
Program Product

L

Restricted Materials of I BM Corporation
L Y26-3921-0
File No. 5370-31

MVS/370
Linkage Editor Logic

Data Facility Product 5665-295

Release 1.0

---- --=- -::-: -= ==----- - ---- - - -----------,-

First Edition (April 1983)

This edition applies to Release 1.0 of MVS/370 Data Facility
Product, Program Product 5665-295, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

Changes are periodically made to the information herein; before
using this pUblication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
pUblication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

This document contains restricted materials of International
Business Machines Corporation. @ Copyright International
Business Machines Corporation 1972, 1983. All rights reserved.

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

HOY TO USE THIS BOOK

This publication describes the internal organization and logic
of the linkage editor. The linkage editor, a processing
program, combines and edits modules to produce a load module
that can be loaded into virtual storage by the control program.

This manual consists of seven sections. The first three
sections describe the overall organization, beginning with a
general description and progressing to a detailed discussion of
the components of the linkage editor. The last four sections
are reference sections for analyzing storage dumps and for
accessing specific areas of code in the program listing.

The seven sections are:

1. "Introduction" describes the linkage editor as a whole,
including its relationship to the operating system. The
major divisions of the program and the relationships among
them are also described.

2. "Method of Operation" provides:

a. An overview of the logic of the linkage editor

b. Detailed descriptions of specific operations

Use the operation diagrams included at the end of this
section with the text. They illustrate the flow of data
through the tables and buffers used during linkage editor
processing.

3. "Program Organization" describes the organization of the
linkage editor. Program components (modules, control
sections, and routines) are described both in terms of their
operation and their relation to other components.

4. "Microfiche Directory" helps the reader find the named areas
of code in the program listing. Microfiche cards contain
the program listing.

5. "Table Layouts" are used for analysis of storage dumps.
They are illustrated in this section.

6. "Diagnostic Aids" includes general register contents at
entry to modules, and an error message--module
cross-reference table.

7. "Appendix" includes input conventions and record formats.

Read the Introduction first for an overview of the linkage
editor within the operating system. Consult the Method of
Operations section for the overall logic of the linkage editor.
Finally, read the Program Organization section for detailed
examination of the program components. Refer to the last four
sections for named areas of code, table layouts, register
contents, input conventions, and record formats while reading
the Method of Operation and Program Organization sections.

How To Use This Book iii

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

If more detailed information is required, refer to the contents
and coding in the linkage editor program listings. Other
pUblications that are required for an understanding of the
linkage editor are:

• MVS/370 Data Management Servjces. GC26-4058

• MVS/370 Data Management Macro Instryctjons, GC26-4057

• OS/VS2 MVS JCL. GC28-0692

The reader should also refer to the corequisit. pUblications:

• MVS/370 Linkage Editor and Loader. GC26-4061

• OS/VS2 System Programming Librarv: Debuggjng Handbook.
Volumes 1 through 3. GC28-1047 through GC28-1049

tv MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972.1983
LY26-3921-0

CONTENTS

Introduction •••••••••••••••
Purpose of Linkage Edi tor .•..
Relationship to the Operating System
General Description ...•

Module Structure
External Symbol Dictionary
Relocation Dictionary
Composite Dictionaries

Linkage Editor Options •••.
Module Attributes •••••..•
Linkage Editor Processing for Attributes

Input/Output Flow ••••

Method of Operation •••••
Logic of the Linkage Editor

Initialization
Input Processing
Intermediate Processing
Second Pass Processing
Final Processing

Initialization•.••••
Preparing the All-Purpose Table (APT)
Analyzing Control Information
Opening Data Sets
Allocating Virtual Storage

Buffer Allocation
Table Allocation •••.

Input Processing ••••
Reading Blocked Input .
Record Lengths for SYSPRINT
Record Lengths for SYSTERM
Control Statement ••..
Control Statement Processors
Object Module Processing
Load Module Processing
ESD Record Types •
CESD Record Types and Subtypes ••••.
ESD Processing .•...• • •••
IDR Processing •......•••.•.......•
Processing Object Module END Records Containing IDR Data
Processing Load Module IDRs
Processing IDENTIFY Control Statement Data
TXT Processing•.•
Processing Object Module Text
Processing Load Module Text
Writing Text on SYSUTI
RLD Processing
END Processing
Include Processing. . .
Automatic Library Call Processing

Intermediate Processing
Address Assignment •.••

ENTAB Size Determination
Entry Processing

Intermediate Output Processing
MAP/XREF Processing •••.••••

Second Pass Processing ...•. • ••••.
Relocation of Address Constants ...•••••..•
Relocation of Nonbranch-Type (A-Type) Address Constants
Relocation of Branch-Type (V-Type) Address Constants
ENTAB Creation ..••
Relocation Routine

Final Processing (HEWLFFNL)
Error Logging ••••
Cross-Reference Table

Diagram 1. Overview of Linkage Editor•..
Diagram 2. Detailed Overview of Linkage Editor Processing
Diagram 3. Initialization .•.•.•••.

Contents

1
1
2
2
3
3
4
4
5
6
8

11

15
15
15
15
16
17
18
19
19
19
20
21
21
21
22
23
23
23
23
25
31
32
34
34
35
39
40
40
41
41
42
43
43
44
47
47
50
51
52
54
56
56
59
59
61
61
66
68
68
72
72
73
74
75
76

y

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Di agram

4. Input Processing
5. Intermediate Processing
6. Second Pass Processing
7. Final Processing •.
8. Control Statement Processing
9. ESD Processing .•••••
10. Processing Object Module Text .
11. Processing Load Module Text Records
12. RLD Processing •.....
13. Address Assignment ••..•• . ..
14. Data Movement During Second Pass Processing

Program Organization •••••••••••••••••••
Initialization and Input Processing

Initial Processor---HEWLFINT (Chart BA) .••••••
Attributes and Options Processor---HEWLFOPT
Allocation Processor---ALLOOl (Chart BA) ••••••.
Table Allocation Processor---HEWLFALK (Chart BB)
Input Processor---HEWLFINP (Chart CAl •
Object Module Processor---HEWLFMDI (Chart CB)
Load Module Processor---INP270 (Chart CC)
SYM Processor---HEWLFSYM (Chart CD)
ESD Processor---HEWLFESD (Chart CE)
Text and RLD Processor---HEWLFRAT (Chart CF)
Text Processor---HEWLFTXT (Chart CG)
RLD Processor---RLD001 (Chart CJ) .••...
End Processor---HEWLFEND (Chart CLl .•.....•
CSECT Identification Record (lOR) Processor---HEWLFIDR

(Chart CQ)••••.......•
Control Statement Scanner---HEWLFSCN (Chart CS) ...•
Include Processor---HEWLFINC (Chart CU)•
Automatic Library Call Processor---HEWLCAUT (Chart CV)

Intermediate Processing ..•.....••..••
Address Assignment Processor---HEWLFADA (Chart DA)
Intermediate Output Processor---HEWLFOUT (Chart EA)

Second Pass Processing .•..•.... • •••••
Second Pass Processor---HEWLFSCD (Chart FA)

Final Processing •.•.•.•..... . ••••
Final Processor---HEWLFFNL (Chart GA) ••••
SYNAD Routine---HEWLCR01 (Chart GB) ••••

Chart AA. Level Major Divisions ...••••••
Chart BA. Initial Processor (HEWLFINT) .•.
Chart BB. Table Allocation Processor (HEWLFALK)
Chart CA. Input Processor (HEWLFINP)
Chart CB. Object Module Processor (HEWLFMDI)
Chart CC. Load Module Processor (INP270)
Chart CD. SYM Processor (HEWIFSYM) ••.•
Chart CEo ESD Processor (NEWLFESD)
Chart CF. TXT and RLD Processor (HEWLFRAT)
Chart CG. TXT Processor (HEWLFTXT) ...
Chart CH. TXT Write Routine (on SYSUT1) (TXTBUF)
Chart CJ. RLD Processor (RLD001)•••
Chart CK. RLD Write Routine (RLDBUF) ..•••
Chart CL. END Processor (HEWLFEND) ...•••••.••
Chart CM. CSECT Identification Record Processor (HEWLFIDR)
Chart CN. IDR Translator Data Processor (HEWLFIDR)
Chart CPo IDRSPZAP Data Processor (HEWLFIDR) •
Chart CQ. IDR Identify Data Processor (HEWLFIDR)
Chart CR. lOR User Data Processor (HEWLFIDR)
Chart CS. Control Statement Scanner (HEWLFSCN)
Chart CT. READ8 Routine••...
Chart CU. Include Processor (HEWLFINC) ..•
Chart CV. Automatic Library Call Processor (HEWLCAUT)
Chart DA. Address Assignment Processor (HEWLFADA)
Chart DB. ENTAB Size Determination Routine (HEWLFENS)
Chart DC. Entry Processor (HEWLFENT> ..••.••
Chart EA. Intermediate Output Processor (HEWLFOUT)
Chart EB. MAP/REF Processor (HEWLFMAP) .•••
Chart EC. lOR WRITE Routine (HEWLFOUT)
Chart FA. Second Pass Processor (HEWLFSCD)
Chart FB. GETIDMUL Routine• .
Chart FC. TXT Read Routine (RDTXT), RLD Read Routine

(RDRLD)---HEWLFSIO . • . •

vi MVS/370 Linkage Editor Logic

77
78
79
80
81
82
83
84
85
86
87

88
88
88
88
88
89
89
89
90
90
91
91
91
91
92

92
92
92
93
93
93
93
94
94

H~
98
99

100
101
102
103
104
105
108
109
110
111
113
114
115
116
117
118
119
120
122
123
124
126
127
128
130
131
132
134

:::~

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972.1983
LY26-3921-0

Chart FD. Text Write Routine (on SYSLMOD)
(WRTTXT)--HEWLFSIO

Chart FE. Relocation Routine (HEWLFREL)
Chart GA. Final Processor (HEWLFFNL) ..••
Chart GB. SYNAD Routine (HEWLCR01) •
Chart GC. Error Logging Routine (HEWLFLOG)

138
139
142
143
144

Microfiche Directory

Table Layouts

Diagnostic Aids

. 145

150

183

194
194
195

APpendix. Input conventions and Record Formats
Input Conventions
Record Formats

Index 207

Contents vi i

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
lY26-3921-0

FIGURES

I. linkage Editor Processing--Simple Case 3
2. Combining Control Dictionaries · · · · · 5
3. linkage Editor Processing for the Overlay and TEST

Attri butes · · · · · · · · · · · · 9
4. linkage Editor Processing for the Scatter load·and TEST

Attri bute . · 11
5. Input/Output Flow · · · · · · · · · · · · · · · · · · 13
6. Incompatible Module Attributes and Program Opt'i ons 20
7. Control Statement Scanner Operation · · · · · · · · 24
8. INCLUDE Statement Processing for a Sequential Data Set 25
9. INCLUDE Statement Processing With Nested Members 26

10. Overlay Statement Processing · · · · · · · · · · · · 27
II. Order and Page Processing · · · · · · · · · · · · · · 29
12. library Statement Processing · · · · · · · · · · · · 30
13. General Register Information--Object Module Processing 31
14. Input Record Types--load Module · · · · · · · · · · · 33
15. General Register Information--load Module Processing 33
16. RlD Flag Field Processing 46
17. Include Processing · · · · · · · · · · · · · · · 49
18. Automatic librarv Call Processing · · · · · 51
19. ENTAB S;'ze Determination · · · · · · · · · · · · 55
20. Processing of Al i as Symbols by the Entry Processor 57
21. Writing Scatter/Translation Records · · · · · · · · 58
22. Nonbranch-Type Address Constants-Relative Relocation 62
23. Nonbranch-Type Address Constants--Absolute Relocation 63
24. Nonbranch-Type Address Constants-Absolute and Relative

Relocation · 64
25. Example of Deli nk i ng · · · · · · · · · · · · 65
26. Entry list Processing · · · · · · · · · · · 67
27. Relationship of RlD Flag Field to Relocation 69
28. ENTAB Creation · · · · · · · · · · · · 70
29. Building Error Messages · · · · · · 73
30. load Module Record Types and Associated Processors 90
3I. linkage Editor Organization · · · · 96
32. Sample Flowchart Symbols · · · · · 97
33. Microfiche Directory · · · · · 145
34. Module/CSECT Cross-Reference Table · · · · 149
35. Table Construction and Usage 150
36. All-Purpose Table (APT> · · · · · · · · 151
37. Alias Table · · · · · · · · · · · 161
38. Calls li st (As Built by RlD Processor) · · · 161
39. Calls list (As Altered and Used by ENTAB Size

Determination Routine) · · · · · · · · · · · · · · 161
40. Composite External Symbol Dictionary (CESD)-Internal

Format . . · · · · · · · · · · · 162
4I. Normal Combination of Internal CESD Types 163
42. Delink Table 164
43. Downward Calls list · · · · 164
44. Entry li st · · · · · · · · 165
45. Entry Table (ENTAB) · · · · · · 165
46. Half External Symbol Symbol Dictionary (HESD) 166
47. High ID Table (HIlD) · · · · · · · · · · · 167
48. Virtual Storage Allocation Table · · 168
49. Partitioned Organization Directory Record (As Received

from BlDl) · · · · · · · · · · · · · · · · · 169
50. Module Attributes · · · · · · · · · · · · 170
5I. Partitioned Organization Directory Record (As Built by

linkage Editor) · · · · 172
52. Relocation Constant Table (RCT> 173
53. Renumbering Table (RNT> 173
54. RlD Input Control Block 174
55. RlD Output Control Block 175
56. RlD Note li st · · · · 176
57. Second Pass Text Control Block 177
58. Segment length Table (SEGlGTH) · · · · 178
59. Segment Table (SEGTAB) · · · · · · 179
60. TABLE and LIST (Referred to by HEWlFBTP) 180
6I. Text I/O Table · · · · · · · · · · · · · 180

viii MVS/370 linkage Editor logic

j

..)

~

(,

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3921-0

62. Text Note Li st · · · · · · · · · · · · · · 181
63. XAD2CESD Table (Bui! t and Referred to by

Cross-Reference Table Routine) · · · · 181
64. ORDER Table (Bu i It by HEWLFSCN) · · · 182
65. General Register Contents at Major Entry Points 183
66. Buffer Allocation . · · · · · · · · · · · · · · · 187
67. Table Allocat ion . · · · · · · · · · · · 188
68. Error Message/Issuer Cross-Reference Table 189
69. SYM Input Record (Card Image) 195
70. ESD Input Record (Card Image) 196
71. Text Input Record (Card Image) 197
72. RLD Input Record (Card Image) · · · · · · · · 197
73. END Input Record-Type 1 (Card Image) · · · · · 198
74. END Input Record-Type 2 (Card Image) · · · · · 198
75. IDR Data in an Object Module End Record · · · · · · 199
76. SYM Record (load Module) · · · · 199
77 • CESD Record (Load Module) · · · · · · · · · · · · · 200
78. Scatter/Translation Record · · · · · · · · · · · · 201
79. Control Record (load Module) · · · · · · · · 202
80. Relocation Dictionary Record (Load Module) · . . . 203
81. Control and Relocation Dictionary Record (load Module) 204
82. Record Format of Load Module IDRs · · · · · · · · · 204

Figures ix

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

INIRODUCTION

This section describes the purpose, organization, and internal
operation of the linkage editor, and its relationship to the
operating system.

PURPOSE OF LINKAGE EDITOR

The linkage editor is one of the processing programs of the
operating system. It is a service program used in conjunction
with the language translators to prepare machine-language
programs from symbolic-language programs written in FORTRAN,
COBOL, report program generator, assembler language, or PL/I.
Linkage editor processing is a necessary step that follows
source program assembly or compilation.

Linkage editor processing allows the programmer to divide a
program into several parts, each containing one or more control
sections. Each part may then be coded in the programming
language best suited to it and may then be separately assembled
or compiled by a language translator (under the rules applicable
to each language translator>.

The primary purpose of the linkage editor is to combine and link
object modules (the output of the language translators> into a
load module. In that load module, all cross-references between
control sections are resolved as though they had been assembled
or compiled as one module. The load module produced by the
linkage editor consists of executable machine-language code in a
format that can be loaded into virtual storage and relocated by
program fetch.

In addition to combining and linking object modules, the linkage
editor performs the following functions:

• Library Calls. Modules (such as standard subroutines> stored
in a library can be placed in the input to the linkage
editor, either automatically or upon request. If unresolved
external references remain after all input to the linkage
editor is processed, an automatic library call routine
retrieves the modules required to resolve the references.
However, unresolved external references marked "weak call ft

or "never call" are not resolved by this routine.

• Program Modification. Control sections can be replaced,
deleted, or rearranged (in overlay programs) during linkage
editor processing, as directed by linkage editor control
statements. Common control sections generated by the
FORTRAN, PL/I, and assembler language translators are
provided locations within the output load module.

• Order and Page Support. The linkage editor can order control
sections in the sequence specified on the linkage editor
control statements, and can assign control sections to page
boundaries according to the control statements.

• Addressing Mode, Residence Mode, and Read-Only Support. The
linkage editor assigns an addressing mode for the entry
points into a load module, assigns a residence mode for the
load module, and indicates which control sections are
read-only in a nucleus load module.

• Program Processing History. CSECT identification records
built during linkage editor processing contain data
describing the language translators and the linkage editor
that produced the program, any modifications to that program
by AMASPZAP, and, optionally, up to 40 characters of user
data for each control section within the program.

Introduction 1

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

•

•

Overlay Module Processing. The linkage editor prepares
modules for overlay by assigning relative locations within
the module to the overlay segments and by inserting tables
to be used by the overlay supervisor during execution.

Options and Error Messages. The linkage editor can:

Process special options that override automatic library
calls or the effect of minor errors

Produce a list of linkage editor control statements that
were processed

Produce coded diagnostic messages and a directory
describing those diagnostic messages that were printed
out during linkage editor processing

Produce a module map or cross-reference table of control
sections in the output load module

RELATIONSHIP TO THE OPERATING SYSTEM

GENERAL DESCRIPTION

The linkage editor has the same relationship to the operating
system as any other processing program. Control is passed to
the linkage editor in one of three ways:

1.

2.

3.

As a job step, when the linkage editor is specified on an
EXEC job control statement in the input stream

As a subprogram, via the execution of a CALL macro
instruction (after execution of a LOAD macro instruction), a
LINK macro instruction, or an XCTL macro instruction

As a subtask, in multitasking systems, via execution of the
ATTACH macro instruction

Linkage editor input may consist of a combination of object
modules, load modules, and linkage editor control statements.
The prime function of the linkage editor is to combine these
modules, in accordance with requirements stated on control
statements, into a single output load module that can be
relocated and loaded into real storage by program fetch for
execution. Output load modules are placed into partitioned data
sets (libraries).

Each module to be processed by the linkage editor has an origin
that was assigned during assembly, during compilation, or during
a previous execution of the linkage editor. Each module in the
input to the linkage editor may contain symbolic references to
control sections in other modules; such references are called
external references.

To produce an executable output load module, the linkage editor:

1. Assigns relative virtual storage addresses to the control
sections to be included in the output module. Because each
input module has an origin that was assigned independently
by a language translator, the order of the addresses in the
input is unpredictable. (Two input modules, for example,
may have the same origin.) The linkage editor assigns an
origin to the first control section and then assigns
addresses to all other control sections in the output
relative to either this origin or to the last control
section aligned on a page boundary.

2. Resolves external references in the input modules.
Cross-references between control sections in different ~.
modules are symbolic, and must be resolved (translated into . .
relocatable machine addresses) in relation to the contiguous
virtual storage addresses assigned to the output load

2 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
LY26-3921-0

MODULE STRUCTURE

module. These symbolic cross-references are made by means
of address constants.

The linkage editor calculates the new address of each
relocatable expression in a control section and determines the
assigned origin (value) of the item to which it refers.

Linkage editor processing is affected by specified options,
operations requested on control statements, module attributes
contained in partitioned data set directories, and control
information contained within the modules themselves. The
following paragraphs des6ribe the relationship of module
structure, linkage editor options, and module attributes to
linkage editor processing.

Object modules and load modules have the same basic logical
structure (see Figure 1). Each consists of:

• Control dictionaries, containing the information necessary
to resolve symbolic cross-references between control
sections of different modules, and to relocate address
constants

• Text, containing the instructions and data of the program

• An end of module (EOM) indicator (END record in object
modules; EOM indication in load modules)

Input

Object Module

ESD

TXT

RLD

END

Output

Load Module

CESD

Control

TXT

EOM/RLD

Figure 1. Linkage Editor Processing--Simple Case

Each language translator usually produces two kinds of control
dictionaries: an external symbol dictionary (ESD) and a
relocation dictionary (RLD). An object module always contains
an ESD; a load module contains an ESD unless it is marked with
the "not editable" attribute. Object and load modules usually
contain an RLD (unless there are no relocatable address
constants in the module). Control dictionary entries are
generated when external symbols, address constants, or control
sections are processed by a language translator.

External Symbol Dictionary

An external symbol dictionary contains entries for all external
symbols defined or referred to within a module. (An external
symbol is one that is defined in one module and can be referred
to in another.) Each entry identifies a symbol, or a symbol

Introduction 3

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

reference, and gives its location, if any, within the module.
When combining input modules, the linkage editor resolves
references between different input modules by matching the
referenced symbols to defined symbols; it does this by searching .~".'
for the external symbol definitions in each input module's ESD. ,
There is an ESD entry for each named control section and each
named common area. The ESD also contains entries that identify
unnamed control sections and unnamed common areas.

Relocation Dictionary

The relocation dictionary (RLD) lists all relocatable address
constants that must be modified when the linkage editor produces
an output load module. The linkage editor uses the RLD whenever
it processes a module. The RLD is also used to adjust the value

. of address constants after program fetch reads an output load
module from a library and loads it into virtual storage for
execution. The RLD contains at least one entry for every
relocatable address constant in a module. An RLD entry
identifies an address constant by indicating both its location
within a control section and the external symbol (in the ESD)
whose value must be used to compute the value of the address
constant.

composite Dictionaries

An output load module is composed of all input object modules
and input load modules processed by the linkage editor (except
those that are replaced or deleted). The control dictionaries
of an output module are therefore a composite of all the control
dictionaries in the linkage editor input. The control
dictionaries of a load module are called the composite ESD
(CESD) and the RLD.

Figure 2 on page 5 shows how the control dictionaries of two
input modules are combined into composite dictionaries by the ~".
linkage editor. The control dictionaries and their associated
text are interrelated through a system of line numbers and
pointers. Within an input module, each ESD item on which an
address constant may depend has a line number (ESD identifier,
or ESD ID); the line number indicates the position of the item,
relative to the other ESD items associated with the text. 1 Every
item of text in an object or load module has associated control
information that describes it. This control information
includes the ESD ID of the ESD item for the control section that
contains the text. (In Figure 2. the ESD ID of the text item
that contains X and Y points to line 1 of the ESD for input
module 1. The ESD ID of the text item containing Z points to
line 1 of the ESD for input module 2.)

Each RLD item must point to two ESD items:

1. The ESD item for the symbol on which the address constant
depends. This is referred to by the RLD relocation pojnter
(R pointer).

2. The ESD item for the control section that contains the
address constant. This is referred to by the RLD position
pointer (P pointer).

1 In an object module, one type of ESD item (ID) may have
associated text or address constants that depend on it (see ~'
"ESD Processing"). Such ESD items are excluded from the
numbering system.

4 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983
LY26-3921-0

Input Module I • Output Module

ESO CESD
Symbol Type" Origin Length Symbol Type Origin Length

500 -5]) 000 500
SD 500 2000
SO 2500 1000

Input Module 2

I~
200

c:cP

"See "ESO Record Types"

Figure 2. Combining Control Dictionaries

In input module 1, X and Y are address constants in the same
control section (CSECT A). X refers to a symbol in CSECT Ai
therefore, both pointers of its associated RLD item refer to the
ESD entry for CSECT A (line 1). The value field of Y refers to
a symbol in a different control section (CSECT C); therefore,
the R pointer of its associated RLD points to the ESD entry for
the external reference (line 2), whereas the P pointer refers to
the ESD entry for its control section (line 1).

When the linkage editor combines the input modules, it must
maintain this system of pointers by renumbering the ESD items to
reflect their relative positions in the CESD of the output
module. It must also update the RLD pointers and control
information for the text so that they refer to the renumbered
CESD items; the resulting CESD and RLD items are shown in
Figure 2.

LINKAGE EDITOR OPTIONS

Options for error diagnostics. processing, and space allocation
may be specified by parameters listed on the EXEC card. or they
may be passed internally by a program requesting the linkage
editor via LINK, LOAD, ATTACH, or XCTL macro
instructions. 2 If the options are passed internally, the user
can also provide alternates for the standard ddnames. 3 If the

For more information, see Data Management Servjces and ~
Management Macro Instryctions.
For more information, see ~.

Introduction 5

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3921-0

"ODULE ATTRIBUTES

options are not user-specified, the defaults are used. The
options that may be specified are as follows:

• LIST. A list of all linkage editor control statements is
written on the diagnostic output data set.

• MAP. A module map, which lists external names and their
storage addresses, is written on the diagnostic output data
set.

• Cross-reference table (XREF). A cross-reference table,
which includes a module map and a list of all address
constants that refer to other control sections, is written
on the diagnostic output data set.

• TERM. Error messages are directed to the terminal data set
as well as to the diagnostic output data set.

• ~. The output module is marked as executable even though
a severity 2 error condition was found during processing.

• Exclusive call (XCAL). The output module is marked as
executable even though valid exclusive references between
overlay segments have been made.

• No automatic library call (HCAl). The automatic library
call mechanism is not to be invoked to resolve external
references.

• SIZE (value 1. value 2). The user can supply two values to
specify the maximum amount of storage to be obtained for
linkage editor processing and what amount of the gotten
storage is to be used as the load module buffer.

• DeBS. The linkage editor initialization routine examines
the SYSLMOD DD statement for a DeB BLKSIZE parameter and
uses that value, if it is acceptable, for its block size
limit. If the DEVTYPE capacity is less than the specified
block size, the DEVTYPE value is used.

When the linkage editor generates a load module in a library
partitioned data set (PDS). it places an entry for the module in
the PDS directory. This entry contains "attributes" describing
the structure, content, and logical format of the load module.
The control program uses these attributes to determine how a
module is to be loaded, what it contains, whether or not it is
executable, whether it is executable more than once without
reloading, and whether it can be executed by concurrent tasks.

Some options for module attributes can be specified by the user;
others are specified by the linkage editor as a result of
information gathered during processing. In the following list,
attributes marked with an asterisk (*> cannot be specified by
the user.

• Reenterable (RENT). A reenterable module can be executed by
more than one task at a time and cannot be modified by
itself or by any other module during execution; that is, a
task may begin executing a reenterable module before a
previous task has finished executing it.

• Refreshable (REFR). A refreshable module cannot be modified
by itself or by any other module during execution. A
refreshable module can be replaced by a new copy during
execution by a recovery management routine without changing
either the sequence or results of processing.

• Serially reusable (REUS). A serially reusable module will
be executed by only one task at a time, and will either .~ ...
initialize itself and/or will restore any instructions or
any data in the module that it alters during its execution.

6 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
lY26-3921-0

• Qverlay format COYLY). A load module structured for overlay
includes a segment table CSEGTAB) to enable the overlay
supervisor to load the proper segments, and at least one
ENTAB to assist in passing control from one segment to
another. If a load module has the overlay format attribute,
the reenterable, reusable, refreshable, hierarchy, scatter,
addressing mode, and residence mode attributes cannot be
present.

• Hierarchy format CHIAR). When a HIARCHY statement is
detected, the "number" and "name" operand values are used in
building the scatter table and the translation table. The
high-order byte of each CSECT address entry contains the
hierarchy number that is included in the GETMAIN request for
main storage for program loading. Hierarchy information is
used only when the program is loaded under the OS system.

• Test (TEST). If this module is an assembler language
program and testing by the test translator or the TSO TEST
command is desired, this attribute can be specified. Test
will cause SYM records to be written. Note that modules
using TESTRAN should not be marked with the RENT, REUS, or
REFR attribute.

• Only loadable (Ol). This attribute indicates that the
control program may load this module only through the
execution of the LOAD macro instruction.

• Scatter format (SCTR). In the OS environment, a load module
in scatter format is suitable for block or scatter loading.
The scatter table, translation table, and the relocation
dictionary maintain logical linkage between scattered
control sections when program fetch loads them into storage.
In the virtual storage environment, the scatter format is
ignored by program fetch. The SCTR attribute is, however,
relevant in the link-editing of a nucleus for a virtual
storage system, which requires the scatter and translate
tables for its proper initialization.

• ALIGN2. If the ALIGN2 attribute is present, all control
sections or named common areas specified on the PAGE control
statements are placed in storage on 2K-byte page boundaries.
The ALIGN2 attribute also aligns on 2K-byte page boundaries
those control sections or named common areas associated with
the "P" operand on the ORDER control statement.

• *Block format. If neither the overlay nor scatter
attributes are specified, it is implied that the module can
only be block loaded. The control program will load the
module only if enough contiguous storage is available for
the entire module.

• *Executable. This attribute indicates that linkage editor
did not find any errors that would prevent successful
execution. If this attribute is not present, the control
program will not load the module.

• *Module contains one text record and no relocation
dictionary records. This attribute indicates that the
control program does not have to allocate storage for
relocation dictionary items when loading the module. It
also indicates that the first text record is the last onei
there is no control record following it. The entire module
can be read by program fetch in a single read operation.

• Downward compatible (DC). This attribute indicates that the
module can be processed by either the level E or level F
linkage editor. The downward-compatible attribute is
assumed by the level E linkage editor. Modules processed by
the level F linkage editor that are not marked "downward
compatible" cannot be processed by the level E linkage
editor.

Introduction 7

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
lY26-3921-0

•

•

*linkage editor assigned origin of first text record js
~. If this attribute is present, the first byte of
instruction or data in the first text record is assigned to
location zero.

MEntry point assigned by linkage editor is zero. This
attribute indicates that the entry point is at the first
byte of the module.

• *No relocation dictionary jtems present. This attribute
indicates to the control program that no allocation of
storage is necessary to receive relocation dictionary items
when program fetch loads them into virtual storage.

• Hot editable (HE). This attribute indicates that the load
module cannot be accepted by the linkage editor for
subsequent processing. The CESD from an output load module
is dropped to conserve space on the library.

• *Symbol statements present. If a module produced by the
assembler language translator is to be tested by the test
translator (TESTRAH) or the TSO TEST command, it may contain
a testing symbol dictionary. In a load module, this
dictionary contains the information from the SYM statement
images that were in the input to the linkage editor.

• Authorization Code (AC). The output load module is assigned
an authorization code that determines whether or not the
load module may use restricted system services and
resources.

• Addressing Mode (AMODE). The entry points--either main,
true alias, or alternate--into the output load module are
assigned the addressing mode that is to be in effect when
the load module is entered at those entry points.

• Residence Mode (RMODE). The output load module is assigned
the residence mode that applies to that load module when it
is loaded into virtual storage for execution.

• MRead-Only Control Section. "Read-only" is an attribute of
a control section deliberatelY created as such by
specification of the control section as an RSECT to the
language translator. The attribute is effective only when
the control section is included in the nucleus load module
for an MVS/XA system; otherwise it is ignored. The
attribute is obtained from the ESD entries for the read-only
control sections and is reflected in the scatter table
entries for those control sections in the nucleus load
module.

LINKAGE EDITOR PROCESSING FOR ATTRIBUTES

Several examples are given here of how linkage editor processing
is affected by attributes specified by the user. Figure 1 on
page 3 shows a simple case in which a single object module,
containing only one control section, is processed by the linkage
editor for block loading.

Figure 3 on page 9 shows the processing of an object module and
a load module, each containing several control sections. In
this example, test translator macro instructions were included
in an assembler language source program and test symbol (SYM)
records were produced by the assembler language translator. The
TEST and OVlY attributes were specified in the control
information passed to the linkage editor, and overlay control
statements were included in the input to the linkage editor.
With these attributes, the output load module produced by the
linkage editor contains:

• SYM records to be used by the test translator. (If the TEST ~
attribute is not specified, input SYM records are not
included in the output load module.) These records contain .

8 MVS/370 linkage Editor logic

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
LY26-3921-0

Object
Module.

Legend:

SYM
ESD
TXT
END
ESD
TXT
END
ESD
TXT
RLD

o

blocked SYM and ESD statements created during a previous
execution of the linkage editor. SYM records in load
modules are passed unmodified through the linkage editor to
the output load module.

• A composite ESD. CESD records contain the ESD items for the
module. There is a maximum of 15 ESD items per record on
the output record. The first 8 bytes of the CESD record
contain control information pertaining to the ESD items in
the record. This information consists of the ESD ID of the
first ESD item and the number of bytes of ESD items in the
record.

Input

Load
Madule

SYM
CESD
lOR

Control
Record
SEGTAB
Control
Record

TXT

ontrol
Record
TXT
ControljRLD
Rec d
ENTAB
EOS/
RLD Record
Control
Record
TXT

_____ ~-< linkage) _____ _

. Editor .

Load
Module

ControV
RLD Record Segment 1
ENTAB (Root

"'+-"E"='O'='S/-:"---i Segment)

RLD Record
Control
Record
TXT
Controlj
RLD Record Segment 2

Segment N
• RLD item. exist for previous TXT record,; therefore, EOM/RLD follaw, TXT record .

•• No RLD items for last TXT record; therefore, EOM precedes TXT record. Note
list Note -- Any overlay tables in the input load module are ignored.

Figure 3. Linkage Editor Processing for the Overlay and TEST Attributes

• CSECT Identification Records (IDR). The IDRs are input from
either an input load module, an END record, or the linkage
editor IDENTIFY control statement. IDRs may contain dat~:

Identifying the language translator creating the control
section, its level, and the translation date

Describing the most recent processing by the linkage
editor

Describing any modification to the executable code of a
control section

Introduction 9

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

Supplied by a user and associated with the executable
code of a control section

Note: The user-supplied data is specified on the IDENTIFY
control statement.

• A control record. or a composite control/RLD record.
preceding each text record. The RLD portion, if present,
contains the RLD items used to relocate the previous text. 4
The control portion may contain:

•

An end of segment (EOS) indication, if the following
text record is the last text record of an overlay
segment. s

An end of module (EOM) indication, if the following text
record is the last text record of the module. s

The number of bytes of RLD information that follow, if
it is a composite control/RlD record.

The number of bytes of control information.

The control portion also contains the IDs and lengths (in
bytes) of all the control sections in the following text, to
a maximum of 60, and a channel command word (CCW). The
channel command word contains the address assigned by the
linkage editor to the first byte of that record, plus the
total length of the record. This information is used by
program fetch to read the following text.

Note: The control portion contains as many IDs and lengths
as there are control sections in the following text record.

Text for each control section. Text records contain the
instructions and data for the module. In overlay, the
linkage editor produces two special types of text records,
the segment table (SEGTAB) and entry table (ENTAB).

SEGTAB, located in the root segment, is used by the overlay
supervisor to keep track of the relationship of segments
during execution. EHTAB is a separate control section that
may be created by the linkage editor for each overlay
segment. EHTAB is used by the overlay supervisor to
determine the segment to be loaded when a segment not in the
current path is referred to.

• A note list. A note list gives the location of each overlay
segment in the output module library.

4 If there are many RLD items for the previous text, there may
be several RLD records preceding the next text record. The
last of these is a control/RLD record.

S If there are no RLD items for the last text record, the
control record that precedes the text contains the EOSor ~
EOM indication. If there are RLD items, the EOS or EOM
follows the text record (see Figure 3 on page 9).

10 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Obiect
Module.

load
Module

Input

lOR
Scotter
Translation
Record

Control

TXT

ConlTol/RlO

TXT

Contro I /Rl 0

TXT

EOM/RlO

load
Module

SYM

CESO

lOR

Scatter
Tromlation
Rect)rd

Figure 4. linkage Editor Processing for the Scatter load and TEST Attribute

JNPUT,OUTPUT FLOW

Figure 4 shows the module structure when the scatter load and
TEST attributes are requested. With these attributes, the
output load module contains:

• SYM records

• A composite ESD

• IDR records

• A scatter'translation record used by program fetch to
compute the relocated addresses required for scatter loading
the module into storage. The record contains a scatter
~ and a translation table. The scatter table is a list
of control section addresses; the translation table
correlates the CESD entry for each control section with the
address indicated in the scatter table. (When a load module
in scatter format is processed again by the linkage editor,
this information is ignored.)

• Text for each control section, preceded by a control or
control'RlD record describing it.

• RlD or control'RlD records containing any RlDs pertaining to
the preceding text record.

• An EOM indication that marks the end of the module.

The appendix "Input Conventions and Record Formats" contains
the format of each record type.

Four data sets must be specified for linkage editor processing;
their ddnames and functions are:

1. SYSlIH. This is the "primary input data set," containing
object modules and control statements. All input from
SYSlIH must be in 80-column card image format, unblocked or
blocked from 1 to 40 records per block. The SYSLIH source
may be a card reader, magnetic tape, a direct access device,
or a concatenation of data sets from different types of
input devices.

Introduction 11

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3921-0

2. SYSPRINT. This is the "diagnostic output data set."
Diagnostic messages as well as any diagnostic options
requested, such as a module map or cross-reference table,
are written on SYSPRINT. It is a sequential data set and -J >

may be partitioned. The SYSPRINT device may be a printer,
magnetic tape, terminal. or a direct access device.

3. SYSUTI. This is the "intermediate data set." The linkage
editor uses this data set for temporary storage of text and
RLD items being processed. SYSUTI must be on a
direct-access volume.

Note: SYSUTI is opened only when twopass processing is in
effect.

4. SYSLMOD. This is the "output module data set." It is a
partitioned data set on a direct-access volume. SYSLMOD
contains load modules; their attributes are described in the
user's portion of the directory entry for the member.

Two additional data sets may be specified for linkage editor
processing; their ddnames and functions are:

• SYSTERM. This is the "terminal data set." Diagnostic
messages are written on SYSTERM if the TERM option was
specified. When the linkage editor is being executed in the
time-sharing foreground. the SYSTERM device is always the
terminal; when the linkage editor is being executed in the
background. the SYSTERM device may be a printer. magnetic
tape, or a direct-access device.

• SYSLIB. This data set is used by the linkage editor if
there are any automatic library calls to be processed.
SYSLIB can be defined only as a partitioned data set CPDS).
The members of SYSlIB can be either load modules or object
modules (but object modules and load modules cannot be
contained in the same PDS and a data set containing load
modules cannot be concatenated with a data set containing
object modules).

When SYSlIB is opened. the linkage editor determines whether
the PDS contains object or load modules by checking the
record format field (RECEM) in the data control block (DCB).
(The format is fixed (F) for object modules and undefined
(U) for load modules. Load module records are of variable
length.) If SYSLIB contains object modules. the linkage
editor ignores the user's portion of the PDS directory
entries for the object modules.

other data sets may be read by linkage editor when it processes
INCLUDE or LIBRARY statements specifying ddnames. Data sets
referenced with INCLUDE statements may be either sequential or
partitioned. SYSLIB and any data sets specified in LIBRARY
statements for use by automatic library call must be
partitioned.

The attributes for the "execute linkage editor" job step are the
attributes specified on the EXEC statement. These attributes
may be modified if a load module having different attributes is
processed. .

Figure 5 on page 13 shows the input/output flow. During the
initial processing. SYSlIN, SYSPRINT, SYSLMOD, and SYSTERM Cif
the TERM option was specified) are opened. During input
processing. the primary input is read from SYSLIN. If an
INCLUDE statement is read in the primary input, the data set
whose ddname is specified on the statement is opened, and is
processed. At the end of all SYSlIN input, SYSLIB and any other
data sets whose ddnames are specified on LIBRARY statements are
processed through automatic library calls.

12 MVS/370 linkage Editor Logic

L

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

SYSLIN

Additional
Input
Sources

SYSLIB

SYSUTl

Initial
Processing

Input
Processing

Intermediate
Processing

Second Poss

t---------"--+-t Processing

Final
Processing

Figure 5. Input/Output Flow

SYSPRINT

Diagnostic
Output
Data Set

SYSTERM

SYSLMOD

If the TEST attribute has been selected, SYM records are written
during input processing; text and RLD items are written
sequentially on SYSUTl, except during single pass processing.
The location of each text record on SYSUTI is entered in a ~
note list. The location of each RlD record on SYSUTI is entered
in a RlD note Ijst. If either note list overflows, it is
written out on SYSUTI. The RlD note list may overflow 3 times,
the text note list may overflow 11 times.

In intermediate processing, the CESD is written on SYSlMOD. If
a scatter table, translation table, or SEGTAB is required, it is
also written on SYSlMOD. The note list for the text and RLD
items on SYSUTI are read into storage. If a module map was
required, the CESD is used in producing the map. If a
cross-reference table was requested and all RlDs are in storage,
the table is produced during intermediate processing.

During second pass processing, text and RlD records are read
into storage from SYSUTI in the order of assigned addresses
within each segment (using the note lists to find the records)
and ara written out on SYSlMOD.

In final processing, the member name and any alias names are
entered into the PDS directory entry for the output load module
through the execution of the STOW macro instruction. If any
coded diagnostic messages were written on SYSPRIHT during

Introduction 13

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

linkage editor processing, a diagnostic message directory
containing error message text is written out on SYSPRINT. If a
cross-reference table was requested and was not produced during
intermediate processing. SYSLMOD is opened for input, RLDs are
read, and the cross-reference table is produced. At the end of
final processing, SYSLMOD is closed (if it was opened for
input). All other data sets are then closed and control is
returned to the calling program, unless theSYSLIN input during
input processing was terminated by a NAME statement. If a NAME
statement terminated the primary input, control is returned to
initial processing and SYSLMOD is opened for output, if it had
been closed during final processing.

When multiple load modules are produced in a single execution of
the linkage editor, SYSLIN, SYSPRINT, and SYSUTI remain open for
the entire execution. (A pointer in the DeB for SYSUTI is
repositioned to the beginning of the extent of SYSUTI after each
load module is produced.) If neither a module map nor a
cross-reference table is requested, or if a cross-reference
table is requested and all RLDs are in storage, SYSLMOD remains
open for output for the entire linkage editor execution.

14 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

METHOD OF OPERATION

This section contains an introduction to the logic of the
linkage editor, emphasizing the flow of primary data and control
information through tables and buffers, and functional
descriptions of its phases.

LOGIC OF THE LINKAGE EDITOR

Initialization

Input processing

The linkage editor can be functionally divided into five phases:

• Initialization

• Input (first pass) processing

• InterMediate (first pass) processing

• Second pass processing

• Final processing

Operation diagrams at the end of this section illustrate the
functional operation of the linkage editor. The shaded areas of
the diagrams correspond to operations described in the text.

When the linkage editor receives control from the job scheduler
or a calling program, it performs initialization functions in
preparation for all subsequent processing (see Diagram 3). The
operations included in initialization are:

• Build the all-purpose table (APT) and enter addresses and
descriptions of all other tables and buffers into it.

• Analyze the attributes and options passed by the calling
program (specified by the programmer) and save them in the
all-purpose table.

• Initialize DCBs and open data sets to be used during linkage
editor processing.

• Allocate storage for all tables, buffers, and work areas to
be used by linkage editor processing.

When all initialization functions are completed, the linkage
editor is ready to accept input.

All linkage editor input is processed initially during the first
pass (see Diagram 4). Object modules from SYSLIH (primary input
data set) are read into the SYSLIH buffer. Object modules from
SYSLIB or a specified user's library (secondary input data sets)
are read into the object module buffer. Text records in load
modules from SYSlIB or a user's library are read into the ineYi
text buffer; all other load module records are read into the
first pass RlD buffer. The various records that constitute
these modules are processed as follows.

Control Statements: These records, which may precede or follow
object modules, contain information that is later used in symbol
res~lution and that specifies libraries containing secondary
input. Depending on the type of control statement, entries are
made in either the all-purpose table (APT) or the composjte
external symbol dictionary (CESD).

Method of Operation 15

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
lY26-3921-0

ESD Records: These records from object modules, and CESD records
from load modules, describe symbols that have been defined for
external use. Entries for the symbols are made in the CESD.
Entries are made in the renumbering table to allow the
translation of the input ESD identifiers (IDs) into new CESD.· .. ~ ..
IDs. Entries are made in the delink table for symbols that are ~
to be deleted or replaced.

TXT Records: These records, containing the instructions and data
of the program, are moved from the SYSlIN buffer and object
module buffer to the input text buffer (text records from load
modules are read directly into the input text buffer). They are
arranged in the proper sequence and recorded in the text I/O
table and the text note list. When the input text buffer is
filled, its contents are written onto SYSUTli if it does not
become filled, text records are retained in the buffer, and
"single pass" processing is in effect. Text note list entries
contain the location of text records (SYSUTI address or buffer
address) and other descriptive information. Text I/O table
entries contain information identifying text records by ESD ID.

RLD Records: These records, to be used later in relocating
address constants, are moved from the SYSLIN buffer and object
module buffer to the RLD buffer. The relocation and position
pointers (R and P pointers) are updated, using control
information from the renumbering table and the delink table.
RLD items are examined and marked for future processing. If
V-type (branch-type) address constants are found in overlay
programs, entries are made in the call list for use during
intermediate processing. When the RLD buffer is full, RLD
records are written on SYSUT1, and control information
identifying RLD records by size (byte count), P pointer, and
location on SYSUT1 is entered in the RLD note list. If the RLD
buffer does not become filled, RLD records are retained in the
buffer and single pass processing is in effect.

SYM Records: These records, which are not involved in linkage
editor processing, are gathered in the RlD buffer and are
written directly on SYSLMOD, if the TEST attribute has been ... \
specified. If TEST has not been specified, SYM records are ~
ignored.

IDR Records: These records, which contain data either from an
input load module or from an END record or from the linkage
editor IDENTIFY control statement, supply information concerning
the processing history of the modules in which the IDRs occur.
If the data is from an input load module, control is passed to
the IDR processor HEWLFIDR. If the data is from an END record,
the data refers to the compiler that created the object module.
The compiler or translator data is passed in a parameter list to
the lOR processor. The user data, supplied via the l.inkage
editor IDENTIFY control statement, is converted into a parameter
list and passed to the IDR processor.

When all input records have been processed (all external symbols
have been entered into the CESD), control is passed to
intermediate processing.

Intermediate processing

The operations included in intermediate processing (see Diagram
5) have two primary objectives: (1) to assign relative storage
addresses to symbols in the CESD, and (2) to write some of the
records to be included in the output load module on the SYSLMOD
data set. The MAP and XREF options may also be processed during
intermediate processing.

Address Assignment: Entries that require no further processing
are deleted from the CESDi all other CESD symbols are assigned
temporary linked addresses. Relocation constants are determined
for all control sections, and the relocation constant table
(RCT) is built.

16 MVS/370 Linkage Editor Logic

-

L

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

For all programs in overlay, additional processing is required.
The calls list is used to determine ENTAB entries to be placed
in the CESD, and the downward calls list is built. The segment
length table (SEGLGTH) is built, and segment relocation
constants are computed. Temporary linked addresses in the CESD
and entries in the relocation constants are computed. Temporary
linked addresses in the CESD and entries in the relocation
constant table are adjusted for overlay by adding to them the
segment relocation constants.

Temporary linked addresses and relocation constants are combined
to determine final linked addresses for symbols, and the results
are placed in the CESD. The alias table is built from alias
symbols in the CESD. At this point, CESD processing is
complete.

MAP/XREF Processing: If the MAP option has been specified, a
module map, containing sorted CESD items, is built and written
on SYSPRINT. If the XREF option has been specified and all RLDs
are in storage, a cross-reference table is built from RLDs (in
the RLD buffer) and written on SYSPRINT. If all RLDs are not in
storage, the cross-reference table is not built, but is deferred
until final processing.

Intermediate Output: The principal function of this section of
intermediate processing is to write the CESD on the output load
module data set (SYSLMOD). The half ESD (HESD), containing
control information from CESD entries, is built and held in
storage for use during second pass processing. The text I/O
table is reorganized according to the sequence in the order
table and scanned to determine the ID of the last control
section containing text in the program (or in each segment of an
overlay program); this information is placed in the high ID
table (HIID), and noted in the HESD for use during second pass
processing.

For a program in overlay, the segment table (SEGTAB), which
defines the relationships among segments, is built and written
(with a control record) on SYSLMOD.

For a program that is to be scatter loaded in the OS environment
(MFT or MVT), a scatter table and a translation table are built
from information in the CESD, and scatter/translation records
are written on SYSLMOD.

The IDRs are written out on the output load module data set
(SYSLMOD).

Second Pass Processing

The objectives of second pass processing (see Diagram 6) are
relocating address constants in the text and writing on the
SYSLMOD data set the remaining records that constitute the
output load module.

Text records are read from SYSUTI (intermediate data set) into
the second pass text buffer, using the text I/O table and the
text note list to locate the records on SYSUTI. The text I/O
table is also used to determine the order in which text records
are to be processed. RLD records associated with the text being
processed are read into the second pass RLD input buffer, using
the RLD notelist to locate the required records.

Single Pass Processing: If the linkage editor did not write text
or RLD records on SYSUT1, single pass processing is in effect
for these records. The records are accessed directly in the
input text buffer and the RLD buffer, which are physically the
same storage areas as the second pass RLD input buffer. If text
records or RLD records were written on SYSUT1, they ara read
back into the same locations.

Relocation: Address constants described by RLD items ara moved
from the second pass text buffer to a work area, where

Method of Operation 17

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1912,1983
LY26-3921-0

Final processing

relocation is performed. The manner in which each address
constant is relocated depends on whether it is a V-type
(branch-type) or an A-type (nonbranch-type) address constant, or
a pseudo register (type 1 or type 2).

The V-type address constant can refer to a named location in
some other control section (branch type address constant). The
value field of such a V-type address constant always contains a
zero because the address was not known at compilation time.
During second pass processing, the linkage editor address
(absolute relocation factor) that was assigned to the symbol and
saved in the HESD is inserted in the value field. This is
called absolute relocation.

If the V-type address constant is in an overlay program, the
address of an ENTAB entry for the symbol and the segment number
of the current text is inserted in the value field. (ENTABs are
created in the second pass RLD buffer from information in the
HESD and the entry list, which contains an entry for each V-type
address constant in the path of a referred-to symbol.)

The value field of an A-type address constant that refers to a
named location in the same input module (nonbranch-type address
constant) contains an address assigned by the language
translator. During second pass processing, this address is
modified by adding or subtracting the relative relocation factor
that was determined for the symbol referred to by the address
constant. Relative relocation factors are saved in the
relocation constant table. This process is called relative
relocation.

When each address constant is relocated, it is placed back in
the text, and the address field of the associated RLD item is
updated. The RLD item is then moved to the second pass RLD
output buffer. When all address constants in the text buffer
are relocated, the text is written on SYSLMOD, followed by the
associated RLD items. A control record pertaining to the next
text record is written on SYSLMOD following the RLD records. If
the output load module is.structured for overlays, a TTR list, '~
containing the address of the first control record of each ,..,
segment (for the first segment, the list contains the address of
the first text record), is also created and retained in virtual
storage.

Second pass processing continues until all segments in the
output module are processed. The last control record contains
end of module indicators. Control is then passed to final
processing.

The objectives of final processing (see Diagram 1) include
writing remaining output to SYSLMOD, producing certain optional
output, and "cleanup" functions.

The partitioned data set directory for SYSLMOD is completed,
including modifications for ALIAS symbols (found in the ~
table), and a STOW macro is issued. The lTR list, containing
the address of the first text record in each segment, is written
on SYSLMOD for overlay programs.

The error 109ging map, produced as errors ara encountered
throughout linkage editor processing, is scanned and an ~
diagnostic directory is built and written on SYSPRINT. If the
TERM option was specified, the error diagnostic directory is
also written on SYSTERM. Storage allocated to the linkage
editor is released.

If the XREF option is specified and was not processed during
intermediate processing, RLD records are read from SY$LMOD, and
a cross-reference table is built and written on SYSPRINT.

18 MVS/310 Linkage Editor Logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

At the completion of linkage editor processing, control is
returned to the calling program.

~ INITIALIZATION

L

The initialization phase comprises modules HEWLFINT, HEWLFOPT,
and HEWlFDEF.

When the linkage editor begins processing, it readies the
all-purpose table, analyzes control information, opens necessary
data sets, and allocates space to buffers and tables.

PREPARING THE ALL-PURPOSE TABLE (APT)

The linkage editor maintains the all-purpose table as the common
communication area for all internal functions (see Figure 27 for
the contents of the all-purpose table). The basic information
in the all-purpose table is added to during initialization as
operating conditions are learned. This information includes the
results of the control information analysis and descriptions of
the tables and buffers built by the linkage editor.

ANALYZING CONTROL INFORMATION

When the linkage editor receives control from the job scheduler,
or from another program via a CALL macro instruction, control
information may be passed to it. This information includes the
options that control linkage editor processing and the
attributes to be assigned to the output load module. A calling
program may also provide a substitute list of ddnames to be used
in place of the standard names, and a PDS directory name for the
output load module.

During initialization, the specified attributes and options are
interpreted, checked for validity against an attribute-option
table, and recorded in the all-purpose table. When options with
associated values are recognized, the linkage editor also saves
the value in the all-purpose table. (For example, the SIZE
option gives user-chosen values to be used instead of the
default values.)

Besides being checked for valid specification, the attributes
and options are also checked to ensure that they are requested
only in allowable conbinations. When mutually exclusive
attributes or options are noted, the dominant attribute or
option is retained; the other is ignored (see Figure 6 on page
20).

IDR Records: These records, which contain data either from an
input load module, from an END record, or from the linkage
editor IDENTIFY control statement, supply information concerning
the processing history of the modules in which they occur. If
the data is from an input load module, control is passed to the
lOR processor, HEWLFIDR. If the data is from an ENO record, the
data refers to the compiler that created the object module. The
compiler or translator data is passed in a parameter list to the
IDR processor. The user data supplied via the linkage editor
IDENTIFY control statement is converted into a parameter list
and passed to the lOR processor.

Method of Operation 19

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

OPENING DATA SETS

-I.
.:,."

o <0'<'"
r--.<...'<- «

'<-r-r- +'<-
~

X ~

"'.<...
" ~.<...

~

C>< '<- ..)<0

lX lX
'<-~

'<-
~'?-

~ .- .<...'<-

IX ~ <oV

~'" X X X '?-"
+v

<0'<'"
V

'?-"
~v

0"
<>v

'" <0'1,:
«'<-

IX '<-~
<Q<O

<>v ~
",'<-.<...

,?-v ~'\-
,0

'?-V 0<>'"

IX I '?-~ 0<>'<,

LX, I I '<-~
Note: An X indicates incompatible attributes; the attribute that appears lower on the list is
ignored. For example. to check the compatihility nf XREF and NE. follow the XREF column
down and the NE row across until t hey intersect. Because an X appears where they intersect,
they are incompatihle attrihutes. NE is ignnred.

Figure 6. Incompatible Module Attributes and Program Options

After the standard ddnames (or passed ddnames) have been entered
into the proper DCBs, the data sets always required for linkage
editor operation are opened. These are the SYSLIN. SYSPRINT.
and SYSLMOD data sets. If the TERM option was specified, the
SYSTERM data set is also opened.

Note: SYSLIB is opened during input processing if automatic
library calls or INCLUDE statements are recognized. SYSUT1 is
opened only for twopass processing.

When SYSLIH is opened. the "unlike attributes" indicator in the
associated DCB is set to signify that SYSLIH may be a
concatenation of data sets with varying blocking factors.

In preparation for the opening of the SYSLMOD data set. the
linkage editor obtains storage for the JFCB for the data set and
reads the JFCB into that storage. From the JFCB, the linkage
editor obtains the data set disposition and the block size, in
case the DCBS option is specified. The block size in the JFCB
is zeroed in order to obtain the DSCB block size when the data
set is opened.

In addition, a DEVTYPE macro instruction is issued to obtain the
maximum block size for the type of device on which the SYSLMOD
data set resides. The value obtained will be used subsequently
in determining the output block size.

20 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

If the SYSLMOD data set resides on a shared device and if the
data set is not a temporary data set, the linkage editor
reserves the shared device for the duration of the job step. If
the SYSLMOD data set does not reside on a shared device but a
disposition of SHR was specified for it on the SYSLMOD DD
statement, the linkage editor enqueues the SYSLMOD data set for
the duration of the job step.

The SYSLMOD data set is opened with an OPENJ macro instruction,
specifying the JFCB previously read and modified.

During the opening of the SYSLMOD data set, the block size to be
used for output to the data set is determined in the open exit
routine. The appropriate block size is selected considering the
following factors: The value obtained from the DEVTYPE macro
instruction, establishing the absolute maximum block size; the
block size in the DSCB for an existing data set, which can be
increased but not decreased; the block size from the SYSLMOD DD
statement, when the DCBS option is used; the implied maximum
block size of 1024. when the DC option is used; the implied
minimum block size of 1024, when the SCTR option is used; the
absolute minimum block size of 256.

ALLOCATING VIRTUAL STORAGE

Buffer Allocation

Table Allocation

To obtain storage for buffers and tables, the linkage editor
issues the GETMAIN macro instruction specifying the minimum
amount of additional virtual storage required for operation.
The minimum provides for overlay or hierarchy tables if these
options are selected, and, for an area, a 12K-byte block of
storage that is returned by means of a FREEMAIN macro
instruction, for use by system and data management functions.
The minimum also includes the added space required for the
primary input buffer when the SYSLIN data set contains blocked
records. If the minimum is not available, control is not
returned to the linkage editor; instead, a system abnormal
termination occurs.

When the supervisor returns virtual storage space, the linkage
editor determines whether the area is sufficient to use maximum
lengths for the SYSLIN, SYSPRINT, and object module buffers. If
the space is not sufficient, intermediate or, when necessary,
minimum buffer lengths are used.

The RLD and text buffers are then assigned storage. The default
text buffer length (48K bytes) is used unless a specific
allocation was requested via the SIZE parameter. The RLD buffer
is also assigned the minimum length unless the SIZE parameter
allows it to be given additional space. In this case, the
increased length depends on the amount of storage remaining
after the text buffer has been allocated.

Note: Space allocated for buffers is not released until linkage
editor processing is completed.

Following buffer allocation, the linkage editor assigns storage
to its fixed-length and Variable-length tables. In initial
allocation, the linkage editor determines the minimum storage
required by each table. The size of each table and the number
of entries in each table are saved in the all-purpose table.

Storage is then reallocated. The storage in excess of the
minimum required for all the tables is determined. The excess
is used to expand proportionately the variable-length tables.
Then, the size of each table and the number of entries per table
are calculated. This information and the newly assigned table

Method of Operation 21

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3921-0

INPUT PROCESSING

addresses are saved in the all-purpose table. When all linkage
ed.itor processing is completed, all table space is released.

The input processing phase comprises modules HEWlFINP, HEWLFINC,
HEWLFSCH, HEWLFESD. HEWLFSYM, HEWlFRAT, HEWLFEND, HEWLFIDR, and
HEWLFRCG.

The operations performed during input processing depend on the
nature of the input; special processing is required for each
input record type. Each input record is read. using one of two
read blocks. The first read control block contains the address
of the SYSlIN buffer; the address of the SYSlIN DCB, and the
block size and logical record length. The second read control
block contains the address of the buffer for library records
(object module buffer or load module buffers>, the address of
tha library DCB, and the block size and logical record length.
A pointer is used to indicate which read control block is to be
used for the input record. Initially, the pointer is set to the
SYSLIN read control block.

The type of input processing required is determined by the
following conditions:

• For all object module records whose first column character
is a blank. control statement scanning is required, provided
that the record is not encountered "in module." (Control
statements encountered within a module cause an error
indication.)

•

•

Either object module processing or load module processing is
required, depending on the type of input module. Only
object modules are read from SYSLIN. Input modules from
libraries are identified by record format. (Fixed format
(F> indicates object modules; undefined format (U) indicates
load modules.)

When an INCLUDE control statement is detected during normal
processing, "include" processing is initiated. At
and-of-input from the specified include library, normal
processing resumes. If an INCLUDE control statement is
detected during "include" processing, "include" processing
is reinitiated for the new include library.

• At end-of-input from SYSlIN, automatic library call
processing is required if the NeAL option (no automatic
library calls> was not selected. If the NCAL option was
selected, input processing is complete.

• At end-of-input from SYSLIB during automatic library call
processing, automatic library call processing is
reinitiated.

• If a NAME statement, which may indicate a multiple execution
of the linkage editor, is detected during control statement
scanning, processing proceeds as if an end-of-input has
occurred on SYSlIN (automatic library call processing is
performed).

• If an end-of-input occurs on SYSLIN but no valid input was
received, linkage editor processing is terminated.

22 MVS/370 Linkage Editor logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

Raading Blacked Input

The linkage editor can accept blocked card image input from the
SYSLIH data set and blocked object module records from the
SYSLIB data set (or from a user's library). Generally, the
record format, block size, and logical record length are
established either when the data set is created, or when they
are specified on the DD statement for the data set in an
execution of the linkage editor. If the BLKSIZE field is not
specified, the linkage editor assumes a block size of 80. The
logical record length (LRECL) is fixed at 80.

If the block size specified on primary input exceeds the
allowable maximum or is not a multiple of the logical record
length, an error message (IEW0594) is issued and linkage editor
processing is terminated; if the invalid block size is specified
on input from a library, the data set is ignored, but processing
is not terminated. The block size specified by the user is used
as the read count; if a short block is read, the linkage editor
determines (via an exit at SYNAD) whether the length of the
short block is valid (a multiple of the logical record length)
and the number of the logical records it contains.

If SYSLIN is a concatenation of data sets, the input processor
reexamines the block size fields whenever a data set boundary is
crossed to determine whether their values have changed.

Record Lengths for SYSPRINT

In determining record lengths for SYSPRIHT, the linkage editor
first checks the block size unless time sharing is in effect.
If the BLKSIZE is not specified by the user, it is set equal to
121. If the block size exceeds the allowable maximum or is not
an integral multiple of 121, linkage editor processing is
terminated and a condition code of 16 is returned. If the block
size is a multiple of 121, it is not changed and the logical
record length for output to SYSPRINT is set equal to 121.

If time sharing is in effect, both the block size and the
logical record length for SYSPRINT are set equal to 81. When
the linkage editor is being executed in the time-sharing
foreground, header messages are printed only once and all
line-counting functions are ignored.

Nate: If SYSPRINT is a member of a partitioned data set and the
DSCB is changed (by setting the logical record length or
changing the block size), it may be impossible to use the
information in the other members of the PDS.

Record Lengths for SYSTERM

Control statement

The block size and the logical record length for output to
SYSTERM are set equal to 121 unless time sharing is in effect.
If time sharing is in effect, the block size and the logical
record length are set equal to 81.

Nate: If SYSTERM is a member of a partitioned data set and the
DSCB is changed (by setting the logical record length or
changing the block size), it may be impossible to use the
information in the other members of the PDS.

When an input record is found to be a control statement (a blank
in column 1), it is scanned to detect format errors and
continuation of comments or operands. A vector table is scanned
to determine the appropriate processor; separate processing is
required for each type of control statement (INCLUDE, REPLACE,
LIBRARY, CHANGE, INSERT, OVERLAY, ENTRY, ALIAS, NAME, SETSSI,
IDENTIFY, HIARCHY, ORDER, PAGE, SETCODE, EXPAND, and MODE).

Method of Operation 23

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3921-0

Diagram S illustrates general processing of each control
statement type.

The general format for linkage editor control statements is
shown in Figure 7. The control statement scanner interprets
symbols enclosed in parentheses as "level 1" symbols; symbols
not enclosed within parentheses are "level 0." ENTRY, ALIAS,
INSERT, HIARCHY, SETSSI, and PAGE control statement operands
contain only level 0 symbols. CHANGE, IDENTIFY, SETCODE,
EXPAND, and MODE statement operands always contain both a level
o symbol and a level 1 symbol.

Operation Operand
-

OPRTlONX
.'000' l(.'.' 0 0 0), (.' 0 0 0), 0 0 0

I I I I
PI PI PI PI

------j- -r---
P2

~
l....L...J L-.J
OPOO OPOI

I--,~-
P2 I

~
P2

+ L....L.J L...LJ
OPOO OPOI ,----

P2

+ LJL..J L....2.....J
OPOO OPOI

1-------
P2

• L..-J L..!...J
OPOO OPOI

I
P I Before Read 8

Process ing
- -After ReadS -

Processing

Figure 7. Control Statement Scanner Operation

The operands of REPLACE, INCLUDE, OVERLAY, NAME, and ORDER
control statements contain level 0 symbols, or both level 0 and
level 1 symbols. LIBRARY statement operands may contain level
1, or both level 0 and level 1 symbols. The operation to be
performed depends on the operand format.

The control statement scanner searches a vector table for the
operation symbol to determine the associated control statement
processor. It then analyzes the operands using two work areas,
"OPD1" and "OPDO", and two pointers, "PI" and "P2". OPD1 is
used for level I operand symbols; OPDO is for level 0 operand
symbols. PI points to the operand symbol being analyzed; P2
points to either OPDO or OPDI, depending on the level of the
operand symbol referred to by Pl.

An operand symbol referred to by PI is placed by the READS ~
routine into the work area referred to by P2. Parentheses and ~
commas control the switching of pointer P2 between the work

24 MVS/370 Linkage Editor Logic

L

L

L

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

areas. For example, when a left parenthesis is encountared, P2
moves to OPDl because a level 1 operand symbol will follow.
When a comma, blank, or right parenthesis is detected, the
PROCENTY routine passes control to the control statement
processor that was previously found during the search of the
vector table.

When an IDENTIFY control statement is read by the control
statement processor, a switch is set on for the special string
option utilized by IDENTIFY. When the switch in the control
statement processor is picked up by the READ8 routine, it sets
another switch, permitting up to 40 characters to appear in the
IDENTIFY operand. This allows any character, including embedded
blanks, to appear between single quotation marks.

Control statement Processors

Register 2

When the operand symbols have been read into work areas OPDO and
OPD1, control is passed to the control statement processor at
the saved entry point. Scanning of the control statement
resumes when the control statement processor returns control.
The individual control statement processors are described in tha
following paragraphs.

CESO

Chn Addr
Chn

Symbol Type /Reverse Seg Sub Pointer

No Type Chain
Choin 10

lengthi 10

c-l":-:":t-- -- ------ ~8AOO • M 02 00000000 CO

~ L-.J I
OPOO OPO!

* ddnome

Figura 8. INCLUDE Statement Processing for a Sequential Data Sat

INCLUDE STATEMENT PROCESSOR: The INCLUDE statement procassor
builds a chain in the CESD of items to be included. Each item
in the chain contains the address of the next item in the chain
(in the chain/address field--bytes 9. 10. and 11). The last
item in the chain contains zeros in this field.

Chained include items have two kinds of subtypes: "include with
pointer" and "include without pointer." In Figure 8, the
statement INCLUDE M defines M as a sequential data set. The
INCLUDE statement processor creates an entry for the ddname M in
the CESD with the subtype "include without pointer."

In the statement INCLUDE LIBX (A), A is defined as a member of a
PDS. The INCLUDE statement processor creates an entry for A in
the CESD with the subtype "include with pointer." The pointer
is in the chain pointer/chain 10 field (bytes 14 and 15); it

Method of Operation 25

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

Revi., .. 2

I All Purpose Table
L _~---'---...,

Current
Include
Pointer

Include Choin
Breaking Point
Pointer

contains the CESD line number of the ddname LIBX. A single
ddname, such as LIBX, may be referred to by several pointers.

Figure 9 describes INCLUDE statement processing with nested
members.

---------,

1
2
3
4

'----_+_ 7COO 8

Symbol Type

· · •
• TEMP 02

• · •
8 02

• ·

library

CESO

Chn Addr Reverse Seg Sub Chn Pointer Chain
Chain 10 No Type length/I 0

80

007010 DO 04

•
U 02 007030 DO 19 7030 r- -- - - -- - - - -, 7010 12

I · ~----'7D30 14 V 02 oo7D60 DO 19
• · ·

~ LY......J 7060 17 C 02 000000 DO 04

OPDO OP01 • · 19 * 1I8X 02 80
• ·

* ddnome

Figure 9. INCLUDE Statement Processing With Nested Members

• The statement INCLUDe TEMP CA, B, C) indicates that A, B,
and C are members to be included from library TEMP.

• Member B contains the nested statement INCLUDE LIBX CU, V,
W); this is the last statement processed in member B.

• The CESD is shown at the time when the control statement
scanner has read operand V, but not W. The INCLUDE
statement processor has created a CESD line for operand V in
the LIBX include chain. C is currently the last item in the
TEMP include chain. When the control statement scanner
reads operand W, the INCLUDE statement processor enters a
CESD line for W between V and C; this process is distinct
from the one that actually searches the members U, V, and C
on the library (see "INCLUDE Processing").

At the time chosen for this example, the data set member B is
being read; data set member A has been read and therefore is no
longer in the CESD as a member name, but data set members U, V,
and C have not yet been read.

The chained CESD entries created by the INCLUDE statement
processor are later processed by the include processor.

26 MVS/370 Linkage Editor Logic

This document contains restricted materials of 18M. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Legend:

Register 2

,

OVERLAY STATEMENT PROCESSOR: The OVERLAY statement processor
maintains a record of the current segment number and updates it
by one each time a new OVERLAY statement is encountered. The
relationship of segments in an overlay tree structure is kept in
the segment path table (SEGTA1) (see Figure 10). Entry n in
SEGTAI contains the number of the segment that precedes the nth
segment of the overlay tree structure (the next higher segment
in its path). The OVERLAY statement processor creates a chain
of overlay items in the CESD and updates SEGTAI. If the level 1
operand (REGION) is detected, the current region number is
incremented by one, and a zero is entered as the previous
segment number in SEGTAI.

11
12
1
,3
14
IS
1 ,

o
1
2

• •
•

OVERLAY A OVERLAY A

2 5
OVERLAY C OVERLAY C :6-- --l

...... I6oV.ERLAY 8 : 7

4

l~ __ ~A~II~P~ur~po~.e~T~~~I~e __ ,

Addre$S of
SEGTA1

Storting Addre .. of
Overlay Chain

I Addrfls of A ~

~
OPOO

L-J
OP01

-------,
_--- -

/

{
\

Symbol Type

• • • .. A 02

• • •
-- --
• • .. C 02

•

CESO

Chn Addr/ Seg Sub
Chn Pointer

Reverse No Type
Chain

Choin 10 Length/I 0

Addr of C 01 90 ,
I
I

/ -

000000 OS 90

• In this example, card OVERLAY C has just been read. Nome B is
no longer in the chain.

• •

Figure 10. Overlay Statement Processing

If an OVERLAY statement is encountered that refers to a node
point higher in the overlay tree structure, all symbols
identifying node points higher in the path are removed from the
chain; their CESD lines are marked "null." For example, in
Figure 10, when the statement OVERLAY A is encountered after
segment 4. the CESD entry for symbol 8 is marked null and is no
longer in the chain. If an OVERLAY B statement was encountered
at the end of segment 5. a new node point would be established
for 8. and symbol B would again be entered in the CESD.

HIARCHY STATEMENT PROCESSOR: The HIARCHY routine first
determines if the hierarchy number is valid. If it is invalid.
the statement is printed; an error message is written and the

Method of Operation 27

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
lY26-3921-0

remainder of the statement is ignored. If the number is valid,
it is converted to binary and saved for the SCAN routine.

Processing of the statement continues with the collection of the
next symbol, up to a comma or a blank. The CESD is searched for
this symbol; the location in the hierarchy table corresponding
to this CESD item is set to the hierarchy number specified.
(The hierarchy table is built during initialization if HIAR was
specified. The hierarchy table consists of one byte per entry
in a one-to-one correspondence with the number of items
allocated to the CESD. The address of this table is kept in a
fullword in the all-purpose table.)

If the symbol does not appear in the CESD, the symbol is entered
in an unused entry in the CESD, marked external reference, and
the hierarchy number is stored in the corresponding entry in the
hierarchy table. This procedure is repeated for each additional
symbol in the HIARCHY statement.

The intermediate output routine uses the hierarchy table to
place the hierarchy number associated with each CESD item in the
scatter/translation table.

INSERT STATEMENT PROCESSOR: The insert statement processor scans
the CESD for the symbol indicated in the INSERT statement. If
the symbol is found, the segment number field is changed to the
number of the segment that contains the INSERT statement. If
the symbol is not found in the CESD, a new ER entry in the CESD
is created. In either case, the CESD entry is marked "insert"
in the subtype field, and the segment number of the INSERT
statement is placed in the segment number field.

REPLACE AND CHANGE STATEMENT PROCESSORS: The REPLACE and CHANGE
statement processors build a chain of CESD entries. Each entry
to be replaced, changed, or deleted is so marked in the subtype
field. The ESD processor examines the replace/change chain
before processing any ESD item. Because a REPLACE or CHANGE
statement applies only to the module that immediately follows it ~
in the input, the replace/change chain is removed from the CESD ~
at the end of the module.

When a REPLACE statement or a CHANGE statement operand contains
two symbols, such as CHANGE A (8), A and 8 are entered in
consecutive lines of the CESD. Only the first line of the pair
(the line for A) contains the address (in the chain address
field) of the next item in the replace/change chain.

NAME STATEMENT PROCESSOR: The NAME statement processor places an
entry in the all-purpose table containing the name under which
the output load module is to be stowed in the PDS directory. If
the operand contains the level 1 symbol (R), a bit is set to
indicate that the module is to be stowed as a replacement for a
module of the same name. Another bit is set to indicate that a
NAME statement was encountered; the input processor tests this
indicator and terminates input operations if it is set. If a
NAME statement is received from any input source other than
SYSLIN, the error routine is entered; NAME statements are
accepted only i~ they are in the primary input.

SETSSI STATEMENT PROCESSOR: The SETSSI statement processor
converts the 8 bytes of hexadecimal information specified on a
SETSSI statement to a 4-byte field, and enters it into the
all-purpose table. During final processing, this information is
entered into the system status index, a 4-byte extension of the
user data area in the PDS directory. The index contains
information describing the status of members in the library and
is used for maintenance purposes.

ORDER AND PAGE STATEMENT PROCESSOR: The ORDER and PAGE statement
processor builds the ORDER table. First, the CESD is searched
for a match to the symbol specified in the ORDER or PAGE ..J ..
statement. If the symbol is not found in the CESD, the symbol··
is entered into the CESD as a "weak external" reference (WX).
The ESD identifier of the CESD line is entered into the ORDER

28 MVS/370 linkage Editor Logic

L

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

table. When a matching symbol is found in the CESD. and the
entry is not a control type ER. the ID of the CESD line is
entered into the ORDER table.

The appropriate flags are set in the ORDER table entry to
indicate if the specified request is either an ORDER or a PAGE
statement. The ORDER flags are set when text ordering during
output processing is requested. The PAGE flags specify that the
linkage editor is to perform page alignment during address
assignment. The ORDER flags can be set only when an ORDER
control statement is present. The PAGE flags can be set in one
of two ways: (1) if P is specified on an ORDER control
statement, or (2) if the PAGE control statement is present. See
Figure 11 for an example of order and page processing.

CESD

Chn Addr/ Seg Sub Chn Pointer
Symbol Type Reverse No Type Chain

Chain 10 Length/I 0

PAGE CSECTS Entry Created 01
02
03
04
05
06
07

•
ORDER
CSECTA,
CSECTC(P)

t---..... Match Found

Entry Created

ORDER TABLE
FLAG ESDID
AO 0002
30 0005
10 0006

CSECTA 02 0000

• I

CSECTC I OA 0000
CSECTS OA 0000

•

00 -

00
00 -

I
1

I
-1---1--:-1

1 I I
I 1 I

I I I
I I I
i I I

- -- - - - I I

- _I I --_______________________ J

Figure 11. Order and Page Processing

Note: In this example, CSECTB must follow CSECTA and CSECTC in
the order table. Ordering was not specified for CSECTB.

IDENTIFY STATEMENT PROCESSOR: The IDENTIFY statement processor
picks up the CSECT name from OPDO, the length of the special
string SPECSTR extracted by the READ8 routine, and the identify
data placed in SPECSTR by the READ8 routine. This information
is placed in storage, and parameters and control are passed to
the IDR processor HEWLMIDR at the entry point HEWLCIDR.

ENTRY STATEMENT PROCESSOR: The ENTRY statement processor places
the symbol specified in an ENTRY statement in the all-purpose
table. The symbol will override any symbol specified in an END
statement as the entry point for the module.

ALIAS STATEMENT PROCESSOR: The ALIAS statement processor creates
chained CESD entries for a maximum of 16 alias names specified
in ALIAS statements. During address assignment, these entries
are used to build the alias table.

LIBRARY STATEMENT PROCESSOR: The LIBRARY statement processor
creates chained CESD entries for the operands specified in
LIBRARY statements; a chain is created for each distinct

Method of Operation 29

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3921-0

library. Each chain begins with a library ddname and contains
all member names specified for the library (see Figure 12).

A member name specified in a LIBRARY statement can result in ona
of two kinds of ER subtypes: "matched library member" or
"unmatched library member." If a CESD entry is created for a
member name specified in an input ER and also specified in a
LIBRARY statement, it is called a "matched library member."
However, if the member name was specified only in a LIBRARY
statement, the entry subtype is "unmatched library member."

5--@
r-- --- -- --- - - -- -- - - - --- - - - - - --'
I
I
I
I

t.o I
02
03
04
05
06
07
08
09
OA
08
OC

01
02
03
04
05
06
07
08
09
OA
08
OC

Symbol

JOE

PETE

Symbol

JOE

LlB2
SAM
PETE

MARY

Ll81

Type

02

02

Type

00

02
02
02

02

02

Chn Addr Seg Sub
/ Reverse No Type
Chain 10

00

00

Chn Addr
Seg Sub /Reverse

Chain 10 No Type

00 BO
06 02
07 03

OC 03

00 80

Chn Pointer/
Chain
Length/I 0

Chn Pointer
Chain
Length/I 0

07
08
00

00

OA

Chn Addr!
Seg Sub

Chn Pointer
Symbol Type Reverse

No Type
Chain

Chain 10 Length/I 0

Legend:

01
02
03
04
05
06
07
08
09
OA
08
OC

JOE 02

Ll82 02
SAM 02
PETE 02

MARY 02

LlBI 02

OC 03 OA

00 80 07
06 02 08
07 03 00

04 02 00

00 BO 04

---.--rhe CESO ,hown in diagram B r.,ult, from the CESO ,hown in diagram A after
reading in three I ibrory cords. A chain with direct and reverse pointers is
created for LlBI and 01,0 far LlB2.

• JOE and PETE were ER, (,ubtype 00) and became "matched (ibrary """"ber"
(,ubtype 03).

• SAM and MARY were not previously in· the CESD. They ore created as "unmatched
I ibrary member" (,ubtype 02).

• The CESD shown in diagram C results f"rom the CESD shown in diagram B after
reading in an input module containing the ER MARY and the SO JOE. (Only the
I ibrary chains are shown).

• JOE is removed from the chain in diagram C, and the chain pointers ore modified.

• MARY becomes a "matched" subtype and will be called by the automatic
I ibrary call processor (unless resolved by other input).

• SAM remains "unmatched" and will be ignored by the automatic library coli
processor (unless matched in otJ,er input).

Figure 12. Library Statement Processing

EXPAND STATEMENT PROCESSOR: The EXPAND statement processor
accumulates the expansion length specified and, if necessary,
limits that length to 4095 bytes. If the name specified matches
the name of a named control section or common section, the
length of that control section or common section is updated by
the expansion length in the matching CESD entry. A special
entry is then made to the text processor to create and save text ..J ...
of the expansion length to ba added to the control section or
common section.

30 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

HODE STATEMENT PROCESSOR: The MODE statement processor verifies
that the valid mode keywords, AMODE and RMODE, are specified and
that the valid mode specifications are used--24, 31, or ANY for
AMODE; 24 or ANY for RMODE. Appropriate values are set in the
all-purpose table to indicate the mode(s) specified.

SETCODE STATEMENT PROCESSOR: The SETCODE statement processor
accumUlates the authorization code specified. A limit of 8
digits specifying a value of 0 to 255 is imposed. Once
verified, the authorization code is saved in the all-purpose
table.

Object Module processing

Input
Record Type

SYM

ESD

TXT

RLD

END

If input to be read by the linkage editor consists of object
modules (fixed (F) record format indicates object modules), the
following operations are performed:

• Determine record type

• Set up general registers

• Perform special event processing

The record type is determined by examining columns 2 through 4
of each logical input record. For each record type (SYM, ESD,
TXT, RLD, lDR, END), special processing is required.

The general registers are loaded with input record information
to be used in the required processing, as described in
Figure 13.

3 4 5 6

SYM record byte Address of SYM
count record in

buffer

Number of bytes ESD 10 of first Address of
of ESD ESD item on first byte of
information record ESD in buffer

Assigned Number of bytes ESD ID of CSECT Address of
address of of text to which text first byte of
first byte of information belongs text in buffer
text

Number of bytes Address of
of RLD first byte of
information RLD in buffer

Absolute Length of CSECT ESD ID CSECT
address of for which no containing
entry point length was entry point
on END record given in ESD

item

Figure 13. General Register Information--Object Module Processing

Method of Operation 31

This document contains restricted materials of IBM. e Copyright IBM Corp, 1972,1983
LY26-3921-0

Following is a description of special event processing:

• When end-of-input is detected, any data still contained in
the input RLD buffer or the input text buffer is written out
on SYSUTl, if necessary.

See the appendix "Input Convention and Record Formats."

• If the TEST attribute is selected, the SYM records from the
object module are blocked 3-to-l in the input RLD buffer and
written out on SYSLMOD. When the first TXT record in a
module is encountered (or, if no text record has been
encountered, when the END record is detected), remaining SYM
records in the input RLD buffer are written out on SYSLMOD.

• When processing of an ESD record is completed, indicators in
the all-purpose table are examined to determine if:

A control section (SD, PC. or common) was indicated on
the ESD record.

The TEST attribute was specified.

If both conditions are met, the ESD record is blocked 3-to-l
in the input RLD buffer and written out on SYSLMOD.

• If a control statement continuation is expected and an
object module record is read, an error condition occurs. and
a coded diagnostic message is produced. Normal object
module processing is then performed on the record.

• If, during object module processing, a record is encountered
that is not one of the six acceptable types (SYM, ESD, TXT,
RLD. IDR. or END), an error condition occurs and a
diagnostic message is produced. The input record is then
ignored.

Load "odule Processing ~
Load modules included as input to the linkage editor are
processed in the following manner:

• The input record type is determined by an identification
field (byte 1 of the record), as shown in Figure 14 on page
33. Special processing is performed for each record type.

• The parameter registers are loaded with input record
information to be used in the required processing, as
described in Figure 15 on page 33.

• If the record is not identified as a TXT, CESD,
IDR, scatter/translation, SYM, or CTL/RLD record, an error
condition occurs, and a diagnostic message is printed out.
The input record is otherwise ignored.

• If the TEST attribute was not specified, all SYM records are
ignored.

• If an end-of-module indication is found in a CTL or RLD
record, cleanup functions are performed.

• When a CTL record is detected, the following TXT record is
immediately read into the input text buffer if it is not to
be deleted.

• If the TEST attribute was specified and a SYM record is
received, the record is written out as text translation data
from the RLD input buffer.

32 MVS/370 Linkage Editor Logic

L

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

Identifier
Record Type (in Hexadec i ma 1)

TXT Identified by
preceding control
record

CESD '20'

IDR '80'

Scatter/Translation ' 10'

SYM '40'

CTL ' 01'

CTl/RLD '03

RLD '02'

If end-of-segment indicator is on:

CTL '05'

CTl/RLD '07'

RLD ' 06'

If end-of-module indicator is on:

CTL 'OD'

CTl/RLD 'OF'

RLD 'DE'

Figure 14. Input Record Types----Load Module

Load Module
Record Type 3 4 5 6

SYM Zero

CESD Byte count of ESD ID of first Address of
ESD items in CESD item on first byte of
record record CESD item in

buffer

CTL (TXT> Assigned Number of ESD ID CSECT to
address of entries in which text
first byte of ID-length list belongs
text

RLD Byte count of Address of
RlD items in first RlD item
record in buffer

~ Figure 15. General Register Information----load Module Processing

Method of Operation 33

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

ESD Record Types

The following describes the special processing performed, during
object and load module processing, for the ESD, IDR, TXT, RLD,
and END records.

Every object module in the input to the linkage editor must
contain at least one ESD item. An ESD item is created by a
language translator whenever it finds a symbol that is defined
for external use. An ESD item is created to define the
beginning of each control section, common areas, entry point
names, and external references. Each ESD item has a type
assigned to it that indicates its function. The ESD types are:

• Section Definition (SO). Defines the beginning of a named
control section.

• Private Code (PC). Defines the beginning of an unnamed
control section.

• Label Definition (LD). Defines a label (symbol) whose
location is defined relative to the location of the control
section in which it is contained. An LD type ESD item
contains the ESD ID of the control section that contains the
label.

• Common (CM). Defines a common area for which a virtual
storage address is assigned during linkage editor
processing. The area may be named or unnamed; an unnamed
area is referred to as a "blank common" area.

•

•

Pseudo Register (PR). Defines an area external to the
output module, but referred to by it, for which virtual
storage space is allocated at execution time. The linkage
editor treates PR symbols as a block that is external to the
program. The value assigned to each symbol is a
displacement within this block.

External Reference (ER). Specifies a symbol that is
referenced but not defined within an input module.

• Weak External Reference (WX). Specifies an external
reference that is not to be resolved by automatic library
call. A WX entry is processed as an ER entry with a "weak
call" flag.

CESD Record Types and subtypes

A load module in the input to the linkage editor contains at
least one CESD record unless the module is marked not editable
(HE). The CESD record types are the same as for ESD records,
with the following additions:

• Hull Type. This indicates that the item is to be ignored in
any reprocessing of the module by the linkage editor.

• Label Reference (lR). This defines a label (symbol) within
a control section. An lR type CESD entry is numbered; it
contains the ESD ID of the control section entry in the
ID/length field. An lR may be referenced directly by an RlD
item in the same module, whereas an lD may not. All lD
items are changed to LR items during linkage editor
processing (lOs are contained only in object modules, never
in load modules).

• Private Code (PC) Marked Delete. This is a CESD item
created only for ENTABs and SEGTABs. PC-delete entries are
placed in the renumbering table, indicating that associated
TXT and RLD information is to be deleted.

34 MVS/370 linkage Editor logic

L

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983
LY26-3921-0

ESD processing

The main function of ESD processing is symbol resolution.
Individual ESDs in the input to the linkage editor are combined
into a composite ESD. which contains all symbols in the input
that were not changed. deleted. or replaced. A chained
replace/change list (produced by the control card scanner)
specifies which ESD items are to be changed. deleted. or
replaced. A renumbering table (RNT) is also produced during ESD
processing; it is used during TXT, RLD, and END processing to
translate the ESD IDs of the input ESD items to CESD IDs.
Diagram 9 provides a general illustration of several types of
ESD processing.

At the beginning of ESD processing, control information from the
ESD record is saved: the ESD ID of the first ESD item in the
record (other than an LD); the number of bytes of ESD
information; and the type field of the first ESO item.

If the OVLY option has been specified for the output load
module. the following occur:

• The current segment number is placed in the ESD, unless the
entry type is PR (PRs have an alignment value in the segment
number field).

• The RMODE for the load module is forced to 24.

• If automatic library call processing is being performed, the
segment number is forced to 1 (all automatically called
modules are placed in the root segment of the overlay
structure).

If the OVLY option has not been specified for the output load
module.

• If the current ESD item is from a load module in overlay
format. the AMODE/RMODE data is forced to 24/24.

• Otherwise. the content of byte 12 is interpreted as
AMODE/RMOOE data.

The ESD item is then processed according to its type. in the
following manner:

• If the ESD item is an ER, bytes 10, 11. and 12 are set to
zero in the input buffer (either the object module buffer.
the SYSLIN buffer. or the first pass RLD input buffer).
Byte 10 must be cleared because automatic library call
processing uses it to indicate whether automatic library
calls have been processed. Bytes 11 and 12 must be cleared
because any nonzero data (including blanks) will be entered
in the delink table if delinking is required for the symbol.
If the input item is an ER item from an object module. the
CESO subtype field is also reset to zero to indicate that
there are no modifiers in the subtype field.

• If a REPLACE/CHANGE function has been requested for the
input module. the replace/change chain that was built in the
CESD by the control statement scanner is examined and the
appropriate modifications are made. For example. if the
scanner received the statement CHANGE A(S), the CESD
contains a line for A. marked as a change statement item in
the subtype field; the next line contains the symbol B. The
input ESD item symbol is changed from A to B during ESD
processing.

• If the ESD item is a PC, the CESD is not searched. because
each PC entry is treated as a unique entry. The PC is
placed in the next available CESD line and is processed in
the same manner as an SO.

Method of Operation 35

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
LY26-3921-0

•

•

If the ESD item is a null item, the renumber routine is
entered. (This routine is described under "Nonresolution
Processing.")

If the ESD item is an LD, it is changed to an LR. The item
is then processed as an LR. (There are some minor
differences in processing LDs that have been changed to LRs;
for this reason, an internal indicator is set when the type
is changed to LR.)

• If the ESD item is a PC or SD, the AMODE/RMODE data is
checked for a valid combination. If an invalid combination
is found, an error message is issued and the RMODE for the
output load module is forced to 24.

After the ESD type is determined, the CESD is scanned for a
matching symbol. If no match is found, nonresolution processing
is performed. If the input ESD symbol matches a symbol in the
CESD, resolution processing is performed. Resolution processing
results in only one CESD entry for each unique input ESD symbol;
multiple occurrences of the same input ESD symbol are listed in
the renumbering table (RNT) with pointers to the single CESD
entry.

NONRESOLUTION PROCESSING: If no matching symbol is found in the
CESD, the input ESD item is processed as described below.

SD Items: If the input ESD item is an SD (see Diagram 9, area
A):

• The freeline routine selects an empty line in the CESD. The
line following the current line is chosen unless a previous
CESD line is marked null. (Whenever possible, null lines
are used to save space.)

• If automatic library calls are being processed, an indicator
is set in the type field of the selected CESD line. (If a
module map was requested, this indicator is checked during. ,..
module map processing. If the indicator is set, the control ~
section is marked with an asterisk in the module map or
cross-reference table to indicate that it was obtained from
a library during automatic library call processing.)

• If the load module is in overlay structure. then those
routines brought into the load module via the automatic
library call are placed in the root segment of the load
module.

• A "write" indicator is set in the all-purpose table to note
that SDs, PCs, or CMs were encountered in the input record.
When ESD processing is completed. the write indicator is
tested. If it is on and the TEST attribute was specified,
ESD records containing SDs, PCs, or CMs are saved. blocked
3-to-l in the input RLD buffer and written out on SYSLMOD.

• In any input object module. the CESD line number of the
first SD entry whose length is zero is saved. END
processing uses this CESD line number to enter the length
specified on the END card.

• The enter routine creates a CESD entry for the input ESD
item; it moves the symbol length. segment number, ID, and
type into the selected CESD line. In addition, the enter
routine accumulates the residence mode for the output load
module. Initially, the residence mode is ANY. As each
control section (SD or PC) is allocated in the output load
module, its residence mode is included in the accumulation.
If all control sections allocated in the output load module
have a residence mode of ANY. the output load module has a
residence mode of ANY; if any control section allocated in
the output load module has a residence mode of 24, the .~.
output load module has a residence mode of 24. (The
residence mode accumulated from the ESD data may be

36 MVS/370 Linkage Editor Logic

L

This document contains restricted materials of IBM. 0 Copyright IBM Corp. 1972,1983
LY26-392l-0

•

overridden by the residence mode specifications in the PARM
field or the MODE control statement.)

The renumber routine places the line number of the new CESD
entry into the renumbering table to provide a means of
translating the input IDs to the new CESD IDs. For example,
if the input ESD item has a line number (ESD 10) of 3 but
the item is placed into the CESD at line 5, a 5 is placed in
the third line of the renumbering table. (For each input
ESD line, except LD lines, there is a corresponding RHT
line. The RHT contains information for the current module;
it is set to zero at the end of each input module.)

ER Items: If the input ESD item is an ER, it is entered in the
CESD and renumbered as described above; no special processing is
required.

WX Items: If the input ESD item is a WX, it is entered in the
CESD and renumbered as described above; no special processing is
required.

CM Items: If the input ESD item is CM (see Diagram 9, area E), a
"common" indicator is set and the item is treated as a delete
item. If the address that was assigned to the CM item by the
language translator is not zero, it is saved in the delink table
for later use. (Two CM items with the same identifying symbol
may have different assigned addresses; therefore, the assigned
address in the input must be subtracted from all address
constants that refer to the CM items so that they are returned
to their displacement value before relocation.> The CM item is
then renumbered and entered into the CESD.

LR (or LD) Items: If the input ESD item is an LR or LD (see
Diagram 9. area C):

• When processing an LR. the label routine determines whether
the SO for the control section has been processed. If the
SO has not been received. any LRs that refer to that SD are
chained together in the CESD until the SD is received. (The
SD might be marked replace; therefore. the LR cannot be
processed until the SD is received.) When the SD is
received, all dependent LRs are processed. Each LR ID field
is renumbered, using the renumbering table, so that it
refers to the CESD ID of the SD.

• LDs are not renumbered, because they are not referred to by
RLDs and are not numbered in language translator output.
The enter routine places them directly in the CESD. If an
LD is received before the SD to which it belongs, it is
handled as an LR.

PR Items: If the input ESD item is a pseudo register, the
current segment number is not entered in column 12 of the ESD
item. Column 12 of a PR item contains an alignment value, which
indicates that the PR must be aligned to a halfword, fullword,
or doubleword boundary. The PR is then processed by the
freeline, enter, and renumber routines, as described above.

RESOLUTION PROCESSING: If a matching symbol is found in the
CESD, the type fields of the input item and the matching CESD
item are compared and resolution processing is then performed.
The following conventions are observed during resolution
processing:

• Input PR items may match only PR entries in the CESD. If an
input PR item matches a non-PR item in the CESD, it is not
treated as a match; the CESD search for a matching PR item
continues.

• If the matching CESD item is marked "chained," resolution is
performed on the item to which it is chained.

• If the CESD line is marked null, the match is ighored and
the search continues.

Method of Operation 37

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

• If the CESD item is an ER produced from a REPLACE, CHANGE,
OVERLAY, or ALIAS statement, or from the ddname field of an
INCLUDE or LIBRARY statement, the match is ignored and the
search continues.

Matching items are processed in the following manner:

• If the input ESD item is eM, SD, or LR and it matches an ER
in the CESD, the input type replaces the type indicated in
the CESD item (see Diagram 9, area B). Nonresolution
processing is then performed on the input item.

• If the input ESO item is an LR and it matches a CM, SO, or
LR in the CESO, a "match" bit is set, indicating that a
double symbol definition is possible. If the SO for the
control section has been entered in the CESO and is marked
for deletion. the Label routine deletes the label; if it is
not marked for deletion, a "double symbol definition"
message is produced. If the SO for the control section is
not in the CESO, the LR is chained to the matching LR; when
the SO is received, the LR is deleted or a double symbol
definition message is produced, depending on whether or not
the SD is being deleted.

• If an input PR matches a PR in the CESD (Diagram 9, area D),
the greater length and the most "constrictive" boundary
alignment are placed in the CESO entry. (A doubleword
alignment is more constrictive than fullword alignment;
fullword is more constrictive than halfwordi etc.) The
input PR entry is then renumbered to the updated PR entry in
the CESD.

• If an input SO item matches an SD entry in the CESD,
automatic replacement of the control section occurs. The
input SD item is entered in the CESD as a delete type and is
chained to the matching SD entry. (During second pass
processing. the assigned address of the control section
being replaced will be subtracted ("delinked") from the
addresses of any nonbranch-type address constants that refer
to the SD-delete entry.) The SO-delete item remains chained
only while the module is being processed; END processing
will change the chained items to null entries (see
"Delinking Nonbranch-Type Address Constants").

• If an input SD item matches a CM entry in the CESD and the
length of the SO item is greater than or equal to the length
of the CM item. the length of the SD item is entered in the
CESO. If the program is in overlay, the common path routine
scans the segment path table (SEGTA1) to find the segment in
the overlay structure that is common to both items and
places the segment number in the SD entry. The SD item is
then written over the CM line and renumbered. (This is
referred to as "automatic promotion of common.")

• If an input SD or CM item matches an LR in the CESD, a
"double symbol definition" message is produced and the SD or
CM item is entered in the CESD as a delete type and is
chained to the matching lR entry. causing the SD or CM to be
replaced.

• If the input item is eM. it may be "blank common." Blank
common may match a PC item in the CESD because both contain
blanks in the symbol field. In such a case, the match is
ignored and the search continues.

•

•

If an input CM item matches a CM item in the CESD (Diagram
9, area F), the greater of the two lengths is entered in the
CESO. If the module is being processed for overlay. the
segment number of the segment common to both the input item
and the CESD item is also entered in the CESD item
(automatic promotion of common).

If an input CM item matches an SO item in the CESO. and the
length of the SO item is greater than or equal to the length

38 MVS/370 linkage Editor Logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983
lY26-3921-0

IDR processing

of the CM item. the length of the SD item is entered in the
CESD. The CESD type is not changed. If the module is being
processed for overlay. the segment number of the segment
common to both the input item and the CESD item is also
entered in the CESD item (automatic promotion of common).

• Whenever an input ER item matches an ER in the CESD. both
the type and subtype fields are examined; the ER items are
then resolved in the following manner:

If the subtype fields of both ER items are not marked.
the input item is not entered in the CESD; the matching
ER remains in the CESD and a pointer to it is placed in
the renumbering table entry for the input item.

If both items are marked "delete," the new ER is entered
in the CESD and the old item remains there so that they
can be delinked individually (in this case, the CESD may
contain two ER items for the same symbol). Delinking is
described in "Second Pass Processing."

If the input ER item is marked for deletion, but the ER
item in the CESD is not marked delete, the input ER is
chained to the matching ER in the CESD. The chained ER
item remains in the CESD until end-of-module is detected
so that the delink value can be saved.

If the input ER item is not marked for deletion and the
ER item in the CESD is marked "delete" or "replace," the
delete bit in the subtype field is cleared (delete is
changed to replace) and the item is renumbered. If the
matching ER item in the CESD is marked "no call" or
"library member," it is marked "matched" before
renumbering.

If the input ER item is marked in the subtype field, but
is not marked "delete" or "replace," it is assumed to be
"never call"; if the matching ER item in the CESD is
"library member," the CESD item is removed from the
chain of library members and the input ER item is
entered in the CESD and renumbered.

• If an input WX matches a WX in the CESD, no change is made
to the CESD. If the matching entry in the CESD is not a WX
or a control card entry, the input WX is changed to an ER.

• If an input ESD item that is not a WX matches a WX in the
CESD, the CESD item is changed to an ER. In all cases,
processing continues normally.

The manner in which CSECT identification records (IDR) are
processed depends on the type of IDR input records or control
statements being processed. The input records or control
statements are:

• Object module END records

• Load module IDRs

• IDENTIFY control statements

An object module END record contains only translation data;
however, load module IDRs may contain four different types of
IDR data:

• HMASPZAP-supplied data

• Linkage editor data

• Translator-supplied data

Method of Operation 39

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

• User-supplied data

Load module IDR processing is dependent upon the type of data
present in the IDR record. The IDENTIFY control statement . ~
contains only user-supplied data. ~

Before any IDR data processing begins, the type of IDR input is
determined either by the input processor HEWLFINP or, if the
data is from the IDENTIFY control statement, by the control
statement processor HEWLFSCN. HEWLFINP passes control to
HEWLFIDR at the entry point HEWLFIDR. HEWLFSCN passes control
to HEWLFIDR at the entry point HEWLCIDR.

Processing Object Module END Records Containing IDR Data

When byte 33 of an object module END record has an EBCDIC 1 in
it, one IDR item follows in bytes 34 through 52. If an EBCDIC 2
appears in byte 33, two IDR items follow in bytes 34 through 71.
A blank in byte 33 indicates that the record contains no IDR
data. IDR data is present only on an object module END record
if the translator that produced the object module contains IDR
support.

The renumbering table is scanned to determine the correct ESD
identifiers of the CSECTs to which the translator data applies.
If any of the CSECTs are marked delete in the renumbering table,
they are not identified in the IDR output. If the input object
module contains at least one CSECT that is not marked delete,
the translator data is removed from the END record and placed in
the IDR translator data table (IDRTRTAB) and the IDR translator
ID table (IDRTITAB). These two tables contain the ESD
identifier of the CSECT to which the translator data applies,
the translator identification, the version and modification
level of the translator, and the date of translation.

A comparison is made with the other entries in the IDRTRTAB for
a duplicate entry. If a duplicate entry is found, the incoming
data is combined with that of the previous entry to avoid
repetition of data.

Processing Load Module IDRs

The subtype of the load module IDR is scanned for the type of
IDR data. If the subtype is 02, the data is from the linkage
editor; these records are ignored by IDR input processing. When
the input data is from HMASPZAP (subtype 01), bits 2 through 7
of the flags and count field are scanned to determine the number
of HMASPZAP entries in the record (from 1 to 19 entries are
possible).

The entry in the renumbering table corresponding to the ESD
identifier of the CSECT processed by HMASPZAP is examined. If
the entry in the renumbering table is marked delete. then the
IDR d~ta associated with that CSECT is deleted. However, the
data that is not deleted is placed at the end of the IDR
HMASPZAP data table (IDRZPTAB). IDRZPTAB contains the ESD
identifier of the CSECT processed by HMASPZAP, the date of the
HMASPZAP processing, the data specified during HMASPZAP
processing (this may be a PTF number or up to 8 bytes of
variable user data specified on an HMASPZAP control statement).
If the IDRZPTAB overflows, an error message is written and
processing is terminated.

When the input data is translator-supplied data (subtype 04),
the renumbering table entry corresponding to each ESD identifier
in the string preceding a translator description is examined.
If the entry is marked delete, the corresponding ESD identifier
is deleted from the string; otherwise, the input ESD identifier
is replaced by the renumbered identifier. If at least one ESD
identifier remains on the string, a check is made among the .,.
table entries in the IDR translator data table (IDRTRTAB) to see ~
whether an identical description has already been entered into

40 MVS/370 Linkage Editor logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

IDRTRTAB. If an identical description does exist in IDRTRTAB,
the CSECTs associated with the incoming translator description
are combined with the existing translator data item to form a
single table entry in order to avoid needless repetition of
data. If it does not exist, a new entry is added for the input
data.

When the input data is user data (subtype 08), the renumbering
table entry corresponding to the ESD identifier of each input
user data item is examined. If it is marked delete, the user
data is ignored. If not, the input ESD identifier is replaced
by the renumbered identifier and the user data is entered at the
end of the IDR user data table (IDRUDTAB). The IDRUDTAB entries
contain the ESD identifier of the CSECT to which the user data
applies, the date the data was supplied to the module via the
linkage editor IDENTIFY function, the number of characters in
the user data field, and the user data.

In the case of input load module IDRs containing translator or
user-supplied data, an individual data item may span more than
one record. When this occurs, the incomplete portion of the
item is saved in either IDRTRTAB or IDRUDTAB. The item is
processed after the next input record has been read, and the
continued portion of the item is combined with the saved portion
to form a complete data item.

processing IDENTIFY Control statement Data

TXT Processing

The control statement processor, HEWLFSCN, passes control to the
IDR processor at the entry point, HEWlCIDR. The CESD is
searched for an SO type entry matching the CSECT name to be
identified. If the name is not an SD, an error is logged and
processing is terminated. If the CESD line is an SD marked
delete, the data is ignored. If the CESD line is an SD not
marked delete, the ESD identifier of the matched SD name is
saved. A check is made to see whether there was any
user-supplied data previously associated with the CSECT. If
there was, the old data is replaced with the new incoming data.
If no earlier data exists, the incoming data is added to the end
of the table IDRUOTAB.

The manner in which TXT records are processed depends on whether
they are part of a load module or an object module or are added
using the EXPAND control statement. A load module contains
records in a specified order. However, in an object module, the
records may not be in the proper sequence because the language
translator may have created them out of order (EXPAND data is
always identified as out of order text). (The restrictions on
linkage editor input are described in "Appendix. Input
Conventions and Record Formats.") Diagrams 10 and 11 illustrate
processing of TXT records from object and load modules,
respectively.

Before any address constants can be relocated within a control
section of an object module, all TXT records must be placed in
the proper order. This is done in the input text buffer
(TXTBFBEG), which is variable in length, allowing grouping of
data within the buffer.

Each "multiplicity" of text is assigned a number as it is moved
(or read) into TXTBFBEG. A multiplicity is a portion of text
equal in length to the maximum size of a SYSlMOO output record.
Within each control section, multiplicity numbers are assigned
consecutively, starting at o.
Text records from object modules contain both text data and the
control information needed for processing. Text records from
load modules contain only text, so the associated control record
must also be examined to obtain the required control
information. During object module processing, control

Method of Operation 41

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-392l-0

information is placed in registers; this information allows the
object module text to be moved from the object module buffer
into TXTBFBEG. For load module text, the assigned address of
the first byte of text and a pointer to the IO-length list (in ..) ..
the control record) is determined during load module processing. •
This information allows the text record to be read directly into
TXTBFBEG.

processing Object Module Text

When text is received from an object module, the text record ID
is renumbered, using the renumbering table, so that it refers to
the CESO entry for the control section that contains the text.
The size of the control section is obtained from the CESD, and a
test is made to determine if the whole control section or a
multiplicity (whichever is smaller) will fit into the space
available in TXTBFBEG. If the control section length was not
specified in the CESD entry, only text for the current ID is
accepted; see "Ho-length Control Section," below.

If there is sufficient space in TXTBFBEG to accommodate the
tabletext I/O table control section or multiplicity, the text is
moved into the buffer, and an entry (containing the ID and
multiplicity number of the text) is made in the text I/O table.
A corresponding entry, containing the location of the
multiplicity and the length of the text, is made in the text
note list. The text note list entry also contains a
displacement field. When text is in order, or on the first
occurrence of text for a multiplicity, the displacement field is
set to 0; for out-of-order text the displacement field contains
the displacement from the beginning of the multiplicity of the
first byte of contiguous text.

If the SYSUTl record size is smaller than the multiplicity size,
each multiplicity is divided into pieces, each piece having a
length equal to the SYSUTl record size. New text I/O table and
text note list entries are made for each piece; the displacement .J ...
field will contain the displacement of each piece from the
beginning of the multiplicity.

NO-LENGTH CONTROL SECTION: When text is received for a ~0-len9th
control section (a control section for which no length 1S
specified in its CESD item), space for one multiplicity is
allocated in TXTBFBEG. Entries are made in the text I/O table
and the text note list for the multiplicity, and the text is
moved into TXTBFBEG. This procedure is repeated for each
subsequent multiplicity of text for the no-length control
section. If TXTBFBEG becomes full, its contents are written on
SYSUTl as described in "Writing Text on SYSUTl." When the length
is received, it is entered in the text note list.

PROCESSING OUT-OF-ORDER TEXT: A load module contains records in
a definite order. However, records in an object module may not
be in the proper sequence because the language translator may
have created them out of order (records resulting from the
EXPAND control statement are marked out of order). Such records
may contain discontinuities in addresses (because of a reorigin
or a disjointed control section), or they may not be contiguous
(that is, text of a given 10 and multiplicity may be
interspersed with text of other IDs or multiplicities). Records
of contiguous text must be built on SYSUTl so that during second
pass processing, the text can be placed into its proper
position, within its 10 and multiplicity, in the second pass
text buffer.

The first occurrence of a given ID and multiplicity is read into
the input text buffer as it is received. Discontinuities and
noncontiguous text are of no consequence at the first occurrence
of an 10 and multiplicity. However, once text of a given ID and
multiplicity has been written out on SYSUTl, any subsequent text
of that ID and multiplicity must be contiguous to be written out .. ~ .
on SYSUTl within each text record. ~

42 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
LY26-3921-0

Text of a previously written 10 and multiplicity is read into
the input text buffer until a discontinuity, or text of a
different 10 or multiplicity, is encountered. The contiguous
text in the buffer is then written out on SYSUTI. The
discontinuous (or noncontiguous) text is then placed in the
buffer. If this text represents the first occurrence of an 10
and multiplicity, the buffer is loaded without regard for
discontinuities or noncontiguous text. If the text belongs to a
previously written 10 and multiplicity, the text processor will
again place only continuous text of that 10 and multiplicity in
the buffer.

A record that contains noncontiguous text is called a loose
record; a record that contains contiguous text is called dense.
The text note list entry for a dense record usually has a
nonzero value in the displacement field. When the text is read
back from SYSUT1 into the second pass text buffer, during second
pass processing, this displ~cement is used to place the t~xt in
its proper position within its 10 and multiplicity.

Processing Load Module Text

Because text records from load modules are ordered and
well-defined, they require little further processing by the text
processor. The information in the IO-length list (in the
control record) is scanned, and each 10 is renumbered and
checked to determine whether it is to be deleted. If all lOs
are to be deleted, the record is ignored, and control is
returned to the input processor.

When an 10 that is to be processed is found, the text record
containing the 10 must be read into TXTBFBEG. The text record
length is obtained from the associated control record and
comp~red against the free space available in TXTBFBEG. If
sufficient space is available, the text record is read into the
buffer; otherwise, the contents of the buffer are written on
SYSUT1 to ensure sufficient space, and the record is read.

Text is processed in the buffer in the order specified by the
IO-length list. lOs that are to be deleted are overlaid by lOs
that are to be processed. The text is divided into
multiplicities. and entries are made in the text I/O table and
the text note list. When all text identified by the IO-length
list is processed. text processing is completed.

Writing Text on SYSUTI

When no more control sections can be accommodated in TXTBFBEG.
the contents of the buffer must be written on the intermediate
data set (SYSUT1). The text I/O table is scanned to determine
the order in which control sections are to be written. The
length of the first control section (that is, corresponding to
the first text I/O table entry) is obtained from its
corresponding ESO 10; if the length is less than the size of the
SYSUTI record, the text I/O table entry for the control section
is marked "written." Each subsequent control section is
similarly processed, and its length added to the sum of the
lengths of previously processed control sections.

When the sum of control section lengths reached the limit of a
SYSUTI record, the entire group of control sections is written
on SYSUTI. The relative track address (TTR) is placed in the
text note list entry corresponding to the last text I/O table
entry that was processed.

When a single control section is larger than a SYSUT1 record.
the multiplicities of the control section are grouped, up to the

Method of Operation 43

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983
lY26-3921-0

RLD processing

limit of the SYSUTI record size, and written. 6 When control
sections or multiplicities are grouped on SYSUTl, the
multiplicities must be in ascending, consecutive order. If the
overlay attribute has been specified, no grouped control ~
sections are permitted on SYSUTI. ~

NOTE: Each time an entry is made in the text note list during
text processing, a check is made to determine whether the list
is full. If it is full, the contents of TXTBFBEG are grouped
(if possible) and written on SYSUTl, and the TTRs are placed in
the text note list. The list is then written on SYSUTl, and its
address is noted in the I/O control table. The text note list
may be written a maximum of 11 times.

If neither TXTBFBEG nor the text note list becomes full during
text processing, no text is written on SYSUTI. The text is
retained in the buffer, and single pass processing is in effect
for text records.

RlD processing basically consists of:

• Updating each set of relocation and position pointers (R and
P Pointers)

• Processing each flag and address (FA) in the input item
until the end of the record or the next item with an Rand P
pointer is detected

RlD records from object modules and load modules are processed
in the same manner.

RlD information is grouped in the RlD buffer by P pointer. Each
P pointer of an input RlD record refers to the ESD entry in the
input module for the control section that contains the address
constant. Each time a new P pointer (one referring to a. ~ ...
different ESD ID) is detected, an entry is made in the RlD note ~
list for the RlD set (a set being an unbroken sequence of RlD
items having the same P pointer). The RlD note list entry
contains the following information for each set:.

• The renumbered P pointer to which these RlDs refer.

• The lowest multiplicity of text to which these RlDs refer.

• The number of bytes of RlDs.

• The storage address of the first byte of RlD data if all
RlDs remain in virtual storage. If RlDs are written on
SYSUTl, this field contains the accumulated byte count for
intermediate chains or the TTR of the record on SYSUT1.

All adjacent RlD items containing the same P pointer are
referred to by only one RlD note list entry. Adjacent RlD items
containing the same Rand P pointers are chained, with the Rand
P pointers appearing only once, at the beginning of the chain.
The remaining RlDs in the chain are compressed by setting the
flag indicating continuation and discarding the four bytes
containing the Rand P pointers.

Each R pointer of an input RlD record refers to the ESD entry in
the input module upon whose value the address constant depends.
The Rand P pointers are updated, using the renumbering table.
Before renumbering, the Rand P pointers refer to ESD entries of
the input module that contains the RlD items. The pointers are
renumbered so that they point to the proper entries in the CESD
being created for the output load module. If the R pointer
refers to a deleted ESD entry, delinking may be performed. If

6 If the SYSUTI record size is smaller than the SYSlMOD record
size, no grouping is permitted.

44 MVS/370 linkage Editor logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

the assigned address of the symbol referred to by the address
constant is zero, the address constant is not delinked. (Normal
relocation is performed.) When delinking is necessary, an entry
is placed in the delink table (a function of ESD processing).
The delink table entry contains the address (delink value) of
the symbol being deleted and the CESD entry number of the
identically named symbol that is to replace the deleted symbol.

The ID of the delink table entry for the deleted symbol is saved
in the renumbering table, and a "delink value saved" indicator
is set. The ID of the identically named symbol and the ID of
the new delink table entry are saved because they are later used
to complete the delinking operation. The R pointer of the RLD
item must be modified to refer to the delink table entry for the
deleted symbol, but the original R pointer is needed to process
any V-type address constants referred to in the RDL item.
(V-type address constants do not require delinking, but may be
in a FA string with A-type address constants that do require
delinking.) Therefore, the R pointer is not modified until the
string of flag-address (FA) fields following the Rand P
pointers has been processed as described below. At that time,
if the module is to be structured for overlay and it contains
V-type address constants that refer to the deleted symbol, the
ID of the identically named symbol is inserted into the calls
list.

Each FA field of the RLD record is processed as follows:

• The high-order bit of the flag field is set to zero.

• If the address constant is an A-type, the renumbering table
entry referred to by the R pointer is checked to determine
whether it is marked as a PR type. If it is a PR, the RLD
flag field is also marked PR (because second pass processing
must handle PRs in a special manner). If the renumbering
table entry is not an ER or marked delete, the RLD flag
field is marked for relative relocation. This indicates to
second pass processing that the difference between the
origin of the control section in the input and the origin
assigned by the linkage editor is to be used as a relocation
factor for the value of the address constant. If the RNT
entry is an ER or marked delete, the RLD flag field is not
marked. This indicates to second pass processing that the
add~ess constant is to be relocated by absolute relocation;
second pass processing uses the linkage editor assigned
address of the symbol in the output module as a relocation
factor for the value of the address constant. (This
procedure is described in "Second Pass Processing.")

• If the address constant is a 4-byte V-type ("branch-type")
and the program is in overlay, an entry is placed in the
calls list, provided that the address constant refers across
control sections (R not equal to Pl. The calls list is used
during address assignment processing to determine which
segments require ENTABs and the number of entries each ENTAB
must contain.

• For both A-type and V-type address constants, the text
multiplicity of the address field is determined and is saved
in the RLD note list if it is lower than any previous
multiplicity in the RLD record. If two pass processing is
in effect, the RLD note list is used during second pass
processing to read back RLD data from SYSUT1 (each RLD note
list entry contains the relative track location (TTR) of an
RLD record on SYSUT1). The second pass processor uses the
multiplicity field of the RLD note list entry to determine
whether the associated RLD record should be read back from
SYSUTI for a given multiplicity of text.

• When the last FA field in the string has been processed, all
items in the string have been checked to determine whether
they require delinking. If any A-type address constants in
the string required delinking, the R pointer for the string
is modified to refer to the associated delink table entry.

Method of Operation 45

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
lY26-3921-0

Figure 16 shows the actions performed during RlD processing for
each input flag format, and the format of the flags after RlD
processing. (The "output" column shows the flag formats that
are passed as input to the Relocation routine of second pass ~.
processing; see Figure 27 on page 69~) After all FA fields have . .
been processed, the next RlD record processed.

If the RlD buffer becomes full, its contents must be written on
the intermediate data set (SYSUT1). The RlD buffer is allocated
with a maximum length less than or equal to the size of a SYSUT1
record, so the entire buffer may always be written. As many
consecutive RlD sets as possible are grouped in a SYSUT1 record.

Input output

Flag1 Type Action Performed Flag Type

OOOOLIST Not PR, Marked for relative relocation 1000lIST Relative
ER, wx,
CM, or
delete

OOOOLIST ER ('02' Marked for absolute relocation OOOOLIST Absolute
in renum-
bering
table)

OOOOLIST Delete or Marked for absolute relocation OOOOLIST Absolute
CM ('05') if assigned address of input

item is zero

OOOOLIST PR('06') Marked as PR (displacement 0010lIST Pseudo
value) Register

Type 1

OOOOLIST Delete or Marked "delink value saved" if High-order Dalink
CM assigned address of input item bit of P

is not zero pointer

OOOllIST Type is RlD is marked branch-type OOOllIST Branch
not
checked

OOOllIST Delete Marked "delink value saved and High-order Delink
or other FA items in string exist bit of P

10DllIST2 that are nonbranch-type" and pointer.
are being delinked

0010LIST Pseudo None. Remains as a PR OD10LIST Pseudo
Register (displacement value) Register
Type 1 Type 1

OOlllIST Type is Marked as PR (cumulative OOllLIST P!5eudo
not length) Register
checked Type 2

Figure 16. RlD Flag Field Processing

.I

Notes to Figure 16:
1

2

Refer to "RlD Input Record (Card Image)" and "Relocation
Dictionary Record (load Module)" in "Appendix. Input
Conventions and Record Formats."

Internal types processed during second pass.

46 MVS/370 linkage Editor logic

L

L

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
lY26-3921-0

END processing

Include Processing

The RlD note list entry for each RlD set in the group contains a
"grouped" indicator; the note list entry for the last RlD set in
the group also contains the relative track address (TTR) of the
group.

RlD sets whose lengths exceed that of a SYSUT1 record (requiring
more than one output record) are not grouped. RLD note list
entries for RlD sets that are not grouped contain the relative
track location (TTR) of the SYSUTl record and a "nongrouped"
indicator.

Each time an entry is made in the RlD note list, a check is made
to determine whether the list is full. If it is full, the RlD
sets in the RlD buffer are grouped and written on SYSUT1, and
the TTR is placed in the appropriate RlD note list entry. The
RlD note list is then written on SYSUTl and its address is noted
in the "I/O control table." The RlD note list may be written a
maximum of three times.

Note: If neither the RLD buffer nor the RLD note list becomes
full during RlD processing, no RLDs are written on SYSUT1. The
RlD information is retained in the RLD buffer, and single pass
processing is in effect for RlDs.

When an END record or the end of an input load module is
detected, END processing is required. The functions of END
processing include:

• Resetting tables (such as the renumbering table) that were
involved in the processing of the input module

• Processing entry point information

•

•

Deleting any CESD lines marked CHAIN or DELETE, and keeping
track of deleted lines

Entering in the CESD the length of a control section for
which no length was specified in the ESD item (if the length
is contained on the END record)

• Setting flags in the ORDER table for each entry matched by
an entry in the CESD and resetting the flag for formerly
matched entries

• Placing the data from END records in object modules created
by a translator that supports IDR into the lOR translator ID
and data tables, IORTRTAB, and IDRTITAB

•

Include processing is required when:

• The control statement scanner has detected an INCLUDE
statement and the INCLUDE statement processor has built an
include chain.

• End-of-input has been detected, and the "more includes"
indicator in the all-purpose table (APT) is on.

Include processing consists of preparatory functions (OPEN,
BLOl, FIND) required before the module to be included can be
read. These functions include:

• An input pointer to the library read block is set.

• The SYSlIB OCB is closed (unless it is open for a
partitioned data set currently being used).

• Each entry in the include chain is examined sequentially.

Method of Operation 47

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

SEQUENTIAL DATA SETS: If an include chain entry specifies a
sequential dat set, the data set organization field of the DCB
is changed from partitioned to physical sequential, and the
ddname fi eld is updated. The DCB is then opened, and the module . \
is read in. ."",

PARTITIONED DATA SETS: If an include chain entry specifies a
member of a partitioned data set, the member name is entered
into the BLDL list, and the next entry is examined. If the next
entry specifies a different data set name, the partitioned data
set is opened and a BLDL macro instruction is executed for the
single member name.

If the next entry specifies another member of the same
partitioned data set, the member name is added to the BLDL list
and the next entry in the include chain is examined. Member
names are added to the BLDL list until a different data set name
is encountered, the BLDL list becomes full, or the end of the
include chain is reached. Because the BLDL list must be in
collating sequence, each member name is inserted into its proper
position, moving other entries as necessary. Because included
modules must be read in the order in which they appear in the
INCLUDE statement (without regard to the collating sequence), a
separate table, indicating the order of processing BLDL list
entries, is maintained.

When the BLDL list is completed, the partitioned data set is
opened and the record format field (RECFM) in the DCB is tested
to determine whether the included modules are load modules
(undefined format) or object modules (fixed format). If they
are load modules, the "load module" indicator is set in the APT.
This indicator is tested when each module is read in. A BLDL
macro instruction is then executed for the member names in the
list. The list is then examined in the order specified in the
INCLUDE statement to obtain the attributes of each included
module (if it is a load module); the attributes of the output
load module may be "downgraded" accordingly in the APT.

If the BLDL macro instruction was successful for a particular ... ,
member, the member is read in. The FIND macro instruction and ~
the directory entry obtained from BLDL are used to set a pointer
in the DCB to the first record of the member. If the BLDL was
not successful for a particular member, a diagnostic message is
printed.

The INCLUDE processor checks the PDS directory information
returned by BLDL for an included load module to determine
whether the load module is in overlay format. If it is, an
indicator is set in the all-purpose table so that the ESD
processor can interpret byte 12 of each ESD item as a segment
number rather than as AMODE/RMODE data . ..
An example of INCLUDE processing is given in Figure 17 on page
49. The input pointer is set to the address of the library read
block. The address of the current include item is contained in
the APT.

Assuming that no includes have yet been processed. A will be
the first item examined. The subtype 'DO' indicates that A is a
member of a partitioned data set, so A will be entered into the
BLDL list. The pointer DODD refers to the data set DATASETX.
The next item in the include chain, B, is also a member of
DATASETX, so it is added to the BLDL list. The next item in the
chain, M, is a sequential data set (subtype CO), so the BLDL
list is completed with two entries (A and B). Assuming that
DATASETX is not currently open and the SYSLIB DCB is not opened
for another data set, the SYSLIB DCB is opened for DATASETX.
(The RECFM field of the data set DSCB is merged into the DCB.)
Assuming that the RECFM field indicates undefined (U) format, a
load module indicator is set in the APT, and a pointer to the
load module buffer is placed in the library read block. The
attributes of A and B are obtained, using the BLDL macro
instruction, and the attributes previously specified are updated
accordingly. (The attributes of the output load module may be

43 MVS/370 Linkage Editor Logic

Th~s document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
LY26-3921-0 ,

INCLUDE DATASETX
{A,a,CLM

Register 2

downgraded as a result.) A pointer in the DCB is then set to
the first record of member A, using the FIND macro instruction,
and the "include initiated" indicator is set in the APT.

All Purpose Tobie

"MORE INCLUDES" INOR

I 1 I

INC8RKPT
9F88

Input Pointer

F278

ID LOC. 0
Oi 9F38
02 9F48
03
04 9F68
05
06 9F88
07
08
09 9F88
OA
08
OC
00 9FF8
OE
OF
10
11

12 13

C oooooc 100 10000
9F88

8 9F88 DO 0000

M 9F48 CO 0000

A 9F68 DO 0000

OATASETX 80

F278 1-~7----;

9400

Lood
Module
8uffer

77CO

SYSLIB OCB

RECFM

I]
OONAME

I
BLKSIZE

I 967C

SYSLIN
Reod Block

F28C 7768
967C

50

SYSLI N
Buffer

BLOL Lis'

~

SYSLIN OC8

7768 RECFM

ODNAME

I

BLKSIZE

I

Figure 17. Include Processing

Member A is read using the input pointer and library read block.
Module A is then processed~ When the end of module A is
reached, item A is deleted from the chain and the CESD line is
marked null. Member B is then read and processed.

When the end of module B is reached, item B is deleted from the
chain, the CESD line is marked null, and the remainder of the
chain is processed.

Method of Operation 49

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3921-0

Automatic Library Call process;ng

Automatic library call processing is required:

• At the end of SYSLIN input when unresolved ERs still exist,
and the NCAL option was not specified

• When a NAME statement has been detected (provided that the
NCAL option was not specified and no more entries in the
include chain are to be processed)

Automatic library call processing consists of two series of CESD
scans. The first series of scans operates on unresolved ERs
specified on LIBRARY statements. It finds the first ddname that
contains a pointer in the chain pointer field (bytes 14 and 15).
Such an entry is the first item in a chain of members associated
with this ddname; there is a distinct chain for each ddname that
was specified on a LIBRARY statement. Chained member names for
a particular ddname are entered into a BLDL list, which is
processed as previously described under "INCLUDE Processing."

The scan of the CESD continues until all ddname chains have been
processed. A second scan of the CESD then searches for ERs not
specified on LIBRARY statements and attempts to resolve them by
calling members of the same name from SYSlIB.7

An example of automatic library call processing is given in
Figure 18 on page 51. Diagram A shows two library chains that
were built in the CESD by the library statement processor. In
Figure 17 on page 49, Diagram B, an SD item for JOE has been
entered in the CESD, resolving the reference to JOE. (JOE was
removed from the chain by ESD processing, and the LIBI chain ID
now points to the line containing TOM.) Automatic library call
processing operates on the library chains, as modified by ESD
processing (Diagram B).

In the first series of scans, the CESD is searched for a ddname
(type 02, subtype BO) with a chain pointer. The ddname item ..J'.
LIB! is found; its chain ID points to TOM. Because TOM is
unmatched (subtype 02), it is not called and because TOM is the
last item in the chain (0 in the chain ID field), the scan is
resumed for another ddname with a chain pointer. LIB2 is found;
its chain ID points to SAM. No call is issued for SAM, because
it is unmatched. The chain ID of SAM points to PETE, which is
matched (indicating that PETE is an external reference, and not
just an operand of a LIBRARY statement). PETE is entered in the
BLDL list; because PETE is the last item in the chain, the list
is completed with one entry.

LIB2 is opened and the BLDL macro instruction is used to obtain
the attributes of PETE (the attributes of PETE are not obtained
if the format is fixed (F)). A "BLDL attempted" indicator is
set for the CESD entry for PETE so that no other search for PETE
will be made in the event of an unsuccessful BLDL or
nonresolution of the ER for PETE by the member PETE. The FIND
macro instruction is used to set a pointer in the SYSLIB DCB to
the member PETE. PETE is then read in.

When processing for PETE is completed, the scan for ddnames
resumes at the beginning of the CESD, rather than at the CESD
line where the scan was interrupted, because additional ddname
items may have been entered at any available line in the CESD.
(Object modules with additional LIBRARY statements may have been
read in.) When the last line of the CESD is reached, the second
series of scans is begun.

7 SYSLIB is the standard library whenever the linkage editor
is executed as a job step. If another program links to the ..J ..
linkage editor, the ddname of the standard library is passed· .
in a parameter list.

50 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

10
01
02
03
04
OS
06
07
08
09
OA
08
oc
CD

10

01
02
03
04
OS
06
07
08
09
OA
OB
OC

CESD
o

lIBI

JOE
SIMPLE

L!.182
SAM
PETE

TOM

CESD
o

lI81

.lQE
SIMPLE
lIB2
SAM
PETE

TOM

Diagram A

Type
8

02

02
02

102
02
02

02

Diagram 8

00

02

00
06
07

04

8 9 10

I
02 I 00

I
00 O6E273
02
02 00
02 06
02 07

02 02

Sub­
Type

12 13

80

03
00
SO
02
03

02

04

OA

07

08
00

OU

12 13 14 15

I
80 I A

I
0121E3
00
80 7
02 8
03 0

02 0

~

~

~

Figure 18. Automatic Library Call Processing

During the second series of scans, the CEDS is searched for
"unmarked" external references (type 02, subtype 00). These are
ER items not specified on LIBRARY statements. In Diagram B, the
scan finds SIMPLE. Assuming that SYSLIB is the ddname for the
standard library, SIMPLE is called from SYSLIB in the same way
that PETE was called from lIB2. Every time automatic library
call processing is resumed after a module is read, the second
series of scans resumes at the beginning of the CESD (because ER
items from a library member may have been entered in any
available CESD line).

When the second series of scans is finished, input processing is
complete.

INTERMEDIATE PROCESSING

The intermediate processing comprises modules HEWlFADA,
HEWlFOUT, HEWlFENS, HEWLFENT, and (optionally) HEWlFMAP.

When all input processing is completed, the second phase of the
linkage editor (intermediate processing) begins operation. The
two major functions of the second phase are address assignment
and intermediate output.

Method of Operation 51

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
lY26-3921-0

ADDRESS ASSIGNMENT

At the conclusion of input processing. address assignment
processing is required (see Diagram 13). Address assignment
includes the following operations:

• Delete CESD entries for ER items marked included. called.
ddname. or overlay in the subtype field. These lines are
marked null and are deleted if the module is processed again
in a subsequent execution of the linkage editor.

• Compute. for programs in overlay. the size of SEGTAB,8 enter
the size in the all-purpose table. and place a private code
delete entry for the SEGTAB in the CESD. The PC-delete
entry is deleted from the module if it is processed again by
the linkage editor (see Diagram 13, area A).

• Determines whether the first text record of a load module is
not assigned to address O. If it is not assigned to address
0, a private code delete entry of one byte is created in the
CESD. The PC-delete entry is deleted from the module if the
module is later reprocessed by the linkage editor.

• Enter segment numbers for label references in the CESD. If
the program is in an overlay structure. the calls list
(built during RlD processing) is also scanned. and pointers
from one chain of calls to the next chain are entered (area
B); the number of EHTAB bytes9 for each segment is
determined; and a PC-delete entry is placed in the CESD for
each EHTAB (see "ENTAB Size Determination").

• Assign temporary linked addresses to SD, PC. and CM entries
in the CESD (area C). SDs and CMs that have entries in the
ORDER table are addressed first in the order of their
appearance in the table. The remaining control sections are
then assigned addresses to the SDs, PCs. and CMs that have
no entries either in the ORDER table or the text I/O table.

•

•

•

8
9

To avoid assigning addresses to any SD or CM more than once • ..)\
a "processed" bit (bit 4 of the 'type' byte in the CESD) is
set in each CESD entry when it is first processed. The bit
is reset to zero in the final scan of the CESD.

Consider each segment to be at zero origin. The temporary
starting address of each control section is computed with
consideration for its location in the segment. relative to
the zero origin (plus any adjustments for boundary
alignment). These addresses are temporary because the
starting addresses of the segments must later be relocated
with respect to their positions in the overlay tree. If the
program is not in overlay (consists of a single segment).
the addresses are final, because no further relocation by
address assignment is necessary.

Perform page alignment while assigning temporary linked
addresses if the program is not in overlay. The ORDER table
is searched for a match of the CESD ID of the SD or CM being
processed. When a match is found. and page alignment is
specified. the assigned address is forced to a 4K-byte
boundary. If the ALIGN2 option is taken, the address is
forced to a 2K-byte boundary.

Compute the temporary relocation constant for each control
section (the difference between the temporary linked address
and the assigned address in the relocation constant table
(RCT) (area D). If the program is not in overlay. these are
the final relocation constants (relative relocation
factors).

SEGTAB size = 24 + (4 x number of segments). . .. ~
ENTAB size = 12 + (12 x number of unique downward calls per ~
segment).

52 MVS/370 linkage Editor logic

L

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

• Accumulate the length of each segment in the leftmost 3
bytes of an entry in the segment length table (SEGLGTH).
The boundary alignment factor of the first control section
in the segment is placed in the fourth byte of the entry.

• Determine the address of each PR entry in the CESD, using
the total length of all PRs previously encountered, plus the
boundary alignment factor. This address is placed in the
CESD entry for the PRo The length of this PR is then added
to the cumulative PR length.

• Process the SEGLGTH table (if the program is in overlay) to
determine the starting address of each segment, relative to
the beginning of the program (area E). SEGTA1 is checked to
find the proper location of each segment in the tree.
SEGLGTH at this time contains the length of each segment.

•

To determine the starting address of a segment, the length
of all previous segments in the same path are added,
together with any adjustments for boundary alignment.
(Boundary alignment adjustment is determined by the last 3
bits of the address of the first control section in a
segment.) This sum, minus the boundary alignment factor for
the segment, is the segment relocation constant (SRC). The
SRC is then placed in the rightmost 3 bytes of the SEGLGTH
table. The sum of the SRC, the boundary alignment factor,
and the segment length is placed in the leftmost 3 bytes of
the SEGLGTH table entry for the segment. It is the length
of the path of the segment (including the segment itself).
At the completion of this process, the entry in SEGLGTH for
each segment contains the cumulative length of its path; the
longest of these lengths is the program length.

Perform a second scan of the CESD if the program is in an
overlay structure. The segment relocation constant in the
SEGLGTH table is added to the temporary linked address in
the CESD entry for the control section; this sum is the
final linked address. The SRC is also added to the
temporary relocation constant table; this sum is the final
relocation constant for the control section.

• Assign final linked addresses in ascending order of segments
if page alignment is specified for any SO or CM type symbol.
For each segment, three cycles of scanning are performed.
First, SOs and CMs having entries in the OROER table are
processed. The final address is calculated by adding the
SRC and the temporary linked address, and is aligned on a
page boundary, if required. A cumulative count of any
increment within a segment caused by page alignment is kept,
in order to assign correct addresses to the unprocessed SOs,
PCs, and CMs. Next, the text I/O table is scanned for the
remaining SOs and PCs in the segment. These SOs and PCs are
assigned final addresses. Finally, a scan of the CESO gives
addresses to all unprocessed SOs, PCs, and CMs in the
segment. For every processed SD, its entry in the
relocation constant table is calculated. Before going on to
the next segment, the length of the segment just processed
and the SRC of the next segment are updated.

• Make a final scan of the CESD to assign a final linked
address to each label reference.

•

The CESD entry for each LR contains a reference to the
control ~ection in which it resides. The relocation
constant for that control section is located in the RCT and
is added to the temporary linked address in the CESD entry
for the LR. This sum, the final linked address for the LR,
is placed in the CESO.

Mark the program as not executable if there are still
unresolved ERs and if neither the NCAL option nor the LET
option has been specified. Unresolved WXs do not inhibit
program execution.

Method of Operation 53

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983
LY26-3921-0

• Build the alias table and compute an entry point for the
program (see "Entry Processing").

ENTAl Size Determination ~
ENTAB size determination consists of computing the size of
EHTABs so that the size of each segment in an overlay program
can be determined and relative relocation factors can be
computed for use by second pass processing. The size is
determined by the number of downward calls. or calls across
regions. to symbols that are not referred to by segments higher
in the path of the calling segments.

An example of EHTAB size determination is given in Figure 19 on
page 55. The overlay tree structure shown in the illustration
consists of nine segments residing in two regions; all
references between segments are made using V-type address
constants. Functions of ENTAB size determination are:

• Scanning the CESD for LR entries and entering their segment
numbers. In Figure 19. item 6 is an lR item; its ID/length
field points to the CESD entry for the control section in
which it resides (line 3). The segment number contained in
line 3 (segment number 3) is entered in the segment number
field of the LR item.

• Scanning the calls list. inserting chaining values that
point from one group of Rand P pointers to the next.

• Scanning the calls list for each segment (starting with
segment 1). and finding symbols referred to by that segment.
For each reference found. the type of call (upward.
downward. or exclusive) is determined. If an ENTAB is
required for the segment. its size is determined and a
PC-delete entry for the ENTAB is made in the CESD.
Referring to Figure 19. the segments are processed in the
following manner:

1. The calls list is scanned for P pointers that refer to
control sections in segment 1. If one is found. the
associated R pointers (which refer to referenced
symbols) are examined to determine the segment in which
each referenced symbol resides. In Figure 19. the fifth
P pointer refers to line 7 of the CESO, which contains
an SO entry for a control section in segment 1. The
associated R pointers refer to line 6 (symbol B in
segment 3) and line 4 (symbol C in segment 5). For each
reference, the type of call (upward. downward, or
exclusive) is determined. using SEGTA1 and the segment
numbers of the calling and called segments. In
Figure 19, SEGTA1 indicates that segment 1 is in the
path of segments 3 and 5; therefore. the calls from
segment 1 to Band C are downward calls. This is noted
in the downward calls list by entering segment number 1
in the lines referred to by the R pointer (lines 6 and
4). Since segment 1 is the root segment. it must have
an ENTAB; the size of the ENTAB is determined and a
PC-delete entry for it is created in the CESD.

2. When the scan for segment 1 is completed. the calls list
is scanned for P pointers that refer to segment 2. In
Figure 19, the third P pointer in the calls list refers
to CESD line 6. which contains segment number 3. In
this case. how~ver. no entry is made in the downward
calls list because it indicates a call to B in segment 3
from segment 1, which is higher in the path of the
calling segment (segment 2). No ENTAB is required for
segment 2 because the reference to symbol B in segment 2
can be resolved through the ENTAB entry in segment 1.

3. The calls list is scanned for P pointers that refer to ~.
segment 3. In Figure 19, the fourth P pointer in the
calls list refers to CESD line 3 (segment 3). The R

54 MVS/370 linkage Editor logic

L

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
LY26-3921-0

CESO

Symbol Type Chain Seg Sub-
Address No Type

1 0 SO 9

2 H SO 2

3 A SO 3
.- C SO 5

S

6 B LR 3
7 I SO I

8 E SO 8

9 G SO 4
1O F CM 6

" PC 7
• PC(d I

t PC(d 1

t PC(d) 3
t PC(d) "

4.

pointer refers to CESD line 8 (segment 8). SEGTA1
indicates that the call from 3 to 8 is downward, across
regions, and the call is noted in the downward calls
list. Segment 3 requires an ENTAB, because it contains
a downward call to a symbol not referred to by a segment
in the path of the calling segment; the ENTAB size is
determined, and a PC-delete entry for the ENTAB is
created in the CESD.

The calls list is scanned for P pointers that refer to
segment 4. In Figure 19, the first P pointer in the
calls list refers to CESD line 9 (segment 4). The R
pointers refer to line 2 (segment 2) and line 8 (segment
8). SEGTA1 indicates that the call from 4 to 2 is
upward, while the call from 4 to 8 is downward, across
regions. The upward call is ignored, because the
address constant can be resolved directly to the
referenced symbol. The downward call from 4 to 8 is
noted in the downward calls list, replacing the previous
entry for segment 3 (because no segment with a segment
number greater than 4 can have segment 3 in its path).
Because an ENTAB is required, the size is determined and
a PC-delete entry is created in the CESD.

This process continues until all segments have been
processed. The required ENTABs are built during second pass
processing (see "ENTAB Creation" and "Relocation of V-Type
Address Constants in Overlay").

Length
/10

3

60

36

24
24

(- ---------V (8)

I

I
I

V (C)---t I
I
I

H-----~ C

2 j 5 v- --- - --V (8)
I
: A
\
--+B

I

G 4 :

V (H)--'

V(E)----~, V(E)_~
I '

1
2
3
4
5
6
7
8
9

Region 1 "

~'~'-13' i : --JIT9--7 8 E-4'------ +
I

V (0)- - - ---'

• PC - delete type entry for SEGTA8
t PC - delete type entries for ENTAB,

CALLS LIST

SEGTAI

o
I
2
2
I
o
6
6
o

,
I I

~

4
5
6
7

Downward
Calls List

8 ~"
9
10
II

, , ,
U

• CV = Chaining Value (gives number of byte, to next CV) End of Call, Ust

Figure 19. ENTAB Size Determination

Method of Operation 55

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

Entry Processing

Entry processing includes the following operations:

• Entering in the alias table any alias symbols that were .~
chained together and saved in the CESD by the ALIAS ~
statement processor. Each entry in this table consists of
an 8-byte symbol field and a 2-byte ESDID field. For each
saved alias symbol, the entry processor scans the CESD for a
matching SD or LR entry. If no match is found, a zero is
placed in the ESDID field of the alias table entry for the

o symbol. If a matching SD or LR entry is found, the ESD ID
of the alias entry in the chain is placed in the ESDID field
of the alias table entry for the symbol (see Figure 20 on
page 57). The address assigned by linkage editor to the
matching SD or LR and the ESD ID of its control section are
placed in the CESD entry for the chained symbol, and the
type of the chained symbol is changed to null.

• Determining whether the entry point was specified as an
address on an END record, or as a symbol on an ENTRY
statement or END record:

1. If the entry point was specified as an address on an END
record, the assigned address is determined by aither
absolute or relative relocation. If the ID on the END
record referred to an ER which was resolved with an SD
or LR, the address assigned by the linkage editor to the
SD or LR is added to the address from the END record
(absolute relocation). If the ID on the END record
referred directly to an SD or PC, the relocation
constant for the SD or PC is added to the address from
the END record (relative relocation).

2.

3.

If a symbolic entry point was specified on an ENTRY
statement or END record, the CESD is scanned for a
matching SD or LR symbol. The address of the matching
symbol is used as the entry point.

If no entry point was specified, the starting address of
the SD or PC control section (not marked delete) with
the lowest assigned address is chosen as the entry
point. The entry point associated with the main name
(not an alias) and all alias entry points must be in
segment 1 if the program is in overlay.

• Assigning the addressing mode for the main entry point into
the output load module. If the load module is in overlay
format, the addressing mode is 24; otherwise, the addressing
mode is obtained from the CESD entry that defines the SD or
PC that contains the entry address. The addressing mode,
along with the entry address and the ESDID of the SD or PC,
is saved in the all-purpose table.

INTER"EDIATE OUTPUT PROCESSING

Intermediate output processing includes the following
operations:

• Writing out the CESD on SYSLMOD in groups of 15 entries per
record. The last record may consist of less than 15
entries. In writing CESD records on to SYSLMOD, the
intermediate output processor sets a flag in the control
information indicating the content of byte 12 in the CESD
entries in the record. If the CESD entries contain segment
numbers (that is, the load module is in overlay format), the
flag is off; if the CESD entries contain AMODE/RMODE data,
the flag is on.

• Building and writing out the IDRs from the IDR tables
(IDRTRTAB, IDRTITAB, IDRUDTAB, and IDRZPTAB) onto SYSLMOD.
The linkage editor IDR is also built and written on to
SYSLMOD.

56 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
lY26-3921-0

All Purpose Tabl.

Alia. Chain Addr ...

Addr ... X

!
\------,

I

+

• Building a half ESD (HESD), consisting of the last 8 bytes
of each CESD entry. (The symbol is deleted from each CESD
entry to conserve virtual storage space during second pass
processing.) The HESD is not complete at this time. (The
10 of each label reference is used in building the scatter
and translation tables.>

• Building and writing out the segment table (SEGTAB),
preceded by a control record describing it, if the program
is in overlay. SEGTAB contains information required by the
overlay supervisor.

• Building and writing a one byte text record if the first
load module text record does not begin at address O. The
I-byte text record is preceded by a control record
describing it.

• Building a scatter table and a translation table for a
program that is to be scatter loaded and writing out
scatter/translation records in a form acceptable to program
fetch at execution time. The scatter/translation
information is written out on SYSlMOD in 1024-byte records.

CESD - Before Entry Processing

Chn Addr Sub
t'olnter

Symbol Type Reverse
Seg Chn

Choin 10 No Type Chn Lgth
110

• •
•

Address X 3 SAM "" Alios

• ,- -- - -- - ---- '"r~~- ~I
(•
'-"Address Y 7 JOE ER AddrZ- "" Alios

• J ---.---- - ---
I

'-.. Addre .. Z 10 BILL ER 000 Alios

• •
•

SAM SC • LAI (Length)

• f-- -.- -- - -- - - I- -,
\

22 JOE LR • LA2 20-/

•
.. Linked address CESD - After Entry Processinq

Chn Addr
Chn

Seg Sub Pointer
Symbol Type Reverse No Type Chn Choin 10

Lgth/lO
Alias Tobie •

AI io, Symbol ESOIO •
•

SAM Null LAI 20-,

• I
SAM 3- - - - -- -~3

• I
JOE Null LA2 20-1
•

JOE 7- f- ---- --_7

• I
BILL 0 10 BILL Null 000 Alios I

--~ --- - --- - - --)

•
SAM SO LAI (Length)

•
• •

22 JOE LR LA2 20

•

Figure 20. Processing of Alias Symbols by the Entry Processor

Method of Operation 57

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Beginning of

Low·Order Position
in Virtual Storage

The first 4 bytes of each record are used to identify the
records as scatter/translation information. If the length
of scatter/translation information is greater than 1020
bytes, the last 1020 bytes (plus 4 bytes of header ~ ..•
information) are written out as the first
scatter/translation record. The data in the last record may
be 1020 bytes, or less (see Figure 21). In creating the
scatter table entries, the RMODE/RSECT data is obtained from
the HESD entries (byte 4) and inserted into the flag byte.

Translation ---_. r-----,
Table D 500 by tel

Beginning of

Scatter -----I.~ - - c- -
Table

A

1020 by tel

1020 byte;

1020 by tel

4-byte header

/

D D D [j
1024 by tel 1024 byte, 1024 bytp; 504 byte;

High-Order Position
in V irtuel Storage Sequential Order of Records

Figure 21. Writing Scatter/Translation Records

• Reading the TXT and RLD note lists into virtual storage if
they were placed on SYSUTI during TXT and RLD processing.
The text note list may have been written a maximum of 11
times and the RLD note list a maximum of 3 times on SYSUTI
for a large program. The TTRs pointing to the locations of
note list information are contained in the input/output
control table in the all-purpose table.

• Determining the control section containing the last text in
the program (or in each segment, if the program is
structured for overlay) and the highest segment number of
the segments that contain text. (This information is
necessary so that second pass processing can determine when
to set the end-of-segment or end-of-module indicator.) The
highest ESD ID is determined by scanning the text I/O table
for the ESD IDs of control sections that contain text. This
ESD ID is entered into the high ID (HIID) table along with
its associated segment number.

• Determining, via bits in the all-purpose table (APT), if the
MAP option has ben specified or if the XREF option has been
specified and all RLDs are in storage. If either of these
conditions exists, the module map and/or the cross-reference
table are produced. If the XREF option is specified and all
RLDs are not in storage. XREF processing will be done as
part of final processing.

• If the ORDER option has been invoked during input
processing. the text I/O table and the text note list II
(formed after merging all text note lists from SYSUTl) are
sorted according to the ORDER table. The sorting, however,
preserves the original order for those control sections that
do not have entries in the ORDER table.

58 MVS/370 Linkage Editor Logic

L

L

Thi. document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-l921 M O

HAP/XREF PrdC ••• tng

When MAP/XREF processing is performed as part of intermediate
output processing, a table address is obtained from the APT, and
a table of 2-byte entries pointing directly to the CESD is
constructed. The CESD records for the current segment are
gathered and sorted by address. The module map is then printed
out; the map lists, in ascending order according to their
assigned origins, all control sections contained in the output
module and the entry points within the control sections.
Control sections in an overlay output module are grouped by
segment.

If XREF processing is done during intermediate output
processing, RLD items are incompletely relocated; their
addresses are relative to the origins of their respective CSECTs
rather than the origin of the load module. and the address of
each RLD must be added to the linkage editor assigned address of
its corresponding control section before the cross-reference
table is produced. The cross-reference table includes a module
map and a list of all references within a given segment that
refer across control ~ection boundaries. Each entry in the list
contains the address of the reference, the symbol to which it
refers, and the name of the control section in which the symbol
is defined. For overlay programs, each item in the list also
contains the number of the segment in which the symbol is
defined.

If the MAP and XREF options are processed during intermediate
output processing, disposition messages and the diagnostic
message directory are printed after the module map and
cross-referance table. If the cross-reference table is producad
during final processing, the disposition messages and tha
diagnostic message directory are printed before the
cross-reference table.

SICAND PASS PRACESSING

Second pass processing comprises modules HEWLFSCD and HEWLFREL.

After intermediate
the linkage editor
(sea Diagram 14).
include:

processing is completed, the third phase of
(second pass processing) begins operation
The major functions of second pass processing

• Relocating address constants contained in the text.

• Creating control/RLD records.

• Writing TXT and control/RLD racords on SYSLMOD in a format
that can be loaded by program fetch. Included in the
control information of the control or control/RLD record
that precades each text record is a count of the RLD and
control/RLD records that follow the text record. This count
is used by program fetch to build optional channel programs
when loading the load modula.

• Creating ENTABs and associated RLD items for overlay
modules.

SINGLE PASS PROCESSING: Indicators residing in virtual storage
in the text I/O table and the RLD note list are checked to
determine whether text and RLD records have been written on
SYSUT1 or have been retained in the input text buffer and the
RLD buffer. If either text or RLD records have been retained in
storage, single pass processing is in effect for that record
type. If two pass processing is in effect, the records are read
into the buffers from SYSUTI.

ORDERING OF TEXT: In two pass processing, the ID sequence in the
text I/O table is used to determine the order in which CSECTs
are to be read into the second pass text buffer (which is

Method of Operation 59

This document contains restricted materials of IBM. 0 Copyright IBM Corp. 1972,1983
LY26-3921-0

physically the same storage area as the input text buffer). The
text I/O table entry for each ID and the corresponding text note
list entry are used to locate text on SYSUTI (see Diagram 14,
area A). Text is read into the buffer one multiplicity at a J ...
time, using the displacement field in the text note list to
determine where within the buffer the text must be placed.
Information about the text is entered into the second pass text
control table, which is used to control subsequent processing of
the text (area B).

SECOND PASS RLD BUFFERS: When the required text is in the text
buffer, the corresponding RLDs are read into the RLD input
buffer, using the RLD note list to locate the RLD records (area
C). The RLD input buffer can contain two RLD records from
SYSUTl; for each RLD input buffer area, an RLD input control
block is maintained (area D). The RLD output buffer is 768
bytes long and is divided into three buffer areas (the maximum
RLD output record is 256 bytes long); for each RLD output buffer
area, an RLD output control block is maintained (area F). While
text is being relocated, the control record for that portion of
text occupies one of the output buffers; the other two output
buffers contain the relocated RLDs for the text being processed
(area E). If the relocated RLDs exceed two buffers, the control
record is written on SYSLMOD; relocated RLDs may then be moved
into the third output buffer.

When all three RLD output buffers and the RLD input buffers are
filled and additional RLDs are required to relocate the text
currently being processed, the contents of the output buffer
must be written out. However, to maintain the required TXT/RLD
sequence in the output module (area G), the associated text must
precede the RLD record. Space for the text is reserved in the
output module by writing the incompletely relocated text; the
contents of the RLD output buffer may then be written, and
processing can continue. When the text is completely relocated,
it is written over the space reserved for it, using the XDAP
("execute direct access program") macro instruction.

GROUPING SYSLMOD OUTPUT: As many CSECTs as will completely fit
in one SYSLMOD record (up to a maximum of 60) are grouped and
written as one record. RLDs are grouped to correspond to the
grouping of their associated text. If the overlay attribute is
specified, only CSECTs belonging to the same segment will be
grouped.

If a CSECT is larger than the SYSLMOD record size, the CSECT is
divided into multiplicities, each multiplicity being equal to
the SYSLMOD record size. The length of the last multiplicity
may be less than the SYSLMOD record size. Each multiplicity is
written as a record, followed by RLDs associated with only that
multiplicity.

Note: If the downward compatible attribute (DC) or the scatter
format attribute (SCTR) is specified, CSECTs will not be.
grouped.

END-OF-MODULE: When control sections for all segments of the
output load module have been processed (determined via the "high
ID" indicator in the HESD type field and the "last segment with
text" field in the all-purpose table), indicators are set in the
last control/RLD record to mark it as the end of the module.
The control/RLd record is written out on SYSLMOD, and second
pass processing is completed.

Note: If the output load module is to be structured for
overlay, a list of relative track addresses (TTR list) is
created to be used by program fetch when it loads the segments
into virtual storage for execution. The TTR list contains one
entry for each segment in the overlay load module. Each entry
contains the relative track address of the first record (control
record) of a segment, except for the first segment, which
contains the relative track address of the first text record. A j ...
PC-delete control section that contains EHTAB entries in each
segment where the text requires them and the RLD records

60 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972.1983
LY26-3921-0

required by program fetch to relocate address constants
contained in the ENTAB entries are also created.

Relocatton of Address constants

There are two types of relocatable address constants:

• Branch-type. such as DC VeX)

• Honbranch-type. such as DC A(X)

The value of a branch-type or non branch-type address constant
depends on a symbol in the CESD. To adjust an address constant
to its proper value in the output load module. the linkage
editor uses an absolute or relative relocation factor. The
absolute relocation factor is the address assigned by the
linkage editor to the symbol on which the value of the address
constant depends. The relative relocation factor is the
difference between the address assigned to the symbol by the
linkage editor and the address of the symbol in the input
module. The relative relocation factor may be positive or
negative. 10 The absolute and relative relocation factors of each
symbol in the CESD are computed during address assignment and
are saved in the half ESD (HESD).

Relocation of Nonbranch-Type (A-Type) Address Constants

A relative relocation factor is used for a nonbranch-type
address constant if the symbol on which its value depends is in
the same input module as the control section that contains the
aadress constant. (The address constant and the symbol it
refers to were assembled or compiled together. or were
previously processed together by the linkage editor.) An
example of relative relocation of nonbranch-type address
constants is shown in Figure 22 on page 62. Because the address
of DICK is known. the language translator places it in the value
of the address constant. DICK is a known value prior to linkage
editor processing (not an external reference in the input);
therefore. a relative relocation factor (+1000) is used to
relocate DICK during linkage editor processing.

10 If it is negative. an indicator is set in the HESD to note
that it is in complement form.

Method of Operation 61

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Input Module I Output Module

0000
SAM CSECT 0000

SAM CSECT

• • • • • • • •
0999 •

Input Module 2 1000
JOHN CSECT

0000 JOHN CSECT
~ • • •
< u.,-)

. Editor .

•
•• 2000

~ • J.gge.

DC A .(O.I€1o:T

• *1000 • DCA,LPI€1(j" •
• • 2000 DICK • • 1000 DICK • • • •
•
• Legend:

* Known value of DICK is inserted by language translator.
:1= Relative relocation factor is +1000; linkage editor assigned address is 2000.

Figure 22. Honbranch-Type Address Constants--Relative Relocation

An absolute relocation factor is used for a nonbranch-type
address constant if the symbol referred to by the address
constant does not have a defined value within the same input
module. (The R pointer of the RLD item refers to an external
reference.) An example of absolute relocation of a
non branch-type address constant is shown in Figure 23 on page
63. In this example, the value of SAM is unknown when input
module 1 is processed by the language translator; therefore,
zeros are placed in the value of the address constant. During
second pass processing, the absolute relocation factor (the
linkage editor assigned address) is used to relocate the address
constant.

62 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
lY26-3921-0

L Input Module I

L

0000
JOE

0499

Input Module 2

0000 F SAM

CSECT

• •
•

EXTRN SAM

•
8

• '0000
DCA JSA/o1\1'

• •
•

CSECT

•
• • •

~ ..

/

Output Module

OOOl~ JOE CSECT

• •
•

EXTRN SAM

•
•

l
• f 0500

0000-
DC A (SAM'r

•
• • I

0500
SAM CSECT

•
•
• , I

0249 '----------------' • I
0749

Legend:
.,.. Language translator inserts zeros because value of SAM i~ unknown .
.,. Actual address of SAM in the output modul~ (0500) IS adrled :0 value

of address constant.

Figure 23. Honbranch-Type Address Constants--Absolute Relocation

Figure 24 on page 64 shows the use of both a relative relocation
factor and an absolute relocation factor in relocating a symbol.
Two input modules are to be processed by the linkage editor.
Input modula 1 contains a nonbranch-type address constant whose
value depends on the symbol PETE; PETE is an external reference
in tha same module. The language translator has assigned a
value of +10 to the address constant. The R pointer of the RLD
item refers to the ER entry for PETE in the ESD; this entry
contains zeros in the origin and length fields. The P pointer
refers to the SO entry for the control section that contains the
address constant.

Input modula 2 contains two control sections, BOB and PETE. BOB
contains a nonbranch-type address constant whose value depends
on PETEi because PETE has a defined value of (300) in the same
module, the language translator has used that value to compute
the value of the address constant (PETE + 10 = 310). The R
pointer of the RLD item refers to the SD entry for PETE in the
ESDi the P pointer refers to the SD entry for BOB (the control
section that contains the address constant).

During linkage editor processing. the ER and SD entries for PETE
are merged into one CESD entry; the R pointers of both RLD items
in the output module will refer to that entry. The RLD P
pointer ~or the address constant in control section BILL will
refer to the SD entry for BILL; the P pointer for the other
address constant will refer to the SD entry for BOB. In the
output load module, both address constants will contain the same
value. Because the R pointer of the RLD item in input module 1
refers to an ER entry in the ESD in that module. it is marked
for absolute relocationi the absolute relocation factor for PETE

Method of OperatiQn 63

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Input Module I

No.
I

ESD 2
3

0000 BILL

TXT

0490

0494
0499 R

RLD 2
3

Input Module 2

No. Symbol
1 B B

ESD 2 'PETE ,
JOE ,

0000
BOB

TXT 0294

0300 PETE

0420 JOE

0699
R

RLD I 2 I

P
1

(+500) is added to the value (+10) assigned by the language
translator. Because the R pointer of the RLD item in input
module 2 refers to an SD entry in the ESD in module 2, it is
marked for relative relocation; therefore. the relative
relocation factor for PETE (+200) is added to the value (+300)
assigned by the language translator. The relocated value for
both address constants is 510.

Relocation of all nonbranch-type address constants requires an
addition or subtraction of the relocation factor to or from the
value of the address constant in the text of the input module.
(Addition or subtraction is specified in the flag field of the
RLD item for the address constant.)

Output Module

No. Symbol Type Origin Length

ESD 1 BILL SO 0000 500
2 PETE SO 0500 400
3 BOB SO 0900 300

CSECT 4 JOE R 0620 2

• 0000 BILL CSECT

• • • •
EXTRN PETE •

• TXT EXTRN PETE
EXTRN JOE •

• • 001 0 EXTRN JOE
OC~ • * 0510

• • 0000 .oetO"
OC~ 0490 OC~

FLAG * 0620
.Q98O"

0494 DC AlJe!1

Linkage 0500 PETE CSECT
Type Origin Length Editor

• S 0000
SO , 0300
LO , 0420

CSECT

•
• • * 0310
OCA~

•

CSECT

•
ENTRY JOE

• •
• • •

P Fla~
1 I

3
, 400 ,
12 ,

Address
10294 I

* Ins
tra

* De

erted by longuoge
nslator

termined by linkage
ed itor using absolute

acetion factors rei
(+5 00, +620)

termined by linkage .. De
ed
rei

itor using relative

acotion factor (+200)

ENTRY JOE
0620 JOE • •

0900 BOB CSECT

•
1194 • .. 0510

• 03+0"
OCA~

•
• •

1199 •
R P Flog Addre"

RLD

I
2

I
1

I I
0490

I 4 1 0494
2 3 1194

Figure 24. Honbranch-Type Address Constants---Absolute and Relative Relocation

64 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

ESD

TXT

RLD

ESD

TXT

RLD

Module A

JOE

BILL

SAM

JOHN
JOE

SD

ER

SD

LR

DELIHKING NONBRANCH-TYPE ADDRESS CONSTANTS: A relative
relocation factor cannot be used to relocate an A-type address
constant that refers to a symbol in a control section being
replaced. Because the address constant has been previously
relocated (by a language translator or by the linkage editor),
it contains the value of a symbol being replaced; therefore, the
value of that symbol must be subtracted from the value of the
address constant. This process is called delinkin9. In
delinking, an address constant is reduced to the value it would
have contained if it referred to an external reference in the
input module. After delinking, the address constant contains
the value required for proper relocation, should the replaced
symbol appear later in the input, in another control section.
Delinked address constants are treated as address constants
whose values depend on external references. (Absolute
relocation factors are used in relocating them.)

Delinking of an A-type address constant is shown in Figure 25.
Input load modules A and B both contain control section SAM.
During linkage editor processing, the first occurrence of
control section SAM is accepted. while the second occurrence is
deleted through automatic control section replacement.

Output Module

0 1000 JOE SD
,

0 1000

0 0 BILL SD '1000 800

1000 750
ESD

SAM SD '1800 750

1050 3 JOHN LR '1850 3
0

JOE •• 1900 0
1100 TXT .J..IOO'

DCA(~) 700 700 DCA~
DC V (W:!) 800 800 DC V Wttj 1000

__________ 0000 ________ --
1000 BILL SAM 1000

*1900
JOHN 1050 DC A~

R P Flag Address 1630

2 I 1 I lC I 800
1800 SAM

4 I 1 I DC I 700 1850 JOHN

linkage R P Flag Address
Module B Editor RLD 2 1 lC 800

SAM SD a 720 4 1 DC 700

JOHN LR 70 1 4 2 DC 1350

BILL SD 720 800
0

Legend:

SAM * Values are derived from HESD .
•• 1100 + 800 = 1900.

JOHN 70 + 120 - 70 + 1850 = 1900.

~.------------------ 720
• A relative relocation foctor is used to relocate the address constant A(JOHN+50) in

BILL control section JOE, because JOE and SAM are in the Some module.
120 • The address constant A(JOHN + 50) in control section BI LL must be delinked becau se

DC A~) 1350 It was resolved with the symbol JOHN in the replaced control sect,on SAM. The old

R P Flog Address
value of JOHN must be subtracted from the vallie of the address constant before It

can be relocated (using the absolute relocation factor) to the new value of JOHN in
2 I 3 I OC I 1350 the output load module.

Del 10k Table

0004 000070

HESD Relocation C'Jnstant Table

Type Absolute Reloc Foct Seg No Length 000000

00 000000 01
000280

00 001000 01

00 001800 01 ooosoo

03 001850 01 000800

Figure 25. Example of Delinking

Method of Operation 65

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
lY26-3921-0

Control section BIll in module B contains a reference to symbol
JOHN in control section SAM. Because SAM in module B will be
deleted, the address constant A (JOHN+50) in module B must be
delinked so that it may be properly resolved with the symbol .. ~
JOHN in module A. In delinking, the old value of JOHN is ~
subtracted from the value of the address constant in BIll
(120-70=50). The absolute relocation factor for JOHN (1850) is
then added to the delinked value of JOHN (50+1850=1900).

DELINKING COMMON CONTROL SECTIONS: Common control sections
(either blank common or named common) must be "delinked" by tha
linkage editor. All references to common control sections ara
made by means of nonbranch-type address constants.

If the assigned address of a common control section in the input
to the linkage editor is not zero, all such references must ba
delinked. Delinking is necessary, because during linkage editor
processing all blank common control sections are collected into
a single control section. All identically named common control
sections are gathered into individual control sections;
references to them from different input modules must be delinked
so that they can be properly relocated with respect to the
locations of the common control sections in the output module.

Delinking adjusts the value of each address constant in a common
control section so that it contains its correct displacement
from the control section origin. The values of such address
constants are then relocated so that they refer to the linkage
editor-assigned addresses, using absolute relocation factors.

Relocation of Branch-Type (V-Type) Address Constants

Only absolute relocation factors are used to relocate
branch-type address constanrs. Because a displacement is not
allowed in the value of a V-type address constant, the absolute
relocation factor is inserted in the value field during
relocation. (It is not added to or subtracted from in value .l.
assigned by the language translator, as described for A-type ~
address constants.) Because the value of a V-type address
constant is inserted, delinking is never necessary for such
address constants. Relocation of V-type address constants in an
overlay structure is discussed in the following paragraph.

RELOCATION OF V-TYPE ADDRESS CONSTANTS IN OVERLAY: If the output
of the linkage editor is to be overlay load module, a 4-byte11

branch-type address constant in the path of the symbol it refers
to (but in a different segment), or in a different region, will
be relocated in a special manner. The value field of the
address constant will contain the address of an EN TAB entry.
The ENTAB entry will contain the address assigned by the linkage
editor to the symbol referred to by the value of the address
constant. An ENTAB entry is created for each V-type address
constant that is in the path of the symbol it refers to (but is
not in the same segment), or located in a different region,
provided that the symbol is not referred to in a segment higher
in the path of the calling segment. (Such address constants ara
resolved so that they refer to the ENTAB entry previously
created for the symbol in the higher segment.) ENTAB entries
are not created for address constants that refer to symbols
higher in the path. Whenever an ENTAB entry is created. it is
noted in an entry list; each item in the entry list contains the
entry number of the referenced symbol in the HESD. the segment
number of the calling segment. and the address assigned to the
ENTAB entry by the linkage editor. The ENTAB creation routine

11 Any address constant must be 4 bytes. because the high-order
byte is used by the overlay supervisor during execution.
The number of the segment containing the address constant
will be placed in the high-order byte of any V-type address ~
constant resolved to an ENTAB entry. (The high-order byte ~
must be zero if it is not resolved to an ENTAB entry.)

66 MVS/370 linkage Editor logic

L

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

uses the entry list to build ENTAB entries (see "ENTAB
Creation").

When second pass processing begins to process a segment, the
entry list is modified so that is contains only entries for
segments higher in the path of the current segment. (In
Figure 26, segment 4 is being processed; the entry for segment 3
is removed, because it is not higher in the path of segment 4.)

3

4

5
r-_.1-:-1
I 7 I

6' I

Current
Segment

Entry

HESD
Entry
Number

List

Seg
Address

No

1

2

3 I+--

Figure 26. Entry List Processing

Next
available
line; 4
will be
entered

here.

During relocation, each V-type address constant is examined to
determine if an ENTAB entry must be created for it. The R
pointer of the RLD item for the address constant is used to find
the associated HESD entry; this entry contains the segment
number of the symbol referred to by the address constant. The
relationship of this segment to the current segment is then
determined, using SEGTAI. Depending on the relationship in
SEGTAl, the address constant is relocated in one of three ways:

1. If the segment that contains the symbol is higher in the
path of the current segment, the call is upward and the
address constant is resolved directly. (The absolute
relocation factor of the symbol is inserted in the value of
the address constant.)

2. If the current segment is higher in the path of the segment
that contains the symbol, the call is downward. The entry
list is checked to determine if an ENTAB entry was
previously created for the symbol in this segment or in a
segment higher in the path of this segment. If an ENTAB
entry for the symbol exists, its address (contained in the
entry list) is placed in the value field of the address
constant. If no ENTAB entry exists for the symbol, a new
entry is placed in the entry list, and an ENTAB entry will
be created by the EN TAB creation routine (see "ENTAB
Creation"). The ENTAB entry will contain the address
assigned to the symbol by the linkage editor, and the
address of the ENTAB entry will be placed in the value of
the address constant and in the entry list item.

3. If neither of the two segments is higher in the path of the
other, the call is either exclusive or across regions. If
the two segments are in different regions, and no ENTAB
entry already exists for the symbol in the entry list, an
ENTAB entry will be created and an entry is made in the
entry list; the value field of the address constant is
relocated to the address of the ENTAB entry, which in turn
contains the relocated address of the symbol. If the two
segments are in the same region, the call is exclusive. If
there is an entry in the entry list for the symbol, the

Method of Operation 67

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972.1983
LY26-3921-0

ENTAl creation

Relocation Routine

address constant is resolved through its EHTAB entry; if
there is no entry for the symbol in the entry list, the call
is an invalid exclusive call and the address constant is
resolved directly to the symbol. (This usually leads to,
incorrect results during execution of the module.) ~

The EHTAB creation routine uses the size field in the HESD to
determine the number of ENTAB entries to be created for a given
segment. The entry list is scanned for all entries that were
created for the current segment; each of these entries contains
the HESD entry number for the corresponding symbol. The value
and segment number of the symbol are obtained from the HESD and
are entered in the ENTAB entry. along with standard information
shown in the table format (see "Table Layouts").

ENTAB creation is shown in Figure 28 on page 70. The V-type
address constants referring to SAM and BILL in segment 1 meet
the requirements for building ENTAB entries. The ESD and RLD
input to the second pass processor. and the overlay tree
structure are shown in Diagram A. During relocation. entries
are created for SAM and BILL in the entry list (see Diagram B);
each entry contains the address of the ENTAB entry created for
the address constant.

In segment 1. location 136 of control section JOE contained a
call to control section SAM before relocation. After
relocation. location 136 contains the address of the ENTAB entry
for SAM. and the high-order byte of the address constant
contains the segment number of the calling segment. An ENTAB
entry is created. in like manner. for BILL in segment 1.

In segment 2, the address constant referring to BILL does not
meet the requirements for building an EHTAB entry. (It is not
in the path of the segment containing the symbol.> Therefore,
no ENTAB is created in segment 2. The call for segment 2 to .j~~
BILL in segment 3 is an exclusive call. Because a call to the ~
same symbol appears in a higher segment common to 2 and 3
(segment 1), the address constant may refer to the ENTAB entry
for BILL in segment 1. (This is determined by scanning the
entry list for the HESD entry corresponding to the symbol BILL.)

If a call to BILL was not contained in a common segment. the
address constant DC V (BILL) in segment 2 would be resolved
using the value assigned by the linkage editor to the symbol
BILL. which results in an error.

In segment 3. the address constant is an upward call and is
resolved directly.

The relocation of address constants is performed by the
relocation routine; the routine operates on the following input
data:

• The address of the RlD input buffers that contain RLD
records.

• The address of the RlD note list entry for the RlDs being
processed.

• The address of the next available entry in the RlD output
buffer.

68 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

• The buffer relocation constant (BRC) where:

BRC = starting buffer address of current text + relative
relocation constant of current control section - address
assigned to current control section by the linkage editor
multiplicity size x current multiplicity number.

Input output

Flag Type Action Pe~fo~med Flag Type

OOOOLLST Absolute Absolute relocation OOOOLLST A-type
factor is added to
value of address
constant

OOOllLST Branch Absolute relocation OOOllLST V-type
factor is inserted
into value of
address constant

0010LLST PR displacement Absolute relocation OOlOLLST PR displacement
value factor is inserted value
CPR type 1> into value of

address constant

0010LLST PR cumulative PR length from all OOllLLST PR cumulative
displacement purpose table is displacement
value inserted into value value
CPR type 2) of address constant

1000LLST Relative Relative relocation OOOOLLST A-type
factor is added to
value of address
constant

~ Figure 27. Relationship of RLD Flag Field to Relocation

Notes to Figu~e 27:

1. If S (sign) in LIST is 1, subtraction is performed, rather
than addition.

2. In delink type, the delink value is added or subtracted
according to the opposite of the sign; the absolute
relocation factor is added to or subtracted from the address
constant according to the indicated sign.

3. If an RLD item refers to an undefined symbol, the associated
address constant is not relocated. (It may have been
delinked.) The high-order bit of the RLD item flag field ;s
set to one (1000LLST for an A-type constant, 1001LLST for a
v-type constant) and no relocation will be performed when
the module is loaded into virtual storage for execution.

4. Delinking is noted in the high-order bit of the P pointer.

Method of Operation 69

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
LY26-3921-:-0

Diagram A.

JOE
SAM
Bill
SEGTAB
ENTAB

RlD

Type

SO
SO
SD
PC
PC

R

HESC

l.E.
A .. igned
Address Seg

36 I
272 2
272 3
0 I
236 I

p Flog

I Ie
Input RlDs - Segment 1

Output RlD Buffer

2 I Ie 136
3 I IC 186

Length

Address
100
ISO

Entry List

3

RLDs and Entry list after relocation for control section JOE.

Diagram C.

Segment 1 ofter processing by Second Poss Processor.

136

186

236
248
260

Diagram D.

JOE
01000236

DC VlSAM1
01000248

DC V,!aIaf

47FF 0024 I 00000 272 I 02 I 000000
47FF 0012 I 00000272 I 03 I 00000o

Standard Last ENTAB Entry

Segment 2 ofter processing by Second Poss Processor.

272 SAM

02000248
752 DCV~

Input RLD Buffer Output RLD Buffer

3 IC 680 3 IC

Segment 3 ofter Second Pass Processing

1"" 00000036
DCV~

Input RlD Buffer Output RlD Buffer

3 lC 690 3 IC

Figure 28. EHTAB Creation

70 MVS/370 Linkage Editor Logic

752

762

Relocation

Constant
Table

200
500
5JO

36
36

} ENTAB

236
248

ENTA8 RLD Items

None

ENT AB RLD Items

None

272

036 JOE

136 DC V(SAM)* Segment 1

186 DC V(BILL)'
236

SAM 272

Segment 2

DC V(BILU

Structure with V-type address
Constants.

BilL

Segment 3

DC V(JOE)

'" Zero "alue assigned by t"e assembler.

Entab RLD Ite'".

o ID 240
ID 252

Entry list

I '

'" Same as after processing segment 1.

Entry list

'" Some as after processing segment 1

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

The relocation routine operates in the following manner:

1. The size of the RlD set 12 and the displacement from the
beginning of the buffer are determined from the RLD note
list.

2. Each RlD item in the current RlD set is scanned to determine
whether:

a. It describes an address constant for the current text
being processed (BRC + address contained in the RlD
address field falls within the text buffer boundaries of
the current text.)

b. The address constant is either a valid 2-, 3-, or 4-byte
address constant. (The only valid 2-byte address
constants are defined by pseudo register symbols.)

3. Each address constant whose RlD meets the above requirements
is moved from the text into a computation area. The address
constant associated with the RlD item is then relocated
according to the information in the flag field of the RlD
item (see Figure 27 on page 69). In relocating 4-byte
address constants (VCONs), the high-order bit in the address
constant before relocation is reproduced in the address
constant after relocation. The relocated address constant
is then placed back into the text.

4. The RlD address field is updated using the relative
relocation factor for the control section being processed.
(The control section referred to by the P pointer of the RlD
item).

5. The RlD is moved into the RlD output buffer if space is
available. If space is not available, the contents of the
RLD output buffer are written out on SYSLMOD. See "Second
Pass RlD Buffers" under "Second Pass Processing."

6. Steps 2 through 5 are repeated until all RLD items have been
scanned in the RlD set being processed. The multiplicity
number in the RLD note list is updated if unprocessed RlDs
remain in the set.

7. If there are more RlD sets in the input buffer to be
processed, the address of the next record is determined and
steps 1 through 6 are performed.

Nate: To minimize the number of times RlD records are read from
SYSUT1, RlD records for a control section are held in the input
RLD buffer, when possible, until all RlD records in the buffer
have been processed (because each RlD record may pertain to many
multiplicities of text). After each set of RlDs is scanned, the
multiplicity number in the RlD note list is updated to reflect
the multiplicity of the remaining unprocessed RlD records in the
set. An RlD record is removed from the buffer when:

• All RlD items in the record have been processed. (Their
associated address constants have been relocated.)

• Another RLD record must be read into the buffer and space is
not available.

When all records in the input RlD buffer have been scanned, the
relocation routine determines if more RlD records for the
current multiplicity of text are to be read in. (The RlD read
routine sets an indicator when it encounters such a record but
cannot read it into the buffer because the buffer is full.>
When both buffers are full, the second buffer is freed, and a
bit is set in the corresponding RlD note list entries which
indicates that the RlDs are not in virtual storage. The records

12 An RlD set is a group of RlDs referred to by a particular
RlD note list entry.

Method of Operation 71

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
lY26-3921-0

to be read in are then placed in the second RlD buffer; these
records are processed in the same manner as those already
residing in the first buffer. This process is repeated until
all records that contain RlD items pertaining to the current .~
multiplicity of text have been scanned and processed. ~

When all RlDs in a buffer are processed, the buffer is marked
"free" in the RlD control block. When a new multiplicity of
text is to be relocated, the Rld note list is scanned
sequentially (on ID and multiplicity number) from the first
entry. If an entry indicates that the record is "in virtual
storage" and the record contains RlD items pertaining to the new
multiplicity of text, it is processed.

FINAL PROCESSING (HEWLFFNL)

Error Lagging

Final processing comprises modules HEWlFFHl, HEWlFBTP, and
(optionally) HEWlFMAP.

The fourth phase of the linkage editor (final processing)
performs "cleanup" functions, and is the last operation of the
linkage editor processing. Functions of final processing
include:

• Writing the TTR note list, created during second pass
processing, on SYSlMOD if the output load module is to be
used in overlay. The TTR list contains the relative track
address of the first record of each segment of the overlay
load module. It is used by the overlay supervisor to find
the segments when it loads them into virtual storage for
execution.

• Placing each entry in the proper format for the partitioned
data set directory, modifying it if there are alias symbols,
and issuing a STOW macro instruction 13 for the member name
and each alias.

• Checking attributes (reusable, reenterable, and
refreshable). If the attri·butes have become more
restrictive, a message describing the change in attributes
is printed out. (For example, the input module was
specified as "reusable" and is now "not reusable.")

• Printing out a directory of logged errors.

• Producing a cross-reference table if the XREF option is
specified, and the cross-reference table was not produced
during intermediate output processing.

• Printing a diagnostic message if the module has been marked
."not executable."

• Reinitiating linkage editor processing. beginning with
initialization, if a NAME statement terminated SYSlIH input.

• Completing linkage editor processing if end-of-file
terminated SYSlIN input; releasing virtual storage and
returning control to the caller.

Whenever an error condition is detected during linkage editor
processing, an indicator is set in an error logging map and a
coded diagnostic message is printed out. During final
processing, the error logging map is scanned. When an indicator

13 The STOW macro instruction is not issued if there was no
valid input, if there were no ESDs, if nothing was written ~
out on SYSlMOD, or if the run was terminated by a severity 4 ~
error.

72 MVS/370 linkage Editor logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
lY26-3921-0

Error Loggi ng Map

is found "on" in the map, an associated list is used to build a
diagnostic message.

Note: An example of error logging is given in Figure 29. Each
entry in the list contains a length indicator and a pointer to a
phrase to be assembled into the message. (Phrases are stored to
save virtual storage space; complete messages would require
additional space because of repetition of identical phrases.)
The diagnostic directory is then printed out, one or two lines
to a message. This directory is normally directed to the
SYSPRINT data set. However, if the TERM option was specified,
diagnostic messages are directed to both the SYSPRIHT and
SYSTERM data sets.

17---~--~------~1 �rr ____ ~----~I o 16 63 64 127

Table

li.t

Phrase.

"
....... --------~------i:d48 I

--- -----------
_,/l

Phrase P

i i
I

/ ,
i

! i ! i
I , , \

" -------- ----------
Phrase M

Meuoger-______________ -r~ ____ _,~--------------,_~----_,

Phrase P Phra.e M

Legend:

• This painter is determined by subtracting the bit number fram the length
of the error logging map (64 - 16 = 48).

Figura 29. Building Error Messages

All error messages produced by the linkage editor are identified
by a message ID having the format:

I EWDMMS

where:

IEW identifies the message as a linkage editor arror message.

D contains a zero.

HH is the message number.

S is the severity code.

The module in which an error message occurred is identified by
the message number (MM; see Figure 68 on page 189).

Cross-Raference Table

If the XREF option is specified, and the cross-reference table
was not produced during intermediate output processing, the RlD
records are read back from SYSlMOD, and the cross-reference
table is built, as described in the discussion of intermediate
processing.

Method of Operation 73

-oJ
.co

3:
<
CJI

" tA
-oJ
Q

r-
:J
;r;­
III
.a
II)

m
0.

ri­
O .,
r­
o
.a
o

4-

INITIALIZATION
(DIAGRAM 3)

INPUT
PROCESSING
(DIAGRAM 4)

legend -~
-=->

/;

0) [Q

0
U

OV(RVI(W OF
LINKAGE EDITOR
PROCES~ING

(DIAGRAM2)

I

1J
INTERMEDIATE
PROCESSING
!DIAGRAM S)

~~
~~~ 

SECOND PASS 
PROCESSING 
(DIAGRAM 6) 

ARROWS SHOWING ENTRANCE AND EXIT FROM DIAGRAM 

DATA TRANSFER 

DATA MODIFIER 

CONNECTORS II MANUAL INPUT 

DECISION BLOCKS D OUTPUT DATA SET 

D TABLES 
DATA SETS ON 
DISKS OR DRUMS 

\,. 

'0 r....; 
1M -<:T 
> N-' 
CO') C7'UI 
;0 1 
:.- tAo. 
:x -,)0 

NO .... ....c 
13 

QfD 
0 :J 
< ri-
111 
;0 0 
< 0 
'M :J 
111 ri-

~ 
12: III 

0 :J 
I'TI UI 

r- ., 
M fD 

FINAL I: UI 
PROCESSING ri-
(DIAGRAM 7) ., 

CO') 
111 0 

ri-
1111 fD 
CI 0. 

1= 3 
0 III 

ri-
ll) ., 
III .... 
III 

0 
-t. 
~ 

~ 
3: 

0 
4") 
0 

" '< ., 
0 
:T 
ri-

~ 

~ 
3: 
4") 
0 ., 
" .... 
..c 
-oJ 
N 

.... 

..c 
00 
tA 

\., .. 



3 ., 
" :r 
o 
0. 

o 
oft 

C 

" III 

~ 
" o 
:J 

...., 
VI 

r 
'

FROM JOB KHEDULER 
OR CALLING ~OGRAM 

INPUT 

r# 

CONTROL STATEMENTS 

OUTPUT 
FROM 
EACH 
PROCESS-

~~MENT U,,_:,--:,~,~_~, :\7'._ .. ~.? 

CROSS-REFERENCE CHART 

PHASE 

Initialization 

Input Pfoce~5ing 

Intermediate Processing 

Second PClS5 Processing 

Finol Processing 

CSECT 

HEWlFINT 

HEWlFINP 

HEWLFADA 

HEV,lFOUT 

HEV.lf5CD 

HEWlFFNl 

FLOWCHART 

SA 

CA 

DA 
fA 

FA 

GA 

r 

I hi SYSUTI IdSYSLMOD ]SYS~INT IhVSLMOD 

FINAL PROCESSING 

WRITE REMAINING OUTPUT 
ON SYSLMOD AND PRODUCE 
OPTIONAL OUTPUT. PERFORM 
CLEAN-UP FUNCTIONS 

FINAL OUTPUT 

r 

RETURNTO _ 
CALLING 
~OGRAM 

r- .... 
-<:r 
N-
G'II 
1 

(;010. 
-00 Nn 
~c: 
1:1 0., 

:J 

" n 
0 
:J 

" .. 
:J 
II , ., 
II 

" , 
n 
" ., 
0. 

9 .. 
" ID , .. 
III .... 
\II 

0 
oft 

I-f 

=' 
3 

0 
(") 
0 

" '< , 
IQ 
:r 
" I-f 

=' 
3 

(") 
0 , 
" . 
~ 

-0 ...., 
N 
~ 
-0 
Ot 
(;01 



..., 
00 

3 
< 
<J) 

" ~ ..., 
Q 

r-

:J 

"" 0/ 
IQ 
ID 

m 
a. 
rt­
o 
~ 

r­
o 
o 
o 

'-

INITIALIZATION (Hl\\lFf-Nl) 

CROSS-REFERENCE CHART 

CSECT tABEt flOWCHART 

a HEWlFINT 8A 

• HEWlFOPT 8A .. HEWlFINT 8A 

II 
Atlool 8A 
HEWlFAlK 88 

STAAT 

• . PttOCESSING _I 
.~........ , 1 

.. OPEN DATA SETS 

II BUILD All PURPOSE TABLE 

: ====:>11 ANALYZE EXEC STATEMENT PARAMETERS AND 
CALLING PROGRAM DO NAMES ---'---, 

II ALLOCATE STORAGE TO BuFnKS AN~ TABLES 

~ 

OUTPUT 

TO INPUT PttOCESSING • 

'-' 

r--t 
-(::r 
N-' 
OoUl 
1 
~a. 
..00 
NO 
.... c 
13 

OlD 
:J 
rt-

o 
o 
:J 
rt-
0/ 

:J 
UI 

~ 
ID 
UI 
rt­
~ 

o 
rt­
ID 
a. 
3 
0/ 
rt­
II) 
~ 

0/ 
t­
UI 

o 
-+0 

.... 
til 
3 

o 
o 
o 
'U 
'< 
~ 

C 
:T 
rt-

.... 
ClIII 
3 

o 
o 
~ 
'U 

... 
00 ..., 
N ... 
00 oe 
c..r 



r 
INPUT 

INPUT PROCESSING 'l-'t :.lM1NP 
CROSS-REFERENCE CHART 

CSECT LABEl fl.OV,CHART 

a HEv,lfSCN co 
READB CI 
HE"lfALK BB 
HE""lFINC cu 

II HEWLFMDI INPI4(; CB 
INP770 INP281 CC 

A HE;'/LFE ID CD 
C h043 CD 

ENTER CD 
HEWLCDll<. CEIDDLIK CD 

II HEwLFMDI INP-lO CB 
INP27Q CC 
Hh'~lFRAT CF 
t-<E#lFTXT BUFFAELOC CG 

:I 
II ID HEV.LFMDI I NP341~ C3 

IT I NP270 INPll0 CC 

':T HU.LFIDR 

0 
II a. HEV,LFMDI INP40 CB 

INP270 INP)7Q CC 
0 HEV,.LFSYM WMOOI00 CD .... 

II I NP27Q INPno CC 
c HEVilFRAT CF 

" RlOOOl Q'lDOQ4A CT ., ., 
III 
IT 

0 
::J 

.... .... 

(' 

INPUT 

CONTROL RECORDS 

SCAN EACH CONTROL STATEMENT 
(SEE DIAGRAM 8) 

MAKE ENTRIES IN THE ALL PURPOSE TABLE 
(APT) OR IN THE COMPOSITE EXTERNAL x: 
DICTIONARY (CESD) 

ESD RECORDS 

ENTER ESD RECORDS IN RENUMBERING TARLE 
FOR TRANSLATION OF ESD IDENTIFIERS INTO 
CESD IDs 
ENTER ESD RECORDS INTO DEUNK TABLE IF 
SYMBOLS ARf TO BE DELETED OR REPLACEt> 

TEXT RECORDS 

lOR RECORDS 

SORT IORs ACCORDING TO TYPE :>C 

SYM RECORDS 

A WAITE SVM RECORDSON SVSlMOD IF TEST 
ATTRIBUTE WAS SPECIFIED. OTHERWISE, 
IGNORE SYM RECORDS 

II RLO RECORDS 

A UPDATE RAND P POINTERS 
USE CONTROL INfORMATION FROM DEUNK 
TABLE AND RENUMBERING TABLE 

TV,O-PAS) 
PROCES~ 

,'----<'"-n-1--A!J 
SINGLE-PASS PROCESSING 

BUILD ORDER TABLE FROM EID ID, IN CESD 
TA1\lE AND FROM ORDER AND PAGE CONTROL 
STATEMENTS 

r 
CI r--4 
M -<':T 
I> N-' OUTPUT 
Gl O\UI 
~ I 
> CJoIO-

13 -00 
"PT - NO 

, ... ... c 
, 3 

QID 
::J 
IT 

0 
0 
::J 
IT 
III 

::J 
UI ., 
ID 
UI 
IT ., 
n 
IT 
ID 
0-

S 
III 
IT 
ID ., 
OJ .... 
UI 

0 .... 
1-4 

'" :I 

€9 
n 
0 

" 'C ., 
Ul 
':T 
IT 

1-4 

'" :I 

n 
0 ., 
" . .... 
-0 .... 
N 

.... 
-0 
01 
CJoI 



..... 
Of 

3: 
< 
(J'I 

.... 
VI ..... 
o 
,... 
::;, 
7:' 
Q.I 
~ 
ID 

m 
Q, 

ti­
o ., 
,... 
o 
~ 

n 

'-' 

RLD BUFfeR 

TEXT I/o TABLE 

ORDER TABLE 

INTERMEDIATE PROCESSING ( HEWlFOUT) 
CROSS-aEfERENCE CHART 

CSECT LABEL 

• HEWlfADA 
A HEWlfADA AOA00910 
B HEWLFAOA ADAOOI23 
C HfWLFADA ADAOOI20 
o HfWLfENS 
G HEWLFAOA ADAOlloo 
J HEwtfENT ENTool50 

• HEWLFMAP 
A HfWlH""P MAPOO55 

HfWlfMAP PUTUNfS 
HfWLFMAP XlEfS 
HfWLFMAP PUTlINfS 

• HfWlFOUT 
HfWlFOUT OUT02000 
IDROUT 

FLOv.cHART 

OA 
OA 
OA 
OA 
OB 
OA 
DC 

fB 
E8 
U 
E8 
Ea 

fA 
;:A 

a 
A. 

8. 

C. 

ADDRESS ASSIGNMENT 

DELETE ENTRIES REQUIRING NO FURTHER PROCESSING 
fROMCESD 
ASSIGN TEMPORARY LINKED ADDRESSES TO ALL OTHER 
CESD SYMBOLS 
BUILD RELOCATION CONSTANT TABLE (RCT) 

D. DETERMINE ENTAB ENTRIES FOR CESD 
E. BUILD DOWNWARD CAllS LIST 
F. BUILD SEGMENT LENGTH TABLE (SEGLGTH) COMPUTE 

SEGMENT RELOCATION CONSTANTS 
G. ADD SEGMENT RelOCATION CONSTANTS TO TEMPORARY 

LINKED ADDRESSES IN CESD AND ENTRIES IN RELOCATION 

H. ~~~!~~~~E:::~~1~Y ~~~~F~D~~~~~:ND RELOCATION l \ 
~~:~ts"':~~~cill~DC~~~AL LINKED ADDRESSES fOR \ 1 

J. BUILD ALIAS TABLE FROM ALIAS SYMBOLS IN CESD 

• MAP/XREF PROCESSING 

A. BUILD MODULE MAP FROM SORTED CESO ITEMS. WRITE ON 
SYSPRINT 

B. BUILD CROSS-REFERENCE TABLE fROM RLD,. WRITE ON 
SYSPRINT .. I NTERMEOIA TE OUTI'LIT 

A. BUILD HALf ESD (HESO) FROM CESD 

B. SCAN TtXT FOR 110 TAIllE CESO ID. 

C. PLACE CESO 10 IN HIGH 10 T AILE. NOTE IN HESO 

v«~ "'" '""""' 

ll~: 
BUIlD SEGMENT TABU (SfGTAIl. I'UT ON SY';LMOO 

IF PROGRAM IS SCA TTat lOADED. BUIlD 
f1ANSLATION TABlf FIOM CUD. PUT 
UCOIDS ONTO SY';lMOO 

WltITf All CSECT IDfNJlfICATION R£COIDS ONTO F. 

'-' 

II 1111 

I,=, ""-1 
1M -<::r 
!~ N-' 

0'1.11 

OUTI'UT 

III I~ 
I 

Via. 
..00 
Nn 
.... c 
13 

OlD 

I~ ::::J 
ti-

-I 

.~ n 
0 

~ ::::J 
ti-

'=' Q.I 
tot 
I> ::::J 
-I 1.11 
11"11 

I" 
., 
ID 

:0 1.11 
0 ti-
10 ., 
1"11 
;(it n 
(it t1-
M ID :z: Q, 

:I 
Q.I 
t1-
ID ., 
OJ .... 
UI 

0 .... 
1-4 
0' 
3: 

0 
(') 
0 
"U 
'< ., 
IQ 

TO SECOND PASS 
::r 
If' 

PROCfSSING 
1-4 
0' 
:3 
(') 
0 ., 
" . 
.... ... ..... 
N ... ... 
CIt 
Cot! 

'-' 



3: 
II) 
tT 
:::1" 
o 
Q. 

o ...., 
o 
"C 
II) , 
III 
tT 

o 
::::II 

..... 

.0 

r 

SECOND PASS PROCESSING (HEWLFSCDI 
CROSS - REFERENCE CHART 

CSECT LABEl FLOWCHART .. SCDENTAB SGENDI FA 

II HEWLFREL SCDOVLY FE 

II HEWLFREL RElOC20 ,E 
A HEWlFREl RELOCIOO FE 

II wRTTXT FD 

II WRTCRRLD FA 

iii HEWlCPTH FE 

r 
PROCESSING 

CREATE ENTABS FROM INFORMATION IN HESD AND ENTRY 
LIST IN SECOND PASS RLD INPUT BUFFER 

RElOCATION PERFORMED IN A WORK AREA 

IF THE ADDRESS CONSTANT IS A V-TYPE ADDRESS CONSTANT 
(BRANCH - TYPE ADDRESS CONSTANT I 

A INSERT ABSOLUTE RElOCATION FACTOR FROM HESD 
INTO THE VALUE FIELD OF V-TYPE ADDRESS CONSTANT 

B. IF V-TYPE ADDRESS CONSTANT IS IN OVERLAY PROGRAM 
INSERT THE ADDRESS OF THE ENTAB ENTRY AND 
SEGMENT NUMBER OF CURRENT TEXT iN VALUE FIELD 
OF V-TYPE CONSTANT 

A-TYPE ADDRESS CONSTANT (NONBRANCH-TYPE ADDRESS 
CONSTANT) 

A. MODIFY ADDRESS ASSIGNED BY LANGUAGE TRANSLATOR 
USING RELATIVE RELOCATION 
FACTOR 

REPLACE EACH ADDRESS CONSTANT 

:~~SMTi~~ ~~:~R~R~~I~~ ~~~S/E~~~~F LI _____ -' 
SECOND PASS TEXT BUFFER ONTO 
SYSLMOD 

UPDATE ASSOCIATED RLD ITEM. MOVE 
RLD ITEM TO SECOND PASS RLD OUTPUT 
BUFFER. wRITE SECOND PASS RLD 
OUTPUT BUFFER ONTO SYSLMOD 

IF THE ~ROGRAM IS IN OVERLAY, CREATE TTR LIST 
CONTAINING THE ADDRESS OF FIRST CONTROL 
RECORD OF EACH SEGMENT 

r 

nR LIST 

.. 
TO FINAL 
PROCESSING 

" ,.... -4 
H -(:::1" 
> N-' 
Ci) O'oUl 
;:a 1 
> '-'IQ. 
1:3 .00 

Nn 
f7'o .... c: 

13 
011) 

tn ::::II 
11'1 tT 
() 
0 n 
z 0 

" ::::II 
tT 

'U III 
:. 
tn ::::II 
tn UI 
; 

'U , 
;:a II) 
0 UI 
() tT 
11'1 , 
tn 
tn n 
H tT 
Z ID 
Ci) Q. 

3 
III 
tT 
II) , 
III .... 
UI 

0 ...., 
1-4 
tlIJ 
3: 

@) 

("') 
0 
"C 
'< , 
Ie 
:::1" 
tT 

1-4 
tlIJ 
3: 
("') 
0 , 
"C 

.... 

.0 ..... 
N 

.... 

.0 
00 
'-'I 



00 
o 

:3 
< 
(II 

"­VI 
~ 
o 

r-

:::J 
';J:' 
III 
III 
ID 

m 
a. 
rt­
o , 
r­
o 
III 

o 

«., 

F1C~AL P'lO(ES\itJG (1-+[;,LFFhJL) 

(I<OSS-R[F ERE NeE CHART 

CSECT LABEL FC 

II H[:,LFFNL FNL900A GA 

fJ H[.,LFHH F",L301A GA 

II r"l.', LrrNl f-NlIUL' GA 

II M[·d ~f\,'tAP Ee 
B HE. LF fv\AP l{LDC';I,.,TA EB 
C HE ", L~ IIM.P PuTlINES EB 

II H[:.LFLUG GC 
A f·f ''.If 3TP 

B HE:·LF L(lG lOG1O GC 

fiJ H[:,LrlOG GC 

D HE"LFH~L IE:, LCEC'I GA 

SYSLMOD 

TEXT 

1-

D 
IJ 

PROCESSING 

COMPLETE THE PARTITION DATA SET DIRECTORY INCLUDING 
MODIFICATIONS FOR ALIAS SYMBOLS 

ISSUE STOW MACRO FROM THE POS TO SYSLMOD 

WRITE THE TTR LIS T CONTAINING THE ADDRESS OF THE FIRST 
TEXT RECORD IN EACH SEGMENT ONTO SVSlMOD FOR 
OVERLAY PROGRAMS 

IF XREF WAS SPECIFIED, BUT WAS NOT PROCESSED DURING 
INTERMEDIATE PROCESSING ISEE DIAGRAM 5) 

A REAr" RLDs FROM SYSlMOD 

8. BUILD A CROSS-REFERENCE TABLE FROM SVSLMOD 

C, 

SCAN r",E ERROR LOGGING MAP 

A BUILD THE ERROR DIAGNOSTIC 
['iRECTORY 

B. \vRIH THE ERROR DIAGNOSTIC 
DIRECTORY ON SVSPRINT 

RELEASE ALL STORAGE ALLOCATED TO THE LINKAGE EDITOR 

\., 

OUTPUT 

r--f 
-<::r 
N-' 
0'>\11 
1 

VIa. 
..00 
NO 
.... c 
13 

OlD 
"11 :::J 
1M rt-
Z 
:. 0 
Ir- 0 

:::J 
~ rt-
;:0 III 
0 
0 :::J 
IT! \II 
(I) 
(I) , 
M ID 
Z \II 
1(;) rt-, 

0 
rt-
ID 
a. 
3 
III 
rt-
ID , 
III ..... 
\II 

0 
~ 

RETURN TO _ 
f-! CALLING 
CII PROGRAM 
:3 

@ 

("') 
0 
'U 
'< , 
10 
::r 
rt-

f-! 
CII 
:3 

("') 
0 , 
'U 

.... 

..0 
~ 
N .. .... 
..0 
CO 
VI 

4., 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
lY26-3921-0 

DIAGRAM 8. CONTROL STATEMENT PROCESSING 

SEGTAl Updated 

SEGTAl 

3 

o 
1 
2 . 

J lOveriay Items Added to' Overlay Chain in (ESD 

\ Inc lude Items Added to Include Chain In CESD 

ymbol Found, Seg. No. Replaced 

ymbol Not Found I New C ESD Entry Made 

Items Added to Replace/Change Chain. Operation Noted in Subtype Field 

AI 

fliOS MM, NNI 
ios Symbols Entered into Alias Choin in CESD 

Lib rary Chain Created for Each Library ddnome/Member Nome 

5ym 
Ind 

bol Entered in APT, 
iectors Set 

tern Status 
c:I 
~5ys 

ex Information Ind 
En. ered in APT 

Ent ry Symbol 
ered in APT 

1 
~Ent 

~ 

1 

APT 

r'-- KK -T Add ress of 
SEGTAl 

PDSE' SGTl 

'--- xlxlxxxx ! Address of 
CE5D 

APT3 CHESD 

xxxx 

551 

RR 

EPSM 

IDRUDTAB 

ESDID DATE DATA LENGTH ------- 0008 YYDDDS 09 

If Symbol Found, Get ESDID 
If SymbOl Not Found, New CSED Entry MOde 

ORDER TA8LE 

I FLAG ESDID 

AO 0006 

30 0013 

90 0005 

.. .. 

.. 

.. 

• 

CESD 

Chain Chain 

Symbol Type Addr/ Seg Sub Pointer/ 
Reve~e No. Type Chain ID/ 
Chain 10 Length 

7(40 EE 02 7C60 02 90 

7C50 DD 02 7(40 01 90 

7C60 FF 02 0000 03 90 

7C70 AA 02 7CAO DO 

7C80 GG 02 0000 
06 90 ..ij4-

7C90 HH 02 0000 06 90 ~ 
7CAO 88 02 7CDO DO 

7C80 JJ 00 7CFO 08 

7CCO LL 00 0000 FO 

7CDO CC 02 0000 DO 

7CEO MM 02 7DOO AO 

7CFO II 02 0000 08 

7DOO NN 02 0000 AO 

7Dl0 00 02 0000 BO 7D30 

7D20 

7D30 PP 02 7Dl0 02 7D50 

7D40 

7D50 QQ 02 7D30 02 0000 

7D60 SS OA 0000 --~ 
7D70 

7D80 

7D90 

7DAO 

DATA 

LEVEL 003 
--

Method of Operation 81 



Ot Object Module Buffer N 

:I (10) ESO 
< @ 01 IAA!00!7CAO! ! 089A I (It 

" <;01 
02 ..... 

0 

® 03 BB 00 7C40 00A6 
r-

::J 
04 

7:' 
III 
U2 
II) 

m 
0. 

Ii' 
0 RLD Input Buffer , 

(I~) 
r- CESD 
0 

© U2 05 CC 03 7C80 04 .... 
n 

06 

@ 1 07 00 06 03 06A8 

08 

· I I I I I 
II · · 

SYSLIN Buffer 

(10) 
ESO · · ® 09 EE 05 7CBO 00A8 

OA 

® OB FF 05 02 006A 

OC 

· · · 

". 

SO (Non- 7030 HH 03 

Resolution) 
7040 AA 00 

CESO 

7050 

01 009A 

I 

i 

(10) 

01 

02 

SO Motching 7050 JJ 03 7070 
--eeee- 03 

An ER 

LR (Non-
Resolution, 
SO Not 
Received 

PR Matching 
aPR 

CM (Nan-
Resolution) 

CM Matching 
aCM 

7060 

r 7070 
7080 

7090 

~70AO 

,.... 

70BO 

70CO 

7000 

70EO 

70FO 

7EOO 

7El0 

7E20 

7E30 

Legend: 

BB 

CC 

DO 

EE 

FF 

00 
...e2-

03 0000 

06 
03 
&t-

05 08 

05 
01 
.aa-

The type of each input ESO item is determined 
The CESO is scanned for a matching symbol 

OOA6 04 

05 

06 

07 

07A8 08 

09 

OA 

OB 

OC 

OOA8 00 

006A 
...QQ6tt" OE 

OF 

10 

11 

If no match is found, nonresolution processing is performed (A 
If a match is found, resolution processing is performed (B, D, 

'" 

RNT r--4 
-<:7' 

02 N ... • 
0'111 
I 

<;010. 
-00 

r 04 Nn 
.... 1: 
13 

OlD 
::J 
Ii' 

n 
0 
::J 

08 Ii' 
III 

::J 

,-. 00 
--J 

len III 

I~ , 
" ID 

1/1 
Ii' 

! 
, ... 

, n 
Ii' 
ID 
0. 

B 
III 
Ii' 
II) , 

./ III .... 

" III 

0 .... 
M 
OJ 
:I 

~ 00 7CBO 
4) 

C") 
0 
"0 
'< , 
U2 
:7' 
Ii' 

M 
OJ 
:I 
C") 
0 , 
"0 . ... 
~ ..... 
N .. .... 
~ 
Ot 
<;01 

'-



3 
ID 
t+ 
J 
o 
e. 
o .... 
o 

" ID , 
III 
t+ 

o 
:J 

Of 

'" 

(" 

TXT 

TXT 

01 

~ 

94' 
02 

A 

\,. 

legend: 

--
Data A 

Data E 

CESD 

00 01 

00 03 

r 
:t record IDs are renumbered (A) 
EeT lengths obtained (B) 
uming there is space in TXTBFBEG, text records are moved (0 
ries made in Text I/O Table and Text Note list (D) 
,tents of TXTBFBEG written onto SYSUT I (E) 
t entered into Text Note list (F) 

TXTBFBEG 

78CO Data A 
c 

II Data B 

7F68 

b 

06AC ~ RNT 

045E .-J 

r{ 01 0 

02 0 

r 
SVSUT1 r--4 

-<J 
N-' ..... ~ O\UI 
I ",e. 

-00 
NO 
.... c 
13 

..... 
OlD 

:J 
t+ 

E 
0 
0 
:J 

..... t+ 
III 

:J 

1° UI 

I~ 
, 
ID 

I~ 
UI 
t+ , 
n 

Text I/O Table 

01 00 0 
F 

02 00 

t+ 
ID 
e. 
3 
III 
t+ 
ID , .... 

r-i III 

0 .... 
UI 

0 .... 
Text Note List 

78CO 06AC ~ ~ 045E ~ 

.... = 3 . 
~ 

TTR (") 
0 

" '< , 
G 
J 
t+ 

.... = 3 
(") 
0 , 
" . .... 
-0 

" N 

.... 
-0 
Ot 

'" 



00 
~ 

:I 
< 
(I' 

"­
VI ..... 
o 

r-

:::J 
~ 
III 
IQ 
ID 

m a. 
rl" 
o ., 
r­
o 
IQ 

o 

" 

Control Records 

..... 
....... 
i'... SYSLIB 

"-

7C60 

T ex t Records 

First Pass RLO Buffer 

4 
01 Z 05CA 

01 3 0640 ~ 

Input Text Buffer (TXTBFBEG) 

ITXT 1 14 1 Text Ooto 

Text Ooto ! ITXTI 3 
Text Doto 

Text Note List 

[~ml ;1:: ItA 

• 
CC 

00 

Disp Addr Length H 

,,- -.., 
~ ---SYSUTI 

TXTBFBEG 

Contents Written 
When Bu Her Is Fu II..) 

CESO 

QI 

03 

GO 0640 

00 05CA 

16 
, 

\., 

Legend: 

• The 10 in the first control record is renumbered. 
The third line of the RNT contains a 4, so the 10 
is renumbered to refer to the fourth I ine of the 
CESO (CSECT 001. 

• Assuming CSEa 00 (CESO 10 41 is not to be 
deleted, its length (in the control record) is checked. 

• If the entire CSECT or a complete multiplicity will 
fit in TXTBFBEG, the record containing text for DD 
is read into TXTBFBEG, and entries are mode in the 
text I/O table and the text note list-. 

• Each subsequent control record is processed. Text 
records are read into TXTBFBEG until it becomes full, 
at which time its contents are written onto SYSUTl . 

In the two text records in this example. the multi· 
plicity number is 0, because they are the first text 
records for their respective control sections. 

4., 

len 

r- -t 
-<::r 
N ... · 
a-UI 
1 

Via. 
oDO 
NO 
~C 
1:1 

OlD 
:::J 
rl" 

0 
0 
:::J 
rl" 
~ 

:::J 
UI ., 
ID 
UI 
rl" ., 
0 
rl" 
ID 
a. 
:I 
~ 
rl" ., ., 
~ 
t-
III 

0 .... 
.... 
tII:I 
:I 

@ 

n 
0 

" '< ., 
IQ 
::r 
rl" 

.... 
tII:I 
:I 

n 
0 ., 
" . .... 
oD ..... 
N 

.... 
oD 
00 
VI 



3 
ID .... 
';j 
o 
0-

o 
-h 

o 
'C 
II) ., .. .... 
o 
:;, 

Ot 
VI 

r r 
RLD Buffer 

R P 

.RLD [ 116[JiPI Da--;;;- - - - ( q q R P 

H \241 11 12 [Dat-;;-- - ( 

R P 

IRLD rF21 11 p I Data ( 

R P 

• Hol 1301 16151 Data ( 
Data 

RNT 

5 

3 

2 

1 
6 .. 

CESO R LD Note list 

CSECTA 00 2 T 20 16 I 

RLDA 02 3 I 24 82 
RLDS 02 6 I 30 
CSECTC 00 

m 
I 

(SECTS 00 

RLDC 02 

legend: 

I 
I 

ID Mult Length Addr/ 
Displ 

e Register 6 initially paints to the first RlO input record. 
• RlO records are grouped in the RlO buffer by P painter. In this example, the first 

and second, and third and fourth RlO records are grouped. 
• Rand P painters are renumbered, using the renumbering tobie, as RlO records are 

moved into the buffer • 
• Entries for each RlO set are mode in the RlO note list. length and displacement 

fields refer to the first record of the set. 
• When the contents of the RlD buffer are written, the displacement field of the RlO 

note list entry for the lost set included in the output record is replaced by the relative 
track address (TTR) of the SYSUTl record. 

r 
r-~ 
-c:::r 
N-' 
O"UI 
1 
~O-
-.QO 
NO 
"'C 

I~ 13 
OlD 

:;, 
;U .... 

....... !r-
~ 0 

SYSUTl I" 
0 
:;, 

1;U .... 
0 11.1 
0 
11"1'1 :;, 

I~ 
UI ., 
ID 
UI .... ., 
0 .... 
ID 
a. 
3 
11.1 .... 
ID ., 
III ... 
UI 

0 
-h 

1-4 
tIIJ 
3 

({) 

0 
0 
'0 
'C ., 
Ie 
:::r .... 
1-4 
tIIJ 
3 

0 
0 ., 
'0 . 
... 
-.Q ..... 
N ... 
-.Q 
Ot 
~ 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

DIAGRAM 13. ADDRESS ASSIGNMENT 

8 

8 f 
w ..... ... 
<{ 
..... 
a< 
w 
o 
co: o 

-0 -

~ ~ 

r 

0 
VI 
W 
u 

8 ~ 

i-
u 
w 
V'I 
U 

Jj 
II 

::ti 
~ 
0 
':::, 

x 
II ..... '" -0 

r-

r-

r-
>-
u r--
'" 

r--
~ 

r--

~l 

( 

;:! ;:! ;:! 8 

\;1j CD :ii <{ 
<{ <{ ~-..... >- l? Z Z Lu 
W Lu VI 

t 

-

86 MVS/370 Linkage Editor Logic 

< ..... 
l? 
w 
VI 

:r ..... 

u 
"" II> 

'" ..... 

'" u 
a< 
VI 

w ..... 

'" u 
'" 

~ 

~ 

VI g 1----1 

l? ¢ w ...P VI 

u 
'" VI 

..... u i 
~"'-

0 

<{ ..... 

0 - -

- N M 

>-
"-<{ 

<{ 

N 
U 
a< 

I" 
VI 

"I 
I 
1 U 

I .. 
a< 
VI 

~ 
I I 
I I .... 
I 
I 
10 

, .., 
I 8 I 1 

1 I 
I I I I 1 

N 

<{ I I ..... 
I I .. .., 

I 
1 CD I I 
t'" 

..... --l I 
I .. u I -' .. I 
1 

...P I 
I .. ..I I 
I w I 
f4 

..... ..I 

0 

.... 

M 
"-

N -
U 
VI r-~ z 
w 

~ 

'" :.::; -
~ 

'" 0 
u 

'" 0-

N 

'" 
'" 
~ 

N 

.J 



:3 
to 
t1" 
~ o 
Q. 

o 
~ 

o 
'U 
III ., 
II 
t1" 

o 
;:, 

01 ..., 

r 

I... 

-, 
I A I '_.I 

Text VO Table 
iii 

ID Mult 

~ 

Text Nate List 

~ 
Disp Addr length 

SY5UT~ 

TXT . 
RLD 

R LD Input Buffer -

(" 

Second Pass T ex t 
Control Table 

(-1 II I I I 111--1 
1 

IB' 
\ J 

..... ( 
I 
I 

Second Pass 
Text Buffer 

(E .... ~ 
\ ..... _, 

-

Relocated Text 

R LD Output Buffer 

CTRL 

r-
Relocated RLDs 

1L RLD 

I Re lac ated R lDs 
RLD 

R LD Note lis t 

m ) ..... 
( D , 
'r/ 

I 
I 

I 
I 
I 

,1., 
\ F J ..... r 

..... 

ID Mult Lgth Disp 
or TTR I RLD Input Control Blocks I 

t_~ 11II1 

RlD Output Control Blocks 

,,-, 
I C I '_..I 

l:~ I I I I I I 
, I I I , 

r 

,,-, 
'\ G ; ..... ., 

SYSlMOD 
,.-

:! r-.... 

-- CTRl 

TXT 
RLD .-

/' -

~-4 

-<~ 
N-' 
0'11 
1 
~Q. 
..00 
NO 
.... c: 
13 

aID 
:::J 
t1" 

o 
o 
:::J 
t1" 
II 

:::J 
II ., ., 
III 
t1" ., 
o 
t1" 
ID 
c.. 
3 • t1" 
ID ., 
III .... 
III 

o 
-to 
.... 
tJ:I 
:3 

~ 

(") 
o 
'U 
'< ., -10 
~ 
t1" 

.... 
tJ:I 
:3 

(") 
o ., 
'U . 
.... 
..0 ..., 
N 

.... 

..0 
01 
~ 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-392!-O 

PROGRAH ORGANIZATION 

The following text and the flowcharts at the end of this section 
describe the processors (code modules, control sections. and 
routines) that accomplish the functions of the linkage editor. 
The organization of this section corresponds to the organization 
of the linkage editor; descriptions of all processors that 
constitute a phase of the linkage editor are grouped together. 
For each processor. the symbolic name is given to facilitate use 
of program listing (see "Microfiche Directory") and the 
descriptive name is given to facilitate reference to "Method of 
Operation." 

Figure 31 on page 96 shows th. overall organization of the 
linkage editor; this illustration is designed to help determine 
relationships among the processors described in this section. 

INITIALIZATION AND INPUT PROCESSING 

Initial Processor--HEWLFINT (Chart BA) 

Entrance: HEWLFINT is entered from HEWLFROU at the beginning of 
linkage editor processing. 

Operation: HEWLFINT performs initialization functions, including 
building the all-purpose table (APT), analyzing attributes and 
options passed by the calling program, opening data sets, and 
allocating virtual storage for buffers and work areas. 

Routines Called: HEWLFINT calls the attributes and options 
processor (HEWLFOPT) and the allocation routine (ALLOO!). The ~\ / 
HEWLFINT routine is recalled immediately upon returning from the 
first call of the allocation routine (ALLOO!). 

Exits: When initialization is completed, HEWLFINT passes control 
to the input processor (HEWLFINP). 

Attributes and options Processor--HEWLFOPT 

Entrance: HEWLFOPT is entered from the initial processor. 

Operation: HEWLFOPT analyzes the options requested and the 
attributes specified by the calling program, and notes this 
information in the APT. If a valid authorization code is found. 
it is converted to binary and stored in both the default field 
and the PDS entry field of the APT. 

Routines Called: None 

Exits: When attribute and option processing is completed. 
HEWLFOPT returns control to the initial processor (HEWLFINT). 

Allocation Processor--ALLOOI (Chart SA) 

Entrance: HEWLFOPT is entered from the initial processor. 

Operation: ALL001 issues the GETMAIN macro instruction and 
assigns storage to buffers. 

Routines Called: ALLOO! calls the table allocation processor 
(HEWLFALK) to allocate storage for fixed-length and 
variable-length tables. 

Exits: When allocation processing is completed. ALLOO! returns .. ~ 
control to the initial processor (HEWLFINT). ~ 

88 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Table Allocat;on Processor--HEWLFALK (Chart BBl 

Entrance: HEWLFALK is entered initially from ALL001 after 
storage has been allocated for the buffers. It is entered a 
second time for reallocation of tables. 

Operation: HEWLFALK assigns storage to the internal tables. In 
initial allocation, HEWLFALK assigns only the minimum required 
storage to the tables. A note is made of the highest address 
used in the initial allocation. Reallocation occurs 
unconditionally. HEWLFALK determines the amount of storage in 
excess of the minimum required. This excess is used to expand 
proportionately the variable-length tables. 

Routines Called: None 

Exits: When table allocation processing is completed, HEWLFALK 
returns to the calling routine. 

Input Processor--HEWLFINP (Chart CAl 

Entrance: HEWLFINP receives control from the initial processor 
when all initialization functions are completed. 

Operation: HEWLFINP reads and initially processes all linkage 
editor input. Input type (object module or load module) and 
input conditions are determined, and control is passed to 
appropriate processors. 

Routines Called: HEWLFINP calls the following processors: 

• Control statement scanner (HEWLFSCN) when a control 
statement is detected (blank in column 1) 

• Object module processor (HEWLFMDI) when object module input 
is detected (SYSLIN input or fixed (F) format input from 
SYSLIB) 

• Load module processor (INP270) when load module input is 
detected (undefined (U) format input from SYSLIB) 

• Include processor (HEWLFINC) at end-of-input if more modules 
must be included 

• Automatic library call processor (HEWLCAUT) at end-of-input 
on SYSLIN if the NCAL option is not specified 

Exits: When input processing is completed, HEWLFINP passes 
control to the address assignment processor (HEWLFADA), if valid 
input was received. If no valid input was received, control is 
passed to the final processor (HEWLFENL) to terminate linkage 
editor processing. 

Object Module Processor--HEWLFHDI (Chart CBl 

Entrance: HEWLFMDI is entered from the input processor when 
object module input is detected. 

Operation: HEWLFMDI determines the input record type (SYM, TXT, 
RLD, ESD, END), loads input record infromation into general 
registers, and passes control to the appropriate processors. 

Routines Called: Depending on input record type, HEWLFMDI calls 
the following processors: 

• SYM processor (HEWLFSYM) 
• ESD processor (HEWLFESD) 
• END processor (HEWLFEND) 
• Text and RLD processor (HEWLFRAT) 
• lOR processor (HEWLFIDR) 

Program Organization 89 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Exits: When object module processing is completed, HEWLFMDI 
returns control to the input processor. 

Load Module Processor--INP270 (Chart eel 

Entrance: INP270 is entered from the input processor when load 
module input is detected. 

Operation: INP270 determines the input record type (TXT, CESD, 
scatter/translation, SYM, CCW, CCW/RLD, RLD, IDR), loads input 
record information into general registers, a~d passes control to 
the appropriate processors. 

Routines Called: Depending on input record type, INP270 calls an 
associated processor, as shown in Figure 30. 

Exits: When load module processing is completed, INP270 returns 
control to the input processor. 

Record Type Processor 

TXT HEWLFRAT 
CESD HEWL FESD 
Scatter/translation (Ignored) 
SYM HEWLFSYM 
CCW HEWLFRAT 
CCW/RLD HEWLFRAT 
RLD HEWLFRAT 
IDR HEWLFIDR 

If end-of"module indicator is on: 

CCW 
CCW/RLD 
RLD 

HEWLFEND 
HEWLFEND 
HEWLFEND 

Figure 30. Load Module Record Types and Associated Processors 

SYM Processor--HEWLFSYH (Chart COl 

Entrance: HEWLFSYM is entered from the object module processor 
when SYM records have been detected and the TEST attribute has 
been specified. If TEST is not specified, SYM records are 
ignored. 

Operations: HEWLFSYM gathers SYM records in the RLD input 
buffer, and writes the buffer contents on SYSLMOD when the first 
TXT record of a module is detected. 

Routines Called: None 

Exits: When SYM processing is completed, HEWLFSYM returns 
control to the object module processor. 

90 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
lY26-3921-0 

ESD Processor--HEWLFESD (Chart CEl 

Entrance: HEWlFESD is entered from the object module processor 
when an ESD record is detected, and from the load module 
processor when a CESD record is detected. 

Operation: HEWlFESD combines ESDs in the linkage editor input 
into a composite ESD. Matching input symbols are resolved, and 
specified operations (replace, change, delete) are performed on 
the symbols. A renumbering table (RNT) is produced to allow 
input ESD IDs to be translated into CESD IDs. 

Exits: When ESD processing is completed, HEWlFESD returns 
control to the routine from which it was entered (object module 
processor or load module processor). 

Text and RLD Processor--HEWLFRAT (Chart CF) 

Entra~: HEWlFRAT is entered from the object or load module 
processors when a text or RLD record is detected. 

Operation: HEWlFRAT determines record type (TXT or RlD), checks 
for error conditions (input record larger than buffer), and 
passes control to the appropriate processor. 

Routines Called: Depending on the record type, HEWlFRAT passes 
control to either the text processor (HEWlFTXT) or the RlD 
processor (RlD001). 

Exits: When text and RlD processing is completed, HEWlFRAT 
returns control to the object or load module processor. 

Text processor--HEWLFTXT (Chart CG) 

Entrance: HEWlFTXT is entered from the text and RlD processor 
when a text record is detected. 

Operations: HEWlFTXT operation depends on whether text input is 
from object or load modules. Object module text is moved from 
the object module buffer to the input text buffer, and must be 
arranged in the proper order. load module text input is already 
ordered, so HEWlFTXT reads it directly into the input text 
buffer. In either case, the input text ID is renumbered to 
refer to the CESD ID of the appropriate control section. When 
the input text buffer becomes full, its contents are written on 
SYSUTI. 

Routines Called: When the input text buffer is full, HEWlFTXT 
calls the text write routine (TXTBUF--Chart CH) to write the 
buffer contents on SYSUT1. 

Exits: When text processing is completed, HEWlFTXT returns 
control to the text and RlD processor. 

RLD Processor--RLDOOI (Chart CJ) 

Entrance: RlD001 is entered from the text and RlD processor when 
an RlD record is detected. 

Operation: RlD001 groups RlD items in the RlD buffer and 
renumbers the Rand P pointers to refer to appropriate CESD 
entries. Each RlD item is processed according to its flag and 
address (FA) field. RlD001 also creates an RlD note list, with 
entries for each set of RlDs (a set being all RlDs having the 
same P pointer). If either the RlD buffer or" the RLD note list 
becomes full, the contents of the buffer and the note list are 
written on SYSUT1. 

Routines Called: When the RlD buffer or the RlD note list is 
full, RlD001 calls the RLD write routine (RLDBUF--Chart CK) to 
write the note list and the buffer contents on SYSUT1. 

Program Organization 91 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972.1983 
LY26-3921-0 

Exits: When RLD processing is completed, RLDOOI returns control 
to the text and RLD processor. 

End Processor--HEWlFEND (Chart Cll 

Entrance: HEWLFEND is entered from the object or load modula 
processor when an END record or the end of a load module is 
detected. 

Operation: HEWLFEND resets tables involved in input processing. 
processes entry point information. deletes CESD lines marked 
"chain" or "delete," and enters in the CESD the length of 
control sections for which no length was previously indicated. 

Routines Called: None 

Exits: When end processing is completed, HEWLFEND returns 
control to the object or load module processor. 

CSECT Identification Record (IDR) Processor--HEWlFIDR (Chart CQ) 

Entrance: HEWLFIDR is entered from the input processor, 
HEWLFINP, to process object module END records and load modula 
identification records. It is also entered from HEWLFSCN for 
processing IDENTIFY control statements. 

Operation: HEWLFIDR takes IDR information from the input racords 
and enters this data in the appropriate IDR table. 

Routines Called: Error and informative messages are processed by 
calling HEWLFLOG. 

Exits: When IDR processing ends, HEWLFIDR returns to the calling 
program. 

Control statement Scanner--HEWlFSCN (Chart CS) 

Entrance: HEWLFSCN is entered from the input processor when a 
control statement is detected. 

Operation: Depending on the type of control statement being 
processed, the control statement scanner makes entries in the 
APT, SEGTAl, and/or the CESD. This information is used to 
control subsequent linkage editor processing. 

Routines Called: HEWLFSCN calls the READS routine (Chart CT) to 
process control statement operands. 

Exits: When control statement processing is completed. HEWLFSCN 
passes control to the include processor (HEWLFINC>. if an 
INCLUDE control statement was processed (include chain built in 
the CESD). Ohterwise, HEWLFSCN returns control to the input 
processor. 

Include Processor--HEWlFINC (Chart CU) 

Entrance: HEWLFINC is entered from the input processor when 
"more includes" are indicated at end-of-input, and from the 
control statement scanner when an INCLUDE statement .has been 
processed. 

Operation: HEWLFINC examines the include chain in the CESD and 
selects the next module to be included. It opens the data set, 
determines the attributes of the module to be included, and 
initializes the DCB to allow the module to be read. 

Routines Called: If a module for which the REPLACE/CHANGE ..)\ 
function has been requested is not contained in the specified 
library, HEWLFINC calls HEWLFEND to delete the corresponding 
CESD lines. 

92 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Exits: When include processing is completed, control is returned 
to the input processor. 

~ Automatic Library Call Processor--HEWLCAUT (Chart CV) 

Entrance: HEWLCAUT is entered from the input processor at the 
end of SYSLIH input, or when a NAME statement has been detected 
(provi ded that the NCAL opt i on was not speci fi edl. 

Operation: HEWLCAUT first st;ans the CESD for unresolved ERs 
specified on LIBRARY statements. It attempts to resolve these 
ERs by searching the POS directories of ddnames included in 
library chains, allowing the members found to be read. A second 
CESD scan attempts to resolve ERs not specified on LIBRARY 
statements by attempting to call them from SYSLIB. 

Routines Called: After the first series of CESD scans, HEWLCAUT 
returns control to the input processor to read the members. 

Exits: After the second series of CESD scans, HEWlCAUT passes 
control to the address assignment processor (HEWlFADA). 

INTERMEDIATE PROCESSING 

Address Assignment Processor--HEWLFADA (Chart DA) 

Entrance: HEWlFADA is entered from the input processor when 
input processing is completed 

Operation: HEWLFADA assigns linked addresses to all CESD 
entries, determines the size of SEGTAB if the program is in 
overlay, determines if the first text record does not begin at 
address 0, determines the number of ENTAB bytes required for 
each segment, builds the alias table, and determines an entry 
point for the program. 

Routines Called: HEWlFADA calls the ENTAB size determination 
routine (HEWlFENS--Chart DB) to compute the size of ENTAB, and 
calls the entry processor (HEWLFENT--Chart DC) to build the 
alias table and determine an entry point. 

Exits: When address assignment processing is completed, HEWLFADA 
passes control to the intermediate output processor (HEWLFOUT). 

Intermediate output Processor--HEWLFOUT (Chart EA) 

Entrance: HEWLFOUT is entered from HEWLFADA when address 
assignment processing is complete. 

Operation: HEWLFOUT writes the following on SYSLMODi CESD, 
SEGTAB (for programs in overlay), and scatter/translation 
records (for programs to be scatter loaded). If a HIARCHY 
statement is specified, storage hierarchy designations are 
included in the scatter/translation records. If the MAP option 
has been specified, a module map is produced and written on 
SYSPRINTi if the XREF option has been specified and all RLDs are 
in storage, a cross-reference table is produced and written on 
SYSPRINT. 

If the TXT and RlO note lists were placed on SYSUT1 during TXT 
and RLO processing, HEWlFOUT reads them back into storage, and 
builds the high 10 table (HIID). The half ESO (HESD) is also 
built, after the CESD has been written. 

Routine Called: HEWLFOUT calls the MAP/XREF processor (HEWLFMAP) 
to produce and write the module map and cross-reference table, 
if requested. 

Program Organization 93 



This document contains restricted materials of IBM. 0 Copyright IBM Corp. 1972,1933 
lY26-3921-0 

~: When intermediate output processing is completed, control 
is passed to the second pass processor (HEWlFSCD). 

SECOND PASS PROCESSING 

Second Pass Processor--HEWLFSCD (Chart FA) 

FINAL PROCESSING 

Entrance: HEWlFSCD is entered from HEWlFOUT when intermediate 
output processing is completed. 

Operation: HEWlFSCD performs the following functions: 

• Reads text from SYSUTI. 

• Relocates address constants contained in the text. 

• Creates control/RLD records. 

• Writes text and control/RlD records on SYSlMOD in a format 
that can be loaded by program fetch. 

• Creates ENTABs and associated RlD items for overlay modules. 

Routines Called: During second pass processing, HEWlFSCD calls 
the following routines: 

• Control section search routine (GETIDMUl-'-Chart FB) to 
determine the next ID and multiplicity to be processed. 

• Text and RlD read routines (RDTXT, RDRlD--Chart FC) to read 
required text and RlDs from SYSUTI. 

• 

• 

Text write routine (WRTTXT--Chart RD) to write text on 
SYSlMOD (HEWlMSIO). 

Control/RlD record write routine (WRTCRRlD) to write RlDs 
and control records on SYSlMOD (HEWlFSIO). 

• Second pass initialization routine (HEWlFREl--Chart FE) to 
initialize text and RLD control blocks. 

• Relocation routine (RElOCATE--Chart FE) to relocate address 
constants (branch-type and nonbranch-type) in the text. 

• Common path routine (HEWlCPTH) to determine common segments 
in an overlay path. 

• ENTAB creation routine (SCDENTAB) to create ENTAB items for 
each segment. 

Exits: When second pass processing is completed, control is 
passed to the final processor (HEWlFFNl). 

Final Processor--HEWLFFNL (Chart GA) 

Entrance: HEWlFFNl is entered from HEWlFSCD when second pass 
processing is completed. 

Operation: HEWlFFNl performs the following "cleanup" functions: 

• Writes the TTR list for overlay modules on SYSlMOD 

• Places entries in the partitioned data set directory and 
issues a STOW macro instruction 

• Prints a directory of logged errors 

94 MVS/370 linkage Editor logic 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983 
lY26-3921-0 

• Checks for more restrictive module attributes 

• Produces a cross-reference table if it was requested and not 
produced during intermediate processing 

Routines Called: During final processing, HEWLFFNL calls the 
following routines: 

• Diagnostic message directory print routine (HEWLFBTP), which 
scans the error logging map produced throughout linkage 
editor processing by the error logging routine 
(HEWLFLOG--Chart GC); HEWLFBTP builds and prints a directory 
of error messages. 

• MAP/XREF processor (HEWLFMAP--Chart EB), which produces a 
cross-reference table if it was not produced during 
intermediate processing. 

Exits: If end-of-file was not detected on a SYSLIN input, 
HEWLFFNL returns control to the initial processor (HEWLFINT), 
and linkage editor processing is repeated. Otherwise, linkage 
editor processing is terminated, and control is returned to the 
control program. 

SYNAD Routine--HEWLCROI (Cha~t Gil 

Entrance: The SYNAD routine may be entered from the following 
routines: 

• From the control program when any input/output error has 
been detected 

• From the second pass processor if an error is found after 
executing the XDAP macro instruction 

Operation: Following are SYNAD considerations for the linkage 
editor: 

• The SYNAD fields of the DCBs in HEWLFROU contain the address 
of the appropriate SYNAD entry point for the access method 
used with the data set. 

• If the SYNAD routine is entered from the input processor 
because of incorrect length, the length of the incorrect 
input block is checked. If a valid short block (integral 
multiple of (LRECL) is found, control is returned to the 
supervisor to continue processing; if not, processing is 
terminated with an error message and completion code of 16. 

• If the SYNAD routine is entered while writing to the 
SYSPRINT data set, control is passed to the final processor, 
and execution is abnormally terminated with a condition code 
of 16. 

• When the include processor opens the DCB for SYSLIB, the 
address of the appropriate SYNAD entry (for either BSAM or 
BPAM access methods is moved into the SYNAD field. 

• If the second pass processor finds an error after executing 
the XDAP macro instruction, it loads register 1 with the lOB 
address, loads register 15 with the SYNAD entry point for 
the EXCP macro instruction, and branches on register 15. 

Program Organization 95 



.0 
G' 

3: 
< 
/JI 
"­
VI 
...... 
C) 

r-

:::I ,.. 
III 
III 
ID 

m 
a. 
~ 
o ., 
r­
o 
III 

o 

'"T1 

III 
I: ., 
ID 

VI ... 
r-

:::I ,.. 
III 
10 
II) 

m 
a. 
~ 
0 ., 
0 ., 
III 
III 
:::I 

N 
III 
~ 

0 
:::I 

'-' 

I"ilial Proceuing 

HEy..lFOPT 

A'tribut" ond 
Options 
Pl-OCflHOr 

ro.,QI" &A' 

HfWlFMDI 

Input F\-__ ing 

~~:~FDCN I ~~~~8E. 

~ 

~i"'Pr_""nv Second ,_ Proc..;1Ig 

GfTlDMUl 

Controt Sec:tion 
s.-h (Goo 

IO!Mt.tIt) 

(Chert Fa) 

AnaI-... I 

4., 

r--f 
-<::r 
N-' 
G'UI 
1 

Via. 
.00 
NO 
.... 1: 
19 

aID 
:::I 
~ 

0 
0 
:::I 
~ 
III 

:::I 
UI ., 
ID 
UI 
~ ., 
0 
~ 
ID 
a. 
9 
III 
~ 
ID ., 
til ... 
III 

0 
-4t 

H 
tlI:I 
3: . 
€) 

(') 
0 
'tJ 
'< ., 
III 
::r 
~ 

H 
tlI:I 
3: 
(') 
0 ., 
'tJ 

... 

.0 

...... 
N ... 
.0 
Ot 
VI 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3921-0 

FUl<CTIOML SYMBOLS 
"-;;;;;ii;;;;;; ;;;. · . • PItOCESSlk; • 

: BLOCK · .................. 

. '. 81 eo 
0" ... 

." DECISION t. 
to BLOCK ... 

to •• 
to •• 

to ..... 

····ct········· :'~~If~A~~lbc~R: ............... 

··01······· . . 
·MO')lFlc~rl0N .. 

.. .. BLOCI( ... . - . ........... 

.. ··El··········· 
·INPUT/OUTPUT • 

8UlCK 

·····f·t·········· · . t_._._._ t_._ .... _ .. 
.. SUBROUTINE .. 
.. BLOC)( .. · . ....... ...... ... .. 

·····U1·········· .. .. 
•• PREDEFINED .. .. 
•• PROCESS .. . .. .. .. .. ................. 

ON- PA::;E 
CONI'fECTuR 

I .... 
->. .. 

.. C) .. . . 
OFr-PAGE 
C0fiNEcrOR 

I .... -)*02 .. 
: Al." .... ·····1(\ ......... . ·----xxxxxxx----· 

.. MINVR .. 

.. ~uaRuUIINE 

: BLC.C'I( .. ......... ... ..... . 

. ... ,,) ........ . · . : HOURSRTN : ............... 

<on 1 
: •••• 83 ••••••••• : 

• - - --SUBNAME- - - -. 
• Fum TABLE • 

EIft'RY . ............... . 
.... 1 · . • Cl . 

• ._> .... 
·····Cl·········· · . · · · . ........ , ....... . 
· . I 
• D)' 1 • ._> .... 
·····01·· .. ·· .. ···· · . · · · . . ............... . 
:~i:~ .->1 · . .... . '. 

El ' • . . '. . . .. --_.. .._--
'. .' '. . . ' .. ' . 

GOTO 1 rrAt ·····rl· ........ . 'SUBNM • ._._.- ._.-.-._._. · . · . · . ..... ...... ..... . 

TB£ TERMINAL BLOCI< IS USED 
1'0 SIIOW EIf'I'RY AND EXIT 

r>Jx:"IS8~F s:oC~UI~NlinRY 
POINT NAMED HOURSRTN. 

THE INSTRlJCTION AT GETf 
C"LL£ " SUBROUTI NE NNtED 
SU8NAM£ THAT IS FULLY 
DEFINED BY THE Tl;XT IN THE 
TEXT BLOCIC. ITSELF. 

01'1- PAGE ENTRY CONNECTOR. 
uNE OR MORE BRANCHES TO 
THIS BL(>C~ APPEA-Col: ON THIS 
PAGE OF THE FLOWCHARf. 

Off- PA.:i.E ENTkY CONN!;CTOR. 
A BRAHCH TO THIS bLOC'tc 
APPEARS ON ANOTtiER PAGE'S' 
or THIS rt.QWCHM'I' • 

fHE INSTRUCTION AT LOCATION GOTO 
CALLS A SUBROUTINE MJlED SUB"". 
11IE LOGIC OF SU8"", IS SHOWN ON 
CHART 'I'~ STARTING AT 8LOCK A1. 

l<-~~~~-~~TION 
L 
I · .... G].......... ~ 

• RETURN .<----
• • C ............... R 

o 
S 
S 
I 
N 
G 

. '. 
Gl '. .' . --_.:' .': '---L 

'0 .' '0 o. ..... . ..... 
--------, .... 1 : 0) : 

::· •• 111 ........ :: 

•• EXECUTE •• 
:: UTLXYZ :: .. . . ..... ...... ..... . 

.1 
J)"" '. · .... J2..... .... . . .0' '0 

• RETURN :<--------.... .::"---1 
••••••••••••••• '. 0·' ~ 

CONTROL IS RETURNED TO 
A VUIABLE POINT. (FOR 

~'AO:t~Jt ~1~H~o~~I:I 
WAS INVOKED.' 

'. .' ..... I ::;:: 
• •••• J() •••••••••• 

: GO TO TAXRTN . ............. . 

ON- PAGE EXIT CONNECTOR. CONTROL 
BRANCHES TO 8LOCtc 03 ON fHIS PAGE. 
Of THE F' LOWCH"R'I" • 

THIS 8L(lCJ( REFERS TO A ROUTINE 
vR PRuGH.AIt" THAT IS OOC:UMENT£O 
IN SOME OTHER PU8LlCATIOfrt. 

oFF- PAGE EX 11 I.vNNECT:l.ta CONTROL 
BRAr«:tt[:i TO BLOCtc Al ON PAGE 2 
OF Till;, FLOWC'ttA.RT. 

L'ONTP:OI. BRANCHES TO AN ENT~Y 
POI NT t.> .. ,,"OTHER n.OWCH~T. 

F;gure 32. Sample Flowchart Symbols 

Program Organization 97 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983 
lY26-3921-0 

CHART AA. LEVEL MAJOR DIVISIONS 

·····A"·········· •••• A3......... • HEWLFROU • 
• •• -*-*-*-* -* _. - *_ • 
• CONTROL PROGRAM*-------->* • 
• •• ENTRY PoINT • ............ ... . . ................. 

I 
---------- ------------------------------------------------------~~~~~ ~ ~ ~ ~~~ ~ ~ ~~~~ ~~~~~~ ~~] --------- ----------------------- -----

:H~~li~~···;.u3: 
*- *- *- *- *- *- *-*_. 
• INITIAL • 

PROCESSOR • . ..... ........... . 
~~~!~~-~!~~:~~~---------------------------- -------------------!----- ----- -- ---- -------- --------- -- -------- ---- --- ---- -------- -" 

1 ·····C3·········· *HEWLFINP CAA2*
- -* -* -*- *_. -*_. · . -INPUT PROCESSOR-·

INPUT PROCESSING I
- ------ --- --- ----- - ------- ---- -------- --_ .. - -- ----- - -- -- - - ----- ----------- - ------ - ------- ---- - - ----------- -------------- - ---- - - ---

1
:t~~l;~···~.:;.i:
*- *- *- *- *- *- *- *_.
• ADDRESS
• ASSIGNMENT
• PROCESSOR • ·

I
•••• *E3.· ••••••••
• HEWlJ'OUT EAA2 • . -. -.-. _.- .-.-.-.
• INTERMEDIATE •
• OUTPUT •
• PROCESSOR •

INTERMEDIATE PROCESSING I -- -- -1---

SECOND PASS PROCESSING

•• • •• P3· •• ••• ••••
• HEWLFSCD FAA2 • . _.-.- .-.-.-.-.-.
• SECOND PASS •

PROCESSOR •
I ---1---

·····G3····.····· : _H.E~!.F_N.L_ • _ ~~~: · . • FINAL PROCESSOR· ·
FINAL PROCESSING I ---r --

····H3·· · . :CONTROL PROGRAM:

98 MVS/370 linkage Editor logic

L

L

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

CHART IA. INITIAL PROCESSOR (HEHLEINT)

FROM FINAL PROCESSOR

FROM ROOT SEGMENT (HEWLFROUI

····"3········· · . • HEWLFINT • ·
1 ·····S3

'SAVE REGISTERS •
')-12 AND PLACE'
• MDRESS OF APT •
: IN REGISTER 2 :

1 ·····C)·········· 'HEWLFOPT •
• -. -* -*-.-*_.- *_.
*ATTRIBIII'ES AND'
• OPTIONS •
• PROCESSOR •

1 , ., 02.......... 03 *. • ••• ·04.· ... ··· ..
'PLACE STANDARD • .' eo • PLACE PASSED •
*ODNAMES IN DeBS' NO.' PIU(AMETER *0 YES *OONAM.ES IN DCBS'
• OF ALL DATA *<--------*. LIST PASSED. *-------->* OF ALL DATA •
~ SETS: *0..... • : SE"I'S : r:::::: _____________ ::; ::_____ _____ ::: .. :J

, .,
G2 .0

: E3···· ..•.. :
• SAVE ODNAMES •
'FOR SYSU'Tl AND •
• SYS!.MOD • ·

1 ... F3······· .
• OPEN SYSLIN •

• SYSPkINT •
• SysLMOD .'

1 · · . • ESTABLISH •
: MULTIPLICITY: ·

ALLOOI 1
· ····Gl········· SYSLMOD··.. YES

· ... ·G)·········· • ALLOCATE •
• INPUT/OI.1rPUT ••

• HEWLFNAM .--______ > •• OATA SET OPEN •• -----· . ·0•......•.... ·0.· ·0 .• r ··82······
• OPEN SYSLMOD .---->

• LOAD MODULE. •

: R;8~F~~~ :
I

.HEWLFALJ< •

.~liAi.- --.
:aa.-:a"l~ or au:
• .-.aDD'I'-""'.

~~~~::---->i 
••••• J 3 •••••••••• 
• CLEAR REQUI ~ED • 
• PARTS OF • 
• PttOCESSI NG • 
• TABLES • · . ..... ........ ... . 

j 
· .... xl········· . 
• HEWLFINP • · . .. ......... ... . 
TO h4PUT PROCESSOR 

Program Organization 99 



This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART BB. TABLE ALLOCATION PROCESSOR (HEWLFALK) 

.... 1\2·····.··· · . • HEWLFALK · ................... 
I v .... . .. 

B2 *0 d3 ... 
•• ... •• IS •• • •• • 0· IS OVERLAY &:.~.? ______ >.:. HIERARCHY ·:.~~--->:D2 • 

• •• SPECIFIED ... .0 SPECIFIED.. • 
*0 • • *0 •• 

•• .• *0 •• i YES i YES 

..... c2.1........ . .... e3.,;' •••••••• 
: INDICATE QVER-: • ..... : ~~~I~~iic:li~_ : 
: LAY TABLE TO • D2! : ARCHY TO BE : 
• BE; ALLOCATED .. ••• • ALLOCATED • 
••••••••••••••••• -I •••••••• ~ •••••••• 

I-------L-----J 
v 

D2·I~·.. : •••• D3 ••••••••• : 
... THIS A ... .. CALCULATE .. 

• :* PofU~'! *: .~:~ _____ >. AVAILABLE .. 
.. ¥.LOCATI.O~ .. : BYTES/WEIGHT ... ." ....................... .. r 

v 
......... E2 ............. .. · . · . : BYTES/WEIGHT-O : · . .. ······F~·~~·~ -------- -- ~ 

v ........ ·F2·· .......... .. 
: CALCULATE .. 
.. TABLE SIZES: 
.. MINIMUM + • 
: (BYTES/WEIGHT) : 
• WEIGHT • .. ... ···1···· .... 

v 
• •••• G2 •••••••••• 
• UPDATE APT IN-. 
• FORMATION ON 
: TABLE SIZES 
• AND LOCATIONS • ........ 1' ...... . 

v 
: •••• H2 ••••••••• : 

• RECORD HIGHEST 
: ADDRESSES USED 
• BY TABLES IN 
• FIRST PASS 

: ~~~~~PDASp~·S~ .......... 
I 

V J2 ·IS·.. • •••• J3.......... . .... J4 ........... . 
• • THIS A •• • NOTE THE HIGH-. • SET SWITCH IN • 

• :. F~?UE;l_ ·:.~9 ______ >: EST ADDRESS : _____ >: APT TO SHOW IN- • 
• ALLOCATION. • USED IN IN IT- • • ITIAL ALLOCATION: 

•••• '. " :.I.~~.A,,~~O'C.A.,T.I.<;r:.: • HAS BEEN DONE • 

IYES I __ ~·~~~] .... ···· .. 
T&AL 300 V ..... K2.......... . .... KJ •••••••••• 
• MOVE AND CLEAR. • SET SWITCH IN • • ••• K4·.· •••••• 
: TABLES AFTER· • APT TO SHOW • V • • 
• REALLOCATION >: RE ALLOCAT ION : - - - - -> : RETURN 
• • HAS BEEN DONE • • •••••••• ,. ••••• ..... ............ . ............... . 

100 MVS/370 Linkage Editor logic 



L 

L 

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CA. INPUT PROCESSOR (HEWLFINP) 

····Cl········· • 80,. OM SYSLlII • 

rRc»I INITIAL 
PROCESSOR 

····A.2········· · . KBWLFINP • . 
" ............. . 

::::: =-.1<--------- -------------- -} YES 
IMP! 0 • • .. e2....... 83 eo 

• • •• to 
• • •• OPEN EXIT to 

• READ " RECORD .-------->.. TA](EN •• 
• • eo •• 
• • to.· 
••••••••••• to •• 

'NO 

6-- ---- - ------ ---- --- -- --- j 
INP12 • t. 

e2 •• • •••• c) •••••••••• 
•• to .INP210 CCAl. ._ IS rHIS A to YES ._._e_._._t_._t_. 

eo LOAD MODULE •• -------->. LOAO MOOULE .---1 
•• •• • • •• : PROCESSOR : Q-

• DCB • · . ............... 

-I 
to •• • •••••••••••••••••••• C : B2 : 

·····01·········· · . • SET AU'l'OIIA.TIC • 

INP13 . '. 02 t. o· •. •• Cotl'I'ROL to NO ._._._._t_._._._. 
• Ll8RAllY CU,L • 
• IIC)ICATOR ON • · . ................. eo STATEMENT 0·-------->· OBJECT MODULE .---L 

•• • • • PROCESS OR • .. .. . . 
to •• • •••••••••••••••••••• 

1 
rs 

: B2 : 

·····El·········· · . • SET END or • 
• INPUT I.,ICATOa. 
• ON • · . 

·····E2···"'······ • HEWLFSCN CSA1. • _.-._._. -*_. _.-• 
• CONTROL • 

ST"TEMEN'T 
SCANNER ................. . ............... . 

1 1 .•. . .. 
Fl •• F2 •• 0··0 .•.. 

•• IHPtrI' .0 YES •• NAME .0 NO ·0 RECEIVED •• ----- ·0 STATEMENT o.---l ·0 .• .0 .. ·0 .• .. o. ·0 o. .0 .• • ••• 

i¥tW. l'NO GAG2 rES : 82 : 

PROCESSOR ••••• G2 •••••••••• ·.·.Gl········· . . • •• SET AUTOMATIC • 
• HEWLFFNL. • LIBRA-RY CA.LL • 
• •• INDICATOR ON • ............... . . I ........ 1' ...... . 

HEWLFEOD •• 0 
82 .0 ••... 63 •••••••••• 

•••• Hl......... 0..0 • HEWLFINC eVA]· 
• lor 011 STSLIB • o. AMY MORE •• YES ._._._._._._._L. 

DCB ·-------->·0 INCLUDES •• -------->. INCLUDE •• ---L . .0 o. • PROCESSOR 
• • • • ••• • • • •• • • • P'R OM LOA.D. 0 • • • • 

MODULE .0 o. • .............•.•...• 
PROCESSOR I NO 

. . 
: B2 : .+ •. 

. ·0 .•. 
J2 .0 J3 •• o. IS •• •••• • ••• J4 ••••••••• 

•• AtrrOMATIC .0 YES o. .. YES • TO ADDRESS • 
•• LIBRARY CALL •• -------->.. NO CALL •• -------->. ASSIGHMENl • 

• 0 INDICA-TOR.. •• • • • 
•• SET •• .0.. • •••.•.• 0 •.••.. •. o· •..• 

t~::·::·: l' NO .... 
. .. ··K3·········· • HEWLCAUT CWA.2 • . _._._._._._._._. 
• AUTOMATIC • 
• LIBRARY CALL • 
• PROCESSOR • · ............... . 

l .... 
->. • 

: B2 : 
•• iloilo 

f'ROM OPEN DURI N:" 
CONCATENATION 

· ····A~········· . 
• DCB EXIT • · . . ............. . 

j 
· ····B~· ........ . 
• HEWLEXIT • ._+---._._.-.-.-. 
:Oi~~I~~~~ ~6 : 
• RETURN • ................. 

I • ••• c s ••••••••• · . 
: RETURN : . .......... _ .. . 

TO OPEN 

Program Organization 101 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CB. OBJECT MODULE PROCESSOR (HEULFHDI) 

FROM INPUT 
PROCESSOR · '. INP22 

INP40 A2 -. • •••• "3 •••••••••• 
eCG3 

····A1········· •• CONTROL.. *HEW'LFLOG GCA2* •••• A4 ••••••••• 
• • 0* STATEMENT to NO *-*-*-*-*-*-*-*-*. • 

HEWLFP'MDI *--------)*.CONTINUATION. *-------->* CONTINUATION *----____ >* INP270 
• to • • *EXPCTD BUT NOT • • •••• ••••••••••• to.. • RECEIVED. • •••••••••••••• 'or ....... ::........ """ L 

••••• 82*......... 83 • . ' 84'· •. 
• LOAD PARAMETER • • • *0 •••• 

: •••• B S ••••••••• : 

• REGISTERS AND • •• to YES • • TEST to n;s • LOAD GENERAL • 
• SET ON MODULE *--------)*. SYM RECORD .*--------)*.INDICATOR ON • *-------->*REGISTER " WITH. 
• INDICATOR IN • to •• to •• • BYTE COUNT • 
• APT. to.. •..• • • ................. ··r~ ..... .. ...... 1········· 

• *0 • to ••• INP140 
•• Cl •••• ..C2 •••• o.C3 •••• : •••• C4 ••••••••• : : •• _H.~_~ •• {_F.~_~ •• M._ •• _·c •• ~_~ •• _2.: 

~o • • • . NO • • •• NO. • •• YES • SET ESD • 
--- •• RLO RECORD •• <--------•• TXT RECORD •• < .. -------•• ESO RECORD •• -------->. INDICA.TOR ON •• • 

•• • •• •• • • • • • .SAVE SYM RE:CORD. .... . • •. o· •..• • •• • .. .. .. .. .. .. .......... .... .... . ................ . 
!rES 

• v.r. ES • 1 j 
INP130 INP160 CeG3 ..... 01.......... D2 .0 ..... 03.......... . ... -.. D4 ......... . 

: CLEAR TEXT: o.·:ERE SYM·· •• YES :.!I;~i':~.:r_._i~~~: :~;~~~~~~_._;=~~: ..... 05 ......... . 
: INDICATOR •• RECORDS •• ------- •. >. •• .------- .>: INP210 
• •• :~CEIVE? • •• : SYM PURGE: : ESO PROCESSOR : ••••••••••••••• .•... ..........•. •. o. ....•.... .... .... . ... tl •••••••••••• 

1 [0 1 
••••• E1 •• •••••••• • •••• E2.· ••••••• • ••••• E3 •••••••••• 
• HEWLFRAT eFG3.. •• • . _+-.-.-.-.-.-.-. . SET TEXT. • CLEAR SYM • 
• RLD AND TXT .<--------. I~DICATOR .<--------. INDICATOR 
• PROCESSOR·· •• · .. .. ..... ............ . ....... ......... . ............... . 

1 ttO' . ···F1····· .... · . INPZ10 · · ............... 

.' . 
Gl •• .. .. o. .. YES 

--> •• END RECORD •• -----·0 o. ·0 .• .. .. r ···· ... U1·········· • HEWLFLOG GCA2. . _._. _.-.-. -.-. -. 
.UNRECOGNI ZABLE • 
• INPUT-NOT • 
• OBJECT MODULE • ..... ..... .... ... 

L~, 
· ... ·Jl········· . 
• INP210 : .... ... ....... . 

· '. F2 •• 
o .IS SYM ., 

•• RECEI liED ., NO 
-->.0 INDICATOR ON •• ---

• 0 o. •. o· •. o· rs 

·····G2··· .. ······ • HEWLFSYM CDA 2. ._._.- ._._._._._. · • SYM PURGE · · ............... . 
1<----------
· '. HZ •• o. .0 

•• DOES END .0 NO 
• 0 cARD CONTAIN ~ .----> 

• 0 IDR DATA? •• •. o· ·0 .• rs 

••••• J 2 •••••••••• · . .TURN ON 'OBJECT. 
• lOR' SWITCH • · . · . . ............... . 

INP340 1 · ... ·K2···· ..... . 
• HEWLFIDR CMA2. . -._._.-.-._.-.-. 

PROCESS lOR .-----
DATA : · ............... . 

INP1Q .·0 INP90 '.0 F3 .0 •.•.• F4 • .,. ••••• ~.. FS •• 
•••• • LOAD GR4 WITH. o • 

o • ENTRY POINT., YES .CONTROL SECTION. •• GR4 .0 NO 
-->.0 INDICATOR ON •• -------->.LENGTH FROM ENO.-------->.o CONTAINS •• _--

•• • • • REr.ORD. •• LENGT 8 •• ·0 .• • • .0 o. .0 o. .... •.•.• ...• •... .0 .• 

i·NO • ..... A1"N-O------- I·YES 

: G4 : 

.'. I WPBO .', G3 •• G4 •• • •••• G~ •••••••••• . ..0 0 • .. • SET NO LENGTH • 

.:·E~~~~L~¥NT·:.~~ •. -y--->.:·E~t~~O~biNT·:. : IN~~~~f~DIN : .0 o· •. o. • APT • .. .. ·0.· . • •. .• .. o· .••...........•.. rs rs 1<----------

. .••. 83.......... . .... H4 .... ·....• . .... HS, •......... 
• SET ABSOLUTE • • SET SYMBOLIC • • HEWLFEND CLAl • 
• ENTRY POINT • ENTRY POINT • .-.-._.-.-.-.-.-• 
• INDICATOR IN • INDICATOR IN •• • 
• APT • APT. • END PROCESSOR • · .... . ............... . 

1 . ... ·J3·· ....... . · . • STORE ASSEMBLED. 
:ADDRESS IN APT : · . . ............... . 

l ... . 
- >. • 

• G4 • . . .... 

. ............... . 
1 

: •••• J4 ••••••••• : 

.SET ENTRY POINT. 
• INDICATOR IN • 
• APT • · . . ............... . 

1 
• •••• K4·· •••••••• · . • STORE SYMBOL IN • 
: APT .-----

· ................. 

1 ... ··J5··· ...... . 
:~;~~!~1_._~~~~: . . 
: END CARD PURGE ! . ............... . 

I =' .. ··K5··· ..... . . . 
INP210 ............... 

102 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. 0 Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CC. LOAD MODULE PROCESSOR (INP270) 

PaOlI IMPUT 
PROCESSOR 

····Al········· · . • INP270 • · . ............... 
1 

IIIP270 .to ••• 
81 *0 82 eo ••••• B3 •••••••••• 

•• •• •• eo • HEWLFSYM COA2. 
•• eo YES ." 15 TEST eo YES *-*-*_.-*-*_.-.-. 

eo 8YM RECORD • *--------> •. INDICATOR ON • *-------->* • 
•• • • •• • • • SYM PURGE • eo .* e... • • 

eo •• eo •• • •••••••••••••••• 

1'110 'lNO •••• l .... 
->. • ->* • 

• G3 • • G3 • . . . . .... 
INP281 ••• Cl eo ••••• e2.......... . .... cl.......... . .... c_.......... . .... cs ......... . 

• • eo • • *LOAD N:.l1I OF • -LOAD ESO IO OF • *WAD ADDRESS OP-
•• eo YES • SET ESD. • BYTES ESO • .1ST ENTRY INTO • • CaD • 

eo ESO RECORD .*-------->* INDICATOR ON *-------->. INFO ON *-------->. GENERAL .-------->. INPOIUIlTIOH • 
eo •• • •• INTO L. • REGISTER 5. • INTO GIHzaAL • 

•• •• • •• REGI .... •• REGIS"'R 6 • 

"i~ ................. ....... ....... ................. .. ...... 1········· 
INP290 ••• 

. • 01 ··.0 :·t~~_~,2~;~;i~·: :~~O~t~;;~·~;·: :~~~; ••• ~p:;: :~~~i;~···~~~t: 
•• •• YES .ADDRESS OF RLO • • BYTES OF RLD • .-.-.-.-.-.-.-.-. .-._._._._.-.-.-• 

•• RLD RECORD 0.--------:>. INFORMATION .--------). INFORMATION .--------:>. PROCESS RLD • • PROCESS ESD • 
• 0 • • • INTO GENERAL • • INTO GENERAL • • INFORMTION • • INFORMATION • 

•• •• • REGISTER 6. • REGISTER".. •• • 

. '1' ~ _______________ ~ ~~ ~ ~ ~ ~ ~~ ~ ~ ~~ ~ ~~ ~ _________ :::: ~: ~ ~ ~ ~ ~ ~ ~ ~ ~: ~ _________ : ~ ~ ~~ ~:]"""" ........ r::~:::: ~ .... . ' . 
INP300 •• El • .• 0 :.~:52:;:~~::;.: :~E~;;;.~~:;: : .... Eq ••••••••• : :H~afJ.T .. ·~;:;: 

•• CCW/RLD •• YES • ADDRESS OF. • OF TXT INTO • • LOAO ID INTO • .-.-.-.-.-.-.-.-. 
•• RECORD •• -------->. I'OLLOWING TXT .-------->. GENERAL .--------:>. GENERAL .-------->. PROCESS TEXT • 

• 0 •• • INTO GENERAL • • REGISTER" • REGISTER 5. • INFOR.MIt.TIOM • 
•••• • REGISTER 3.. ... . .. .. ................. ................. ................. . ............... . 
l·NO •••• · . • F3 • · ..... --~ 

INP305 n0.... INP310 F3°· o •• .. •. o· •. o. .0 YES YES o. •. 
• 0 .~LD RECORD ••• ·---1 r---.o. ~T REeOR? •• <------------------------------------------

•• •• '6' 9- •• •• •. .• •••• ••.. •. o· .HO . • ...NO 
I • F3 • • 82 ••••• 1 . . . . . 

•••• • •••• G3 • • ._> 
V •••• 

INP320 •• 0 IMPll0 •• 0 ••• 

Gl •• G3 .0 G~ •• .. .. ...0 .. IS ESO •• 
•• SCATTER •• YES •• IS RETURN •• YES o. WRITE .0 NO 

•• RECORD 0.---------------------------------->.. FROM FSD 0.--------> •. INDICATOR ON •• ---~ 
•• • • •• PROCESSOR. • .0 .• •. o. .0 o. •..• .. .. .. .. .. .. . ... r :::~: =--1 r:(:::: rs 

: .::': 
INP330 •• 0 INP282 V CAH2 ••• 

81 *0 ••••• H2.......... H~ •• .• 0. .0 .. NO :~~~~~~~_._~:~~: • ····8] .. •••• .. • • 0 .0. IS TEST·o.o NO .0 lOR 0.----- • .-------->. HEWFMINP. .0 INDICATOR ON •• ---~ .0 . ...- • END PROCESSOR •• • .0 .• • 0.. • • •••.••••••••••• .0 .• ·0 .. ••••••.•...•.•... .. .. • ••. rs I YES rs 
:.::': 

••••• Jl.......... J2° ·.0 INP!!! •• J3.......... J4°·0•. • •••• Js •••••••••• · . . . .. . . . ..0 . HEWLFSYM COA2. 
:M6gR~D~. ~~H: __ ).:. LAST RECORD·:. :SET SY~I¥ECEIVE:< _____ ~~_.: .f.gJ,N~g6u~E·: .!:~ _____ >:-.-._.- ._.-.-.-. · • •. ... ••. o. • SYM PURGE · . .0.. ... o. . ••••••••••••••••• •. .• •••••••••••••.••• ·0 .• • •••••••••••••••• 

..... J........ .. .... T...... .. .... ,.1,....... · :::::Lj 
• HEWLFLOG CMA2. • HEWLFSYM GCA.2. .HEWLFSYM CDAl. .. •• K~ ••••••••• . _.- .-.-.-.-.-._. .-.-.-.-. -. -. -. _. .-. _.-.-.-.-.-.-. .. 
• PROCESS 10K • • UNRECONI ZABLE ••• • RETURN • 
• DATA. .INPUT-NOT LOAD • • SAVE ESD CARD" •• 
• •• MODULE··· ••••••••••••••• ................. ................. . ............... . 

l . ... l .... l ... . ->. • ->. • -). • 
: KS : : G3 : : J(S : .... . ... 

TO INPUT 
PROCESSOR 

Program Organization 103 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
lY26-3921-0 

CHART CD. SVM PROCESSOR (HEWIFSVM) 

.. ROM LOAD OR 
OBJECT MODULE 
PROCESSOR ····A2····· .... · . • HEWLP'SYM • 

• 0 ............... 
1 

SYMOOI00 ••• 
92 e. o· •. 

NO •• to 

l
-----------------O.?~ECT IIODU~~.' 

to •• 
eo .* rs 

SYMO0200 • o. SYM00900 ..... Cl.......... C2 to ••••• C] •••••••••• 
• • •• eo • • 
-INITIALIZE FOR • •• IS R1.O eo NO • MOVE 8YM/ESD • 
-WRIT! 'ROM RlD • to BUPPER TO BE •• -------->. RECORD TO RLD • 
• BUrFER. e. PURGED • • • BUFFER • • • e... . • ................. 'T:' .... · .. 1 .... · .. 

104 

••••• 02.... •••••• • •••• 03 •••••••••• · .. . • INITI~LIZE FOR.. • 
-WRITE FROM OBJ • -INCREMENT COUNT-
• MODULE BUFFER •• • · .. . ................. . ............... . 

--------------~~~~~;~~--> 1 
···E2··········· . . 

WRITE AIID CHECX 
o • 

~:::: .. ·l::::::---------------
····P2········· · . • RETURN • · . ............... 
TO LOAD OR 
OBJECT MODULE 
PROCESSOR 

MVS/370 linkage Editor logic 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1912,1983 
LY26-3921-0 

CHART CEo ESD PROCESSOR (NEWLFESD) (PART 1 OF 3) 

PROM INPUT 
PROCESSOR 

····A.l········· · . • HEWLf'ESD • · . ............... 
j 

:i;i;!i~~;;.;:~~: : ••.• 83 ••••••••• : 

• ISOID NO. OF • • SET SEGMENT • 
:E~epiTl:2BbREgi : : NUMBER TO ONE :-----
• CESO' A.1tD RNT • •• ................. . ............... . 
• *-> 
: *;:*: 1 '1 
•••• YES ES01B 

ESDIAO Cl' eo eo ••••• e2....... ... C3' • *0 ESDlA C4' *0 ••••• CS •••••••••• 
• -IS ESO eo -INSERT CURRENT. •• IS *0 •• to • • 

• .TYPE PSEUDO*. NO -SEGMENT NUMBER. •• AtJTOMATIC eo NO •• IS ESO TYPE •• YES .ZERO BYTES 10 • 
to ~~GlSTER C P~!. *-------->:IN ESO l~fN BrrE:--------> •• ~¥:M~A~rut~ •• *-------->*. eo IR OR WX •• ' .-------->: 11ks:'YTi~ ot : 

eo • • • • *0 ON •• to.. • • 

.. C: --------------~::::~~::~~:~::::---------------:~:~~---------------------):~----------- ...... ··i····· .. . 
ES02 • *0 • *. 01 *0 ••••• D2.......... 05 ., 

• - ANY., .HEWLrRCG. •• • • 
• _ REPLACE/ ., YES .-.-._._.-.-.-.-. NO ,.IS THIS AN ., 

•• CHANGE • _________ >. SCAN • <--•• OBJ£CT MODULE,. 
-. SYMBOLS ,. .REPLACE/CHANGE - •• .-

•• • • - CHAIN • •• •• .. .. ................. ., .. 
·NO 1 ·YES 

ES03 J----------------~~~~~--- 1 El .. . .... E2.......... • ••.• E5 ..•. · ....• 
•• ., ·NXTLINE • • • 

• .IS ESO TYPE •• YES ._.-._._.-.-._._. • ZERO THE • 
• , PNIvATE CODE, .-------->.SET POINTER TO .---~ ---. SUBTYPE FIELD • 

•• (Pc. •• • NEXT LINE OF • • • 
•• ,. • CESO • • • .. .. ...................... . ............... . 

• NO .02 • 

1 :30:. • • C~. 
: F2 •• --1 .... 

••• ES029 ,.. E8043 

•• Fl .'.. :~~~~~; ••••••• : •• FJ ••• , :·~~:ll·~~~~~~··: :::~eB~:·······: 
• .15 ESO TYPE •• YES .-._.-._.-.-.-._. •• IS COMMON •• YES • INDICATOR. ._._._._._.-.-.-. 

•• NULL ,.-------->.TRANSLATE ESOIO.-------->., I rID I CATOR ON ,.-------->. PREPARE FOR .-------->.BUIW ENTRY FOR. 
•• •• • TO CESOID IN • ., •• • DELINKING. • CESD LINE IN • 

•• •• .RENUMBERING TBL. •••• • •• OELINJ{ TBL • .. .. ................. .. .. ................. . ............... . 
1. NO ~ °i; :-->1· :~ _________________________________________________ 1 .... 

••• ESDJO , •• ESo30AO 
Gl ., ••••• G2.......... G3 •• • •••• Gl4 •••••••••• 

• • IS ESD •• .CHANGE TYPE TO • • ••• • • 

• : ·6i~iN~¥~~ .: .!~~----->:Tf;~t f~D~~~T~N : .:. ~~U~O~~D .: .~:: _____ > :G~Ti~~i~ ~~g : 
•• ( LD) • • • LO. •• ITEMS • • • TYPE • .. . . . . ... . . . .. .. ... .............. .. .. . ............... . 

~:~~: ._> i:~-----------------------l l' NO l_>(~~: : 
ESOl4 V 

•• •• ·Hl· ••••••••• 
•• •••• H3··· •••••• 
• SEARCH THE CESO. • • 
• FOK A MATCHING • RETURN • 
• SYMBOL • •• .. .............. . ................. .... I 
~:~:: .-, V <--------------------- ---1"0 

ESDI) ••• ESD6 •• 
Jl •• J 2 •• .. .. .... 

,.15 THIS THE., NO ,. DOES ESO •• 
•• END OF THE ,.--------> •. MATCH CESD •• 

•• CESD •• •• SYMBOL •• ... ... . .. .. .. . . 
• YE~... .YE~ ••• 
L'.02 • L>.02 • 

: AI.. : Al4 •• .... . ... 
NON-RESOLUTION RESOLUTION 
PROCESSING PROCESSING 

Program Organization 105 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CE, ESP PROCESSOR (NEWLFESP) (PART 2 OF 3) 

.. ... 
'02 • 
• A1' , , , 

ESo2) ! ·····Al·········· 'FREELINE • • _._ ._t_._ ._._._. 
• SE~CT NEXT • 
*AVAlLABLE LINE • 
• IN elso • 

iii:::::1 .... ····· :~i;' '--1 · . . . .... . ... 
ES023A .'. 

B1 '. • •••• S2 •••••••••• 
.. tIS ESO t. -LABEL • • tTYPE lABEL '. YES ._._t_._._._t_ .... 

to REFERENCE ".-------->. RENUMBER IO .---~ 
'. (LIU .' -FIELD OF LABEL' 

'.. ..' • ITEM • 
to .. ' •••••••••••••••••••••• 

'HO '01 • 

1 :02'. • .F~' 
• c2 '--l • . . .... 

0'" ES02l" t. 
el to C2 to ••••• C3 •••••••••• 

,,' to .. ' IS to • • 
"tIS ESO TYPE-. YES ,,' AUTOMATIC to YES 'INDICATE SO IS • 

t.A SECTION DEP'. t ________ > •• LIBRARY cALL ".-------->tI'ROM A LIBRARY' 
to «so, .. ' '. INDICATOR.' • (AlJ'I'OLIB INPUT.' 

to .. ' to ON ,,' • • 
to .. ' to .. ' ••••••••••••••••• 

• \00 'NO j 
1 1<------------------------• •• ES022 

01 •• • •••• 02 •••••••••• 
•••• • INDICATE TKAT • 

• • IS ESD TYPE •• NO .ESD IS SD OR pc. 
•• COIiMON (CM ••• ---~ .- SET ESt) WRITE. 

•• • • • INDICATOR IN • 
•••• • APT • 

··l·Yis : .;:. : ········1········· .... 
ESD42 ••• • •• ..... £1.......... E2 .. E3 .. 
• MRX COMMON • • • •• • • 15 •• 
• ITEM AS A. NO. • IS SO •• YES •• LENGTH 10 •• YES 
·DELETE ITEM AND· J----- .. LENGTH ZERO •• -------->.. SAVED •• ---! • SET COMMON. •• •• •• INDICA'tt)R •• 
• INDICATOR • •••• •• 011 •• 

;~i:: "'1'::::::::--- · ..... ,.,.' ··l·~ : .;:.: 
• F1 .-> • F2 • • ••• :.... . ..... --~ . ' . ....... 1.......... F2 •• • •••• F) •••••••••• 
• ENTER • •••• .SAVE N TH • 
• -.-.-.-.-.-.-.-. NO.. LD.. • LINE • r-->. ENTER ITEM ·(--------·.INDICATOR ON •• • AND • 
: IN C!!SD: •••••••• :SAVE¥N TOR: .................... ... .. . ............... . ,. l ·YES l 

: F1 : ->:01· • L>:oi·. _> •••••• 
•••• • F2 • • Gl • • F1 • . . . . . . .... .... . ... 

106 MVS/370 Linkage Editor Logic 

..... 
·02 • • .A: • , 

ES06A ! ·····A"·········· , . 
• SAVE TYP£ OF • 
• MATCHING CESD • 
• ENTRY • · . . ............... . 

1 ·····8"·········· • IOCESO • .- ._.-._._.-.-.-. 
.OETERMINE LIME. 
.NO. OF CURRENT • 
• CBSO LIRE • . ............... . 

1 .' . c" •• .. .. 
• • IS CESO •• YES 

•• TYPE NULL •• ---l .. .. .. .. .. .. . .... 
.1'10 .01 • 

1 '. J,l· :0;· • 
• III • 

r~· ... 
0 .. ••••• DS· ••• .... ... . 

• • 15 ESO TYPE •• NO •• IS CISO •• 
•• PR •• -------->.. TYPE PR •• .. .. .. .. .. .. ... . .. .. . .. . 

I·YES L::~i· . 
• .11 • , . 

.' . ESD9 E" •• .- .. •• IS eESD •• NO 
•• TYPE PR •• ---~ .. .. ... .. .. .. . .... 

.YES .01 • 1 '<~. 
. ' . F" •• .. . . 

NO •• ISESO •• 
--- -. LENGTH • -•• GREATER •• .. .. . ... rs 

·····G,,·········· · . • SET CESO LENGTH. 
• EQUAL TO ESD • 
• LENGTH • · . ................. 

:~::-----> 1 
·····H"·········· • SET cno • 
• ALIGNMENT EQUAL. 
• TO HIGHEST or • 
• CESD AND ESD • · . ................. 

l .... 
->·01 • 

• 1'2 • • • .... 



This documant contains rastricted matarials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CEo ESP PROCESSOR (NEWLFESP) (PART 3 OF 3) 

.... . . . 
I • ALi • 

V ••••• *--v ,.. ,.. '.0 ,.0 EGOl2A ,., 
Al *0 A2 •• ESD6C A] ., A4 •• A5 *, 

o *IS ESO •• ••• • • IS eESO.. •••• • • • • 
•• TYPE \olEAR *. YES •• IS eESO •• NO •• TYPE A *. YES •• rs ESO TYPE-. NO •• IS ER *, YES 

•• EXTERNAL ,.-------->., TYPE WX •• --------:>*.C0N'fROL CARD '.--'} •••• DREELpELATCE~ •••• --------> •••. UNMA(ESRROE,'O •• ' ._--j 
., REFERENCE. • •• •• •• • • .. 

.,(WXI ,* .0 ,. *, ,. •• ,. •• ,. v 
•• •• •. .• •. .• ••••• •. .• *. .• • ••• 

*1'10 *ns *rw .01 .. .YES .NO • .. 

I L>:;i.:*. I .. :;. 11 . :*::*: 1 :.~!.: 
.. .. .. .._> 

V •••• 0.0 V" ESD17A •• o 

ESD6~ .Bl .. *0 : •••• 82 ••••••••• : : •••• B3 ••••••••• : .1'14 .'., • • ~i; CE;b* • 

• " IS CESD .0 YES CHANGE CESD .. ·CHANGE ESO TYPE. •• IS ClSO '0 NO o' TYPE A '0 NO '0 TYP!:: WX 0 .-------->. TYPE TO ER' t TO ER' to TYPE DELETE/ 0·---1 .0.0 ~=Y' 0.' '---1, 
•••• ...: :: ••• ~EPLAC~... v ••. • v 

.. I:~ ----- --------- -~~~~ ~~~ ~1~~~~~~~~ _________ ~~~~~~~~j"""" . ·1.Y~S : .::. : . '1'Y~5 :~~;: 
. '. ES07 c:1 •. • •••• c2 •••• •• ••• • cit •. • •••• cs •••••••••• 

• .. \5 CESD··.. YES : P~¥~T~~S~O : •• ' • IS CESO··.. NO :!i;~:~~_._._._: 
'.T.Y.PE CHAINED ••• --------> ••• 'CHAL,N,NEOE TO' ·.---1 •. TYPE DELETE. ·---1 'REMOVE LIBRARY '---1 '. . • v • MEMBER FHOM· V 

•.•. .•.• • ••••••••••••••. : .•• ~. t... . •.• •••• : ••••• ~~~!~ ••••• : ••••• 
• NO '02 • 'YES • • '02 • 

1 '.A.:' 1 : H3: • ••••• • .Ell· 
•••• • D~ • • • ._-! .... . .. ... .' . 

• • 01 •••• ..02 •••• : .... D3 ••••••••• : •• Oq •••• :.~t~.;~:;;;~.: 
... IS CESD •• NO •• IS ESD TYPE •• YES t SET MATCH t • tIS ESD TYPE •• YES • DELETE BIT IN • 

•• TYPE ER •• -------->.. LR •• -------->. INDIC.('J'(IR .:. ---} •• DELETE •• ---! 'CESO LINE (MAKE;' 
•• • • '. ••• ••• • • IT A. REPLACE' a. .. .. ... .. .. .. . . ·0 o. .. .. . t... .............. ... .0 .• ••••• • ••.•••••••.••••• 

V(S vro :~~;: l~~: '::. (:l: 1 .... 
ESOl2 E1···.. ESD14 E2···.. ESDlS E3···.. Eq···.. ES··· •• 

• 'IS CESO.. 0... ...0 ..•. . 'IS CESO •• 
• .ITEM FOR A .0 YES •• IS ESO TYPE •• NO .'15 ESD TYPE'. YES •• IS CESO •• YES •• UNMARKED OR'. YES 

'o~?:~OL e~:~"'---t ...... SO •••••• --------> •.•.•. CM •••••• --------> •.•.• ~YPE p~ ••••• ---t •.• ~:~R CA~~ •••• ---! 
.. .. •.••• .. o. '.. o. '0 .' ••••• '. .' ••••• r :~~~: rs l~~~;::yS ER) r :~:l: 1 .. 0 :~:~: 
.•. 0.0 ESD15 ,'. • •• 

F1 '0 F2 •• F3 '. F4 '0 ••••• F5 •••••••••• 
•• '. ." 0 •••• • '.. • • 

• 'IS ESD TYPE', NO o. IS CESO •• NO •• IS CESD .0 NO .' IS CESO .0 YES .HARK eESD TYPE' 
•• CM. SO. OR LR •• ---~ .0 TYPE eM • ·-------->·0 TYPE LR •• --- '0 "rYPE LR •• ---l • MATCHED • 

'. .' '. .' '. .' •• .' (TYPE· • 
•• • • •••• ••• • •••• IS CO" • . 0 .' .••. .0 .' . ~ .' '. .' .••• • ,. •••••••••••••.• 

l·YES : A4 : l·YES • ••••• l' YES IONO : G3 : l .... 
• •••• • • G3 • •••• ->:O~2' • 

• .-> • • 
.'0 •••• COMMON ESD11 

G1 •• • •••• G2.......... • •••• G3.......... • •••• G" •••••••••• 
•••• 'SET cESn LENGTH' 'DBLDEF • • UPOATE LENGTH' 

.:·TY~~ 5~~~TE·:.~~-~ :GRJ:~:LO}:°CESD: :-~O~B~·~~i:-: : O~oC~~~¥~~RY: '0 .' • AND ESO ITEMS • • DEFINITION. • LENGTH • 
'. •• • •• ERROR" • '. .. .... .... ......... .... ..... ......... ... . ............... . 

: '::': '1 YES : .:~.: 1 : .::': 1<----·------ 1 • ._> • ._> 
•••• VCE,sDDLNK .'. ESDI ;: •• 

:~~:.t~M.~·······: .. H2 .0.. :;~~~M·········: :~~~t~~;.~·······: 
.-.-._._.-.-.-._. NO. 'IS OVERLAY.. .-.-.-._'_'_010_'-' ._._._ ..... _._._._. 
• DELINK CESD' J---" INDICATOR ON .' ~---. CREATE A LINE .<--------. FIt«> COMMON • 
• LINE. '. IN APT .' 'CHAINED TO LINE' • PATH SEGMENT • • • '. o· 'FOR MATCHNG SYM" • .. .......... ..... ..... .. .. . ........ "........ ..... . ............... . 

L>~:~~:. :~~l: rs :~:l: 1 YES 

••••• J2.......... ESD16 J3' ' •• 
• HEWLCPTH' 0.. . . -.-.-.-.-.-.-.-* .. IS .£SO TYPE'. 
• FIND COKMON' 1-->" DELETE .' 
• PA.TH SEGMENT • '. o' • • •. o' 
••••••••••••••••• ••• • 0 . ' l .. 'NO 

_>:~;'. : J3 : L>:;~'. 
: B1.. •••• : F2." .... . ... 

Program Organization 107 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
lY26-3921-0 

CHART CE. TXT AND RLD PROCESSOR (HEWLERAT) 

FROM OBJECT 
OR LOAD MODULE 
PROCESSOR 

· .... B3····· ..... 
• HEWLFRAT • · . .... .... ... .... 

1 .' . ECPRG 
c3 to ••••• Cl.l •••••••••• o. •. . kLDBUF CKA 1. o. *0 YES *-*-*-*-*-*-*-*-* *0 END OF DATA. *-------->* WRITE OUT RLD • 

•• •• • BUFFER • .. . . . . -r · .... ··T .. · .. ·· 
03 *0 ••••• 04 •••••••••• 

• • i~pu'l' COU~T •• YES :~~~~~_._._~~~~: ••••• 05 •••••••••• 

*0 = 0 •• ---1 • WRITE OUT 'TXT *-------->* RETUltN • •• • • v • BUFFER • 1\. • 

to to •• 0. .... : ...•..•.•••..•• : 1 ••• ••••••••••••••• 
·NO • • • • 

1 . D~ • • 05 • . . . . .... 
. '. 

E3 *. o. *0 r---------",.: : ~:': . ~ . ~:. : : · "'--------------I 
• *0 ••• 

RATIN F2 *0 ••••• F).......... F4 *. o. *0 • HEWLFLOG GCA2* •• *. 
o .INPUT SIZE *0 YES *-*-*-*-*-*-*-*-* YES •• INPUT SIZE -. 

*0 EXCEEDS RLD • *-------->. INPUT RECORD .<--------•. EXCEEDS TXT •• 
•• BUFFER • • • TOO LARGE • •• BUFFER •• 

t. •• • • ••.• .. .. ................. . .. . r r ..... G2.......... . .... G4 ......... . 
• RLDOOl CJA.l. • HEWLFTXT CGA2 • . _._._.-.-.-.-.-. .-._.-.-.-.-._._. 
• PROCESS RLD • • PROCESS TXT • 
• RECORDS • RECORDS • .. . .... ............. . ............... .. 

.. ··H3··· ..... . · . ---------------->. RETURN .<----------------· . .... .... ...... . 

108 MVS/370 linkage Editor logic 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CG, TXT PROCESSOR (HEWLFTXT) 

. *. . •. 
A3 eo Aq •• • •••• AS •••••••••• 

•••• A2......... •• eo • • eo *TXTBUF eHA)-
• • •• eo YES .* ONE PASS eo NO *-.-.-.-*-*_._._. 
• HEWLFTXT *--------> •• END OF DATA •• -------->.0 PROCESSING • *-------->. WRITE OUT TXT. 
• • eo •• eo •• • BUFFER • 

eo •• eo.. • • 
eo .N~ eo .y~S •••••••• j ........ . 
1 : .:;. : 

• *-> .... 
TXTLM • *0 • e. 

a2 •• 83 e. 
o. ALL eo •• to •••• SS ••••••••• 

YES •• ID-LENGTH *0 YES •• eo •• 

t--- •. L1ST ITEMS TO. *<--------*. LON) MODULE 0* ---------------->* RETURN • 
eo BE OELET-.. •• •• •• 

eo EO •• *0.. • •••••••••••••• 
• ••• eo •• •• •• 1\ 

: 85 : l' NO l'NO .... 
TXTREAD ···C1··········· o eo TXT0011 ••• 

e2 eo C3 to ••••• C ........... . 
•• WILL eo •• eo .HEWLFLOG GCA2* 

• YES •• RECORD FIT eo 0* IS TXT 10 •• NO .-.-.-.-.-.-._.-. 
READ RECORD <--------•. IN AVAILABLE.. •• AN se OR PC •• --------). INVALID 10 ON .-----------------

1\ •• BUFFER • • •• • • • TXT CARD • .. .. .... . . ................ .. .. .. .. . ............... . 
1 r rs 

·····01··· ••••••• ..... 02.......... . .... 03 ......... . 
.TXTBUF CHA3.. • ._._._. _. -. -. -. _.. . :u~g~¥~¥~l'I~}o : 

--).TABLE ANO TEXT • -----.WRITE OUT TEXT. • RENUMBER 10 • 
• NOTE LIST • • BUFFER·· • , , · .. . ................. 

1 
TXTLM2 . '. E1 •• • •••• E2 ••• ~ •••••• 

•• •• .MQVE FOLLoWING • 
•• 10 TO BE •• YES • 10· S UP TO • 

•• DELETED •• --------).OVERLAY DELETED. 
•• •• • 10 • .... . . 

'·l:~---------------~~~~~~]'·""" 
. '. F1 •• . . .. 

Y~ •• •• NO 
--- •• ANY MORE ID'S •• ---~ .. .. .. .. .. .. . ... , ., 

• 85 • · . 

................. 
1 . ' . E3 •• 

1100------- ----------------L 
Ell· ••• • •••• E5 •••••••••• .. . . •• •• .TXTBUF eRA3. 

•• •• ''YES •• NEW ENTRY.. YES .-.-.-.-.-.-.-.-. 
•• DELETE •• ---! .. .. .. .. •• CONTIGUOUS •• ----- .WRITE OUT TEXT • 

•• •• • BUFna. • .. .. . . .. .. . ... 
1. NO : 85 : 

TXT00151 
·····F3·········· 

·:c ....... 1' ...... 
,.11 •• • ...... 5 •••••••••• 

• CALCULATE • .... . . 
• MULTI PLICITY • •• PREVIOUS •• NO • ENTER." • 
• AND • ----> •. RECORD DENSE •• -------->. RECORD • 
• 01 SPLACEMENT • , , .. .. . . .. .. . . ................. .. .. . ............... . 

TXTINT 
1 

• L •••• 
>. • 

••• TXT0038 ••• 
G3 •• G" •• 

• ·CURRENT·. ••• • 

• B5 • , , 
•••• 

• • 10 AND MOLT.. YES • • NEW.. YES 
•• AGREE WITH •• _-- -->·.MULTIPLlCITY •• ---L 

•• PREVIOUS.· •• •• .. .. .... 
TXT003 

.. .. .. .. . ... 
l'NO l'NO =.::.: :':;': 

r->· • .... 
••• TXTOL02 ••• 

H3 •• H" •• • •••• H5 ••••••••• 
•••• ··NOWIN·· • • 

.::. NEW 10 • ::.~~___ .::. ~~~~ ::.!~~ _____ ): EHTln .. JLTXT : .. .. .... . . .. .. .. .. . ............... . 
TXT NEW 

JES r A 
J3 •• ..J" ••••••• .... . . 

• • LENGTH •• YES • SET DENSE • 
•• SPECIFIED IN •• ----- • INDICATOR • 

•• CESD •• • • .. .. . . .. .. . ......... . 
V
'
INO :'::': 1 • ._> ..... 

BUFALLOC .. !(3....... . ..•. !(4.......... • •..• 11:5 •........ . . . .. . 
.SET NO LENGTH. • ALLOCATE NEW • • RECORD IN TXT. 

•• INDICATOR •• -------->: MULTIPLICITY :-------->:~~ ~~L~fi : . . . .. . ........... ................. . ............... . 

Program Organization 109 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
lY26-3921-0 

CHART CH. TXT WRITE ROUTINE (ON SYSUT1l (TXTBUFl 

•••• A,j* •••••••• · . TXTBUF : ............... 
1 ... 

B3 '. • •••• 84.... •• •••• • •••• B 5* ••••••••• 
• ' f. • CLEAN UP" • 

0* '. YES • NECESSARY' 'POST LENGTH IF • 
'. END OF DATA. , ________ .>*PORTION OF TEXT*--------)* IN NO-LENGTH 

'. .' • BUFFER' • SITUATION 

'. ' ... '~' : ............... : : ............... . 
)~ j 

• ";XT INPU;- f. YES ••••• CS •••••••••• 
*0 COUNT = 0 • *----------------------------------.>* RETURN • *. .' •• *0 • • • •••••••••••••• 

t •• ' • r 
TXTBUFl .'. 

D3 *. o. f. 
• • OVERlAY to YES 

'0 SPECIFIED • *-----'. .' 
to .' 

'0 .' r 
• to TXTENTl 

E3 f. • •• E" ••••••••••• ····ES········· .. . .' '0 WRITE ONE 
• 'MULT LARGER'. YES • RECORD PER 

'. THAN SYSlJTl • *--------> TXT 1/0 TABLE '0 . • • ENTRY • .. . . •. 4· 
: .;:.: l·NO 
• ._> .... 
·····F3·········· · . • RECORD CURRENT • 
• LENGTH AND • 
• BUFFER ADDRESS • · . ... ...... ....... . 

1 ·····G3·········· · . • I NCREMENT TO • __________________________________________ >. NEXT TXT I/O • 

• TABLE ENTRY • · . ........... ..... . 
1 

-------->. Rh'TJJRN • , . . ............... 

• to TXTBEHD •• 0 
••••• H1. •••• •••• H2 .0 H3 ·0 
• P.OD PRESENT • 0..0 . . ·0 ••• HLi •••• • •••••• 

., LENGTH TO. YES o. THIS MULT •• NO •• ALL TXT I/O •• YES • WRITE AHY 
• P..CCUMULATED .<--------•. ONE LARGER •• <--------.0 TABLE ENTRIES •• --------> p..cCUMULATED 
• LENGTH. .0 THAN LAST.. •• WRITTEN o. . LENGTH • • •. o· ...• ..... ...... ...... .. .. .. .. r . 

110 

· .. 
J2 •• .. ·J3····· ..... . .. .. 

o • PRESENT •• NO WRI TE .0 MULT = 0 0.--------> ACCUMULATED .0 o. 1\. LENGTH •. o· .. .. cs 

· .. 
K2 •• o· .. 

YES •• LAST ENTRY .0 NO -----------------.0 HIGHEST MULT 0.-----·0 .• ·0 .• ... 0. 

................ 
1 ·····1(3·········· · . • Il«:REMENT TO • 

• NEXT ENTRY .---~ · . · . . ................... . · . 
• F3 • · . ... . 

MVS/370 linkage Editor logic 

J 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
lY26-3921-0 

CHART CJ. RLP PROCESSOR (RLP001) (PART 1 OF 2) 

· '. A2 *0 ••••• "3 •••••••••• 
••• • Al......... • • •• • RLDBUP CKAlt •••• Aft ••••••••• 

• • •• to YES *_*_*_*_t_t_*_*_.. • 
• IlLDOOl t ________ )*. FROM EOD • *-------->* WRITE otn RLD .--------)* RETURN • 
• • to •• • BUFFER.. • ••••••••••••••• to.· • • 

to •• 

:~i; . -->1.00 · . .... 
·····82·········· · . • SET COUNTERS • 
• FOR NEXT R AND • 
• P POINTERS • · . ................. 

1 · '. 

. ............... . 

C2 to ••••• C) •••••••••• 
•• to • • 

• tIS P DELETE •• YES -SET DELETE FLAG. 
to IN RNT • *-------->* AND SKIP RLO • 

to •• • ITEM • 
t o .* • • 

to •• • •••••••••••••••• r 
RLDOO) ••• ..... 01.......... D2 to 

*RLDBUI' ettAl. •• to 
*_t_*_t_t_t_t_t_* NO •• P SAME AS to • MAltE BUrrlR *< ________ t. PR!VIOUS P • t< _______________ _ 
• EM'l'Ity. to •• 
• • to.· ................. . ... 

'YES 

RLDOO"A 1 ·····E2·········. · . • RENUMBER R AND • ---------------->. P POINTERS • · . · . ········1 .... · .. · 
· ' . ..... n.......... F2 •• 

• HhLCOLl{· ••• • 
• -.-.-.-.-._.-.-. YES •• • • • <--------.. DELINJ( •• 

DELI.· •• •• · . ... . ....... T~~~~::~ _____________ ~~ t 

............... 

••• RLD010 ••• 
G2 •• G" •• • •••• GS •••••••••• .. .. ..... . __ >.: .Rtg ~f·: .~ ________________________________ >.:. U IN·: .!~~ _____ >:ftAG ~.AS PR : 

•• TYPE •• •• •• • • .. .. ..... . .. .. .. .. . ............... . rs r 
B2···.. B.··· •. 

•• •• •• IS A •• 
• • •• 110 YES •• EXTEJUIP.L •• •• OVERLAY •• ----- -----t.REP1:Raca 1M •• < _______________ _ 
t. •• •• RNT •• .. .. .. .. .. .. . ... 

R~~ rs r .... ·J2····...... . .... Jl.......... . .... J" •••••••••• 
• • .MULTDft •• • 
• 8ft ENTRY IN • .-.-.-.-.-.-.-._. • FLAG ALD FOR • 
• CALLS LIST .-------->. ESTABLISH .(--------. RBLATIVE • 
• •• MULTIPLICITY • • UL():A.TIOII • · .. .. . ................. ········r· .. ··.. . ............... . 

RLD0122 .' • ..... X2.......... Xl .. · . ... . 
• UPOATS COUNTERS. YES •• IS IUD •• 110 

--_. PO. IIDT FA ·(--------·.COM1"llftJATlotI •• ---l 
• FIEID. .."LAG SET •• · . .... ................. .. .. . .... 

• ·02 • 
• ale .. . 

Program Organization 111 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CJ. RLD PROCESSOR (RLD001) (PART 2 OF 2) 

.... 
*02 • 
• 83 ._-t ' , .... 

RLDOt:~ ••• 
83 •• o· ... .• .0 YES 

eo DELETE •• ---
eo ... .. .. ·0 .• 

'NO 

I --------------~~~~~~----~ 1 . 
••••• e2. •••••••• C3 •• 
*RLDBUF CKA1* •• *0 *_.-._._._*_._._* NO .-SUFFICIENT.o 
• WRITE OUT RLD .<--------*. SPACE IN •• 
.. BUFFER. •• BUFFER •• · . ·0.· ••••••••••••••••• ·0 .• rs 

. ' . ••••• 02... ••••••• 03 •• 
• • •• eo 
• .. YES •• 10 SAME AS •• 
• COMPRESS *(--------•• PREVIOUS 10' S •• · . .. ." 
• • eo.· ....... .......... .. .. 

112 

r ·····E3·········· , , 
-MOVE RLO ITEMS .. 

---------------->* TO BUFFER • • , ................. 
1 

RLD0152 '.0 
F3 e. o· -. NO ." ALL ITEMS eo 

L---*. PROCESZED • *<--.. ." .. . . 
••••• eo •• 

:::1: r 
• •••• G) •••••••••• 

• RETURN • , , ............... 

MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART Cl, RLD WRITE ROUTINE (RLDBUF) 

A2" eo A3· r~~-------------------::~:~:~----------------------l 

•• ~ .Al......... ..... . . e. ...... • ••• AS ........ . 
• ••••• NO •• -.YES •• -.NO. • 
• RLDBur .--------) •• ANY NEW RLeS •• --------).. EOD ... --------) •• AHY RLDS LEFT •• -------->* RETURN • 
• • e. •• eo •• e. ... • • ••••••••••••••• eo... eo... eo... • •••••••••••••• 

eo ... eo ... eo •• 

rES . 'YES 

RLOBUFl .. e. 
B2 e. o. e. 

o. eo NO 

., • ~AD MODUL~., .------~----------l eo ... 
eo ... . 

rES < _______________________ _ 

.. eo .. eo RLOBUF3 • eo .. _ • 
••••• Cl.......... c2 eo C3 eo Cit eo C5 eo 

:~~_._~~::: yES ..... • OVER eo eo NO ..... BUFFER eo eo NO •• 0 :OTE LIS;· eo NO ... 0. eo eo NO • .<--------•. MAXIMUM SIZE •• -------->.. OVERFLOW •• --------).. FULL •• -------->.. EOD ... _--
• ERROR ROUTINE • .~ ... e. o. •. o. .0 .. • . ·0 o. .0.. .0.. .0 .. ........ j......... . ...... 0... ··l·~S 't:: ..... ·'l·Y;S 

• 02 • • 02 • • ·--l • • .... . ... 
RLDBUFq A 0 .0 RLDBUF2A ••• 

••••• 02.......... 03 •• 05 .0 ····01········· . . ...0 o. .0 • •• SET TWO PASS. YES o. 2 BUFFERS •• YES •• •• 
• RETURN. FLAG .<--------.. FULL •• (----------------------------------.. TWO PASS •• •• ..0 o. •. o. •••..•••.•.•••• .•. .• ·0 .• · .. · .... c·....·r ".~ 

••••• E2.... •••••• E3 .0 · . ...0 .... Eq ••••••••• 
• FORMAT NOTE. YES ... ... NO. • 
• LIST ENTRIES .(--------.. EOO •• -------->. RETURN • • • ·0 .. • • • • •. o· ••••••••••••••• •••••....•••••..• ·0 .. 

1 . 
RLDBUF6 •• oo 

•• F2 .0.. : .... Fq ••••••••• : : •••• ,.s, ••••••••• : 

... ANY BUFFER .0 NO .MAKE NOTE LIST • • SET IN-CORE • 
•• WRITTEN 0.---------------------------------->. ENTRY .(--------. DATA .(--·0 .• 1\ • •• • ·0 .• •••• ·'.it;s • ...... ·1........ . ............... . 

1 RLDBUF1 ,', ..••• G2...... •.•• Gq .0 ···Gs,··········· 
·COMCHJ( • ... • • • -.-.-.-.-.-.-.-. 0... YES 

[
--------------->:C8!CK/WR~1 LAST:------------------------------- ••• 0 LIST FULL •• 0·--------> WRITE LIST .. .. .. ••..••...•.•••••• •. o· •..•••••.••••••• 

~ r Hi· ·.0 ••• 82........... H3···.. RLDBUF1AHq·•· •. o. .. .•...• .0 . . .0. NO •• 2 BUFFERS .0 YES ... 2 BurFERS •• 
• 0 BOO ... <-------- WRITE BUFFER <--------.. WRITTEN •• <--------.0 FULL •• <----------------·0 0.. •. o. .0 .• to o. to..... o. ·0 .• •..••••.•••....• .0 o. .0 o • . ~ r' OO 

····J3········· . . -------------------------.. --------------->. RE'I'URN .<----------------. . ............... 

Program Organization 113 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CL. END PROCESSOR (HEULFEND) 

.... Al········· · . • HEWU'END • · . ...... .... ..... 
I ... ··B1······ .... 

• INITIALIZE • 
• RENUMBERl NG • 
-TABLE AND CESD • 
-BA-SE REGISTERS· · . ....... ......... . 

1 .'. 
ct *. 

o .IS THE -. 
YES • -ENTRY POINT •• 
---eo ~IT ON IN APr •• 

*0 •• .. .. r 
, " 

01 *. 
o • •• 

NO •• IS ENTRY •• 
<-- *0 TYPE ABsoLUTE.· .. .. .. .. 

*0 •• 
'YES 

ENDa) 1 .... ·El····· ..... • RENUMBER THE 10. 
• FIELD FOR • 
• "SSO[AJTE • 
• ADDRESS • · . ....... ..... ..... 

1 ... ··Fl····· ..... · . *St;T ENTRY POINT. 
: Bir ON IN APT : · . ................. 

----------> 1 
ENOl ••• 

Gl *. o· *. o. IS NO *0 NO 
··~~nHA~T ~~. *---1 

*0 •• v 
*0 0* •••• 

rs 

, '. 

· . • A3 • · . .... 
H1 eo ••••• a2 •• ••• ••••• 

.• ·~s LENGT:· •• NO :~~~-.-~~~: 
•• GIVEN IN END o*-------->*NO LENGTH GIVEN. 

•• RECORD • • • FOR CONTROL • 
•• •• • SECTION • '. .. . ............... . 

'YES 1 

1<-- ------- -- --- ---- ------
ENOlA ..... . ........ . 

• PUT INTO. 
'CESD FOR' 
• T OL • · . · . ..... ......... .. . 

1 ·· .. ··1<1·········· • TURN OFF • NO • 
• LENGTH' • 
• INDICATOR IN • 
• API' • · . ................. 

l .... 
->. • 

• "3 • . . 

.... · . • AJ • 
• •••• ·--1 

EN02 .:,. END7 ..... A3.......... ·····"5·········· 
• CLEAR • • • 
• REPLACE/CHANGE • • REFER TO CESD • 
.BITS AND SYMBOL. ---->. USING RNT ID • 
• COUNT • • VALUE • .. .. ········1 ........ · ........ 1' ....... 

, " ..... B3.......... B5 .. 
• SET UP LOOP • • • •• 
• INDEX TO REFER • , • IS CESD •• YES 
.TO RENUMBERING. •• ENTRY'S TYPE ... _--
: TABLE : ••• ~ELETE •••• ................. . ... 

---------->1 r 
END3 C3···.. C5··O., . . .. . . ' .. 

.. .15 RNT TYPE •• 'tES (EITHER) NO ... IS CESD •• 

•• CHAIN ,. •• CHAIN .. ' •. , • •. o· 
'0 .. ' '0 .• 

•• DELETE OR ... ----------------------------- 1---.' ENTRY'S T'tPE ... 

END10 r::-~::::::::--------------------------- END" f~--------..... 0).......... ·····05·········· .. .. 
• ZERO OUT • 'BLANK OUT CESO • 
• RENUMBERING • • ENTRY • 
• TABLE ENTRY • •• . .. .. ................. 

1 
END10B .' . E3 •• . . . . 
NO •• I S RNT LOOP'. 
--_. DONE •• .. ... . , .' ... ... r · ····F3········· . 

: RETURN : ............... 
TO INPl1l' 
PROCESSOR 

·······r···· .. 
·····£5·········· · . • INCREMENT • 
.ENTRIES DELETED. 
• COURT • · . .. ...... 1' ....... 

, " ..... F4.......... F5 ~ . · . ... . 
• SAVE CESD ENTRY. YES 0.15 THIS TilE •• 
.NUMBER AS FIRST.(-------- •• FIRST OJ:LETID.· 
• of THE CHAIN • •• ENTRY .' · . ... . 
.. ...... [::::: ....... ·······:r 

• •••• Gs· •••••• ••• 
.USING TO • 
• LAST or • 
'CESD PlI'l' • 
... Y· 
• WOP CESD • 

, .. : .. ····r··· .. · 
·····85·········· • PVI' IItTRY • 
• NmmD or • 
• DELETED CML • 
.ENTRY III AS· 
'LAS'rorc II. . ............... . 

______________________________________ J 

114 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3921-0 

CHART CM. CSECT IDENTIFICATION RECORD PROCESSOR (HEWLFIDR) 

-ENTER-HERi-----) •••• ,.2 ••••••••• 
FROM INPUT • • 
_:~~~~~~ ______ ---------: HEWLFIOR : . ....... ...... . 

i 
: •••• 82 ••••••••• : · . • SAVE REGISTERS • · . · . · ............... . 

! 
i ·····c2·········· • ESTABLI SH • 

-ENTER-HERE-----j •••• A4 ••••••••• 

~~~~~~~ROL _________ : HEWLFIDR : 

-!~~~~~~~------ •••••••••••••••••

i
••• ··B4* ••••••••• · . • SAVE REGS' •
• ESTABLISH •
*AODRESSABILITY • ·

1 ·····c .. ·········· • TURN ON •
• IDENTIFY • *ADDRESSABILITY •

• FOR MODULE' •
• APT · • CONTROL CARD *---L

• ItIDICATOR • · ·
1

· .
• J3 • ·

• to •••
02 *. 03 *. • •••• 04 ••••••••••

• • •• • • •• • HEWU"LOG GCA2 •
•• IS INPUT t. YES •• OOES IT t. NO .-.-._.-._._._._ •

•• OBJECT END •• --------) •• CONTAIN lOR 0.-------->. WRITE OUT • •. o· ·0 DATA • • • ERROR MESSAGE • ·0 .• •. o. • •
• 0 o. .. 01< ••••••••••••••••• r r~

0.0 0.0 E1.......... E2 .0 E3 .0
.:HEWLFLOG GC.;,2· •••• ..IS lOR .0 : .. ··E4····· :
.-.-.-.-.-.-.-.-. NO •• IS INPUT .0 . * FIELD A .0 YES .TURN ON DOUBLE.
• WRITE OUT .<--------•. LOAD MODULE •• .0 DOUBLE ENTRY o.-------->.ENTRY INDICATOR.
• ERROR MESSAGE· ·0 lOR· * 0 o· • • : •.............. : .'. .0. .0. .0. : :

"fES 0 j:: _____________________ J
0.0 V ••.• FI......... .. F2 : ..•. F3•.• :

• • YES o. I S SUBTYPE .0 .TURN ON OBJECT • * RETlIRN .<--------.0 LYEO o. • END INDICATOR. • • ·0 .• • • •. .••••••..• .•. ·0. • • • ·0 .• • ••••••..••••••••

i-NO 1 -
• G4 • • ._-!

0-0 G1.......... G2 G3.......... G4
:~~~:;~:_._;:~~: YES •• i; SUBTYP~o.. ::~~I~~_._~~~~:: :. ····GS········· •
*ADO SPZAP DATA .<--------.. SPZAP •• • ADD INFO TO .--------). RESTORE .-------->. RETURN •
• TO TABLE. .0 o. • TRANSLATOR. • REGISTERS.. • · • •. o. • TABLE.. • • •••••••••••••• ••••••••••••••••• ·0 o.•....•.•..•.. • ...••••....••.••

l I' NO ->: G4 :
0'0

•• 82 .0.0 : ..•. H3 ••••••••• : :~;:;c;.; ••• ~~i:
o .IS SUBTYPE .0 YES • TURN ON LOAD • .-.-.-.-.-._._._ •

•• TRANSLATOR 0·-------->· MOD lOR ·--------)·ADD TRANSLATOR .---L
.0 0 • • I tmICATOR. • DATA TO TABLE • ·0 .• • •• • ·0 o.•.•..•.••••••.••

I-NO : .:;. =--! : .::. :
0'0

J2 •• • •••• J3 ••••••••••
0..0 .IDRIDENT CQA2 •

• • IS SUBTYPE .0 YES .-._.-._._._.-.- • • 0 USER DATA 0.--------). ADD USER DATA ._--! .0 .• • TO TABLE • •. o· • • ·0 o. . .•..•......•..•....• r : G" :

·····)(2·········· • HEWLFLOG GCA2 • . _ -.-.-.-.-.-.
• WRIT~_OUT •
: ERROR MESSAGE :

Program Organization 115

This document contains rp.stricted materials of IBM. C Copyright IBM Corp. 1972,1983
lY26-3921-0

CHART CN. IDR TRANSLATOR DATA PROCESSOR (HEWLFIDR)

... tA2······ ... · . IDRTRANS .0 ••.....•••...

1 .' . B2 •• • •••• B 3 •••••••••• ...0 *POSTIDR CRA2* •••• B4 •••••• • ••
•• IS OBJECT to YES *-*-*_._.-._._*_.. •

•• END INDICATOR.*--------)*.a.on ITEM TO IDR*-------->* RETURN
to ON • • • TRANS DATA. •

•• •• • T1\BLE· •••••••••••••••
to •• • •••••••••••••••• r . ' el.......... C2 *0

• HEWLFLOG GCA2 • • • •• *_*_._._*_._*_._* NO •• IS LOAD MOD ••
• WRITE ERROR *<--------*. lOR INDICATOR.·
: MESSAGE: •• •• ON ••••
••••• •••••••••••• to ••

: *;B* • 1*YES
• • ---- ·03·
.02. • •
•••• • ••• --¢ .'. . .. __________________] 02 to D3 to ••••• 04.......... • •••• 05 ••••••••• •

PATH FROM •• IS LAST-. •• to • • .POSTIDR eRA.2·
THIS POINT ... ENTRY IN ... YES •• IS THIS •• NO .TURN ON PARTIAL· .-.-.-.-._.-.-.-.
DOWN IS _______ •• TABLE •• -------->.. ENTRY •• -------->.ENTRY INDICATOR.-------->. ADD ITEM TO •
SHARED WITH •• COMPLETE •• ..COMPLETE •• • •• USER DATA OR •
IDRIDENT RTN •••• •••• • • .T~A.NS DATA TBL • ----------------- '-r · T;" j

116

••••• E2.......... • •••• E3· •• •••••••
• • .POSTIDR CRA2. ..··£5··.··· ...
• TURN ON. .-.-.-.-.-.-.-.-. • •
• CONTINUED ENTRY. • CORRECT CESD • • kETURN •
• INDICATOR. .LINE NUMBER(st • ••
• •• FOR ITEM • • •••••••••••••• ·· .. r .. ·.... I

v ••• F2.......... f"3 ..
• POSTIDR CRA2. •••• .···FtI-········· ._._._._._._._._. ... ANY MORE •• NO. •
• FORM COMPLETE. •• ENTRIES •• -------->. RETURN •
• ITEM· •• •• • • · [::::::: ____________ :t"
·····G2·········· · . • POSITION TO •
• NEXT INCOMING •
• ENTRY • ·

l
->. •

• 03 •

MVS/370 linkage Editor logic

This document contains restricted materials of IBM. 0 Copyright IBM Corp. 1972,1983
LY26-3921-0

CHART Cpo IDRSPZAP DATA PROCESSOR (HEWLFIDR)

• •••• A2 ••••••••••

• !DRSPZAP • ·
1 · '. B2 .,

0.' ~Ngo~¥NG *0 to NO • ····83········· •
0 RECORD CON- .--------)* RETURN •

*.1'A1N ANY •• • •
•• DATA •• • ••••••••••••••

*0 •• rs

· '. C2 *0 ••••• el •••••• • •••
•• *0 • •

•• IS FORCE •• NO • TUNN ON FORCE •
to FLAG ON IN • *--------)* FLAG IN TABLE.

to lOR •• • •
to • • • •

to •• • ••••••••••••••••

'YES j
1(------------------------.. ···02····

• DETERMI HE •
• NUMBER OF DATA.
• ITEMS USED IN •
• lOR • ·

1 ·····E2·········· · . -POINT TO FIRST •
• DATA ITEM • · . ·

1 (-------------------------------------- ------------------------
.. ··-F2····
• DETERMINE •
• CORRECT CESD •
• LINE NO FOR •
• ESDID IN ITEM •
• C RENUMBER I •

1
• G3 • --~

• *0 • to
G2 to G3 *0 ••••• G" ••••••••••

•••• •• MY·. • •
•• IS CESD •• YES •• ITEMS LEn •• YES • POINT TO NEXT •

•• LINE MARX ED •• --------) •• ON THIS RBC •• --------).ITEM IN RECORD .---
... DELETE • • • • TO BE • • • •

•• •• •• PRCSD.· • • ~ .~

..... H2J....... 1 · • •• ··H3·· .••.••.
• MOVE ITEM TO •• •
• END OF SPZAP • • RETURN •
• DATA TABLE.. • ·

1 .' J2.......... J3 e. • •• J". •••••••••• • •••• J5 ••••••••••
e • •• e.
:E~KD:~fNf~:L~y ! ________ >.: ·~~~o§A=~IN·: .!:~ _____ >. ~~Jm;E . :-~~-.-~: -------->. WRITE WlROR •
e ONE ITEM. •• EXCEEDED •• • MESSAGE • _SAGE • • • e....•.....•.....• ·0

OlIO
l_> ••••••

• G3 •
• 0

Program Organization 117

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
lY26-3921-0

CHART Ci. IDR IDENTIFY DATA PROCESSOR (HEWLFIDR)

····A2········· · . • IDRID£NT • ·
1 , ., s2 to ••••• S3.......... . •.•. s"' .•.•.•...• eND2

•• IS to • ••• • • ••• ss •••••••••
•• CONTRQL to NO • 'l'UJlr. ON IDENT • • POINT TO USU •• •

to CARD •• -------->.DATA INDICATOR *-------->*DATA TABLE FOR *-------->. IDIl"l"IlAHS •
to INDICATOR.. • •• POSTIDR RTN •• •

to ON •• • •• • • ••••••••••••••
to •• ••••••••••••••••• • •••••••••••••••• rs

·····e2·········· · . • POINT TO •
• BEGINNING OF •
• CESD • · .

----------------:::::::: I········
• to • to • t.

D2 to OJ .~ Olf •• • •••• 05 ••••••••••
•• to •• to •• to • •

•• DOES CESD to YES •• to YES •• IS SD to NO • SAVE ESDID OF •
to NAME MATCH •• -------->*. IS TtPE SO • * ________ >t. MARICEO DELETE. *-------->*MATCSZD So MNIB.

to lOR NAME.. to •• to·.* • • ··t: ·t ·T · ..
·····El· E2···.. j J ·····E5.· ... ·.··· • • 0..0 • POIN'1' TO •
•. POI NT TO NEXT • NO 0 . .0 • 8EGlIftIIIG or •
• LItlE OF CESD .<--------•. END OF CUD •• <-- • lOR USER MTA. •
• • •• •• • TA.BLE • ·
................. · ·l·Y~S r----------------------------------- -------- ~~ ~~ ~:::r·

... 1'2........... F3. 1''' .0 1'5 ••

118

• LOG CONTROL •
CARD ERROR

MESSAGE

I
····G2········· · . • RETURN • ·

·····J2·········· • HEWLFLOG GCA2.

• • .••. 0··0 • POINT TO NEXT • NO •• END OF lDR .0 NO o.OOES ESDlO .0
• ITEM IN TABLE .<--------.0 DATA TAB •• <--------.0 MATCH •• • • •. .• ·0 .• • • •. o. •. o. rs I~

..... G".......... • •... GS••....
• ADD DATA FROM • • OVERLAJ' OLD •
.COtfTROL CARD , • • ITEM WIT'll OATA •

:~lf8rD~IL.tT : :CAT,c~~"s :
• •• I*ft •

········1········· · .. ··· .. r·······
, -, •.... H........ as .0 ·

• UPOATE TABLE. NO.. IS LBIG!. .0
: END POltl'l'BR :<- ... ------.o21'orrDA'IA.~ .• -......
• • UIBW>OLDJ •• • 01.0

···"3···········
...... 1 ·.. "r

JIt .0 J5 ••••••••••
• _.-._.-.-.-.-.-. • LOG TABLE • YES ,. TABLE •• • UPDATJoIDfH •

• <--------••• ~ix~IDI!E~... : am :

····r· ' ·r:::::···
. ... tc."......... s •••••••••

: BaMiTEME~~AGE :<--------. °:rss~=

· .. .
• RETURN· ..."... ·

MVS/370 linkage Editor logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

CHART CR. IDR USER DATA PROCESSOR (HEWLFIDR)

• •••• A2 ••••••••••

: POSTlDR :
1
.'. • t. B2 *0 ••••• B).......... 84 '. • •••• S5 ••••••••••

• 'IS USER., • GET CESO LINE. .' *0 • •
.' DATA to YES • NUM.BER FOR. •• IS CESO '. NO • POINT TO 1ST •

to INDICA-TOR ON • *-------->* ESOID IN THIS *-------->*0 ITEM MARKED. *-------->. ITDIi IN USER •
to .' • ITE~1. •• DELETE • • • DkTl1 TABU: • '. .' . . ·0.· • .

to .' ••••••• ,.......... to .* •••••••••••••••••
'NO 'YES 1 1 l_>::~::: < _________ _

••• • t. e2 to ••••• Cl.......... C4.......... C5, t. o. IS LOA[l*. 'MO ING OF •• • • • BS t.
o • MODULE •• NO • S FOR • .CONVERT ITEM TO* YES •• IN'.

·.INDICATOR ON 0·-------->·1 VED BY *-------->* LOAD MODULE· L---*' T MATCH.' *0 •• *E ESSOR' • • FORMAT. •• MO •• •. o. . .. • •. 10 .• .. o. .••...•.. ..•.....• .•••••. .•.•• . •.. .0 o.
·YES l .. ·NO

1 ->. •••• • : G" : 1
• F2 • • ••••. . ..

•• °2 15 •••• :.~~~~3;::;~:1 .. : : .•.. 0 : •• 05 .0 •. o. PARTIAL •• YES .ENTRY TO END OF. .ADD ITEM TO END. YU •• HAS £00 or •• • 0 ENTRY •• -------->. TRANS DA'l',., OF TABLE .(--------.0 TABLE BEEN ••
•• ItlDICATOR.. • TABLE ..0 REACHED o •

•• ON 0.. ...0 o. ·r j......... · .. ····r·· .. ·· ··r
..... E1.......... E2 .0 .•••. E4.......... ES
• MOVE CONTO ENT • •• IS .0 .••• E3.. ••• •••• • •• •
• TO END 01' LAST • YES o. CONTINUED •• • •• UPDATE TASLE • • POINT TO NEXT •
: 16i~AI~A~~~S :<--------·· •. IN~~:~OR •• •• : RETURN: : END POltlrER : : ITEM IN TABLE :---
.FORM CMPLT lTEJII!. •• ON •• ••••••••••••••• • •• • ••••••••••••••••• ·0 o. •..•.••.••.....•. • ••••••..••••••••

l l·NO 1 ->.. .. .
• F2 • • F2 •
• ••••• • ••••• _> ...

USE ESOID or • GET CORRECT • • • • •

.... · . • F5 •
• ·--1 •••• v

···,.5· .. ·••··••··
INCOMING ITEM • CESD LINE • • .HAVE TABLE .0 YES • LOG TABLE

----------------] ••••• F2.......... 1''' ••

~~~~~:I~~'tO ---------: NUMBt¥~~) FOR : ••• ~~~~~DroE~ •.• --------> • 0m'~ 
TABLE •• •• o. ---------------- •••. •.•••••.•...• ·0 .• • ••••••••••••••• 

1 :.::': :'::.: 1·NO 1 •.•.. ·--t ...... -> 
••..• G2 •• ·.·..... • .••. G3.......... . •••. Gs, •••••••••• 
• POINT TO CESD •• • • ••• G4......... • HEWLl'LOG GCA2. 
• LINE FOR 1ST • • POINT TO 1ST •• • .-.-.-.-.-.-._.-. 
• ESOID IN THIS. • ITEM IN TRANS. RETURN .(--------. WRITE IRROR • 
: ITEM: : DATA TABLE: •••••••••••• ••• • : MISSAGB : ................. ................. . ............... . 

1<---------- ---------->1 ... '·0 ... ·.H1.......... H2 .0 H3 .0 ....• H4.......... • •.•• RS ....•••••• • • 0..0 .. DOES .0 • ADO INCOMING •• • 
• OELETE THIS. YES o. IS IT .0 o.OATA MATCH .0 YES • £501015) TO • • UPDATE TABLE • 
• Z5010 FROM lTEM.<-------- •• MARKED DELETE.. •• INCOMING DATA •• -------->.MATCHED ITEM IIf.-------->. END POtRTEJt • 
• ••• o •••••• TABLE. "' •• · . .... .... . .. . ····· .. ·[~~~~~~-----~---------~~t ·T~ ................. . ....... 1" ..... . 

0.0 0.0 0.0 
J2 •• J3 .0 •.••• JII.......... JS •• ...0 ...0 . . .... 

NO o. ANY MORE •• o. I SIT END •• YES • ADD INCOMING • 0 .HAVE TULI: .0 YES 

L---.o ESDID FOR o· •• OF TABLE •• -------->.ITEM TO END OF .----- .0 BOUtl)S 8 ••••• ---~ .0 ITEM • • .0 0 . • TA.BLE. ..DOZD£[) o. ·0 .• .0.. . • .0 .• •..• •. o. .0 .. ....••••••••••••• .0 o. • ••• 
: .~:.: rES r 1'

RO 
: .::. : 

..... )(2.......... . .... X3 ......... . · ... ····.5···.····· • POINT TO CESD • • POINT TO NEXT • •• 
• LINE FOR NEXT .--- --_. ITEM IN TABLE • • aft... . 
• ESDID··. •• · ... . ............. . ................. . ............... . 

Program Organization 119 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3921-0 

CHART CS. CONTROL STATEMENT SCANNER (HEWLFSCN) (PART 1 OF 2) 

FROM INPUT 
PROCESSOR 

····A1····.···· · . : HEWLFSCN ............... 

".... 1 0 "'>om . o. • o • ••••• Bl.......... 82" • to B1 to Btl to ••••• B$ •••••••••• 
• • .' to .'IS THIS'. .' to -RESET COMMENTS • 
'SAVE COLUMN 72 • .' IS THIS A to YES .' A COtfI'IN- to YES • *IS THERE A to ¥E.S • All) • 
• - SET POINTER *-------->*.cONTINUA,TION .*-------->*. UATION OF • *-------->*. BLANI{ IN • *-------->* CONTINUATION • 
-PI TO COLUMN 1 • '.STATEMENT.' *.COMMEtlI'S .' '.COLUMN 72.* • IlC)ICATORS • 
• • to.. to.. to.. • • 
••••• •••••••••••• to .' •• .' '. .' ••••••••••••••••• 

l·NO l' NO '[NO •••• l .... 
->*02 .. ->*02 • 

• Cit • • c" • . . . . .... . ... 
SCNlOOO ..... ct.......... . .... e2.......... . .... C) •••••••••• 

-READ 8 eTA1.. • .SET POINTER Pl • 
• -.-.-.-._._.-.-. .SET POINTER P2 • .TO READ COWMN • 
:~~~~sW:~fig: :<--------: TO OPO 1: : (coNTl~UATION : 
.INDICATOR TO 1 •• •• OF OPERANOS) • ........ 1'........ ................. .. ...... 1' ..... .. 

... .. .. 
01 •• 03 •• .. .. .. . . 

•• 010 SYMBOL •• NO •• OLD STATUS •• YES 
•• END WJTH A •• ---~ •• WAS LEVEL 1 •• ---~ 

• t BLANI<. •• •• •• .. .. .. .. .. .. ..... .. .. . ... 
SCN10l00 

I
·YES :~:~: 1. NO : .::.: 

..... £1.......... .· ... £3 ..... ·· .. · .. .. 
• SEARCH • .SET POINTER P2 • 
• PROCESSOR KEY • • TO OPO 0 .-----
.1'1\81.1: FOR. MAreR. •• .. .. .. · .. · .. r· .. · .. · ............... .. 

••• SCNI0120 
Fl.. • •••• P2.......... • •••• F3.......... • •••• F" •••••••••• NOTE - OPTIOlI 

•••• • SAVE ENTRY. .TU,H,N ON 'OPO 0 • .READS CTA1. INDICATOR IS 

.: ·IS if~' A .: .:~~----->:PR~~l:ER 0: SET:-------->::~· sj~Ol~~£. :-------->:-~~O·i;T·O;N~-: SET TO 1 
•• •• • POUlTER P2 TO • • INDICATOR TO • .oA CONTINUATION. 

•• • • • OPO O. • ZERO. • PARAMETER • 

'. I::oi:-. ;::::;........... ................. i~i:::::I········· 
.. . .--~ . . .... .... . ... 

••• SCN10180 ••• SCNtOllO ••• 
Gt •• • •••• G2.... •••••• Gl •• Gil •• 

• ••• • • •• ENDED •• • .WAS AT •• 
NO •• •• • SET I LEVEL'. YES •• BY A LEFr •• YES •• LEAST ONE •• 

•• •• • ONE. •• • • •• CHARAC'1'ER •• L---•. IDENTIFY CARD •• <--------. INDICATOR TO .<--------•. PARENTHESIS •• <--------.. VALID •• 

•• • • • • •••• •• READ •• .... .. .. ................. .. .. . .. . 
: H2 : I·YES :~~. . i::. ..... 1. NO 
•••• .H2._-1 ·X3. . . . . .... . ... 

SCNl0190 SCN10220 .'. 

120 

••••• 81.......... • •••• H2.......... • •••• H3.......... HII •• 
• •• •• • •• ENDED •• 
• TURN ON. .SET POlllTER P2 • • SET' OPO O. YES •• BY A LIFT •• 
:STR~~'C~~~ION : r-->: TO OPo 1: : I~~:r~R :<--------•.• ~ARENTHBSI~ ••• · .. .. . .... ········1········· : :;·:·······1········· ·········l···::::· ··l·N~ • • ->. • 

•••• • G2 • . . .... . '. ..... J1.......... . .... J2.......... JII •• 
• • .READ8 CTA1. • • IS •• 
• SET POINTER P2 • .-.-._.-.-.-.-.-. YES •• CONTJNUITY •• 
• ro IDRSTRNG .-------->.READ NEXT SYM -. L---•. IHDICATOR SET •• 
• •• SBT OPTION • •• • • 
• •• INDICATOR TO 0 • •• • • ................. ................. ..... . .. . 

1 .... :O~II: .[110 •••• · . . . ->.. 
• K3 • • • G5 • 
• •••• ·--1 •••••• 

••• sCNI01110 * 
x2 •• • •••• ltl •••••••••• 

•••• ·PROCBNTY· 
•• AT LEAST •• YES .-.-.-.-.-.-.-.-. 

•• ONE VALID •• -------->.PASS COII'l'ROL TO.---t •• CHAR • • • CTRL STMNI' • 
• • • • • PROCESSOR • .. .. . .................... . 

.HQ ·02 • 
L_>. •••• • • • A1 • 

• G5 • • . . .... 

MVS/370 linkage Editor logic 

.... 
• • 
• G~ • · ..... --~ 

SCN10200 .'. 
G5 •• .. .. 

NO •• ENDED BY A •• 

L---.. BLAMI: •• .. .. .. .. ..... . ... 
• 02 • -YES .. ::. 1 

· '. f5 •. 
NO ,.··M~~ •.•. 

!---.. DIDIO BY A •• 
•• COlMA. •• .. .. ..... .. .. 

:~~: rs 

· '. J5 •• .. . . 
YES .' BLAIOl< I, '. 

~---.. cow.. 2 •• .. .. .. .. ..... . ... ::::: r 
·····.5·········· · . 
• 8ft • 
• a.f1"'UIOII • 
• IIK>ICATOIl • · . . ............... . 

! ..... 
.02 • • c .. · . . 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CS, CONTROL STATEMENT SCANNER (HEWLFSCN) (PART 2 OF 2) 

..... 
-02 • 
• Al' .. . 
! [iEs----------------------l 

~1···.. A2" to eo SCNIOIQSA3" to eo All" "'. • •••• A~ •••••••••• 
• • eo •••• ..' to • • to • SET CO .... NTS • 

• ' '. NO • tENDED BY A '. NO • 'ENDED BY A to NO .' BLANK IN to NO • AND • 
to LEVEL ONE • *-------->.. COMMA 0.-------->*. BLANI< • *--------}*. COLUMN 72 ... ---~ • CONTINUATION • 

'. .' to • • to .' to .' • INDICATORS • 
to .' •••• eo.. to. • • • 

eo 0* to .' to .' to .' •••• • •••••••••••••••• 

l·ns I~:; '::': j.YES :~i:' '--1' : ell : · . . . .... . ... 
SCNIOlS>O • to • to SCNI0230 

•• BiNDE~·" •• 82 •••• :HEWatOG···~~:2: 
.'BY A RIGHT to NO • tENDED BY A to NO ._t_*_t_._*_t_*_. 

to PAREtlTHESIS • *--------)*. COMMA • *----------------------------------:>. • 
to o' eo .' • ERROR ROUTINE. 

t.. ..' to.... •• 
"l*Y;S *. ·lY~... :::: •••• j ........ . 

_).01 .. .02 .. 
.. H2 .. .. C4 *-> .. .. .. .. .... . ... 

SCNIOI.O ..... ct.......... SCNI0210 .. .. ····C"········· .. SET LEVEL .. .. .. 
.. INDICATOR TO .. r-->. RETURN *<----------------
.. ZERO .. .. .. .. .. .............. . ................. . .. 

1 .. .. TO INPUT 
.. C4 .. PROCESSOR . -..... 

. -. ..... Dl.......... D2 *. 
.. .. ... eo 
.. UPDATE PI" ... Is P1 AT .... YES 
.POINTER TO NEXT*--------)*. COLUMN 12 •• ---~ 
.. COWMN" *0 .* .. .. e... .. ••••••••••••••••• *. ... • ••• 

elf{) .. .. 1 : co : 

. '. E2 e • 
• * e. 

... IS THIS eo NO 
*.. CHARACTER A .. " ---! 

e. COMMA .. " 
eo .. " *0 .. " •••• rs :.~:) 

·····Fl·········· · . :SETc~fDI:Y ": 
.. STATUS .. · . ................. 
:*:;*: 1 .. *-> ..... 

SCNl 017 0 ·····G2·········· · . • SET POINTER P2 .. 
.. 'l"OOPDO .. · -· . ................. 

1 ·····HZ·········· -READe crAt. 
*-*-*-*-*_._*-*-* 
*R&AD NEXT PARAH. 
.. SET OPTION • 
• INDICATOR TO 0 • ................. 

l .... 
->·01 • 

• Gil • · . .... 

Program Organization 121 



This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CT. READS ROUTINE 

f'Klli"1 Cl,NTRUL 
:;TATe·H'.N1 
:;Chr~NEK 

... "A 1* ......... .. , , 
• Hr:ALt!1 .. 

I 
::CN11ROF! v 

: •••• Bl ••••••••• : 

• ~AVt:, I STATlJ~,' .. 
:IN 'uLrJ STA1U~;·:----­

, , ......... ........... ... .. 
: •••• 82 ••••••••• : 

'CLEA,~ WuRK Attf-.a' 
-->'REFERHSD TO f<'t' (-

: POINTER. P2 : 

. '. 
B3 •• . . .. : •••• 84 ••••••••• : 

,. IS THI S A. ., YES • SET VARIABLE ->.. SPECIAL •• ~------->. COUNT TO 41 
•• STRING •• .. . . .. ,. · ................. 

li'<) 1 : .::' L 
•••• 1 

SCNI1000 ~ .· ... c3.......... . .... C4.......... . .... C5 •••••••••• 
• • .RESET AT LEAST •• • 
• S1::1' CHARACTEr< • • ONE VALID. • UPDATE PI • 
• CUIINT TO 9 .-------->. CHARACTER .-------->.POINTER TO NEXT. 

• : INDIC.a.TOR: : CHAltACTER : ..... ~... ........ ..... ........ .... . ............... . 
, I • Kl • 

rN~' .. ,. .......~. 
D1' '. 02'·0., [J] •• D4 ., DS ., 

.• i~ SPE'.Cll'~'.. NO •• ··I.:~ IT A··.. YES ,.i: P1 AT ~'.. NO .ti~ PI AT :'.. NO ,.·is PI AT·· •• 
•• ~:;TldNG OPTION •• <----~--~.. ~;PEcr.a.L •• <-----~--.. ~UGTE. •• <--------.. BLANK 0.<--------.0 COWMN 12 •• 

• 0 O~l. .0 STRI!'llG •••• ..CHARACTER.. •• •• . • ·0 o· •.. • •..• .0 .• .. o. .. .. •. .. .. o. •. .• 

(" C" r C" rES 
• •• ••• ••• ::>CNII04Q ••• SCNIQ230 ! 

!::1 •• E2 .0 £) •• E4 •• • •••• E5 •••••••••• ...0 ." NEXT •• •••• •••• .HEWLFLOG 702,\2. 
•• Flr-::.>T •• YES •• CHARACTER •. YES •• IS PI AT A •• YES •• IS OP'TION •• NO t_._t_._._._._._ • 

•• :.'".AR"'TAST,E"G" IN." ·---1 ·.AL.SO A QUOTE '·---1 •. COMMA • "---1 ·.INDICATOR SET.·----- ·OPERAND EXTENDS • . ' " ~ •..• •• . • v •• o· . BEYOND COLUMN· 

•.•. .•.• • •• ~ •••• .•.• • •• ¥ •.•• ••.• •••• •.•. •••• : •••••• !1 ••••••• ·: 
·NO •• ·NO·· ·NO·· ·YES l 
I : J 1 : I: JI : I: J2 : I -> •••••• 

I • Kl • 
t, v •••••• 

v ~ 0.. .•. SCNI1050 
: •••• Fl ••••••••• : : •••• F2 ••••••••• : F3 •• F4 .0 .••.. FS •••••••••• 

• SAVE LEHGrH OF. .,sAVE LEI'iGTH OF • ..·~TI~ r~r;· •. NO ."'ill~T'S~E:· •. YE.S :SET ~~,,~ BY": 
:r,Pc:::IAL :..iTidNG : :SPECIAL STRll~G : ••• ;A}{FtnHE.Sl~ ••• ~-- •• !~DICATO}{ S~i'.-------->: INO~~~i3~ Itt : 

• •. .• 11-... • • ....•..•..... •••• • ...•• -. •••.•. ..•. •. o· .. .• • •••••••••••••••• 

1 
: ...... *G 1 ................. : 

, . 
::-a:r ClJdtIT TO 1 : 

....... ............ .. 
l ..... . 
->* .. 

...... .. , . 
.. Jl .. .......... --! 

: c~ : 

; •••• Jl ••••••••• : 

'UPDA.TE POINTER .. 
.. PI TO :-lJ::XT .. 
.. ::::HARA;;TEri .. 

I v 
: ....... G2 ................. : . , 
:SET COUNT TO 1 : 

, ............ ........ .. . 
l ...... . 
-)' .. 

.. c:, • 

...... . . 
.. J2 • 

.. ..... *--1 
SCNIIOIO v 

, , 

.. ••• *J2*·· ........ . 

.. SET I ENDED ElY .. 

.. COMMA' .. 

.. INDICr>.TOR IN .. 

.. STATUS .. .. .... .. ..... ... ........ .... .. .................. .. 
: :::: :-> I < ______________________ J 

v .. .... ·Kl········· . 
• RETURN : .. .......... .. . 

. ~ ~ l 
1 l_>. • ••• • -> •••••• 

seNU 020 .. ···G3···· ..... . .SET I EUDED BY A. 
• LEFT • 
• P:l\RENTHESIS' 
• INDICATOR IN 
• STATllS ................. 

l .... 
->. • 

: Kl : 

.' . H3 .0 
•• IS PI •• 

YES •• AT A RIGHT ., 
--- •• PARENTHESIS •• <--.. , . . , , . 

• 0 o. 

: cS : : Kl : .... . ... 

ro .'. SCIH100~ 
••••• J 3.......... J4 .. . .... J~ •••••••••• 
• ... 0..0 .MOVE caNt AT Pl. 
• SUBTH.ACT ONE • •• •• NO ·XIITQ W - . 
• FROM COUNT .--------> •. IS COUNT ZERO •• -------->. POlltT TO". · . .. o· • " · • ·0 o. . • ................. .. t~:;·;~·: ··· .. ···1········· 

· . 
••••• l( J •••••••••• 
• SET I ENDED BY • 
• RIGHT • -->. PARENTHESIS' • 
• INDIC.'TOR IN • 
• STATUS • ................. 

l , .... 
-~. . 

• Kl • . . 

: ····KIt·· ....•.• : : .;:;..~~ ••••••• : 
• UPDATE p2. • 011& ~ • 
:OT~A~tcT~EA:<--------: Cfml& : · .. . ................. . ............... . 

l .... 
->. • 

• c~ • · . 

122 MVS/370 linkage Editor logic 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CU, INCLUDE PROCESSOR (HEWLFINC) 

FROM 
INPUT 
PROCESSOR 

···."3········· · . • HEWLFINC • · . ............... 
1 . ' . ..... S2.......... 83 *. · . .... 

'SIT SINGLE BLDLO YES • 'HAS INCWDE'. 
INDICATOR *<--------*. POINTER •• 

• e. CHANGED •• • • e... ·········l···::::· ··l·~ .... 
->* • • • 

• 03 • • cs • 
• ••••• • •••• *--1 

INCLUI10 . eo • e. V 
Cl *. c" to ••••• CS •••••••••• .• *. .• eo • • 

•• WAS BLDL •• YES • • ARE AllY •• YES • GET NEXT ITEM • 
-.DONE ON LIST. *-------->*. LEFT IN LIST. *-------->* III LIST 

to •• *0 •• • 
*0 •• eo.. • • 

*0 •• *0 .* ••••••••••••••••• 

::~~)--~ ::~!: L1·::-----------------------r 1 
INCW160 .'. INCLU250 INCLU605 01 eo ••••• 02.......... . .... D3.......... ..OS ...... . 

•• IS *0 • ••• •• 
• .SINGLE BLDLt'. US • Ptn' NAM! IN • .FIIID NEXT ITEM. •• 

eo INDICATOR OM • *-------->. SINGLE BLDL • • IN INCLUDE • • ISSUE FIND • 
•• •• • LIST. • CHAIN • •• .. .. . ... .. 

---------:~l·~ ········1········· ········1········· ····T:~::;.: .... .•. . .. ..... !1.......... £2 .. E3 .. 
: PUto~riN : •• ··~k~~·· •. NO •••• IS IT •••• YES 
• UpBATII COUIITI: • '. EQUAL IIICWDE •• ---~ '. INCLUDE WITS • '---t 
.UPDAtE INCLUD • •• BREAK • • •• POI NTER •• 
• POIWl'ER. •• PMTR •• .0 .• ••••••••••••••••• ·0 .• •••• •. o. • ••• 

1 i·ns : 1(2 : ·NO·. .... 1: .~~. : 
••• INCLUIl~O ••• 

.... · . • r5 • · ._-, •••• v 
• • Fl •••• : •••• F2 ••••••••• : : •••• ~;.;: ••••• : o.F.. •••• :~iOG ••• ~~;: 

.: - r.s~dJAM .:.~ :ir:~ Y~I~l¥8kE: :i~~li~T~, ~iN: ________ >.:. SUC£~="UL .: .~~------>:i;w~.32·L~~i: •. _. . _.- : :: PS: •.••.•.• :lIAIIEoil:r •• : 

··1·~ ·· .. ···T:~::;:~ ~:~::~:::::::::::---------------:J~s ····· .. ·1········· 
•••• •••• v 

••• ••• ItlCLU200 0 -. IMCLU600 ••• 
Gl •• G2 .. G3 .. ..G......... GS .. ...0 .... .. IS IT .0 • . 0... 

• .aWL TABLE. Yts NO o. ANY ITEMS •• YES •• LAST ITEM •• • • YES •• Ell) fI •• 
•• rULL : .--> --_ •. LlFr IN aLDL •• <--------•. IN INCLUDE •• 1-->. ISSUE aWL· ~--- •• INCLUDE CIIAI ••• <--.0 .* •. LIST •• •• COIN •• • • •• •• .. .. .... ·0.· . . •... 

•• •• • •• Y;S .'.~. •••• ••••••••••• • •••• • .o.~ 

1·110 • ••••• L----------------------->l : Gil : 1 : 82 : L> ••••• • 
• H2 • •••• ••••• Dl • • ·_-t • • .... . ... .•. . .. 11 .. . .... 82.......... . .... Hl.......... B" .. . ....• 5 ......... . 

• •• :ZXT IT.:.·.. 110 : CLEAR' MOR~ : : SET' MORE: • ••• BLDL •••• NO :!'f!'P-'~_._~~: 
•. ~~~~~A~ •. ·--> -->. I5L008S TO • • I!fLUDBS TO • •• SUCCZSSP'UL •• --------> • ..11"03'2 poa • 

•• •• :COME INDICATOR: : COME INDICATOR: •• •• • .' • : eMuif'": 

"1'Y~ '·······[:::~~:---------~~~:::~:l········· '. t~·::.: · .. ·· .. '1········· .... .•. . .. Jl .. . .... J2.......... JS .. 
118 •• i; IT M· •. ., :SAVI POINTER TO: • ····J3········· • YES •• 1n I:'.. 110 
--.. POIII'l'U •• -------->. lUXT IT£M. • RETUR" • !---.. .. .• ---.. .. . ... .. .. .. .. . . ............... .. .. 

•• •• ••••••••••••••••• TO INPUT •••• •• •• · t PROCESSOR •• • •••• • C5 • · . . . · 1t2 . • ••. • ._> •••• LlBOP ••• IttCLU125 ••• 1t2 .. ..Kl....... ..It......... as •• . _.. . . . . .... 
•• IS THIS •• NO. • • OP.III 8Y8LIB • •• OPIII •• " 

•• L18RAltY on .... -------->. CLOSE srSLla ·-------->·roa WI8 DD ... ·--------> •• 80CC_JIUL •• ---1 
•• • • • • • TYPOItT-PD • •• • • .... - . . . ... . •• • y~ ••••••••••• ••••••••••• • •• y;. •••••• 

L>. ••••• L>.····: " : 
• G" • • ...... . • • • • •••• • ••• 

Program Organization 123 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983 
LY26-3921-0 

CHART CV. AUTOMATIC LIBRARY CALL PROCESSOR (HEWLCAUT) (PART 1 OF 2) 

. . 
• AJ • 

FROIoI INPUT ••••• *--, 
PROCESSOR V 
•••• A2......... • ·'11.3* •••••• .. • ••• All ••••••••• 

• • .. ISSU~ FI~O • • • 
HEWLCAUT" • FOR NEXT ITEM *-------->* RETURN • 

• ... IN LIST' • • 

: A3 : :;~~::~T ..... · . ............ : :~~:~ ........ .. 
. ry.~; ..... :.... v •••••• --~ 

.... LIBOP .'. 
81 to B2 to •• 83 •••• ··.. 84 '. 

o "'0 .••• .. • .•• . 
• ' NEXT ITEM'. YES. -AIlYTHING IN'. 'OPEN DCB FOR" NO. • •• 

'.IN LIST rOUND •• <--------*. 8LOL LIST '.<--1 .. THIS DDNME *<--------*oTHIS LIBRARY.' 
to • • '. .' • TYPORT = PO .. to •• 

... ." to. • .. • •••• 

"l'N~ "l'N~ :::~: .. ··T· .. · '. 'lY;S 

INCLU630 •• , ..... el.......... . .... e2.......... C3 '0 ··eq·.····· 
.. •• • • .. to .. .. 
• STEP TO NEXT • INITI,r..TE CESD .. ... UPEN to YES' • 
• ITEM : SCAN : ••• ~UCCESSFUL •• 0.--------> •• ISSUE BLDL • 

.. • •. o· • . .. ...... ... ...... ....... .... ...... ,.. .. . ......... . 
l_>:'::': :'~:':J i·NO L>:'::': 

124 

•••• V •••• 
. '. D2 .0 ·····0)·········· 0..0 • HEWLELOG GCA2· 

YES. '" ·0 "'-.-.-.-.-.-.-.-. 
L---•. END OF CESD .<--------·IEW0432 LIBRARY· 

•• •• .NAME CANNOT BE • 
• 0 o. . OPENED • ••••. ·0 .• • ••..•••••••••••• 

• 02 • .NO 

'<l' I 
v . '. E2 $". ·····E3·········· 0··. . . o. IS THIS .0 NO· • 

•• ODNAME FOR A •• -------->·uPDATE POINTEr; .---1 ·0 LIBRARY o· • • v .0.. 0.0. : ••••••••••••••• : •••• 
·YES • • 1 : D2 : 

0.0 INCLU640 F'2 .0 ....• F3······· _ .• ..·0 . . 
o -IS POINTER. 0 YES - MARK E.NTRY • • 0.0 = 0 0.' .-------->:~Lk6L~r~~A~~ : ·0 o. • . . 0 o. . •...••.•..•.••.• 

'NO 

• G3 • 

• •••• ·--v 1 ..... . 
INCLU63~ ,·0 

••••• G2.... •••••• G] ·0 
• • •• to 
• INITIATE • YES o. BWL •• 
• PROCESSING THIS. -----.0 PREVIOUSLY •• 
• CHAIN. .0 ATTEMPTED •• · . .... • •.••....•...... '" .. o· 

1 'NO 

:'::': 1 • ._> .... 
INCLUI10 ..... H2.......... ·····H3·········· • •• ENTER IN BLOL • 

:T~~NN~~rI~NTRY:<____ :LI~~EVi~us~~L : 
• •• ATTEMPTED • · .. . .... ............. . ............... . 

1 1 
INCLU650 0.0 • ·0 

J2 •• J3 •• .... ..·0 
•• •• YES NO o. .. YES 

•• END OF CHAIN •• _--\---.. LIST FULL • '---J ·0 .• •. .• ·0 o. ·0.· ·0 .. .0.0. • .••.. r _____________ q : 80 : 

INCLU610 0.0 INCLU186 .·0 
](2 .0 ](3 •• o. .0 0··. 

NO 0 • MATCHED •• •• ANY' ITEMS ... YES 

!---.o LIBRARY o· ·0 IN BLDL LIST o._--t .0 MEMBER o. ·0 .• ..... o. •. o· • ••• ·0 .• •. o· •••• 
•• .YES ·NO • • 
: H2 : L>. •••• • L> ..... : S" : 
•••• • G3 • • 02 ••••• . . . . .... . ... 

MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART CV. AUTOMATIC LIBRARY CALL PROCESSOR (HEWLCAUT) (PART 2 OF 2) 

..... 
·02 • 
• Al· . . . ... . . . ! . A2 • 

• •••• *--9-
INCLUb70 • e. . t • ..... A.l.......... ...2 eo ... 3 to 

• • •• *0 0* to •••• A" ••••••••• 
• INITIATE CESO • •• eo YES • -ANYTHING IN-. NO. • 
• SCAN *-------->*0 END OF CESD • *-------->*. BLOL LIST • *-------->* EXIT 
• e· to •• to •• • · . .... ... . . ............. . ........... ...... .. .. .. .. 

*NO .YES 

1 l_>* ••••• 
: G2 : .... 

·····a2·········· · . · . • GET NEXT ENTRY • · . · . ................. 
1 

TO ADDRESS 
ASSIGNMENT 
PROCESSOR 

• to INCLU690 • t. 
e2 *0 c3 •• • •••• Cq •••••••••• 

•• to •• to • • 
•• IS IT ER •• NO • • IS IT •• YES • MARK ENTRY • 

to SUBTYPE 0 • *--------)*. OVERLAY • *-------->*NULLb PLACE IT *---! 
to • • •• CONTROL •• • IN H LES CHAIN • 

to •• *0.. • • 
to •• *0 •• • •••••••••••••••••••• 

* YES .NO • • 1 l •••• ·A2· ->. • • • 
• A2 • • ••• . . .... 

0·0 D2 ... ... .. o. ~s SLOL .0 YES 
•• PREVIOUSLY 0.---+ 

·.ATTEMPTED.· ·0 .• .. .. . ... 
l·NO =.::.: 

IIICW17 0 ·····22·········· · . • MOVE NAME TO • 
• BLDL LIST • · . · . ................. 

1 0·0 F2 •• o· •. 
•• BLDL LIST ... NO .0 FULL 0.---+ ·0 o. ·0 .• ·0 ... • ••• 

·YES • • .... 1 . A2 • .. .. 
• G2 • • ••• • ._> .... 

LI80P ... 0 •• 0 

G2 .0 .. G3....... Gta •• 0... . . 0... o. _ •. NO .OPEN STANDARD. o. OPEN .0 NO ._._._._._._._._ • 

... • ~YSLIB OPE~ .... -------->.~YSLIBP6YPORG :.--------> •.• ~UCCE8S"UL ... 0 .------ -->:H::ilf ~.t.IiM'auy: .0 .• . . .0.. • on.o • ·0 o. ........... .0 .• • •••••••••••••••• 
·ns ·YES l 
1 J -> •••••• 

• A2 • 
<- ------ -------------- -------- --- -------- ---------- •••••• 

··H2······· . . . . 
• ISSUE BLDL .---+ . . . . .... .... ... . .... 

·01 • 
• B2· .. . 

Program Organization 125 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3921-0 

CHART DA. ADDRESS ASSIGNMENT PROCESSOR (HEWLFADA) 

FROM INPUT ... ~:r.~~~~~... . .... Ah ........ . 

: HEWLFADA : : SEARCH ORDER : 

•• ----------->*: TCABESLOE'EFNTINRyO ·:------------1 ............... 
V

I ................ . 
AD~00120 • *0 ADA00123 V .•... 81.......... 82 *0 ••••• B3.......... . .... BlI. .. ··....... . .... B5 ......... . 

• CLOSE SYSLIB • •• *. • HEWLFENS DBA2-. •• ASSIGN TEMP • 
• cI.,EAR ADDRESS. •• *0 NO *_*':*_*_*_*_L*_* .SEARCH 1'XT 1/0 • .LINKED ADDR TO • 

: c~~M~~r-ND :-------->* .• ~N OVERLAY •• ' ·-----;;-->:NUM~~~RI~EgESO: : t:~~E!:tJ:A~D :-------->: f~~~ i3~ ~s~ : 
••••••••••••••••• to •• ••••••••• •••••••• •• ••••••••• •••••• • •••••••••••••••• 
• INDICATORS • •••• l. .. .. . rs -------IN~-------------I L_______ 1 

••••• e2.......... cf to to •••• .c4.......... • •••• cs •••••••••• 
:c~ga~Hs~~AB : 0 .. · !'IRST ··.0 YES : :~;i~ ~c CESD : : PERFORM :' 

:SEGBTgNAI;'BOYIANFOcP~ESO :- - - - - -~ ••• ;EXT RECO~. 0.-------->: FOR FIRST 1: : ~G~~:o : •••••.••.•••••... ..I:. ~.Oo. :.~!;~.~~.;~~; •. : : ..•..•....•.•..• .... · . 
• D1 • 
• •••• ·--9 

APAOO; 00 ••• 

. ' 1 
D1 •• ..... 03.......... . .... 0" ......... . . . .. • TEMP REL CONSTS.. • o. •. NO • • • ARE FINAL. .PROGRAM LGTH IS. .0 IN OVERLAY •• --------). ADD gE :-------->: R~~g~~I~~ :-------->:E8~A~Ea~E~~TH:---

• 0 o. • FIN ·0 .• • ES·· •• • .0 o. • ....... . ....... ................. . ............... . 
rs 

1.......... . .... E2.......... . .... E3.......... . .... E" ......... . 
SE .: !PROGRAM LENGTH : :U~g~EC:ggR~~ : : gg:~~E5i~:h : 

• -------->. EQUALS LENGTH .-------->.OF EACH SO, PC, .-------->.RELOC caNST FOR • 
~H R: :OF LONGEST PATH: : OR CM: :SDpu;ClNC~C~D ": ... .... ....... .......... ................. . ............... . 

ADA00550 1 <----------

·····F"·········· • UPDATE LR • 
• ADDRESSES USING. 
• RELOC CONST OF • 
: so, PC, OR CM : . ........ .... ... . 

r----------------------------------------------------------------------------1 .......... 

1 . '. H1 •• • •••• H2· ••••••• •• .. ·0 • • 
• • •• NO • PROGRAM IS • 

•• NO CALL 0.--------). EXECUTABLE ON • 
• 0 o. .LET OPTION ONLY. .. .. . . .. .. . ............... . 

[:-----------~~~~~~~-->1 AOA00100 ..... J2.......... . .... J3 1t ••••••••• 

• • .HEWLFENT DCA2. • ••• JI ......... . 
• SET MARKED CESD. .-._._.-.-.---.-. .TO INTERMEDIATE. 
• ITEMS TO NULL .-------->. COMPtrrE ENTRY .-------->. PROCESSOR • 
• TYPE • • PT A.ND BUILD •• • 
• •• ALIAS TABLE • • •••••••••••••• ................. . ............... . 

126 MVS/370 Linkage Editor logic 

• •••• 05 •••••••••• 
• COMPUTE • 
.TEMPORARY RELOC. 
.CONST FOR EACH • 
.CONTROL SECTION • 
.SAVE Re IN RCT • . ............... . 

1 ·····ES·········· .AC LATE SEG • 
• AND· 
• IT IN • 
• S HTABLE. · . · ............... . 

I .····FS·········· .ASSIGN PENDING • 
• TEMP LI NKED • 
.ADOR TO NO-TEXT • 
.CSECTS, ENTAB, • 
• eM • ................. 

1 ···.·G5.···· .. ··· 
:DI~pr.:~E=~~ N: 
• CESO MO • 
• ACCUMULATE • 
• TOTAL PR LEIIGTH • ................. 

.' . HS. •• 

NO o. ·~/oTET~L;·.' --.0.0 SEARCH ••• " • 
•• DONI': •• ·0 .. rs 

. ... · . • D1 • · . . ... 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3921-0 

CHART DB. ENTAB SIZE DETERMINATION ROUTINE (HEWLFENS) 

FROM ADDRESS 
ASSIGNMENT PROCESSOR · . ···A2···· ..... . 
: HEWLFENS : ............... 

'EO'" j ·····82····· ..... · . • sCAN CESD FOR • 
• LABEL • 
: REFERENCES : · ............... . 

1 
•••• *e2·· •••••••• 
• USING ID OF ID • 

:R~~~~T¥oF~5t.gft : 
• PC ENTRY IN • 
• CESD • ..... .... ....... . 

1 .. ···02···· ..... . · . • INSERT SEG NO •• 
• IN CESD FOR LR • · . · . .... ....... ..... . 

1 . '. 
E2 *. o. t. o. .. NO .0 IN OVERLAY • *---------------------. ---------------------

eo •• 
*0 •• ·0 .• 

CS 

·····F2·········· · . -SCAN CALL LIST. 
-ENTERING CHAIN. 
: POINTERS : ................. 

1 
ENS01S ••• 

G2 .0 •••.. G3 •••••••••• 
•• ANY •• • HEWLFLOG GCA2* 

•• CALLS FROM •• NO ._*_._*-*-*-*-*-* 
•• SEG NO. 1 TO • *-------->. PROGRAM IS • 

•• ANY OTHER.. • EXECUTABLE ON • 
•• SEG •• .LET OPTION ONLY. '. r... ..... ::::::::r ....... 

·····H2···· ..... . • DETERMI NE • 
• NUMBER OF ENTAB • 
• LINES FOR EACH • 
• SEGMENT • · . .... .... ........ . 

1 ·····J2·········· • HEWLCAOI • . -._._._._.- ._*-. 
• MAXE ONE CESD • 
• ENTRY FOR ENTAS. 
• PER SEGMENT • ................. 

····K .. ······••· . . 
----------,-------------------------------->. RETURN • . . ............... 

TO ADDRESS 
ASSIGlMItIIT 
PROCESSOR 

Program Organization 127 



This document contains restricted materials of IBM. 0 Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART DC. ENTRY PROCESSOR (HENLEENT) (PART 1 OE 2) 

FROM ADDRESS 
ASSIGNMENT 
PROCESSOR · ····"2········· . 

• HEWLFENT • · . ............... 
;;;;;;;;-,( 

: •••• 82 ••••••••• : 

• FIND NEXT • 
• CHAINED ALIAS • 
• ENTRY IN CESD • · . ................. 

I 
~ ···.·e2·········· • MOVE ALIAS • 

: ci~~BO,.5 :~?:s : 
• TABLE • · . ................. 

ENT00190 1 ·····02·········· · . • SCAN CESO FOR • 
-MATCHING ALIAS • 
• SYMBOL • · . ................. 

1 . '. E2 t. • •••• &1.......... . ...• EII.......... • .•.• ES ..•....... 
•• t. tENTER ISOIO OF • .SET TYPE FIELD • .PUT ADDRESS OF • 

• :. SY~:rNfiCH t: .!~ _____ >:S~aA~'iNAkl~s: ________ >:O'NT"fiiAfNStf~L: ________ >:SDFO~R,.tl,lNi=y : 
It. •• • TABLE. • TO' RULL. .CESD ENTity FOR • 

•• • • • •• •• ALIAS SYMBOL • 'or ................. ................. ····· .. r···· .. 
..... F2.......... . .... vs····.· .. ·· 
.ENTER ESOID OF • • PUT ESOIO 0F • 
• ZERO IN ALIAS • .CONTROL SE~TIOU· 
.TABLE FOR THIS • fOF ALIAS 3V'MBOL.. 
• ENTRY • • IN CESD t; .... TRY • 
• • • FOR SYMBOL • 

........ I :::: ::~:-------------------------------------------------------------::~~~~]"""" 
HNT00160 ••• EIft"00200 ••• 

G2 •• G3 •• .... .... 
YES •• ANY MORE f. NO •• IS THERE AN.. YBS 
___ f. ALIAS ENl'RIES.· ________ >·. ENTRY POJNT •• ---t .. .. .0 .. .. .. .... 

128 

·0 .• f. •• • •••• 
• .NO .02 • 

L>:o; •••• A~ • 
• AS· • . . .... 

MVS/370 linkage Editor logic 

J 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1912.1983 
LY26-3921-0 

CHART DC. ENTRY PROCESSOR (HEWLFENT) (PART 2 OF 2) 

..... 
*02 • 
•• A.~. . 
t 

• *0 ••• 
".2 •• AJ *0 ••••• ".4 •••••••••• 

o. +0 •• to • USING ESDI[' • 

.: ;YMBOLIC E. p~: .~9 ______ >.:· K~tAfi~E *: .~~ ______ >:F~g~:J~() c~~gL : 
to •• •• • • .ENTRY FOR ('SECT. 

+0 •• +0.. .coNTAIrHNG E.P •• .. .. .. .. . ............... . 
ENTOO]OO Ins lYES 1 ..... S2.......... . .... B3 ......... . ·····B4· .. ······· • •• USING ESOlD • • ADD C OL. 

• SCAN CESD FOR • .FROM END CARD, • 
• MATCHING SD OR • • LOCATE kEL • 

.SECTI REss. 
• TO J::H • 

• LR sn1POL. -CONST fo"OR CSEcr. • ASSI AOOR • 
• • .CONTAINING E. P •• • IN CARD. .. ...... ... ...... . ............... . . ............... . 

. 1 1 
C2 *0 ••••• C3 •••••• "' ••• 

• • to • ADD kEL COHST • 
NO •• • • • TO ASSEMBLED • 

-----------------*. SYMrlOL FOUND.. • ADDRESS (FROM. 
to •• • i:.ND CA~D' • 

*0 • • • • .. .. . ............... . 
·'lES l i <----- - - - - - - ------- - - - - - -" - - - - ---- - - - - - ---- - ----------------- - ---

V ENT00800 • +0 ..... 01.......... 02 .. 
• HEWLFLOG GCA2. •• IS •• 
• -._._.-._._.-.-. NO •• ENTRY PT •• 
• HIVALID ENTRY .<--------.. CSECT IN •• 
• POINT. •• SEGMENT •• 
• • •• NO.1.· ... ......... ..... .. ,. 

·YES 

ENT00900 1 ·····E2······ .... • SAVE ~. P. AODR • 
• .sAVE ESDID OF • 
• CSECT • 
:CONTAINING .1:.:. P. : ................. 

..... ·02 . 
• A5· . . . 

ENT012S0 1 
.····A~·········· .SCAN CESO FOR A. 

:PC:~~~O~~tE) : 
• WITH LOWEST • 
.ASSIGNEO ADOR. • . ............... . 

1 . '. 
B~ •• .. .. 

YES.· •• 
---., ENTRY FOUND •• .. . . .. . . . ... r 

·····C5·········· 
• HEWLFLOG GCA2. .-.-.-.-._.-._.-. 
• IhlVALID E[~TRY·. 
• POINT • · . . ............... . 

-------------:::::: ---+ -------- - -------- --------------------
. ···F2········· · . • RETURN • · . . ........... .. . 

TO ADDRESS 
ASSIGNMEN'f 
PROCE'5S0R 

Program O~ganization 129 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
lY26-3921-0 

CHART EA. INTERMEDIATE OUTPUT PROCESSOR (HEWLFOUT) 

FROM 
ADDRESS •• 0 0.0 0.0 
ASSIGNMENT 1>.3 .0 A4 .0 A. 5 .0 

•••• A2. •••••••• 0..0 0..0 0..0 
• • •• .0 NO 0 • XREF .0 YES o. RLDS IN .0 YE;S 
• HEWLFQUT ·-------->·oMAP SPECIFIED.·-------->·. SPECIFIED •• -------->.. VIRTUAL • • ---L 
• • •• 0 • •• • • .0 STORAGE •• ...... ......... .... .0.. .0 .. .. o. .0 o. .. .. • ••. 

• YES .NO .NO • • · ..... 1 : B3 : 
• B3 • • ••• 
• ••••• _> 

OUT0010~ ·····83·· ....... . 
• HEWLFMAP EBA2 • . _.- ._.- ._.- ._._ . 
• PRODUCE MAP OR • 
: XREF : ................. 

v 
~-- - - - -- --- - - - -- --- ---- ------ - -------------- - -------

OUTDO 300 ••• c3 *. • •• Cij........... . •••• CS •••••••••• 
.• *. *IDROUT ECA2* 

•• *. NO • WRITE OUT. *-*-*-*-*-*-*-*-* *. NO'f EDITABLE. *--------> CESD ON SYSLMOD -------->* WRITE OUT • 
*. *. .". • • :ID~~S~y§~SSY, : .. i :~. .......:::::::::::: :.......:::::::i ....... . 

.... ·03··· ...... . · --: BUILD HESD 

- -................. 
1 

OUT00525 • *. 
E3 *. • •••• E4 •••••••••• 

.• *. • HEWLFLOG GCA2. • ••• E5 ••••••••• 
•• TEXT IN *. NO *-*-*-*-*-*-*-*-* • TO FINAL • *. LOAD MODULE. *--------)*NO TEXT IN LOAD*--------)* PROCESSOR • 
•• •• • MODULE·· • .. . . . . .. .. . ............... . 
rs 

• *. . *. aUTOlOaD • * • 
••••• Fl.......... F2 *. F3 *. F4 *. • •• FS ••••••••••• 
• GET HI HY • •• *. .• *. • • *. BUILD AND 
• NO. H. YES •• 15 HIAR BIT.. • .IS PROGRA.M .0 YES • • .0 NO • WRITE OUT 
.CESO OM .<--------.. SET •• <-- •. IN OVERLAY 0.-------->.0 NOT EDITABLE •• --------> SEGTAB CONTROL 
:HIER BLE: .0....0. • •• 0 •• 0. .0... .0. • RECORD 

·········l········ ·0 .N~ • 0 .N~ • 0 .Y~S • ········1······· 
--------------~~;~;~~~--> 1 .!. L ______________________ > 

••• Gi........... • •••• G2.......... ct3 .0 ••• Gs ••••••••••• · . .... 
• WRITE OUT. • BUILD SCATTER. YES •• IS PROGRAM .0 • BUILD AND 

WRITE OUT 
SEGTA8 

SCATTER/TRANS <--------.AND TRANSLATION. -----•• TO BE SCATTER •• 
RECORDS. • TABLES. .0 LOADED o. 

1 . -. 
Hi OS .0. 

• _·~IRST TEXt_. NO 
• 0 IN LOAD MOD •• ----> ·0 o· ···r;· 
••••• Jl •••••••••• 
• BUILD , WRITE • 
• 1 BYTE TEXT • 
: CONTROL : 
• RECORD • ········1········ 
·····xl· ....... . 
: BUILD , WRITE : 

• 1 BYTE .---> 
• TEX'!' • - -................. 

• • •. o· ••••••••••••••••• ·0 o. . .•••.•••••.•••• 

- - - - - - - - - ----------------~~;~~~:~ --> l:~ ---------------------------____________________ J 
···83··········· READ TXT AND 

.RLD NOTE LISTS • 
INTO VIRTUAL 

STORAGE • ................ 
1 ·····J3·········· • MARX so, PC • 

.WITH HIGH ESDID. 
• IN PROGRAM (OR • 
• EACH SEG WITH • 
.TXT IN OVERLAY'. ................. 

1 OUT00515 . .... X3.......... . .... x ........... . 
• SAVE HIGHEST •• • • ••• ICS ••••••••• 
• SEG NO. OF. .INITIALIZE FOR • .TO SECOIID PASS • 
• SEGMENTS THAT .-------->. SECORD PASS .-------->. PROCBSSOR • 
• CONTAIN TEXT •• •• • · .. . . ............. . ................. . ............... . 

130 MVS/370 linkage Editor logic 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART EB. MAP/REF PROCESSOR (HEWLFMAP) 

.... · . • C1 • · ..... --~ 
NX'lSEGNO • *. 

el +. o. *0 
y~ •• IS THIS *0 
--- *0 LAST SEGMENT •• .. .. . ~ .. 

to •• r ·····01· ........ . 
• REINITIALI ZE • 
• REGISTERS, • 
• INCREMENT 
: SEGMENT NO. ................ . 

... ·A2········· · . HEWLFMAP • . 
j 

·····82········· . • INITIALl ZE • 
*GETMAIN, PRINT • 

: HEAgi~tMgbEN : ................ . 
1 . .. 

C2 •• ,. ·0 
NO •• ENTRY FROM ., ---.0 FINAL ,. ·0 o. . , .. •. o· 

1"
S 

.. ·02······ ..... READ CESD AND 
.FIRST CONTROL. 

RECORD FROM 
SYSLMOD 

· . 
• 1\4 • · ..... --~ 

MAPl3 ••• 
A4 •• . . .. 

'fES •• I S RI..o TYPE-. 

UNRES ... 
A5 • 

, . .. o. IS CESD .0 NO 

r---------------- ....... ~R •••••••• 

i r 
--> •• TYPE NEVER ,.---

•• CALL •• ·0 .. ., ,. (S 
... 

B3 •• 
.• *. 

o *IS RLD T'tPE*. NO 
•• PR2 • *---L .. .. .. , . .. ,. . ... rs :.1: 
. ... ·e3·········· · .. 
• SAVE CUMULATIVE. 
• LENGTH VALUE • · . · . ....... ......... . 

l ... . 
->. • 

: K3 : .... 

XL:'CONT • *0 
BI.f *. 

o • IS eESOt. 
• • TYPE ER •• YES 

*0 CUNRESOLVED) • *-----
*0 •• 

.~ .. 
*0 •• r . .. 

·····85·········· · . • INDIC~TE 'NEVER. 
• CALLI ON MAP • 
• PRINT LINE • · . . ............... . 

l •••• ->. • 
• Oil • . . .... 

CIl .0 ... .. c5 •••••••••• 0..' . INDICATE • 
,. IS CESO .0 YES .IUNRESOLVEOCW)· • 

•• TYPE WX •• -------->. ON KAP PRINT • .0 , • • LINE • .. ,. . . . ..... ·lN~ ........ J ........ . 

PlJT~~~~; L <- -- --------T---------- j 
• ··D"· ••••• ••••• t : •••• 05 ••••••••• : 

.WRITE LINE ON • • INDICATE • 
SYSPRINT ---.'UNRESOLVEO t ON.(--

.MAP PRINT LINE • · . .. .... ..... .... . . ............... . 
l ... . ->. • 

: x3 : .... L ____________ ~ --------->1 

. ··£1*·········· WRITE OUT 
• PR" S CUML. -->. LENGTH, E.P. 
AD~NGf~TAL • ... ............ . 

j 
····FI········· · . : RETURN : ...... ........ . 

TO FINAL OR 
INTERMEDIATE 
OUTPUT PROCESSOR 

..... ~2·········· .MAPOO 3 • · _.-.-. -. -. -. -_. _. 
• GATHER CESD • 
• ENTRIES FOR • 
• PRESENT SEGMENT • . ............... . 

MPOO. 1 ·····F2···· ..... . .SORT ASSEMBLED • 
• CESD ENTR IE S • 
.USE ADORESS AS • 
• KEY • · . ...... .... ...... . 

MP0055 1 
: •••• G2 ••••••••• : 

.CREATE MAP FOR • 
: THIS SEGMENT : 

· ................. 
1 ... 

~2 ., o· •. 
NO ... XREF .0 

l---.o SPECIFIED ,. .. ,. ·0 .. 

.... · . • FII • • •••• ·--v 
RLDOtrI'A ,., 

FIl •• o· ., 
LAST o. THIS •• RLO 

!---.. RECORD'S TYPE •• ---·0 , . ·0 , . .... . ... 
: Cl : rw 

···G4··········· 
PASS OVER 

TEXT RECORD . .............. . 
1 <----------

···H4 ••••••••••• . . 
READ Rill RECORD · . •••• ·0 .• • ••••••••••••••• 

: . :::5 I ::: ___________________ .. ____________________________ 1 
••••• J2..... ••••• • •••• J 3 •••••••••• · .. . 
• INITIALI ZE FOR • • I NCREMENT TO • 

• AND RLD.. • · .. . ...... ... ........ . ......... ".. ..... . • lOOP OF CESD· r-----. NEXT ITEM • 

1<----------' 1NO : .;:.: 
rri; •••• 

X2···... X3' '.0 X" •• , .. .. .··0 .... 
o. DOES THIS •• YES • • •• YES o.ENTRY FROM •• • 0 RLD ENTRY'S •• --------> •. END OF LOOP 0.-------->.. FINAL •• 
•• R"'P ... l\.o ••• 0 , • • 0.0 0.·· !....o.o 0.·· .0 •..• 0 • 

• NO ••• .NO 
L>. •••• • : K3 : L> •••••• 

: All : : Cl : .... 

Program Organization 131 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART EC. IDR WRITE ROUTINE (HEWLFOUT) (PART 1 OF 2) 

• •••• A2 •••••••••• 

: IDROUT : ............... 
j 

·····82· ........ . · . • MOVE SPZAP • 
• HEADER TO lOR • 
: OUT BUF : ................. 

1 
• to • *. e2 to c3 to ••••• c" •••••••••• 

•• *0 •• to • • 
•• ANY DATA IN •• 'lES •• -FORCE- to YES • TURN ON FORCE. 

to SPZAP TAB • *-------->*. FLAGS ON IN • *-------->*FLAG IN RECORD. 
to •• +0 TABLE •• • • 

*0 •• *0.. • • 
*0 •• *0 •• • •••••••••••••••• 

(~:: Ll·NO 1=----------------------J----------... 
••••• 02.... •••••• 03 to ••••• 0" •••••••••• 
• • ..00 MORE.. • • 
• SET NO OF. •• THAN 19 *0 YEs • SET NO OF • 
• ENTRIES = TO • to ITEMS REMAIN. *-------->*ENTRIES = TO 19-
• ZERO. •• IN TAB •• • • • • *0.· • • ••••••••••••••••• to •• • •••••••••••••••• 

1<---------- r 1 ... E2........... . .... E3.......... . .... E" ......... . 
• WRITE THE 

RECORD OUT ON 
SYSLMOD • ................ 
1 ·····F2·········· · . • MOVE LJ<EO DATA • 

• IDR TO lOR OUT • 
• BUF • · . ................. 

1 . ····G2·········· · . • MOVE TODAY'S • 
• DATE INTO • 
• RECORD · ................. 

1 · .. 
H2 •• .. .. 

YES •• ANY DATA IN •• 

J--_.. TRANS TA8 •• ... o.. • o. o.. .•••• .. o.. 
.02 • .NO 

· .. . 
• SET NO OF. .MOVE 19 ENTRIES. 
.ENTRIES = TO NO. • FROM TABLE TO • 
• LEFT I N TABLE • • IDR OUT BUF • · .. . · .. ····r······ ·······r······ 
••••• F3.. •••••••• • •••• F4 •••••••••• · .. . 
• MOVE DATA FROM • .TURN ON 'CHAIN • 
• TABLE TO lOR • .BIT' IN RECORD • 
• OUT BUF. • HEADER • · .. . ................. . ............... . 

.t 1 
G3 •• • •• G" ••••••••••• .. .. 

NO •• AR,ENOOP •• 
----- •• ENTRIES > 1" •• .. .. .. .. .. .. 

r~ 
·····H3·········· · . • TURN ON CHAI N • 
• BIT • · . · . ................. 

• WRITE THE 
RECORD ................ 
1 ·····8"·········· · . • UPDATE TABLE • 

• POIN'l'ZR BY 19 • 
• ITEMS • · . . ............... . 

1 
.... . 82····· 1 .01 • • •• 01 • 
• J1 .--1 • • J2 .-> · . . . .... . ... 1 · .. ..... Jl.......... J2 .. · . ..... 
• ~K • END OF. NO ... A.NY DATA IN •• YES 
.IOR IN RECORD .<--------.. IOENT TAB ... ---~ 
• SUBTYPE FIELD • •• •• · . ... . ·········1········ ..... :~;.: • B"· .. . 

V ··.Kl··········· ····K2········· • WRITE THF .. . 
RECORD -------->. RETURN • · . ............... ................ 

···J3·········.· 
• WRITE THE 

RECORD . .............. . 
1 .····1t3·········· · . .TURN OFF CHAIN • 

• BIT • · . · . . ............... . 
l ... . ->. • 

• 02 • . . .... 

132 MVS/370 Linkage Editor Logic 

••••• Jq •••••••••• · . .TURN or .. CHAIN • 
• BIT ._--· . · . . ............... . 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART EC. IDR WRITE ROUTINE (HEWL'OUT) (PART 2 9' 2) 

.... 
-02 • 
• B2 0_-1 o 0 .... 
• ••• -S2*' •••••••• 
o 0 

• MARK 'TRANS • 
• DATAl IN SUB • 
• TYPE FIELD • o • ................. 
:';;*: 1 
• •••• *-> 

,0, ..... Cl.......... c2 to 
• • .' MORE t. 
• MOVE 2SS TO. YES •• THAN 253 '. 
• BYTE COUN'!' *<--------*. BYTES LEFT IN.' 
-YIELD OF RECORD- t. TAB 10. · . t... 
.. ·····r··· .. · 
·····01.·.······· o 0 

• MOVE NEXT 253 • 
• BYTES OF DATA • 
,,.ROM TAB TO RBC. 
o • ................. 

1 ···El···· ...... . 
• WRITE THE 

RECORD 

· .. ·····r···· 
·····n·········· • UPDATE TRANS • 

:PO¥~~Tt'~53 : 
• BYTES • o • ................. 

l .... ->. • 
• c2 • 
• 0 .... 

t ••• r ·····02·········· • MOVE NO OF • 
• BYTES OF DATA • 
• IN TAB + 2 TO • 
• BYTE COUNT OF • 
• RECORD • .. .. · .. r .. ·· .. 
·····E2·········· o 0 
'MOVE DATA. FROM • 
'TABLE TO RECORD­
*IN lOR OUT BUP' • 
o • ................. 

l .... 
->*01 • 

• J2 • 
o 0 .... 

· ... 
·02 • 
• B'" .--1 o 0 · ... 
·····B ... ·········· o 0 

• MARl<' USER • 
• DATAl IN • 
• SUBTYPE FI ELD • o 0 . ............... . 
: .;:.: 1 
• ._> .... 

,0, 
c.. •• • •••• cs •••••••••• 

.; •• ;~S3··.. YES : MOVE 255 TO : 
•• BYTES LEFT IN •• -------->. BYTE COUNT • 

•• USER DATA.. • FIELD OF R&C01lOt' 
•• TAB •• • • r ·· .. ···r .. ···· 

..... 0............ . .... 05 ......... . 
• MOVE NO OF.. • 
: !praABO~ ~A~ : : W~ISN~TO~~~ : 
.BYTE coo ..... FLO • .FROM TAB TO REe. 
• Of'REC·· • · .. ····r· .... · ·· .... ·r .. ·· .. 
• •••• E... ••••••••• • •• 1.5 ••••••••••• 
o 0 
.MOVE DATA FROM • 
• TAB TO RECORD • 
.IN lOR OUT BUF • 
o 0 · ............... . 

l ... . 
->·01 • 

• Jl • 
o 0 

• WRITE THE 
RECORD . .............. . 
1 ·····FS·········· • UPDATE USER • 

• DATA TABLE • 
• POINTER BY 253 • 
• BYTES • o 0 . ............... . 

l ... . 
->. • 

• Cit • 
o • . ... 

Program Organization 133 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART FA. SECOND PASS PROCESSOR (HEWLFSCD) (PART 1 OF 2) 

· ... *A2*········ . 
: HEWLFSClJ : ............... 

j 
••••• B2 4 ••••••••• · . · . :lNITIALIZATION : 

· ................. 
~:~~ :-->1 

GETID • to 
C 2 ... • •••• c3 •••••••••• 

• • '. *GETI DMUL rBA2' 
• '" ANY TEXT to NO *-,-*-,-,-,-,-,-, '0 READY TO BE • ,-------->* DETERMINE • 
'. PROCESSED.' • ID-MULT TO • 

'0. .0' : •••• tf~~~ •••• : 

·l:~-------------------_J 
LOOKAHED • '0 

02 '. • •• "D3" •••••••• 
• • '. *GETIDMUL FBA2' 

.' NEXT TEXT '0 NO ,-,-,-,-,-,-,-,-, 
to READY TO BE • *-------->*DETERMlNE NEXT' 

to PROCESSED.' • IO-MOLT TO • '0 . • • PROCESS • 

'. I:~~--------------~~~~~~]"""" 
RLOSCAN • '. 

E2 '. · . '. o' ANY RLOS '. NO 
'. FOR TEXT • *---! '0 .' 

'0 .' '. .' ..... 
*YES *02 • 

1 "~l· 
CRREADY • *0 

F2 '0 ••••• F3 •••••••••• 
• ' PREV- '0 *WRTCRRLD' 

o .IOU8 CONTRL •• 'lES .-._.-.-.-.-.-.- • • 0 REC READY TO •• -------->. SET UP AND .---~ 
•• BE WRIT- o. .WRITE PREVIOUS • 

• , TEN •• .CONTROL RECORD • ·0 o. • ••••••..••.••••••••• 
·H8 • • .... 1 .... . G2 • 

• • ·01 • •• 
• G2 • • G3 .--1 
• ••••• _> : •••• . .. 

G2 ••••• G3 •••••••••• 0..0 .RDRID FCA" • 
• • NEEDED RLDS •• NO .-._.-.-._._.-.- • 

• 0 IN VIRTUAL o. -------->. SET UP AND READ • 
• 0 STORAGE •• • NEEDED RIDS • .. .. . . 

'. i:~~--------------~~~~~~J .. ······ 
v ·····H2········ .. • HEWLFREL FEA2 • . -.-._. _. _. _. -.-. 

• RELOCATE ADCOHS. 
• OF CURRENT • 
• ID-MULT • .... .......... .. . 
:~i:· .->1 · . .. .. 

MVRLD "····J2·········· · . • MOVE RELOCATED • 
• RLDS TO RLD • 
• OUTPUT BUFFER • · . ....... ......... . 

134 

I ... . 
->·02 • 

: AI •• 

MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. 0 Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART FA. SECOND PASS PROCESSOR (HEHLFSCD) (PART 2 OF 2) 

..... 
*02 • 
• Al' .. 
1 

A1- •••• ..RLD210A1 ••••• ··.··A" ••• · •••. ·. 
• • '. • • 0 E '. • .. TCRRLD • 

• 'RLD OUTPUT '. YES .' '. YES *-*-*-*-,-*-*-*-* 
'. "BU .... ERS FULL. *----------------------------------)*. CON PREV. *-------->, SET UP AND • '. .' *. OL .' -WRITE PREVIOUS • *. .' f.R D.' • CONTROL RECRD • ' •• ' * •• ' ••••••••••••••••• 

l·NO I'NO L>:o~' • 
• J2 • . . .... . '. . '. 

Bt '. 83 ' • . ' '.. .' ' . 
• ' MORE RLOS '. US .' PREVIOUS '. YES *. FOR TEXT • *---l '. WR ITE A DlJIIMY. ,-------------------------------'. .' . *. WRITE .' 

*. .' '. .' * •• ' ••••• * •• ' 

.... ~~>l~ ~: l~ 
.'. .'. MVRLD220 Cl '. C3 '. • •••• e,........... . .... es •......... 

• • '. • • '. • WR'l'TXT POAI* 'WItTCRIlLD • 
• ' LAST TEXT *. NO .' MORE RLEIS '. NO *-*-,-,-,-*-*-*-* .-.-.-.-.-.~.-.-. 
• •• •• • •• TEXT • • .WRITE TXT RECRD. 1\. WRltz U RLD • 

• IN GROUP .---l •. NEEDED POR •• -------->. SET UP AND .-------->. Sft UP UD • 
•• • • •• • • • I F NEEDED. • RBCORD • .. .. ..... .. .. ................. . ............... . 
l·YES :O~2: l·YES L •••• 

• • >·01 • 
• • J2 • . . 

•••• 
IASTrXTO01••••• • •••• D2.......... • •••• 03 •••••••••• 

• ••• .WItTCRRLD. .WRTTXT FDA 1 • 
•• PREVIOUS •• NO .-.-.-.-.-.-.-.-. .-.-.-.-.-.-.-.- • 

•• CONTRL RECORD •• -------->. SET UP AND. • SET UP AND .-------------------------------
•• WRITTEN •• .WRITE PReVIOUS • • ISSUE DUMMY • 

•• •• .CONTROL RECORD • • WRITE • 

··l~:--------------:~::::: j" .••..• . .....••••••••••. 
TEX'l'WRIT ••• 

El •• • •••• E2 •••••••••• 
• ••• .WRTTXT FOAl • 

•• PREVIOUS •• YES .-.-.-.-.-.-.-.- • 
•• WRITE A DUMMY •• ------.->. Sft UP AND .0 WRITE o. . ISSUE XDAP 

•• •• • WRITE • .. .. . ............... . r ·····Fl ......... · .WRTTXT FDA1 • . -.-.-._._._._._. 
• S&'I'UPAND • 
• WRITZ TEXT • 
• RECORD • ................. 

1 <------------------------1 
.. ITO ••• 

G1 •• • •••• G2 ••••••••• 
•• MORE •• .WRTCARLD • 

•• THAN ONE •• YES .-.-.-.-.-.-.-.-. 
··f~ Bg~~ER ~~ •• -------->: wI~EU:NA=~ : •. o. • UCORD • .. .. . ............... . r 

TSTSGEND ••• 
Hl •• • •••• H3 •••••••••• .. .. . . 

•• TEXT LAST •• 110 • SET' END OF • 
•• IN SEGMEN'I' •• ---l • MODULE"-III .-----.0 . • .CONTROL RECORD • ·0 .• •• .. .. ..... . ............... . 

-YES -01 • A I "~l' lYES 
5GB"Dt Jt···.. J2···.. J3· ·.0 5G~~~ •• J".......... • •••• Js •••••••••• · • .0 . . .. . • .. • . .waTeRRID • 

• : ~NTAB NEEDED·: .!~ ______ >.: • S~¥lLR~S BE .: • !~----->.: ~S~S sl~~NT .: .~-----_>: ~I~MP ¥~ :-------->:-·SET ·u;-~;-.-: 
•• •• 1\ •• WRITTEN •• .0 . . • CONTROL RECORD • .WRITE " COMTROL. •. o. .... •... • •• RECORD • 

. ·l·~S '. i~------------- ________ :~: ~: _______________ :~~~~~~:::~~~~~~~ _________ ~~~~~~~~ iO

" ••••• 

SGEND3 0 •• ..... )(1.......... )(2 .. 
• SCDENTAB. 0... . ... )(.3 ••••••••• 
• -.-.-.-.-.-.-.-. •• ANY MORE .0 !'fO • TO FINAL • 
• ENTAB-£trI'A.B RLD.----- .0 SEGMENTS TO •• -------->. PROCESSOR • 
• CREATION. .0 PROCESS o. . . · . ·0.· .............. . ....... .......... .. .. 

·YES 

t ..... 
·01 • •• C;. 

o 

Program Organization 135 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972.1983 
LY26-3921-0 

CHART Fl. GETIDHUL ROUTINE 

... *Po2········· · . : GETIDMUL ............... 
j 

·····B2······ .... • SEARCH TXT 1/0 • 
• TABLE FOR NEXT • 
• ID-M.ULT TO • 
• PROCESS • · . .. .............. . 

1 .•. 
e2 +0 ••••• C3 •••••••••• 

•• *0 .SET UP CONTROL • • ••• e" ••••••••• 
• • •• NO • BLOCK TO.. • 

*0 ID-MULT FOUND. *--------)* REFLECT NO +--------)+ RETURN 
• • • • • LOQI< - AHEAD. • 

*0 •• • • • •••••••••••••• 
to •• • •••••••••••••••• 

.rES ID~Ll 90 .1 ~o 
02 *0 03 *0 ••••• 0" •••••••••• 

•• *0 •• *0 +RDTXT FCAl. 
• *ID-MULT IN *0 NO •• WILL RECORD •• YES *-*-*-*-*-*-*-*-* 

*0 VIRTUAL o*-------->+.FIT IN BUFFER. *-------->*SET UP AND READ. 
*0 STORAGE •• •• • • • NEEDED TEXT • .. . . .... . . 

.. I ~~ ---------------- ----~~:~~---------------~~~~~~::j ....... . 
IDMUL301 • *. 

E2 •• .. . 
•• *0 'fES 

*0 seTR OR DC • *-----.. .. .. .. .. .. r .•. 
F2 •• • •••• F3 •••••••••• 

•• CAN .0 .SET UP CONTROL. • ••• F4 ••••••••• 
• .ID-MULT BE •• NO • BLOCK TO.. • 

•• GROUPED IN 0.-------->. REFLECT NEW .-------->. RETURN • 
•• PREVo o. • GROUP.. • 

•• GROUP.· • • •. o· ••.•••........... 
rES 

·····G2·········· .SET UP CONTROL • 
• BLOCK TO .. 
• REFLECT .. 
• CONTINUED • 
• GROUPING • ..... ........ ... . 

j 
····H2·········· · . • RETURN • · . ........... .... 

136 MVS/370 Linkage Editor logic 



L 

L 

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART FC. TXT READ ROUTINE (RDTXTJ, RLD READ ROUTINE (RDRLDJ--HEWLFSIO 

.... ·A1'········ . 
: RDTXT : .............. . 

1 ... ·'B1*····· .... · . 
: LSTABLISH : 
• AlJ:)N.SS,\BIl,ITY • · . ............ ..... 

---------J v . .. 
ct '0 ••• c2 ••••••••••• 

• ' ANY '. 
.' UNCHECKED '0 YES '0 TEXT READS • ,--------> CHEeR '0 . • • ". ." ............... . 

·1:: -- ---------------------J 
•• '01" ••••••••• 

READ . .......... .... . 
1 · .···E1······ .... · . • MARK TEXT IN 

• INVIRTUAL 
: STORAGE • ....... ...... ... . 

1 
RDTXT7Q • '. 

Ft '. o· '. YES. • ANY '0 
---'oOtn'-QF-OROER .' '0 TEXT .' '. .' '0 .' r ····Gl········· · . : RETURN : ............... 

... 'A"*········ · . • RORLD • · . .... ........ .. . 

1 
•••• 'S4 •••••••••• · . 
: LSTABLISH : 
• ,\LJlJRLSSABILITY • · . . ............... . 

1 ... 
C4 '0 ••• eS-· ••• • •••••• 

.' ' . • • ANY '0 YES 
•• UNCHECKED •• --------> CHECK 

•• READS •• • .. .. . r -------------::::::::r···· 
···04··.········ 

----> • READ ................ 
1 ···E4.·· .. ······ 

CHECK . .............. . 
1 ·····F4 ....... · .. · . • ~K RLDS • 

• IN VIRTUAL • 
: STORAGE : ................. 

---------->1 
RDRLD1SO ••• 

G4 •• .. .. ····Gs········· •• ANY MORE •• NO. • 
•• RLDS FOR TEXT •• -------->. RETURN • .. .. . . .. .. . ............. . . ... rs 

... 
H4 •• .. . .. 

YES •• RECORD IN •• 
---.. VIRTUAL •• 

•• STORAGE.· .. . . .. .. r ... 
J" •• .. .. 

YES •• ROOM IN RLD •• 
-----•• INPUT BUFFER •• .. .. .. . . .. .. r 

••••• 1(" •••••••••• · . ····as········· • INDICATE MORE •• • 
• RL05 TO U READ.-------->. UTlMM • · .. . · . . ............. . ................. 

Program Organization 137 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART FD. TEXT WRITE ROUTINE (ON SYSLHOD) (WRTTXT)--HEWLFSIO 

· .... AI'······· .. 
• WRT'TXT 

j 
: •••• B1 ••••••••• : 

. ................ . 
1 .' . 

Cl '. 
WHTTXT90 ···e2'········· . o· '. • ' PREVIOUS '0 YES 

'.WHITE A DUMMY.'--------) 
'0 WRITF. .' • . . 

'0 .' r . 

. 
XDAP 

Dl *0 ••••• 02 •••••••••• . . '. . . 
• 'FIRST TEXT '0 YES • SAVE RELATIVE' '0 OF SEGMENT • ,-------->* TRACK ADDRESS' '0 .' • IN TTR TABLE • ". .., : ............... : 

· C-------------________ J 
v · '. 

-------->. 

E1 '. . .. E2··········· . . " o' ANY '. YES '0 UNCHECKED • ,--------> CHECK '0 WRITES • • 
'. 

'. i:~--------------~~~~~~~~]······ 
v .. ·Fl··········· 

WRITE 

1 · '. Gl •• • •••• G2 •••••••••• .. .. . . 
•• •• YES .INDICATE DUMMY • 

•• DUMMY WRITE •• -------->. WKITE • .. . . . .. . ... : .............. ' 
· r-----------------------J · '. HI •• 

• • FiRST TEX~· •• NO •• ···H2· •• ···•·· . 
•• OF LOAD •• -------->. RETURN 

•• MODULE • • .. . . . ............. .. .. .. 
1'"S 

•••• ·Jl· ••••••••• · . • PUT NEEDED • 
• INFORMATION IN • 
: PDS : ................. 

j 
.. ··Kl········· · . : RETURN : ............... 

.' . . .. (" 1······ ..... ell *, o. '. . .. 'cs*" •••••• 
• • • 110 *. YES' • 

WAIT -------->*0 .~UCt·t:S£FUL ,0 "'-------->: Hl::TURN : 

*0 •• . ............. . 
'. .' r "'··'04 ••••••••• 

• EXIT EkROR • 
t<OUTINE 

138 MVS/370 linkage Editor logic 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART FE. RELOCATION ROUTINE (HEWLFREL) (PART 1 OF 3) 

: •••• 01 ••••••••• : 

· ... 'A.!*····· .... 
• HEWLFREL 

1< -------------- ----------- ---- --- ------- ----- ------ii--- --- --- - -------- ----- --
RELOCATE v .. ··'82*········· 'CALCULATE ADOR.' 

• AND EXTENT OF • 
• RLDS IN INPl1T • 
• BUFFER • · . ........ ..... .... 

1 ••••• c 2 •••••••••• · . 
:S~~5A~EP¥6N~~R, : 
• FIELD • · . .......... ...... . 
1:~::-->1 YES YES 

02···.0 REL~~;~ZD3""""" DU '0 os' " o. '. • UPDATE LOW • •••• • • '. 
'UPDATE TO NEXT' • *END Of RLD '0 YES 'MULTIPLICITY ORe • 'MORE NEEDEO', NO • *NEEDED KLOS', 
• RLO ITEM ,--------;.*. EXTENT • *-------->* MARl< ENTRY *--------)*.RLOS IN GROUP. ,-------->*. IN OTHER .' 
• • '. .' • • PROCESSED' • '0 . • '0 BUFFO .' 
• • '.. • • • •••• '0, • ••••••• •••••••••• '. .' ••••••• •••••••••• '0 .' '0 .' 

...... El.!......... ,,.C. . r 
.' '0 •••• ES ......... . 

• uPDATE LOW. NO •• RLD WITHIN •• • • 
• MULT. IF IN ,,<-------- •. TEXT LIMITS.. • RETURN • 
: HIGHER MUL'J. : ••• 0.... • ......•......... ............. .... .. .. rs 

: •••• F2 ••••••••• : 

.OETERMINE ADCON. 
• LENGTH : · . .. .......... .... . 

1 · '. G2 •• • •••• G3 •••••••••• ...0 .ERROR • 
•• INVALID .0 YES .-.-.-.-.-._.-._. 

•• TWO-BYTE o.-------->.SET BIT MAP TO • 
•• ADCON. o. .REFLECT INVALID. 

•• • • • 2- BYTE AOCON • ·0 .. • •..•.••••••••••• 
·NO l .... 
1 ->:°51·. 

RELCX:20 •• 0 

. . .... 
H2 .0 ..... H) •••••••••• .• .0 .SPLTADCN. 

•• •• YES ._.-.-.-.-.-._.- • 
•• SPLIT ADeON 0.-------->. SPLIT AOCON 

•• •• • ROUTINE ·0 .• • 

··l:~------.--------~~~~~~~~i········ 
RELOCbO •• 0 

J2 .0 ..... J) •••••••••• 
•• •• • OBTAIN DELINK • o. ADCON •• YES • VALUE AND • ··.0 ~~E'i~~f~ .• · .-------->: pgy~~~TF~R : .0. •.• : •. ~fWi~r!~~ ••• : 

· r---------------------J 
· '. K2 •• o· .. 

o .IS THIS AN •• NO 
•• OVERLAY •• ---l 

•• MODULE •• ·0 .. ·0 .• • •••• 
• YES .02 • .. t.. . .:!. 

·0) • 
• Al· · . . 

Program Organization 139 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART FE. RELOCATION ROUTINE (HEHLFREL) (PART 2 OF 3) 

..... 
·02 • 
• Al· .. 

kELOe?? 1 
: •••• 1\1 ••••••••• ; 

• MOVE ADeON FROM. 
• TEXT TO WORI< • 
• REGISTER • · . ................ . 

RELOC130 ••• 
Bl •• 82 to ••••• el •••••••••• 

• • •• •••• • INSERT • 
•• IS RLD TYPE-. NO •• IS RLD TYPE •• YES • CUMULATIVE PR • 

*0 RELATIVE • *--------)*. PR TYPE 2 0*-------->* LENGTH INTO *---
• • •• • • -vALUE OF ADCON • 

*0 • • •••• • • .. .. .. .. . ............... . rs ro 
RELOC90 • *0 • *. 

el •• C2 *0 ••••• e3 •••••••••• 
• • IS HESO.. •• *0 • • 

•• Etn'RY FOf< •• NO •• IS RLD TYPE •• YES t"DD OR SUBTRACT. 
to A[.!CON MARKED. *___ • DELINK • *-------->* OELINK VALUE • 

• •• NEG •••• *0.. •.• : : 
'. 'l hS ··l·N~ ········r···::::· l_>* • 

: E1 : 

v • *0 ..... 01.......... 02 *0 
• • • • *0 
• MAKE IT A. • .IS RLO" TYPE •• YES 
• FOUR-BYTE· •• ABSOLUTE •• ---1 
:NE:GATIVE NUMBER: •••••••• v ................. .. .. . ... 
: .;:.: 1<---------- l·Nc

: .:~.: 
• • - > .... ..... El.......... . .... E2 ......... . 
• PERl-'ORM. .TYPE IS BRANCH • 

:aEt~c~~~~~AC'~DO: :Ig~Ek~ I~~~J+E: 
• RELOC. FACTOR • .H.EL. FA.CTOR FOR. 
• • .VALUE OF AOCON • 

....... . i~: ::::: : _________ ::::::::1:::~:: ::-----------------------------
RELOC100 V ... ··Fl·········· · . ·MOVE: RELOCATED • 

·A.Oe'ON BACK INTO. 
: TEXT RECORD : ................. 
~:~::--> 1 
.... ·Gl·········· · . • RELOCATE • 
• ADDRESS FIELD • 
: OF RLD ITE:M : ................. 

1 . '. 
HI .0 .•... H2 •• •••••••• .• ·0 • • . . .0 YES • SAVE RLD ITEM • 

•• SPLIT AOCON •• -------->. IN RES!) PREFIX • ·0 .• • • .. .. . . 
l ~j: >~~1':~----- ----------:~~~~~~:j ....... . ... . 

RELOC120 
: •••• Jl ••••••••• : 

• UPDATE TO NEXT • 
• RLD ITEM • · . · . .. ... ........... . 

140 

l ... . 
->·01 • 

: 02 •• . ... 

MVS/370 Linkage Editor Logic 



Th;s document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART FE. RELOCATION ROUTINE (HEHLFREL) (PART 3 OF 3) 

..... 
-03 • 
• 1'.1' .. . 
J 

SCDOVLY • '. 
Al '. 

• • t. o. l~ IT A. '. NO 
•• ~~TY E ADco~ •• '---1 

*0 • • v '. .' ..... r" :::l: 
.' . .• 81 to.. :;:~~~2""""': 

• *IS ADeON I S to NO *_*_*_*_*_*_*_*_* 
to LENGTH ("OUR o*--------.>*SET BIT MAP TO *---l 

*0 BYTES .' *REFLECT INVALID' 
'. .' • V-TYPE • 

to .' •••••••••••••••••••••• 
'YES '02 • I .. ~!' 
v . '. 

ct '. 
• *IS THE *. o. ADCONIS '. YES 

*0 SYMBOL UN- • *---L 
*0 RESOLVED.' 

*0 .' '. .' ..... ro :~i!: 
v ·····01········· . · . 'OBTAIN SEGMENT • 

• NUMBER OF • 
:CALLED SEGMENT : ................. 

1 ... ··El···· ..... . · . 'OBTA!N SE:iMENT • 
• NUMBER OF • 
'crtLLING SE::iMENT* · . ....... ......... . 

1 ... ··FI·········· • HEWLCPTH • *- *- *- *- *- *- *-* _. 
• FI NO COMMON • 

:HIG~:~+ ~i~HNO.: ................. 
1 -------------~ 

Gl' •••• OVLY"'O G3··· •• · . .. .. . . 
•• IS IT AN .0 YES YES •• ENTRY LIST •• 

•• UPWARD CALL • • _--t ---.. ENTRY FOR •• 
•• •• •• THIS ID •• •. .. ·0 .• .. .. ..... . ... r :~:!: r 

••• 0·' 
HI .0 H3 •• • •••• H" •••••••••• 

o • •• • • .0 • HEWLFLOG GCA2. • ••• H~ ••••••••• o. IS IT.A •• YES •• ENTRY LIST .0 YES .-._._._._._._._.. • ·0 DoWNARD CALL 0.--------------------_________ •• FULL 0.-------->. ENTRY LIST .-------_>. RETURN • 
•• 0 • " •• 0 • • OVERLFOW.. • ·0 .• .0 .• • • • •••••••••••••• •. .. ·0 .. . ......•......•.. 

OVLYlO . r OVLY90 r 
Jl .0 •••.. J3 •••••••••• 

• .15 IT A.. •• o. LATERAL .0 YES • CREATE NEW • 
•• CALL ACROSS •• --- .ENTRY IN ENTRY. ·0 REGIONS •• • LIST • ·0 o. • • •. o· ••••••••••••••••• . r 1 

Kl •• • •••• K3 •••••••••• o. I S IT .0 .CHANGE VALUE OF. o. AN •• YES .V-TYPE ADCON TO. 
•• ALLOWABLE •• ---------------------------------->.POINT TO ENTA8 • 

•• EXCLUSIVE.· • EIfI'RY • 
•• CALL. • •• 

"r~ ........ i .... · .. · 
..... . ... . 
• 02 • .02 • 
• AI. • Gt. . . . . . 

Program Organizat;on 141 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHARI GA, FINAL PROCESSQR (HEWLFFNL) 

FROM INTERMEDIATE 
OUTPUT OR SECOND PASS PROCESSOR 

··.·A2········· · . • HEWLFFNL • · . .... ...... .... . 
1 
.'. FNL100 82 t. • •• S3........... . .... Sq .•.•••..•• 

• • '. • PLACE TTR OF • 
• 'OVLY OPTION.. YES • WfU1'E TTR' • OVERLAY TTR • 

to SPECIFIED .t ________ > LIST FOR ________ >t LIST IN pos • 
t. .' • SEGMENTS • DIRECTORY • '.. ..' . ..... .......... : ............... : 

·l:~ -------------------------------------------------1 .•.•• C2.......... . .... C) ......••.. 
• PLACE MEMBER • • SET UP C-BYTE • 
• NAME IN POS • • OF DIRECTORY • -DIRECTORY FROM t ________ >* FOR • 
• NAME CARD OR • • BLOCK/SCATTER • 
• DEB • • FORMAT • ................. . ............... . 

EIITRY FROII J 
¥1Wd"l&¥ETO FNL301" r-----------------------~ •. 

•• 02....... 03 to ••••• 0 ........... . 
• STOW. • • •• • HEWLFLOG GCA2. 

• DIRECTORY • •• •• YES .-.-.-.-.-.-.-._. 
• WITH ADD OR .--------> •. ANY ERRORS •• -------->.1.00 ERROR TYPB • 

• REPLACE AS • • • • • • AND MESSAGE • 
• DIRECTED • •••• • • 

: : :~: ~ :::: :~:: __________________ : J~ _______________ ::::::] ....... . 
P'HL900A ••• P'NL900 ••• 

E2 .0 ..... In.......... Ell •• • ••••• ~ •••••••••• 
•••• • SAVE MAIN • • .REIft' OR.. • SAVE MI. • 

•• ANY ALIAS .0 'tES .MEMBER NAME AND. • • REUS •• YES ....... at! ~ ··l? BE STOWE? •• -------->: rUTTRIN~"h :--------> •. ~:nuBUTES ?~.-------->: DI&c~t.Pdm : 
•• • • • • • 0 • • • ADJUST C-8fta • ·0 .• ••••••••••••••••• •. .• • •••••••••••••••• 

'NO • \to I 
: .;;. =-'1 1<------------------------.... 

PIlLeN ••• ,.2 .. . ...... 3.......... . .•.. P,. ••.••••••• 
... HAVE •• .PRINT IMAGE TO • • PIcl( UP ALIAS • 

o .A'rl'RIBU'l'ES •• YES • MOTIFY OF. • a. P. C EITHER • 
•• CHANGED SINCE •• -------->. CIlANGSD .DBFIIIBD OR USE • 

•• START OF •• • ATTRIBUTES • MIN a.o P.' • 
• .o EDIT •• • •• • 

• ..... ENTRY FROM ··l·~ ........ }......... ········1········· 
: .:~. : __ ~ ~Wxi:~TO < _______________________ _ 

.o.. PMLCII2 •• o 
Gl •• G2 •• ..G,. ••••••• 

• • • .. • • •• .STOII ALIU • 
• • HAS IT BaaN.. YES •• XREF •• YES • 1M • 

• ~ DONE • ·-----1 .. SPECIFIED •• ---, • PARTITIC*ED • •. •. . . . • •. •. . • . • * •• &fitcMlv •• 

··1·~ ---------::1·~: .::.: ·· .. ·1·····' .... 
IEWLCEOI ••• • • .o 

:.:~1·····;;.A2: :·H·;;M.,.~·······: .• H3 •.•. ..SII •.•. :::.at::.···;Qz: 
• .: .... .:.-:;~_._._._. ._._._._._._._._. •• •• YES •.• •• Ya .':'T.:.-r-.. .; ... _._. ___ ~ 

: PRODUCE XREF :-------->: g~A~K~I.r :--------> •. f~D OF ~NPU: ••• --- • .o.~ ERRORS .... -------->:LOG..rIIaIJr : 
• •• DIRECTORY • ••• • •••• • • 
••••••••••••••••• ••••••••••••••••• • • .o. •• •• • •••••••••••••••• 

142 

·NO ·NO L 
J------------------------J 1 >(;;.: .... 

FIIL90." .. J2....... ..J)....... . .... J ........... . · . . . . . 
• REPOSITION • • • • ~ TO PRIM, • · .Jn~~~~f,.· .~LOSE ALL FILE~.<-- :ALI ~E" '1'8: · . . . . . 

······1····· ·····1··· .. · ······'T:::::: 
• 12 • • • •••• 

·····1t3·········· •••• 1t2... ...... • saT UP • • ....... . 
• RITURN TO. .COlmITIOli CODE • .11'0 • 
• IMITIALIZER • • IIIDICE IF .---------- .. ----------------------->. • • •• aft IS. •• ••••••••••••••• • nECUT I.E • • •••••••••••••• ................. 

MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

CHART GB. SYNAD ROUTINE (HEWLCR01) 

FROM 8SM 

A2"·O.o A3···.. A4'*'.o "s··o.o 
••••• Ao1.......... ..··IS THIS·· •• NO "F:6~ l~~t~N" YES •••• IS IT •••• 'lES •• i; IT VAL;O" YES 
• HEWLCROl .--------> •. fROM 5YSPRIN'T •• --------> •• OR SYSLIB " •• --------).. INCORRECT •• --------> •. SHORT BLOCK •• _--
• • '0 .' '. FIXED .' '0 LENGTH .' '0 .' '. . • •..• •..• '0' • 

'. .' '. .' '0 .' '0 .' 

e:~ .::. : r----- __________________ r _______________________ r 
····ss··· ..... . .... ·S3·········· · . • SYNADAF MACRO • . . 

FROM BPAM 

• FOR 8SM • · · ................. 
l .... 
->. * • F3 • . . .... .... ·e3···· ..... . ... ·e2···· ..... . . 

• •• SYNADAF MACRO • 
• HEWLCRC2 • -------->. FOR BPAM • · .. . ........ ....... . . ......... ... ..... 

1 . '. 03 '0 • •••• 0" •••••••••• 
• ' '. • SET BIT • 

HO •• ENTRY FROM •• YES • INDICATING • 

!--_.. MAP •• -------->. ERROR WHILE • 
. •• • • .READIP«i SYSLMQD. .. .. . . .... .. .. . ............... . .. . 

• F3 • . . 
FROM XDA.P 

·····E3·········· • ····£2········· • : S'iNAOAF MACRO: 
• HEWLCR03 .-------->. FOR EXCP • · .. . ...... .... ..... . . ................. 

: :::: L 1<------------------------
MESGPNTA 0.' 

••••• F2.......... F3 .0 ..••• F4 •••••••••• 
• INSERT. •••• • INSERT • 
• I IEW06 30' IN. YES •• ERROR .0 NO • I IEW029_ I IN • 

:~*, Jr-Br~TJ~:<-------- •••• ~i~~~g .• 0 .-------->:~. ~~TB¥fT,J;: 
• PROCESSOR • ••• • • PROCESSOR • 

.. ·····1:::::: ... _...... ... ::; :........... .. ::] ....... . 
·····G3···$······ · . • MOVE MESSAGE TO. 
• PRI NT BUFFER • · . · . ..... ........... . 

1 ·····H3·· ....... . 
• HEWLEPNT • . _. -. -.-.-. _._.-. · . • PRI NT MESSAGE • · . ......... ....... . 

1 .. ···J3·.···· .... · . · . :SYNADRLS MACRO: · . ......... ....... . 
1 .... . . 
.'. : .::. :--1 ..•.. 1(2.......... K3 .. 

•••• Kl......... • TURN OFF BIT • •••• • ••• 1( .......... . 
• RETURN TO. • INDICATING. YES •• ERROR •• NO • EXIT TO PINAL • 
• MAP/XREF .<--------. ERROR WHILE .<--------.. READING •• -------->. TO ABORT • 
• •• READING SYSLMOO. •• SYSLMOO •• • • ................ . ..... . ............. . ................. . .. . . 

RETURN .<--. 

Program Organization 143 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
lY26-3921-0 

CHART GC. ERROR LOGGING ROUTINE (HEWLFLOG) 

LOGO] ···ct··········· 

••• ·A2 ••••••••• · . • HEWLFLOG • · . . ... .......... . 

! ·····82···· ..... . · . • SEPARATE ERROR • 
• CODE AND • 
• MESSAGE NUMBER • · . .. ..... ......... . 

1 
LOGO 7 .' . 

c2 *. o. *0 
WRITE OUT 

CARD IMAGE 
• YES •• CONTROL to 

....... ........ . 

! ····01····· .... · . • RETURN • · . ............... 

<--------•• STATEMENT TO •• 
*0 BE LISTED •• 

to •• 
to •• r . '. 

02 t. o· *. 
o .CESD SYMBOL.. NO 

t.TO BE WRITTEN.*---
*0 OUT •• .. .. .. .. 

rs 

·····E2·········· · . • MOVE SYMBOL TO • 
-MESSAGE BUFFER • · . · . .. ....... ....... . 

1 . '. 
F2 *. o. t. 

o *IS THERE A •• NO 
to SECOND SYMBOL. *--> 

to •• 
to •• 

to •• rs 

·····G2·········· · . • MOVE SECOND • 
• SYMBOL TO • 
• MESSAGE BUFFER • · . ................. 

LOG10 1<----------
···H2··········· 

• WRITE OUT 
MESSAGE BUFFER · . ................ 

~Ol 1 ·····J2·········· · . • UPDATE • 
• CONDITION CODE • · . · . ................. 

1 
GAG2 ••• 

X2 •• .... Xl......... .... . ... Xl ..••..••• • • YEs.. ..110. • 
• HEWLFFNL .<--------•. SEVBRITY CODE •• -------->. RaTWt. • · . .. .. . . ............... .... . ............. . .... . 

144 MVS/370 linkage Editor logic 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

MICROFICHE DIRECTORY 

symbol Type 

APT END Entry 

APTEXLST Label 

APTXLIST Label 

APTOOO Entry 

CHECKRD Entry 

CHECKWRT Entry 

ENQNAME Label 

GETIDMUL Entry 

HEWLCADA Label 

HEWLCADI Entry 

HEWLCAUT Entry 

HEWLCDCN Entry 

HEWLCDLK Entry 

HEWLCEOD Entry 

HEWLCEOI Entry 

HEWLCE30 Entry 

HEWLCFAB Entry 

HEWLCFNI Entry 

The microfiche directory, Figure 33, is designed to help you 
find named areas of code in the program listing, which is on 
microfiche. Microfiche cards are filed in alphameric order by 
object module name. If you wish to locate a control section or 
entry point on microfiche, find the name in column one and note 
the associated CSECT name. A description of the control section 
is also given. 

This section also contains a module-CSECT cross-reference table 
(see Figure 34 on page 148). 

CSECT Description Referenced By 

point HEWLFROU See HEWLEPNT 

HEWLFROU Open exit list for HEWLFINT, HEWLFINC 
SYSLIN, SYSPRINT, and 
SYSLIB 

HEWLFROU Open exit list for HEWLFINT, HEWLFMAP 
SYSLMOD 

point HEWLFAPT SYNAD exit routine for 
SYSPRINT 

point HEWLFSIO Routine to check reads HEWLFREL 
on SYSUTl 

point HEWLFSIO Routine to check writes HEWLFREL 
on SYSLMOD 

HEWLFROU Major name by which HEWLFINT, HEWLFFNL 
SYSLMOD is enqueued 

point HEWLFSCD Text LOOK AHEAD/READ HEWLFREL 
AHEAD routine 

HEWLFROU Not used 

point HEWLFADA Routine to make CESD HEWLFENS 
entries for ENTABS 

point HEWLFINC Automatic library call HEWLFINP 
processing 

point HEWLFRCG Library DECHAIN routine HEWLFESD 

point HEWLFINP DELINK routine HEWLFESD, HEWLFRAT 

point HEWLFINP END-OF-DATA routine for HEWLFINC, HEWLFROU 
SYSLIB 

point HEWLFFNL HEWLFROU 

point HEWLFESD Return point to avoid HEWLFRCG 
ESD processing 

point HEWLFFNL Termination processing HEWLFROU 

point HEWLFFNL Immediate termination HEWLFINP, HEWLFROU 
processing 

~ Figure 33 (Part 1 of 4). Microfiche Directory 

Microfiche Directory 145 



This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983 
LY26-3921-0 

symbol Type CSECT Description Referenced By 

HEWLCICA Label HEWLFINP Pointer to include 
processor 

HEWLCIDR Entry point HEWLFIDR lOR user data from HEWLFSCN 
IDENTIFY statement 
processor 

HEWLCINP Entry point HEWLFINP See HEWLFINP HEWLFTXT 

HEWLCMDB label HEWLFROU DCB for SYSLMOD HEWLFFNl, 
HEWLFINT, 
HEWLFMAP, 
HEWLFOUT, 
HEWlFSIO, HEWLFSYM 

HEWLCPDB label HEWlFROU DCB for SYSPRINT HEWLFAPT, 
HEWLFFNL, HEWlFINT 

HEWLCPTH Entry point HEWLFRCG COMMON PATH routine HEWlFESD 

HEWLCRBB Label HEWLFAPT DECB for SYSLIB 

HEWLCRBN Label HEWLFAPT DECB for SYSLIN 

HEWLCRID Label HEWLFESD ESD 10 of item HEWLFRCG 
currently in process 

HEWLCR01 Entry point HEWLFROU END-OF-DATA routine for HEWLFINC 
SYSUTl i SYNAD routine 
for SYSUT1, SYSPRINT, 
and SYSLIN 

HEWLCR02 Entry point HEWLFROU END-OF-DATA routine for HEWlFINC 
SYSLMOD 

HEWLCR03 Entry point HEWLFROU I/O ERROR routine for HEWLFSIO 
SYSLMOD 

HEWLCSDB Label HEWLFROU DCB for SYSLIN HEWlFAPT, 
HEWLFFNL, HEWLFINT 

HEWLCSNX Entry point HEWLFFNL Termination processing HEWLFROU 
after SYNAD exit 

I 
HEWLCTTY Label HEWLFESD Type flags for current HEWLFRCG 

ESD item 

HEWLCUDB Label HEWlFROU DCB for SYSUTl HEWLFFNL, 
HEWlFINT, . HEWLFOUT, 
HEWLFRAT, HEWlFSIO 

HEWL EEON Entry point HEWLFINP END-OF-DATA routine for HEWLFROU 
SYSLIN 

HEWlENAM Entry point HEWLFINT Reentry into HEWLFROU, HEWLFFNL 
initialization for 
multiple link-edits 

HEWLEPNT Entry point HEWLFROU SYSPRINT OUTPUT routine HEWlFBTP, 
HEWLFFNl, 
HEWLFINT, 
HEWLFMAP, HEWlFOPT 

HEWLERDM Entry point HEWLFINP PRIMARY INPUT READ HEWlFTXT 
routine 

Figure 33 (Part 2 of 4). Microfiche Directory 

146 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

symbol Type CSECT Description Referenced By 

HEWLFADA CSECT HEWLFADA Address assignment HEWLFIHC, 
HEWLFIHP, HEWLFROU 

HEWLFALK Entry point HEWLFROU TABLE ALLOCATIOH HEWLFAPT 
routine 

HEWLFAPT CSECT HEWLFAPT All Purpose Tabla HEWLFIHT 
(Communications Area) 

HEWLFAPX Entry point HEWLFMAP RECOVERY routine after HEWLFROU 
SYHAD exit 

HEWLFBTP CSECT HEWLFBTP Error message printing HEWLFFHL 

HEWLFDEF CSECT HEWLFDEF Default size values HEWLFIHT, 
HEWLFOPT, HEWLFOUT 

HEWLFEHD CSECT HEWLFEHD End record processing HEWLFIHC, HEWLFIHP 

HEWLFEHS CSECT HEWLFEHS EHTAB size HEWLFADA 
determination 

HEWLFEHT CSECT HEWLFEHT Entry statement HEWLFADA 
processing 

HEWLFESD CSECT HEWLFESD ESD record processing HEWL FIHP 

HEWLFFHL CSECT HEWLFFHL Final processing HEWLFOUT, 
HEWLFROU, 
HEWLFSCD, HEWLFADA 

HEWLFIDR CSECT HEWLFIDR IDR record processing HEWLFIHP 

HEWLFIHC CSECT HEWLFIHC Include statement HEWLFIHP, HEWLFSCH 
processing 

HEWLFIHP CSECT HEWLFIHP Input processing HEWLFIHC, 
HEWLFIHT, HEWLFROU 

HEWLFIHT CSECT HEWLFIHT Initialization HEWLFROU 

HEWLFLDB Label HEWLFROU DCB for SYSLIB HEWLFAPT, 
HEWLFFHL. 
HEWLFIHC, HEWLFADA 

HEWLFLOG Entry point HEWLFROU ERROR LOGGIHG routine HEWLFAPT 

HEWLFMAP CSECT HEWLFMAP MAP/CROSS-REFEREHCE HEWLFFHL, 
processing HEWLFOUT, HEWLFROU 

HEWLFOPT CSECT HEWLFOPT Options processing HEWLFIHT 

HEWLFOUT CSECT HEWLFOUT Intermediate output HEWLFADA 

HEWLFRAT CSECT HEWLFRAT RLD record processing HEWLFIHC, 
HEWLFIHP, HEWLFSCH 

HEWLFRCG CSECT HEWLFRCG REPLACE/CHANGE HEWLFESD 
statement processing 

HEWLFREL CSECT HEWLFREL Relocation/second pass HEWLFSCD 
initialization 

HEWLFROU CSECT HEWLFROU Miscellaneous 
routines/LOAD module 
entry point 

Figure 33 (Part 3 of 4). Microfiche Directory 

Microfiche Directory 147 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

symbol Type CSECT Description Referenced By 

HEWLFSCD CSECT HEWLFSCD Second pass (LOAD HEWLFOUT, HEWLFROU 
module) output 

HEWLFSCN CSECT HEWLFSCN Control statement HEWLFINP 
processing 

HEWLFSIO CSECT HEWLFSCD Second pass HEWLFSCD 
input/output 

HEWLFSYM CSECT HEWLFSYM SYM record processing HEWLFSYM 

HEWLFTXT CSECT HEWLFRAT TXT record processing HEWLFRAT 

HEWLTMDB Label HEWLFROU DCB for SYSTERM HEWLFFNL, HEWLFINT 

HEWLXIT2 Entry point HEWLFINT Open exit routine for HEWLFROU 
SYSLMOD 

HEWVLDCK Entry point HEWLFROU Member and alias name HEWLFFNL, HEWLFSCN 
validity check routine 

INDDNAME Label HEWLFROU DDNAME for primary HEWLFINT, HEWLFSCN 
input data set 

INRLDCBl Label HEWLFREL Input RLD control block HEWLFSCD 
#l 

INRLDCB2 Label HEWLFREL Input RLD control block HEWLFSCD 
#2 

JFCBADDR Label HEWLFMAP JFCB for SYSLMOD HEWLFFNL 

MAINGOT Label HEWLFINT Address of storage 
obtained from GETMAIN 

MINOR Label HEWLFROU Minor name by which HEWLFFNL, HEWLFINT 
SYSMOD is enqueued 

MSGFOUR Label HEWLFINT Pointer to (optional) HEWLFROU 
heading message 

OTRLDCBl Label HEWLFREL Output RLD control HEWLFSCD 
block #l 

OTRLDCB2 Label HEWLFREL Output RLD control HEWLFSCD 
block 12 

OTRLDCB3 Label HEWLFREL Output RLD control HEWLFSCD 
block #3 

RELOCATE Entry point HEWLFREL Address constant HEWLFSCD 
relocation routine 

SCDENTAB Entry point HEWlFREL Routine to create HEWLFSCD 
ENTABS and ENTAB RLDs 

SEGLNTAB Label HEWLFADA Pointer to Segment HEWLFOUT 
Length Table 

WRTCRRLD Entry point HEWLFSIO Routine to wri te CTL or HEWLFREL 
CTL/RLD records on 
SYSLMOD 

WRTTXT Entry point HEWLFSIO Routine to write text HEWLFREL 
records on SYSLMOD 

Figure 33 (Part 4 of 4). Microfiche Directory 

148 MVS/370 Linkage Editor Logic 



This document contains restricted mat~rials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

ttadule Name CSECT Nama 
HEWLFADA HEWLFADA 
HEWLFAPT HEWLFAPT 
HEWLFBTP HEWLFBTP 
HEWLFDEF HEWLFDEF 

HEWLFEHD HEWLFEHD 
HEWLFEHS HEWlFEHS 
HEWLFEHT HEWLFEHT 

HEWLFESD HEWLFESD 
HEWlFFHL HEWLFFHL 
HEWlFIDR HEWLFIDR 
HEWLFIHC HEWLFIHC 

HEWLFIHP HEWLFIHP 
HEWLFOPT HEWLFOPT 
HEWLFMAP HEWlFMAP 
HEWLFINT HEWLFIHT 
HEWlFOUT HEWLFOUT 
HEWLFRAT HEWLFRAT, HEWLFTXT 
HEWLFRCG HEWLFRCG 
HEWLFREL HEWLFREL 

HEWLFROU HEWLFROU 
HEWLFSCD HEWLFSCD, HEWLFSIO 
HEWlFSCN HEWLFSCH 

HEWLFSYM HEWLFSYM 

Figure 34. Module/CSECT Cross-Reference Tabla 

Microfiche Directory 149 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

TABLE LAYOUTS 

This section provides detailed layouts of internal tables used 
during Linkage Editor processing. Figure 35 indicates the 
modules in which tables are initialized and used or modified. 
Tables described in this section are included alphabetically 
except for the All-Purpose Table (see Figure 36 on page 151). 

Table Bui! t by Used and/or Modified by 

Alias Table HEWLFENT HEWLFFNL 

All-Purpose Table (APT) HEWLFINT 1 

Calls Li st HEWLFRAT HEWLFENS 

Composite External Symbol HEWLFESD HEWLFRAT, HEWLFSCN, HEWLFINC, 
Dictionary (CESD) HEWLFADA, HEWLFENS, HEWLFENT, 

HEWLFOUT, HEWLFTXT 

Delink Table HEWLFESD HEWLFRAT, HEWLFSCD 

Downward Calls List HEWLFENS 2 

Entry List HEWLFSCD 2 

Entry Table (ENTAB) HEWLFSCD 2 

Half ESD (HESD) HEWLFOUT HEWLFSCD 

Half ESD Prefix HEWLFSCD 2 

High ID Table (HIlD) HEWLFOUT 2 

IDR Translator Table (IDRTRTAB) HEWLFIDR HEWLFOUT 

IDR IMASPZAP Tabl~ (IDRZPTAB) HEWLFIDR HEWLFOUT 

IDR User Data Table (IDRUDTAB) HEWLFIDR HEWLFOUT 

ORDER Table HEWLFSCN HEWLFOUT, HEWLFADA 

Relocation Constant Table (RCT) HEWLFADA HEWLFOUT, HEWLFSCD 

Renumbering Table (RNT) HEWLFESD HEWLFRAT, HEWLFTXT 

RLD Input Control Blocks HEWLFSCD 2 

RLD Note List HEWLFRAT HEWLFOUT, HEWLFSCD 

RLD Output Control Blocks HEWLFSCD 2 

Second Pass Text Control Blocks HEWLFSCD :2 

Segment Length Table (SEGLGTH) HEWLFADA 2 

Segment Path Table (SEGTAU HEWLFOUT HEWLFSCD 

Text I/O Table HEWLFTXT HEWLFOUT, HEWLFSCD 

Text Note List HEWLFTXT HEWLFOUT, HEWLFSCD 

TTR List CText I/O Control HEWLFSCD HEWLFSCD 
Table> 

Figure 35. Table Construction and Usage 

150 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Offset 
Decimal Hex 

8 8 

16 10 

19 13 

20 14 

24 18 

27 IB 

28 lC 

29 10 

Notes to Figure 35: 
1 

Length 

8 

3 

1 

4 

3 

1 

1 

1 

Major communications area throughout linkage editor 
processing. 

Built and processed entirely within one routine. 

symbol Description 

POSEI Member or alias name of module being created 

POSE2 Relative disk address CTTR) of first record 
of module 

POSE3 Flags 

Bit 0 Alias indicator 

Bits 1-2 Number of TTRs in user data 

Bits 3-7 length of user data in half words 

POSE4 Relative disk address (TTR) of first text 
record of module 

POSE5 Relative disk address (TTR) of note list or 
scatter/translation record 

POSE6 Number of TTRs in note list, if present 

POSE7 Flags (module attributes III 

Bit 0 Reenterable 

Bit 1 Reusable 

Bit 2 Overlay 

Bit 3 Test 

Bit 4 Only loadable 

Bit 5 Block/scatter format 

Bit 6 Executable 

Bit 7 Module contains 1 text record and no 
RlO's 

POSE8 Flags (module attributes 11) 

Bit 0 Output load module not downward 
compatible 

Bit 1 Origin of first text record is zero 

Bit 2 Entry point assigned by linkage 
editor is 0 

Bit 3 Module contains no RLD items 

Bit 4 Module can be reprocessed by linkage 
editor 

Bit 5 Module does not contain SYM records 

Bit 6 Module was created by link editor F 

Figure 36 (Part 1 of 10). All-Purpose Table (APT) 

Table Layouts 151 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Offset 
Decimal Hex Length Symbol Description 

Bit 7 Refreshable 

30 1E 3 PDSE9 Total contiguous storage requirement for load 
module 

33 21 2 PDSE10 Length of first text record 

35 23 3 PDSEll Entry point address 

38 26 3 PDSE12 Editor assigned origin of first text record 

38 26 1 Flags (1) (Module attributes 12) 

Bit 0 Load module built by OS/VS linkage 
editor 

Bit 1 Not used 

Bit 2 Page alignment required for load 
module 

Bit 3 SSI present in directory entry 

Bit 4 Directory entry contains 
authorization code 

39 27 1 Flags (2) (Module attributes 12) 

Bi.ts 0-2 Not used 

Bit 3 Load module residence mode 

Bits 4-5 Alias entry point addressing mode 

Bits 6-7 Main entry point addressing mode 

40 28 1 Count of RLD and CTL/RLD records following 
the first text record 

41 29 2 PDSEl3 Number of bytes in scatter list 

43 2B 2 PDSE14 Number of bytes in the Translation Table 

45 2D 2 PDSE15 ESDID of the first text record 

47 2F 2 PDSE16 ESDID of the control section containing the 
entry point 

49 31 3 PDSEl7 Entry point of main member name 

52 34 8 PDSE18 Member name of module 

60 3C 72 REGSA Register save area for data management 

132 84 56 IOCT I/O Control Table 

188 BC 1 APTO Flags 

Bit 0 NCAL 

Bit 1 XREF 

Bit 2 MAP 

Bit 3 LET 

Figure 36 (Part 2 of 10). All-Purpose Table (APT) 

152 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983 
LY26-3921-0 

Dffset 
Decimal Hex Length symbol Description 

Bit 4 LOG 

Bit 5 XCAL 

Bit 6 TXT/RLD 

Bit 7 A library statement was read 

189 BD 1 APT! Flags 

Bit 0 More include input to come 

Bit 1 Automatic library call in operation 

Bit 2 Object or load module 

Bit 3 Delete indicator 

Bit 4 Entry point received 

Bit 5 Symbolic or absolute entry 

Bit 6 Entry statement received 

Bit 7 ESD write indicator 

190 BE 1 APT2 Flags 

Bit 0 No length received 

Bit 1 No length indication 

Bit 2 First text record 

Bit 3 Status indicator received 

Bit 4 Include previously initiated 

Bit 5 I/O overlap bit 

Bit 6 In module indicator 

Bit 7 Card continuation 

191 BF 1 APT3 Flags 

Bit 0 End of file 

Bit 1 Name statement received-end of input 
for load module 

Bit 2 End of SYSLIN input 

Bit 3 To stow as replacement 

Bit 4 First text of load module 

Bit 5 First text of segment 

Bit 6 RLDs for group 

Bit 7 SYSLIB opened 

192 CO 4 CTTR Relative disk address (TTR) of first CESD 
record. if MAP or SREF option specified 

Figure 36 (Part 3 of 10). All-Purpose Table (APT) 

Table Layouts 153 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Offset 
Decimal Hex Length Symbol Description 

196 C4 2 CSNO Current segment number 

198 C6 2 CRNO Current region number 

200 C8 4 PRAL Pseudo register cumulative length 

204 CC 4 FLCD Address of first deleted CESD entry 

208 DO 4 RCCE Address of replace/change chain end 

212 D4 4 RCCB Address of replace/change chain beginning 

216 D8 4 ALCB Address of alias chain beginning 

220 DC 4 OVCMBGAD Address of overlap chain beginning 

224 EO 4 SGTl Address of SEGTABI - 1 

228 E4 4 CLLT Address of Calls List Table 

323 E8 4 TNTl Address of text note list 1 

236 EC 4 RNTl Address of RLD note list 1 

240 FO 4 RLDINPAD Address of RLD input buffer, 1st pass 

244 F4 4 RECNT Address of Relocation Constant Table - 4/ 
Renumbering Table - 4 

248 F8 4 TXTIO Address of Text I/O Table 

252 FC 4 ALAS Address of Alias Table 

256 100 4 DLKT Address of DELINK Table - 5 

260 104 4 CHESD Address of composite ESD - 16 

264 108 4 SELST Address of second pass entry list 

268 10C 4 TNLS2 Address of text note list 2 

272 110 4 RNLS2 Address of RLD note list 2 

276 114 4 TTRLIST Address of TTR list 

280 118 4 RLDOUTBF Address of output RLD buffer, 2nd pass 

284 11C 4 HIARADD Address of Hierarchy Table 

288 120 4 ORDRADR Address of Order Table 

292 124 4 INCBRKPT Address of breaking point in include chain 

296 128 4 CRRTINCL Address of currently included ESD item 

300 12C 2 ENRNX Maximum number of entries in RNT Table 

302 12E 2 ENCDX Maximum number of entries in C/HESD Tables 

304 130 2 ENTlX Maximum number of entries in text note list 1 

306 132 2 ENRIX Maximum number of entries in RLD note list 1 

308 134 2 ENT2X Maximum number of entries in text note list 2 

Figure 36 (Part 4 of 10). All-Purpose Table (APT) 

154 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Offset 
Decimal Hex Length Symbol Description 

310 136 2 ENR2X Maximum number of entries in RLD note list 2 

312 138 2 ENTOX Maximum number of bytes in Text I/O Table 

314 13A 2 ENCLX Maximum number of bytes in calls Ii st 

316 13C 2 ENDTX Maximum number of entries in DELINK Table 

318 13E 2 ENSIX Maximum number of segments 

320 140 2 BUFSIZ Size of load module input buffer 

324 144 4 HESD Address of HESD Table - 8 

328 148 2 ENELTX Maximum number of entries in 2nd pass entry 
list 

330 14A 2 ENTlXl Maximum number of entries in text note list 
1, pre-reallocate 

332 14C 2 ENRIXI Maximum number of entries in RLD note Ii st 1, 
pre-reallocate 

334 14E 2 IDRTRLEN Maximum length of IDR Translator Data Table 

336 150 2 IDRTILEN Maximum length of IDR Translator ID Table 

338 152 2 lORUDLEN Maximum length of IDR User Data Table 

340 154 2 IDRZPLEN Maximum length of IDR AMASPZAP Data Table 

344 158 4 IDRTRTAB Starting address of IDR Translator Data Table 

348 15C 4 IDRTITAB Starting address of IDR Translator ID Table 

352 160 4 IDRUDTAB Starting address of lOR User Data Table 

356 164 4 lORZPTA.B Starting address of IDR AMASPZAP Data Table 

360 168 4 IDRTREND Address of next available byte in IDR 
Translator Data Table 

364 16C 4 IDRTIEND Address of next available byte in lOR 
Translator lO Table 

364 16C 4 IDRTIEND Address of next available byte in lOR 
Translator ID Table 

368 170 4 IDRUDEND Address of next available byte in lOR User 
Data Table 

372 174 4 lORZPEND Address of next available byte in IDR 
AMASPZAP Data Table 

376 178 2 ENRLD2X Maximum size of input RLD buffer, 1st pass 

378 17A 2 EHSPX Save area 

380 17C 4 LSTS Last segment in each region (region 1-4) 

384 180 8 EPSM Entry point symbol or end card address/symbol 

392 188 2 ENTlC Current number of entries in text note list 1 

394 18A 2 ENR1C Current number of entries in RLD note list 1 

~ Figure 36 (Part 5 of 10). All-Purpose Table (APT) 

Table Layouts 155 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Offset 
Decimal Hex length Symbol Description 

396 18C 2 ENITC Current number of bytes in TXT I/O CNTL Table 

398 18E 2 ENIRC Current number of bytes in RLD I/O CNTL Table 

400 190 2 ENTOC Current number of bytes in TXT I/O Table 

402 192 2 ENCLC Current number of bytes in calls list 

404 194 2 ENS1C Current number of entries in SEGTABI 

406 196 2 ENASC Current number of entries in Alias Table 

408 198 2 ENDTC Current number of entries in DELINK Table 

410 19A 2 ENRNC Current number of entries in RNT Table 

412 19C 2 ENCDC Current number of entries in H/CESD Table 

414 19E 2 ENELTC Current number of entries in 2nd pass entry 
1 i st 

416 lAO 2 ENT2C Current number of entries in TXT note list 2 

418 1A2 2 ENR2C Current number of entries in RLD note 11 st 2 

420 1A4 2 ENSPC Highest segment number with text 

424 lA8 2 IDRTRCUR Current number of bytes in !DR Translator 
Data Table 

428 lAC 2 IDRTICUR Current number of bytes in IDR Translator ID 
Table 

432 180 2 IDRUDCUR Current number of bytes in !DR User Data 
Table 

436 184 2 IDRZPCUR Current number of bytes in IDR AMASPZAP Data 
Table 

438 186 2 ORDRCUR Current number of bytes in Order Table 

440 1B8 2 ORDRMAX Maximum number of bytes in Order Table 

444 1BC 8 BITMAP Bit switches denoting error messages logged 
(error msgs 64-1) 

452 1C4 8 BITMAP2 Bit switches denoting error messages logged 
(error msgs 128-65) 

460 ICC 2 LINECNT Number of lines output for current page 

462 ICE 2 HISEV Highest severity message logged 

464 1DO 8 SYSRTN Save area for registers 13 and 14 from 
INVOKER 

472 1D8 72 SPACES Register save area 

544 220 4 ERDIG Address of HEWLFLOG, error logging routine 

548 224 4 ERDIGA Address of HEWLFALK, table allocl;'tion routine 

552 228 4 SSI System status indicator (for APT> 

556 22C 4 FFCADR Highest address retained from gotten storage 

Figure 36 (Part 6 of 10). All-Purpose Table (APT) 

156 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Offset 
Decimal Hex Length Symbol Description 

560 230 8 LIBNAME Name of library for automatic library call 

568 238 8 LIBOPEN Name of library currently open 

576 240 2 APTOOO SYNAD routine for SYSPRINT data set 

578 242 3 SAVATS Attributes save area 

581 245 1 APTSWS Switches 

Bit 0 TSO task 

Bit 1 Not used 

Bit 2 Absolute/relocatable 

Bit 3 DeBS override 

Bit 4 Bit map processed 

Bit 5 Linkage editor input received 

Bit 6 SYM received 

Bit 7 ESD received 

582 246 1 NEWSW Flags 

Bit 0 If off indicates 1st time in INT 

Bit 1 MAP/XREF entered from 
intermediate/final processor 

Bit 2 All RLDs in storage/not in storage 

Bit 3 MAP/XREF in control/not in control 

Bit 4 Normal printing on SYSPRINT/ABORT 
without printing 

Bit 5 HIERARCHY 

Bit 6 Not used 

Bit 7 Indicates purge to TXT/RLD processor 

583 247 1 NEWSW2 Flags 

Bit 0 More RLDs exist for current ID 

Bit 1 Split RLD in output buffer 

Bit 2 Rand P pointer have been saved 

Bit 3 Relative/absolute relocation factor 
needed 

Bit 4 Split RLD has been saved in HESD 
prefix 

Bit 5 No RLDs exist for last text of 
segment/module 

Bit 6 Split RLD is preceded by Rand P 
pointers 

~ Figure 36 (Part 7 of 10). All-Purpose Table (APT) 

Table Layouts 157 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Dffset 
Decimal Hex Length symbol Description 

Bit 7 Rand P pointers for current chain 
are in buffer 

584 248 1 APTSW2 Flags 
. 

Bit 0 SYSLMOD enqueued 

Bit 1 Not used 

Bit 2 SYSLMOD shared DASD 

Bit 3 First/not first time through 
initialization 

Bits 4-7 Hot used 

585 249 I APTSW3 Flags 

Bit 0 Expand statement encountered 

Bit 1 Included load module was in overlay 
format 

Bits 2-7 Reserved 

586 24A 1 APTSW4 Switches 

587 24B 1 lDRSWS Flags 

Bits 0-2 Not used 

Bit 3 Last lDR item processed not complete 

Bit 4 Double lDR entry on object module 
record in process 

Bit 5 Identify control card in process 

Bit 6 Object module end card in process 
for IDR input 

Bit 7 Load module IDR in process 

588 24G 1 APT4 Flags 

Bit 0 Tables initially allocated 

Bit 1 Tables reallocated 

Bit 2 Intermediate pass processing 

Bit 3 Second pass processing 

Bit 4 Ordering required 

Bit 5 Page boundary alignment required 

Bit 6 Align on 2K-byte page boundary 

Bit ..., Not used I 

590 24E 2 MAXBF Maximum blocking factor 

592 250 28 HEWLCRBB SYSLIB control block 

Figure 36 (Part 8 of 10). All-Purpose Table (APT) 

158 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Offset 
Decimal Hex Length Symbol Description 

592 250 4 Address of SYSLIB DECB 

596 254 4 1st library buffer 

600 258 4 2nd library buffer 

604 25C 2 BLKSIZE 

606 25E 2 LRECL 

608 260 2 BLKFCTR 

610 262 2 Number of records left in buffer 

612 264 4 Address of current record 

616 268 4 READSW set to first read 

620 26C 28 HEWLCRBN SYSLIH control block 

620 26C 4 Address of SYSLIN DECB 

624 270 4 1st SYSLIH buffer 

628 274 4 2nd SYSLIH buffer 

632 278 2 BlKSIZE 

634 27A 2 LRECL 

636 27C 2 BlKFCTR 

638 27E 2 Humber of records left in buffer 

640 280 4 Address of current record 

644 284 4 READSW set to first read 

648 288 28 HEWlCWBB SYSPRIHT control block 

648 288 4 Address of SYSPRIHT DCB 

652 28C 4 1st SYSPRIHT buffer 

656 290 4 2nd SYSPRIHT buffer 

660 294 2 BLKSIZE 

662 296 2 lRECL 

664 298 2 BlKFCTR 

666 29A 2 Humber of records left in buffer 

668 29C 4 Address of current record 

672 2AO 4 WRITESW set to first write 

676 2A4 4 RlDOUTl Address of first RlD output buffer. 1st pass 

676 2A4 4 RlDIHBFl Address of first RLD input buffer. 2nd pass 

680 2A8 4 RlDOUT2 Address of second RLD output buffer. 1st pass 

680 2A8 4 RLDIHBF2 Address of second RlD input buffer. 2nd pass 

Figure 36 (Part 9 of 10). All-Purpose Table (APT) 

Table layouts 159 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Offset 
Decimal Hex Length Symbol Descr-iption 

684 2AC 4 TXTBFBEG Address of start of text buffer 

688 2BO 4 TXTBFEND Address of end of text buffer 

692 2B4 4 MULTSIZE Size of SYSLMOD multiplicity or record 

696 2B8 4 UTlSIZE Size of SYSUTl record 

700 2BC 4 SZSYSUTl Maximum number of bytes per track on SYSUTI 

704 2CO 4 RLDSIZE Size of each input RLD buffer, 1st pass 

708 2C4 4 VALUEI Size value 1 (maximum allowable storage) 

712 2C8 4 VALUE2 Size value 2 (load module buffer) 

716 2CC 4 MSGONE Pointer to 1st heading message 

720 2DO 4 MSGTWO Pointer to 2nd heading message 

724 2D4 4 MSGTHREE Pointer to 3rd heading message 

728 2D8 4 HEWLCLAC Address of current read block 

732 2DC 20 DECB for SYSLIN 

752 2FO 20 DECB for SYSLIB 

772 304 4 COREADR Address of storage obtained through GETMAIN 

776 308 4 CORELEN Length of storage obtained through GETMAIN 

780 30C 64 BRNCHSV Save area 

844 34C 1 APTAPFCT Default length of authorization code 

845 340 1 APTAPFAC Default authorization code 

846 34E 1 PDSAPFCT Length of authorization code assigned 

847 34F 1 PDSAPFAC Authorization code assigned 

848 350 I MODEAMOD Addressing mode from mode control statement 

849 351- 1 MODERMOD Residence mode from mode control statement 

850 352 1 PARMAMOD Addressing mode from PARM field 

851 353 1 PARMRMOD Residence mode from PARM field 

852 354 1 MEMBAMOD Addressing mode for main entry point 

853 355 1 ESDARMOD Residence mode accumulated from ESDs 

Figure 36 (Part 10 of 10). All-Purpose Table (APT) 

160 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983 
lY26-3921-0 

Alias Table 

Sui It by Entry Processor 
Referred to by Final Processor 

CESO entry number - present only if symbol is one that is present in the CESO and is type 
SD or LR. This field contains zero for all other symbols (2 bytes). 

Symbol - the eight-character alias name (S bytes) 

Figure 37. Alias Table 

Calls List 

As bui It by RLD Processor 

Ip7 1 R I R I R I R I z Ips I R I R I z I 

2 bytes of binary zeros 

Relocation pointer - points to the referred to symbol in the CESO (types SO, LR, ER, WX, 

and CM) (2 bytes) 

Relocation pointer (2 bytes) 

Relocation pointer (2 bytes) 

Position pointer - points to SO or PC in CESO that contains the references (V-type address constants) (2 bytes) 

Figure 38. Calls list (As Built by RLD Processor) 

Calls List 

As altered and used by ENTAB Size Detenninotion Routine (HEWLFENS) 
r----~----r---~~~,-~~.-~~__r_~~__r~~ 

2 bytes of binary zeros 
(End of chain indicator) 

Chaining'!.2!..!!! - inserted byHEWLFENS-- count, in bytes, to next chaining value (2 bytes) 

Figure 39. Calls List (As Altered and Used by ENTAB Size Determination Routine) 

Table Layouts 161 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Composite External Symbol Dictionary (CESD) - Internal Format 

Built by ESD Processor and Control Statement Processors 
Modified' by Address Assignment Proce$5or 

1 J I j l Il ~S,,-,--I _--,-I ...1....-1 ---'.1 ~I 1----, 

-Chain pointer/chain 10jlength - chain pointer when the entry 
type is: ER-Include w/pointer or on ER-ddname 
that was extracted from a LIBRARY control statement 

chain 10 when the entry type is: 
ER-library (the symbol was extracted from a LIBRARY cantrol statement) 

length of control section for type: 
SD, Pc. PR, or CM (2 bytes) 

'--Subtype - ER 
ER-Control change 
ER-Control reploce 
ER-Control delete 
ER-Control include w/ pointer 
ER-Control include w/o pointer 
ER-ddname 
ER-Alias 
ER-Overlay 
ER-Unmatched I ibrary member 
ER-Matched library member 
ER-Unmatched no call 
ER-Matched no call 
ER-Never call 
ER-Delete 
ER-Replace 

(1 byte) 

- If segment number. 1 to 255 (SO. CM. PC. LA) 
If AMOOE/AMOOE/ASECT data (SO. PC): 

xxxx . not used 
R. RSECT Information 

o =:: not read-only 

1 = read-only 

. A. AMOOE data 
0=24 
1 = ANY 

.. AA AMOOE data 
00.01 = 24 

10 = 31 

Alignment factor (PR) 
07 == doubleword 
03 = fullword 
01 = half word 

00 = byte 

11 = ANY 

0000 0000 
1111 0000 
11100000 
1110 1000 
1101 0000 
1100 0000 
1011 0000 
1010 0000 
1001 0000 
0000 0010 
0000 0011 
0000 0100 
0000 0101 
0000 0110 
0000 1000 
0000 0000 

Hex 
00 
FO 
EO 
E8 
DO 
CO 
BO 
AO 
90 
02 
03 
04 
05 
06 
08 
00 

LChain address/reverse chain 10 - used to create a chain of CESD entries (3 bytes) 

-Type - Section definition (SD) xxxx 0000 Subc lass ificatian -
labe I reference (lR) xxxx 0011 Delete xxxi xxxx 
Private code (PC) xxxx 0100 Replace xxx 1 xxxx 
Common (CM) xxx x 0101 Insert xxlx xxx x 
Pseudo register (PR) xxxx 0110 Chain xlxx xxxx 
Null 0000 0111 Map lxxx xxxx 
Externa I reference (E R) xxxx 0010 
Weak external reference 0NX) xxxx 1010 
(1 byte) 

-Symbol - the eight-character symbolic name (8 bytes) 

Figure 40. Composite External Symbol Dictionary (CESD)--Internal Format 

162 MVS/370 Linkage Editor logic 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3921-0 

See Figure 41 for normal combination of internal CESD types. 

CESO Entry Type Type Field Chain Address AMODE/RMODE/RSECT ER Subtype ddnome Poi nterl 

Chain ID Data or Segment Number Chain 10/Length 
(byte 8) (bytes 9-111 (byte 121 (byte 13) (bytes 14-15) 

Section Definition xxxx xOOO lSI Length of control section 

Private Code xxxxxlOO lSI Length of control section 

Common xxxxxlOI 161 Length of common area 

Pseudo Register xxxx xII 0 Alignment Length of pseudo register 
value (1) 

External Reference xxxx 0010 Hex 00 or 80 00000000 

Weak External Reference xxxx 1010 Hex 00 0000 0000 

Label Reference xxxx xOll 161 CESD entry na. of SD or PC (ID) 

NULL 00000111 

Replace xxx, xxxx 00000000 

Insert xxIx xxx x 

Chain xlxxxxxx 

Map I xxx xxxx 

Delete xxx 1 xxxx 00001000 

ER - Unmatched Lib- 00000010 Reverse cham 10 00000010 CESD entry no. of 
rory Member Nome next item (10) 

ER - Motched Library 00000010 Reverse chain 00000011 CESD entry no. of 
Member Nome ID (21 next item (10) 

ER - Unmatched No 00000010 00000100 
Call Name 

ER - Motched No Coli 00000010 00000101 

ER - Never Call 00000010 00000110 

ER - Overloy Control 00000010 Address of next 1001 0000 
Statement Item in the chain 

ER - Alios Control 00000010 Address of nex t 10100000 
Statement Item In the cham 

ER - ddnome from 00000010 1011 0000 Forward chain 
library or Include Statement PTR (Library only) 

ER - Include Control 00000010 Address of next 1100 0000 
Statement wlo Pointer Item In the cham 

E R - Incl ude Control 00000010 Address of nex t 11010000 Pointer to li-
Statement with Pointer Item in the chain brory's ddnome 

ER - Replace Control 0000 0010 Address of next 11000000 
Statement (3) Item In the cham 

ER - Control Delete (4) 0000 0010 Address of next 11101000 
It~m In the cham 

ER - Change Control 00000010 Address of next 1111 0000 
Stotement (3) Item Itl the chain 

Figure 41 (Part 1 of 2). Normal Combination of Internal CESD Types 

Table layouts 163 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Notes: 

1. Alignment Value -- Specifies boundary alignment of the pseuda register 
00 = byte alignment 
01 = halfward alignment 
03 = fullword alignment 
07 = doubleword alignment 

2. BLDL has been issued for this member name if bit 64 is set to 1. 
3. Two CESD entries are made for each ReplClce or Change contral statement, one entry for each Iymbol. 
4. This entry results from a Replace or Change control statement that contains only a single symbolic nome. 
5. If segment number. 1 to 255. 

If AMODE/RMODE/RSECT data: 
xxxx . . . . not used 
· ... R... RSECT information 

o = not raad-only 
1 = read-only 

· .... R . . RMODE data 
0=24 
1 = ANY 

· ..... AA AMODE data 
00,01 = 24 

10 = 31 
11 • ANY 

6. If segment number. 1 to 255. 
Otherwise. zero or blank. 

Figure 41 (Part 2 of 2). Normal Combination of Int.rnal CESD Types 

Delink Table 

Address - assigned to the symbol being deleted (3 bytes) 

CESD entry number (10) - the relocotion pointer of on RLD item referdng to the symbol thot is 
replocing the identically named symbol (or symbols) to be deleted (2 bytes) 

Figure 42. Delink Table 

Downward Calls list 

Built by and referred to by ENTAB Size Determination Routine (HEWlFENS) 

SSA---___ ---'-I ............ I 1--'--11 I 111[1111111111 

Segment number - entries ore one for one with those of the CESD. If a 
downward call is made to a symbol, the segment's number from 
which the call is mode is entered in the downward colis list 
at an entry corresponding to the ESDID of the symbol in the 
CESD. The list is initially zero. (I byte) 

Figura 43. Downward Calls List 

164 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
lY26-3921-0 

Entry List 

8ui It by and referred to by Second Pass Processor 

Figure 44. Entry list 

Entry Table (ENTAB) 

Built by Second PaSos Processor 

Unconditional branch to lost 

entry-BC 15, DISP 115,0) 

Unconditional bronch to lost 
entry-BC 15, DISP 115,0) 

Unconditional bronch to lost 
entry-BC 15, DISP ,15,0, 

Address - linkage editor assigned address of the 
--- ENTA8 entry for this symbol (3 bytes) 

Segment number - that will contain this ENTA8 entry (1 byte) 

Half ESD entry number - corresponding to the CESD entry that 
contained the referred to symbol (2 bytes) 

Address of referred "to" seg 
to symbol number 

Address of referred "to" seg 
to symbol number 

I Address of referred "to" seg 
to symbol number 

SVC 45 I L 15, 4 (0,15) load. GR15 with i BCR 15,15 
"from" 

the value of the adeon seg no 

I+- ::y ~ (6 bytes) 

Previous Caller 
(zero initially) 

Prey ious Caller 
(zero in itially) 

Prey iou. Caller 
(zero initially) 

Addr ... of .egment 
table (SEGT Aa) 

r-- 2 bytes -+2 bf'e'-----t~"i144---2 bytes -+--2 byte. + 1 byte-"~"'I·_---3 byt .. ---1 
DISP -- is the displacement, in bytes, of this entry from the last entry. 
"to" segment number -- is the number of the segment containing the symbol being referred to. 
"from II segment number -- is the number of the segment that contains this entry table. 

Figure 45. Entry Table (ENTAB) 

Table layouts 165 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Half External Symbol Dictionary 

~~--~~--~"~I~I ~~~~ __ ~II~II~I 
~one~ 

Length (3 bytes) 

II segment number, 1 to 255 (SO, CM, PC, LR) 
II AMOOE/RMOOE/RSECT data (SO, PC): 

xxxx .... 
R .. 

.R. 

not used 
RSECT information 

0= not read-only 
1 = read-only 

RMOOE data 
0=24 
1 = ANY 

.. AA AMOOE data 
00,01 = 24 

10 = 31 

Alignment lactor (PR) 
07 = doubleword 
03 = lull word 
01 = hallward 
00 = byte 

11 = ANY 

linkage Editor assigned address - of this symbol (absolute value of the address constant) (3 bytes) 

Indicator-Type - Bit zero is not used. Bits 1, 2 and 3 are used as an indicator field that applies to: 
SD,PC - Bit I = 0 -- this control section (SO or PC) does not have 

the highest CESO entry number with text in this segment 
= I -- this control section (SO or PC) has the 

highest CESO entry number in this seament 
SO, PC, or CM - Bit 2 = 0 -- relative relocation constant is a positive value 

:;;:; 1 -- relative relocation constant is in 
complemented form 

PC-delete- Bit 3 = I -- indicates that this unnamed control section 
isa SEGTAB or ENTAB, 

Bits ., 5, 6 and 7 are used to specify the entry type: 
0000 = Section Definition (SO) 
0010 = External Reference (ER) - all fields are zero except type 
1010 = Weak External Rererence 0NX) 
0011 = Label Reference (LR) 
0100 = Private Code (PC) 
0101 = Comman (C~ 
0110 = Pseudo Register {PR} 
0111 .. Null - all fields are zero except type 

Figure 46. Half External Symbol Symbol Dictionary (HESD) 

166 MVS/370 Linkage Editor logic 

entry (8 byte.) 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
lY26-3921-0 

High 10 Table 

Built and referred to by Intermediate Output Processor 

CESD entry number - entries are in segment number order. Each 
entry contains the highest CESO entry number 
(10) assigned to a section definition (SO or PC) 
within that segment. (2 bytes) 

Note: If segment does not contain text, its corresponding entry contains zero. 

Figure 47. High ID Table CHIlD) 

Table Layouts 167 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Virtual Storage Allocation Table 

Used by A Ilocat ion Processor 
,Indica ors (1 byte) 

L Number of current entries 

- Minimum Size - minimum number of bytes 
of virtual storage required for 
this table (2 bytes) 

'- Weight - The factor used to allocate extra virtual storage 
--- to enlarge the table. It specifies how many 

bytes will be added to this table for every 582 
bytes (or 603 bytes, with overlay) which become 
avai lable (2 bytes). 

- Number of Bytes per Entry - number of bytes per entry for 
this table (1 byte) 

'- Number of Entries - 156 - a value to which must be added 156 to 
determine the address in the a II purpose 
table at which the number of entries value 
for this table is to be stored (1 byte) 

'- Address - 156 - a value to which must be added 156 to determine the 
address in the all purpose table at which the determined 
address for this table is to be stored (1 byte) 

'- Indicators - ( 1 byte) 

Bi t 0 - table needed to process overlay modu les on Iy 
Bit 1 - table needed during first pass 
Bit 2 - table needed for intermediate processing 
Bit 3 - table needed dur'ing second pass 
Bit 4 - table requires doubleword alignment 
Bit 5 - table requires word alignment 
Bit 6 - NA 
Bit 7 - table has a zero entry{prefix) 

Figure 48. Virtual storage Allocation Table 

168 MVS/370 linkage Editor logic 

End Flag - FF (1 Byte) -



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Pcrtitioned Ogonizction DIrectory Record 

As received from BLOL 

Byte 
o 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

48 

52 

Name of load module {member or alios name} I 

J 
Concatenation 

Relative (to beginning of data set) track oddress of module (TTR) number 

Byte of binary Alios indicator and Relative (to beginning of doto set) 
zeros . miscellaneous info track address of first text record 

Continuation of Byte of binary Relative (to beginning of data set) 
track address Zeros track address of note I ist or scatter-

translation recOt'd Number of entries Module attributes 1 (see Figure 50) 
in note list .. 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 

Total contiguous quantity of virtual storoge requred by the 

I 
Length (in bytes) of 

module first text record 

Continuation of Module's linkage editor assigned entry point address 
length 

Module Attributes 2 AMODE/RMODE information RLD count 

(see Figure 50) (see Figure 50) 

For load modules in seatter format add: 

list (in bytes) Length of translation table (in bytes) 

section name) for ES 01 0 (CES 0 entry number of control 
first text record section name) containing entry point 

For load modules with 01 ias names odd: 

of the member name 

I 
Member nome 

I 
SSI Bytes - Aligned on a halfword boundary at the end of the POS record 

Legend: 

Alias indicator and miscellaneous information: 
Bit 
"0 

~eoning 
signifies none 

1 signifies alias 
1,2 number of relative track addresses (TTR) in user data field 
3-7 length of user dota field (in halfwords) 

PODS Directory Record Size: 

Format ;frs 
~ with olios names, it is 46 bytes) 
Scatter « (with alios names, it is 54 bytes) 
!::::!2!!.: For SSI, add 4 bytes to sizes given above. 

I 

length of seatter 

ES 01 0 (CES 0 entry 
number of control 

1 
Entry point address 

*This is normally a zerO byte inserted to maintain halfword boundaries. If the DeB operand waS specified os zero and the name 
was found in the link library, this byte will contain a 1; if the name was found in the job library, this'byte will contain a 2. 

**This byte contains a zero if load module is not in overlay. 

Figura 49. Partitioned Organization Directory Record (As Received from BLDL) 

Table Layouts 169 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Module Attributes 1 

Bit Number 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
15 

Note: 

Attributes Bit setting 

RENT 0 
1 

REUS 0 
1 

OVLY 0 
1 

TEST 0 
1 

LOAD 0 
1 

Format 0 
1 

Executable 0 
1 

Format 0 

1 

Compatibility 0 

1 

Format 0 

1 

Format 0 

1 

Format 0 
1 

Editability 0 

1 

Format 0 

1 

Compatibility 1 
REFR 0 

Indication 

Not reenterable 
Reenterable 
Not reusable 
Reusable 
Not an overlay module 
Overlay module 
Not under test 
Under test 
Not only loadable 
Only loadable 1 

Block format 
Scatter format 
Not executable 
Executable 
Module contains more than one text 
record and/or RLD record(s) 
Module contains only one text 
record and no RLD record 
Module can be reprocessed by all 
levels of linkage editor 
Module cannot be reprocessed by 
linkage editor E 
Linkage editor assigned origin of 
first text record is not zero 
Linkage editor assigned origin of 
first text record is zero 
Linkage editor assigned entry 
point is not zero 
Linkage editor assigned entry 
point ;s zero 
Module contains RLD recordCs) 
Module does not contain an RLD 
record 
Module can be reprocessed by 
11 nkage ed; tor 
Module cannot be reprocessed by 
linkage editor 
Module does not contain TESTRAN 
symbol records 
Module contains TESTRAN symbol 
records 
Module created by linkage editor F 
Module is not refreshable 

1 Module can be loaded only with the LOAD macro instruction. When the module is 
in virtual storage, it is entered directly, not through the use of an XCTL, 
LINK, or ATTACH macro instruction. 

Figure 50 (Part 1 of 2). Module Attributes 

170 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Module Attrjbutes 2 

Bit Number Bit 

0 
1 
2 
3 
it 

setting 

1 
0 
1 
1 
1 

Indication 

Module has been processed by OS/VS linkage editor 
Reserved - Unused 
Page alignment required for load module 
S51 present 
Authorization code present in last 2 bytes of 
directory entry 

AMODE/RMODE Information 

xxx .•••• 
• •• R •••• 

• .•• AA .• 

• •.••• AA 

Hot Used 
RMODE for Load Module 
o = 24 
1 = ANY 
AMODE for the True Alias or Alternate Entry Point 
00 = 24 
10 = 31 
11 = ANY 
AMODE for the Main Entry Point 
00 = 24 
10 = 31 
11 = ANY 

Figure 50 (Part 2 of 2). Module Attributes 

Table Layouts 171 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Partitioned Organization Directory Record 

As built by linkage editor 

Byte 0 

4 

8 

12 

16 

Name of load module (member or elias name) 

Relative (to beginning of data set)track address of 
module (TTR) 

Relative (to beginning of data set)trackaddress of first 
text record (TTR) 

Relative (to beginning of data set}trock address of note 
list or scatter/translation record (TTR) 

Alios indicator and 
miscellaneous info (see below) 

Byte of binary 
zeros 

Number of entries 
in note list* 

20 Module Attributes 1 (see Figure 50) Total contiguous virtual storage required 

24 

28 

32 

36 

40 

44 
48 

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 

for the modu Ie 

I 
Length (in bytes) of first text record 

editor assigned entry point address Module Attributes 2 
(see Figure 50) 

RLD count 

I 
Authorization Code Length** Authorization Code** 

For load modules in scatter format add: 

Length of scatter list (in bytes) 

tion table (in bytes) ESDID (CESD entry number of control 
section name) for first text record 

section nome) cont- Authorization Code length" I Authorization Code** 
oining entry point 

For load modules with alias names add: 

I Entry point address of the member nome 

Member nome 

Module's linkage 

AMODE/RMODE information 
(see Figure 50) 

length of transla-

ESDID (CESD entry 
number of control 

r-----------------~------------------._----------------------------------~ 

52 Authorization Code length** I Authorization Code*' I 

Authorization Code Length** 

Legend: 

For load modules with 551 bytes: 

551 bytes - Aligned on a holfword boundary at the end of the PDS 
record. 

Authorization Code** 

Alias indicator and misceUoneous information: 
Bit Meaning 
0- 0 signifies none 

1 signifies olios 
1,2 number of relative track addresses (TTR) in user data field 
3-7 length of user data field (in holfwords) 

PODS Di rectory Record size: 
Format Bytes 
Block 36 -- when rounded to a holfword boundary (with olios names, 44 bytes) 
Scatter 44 (with alias names, 54 bytes) 
Note: For 551, odd 4 bytes to sizes given above. 

*This. byte contains a zero if load module is not in overlay. 
**The authorization code fields will appear only once. They are always the last fields of 

th.-directory record. The size of the directory determines in which of the four locations 
they appear. 

Figure 51. Partitioned Organization Directory Record (As Built by linkage Editor) 

172 MVS/370 Linkage Editor logic 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

Relative Relocation Constant Table 

lui It by and referred to by Address Assignment Processor 

I ~~ ______ ~~~~ 

[ "'~"~ c~ .. " • (I; ..... "";o~ '.',M' od'_HI"."'~.I, •• I,M' ...... ) of • 
control section (SO, PC or CM) or a label reference (lR). The 
entries are one for one with CESO, in true or complement form. Com­
plement form specified by binary ones in the high-order byte (4 bytes) 

Figura 52. Relocation Constant Table (ReT) 

Renumberi~ Table (RNn 

lui I t by ESO Processor 
Referred to by TXT, RlD, END and ESD Processor 

~~~~--------~&~--------~II~I~II 
Section Definition (SO) xxxx 0000 Subclaaification -

Lobel Reference (lR))000(oem belete xxxI xxxx
Private Code (PC) xxxx 0100 Replace xxxI xxxx
Common (CM))000(0101 Choin xlxx)000(

Pseudo Register (PR))000(0110 Insert xxIx)000(

Null 0000 0111 Library 1 xxx xxxx
External Reference xxxx 0010
W ... External Reference (WX) xxxx 1010

(1 byte)

Flag - to indicate thot the section definition (SD or PC) to which this entry corresponds is pr_nt
-- In the CESD (0000 0001), or thot other CESD Items are dependent on its pr_nce (0000 0010),

or thot a Delink Table entry was created for this symbol (0000 01(0) -- 1 byte

CESD entry number (lD) - points to an entry in the CESD -- 2 bytes

Figura 53. Renumbering Table (RNT)

Table Layouts 173

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972.1983
LY26-3921-0

R LD Input Control Block *

Build and referred to by Second Pass RLD Processar

Address of RLD note list entry
marking the end af the RLD
groupi ng (4 bytes)

Address of current RLD note list entry
being processed (4 bytes)

Address of RLD nate list entry marking the
beginning of the RLD grouping (4 bytes)

Beginning address of RLD input buffer (4 bytes)

Lowest RLD address of unprocessed RLDs in current RLD set (3 bytes)

Flags (1 byte)

Bit 0 - 1 Control block in use

Bit 3 - 0 Control block governs RLD input buffer 1
1 Control block governs RLD input buffer 2

• There is a control block for each of two input buffers.

Figure 54. RlD Input Control Block

174 MVS/370 linkage Editor logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

RLO Output Control Block *

Bu i It and referred to by Second Pass R LO Processor

Address of end of buffer - 4
(4 bytes)

Address of beginning of buffer (4 bytes)

Fint free oddress in the buffer (4 bytes)

Length in bytes of 10-length list (2 bytes)

Flags- Byte 1

Byte 2

Bit 0 - 1 Control block in use
Bit 1 - 1 Buffer is being written

Bit 8 - 15 Constant to tum off use bits in
the text control block
For: Buffer 1 - X 'DB'

Buffer 2 - X' ED'
Buffer 3 - X 'F6'

* There is a control block for eoch of three RLD output buffers.

Figure 55. RLD Output Control Block

Table Layouts 175

Thi. document cont.ins restricted materials of IBM. 0 Copyright IBM Corp. 1972,1983
LY26-3921-0

RlD Note list

Built and referred to by First Pass RLD Processor

Address. - displacement in words from beginning of record; TTR If lost
entry of a group (3 bytes)

length - number of words of RlD data (2 bytes)

Lowest Multiplicity - of the control section referred to by the ID field to which the
RlD information in this record pertains (10 bits)

R Bit
~- 1)

Meaning
o = RlDs are not in virtual storage
I = RLDs are in virtual storage

o = Entry is grouped
1 = Entry conta i ns a TT R

2 0 = Not processed
I = Processed

3 0 = RlDs are in Buffer I
I = RLDs are in Buffer 2

0=
I = Split RlD in set (Second Pass)

5 0=
1 = Current I y be i ng processed (Second Pass)

10 - CESO entry for the control section (SO or PC) to
- which this RlO Information pertains (2 bytes)

Figure 56. RLD Hote List

176 MYS/370 Linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Second Poss Text Control Block *

Built and referred to by Second Pass Text Processor

CCW displacement for text (4 bytes)

Accumulated length of text (2 bytes)

Length of current text (2 bytes)

Address of text I/O table entry marking end of
text grouping (4 bytes)

Address of text I/O table entry marking beginning of text
grouping (4 bytes)

Address of current text I/O table entry being processed (4 bytes)

End address of text in buffer (4 bytes)

Beginning address of text in buffer (4 bytes)

Flags (4 bytes)

Byte 1

Byte 2

Byte 3

Bit 0 - 1
1 - 1
2 - 1
3 - 1
4 - 1
5 - 1
6 - 1
7 - 1

BitO-l

1 - 1
2 - 1
3 - 1
4 - 1
5 - 1

6 - 1

7 - 1

Bit 0 - 1
1 - 1

2 - 1
3 - 1

4 - 1

Control block in use
Text being written
Text being read
Text has RLDs
Text is first of group,
Text is last of group
Text is last in segment
Text is last in load madule

XDAP write needed
Dummy write needed
RLD output buffer 1 is being used
RLD output buffer 2 is being used
RLD output buffer 3 is being used
RLD output buffer 1 contains ID-Iength list for
this text
RLD output buffer 2 contains ID-Iength list for
this text
RLD output buffer 3 contains ID-length list for
this text

RLD input buffer 1 contains RLDs for this text
RLD input buffer 1 contains processed RLDs for
this text
RLD input buffer 2 contains RLDs for this text
RLD input buffer 2 contoins processed RLDs for
this text
There is more text to process after current text

* There are two text control blocks - - one for current text being processed, onother
for next text to be processed or text just processed.

Figure 57. Second Pass Text Control Block

Table Layouts 177

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Segment Length Table (SEGLGTH)

Built and referred to by Address Assignment Processor

Appearance of table after ass ignment of control section addresses

~ II I II I II I II ?
Highest 10 or ENTA8 Entry Count for Segment (2 byt~)

L-______ Flag (1 byte) 8its 0 through 3 not ",ad
8it 4 = 0 -- next two bytes contain the highest 10 of the segment

= 1 -- next two bytes contain the number of ENTAB entries for this segment

8its 5,6,7 - The low-order three bits of the previously assigned address of the first contral section of
this segment

'---------- Cumulative Segment Length - in bytes, of control sections in this segment (including the ENTAB, If pres ... t) (3 bytes)

Appearance of table after segment addresses are determined

~ I
Segment Relocation Constant - for the segment that corresponds to this entry (3 bytes)

Path Length - in bytes, of this segment, including this segment and its ENTAB (3 bytes)

Figure 58. Segment Length Table (SEGLGTH)

178 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Segment Table ISEGTAB)

Built by Intermediate Output Processor

TEST r\
indicator

Lost segment
number of region 1

last segment
number of region 3

Zero

Prey ious segment .
number for segment 1

Prey ious segment
number for segment 2

Previous segment
number for segment N

Address of data control block (DeB) used to load module

Address of note list

Highest segment no. Last segment

in storoge-region 1 number of region 2

Highest segment no. Last segment
in storage-region 3 number· of region 4

(Not used in the Fixed-Task Supervisor)

(Not used in the Fixed-Task Supervisor)

Zero

Address of entry table entry (when coller
chain exists)

Address of entry table entry (when caller
chain exists

4 byte,

Highest segment no.
in storage-region 2

H ighes t segment no.
in storage-region ..

.

Legen£,
TE T indicator -- specifies that this module is lIunder test" using TESTRAN. Bit 1 is initialized by program fetch.
Highest 5egmen! no. in storage -- is initially set to 00 except for region 1 which is initially set to 01 by linkage editor.
Status indicator -- indicates the status of this segment with the two last bits of the enlty table address field as follows:

Bits Meaning
00 segment is in virtual storage as a result of a branch to the segment.
10 segment is in virtual storage i no coller chain e)(ists.
01 segment is ilot in virtual storoge,but isscheduled to be loaded.
11 segment is not in virtual storage.
~: The status indicator for segment 1 is initially set to 10; all the rest are initially set to 11 .

• Set to zero by linkage editor.

Figure 59. Segment Table (SEGTAB)

·
·

·
·

Status
indicator

Status
indicator

Table Layouts 179

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

TEXT I/O TABLE

TABLE
Referred to by HEWLMBTP

I I I) S",-----"",----I .a.............~-----I
[POinter - to beginning of a group of entries in LIST (2 bytes)

LIST

End of Message Indicator - delimits a group of entries that define
a message (1 byte - hex FF)

Pointer - to the first character of a phrase (2 bytes)

Count-l - of characters in the phrase (1 byte)

Figure 60. TABLE and LIST (Referred to by HEWLFBTP)

Built and referred to by First Pass Text Processor

I I (I I
I I

(.------

'- Multiplicity Number of th is piece of text (10 bits)

'--- Flags
(6 bits)-- Bit

""""0

1

2

3

4

5

10 -- CESO ent

Meaning
o Text is not in virtual storage

in virtual storage 1

0
1

0
1

0
1

0
1

Text is

Corresp onding TXT note list entry is a grouped entry
onding TXT note list entry contains a TTR Corresp

Text no t out-of-order
Out-of -order text

Text ha
Text ha

s not been processed (second pass)
s been processed (second pass)

Corresp onding TXT note list entry contains a true length of the text
onding TXT note list entry contains a full multiplicity length
ch is larger than the actual length of the text

Corresp
whi

Not used

ry for this c ontrol section (SO or PC) (2 bytes

Figura 61. Text I/O Table

180 MVS/370 Linkage Editor Logic

J

This document contains restricted materials of IBM. Q Copyright IBM Corp. 1972,1983
LY26-3921-0

TEXT NOTE LIST

'"U. , ,.".'" '" by';" p", T~. p'll...:_ss_0J..i ___ J.... ___ ---' ___ ...J... __ ---I (

- Length- number of bytes of text (2 bytes)

'- Add ress - storage add ress if text is in virtual storage,
grouped entry or last

'- Dis lacement-p

TTR if non-
entry in a g roup (3 bytes)

I ati n f h" oc ° ° t .5 text relative to the beginning
of the multiplicity - used only for out-of-order
text (2 bytes)

Figure 62. Text Note List

XAD2CESD TABLE
Built and referred to by Cross-Reference Table Routine

I I I 1 1 liS)"-'---1 """'--1 -r-I --'---'----r---I
[compOSite ESD entry number - specifies the CESD entry containing the

symbol (2 bytes)

Figure 63. XAD2CESD Table (Built and Referred to by
Cross-Reference Table Routine)

Table Layouts 181

This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983
LY26-3921-0

ORDER TABLE

Built by HEWLFSCN

(j

~CESD Identifier (2 bytes)

- IndIcators (1 byte). BIt 0 Entry matched on CESD -

Bi t 1 - Unused

Bit 2 - ORDER required

Bit 3 - PAGE alignment required

Bits 4-: - Unused

Figure 64. ORDER Table (Built by HEWLFSCN)

182 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

DIAGNOSTIC AIDS

Module
Entry point Reg

HEWLCIDR 1

2

13

14

15

HEWLFADA 2

HEWLFBTP 2

14

15

HEWLFEHD 2

4

5

13

14

15

HEWLFEHS 2

13

14

HEWLFEHT 2

13

14

This section contains information that may be useful in
diagnosing difficulties with the linkage editor program.
Included are: register contents at major entry points
(Figure 65), charts describing buffer (see Figure 66 on page
187) and table allocation (Figure 67 on page 188), and an error
message--module cross-reference table (Figure 68 on page 189).

Contents

Pointer to parameter list

Address of all-purpose table

Address of save area

Return address

Entry point address

Address of all-purpose table

Address of all-purpose table

Return address

Entry point address

Address of all-purpose table

Length of any no-length control section

ID of the assembled address of the module entry point

Address of save area

Return address

Entry point address

Address of all-purpose table

Save are address

Return address

Address of all-purpose table

Save area address

Return address

Figure 65 (Part 1 of 5). General Register Contents at Major Entry Points

Diagnostic Aids 183

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
lY26-3921-0

Module
Entry Point Reg contents

HEWlFESD 2 Address of all-purpose table

4 Byte count of ESD information

5 ID of first ESD item to be processed

6 Address of first ESD item to be processed

13 Save area address

14 Return address

15 Entry point address

HEWlFFHl 2 Address of all purpose table

HEWlFIDR 1 Pointer to parameter list

2 Address of all-purpose table

13 Address of save area

14 Return address

15 Entry address

HEWlFIHC 2 Address of all-purpose table

12 Return address

15 Entry point address

HEWlFINP 2 Address of all-purpose table

15 Entry point address

HEWlFINT 1 Address of parameter list

13 Save area address

14 Return address

15 Entry point address

HEWlFMAP 2 Address of all-purpose table

14 Return address

15 Address of entry point

HEWlFOPT 1 Address of parameter list

2 Address of all-purpose table

14 Return address

15 Entry point address

HEWlFOUT 2 Address of all-purpose table

Figure 65 (Part 2 of 5). General Register Contents at Major Entry Points

184 MVS/370 linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Module
Entry Point Reg contents

HEWLFRAT 2 Address of all-purpose table

4 Byte count of RLD input

6 Storage address of RLD input

14 Return address

HEWLFRCG 2 Address of all-purpose table

6 Address of ESD item being processed

10 Address of beginning of replace/change chain

13 Entry point address

HEWLFREL 1 HESD address of either first ENTAB entry (if overlay) or
last HESD entry + 8

2 Address of all-purpose table

14 Return address

15 Entry point address

HEWLFROU 1 Address of parameter Ii st

13 Address of save area

14 Return address

15 Entry point address

HEWLEPNT 2 Address of all-purpose table

14 Return address

15 Entry point address

HEWLFLOG 0 Error Code

1 Address of first symbol (optional)

2 Address of all-purpose table

13 Address of second symbol (optional)

14 Return address

15 Entry point address

HEWLFALK 2 Address of all-purpose table

14 Return address

15 Entry point address

HEWLFSCD 1 Address of first ENTAB entry in HESD, if overlay;
otherwise, address of last HESD entry + 8

2 Address of all-purpose table

Figure 65 (Part 3 of 5). General Register Contents at Major Entry Points

Diagnostic Aids 185

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Module
Entl'Y Point Reg contents

GETIDMUL 0 Indicator: 0 - prime read; = lookahaad

1 Text control block address

14 Return address

HEWLFSCN 1 Address of column 1 of input record

2 Address of all-purpose table

15 Entry point address

HEWLFSIO 2 Address of all-purpose table

CHECKRD 10 Base register of HEWLFSIO

12 Address of HEWLFSCD

14 Return address

15 Address of HEWLFRLD

CHECKWRT 10 Base register of HEWLFSIO

12 Address of HEWLFSCD

14 Return address

15 Address of HEWLFRLD

WRTCRRLD 1 Address of control block for buffer to be written

10 Base register of HEWLFSIO

12 Address of HEWLFSCD

14 Return address

15 Address of HEWLFRLD

HEWLFSYM 2 Address of all-purpose table

13 Save area address

14 Return address

15 Entry point address

HEWLFTXT 2 Address of all-purpose table

3 Assembled address of first byte of text

4 Byte count of TXT input

5 ID of current text record

7 Base register of HEWLFTXT

12 Base register of HEWLFRAT

14 Return address

Figure 65 (Part 4 of 5). General Register Contents at Major Entry Points

186 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

Module
Entry Point Reg contents

HEWlCAUT 2 Address of all-purpose table

12 Return address

15 Entry point address

RelOCATE 2 Address of all-purpose table

3 Address of text control block for current text

14 Return address

15 Address of HEWlFREl

Figure 65 (Part 5 of 5). General Register Contents at Major Entry Points

BUFFER ALLOCATION - (LINKAGE EDITOR)

Initiol and Input Processing

Initial and Input
Praeeuing Tables

I Intermediate Processing

Obiect Module Buffer 1
3200 byte. (max.) or 800 byte. or 400 bytes (min.)

Obiect Mooule Buffer 2
3200 byte. (max.) or 800 byte. or 400 bytes (min.)

SYSLI N Buffer 1
3200 byte. (max.) or 800 bytes or 400 bytes (min.)

SYSLI N Buffer 2
3200 bytes (max.) or 800 byte. or 400 byt .. (min.)

Print Buffer 1
4840 bytes (max.) or 1216 bytes or 608 bytes (min.)

Print Buffer 2
4840 bytes (max.) or 1216 bytes or 608 bytes (min.)

RLD Buffer Area
1024 byte.

Text Buffer Area
102400 bytes (max.) or 6144 bytes (min.)

I ntermedi ate
Processing Tables

Figure 66. Buffer Allocation

I Second POlS Proces.i n9

Second POlS
Prac .. 1nll Tabl.

Diagnostic Aids 187

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Allocated Present In Size (in bytes)
for Overlay
Link-Edit Order of Bytesl Inp. Int. 2nd

Table Name Only Allocation Entry Weight Proc. Proc. Pass Prefix Align. Min. Max.

Alias Table No 2 1 0 No Yes Yes No Dblwd 160 160
Calls List Yes 17 1 96 Yes Yes No No Dblwd 1536 3

Composite ESD No 3 16 288 Yes No No Yes Dblwd 4608 3

Delink Table No 10 5 24 Yes Yes Yes Yes Dblwd 384 3

Entry List Yes 18 6 96 No No Yes No Dblwd 1536 3

Half ESD No 5 8 144 No Yes Yes No Dblwd 2304 3

Half ESD No 4 1 0 No Yes Yes No Dblwd 8 8
Prefix

HIERARCHY· No 15 1 18 Yes Yes No Yes Dblwd 288 3

IDRTRTAB2 No 18, 20 1 12, 45 Yes Yes No No Dblwd 192, 208 3,3

IDRUDTAB No 22 1 88 Yes Yes No No Dblwd 960 3

IDRZPTAB No 23 1 44 Yes Yes No No Dblwd 455 3

Order No 14 1 28 Yes Yes No No Dblwd 456 3

First Pass No 1 1 0 Yes No No No Dblwd 256 256
RLD Buffer

Second Pass No 11 1 0 No No Yes No Dblwd 768 768
RLD Buffer

Relocation
Constant Tablel No

Renumbering No 9 4 72 Yes No No Yes Dblwd 1152 3

Table

RLD Note No 13 9 14 Yes Yes No No Dblwd 232 3

List I
RLD Note No 7 9 58 No Yes Yes No Dblwd 928 3

List II
SEGTA1 Yes 16 1 0 Yes Yes Yes Yes Dblwd 256 256

Text 1/0 No 8 1 144 Yes Yes Yes No Dblwd 2304 3

Table
Text Note No 12 7 21 Yes Yes No No Dblwd 336 3

List I
Text Note No 6 7 252 No Yes Yes No Dblwd 4032 3

List II

• Not used in virtual systems
2Table allocated in two parts.
3 Maximum is determined by storage availability.

Figure 67. Tabla Allocation

188 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

Error
Message
Number

IEWOOOO

IEW0012

IEW0022

IEW0033

IEW0043

IEW0053

IEW0063

IEW0073

IEW0083

IEW0093

IEWOI02

IEWOl13

IEW0123

Figure 68 contains a list of error messages and the routines and
CSECTs in which they originate. Each message contains a
severity code in the final position of the message code. These
severity codes are defined as follows:

o Indicates a condition that will not cause an error during
execution of the link-edited program.

1 Indicates a condition that may cause an error during
execution of the link-edited program.

2 Indicates an error that can make execution of the
link-edited program impossible.

3 Indicates an error that will make execution of the
link-edited program impossible.

4 Indicates an unrecoverable error. Such an error causes
termination of linkage editor processing.

Error Message Text

Control statement

ERROR--Input contains invalid 2-byte relocatable
address constant; constant has not been
relocated.

ERROR--Input contains invalid V-type address
constant; constant has not been relocated.

ERROR--Invalid entry point from END card; no
entry point assigned.

ERROR--Input contains invalid external symbol
10.

ERROR--Entry statement symbol printed is invalid
(not an external name); no entry point assigned.

ERROR--END card symbol printed is invalid (not
an external name); no entry point assigned.

ERROR--Entry statement symbol printed is not in
root segment of overlay structure; no entry
point assigned.

ERROR--END card symbol printed is not in root
segment of overlay structure; no entry point
assigned.

ERROR--END card entry point address printed is
not in root segment of overlay structure; no
entry point assigned.

ERROR--Invalid entry point on END card; entry
point ignored.

ERROR--Output module contains no control
sections in root segment of overlay structure;
no entry point assigned.

ERROR--No ESD entries; execution impossible.

Issuer

Routine CSECT

HEWLFSCN HEWLFSCN

HEWLFREL HEWLFREL

HEWLFREL HEWLFREL

HEWLFENT HEWLFENT

HEWLFENT HEWLFENT

HEWLFENT HEWLFENT

HEWLFENT HEWLFENT

HEWLFENT HEWLFENT

HEWLFENT HEWLFENT

HEWLFENT HEWLFENT

HEWLFEND HEWLFEND

HEWLFENT HEWLFENT

HEWLFINP HEWLFINP
HEWLFADA HEWLFADA

Figure 68 (Part 1 of 5). Error Message/Issuer Cross-Reference Table

Diagnostic Aids 189

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

E o ... Issue ...
Message
Numbe ... E o ... Message Text Routine CSECT

IEW0132 ERROR-Symbol printed is an unresolved external HEWLFADA HEWLFADA
reference.

IEW0143 ERROR-No text. HEWLFOUT HEWLFOUT
HEWLFINP HEWLFINP

IEW0152 ERROR-Invalid overlay structure; no calls or HEWLFENS HEWLFENS
branches made from root segment.

IEWOI61 Warning--Exclusive call from segment number HEWLFENS HEWLFENS
printed to symbol printed - XCAL was specified.

IEW0172 ERROR-Exclusive call from segment number HEWLFENS HEWLFENS
printed to symbol printed.

IEW0182 ERROR-Invalid exclusive call from segment HEWLFEHS HEWLFENS
number printed to symbol printed.

IEW0191 Warning--Main storage requirements for output HEWLFADA HEWLFADA
load module have exceeded 512K bytes.

IEW0201 Warning--Overlay structure contains only one HEWLFADA HEWLFADA
segment - overlay option cancelled.

IEW0212 ERROR-Expected continuation card not found. HEWLFINP HEWLFINP

IEW0222 ERROR-Card printed contains invalid input from HEWLFESD HEWLFESD
object module. HEWIFINP HEWLFIHP

HEWLFRAT HEWLFRAT

IEW0234 ERROR-Input from load module is invalid. HEWLFRAT HEWLFRAT
HEWLFINP HEWLFINP
HEWLFESD HEWLFESD

IEW0241 Warning--External symbol printed is doubly HEWLFESD HEWLFESD
defined - ESD type definitions conflict.

IEW0254 ERROR-Table overflow - too many external HEWLFESD HEWLFESD
symbols in ESD. HEWLFADA HEWLFADA

HEWLFSCN HEWLFSCH

IEW0264 ERROR-Table overflow - input load module HEWLFESD HEWLFESD
contains too many external symbols in ESD.

IEW0272 ERROR-Load module from library speci fi ed HEWLFINC HEWLFINC
unacceptable to level F.

IEW0284 ERROR-DDname printed cannot be opened. HEWLFINT HEWLFINT
HEWLFRAT HEWLFRAT

IEW0294 ERROR-DDname printed had synchronous error. HEWLFROU HEWLFROU
HEWLFFNL HEWLFFNL

IEW0302. ERROR-Invalid statement - scan terminated. HEWLFSCN HEWLFSCN

IEW0314 ERROR-Maximum number of regions (4) exceeded. . HEWLFSCN HEWLFSCH

I EW0324 ERROR-Maximum number of segments exceeded. HEWLFSCN HEWLFSCN

IEW0332 ERROR-Maximum number of aliases (16) exceeded. HEWLFSCN HEWLFSCN
excess ignored.

Figure 68 (Part 2 of 5). Error Message/Issuer Cross-Reference Table

190 MVS/370 Linkage Editor Logic

This document contain5 restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Error Issuer
Message
Number Error Message Text Routine CSECT

IEW0342 ERROR--Library specified does not contain HEWLFIHC HEWLFIHC
module.

IEW0354 ERROR--Table overflow - too many calls between HEWLFRAT HEWLFRAT
control sections.

IEW0364 ERROR--Table overflow - input text exceeded HEWLFRAT HEWLFTXT
maximum or too many changes of origin in input. HEWLFOUT HEWLFOUT

IEW0374 ERROR--Table overflow - input contains too many HEWLFRAT HEWLFRAT
relocatable address constants or too many
control sections containing such constants.

IEW0382 ERROR--Text record ID is invalid; card ignored. HEWLFRAT HEWLFTXT
HEWLFADA HEWLFADA

IEW0394 ERROR--Member not stored in library - permanent HEWLFFHL HEWLFFHL
device error.

IEW0404 ERROR--Member not stored in library - no space HEWLFFHL HEWLFFHL
left in directory.

IEW0412 ERROR--AU as not stored in library - no space HEWLFFHL HEWLFFHL
left in directory.

IEW0421 Warning--Member not stored in library - HEWLFFHL HEWLFFHl
identical name in directory; wi 11 try to store
under ' T EMPHAME. '

IEW0432 ERROR-·-Library name printed cannot be opened; DD HEWLFIHC HEWLFIHC
card may be missing.

IEW0444 ERROR--Table overflow - too many downward calls. HEWLFREL HEWLFREL

IEW0454 ERROR--Table overflow - segment contains too HEWLFADA HEWLFADA
many downward calls.

IEW0461 Warning--Symbol printed is an unresolved HEWLFADA HEWLFADA
external reference; HCAL was specified, or the
reference was marked for restricted no-call or
never-call

IEW0472 ERROR--Invalid alias entry point in overlay HEWLFENT HEWLFEHT
structure.

IEW0484 ERROR--Table overflow - too many external HEWLFIHP HEWLFIHP
symbols affected by relocation.

IEW0492 ERROR--Invalid name card found in library; card HEWLFSCH HEWLFSCH
ignored.

IEW0502 ERROR--Alias not stored in library - permanent HEWLFFHL HEWLFFHL
device error.

IEW0512 ERROR--IHCLUDE statement syntax conflicts with HEWLFIHC HEWLFIHC
record format of specified data set - DDname
printed.

IEW0522 ERROR--Specified data set has unacceptable HEWLFIHC HEWLFIHC
record format - DDname printed.

IEW0532 ERROR--Blocksize of library data set exceeded HEWLFIHC HEWLFIHC
maximum - DDname printed.

Figure 68 (Part 3 of 5). Error Message/Issuer Cross-Reference Table

Diagnostic Aids 191

This document contains restricted materials of IBM. 0 Copyright IBM Corp. 1972#1983
LY26-3921-0

Error Issuer
Message
Humber Error Message Text Routine CSECT

IEW0543 ERROR--Identical name in directory. HEWLFFHL HEWLFFHL

IEW0552 ERROR--Common printed exceeded size of control HEWLFESD HEWLFESD
section with identical name.

IEW0564 ERROR--Invalid text origin, linkage editor HEWLFSCD HEWLFSCD
processing terminated.

IEW0572 ERROR--Common printed and subroutina have HEWLFESD HEWLFESD
identical name.

IEW0581 Warning--Invalid member nama; wi 11 try to store HEWLFFHL HEWLFFHL
under 'TEMPHAME. '

IEW0594 ERROR--Input data set blocksize is invalid. HEWLFIHP HEWLFIHP
HEWLFIHT HEWLFIHT

IEW0602 ERROR--Input from object module is invalid - EHD HEWLFIHP HEWLFIHP
card missing.

IEW0614 ERROR--Length not specified for external symbol HEWLFRAT HEWLFTXT
printed.

IEW0622 ERROR--Address constant references null unnamed HEWLFRAT HEWLFRAT
control section.

IEW0630. ERROR--DDname printed had synchronous error - HEWLFROU HEWLFROU
XREF aborted.

IEW0642 ERROR--Symbol printed appeared on control HEWLFADA HEWLFADA
statement but was not matched.

IEW0652 ERROR--Conflict in order specified for symbol HEWLFSCN HEWLFSCH
pri nted.

IEW0670 The specified identify data has been added to HEWLFIDR HEWLFIDR
the IDR for the control section name printed.

IEW0682 ERROR--Control section name on an IDENTIFY HEWLFIDR HEWLFIDR
control statement is incorrect or the statement
is misplaced - IDENTI FY data ignored.

IEW0694 ERROR--Table overflow - SIZE value specified not HEWLFIDR HEWLFIDR
large enough for CSECT IDR input - Linkage
Editor processing terminated.

IEW0704 Unrecoverable error detected in CSECT IDR input HEWLFIDR HEWLFIDR
- linkage editor processing terminated.

IEW0714 ERROR--Member not stored in library - STOW HEWLFFHL HEWLFFNL
workspace unavailable.

IEW0722 ERROR--Invalid alias name. HEWLFSCH HEWLFSCN

IEW0731 Warni ng--Al i as matches member nama - al i as HEWLFFNL HEWLFFNL
ignored.

IEW0740 The indicated action was takan for an EXPAND HEWLFSCN HEWLFSCN
request.

IEW0751 Warning--Invalid AMODE/RMODE combination found HEWLFFNL HEWLFFHL
in MODE control statement - i","ored.

Figure 68 (Part 4 of 5). Error Message/Issuer Cross-Reference Table

192 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

Error Issuer
Kessage
Number Error Kessaga Text Routine CSECT

IEW0761 Warning--Invalid AMODE/RMODE combination found HEWLFFHL HEWLFFHL
in PARM field - ignored.

IEW0771 Warning--AMODE/RMODE data in MODE control HEWLFFHl HEWlFFHl
statement incompatible with OVLY option -
ignored.

IEW0781 Warning--AMODE/RMODE data in PARM field HEWLFFHL HEWLFFHL
incompatible with OVLY option - ignored.

IEW0791 Warning--Invalid AMODE/RMODE combination in ESD HEWLFESD HEWLFESD
data for the named CSECT - ignored.

I EW098lt ERROR--SYSPRIHT blocksize exceeds maximum - HEWLFIHT HEWLFIHT
linkage edit processing terminated.

IEW099lt ERROR--SYSPRIHT DD card missing - linkage editor HEWLFIHT HEWLFIHT
processing terminated.

Figure 68 (Part 5 of 5). Error Message/Issuer Cross-Reference Table

Diagnostic Aids 193

This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983
LY26-3921-0

APPENDIX. INPUT CONVENTIONS AND RECORD FORMATS

INPUT CONVENTIONS

This section contains linkage editor input conventions and
record formats (see Figure 69 on page 195 through Figure 82 on
page 204).

Input modules (object or load) to be processed in a single
execution of the linkage editor must conform with a number of
input conventions. Violations of the following are treated as
errors by the linkage editor:

• All text records of a control section must follow the ESD
record containing the SD or PC entry that describes the
control section.

• The end of every input module must be marked by an end
indication (END record in an object module; EOM flag in a
load module).

• Each input module may contain only one no-length control
section (a control section whose length field in its SD or
PD entry in the ESD contains zeros). The length must be
specified on the END record of any module that contains a
no-length control section.

• After processing the first text record of a no-length
control section, the linkage editor will not accept a text
record of a different control section within the same input
module.

• Any RLD item must be read after the ESD items to which it .j
refers; if it refers to a label within a different control
section, it must be read after the ESD item for that control
section.

• The language translators must gather RLD items in groups of
identical position pointers. No two RLD items having the
same P pointer can be separated by an RLD item having a
different P pointer.

• Each record of text 14 and each LD or LR entry in the ESD
record must refer to an SD or PC entry in the ESD.

• The position pointer of every RLD item must point to an SD
or PC entry in the ESD.

• No tD or LR may have the same name as an SD or CM.

• All SYM records must be placed at the beginning of an input
module. The ESD for an input module containing test
translator statements must follow the SYM records and
precede TXT records.

• The linkage editor accepts TXT records that are out of order
within a control section, even though linkage editor
processing may be affected. TXT records are accepted even
though they may overwrite previous text in the same control
section. The linkage editor does not eliminate any RLD
items that correspond to overwritten text.

• During a single execution of the linkage editor, if two or
more control sections having the same name are read in, only

14 A common (CM) control section cannot contain text or
external references.

194 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

RECORD FORMATS

L SYM Input Record (Card Image)

the first control section is accepted; the subsequent
control sections are deleted.

• The linkage editor interprets common (CM) entries in the ESO
(blank or with the same name) as references to a single
control section whose length is the maximum length specified
in the eM items of that name (or blank). No text may be
contained in a common control section.

• Within an input module, the linkage editor does not accept
an SO or PC entry after the first RLO item is read.

To avoid unnecessary scanning and input/output operations, input
modules should conform with the following conventions. Although
violations of these rules are not treated as errors, avoiding
them will improve the efficiency of linkage editor processing.

• Within an input module, no LO or SO may have the same name
as an ER.

• Within an input module, no two ERs may have the same name.

• Within an input module, TXT records may be in the order of
the addresses assigned by the language translator. (If TXT
records are not in address sequence, each reorigin operation
may require additional linkage editor processing time.)

• SYSUTl record size should be at least as large as SYSLMOO.

Figure 69 through Figure 82 on page 204 are the card image and
load module record formats for the Linkage Editor.

73-80

- Not used

TESTRAN data

Number of bytes of TESTRAN data

Blank

SYM

12-9-2 (00000010)

Figure 69. SYM Input Record (Card Image)

Appendix. Input Conventions and Record Formats 195

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972.1983
LY26-3921-0

ESD Input Record (Card Image)

5-10

L Blank

-ESD

~ 12-9-2 10000 0010)

ESD Data Item

I 1-8

L ESD Data - see below (up to 3 data items per record)

- Blank if all ESD items are LD

- ESO IOENTIFIEIRof first ESD item (other than LO)
Blank

- Number of bytes of ESD data

Zero - if length is on END record.
- Length of control section (if type is: SD, PC, CM)
- ~ier of SD entry containing name
I-- Blank if type is ER, WX
'-- Length of pseudo register (PR)

~ Alignment factor (PRI
07 - doubleword alignment
03 - word alignment
01 - halfword alignment
00 - byte alignment

AMODE/RMOOE/RSECT data (SO,PCI
xxxx not used
.... R... RSECT information

..... R ..

o ~ not read-only
1 = read-only

RMOOEdata
0=24
1 =ANY

. AA AMOO E data
00,01 = 24

00 = 31
11 ~ ANY

Blank (LO, ER, CM, Null, WX)

~ 24 bit address (SO, PC, LO)

- Type - Hex IOO~SD, 01~LD, 02~ER, 04~PC, 05~CM, 06~PR, OA~WX)

- Name -when type is: SO, LD, ER, CM, PR, WX
- Blank - when type is: PC or blank CM

Figure 70. ESD Input Record (Card Image)

196 MVS/370 Linkage Editor Logic

I 73-80 I
L Not used

J

L

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1913
LY26-3921-0

Text Input Record (Card Image)

17-72

Text data (machine language code)

ESO Identifier of SO far control section of this text

ill

Blank

~ of. bytes of text data

Blank

2 .. bit address of first byte of text data

12-9-2 (0000 0010)

Figure 71. Text Input Record (Card Image)

RLO Input Record (Card Image)

17-72

RLO data - see below

Blank

Number of bytes of RLO data

RLO

12-9-2 (0000 0010)
RLO data It_

Assigned address of odd,... constant

~d -- (TTTTLLSTn)

()()()()c-:,n:,ronch
0001 =blanch
0011 =pseudo register cumulative length
LL"~th of ad constant
OJ~>,teI
l~byt ..
11 bytes

S=Oirection of relocation
()opOIltlve (+)
1 '"MgOtl ve (-)

T n""trpe of next RLO It_
O=next RLb Item 110. 0 dlfm.nt R or ,

pointer; they are present In the ~ Item
l_xt RLD Item hal the _ R , point­

en, hence they are omitted

POiltlon pointer (P) - ESOIO of SO for control section that contolns the addr_ constant

73-80

Not utecI

L...-__ Relocation pointer (R) - ESOIO of CESO entry for the .ymboI being referred ta (zero (00) If ~PR cumulative I

Figure 72. RLD Input Record (Card Image)

Appendix. Input Conventions and R*cord Formats 197

This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983
LY26-3921-0

END Input Record - Type I (Card Image)

17-28 33-80

See Below

Control section length for control section whose length was not specified
in SO ESD item. Byte 29 is binary zero if length is present.

ESDID of SO item for this control section that contains the entry point address specified in columns 6-8.

24 bit address of entry point (optional)

12-9-2 (0000 0010)

Figure 73. END Input Record--Type 1 (Card Image)

END Input Record - Type 2 (CCI'd Image)

5-16
1

-END

-12-9-2 (00000010)

17-24 125-28 1 29-32 1 33-80 I

'-- See Below

- Control section length for control sectian whose length was not specified
in SO ESD item

- Symbolic entry paint name (optional)

Figure 74. END Input Record--Type 2 (Card Image)

198 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

I 33 I 34-43 I 44-45 I 46-47 I 48-49 I 50-52 I 53-71 I n-ao I
L When present, Icme fOl"mat as

columns 34-52, but data applies
to a pracelSOl" wh i ch produced
the source code fOl" the praceuor
described in columns 34-52
(Pl/S compi leF)

'-- Day of year (date of compilation 01" _mbly)

'- Last two digits or year (date of compilation 01" assembly)

'--Modification level of processor (01 to 99)

- Flag field:

- Version level of processor (01 to 99)

'--Translator identification - PID order number or equivalent,
left· justified and padded to the right with blanks.

Blank = no lOR information in this record (provides
compotibility with existing format)

EBCDIC 1 = one lOR item follows
EBCDIC 2 = two lOR items follow

Figure 75. lOR Data in an Object Module End Record

SYM RecOl"d - (load Module)

4-243 (~~~~ __________________ ~)~ ______________________ --w

SYM data and ESD data (ESD type SO, eM, and PC iteml) - 6nCIKlmum of 2.., bye.a)

Count - in bytel, of SYM and ESO data (2 bytes)

Subtype - speciflel infOl"mation for TESTRAN - (l byte)
--- 1000 0000 - this SYM record contains ESD It_ (SO, PC or CM) from

a load module that was not "under test". The TEST attribute
was not specified when It was link edited.

0000 0000 - this SYM recOI"d il not the above type.

L Identification - speciflel this is a SYM record -- OUIO 0000 (1 byte)

Figure 76. SYM Record (Load Module)

Appendix. Input Conventions and Record Formats 199

This document contains restricted materials of IBM. 0 Copyright IBM Corp. 1972,1983
LY26-3921-0

CESD Record - (Load Module)

] 0]1]2-314,5]6,718-247 ~SL ____ U_P_ta_2_40_b_yt_es __ af_E_S_D_da_ta _____ ~

~ESD data - see below

~!=ount - in bytes, af ESD data (2 bytes)

-ESDID of first ESD item (2 bytes)

-Spare - binary zeros 12 bytes)

- Flag (1 byte)
Ox xx xxx x - byte 12 of CESD data items contains segment numbers
lxxx xxxx - byte 12 of CESD data items contains AMODE/RMODE/RSECT data

-Identification -- 0010 0000 (1 byte)

CESD Dota (Load Module)

] 1-8

L ID/leneth - leneth (3 bytes), when type I .. SD, PC, CM, or PR
10 (2 bytes), when type II LR
zero (3 bytes), when type II WX, Null or ER (Hex '06' indicotel neyer call)

'--Zero (ER, WX. Null)
If flag byte (byte 1) indicates CESD data items contain segment numbers. legment number (SO, PC, CM. LR)
If flag byte (byte 1) indicates CESD data items contain AMODE/RMODE/RSECT data -

xxxx not used
. . .. R... RSECT information

o = not read-only
1 = read-only

..... R . . RMODE data
0=24
1 =ANY

_ AA AMODE data

(SO. PC)

Alignment factor (PR)
07 = doubleword
03 = fullword
01 = halfword
00 = byte

00,01 = 24
10 = 31
11 = ANY

~Addre .. - linkage editor assigned address of thl. symbol. Zero when type is ER, WX or Null (3 bytas).

-Type - Section Definition (SD)
Label Reference (LR)
Private Cade (PC)
Common(CM)
Pseudo Register (PR)
Null
Externa I Reference (ER)
Weak External Reference (WX)
(1 byte)
Private Code marked delete

.xxx 0000
xxxx 0011
..xx 0100
..xx 0101
..xx 0110
0000 0111
xxxx 0010
xxx. 1010

Subc 10Hlfication
belete xxxI .xxx
Replace xxx 1 xxxx
In .. rt xx!'x xxxx
Chain xlxx xxxx
Mop lxxxxxxx

(ENTA8 and SEGTA8 control 18ctions) xxxi .100

'--Symbol - The eight-character external name (zero when type II Null)

Figure 77. CESD Record (load Module)

200 MVS/370linkaga Editor logic

Note: • may be I or O.

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983
LY26-3921-0

'Scatter/Translation Record

1°1 1 12-3 14-1023 ~S~ ________ u_p_t_o_a_n_d __ in_c_lu_d_in_g __ l0_2_0 __ by_t_e_s __________ ~

'-- Data - may contain translation table or scatter table; or both, if both will fit in 1020 bytes.

'--Count - in bytes, of data field (2 bytes)

'--~ - binary zeros (1 byte)

'--Identjfication - identifies this as a scatter/translation record - 0001 0000 (1 byte)

Translation Table

L.r---Lr--L----L...-....I...l..--J~ I TIT ITT I Tn I l
Lpadding-if necessary, to force fullword boundary alignment

--- of scatter table (2 bytes)

Translation Table Entry - pointer to the scatter table entry that contains
the address of the control section containing
this CESO entry. Number of translation table
entries = number of CESO entries +1 = n.
Pointer will be zero if its corresponding CESO
entry is not SO, PC, CM, or LR. (2 bytes)

Zero - binary zeros (2 bytes)

Scatter Table

,Scatter Table Entry (4 bytes)

--
Assigned Address - of a control section (SO, PC, or CM) (3 bytes)

Flags (1 byte)
xxxx .. x . not used
· . .. R... RSECT information ° = not read-only

1 = read-only
· R . . RMOOE data

0= 24
1 = ANY

· H Hierarchy (OS/MVT) ° = processor storage
1 = 2361 storage

L-_______ Zero - binary zeros (4 bytes)

Translation Table and Scatter Table

Translation data (2 bytes) Padding - if necessary to align scatter table to a fullword boundary (2 bytes)

Binary Zero (2 bytes)

Figure 78. Scatter/Translation Record

Appendix. Input Conventions and Record Formats 201

This document contains restricted materials of IBM. C Copyright IBM Corp. 1972.1983
LY26-3921-0

Control Record - (Load Module!

a,l °rol1.,'_-2 J ... 3,..:.L 14-r-5 1.,6_-7_..L.,..I ___ 8_-_15 ___ Lr-I _______ 16_-_25_5 _______ SJS Record Length 20 to 256 bytes for level F

'-- Control Data -- see below

- Channel Command Word (CCW) - that could be used to read the text record that follows. The data adchu field
contains the linkage editor-assigned eddress of the first byte of text in the text record that follows.
The count field contains the length of the succeeding text record_ (8 bytes'

- Count - binary zeros (2 bytes)

- ~ - in bytes, of the control data (CESD 10, length of control section) following the CCW field (2 byte.)

'- Count (1 byte'· of RLD and/or CTL/RLD records following next text record

'--- Spore - binary zeros (2 bytes'

'-- Identification (1 byte) - specifies that this is:

• a control record - 0000 0001

• the control record that precedes the lost text record of this overlay segment - 0000 0101 (EOS)

e the control record that precedes the last text record of the module - 0000 1101 (EOM)

Control Data

length of text record and/or lensth of control section - specifies the
length of the control sectio., (in byte.) to which the text in the
fallowing record belongs, or the number of byte. of a control
section contained in the following text record (2 bytes)

CESD entry number - specifies the composite external symbol dictionary entry that
contains the cl)rltrol section name of the control section of which this text is a port (2 byte.)

Figure 79. Control Record (Load Module)

202 MVS/370 Linkage Editor Logic

Th;s documant conta;ns restricted materials of IBM. C Copyr;ght IBM Corp. 1972,1983
LY26-3921-0

Relocation Dictionary Record - (lood Module)

... IOrll.,1r ,_2..J1,3..J11,.4_,_5"'-T 16_,7_' 1 __ a_-_1_5 ___ I_I_6_-2_5_5 _____________ ~.JSRecord length can be between 24 and 256

- RlD doto -- see below

- Spore - binary zeros (a byte.)

- Count - in byte., of the relocation dktionary information following the .pore a-byte field (2 byte.)

- Count - binary zero. (2 byte.)

- f2!:!!!1 (1 byte' - of RLD andlor CTLIRLD records following next text record

.~ Spore - binary zero. (3 byte.)

L- IdentificatIon (I byte) - .pecifie. that thIS IS.
• Q relocation dictionary record ... 0000 0010
• the la.t record of the .egment - 0000 0110
• the lo.t record at the module - 0000 1110

~~~_4~~ __ ----~SL--------~IF~I-A-LR-LP~I~FI~A~-R~~IF~I_A~ 
[ Addr.ss - I inkoge editor assigned address 01 

--- the address con.tant (3 bytes) 

~ - (1 byte) When byte format is •••• llST, 
specifies miscellaneous information as follows: 
.xx •• peclfie.the type of this RlD item (address cO"'tant). 
0000 -- nonbranch-type in assembler language, DC A (name) 
0001 -- branc"-type in ... sembler language, DC V (name) 
0010 -- pseudo regi.ter displacement yalue 
0011 -- pseudo register cumulative displacement "alue 
1000 and 1 001 -- this oddreu constant is not to be relocated because it refers to on unresolyed symbol 

II ~cifie. the length of the address con.tant. 
01 -- two byte 
I 0 -- three byte 
II -- four byte 
5 specifies the direction of relocation. 
o -- positive 
I -- negatiYe 
T .pecifi •• the type of the next RlD item. 
0-- the foll_ing RLD item has a different relocation and/or po.ition point.r 
I -- the foll_ing RlD item has the same relocation and 

poIition pointe,. as this and therefore is omitted 
Position pointer (P) - contain. the entry number of the CESD entry (or tran.lotion table entry) 

thot indicote. which control section holds the address con.lOnt (2 bytes) 

Relocation pointer (R) - contain. the entry number 01 the CESD entry (or tronslotion table entry) that indicates which .ymbol ""I ... 
i. to be used in the computation of the address constant'. "alue (2 bytes) 

Figura 80. Relocation D;ctionary Racord (Load Modula) 

Appendix. Input Conventions and Record Formats 203 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
lY26-3921-0 

Control and Relocation Dictionary Record - (Load Module) 

8-15 I I I I I I ) C)~_---.!.-J.l l-----Lrl --L,-I ---1...1 

l L"""" ~ '""" ...... 
I 

~ Address (3 bytes) 

-~(Ibyte) 

-Position pointer (2 bytes) 

- Relocation pointer (2 bytes) 

'-- Channel Command Word (8 bytes) 

'--~, in bytes, af RLD infannation (2 bytes) 

~, in bytes, of control information foll~ing the last RLD address field. 
The control information contains the 10 and length of control sections in the 
following text record. (2 bytes) 

'--~ (3 bytes) 

-Identification (I byte) - specIfies that this record IS: 

• a control and RLD record - 0000 0011- (it Is followed by a text record) 
• a control and RLD record thot is followed by the last text record of a segment - 0000 0111 (EOS) 
• a conlrol and RLD record thot is followed by the last text record of a module - 0000 1111 (EOM) 

Notes: For detailed descriptions of the data fields see Relocation Dictionary Record and Control Record. 
The record length varies from 20 to 256 bytes. 

or t.xt record (2 bytes) 
CES 0 entry numb.r (2 bytes) 

Figure 81. Control and Relocation Dictionary Record (load Module) 

CSECT Identification Record 

J record length 7 to 256 bytes 
~-'-----r----'------r-----J ~'-----------I 

Sub-Type Indicator - specified type of lOR data 
contained on this record (bits 1-3 reserved) 
---- 0001 data supplied by HMASPZAP 
---- 0010 Linkage Editor data 
---- 0100 Translator-supplied data 
---- 1000 User {System}-supplied data (from IDENTIFY function) 
1--- ---- Indicates the last lOR of this load module 

Byte Count - of lOR data in this record, 
including this field (value range 6 to 255). 

Identification - indicates that this is: 
10000000 - a CSECT Identification record. 

Figure 82 (Part 1 of 3). Record Format of Load Module IDRs 

204 MVS/370 Linkage Editor logic 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

HMASPZAP Data 

6-13 j 
~-L ___ ~~ ___ ,-___ L-_________ ~ _________ L-_________ ~ ______ ~~~ ____________________________________ ~ 

Up to 18 repetitions of bytes 1 through 13 

Data specified during HMASPZAP processing • 

Data of HMASPZAP processing (packed decimal) VYDDD 

ESDID of CSECT processed by HMASPZAP 

Rags and count 
Bi t 0 - reserved 
Bit 1 - chain bit - a 1 indicates that the next record is 
also available for HMASPZAP data. 
Bits 2-7- number of HMASPZAP entries used on this record 
(value range 0 to 19) 

*Wtoy be a PTF number or up eight bytes of variable user 
data specified on an HMASPZAP IDRDATA control 
statement. 

Date of last linkage editor processing 
of this module (pocked decimal) VYDDD 

Version and Modification level of the linkage editor 
that produced this module (pocked decimal) VVMM 

Program Name of the linkage editor that produced this module 

Figure 82 (Part 2 of 3). Record Format of Load Module IDRs 

Appendix. Input Conventions and Record Formats 205 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

T ransl ator Data 

Variable n to n+14 

LTranslator description (see below) 

'----------'--.... ESDID (s) of CSECT (s) whose object code was produced by the translator 
described in this-data item. This field is repeated as many times as 
necessary with the high order bit of the last ESDID irr the list set to 1. 

Translator Description (This portion is an optional extension for PL/S) 

1-10 

-Indicator 

16-30 

When present, same as bytes 1-15, but data 
applies to a translator whose output is source 
code (a pL/S compiler) 

Date of compilation/assembly (packed decimal) YYDDD 

Version and Modification level of translator (packed decimal) WMM 

Program name of translator, left justified and padded to the right with blanks 

0000 0000 - only one translator was described on object END card for these CSECTs 
0000 0001 - two translators were described on object END cord (that is, PL/S Compiler 

and Assembler) and are included here. 

User Data (Linkage Editor IDENTIFY Function) 

~~-------I-to-4O-b-y-te-s-----------' 

~r-~ __ ~ __ ~~-L ____ ~ __ -J J~ ____________________________ ~ 
1T0m 1 to 40 bytes of variable user (or system) supplied 
data as specified on the Linkage Editor IDENTIFY. control 
statement. Assumed to be printable EBCDIC characters. 

Count - number of characters in the user data field 

Date on which this data was supplied to the module via the linkage 
editor IDENTIFY control statement. 

ESDID of the CSECT to which the user data applies. 

Figure 82 (Part 3 of 3). Record Format of Load Module IDRs 

206 MVS/370 Linkage Editor Logic 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

A-type address constant 
de!; nki ng of 65 
relocation of 61 
RLD processing for 45 

absolute relocation 18 
See also absolute relocation factor, 
relocation 

examples 63 
in entry processing 56 

absolute relocation factor 62 
See also absolute relocation 
definition 62 
determination of 45 
use in relocating delinked address 
constants 62 

use in relocating V-type address 
constants 66 

adcon 
See address constant 

additional call libraries 
See LIBRARY statement 

additional input sources 
See INCLUDE statement 

address assigment 59 
See also address assignment processor 
function 2-3 
general description 16 
in cross-reference table 59 
of first text record as zero 7 
of main entrY point 56 

address assignment processor (HEWLFADA) 
description of 52-54 

chart 126 
synopsis 93 

operation diagram 86 
address constant 2 

See also A-type address constant, 
pseudo register, V-type address 
constant 

computing the value of 4 
delinking 45, 66 
in RLD processing 45 
purpose 2 
relocation 61, 71 

See also address assignment 
addressing mode 1 
addressing mode (AMODE) 8 
ALIAS statement 

general description of processing 23 
operation diagram 81 
processor 29 

alias table 
construction of 56 
format 161 
introduction to 17 

ALIGH2 format attribute 7 
all purpose table (APT) 

format 150 
indicators for MAP, XREF options 58 
introduction to 15 
making an entry in 88 
preparation of 19, 88 

allocat ion 
of buffers and tables 21-22 

of virtual storage 21, 22, 168 
initialization 15 

allocation processor (ALL001) 88 
APT 

See all-purpose table 
attributes and options processor 

(HEWLFOPT> 88 
attributes, module 

analysis of (HEWLFOPT) 88 
descriptions 6-8 
incompatible (table) 19 
processing examples 8-11 
use of 6-8 

authorization code 
in partitioned organization director 
record 172 

authorization code (AC) 8 
automatic library call 1 

See also automatic library call 
processor 

function 1 
automatic library call processor 

(HEWLCAUT> 
description of 50-51 

charts 120, 124 
synopsis 93 

automatic promotion of common 38 
automatic replacement 65 

blank common 
See also common 
definition of 34 
de!; nki ng of 66 
in resolution processing 37 

BLDL list, making an entry in 48, 50 
BLDL macro instruction 47, 48 
block format attribute 7 
blocked input 

on SYSLIB 23 
on SYSLIN 23 

blocked output 
on SYSPRINT 23 

boundary alignment factor 52 
branch-type address constant 

See V-type address constant 
buffer allocation 21, 187 

call library 
See automatic library call, SYSLIB 

data set 
calls 

downward 54, 67 
exclusive 54, 67 
invalid exclusive 68 
upward 54, 67 

calls list 
format 161 
making entries in 16, 45 

Index 207 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

scanning 52-55 
calls, automatic library 

See automatic library call 
CESD 

See composite external symbol 
dictionary 

CESD entry number 27, 82 
CESD identifier 35-37, 92 
CESD record 

format 200 
in input load module 32, 34 

CESD record types 34 
CHANGE statement 

CM 

operation diagram 81 
processing 23 
processor 28 

See common 
combining object modules 1 
common (CM) 

See also blank common 
defi niti on 34 
delinking of 66 
non-resolution processing 36 
resolution processing 37 

Common path routine (HEWLCPTH) 
automatic promotion.of common 38 
in program organization 94 

communication area 
See all purpose table 

composite dictionaries 4, 5 
See also composite external symbol 
dictionary, relocation dictionary 

composite ESD 
See composite external symbol 
dictionary 

composite external symbol dictionary 
(CESD) 

contents 9 
definition 34 
internal format 162, 164 
introduction to 4 
making an entry in 15, 92 
written out on SYSLMOD 56 

concatenated data sets 
on SYSLIB 12 
on SYSLIN 11, 23 

control dictionaries 3 
See also external symbol 
purpose 3 
when generated 3-5 

control information processing 
analyzing 19 
description of 19 
operation diagram 81 

control record 
contents 10 
in input module 32 

control section (CSECT) 2 
See also no-length control section 
assigning addresses to 2-3 
delinking of 66 
grouping on SYSLMOD 60 
replacement 38, 65 

control section search routine 
(GETIDMUL) chart 136 

in program organization 94 
control statement 

format 23 
operands 23 
operation diagram 81 
pointers (PI, P2) 24 
processing 15, 23-31 
work areas (OPDO, OPD1) 24-25 

208 MVS/370 Linkage Editor Logic 

control statement scanner (HEWLFSCN) 
processing 23 

synopsis 92 
control/RLD dictionary record 10 

See also control/RLD record write 
contents 10 
creation of 59, 94 
format 204 

control/RLD record 
See control/RLD dictionary record 

control/RLD record write routine 
(WRTCRRLD) 94 

cross-reference between control 
. secti ons 2-3 
cross-reference table 59 

See also options 
XREF option 

See also options, XREF option 
contents 59 
detailed description of 
production 59 

in program organization 93, 95 
CSECT identification record (lOR) 

contents 1, 16 
data types 

See lOR data types 
description 9-10 
formats 204 
IDENTIFY control statement 41 
in load module 16, 39-40, 41 
in object module END records 39-40 
processing (HEWLFIDR) 

description of 39-41 
operation diagrams 81 

program processing history 1 
written out on SYSLMOD 17 

data control block 
initializing 15, 92 
used to determine module type 12 

DC 
See downward compatible attribute 

DCB 
See data control block 

DCBS option 
function 6 

delink table 
contents 16 
format 164 
making an entry in 45 

deli nk i ng 
definition 65 
example 65 
in RLD processing 46 
of A-type (nonbranch-type) address 
constants 65 

of common control sections 66 
of external symbols 65 

dense record 43 
determining ESD type 34 
diagnostic aids 

buffer allocation 187 
error message--module cross-reference 
table 189 

register contents at entry to 
module 183 

table allocation 188 
diagnostic directory print routine 

(HEWLFBTP) 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
LY26-3921-0 

in program organization 95 
LIST used during processing 
TABLE used during processing 

diagnostic messages construction 
See also error logging 

diagnostic output data set 
See SYSPRINT data set 

diagrams, operation 15, 74-87 
directory, microfiche 145 
downward call 54, 67 
downward calls list 

format 164 
introduction to 16 

180 
180 

72 

downward compatible attribute (DC) 
definition 7 
grouping control sections 60 

downward reference 54, 67 

end of module (EOM) indicator 3 
See also END record 
description of 3 
in control record 10 
in END processing 92 
in input load module 32 
setting 60 

and of segment (EOS) indicator 
in control record 10 
setting 58 

END processing (HEWLFEND) 
description of 47 

chart 114 
synopsis 92 

END record 
containing IDR data 39-40 
format 198 
in entry processing 56 

END record (continued) 
in object module 31 

ENTAB 
See entry table 

enter routine 36 
entry list 

contents 18 
format 165 
relocation 18 
use of 67 

entry point 8 
See also ENTRY statement 
assigned by linkage editor 8 
in END processing 47 
processing 56 

entry processor (HEWLFENT) 
description of 56 

charts 128 
ENTRY statement 

general description of processing 24 
operation diagram 81 
processor 29 

entry table (ENTAB) 
See also entry table creation routine 
entries in CESD 16 
format 165 
introduction to 10 
PC-delete entry for 34. 52 

used in relocating V-type address 
constants 68 

entry table creation routine (SCDENTAB) 
description of 68 
in program organization 94 

entry table size determination routine 
calls list format 

processing 54-55 
processing chart 127 

EOM 
See end of module indicator 

ER 
See external reference 

error logging 
description of 72 
routine (HEWLFLOG) 

chart 144 
table and list used 180 

error message/issuer--module 
cross-reference table 189 

error messages 
See diagnostic messages 

error processing 
See diagnostic directory print 

routine 
See error logging 

ESD 
See external symbol dictionary 

ESD ID 
See ESD identifier 

ESD identifier 
definition 4 
entry in high ID table 58 
in entry processing 56 
in ESD processing 35 
in text processing 43 

ESD record 
definition 16 
format 196 
in object module 31 
operation diagram 82 
processing 35-39 

ESD record types 34 
exclusive call 54, 67 

See also options. XCAL option 
executable attribute 7 
EXPAND statement 

general description of processing 23 
EXPAND statement processor 30 
external dummy section 

See pseudo register 
external reference (ER) 

definition 2, 34 
entry processing 35 
non-resolution processing 37 
resolution processing 34. 38 
unresolved ER processing 53 

external symbol definition 3 
external symbol dictionary (ESD) 

contents 3 
entry types 34 
identifier 

See ESD identifier 
introduction to 3 
processing (HEWLFESD) 

description of 35-39 
description of chart 105 
description of synopsis 91 
operation diagram 82 

Index 209 



This document contains restricted materials of IBM. e Copyright IBM Corp. 1972,1983 
l Y26-3921-0 

final linked address 53 
final processing (HEWlFFNl) 

description of 18. 72 
charts 143-144 
synopsis 94 

objective 18 
operation diagram 80 
overview 13 

final relocation constant 53 
first pass RlD buffer 

See RlD buffer 
formats, record 195-206 
freeline routine 36 
functions of the linkage editor 1-2 

half ESD table (HESD) 
contents 17 
format 166 
in ENTA8 creation 68 
production of 57, 93 
saving relocation factors in 61 

HESD 
See half ESD table 

HEWlCPTH 
See Common path routine 

HEWlCROI 
See SYNAD routine 

HEWlFADA 
See address assignment processor 

HEWlFAUT 
See automatic library call processor 

HEWlFEND 
See End processing 

HEWlFENT 
See entry processor 

HEWlFESD 
See external symbol dictionary 
processing 

HEWlFFNl 
See final processing 

HEWlFIDR 
See CSECT identification record 

HEWlFINC 
See include processing 

HEWlFINP 
See input processing 

HEWlFINT 
See initialization processing 

HEWlFlOG 
See error logging, routine 

HEWlFMAP 
See MAP/XREF processor 

HEWlFMDI 
See object module processing 

HEWlFOPT 
See attributes and options processor 

HEWlFOUT 
See intermediate output processor 

210 MVS/370 linkage Editor logic 

HEWlFRAT 
See text and RlD processor 

HEWlFREl 
See RlD control block, second pass 
text control block format 

HEWlFROU 
See linkage editor, entry point 

HEWlFSCD 
See second pass processing 

HEWlFSCN 
See control statement scanner 

HEWlFSIO 
See second pass processing 

HEWlFSYM 
See symbol record, processor 

HEWlFTXT 
See text record, processing 

HEWlMBTP 
See diagnostic directory print 

routine 
HIARCHY 

See hierarchy format attribute 
HIARCHY statement 

general description of processing 23 
processor 27-28 

hierarchy format attribute (HIAR) 7, 23 
hierarchy table 28 
high ID table (HIID) 

construction of 93 
contents 17 
format 167 
making an entry in 58 

HMASPZAP data 40 
See also IDR data types 
processing (HEWlFIDR) 

chart 118 
description of 40 

I/O control table, address of t~xt note 
list on SYSUT1 43, 47 

ordering of text 59 
I/O flow 11-14 
ID-length list 43 
identification record 

See CSECT identification record 
IDENTIFY statement 23 

See also CSECT identification record 
general description of processing 23 
operation diagram 81 
processing data 41 

chart 118 
processor 29 

lOR 
See CSECT identification record 

lOR data types 39 
IMASPZAP-supplied data processing 40 
linkage editor data processing 40-41 
translator-supplied data 
processing 39, 40 

chart 116 
user-supplied data 41 

See also IDENTIFY statement 
processing 41 
processing chart 119 

lOR tables 56 
See also CSECT identification record 
written onto SYSlMOD 

translator data table (IDRTRTAB) 
contents 47 



This document contains restricted materials of IBM. @ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

entry 41 
user data table (IDRUDTAB) 

contents 41 
include processing (HEWLFINC) 9, 92, 

123 
INCLUDE statement 23 

See also include processing 
general description of processing 23 
in input processing 20 
operation diagram 81 
processor 25 

incompatible module attributes 20 
initialization processing (HEWLFINT) 

description of 15, 19 
synopsis 88 

operation diagram 76 
input 

See automatic library call, SYSLIN 
data set 

input conventions 194 
input data set 

See SYSLIN data set 
input entry types 

See input record types 
input processing (HEWLFINP) 

description of 15-16, 22 
chart 101 
synopsis 89 

operation diagram 77 
overview 11-14 

input record types 
associated processors 90 
formats 195-206 
general register contents for 33 
processing 22, 32 

input text buffer (TXTBFBEG) 
general description of use 16, 17 
in single pass processing 59 
in text processing 41, 43 
minimum length 21 

input/output flow 11-14 
INP270 

See load module processing 
INSERT statement 

general description of processing 23 
operation diagram 81 
processor 28 

intermediate output processor (HEWLFOUT) 
description of 16-17, 56 

synopsis 93 
use of hierarchy table 28 

intermediate processing 
description of 16-17, 51-56 

charts 126, 131 
synopsis 93 

objectives 16 
operation diagram 78 
overview 13 

label definition (LD) 
definition 34 
entry processing 34 
non-resolution processing 37 

label reference (LR) 
definition 34 

non-resolution processing 37 
resolution processing 38 

label routine 38 
language translators 1 
LD 

See label definition 
LET option 6 
level 0 symbol 24 

See also control statement 
operands 

level 1 symbol 24 
See also control statement 

operands 
library calls 

function 1 
library read block 48 
LIBRARY statement 

in automatic library call 
processing 50, 51 

See also automatic library call 
in input processing 12 
operation diagram 81 
processor 29 

line number 4, 36 
See also CESD identifier, ESD 

identifier 
linkage editor 

data 
See IDR data types 

data sets 11 
description 2-3 
design points 1-2 
entry point (HEWLFROU) 88 
functions 1 
method of operation 15 
options 5-6 
organization 88-144 
overlay structures 1 
purpose 1-2 
relationship to the operating 

system 2 
linkage editor assigned address of first 
text record as zero 7 

linking object modules 2 
LIST option 6 
load module 

attributes 6, 8 
See also attributes, module 

data set 
See SYSLMOD data set 

definition 3 
processing (INP270) 

description of 32 
description of chart 103 
description of synopsis 90 

record types 32 
See also input record types 

structure 3-5, 6-11, 16-18 
text processing 43 

See also text record processing 
logical record length (LRECL) 

for SYSLIB 23 
for SYSLIN 23 
for SYSPRINT 23 
for SYSTERM 23 

loose record 43 
LR 

See label reference 
LRECL 

See logical record length 

Index 211 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

MAP option 6 
See also MAP/XREF processor 
function 6 
general description of 
processing 16-17 

in intermediate output processing 58 
MAP/XREF processor (HEWLFMAP) 

description of 59 
chart 131 
in program organization 93 

map, module 17 
See also MAP option. MAP/XREF 
processor, options 

contents 17, 58 
production of 13, 58 

chart 131 
in program organization 93 

member name for SYSLMOD data set 12-14 
messages 13 

See also diagnostic aids 
microfiche directory 145 
MODE statement 

general description of processing 23 
MODE statement processor 31 
module 

origin 2 
structure 2-5 

module attributes 
See attributes, module 

module map 
See map, module 

module--CSECT cross-reference table 148 
multiplicity 

in relocating address constants 72 
read into input text buffer 41 
writing on SYSLMOD 60 
writing on SYSUTI 42 

NAME statement 
general description of processing 23 
in final processing 72 
in input processing 22, 50 
operation diagram 81 
processor 28 

NCAL option 
See also automatic library call 
function 6 
in input processing 22, 50 

NE (not editable attribute) 8 
no-length control section 42, 92 
non-resolution processing 36-37 
not editable attribute (HE) 8 
note list (for overlay segments) 10 
null type 

changing CESD entries to 52 
definition 34 
entry processing 36 

212 MVS/370 Linkage Editor Logic 

object module 
definHion 1 
processing (HEWLFMDI) 

description of 32 
description of?synopsis 89 

record types 31 
See also input record types 

structure 3-5 
text processing 42, 43 

See also text record processing 
object module buffer 15, 42 
OL (only loadable attribute) 7 
opening data sets 20 
Qperation diagrams 15, 74-87 
options 

analysis of CHEWLFOPT) 19, 88 
diagnostic output 5, 6 

See also LIST. MAP, TERM, XFER 
options 

introduction to 2 
processing 5, 6 

See also LET, NCAL, XCAL options 
space allocation 6 

See also DCBS, SIZE options 
specification of 5 

ORDER statement 
and ALIGN2 attribute 7 
processor 28 

ORDER table 
creation 28 

diagrams 77 
in address assignment 52, 53 
in END processing 47 
in intermediate output 58 

diagram 78 
layout 182 

out of order text 42 
use during text processing 42 

output load module data set 
See SYSLMOD data set 

overlay format attribute COVLY) module 
characteristics 7 

overlay module processing 1 
See also OVERLAY statement 
description 1 
relocating V-type address 
constants 66 

OVERLAY statement 
general description of processing 23 
operation diagram 81 
processor 27 

OVLY 
See overlay format attribute 

P (position) pointer 
definHion 4 
in entry table size determination 54 
updating 16 

PAGE statement 
and ALIGH2 attribute 7 
general description of processing 23 
processor 28 

partitioned data set CPDS) 
directory entry for SYSLMOD 18, 72 
generating a load module in 2, 6 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

PC 

include processing for 48-50 
SYSLIB data set 12 
SYSLMOD data set 12, 13 

See private code 
PDS 

See partitioned data set 
position pointer 

See P pointer 
PR 

See pseudo register 
private code (PC) 

definition 34 
entry processing 34, 35 
marked delete 34, 52 

PROCENTY routine 25 
program 

organization 88-144 
processing history 1 

pseudo register 
address assignment 18 
computing cumulative PR length 53 
definition 34 
in RLD processing 44, 71 

purpose of the linkage editor 1 

R (relocation) pointer 
definition 4 

RCT 

in entry table size determination 54 
updating 16, 44 

See relocation constant table 
RDRLD 

See RLD read routine 
RDTXT 

See text read routine 
read control block 

for SYSLIN 22 
read only control section 8 
READ8 routine 

chart 122 
in control statement processing 25 
in program organization 92 

record 
See also ESD record 
dense (contiguous) 43 
formats 195-206 
loose (noncontiguous) 43 
types 

See input record types 
record types 

LIST used in construction 180 
on SYSPRINT data set 12, 13 

See also SYSPRINT data set 
on SYSTERM data set 12 

See also SYSTERM data set 
TABLE used in construction 180 

recovery management routine and 
refreshable attribute 6 

reenterable attribute (RENT) 6 
REFR 

See refreshable attribute 
refreshable attribute (REFR) 6 
registers, contents of 31-33 

load module processing 33 
object module processing 31 

relative relocation 
definition 18 
in entry processing 56 

marking RLD item for 44 
relative relocation factor 

determination of 45, 54 
general description of use 18 
use in determining buffer relocation 
constant 71 

See also relocation constant table 
RELOCATE routine 

See relocation routine 
relocation 

of address constants 16-17, 61 
See also address assignment 
processor, address constant 

of RLD items during intermediate 
output processor 59 

relocation constant 16, 17, 18 
relocation constant table (RCT) 

contents 16, 17 
format 173 
making an entry in 52 

relocation dictionary (RLD) 
and text processor (HEWLFRAT) 91 

See also text and RLD processor 
contents 4 
introduction to 4 
processing (RLDOOl) 

description of 44-47 
description of chart 111 
description of synopsis 91 
operation diagram 85 

record 
See RLD record 

relocation pointer 
See R pointer 

Relocation routine (RELOCATE) 
description of 

in program organization 94 
RENT (reenterable attribute) 6 
renumbering table (RNT) 

contents 16 
format 173 
production of 35-39, 91 
use of 35, 40 

REPLACE statement 
general description of processing 23 
processor 28 

replace/change chain in the CESD 28 
See also CHANGE statement, REPLACE 
statement 

residence mode 1 
residence mode (RMODE) 8 
resolution processing 37-39 
REUS (reusable attribute) 6 
reusable attribute (REUS) 6 
RLD 

See relocation dictionary 
RLD buffer 

first pass 16 
general description of use 16, 17 
in single pass processing 59 

RLD control block 
initialization (HEWLFREL) 94 
input control block 60 

format 170, 174 
output control block 60 

format 174 
RLD flags 

in relocation address constants 
(table) 45-47 

RLD input buffer 
See second pass RLD input buffer 

RLD note U st 
format 176 
introduction to 13 

Index 213 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

making entries in 16, 44-47 
reading from SYSUT1 60, 93 
RLD Processor 91 
use in locating RLD records 60 
use in relocating address 
constants 72 

RLD output buffer 
See second pass RLD output buffer 

RLD pointers 4, 91 
See also P pointer, R pointer 

RLD read routine (RDRLD) processing 
chart 137 
in program organization 94 

RLD record 
created for overlay 60 
format 203 
in load module 32 
in object module 31, 32 
processing (RLD001) 16, 44, 47 

See also relocation dictionary 
processing 

RLD set 
definition 71 
use in relocating address 
constants 71 

written on SYSUT1 44, 46, 47 
RLD write routine (on SYSUT1) (RLDBUF) 

chart 113 
in program organization 91 

RlD/control record 
See control/relocation dictionary 

record 
RLDBUF 

See RLD write routine 
RLD001 

See relocation dictionary, processing 
RNT 

See renumbering table 
root segment 

in overlay module 10 

sca~ter format attribute (SCTR) 
grouping control sections 60 
in processing example 11 
module characteristics 7 

scatter loading 
See scatter format attribute 

scatter table 
format 201 
introduction to 11 
production of 17, 57 

scatter/translation record 
format 201 
function 7 
introduction to 11 
written on SYSLMOD 57, 93 

SCDENTAB 
See entry table creation routine 

SCTR . 
See scatter format attribute 

SO 
See section definition 

second pass processing (HEWLFSCD) 
description of 

charts 134 
synopsis 94 

objectives 17 
operation diagrams 79, 87 
overview 13 

214 MVS/370 Linkage Editor logic 

second pass RlO input buffer 
reading RLO records into 17, 60 
use in relocating address 
constants 72 

second pass RLO output buffer 
entering RLO items in 18, 60 
use in relocating address 
constants 71 

second pass text buffer, reading text 
records into 60 

second pass text control block 
format 177 
initialization (HEWLFREL) 94 

second pass text control table, making 
an entry in 60 

section definition (SO) 
definition 34 
non-resolution processing 36 
resolution processing 38 

SEGLGTH 
format 178 
introduction to 16 
processing 53 

segment path table (SEGTA1) 
in entry table size determination 54 
making an entry in 92 
processing 53 
purpose 27 
scanning by common path routine 38 
use in entry table creation 67 

segment relocation constant (SRC) 
definition 53 
introduction to 16 

segment table (SEGTAB) 
determining the size of 93 
format 179 
introduction to 10 
PC-delete entry for 34, 53 .~ 

SEG~~~duction of 16 ~ 
See segment path table 

SEGTAI 
See segment path table 

serially reusable attribute (REUS) 6 
SETCODE statement 

general description of processing 23 
SETCOOE statement processor 31 
SETSSI statement 

general description of processing 23 
operation diagram 81 
processor 28 

single pass processing 
description of 17, 59 
occurrence 17, 44 

SIZE option 
function 6 
requesting additional buffer 
space 21 

special event processing 31, 32 
SRC 

See segment relocation constant 
storage allocation 15, 21, 22 

See also allocation 
STOW macro instruction 

entering name in POS 13, 18 
issuing 72, 94 

SYM record 
See symbol record 

symbol (SYM) record 
format 195,199 
in output load module 8, 16 ~'. 
processor (HEWLFSYM) 

chart 104 
synopsis 90 



This document contains restricted materials of IBM. ~ Copyright IBM Corp. 1972,1983 
LY26-3921-0 

special event processing for 31 
SYHAD routine (HEWLCROl) 

chart 139, 143 
synopsis 95 
use of 23 

SYSLIB data set 
definition 12 
in input processing 15 
opening 20 
opening DCB in include processing 48 
resolving ERs from 51 
with automatic library call 

processing 20, 50 
SYSLIN buffer 16 
SYSLIN data set 

opening 20 
processing after termination of 

input 72 
with automatic library call 
processing 22, 50 

SYSLMOD data set 
definition 12 
in program or?anization 90, 93 
member name 12 
opening and determining block 
size 20 

writing on 56, 72 
SYSPRINT data set definition 12 

directing diagnostic messages to 73 
opening 20 
output block size 23 
writing cross-reference table on 93 

system status index 28 
SYSTERM data set 

definition 12 
device requirement 12 
writing text on 43 

table 
allocation 21, 188 

temporary linked address 52 
temporary relocation constant added to 

SRC 52 
computation of 52 

TERM option 
function 6 
in final processing 73 
processing 18 

terminal data set 
See SYSTERM data set 

TEST attri bute 
function 7 
in input processing 13, 90 
in object module processing 32 
in processing example 11-13 

testing symbol dictionary 8 
See also symbol record 

text (TXT) record 
contents 10 
dense 43 
format 197 
in load module 32 
in object module 31 
loose 43 
processing (HEWLFTXT) 

chad 109 

description of 16 
operation diagrams 83, 84 
synopsis 91 

RLD processor (HEWLFRAT) 91 
See also text and RLD processor 

text and RlD processor (HEWlFRAT) 91 
See also relocation dictionary 

processing 
chart 108 
synopsis 91 

text buffer 
See input text buffer 

text control block 
See second pass text control block 

text I/O control table 
See text I/O table 

text I/O table 
contents 16, 17 
format 180 
making an entry in 42, 43 
use during address assignment 52 
use during intermediate output 
processing 58 

use during processing 16-17 
use in ordering text 59 
use in reading from SYSUT1 58 

text note list 
format 181 
making an entry in 42, 43 
reading from SYSUT1 59, 93 
use during text processing 42, 43 
use of 17 

Text read routine (RDTXT) 
chart 137 
in program organization 94 

Text write routine (on SYSlMOD) (WRTTXT) 
chart 138 
in program organization 94 

Text write routine (on SYSUT1) (TXTBUF) 
chart 11 0 
synopsis 91 

translation of input IDs 35 
translation table 

format 201 
introduction to 11 
production of 57 

translator-supplied data 40 
See also IDR data types 
processing 40 

chart 116 
TTR 11 st 

contents 18, 60 
creation of 60 
writing on SYSlMOD 72. 94 

two pass processing 59 
TXT record 

See text record 
TXTBFBEG 

See input text buffer 

unlike attributes indicator 20 
upward calls 54 
user-supplied data 41 

See also IDR data types 
processing 41 

chart 119 

Index 215 



This document contains restricted materials of IBM. C Copyright IBM Corp. 1972,1983 
LY26-3921-0 

V-type address constant 
description of 18 
entered in calls list 16 
in RLD processing 45 
relocation of 61, 66 

virtual storage allocation 
description of 15, 21 
release of 72 

virtual storage allocation table 168 

weak external reference (WX) 
definition 34 
non-resolution processing 37 
resolution processing 39 

weight factor 168, 188 
See also virtual storage allocation 

216 MVS/370 Linkage Editor Logic 

WRTCRRLD 
See control/RLD record write routine 

WRTTXT 
See text write routine on SYSlMOD 

WX 
See weak external reference 

XAD2CESD table 181 
See also cross-reference table 
table used in the production of 181 

XCAl option 6 
XDAP macro instruction 60 
XREF option 

function 6 
general description of processing 17 
in final processing 72 
in intermediate output processing 93 



f 



Restricted Materials of I BM Corporation 
LY26-3921-0 

==--= =® - ---- .... -~--- -. _ .... -- - - -----------~-.-

" s:: 
< 
U'I 

---W ...... 
0 
r 
:;' 
" Q> 
10 
ro 
m 
Cl-
;:+" . 

~J 
10 
n' 
"T'1 

CD 
Z 
~ 
U'I 
W ...... 
0 
W 

"tl .., 
S' ... 
~ 
:J 

C 
en 
~ 
r 
-< 
'" OJ 
W 
<0 

'" 6 



MVS/370 Linkage Editor Logic 
LY26-392J-O 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any 
requests for copies of publications, or for assistance in using your IBM system. to your IBM representative or to 
the IBM branch office serving your locality. 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

Last TNL _________ _ 

Previous TNL ________ _ 

Previous TNL _________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



L Y26-3921-0 

Reader's Comment Form 

Fold and tape Please do not staple Fold and tape 

...................................................................................................................... : 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM Corporatioo 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

IIIII NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 
Fold and tape P ..... do not ,taple Fold and tape 

-~- ------ ------- --_ .... - -. ------ - - ---
---~-----_ .. -

<K 

J 

" ~ 
z 
9 
U'l 
CAl 
-...I 
o 
W 

"'tJ 
::::! • 
::l ..... 
(1) 

C. 

::J 

C 
en 
~ 
r­
-< 
N 
O'l 
W 
(0 
N 

6 



.; E c: .. 
a> 0 E ... 
0." 
'5 :c 
u'" 
a> OJ 
01 a> c: .. 
of E 
o a> 
.. 0-
:: co ..... 
E-c 
iE 
;; E 
E ::> o 01 ..... 
::> ., 
... £ 
.t: 0 

-..
. -t:. "~ 

.> ... 
_"iii 
.oc: e a 
0.., 
a> .. .. ::> 
::> .. 
3 f 
c: 0-

B ; .. 
OIl ., 
'Q.; 
!~ 
IJ)Q. 

MVS/370 Unkage Editor Logic 
LY26·3921·0 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any 
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to 
the IBM branch office sel'Ving your locality . 

List TNLs here: 

If you have applied any technical newsletters (TNLs) to this book, please list them here: 

last TNL ________ _ 

Previous TNL ________ _ 

Previous TNL ________ _ 

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the address in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



L Y26-3921-0 

Reader's Comment Form 

Fold and tape Please do not staple F old and tape 

.................................................................................. ,e ................................................................................................................................... . 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

II I NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

....................................................................................................................................................................................................................................... 

FOld and tape P ..... do not .taple Fold and tape 

---.. - ------ - ---- ----- -.. ----- - - --------
-~-.-l~ 

r­o 
tel 
n' 
"T1 

(D 

Z 
~ 
(f) 
W 
--..J 
o 
W 


