Restricted Materials of IBM Corporation

LY26-3921-0
File No. $370-31

MVS/370
Program Product Linkage Editor Logic

Data Facility Product 5665-295

Release 1.0

First Edition (April 1983)

This edition applies to Release 1.0 of MVS/370 Data Facility
Product, Program Product 5665-295, and to any subsequent
raleases until otherwise indicated in new editions or technical
newsletters.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Biblioagraphy, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
saervices do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below:;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your

locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S5.A. 95150. IBM may use or
distribute whatever information vou supply in any way it
believes appropriate without incurring any obligation to you.

This documaent contains restricted materials of International
Business Machines Corporation. © Copyright International
Business Machines Corporation 1972, 1983. All rights reserved.

»

C

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

HOW TO USE THIS BOOK

This publication describes the internal organization and logic
of the linkage editor. The linkage editor, a processing
program, combines and edits modules to produce a load module
that can be loaded into virtual storage by the control program.

This manual consists of seven sections. The first three
sections describe the overall organization, beginning with a
general description and progressing to a detailed discussion of
the components of the linkage editor. The last four sections
are reference sections for analyzing storage dumps and for
accessing specific areas of code in the program listing.

The seven sections are:

1. "Introduction™ describes the linkage editor as a whole,
including its relationship to the operating system. The
major divisions of the program and the relationships among
them are also described.

2. "Method of Operation" provides:
a. An overview of the logic of the linkage editor
b. Detailed descriptions of specific operations

Use the operation diagrams included at the end of this
section with the text. They illustrate the flow of data
through the tables and buffers used during linkage editor
processing.

3. "Program Organization™ describes the organization of the
linkage editor. Program components (modules, control
sections, and routines) are described both in terms of their
operation and their relation to other components.

4. "Microfiche Directory™ helps the reader find the named areas
of code in the program listing. Microfiche cards contain
the program listing.

5. "Table Layouts™ are used for analysis of storage dumps.
They are illustrated in this section.

6. "Diagnostic Aids™ includes general register contents at
entry to modules, and an error message—module
cross—reference table.

7. TAppendix"™ includes input conventions and record formats.

Read the Introduction first for an overview of the linkage
editor within the operating system. Consult the Method of
Operations section for the overall logic of the linkage editor.
Finally, read the Program Organization section for detailed
examination of the program components. Refer to the last four
sections for named areas of code, table layouts, register
contents, input conventions, and record formats while reading
the Method of Operation and Program Organization sections.

How To Use This Book iii

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

iv

If more detailed information is required, refer to the contents
and coding in the linkage editor program listings. Other
publications that are required for an understanding of the
linkage editor are:

. MVS/370 Data Management Services, GC26-4058

. MVS/370 Data Management Macro Instructions, GC26-4057

. 0S5/VS2 MVS JCL, 6C28-0692

The reader should also refer to the corequisite publications:

. MVS/370 Linkage Editor and Loader, GC26-4061

. 05/VS2 System Programming Library: Debugging Handbook,
Volumes 1 through 3, GC28-1047 through GC28-1049

MVS5/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp.

1972,1983

LY26-3921-0
CONTENTS
Introduction . . e » o 5 o 8 o s s e e s e e s e ®
Purpose of Linkage Edrtor . . e . e e e e e e s
Relationship to the Operating System e e e e e e e e e
General Description e e e e e e e e e e e e e e e e
Module Structure e e e e e e e e e e
External Symbol chtionary . e e e e e e e e e e
Relocation Dictionary e e e e e e e e e e e e e e
Composite Dictionaries . . e e e e e e e e e
Linkage Editor Options . . e e e . e e e e e
Module Attributes e e e e e e e e e e e
Linkage Editor Processrng for Attributes e e e e e e s
Input/Output Flow e e e e e e e e e e e e e e e . .
Method of Operation . e o o o o s s s s s s e e s o
Logic of the Linkage Edltor e e e e e e e e e e e
Initialization e e e e e e e e e e e e e e e e
Input Processing e e e e e e e
Intermediate Processing . e . . . e e e e e e e
Second Pass Processing e e e e e e e e e e e e e
Final Processing . e . e e e e . e . e e e .
Initialization . e e e e e e e e e e e e
Preparing the All- Purpose Table (APT) e e e e e e e
Analyzing Control Information e e e e e e e e e e
Opening Data Sets « e e e e e e e e e
Allocating Virtual Storage e e e e e e e e e e e e
Buffer Allocation . . e e e e e e e e e e e e
Table Allocation . e e e e e e e e e e e e e
Input Processing . . e e e e e s e e e e e e e
Reading Blocked Input . e . e e e e e e e e
Record Lengths for SYSPRINT . e e e e e e e e e
Record Lengths for SYSTERM . . e e e e e e e e
Control Statement e e e e e e e e e e e e e e e e
Control Statement Processors e e e e e e e e e e e
Object Module Processing . e e e e e e e e e e e
Load Module Processing e e e e e e e e . . .
ESD Record Types e e e e e e e e . e .
CESD Record Types and Subtypes e e e e e . . .
ESD Processing e e e e e e e e e e e e e e
IDR Processing . . e .
Processing Object Module END Records Containing IDR Data
Processing Load Module IDRs e e e .
Processing IDENTIFY Control Statement Data e e e e .
TXT Processing . e e e e e e e e e e .
Processing Object Module Text e e e e e e e e e e
Processing Load Module Text . . e e e e e e .
Writing Text on SYSUT1 e e e e e e e e e e e e e e
RLD Processing e e e e e e e . . e e e e e e
END Processing e e e e e e e e . e e e e e e e
Include Processing e e e e e e e e e e e
Automatic Library Call Processtng e e e e e e e e
Intermediate Processing e e e e e e e e e e e e e e
Address Assignment . e e e e e e . . e . . e
ENTAB Size Determlnatlon e e e e e . . e . . e
Entry Processing e e e e e e e e e e . e .
Intermediate Output Processrng e e e e e e . e .
MAP/XREF Processing e e e e e e e e e e . e .
Second Pass Processing . e e e e e e . .
Relocation of Address Constants
Relocation of Nonbranch-Type (A- Type) Address Constants
Relocation of Branch Type (V-Type) Address Constants
ENTAB Creation . e e e e e e e e e e e e . .
Relocation Routine . e e e e e e e e e e e e e
Final Processing (HENLFFNL) e e e
Error Logging e e e e . . . e e e e e e
Cross-Reference Table
Diagram 1. Overview of Linkage Edltor . . e e e e e
Diagram 2. Detailed Overview of Linkage Edltor Processing
Diagram 3. Initialization e e e e e e e . e

Contents

OOV DUUNNF =

v

LY26-3921-0

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
Diagram 4. Input Processing e e e e e e e e e e e e e 77
Diagram 5. Intermediate Processing Y L -
Diagram 6. Second Pass Processing . e . e e . . 19
Diagram 7. Final Processing . . . e e e .« . . . 80
Diagram 8. Control Statement Proce551ng e e e e e+« e+« . 81
Diagram 9. ESD Processing . e e e e« . . 82
Diagram 10. Processing Object Module Text . e . e« « . 83
Diagram ll. Processing Load Module Text Records . . . 84
Diagram 12. RLD Processing e e e e e e e e e . . . 85
Diagram 13. Address Assignment - . « . 86
Diagram 14. Data Movement During Second Pass Proce551ng . 87
Program Organization e o o o s e o o o s s e o e s o o « o 88
Initialization and Input Processing e e e e+ + +« « . . 88

Initial Processor—HEWLFINT (Chart BA) e e e 88
Attributes and Options Processor—HEWLFOPT 88
Allocation Processor—ALL001 (Chart BA) 88
Table Allocation Processor—HEWLFALK (Chart BB) .« . 89
Input Processor—HEWLFINP (Chart CA) . . e+ o« <« « . 89
Object Module Processor—HEWLFMDI (Chart CB) e e e« « .« 89
Load Module Processor—INP270 (Chart CC) e+ e« « « « « 90
SYM Processor—HEWLFSYM (Chart CD) e e e e e e e e« <« . 90
ESD Processor—HEWLFESD (Chart CE) . e e . . . 91
Text and RLD Processor—HEWLFRAT (Chart CF) P 2 |
Text Processor—HEWLFTXT (Chart CG) S) |
RLD Processor—RLD001 (Chart CJ) e e e e e e e . . 91
End Processor—HEWLFEND (Chart CL) 92
CSECT Identification Record (IDR) Processor——HENLFIDR
(Chart CQ) . P 4
Control Statement Scanner——HENLFSCN (Chart CS) e e . . 92
Include Processor—HEWLFINC (Chart CU) . . 92
Automatic Library Call Processor—HEWLCAUT (Chart CV) 93
Intermediate Processing . . . 93
Address Assignment Processor——HENLFADA (Chart DA) . . 93
Intermediate Output Processor—HEWLFOUT (Chart EA) . . 93
Second Pass Processing e e e e e« o « 94
Second Pass Processor——HENLFSCD (Chart FA) e e s e+ . . 94
Final Processing . e e e e e e e o e« « 9%
Final Processor——HENLFFNL (Chart GA) . e . e e e« . 94
SYNAD Routine—HEWLCRO01 (Chart GB) e e e e e s e e+ e+« 95
Chart AA. Level Major Divisions e e e e e e e e+« « . 98
Chart BA. Initial Processor (HENLFINT) . e e e e e e« 99
Chart BB. Table Allocation Processor (HENLFALK) e e e e 100
Chart CA. Input Processor (HEWLFINP) . e e e e e e e 101
Chart CB. Object Module Processor (HENLFMDI) e e e e e e 102
Chart CC. Load Module Processor (INP270) e e e e e e e 103
Chart CD. SYM Processor (HEWIFSYM) e e e e e e e e e e 104
Chart CE. ESD Processor (NEWLFESD) . e e e e e . . 105
Chart CF. TXT and RLD Processor (HEHLFRAT) e e e e . . 108
Chart CG. TXT Processor (HEWLFTXT) . . . 109
Chart CH. TXT Write Routine (on SYSUTl) (TXTBUF) . . 110
Chart CJ. RLD Processor (RLD001) e e e e e e e e e e e 111
Chart CK. RLD Write Routine (RLDBUF) e e e e e e e e e 113
Chart CL. END Processor (HEWLFEND) . 114
Chart CM. CSECT Identification Record Processor (HENLFIDR) 115
Chart CN. IDR Translator Data Processor (HEWLFIDR) e e . 116
Chart CP. IDRSPZAP Data Processor (HEWLFIDR) e e e . . 117
Chart CQ. IDR Identify Data Processor (HEWLFIDR) . . . 118
Chart CR. IDR User Data Processor (HEWLFIDR) e e e e e e 119
Chart CS. Control Statement Scanner (HEWLFSCN) . . e . 120
Chart CT. READ8 Routine e e e e e e . e . 122
Chart CU. Include Processor (HENLFINC) . « e 123
Chart CV. Automatic Library Call Processor (HENLCAUT) . 124
Chart DA. Address Assignment Processor (HEWLFADA) . . 126
Chart DB. ENTAB Size Determination Routine (HEWLFENS) . 127
Chart DC. Entry Processor (HEWLFENT) . . 128
Chart EA. Intermediate Output Processor (HENLFOUT) . . 130
Chart EB. MAP/REF Processor (HEWLFMAP) e e e e e e e e 131
Chart EC. IDR WRITE Routine (HEWLFOUT) e e e e e e e e 132
Chart FA. Second Pass Processor (HEWLFSCD) e e e e . . 134
Chart FB. GETIDMUL Routine . 136

Chart FC. TXT Read Routine (RDTXT), RLD Read Routine
(RDRLD)—HEWLFSIO . & & v o v oo e

vi MVS/370 Linkage Editor Logic

<9

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983
LY26-3921-0

Chart FD. Text Write Routine (on SYSLMOD)

(WRTTXT)—HEWLFSIO . e e e e e e e e 138
Chart FE. Relocation Routlne (HENLFREL) e e e e e e e e 139
Chart GA. Final Processor (HEWLFFNL) e e e e e e e e e 142
Chart GB. SYNAD Routine (HEWLCRO1) . e e e e e e e 143
Chart GC. Error Logging Routine (HEHLFLOG) e e e e e e e 144

Microfiche Directory e o o o s o s s e s s e e s s e e 145

Table Layouts e o o o o o s o s o s e e s o v e e e o e 150
Diagnostic Aids e o o o o o o o o o e s s e s e e e o 183
Appendix. Input Conventions and Record Formats e e o o @ 194
Input Conventions e e e e e e e e e e e e e e e e e e . 194
Record Formats e 195
Index L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] [] L] L] L] L] L] L] L] 207

Contents vii

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0
FIGURES

VO~NOUT N NN

42.
43.
44,
45.
46 .
47 .
48.
49.

50.
51.

52.
53.
564.
55.
56.
57.
58.
59.
60.
61.

1972,1983
Linkage Editor Processing—Simple Case e e e e e e 3
Combining Control Dictionaries . . 5
Linkage Editor Processing for the 0ver1ay and TEST
Attributes . 9
Linkage Editor Proce551ng for the Scatter Load and TEST
Attribute . e e e e e e e e e e e e e e .. .11
Input/Qutput Flow . . . 13
Incompatible Module Attrlbutes and Program Optlons 20
Control Statement Scanner Operation . . 24
INCLUDE Statement Processing for a Sequentlal Data Set 25
INCLUDE Statement Processing With Nested Members 26
Overlay Statement Processing e e e . e e e e e . . 27
Order and Page Processing e e e e e e e e e e e e e . 29
Library Statement Processing . 30
General Register Informatlon——ObJect Module Processvng 31
Input Record Types—Load Module . . . 33
General Register Information—Load Module Processlng 33
RLD Flag Field Processrng e 1)
Include Processing e e e e e e e . . 49
Automatic Library Call Proce551ng - |
ENTAB Size Determination . . 55
Processing of Alias Symbols by the Entry Processor . 57
Writing Scatter/Translation Records . . . 58
Nonbranch-Type Address Constants——Relatlve Relocatlon 62
Nonbranch-Type Address Constants—Absolute Relocation 63
Nonbranch-Type Address Constants—Absolute and Relative
Relocation . e 1
Example of Deltnklng e e e e e e e e e e . . . 65
Entry List Processing . P X
Relationship of RLD Flag Fleld to Relocatlon . e« . 69
ENTAB Creation . e e e e e e e e« + « « o« . 10
Building Error Messages . . . e e e o . 13
Load Module Record Types and Assocnated Processors . 90
Linkage Editor Organization e e e e s e e e e e . 96
Sample Flowchart Symbols e e e e e e e e e e e . 97
Microfiche Directory e e e e e e e e 145
Module/CSECT Cross- Reference Table e e e e . . . 149
Table Construction and Usage e e e e e e e e e e 150
All-Purpose Table (APT) e e e e e e e e e e e e e 151
Alias Table . e e e e e e 161
Calls List (As Bu11t by RLD Processor) e e e . 161
Calls List (As Altered and Used by ENTAB Slze
Determination Routine) 161
Composite External Symbol chtlonary (CESD)——Internal
Format . . . e e e e 162
Normal Comblnatlon of Internal CESD Types e e e e 163
Delink Table e e e e . e e e e e e . 164
Downward Calls List e e e e e e e e e e e e e e e 164
Entry List e e e e e e e e e e e . . . 165
Entry Table (ENTAB) 165
Half External Symbol Symbol cht|onary (HESD) . e . 166
High ID Table (HIID) . e e e e e e e e 167
Virtual Storage Allocatlon Table e e e e e e e . 168
Partitioned Organization Directory Record (As Received
from BLDL) e e e e e e e e e e e e e e e e e e e 169
Module Attributes . . e e e e e e 170
Partitioned Organlzatlon Dlrectory Record (As Built by
Linkage Editor) . e e e e e e e e e e 172
Relocation Constant Table (RCT) e e e e e e . . 173
Renumbering Table (RNT) e e e e e e e e e e e e e 173
RLD Input Control Block e e e e e e e e e e e . 174
RLD OQutput Control Block . e e . e e e e e 175
RLD Note List . e . . e e e e e e e e 176
Second Pass Text Control Block e e e e e e e e e 177
Segment Length Table (SEGLGTH) 178
Segment Table (SEGTAB) e e e e e . 179
TABLE and LIST (Referred to by HENLFBTP) e e e e . 180
Text I/0 Table . . e e e e e e e e e e e 180

viii MVS/370 Linkage Editor Logic

9

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0

62. Text Note List . e e e e o 181
63. XAD2CESD Table (Bu11t and Referred to by

2 . Cross-Reference Table Routine) e e e e e e e e e 181
64. ORDER Table (Built by HEWLFSCN) . . e . 182
65. General Register Contents at Major Entry POInts . . 183
66. Buffer Allocation e e e e e e e e e e e e e e e e 187
67. Table Allocation . e e e e e 188
68. Error Message/Issuer Cross Reference Table e e e e 189
69. SYM Input Record (Card Image) e e e e e e e e e e 195
70. ESD Input Record (Card Image) . . e e e e e e e 196
71. Text Input Record (Card Image) . e e e e e e e 197
72. RLD Input Record (Card Image) . e e e e e e e 197
73. END Input Record—Type 1 (Card Image) e e e e e e 198
74. END Input Record—Type 2 (Card Image) e e e e e e e 198
75. IDR Data in an Object Module End Record e e e e e . 199
76. SYM Record (Load Module) . e e e e e e e e e e 199
77. CESD Record (Load Module) e e e e e e e e e e e . 200
78. Scatter/Translation Record e e e e e e e e e e e 201
79. Control Record (Load Module) 202
80. Relocation Dictionary Record (Load Module) . 203
8l. Control and Relocation Dictionary Record (Load Module) 204
82. Record Format of Load Module IDRs e e e e e e . 204

Figures ix

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983
LY26-3921-0

INTRODUCTION
This section describes the purpose, organization, and internal

operation of the linkage editor, and its relationship to the
operating system.

PURPOSE OF LINKAGE EDITOR

The linkage editor is one of the processing programs of the
operating system. It is a service program used in conjunction
with the language translators to prepare machine-language
programs from symbolic-language programs written in FORTRAN,
COBOL, report program generator, assembler language, or PL/I.
Linkage editor processing is a necessary step that follows
source program assembly or compilation.

Linkage editor processing allows the programmer to divide a
program into several parts, each containing one or more control
sections. Each part may then be coded in the programming
language best suited to it and may then be separately assembled
or compiled by a language translator (under the rules applicable
to each language translator).

The primary purpose of the linkage editor is to combine and link
object modules (the output of the language translators) into a
load module. In that load module, all cross-references betuween
control sections are resolved as though they had been assembled
or compiled as one module. The load module produced by the
linkage editor consists of executable machine-language code in a
format that can be loaded into virtual storage and relocated by
program fetch.

In addition to combining and linking object modules, the linkage
editor performs the following functions:

J Library Calls. Modules (such as standard subroutines) stored
in a library can be placed in the input to the linkage
editor, either automatically or upon request. If unresolved
external references remain after all input to the linkage
editor is processed, an automatic library call routine
retrieves the modules required to resolve the references.
However, unresolved external references marked "weak call"™
or "never call"™ are not resolved by this routine.

. Program Modification. Control sections can be replaced,
deleted, or rearranged (in overlay programs) during linkage
editor processing, as directed by linkage editor control
statements. Common control sections generated by the
FORTRAN, PL/I, and assembler language translators are
provided locations within the output load module.

o Order and Page Support. The linkage editor can order control
sections in the sequence specified on the linkage editor
control statements, and can assign control sections to page
boundaries according to the control statements.

. Addressing Mode, Residence Mode, and Read-Only Support. The

linkage editor assigns an addressing mode for the entry
points into a load module, assigns a residence mode for the
load module, and indicates which control sections are
read-only in a nucleus load module.

o Program Processing History. CSECT identification records
built during linkage editor processing contain data
describing the language translators and the linkage editor

[that produced the program, any modifications to that program

by AMASPZAP, and, optionally, up to 40 characters of user
data for each control section within the program.

Introduction 1

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

. Overlay Module Processing. The linkage editor prepares
modules for overlay by assigning relative locations within
the module to the overlay segments and by inserting tables
to be used by the overlay supervisor during execution. ’

. Options and Error Messages. The linkage editor can:

- Process special options that override automatic library
calls or the effect of minor errors

- Produce a list of linkage editor control statements that
were processed

- Produce coded diagnostic messages and a directory
describing those diagnostic messages that were printed
out during linkage editor processing

- Produce a module map or cross-reference table of control
sections in the output load module

RELATIONSHIP TO THE OPERATING SYSTEM

The linkage editor has the same relationship to the operating
system as any other processing program. Control is passed to
the linkage editor in one of three ways:

1. As a job step, when the linkage editor is specified on an
EXEC job control statement in the input stream

2. As a subprogram, via the execution of a CALL macro
instruction (after execution of a LOAD macro instruction), a
LINK macro instruction, or an XCTL macro instruction

3. As a subtask, in multitasking systems, via execution of the
ATTACH macro instruction

GENERAL DESCRIPTION J

Linkage editor input may consist of a combination of object
modules, load modules, and linkage editor control statements.
The prime function of the linkage editor is to combine these
modules, in accordance with requirements stated on control
statements, into a single output load module that can be
relocated and loaded into real storage by program fetch for
execution. Output load modules are placed into partitioned data
sets (libraries).

Each module to be processed by the linkage editor has an origin
that was assigned during assembly, during compilation, or during
a previous execution of the linkage editor. Each module in the
input to the linkage editor may contain symbolic references to
control sections in other modules; such references are called
external references.

To produce an executable output load module, the linkage editor:

1. Assigns relative virtual storage addresses to the control
sections to be included in the output module. Because each
input module has an origin that was assigned independently
by a language translator, the order of the addresses in the
input is unpredictable. (Two input modules, for example,
may have the same origin.) The linkage editor assigns an
origin to the first control section and then assigns
addresses to all other control sections in the output
relative to either this origin or to the last control
section aligned on a page boundary.

2. Resolves external references in the input modules.
Cross-references between control sections in different
modules are symbolic, and must be resolved (translated into '
relocatable machine addresses) in relation to the contiguous
virtual storage addresses assigned to the output load

2 MVS/370 Linkage Editor Logic

C

C

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0

MODULE STRUCTURE

module. These symbolic cross-references are made by means
of address constants.

The linkage editor calculates the new address of each
relocatable expression in a control section and determines the
assigned origin (value) of the item to which it refers.

Linkage editor processing is affected by specified options,
operations requested on control statements, module attributes
contained in partitioned data set directories, and control
information contained within the modules themselves. The
following paragraphs describe the relationship of module
structure, linkage editor options, and module attributes to
linkage editor processing.

Object modules and load modules have the same basic logical
structure (see Figure 1). Each consists of:

. Control dictionaries, containing the information necessary
to resolve symbolic cross-references between control
sections of different modules, and to relocate address
constants

. Text, containing the instructions and data of the program

. An end of module (EOM) indicator (END record in object
modules; EOM indication in load modules)

Input Output
Object Module Load Module
ESD CESD
TXT é;?t:rge Control
RLD TXT
END EOM/RLD

Figure 1. Linkage Editor Processing—Simple Case

Each language translator usually produces two kinds of control
dictionaries: an external symbol dictionary (ESD) and a
relocation dictionary (RLD). An object module always contains
an ESD; a load module contains an ESD unless it is marked with
the "not editable™ attribute. O0Object and load modules usually
contain an RLD (unless there are no relocatable address
constants in the module). Control dictionary entries are
generated when external symbols, address constants, or control
sections are processed by a language translator.

External Symbol Dictionary

An external symbol dictionary contains entries for all external
symbols defined or referred to within a module. (An external
symbol is one that is defined in one module and can be referred
to in another.) Each entry identifies a symbol, or a symbol

Introduction 3

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

reference, and gives its location, if any, within the module.
When combining input modules, the linkage editor resolves
references between different input modules by matching the
referenced symbols to defined symbols; it does this by searching
for the external symbol definitions in each input module's ESD.
There is an ESD entry for each named control section and each
named common area. The ESD also contains entries that identify
unnamed control sections and unnamed common areas.

Relocation Dictionary

The relocation dictionary (RLD) lists all relocatable address

constants that must be modified when the linkage editor produces
an output load module. The linkage editor uses the RLD whenever
it processes a module. The RLD is also used to adjust the value

.of address constants after program fetch reads an output load

module from a library and loads it into virtual storage for
execution. The RLD contains at least one entry for every
relocatable address constant in a module. An RLD entry
identifies an address constant by indicating both its location
within a control section and the external symbol (in the ESD)
whos: v:lue must be used to compute the value of the address
constant.

Composite Dictionaries

An output load module is composed of all input object moduleaes
and input load modules processed by the linkage editor (except
those that are replaced or deleted). The control dictionaries
of an output module are therefore a composite of all the control
dictionaries in the linkage editor input. The control
dictionaries of a load module are called the composite ESD
(CESD) and the RLD.

Figure 2 on page 5 shows how the control dictionaries of two
input modules are combined into composite dictionaries by the
linkage editor. The control dictionaries and their associated
text are interrelated through a system of line numbers and
pointers. MWithin an input module, each ESD item on which an
address constant may depend has a line number (ESD identifier,
or ESD ID); the line number indicates the position of the item,
relative to the other ESD items associated with the text.! Every
item of text in an object or load module has associated control
information that describes it. This control information
includes the ESD ID of the ESD item for the control section that
contains the text. (In Figure 2, the ESD ID of the text item
that contains X and Y points to line 1 of the ESD for input
module 1. The ESD ID of the text item containing Z points to
line 1 of the ESD for input module 2.)

Each RLD item must point to two ESD items:

1. The ESD item for the symbol on which the address constant
depends. This is referred to by the RLD o i i
(R pointer).

2. The ESD item for the control section that contains the
address constant. This is referred to by the RLD position
pointer (P pointer).

1 In an object module, one type of ESD item (ID) may have
associated text or address constants that depend on it (saee
"ESD Processing™). Such ESD items are excluded from the
numbering system.

4 MVS/370 Linkage Editor Logic

J

9

9

C

¢

This document contains restricted materials of IBM. ©® Copyright IBM Corp. 1972,1983

LY26-3921-0

Input Module 1 Output Module
ESD CESD
Symbol Typé*| Origin | Length Symbol Type | Origin | Length
CSECT A SD 000 500 [e—r " CSECT A SD 000 500
> _CsecTC [ER [000 0 [gsecre o 500 | 2000
CSECTB | SD | 500 1000 —»{ CSECTB SD_| 2500 | 1000
T 300 |
X 400 ([
300
; = x e
X
:] G
X I RLD
T R P
é 1 ¢ (1
RLD N W) 1
R P Flag Address
1 'I 1 31 F 300 T 700
N T {e] F 400 - X Lz
N N\ / T
Input Module 2 RLD
ESD JT'R [P T Flag [Address
Symbol Type |Origin | Length t“ ’; 7’ 2 Je2 | F 700
> CSECTC | SD 000 2000 T
X
T
T 200
“—{ X]
I

RLD

P

J Flag

[R]
L1 o

1

o F

[Address J’J
T 200

*See ''ESD Record Types''

Figure 2. Combining Control Dictionaries

In input module 1, X and Y are address constants in the same
control section (CSECT A). X refers to a symbol in CSECT A;
therefore, both pointers of its associated RLD item refer to the
ESD entry for CSECT A (line 1). The value field of Y refers to
a symbol in a different control section (CSECT C); therefore,
the R pointer of its associated RLD points to the ESD entry for
the external reference (line 2), whereas the P pointer refers to
the ESD entry for its control section (line 1).

When the linkage editor combines the input modules, it must
maintain this system of pointers by renumbering the ESD items to
reflect their relative positions in the CESD of the output
module. It must also update the RLD pointers and control
information for the text so that they refer to the renumbered
EESD itgms; the resulting CESD and RLD items are shown in

igure 2.

LINKAGE EDITOR OPTIONS

Options for error diagnostics, processing, and space allocation
may be specified by parameters listed on the EXEC card, or they
may be passed internally by a program requesting the linkage
editor via LINK, LOAD, ATTACH, or XCTL macro

instructions.?2 If the options are passed internally, the user
can also provide alternates for the standard ddnames.® If the

Man m ctions.
3 For more information, see JCL.

2 For more in;ormationé see Data Management Services and Data
Management Macro Instructions

Introduction 5

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0

MODULE ATTRIBUTES

options are not user-specified, the defaults are used. The
options that may be specified are as follouws:

. LIST. A list of all linkage editor control statements is
written on the diagnostic output data set.

L MAP. A module map, which lists external names and their
storage addresses, is written on the diagnostic output data
set.

. Cross-reference table (XREF). A cross-reference table,
which includes a module map and a list of all address
constants that refer to other control sections, is written
on the diagnostic output data set.

. TERM. Error messages are directed to the terminal data set
as well as to the diagnostic output data set.

. LET. The output module is marked as executable even though
a severity 2 error condition was found during processing.

. xclusive ca (X). The output module is marked as
executable even though valid exclusive references between
overlay segments have been made.

. o automatic library call (NCAL). The automatic library
call mechanism is not to be invoked to resolve external
references.

. SIZE (value 1, value 2). The user can supply two values to

specify the maximum amount of storage to be obtained for
linkage editor processing and what amount of the gotten
storage is to be used as the load module buffer.

U DCBS. The linkage editor initialization routine examines
the SYSLMOD DD statement for a DCB BLKSIZE parameter and
uses that value, if it is acceptable, for its block size
limit, If the DEVTYPE capacity is less than the specified
block size, the DEVTYPE value is used.

When the linkage editor generates a load module in a library
partitioned data set (PDS), it places an entry for the module in
the PDS directory. This entry contains Mattributes™ describing
the structure, content, and logical format of the load module.
The control program uses these attributes to determine how a
module is to be loaded, what it contains, whether or not it is
executable, whether it is executable more than once without
reloading, and whether it can be executed by concurrent tasks.

Some options for module attributes can be specified by the user;
others are specified by the linkage editor as a result of
information gathered during processing. In the following list,
:gtributes marked with an asterisk (%) cannot be specified by

e user.

. Reenterable (RENT). A reenterable module can be executed by
more than one task at a time and cannot be modified by
itself or by any other module during execution; that is, a
task may begin executing a reenterable module before a
previous task has finished executing it.

. Refreshable (REFR). A refreshable module cannot be modified
by itself or by any other module during execution. A
refreshable module can be replaced by a new copy during
execution by a recovery management routine without changing
either the sequence or results of processing.

. Serjally reusable (REUS). A serially reusable module will
be executed by only one task at a time, and will either
initialize itself and/or will restore any instructions or
any data in the module that it alters during its execution.

6 MVS/370 Linkage Editor Logic

9

C

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921~0

Overlay format (OVLY). A load module structured for overlay
includes a segment table (SEGTAB) to enable the overlay
supervisor to load the proper segments, and at least one
ENTAB to assist in passing control from one segment to
another. If a load module has the overlay format attribute,
the reenterable, reusable, refreshable, hierarchy, scatter,
addressing mode, and residence mode attributes cannot be
present.

Hierarchy format (HIAR). When a HIARCHY statement is

detected, the "number™ and "name" operand values are used in
building the scatter table and the translation table. The
high-order byte of each CSECT address entry contains the
hierarchy number that is included in the GETMAIN request for
main storage for program loading. Hierarchy information is
used only when the program is loaded under the 0S5 system.

Test (TEST). If this module is an assembler language
program and testing by the test translator or the TS0 TEST
command is desired, this attribute can be specified. Test
Will cause SYM records to be written. Note that modules
using TESTRAN should not be marked with the RENT, REUS, or
REFR attribute.

Only loadable (0OL). This attribute indicates that the
control program may load this module only through the
execution of the LOAD macro instruction.

Scatter format (SCTR). In the 0S5 environment, a load module
in scatter format is suitable for block or scatter loading.
The scatter table, translation table, and the relocation
dictionary maintain logical linkage between scattered
control sections when program fetch loads them into storage.
In the virtual storage environment, the scatter format is
ignored by program fetch. The SCTR attribute is, however,
relevant in the link-editing of a nucleus for a virtual
storage system, which requires the scatter and translate
tables for its proper initialization.

ALIGN2. If the ALIGN2 attribute is present, all control
sections or named common areas specified on the PAGE control
statements are placed in storage on 2K-byte page boundaries.
The ALIGN2 attribute also aligns on 2K-byte page boundaries
those control sections or named common areas associated with
the "P" operand on the ORDER control statement.

¥Block format. If neither the overlay nor scatter
attributes are specified, it is implied that the module can
only be block loaded. The control program will load the
module only if enough contiguous storage is available for
the entire module.

XExecutable. This attribute indicates that linkage editor
did not find any errors that would prevent successful
execution. If this attribute is not present, the control
program will not load the module.

¥Module contains one text record and no relocation
dictionary records. This attribute indicates that the
control program does not have to allocate storage for
relocation dictionary items when loading the module. It
also indicates that the first text record is the last one;
there is no control record following it. The entire module
can be read by program fetch in a single read operation.

Douwnward compatible (DC). This attribute indicates that the

module can be processed by either the level E or level F
linkage editor. The downward-compatible attribute is
assumed by the level E linkage editor. Modules processed by
the level F linkage editor that are not marked "downward
cgyzatible" cannot be processed by the level E linkage

edi tor.

Introduction 7

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

o XLinkage editor assigned oriqin of first te record is
zero. If this attribute is present, the first byte of
instruction or data in the first text record is assigned to
location zero.

U ¥Entry point assigned by linkage editor is zero. This
attribute indicates that the entry point is at the first

byte of the module.

o ¥No relocation dictionary item resent. This attribute
indicates to the control program that no allocation of
storage is necessary to receive relocation dictionary items
when program fetch loads them into virtual storage.

U Not editable (NE). This attribute indicates that the load
module cannot be accepted by the linkage editor for
subsequent processing. The CESD from an output load module
is dropped to conserve space on the library.

o ¥Symbol statements present. If a module produced by the
assembler language translator is to be tested by the test
translator (TESTRAN) or the TS0 TEST command, it may contain
a testing symbol dictionary. In a load module, this
dictionary contains the information from the SYM statement
images that were in the input to the linkage editor.

. Authorization Code (AC). The output load module is assigned

an authorization code that determines whether or not the
load module may use restricted system services and
resources.

o Addressing Mode (AMODE). The entry points—either main,
true alias, or alternate—into the output load module are
assigned the addressing mode that is to be in effect when
the load module is entered at those entry points.

. Residence Mode (RMODE). The output load module is assigned
the residence mode that applies to that load module when it
is loaded into virtual storage for execution.

o XRead-Only Control Section. "Read-only"™ is an attribute of
a control section deliberately created as such by
specification of the control section as an RSECT to the
language translator. The attribute is effective only when
the control section is included in the nucleus load module
for an MVS/XA system; otherwise it is ignored. The
attribute is obtained from the ESD entries for the read-only
control sections and is reflected in the scatter table
entries for those control sections in the nucleus load
module.

LINKAGE EDITOR PROCESSING FOR ATTRIBUTES

Several examples are given here of how linkage editor processing
is affected by attributes specified by the user. Figure 1l on
page 3 shows a simple case in which a single object module,
containing only one control section, is processed by the linkage
editor for block loading.

Figure 3 on page 9 shows the processing of an object module and
a load module, each containing several control sections. In
this example, test translator macro instructions were included
in an assembler language source program and test symbol (SYM)
records were produced by the assembler language translator. The
TEST and OVLY attributes were specified in the control
information passed to the linkage editor, and overlay control
statements were included in the input to the linkage editor.
With these attributes, the output load module produced by the
linkage editor contains:

. SYM records to be used by the test translator. (If the TEST
attribute is not specified, input SYM records are not

included in the output load module.) These records contain

8 MVS/370 Linkage Editor Logic

C

This document contains

LY26-3921-0

restricted materials of IBM. © Copyright IBM Corp. 1972,1983

blocked SYM and ESD statements created during a previous
execution of the linkage editor. SYM records in load
modules are passed unmodified through the linkage editor to
the output load module.

A composite ESD. CESD records contain the ESD items for the
module. There is a maximum of 15 ESD items per record on
the output record. The first 8 bytes of the CESD record
contain control information pertaining to the ESD items in
the record. This information consists of the ESD ID of the
firstdESD item and the number of bytes of ESD items in the
record.

Output
Load
Module
Input
Load
Module SYM
CESD
IDR
SYM 1 ;:onn:l
ecor
ICDE:D \ SEGTAB
Control
\ Control \ Record
Record — |
Obiject SEGTAB TXT
Modules \ Control Control/
Record RLD Record Segment 1
o T ENTAB g:zon:en')
EOS
=D \ Control /RLD \ ho ecord
TXT Record Control
END ENTAB \ Record
ESD EOs/ . TXT
T RLD Record Linkage — » [Control/
END ontrol r Editor \ RLD Record Segment 2
ESD Record ENTAB |
TXT IXT EOS/
\\\\\\ RLD \\\\\\\ Control/RLD _&uzjssgﬂL
END | Record | Control
ENTAB Record
EOS/ .\ T
RLD Record \
Control
Record Control/
TXT \ RLD Record
EOM/ ENTAB
RLD Record EOS/
Note Lid RLD Record
List J Control/
EOM
Legend: ™>T Segment N
* RLD items exist for previous TXT records; therefore, EOM/RLD follows TXT record.
** No RLD items for last TXT record; therefore, EOM precedes TXT record. Note
Note -- Any overlay tables in the input load module are ignored. List

Figure 3.

Linkage Editor Processing for the Overlay and TEST Attributes

CSECT Identification Records (IDR). The IDRs are input from
either an input load module, an END record, or the linkage
editor IDENTIFY control statement. IDRs may contain data:

- Identifying the language translator creating the control
section, its level, and the translation date

- Describing the most recent processing by the linkage
editor

- Describing any modification to the executable code of a
control section

Introduction 9

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

- Supplied by a user and associated with the executable
code of a control section

Note: The user-supplied data is specified on the IDENTIFY
control statement. ’

. A control record, or a composite control/RLD record,

preceding each text record. The RLD portion, if present,
contains the RLD items used to relocate the previous text.*
The control portion may contain:

- An end of segment (EO0S) indication, if the following
text record is the last text record of an overlay
segment.®

- An end of module (EOM) indication, if the following text
record is the last text record of the module.5

- The number of bytes of RLD information that follow, if
it is a composite control/RLD record.

- The number of bytes of control information.

The control portion also contains the IDs and lengths (in
bytes) of all the control sections in the following text, to
a maximum of 60, and a channel command word (CCW). The
channel command word contains the address assigned by the
linkage editor to the first byte of that record, plus the
total length of the record. This information is used by
program fetch to read the following text.

Note: The control portion contains as many IDs and lengths
as there are control sections in the following text record.

L Text for each control section. Text records contain the
instructions and data for the module. In overlay, the
linkage editor produces two special types of text records,
the segment table (SEGTAB) and entry table (ENTAB). :

SEGTAB, located in the root segment, is used by the overlay
supervisor to keep track of the relationship of segments
during execution. ENTAB is a separate control section that
may be created by the linkage editor for each overlay
segment. ENTAB is used by the overlay supervisor to
determine the segment to be loaded when a segment not in the
current path is referred to.

° A note list. A note list gives the location of each overlay
segment in the output module library.

4 If there are many RLD items for the previous text, there may
be several RLD records preceding the next text record. The
last of these is a control/RLD record.
S If there are no RLD items for the last text record, the
control record that precedes the text contains the EO0S or
EOM indication. If there are RLD items, the EO0S or EOM J
follows the text record (see Figure 3 on page 9).

10 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
Qutput
Input
SYM
CESD
SYM W IDR
ESD CESD Scatter
IDR Load j Translation
™@T Scatter Module Record
Object END Lood Translation Control
Modules) Module Record YT
Control Linkage
bl XT Editor Control/RLD
RLD TXT
END Control /RLD
™@T
Control /RLD Control/RLD
XT XT
EOMARLD EOM/RLD

~

Figure 4. Linkage Editor Processing for the Scatter Load and TEST Attribute

Figure & shows the module structure when the scatter load and
TEST attributes are requested. With these attributes, the
output load module contains:

° SYM records
o A composite ESD
° IDR records

L A scatter/translation record used by program fetch to
compute the relocated addresses required for scatter loading
the module into storage. The record contains a scatter
table and a translation table. The scatter table is a list
of control section addresses; the translation table
correlates the CESD entry for each control section with the
address indicated in the scatter table. (When a load module
in scatter format is processed again by the linkage editor,
this information is ignored.)

o Text for each control section, preceded by a control or
control/RLD record describing it.

L RLD or control/RLD records containing any RLDs pertaining to
the preceding text record.

. An EOM indication that marks the end of the modula.

The appendix "Input Conventions and Record Formats™ contains
the format of each record type.

Four data sets must be specified for linkage editor processing;
their ddnames and functions are:

1. SYSLIN. This is the "primary input data set,"™ containing
object modules and control statements. All input from
SYSLIN must be in 80-column card image format, unblocked or
blocked from 1 to 40 records per block. The SYSLIN source
may be a card reader, magnetic tape, a direct access devicae,
or a concatenation of data sets from different types of
input devices.

Introduction 11

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

2. SYSPRINT. This is the "diagnostic output data set."
Diagnostic messages as well as any diagnostic options
requested, such as a module map or cross-reference table,
are written on SYSPRINT. It is a sequential data set and
may be partitioned. The SYSPRINT device may be a printer,
magnetic tape, terminal, or a direct access device.

3. SYSUT1. This is the "intermediate data set.™ The linkage
editor uses this data set for temporary storage of text and
RLD items being processed. SYSUT1l must be on a
direct-access volume.

Note: SYSUT1 is opened only when twopass processing is in
effect.

4. SYSLMOD. This is the "output module data set." It is a
partitioned data set on a direct-access volume. SYSLMOD
contains load modules; their attributes are described in the
user's portion of the directory entry for the member.

Two additional data sets may be specified for linkage editor
processing; their ddnames and functions are:

L SYSTERM. This is the "terminal data set."™ Diagnostic
messages are written on SYSTERM if the TERM option was
specified. When the linkage editor is being executed in the
time-sharing foreground, the SYSTERM device is always the
terminal; when the linkage editor is being executed in the
background, the SYSTERM device may be a printer, magnetic
tape, or a direct-access device.

o SYSLIB. This data set is used by the linkage editor if
there are any automatic library calls to be processed.
SYSLIB can be defined only as a partitioned data set (PDS).
The members of SYSLIB can be either load modules or object
modules (but object modules and load modules cannot be
contained in the same PDS and a data set containing load
modules cannot be concatenated with a data set containing
object modules).

When SYSLIB is opened, the linkage editor determines whether
the PDS contains object or load modules by checking the
record format field (RECEM) in the data control block (DCB).
(The format is fixed (F) for object modules and undefined
(U) for load modules. Load module records are of variable
length.) If SYSLIB contains object modules, the linkage
editor ignores the user's portion of the PDS directory
entries for the object modules.

Other data sets may be read by linkage editor when it processes
INCLUDE or LIBRARY statements specifying ddnames. Data sets
referenced with INCLUDE statements may be either sequential or
partitioned. SYSLIB and any data sets specified in LIBRARY
statements for use by automatic library call must be
partitioned.

The attributes for the "execute linkage editor™ job step are the
attributes specified on the EXEC statement. These attributes
may be modified if a load module having different attributes is
processed.

Figure 5 on page 13 shows the input/Zoutput flow. During the
initial processing, SYSLIN, SYSPRINT, SYSLMOD, and SYSTERM (if
the TERM option was specified) are opened. During input
processing, the primary input is read from SYSLIN. If an
INCLUDE statement is read in the primary input, the data set
whose ddname is specified on the statement is opened, and is
processed. At the end of all SYSLIN input, SYSLIB and any other
data sets whose ddnames are specified on LIBRARY statements are
processed through automatic library calls.

12 MVS/370 Linkage Editor Logic

C

This documaent contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

SYSLIN SYSPRINT
n Diagnostic
Primary Initial oeg t
Input) P ; r P
rocessing Data Set
T
Additional i SYSTERM
Input :
Sources) Terminal
i) Data Set
” > Input
Processing
—— —
[
|
I
SysLIB }
|
X A
Call Intermediate
Library P Processing
S —
|
|
|
SYSUTI | SYSLMOD
|
Inter- [Second Pass Output
mediate) | Processing
Data Set g 1 Library
|
|
|
|
|
Final
Processing
S

Figure 5. Input/Output Flow

If the TEST attribute has been selected, SYM records are written
during input processing; text and RLD items are written
sequentially on SYSUTl, except during single pass processing.
The location of each text record on SYSUT1l is entered in a

pote list. The location of each RLD record on SYSUT1l is entered
in a ote list. If either note list overflows, it is
written out on SYSUT1l. The RLD note list may overflow 3 times,
the text note list may overflow 1l times.

In intermediate processing, the CESD is written on SYSLMOD. 1If
a scatter table, translation table, or SEGTAB is required, it is
also written on SYSLMOD. The note list for the text and RLD
items on SYSUT1 are read into storage. If a module map was
required, the CESD is used in producing the map. If a
cross-reference table was requested and all RLDs are in storage,
the table is produced during intermediate processing.

During second pass processing, text and RLD records are read
into storage from SYSUTl1l in the order of assigned addresses
within each segment (using the note lists to find the records)
and ara written out on SYSLMOD.

In final processing, the member name and any alias names arae
entered into the PDS directory entry for the output load module
through the execution of the STOW macro instruction. If any
coded diagnostic messages were written on SYSPRINT during

Introduction 13

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

linkage editor processing, a diagnostic message directory
containing error message text is written out on SYSPRINT. 1If a
cross-reference table was requested and was not produced during
intermediate processing. SYSLMOD is opened for input, RLDs are
read, and the cross-reference table is produced. At the end of
final processing, SYSLMOD is closed (if it was opened for
input). All other data sets are then closed and control is
returned to the calling program, unless the SYSLIN input during
input processing was terminated by a NAME statement. If a NAME
statement terminated the primary input, control is returned to
initial processing and SYSLMOD is opened for output, if it had
been closed during final processing.

When multiple load modules are produced in a single execution of
the linkage editor, SYSLIN, SYSPRINT, and SYSUT1l remain open for
the entire execution. (A pointer in the DCB for SYSUT1 is
repositioned to the beginning of the extent of SYSUTl1 after each
load module is produced.) If neither a module map nor a
cross-reference table is requested, or if a cross-reference
table is requested and all RLDs are in storage, SYSLMOD remains
open for output for the entire linkage editor execution.

14 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
THOD P TIO

This section contains an introduction to the logic of the
linkage editor, emphasizing the flow of primary data and control
information through tables and buffers, and functional
descriptions of its phases.

0GIC HE LINKAGE EDITOR
The linkage editor can be functionally divided into five phases:
. Initialization
. Input (first pass) processing
. Intermediate (first pass) processing
U Second pass processing
. Final processing
Operation diagrams at the end of this section illustrate the
functional operation of the linkage editor. The shaded areas of
the diagrams correspond to operations described in the text.

Initialization

Input Processing

When the linkage editor receives control from the job scheduler
or a calling program, it performs initialization functions in
preparation for all subsequent processing (see Diagram 3). The
operations included in initialization are:

. Build the all-purpose table (APT) and enter addresses and
descriptions of all other tables and buffers into it.

. Analyze the attributes and options passed by the calling
program (specified by the programmer) and save them in the
all-purpose table.

. Initialize DCBs and open data sets to be used during linkage
editor processing.

. Allocate storage for all tables, buffers, and work areas to
be used by linkage editor processing.

When all initialization functions are completed, the linkage
editor is ready to accept input.

All linkage editor input is processed initially during the first
pass (see Diagram 4). Object modules from SYSLIN (primary input
data set) are read into the SYSLIN buffer. Object modules from
SYSLIB or a specified user's library (secondary input data sets)
are read into the object module buffer. Text records in load
modules from SYSLIB or a user's library are read into the input
text buffer; all other load module records are read into the
first pass RLD buffer. The various records that constitute
these modules are processed as follows.

Control Statements: These records, which may precede or follow
object modules, contain information that is later used in symbol
resolution and that specifies libraries containing secondary
input. Depending on the type of control statement, entries are
made in either the all-purpose table (APT) or the composite
external symbol dictionary (CESD).

Method of Operation 15

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983
LY26-3921-0

ESD Records: These records from object modules, and CESD records
from load modules, describe symbols that have been defined for
external use. Entries for the symbols are made in the CESD.
Entries are made in the renumbering table to allow the
translation of the input ESD identifiers (IDs) into new CESD
IDs. Entries are made in the delink table for symbols that are
to be deleted or replaced.

TXT Records: These records, containing the instructions and data
of the program, are moved from the SYSLIN buffer and object
module buffer to the input text buffer (text records from load
modules are read directly into the input text buffer). They are
arranged in the proper sequence and recorded in the text I/0
table and the text note list. When the input text buffer is
filled, its contents are written onto SYSUT1l; if it does not
become filled, text records are retained in the buffer, and
"single pass" processing is in effect. Text note list entries
contain the location of text records (SYSUT1l address or buffer
address) and other descriptive information. Text I/0 table
entries contain information identifying text records by ESD ID.

RLD Records: These records, to be used later in relocating
address constants, are moved from the SYSLIN buffar and object
module buffer to the RLD buffer. The relocation and position
pointers (R and P pointers) are updated, using control
information from the renumbering table and the delink table.
RLD items are examined and marked for future processing. If
V-type (branch-type) address constants are found in overlay
programs, entries are made in the call list for use during
intermediate processing. When the RLD buffer is full, RLD
records are written on SYSUT1l, and control information
identifying RLD records by size (byte count), P pointer, and
location on SYSUT1l is entered in the RLD note list. If the RLD
buffer does not become filled, RLD records are retained in the
buffer and single pass processing is in effect.

SYM Records: These records, which are not involved in linkage
editor processing, are gathered in the RLD buffer and are

written directly on SYSLMOD, if the TEST attribute has been
specified. If TEST has not been specified, SYM records are
ignored.

IDR Records: These records, which contain data either from an
input load module or from an END record or from the linkage
editor IDENTIFY control statement, supply information concerning
the processing history of the modules in which the IDRs occur.
If the data is from an input load module, control is passed to
the IDR processor HEWLFIDR. If the data is from an END record,
the data refers to the compiler that created the object modula.
The compiler or translator data is passed in a parameter list to
the IDR processor. The user data, supplied via the linkage
editor IDENTIFY control statement, is converted into a parameter
list and passed to the IDR processor.

When all input records have been processed (all external symbols
have been entered into the CESD), control is passed to
intermediate processing.

Intermediate Processing

The operations included in intermediate processing (see Diagram
5) have two primary objectives: (1) to assign relative storage
addresses to symbols in the CESD, and (2) to write some of the
records to be included in the output load module on the SYSLMOD
data set. The MAP and XREF options may also be processed during
intermediate processing.

Address Assignment: Entries that require no further processing

are deleted from the CESD; all other CESD symbols are assigned
temporary linked addresses. Relocation constants are determined

for all control sections, and the relocation consta abl \
(RCT) is built. ,

16 MVS/370 Linkage Editor Logic

C

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0

For all programs in overlay, additional processing is required.
The calls list is used to determine ENTAB entries to be placed
in the CESD, and the downward calls list is built. The segment
length table (SEGLGTH) is built, and segment relocation
constants are computed. Temporary linked addresses in the CESD
and entries in the relocation constants are computed. Temporary
linked addresses in the CESD and entries in the relocation
constant table are adjusted for overlay by adding to them the
segment relocation constants.

Temporary linked addresses and relocation constants are combined
to determine final linked addresses for symbols, and the results
are placed in the CESD. The alias table is built from alias
symbols in the CESD. At this point, CESD processing is
complete.

MAP/XREF Processing: If the MAP option has been specified, a
module map, containing sorted CESD items, is built and written
on SYSPRINT. If the XREF option has been specified and all RLDs
are in storage, a cross-reference table is built from RLDs (in
the RLD buffer) and written on SYSPRINT. If all RLDs are not in
storage, the cross-reference table is not built, but is deferred
until final processing.

Intermediate OQutput: The principal function of this section of
intermediate processing is to write the CESD on the output load
module data set (SYSLMOD). The half ESD (HESD), containing
control information from CESD entries, is built and held in
storage for use during second pass processing. The text I/0
table is reorganized according to the sequence in the order
table and scanned to determine the ID of the last control
section containing text in the program (or in each segment of an
overlay program); this information is placed in the high ID
table (HIID), and noted in the HESD for use during second pass
processing.

For a program in overlay, the segment table (SEGTAB), which
defines the relationships among segments, is built and written
(with a control record) on SYSLMOD.

For a program that is to be scatter loaded in the 0S environment
(MFT or MVT), a scatter table and a translation table are built
from information in the CESD, and scatter/translation records
are written on SYSLMOD.

The IDRs are written out on the output load module data set
(SYSLMOD).

Second Pass Processing

The objectives of second pass processing (see Diagram 6) are
relocating address constants in the text and writing on the
SYSLMOD data set the remaining records that constitute the
output load module.

Text records are read from SYSUT1l (intermediate data set) into
the second pass text buffer, using the text I/0 table and the
text note list to locate the records on SYSUT1l. The text I/0
table is also used to determine the order in which text records
are to be processed. RLD records associated with the text being
processed are read into the second pass RLD input buffer, using
the RLD notelist to locate the required records.

Single Pass Processing: If the linkage editor did not write text
or RLD records on SYSUT1l, single pass processing is in effect
for these records. The records are accessed directly in the
input text buffer and the RLD buffer, which are physically the
same storage areas as the second pass RLD input buffer. If text
records or RLD records were written on SYSUT1l, they are read
back into the same locations.

Relocation: Address constants described by RLD items are moved
from the second pass text buffer to a work area, where

Method of Operation 17

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1;83

LY26-3921-0

Final Processing

relocation is performed. The manner in which each address
constant is relocated depends on whether it is a V-type
(branch-type) or an A-type (nonbranch-type) address constant, or
a pseudo register (type 1 or type 2).

The V-type address constant can refer to a named location in
some other control section (branch type address constant). The
value field of such a V-type address constant always contains a
zero because the address was not known at compilation time.
During second pass processing, the linkage editor addraess
(absolute relocation factor) that was assigned to the symbol and
saved in the HESD is inserted in the value field. This is
called absolute relocation.

If the V-type address constant is in an overlay program, the
address of an ENTAB entry for the symbol and the segment number
of the current text is inserted in the value field. (ENTABs are
created in the second pass RLD buffer from information in the
HESD and the entry list, which contains an entry for each V-type
address constant in the path of a referred-to symbol.)

The value field of an A-type address constant that refers to a
named location in the same input module (nonbranch-type address
constant) contains an address assigned by the language
translator. During second pass processing, this address is
modified by adding or subtracting the relative relocation factor
that was determined for the symbol referred to by the address
constant. Relative relocation factors are saved in the
relocation constant table. This process is called relative

relocation.

When each address constant is relocated, it is placed back in
the text, and the address field of the associated RLD item is
updated. The RLD item is then moved to the second pass RLD
output buffer. When all address constants in the text buffer
are relocated, the text is written on SYSLMOD, followed by the
associated RLD items. A control record pertaining to the next
text record is written on SYSLMOD following the RLD records. If
the output load module is structured for overlays, a ITR lijist,
containing the address of the first control record of each
segment (for the first segment, the list contains the address of
the first text record), is also created and retained in virtual
storage.

Second pass processing continues until all segments in the
output module are processed. The last control record contains
end of module indicators. Control is then passed to final
processing.

The objectives of final processing (see Diagram 7) include
writing remaining output to SYSLMOD, producing certain optional
output, and "cleanup”" functions.

The partitioned data set directory for SYSLMOD is completed,
including modifications for ALIAS symbols (found in the ALIAS
table), and a STOW macro is issued. The TTR list, containing
the address of the first text record in each segment, is written
on SYSLMOD for overlay programs.

The error loggqing map, produced as errors are encountered
throughout linkage editor processing, is scanned and an er
diagnostic directory is built and written on SYSPRINT. If the
TERM option was specified, the error diagnostic directory is
also written on SYSTERM. Storage allocated to the linkage
editor is released.

If the XREF option is specified and was not processed during
intermediate processing, RLD records are read from SYSLMOD, and
a cross-reference table is built and written on SYSPRINT.

18 MVS/370 Linkage Editor Logic

9

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

INITIALIZATION

At the completion of linkage editor processing, control is
returned to the calling program.

The initialization phase comprises modules HEWLFINT, HEWLFOPT,
and HEWLFDEF.

When the linkage editor begins processing, it readies the
all-purpose table, analyzes control information, opens necessary
data sets, and allocates space to buffers and tables.

PREPARING THE ALL-PURPOSE TABLE (APT)

The linkage editor maintains the all-purpose table as the common
communication area for all internal functions (see Figure 27 for
the contents of the all-purpose table). The basic information
in the all-purpose table is added to during initialization as
operating conditions are learned. This information includes the
results of the control information analysis and descriptions of
the tables and buffers built by the linkage editor.

ANALYZING CONTROL INFORMATION

When the linkage editor receives control from the job scheduler,
or from another program via a CALL macro instruction, control
information may be passed to it. This information includes the
options that control linkage editor processing and the
attributes to be assigned to the output load module. A calling
program may also provide a substitute list of ddnames to be used
in place of the standard names, and a PDS directory name for the
output load module.

During initialization, the specified attributes and options are
interpreted, checked for validity against an attribute-option
table, and recorded in the all-purpose table. When options with
associated values are recognized, the linkage editor also saves
the value in the all-purpose table. (For example, the SIZE
option gives user-chosen values to be used instead of the
default values.)

Besides being checked for valid specification, the attributes

and options are also checked to ensure that they are requested
only in allowable conbinations. When mutually exclusive

attributes or options are noted, the dominant attribute or

gp§ion is retained; the other is ignored (see Figure 6 on page
0).

IDR Records: These records, which contain data either from an
input load module, from an END record, or from the linkage
editor IDENTIFY control statement, supply information concerning
the processing history of the modules in which they occur. 1If
the data is from an input load module, control is passed to the
IDR processor, HEWLFIDR. If the data is from an END record, the
data refers to the compiler that created the object module. The
compiler or translator data is passed in a parameter list to the
IDR processor. The user data supplied via the linkage editor
IDENTIFY control statement is converted into a parameter list
and passed to the IDR processor.

Method of Operation 19

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

OPENING DATA SETS

-
Q)
© /&
— &
A <
Qfo
&
Q\
&
,(/0
<
Q\
Qs
AR
. A
&
%Q’ N~
o8
+
A
°
v ~
v
S
O\l
OC;
,‘fo
> S
&
Q\
)
&
O/
<&
Y
Q
Py
vs“ Oo‘v
(&
Note: An X indicutes incompatible attributes: the attribute that appears lower on the list is
ignored. For example. to check the compatibility ot XREF and NE, follow the XREF column
down and the NE row across until they intersect. Because an X appeurs where they intersect,

they are incompatible attributes. NE is ignored.

Figure 6. Incompatible Module Attributes and Program Options

After the standard ddnames (or passed ddnames) have been entered
into the proper DCBs, the data sets always required for linkage
editor operation are opened. These are the SYSLIN, SYSPRINT,
and SYSLMOD data sets. If the TERM option was specified, the
SYSTERM data set is also opened.

Note: SYSLIB is opened during input processing if automatic
library calls or INCLUDE statements are recognized. SYSUT1 is
opened only for twopass processing.

When SYSLIN is opened, the "unlike attributes™ indicator in the
associated DCB is set to signify that SYSLIN may be a
concatenation of data sets with varying blocking factors.

In preparation for the opening of the SYSLMOD data set, the
linkage editor obtains storage for the JFCB for the data set and
reads the JFCB into that storage. From the JFCB, the linkage
editor obtains the data set disposition and the block size, in
case the DCBS option is specified. The block size in the JFCB
is zeroed in order to obtain the DSCB block size when the data
set is opened.

In addition, a DEVTYPE macro instruction is issued to obtain the
maximum block size for the type of device on which the SYSLMOD
data set resides. The value obtained will be used subsequently
in determining the output block size.

20 MVS/370 Linkage Editor Logic

9

9

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0

If the SYSLMOD data set resides on a shared device and if the
data set is not a temporary data set, the linkage editor
reserves the shared device for the duration of the job step. If
the SYSLMOD data set does not reside on a shared device but a
disposition of SHR was specified for it on the SYSLMOD DD
statement, the linkage editor enqueues the SYSLMOD data set for
the duration of the job step.

The SYSLMOD data set is opened with an OPENJ macro instruction,
specifying the JFCB previously read and modified.

During the opening of the SYSLMOD data set, the block size to be
used for output to the data set is determined in the open exit
routine. The appropriate block size is selected considering the
following factors: The value obtained from the DEVTYPE macro
instruction, establishing the absolute maximum block size; the
block size in the DSCB for an existing data set, which can be
increased but not decreased; the block size from the SYSLMOD DD
statement, when the DCBS option is used; the implied maximum
block size of 1024, when the DC option is used; the implied
minimum block size of 1024, when the SCTR option is used; the
absolute minimum block size of 256.

ALLOCATING VIRTUAL STORAGE

Buffer Allocation

Table Allocation

To obtain storage for buffers and tables, the linkage editor
issues the GETMAIN macro instruction specifying the minimum
amount of additional virtual storage required for operation.
The minimum provides for overlay or hierarchy tables if these
options are selected, and, for an area, a 12K-byte block of
storage that is returned by means of a FREEMAIN macro
instruction, for use by system and data management functions.
The minimum also includes the added space required for the
primary input buffer when the SYSLIN data set contains blocked
records. If the minimum is not available, control is not
returned to the linkage editor; instead, a system abnormal
termination occurs.

When the supervisor returns virtual storage space, the linkage
editor determines whether the area is sufficient to use maximum
lengths for the SYSLIN, SYSPRINT, and object module buffers. If
the space is not sufficient, intermediate or, when necessary,
minimum buffer lengths are used.

The RLD and text buffers are then assigned storage. The default
text buffer length (48K bytes) is used unless a specific
allocation was requested via the SIZE parameter. The RLD buffer
is also assigned the minimum length unless the SIZE parameter
allows it to be given additional space. In this case, the
increased length depends on the amount of storage remaining
after the text buffer has been allocated.

Note: Space allocated for buffers is not released until linkage
editor processing is completed.

Following buffer allocation, the linkage editor assigns storage
to its fixed-length and variable-length tables. In initial
allocation, the linkage editor determines the minimum storage
required by each table. The size of each table and the number
of entries in each table are saved in the all-purpose table.

Storage is then reallocated. The storage in excess of the
minimum required for all the tables is determined. The excess
is used to expand proportionately the variable-length tables.
Then, the size of each table and the number of entries per table
are calculated. This information and the newly assigned table

Method of Operation 21

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

addresses are saved in the all-purpose table. When all linkage
editor processing is completed, all table space is released.

9

The input processing phase comprises modules HEWLFINP, HEWLFINC,
ngzt;ggg. HEWLFESD, HEWLFSYM, HEWLFRAT, HEWLFEND, HEWLFIDR, and

The operations performed during input processing depend on the
nature of the input; special processing is required for each
input record type. Each input record is read, using one of two
read blocks. The first read control block contains the address
of the SYSLIN buffer; the address of the SYSLIN DCB, and the
block size and logical record length. The second read control
block contains the address of the buffer for library records
(object module buffer or load module buffers), the address of
the library DCB, and the block size and logical record length.
A pointer is used to indicate which read control block is to be
used for the input record. Initially, the pointer is set to the
SYSLIN read control block.

The type of input processing required is determined by the
following conditions:

o For all object module records whose first column character
is a blank, control statement scanning is required, provided
that the record is not encountered "in module."™ (Control
statements encountered within a module cause an error
indication.)

. Either object module processing or load module processing is
required, depending on the type of input module. Only
object modules are read from SYSLIN. Input modules from
libraries are identified by record format. (Fixed format
(F) indicates object modules; undefined format (U) indicates

load modules.)
. When an INCLUDE control statement is detected during normal \l;b
processing, "include™ processing is initiated. At
end-of-input from the specified include library, normal
processing resumes. If an INCLUDE control statement is
detected during "include™ processing, "include™ processing
is reinitiated for the new include library.

. At end-of-input from SYSLIN, automatic library call
processing is required if the NCAL option (no automatic
library calls) was not selected. If the NCAL option was
selected, input processing is complete.

. At end-of-input from SYSLIB during automatic library call
processing, automatic library call processing is
reinitiated.

. If a NAME statement, which may indicate a multiple execution
of the linkage editor, is detected during control statement
scanning, processing proceeds as if an end-of-input has
occurred on SYSLIN (automatic library call processing is
performed).

. If an end-of-input occurs on SYSLIN but no valid input was
received, linkage editor processing is terminated.

22 MVS/370 Linkage Editor Logic

C

This documaent contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

Reading Blocked Input

The linkage editor can accept blocked card image input from the
SYSLIN data set and blocked object module records from the
SYSLIB data set (or from a user's library). Generally, the
record format, block size, and logical record length are
established either when the data set is created, or when they
are specified on the DD statement for the data set in an
execution of the linkage editor. If the BLKSIZE field is not
specified, the linkage editor assumes a block size of 80. The
logical record length (LRECL) is fixed at 80.

If the block size specified on primary input exceeds the
allowable maximum or is not a multiple of the logical record
length, an error message (IEW0594) is issued and linkage editor
processing is terminated; if the invalid block size is specified
on input from a library, the data set is ignored, but processing
is not terminated. The block size specified by the user is used
as the read count; if a short block is read, the linkage editor
determines (via an exit at SYNAD) whether the length of the
short block is valid (a multiple of the logical record length)
and the number of the logical records it contains.

If SYSLIN is a concatenation of data sets, the input processor
reexamines the block size fields whenever a data set boundary is
crossed to determine whether their values have changed.

Record Lengths for SYSPRINT

In determining record lengths for SYSPRINT, the linkage editor
first checks the block size unless time sharing is in effect.

If the BLKSIZE is not specified by the user, it is set equal to
121. If the block size exceeds the allowable maximum or is not
an integral multiple of 121, linkage editor processing is
terminated and a condition code of 16 is returned. If the block
size is a multiple of 121, it is not changed and the logical
record length for output to SYSPRINT is set equal to 121.

If time sharing is in effect, both the block size and the
logical record length for SYSPRINT are set equal to 81. When
the linkage editor is being executed in the time-sharing
foreground, header messages are printed only once and all
line-counting functions are ignored.

Note: If SYSPRINT is a member of a partitioned data set and the
DSCB is changed (by setting the logical record length or
changing the block size), it may be impossible to use the
information in the other members of the PDS.

Record Lengths for SYSTERM

control Statement

The block size and the logical record length for output to
SYSTERM are set equal to 121 unless time sharing is in effect.
If time sharing is in effect, the block size and the logical
record length are set equal to 81.

Note: If SYSTERM is a member of a partitioned data set and the
DSCB is changed (by setting the logical record length or
changing the block size), it may be impossible to use the
information in the other members of the PDS.

When an input record is found to be a control statement (a blank
in column 1), it is scanned to detect format errors and
continuation of comments or operands. A vector table is scanned
to determine the appropriate processor; separate processing is
required for each type of control statement (INCLUDE, REPLACE,
LIBRARY, CHANGE, INSERT, OVERLAY, ENTRY, ALIAS, NAME, SETSSI,
IDENTIFY, HIARCHY, ORDER, PAGE, SETCODE, EXPAND, and MODE).

Method of Operation 23

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

Diagram 8 illustrates general processing of each control
statement type.

shown in Figure 7. The control statement scanner interprets
symbols enclosed in parentheses as "level 1" symbols; symbols
not enclosed within parentheses are "level 0." ENTRY, ALIAS,
INSERT, HIARCHY, SETSSI, and PAGE control statement operands
contain only level 0 symbols. CHANGE, IDENTIFY, SETCODE,
EXPAND, and MODE statement operands always contain both a level
0 symbol and a level 1 symbol.

The general format for linkage editor control statements is ,

Operation Operand
OPRTIONX a,..., ble,d,...), (e, ..0,...
HH—
Pl Pl PI PI Pl Before Read 8
J _l Processing
S A N N _—__{_-_7EET§E§__
|_ Processing
P2
a
OPDO OPDI

OPDO OPDI
M

Figure 7. Control Statement Scanner Operation

The operands of REPLACE, INCLUDE, OVERLAY, NAME, and ORDER
control statements contain level 0 symbols, or both level 0 and
level 1 symbols. LIBRARY statement operands may contain level
1, or both level 0 and level 1 symbols. The operation to be
performed depends on the operand format.

The control statement scanner searches a vector table for the
operation symbol to determine the associated control statement
processor. It then analyzes the operands using two work areas,
"OPD1"™ and "OPDO"™, and two pointers, "P1"™ and "P2". OPDl is
used for level 1 operand symbols; OPDO0 is for level 0 operand
symbols. Pl points to the operand symbol being analyzed; P2
points to either OPD0 or OPD1, depending on the level of the
operand symbol referred to by Pl.

An operand symbol referred to by Pl is placed by the READS8)

routine into the work area referred to by P2. Parentheses and
commas control the switching of pointer P2 between the work

24 MVS/370 Linkage Editor Logic

C

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26~-3921-0

areas. For example, when a left parenthesis is encountered, P2
moves to OPD1 because a level 1 operand symbol will follow.
When a comma, blank, or right parenthesis is detected, the
PROCENTY routine passes control to the control statement
processor that was previously found during the search of the
vector table.

When an IDENTIFY control statement is read by the control
statement processor, a switch is set on for the special string
option utilized by IDENTIFY. When the switch in the control
statement processor is picked up by the READ8 routine, it sets
another switch, permitting up to 40 characters to appear in the
IDENTIFY operand. This allows any character, including embedded
blanks, to appear between single quotation marks.

control Statement Processors

When the operand symbols have been read into work areas OPD0 and
0OPD1, control is passed to the control statement processor at
the saved entry point. Scanning of the control statement
resumes when the control statement processor returns control.
The individual control statement processors are described in the
following paragraphs.

=10

=il

Register 2

Figure 8.

All Purpose Table

CESD

Chn Addr
Symbol Type|/Reverse
Chain 1D |No [TrPe

Chn
Seg|Sub |Pointer
Chain
Length,/1D

8A00 4+~ — — — — — — — - 8A00 *M 02 | 00000000 co

OPDO

| —
OPDI1

* ddname

INCLUDE Statement Processing for a Sequential Data Set

INCLUDE STATEMENT PROCESSOR: The INCLUDE statement processor
builds a chain in the CESD of items to be included. Each item
in the chain contains the address of the next item in the chain
(in the chain/address field—bytes 9, 10, and 11). Thae last
item in the chain contains zeros in this field.

Chained include items have two kinds of subtypes: "include with
pointer™ and "include without pointer.™ In Figure 8, the
statement INCLUDE M defines M as a sequential data set. The
INCLUDE statement processor creates an entry for the ddnamae M in
the CESD with the subtype "include without pointer."

In the statement INCLUDE LIBX (A), A is defined as a member of a
PDS. The INCLUDE statement processor creates an entry for A in
the CESD with the subtype "include with pointer.” The pointar
is in the chain pointer/chain ID field (bytes 14 and 15); it

Method of Operation 25

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
contains the CESD line number of the ddname LIBX. A single
ddname, such as LIBX, may be referred to by several pointers.
Figure 9 describes INCLUDE statement processing with nested
members.
Library
P
7/

EMP (A,B,C) Member B of Temp -

,(

Register 2

All Purpose Table

i
!
]
R

Current
Include
Pointer

7CDO
1
| IR

Include Chain
Breaking Point
Pointer

7030 1

LIBX

Figure 9.

OoPDO OPDI

Chn Addr Reverse | Seg | Sub |Chn Pointer Chain
bol -
Symbol 1TyPe | Chain ID No | Type |Length/ID
| .
2 .
3 .
4 [*TEMP [02 BO
L]
L]
_______ —_ .
‘—— — - 7CD0 8 B 02 007010 DO 04
L]
L]
.
________ | 7010 12 U 02 007030 DO 19
I L]
‘—— — — 7D30 14 A 02 007 D60 DO 19
L]
L]
L]
7D60 17 C 02 000000 DO 04
L]
L]
19 | *LIBX 02 BO
L]

CESD

* ddname

INCLUDE Statement Processing With Nested Members

. The statement INCLUDE TEMP (A, B, C) indicates that A, B,
and C are members to be included from library TEMP.

. Member B contains the nested statement INCLUDE LIBX (U, V,
W); this is the last statement processed in member B.

. The CESD is shown at the time when the control statement
scanner has read operand V, but not W. The INCLUDE
statement processor has created a CESD lina for operand V in
the LIBX include chain. C is currently the last item in the
TEMP include chain. When the control statement scanner
reads operand W, the INCLUDE statement processor enters a
CESD line for W between V and C; this process is distinct
from the one that actually searches the members U, V, and C
on the library (see "INCLUDE Processing™).

At the time chosen for this example, the data set member B is
being read; data set member A has been read and therefore is no
longer in the CESD as a member name, but data set members U, V,
and C have not yet been read.

The chained CESD entries created by the INCLUDE statement
processor are later processed by the include processor.

26 MVS/370 Linkage Editor Logic

9

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983
LY26-3921-0

OVERLAY STATEMENT PROCESSOR: The OVERLAY statement processor
maintains a record of the current segment number and updates it
by one each time a new OVERLAY statement is encountered. The
relationship of segments in an overlay tree structure is kept in
the segment path table (SEGTAl) (see Figure 10). Entry n in
SEGTAl contains the number of the segment that precedes the nth
segment of the overlay tree structure (the next higher segment
in its path). The OVERLAY statement processor creates a chain
of overlay items in the CESD and updates SEGTAl. If the level 1
operand (REGION) is detected, the current region number is
incremented by one, and a zero is entered as the previous
segment number in SEGTAL.

_ (oveRaT e

- OVERLAY A | OVERLAY A

»
i
'
i
1
|
]
'
|
Loyoed
|

OVERLAY cjovErLaY ¢ *
6771

OVERLAY VERLAY B : 7
SEGTAI \
- 3
4 1

s 7
'
s

0 0 —NN—O

|

|

|

|

.

]

1

!

i

I

1
Register 2 :
|

] :
'\ _ All Purpose Table :

1

|

L

SEGTAI W Chn Addr/ Sub Chn Pointer

Symbo! | Type | Reverse ?:g Chain

Legend:

* In this example, card OVERLAY C has just been read. Name B is
no longer in the chain.

T
Starting Address of Chain ID YP€ | Length/ID
Overlay Chain °
| :
(S —-7 A 02 Addr of C [01 | 90
® I
. |
. |
_lL_7
LC | N B
OPDO OPDI (.
~» C 02 | 000000 05 | 90
.
]
(]

Figure 10. Overlay Statement Processing

If an OVERLAY statement is encountered that refers to a node
point higher in the overlay tree structure, all symbols
identifying node points higher in the path are removed from the
chain; their CESD lines are marked "null.™ For example, in
Figure 10, when the statement OVERLAY A is encountered after
segment 4, the CESD entry for symbol B is marked null and is no
longer in the chain. If an OVERLAY B statement was encountered
at the end of segment 5, a new node point would be established
for B, and symbol B would again be entered in the CESD.

HIARCHY STATEMENT PROCESSOR: The HIARCHY routine first

determines if the hierarchy number is valid. If it is invalid,
the statement is printed; an error message is written and the

Method of Operation 27

This documaent contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

remainder of the statement is ignored. If the number is valid,
it is converted to binary and saved for the SCAN routine.

Processing of the statement continues with the collection of the
next symbol, up to a comma or a blank. The CESD is searched for
this symbol; the location in the hierarchy table corresponding
to this CESD item is set to the hierarchy number specified.

(The hierarchy table is built during initialization if HIAR was
specified. The hierarchy table consists of one byte per entry
in a one-to-one correspondence with the number of items
allocated to the CESD. The address of this table is kept in a
fullword in the all-purpose table.)

If the symbol does not appear in the CESD, the symbol is entered
in an unused entry in the CESD, marked external reference, and
the hierarchy number is stored in the corresponding entry in the
hierarchy table. This procedure is repeated for each additional
symbol in the HIARCHY statement.

The intermediate output routine uses the hierarchy table to
place the hierarchy number associated with each CESD item in the
scatter/translation table.

INSERT STATEMENT PROCESSOR: The insert statement processor scans
the CESD for the symbol indicated in the INSERT statement. If
the symbol is found, the segment number field is changed to the
number of the segment that contains the INSERT statement. If
the symbol is not found in the CESD, a new ER entry in the CESD
is created. In either case, the CESD entry is marked "insert™
in the subtype field, and the segment number of the INSERT
statement is placed in the segment number field.

REPLACE AND CHANGE STATEMENT PROCESSORS: The REPLACE and CHANGE
statement processors build a chain of CESD entries. Each entry
to be replaced, changed, or deleted is so marked in the subtype
field. The ESD processor examines the replace/change chain
before processing any ESD item. Because a REPLACE or CHANGE
statement applies only to the module that immediately follows it
in the input, the replace/change chain is removed from the CESD
at the end of the module.

When a REPLACE statement or a CHANGE statement operand contains
two symbols, such as CHANGE A (B), A and B are entered in
consecutive lines of the CESD. Only the first line of the pair
(the line for A) contains the address (in the chain address
field) of the next item in the replace/change chain.

NAME STATEMENT PROCESSOR: The NAME statement processor places an
entry in the all-purpose table containing the name under which
the output load module is to be stowed in the PDS directory. 1If
the operand contains the level 1 symbol (R), a bit is set to
indicate that the module is to be stowed as a replacement for a
module of the same name. Another bit is set to indicate that a
NAME statement was encountered; the input processor tests this
indicator and terminates input operations if it is set. If a
NAME statement is received from any input source other than
SYSLIN, the error routine is entered; NAME statements are
accepted only if they are in the primary input.

SETSSI STATEMENT PROCESSOR: The SETSSI statement processor
converts the 8 bytes of hexadecimal information specified on a
SETSSI statement to a 4-byte field, and enters it into the
all-purpose table. During final processing, this information is
entered into the system status index, a 4-byte extension of the
user data area in the PDS directory. The index contains
information describing the status of members in the library and
is used for maintenance purposes.

ORDER AND PAGE STATEMENT PROCESSOR: The ORDER and PAGE statement
processor builds the ORDER table. First, the CESD is searched
for a match to the symbol specified in the ORDER or PAGE
statement. If the symbol is not found in the CESD, the symbol
is entered into the CESD as a "weak external" reference (WX).
The ESD identifier of the CESD line is entered into the ORDER

28 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. ©® Copyright IBM Corp. 1972,1983
LY26-3921-0

table. When a matching symbol is found in the CESD, and the
entry is not a control type ER, the ID of the CESD line is
entered into the ORDER table.

The appropriate flags are set in the ORDER table entry to
indicate if the specified request is either an ORDER or a PAGE
statement. The ORDER flags are set when text ordering during
output processing is requested. The PAGE flags specify that the
linkage editor is to perform page alignment during address
assignment. The ORDER flags can be set only when an ORDER
control statement is present. The PAGE flags can be set in one
of two ways: (1) if P is specified on an ORDER control
statement, or (2) if the PAGE control statement is present. See
Figure 11 for an example of order and page processing.

CESD
Chn Addr/ Seg | Sub | Chn Pointer
Symbol |[Type | Reverse No | Type| Chain
Chain ID Length/ID
PAGE CSECTB Entry Created 01 °
02| CSECTA | 02 | 0000 00 =
0
(CDQECE'FA Match Found ’—Oj e
CSECTC(P) Entry Created | 05| CSECTC | 0A | 0000 00 |
‘ 06| CSECTB | OA | 0000 oo (L —ala-
07 °

ORDER TABLE
FLAG | ESDID

A0 (0002 - ——— T T T — —— |
30 (0005 fe-————————————— —— — ——— —— —— !
10 0006 [+ ——— — ————— —— — — —— — — — —

Figure 11. Order and Page Processing

Note: In this example, CSECTB must follow CSECTA and CSECTC in
the order table. Ordering was not specified for CSECTB.

IDENTIFY STATEMENT PROCESSOR: The IDENTIFY statement processor
picks up the CSECT name from OPDO, the length of the special
string SPECSTR extracted by the READ8 routine, and the identify
data placed in SPECS5TR by the READ8 routine. This information
is placed in storage, and parameters and control are passed to
the IDR processor HEWLMIDR at the entry point HEWLCIDR.

ENTRY STATEMENT PROCESSOR: The ENTRY statement processor places
the symbol specified in an ENTRY statement in the all-purpose
table. The symbol will override any symbol specified in an END
statement as the entry point for the module.

ALIAS STATEMENT PROCESSOR: The ALIAS statement processor creates
chained CESD entries for a maximum of 16 alias names specified
in ALIAS statements. During address assignment, these entries
are used to build the alias table.

LIBRARY STATEMENT PROCESSOR: The LIBRARY statement processor

creates chained CESD entries for the operands specified in
LIBRARY statements; a chain is created for each distinct

Method of Operation 29

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983
LY26-3921-0

library. Each chain begins with a library ddname and contains
all member names specified for the library (see Figura 12).

A member name specified in a LIBRARY statement can result in one
of two kinds of ER subtypes: "matched library member™ or
"unmatched library member.™ If a CESD entry is created for a
member name specified in an input ER and also specified in a
LIBRARY statement, it is called a "matched library member."
However, if the member name was specified only in a LIBRARY
statement, the entry subtype is "unmatched library member."™

Register 2 All Purpose Table
LIBRARY LIB1 (MARY) -— ¥
LIBRARY LIB2 (SAM, PETE)
(' LIBRARY LIB1 (JOE) :I
1
|
_______________ —
(T e e
l . h h H
Chn Addr Chn Pointer/ Chn Addr/ s Sub Chn Pointer
I Symbol | Type |/ Reverse ?:: ?Ube Chain Symbol Type REVE_“Q Ne: T:pe Chain
| Chain 1D YP€| | ength/ID Chain ID Length/ID
l’O] 01
02 02
03 03
04 JOE 02 00 04 JOE 02 0cC 03 0A
05 05
06 06 LIB2 02 00 BO 07
o7 07 SAM 02 06 02 08
08 PETE 02 00 08 PETE 02 07 03 00
09 09
0A 0A MARY 02 04 02 00
0B 08
oc oc| Ll 02 00 BO 04
Diagram A Diagram B
Legend:
® The CESD shown in diagram B results from the CESD shown in diagram A after
Chn Addr b Chn Pointer reading in three library cards. A chain with direct and reverse pointers is
Symbol Type |/Reverse ?:g ?U Chain created for LIB1 and also for LIB2.
Chain ID | "°|"YP¢|Length/ID
® JOE and PETE were ERs (subtype 00) and became "matched library member"
01 (subtype 03).
gg ® SAM and MARY were not previously in the CESD. They are created as "unmatched
o4 10E 00 library member" (subtype 02).
g: L182 02 00 BO ® The CESD shown in diagram C results from the CESD shown in diagram B after
07 SAM 02 06 02 07 reading in an input module containing the ER MARY and the SD JOE. (Only the
08 PETE 02 07 03 gg library chains are shown),
g: MARY 02 oC 03 00 ® JOE is removed from the chain in diagram C, and the chain pointers are modified,
08
® MARY becomes a "matched" subtype and will be called by the automatic
oc LIB 02 00 BO 0A library call processor (unless resolved by other inputy.
® SAM remains "unmatched" and will be ignored by the automatic library call
Diagrom C processor (unless matched in other input).
Figure 12, Library Statement Processing
EXPAND STATEMENT PROCESSOR: The EXPAND statement processor
accumulates the expansion length specified and, if necessary,
limits that length to 4095 bytes. If the name specified matches
the name of a named control section or common section, the
length of that control section or common section is updated by
the expansion length in the matching CESD entry. A special
entry is then made to the text processor to create and save text
of the expansion length to be added to the control section or
common section.
30 MVS/370 Linkage Editor Logic

9

9

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

MODE STATEMENT PROCESSOR: The MODE statement processor verifies
that the valid mode kevwords, AMODE and RMODE, are specified and
that the valid mode specifications are used—24%, 31, or ANY for
AMODE; 24 or ANY for RMODE. Appropriate valuas are set in the
all-purpose table to indicate the mode(s) specified.

SETCODE STATEMENT PROCESSOR: The SETCODE statement processor
accumulates the authorization code specified. A limit of 8
digits specifying a value of 0 to 255 is imposed. Once
:eg{fied, the authorization code is saved in the all-purpose
able.

Object Module Processing

If input to be read by the linkage editor consists of object
modules (fixed (F) record format indicates object modules), the
following operations are performed:

. Determine record type

. Set up general registers

. Perform special event processing

The record type is determined by examining columns 2 through 4
of each logical input record. For each record type (SYM, ESD,
TXT, RLD, IDR, END), special processing is required.

The general registers are loaded with input record information

to be used in the required processing, as described in
Figure 13.

address of
entry point
on END record

for which no
length was
given in ESD
item

containing
entry point

Input
Record Type 3 4 S 6
SYM SYM record byte Addraess of SYM
count record in
buffer
ESD Number of bytes ESD ID of first Address of
of ESD ESD item on first byte of
information record ESD in buffer
TXT Assigned Number of bytes ESD ID of CSECT Address of
address of of text to which text first byte of
first byte of information belongs text in buffer
text
RLD Number of bytes Address of
of RLD first byte of
information RLD in buffer
END Absolute Length of CSECT ESD ID CSECT

Figure 13. General Register Information—0bject Module Processing

Method of Operation

31

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

Following is a description of special event processing:

Load Module Processing

When end-of-input is detected, any data still contained in
the input RLD buffer or the input text buffer is written out
on SYSUT1, if necessary.

See the appendix "Input Convention and Record Formats.™

If the TEST attribute is selected, the SYM records from the
object module are blocked 3-to-1 in the input RLD buffer and
written out on SYSLMOD. MWhen the first TXT record in a
module is encountered (or, if no text record has been
encountered, when the END record is detected), remaining SYM
records in the input RLD buffer are written out on SYSLMOD.

When processing of an ESD record is completed, indicators in
the all-purpose table are examined to determine if:

- A control section (SD, PC, or common) was indicated on
the ESD record.

- The TEST attribute was specified.

If both conditions are met, the ESD record is blocked 3-to-1
in the input RLD buffer and written out on SYSLMOD.

If a control statement continuation is expected and an
object module record is read, an error condition occurs, and
a coded diagnostic message is produced. Normal object
module processing is then performed on the record.

If, during object module processing, a record is encountered
that is not one of the six acceptable types (SYM, ESD, TXT,
RLD, IDR, or END), an error condition occurs and a
diagnostic message is produced. The input record is then
ignhored.

Load modules included as input to the linkage editor are
processed in the following manner:

The input record type is determined by an identification
field (byte 1 of the record), as shown in Figure 14 on page
33. Special processing is performed for each record type.

The parameter registers are loaded with input record
information to be used in the required processing, as
described in Figure 15 on page 33.

If the record is not identified as a TXT, CESD,

IDR, scatter/translation, SYM, or CTL/RLD record, an error
condition occurs, and a diagnostic message is printed out.
The input record is otherwise ignored.

If the TEST attribute was not specified, all SYM records are
ignored.

If an end-of-module indication is found in a CTL or RLD
record, cleanup functions are performed.

When a CTL record is detected, the following TXT record is
immediately read into the input text buffer if it is not to
be deleted.

If the TEST attribute was specified and a SYM record is
received, the record is written out as text translation data
from the RLD input buffer.

32 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. ©® Copyright IBM Corp. 1972,1983
LY26-3921-0
Identifier
Record Type (in Hexadecimal)
XT Identified by
preceding control
record
CESD 20"
IDR '80"
Scatter/Translation 10"
SYM 40"
CTL 01"
CTL/RLD '03
RLD 02"
If end-of-segment indicator is on:
CTL 05"
CTL/RLD 07"
RLD 06"
If end-of-module indicator is on:
‘ CTL '0D"
CTL/RLD "OF"'
RLD '0E"
Figure 14. Input Record Types—Load Module
Load Module
Record Type 3 4 5 6
SYM Zero
CESD Byte count of ESD ID of first Address of
ESD items in CESD item on first byte of
record record CESD item in
buffer
CTL (TXT) Assigned Number of ESD ID CSECT to
address of entries in which text
first byte of ID-length list belongs
text
RLD Byte count of Address of
RLD items in first RLD item
record in buffer

C

Figure 15. General Register Information—Load Module Processing

Method of Operation

33

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

The following describes the special processing performed, during
object and load module processing, for the ESD, IDR, TXT, RLD,
and END records.

J

ESD Record Types

Every object module in the input to the linkage editor must
contain at least one ESD item. An ESD item is created by a
language translator whenever it finds a symbol that is defined
for external use. An ESD item is created to define the
beginning of each control section, common areas, entry point
names, and external references. Each ESD item has a type
assigned to it that indicates its function. The ESD types are:

. Section Definition (SD). Defines the beginning of a named
control section.

L Private Code (PC). Defines the beginning of an unnamed
control section.

. Label Definition (LD). Defines a label (symbol) whose
location is defined relative to the location of the control
section in which it is contained. An LD type ESD item
cogtains the ESD ID of the control section that contains the
label.

. Common (CM). Defines a common area for which a virtual
storage address is assigned during linkage editor
processing. The area may be named or unnamed; an unnamed
area is referred to as a "blank common™ area.

. Pseudo Register (PR). Defines an area external to the
output module, but referred to by it, for which virtual
storage space is allocated at execution time. The linkage
editor treates PR symbols as a block that is external to the
program. The value assigned to each symbol is a
displacement within this block. i

. External Reference (ER). Specifies a symbol that is
referenced but not defined within an input module.

L Weak External Reference (WX). Specifies an external
reference that 1s not to be resolved by automatic library
call. A WX entry is processed as an ER entry with a "weak
call™ flag.

CESD Record Types and Subtypes

A load module in the input to the linkage editor contains at
least one CESD record unless the module is marked not editable
(NE). The CESD record types are the same as for ESD records,
with the following additions:

] Null Tvpe. This indicates that the item is to be ignored in
any reprocessing of the module by the linkage editor.

. Label Reference (LR). This defines a label (symbol) within
a control section. An LR type CESD entry is numbered; it
contains the ESD ID of the control section entry in the
ID/length field. An LR may be referenced directly by an RLD
item in the same module, whereas an LD may not. All LD
items are changed to LR items during linkage editor
processing (LDs are contained only in object modules, never
in load modules).

U Private Code (PC) Marked Delete. This is a CESD item
created only for ENTABs and SEGTABs. PC-delete entries are
placed in the renumbering table, indicating that associated
TXT and RLD information is to be deleted.

34 MVS/370 Linkage Editor Logic

C

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
ESD Processing

Thae main function of ESD processing is symbol resolution.
Individual ESDs in the input to the linkage editor are combined
into a composite ESD, which contains all symbols in the input
that were not changed, deleted, or replaced. A chained
replace/change list (produced by the control card scanner)
specifies which ESD items are to be changed, deleted, or
replaced. A renumbering table (RNT) is also produced during ESD
processing; it is used during TXT, RLD, and END processing to
translate the ESD IDs of the input ESD items to CESD IDs.
Diagram 9 provides a general illustration of several types of
ESD processing.

At the beginning of ESD processing, control information from the
ESD record is saved: the ESD ID of the first ESD item in the
record (other than an LD); the number of bytes of ESD
information; and the type field of the first ESD itemnm.

If the OVLY option has been specified for the output load
module, the following occur:

° The current segment number is placed in the ESD, unless the
entry type is PR (PRs have an alignment value in the segment
number field).

. The RMODE for the load module is forced to 24.

] If automatic library call processing is being performed, thea
segment number is forced to 1 (all automatically called
modules are placed in the root segment of the overlay
structure).

If the OVLY option has not been specified for the output load
module,

. If the current ESD item is from a load module in overlay
format, the AMODE/RMODE data is forced to 24/24.

L Otherwise, the content of byte 12 is interpreted as
AMODE/RMODE data.

The ESD item is then processed according to its type, in the
following manner:

) If the ESD item is an ER, bytes 10, 11, and 12 are set to
zero in the input buffer (either the object module buffer,
the SYSLIN buffer, or the first pass RLD input buffer).
Byte 10 must be cleared because automatic library call
procassing uses it to indicate whether automatic library
calls have been processed. Bytes 11 and 12 must be cleared
because any nonzero data (including blanks) will be entered
in the delink table if delinking is required for the symbol.
If the input item is an ER item from an object module, the
CESD subtype field is also reset to zero to indicate that
there are no modifiers in the subtype field.

. If a REPLACE/CHANGE function has been requested for the
input module, the replace/change chain that was built in the
CESD by the control statement scanner is examined and the
appropriate modifications are made. For example, if the
scanner received the statement CHANGE A(B), the CESD
contains a line for A, marked as a change statement item in
the subtype field; the next line contains the symbol B. The
input E§D item symbol is changed from A to B during ESD
processing.

° If the ESD item is a PC, the CESD is not searched, because
each PC entry is treated as a unique entry. The PC is
placed in the next available CESD line and is processed in
the same manner as an SD.

Method of Operation 35

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

. If the ESD item is a null item, the renumber routine is
entered. (This routine is described under "Nonresolution
Processing.™) .

. If the ESD item is an LD, it is changed to an LR. The item
is then processed as an LR. (There are some minor
differences in processing LDs that have been changed to LRs;
for this reason, an internal indicator is set when the type
is changed to LR.)

. If the ESD item is a PC or SD, the AMODE/RMODE data is
checked for a valid combination. If an invalid combination
is found, an error message is issued and the RMODE for the
output load module is forced to 24.

After the ESD type is determined, the CESD is scanned for a
matching symbol. If no match is found, nonresolution processing
is performed. If the input ESD symbol matches a symbol in the
CESD, resolution processing is performed. Resolution processing
results in only one CESD entry for each unique input ESD symbol;
multiple occurrences of the same input ESD symbol are listed in
th: renumbering table (RNT) with pointers to the single CESD
entry.

NONRESOLUTION PROCESSING: If no matching symbol is found in the
CESD, the input ESD item is processed as described below.

SD Items: If the input ESD item is an SD (see Diagram 9, area

A):

. The freeline routine selects an empty line in the CESD. The
line following the current line is chosen unless a previous
CESD line is marked null. (Whenever possible, null lines
are used to save space.)

. If automatic library calls are being processed, an indicator
is set in the type field of the selected CESD line. (If a
module map was requested, this indicator is checked during
module map processing. If the indicator is set, the control
section is marked with an asterisk in the module map or
cross—reference table to indicate that it was obtained from
a library during automatic library call processing.)

L If the load module is in overlay structure, then those
routines brought into the load module via the automatic
library call are placed in the root segment of the load
module.

. A "write"™ indicator is set in the all-purpose table to note
that SDs, PCs, or CMs were encountered in the input record.
When ESD processing is completed, the write indicator is
tested. If it is on and the TEST attribute was specified,
ESD records containing SDs, PCs, or CMs are saved, blocked
3-to-1 in the input RLD buffer and written out on SYSLMOD.

. In any input object module, the CESD line number of the
first SD entry whose length is zero is saved. END
processing uses this CESD line number to enter the length
specified on the END card.

. The enter routine creates a CESD entry for the input ESD
item; it moves the symbol length, segment number, ID, and
type into the selected CESD line. In addition, the enter
routine accumulates the residence mode for the output load
module. Initially, the residence mode is ANY. As each
control section (SD or PC) is allocated in the output load
module, its residence mode is included in the accumulation.
If all control sections allocated in the output load module
have a residence mode of ANY, the output load module has a
residence mode of ANY; if any control section allocated in
the output load module has a residence mode of 24, the
output load module has a residence mode of 24. (The
residence mode accumulated from the ESD data may be

36 MVS/370 Linkage Editor Logic

9

C

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0

overridden by the residence mode specifications in the PARM
field or the MODE control statement.)

] The renumber routine places the line number of the new CESD
entry into the renumbering table to provide a means of
translating the input IDs to the new CESD IDs. For example,
if the input ESD item has a line number (ESD ID) of 3 but
the item is placed into the CESD at line 5, a 5 is placed in
the third line of the renumbering table. (For each input
ESD line, except LD lines, there is a corresponding RNT
line. The RNT contains information for the current module;
it is set to zero at the end of each input module.)

ER Items: If the input ESD item is an ER, it is entered in the
CESD and renumbered as described above; no special processing is
required.

WX Items: If the input ESD item is a WX, it is entered in the
CESD and renumbered as described above; no special processing is
required.

CM Items: If the input ESD item is CM (see Diagram 9, area E), a
"common" indicator is set and the item is treated as a delete
item. If the address that was assigned to the CM item by the
language translator is not zero, it is saved in the delink table
for later use. (Two CM items with the same identifying symbol
may have different assigned addresses; therefore, the assigned
address in the input must be subtracted from all address
constants that refer to the CM items so that they are returned
to their displacement value before relocation.) The CM item is
then renumbered and entered into the CESD.

LR (or LD) Items: If the input ESD item is an LR or LD (see
Diagram 9, area C):

° When processing an LR, the label routine determines whether
the SD for the control section has been processed. If the
SD has not been received, any LRs that refer to that SD are
chained together in the CESD until the SD is received. (The
SD might be marked replace; therefore, the LR cannot be
processed until the SD is received.) When the SD is
received, all dependent LRs are processed. Each LR ID field
is renumbered, using the renumbering table, so that it
refers to the CESD ID of the SD.

. LDs are not renumbered, because they are not referred to by
RLDs and are not numbered in language translator output.
The enter routine places them directly in the CESD. If an
LD is received before the SD to which it belongs, it is
handled as an LR.

PR Items: If the input ESD item is a pseudo register, the
current segment number is not entered in column 12 of the ESD
item. Column 12 of a PR item contains an alignment value, which
indicates that the PR must be aligned to a halfword, fullword,
or doubleword boundary. The PR is then processed by the
freeline, enter, and renumber routines, as described above.

RESOLUTION PROCESSING: If a matching symbol is found in the
CESD, the type fields of the input item and the matching CESD
item are compared and resolution processing is then performed.
The following conventions are observed during resolution
processing:

. Input PR items may match only PR entries in the CESD. If an
input PR item matches a non-PR item in the CESD, it is not
treated as a match; the CESD search for a matching PR item
continues.

° If the matching CESD item is marked "chained,™ resolution is
performed on the item to which it is chained.

] If the CESD line is marked null, the match is ignored and
the search continues.

Method of Operation 37

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

If the CESD item is an ER produced from a REPLACE, CHANGE,

OVERLAY, or ALIAS statement, or from the ddname field of an
INCLUDE or LIBRARY statement, the match is ignored and the

search continues.

Matching items are processed in the following manner:

If the input ESD item is CM, SD, or LR and it matches an ER
in the CESD, the input type replaces the type indicated in
the CESD item (see Diagram 9, area B). Nonresolution
processing is then performed on the input item.

If the input ESD item is an LR and it matches a CM, SD, or
LR in the CESD, a "match™ bit is set, indicating that a
double symbol definition is possible. If the SD for the
control section has been entered in the CESD and is marked
for deletion, the Label routine deletes the label; if it is
not marked for deletion, a "double symbol definition"
message is produced. If the SD for the control section is
not in the CESD, the LR is chained to the matching LR; when
the SD is received, the LR is deleted or a double symbol
definition message is produced, depending on whether or not
the SD is being deleted.

If an input PR matches a PR in the CESD (Diagram 9, area D),
the greater length and the most "constrictive™ boundary
alignment are placed in the CESD entry. (A doubleword
alignment is more constrictive than fullword alignment;
fullword is more constrictive than halfword; etc.) The
iapuéEPg entry is then renumbered to the updated PR entry in
the SD.

If an input SD item matches an SD entry in the CESD,
automatic replacement of the control section occurs. The
input SD item is entered in the CESD as a delete *ype and is
chained to the matching SD entry. (During second pass
processing, the assigned address of the control section
being replaced will be subtracted ("delinked") from the
addresses of any nonbranch-type address constants that refer
to the SD-delete entry.) The SD-delete item remains chained
only while the module is being processed; END processing
will change the chained items to null entries (see
"Delinking Nonbranch-Type Address Constants™).

If an input SD item matches a CM entry in the CESD and the
length of the SD item is greater than or equal to the length
of the CM item, the length of the SD item is entered in the
CESD. If the program is in overlay, the common path routine
scans the segment path table (SEGTAl) to find the segment in
the overlay structure that 1s common to both items and
places the segment number in the SD entry. The SD item is
then written over the CM line and renumbered. (This is
referred to as "automatic promotion of common."™)

If an input SD or CM item matches an LR in the CESD, a
"double symbol definition™ message is produced and the SD or
CM item is entered in the CESD as a delete type and is
chained to the matching LR entry, causing the SD or CM to be
replaced.

If the input item is CM, it may be "blank common.™ Blank
common may match a PC item in the CESD because both contain
blanks in the symbol field. 1In such a case, the match is
ignored and the search continues.

If an input CM item matches a CM item in the CESD (Diagram
9, area F), the greater of the two lengths is entered in the
CESD. If the module is being processed for overlay, the
segment number of the segment common to both the input item
and the CESD item is also entered in the CESD item
(automatic promotion of common).

If an input CM item matches an SD item in the CESD, and the
length of the SD item is greater than or equal to the length

38 MVS/370 Linkage Editor logic

C

This document contains restricted materials of IBM. ©® Copyright IBM Corp. 1972,1983

LY26-3921-0

IDR Processing

of the CM item, the length of the SD item is entered in the
CESD. The CESD type is not changed. If the module is being
processed for overlay, the segment number of the segment
common to both the input item and the CESD item is also
entered in the CESD item (automatic promotion of common).

. Whenever an input ER item matches an ER in the CESD, both
the type and subtype fields are examined; the ER items are
then resolved in the following manner:

- If the subtype fields of both ER items are not marked,
the input item is not entered in the CESD; the matching
ER remains in the CESD and a pointer to it is placed in
the renumbering table entry for the input item.

- If both items are marked "delete,™ the new ER is entered
in the CESD and the old item remains there so that they
can be delinked individually (in this case, the CESD may
contain two ER items for the same symbol). Delinking is
described in "Second Pass Processing."

- If the input ER item is marked for deletion, but the ER
item in the CESD is not marked delete, the input ER is
chained to the matching ER in the CESD. The chained ER
item remains in the CESD until end-of-module is detected
so that the delink value can be saved.

- If the input ER item is not marked for deletion and the
ER item in the CESD is marked "delete™ or "replace," the
delete bit in the subtype field is cleared (delete is
changed to replace) and the item is renumbered. If the
matching ER item in the CESD is marked ™no call™ or
"library member,™ it is marked "matched™ before
renumbering.

- If the input ER item is marked in the subtype field, but
is not marked "delete™ or "replace," it is assumed to be
"never call"™; if the matching ER item in the CESD is
"library member,"™ the CESD item is removed from the
chain of library members and the input ER item is
entered in the CESD and renumbered.

. If an input WX matches a WX in the CESD, no change is made
to the CESD. If the matching entry in the CESD is not a WX
or a control card entry, the input WX is changed to an ER.

L If an input ESD item that is not a WX matches a WX in the

CESD, the CESD item is changed to an ER. In all cases,
processing continues normally.

The manner in which CSECT identification records (IDR) are
processed depends on the type of IDR input records or control
statements being processed. The input records or control
statements are:

. Object module END records

. Load module IDRs

. IDENTIFY control statements

An object module END record contains only translation data;
however, load module IDRs may contain four different types of
IDR data:

. HMASPZAP-supplied data

L Linkage editor data

. Translator-supplied data

Method of Operation 39

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

. User-supplied data

Load module IDR processing is dependent upon the type of data
present in the IDR record. The IDENTIFY control statement
contains only user-supplied data. \

Before any IDR data processing begins, the type of IDR input is
determined either by the input processor HEWLFINP or, if the
data is from the IDENTIFY control statement, by the control
statement processor HEWLFSCN. HEWLFINP passes control to
HEWLFIDR at the entry point HEWLFIDR. HEWLFSCN passes control
to HEWLFIDR at the entry point HEWLCIDR.

Processing Ohject Module END Records Containing IDR Data

When byte 33 of an object module END record has an EBCDIC 1 in
it, one IDR item follows in bytes 34 through 52. If an EBCDIC 2
appears in byte 33, two IDR items follow in bytes 34 through 71.
A blank in byte 33 indicates that the record contains no IDR
data. IDR data is present only on an object module END record
if thettranslator that produced the object module contains IDR
support.

The renumbering table is scanned to determine the correct ESD
identifiers of the CSECTs to which the translator data applies.
If any of the CSECTs are marked delete in the renumbering table,
they are not identified in the IDR output. If the input object
module contains at least one CSECT that is not marked delete,
the translator data is removed from the END record and placed in
the IDR translator data table (IDRTRTAB) and the IDR translator
ID table (IDRTITAB). These two tables contain the ESD
identifier of the CSECT to which the translator data applies,
the translator identification, the version and modification
level of the translator, and the date of translation.

A comparison is made with the other entries in the IDRTRTAB for
a duplicate entry. If a duplicate entry is found, the incoming
data is combined with that of the previous entry to avoid
repetition of data.

Processing Load Module IDRS

The subtype of the load module IDR is scanned for the type of
IDR data. If the subtype is 02, the data is from the linkage
editor; these records are ignored by IDR input processing. When
the input data is from HMASPZAP (subtype 01), bits 2 through 7
of the flags and count field are scanned to determine the number
of HMASPZAP entries in the record (from 1 to 19 entries are
possible).

The entry in the renumbering table corresponding to the ESD
identifier of the CSECT processed by HMASPZAP is examined. 1If
the entry in the renumbering table is marked delete, then the
IDR data associated with that CSECT is deleted. However, the
data that is not deleted is placed at the end of the IDR
HMASPZAP data table (IDRZPTAB). IDRZPTAB contains the ESD
identifier of the CSECT processed by HMASPZAP, the date of the
HMASPZAP processing, the data specified during HMASPZAP
processing (this may be a PTF number or up to 8 bytes of
variable user data specified on an HMASPZAP control statement).
If the IDRZPTAB overflows, an error message is written and
processing is terminated.

When the input data is translator-supplied data (subtype 04),
the renumbering table entry corresponding to each ESD identifier
in the string preceding a translator description is examined.

If the entry is marked delete, the corresponding ESD identifier
is deleted from the string; otherwise, the input ESD identifier
is replaced by the renumbered identifier. If at least one ESD
identifier remains on the string, a check is made among the
table entries in the IDR translator data table (IDRTRTAB) to see
whether an identical description has already been entered into

40 MVS/370 Linkage Editor Logic

C

¢

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

Processing IDENTIFY

TXT Processing

IDRTRTAB. If an identical description does exist in IDRTRTAB,
the CSECTs associated with the incoming translator description
are combined with the existing translator data item to form a

single table entry in order to avoid needless repetition of

data. If it does not exist, a new entry is added for the input
data.

When the input data is user data (subtype 08), the renumbering
table entry corresponding to the ESD identifier of each input
user data item is examined. If it is marked delete, the user
data is ignored. If not, the input ESD identifier is replaced
by the renumbered identifier and the user data is entered at the
end of the IDR user data table (IDRUDTAB). The IDRUDTAB entries
contain the ESD identifier of the CSECT to which the user data
applies, the date the data was supplied to the module via the
linkage editor IDENTIFY function, the number of characters in
the user data field, and the user data.

In the case of input load module IDRs containing translator or
user-supplied data, an individual data item may span more than
one record. When this occurs, the incomplete portion of the
item is saved in either IDRTRTAB or IDRUDTAB. The item is
processed after the next input record has been read, and the
continued portion of the item is combined with the saved portion
to form a complete data item.

control statement Data

The control statement processor, HEWLFSCN, passes control to the
IDR processor at the entry point, HEWLCIDR. The CESD is
searched for an SD type entry matching the CSECT name to be
identified. If the name is not an SD, an error is logged and
processing is terminated. If the CESD line is an SD marked
delete, the data is ignored. 1If the CESD line is an SD not
marked delete, the ESD identifier of the matched SD name is
saved. A check is made to see whether there was any
user-supplied data previously associated with the CSECT. 1If
there was, the old data is replaced with the new incoming data.
If no earlier data exists, the incoming data is added to the end
of the table IDRUDTAB.

The manner in which TXT records are processed depends on whether
they are part of a load module or an object module or are added
using the EXPAND control statement. A load module contains
records in a specified order. However, in an object module, the
records may not be in the proper sequence because the language
translator may have created them out of order (EXPAND data is
always identified as out of order text). (The restrictions on
linkage editor input are described in "Appendix. Input
Conventions and Record Formats.m) Diagrams 10 and 11 ijllustrate
processing of TXT records from object and load modules,
respectively.

Before any address constants can be relocated within a control
section of an object module, all TXT records must be placed in
the proper order. This is done in the input text buffer
(TXTBFBEG), which is variable in length, allowing grouping of
data within the buffer.

Each "multiplicity”™ of text is assigned a number as it is moved
(or read) into TXTBFBEG. A multiplicity is a portion of text
equal in length to the maximum size of a SYSLMOD output record.
Within each control section, multiplicity numbers are assigned
consecutively, starting at 0.

Text records from object modules contain both text data and the
control information needed for processing. Text records from
load modules contain only text, so the associated control record
must also be examined to obtain the required control
information. During object module processing, control

Method of Operation %1

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

information is placed in registers; this information allows the
object module text to be moved from the object module buffer
into TXTBFBEG. For load module text, the assigned address of
the first byte of text and a pointer to the ID-length list (in
the control record) is determined during load module processing.
This information allows the text record to be read directly into
TXTBFBEG.

Processing Object Module Text

When text is received from an object module, the text record ID
is renumbered, using the renumbering table, so that it refers to
the CESD entry for the control section that contains the text.
The size of the control section is obtained from the CESD, and a
test is made to determine if the whole control section or a
multiplicity (whichever is smaller) will fit into the space
available in TXTBFBEG. If the control section length was not
specified in the CESD entry, only text for the current ID is
accepted; see "No-length Control Section,™ belou.

If there is sufficient space in TXTBFBEG to accommodate the
tabletext I/0 table control section or multiplicity, the text is
moved into the buffer, and an entry (containing the ID and
multiplicity number of the text) is made in the text I/0 table.
A corresponding entry, containing the location of the
multiplicity and the length of the text, is made in the text
note list. The text note list entry also contains a
displacement field. When text is in order, or on the first
occurrence of text for a multiplicity, the displacement field is
set to 0; for out-of-order text the displacement field contains
the displacement from the beginning of the multiplicity of the
first byte of contiguous text.

If the SYSUTl record size is smaller than the multiplicity size,
each multiplicity is divided into pieces, each piece having a
length equal to the SYSUT1l record size. New text I/0 table and
text note list entries are made for each piece; the displacement
field will contain the displacement of each piece from the
beginning of the multiplicity.

NO-LENGTH CONTROL SECTION: When text is received for a no-length
control section (a control section for which no length is
specified in its CESD item), space for one multiplicity is
allocated in TXTBFBEG. Entries are made in the text I/0 table
and the text note list for the multiplicity, and the text is
moved into TXTBFBEG. This procedure is repeated for each
subsequent multiplicity of text for the no-length control
section. If TXTBFBEG becomes full, its contents are written on
SYSUT1 as described in "Writing Text on SYSUT1." When the length
is received, it is entered in the text note list.

PROCESSING OUT-OF-ORDER TEXT: A load module contains records in
a definite order. However, records in an object module may not
be in the proper sequence because the language translator may
have created them out of order (records resulting from the
EXPAND control statement are marked out of order). Such records
may contain discontinuities in addresses (because of a reorigin
or a disjointed control section), or they may not be contiguous
(that is, text of a given ID and multiplicity may be
interspersed with text of other IDs or multiplicities). Records
of contiguous text must be built on SYSUT1l so that during second
pass processing, the text can be placed into its proper
position, within its ID and multiplicity, in the second pass
text buffer.

The first occurrence of a given ID and multiplicity is read into
the input text buffer as it is received. Discontinuities and
noncontiguous text are of no consequence at the first occurrence
of an ID and multiplicity. However, once text of a given ID and
multiplicity has been written out on SYSUTl, any subsequent text
of that ID and multiplicity must be contiguous to be written out
on SYSUT]l within each text record.

42 MVS/370 Linkage Editor Logic

C

This document contains restricted materials of IBM. © Copyright IBM Cofp. 1972,1983
LY26-3921-0

Text of a previously written ID and multiplicity is read into
the input text buffer until a discontinuity, or text of a
different ID or multiplicity, is encountered. The contiguous
text in the buffer is then written out on SYSUT1. The
discontinuous (or noncontiguous) text is then placed in the
buffer. If this text represents the first occurrence of an ID
and multiplicity, the buffer is loaded without regard for
discontinuities or noncontiguous text. If the text belongs to a
previously written ID and multiplicity, the text processor will
again place only continuous text of that ID and multiplicity in
the buffer.

A record that contains noncontiguous text is called a locose
record; a record that contains contiguous text is called dense.
The text note list entry for a dense record usually has a
nonzero value in the displacement field. When the text is read
back from SYSUT1 into the second pass text buffer, during second
pass processing, this displacement is used to place the text in
its proper position within its ID and multiplicity.

Processing Load Module Text

Because text records from load modules are ordered and
well-defined, they require little further processing by the text
processor. The information in the ID-length list (in the
control record) is scanned, and each ID is renumbered and
checked to determine whether it is to be deleted. If all IDs
are to be deleted, the record is ignored, and control is
returned to the input processor.

When an ID that is to be processed is found, the text record
containing the ID must be read into TXTBFBEG. The text record
length is obtained from the associated control record and
compared against the free space available in TXTBFBEG. If
sufficient space is available, the text record is read into the
buffer; otherwise, the contents of the buffer are written on
SYSUT1 to ensure sufficient space, and the record is read.

Text is processed in the buffer in the order specified by the
ID-length list. 1IDs that are to be deleted are overlaid by IDs
that are to be processed. The text is divided into
multiplicities, and entries are made in the text I/0 table and
the text note list. When all text identified by the ID-length
list is processed, text processing is completed.

Writing Text on SYSUT1

When no more control sections can be accommodated in TXTBFBEG,
the contents of the buffer must be written on the intermediate
data _set (SYSUT1). The text I/0 table is scanned to determine
the order in which control sections are to be written. The
length of the first control section (that is, corresponding to
the first text I/0 table entry) is obtained from its
corresponding ESD ID; if the length is less than the size of the
SYSUT1 record, the text I/0 table entry for the control section
is marked "written.”" Each subsequent control section is
similarly processed, and its length added to the sum of the
lengths of previously processed control sections.

When the sum of control section lengths reached the limit of a
SYSUT1 record, the entire group of control sections is written
on SYSUT1. The relative track address (TTR) is placed in the
text note list entry corresponding to the last text I/0 table
entry that was processed.

When a single control section is larger than a SYSUTl1 record,
the multiplicities of the control section are grouped, up to the

Method of Operation 643

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

RLD Processing

limit of the SYSUT1 record size, and written.® When control
sections or multiplicities are grouped on SYSUT1, the
multiplicities must be in ascending, consecutive order. If the
overlay attribute has been specified, no grouped control
sections are permitted on SYSUT1.

NOTE: Each time an entry is made in the text note list during
text processing, a check is made to determine whether the list
is full. If it is full, the contents of TXTBFBEG are grouped
(if possible) and written on SYSUT1l, and the TTRs are placed in
the text note list. The list is then written on SYSUT1l, and its
address is noted in the 1/0 control table. The text note list
may be written a maximum of 11 times.

If neither TXTBFBEG nor the text note list becomes full during
text processing, no text is written on SYSUT1. The text is
retained in the buffer, and single pass processing is in effact
for text records.

RLD processing basically consists of:

J Updating each set of relocation and position pointers (R and
P Pointers)

. Processing each flag and address (FA) in the input item
until the end of the record or the next item with an R and P
pointer is detected

RLD records from object modules and load modules are processed
in the same manner.

RLD information is grouped in the RLD buffer by P pointer. Each
P pointer of an input RLD record refers to the ESD entry in the
input module for the control section that contains the addraess
constant. Each time a new P pointer (one referring to a
different ESD ID) is detected, an entry is made in the RLD note
list for the RLD set (a set being an unbroken sequence of RLD
items having the same P pointer). The RLD note list entry
contains the following information for each set:

. The renumbered P pointer to which these RLDs refer.
. The lowest multiplicity of text to which these RLDs refer.
o The number of bytes of RLDs.

. The storage address of the first byte of RLD data if all
RLDs remain in virtual storage. If RLDs are written on
SYSUT1, this field contains the accumulated byte count for
intermediate chains or the TTR of the record on SYSUT1.

All adjacent RLD items containing the same P pointer are
referred to by only one RLD note list entry. Adjacent RLD items
containing the same R and P pointers are chained, with the R and
P pointers appearing only once, at the beginning of the chain.
The remaining RLDs in the chain are compressed by setting the
flag indicating continuation and discarding the four bytes
containing the R and P pointers.

Each R pointer of an input RLD record refers to the ESD entry in
the input module upon whose value the address constant depends.
The R and P pointers are updated, using the renumbering table.
Before renumbering, the R and P pointers refer to ESD entries of
the input module that contains the RLD items. The pointers are
renumbered so that they point to the proper entries in the CESD
being created for the output load module. If the R pointer
refers to a deleted ESD entry, delinking may be performed. 1If

9

6 If the SYSUT1 record size is smaller than the SYSLMOD record J

size, no grouping is permitted.

44 MVS/370 Linkage Editor Logic

C

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983
LY26-3921-0

the assigned address of the symbol referred to by the address
constant is zero, the address constant is not delinked. (Normal
relocation is performed.) When delinking is necessary, an entry
is placed in the delink table (a function of ESD processing).
The delink table entry contains the address (delink value) of
the symbol being deleted and the CESD entry number of the
identically named symbol that is to replace the deleted symbol.

The ID of the delink table entry for the deleted symbol is saved
in the renumbering table, and a "delink value saved" indicator
is set. The ID of the identically named symbol and the ID of
the new delink table entry are saved because they are later used
to complete the delinking operation. The R pointer of the RLD
item must be modified to refer to the delink table entry for the
deleted symbol, but the original R pointer is needed to process
any V-type address constants referred to in the RDL item.
(V-type address constants do not require delinking, but may be
in a FA string with A-type address constants that do require
delinking.) Therefore, the R pointer is not modified until the
string of flag-address (FA) fields following the R and P
pointers has been processed as described below. At that time,
if the module is to be structured for overlay and it contains
V-type address constants that refer to the deleted symbol, the
ID :f the identically named symbol is inserted into the calls
list.

Each FA field of the RLD record is processed as follows:
. The high-order bit of the flag field is set to zero.

. If the address constant is an A-type, the renumbering table
entry referred to by the R pointer is checked to determine
whether it is marked as a PR type. If it is a PR, the RLD
flag field is also marked PR (because second pass processing
must handle PRs in a special manner). If the renumbering
table entry is not an ER or marked delete, the RLD flag
field is marked for relative relocation. This indicates to
second pass processing that the difference between the
origin of the control section in the input and the origin
assigned by the linkage editor is to be used as a relocation
factor for the value of the address constant. If the RNT
entry is an ER or marked delete, the RLD flag field is not
marked. This indicates to second pass processing that the
address constant is to be relocated by absolute relocation;
second pass processing uses the linkage editor assigned
address of the symbol in the output module as a relocation
factor for the value of the address constant. (This
procedure is described in "Second Pass Processing.")

. If the address constant is a 4-byte V-type ("branch-type™)
and the program is in overlay, an entry is placed in the
calls list, provided that the address constant refers across
control sections (R not equal to P). The calls list is used
during address assignment processing to determine which
segments require ENTABs and the number of entries each ENTAB
must contain.

. For both A-type and V-type address constants, the text
multiplicity of the address field is determined and is saved
in the RLD note list if it is lower than any previous
multiplicity in the RLD record. If two pass processing is
in effect, the RLD note list is used during second pass
processing to read back RLD data from SYSUT1 (each RLD note
list entry contains the relative track location (TTR) of an
RLD record on SYSUT1l). The second pass processor uses the
multiplicity field of the RLD note list entry to determine
whether the associated RLD record should be read back from
SYSUT1 for a given multiplicity of text.

. When the last FA field in the string has been processed, all
items in the string have been checked to determine whether
they require delinking. If any A-type address constants in
the string required delinking, the R pointer for the string
is modified to refer to the associated delink table entry.

Method of Operation 65

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0
Figure 16 shows the actions performed during RLD processing for
each input flag format, and the format of the flags after RLD
processing. (The "output™ column shows the flag formats that
are passed as input to the Relocation routine of second pass
processing; see Figure 27 on page 69.) After all FA fields have
been processed, the next RLD record processed.
If the RLD buffer becomes full, its contents must be written on
the intermediate data set (SYSUT1). The RLD buffer is allocated
with a maximum length less than or equal to the size of a SYSUT1
record, so the entire buffer may always be written. As many
consecutive RLD sets as possible are grouped in a SYSUT1 record.
Input output
Flagl Type Action Performed Flag Type
0000LIST Not PR, Marked for relative relocation 1000LIST Relative
ER, WX,
CM, or
delete
0000LIST ER ('02°' Marked for absolute relocation 0000LIST Absolute
in renum-
bering
table)
0000LIST Delete or Marked for absolute relocation 0000LIST Absolute
CM ('05") if assigned address of input
item is zero
0000LIST PR('06") Marked as PR (displacement 0010LIST Pseudo
value) Registar
Type 1
0000LIST Delete or Marked "delink value saved" if High-order Delink
CcM assigned address of input item bit of P
is not zero pointer
0001LIST Type is RLD is marked branch-type 0001LIST Branch
not
checked
0001LIST Delete Marked "delink value saved and High-order Delink
or other FA items in string exist bit of P
1001LIST? that are nonbranch-type" and pointer.
are being delinked
0010LIST Pseudo None. Remains as a PR 0010LIST Pseudo
Register (displacement value) Register
Type 1 Type 1
0011LIST Type is Marked as PR (cumulative 0011LIST Pseudo
not length) . Register
checked Type 2

Figure 16. RLD Flag Field Processing

Notes to Figure 16:

1 Refer to "RLD Input Record (Card Image)™ and "Relocation
Dictionary Record (Load Module)" in "Appendix. Input
Conventions and Record Formats."

2 Internal types processed during second pass.

46 MVS/370 Linkage Editor Logic

C

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

END Processing

Include Processing

The RLD note list entry for each RLD set in the group contains a
"grouped”™ indicator; the note list entry for the last RLD sat in
the group also contains the relative track address (TTR) of the
group.

RLD sets whose lengths exceed that of a SYSUT!l record (requiring
more than one output record) are not grouped. RLD note list
entries for RLD sets that are not grouped contain the relative
track location (TTR) of the SYSUT1l record and a "nongrouped”
indicator.

Each time an entry is made in the RLD note list, a check is made
to determine whether the list is full. If it is full, the RLD
sets in the RLD buffer are grouped and written on SYSUT1l, and
the TTR is placed in the appropriate RLD note list entry. The
RLD note list is then written on SYSUT1l and its address is noted
in the "I/0 control table.™ The RLD note list may be written a
maximum of three times.

Note: If neither the RLD buffer nor the RLD note list becomes
full during RLD processing, no RLDs are written on SYSUT1l. The
RLD information is retained in the RLD buffer, and single pass
processing is in effect for RLDs.

When an END record or the end of an input load module is
detected, END processing is required. The functions of END
processing include:

. Resetting tables (such as the renumbering table) that were
involved in the processing of the input module

. Processing entry point information

. Deleting any CESD lines marked CHAIN or DELETE, and keeping
track of deleted lines

. Entering in the CESD the length of a control section for
which no length was specified in the ESD item (if tha length
is contained on the END record)

. Setting flags in the ORDER table for each entry matched by
an entry in the CESD and resetting the flag for formerly
matched entries

. Placing the data from END records in object modules created
by a translator that supports IDR into the IDR translator ID
and data tables, IDRTRTAB, and IDRTITAB

.

Include processing is required when:

. The control statement scanner has detected an INCLUDE
statement and the INCLUDE statement processor has built an
include chain.

L End-of-input has been detected, and the "more includes”
indicator in the all-purpose table (APT) is on.

Include processing consists of preparatory functions (OPEN,
BLDL, FIND) required before the module to be included can be
read. These functions include:

L An input pointer to the library read block is set.

. The SYSLIB DCB is closed (unless it is open for a
partitioned data set currently being used).

. Each entry in the include chain is examined sequentially.

Method of Operation 47

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

SEQUENTIAL DATA SETS: If an include chain entry specifies a
sequential dat set, the data set organization field of the DCB
is changed from partitioned to physical sequential, and the
ddname field is updated. The DCB is then opened, and the module
is read in.

PARTITIONED DATA SETS: If an include chain entry specifies a
member of a partitioned data set, the member name is entered
into the BLDL list, and the next entry is examined. If the next
entry specifies a different data set name, the partitioned data
set is opened and a BLDL macro instruction is executed for the
single member name.

If the next entry specifies another member of the same
partitioned data set, the member name is added to the BLDL list
and the next entry in the include chain is examined. Member
names are added to the BLDL list until a different data set name
is encountered, the BLDL list becomes full, or the end of the
include chain is reached. Because the BLDL list must be in
collating sequence, each member name is inserted into its proper
position, moving other entries as necessary. Because included
modules must be read in the order in which they appear in the
INCLUDE statement (without regard to the collating sequence), a
separate table, indicating the order of processing BLDL list
entries, is maintained.

When the BLDL list is completed, the partitioned data set is
opened and the record format field (RECFM) in the DCB is tested
to determine whether the included modules are load modules
(undefined format) or object modules (fixed format). If they
are load modules, the "load module"™ indicator is set in the APT.
This indicator is tested when each module is read in. A BLDL
macro instruction is then executed for the member names in the
list. The list is then examined in the order specified in the
INCLUDE statement to obtain the attributes of each included
module (if it is a load module); the attributes of the output
load module may be "downgraded™ accordingly in the APT.

If the BLDL macro instruction was successful for a particular
member, the member is read in. The FIND macro instruction and
the directory entry obtained from BLDL are used to set a pointer
in the DCB to the first record of the member. If the BLDL was
no@ :ugcessful for a particular member, a diagnostic message is
printed.

The INCLUDE processor checks the PDS directory information
returned by BLDL for an included load module to determine
whether the load module is in overlay format. If it is, an
indicator is set in the all-purpose table so that the ESD
processor can interpret byte 12 of each ESD item as a segment
number ;ather than as AMODE/RMODE data.

An example of INCLUDE processing is given in Figure 17 on page
49. The input pointer is set to the address of the library read
block. The address of the current include item is contained in
the APT.

Assuming that no includes have yet been processed. A will be
the first item examined. The subtype 'D0' indicates that A is a
member of a partitioned data set, so A will be entered into the
BLDL list. The pointer 000D refers to the data set DATASETX.
The next item in the include chain, B, is also a member of
DATASETX, so it is added to the BLDL list. The next item in the
chain, M, is a sequential data set (subtype C0), so the BLDL
list is completed with two entries (A and B). Assuming that
DATASETX is not currently open and the SYSLIB DCB is not opened
for another data set, the SYSLIB DCB is opened for DATASETX.
(The RECFM field of the data set DSCB is merged into the DCB.)
Assuming that the RECFM field indicates undefined (U) format, a
load module indicator is set in the APT, and a pointer to the
load module buffer is placed in the library read block. The
attributes of A and B are obtained, using the BLDL macro
instruction, and the attributes previously specified are updated
accordingly. (The attributes of the output load module may be

48 MVS/370 Linkage Editor Logic

9

C

downgraded as a result.)
the first record of member A, using the FIND macro instruction,
and the "include initiated™ indicator is set in the APT.

A pointer in the DCB is then set to

This document contains restricted materials of IBM. © Copyright IBM Corp.
LY26-3921-0
N

1972,1983

INCLUDE DATASETX
(A,8,C),M

i

1D LOC. O 8 12 13
01 938
02 9F48 C 000000 DO 000D
Register 2 All Purpose Table 03 9F 88
"MORE INCLUDES" [NDR gg 968 B 9F 88 D0 000D
06 9F88 M 48 C0 | 0000
CRRTINCL 07
[__9Fs8 | 08
T 05 a8 A 968 | | D0] 000D
INCBRKPT L o
[B8] 08
0C
0D 9FF8 DATASETX BO
Input Pointer OE
IZEE o
n
Library Read
Block
77C0
9400
400 BLADL List
B
SYSLIN
Read Block
F28C 7768
967C
50
SYSLIB DCB
77C0 RECFM
DDNAME SYSLIN DCB
Load Eii;;%zz:] 7768 | RECFM
Module 967C SYSLIN
Buffer Buffer DDNAME
BLKSIZE
Figure 17. Include Processing

Member A is read using the input pointer and library read block.
When the end of module A is

Module A is then processed.
item A is deleted from the chain and the CESD line is
Member B is then read and processed.

item B is deleted from the

reached,
marked null.

When the end of module B is reached,
the CESD line is marked null, and the remainder of the

chain,
chain is processed.

Method of Operation

49

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

Automatic Library Call Processing

&

Automatic library call processing is required:

. At the end of SYSLIN input when unresolved ERs still exist,)
and the NCAL option was not specified

L When a NAME statement has been detected (provided that the
NCAL option was not specified and no more entries in the
include chain are to be processed)

Automatic library call processing consists of two series of CESD
scans. The first series of scans operates on unresolved ERs
specified on LIBRARY statements. It finds the first ddname that
contains a pointer in the chain pointer field (bytes 14 and 15).
Such an entry is the first item in a chain of members associated
with this ddname; there is a distinct chain for each ddname that
was specified on a LIBRARY statement. Chained member names for
a particular ddname are entered into a BLDL list, which is
processed as previously described under "INCLUDE Processing."™

The scan of the CESD continues until all ddname chains have been
processed. A second scan of the CESD then searches for ERs not
specified on LIBRARY statements and attempts to resolve them by
calling members of the same name from SYSLIB.?

An example of automatic library call processing is given in
Figure 18 on page 51 . Diagram A shows two library chains that
were built in the CESD by the library statement processor. In
Figure 17 on page 49, Diagram B, an SD item for JOE has been
entered in the CESD, resolving the reference to JOE. (JOE was
removed from the chain by ESD processing, and the LIBl chain ID
now points to the line containing TOM.) Automatic library call
processing operates on the library chains, as modified by ESD
processing (Diagram B).

In the first series of scans, the CESD is searched for a ddname
(type 02, subtype B0) with a chain pointer. The ddname item .
LIBl is found; its chain ID points to TOM. Because TOM is '
unmatched (subtype 02), it is not called and because TOM is the
last item in the chain (0 in the chain ID field), the scan is
resumed for another ddname with a chain pointer. LIB2 is found;

its chain ID points to SAM. No call is issued for SAM, because

it is unmatched. The chain ID of SAM points to PETE, which is
matched (indicating that PETE is an external reference, and not

just an operand of a LIBRARY statement). PETE is entered in the
BLDL list; because PETE is the last item in the chain, the list

is completed with one entry.

LIB2 is opened and the BLDL macro instruction is used to obtain
the attributes of PETE (the attributes of PETE are not obtained
if the format is fixed (F)). A "BLDL attempted™ indicator is
set for the CESD entry for PETE so that no other search for PETE
will be made in the event of an unsuccessful BLDL or
nonresolution of the ER for PETE by the member PETE. The FIND
macro instruction is used to set a pointer in the SYSLIB DCB to
the member PETE. PETE is then read in.

When processing for PETE is completed, the scan for ddnames
resumes at the beginning of the CESD, rather than at the CESD
line where the scan was interrupted, because additional ddname
items may have been entered at any available line in the CESD.
(Object modules with additional LIBRARY statements may have been
read in.) When the last line of the CESD is reached, the second
series of scans is begun.

7 SYSLIB is the standard library whenever the linkage editor .
is executed as a job step. If another program links to the :
linkage editor, the ddname of the standard library is passed
in a parameter list.

50 MVS/370 Linkage Editor Logic

C

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

Diogram A

Sub-
CESD Type Type
D 0 8 12 13
ol
02 LIB1 02| 00 BO| 04
03)
04 [JOE 02| 02 03 | 0A
gi SIMPLE 82 5 gg .
1182 2] 0
07 SAM 02 06 02| 08 _D
08 PETE 02[07 03| 00 D
09
0OA [TOM 02| 04 02 00
08
oC
oD
Diogram B
CESD —_—
D 0 8 9 10 12 13 14 15
01
02 |LIBI 02 00 BO A
03
04 [JOE 00 | 06E273 0121E3
05 SIMPLE 02 00
06 LIB2 02 00 BO 7
07 SAM 02 06 02 8 D
08 [PETE 02 07 03 0 D
09
0A [TOM 02 02 02 0
0B
oC

Figure 18. Automatic Library Call Processing

During thae second series of scans, the CEDS is searched for
"unmarked™ external references (type 02, subtype 00). These are
ER items not specified on LIBRARY statements. In Diagram B, the
scan finds SIMPLE. Assuming that SYSLIB is the ddnama for the
standard library, SIMPLE is called from SYSLIB in the same way
that PETE was called from LIB2. Every time automatic library
call processing is resumed after a module is read, the second
series of scans resumes at the beginning of the CESD (because ER
items from a library member may have been entered in any
available CESD line).

When the second series of scans is finished, input processing is
compleata.

INTERMEDIATE PROCESSING

The intermediate processing comprises modules HEWLFADA,
HEWLFOUT, HEWLFENS, HEWLFENT, and (optionally) HEWLFMAP.

When all input processing is completed, the second phase of the
linkage editor (intermediate processing) begins operation. The
two major functions of the second phase are address assignment
and intermediate output.

Method of Operation 51

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
ADDRESS ASSIGNMENT

At the conclusion of input processing, address assignment
processing is required (see Diagram 13). Address assignment
includes the following operations:

Delete CESD entries for ER items marked included, called,
ddname, or overlay in the subtype field. These lines are
marked null and are deleted if the module is processed again
in a subsequent execution of the linkage editor.

Compute, for programs in overlay, the size of SEGTAB,® enter
the size in the all-purpose table, and place a private code
delete entry for the SEGTAB in the CESD. The PC-delete
entry is deleted from the module if it is processed again by
the linkage editor (see Diagram 13, area A).

Determines whether the first text record of a load module is
not assigned to address 0. If it is not assigned to address
0, a private code delete entry of one byte is created in the
CESD. The PC-delete entry is deleted from the module if the
module is later reprocessed by the linkage editor.

Enter segment numbers for label references in the CESD. If
the program is in an overlay structure, the calls list
(built during RLD processing) is also scanned, and pointers
from one chain of calls to the next chain are entered (area
B); the number of ENTAB bytes® for each segment is
determined; and a PC-delete entry is placed in the CESD for
each ENTAB (see "ENTAB Size Determination™).

Assign temporary linked addresses to SD, PC, and CM entries
in the CESD (area C). SDs and CMs that have entries in the
ORDER table are addressed first in the order of their
appearance in the table. The remaining control sections are
then assigned addresses to the SDs, PCs, and CMs that have
no entries either in the ORDER table or the text I/0 table.
To avoid assigning addresses to any SD or CM more than once,
a "processed”" bit (bit 4 of the "type' byte in the CESD) is
set in each CESD entry when it is first processed. The bit
is reset to zero in the final scan of the CESD.

Consider each segment to be at zero origin. The temporary
starting address of each control section is computed with
consideration for its location in the segment, relative to
the zero origin (plus any adjustments for boundary
alignment). These addresses are temporary because the
starting addresses of the segments must later be relocated
with respect to their positions in the overlay tree. If the
program is not in overlay (consists of a single segment),
the addresses are final, because no further relocation by
address assignment is necessary.

Perform page alignment while assigning temporary linked
addresses if the program is not in overlay. The ORDER table
is searched for a match of the CESD ID of the SD or CM being
processed. When a match is found, and page alignment is
specified, the assigned address is forced to a 4K-byte
boundary. If the ALIGN2 option is taken, the address is
forced to a 2K-byte boundary.

Compute the temporary relocation constant for each control
section (the difference between the temporary linked address
and the assigned address in the relocation constant table
(RCT) (area D). 1If the program is not in overlay, these are
the final relocation constants (relative relocation
factors).

SEGTAB size = 24 + (4 x number of segments).
ENTAB size = 12 + (12 x number of unique downward calls per
segment).

52 MVS/370 Linkage Editor Logic

9

9

C

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

Accumulate the length of each segment in the leftmost 3
bytes of an entry in the segment length table (SEGLGTH).
The boundary alignment factor of the first control section
in the segment is placed in the fourth byte of the entry.

Determine the address of each PR entry in the CESD, using
the total length of all PRs previously encountered, plus the
boundary alignment factor. This address is placed in the
CESD entry for the PR. The length of this PR is then added
to the cumulative PR length.

Process the SEGLGTH table (if the program is in overlay) to
determine the starting address of each segment, relative to
the beginning of the program (area E). SEGTAl is checked to
find the proper location of each segment in the tree.
SEGLGTH at this time contains the length of each segment.

To determine the starting address of a segment, the length
of all previous segments in the same path are added,
together with any adjustments for boundary alignment.
(Boundary alignment adjustment is determined by the last 3
bits of the address of the first control section in a
segment.) This sum, minus the boundary alignment factor for
the segment, is the segment relocation constant (SRC). The
SRC is then placed in the rightmost 3 bytes of the SEGLGTH
table. The sum of the SRC, the boundary alignment factor,
and the segment length is placed in the leftmost 3 bytes of
the SEGLGTH table entry for the segment. It is the length
of the path of the segment (including the segment itself).
At the completion of this process, the entry in SEGLGTH for
each segment contains the cumulative length of its path; the
longest of these lengths is the program length.

Perform a second scan of the CESD if the program is in an
overlay structure. The segment relocation constant in the
SEGLGTH table is added to the temporary linked address in
the CESD entry for the control section; this sum is the
final linked address. The SRC is also added to the
temporary relocation constant table; this sum is the final
relocation constant for the control section.

Assign final linked addresses in ascending order of segments
if page alignment is specified for any SD or CM type symbol.
For each segment, three cycles of scanning are performed.
First, SDs and CMs having entries in the ORDER table are
processed. The final address is calculated by adding the
SRC and the temporary linked address, and is aligned on a
page boundary, if required. A cumulative count of any
increment within a segment caused by page alignment is kept,
in order to assign correct addresses to the unprocessed SDs,
PCs, and CMs. Next, the text I/0 table is scanned for the
remaining SDs and PCs in the segment. These SDs and PCs are
assigned final addresses. Finally, a scan of the CESD gives
addresses to all unprocessed SDs, PCs, and CMs in the
segment. For every processed SD, its entry in the
relocation constant table is calculated. Before going on to
the next segment, the length of the segment just processed
and the SRC of the next segment are updated.

Make a final scan of the CESD to assign a final linked
address to each label reference.

The CESD entry for each LR contains a reference to the
control section in which it resides. The relocation
constant for that control section is located in the RCT and
is added to the temporary linked address in the CESD entry
for the LR. This sum, the final linked address for the LR,
is placed in the CESD.

Mark the program as not executable if there are still
unresolved ERs and if neither the NCAL option nor the LET
option has been specified. Unresolved WXs do not inhibit
program execution.

Method of Operation 53

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

. Build the alias table and compute an entry point for the
program (see "Entry Processingm).

ENTAB Size Determination J

ENTAB size determination consists of computing the size of
ENTABs so that the size of each segment in an overlay program
can be determined and relative relocation factors can be
computed for use by second pass processing. The size is
determined by the number of downward calls, or calls across
regions, to symbols that are not referred to by segments higher
in the path of the calling segments.

An example of ENTAB size determination is given in Figure 19 on
page 55. The overlay tree structure shown in the illustration
consists of nine segments residing in two regions; all
references between segments are made using V-type address
constants. Functions of ENTAB size determination are:

. Scanning the CESD for LR entries and entering their segment
numbers. In Figure 19, item 6 is an LR item; its ID/length
field points to the CESD entry for the control section in
which it resides (lire 3). The segment number contained in
line 3 (segment number 3) is entered in the segment number
field of the LR item.

. Scanning the calls list, inserting chaining values that
point from one group of R and P pointers to the next.

. Scanning the calls list for each segment (starting with
segment 1), and finding symbols referred to by that segment.
For sach reference found, the type of call (upward,
downward, or exclusive) is determined. If an ENTAB is
required for the segment, its size is determined and a
PC-delete entry for the ENTAB is made in the CESD.
Referring to Figure 19, the segments are processed in the

following manner:

1. The calls list is scanned for P pointers that refer to J
control sections in segment 1. If one is found, the
associated R pointers (which refer to referenced
symbols) are examined to determine the segment in which
each referenced symbol resides. 1In Figure 19, the fifth
P pointer refers to line 7 of the CESD, which contains

an SD entry for & control section in segment 1. The
associated R pointers refer to line 6 (symbol B in
segment 3) and line 4 (symbol C in segment 5). For each

reference, the type of call (upward, downward, or
exclusive) is determined, using SEGTAl and the segment
numbers of the calling and called segments. In

Figure 19, SEGTAl indicates that segment 1 is in the
path of segments 3 and 5; therefore, the calls from
segment 1 to B and C are downward calls. This is noted
in the downward calls list by entering segment number 1
in the lines referred to by the R pointer (lines é and
4). Since segment 1 is the root segment, it must have
an ENTAB; the size of the ENTAB is determined and a
PC-delete entry for it is created in the CESD.

2. When the scan for segment 1 is completed, the calls list
is scanned for P pointers that refer to segment 2. 1In
Figure 19, the third P pointer in the calls list refers
to CESD line 6, which contains segment number 3. In
this case, however, no entry is made in the downward
calls list because it indicates a call to B in segment 3
from segment 1, which is higher in the path of the
calling segment (segment 2). No ENTAB is required for
segment 2 because the reference to symbol B in segment 2
can be resolved through the ENTAB entry in segment 1.

3. The calls list is scanned for P pointers that refer to ’

segment 3. In Figure 19, the fourth P pointer in the
calls list refers to CESD line 3 (segment 3). The R

564 MVS/370 Linkage Editor Logic

C

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

pointer refers to CESD line 8 (segment 8). SEGTAl

indicates that the call from 3 to 8 is downward,

regions, and the call is noted in the downward calls

list. Segment 3 requires an ENTAB,

1972,1983

across

because it contains

a downward call to a symbol not referred to by a segment

in the path of the calling segment;

determined, and a PC-delete entry for the ENTAB is

created in the CESD.

4. The calls list is scanned for P pointers that

segment 4. In Figure 19,

upward, while the call from 4 to 8 is downward, across

regions. The upward call

noted in the downward calls list,
entry for segment 3 (because no segment with a segment
number greater than ¢ can have segment 3 in its path).
Because an ENTAB is required,

the first P pointer in the
calls list refers to CESD line 9 (segment 4). The R
pointers refer to line 2 (segment 2) and line 8 (segment
8). SEGTAl indicates that the call from ¢ to 2 is

is ignored, because the
address constant can be resolved directly to the
referenced symbol. The downward call from 4 to 8 is
replacing the previous

a PC-delete entry is created in the CESD.

This process continues until all segments have been
processed. The required ENTABs are built during second pass

processing (see "ENTAB Creation™ and "Relocation of V-Type

Address Constants in Overlay™).

the ENTAB size is

refer to

the size is determined and

CESD y

|
bol Chain Seg|Sub=-| Length | A
§ Type Address | No (Type| / ID \

SD
sD

SD
SD

N o

Region 1

Region 2

O>» T O
wn w

LR
SD
SD
SD
(o)
PC
PC(d
PC(d
PC(d)
PC(d)

VO ® N> AW N -

D
- O
T m — @

60

24 * PC - delete type entry for SEGTAB
24 t PC - delete type entries for ENTABs

W - = N O A D - W

- * - *

CALLS LIST

VONOULEWN —

SEGTAI

OO —NN—-O

Downward

Calls List

T =N ONOCOLAEWN —

—~ o

* v P

N cv 4 R cv P R cv 4 R cv

~ //’\\ /’\\ /‘\ "~
S — -~ N~ ~ — -~ —

* CV = Chaining Value (gives number of bytes to next CV)

Figure 19. ENTAB Size Determination

3 I N A 8 N A N

End of Calls List

Method of Operation

55

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0
Entry Processing

Entry processing includes the following operations:

Entering in the alias table any alias symbols that were
chained together and saved in the CESD by the ALIAS
statement processor. Each entry in this table consists of
an 8-byte symbol field and a 2-byte ESDID field. For each
saved alias symbol, the entry processor scans the CESD for a
matching SD or LR entry. If no match is found, a zero is
placed in the ESDID field of the alias table entry for thae

-symbol. If a matching SD or LR entry is found, the ESD ID

of the alias entry in the chain is placed in the ESDID field
of the alias table entry for the symbol (see Figure 20 on
page 57). The address assigned by linkage editor to the
matching SD or LR and the ESD ID of its control section are
placed in the CESD entry for the chained symbol, and the
type of the chained symbol is changed to null.

Determining whether the entry point was specified as an
address on an END record, or as a symbol on an ENTRY
statement or END record:

1. If the entry point was specified as an address on an END
record, the assigned address is determined by either
absolute or relative relocation. If the ID on tha END
record referred to an ER which was resolved with an SD
or LR, the address assigned by the linkage editor to the
SD or LR is added to the address from the END record
(absolute relocation). If the ID on the END record
referred directly to an SD or PC, the relocation
constant for the SD or PC is added to the address from
the END record (relative relocation).

2. If a symbolic entry point was specified on an ENTRY
statement or END record, the CESD is scanned for a
matching SD or LR symbol. The address of the matching
symbol is used as the entry point.

J. If no entry point was specified, the starting address of
the SD or PC control section (not marked delete) with
the lowest assigned address is chosen as the entry
point. The entry point associated with the main name
(not an alias) and all alias entry points must be in
segment 1 if the program is in overlay.

Assigning the addressing mode for the main entry point into
the output load module. If the load module is in overlay
format, the addressing mode is 24; otherwise, the addressing
mode is obtained from the CESD entry that defines the SD or
PC that contains the entry address. The addressing mode,
along with the entry address and the ESDID of the SD or PC,
is saved in the all-purpose table.

INTERMEDIATE OUTPUT PROCESSING

Intermediate output processing includes the following
operations:

Writing out the CESD on SYSLMOD in groups of 15 entries per
record. The last record may consist of less than 15
entries. In writing CESD records on to SYSLMOD, the
intermediate output processor sets a flag in the control
information indicating the content of byte 12 in the CESD
entries in the record. If the CESD entries contain segment
numbers (that is, the load module is in overlay format), the
flag is off; if the CESD entries contain AMODE/RMODE data,
the flag is on.

Building and writing out the IDRs from the IDR tables
(IDRTRTAB, IDRTITAB, IDRUDTAB, and IDRZPTAB) onto SYSLMOD.
The linkage editor IDR is also built and written on to
SYSLMOD.

56 MVS/370 Linkage Editor Logic

9

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983
LY26-3921-0

L Building a half ESD (HESD), consisting of the last 8 bytes
of each CESD entry. (The symbol is deleted from each CESD
entry to conserve virtual storage space during second pass
processing.) The HESD is not complete at this time. (The
ID of each label reference is used in building the scatter
and translation tables.)

L Building and writing out the segment table (SEGTAB),
preceded by a control record describing it, if the program
is in overlay. SEGTAB contains information required by the
overlay supervisor.

o Building and writing a one byte text record if the first
load module text record does not begin at address 0. The
l-byte text record is preceded by a control record
describing it.

L Building a scatter table and a translation table for a
program that is to be scatter loaded and writing out
scatter/translation records in a form acceptable to program
fetch at execution time. The scatter/translation
information is written out on SYSLMOD in 1024-byte racords.

All Purpose Table

Alias Chain Address

CESD - Before Entry Processing

l - Pointer
: Symbol Type :l-::e::dr Seg | Sub | Chn
L . No | Type| Chn Lgth|
Chain ID
| /1D
b .
| .
7 .
Address X 3 SAM ER | Addr Y-[~ |Alias
— -l ___ _1_l___
' .
--Address Y 7 JOE ER | Addr Z - Alias
. I
R
\.pAddress Z 10 BILL ER 000 Alias
.
.
.
'»——>20 SAM SC| * LAl (Length)
_ e 1 [
L4 \
22 JOE R | *LA2 20-7
O
* Linked oddress CESD -~ After Entry Processing
Chn
Chn Addr Seg|Sub |Pointer
Symbol Type|Reverse |\~ Type |Chn
Chain 1D Lgth/ID
Alias Table 0
Alias Symbol ESDID L4
.
SAM i—+—— — — — — »3 SAM Null LAl 20‘\|
.
° |
JOE 77—t — — — — — 7 JOE Null LA2 20\1
.
|
BILL 0 10 BILL Null 000 Alias |
________ e Ll L_L__
! .
S »20 SAM sD LAT (Length)
O
[]
.
22 JOE LR LA2 20
.

Figure 20. Processing of Alias Symbols by the Entry Processor

Method of Operation 57

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0

The first 4% bytes of each record are used to identify the
records as scatter/translation information. If the length
of scatter/translation information is greater than 1020
bytes, the last 1020 bytes (plus 4 bytes of header
information) are written out as the first
scatter/translation record. The data in the last record may
be 1020 bytes, or less (see Figure 21). In creating the
scatter table entries, the RMODE/RSECT data is obtained from
the HESD entries (byte 4) and inserted into the flag byte.

Low-Order Position

Beginning of
Translation ———»
Table

Beginning of
Scatter —
Table

High-Order Position
in Virtual Storage

in Virtual Storage

500 bytes

4-byte header
1020 bytes

1020 bytes A 8 C D

1024 bytes 1024 bytes 1024 bytes 504 bytes

—

Sequential Order of Records

1020 bytes

Figure 21. Writing Scatter/Translation Records

Reading the TXT and RLD note lists into virtual storage if
they were placed on SYSUT1 during TXT and RLD processing.
The text note list may have been written a maximum of 11
times and the RLD note list a maximum of 3 times on SYSUT1
for a large program. The TTRs pointing to the locations of
note list information are contained in the input/output
control table in the all-purpose table.

Determining the control section containing the last text in
the program (or in each segment, if the program is
structured for overlay) and the highest segment number of
the segments that contain text. (This information is
necessary so that second pass processing can determine when
to set the end-of-segment or end-of-module indicator.) The
highest ESD ID is determined by scanning the text I/0 table
for the ESD IDs of control sections that contain text. This
ESD ID is entered into the high ID (HIID) table along with
its associated segment number.

Determining, via bits in the all-purpose table (APT), if the
MAP option has ben specified or 1 f the XREF option has been
specified and all RLDs are in storage. If either of these
conditions exists, the module map and/or the cross-reference
table are produced. If the XREF option is specified and all
RLDs are not in storage, XREF processing will be done as
part of final processing.

If the ORDER option has been invoked during input
processing, the text I/0 table and the text note list II
(formed after merging all text note lists from SYSUT1l) are
sorted according to the ORDER table. The sorting, howaver,
preserves the original order for those control sections that
do not have entries in the ORDER table.

58 MVS/370 Linkage Editor Logic

9

C

This document contains rastricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26~3921~0
MAP/XREF Procassing

When MAP/XREF processing is performed as part of intermediate
output processing, a table address is obtained from the APT, and
a table of 2-byte entries pointing directly to the CESD is
constructed. The CESD records for the current segment are
gathered and sorted by address. The module map is then printed
out; the map lists, in ascending order according to their
assigned origins, all control sections contained in the output
module and the entry points within the control sections.

Controt sections in an overlay output module are grouped by
saggment.

If XREF processing is done during intermediate output
processing, RLD items are incompletely relocated; their
addresses are relative to the origins of their respective CSECTs
rather than the origin of the load module, and the address of
each RLD must be added to the linkage editor assigned address of
its corresponding control section before the cross-reference
table is produced. The cross-reference table includes a module
map and a list of all references Wwithin a given segment that
refer across control section boundaries. Each entry in the list
contains the address of the reference, the symbol to which it
rafaers, and the name of the control section in which the symbol
is defined. For overlay programs, each item in the list also
gog?aigs the number of the segment in which the symbol is
aefined.

If the MAP and XREF options are processed during intermediate
output processing, disposition messages and the diagnostic
message directory are printed after the module map and
cross-refaerence table. If the cross-reference table is produced
during final processing, the disposition messages and the
diagnostic message directory are printed before the
cross-reference table.

Sacond pass processing comprises modules HEWLFSCD and HEWLFREL.

After intermediate processing is completed, the third phase of
the linkage editor (second pass processing) begins operation
Sse: giagram 14). The major functions of second pass processing
includa:

. Relocating address constants contained in the text.
. Creating control/RLD records.

. Writing TXT and control/RLD records on SYSLMOD in a format
that can be loaded by program fetch. Included in the
control information of the control or control/RLD record
that precedes each text record is a count of the RLD and
control/RLD records that follow the text record. This count
is used by program fetch to build optional channel programs
when loading the load module.

U Creating ENTABs and associated RLD items for overlay
modules.

SINGLE PASS PROCESSING: Indicators residing in virtual storage
in the text I/0 table and the RLD note list are checked to
determine whether text and RLD records have been uwritten on
SYSUT1 or have been retained in the input text buffer and the
RLD buffer. If either text or RLD records have been retained in
storagae, single pass processing is in effect for that record
type. If two pass processing is in effect, the records are read
into the buffers from SYSUT1.

ORDERING OF TEXT: In two pass processing, the ID sequence in the

text I/0 table is used to determine the order in which CSECTs
are to be read into the second pass text buffer (which is

Method of Operation 59

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

physically the same storage area as the input text buffer). The

text I/0 table entry for each ID and the corresponding text note

list entry are used to locate text on SYSUT1 (see Diagram 14,

area A). Text is read into the buffer one multiplicity at a

time, using the displacement field in the text note list to '
determine where within the buffer the text must be placed.

Information about the text is entered into the second pass text
control table, which is used to control subsequent processing of

the text (area B).

SECOND PASS RLD BUFFERS: When the required text is in the text
buffer, the corresponding RLDs are read into the RLD input
buffer, using the RLD note list to locate the RLD records (area
C). The RLD input buffer can contain two RLD records from
SYSUT1; for each RLD input buffer area, an RLD input control
block is maintained (area D). The RLD output buffer is 768
bytes long and is divided into three buffer areas (the maximum
RLD output record is 256 bytes long); for each RLD output buffer
area, an RLD output control block is maintained (area F). While
text is being relocated, the control record for that portion of
text occupies one of the output buffers; the other two output
buffers contain the relocated RLDs for the text being processed
(area E). If the relocated RLDs exceed two buffers, the control
record is written on SYSLMOD; relocated RLDs may then be moved
into the third output buffer.

When all three RLD output buffers and the RLD input buffers are
filled and additional RLDs are required to relocate the text
currently being processed, the contents of the output buffer
must be written out. However, to maintain the required TXT/RLD
sequence in the output module (area G), the associated text must
precede the RLD record. Space for the text is reserved in the
output module by writing the incompletely relocated text; the
contents of the RLD output buffer may then be written, and
processing can continue. When the text is completely relocated,
it is written over the space reserved for it, using the XDAP
("execute direct access program™) macro instruction.

GROUPING SYSLMOD OUTPUT: As many CSECTs as will completely fit ’
in one SYSLMOD record (up to a maximum of 60) are grouped and

written as one record. RLDs are grouped to correspond to the

grouping of their associated text. If the overlay attribute is
specified, only CSECTs belonging to the same segment will be

grouped.

If a CSECT is larger than the SYSLMOD record size, the CSECT is
divided into multiplicities, each multiplicity being equal to
the SYSLMOD record size. The length of the last multiplicity
may be less than the SYSLMOD record size. Each multiplicity is
written as a record, followed by RLDs associated with only that
multiplicity.

Note: If the downward compatible attribute (DC) or the scatter
format attribute (SCTR) is specified, CSECTs will not be
grouped.

END-OF-MODULE: When control sections for all segments of the
output load module have been processed (determined via the "high
ID" indicator in the HESD type field and the "last segment with
text" field in the all-purpose table), indicators are set in the
last control/RLD record to mark it as the end of the module.

The control/RLd record is written out on SYSLMOD, and second
pass processing is completed.

Note: If the output load module is to be structured for

overlay, a list of relative track addresses (TTR list) is

created to be used by program fetch when it loads the segments

into virtual storage for execution. The TTR list contains one

entry for each segment in the overlay load module. Each entry
contains the relative track address of the first record (control
record) of a segment, except for the first segment, which

contains the relative track address of the first text record. A
PC-delete control section that contains ENTAB entries in each i
segment where the text requires them and the RLD records

60 MVS/370 Linkage Editor Logic

C

This documaent contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

required by program fetch to relocate address constants
contained in the ENTAB entries are also created.

Relocation of Address cConstants

Therae are two types of relocatable address constants:
. Branch-type, such as DC V(X)
. Nonbranch-type, such as DC A(X)

The value of a branch-type or nonbranch-type address constant
depends on a symbol in the CESD. To adjust an address constant
to its proper value in the output load module, the linkage
editor uses an absolute or relative relocation factor. The
absolute relocation factor is the address assigned by the
linkage editor to the symbol on which the value of the address
constant depends. The relative relocation factor is the
difference between the address assigned to the symbol by the
linkage editor and the address of the symbol in the input
module. The relative relocation factor may be positive or
negative.!® The absolute and relative relocation factors of each
symbol in the CESD are computed during address assignment and
are saved in the half ESD (HESD).

Relocation of Nonbranch-Type (A-Type) Address Constants

A relative relocation factor is used for a nonbranch-type
address constant if the symbol on which its value depends is in
the same input module as the control section that contains the
address constant. (The address constant and the symbol it
refers to were assembled or compiled together, or were
previously processed together by the linkage editor.) An
example of relative relocation of nonbranch-type address
constants is shown in Figure 22 on page 62. Because the address
of DICK is known, the language translator places it in the value
of the address constant. DICK is a known value prior to linkage
editor processing (not an external reference in the input);
therefore, a relative relocation factor (+1000) is used to
relocate DICK during linkage editor processing.

10 If it is negative, an indicator is set in the HESD to note
that it is in complement form.

Method of Operation 61

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

Input Module 1 Output Module
0000
SAM CSECT 0000 SAM CSECT
° .
. .
. .
° .
0999 U
Input Module 2 1000 JOHN CSECT
°
0000 oHN CSECT Linkage #2000
° Editor o 1000
o DC A (DiEXT
° .
*1000 °
DC A (DIEXT °
.
°
2000 |pyck .
°
1000 15 cx . o
° °
°
.
Legend:

* Known value of DICK is inserted by language translator.
1 Relative relocation factor is +1000; linkage editor assigned address is 2000.

Figure 22. Nonbranch-Type Address Constants—Relative Raelocation

An absolute relocation factor is used for a nonbranch-type

address constant if the symbol referraed to by the address
constant does not have a defined value within the same input
module. (The R pointer of the RLD item raefers to an external
reference.) An example of absolute ralocation of a
nonbranch-type address constant is shown in Figure 23 on page
63. In this example, the value of SAM is unknown when input
module 1 is processed by the language translator; therefore,
zeros are placed in the value of the address constant. During
second pass processing, the absolute relocation factor (the
linkage editor assigned address) is used to relocate the address
constant.

62 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

(i Input Module 1

0000 JOE CSECT
L]
[]
L[]
EXTRN SAM
L4 Output Module
L]
e *0000 0000
DC A (SAMT JOE CSECT
° []
[] []
[] []
0499 EXTRN SAM
[]
[]
® #0500
Linkage 0060
Editor DC A (SAMT
[]
[]
Input Module 2 o
0000 SAM CSECT
‘ [] 0500 SAM CSECT
° []
° []
L4 . °
0249 .
0749
Legend:

* Language translator inserts zeros because value of SAM is unknown.
Actual address of SAM in the output module {0500) s added to value
of address constant.

‘ Figurae 23. Nonbranch-Type Address Constants—Absolute Relocation

Figure 24 on page 64 shows the use of both a relative relocation
factor and an absolute relocation factor in relocating a symbol.
Two input modules are to be processed by the linkage editor.
Input modula 1 contains a nonbranch-type addrass constant whose
value depends on the symbol PETE; PETE is an external reference
in the same module. The language translator has assigned a
value of +10 to the address constant. The R pointer of the RLD
item refers to the ER entry for PETE in the ESD; this entry
contains zeros in the origin and length fields. The P pointer
refers to the SD entry for the control section that contains the
address constant.

Input module 2 contains two control sections, BOB and PETE. BOB
contains a nonbranch-type address constant whose value depends
on PETE; because PETE has a defined value of (300) in the same
module, the language translator has used that value to compute
the value of the address constant (PETE + 10 = 310). The R
pointer of the RLD item refers to the SD entry for PETE in the
ESD; the P pointer refers to the SD entry for BOB (the control
section that contains the address constant).

During linkage editor processing, the ER and SD entries for PETE
are merged into one CESD entry; the R pointers of both RLD items
in the output module will refer to that entry. The RLD P
pointer for the address constant in control section BILL will
refer to the SD entry for BILL; the P pointer for the other
address constant will refer to the SD entry for BOB. 1In the
output load module, both address constants will contain the same
valua. Because the R pointer of the RLD item in input module 1
(refers to an ER entry in the ESD in that module, it is marked
for absolute relocation; the absolute relocation factor for PETE

Method of Operation 63

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
(+500) is added to the value (+10) assigned by the language
translator. Because the R pointer of the RLD item in input
module 2 refers to an SD entry in the ESD in module 2, it is
marked for relative relocation; therefore, the relative
relocation factor for PETE (+200) is added to the value (+300)
assigned by the language translator. The relocated value for
both address constants is 510.
Relocation of all nonbranch-type address constants requires an
addition or subtraction of the relocation factor to or from the
/ value of the address constant in the text of the input module.
(Addition or subtraction is specified in the flag field of the
RLD item for the address constant.)
Input Module 1 Qutput Module
No. Symbol Type Origin Length No. Symbol Type Origin Length
ESD 1 [BILL sb 0000 500 £SD 1 [(BILL SD 0000 500
2 | PETE ER 0000 000 2 | PETE sD 0500 400
3 JOE ER 0000 000 3 [BOB SD 0900 300
0000 BILL CSECT 4 LR 0620 2
. 0000 BILL CSECT
[] []
[] []
EXTRN PETE .
TXT . TXT EXTRN PETE
EXTRN JOE .
e *0010 EXTRN JOE
0490 DC A(PEFE+TY e # 0510
® * 0000 pettr
0494 DC AUOEY 0490 DC A(PEFE+T)
0499 R P FLAG — Address + 0620
RLD 2 1 1] 0490 0000
3 | [0494 | 0494 DC_AUOE]
Input Module 2 0500 PETE CSECT
No. Symbol Type Origin Length N
1 [BOB D 0000 300
ESD 2 [PETE) 0300 400 0620 ENTRY JOE
JOE LD 0420 2 JOE :
0000
BOB CSECT
[]
° 0900 BOB CSECT
[]
e +0310
1194 ® £ 0510
o Nk " ey o » o
DC A (PETEHOY
Determined by linkage ¢
editor using absolute :
0300 PETE CSECT relocation factors
3 ° (+500, +620) 1199 ®
ENIRY JOE # Determined by linkage R P Flag Address
° editor using relative RLD 2 1 0490
0420 JOE ° relocation factor (+200) 4 1 0494
. 2 3 1194
0699 °
R P Flag Address
RLD 2 1 [0294]

Figure 2%4. Nonbranch-Type Address Constants—Absolute and Relative Relocation

6% MVS/370 Linkaga Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
DELINKING NONBRANCH-TYPE ADDRESS CONSTANTS: A relative
relocation factor cannot be used to relocate an A-type address
constant that refers to a symbol in a control section being
replaced. Because the address constant has been previously
relocated (by a language translator or by the linkage editor),
it contains the value of a symbol being replaced; therefore, the
value of that symbol must be subtracted from the value of the
address constant. This process is called delinking. 1In
delinking, an address constant is reduced to the value it would
have contained if it referred to an external reference in the
input module. After delinking, the address constant contains
the value required for proper relocation, should the replaced
symbol appear later in the input, in another control section.
Delinked address constants are treated as address constants
whose values depend on external references. (Absolute
relocation factors are used in relocating them.)
Delinking of an A-type address constant is shown in Figure 25.
Input load modules A and B both contain control section SAM.
During linkage editor processing, the first occurrence of
control section SAM is accepted, while the second occurrence is
deleted through automatic control section replacement.
Module A Output Module
JOE) 0 1000 JOE sD|* 0 1000
BILL ER 0 0 BILL sD | *1000 800
ESD ESD
S SAM SD| 1000 750 S0 Toam sD | *1800 750
JOHN LR| 1050 31, JOHN LR [*1850 3
JOE o [JOE ** 1900
1100 TXT 11807
DC A (JOHN-+S50) 700 700 DC A (IOHN~+5T)
DC V (BHD) 800 800 DC V (BHLT 1000
TXT bgg- - ~~—— ——®0________| 1000 | BILL
SAM 1000 $1900
JOHN 1050 DC ALCHN-30)
R P Flog Address 1';;8 oam
RLD 2] 1C 800
4] oc 700 JOHN
Linkage R P Flag Address
Module B Editor 2 1 1C 800
SAM) 0 720 4] oC 700
ESD JOHN LR 70 1 4 1 2 0C 1350
BILL sD| 720 8o |, Legend:
SAM * Values are derived from HESD.
** 1100 + 800 = 1900.
JOHN 70 1120 - 70 + 1850 = 1900.
R 720 ® A relative relocation factor is used to relocate the address constant A(JOHN+50) in
BILL control section JOE, because JOE and SAM are in the same module.
120 ® The address constant A{JOHN + 50) in control section BILL must be delinked because
DC A(LOHN*50) 1350 it was resolved with the symbol JOHN in the replaced control section SAM. The old
value of JOHN must be subtracted from the value of the address constant before it
P Flag Address
can be relacated (using the absolute relocation factor) to the new vaiue of JOHN in
RLD 3 r OLl 1350 the output load module.
Delink Table
0004 000070
HESD Relocation Constant Table
Type Absolute Reloc Fact | Seg No Length 000000
00 000000 01 000280
00 001000 01
00 001800 ol 000800
03 001850 o1 000800

Figure 25. Example of Delinking

Method of Operation 65

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

Control section BILL in module B contains a reference to symbol
JOHN in control section SAM. Because SAM in module B will be
deleted, the address constant A (JOHN+50) in module B must be
delinked so that it may be properly resolved with the symbol

JOHN in module A. In delinking, the old value of JOHN is

subtracted from the value of the address constant in BILL
(120-70=50). The absolute relocation factor for JOHN (1850) is
then added to the delinked value of JOHN (50+1850=1900).

DELINKING COMMON CONTROL SECTIONS: Common control sections
(either blank common or named common) must be "delinked" by theae
linkage editor. All references to common control sections are
made by means of nonbranch-type address constants.

If the assigned address of a common control section in the input
to the linkage editor is not zero, all such references must be
delinked. Delinking is necessary, because during linkage editor
processing all blank common control sections are collected into
a single control section. All identically named common control
sections are gathered into individual control sections;
references to them from different input modules must be delinked
so that they can be properly relocated with respect to the
locations of the common control sections in the output modula.

Delinking adjusts the value of each address constant in a common
control section so that it contains its correct displacement
from the control section origin. The values of such address
constants are then relocated so that they refer to the linkagae
editor-assigned addresses, using absolute relocation factors.

Relocation of Branch-Type (V-Type) Address Constants

Only absolute relocation factors are used to relocate
branch-type address constants. Because a displacement is not
allowed in the value of a V-type address constant, the absolutae
relocation factor is inserted in the value field during
relocation. (It is not added to or subtracted from in value

assigned by the language translator, as described for A-type

address constants.) Because the value of a V-type address
constant is inserted, delinking is never necessary for such
address constants. Relocation of V-type address constants in an
overlay structure is discussed in the following paragraph.

RELOCATION OF V-TYPE ADDRESS CONSTANTS IN OVERLAY: If the output
of the linkage editor is to be overlay load module, a 4-bytel!
branch-type address constant in the path of the symbol it refers
to (but in a different segment), or in a different region, will
be relocated in a special manner. The value field of the
address constant will contain the address of an ENTAB entry.

The ENTAB entry will contain the address assigned by the linkage
editor to the symbol referred to by the value of the address
constant. An ENTAB entry is created for each V-type address
constant that is in the path of the symbol it refers to (but is
not in the same segment), or located in a different region,
provided that the symbol is not referred to in a segment higher
in the path of the calling segment. (Such address constants are
resolved so that they refer to the ENTAB entry previously
created for the symbol in the higher segment.) ENTAB entries
are not created for address constants that refer to symbols
higher in the path. Whenever an ENTAB entry is created, it is
noted in an entry list; each item in the entry list contains the
entry number of the referenced symbol in the HESD, the segment
number of the calling segment, and the address assigned to the
ENTAB entry by the linkage editor. The ENTAB creation routine

11 Any address constant must be & bytes, because the high-order
byte is used by the overlay supervisor during execution.
The number of the segment containing the address constant
will be placed in the high-order byte of any V-type address
constant resolved to an ENTAB entry. (The high-order byte
must be zero if it is not resolved to an ENTAB entry.)

66 MVS5/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

uses the entry list to build ENTAB entries (see "ENTAB
Creation™).

When second pass processing begins to process a segment, the
entry list is modified so that is contains only entries for
segments higher in the path of the current segment. (In

Figure 26, segment & is being processed; the entry for segment 3
is removed, because it is not higher in the path of segment 4.)

—

5
2 e 1 _7_‘ Entry List
i
3] 61 HESD S
Entry t:g Address
Number °
4
1
Next
2 available
Current 3 line; 4
Segment will b:
entere
here.

Figure 26. Entry List Processing

During relocation, each V-type address constant is examined to
determine if an ENTAB entry must be created for it. The R
pointer of the RLD item for the address constant is used to find
the associated HESD entry; this entry contains the segment
number of the symbol referred to by the address constant. The
relationship of this segment to the current segment is then
determined, using SEGTAl. Depending on the relationship in
SEGTAl, the address constant is relocated in one of three ways:

1. If the segment that contains the symbol is higher in the
path of the current segment, the call is upward and the
address constant is resolved directly. (The absolute
relocation factor of the symbol is inserted in the value of
the address constant.)

2. If the current segment is higher in the path of the segment
that contains the symbol, the call is downward. The entry
list is checked to determine if an ENTAB entry was
previously created for the symbol in this segment or in a
segment higher in the path of this segment. If an ENTAB
entry for the symbol exists, its address (contained in the
entry list) is placed in the value field of the address
constant. If no ENTAB entry exists for the symbol, a neuw
entry is placed in the entry list, and an ENTAB entry will
be created by the ENTAB creation routine (see "ENTAB
Creation™). The ENTAB entry will contain the address
assigned to the symbol by the linkage editor, and the
address of the ENTAB entry will be placed in the value of
the address constant and in the entry list item.

3. If neither of the two segments is higher in the path of the
other, the call is either exclusive or across regions. If
the two segments are in diffarent regions, and no ENTAB
entry already exists for the symbol in the entry list, an
ENTAB entry will be created and an entry is made in the
entry list; the value field of the address constant is
relocated to the address of the ENTAB entry, which in turn
contains the relocated address of the symbol. If the two
segments are in the same region, the call is exclusive. If
there is an entry in the entry list for the symbol, the

Method of Operation 67

This documaent contains restricted materials of IBM. © Copyright IBM Corp. 1972,19%83

LY26-3921-0

ENTAB Creation

Relocation Routine

address constant is resolved through its ENTAB entry; if
there is no entry for the symbol in the entry list, the call
is an invalid exclusive call and the address constant is
resolved directly to the symbol. (This usually leads to
incorrect results during execution of the module.)

The ENTAB creation routine uses the size field in the HESD to
determine the number of ENTAB entries to be created for a given
segment. The entry list is scanned for all entries that were
created for the current segment; each of these entries contains
the HESD entry number for the corresponding symbol. The value
and segment number of the symbol are obtained from the HESD and
are entered in the ENTAB entry, along with standard information
shown in the table format (see "Table Layouts").

ENTAB creation is shown in Figure 28 on page 70. The V-type
address constants referring to SAM and BILL in segment 1 meet
the requirements for building ENTAB entries. The ESD and RLD
input to the second pass processor, and the overlay tree
structure are shown in Diagram A. During relocation, entries
are created for SAM and BILL in the entry list (see Diagram B);
each entry contains the address of the ENTAB entry created for
the address constant.

In segment 1, location 136 of control section JOE contained a
call to control section SAM before relocation. After
relocation, location 136 contains the address of the ENTAB entry
for SAM, and the high-order byte of the address constant
contains the segment number of the calling segment. An ENTAB
entry is created, in like manner, for BILL in segment 1.

In segment 2, the address constant referring to BILL does not
meet the requirements for building an ENTAB entry. (It is not
in the path of the segment containing the symbol.) Therefore.
no ENTAB is created in segment 2. The call for segment 2 to
BILL in segment 3 is an exclusive call. Because a call to the
same symbol appears in a higher segment common to 2 and 3
(segment 1), the address constant may refer to the ENTAB entry
for BILL in segment 1. (This is determined by scanning the
entry list for the HESD entry corresponding to the symbol BILL.)

If a call to BILL was not contained in a common segment, the
address constant DC V (BILL) in segment 2 would be resolved
using the value assigned by the linkage editor to the symbol
BILL, which results in an error.

In segment 3, the address constant is an upward call and is
resolved directly.

The relocation of address constants is performed by the
relocation routine; the routine operates on the following input
data:

. The address of the RLD input buffers that contain RLD
records.

L The address of the RLD note list entry for the RLDs being
processed.

. The address of the next available entry in the RLD output
buffer.

68 MVS/370 Linkage Editor Logic

9

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983
LY26-3921-0

L The buffer relocation constant (BRC) where:

BRC = starting buffer address of current text + relative
relocation constant of current control section - address
assigned to current control section by the linkage editor -
multiplicity size x current multiplicity number.

Input Output
Flag Type Action Performed Flag Type
0000LLST Absolute Absolute relocation 0000LLST A-type

factor is added to
value of address
constant

0001LLST Branch Absolute relocation 0001LLST V-type
factor is inserted
into value of
address constant

0010LLST PR displacement Absolute relocation 0010LLST PR displacement

value factor is inserted value
(PR type 1) into value of
address constant
0010LLST PR cumulative PR length from all 0011LLST PR cumulative
displacement purpose table is displacement
value inserted into value value
(PR type 2) of address constant
1000LLST Relative Relative relocation 0000LLST A-type

factor is added to
value of address
constant

‘ Figure 27. Relationship of RLD Flag Field to Relocation

Notes to Figure 27:

1. If S (sign) in LIST is 1, subtraction is performed, rather
than addition.

2. In delink type, the delink value is added or subtracted
according to the opposite of the sign; the absolute
relocation factor is added to or subtracted from thae address
constant according to the indicated sign.

3. If an RLD item refers to an undefined symbol, the associated
address constant is not relocated. (It may have been
delinked.) The high-order hit of the RLD item flag field is
set to one (1000LLST for an A-type constant, 1001LLST for a
V-type constant) and no relocation will be performed when
the module is loaded into virtual storage for execution.

4. Delinking is noted in the high-order bit of thae P pointer.

Method of Operation 69

This document contains restricted materials of IBM. ® Copyright IBM Corp.

LY26-3921-0

1972,1983

Diagram A, HESD 036 | JOE
L.E. Relocation 136 DC V(SAM)* Segment |
Assigned Constant
Type Address Seg Length Table 26 186 | DC v{BILL)*
JOE D 36 2900
SAM D 272 2 500
BILL D 272 530 272 | SAM 272 |BILL
SEGTAB PC 0 1 36
ENTAB PC 236 1 36 Segment 2 Segment 3
DC V(BILL) DC V(JOE)
R P Flag Address
RWO [T 2T 1T T 1C 1T 100 J] Structure with V-type address
L3 [v 17 T 50] Constants,
Input RLDs - Segment 1 * Zero value assigned by the assembler.
Diagram B.
Output RLD Buffer Entry List Entab RLD Items
2 T T T 7€ T 136] 2 [1 T 236 | [o T D | 240]
(3 T 17 [¢ 86 | L3 7] | 248 } 1 LT o T 252 1
RLDs and Entry List after relocotion for control section JOE.
Diagram C.
Segment 1 after processing by Second Pass Processor.
JOE
01000236
136 DC v{Samg
01000248
184 DC V(BWAT
236 47FF 0024 _ | 00000272 | 02 | 000000
248 47FF 0012 | 00000272 | 03 | 000000 ENTAB
260 Standard Last ENTAB Entry
Diagram D.

Segment 2 ofter processing by Second Pass Processor.

272 | SAM
02000248
752 | DC V(BHAT
input RLD Buffer Output RLD Buffer ENTAB RLD Items Entry List
3 T 2z [7c] e80] 3 T 2 T ic] [None] L]

* Same as ofter processing segment 1.

Diagram E.

Segment 3 after Second Pass Processing

BILL

00000036
DC V(OET

input RLD Buffer

Output RLD Buffer

ENTAB RLD Items

Entry List

(L1 T 3 Tic Je% | 1

3

1 1cC

]

[None

] L |

Figure 28. ENTAB Creation

* Same as after processing segment |

70 MVS/370 Linkage Editor Logic

9

C

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

The relocation routine operates in the following manner:

1. The size of the RLD set!?2 and the displacement from the
beginning of the buffer are determined from the RLD note
list.

2. Each RLD item in the current RLD set is scanned to determine
whether:

a. It describes an address constant for the current text
being processed (BRC + address contained in the RLD
address field falls within the text buffer boundaries of
the current text.)

b. The address constant is either a valid 2-, 3-, or 4-byte
address constant. (The only valid 2-byte address
constants are defined by pseudo register symbols.)

3. Each address constant whose RLD meets the above requirements
is moved from the text into a computation area. The address
constant associated with the RLD item is then relocated
according to the information in the flag field of the RLD
item (see Figure 27 on page 69). In relocating 4-byte
address constants (VCONs), the high-order bit in the address
constant before relocation is reproduced in the address
constant after relocation. The relocated address constant
is then placed back into the text.

4. The RLD address field is updated using the relative
relocation factor for the control section being processed.
(The control section referred to by the P pointer of the RLD
item).

5. The RLD is moved into the RLD output buffer if space is
available. If space is not available, the contents of the
RLD output buffer are written out on SYSLMOD. See "Second
Pass RLD Buffers"™ under "Second Pass Processing.™

6. Steps 2 through 5 are repeated until all RLD items have been
scanned in the RLD set being processed. The multiplicity
number in the RLD note list is updated if unprocessed RLDs
remain in the set.

7. If there are more RLD sets in the input buffer to be
processed, the address of the next record is determined and
steps 1 through 6 are performed.

Note: To minimize the number of times RLD records are read from
SYSUT1, RLD records for a control section are held in the input
RLD buffer, when possible, until all RLD records in the buffer
have been processed (because each RLD record may pertain to many
multiplicities of text). After each set of RLDs is scanned, the
multiplicity number in the RLD note list is updated to reflect
the multiplicity of the remaining unprocessed RLD records in the
set. An RLD record is removed from the buffer when:

. All RLD items in the record have been processed. (Their
associated address constants have been relocated.)

. Another RLD record must be read into the buffer and space is
not available.

When all records in the input RLD buffer have been scanned, the
relocation routine determines if more RLD records for the
current multiplicity of text are to be read in. (The RLD read
routine sets an indicator when it encounters such a record but
cannot read it into the buffer because the buffer is full.)

When both buffers are full, the second buffer is freed, and a
bit is set in the corresponding RLD note list entries which
indicates that the RLDs are not in virtual storage. The records

12 Ap RLD set is a group of RLDs referred to by a particular

RLD note list entry.

Method of Operation 71

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0

to be read in are then placed in the second RLD buffer; these
records are processed in the same manner as those already
residing in the first buffer. This process is repeated until
all records that contain RLD items pertaining to the current
multiplicity of text have been scanned and processed.

When all RLDs in a buffer are processed, the buffer is marked
"free"™ in the RLD control block. MWhen a new multiplicity of
text is to be relocated, the RLd note list is scanned
sequentially (on ID and multiplicity number) from the first
entry. If an entry indicates that the record is "in virtual
storage™ and the record contains RLD items pertaining to the neuw
multiplicity of text, it is processed.

FINAL PROCESSING (HEWLFFNL)

Error Logging

Final processing comprises modules HEWLFFNL, HEWLFBTP, and
(optionally) HEWLFMAP.

The fourth phase of the linkage editor (final processing)
performs "cleanup" functions, and is the last operation of the
}in?age editor processing. Functions of final processing
1nclude:?

. Writing the TTR note list, created during second pass
processing, on SYSLMOD if the output load module is to be
used in overlay. The TTR list contains the relative track
address of the first record of each segment of the overlay
load module. It is used by the overlay supervisor to find
the segments when it loads them into virtual storage for
execution.

. Placing each entry in the proper format for the partitioned
data set directory, modifying it if there are alias symbols,
and issuing a STOW macro instruction!® for the member name
and each alias.

. Checking attributes (reusable, reenterable, and
refreshable). If the attributes have become more
restrictive, a message describing the change in attributes
is printed out. (For example, the input module was
specified as "reusable" and is now "not reusable.")

. Printing out a directory of logged errors.

. Producing a cross-reference table if the XREF option is
specified, and the cross-reference table was not produced
during intermediate output processing.

. Printing a diagnostic message if the module has been marked
"not executable."™

L Reinitiating linkage editor processing, beginning with
initialization, if a NAME statement terminated SYSLIN input.

L] Completing linkage editor processing if end-of-file
terminated SYSLIN input; releasing virtual storage and
returning control to the caller.

Whenever an error condition is detected during linkage editor
processing, an indicator is set in an error logging map and a
coded diagnostic message is printed out. During final
processing, the error logging map is scanned. When an indicator

13 The STOW macro instruction is not issued if there was no

valid input, if there were no ESDs, if nothing was written
out on SYSLMOD, or if the run was terminated by a severity %
error.

72 MVS/370 Linkage Editor Logic

»

C

This document contains restricted materials of IBM. ©® Copyright IBM Corp. 1972,1983
LY26-3921-0

is found "on"™ in the map, an associated list is used to build a
diagnostic message.

Note: An example of error logging is given in Figure 29. Each
entry in the list contains a length indicator and a pointer to a
phrase to be assembled into the message. (Phrases are stored to
save virtual storage space; complete messages would require
additional space because of repetition of identical phrases.)
The diagnostic directory is then printed out, one or two lines
to a message. This directory is normally directed to the
SYSPRINT data set. However, if the TERM option was specified,
diagnostic messages are directed to both the SYSPRINT and
SYSTERM data sets.

C

Error Logging Map

—

16 63 64 12
AS
~ N *_ ——————
Table K’
r] Entry 48 I |
=7
-
List
T T 7 T T
| [[[
I N U U S 1
/ i T \
/ \ o
____________ - S ~ o S
- 4 TTme~ h
Phrases
l Phrase P ‘ Phrase R Phrase M] Phrase J l
Messoge / / /
l Phrase P Phrase R Phrase M ; Phrase J
Lﬂend.

* This pointer is determined by subtracting the bit number from the length
of the error logging map (64 - 16 = 48),

Figure 29. Building Error Messages

All error messages produced by the linkage editor are identified
by a message ID having the format:

IEWDMMS

where:

IEW identifies the message as a linkage editor error maessage.
D contains a zero.

MM is the message number.

S is the severity code.

The module in which an error message occurred is identified by
the message number (MM; see Figure 68 on page 189).

cross-Reference Table

If the XREF option is specified, and the cross-reference table
was not produced during intermediate output processing, the RLD
records are read back from SYSLMOD, and the cross-reference
table is built, as described in the discussion of intermediate
processing.

Method of Operation 73

OVERVIEW GF
LINKAGE EDITOR
PROCESSING
(DIAGRAM 2)

1 4031p3 @6esULT 0LE/SAW b2

al6o0

INITIALIZATION INPUT INTERMEDIATE SECOND PASS FINAL
(DIAGRAM 3) PROCESSING PROCESSING PROCESSING PROCESSING
(DIAGRAM 4) (DIAGRAM 5) (DIAGRAM 6) (DIAGRAM 7)

BHERD

ARROWS SHOWING ENTRANCE AND EXIT FROM DIAGRAM

DATA TRANSFER

DATA MODIFIER

CONNECTORS

DECISION BLOCKS

DATA SETS ON
DISKS OR DRUMS

C] MANUAL INPUT

QUTPUT DATA SET

TABLES

0-T26£-92AT

*dyo) NEI IY614AdOo) O ‘WEI 40 STRlJB}ew pa3}dLJ}SdJ SULRIUGD Judwndop SLYy|

€86T‘2L61T

uotjedsadg jo poyiyal

1Y 4

FROM JOB SCHEDULER
OR CALLING PROGRAM

INPUT

—

CONTROL STATEMENTS

OuTPUT

FROM S s
EACH ALL
PROCESS- PURPOSE |
ING TABLE (APT)
SEGMENT |7

.

2 ORDER TABLE

| [DWNWARD CALLS
: I HESD

rlEMEIIII

HIID

TIR LIST

FINAL PROCESSING

WRITE REMAINING OUTPUT
ON SYSLMOD AND PRODUCE
OPTIONAL OUTPUT, PERFORM
CLEAN-UP FUNCTIONS

CROSS-REFERENCE CHART

PHASE CSECT FLOWCHART
Initiglization HEWLFINT BA
Input Processing HEWLFINP CA
Intermediate Processing HEWLFADA DA
HEV: LFOUT EA
Second Pass Processing HEWLFSCD FA
Final Processing HEWLFFNL GA

TEXT INPUT
BUFFER

RLD BUFFER

FINAL QUTPUT

RETURN TO
CALLING
PROGRAM

0-126£-92A1

-da0n WEI IYBLJIAdO) O ‘WEI 40 STRIJB}RW Paj3ILJ}SBJL SULRIUOD JUBWNIOP Siy]

£86T‘2L6T

1 403 1p3 sbexqut] 0LE/SAW 9L

2160

CONTROL
PASSED FROM
JOB SCHEDULER

—

CONTROL
PASSED FROM
CALLING
ROUTINE

—

INPUT

START

%

‘/LKED EXEC PGM HEWL
PARM

CALL HEWL

PROCESSING

INITIALIZATION (HEWLFENL)

CROSS-REFERENCE CHART

CSECT

LABEL

FLOWCHART

B
B

HEWLFINT
HEWLFOPT

HEWLFINT

ALLOOT
HEWLFALK

BA

BA

BA

BA
88

OPEN DATA SETS

BUILD ALL PURPOSE TABLE

ANALYZE EXEC STATEMENT PARAMETERS AND
CALLING PROGRAM DD NAMES

ALLOCATE STORAGE TO BUFFERS AND TABLES

=

ouTPUT

TO INPUT PROCESSING -

ILINI £ WYYOVI

0IlvVZI

0-T26E-92A1

*dd0) WAI IUYBLIAO) O ‘WEI 40 STeLJBjRWw PA3IOL1J43}SdJ4 SULRIUOD JUBWNIOP S 1Y)

£R6T‘2L6T

uolyedadg 30 poyjou

LL

INPUT

SYSLIN

SYSLIB

SYSLIN BUFFER

RLD BUFFER

TEXT INPUT
BUFFER

"j OBJECT MODULE
v BUFFER
INPUT PROCESSING "HE - LMINP
CROSS-REFERENCE CHART
CSECT LABEL F1.OV.CHART
n HEVWLFSCN cs
READS cr
HE v/ LFALK 88
HEWLFINC cu
. HEWLFMDI INPIA4C cB
INP270 INP28! cc
A HEWLFESD co
C £5D43 co
ENTER o
C HEWLCODLK CESDDLIK 4}
HEWLFMDI INPI0 cB
INP270 cc
HEVLFRAT CF
HEWLFTXT BUFFALLOC de
n HEV LFMDI INP34C c3
INP270 INP330 cc
HEV LFIDR
HEV: LFMDI INP40 ce
INP270 INP270 cc
HEW/LFSYM SYM00I00 q
INP270 INP230 cc
HEV/LFRAT CF
RLDOO! RLDO04A cr

1

START

INPUT PROCESSING
CONTROL RECORDS
SCAN EACH CONTROL STATEMENT

(SEE DIAGRAM 8)

r
MAKE ENTRIES IN THE ALL PURPOSE TABLE I
(APT) OR IN THE COMPOSITE EXTERNAL
DICTIONARY (CESD) ’

ESD RECORDS

e
ENTER ESD RECORDS IN THE CESD
ENTER ESD RECORDS IN RENUMBERING TABLE

FOR TRANSLATION OF ESD IDENTIFIERS INTO

CESD IDs
ENTER ESD RECORDS INTO DELINK TABLE IF

SYMBOLS ARE TO BE DELETED OR REPLACED

TEXT RECORDS

ORDER AND PLACE IN TEXT 1/O TABLE

TEXT NOTE LIST

. TWO-PASS
YES PROCESSING

SYSUTI

INPUT BUFFER 3

SINGLE-PASS
PROCESSING

pn IDR RECORDS
A SORT IDRs ACCORDING TO TYPE >< : ’

A, WRITE SYM RECORDS ON SYSLMOD IF TEST ; oo
ATTRIBUTE WAS SPECIFIED, OTHERWISE,
IGNORE SYM RECORDS

E RiD RECORDS

A, UPDATE R AND P POINTERS
USE CONTROL INFORMATION FROM DELINK
TABLE AND RENUMBERING TABLE

TWO-PASS
YES PROCESSING

RLD
BUFFER
FULL?

NO SINGLE-PASS PROCESSING

TEXT INPUT BUFFER

svsimon |

RLD BUFFER

BUILD ORDER TABLE FRCM ESC IDs IN CESD
TABLE AND FROM ORDER ANLC PAGE CONTROL
STATEMENTS

DELINK TABLE

TEXT 1/O TABLE

TEXT NOTE LIST

CALLS LIST

ORDER TABLE

0-T26€-92A1

*d109) WEI IYS14Ado) @ “WEI 40 STR1423BW P23 L1J}SaJ SULRIUOD JuaWNIOP S1Y]|

£86T“2L61

1 4031p3 ®6@ULT 0LS/SAW 8L

o160

INPUT

PROCESSING

TEXT 1/O TABLE

ORDER TABLE

1DR

INTERMEDIATE PROCESSING { HEWLFOUT)
CROSS-REFERENCE CHART

CSECT LABEL FLOWCHART
HEWLFADA DA
A HEWLFADA ADA0O910 DA
B HEWLFADA ADA00123 DA
C HEWLFADA ADA00120 DA
D HEWLFENS o8
G HEWLFADA ADAD1100 DA
3§ HEWLFENT ENTO0IS0 DC
7 HEWLFMAP £8
A HEWLFMAP MAPOOS5 1]
HEWLF MAP PUTLINES 4]
8 HEWLFMAP XREFS €8
HEWLF MAP PUTLINES 1]
' HEWLFOUT €A
£ HEWLFOUT 0102000 A
£ IDROUT

START
CESD
CALLS LIST -
RLD BUFFER —)

ADDRESS ASSIGNMENT

AL

DELETE ENTRIES REQUIRING NO FURTHER PROCESSING
FROM CESD

ASSIGN TEMPORARY LINKED ADDRESSES TO ALL OTHER
CESD SYMBOLS

OuTPUT

BUILD RELOCATION CONSTANT TABLE (RCT)

DETERMINE ENTAB ENTRIES FOR CESD

BUILD DOWNWARD CALLS LIST

BUILD SEGMENT LENGTH TABLE (SEGLGTH) COMPUTE
SEGMENT RELOCATION CONSTANTS

ADD SEGMENT RELOCATION CONSTANTS TO TEMPORARY
LINKED ADDRESSES IN CESD AND ENTRIES IN RELOCATION
CONSTANT TABLE TO ADJUST FOR OVERLAY

COMBINE TEMPORARY LINKED ADDRESSES AND RELOCATION ———L » SEGLGTH

CONSTANTS TO FIND FINAL LINKED ADDRESSES FOR
SYMBOLS PLACED IN CESD

-
BUILD ALIAS TABLE FROM ALIAS SYMBOLS IN CESD —’_:WL L
CESD

DOWNWARD CALLS LIST

BUILD MODULE MAP FROM SORTED CESD ITEMS, WRITE ON
SYSPRINT

OPTION
SPECIFIED
?

BUILD CROSS-REFERENCE TABLE FROM RLDs, WRITE ON —
SYSPRINT —
INTERMEDIATE OUTPUT

BUNLD HALF ESD (HESD) FROM CESD
SCAN TEXT FOR 1,0 TABLE CESD ID.
PLACE CESD ID IN HIGH ID TASLE. NOTE IN HESD

—
BUHLD SEGMENT TABLE (SEGTAB). PUT ON SYSLMOD

1F PROGRAM IS SCATTER LOADED, BUILD SCATTER/

SYSPRINT

@D ALIAS TABLE

O

TRANSLATION TASLE FROM CESD, PUT SCATTER/TRANSLATION l

RECORDS ONTO SYSLMOD

—
WRITE ALL CSECT IDENTIFICATION RECORDS ONTO svswoor l

TO SECOND PASS
PROCESSING

0-T26£-92A1

*da0) WEI FIUSL1JUAdO) G "WEI 40 STeiJd}ew pa}ILJ]}SdJL SULBJUOD Judwndop Sty]

£861°2L61T

uoljedadQ JO0 poyiay

6L

INPUT

TEXT I/O TABLE |

TEXT NOTE LIST

SYSUT!

ENTRY LIST

] seconp }.
PASS TEXT

| surrer I

RLD NOTE LIST

SECOND
PASS RLD -
INPUT BUFFER

RELOCATION |
CONSTANT -

START

PROCESSING

] rasie [

SECOND PASS PROCESSING (HEWLFSCD)
CROSS - REFERENCE CHART

CSECT LABEL FLOWC HART
SCDENTAB SGENDI1 FA
HEWLFREL SCDOVLY FE
HEWLFREL RELOC20 3
HEWLFREL RELOC 100 FE
WRTTXT D
WRTCRRLD FA
HEWLCPTH FE

CREATE ENTABS FROM INFORMATION IN HESD AND ENTRY
LIST IN SECOND PASS RLD INPUT BUFFER

RELOCATION PERFORMED IN A WORK AREA

IF THE ADDRESS CONSTANT IS A V-TYPE ADDRESS CONSTANT
(BRANCH - TYPE ADDRESS CONSTANT)

A, INSERT ABSOLUTE RELOCATION FACTOR FROM HESD
INTO THE VALUE FIELD OF V-TYPE ADDRESS CONSTANT

B. IF V-TYPE ADDRESS CONSTANT IS IN OVERLAY PROGRAM
INSERT THE ADDRESS OF THE ENTAB ENTRY AND
SEGMENT NUMBER OF CURRENT TEXT iN VALUE FIELD
OF V-TYPE CONSTANT

A-TYPE ADDRESS CONSTANT (NONBRANCH-TYPE ADDRESS
CONSTANT)

A. MODIFY ADDRESS ASSIGNED BY LANGUAGE TRANSLATOR
USING RELATIVE RELOCATION
FACTOR SECOND
REPLACE EACH ADDRESS CONSTANT PASS TEXT —
FROM THE WORK AREA TO THE SECOND BUFFER
PASS TEXT BUFFER, WRITE CONTENTS OF
SECOND PASS TEXT BUFFER ONTO

LMOD
sve SECOND PASS

UPDATE ASSOCIATED RLD ITEM. MOVE | 215 cutPuT
RLD ITEM TO SECOND PASS RLD OUTPUT | gierer
BUFFER, WRITE SECOND PASS RLD
OUTPUT BUFFER ONTO SYSLMOD

OUTPUT

SYSLMOD

TR LIST

IF THE PROGRAM IS IN OVERLAY, CREATE TTR LIST
CONTAINING THE ADDRESS OF FIRST CONTROL
RECORD OF EACH SEGMENT

—

TO FINAL
PROCESSING

0-TZC6£-92A1

£86T¢2L6T 9403 WAI IY614AdO) @ "WAI 40 STRLJBIBW PB3IDLJISBJ SULRIUOD JUBWNIOP SILY|

1 4031p3 @6exul] 0LS/SAW 08

al60

INPUT

START

PROCESSING

0%

ALAS TABLE [
3 PDS DIRECTORY
TIR LIST S
SYSLMOD
ERROR LOGGING [~~~ 7
MAP 1
FINAL PROCESSITG (HE L LFFINLy
CROSS-REFERENCE CHART
CSECT LABEL FC TEXT
. HEALFENL FNL?00A GA
HELFFMNL FNL3OTA GA
mE L LHENL FNLIVO GA
a HE. LFMAP €8
B HE.LFMAP RLDOUTA €8
C HELLEMAP PUTLINES £8
HESLFLOG oC
A BE. LFBIP
B HELLFLOG LOG10 GC
a HELLFLOG GC
HELFER.L IE 4 LCEOI GA

COMPLETE THE PARTITION DATA SET DIRECTORY INCLUDING
MODIFICATIONS FOR ALIAS SYMBOLS

ISSUE STOW MACRO FROM THE PDS TO SYSLMOD

WRITE THE TTR LIST CONTAINING THE ADDRESS OF THE FIRST
TEXT RECORD IN EACH SEGMENT ONTO SYSLMOD FOR
OVERLAY PROGRAMS

IF XREF WAS SPECIFIED, BUT WAS NOT PROCESSED DURING
INTERMEDIATE PROCESSING SEE DIAGRAM 5)

A_ READ RLDs FROM SYSLMOD
B, BUILD A CROSS-REFERENCE TABLE FROM SYSLMOD
C., WRITE THE CROSS-REFERENCE TABLE ONTO SYSPRINT

SYSPRING

CROSS-
REFERENCE
TABLE
SCAN THE ERROR LOGGING MAP
A, BUILD THE ERROR DIAGNOSTIC
DIRECTORY ERROR
HAGNOSTH
8, WRITE THE ERROR DIAGNOSTIC SIREGCTSRSY ¢
DIRECTORY ON SYSPRINT

IF THE TERM OPTION ¥ AS SPECIFIED, WRITE THE ERROR

PIAGNOSTIC DIRECTORY ON SYSTERM

RELEASE ALL STORAGE ALLOCATED TO THE LINKAGE EDITOR

RETURN TO
CALLING
PROGRAM

L WYIOVIA
0-T26E-92A1

ONISS3J0dd TYNIA

‘du0) WAI IYO614AdO) @ ‘WAl 4O STRLJB}RW PB}DLJ}SDBJ SULRJUOD JudWNIOP SLY]

£86T2L6T

This document contains restricted materials of IBM. ©® Copyright IBM Corp. 1972,1983
LY26-3921-0

DIAGRAM 8. CONTROL STATEMENT PROCESSING

SEGTAI
1 0
SEGTA1 Updated 2 1 CESD
3 2 Chai; s Sub Chain ,
Overlay DD M Addr, eg ub | Pointer,
ery . Symbol | Type Reverse No. | Type |Chain ID/
. Chain 1D Length
Include CC 7C40 EE 02 7C60 02 90
Include BB Overlay Items Added to Overlay Chain in CESD 7650 oD 02 7C40 o %
7C60 FF 02 0000 03 90
Include AA _Include {tems Added to Include Chain In CESD
7C70 AA 02 7CAQ DO

If Symbol Found, Seg. No. Replaced 06

{ - 7C80 GG |02 | 0000 |g3 | %0
Insert GG, HH | If Symbol Not Found, New CESD Entry Made 7¢90 e 2 | 0000 o | %0
7cA0 | BB 02 | 7coo DO
Raplaca T Mems Added to Peplace/Change Chain. Operation Noted in Subtype Field . i " w | 7cro "
Change J3 (LL:] 7cco | tL 00 | 0000 FO
7cpo | cc 02 | 0000 DO
Alias Symbols Entered into Alios Chain in CESD - 7CEO A 02 7000 A0
Alias MM, NN 7cr0 | 1 02 | 0000 08
Library Chain Created for Each Library ddname/Member Name 7000 b e 0090 A9
E > 7010 | 0O |02 | 0000 B0 | 7D30
00 (PP, QQ) 7020
f::::::oin;gd in APT, . 7D30 PP 02 | 7pio 02 | 7050
Name KK Address of 7040
Is:;:m| nsf':r'muzﬁon KK 1] stoa 7050 | @@ | 02 | 7D30 02 | 0000
Entered in APT PO AZS” : 7D60 SS 0A 0000
x:sxsﬂx T oo Crep 7D70
Entry Symbol APT3 CHESD 7D80 '
Entered in APT oo 7090
RR

C

EPSM
IDRUDTAB
ESDID DATE DATA LENGTH DATA
0008 | YYDDDS 09 LEVEL 003
IDENTIFY
JJ('LEVEL 003')
PAGE GG If Symbol Found, Get ESDID
ORDER It Symbol Not Found, New CSED Entry Made
HH, SS(P) ORDER TABLE
FLAG| ESDID
AO 0006
30 0013
90 0005

Method of Operation 81

71 J031p3 ®Sejyul] 0LE/SAW 28

al160

@ @

0-T26£-92A1

Object Module Buffer CESD (ID) RNT
(ID) ESD SD (Non- 7D30 HH 03 | 7D50 o1 02
Resolution)
01 |[AA |00 |7CAO 08%A = 7D40 AA 00 01 009A 02
04
02
SD Matching 7050 | JJ | 03 | 0% 03
03 |BB |00 |7C40 00A6 An ER
\A4n =700 | B8 | 0o 00A6 | 04
04
e 7D70 ccC 03 | 0000 05
: 7D80 06 | 08
7D%90 07
r—{ oD
RLD Input Buffer LR (Non- 7D0A0 | DD | 06 93 07A8 | 08
(ID) Resolution,
: CESD SD Not 7DBO 09
. Received
05 |cc |03 |7cs0 04 = 7DCO 0A
06 C'I’Rr)a/\c:fching 7DDO 08
A
07 |DD |06 03 [06A8 7DEO oc
08
= 7DF0 EE 05 00A8 oD
. A7E00 | FF | 05 Pt 2068 | o ——{
7E10 OF
SYSLIN Buffer 7E20 10
(ID)
. ESD CM (Non-
- Resolution) J 7830 1 Delink Table
09 | EE |05 | 7CBO 00A8]
oD |7CBO
0A CM Matching
a CM
OB | FF {05 02 | 006A
oc Legend:
e The type of each input ESD item is determined
) e The CESD is scanned for a matching symbol
: e If no match is found, nonresolution processing is performed (A, C, E)
’ e If a match is found, resolution processing is performed (B, D, F)

*dyo) WEI JIYSLIAdO) @ ‘WEI 40 SILL1JDIRW PaIOLJISBJ SULRIUOD JuUBWNIOP SLY)

£€86T2L61T

uoijeaadg JC poyzay

€8

Object Module Buffer

r

Legend:

Text record IDs are renumbered (A)

CSECT lengths obtained (B)

Assuming there is space in TXTBFBEG, text records are moved (C)
Entries made in Text 1/0 Table and Text Note List (D)

Contents of TXTBFBEG written onto SYSUT1 (E)

TTR entered into Text Note List (F)

01 TXTBFBEG
TXT s Data A 78C0 r Data A
N .
™I o4 | Datat N4 || ooros
02 7F68
[}
Text I/O Table
o1
02
CESD
00 01 06AC RNT
A
00 03 045

01
02

SYSUT1

=, ©

Text Note List

78C0

_ZF68

06AC }_)
0456 | J

TTR

0-T26£-92A1

£96T°2L61 9407 WAL IYSLJAdO) G “WEI 40 STRIJIBIRW PBJOLJIEBL SULRIUOD FJUBWNIOP SLY)

7 Jojip3 abexul] OLE/SAN H®

o160

First Pass RLD Buffer

Control Records

01

05CA

N | s

i

Input Text Buffer (TXTBFBEG)

7C60 ITXTI 4 [Text Data TXTBFBEG
Text Data [TXTL I 3| Contents Written
Text Records Text Data When Buffer Is Full
Renumbering
Table (RNT) Text |/O Table Text Note List CESD
! 4 0 0 7C60 05CA AA | 02
w4 t] 0 0 S2A 0640 » |
CC| 00 0640
DD | 00 05CA
1D Mult Disp Addr Length EE | 08

Legend:

The ID in the first control record is renumbered.
The third line of the RNT contains @ 4, so the ID
is renumbered to refer to the fourth line of the

CESD (CSECT DD).

Assuming CSECT DD (CESD ID 4) is not to be

deleted, its length (in the control record) is checked.

If the entire CSECT or a complete multiplicity will
fit in TXTBFBEG, the record containing text for DD
is read into TXTBFBEG, and entries are made in the
text 1/O table and the text note list*.

Each subsequent control record is processed. Text
records are read into TXTBFBEG until it becomes full,
at which time its contents are written onto SYSUT1.

In the two text records in this example, the multi-

plicity number is O, because they are the first text
records for their respective contro! sections.

0-T26€-92A1

*dJo) WEI IYBlJAdO) O ‘WEI 40 STRLJID}EW PBAJOLJI}SAJ SULRIUOD JudWNIOP SLYy|

£86T‘2L61

uoijeJdadg jo0 poyjzay

11’

REG 6
4
RLD Buffer
RP RLD 20 1|2 | Data
RLD i?O] 4 |3 [Data (
Data RLD| 16 Data

R P
lRLD llél |4|3|Dara l RLD) 24 | |53

Wreo B ‘:lzLDam (- 2 Data Da!gw
Bl o[TR ¢ 4

R P RLD 30 4|6| Dota
Wxeo[o[[e]s] e (
Data
RNT CESD RLD Note List
5 CSECTA |00 2 |1 {20 |16
3 RLDA |02 3 |1 |24 |82
2 RLDB |02 +
6 |1 |30 [
1 CSECTC |00 +
6 CSECTE |00 :
4 RIDC |02 |
ID Mult Length Adde/
Displ
Legend:

e Register 6 initially points to the firsf RLD input record.

@ RLD records are grouped in the RLD buffer by P pointer. In this example, the first
and second, and third and fourth RLD records are grouped.

e Rand P pointers are renumbered, using the renumbering table, as RLD records are
moved into the buffer.

e Entries for each RLD set are made in the RLD note list. Length and displacement
fields refer to the first record of the set.

@ When the contents of the RLD buffer are written, the displacement field of the RLD
note list entry for the last set included in the output record is replaced by the relative
track address (TTR) of the SYSUT1 record.

0-T26£~-92A1

*dJ0o) WEI IYBLJAdO) G "WEI 40 STelJD}RW PBJID1JISDJ SULEIUOD JudWNIOp SLY]

€86T‘2L6T

1972,1983

This document contains restricted materials of IBM. © Copyright IBM Corp.
ADDRESS ASSIGNMENT

LY26-3921-0
DIAGRAM 13.

(+)

||||| —— o._ f
I — — 1
¥|%|z

ol
Lous foq A...mﬂ_Ngz ¥l z
-t — S | T
0 ¥ nﬂ[mﬂ
ol e Bl TN | E v _ i
| | ws| g | o | s N IR _ z —
H19193s 0 !
V1935
Jfl 50 -
1| avioasje’
f‘ h _ _ _ _‘_ v1| Z8VIN3
154 1| 18vIN3 |
) 9
, 0| 193D U z
asid H 3|goL O/1 %31
® — T
AHV \J 08

318v1 33040

86 MVS/370 Linkage Editor Logic

uoijeuddg 40 poyiesl

L3

SYsuti

-

\

Text |/O Table

AN
TA)
V4

Text Note List

1D Mult

T

Disp Addr

‘r'\

Second Pass Text
Control Table

— =

/

14
\

~

N
)

|
|
1
B
|
|
|

Second Pass
Text Buffer

RLD

RLD Note List

ID Mult Lgth Disp
or TIR

77N\
f
\E/,

RLD input Buffer ,E\

Relocated Text

SYSLMOD

-

CTRL

Relocated RLDs

TXT

RLD Output Buffer
CRL o

RLD I

~~

- O
N~

/-1 Relocated RLDs

Y

RLD Input Control Blocks

P — ———

~»

RLD -/

Y

|

|

|

/L\

\\F i
r
|l RLD Output Control Blocks

|~

1

[~ >

(NN

Y

0-T26£-92A1

*da0) WEI JYSLJAdo) @ "WEI 40 STRlJdjW Pd3ILJ]IEBJ SULBIUOD JUBWNIOP &Ly}

€R6T‘2L6T

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

PROGRAM ORGANIZATION

J

The following text and the flowcharts at the end of this section
describe the processors (code modules, control sections, and
routines) that accomplish the functions of the linkage editor.
The organization of this section corresponds to the organization
of the linkage editor; descriptions of all processors that
constitute a phase of the linkage editor are grouped together.
For each processor, the symbolic name is given to facilitate use
of program listing (see "Microfiche Directory") and the
descriptive name is given to facilitate reference to "Method of
Operation."”

Figure 31 on page 96 shows the overall organization of the
linkage editor; this illustration is designed to help determine
relationships among the processors described in this section.

INITIALIZATION AND INPUT PROCESSING

Initial Processor—HEWLFINT (Chart BA)

Entrance: HEWLFINT is entered from HEWLFROU at the beginning of
linkage editor processing.

Operation: HEWLFINT performs initialization functions, including
building the all-purpose table (APT), analyzing attributes and
options passed by the calling program, opening data sets, and
allocating virtual storage for buffers and work areas.

Routines Called: HEWLFINT calls the attributes and options
processor (HEWLFOPT) and the allocation routine (ALLOO1). The ’

HEWLFINT routine is recalled immediately upon returning from the
first call of the allocation routine (ALLOOI1).

Exits: When initialization is completed, HEWLFINT passes control
to the input processor (HEWLFINP).

Attributes and oOptions Processor—HEWLFOPT
Entrance: HEWLFOPT is entered from the initial processor.
Operation: HEWLFOPT analyvzes the options requested and the
attributes specified by the calling program, and notes this
information in the APT. If a valid authorization code is found,
it is converted to binary and stored in both the default field
and the PDS entry field of the APT.

Routines Called: None

Exits: When attribute and option processing is completed,
HEWLFOPT returns control to the initial processor (HEWLFINT).

Allocation Processor—ALLO001l (Chairt BA)
Entrance: HEWLFOPT is entered from the initial processor.

Operation: ALLOOl issues the GETMAIN macro instruction and
assigns storage to buffers.

Routines Called: ALLOOl calls the table allocation processor
(HEWLFALK) to allocate storage for fixed-length and
variable-length tables.

Exits: When allocation processing is completed, ALLO0l returns J
control to the initial processor (HEWLFINT).

88 MVS/370 Linkage Editor Logic

C

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

Table Allocation Processor—HEWLFALK (Chart BB)

Entrance: HEWLFALK is entered initially from ALLOO1l after
storage has been allocated for the buffers. It is entered a
second time for reallocation of tables.

Operation: HEWLFALK assigns storage to the internal tables. In
initial allocation, HEWLFALK assigns only the minimum required
storage to the tables. A note is made of the highest address
used in the initial allocation. Reallocation occurs
unconditionally. HEWLFALK determines the amount of storage in
excess of the minimum required. This excess is used to expand
proportionately the variable-length tables.

Routines Called: None

Exits: When table allocation processing is completed, HEWLFALK
returns to the calling routine.

Input Processor—HEUWLFINP (Chart CA)

Entrance: HEWLFINP receives control from the initial processor
when all initialization functions are completed.

Operation: HEWLFINP reads and initially processes all linkage
editor input. Input type (object module or load module) and
input conditions are determined, and control is passed to
appropriate processors.

Routines Called: HEWLFINP calls the follewing processors:

. Control statement scanner (HEWLFSCN) when a control
statement is detected (blank in column 1)

. Object module processor (HEWLFMDI) when object module input
is detected (SYSLIN input or fixed (F) format input from
SYSLIB)

U Load module processor (INP270) when locad module input is
detected (undefined (U) format input from SYSLIB)

. Include processor (HEWLFINC) at end-of-input if more modules
must be included

U Automatic library call processor (HEWLCAUT) at end-of-input
on SYSLIN if the NCAL option is not specified

Exits: When input processing is completed, HEWLFINP passes
control to the address assignment processor (HEWLFADA), if valid
input was received. If no valid input was received, control is
passed to the final processor (HEWLFENL) to terminate linkage
editor processing.

Object Module Processor—HEWLFMDI (Chart CB)

Entrance: HEWLFMDI is entered from the input processor when
object module input is detected.

Operation: HEWLFMDI determines the input record type (SYM, TXT,
RLD, ESD, END), loads input record infromation into general
registers, and passes control to the appropriate processors.

Routines Called: Depending on input record type, HEWLFMDI calls
the following processors:

SYM processor (HEWLFSYM)
ESD processor (HEWLFESD)
END processor (HEWLFEND)
Text and RLD processor (HEWLFRAT)
IDR processor (HEWLFIDR)

Program Organization 89

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

Exits: When object module processing is completed, HEWLFMDI
returns control to the input processor.

Load Module Processor—INP270 (Chart CC)

Entrance: INP270 is entered from the input processor when load
module input is detected.

Operation: INP270 determines the input record type (TXT, CESD,
scatter/translation, SYM, CCW, CCW/RLD, RLD, IDR), loads input
record information into general registers, and passes control to
the appropriate processors.

Routines Called: Depending on input record type, INP270 calls an
associated processor, as shown in Figure 30.

Exits: When load module processing is completed, INP270 returns
control to the input processor.

Record Type Processor
TXT HEWLFRAT
CESD HEWLFESD
Scatter/translation (Ignored)
SYM HEWLFSYM
CCW HEWLFRAT
CCW/RLD HEWLFRAT
RLD HEWLFRAT
IDR HEWLFIDR

If end-of-module indicator is on:

CCHW HEWLFEND
CCW/RLD HEWLFEND
RLD HEWLFEND

Figure 30. Load Module Record Types and Associated Processors

SYM Processor—HEWLFSYM (Chart ¢€D)

90

Entrance: HEWLFSYM is entered from the object module processor
when SYM records have been detected and the TEST attribute has
been specified. I1If TEST is not specified, SYM records are
ignored.

Operations: HEWLFSYM gathers SYM records in the RLD input
buffer, and writes the buffer contents on SYSLMOD when the first
TXT record of a module is detected.

Routines Called: None

Exits: When SYM processing is completed, HEWLFSYM returns
control to the object module processor.

MVS/7370 Linkage Editor Logic

C

.

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

ESD Processor—HEWLFESD (Chart CE)

Entrance: HEWLFESD is entered from the object module processor
when an ESD record is detected, and from the load module
processor when a CESD record is detected.

Operation: HEWLFESD combines ESDs in the linkage editor input
into a composite ESD. Matching input symbols are resolved, and
specified operations (replace, change, delete) are performed on
the symbols. A renumbering table (RNT) is produced to allow
input ESD IDs to be translated into CESD IDs.

Exits: When ESD processing is completed, HEWLFESD returns
control to the routine from which it was entered (object module
processor or load module processor).

Text and RLD Processor—HEHLFRAT (Chart CF)

Entrance: HEWLFRAT is entered from the object or load module
processors when a text or RLD record is detected.

Operation: HEWLFRAT determines record type (TXT or RLD), checks
for error conditions (input record larger than buffer), and
passes control to the appropriate processor.

Routines Called: Depending on the record type, HEWLFRAT passes
control to either the text processor (HEWLFTXT) or the RLD
processor (RLD0OO1l).

Exits: When text and RLD processing is completed, HEWLFRAT
returns control to the object or load module processor.

Text Processor—HEWLFTXT (Chart €G)

Entrance: HEWLFTXT is entered from the text and RLD processor
when a text record is detected.

Operations: HEWLFTXT operation depends on whether text input is
from object or load modules. Object module text is moved from
the object module buffer to the input text buffer, and must be
arranged in the proper order. Load module text input is already
ordered, so HEWLFTXT reads it directly into the input text
buffer. In either case, the input text ID is renumbered to
refer to the CESD ID of the appropriate control section. When
thguinput text buffer becomes full, its contents are written on
SYSUT1.

Routines Called: When the input text buffer is full, HEWLFTXT
calls the text write routine (TXTBUF—Chart CH) to write the
buffer contents on SYSUT1.

Exits: When text processing is completed, HEWLFTXT returns
control to the text and RLD processor.

RLD Processor—RLDO00O1 (Chart CJ)

Entrance: RLDOOl is entered from the text and RLD processor when
an RLD record is detected.

Operation: RLD001l groups RLD items in the RLD buffer and
renumbers the R and P pointers to refer to appropriate CESD
entries. Each RLD item is processed according to its flag and
address (FA) field. RLD0O0l1l also creates an RLD note list, with
entries for each set of RLDs (a set being all RLDs having the
same P pointer). If either the RLD buffer or the RLD note list
becomes full, the contents of the buffer and the note list are
written on SYSUTL.

Routines Called: When the RLD buffer or the RLD note list is

full, RLDOO01 calls the RLD write routine (RLDBUF—Chart CK) to
write the note list and the buffer contents on SYSUTL.

Program Organization 91

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

Exits: When RLD processing is completed, RLD001l returns control
to the text and RLD processor.

End Processor—HEHWLFEND (Chart CL) J

Entrance: HEWLFEND is entered from the object or load module
processor when an END record or the end of a load module is
detected.

Operation: HEWLFEND resets tables involved in input processing,
processes entry point information, deletes CESD lines marked
"chain" or "delete,™ and enters in the CESD the length of
control sections for which no length was previously indicated.

Routines Called: None
Exits: When end processing is completed, HEWLFEND returns
control to the object or load module processor.

CSECT Identification Record (IDR) Processor—HEWLFIDR (Chart CQ)
Entrance: HEWLFIDR is entered from the input processor,
HEWLFINP, to process object module END records and load module
identification records. It is also entered from HEWLFSCN for
processing IDENTIFY control statements.

Operation: HEWLFIDR takes IDR information from the input records
and enters this data in the appropriate IDR table.

Routines Called: Error and informative messages are processed by
calling HEWLFLOG.

Exits: When IDR processing ends, HEWLFIDR returns to the calling
program.

control Statement Scanner—HEWLFSCN (Chart CS) J

Entrance: HEWLFSCN is entered from the input processor when a
control statement is detected.

Operation: Depending on the type of control statement being
processed, the control statement scanner makes entries in the
APT, SEGTAl, and/or the CESD. This information is used to
control subsequent linkage editor processing.

Routines Called: HEWLFSCN calls the READ8 routine (Chart CT) to
process control statement operands.

Exits: When control statement processing is completed, HEWLFSCN
passes control to the include processor (HEWLFINC), if an
INCLUDE control statement was processed (include chain built in
the CESD). Ohterwise, HEWLFSCN returns control to the input
processor.

Include Processor—HEWLFINC (Chart CU)

Entrance: HEWLFINC is entered from the input processor when
"more includes" are indicated at end-of-input, and from the
control statement scanner when an INCLUDE statement has been
processed.

Operation: HEWLFINC examines the include chain in the CESD and
selects the next module to be included. It opens the data set,
determines the attributes of the module to be included, and
initializes the DCB to allow the module to be read.

function has been requested is not contained in the specified
library, HEWLFINC calls HEWLFEND to delete the corresponding
CESD lines.

Routines Called: If a module for which the REPLACE/CHANGE ,

92 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

Exits: When include processing is completed, control is returned
to the input processor.

(« Automatic Library Call Processor—HEWLCAUT (Chart CV)

Entrance: HEWLCAUT is entered from the input processor at the
end of SYSLIN input, or when a NAME statement has been detected
(provided that the NCAL option was not specified).

Operation: HEWLCAUT first scans the CESD for unresolved ERs
specified on LIBRARY statements. It attempts to resolve these
ERs by searching the PDS directories of ddnames included in
library chains, allowing the members found to be read. A second
CESD scan attempts to resolve ERs not specified on LIBRARY
statements by attempting to call them from SYSLIB.

Routines Called: After the first series of CESD scans, HEWLCAUT
returns control to the input processor toc read the members.

Exits: After the second series of CESD scans, HEWLCAUT passes
control to the address assignment processor (HEWLFADA).

INTERMEDIATE PROCESSING

Address Assignment Processor—HEWLFADA (Chart DA)

Intermediate Output

Entrance: HEWLFADA is entered from the input processor when
input processing is completed

Operation: HEWLFADA assigns linked addresses to all CESD
entries, determines the size of SEGTAB if the program is in
overlay, determines if the first text record does not begin at
address 0, determines the number of ENTAB bytes required for
each segment, builds the alias table, and determines an entry
point for the program.

Routines Called: HEWLFADA calls the ENTAB size determination
routine (HEWLFENS—Chart DB) to compute the size of ENTAB, and
calls the entry processor (HEWLFENT—Chart DC) to build the
alias table and determine an entry point.

Exits: When address assignment processing is completed, HEWLFADA
passes control to the intermediate output processor (HEWLFOUT).

Processor=—HEWLFOUT (Chart EA)

Entrance: HEWLFOUT is entered from HEWLFADA when address
assignment processing is complete.

Operation: HEWLFOUT writes the following on SYSLMOD; CESD,
SEGTAB (for programs in overlay), and scatter/translation
records (for programs to be scatter loaded). If a HIARCHY
statement i1s specified, storage hierarchy designations are
included in the scatter/translation records. If the MAP option
has been specified, a module map is produced and written on
SYSPRINT; if the XREF option has been specified and all RLDs are
;n gtgrage, a cross-reference table is produced and written on
YSPRINT.

If the TXT and RLD note lists were placed on SYSUT1l during TXT
and RLD processing, HEWLFOUT reads them back into storage, and
builds the high ID table (HIID). The half ESD (HESD) is also
built, after the CESD has been written.

Routine Called: HEWLFOUT calls the MAP/XREF processor (HEWLFMAP)
to produce and write the module map and cross-reference table,
if requested.

Program Organization 93

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0

Exits: When intermediate output processin

s completed, control

g i
is passed to the second pass processor (HEWLFSCD).

SECOND PASS PROCESSING

second Pass Processor—HEWLFSCD (Chart FA)

Entrance: HEWLFSCD is entered from HEWLFOUT when intermediate
output processing is completed.

Operation: HEWLFSCD performs the following functions:

Reads text from SYSUTI.
Relocates address constants contained in the text.
Creates control/RLD records.

Writes text and control/RLD records on SYSLMOD in a format
that can be loaded by program fetch.

Creates ENTABs and associated RLD items for overlay modules.

Routines Called: During second pass processing, HEWLFSCD calls
the following routines:

Control section search routine (GETIDMUL—Chart FB) to
determine the next ID and multiplicity to be processed.

Text and RLD read routines (RDTXT, RDRLD—Chart FC) to read
required text and RLDs from SYSUT1.

Text write routine (WRTTXT—Chart RD) to write text on
SYSLMOD (HEWLMSIO).

Control/RLD record write routine (WRTCRRLD) to write RLDs
and control records on SYSLMOD (HEWLFSIO).

Second pass initialization routine (HEWLFREL—Chart FE) to
initialize text and RLD control blocks.

Relocation routine (RELOCATE—Chart FE) to relocate address
constants (branch-type and nonbranch-type) in the text.

Common path routine (HEWLCPTH) to determine common segments
in an overlay path.

ENTAB creation routine (SCDENTAB) to create ENTAB items for
each segment.

Exits: When second pass processing is completed, control is
passed to the final processor (HEWLFFNL).

EINAL PROCESSING

Final Processor—HEWLFFNL (Chart GA)

Entrance: HEWLFFNL is entered from HEWLFSCD when second pass
processing is completed.

rati HEWLFFNL performs the following "cleanup™ functions:
Writes the TTR list for overlay modules on SYSLMOD

Places entries in the partitioned data set directory and
issues a STOW macro instruction

Prints a directory of logged errors

94 MVS/370 Linkage Editor Logic

J.

C

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

. Checks for more restrictive module attributes

L Produces a cross-reference table if it was requested and not
produced during intermediate processing

Routines Called: During final processing, HEWLFFNL calls the
following routines:

. Diagnostic message directory print routine (HEWLFBTP), which
scans the error logging map produced throughout linkage
editor processing by the error logging routine
(HEWLFLOG—Chart GC); HEWLFBTP builds and prints a directory
of error messages.

o MAP/XREF processor (HEWLFMAP—Chart EB), which produces a
cross-reference table if it was not produced during
intermediate processing.

Exits: If end-of-file was not detected on a SYSLIN input,
HEWLFFNL returns control to the initial processor (HEWLFINT),
and linkage editor processing is repeated. Otherwise, linkage
editor processing is terminated, and control is returned to the
control program.

SYNAD Routine—HEWLCRO1l (Chart GB)

Entrance: The SYNAD routine may be entered from the following
routines:

. From the control program when any input/output error has
been detected

. From the second pass processor if an error is found after
executing the XDAP macro instruction

Operation: Following are SYNAD considerations for the linkage
editor:

° The SYNAD fields of the DCBs in HEWLFROU contain the address
of the appropriate SYNAD entry point for the access method
used with the data set.

° If the SYNAD routine is entered from the input processor
because of incorrect length, the length of the incorrect
input block is checked. If a valid short block (integral
multiple of (LRECL)Y is found, control is returned to the
supervisor to continue processing; if not, processing is
terminated with an error message and completion code of 16.

° If the SYNAD routine is entered while writing to the
SYSPRINT data set, control is passed to the final processor,

and execution is abnormally terminated with a condition code
of 16.

. When the include processor opens the DCB for SYSLIB, the
address of the appropriate SYNAD entry (for either BSAM or
BPAM access methods is moved into the SYNAD field.

. If the second pass processor finds an error after executing
the XDAP macro instruction, it loads register 1 with the IO0OB
address, loads register 15 with the SYNAD entry point for
the EXCP macro instruction, and branches on register 15.

Program Organization 95

1 4031p3 B6e)ULT 0LS/SAW 96

o160

*1§ ®anbiy

uoLjeziuebyg J03}Lp3 B6ENUL]

Initial Processing

HE ~.LFROU HEWLEINT

Entey Paint tnitial
Processor.

(Chart AAY (Chart BA)

HEWLFOPT

Attibutes and
Options
Processor

{Chort BAY

ALOOL

HEV NP

Allocation
Routine
{Chart BA:

Input Socessor

(Chors CA1

HEWLFALK

Table
Allocation
Routine

(Chart 88)

Input Procening l intermediate Processing
|
HEWLFMDI HEWLFESD HEWLFDCN | REN ad |
LABEL ENTER |
Object Module £SD Processor FREELING HEWLCPTH
— ocessor — !
NXTL IDCESD
(Cher CB) (Chart CE) LN f I
HEWLFRCG | HEWLCDLK | |
HEWLFSYM DLOEF !
SYM Processor :
(Chart CO) :
INP270 HEWLFRAT HEWLFTXT : HEWLFACA
Lood Module Text and RLD Text Processor TXTBUF | | [Addvass Awsign-] ';g“f‘;;s
[- ment Processor art 0B) |
ocesior | { Pocemor | I HEWLFENT
(Chart CCt (Chart CFY (Chart CG {Chon] | | (Chan DAY {Chart DC)
HEWLFEND RLDOC1T :
| END frocessar RLD Processor RLDBUF | |
I
{Chany CL} {Chart €1 (Chart CK1[|
|
HE 4 LFING HEWLFIDR | HEWLFOUT HEWLEMAP
Include oot | [intermediate MAP XREF
rocessor o, essor
M Poeeme | L icram cm, | e Proe
(Chort CLY CN,CP,CQ) | leramea, ecy (Chost EB)
!
HE S LCAUT |
Automatic |
Library Call |
Processor 1
{Chart CV) [}
}
HEWLFSCN t
Control READ 8 |
|| Srarement (Chart €T {
Sconner PROCENTY I
(Chart C5) Chart C5) |
|
HEWLCIOR |
Identify |
Processor I
(Chart CW 1
|
|
|
|
|
1

Second Pam Processing

HEWLFSCD

GETIDMUL

(Control Section|
Search (Get

r 1D /Mult)
{Chart B

RDTXT RORLD

Read From
— Sysumi

(Chare FC)

Second Pass
Processor

(Chart FA)

Write To
SYSLMOD

(Chart FDY

HEWLFREL
RELOCATE

WRTTXT WRTCRRLD

Relocation
4 Routine

(Chart FE)

SCOENTAB

ENTAB
Cragtion

HEWLCPTH

Common Porh
Routine

|
[}
I
I
I
|
[}
f
|
I
I
|
I
1
l
[
|
|
!
1
I
I
|
i
|
|
I
I
I
|
!
I
!
1
[
1
|
!
)
I
!
|
1
1
I
|
|
1
f
!
|
I

HEWLFFNL

Finol Meceming

AL

Write TTR Liw
in Overlay)

FNLI0O

Set Up PDS
Directory Entry

[ANDX01A

STOw

FNLS0O

L Set Up ond
STOW
Alicess

FNLSCN

Final Processor

(Chart GA)

H—

Pint Down-
Groded
Atrvibutes

HEWLFBTP

Print
Diagnostic
Massage

Directory

HEWLFMAP

XREF Procemor

HEWLCEDH

Final Cleanup
Terminate and
Return

SYNAD

SYNAD
Routine

{Chart GB)

0-T26E£-92A1

*dJo) NEI IY6LJAdO) @ *WYI #0 STeludjew pa3dLJ}sSadJ SULBJUOD Juawndop siyj

€86T°2L61

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

FUICTIOML SYIEOI-S

e
.
PROCESSING .
BLOCK :
.
.

.0,
JLIREH
o D!”X Low '~..

so0eCl00
*ENTRY, WAIT, OR®
:rannl&AL BLOCK :
0000000000000 0

eseplee

. .
OMODIFICATION ¢
. BLOCK b4

®eeElecessesseee

*INPUT/OQUTPUT o
BLOCK

esessfl100sse00000

o_o_o_o_o_0_
® SUBROUTINE
: BLOTK

eGleee

PREDEFINED
PROCESS

ON=PASE
CONNECTOR

OFF - PAG
LUHNECTOR

seK]eeesens
S AXKXXXX- -
M1 NG|

.
.
. ! R
¢ SUBRUUTINE
. BLOCK

seeeG2ee

.
. RETURN 0L
. .

QZ=ONOTA) MT -~

ssesJ2000000000
. .
. RETURN [ST
. .

seve

CONTROL IS RETURNED
ARIA E POINT. (NR
EXM LE,

THE_POINT
AT uu:ck TR13"RObTINE
VOKED. ¥

eesopjeecssenne

.
. HOURSRTN .
. .

sos0cesessesseee

[IYY)
. .

s0sc000ssossnce

1
.
.
.
.
o

K)o
. .
: GO TO TAXRTN :
eeccssesccvcnee

Figure 32. Sample Flowchart Symbols

THE TERMINAL BLOCK IS USE
TO_SHO! o

=
|
<
»
5
m
ot
e}

SHOWS AN ENTR
POINT NAMED HOURSR%N. Y

THE lNSTkUCTION AT GETT

ME Y
DEFINED BY THE TEXT IN THE
TEXT BLOCK ITSELF.

ON- PAGE ENTRY CONNECTOR.
ONE OR MORE BRANC

TH1S BLOCK APPEAR JN THXS
PAGE OF THE FLOWCHART.

OFF PAGE ENTKY CONNECTOR.
BRANCH TO THIS

APPEA.RS aoN ANOTﬂEﬁ PAGE(S)

OF THIS FLOWC

I‘HE lNS""RUCTlON AT LOCATION L'OTO
A SUBROUTINE NAMED SUBNM.
I F SUBNH IS SHOWN ON
CHART YY STARTING AT BLOCK Al.

ON- PAGE EXIT CONNECTOR. CONTROL
BRANCHES TO BLOCK D3 ON THIS PAGE
OF THE FLOWCHART

THIS BLOCK REFERS TO A ROUTINE
VR PROGRAFM THAT IS DOCUMENTED
IN SOME OTHER PUBLICATION.

OFF-PAGE EXI1 L\)NNECI'DA. CDN'T)IOL
BRANCHES TO BLOCK Al ON PAGE
OF THIS FLOWCHART.

LONTROK. BRANCHES TO AN ENTRY
ON ANOTHER FLOWCHAART.

Program Organization 97

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

CHART A EVEL MAJOR DIVISIONS

SENBSAUIEIEIBSIOSTS
essep]sescvine ¢ HEWLF ROU .
* . S_d_t_ v b b

:COMROL PROGRAH: ———————— >

.
. .
¢ ENTRY POINT ¢

LTI A T T . .

.

SesseEINEsEINIOES

SesseEIseesst e e
¢ HEWLFINT BAA3*
C__s_0_s_e_e_¢_¢
. INITIAL .
: PROCESSOR :

.

ORI T LT T S
INITIAL PROCESSING | X

*esseCIesseseo N
¢ HEWLF IN

. .
:I NPUT PR(X‘ESSOR:

SENEEIPEGEEISOIIES
INPUT PROCESSING 1 *

*s8eeD3ee0E00000 8
¢ HEWLFADA DAAls#
S_S_s_b_s_s_s_oe_»
. ADDRESS .
¢ ASSIGNMENT *

QCESSOR .
LTI T ey ya ey

“esssEIessecetree
* HEWLFOUT EAA2e
S_e_e_s_s_9v_e_s_»
¢ INTERMEDIATE ¢
. QUTP .
. PROCESSOR .
O T e Tt LYY
INTERMEDIATE PROCESSING | X

* SECOND PASS

: PROCESSOR

$0scssssssneree
SECOND PASS PROCESSING | X

€s008GIses st

¢ HEWLFFNL = GAA2e¢
S_v_v_e_s_¢_e_o_¢

. .
:FINAL PROCESSOR:

eseslees
L] L
$CONTROL PROGRAM?
.

(IR 1]]

98 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. ©® Copyright IBM Corp. 1972,1983
LY26-3921-0

CHART BA, INITIAL PROCESSOR (HEWLFINT)

FROM ROOT SEGMENT (HEWLFROU)
S00oAlessss000n
HEWLFINT

$0000p3000000000 0

.
.
. PROCESSOR .
sescsssesssiscecee

sesseD200cesssns p3° e, esssopUsICNIIOOE
PLACE STANDARD ¢ . .

DDNAMES IN DCBS NO .* PARAMETER *¢. YES

® OF ALL DATA ¢<---co--- ¢, LIST PASSED .®-------- >

. SETS . ., .. .

sesses sesc0e

<

®eeesE3ee00000000
.

SAVE DDNAMES ¢
FOR SYSUT1 AND ¢
SYSLMOD .

.
T T TR Y Y Y Y

SeFjecsscee
. .
* OPEN SYSLIN ¢
SYSPRINT .
. SYSLMOD .

.

ssesesceeee

L R T Y Y]

. .
* ESTABLISH
s MULTIPLICITY §

.

ALLOO1
PROM FINAL PROCESSOR e, eesseGIevensseons
000Gl esessene . ., . ALLOUCATE .
. «¢ SYSLMOD ¢, YES ¢ INPUT/QUTPUT, ¢
. HEWLFNAM >¢.DATA SET OPEN.®-----, LOAD MODULE, e
. ., .* RLD, TXT .
0000000000000 0 ., .. BUFFERS .
. . sesecssssscece
*NO
eof20e
. .
. .
‘.OPEN SYSLMOD
. .
0000000000
---------- >

.
.
.
.
.

TR YR TRy Y)

seseKIesesesnre
HEWLFINP
escseseccecee

TO INPUT PROCESSOR

Program Organization 99

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

CHART BB. TABLE ALLOCATION PROCESSOR (HEWLFALK)

SEREA2e0IERNNY
.

»
: HEWLFALK :
SEEEEPEEEEIIINS

v

.,
.,

. ..

.+ * IS OVERLAY ~

*+ SPECIFIED
* »

B2’
*

.
YES

sasssCo0s0avnttre

+ INDICATE OVER-, ***

¢ LAY TABLE TO D2

¢ BE ALLOCATED »

. vee

' |
v

L]
D215 ..
. ¢ THISA *.
.. REJUEST ..
. FO - N
* ALLOCATION *
.

..
*NO

eesssE2envcssacen
.

. .
BYTES/WEIGHT=0 *

see

v
SEIEEF2es e NS
+ CALCULATE

¢ TABLE SIZES:

¢ MINIMUM +

4 (BYTES/WEIGHT)
+ WEIGHT

. .”"T"“

s snsne

sesesG2ensersnans
« UPDATE APT IN- e
¢ FORMATION ON ¢
Y TABLE SIZES
+ AND LOCATIONS »

LT PR P Y Y

v
ssasspossessatnne
.

*RECORD HIGHEST °
+ ADDRESSES USED |
»BY TABLES IN
* FIRST PASS '
+ INTERPASS, & M
+ SECOND PASS |

.

* FOR RE- .
* ALLOCATION *
S
.

YES

TBAL 300y
CeeaeR200tarenrae
$MOVE AND CLEAR $
+ TABLES AFTER
+ REALLOCATION

.
tessseenss

..

100 MVS/370

. '
PR
¢ 15 *.
:* HIERARCHY
+. SPECIFIED, »
., ot
.

YES

|

v
ssessClessnnntny
SET SWITCH TO
: INDICATE HIER-
« ARCHY TO BE

* ALLOCATED
sesseesssrrene

.
.
.
-
.
.

sssesDIee
+ CALCULATE .
>& AVAILABLE .
+ BYTES/WEIGHT
LX)

sresteese

sesseT3esenervnne
+ NOTE THE HIGH-#
+ EST ADDRESS %
« USED IN INIT- o
¢ IAL ALLOCATION »

wessasertetes

*seesKIesnsnntnne
+ SET SWITCH IN *
5+ APT TO SHOW
+ RE ALLOCATION o

¢ HAS BEEN DONE *
L TR Y

seteeTdecsssencoens
* SET SWITCH IN ¢
¢ APT TO SHOW IN- %
+ ITIAL ALLOCATION,

* HAS BEEN DONE .
TR R Y TR Y

RS ETTT LT TS

.
RETURN :

ssssssesiincens

Linkage Editor Logic

1972,1983

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

CHART CA. INPUT PROCESSOR (HEWLFINP)

s800C100000000¢

¢ EOF ON SYSLIN ¢
* DCB be
.

.
.. sesoee

Y CALL
INDICATOR ON
s00scecsncstene

.
.
.
.
.

$800¢E] "
.

* SET END OF o
*INPUT INDICATOR®
. ON .

. .
seessssetsecseesoe

.* ..
.. INPUT ‘.‘

.. R RECEIVED

. GAG2

secssee
HEWLFFNL :
S0es000erstene

ssssjjlos0ss0nee
: EOF Ol S!SLIB .

.
eesscessretsere

PROM INITIAL
PROCESSOR

ssssp 200000000
.
: HEWLF INP :
ses00sesececose

seee
B2 *
D R et Ll
(13 lYES
INP1O ..,
®ep2eseseese B3 .,
. .
. hd «* OPEN EXIT e,
¢ READ A RECORD ®*-wcee-_o- >, TAKEN .t
. . ., .
. . ., .
sesse . . .*
*NO
INP12 .t
., s00e0CJee0sesstse
SINP270 CCAle
.* 1S THIS A ¢. YES S_S_e_0_0_s_o_9s_»
.. MODULE ,#------oo >¢ LOAD MODULE ¢---
‘e . : PROCESSOR .
“e, L0 *resreresscscscetante
*NO
O B2 c
.
sese
INP1) .0
D2 ., seseeDIsssesseRe
. HE! MDI CBAl*

.+" CONTROL "*. NO
*., STATEMENT

Te, Lo gy
oYES .

e B2 e
.

cene

SOE20¢sc ettt
SCN
‘e

CONT
. STATEMENT .
. 5C, R .
LI L PP T T T R T)

.t
F2 .
. ..
. NAME *. NO
®. STATEMENT .¢---
. .o 1
., .t
. L “eee
SYES . .
« B2 e
. .
seee

oooooczo‘onotooco
' SET AUTOMATIC '
¢ LIBRARY CALL ¢
: INDICATOR ON ¢

.
T Y Y T Y Y YT

HEWLFEOD _.*.
.HZ .

ANY MORE
INCLUDES

*, . . PROCESSOR .
FROM LOAD®, .
HMODULE . .0 L T T Y
PROCESSOR *NO . .
* B2 ¢
.
e
N .,
J2 .. J3 ..
.* IS hd I .
+* AUTOMATIC ¢, YES YES
®,LIBRARY CALL .®-------- >e, NO CALL R
¢, INDICATOR. . .
¢, SET . .., .
., e ., .0
*NO *NO
{ sase
e
¢ p2 ¢
.
cone

esseegIescesssnee
CHEZ‘

' HEHLCAUT

ssesJUsssss 0t

TO ADDRESS
ASSIGNMENT

. .
sesesssresrere

FROM OPEN DURING
CONCATENAT ION

ssespCesecen e
.

* DCB EXIT .
. .

€s00000s0s0s00e

on“.gﬁo.o.ooo.oo
* HEWLEXIT

S_t_S_ S S _S__o_ ‘
*OPEN EXIT, SET .
*+ INDICA Tok AN .

R. RN
oc-ootoc-ccn‘ccco

sseeCHe0s00 000

. .
. RETURN .
. :
SEE6208 8800 0¢0 0
TO OPEN
Program Organization

1972,1983

101

This document contains restricted materials of IBM. © Copyright IBM

LY26-3921-0

CHART CB. OBJECT MODULE PROCESSOR (HEWLFMDI)

FROM INPUT
PROCESSOR

LRI SER R T L]

. .
b HEWLFFMDI e
. .

Ceerssresernn

c1” Ve,
. .,
- *
---+ RLD RECORD
. o
., o*
. e
*YES

1

LRI PN SRR TR TYY 7Y
. .
* CLEAR TEXT .
. INDICATOR .
. .
. .
] .

R]

SseseEL¢eeseetere

.
T T R TR I 1)

CCG3

seesene

*2eeF]e
. .
. INP270 *
. .

R LR T Y L)

.*

* ‘e,
END RECORD
* .

>,

LT E)

srsenlle
LO

T MODULE
0.0tt.‘.‘.‘....'.

CCG3

sessnns

*reaJ1e
. .
. INP270 .
. »

SeEsIsEEIIIIIS

Corp.

., INP22 CCG3
INP40O R L I LT R e
'CONT ‘ngLpLQG GCA2* SEEIPUPEEIESIES
ATEHEN’I‘ *. NO e - —'—‘—‘- .
-2, CONTINUATXON P > CONTI NUATIO e > INP270 *
.. . *EXPCTD BUT NOT ‘ hd
., L. R 1 LRI TR Y
o . ooot‘ttot‘t‘t‘t‘t A
*YES
NO
Y .. INP150 %
seesepeesennttee B3 ., BY .. t.“tgsooo‘tt..t.
*LOAD PARAMETER * .* .. .
‘ REGISTERS AND ¢ . YES YES LOAD GENERAL ¢
ON MODULE ®---=-co- >%. SYM RECORD 4%--v-———— >et INDXCATOR on CelTo-)'REGXSTER 4 WITH®
M mmcmon IN BYTE COUNT *
. A . ., .* ., Lol .
P T T R T P T . o L. sesstersescereens
*NO .
... ... INP140 v
c2 ., c3 ., tttttcn“"‘ooo.o S9998CHE20R 00 REY
. .. . ¢ HEWLFSYM CDA2e
. NO . YES ES . SLe__s_e_e_e 0 s
—Z-%. TXT RECORD .#<C-o——e—2o *. ESD RECORD . #%--———___ > xnoxchon ON ¢ . .
. ¢SAVE SYM RECORD®
., .. .,
o . “ . trreENIERILIREEIRIS seresNsIRINRIIIIIS
*YES .
INP160 .. CcCcG3
.. sre00DIEs0t0NeY estesDUISISEERENS
'HEWLFSYM CDA2¢* *HEWLFESD CEGJ' #eseD5st NN
+* WERE SYM *, YES = = ¢_#_s_+¢_s_»_ s S_s_e_d_d_e_s_e_ . .
., RECORDS o %---—-=—n >~ . . - > INP270 .
.. RECEIVED .* * SYM PURGE * * ESD PROCESSOR ‘ . *
., . . . ssssseserestens
o e S0t rNINERIEIES sesesEsERIIIEIEES
*NO
SEEEIES RN RS ooooog}ntooottoot
. .
. SET TEXT * ‘ ‘
-~~~ INDICATOR #<---—-——- . INDICATOR »
. . . .
. . . .
T T T P T) sesereerNeNERIIS
.t INP70Q .. INP9O .
F F3 .. SS0SOFLUSvEIEOOENS FS .,
.'I . * * LOAD GRU WITH * . .
REC] NO .*ENTRY POINT*, YES *CONTROL SECTION®* . GRYU « NO
——>%, INDICRTOR ON ,®--- —-—D>, INDICATOR ON et >*LENGTH FROM END#*-------—— >*. CONTAINS P *o-ny
. . . . RECORD » *. LENGTR .*
., .* Se, .. » . .
. .0 o . srEBIEEREIEIEIERY oL
*YES *NO A *YES
teen
. .
* G4 < ——————- B
. .
seee NO
v .. INP8BO ot
R R P L R Y TR T G3 ., K .. SEEIRGEIINNIIENNE
* HE! SYI .* .. . ¢ SET _NO LENGTH *
«* ABSOLUTE *. NO y .’ qYMBOLIC . RECEIVED .
. ¢, ENTRY PCINT . %-—-—o"oo >*. ENTRY POLNT ie * INDICATOR IN ¢
* SYM PURGE * » APT *
. . ., . ., . ’ .
SEEIEIEINEEIRIGIIRSE . . . T T T YT P Y TR
*YES *YES
Cmrmmm et <-
o' 4
H2 ., seersIsesssovnne I UL T R Y Y Y se0eRHSENEIIRIOLS
. $ SET ABSOLUTE s SET SYMBOLIC * ¢HEWLFEND = CLA1®
DOES END " #. NO POINT » . RY POINT oo a_e_ e s _¥_e_
. cARD CONTAIN .¢———-> : INDICATOR IN ¢ ¢ INDICATOR IN * *
*, zDR DATA".- : APT : : AP : : END PROCESSOR :
Ce. e tesesereEREIRRTISS SesrNEIIRILIISIIILSE SEIENNEERIEINIIESE
*YES
ersreJ2eers0sn0es co.coJ;n serveses sersegue ssasevee cootonnctt.tcoo.
. CFB3+
TURN ON 'OBJECT ‘STORE ASSEMBLED‘ ‘SET ENTRY PO XNT‘ __e_»
¢ IDR' SWITCH * ’ADDRESS IN APT ‘ INDICATOR IN . .
‘. . M : :Enn CARD PURGE *
SEEISERI S EIIIINSE o.'......oo.tco.. ‘.t..t.tt.t.“l‘t sssssestsesrnesae
eees
. .
« G4 *
.
sees
INP340 ccG3
SEEOK 200 L0 I RN R sereeKuetosesares
’HEWLFIDR CMA2 » CORIKSERENIRINS
—_e_» tsTORE SYHBOL IN‘ *
4---- . INP270 :

.
esEsesEIEIEIOIIISS

102 MVS/370 lLinkage Editor Logic

. .
CrseEISEIILIEEIIOS

SEEIREICOIEIITSTS

1972,1983

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0
HART CC.

FROM_INPUT
PROCESSOR
Seeap10000 00000
.
* INP270 .
. .
0000080000008

INP270 .*, "
Bl . BZ ..

*
*NO
Lo,
> .
¢ Gl e
. .
sese

INP281 RS
c1
.. .

eeC20000000000

.
. P et >
.

ssssese

tesesstsssse

OAD MODULE PROCESSO

..
I TEST ¢. YES
NDICATOR ON.. -

.
SET ESD .
INDICATOR ON ¢_--

1972,1983

INP270)

3esesesssse

sesseCIene oot-ocuooo“o . sssseC50000 .
*LOAD N'JMBER OF ¢ *LOAD ESD ID OF ¢ *LOAD ADDRESS OF¢
¢ BYTES OF CESD ¢ *1ST ENTRY INTO ¢ . CES! .
----- >¢ INFORMATION ®-——--_-->¢ GENERAL . ------)‘ INFORMATION ¢
* INTO GENERAL ¢ ¢ REGISTER 5 . INTQO GENERAL '
¢ REGISTER & . . . ’ REGISTER 6
sesseeses e . R 112 341115 P

INP290 ..
D1 ., sep2esess seD3IseesesNNe . .
.. ., . .
. .
RLD RECORD P hd * .
e ..‘ 3 : INFORMATION : : INPORHATION :
., . LTI T PP Y P YT T T YT PP P Sess0NINILIEIEIIGS $0800000000000000
.
NO cone
- .
Gl *
< e — S .
<.
INP300 E1 ., SeE2080 0 esessEIesee .
.. .. * LOAD ASSI *LOAD BYTE . .
*" CCW/RLD ¢ “ADDRESS OF * OF TXT INTO * LOAD ID INTO ¢ .
RECORD >¢ FOLLOWING TXT #-------o >e GENERAL GENERAL DU, >— noct-:ss TeXT 4
., . * INTO GENERAL + * REGISTER 4 REGISTER 5 . FORMAT 10 .
.. . ¢ REGISTER 3 . . » .
. .* I T T Y T TL T RY LT T T Se0sesssssssstece s0000setesttsecee
*NO
sese
.
* F3

INP3OS .*.
F1
.. ..
.* *. YES
¢. RLD RECORD .*---
. .* l
.

., .

. s ®
*NO .
s F3 e
. .
"o

v
INP320 .t
Gl .

INP330 .t
H1 *eH200s0000008

HEHLF‘END CLAIO
.- .

ssee

END PROCESSOR
t0000s0c000t0000e
A

seseeTle
.
¢ TURN ON 'LOAD .
:HOD IDR" SHITCH: .t
. . ‘e, s
P40 000 0000000 ., .

*NO

6800010600 eensse G600 20000000000

* HEWLF * HEWLF' AZ.

SHEWLELOG ST P L e S

¢ PROCESS IDR . UNRECONIZABLE ‘
DATA ‘INP T

.

INPI1O gy,
Ll .,

YES . ¢ ..

i---t..us-r RECORD . +<

.. ..
. .

. L] ‘eho
o H2 eeses
eesss GI »
. o>
[131
INP110 .., ...
Gl e, Gy e,
.. .. .*IS ESD *.
.+ IS RETURN +.
---->+. FROM
¢. PROCESSOR. ¢

seeslIee
.
HEWFMINP :

LA LN AL L]

INP111
sesenyes

.o .
. . .
*SET SYM_RECEIVE® I .
. BIT < Lo . .
. .. . SYM PURGE e
.
S0000000000000 002 ., . . seceecsssenee

CesPIKIN000 00000
LDAZ‘

.
‘

*eeeKS0e000 0000
.
. RETURN bd
. .
. .

TO INPUT
PROCESSOR

Program Organization

103

This document contains restricted materials of IBM. ©® Copyright IBM Corp.

LY26-3921-0
CHART CD. SYM PROCESSOR (HEWIFSYM)

'OCESSOR
seeep 2000000000
. .
. HEWLFSYM .
. .

e6000s000000eee

SYM00100 _.e.
.BZ .

. ‘e,
NO .e .
__________________ +QBJECT MODULE.
‘e, .o
.,

®
YES

|

SYM00200 .. 5YM00900
e000eCl 0000000000 c2” e, eedeeCIeecscscece
., . .
SINITIALIZE FOR ¢ «¢ IS RLD ¢, NO ¢ MOVE SYM/ESD ¢
SWRITE FROM RLD ¢ ¢.BUFFER TO BE .®--~emmm— >¢ RECORD TO RLD e
UFFER : .. . PURGED o . : BUFFER :
0000000000000 000e o .o 000000000000 0000
*YES
eeeeeD2esceststse eeeeepIecesssecee
. . .

.
¢INITIALIZE FOR ¢
*WRITE FROM OBJ ¢
¢ MODULE BUFFER : M4 :
e0000esst sttt 000000 cetettteee

. .
: INCREMENT COUN'I‘:

SYM00300,
SeeE2000 00000000

. .
.HRITE AND CIIECI.(

CLL LYY YT Y YT T

SYM00500
Ty TR TTY T Y

[.

. RETURN .

. .
s00cescessseeee
TO _LOAD

OR
OBJECT MODULE
PROCESSOR

106 MVS/370 Linkage Editor Logic

1972,1983

This document
LY26-3921-0

CHART CE. ESD

FROM INPUT
PROCESSOR

sssspL1 000000000
.

. HEWLFESD .

. .

sesssnsencsssns

essseplesesssseee

‘IHIT ALIZE SAVE
ESDID, NO. OF ¢

contains restricted materials of IBM.

PROCESSOR (NEWLFESD) (PART 1 OF 3)

seesepIeccecssoce
.

¢ SET SEGMENT
: NUMBER TO ONE : -----

.
*900000000
A

© Copyright IBM Corp.

AYES ESD1A R ESD1B
c1 . $0080C20000 000000 c3 t, cu ., noo.ocsoooooooooo
ESD ¢INSERT CURRENT * .o ..
. TYPE_PSBUDDS. NO $SEGMENT NUMBER ¢ . ¢" AUTONATIC" . JNo .*1s ESD TYPEe. YES *2ERO BYTES 10, +
o “QEGISTER (PR).e-~----o- >¢IN ESD_(IN BYTE® + LIBRARY CALL . ®——como >e. "ER OR WX . #-——o—eee >3 711 AND 12 of «
., . 12) . ¢ INDICATOR. + .. . Esp :
.. Ky o ON
L . . Ss00e, .0
*YES lno
P - —
ESD2 RN RS
D1 ., OOOOODz..‘..OOOOO DS .
* CARY e, HEWLFRC .
. ¢ REPLACE/ ¢. YES ot -~-'-0—~ is THIS
*. CHANGE L T BJECT mounz.
*. SYMBOLS .+ -nspucs/cnmcr: . Y
Te. et T e
*NO *YES
P,
ESD3 ., ESD20
E1l 0. e .Ez........ Ses0eESes e
.. NXTLINE .
is ESD TYPE. _e_e_e_e_o_e ¢ ZERO THE .
. vuxvus CODE -->eBET POINTER T s SUBTYPE FIELD ¢
LT - < R $ NEXT LINE OF . .
., . . CE . .
", L,l..‘.‘......... LIS EYT I L Y]
* N 02 »
311 o C2e
#3045 Ly
* F2 o__ *
.
ESD29 N ESD43
.opzooo.oo.ooo F3 ., Ss9soF sssR00 0 ees0sFSe
NUMBER * CLEAR_COMMON $HEWLCD!
LYES iy 2t SRR MMON" . YES 1CATOR
-------- > TRANSLATE ESDID#---—-->¢. mmcm-on OR e B >+ DPREBARE FOR #-------->eBUILD ENTRY FOR®
$RIQLGESDID IN ..) » DELINKING * 4 CESD LINE IN s
* NG TBL* .. .o . . * "DELINK TBL
...‘...‘. ., .0 PSS90 90008900 9 ..““....."'...
.
se00 No
01 »
* G3 o>
* * <. -
e e
.. ESD30 ... ESD30AQ
G1 ., 9604050000 ss800 s G3 ., PestIGUIIISIINIIGS
LIS *CHANGE TYPE TO M e ., . .
«TYPE IABEL *. YES * LR, INDICATE .+ ANY MORE ' *. YES *GO TO NEXT ESD *
o DEFINITION I >eTHat IT WAS AN . +. INPUT ESD .®-——-oo—o > LTEM-SAVE ESD *
) ITEMS .+ . TYPE »
., .* ., . * .
., .® ., . [TETTY)
*NO *No {
EEL] e
01 > .
¢ H1 e-> e C1 e
. LIS [<y iy Sy Sy Sy g Sy . »
s st
ESD4
eseesleertonsene
L] -

SEARCH THE CESDe
SFOR A MATCHING *
. SYMBOL

0880000000000 000

s
*0]1 ¢
*J1 >
L] . <
sees
ESDS ...
J1
.. ..
1S THIS THE®.
END OF THE .¢
CESD .

SQLUTION
PROCESSING

se0e3sse0s000e
. .
. RETURN *
. .
s00000000000000

RESOLUT ION
PROCESSING

Program Organization

1972,1983

105

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
HA

c

ESD23
oooo.glo.on‘to.‘o

'FIEE
n.‘_o-o-t-
E CT NEX'
:AVAI BLE LINE

20800800808 000000

XYY

..
c1 .,
. ..,
*IS ESD TYPE®
¢.A SECTION DEF
‘.. (SD) .

ox' 'o..
.15 EsD r!PEO.
JComion (cm]

ESD42

sesesEL S
¢ MARK C
* ITEM AS A .
SDELETE IT!H AND'
‘ SET COMM

INDICATO Il
t..‘.oo“.“‘o“‘

IXTIITIY]
OMMON ¢

.
Io.‘o.‘.ttoooooo...oo
. .
¢ Fl1 e scone
. . ->801 *
sese s F2 e
.

NO

D PROCESSO

£SD22

RTY

‘FIELD OI LABEL
“0‘00“0“.0.“‘.‘.0‘
*01

sose s F2e
202 o e
* C2 ¢ .
. . 3
..
. $0040C30000000
«% IS .,
AUTOMATIC ¢, YES 'IND!CAT! SD_IS
O SFROM A

BRARY
O(AUTOLIB INPUTD‘
oo.ooooooo..oo‘oo

IBRAR
« INDICATOR. *
¢, ON .¢

Ben
O

OR_PC
D WRITE®
R IN

... ...
E2 .. E3 .,
.. .+ 18 e,
.. s, YES .+ LENGTH ID s, YES
o LENGTH® z:no TemTa- >l Tel2
. . +. INDICKTOR. ¢ l
.. .. on
', .® t. .o se00
. L] L]
s F1 e
» »
[221
ssF3see
+SAVE' NO LENGTH #
¢ LINE ADDRESS
i) AND SET ID
osnvsn xnnxcnron:
o, 0 ..“.‘...““““
*¥ES
l 880 e
—>¢01 ® ->e .
L] ® F1 o
. L]
[T 11 s900

106 MVS/370 Linkagae Editor Logic

ESD6A
SeesIpUGESISINOS
.

L3
® SAVE TYPE OF *
* MATCHING CESD ¢
* ENTRY :

[XXIETTT LY s

'4
es009Bys

. CESD LINE .
$9008080000000000

cu’ e,

.. ..
.*" 1S CESD ‘e
s, TYPE NULL Ce-

. o
. .,
oho
pu’ e,
R ..
.+1s ESD TYPEs. NO
. PR L R
., .®
.. .
T Y
*YES
v
ESD9 E4 s,
.+’ 1S CESD
o TYPE P
.
‘o, .0
*YES

Fuo e,

* .,
IS ESD *.
LENGTH .
GREATER . ¢

"e¥ES

ooo.oguo

‘SET CESD LE!K;’I‘H'
¢ EQUAL TO

. LE

oooot‘tt

D10
otoo.uut~
SET C
NMENT EQU:
¢ TO HIGHEST OF
CESD AND ESD

>

D5 ..
L] L]

IS CESD .
TYPE PR

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

CHART CE. ROCESSO

..
A2 ..

«® ..
* IS CESD =,
TYPE WX

sesesp2estenee
-

* CHANGE CESD

(NEWLFESD

(PART

ESD6C A]

v
oooooajoooooooooo

‘CHANGE ESD TYPE‘

. .
CIIIIIIIIIIIIIIIGTS

TYPE TO ER :
e, Lol . .
o, .* SEEEIIIIIIIIIIIGSY
*NO
{(--
v
.t

L e I TR TN
* SET CESD

POINTER TO
*CHAINED TO'

.
. . LINE I
‘e, .. 'S . v
o, .0 LR R A L A A R A A R R)
*NO *02 *
* Al
L]
.
v
... ...
D1 .. D2 ..
.

I .
«* IS CESD *.
‘.’ TYPE ER

NO

* A
+*IS ESD TYPE*.
LR

..t
., L o, L0
*YES NO
v
ESD12 .0 ESD14 ot
E1
. *IS CESD*.
ITEM FOR A *. YES
¢, CONTROL CARD .%---
., . “e. .
- *res o, .
*NO *01 ¢ *YES
¢ J1e
.
ot ot
F1 .. F2 ..

.. ., . ..
+.*IS ESD TYPE*. NO «* IS CESD .
‘.EH, SD, OR LE e .. TYPE CM ..
.

(TYYy L)

. . *YES

* AL »

. .

seee

ESD17 ...
., $4000G0000 000
. . ‘SBT CESD LENGTH‘
. AL T
‘GRBA R OF CESD’

: AND ESD ITEMS :

o e AL LA R Y L)
SYES s s
soee ¢ BS o
. .
* H1 » 00
. ~>
e
* JCESDDLNK RS
(AL P LA LT Y] H2 .,

oooooizooooonoooo
EWLCPTH

e d_s_e_e_

FIND COMMON ¢

‘ PATH SEGMENT :

teeessssssrenenns
e

->%02 *

* Bl ¢

. .
LYYy

YES

seeseDIesete sty
. *

. .
PEEPEEIIIEIEIEITIIIISG
*0

ESD18

. ..
+*IS ESD TYPE®.
CM

.

SE1
INDICATOR :———

.t
E3 ..
*
YES
.
*

., ..
o .

*NO(TYPE IS ER)
veee

> .
¢ J3 e
. .
s

sesescen

YES

ESD16 .n : ...

—->e.
Iooo
.

lS ESD TYPE‘

OF 3)

..
.*1IS ESD TYPE' NO
.. DELETE/ .
*. REPLACE .+
., ..
., .
*YES

.t
BY ..
.t ..
B IS CESD ¢, NO
*.TYPE DELETE/ .#%---
. REPLACE .

“e¥ES MR

o0

seee

SD " NO
TYPE DELETE PO

LYY
»

Eu e,

. ..
«* IS CESD e,
)'.‘ TYPE PC ..‘

., .
o .
*NO
JRUT e
. ..
. IS CESD *. YES
.. TYPE P et
., . *(TYPE
., «* IS CD
., e
*NO .
* G3 »
.
seee
COMMON
S000GUIEIEIINIGS
¢ UPDATE LENGTH ¢
¢ OF CESD ENTRY ¢
¢ TO GREATER .
LENGTH :
T P YT Y Y
sesee Uy ..ooo.o.

PTH
.

F ND COMMON
: PATH SEGMENT :

LR Y YT

..
*. YES

PE A
LIBRARY . ¢--—y
. MBE
* .. “sene
*YES *02 ¢
¢ Bl
L

ss0s0C5080000
‘HEHLCDCN
L L B B P e]
*REMOVE LIBRARY
‘ MEMBER FR

ootooooooooooo

teee

KE *
M T A REPLACE) '
oo.oooooo.ooooooo

ES ..,
. *1S CESD*.
+ *UNMARKED OR*. YES
E AL

. NEVER CALL .---
.. .t
. . l
.

seeeeFse

‘HARK CESD TYPE :
.

ooo.oo..

. .
$300000000000000 0

(331
->¢01 ¢
S F2 ¢

ceee

Program Organization

1972,1983

107

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

HART ND OCESSOR EU

FROM OBJECT

OR LOAD MODULE
PROCESSOR
eessBIsssesseee
. .
: HEWLFRAT :
s000 00000000000

o'
c3 .
. ..
" *, YES LR P D -
®. END OF DATA .#*-------- >* WRITE OUT RLD *
.., .. . BUFFER .
., .* .
., . LRI AT R Y]
*NO
p3" e, L TR YT P T Y
.. ., *TXTBUF CHA3*
..‘INPUT SOUNT'. YES S0 S b s _e_s_»
. = P P
., .. l
., ..
., L, "o BI040 0080080 0
*NO . .
e D5
L] .
LI R L)

RATIN F2'
. eINPUT oo
¢. EXCEED: NPUT RECORI
¢, BUFFE M TOO LARGE
‘e, Lo 0000000000000 t00e
*NO

$0000G 20000000000
LD

s000H300000000e

.
----------------- > RETURN # e
. .

108 MVS/370 Linkage Editor Logic

ssseD5000c0s 000
. .

(XYY

RETURN :

1972,1983

This document contains restricted materials

LY26-3921-0

CHART CG. TXT PROCESSO

Sseep2000 000000

L] . .
¢ HEWLFTXT oo >e!
000N ONINNIINIINITS

TXTLM '

ALL
YES .* ID-LE

(HEWLFTXT

..
A3 e,
..

.
END OF
.

.
*. YES

..
——— LIST I’PEMS TO.‘(..
L LET- . .
< OE PEVETL:
seee ., . P
. . *NO *NO
¢ BS o
. .
. [
v
TXTREAD .t TXT0011 .0,
IS LLLLI T T c . c3 ..
«® WILL o, .* ..
. YES RECORD FIT ¢. .* IS TXT 1D e,
READ RECORD ¢.IN AVAILABLE .* *. AN SD OR PC .*
A . A ¢, BUFFER .* .. .
.. . .. P4
seevene . e)
*NO *YES
seseeDle .‘ L] .
‘ RENUMB . . .
UPDAT! 'I'X'l‘ I/O b . .
-->‘TABLE AN) TEXT . . .
NOTE . . .
L] . .
..0.0.“‘........ SE0000SNNEIIINIEIGTS e 00000 00OOISTS
TXTLM2 .*.
.El ..
¢ ID TO BE . « YES
.. DELETED . e®eee
.. I . .
..
o . T Y T YT T o .* seoe
*NO *NO
seon
< -
S TXT00151
F1 ., LX) 3. OO..O...
. ., * CAL
YES .¢ *. NO . HULTIPLICITY .
---¢,ANY MORE ID'S.®--- . .
.. . DISPLACEMENT +
.,
.« . eee LYY YY) .
L] . .
e B5 o
. .
e
TXTINT ot
« *CURREN

TXT003

seKIsessone
. .

*SET NO LENGTH®
°. INDICATOR .

.

.

. .

DATA . #----
L]

of IBM. © Copyright IBM Corp.

..

AW" e,
.,
PA
--->+. PROCESSING
. e
. . ®
*YES
I *ssepSetsccceee
. .
________________ > RETURN .
. .
LI RY]
A

*0000CUIGIGIOIOOS
'HEHLPLOG GCA2¢
_e_e_e

XYY Y

.
L] L]
. .
.. esesecessscceeree

.

A

YES

Fu' e, seseeF5eecececece
.. ., . .
. ¢ PREVIOUS s. NO e ENTER NEW ¢
¢ .RECORD DENSE .* RECORD :
* ., .* * .
.. .

.

.. ..
« . ssee
*NO . .
¢ K4 o coee
. .
seee * BS o
. .
I_ esee
seeesiSesensetoce
.

¢ ENTER IN TXT
BUFFER

ooJuo

.
‘ SET DENSE .

‘. INDIC. .
.

. .
LI T Y YY)

seee
.

secsence sesseK5080000000e

. . .

* ALLOCATE NEW ¢ ¢ RECORD IN TXT ¢

<==>¢ MULTIPLICITY ®--eee--- >¢ 1/0 TABLE Aq .
. :T!XT NOTE LIS

.
sovee .

Program Organization

1972,1983

109

This document contains restricted materials of IBM. © Copyright IBM

LY26-3921-0

CH RI

OUTINE (ON SYSUT1) (TXTBUF)

sHvIpIee
.

TXTBUF :
TR T Y TR TR Y

%,
B3 . .‘.BH“........
.o .. t o glean
.. .. YES NECESsRRY o
+. END GF DATA l#--"-—o—o >o1>om~xon OF TEXTY------
‘e, ..
« o® SEESSEEESES s
*NO
.®.
€3’ el
. .
.+ TXT INPUT . YES
ol COUNT =0 e
..- -..
.« a®
*}O

TXTBUF1 N
D3

.¢" OVERLAY 's.
¢ SPECIFIED .
., . *
'R ..
., .
+f0
RN TXTENT1
E3 ., .‘.Eu....t.““‘

E
. RE‘.CO P .
—> TXT I‘O TABLE -

saseccctcsrrtere

AND *
'BUH-‘ER ADDRESS '
ooooooooottooo.o.

seeeeiIenescensne
.

¢ INCREMENT TO
>¢ NEXT TXT 1/0

.
.
: TABLE ENTRY :
sseetsetestsseens

.t TXTBEND ot
seseejjiedesssecee B2 e ST Te cesHussseteneee
¢ ADD PRESENT
* LENGTH TO ' THIS HULT .. NO ‘ALL TXT 1/0. YES * WRITE ANY *
¢ ACCUMULATED o oN LARGER e . TABLE_ENTRIES. ®-—————~— > ACCUMULATED
: LENGTH ¢, THAN LAST. ST- ‘c.HRITTEN... . NGT .
seseessetstente ‘e, Lo “e, L0 Ty

“NO .

J2° '., sesJIeesenceesns
..

110

xz'

YES ‘LAST
_________________ i.IIGH!.S

MVS/370 Linkage Editor

.

il LIRS YY)
*YES
4
'o. eteseKlessesseee

. .
ENTRY ., I.O * INCREMENT TO ¢
T MULT .®-———- : NEXT ENTRY

Lo .

.* S EEEREBOOITOETST
.

Logic

(LI - LI TR T T Y 1Y
. .
*POST LENGTH IF‘ .
>¢ IN NO-LENGT *
: SITUATION .

R T R R P T Y 1Y

esesCHeeees s e

. .
> RETURN .
. .

SeseESSsesee e

.
-> RETURN .
. .

tesssssssceeree

Corp.

1972,1983

This document contains restricted matarials of IBM. © Copyright IBM
LY26-3921-0

. sseeepIeeseteeees
*RLDBUF KAl CEPSA SN
.
RETURN

IIIYTNEIT IR T YY)
.

RLD0OOL

—b_0_0_0_0_o_0_»

- .
Y .
Y .

LTI Y]

seeee

LI XYTT Y

. .
* SET COUNTERS ¢
*FOR NEXT .

c2”

DELETE_F LA
SKIP RLD
ITEM

- L
., .0
*NO

ET
e >¢ AND
.

. .,
«® P SAME AS ¢,
¢, PREVIOUS P
.. ..
., ..
., L,
*YES

.
.
. .
080000000000 0000

RLDOOUA
S0000E2e0 00000000
.

SRENUMBER R AND *
................ ¢ P POINTERS :

>
*

. .
0000000000000 Y

spleescsesess
.

DELINK
000000000000 0000

*
.
.
*

00000G500000 00

SFLAG R1D AS PR
-->e TYPE :
L L]
000880008000 080 8
u2' e,
0 .,
OVERLAY
. e
., 0
YES
RLDCALL
: 08 J20000000000 sesse N0 00000 H
. ENTRY IN o * FLAG RLD FOR ¢
* Ci LIST S e > ESTABLISH < Ld RELATIVE .
: : : MULTIPLICITY : : RELOCATION :
0050020000000 0000 2000005000000 0000 0000000002000 0¢000
RLD0122 o®,
ooooogzooooooooo: X3 o..
. . .
SUPDATE COU 8¢ YES .¢ IS RLD L
— FOR NEXT FA o<eccca-—o ¢, CONTINUATION
. FIELD : $,PLAG SET ,*
000000000000 080 0 .‘. ... *8000
L] 02 »
* Ble
L
L]

Program

Corp. 1972,1933

Organization 111

This document contains restricted materials of IBM. ©® Copyright IBM Corp. 1972,1983
LY26-3921-0

HART CJ. RLD PROCESSOR (RLDO T F 2)

¢ BY o
L]
feeet]
RLDO13 L
.53 .

et i
.. DELETE e
. .

>

l RLDO15 ...
S6S4C %0000 S c3 .,
*RLDBUF CKAle . ..

L e e L o] NO .*SUFFICIENT *.
¢ WRITE OUT RLD $<--—--——-¢, SPACE IN ..
. BUFFER . ‘.‘BUFPER ‘.‘

seescesssesttrtee o .

*YES
sssseD2essssssense p3° e,
. . . .
. . YES .¢ID SAME AS ¢,
. COMPRESS :(———————— '-EREVIOUS ID'?-'
. . .
.
esssssetssssrttee . .*

*NO

SeeeeEIsesesstese
. .
*MOVE RLD ITEMS ¢
>: TO BUFFER :

. .
sesseestssEOINEES

RLD0152 ot
.l‘3 ..

NO .+ ALL ITEMS
---l PROCESSED

.01 ‘e¥ES

..,
Y-
.

e09G3IeseNEOGES

L4

. RETURN .
Ll .
6640480000000

112 MVS/370 Linkage Editor Logic

This document contains restricted materials
LY26-3921-0

CHART CK. RLD WRITE ROUTINE (RLDBUF)

of IBM. © Copyright IBM Corp.

Ino
.. % ..
A2 .. A3 .., A8 ..
segeplcccecscee .o sesepSesesccsee
. .* *. NO .* *, YES . ¢, NO .
: RLDBUF :-- ------ >‘.5I|Y NEW RLDS..‘ -------- >‘.. EOD ‘.‘ -------- >'.§NY RLDS LEF'E.' -------- >: RETURN : .
CLTTTITTYTYYYTYY e, Lot ‘e, Lo ‘e, .e° seceesssecensee
., .0 ., .0 ., L0
i?ﬁs . *YES
RLDBUF1 .t
B2 .,
R ..
. ¢. NO
+. LOAD MODULE [#------ e
‘. e
., L
¢YES
<
.t . RLDBUF3 .t .t
. c2 ., c3 .. (o]} ., cS ..
GCA2¢ . .., . . ., . ..
S_S_S_0_s_0_0_0_»o 3 OVER * «® NOTE LIST *. NO 4 *. NO
. <~ +MAXIMUM SIZE -=D>e, FULL ot >, EOD «®ome
¢ ERROR ROUTINE ¢ .. .* .. .® .., .
. . .* . .
P IYYTTTT Y Y TS . . .0
YES
RLDBUF2A . e,
D5 ..
seseDlesesseres,
. . ¢ SET TWO PASS ¢ YES YES .e¢ ..
. RETURN . . FLAG S GEEE T] ¢, TWO PASS I
.
eeessesesssence
eseccsscessernene . o
*NO
seeseE20000000000 E3" ‘e,
. . .. ey
¢ FORMAT NOTE .
¢ LIST ENTRIES RETURN :
RLDBUF6 .
F2° ‘e, esessFyseestsrnee s0s0eF5e0cetsecee
.
.¢ANY BUPFER ¢. NO ®MAKE NOTE LIST ¢ ¢ SET IN-CORE
. WRITTEN ..‘ A >: ENTRY [T S, . DATA
‘o, e .
. . ETTTYYYTTY YT TS
SYES
RLDBUF? ...
G4 ., seeG5000c0ee
.* .,
. .
¢. LIST FULL >. WRITE LIST
. . ‘e, o
seecesssecssesece . . sescesccctccncee
*NO
R RLDBUFTA .. :
H3 . Hu .

.. e,
NO .*"2 BUFFERS s+,
i, WRITTEN .

. .
. .*
., .0
*YES
seseJ30ss00c00e

>e
.

.. ‘e,
*"2 BUFFERS's,
o, FULL .

Program Organization

1972,1983

113

This document contains restricted materials

LY26-3921-0

CHART CL. END PROCESSOR (HEWNLFEND)

Ty SEXT TP TT Y
*

: HEWLFEND :

0800008000000

$4000R] 000000000

‘BASE REGISTERS ‘
o.oa...oooooo.ooo

c1” e
.¢IS THE ¢
YES . $ENTRY
---¢.BIT
.. .
. ..
..
*NO
o1t e

NO .o IS ENTRY
<--*.TYPE ABSOLUTE.

ENDO3
19000080000
RENUMBER THE ID#
LD FOR .
OLUTE
ESS .

$8000000000000000

tooooplo oooooooo

‘SLT ENTRY POINT'
¢ BIT ON IN AP .

. .
$0000000000000000

---------- >
END1 .t
1 ..
NO .,
¢.LENGTH BIT ON, ¢---
APT 1
. v
., . XTI
*YES L .
¢ A3 e
L] .
o0
.t
H1 .. *90ss[H20000000000

..
IGTH

< —

SECTION :
s0s00000000000000

sssseK]e
: TURN_OFF.

.
seee
oooooA3ooooo...o.
OREPLACE/CHANGE ‘

YMBOLO

ooooooooooooooooo

*sse0p3Iesssse
¢ SET UP LOOP
NDEX TO REFER
°T0 RENUMBER!NG

seccee

oooooooooooo.oooo

. ..
.*IS RNT TYPE*. YES (EITHEFR)

of IBM. © Copyright IBM Corp.

END7
ttoooASOO...nooO.

FER TO CESD ‘
—--->‘ USING RNT ID ¢
[VALOE ¢

oo.to.ttoootoo. .

¢. DELETE OR .*
.. ..

., .8
*NO (NEITHER)

., L,
.
ot
c5 .
. ..
NO e IS CESD .
---*.ENTRY'S TYPE .*
¢. CHAIN .»*
.. .
o .0
*YES
Commmmm e e

sseeD3esssss0es
.

2ERO *
RENUM BERIN’ .
TABLE ENTRY :

.

10
.
.
.
[3
.
.
S000000000000000

END10B .t
E3 ..

NO ‘IS RNT I.DOP‘

———t ONE .
., .*
., ..
o, .
*YES
SeeseFLUessss et s0e
ssssF3ee . .

sessse

* *SAVE CESD ENTRY®
*NUMBER A.
: OF THE CHAIN

0908080000000 0000

: RETURN :
$000000000s000s

TO INPUT
PROCESSOR

FIRST‘<——

END4
s0eseD5e00000 0000

*BLANK OUT CESD *
b ENTRY .
. .
.
.

.
S800000080000000

“c.ogstro-oocoo-
.

. INCREMENT *
*ENTRIES DELETED®
. COUNT .

. .
EXTTT T .

g

FS e,

'IS THIS THE.
FIRST D!LBTID .
NTR

seceeses

END6
..ooousn seseesee

PUT ENT!
NUHDIICOP ‘

114 MVS/370 Linkage Editor Logic

1972,1983

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
CHART CM. CSECT IDENTIFICATION RECORD PROCESSOR (HEWLFIDR)

FROM I NPU'

PROCESSOR —-——

SesesE] et 0000

EWLF GCAZ‘
e e_S_e_es_@o_

WRITE OUT :(—
ERROR MESSAGE
SE000000000000000

ssesF]0ee
.

*
. RETURN ¢l
. .

ses00esttssnnee

0600910000000 000
‘IDRSPZAP N CPAZ‘

‘ADD SPZAP DATA ————
. TO TABLE

®s0000000000000

SER 2000000000
-

.
----- . HEWLFIDR -
. .

sssssssesenstee

LRI Y- PR AT Y Y N
.

.
:SAVE REGISTERS
.
.

€006 C000000000 0
. ESTABLISH
*ADDRESSABILITY
¢ FOR MODULE §
- APT

sssese

sesee

...
D2 ..
.* ®.
IS _INPUT e,
OBJECT END o

‘. et
. .8
*NO

F2© e
.. ..
YES .*1S SUBTYPE's.
. L¥ED

e o

62" e,
o .,
YES . +15 suBTYPE's.
SPZAP = .®

o_oqo-o_o_o_

: WRITE. QUT

L]
RROR MESSAGE §
Sss00000tee

. TRANSLATOR _.%--—-——-
. .

SesspLessstss e
.

HEWLF IDR L

.

sescenessscees

FROM CONTROL
STATEMENT
PROCESSOR

v
S9000BUCsCOIISIIS
. .

REGS & ¢
. ESTABLISH .
:ADDRESSABILITY :
ITTTTYY .

sese

'
ooooocuo sseseses

'URN Ol
ENT

FY
CONTROL CARD :—--

o
.

: INDICATOR
TIYYTY TS

essseny
’ HEWLPLOG GCAZ'

+ ERROR MESSAGE
56450000000

ooooozuooooo

o
‘TURN ON DOUBLE
> ENTRY INDICATOR‘

oooonoooooo.ooooo

ssF3e

.
.

‘TURN ON OBJE! *
‘ END INDICATOR :
.

.

‘
se4ssesssecsenee

sose
.

$6000GIes000esb0e

$0000GLUSGIISINIIS
. .
. .

>¢ RESTORE .
: REGISTERS

sessessee

SeessHUss 0SS OONS

LI R TP P T Y
. * IDRTRANS NAZ‘
_e_6_s_9e_»

¢ TURN ON_LOAD

> MOD IDR >*ADD TRAN: SLA OR
: INDICATOR : DATA TO TABLE
L LITT R YT RT T Y) s000000s0sssnne

J3eesss
‘IDRIDENT SQA

>. ADD USER DATA
: TO TABLE :

SE0EES000000000000004
. .

* Gy e

040G5000000000

Program Organization

115

This document contains restricted materials of IBM. ® Copyright IBM Corp.

LY26-3921-0
CHART _CN.

IDR TRANSLATOR DATA PROCESSO

Ceeep200 0000000
.

: IDRTRANS :
toeeNeItINEENIS

‘BZ ..
.*"IS_OBJECT ®.
¢.END INDICATOR,*
. ON .*
.. .
. .
NO
se0esCIe0esss000s c2” .
* HEWLFLOG GCA2 ¢ .* .
S_s_e_b_s_s_t_s_» NO .*IS LOAD MOD®.
. WRITE ERROR #<---=~---- ¢.IDR INDICATCR, *
M MESSAGE s, ON .t
tecesssseserertee “e, .8
seee *YES
*+ AB .
.
e D2
cene
ot
__________________ D .,
PATH FROM +*1S LASTS®.
THIS POINT ¢ ENTRY IN ¢
OWN 1S L
SHARED WITH ¢.COMPLETE .*
1D N L .’
. .
*NO
eeessE20ssentrtne
. .

. TURN ON b4
SCONTINUED ENTRY®
. INDICATOR b

CEXTTTTTY

1331371
*POSTIDR

sesessee

seereG2e

sesesee

[EIXTTIE Y

HEUWLFI

PesseRINEIIEIIIENS
TIDR RA

2¢ SesrBUsSISESIL
YES B_E_ e _s_ b b_e_" .
-------- >¢ADD ITEM TO IDR#———————->¢ RETURN .
¢ TRANS DATA . .
. . L T PP LY
LI EY T YT T
cren
. L]
¢ D3I o
. L .
Ty 6
..
D3 . CseesDUONINIIIIS . D5
. .. * . *POSTIDR CRA2¢
YES «* IS THIS *TURN ON PARTIAL® S _b_s_s_G_s_s_o
.. ENTRY >®ENTRY INDICATOR®-----—-- >* ADD ITEM TO ¢
*,.COMPLETE .+ . . ¢ Us OR
.. .. *TRANS DATA TBL ¢

. . A
. T P Y T T YT Y sesessestsstiee

. .
*¢YES

ssns

sessetesssIeS

.
.
*LINE NUMBER(S) ¢
. T .
.

POSITION TO *
NEXT INCOMING ¢
ENTRY :

e ssbete F3° s
CRA2* . . SeeOF SISO 0S
_e_s_se «* ANY MORE M
., ENTRIES RETURN :
. R L tessessetsnetee
seesennne .o .
*YES
<- -— }
cesssser

116 MVS/370 Linkage Editor Logic

1972,1983

This document contains restricted materials of IBM. ©® Copyright IBM Corp.

LY26-3921-0
CHART CP. IDRSPZAP DATA PROCESSOR (HEWLFIDR)

S0 A2400000000
.
: IDRSPZAP :
ss00s0000ss0000

O
.. 3 ES "¢ ssesBlesesstses
.1 1 .
.. RETURN .
T NY . .
.DATA . ss00ss00ss0sene
. o8
*YES
c2” e, 8200 CI0000000000
.. .. .
«* IS FORCE *. NO TURN ON FORCE ¢
¢, FLAG ON IN ,®---——o—o >¢ FLAG IN TABLE ¢
.. IDR g . .
., . . .
. . T T T T P YT Y Y
*YES

Ty X IR TIT Y Y
. DETERMINE .
*NUMBER OF DATA ¢
hd ITBHSXgEED IN »

$0000E20 000000000
. .

*POINT TO FIRST ¢
: DATA ITEM .

.

SE2SF24000000000
. .

dgm

$000000000000000

sonse
.
*G3 e
.
YY) ¥
.. ..
62" e, G3 .. Ses00GUSSIIIIIIGS
. . .
.* S CESD . YES +*ITEMS LEFT ¢. YES ¢ POINT TO NEXT ¢
.. s ITEM IN RECORD -

esesessree

se00e{20000000000
. L] SessIe00s00 000

ot
eeseeJ20000s0000e 33" e, seeJUsesssesrane e00seI50000000000
. . » o, .
¢ UPDATE TABLE +# . *HAVE TABLE *¢. YES .
®END POINTER BY #-—-mm-—o >¢. BOUNDS BEEN o ®-—--mmmm
ONE ITEM : ‘.EXC!EDED‘.‘
. ‘e, .o
a0
->e
*® G3 o
L]

Program Organization

1972,1983

117

This documaent contains restricted materials of IBM. ©

LY26-3921-0

Seeep2000 000000

.
: IDRIDENT :
escecscessceee

WLFID

Copyright IBM Corp. 1972,1983

. CND2
B2 ., $s200R3sssss00 00 e SS0eSBUsEsEIS NS
«* 1S ., . M * . * SeesR5eeseetese
«* CONTROL ¢, NO ¢ TURN-ON_IDENT ¢ ¢ POINT TO . *
., [t >$DATA INDICATOR ®-—-cc-oe >SDATA TABLE FOR $—————___ >¢ IDRTRANS .
*. INDICATOR. * . . ¢ POSTIDR RTN ¢ . .
¢, ON .* . . . tsessesesstntte
. . seseesestcrtecene eessestceteceene
*YES
'Ont.czo LRI TN
.
‘ POINT .
: B!GINNING OF :
. .
LTI T TV T Py .
>
. ;. % .,
D2 .. D3 L DU ., oooocust..oooo...
B . . .,
. DOES CESD .. YBS YES 1S S ¢, NO ¢ SAVE ESDID OF .
. NAME MATC P >¢, IS TYPE SD ®¢--=v—-=- >¢, MARKED DELETE. ¢--=-—--- >‘MTCH SD NAME
¢.IDR NAH! . . . - .
. . ., .® ., .* .
. .® ssese
SNO *NO ¢YES
vV
‘0000210 ooooo.oo g2" e,
. .
S POINT TO NEXT * No ¢ ‘e,
: LINE OF CESD .< -------- ...END OF CESD.-‘(
. . e, Lol
sesssssseessecese ., e
SYES
*eeFesess st e oootor;o[oo [TTTY
. .
. CONTROL ¢ ¢ POINT TO NEXT ¢
CARD ERROR ¢ ITEM IN TABLE ¢<
. MESSAGE * . .

[XYIITYYYYY 1Y

ee0eG2e
. .
. RETURN 3
* *

0600000000000

(XXX ITT)

S0e08 20000080000
WLF.

. WR, ouT be
: ERROE MESSAGE :
see00ss000000000e

118

.
LXIYIIT Y

CITRETTY YR YR LY
¢ LOG TABLE A

________ OVERFLOW <
. MESSAGE .

sesse00800000000

MVS/370 Linkage Editor Logic

se00000e

sseeoHye
.

¢ UPDATE TABLE
¢ END PO

[IXIYTITT]
.

. .
6800000000000 0000

‘4
stssees

eoeoKye
.

. RETURN .
. .
LT T TY T Y YT YT

seeG5e
oV

ERLAY O L; .
‘ITIH WITH RATA :
Sk Rt

080000000080 00000

0000 J50000000008
"R Folitis

000000000000 0800

[O——

TTTI LYY .
M RETURM :
essettsstsscene

This document contains restricted materials of IBM. ©® Copyright IBM

LY26-3921-0
H

....Az.........
L] L]
. POSTIDR .
L] *

XTSI R Y]

B2"
«*1IS USER‘
.. DATA .
. XNDICATOR ON .

ROCES

EW

+$00eR3Iesesese st
¢ GET CESD LINE *
¢ NUMBER FOR .
>+ ESDID IN THIS -
* ITEM .

Corp.

sseeepSene
POINT TO 1ST
ER

P T T YTy Y Y
*NO
L] *
sese
.0,
c2' e, seeseCIsesene s eseesCUes ORI O IOGE 5 .
+*IS LOADs, *MOVE SWING QF * . DO ..
.* MODULE ¢, NO ID'S FOR *CONVERT ITEM TO¢ ESDID IN o,
¢, INDICATOR ON .®-c—cmcon >*ITEM (SAVED BY ®--——---- >¢ LOAD MODULE ¢ 'ABLE MATCH .*
., .. *ESD PROCESSOR} * * FORMAT . ICOMIND .
.. .t . * . ESDID. ¢
. . Ssesstssesetttee s, ,®
*YES *NO
... ..
D2 ., essesDIeesrsesses ooooopuoooooooooo DS .,
«.* IS .. * MOVE PARTIAL
+* PARTIAL . YES *ENTRY 1O END OF* ‘hDD ITEM TO mD‘ YES .¢HAS END OF .
.. ENTRY R S OF TABLE .
*. INDICATOR. * . B *
. ON .°
o .. PETTTTTTITITITI Y essene ..
sNO .
«*. .
esssE ssessssene g2 e, eeeeeEL" ee0esESe
SSOSEIse st 0 . L]
* * UPDATE TﬁLE . ¢ POINT TO NEXT
: RETURN : : END POINTER : : ITEM IN TABLE -
SEFS S0 2000808 - . .
Ty LTI Y seessssssscssece
see s
e F2 ¢
seee v
________________ Fu' e,
USS ESDID o .,
INCOMING ITEM « *HAVE TABLE *.
AS INDEX ¢. BOUNDS BEEN .
RENUEBERING ‘.EXCBEDED.-‘ . MESSAGE .
________________ ‘e, Lo L
*NO
sese [I1E]
* L] * L]
* Gl * G4
— . —>
sene sene
SeseeG2eesessnee SeessGIssetssnees 0000050000000 000
* POINT TO CESD * . . *eeeGLUeess 000 GCA2¢
¢ LINE FOR 1ST ¢ POINT TO 1ST ¢ . . .-.-.-._0-._0-. .
¢ ESDID IN THIS ¢ . XTm IN TRANS ¢ . RETURN (ST WRITE 'l‘o‘ .
. ITEM - ¢ DATA TABLE . . . ‘ MESSAGE .
* * SOSN8 02000 0 L]
SO0 000SS0S 00 G000 20440000000 . (1]
< ———>
.
ooﬂ]ooooooooo. H3 ., S0t HUGGON OGNS seeesf5000 000
+* DOES o, .
DELETE THIS +«*DATA MATCH ¢. YES . ¢ UPDATE TABLE ¢
SDID FROM ITEH‘(‘.}NCOHING DATA, ¢~ cmeme): END POIRTER :
Te. . e, s . . .
..............‘.. ., . * ., ., 00000008000 0000 0 0080000000000 000
*NO *NO
>
. .0
J2 . 33" e, essesuseseserese
.. ., Y ., . .
NO ¢ ANY MORE *. .% IS IT END *, YES ¢ ADD INCOMING
-=-~¢, ESDID FOR .¢ ¢. OF TABLE P >¢ITEM TO END OF
. ITEM .-‘ ‘Y R . . ‘TABLE
“e, .0 ‘e, L8 se0s0000000s00000
*YES *NO

oooooxz.ooooooo.o
.

POINT TO CESD ‘
LI.N! FOR NEXT
ESDID

[,

stssssssensee

---: ITEM IN TABLE

Ssss0KIss eS80

.

* POINT TO NEXT :
.

. .

sesesssee .

seseKSeteecere
. RETURN :

8060500000

Program Organization

1972,1983

119

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983
LY26-3921-0

ART_CS. CONTROL STATEMEN CANNE HEWLFSCN PA OF

FROM_INPUT
PROCESSOR

LI TS ETTT P Y YT Y
.

.
HEWLFSCN :

SCN10240

ssesep5e
:RESH‘ COMMENTS

>¢ CONTINUATION
: INDICATORS

se e
->902 ¢
e Cy o
.
LX) 000
(2L LI AT TR]]
9 Al:
*READ %EMTIO“ <
*SYM-S. OPTION e
SINDICATOR TO 1 ¢
0000000900000
‘DZ ‘..
. *OLD STATUS ¢, YES
‘.‘HAS LEVEL —__
.. _o'
., L, LLL]]
*NO .
* G2
.
000
SCN10100
®SEle ¢E]3e
L]
. *SET POINTER P2
. PROCBSSOR KEY ¢ . TO OPD 0 ®——o
:TABLE FOR HA'[CB. : :
0900030000000 990 B004000000000000 0
VE E! ¢TURN
. . POINT OF I *NEW* IHD}CANR -0
.. MATCH o ®———————->¢PROCESSOR - SET®---c-e-- >¢AND SET 'LEVEL' >¢ READ 1ST OPND ¢
. . . : INDICATOR TO : ‘OR COMI“UATION:
eSO EP90000000 0 . 0080004400000
1 L]
$°GH o>
.o ¥
SCl .t SCII]OI]O .t SCN10200__.*,
GJ G4 ., GS ..
NDED *, . SWAS AT o,

. * ..
BEED BY A o,

YES. o PRy NO o

JOEY LARE o
., .

.

SYES
Y
SCN10190 O
. o-ooonzoon . 5
L .
e 'SBT POINTER P2 ¢
. __). D 1 .
. [.
. .
se00s0csssseteee ssesecrressssssccens
. .
¢ H2 *
. L]
L 111}
“egie

$SET POIL R P2
* TO IDRSTRNG
. . S!'l‘ OPTION
: I . TO

.

.. SCN10140
$0eseKIesescee
*PROCENTY .
o_s_6_s_s_o_o_9 .
>¢PASS CONTROL TO®---—. .
* CTRL STMNT *
.

M 'ROCESSOR
tooo:o..ooooooo 0060000000000000

120 MVS/370 Linkage Editor lLogic

This document contains raestricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

CHART CS., CONTROL STATEMENT SCANNER (HEWLFSCN) (PART 2 OF 2)

SCN10150 ..
Bl

*

. ENDED *.
.eBY X RIGHT ».
+. PARENTHESIS .*

sssesDlecssssesee
.

.
* UPDATE P1 .
SPOINTER TO NEXT*
* COLUMN .

. .
s800000000000 0000

LN
A2 .

.* e,
.*ENDED BY A ¢. NO
>s, COMMA .

B2 s,

Ivzs
SCN10145 .. R h
A3 e, Au" e,

.* ., .* .,
«®ENDED BY A *. NO «* BLANK I *. NO
BLANK . 2 .

. .,
NO .+ENDED BY A"+, NO
- —>e! COMMA *

., .
. .

*YES
L, oese
->%01 ¢
¢ H2 o

seee

.
D2 ..

e .
.¢"Is P1 AT ‘s, YES
COLUMN 72 ..‘
‘e, oo
", .
*NO L]
* Ch
.

seee

.,
E2 ..
.
.

P i

.* .
+% IS THIS
®. CHARACTER A

‘.‘ COMMA o

., .
*YES

SSSeOF20800000000
®SET ‘ENDFD BY As
* COMMA® IN .
: STATUS :
tss0s000000000000
eses
. .
. G2 e
. ">

(3334
SCN10170

$8800G20s0s 00080

.

¢SET_POINTER P2 *

: TO OPD 0 :

. .
0080000000000 008

toootgzoooooooo.o
SREAD 1

(X214

->e .
: ERROR ROUTINE :
tss00ssss0s000000

tsee

SCN10210
sseeCUSSISIIS OIS

.
RETURN $<mene

—->e
I s0esceseessetes

s0e
. ¢ TO INPUT
: (o : PROCESSOR

.
.
.

CeeIEpSEEes0N 0t
SET Col NT: .

. AND .
* CONTINUATION *
¢ INDICATORS .
. .
.

Program Organization

1972,1983

121

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

CHART CT. READ8 ROUTINE

FruM CUNTROL
STATEMENT
GCANNER
rrepIrevaerenr
. *

. READS .
. .

SresrEsEREEL RS

N11RDP v
Tt T T T PP ererep s e nes tttocgutttootttto
. . . .
¢ SAVE 'STATUS' * *CLEAN WORK ARER® YES . SET VARIABLE .
$IN P OLDT STATOS 8- oo oe >#REFERRED TO [f $—--—--_->#, SPECIAL .#--<--—-- >¢ COUNT TO 41
. *« TPOINTER P2 ¢ : .
. . *
Sererisssrarreees SEANEIsEIROI RIS sesrsseessenetere
seee
. .
*C5
0 ‘__
bCNllOOO
arseRCInseeresense “sessCUSEIICEOEEE $8606C500e 000000
* . *RESET AT LEAST ¢ . M
* SET CHARACTER . ONE VALID . . UPDI
» "COUNT TO 9 [>* CHARACT [S >¢POINTER TO NEXT®
. . : mmcuua . CH ER ¢
. » .
T PP T sesareessentetoes e T YT P Y T
sens
.
« K1 »
->% .
[ND e
AN . .
JEI R pu" e, ns ...,
' P
'lh SPECIA .¢1IS P1 AT A e, ot lS P1 A; ..
*, oTr(ING OPTION. "<~ .., LA CLUMN 72 e
* CHARACTER o . .
Te, .. ., .
.. LT ..
‘YEC *YES
v J’
.t ot . SCN11040 , . SCN10230
=1 .. . E3 * E4 . S0000ESsss00 00
.’ . «® NEXT +, . 'HEHLPLOG 702A2‘
. FIxuT *. YES .* CHARACTER *. YES .*1s P1 AT A *. YES 15 P"'ION ., NO et d.s._s.0_
'HAH»\‘"IER IN .- *.ALSO A QUOTE .*--- .. COM ¥ .l INDICATOR SET. ----- ‘OPI'.RAND EXTENDS‘
s STRING] ., e] . . . BEYOND COLUMN
.. . v .. . v L .. el .. 71
o e .+ sane L] eere . .
*NO * *NO . . *NO ¢YES
* 31 0 . J1 * . J2
. » .
sesn sees sensn
v v
v v
.nao:p1aooo.oo..o TP I T T Y F3 ., F .,
* + «* 15 Pl e, ¢IS 'AT *.
'HAUE LENGTH_UF ‘ *SAVE LENGTH OF «* AT A LEFT * »LEAST ONE' .,
+SPLCIAL STRING * *SPECIAL STRING * *. PAKEWTHESIS +. INDICATOR SET
. . . ., . ., .
. *t L ..
cesnrsresrneenens T T YT oL . ..
*YES o
l soes
>
e« Cc5 e
. .
J coee LYY
v v SCNIIOZU
ttntobloouoto.oot Seees2eserere s teeesGINeeRIetsne
. . * *SET 'EHDED BY Ae
.
‘:;L‘I‘ COUNT TO 1 # *SET COUNT TO 1 # . l\REN’IHESI&.' .
. » . . *» INDICATOR IN ¢
. STATUS .
T P T Y TP Y TP TY .
sree e
> —>» .
*CS . * C5 »
. . .
cers LYY
seee saee
» .
* J1 . . J2 e
. - L
1o
SCN11010 .., SCHN11005
totatJl...to.o.ot Cees TR EREROIES stete lsressreese T4 .. shoey * oo
¢ SET 'ENDED BY * SMOVE CHAR AT Pie
'UPDATE POINTER . . ® SUBTRACT ONE NO *INTO .
Pl TO NEXT . 1N01LM‘0R IN o+ *+ "FROM COUNT . TO BY
: HARAYTER
.
T T Y TR Y Y L T P T Y Y tEeseessetIstOr N .. ssosscocssee
sees cose
. .
* Kl c5 »
» ® > .
sees s
v eesesKIeesesecrse CesssKU e 0000000 sese0K5e8000000 00
LIRSS T IRT RY LY * SET 'ENDED BY ¢ L] . ¢ SET 'AT .
. . . IGHT . ¢ UPDATE P2 ¢ ¢ “ToNE P °
» RETURN . -->¢ PARENTHESIS' ¢ ¢ POINTER TO ¢C—mw—- —— Cm .
L . * INDICATOR IN ¢ *OTHER WORK AREA® . .
seesbeeserencen
*seeetesesttcrens LTI PR PR T s4060000000s000000
sees ssee
- . .
* K1 * c5
. .
sans

122 MVS/370 Linkage Editor Logic

1972,1983

This documant contains raestricted materials of IBM. © Copyright IBM

LY26-3921-0

CHART CU, INCLUDE PROCESSOR (HEWLFINC)

s80seB2esseses0es

FROM
INPUT
PROCESSOR
s00epT00ss00s00
L d
: HEWLFINC :
40000000 ss00se

.
B3 ..

Corp.

. .. .
¢SET_SINGLE BLDL#* YES -‘HAS INCwDE‘-
¢ INDICATOR $<----——o- «. " POINTER _.*
. . ’, Cme .
e et
*NO
INCLU110 _. e, .,
c3 ., (L] ., '
* GET_ NEXT ITI“
>. IN LIST .
‘e, . .
.. tessecsrasccrores
oo
esee
INCLU160 .*. INCLU250 INCLU605
p1’ ‘e sesseD2esecesscee eseseD3e . seDpSese
..
eSINGLE BLDLe YES ¢ PUT NAME IN ¢ SFIND NEXT ITEM * . .
A !'DICATOR 0“ ‘—-—---——>‘ SINGLE BLDL ¢ ¢ IN INCLUDE . ¢ ISSUE FIND .
. LIST . . CHAI * . .
‘e, Lot
o .0 ssssserrerececsee LTI S soreesercee
*NO
————
' . L.
ooooo%;o seeseres 2" e, LERN O
¢ PV Ill «*INCLUDE®, .*
. IDL LIST . «¢ POINTER ¢, NO YES
* UPDATE OU“T . ¢.EQUAL INCLUDE.®--- o INCLUDE HITH -‘---
SUPDATE INCLUDE ¢, BREAX e POINTER]]
000008688 000000 ‘o, L0 sees “e, .0 seee
SYES . . *NO » .
. K2 ¢ ¢ D1 e
. . . .
“ere
IRCLU4S0 o
T P LTI fesisp3esescecens ru e,
. . . SET PS .*
STURN OFF_ SINGLE® SINDICATOR OPEN‘ . OPEN *. NO
SBLDL INDICATOR ¢ oSYSLIB h FOR ¢ >¢, SUCC] UL . >‘Iﬂ°.32 L!MYO
., . M MNNOT BE '
. oBENED
eeseceestrsocece eeesssestesceriee . ,® POTINE 1< 11 - JOPe
.
sees eee YES
->e . . .
. K2 ®
. .
ssee) Y
. INCLU200 .. INCLU600 .*.
qz ., G3 ., seGUessceee qs .,
«¢ IS IT o,,
NO -’ A"Y IT] Ms YES .¢ LAST ITEM e, . . YES .* END OF
——, Lll'l‘ I LDL .‘ ———————— . n‘ IEELUDE ‘.‘ ——>‘. ISSUE BLDL .‘ -———" I“CLUDI CHAINM, *<-~
* .. o [. . & ‘e, ..
. ¢ ese eevccossece T . .
ofio . .
“ Gy e
> . .
eeee
o,
sesevi2esesenerey essseHIee o0 tOee 2" e,
. . .* . GCAZ‘
*MORZ . SET ‘MORE * . BLDL . NO ‘ ----- -0-0-¢
--)‘ IFLUDBS TO ¢ INCLUDES TO ¢ ¢, SUCCESSFUL ,%----- -——D Et'o;‘z r R ¢
Cm INDICATOR‘ :COHE' INDICA’IOR: *e o ﬁ, :
H . ‘e, .o te000eteat000000e
>
eesseJ20s00000000
. . ssseJieserveeee
NO ®SAVE POINTER TO*® .
—e————— >: NEXT ITEM : : RETURN :
. sesecessscconee
seee TO INPUT
PROCESSOR
->
.
LIBOP ... INCLU325 .
k2" e, JieK3ersseee, seKusoseece X5 .
o*
.¢ IS THI ¢, NO ‘ OPEN_SYSLIB ¢ °==
¢, LIBRARY O IN O >0 CLOS! SYSLIB ®cc—cea—-).m THIS DD“‘--—----)‘- ancc PUL L
., . . TYPORT=| .®
., o’
., . seseesencce eecscocsese
SYES
Loo**
>e .
“ Gy o
. .
soee

Program Organization

1972,1983

123

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

CHART CV. AUTOMATIC LIBRARY CALL PROCESSO

FROM_ INPUT
PROCESSOR
SESINE NN EEERS
* .
: HEWLCAUT .
.
SO EBISEEEERES

sene te0e
. . *01 *
¢« A3 » s B2 *->
-> * . .
[ygs s e
.t .t
Bl .. 32 .,
. *. .* .
+% NEXT ITEM ¢. YES . *ANYTHING INs,
¢, IN LIST FOUND,#<-——~----— . BLDL LIST .\'<—»
. o . .
.. l
AN * * (T
*NO

SEENRCIISESESON S
.

STEP_TO NEXT
ITEM

.
. .
. .
. .
. * .
. .

. .,

‘e, L
.

. ..
* 1S THIS _*
DDNAME FOR A .*
.. LIBRARK..'

“ .
*YES

..
F2 ..
. ..
+*IS POINTER ¢,
. =0 .

*

ssesrene
.

TE

ssenave

stesestasINNeS

sers
. .
* {2 e
. >
tors

LTI PI T I TR R YT R LY
.

TAKE NEXT ENTRY
: IN CHAIN e

. .
CrssIBIBISEEIEEOINS

INCLUG50 _.s.
J2
. .

.* .
*.END OF CHAIN
. .

.. ..
o L
*NO
INCLUG70 .‘.‘
. .

126 MVS/370 Linkage Editor

.'. .,
. END OF CESD .%<-----
. .

P
. .
¢ pl e
* -
LR S
*ERTsEsNN G
. *
¢ ISSUE FIND +
* FOR_NEXT ITEM ¢
. IN LIST .

sseesecenns
.

seplssseene

. *
¢OPEN DCB FOR #
¢ THIS DDNAME
"TYPOHT = PD.‘

crtesresine

10
LR SUS . .

...
Cc3 ..
.t ..
.t OPEN *
*. SUCCESSFUL N
‘e et
o,
*NO

sesosDIesssse st

*IEWQ432 LIBRARY®
+NAME CANNOT BE *

.
TR TR R T T R T)

ssessEde
-

.
>:UPDATE POINTER

.
sesssssssssnese

INCLUG6UO
sesesFlosessssense
*

.

¢ MARK ENTRY &
—->$NULL, PLACE IT *

sIN HOLES CHAIN :

CEEEEEIEENIEIIGTS

I -
«* BLDL
¢. PREVIOUSLY
¢ ATTEMPTED. *
.. o*
., .
*NO

INCLU170

sssbeIesssenetoe

J3 .
.*
. YES
LIST FULL .®-—-
., ®
. !
.. e e
L] L] *
¢ By o
L] .
e
Y
INCLU186 _.*,
K3 .,
c. .u
+* ANY ITEMS ¢, YES
¢,IN BLDL LIST . *¢-—-.
., .
., «*
L . e
. L)
l ssees BY *
->" .
¢ D2 esaes
- *
[XX])
Logic

e
LIBOP ',
B4

EWLCAUT) (PART 1 OF

TR YRR LR PR Y

.
RETURN :
CEERONIIEOIRGOS

(X133

BU *

. ..

.
“THIS LIBRARY [
.

‘. et
LT
*YES

*ECUsSIes e
. .

*

ISSUE BLDL “

. .
tessesevene

1972,1983

This document contains restricted materials of IBM. © Copyright IBM Corp.
LY26-3921-0

RT_CV TOM

BRARY CALL PROCES HEWLCAU (PART 2 OF 2)

NCLU670 .t
1 *u..tklt....‘. . A3 .,
. . . ., sssepuesee
¢ INITIATE CESD * ¢ANYTHING INe¢. NO . L4
. SCAN . BLDL LIST ..‘ ———————— >: EXIT :
. . . .
.t seesessessesee
L T YT T e
*NO *YES TO ADDRESS
L L ddd ASS IGNMENT
->¢ . PROCESSOR
¢ G2 e
L] .
et

9SS OR 2080000
.

.
:GE.T NEXT ENTRY

.
*esessterseeeee

*eCysesseee

.
.

.
.
¢ MARK ENTRY _ ¢
>®NULL, PLACE IT
sIN HOLES CHAIN ¢
000000000000 0000000S
.
* A2

. .
.

.* -
¢ WAS BLDL
¢. PREVIOUSLY
¢ .ATTEMPTED.
., .

. .
NO

INCLU170 4
CeICE280 00000000

MOVE NAME TO
BLDL LIST

sesse

.
3
.
.
.
.
.

908000040t esS

eeG3e0sesse 0808G500000008008

* . . LOG GCA2
*OPEN STANDARD® . NO b0 Pty

>¢SYSLIB TYPORG =€ce———w_- >e «Comacaa ~=>¢IEWON]I2 BRARY*

. PO . . SNAME BE ¢

. . . OPEl .

XY TTTY YT TS ees0ecesestestece
cese

-> .

" A2 ¢

< . .
esee

eof2¢s008se
. .

. .
¢ ISSUE BLDL e
. . l
. .
sss0ssssene .
2!
.

1972,1983

Program Organization 125

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

CHART DA. ADDRESS ASSIGNMENT PROCESSOR (HEWLFADA)

FROM INPUT
essepistetstrne
. .
: HEWLFPADA :
LRI T RIS A2)

ADRO0120 ..
TECSCR] *4008000 00 B2 . O...OB).‘OO..O‘.. SEESIBUSCIS G0N
* CLOSE SYSLIB * .. . WLFENS = DBA2¢ .
* CLEAR ADDRESS *_._._._._ ~e_es *$EEARCH TXT I/0 *
* ASSIGNMENT ¢-—------ >¢. IN OVERLAY . #----v--- ¢ TABLE, FIND #-——---
* COUNTERS A A onunssns w cr-:sn- * CESD ENTRY ¢
* "INDICATORS ¢
SEFFE44 9000 ¢80 ., ,® EEEEESSEISOEIBRGTS SEPSEENGERE IO S
*YES f[
_____________________ A Lmm—mmm-
NO ‘
..,
S E0C 260000000 c3 ., o.otaCA.‘oooooooc
.* FIRST ** « BUILD APC
X *. YES): ENTRY IN CESD :
TEXT RECORD . #-------- ® FOR FIRST 1 &
o IN MOD ,* ¢ BYTE OF TEXT. ¢
., L, PR E I ITTIR I)
o
‘.O‘
.
. D1 ¢
L B
otct 6
ADA0O: 00 _ . *.
D1 ., SeeteDIeses ettt ss6eeD30 000400008 SeeseDUNCSIEI SO
.* .. ¢ TEMPORARY # *TEMP REL _CONSTS* . .
. . * " ARE FINAL ¢ *PROGRAM LGTH IS*
¢, IN OVERLAY RELOCATXON e >®EQUAL TO LENGTH®- —-
. .. ISTANTS ¢ OF SEGMENT 1 ¢
. .. ¢ "ADDRESSES _ ¢ * M
., . AR T T R AL R L) AR RS R Y] LIS AT LR L) e
*YES
ADA01100

S0SSCE20G0S 040000 SESFCEIGGE S e
- *

*PROGRAM LENGTH

o EQUALS LENGTH ¢
$OF 'LONGEST PATH$
KOS FHE20042000 8

EACH S * .
PP -1 T8 S R T T T Y

“sessRdssrsesnnns
+ SEARCH ORDER 4

+ CESD ENTRY M
EEEIONERERSINIENISS

SesesEUS OIS IS

v
Fuoo‘ottotot
UPDATE
DRESSES USING‘
LOC CONST OF *
D, PC, OR CM :
sesseseetnctiniee

wBEE

ADA00900
€8844G] 40000000

*WRITE OUT ERK

REFERENCES
LI T Y

Seess2es00 000000
. .
PROGRAM IS .
EXECUTABLE ON
LET OPTION ONL'

*060scest ey

*. NO .

ADAQQ700
68008 J3Co00e0b0e
‘HEWLFENT CA

(T TEY)

RKED CESD

L

¢ ALIAS TABLE
EEEIONOIIEIIGETSY

126 MVS/370 Linkage Editor lLogic

esesJUsesssssen
TO INTERMEDIATE®
* PROCESSOR :

.
LTI PR T YTy

TABLE, FIND ~ #-——========- .

L% * 10 -nuu.z

sees e

D OR PC *
NE OF CESD :
sessesssssstteee

*s0ssChedsssaveen
« PERFORM e
¢ PAGE ALIGN. *
% AS REQUIRED }
SEEEESEFEE SNBSS

)
4esssD5s0sssssnse

SSeseESEEestesIe
*ACCUMULATE SEG *
* LENGTH_AND .

* ENTER IT IN
: SEGLGTH TABLE :
SesEsEEIEEEIIGITS

.oo..pso

IGN PEN

‘ T!HP LINKED ¢
NO—TEXT:

*AD]
:CSECTS, ENTAB,
Ses00000tncetttse

sseeeC50ssssssens

. C

¢ ACCUMULATE .
TOT: PR LENGTH®
TR TR P Y Yy

.
HS
.. 'n:x'r Te.

‘e SEARC
nom:

A
'Y!S

1972,1983

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

CHART DB. ENTAB SIZE DETERMINATION ROUTINE (HEWLFENS)

FROM ADDRESS
ASSIGNMENT PROCESSOR
T VIT TR

.

. HEWLFENS .

.

T Y Y

SB2¢sssesrene
.

SCAN CESD FOR ¢
LABEL hd
REFERENCES :

T T P P YT Y

eseeeCe

.
TR TR T TR T Y

SesseD2essss000e

*INSERT SEG NO.
:IN CESD FOR LR

. .
CeretetetItett e

2" e,
..
.. +. NO
¢, IN OVERLAY . ®ccmmmerm e e cmr e m e e
., "
., Ll
., L
*YES

$eeesF20000esntee
.

®SCAN CALL LIST ¢
*ENTERING CHAIN *
. POINTERS .

Secesssesststtene

ENSO015 LN
G2 e ee0seGIesetesecte

.o “ANY e, ¢ HEWLFLOG _ GCA2¢
.CALLS FROM ¢. NO oo dee_e e ele
“SEG NO., 1 TO .®--oocco- >¢ PROGRAM IS ¢

¢ ANY OTHER.* * EXECUTABLE ON ¢
. SEG . *LET OPTION ONLY®
., L0 88000000000
*YES
e

G000 s[20000000000
.

DETERMI
ONUMBER OF ENTAB*
SLINES_FOR EACH *
. SE .

L]

.
ITTYY

080720000 000000

. L .
L B B R L D B Y
¢ MAKE ONE CESD ¢
ENTRY FOR ENTAB
¢ PER SEGMENT
000000000080 000 0

seeeKhseecseesee
. .

------------------ > RETURN .

‘Q.QQ...‘...
TO _ADDRES
ASSIGMMENT
PROCESSOR

Program Organization 127

This document contains restricted matarials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

CHART D

FROM ADDRESS

ASSIGNMENT

PROCESSOR
Iy YT LYY I Y

. .
. HEWLFENT .
. .

0000000000000 0

: ENTRY IN CESD
0000000000 0000 0

ecsscsce

seccce

® SYMBOL FR
¢ CESD TO ALIAS
. TABLE

.
0000000000000 0000

ENT00190
ses0eD20s00s0s000
. .
¢ SCAN CESD FOR ¢
®MATCHING ALIAS ¢
. SYMBOL .

.
s00s00s00s00000000

¢

E2° s, 00se0EIe0 00000000 eeeseEUSCsOsOOte ©000eES5s000000000
.* .. SENTER ESDID OF ¢ *SET TYPE F1ELD ¢ $PUT ADDRESS OF ¢
«* SYM MATCH ¢. YES . CM!NE? Aklls . ‘O{ AIR.IAS SYMBOL® *SD ORAE:R NTRY ¢
. FOUND R et >¢SYNBOL IN ALIAS®-ccoon-o- >¢ ENTRY IN'CESD $-------- >¢ FOR ALIAS IN o
., R M TABLE M ¢ TO *NULL M4 *CESD n!g FOR M
“e, L0 T TT Y YT Y TYY YT Y se0eeseccsccseee es00sseccttsttene
*NO

$8000F2000000000 s ®0000F50000000000
SENTER ESDID OF * ® PUT ESDID GF o
¢ ZERO IN ALIAS ¢ *CONTROL SECTION®
STABLE FOR THIS ¢ *OF AL gg SYMBOL®
. ENTRY . ¢ IN C ENTRY ¢
. ¢ FOR L .
eessssesesessenee s0000000¢0s000000

< ————

ENT00200 .°,
G3 .

ENT00160 _.*.
G2 .

. ., .. .
YES .¢ ANY MORE "¢. NO .*1S THERE ANe. YES
-=-¢IALIAS ENTRIES.®-------~ >+l ENTRY POIN

..I -.. ..I

128 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

CHART DC. ENTRY PROCESSOR (HEWLFENT) (PART 2 OF 2)

X XTI R

*02 *

* A5¢

o

*
L. ENTO1250
A3 ., SEESSAUSIISISIEISIIGS 248050000000 00 0
. * USING ESDIL * #SCAN CESD FOR A%
.o *. NO o+7 IS E.P, ¢, NO *FROM END CARD, * * "CSECT (SD, .
*.SYMBOLIC E.P..#-Zo-ocoo >¢. RELATIVE le-Zo___ .. >+ POINT Tu cEsbh *PC-NOT DELEYE) *
.. $ENTRY FOR CSECT* * WITH LOWEST *
. I INING E.P.* *ASSIGNED ADDR. *
. ., L LRI SIEEEEISEISIEIIOIEIEISTS
*YES *YES

ENT00300 .ot

sssesp2e SIBUSSEISEEREY BS .

* ADD CONTROL * .t ..

* SCAN CESD FUR ECTION ADDR *

*MATCHING SD OR TO ASSEMBLER *

: LR SYMROL : ASﬁIGNBD ?iDR :

seeresrertete PR TP T Y PR PR

.t
c2 ' SessECIesEsIsEEe SPEIC59P 0000008

.t .. ¢ ADD KEL COHST ¢ * HEWLFLOG GCA2¢
NO .* ., . SEM . S _s_s_s_s_»
_________________ *, SYMBOL FOUND ., * * . * INVALID ENTRY *
., .t * * . POINT *
' *
R . . PEEEEIGEPEIIIRIES

YES

R — |

ENT00800 .s%,
D2 .

. S s,
NO .* ENTRY PT *.
.. SECT IN .*
*. SEGMENT .+
¢.NO. 1.+

_s_e_ e % -
* INVALID ENTRY ¢<--~
* POINT .

IITTTYTTEYY

ENT00900
SEPEIEQCCCESSI0
*SAVE F,P. ADDR *
* SAVE ESDID OF ¢
* CSECT .
CONTAINING E.P.
* .

SEEEEEIIEIEIEIIEILIEISS

ENT0100
SEEIF 2000008080

. *
* RETURN *
* *
seeee
TO ADDRES
ASSIGNMENT
PROCLSSOR

soess

Program Organization 129

This document contains restricted materials of IBM. © Copyright IBM

LY26-3921-0
CHART EA. INTERMEDIATE OUTPUT PROCESSOR (HEWLFOUT)

ASS!GHHENT
Ly VIR R YT Y

.
: HEWLFQUT

*EEEEEENANEEEIETS

seee

OUT00105 v
R R R TR Y
'HEWLFMAP EBAZ‘

‘PRODUCB MAP OR '
n

Corp. 1972,1983

*NO

SEECUSSEEEEEEES

NO * WRITE

SEEEEAANRRRRRRN

..
._. ________ > CESD ON SYSLHOD —————

ssssaDIsss 00000
.

.

¢ BUILD HESD

. .
.

.

.
SEEEEINEINIEEIEIESTS

0UT00525 .+,

E3 ., SESESELSSREEE SRS
. ., OHEWLFLOG GCAZ‘
TEXT IN ¢, NO .

LOAD MODULE , #-—--ve-- >‘N0 TEXT N LOAD
. MODULE *

o .
L T T Y

TO NAL
--): PROCESSOR

S$44ESSISRE SN
.

SesF5¢80000 00008
BUILD AND

¢ WRITE OUT .
-=> SEGTAB CONTROL
. RECORD .

. L0
IYES
ot .‘. OUT01000 .+,
R SIS F2 ., 0. Fu ..
¢ GET HIERARCHY ¢ 4 ., .
‘ NO. FOR EACH ¢ YES +«*IS HIAR BIT®. «*1IS PROGRAH *¢. YES . N
CESD ITEM FROM #<—-co—e—u . SET PP - o1 LAY . #———————- >#.NOT EDITABLE . %-————-
‘HIBRARCHY TABLE' ., .* .. .* .. .
., e ., . ., .
onuno . . . o ‘., .*
*NO *NO *YES
0uUT02000 .t
TS X T TP P ooooncznnoonono.o 63 n.

>

$80G50 000 ss00s

¢ WRITE OUT * ‘ BUILD SCATTER ‘ YES ‘IS PROGRAH .,
SCATTER/TRANS <--cceeee ‘AND TRANS TION* leeo ., SCATTER. *
* RECORDS * ABLES '.‘LD DED ‘.‘
CesssssEsEsItES ‘e, e
[o]
V —————————— >|<
00 60
"1 S out 5 *H3e otunuo
e EIRST 'rr:x’h NO READTXT A
=== *RLD NOTE LISTS'
. . INTO VIRTUAL
. e . STORAGE ¢
*. 3(;;5 L T Y T]

.unJlo‘

.
.
*
+ CONTROL M
*
.

XT IN
T T R R Y T T

OUT00575
.....Kl‘ e o0 :‘;;\']gaal(.;;[g;..: :.00‘](“........0:
* .
% BUILD & WRITE J ¢ SEG NO. . ¢INITIALIZE FOR *
¢ 1 BYTE Saintnte ¢ SEGMENTS THAT * >¢" "SECOND PASS #$------
S TEXT 4 CONTAIN TEXT s :
‘. 00..0..‘...‘ sttt ettt 8808080800800

130 MVS/370 Linkage Editor Logic

*TO SECOND PASS
——>: PROCESSOR .

eSS KGese0s 000
.

This document contains restricted materials of IBM. ©® Copyright IBM Corp.

LY26-3921-0

CHART EB. MAP/REF PROCESSOR (HEWLFMAP)

s
. *
e C1 *
* L
e 6
NXTSEGNO .,
c1

. .
YES .* IS THIS
---*,LAST SEGMENT

. *

sseesD]sssessses s
* REINITIALIZE *
¢ REGISTERS .
. INCREMEN' .
* SEGMENT NO. *
3 .

.

SEBBBRIIORERNES

--> LENGTH, E.P.
¢ ADDR, TOTAL *
LENGTH
Y Y T T

SsseF 1 esesenn0s
. .
* RETURN .
. *

SEetsssIEEEONS
TO FINAL OR

INTERMEDIATE
OUTPUT PROCESSOR

SEEEA 2000000000
. .
. HEWLFMAP -
. .

ssesssenens

S8 EP2IEEEINRNS

SEssEELEEEIEEIGES

sseD2sssssane s
READ CESD AND
*FIRST CONTROL *
RECORD FROM

. SYSLMOD .

BEEEEEEERNNNINRS

SeseNE 200000

.
*MAP003 .
s

.
o
o
]
[4)
m
z
5
“n
™
m
5

.

GMEN'
BOESIEISISOERNGRS

MAPOOU
SEESEF20R0RE000 0.

*USE ADDRESS AS *
. KEY .

. .
CeENAIRIAINENNEES

MAP0OOSS
SesesG2eessennen
.

.
*CREATE MAP FOR *
: THIS SEGMENT
*
.

.
I TIT YT TR YY

w2' e,
* .
.

" XREF e,
‘e SPECIFIED ‘.‘

e

B3 ..
I .,
.*IS RLD_TYPE*. NO
* PR2 .
.

.. ..

. . LTI
*YES . .

. K}

. .

LR

#ss0eCIossnsnnnse

3
*SAVE CUMULATIVE®
* LENGTH VALUE ¢
3 *

seee
. .
* A4
XTI
MAP13 N

XLSCONT L
B

RLDOUTA ...
Fu .

e
PUTLINES

..
.*1S CESD*.

* TYPE ER
UNRESOLVED)

seeDusesesese e

*WRITE LINE ON *
SYSPRINT

sEsssEENNNNNNNOE

e
. L]
¢ Fy &

“eree’ Y

LAST .¢ THIS "#, RLD

v
S60GUSIsEeR .

*

PASS OVER
TEXT RECORD N

seesssesnne

sesHUeseeses e

. .
.READ RLD RECOR?

sesesssene

esJ20ssesss00s
.

.

*INITIALIZE FOR *
OF CESD *
D RLD .

Ceseeenene

-: NEXT ITEM

6880 30000000040
.

¢ INCREMENT TO %
L]
.
.

.
SEEEENENIIEONIGS
A

UNRES .t
AS

eseeep5esesceceer
. .
¢INDICATE ‘'HNEVER®*
¢ CALL' ON MAP ¢
: PRINT LINE :
teeseseceececceee

seee

s0seeD5essssss e
. .
. INDICATE .
~--#'UNRESOLVED' ON®<--
:HAP PRINT LINE :

T T P Y T

Program Organization

1972,1983

131

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

CHART EC. IDR WRITE ROUTINE (HEWLFOUT) (PART 1 OF 2)

SESSP2%%08 08880
L] .
. IDROUT .
L] .

8885088888000 8

LIS PIRT LY L Y
.

.
.
MOVE SPZAP :
.
.
.

$seE2s

¢ WRITE
RECORD OUT ON
. SYSLMOD

sesessesss e

esseeG2esessstOee
. .
¢ MOVE TODAY'S e
NTO ¢

. RECORD .
. .
.

.
2
4
[o]
—

‘uz' '-..
YES .sANY DATA INe,
. e
sesse L—
€02 ¢ *ho

csee ¢ Blesese

L]
b HA%K D OF ¢
¢IDR' IN RECORD
: SUBTYPE FIELD : ‘e ..‘
sesssssesscntesee Ce, L eseee
. .02 ¢
¢ Bys
.o
L
v
Se0K100s00sss00e
.‘..Kz'....."‘
¢ WRITE THF . .
RECORD o T): RETURN :

ssssensee

seseesee

..
Cc3 .,

.* ..
¢ "FORCE" ¢, YES
>¢. FLAGS gN IN .o

seeseCysessesetee
. .

¢ TURN ON FORCE *
):FLAG IN RECORD ¢

essesEle
.

. SET N
SENTRIES = TO NO
¢ LEFT IN TABLE :
.

Seesses sttt

esseeFlese
.

*MOVE DATA FROM ¢
¢ TABLE TO IDR ¢
. OUT BUF

.
sssssne

¢ TURN ON CHAIN
: BIT

sseJ3esesee

¢ WRITE THE .
RECORD

se8000000000000e

LTI SELTTTYYY Y Y

.
$TURN OFF CHAIN
. BIT

132 MVS/370 Linkage Editor Logic

sssssDysssssssce
. .

. SET NO OF
):ENTRIES =T0 1

.
ssee

sssesssee

UT BUF ¢
.

.
*TURN ON *CHAIN ¢

IN RECORD ¢
HEADER .

sseGUesesse sl

¢ WRITE THE .
RECORD R

coe

LI T TYY YY)

e Hye

UPDATE
ITEM

CETTI R TT Y YT Y Y LYY

.
.
.
.
.

ssseeJyssee

.
¢TURN OFF CHAIN
: BIT

.-
.

1972,1983

This document contains restricted mataerials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
HA C.

SeeCLe000000000

.

MOVE 255 TO
BYTE COUNT

:PIELD OF R!CORD:

4000000000000 004s

48008 Dlesssostses
. .

BYTES
‘PROH TAB TO REC
oooooooooooooo.oo

SSOE1 000040 0¢ 000

* WRITE THE .
RECORD N

0000000000000 400

Se00sF16000000000
‘ UPDRTB TRANS
TAB!

ATA
INTER BY 253
BYTES

DR_WRI UTIN

.

2 ..

«* MORE ¢

YES .® THAN 253 ¢
------- «BYTES LEFT IN.*

.. B

. .
.« o

*NO

[IXITITYY

L]
L]
* IN Ti .
¢ BYTE COUNT OF ¢
L] REC L]
0000000000000 00

LIXITTT Y

.
SMOVE DATA FROM
STABLE TO RECORD®
‘IN IDR OUT BUF ‘

‘nootnntnoo‘oonoo

WLFO

* OF
40808000000 00000

(AL LYY YT Y
.

SMOVE DATA FROM
¢ TAB TO RECORD
:IN IDR OUT BUF

8960003300000 0000

s000eC50000000

.

* MOVE 255 TO
--->¢ BYTE

‘I’IELD OF RECORD‘

uou--ououu-‘

v
ss000D5esss0ss00s

. .
¢ MOVE NEXT 253 ¢
¢ BYTES OF DATA ¢
®FROM TAB TO REC:

0004000000000 0008

SOOE50000000000s
¢ WRITE THE *
N RECORD .

G800000000000000

Ss000F50000000008
: UPDATE USER

DATA TABLE
SPOINTER BY 253
. BYTES

Program Organization 133

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

CHART FA. SECOND PASS PROCESSOR (HEWLFSCD ART 1 OF

LEYTY VITT YT YY)

.
. HEWLFSCD .
. .

tesessettttccee

ssseee

INITIALIZATION :

sessese

.
T T Y Y Y TY YT Y

XXX}
01 o
¢ C2 e->
o ‘e
e
GETID ..
c2

. eeeeeCc3ece

. ., ‘GETIDHUL FBAZ
+* ANY TEXT ¢, NO = = ¢_¢_¢_o_o_o_o_
. READY TO BE > DETERHJNE
¢, PROCESSED. ¢ ¢ ID-MUL
., .. . Pl
., L TR IY)
¢YES

LOOKAHED _.*.
D2 .

. ...
* NEXT TEXT ¢

¢. READY TO BE
., EROCESSEB.

RLDSCAN ...

“e. Lo
YES

CRREADY 2

g -
ANY RLDS
FOR TEXT
.. .
.
L)
‘.
“...Fa.‘.‘.““‘
*WRTCRRLD
o[ous CONTRL YES e ._._._._._.
. READ' L
EVI00s i
+EONTROL RECORD
....‘0“............

coee . G2 .

. .
seee

RE
¢. STORAGE .e NEEDED RLDS ¢
. . o .

‘e, .o
*YES

<-

eesesi20000000000
¢ HEWLFREL FEA2¢
C_d_e_s_t_e_o_s_¢
¢RELOCATE ADCONS®
¢ OF CURRENT .
. ID-MULT .
S0000000000000000

LXX1)

01

© 32 >
. L]
ALY}

MVRLD
©

eeJ2eee
.

*MOVE RELOCATED
¢ RLDS TO

¢ OUTPUT BUFFER

secssce

134 MVS/370 Linkage Editor Logic

This documant contains raestricted matarials of IBM. © Copyright IBM Corp.

LY26-3921-0

..RLD210__.e,
.

. s..
+® MORE RLDS e,
‘.. FOR TEXT

YES

. 0-—-1

->¢ SET UP AND
SWRITE PREVIOUS

$CONTROL RECORD

0890009000000 000

v
TEXTWRIT _.°%.
E ..
.* ..
.* PREVIOUS ¢
¢, WRITE A DUMMY, ¢
¢. WRITE .°*
.,)

ssss0000
FDA1

TSTSGEND . °*.
H1 .,

. IN
.

SGEND1 «®, o
..
.
., .ENTAB NEEDE!
‘e, .

., .0
*YES

0000k 0000000000
‘S!DEIH'“ .
.- -o_o_o-o_o_o
NTAB-ENTAB RLD
CREATION

Ry -r:x'r lAST ¢, NO
SEGMENT .

. XDAP
.

SWRTCRRLD
_0_6_e_s_s_s_9o_
SET UP AND
WRITE AN RLD

Al . .

«® ONE o, .

«¢ BUFFER . YES . .
>‘.CONTAINS PREV.‘ -------- >e sar up .
*. CONTRO! ‘HR!TE PREVIOUS .

., RECRD. CONT! .

‘ LT] .

J2 e
.
LIYT)

. .,
.o'pn:v:ous *. YES
¢ WRITE A_DUMMY. *
~e. "WRITE .*

., .
L]

*NO

.. . . IF NEEDED
. sssee

. .
9000000800000 0000

sHIee

e SET ‘E

. LBVDIN

'COlﬂ'ROL RECORD

Ceceeecererrsnnes
A

sJhee

.
SET 'ENp OF ¢
>¢ SEGMENT' IN o
:CO!I'I‘ROL RECORD ¢

9000000000000 0000

[3
:lﬂ!'l'! A connm.:
$0000000000000000

<
SGEND3 .0
.K2 ..
«* ANY MORE .

$000K30ss000000
.

TO .
PROCESSOR %

see .

Program Organization

1972,1983

135

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0
CHART FB. GETIDMUL ROUTINE

.‘..Az‘........
L] *
* GETIDMUL .
* *

*E0e00EEERS

SEEIEE2 G0N EINENS

.t
c2 ., S2008CIe000000 000
. ., *SET UP CONTROL ¢ SECUIIEEEEIEES
.l ., L] K L d - .
¢, ID-MULT FOUND. -->* REFLECT NO bl —-=>* RETURN .
He . ¢ LOOK-ARHEAD ¢ b *
. .* . L] LIRS A2 2 23]
L SEERERREBEBESRES
*YES
l NO
.. IDMUL190__.*.
D2 L D3 ., sseesDUEsEEE s
.t ., . * .. *RDTXT FC,
«¢ID-MULT IN ¢. NO «*WILL RECORD*. YES -ttt d_t_t_C_00
. VIRTUAL e ¢.FIT IN BUFFER, ¢-——————- >*SET_UP AND READ®*
¢, STORAGE ,* .. * NEEDED TEXT ¢
.., . * .* * .
. e “ . Cetsesetsetetee
¢YES .
< - -
IDMUL301 .e,
E! -
B4 ..
YES
‘..SCTR OR DC ,#---—--
T, .o
., L.
*NO
..
F2 ., $2sesFIes00ssst e
.* CAN s, ¢SET UP CONTROL ¢ $eeeFUsIes O
«*ID-MULT BE *. NO b BLOCK TO . . .
¢, GROUPED IN .#¢---wce--- >¢ REFLECT NEW #---————- > RETURN .
¢, PREV. .s* hd GROUP . . .
*.GROUP. ¢ . . ssessesee
“ o® P T T P YT YT
*YES

S0008G2es 0000000
¢SET UP CONTROL ¢
. BLOCK_TO -

. GROUPING .
SessEIREEINIOINSS

vV
LXET PRI
.
. RETURN .
. .
sseessoenrnene

136 MVS/370 Linkage Editor Logic

1972,1983

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0

CHART FC. TXT READ ROUTIN DTXT)

TSR T R Y T Y
. .
: RDTXT *

R L TR T T

c .. sseC 20t est0ee

1
.% ANY o,
+* UNCHECKED *. YES
TEXT READS .

CHECK

CessesesserIIIe

XTI SR Y

READ
. *

R R T T Y

SHIISE] S50 000800
-

* MARK TEXT IN
* INVIRTUAL]
¢ STORAGE .
* *
* .

ESIEEIEIICEIOISTS

RDTXT70 ot
F1

se0sGlesssseses
.
. RETURN .
. *
SEES 288080008

LD READ ROUTINE (RD

—HEUWLFSIO

SsEsAUSESSS IR,
.

RDRLD :
e I

SIIIBLUGIISIEISIES
. .
+ LSTABLISH :
+ ADDRLSSABILITY §

. .
SesssEEEEEIEISISIOISIES

cu” e, €8eCSeesseeses
.* .,
N ANY *, YES .
*, UNCHECKED .%-------- > CHECK
s. READS .* .
' .*
. . ceessssssersenes
*N

sseDUSIEIIESISIEES
. .
--==> READ
.

Se0sss00ssss0eRS

SELEUSIIISISIESIISS

.
CHECK

. .

P R I 1

SssesFUssssstete
.

.
.
* MARK RLDS .
* IN VIRTUAL .
+ STORAGE :
SEEEE S99 06080 3

RDRLD150 .*.
G’ e,

.t .. s800G50s000ssee
« ¢ ANY MORE .

. Ld
¢.RLDS FOR TEXI . : RETURN :
“e. .o seceesesestes
. .
*YES
.

.Hu o..
YES . ¢ RECORD IN'%,
--=¢. VIRTUAL _.*
*. , STORAGE, - *

‘Ju’ .,
YES . *RoOM IN RLDe.
NPUT BUFFER ©+

----- 1
.

Ld * 2000 K5000000000

¢ INDICATE MORE ¢ .

¢RLDS TO BE READ3-------- >: RETRM .
208009000000 000

. .
Gsersesssossttete

Program Organization

137

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0
CHART FD.

Ty SER TR T Y
. .
. WRTTXT .
. .

)
sesssp eseesteenn
.

+ LSTABLISH M
ADURLSSABILITY o

.
Se00E 00t eRN T

v

.. WKTTXT90

1’ e,
.* ..
.+ PREVIOUS s, Y
*.WRITE A DUMMY.®-
*. WRIT .

. .
*NO
..

D1 ..

.. ..
«*FIRST TEXT *. YES

*. OF SEGMENT ..' --------

$e0C2%0 00000000
.

> XDAP
.

T PP Y Y

sesseD2s 0ttt
.

¢ SAVE RELATIVE
>% TRACK ADDRESS
: IN TTR TABLE

SOE2e0 000 et es

., "
"ebo
B ————————
v
o®
E1" el
. .

0 Ay T
¢ UNCHECKED o %=-—--cn
. WRITES .*

v
SseF1stesssstn e
. .
WRITE
.

seeesessetetees

v

61" e,

v
SesesJ1es00000000
. .
* PUT NEEDED *
*INFORMATION IN *
: PDS *

.
$00000000000000S

v
RS ELITT YIS
. .
. RETURN .
. .
TR YT T YT T Y

. .
>. CHECK

SesssEIEIGINIIIGS

XYY P T Y TY TN
. .
INDICATE DUMMY #
> WRITE .
. .
’

.
000000 IIIIINTY
se0e2ess00000y

. .
>e RETURN .
.

see0000000 0000y

TEXT WRITE ROUTINE (ON SYSLMOD) (WRTTXT)—HEWLFSIO

LT YT YT T cu ..
. ., $eseC 5000000000
. . .. 1/0 - .
> WAIT ~ —eeemeeo >*, SUCCESSFUL RETURN .
.
., e sessssnsessceen
tesesessetenrne . .e
*NO

ssDUssesene
* EXIT ERROR .
ROUTINE

T T PP PR YY

138 MVS/370 Linkage Editor Logic

1972,1983

This document contains restricted materials of IBM. ©® Copyright IBM Corp. 1972,1983
LY26-3921-0

CH E. RELOCATION ROUTINE (HEWLFREL) (PART 1 OF 3)

2esIp 2000000000
.

.

: HEWLFREL :

SEELIISEEESINSTDY
€ e e o=
A
RELOCATE

SessseTEEREERIESIES

SsEEC 0000000000

. .

*SAVE R POINTER, *

¢ UPDATE TO FA "¢

: FIELD .

EOESEOSEELEEEEISTS

1 .
« D2 >
sese YES YES
.t RELOC150 «t. « %
TSR I YT TS T *skeoDl00000 0 te DU ., D5 .,
¢ UPDATE LOW . .* ., . .,
*UPDATE TO NEXT ¢ CMULTIPLICITY OR® « *MORE NEEDED*. NO *NEEDED RLDSe¢
. RLD ITEM .~ ~>% MARK ENTRY . ->* ,RLDS IN GROUP,*-- > OTHER
4 . ¢ 'PROCESSED' . . BUFFER .
., .* . ..
PSSO EENNNOOIEEDL SEERCEOREENEEIRES . = ., .
. *NO

I S I I T Y P 2" e,
* * SEsCESesst eI

.* ..
*RLD WITHIN ¢
.TEXT LIHITS.

¢ UPDATE_ LOW
¢ MULT. IF IN
: HIGHER MULT. ‘e .

LY R T T T Y) .. .t
*YES

.
. RETURN .
. .
[T TYY

..‘..FZ“O‘....“
L] *
OETERMINE ADCON®
. LENGTH .
L] .
.
L

.
tescssssssenenne

.t
G2 ..
. ..
«¢ INVALID ¢, YES
%. TWO-BYTE .
¢. ADCO

o, .
*NO

., I kLTI YT Y
*SPLTADCN .
et b e e_e_e_e_¢

SPLIT ADCON ¢
ROUTINE :
.o . T T T T YT
*NO
€
RELOC60 .t
2 », LI INET seee
.. .. ¢ OBTAIN DELINK *
.* ADCON . VALUE AND .
*. REQUIRES 3
¢.DELINKING. ¢ .
.. . .
‘. .0 .
*NO
i(—————————————————————————
.t
K2 ..

o ..
+*IS THIS AN ¢,
. OVERLAY .

¢. MODULE .e

., .
.

*YES

Program Organization 139

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0
CHART FE.

RELOC7S
.oo.oA1oo.o-oon.o

‘HOVE ADCON FROM'
* TEXT TO WORK

. REGISTER 0
. .

L T R R

.
B1 L
.* ..
.*IS RLD TYPEe.
. ELATIVE .

eesesplene
.

. MAKE IT A
. FOUR-BYTE
:NEGATIVE NUMBER:

sesseNENIRIIIIIGSY

<-

OCATION ROUT

RELOC130 .+,
B2 hd

., "
. .
*NO
.
c2 ..
. .,
.*1S RLD TYPE®. YES
.. DELINK 2@
R .o
. .
*NO
v
L
DZ ‘.
'IS RLD TYPE'
‘. AB:!
..
L
.. esee
L]
¢ E1 »
e

SeeeoE 2000 0n000 N0
*TYPE IS BRANCH ¢

EWLFRE

SEEIIRISONINN NS
. .

*VALUE OF ADCON
.
seensssente

ooooocjoooooooooo

ADD OR SUBTRACT'
)' DELINK VALUE

.ooooooo..oo.. .

.
sren

(PART 2

v
Fleeesseseee

MOVE RLLOCAT D
CON BACK INTO*
: TEXT RECORD *

.
TR R TS R R R L 1Y

see
*02 »
* Gl.0—>

LIRS E T Y Y TS
3

RELOCATE .
ADDRESS FIELD ¢
OF RLD ITEM
sene

sesees

LOC120
sssreJleserrree
.

PDATE TO NEXT
RLD ITEM

.
ess0essssee

YES AV
------)'IN HESD PREFIX

seseeIesncorones

E RLD ITEM ¢
.
.
.
.

ooooooooo.oooooo

140 MVS/370 Linkage Editor Logic

1972,1983

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0
CHART FE. RELOCATION ROUTI

SCDOVLY .
Al

. 13 1T A e
+y-T¥FE ADCON,

., .
.

Bl . LI TY-PITE FT TP YIS

. S *ERROR *
.+1S ADCON'S’*. NO e e_s-s_s_e_e_e_e
+. LENGTH FOUR .#----——-- >SET BIT MAP TQ #---
e BYTES .* *REFLECT INVALID®
.. .. . V-TYP .
-, 0 S0 00 0N F0OEROOOOOOISTST
*YES 02 *
‘ * J1e
L
v
. ¥

*. SYMB
.RESOLVED .
., .
.

. o
*NO

aesesD]o0seresres
. .
*OBTAIN SEGMENT *
. UMB. .

:CALLED SEGMENT :
sess0vtetnerne

CeE]osuts0

. .
*OBTAIN SEGMENT *
. NUMBER OF *
:CALLING SESHENT:

*es0e seses

CEPSIF # ettt
* HEWLCPTH
S_t_G_e _t_s__»

.
-
.
.
.

G1" e,
* *

*"1s IT AN . e
UPWARD CALL

H1 ..

.t ..
.¢ IS IT.A
‘.EOHNARD CALL

*. YES
L]
.

OVLY10 .
J .,
«*IS IT A,

¢ LATERAL *. YES
. CALL ACROSS .---
'..REGIONS .
Tl Lo
*NO

.t
K1 .,
«* IS IT .
.® AN *. YES

(HEULFRE

OVLY90
eoe
.
.
*EN
.
.

e

see

¢. ALLOWAB
¢, EXCLUSIVE.
.CALL .

ART 3 OF 3

.
H3 N seseeHyses0 000000
.* .,
ENTRY LIST ¢. YES
FULL . ENTRY LIST
. . OVERLFOW .
.. .. .
. . seseeee
*NO

seJiececsnsnne

.

CREATE
TRY IN

LIST

sesscencantene

NEW .
ENTRY ¢
.
»

seKIesesereees

esesH5000000 000

Program Organization

1972,1983

141

This document contains restricted materials of IBM. ©® Copyright IBM Corp. 1972,1983

LY26-3921-0
OCESSO

FROM INTERMEDIATE

FE

OUTPUT OR SECOND PASS PROCESSOR

S00ep20 00000000
.
: HEWLFFNL :
90000000000

.
. sOVLY OPTION‘
‘.. SPECIFIED .
.. ..
. .
*NO

> LIST FOR

oo
UP C:
>' OF DIRFL‘TOR\'

oguooooo
LACE
OVEIILAY TTR
IN PDS ¢
D!REC’I‘ORY

LXTYTTYYY

¢ WRITE TTR
. SEGMENTS
(XX Y Y T

30

'SE

FOI .
‘ BLOCK/ SCA’I'I‘ER .
. FORMAT

FNL301A
seD2s0esses
.

RROR TY|
AND MESSAGE ¢
0008000000000 000

>
.

«® .
ANY ALI AS
. 'ro BE STOWED M
‘e, Lol . c- .
., ¢ 00000000000 00000 ., .0 0000060000000 0000
*NO *NO
seee
. .
o P2 e l
. o~>
eoee
FNLCN RS
F2 L] S8880F 30000000000 00O OFLG000 OO
® PICK UP_ALI
. o PICE VR Meida o
o SDEPINED OR USE ®
: MAIN E. P.) o
'E?!.. 2000000080 00000000 0000888082800 000000
*NO
OM
TO
TERMINATE 1
Gz'.'o, eeGUessecee
.* .. 's‘m\l ALIAS ‘
¢ _XREF . IN
SPECIFIED ‘ PAR;XT]OI‘@ '
. L A SET .
. . ., . ‘ DIRECTORY ¢
. .0 o . sessevectee
*NO *NO
----------- >
IEWLCEOI _.*. o®.
0000100000000 ...E.w‘lw.....‘... H3 L H& L] 00000500000 00000
. EBA2 * K TP . .‘ ., GCh2e
oS- 6-b-%_s_0_0 o_o_0_o_o_s_0_¢ .o . o_S_6_6-0_0_0_0_¢
. >el znn oF INPUI‘ vel o .
PRODUCE XREF ‘e o
LXIIITIT] ‘o, L o°

o

I

s0J2es00000

.

¢ REPOSITION ¢
¢ INTERMEDIATE ¢
‘!‘ILB lSYSU’K‘l)“

S000K20 00000000
.

: INITIALIZER
seesseeee

142 MVS/370 Linkage Editor

FNL906A

seJ3eccecee 0000 TN0000000000
. . . .

. .
‘(..‘LOSE ALL PILB§‘<- -

onnnolgo.o.ooccon
‘COIDITIOH CODE ¢
.

A

Logic

This document contains restricted materials of IBM. ® Copyright IBM Corp. 1972,1983

LY26-3921-0
CHART GB. SYNAD ROUTINE (HEWLCRO1)

FROM BSAM .
a2t e,
LA TSR EL Y]] . .,
. . . IS THIS o,
: HEWLCRO1 LR E T)‘.EROM SYSPR!VI.'
. . .
ceosressssnsans . .
. e
*YES
L e
>
* K4 o
SssseRIsesssetese
. L]
¢ SYNADAF MACRO *
: FOR BSAM
L]
.
FROM BPAM

eseseC3eessne
.

. . ¢ SYNADAF MACRO

: HEWLCRC2 : -------- >: FOR BPAM

Sesseesnsennnee

seseC2¢s0 0t

.
Setseteseroneres

..
D3 ..

. * ..
NO *ENTRY FROM @,
——— MAP .

P L R TR Y T LYY
.

SE! 1T
INDICATING .
ERROR WHILE *

:READ!M; SYSLH@:

.

LI R TRY T I

FROM XDAP
LTy LYY T YY)
SsesE2scssseven . .
. . ¢ SYNADAF MACRO ¢
¢ HEWLCRO3 $mmmmee >$ ~ FOR EXCP :
S0 ENIB0 49000 . 9
000000000000 000
2000
L] L]
s F3 o
. > <
LI}

$00esF20e
.

INSERT . ..
* ‘IEW0630' IN o YES .* ERROR ..
*MSG, SET BIT IN®C—————mwe .. READING .
APT FOR BIT MAPe ¢. SYSLMOD .
'OCESSOR . .*
LRI P T Y YY) o, .o

teeseGIteecetsene
. .
MOVE MESSAGE TO®
: PRINT BUFFER :

. .
®e00s000000000t00

ssessese
T [

. .
: PRINT MESSAGE :
LI EY YT PY TR YT T

seessJIesesestose
. .

. .
:SYNADRIS MACRO :

. .
0000000000 sees
.
; .
se0ssK200 00000000 K3 e,
se0eK]lesesssces ¢ TURN OFF BIT ¢ .. .,
. RETURN TOQ . ¢ INDICATING . YES .* ERROR ., .
¢ MAP/XREF | S—— * ERROR WHILE ®<--oeo—-l *. READING . #————_>e
READING SYSLMOD® ¢, SYSLMOD .
tesesesesnsesan
tsesesececese .. .0
.

Fueeos
INSERT
*IEWQ294° IN
MSG, SET BIT INe

IT MAP*

APT FOR B

PROCESSOR .
sese XY LT Y

coee

.
K4 o
seee

esesKyetesettee
EXIT TQO FINAL ¢
TO ABORT .

.
se0vveseseseses

seeepseccececes
.
RETURN :(--
S0t et et ene

.

Program Organization 143

This documaent contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

H. G LOGG

seeep200000
.

b HEWLFLOG .
. .

s00000000000000

$000R20000000000

.
SEPARATE ERROR ¢
. 0 D .
:HESSAGE NUMBER :
L T YT YT YT

LOGO3 LOGO7 .
SOIC 00000000000 c2 .,
. .,
* WRITE OUT . YES .*¢ CONTROL
CARD IMAGE Commmme e ¢ .STATEMENT TO
. ‘.EE LISTED. *
sessessssrencrne ‘e, Lo
*NO
p2" e,
eseeD]I 000000000 e .,
* . . *CESD SYMBOLe¢. NO
* RETURN . ¢.TO BE WRITTEN, ¢---
* ., ouT I
XYY . .
. .0
*YES

$9000E20000000000
. .
*MOVE SYMBOL TO ¢
:HESSAGE BUFFER :
.
.

.t
F2 ..

. ® .,
«*IS THERE A ¢
*.SECOND SYMBO]

“e¥ES

eeG2e0e

.
.
MOVE SECOND ¢
L TO .
.

.

.

.
:HFSSAGE BUFFER
sess0s0000000000

LOG10
SesH20000 0000000

* WRITE .

OUT
‘H!SSAGI HUPPER.

01 '
00000 J20000000000
.

UPDATE
'ONDITION CODE

esesee

GAG2 ..
K2 ..

[TIT ST . . ., LITT) &11]]
. . YES .* *, MO . .
: HEWLFFNL :(-------- ‘.§IV2RITY CODE.' -------- >. RETURN .

*00000000000000 ‘e, .ot s000000000s000e

., L.

144 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp.
LY26-3921-0

1972,1983

MICROFICHE DIRECTORY

C

The microfiche directory, Figure 33, is designed to help you
find named areas of code in the program listing, which is on
microfiche. Microfiche cards are filed in alphameric order by
object module name.

entry point on microfiche,
the associated CSECT name.

is also given.

If you wish to locate a control section or
find the name in column one and note
A description of the control section

This section also contains a module-CSECT cross-reference table
(see Figure 34 on page 148).

symbol Type CSECT Description Referenced By

APTEND Entry point HEWLFROU See HEWLEPNT

APTEXLST Label HEWLFROU Open exit list for HEWLFINT, HEWLFINC
SYSLIN, SYSPRINT, and
SYSLIB

APTXLIST Label HEWLFROU Open exit list for HEWLFINT, HEWLFMAP
SYSLMOD

APT000 Entry point HEWLFAPT SYNAD exit routine for
SYSPRINT

CHECKRD Entry point HEWLFSIO Routine to check reads HEWLFREL
on SYSUT1

CHECKWRT Entry point HEWLFSIO Routine to check writes | HEWLFREL
on SYSLMOD

‘ ENQNAME Label HEWLFROU Major name by which HEWLFINT, HEWLFFNL

SYSLMOD is enqueued

GETIDMUL Entry point HEWLFSCD Text LOOK AHEAD/READ HEWLFREL
AHEAD routine

HEWLCADA Label HEWLFROU Not used

HEWLCAD1 Entry point HEWLFADA Routine to make CESD HEWLFENS
entries for ENTABS

HEWLCAUT Entry point HEWLFINC Automatic library call HEWLFINP
processing

HEWLCDCN Entry point HEWLFRCG Library DECHAIN routine HEWLFESD

HEWLCDLK Entry point HEWLFINP DELINK routine HEWLFESD, HEWLFRAT

HEWLCEOD Entry point HEWLFINP END-OF-DATA routine for HEWLFINC, HEWLFROU
SYSLIB

HEWLCEOI Entry point HEWLFFNL HEWL FROU

HEWLCE30 Entry point HEWLFESD Return point to avoid HEWLFRCG
ESD processing

HEWLCFAB ‘Entry point HEWLFFNL Termination processing HEWLFROU

HEWLCFNI Entry point HEWLFFNL Immediate termination HEWLFINP, HEWLFROU
processing

Figure 33 (Part 1 of 4).

C

Microfiche Directory

Microfiche Directory

145

routine

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0
symbol Type CSECT Description Referenced By
HEWLCICA Label HEWLFINP Pointer to include
processor
HEWLCIDR Entry point HEWLFIDR IDR user data from HEWLFSCN
IDENTIFY statement
processor
HEWLCINP Entry point HEWLFINP See HEWLFINP HEWLFTXT
HEWLCMDB Label HEWLFROU DCB for SYSLMOD HEWLFFNL,
HEWLFINT,
HEWLFMAP,
HEWLFOUT,
HEWLFSIO, HEWLFSYM
HEWLCPDB Label HEWLFROU DCB for SYSPRINT HEWLFAPT,
HEWLFFNL, HEWLFINT
HEWLCPTH Entry point HEWLFRCG COMMON PATH routine HEWLFESD
HEWLCRBB Label HEWLFAPT DECB for SYSLIB
HEWLCRBN Label HEWLFAPT DECB for SYSLIN
HEWLCRID Label HEWLFESD ESD ID of item HEWLFRCG
currently in process
HEWLCRO1 Entry point HEWLFROU END-OF-DATA routine for HEWLFINC
SYSUT1; SYNAD routine
for SYSUT1, SYSPRINT,
and SYSLIN
HEWLCRO2 Entry point HEWLFROU END-OF-DATA routine for HEWLFINC
SYSLMOD
HEWLCRO3 Entry point HEWLFROU I/0 ERROR routine for HEWLFSIO
SYSLMOD
HEWLCSDB Label HEWLFROU DCB for SYSLIN HEWLFAPT,
HEWLFFNL, HEWLFINT
HEWLCSNX Entry point HEWLFFNL Termination processing HEWLFROU
after SYNAD exit
HEWLCTTY Label HEWLFESD Type flags for current HEWLFRCG
ESD item
HEWLCUDB Label HEWLFROU DCB for SYSUT1 HEWLFFNL,
. HEWLFINT,
HEWLFOUT,
HEWLFRAT, HEWLFSIO
HEWL EEON Entry point HEWLFINP END-OF-DATA routine for HEWLFROU
SYSLIN
HEWLENAM Entry point HEWLFINT Reentry into HEWLFROU, HEWLFFNL
initialization for
multiple link-edits
HEWLEPNT Entry point HEWLFROU SYSPRINT OUTPUT routine HEWLFBTP,
HEWLFFNL,
HEWLFINT,
HEWLFMAP, HEWLFOPT
HEWLERDM Entry point HEWLFINP PRIMARY INPUT READ HEWLFTXT

146

Figure 33 (Part 2 of %).

MVS/370 Linkage Editor Logic

Microfiche Directory

This document contains restricted materials of IBM. ® Copyright
LY26-3921-0

IBM Corp.

1972,1983

Symbol Type CSECT Description Referenced By
HEWLFADA CSECT HEWLFADA Address assignment HEWLFINC,
HEWLFINP, HEWLFROU
HEWLFALK Entry point HEWLFROU TABLE ALLOCATION HEWLFAPT
routine
HEWLFAPT CSECT HEWLFAPT All Purpose Table HEWLFINT
(Communications Area)
HEWLFAPX Entry point HEWLFMAP RECOVERY routine after HEWLFROU
SYNAD exit
HEWLFBTP CSECT HEWLFBTP Error message printing HEWLFFNL
HEWLFDEF CSECT HEWLFDEF Default size values HEWLFINT,
HEWLFOPT, HEWLFOUT
HEWLFEND CSECT HEWLFEND End record processing HEWLFINC, HEWLFINP
HEWLFENS CSECT HEWLFENS ENTAB size HEWLFADA
determination
HEWLFENT CSECT HEWLFENT Entry statement HEWLFADA
processing
HEWLFESD CSECT HEWLFESD ESD record processing HEWLFINP
HEWL FFNL CSECT HEWLFFNL Final processing HEWLFOUT,
HEWLFROU,
HEWLFSCD, HEWLFADA
HEWLFIDR CSECT HEWLFIDR IDR record processing HEWLFINP
HEWLFINC CSECT HEWLFINC Include statement HEWLFINP, HEWLFSCN
processing
HEWLFINP CSECT HEWLFINP Input processing HEWLFINC,
HEWLFINT, HEWLFROU
HEWLFINT CSECT HEWLFINT Initialization HEWL FROU
HEWLFLDB Label HEWLFROU DCB for SYSLIB HEWLFAPT,
HEWLFFNL .
HEWLFINC, HEWLFADA
HEWLFLOG Entry point HEWLFROU ERROR LOGGING routine HEWLFAPT
HEWL FMAP CSECT HEWLFMAP MAP/CROSS-REFERENCE HEWLFFNL,
processing HEWLFOUT, HEWLFROU
HEWLFOPT CSECT HEWLFOPT Options processing HEWLFINT
HEWLFOUT CSECT HEWLFOUT Intermediate output HEWLFADA
HEWLFRAT CSECT HEWLFRAT RLD record processing HEWLFINC,
HEWLFINP, HEWLFSCN
HEWLFRCG CSECT HEWLFRCG REPLACE/CHANGE HEWLFESD
statement processing
HEWLFREL CSECT HEWLFREL Relocation/second pass HEWLFSCD
initialization
HEWL FROU CSECT HEWLFROU Miscellaneous

routines/LOAD module
entry point

‘ Figure 33 (Part 3 of 4). Microfiche Directory

Microfiche Directory

147

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0
Symbol Type CSECT Description Referenced By
HEWLFSCD CSECT HEWLFSCD Second pass (LOAD HEWLFOUT, HEWLFROU
module) output
HEWLFSCN CSECT HEWLFSCN Control statement HEWLFINP
processing
HEWLFSIO CSECT HEWLFSCD Second pass HEWLFSCD
input/output
HEWLFSYM CSECT HEWLFSYM SYM record processing HEWLFSYM
HEWLFTXT CSECT HEWLFRAT TXT record processing HEWLFRAT
HEWLTMDB Label HEWLFROU DCB for SYSTERM HEWLFFNL, HEWLFINT
HEWLXIT2 Entry point HEWLFINT Open exit routine for HEWLFROU
SYSLMOD
HEWVLDCK Entry point HEWLFROU Member and alias name HEWLFFNL, HEWLFSCN
validity check routine
INDDNAME Label HEWLFROU DDNAME for primary HEWLFINT, HEWLFSCN
input data set
INRLDCB1 Label HEWLFREL Input RLD control block HEWLFSCD
#1
INRLDCB2 Label HEWLFREL Input RLD control block HEWLFSCD
#2
JFCBADDR Label HEWL FMAP JFCB for SYSLMOD HEWLFFNL
MAINGOT Label HEWLFINT Address of storage
obtained from GETMAIN
MINOR Label HEWLFROU Minor name by which HEWLFFNL, HEWLFINT
SYSMOD is enqueued
MSGFOUR Label HEWLFINT Pointer to (optional) HEWLFROU
heading message
OTRLDCB1 Label HEWLFREL OQutput RLD control HEWLFSCD
block #1
OTRLDCB2 Label HEWLFREL Output RLD control HEWLFSCD
block #2
OTRLDCB3 Label HEWLFREL Output RLD control HEWLFSCD
block #3
RELOCATE Entry point HEWLFREL Address constant HEWLFSCD
relocation routine
SCDENTAB Entry point HEWLFREL Routine to create HEWLFSCD
ENTABS and ENTAB RLDs
SEGLNTAB Label HEWLFADA Pointer to Segment HEWLFOUT
Length Table
WRTCRRLD Entry point HEWLFSIO Routine to write CTL or HEWLFREL
CTL/RLD records on
SYSLMOD
WRTTXT Entry point HEWLFSIO Routine to uwrite text HEWLFREL
records on SYSLMOD

Figgre 33 (Part 4 of 4). Microfiche Directory

148 MVS/370 Linkage Editor Logic

C

This documaent contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

Module Name CSECT Name
HEWLFADA HEWLFADA
HEWLFAPT HEWLFAPT
HEWLFBTP HEWLFBTP
HEWL FDEF HEWL FDEF
HEWLFEND HEWLFEND
HEWLFENS HEWLFENS
HEWLFENT HEWLFENT
HEWLFESD HEWLFESD
HEWLFFNL HEWLFFNL
HEWLFIDR HEWLFIDR
HEWLFINC HEWLFINC
HEWLFINP HEWLFINP
HEWLFOPT HEWLFOPT
HEWLFMAP HEWL FMAP
HEWLFINT HEWLFINT
HEWLFOUT HEWLFOUT
HEWLFRAT HEWLFRAT, HEWLFTXT
HEWLFRCG HEWLFRCG
HEWLFREL HEWLFREL
HEWL FROU HEWLFROU
HEWLFSCD HEWLFSCD, HEWLFSIO
HEWLFSCN HEWLFSCN
HEWLFSYM HEWLFSYM

Figura 3%. Module/CSECT Cross-Raeferaencae Table

Microficha Directory

149

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

TABLE LAYOQUTS

This section provides detailed layouts of internal tables used

during Linkage Editor processing.

Figure 35 indicates the

modules in which tables are initialized and used or modified.
Tables described in this section are included alphabetically
except for the All-Purpose Table (see Figure 36 on page 151).

>

Table Built by Used andsor Modified by

Alias Table HEWLFENT HEWLFFNL

All-Purpose Table (APT) HEWLFINT 1

Calls List HEWL FRAT HEWLFENS

Composite External Symbol HEWLFESD HEWLFRAT, HEWLFSCN, HEWLFINC,

Dictionary (CESD) HEWLFADA, HEWLFENS, HEWLFENT,
HEWLFOUT, HEWLFTXT

Delink Table HEWLFESD HEWLFRAT, HEWLFSCD

Downward Calls List HEWLFENS 2

Entry List HEWLFSCD 2

Entry Table (ENTAB) HEWLFSCD 2

Half ESD (HESD) HEWLFOUT HEWLFSCD

Half ESD Prefix HEWLFSCD 2

High ID Table (HIID) HEWLFOUT 2 J

IDR Translator Table (IDRTRTAB) HEWLFIDR HEWLFOUT

IDR IMASPZAP Table (IDRZPTAB) HEWLFIDR HEWLFOUT

IDR User Data Table (IDRUDTAB) HEWLFIDR HEWLFOUT

ORDER Table HEWLFSCN HEWLFOUT, HEWLFADA

Relocation Constant Table (RCT) HEWL FADA HEWLFOUT, HEWLFSCD

Renumbering Table (RNT) HEWLFESD HEWLFRAT, HEWLFTXT

RLD Input Control Blocks HEWLFSCD 2

RLD Note List HEWL FRAT HEWLFOUT, HEWLFSCD

RLD Output Control Blocks HEWLFSCD 2

Second Pass Text Control Blocks | HEWLFSCD 2

Segment Length Table (SEGLGTH) HEWLFADA 2

Segment Path Table (SEGTAl) HEWLFOUT HEWLFSCD

Text I/0 Table HEWLFTXT HEWLFOUT, HEWLFSCD

Text Note List HEWLFTXT HEWLFOUT, HEWLFSCD

TTR List (Text I/0 Control HEWLFSCD HEWLFSCD

Table)

150 MVS/370 Linkage Editor Logic

Figure 35. Table Construction and Usage

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0
Notes to Figure 35:
1 Major communications area throughout linkage editor
t processing.
2 Built and processed entirely within one routine.
Offset
Decimal | Hex Length | Symbol Description
8 8 8 PDSE1 Member or alias name of module being created
16 10 3 PDSE2 Relative disk address (TTR) of first record
of module
19 13 1 PDSE3 Flags
Bit 0 Alias indicator
Bits 1-2 Number of TTRs in user data
Bits 3-7 Length of user data in half words
20 14 4 PDSE4 Relative disk address (TTR) of first text
record of module
26 18 3 PDSES5 Relative disk address (TTR) of note list or
scatter/translation record
27 1B 1 PDSEé6 Number of TTRs in note list, if present
28 1C 1 PDSE? Flags (module attributes #1)
Bit 0 Reenterable
Bit 1 Reusable
L Bit 2 Overlay
Bit 3 Test
Bit 4 Only loadable
Bit 5 Block/scatter format
Bit 6 Executable
Bit 7 Module contains 1 text record and no
RLD's
29 1D 1 PDSES8 Flags (module attributes #1)
Bit 0 Output load module not downward
compatible
Bit 1 Origin of first text record is zero
Bit 2 Entry point assigned by linkage
editor is 0
Bit 3 Module contains no RLD items
Bit 4 Module can be reprocessed by linkage
editor
Bit 5 Module does not contain SYM records
Bit 6 Module was created by link editor F

‘ Figure 36 (Part 1 of 10). All-Purpose Table (APT)

Table Layouts

151

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

offset

Decimal | Hex | Length | Symbol Description
Bit 7 Refreshable

30 1E 3 PDSE9 Total contiguous storage requirement for load
module

33 21 2 PDSE10 Length of first text record

35 23 3 PDSE11 Entry point address

38 26 3 PDSE12 Editor assigned origin of first text record

38 26 1 Flags (1) (Module attributes #2)

Bit 0 Load module built by 05/VS linkage
editor

Bit 1 Not used

Bit 2 Page alignment required for load
module

Bit 3 SSI present in directory entry

Bit 4 Directory entry contains
authorization code

39 27 1 Flags (2) (Module attributes #2)

Bits 0-2 Not used

Bit 3 Load module residence mode

Bits 4-5 Alias entry point addressing mode

Bits 6-7 Main entry point addressing mode

40 28 1 Count of RLD and CTL/RLD records following
the first text record

1 29 2 PDSE13 Number of bytes in scatter list

43 2B 2 PDSE1lé4 Number of bytes in the Translation Table

45 2D 2 PDSE15 ESDID of the first text record

47 2F 2 PDSE16 ESDID of the control section containing the
entry point

49 31 3 PDSE17 Entry point of main member name

52 34 8 PDSE18 Member name of module

60 3C 72 REGSA Register save area for data management

132 84 56 I0CT I/0 Control Table

188 BC 1 APTO Flags

Bit 0 NCAL

Bit 1 XREF

Bit 2 MAP

Bit 3 LET

Figure 36 (Part 2 of 10). All-Purpose Table (APT)

152 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

Offset .
Decimal Hex Length symbol Description

‘ Bit 4 LOG

Bit 5 XCAL
Bit 6 TXT/RLD

Bit 7 A library statement was read

189 BD 1 APT1 Flags

Bit 0 More include input to come

Bit 1 Automatic library call in operation
Bit 2 Object or load module
Bit 3 Delete indicator
Bit 4 Entry point received
Bit 5 Symbolic or absolute entry
Bit 6 Entry statement received
Bit 7 ESD write indicator
190 BE 1 APT2 Flags
Bit 0 No length received
Bit 1 No length indication
‘ Bit 2 First text record
L Bit 3 Status indicator received
Bit ¢4 Include previously initiated
Bit 5 I/0 overlap bit
Bit 6 In module indicator
Bit 7 Card continuation
191 BF 1 APT3 Flags

Bit 0 End of file

Bit 1 Name statement received-end of input
for load module

Bit 2 End of SYSLIN input

Bit 3 To stow as replacement
Bit 4 First text of load module
Bit 5 First text of segment

Bit 6 RLDs for group

Bit 7 SYSLIB opened

192 co 4 CTTR Relative disk address (TTR) of first CESD
record, if MAP or SREF option specified

" Figure 36 (Part 3 of 10). All-Purpose Table (APT)

Table Layouts 153

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

offset

Decimal Hex Length | Symbol Description

196 C4 2 CSNO Current segment number

198 Cé 2 CRNO Current region number

200 c8 4 PRAL Pseudo register cumulative length

204 cc 4 FLCD Address of first deleted CESD entry

208 DO 4 RCCE Address of replace/change chain end

212 D4 4 RCCB Address of replace/change chain beginning

216 D8 4 ALCB Address of alias chain beginning

220 DC 4 OVCMBGAD| Address of overlap chain beginning

224 EO 4 SGT1 Address of SEGTAB1l - 1

228 E4 4 CLLT Address of Calls List Table

323 E8 4 TNT1 Address of text note list 1

236 EC % RNT1 Address of RLD note list 1

240 FO 4 RLDINPAD| Address of RLD input buffer, 1lst pass

244 F4 4 RECNT Address of Relocation Constant Table - 4/

Renumbering Table - 4§

2648 F8 4 TXTIO Address of Text I/0 Table

252 FC 4 ALAS Address of Alias Table

256 100 4 DLKT Address of DELINK Table - 5

260 104 4 CHESD Address of composite ESD - 16

264 108 % SELST Address of second pass entry list

268 10C 4 TNLS?2 Address of text note list 2

272 110 4 RNLS2 Address of RLD note list 2

276 114 4 TTRLIST Address of TTR list

280 118 4 RLDOUTBF| Address of output RLD buffer, 2nd pass

284 11C 4 HIARADD Address of Hierarchy Table

288 120 4 ORDRADR Address of Order Table

292 124 4 INCBRKPT| Address of breaking point in include chain

296 128 4 CRRTINCL| Address of currently included ESD item

300 12C 2 ENRNX Maximum number of entries in RNT Table

302 12E 2 ENCDX Maximum number of entries in C/HESD Tables

304 130 2 ENT1X Maximum number of entries in text note list 1

306 132 2 ENR1X Maximum number of entries in RLD note list 1

308 134 2 ENT2X Maximum number of entries in text note list 2

Figure 36 (Part 4 of 10).

154 MVS/370 Linkage Editor Logic

All-Purpose Table (APT)

C

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0

offset

Decimal Hex Length | Symbol Description

310 136 2 ENR2X Maximum number of entries in RLD note list 2

312 138 2 ENTOX Maximum number of bytes in Text I/0 Table

314 13A 2 ENCLX Maximum number of bytes in calls list

316 13C 2 ENDTX Maximum number of entries in DELINK Table

318 13E 2 ENS1X Maximum number of segments

320 140 2 BUFSIZ Size of load module input buffer

324 144 % HESD Address of HESD Table - 8

328 148 2 ENELTX T@xlmum number of entries in 2nd pass entry

is

330 14A 2 ENT1X1 Maximum number of entries in text note list
1, pre-reallocate

332 14C 2 ENR1X1 Maximum number of entries in RLD note list 1,
pre-reallocate

334 14E 2 IDRTRLEN| Maximum length of IDR Translator Data Table

336 150 2 IDRTILEN| Maximum length of IDR Translator ID Table

338 152 2 IDRUDLEN| Maximum length of IDR User Data Table

340 154 2 IDRZPLEN| Maximum length of IDR AMASPZAP Data Table

344 158 % IDRTRTAB| Starting address of IDR Translator Data Table

348 15C % IDRTITAB| Starting address of IDR Translator ID Table

352 160 % IDRUDTAB| Starting address of IDR User Data Table

356 164 % IDRZPTAB| Starting address of IDR AMASPZAP Data Table

360 168 4 IDRTREND| Address of next available byte in IDR
Translator Data Table

364 16C % IDRTIEND| Address of next available byte in IDR
Translator ID Table

364 16C 4 IDRTIEND| Address of next available byte in IDR
Translator ID Table

368 170 % IDRUDEND| Address of next available byte in IDR User
Data Table

372 174 % IDRZPEND| Address of next available byte in IDR
AMASPZAP Data Table

376 178 2 ENRLD2X Maximum size of input RLD buffer, lst pass

378 17A 2 ENSPX Save area

380 17C 4 LSTS Last segment in each region (region 1-%)

384 180 8 EPSM Entry point symbol or end card address/symbol

392 188 2 ENT1C Current number of entries in text note list 1

394 18A 2 ENRI1C Current number of entries in RLD note list 1

‘ Figure 36 (Part 5 of 10). All-Purpose Table (APT)

Table Layouts

155

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

offset

Decimal Hex Length | Symbol Description

396 18C 2 ENITC Current number of bytes in TXT I/0 CNTL Table

398 18E 2 ENIRC Current number of bytes in RLD I/0 CNTL Table

400 190 2 ENTOC Current number of bytes in TXT I/0 Table

402 192 2 ENCLC Current number of bytes in calls list

404 194 2 ENS1C Current number of entries in SEGTABI

406 196 2 ENASC Current number of entries in Alias Table

408 198 2 ENDTC Current number of entries in DELINK Table

410 19A 2 ENRNC Current number of entries in RNT Table

412 19C 2 ENCDC Current number of entries in H/CESD Table

414 19E 2 ENELTC ggr;ent number of entries in 2nd pass entry

is

%16 1A0 2 ENT2C Current number of entries in TXT note list 2

418 1A2 2 ENR2C Current number of entries in RLD note list 2

420 1A4 2 ENSPC Highest segment number with text

426 1A8 2 IDRTRCUR| Current number of bytes in IDR Translator
Data Table

428 1AC 2 IDRTICUR| Current number of bytes in IDR Translator ID
Table

432 1B0O 2 IDRUDCUR| Current number of bytes in IDR User Data
Table

436 184 2 IDRZPCUR| Current number of bytes in IDR AMASPZAP Data
Table

438 1B6 2 ORDRCUR Current number of bytes in Order Table

440 1B8 2 ORDRMAX Maximum number of bytes in Order Table

444 1BC 8 BITMAP Bit switches denoting error messages logged
(error msgs 64-1)

452 1Cc4 8 BITMAP2 Bit switches denoting error messages logged
(error msgs 128-65)

460 1CcC 2 LINECNT Number of lines output for current page

462 1CE 2 HISEV Highest severity message logged

464 1D0 8 SYSRTN Save area for registers 13 and 14 from
INVOKER

472 1D8 72 SPACES Register save area

544 220 4 ERDIG Address of HEWLFLOG, error logging routine

548 224 4 ERDIGA Address of HEWLFALK, table allocation routine

552 228 % SSI System status indicator (for APT)

556 22C 4 FFCADR Highest address retained from gotten storage

Figure 36 (Part 6 of 10).

All-Purpose Table (APT)

156 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
Offset
Decimal Hex Length | symbol Description
L, 560 230 8 LIBNAME Name of library for automatic library call
568 238 8 LIBOPEN Name of library currently open
576 2640 2 APTO000 SYNAD routine for SYSPRINT data set
578 262 3 SAVATS Attributes save area
581 2645 1 APTSWS Swi tches
Bit 0 TS0 task
Bit 1 Not used
Bit 2 Absolute/relocatable
Bit 3 DCBS override
Bit & Bit map processed
Bit 5 Linkage editor input received
Bit 6 SYM received
Bit 7 ESD received
582 266 1 NEWSW Flags
Bit 0 If off indicates 1st time in INT
Bit 1 MAP/XREF entered from
intermediatesfinal processor
L Bit 2 All RLDs in storage/not in storage
Bit 3 MAP/XREF in control/not in control
Bit 4 Normal printing on SYSPRINT/ABORT
without printing
Bit 5 HIERARCHY
Bit 6 Not used
Bit 7 Indicates purge to TXT/RLD processor
583 2647 1 NEWSW2 Flags
Bit 0 More RLDs exist for current ID
Bit 1 Split RLD in output buffer
Bit 2 R and P pointer have been saved
Bit 3 Relative/absolute relocation factor
needed
Bit 4 Split RLD has been saved in HESD
prefix
Bit 5 No RLDs exist for last text of
segment/module
Bit 6 Split RLD is preceded by R and P
pointers

‘ Figure 36 (Part 7 of 10).

All-Purpose Table (APT)

Table Layouts 157

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
LY26-3921-0
Offset
Decimal Hex Length symbol Description
Bit 7 R and P pointers for current chain
are in buffer
584 248 1 APTSW2 Flags
Bit 0 SYSLMOD enqueued
Bit 1 Not used
Bit 2 SYSLMOD shared DASD
Bit 3 First/not first time through
initialization
Bits 4-7 Not used
585 249 1 APTSW3 Flags
Bit 0 Expand statement encountered
Bit 1 Included load module was in overlay
format
Bits 2-7 Reserved
586 26A 1 APTSW4 Swi tches
587 24B 1 IDRSWS Flags
Bits 0-2 Not used
Bit 3 Last IDR item processed not complete
Bit 4 Double IDR entry on object module
record in process
Bit 5 Identify control card in process
Bit 6 Object module end card in process
for IDR input
Bit 7 Load module IDR in process
588 264G 1 APTG Flags
Bit 0 Tables initially allocated
Bit 1 Tables reallocated
Bit 2 Intermediate pass processing
Bit 3 Second pass processing
Bit 4 Ordering required
Bit 5 Page boundary alignment required
Bit 6 Align on 2K-byte page boundary
Bit 7 Not used
590 26E 2 MAXBF Maximum blocking factor
592 250 28 HEWLCRBB| SYSLIB control block

Figure 36 (Part 8 of 10).

All-Purpose Table (APT)

158 MVS/370 Linkage Editor lLogic

This document contains restricted materials of IBM. © Copyright IBM Corp.

1972,1983

LY26-3921-0
offset
Decimal | Hex Length | Symbol Description
(-' 592 250 4 Address of SYSLIB DECB
596 254 4 1st library buffer
600 258 4 2nd library buffer
604 25C 2 BLKSIZE
606 25E 2 LRECL
608 260 2 BLKFCTR
610 262 2 Number of records left in buffer
612 264 4 Address of current record
616 268 4 READSW set to first read
620 26C 28 HEWLCRBN| SYSLIN control block
620 26C 4 Address of SYSLIN DECB
624 270 4 1st SYSLIN buffer
628 274 4 2nd SYSLIN buffer
632 278 2 BLKSIZE
634 27A 2 LRECL
636 27¢C 2 BLKFCTR
638 27E 2 Number of records left in buffer
L 640 280 4 Address of current record
6644 284 4 READSW set to first read
648 288 28 HEWLCWBB| SYSPRINT control block
648 288 4 Address of SYSPRINT DCB
652 28C 4 1st SYSPRINT buffer
656 290 4 2nd SYSPRINT buffer
660 294 2 BLKSIZE
662 296 2 LRECL
664 298 2 BLKFCTR
666 29A 2 Number of records left in buffer
668 29C 4 Address of current record
672 2A0 4 WRITESW set to first write
676 2A4 4 RLDOUT1 Address of first RLD output buffer, lst pass
676 2A4 4 RLDINBFl| Address of first RLD input buffer, 2nd pass
680 2A8 4 RLDOUTZ2 Address of second RLD output buffer, 1st pass
680 2A8 4 RLDINBF2| Address of second RLD input buffer, 2nd pass

‘ Figure 36 (Part 9 of 10). All-Purpose Table (APT)

Table Layouts

159

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0
Offsat
Decimal | Hex | Length | Symbol Description
686 2AC 4 TXTBFBEG| Address of start of text buffer
688 2B0 4 TXTBFEND| Address of end of text buffer
692 2B4 4 MULTSIZE| Size of SYSLMOD multiplicity or record
696 2B8 4 UT1SIZE Size of SYSUT1 record
700 2BC 4 SZSYSUT1| Maximum number of bytes per track on SYSUT1
704 2C0 4 RLDSIZE Size of each input RLD buffer, lst pass
708 2C4 4 VALUE1 Size value 1 (maximum allowable storage)
712 2C8 4 VALUEZ2 Size value 2 (load module buffer)
716 2ccC 4 MSGONE Pointer to 1lst heading message
720 2D0 4 MSGTWO Pointer to 2nd heading message
724 2D4 4 MSGTHREE| Pointer to 3rd heading message
728 2D8 4 HEWLCLAC| Address of current read block
732 2DC 20 DECB for SYSLIN
752 2F0 20 DECB for SYSLIB
772 304 4 COREADR Address of storage obtained through GETMAIN
776 308 4 CORELEN Length of storage obtained through GETMAIN
780 3ocC 66 BRNCHSV Save area
844 34C 1 APTAPFCT| Default length of authorization code
845 340 1 APTAPFAC| Default authorization code
846 34E 1 PDSAPFCT| Length of authorization code assigned
847 34F 1 PDSAPFAC| Authorization code assigned
848 350 1 MODEAMOD| Addressing mode from mode control statement
849 351 1 MODERMOD| Residence mode from mode control statement
850 352 1 PARMAMOD| Addressing mode from PARM field
851 353 1 PARMRMOD| Residence mode from PARM field
852 354 1 MEMBAMOD| Addressing mode for main entry point
853 355 1 ESDARMOD| Residence mode accumulated from ESDs

Figure 36 (Part 10 of 10).

All-Purpose Table (APT)

160 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983

LY26-3921-0

Alias Table

Built by Entry Processor
Referred to by Final Processor

CESD entry number - present only if symbol is one that is present in the CESD and is type
SD or LR. This field contains zero for all other symbols (2 bytes).

Symbol - the eight=character alios name (8 bytes)

Figure 37. Alias Tablae

Colls List

As built by RLD Processor

Z [P |R (R |Z]|P |R]|R|[R|[Z P R|IR|R|[R[Z |P R [R [Z
1 2 7 8

2 bytes of binary zeros

Relocation pointer - points to the referred to symbol in the CESD (types SD, LR, ER, WX,
and CM) (2 bytes)

Relocation pointer (2 bytes)

—— Relocation pointer (2 bytes)

— Position pointer - points to SD or PC in CESD that contains the references (V-type address constants) (2 bytes)

Figure 38. Calls List (As Built by RLD Processor)

Calls List

As altered ond used by ENTAB Size Determination Routine (HEWLFENS)

gslp |R |[R [10]P [R[R]|R|G®& SS p [R|IR|R[R]B8TPTR[R [Z
1 2 7

2 bytes of binary zeros
(End of chain indicator)

Chaining value - inserted by HEWLFENS -~ count, in bytes, to next chaining value (2 bytes)

Figure 39. Calls List (As Alteraed and Usaed by ENTAB Size Datermination Routine)

Tabla Layouts

lé61

This document contains restricted materials of IBM. ©® Copyright IBM Corp.

LY26-3921-0

1972,1983

Composite External Symbol Dictionary (CESD) - Internal Format

Built by ESD Processor and Control Statement Processors
Modified by Address Assignment Processor

0-7 Ial 9-11 ||2]13J14,15| I T I

[T 115

1]

-—Subtype - ER

ER-Control change
ER-Control replace
ER-Control delete

ER-ddname
ER-Alias
ER-Overlay

ER-Matched no call
ER-Never call
ER-Delete
ER-Replace

(1 byte)

If AMODE/RMODE/RSECT data (SD,
XXXX not used
R RSECT information

0 = not read-only
1 = read-only
R. RMODE data
0=24
1=ANY
.AA AMODE data
00,01 =24
10=31
11 = ANY

Alignment factor (PR)
07 = doubieword
03 = fullword
01 = haltword
00 = byte

L—Type - Section definition (SD)

- Label reference (LR)

Private code (PC)

Common (CM)

Pseudo register (PR)

Null

External reference (ER)

Weak external reference (WX)
(1 byte)

L—Symbol - the eight-character symbolic name (8 bytes)

PC):

XXXX
XXXX
XXXX
XXXX
XXXX
0000
XXXX
XXXX

ER-Control include w/ pointer
ER-Control include w/o pointer

ER-Unmatched library member
ER-Matched library member
ER-Unmatched no call

L— If segment number, 1 to 255 {SD, CM, PC, LR}

0000
0011
0100
0101
0110
ol
0010
1010

chain ID when the entry type is:
ER-Library (the symbol was extracted from a LIBRARY control statement)

length of control section for type:
SD, PC, PR, or CM (2 bytes)

Chain pointer/chain ID/length - chain pointer when the entry
type is: ER-Include w/pointer or an ER-ddname
that was extracted from a LIBRARY control statement

0000 0000
1111 0000
1110 0000
1110 1000
1101 0000
1100 0000
1011 0000
1010 0000
1001 0000
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110

Subclassification ~

Delete xxx1
Replace xxx1
Insert xx1x
Chain x1xx
Map Txxx

XXX
XXXX
XXXX
XXXX
XXX

Hex
00
FO
EO
E8
DO
co
BO
A0
%
02
03
04
05
06
08
00

L—Chain address/reverse chain ID - used to create a chain of CESD entries (3 bytes)

Figure 40. Composite External Symbol Dictionary (CESD)—Internal Format

162 MVS/370 Linkage Editor Logic

This document contains restricted materials of IBM. © Copyright IBM Corp.

LY26-3921-0

See Figure 41 for normal combination of internal CESD types.

1972,1983

Statement (3)

item (n the chain

CESD Entry Type Type Field | Chain Address AMODE/RMODE/RSECT ER Subtype ddname Pointer/
Chain ID Data or Segment Number Chain ID/Length

(byte 8) (bytes 9-11) (byte 12) (byte 13) (bytes 14-15)
Section Definition xxxx x000 (5) Length of control section
Private Code xxxx x100 (5) Length of control section
Common xxxx x 101 (8 Length of common area
Pseudo Register xxxx x110 Alignment Length of pseudo register

value (1)
External Reference xxxx 0010 | Hex 00 or 80 0000 0000
Weok External Reference xxxx 1010 | Hex 00 0000 0000
Label Reference xxxx x011 (6) CESD entry no. of SD or PC (ID)
NULL 0000 0111
Replace xxx] xxxx 0000 0000
Insert xxTx xxxx
Chain xTxx xxxx
Map Txxx xxxx
Delete xxx | xxxx 0000 1000
ER - Unmatched Lib- 0000 0010 | Ruverse chan ID 0000 0010 CESD entry no. of
rary Member Name next item (ID)
ER - Matched Library 0000 0010 | Reverse chain 0000 0011 CESD entry no. of
Member Name D (2) next item (D)
ER - Unmatched No 0000 0010 0000 0100
Call Name
ER - Matched No Call 0000 0010 0000 0101
ER - Never Call 0000 0010 0000 0110
ER - Overlay Control 0000 0010 | Address of next 1001 0000
Statement item in the chain
ER - Alias Control 0000 0010 | Address of next 1010 0000
Statement item in the chain
ER - ddname from 0000 0010 1011 0000 Forward chain
Library or Include Statement PTR (Library only)
ER - Include Control 0000 0010 | Address of next 1100 0000
Statement w/o Pointer item In the chain
ER - include Control 0000 0010 | Address of next 1101 0000 Pointer to li-
Statement with Pointer item in the chain brary's ddname
ER - Replace Control 0000 0010 | Address of next 1100 0000
Statement (3) item in the chain
ER - Control Delete (4) 0000 0010 | Address of next 1110 1000
item in the chain

ER - Change Control 0000 0010 | Address of next 1111 0000

Figure 41 (Part 1 of 2).

Normal Combination of Internal CESD Types

Table Layouts

163

Ih;z goggmgnt contains restricted materials of IBM. © Copyright IBM Corp. 1972,1983
Y26-3921-

Notes:
1. Alignment Value -- Specifies boundary alignment of the pseudo register
00 = byte olignment
01 = halfword alignment
03 = fullword alignment
07 = doubleword alignment
BLDL has been issued for this member name if bit 64 is set to 1,
Two CESD entries are made for each Replace or Change control stotement, one entry for each symbol .
This entry results from a Replace or Change control statement that contains only o single symbolic name.
If segment number, 1 to 255.
If AMODE/RMODE/RSECT data:
XXXX ... not used
.R... RSECT information
0 = not read-only
1 = read-only
.....R.. RMODE data
0=24
1= ANY
...... AA AMODE da