
DYNAMIC DATA QUEUING
(.., FACILITY

@ISOGON
330 Seventh Avenue • New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR

Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Publication

First Edition

Second Edition

Third Edition

Fourth Edition

Dynamic Data Queuing Facility

Date

June 1974

January 1975

February 1979

July 1999

Publishing History

Remarks

This manual corresponds to Intercomm Release
6.0.

General updates, corresponding to Intercomm
Release 6.1.

General updates, additions and format changes,
corresponding to Intercomm Release 8.0.

Updates and revisions corresponding to Intercomm
Releases 9, 10 and 11.

Notes: the following are not supported under Release 9:

DDaPRT Utility
VS COBOL II
Subsystem loading above the 16M line.
Backout-on-the-fly feature of the File Recovery Facility in more than one region in a

Multiregion environment

The material in this document is proprietary and
confidential. Any reproduction of this material
without the written permission of Isogon
Corporation is prohibited.

ii

J

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system executing on the IBM
System/390 family of computers and operating under the control of IBM Operating Systems
(ESA and OS/390). Intercomm monitors the transmission of messages to and from terminals,
concurrent message processing, centralized access to I/O mes, and the routine utility
operations of editing input messages and formatting output messages, as required.

The Dynamic Data Queuing Facility (DDQ) is a Special Feature of the Intercomm
system. This manual documents the utilization of the DDQ Facility from the point of view of the
application program, and details implementation techniques for the System Manager. Since
this is a reference document, only DDQ speCifications are described.

In conjunction with the use of this document, the reader is referred to the following
Intercomm publications:

• Concepts and Facilities

• Operating Reference Manual

• COBOL Programmers Guide

• PU1 Programmers Guide

• Assembler Language Programmers Guide

• Messages and Codes

The DOQ Facility is also used by the Multiregion special feature (see Multiregion
Support Facility), the serial restart facility (see Operating Reference Manual), and optionally for
the Message Mapping Utilities (MMU) output message data storage processing (see Message
Mapping Utilities).

Note: in this manual, the term COBOL refers to all supported COBOL compilers, a distinction
is made only if necessary.

iii

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide

PU1 Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros

BTAM Terminal Support Guide

Installation Guide

Messages and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

User Contributed Program Description

FEATURE IMPLEMENTATION MANUALS

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Multiregion Support Facility

Page Facility

Store/Fetch Facility

SNA Terminal Support Guide

Table Facility

TCAM Support Users Guide

Utilities Users Guide

EXTERNAL FEATURES MANUALS

SNA LU6.2 Support Guide

iv

J

Chapter

1
1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8
1.4.9
1.4.10

2
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3
2.3.1
2.3.2
2.4
2.5
2.6
2.7
2.8
2.9

TABLE OF CONTENTS

INTRODUCTION
General Description
DDQ Features
Uses of Dynamic Data Queuing

Segmented Messages
Data Collection
Message Collection
Data Switching
Inter-Subsystem Communications Area
Temporary Storage
Minimizing Storage Requirements
Batch/On-Line Communications

Functional Characteristics
Queue Types
Queue Records
Queue Access
Queue Size
Queue Location
Queue Recovery
Queue Resource Management
Queue Records Automatically Input to a Subsystem
Front End Data Queuing
Other Features

APPLICATION PROGRAM INTERFACE
Introduction
Using the DDQ Facility with Intercomm

Using the DDQ Facility via the Standard CALL Statement
Building a DDQ
Closing a DDQ
Passing a DDQ to Another Subsystem
Retrieval of Data from a Saved Queue
Front End Data Queuing

Linkage
User-Supplied Parameters
Calling DDQ Functions

Creating a New Queue (Q8UILD)
Selecting an Existing Queue (QOPEN)
Queue Disposition (QCLOSE)
Writing to a Queue (QWRITE)
Reading from a Queue (QREAD)
Updating a Queue Record (QREADXlQWRITEX)

v

1
1
1
2
2
2
2
3
3
3
3
3
4
4
4
5
5
6
6
6
6
7
7

9
9
9
9

10
10
10
13
13
16
16
16
18
19
21
23
24
25

Chapter Page J
2.10 Creating a Front End Control Message (FECMDDQ) 26
2.10.1 Messages Transmitted to a Terminal via the Front End 26
2.10.2 Coding Techniques for Calls to FECMDDQ 26
2.11 Subsystem Design Restrictions 28

3 OTHER DDQ FEATURES 31
3.1 The DDQINTFC Module 31
3.1.1 Automatic Queue Input Facility 31
3.1.2 Operation of DDQINTFC 31
3.1.3 DDQI NTFC and the SCT 32
3.1.4 Required Implementation Steps 32
3.1.5 Using DDQINTFC with Dynamically Loaded Subsystems 33
3.1.6 Using DDQINTFC with the Output Utility 34
3.1.7 Restrictions of DDQINTFC 34
3.2 Segmented Input Messages 35
3.2.1 Automatic Queuing of Segmented Input Messages 35
3.2.2 Implementation Steps 35
3.2.3 Restrictions 35

4 OPERATIONAL CONSI DERATIONS 37
4.1 Introduction 37
4.2 Data Set Table 37 J 4.3 Core Requirements 38
4.4 Performance Considerations 38
4.5 DDQ Statistics 38
4.6 Conditional Assemblies (DDQENV) 39
4.7 Intercomm Linkedit Requirements 39
4.8 Batch Program Linkedit Requirements 40
4.9 Execution JCL and Required Data Sets 40
4.10 Restart Considerations 43
4.11 Using DDQ with the Message Mapping Utilities (MMU) 44

5 OFF-LINE DDQ PRINT UTILITY 45
5.1 Introduction 45
5.2 Execution JCL 45
5.3 Examples 47
5.4 Error Conditions 47
5.5 End of Job Statistics 48
5.6 Execution Considerations 48

Appendix A THE DDQDS MACRO 49

Appendix B DDQENV GLOBALS 51

INDEX 53

j

vi

Figure

1

2

3

4

LIST OF ILLUSTRATIONS

Subsystem Logic for Passing a DDQ

Subsystem Logic for Passing a DDQ and Using the Automatic Queue Input
Facility

Three Types of Transactions in the DDQ Environment

Application Logic for Front End Data Queuing (FECM)

vii

11

12

14

15

J

Chapter 1

INTRODUCTION

1.1 GENERAL DESCRIPTION

The Dynamic Data Queuing Facility (DDQ) provides application programs with the ability
to dynamically create, retrieve, and delete logical data sets and/or queues of messages on a
single BDAM data set. This eliminates the need to define separate· data sets for small,
transient queues of data and/or messages. As used in this manual, the terms "queue" and
"dynamic data queue" refer to any logical sequence of records, irrespective of size or content.

1.2 DDQ FEATURES

The DDQ Facility provides the following features:

• Dynamic queues of practically any size may be created for use on-line with
Intercomm or in batch mode. The size of DDQ records written on dynamic queues
may be up to 32K minus 5 bytes (DDQ processing limition).

• Either message or non-message data may be contained in queue records.

• Queues may be created, updated, added to, read and deleted via the DDQ Facility
service routines, requested via application program logic.

• Queues may be saved for any period of time, and retrieved at any time via user­
specified queue identifiers.

• Queues may be created on one or more BDAM data sets. If multiple BDAM data
sets are available, the application program may force the creation of a queue on a
particular data set, or use a default data set.

• Records on queues may be blocked or unblocked. Automatic blocking/deblocking
of blocked records is provided.

• Automatic handling of variable-length records is provided, including handling of
records larger than the physical block size of the data set. This is true for both
blocked and unblocked queues.

1

Chapter 1 Introduction

• Queues may be shared between on-line and batch programs.

• The space allocated to a queue for a subsystem message processing thread may
be recovered, via the Resource Management Audit and Purge facility, after
subsystem failure.

• Queues may be preserved if Intercomm is restarted using the standard restart
facility.

• Queues may be specified as single-retrieval or multiple retrieval. Multiple retrieval
queues may be read non-destructively as many times as desired.

• A DDQ containing messages prepared for transmission can be passed directly to
the Front End using the Front End Control Message (FECM) facility.

1.3 USES OF DYNAMIC DATA QUEUING

1.3.1 Segmented Messages

Full multithreading of Intercomm segmented input and output messages to and from
application subsystems can be effected. Since each dynamic queue is unique to a message

J

thread, no interleaving of unrelated message segments will occur. This obviates the need to J ..
lock out a terminal until a subsystem has read or written the final segment of a multi-segment
message.

1.3.2 Data Collection

Application subsystems have the option of accumulating data for a period of time before
processing that data, either on-line or in batch mode. They may do this by building a dynamic
queue and adding data records to the queue when necessary.

1 .3.3 Message Collection

Application subsystems have the option of delaying processing/outputting of messages
until a time period has elapsed or a certain event has occurred. The messages are collected on
a DDQ until they are to be processed, or transmitted.

2

Chapter 1 Introduction

1.3.4 Data Switching

If large amounts of data are to be passed from one subsystem to another, the normal
Intercomm message switching scheme may be unwieldy. The DDQ Facility enables the
passing of data by building a queue of records containing the data, and then forwarding the
queue to the destination subsystem.

1.3.5 Inter-Subsystem Communications Area

If many subsystems access a large common area of data, the area may be written out
as a dynamic queue, and retrieved for updating via a common Queue Identifier (QID).

1.3.6 Temporary Storage

Subsystems may at times store large data areas, in order to free some main storage, if
their proceSSing paths do not require the data for a considerable period of time.

1.3.7 Minimizing Storage Requirements

24-Amode Assembler Language subsystems may minimize their main storage
requirements during calls to CONVERSE by writing out most of their dynamic work areas to a
dynamic queue.

1.3.8 Batch/On-Line Communications

Queues created by an on-line program may be accessed via a batch program and vice
versa.

3

Chapter 1 Introduction

1.4 FUNCTIONAL CHARACTERISTICS

The significant characteristics and user options of the DDQ Facility are tabulated in the
following subsections.

1.4.1 Queue Types

When a new dynamic queue is created, the desired type of queue must be specified:
transient, single-retrieval transient, semi-permanent or permanent:

• Transient queues

These are queues of data/messages that are not to be saved for later retrieval.
Once created, a transient queue must be freed or passed to another subsystem.
Transient queues are not preserved across an Intercomm restart.

• Single-Retrieval Transient Queues

These are queues that are identical to transient queues but may be retrieved one
time only. The advantage of this type of queue is that the space for these queues
is freed as soon as possible after retrieval, rather than at queue close time.

• Semi-permanent Queues

These are queues that the user wishes to retrieve, via a user-provided queue J
identifier, at a later point in time. Some additional I/O overhead is involved in ..
saving the queue. This type of queue can be freed by explicit user request. Semi­
permanent queues are optionally preserved across an Intercomm restart. At
normal startup, existing semi-permanent queues are freed.

• Permanent Queues

These are identical to semi-permanent queues, except permanent queues are
always preserved across any Intercomm startup, warm or cold. Permanent queues
must be freed by explicit user request.

For a queue to be preserved and available at restart, it must be completed by the
creating program, that is, the queue must have been closed.

1.4.2 Queue Records

Records written to a dynamic data queue should consist of data prefixed with a four-byte
length field. The length must be in the first two bytes of the prefix. Each record may be of any
length up to 32K (less 5 bytes). If the data record is a message with a preformatted header
containing the length in the first 2 bytes, then the 4-byte length field is not needed (may not be
used).

4

Chapter 1 Introduction

1 .4.3 Queue Access

Normal queue access is sequential. This may be varied in the following ways:

• Updating

The application program may request that a record be read and written back. All
updates take effect immediately. The length of the record cannot be changed.

• Adding Records to the Front of a Queue

The application program may request that a particular record be placed in logical
sequence ahead of existing queue records.

• Retrieval by Relative Record Number

The application program may retrieve queue records at random by supplying a
number corresponding to the record's position in the queue; that is, to retrieve the
first record on a queue, the relative record number is 1, for the nth record, the
relative record number would be n. This type of retrieval can only be used with
unblocked queues, and the largest record on a queue must not exceed the block
size of the queuing data set. If sequential retrieval is performed prior to a read by
the relative record number, specific retrieval does not alter the read position on the
queue for subsequent sequential retrieval.

• Retrieval by Record Location

When writing a record to a queue, feedback information on the record's location in
the queue may be requested with either blocked or unblocked queues. This
information is used to retrieve the record at a later time. When a record is retrieved
in this manner, the reading position in the queue is then set for a subsequent read
of the record following the one requested. If the next read request does not specify
a relative record number or a record location field, the record read is the one
following the last record read by location. This function is similar to a QISAM SETL
function. The record location returned by the DDQ facility is in internal DDQ format
and must not be changed in any way.

1.4.4 Queue Size

The maximum number of records that can be written to a queue is a function of the
available blocks on the queuing data set and of the queue size. When a queue is first created,
the application program specifies the number of blocks to be allocated to the queue (or uses
the default allocation value for that data set). If the queue's space is then exhausted, the
Dynamic Data Queuing Facility will automatically allocate another extent of the same size as
the initial (or primary), extent. A queue may own up to 16 space extents. The acquisition of
extents is contingent upon having available space on the queuing data set.

5

Chapter 1 Introduction

1 .4.5 Queue Location

Dynamic data queues reside on BOAM data sets, preformatted by the CREATEGF utility
program. At least one data set must be provided for queue residency. Multiple data sets may
be used to build queues, and a queue can be forced to be created on a particular data set, or
else use the default data set. In this manual, these data sets are referred to as queuing data
sets.

1.4.6 Queue Recovery

Non-transient queues may be recovered if restart/recovery is used. Recovery of queues
is independent of the Intercomm File Recovery Special Feature.

1.4.7 Queue Resource Management

If Resource Auditing is in effect, the OOQ logical data set (queue) is monitored as an
active resource of a message thread between the thread's initial request to create or access a
queue and the termination of access specifying queue disposition by that thread. If a
subsystem thread terminates (abnormally or normally) without indicating queue dispOSition, the
associated queue space is freed if a queue of any type was being built (created) or if the type is
transient. If an opened queue is semi-permanent or permanent, then the queue is kept
(including thread updates), except that any new extents added by the thread will be deleted.

1.4.8 Queue Records Automatically Input to a Subsystem

The OOQ interface module (OOQINTFC) may be utilized to intercept messages directed
to a subsystem and check for the presence of a special message indicating a dynamic data
queue exists for the subsystem. If the special message is present, OOQINTFC automatically
retrieves messages from the queue and passes them to the subsystem for processing. In this
mode of operation, no subsystem logic is required to retrieve the messages from the OOQ. If
the presence of a OOQ message is not found, normal message processing proceeds. When
processing of the OOQ is completed, the OOQ will be freed if transient, otherwise it will be
saved.

Queues containing data records (not messages) may not be retrieved by ODQINTFC.

This facility is not supported for subsystems loaded above the 16M line, nor for any
COBOL subsystems.

See Chapter 3 for detailed specifications on using DOQINTFC.

6

Chapter 1 Introduction

1.4.9 Front End Data Queuing

Through the use of a Front End Control Message (FECM), Front End Data Queuing
enables an application to pass a DDQ directly to the Front End. The DDQ contains messages
ready to be transmitted to the terminal specified in the message header of the FECM. Groups
of related output messages may be put on a single DDQ. Therefore, requesting of Front End
terminal-oriented queuing of the individual messages is avoided. Also, the possibility of
overflowing the terminal queue (if the terminal is down or disconnected) is minimized.

In order to use this feature, a permanent or semi-permanent DDQ is built containing
messages that are preformatted with the necessary control characters for the destination
terminal. The DDQ may also contain FECMs for other DDQs, or feedback FECMs, with the
output messages. The various other types of FECM messages and how to create them is
described in the Programmers Guides.

After the queue is built, a FECM is formatted by calling the entry point FECMDDQ of the
FECMMOD module. (See Chapter 2 for detailed specifications.) The DDQ is passed to the
Front End by queuing the FECM formatted by FECMDDQ for the Output subsystem as a VMI
X'67' message, or by passing the FECM to the Front End via the FESEND (FESENDC) service
routine. If Message Mapping (MMU) is used by an application subsystem to format a group of
output messages, it will automatically create the DDQ and queue a FECM for the Front End, if
requested.

Nesting of DDQs is possible if the FECM obtained above is written to another DDQ,
which is in turn passed to the Front End. A broadcast group terminal-id may be used in the
FECM message header if all terminals in the group are the same type (that is, all 3270s, etc.).

1.4.10 Other Features

Recommendations for defining a DDQ data set for use with the Message Mapping
Utilities (MMU) are given at the end of Chapter 4.

Gathering of statistics on DDQ CALL activity and data set I/O is described in Chapter 4.

Printing of the contents of semi-permanent and permanent DDQs via the DDQ Print
Utility (DDQPRT) is described in Chapter 5. This feature is useful for checking the contents of
subsystem-created DDQs or to determine why a DDQ data set is filling up.

The linkedit for a batch program which accesses, creates, or deletes DDQs is listed in
Chapter 4. Creation of DDQ data sets and execution JCL is also detailed in Chapter 4, and
Multiregion environment considerations are also given.

7

Chapter 2

APPLICATION PROGRAM INTERFACE

2.1 INTRODUCTION

This chapter describes application program interface with the Dynamic Data Queuing
Facility. It documents the following subjects:

• Using the DDQ Facility with Intercomm

• Linkage

• Creating a new queue (QBUILD)

• Selecting an existing queue (QOPEN)

• Queue disposition (QCLOSE)

• Writing to a queue (QWRITE)

• Reading from a queue (QREAD)

• Updating a queue record (QREADX/QWRITEX)

• Creating a Front End Control Message (FECMDDQ)

• Subsystem design restrictions

2.2 USING THE DDQ FACILITY WITH INTERCOMM

2.2.1 Using the DDQ Facility via the Standard CALL Statement

An Intercomm subsystem or a batch program uses the DDQ Facility via the standard
CALL statement. The following functions may be called to perform the corresponding
operation:

• QBUILD--create a queue and define its attributes

• QOPEN--prepare DDQ control blocks for application program access of an existing
queue

9

Chapter 2 Application Program Interface

• QClOSE--indicate application program access of a queue is complete and define
its disposition (free, pass or save)

• QWRITE--add a record to a queue

• QREAO--retrieve a record from a queue

• QREAOX--retrieve a record from a queue with intent to update

• QWRITEX--update a record on a queue

These functions are entry points in the OOQ monitor module, OOQMOO.

The entry point FECMOOQ of the FECMMOO module is called to produce a Front End
Control Message (FECM) for Front End Data Queuing.

2.2.2 Building a OOQ

When a OOQ is built, a 48-byte Queue locate Block (QlB) is constructed containing the
Queue Identifier (QIO) and other internal control information. This QlB is referenced in all
subsequent calls to OOQ.

2.2.3 Closing a OOQ

When a OOQ is closed, it is freed, saved or passed to another subsystem, based upon
parameter specifications passed to the QClOSE routine. Non-transient queues are saved if
they are not freed, and control information is written to the OOQ Queue Control File (QCF) for
potential use at system restart time and/or for delayed or batch access to the queue.

2.2.4 Passing a OOQ to Another Subsystem

If a DDQ is to be passed to another subsystem when QClOSE is called, ODQ
generates a message for the receiving subsystem conSisting of a standard message header
with VMI X'EE' and message text conSisting of the 48-byte Queue locate Block (QlB). The
receiving subsystem may then process the DDQ in one of two ways. The subsystem checks
each input message for the VMI X'EE' message, and then uses OOQ queue processing logic to
retrieve the queued data; or, a non-COBOL subsystem may use the Automatic Queue Input
facility (ODQINTFC) to process each entry on the queue as an independent message.

The first case is illustrated in Figure 1.

10

Chapter 2

(Sub s Y s te m A)

I

Q BUlL D
(th e Q L B is
initialized)

Q WRIT E

END
?

QCLOSE

YES

(pass the DDQ)

EX IT

NO

o th e r
processing

10 g ic

Application Program Interface

NO

NO

(Subsystem B)

I

VMI
X 'E E'

YES

QOPEN

YES

QREAD

END
?

QCLOSE

(fre e th e D D Q)

E X IT

Figure 1. Subsystem Logic for Passing a DDQ

This technique is appropriate when the queue data consists of related pieces of
information, such as in an order entry situation where the queue data represents related items
of one order. Subsystem A gathers onto a queue the order information entered by the terminal
operator; Subsystem B, in turn, processes the entire order (queue) for inventory control
purposes, shipping orders, etc.

11

Chapter 2 Application Program Interface

The second case, in which the subsystem uses the Automatic Queue Input facility, is
illustrated in Figure 2. J

(Subsystem A)

QBUILD

QWRITE
message segment

YES

END
?

QCLOSE
(pass the D DQ)

(EXIT)

NO

Subsystem B
(with DDQINTFC)

Stand~rd input
message :processing

I~gic

(EXIT)

Figure 2. Subsystem Logic for Passing a DDQ and Using the Automatic Queue Input Facility

Here the DDQ is used for segmented output messages. Application subsystems create
segmented messages for processing by another subsystem (or Output Utility) and route those
messages to a dynamic data queue, rather than the normal Intercomm subsystem queue. The
receiving subsystem then multithreads each queue of segmented messages using standard
Intercomm message processing logic. The messages within a queue are processed serially.
Without a DDQ, multithreaded retrieval of segmented messages from the same subsystem
queue occurs. (If the Output Utility uses the DDQ Automatic Queue Input facility, it need not be
modified to retrieve messages from dynamic queues. See Chapter 3.)

12

J

Chapter 2 Application Program Interface

2.2.5 Retrieval of Data from a Saved Oueue

To make possible retrieval of data from a saved queue, the application program must
communicate the Queue Identifier (QID) to terminal operators. For example, in an order entry
system, a DDQ can be used to hold orders entered by an operator at the terminal. The DDO
can be defined as a permanent queue to allow access to the order information until the data is
no longer needed.

The DDQ can be freed based upon program logic and/or an input transaction. When
the order is entered, the operator at the originating terminal is notified of the OlD. Subsequent
messages may be entered from the terminal requesting retrieval or update of order data.
Figure 3 illustrates three types of transactions in this environment.

2.2.6 Front End Data Queuing

Front End Data Queuing is accomplished through the Front End Control Message
(FECM) facility. An application subsystem builds a DOQ consisting of preformatted messages
(VMI=X'57', if preformatted by the subsystem logic) or mapped messages (VMI=X'67', after
processing by Message Mapping Utilities). The entire ODQ is passed to the Front End for
transmission by creating a FECM and passing it to the Front End. The FECM is then queued
as though for transmission to the terminal. When the Front End retrieves the FECM from the
terminal-oriented queue, the FECM is not sent to the terminal, but triggers the processing of the
DOO. The messages in the queue are then serially transmitted to that terminal. An example of
application logic is illustrated in Figure 4.

Alternatively, the subsystem using MMU may request at MAPENO time that all mapped
messages be put on a DDO and a FECM automatically be created and queued for the terminal.
Under Releases 10 and 11, multiple copies of the entire series of messages in a DDQ may be
transmitted to the same terminal (for example, a report to a printer) via an additional MAPENO
'copies' parameter (see Message Mapping Utilities).

13

Chapter 2

ORDER ENTRY

Input message(s): order data
Output message: order control

number (QID)

ENTER

QBUILD

CONVERSE

QCLOSE SAVE THE DDQ

(EXIT)

SHIPPING TRANSACTIONS

Input message(s): QID and shipping data
Output message: verification of update

(ENTER)

QOPEN

QREADX

QWRITEX

I

QCLOSE

Application Program Interface

STATUS REQUEST

Input message(s): QID
Output message: order control

number (010)

ENTER

QOPEN

NO

QCLOSE

(EXIT)

I
C ___ E_X_IT __)

Figure 3. Three Types of Transactions in the DDQ Environment

14

J

J

Chapter 2

NO

Subsystem
Entry

QBUILD

QWRITE

QCLOSE

FECMDDQ

FESEND

EXIT

Application Program Interface

FECMDDQ creates the FECM with all
required control data in the
message text.

FESEND is used, instead of
queuing the FECM for processing
by the Output Utility. It passes
the message to the Front End to
be queued on a terminal queue.

Figure 4. Application Logic for Front End Data Queuing (FECM)

15

Chapter 2 Application Program Interface

2.3 LINKAGE

2.3.1 User-Supplied Parameters

When calling a DDO function, the user must supply a set of parameters. The parameter
areas must be in a reentrant program's dynamic work space (except if the caller is VS COBOL
II). The following parameters are passed:

.9.!Q

qlb (a required parameter) is the address of the Oueue locate Block (OlB). This is
a 12-fullword (48 byte) area, on a fullword boundary, used by the DDO Facility to
hold information about the queue being processed. The first 16 bytes of this area
contain the OlD, and may be initialized for OBUllD and OOPEN requests when the
user is supplying the OlD; otherwise, the OlB must never be modified by a user
program.

• gsw

qsw (required) is the address of the Oueue Status Word (OSW), a fullword (four­
byte) area, on a fullword boundary. The OSW is used to modify a function call and
to receive return codes from the DDO Facility. All return codes placed in the OSW
can also be found in Register 15, in binary and multiplied by 4. Assembler
language programs can code a branch table following any call to a DDO function.

• gmm

qmm (required for all functions except OOPEN and OClOSE) is for READIWRITE
calls; this is the address of an I/O area. Otherwise, it is the address of a function­
related parameter.

• gnn

qnn (optional) is the address of a function-related parameter.

2.3.2 Calling DDO Functions

For COBOL and optionally for PU1, the service routines are invoked through calls via
the interface routines COBREENT or PMIPL 1 (not required for PU1 - function may be called
directly). The code names for the functions are provided in the COPY members ICOMSBS
(COBOL) and PENTRY or PLiENTRY for PU1. Note that in ICOMSBS, each function name
has a prefix, for example DO-BUilD for OBUILD, etc. The REENTSBS codes (and relative
offsets) for DDO functions are as follows:

16

Chapter 2 Application Program Interface

• OBUILD--3

• OOPEN--7

• OCLOSE--11

• OREAD--15

• OWRITE--19

• OREADX--23

• OWRITEX--27

The specific form of the CALL statement depends on the programming language being
used. Examples are given below for all languages supported by Intercomm ('function' is the
specific DDO routine being called):

• Nonreentrant Assembler Language:

CALL function,(qlb,qsw[,qmm][,qnn]),VL

• Reentrant Assembler Language:

CALL function,(qlb,qsw[,qmm][,qnn]),VL,MF=(E,list)

• Nonreentrant COBOL:

CALL 'function' USING qlb,qsw[,qmm][,qnn].

• Reentrant COBOL:

CALL 'COBREENT' USING DO-function,qlb,qsw[,qmm][,qnn].

where DO-function is the label of the desired REENTSBS offset code

• PU1:

CALL function(qlb,qsw[,qmm][,qnn]);

or

CALL PMIPL 1 (ddq-function,qlb,qsw[,qmm][,qnn]);

where ddq-function is the label of the desired REENTSBS offset code.

17

Chapter 2 Application Program Interface

2.4 CREATING A NEW QUEUE (QBUILD)

OBUllD is invoked to create a queue. At this time, the application program defines
queue attributes such as size, location, queue type, queue identifier, and blocked/unblocked
attribute. The parameter list for OBUILD is:

where:

qlb,qsw,qmm[,qnn]

• qlb (required) is the address of a OlB, which is a 48-byte area on a fullword
boundary. The application program may initialize the first 16 bytes of the OlB with
a 16-byte QID. If the application program does not supply the QID, the Dynamic
Data Queuing Facility assigns a unique OlD based on date and time of day.

• qsw (required) is the address of a OSW, a four-byte field on a fullword boundary.
This field must be initialized to blanks and/or appropriate function codes prior to
calling OBUILD. The function of each byte is as follows:

byte 1: return code from OBUllD

C'O'--normal completion

C'1'--duplicate QID--non-transient queue

C'2'--no space found on the Queue Control File for building queue J
C'3'--invalid ddname, or data set unusable

C'4'--invalid or conflicting OBUILD options; check coding of DDODS
macro for specified data set, also DDQENV option coding.

byte 2: defines the queue type. Must be initialized by the application program
with one of the following codes:

C'T'--transient queue

C'S'-semi-permanent queue

C'P'--permanent queue

C'V'--single-retrieval transient queue

byte 3: if initialized with a C'B', the queue is blocked (if blocked queues are
permitted on the DDQ data set; see DDQDS macro). The default (blank) is an
unblocked queue.

18

Chapter 2 Application Program Interface

byte 4: if initialized with a C'Q', the DDQ Facility uses the first 16 bytes of the
OlB as the 010; the application program is responsible for initializing the QlB
with the appropriate 010. The default (blank) is that the 000 Facility assigns
a 010 and places it in the first 16 bytes of the OlB.

When the application program regains control, after calling OBUllO, bytes 3 and 4
of the OSW will contain a binary value equal to the physical block size of the
queuing data set.

• qmm (required) is the address of a four-byte area on a fullword boundary. The first
two bytes must be initialized prior to calling QBUllD, as follows:

binary zeros: the number of blocks in a queue extent is to be the default (n)
for the data set; see BLOCKS parameter of OOOOS macro.

binary integer: the number supplied (n) becomes the number of physical
blocks allocated to each queue extent.

The value n, whether user-specified or default, is the number of contiguous
physical blocks that the 000 Facility reserves on the 000 data set for the queue
to be built. If a queue extent becomes full, the 000 Facility allocates up to 15
more extents, each equal to n physical blocks; this allows for a maximum queue
size of 16*n blocks (depending on value coded for the EXTNUM global in the
DDOENV table (see Appendix B), the default is 16). Secondary allocation should
be avoided by supplying a good estimate of the size of the queue. However, over­
allocation should also be avoided, as this wastes space on the 000 data set.

Bytes 3 and 4 are reserved for future use, and must be binary zeros or blank.

• qnn (optional) is the address of an eight-byte field containing the ddname of the
000 data set on which the queue is to be built. If this parameter is omitted, the
000 Facility will build the queue on the default 000 data set. If used, the ddname
field must be in the caller's dynamic working storage area (DWS/DSA or save/work
area) if the calling program may be dynamically loaded above the 16M line, except
if the caller is VS COBOL II. .

2.5 SELECTING AN EXISTING ~UEUE (OOPEN)

Before accessing an existing queue, the application program must issue a OOPEN to
initialize the OlB and to give exclusive access of the queue to the calling program. This
exclusive access must later be relinquished by invoking OClOSE.

Oueues to be opened may be queues passed to a subsystem by either Intercomm or
another subsystem, or queues that were previously saved. In the former case, the VMI field of
the message header contains a X'EE'. The application program must not change the contents
of this message before issuing a OOPEN. A saved queue, on the other hand, may be opened
whenever the subsystem logic requires it.

19

Chapter 2 Application Program Interface

If the application program has just created the queue via OBUllD (within the same
processing thread), a OOPEN is unnecessary and should not be issued. J

where:

The parameter list for OOPEN is:

qlb,qsw

• qlb (required) is the address of the alB, a 48-byte area on a fullword boundary.
To access a queue, the first 16 bytes of the QlB must be initialized with the aiD of
that queue, unless the queue is being passed via a VMI X'EE' message. In that
case, do not initialize the QlB; the DDQ Facility will locate the QID from the
message text itself and perform the QlB initialization.

• qsw (required) is the address of the QSW, a four-byte field on a fullword boundary.
The function of each byte is as follows:

byte 1: return code from QOPEN

C'O'--normal completion

C'1'--queue not found

C'2'--queue is already open (in use) by another thread

C'3'--invalid ddname or unusable data set

C'4'--message with VMI X'EE' not found

C'5'--QOPEN was issued for a permanent or semi-permanent
queue, but subsystem access to the DDQ data set has been
restricted to transient queues by the installation (see DDQDS
macro, PERMS parameter)

byte 2: must be initialized with a C'M' when the application program opens a
queue with a aiD passed via the VMI X'EE' message. Otherwise, must be
zero or blank.

bytes 3 and 4: unused--must be binary zero or blank.

When the application program regains control after calling QOPEN, bytes 3 and 4
of the QSW will contain a binary value equal to the block size of the data set or the
length of the largest record on the queue, whichever is larger.

20

J

j

Chapter 2 Application Program Interface

2.6 QUEUE DISPOSITION (QClOSE)

Dynamic data queues must eventually be disposed of. Queue disposition is
accomplished by invoking QClOSE. There are three ways to dispose of a queue: it can be
freed, it can be saved, or it can be passed to another Intercomm subsystem, which may then
QOPEN and QClOSE it.

Queue disposition is also determined by whether or not the queue is transient.
Transient queues cannot be saved, but can only be passed or freed. A single-retrieval transient
queue accessed via a QOPEN (for retrieval) cannot be passed; it can only be freed. If the
application program does not specifically request that a transient queue is to be passed, it is
freed. All non-transient queues are automatically saved, unless explicitly freed. If a block of
records to be added to the queue was being built in core when QClOSE is called, it is written to
the queue data set before QClOSE processing is started.

where:

The parameter list for QClOSE is:

. qlb,qsw[,qnn]

• qlb (required) is the address of the QlB provided at QOPEN or QBUllD time.

• qsw (required) is the address of the QSW. The function of each byte is as follows:

byte 1: return code from QClOSE

C'O'--normal completion

C'1'--1/0 error on queuing data set

C'2'--queue full (last block could not be added)

C'3'--queue not owned. QOPEN/QBUllD not issued.

C'4'--queue can not be passed. Probably due to an invalid receiving
subsystem code. Other possible causes are: no room on the
receiving subsystem queue, or no core for that subsystem's
disk queue 1/0 area.

21

Chapter 2 Application Program Interface

byte 2: specifies whether the queue is to be passed or freed, if the default is
different.

C'P'--queue to be passed (requires qnn parameter)

C'F'--queue to be freed

C'T'--the QCB is to be written out, but the application program thread
can continue processing the queue without having to reopen it.
On restart, the queue is restored to its state at the time of this
close request, if a normal (P or F) close was not subsequently
issued. (This is only applicable to non-transient queues.)

Any other specification in this byte means the queue will be saved if non­
transient, freed if transient.

bytes 3 and 4: unused--must be binary zeros or blank.

• qnn (required if queue is being passed) is the address of a four-byte or twelve-byte
area on a fullword boundary. Each byte must be initialized as follows:

bytes 1 and 2: the code of the subsystem to receive the queue. (The left­
most byte is the high-order code.)

NOTE: The following three items are only necessary if QCLOSE is not being
called by a subsystem (twelve-byte area required). They are used to J
construct the message header of the VMI X'EE' message. If the
caller is a subsystem, this information is taken from the subsystem
input message header (as saved by the Subsystem Controller), and
these entries will be ignored.

bytes 3 and 4: the code of the subsystem passing the queue. (The left-most
byte is the high-order code.)

bytes 5 through 9: the terminal-ID to be used (MSGHTID).

bytes 10 through 12: value to be used for the Front End Sequence Number
(MSGHBMN), which may be zero; use only bytes 10 and 11 if a 2-byte BMN
number is used system-wide.

22

Chapter 2 Application Program Interface

2.7 WRITING TO A QUEUE (QWRITE)

Unless the application program specifies otherwise, records are written sequentially
using OWRITE. Optionally, the application program may place each record at the head of its
queue (except for single-retrieval transient queues). When the queue is sequentially retrieved,
the most recently written record at the head of the queue will be the first record read. In this
way, a reverse sequential queue may be created by writing all records to the head of the queue.
During one thread's access to a queue, records may only be written in one direction, unless the
queue is closed and reopened for writing in the opposite direction.

where:

The parameter list for QWRITE is:

qlb,qsw,qmm[,qnn]

• qlb (required) is the address of the OlB, provided when the OOPEN or OBUllD
call was issued.

• qsw (required) is the address of the QSW. The function of each byte in the OSW
is as follows:

byte 1: return code from QWRITE

C'O'--normal completion

C'1'--I/O error on queuing data set. DDOMOD closes the DDQ.

C'2'--queue is full

C'3'--queue is not owned. QOPEN/OBUllD not issued, or queue
has been closed.

C'4'--reserved for future use

C'5'--invalid record length

byte 2: if the record is to be written to the head of the queue, this field must be
initialized with a C'H'. Otherwise, it should be zero or blank.

bytes 3 and 4: unused--must be binary zero or blank.

• qmm (required) is the address of the record to be written. The record must be on a
halfword boundary, and must (if not an Intercomm message with a formatted
header) have a four-byte prefix, with the length of the record (including the prefix)
in the first two bytes of the prefix. The length must be a binary number between 5
and 32,767.

23

Chapter 2 Application Program Interface

• qnn (optional), if specified, must be the address of a four-byte field on a fullword
boundary. The DDQ Facility returns the record location of the just-written record in J:
this field. This may later be used for direct retrieval of the record, if supplied
unchanged in a QREAD call. This field is called the write feedback field. Feedback
information is unobtainable when a record is written to the head of a queue.
Therefore, when byte 2 of the QSW is an 'H', this parameter must not be coded.
This feature may be used with blocked or unblocked queues.

2.8 READING FROM A QUEUE (QREAD)

Records are retrieved using QREAD. Unless otherwise specified, retrieval of queue
records is sequential and commences from the beginning of the queue. If the queue is not a
blocked queue, the application program can override sequential retrieval by supplying a relative
record number. However, if the specific location obtained via a previous QWRITE with
feedback is requested, sequential retrieval 'from that point can subsequently be requested.

where:

The parameter list for QREAD is:

qlb,qsw,qmm[,qnn]

• qlb (required) is the address of the QlB provided at QOPEN or QBUllD time.

• qsw (required) is the address of the QSW. The function of each byte in the QSW
is as follows:

byte 1: return code from QREAD

C'O'--normal completion

C'1'--invalid parameter or retrieval option, or lID error on queuing data
set (the DDQ facility closes the queue)

C'2'--queue is empty or end-of-queue, or invalid qnn read start point
value

C'3'--queue is not owned. QOPEN/QBUllD not issued, or queue has
been closed.

byte 2: C'l'--retrieve by specific record location provided by a QWRITE
feedback field, otherwise blank or binary zero (retrieve sequentially) - see also
qnn below

bytes 3 and 4: unused--must be binary zero or blank.

24

J

Chapter 2

•

Application Program Interface

qmm (required) is the address of an area where the DDQ Facility will place the
record. This area must be large enough to contain the largest record on the
queue. For an unblocked queue, the area must be at least as large as the block
size of the DDQ data set. Note that the record data (if not an Intercomm message
with a formatted header) has the 4-byte length field prefix created for the QWRITE
of the record.

• qnn (optional) is used to provide a specific read start pOint. This option may not be
used for single-retrieval queues which must be read sequentially from the
beginning of the queue. The type of start pOint depends on byte 2 of the QSW:

If byte 2 of the QSW is not a C'l', qnn is the address of a fullword (four bytes) on a
fullword boundary which contains the relative record number (RRN) of the record
to be read. The RRN is a binary number corresponding to the record's position
within a queue. This feature can only be used with unblocked queues that have no
records larger than the DDQ data set block size. This feature is useful for random
retrieval of queue records when the relative location is known. Sequential retrieval
can continue from this point if this parameter is omitted on subsequent calls to
QREAD.

If byte 2 of the QSW contains a C'l', qnn is the address of a fullword on a fullword
boundary that contains a specific record location originally obtained in the write
feedback field of a QWRITE. Supplying this field also causes subsequent
sequential retrieval to begin at this point. This feature may be used with blocked
or unblocked queues.

2.9 UPDATING A QUEUE RECORD (QREADXlQWRITEX)

Updating is performed by paired QREADXlQWRITEX calls. QREADX is identical to
QREAD, except that the DDQ Facility prepares to update the record if the next call is a
QWRITEX. If it is not, the QREADX is treated as a QREAD. If a QWRITEX is issued, the
updated record (or block, if queues are blocked) is immediately written. The length of the
record must not be changed. The parameters for QREADX and QWRITEX are as follows:

QREADX: qlb,qsw,qmm[,qnn]
QWRITEX: qlb,qsw,qmm

where the parameters are identical to those supplied on QREAD or QWRITE calls, except that
an additional return code, C'6', is defined for QWRITEX. This indicates an invalid update, either
because the record length was changed or because the previous call was not to QREADX.

25

Chapter 2 Application Program Interface

2.10 CREATING A FRONT END CONTROL MESSAGE (FECMDDQ)

2.10.1 Messages Transmitted to a Terminal via the Front End

This facility enables the sending to the Front End of a DDQ containing messages to be
transmitted to a terminal. This technique avoids interleaving of messages queued for the
terminal and thus simplifies handling of groups of related output messages for the same
terminal by putting them in a DDQ.

During creation of a Front End Control Message, the following actions occur:

1. The subsystem builds a permanent or semi-permanent DDQ containing messages
preformatted with the control characters necessary for the destination terminal.
When this DDQ is closed, byte 2 of the QSW must be set to a blank, indicating the
DDQ is to be saved. The DDQ may also contain FECMs for other DDQs, or
feedback FECMs mixed in with output messages. If the DDQ is prepared for a
broadcast terminal group, all terminals must recognize the same message control
characters. Final output message formatting is performed when each message is
retrieved from the DDQ for transmission to the terminal (STCHAR insertion,
OUT32?0 processing if VMI not X'6?" etc.).

2. The DDQ FECM is formatted by calling the service routine FECMDDQ, and
initializing the message header, as described in the Intercomm Programmers
Guides.

3. The DDQ is passed to the Front End by calling FESEND (FESENDC) with a VMI of
X'S?' in the FECM message header. If the return code from the call to FESEND(C)
is not 0 (and not recoverable), then the DDQ must be freed by the caller (call
QOPEN, then call QCLOSE with a C'F' in byte 2 of the QSW).

Nesting of DDQs is possible if the FECM is written to another DDQ, which in turn is
passed to the terminal, or is itself nested, that is, the FECM for the second DDQ is written to a
third DDQ.

2.10.2 Coding Techniques for Calls to FECMDDQ

The REENTSBS code (COBOL COBREENT and PU1 PMIPL 1 calls) for FECMDDQ is
31. The FECM is created in a user-supplied area of storage (COBOL, PU1 or Assembler
Language) or in an area obtained by FECMDDQ (Assembler Language only).

26

J

J

Chapter 2 Application Program Interface

where:

The parameter list for FECMOOQ is:

status,area,qid[,disp]

• status (required) is the address of a fullword on a fullword boundary which contains
the status word; on return, the first byte is set to C'O', unless an attempt to acquire
an area for the FECM failed; then it is set to C'8' (same value returned in RI5). The
second through fourth bytes are reserved.

• area (required) is the address of the user-supplied 112-byte FECM message area;
or 0 if FECMOOQ acquires the needed area and then returns its address here.

• qid (required) is the address of the OOQ QIO (first 16 bytes of QlB).

• disp (optional) parameter is the address of a one-byte area that indicates the
disposition of the OOQ when it is closed by the Front End after all messages are
transmitted. If it is to be saved, set to C'S'; if to be freed, set to C'F'. If this
parameter is omitted, then C'F' is implied. A save disposition would be necessary
for 'canned' messages to be transmitted periodically, for example, and if the
terminal-id placed in the message header is the name of a broadcast group.

On return, the FECM MSGHlEN and text data fields are set; the caller is responsible for
the remainder of the message header. If a user area was supplied, bytes 3 through 42 are
untouched by FECMOOQ. Typically, the user will copy an input message header to the user­
supplied FECM area prior to the call to FECMOOQ (and then set the VMI to X'57' and set the
sending subsystem codes).

If a partially transmitted OOQ is processed by Intercomm restart, all messages on the
queue will be retransmitted. For restart of nested queues to be successful, all inner queues
must have a save disposition. Transmission restart, if a terminal is put down (operator request
or I/O error), is from the beginning if VTAM or is controlled by the BTERM parameter
OOQRSRT.

If a broadcast terminal-id is put in the message header of the FECM, it will not be logged
(F2). Instead, a FECM for each terminal in the group is logged (with the real terminal-id) and
queued for the corresponding terminal by FESENO processing. A 'disp' option of S must be
used.

Coding techniques for calis to FECMOOQ are described in the COBOL Programmers
Guide, the PU1 Programmers Guide and the Assembler language Programmers Guide.

27

Chapter 2 Application Program Interface

2.11 SUBSYSTEM DESIGN RESTRICTIONS

When designing application subsystems that are to use the Dynamic Data Queuing
Facility, the following restrictions should be observed:

• Only transient queues may be designated for single-retrieval. Neither updating nor
direct retrieval (via record location or RRN) functions may be performed on these
queues. A second restriction of single-retrieval queues is that records may not be
written to the head of the queue.

• A subsystem which builds, or adds to, a semi-permanent or permanent queue must
call QCLOSE to save it, before trying to read from the queue. Any records written
to the head of a queue by a thread cannot be retrieved by the same thread without
an intervening call to QCLOSE.

• DDQs are always restored to their state at time of abend (if closed), rather than
their state at checkpoint time. Subsystems which reprocess messages on restart
of Intercomm (data base update subsystems, file update subsystems), and which
use non-transient DDQs, may have to take steps, depending on their manner of
queue usage, to bypass reprocessing of their DDQs, or to delete an existing
queue, and then recreate it.

• When a QCLOSE is issued for a DDQ, the queue is considered closed, and if
restart occurs, it is restored to that point. However, subsystems that have issued a
QCLOSE may be restarted, as they may not have finished message processing at
time of abend. It is advisable to code all QCLOSE calls as near the end of J
application subsystem logic as possible Uust before RTNLlNK, GOBACK, or .
RETURN statements) to avoid duplicate creation of queues by a reprocessed
message. If the subsystem specified its own QID, then subsystem restart logic can
test for the existence of a DDQ with a specific QID (on return from call to QBUILD)
and take appropriate action.

• Updating DDQs is not recommended, since DDQ applies all updates immediately.
On restart, it is possible for a subsystem which had updated a record prior to the
abend to find that record already updated. Precautions against this occurrence
should be taken by restricting updates.

• A reading by record location changes the position for subsequent sequential
retrieval each time a record location is supplied. (This is identical to the SETL
function in IBM's QISAM.) The record location must not be modified in any manner
(it was supplied in the feedback field of a QWRITE). Adding 1 to the record
location will not supply the next record, but a QREAD without record location will do
so.

• Queues to be passed to another subsystem in the same region should only be
transient queues, while queues to be passed to a subsystem (or terminal) in
another region may not be transient queues.

28

Chapter 2 Application Program Interface

• It is important that the user have a large enough I/O area for retrieving records
from a DDQ; at QOPEN time DDQ supplies the application program with the size of
either the largest record on the queue (if the queue' is blocked or if the largest
record is greater than the physical block size of the queuing data set), or with the
queuing data set's block size (if queue is unblocked). This value must be the
minimum size of the I/O area supplied for QREADs. If too small an area is used,
core will be overlaid.

The following chart summarizes the state of a DDQ at restart time (applicable only to
semi-permanent or permanent DDQs) for various prior combinations of activity by a message
processing thread.

Subsystem Activity Prior to Failure DDQ Status at Restart
QOPEN + QREAD + QCLOSE All additions/updates intact
QSUILD + QWRITE + QCLOSE All additions/updates intact
QSUILD + QWRITE (no QCLOSE) Queue not created
QOPEN + QWRITE (no QCLOSE) Additions not applied (unless liT" CLOSE

performed before failure)
QOPEN + QREADX + QWRITEX Update applied

(no QCLOSE)

29

J

J

Chapter 3

OTHER OOQ FEATURES

3.1 THE DDQINTFC MODULE

3.1.1 Automatic Queue Input Facility

The DDOINTFC module is a generalized interface to the 000 Facility. Its function is to
determine if a dynamic transient queue has been passed to a subsystem and, if so, to read the
queue records and pass them to the subsystem. OOQINTFC assumes that the queue records
consist of Intercomm messages. The queue record is passed to the subsystem in an identical
manner as any other message; that is, the address of the queue record will be the first word of
the standard parameter list passed by the Subsyste'11 Controller.

The primary purpose of this feature is to enable the application program to process a
series of messages passed from one subsystem to another subsystem in a DOQ without DDQ
processing application program code in the receiving subsystem.

This facility is not supported for any COBOL subsystems, nor for any subsystems which
may be dynamically loaded above the 16M line. Such subsystems must contain DDQ
processing logic for a OlD which may be queued to the subsystem in the input message text.
In that input message, MSGHVMI is set to X'EE' to indicate to the receiving subsystem the
contents of the message text. The 000 type must be semi-permanent and the receiving
subsystem must free the OOQ when it is no longer needed.

3.1.2 Operation of OOQINTFC

OOOINTFC intercepts and checks a message to see if a VMI of X'EE' is present. If not,
control is passed directly to the subsystem; otherwise OOQINTFC issues a QOPEN, indicating
the presence of the VMI X'EE' message. If the OOPEN is successful, it then reads a queue
record and places the address of the record in the standard parameter list, replacing the
original message address. It then calls the subsystem, passing it the standard Subsystem
Controller parameter list. When the subsystem has processed the message, OOOINTFC will
retrieve each additional message and pass it to the subsystem until the dynamic queue is
exhausted, at which point it returns to the Subsystem Controller.

31

Chapter 3 Other DDQ Features

3.1.3 DDQINTFC and the SCT

The SCT for the sUbsystem using DDQINTFC defines a unique pseudo-entry point
within DDQINTFC which receives all input messages.

The actual subsystem entry is identified by a unique pseudo-exit point within
DDQINTFC. Since DDQINTFC may be used by several different subsystems, multiple copies
of the module will be required (one with each subsystem). The following linkage editor
CHANGE cards are used to define the pseudo-entry and pseudo-exit:

INCLUDE SYSLlB(subsystem)

CHANGE DDQENTRY(pseudo-entry)

CHANGE DDQEXIT(pseudo-exit)

INCLUDE SYSLlB(DDQINTFC)

3.1.4 Required Implementation Steps

When a user subsystem is to receive automatic input from a DDQ, the following steps
are required for implementation:

1. Code an SCT (SYCTTBL macro), defining the subsystem code and the pseudo-
entry point for DDQINTFC as the subsystem entry. J

2. Use the following linkage editor control cards for resident subsystems:

INCLUDE SYSLlB(user-subsystem)

CHANGE DDQENTRY(SCT-pseudo-entry)

CHANG E DDQEXIT (subsystem-entry)

INCLUDE SYSLlB(DDQINTFC)

The Subsystem Controller then passes control to DDQINTFC as the SCT pseudo-entry
point, which checks for a VMI X'EE' message and automatically retrieves messages from the
associated DDQ and passes them to the subsystem for processing.

32

L

Chapter 3 Other DDO Features

3.1.5 Using DDOINTFC with Dynamically Loaded Subsystems

Using DDOINTFC with dynamically loaded 24-Amode subsystems necessitates different
linkedit requirements. A copy of DDOINTFC is part of the subsystem load module; linkage
editor control statements depend on the language used.

For Assembler Language, use linkage editor statements as follows:

INCLUDE SYSLlB(INTLOAD)

INCLUDE SYSLlB{user-subsystem)

CHANGE DDOEXIT(subsystem-entry)

INCLUDE SYSLlB(DDOINTFC)

ENTRY DDOENTRY

must be first, or omit if dynamic linkedit used

required control card

For PU1 dynamic load, use linkage editor statements in this order:

INCLUDE SYSLlB{PLlV)

ENTRY PLiV

INCLUDE SYSLlB(INTLOAD)

INCLUDE SYSLlB{user-subsystem)

CHANGE PL 1 CSECT(PLIMAIN)

CHANGE DDOEXIT(subsystem-entry)

INCLUDE SYSLlB(DDOINTFC)

omit if only PMIPL 1 called

33

Chapter 3 Other DDQ Features

3.1.6 Using DDQINTFC with the Output Utility

To use DDQINTFC for the Output Utility to process segmented messages (a series of
related messages destined for one terminal), perform the following sequence:

1 . Change the SCT entry for the Output Utility segmented messages SYCTTBL
(Subsystem Code V is the Intercomm-supplied standard) to reflect a unique entry
point, that is, SBSP=SEGOUTPT.

2. Set the &DDQBACK global in SETGLOBE to 1. Reassemble and linkedit
PMIOUTPT.

3. Ensure that the following control cards are in the Intercomm linkedit (see above if
the Output Utility is dynamically loaded).

INCLUDE SYSLlB(PMIOUTPT)

CHANGE DDQENTRY(SEGOUTPT)

CHANGE DDQEXIT(PMIOUTPT)

INCLUDE SYSLlB(DOQINTFC)

This produces a CSECT name SEGOUTPT, which will receive control from the
Subsystem Controller and call PMIOUTPT (the Output Utility entry point) after reading a
message from the ODQ, if a OOQ was passed, or simply branch to PMIOUTPT in a normal
fashion when no ODQ is present.

3.1.7 Restrictions of ODQINTFC

Two restrictions exist when using this facility:

• DDQINTFC will return to the Subsystem Controller before the queue is empty if the
subsystem return code is not zero, passing that nonzero return code back to the
Subsystem Controller. When this occurs, the DDQ is freed and no further
messages are processed.

• When DOQINTFC is used with a high-level language subsystem (PU1), pre-editing
by the Edit Utility of messages from the DDQ is unavailable.

34

Chapter 3 Other DDQ Features

3.2 SEGMENTED INPUT MESSAGES

3.2.1 Automatic Queuing of Segmented Input Messages

Segmented input messages from start-stop dial-up BTAM terminals and GFE and
Extended TCAM terminals may be automatically queued by Intercomm until the message is
complete, then passed to the subsystem. This is accomplished by the DDQ Facility in
conjunction with the BSEGMOD BTAM interface module (if included in the Intercomm linkedit).

The advantages of handling segmented input in this manner are as follows:

• No special code (calls to GETSEG) is needed in the application subsystems.

• Segmented messages processed by one subsystem are fully multithreaded.

• If 1/0 errors cause lost segments, the handling and disposition of segments is
automatic.

• There is no possibility of a subsystem receiving only parts of a segmented
message.

3.2.2 Implementation Steps

Implementation of this feature requires the following steps:

1. A default queuing data set must be defined in the DDQ Data Set Table,
DDQDSTBl.

2. &DDQ global must be set to 1 in the SETENV member, and the following must
subsequently be reassembled:

BLHIN

BDIAL

BTSEARCH

TPUMSG

3. Include BSEGMOD in the Intercomm linkedit.

3.2.3 Restrictions

This feature may not be used if &BSCSGMT is 1 (for 2770 terminals) in SETENV, or if
any CPU-to-CPU BTERM specified BSCSGMT =YES in the associated BDEVICE. This feature
is not supported by the VT AM Front End.

35

Chapter 4

OPERATIONAL CONSIDERATIONS

4.1 INTRODUCTION

In describing operational considerations of the Dynamic Data Queuing Facility, this
chapter documents the following subjects:

• Data Set Table (DDQDSTBL)

• Core requirements

• Performance considerations

• Statistics on DDQ execution and DDQ data sets

• Conditional assemblies (DDQENV)

• Intercomm linkedit requirements

• Batch program linkedit requirements

• Execution JCL and required data sets

• Restart considerations

• Using DDQ for MMU formatted output messages

For description of DDQ messages, snaps and abends, see Messages and Codes.

4.2 DATA SET TABLE

To use the Dynamic Data Queuing Facility, the DDQ Data Set Table (DDQDSTBL) must
be coded. This table defines all the data sets on which queues may be created. The table is
built by coding a DDQDS macro for each data set. (For description and illustration of the
DDQDS macro, see Appendix A.) A sample Data Set Table is provided as member
DDQDSTBL on the released SYMREL. The CSECT name is generated by the first DDQDS
macro; no PMISTOP macro is required.

37

Chapter 4 Operational Considerations

4.3 CORE REQUIREMENTS

The DDQMOD module consists of three CSECTs, which require about 9K. The
DDOSTART module is used to initialize the DDQ feature and requires 3K. The size of the
DDODSTBL depends on the number of data sets. A representative size, assuming three data
sets, would be about 260 bytes.

The other fixed core requirement is the Free Extents Tables (FET). There is one FET in
core per data set not shared; the size of the FET is determined by the FETSIZE parameter of
the DDODS macro for the data set. Assuming that two out of the three data sets defined in a
DDODSTBL are not shared and use the default FETSIZE value of 600 bytes, the core
requirement is 1200 bytes. However, should it become full, the FET may be dynamically
expanded during execution.

The dynamic core requirements of DDO per thread are:

QLB--User-supplied control block 48 bytes

QCB--Queue Control Block used by DDO 136 bytes

Additionally, for a blocked queue being read, a read buffer equal to the block size of the
queuing data set is also acquired. For writing to a blocked queue, the write buffer is expanded
until full.

J

During calls to DDO functions, a 256-byte work area is acquired by DDQMOD. It is
freed prior to returning to the calling program. J

4.4 PERFORMANCE CONSIDERATIONS

Transient dynamic data queues are more efficient than semi-permanent or permanent
queues because of the extra I/O involved in maintaining the Queue Control Blocks. Unless
otherwise required, queues should be defined as transient.

4.5 DDO STATISTICS

Statistics on Dynamic Data Queuing Facility activities may be acquired via the System
Accounting and Measurement Facility (SAM) described in the Operating Reference Manual. I/O
activity for DDO data sets, and for the QCF and SCF files (if defined) are given in the File
Handler Statistics written to the SYSPRINT SYSOUT data set (see Operating Reference
Manual).

38

J

Chapter 4 Operational Considerations

4.6 CONDITIONAL ASSEMBLIES (DDQENV)

The DDQ modules DDQSTART and DDQMOD may be conditionally assembled to effect
a core saving and to add or delete certain capabilities. The globals involved are defined and
set in the member DDQENV. Their default values (as supplied in DDQENV on the released
SYMREL), their definitions, and possible settings are described in Appendix B.

The DDQENV member as released is:

*
*

*
*
*
&MAXLEN
&EXTNUM
&UPDAT
&WRTHEAD
&TRONLY
&SHARED
&INTLOCK

DDQ GLOBAL DECLARATIONS

GBLA
GBLA
GBLB
GBLB
GBLB
GBLB
GBLB

&EXTNUM
&MAXLEN
&UPDAT
&WRTHEAD
&TRONLY
&SHARED
&INTLOCK

NO. OF EXTENTS TO BE ALLOWED-MAXIMUM
MAXIMUM RECORD SIZE ALLOWED ON QUEUES
UPDATE TO DYNAMIC QUEUES ALLOWED
WRITING TO THE HEAD OF A QUEUE IS OK
IF ONLY SINGLE-RETRIEVAL TRANSIENT Q
IF QUEUING DATA SETS ARE SHARED
I/O IS TO BE EXCLUSIVE ONLY

CURRENT DDQ OPTIONS IN EFFECT

SETA
SETA
SETB
SETB
SETB
SETB
SETB

32760
16
1
1
o
1
1

32,760 BYTES IS CURRENT MAX. RECSIZE
16 EXTENTS IS MAXIMUM
UPDATING ALLOWED
WRITING TO THE HEAD OF QUEUE IS OK
ALLOW PERMANENT TYPE QUEUES
SHARED QUEUING DATA SETS SUPPORTED
I/O LOCKOUT IS NECESSARY

4.7 INTERCOMM LlNKEDIT REQUIREMENTS

When using the Dynamic Data Queuing Facility with Intercomm, &DDQ SETB 1 in the
SETENV member causes the ICOMLINK macro to automatically generate the required linkage
editor statements for DDQ. DDQ modules are automatically included in the linkedit (even
though &DDQ is 0) if either DDQ=YES, BACKOUT =YES, or the Multiregion Facility for the
control region, is requested for the ICOMLINK generation of linkedit control statements. Also
ensure that PMIGETNB is included in the Iinkedit. DDQMOD is eligible for residence in the Link
Pack Area (see Link Pack Facility in the Operating Reference Manual).

Or, the following control statements may be used:

INCLUDE
INCLUDE
INCLUDE

SYSLlB(DDQDSTBL)
SYSLI B(DDQMOD)
SYSLI B(DDQSTART)

39

DDQ Data Set Table
DDQ Processing
DDQ Startup Processing

Chapter 4 Operational Considerations

4.8 BATCH PROGRAM LlNKEDIT REQUIREMENTS

For batch program use of DDQ, several Intercomm modules (including the File Handler)
are used. The following linkedit control statements are required in the order listed:

ENTRY
INCLUDE
CHANGE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

DDOBATCH
SYSLlB(batch)
DDOENTRY(batch)
SYSLI B(DDOST ART)
SYSLI B(DDOMOD)
SYSLlB(IXFHNDOO)
SYSLI B(IXFHND01)
SYSLlB(PMINQDEQ)
SYSLlB(BATCHPAK)
SYSLlB(PMIGETNB)
SYSLI B(DDODSTBL)

(entry pOint in DDOSTART)
user's batch program
batch is entry point to the batch program

if any 000 added, updated or deleted

(user version)

The QCF, SCF, and all DDQ data sets must have DISP=SHR if the batch program is
executed while the on-line system is running (must not be executed during Intercomm startup).
Inclusion of PMINQDEQ to serialize changes while the on-line system is running is only
available under Releases 10 and 11.

4.9 EXECUTION JCL AND REOUIRED DATA SETS

All DDQ data sets must have a block size that is a multiple of eight. The following data
sets are required for both the Intercomm system and batch programs using DDQ:

• All queue data sets defined by the Data Set Table (DDODSTBL) must be BDAM
data sets preformatted by the Intercomm CREATEGF utility program. They may
have any valid block size (which must be a multiple of eight) and any number of
blocks. When calculating the block size, note that every record in the block is
proceeded by a 4-byte ROW (if not a message with a formatted Intercomm header)
and treated as a variable length record. To calculate the number of blocks needed,
first multiply the value coded for the BLOCKS parameter on the associated DDODS
macro by the value coded for &EXTNUM in the DDOENV table. Then multiply the
result by the anticipated number of DDQs to be created on the data set. See also
the description of the qmm parameter for the call to QBUILD in Chapter 2, and
MMU considerations in Section 4.11.

If a data set defined in DDQDSTBL does not have a DO statement, or is not
properly formatted, the DDQSTART module will issue an indicative message and
the data set will not be available for queue creation or retrieval.

40

Chapter 4 Operational Considerations

Standard Intercomm File Handler DO statement requirements apply to dynamic data
queues, as follows (where ddname matches that coded on the corresponding DDQDS macro):

IIddname DD DSN=dsname,DISP=SHR,DCB=(DSORG=DA,OPTCD=RF)

• If semi-permanent or permanent queues are to be created or retrieved, a data set
known as the Queue Control File (QCF) must be defined. This is a keyed BDAM
data set that must be preformatted by an off-line utility, KEYCREAT.

The JCL to format the OCF is as follows:

IIXXX
IISTEPLIB
IIINTKEYFL
II
II

EXEC
DO
DO

PGM=KEYCREAT,PARM=nnn
DSN=I NT .MODREL,DISP=SH R
DSN=anyname,DISP=(,CATLG),
SPACE=(120,(nnn)),UNIT =SYSDA,VOL=SER=xxxxxx,
DCB=(RECFM=F,BLKSIZE=120,KEYLEN=16,DSORG=DA)

where nnn in the PARM and SPACE fields specifies the number of records that are being
formatted; this value is determined by the maximum number of permanent and semi-permanent
queues to be created on all 000 data sets (be generous). The BLKSIZE is a function of the
value coded for &EXTNUM in the DDOENV table, as described in Appendix B. KEYCREAT
formats the data set with the ddname INTKEYFL.

The following DO statement for the QCF is required at execution time in all regions
using non-transient DDQs:

IIPMIQCFDD DD DCB=(DSORG=DA,OPTCD=RFE, L1MCT =1),
II DSN=name,DISP=SHR

For subsequent executions of Intercomm, the LlMCT sub-parameter may have to be set
to a new value in order to restrict or expand the search for a queue control record (one for each
semi-permanent and permanent queue on each 000 data set).

• If any queuing data sets defined in the DDODSTBL are shared by on-line and
batch update programs, or by multiple Intercomm regions, that is, SHARED=YES
was coded in the DDQDS macro for the data set, then a Space Control File (SCF)
data set must be defined. The SCF is a BDAM data set preformatted by the
CREATEGF utility. The block size of the data set must equal the FETSIZE
parameter value of the DDODS macro for every shared queue data set; all shared
queue data sets must have the same FETSIZE value. The number of blocks to be
formatted must be equal to or greater than the number of shared queue data sets.

The following DO statement is required for the Space Control File:

IIPMISCFDD DD DCB=(DSORG=DA,OPTCD=RF),DSN=name,DISP=SHR

41

Chapter 4 Operational Considerations

In a Multiregion environment, the DDODSTBL must contain entries in the same order for
every DDO data set used in any region in the system, regardless of whether or not a particular J'"
region uses that data set. However, the JCL for a specific region should contain DD statements
only for those data sets that it actually accesses. (See example below.) This causes WTO
messages to be issued at the startup of the region, stating that the DD statements for the data
sets which are not used in the region are missing, but causes no other problems. Any DD
statement not present in the JCL is simply inaccessible to the region. (The inclusion of all
ddnames in the DDODSTBL is necessary because of the way DDOSTART processes the SCF
file.) Also, entries for shared queue data sets must be coded before entries for dedicated
queue data sets.

For example: DD01, DD02 and DD03 are ddnames for three DDO data sets. DD01 is
shared between control and satellite regions, but DD02 and DD03 are used only by the
satellite region, that is, they are dedicated.

The DDODS macro coding for the DDODSTBL is as follows (the identical table must be
linkedited into each region):

DDODS DDNAME=DD01,SHARED=YES, .. .
DDODS DDNAME=DD02,SHARED=NO, .. .
DDODS DDNAME=DD03,SHARED=NO, .. .

(other parms
as required)

The Control Region JCL is as follows:

IICR
IIPMIOCFDD
IIPMISCFDD
IIDD01

EXEC ...
DD DISP=SHR,DSN= .. .
DD DISP=SHR,DSN= .. .
DD DISP=SHR,DSN= .. .

The Satellite Region JCL is as follows:

IISR
IIPMIOCFDD
IIPMISCFDD
IIDD01
IIDD02
IIDD03

EXEC ...
DD DISP=SHR,DSN= .. .
DD DISP=SHR,DSN= .. .
DD DISP=SHR,DSN= .. .
DD DSN= .. .
DD DSN= .. .

DISP=SHR recommended
DISP=SHR recommended

To prevent the start of any region from wiping out a queue still being used by another
region, semi-permanent queues should not be kept on a shared data set (see below). DDO
data sets (ddname= THREDLOG) used for the Backout-on-the-Fly facility (see the File
Recovery Users Guide) may not be shared across regions. Under Release 9 only, Backout-on­
the-Fly must be confined to one region if there are any shared DDO data sets.

42

J

Chapter 4 Operational Considerations

When a new DDQ data set is created, a new entry must be added to the DDQDSTBL.
(If shared it must immediately precede the dedicated entries, if not it must follow the dedicated
entries.) The DD statement for the data set must be placed in the JCL for only that region(s)
that accesses it. Also, if the new DDQ data set is shared, the SCF BDAM data set must be
recreated to add a block for the new DDQ data set (if the current number of blocks is less than
the new total number of shared DDQ data sets). The QCF data set must also be recreated if
the SCF file is recreated.

Batch programs always require both the Queue Control File and Space Control File.
Batch programs using DDQ must not be executing while Intercomm is starting up. They may
only execute if Intercomm is down or if startup has completed. This is because DDQ
initialization closes all open queues. If a batch program using DDQ abends, any queue opened
and not closed by the batch program will be inaccessible unti~ an Intercomm startup (normal or
restart) takes place.

If a DDQ data set containing permanent or semi-permanent queues is scratched and
recreated, then the QCF data set (and SCF data set, if used) must also be recreated.

If it is necessary to change the FETSIZE value for any shared DDQ data set, then every
DDQDSTBL entry for a shared DDQ data set must be correspondingly changed to have the
new FETSIZE value. The QCF file must be recreated, as well as the SCF file (which must
specify the new FETSIZE as the BLKSIZE for that recreation).

4.10 RESTART CONSIDERATIONS

DDQ includes its own logic for preservation of non-transient queues at system startup
time. This capability is independent of the Intercomm File Recovery Special Feature.

Preservation of DDQs depends upon the queue being closed at the time of job
termination, normal or abnormal. Depending on the mode of execution and type of queue, a
DDQ existing in a previous execution mayor may not be available at subsequent executions.

A permanent queue is available, if closed, at startup and restart. A semi-permanent
queue is not available at startup, but is available at restart if previously closed with any option
but free the queue, and RESTART=YES must have been coded on the DDQDS macro for the
associated DDQ data set. A transient queue is never available at startup or restart.

A queue is preserved, not restored; it is unavailable at restart time if it was not
previously closed by the program creating the queue. Refer to Section 2.11, "Subsystem
Design Restrictions," for additional considerations of restart processing.

43

Chapter 4 Operational Considerations

After an Intercomm (Control Region) restart with message restart, a 000 which has
been passed to the Front End by a FECM will be completely retransmitted if Front End 1~
processing of the OOQ did not complete in its previous execution, and if RESTART = YES is ...,
defined for the receiving terminal. If a FECM OOQ is created in a Satellite Region, and that
region abends before the OOQ is completely transmitted by the Control Region, then the
satellite region must be restarted in restart mode so that the queue is preserved and Control
Region transmission can continue if already in progress, or begin when the previously queued
FECM for the terminal is dequeued for transmission processing. Code RESTRNL for the
Intercomm execution parameter if message restart is not used in the Satellite Region.

If the File Recovery facility is in use, OOOs must not be specified for file reversal. To
recover OOOs, the queuing data sets, the Oueue Control File, and the Space Control File (if
any), must be defined by FAR entries specifying RECREATE. This causes additional overhead
on writes to OOOs, as all writes are logged, and should only be used to protect OOOs against
disk head crashes, or other permanent disk I/O problems.

Do not code the REVERSE parameter on the FAR entry for any of these OOQ files. If a
serious error occurs on any of the above files, they must first be recreated by the File Recovery
facility off-line utility IXFCREAT, before restarting Intercomm.

4.11 USING 000 WITH THE MESSAGE MAPPING UTILITIES (MMU)

If a OOQ data set is to be used for OOOs automatically created by the MMU output
message processing routines (see Chapter 2), that data set is specified in the Message . ',.
Mapping Utilities Vector Table (MMUVT). The ddname of the data set is coded for the ,.."
OPMOONM parameter of the MMUVT macro and must also be defined in the 000 Data Set
Table (OOOOSTBL). If no ddname is provided in the MMUVT, MMU uses the 000 data set
specified as the default in the OOQOSTBL.

The OOQ created via a MAP END call option is of the semi-permanent type, therefore
PERMS=YES must be coded on the OOOOS macro defining the data set for MMU OOQs.
Considerations for restart affecting such queue types and FECMOOOs are described in the
previous section. Either a blocked or an unblocked (see OOOOS macro) 000 data set may be
used for MMU. The minimum block size must be 2000 bytes (longest message length including
header, +4).

MMU does not request blocking of messages in the 000, and uses the default number
of blocks (messages) per extent defined on the OOQOS macro for the 000 data set used by
MMU. A maximum of one message per block is written. Therefore, the maximum number of
messages that may be put in one 000 is the value coded for the BLOCKS parameter on the
associated 000 data set, times the value coded for the &EXTNUM global in the OOOENV
table. If 3270 printer output is placed in a 000, and the logical page size mapped for a printer
exceeds the device block size (default is 1920), then more than one message (block) may be
required per logical printer page. See the OVMOOIFY macro description in Basic System
Macros.

44

Chapter 5

OFF-LINE DDQ PRINT UTILITY

5.1 INTRODUCTION

An off-line utility, DDQPRT, is provided under Releases 10 and 11 to perform the
following operations:

• Print the records in a specific DDQ (in EBCDIC and hexadecimal)

• Print all the DDQ's on the DDQ data set pointed to by the specified ddname (in
EBCDIC and hexadecimal)

• Print information from the Queue Control File, for either a specific ddname or all
DDQ data sets.

Installation of the utility will require linkediting it using the Intercomm LKEDP Procedure.
The linkedit control statements are shown in Section 4.8 where DDQPRT is the batch program.
The INCLUDE statement for DDQDSTBL should be changed to:

INCLUDE ddname(DDQDSTBL)

where ddname is the label of a DO statement pointing to the load library containing the user's
DDQDSTBL (if not the library indicated by the Q parameter for LKEDP).

The load module name should be DDQPRINT. A prelinked DDQPRINT load module is
provided on MODREL (or on MODUB from installation job 40), however the load module must
be relinked (see Section 4.8) if any of the included modules are updated or reassembled.

5.2 EXECUTION JCL

The syntax of the EXEC statement is as follows:

II EXEC PGM=DDQPRINT,PARM='{qid-name }I
{ddname[,{L}]}
{ {Q} }
{ {S} }

{, L }

45

Chapter 5 Off-line DDO Print Utility

Each of the possible PARM options will provide printed output as follows:

1. PARM='qid-name' prints the DDO records for this OlD name only.

2. PARM='ddname' prints all the DDQ's that are pointed to by this ddname on the
OCF file.

3. PARM='ddname,L' prints all the DDQ's that are pointed to by the ddname and lists
all the OlD names and ddnames found on the Queue Control File.

4. PARM='ddname,Q' prints all the DDQ's that are pointed to by the ddname and lists
only the OlD names on the specified data set from the Queue Control File.

5. PARM='ddname,S' lists only the QID names on the specified data set from the
Oueue Control File.

6. PARM=',L' lists all the OlD names and ddnames found on the Queue Control File.

NOTE: ddname must be a valid 1 to 8 character DDO data set ddname; qid-name
must be exactly 16 characters.

The following DD statements must be present in the execution JCL:

IISTEPLIB DD points to the library containing the OOOPRINT load module
IIPMIOCFDD DD points to the user's Queue Control File with parameters:

DCB=(DSORG=DA,OPTCD=RFE,LlMCT =c)
where c is the L1MCT value used in the on-line JCL

/IPMISCFDD DD pOints to the user's Space Control File with parameters:
DCB=(DSORG=DA,OPTCD=RF)

/IPRINTOUT DO a SYSOUT file with DCB=(LRECL=133,BLKSIZE=nnn)
IIPRINT DD a SYSOUT file with DCB=(LRECL=133,BLKSIZE=nnn)

where nnn is a multiple of 133

II plus 1 DD statement for each DDQ data set to be processed, each with parameters:
DCB=(DSORG=DA,OPTCD=RF)

The requested data is printed on the PRINT file; error messages are written to
PRINTOUT.

If executed while the on-line system is running, ensure all referenced DDQ data sets
and the QCF and SCF (if used) files have OISP=SHR in both the batch and on-line JCL.

46

J

J

Chapter 5 Off-line DDQ Print Utility

5.3 EXAMPLES:

To print out a specific DDQ whose qid-name is known:

II EXEC PGM=DDQPRINT,PARM='AAAAAAAAKKKKKI-IIJ'
IISTEPLIB
IIPMIQCFDD
II
IIPMISCFDD
II

DD DSN=INT.MODLlB,DISP=SHR
DD DSN=INT.PMIQCFIL,DISP=SHR,

DCB=(DSORG=DA,OPTCD=RFE,LlMCT =c}
DD DSN=INT.PMISCFIL,DISP=SHR,

IIMAROTH04 DD
IIPRINTOUT DD
IIPRINT DD

DCB=(DSORG=DA,OPTCD=RF}
DSN=INT.MAROTH04,DISP=SHR,DCB=(DSORG=DA,OPTCD=RF}
SYSOUT =A,DCB=LRECL=133
SYSOUT =A,DCB=LRECL=133

In this example, the DDQPRINT load module is on INT.MODLlB, and the DDQ (qid­
name=AAAAAAAAKKKKKHIJ) is known to be on the DDQ data set pointed to by the
MAROTH04 DD statement. If the data set on which the DDQ resides is not known, DD
statements for all the DDQ data sets used on-line should be added to the execution JCL.

To print out all the DDQ's on a DDQ data set pointed to by a specific ddname and list all
the qid-names for the DDQ's which reside on this data set:

II
IISTEPLIB
IIPMIQCFDD
II
IIPMISCFDD
II

EXEC PGM=DDQPRINT,PARM='MAROTH02,Q'
DD DSN=INT.MODLlB,DISP=SHR
DD DSN=INT.PMIQCFIL,DISP=SHR,

DCB=(DSORG=DA,OPTCD=RFE,LlMCT =c}
DD DSN=INT.PMISCFIL,DISP=SHR,

IIMAROTH02 DD
IIPRINTOUT DD
IIPRINT DD

DCB=(DSORG=DA,OPTCD=RF}
DSN=INT.MAROTH02,DISP=SHR,DCB=(DSORG=DA,OPTCD=RF}
SYSOUT =A,DCB=LRECL=133
SYSOUT =A,DCB=LRECL=133

Again, in this example, the DDQPRINT load module is on INT.MODLIB. The only DDQ
data set DD statement required is for ddname MAROTH02, since it is the only DDQ data set
ddname which will be processed.

5.4 ERROR CONDITIONS

Error messages are written out to the PRINTOUT SYSOUT data set. If storage cannot
be obtained for a DDQ record, a message is written and an intentional program check is forced.

47

Chapter 5 Off-line DDQ Print Utility

5.5 END OF JOB STATISTICS

At normal end-of-job, statistics are written out to the PRINT SYSOUT data set. The
statistics give counts of the following:

1. number of Queue Control Blocks read

2. number of Queue Control Blocks listed

3. number of DDQ's processed

4. number of records read and printed from the DDQ's

5. number of errors encountered before processing was stopped, if necessary.

5.6 EXECUTION CONSIDERATIONS

This program may be executed after Intercomm startup completes provided DISP=SHR
is coded on all DDQ data set DD statements (including those for PMIQCFDD and PMISCFDD),
for both the batch and on-line JCl, and provided that the identical DDQDSTBl is used. Ignore
error messages (D0051I) issued because DD statements are omitted for one or more of the
data sets named in the DDQDSTBl used for execution of the batch program.

If a DDQ in a file named in the batch execution JCl is updated or deleted while this
program is executing, results may be unpredictable. DDPRT does not modify existing DDQ
records or the QCF or SCF files, and keeps all existing queues. If the on-line system is down
or closes down (abends) while this program is executing, do not start/restart the on-line system
until DDQPRINT ends.

48

J

Appendix A

THE DDQDS MACRO

The format of the ooaos macro is as follows:

(blank) DDQDS DDNAME=ddname

ACTIVE

[, ACTIVE= {NO }]
[{YES}]

[, BLOCKNG= {NO }]
[{YES}]

[, BLOCKS= {nn}]
[{! }]

[, DEFAULT= {YES}]

[{~ }]

[,FETSIZE={nnnnn}]
[{600 }]

[, PERMS= {YES}]
[{NO }]

[, RES TART = {NO }]
[{YES}]

[, SHARED= {YES}]
[{NO }]

[, TRESH= {nn}]
[{80}]

is coded NO if the data set is not to be used for dynamic data queuing. The default is YES.

BLOCKNG
NO specifies that no blocked queues are allowed on the data set. If NO is specified, it overrides
any request for creation of a blocked queue via the QBUILD function. The default is YES.

BLOCKS
specifies the number of physical blocks to be allocated for each queue extent, unless otherwise
specified at QBUILD time. Code as a decimal value from 1 to 32767. The default is 8.

49

Appendix A The ooaos Macro

DDNAME
identifies the ddname of a BDAM data set that is to be used for dynamic data queues. This
parameter must be coded.

DEFAULT
is coded YES if this data set is to be the default data set. Queues will be created on this data set
unless otherwise specified at QBUILD time. The default is NO.

FETSIZE

PERMS

defines the initial size of the Free Extents Table (FET), which consists of 12-byte elements, one
for every set of contiguous physical blocks not in use. The amount of expected fragmentation of
the total queuing space should determine the FET size. When SHARED=NO is coded, the FET is
core-resident and, if full, is automatically expanded by the DDQ program. If SHARED=YES, the
FET is disk-resident and cannot be expanded, and FETSIZE must be the same value for all
shared data sets, and is used as the BLKSIZE when creating the SCF data set (see Section 4.9).
Code as a decimal value from 36 to 32760 divisible by 12. The default is 600. The formula for
calculating FETSIZE is:

12*(# Blocks in largest shared DDQ data set
(smallest value of BLOCKS par.m for all shared DDQ data sets)

is coded YES if non-transient queues will be created on the data set. If SHARED=YES, this
parameter must be coded as YES. The default is NO.

RESTART
is coded NO if semi-permanent queues are not to be recovered on Intercomm restart. The
default is YES (required for shared DDQ data sets).

SHARED

TRESH

is coded YES if the data set is to be shared by batch and/or multiple on-line regions. If this
parameter is coded YES, the PERMS parameter must also be YES. The default is NO.

is the percentage of the data set which must be in use before a warning message (DDQ0101) is
generated. Code as a decimal value from 0 to 100. The default is 80.

50

J

Appendix S

DDQENV GLOBALS

Global Setting Default Definition
&MAXLEN SETA 32760 The maximum size a queue record may have. Code as a

decimal value from 5 to 32760.
&EXTNUM SETA 16 The number of extents a queue may own. Code as a decimal

value from 1 to 44. Changing this value changes the block size
of the Queue Control File: block size = (&EXTNUM*4)+56.
If this value is changed, the QCF data set (and SCF data set, if
used) must be scratched and recreated.

&UPDAT SETS 1 Generate code to support the update functions, QREAOX and
QWRITEX.

&WRTHEAD SETS 1 Generate code to support writing to the head of a queue.

&SHARED SETS 1 Generate code to support shared (by different regions) queue
data sets.

&TRONLY SETS 0 Generate code to support all queue types. The largest core
saving is obtained by setting on the & TRONL Y global so that
only support for single retrieval transient queues is generated.

&INTLOCK SETS 1 Generate code to support single-threaded accesses to a
queue. If using the DOQ Facility with the Multiregion Support
Facility, the &INTLOCK global must be on. If off, multithread
access to the same queue is possible.

51

INDEX

Page Page

Access to queues. See Queue access. Data collection 2
Assembler Language--CALL from 16--17 Data Set Table 35, 37--44, 45, 48
--and dynamically loaded subsystems 33 Data switching 3
-and FECMDDQ 26--27 DDQ global (SETENV) 39
--and Queue Status Word 16 DDQDS macro 20, 37, 40--44
--and storage requirements 3 --BLOCKS parameter 40,44,49

Automatic Queue Input Facility 6, 12,31--34 --FETSIZE parameter 38,41,43,50
--and segmented messages 34 --parameters described 49--50
See also Subsystem input (automatic). --PERMS parameter 44,50

--REST ART parameter 43,50
Backout-on-the-fly Facility 42 --SHARED parameter 41,50
Batch/On-line communications 3 DDQDSTBL 35,37,40,44,45,48
Batch programs--linkedit 40 --adding an entry 43
--and QCF and SCF files 40,43 --and batch programs 40
BATCHPAK--and batch programs 40 --and Intercomm linkedit 39
BDEVICE macro--BSCSGMT parameter 35 --and Multiregion 42
BDIAL 35 --storage requirements 38

~ BLHIN 35 See also Data Set Table.
Broadcast message terminal-id 7,27 DDQENV Global Table 19,39
BSEGMOD 35 --Global settings 51
BTERM macro DDQINTFC 6, 31--34
--and DDQRSRT parameter 27 DDQMOD 10,39
--and segmented messages 35 --and batch programs 40
BTSEARCH 35 --storage requirements 38
Building a DDQ 10, 18--19 DDQPRINT load module 45--48

DDQPRT Utility 7,45
CALL statement 9, 17 DDQSTART 39,42
--parameters 16--17 --and batch programs 40
-statistics on 7, 38 --storage requirements 38
Check poi nti ng 28 DVMODIFY macro 44
Closing a DDQ 10,21--22 Dynamic Data Queuing--uses of 2--3
COBOL --defined 1
--and ddname for QBUILD 19 Dynamically loaded subsystems 19,33
--and DDQINTFC 6, 10,31
--and FECMDDQ 26--27 Edit Utility 34
--CALL from 16--17 Exclusive access to a queue 19
COBREENT 16--17, 31 Execution JCL 40--43
Conditional assemblies 39 --and Multiregion 42
CONVERSE--and Assembler Language 3 --for Print Utility 45--47
CREATEGF Utility 6,40,41 EXTNUM global (DDQENV)

L
Creating a queue. See Building a DDQ. 19,40,41,44,51

53

Index

Features 1--2,7,31--35
FECM. See Front End Control Message.
FECMDDQ 7,10, 13, 15,26--27
--and retransmission 44
--parameters for 27
--REENTSBS code for 26
FECMMOD 7,10
Feedback Front End Control Message 7,26
FESEND (FESENDC) 7, 15,26,27
FET. See Free Extents Table.
FETSIZE--value restrictions 41
File Recovery of DDQs 6, 43--44
Free Extents Table(s) 38
Front End Control Message 2,7,10,13
--and Broadcast Group terminal-id 7,26,27
--and restart 27, 44
--creation of 26-27
Front End Data Queuing 7,10,13,15
Functional characteristics of 000 3--7

ICOMLINK macro 39
ICOMSBS copy member 16
Interface module. See DDOINTFC.
See also DDQMOD.
Inter-Subsystem Communications Area 3
INTLOAD 33
IXFCREAT Utility--and restart 44
IXFHNDOO--and batch programs 40
IXFHND01--and batch programs 40

JCL. See Execution JCL.

KEYCREAT Utility 41

Link Pack Area-and DDOMOD
Linkage (with application program)
Linkedit
--and batch programs
-and DDQINTFC
-and DDQPRINT

Linkedit (Intercomm)
--and DDQINTFC
--and Output Utility
--and segmented messages

39
16

7,40
32--33

45
39
32
34
35

54

MAPEND--and DDQs
Message collection
Message Mapping Utilities (MMU)
Message restart
--and preserving DDQs
Messages to a terminal
MMUVT macro
MSGHBMN field
MSGHTID field
MSGHVMI. See VMI.
Multiregion Facility
--and JCL
--and Restart

Nesting of DDOs

Index

13
2

7,13,44
43--44

44
13,26,44

44
22
22

7,42,51
42

43--44

7,26

Off-line print utility. See Print Utility.
Output subsystem--and FECMs 7
Output Utility--and DDQINTFC 12,34
--&DDQBACK global 34

Parameters--user supplied 16
Passing a DDQ to another subsystem

10--12,21-22
PENTRY copy member
Permanent queues--defined

16
4

--and Front End Control Messages 26
29,43
41--42
16--17

--and restart
--JCL for
PU1--and CALL from
--and DDQINTFC
--and FECMDDQ
PLiENTRY copy member
PLiMAIN

33
26--27

16

--and dynamically loaded Subsystems 33
PLiV 33
PMIGETNB--and batch programs
-and Intercomm linkedit
PMINQDEQ--and batch programs
PMIOUTPT--and DDQINTFC
PMIPL1
PMISTOP macro
Print Utility
--error conditions
--execution considerations
--statistics

40
39
40
34

16--17, 31
37

7,45--48
47,48

48
48

Index Index

L
Page Page

QBUILD 9, 18--19,49,50 RECREATE Far option 44
--and Queue Identifier 16 REENTSBS Table
--REENTSBS code for 16--17 --codes for DDQ functions 16--17
QCB. See Queue Control Block. Resource Auditing of DDQs 6
QCF. See Queue Control File. Resource Management 6
QCLOSE 10, 19,21--22,26,28 Restart considerations 4, 28, 29, 43--44
--REENTSBS code for 17 Retrieving data from a queue 13,24--25
QID. See Queue Identifier. Return codes--and QSW 16
QLB. See Queue Locate Block. --from QBUILD 18
QOPEN 9, 19--20,26,29 --from QCLOSE 21
--and Queue Identifier 16 --from QOPEN 20
--REENTSBS code for 17 --from QREAD 24
QREAD 10, 24--25, 28, 29 --from QREADX 25
--REENTSBS code for 17 --from QWRITE 23
QREADX 10,25,51 --from QWRITEX 25
--REENTSBS code for 17 Return codes--from FECMDDQ 27
Queue access 5 REVERSE Far option 44
Queue Control Block (QCB) 38
Queue Control File (QCF) 10 SCF. See Space Control File.
--and DDQ Print 45--46 SCT. See Subsystem Control Table.
--and number of DDQ extents 51 Segmented messages 2,12,34,35
--and restart 43--44 SEGOUTPT--and DDQINTFC 34
--JCL for 41--43 Semi-permanent queues 28

L --LlMCT parameter for 41,46 --defined 4
--recreation of 43 --JCL for 41--42
Queue Identifier (QID) --and restart 29,43

1,10,13--14,20,27,46-47 SETENV--&DDQ global 35,39
--described 3,16,18,19 --&BSCSGMT global 35
Queue Locate Block (QLB) 10, 38 SETGLOBE--&DOQBACK global 34
-defined 16 Single-retrieval queues 2,4
Queue location 6 Space Control File (SCF) 41-43
Queue records 4 --and FETSIZE 38,43,50
--blocking of 1,18,25 --and restart 43
--size of 1,4,19,20,23,29,40,44 --JCL for 41
--updating of 25 --recreation/expansion of 43
Queue recovery 6 Startup--and batch programs 43
Queue size 5 Statistics (via SAM) 38
Queue Status Word (QSW) 16 -for OOQ data sets 7,38
Queues--types defined 4, 18 --for Print Utility 48
--and restart 4 Storage requirements 38
See also sQecific gueue tYQes --and Assembler CALL to CONVERSE 3
(~, Transient queues). Subsystem Control Table

Queuing data sets 6 --and OOQINTFC 32
QWRITE 10,23--24 Subsystem design restrictions 28--29
--REENTSBS code for 17 Subsystem input 10, 11
QWRITEX 10,25,51 Subsystem input (automatic) 6,12,31
--REENTSBS code for 17 See also Automatic Queue Input Facility.

55

Index

Subsystem logic
Subsystem termination
SYCTTBL macro

11,12,14,15
6

32

Terminals--and segmented messages 35
THREDLOG data set 42
TPUMSG 35
Transactions in a DDQ environment 14
Transient queues 20
--advantages of 38
--defined 4
--disposition of 21

Transient queues (single-retrieval) 28
--defined 4

VMI
--for DDQINTFC
--for FECMs
--for FECMDDQ

10,19,20,22,31,32
7.26

--for messages on a DDQ
27

13,26

Write feedback field
Writing to the head of a queue

24,25
23

Index

J

56

