
------- ------ ---- - ---

~,
v'

Publication Number
5C34-4018-0

Interactive
System Productivity FacilitYI
Program Development Facility

Version 2
Edit Macros

MVS/Extended Architecture

File Number
5370/4300-39

Program Number
5665-317

First Edition\(December 1984)

This is a new manual and supports ISPF for NVS/XA and MVS/370.
You should use this manual if you have ISPF with an NVS/XA
environment or if you are using APL2 with ISPF in either an
~lVS/370 or an HVS/XA environment. This manual is a revision of,
but does not obsolete, SC34-2134-0 for ISPF/PDF for f'lVS.
Changes or additions to the text and illustrations are indicated
by a vertical line to the left of the change or addition.

This edition applies to version 2, release 1, modification 2 of
the Interactive System Productivity Facility (ISPF) Program
Product, (Program Number 5665-319) and to the ISPF/Program
Development Facility (ISPF/PDF or PDF) Program Product (Program
Number 5665-317) for use withOS/VS2 HVS Release 3.8 or MVS/SP
Release 1.1.1 and to all subsequent releases until otherwise
indicated by new editions or technical newsletters.

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBN Systemj370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

It is possible that this material may contain reference to, or
information about, IBM prod,ucts (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean
that IBM intends to announce such IBM products, programming, or
services in your- country.

Publications are not stocked at the address given below.
Requests for copies of IB~l publications should be made to your
IBM representative or to'the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Dept. T46, P. O. Box 60000, Cary,
North Carolina, 27511. IBM may use or distribute any of the
information you supply in any way it be1ieve3 appropriate
without incurring any obligation whatever. You may,' of course,
continue to use the information you supply.

© Copyright International Business Machines Cor,oration 1984

~~I, PREFACE ,

The Interactive System Productivity Facility (ISPF) and the ISPF/Program
Development Facility (ISPF/PDF or PDF) are related IBM program products.
Together, they are designed to improve user productivity in the
development of applications, and contain special functions for the
development, test, and use of interactive applications, called dialogs.
Specifically:

• ISPF is a dialog manager for interactive applications. It provides
control and services to permit execution of dialogs.

• PDF is a facility that aids in the development of dialogs and other
types of applications. It makes use of display terminals and an
interactive environment to assist with many of a programmer's tasks.

This manual describes the edit macro facility, the statements that are
available, and how to code them. It assumes that you are an application
or systems programmer, engaged in program development, and are familiar
with coding CLISTs in the ~1VS environment and with the ISPF /PDF editor.

Use this publicatiollwith the following publications:
. '.,

OS/VS2TSO Command Language Reference (GC28-0646) - Provides
reference informatioil about the CLIST statements coded in PDF edit

, ,

macros.
OS/VS2 TSO Terminal User's Guide (GC28-0647) - Provides usage
information about the CLIST statements coded in PDF ed*,t mac~os.

The following publications provide further information about ISPF and
PDF:

ISPF/PDF for NVS/XA Program Reference (SC34-4024) - Provides
information on the use of PDF under MVS.

ISPF for MVS/XA Dialog Management Services (SC34-4021) - Provides a
detailed description of the dialog management services and related
information required to develop an interactive application that
runs under ISPF.

ISPF for MVS/XA Dialog Management Services Examples (SC34-4022) -
Provides a set of examples of the use of dialog management
services.

ISPF and ISPF /PDF for t-1VS/XA Installation and Customization
(SC34-4019) - Provides information needed to install ISPF and
ISPF/PDF and to custom tailor these products for a particular
installation.

Preface iii

ISPF /PDP' for ~1VS/XA Services (SC34-4023) - Provides a detailed 1
desct*ption of the dialog management services required to develop ~
an interactive application that runs under ISPF with PDF.

ISPF/PDF for MVS/XA Library Management (SC34-4025) - Provides a
description of the library management facilities available with
ISPF/PDF.

In this document, the following notation conventions are used to
describe macro formats:

• Uppercase commands and their operands should be entered as shown,
but not necessarily in uppercase. Operands shown in lowercase are
variable; you substitute your own value for them.

• Operands shown in brackets [] are optional, with a choice indicated
by the OR symbol (I) or by stacki~g the operands. You may choose
one or none; the defaults are underscored.

• Operands shown without brackets are required. If several operands
are separated by the OR symbol (I) or are stacked and shown in
braces { }, you must select one of the choices.

• Command name truncations are shown stacked under the full command
name without braces.

iv ISPF/PDF for MVS Edit Macros

~ CONTENTS
~

\

Chapter 1. Introduction
Why Use Edit Macros?

CLEANUP Macro
TESTGEN Macro
STRCOUNT Macro

Edit Macro Elements
CLIST Command Procedure Statements
Edit Macro Statements
ISPF and ISPF/PDF Dialog Service Requests
TSO Commands and Subcommands

Chapter 2. Basic Edit Macro Concepts
Variables
Variable Substitution
Edit Primary Commands
Edit Assignment Statements
Performing Line Command Functions
Passing Parameters
Edit Macro Messages
Return Codes
Labels

Chapter 3. Testing Edit Macros
Error Handling
Using CLIST WRITE Statements
Using CLIST CONTROL Statements

Chapter 4. Advanced Edit Macro Concepts
Edit Primary Commands
Edit Assignment Statements

Statements with Two-Valued Keyphrases
Line Data Statements

Handling Errors
Referring to Data Lines
Referring to Column Positions
Labels
Macro Levels
Passing Multiple Parameters to a Macro
Defining Macros

Implicit Definitions
Overriding Command Names
Defining an Alias
Resetting Definitions
Scope of Definition

Using the PROCESS Command
Profiles
Initial Macros

Contents

1
1
2
3
4
6
6
6
7
7

9
9

10
11
11
13
14
15
15
17

19
19
20
21

23
23
24
25
26
27
27
28
28
29
31
32
32
32
32
33
33
33
35
36

v

Recovery Macros

Chapter 5. Sample Edit Macros
FOR~1AT Macro
PFCAN Macro
BOX Macro
ALL~1BRS ~1acro

IMBED Macro
FINDCHGS Macro
MASKDATA Macro

Chapter 6. Writing Program Macros
Writing Program Macros
Invoking Program Macros
Variable Substitution

Chapter 7. Macro Command Reference
AUTOLIST - Set or Query Autolist Mode
AUTONUM - Set or Query Autonum Mode
AUTOSAVE - Set or Query Autosave Mode
BLKSIZE - Query the Block Size
BOUNDS - Set or Query the Current Boundaries
BUILTIN - Execute a Built-in Command
CANCEL - Cancel the Edit Session
CAPS - Set or Query Caps Mode
CHANGE - Change a Data String
CHANGE_COUNTS - Query Change Counts
COpy - Copy a Member
CREATE - Create a Member
CTL_LIBRARY - Query Controlled Library Status
CURSOR - Set or Query the Cursor Location
DATA_CHANGED - Query the Data Changed Status
DATA_WIDTH - Query Data Width
DATAID - Query Dataid
DATASET - Query the Current Data Set Name
DEFINE - Define a Name
DELETE - Delete Lines from the Current Data Set
DISPLAY_COLS - Query Display Columns
DISPLAY_LINES - Query Display Lines
DOWN - Scroll Down
EDIT - Edit a Member
END - End the Edit Session
EXCLUDE - Exclude Lines from the Display
EXCLUDE_COUNTS - Query Exclude Counts
FIND - Find a Data String
FIND_COUNTS - Query Find Counts
FLOW_COUNTS - Query Flow Counts
HEX - Set or Query Hex Mode
IMACRO - Set or Query Initial Macro
INSERT - Prepare Display for Data Insertion
LABEL - Set or Query a Line Label .
LEFT - Scroll Left
LEVEL - Set or Query Modification Level
LINE - Set or Query a Line from the File

vi ISPFjPDF for MVS Edit Macros

37

39
39
41
42
45
47
49
52

55
57
60
61

63
64
65
66
68
69
71
72
73
74
76
77
78
79
81
83
84
85
86
87
89
91
92
93
94
95
96
98
99

101
102
103
104
105
106
108
110
111

I

"

~
~

LINE AFTER - Add a Line to the Current File
LINE BEFORE - Add a Line to the Current File
LINENUM - Query the Line Number of a Labeled Line
LOCATE - Locate a Line or Type of Line
LRECL - Query the Logical Record Length
MACRO - Identify an Edit Macro
MACRO_LEVEL - Query the Current Macro Nesting Level
MASKLINE - Set or Query the Mask Line
MEMBER - Query the Current Member Name
MODEL - Copy a Model into the Current Data Set
MOVE - Move a Member into the Current File
NOTE - Set or Query Note Mode
NULLS - Set or Query Nulls Mode
NUMBER - Set or Query Number Mode
PACK - Set or Query Pack Mode
PROCESS - Process the Display Screen
PROFILE - Set or Query the Current Profile
RANGE_CMD - Query the Command Entered by the User
RCHANGE - Repeat a Change
RECFM - Query the Record Format
RECOVERY - Set or Query Recovery Mode
RENUM - Resequen'ce and Number the Data
REPLACE - Replace a Member
RESET - Reset Lines
RFIND - Repeat Find
RIGHT - Scroll Right
RMACRO - Set or Query the Recovery Macro
SAVE - Save the Current Data on Disk
SCAN - Set Command Scan Mode
SEEK - Seek a Data String, Positioning the Cursor
SEEK_COUNTS - Query Seek Counts
SHIFT (- Shift Columns Left
SHIFT) - Shift Columns Right
SHIFT < - Shift Data Left
SHIFT > - Shift Data Right
SORT - Sort Data
STATS - Set or Query Stats Mode
SUBMIT - Submit a Job'for Batch Execution
TABS - Set or Query Tabs Mode
TABSLINE - Set or Query Tabs Line
TENTER - Set Up Display Screen for Text Entry
TFLOW - Text Flow a Paragraph
TSPLIT - Text Split a Line
UNNUM - Unnumber the Current File
UP - Scroll Up
USER STATE - Save or Restore User State
VERSION - Set or Query Version Number
XSTATUS - Set or Query Exclude Status of a Line

Appendix A. CLIST Considerations

Appendix B. Summary of Macro Statements .
Appendix C. List of Abbreviations . . .

.

. . .

113
115
117
118
120
121
123
124
125
126
127
128
129
130
132
133
135
137
138
139
140
141
142
143
144
145
147
148
149
150
152
153
154
155
156
157
158
159
160
161
163
164
165
166
167
168
170
171

173

177

181

Contents vii

Index 183 (

/

\..

viii ISPF/PDF for MVS Edit Macros

FIGURES

1. CLEANUP Macro 3
2. TESTGEN Macro 4
3. STRCOUNT Macro 5
4. TRYIT Macro 14
5. TESTGEN Macro with WRITE Statements 20
6. FORMAT Macro 40
7. PFCAN Macro 41
8. BOX Macro 43
9. ALLMBRS Macro 45

10. IMBED Macro . 47
11. FINDCHGS Macro . 50
12. MASKDATA Macro 52
13. SEPLINE CLIST Macro 57
14. SEPLINE PL/I Macro 58
15. SEPLINE COBOL Macro 59

Figures ix

x ISPF/PDF for MVS Edit Macros

~
\~

) CHAPTER 1. INTRODUCTION

The ISPF/Program Development Facility (ISPF/PDF, or PDF) provides you
with the ability to write and execute macros for use with the PDF
editor.

Edit macros allow you to:

• Extend edit with macro commands.

• Override existing PDF edit commands.

• Specify an initial macro to be executed automatically when edit is
invoked. This initial macro receives control after the data has
been read, but before the data has been displayed.

• Access:

•

The data currently being edited (line by line).

The current cursor position and the location of the screen
"window" .

Edit modes and other related information, including the mask
line, tabs line, and boundaries.

Access external data from a library or data set using library
access services.

• Invoke any ISPF or PDF dialog service.

WHY USE EDIT MACROS?

As a user of PDF edit, you know that there are a large number of edit
commands that can be used in editing a progr~ or document. When you
are at your terminal, you can use edit commands such as FIND, RESET,
SAVE, CHANGE, and LOCATE. Lines can be inserted or deleted, and you can
add or change data by overtyping data that is already displayed on the
screen.

For simple editing, you may be able to enter a command that does exactly
what you want to do. If you want to find the word 'COFFEE', for
example, you can enter the command ==> FIND WORD 'COFFEE'.

For more complex tasks, there may not be a command that does what you
want to do. You may have to ~xecute a series of commands to accomplish
the task. Suppose that you want to delete every line that begins with a
'_I in column 1, except for the first such line.

Chapter 1. Introduction 1

One approach would be to visually scan ,the file and manually delete the ~
lines. This approach would work well if" there were only a few lines to '~
be deleted from a small file.

A second approach would be to perform a series of edit commands to
accomplish the task. For example, to delete the lines, you could enter:

===> RESET EXCLUDED
===> EXCLUDE ALL '-' 1
===> FIND FIRST '-' 1
===> DELETE ALL EXCLUDED

This second approach would be a better approach if there were several
hundred lines to be deleted. The RESET command would reset any excluded
lines in the file. The EXCLUDE command would exclude all of the lines
with a hyphen (-) in column 1. The FIND command would show (unexclude)
the first such line. And the DELETE command would then delete the lines
that remained excluded.

CLEANUP Macro

With PDF edit macros, there is a third approach, one that would be
appropriate if the task has to be done many times. The third approach
would be to write a macro named CLEANUP that includes the four edit
commands. Once the macro was written, you could perform the line
deletion simply by entering CLEANUP as an edit command. Edit would then
execute the four commands, one after another, performing the task in a
single interaction.

Thus, by writing a macro named CLEANUP, you would have in effect created
a new edit command. In this manual, we will normally refer to the
built-in commands such as FIND and END as 'commands' and edit macro
commands such as CLEANUP as 'macros'. Later on, we will see how an edit
macro can be written to replace the END command. (Refer to "Defining
Macros" on page 32.) When discussing special cases like this where
confusion might result, the terms 'edit macro command' and 'edit
built-in command' will be used.

To an end user, there is little difference between an edit macro and an
edit built-in command. Edit macros are executed exactly the same way
that edit commands are executed. You simply type the macro name in the
command field on the edit data display, along with any operands that may
be required, and then press ENTER.

This manual assumes that you are familiar with the CLIST language.
Macros can be written in either CLIST language or compiled or assembled
languages. A discussion of coding and invoking program macros will be
found in Chapter 6, "Writing Program Macros" on page 55.

Let's take a look at the implementation of the CLEANUP macro in the
CLIST language. The macro (Figure 1) consists of six lines that are
stored as a member of a CLIST partitioned data set. The name of the

2 ISPF/PDF for MVS Edit Macros

/"':
/*

member is CLEANUP, and the PDS must be part of your SYSPROC
concatenation.

CLEANUP MACRO - DELETE LINES WITH A '-' IN COLUMN 1

ISREDIT MACRO
ISREDIT RESET EXCLUDED
ISREDIT EXCLUDE ALL '-' 1
ISREDIT FIND FIRST '-' 1
ISREDIT DELETE ALL EXCLUDED

/* Ensure no lines are excluded */
/* Exclude lines with '-' in col1*/
/-.': Show the first such line -.': /
/-.': Delete all lines left excluded"': /

EXIT CODE(O)

Figure 1. CLEANUP Macro

Don't worry if you don't understand everything about this macro and the
macros that follow in this chapter. They are included only as
illustrations.

The lines that begin with ISREDIT are edit commands, and are documented
in this manual. The first such command identifies this CLIST as being
an edit macro. Every edit macro must include an ISREDIT MACRO
statement. The last statement, EXIT, is a CLIST statement. While the
EXIT statement is not required by the CLIST processor, we will include
it to clearly identify the ending of the macro. Indentation is used to
show the structure of the macro. In this manual, complete valid macros
will always be shown beginning with an ISREDIT MACRO command and ending
with an EXIT statement.

Note: Do not code a CLIST PROC statement at the beginning of your edit
macro.

TESTGEN Macro

In the CLEANUP macro, four commands were executed, one after another,
just as though you had executed the four commands separately. You may
find this approach useful for simple tasks; for more complex tasks,
however, you will need to repeat some steps and execute other steps only
under certain conditions.

For example, s~ppose that you wanted to generate some test data. The
following macro (Figure 2) changes the first TEST-# to TEST-1, the
second TEST-# to TEST-2, up through nine occurrences of TEST-#.

Chapter 1. Introduction 3

,~ I
I~'r TESTGEN MACRO - GENERATE TEST DATA */

,'r I
ISREDIT NACRO

SET &COUNT = 1 1* Initialize loop counter
1* Loop up to 9 times

,~ I
DO WHILE &COUNT <= 9

ISREDIT FIND 'TEST-#'
SET &RETCODE = &LASTCC
IF &RETCODE = 0 THEN

1* Search for 'TEST-#'
1* Save the FIND return code
1* If string was found,

,~ I
~'r /

,tr /

,'t /

DO
ISREDIT CHANGE '#' '&COUNT'
SET &COUNT = &COUNT + 1

END

I~~

I~~ Change # to a digit and
increment loop counter

,tr /

-;'r /

,~ /
~': I

ELSE 1* If string is not found, 'i'rl
SET &COUNT = 10 1* Set counter to exit loop ')':/

END -;~/

EXIT CODE(O)

Figure 2. TESTGEN Macro

This macro has limited use, but it illustrates how logic can be included
in an edit macro. The CLIST DO WHILE statement loops up to nine times,
finding and then changing data. The IF and ELSE statements cause
different statements to be executed, depending on whether the 'TEST-#'
string was found or not.

STRCOUNT Macro

A general-purpose macro is often required. Such a macro might be passed
a parameter to indicate data which is to be processed. It might need to
retrieve information known to the editor. And it could return
information to the end user by setting up a message to be displayed by
the editor.

The following macro (Figure 3) is written to be passed a string of
characters. After searching the file, it displays a message that
indicates how many times the string was found. This example is included
to show that a macro can get information from the end user, that it can
get information from the editor, and that it can display a message to
the end user.

4 ISPF/PDF for MVS Edit Macros

~

(
I

'"

\
\

I'':
1* STRCOUNT - COUNT THE NUMBER OF OCCURRENCES OF A STRING

*1
*1
1 1

ISREDIT MACRO (PARMSTR)
ISREDIT SEEK ALL &PARMSTR
ISREDIT (COUNT) = SEEK_COUNTS
SET &COUNT = &COUNT
SET &ZEDSMSG = &STR("&PARMSTR" FOUND &COUNT TIMES)
SET &ZEDLMSG = &STR(THE STRING "&PARMSTR" WAS FOUND +

&COUNT TIMES IN THE FILE.)
ISPEXEC SETMSG MSG(ISRZOOO)

EXIT CODE(O)

Figure 3. STRCOUNT Macro

The ISREDIT MACRO command includes the name of the variable &PARMSTR
into which edit stores the parameter. The ISREDIT SEEK command is used
for find all occurrences of the string. It is identical to the FIND
command, except that it does not alter the exclude status of a line, and
therefore is recommended for use in macros. The line following the SEEK
command assigns the SEEK_COUNTS to the variable &COUNT. The SET &COUNT
= &COUNT statement strips leading zeros from the variable &COUNT, to
prepare it for display. The SET &ZEDSMSG = ... statement sets the "edit
short message variable", and the SET &ZEDLMSG = ... statement sets the
"edit long message variable". These two variables make up the short and
long messages for ISRZOOO, which is referenced in the dialog manager
service SETMSG. Finally, the macro exits, at which point the short
message is displayed by the editor. If the user enters HELP, the long
message is then displayed.

If you enter the macro exactly as it is shown, and then enter the SAVE
command, you can test the macro by executing it while you are still
editing it. If you enter:

COMMAND ===> STRCOUNT ISREDIT

the short and long messages which would be displayed would be:

"ISREDIT" FOUND 3 TIMES
COMMAND ==>
THE STRING "ISREDIT" WAS FOUND 3 TIMES IN THE FILE.

Chapter 1. Introduction 5

EDIT MACRO ELEMENTS

An edit macro is a CLIST. As such, it is made up of CLIST statements,
each of which falls into one of the following categories.

• CLIST command procedure statements

• Edit macro statements

• ISPF and PDF dialog services requests

• TSO commands and subcommands

All statements are initially processed by the TSO command processor,
which scans them, and performs symbolic substitution. It is important
to distinguish among these different kinds of statements because:

• They are processed by different components of the system.

• They have different syntax rules and error handling.

• Their descriptions will be found in different documents.

CLIST Command Procedure Statements

Command procedure statements provide for the handling of CLIST
variables, and for control flow within a CLIST. When a command
procedure statement is encountered during the execution of a CLIST, it
is processed by the TSO command processor. Some of the command
procedur~ statements which are commonly seen in PDF edit macros are:

• SET statement

• IF-THEN-ELSE statement

• DO-WHILE-END sequence

• EXIT statement

For a complete list and description of the command procedure statements
see OSjVS2 TSO Command Language Reference.

Edit Macro Statements

Any statement that begins with ISREDIT is assumed to be an edit macro
statement. When such a statement is encountered during the execution of
a CLIST, the PDF editor is given control. The editor then processes the
statement, performing any requested functions. Edit macro statements
are the only statements that are processed by the PDF editor. Examples
of edit macro statements are:

6 ISPFjPDF for MVS Edit Macros

/
I

"<I

ISREDIT FIND "TEST47S"
ISREDIT BOUNDS = 1,60
ISREDIT (WIDTH) = LRECL
ISREDIT PROCESS

A description of each macro statement can be found in Chapter 7.

ISPF and ISPF/PDF Dialog Service Requests

Any statement which begins with ISPEXEC is assumed to be an ISPF or PDF
dialog service request. When such a statement is encountered during the
execution of a CLIST, the appropriate ISPF or PDF service is executed.
Some examples of service requests which might be found in a PDF edit
macro are:

ISPEXEC SETMSG
ISPEXEC VPUT ...
ISPEXEC DISPLAY ...
I SPEXEC ED IT .. .
ISPEXEC LMINIT .. .

ISPF service requests are described in ISPF for MVS/XA Dialog Management
Services. PDF service requests are described in ISPF/PDF for MVS/XA
Services.

TSO Commands and Subcommands

Any statement that is not recognized as a command procedure statement
and does not begin with ISPEXEC or ISREDIT is assumed to be a TSO
command or subcommand. TSO commands can be either CLISTs or programs.
When a TSO command is encountered, it is executed. Examples of TSO
commands are:

ALLOCATE ...
FREE ...
DELETE
RENAME ...

TSO subcommands are statements which are processed by a TSO command.
Examples are TSO EDIT subcommands which are processed by the TSO EDIT
command, and TSO TEST subcommands which are processed by the TSO TEST
command.

For a complete list and description of the TSO commands and subcommands
see TSO Command Language Reference.

Chapter 1. Introduction 7

8 ISPF/PDF for MVS Edit Macros

(1,.\

;

CHAPTER 2. BASIC EDIT MACRO CONCEPTS

VARIABLES

In this chapter, we will examine some of the basic concepts used in
writing edit macros. Some of the topics will be explained more fully in
Chapter 4, "Advanced Edit Macro Concepts" on page 23.

An edit macro is simply a CLIST which may contain edit macro statements.
If you understand how variables are handled in a CLIST, you also
understand their use in edit macros. Since variables are important in
any CLIST, let's review a few important points.

CLlSTs can contain three types of variables, all of which begin with an
ampersand (&). They are:

• Symbolic variables

• Control variables

• Built-in functions

Symbolic variables can be set by using a CLIST SET statement. For
example, if you code

SET &COUNT = 3
SET &LABEL = TEST14

the first statement sets the variable &COUNT to a value of 3 and the
second sets the variable &LABEL to the string of characters 'TEST14'.
(The variable on the left side of a CLlST SET assignment statement can
be coded without the ampersand (&) but including it improves
readability.)

You can perform arithmetic functions with a SET statement and numeric
variables. Examples are:

SET &COUNT = &COUNT + 1
SET &RIGHT = &LEFT + &MARGIN + &WlDTH - 1

Control variables are predefined variables which are normally set by the
command processor. Some of them can be overridden by setting them with
a SET statement. A list of the CLlST control variables and their
descriptions can be found in the OS/VS2 TSO Command Language Reference.
Examples of control variables are:

&LASTCC
&SYSDATE
&SYSUlD

Chapter 2. Basic Edit Macro Concepts 9

Built-in functions are also predefined by the command processor. A list ~

of the CLIST built-in functions and their descriptions can be found in ~

the TSO Command Language Reference. Examples of built-in functions are:

&LENGTH(expression)
&STR(string)

VARIABLE SUBSTITUTION

Every statement in a CLIST is scanned by the TSO command processor.
When a variable is found, it is replaced by its value. Then the
statement is evaluated and is processed by the command processor, by the
PDF editor, by ISPF or PDF dialog services, or is executed as a command.

The CONTROL LIST statement can be added to a macro to turn on list mode
and cause the TSO command processor to write out each statement after
substitution has been performed. CONTROL NOLIST can be used to turn off
list mode.

Some examples of the use of variables and substitution:

Example 1
Before substitution:

SET &A = ABC
SET &B = DEF
IF &A = &B THEN

After substitution:

SET &A = ABC
SET &B = DEF
IF ABC = DEF THEN

Example 2
Before substitution:

ISREDIT CHANGE xx:xx:xx &SYSTIME

After substitution:

ISREDIT CHANGE xx:xx:xx 14:50:07

Example 3
Before substitution:

SET &COL = 12
ISREDIT CHANGE XXXXXX TEST01 1 &EVAL(&COL + 4)

After substitution:

SET &COL = 12
ISREDIT CHANGE XXXXXX TEST01 1 16

10 ISPF/PDF for MVS Edit Macros

:~

\ EDIT PRIMARY COMMANDS
})

~
I

/

Any command that you can execute from the edit command line can be
included in a macro. Simply prefix the command with ISREDIT. For
example:

From the command line:

COMMAND ===> LOCATE 10

From an edit macro:

ISREDIT LOCATE 10

From the command line:

COMMAND ===> CHANGE ALL
, ,

'- ' 1 10

From an edit macro:

ISREDIT CHANGE ALL
, ,

'- ' 1 10

EDIT ASSIGNMENT STATEMENTS

A large number of edit macro statements can be grouped together under
the heading of edit assignment statements.

An edit assignment statement has the format

ISREDIT xxx = yyy

and is used as the primary means of communication between an edit macro
and the editor.

Let's take an example. The editor knows whether or not caps mode is
currently set ON or OFF. The macro would like to know the current caps
mode so that it can take different logic paths. The problem is how to
pass the setting of caps mode from the editor to the CLIST. The answer
is by using the following edit assignment statement:

ISREDIT (CAPMODE) = CAPS

When the editor sees this statement, it takes the current CAPS mode and
puts it into the variable &CAPMODE.

It may not be obvious why the variable &CAPMODE is not preceded by an
ampersand (&) in the statement, and why it is enclosed in parentheses.

The PDF editor needs to know the name of the variable in order to assign
a value to it. If the name were preceded by an ampersand (&), the TSO
command processor would have replaced the name of the variable with its
value, and the editor would never get to see the name.

Chapter 2. Basic Edit Macro Concepts 11

The parentheses simply indicate to the PDF editor that the enclosed name /
is the name of a symbolic variable. Although the TSO command processor \.
allows long variable names, only names with eight or fewer characters
are allowed by PDF edit.

Let's take another example. The macro wants to tell the editor to set
caps mode. Because any primary command can be executed, the following
edit macro statement could be used:

ISREDIT CAPS ON

In addition, either of the two following assignment statements could be
used:

ISREDIT CAPS = ON
ISREDIT CAPS = (CAPMODE)

When the editor sees these statements, it takes the value from the right
side of the equals sign (=), and assigns it to caps mode. The value can
be coded directly or it can be in a variable, such as &CAPMODE.

Of course you could also code either

ISREDIT CAPS &CAPMODE
ISREDIT CAPS = &CAPMODE

in which case the TSO command processor would replace the variable
&CAPMODE with its value before the PDF editor processed the statement,
making them equivalent to the statements in the previous example.

All of the above three examples are valid. When coding a macro, you
should use the format which seems to make the most sense, and which
makes the macro as readable as possible.

Some information can best be passed back and forth between the editor
and the macro in pairs. The following examples show assignment
statements that pass two values:

ISREDIT (LEFTBND,RIGHTBND) = BOUNDS
ISREDIT BOUNDS = (LB,RB)

In the first statement, the current left and right boundaries are stored
into the variables &LEFTBND and &RIGHTBND. In the second statement, the
values from the variables &LB and &RB are used to change the current
boundaries.

The descriptions of the edit commands in Chapter 7 will indicate which
edit macro commands are used with one variable, and which are used with
two variables.

Many macros need to examine or change data in the file that is being
edited. Edit assignment statements are used to communicate data from
the file between the editor and the macro.

12 ISPF/PDF for MVS Edit Macros

/

ISREDIT (LINEDATA) = LINE 1

When the editor sees this statement, it takes line 1 from the file and
puts it into the variable &LINEDATA.

To replace the first line in the file, using the data from the variable
&LINEDATA, use:

ISREDIT LINE 1 = (LINEDATA)

To add a new line after line 1 in the file using the variable &NEWDATA,
use:

ISREDIT LINE AFTER 1 = (NEWDATA)

PERFORMING LINE COMMAND FUNCTIONS

There is no way to execute PDF edit line commands directly from an edit
macro. For example, the TS (text split) line command cannot be executed
from an edit macro.

However, most of the functions provided by line commands can be
performed by an edit macro. Functions such as move, copy, or repeat can
be performed within a macro by using edit assignment statements or by
executing edit primary commands. To move a line you can assign the line
to a CLIST variable, delete the original line using the DELETE command,
and assign the variable to a new line in the file.

Functions provided by the I (insert) line command, the shift line
commands, and the text line commands are provided by new commands that
can be executed only from within a macro. The following list identifies
these commands, the corresponding line commands, and the functions
performed.

Edit Macro Corresponding
Statement Line Command Function

INSERT I To insert temporary lines
SHIFT ((To shift columns left
SHIFT)) To shift columns right
SHIFT < < To shift data left
SHIFT > > To shift data right
TENTER TE To enter text entry mode
TFLOW TF To perform text flow
TSPLIT TS To perform text split

For example:

ISREDIT TFLOW 1

causes the paragraph starting on line 1 to be flowed, using the same
rules as the TF (text flow) line command.

Chapter 2. Basic Edit Macro Concepts 13

PASSING PARAMETERS

I"':

You may have a need for the user to supply information to the macro, in
the form of parameters. These parameters, to be accepted by the PDF
editor, must be identified on the ISREDIT MACRO statement, enclosed in
parentheses. If your macro FIXIT needs one piece of information, a
filename, for instance, you can code:

ISREDIT MACRO (FILNAM)

When the end user enters

====> FIXIT ABCD

the value ABCD is assigned to the variable &FILNAM, to be used by the
macro.

The TRYIT macro (Figure 4) is useful in trying out edit commands.

I"', TRYIT - SHIPLE MACRO FOR TRYING OUT EDIT HACRO STATEMENTS

ISREDIT MACRO (COMMAND)
IF &STR() = &STR(&COMMAND) THEN

WRITE MISSING COMMAND PARAMETER
ELSE

DO
ISREDIT &COMMAND
SET &RETCODE = &LASTCC
WRITE &COMMAND RETURN CODE IS &RETCODE

END
EXIT CODE(&RETCODE)

Figure 4. TRYIT Macro

I"':
I""·
I""·
/-;'~

Ii,
/-lr

If no command specified, ,'c / -
indicate problem "':j

Else parameter exists; ,,', I -
invoke edit command "'':1
and save return code ~'r /

for WRITE message -;'r /

If TRYIT is invoked as "TRYIT RESET", the variable &COMt-1AND is set to
RESET; if it is invoked as "TRYIT FIND A", the variable &COMMAND is set
to FIND A.

14 ISPF/PDF for MVS Edit Macros

I\.
\

/

)

J EDIT MACRO MESSAGES

To display a message from your macro to the user, you can use the SETMSG
dialog service. There are two system variables, &ZEDSMSG and &ZEDLMSG,
that you can use to set up the short and long messages you wish to
issue. For example, if your macro needs to put out a short message
saying "INVALID PARAMETER, " and a long message saying "THE ABC
PARAMETER MUST BE A 4-DIGIT NUMBER", you can code:

SET &ZEDSMSG = &STR(INVALID PARAMETER)
SET &ZEDLMSG = &STR(THE ABC PARAMETER MUST BE A 4-DIGIT NUMBER)

You can use these variables in either of two predefined edit macro
messages, ISRZOOO (for informational messages) and ISRZ001 (for error
messages). ISRZ001 causes the audible alarm to be sounded when it
issues the message. To issue the messages defined above, just code:

ISPEXEC SETMSG MSG(ISRZ001)

RETURN CODES

A macro invoked from the command line may issue the following return
codes. These codes affect the command line and cursor position on the
next display of edit data:

• Code 0 indicates normal completion of the macro. The cursor
position is left as set by the macro. The command line is blanked.

• Code 1 indicates normal completion of the macro. The cursor is
placed on the command line. The command line is blanked. Use this
code to make it easy to enter another macro or edit command on the
command line.

• Codes 4 and 8 are reserved. They are functionally equivalent to
return code o.

• Codes 12 and above are error codes. The cursor is placed on the
command line and the macro command is left displayed. Use this code
with the dialog manager SETMSG service to prompt the user for an
incorrect or omitted parameter.

Every edit macro command sets &LASTCC with a return code. The codes
range from 0 to 20.

• Code 0 indicates normal completion of the command.

• Codes 4 and 8 are information codes. They indicate a special
condition which is not necessarily an error. These codes can be
tested or ignored, depending on the requirements of the macro.

• Codes 12 and above are error codes. Normally an error code will
cause the macro to be abnormally terminated and an error panel to be
displayed. The error panel will indicate the type of error, and

Chapter 2. Basic Edit Macro Concepts 15

list the statement which caused the error condition. (A description
of how a macro can capture and handle errors is included in Chapter
4.)

Each command description in Chapter 7 includes a list of return codes
that are possible for the command. Since &LASTCC is set for every
statement, you must either test it in the statement immediately
following the command that sets it, or you must save its value in
another variable, using a command such as:

SET &RETCODE = &LASTCC

The variable &RETCODE can then be tested anywhere in the macro until it
is changed.

In many cases, the only two possible codes are 0 and 20. The CAPS
command is an example of such a command. Any valid form of the CAPS
command returns a code of o.

All of the following forms of the CAPS command have some type of syntax
error, and return a code of 20:

ISREDIT CAPS XYZ
ISREDIT CAPS ()
ISREDIT CAPS (CAPMODE)
ISREDIT CAPS ON ON
ISREDIT CAPS = ()
ISREDIT CAPS = (-=+*)
ISREDIT CAPS = (CAPSMODE1)
ISREDIT CAPS = ON ON
ISREDIT CPAS = ON
ISREDIT () = CAPS
ISREDIT (-=+*) = CAPS
ISREDIT (CAPSMODE1) = CAPS
ISREDIT CAPS = (VAR1,VAR2)
ISREDIT (CAPMODE) = CPAS

Invalid value for CAPS
Invalid value for CAPS
Not an assignment statement
Too many parameters coded
No variable name specified
Invalid variable name
Variable name too long
Too many parameters coded
Keyword not recognized
No variable name specified
Invalid variable name
Variable name too long
Too many parameters coded
Keyword not recognized

An example of a command returning a code of 4 is the following CHANGE
command:

ISREDIT CHANGE "TEST" "DONE"

This command sets &LASTCC to 4 if "TEST" is not found. This is not
considered an error, since it is unlikely to represent an error in the
macro.

An example of a command with a return code of 12 or greater is the
CURSOR assignment statement, which sets the cursor position. The
following statement:

ISREDIT CURSOR = 80 1

sets the cursor to line 80, column 1, and sets &LASTCC to 0 unless there
is no line 80. In this case, &LASTCC is set to 12, and the macro is

16 ISPF/PDF for MVS Edit Macros

LABELS

/

abnormally terminated. If such an error occurs, it indicates a probable
error in the macro.

A macro frequently wants to look at the data that was found by a FIND or
SEEK command. Both commands position the cursor to the search argument.
The following statement assigns the data from the line on which the
cursor is positioned to the variable&CSRDATA:

ISREDIT CCSRDATA) = LINE .ZCSR

.ZCSR is a label that names the line at the cursor position. It is a
label set by the editor. .ZFIRST and .ZLAST are labels associated with
the first and last data lines. You can retrieve the number of data
lines with the following statement:

ISREDIT CNBRLINES) = LINENUM .ZLAST

.ZCSR will be moved by the editor to a new line when one of the
following commands moves the cursor: FIND, CHANGE, SEEK, EXCLUDE,
TSPLIT or CURSOR. .ZFIRST and .ZLAST also may move when data is added
and deleted.

A macro can also label lines that it will refer to frequently. Labels
that a macro assigns stay with one line until the macro moves or deletes
the label.

A label is an alphabetic character string that must begin with a period
C.) followed by from one to· eight alphabetic characters, the first of
which must not be Z. No special characters or numeric characters are
allowed.

For example:

ISREDIT
ISREDIT

LINE .NEXT = CDATAVAR)
LINE_AFTER .XYZ = CDATAVAR)

The first example stores new data into the line that currently has the
label . NEXT. The second example creates a new line after the line whose
label is .XYZ, and stores data into the new line.

A macro may assign a label to a line with the LABEL assignment
statement. For example:

SET &LNUM = 10
ISREDIT LABEL &LNUM = .HERE

This assigns the label .HERE to the line whose relative line number is
contained in variable &LNUM, line 10 in this case. The .HERE label is
set to allow the macro to keep track of a line whose relative line
number may change. When the macro completes execution, the .HERE label
is deleted.

Chapter 2. Basic Edit Macro Concepts 17

A macro may obtain the current relative line number of a labeled line
with the LlNENUM assignment statement. For example:

ISREDIT
ISREDIT

(LNUMl) = LINENUM .ZLAST
(LNUM2) = LINENUM .ABC

The first example stores the relative line number of the last data line
into variable &LNUMI. The second example stores the relative line
number of the line with label .ABC into variable &LNUM2.

To delete a label, set the label to blanks:

ISREDIT LABEL lptr = I I

18 ISPF/PDF for MVS Edit Macros

.~

'\
)

CHAPTER 3. TESTING EDIT MACROS

At this point, you should be able to write and execute an edit macro
that uses CLIST logic and invokes simple edit commands. However, even
an experienced edit macro writer occasionally includes a bug that causes
a macro to terminate abnormally, or writes a macro that does not work as
expected. When this occurs, it is necessary to debug your macro, just
as you would debug any other type of program which you were
implementing.

If you have not coded a CLIST before, there are some additional
considerations you should be aware of when you test and debug your edit
macro. Refer to Appendix A for these CLIST considerations.

ERROR HANDLING

Because edit macros consist of different kinds of statements, there are
different kinds of errors that can occur, and different ways that the
errors are handled. Later on we will discuss how you can code macros
that capture and handle error conditions. In debugging macros that do
not handle errors, you run into the following types of errors:

• Errors may be detected during variable substitution, or in the
processing of command procedure statements, by the TSO command
processor. They normally result in the screen being cleared, and
the statement in error being displayed, along with an error message.
For example, if the symbolic variable &DATA was referenced in an
edit FIND command before it was set, the error messages might be:

ISREDIT FIND &DATA
THIS STATEt-tENT HAS AN UNDEFINED SYHBOLIC VARIABLE

When ENTER is pressed, the macro is abnormally terminated, and you
return to edit where the message "xxxxx HACRO ERROR" is displayed.

• Edit command errors are detected by the editor. They result in an
PDF edit macro error panel being displayed. The command in error is
displayed, along with an error message that identifies the error.

Using PDF as a normal user, with ISPF test mode off, you are
prompted to press ENTER to terminate the macro. The macro is
abnormally terminated, and you return to edit.
Using PDF in test mode, with ISPF test mode on, you can override
the abnormal termination and attempt to continue by entering YES
on the PDF edit macro error panel.

Chapter 3. Testing Edit Macros 19

• Dialog service errors are detected by ISPF. They result in an ISPF
dialog error panel being displayed. A message identifying the error
is displayed, along the with the statement which is in error.

Using PDF as a normal user, with ISPF test mode off, you are
prompted to press ENTER to terminate the dialog. The edit
session is abnormally terminated, and the primary option menu is
displayed.
Using PDF in test mode, with ISPF test mode on, you can override
the abnormal termination and attempt to continue by entering YES
on the ISPF dialog error panel.

Note: If you enter ISPF with TEST as a parameter, ISPF test mode is
set on. Once you are executing ISPF, you can cause ISPF test mode to be
set on by going to Option 7 (Dialog Test) from the primary option panel.
Once test mode is set on, it remains on until you end your ISPF session.

USING CLIST WRITE STATEMENTS

The CLIST WRITE statement can be a valuable tool in tracking down edit
macro problems. On the WRITE statement you can identify the position of
the statement within the macro, as well as display the value of
variables. For example, if you are having trouble debugging the TESTGEN
macro (Figure 2), you might include some WRITE statements, as shown in
Figure 5.

I"'~
1* TESTGEN MACRO - GENERATE TEST DATA

ISREDIT MACRO
SET &COUNT = 1
DO WHILE &COUNT <= 9

ISREDIT FIND 'TEST-#'
SET &RETCODE = &LASTCC

WRITE RESULT OF FIND, RC = &RETCODE
IF &RETCODE = 0 THEN

DO
ISREDIT CHANGE '#' '&COUNT'
SET &COUNT = &COUNT + 1

WRITE COUNT IS NOW UP TO &COUNT
END

ELSE
SET &COUNT = 10

END
EXIT CODE(O)

*/

1* Initialize loop counter *1
1* Loop Up to 9 times *1
1* Search for 'TEST-#' *1
1* Save the FIND return code *1

1* If string was found, *1
I"~ *1
1* Change # to a digit and *1
1* increment loop counter *1

1* *1
1* If string is not found, *1
1* Set counter to exit loop *1
1* ,,:/

Figure 5. TESTGEN Macro with WRITE Statements

20 ISPF/PDF for MVS Edit Macros

)

In this example, the WRITE statements are not indented, which makes them
stand out. You may want to use this approach in your debugging and
testing to make the statements easier to delete once the macro is
complete.

USING CLIST CONTROL STATEMENTS

You can use the CLIST CONTROL statement with the LIST, SYMLIST, or
CONLIST operands to display statements from a macro as it is being
interpreted and executed. See the TSO Command Language Reference for
more details.

• LIST displays commands and subcommands (including ISREDIT
statements), after substitution, but before execution. This allows
you to see an ISREDIT statement in the form that the editor sees the
statement.

• CONLIST displays a CLIST statement (IF, DO, SET, etc) after
substitution, but before execution. You may be able to tell why an
IF statement didn't work properly by using CONLIST.

• SYMLIST displays lines before symbolic substitution. It is less
useful than LIST and CONLIST, but in some cases may be required to
help debug a macro.

The NOLIST, NOSYMLIST, and NOCONLIST operands can be used to terminate
the display of statements.

Chapter 3. Testing Edit Macros 21

22 ISPF/PDF for MVS Edit Macros

(

'~

CHAPTER 4. ADVANCED EDIT MACRO CONCEPTS

This chapter contains information that you will need to know when you
begin to code more advanced edit macros.

EDIT PRIMARY COMMANDS

As was noted in Chapter 2, any command that you can execute from the
edit command line can be included in a macro by prefixing it with
ISREDIT. There are however, some minor differences between executing a
command from the command line, and executing the same command from a
macro.

One difference is that if you execute the command from the command line,
an information or error message will frequently be displayed, while if
you execute the command from a macro, a return code will be set.

A further difference may be experienced if a series of commands are
executed. Since the display is not formatted for each command that is
executed from a macro, the lines being displayed may be different.

An example would be a series of FIND commands, some of which position
the cursor within the displayed screen, and others which causes
scrolling to take place. The series of FIND commands executed from the
command line might result in line 000050 being the first line displayed,
with the cursor in the middle of the screen, while the same commands
executed from a macro might result in line 000060 being the first
displayed line, with the cursor on the second line of the screen. The
ISREDIT (varname) = DISPLAY_LINES assignment statement forces the
display screen to be formatted and may be used within a macro if
necessary to simulate a series of end user commands.

Some of the commands have additional operands that are permitted in a
macro but are not permitted from the command line. For example:

ISREDIT COpy 1 10 MYDATA AFTER .ZLAST

which copies lines 1 through 10 from the member MYDATA after the last
line of the current file, is valid from a macro, but is not valid from
the command line.

Chapter 4. Advanced Edit Macro Concepts 23

EDIT ASSIGNMENT STATEMENTS

Edit assignment statements are used for communication between a macro
and the editor. Edit assignment statements differ from CLIST assignment
statements in the following ways:

• Certain keyphrases may appear on the left or right side of an equal
sign. A keyphrase is either a single keyword, or a keyword followed
by a line number or label.

• Variable names that are to be passed to the editor are enclosed in
parentheses, with no leading ampersand. In some cases, two variable
names may appear within the parentheses.

• Arithmetic expressions are not allowed in an edit assignment
statement, but in certain cases a plus sign (+) may be used to
indicate partial overlay of a line.

In general, edit assignment statements are used to set or retrieve the
contents of a line of data, the cursor pO,sition, the boundaries, the
contents of the mask and tabs lines, or the settings of edit modes.
Each of these is represented by a keyphrase.

For example, the keyphrase "LINE lptr" represents the contents of the
data line pointed to by a line pointer (lptr), which may be either a
relative line numb~r or a label. The statements:

ISREDIT
ISREDIT

(OLD) = LINE 5
LINE 5 = (NEW)

save the contents of the fifth line in a variable named &OLD, and then
replace the contents of the same line from a variable named &NEW.

Frequently, the line pointer (lptr) operand is specified as a variable.
For examp Ie: . <: Of) -\ ,

.,,----7 ~ p~~ 1.l- j,

ISREDIT (OLD) =~)&LINENUM d
ISREDlT LINE &LlNENUM = (NEW)

where the variable &LINENUM contains a relative line number.

Note: The line pointer variable (&LINENUM, in this example) is not
coded in parentheses because it is to be replaced with its current value
by the CLlST processor before the command is passed to the editor.

Certain keyphrases have two associated values. For example, the first
value associated with the CURSOR keyphrase is the relative line number
on which the cursor is currently located, and the second value is the
relative column position of the cursor. The statements:

ISREDlT
ISREDlT

(ROW,COL) = CURSOR
CURSOR = 1,40

24 ISPF/PDF for MVS Edit Macros

I~
1,.-

(
.~

save the current position of the cursor in variables ROWand COL, and
then set the cursor to line 1, column 40.

Either of the variables or values in the pair can be omitted. For
example, the statements:

ISREDIT
ISREDIT

(ROW) = CURSOR
CURSOR = 1

save and then set the cursor line number without changing the column
position, whereas the statements:

ISREDIT
ISREDIT

(,COL) = CURSOR
CURSOR = ,40

save and then set the cursor column position without changing the line
number.

The "value" in an edit assignment statement may be one of the following:

•

•

A literal (character string) that may be:

A simple string
Any series of characters not enclosed within apostrophes
(t), quotation marks ct), parentheses, or less-than «)
and greater-than signs (», and not containing any
embedded· blanks or commas.

A delimited string
Any string starting and ending with an apostrophe (t) but
not containi~edded apostrophes, or starting and
ending-·wffh· a quotation mark (,i)'out not containing
imbedded quotation marks. The delimiting apostrophes or
quotation marks are not considered part of the data.

A variable name enclosed in parentheses:

(varname)

The entire contents of the variable are considered part of the data,
including any quotes, apostrophes, blanks, commas, or other special
characters.

Statements with Two-Valued Keyphrases

An edit assignment statement that contains a two-valued keyphrase has
one of the following formats:

ISREDIT
ISREDIT

(varname,varname) = keyphrase
keyphrase = value-pair

where "value-pair" is one of the following:

• Two literals that may be separated by a comma or blank. Examples:

Chapter 4. Advanced Edit Macro Concepts 25

ISREDIT
ISREDIT

CURSOR = 1,40
CURSOR = 1 40

Note: Apostrophes or quotes may not be used when specifying
two numeric values. Both of the following, for example, are
invalid:

ISREDIT
ISREDIT

CURSOR = '1', '40'
CURSOR = '1,40'

• Two variable names enclosed in parentheses and separated by a comma
or blank:

(varname,varname) or (varname varname)

where each variable contains a single value.

In any edit assignment statement that contains a two-valued keyphrase,
either of the variables or values in a pair can be omitted. The general
format then becomes:

ISREDIT
ISREDIT

ISREDIT
ISREDIT

(varname) = keyphrase
keyphrase = single-value

(,varname) = keyphrase
keyphrase = ,single-value

Note: Even though blanks may be used instead of commas to separate
paired variables or values, a leading comma is required whenever the
first variable or value has been omitted.

Line Data Statements

In addition, there are certain statements that allow additional
flexibility. These statements, which add or replace lines of data, are
LINE, LINE_AFTER, LINE_BEFORE, MASKLINE, and TABSLINE. They may have
any of the following formats:

ISREDIT
ISREDIT
ISREDIT
ISREDIT

keyphrase = keyphrase
keyphrase = value
keyphrase = keyphrase + value
keyphrase = value + value

When two values, or a keyphrase and a value, are separated by a plus
sign (+), nonblank characters in the value on the right overlay
corresponding characters in the value on the left. For example:

ISREDIT
ISREDIT

LINE .ZCSR = LINE + 'II'
MASKLINE = MASKLINE + <40 '1*' 70 '*1'>

The first example causes two slashes to replace the first two column
positions of the line containing the cursor. The remainder of the line
is unchanged. The second example uses a template to cause columns 40-41

26 ISPF/PDF for MVS Edit Macros

/

)
v'

of the current mask line to be replaced with "/~~" and columns 70-71 to
be replaced with "'\,1". A template of the form:

<col-1 literal-1 col-2 literal-2 ... >

may be coded with col indicating a starting column position and literal
indicating the data to start at that column. The entire template is
delimited with less-than «) and greater-than (» signs. A template may
be coded using variable names, enclosed in parentheses, for "col" or
"literal" (or both). All of the following forms are valid:

«colvar-1) (datavar-1) (colvar-2) (datavar-2) >
«colvar-1,datavar-l) (colvar-2,datavar-2) >
«colvar-1) literal-1 col-2 (datavar-2) >

HANDLING ERRORS

As indicated in "Return Codes" in Chapter 2, every edit macro statement
causes &LASTCC to be set to a return code. Codes of 12 or greater are
considered errors, and the default is to terminate macros which issue
return code 12 or greater.

If you want to handle all errors that might occur in your macro you
should code

ISPEXEC CONTROL ERRORS RETURN

indicating that, in case of errors, control is to return to the macro.
If you do not want to handle errors, you should code

ISPEXEC CONTROL ERRORS CANCEL

indicating that in the case of an error, the macro is to be terminated.

You can include any number of ISPEXEC CONTROL statements in your macro
to turn error handling on and off.

REFERRING TO DATA LINES

You may refer to data lines either by a relative line number or by a
symbolic label.

Note: Special lines (MASK line, TABS line, COLS line, BOUNDS line, MSG
lines, and others) are not considered data lines and are not assigned
relative line numbers, and they may not be assigned labels. These lines
cannot be directly referenced by a macro even though they may be
displayed in the data portion of the screen.

Relative line numbers are not affected by the presence of sequence
numbers within the data, nor are they affected by the current setting of
number mode. The first line of data is always treated as line number 1,

Chapter 4. Advanced Edit Macro Concepts 27

the next line is line number 2, and so on. The "top of data" line is
considered line number O.

When lines are inserted or deleted, the lines that follow will have new
relative line numbers. If a new line is inserted after line 3, for
example, it becomes relative line 4 and all lines that follow will have
new relative line numbers. (What was relative line 4 becomes relative
line 5, and so on.) Similarly, if line 7 is deleted, the line that was
relative line 8 becomes relative line 7, and so on.

REFERRING TO COLUMN POSITIONS

LABELS

In edit macros, column positions are always referred to relative to the
data portion of a line. The data portion excludes the sequence numbers
when number mode is on. For example, if "NU~1BER COBOL ON" mode is in
effect, the first six card image positions of each line contain the
sequence number. The first data character is in card image position 7,
which is considered relative column 1.

If your macro has to access the sequence numbers as data, first ensure
that number mode is off. If desired, your macro may save the current
number mode, set number mode off, and then restore the original number
mode before returning to the end user.

When a macro retrieves the current cursor position, a relative column
number of zero is returned if the cursor is outside the data portion of
the line. When a macro sets the cursor column to zero, the cursor is
placed in the line command field (left side) of the designated line.

There are several special labels that are automatically assigned by the
editor. They all begin with the letter "Z". Labels beginning with "z"
are reserved for editor use, and may not be assigned by a macro or an
end user.

The editor-assigned labels are:

.ZCSR The data line on which the cursor is currently positioned .

. ZFIRST The first data line (same as relative line number 1). May be
abbreviated .ZF.

· ZLAST The last data line. Hay be abbreviated . ZL.

· ZFRANGE The first line in a range indicated by the user.

· ZLRANGE The last line in a range indicated by the user.

· ZOEST The destination line indicated by the user.

Note: Unlike other labels, .ZCSR, .ZFIRST, and .ZLAST do not stay with

28 ISPF/PDF for MVS Edit Macros

/
I~

)

the same line. Label .ZCSR stays with the cursor, and labels .ZFIRST
and .ZLAST point to the current first and last lines.

A macro can refer to labels assigned by the user. A lower-level macro
(nested macro) is able to refer to all labels assigned by higher-level
macros as well as the user. When a macro assigns labels, they are
normally associated with that macro and are automatically unassigned
when the macro completes execution. The labels "belong" to the macro
that assigned them, and may have the same name as labels at a higher
level without any conflict.

If desired, a macro may assign labels that are to be passed to the user
or to a higher-level macro. Labels to be passed back are indicated with
a level operand when the label is assigned:

ISREDIT LABEL lptr = label [level]

where level is a numeric value. Level 0 is the end user level, level 1
is the macro invoked by the end user, level 2 is the next lower-level
(nested) macro, and so on. The maximum nesting level allowed is 255.
If the level operand is omitted, or if its value is equal to or greater
than the level at which the macro is executing, the label is assigned to
the macro's own level.

A macro has access to any labels that it assigns to the user or to a
higher-level macro, but those labels do not "belong" to the macro and
are not automatically unassigned when the macro completes.

MACRO LEVELS

Each macro operates on a separate and unique level. The end user always
operates at level o. The macro invoked by an end user always operates
at level 1, the macro invoked by a level 1 macro operates at level 2,
and so on. The level is the degree of macro nesting. When a macro sets
a label without indicating a level, the label is set at the macro level
that is currently in control and does not affect any labels set in a
higher level. When a macro queries a label without specifying a level,
or uses the label as a line pointer, the search for the label starts at
the current level and goes up, level by level, until the label defined
closest to the current level is found.

If you specify a level parameter that is outside the current active
levels, it is adjusted as follows: a value less than zero is set to
zero; a value greater than the current nesting level is set to the
current nesting level. This means that a higher-level macro cannot set
a label at the level of the macro that it is going to invoke.

When the macro terminates, the labels at the current nesting level are
deleted. To set a label for the next higher level, the macro can issue
the MACRO_LEVEL assignment statement to obtain the current level and
decrement the level by 1.

Chapter 4. Advanced Edit Macro Concepts 29

When a label is set on a line, it remains associated with the line even
when the relative line number of that line changes as a result of new
lines being added to or deleted from the data. Using the same label
name as an existing label on the same level moves that label name from
one line to another.

A macro may find out the level of a label with the LABEL assignment
statement, as follows:

ISREDIT (varname1,varname2) = LABEL lptr

The label assigned to the referenced line is stored in the first
variable, and its level is stored in the second variable. If there is
no label assigned to the line, a blank is stored in both variables.

A macro may find out its own level with the following assignment
statement:

ISREDIT (varname) = MACRO_LEVEL

The current level number is stored in the specified variable.

Notes:

1. Labels at the end-user level are retained until editing of the
current data is terminated.

2. Whenever a line is deleted, any labels associated with it become
unassigned.

3. A labeled line may be assigned a new label, which causes the
previous label to be unassigned (if both labels are at the same
level). If the new label is a blank, the line becomes unlabeled.
For example:

ISREDIT LABEL .HERE = r r

causes the line labeled .HERE to no longer have a label.

4. If a label ~hat is in use is assigned to another line, the label is
"moved" from the original line to the new line (provided that the
new assignment is at the same level as the original).

5. If the label is set on a line that already has a label at the same
level associated with it, setting the new label causes the previous
label to be deleted.

30 ISPFjPDF for MVS Edit Macros

PASSING MULTIPLE PARAMETERS TO A MACRO

When you invoke a macro with parameters, the editor takes the parameters
and 'puts them into variables, as yet unnamed. Then it invokes the macro
without parameters. If the macro allows parameters to be specified, the
HACRO command identifies the names of one or more variables, which will
contain any passed parameters. These names are enclosed in parentheses.
The HACRO command allows parameters to be omitted or entered in any
order. This allows the macro to assume default values for parameters
that are not supplied, similar to the way edit FIND looks for the next
occurrence of string ABC when FIND ABC is entered (NEXT is a default
keyword).

It is an error if a macro that does not have parameters is invoked with
parameters. If an end user makes this error, edit displays a message.
It is not an error if more or fewer parameters are supplied than the
number of variables coded on the HACRO command. It is the macro
writer's responsibility to check for omissions and the order of
parameters.

Hultiple parameters are placed into one or more variables based on the
number of variables specified on the HACRO command. If only one
variable name is coded on the HACRO command, that variable contains all
parameters entered after the macro name. If more than one variable name
is coded, the editor attempts to parse any parameters, and stores them
in order (that is, the first parameter in the first variable, the second
in the second, and so on). If there are more parameters entered than
there are available variables, the editor stores the remaining
parameters as one character string in the last variable.

If there are more variable names than parameters, the unused variables
are set to nulls. The parameter is defined as a simple string,
separated by a blank or a comma, or a quoted string, separated separated
by a blank or comma. Quotes may be single (') or double (ft). For
example, if your FIXIT macro is to have two parameters, you can code:

ISREDIT HACRO (PARH1,PARH2,REST)

This means that if the user enters

====> FIXIT GOOD BAD AND UGLY

variable &PARM1 will be assigned the value GOOD, &PARM2 will be assigned
the value BAD, and &REST will be assigned thev-alu~'ANnUGLY. If the
parameters passed were GOOD BAD, variable-&REST would be null.

If the MACRO statement in TRYIT(Figure 4 on page 14) Were coded with
two variables, ftISREDIT t-lACRO/{COMHAND, PARt-I) ft, ftTRYIT.,;J~ESETft would
result in the variable &COMMAND being set to RESET arid &PARH being set
to null; ftTRYIT FIND Aft would result in &COMHAND/being set to FIND and
&PARM being set to A.

TRYIT would have to be f~~ther modified to allow edit commands that
require parameters to workwlt-h the modified HACRO command.

Chapter 4. Advanced Edit Hacro Concepts 31

DEFINING MACROS

ef o want to establi~or macros that are different from their
me~s, or use allases for built-in edit commands, or-identify
acT~ program macros, you must issue a DEFINE command. You will

commonly issue DEFINE commands in an initial macro.

Implicit Definitions

When you or your macro issues a command unknown to the editor, the
SYSPROC concatenation sequence is searched for a CLIST with that name.
If it is found, it is implicitly defined as a CLIST macro. For example,
if you enter XXX on the command line or the macro command processed is
ISREDIT XXX and XXX exists in SYSPROC, XXX is defined implicitly as a
CLIST macro. You may implicitly define a program macro by preceding its
name with an exclamation point (!); you can use this method only when
the name is seven characters or less. The third way to define a macro
implicitly is to define a name as an alias of a name that is unknown to
edit. If the unknown name is in the SYSPROC concatenation, it becomes
implicitly defined.

Overriding Command Names

To override an existing edit command name, that is, to cause a macro to
be executed in place of a built-in edit command, issue a DEFINE command. (
To issue the built-in edit command in an overriding macro, precede the
command with BUILTIN. However, you cannot override an assignment
statement. Commands that can only be executed in a macro (like LINE or
~fACRO) do not require a DEFINE command to override the definition for
the end user. Since the command is unknown to an end user, the SYSPROC
directory is searched for a macro with that name. To use LINE as a
macro (not recommended), issue DEFINE LINE MACRO. Then an ISREDIT LINE
command without an equals sign causes the LINE macro to be executed.

Defining an Alias

To establish an alias or alternate invocation name for a command, code
the alias name first, followed by the ALIAS keyword and the command
name. For example, issuing

DEFINE FILE ALIAS SAVE

allows you to use the command FILE to save the data currently being
edited on disk. If the command following the ALIAS keyword is unknown
to edit, the SYSPROC concatenation is searched and, if the name is
found, it is defined implicitly as a macro.

32 ISPF/PDF for MVS Edit Macros

) Resetting Definitions

To undo the last DEFINE for a command and to return it to its previous
status, issue the DEFINE command with the RESET keyword. For example,
after the previous definition of FILE as an alias for SAVE, if you issue

DEFINE FILE RESET

any further attempts to use the FILE command would be flagged as an
invalid command.

Scope of Defi n ition

DEFINE commands issued in a macro are in effect while the current member
is being edited. DEFINE commands issued by an end user are in effect
until the edit session is terminated.

USING THE PROCESS COMMAND

An end user can perform three different kinds of editing with a single
interaction. He can:

• Enter a primary command

• Enter one or more line commands

• Overtype data on the screen

If a macro is entered as the primary command, the sequence of events is
as follows:

•

•

•

•

The macro is executed up to the ISREDIT MACRO command, which must be
the first command in the macro.

Any overtyping that was made on the screen is merged into the file
being edited.

Any line commands are executed.

The rest of the macro is executed.

It is possible to alter this sequence by using an ISREDIT MACRO command
with the NOPROCESS argument, and then code an ISREDIT PROCESS command.

The syntax of the MACRO statement is~

ISREDIT MACRO (parm ...)~~
The PROCESS keyword indicates that screen data and line commands are to
be processed when the MACRO command is encountered. PROCESS is the
default.

Chapter 4. Advanced Edit Macro Concepts 33

The NOPROCESS keyword indicates that processing of the screen data and t
line commands are to be deferred until an ISREDIT PROCESS command is ~

encountered later in the macro, or the macro terminates.

There are two reasons for coding NOPROCESS. / 1S that you want
to execute statements before the screen data or 1ne commands are
processed. You might want to perform initial verification of parameters
or capture lines from the file before they have been changed from the
screen.

Th~~aso that you want to code an ISREDIT PROCESS command to
s~~' weer or not the macro expects, and will handle, line commands
that identify either a range of lines, a destination line, or both.
This is the method by which the editor allows a macro command to
interact with line commands in the same way that the built-in MOVE or
REPLACE commands do. Once the ISREDIT PROCESS command has been
executed, the editor can process the line commands that have been
entered by the end user, performing meaningful error and consistency
checking.

If ISREDIT PROCESS DEST is coded, it indicates that the macro expects a
destination line to be specified by the end user. A destination line is
always specified using either A (after) or B (before). The dialog
variable .ZDEST is set to the line preceding the destination; if neither
A nor B is specified, .ZDEST is set to the last data line in the file.

If ISREDIT PROCESS RANGE arg is coded, it indicates that the macro
expects a range of lines to be specified by the end user. The argument
following the RANGE keyword identifies either one or two commands which
are to be accepted. For example, PROCESS RANGE Q Z allows the user to
enter either Q or Z line commands in conjunction with this macro. The
line commands could take any of the following forms:

• Q or Z, to indicate a single line
• QQ or ZZ, to indicate a block of lines (this form is obtained by

doubling the last letter of the single-line command)
• Qn or Zn, where n is a number that indicates a block of n lines

After the PROCESS command is completed, the dialog variable .ZFRANGE is
set to the first line of the user-entered range and the dialog variable
.ZLRANGE is set to the last line of the user-entered range. The labels
may refer to the same line. If no range is entered, the range defaults
to the entire file. When a choice may be made between the two line
commands, the RANGE_CMD assignment statement is used to return the value
of the command entered. The names of line commands used to define the
range of processing may be one to six characters, but if the name is six
characters long, it may not be used as a block format command. The name
may contain any alphabetic or special character except blank, hyphen
(-), or apostrophe ('). It may not contain any numeric characters.

An example may clarify some of the above statements.

34 ISPFjPDF for MVS Edit Macros

/

I
~

PROFILES

Example

The NOPROCESS keyword on the MACRO command is used to defer processing
of the screen data until the line with the cursor is assigned to a
variable. After the PROCESS command, the line contains any changes that
were made by overtyping it.

ISREDIT MACRO NOPROCESS
ISREDIT (BEFORE) = LINE .ZCSR
ISREDIT PROCESS
ISREDIT (AFTER) = LINE .ZCSR
IF &STR(&BEFORE) = &STR(&AFTER) THEN -

no change to line with the cursor.
ELSE -

the line with the cursor has been changed.

The set of default modes for a given record format (like fixed 80) is
called a profile. Each user has his own edit profile table (ISREDIT) on
disk that contains profiles for each type (the lowest-level qualifier in
the data set name) of data edited unless an explicit profile name is
specified. The user can explicitly specify a profile name, and thus the
modes to use, in three ways:

• Issue a 'PROFILE name' command

• Fill in the PROFILE field on the edit entry panel

• Supply a PROFILE keyword when invoking the EDIT service:

ISPEXEC EDIT PROFILE(name)

In addition to the disk profile, a current profile is maintained.
Another form of the PROFILE command (PROFILE LOCK/UNLOCK) controls
whether the disk profile is automatically updated to reflect changes to
the current profile. The following assignment statements change profile
modes or values:

AUTONUM
AUTOLIST
AUTO SAVE
BOUNDS

HEX
IMACRO
MASKLINE
NULLS

NUMBER
NOTE
PACK
PROFILE

RECOVERY
TABS
TABSLINE

Each time another member is edited, the current profile is reloaded from
disk. The data is then examined for caps, number, stats, and pack mode
values and warning messages are issued if the current copy of the
profile is changed. With a locked profile, the messages occur only when
a member has characteristics different from those stated in the profile.
Since a locked profile establishes default values that are reinstated
when a new member is edited, a change to a profile setting, such as a
boundary change, or a difference in the mask line, will be in effect
only for the current member being edited.

Chapter 4. Advanced Edit Macro Concepts 35

INITIAL MACROS

An initial macro is executed after a member or sequential data set has
been specified and its data read, but before the data is displayed.

An initial macro can be used to set up your edit environment if you want
to default to values other than those automatically set up by edit. For
example, if you want caps mode on, regardless of whether the data
contains lowercase data, create an initial macro with a CAPS ON command.
Edit first reads the profile and the data and then sets caps mode to
correspond to the data. Then it executes your initial macro, which
overrides the setting of caps mode by edit.

You can specify an initial macro in one of the following ways:

• Using the IMACRO command to store the macro name in the edit
profile:

IMACRO STARTUP

• Specifying the initial macro name on the edit selection panel:

INITIAL MACRO ===>

• Specifying the initial macro name on the EDIT service invocation:

ISPEXEC EDIT DATASET(dsname) MACRO(initmac)

Specifying the parameter on the edit selection panel or on the EDIT
service invocation overrides the setting in the edit profile. You can
enter NONE to suppress execution of the initial macro defined in the
profile.

Some commands you may find useful in an initial macro, either for all
members or for new members (members with zero lines):

CAPS - Force caps mode on or off
NUMBER - Force number mode off
PACK - Force pack mode on or off
STATS - Force stats mode on or off
RESET - Reset unwanted information messages
VERSION - Set version number
LEVEL - Set or increment modification level ~

(commandS" th,at reference display values (DISPLAY_COLS, DISPLAY_LINES, Vmm, ,LEFT" RIGHT, "UP) are invalid in an ~;al. macro.

If the initial macro issues an END command, changes to the data made by
the macro are saved and the member is not displayed.

36 ISPF/PDF for MVS Edit Macros

(

, , RECOVERY MACROS

When you are recovering from a system failure, you may want to restore
the command definitions and aliases that you were using when the system
failed, but you don't want to destroy the profile changes that you've
made during the edit session before the failure. To allow you to
recover, edit provides a recovery macro which, like an initial macro, is
executed after the data has been read but before it is displayed. In
this case, however, the macro is executed whenever the edit of the data
set is occurring as a result of recovery. You can specify a recovery
macro in your initial macro, using the RMACRO command.

Chapter 4. Advanced Edit Macro Concepts 37

38 ISPF/PDF for MVS Edit Macros

I
\

CHAPTER 5. SAMPLE EDIT MACROS

This chapter presents several edit macros, along with line-by-line
comments about their operation. The numbers within parentheses on the
left identify the statements described in more detail below and are not
part of the macro.

FORMAT MACRO

The FOR~lAT macro (Figure 6) initializes the edit profile values and PF
keys for text entry. It may be invoked from the command line or may be
used as an initial macro set in the profile used for text entry with the
command I~lACRO FaRHAT; it requires no parameters. It is to be used in
conjunction with the BOX macro, which will be described later.

Chapter 5. Sample Edit Macros 39

(1)

(2)

(3)
(4)

(5)

(6)

(1)
(2)

(3)

I"~
1* FORMAT initializes the profile and PF keys for text work
1*
ISREDIT MACRO 1*

ISREDIT NUMBER OFF
ISREDIT TABS OFF
ISREDIT NULLS OFF
ISREDIT BOUNDS
ISREDIT CAPS OFF
ISREDIT RECOVERY ON

SET &ZPF24 = BOX
ISPEXEC VPUT (ZPF24) PROFILE

ISREDIT DEFINE END ALIAS ~~
ISREDIT DEFINE CANCEL ALIAS~
ISREDIT DEFINE QUIT ALIAS CANCE~

EXIT CODE(O) ~
'~~

1* *1
1* Set profile values *1
1* default bounds *1 /-

~ 1* Set tabs, nulls, caps ~

~: se~:e:::::: :~:~
~: t PF l~~X :~
1* and sav~Yin profile *1

.//~/

I"~ ------ * I
/* Do DEFINEs to reset
/* the PF key at exit
/ .. ~ QUIT = PFCAN
1*

...... -."----~

The MACRO command identifies this CLIST as a macro.
These six commands set profile values; the boundaries are set to
the first and last column numbers of data.
The CLIST SET statement sets &ZPF24 to BOX. This ISPF variable
controls the function of PF key 12 (for terminals
with 12 program function keys) or PF key 24 (for 24-key terminals).
BOX is the command to be executed when PF key 12 or PF key 24
is pressed. Since no native edit command exists with the
name BOX, the SYSPROC concatenation will be searched for
a CLIST named BOX.

(4) A dialog service sets the PF key variable in the profile
pool where the PF key variables are saved.

(5) Macros are defined to be invoked when edit commands are issued.
When the user enters a CANCEL or CAN or QUIT command, the macro
PFCAN is executed. Similarly, when the user enters an END
command or presses the END PF key, the macro PFEND is invoked.
Notice that since QUIT is defined after CANCEL was
defined as an alias of a macro, it too becomes an alias of
the same macro. The PFCAN macro is also shown later as an example.

(6) Exit from the macro, setting a return code of zero.

Figure 6. FORMAT Macro

40 ISPF/PDF for MVS Edit Macros

/

l
\;

.--------~

~-.-> .. -.--------'-.-.
~-~

PFCAN ~ePJ)---
/"-/.

The PFCAN macro (Figure 7) may be run in place of th~~~--edit""GA~
command. It cancels the edit session, but first i1(:"resets PF 12~ which
was defined by the FORMAT macro. '> '''''''''"'' " •••••• --, •• '~

!~PFCAN~eset PF 12, which was defined by the FORMAT macro.
>£* .. //
, . rsREDrT" MACRO I-;'r

// SET ZPF24 = CURSOR 1* Reset PF 12 to
" (lJ ISPEXEC VPUT (ZPF24) PROFILE /-;'~ default value

,{2) ISREDIT BUILTIN CANCEL 1* Cancel the
1* session

EXIT /~'\

(1) PF 12 is reassigned to its default setting: place the cursor
in the command area.

(2) The native edit CANCEL command is executed. If BUILTIN did
not precede CANCEL on this statement, PFCAN would issue
a CANCEL command which would cause PFCAN to get invoked, and
so on.

Figure 7. PFCAN Macro

edit

,~ /
*1
-.'rl

its -;"1
*1
-;~/

,~ /
,~ /

Chapter 5. Sample Edit Macros 41

BOX MACRO

The BOX macro (Figure 8) draws a box whose left corner is at the cursor
position. You can prepare to invoke BOX in one of two ways:

•

•

Enter KEYS on the command line, set a PF key to the BOX macro, and
enter the END command.
Use the FORMAT macro, defined earlier, which sets up the PF key for
BOX and defines the profile values for text entry.

Then position the cursor on a data line where you want the box drawn and
press PF 12 (or another key that you have defined) to invoke BOX. After
the box is drawn, the cursor is positioned inside, ready for entering
text to fill the box. If any of the macro commands fail, it issues a
warning message. To show how the box is drawn, the BOX macro was run
placing the cursor on the "&" of &EVAL in the BOX macro definition. The
result:

ISREDIT LINE &ROW = LINE
ISREDIT LINE +----------------+NE
ISREDIT LINE I INE
ISREDIT LINE I INE
ISREDIT LINE I I NE
ISREDIT LINE I INE

+----------------+

42 ISPF/PDF for MVS Edit Macros

+ < &COL
+ < &COL
+ < &COL
+ < &COL
+ < &COL
+ < &COL

'+----------------+'>
' I I'>
' I I'>
' I I'>
' I I'>
'+----------------+'>

1* */

/* */
/* BOX - Draw a box whose left corner is at the cursor position. */
/* */

ISREDIT MACRO
(1) ISREDIT (ROW,COL) = CURSOR /* Get cursor position */

/* */
(2) ISPEXEC CONTROL ERRORS RETURN /* No macro error panel */

(3)

(4)

(5)

(6)

ISREDIT LINE &ROW
ISREDIT LINE &EVAL(&ROW+1)
ISREDIT LINE &EVAL(&ROW+2)
ISREDIT LINE &EVAL(&ROW+3)
ISREDIT LINE &EVAL(&ROW+4)
ISREDIT LINE &EVAL(&ROW+5)

IF &MAXCC > 0 THEN
DO

/* Draw box over */
/* existing lines */
/,tr

= LINE + < &COL '+----------------+'>
= LINE + < &COL 'I I '>
= LINE + < &COL 'I I '>
= LINE + < &COL 'I I '>
= LINE + < &COL 'I I '>
= LINE + < &COL '+----------------+'>

/*
/* If error on
/* overlaying lines */

SET ZEDSMSG = INCOMPLETE BOX
SETZEDLMSG = NOT ENOUGH LINES/COLUMNS TO DRAW COMPLETE BOX
ISPEXEC SETMSG MSG(ISRZ001)

END
SET &COL = &COL + 2
SET &ROW = &ROW + 1
ISREDIT CURSOR = (ROW,COL)
EXIT

/* Issue error message */
/* Position cursor */
/* within the box */

.. ~/

Figure 8 (Part 1 of 2). BOX Macro

Chapter 5. Sample Edit Macros 43

(1) The variables &ROW and &COL are set to the cursor position.
(2) A dialog service allows the macro to handle severe errors.

This allows a message to be displayed when the
cursor is placed too close to the end of the file. The LINE
assignment statement fails if the row it is setting does not exist.

(3) The LINE assignment statements overlay existing data on a line with
characters to form a box. LINE uses a merge

(4)

(5)

(6)

format to include the existing line data and then a template
to put the overlaying data at the cursor column position.
The CLIST &EVAL function increments the relative 1ir.e
numbers before the statement is passed to edit.
The CLIST IF statement checks the &MAXCC variable, and if it is
nonzero, invokes the dialog service SETMSG to display a
message. &~IAXCC is a variable updated by the CLIST processor
to contain the highest condition code.
The message used in SET~ISG is one of two messages (ISRZOOO and
ISRZ001) reserved for macro use. Each message uses two
variables:

&ZEDSMSG to set the text for the short message (up to 24
characters) that is displayed when the macro completes.
&ZEDLMSG to set the text for the long message that appears
when the HELP PF key is pressed.

Message ISRZ001 sounds the alarm to indicate an error,
message ISRZOOO does not sound the alarm.
This statement positions the cursor within the box
to simplify entering text when the screen is redisp1ayed.

Figure 8 (Part 2 of 2). BOX Macro

44 ISPF/PDF for MVS Edit Macros

(

~
V

ALLMBRS MACRO

(1)
(2)
(3)
(4)

(5)

(6)
(7)

(8)

(9)

(10)

(11)

I'':
/,t(
1*

The ALLMBRS macro (Figure 9) uses library management services to get
each member name in the partitioned data set that is being edited. An
inner macro is invoked for each member in the data set except the member
currently being edited. The name of the inner macro to execute is
passed as the only parameter to ALLMBRS. The ihner macro is invoked
with the member name as a parameter. To invoke ALLMBRS, edit a new
member and invoke ALLMBRS with the name of the macro to be invoked in
each member. For example, if the name of the macro is IMBED, issue:

COMMAND ====> ALLMBRS IMBED

";':/
ALLMBRS Invokes a macro for every member of the PDS being edited. ";':/

~'~ /
ISREDIT MACRO (DOITMAC) I";': Pass macro name ~'(/
ISREDIT (DATAl) = DATAID /~'~ Get the data id -k /

ISREDIT (CURMBR) = MEMBER /-.': Get edit member name ~~ /
ISPEXEC LMOPEN DATAID(&DATA1) /i't Open dataid for input";'(/ -

OPTION(INPUT) /";t(i'r /

SET LMRC = &LASTCC I";': i~ /

DO WHILE (&LMRC = 0) /-.': Build member (3) ";':/
ISPEXEC LMMLIST DATAID(&DATA1) I";': list and return i'r/ -

OPTION(LIST) MEMBER(MEMBER) /-.t(next member name ";':/ -
STATS(NO) /i't ";':/

SET &LMRC = &LASTCC I'': Capture return code -.':/

IF &LMRC = 0 THEN /-.': If a member name -.':/ -

DO I";': returned OK ,;t(/

/-.t(current member ";':/
IF &CURMBR = &MEMBER THEN I";': Skip if the same -.':/
ELSE I";': Otherwise will ";':/ -

DO /-.': invoke inner macro ";':/
WRITE PROCESSING MEMBER &MEt-IBER

I,;': confirm working ";':/
ISREDIT &DOITMAC &MEMBER /-.'(Invoke macro (5) ·lr /

END /-.': member name ";'(/
END

END
ISPEXEC LMMLIST DATAID(&DATA1)

OPTION(FREE)
ISPEXEC Lt-ICLOSE DATAID(&DATA1)

EXIT CODE(&MAXCC)

/* Free member list
I';':
/-.'(Close dataid

Figure 9 (Part 1 of 2). ALLMBRS Macro

Chapter 5. Sample Edit Macros 45

(1) The MACRO command identifies &DOITMAC as the variable to
contain the name of the inner macro. If this macro is invoked
without a parameter, &DOITMAC will be set to a null value.
IMBED (Figure 10) is an example of a macro
that can be invoked by ALLMBRS.

(2) The DATAID assignment statement will return a dataid in variable &DATA1.
The dataid defines the data set(s) to library management (LMF).
When this macro is invoked under the ISPF/PDF editor, the dataid
identifies the concatenation of data sets currently being
edited.

(3) The name of the member being edited is returned in &CURMBR.
(4) The data set is opened by LMF to allow the LMMLIST service to be

invoked later.
(5) The condition code is captured in &LMRC. The CLIST processor

updates the &LASTCC variable after each statement is processed.
(6) The CLIST DO statement is coded to loop as long as no error

is found by LMOPEN or LMMLIST. &LMRC will be set nonzero
when the member list is exhausted, ending the loop.

(7) LMMLIST invokes the LMF member list service. It returns the
next member name in the MEMBER variable.

(8) If the current member being edited is the same as the name
returned by LMMLIST, nothing is done. This IF statement
does not have a CLIST continuation character as the last
character on the line; therefore, no action is taken when the
IF statement is true.

(9) A CLIST WRITE statement is used to write line-I/O messages.
As the macro processes each member, the member name will appear on
the terminal to keep you informed as to what is happening.
A nicer way to do this is to display a panel showing the member
name after issuing a ISPEXEC CONTROL DISPLAY LOCK.

(10)The inner macro is invoked. If no macro name was passed
to ALLMBRS, the member name is used as the macro name.
If the macro does not exist, a macro error panel is displayed.

(11)At the end of the loop, the dataid is closed and freed.

Figure 9 (Part 2 of 2). ALLMBRS Macro

46 ISPF/PDF for MVS Edit Macros

) IMBED MACRO

The IMBED macro (Figure 10) builds a list of imbed C.im) statements
found in the member whose name is entered as a parameter. The list is
created at the end of the member currently being edited. The imbed
statements are indented under a MEMBER identifier line.

MEMBER mbrname
.im imbedname1
.im imbedname2

MEMBER mbrname

You can invoke this macro by editing a new member, such as IMBEDLIST,
and then enter ALLMBRS IMBED on the command line.

1* IMBED Creates a list of imbed statements *1
1-'': *1

ISREDIT MACRO (MEMBER) 1* Member name passed *1
1* as input *1

(1) ISREDIT LINE AFTER .ZL = 'MEMBER &MEMBER' 1* Add member ID line *1
(2) ISREDIT (LINENBR) = LINENUM .ZL 1* Get its line number *1

(3)
(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

ISREDIT COpy AFTER .ZL &MEMBER
ISREDIT (NEWLL) = LINENUM .ZL

IF &LINENBR = &NEWLL THEN
EXIT CODE(8)

ELSE
DO

ISREDIT LABEL &EVAL(&LINENBR + 1)
= .FIRST

ISREDIT EXCLUDE ALL .FIRST .ZL

ISREDIT FIND ALL .IM 1 .FIRST .ZL
SET FINDRC = &LASTCC

ISREDIT DELETE ALL X .FIRST .ZL

ISREDIT (NEWLL) = LINENUM .ZL

IF &FINDRC = 0 THEN
DO WHILE (&LINENBR < &NEWLL)

SET LINENBR = &LINENBR + 1
ISREDIT SHIFT &LINENBR) 8

END
END

EXIT CODE(&MAXCC)

Figure 10 (Part 1 of 2). IMBED Macro

1* *1
1* Copy member at end *1
I,,;~ Get new last line# -J(I
1* *1
1* If no data copied *1 -
1* exit *1
1* Else *1
1* *1
1* Label first line *1 -
1* copied *1
1* *1
1* Exclude just copied *1
1* lines *1
1* Show lines *1
1* containing .im *1
1* *1
1* Delete any lines *1
1* still excluded *1
1* Update new last *1
1* line# after delete *1
1* If .im was found *1 -
1* loop through *1
1* all .im lines *1
1* shift right 8 *1

Chapter 5. Sample Edit Macros 47

(1) Add a line identifying the member to be searched at the end
of IMBEDLIST. The .ZL label (or .ZLAST) is always
associated with the last line in the file.

(2) Retrieve the line number of the identifier line just added
by statement (1) into &LINENBR.

(3) Now copy, at the end of IMBEDLIST, the member whose name was
passed as an input parameter.

(4) &NEWLL is set to the new last line number of IMBEDLIST.
(5) Check to see if any lines were added by the copy. Exit from the

macro if no lines were added.
(6) Set the .FIRST label on the first line copied. This label

is only available to this macro and is not seen by the end
user.

(7) Exclude all the lines that were just copied: all the lines
in the range .FIRST to .ZL.

(8) The FIND command is used to find all occurrences of .IM
starting in column 1 of the copied lines.
This will show (unexclude) the lines to keep.
If .IM was not found on any line, &FINDRC will be 4.

(9) All the lines still excluded are now deleted.
(10) Reobtain the last line number, because it will have changed if

lines were deleted.
(11) If .IM lines were found, loop using a column shift to indent

them under the member identifier line. Note that &LINENBR
is still associated with the identifier line.

Figure 10 (Part 2 of 2). IMBED Macro

48 ISPF/PDF for MVS Edit Macros

(

~ FINDCHGS MACRO

TheFINDCHGS macro (Figure 11) identifies the lines most recently
changed by showing just those lines and excluding all the others. When
no level is passed, the latest level is assumed. A label range may also
be passed to FINDCHGS to limit the search. This macro relies on the
modification level maintained by edit for members with numbers and ISPF
statistics.

For example, to show lines with level 8 or greater on line range:

COMMAND ===>"FINDCHGS 8 .FIRST .LAST

Chapter 5. Sample Edit Macros 49

(1)

(2)

(3)

(4)

(5)

(6)
(7)

*1
1* FINDCHGS shows the most recent changes to a file. ,trl

,trl
I,tr Macro accepts args: ,tr 1
1* level & label range *1

1*
ISREDIT MACRO (SEARCH,PARMS)

ISREDIT (SAVE) = USER_STATE I*Save user info/csr pos*1
ISREDIT (NUMBER)= NUMBER 1* Get number mode *1
ISREDIT (STATS) = STATS 1* stats mode *1
ISREDIT (LEVEL) = LEVEL 1* current level *1
IF &SEARCH = &STR() I &SUBSTR(1:1,&SEARCH) = &STR(.) THEN -

DO 1* If first arg omitted *1
SET PARMS = &STR(&SEARCH &PARMS) 1* or looks like a *1
SET SEARCH = &LEVEL 1* label, keep labels *1

END 1* set current level *1
IF &STATS = OFF I &NUMBER = OFF THEN -

DO 1* If level not possible*1
SET ZEDSMSG = INVALID DATA
SET ZEDLMSG = BOTH NUMBER AND STATS MODE MUST BE ON
ISPEXEC SETMSG MSG(ISRZ001)
EXIT CODE(B)

END

1* set an error message*1

IF &DATATYPE(&SEARCH) = CHAR I &SEARCH > &LEVEL THEN -
DO 1* First arg not number *1

SET ZEDSMSG = INVALID ARG
SET ZEDLMSG = &STR(SEARCH ARGUMENT MUST BE FIRST AND +

MUST BE A NUMBER <= CURRENT LEVEL NUMBER)
ISPEXEC SETMSG MSG(ISRZ001) 1* set an error message*1
EXIT CODE(B)

END

ISREDIT NUMBER = OFF
ISREDIT (RECFM) = RECFM
IF &RECFM = F THEN -

DO
ISREDIT (LRECL) = LRECL
SET COLI = &LRECL - 1
SET COL2 = &LRECL

END

I*If here no errors *1
1* now numbers are data *1
1* get file record fmt *1

I*Fixed format file so *1
1* get maximum column *1
1* in file and use last *1
1* 2 columns to find lvl*1

Figure 11 (Part 1 of 2). FINDCHGS Macro

50 ISPF/PDF for MVS Edit Macros

(

(8)
(9)

(10)

ELSE -
DO

SET COL1 = 7
SET COL2 = 8

END
ISREDIT EXCLUDE ALL
DO WHILE (&SEARCH LE &LEVEL)

ISREDIT FIND ALL '&SEARCH' &COL1 &COL2

SET SEARCH = &SEARCH + 1
END
ISREDIT USER STATE = (SAVE)

EXIT CODE(&MAXCC)

I*Variable format file: *1
1* use columns 7 and 8 *1

I*Initialize for loop *1
1* exclude all lines *1
I*Do for each level *1
1* find level where */

&PARHS
1* found lines popped *1
1* up level to next *1

I*Restore user values *1

(1) FINDCHGS allows three optional parameters to be passed. A search
level and a label range (two labels). If all three are passed,
PARMS will contain two labels.

(2) This macro saves end user information, number mode, last find
string, cursor location etc. It also retrieves number, stats
mode and the current modification level for parameter checking.

(3) FINDCHGS requires that the level be entered first if it is
specified. This checks allow the level to default to the
current (highest) modification level. Notice a label range
can be specified without a level number; PARMS is reset to
capture both labels.

(4) Check if member modification level is maintained. If not
issue error message and exit macro.

(5) A CLIST DATATYPE function is used to check if first parameter
is valid (a number). If not valid, issue an error message and
exit from the macro.

(6) Now we've passed validity checks, so set number mode off. This
allows us to treat the number field, which contains the level
number, as data.

(7) Set &COL1 and &COL2 to the columns containing the level numbers.
(8) Exclude all lines in the member.
(9) For each level, find that level number. If a label range was

specified it will be in the PARHS variable. All lines with
matching levels will be unexcluded.

(lO)Restore user values and especially number mode.

Figure 11 (Part 2 of 2). FINDCHGS Macro

Chapter 5. Sample Edit Macros 51

MASKDATA MACRO

(1)
(2)
(3)

(4)
(5)

(6)

(7)

I"~

The MASKDATA macro (Figure 12) allows data in the mask line to overlay
lines. It can be used to place a comment area over existing lines in a
member.

To invoke, specify MASKDATA in the command area and also indicate the
range of lines to be overlaid a 0 or $ line command. Then press ENTER.
You can use 0, 00, On, or $, $$, $n, where n is the number of lines. If
you specify an 0 line command, data on that line is nondestructively
overlaid with mask line data: only blanks are replaced by the mask line
data. If you specify a $ line command, nonblank mask line data overlays
data existing on the line.

I": NASKDATA Overlays a line with data from the mask line.
'~I
'~I
'~I I'~

ISREDIT MACRO NOPROCESS
ISREDIT PROCESS RANGE 0 $
IF &LASTCC = 0 THEN

1* Wait to process
I": "0" and "$" reserved
I": for macro

,': 1
'~I
,trl +

DO
I SRED IT (CMD) = RANGE _ C!'lD

1* If specified get
1* command entered
1* and line number
I'~ range

'~I
(3) okl

ISREDIT (LINE!) = LINENUM .ZFRANGE
ISREDIT (LINE2) = LINENUM .ZLRANGE
DO WHILE &LINEI LE &LINE2

(4) ,~/

ISREDIT (LINE) = LINE &1INE1
1* Loop merging data
1* based on which
1* line command was
1* entered. If $

= (LINE) + MASKLINE
IF &CMD = $ THEN

ISREDIT LINE &LINE1
ELSE

ISREDIT LINE &LINE1
1* overlay data- else

= MASKLINE + (LINE)
1* do not overlay

SET LINE1 = &LINE1 + 1 1* Increment line num
END 1*
SET RC = 0 1*

END 1*
ELSE 1* Else give prompt

DO 1* message
SET ZEDSMSG = &STR(ENTER "0"1"$" LINE CHD)
SET ZEDLMSG = &STR("NASKDATA" REQUIRES AN "0" OR +

"$" CMD TO INDICATE LINE(S) MERGED WITH MASKLINE
ISPEXEC SETNSG MSG(ISRZ001) 1*
SET RC = 12 1* Return code >= 12

END 1* keeps command in
EXIT CODE(&RC) 1* command area

'~I
'~I

,trl
'~I +

'~I +

-;~/

'~I
,t:1
'~I
e;'r/

'~I +
,': 1

,;'~ /
'~I
*1
*1

Figure 12 (Part 1 of 2). t-fASKDATA Macro

52 ISPF/PDF for MVS Edit Macros

(1) The NOPROCESS keyword on the MACRO command allows the
macro to control when end-user input (changes to data and
line commands) is processed.

(2) Now process user input; also notice if certain line commands
are entered. The 0 and $ following the RANGE keyword
indicate the line commands to be processed by this macro.

(3) A zero return code indicates the user entered a 0 or $
in any of its valid forms: 00-00, On, etc.

(4) &CMD is set to 0 or $, whichever command was entered.
(5) &LINE1 and &LINE2 contain the first and last line numbers

of the lines indicated by the user line commands.
(6) Each line indicated by the user is merged with data from

the mask line. The &LINE variable contains line data.
The line command entered controls how the data is merged.
A $ indicates nonblank mask line data will overlay line data.
An 0 indicates the mask line data will only overlay where
the line contains blanks.

(7) When no line command is entered issue a prompt message.
Set a return code of 12 to keep MASKDATA displayed in the
command line.

Figure 12 (Part 2 of 2). MASKDATA Macro

Chapter 5. Sample Edit Macros 53

(

54 ISPF/PDF for MVS Edit Macros

CHAPTER 6. WRITING PROGRAM MACROS

In addition to writing edit macros as TSO CLISTs, you can also write
edit macros in programming languages, just as you write programming
dialogs. There are three basic reasons to go to the additional work of
debugging a program macro:

1. A macro that is executed many times will execute faster in a
language which can be precompiled than in the CLIST interpretive
language.

2. A macro that has to deal with data containing symbols can confuse
the CLIST processor. Ampersands in data can cause problems.

3. A macro that has complex logic may better be handled in a
programming language.

There are some differences in the way program macros are handled:

•

•

Variables are not self defining in a program macro. The VDEFINE
dialog service must be invoked to identify variables looked at or
set by the program.

Variables are not automatically converted to uppercase. A macro
invoked accepting parameter input must be aware that the input may
be in lowercase.

• When an unknown name is typed on the command line, the editor
automatically checks SYSPROC to see if a member with the same name
exists. If it does, it is assumed to be a macro. This is not done
for program macros. There are two ways to tell edit to invoke a
program macro: precede the name with a "!" if it is less than eight
characters, or use the DEFINE command to define the name as a
program macro.

• Program macros may be executed without being verified as a macro;
the macro statement may be preceded by calls to dialog services.

• The editor will scan edit statements to do variable substitution.
Only one level of scanning is done. This may simplify using
variables set by edit in a subsequent command. Scanning edit
commands for ampersands is a default; use the SCAN assignment
statement to prevent this step.

Edit commands are executed from a program macro using the ISPLINK (or
ISPLNK for FORTRAN) or ISPEXEC interface. The appropriate program must
be link edited with your macro program. Parameters are passed to the
ISREDIT service as follows:

Chapter 6. Writing Program Macros 55

CALL ISPLINK ('ISREDIT' ,length,buffer)

CALL ISPEXEC (length,'ISREDIT command')

'ISREDIT'
identifies the service name

length
must be a fullword integer that contains the length of the command
buffer

buffer
is the command buffer that may contain any edit command that is
valid from a macro, coded with the same syntax that would be used
in a CLIST.

command
is any PDF edit command that is valid from a macro, coded with the
same syntax that would be used in a CLIST. No CLIST variables or
functions may be coded in the command field.

The following examples show three different methods of coding a FIND
command. They are coded using PL/I syntax:

1. CALL ISPLINK ('ISREDIT' ,LENO,'¢FIND XYZ¢')
2. CALL ISPLINK ('ISREDIT' ,LENB,'FIND XYZ')
3. CALL ISPEXEC (LEN16, 'ISREDIT FIND XYZ')

LENO
is a fullword program variable containing a length of O.

LENS
is a fullword program variable containing a length of B.

LEN16
is a fullword program variable containing a length of 16.

In each example, the remainder of the command is coded as a literal
value.

The first two examples show the ISPLINK format. In the ISPLINK call,
ISREDIT is coded as the first parameter and is omitted from the command
buffer.

The first example uses a special interface. A zero length may be passed
only when the command is delimited by a special character. Aspecial
character cannot be A-Z or 0-9. If the length is zero and if a valid
delimiter is the first character in the command buffer, a scan of the

56 ISPF/PDF for MVS Edit Macros

"'" I

I~

command is done to find the next occurrence of that character. The
command length is the number of characters between the two delimiters.
In this case, the cent sign (C) is used asa delimiter.

In the second example, an explicit length of 8 is coded and the command
buffer contains the command without delimiters.

The third example shows the ISPEXEC format. This format always requires
the length of the command buffer to be passed. The command buffer in
this case includes the ISREDIT prefix, in the same way the CLIST command
is coded.

WRITING PROGRAM MACROS

It is often helpful when writing a program macro to first code it as a
CLIST macro to help debug the logic and the command statements. This
was done with SEPLINE, a simple macro that separates each line in a file
with a line of dashes. The CLIST syntax is shown in Figure 13, the PL/I
program is shown in Figure 14, and the COBOL program is shown in
Figure 15. Notice that, in the program, a VDEFINE is not required for
the variable &SAVE, which is only referenced by edit.

ISREDIT MACRO

ISREDIT (SAVE) = USER STATE
ISREDIT RESET
ISREDIT EXCLUDE ----- 1 ALL
ISREDIT DELETE ALL X
SET &LASTL = 1
SET &LINE = 0
SET &LINX = &STR(----------------------------------+

---------------------------------------)
DO WHILE (&LINE < (&LASTL + 1))

ISREDIT LINE_AFTER &LINE = (LINX)
ISREDIT (LASTL) = LINENUM .ZLAST
SET &LINE = &LINE + 2

END
ISREDIT USER STATE = (SAVE)

EXIT

Figure 13. SEPLINE CLIST Macro

Chapter 6. Writing Program Macros 57

/*
/* SEPLINE- EDIT MACRO PROGRAM TO INSERT SEPARATOR LINES
/*
SEPLINE: PROC OPTIONS(MAIN);
/*

DECLARE
LINEX CHAR (70) INIT ((70)'-'),
LASTL FIXED BIN(31,0) INIT (0),
LINE FIXED BIN(31,0) INIT (0),
LENO FIXED BIN(31,0) INIT (0),
LENI FIXED BIN(31,O) INIT (1),
LEN4 FIXED BIN(31,O) INIT (4),
LEN70 FIXED BIN(31,O) INIT (70);

/oJr
/* SEPARATOR LINE ------­
/* LAST LINE OF TEXT
/* CURRENT LINE NUMBER
/'f'r LENGTHS - 0
/* LENGTHS - 1
/* LENGTHS - 4
/'f'r LENGTHS - 70
/'f'r

DECLARE /*
ISPLINK ENTRY OPTIONS(ASM,INTER,RETCODE);/* LINK TO ISPF

/'f'r

CALL ISPLINK ('VDEFINE' ,'(LASTL)' ,LASTL, 'FIXED' ,LEN4);
CALL ISPLINK ('VDEFINE' ,'(LINE)', LINE, 'FIXED' ,LEN4);
CALL ISPLINK ('VDEFINE' ,'(LINEX)' ,LINEX, 'CHAR', LEN70);

CALL ISPLINK('ISREDIT' ,LENO, 'e
CALL ISPLINK('ISREDIT' ,LENO,'e
CALL ISPLINK('ISREDIT' ,LENO, 'e
CALL ISPLINK('ISREDIT',LENO, 'e
CALL ISPLINK('ISREDIT' ,LENO, 'e

LASTL = 1;
LINE = 0;

DO WHILE (LINE < (LASTL + 1»;

MACRO e');
(SAVE) = USER STATE e');
RESET e'); -
EXCLUDE ------ 1 ALL e');
DELETE ALL X e');

*/
*1
*/

'f'r/

*/
*/
'f'r/

*/
~'t /

'f'r/

*/
*/
-it /

,~ /
,tr /

'f'r/

CALL ISPLINK ('ISREDIT' ,LENO, 'e LINE AFTER &LINE = (LINEX) e');
CALL ISPLINK ('ISREDIT' ,LENO,'e (LASTL) = LINENUM .ZLAST e');
LINE = LINE + 2;

END;

CALL ISPLINK('ISREDIT' ,LENO, 'e USER_STATE = (SAVE) e');

END SEPLINE;

Figure 14. SEPLINE PL/I Macro

58 ISPF/PDF for MVS Edit Macros

~
\~

(

ID DIVISION.
PROGRAM-ID. SEPLINE.

*
*
-Ir

EDIT MACRO PROGRAM TO INSERT SEPARATOR LINES

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 LINEX PIC X(70) VALUE ALL "_".

* SEPARATOR LINE -------

01 LASTL PIC 9(6) VALUE 0 COMPo
* LAST LINE OF TEXT

01 LYNE PIC 9(6) VALUE 0 COMPo
* CURRENT LINE NUMBER

01 ISREDIT PIC XeS) VALUE "ISREDIT It.

01 VDEFINE PIC XeS) VALUE "VDEFINE It.

01 ZLASTL PIC XeS) VALUE "(LASTL)".
01 ZLINE PIC XeS) VALUE "(LINE)".
01 ZLINEX PIC XeS) VALUE "(LINEX)".
01 FIXED PIC XeS) VALUE nFIXED n
01 CHAR PIC XeS) VALUE nCHAR "
01 LENO PIC 9(6) VALUE 0 COMPo
01 LEN4 PIC 9(6) VALUE 4 COMPo
01 LEN70 PIC 9(6) VALUE 70 COMPo

01 EM1 PIC X(10) VALUE n¢ MACRO ¢".
01 EM2 PIC X(24) VALUE n¢ (SAVE) = USER_STATE ¢n.
01 EM3 PIC X(10) VALUE n¢ RESET ¢".
01 EM4 PIC X(25) VALUE "¢ EXCLUDE ------ 1 ALL ¢n.
01 EMS PIC X(lS) VALUE n¢ DELETE ALL X ¢n.
01 EM6 PIC X(30) VALUE "¢ LINE AFTER &LINE = (LINEX) ¢".
01 EM7 PIC X(2S) VALUE n¢ (LASTL) = LINENUM .ZLAST ¢".
01 EMS PIC X(23) VALUE n¢ USER_STATE = (SAVE) ¢n.

Figure 15 (Part 1 of 2). SEPLINE COBOL Macro

Chapter 6. Writing Program Macros 59

PROCEDURE DIVISION.
CALL "ISPLINK" USING VDEFINE ZLASTL LASTL FIXED LEN4
CALL "ISPLINK" USING VDEFINE ZLINE LYNE FIXED LEN4
CALL "ISPLINK" USING VDEFINE ZLINEX LINEX CHAR LEN70

CALL "ISPLINK" USING ISREDIT LENO EN1
CALL "ISPLINK" USING ISREDIT LENO E~12

CALL "ISPLINK" USING ISREDIT LENO E~f3

CALL "ISPLINK" USING ISREDIT LENO E~14

CALL "ISPLINK" USING ISREDIT LENO EN5

NOVE 1 TO LASTL
HOVE 0 TO LYNE
PERFORN LOOP UNTIL LYNE
CALL "ISPLINK" USING
GOBACK.

IS NOT LESS THAN (LASTL + 1)
ISREDIT LENO EH8

LOOP.
CALL "ISPLINK" USING
CALL "ISPLINK" USING
ADD 2 TO LYNE.

ISREDIT
ISREDIT

LENO
LENO

EM6
EN7

Figure 15 (Part 2 of 2). SEPLINE COBOL Nacro

INVOKING PROGRAM MACROS

Edit assumes that any primary command that is unknown is a macro, and it
normally assumes that the macro has been implemented as a CLIST. You
can define a macro to edit as a program macro, either by executing a
DEFINE command or by prefixing the invocation of the macro with the
special character "!".

If a macro named FINDIT were coded as a CLIST, for example, it would be
invoked by entering FINDIT. If it were coded as a program, it could be
invoked by entering !FINDIT, or it could be invoked by entering FINDIT
if it had previously been defined as a program macro by means of the
DEFINE command.

The first invocation of a program macro with a "!" prefix implicitly
defines that macro as a program macro. Thereafter, the prefix may be
omitted.

To use the DEFINE command to define a macro as a program, code DEFINE
name PGM MACRO.

Note: The keywords may be coded in either order. The following,
for example, is valid:

60 ISPF/PDF for NVS Edit Macros

(if

~

DEFINE name MACRO PGM

You can explicitly define a built-in command, such as FIND, as a macro
(causing the macro to override the built-in command) by using the DEFINE
command.

VARIABLE SUBSTITUTION

The SCAN assignment statement is used either to set the current value of
scan mode (for variable substitution), or to retrieve the current value
of scan mode and place it in a variable. Scan mode controls the
automatic replacement of variables in command lines passed to edit.

When scan mode is on, edit command lines are scanned for ampersands (&).
If an & followed by a nonblank character is found, the name following
the ampersand (terminated by a blank or period) is assumed to be a
variable name, and the value of the variable is substituted in the
command for the t&name t or t&name. t (the period allows concatenation of
the variable value without an intervening blank delimiter) before the
command is processed.

Chapter 6. Writing Program Macros 61

62 ISPF/PDF for MVS Edit Macros

~ CHAPTER 7. MACRO COMMAND REFERENCE ,

,

This chapter contains information about the edit macro commands
available for ISPF/PDF.

Each command description consists of the following information:

Description

Syntax

Operands

Retu rn Codes

Examples

A description of the function and operation of the
command. This description also refers to other commands
that may be used with this command.

A syntax diagram for coding the macro command.

A description of any required or optional keywords or
parameters.

A description
command. For
severe error.
error, but may
dialog service
is detected in
system table,

of the codes returned by the macro
all commands a return code of 20 implies a
This error is normally a command syntax
be any severe error detected when using
routines. For example, if a severe error
attempting to access a variable or a

a code of 20 is returned.

Some commands may return additional codes for specific
errors.

Sample usage of the macro command.

A list of all edit macro commands with their syntax can be found in
Appendix B. A list of all abbreviations for command and keyword operand
names can be found in Appendix C. Note, however, that it is recommended
that you not code abbreviations for command names or operands, for ease
in reading and maintenance.

Chapter 7. Macro Command Reference 63

AUTOLIST - Set or Query Autolist Mode

The AUTOLIST assignment statement is used either to set the current
autolist mode, or to retrieve the current setting of autolist mode and
place it in a variable. Autolist mode controls whether edit generates a
source listing in the ISPF list data set when the edit session is
terminated with data that was changed.

ISREDIT Cvarname) = AUTOLIST
ISREDIT AUTOLIST = mode
ISREDIT AUTOLIST mode

varname

mode

is the name of a variable containing the setting of autolist
mode, either ON or OFF.
is the setting of autolist mode, either ON or OFF:
ON When the edit session is terminated with data that

was changed, PDF edit generates a source listing in
the ISPF list data set.

OFF No source listing is generated.

If no value is specified when setting autolist mode, ON is
assumed.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Examples:

To store the autolist mode setting in variable &AU'10DE:

ISREDIT CALMODE) = AUTOLIST

To set autolist mode on with the assignment statement:

ISREDIT AUTOLIST = ON

To set autolist mode on with the end user command:

ISREDIT AUTOLIST ON

To set autolist mode from the variable &ALMODE:

ISREDIT AUTOLIST = CALMODE)

64 ISPF/PDF for MVS Edit Macros

AUTONUM

AUTONUM - Set or Query Autonum Mode

The AUTONUM assignment statement is used either to set the current
autonum mode, or to retrieve the current setting of autonum mode and
place it in a variable. Autonum mode controls the automatic renumbering
of data when it is saved.

ISREDIT (varname) = AUTONUM
ISREDIT AUTONUM = mode
ISREDIT AUTONUM mode

varname is the name of a variable containing the setting of autonum
mode, either ON or OFF.

mode is the setting of autonum mode, either ON or OFF:
ON When number mode is also on, the data is

automatically renumbered when it is saved.
OFF Data is not renumbered.

If no value is specified when setting autonum mode, ON is the
default.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Examples:

To put the value of autonum mode into variable &ANUM:

ISREDIT (ANUM) = AUTONUM

To set autonum mode from variable &ANUM1:

ISREDIT AUTONUM = &ANUMl

To set autonum mode off with the end user command:

ISREDIT AUTONUM OFF

Chapter 7. Macro Command Reference 65

AUTOSAVE - Set or Query Autosave Mode

The AUTOSAVE assignment statement is used either to set the current
autosave mode, or to retrieve the current setting of autosave mode and
place it in variables. Autosave mode controls the saving of data when
the END command is issued.

ISREDIT (varnamel,varname2) = AUTOSAVE
ISREDIT AUTOSAVE = mode
ISREDIT AUTOSAVE mode

varnamel is the name of a variable to contain the setting of autos ave
mode, ON or OFF.

varname2 is the name of a variable to contain the prompt value, PROMPT
or NOPROMPT.

mode is the setting of autosave mode.
ON When coded, the changed data is saved when END is

entered. PROMPT or NOPROMPT are ignored, if coded.
OFF PROMPT When coded, the user is notified that changes have

been made and that either SAVE (followed by END) or
CANCEL must be used.

OFF NOPROMPT When coded, the user is not notified and data is
not saved when an END command is issued. The END
command becomes an equivalent to the CANCEL command.
Use this option with caution.

If no value is supplied when setting autosave mode, ON
NO PROMPT is assumed. If ON is supplied for the first value,
NOPROMPT is assumed for the second value. If OFF is supplied
for the first value, PROMPT is assumed for the second value.

The following return codes may be issued:

o - Normal completion
4 - OFF NOPROMPT specified

20 - Severe error

66 ISPF/PDF for MVS Edit Macros

(

AUTOSAVE

Examples:

To put the value of autosave mode into variables &ASAVl and &ASAV2:

ISREDIT (ASAV1,ASAV2) = AUTOSAVE

To set autosave mode from variables &ASAVl and &ASAV2:

ISREDIT AUTOSAVE = (ASAV1,ASAV2)

To set autosave mode on:

ISREDIT AUTOSAVE ON

Chapter 7. Macro Command Reference 67

BLKSIZE - Query the Block Size

The BLKSIZE assignment statement returns the block size of the data set
being edited in a specified variable.

ISREDIT (varname) = BLKSIZE

varname is the name of a variable to contain the block size of the
data set being edited, a 6-character value, left-padded with
zeros.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To check the block size of the data set and process the data if the
b10cksize is greater than 4096:

ISREDIT (BSIZE) = BLKSIZE
IF &BSIZE > 4096 THEN-

68 ISPF/PDF for MVS Edit Macros

(

BOUNDS

BOUNDS - Set or Query the Current Boundaries

The BOUNDS command is used to set or retrieve the current left boundary,
the current right boundary, or both boundaries and place these values in
variables. The column numbers are always data column numbers. Thus,
for a variable format data set with number mode on, data column 1 is
column 9 in the record.

ISREDIT (varname1,varname2) = BOUNDS
ISREDIT BOUNDS = left right
ISREDIT BOUNDS left right

varname1
varname2
left
right

is a variable containing the left boundary.
is a variable containing the right boundary.
is the left boundary to be set.
is the right boundary to be set.

To set one boundary while leaving the other value unchanged, enter an
asterisk (*) for the boundary to be unchanged. To set the boundaries to
their default values, enter the BOUNDS command without arguments.

The following return codes may be issued:

o - Normal completion
4 - Right boundary greater than default, default right boundary used

12 - Invalid boundaries specified
20 - Severe error

Examples:

To save the value of the left boundary in the variable &LEFT:

ISREDIT (LEFT) = BOUNDS

To save the value of the right boundary in the variable &RIGHT:

ISREDIT (,RIGHT) = BOUNDS

To set the left boundary to 1, leaving the right boundary unchanged:

ISREDIT BOUNDS = 1 *

Chapter 7. Macro Command Reference 69

To set the boundaries to their default values:

ISREDIT BOUNDS

To set the left boundary from the variable &LEFT, leaving the right
boundary unchanged:

ISREDIT BOUNDS &LEFT *
Note: The following commands work within the column range specified by
the current boundary setting: CHANGE, EXCLUDE, FIND, SEEK, SHIFT, SORT,
TFLOW, TSPLIT, and TENTER. This range is in effect unless overriding
boundaries can be specified with the command. Refer to the individual
command descriptions for the effect of the BOUNDS command.

70 ISPF/PDF for MVS Edit Macros

BUILTIN

BUILTIN - Execute a Built-in Command

The BUILTIN command is used within a macro to execute a built-in edit
command, even though a macro or a macro statement with the same name may
have been defined.

For example, a DEFINE END ALIAS MACEND could be issued so that when an
END command is processed by edit, the user-defined MACEND macro is
executed. Within the macro, logic could be performed, and a built-in
END command could be issued to actually terminate edit.

Note: If the END command is issued in the user-defined MACEND macro
without being preceded by BUILTIN, the MAC END macro would be executed,
resulting in an endless loop.

ISREDIT BUILTIN cmdname

cmdname is the built-in command to be executed.

The following return codes may be issued:

n - Return code from the built-in command
20 - Severe error

Examples: To execute the built-in END command:

ISREDIT BUILTIN END

To execute the built-in CHANGE command:

ISREDIT BUILTIN CHANGE ALL" " "-"

Chapter 7. Macro Command Reference 71

CANCEL - Cancel the Edit Session

The CANCEL command is used to cancel an edit session without saving the
current data on the disk.

ISREDIT CANCEL

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To cancel the current edit session:

ISREDIT CANCEL

72 ISPF/PDF for MVS Edit Macros

CAPS

CAPS - Set or Query Caps Mode

The CAPS assignment statement is used either to set the current caps
mode, or to retrieve the current setting of caps mode and place it in a
variable. Caps mode controls the translation of input to uppercase.

ISREDIT (varname) = CAPS
ISREDIT CAPS = mode
ISREDIT CAPS mode

varname is the name of a variable containing the setting of caps mode,
either ON or OFF.

mode is the setting of caps mode, either ON or OFF:
ON Input is translated to uppercase when entered.
OFF Input is not translated, but is left as entered.

If no value is specified when setting caps mode, ON is
assumed.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Examples:

To save the value of caps mode in variable &CAPHODE:

ISREDIT (CAPHODE) = CAPS

To set caps mode off:

ISREDIT CAPS = OFF

To set the value of caps mode from variable &CAPt-1ODE:

ISREDIT CAPS &CAPHODE

Chapter 7. Hacro Command Reference 73

CHANGE - Change a Data String

The CHANGE command is used to change one or more occurrences of one data
string to another. The arguments on the CHANGE command are exactly the
same as those available to an end user.

ISREDIT CHANGE str-l str-2 [label-range] [NEXT] [CHARS] [X][col-l [col-2]]
[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREY]

label-range indicates that two labels are required to indicate a range
of lines; one label is invalid. If relative line numbers are
coded, they are interpreted as column numbers or a syntax
error is detected.

args For information about specifying the following arguments for
the CHANGE command, see the ISPF/PDF for MVS/XA Program
Reference:

NEXT
ALL
FIRST
LAST
PREY

CHAR
PREFIX
SUFFIX
WORD

X
NX

If your macro is working with text containing uppercase and lowercase
data, str-l is found independent of case, unless coded as a character
string. Therefore, a CHANGE 'first' 'next' will change any of the
following strings - first, FIRST, or First - to next. To limit the
search to a specific form of 'first', code C'first', C'FIRST', or
C 'First' .

The boundary settings limit the columns searched to the columns between
the boundary columns. When writing a general macro, you may want to
override the boundary settings with specific columns.

When the cursor is within the line range, the search for the string
starts at the cursor position for a NEXT or PREY change request; when
the cursor is outside the range, the search starts at the top (if NEXT)
or bottom (if PREY) of the range. Therefore, if labels are included to
limit the lines searched and the cursor is within those lines, the
search begins at the cursor position and goes to the end of the range.

If a string to be changed is found and can be changed, the cursor
position is changed based on the direction of search. For a forward

74 ISPF/PDF for MVS Edit Macros

(
\

CHANGE

search (FIRST, NEXT, or ALL), the 'cursor is placed at the line and
column position of the character following the end of the first changed
string. For a backward search (PREV or LAST), the cursor is placed
preceding the first character of the first changed string. If labels
are included to limit the lines searched and the cursor is within those
lines, CHANGE searches from the cursor position to the end of the range.
When a string is not found, the cursor is not moved.

The following return codes may be issued:

o - Normal completion
4 - String not found
8 - Change error ('to' string longer than 'from' string and

substitution was not performed on at least one change)
20 - Severe error

Example:

After putting the current member name in variable &MEMNAME, add an
identifier to the name if it is found in columns 1 to 10 in lines
between the first line and the line labeled .XLAB:

ISREDIT (MEMNAME) = MEMBER
ISREDIT CHANGE WORD &MEMNAME "MEMBER: &MEMNAME" 1 10 .ZFIRST .XLAB

Notes:

1. CHANGE shows all lines meeting the search criteria. Use the SEEK
command in combination with the XSTATUS command to preserve the
exclude status of a line.

2. When a CHANGE ALL is done, the lines changed are flagged with a
==CHG>, and lines that cannot be changed are flagged with an ==ERR>.
The status of these lines can be used by the LOCATE command and
changed by the RESET command.

Chapter 7. Macro Command Reference 75

CHANGE_COUNTS - Query Change Counts

The CHANGE COUNTS assignment statement is used to retrieve values set by
the most recently executed CHANGE command and place these values in
variables.

ISREDIT (varnamel,varname2) = CHANGE COUNTS

varnamel is the name of a variable to contain the number of strings
changed, an 8-character value, left-padded with zeros.

varname2 is the name of a variable to contain the number of strings
that could not be changed, an 8-character value, left-padded
with zeros.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Examples:

To put the number of changes resulting from the most recent CHANGE
command into variable &CHGED:

ISREDIT (CHGED) = CHANGE_COUNTS

To put the number of change errors into variable &ERRS:

ISREDIT (,ERRS) = CHANGE_COUNTS

To put the number of changes and change errors into variables &CHG and
&ERR:

ISREDIT (CHG,ERR) = CHANGE COUNTS

76 ISPF/PDF for MVS Edit Macros

COpy

) COpy - Copy a Member

1

The COPY command is used to copy a member of the current library into
the member being edited.

ISREDIT COpy member {AFTER} lptr [linenum-range]
{BEFORE}

member indicates the name of the member of the current library to be
copied.

AFTER or BEFORE indicates the relative position of the new data to the
insertion point.

lptr indicates a line pointer must be used to indicate where the
data is to be copied. A line pointer can be a label or a
relative line number.

linenum-range indicates the data line numbers of the member being
copied. Two line numbers are required to indicate a range of
lines; specifying one line number is invalid.

The following return codes may be issued:

o - Normal completion
8 - End of file reached before last record read

12 - Invalid line pointer (lptr); member not found or BLDL error
16 - End of file reached before first record of specified range read
20 - Syntax error (invalid name, incomplete range)

- I/O error

Examples:

To copy all of member MEMI at the end of the data:

ISREDIT COPY MEMI AFTER .ZLAST

To copy all of member MEM1 before the first line of data:

ISREDIT COpy t-iEM1 BEFORE . ZFIRST

To copy the first three lines of member MEM1 at the beginning of the
current member:

ISREDIT COpy MEMI BEFORE .ZF 1 3

Chapter 7. Macro Command Reference 77

CREATE - Create a Member

The CREATE command is used to create a new member in the library that is
currently being edited.

ISREDIT CREATE member lptr-range

member is the name of the new member to be created.
lptr-range indicates that two line pointers are required to indicate a

range of lines in the current member to be used to create the
new member. A line pointer may be a label or a relative line
number. Specifying one line pointer is invalid.

The following return codes may be issued:

o - Normal completion
8 - Member already exists, member not created

12 - Invalid line pointer (lptr); member not found or BLDL error
20 - Syntax error (invalid name or incomplete lptr range)

- I/O error

Example:

To create a new 10-line member from the first 10 lines of member being
edited:

ISREDIT CREATE MEM1 1 10

78 ISPF/PDF for MVS Edit Macros

\

CTL LIBRARY

CTL_LIBRARY - Query Controlled Library Status

The CTL_LIBRARY assignment statement is used to retrieve the status of a
controlled library and place the status in variables. CTL LIBRARY is
normally used in initial macros to define the use of controlled library
members.

ISREDIT (varnamel,varname2) = CTL LIBRARY

varnamel is the name of a variable to contain the lock status of the
member.

varname2 is the name of a variable to contain additional information
about the status.

The following table summarizes the information contained in varnamel and
varname2. The table entries are defined following the table.

varnamel

OBTAINED

UNAVAILABLE

ERROR

NOCHECK

varname2

Userid that obtained member

{Userid }
{DEACTIVATED}
{ .. ·"LOCKED..... }

blanks

{FIRSTLIB}
{blanks }

The value placed in varnamel is one of the following:

OBTAINED indicates that the lock has been obtained for the member
being edited. The member was found in a controlled library.
If the member is modified and saved in your library, the
next time this statement is executed, NOCHECK will be
returned as the lock status. If the member is not saved in
your library, the lock for this member is freed.

UNAVAILABLE indicates that the lock could not be obtained for the member
being edited. The member was found in a controlled library.

ERROR indicates that the library access service was unable to
determine whether or not the member was locked because of an
error or unusual condition.

Chapter 7. Macro Command Reference 79

NOCHECK indicates that no check was done to determine the status
the member. NOCHECK is returned in the following cases:
• The member is new
• The member was obtained from the first library in the

concatenation sequence
• An ISRCFIL file name is not allocated to the user

If OBTAINED is placed in varnamel, varname2 contains your userid, the
userid that locked the member.

If UNAVAILABLE is placed in varnamel, indicating the lock is not
available, the value placed in varname2 is one of the following:

The userid that has locked the member
Library controls have been deactivated

of

userid
DEACTIVATED
LOCKED The member is available but exists in a lower level of the

library structure that did not precede the library where the
member was found in the edit concatenation sequence. This
is called a pseudo-lock.

If ERROR is placed in varnamel, varname2 is set to blanks.

If NOCHECK is placed in varnamel, indicating that no checking was done,
the value placed in varname2 is the reason, one of the following:

~
~

FIRSTLIB The member was found in the first library of the concatenation
sequence used for editing, or the member is new. (

blank The file allocation indicates that library management should
not be invoked; no ISRCFIL file id is allocated.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To get the control and lock status of the current member:

ISREDIT (CSTATUS,LSTATUS) = CTL LIBRARY

80 ISPF/PDF for MVS Edit Macros

CURSOR

CURSOR - Set or Query the Cursor Location

The CURSOR assignment statement is used to s~ee relative line number
and the relative column number of the cursor, or retrieve the relative
line number and the relative column number 0 e cursor and place these
values in variables. The position of the cursor is used as the starting
location for the search argument for SEEK, FIND, CHANGE, and EXCLUDE; or
as the text split point for the TSPLIT command.

ISREDIT (varname1,varname2) = CURSOR
ISREDIT CURSOR = line col

varnamel

varname2

line
col

is the name of a variable containing the relative line number,
a 6-character value, left-padded with zeros.
is the name of a variable containing the data column number, a
3-character value, left-padded with zeros.
is the relative line number
is the data column number

The following return codes may be issued:

o - Normal completion
4 - Column number beyond data, line number incremented

12 - Invalid line number
20 - Severe error

e line number of the current cursor position into variable

~IT (LINE) = CURSOR

T~the cursor position to data line 1, column 1:

ISREDIT CURSOR = 1 1

To set the cursor position to column 1 of the last data line:

ISREDIT CURSOR = .ZLAST 1

To set the cursor position to the line with the label .LAB, without
changing the column position:

ISREDIT CURSOR = .LAB

Chapter 7. Macro Command Reference 81

Notes:

1. When a macro is invoked by the end user, the cursor value is the
cursor position on the screen at invocation time.

2. If the cursor is in the command area, the cursor value ~is~~~ __
relative number of the first data line on the screen, co umn O.

3. If the column number is beyond the data when setting t ,
cursor is positioned to the next line, column 0, which is equivalent
to the first position of the line command area.

4. When setting the cursor to a line number, the line number must
exist.

5. When retrieving the cursor position in an empty member, the line
number and column number are both set to o.

6. The following statements may change the cursor position:

CHANGE
EXCLUDE
FIND

SEEK
TSPLIT

See the individual statement descriptions for their effect on cursor
position. No other commands have any effect on cursor position.

82 ISPFjPDF for MVS Edit Macros

DATA CHANGED

) DATA_CHANGED - Query the Data Changed Status

The DATA_CHANGED assignment statement is used to retrieve the current
data changed status and to place it in a variable.

Note: Data may be saved without data being changed if there is a
change to number, stats, or pack mode. This command does not indicate
whether data will be saved.

ISREDIT (varname) = DATA CHANGED

varname is the name of a variable containing the value of data changed
status, either YES or NO. The data changed status is
initially set to NO at the beginning of an edit session, and
is reset to NO whenever a save is done. When data in the
current file is changed, or if a command is issued which might
have changed the data, the changed status is set to YES.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To determine whether data has been changed, and, if it has, issue the
built-in SAVE command:

ISREDIT (CHGST) = DATA_CHANGED
IF &CHGST = YES THEN ISREDIT BUILTIN SAVE

Chapter 7. Macro Command Reference 83

DATA_WIDTH - Query Data Width

The DATA_WIDTH assignment statement is used to retrieve the current
logical data width and place it in a variable. For data without
sequence numbers, the logical data width is the same as the logical
record length (LRECL) of the data set being edited. For data with
sequence numbers, the logical data width is:

Sequence Number Type Logical Data Width

STD LRECL - 8

COBOL LRECL - 6

STD COBOL LRECL - 14

ISREDIT (varname) = DATA WIDTH

varname is the name of the variable to contain the logical data width,
a 3-character value, left-padded with zeros.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To put the data width in variable &MAXCOL and override the boundary
setting for the SEEK command:

ISREDIT (MAXCOL) = DATA_WIDTH
ISREDIT SEEK 1 &MAXCOL &ARGSTR

84 ISPF/PDF for MVS Edit Macros

)

DATAID

DATAID - Query Dataid

The DATAID assignment statement is used to retrieve the dataid for the
data set currently allocated for editing and place it in a variable.
The dataid is created by the LMINIT service to identify a data set.

If edit was invoked with a dataid, the dataid is returned when this
command is invoked. If edit was invoked without a dataid, then an
LMINIT service is performed by edit and the dataid thus obtained is
returned. On return from a top-level macro, edit releases any dataid it
has obtained.

For further information about the use of library access services, refer
to ISPF/PDF for MVS/XA Services.

ISREDIT (varname) = DATAID

varname is the name of a variable containing the dataid for the data
set currently allocated for editing.

The following return codes may be issued:

o - The dataid returned was passed to edit
4 - Dataid was generated by edit and will be freed by edit
8 - A previously generated dataid was returned

20 - Severe error

Example:

To store the dataid in variable &DID, and then find member MEMl of that
data set using the LMMFIND library access service:

ISREDIT (DID) = DATAID
ISPEXEC LMMFIND DATAID(DID) MEMBER(MEM1)
IF &LASTCC = 0 THEN ...

Chapter 7. Macro Command Reference 85

DATASET - Query the Current Data Set Name

The DATASET assignment statement is used to retrieve the name of the
data set into which the data currently being edited will be stored and
place it in a variable.

ISREDIT (varname) = DATASET

varname is the name of a variable to contain the name of the data set
currently being edited. The data set name is fully qualified,
without quotation marks (').

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To determine if you are editing a data set with a prefix of PROJ:

ISREDIT (DSNAME) = DATASET
IF &SUBSTR(1:4,&DSNAME) = PROJ THEN -

86 ISPF/PDF for MVS Edit Macros

)

\
i

I

DEFINE

DEFINE - Define a Name

The DEFINE command is used to identify a command name to edit, or to
cancel the effect of a previous DEFINE command. A command name is
identified as a CLIST or program macro, an alias of another command
name, or a NOP.

DEFINE commands issued in a macro are in effect while the current member
is being edited. DEFINE commands issued by an end user are in effect
until the edit session is terminated.

DEFINE commands can be nested. There should be a DEFINE xxx RESET
command for every DEFINE xxx command, unless the definition is intended
to be permanent for the member or the edit session.

ISREDIT DEFINE name {CMD MACRO }
{PGM MACRO }
{ALIAS name2}
{NOP }
{RESET }

name is the user invocation name.
CMD MACRO identifies tnamet as a command language macro, which is to be

invoked by the SELECT CMD service.
PGM MACRO identifies tnamet as a program (load module) macro, which is

to be invoked by the SELECT PGM service.
ALIAS name2 identifies tnamet as an alias of tname2t with the same

NOP
characteristics
identifies tnamet as a NOP. When tnamet is invoked, nothing
is executed. Any aliases are set to NOP, also.

RESET resets the most recent definition of tnamet to the status in
effect prior to that definition.

CMD MACRO, MACRO CMD, and MACRO are equivalent. PGM MACRO and MACRO PGM
are equivalent.

The following return codes may be issued:

o - Normal completion
8 - RESET was attempted for a name not currently defined, or

DEFINE name ALIAS name2 requested and name2 is a NOP
12 - DEFINE was attempted for a name not currently defined
20 - Severe error (unknown command)

Chapter 7. Macro Command Reference 87

Examples:

To define the name IJKDOIT as a program macro:

ISREDIT DEFINE IJKDOIT PGM MACRO

To define the name DOlT as an alias of the macro IJKDOIT:

ISREDIT DEFINE DOlT ALIAS IJKDOIT

To define the name SAVE to have no effect:

ISREDIT DEFINE SAVE NOP

To define the name SETITUP to be a program macro:

ISREDIT DEFINE SETITUP PGM MACRO

To define the name FINDIT to be a CLIST macro:

ISREDIT DEFINE FINDIT MACRO CMD

To reset the definition of the name SAVE:

ISREDIT DEFINE SAVE RESET

'88 ISPF/PDF for MVS Edit Macros

DELETE

DELETE - Delete Lines from the Current Data Set

The DELETE command deletes lines from the current file. DELETE may
specify a single line or a range of lines, or it may limit the lines to
be deleted to all excluded or non-excluded lines in the file or all
excluded or non-excluded lines within a line pointer range.

ISREDIT DELETE {ALL XINX [lptr-range]}
{[ALL] XINX lptr-range}
{lptr }
{lptr-range }

ALL indicates that all specified lines are
X indicates that only excluded lines are

to be deleted.
to be deleted.

NX indicates that only non-excluded lines are to be deleted.
lptr indicates a line pointer must be used to identify a line to be

deleted. A line pointer can be a label or a relative line
number.~

lptr-range indicates that two line pointers are required to indicate a
range of lines to be deleted. A line pointer may be a label
or a relative line number. Specifying one line pointer is
invalid.

The following return codes may be issued:

o - Normal (lines deleted successfully)
4 - No lines deleted
8 - No standard records exist

12 - Invalid line number
20 - Severe error

Examples:

To delete all non-excluded lines:

ISREDIT DELETE ALL NX

To delete all lines in the range of labels .A and .B with a blank in
column 1:

ISREDIT RESET X .A .B
ISREDIT EXCLUDE ALL I I 1 .A .B
ISREDIT DELETE ALL X .A .B

To delete the last line of data in the current file:

ISREDIT DELETE .ZLAST

Chapter 7. Macro Command Reference 89

To delete the first 10 lines of data in the current file:

ISREDIT DELETE 1 10

90 ISPF/PDF for MVS Edit Macros

DISPLAY eOlS

~ DISPLAY_COLS - Query Display Columns

The DISPLAY COLS assignment statement retrieves the column number of the
first and last data columns that are being seen by the end user and
places them in variables. Columns that contain sequence numbers are not
considered data columns. This assignment statement is invalid in
initial macros, since the columns displayed are not known until the data
is first displayed.

ISREDIT (varnamel,varname2) = DISPLAY COLS

varnamel is the name of a variable containing the column number of the
first data column visible to the end user, a 3-character
value, left-padded with zeros.

varname2 is the name of a variable containing the column number of the
last data column visible to the end user, a 3-character value,
left-padded with zeros.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To put the leftmost and rightmost column values displayed to the user in
variables &LEFT and &RIGHT:

ISREDIT (LEFT,RIGHT) = DISPLAY_COLS

Chapter 7. Macro Command Reference 91

DISPLAY_LINES - Query Display Lines

The DISPLAY_LINES assignment statement retrieves the relative line
numbers of the first and last data lines that would be displayed, if
macro terminated, at this point and places them in variables. Other
non-data lines might be on the display. This assignment statement is
invalid in an initial macro, since the lines displayed are not known
until the data is first displayed.

ISREDIT (varnamel,varname2) = DISPLAY LINES

the

varnamel is the name of a variable containing the relative line number
of the first data line that would be visible to the end user
if the macro terminated at this point, a 6-character value,
left-padded with zeros.

varname2 is the name of a variable containing the relative line number
of the last data line that would be visible to the end user if
the macro terminated at this point, a 6-character value,
left-padded with zeros.

The following return codes may be issued:

o - Normal completion
4 - No visible data lines
8 - No existing data lines

20 - Severe error

Example:

To place the top and bottom line numbers in variables &TOP and &BOT:

ISREDIT (TOP,BOT) = DISPLAY_LINES

92 ISPF/PDF for MVS Edit Macros

(

(

DOWN

~ DOWN - Scroll Down ,
The DOWN command causes a scroll down from the current screen position.
To scroll down using the screen position when the macro was issued, use
USER_STATE assignment statements to save and then restore the screen
position parameters.

If you define a macro named DOWN, it overrides the DOWN command when
used from another macro, but has no effect for the end user. The DOWN
command does not change the cursor position and cannot be used in an
initial macro.

ISREDIT DOWN amt

amt is the scroll amount, the number of lines or one of the
following keywords: MAX, HALF, PAGE, CURSOR, or DATA.

The following return codes may be issued:

o - Normal completion
4 - No visible lines
8 - No data to display

12 - Amount not specified
20 - Severe error

Example:

To make the line where the cursor is placed the first one on the
display:

ISREDIT DOWN CURSOR

Notes:

1. The first line that would be displayed is determined by:
a. Whether the cursor was set explicitly by a CURSOR assignment

statement or implicitly by a SEEK, FIND, CHANGE, or TSPLIT
command. Since the cursor must be on the screen, the line that
is the first line on the screen may be different from the line
that was first when the user invoked the macro.

b. A LOCATE command setting the line to be first on the screen.
2. The number of lines scrolled are affected by non-data lines on the

screen.
3. The number of lines on the screen is determined by:

a. The number of lines excluded from the display.
b. The number of non-data lines displayed: profile, message, note,

bounds, tabs, or mask lines.
c. The terminal display size and the split-screen line.

Chapter 7. Macro Command Reference 93

EDIT - Edit a Member

The EDIT command is used to edit another member in the partitioned data
set you are editing. This is called recursive editing. The current
library concatenation sequence is used to find the member. Your initial
edit session is suspended until the second-level edit session is
complete. To exit from the second-level edit session, an END or CANCEL
command must be executed by the macro or by the end user. The edit
service invocation ISPEXEC EDIT ... is the recommended method to
recursively invoke edit. It allows the option of editing another data
set and specifying an initial macro. 3~

~,. ~fJru

ISREDIT EDIT member

member is the name of a member in the partitioned data set you are
currently using.

The following return codes may be issued:

o - Normal completion
12 - User error (invalid member name, recovery pending, sequential data

set being edited)
20 - Severe error

Example:

To recursively edit the member OLDMEM in your current partitioned data
set:

ISREDIT EDIT OLDMEM

94 ISPF/PDF for MVS Edit Macros

END

END - End the Edit Session

The END command terminates the editing of the current data set. If the
data has been changed, END automatically saves the data on disk unless
the profile in effect has autosave mode set off. In this case, to end
the edit session, either a SAVE command must precede the END command to
save data, or a CANCEL command must be issued to terminate without
saving data.

ISREDIT END

The following return codes may be issued:

o - Existing member saved
4 - New member saved

12 - END not done, AUTOSAVE OFF set
- Data not saved (not enough PDS space or directory space)

20 - Severe error

Example:

To end the current edit session:

ISREDIT END

Chapter 7. Macro Command Reference 95

EXCLUDE - Exclude Lines from the Display

The EXCLUDE command marks lines in the current data as excluded.

ISREDIT EXCLUDE str-l [label-range] [NEXT] [CHARS] [X] [col-l [col-2]]
[ALL] [PREFIX] [NX]

str-l

[FIRST] [SUFFIX]
[LAST] [WORD]
[PREY]

indicates the string used to identify those line to be
excluded.

label-range indicates that two labels are required to indicate a range
of lines to be searched. Specifying one label is invalid.

args For information about the following EXCLUDE arguments, see the
ISPF/PDF for MVS/XA Program Reference:

NEXT
ALL
FIRST
LAST
PREY

CHARS
PREFIX
SUFFIX
WORD

X
NX

If EXCLUDE is coded with a search argument, not the keyword ALL, the
cursor position affects the search. When the cursor is within the line
range, the search for the string starts at the cursor position for a
NEXT or PREY EXCLUDE request. When the cursor is outside the range, the
search starts at the top (for NEXT) or bottom (for PREY) of the range.
If the string is found, the cursor position is changed to the line and
column position of the first character of the first string found. When
a string is not found, the cursor is not moved. The boundaries affect
the columns searched unless explicitly overridden on this command.

IF EXCLUDE is coded with the keyword ALL, it excludes all lines in the
file or all lines within a specified line pointer range.

The following return codes may be issued:

o - Normal completion
4 - String not found

20 - Severe error

96 ISPF/PDF for MVS Edit Macros

EXCLUDE

Examples:

To exclude all lines in the file and show only those lines containing
"IF":

ISREDIT EXCLUDE ALL
ISREDIT FIND ALL IF

To exclude all lines with a blank in column 1:

ISREDIT EXCLUDE ALL " " 1

To exclude all lines with an alphabetic character in column 1:

ISREDIT EXCLUDE P"@" 1 ALL

Chapter 7. Macro Command Reference 97

EXCLUDE_COUNTS - Query Exclude Counts

The EXCLUDE_COUNTS assignment statement is used to retrieve values set
by the most recently executed EXCLUDE command and place them in
variables.

ISREDIT (varnamel,varname2) = EXCLUDE COUNTS

varnamel is the name of a variable to contain the number of strings
that were found, an 8-character value, left-padded with zeros.

varname2 is the name of a variable to contain the number of lines
excluded, an 8-character value, left-padded with zeros.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To determine the number of lines containing the word 'BOX':,

ISREDIT EXCLUDE BOX
ISREDIT (,BOXLINES) = EXCLUDE COUNTS

98 ISPF/PDF for MVS Edit Macros

(
',':,iOf ',,'41

)

FIND - Find a Data String

The FIND command is used to find one or more occurrences of a data
string. The arguments on the FIND command are the same arguments
available to the end user.

ISREDIT FIND str-l [label-range] [NEXT] [CHARS] [X] [col-l [col-2]]
[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX] [EX]
[LAST] [WORD]
[PREV]

str-l indicates the string to be located.

FIND

label-range indicates that two labels are required to indicate a range
of lines to limit the FIND operation. If relative line
pointers are coded, they are interpreted as column numbers or
a syntax error is detected. Specifying one label is invalid.

args For complete information about the following FIND arguments,
see the ISPF/PDF for MVS/XA Program Reference:

NEXT
ALL
FIRST
LAST
PREV

CHAR
PREFIX
SUFFIX
WORD

X
NX
EX

When the cursor is within the line range, the search for string-l starts
at the cursor position for a NEXT or PREV FIND request; when the cursor
is outside the range, the search starts at the top (for NEXT) or bottom
(for PREV) of the range. If string-l is found, the cursor position is
changed to the line and column position of the first character of the
first occurrence of the string found. When a string is not found, the
cursor is not moved.

The boundary settings limit the columns searched to the columns between
the current boundary columns. When writing a general macro, you may
want to override a boundary setting by supplying specific column
numbers.

The following return codes may be issued:

o - Normal completion
4 - String not found

20 - Severe error

Chapter 7. ~lacro Command Reference 99

Example:

To find the next blank character on the line with label .LABI and show
the line if it was excluded:

ISREDIT FIND NEXT" " .LABI .LAB!

Note: The FIND command is not recommended for use in a macro, since
any excluded string found is shown on the display. Use the SEEK command
to perform the identical function without changing the lines' exclude
status.

100 ISPF/PDF for MVS Edit Macros

FIND COUNTS

FIND_COUNTS - Query Find Counts

The FIND COUNTS assignment statement is used to retrieve values that
were set by the most recently executed FIND or RFIND command and place
these values in variables.

ISREDIT (varname1,varname2) = FIND COUNTS

varname1 is the name of a variable to contain the number of strings
found, an 8-character value, left-padded with zeros.

varname2 is the name of a variable to contain the number of lines on
which strings were found, an 8-character value, left-padded
with zeros. strings were found.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To find all occurrences of '&' in the line labeled .A and loop through
all occurrences, processing them:

ISREDIT FIND .A .A && ALL
ISREDIT (FINDS) = FIND_COUNTS
DO WHILE &FINDS > 0

END

Chapter 7. Macro Command Reference 101

FLOW_COUNTS - Query Flow Counts

The FLOW_COUNTS assignment statement is used to retrieve values that
were set by the most recently executed TFLOW command and place these
values in variables.

ISREDIT (varname1,varname2) = FLOW COUNTS

varname1 is the name of a variable to contain the number of original
lines that participated in the text flow operation, an
8-character value, left-padded with zeros.

varname2 is the name of a variable to contain the number,of lines that
were generated by the text flow operation, an 8-character
value, left-padded with zeros.

If the value in varname1 is larger than the value in varname2, the
difference is the number of lines that were deleted from the current
data because of the text flow operation. If the value in varname1 is
less than the value in varname2, the difference is the number of lines
that were added to the current data because of the text flow operation.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To get the value of the rightmost column displayed, allow a margin of 8
for the text flow, and then take action if lines were added because of
the text flow operation:

ISREDIT (,MAXCOL) = DISPLAY_COLS
ISREDIT TFLOW .ZCSR &EVAL(&MAXCOL - 8)
ISREDIT (INLINE,OUTLIN) = FLOW_COUNTS

IF &OUTLIN > &INLINE THEN -

102 ISPF/PDF for MVS Edit Macros

HEX

HEX - Set or Query Hex Mode

The HEX assignment statement is used either to set the current hex mode,
or t'o retrieve the current values of hex mode and place them in
variables. Hex mode controls the display of data in hexadecimal format,
with vertical or data format.

ISREDIT (varnamel,varname2) = HEX
ISREDIT HEX = mode
ISREDIT HEX mode

varname1
varname2
mode

is the name of a variable to contain ON or OFF.
is the name of a variable to contain DATA, VERT, or blanks.
Hex mode can have values of ON DATA, ON VERT, or OFF:
ON DATA Causes the hexadecimal representation of the data to

be displayed as a string of hexadecimal characters
(two per byte) under the characters.

ON VERT Causes the hexadecimal representation of the data to
be displayed vertically (two rows per byte) under
each character.

OFF Causes no hexadecimal representation of the data to
be displayed.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Examples:

To put the value of hex mode (ON or OFF) in variable &HEXMODE and to do
processing if hex mode is on:

ISREDIT (HEXMODE) = HEX
IF &HEXMODE = ON THEN -

DO

To turn hex mode off:

ISREDIT HEX OFF

Chapter 7. Macro Command Reference 103

IMACRO - Set or Query I nitial Macro

The IMACRO assignment statement is used to set or retrieve the value for
the initial macro in the current profile and place it in a variable.

ISREDIT (varname) = IMACRO
ISREDIT IMACRO = name
ISREDIT IMACRO name

varname

name

is the name of a variable to contain the name of the initial
macro.
the name of the initial macro to be executed when edit is next
invoked. The name NONE can be used to eliminate the initial
macro from the profile; conversely, a value of NONE is
returned when no initial macro has been specified.

The following return codes may be issued:

o - Normal completion
4 IMACRO set not accepted; profile is locked

12 - Invalid name specified
20 - Severe error

Examples:

To set the initial macro name to ISCRIPT:

ISREDIT IMACRO ISCRIPT

To set no initial macro:

ISREDIT IMACRO NONE

To store the name of the initial macro in the variable &IMACNAM:

ISREDIT (IMACNAt-l) = IMACRO

104 ISPF/PDF for MVS Edit Macros

A
I

.~

(

INSERT

INSERT - Prepare Display for Data Insertion

The INSERT command is used, as it is in the editor, to prepare the
display for data input by the user by displaying one or more blank input
lines and allowing the user to fill them with data.

Inserted lines are initialized with data from the mask line. Inserted
lines are not data lines and cannot be referred to by any macro. If you
do not enter data on an inserted line, it is deleted from the file.

This command is not used for adding lines with specific data; the
LINE BEFORE and LINE_AFTER assignment statements should be used for that
purpose.

ISREDIT INSERT lptr [numlines]

lptr indicates a line pointer must be used. A line pointer can be
a label or a relative line number.

numlines indicates the number of lines to be displayed for data input;
these lines will not be saved unless data is entered on them.
If numlines is not entered, one data input line is displayed.

The following return codes may be issued:

o - Normal completion
12 - Invalid line number
20 - Severe error

Example:

To open a 5-line area for data input after the line with the label
.POINT, locate .POINT to position it to the top of the display, then
issue INSERT:

ISREDIT LOCATE .POINT
ISREDIT INSERT .POINT 5

Note: You must ensure that the line referenced on the INSERT command
will be displayed; otherwise, the inserted line will not be seen. The
LOCATE command causes a line to be positioned at the top of the display.

Chapter 7. Macro Command Reference 105

LABEL - Set or Query a Line Label

The LABEL assignment statement is used to set or retrieve the values for
the label on the specified line and place the values in variables.

ISREDIT (varname1,varname2) = LABEL lptr
ISREDIT LABEL lptr = labelname [level]

varname1 is the name of a variable to contain the name of the label.
varname2 is the name of the variable to contain the nesting level of

the label, a 3-character value, left-padded with zeros.
lptr indicates a line pointer must be used to identify the line for

which a label is being set or retrieved. A line pointer can
be a label or a relative line number.

labelname indicates the name of the label. It must begin with a period,
followed by from one to eight alphabetic characters, the first
of which must not be Z. (Z is reserved for editor-defined
labels.) No special characters or numeric characters are
allowed. If the label is to be seen by the end user, it must
be five characters or less. To delete a label, set the label
name to blank (' I).

level indicates the highest nesting level at which this label is
visible to a user or macro. Level 0 is the highest level and
labels at this level are visible to the user and all levels of
nested macro; level 1 is not visible to the end user but to
all macros, and so on. The level can never exceed the current
nesting level. The maximum nesting level is 255.

The following return codes may be issued:

o - Normal completion
4 - Label not found
8 - Label set, but an existing label at the same level was deleted

20 - Severe error

Example:

To get the name of the label at the cursor, find the contents of
variable &ARG and, if found, label the line so that the end user can see
it:

/(

ISREDIT (NMIE) = ~ .~CSR
ISREDIT FIND &ARG
IF &LASTCC = 0 THEN -

ISREDIT LABEL .ZCSR = .POINT 0

106 ISPF/PDF for MVS Edit Macros

LABEL

Notes:

1. Use the LINENUM assignment statement to obtain the current relative
line number of a line with a label. See the LOCATE and RESET
command descriptions in which a label can be coded as a keyword.

2. The following commands operate on a range of lines; for these
commands, a range of labels is particularly useful:

CHANGE
CREATE
DELETE

EXCLUDE
FIND
LOCATE

REPLACE
RESET
SEEK

SORT
SUBMIT

Chapter 7. Macro Command Reference 107

LEFT - Scroll Left

The LEFT command causes a scroll left from the current screen position.
The current setting of the boundaries may affect the amount actually
scrolled. To scroll left using the screen position when the macro was
issued, use USER_STATE assignment statements to save and then restore
the screen position parameters.

If you define a macro named LEFT, it overrides the LEFT command when
used from another macro, but has no effect for the end user. The LEFT
command does not change the cursor position and cannot be used in an
initial macro. For further information, see the BOUNDS and
DISPLAY_COLUMNS descriptions.

ISREDIT LEFT amt

amt indicates the scroll amount, the number of columns or one of
the following keywords: MAX, HALF, PAGE, CURSOR, or DATA.

The following return codes may be issued:

o - Normal completion
4 - No visible lines
8 - No data to display

12 - Amount not coded
20 - Severe error

Example:

To scroll the display left and put the column specified in variable &COL
in column 1:

ISREDIT LEFT &COL

Notes:

1. The first line that would be displayed is determined by:
a. Whether the cursor was set explicitly by a CURSOR assignment

statement or implicitly by a SEEK, FIND, CHANGE, or TSPLIT
command. Since the cursor must be on the screen, the line that
is the first line on the screen may be different from the line
that was first when the user invoked the macro.

b. A LOCATE command setting the line to be first on the screen.
2. The number of lines scrolled are affected by non-data lines on the

screen.
3. The number of lines on the screen is determined by:

a. The number of lines excluded from the display.

108 ISPF/PDF for MVS Edit Macros

(

\

LEFT

b. The number of non-data lines displayed: profile, message, note,
bounds, tabs, or mask lines.

c. The terminal display size and the split-screen line.

Chapter 7. Macro Command Reference 109

LEVEL - Set or Query Modification Level

The LEVEL assignment statement is used either to set the modification
level, or to retrieve the current modification level and place it in a
variable.

ISREDIT (varname) = LEVEL
ISREDIT LEVEL = num
ISREDIT LEVEL num

varname

num

The name of a variable to contain the modification level, a
2-character value, left-padded with zeros.
The modification level, any number from 0 to 99

The following return codes may be issued:

o - Normal completion
4 - Statistics mode is off

12 - Invalid value specified
20 - Severe error

Examples:

To reset the modification level to 1:

ISREDIT LEVEL = 1

To save the value of the modification level in variable &MODLVL:

ISREDIT (MODLVL) = LEVEL

110 ISPF/PDF for MVS Edit Macros

LINE

LINE - Set or Query a Line from the File

The LINE assignment statement is used either to set or to retrieve the
data from the data line specified by a line pointer and place it in a
variable. The logical data width of the line determines how many
characters are retrieved or set. Refer to the DATA_WIDTH description.
The line pointer must be specified for setting or retrieving a line. To
set data on a line, you may use a variety of data formats: (variable),
templates, or merging a line with other data. The data on the line is
completely overlaid with the data specified on this command.

ISREDIT (varname) = LINE lptr
ISREDIT LINE lptr =

-.::? (e)l ~".. t')t.lrl\ 'J I', ",e.

~ I\'rf\,e.

varname is the name of a variable to contain the contents of the
specified data line.

lptr indicates a line pointer must be used. A line pointer can be
a label or a relative line number.

data indicates that the following forms may be used:
• simple string
• delimited string
• variable
• keyword:

LINE Data from this line is used
LINE lptr Data from the line with the given lptr
MASKLINE Data from the mask line
TABSLINE Data from the tabs line

• template « co 1 , s t ring »
• merge format (string-1 + string-2, keyword + string-2,

string-1 + keyword)

The following return codes may be issued:

o - Normal completion
4 - Data truncated (line shorter than data supplied)
8 - Variable not found

12 - Invalid line number
16 - Variable data truncated
20 - Severe error

Examples:

To set comment delimiters in columns 40 and 70, blanking the rest of the
line:

ISREDIT LINE 1 = < 40 '/*' 70 '*/' >

Chapter 7. Macro Command Reference 111

To overlay the first two columns of line 2 with 'II':

ISREDIT LINE 2 = LINE + II

To merge mask line data with data from variable &VAR:

ISREDIT LINE 3 = MASKLINE + (VAR)

112 ISPF/PDF for MVS Edit Macros

LINE AFTER

LINE AFTER - Add a Line to the Current File

The LINE AFTER assignment command is used to add a line to the current
file after the specified line.

ISREDIT LINE AFTER lptr = [DATALINE] data
[NOTELINE]
[MSGLINE]

lptr indicates a line pointer must be used to identify the line
after which the new line is to be inserted. A line pointer of
zero causes the new line to be inserted at the beginning of
the current data set. The line pointer can be either a label
or a relative line number.

DATALINE if coded, or if the operand is omitted, the line inserted is a
data line.

NOTELINE if coded, the line inserted is a temporary line (a non-data
line). The line command area shows =NOTE= in high intensity
and the data on the line is in low intensity. A note line has
a data length of 72 characters, regardless of the data width.

MSGLINE if coded, the line inserted is also a temporary line. The
line command area ~ontains ==MSG> in high intensity and the
data on the line is also in high intensity. After NOTE and
MSG lines have been added to the data, they cannot be
referenced; they are not data lines. A message line has a
data length of 72 characters, regardless of the data width.

data indicates that the following data formats may be used:
• simple string
• delimited string
•
•

variable
keyword:
LINE

LINE linenum

MASKLINE
TABS LINE
templAte
merge format

Da,ta from the line preceding this line is
used
Data from the line with the given line
number
Data from the mask line
Data from the tabs line
« col,string »
(string-l + string-2, keyword + string-2,
string-l + keyword)

The following return codes may be issued:

o - Normal completion
4 - Data truncated

12 - Invalid line number
20 - Severe error

Chapter 7. Macro Command Reference 113

Examples:

To put a new line as the first line of the file containing the string
"This is the new top line of the file":

ISREDIT LINE AFTER 0 = "This is the new top line of the file"

To put the contents of the line labeled .START on a new line following
the line labeled .END:

ISREDIT LINE AFTER .END = LINE .START

To put the contents of the mask line modified by the variable &DATA
after the line whose number is in variable &N:

ISREDIT LINE AFTER &N = MASKLINE + &DATA

114 ISPF/PDF forMVS Edit Macros

(

LINE BEFORE

~ LINE BEFORE - Add a Line to the Current File

~
I

The LINE BEFORE assignment command is used to add a line to the current
file before the specified line.

ISREDIT LINE BEFORE 1ptr = [DATALINE] data
[NOTELINE]
[HSGLINE]

1ptr indicates a line pointer must be used to identify the line
before which the new line is to be inserted. A line pointer
of zero is invalid. The line pointer can be either a label or
a relative line number.

DATALINE if coded, or if the operand is omitted, the line inserted is a
data line.

NOTELINE if coded, the line inserted is a temporary line (a non-data
line). The line command area shows =NOTE= in high intensity
and the data on the line is in low intensity. A note line has
a data length of 72 characters, regardless of the data width.

MSGLINE if coded, the line inserted is also a temporary line. The
line command area contains ==NSG> in high intensity and the
data on the line is also in high intensity. After NOTE and
HSG lines have been added to the data, they cannot be
referenced; they are not data lines. A message line has a
data length of 72 characters, regardless of the data width.

data indicates that the following data formats may be used:
• simple string
• delimited string
•
•

•
•

variable
keyword:
LINE

LINE 1ptr

MASKLINE
TABSLINE
template
merge format

Data from the line following this line is
used
Data from the line with the given line
1ptr
Data from the mask line
Data from the tabs line
« co 1 , s t ring »
(string-1 + string-2, keyword + string-2,
string-1 + keyword)

The following return codes may be issued:

o - Normal completion
4 - Data truncated

12 - Invalid line number
20 - Severe error

Chapter 7. Macro Command Reference 115

Examples:

To put the contents of the line labeled .START on a new line preceding
the line labeled .END:

ISREDIT LINE BEFORE .END = LINE .START

To put the contents of the mask line modified by the variable &DATA
before the line whose number is in variable &N:

ISREDIT LINE BEFORE &N = MASKLINE + &DATA

116 ISPF/PDF for MVS Edit Macros

LINENUM

LINENUM - Query the Line Number of a Labeled Line

The LINENUM assignment statement is used to retrieve the current
relative line number of a specified label and place it in a variable.
The line number can then be used in CLIST arithmetic operations.

Note: It may not be sufficient to get the line number of a line once.
If lines are added or deleted before this line, you may need to get the
line number each time a change might occur.

ISREDIT (varname) = LINENUM label

varname

label

is the name of the variable to contain the line number of the
line with the specified label, a 6-character value,
left-padded with zeros.
is the name of the label for the line whose line number is
needed. a label or a relative line number.

The following return codes may be issued:

o - Normal completion
4 - Line 0 specified
8 - Label specified, but not found (variable set to 0)

12 - Invalid line number
20 - Severe error

Examples:

To set variable &VAR to the last line number in the file:

ISREDIT (NUM) = LINENUM .ZLAST

To set variable NUM to the line number containing the label .MYLAB:

ISREDIT (NUM) = LINENUM .MYLAB

Chapter 7. Macro Command Reference 117

LOCA TE - Locate a Li ne or Type of Li ne

The LOCATE command identifies a line to be displayed as the first line
on the screen.

ISREDIT LOCATE {lptr }
[lptr-range]}

lptr

dir

lineid

{[dir] lineid

indicates a line pointer must be used for the target. A line
pointer can be a label or a relative line number.
indicates the direction of searching. NEXT is the default.
NEXT to search from the cursor line, proceeding forward.
PREY to search from the cursor line, proceeding backward.
FIRST to search from the first line, proceeding forward.
LAST to search from the last line, proceeding backward.
generic line identifier, which may be:
LABEL any line with a label
CHANGE any line flagged with ==CHG> as a result of a CHANGE

ALL command
ERROR any line flagged with ==ERR> as a result of a CHANGE

or SHIFT data command that failed because data would
not fit on a line

SPECIAL

EXCLUDED
COMMAND

any special non-data line:
Profile lines flagged as =PROF>
Mask lines flagged as =MASK>
Bounds line flagged as =BNDS>
Tabs line flagged as =TABS>
Message lines flagged as ==MSG>
Note lines flagged with =NOTE=

any excluded line
any line with a pending line command in the line
command field

lptr-range indicates that two line pointers are required to indicate a
range of lines in which to search. A line pointer may be a
label or a relative line number. Specifying one line pointer
is invalid.

The following return codes may be issued:

o - Normal completion
4 - Line not located

20 - Severe error

118 ISPF/PDF for MVS Edit Macros

LOCATE

Examples:

To locate the next occurrence of a line with a label:

ISREDIT LOCATE NEXT LABEL

To locate the first occurrence of a special (non-data) line:

ISREDIT LOCATE FIRST SPECIAL

To locate the last excluded line:

ISREDIT LOCATE LAST X

To locate the previous line with an unexecuted line command:

ISREDIT LOCATE PREV CMD

Chapter 7. Macro Command Reference 119

LRECL - Query the Logical Record Length

The LRECL assignment statement returns the logical record length of the
data being edited in a specified variable. This length includes the
sequence number field, if there is one. Use the DATA_WIDTH command to
get the length of the data columns without regard to whether the data is
numbered.

ISREDIT (varname) = LRECL

varname is the name of a variable to contain the logical record length
of the data being edited, a 3-character value, left-padded
with zeros.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To check the logical record length of the data and process the data if
the LRECL is 80:

ISREDIT (RECLEN) = LRECL
IF &RECLEN = 80 THEN -

120 ISPF/PDF for MVS Edit Macros

MACRO

~ MACRO - Identify an Edit Macro

The MACRO command identifies the command as a macro. It is required in
all macros. It must be the first command in a CLIST macro that is not a
CLIST statement. It must be the first edit command in a program macro.

ISREDIT MACRO [(varnamel [,varname2, ...])] [PROCESS]
[NOPROCESS]

varnamel, 2, ... if a macro allows parameters to be specified, the names
of the variables to contain the parameters. Parameters are
parsed and placed into the named variables in the order coded.
The last variable will contain any remaining parameters.
Variables that do not receive a parameter are set to a null
string. A parameter is a simple or quoted string, separated
by blanks or commas. Quotes may be single C') or double (ft),
but must be matched at the beginning and end of the string.

PROCESS processes all user-entered changes and line commands
immediately

NOPROCESS processes user-entered changes and line commands when the
macro completes processing or a PROCESS statement is
encountered. NOPROCESS must be coded if the macro is to use
line commands as input to its processing.

For more information, refer to the PROCESS statement
description.

The following return codes may be returned:

o - Normal completion
20 - Severe error

Examples:

To begin a macro, accepting a member name and optionally a line number
range to be placed in variable &PARM:

ISREDIT MACRO (PARM)
ISREDIT COPY AFTER .ZCSR &PARM

Chapter 7. Macro Command Reference 121

To begin a macro, checking parameters before processing screen ~
information, testing for input omitted, non-numeric input, and too many ~
parameters:

ISREDIT MACRO NOPROCESS (COL,X)
IF &STR(&COL) = &STR () THEN -

ISREDIT (,COL) = DISPLAY_COLS
ELSE -

IF &DATATYPE(&COL) = CHAR THEN -
GOTO MSG

IF &STR(&X) ~= &STR() THEN -
GOTO MSG

ISREDIT PROCESS

122 ISPF/PDF for MVS Edit Macros

MACRO LEVEL

MACRO_LEVEL - Query the Current Macro Nesting Level

The MACRO_LEVEL assignment statement is used to retrieve the current
nest'ing level of the macro being executed and place the nesting level in
a variable. The nesting level can be any number between 1 (user-invoked
macro) and 255. MACRO_LEVEL is used to adjust processing based on
whether the macro is invoked by an end user or by another macro. It is
required if labels are to be set for the invoker of this macro. See the
LABEL statement description.

ISREDIT (varname) = MACRO LEVEL

varname is the name of a variable to contain the macro nesting level,
a 3-character value, left-padded with zeros.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To set the label for the caller of the macro at one less than the
current level:

ISREDIT (NESTLEV) = MACRO LEVEL
ISREDIT LABEL .ZCSR = .XSTR &EVAL(&NESTLEV -1)

Chapter 7. Macro Command Reference 123

MASKLINE - Set or Query the Mask Line

The MASKLINE assignment statement is used to set or retrieve the value
of the mask line, used to control the formatting of input from the end
user on the display. It places the mask line contents in a variable or
sets the mask line from a variable. The mask line can contain any
characters and serves to initialize inserted lines to the value of the
mask line. See the description of templates in Chapter 2 to simplify
the setting of a mask line.

ISREDIT (varname) = ~lASKLINE
ISREDIT MASKLINE = data

varname is the name of a variable to contain the contents of the mask
line.

data indicates that the following forms may be used:
• simple string
• delimited string
•
•

•
•

variable
keyword:
LINE lptr
NASKLINE
TABSLINE
template
merge format

Data from the line with the given lptr
Data from the mask line
Data from the tabs line
« col,string »
(string-1 + string-2, keyword + string-2,
string-1 + keyword)

The following return codes may be issued:

o - Normal completion
4 - Data truncated

16 - Variable data truncated
20 - Severe error

Examples:

To set the mask line to place comment delimiters starting at lines 40
and 70:

ISREDIT MASKLINE = <40 '/*' 70 '*/'>

To set the mask line to blanks:

ISREDIT MASKLINE =
, ,

124 ISPF/PDF for MVS Edit Macros

MEMBER

MEMBER - Query the Current Member Name

The MEMBER assignment statement is used to retrieve the name of the
member currently being edited and place it in a variable. If a
sequential file is being edited, the variable is set to blanks.

ISREDIT (varname) = ME~lBER

varname is the name of a variable to contain the name of the member
currently being edited.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To determine if you are editing a member with a prefix of MIN:

ISREDIT (MEMNAME) = MEMBER
IF &SUBSTR (1: 3 ,&~lEMNA~lE) = MIN THEN -

Chapter 7. Macro Command Reference 125

MODEL - Copy a Model into the Current Data Set

The MODEL command is used to copy a specified dialog development model
before or after a specified line. If note mode is set on, note lines
are also copied, but they cannot be directly referenced by a macro.

ISREDIT MODEL modelname {AFTER} lptr
{BEFORE}

ISREDIT MODEL CLASS classname

[NOTE]
[NONOTE]

BEFORE or AFTER indicates whether the model is to be copied before or
after the line indicated by lptr.

modelname indicates the name of the model to be copied. Refer to
ISPF/PDF for MVS/XA Program Reference for a list of
models and model names.

lptr indicates a line pointer must be used to indicate where
the model should be copied. A line pointer can be a
label or a relative line number.

NOTE indicates that explanatory notes will be displayed when
a model is copied. NOTE is the default if neither NOTE
nor NONOTE is specified.

NONOTE indicates that no explanatory notes will be displayed.
classname indicates the model class to be set for following MODEL

command invocations.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To copy the VGET model at the end of the current file:

ISREDIT MODEL VGET AFTER .ZL

126 ISPF/PDF for MVS Edit Macros

MOVE

MOVE - Move a Member into the Current File

The MOVE command is used to move a member of the partitioned data set
being edited into the current member after the specified line number.
The entire member is moved, then deleted. The AFTER or BEFORE keyword
must be followed by a line pointer to indicate the insertion point; data
will be copied after or before that line.

13REDIT !-lOVE member {AFTER } lptr
{BEFORE}

BEFORE or AFTER indicates whether the member is to be moved before or
after the target specified by lptr.

lptr indicates a line pointer must be used to identify the target
of the move. A line pointer can be a label or a relative line
number.

The following return codes may be issued:

o - Normal completion
8 - End of file before last record read

12 - Invalid line pointer (lptr); member not found or BLDL error
16 - End of data before first record read
20 - Syntax error (invalid name, incomplete range)

- I/O error

Examples:

To move the contents of member ABC after the first line in the current
file:

ISREDIT MOVE ABC AFTER .ZF

To move the contents of member DEF before the line where the cursor is
currently positioned:

ISREDIT MOVE DEF BEFORE .ZCSR

Chapter 7. Macro Command Reference 127

NOTE - Set or Query Note Mode

The NOTE assignment statement is used either to set the current note
mode, or to retrieve the current setting of the note mode and place it
in a variable. Note mode controls whether notes are to be displayed
when a dialog development model is copied into the data. Refer to the
MODEL command description.

ISREDIT (varname) = NOTE
ISREDIT NOTE = mode
ISREDIT NOTE mode

varname

mode

is the name of a variable to contain the value of note mode,
either ON or OFF.
is the value that note mode can have, either ON or OFF.
ON indicates that explanatory notes will be displayed when a

model is copied into the data being edited.
OFF indicates that no explanatory notes will be displayed.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Examples:

To set note mode off:

ISREDIT NOTE = OFF

To store the value of note mode in variable &NOTEMODE:

ISREDIT (NOTEMODE) = NOTE

128 ISPF/PDF for MVS Edit Macros

NULLS

NULLS - Set or Query Nulls Mode

The NULLS assignment statement is used either to set the current nulls
mode, or to retrieve the current setting of the nulls mode and place it
in a variable. Nulls mode controls whether data fields on the screen
are padded with blank or null characters.

ISREDIT (varname1,varname2) = NULLS
ISREDIT NULLS = mode
ISREDIT NULLS mode

varname1 is the name of a variable to contain either ON or
varname2 is the name of a variable to contain ALL, STD, or
mode is the setting of nulls mode, ON, OFF, ON STD, or

ON indicates that trailing blanks in each data
written as nulls.

OFF indicates that trailing blanks in each data
written as blanks.

OFF
blanks.
ON ALL:

field will

field will

ALL indicates that all trailing blanks and all-blank fields
will be written as nulls.

STD indicates that one trailing

The following return codes may be issued:

o - Normal completion
20 - Severe error

Examples:

To set nulls mode to ON STD:

ISREDIT NULLS = ON STD

To set nulls mode off:

ISREDIT NULLS = OFF

blank will be preserved.

be

be

Chapter 7. Macro Command Reference 129

NUMBER - Set or Query Number Mode

The NU~1BER assignment statement is used either to set the current number
mode, or t'o retrieve the current setting of number mode and place it in
variables. Number mode controls the numbering of lines in the current
file.

ISREDIT (varname1,varname2) = NUMBER
ISREDIT NUMBER = mode
ISREDIT NUMBER mode

varname1 is the name of a variable to contain either ON or OFF.
varname2 is the name of a variable to contain STD, COBOL, or DISPLAY,

mode
or a combination.
is the
COBOL,
ON

OFF

STD

setting of number mode, either ON or OFF and STD,
DISPLAY, or a combination:

automatically verifies that all lines have valid
numbers in ascending sequence and renumbers any
lines that are either unnumbered or out of sequence.
ON is the default if no operands are coded.
turns off number mode, indicating that the data does
not contain sequence numbers.
when number mode is on, indicates that the data is
numbered in the standard sequence field. If you
omit both the STD and COBOL operands, the default is
STD unless number mode was already on, in which case
the data is numbered in whichever fie1d(s) were
previously specified.

COBOL when number mode is on, indicates that the data is
numbered in the COBOL sequence field.

STD COBOL when number mode is on, indicates that the data is
numbered in both the standard and the COBOL sequence
number fields.

DISPLAY indicates that the width of the data window includes
the sequence number fields.

The value STD, COBOL, or DISPLAY can be placed in varname2 even when
varname1 is set to OFF. This allows the macro to save and restore
number mode or set number mode off with defaults to be used when number
mode is set on by the end user without specifying STD or COBOL.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

130 ISPF/PDF for MVS Edit Macros

NUMBER

To save the current value of number mode, set number mode off for
processing, and then restore the value of number mode:

I SRED IT (STAT, VALUE) = NU~IBER
ISREDIT NUMBER OFF

ISREDIT NU~IBER = (STAT, VALUE)

Chapter 7. Macro Command Reference 131

PACK - Set or Query Pack Mode

The PACK assignment statement is used either to set the current pack
mode, or to retrieve the current setting of pack mode and place it in a
variable. Pack mode controls whether the data is to be stored in packed
format.

ISREDIT (varname) = PACK
ISREDIT PACK = mode
ISREDIT PACK mode

varname

mode

is the name of a variable to contain the setting of pack mode,
either ON or OFF.
indicates the value of pack mode, either ON or OFF:
ON indicates that data will be saved in packed format.
OFF indicates that data will be saved in normal, unpacked

format.

If this mode is changed, data will be written when an END command is
issued.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To set pack mode off:

ISREDIT PACK OFF

132 ISPF/PDF for MVS Edit Macros

(

PROCESS

PROCESS - Process the Display Screen

The PROCESS command allows the macro to control when user-entered line
commands or data changes are to be processed. If a line is retrieved
before the PROCESS statement has been executed, changes made by the user
on this interaction will not be seen. The DEST and RANGE keywords allow
the macro to identify what line commands a user may enter as additional
input to the macro.

Refer to "Controlling User Input" for a more complete description of
this command.

ISREDIT PROCESS [DEST] [RANGE cmd1 [cmd2]]

DEST

RANGE

cmd1, cmd2

indicates that the macro can capture an AFTER (A) or a
BEFORE (B) line command entered by the user. The .ZDEST
label is set to the line preceding the insertion point. If
A or B is not entered, .ZDEST points to the last line in
the file.

must be followed by the names of one or two line commands,
either of which the user may enter. This permits the macro
to define and then capture a line command entered by the
user. It can also modify its processing based on which of
the two commands was entered.

When a choice may be made between two line commands, the
RANGE_CMD assignment statement is used to return the value
of the line command entered.

indicates one or two line command names, which may be one
to six characters, but if the name is six characters long
it may not be used as a block format command. The name may
contain any alphabetic or special character except blank,
hyphen (-), or apostrophe ('). It may not contain any
numeric character.

The .ZFRANGE label is set to the first line identified by
the user-entered line command and .ZLRANGE is set to the
last line. They may refer to the same line. If the
expected RANGE line command was not entered, .ZFRANGE
points to the first line in the file and .ZLRANGE points to
the last line in the file.

Chapter 7. Macro Command Reference 133

The following return codes may be issued:

o - Normal completion
4 - Range expected by macro but not entered by user; defaults set
8 - Destination expected by macro but not entered by user; defaults

set
12 - Both range and destination expected by macro but neither range nor

destination entered by user; defaults set
16 - Incomplete or conflicting line commands entered by user
20 - Severe error

Examples:

To set up the macro to process the line commands * and # (defined by the
macro writer):

ISREDIT MACRO NOPROCESS
ISPEXEC CONTROL ERRORS RETURN
ISREDIT PROCESS RANGE * #
IF &LASTCC > = 16 THEN EXIT CODE(&LASTCC)
ISREDIT (CMD) = RANGE_CMD
ISREDIT (FIRST) = LINENUM .ZFRANGE
ISREDIT (LAST) = LINENUM .ZLRANGE
IF &CMD = &STR(*) THEN -

To place data depending on the location of the A or B line command:

ISREDIT MACRO NOPROCESS
ISREDIT PROCESS DEST
ISREDIT LINE AFTER .ZDEST = tr&DATAtr

To allow processing of the A and B destination line commands and the
specification of a range using the * line command (defined by the macro
writer):

ISREDIT MACRO NOPROCESS
ISREDIT PROCESS DEST RANGE *

Note: To specify this command, the MACRO command must have been coded
with a NOPROCESS keyword.

134 ISPF/PDF for MVS Edit Macros

PROFILE

PROFILE - Set or Query the Current Profile

PROFILE allows the user to view or switch the default modes in the
current edit session. PROFILE has two forms: a command and an
assignment statement. The profile name cannot be set by an assignment
statement. Use the PROFILE command to change the profile name, thereby
changing the current edit profile and the edit profile values.

ISREDIT (varname1,varname2) = PROFILE
ISREDIT PROFILE name [number]
ISREDIT PROFILE number
ISREDIT PROFILE LOCK
ISREDIT PROFILE UNLOCK

varnamel is the name of a variable to contain the name of the current
profile.

varname2 is the name of a variable to contain the profile status, LOCK
or UNLOCK.

name

number

LOCK

UNLOCK

indicates the profile name. The edit profile table is
searched for an existing entry with the same name. That
profile is then read from disk and used. If one is not found,
a new entry is created in the profile table.
indicates the number of lines, from 0 through 8, of profile
data to be displayed. When you code the number as 0, no
profile data is displayed. When you code no number, the
profile modes are displayed; the mask and tabs lines are
displayed if they contain data.
indicates that the current values in the profile are saved in
the edit profile table and are not modified on disk until the
profile is unlocked. The current copy of the profile can be
changed, either as a result of user commands that modify
profile values (BOUNDS and NUMBER, for example) or as a result
of differences in the data from the current profile settings.
Caps, number, stats, or pack mode are automatically changed to
fit the data. These changes occur when the file is first read
or when data is copied into the file.

Note: To force caps, number, stats, or pack mode to a
particular setting, use an initial macro. Be aware, however,
that if you set number mode on, data may be overlaid.
indicates that changes to profile values are automatically
saved on disk.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Chapter 7. Macro Command Reference 135

Example:

To check the lock status of the profile and perform processing if the
profile is locked:

ISREDIT (,STATUS) = PROFILE
IF &STATUS = LOCK THEN -

136 ISPF/PDF for MVS Edit Macros

~

~

RANGE CMD

RANGE_ CMD - Query the Command Entered by the User

The RANGE CMD assignment statement is used to identify the name of a
line command entered by the end user and processed by this macro. The
macro first issues a PROCESS command to identify line commands to be
processed by this macro. The RANGE_CMD statement returns either a Q or
$ when the following PROCESS command has been issued by the macro:

PROCESS RANGE Q $

If the end user enters Q5, just Q is returned.

ISREDIT (varname) = RANGE CMD

varname is the name of a variable to contain the line command entered
by the user.

The following return codes may be issued:

0 - Normal completion
4 - Line command not set
8 - Line command setting not acceptable

20 - Severe error

Example:

To determine which line command (* or #) the user entered and to process
the line command (defined by the macro writer):

ISREDIT MACRO NOPROCESS
ISREDIT PROCESS RANGE * #
ISREDIT (CMD) = RANGE_CMD
IF &CMD = &STR(*) THEN -

ELSE IF &CMD = &STR(#) THEN -

Chapter 7. Macro Command Reference 137

RCHANGE - Repeat a Change
;!

The RCHANGE command repeats the change requested by the most recent \.;
CHANGE command. It is recommended that the CHANGE command be reissued
for clarity.

The RCHANGE command can be used repeatedly to change other occurrences
of the search string. After a "string not found" condition is
encountered, the next RCHANGE issued starts at the first line of the
current range for a forward search (FIRST or NEXT specified) or the last
line of the current range for a backward search (LAST or PREV
specified).

ISREDIT RCHANGE

The following return codes may be issued:

o - Normal completion
4 - String not found
8 - Change error ('to' string longer than 'from' string and

substitution was not performed on at least one change)
12 - Syntax error
20 - Severe error (no previous change)

Example:

To perform a single-line change and then repeat it if there are more
lines to be searched:

ISREDIT CHANGE C'. the' C'. The' 1 8
IF &LASTLN ~= &END THEN -

ISREDIT RCHANGE

138 ISPF/PDF for MVS Edit Macros

RECFM

RECFM - Query the Record Format

The RECFM assignment statement is used to retrieve the record format of
the data set being edited and to place the value in a variable.

ISREDIT (varname) = RECFt-l

varname is the name of a variable to contain the record format of the
data set being edited, either F or V:
F indicates fixed-length records.
V indicates variable-length records.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To place the record format in variable &RECFORM and then use the logical
data width, if the file is fixed, or the right display column, if the
file is variable:

ISREDIT (RECFORM) = RECFt-l
IF &RECFORM = F THEN -

ISREDIT (WIDTH) = DATA_WIDTH
ELSE -

ISREDIT (,WIDTH) = DISPLAY_COLS

Chapter 7. Macro Command Reference 139

RECOVERY - Set or Query Recovery Mode

The RECOVERY assignment statement is used either to set the current
value of recovery mode, or to retrieve the current value and place it in
a variable.

ISREDIT (varname) = RECOVERY
ISREDIT RECOVERY = mode
ISREDIT RECOVERY mode

varname

mode

is the name of a variable to contain the setting of recovery
mode, either ON or OFF.
is the setting of recovery mode, either ON or OFF:
ON indicates that a recovery file is created when the first

change is made to the data and updated for each change
thereafter.

OFF indicates that no recovery file is created.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Examples:

To save the value of recovery mode in variable &RECOV:

ISREDIT (RECOV) = RECOVERY

To set recovery mode off:

ISREDIT RECOVERY = OFF

140 ISPF/PDF for MVS Edit Macros

RENUM

RENUM - Resequence and Number the Data

The RENUM command sets number mode on and renumbers all data lines.

ISREDIT RENUM [STD] [COBOL] [DISPLAY]

The STD, COBOL, and DISPLAY keywords are the same as those used on the
NUMBER command.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To renumber all data lines with COBOL numbering:

ISREDIT RENUM COBOL

Chapter 7. Macro Command Reference 141

REPLACE - Replace a Member

The REPLACE command is used to replace the specified member in the
library currently being edited with the data in the current member as
limited by the range of line pointers.

ISREDIT REPLACE member lptr-range

member indicates the member name of the member in the current library
to be replaced. If the member does not exist, it is created.

lptr-range indicates that two line pointers are required to indicate a
range of lines. A line pointer may be a label or a relative
line number. Specifying one line pointer is invalid.

The following return codes may be issued:

o - Normal completion
12 - Invalid line pointer; member not found or BLDL error
20 - Syntax error (invalid name, incomplete line point~r value)

- I/O error

Example:

To replace member MEM1 with the first 10 lines of the current file:

ISREDIT REPLACE MEM1 1 10

142 ISPF/PDF for MVS Edit Macros

RESET

~ RESET - Reset Li nes

The RESET command is used to reset the status of lines or delete special
(non-data) lines. If all operands are omitted, the RESET command resets
everything except labels.

Note: The LOCATE command positions the first line on the screen with
the same generic line identifiers.

ISREDIT RESET lineid [lptr-range]

lineid

lptr-range

indicates a generic line identifier, one or more of the
following:
LABEL to delete labels from any line with a label
CHANGE to delete ==CHG> flag from the line command area

of any lines flagged as a result of a CHANGE ALL
command

ERROR to delete ==ERR> flag from the line command area
of any line flagged as a result of a CHANGE or
SHIFT data command that failed because data would
not fit on a line

SPECIAL to delete from the display any special or
non-data line:

Profile lines flagged as =PROF>
Mask lines flagged as =MASK>
Bounds line flagged as =BNDS>
Tabs line flagged as =TABS>
Message lines flagged as ==MSG>
Note lines flagged with =NOTE=

EXCLUDED to show any excluded line
COMMAND to delete any pending line commands from the line

command field
indicates that two line pointers are required to indicate a
range of lines for the reset operation. A line pointer may
be a label or a relative line number. Specifying one line
pointer is invalid.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To reset all special lines in the current file:

ISREDIT RESET SPECIAL

Chapter 7. Macro Command Reference 143

RFIND - Repeat Find

The RFIND command finds the search string defined by the most recent
SEEK, FIND, or CHANGE command, or excludes a line containing the search
string defined by the previous EXCLUDE command.

The RFIND command can be used repeatedly to find other occurrences of
the search string. After a "string not found" condition is encountered,
the next RFIND issued starts at the first line of the current range for
a forward search (FIRST or NEXT specified) or the last line of the
current range for a backward search (LAST or PREV specified).

ISREDIT RFIND

The following return codes may be issued:

0 - Normal completion
4 - String not found

12 - Syntax error
20 - Severe error (string not defined)

Example:

To find a character string, process it, and repeat the find operation if
there are more lines:

ISREDIT FIND NEXT C'. the'
..... (process the line)

IF &LASTLN ,= &END THEN -
ISREDIT RFIND

144 ISPF/PDF for MVS Edit Macros

~

!:
I

RIGHT

RIGHT - Scroll Right

The RIGHT command causes a scroll right from the current screen
position. The current setting of the boundaries may affect the amount
actually scrolled. To scroll right using the screen position when the
macro was issued, use USER_STATE assignment statements to save and then
restore the screen position parameters.

If you define a macro named RIGHT, it overrides the RIGHT command when
used from another macro, but has no effect for the end user. The RIGHT
command does not change the cursor position and cannot be used in an
initial macro. For further information, see the BOUNDS and
DISPLAY_COLUMNS descriptions.

ISREDIT RIGHT amt

amt indicates the scroll amount, the number of columns or one of
the following keywords: MAX, HALF, PAGE, CURSOR, or DATA.

The following return codes may be issued:

o - Normal completion
4 - No visible lines
8 - No data to display

12 - Amount not coded
20 - Severe error

Example:

To scroll the display right to put the column specified in variable
&RCOL in column 1:

ISREDIT RIGHT &RCOL

Notes:

1. The first line that would be displayed is determined by:
a. Whether the cursor was set explicitly by a CURSOR assignment

statement or implicitly by a SEEK, FIND, CHANGE, or TSPLIT
command. Since the cursor must be on the screen, the line that
is the first line on the screen may be different from the line
that was first when the user invoked the macro.

b. A LOCATE command setting the line to be first on the screen.
2. The number of lines scrolled are affected by non-data lines on the

screen.
3. The number of lines on the screen is determined by:

a. The number of lines excluded from the display.

Chapter 7. Macro Command Reference 145

b. The number of non-data lines displayed: profile, message, note,
bounds, tabs, or mask lines.

c. The terminal display size and the split-screen line.

146 ISPF/PDF for MVS Edit Macros

RMACRO

RMACRO - Set or Query the Recovery Macro

The RMACRO assignment statement is used to set or retrieve the name of
the macro set in this edit session. This macro is to be executed after
the file has been recovered but before the edit data panel is displayed
for editing. Commands that refer to display values are invalid in a
recovery macro.

Recovery may occur if this edit session terminates abnormally, when a
SAVE, END, or CANCEL command has not been issued, and when recovery mode
is on.

ISREDIT (varname) = RMACRO
ISREDIT RMACRO = name
ISREDIT RMACRO name

varname is the name of a variable to contain the name of the recovery
macro.

name indicates the name of the macro to be executed after a file
has been recovered. The name NONE can be used to prevent a
recovery macro from being used; conversely, a value of NONE is
returned when no recovery macro has been specified.

The following return codes may be issued:

o - Normal completion
12 - Invalid name specified
20 - Severe error

Example:

To set the RMACRO name from the variable &RMAC:

ISREDIT RMACRO = &RMAC

Chapter 7. Macro Command Reference 147

SAVE - Save the Current Data on Disk

The SAVE command saves the current data on disk. See the DATA CHANGED,
AUTO SAVE , CANCEL, and END commands, which are interrelated, for further
information about saving data.

ISREDIT SAVE

The following return codes may be issued:

o - Normal completion
12 - Data not saved; not enough PDS space or directory space
20 - Severe error

Example:

To check autosave mode and, if off, ensure that changes are saved:

ISREDIT eVAR) = AUTOSAVE
IF &VAR = OFF THEN -

ISREDIT SAVE

148 ISPF/PDF for MVS Edit Macros

SCAN

SCAN - Set Command Scan Mode

The SCAN assignment statement is used either to set the current value of
scan mode (for variable substitution), or to retrieve the current value
of scan mode and place it in a variable. Scan mode controls the
automatic replacement of variables in command lines passed to edit.

SCAN is valid only within a macro.

For further information, refer to "Variable Substitution" on page 61.

ISREDIT (varname) = mode
ISREDIT SCAN = mode
ISREDIT SCAN [mode]

varname

mode

is the name of a variable to contain the setting of scan mode,
either ON or OFF:
is the setting of scan mode, either ON or OFF:
ON indicates that edit automatically replaces variables in

command lines passed to edit.
OFF indicates that edit does not automatically replace

variables.

If mode is omitted, the default is ON. Scan mode is initialized to ON
when a macro is invoked.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Example:

To set the line whose number is in variable &LNUM to u&SYSDATE is a
CLIST built-in function", set scan mode off and issue the LINE command
with the CLIST function name coded as &&SYSDATE. The CLIST processor
strips off the first &, but, because scan mode is off, edit does not
remove the second &:

ISREDIT SCAN OFF
ISREDIT LINE &LNUM = u&&SYSDATE is a CLIST built-in function"
I SRED IT SCAN ON

Chapter 7. Macro Command Reference 149

SEEK - Seek a Data String, Positioning the Cursor

The SEEK command is used to find one or more occurrences of a data
string. The SEEK command is exactly like the FIND command except that
when a string is found, the exclude status of the line is not affected.
The SEEK command is provided so that the cursor can be positioned
without affecting the end user's view of the screen. Therefore, SEEK
should be used in place of FIND within macros.

ISREDIT SEEK str-l [label-range] [NEXT] [CHARS] [X] [col-l [col-2]]
[ALL] [PREFIX] [NX]
[FIRST] [SUFFIX]
[LAST] [WORD]
[PREV]

str-l indicates the string to be located.
label-range indicates that two labels are required to indicate a range

of lines; one label is invalid. If relative line numbers are
coded, they are interpreted as column numbers, or a syntax
error is detected.

args For complete information about the following SEEK arguments,
see the ISPF/PDF for MVS/XA Program Reference:

NEXT
ALL
FIRST
LAST
PREV

CHAR
PREFIX
SUFFIX
WORD

X
NX

When the cursor is within the line range, the search for the string
starts at the current cursor position for a SEEK NEXT or SEEK PREV
request; when the cursor is outside the range, the search begins at the
top (for NEXT) or bottom (for PREV) of the range. If str-l is found,
the cursor position is changed to the line and column position of the
first character of the first string found. If a string is not found,
the cursor is not moved.

The boundary settings limit the columns searched to the columns within
the boundary columns. When writing a general macro, you may want to
override the boundary setting by supplying specific columns.

150 ISPF/PDF for MVS Edit Macros

The following return codes may be issued:

o - Normal completion
4 - String not found

12 - Syntax error
20 - Severe error

Examples:

To position the cursor to the first 'abc':

ISREDIT SEEK FIRST 'abc'

To position the cursor to the previous numeric field:

ISREDIT SEEK PREV p'###'

SEEK

Chapter 7. Macro Command Reference 151

SEEK_COUNTS - Query Seek Counts

The SEEK COUNTS assignment statement is used to retrieve values that
were set by the most recently executed SEEK command and to place them in
variables.

ISREDIT (varnamel,varname2) = SEEK COUNTS

varnamel is the name of a variable to contain the number of strings
found, an 8-character value, left-padded with zeros.

varname2 is the name of a variable to contain the number of lines on
which strings were found, an 8-character value, left-padded
with zeros.

The following return codes may be set:

o - Normal completion
20 - Severe error

Example:

To seek all lines with a blank in column 1 and store the number of such
lines in variable &BLNKS:

ISREDIT SEEK ALL " " 1
ISREDIT (BLNKS) = SEEK_COUNTS

152 ISPF/PDF for MVSEdit Macros

SHIFT

SHIFT (- Shift Columns Left

The SHIFT (command is used to shift columns of data left, in the same
manner that the (edit line command shifts data. The current setting of
the boundaries affects the columns within which data is shifted.

The SHIFT (command is limited to shifting data on a single line. If
you want to shift data on several lines, you have to loop through the
lines, shifting data on each line individually.

ISREDIT SHIFT (lptr [nl
[~l

lptr indicates a line pointer must be used. A line pointer can be
a label or a relative line number.

n indicates the number of columns to shift. If this operand is
omitted, the default is two columns.

The following return codes may be issued:

o - Normal completion
12 - invalid line number
20 - Severe error

Examples:

To shift columns of data on the line containing the cursor to the left
10 columns:

ISREDIT SHIFT (.ZCSR 10

To shift columns of data on the line with the label .LAB to the left 2
columns:

ISREDIT SHIFT (.LAB

Chapter 7. Macro Command Reference 153

SH 1FT) - Shift Columns Right

The SHIFT) command is used to shift columns of data right, in the same
manner that the) edit line command shifts data. The current setting of
the boundaries affects the columns within which data is shifted.

The SHIFT) command is limited to shifting data on a single line. If
you want to shift data on several lines, you have to loop through the
lines, shifting data on each line individually.

ISREDIT SHIFT) lptr [n]
[~]

lptr indicates a line pointer must be used. A line pointer can be
a label or a relative line number.

n indicates the number of columns to shift. If this operand is
omitted, the default is two columns.

The following return codes may be issued:

o - Normal completion
12 - invalid line number
20 - Severe error

Examples:

To shift columns of data on the line containing the cursor to the right
4 columns:

ISREDIT SHIFT) .ZCSR 4

To shift columns of data on the line with the label .LAB to the right 2
columns:

ISREDIT SHIFT) .LAB

154 ISPF/PDF for MVS Edit Macros

SHIFT

SH 1FT < - Shift Data Left

The SHIFT < command is used to shift data left, in the same manner that
the < edit line command shifts data. The current setting of the
boundaries affects the columns within which data is shifted.

The SHIFT < command is limited to shifting data on a single line. If
you want to shift data on several lines, you have to loop through the
lines, shifting data on each line individually.

If the data cannot be shifted, the line is flagged in the line command
area with ERR>. You can use the LOCATE and RESET commands, which are
sensitive to this flag.

ISREDIT SHIFT < lptr [n]
[2]

lptr indicates a line pointer must be used. A line pointer can be
a label or a relative line number.

n indicates the number of columns to shift. If this operand is
omitted, the- default is two columns.

The following return codes may be issued:

o - Normal completion
12 - invalid line number
20 - Severe error

Examples:

To shift data on the line containing the cursor to the left 4 columns:

ISREDIT SHIFT < .ZCSR 4

To shift data on the line with the label .LAB to the left 2 columns:

ISREDIT SHIFT < .LAB

Chapter 7. Macro Command Reference 155

SH 1FT> - Shift Data Right

The SHIFT> command is used to shift data right, in the same manner that
the> edit line command shifts data. The current setting of the
boundaries affects the columns within which data is shifted.

The SHIFT> command is limited to shifting data on a single line. If
you want to shift data on several lines, you have to loop through the
lines, shifting data on each line individually.

If the data cannot be shifted, the line is flagged in the line command
area with ==ERR>. You can use the LOCATE and RESET commands, which are
sensitive to this flag.

ISREDIT SHIFT > lptr [n]
[~]

lptr indicates a line pointer must be used. A line pointer can be
a label or a relative line number.

n indicates the number of columns to shift. If this operand is
omitted, the default is two columns.

The following return codes may be issued:

o - Normal completion
12 - invalid line number
20 - Severe error

Examples:

To shift data on the line containing the cursor to the right 4 columns:

ISREDIT SHIFT> .ZCSR 4

To shift data on the line with the label .LAB to the right 2 columns:

ISREDIT SHIFT> .LAB

156 ISPF/PDF for MVS Edit Macros

SORT

~ SORT - Sort Data

The SORT command is used to put data in a specified order.

The data columns to be sorted are defined by the current boundaries.
The columns to be used for sort keys are specified as arguments,
identical to those specified by the end user.

ISREDIT SORT [X] [sortfield-1 [:sortfield-2, ...]] [label-range]
[NX]

X indicates that only excluded lines are to be sorted.
NX indicates that only non-excluded lines are to be sorted.
sortfield-1, 2, ...

indicates the fields that define the sort operation. For
further information about sort fields, refer to ISPF/PDF
for MVS/XA Program Reference.

label-range indicates that two labels are required to indicate a range
of lines for the sort operation; one label is invalid.

The following return codes may be issued:

o - Normal completion
4 Lines were already in sort order

20 - Severe error

Examples:

To sort the entire file in ascending order:

ISREDIT SORT

To sort the file in descending order, using the sort key in columns 15
through 20:

ISREDIT SORT D 15 20

To sort all excluded lines in ascending order:

ISREDIT SORT X A

To sort lines between labels .A and .B in ascending order:

ISREDIT SORT .A .B

To sort lines between labels .A and .B, using the sort key in column 5:

ISREDIT SORT .A.B 5

Chapter 7. Macro Command Reference 157

STATS - Set or Query Stats Mode

The STATS assignment statement is used either to set the current stats
mode or to retrieve the current setting of the stats mode and place it
in a variable.

ISREDIT (varname) = STATS
ISREDIT STATS = mode
ISREDIT STATS mode

varname

mode

is the name of a variable to contain the setting of stats
mode, either ON or OFF.
is the setting of stats mode, either ON or OFF:
ON indicates that library statistics will be created or

updated when the data is saved.
OFF indicates that no library statistics are to be created or

saved.

The following return codes may be issued:

o - Normal completion
20 - Severe error

Examples:

To put the value of stats mode in variable &LIBSTAT:

ISREDIT (LIBSTAT) = STATS

To set stats mode on:

ISREDIT STATS = ON

To set stats mode off:

ISREDIT STATS OFF

To reset stats mode from the mode saved in variable &LIBSTAT:

ISREDIT STATS = (LIBSTAT)

158 ISPF/PDF for MVS Edit Macros

SUBMIT

SUBMIT - Submit a Job for Batch Execution

The SUBMIT command is used to submit the current data set, or that part
of the data set defined by the range of line pointers, to be executed as
a batch job.

ISREDIT SUBMIT [lptr-range]

lptr-range indicates that two line pointers are required to indicate a
range of lines. A line pointer may be a label or a relative
line number. Specifying one line pointer is invalid.

The following return codes may be issued:

o - Normal completion
20 - Severe error (submit failed)

Examples:

To submit the first 20 lines of the JCL file:

ISREDIT SUBMIT 1 20

To submit the entire file of JCL:

ISREDIT SUBMIT

Chapter 7. Macro Command Reference 159

TABS - Set or Query Tabs Mode

The TABS assignment statement is used either to set the current tabs
mode or to retrieve the current setting of the tabs mode and place it in
a variable.

ISREDIT (varnamel,varname2) = TABS
ISREDIT TABS = mode [tabchar] [ALLISTD]
ISREDIT TABS mode [tabchar] [ALLISTD]

varname1 is the name of a variable to contain the setting of tabs mode,
either ON or OFF.

varname2 is the name of a variable to contain the tab character and
either ALL or STD. This variable may be blank.

mode is the setting of tabs mode, either ON or OFF:
ON indicates that logical tabs can be used to break up

strings of data.
OFF indicates that logical tabs cannot be used.

tabchar indicates the character to be defined as the logical tab
character.

ALL indicates that nonblank characters are not replaced with
hardware attribute bytes.

STD indicates that all characters, including nonblank characters,
are replaced with hardware attribute bytes, thus overlaying
data.

The following return codes may be issued:

o - Normal co~pletion
20 - Severe error

Examples:

To store the setting of tabs mode in variable &TABVAL:

ISREDIT (TABVAL) = TABS

To set tabs mode on and set the tab character to \:

ISREDIT TABS ON \

To set the value of tabs mode from variable &TABVAL:

ISREDIT TABS = (TABVAL)

160 ISPF/PDF for MVS Edit Macros

TABSLINE

TABSLINE - Set or Query Tabs Line

The TABSLINE assignment statement is used either to set the current tabs
line or to retrieve the current tabs line and place it in a variable.

ISREDIT (varname) = TABSLINE
ISREDIT TABSLINE = data

varname is the name of a variable to contain the contents of the
current tabs line.

data indicates the data used to set the tabs line. The only valid
characters for this data are blanks and valid tab characters:
asterisk (*), hyphen (-), or underscore (). The following
forms may be used:
• simple string
• delimited string
•
•

•
•

variable
keyword:
LINE lptr
MASKLINE
TABSLINE
template
merge format

Data from the line with the given lptr
Data from the mask line
Data from the tabs line
« col,string »
(string-1 + string-2, keyword + string-2,
string-1 + keyword)

The following return codes may be issued:

o - Normal completion
4 - Data truncated
8 - Invalid data detected and ignored

20 - Severe error (invalid input)

Examples:

To store the value of the tabs line in variable &OLDTABS:

ISREDIT (OLDTABS) = TABSLINE

To set the tabs line to '* * *':

ISREDIT TABSLINE = '* * *'

To clear the tabs line:

ISREDIT TABSLINE = ' ,

Chapter 7. Macro Command Reference 161

To set tabs in columns 1 and 35:

ISREDIT TABSLINE = <1,*,35,*>

To add a tab in column 36:

ISREDIT TABSLINE = TABSLINE + <36,*>

To remove a tab from column 36:

ISREDIT TABSLINE = TABSLINE + <36,' '>

162 ISPF/PDF for MVS Edit Macros

TENTER

TENTER - Set Up Display Screen for Text Entry

The TENTER command performs the function of the TE edit line command for
the end user, preparing the screen to allow power typing. While in text
entry mode, no macros may be executed. Text entry is affected by the
boundary settings.

ISREDIT TENTER lptr [n]

lptr indicates a line pointer must be used. A line pointer can be
a label or a relative line number.

n indicates the number of lines displayed for text entry. If n
is not specified, the remainder of the screen is displayed for
text entry.

The following return codes may be issued:

o - Normal completion
12 - Invalid line number
20 - Severe error

Example:

To find the last line in the file and set up the display for text entry
following the last line:

ISREDIT LOCATE .ZL
ISREDIT TENTER .ZL

Note: You must ensure that the line pointer referenced on the TENTER
command is displayed; otherwise, the text area will not be visible to
the end user. The LOCATE command causes a line to be placed at the top
of the display.

Chapter 7. Macro Command Reference 163

TFLOW - Text Flow a Paragraph

The TFLOW command performs the functions of the TF line command for the
end user, restructuring paragraphs to smooth display line endings. Data
is flowed starting at the specified line to the specified column within
the current right and left boundaries. Data is flowed until a paragraph
end is reached. A paragraph end is indicated by a blank line, a change
in indentation, or a special character (period (.), colon (:), or
ampersand (&)) in column 1.

ISREDIT TFLOW lptr [col]

lptr indicates a line pointer must be used. A line pointer can be
a label or a relative line number.

col indicates the column to which the text should be flowed. If
the column number is omitted, it defaults to the right
boundary, unlike the TF line command, which defaults to the
screen width when default boundaries are in effect.

The following return codes may be issued:

o - Normal completion
12 - Invalid line number
20 - Severe error

Example:

To limit the flowing of text to the displayed columns:

ISREDIT (,RCOL) = DISPLAY_COLS
ISREDIT TFLOW .PP &RCOL

164 ISPF/PDF for MVS Edit Macros

TSPLIT

TSPLIT - Text Split a Line

The TSPLIT command performs the functions of a TS line command for the
end user, splitting a line so that data can be added. It is affected by
the current setting of the boundaries; data beyond the right boundary is
not moved to the line added by TSPLIT and the data between the spli~
column and the right boundary is moved to the new line starting at the
left boundary. The cursor position is set to the split point.

ISREDIT TSPLIT [lptr col]

lptr indicates a line pointer is used to identify the line where
the split is to occur. A line pointer can be a label or a
relative line number.

col indicates the column at which the text is to be split.

If no operands are coded, the split point is assumed to be the current
cursor position.

The following return codes may be issued:

o - Normal completion
12 - Invalid line number
20 - Severe error

Example:

To split the line labeled .TOP at column 15:

ISREDIT (LINENBR) = LINENUM .TOP
ISREDIT TSPLIT &LINENBR 15

Chapter 7. Macro Command Reference 165

UNNUM - Unnumber the Current File

The UNNUM command removes t~e numbers from the current file and turns
number mode off.

ISREDIT UNNUM

The following return codes may be issued:

o - Normal completion
12 - Number mode not on
20 - Severe error

Example:

To remove the line numbers from the current file and turn number mode
off:

ISREDIT UNNUM

166 ISPF/PDF for MVS Edit Macros

UP

UP - Scroll Up

The UP command causes a scroll up from the current screen position. To
scroll up using the screen position when the macro was issued, use
USER_STATE assignment statements to save and then restore the screen
position parameters.

If you define a macro named UP, it overrides the UP command when used
from another macro, but has no effect for the end user. The UP command
does not change the cursor position and cannot be used in an initial
macro.

ISREDIT UP amt

amt indicates the scroll amount, the number of lines or one of the
following keywords: MAX, HALF, PAGE, CURSOR, or DATA.

The follotving return codes may be issued:

o - Normal completion
4 - No visible lines
8 - No data to display

12 - Amount not coded
20 - Severe error

Example:

To make the line where the cursor is placed the first one on the
display:

ISREDIT UP CURSOR

Notes:

1. The first line that would be displayed is determined by:
a. Whether the cursor was set explicitly by a CURSOR assignment

statement or implicitly by a SEEK, FIND, CHANGE, or TSPLIT
command. Since the cursor must be on the screen, the line that
is the first line on the screen may be different from the line
that was first when the user invoked the macro.

b. A LOCATE command setting the line to be first on the screen.
2. The number of lines scrolled are affected by non-data lines on the

screen.
3. The number of lines on the screen is determined by:

a. The number of lines excluded from the display.
b. The number of non-data lines displayed: profile, message, note,

bounds, tabs, or mask lines.
c. The terminal display size and the split-screen line.

Chapter 7. Macro Command Reference 167

USER STATE - Save or Restore User State

The USER_STATE assignment statement is used to save or restore the state
of edit pr'ofile values, FIND and CHANGE values, and screen and cursor
values. USER_STATE can be used at the beginning of a macro to save
conditions and at the end of a macro to restore the conditions which may
have changed during the execution. Many of the values saved by
USER_STATE can be saved and restored individually. The USER STATE
assignment statement is a simple way of saving a large number of values
with a single statement.

ISREDIT (varname) = USER_STATE
ISREDIT USER_STATE = (varname)

varname is the name of a variable to contain the user status
information.

The follmving return codes may be issued:

o - Normal completion
20 - Severe error

Examples:

To save the user state in variable &STATUS:

ISREDIT (STATUS) = USER_STATE

To restore the user state from variable &STATUS:

ISREDIT USER_STATE = (STATUS)

Notes:

1. The following edit modes and values are saved and restored by
USER STATE:

AUTOLIST
AUTONUM
AUTO SAVE
BOUNDS
CAPS
CURSOR

HEX
IMACRO
MASKLINE
MODEL CLASS
NOTE
NULLS

NUMBER
PACK
PROFILE
RECOVERY
STATS
TABS

TABSLINE

current FIND/CHANGE/SEEK/EXCLUDE parameters

168 ISPF/PDF for MVS Edit Macros

USER STATE

2. The information in the variable is saved in an internal format that
is subject to change. Dependence on the format may lead to macro
errors.

Chapter 7. Macro Command Reference 169

VERS ION - Set or Query Version Number

The VERSION assignment statement is used either to set the current
version number or to retrieve the current version number and place it in
a variable.

Version numbers may be used to identify classes of members. For
example, members associated with the first release of a product could be
set to version 1 and members associated with the second release of a
product could be set to version 2, while members not associated with any
release could be set to version 99.

ISREDIT (varname) = VERSION
ISREDIT VERSION = num
ISREDIT VERSION num

varname

num

is the name of a variable to contain the version number, a
3-character value, left-padded with zeros.
is the version number, any number from 1 to 99.

The following return codes may be issued:

o - Normal completion
8 - Stats'mode is off, the command is ignored

12 - Invalid value specified (the version must be 1 to 99)
20 - Severe error

Examples:

To save the version number in variable &VERS:

ISREDIT (VERS) = VERSION

To set the version number to 1:

ISREDIT VERSION 1

To set the version number from variable &VERS:

ISREDIT VERSION = &VERS

170 ISPF/PDF for MVS Edit Macros

XSTATUS

XSTATUS - Set or Query Exclude Status of a Line

The XSTATUS assignment statement is used either to set the exclude
status of the specified data line or to retrieve the exclude status of
the specified data line and place it in a variable. Exclude status
determines whether or not the line is excluded.

ISREDIT (varname) = XSTATUS lptr
ISREDIT XSTATUS lptr = X I NX

varname is the name of a variable to contain the exclude status,
either X or NX.

lptr indicates a line pointer must be used. A line pointer can be
a label or a relative line number.

X
NX

indicates that the specified line is to be excluded.
indicates-that the specified line is to be shown
(non-excluded).

The following return codes may be set:

o - Normal completion
8 - An attempt to set a line status to 'NX' could not be

performed. (The line had an interpreted but unexecuted line
command in it). For example, if an excluded line is overtyped
with the H command "HOVE/COPY IS PENDING" and the line(s)
cannot be shown.

12 - Line number is not an existing line
20 - Severe error

Examples:

To store the exclude status of the line whose number is in variable &N
in variable &LINEX:

ISREDIT (LINEX) = XSTATUS &N

To exclude line 1:

ISREDIT XSTATUS 1 = X

Chapter 7. Macro Command Reference 171

To locate a string and change it, saving and then restoring the exclude
status:

ISREDIT SEEK &DATA
IF &LASTCC = 0 THEN -

DO
ISREDIT (XLINE) = XSTATUS .ZCSR
ISREDIT CHANGE &DATA &NEWDATA .ZCSR .ZCSR
ISREDIT XSTATUS .ZCSR = (XLINE)

END

Note: To exclude a number of lines at one time, use the EXCLUDE
command. To show a number of lines at one time, use the FIND command.
Use XSTATUS together with SEEK and CHANGE to preserve the exclude status
of a line.

172 ISPF/PDF for MVS Edit Macros

APPENDIX A. CLIST CONSIDERATIONS

If you are not an experienced CLIST writer, several considerations are
likely to cause problems initially. You may want to note the following
items, which frequently are the cause of errors for new users. For
additional information about writing CLISTs, refer to TSO Command
Language Reference and TSO Terminal User's Guide.

• A '-' (hyphen) or a '+' (plus sign) at the end of a line serves as a
continuation character. In Figure 2 on page 4, the IF statement and
the ELSE statement both have a hyphen (-) following the comment.
The plus sign deletes leading blanks from the following line; a
minus sign leaves the leading blanks when continuing the line. The
plus sign is preferred when dealing with data in which blanks are
not wanted; the minus sign preserves the indentation of programming
statements for debugging purposes.

Three common errors occur with continuation characters. See if you
can spot the errors in the examples that follow:

Example

SET &A = 1
IF &A ... = 1 THEN

DO
WRITE THIS LINE SHOULD NEVER BE WRITTEN.

END

In the above example, the line that should never be written is in
fact written, because the continuation character on the IF ... THEN
statement was omitted. The IF statement could be interpreted as:

"IF the value of &A is not equal to 1 THEN do nothing"

Example

SET &A = 1
WRITE ---- TITLE LINE
SET &A = 9

In the above example, because the final '-' (hyphen) on the WRITE
statement was taken as a continuation character, the CLIST writes:

tt ____ TITLE LINE --- SET 1 = 9"

Appendix A. CLIST Considerations 173

•

•

•

•

Example

SET &A = 1
IF &A ~= 1 THEN -
DO

/* test for the end of the loop */

WRITE
END

THIS LINE SHOULD NEVER BE WRITTEN.

Once again, the line that should never be written is in fact
written. The '-' following the word THEN is not treated as a
continuation character, because it is not the last nonblank
character on the line. This type of error can occur if comments are
added after the original statements are written.

A symbolic variable must be given a value before it can be used in a
statement. The variable can be set with a SET statement or with an
edit assignment statement. For example:

SET &NAME = CLEANUP
ISREDIT (NAME) = MEMBER
SET &NAME = &STR()
SET &NAME = &STR()

are all valid ways to set the variable NAME. The first sets &NAME
to the word CLEANUP. The second sets &NAME to the name of the
member that is being edited. The third sets &NAME to a string of
eight blanks. The fourth sets &NAME to a null string.

Once set, &NAME can be included in a statement, and the value
assigned to &NAME is substituted before the statement is executed.
You may use a variable set to a null value, but it is an error if
you use a variable that has never been set.

If you attempt to execute a statement that contains a variable that
has never been set, a CLIST error message is displayed, and the
CLIST is abnormally terminated.

CLIST statements must be written in uppercase. Lowercase letters in
statement names, variables, or operators will cause unpredictable
results. Of course, quoted string variables and operands on edit
macro statements can be uppercase or lowercase, since they are
passed to the PDF editor for processing.

To check the return code of a command, you must check the CLIST
control variable &LASTCC in the very next statement following the
command. Its value is reset at the end of each command, including
CLIST WRITE, IF, and DO statements. You should capture its value in
another variable, using a statement like SET &RETCODE = &LASTCC.
Then the variable can be tested where appropriate to the logic.

When a variable that contains leading and trailing blanks is used in
a CLIST comparison, the blanks are ignored.

174 ISPF/PDF for MVS Edit Macros

• Use "&STR(" before data that may contain arithmetic or logical
operators (= + - * I II ~= <= ...) to suppress evaluation of the
expression. To determine whether a variable is set to nulls:

IF &STR(&VAR) = &STR() THEN ...

• Remember that the CLIST processor reads and interprets each
statement in the CLIST before the statement is passed to the editor
for macro processing. CLIST control statements such as SET, IF, and
DO are not passed to the editor so those statements cannot contain
any macro language syntax. For example, a CLIST error results if a
SET statement contains a label.

• To parse a statement into "words" (character strings, quoted strings
('), parenthesized strings, or a null string indicated by two
adjacent commas (,,)), you can do the following:

SET &SYSDVAL = &STR(&DATA
READDVAL &VAR1 &VAR2 &VAR3

If &DATA contained HE SAID 'TRY IT', &VAR1 would be set to HE, &VAR2
would be set to SAID, and &VAR3 would be set to TRY IT.

Note: "TRY IT" is not considered a quoted string by the CLIST
language so, if &DATA contained HE SAID "TRY IT", &VAR3 would be set
to "TRY.

• The CLIST ERROR statement can be used to capture any nonzero return
code. Since edit returns a code of 4 and sometimes 8 for
information, it is suggested that, if used, it be coded as follows:

ERROR -
IF &MAXCC < 12 THEN I~': If the last code is ~'~ 1-

DO I~': less than 12 ~'~ I
SET &MAXCC = 0 I~': continue processing */
RETURN I~': (reset &MAXCC) ,~ /

END I~': Otherwise go to severe .,~/

ELSE 1* error processing ,~ /-
GOTO SEVERE I~': to issue messages & exit ~'~ I

Appendix A. CLIST Considerations 175

176 ISPF/PDF for MVS Edit Macros

APPENDIX B. SUMMARY OF MACRO STATEMENTS

This appendix lists all the forms of the PDF edit macro statements. For a
description of the operands and usage, see the command descriptions in Chapter 7.

AUTOLIST

AUTONUM

AUTO SAVE

BLKSIZE
BOUNDS

BUILTIN
CANCEL
CAPS

CHANGE

ISREDIT (varname) = AUTOLIST
ISREDIT AUTOLIST = mode
ISREDIT AUTOLIST mode
ISREDIT (varname) = AUTONU~l
ISREDIT AUTONUM = mode
ISREDIT AUTONU~l mode
ISREDIT (varname1,varname2) = AUTOSAVE
ISREDIT AUTOSAVE = mode
ISREDIT AUTOSAVE mode
ISREDIT (varname) = BLKSIZE
ISREDIT (varname1,varname2) = BOUNDS
ISREDIT BOUNDS = left right
ISREDIT BOUNDS left right
ISREDIT BUILTIN cmdname
ISREDIT CANCEL
ISREDIT (varname) = CAPS
ISREDIT CAPS = mode
ISREDIT CAPS mode

ISREDIT CHANGE str-1 str-2 [label-range] [NEXT]
[ALL]
[FIRST]
[LAST]

[CHARS] [X] [co 1-1 [co 1-2]]
[PREFIX] [NX]
[SUFFIX]
[WORD]

CHANGE COUNTS
COpy
CREATE
CTL LIBRARY
CURSOR

DATA CHANGED
DATA WIDTH
DATAID
DEFINE

DELETE

DISPLAY COLS
DISPLAY LINES
DOWN
EDIT

[PREV]
ISREDIT (varname1,varname2) = CHANGE COUNTS
ISREDIT COPY member AFTERIBEFORE lpt~ [linenum-range]
ISREDIT CREATE member lptr-range
ISREDIT (varname1,varname2) = CTL_LIBRARY
ISREDIT (varname1,varname2) = CURSOR
ISREDIT CURSOR = line col
ISREDIT (varname) = DATA CHANGED
ISREDIT (varname) = DATA-WIDTH
ISREDIT (varname) = DATAID
ISREDIT DEFINE name PGM MACROICMD MACRO
ISREDIT DEFINE name ALIAS name2
ISREDIT DEFINE name NOP
ISREDIT DEFINE name RESET
ISREDIT DELETE lptr
ISREDIT DELETE lptr-range
ISREDIT DELETE ALL XINX [lptr-range]
ISREDIT DELETE [ALL] XINX lptr-range
ISREDIT (varname1,varname2) = DISPLAY_COLS
ISREDIT (varname1,varname2) = DISPLAY_LINES
ISREDIT DOWN amt
ISREDIT EDIT member

Appendix B. Summary of Macro Statements 177

END
EXCLUDE

ISREDIT END

ISREDIT EXCLUDE str-l [label-range] [NEXT]
[ALL]
[FIRST]
[LAST]

[CHARS] [X] [co 1-1 [co 1-2]]
[PREFIX] [NX]
[SUFFIX]
[WORD]

EXCLUDE COUNTS
FIND

[PREV]
ISREDIT (varnamel,varname2) = EXCLUDE_COUNTS

ISREDIT FIND str-l [label-range] [NEXT]
[ALL]
[FIRST]
[LAST]

[CHARS] [X] [col-l [col-2]]
[PREFIX] [NX]
[SUFFIX] [EX]
[WORD]

FIND COUNTS
FLOW COUNTS
HEX

IMACRO

INSERT
LABEL

LEFT
LEVEL

LINE

LINE AFTER
LINE BEFORE
LINENUM
LOCATE

LRECL
MACRO
MACRO LEVEL
MASKLINE

MEMBER
MODEL

MOVE
NOTE

NULLS

[PREV]
ISREDIT (varnamel,varname2) = FIND COUNTS
ISREDIT (varnamel,varname2) = FLOW COUNTS
ISREDIT (varnamel,varname2) = HEX
ISREDIT HEX = mode
ISREDIT HEX mode
ISREDIT (var) = IMACRO
ISREDIT IMACRO = name
ISREDIT IMACRO name
ISREDIT INSERT Iptr [numlines]
ISREDIT (varnamel,varname2) = LABEL lptr
ISREDIT LABEL lptr = .labelname [level]
ISREDIT LEFT amt
ISREDIT (varname) = LEVEL
ISREDIT LEVEL = num
ISREDIT LEVEL num
ISREDIT (varname) = LINE lptr
ISREDIT LINE lptr = data
ISREDIT LINE AFTER Iptr = DATALINE I NOTELINE I MSGLINE data
ISREDIT LINE=BEFORE lptr = DATALINE I NOTELINE I MSGLINE data
ISREDIT (varname) = LINENUM lptr
ISREDIT LOCATE lptr
ISREDIT LOCATE [dir] lineid [lptr-range]
ISREDIT (varname) = LRECL
ISREDIT MACRO [(variables)] [PROCESS I NOPROCESS]
ISREDIT (varname) = MACRO_LEVEL
ISREDIT (varname)= MASKLINE
ISREDIT MASKLINE = data
ISREDIT (varname) = MEMBER
ISREDIT MODEL modelname AFTERIBEFORE lptr [NOTE I NONOTE]
ISREDIT MODEL CLASS classname
ISREDIT ~lOVE member AFTER I BEFORE lptr
ISREDIT (varname) = NOTE
ISREDIT NOTE = mode
ISREDIT NOTE mode
ISREDIT (v~rnamel,varname2) = NULLS
ISREDIT NULLS = mode
ISREDIT NULLS mode

178 ISPF/PDF for MVS Edit Macros

NUMBER

PACK

PROCESS
PROFILE

RANGE CMD
RCHANGE
RECFM
RECOVERY

RENUM
REPLACE
RESET
RFIND
RIGHT
RMACRO

SAVE
SCAN
SEEK

ISREDIT (varname1,varname2) = NUMBER
ISREDIT NUMBER = mode
ISREDIT NUMBER mode
ISREDIT (varname) = PACK
ISREDIT PACK = mode
ISREDIT PACK mode
ISREDIT PROCESS [DEST] [RANGE cmd1 [cmd2]]
ISREDIT (varname1,varname2) = PROFILE
ISREDIT PROFILE name [number]
ISREDIT PROFILE number
ISREDIT PROFILE LOCK
ISREDIT PROFILE UNLOCK
ISREDIT (varname) = RANGE CMD
ISREDIT RCHANGE
ISREDIT (varname) = RECFM
ISREDIT (varname) = RECOVERY
ISREDIT RECOVERY = mode
ISREDIT RECOVERY mode
ISREDIT RENUM [STDICOBOLIDISPLAY]
ISREDIT REPLACE member lptr-range
ISREDIT RESET lineid [lptr-range]
ISREDIT RFIND
ISREDIT RIGHT amt
ISREDIT (varname) = RMACRO
ISREDIT RMACRO = name
ISREDIT RMACRO name
ISREDIT SAVE
ISREDIT SCAN mode

ISREDIT SEEK str-1 [label-range] [NEXT]
[ALL]
[FIRST]
[LAST]

[CHARS] [X] [col-1 [col-2]]
[PREFIX] [NX]
[SUFFIX]
[WORD]

SEEK COUNTS
SHIFT (
SHIFT)
SHIFT <
SHIFT >
SORT
STATS

SUBMIT
TABS

TABSLINE

TENTER
TFLOW
TSPLIT
UNNUM

[PREV]
ISREDIT (varname1,varname2) = SEEK COUNTS
ISREDIT SHIFT (linenum [nl
ISREDIT SHIFT) linenum [nl
ISREDIT SHIFT < linenum [n]
ISREDIT SHIFT > linenum [n]
ISREDIT SORT [XINX] sortfield-1 [sortfield-2, ...] [label-range]
ISREDIT (varname) = STATS
ISREDIT STATS = mode
ISREDIT STATS mode
ISREDIT SUBMIT [lptr-range]
ISREDIT (varname) = TABS
ISREDIT TABS = mode
ISREDIT TABS mode
ISREDIT (varname) = TABSLINE
ISREDIT TABSLINE = data
ISREDIT TENTER lptr [n]
ISREDIT TFLOW lptr [col]
ISREDIT TSPLIT [lptr col]
ISREDIT UNNUM

Appendix B. Summary of Macro Statements 179

UP
USER STATE

VERSION

XSTATUS

ISREDIT UP amt
ISREDIT (varname) = USER STATE
ISREDIT USER_STATE = (va~name)
ISREDIT (varname) = VERSION
ISREDIT VERSION = num
ISREDIT VERSION num
ISREDIT (varname) = XSTATUS Iptr
ISREDIT XSTATUS Iptr = XINX

180 ISPF/PDF for MVS Edit Macros

APPENDIX C. LIST OF ABBREVIATIONS

The following list includes the command names and keywords that can be
abbreviated, followed by the allowable abbreviation(s). It is
recommended that, in order to improve readability, abbreviations not be
used in edit macros.

AFTER AFT
BEFORE BEF
BOUNDS BOUND BNDS BND
BROWSE BRO
CANCEL CAN
CHANGE CHA CHG C
CHARS CHAR
COMMAND CMD COM
COBOL COB
COLUMNS COLS COL
CREATE CRE
CURSOR CUR CSR
DATA D
DEFINE DEF
DELETE DEL
DISPLAY DIS DISP DISPL
ERR ERROR
EXCLUDED EXCLUDE EXC EX X
FIND F
HALF H
LABEL LABELS LAB
LEVEL LEV
LOCATE LOC L
MAX M
MODEL MOD
NOCOBOL NOCOB
NOCOLS NOCOL
NONOTES NONOTE NONOT
NONULLS NONULL NONUL
NONUM NONUMBR NO NUMB NONUMBER
NOPROCESS NOPROC
NOTABS NOTAB
NOTES NOTE
NULLS NULL NUL
NUMBER NUMB NUM
NX NON X'ED NONX
PAGE P
PROGRAM PGM
PREFIX PRE
PROFILE PROF PRO PR
RECOVERY RECOVER RECOVRY RECVRY RECVR
RECOVERY RECOV REC
RENUM REN

Appendix C. List of Abbreviations 181

REPLACE REPL REP
RESET RES
SPECIAL SPE
STANDARD STD
SUBMIT SUB
SUFFIX SUF
TABS TAB
UNNUMBER UNNUMB UNNUM UNN
VERSION VERS VER
VERTICAL VERT

182 ISPF/PDF for MVS Edit Macros

INDEX

Special Characters

.ZCSR 28

.ZDEST 28, 34

.ZFIRST 28

.ZFRANGE 28, 34

.ZLAST 28

.ZLRANGE 28, 34

r-----,
I A I
L-.J

adding
a data line 113, 115
a message line 113, 115
a note line 113, 115

adding display lines 105
alias 32
altering data 74
assignment statements

AUTOLIST 64
AUTONUM 65
AUTO S AVE 66
BLKSIZE 68
CAPS 73
CHANGE COUNTS 76
CTL LIBRARY 79
CURSOR 81
DATA CHANGED 83
DATA WIDTH 84
DATAID 85
DATASET 86
DISPLAY COLS 91
DISPLAY LINES 92
EXCLUDE COUNTS 98
FIND COUNTS 101
FLOW COUNTS 102
HEX 103
IMACRO 104
LABEL 30, 106
LEVEL 110
LINE 111
LINE AFTER 113
LINE BEFORE 115

LINENUM 117
LRECL 120
MACRO_LEVEL 30, 123
MASKLINE 124
MEMBER 125
NOTE 128
NULLS 129
NUMBER 130
PACK 132
PROFILE 135
RANGE CMD 34, 137
RECFM 139
RECOVERY 140
RMACRO 147
SCAN 61, 149
SEEK COUNTS 152
STATS 158
TABS 160
TABSLINE 161
USER STATE 168
VERSION 170
XSTATUS 171

AUTOLIST assignment statement 64
auto1ist mode

setting or retrieving 64
AUTONUM assignment statement 65
autonum mode

setting or retrieving 65
AUTOSAVE assignment statement 66
autos ave mode

setting or retrieving 66

r-----,
I B I
L-J

BLKSIZE assignment statement 68
block size

retrieving 68
boundaries 69

setting or retrieving 69
bounds

See boundaries
BOUNDS command 69
built-in command

executing 71
BUILTIN command 71

Index 183

r-I
I C I
L--J

CANCEL command 72
cancelling

a macro definition 87
the edit session 72

CAPS assignment statement 73
caps mode

setting or retrieving 73
CHANGE command 74

repeating 138
change counts

retrieving 76
CHANGE COUNTS assignment statement 76
changed data status

retrieving 83
changing data 74
CLIST

identifying as a macro 121
writing 173

column number, relative
setting or retrieving 81

column position 28
command names

overriding 32
command scan mode

setting or retrieving 149
commands

BOUNDS 69
BUILTIN 71
CANCEL 72
CHANGE 74
COpy 77
CREATE 78
DEFINE 87
DELETE 89
DOWN 93
EDIT 94
END 95
EXCLUDE 96
FIND 99
INSERT 105
LEFT 108
LOCATE 118
MACRO 33, 121
MODEL 126
MOVE 127
PROCESS 33, 133
PROFILE 135
RCHANGE 138
RENUM 141
REPLACE 142

184 ISPF/PDF for MVS Edit Macros

RESET 143
RFIND 144
RIGHT 145
RMACRO 147
SAVE 148
SEEK 150
SHIFT < 155
SHIFT (153
SHIFT) 154
SHIFT > 156
SORT 157
SUBMIT 159
TENTER 163
TFLOW 164
TSPLIT 165
UNNUM 166
UP 167

controlled library status
retrieving 79

controlling variable substitution 149
COPY command 77
copying a member 77
copying a model into the current data
set 126

CREATE command 78
creating a member 78
CTL_LIBRARY assignment statement 79
CURSOR assignment statement 81
cursor location

setting or retrieving 81
cursor position

saving and restoring 168

r-l
I D I
L-..J

data
changed status

retrieving 83
data columns

retrieving number 91
data lines

referring to 27
data set name

retrieving 86
data width

retrieving 84
DATA_CHANGED assignment statement 83
DATA_WIDTH assignment statement 84
dataid

retrieving 85
DATAID assignment statement 85

DATASET assignment statement 86
DEFINE command 87
defining

alias 32
defining a name 87
defining macros 32

defining an alias 32
implicit 32
overriding command names 32
resetting definitions 33
scope of definitions 33

DELETE command 89
deleting a label 18
deleting lines 89
display line numbers

retrieving 92
display screen

processing 133
DISPLAY_COLS assignment statement 91
DISPLAY_LINES assignment statement 92
DOWN command 93

r--l
I E I
L----.J

edit assignment statements
using 24

EDIT command 94
edit session

cancelling 72
editing a second member 94
END command 95
ending the edit session 95
EXCLUDE command 96
exclude status

setting or retrieving 171
EXCLUDE_COUNTS assignment statement 98
excluded lines

resetting 143
retrieving number 98
showing 143

excluding lines from display 96
executing a built-in command 71
executing an edit command from a program

macro 55

r--l
I F I
L----.J

FIND command 99
repeating 144
retrieving results

FIND_COUNTS assignment
finding a data string
FLOW COUNTS assignment

r--l
I H I
L-..J

101
statement
99, 150
statement

HEX assignment statement 103
hex mode

setting or retrieving 103

r--l
I I I
L-..J

identifying
CLIST as a macro 121
program as a macro 121

IMACRO assignment statement 104
implicit macro definition 32
initial macro 36

DEFINE commands used in 32
setting or retrieving 104
specifying 36

101

102

used with controlled libraries 79
INSERT command 105
inserting lines 105
ISREDIT service 55

r--l
I L I
L-..J

label
.ZCSR 28
.ZDEST 28, 34
.ZFIRST 28
.ZFRANGE 28, 34
.ZLAST 28
.ZLRANGE 28, 34
definition 17
deleting a 18
level 29

Index 185

LABEL assignment statement 30, 106
labels

in nested macros 29
setting or retrieving 106
special 28

lateral scrolling 108, 145
LEFT command 108
level

retrieving 123
LEVEL assignment statement 110
library

controlled, status
retrieving 79

library member, copying 77
LINE assignment statement 111
LINE command 26
line flags

resetting 143
line label

retrieving the line number of 117
setting or retrieving 106

line number
of a label

retrieving 117
line number, relative

setting or retrieving 81
LINE_AFTER assignment statement 113
LINE AFTER command 26
LINE_BEFORE assignment statement 115
LINE BEFORE command 26
LINENUM assignment statement 117
LOCATE command 118
locating a line 118
locking

current profile 135
logical data width

retrieving 84
logical record length

retrieving 120
LRECL assignment statement 120

r-t
I M I
L--J

MACRO command 33, 121
macro definitions

resetting 33
scope 33

macro input

186 ISPF/PDF for MVS Edit Macros

proces s· ing 133
macro level 29

retrieving 123
macro name

defining 87
macro nesting level

retrieving 123
macro parameters

processing mUltiple 31
NACRO_LEVEL assignment statement 30,

123
macros

defining 32
program 55

mask line
setting or retrieving 124

l-IASKLINE assignment statement 124
HASKLINE command 26
member

copying a library 77
MEMBER assignment statement 125
member name

retrieving 125
messages 15
model

copying 126
NaDEL command 126
modification level

setting or retrieving 110
MOVE command 127
moving a member into the current
file 127

.----,
I N I
L--J

nested macros
labels 29
retrieving macro level 123
setting or retrieving labels

NOTE assignment statement 128
note mode

setting or retrieving
NULLS assignment statement
nulls mode

128
129

setting or retrieving 129
NUMBER assignment statement 130
number mode

setting or retrieving 130

106

,-,
I 0 I
L-.J

overriding command names 32

,-,
I P I
L-.J

PACK assignment statement 132
pack mode

setting or retrieving 132
paging ahead 93
paging back 167
parameters

passing 14
processing multiple 31

passing parameters 14
PROCESS command 33, 133

RANGE CMD statement used with 137
processing the display screen 133
profile

saving and restoring 168
setting or retrieving 135

PROFILE assignment statement 135
PROFILE command 135
profiles 35
program

identifying as a macro 121
program macros 55

executing an edit command from 55
implicit definition 32

pseudo-lock 80

r--l
I Q I
L-.J

quitting
the edit session 72

,-,
I R I
L-.J

RANGE_CMD assignment statement 34, 137
RCHANGE command 138
RECFM assignment statement 139
record format

retrieving 139

RECOVERY assignment statement 140
recovery macro name

retrieving 147
recovery macros 37
recovery mode

setting or retrieving 140
recursive editing 94
reformatting a paragraph 164
relative column number

setting or retrieving 81
relative line number

setting or retrieving 81
relative line numbers 27
removing sequence numbering from a
file 166

RENUM command 141
repeating

a CHANGE command 138
FIND command 144

REPLACE command 142
replacing a member 142
resequencing and renumbering data 141
RESET command 143
resetting

excluded lines 143
line flags 143
special lines 143

resetting macro definitions 33
retrieving

autolist mode 64
autonum mode 65
autos ave mode 66
block size 68
boundaries 69
caps mode 73
change counts 76
changed data status 83
controlled library status 79
current profile 135
cursor location 81
data column numbers 91
data set name 86
dataid 85
display line numbers 92
exclude status of a line 171
hex mode 103
initial macro name 104
line from the file 111
line label 106
line number of a label 117
logical data width 84
logical record length 120
macro nesting level 123
mask line 124

Index 187

member name 125
modification level 110
note mode 128
nulls mode 129
number mode 130
number of excluded lines 98
pack mode 132
record format 139
recovery macro name 147
recovery mode 140
relative column number 81
relative line number 81
results of a SEEK command 152
results of FIND or RFIND

commands 101
results of TFLOW command 102
stats mode 158
tabs line 161
tabs mode 160
user-entered command 137
version number 170

return codes 15
general information 63

RFIND command 144
retrieving results 101

RIGHT command 145
RMACRO assignment statement 147

r---l
I S I
L...-J

SAVE command 148
saving and restoring

the current profile 168
the cursor position 168

saving the current data 148
SCAN assignment statement 61, 149
scope of macro definitions 33
scrolling

back 167
down 93
forward 93
left 108
right 145
up 167

SEEK command 150
retrieving results of 152

SEEK_COUNTS assignment statement 152
seeking a data string 150

188 ISPF/PDF for MVS Edit Macros

setting
auto1ist mode 64
autonum mode 65
autos ave mode 66
boundaries 69
caps mode 73
command scan mode 149
current profile 135
cursor location 81
display screen for text entry 163
exclude status of a line 171
hex mode 103
initial macro name 104
line in the file 111
line label 106
mask line 124
modification level 110
note mode 128
nulls mode 129
number mode 130
pack mode 132
recovery macro name 147
recovery mode 140
relative column number 81
relative line number 81
stats mode 158
tabs line 161
tabs mode 160
version number 170

SHIFT < command 155
SHIFT (command 153
SHIFT) command 154
SHIFT > command 156
shifting

columns left 153
columns right 154
data left 155
data right 156

showing excluded lines 143
SORT command 157
sorting data 157
special lines 27

resetting 143
specifying an initial macro 36
splitting a line of text 165
STATS assignment statement 158
stats mode

setting or retrieving 158
SUBMIT command 159
submitting a job for batch
execution 159

,-,
I T I
L--J

TABS assignment statement 160
tabs line

setting or retrieving 161
tabs mode

setting or retrieving 160
TABSLINE assignment statement 161
TABSLINE command 26
template 27
TENTER command 163
text entry

setting display screen for· 163
text flow a paragraph 164
text split a line 165
TFLOW command 164

retrieving results 102
TSPLIT command 165

II
I U I
L-..J

unlocking
current profile 135

UNNUM command 166

unnumbering a file 166
UP command 167
user-entered command

retrieving 137
USER STATE assignment statement 168

II
I V I
L-..J

variable substitution 10
controlling 61, 149

variables 9
VERSION assignment statement 170
version number

setting or retrieving 170

II
I X I
L-..J

XSTATUS assignment statement 171

Index 189

190 ISPF/PDF for MVS Edit Macros

Interactive System Productivity Facility /
Program Development Facility
Version 2 for MVS/Extended Architecture SC34-4018-0
Edit Macros

READER'S
COMMENT
FORM

This manual is part of a library that serves as a' reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication. It will
be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments
may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation? ______________________________ _

Number of latest Technical Newsletter (if any) concerning this pUblication: ___________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an mM
office or representative will be happy to forward your comments.)

SC34-40 18-0

Reader's Comment Form

Fold and tape Please Do Not Staple

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department T 46 .
PO. Box 60000
Cary, North Carolina 27511

Fold and tape

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

•• •••••••••••••••••••• e .•••••••••••••••••

Fold and tape Please Do Not Staple Fold and tape

==.::. ==® - - ------- - ---- - - -----------,-

en
."

" ::0
c
" 0-..,
3:
< en -m
X
nt
~ a.
CD a.
» g.
;:j:
CD
n
.-+
c: ..,
CD

m a.
;:j:

s::
Q)
n ..,
o
CII

en
8
"J:::.
~
o -cp
o

Interactive System Productivity Facility /
Program Development Facility
Version 2 for MVS/Extended Architecture SC34-40 18-0
Edit Macros

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication. It will
be sent to the author's department for whatever review and action, if any, is deemed appropriate. Comments
may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

~hatis~uroccupatio~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_

Number of latest Technical Newsletter (if any) concerning this publication: ~ __________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments.)

SC34-40 18-0

Reader's Comment Form

Fold and tape

Fold and tape

==-~!:® - - ------- - ---- - - ----------_.-

Please Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. NY.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department T 46
P. O. Box 60000
Cary, North Carolina 27511

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

Fold and tape

en
""0

" -""0
C

" -Q
~
< en -m
X
.-+
CD
::J
0..
CD
0..

»
~
(")
::T
;:::+" A
CD

~ (")
.-+
c:
~

CD

m
0..
;:::+"

~
Ql
(")
~

0
UI

------- ------- ---- - --------___ . _ i

