SC33-0068-2

Customer Information
Control System/Virtual

Storage (CICS/VS)
| Version 1 Release 5

System/Application Design
Program Product Guide

Program Numbers 5740-XX1 (CICS/OS/VS)
5746-XX3 (CICS/DOS/VS)

|
i

Iy

([ mon
il
Ill‘"!



Third Edition (May 1980)

This edition applies to Version 1 Release 5 (Version 1.5) of -the IBM
progran product Customer Information Control System/Virtual Storage
(CICS/VS), program numbers 5746-XX3 (for DOS/VS) and 5740-XX1 (for
0S/VS) . Until the 0S/VS version is released, the information applicable
to that version is for planning purposes only.

This edition is based on the CICS/VS Version 1.4.1 cdition, and changes
from that edition are indicated by vertical lines to the left of the
changes. Note, however, that the 1.4.1 edition remains current and
applicable for users of Version 1.4.1 of CICS/VS.

Information in this publication is subject to change. Changes will be
published in new editions or technical newsletters. Before using this
publication, consult the latest IBM_System/370 and 4300 Processors
Bibliography, GC20-0001, to learn which editions and technical
newsletters are current and applicable.

It is possible that this material may contain references to, or
information about, IBM products (machines and programs), programming, or
services that are not announced in your country. Such references or
information must not be construed to mean that_IBM intends to announce
suwch IBM products, programming, or services in your country.

Publications are not stocked at the addresses given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader®s comments is provided at the back of this
publication; if the form has been removed, comments may be addressed
either to:

International Business Machines Corporation,
Department 812HP,

1133 Westchester Avenue

White Plains, New York 10604.

or to: ¢

IBM United Kingdom Laboratories Limited,
Programming Publications, Mail Point 095,
Hursley Park,

Winchester, Hampshire S021 2JN, England.

IBM may use or distribute any of the information you supply in any way
it believes appropriate without incurring any obligation whatever. You
may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1977, 1978,
1979, 1980



Preface

This publication provides the system analyst and system administrator
with guidelines which assist in the design of online applications to run
under the control of CICS/DOS/VS or CIC5/05/VS. 1t assumes that the
reader is familiar with the introductory information contained in the
CICS/VS General Information manual.

The publication is directed mainly towards the inexperisnced CICS/VS
user, and assumes no prior CICS/VS knowladge apart from that presented
in the CICS/VS General Information manual.

The gencsration of CICS/V5 and the preparation of the system tables
that describe the environment to be supported by CICS/VS are described
in the appropriate (CICS/DO0S/VS or CICS/0S/VS) CICS/VS_System
Programmer®s Guids and the CICS/VS _System_Programmer's Reference Manual.
The relationships between these publications, an overview of their
contents, and suggestions regarding their use are given in Chapter 1 of
this publication.

In this publication, the term VTAM refers to ACF/VTAM, to ACF/VTAME
(CICS/DOS/VS only), and to the Record Interface of ACF/TCAM (CICS/0S/VS
only). The term TCAM refers both to TCAM and to the DCB Interface of
ACF/TCAM. The term BTAM refers to BTAM (CICS/0S/VS only) and to BTAM-ES
(CICS/DOS/VS only). PFor further d=tails of system requirements, refer
to the publication CICS/VS General Information.

RELATED PUBLICATIONS

Telecommunications Access_Method (TCAM):

0S/VS TCAM Concepts and Applications, GC30-2049

0S/VS _TCAM System Programmer®s Guide, TCAM Level 10, GC30-2051

0S/VS TCAM Application Programmer's Guide, TCAM Level 10, GC30-3036

0S/VS_TCAM Hacro Reference Guide, TCAM Level 10, GC30-2052

Virtual Telecommunications Access Method (VTAM):

A a1

Virtual Storage Access Method (VSAM):
VSE/VSAM General Information, GC24-5743
OS/VS VSAM Planning Guide, GC26-3799

Customer Information Control System/Virtual Storage (CICS/VS Version 1
Release 5: .

General Information, GC33-0066

Application Proqrammer®s Reference Manual (Command Level), SC33-0077
Application Programmer's Reference Manual (Macro level), SC33-0079

Preface iii



Application Programmer®s Reference Manual (RPG Ii), SC33-0085

System Programmer's Reference Manual, SC33-0069

Operator's Guide, SC33-0080

System Programmer's_Guide_ (DOS/VS), SC33-0070

System Programper's_Guide (0S/¥S), SC33-0071
Entry Level System User's Guide_ (DOS/VS), SC33-0086

Master Terminal Operator®s Reference Summary, SX33-6011

Problem Determination Guids, SC33-0089

Program_Debugging Reference Summary, SX33-6010

Messages_and Codes, SC33-0081
Diagnosis_ Refersnce, LC33-0105

Data Areas_(0S), LY33-6035

Data Areas (DOS/VS), LY33-6033
IBM_ 3270 Guide, SC33-0096

IBM 3600/3630 Guide, SC33-0072

IBM 3650,/3680 Guide. SC33-0073

IBM 3767/3770/6670 Guide, SC33-0074

IBM 3790/3730 Guide, SC33-0075

Data_Lanquage/I (DL/I) DOS/VS:
System/Application Design Guide, SH12-5413

General Information, GH20-1246

Application Programming Reference Manual, SH12-5411

Utilities and Guide for the System Programmer, SH12-5412

High Level Programming Interface User's Guide, SH24-5009

Information Management System/Virtual Storage (IMS/VS):
System/Application Design_ Guide, SH20-9025

General Information, GH20-1260

System Programming Reference Manual, SH20-9027
Application_ Programming_ Reference Manual, SH20-9026
Dasplay Management System/VS_ (DMS/VS):

General Information, GH20-1863

iv CICS/VS System/Application Design Guide



System_Network Architecture:

Types of Logical Unit to Logical Unit Sessions, GC20-1869

Functiopnal Description of Logical Unit Types, GC20-1868

VIDEO/370:
General Information, SC27-6960

Data Security Desiqn Handbook, GBOF-7502

CICS Productivity Aids:

Installed User Programs

CICS Online Test/Debug II
Program Description Operations Manual, SH20-1877

Field Developed Progranms

CICS Dynamic_Map_Program_Description
Operations Manual, SB21-1075

CICS/VS Performance Analyzer I1
Program_ Description Operations Manual, SB21-1697

CICS/3270_Simulator Program Description
Operations Manual, SB21-1036

CcIics_Plot
Program Description Operations Manual, SB21-1508

CICS Network Activity_ Simulator
Program_Description Operations Manual, SB21-1505

CICS Source Program Maintenance Online II
Program Description Operations Manual, SB21-1700

Preface



PART 1. INTRODUCTION

CHAPTER 1.1. INTRODUCTION TO CICS/VS
CICS/VS - - - - - . - . - - - - - -
CICS/VS Pregenerated Systems . . .
CICS/DOS/VS Entry Level System .
CICS/VS Starter System (DOS/VS)
CICS/VS Starter System (0S/VS1)
Installation and Use « . « . . .
CICS/VS System Publications . . .

CHAPTER 1.2. SYSTEM DESIGN . .

The Need for Good System Design
Turnaround or Response Time
User Acceptance . . « . .
Resource Utilization . . .

Design Strategy . . . . . .
Application Design . . . .
Data Communication Design
Program Design . « . - . &
Data Management Design . .
Data Base Design . . . . .

L R T T )
" e s 0 8 e

[ ] L ] . [ ] . . L ] L]
¢ o 9 o o 8 s @
L T S S S S |
L ] [ L ] L[] L[] . L[] L ]
* e« % v s 8 0 @

PART 2. DATA BASE DESIGN

CHAPTER 2.1. INTRODUCTION . « v o o o « o«
Application Requirements of Data Bases . .
Data Base Definition . . . . . . - .
Structures « « =« ¢ ¢ ¢ = ¢ o ¢ o o o o
Data Redundancy . . « « « ¢ « = o « =
Collection of Interrelated Information
Data Base Implementation for Applications
Data Base Requirements Summary . . . .

Multiple Occurrence Implementation
Data Base Selection Criteria . . . .
Data Base Performance . . . .
Batch Program ACCesSS . . . .« .
Shared DL/I Data Base (0S) . .
Batch Data Base Creation . . - . « « « &
Installation Data Base Support Direction

CHAPTER 2.2. DL/I . . .
DL/I Products . . . . .
DL/I Entry DOS/VS . .
DL/I DOS/VS . . . . .
IMS/VS DL/I . . . « « o« .
DL/I Access from CICS/VS .
Introduction to DL/I . . . . .
ce

Application Programming Interfa
Advantages of DL/I . . . . . .

CHAPTER 2.3. CICS/VS FILE CONTROL FACILITIES

Introduction to CICS/VS FIle Control . . .

Direct ACCESS =« 2 o« « o o o o o « «
Random Record Retrieval . . . . .
Random Record Update . . . « « . =
Exclusive Control During Update .
Random Record Addition . . . .
Random Record Deletion (VSAM Only)

vi CICS/VSs System/Application Design

" e 8 8 % 8 9 8 ' 3 0 ¢
e 8 ¢ 9 T »
P8 8 ® g 8 e % % g 1 @

Guide

S 8 0 % 8 3 5 & e g ¢ & 1 5 0

e ¢ o 8 6 % 8 9 o " e " " 8 9 o @

¢ ¢ 0 0 9 ¢ o 8 8 0 € 0 ¥ g 0

Contents

. L] . L I e .
[ ] L] ° . [ L] e 9
e 8 9 8 8 v
e ¢ a e 0 ¢ o @

-l ot w wb
WWN=a2OWYWYWLYDOPON FErsFfFWwWwwWwWw

.
.
[
L]
.

L N LU . [ [ . . . . . [ .

* 0 o L e & @ [ ] . . . R L ]

¢ 0 " e 0 L . [ ] . . L] [ I .

® & 0 e 9 ® ® 9 ¢ ¢ 9 s 9§ ¢ 9
S

T ¢ 8 8 % 8 8 v e
9 o o ® 8 ¢ o & g
" 9 o 0 9 e * s 9
N
@

LR IR T )
w
v

L ]
w
~



Locate
Blocked
VSE ISA
Dynamic

Mass Record Insertion (VSAM Only) .
VSAM Shared ResouUrcesS . « « « «

Sequentia
Browse
Browse
Browse
Multipl

Browsing Backwards (VSAM Only)

Record Id
Record
Record

Indirect

Indirect Access Application Example

Indirect
Indirec
Specifi

Duplica
Duplica
Additio
Indirec
Segmented
Segment
Presenc
Root Se
Segment
Segment
Segment
Segment
Segment
Segment
Fixed—
Creatio

Advantages of Segmented Records . . . « . . .

CICS/VS F
Access
Segment
Multipl
Real St

Recovery
Automat
Automat

PART 3.

CHAPTER 3
Devices a

CHAPTER 3

Skip Sequential Browsing (VSAM On

Mode Processing (VSAM Read—only) . . . .
DAH Records . « o o o o o o o o o « = =
M Variable-length Records . .
OPEN/CLOSE of Data Sets . .

¢ o e
[ )
* s 9 0
.
.

1 Access (Browsing) . . .
Initiation . . . . . . .
Retrieval . . . . . . .
Termination . . . . . .

e Browsing . . . .

LI Y

L] L]

. .

L T T T SR

R I S NS

.

.

.

entification . . . . .
Key ¢ ¢ ¢ ¢ o ¢ o o &
Location . . « « o . .
ACC2SS =+ o o » o o &«

L N N A L L
(%7

LI L] . [ ]
. ] . LI ]

L /) DR TR U TR I T T )

Access Implementation . . .
t Access Initiation . « « o o« o « « o o «

cation of Indirsct Access logical Relationships
Updating Indirectly Accessed Records . . . . . .

tes Data Set . o o o 4o ¢ ¢ o o o o o o .
tes Data Set Implementation . . . . . . .
ns to Indirect Access Data Sets . . . . .
t Access Chain Integrity . . . . . . .
Records . « « ¢ o o o &
Design « « o o o o = « .
e or Absence of Segments
glllent e o o o o o s 8 e o
Indicator Flags . . . . .
Definitions in FCT . . . .
Retrieval . . . . . . . o s v = »
Updating (Key—sequenced VSAM) e o o o =
Updating (DAM, ISAM, and Entry-sequenced
Deletion « . « . e o o o o o =« = »
and Variable-length Segmented Rzcords .
n and Maintenance of Segmented Records

ile Control Design Considerations . . .
To Online Data Base by Offline Programs
€d RECOLdS =« « o o o o o ¢ o 2 o o o =
e Occurrencs of Segments
orage Availability .
Considerations . . .

ic Logging . . . . .
ic Journaling . . . .

o o 8 0 s o v & 0

DATA_ COMMUNICATION DESIGN

.1. INTRODUCTION o« o ¢ = @ e @ o o a o @
nd Access MethOGS « o o « « o o o o o =

.2. BMS, TERMINAL CONTROL AND BATCH APPLICATIONS

CICS/VS Terminal Control and BMS . « « =« « « &« « =&

Process
Basic Map
BMS Map

Terminal Device Independence .

Input M

Output Messages . « « o«

Terminal

Terminal Paging Status .
Message Routing . . . . .

Message

or Console as a CICS/VS Terminal . . . .
ping Support . . . . . ¢ ¢ . o o . . . .

S o o o o o o » o o o o o e o =

eSSagesS « + o o o

Paging . . . . .

Delivery . . . .

L )

[ T R 2 ) .
. 8 0 L ]
* o e

« 8 0 . . .
* ® LI ] e »

Contents

vii



CHAPTER 3.3.
Conversational Applications

Priority Processing .

CHAPTER 3.U4.
Network Components . . « « o o o = «

Defining a VTAM Network . . . . . . .
Connection Services . . e e o o o =

PART 4.

CHAPTER 4.1.
Task Initiationd . ¢ ¢ o ¢ o o o o o o o o

Message Switching Transaction (CMSG) . . .

Batch ApplicationS . « o 2 o o o o = « o « =«

Asynchronous Transaction Processing . .
General Batch Processing . . . « « « - &
CICS/VS Batch Data Interchange . . . . .

Terminal Error Recovery . . . - .

Terminal Abnormal Condition Program (TACP)
Terminal Error Progral . . « « o = o = o &«
Node Abnormal Condition Program (DFHZNAC)

Node Error Program (DFHZNEP) . . . « « . .
Message LOGGING =« ¢ o o o o o o o o = o @

COMMUNICATION TECHNIQUES . . .

Task Initiation . . . . . .
Input Transaction Design . .
Transaction Editing . . . .
Error Correction . . .
Output Formatting . .

s s o * 0 9 0
.
.

Task Priority . « . « « « « . &

SNA ACCESS METHODS . . . .

Shared Resources . . .
Synchronous Data Llnk Control (SDLC)

Connecting CICS to VTAM . o e o o
Logging the Logical Unit onto VTAH « o o e
3270 SesSSiOoNS ¢ ¢ o s o s e e e = o o o o
3600 SeSSiONS o + o o o o © o o o o = o &
3650 SeSSIiOoNS . . . o . e o o o o o 8 e .
3767 Sessions and 3770 Interactive Sessions
3770 Batch SessSionsS =« o « o« o o = ¢ o o &
3770 Programmable Sessions . ¢« « -« o o - -
3790 SeSSiOoNS o o o o o e o o o o o o o o
LUTYPEY SeSSIONS o ¢ o o « o o o o o. o o o
Terminal Coantrol Communication Usiag VTAM .
Terminal I/0 OVerlap -« « « « o« o o o o o =
Full—duplex Transmission . « « o« =« « » .
Function Management Header . . . . . .

System Programmer Macro Instructions .
Basic Mapping Support Communnication with

Input Mapping . . « =« o o o o o o o &
Output Mapping . « ¢ ¢« « ¢ o o o o o & o &
Logical Device Code Uses . &« o ¢ « & &
Map Residence in Controllers . . « « « « «
BMS Alarm Indicator . . « « o o o o = o o«
BHMS I/0 OverlapP . . « .« = .

¢ e 0
+3

o I»e e
€1

Terminal Device Independence wlth VTAM and BTAM

Terminal Paging Using VTAR . . « . . . . &

* ¢ o 9 8 T 9

Message Routing and Message Switching Using VTAH

APPLICATION DESIGN
PROGRAM DESIGN . ¢ ¢ o o o o @
Transaction CodesS .« ¢ « o o = « s o = « =

Automatic Transaction Initiation . . . . .
Interval Control . . ¢ o o = o « o ¢ = o =

Program Control . . . . . . e+ o -

Transfer Control to Program (XCTL) c o o e
Link to Program (LINK) . o o o o o o o « @
Load Program (LOAD) c e e o o s = s s o =

viii CICS/VS System/Application Design Guide

S ¢ 8 8 o &

e 8 & & 8 s O

* ¢ 9 s 8 © o o

e 8 8 & 5 o 9 s

e 0 9 s s 0 o

e o o & g @

133

134

137
137
137
137
138"
138
138
139
139



Delete Program (RELEASE) . . . . « « « .
Return from Program (RETURN) . . . . . .
Abnormally Terminate Program (ABEND) . .
Abnormal Termination Exit (HAKDLE ABEND)
Task Control . . =« ¢ & « o o o o o « o = =
Suspend . . . . . . .
Terminal Read Timeout
Isolated Task Paging .
Enqueue/dequeue . . .
Interval Control . . . .
Future Task Initiation
Time Event Wait . . .
Time Event Cancel . .
Program Error Recovery . .
Program Error Processing
Dynamic Transaction Backo
Transaction Restart . .
Program Error Program .
Quasi-reentrant Programming . . . . . . .

¢ o 9 s 8 v v 2
LI I T R )
® 8 s e 8 8 s s
[ I S TR R R BT S )
* o 8 9 0 9 e 0
" s & 0 0 3 o ®
" e e & 8 ¢ 8
I T T R S Y N )
s 8 8 s 0 s 0 s

ut

CHAPTER 4.2. DATA MANAGEMENT DESIGN . . .
Application Requirements . « o o« o o o « &«
Work File Capability . . . . . « . . . .
CICS/VS Temporary Storage . « « « « o o &
Temporary Storage Usage . . .« « « « « &
Data Identification . . . . . . . « . .
Use of Dynamic Storage by Temporary Stora
Accessing Records in Temporary Storage .
Temporary Storage ReCOVErY « « « o« « «
CICS/VS Transient Data . . . . « . . .
Extrapartition Data Sets . . . .
Intrapartition Data Sets . . . .
Extrapartition Transient Data .

e

e 8 » Qe s v e o

Intrapartition Transient Data .

Intrapartition Queue Usage . . .

Reusable Intrapartition Queues . . « .« « . .
n

Indirect Destinations . . . . . .
Other Methods of Data Transfer Betwee

Modules

CHAPTER 4.3. PROGRAM DEVELOPMENT AND TESTING
Hodular Programming . . . . . .
Batch Environment . . . . .

CICS/VS Onlire Environment . . . -
Virtual Storage Environment . .

High Level Languages . « . « « » .

Online Testing . « =« =« « . « . . .
Execution (Command Level) Diagnostic

Command—Level Interpreter o« .
Security « « « « . o o - . .
Tracing and Testing . . . . .
TPracing and Dumping . . . . .
Simulated Sequential Terminals
Single—Thread Testing . . . .
Multithread Testing . . . . .
Multiregion Operation . . . .

* 0
l.ccllolOniul..
'.00!-.'1‘"'!!'0
e ¢ s 0 e 0
e o o 3 o * o Mg ¢ ¢ o
Y]
s 0o o s 0 % o Qe o s ¢ @
'.l.
e o o 0 0 3 =00 s 9 3
B
" ¢ 8 o 0 o 92 ¢t o

CHAPTER 4.4. SECURITY DESIGN . . . .

Security Considerations . . . . . .
Security Role in Online Appllcatlons
Sources of Threat . . « « « . . .
Degree of Security .
Security Techniques
Authentication . . .
Recognition . . . .
Security Logging . .

~

. 0 % 8 8 9 % % o 8 P % s 9 0

" " ¢ 8 8 v 9 g

8 ¢ 9 8 ® 8 & & B s s 8 %

. L] LI . . L ] .

s 9 8 0 o 3 8 s v
I T TR R T B I B |

" 8 % & 9 % & 3 ¢ " o % g g @
8 s 8 0 0 9 9
e ® % 5 8 8 % 3 s 8 0 9 9

.
.
.
L]

Contents

. . L [ ] . . .

s 8 8 o s 9 % ¢ s 0 O 9

. . L]

139

ix



Authentication Control And Security Logging With CICS/VS . . . . . . 187
Terminal Operator Sign-on/Sign—off . . . « « ¢« ¢ ¢ ¢ « ¢ =« « « « « 188
Control of Transaction Access by Terminal Operators . . . . . . . 191
Control of Transaction AccesSs tO RESOUICES . « o v « » = o « « = « 192
Transaction and Resource Access Without Prior Sign-on . . . . . . 194
Control of Transaction Access by a Connected CICS/VS System . . . 194
Control of the Resource Access by IRC— or VTAM—Connected Systems . 196
The CICS/VS Concept of an External Security Manager . . . . . . . 196
Authentication using an BExternal Security Manager . . . . . . . . 198
ESM Recognition of Connections « . . ¢ ¢« ¢ ¢ o ¢« o o o« =« = &« =« - » 198
Transaction Access Check Using.an ESM . . . . ¢ &« ¢ o o = =« » = « 199
DL/I Data Base Security Checking . . « ¢ ¢ o ¢ e o o =« « &« o = » o 200
Logging tO CSCS & e o o o o o = o o o o o o s s o o o s s o » = « 200

Security Controls Over Application Programmer . « « « o « « « = » » 201
Program Review ProcedUreS . « « o o o o o o o = s o = o o o o o » 202

Audit FaCilities L - - L] L] - - L] L3 - - . L] L] - . - - - - - - - - . . 202
Journaling by CICS/VS Management ModulesS . « o« « « o o « « » = « « 202
Journaling DY DL/T . ¢ o o o o « o = o s o o o o o » s s o o o o » 203
Journaling by User Application « ¢« 2 ¢ =« ¢ o o o o o s o = s « «» » 203
Correlation with CSCS . & ¢ o o o o o o o o o = o« o o o« o « = » « 203

PART 5. RECOVERY AND RESTART DESIGN

CHAPTER 5.1. PRINCIPLES OF CICS/VS RECOVERY AND RESTART . . . . . . 207

Recovery and Restart OVerview . . o o o o o o o o o = s o o o o o « 207

Principles Underlying CICS/VS Recoverable Resources . . « » . - » « 208
Defining Protected RESOULCES . o o o o o o o o o o = « « & = » = « 209
Logical Units of Work and Synchronization Points . . . . . . . . . 210
Enqueueing « « . . . . e o o s o 8 s o o o o s s e s s e s o o o 211
Logging and Deferred wOrk e o o o o o s s s s 8 s o e« = s o e o & 213
System Activity KeypointsS . o ¢ o o ¢ o o« o o = o « o o o =« o « = 215
Protected Messages (VIAM ONly) « o « o« o o o o o o o« ¢ o o o« o o « 216

CHAPTER 5.2. ERROR HANDLING . . « « o ¢« « o = = = o = = o o » =« o « 219

Recovery from Terminal I/0 ETLOLS =« o o o « o o o = o o o o = = » » 219

Program Check HandliRg « « ¢ o ¢ o & o o o o o o o« s o o o o o « « « 219
System ReCOVErYy PLOGTAM « = = « o = o o o o o = « o« o s o o« =« =« « 219

Transaction Abend Handling . o o « o c o o o o s o o s o o o o o =« » 229
User EXit ROUtINES & o o o o o o o o o o 2 o o o o o = o « o o o o 222
Dynamic Transaction Backout . ¢ ¢ o o o ¢ ¢ o ¢ o o o o o o o = « 223
Abnormal Condition PTOGLral . . « o « « o o o o = o « = o o & o « o 226
Program ErTOr PrOGTA@R . o « o o « o o o o o o = = s o o o s o o » 227
Transaction Restart . ¢« ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o o o » s o o o = » 227
PCT Disable and Enable . o «o +o o o« o ¢ o ¢ o o o = o » o o & « « » 230
Transaction Dumps . . . . . - . - e o o s o o s o o o & 231

Operating Systenm Reglon/Partltlon ABBND Bandllng e e s o o s o s « « 231

CHAPTER 5.3. CICS/VS SHUT-DOWN AND START=UP . . ¢ ¢ o = « » o » « » 233

CICS/VS Termination . . ¢« o« ¢ o o o 2 « o o « o « s s o o =« o o » = 233
Controlled Shutdown . « ¢ ¢ o ¢ o o o o e « 2 o o o o o o « « = « 233
Inmediate ShutdoWn . ¢ . & o o o o o o o = o o o @« = » s o o« o o = 236
Uncontrolled Shutdown . . ¢ ¢ o ¢ ¢ ¢ ¢ o ¢ o o =« « o o o o« « « » 236

CICS/VS Initialization « v« o« ¢ « o 2 2 o o e o o = o o o« o o o o o o 237
Complete Cold Start . . ¢ ¢ o ¢ ¢ o o o o 2 o o s o o o o o = o o 237
Complete Warm Start . . o « o o o o o s o o o o o o o o o s o = o 237
Partial Warm StaACt « ¢ « o o « o o o o o o o o« » o o o o o o o o o« 237
Emergency .-Restart .« o o o o o« o o o o o o o o » o o o o s o « » » 238

CHAPTER 5.4. USER JOURNALING ¢ « ¢ « &+ o o = o = o o » o o s o o « 247

Journaling . « o ¢ o o ¢ o o o o s o 5 o s e e o o s s o s o o o o o 207
Specification of Journaling . - . e o o e » o = = = e s o o 2u8
Use of Journals at Systenm Inltlallzatlon e o o e e o o s o s o o e« 28
Journal RequesStS « o ¢ o o o o « ¢ o 2 o = o o o o o o o « « o« » « 248
Transaction Journals . . . o o o o o o o o o o o « o » » o o =« « = 249

Preparation of User Journals . « v« « o =« « ¢ « o o o « o s « « » « « 250

X CICS/VS System/Application Design Guide



User Journaling as a Means to Extend CICS/VS Recovery

Extrapartition Data Set Recovery . . . . « « .« -« « .
Input Data Sets . ¢ ¢ ¢ ¢ o o o ¢ ¢ o o o o = = o
Output Data SSLS o o o = ¢ o o ¢ o « o o o o o o =

Transaction Recovery and Restart . « « .« « . o « .«
Recovery of Messages Associated with VTAM Terminals
Recovery of HMessages Associated with BTAM Terminals
Restart Transactions (BTAM and VTAM Terminals) . .
Terminal Operator Restart . « « « o o = « « =« = &

PART 6. PERPORMANCE DESIGN

CHAPTER 6.1. INTRODUCTION TO PERFORMANCE CONSIDERATIONS . . .

Introduction « « ¢ & ¢ ¢ ¢ ¢ o o e a2 s o o o & a o @
Performance Aspects of Design . . . .
Response TiMe .« o o o o o o o o o =
Maximum Load . . ¢« ¢ o o o o o o o .
Virtual and Real Storage Utilization
Pathlength and Processor Utilization
Physical Database Utilization . . .
Network Utilization . . . . . . . .
Design Criteria . «o « o o o « o o o o @
Application Design . « « =« o &« « « = .
System Design . . . . .
Communications Design .
Database Design . . . .
Program Design . . . . .

Human Factors . . . .
Performance Monitoring

e o o - e

Recovery, Security, and Debugging . .
Online Control and Modification of the Systenm
Major CICS/VS Performance Options . . .
CICS/DOS/VS Entry Level System . . . e e e e .
High Performance Option (CICS/0S/VS Only) . e .
Intercommunication . « o ¢ ¢ ¢ ¢ ¢ & ¢ e o . o o o @
Recovery and Integrity Features . . « ¢ o ¢ o o « =«

PART 7. TINTERCOMMUNICATION DESIGN

CHAPTER 7.71. INTRODUCTION . o ¢ o ¢ o o« o = o o « &«

CHAPTER 7.2. PFUNCTION REQUEST SHIPPING AND TRANSACTION ROUTING

Function Regquest Shipping . . . . . ¢ ¢ ¢ o ¢ o o &
Transaction Routing . . . ¢ ¢ o« o ¢ o o o = o « =
Applications of Region—remote Intercommunication .
Introduction .« . & & & ¢ 4 ¢ ¢ o ¢ o o o o s o =
System Development . « « o« o ¢ o o o o o & o o
Program DevelopmenNt . « o« o o o o o o o o o o o
Time—sharing . « « o o o « « o o«
Reliable Data Base Access . . .
Departmental Separation . . . .
Multiprocessor Performance . « « « « o« o o« &«
Applications of Domain—-Remote Intercommunication
Connecting Regional Centers . . . . . . . . .
Connecting Divisions within an Organization .
Design ConsideratioDsS . o « o« o © o « o o o o =
File Control . « . + « « « =
DL/T ¢ & ¢ o o o ¢ o o o o =
Interval Control . . . . . .
Temporary Storage . . . . .
Transient Data . « « =« « =« « « « = = &
Transaction Routing . .« « o ¢ ¢ « « &
The Mirror Transaction . . - « . « . =
The Relay Program . . . e e o s » @
Performance Con51deratlons e o & o s @

¢« v 9+ 9
¢« e 0
* 0.
s e
¢« e
. e
. L N )
. L I
L )
. " .
] [

L] L]

s 9 & o 8 & 9 0 o
. L]
.

Contents

.

250

255

259
259
260
260
261
261
262
262
262
263
264
264
267
268
269
271
272
273
273
273
274
274
276
276

279

281
281
281
282
282
282.
283
283
283
284
284
284
284
285
287
288
288
289
291
291
291
293
296
298

xi



Application Prograaming Considerations . . . . . .

System Programming Considerations . . . . . . .
Terminal Control Table . . « o «o o « &
File Control Table « - «o =« o & o o o & =
Destination Control Table . . . .
Temporary Storage Table . . . . .
Program Control Table . . . . . « « « &«
DL/I ¢ o o e o o o o o o o o s o o
General Considerations . « « « « « .« . .
CRTE Routing Program . . « « o o o « o =
Statistics o« ¢ ¢ ¢ ¢ o 4 o e o6 o o =
Recovery . « « o« ¢ o« o = o =« e o o

Function Reguest Shipping — Examples c e s e s e @

CHAPTER 7.3. DISTRIBUTED TRANSACTION PROCESSING .
Introduction to Distriputed Transaction Processing
Applications of Distributed Transaction Processing
Design CONCEPES =« o o = o o o o o o o o o o o o o«
Distributed Transaction Processing Concepts . .
Overview of Application Progranmnming Interface .
Protocols . o o« ¢ o o ¢ o & o o o o o o o o o =
Application Programming Considerations . . . . . .
Identifying the Remote System . . . « « o « = &
Session Allocation and Data Transmission . . . .
Synchronisation Points « « o &+ ¢ ¢ o ¢ o o & « &
Efficient Use of Session « =« &« ¢ ¢ ¢ ¢ o o = « &
System Programming Considerations
Design HiDtS . o o & ¢ ¢ ¢ o o o o o o o o o o = &
Types of Application «. . « o ¢ o o o o o o o o «
Master and Slave Design . -« o + « « o ¢ o o « =
SNA ITndicatoOES « « « = o o o ¢ o o o o « o o o &
Queue Transfer « « ¢« ¢ o o e o o o o o o o o = =
Multiple LU Type 6 SeSSiONS .+ « o o o o o o o @
Error Handling . . . . . . e & s e o o o = =
CICS/VS to Non-CICS/VS Systems e ¢ e o o o o o @
Distributed Transaction Examples . « « « « o o « &«

CHAPTER 7.4. SESSIONS BETWEEN DOHAINS . . . . . .
Th2 SESSION =« o o o o o e o o o = & o o o o = o =
Operating Considesrations « . « « o ¢ o o o o o « o«

CHAPTER 7.5. RECOVERY AND RESTART . -« « « o = o &
Introduction to Intersystem Communication Recovery
Designing fOr RECOVELY « o o o o o « o o o o o = &
Failures in Connected Systems . ¢« o « o « o o =«
Data Base Synchronization . . . . . ¢ « o « « .
Connected System Recovery — An Example . . . . .
Intersystem Communication and Emergency Restart
Recovery and Multiple Comnections . .« .« . . .
Error Handling Programs for Intercommunication .
Data Base InterloCk .« « « ¢ o o o ¢« o o o o o =
Problem Determination . . « ¢« o ¢ ¢ ¢« ¢ ¢ o . .
Recovery and Restart with Non—-CiCS/VS Systems .

INDEX « o o o o o o o o o o o o o o o o o o o « «

xii CICS/VS System/Application Design Guide

0 8 9 8 0

s " o 9 % e o

¢ o ® ® ¢ 8 0

300
301
301
303
303
303
303
304
304
306
306
307
308

319
319
320
322
322
322
323
324
324
325
326
326
327
327
327
328
328
329
330
330
331
332

339
341
342

343
343
343
343
344
346
347
347
348
349
349
350

351



1.1-1.
1.2-1.
1.2—2-
1.2-3.
1.2-4.
1.2-5.
2.1-1.
2.2-1.
2.2-2.
2.2-3.
2.3-1.
2.3-2.
2.3-3.
2.3-4.
2-3—50
2.3-6.
2.3-7.
2.3-8.
2.3-9.
2.3-10.
2.3-11.
2.3-12.
2.3-13.
2.3-14.
2.3-15.
2.3-16.
2.3-17.

2.3-18.
3.2—1.
3.2—2-
3.2-3.
3.2-4.
3.2-5.
3.2-6.
3.3-1.
3.3-2.
3.3-3.
3.3-4.
3.3-5.
3.3-6.
3.3-7.
4.1-1.
4.1-2.
4.2-1,
4.2-2.
4.2-3,
4.2-4.
4.2-5.
4.2-6.
4.2-7.
4.4-1.
4.4-2,
5.2-1.
5.3-1.
5.3=-2.
5.3-3.
6.1-1.
7. 1_1-
7.2-1.

CICS/VS System Information Organization .

Top—down Systems Design . . . . . . .

Order Bntry and Invoicing Function Diagran

Order Entry and Invoicing Flowchart .

Order Entry and Invoicing Program Design
order Entry Application Data Base Design

Savings and loan Data Base Chaining .
Traditional Data Set Approach . . . .
DL/I Data Base Approach « « « « « . =
DL/I Data Base ACCESS . o « o o
DAM Data Set Record Location . .
Product Data Set Indirect Access
Policy Data Set Indirect Access .

Indirect Access to Insurance Agent Data

Indirect Access Chain in a Parts Data Base

Indirect Access Operation . . . . .

[N S B R )

Set

et 9 v 9 & 0o

Specification of Indirect Access Log1ca1 Relanlo
Duplicates Data Set for Indirect Access .
Addition of Records to Indirect Accessed Data

Typical Customer Record Format . . .
Typical Savings Account Record Format
Segmented Customer Record Format . .
Segment Indicator Flags . - - . . . .
Segment Definition imn PCT . . . . . .
Segment Set Definition in PCT . . . .
Segment Retrieval . . . . . . . .
Segment Updating, with Length Increas
Entry—-Sequenced VSAM Data Sets . . .
Segmented Record Disk Utilization . .
CICs/Vs Basic Mapping Support (BMS) .
CICS/VS Terminal Device Independence
CICS/VS Terminal Paging . . « - « . =
CICS/VS Message Routing . « « « « .« «
ATP Teraminal Operator Commands . . .
CICS/VS Terminal Brror Recovery . . .
Task Initiation . . . . . . .« . . . .
Fixed—, Variable—, and Keyword—Pormat

Mutliple Choice Input Message Format
Transaction Editimg Techniques . . .
Error Field Correction . . . « . . .
Task Priority . « « « « ¢« &« « & .- .
CICS/VS Program Control FaCIlltleS .

Quasi—-Reentrant Programning and Multltasklng

Extra Partition Data Set Accessing .
Intrapartition Disk Organization . .

® 8 s 2 s Fe s s v s s 0

Input
Fill—-in-the—Blanks Input Message Pormat

® 0 92 s 8 0 e s s 0 s 8

" ¢ s 8 g o e o s v 9 0

¢ s % 9 M e s

Terminal Output Via Intrapartition Data Set .
Notification to Terminal Operator of Automatic O

Notification of Paged Output . . . .
Indirect Destinations . . . . . . . .
Terminal Backup and Reconfiguration .

Operator Sign—on using Built-in CICS/VS

CICS/VS Control of Transaction Access
Program-Level ABEND Exit Processing .
CICS/VS Controlled Shutdown . . . . .
CICS/VS Warm Start Procedure . . . .
CICS/VS Emergency Restart Procedure .
Typical Response Characteristic . . .

Availability of Intercommunication Functions

Ba

I

Security

Possible Application Configuratioms (2 Parts)

Ol.-.-U)ooo-.-.woﬁoat-.o--.o-loo

v s 0 o NN e o
0
Q
Q

o v 9 v (D e o
n

[ S Y ~J T N S Y B )

t

Figures

.
LI L B
.
e % 9 8 8 8 s 8 v 8 o s
N

-D“uvooocono-c'-
.

o®
.
" 0

P T T I T T R |
W
-

R B )
(=)
-

A

¢ o e o s 0 Ze s 2 v e
-

¢ 2 0 8 v
s

g‘-.-

Sup

e 8 0 ¢ 8 ¢ 8 8 MY 4 % g % 3 8 0 8 8 S ¥ s 8 9 8 P g % 3 % 4 ot s P e v o o

T T e O R e I R R L R
-
&
(%]

LI I I I I T B O~ I I - B D D D I I

e o v s o 8 e % T g
o

286

Figures xiii



7.2-2.
7.2-3.
7.3-1.

7.4-1.

xiv

Multiple and Chained TransSacCtionS « o « = o « o o = a o« »
R>lay and Mirror TransactioBs . . « ¢ o ¢ « o & = o = « »
D.: relopment of a Network using Function Request

Shipping and DTP . v« =& ¢ ¢ o o o ¢ s o o 2 o o o o o o o
A Possible Configuration Connecting Three CICS/VS Systenms

CICS/VS System/Application Design Guide

295
297

321
340



Summary of Amendments for Version 1 Release 5

The new facilities and enhancements availaple with CICS/VS Version 1
Release 5 are:

° New intercommunication facilities, offering:

- Multiregion oparation (MRC) — a new mechanism that allows
communication between multiple connected CICS/VS regions within
the same processing system without the use of SNA networking
facilities.

- Distributed transaction processing (DTP) — direct transaction—
to—transaction communication across systems. (This facility is
not available on MRO.)

- Intersystem Communication between CICS/VS and INS/VS.

- Improved throughput by support of SNA parallel sessions.

. Bnhanced master terminal facilities for interactive control of
cICS/VS

. Command—level interface enhancements:
- an interactive command interpreter.
- a new coamand-level interface with DL/I DOS/VS.

- Execution Diagnostic Facility enhancements to support DL/I
commands (CICS/DOS/VS only).

° Security enhancements, including support for an external security
manager (for example, the Resource Access Control Facility (RACF)
program product). :

° Improved monitoring facilities

. Purther device support, including:

- additional 3270 support.
- use of ‘the 0S/VS consols as a CICS/VS terminal.

-~ networking of TWX and WTTY terminals through the Network
Terminal Option (NTO) program product.

. Usability and serviceability aids, including a new user exit

mechanism and facilities in CICS/DOS/VS similar to those provided
by the PERS service aid.

Summary of Amendments Xv



This manual has been reorganized since the previous release of
CICS/VS. It is now divided into seven parts:

Part 1, Introduction

Part 2, Data Base Design

Part 3, Data Communication Design
Part 4, Application Design

Part 5, Recovery and Restart Design
Part 6, Performance Design

Part 7, Intercommunication Design

XVi CICs/Vs System/Application Design Guide



Summary of Amendments for Version 1 Release 4.1

This Technical Newsletter contains changes to the latest edition (SC33-—
0068—-1 plus TNL SRKR33—6216) that reflect new features of CICS/VS
introduced in Version 1, Release 4, Modification 1. These features are:
° Support for logical units type 4 (LUTYPEY)
° Message performance option of intersystem communication

° Fixed block architecture (FBA) storage devices

All changes are indicated by revision bars in the lzft margin.

Summary of Amendments xvii



Summary of Amendments for Version 1 Release 4

This publication replaces, for CICS/VS Version 1.4, the previous edition

SC33-0068-0.

A new chapter, Chapter 13, "Intersystem Communication",

has been added describing the facilities available for the
interconnection of CICS/VS systens.

Changes are also included to cover the following new facilities
introduced in CICS/VS Version 1.4:

° Data Base Support

- Shared Data Base (CICS/0S/VS)

- Transaction Restart

. Extension to support of 3270 Devices

. Enhancements to the Command Level Interface

- Assembler

- RPG 1I (CICS/DOS/VS)

. CICS/DOS/VS Entry Level System (ELS)

° Execution (Command Level) Diagnostic Facility (EDF)

These additions and all other changes to the text originally
contained in SC33-0068~0 are indicated by revision bars in the left

margin.

xviii CICS/VS System/Application Design Guide



Part 1. Introduction






Chapter 1.1. Introduction to CICS/VS

CICS/VS

The IBM Customer Information Control System/Virtual Storage (CICS/VS) is
a general purpose data base/data communication system. The term data
bases/data communication (DB/DC) is descriptive of the type of processing
carried out by online systems, as opposed to batch—processing systens.
Generally online systems involve the transmission of information from a
terminal to a computer, the use of that information to access data
maintained by the computer (referred to as a data base), and the
transmission of processed information back to the terminal. Hence the
term data_base/data_communication system.

As a DB/DC systam, CICS/VS provides support for online systems in
much the same way as the opsrating system and access methods provide
support for batch processing systems. However, CICS/VS is not a
replacement for an operating system. It runs under the control of
Virtual Storage Extended (VSE) or the Operating System/Virtual Storage
(0S/VS1 or 0S/VsS2) and uses standard access methods.

A DB/DC system can be seen as consisting of two major components,
application and environment.

While the application component varies from user to user, the
environment component serves all users by controlling those elements of
the DB/DC system involved in communicating with terminals, accessing
data base information, and controlling the passing of that information
to the application component for processing.

The development of the environment component of a DB/DC system often
requires more =ffort than the development of the application component.
To relieve the user of the need to develop the environment component of
his DB/DC system, and to enable him to concentrate on the application
component, CICS/VS is designed as a modular system. This modular
structure allows the user to select and tailor a CICS/VS system at
system generation or initialization to meet particular application
processing needs. While some of the available CICS/VS functions and
their associated services arz essential to the system, many are optional
and may be included in the system if and when required.

CICS/VS Pregenerated Systems

CICS/DOS/VS ENTRY LEVEL SYSTEM

The CICS/DOS/VS Entry Level System is a subset of CICS/VS. It provides
fewer functions than those provided by CICS/VS. By providing fewer
functions it is more suitable for small systems or first time users.
The functions provided by the Entry Level System are described in the
CICS/VS ELS_User's Guide. The Entry Level System is supplied as a
completely pre—generated system and thus no sysgen process is required.

Chapter 1.1. Introduction to CICS/VS 3



CICS/VS STARTER SYSTEM (DOS/VS)

This system consists of a private core-image library and private
relocatable library. The private core-image library contains
pregenerated versions of all CICS/DOS/VS programs together with sample
taples, maps, and applications. The private relocatable library
contains those items that were needed to generate the private core—image
library contents.

CICS/VS STARTER SYSTEM (0S/VS1)

A load library is supplied containing pregenerated versions of every
CICS/0S/VS program, together with sample tables, maps, and applications.

INSTALLATION AND USE

The user can install the appropriate system and expand as the
application needs dictate. Full details of installation .and expansion
are given in the CICS/VS ELS User's Guide, or the CICS/VS System
Programmer®s Guide (DOS/VS and 0S/VS versions) and CICS/VS Systen
Programmer®’s Referance Manual.

CICS/VS System Publications

The publications available with CICS/VS provide an extensive library
containing information on the various aspects of CICS/VS. The CICS/VS
System/Application Design Guids is one of a group of four publications
concerned with CICS/VS design and programming. The other three
publications in this group are:

CICS/VS Entry Level System User's Guide (DOS/VS)
CICS/VS System Programmer's Guide (DOS/VS or 0S/VS)
CICS/VS System Programmer®s Reference Manual

mh e are ] 2o

This group of publications provides information necessary for the
design, installation, generation, execution, and efficient online
performance of CICS/VS. PFigure 1.1-1 gives an overview of the
information in these publications. The notes following apply to the
references given in the diagram.

4 CICS/VS System/Application Design Guide



Cost and efficiency
considerations in

system design

N’

SYSTEM/APPLICATION
DESIGN GUIDE

®

@ System design

ua?
SYSTEM/APPLICATION CICS/VS ELS
DESIGN GUIDE USER’S GUIDE
@ System installation
System generation
System table preparation
System execution
Online performance
./ o
SYSTEM PROGRAMMER’S CICS/VS ELS
GUIDE USER’'S GUIDE
@ System program and @
table macro -
definitions
A .
' SYSTEM PROGRAMMER'S CICS/VS ELS

RERERENCE MANUAL USER'S GUIDE

Figure 1.1-1. CICS/VS System Information Organization

Chapter 1.1. Introduction to CICS/VS



Notes:

1.

This publication provides information to enable a system design
team to decide which CICS/VS functions and facilities would be best
suited for a particular installation/application.

The CICS/DOS/VS Entry Level System is available to users who do not
require the full range of CICS/DOS/AVS functions. The limited set
of functions available under the Entry Level System is described in
the CICS/VS Entry Level System User's Guide, which contains
information on the use of the CIC5,/D0OS/VS Entry Level Systenm.

Information relating to all aspects of system design (application
programs, basic mapping support, data management and data base, is
provided, as applicable, in this publication and the CICS/VS Entry
Level System User's Guide.

Once the design of a particular CICS/VS system has been decided,
the CICS/VS_System Programmer's Guide, (or CICS/VS Entry Level
Systen User®s Guide if the CICS/DOS/VS Entry Level System is to be

used), leads the system programmer through the various steps
necessary. to achieve and maintain efficient operation of an online
system.

In order to generate the regquired CICS/VS programs and control
tables, the system programmer must refer to either the CICS/VS
System_Programmer's_Reference Manual (or the CICS/VS Entry Level

System User's Guide) for detailed information about the macros that
must be used.

CICS/VS System/Application Design Guide



Chapter 1.2. System Design

The installation of an online system involves a number of activities.
These include, but are not limited to:
Development

° Peasibility study

° Network planning

° Equipment management

° Development of installation

. Education

° Development of standards

° Application design

° Documentation

Implementation
° CICS/VS generation

Offline and online program writing and testing
° Preparation of computer and network operations
° System integration

° Documentation

Operations
Operation, maintenance, and evaluation of:

e CICS/VS

o Application programs

° Housekeeping routines

° Complete network
Continuous evaluation of all aspects of the installation could lead to
prodifications of the current system and expansion of the applications
handled by the systen.

The purpose of this publication is to discuss one main activity,

systen design on the overall success or failure of the application. The
publication presents the considerations involved in online system design
in the same sequence as they might be encountered im an actual design
situation. The factors to consider during each step of the design
process are identified in terms of the application requirements. Sone

Chapter 1.2. System Design 7



design factors and application requirements are satisfied by CICS/VS—
provided support. These facilities are explicitly defined and
jdentified. :

Many applications will not require additional user—developed support
beyond that provided by CICS/VS. However, online applications may
exhibit unique requirements. This publication presents these additional
support requirements, outlines suggested design solutions, and discusses
some of the potential problem areas that should be considered by the
user.

To use CICS/VS facilities efficiently and satisfy design
requirements, it is important that the system designer be aware of the
manner in which CICS/VS implements these facilities. This information
is presented at the conceptual level, assukring there is no prior
knowledge beyond that covered in CICS/VS General Information. More
detail can also be obtained, if necessary, by referring to other CICS/VS
documentation.

The Need for Good System Design

The design of any system, whether it be a batch processing system or an
online system, is a complex and involved procedure. A "cookbook™"
approach to system design cannot be followed because of the varjety of
ways the same application may be implemented in different organizationmns.
However, guidelines can be recommended, which direct the designer to
consider those functions or requirements that exist in the design of
most online systeams.

TURNAROUND OR RESPONSE TIME

The effect of poor system design in a batch processing environment
increases the total processing time of applications, with consequent
delays in turnaround time before results of that processing are
available. With an infrequently run batch application, the effect of
poor system design on the installation may not be great. However, with
frequently run batch processing applications, poor system design and
long run times may impact the ability of the installation to provide
adequate turnaround for that and other applications. This will probably
necessitate a change in the system design of the offending application.

In an online environment, the effect of poor system design is often
immediately apparent, generally through the online system providing
unacceptable response times for the particular applications concerned.
The definition of amn “acceptable response time" is generally very
application—dependent. For exanple, in an online order entry
application, where the terminal operator takes an order from a customer
directly over the telephone, any response time that keeps that customer
waiting can be regarded as unacceptable.

8 CICS/VS System/Application Design Guide



USER ACCEPTANCE

A factor that can affect the acceptability of an online application is
the way in which it meets the needs of the users of that application.
It is pointless for the user to design a system that provides fast
response time if the information provided cannot be used. In this
regard, measured by the usability of the system, an unusable system is
therefore as inefficient as a "poor performance” systen.

RESOURCE UTILIZATION

A final factor to consider is the utilization of resources such as the
processor poWwer, processor storage, and input/output devices. An online
system that unnecessarily uses so much processor capability, or storage,
or so many input/output devices that it impacts the ability of the
installation to carry out other processing in other partitions or
regions, may result in the complete installation becoming a "poor
performance” systen.

Thus, poor system design can have a significant impact on:
° Customer service (because of poor response time)
° Application usability

° Installation processing capability

Design Strategy

Generally, online systems cannot be designed imn isolation. To ensure
that the foregoing objectives are met, it is important that a design
group comprise people with knouledge of: '

° Application requirements
° CICcs/Vs facilities
. Installation requirements

Usually, the optimum size for the design group is three or four.
Pever than this number increases the probability that bad design
decisions can slip through, while many more than four may affect the
productivity of the design group as a whole.

The system design phase is an iterative process. Based on the
decisions taken at one stage of the design, it may be necessary to
change decisions that were made earlier in another area of the design.
This change may in turn affect other decisions. Thus, the design group
must be flexible in its approach and be prepared during the design phase
to change its decisions if necessary. However, once the system design
has been completed, it should be frozen at that point, and not changed
unless serious errors or omissions are found, which will affect the
ability of the system to run effectively.

During implementation of the design, there is always the temptation
to incorporate improvements from an application point of view. While
each improvement may not represent a great deal of extra implementation
effort, all of these improvements may affect the project completion

Chapter 1.2. System Design 9



date. Also, the effect of these improvements on the overall system
performance must be evaluated. The Ganger is that this evaluation may
not be carried out for those changes introduced after the system design
phase has been completed.

These changes or enhancements must pe controlled. The best way of
achieving this control may be to incorporate all of these enhancements
in a later version of the online application or system. These
enhancements become a project in their own right, and must therefore go
through the system design phase before implementation. In this way
their effect on system performance can be readily evaluated.

A top—down approach to system design is possible, and such an
approach should direct the design group to consider all of those areas
of the online system which may reguire decisions to be taken. This top-
down design approach is illustrated in Figure 1.2-1. This figure also
illustrates some of the topics presented in this publication, and the
description of each topic following the figure provides an overview of
this publication.

APPLICATION DESIGN

The starting point for online system design is the application design.
The initial application design steps require that the objectives to be
achieved by an online application be defined and the requirements of the
users of that application be identified. A broad system flow of the
application is then developed as part of the initial design. This
system flow and application design are an extremely important part of
the overall design process, bescauss they deofine the interface between
the terminal user and the computer. Unless the online application meets
the requirements of its users, it is destined to fail.

The online application should be designed initially to identify the
broad input, processing, and output requirements of the application.
The need for conversational and/or batch data transmission bastween the
terminals and the processor can be identified. The terminal output
requirements of the application can be determined, after which the broad
processing logic and data set accessing necessary to produce that output
can be designed. At this stage, the input data required for that
processing and output can also be defined.

10 °~ CICS/VsS system/Application Design Guide



Application

Design
Data N Recovery Data Base
Communication And Restart Desi
. . esign
Design Design
Program Data pLA File
Design n4aqagement Products Control
Design
Temporary Transient DL/ DL/ DL/
Storage Data ENTRY DOS/VS IMS/VS

Figure 1.2-1. Top—down Systems Design

The result of this application design phase is a broad system
flowchart showing, in application terms only, the flow of information to
and from terminals, the broad processing to be carried out by the
processor, and the file accessing necessary to allow that processing.
Fiqures 1.2-2 and 1.2-3 illustrate two types of flowcharts, both
representing the system flow of an Order Entry and Invoicing application
in the Distribution industry.

DATA COMMUNICATION DESIGN

With the broad application design mapped out, design of transactions to
be initiated from terminals and the responses to be sent back to the
terminals can be developed. Also, during this phase the editing and
validation of input messages can be defined in more detail.

Consideration should be given to the design of security procedures
and the handling of high priority transactions. The effect of
unrecoverable terminal and line errors should be considered, together
with approaches whicn may be used to provide a communications backup
capability (if regquired) to enable the online applications to continue
to function, i1f possible, in the event of a communications equipment
malfunction.

Data communication design is discussed in greater detail in Part 3 of
this publication.

Chapter 1.2. System Design 1



PROGRAM DESIGH

After determining system flow and broad processing to be carried out by
the processor, this processing should now be broken down into particular

functions. For example, the initial function on receiving a tramnsaction

identification code from a terminal would be that of editing or

validation.

INPUT

APPLICATION PROCESSING

QUTPUT

)

Enter
Customer
ident.

Customer
Data Set

. Access Customer Record.

N

Display Name and Address.

w

Generate Order-In-Progress
Data Set.

i

Enter
Product
Order

Product
Data Set

i

Order-
In-Progress
Data Set

{

>

Access Product Record.

m

Update Order-In-Progress
Record.

I

Display Order Quantity
Accepted.

~

If Necessary.

«©

Update Product tnventory
With Accepted Quantity.

. Record Back Order Quantity,

Indicate
Order- End Of

in-Progress Order
Data Set

Enter
Product Receipt
Data Set o}

{

9. Access Order-In-Progress
Data Set.

10. Place In Warehouse Location
Sequence.

11. Transmit Packing Slip.
12. Extend Invoice.

13. Transmit Invoice.

"

\ Deiaiis /

14. Access Product Record.

15. Update Product Inventory
With Received Quantity.

Display
Customer
Details

Display
Accepted

Quantity ord
rder-

in-Progress
Data Set

Back
Order
Data Set

Product
Data Set

Packing l

Slip

> Product

Figure 1.2-2. Order Entry and Invoicing Function Diagram

This validation may require access to various data sets. Following
validation, it may be necessary to retrieve information from other data
sets for processing, followed by possible updating of those data sets.
Finally, it would be necessary to prepare a response to be sent to the
terminal.

The processing for each type of transaction in the application should
be broken down into logical sections in this manner. These logical
sections may subseguently become separate CICS/VS application program
modules, or can be incorporated into one module. PFigure 1.2-4
illustrates the various modules in the program design for the Order
Entry and Invoicing application shown in Pigures 19.2-2 and 1.2-3.

12 CICS/VS System/Application Design Guide



Note that the separate programs and broad processing required,
developed in Figure 1.2-4 from the flowchart in Figure 1.2-3, are
described as part of the function diagram in Figure 1.2-2. In effect,
the first three boxes in Figure 1.2-2 define the three separate programs
in Pigure 1.2-4.

A point to consider when defining program modules is the frequency of
use of different modules. Por example, exception routines or error
routines that are infrequently used should be separated from the more
frequently used main processing modules. In this way program design and
subsequent implementation will be able to take best advantage of the
dynamic storage capabilities of CICS/VS and the virtual storage
capabilities of VSE, 0S/VS1, or 0S/VS2.

Application programs can be coded in assembler, COBOL, RPG II
(CICS/DOS/VS only), or PL/I. The user can select the most appropriate
language for each program. Programs written in one language can pass
control to programs written in another language.

Application program design is discussad in greater detail in Part 4
of this manual.

DATA MANAGEMENT DESIGN

Application requirements for the temporary storage of information and
the gueuing of information should be defined. CICS/VS Temporary Storage
management provides a “scratchpad" capability and allows information to
be stored temporarily in main storage or, alternatively, on secondary
storage.

The queuing, or sequential data set requirements, of ths application
can be defined. The need to pass information through sequential files
to and from the CICS/VS partition and other batch partitions or regions
using the CICS/VS Transient Data management facility can also be
determined, together with broad recovery procedures.

It is also necessary to determine whether the application programs
are to pass small sequential queues of information between each other in
the CICS/VS partition, using CICS/VS Transient Data facilities.

Data management design is discussed in greater detail in Part 4 of
this manual.

DATA BASE DESIGN

Particular application data base characteristics and requirements are
considered when selecting the best data base support. This can be based
on CICS/VS File Control facilities or on one of the DL/I products.

Chapter 1.2. System Design 13



SYSTEM FLOW

DESCRIPTION

Order Entry

Enter
Customer
Details

/ G Edit
Dustogwer Customer
\ ata Set Details

Invalid
Cust. No.
Display

Display
Customer
Details

Enter
Order
Detail
Lines

Product Edit Checlf
Data Set Stock Avail.
a And Update

Display
Accptd Qty.
For Oper

Action

End

Figure 1.2-3.

Of Order
?

Place In Whse
Orders |  Location
Data Set Seq & Entend

Invoice

Invoice

Pa‘:ki"g
Slip

\_/—

Order Entry

Enter customer number and customer reference number.

Validate customer number and extract credit limit,

If an error is found, display error message back at terminal.

Display customer name, address, ship-to-address and credit limit.

Enter product number and quantity for each line item.

Validate product number against product data set. Determine
current stock availability, and update product data set.

If insufficient stock, indicate quantity on-hand. Then atlow operator
to either order available quantity, cancel item, or cancel order,

If not end of order, read next line item from order terminal.

Sequence products in order to warehouse loacation sequence. Extend
invoice. Write order to orders data set.

Transmit packing slip ans invoice to terminal in warehouse.

Order Entry and Invoicing Flowchart

CICS/VS System/Application Design Guide



SYSTEM FLOW

PROGRAM

ORDER ENTRY

Enter
Customer
Details

Customer
Data Set

Edit
Customer
Details

Invalid
Cust. No.
Display

Display
Customer
Details

Enter
Order
Detail
Lines

Product
Data Set

Edit Check
Stock Avail.
And Update

Display
Accptd Qty
For Oper.

Action

End

Of Order
?

Orders
Data Set

Place In Whse
Location

Seq & Extend
Invoice

End Of Order )
Slip

Figure 1.2-4.

Invoice

Packing

—_

Order
> Start
Program

Order
> Detail
Program

Order
» Finish
Program

ORDER START PROGRAM

Accept customer details and edit to
commence order.

ORDER DETAIL PROGRAM

Accept product order, edit, and update
product data set.

ORDER FINISH PROGRAM

Complete order, put orders” in
warehouse location sequence, extend
invoice, log order to orders data set
for audit, and transmit packing slip
and invoice to warehouse printer.

*Note: Standard batch sort is not used; products
are placed in location slots in storage
table, to carry out sequencing.

Order Entry and Invoicing Program Design

Chapter 1.2. System Design

15



Factors to be considered in this decision include the need to access
the data base from both online application programs and batch processing
programs, and the number of ways in which information is to be
retrieved, such as by the use of different record keys (for example,
part number or part name in an inventory control application). FPurther
factors in this decision are the number of times certain information
occurs in each record, and the amount of information that may be absent
in some records, yet present in others.

After selecting the appropriate data base support, the structure of
the data base is designed, and how that data can be retrieved from
application programs is defined. Figure 1.2-5 shows the design of a
DL/I logical structure for the Order Entry application discussed above.

The effect of various errors and system failures on the integrity of
the data base is considered, and a data base recovery and backup
approach (if required) is defined.

Data base design is discussed in greater detail in Part 2 of this
publication.

CONTAINS - ITEM NUMBER

- ITEM NAME
ITEM
INFORMATION WAREHOUSE SUPPLIER
CONTAINS CONTAINS CONTAINS
- PRICE PER UNIT (SALES) - WAREHOUSE NO. - SUPPLIER NO.
- DATE OF LAST CHANGE - NO. OF ITEMS IN STOCK - PRICE PER UNIT (PURCHASE)
- UNIT OF ITEM - STOCK LOCATION - UNIT OF ITEM
- TURNOVER LAST YEAR - REORDER POINT - DELIVERY TIME
- TURNOVER Y.T.D. - QUALITY INDEX
- DELIVERY INDEX
- PURCHASE Y.T.D.

- SUPPLIER INFORMATION

Figure 1.2-5. Order Entry Application Data Base Design

16 CICS/VS System/Application Design Guide



Part 2. Data Base Design

17






Chapter 2.1 Introduction

Application Requirements of Data Bases

DATA BASE DEFINITION

The term ndata base" may have a different meaning to different online
applications or installations. A general definition of a data base,
which covers most considerations, is:

uwA structured nonredundant collection of interrelatea
information accessible to many users at the same time.™

STRUCTORES

The term "structured" in the definition refers to the organization of
information in a manner by which it can be easily retrieved. The
following two structuring approaches can be used:

° Physical structure
° Logical structure

To require an application program to be aware of the physical
structure of the data base implies that any change to the orgamization
of information on that data base might also necessitate modification of
the application programs which access the data base.

A logically structured data base is one in which an application
program can refer to information in that data base by name, without
necessarily being aware of the physical organization or location of data
on the data base. The physical structure or organization may be
separately described by a data description table, while the application
program can describe its logical accessing and usage of the data using a
program description table. These tables provide an interface between
the application program and the physical structure of the data base.

The advantage of logical structures is that a change in the data base
generally only requires a change in the relevant tables, often without
necessitating any change in the application programs. This is termed
data independence, and results in reduced maintenance of programs
following modification of a data base.

Data bases which are reterenced by physical structure usually have
limited (or no) data independence, and programs may require coansiderable
modification following a data base change. However, programs that refer
to data bases logically, exhibit a much higher degree of data
independence. Any data base changes are reflected in the data base
tables and program tables rather than in the program itself.

Chapter 2.1. Introduction 19



DATA REDUNDANCY

The term »nonredundant® in the above definition refers to the ability of
a data base to record certain information (for example, a customer's
name and address) once only, but make that information available to
other programs that use it.

Praditionally, batch applications and programs arec developed with
their own data sets, often disregarding information that is recorded on
separate data sets for separate applications. The result in the
traditional batch environment is the existence of redundant
information—that is, tne same information is often recorded in many
data sets. A change to that information must be propagated through all
data sets to ensure that the information remains in step across all
applications. One advantage in recording information only once, and yet
making that one record of information available to all applications, is
that once that information is changed, the change is reflected across
all applications that use the information. A further advantage
resulting from nonredundant storage of information is storage econony,
either on disk or tape.

COLLECTION OF INTERRELATED INFORMATION

The term "“collection of interrelated information® in the definition
refers to the consolidation of information relating to applicatioms at
one conmon point. The advantages offered by such consolidation include:
° More readily available information

. More timely information

L Elimination of redundant information

. Saving in disk or tape storage requirements

. Easier maintenance of information

° Development of information relationships

The last advantage listed refers tc a significant a
bases: the determination of the logical relationship of all information
referring to a particular entity. The identification of such logical
relationships of information enables that information to be utilized for
better management of an organization®s activities. This information may
have been available previously, but may not have been utilized
effectively before implementing the data base.

Data Base Implementation for Applications

DATA BASE REQUIREMENTS SUMMARY
The most common requirements of data base support are:

. Ability to support the multiple occurrence of information, with the
number of occurrences varying from zero to Rrany

20 CICS/VS System/Application Design Guide



° Utilize disk storage most efficiently, without requiring storage
space to be allocated for information which is not present for a
particular record

° HBandle variable—length information such as names, addresses, or
textual information for better disk storage efficiency

° Add, change, or delete records in a data base

° Add, change, or delete multiple occurrences of information for a
record

° Nonredundant storage of information
° Data independence

° Access to the data bases by batch and online programs

MULTIPLE OCCURRENCE IMPLEHMENTATION

Before examining the various data base support techniques available to
determine hovw these can satisfy the above requirements, it is
particularly important to examine the way in which nmultiple occurrences
of information for a particular data base record can be implemented.
The two techniques are:

° Physically related occurrences
° Logically related occurrences

Physically related occurrences generally are implemented by utilizing
separate data sets. The main wroot® information is stored in one data
set. This may be specific customer data in a customer information
system, account information in a savings bank and loan system, or
product information in an order entry systen.

The multiple occurrences of related information are then stored in a
separate data set or data sets, and are related back to the main root
information in the root data set by means of pointers. Furthermore, the
separate occurrences of information relating to a root can be chained by
means of pointers.

For example, in the banking industry, all the accounts relating to a
bank's customers may be recorded in savings and loan account data sets,
with each account record containing pointers which refer back to the
customer's root information, such as name and address. Each account
record for that customer may also contain a pointer to the next account
for that same customer in a chain of accounts. A further data set, a
transaction data set, contains deposits and withdrawals for accounts.
Each transaction refers back to its related account record by means of a
pointer, and to the next transaction against the same account in a chain
of transactions, using another pointer. This is illustrated in Figure
2.1-1.

Chapter 2.1. Introduction 21



Customer
Data Set

Savings
Account
Data Set

Loan
Account
Data Set

Savings

Loan
Transactions
Data Set

Transactions
Data Set

Pigure 2.1-1. Savings and loan Data Base Chaining

The separation of the root information in one data set, with the
variable transaction information in other data sets chained logically to
the root data set and also to other transactions for that same root,
enables standard access methods to be utilized in providing data base
support. The root information may be organized as a standard DAM
(Direct Access Method), ISAHM (Indexed Sequential Access Hethod), or VSAM
(virtual Storage Access Method) data set. Generally, the transaction

data set would be organized as a DAM data set, or an entry—sequenced
VSAM data set. to enahle direct retrieval of transacticn rezceréds.
Retrieval of all the transactions relating to a particular root requires
retrieval of the root information itself, followed by retrieval of each
transaction in the chain—with a possible separate physical access for
each transaction.

This physically related chaining technique may be supported by the
CICsS/VS file control indirect access feature, which is discussed in more
detail later in this chapter.

The logically related technique for the multiple occurrence of
information generally incorporates the multiple transactions in the same
data set (or data base) with the root information. Most of the
transactions relating to the root information are potentially accessible
in fewer physical disk accesses than for physically related information.
The data base support endeavors to place multiple transactions as close
physically to their logically related root information as possible. For
example, root information such as customer details is recorded
immediately followed by multiple occurrences of information, each
detailing a separate account for that customer and tramnsaction activity
against each particular account.

22 CICS/¥s System/Application Design Guide



The data basec support to implement a logically related technique must
enable new information related to the root information to be added to
other information for that root, existing information to bz changed, or
information to be deleted. This may require the utilization of
internally controlled pointers and chains which are known only to the
data base support and which are transparent to the application progranm.
The application program may logically regard the multiple occurrsnces of
information as if that information were physically adjacent to the root
information.

Alternatively, the data base support may attempt to physically imsert
added information with the root and existing information, thus shifting
along other information in the data base.

The data base support availapnle for such logically related
information is: .

° CICS/VS file control segmented record feature
o DL/I products

These are discussed in outline in the next section, and in more detail
in the next two chapters.

Data Base Selection Criteria

Several factors should be considered when choosing between CICS/VS
file control and DL/I. The most important of these factors are outlined
in the following sections. They should be borne in mind when reading
the tvwo subsequent chapters.

DATA BASE PERFOKMANCE

CICS/VS File Control Accessing

Prime consideration in online application design should be given to the
access time for retrieval of information from a data base. Depending
upon the performance requirements of the application, this may dictate
the selection of data base support. For example, if a data set may need
to be accessed through other data sets, it may lend itself to the use of
the CICS/VS file control indirect accessing feature. However, if
several data sets have to be indirectly accessed to obtain the required
information, these additional file accesses could have an adverse effect
on online performance.

The particular access method selected with CICS/VS file control for
the application may affect the performance. FPFor example, the direct
access method (DAM) generally provides excellent online performance.
However, DAM support requires that records be identified by either their
physical location on disk or their relative location in a data set. The
application, on the other hand, may require that a record be accessed by
a key. In this case, the indexed sequential access method (ISAM) may be
suitable, but its use will involve at least two file accesses to
retrieve each record. Furthermore, if many additions are made to an
ISAM data set, the access time for a specific record may increase.

Chapter 2.1. Introduction 23



To overcome some of the apove limitations, the virtual storage access
method (VSAM) may be best suited. This enables records to be retrieved
directly, based on relative location in the data set, or by key. It
also enables rapid retrieval of information for applications with a high
percentage of additions to the data set.

Another factor which should pe considered is the serial scheduling of
concurrently executing tasks, several of which may wish to update the
same record in a data set at the same time (see "Exclusive Control
During Update® in this chapter) . CICS/VS will permit only one task to
update a record at a time, and other tasks wishing to update that same
record must wait for completion of the first update. (However, other
records in the data set may be concurrently updated, if required.) This
serialization of updates may affect performance, if application factors
may cause concurrent updating of individual data set records to be
attempted.

DL/I Accessing

DL/I provides a number of access methods which may be used for
satisfactory performance depending upoh the requirements of the
application. These access methods are the: Hierarchical Sequential
Access Method (HSAM), Hierarchical Indexed Sequential Access Method
(HISAM) , Hierarchical Direct Access Method (HDAM), and Hierarchical
Indexed Direct Access Method (HIDAM). Refer to the System/Application
Design Guide for the relevant BDL/I product for further information about
DL/I access method selection.

The CICS/VS-DL/I interfacs handles the data base activity from
CICS/Vs application programs on a multithread basis. Several CICS/VS
application programs (tasks) may concurrently access the same, or
different, data bases up to a maximum of 255 concurrent tasks for DL/I
Dos/vs, 32 for DL/I ENTRY, or 15 for IMS/VS DL/I. CICS/VS allows
concurrent access to DL/I data bases. To prevent double updating of a
segment there are two scheduling methods available, Intent Scheduling
ana Program Isolation, the choice of which has a crucial effect on
performance.

The CICS/DOS/VS—DL/I ENTRY interface permits multithread access to
DL/1 data bases, up to 32 tasks for DL/I ENTRY. In order to prevent
double updating of a segment, DL/I ENTRY uses CICS/VS facilities to
enguene dhetween the GET HOLD and the REPLACE calls) on the logical
record that contains the segment to be replaced.

BATCH PROGRAM ACCESS

If the online application data sets require further processing in a
batch environment, this consideration should also be taken into account
in selection of the data base support.

Factors which should be considered are that CICS/VS file control
supports variable-length records within a fixed-length block for VSE
ISAM data sets, standard O0S/VS variable—length BISAM data sets, and
blockea records for DAM data sets. VSE ISAM does not support these
variable-length records for ISAM in a batch partition. They can be
accessed in a batch environment by defining them to VSE ISAM as fixed-—
length unblocked records. However, the batch processing program must
itself deblock the variable-length records from the fixed-length block
returned to it by VSE ISAM.

24 CICs/VS System/Application Design Guide



Neither VSE DAM, 0S/VS1, or 0S/VS2 BDAM supports blocked records. If
blocked DAM data sets are to be accessed in a batch environment
sequentially, they may be defined as VSE SAM data sets or 0S/VS BSAM or
QSAM data sets. In this instance, the sequential access method will
handle deblocking of records.

However, if the batch processing programs need to access these
blocked records directly instead of sequentially, the responsibility
rests with the batch program to define the data set as an unblocked DAM
data set and provide its own deblocking of records within that physical
block.

The use online of the CICS/VS file control indirect access and
segmented record features requires that special coding to support these
features in batch programs be developed by the installation.

The DL/I products support the same access methods and record formats
both online and offline. fo additional coding is required to enable
batch DL/I programs to access online data bases.

SHARED DL/I1I DATA BASE (0S)

CICS/0S/VS has a shared DL/I Data Base feature that enables a batch
region to simultaneously use the same DL/I data base as a CICS/VS
transaction. The feature provides full data integrity by protecting
against simultaneous update and by ensuring that if one of the regions
fails then the data base is not left corrupted by the failing region.

If the batch program updates the data base then the CICS/VS systenm
should make use of the program isolation scheduling facility. Long
running batch updates should be split into small logical units of work
by use of the CHKP call.

The batch program will appear to CICS/VS as another DL/I transaction
so the systems programmer should be aware of overloading the CICS/VS
systen.

The CICS/DOS/VS user has a similar shared Data Base Facility provided
by DL/I DOS/VS.

BATCH DATA BASE CREATION

CICs/vs file control provides no facility for creation of the online
data bases, apart from that provided by standard SAM, VSAM, DAM, and
ISAM support. The insertion of indirect access pointers in data sets,
and the preparation and organization of segmented records, is the
responsibility of the user. Generally, special data base creation
programs must be written by the user.

Similarly, no facilities are provided for maintenance of the online
file control data bases in a batch environment. To provide this, the
user's data base creation program should also be designed to allow a
maintenance capability.

DL/I allows creation and maintenance of data bases through the use of
various utilitaes. Purthermore, because the program is independent of
the physical data base organization and only refers to its logical
organization, considerable flexibility is offered the installation in
data base reorganization and maintenance.

Chapter 2.1. Introduction 25



INSTALLATION DATA BASE SUPPORT DIRECTION

In evaluating each of the selection criteria described above, the systenm
designer must keep in mind the future direction for his installation in
the use of particular data base support.

cics/vs file control may be utilized if desired, because CICS/VS has
been identified by IBM as one of its standard data base/data
communications program products. However, the CICS/VS installation may
wish to take full advantage of the extensive data base support provided
by DL/I, by using the appropriate CICS/VS-DL/I Interface feature.

26 CICS/VS System/Application Design Guide



Chapter 2.2. DL/I

DL/I Products

This chapter is intended as an introduction to some of the significant
features of DL/1, as used in the CICS/VS environment. It should not be
considered as a substitute for the DL/I product documentation. No
attenpt is made to describe the operation of the various DL/I products
in depth, nor to describe in detail the design of DL/I data bases. DL/1
is discussed only in sufficient detail to help the CICS/VS system
designer to evaluate the various DL/I products and the CICS/VS File
Control facilities as data pase support for online applications to run
under control of CICS/VS. Refer to the appropriate DL/I General

manuals listed in the preface of this publication for further
information about these DL/I products and thas design of DL/TI data bases.
Additional information on DL/I, as used by CICS/VS, is given in the
CICS/VS Application Programmer®s Reference Manuals.

CICS/VS enables data bases created and maintained by the following
DL/I products to be accessed by CICS/VS application programs:

e DL/I/DOS/VS ENTRY (CICS/DOS/VS only)
e DL/I/DOS/VS (CICS/DOS/VS only)

e IMS/VS DL/I (CICS/0S/VS only)

DL/1 ENTRY DOS/VS

DL/I ENTRY DOS/VS provides a subset of the data base facilities offered
by DL/I DOS/VS. It utilizes VSE SAM and VSAM on which DL/I access
methods HSAM, HISAM, and HDAM are organized. Data bases may be created,
maintained, and operated upon by batch processing programs. In
addition, CICS/VS application programs may retrieve, update, add or
delete information in DL/I ENTRY HISAM and HDAM data bases online. DL/I
ENTRY does not support logging of DL/I activity, and does not provide
data base recovery utilities that are available with DL/I DOS/VS and
IMS/VS. However, since in an online environment DL/I ENTRY uses CICS/VS
File Control services to map the DL/I access methods HISAM and HDAM onto
VSE SAM and VSAM, the normal CICS/VS recovery functions can be used
where appropriate.

Chapter 2.2. DL/I 27



DL/1 DOS/VSs

DL/I DOS/VS provides a subset of the data base facilities offered by
INS/VS (though not necessarily a compatible subset) and utilizes VSE SAM
and VSAM as its standard access methods, on which are organized the DL/I
access methods, HSAM, HISAM, HIDAM, and HDAM. These access methods are
described later in this chapter. Data bases may be created, maintained,
and operated upon by batch processing programs. In addition, CICS/VS
application programs may retrieve, update, add, and delete information
in DL/I DOS/VS data bases online. Data base recovery utilities are
supplied for data base backout in the event of an uncontrolled shutdown
and for data recovery following an unrecoverable I/0 error.

IMS/VSs DL/I

IMS/VS DL/I operates under control of 05/V51 or 0S/VS2. It utilizes
VSAM as its standard access method (and also BISAM and a BDAM access
method called OSAM). DL/1 access methods HSAM, HISAM, HIDAM, and HDAM
are organized on VSAM or ISAM/OSAM (see later in this chapter). Data
bases may be created, maintained, and operated upon by batch processing
programs. In addition, CICS/VS application programs may retrieve,
update, add, and delete information in IMS/VS DL/1 data bases online.
Data base recovery utilities are supplied for data base backout in the
event of an uncontrolled shutdown and for data recovery following an
unrecoverable 1/0 error.

Unless specifically stated otherwise, the following discussion of
DL/I suapport applies to each of the DL/I products previously described.

Full details of the individual DL/I products can be found in the
appropriate IBM manuals, as listed in the Preface.

DL/1 ACCESS FROM CICS/VS

Access to DL/I data bases online from CICS/VS application programs is
achieved using the multitasking facilities of CICS/VS. Any CICS/VS
application programs may concurrently access the same data base, up to
the mavimum number of active DL/I tasks specified for the CICS/VS
partition, or the maximum number of concurrent DL/I tasks specified
during initialization of the relevant DL/I product with CICS/VS.

DL/I ENTRY permits concurrent data base access up to a maximum of 32
tasks, DL/I DOS/VS up to 255 tasks, and IMS/VS DL/I up to 15 tasks.

DL/I utilities are used to describe the physical organization of data
bases and the way in which programs will logically access the data bases
defined. In addition, a number of DL/I utilities are provided to allow
recovery of data bases in the event of I/0 errors or system failures.

28 CICS/VS System/Application Design Guide



Introduction to DL/I

DL/I is a general-purpose data base control system that executes in a
virtual storage environment under VSE, 0S/VS1, or 0S/VS2. It has been
designed to simplify the user's task of creating and maintaining large
conmmon data bases to be accessed by various applications. Its design is
open—ended, which allows future DL/I functions to be added without
affecting existing functions. DL/I also allows growth to online
applications through an interface with CICS/VS, and, on 0S/VS only,
through the data communications feature of IMS/VS.

DL/I has been developed by IBM to serve two application areas:

° Batch processing
° Online processing

In batch processing, single data base transactions requested by
applications are accumulated and processed periodically against the data
base. Because of the elapsed time, data in the data base is not always
current. The use of batch processing should depend on how current the
user's information must be, viewed in relation to the cost of other
methods of processing data.

For online processing, IMS/VS DL/I may be used in conjunction with
either the IMS/VS DC feature, or with CICS/0S/VS. With DL/I ENTRY and
DL/I DOS/VS, data communications support is provided only through
CICS/DOS/VS. The use of online processing, as opposed to batch
processing, enaples a response to be generated for each transaction as
it is requested. This reduces the elapsed time inherent in batch
processing systems and allows the user to naintain current data for his
applications.

Traditionally, data used by application programs is organized in data
sets. Bach data set is physically structured to present data in the
physical sequence and format required by the particular application
program, and each program contains a description of the data set
organization and record format-as an integral part of the program (see
Pigure 2.2-1). Rhen the same data is shared by many applications
(common data), the data is duplicated on different data sets so that it
can be presented to each application program in the physical sequence
and format required. This duplication uses additional storage space and
results in increased maintenance time and cost, since the same data has
to be maintained simultaneously in many locations. Futhermore, when the
data set organization or record format must be changed, each progran
which accesses that data set must be modified to reflect the changes.
This traditional data set approach is illustrated in PFigure 2.2-1.

Chapter 2.2. DL/I 29



PROGRAM A

DATA
DESOR. > DATA SET A
PROGRAM B
DATA > DATA SET B
DESCR.
PROGRAM C
DATA > DATA SET C
DESCR. v L_/

Figure 2.2-1. Traditional Data Set Approach

DL/I enables programs to be freed from their dependence on data set
organization and record format. The description of the physical
organization of a data base is removed from programs and contained in a
separate data description table. Bach program utilizes this data
description. DL/I extracts the requested information from the data base
to present to the program. This is illustrated in Pigure 2.2-2.

Because programs using DL/I are no longer dependent upon the physical
organization of data, when the data base organization must be changed,
generally only the data description table need be changed. Programs
which access the data base using the data description in most cases need
not be aware that the data base has changed, and generally need no
modification.

30 CICS/VS System/Application Design Guide



PROGRAM A

DATA
PROGRAM B
..> DATA ’> BASE
v DESCRIPTION '
{ABC)
PROGRAM C

Figure 2.2-2. DL/I Data Base Approach

All application data is stored in one or more data bases in a
hierarchical fashion; that is, the most significant data resides on
hierarchically higher levels, while less significant but related data:
(dependent data) appears on hierarchically lower levels, as illustrated
in Pigure 2.Z-3. This hierarchical approach enables programs to view
data in a data base apart from its physical organization. Through the
use of a concept called "sensitivity,™ each application program views
only that data in the data base which it uses. (Sensitivity is
discussed further, in "Logical Data Structures,% later in this chapter.)

DL/I accesses data in the data base and presents only the information
requested by the program. The data presented to the program by DL/I is
called a "segment." A program requests a segment from DL/I by issuing a
DL/I call.

In practice, a system designer reviews the data reguirements of all
applications (as illustrated at the start of this chapter), then defines
the data base or bases. To create a data base, the user defines to DL/I
a common data structure and format that serve his applications and loads
his application data into that data base.

The definition of the data base is provided by a data base
description (DBD), and a DBD is regquired for each data base (see Figure
2.2-3). This is generated prior to the loading of data into the data
base, by assembling a set of DBD macro instructions which define the
data base.

Chapter 2.2. DL/I 31



DL/

|

Program Program Data
Communication Base
Block Description

Data

| irem | ey )2 R E— Base

o
=
=
o]

1]

:

Program View Data Base View

—_— —— - ~
— ~
Customer \ / \

No./Name I

|

Address Details No./Name Address Details

Account | Customer Account

Figure 2.2-3. DL/I Data Base Access

The second definition regquired is the program specification block
(PSB) . The PSB defines the data base processing requirements of an
application program. It identifies those sensitive data elements
(segments) in the data base that are available to the application
program which uses the PSB, and the way in which the program views the
data base. Although a transaction may only reference one PSB at a time,
CICS/VS permits a transaction to dynamically change from one PSB to
another through the PSR schedule and termination mechanisms.

The PSB is generated by assembling a set of PSB macro instructions
which define the above factors.

Through DL/I's use of the DBD and PSB, application programmers canh
write their programs without much regard to the physical structure of
data. Instead, they refer only to segments of data as needed by the
program, without consideration for the physical location of that data in
the data base.

32 CICS/VS System/Application Design Guide



APPLICATION PROGRAMMING INTERFACE

An application program can retrieve, replace, delete or insert data in a
DL/I data base by means of either a high level programming interface
(HLPXY) or a CALL interface. The HLPI uses EXEC DLI program statements
in a way similar to the use of EXEC CICS statements for interfacing with
CICS/VS. Purther information is given in the DL/I High Level
Programming ¥nterface User's Guide .

The HLPI is available to PL/I and COBOL users under VSE. The CALL
interface is available to PL/I, COBOL and assembler users under VSE and
0S/VS.

A special interface (RQDLI) is available for RPG users.

ADVANTAGES OF DL/I

DL/I provides application independence from access methods, from
physical storage organization, and from the characteristics of the
devices on which the data of the application is stored. This
independence is provided by a common symbolic program linkage and by
data base descriptions external to the application program. A reduction
in application program maintenance is generally realized.

DL/I provides for the reduction, and possible elimination of,
redundant data or sharing of common data. The majority of the data
utilized by any company has many interrelationships that can cause
significant redundant storage of data if conventional organization and
access methods are used. For example, manufacturing and engineering
departments work with subset data which is also useful to quality
control.

The storage organization and access methods employed by DL/I
facilitate data integration with a minimum of data redundancy. However,
if an analysis of a company's data shows that all of the data cannot be
placed in a single common data base, DL/I allows the user the additional
capability of physically structuring the data across more than one data
base. Before DL/I, application programmers frequently did not have the
time or ability to integrate other data with their own data to eliminate
redundancies without the necessity of a major rewrite of the application
programs involved.

Chapter 2.2. DL/1 33






Chapter 2.3. CICS/VS File Control Facilities

Introduction to CICS/VS File Control

The CICS/VS file control program provides data base support for
application programs executing under its coantrol. It uses the standard
access methods available under VSE and 0S/VS1 or 0S/VS2 — namely the
Indexed Sequential Access Method (VSE ISAM or OS/VS BISAM), Direct
Access Method (VSE DAM or OS/VS BDAM), and Virtual Storage Access Method
(VSAM). Por the remainder of this chapter, "DAM" will be used to refer
both to VSE DAM and OS/VS BDAM, and "ISAM" will refer to both VSE ISAH
and 0S/VS BISAM.

The facilities provided by the standard access methods are extended
in some cases by CICS/VS file control to provide additional support.
For example, file control supports the following data sets:

° Fixed-length and variable-length records
° Blocked and unblocked data sets
° ISAM, DAM, and VSAM

Note: PFixed block architecture (FPBA) devices are supported by CICS/VS
file control using VSAM only.

Extensions provided by CICS/DOS/VS file control enable the support of
variable—length VSE ISAM data sets, which are not part of standard
support provided by VSE ISAM. Similarly, file control provides support
for blocked fixed—length or variable—length DAM data sets, which are not
included in the standard support provided by VSE DAM or 0S/VS BDAHM. The
support of blocked direct access data sets is particularly useful if
those data sets are processed sequentially by CICS/VS programs, as
discussed below in "Sequential Access (Browsing)."® CICS/VS file control
allows both direct access and sequential access to ISAM, DAM, and VSAH
data sets.

A VSAM function provides the ability to reuse a VSAH data set without
redefinition. CICS/VS support allows reusable files to be defined, via
the SERVREQ= operand of the DFHFCT TYPE=DATASET macro (refer to the
CICS/VS System Proqgrammer®s Reference Hanual). These reusable files are
available to application and system programmers as temporary files
and/or for test purposes. The user should be aware, however, that there
is no recovery support for reusable data sets; if the system is taken

down for any reason then the file is closed and the data is lost.

Direct Access

Direct access, sometimes referred to as random access, is supported by
file control for ISAM, DAB, and VSAM data sets. The following services
are provided by CICS/VS file control for DAM, ISAM, and VSAM:

° Random record retrieval

. Randon record update

Chapter 2.3. CICS/VS File Control Facilities 35



° Random record addition

° Random record deletion (VSAM only)

. Logically open/close data sets

. Exclusive control of records during update operations

. Variable—-length ISAM records (both VSE and 0S/VS)

° Blocked DAM records

° LOCATE mode, read-only retrieval (VSAM only)

. Mass record insertion (VSAM only)

e ' Segmented records

] Indirect access
These services enable CICS/VS file control to provide data management
support that surpasses 0S/VS or VSE data management support in many
areas.

Direct access to data sets is made on the basis of record
identification of the particular logical record to bz retrieved. The
record identification may bpe either a record key in the case of ISAM or
key—sequenced VSAM data sets, or a record location within the data set
for DAM or entry-sequenced VSAM data sets. The use of record keys or
locations for direct access is discussed in more detail under "Record
Identification.n

Based upon presentation of the appropriate record identification by
the application program, CICS/VS file control will access the data set

requested by the program to carry out the services listed above, and
described in detail in the following sections.

RANDOM RECORD RETRIEVAL

File control will directly access the record idesntified by the
application program using either key or record location (depending upon
the type of data set) from the specified data set. The application
program issues a file control READ command, identifying by name the data
set to be accessed, the data area within the program into which the
record is to be read, the location in the program which contains the
record identification. The data set name is used by CICS/VS to locate
the relevant entry for that data set in the file control table (FCT).
This entry contains specifications for that data set, such as:

° Access method used

° Record length

. Block length

1 Key length (if applicable)

. Key location (if applicable)

This information is not contained within the application program. In
the event of a change to the data set, the relevant changes may be made

36 CICS/VS System/Application Design Guide

PN R M A Y A X




to the FCi, without affecting the application program. This provides a
limited degree of data independence.

Hhen the application program issues a READ command, the input
operation begins. The application program waits until the requested
operation is completed. Any I/O errors on completion, which cannot be
recovered by the access method or by file control, are then returned to
the application program for action.

Although an application program does not continue processing while a
requested I/0 operation is being carried out, CICS/VS utilizes the
available processing time during the I/O for other concurrently
executing tasks. Consequently, all tasks are given an equal opportunity
to process, based upon their respective task priorities, while I/O is in
progress. The net result is improved overall performance of all
concurrently executing tasks in the system, even though the full
processing overlap potential of the single task issuing the I/0
operation request is not utilized..

RANDOM RECORD UPDATE

A record can be directly accessed using a file control READ command, as
described above, for potential subsequent update. An indication that
this record may subsequently be updated is made by the application
program at the time that the READ command is issued, by specifying the
UPDATE operand.

Iin this case, the record is retrieved as described above for the READ
commnand. After the application program has updated the record, it
issues a REWRITE command, supplying to CICS/VS the name of the data area
holding the record. The logical record then replaces the original
record on disk.

If the application program does not wish to update the record which
vas retrieved, it does not issue a WRITE command. The application
program should issue an UNLOCK command. :

EXCLUSIVE CONTROL DURING UPDATE

If the exclusive control feature was specified when the file control
routines were generated then file control will protect record integrity
during updating.

o Exclusive Control and ISAM Files

CICS/VS maintains exclusive control over an ISAM logical record
that is read for update. If another task attempts to access the
record before exclusive control is released then a lockout will
occur.

° Exclusive Control and DAM Files

If a DAM logical or physical record is to be updated, CICS/VS will
maintain exclusive control over the physical record. If another
task attempts to access that physical record or if the same task
attempts to access another logical record within that physical
record before exclusive control is released then a lockout wuill
occur.

Chapter 2.3. CICS/VS File Control PFacilities 37



e Exclusive Control and VSAH Files

VSAM maintains exclusive control over a control interval that
contains a record that is to be updated. If the same task or
another task tries to read or add a new record within that control
interval before exclusive control is released then a lockout will
occur.

RANDOM RECORD ADDITION

Records may be added to a data set through the use of a WRITE command.
The record identification supplied by the program is used to determine
where the new record will be added.

If the record identification provided is a record key for addition of
new records to ISAM or key-segquenced VSAM data sets, the record is
placed in sequence in the data set based upon that key. For DAM data
sets, the new record is inserted as close as possible to the specified
record location as described below.

For fixed-length unblocked DAM records, such data sets must be
initially generated with a number of dummy records interspersed
throughout the data set. A dummy record is one containing hexadecimal
FF in the first byte of the record. The record to be added is inserted
in the first available dummy record location following the specified
record location. If no dummy records are available in the same cylinder
(for VSE), the application program is notified; it may then reissue the
HRITE request for the new record to another part of the data set until a
dummy record is found. When the new record replaces the dummy record,
file control returns the record location where the new record is stored
to the application program in the record identification field.

Hotes:

1.  Record addition is not possible for VSAM files that have been
specified as ICIP. Such files should revert to normal VSAM if
record addition is reguired.

2. CICs/VS cannot be used to extend (add a record with a key higher
than any existing record) an ISAM dataset.

Por variable-length record DA data sets, CICS/VS file control
attempts to add the new record at the end of the specified track, for
CICS/DOS/VS, providing there is sufficient space on that track to
contain it. PFor CICS/0S/VS, a specified number of tracks may be
searched to locate a track on which to add the record. If there is not
sufficient space, the application program is notified, and may reissue
the WRITE regquest for the new record, indicating another track to be
used. When the new record has been successfully written at the end of
the specified track, its record location is returned to the application
program in the record identification field.d22232

For entry—sequenced VSAM data sets, new records are always added to
the end of the data set regardless of whether they are fixed or
variable—length. The relative byte address of the added record in the
data set is returned to the application program.

38 CICS/VS System/Application Design Guide



RANDOM RECORD DELETION (VSAM ONLY)

The file control DELETE command is used to specify the deletion of
records in a VSAM key—sequenced data set. The specified record is
physically deleted. The space occupied by that record is reclaimed and
added to the available free space in the particular control interval
which contained that deleted record.

LOCATE MODE PROCESSING (VSAH READ-ONLY)

The normal mode of processing for file control operations is move mode.
With mode processing of blocked data sets, the logical record .is moved
froa the block into a FWA, and the address of that FWA is presented to
the application program.

For VsAM data sets, locate mode processing may be specified for read-—
only operations. With locate mode processing, the address of the
logical record in the control interval is stored in a virtual storage
work area (VSWA). The additional processing required to move the
logical record from the control interval is therefore avoided. However,
locate mode is invalid if a read for update is specified and/or
segmented records are being retrieved.

BLOCKED DAM RECORDS

CICs/Vs file control provides for the deblocking of logical records in a
blocked direct access (DAM) data set. This service is provided for bpoth
fixed-length and variable-length records. When creating or adding to
blocked DAM data sets, the application program must work with entire
blocks.

The advantage in supporting blocked DAM records is to enable both
direct and sequential access of the data set. The block size should be
such that the physical record retrieved for direct access is maintained
as small as possible, while still providing sufficient blocking to
enable satisfactory performance for sequential retrieval.

CICS/VS will support the update of variable iength records within
fixed or variable length blocks provided that the length of the records
is not changed.

VSE ISAM VARIABLE-LENGTH RECORDS

CICS/D0S/VS supports the retrieval and static update (that is, no length
variation) of variable-length records within a fixed-length block under
ISAM organization. These pseudovariable blocks must contain the block
length in the first four bytes in the standard form LLbpb. Since all
blocks are fixed-length, this value is the same for all blocks. BEach
logical record within the block must also reflect the length of the
record in the first four bytes (LLbb). A logical record may not be
continued into the next block. The first byte of any unused portiomn of
a block must contain a hexadecimal FF.

The addition and deletion of records for a VSE ISAM variable-length
record data set must be handled by the user in an offline batch

Chapter 2.3. CICS/VS File Control Facilities 39



environment. When creating the data set, it must be defined as fixed
unblocked, and the key for each block must be the sams as the last
logical record im that block. The block size must be an even number of
bytes. All records must reside in the prime data area; no overflow
records are allowed.

However, the use of key—sequenced VSAM data sets instead of ISAM
allows the support of both fixed—length and variable-length records,
with the added advantage that the record length can be either increased
or reduced as a result of a record update, addition, or deletion.

DYNAMIC OPEN/CLOSE OF DATA SETS

When the CICS/VS system is initialized, data sets may be specified in
the file control table (FCT) as either open or closed. Closed data sets
may be dynamically opened for accessing at a later time, by means of a
master terminal command. The design techiques described below utilize
dynamically opened or closed data sets.

Data sets may be dynamically closed at certain times of the day, to
prevent access to information from terminals, and may be dynamically
opened when access is to be permitted. 1In this way, support for certain
online applications may be provided only when desired. If an
application program attempts to access a data set which has been closed,
an error indication is returned to the program.

MASS RECORD INSERTION (VSAM ONLY)

If many records are to be added to a VSAM data set and those records
have keys that are in ascending sequence then significant performance
gains can be achieved by using mass record insertion. This is specified
with the MASSINSERT option of the WRITE command.

VSAM SHARED RESOURCES

VSAM shared resources enable a pool of I/O related blocks, channel
programs, and buffers to be shared among several VSAM data sets. This
permits efficient utilization of storage in an environment in which many
VSAM data sets are open and it is difficult to predict the amount of
activity against a given data set, or in a situation where each
transaction may access several VSAH data sets.

The user indicates in the FCT which VSAM data sets are to share
‘resources. CICS/VS calculates the maximum amount of resources required
by using the number of strings specified in the FCT for each of the VsSAn
data sets that are to share resources and the control interval sizes for
these data sets from the VSAM catalog. CICS/VS then requests VSAM to
build a resource pool large enough for a certain percentage of maximum
amount of resources required. The user can override this percentage and
resource calculation if desired. For example, the user may wish to
override the CICS/VS calculation to reflect specific data set activity
known only to the user.

Storage utilization efficiency obtained by sharing VSAM resources

must be evaluated against the effect on performance. If insufficient
resources are available to satisfy a specific I/0 request against a

40 CICs/VS System/Application Design Guide



shared resource data set, the requesting task is placed in a CICS/VS
vait until the necessary resources become available. CICS/VS provides
statistics (number of strings, buffer sizes, and number of buffers of
each size) to identify the resources allocated. Statistics are also
provided to aid in the optimization of these resources to ensure that
sufficient bufrfers and VSAM strings are available to avoid excessive
task wait time.

If the activity against specific data sets is higher than can be
managed using shared resources, those data sets should be defined in the
FCT as not sharing resources.

Sequential Access (Browsing)

The operations discussed above refer to direct access. CICS/VS file
control enables DAM, ISAM, and VSAM data sets to be sequentially as wvell
as directly accessed. This sequential access 1s sometimes referred to
as a wbrowse" operation. Data sets to be browsed may be either fixed-—
length or variable-length, blocked or unblocked data sets.

A browse operation using CICS/VS file control is analogous to the
sequential retrieval of records from ISAM data sets, sometimes called
SETL retrieval, in a batch environment. However, a batch program can
only sequentially retrieve records from one logical section of a data
set at a time. On the other hand, CICS/VS enables many browse
operations to be concurrently executed on the same data set, either from
the one task or sesveral tasks. This is referred to as multiple
browsing, and is discussed further below.

BROWSE INITIATION

To specify a browse operation, the application programmer identifies the
data set to be prowsed, and provides the record identification of the
logical starting point in the data set for the browse operation. This
logical starting point can be either a specified record location, or
key, or a generic key. For example, if it is desirable to browse an
orders data set, containing orders for products placed by different
branches, a generic key may indicate that browsing is to start with the
first order recorded from a specified oranch. The initiation of a
brouse operation is achieved by the application program issuing STARTBR
command.

BROWSE RETRIEVAL

Bach record is sequentially retrieved for the browse operation when the
application program issues a READHEXT command. Each READNEXT presents
the next sequential logical record to the application program for
processing. In the case of an ISAM data set or a key—sequenced VSAM
data set, the records are presented in ascending key sequence (except
for a browse operation using relative byte address (RBA) for a key—
sequenced data set, when records may be presented in physical sequence).
For a DAM data set, or an entry-sequenced VSAM data set, the records
Will be presented in the sequence in which they are physically stored on
the data set.

Chapter 2.3. CICS/VS File Control Facilities 41



BROWSE TERMINATION

The browse operation continues with each subsequent READNEXT, until the
end of the data set is reached or it is desired to terminate the browse
operation. This termination is achieved by issuing an ENDBR command.

MULTIPLE BROWSING

A task can issue one or more STARTBR commands to initiate one or more
browse operations. EBach one must have a unique halfword binary value
specified in the REQID operand. This value is then specified in the
REQID operand of corresponding READNEXT commands.

There is no logical limit to the number of browse operations that may
be executed concurrently for the same data set, either from the same
task or many tasks. The only limitation is the availability of data
areas and buffers. This is a factor of the block length, record length,
degree of multitasking, and amount of dynamic storage allocated in the
CICS/VS partition, and number of VSAM strings specified for a VSAM data
set.

The multiple browse technique introduces a number of very useful
system design solutions. For example, an orders data set may contain
orders that are in sequence according to product number as placed from
several branches within a company. If it is desired to retrieve all
product orders from a specific branch, this can be achieved by issuing a
browse operation, starting the browse at the first product number
ordered from that branch. Subsequent READNEXT commands will retrieve
the next product ordered from the branch, until the end of all products
ordered from that branch is reached. At this time the browse operation
may be terminated by an ENDBR command.

However, if the product orders received from several branches are
reported using a terminal, this may imply that the orders data set
should be sorted into the sequence of branch number within product
number.

Generally, online sorting is impractical. Records should be
retrieved in the sequence of branch within product, while still
maintaining the orders data set in the sequence of produnct within
branch. This can be achieved by issuing multiple browse operations,
having each browse initiated from the first product order record from
each branch. Each browse operation in effect logically breaks up.the
orders data set into a number of separate order data sets, one for each
branch.

A READNEXT command can be issued for each branch browse operation to
retrieve the orders placed for the first product number in the small
logical data set for each branch. The second READNEXT issued for each
browse opsration then retrieves the next product order record for each
branch.

This can continue, retrieving all the information from each branch
relating to a specified product until the application program has
constructed an entire terminal page. At this time, the browse
operations for the products and branches contained on that terminal page
may be terminated by issuing an ENDBR command for each browse.

As previously stated, the technique of multiple browsing enables the
sequential retrieval of information in a sequence different from that in

42 CICS/VS System/Application Design Guide



which a data set is organized. This multiple browsing design technigue
may open up powerful data inquiry possibilities for online data sets.

SKIP SEQUENTIAL BROWSING (VSAM ONLY)

Skip sequential refers to the ability to sequentially browse through a
logical section of a data set, and then skip to another logical section
of a data set to continue the same browse operation. In effect, it
provides a direct access capability in the middle of a sequential
retrieval operation. The record identification of the next logical
section of the data set may be moved into the record identification
field set up in the program, and another READNEXT command can be issued.
This will position the browse to the new section of the data set, thus
effecting a skip sequential operation. This technique cannot be used
for DAM or ISAM data sets.

BROWSING BACKWARDS (VSAM ONLY)

The CICS/VS support of this VSAM function allows the user to browse
backwards through a VSAM file.

Once a browse operation against a VSAM data set has been initiated,
the next sequential record toward the beginning of the data set can be
requested by issuing a READPREV command.

The definition of the previous record depends on the type of browse
operation. For browses by key, the previous record is the one which has
a key which is next in descending order. If, however, the records have
identical (non—unique) keys, they are returned in the order in which
they were added to the data set.

Record Identification

As discussed above, data sets supported by CICS/VS file control can be
accessed either directly or sequentially. Records are accessed based
upon the record identification supplied by the application program. The
record identification utilized depends upon the particular data set
being accessed. There are two types of record identifications:

. Record key

° Record location

Chapter 2.3. CICS/VS File Control Facilities 43



RECORD KEY -

Record identification based upon a key is used to access ISAM data sets
and key-sequenced VSAM data sets. The key may be either a full key for
retrieval of a particular logical record, or a partial (generic) keay, to
indicate a logical point in a data set from which a browse operation is
to commence. This generic key contains sufficient information in the
high—order bytes of the key to uniguely identify the logical section of
the data set. The remaining low—order bytes of the key may be either
binary zeros or blanks. For key—sequenced VSAM, a truncated generic key
may be utilized, with the first byte of the key specifying (in binary)
the number of significant bytes in the generic key which follows.

For instance, the orders data set discussed above for browsing can
utilize a key containing a branch number in the high—order bytes of the
key, and specific product numbers in the low—order bytes of the key.

For example, orders for product number 1016 from branch number 12 may be
contained in a record which utilizes the key of 121016. The generic key
to enable the first product record to be accessed for branch number 12
would then be the generic key 120000 for ISAM, or 212 for VSAM. The "2®
indicates (in binary) that a generic key of length two bytes follows,
for branch number 12 in this example.

When a full record key is used to access an 1ISAM data set, it must
locate a record on that data set with the identical key; otherwise, an
error indication is returned to the application progranm.

However, when a full record key is used to access a key—sequenced
VSAM data set, any search for relevant VSAM records must be specified
as: .

° Full Key Equal — indicates that the key provided by the application
program is a full key, and failure to locate a record with this
exact key will result in an error imdication being returned to the
application program.

° Pull Key Greater or Equal — specifies that thes record key is a full
key, and that the first data record with a key equal to or greater
than the supplied record key is to be retrieved. This is
equivalent to using a generic key in ISAM.

° Generic Key Egual — indicates that the record key is a generic key
with a specified generic length. A record whose key is egual to
the supplied generic key for the number of bytes indicated is then
retrieved. If one cannot be found, a "no record found" condition
is returned to the program.

° Generic Key _Greater or Equal — indicates that a generic key is
provided, and the first data record with a key equal to or greater
than this generic key for the number of bytes indicated is to be
retrieved.

An additional advantage in the utilization of record keys is in the
addition of records. When new records are added to the data set, they
are inserted in sequence in the data set based upon their record key
value.

Relative Record Number_ (VSAM Only): This VSAM support allows users to
define a type of VSAM data set, called a Relative Record Data Set
(RRDS) , which can be accessed by a relative record number. In the case
of a RRDS, the key to a record is its relative record number, and access
is by this number only.

4y CICS/VS System/Application Design Guide



Alternate Indexes (VSAM Only): This VSAM support allous users to
construct and maintain alternate indexes to a data set thus permitting
access to it via multiple keys. The major difference with an
alternative index is that there can be several records in the data set
which have the same alternative key. The CICS/VS support enables the
usSer to access his data set via an altermative path and to handle
duplicate keys. The user should be aware that if the data set is going
to be updated then any other indexes may no longer be valid. Equally,
if he has defined his alternative indexes as part of an update group,
the several indexes will automatically be updated by VSAM. These
factors will affect performance.

There is a database integrity exposure in VSE when updating a path
(or paths) and the base dataset at the same time. The VSE Share options
cannot be used to provide such integrity for files accessed in the sane
partition.

Also if transactions update a path and the base dataset at the same
time CICS/VS logging will no longer guarantee data base integrity.
Logging will only function correctly if all updates are made via a
single path or via the base dataset.

It is strongly recommended that transactions get read—only access via
paths and perform all updates on the base dataset. Failure to do this
may resuit in loss of integrity of the database. also, it should be
noted that, under VSE, records retrieved by read-only access via a path
may be invalid if concurrent update activity is taking place, because
the path buffers are not refreshed when an update is performed on the
base data set.

Spanned Records (VSAM Only): CICS/VS does not support VSAH spanned
records.

Reusable Dataset (VSAM Only): This VSAH feature causes the contents of
the dataset to be deleted when the dataset is opened. When the reusable
dataset has been closed, the data in it can be accessed with another
File Control Table entry which is not specified as reusable.

RECORD LOCATION

To facilitate retrieval from DAM or VSAM data sets, records are
identified by their locations in the data set. VSAHM record
identification is based on relative byte address (RBA) within the data
set. In the case of DAM, the physical block (record) identification can
be on the basis of:

° Actual disk address (MBBCCHHR)
. Relative track and record within the data set
° Relative block number (for CICS/0S/VS only)

If a physical key is recorded for the physical record, it may be
appended to each of the record identifications detailed above. Ffigure
2.3—1 shows some representative record identification field formats.

DAM data sets with or without physical keys can be accessed. If a
physical key is recorded on disk preceding the data record, the record
identification can indicate the relative track within the data set, and

the key which is physically recorded with the data record to be
retrieved.

Chapter 2.3. CICS/VS File Control PFacilities 45



Both blocked and umnblocked DAM data sets are supported by CICS/VS
file control. 1In the case of blocked DAM data sets, additional
information may be provided to identify the logical record within the
physical block. This logical record identification immediately followus
the physical block identification (as detailed above) in the record
identification field provided by the application program. Logical
records may be selected from a physical block based upon:

. Record number within block
° Record key within block (as illustrated in Figure 2.3-2)

where the location of the record key within each logical record is
defined in the file control table.

CICs/VS file control uses this logical record number or key to
deblock the relevant logical record from the physical block and present
it to the application program.

For VSAM data sets, the record location utilized is a relative byte
address (RBA). VSAM data sets use this relative byte address to
identify the location within the entire data set of information (such as
a logical record) to be retrieved.

DEBLOCKING
PHYSICAL RECORD PHYSICAL KEY ARGUMENT COMMENTS
(BLOCK) LOCATION (IF PRESENT) _ (1F BLOCKED) .
Relative Block No. - Record No. ’
CICS/0S/VS Only
Relative Block No. Key Record Key
TTR - Record No.
TTR - Record Key Relative Track and
Record (binary)
TTR Key Record Key
TTTTTTRR - Record No.
TTTTTTRR - Relative Track and
Record Key Record (zoned decimal)
TTTTTTRR Key Record Key
MBBCCHHR - Record No.
MBBCCHHR - Record Key Actual Disk Address
Block Physical Key | Deblocking Format of Record
Reference (if present) Argument Identification Field

in Program

Figure 2.3-1. DAM Data Set Record Location

Initially, this appears to restrict the size of the data set.
However, the relative address is maintained in a fullword, enabling a

46 CICS/VS System/Application Design Guide



data set to be maintained, containing 2 raised to the power of 32 bytes.
This is squivalent to a data sct of approximately 43 billion bytes,
extending over more than forty—three 3330 disk drives.

Records which are written to an entry—sequenced VSAM data set are
never moved until the data set is reorganized. Any additions to the
data set are made at the end of the data set, and the relative byte
address by which that added record may be subsequently retrieved is
returned to the application program.

Using the relative byte address for record identification of a VSAHM
data set provides the following advantages:

o Operates equally well with fixed—length or variable-length records

° Provides rapid file access, with full rotational position semsing
support even when variable-—-length records are utilized

The record identification provided by an application program to
access a VSAM data set by RBA is a four-byte relative byte address.
This may be calculated using techniques similar to that used to
calculate a relative record number or relative block number for DAM data
sets, or the relative byte address may be stored as a pointer in
logically related records.

Indirect Access .

CICS/VS file control enables data bases to be coastructed. This is
achieved by the use of the indirect access feature of file control,
enabling various data sets to be constructed to identify logically
related records in other data sets. The indirect access feature
utilizes pointers from a record in the data set to logically related
records in other data sets. The pointers can contain the actual disk
address of a logically related record, the relative location of that
record in its data set, or the key of that record. This enables
identification and retrieval of information logically related to the
record being processed.

Indirect access is supported, at the CICS/VS command level interface,
for VSAM data sets only. Support for other access methods is provided
at the macro level; it is not described in this manual, but further
information is given in the Application Programmer'®s Reference_ Manual
(Macro level).

INDIRECT ACCESS APPLICATION EXAMPLES

FPigure 2.3-2 illustrates a product record in a product data set and the
supplier of that product through a supplier number. This supplier
number is used as a pointer to access a separate supplier data set to
obtain further information about the supplier of the product in
guestion. The supplier number in the product record becomes a pointer
to the supplier data set and can be indirectly accessed from the product
data set.

Chapter 2.3. CICS/VS File Control Facilities 47



Product Supplier

Data Set Data Set
Product Record Supplier Record
Product Supplier Supplier
No. No. No.
13425 8018 8018

Figure 2.3-2. Product Data Set Indirect Access

_Another example of indirect access is in an insurance policy
information system. 1In this case, a policy record in a policy data set
contains information :relating to the policyholder (for example, customer
number or name). If the customer data set is organized in customer name
sequence, the name may be used as a key to retrieve the customer recorad
relating to that particular policy. 1In this way, the customer name in
the policy record is used as a pointer for indirect access to further
customer details in the customer data set (see Figure 2.3-3).

Customer
Data Set

Policy
Data Set

Policy Record Customer Record
Policy | policyholder Policyholder
No.
8133462 | Smith, John A. Smith, John A.

FPigure 2.3-3. Policy Data Set Indirect Access

An indirectly accessed data set may also contain pointers to other
logically related records in other data sets. The customer record,
indirectly accessed from the policy record, may im turn have a field
which identifies that customer®s insurance agent. The identification of
this agent (agent number) may be used to access the related agent record
in an agent data set (see Figure 2.3-4).

48 CICs/VS System/Application Design Guide



Policy Customer Agent

Data Set Data Set Data Set
Policy Record Customer Record Agent Record
Policy . ‘ . | Agent Agent
No. Poticyholder Policyholder No. No.
8133462 | Smith, John A, Smith, John A, 68 68

Pigure 2.3-4. Indirect Access to Insurance Agent Data Set

Indirect Access Implementation

The CICS/VS file control indirect access feature enables fields in a
record to be utilized as pointers to logically related records in other
data sets. There is no limit to the number of indirect accesses to
other data sets which may be made through the use of these pointers.
Depending upon the type of data set, the pointer will be either a record
location or a record key.

The data set which contains a pointer field to a logically related
record in another data set is referred to as the index data set. The
logically related data set is referred to as the object data set. An
index data set may utilize several fields in a record to point to
logically related records in several object data sets. These indirectly
accessed object data sets may in turn utilize a field in their records
to point to logically related records in other data sets. These
original object data sets become index data sets for the n=xt level of
indirectly accessed data set.

INDIRECT ACCESS INITIATION

Indirect access enables a chain to be constructed through logically
related records in many different data sets. PFigure 2.3-5 illustrates a
parts data set, which may be organized in part name sequence. This data
set is accessed by means of a part name. The part name record is
utilized as an index to a part number record in the parts data set.

This part number record may in turn contain a supplier number utilized
as a pointer to the supplier data set. In turn, the supplier record may
contain a relative block address (RBA) pointing to an associated
accounts payable record for that supplier.

Chapter 2.3. CICS/VS File Contrbl Facilities 49




Accounts
Payable
Data Set

Supplier
Data Set

Parts
Data Set

Partname
Data Set

Partname Record Parts Record Supplier Record Accounts Payable

Acct Payable
Disk Addr Record
Bolt, 2 Inch 6173 6173 82 82 RBA

Parts Name Part No. Part No. Supplier No. Supplier No.

Figure 2.3-5. 1Indirect Access Chain in a Parts Data Base

To initiate an indirect access retrieval, the application program
issues a READ command indicating the name of the data set from which a
logically related record is to be retrieved. In the example illustrated
in Figure 2.3-5, the application program may provide a part name key and
specify that a record is to be retrieved from the supplier data set, to
obtain further information about the supplier of that part name. This
is shown in Figure 2.3-6.

Application Program

[ ot 2inch |

(:;CDKEY \\\\\\\\\\\\

EXEC CICS READ
DATASET(‘SUPPLIER')
RIDFLD(RECDKEY)

Partname
Data Set

Parts

Data Set m

K| ~————

="

Process Supplier

Supplier
Data Set

1

Record Accounts
Payable
Supplier . Data Set
No. Supplier

Record

82

Pigure 2.3-6. Indirect Access Operation

CIcs/vs file control automatically retrieves the part name record for
the part name key provided by the program, extracts the part number, and
uses it as a key to retrieve the part number record from the parts data
set. Also, the supplier number is extracted from that parts record and
is used as a key by file control to retrieve the related supplier record
from the supplier data set. This supplier record is the record

50 CICS/VS System/Application Design Guide



requested by the application program and is returmed to it for
processing.

In one READ request, CICS/VS file control follows the necessary
indirect access chain, accessing as many data sets as required, to
retrieve the record requested and present it to the application program.
However, the application program is not aware of the number of data sets
indirectly accessed. It appears to the program as if the supplier data
set in the above example is in fact organized in part name sequence,
rather than in supplier number sequence.

By following an indirect access chain in this way, file control must
be aware of the logical relationship between data sets. This is

achieved at system generation when the file control table (FCT) is
generated.

SPECIFICATION OF INDIRECT ACCESS LOGICAL RELATIONSHIPS

As characteristics of each data set are specified in the FCT entry for
that data set during PCT generation, an indirect access relationship
between that data set and another data set may be specified.
Information required to define an indirect access relationship is:

. Location of the field in the record to be used as a pointer to the
indirectly accessed data set

° Length of that field or pointer

L Name of the object data set

FILE CONTROL TABLE (FCT)

DATASET=PARTNAME DATA SET SPECIFICATIONS
OBJECT D/S=PARTNO KEY LOC=40 | KEY LNG=5
k DATASET=PARTNO DATA SET SPECIFICATIONS PARTNO

OBJECT D/S=SUPPLIER | KEY LOC=32 | KEY LGN=3 DATA SET

'SUPPLIER

DATASET=SUPPLIER DATA SET SPECIFICATIONS DATA SET

OBJECT D/S=ACCTPAY KEY LOC=25.| KEY LNG=3

ACCTPAY

DATASET=ACCTPAY DATA SET SPECIFICATIONS > DATA SET

Pigure 2.3-7. Specification of Indirect Access Logical Relationships

Chapter 2.3. CICS/VS File Control Pacilities 51



All fields in the record which are to be utilized as pointers to
indirectly accessed data sets are identified, together with the data
sets to which they refer, as shown in Pigure 2.3-7. This information
defines the data set in question as an index data set and identifies the
indirectly accessed data set as an object data set. These data sets,
when they are subsequently defined in the FCT, are also identified as
index data sets which refer to other object data sets. This is done by
defining the record fields which are to be used as pointers in those
data sets, and the names of the object data sets to which they refer.

A chain of logically related data sets is defined in the PCT during
system generation. When an application program requests indirect access
retrieval, file control identifies a chain on which the objsct data is
located. It then retrieves each related record in the data sets on the
identified chain in the sequence specified by the FCT, until the related
record in the object data set is retrieved. It is then presented to the
application program for processing.

Indirect access retrieval enables data bases to be constructed
utilizing logically related information in a number of data sets. One
READ command causes all the required indirect accesses to be carried out
until the requested record is retrieved for presentation to the task.
This indirect accessing is carried out asynchronously, enabling other
concurrently executing tasks to continue processing.

UPDATING INDIRECTLY ACCESSED RECORDS

Indirect access retrieval may be carried out with the intention of
subsequently updating the object data set record, if required. This is
indicated by the application program specifying that this indirect
access retrieval is also part of an update operation. When the object
record is retrieved, exclusive control is placed on the VSAM control
interval. The application program issues either a REWRITE command to
write the updated record back, or an UNLOCK command to indicate that the
record is not to be updated, but that exclusive control is to be
released.

DUPLICATES DATA SET

In following a direct access chain through several data sets, the
pointer field in an index data set record can identify a number of
separate records in its relevant object data set. As shown in Figure
2.3-4, a policy record identifies the policyholder by name. The
customer data set in this case may be organized in customer name
sequence, with the name used as a key to access relevant records.
However, there may be several customers with the same name, such as
Jones. To develop a unique key for each policyholder with the name of
Jones, additional information covering first and second names, birth
date, or address must be added to the key. However, adding extra
information to the record key reduces the amount of disk storage
available, and wastes disk storage when additional identifying
information is not used.

To overcome this problem, CICS/VS file control provides an additional
capability with the indirect access feature, to enable duplicate records
to be identified. This is achieved by utilizing the first byte of a
pointer field in an index data set record. This first byte contains a
unigque code which cannot otherwise occur as part of the key. In the
case of customer Jones, the first byte of the customer name field in the

52 CICS/VS System/Application Design Guide



policy record can contain a unique code, for example, hexadecimal FF, as
shown in Figure 2.3-8. This is immediately followed by the customer
name (Jones in this case). The hexadecimal code FF identifies this as a
pointer to several records with the same key. The key is utilized to
access a separate duplicates data set, rather than the normal object
data set. In this example, the key Jones is used to access a "duplicate
customer” data set that contains one record with the name key of Jones.
This duplicate record may in turn contain information enabling further
identification of customers with the name Jones.

>

Policy )

Data Customer Agent

Set Data Set Data Set
Policy Record

Pol. No. | Flag Policyholder
51555662 | ‘FF’ JONES, AB

Customer
Duplicate
Data Set

Duplicates Flag

Duplicates Record

Name First Code First Code
—1JONES, AB ALLAN B| JONES1[ ALF B | JONES2

Duplicates Key Coded Keys

Figure 2.3-8. Duplicates Data Set for Indirect Access

DUPLICATES DATA SET IMPLEMENTATION

The definition of a duplicates data set associated with a particular
index data set is specified in the PCT as part of the index data set FCT
entry. This indirect access PCT entry identifies the location and
length of the pointer field in the index record and the name of the
object data set. In addition, the user—specified duplicates code in the
first byte of the pointer is defined, together with the name of the
duplicates data set.

Even though an indirect access chain is followed through several data
sets, the first byte of the pointer field to be used in a record is
examined by file control to determine whether it is a duplicates code
defined for that index data set. If it is, the duplicates data set is
accessed using that pointer, instead of the defined object data set for

Chapter 2.3. CICS/VS File Control Facilities 53



that index record. The indirect access chain is broken at that point,
and the duplicates record is returned to a user—supplied duplicates
routine in the application program for further processing, instead of
returning the requested object data set record. The function of the
user-supplied duplicates routine is to examine the information presented
in that duplicates record, and uniquely identify the pointer to be used
to retrieve the next record in the indirect access chain. This
identification can be made either by the application program itself, or
by a request for further information from the terminal operator if
necessary (see Figure 2.3-8).

The duplicates data set feature becomes a powerful capability,
enabling unique record identification problems to be resolved so that an
indirect access chain can be maintained through the various logically
related data sets.

ADDITIONS TO INDIRECT ACCESS DATA SEBTS

Records can be retrieved using the indirect access data set, either for
processing only (READ), or for subsequent update (READ with UPDATE).

The updated object record can be written back with a REWRITE command, or
ignored by issuing an UNLOCK command.

However, when adding new records to data sets which are indirectly
accessed, care must be exercised to ensure that the indirect access
chains are correctly maintained.

Records can be added to data sets which are part of an indirect
chain, using the procedures described in the topic "Direct Access."
When constructing new records, the indirect access pointer fields must
be correctly positioned, and must contain the correct information for
record identification to access the object data set referenced by that
particular index pointer.

The order in which new records are added to indirect data sets is
significant, depending upon vhether a record key or a record location
pointer is utilized. If all the indirect access pointers are record key
pointers (for example, to be used for accessing key-sequenced VSAM data
sets), the order in which additions should be made to the indirect data
sets is not particularly significant. However, if some or all of the
pointers are record location fields for use with VSAM data sets, the
order becomes significant, because the actual locations of the added
records are not known until the addition is completed.

54 CICS/VS System/Application Design Guide



INPUT PROCESSING OUTPUT

Lowest Record
To Add
1 User Program Adds Record To Lowest Level N
> Data Set In Indirect Access Chan, Furst. g Lowest
‘ Level
tow:” Data Set
eve
Data Set 2 CICS/VS Returns Locatior Of Added Record Record
To Program. Location
3. Program Inserts Record Location Of Added S
Higher Record Record As Pownter In Record To Be Added
To Add To Next Higher Data Set
Higher
[_;?,ﬂ > 4. Program Adds Record To Next Higher Leve! > :hghlev
Data Set In Indirect Access Chain. eve
Data Set ’ Data Set
Record
Location
>
Highest Record 5. CICS/VS Returns Record Location.
To Add
' 6. Program Inserts This in Record To Be
Added To Highest Level Data Set.
) > Highest
Highest >| 7. Program Adds Record To Highest Level Level
Level Dsta Set. Data Set
Data Set
New Rec
—_—

Figure 2.3-9. Addition of Records to Indirect Accessed Data Base

Additions to an entry—sequenced VSAM data set are made at the end of
the data set, as discussed under the topic "Direct Access."™ The record
location (RBA) of the added record is returned to the application
program. This RBA may be utilized as a pointer from an index record to
that new added record. Figure 2.3-9 shows how indirect access chains
for entry—sequenced VSAM data sets may be built up. Records are added
at the lowest indirect access level first, and the RBA pointers returned
to the application program are utilized as indirect access pointers in
the next higher indirect access level. This progresses upward through
successively higher indirect access levels until the highest indirect
access level record has been added to its associated data set.

INDIRECT ACCESS CHAIN INTEGRITY

Special consideration should be given to the possibility of systenm
failure during the addition of an indirect access chain. If a systen
failure occurs before all the logically related records are added to
their relevant data sets, an incomplete direct access chain will result.
Accordingly, techniques discussed in Part 5 should be utilized for
journaling any indirect access additions, to enable incomplete indirect
access chains to be backed out on restart if necessary.

Normally, new indirect access chain records should be added offline

to the data sets. However, adding these indirect access record chains
online using the preceding technique is required to reduce the

Chapter 2.3. CICS/VS File Control Pacilities 55



vulnerability of those data sets to system failure, and it is advisable
to ensure that only one direct access chain be added at a time. This
may be achieved by all application programs that generate new indirect
access chains enqueuing on the same single user resource prior to
commencing an indirect access chain addition. On successful completion
of the entire indirect access chain addition, the application program
can dequeue itself from the single user resource. By utilizing CICS/VS
ENQ and DEQ commands, only one task at a time will be able to carry out
an indirect access chain addition. While this may have an effect on
online performance, depending upon the frequency of adding new chains,
it will result in a definite improvement in the integrity and safety of
the various data sets in the event of a system failure.

Seginented Records

The CICS/VS file control segmented record feature enables data sets to
be constructed for efficient uses on disk and dynamic storage space,
including those data sets containing a considerable amount of variable-—
length information and which have various fields that are either present
or absent in specific records. )

The segmented record feature considers a record to be comprised of a
number of segments — each segment containing one or more related fields.
For example, in a customer data set (see Figure 2.3-10), the customer
name may be defined as one segment and each address line as another
segment. A number of customer account history fields containing the
balance outstanding (current, one amonth, two months, three months, and
over three months) may comprise another single segment.

Postal Address )

Customer Credit Customer - - - - —
Number Limit Name Line 1 Line 2 Line 3 Line 4 Line

6 bytes 6 bytes 20 bytes |© 20 bytes 20 bytes 20 bytes 20 bytes 20 bytes

Ship-To-Address Account History — Arrears
Customer -
Line 2 Line 3 Line 4 History Current One Two Three Over Three
Balance Month Months Months | Months
20 bytes| 20 bytes| 20 bytes 60 bytes 6 bytes 6 bytes | 6 bytes 6 bytes 6 bytes

© Record Format: Fixed-Length
® Record Length: 282 Bytes

Figure 2.3-10. Typical Customer Record Format

Another example of segmented records is shown in Figure 2.3-11, which
illustrates a savings account data set used in the banking industry.
The account master information may be defined as one segment. Each
deposit or withdrawal transaction made previously against the account
may also be defined as a segment.

56 CICS/VS System/Application Design Guide



Account Master
Information

Account} Account| Current | Other Passbook |Passbook|No Book Passb(dPassbook No Bock [|Passbook] Unused

Previous Transactions ) Against This Account

Number | Type Balance | Account|Withdrawal|Deposit |Deposit [With Withdrawal|Withdrawal[Deposit
Details

Figure 2.3-1%1. Typical Savings Account Record Format

SEGMENT DESIGN

Generally, fields are grouped within one segment if they have sone
similar relationship, such as similar information which will be operated
upon together by various programs, or fields which are either all
present or all absent for a particular record, or single fields which
may contain variable-length information such as name or address lines.

A segment may contain any number of fields up to a total segment
length of 255 pytes. Segments may be further defined as either fixed-—
length segments, or variable-—length segments whosz length is indicated
by a one-byte binary field at the start of the segment.

Consider the storage of a customer pame and address in the record
format shown in Figure 2.3-10. How many bytes should be allocated for
the name field? Should each name field be allocated 20 bytes or 30
bytes or 15 bytes? Depending upon the characteristics of various
customer names, a 30-byte name field could contain every possible name,
whereas a 20-byte name field may contain 95% of customer names, and a
15-byte name field only 80% of names. Using the 30-byte name field will
avoid the nscessity of abbreviating or reducing the lengths of names, as
would be necessary using 20-byte or 15-byte fields. However, the great
majority of names may be less than 15 bytes. In this case, 15 bytes or
more of disk space in each customer record is wasted if a 30-byte name
field is allocated.

How many bytes should be allocated to esach address line? Allocation
of 30 bytes for each address line may enable every possible address line
to be stored in full, while 20-byte or 15-byte address lines may require
some form of abbreviation. Again, the use of 30-byte address line
fields may result in wasting approximately 15 bytes or more per address
line, because the majority of address lines may fit within 15 bytes.

~Another consideration is the nuaber of address lines to allocate for
a customer record. Many customer addresses have two or three address
lines, while some may require six or more address lines. Should six
address lines be allocated for each customer record? Should instead
three address lines be allocated, reducing longer addresses to three
lines, but wasting an address line field in the case of a two-line
address?

The segmented record feature enables record format definition
problems such as these to be easily resolved. The customer name and
each customer address line may be defined as separate segments.
Purthermore, they may be defined as variable-—length segments such that
for one additional length byte at the start of each segment, the exact
length of that segment can be indicated. Thus, a five—character

Chapter 2.3. CICS/VS File Control Facilities 57



customer name would occupy five bytes plus one byte for the length
indication — a total of six bytes. However, a 25-byte customer name
would occupy a total of 25 plus one or 26 bytes, while a 14—character
name would occupy a total of 15 bytes. Only the amount of storage
required for each individual name need be allocated, for more efficient
disk storage utilization.

Figure 2.3-12 shows that each address line segment may be defined as
variable—-length, with the actual length of each address line occupying
only that many bytes, together with an additional byte per address line
as a length indication. Names and addresses need not be abbreviated,
but may occupy as little or as much disk storage as required.

::/::::18 Root Segment Customer Postal Address Segments Account History
Length Name . Segment
4 Bytes Segment Line 1 Line 2 Line 3
4 bytes 15 bytes 12 bytes 13 bytes 9 bytes 7 bytes 30 bytes
/ ™ ~  — -~ o "\ P

Account History

Varible | Customer Credit Segment }. | Customer |, | Postal « | Postal » | Postal Arrears (Months)

Length | Number Limit Presence |L | Name L{ Address |L| Address |L| Address

Control Indicators Line 1 Line 2 Line 3 Cur.l1 121 3)0ver
LLbB Bal. 3
* L = 1-Byte Length Field For ® Record Format: Variable-Length

Variable-Length Segments ® Length Of This

**LLbH = 4-Byte Variable-Length Customer Record: 90 Bytes

Record Control ® Original Record Length

If Not Segmented: 282 Bytes

Figure 2.3—12. Segmented Customer Record Format

PRESENCE OR ABSENCE OF SEGMENTS

A further advantage of variable-length segments is that segments may be
defined as being either present or absent on an individual record basis.
In Figure 2.3-11, eight address line segments are defined for each
customer record. 'However, if only three address lines are required,
only three address line segments need be present for that record (see
Figure 2.3-12) . The remaining five possible address ‘line segments are
not present, and do not occupy any disk space.

ROOT SEGMENT

Fields which are always present in every record, such as a customer
number, credit rating, and other required information for each record,
are generally grouped together into one segment. This is called the
root segment and precedes all other segments in the record. This
segment is always present in a segmented record.

58 CICS/VS System/Application Design Guide




SEGHENT INDICATOR FLAGS

The presence or absence of other segments in the record is indicated by
segment indicator flags. These indicator flags are contained within the
root segment, and may comprise either bit indicators or halfword
indicators.

Bit indicators use a separate bit to indicate the presence or absence
of each specific segment. If the segment associated with a bit is
present, that bit is turned on. However if the segment associated with
the bit is absent, that bit is turned off.

Halfword indicators utilize two bytes to indicate the presence or
absence of each segment. The two bytes are used as a zero/nonzero
switch. If the two bytes are nonzero, the associated segment is
present; if the two bytes are binary zero, the associated segment is
absent.

COBOL programs must use halfword indicators.

Figure 2.3-18 illustrates the use of segment indicator flags, and
relates to the customer record shown in Figure 2.3-12.

SEGMENT DEFINITIONS IN FCT

While it is the responsibility of the system programmer to specify
segments in the FCT, it is important that the system designer have a
general understanding of how segments are defined, to better understand
the operation of the CICS/VS segmented record feature. This will enable
him to take advantage of facilities offered by this feature when
initially designing the various data bases which will be utilized by the
application.

Either bit indicators or halfword indicators may be used with a
particular segmented record data set, but not both. The selected type
of indicators is specified in the file control table (PCT) entry for
that segmented record data set. As many bytes as required to contain
all of the necessary segment indicator flags (up to a maximum of 99
segment flags) must be defined within the root segment. The starting
location, and length in bytes, of the segment indicator flags field in
the root segment is also defined in the PCT entry for a segmented racord
data set. See Figure 2.3-13.

Bach separate segment is then defined in the PCT entry (see Figure
2.3-14). Every segment is allocated a segment name up to 8 characters
long, and is specified as a fixed-length segment or a variable—length
seqment of a defined maximum length. In addition, any required boundary
alignment (byte, halfword, fullword, or doubleword) necessary when the
segment is read into storage is identified. As each segment is
presented to the application program for processing, the segment is
aligned on the specified boundary. However, the extra bytes required to
ensure specific boundary alignment are not recorded on disk; they are
inserted when the record has been read from disk and before the segment
is passed to the application program.

An application program may utilize several segments in a record for
processing. These segments may be grouped together and called a segment
set. By identifying a segment set by name, all the segments comprising
that segment set are also identified.

Chapter 2.3. éICS/VS File Control Pacilities 59



Consider a customer data set in the utilities industry, as shown in
Figure 2.3—15. An application program which requires access only to the
customer name and address may request a segment set comprised only of
the customer name segment and each of the postal address line segments.
This may be uniquely identified as a segment set which is given a
specific name, such as NAMEADDR.

Variable
Format Root Segment Customer Postal Address Segments Account History
Length Name Segment
4 Bytes Segment Line 1 Line 2 Line 3
4 bytes 15 llytes 12 bytes 13 bytes 9 bytes 7 bytes 30 llytes
/ .~  m— o A ——  m—— e, #*

‘ Account History
Varible f Customer | Credit | Segment |.| Customer|,| Postal |« | Postal » | Postal Arrears (Months)
Length | Number Limit Presence {L{ Name Ll Address JiL| Address |L{| Address
Control Indicators Line 1 Line 2 Line3 Jcur. |12} 3]0ver
LLBb Bal. 3

® Record Format: Variable-Length
® Length Of This Customer
Record: 90 Bytes
® Original Record Length If
Not Segmented: 282 Bytes
* L = 1-Byte Length Field For
Variable-Length Segments
** LLBH = 4-Byte Variable-Length
Record Control
Segment Indicator Flags
Flag 1,1,1,1 0
NumberLl|1|°|°|°| ot Il L O IO O Lo |

12 34 56 78 9 1011 12 13 14 15 16 1718 19 20 21 22 23 24

® Segment Indicator Flags Indicate The Presence Or Absence Of Segments.

® 1 Bit or 2 Bytes May Be Used To Indicate The Presence Or Absence Of Each Segment. Here, Bit Indicators
Are Used.

® Flag 1 Refers To The First Segment After The Root, That Is, Customer Name. Flag 2 Refers To Postal Address
Line 1, Flag 3 Is Postal Address Line 2, And So On, Up To Flag 11, Which Is Account History.

© A Bit ON Indicates The Relevant Segment Is Present; A Bit OFF Indicates The Segment Is Absent.

® The Example Here Shows That Customer Name, A 3-Line Postal Address, And Account History Are Present In
This Particular Customer Record.

® Bits 12 Through 26, In This Example, Are Not Used. They Have Been Allocated To Enable Another 13 Segments To Be
Added To This Record Later, For Other Applications, Without Necessitating Any Modification To Existing Application
Programs.

Figure 2.3~13. Segment Indicator Flags

60 CICS/v¥S System/Application Design Guide



6 bytes 6 bytes 20 bytes 60 bytes 6 bytes
e —
-~ ———
Postal Address Ship-To-Address Account History — Arrears
Customer | Credit Customer Customer o
Number Limit Name . . . . . . . R History Current | One Two Three ver
Line 1 { Line 2 { Line 3 | Line 4 { Line 1 | Line 2 | Line 3] Line 4 Balance | Month | Months | Months ;hreteh
onths

Data Set = Customer

File Control Table (FCT)

DATASET=CUSTOMER DATA SET SPECS
SEGMENT=ROOT LENGTH=15 BITINDICS ST