- © . File Wo. 360 (Mod.20)-21
.. OO, GC26 1602-5 CPS

M Systems Reference Library

IBM System/360 Model 20
Card Programming Support
Basic Assembler Language
This reference publication provides programmers with

the information required to write programs in the Basic
Assembler language of the IBM System/360 Model 20.

s

The Basic Assembler language provides the user with

a convenient means of making full use of the operation-
al capabilities of the Model 20. Programs written in
the Basic Assembler language (source programs) are
translated into machine-language by means of the Basic
Assembler program.

The description of the language includes rules for
writing source programs and explanations of the
instructions for controlling the Basic Assembler pro-
gram. In addition, this publication includes a number
of tables for convenient reference and conversion.
Time and storage requirements are listed in a separate
section. An extensive sample program is given to
illustrate Basic Assembler language programming.

The description of the card and tape versions of the
Basic Assembler program is confined to the aspects that
affect the planning and writing of source programs.

Readers of this publication should be thoroughly
familiar with the contents of the SRL publication IBM
System/360 Model 20, Functional Characteristics, Order
No. GA26-5847. Titles and abstracts of other Model 20
SRL publications are contained in the publication IBM
System/360 Model 20, Bibliography, Order No.
GA26-3565.

Seventh Edition (May, 1969; reprinted January, 1971)

This is a reprint of GC26-3602-5 incorporatiﬁg changes issued
in Technical Newsletter GN33-8612, dated April 6, 1970.

This edition applies to the following program version and
modification levels of IBM System/360 Model 20, Card Program-
ming Support, Basic Assembler, and to all subsequent versions
and modifications until otherwise indicated in new editions
and Technical Newsletters.,

Program Number Version/Modification

360T-AS-001 3/7
360T-AS-110 2/0
360U-AS5-130 2/2
360U-A5-153 2/0

Changes are continually made to the information herein;
before using this publication in connection with the opera-
tion of IBM systems, consult the latest SRL Newsletter, Order
No. GN20-0361, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for reader's comments is provided at the back of this
.publication. If the form has been removed, comments may be
addressed to IBM Laboratory, Publications Department, P.O.
Box 24, Uithoorn, Netherlands.)

© Copyright International Business Machines Corporation 1965,1966,1967,1969

Prerequisite to using this publication is a
thorough knowledge of IBM System/360 Model
20 machine operations, particularly storage
addressing, data formats, and machine
instruction formats and functions. It is
assumed that the reader has experience with
programming concepts and techniques or has
completed basic courses of instruction in
these areas.

Publications closely related to this one
are:

IBM System/360 Model 20:

Functional Characteristics,
A26-5847.

Form

Card Programming_Support, Basic Assem-
bler (Card), Operating Procedures, Form
C26-3802.

PREFACE

Card _Programming Support, Basic Assemn-
bler (Tape) , Operating Procedures, Form
C24-9011.

Card_Programming_Support, Input/Output
Control System, Form C26-3603.

Input/Output Control System for_ the_ Com- .
munications Adapter, Form C26-3606.

Input/Output Control System for the
Binary Synchronous Communications_ Adapt-
er, Form C33-4001.

Card_Programming Support, Basic Utility
Programs, Functions_and Operating Proce-
dures, Form C26-3604.

Titles and abstracts of other Model 20 SRL
publications are contained in the IBM
System/360 Mpdel 20 Bibliography, Form

A26-3565.

~a

CONTENTS

INTRODUCTION . . ¢ ¢ o ¢ ¢ o ¢ o o o =«
Definitions <
Basic Assembler Language Statements
BASIC ASSEMBLER LANGUAGE FEATURES .
Minimum System Configuration
Maximum System Configuration
Language Compatibility

CHARACTERISTICS OF THE BASIC ASSEMBLER
LANGUAGE + ¢ v o ¢ 4 4 o« o o o o o o =
Coding Conventions
Statement Formats and Components . .
The Langdage Structure
The Character Set
Self-Defining Terms
Symbols . ¢ ¢ . ¢ 4 4 4 o e e s e .
EXPLressions .« ¢ ¢ ¢ ¢ ¢ o o « o o &
Location Counter
Assigned Addresses

FUNCTIONS OF THE ASSEMBLER LANGUAGE .
Storage Addresses « .+ .+ . . .
Effective Addressing . « « « « « .+
Symbolic (Implied) Addressing . . .
Explicit Addressing . . .« « « « . .
Absolute (Direct) Addressing
General and Pseudo-Registers
Base Registers « ¢« &« ¢« ¢« « o .
Using -- Use Base Register . . .« .
BASR -- BRANCH and STORE Reglster .
DROP -- RELEASE Rase Register . . .

ABSOLUTE AND RELOCATABLE PROGRAMMING .

PROGRAM LINKING . ¢ ¢ & o o o o « » =
Sample Program . « . « « « =« o o o =

DEFINITION INSTRUCTIONS .+ v v o o o @
EQU —-- Equate Symbol
DC -- Define Constant
DS -- Define Storage « « « « o o« o+ o

BASIC ASSEMBLER CONTROL INSTRUCTIONS .

START -- Start Program
END -- End.of Program <« o+ .
ORG -- Reset Location Counter . . .

INPUT/OUTPUT INSTRUCTIONS « .

XI0 -- Execute Input/Output
CIO -- Control Input/Output ., .
TIOB -- Test Input/Output and Branch

Sequence of I/0 Instructions
Input/Output Macre Instructions . . .
I/0 Routines -- Including Interrupts .

MACHINE-INSTRUCTION STATEMENTS
Machine-Instruction Mnemonic Codes . .
Instruction Formats . . « o o o o o &
RR Format s e e s e e e » o s e e o
RX Format .« o o ¢ o o o o o o o o &

®JoOonn N

SI Format . . ¢ + o 4 o ¢ o o « o « o 47

SS Format . ¢ ¢ o o 4 ¢ o o o+ o« « o o U8
Types of Machine Operations U9
Binary Arithmetic U9
Instructions for Binary Arlthmetlc . . 51
Decimal Arithmetic 53
Instructions for Decimal Arithmetic . 55

Non-Arithmetic Operations 61
Instructions for Non-Arithmetic

Operations . . . ¢ ¢« ¢ ¢ ¢ o « o o« « o 62
Branching e s e« « s « o . 69
Instructions for Branch Operations . . 70

THE BASIC ASSEMBLER PROGRAM 72
Basic Assembler (Card Versions) 72
Basic Assembler (Tape Versions) 73

DIAGNOSTIC MESSAGES . . « « « « « . o . T4
Loading Object Programs « « « . 74

PERFORMANCE DATA ¢ « + « o« o« & o 15

Main Storage Requirements 15
Time Requirements -- Card Ver51on « « 75
Time Requirements -- Tape Version . . 75

WRITING A PROGRAM IN BASIC ASSEMBLER
LANGUAGE e o e o s e+ e o o o o 16
Stating the Problem e s e s e o e « s« . 16
Writing the Source Program 76
The Flowchart” 76
Initializing the Progranm
(STMT1-STMT3) . & & &« o ¢« o« o o« « « & 16
Data Constants and Work Areas
(STMTY4-STMT15) .« .« « + « . . e e . o 17
Program Routine (STMT16- STMT2H) . <. .. 18
Output (STMT25-STMT35) . . . « « « . . 79
Program End (STMT36) . . « « « « « « . 80
Assembling the Source Program 80
Control Card . . . « « ¢« ¢« ¢« « « « « . 80
Diagnostic Ruu v« &« ¢« « ¢« ¢ ¢« « « « « o 80

APPENDIX A. SUMPMRY OF BASIC ASSEMBLER
INSTRUCTIONS o« o & ¢ o ¢ o o o o o « o o 82

APPENDIX B. SUMMARY OF
MACHINE-INSTRUCTIONS . . . « +. . . « o o B3

APPENDIX C. SUMMARY OF INPUT/OUTPUT
INSTRUCTIONS ¢ & o ¢ o o o « o « o« « « . 84

APPENDIX D. SUMMARY OF DIAGNOSTIC
MESSAGES ¢ ¢« ¢ « « o o « « « o o« « = o o 86

APPENDIX E. CONDITION CODES 88
APPENDIX F. CHARACTER CODES 89

APPENDIX G. HEXADECIMAL-DECIMAL NUMBER
CONVERSION TABLE . +« « ¢ « « « + o o « « 93

APPENDIX H. GLOSSRARY . . «. . « . « . . . 99

INDEX '« & ¢« 4 « v o 4 o o « & o o« « . 104

C

Computer programs may be expressed either
in machine language, in other words, lan-
guage directly interpreted by the computer,
or in a symbolic language, which is more
meaningful to the programmer. The symbolic
language, however, must be translated into
machine language before the computer can
execute the program. This function is
accomplished by an associated processing
progranm,

Of the various symbolic programming lan-
guages, Assembler languages are closest to
machine language in form and content.

The Basic Assembler language discussed
in this manual is a symbolic progranmming
language for the IRM System/360 Model 20.
It enables the programmer to use all Model
20 machine functions, as if he were coding
in Model 20 machine language.

The Basic Assembler program translates
or processes programs written in Basic
Assembler language into machine language
for execution by the computer. The progranm
written in the Basic Assembler language
used as input to the Basic Assembler pro-
gram is called the source_program; the
machine-language program produced as output
from the Basic Assembler program is called
the object program. The translation or
processing procedure performed by the Basic
Assembler program to produce the object
program is called assembling or assembly.

Four versions of the Basic Assembler
program are availahle:

a. Two card versions. These are two-pass
programs for a Model 20 system that
includes only card input/output
devices. One of the versions permits
the assembly of the macro instructions
associated with the Input/Output Con-
trol System for the Binary Synchronous
Communications Adapter (BSCA IOCS).

b. Two tape versions. These versions
differ from the card versions by being
one-pass programs and by using magnetic
tape as an intermediate storage mediunm,
thus reducing card-handling and assem-

bly tinme.
Note: The CPS Input/Output Control System
(IOCS) routines can be assembled by means
of either version.

INTRODUCTION

DEFINITIONS

Terms used in this publication are defined

BASIC ASSEMBLER LANGUAGE STATEMENTS

Program statements (source statements)
written in Basic Assembler language may
consist of: a name to identify the state-
ment; a s i i monic
to identify the function the statement
represents; one or more items called
operands, to designate the data or storage
locations used in the operation; and
comments.

Programs written in Basic Assembler lan-
guage may consist of up to five types of
instructions: definition instructions

rogram linkin tructions, Basic Assem-
1NSTLUCL1O (lncluding IBM-supplile /0

macro instructions), and machine _j
tions. There are predefined mnemonic codes

TOT™ a1l instructions in the Basic Assembler

language.

Definition instructions are_used to
reserve sto to define constants, and
to equate symbols to the attributes of an

expression.

Program linking instructions are used to
Link, j IQipbmtkocution.

NOAIRSTIN W OR M- A BN 1R W S, & =40

Basic Assembler control instructions are
used to begin assembly, end assembly, angd.
Set the locatiop counter.

Input/output instructions designate the
units used as..4Q. devices, and contrgl

thelr o tlad. The use of IOCS macro
instructions saves programming time because
it relieves the user of having to code,
test, and provide linkages to his own I/0
routines.

Machine instructions direct the computer
to execute certain operations. The Basic
Assembler produces an equivalent internal
machine instruction in the object program
from each machine instruction in the source
program.

Introduction 5

BASIC ASSEMBLER LANGUAGE FEATURES

Variety in Data Representation

Decimal, hexadecimal, or character repre-
sentation of machine-language binary values
may be employed by the programmer in writ-
ing source statements. The programmer
selects the representation best suited to
his purpose.

Base Register Address_Calculation

The Fodel 20 Basic Assembler language pro-
vides for two methods of addressing:

1. The address may be specified as a dis-
placement plus a base register the con-
tents of which are added to the displa-
cement. The base register may be one
of the general registers 8 through 15
or one of the pseudo base registers 0
through 3. (If a Submodel 5 is used,
pseudo registers 0-7 are available.
However, 0-3 are the only pseudo regis-
ters recognized in CPS progranms.)

a. When using a general register, the
register contents can be controlled
by the programmer.

b. When using a pseudo base register,
the register contents are assumed
to be fixed (i.e., 0, 4096, 8192,
and 12288). This corresponds to
what is termed direct addressing in
the Model 7?0 SRL publication rglc-
tional Characteristics, Form
A26-5847.

2. The address may be specified symbolic-
ally without the use of a base regis-
ter. In this case, the Basic Assembler
assumes the clerical burden of comput-
ing storage locations in terms of a
base address and a displacement,

-
N

Relocatability \

The object programs produced by the Basic
Assembler may be in a format enabling relo-
cation from the originally assigned storage
area to any other suitable area.

Program_Linking

The linking facilities of the Basic Assem-
bler language and program allow symbols to
be defined in one assembly and referred to
in another, thus effecting a link between
separately assembled programs. This per-
mits reference to Aata and/or transfer of
control between programs. A discussion of
linking is contained under Program Linking.

Program Listings

A listing of the source-program statements
and the resulting object-program statements
is produced by the Basic Assembler for each
source program it assembles. The program-
mer can partly control the form and con-
tents of the listing.

Error_Indications

As a source program is assembled, it .is
analyzed for actual or potential errors in
the use of the Basic Assembler language.
Detected errors are indicated in the pro-
gram listing.

MINIMUM SYSTEM CONFIGURATION

The minimum system configuration for
assembling and executing Basic Assembler
programs is as follows. The configuration
applies to all versions of the program
except where indicated.

Submodel 2

e An IBM 2020 Central Processing Unit,
Model B2 for the normal version, or C2
for the BSCA version (4096 or 8192 bytes
of main storage);

e one of the following card units:
IBM 2560 Multi-Function Card Machine,
Model A1,
IBM 2520 Card Read-Punch, Model A1,
IBM 2501 Card Reader, Model A1 or A2
with either an IBM 2520 Card Punch,
Model A2 or A3, or an IBM 1442 Card
Punch, Model 5;

e an IBM 2415 Magnetic Tape Unit, Model 1
or 4 (for the tape versions only);

e one of the following printers: »
IBM 1403 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model A1;

Submodel 3

e an IBM 2020 Central Processing Unit,
Model B3 (4096 bytes of main storage);

e an IBM 2560 Multi-Function Card Machine,
Model A2; -

e an IBM 2203 Printer, Model A2.

~

e an IBM 2020 Central Processing Unit,
Model B4 (4096 bytes of main storage) ;

e an IBM 2560 Multi-Function Card Machine,
Model AZ2;

6 System/360 Model 20 Basic Assembler Language

an IBM 2203»Printer, Model A2.

Submodel 5

Note_ 1:
sizes of 24K and 32K,

an IBM 2020 Central Processing Unit,
Model C5 (8192 hytes of main storage) ;

one of the following card units:

IBM 2560 Multi-Function Card Machine,
Model A1,

IBM 2520 Card Read Punch, Model A1,
IBM 2501 Card Reader, Model A1 or A2
with either an TBM 2520 Card Punch,
Model A2 or A3, or an IBM 1442 Card
Punch, Model 5;

an IBM 2415 Magnetic Tape Unit, Model 1
or 4 (for the tape versions only) ;

one of the following printers:
IBM 1403 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model A1.

CPS does not support main storage
but CPS programs will

run on Models DC5 and ES5 although only 16K

bytes are used.
location counter is X'3FFF'.

(The maximum value of the
Therefore,

the Basic Assembler will not pernmit
references ‘to addresses greater than this.)

Note 2:

If 7-track tapes are used, the

data-conversion feature is required.

0 MAXIMUM SYSTEM CONFIGURATION

Basic Assembler obiect programs may be pro-
duced for the following maximum system
configurations.

Submodel 2

An IBM 2020 Central Processing Unit,
Model D2 (16,384 bytes of main storage);
with or without IBM Binary Synchronous
Communications Adapter, Feature No.
2074

two IBM 2311 Disk Storage Drives, Model
11 or 12 (both must be the same model);

an IBM 2415 Magnetic Tape Unit, Model 1
through 6;

an IBM 2501 Card Reader, Model A1 or A2;

an IBM 1442 Card Punch, Model 5;

one of the following card units:

IBM 2520 Card Read-Punch, Model A7,
IBM 2520 Card Punch, Model A2 or A3,
IBM 2560 Multi-Function Card Machine,
Model A 1;

one of the following printers:
IBM 1403 Printer, Model N1, 2,
IBM 2203 Printer, Model A1;

or 7,

one of the fs>llowinyg magnetic character
readers:

IBM 1419 Magnetic Character Reader,
Model 1 or 31,

IBM 1259 Magnetic Character Reader,
Model 1, 31, or 32;

an IBM 2152 Printer-Keyboard.

Submodel 3

an IBM 2020 Central Processing Unit,
Model D3 (16,384 bytes of main storage);

an IBM 2560 Multi-Function Card Machine,
Model A2;

an IBM 2203 Printer, Model A2.

Submodel 4

an IBM 2020 Central Processing Unit,
Model D4 (16,384 bytes of main storage) ;
with or without IBM Binary Synchronous
Communications Adapter, Feature

No. 2074;

two IBM 2311 Disk Storage Drives, Model
12; .

an IBM 2560 Multi-Function Card Machine,
Model A2;

“.an IBM 2203 Printer, Model A2;

an IBM 2152 Printer-Keyboard.

Submodel 5

an IBM 2020 Central Processing Unit,
Model D5 (16,384 bytes of main storage) ;
with or without IBM Binary Synchronous
Communications Adapter, Feature

No. 2074;

four IBM 2311
11 or 12;

Disk Storage Drives, Model

an IBM 2415 Magnetic Tape Unit, Model 1

through 6;

an IBM 2501 Card Reader, Model A1 or A2;

an IBM 1442 Card Punch, Model 5;

one of the following card units:

IBM 2520 Card Read-Punch, Model 11,
IBM 2520 Card Punch, Model A2 or A3,
IBM 2560 Multi-Function Card Machine,
Model A1;

one of the following printers:
IBM 1403 Printer, Model N1, 2,
IBM 2203 Printer, Model A1;

or 7,

one of the following magnetic character
readers:

Introduction 7

IBM 1419 Magnetic Character Reader,
Model 1 or 31,

IBM 1259 Magnetic Character Reader,
Model 1, 31, or 32;

e an IBM 2152 Printer-Keyboard.

Note: CPS does not support main storage
sizes of 24K and 32K, but CPS programs will
run on Models DC5 and E5 although only 16K
bytes are used.

LANGUAGE COMPATIBILITY

The IBM System/360 Model 20 Basic Assembler
language is compatible with the Basic
Assembler language for the other models of
the IBM System/360, except where dif-
ferences in machine design make it neces-
sary to include some instructions in the
Model 20 Basic Assembler language that are
not contained in the System/360 Basic
Assembler language. The mnemonics of these
Model 20 instructions are:

BAS
BASR

CIo
HPR
SPSW
TIOB
XIo

The use of the CIO, SPSW, TIOB, and XIO
instructions in Model 20 programs can be
avoided by using IOCS macro instructions to
satisfy input/output requirements.

Programs that are written in the Model
20 Basic Assembler language and contain
statements with blank operands cannot be
assembled by other System/360 Assenmbler
programs.

In addition, the use and the functions
of registers 0 through 3 in Model 20 pro-
gramming differ from the corresponding
registers on other models of the IBM
System/360.

O

8 System/360 Model 20 Basic Assembler Language

CHARACTERISTICS OF THE BASIC ASSEMBLER LANGUAGE

CODING_CONVENTIONS

Statements in Basic Assembler language can
be written in free format; in other words,
the statement components need not begin in
a specified column of the coding sheet.
(The name of a statement, which must begin
in column 25, is an exception to this
rule.) However, the statement components
must be separated from each other by at
least one blank column.

For the purpose of clarity, most pro-
grammers do not use the free format but
prefer to begin each type of statement conm-
ponent in a specific column of the coding
sheet.

The Coding Form

The coding form shown in Fiqure 1 is
designed to satisfy this preference. This
form -- the IBM System/360 Assembler Short

Coding Form (No. X28-6506-2) -- contains a
statement field which extends from column
25 to column 71 and is broken down into
three sub-fields: the name field (cols.

25-30), the operation field (cols. 32-36),
and the operand field (cols. 38-71).

The column numbers on the coding form
refer to the column numbers on the cards
into which the source program is to be
punched.

For the purpose of alignment, each entry
in one of the sub-fields should begin in
the leftmost column of the sub-field.

Thus, the operation entry should begin in
column 32 and the operand entry should
begin in column 38. (Note that the name
entry must begin in column 25.) Figure 2
shows a coding form with a number of typic-
al statements in the Basic Assenmbler
language.

Characteristics of the Basic Assembler Language 9

IBM System 360 Assemble X28-6506
IBM Short Coding Form i Frimed im U.5.A.
PROGRAM PUNCHING INSTRUCTIONS PAGE OF
GRAPHIC CARD FORM #
PROGRAMMER DATE PUNCH
STATEMENT
identification-
Name Operation Operand Comments Sequence
25 30 |32 36| {38 45 50 55 60 5 71 173 80,
t
|
1
Figure 1. The IBM System/360 Assembler Short Coding Form
STATEMENT
N 5 N o y c Identification-
ame peration ran om £ nc
25 30| |32 38 P 45 50 55 e 60 71 |73 Sequence
SITlalR[T| [3[4|@
8lgiv B|AISIR 1|3
ulsiIivg] 1,14
MVIC olv|r+#(13])],ICl1
Li#] 1]0|.|Cl%
R|TIT MlV|C wlolR|K[#]2][(]7])]s[<]4
D|P wolRIKI([9]) [4]CI2](]2])
Alp QWITI(17])] aIW]OIRIKI(17])
AlP olvlTi+l61(11])],ICI3](1]) .
MV T T0lvTT6l u@i' HHES
| L] L |
.,.ﬂmﬂl- Sl LML ;.Q/ L LL — - - -
| - _&L——j—N F L L1 LA
~ = \;\8: ,t:/‘>

Figure 2. Typical Statements on a Short Coding Form

10 System/360 Model 20 Basic Assembler Language

STATEMENT FORMATS AND COMPONENTS

A source program that is written in the
Basic Assembler language is composed of a
sequence of statements. These statements
have the following format:

T L) 1
| Name | Operation | Operand(s) | Comments |
L 1 1 i - J

| {#=————=Instruction———————=>|

Each source statement is punched into a
separate card. The deck of cards that con-
tains all the statements of one source pro-
gram is referred to as the source progranm
deck.

A statement may consist of (1) an
instruction only, or (2) an instruction and
a comments portion. Instruction entries
and comments entries are described in two
separate sections below,

Instruction Entries

The instruction entry must contain an
operation entry, and may contain a name and
an operand entry. These three types of
entry are described in the subsequent
sections.

The Name Entry: The name entry consists of
a symbol that is placed in the name field
of the coding form to identify the asso-
ciated statement. The use of such names is
optional.

In the Basic Assembler language, names
must conform to the following rules.

1. The first character of the name must be
alphabetic.

2. The name must not be longer than four
characters.

3. The name must not contain special char-
acters or embedded blanks.

4. The name must begin in column 25 of the
coding form and in column 25 of the
source card.

5. The name must be separated from the
operation entry by at least one blank.,

Examples of valid names:

RNT1
c3u45
A
BGN

Examples of invalid names:

3NBR (the first character is not
alphabetic)

START (the symbol contains more than U
characters)

RL+8 (the symbol contains a special

character)

A programming example that demonstrates
the use of the name entry is shown in
Figure 3.

Note 1: For all joint assemblies (i.e.,
whenever the programmer uses the IOCS and
wishes to assemble the generated IOCS rou-
tines with his source program) user pro-
grams must not contain a name that begins
with the letter T followed by three numer-
ical characters (0-9). 1In addition to
this, the name assigned to a file must not
appear in the name field of any statement
in the source program.

Note 2: User programs for joint assemblies
with the BSCA Basic Assembler pust not con=
tain a name that beqgins with the letters ID
followed by two nume;igal characters, ser
blies of the BSCA Basic Assemblgf—ﬁﬁst not

include the type codes of the BSCA macro
instructions in a name field.

The Operation Entry: The operation entry
consists of a mnemonlc operatlon code that

epresent 1NSLraciion, a Basic
Assembler instruction, or an IOCS macro

instruction.

A mnemonic operation code consists of up
to five alphabetic characters. It must be
separated from the name entry and the
operand entry by at least one blank column
each.

To understand the terms used in this
publication, a clear distinction must be
made between (1) a machine instruction
written in Basic Assembler language and (2)
a Basic Assembler instruction.

o the computer, ry Ipt

thése 1nstructions a;e contained in the
section Machine Instruction Statements.
Detailed descriptions of machine instruc-
tions are contained in the SRL publication
IBM_System/360 Model 20, Functional Charac-
teristics, Form A26-5847.

pertlnent sections of this publlcatlon.

Characteristics of the Basic Assembler Language 11

The IOCS macro instructions are sum-
marized in the section Input/Output Macro
Instructions. Detailed descriptions of

these macro instructions are contained in
the SRL publication IBM _System/360 Model_ 20

symbolic address VALX. These two operands
must be separated from each other by a
comma.

Note: Operand entries that consist of two

Card Programming_Support, Input/Output Con-
trol System, Form C26-3603.

The following are examples of valid
operation codes:

LH load halfword

AH add halfword

MVC move characters

ORG reset location ‘counter
TIOB test I/0 and branch

The Operand Entry: The operand entry pro-
vides the Basic Assembler program or the
computer with the information required to
carry out the instruction specified in the
operation field.

tug operands “Operands are tsed to dé51g
nate sforage addresses, to SLeleV register
RE DS R
NUmpeL>, or Bl Dl S V1 C.C immedl-
‘ate datal masks, and lengths of storaqe

areas.
AR

An operand may consist of a symbol
a_constant, or a d ; -
sion. Two examples of compound expressions
are shown below.

X'BF!' -- defines the hexadecimal con-
stant RF, which 1s equal to
decimal 191.

GAMA-150 -- designates the storage address

of GAMA minus 150 bytes.

Each operand entry must be separated
from the associated operation entry by at
least one blank column. In addition, each
operand entry must be delimited by at least
one blank column; i.e., any associated con-
ments entry must be separated from the
operand entry by at least one blank column.

For example, the AH instruction requests
the computer to ad? a halfword to the con-
tents of a register. The operand, there-
fore, must specify (1) the number of the
register and (2) the storage address of
this halfword, as shown in the sample
statement

AH 8,VALX

The above statement specifies that the
value {(halfword) stored at the location
whose address is VALX be added to the con-
tents of register AR,

The operand entry of the AH instruction
in the above example consists of two
" operands: the register number 8 and the

operands must conform to the format
operandl,operand?

and must not contain a blank column. ¥hen

the computer encounters a blan&ﬂcolum&wiﬁ

Ah~BPerand SNLLY ., Tr-g8hsiders the~Gperanad

entry-to be terminated.

The attributes and functions of symbols
and expressions that may appear in the
operand field of a statement are described
in a later section.

Comments Entries

The comments entry in a statement provides
for the insertion of explanatory informa-
tion into a program listing. Comments do
not affect the assembly or the execution of
a rrogram, but they facilitate the reading
and understanding of a program listing by
explaining the purpose or function of a
particular statement.

Any valid character, including blanks,
can be used in a comment. Comments entries
are punched into> a statement card to the
right of the operand entry and separated
from it by at least one blank column. Conm-
ments entries must not extend beyond column
71.

If the desired comments entry cannot be
accommodated in the space available on the
right of the operand entry, or if comments
consist Qf general information that per-
tains_to a sequence of statements, the
“comments card" can be used.

LJust contalnugn asterisk

sourceﬁprogram deck.

Identification=Sequence Entries

The identification-sequence field (columns
73-80 of the coding form) can be used to
specify identifying information and/or to
provide the statemerts of a program with
sequence numbers. Some typical
ldentlflcatlon—sequence entries are shown
in the exanmple below.

SALE0OQO1
SALEQQO2

Example 1:

.

SALE0813

12 System/360 Model 20 Basic Assembler Language

O

O

MAINOO1
MAINOC2

Example 2:

MAINOQ7
ROUT1/01

ROUT1/65
MAINOOS

MAINU4GG

MILLE®
MILLE®

Example 3:

MILLE®

Any identification-sequence entry is
printed in the program listing as it is
read. Identification-sequence entries do
not affect the assembly or the execution of
the progranm.

Sample_Sequence of Statements

Figure 3 shows a sample sequence of state-
ments in the Basic Assembler language.
This example illustrates the writing and
the general function of the statements and
their components as discussed in the pre-
ceding sections.

The comments entries in Figure 3 refer
to the subsequent notes.

Note 1:

The instruction CALC SR 9,10 causes the
contents of register 10 to be subtracted
from the contents of register 9. When this
subtraction has been completed, control is
transferred to the physically next state-
ment. (Refer to Note 2.)

Note 2:

The instruction BC 12,RES1 causes a test to
determine if the contents of register 9 --
the register whose contents were changed by
means of the preceding instruction -- are
equal to or less than zero.

If they are, this BC instruction causes
a branch to the symbolic address RES1.
(Refer to Note 3.)

If the contents of register 9 are great-
er than zero (positive), the BC instruction
causes the physically next statement (SH
instruction) to be executed. (Refer to
Note 4.) ’

. Note 3:

The instruction RES1 STH 9,0UTA is executed
only if the contents of register 9 were
found to be less than or equal to zero
(refer to Note 2).

This STH instruction causes the contents
of register 9 to be transferred to an (out-
put) area named OUTA. When this transfer
has been completed, the physically next
statement of the program (not shown in this
example) is executed.

Note 4:

The instruction SH 9,CON2 is executed only
if the contents of register 9 were found to
be greater than zero (refer to Note 2).

This SH instruction causes the value
stored at the symbolic address CON2 to be
subtracted from the current contents of
register 9. When this subtraction has been
completed, the physically next statement is
executed. (Refer to Note 5.)

Note 5:

The instruction BC 2,CALC causes a condi-
tional branch to the symbolic address CALC,
which is the address of the SR instruction
referred to in Note 1.

Note that this BC instruction is
executed only if the contents of register 9
were found to be greater than zero in the
test caused by the instruction BC 12,RES1.

Note 6:

The program "loops"™ through the statement
sequence beginning with the instruction
CALC SR 9,10 and ending with the instruc-
tion BC 2,CALC until the contents of regis-
ter 9 are found to be less than or equal to
zero. When this is the case, the instruc-
tion BC 12,RES1 causes an exit from the
loop to the instruction RES1 STH 9,0UTA
(refer to Note 3).

Characteristics of the Basic Assembler Language 13

PROGRAM PUNCHING INSTRUCTIONS PAGE OF)
' CARD FORM # ' ()
GRAPHIC
PROGRAMMER DATE PUNCH
STATEMENT
Identification—
Name Operation Operand Comments Sequence
25 30| 32 36| |38 45 50 55 40 65 7l §73 80}
S|TIAIR|T
)
CIAILIC SIR ql,|1|@ wolTE| |4
8|C 1]2],|R|E|S|L vo|TlE] [2
S|4 9|4 |ClON|2 N|O|TIE| |#
8|C 21L,|CIAILIC NIOIT|E| |5
RIEIS|L SITIH 9l.l0|UITIA vlo|Tlels| 3] [An[D] |6
¢
J
v
EVMD
Figure 3. Sample Sequence of Statements
THE_LANGUAGE STRUCTURE Self-defining terms must not be confused
with data constants, which are described in -
the section Definition_ Instructions. There (M;@
THE CHARACTER SET is a clear distinction in the use of each:
the Basic Assembler program assembles the
The following 44 characters can be used in value of a self-defining term, but it
statements written in the Basic Assembler assembles the address of a data constant.
language.
26 alphabetic characters: A through Z A self-defining term is considered abso-
10 numerical characters: O through 9 lute because its value is not changed on
8 special characters: *+-,) ('blank program relocation.
The punch combinations that represent Decimal Self-Defining_Terms
these characters are shown in Appendix_ F. :
However, constants and character self- A decimal self-defining term is an unsigned
defining terms may contain any of the 256 decimal number with a maximum of five
punch combinations listed in Appendix_F. digits, e.g., 007, 11900, or 3. 1Its value

nust not exceed 16383. A decimal self-
defining term is assembled as its binary
equivalent.

SELF-DEFINING TERMS

A self-defining term is a term whose value Hexadecimal Self-Defining Terms

is not assigned by the Basic Assembler pro-

gram, but is inherent in the term itself. A hexadecimal self-defining term is a
Thus, the decimal digit 3, representing the sequence of up to four hexadecimal digits

value 3, is a self-defining term. enclosed in apostrophes and preceded by the
. prefix X (e.g., X'9',X'A4',X'20B3'). The
highest hexadecimal self-defining term is

.The three types of self-defining terms 3FFF. This value corresponds to the maxi-
are decimal, hexadecimal, and character mum decimal self-defining term 16383. Each
terms. They can be used to specify immedi- hexadecimal digit is assembled as its 4-bit
ate data, masks, registers or addresses, binary equivalent, as shown in Figure 4, ‘::m

and constants.

14 System/360 Model 20 Basic Assembler Language

O

Hexadecimal
Digit

Binary
Equivalent

0 0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

b o e e o — . s — e — e —— e
e e e . o —— —— — — — . — —— — o — e —— —

P e e e e ————— . — . —
Mo OW»OWOJoOUNEWN .

Table of Hexadecimal Self-
Defining Terms

Figure 4.

A hexadecimal-to-decimal conversion
table is shown in Appendix_ G.

Character Self-Defining Terms

A character self-defining term consists of
a single character, enclosed in apostrophes
and preceded by the prefix C (e.g., C'A',
C'/', C'5', C* '). Any of the 256 EBCDIC
punch combinations shown in Appendix F can
be used for character specification.
However, ampersands and apostrophes that
are to be specified as self-defining char-
acters must be doubled within the enclosing
apostrophes. Thus, a single apostrophe
must be written as C'''' and a single
ampersand as C'&&'.

Each character self-defining term is
assembled as its 8-bit EBCDIC code equiva-
lent (see Appendix F).

SYMBOLS

Symbols are used to refer to locations in
main storage by name rather than by the
actual address.

A symbol may be placed in the name field
of one statement and in the operand entry
of another statement. However, if a symbol
is to be placed in the operand entry of a
statement, it must be "defined" elsewhere
in the progranm.

A symbol is considered "defined" when it
appears

{a) in the name field of some statement
within the same program, or

(b) in the operand of an EXTRN statement
within the same progranm.

A prerequisite for defining a symbol by
method (b) is that the same symbol appear
in the operand entry of an ENTRY statement
and in the name field of some statement in.
another program section. (Refer to the
section Program_Linking for further infor-
mation about the use of EXTRN and ENTRY
statements.)

Defining Symbols

The Basic Assembler program maintains an
internal table -- the symbol table -- where
it stores all symbols that are used as
names within a program. Each symbol in the
table is associated with a storage address,
which is the setting of the location coun-
ter at the time the symbol is read. A
program—generated length attribute and a
name identification are added. The length
attribute depends on the basic instruction
format. The name identification indicates
whether the symbol is relocatable or abso-
lute, and whether it is external (defined
in a separately assembled program section).
Thus, a symbol entered in the name field of
a statement is considered to be defined.

A1]1 symbols that are used as expres-
sions, i.e., as operands of a statement,
must be defined. VNormally, this can be
done at the most convenient position in the
program. The ORG and the EQU instructions,
however, require the symbols in their
operands to be previously defined. Other-
wise, the Basic Assembler identifies these
statements in the program listing by the
diagnostic message U (undefined).

Relocatable and Absolute Symbols

In general, a symbol is considered to be
relocatable because relocatability is its
inherent purpose. (Refer to the section
Absolute and Relocatable Programming.)
However, for the convenience of relating
the meaning of the stored information to
its symbolic address, a symbol can be
equated to an absolute address by means of
the Basic Assembler instruction EQU, which
is described in the section EQU-Equate
Symbol.

The Basic Assembler program generates
the relocatable or absolute attribute of a
symbol as part of the name identification.
This attribute is then stored with the sym-
bol in the symbol table.

External Symbols

Limited main storage availability may
require a program to be divided into a
number of sections, each of which can be

assembled separately.

Characteristics of the Basic Assembler Language 15

In one program section, the operand
entry of a statement may contain a symbol
that is defined in a different program sec-
tion. This symbol must be introduced by an
EXTRN statement into the section in which
it is not defined. In the program section
where the symbol is defined, it must be
specified in an ENTRY statement. The Basic
Assembler instructions, ENTRY and EXTRN,

Restrictions on Symbols

Each symbol can represent one specific
storage address only. Therefore, it must
not be defined twice. The number of sym-
bols that can be specified in a progranm
depends on the available storage capacity,
as shown in Figure 5.

r L 1
| Storage | Number of Symbols Allowed |
| Capacity | in the Source Program . |
L 1 4
1] 1 1
| 4096] 165 - |
| 8192 | 847 805 |
] 12288 I 1530 1487%* |
| 16384 | 2213 2170% |
L 1]
*

for the BSCA version
Fiqure 5. Number of Symbols versus Storage
Capacity '

If the number of symbols exceeds the ap-
plicable maximum, a symbol-table overflow
occurs. The -card versions of the Basic
Assembler program require an additional as-
sembly run to compensate for the overflow;
the tape versions f{after an informative
halt) deal with the situation automatical-
ly. Detailed explanations are supplied in
the section The Basic_ Assenmbler Program.

Relative Addressing

To avoid a symbol-table overflow,‘the numb-
er of symbols can he reduced by means of
relative addressing.

The term relative addressing refers to
the method of specifying storage locations
by means of a defined symbol plus or minus
a displacement, or by means of the setting
of the location counter plus or minus a
displacement. The following examples show
some relative addresses.

FLDA-200 (symbol minus displacement)

*+12 (location counter plus
displacement)

FLDB+X'F! (symbol plus hexadecimal
displacement)

Note: The asterisk (*) represents the

value of the location counter after the
preceding instruction has been read in,

and, if required, boundary alignment has
taken place.

The use of relative addressing is illus-
trated in the example below. In this
example, statement sequence A uses dif-
ferent symbols to refer to five different
storage locations: BGN, SYM, AUG, ADD, and
SUM. In statement sequence B, these five
storage locations are referred to by only
two different symbols (BGN and AUG) and by
three relative addresses: AUG+2 (for ADD),
*¥+6 (for SYM), and AUG+4 (for SUM).

Sequence_ A BGN BASR 13,0

USING *,13
LH 12,AU0G
AH 12,ADD
BC 2,SYM
SR 12,12

SYM STH 12,s50M
BA SR 14,15

AUG DS H

ADD LS H

sSuM DS H

Sequence B BGN BASR 13,0

USING *¥,13
LH 12,A0G
AH 12, 2UG+2
BC 2,%+6
SR 12,12
“STH 12, AUG+4
BA SR 14,15

AUG DS d
DS H
DS H

The relative address AUG+2 can be used
to replace the symbol ADD because the
storage area referred to by ADD (see state-
ment ADD DS H) begins directly behind the
storage area AUG, which is two byteéS long
(see statement AUG DS H). The same applies
to the replacement of the symbol SOM by the

relative address AUG+4.

The branch address SYM is replaced by
the relative address *+6 (current setting
of the location counter plus 6 bytes).
This relative address causes a branch to
the location six bytes beyond the BC
instruction; in other words, to the first
byte of the instruction STH 12,AUG+4.

EXPRESSIONS
An expression is any symbol or self-
defining term, relocatable or absolute,

used in the operand entry of a statement.

Compound Expressions

An expression that consists of more than
one symbol or self-defining term and con-
nected by plus or minus signs is referred
to as a compound expression.

16 System/360 Model 20 Basic Assembler Language

O

O

o

BETA-10+200
FLD+X'2D!
*-GAMA+200

Examples:

Restrictions. The Basic Assembler progranm
considers an expression to be terminated by
a blank or a comma, depending on the type

of expression. An expression must pot
e begin with a plus or minus sign,

e comprise more than three symbols and/or
self-defining ternms,

e have a negative value at object time (if
it is absolute),

e contain another relocatable symbol if an
external symbol is part of the
expression,

* contain any self-defining term with a
value >4095 if used as operand of a
machine instruction, and

e exceed 16383 (decimal).

Evaluation of Expressions

The Basic Assembler replaces symbolic ex-
pressions with their numerical equivalents
by evaluating compound expressions, execut-
ing arithmetic calculations, and inserting
the results into the instruction.

Absolute Expressions

An expression is considered absolute if it
contains

(1) only self-defining terms and/or abso-
lute symbols, or

(2) one positive and one negative relocat-
able symbol.

Some examples of absolute expressions are
shown below. (The symbols PHS1 and PHS2
are considered relocatable.)

2510
PHS2+2510-PHS

PHS2-PHS1
2510-PHS2+PHS1

Relocatable Expressions

The value of a relocatable expression is
changed by the Basic Assembler program on

program relocation, in other words, the
relocation factor is applied to its numer-
ical equivalent to compute the new storage
address.

Relocatable expressions must conform to
the following rules:

e 1A relocatable expression must contain
either one or three relocatable symbols.

e TIf a relocatable expression contains
three relocatable symbols, one and only
one of these symbols must be preceded by
a minus sign.

e If a relocatable expression contains
only one relocatable symbol, this symbol
must not be negative.

Some examples of valid relocatable ex-
pressions are shown below. (R stands for
"relocatable symbol".)

R+1, R-8, R-R+R, *-X1D0O"

The following examples show some invalid
relocatable expressions.

R+R (contains two relocatable symbols)

R+R+R (one of the relocatable symbols

should be negative)
16-R (the relocatable symbol must not be
negative)

R-R-R (two negative relocatable symbols)

LOCATION COUNTER

The Basic Assembler program uses a counter
to record the address assigned to each sta-
tement read into main storage. This coun-
ter is referred to as the location counter.

At assembly time, as soon as an instruc-
tion statement has been read into main
storage, and, if required, boundary align-
ment has taken place, the location counter
is incremented by the number of bytes occu-
pied by that statement. The location coun-

“ter then indicates the next available

storage location.

Characteristics of the Basic Assembler Language 17

LOC.| | SOURCE STATEMENTS 10BJ . /

crr| OBJECT CODE l ICRD 1
+ : .

0154 " INDA START 340 STMTO1L [s]0}%

0154 00DO BASR 13,0 LOAD BASE REG. STMT02 002

0156 USING #,13 ASSIGN BASE RE. STMT03 002

0156 47F0 D048 BC 15+CALC CIRCLE THE CONST STMTO04 002

000A R10 EQU 10~ STMTOS 002

0154 PRT DS cL17 STMT06 002

0168 0000 0000 0000 0000 00 WORK DC XL9'0" STMTO7 003

0174 0000 0000 0000 00 ACCU~ DC = XL7'0' STMTO8 003

0178 2400 0OC CPTL DOC X'24000C"* STMT09 003

017E 02sC RATE DC X1025¢C* STMT1I0 003

0180 0000 0000 0000 SC ROUN DC X' 0000000000005C"* STMTI1 003

0188 0152 CNT DC H'338" STMT12 003

0184 0001 DECR DC H'pe STMT13 003

018C 4020 6320 2020 6B20 2020 6B MASK DC X'4020682020206R20202068" STMT14 003

0197 2020 2148 2020 oc X'2020214R82020" STMT15 003

019E 48A0 D032 CALC LH R10+CNT LOAD COUNT STMT16 003

0142 0262 D022 D025 MyC) ACCU+4(3),CPTL LOAD ACCU STMT17 003

0148 06 D017 DOLE LOOP "MVC: WORK+H(7),ACCU LOAD WORKY STMT18 004

01AE FD81 DO1S5 D028 ‘oP WORK,RATE COMPUTE INTEREST STAT19 004

0184 FA66 DO1lE DO15 . AP ACCU,WORK(714 INCREMENT CAPITAL STAT20 004

o182 FA66 DOL1E DO2A AP ACCU,ROUN ROUND DEC AL STMT21 004

01co 920C D024 MVI ACCU+6,X'0C' RESTORE LAST DIGIT STAT22 004

01C4 4BAO D034 SH R10,DECR DECRFASE COUNT STAMT23 004

olcs 4720 D052 BC 2,L00pP TEST FOR COMPLETION STHT24 004

olcc D210 D004 D036 MVC PRT,MASK MASK TO PRINT AREA ST4T25 004

0102 DE10 D004 DO1E ED PRT,ACCU EDIT RESULT STMT26 004

0108 0040 D004 0011 FINE XIO PRT(X'40'),17 PRINT RESULT STMT27 004

01DE 4710 DOAO BC 1,PERR TEST PRINTER NOT OK STMT28 005

01E2 4740 D082 BC 4,FINE TEST PRINTER WORKNG STMT29 005

01E6 9440 D090 TIOB #*,X'40' TEST END OF 1/0 STMT30 005

O1EA 9A41 DOAO TIOB PERR,X'41" TEST PRINTER ERROR STMT31 005

O1EE 9900 0999 HALT HPR X'999',0 DISPLAY 999 STMT32 005

01F2 47F0 D098 BC 15,HALT LOCK RESTART ST4T33 005 -

01F6 9900 0111 PERR HPR X'111',0 DISPLAY 111 STMT34 005

O1FaA 47F0 D082 BC 15¢FINE REPEAT PRINT STMT35 005 O

0154 END INDA STMT36 006

Figure 6A. Assignment of Storage Addresses

r RE T L] 1
| Location Counter Setting | | |

& T 1 Instruction| Length | Statement |
] In Hex | In Decimal]] | |
t t + t t 1
| 0154 | 34n | START | none | 01

| 0154 | 340 | BASR | 2 bytes | 02

| 0156 | 342 | USING | none | 03]
| 0156 | 342 | BC | 4 bytes | o4

[0154 | 346] EQU | none | 05 |
] 0151 | 3u6 | DS | 17 bytes | 06

| 016B | 363] DC | 9 bytes | 07 |
1 0174 372 | | 1| | |
| |] | | | I | |
| | ! | | I I | |
] v | v | v I v | |
O18E	414] LH	4 bytes	16	
0122	418] Mvce	6 bytes	17	
0148	42u	Mvce	6 bytes	18
O01AE	430	DP	6 bytes	19]
01B4	436		1	
]		!		
i	v		I	
] 1 1 etc. | | |
1 i 8 1 1 J
Figure 6B. Assignment of Storage Addresses 0

18 System/360 Model 20 Basic Assembler Language

ASSIGNED ADDRESSES

If a printer is attached to the Model 20
during the assembly of a source program, a
program listing is produced, as shown in
Figure 6A. The listing includes all state-
ments translated into machine language. To
the left of the machine-language state-
ments, the listing contains the address
assigned to each statement; i.e., the cur-
rent setting of the location counter at the
time the statement is read into main
storage.

In the example in Pigure 6B, the loca-
tion counter is initially set to 340, which
is the address of the 'next sequential
storage location. The next program state-
ment, the BASR instruction, 1s stored
beginning at location 340. Since two bytes
are required for the BASR instruction, the
location counter is incremented to 342.
Then follows the USING statement, which
does not require any storage space. There-
fore, the address W2 is assigned to the BC
instruction that follows the USING state-
ment. After storing the BC statement,
which requires 4 bytes, the location coun-
ter points to storage address 346. This
procedure is continued until the entire
program is assembled.

Location-Counter Overflow

The location-counter setting is limited to
the storage capacity specified in the con-
trol card. The control card is described
in the SRL publications IBM_System/360
Model 20 Card Programming Support, Basic
Assembler, Operating Procedures, Forms C26-
3802 and C24-9011 for the card or tape ver-
sions, respectively.

If, for example, the specification in
the control card is 4096 bytes and the pro-
gram to be assembled exceeds this capacity,
the location counter is reset to 0 at the
point where the specified storage capacity
is exceeded -- even if the storage capacity
that is actually available is greater than
4K. The respective statement is identified
by an error message (L).

The largest number the location counter
can accommodate is 2!'4-1 or, in hexadecimal
notation, 3FFF. The leftmost digits of any
value greater than 3FFF are truncated.

Reference to the Location Counter

At any point in the source program, the
programmer may refer to the current setting

"tion counter,

of the location counter by using an
asterisk in the operand entry. The example
in Figure 7 illustrates a print routine,
which includes a method of stopping the
processing flow until the execution of a
previously initiated output operation has
been completed.

The instruction TIOB *,X'40' tests to
determine if the attached 1403 printer is
still busy with the execution of the last
print command. The second operand (X'40')
specifies the unit and the function. The
first operand specifies the address to
which the program is to branch if the
printer is busy.

During the assembly of this instruction,
the Basic Assembler program replaces the
asterisk by the actual branch address,
which is the current setting of the loca-
1078. During execution, the
program repeatedly branches to the same
instruction until the printer is no longer
busy and sequential processing of the sub-
seguent instructions can continue.

Note: The same effect can be obtained by

the insertion of a symbol in the operand

entry that is also inserted in the name

field:
TEST TIOB TEST,X'40!

The symbol TEST, as a branch address,
also repeatedly refers the program to the
same statement until the busy condition no
longer exists.

i T LN T
|Location|Name|Operation|Operand

1

!
|Counter | | | |
I t t } 4
1060	HALT	HPR	X'99',0
1064	FIN	XIO	PRT (X' 40%) ,17
1070		BC	1, HALT
1074		BC	4,FIN
1078	TIOB	*,X'40"	
1082		TIOB	HALT, X' 41
L 1 1 L J

Use of an Asterisk in the
Operand Entry of a Statement

Figure 7.

Resetting the Location Counter

The Basic Assembler instruction ORG can be
used to reset the location counter to any
desired value. This is described in the
section ORG -- Resetting the Location
Counter.

Characteristics of the Basic Assembler Language 19

FUNCTIONS OF THE ASSEMBLER_LANGUAGE

STORAGE ADDRESSES

A storage address is the address of the
leftmost byte of the area referred to.
length of an addressed area is either
explicitly stated in the operand entry, or
is implied in the constant by which the
addressed area has been defined. Registers
are fixed length areas and are, therefore,
exempt from this rule,

The

The two ways of specifying storage
addresses in a program written in Basic
Assembler language are:

1. effective addressing, allowing for sym-
bolic (or implied) addressing and
explicit addressing; and

2. absolute (or direct) addressing.

An address is generated as a storage
field of 16 bits. The four high-order bits
(the B-field) indicate the base register.
The twelve low-order bits (the D-field)
indicate the displacement, which is the
difference (in bytes) between the contents
of the base register (or the address repre-
sented by a symbol) and the referenced
storage location. D1(B1) and D2(B2) desig-
nate addresses that are part of the first
and the second operand, respectively.

Addition of the contents of the base
register to the displacement gives the
actual address of a location in main
storage. (Refer to the section Base

EFFECTIVE ADDRESSING

Effective addresses are identified by a
1-bit in the leftmost position of the B-
field, which signals that at least one of
the general registers 8 through 15 must be
used as a base register. At assembly time,
the address of a location in main storage
is split into two vnarts,

a) a fixed value contained in the base
register, and

b) a displacement, which is the difference
between the actual storage address and
the contents of the base register.

At object time, the contents of the gen-
eral register specified by the B-field of
an address are added to the contents of the
D-field to form the actual address in main
storage.

SYMBOLIC (IMPLIED) ADDRESSING

Symbolic (or implied) addressing is used
when a symbol is given in the operand entry
of a statement, rather than the explicit
specification of a base register and a dis-
placement. The equivalent value of the
symbol is assigned by the location counter.
The symbol must be defined elsewhere in the
program. (Refer to the section Symbols.)

When the Basic Assembler program encoun-
ters a symbol during assembly, it scans the
symbol table, finds the associated address,
and assembles this address into the
instruction. If the operand consists of a
compound expression, such as ALFA-BETA+
GAMA, the address equivalents of all sym-
bols are looked up, the arithmetic opera-
tions are executed, and the result is
assembled into the instruction.

The computed address integer is not
stored as it is, but is first split into a
base register and a displacement. This is
explained in the following example.

If the address equivalent of the above-
mentioned compound expression (ALFA-BETA+
GANMA) were 6319, the Basic Assembler would
split this address by selecting a base
register containing the closest value to
6319. For example, if the three base
registers 9, 10, and 11 were used and con-
tained the values 4000, 5000, and 7000,
respectively, the Basic Assembler would
select register 10, because this register
would cause the smallest displacement,
which is the difference between the actual
storage address and the contents of the
base register selected by the Basic Assen-
bler for address generation. Thus, the
displacement resulting from the splitting
of 6319 is 1319. The address 6319,
assembled into the instruction, therefore,
has the following format: 1319 (10); or
A527 in hexadecimal notation, as it is
printed on the program listing produced
during the assembly. ™"A" represents the
base register and "527" represents the dis-
placement, 1319.

A displacement calculated by the Basic
Assembler cannot be greater than 4095. For
the calculation of addresses higher than
4095, additional base registers must be
used.

The rules followed by the Basic Assenm-
bler in the selection of a suitable base
register are as follows:

20 System/360 Model 20 Basic Assembler Language

1. If more than one register would produce
a valid displacement (not exceeding
4095) , the Basic Assembler uses the
register that produces the smallest
displacement.

2. If two or more registers produce the
same displacement, the Basic Assembler
uses the highest-numbered register.

3. If none of the specified registers pro-
duces a valid Adisplacement, the address
field in the instruction that contains
the invalid operand is set to zero. An
appropriate error message appears in
the program listing.

The advantages of symbolic addressing
are the simplicity of the method itself and
the resulting relocatability of the
program.

EXPLICIT ADDRESSING

Explicit addressing requires the specifica-
tion of a base register and a displacement
in the operand entry of a statement.
Example: MVI 800(8),X'A?

The above statement causes the immediate

data (X'A') to be stored in the location
identified by D1=8NP0 and B1=8.

Indexing
Explicit addressing provides a special
technigque of address modification, called
_______ Using the indexing method, the
programmer can conveniently deal with a
storage area step hy step.

Assume that a table of 100 integers,
each of which is 5 bytes long, is contained
in main storage. These integers are to be
transferred one-by-one to the output area
OUTA.

START 350
BGN BASR 9,0
USING *,9
LH 10,TADR
AH 10, TLEN
STH 10,TLIM
LH 8, TADR
LOOP MVC OUTA (5) , 0 (8)
XI0 OUTA (X'40') ,5
AH 8,INCR
CcH 8, TLIM
BC 12,LO0OP
HPR X'991,0

TLIM DS H

TLEN DC Ht495!

INCR DC " H'S5!

TADR DC Y (TAB)

TAB DS 100CL5S

OUTA DS 100CL5
END BGN

In the above routine, register 9 is used
as a base register, The maximum table
address (TAB+495) is computed in register
10 and then stored at location TLIM,
Register 8 is loaded with the address of
the first table entry (see the section,
Address_Constants). The expression 0(8)
thus designates the first table entry
(TAB) , which is moved to OUTA.

The data stored in OUTA is printed.
(For simplicity, the necessary edit and
test routines are omitted.) The subsequent
instruction is used to increase by five the
contents of register 8, causing the address
0(8) to point to the position of the second
table entry (TAB+5). The contents of
register 8 are then compared with the maxi-
mum table address at location TLIM. If the
value in register 8 is lower than, or egual
to, the compared value in TLINM, the program
branches to LOOP to fetch another table
argqument. Otherwise the program halts.

Normally, if base registers are used for
address generation, a symbol in the operand
entry of a statement should not be accom-
panied by an explicit base register desig-
nation. It is possible, however, to speci-
fy a symbolic address accompanied by an
explicit base r egister designation, instead
of using the expression 0(8) in the pre-
vious example. If TAB(8) is given as the
second operand of the MVC instruction, the
address is computed by adding the (normal)
displacement value of TAB to the contents
of register 8. The statement is flagged
with a warning message.

In the previous example the instructions

LE 8,TADR
LOOP MVC OUTA (5) ,0(8)

may be replaced by

SR 8,8
AR 8,9
LOOP . MVC OUTA (5) , TAB (8)

Note: 1In the statements following this MVC
statement, the program again uses the base
register that was originally designated.

This program can be simplified further
if absolute addressing is used. 1In the

Functions of the Assembler Language 21

following example pseudo register 0 is used
as a base register.

START 350
BGN USING *,0

-

SR 8,8
LOOP MVC OUTA (5) , TAB(8)
XIO OUTA (X'40'),5
AH 8,INCR
CH 8,TLIM
BC ~ 12,LOOP
HPR X199',0
TLIM DC H'495°"
INCR DC H'S!
TAB DS 100CL5
OUTA DS 100CL5
END BGN

Register 8 is initially set to zero.
Thus, TAB(8) refers to the first table
entry. When the last MVC instruction has
been executed, register 8 contains the
value 500 and the program halts.

ABSOLUTE (DIRECT) ADDRESSING

Absolute addresses are identified by a zero
in the leftmost bit position of the
B-field, In absolute addressing, the 14
low-order bits of the combined B and
D-field represent the complete address
value and refer directly to byte locations
in main storage. MAbsolute addresses are
specified by decimal integers or absolute
symbols in the operand entry of a
statement.

Example:

r T R i
|Name|Operation|Operand |
t + + 1
] | STH 113,2440 |
i A L J

The above statement causes the contents
of register 13 to be stored in position
2440 of main storagqge.

Absolute addresses are also split into

base register and displacement by the Basic
4 . r}

Assembler program, as described in the sec-
tion Effective Addressing. This addressing
met hod, however, requires the specification
of pseudo-registers to be used as' base
registers. A program that contains abso-
lute addresses is not relocatable.

GENERAL_AND PSEUDO-REGISTERS

‘::l

General Registers

The Model 20 uses eight auxiliary storage

units which are referred to as general

registers. Each of these general registers

has a length of one halfword (two bytes). -
The general registers are numbered from 8

to 15 and are used for ten tora of
information during execution of indexing,
fixed-point arithmetic, address generation,
and logical operations.

Information that requires the use of
registers can be transferred

(1) from register to register,

(2) from register to main storage, or

(3) from main storage to register.

The direction of the information flow is
implied in the machine-instruction format.

(Refer to the section Machine Instruction
Statements.)

When general registers are used for
addressing, they are referred to as base
registers. Base registers are assigned by
a USING statement, as explained in the sec-
tion Base_ Registers.

{ |
An advantage of using general registers (;jp
for fixed-point arithmetic is that data
need not be packed prior to computation.
A1l calculations are executed in binary

form.

Examples of the use of general
registers:
AR 9,10 The contents of register 10 are
added to the contents of regis-
ter 9. The result is contained
in register 9.

LH 12,AREA The first 2 bytes of the field
AREA are loaded into register
12. (Note that in this case
the field AREA must be aligned
at a halfword boundary.)

STH 13,0UTA The contents of register 13 are
stored in the field OUTA.
(Note that in this case the
field OUTA must be aligned at a
halfword boundary.)

Restriction

When using the IOCS, the following restric-
tions on general registers apply.

e Register 15 must not be used by the pro-
grammer at any time.

22 System/360 Model 20 Basic Assembler Language

e Register 14 is available only for
restricted use, since its contents are
changed each time a macro instruction is
executed.

e PRegisters 11-15 are used by the 1419
I0CS.

Pseudo-Registers

In addition to the eight general registers
there are four pseudo-registers numbered 0
to 3. (If a Submodel 5 is used, pseudo
registers 0-7 are available. However, 0-3
are the only pseudo registers recognized in
CPS programs.) The pseudo-registers are
assumed to have the following permanent
contents:

Register Assumed Contents
0 0
1 4096
2 8192
3 12288

The pseudo-registers may be used only
for storage addressing, i.e., as base
registers. The advantage, in comparison to
the use of general registers, is that
pseudo-registers need not be loaded with a
base address. Thus, program execution is
faster and the general registers are avail-
able for other purposes. However, pseudo-
registers can be used only for the specifi-
cation of absolute addresses. Additional
information is given in the section Abso-
lute Addressing.

BASE _REGISTERS

Base registers are general registers that
are used for addressing main storage loca-
tions. The contents of a base register are
subtracted from each storage address during
program assembly; the remainder is referred
to as the displacement. The base-register
number, together with the displacement, is
assembled into the instruction.

At least one general register must be
assigned as a base register at the begin-
ning of a relocatable program. In addi-
tion, this register must be loaaed with the
desired base address, which is normally the
start address of the progranm.

USING -—- USE BASE REGISTER

The USING statement is used to assign base
registers. It also informs the Basic
Assembler program of the anticipated con-
tents of the respective base registers.

T
OperationjOperand
1

USING

e e b e

i
1*,11
L

The above statement designates register
11 as a base register and informs the Basic
Assembler program that it may expect regis-
ter 11 to contain the current value of the
location counter.

Note: A name entry is not used. TIf a sym-
bol appears in the name field of the USING
statement, it is disregarded by the Basic
Assembler program -- if it conforms to sym-
bol specifications. Otherwise, it is iden-
tified by a diagnostic message in the pro-
gram listing.

A1l registers that are assigned by means
of USING statements must be loaded. This
can be achieved by means of BASR
instructions.

BASR —- BRANCH AND STORE REGISTER

The BASR (Branch and Store Register)
instruction causes bits 16 _to 31 of the
Program Status Word (PSW) to be stored in
the register deflned in the first operand

Since bits 16 to 31 of the Psw coptain the

address of instruction

in the Sécdn-"ogéfand; '&he“braﬁc“"‘“”“””“”
1S ermined prior to the storing of bits
16 to 31 of the PSW.

For example, the statement BASR 12, 12
causes register 12 to be loaded with the
current value of the location counter.

This is followed by a branch to the address
previously contained in register 12,

in the above USING-statement
register 11 can be loaded as

Thus,
example,
follows:

T L
Name|Operation|Operand

L 4

L] T

| BASR
1

11,0

e b e o

T
|
[}
[4
l
L

|
L

Register 11 now contains the address of
the next storage location; that is, the
current value of the location counter at
assembly time. The second operand, which
normally specifies the register that con-
tains the branch address, prevents branch-
ing because it refers to register 0.
Accordingly, the first instructions of a
program may be the following:

Functions of the Assembler Language 23

START 356

BASR 11,0

USING *, 11
BGN cececsscsssene

The largest displacement that can be
calculated by the PRasic Assembler is 4095.
Therefore, an additional base register
mustbe assigned for each additional 4096
bytes of main storage required.

Additional base registers may be speci-
fied also for other programming purposes,
such as creating defined-areas (dummy sec-
tions) in main storage where certain pro-
gram subroutines can be executed or where
intermediate data is stored. However, if
several base registers are specified by
subsequent USING statements, an adequate
method of loading these base registers must
be found.

Figure 8 illustrates one such method.

) T T A] 1
Location-			
Counter	Name]	Operation	Operand
Reference] l			
t 1 1 + i			
1000 ! [START [10 o I			
1000		BASR	11 1
1002 I	USING 1%,		
1002 i 1 BC 115 PRGM			
1006	JUSING	*+4098-6,12	
1006	ALFA	DC 1Y (*¥+4098-6) I	
1008	JUSING	¥+6192-8,13	
1008	BETA	DC 1Y (*+6192-8)	
1010		USING 1*+4500-10, 14	
1010	GAMA	DC	Y (¥+4500-10) I
	PRGM	LH {12,ALFA]	
1 1016		LH 113,BETA	
1020 1	LH 114,GAMA		
L L 1 i J
Figure 8. Example of Loading Base
Registers
Explanation: The following base registers

are assigned by USING statements: 11,12,
13, and 14, 1In this example, the base
registers are loaded with the following
base addresses.

Register 11 -- 1002
Register 12 -- 5098
Register 13 -- 7192
Register 14 -- 5500

Base register 12 is assigned and loaded
to deal with addresses higher than the
maximum address the Basic Assembler can
generate by using base register 11, which
is

4095(11) = 4095 + 1002 = 5097.

The next higher address is generated as

0(12) = 0 + 5098 = 5098

Base register 11 is loaded when the BASR
instruction is executed. Note that 1002 is
the address of the first machine instruc-
tion after the BASR statement.

To load registers 12 to 14, the desired
addresses are supplied to the Basic Assen-
bler by means of address constants, which
are then loaded into the respective regis-
ter by subsequent LH instructions. Since
the location counter is being referred to,
the addresses specified by address con-
stants are incremented first by the start
address of the program (1000), and then by
the length of each instruction. Therefore,
the accumulated instruction lengths must be
subtracted when the address constants are
set up. The expressions contained within
the parentheses of the address constants
can also be used in the first operand of
the respective USING statement.

Accordingly, the address constants have the

following values:

ALFA = 1006 + 4098 - 6 = 5098
BETA = 1008 + 6192 - 8 = 7192
GAMA = 1010 + 4500 - 10= 5500

The contents of a base register can be
altered whenever required; but the Basic
Assembler program must be informed of the
change by means of a USING statement.

Example:

r T L § 1
.| Name|Operation| Operand]
b t + 1
I | USING IALFA,9 |
!] ! I
1 1 | I
| 1] | !
I v | |
| JUSING |ALFA+1000,9 I
L L A J

register nust be specified in the second
operand of the USING statement. In addi-
tion, the first operand must be an
asterisk; otherwise, the USING statement
will be identified by a diagnostic message
in the program listing.

The pseudo-registers need not be loaded.
They are assumed to contain at any time the
values described in the section
Pseudo-Registers.

START 0

USING *,0

USING *+4096,1
USING *+8192,2
USING *+12288,3
ORG *+316

The statements:

24 System/360 Model 20 Basic Assembler Language

O

inform the Basic Assembler program that
pseudo-registers 0 through 3, the contents
of which are 0, 4096, 8192 and 12288 are to
be used as base reqisters.

For example, in this case storage
address 3091 is split into displacement
C13 (hexadecimal equivalent for 30917 and
base register 0, and assembled as 0C13. 1In
like manner, storage address 6000 is
assembled as 1770, address 10000 as 2710,
and address 16000 as 3ES80.

A program cannot be relocated if pseudo-
registers are used as base registers. This
disadvantage, however, may be outweighed by
having all the general registers available
for other purposes.

DROP -- RELEASE BASE REGISTER

If a general register has been assigned the
functions of a base register, it cannot be
used for other programming purposes unless
the programmer cancels the assignment.

This can be done by means of a DROP

statement.

Example:

T T kKl 1
|Name|Operation|Operand |
1 1 1 1
1 1 1 R
| JUSING |ADDR,11 1
1 | | |
| 11 | |
| | | |
| I i |
| i v | |
| | DROP |1 11 |
L i 1 Jd

After the DROP statement in the above
example, register 11 can be used as an
index register, an accumulator for arith-
metic operations, etc. A name entry is not
used in the DROP statement. If a name is
specified, it is disregarded by the Basic
Assembler program -- if it conforms to sym-
bol specifications. Otherwise, the state-
ment is identified by a diagnostic message
in the program listing.

Functions of the Assembler . Language 25

ABSOLUTE _AND RELOCATABLE_ PROGRAMMING

following conditions:

1. It must contain all of the loader
information produced by the Basic
Assembler program (i.e., the punching
of ESD and RLD cards must not be sup-
pressed during the assembly of such
programs).

2. At least one of the general registers 8
to 15 must be used for address
generation.

3. It must not contain absolute expres-
sions tc refer to areas that are to be
relocated.

A program is absolute if at least one of
pseudo-registers 0 to 3 is specified and
used for address generation throughout the
program.

Absolute pro gcamming has the advantage
of saving general registers for programming
purposes other than address generation. 1In
addition, the Basic Assembler program is
not required to split the specified abso-
lute addresses if pseudo-register 0 is spe-
cified in an appropriate USING statement.
Absolute programming does not restrict the
application of symbolic addressing.

Absolute programming must not be used
under the following conditions:

1. If (1) the IOCS is used, and (2) the
source program and the symbolic IOCS
routines are to be assembled
separately.

2. If subsejuent parts of a program are
loaded and executed together. 1In this
case, only the program loaded first may
be absolute.

26 System/360 Model 20 Basic Assembler Language

Extensive programs that exceed the avail--
able main storage capacity must be subdi-
vided into sections that are assembled
separately. :

Since the Basic Assembler program is no
longer required during object program
execution, storage availability is
increased, which may allow the loading and
simultaneous execution of more than one
object program.

Two jointly executed program sections
may contain the same symbols, provided
these symbols are Aefined in only one of
the two programs. In addition, these two
program sections must be linked together by
means of EXTRN and ENTRY statements. These
statements are described below.

The EXTRN Statement

For the joint execution of two programs (A
and B), EXTRN statements must be used in
program B to introduce symbols that are
used in program B bhut defined in program A.

Example:

T T
Name|Operation|Operand
1 [l

T L
|EXTRN |F1

i 1

e e e I

L)
|
L
L)
|
L

The EXTRN statement in the above example
introduces F1 as a symbol that is defined
in another program section.

A name entry is not used in the EXTRN
statement. 1If a symbol is entered in the
name field, it is Adisregarded by the Basic
Assembler program -- provided it conforms
to symbol specifications. Otherwise, it is
identified by a diagnostic message in the
program listing.

Only one operand -- a relocatable symbol
-- may be specified in an EXTRN statement.
Each additional external symbol must be
introduced by an additional EXTRN
statement.

If an external symbol is to be used, the
following action is required:

1. An address constant must be created for
the external symbol.

2. The address constant must be loaded
into a general register.

PROGRAM LINKING

3. The external symbol must be referred to
in the program by means of the above
general register.

The maximum number of EXTRN statements
to be used within one program seguence is
14. Symbols contained in statements in
excess of this number are indicated as
undefined in the program listing.

An EXTRN statement must immediately fol-
low a START statement, an ENTRY statement,
or another EXTRN statement. If an EXTRN
statement is incorrectly placed, it is
identified by a warning message. If it
contains an incorrect operand, it is iden-
tified by an error message. In either
case, the statement is not used.

The ENTRY Statement

An EXTRN statement in program B requires an
ENTRY statement with the same operand in
program A, where the appropriate symbol is
defined.

Example:

T T T 1
| Name [Operation|Operand |
I t+ —+ 4
PRGA	START 12000	
	ENTRY	F1
	'I	
[
[
PV		
F1	DC)	XL2* FOFO! 1
	END	PRGA
L 1)]

1

The above ENTRY statement permits pro-
gram B, which has been loaded and stored
behind program A, to use the contents of
the field F1.

The Basic Assembler ENTRY statement fol-
lows the same syntax rules as the EXTRN
statement. The START statement of a pro-
gram can also be used instead of an ENTRY
statement; that is, program names need not
be introduced as linkage symbols by ENTRY
statements.

The order in which independently
assembled programs are loaded determines
the extent of their linkability by means of
the relocatable program loader. Programs
containing the entry points must be loaded
ahead of the programs containing the corre-
sponding external links.

Program Linking 27

o e e e e T e m — - — —

L] A}
MAIN PROGRAN | SUBRQUTINE |
| |
T T + T T 4
Name | Operation | Operand | Name | Operation | Operand |
-4 4 1 4 { ’]
T T ; T T - T - LIS
CRDT | START | —————4~>CVB | START 1 1000 .
: | ENTRY 1 F1 | | | EXTRN | F1 |
| EXTRN | CVB | | . |- BASR {1 11,0 |
| BASR | 8,0 | 1 | USING | *,11 |
| USING | *,8 |- i | MVC | WAN,KOO]
| LH | 12,YCVB | | -| LH | 10,YF1 |
GET | XIO | INPT(X'12'),80 | i | MVN | WAN+1{1),0(10) !
) [| C | | o | l
| | | | | 1 I 1
I I | | | | |] !
PV] o | | v | 1
Mvce	F1,INPT+10	i	AH] 13,WAN	
"BASR 1.9,12 < J 4 +—BCR	15,9			
SR 1 13,1u4<)	WAN	DS	H	
1		KOO0	DC	H*O!
[S		
		l		
v))	
C	15,GET] YF1	DC 1 Y(F1)		
F1	DC	Cr00!		END
YCVB	DC	Y (CVB)		
- END	CRDT			
L 1. 1 b § 1]
Figure 9. Sample of

Program Linkage

However, a. program may refer to the names
of programs loaded subsequently, by means
of the Include Segment (ICS) card of the
Relocatable-Program Loader. This is
described in the S®L publication IBM
System/360 Model 20 Card Programming Sup-
port, Basic Utility Programs, Functions angd
Operating Procedures, Form C26-3604.

SAMPLE PROGRAN

A sample progranm that illustrates program
linking 1is shown in Figure 9.

The main program in Fiqure 9 is assumed
to deal with data in binary form. Since
the data obtained by means of the XIO sta-
tement is in unpacked decimal form, the

subroutine is used to convert the data into.

binary. To achieve this, the main progranm
nust be loaded first, using the Relocatable
Program Loader, including an ICS card to
allow reference to the subroutine which is
loaded after the main program. (The two
programs in this example are con31deted to
be separately assembled.)

‘Program linkage 1s achieved as follows.
Through the ICS card, the loader reserves a
storage area for the subsequent program
while loading the main progranm. The
address of the reserved area is loaded into
register 12 during execution of the main

program to allow branching to CVB, which
the EXTRN statement declares to be an

externally defined symbol.

An ENTRY statement in the subroutine 'is
not required for CVB because the START sta-
tement, in this case, serves the same pur-
pose. During execution of the main pro-
gram, the data that is read from cards (XIO
instruction) is stored in the field INPT.
For conversion into binary form, the appli-
cable data section is moved into F1.
the program branches into the subroutine
(BASR instruction). :

The contents of F1 are available to the
subroutine because F1 is declared to be an’
external symbol by the EXTRN statement, and
an entry is provided by an appropriate sta-
tement. in the main program. ~ In addition,
the address of F1 is loaded into register
10 during execution of the subroutine.
Explicit addressing with base register 10
and a displacement of O (MVN instruction)
enables the subroutine to make use of the
required data.

The contents of F1 are processed until
the final step (AH instruction) results in

.a binary value contained in register 13.

Then, a branch back to the main program is
performed (BCR 15,9) and the binary value
in register 13 is at the disposal of the
main progranm.

28 sSystem/360 Model 20 Basic Assembler Language

Then -

EQU —-- EQUATE SYMBOL

The Basic Assembler instruction EQU is used
to equate a symbol to the attributes of an
expression.

The EQU statement consists of (1) the
name entry, (2) the operation code EQU, and
(3) an expression as an operand. All sym-

bols appearing in the operand of the EQU
statement must have been previously
defined.

Example:

r T T !
| Name | Operation|Operand |
— + 1 !
| REG5]| EQU 15 |
L 1 1 J

The symbol REG5 is equated to the abso-
lute value 5 and thus becomes absolute. To
the Basic Assembler program, it is of no
further significance whether REG5 or the
value 5 is specified in the operand of a
statement elsewhere in the progran.

To reduce programming time, symbols can
be equated to frequently used compound ex-
‘pressions, as shown in the following
example: :

r T
| Name [Operation|Operand
1 L

-

T L)
| CALC| EQU |A-R+C

L 1 1

DC -— DEFINE CONSTRNT

Constants are data supplied to the progranm
by the Basic Assembler statement DC (define
constant).

‘DEFINITION INSTRUCTIONS

The object program refers to these con-
stants by their symbolic addresses, i.e.,
each DC statement is normally identified by
a symbol that points towards the storage
location of the constant. A DC statement
may have only one operand which has the
following componentss:

Length
Modifier

Type Constant

The type is written as a single letter,
C, X, H, or Y. The length modifier is
written as a decimal integer, preceded by
the letter L. It must not be specified for
H and Y-type constants.

The four types of constants are shown in
Figure 10.

The length of a constant must not exceed
16 bytes including the bytes skipped for
boundary alignment. Constants exceeding
these lengths must be defined by subsequent
DC statements. For example, the character
constant C'THIS PARAMETER COMBINATION IS
INVALID' should be defined as

PRT1 DC C'THIS PARAMETER C'
DC C'OMBINATION IS IN'
DC C'VALID'

The symbol PRT1 in the statement below
still refers to the complete sentence;
i.e., it causes the complete sentence to be
transferred to position FLDA.

Mve FLDA (37) ,PRT1

Character Constants

Character constants may consist of any of
the 256 EBCDIC characters. Each character

1 ¥ T T 1
| Type of | Code|Machine Format of the Constant jAlignment at |
|]Constant | | | |
— 1 + t —
| Character | C |8-bit code for each character |byte boundary 1
Hexadecimal	X	Ut-bit code for each hexadecimal]	byte boundary
	1digit		
			i
Halfword	H [16-bit blnary equivalent of the	halfword boundary	
	Ispecified value (signed)		

| | | | I
| Address | Y |116-bit binary equivalent of | halfword boundary |
| | |symbolic or absolute storage {

| | |address | |
L 1 L 1 3
Figure 10. Types of Constants

Definition Instructions 29

in these constants occupies one byte of
main storage.

DC statements that define character con-

stants may comprise all of the three
operand components: type, length modifier,
and the constant. :

Hexadecimal Constants

Hexadecimal constants are used to introduce
data characters each of which occupies half
a byte of main storage. DC statements that
define hexadecimal constants may comprise
all of the three operand components: type,
length modifier, and the constant.

Example:

Example:

|' T T Rl) LR L] 1
| Name |Operation |Operand | | Name|Operation |[Operand »
L 4 — I { " 4 1
r T - T . Rl] T T) 1
|CON1|DC |CLU*ABCD' | | MASK|] DC | XL3* A34SBF! |
L L L] L 1 L b}

In the above example, the name entry.and
length modifier are optional and may be
omitted. 'This statement causes the con-
stant ABCD to be generated in main storage.

The length modifier (L4) coincides with
the number of characters in the constant.
Therefore, it has no effect because the
Basic Assembler program assumes the length.
of the constant to be implied if the length
modifier is omitted. However, if the
length modifier disagrees with. the number
of characters in the constant, the constant
is modified as follows.)

1. If the length modifier is smaller than
the number of characters in the con-

stant, rightmost digits of the constant

are dropped to achieve agreement with
the modifier. :)

2. If the length modifier is greater than
the number of characters in the con-
-stant, the excess rightmost bytes are
filled with blanks until ‘the length of
the constant agrees-with the length
modifier. o

The constant must be enclosed by apos-
trophes. The length of the constant must
.. not exceed 16 bytes. Apostrorhes and
. ampersands that are to appear within con-
stants must be written twice but are coun-
ted only once.

- Example:
Statement: CON2
Generated as: 'TOTAL 10!

DC C'*'TOTAL 10''!
(implied length

10 bytes)
Statement: . CON2 DC cL1'yY!
Generated as: Y (explicit
length one
byte)

In the last example, the specification
of the length modifier (L1). causes the last
character Y to be truncated. This state-
ment will be identified by a warning mes-
sage in the program listing.

‘0of the length modifier (L2)

In the above example,
length modifier are optional and may be
omitted. This statement causes the con-
stant A345BF to be generated in main
storage. Each pair of digits is translated
into one byte. Thus, the length modifier,
L3, coincides with the length of the con-
stant and has no effect because the implied
length is half the number of hexadecimal -
digits specified if the length modifier is
omitted. However, if the length modifier
is not equal to half the number of hexade-
cimal digits, the constant is modified as
follows: <

‘1. If the lengﬁh modifier is smaller than

the number of pairs of hexadecimal
digits the leftmost digits of the con-
stant are dropped to achieve agreement
with the modifier.

2. If the length modifier is greater than
the number of pairs of hexadecimal. -
digits, the excess leftmost bytes are
filled with zeros until the length of
the constant agrees with the length
modifier.

The constant may consist of any number
of valid hexadecimal characters, 0 to 9 and
A to F, but must not exceed 32 digits. If
an odd number of digits is specified, a
hexadecimal zero is added to the leftmost
position.

- Examples:
Statement: TRIX DC X'3AF'
generated as: 03AF
Statement: INCR DC XL4'BAOS!
generated as: 0000BAOS
Statement: TRNC ~ DC XL2'AFE696"
generated as: E696 .

In the last example, the specification
causes trunca-
tion of the digits AF., The truncation
causes the statement to be identified by a
warning message in the program listing.

30 System/360 Model 20 Basic Assembler Language

the name entry and

A hexadecimal constant can be used to
set the binary bits of a halfword. The
constant in the following example sets the
eight leftmost bits of a halfword to 1's.
Since a hexadecimal constant is not boun-
dary aligned, the preceding DS statement is
applied to force this condition. (For a
discussion of DS statements refer to the

section DS_-- Define Storage.)

r T T 1
| Name |Operation|Operand |
k + })
| IDS | OH |
|TEST |DC 1
1 1 J

|X'FFOO!

Halfword Constants

A halfword constant is a signed integer,
aligned at a halfword boundary. The
operand must not contain a length code.

Example:

r 1 T
| Name|Operation|Operand
i 1 [l

1
|H' =241

SRR SR

1] L]
| HORK|DC
L -

The name entry is optional and can be
omitted. The above statement causes the
generation of one halfword in main storage,
containing the value -24.

The highest allowable value for a half-
word constant is 32767, the lowest, -32768.
. If a specified number exceeds either value,
the constant is set to zero and the state-
ment is identified by a warning message in
the program listing. Unsigned numbers are
considered to be positive.

Address Constants

An address constant is a relocatable or
absolute expression, enclosed in paren-
theses with the prefix Y. TIt is used for
indexing (i.e., generating and incrementing
address values to scan main storage) and
for program linkina. The operand must not
contain a length modifier.

r T Al

|NamejOperation|Operand

t—+t +

| ADTA [DC 1Y (TABL)
L

| 4

In the above example, the address of
TABL is stored at position ADTA. If ADTA
is now loaded into a register, an AH
instruction can be used to update or incre-
ment this address by any desired value.

L

This is demonstrated in Figure 14 and in
the section Indexing.

The routine PRGM in Figure 14 calculates
certain values, which are then stored in
the 480-byte table defined by TABL. The
program loads the first value to be stored
into register 10 (statement 034A) and
branches to LOOP (statement 0330).

The statement named LOOP stores the
value of register 10 in the location desig-
nated by register 8, which is the table
address ADTA loaded into register 8 by the
statement named RTN. Thus, the first cal-
culation result is stored in the first
table position.

The AH statement then increments the
contents of register 8 (i.e., the table
address) by four, the implied length of
each position., The contents of register 8
now point to the second table position.

Successive rerpetitions of the procedure
continue until the table is filled or the
program is terminated by the TM
instruction.

The use of the address constant to link
two or more simultaneously executed progran
parts is discussed in the section Progranm
Linking.

An absolute expression is specified in
the operand of an address constant if a
branch to an absolute address is performed
during the course of a program. But the
program must be relocatable. Obviously,
the absolute address should be updated upon
program relocation to avoid branching to
the wrong statement. This updating is
gquaranteed by the address constant. One
method of accomplishing this updating is
demonstrated by the following example.

BC 15,0
ORG *-2
DC Y(3215)

In the normal branch instruction BC 15,
3215, . the address 3215 would not be altered
upon program relocation. Therefore, the
second operand is set to zero as the branch
instruction is assembled.

On its own, this imperative branch
instruction would be invalid because it
instructs the computer to branch and, at
the same time, prevents the branch by set-
ting the branch address to zero. However,
the Basic Assembler program does not con-
sider this statement incorrect since all
syntax requirements are satisfied. The
second operand of the BC instruction can be
omitted, provided the comma is written.

Definition Instructions 31

Bytes 1 2 -3 4 5 6

C(char.) | X (hexa) H (hol:frvord)

X (hexa)

10 . n 12 13
x —
Y (address)

|

Figure 11. VUneconomical Storing of a Sequence of Constants

The ORG statement reduces the value of
the location counter by two bytes so that
it points to the location of the second
operand of the BC instruction, which is
updated if the program is relocated.

Sequence of Definition of Constants

Halfword and address constants are automat-
ically aligned at halfword boundaries by
advancing ‘the location counter to the prop-
er value (multiple of 2) when either type
of constant is encountered-in the source
progranm. ‘ _ ‘ '

For economical use of main storage, the
sequence in which constants are defined is
important.
definition of a sequence of constants. It
is assumed that the first storage position’
of these constants is not boundary aligned.
C and X-type constants have an implied
length of one byte. '

DC C (character type)
DC X (hexadecimal type)
bDC H (halfword type)

DC X (hexadecimal type)
-DC Y (address type)

DC C (character type)
. DC Y (address. type)

They are. stored as shown in Figure 11.

As shown in Figure 11 three bytes are-
not used. A more economical specification
sequence is

" areas, tables, etc.

The following example shows the

for C-type constants.

DC X {(hexadecimal typé)
DC C (character type)

resulting in the storage allocation shown
in Figure 12.

DS -- DEFINE-STORAGE

The DS (Define Storage) statement. is used’
to reserve storage for work areas, I/O
These storage areas
are not set to zeros or blanks. The loca-
tion counter is incremented during assembly

- by the number of bytes implied in the

operand .of the DS statement, leaving the
respective storage positions -unused when
the object program is loaded. The progranm
later refers to this area by the symbolic
address of the DS statement. The DS state-
ment can also be used to effect boundary
alignment of the subsequent program sec-

tions. The DS statement has only one

operand. It has the follow ing. format:

puplication Type Length
Factor Modifier

The duplication factor is written as a
decimal integer; the type is written as a
single letter, C or H. - The length modifier
is written as a decimal integer, preceded
by the letter L. It may only be specified

256. The sto:dge area that can be reserved
by a DS statement is limited only by the
capacity of the location counter.

DC C (character type) AH—Ter Operand

©.DC H (halfword ‘type)
DC Y (address type) The HE-type operand is employed: to reserve a
DC Y (address type) storage area the subfields of which have an
DC X (hexadecimal type) implied length of two bytes.

1 2 3 4 5 6 -7 8 9 10

. L . * 1 T T . T g
C(char.) H (halfword) Y (address) Y (address) X(hexa) | X(hexa) | C(char.)
. 1 R 1)

‘Figare 12.

Economical Storing of a Sequence of Constants

32 System/360 ¥odel 20 Basic Assenmbler Danguage

The maximum value is’

o

Example:

T T
Name|Operation|Operand
i 1

P — i —
e b e J

INA1|DS | 20H
L 1

This statement causes 20 halfwords (40
bytes) of main storage to be reserved,
beginning at a halfword boundary. The
leftmost byte of this area carries the sym-
bolic address INA1. - Each storage field
referred to by this address has the implied
length of two bytes. The knowledge of the
implied length is important if INA1 is spe-
cified as an operand of a machine instruc-
tion that requires the inclusion of a
length factor.

C-Type Operand

For reservation of storage areas with sub-
fields of different implied lengths, the
C-type operand is used.

Example:

r T T
| Name |Operation|Operand
1 1 1

T 1 1
] INA2|DS 1 100CL3
L L 1

This statement reserves 100 fields of
main storage with a length of 3 bytes each,
a total of 300 bytes, addressable through
the symbol INA2. This reserved area is not
boundary aligned.

The length modifier of a DS C-type sta-
tement may have any value from 1 through
256. Additional examples of DS statements
are shown below.

AREA DS CL100 defines one field of
100 bytes.
FLD1 DS 80C defines 80 fields of

one byte each.

while the Basic Assembler is processing
a DS statement, it discontinues the punch-
ing of the current TXT and RLD cards..
Punching is resumed with a new TXT card for
the location following the reserved area(or
areas). Therefore, all DS statements of a
program should be grouped together to
reduce the number of TXT cards punched.

Duplication Factor

Data fields frequently contain values that
will be loaded into a register in the
course of a program. These data fields
must be aligned at a halfword boundary.

If the data is defined as character or
hexadecimal constants, i.e., data is not
automatically boundary aligned, it may be
difficult to verify this alignment, espe-
cially in a complex program. In such a
case, it is better to force boundary align-
ment, as a precaution, thus removing the
need to verify.

In the following example, a storage area
named AREA is defined, with an implied
length of 128 bytes. The preceding DS sta-
tement with a duplication factor of zero
sets the location counter to a halfword
boundary.

T T T Al
| Name | Operation| Operand |
F } } 1
| | DS |0H |
| AREA|DS jCL128 |
L 1. 1 J

A duplication factor of zero is also
used to assign a name and a length attri-
bute to a storage area without actually
reserving it., Subseguent DS or DC state-
ments then establish subfields within the
larger area by assigning addresses to these
subfields and generating data.

In the example in Figure 13, the nanme
PAYR is assigned to an area of 50 bytes.
No space is actually reserved at this
point, but subsequent DS statements subdi-
vide and reserve the storage within the
area PAYR. The symbols PYNO, REGH, etc.,
which are specified in the name fields of
the DS statements, allow reference to sub-
sections of the area PAYR. The address
PAYR still implies the length of 50 bytes
and refers to the area as a whole.

I A T Al
| Name|Operation{Operand |
t —+ + : |
|PAYR|DS | OCL50 1
| | DS | 24 |
[PYNO|DS | CL6 I
| LNAM| DS 1 CL10 |
| FNAM| DS [CL10 |
IREGH| DS | H |
|OVTM| DS 1H 1
|STRT|DS | CL4 1
[OVRT| DS |CLu |
|SLRY|DS ICL6]
| IDS I8 |
L. 1 1 1

Figure 13. Reservation of Main Storage

Definition Instructions 33

BASIC_ ASSEMBLER CONTROL INSTRUCTIONS

Basic Assembler control instructions are
used to begin assembly (START), end assem-
bly (END), and set the location counter to
a value at a halfword boundary (ORG).

START -- START PROGRAM

When a program is loaded, a start address
normally specifies the point where the
first byte of information 1is to be stored.
Bytes 0 to 155 of main storayge lie within
an area that contains information required
for the execution of a program. This
information must not be overwritten.
Therefore, the lowest usable start address
is 156 (hexadecimal 009C). Before a source
program or the Basic Assenmbler program can
be loaded, a program to execute the loading
functions is required. Such a program (the
Absolute-Program Loader or the Relocatable-
" Program Loader) 1is stored from location 156
upward. The Absolute-Program Loader, for
example, requires 160 bytes of main
storage, which increases the possible start
address for the source program to 316
(hexadecimal 013C). A start address of 156
can be used in this case, provided the sub-
sequent 160 bytes are reserved for the
Absolute-Program Loader by means of an
appropriate DS or NRG statement.

The start address is specified in a
START statement. The operand of the START
statement specifies the tentative loading
point in the form of an absolute address.
The value of the location counter 1is incre-
mented to represent this address as soon as
the START statement is read by the Basic
Assembler program. If the START statement
is omitted, the location counter is auto-
matically set to 3u0. (A START statement
without an operand should not be used and
is flagged with a C.)

START 1000

This statement causes the location coun-
ter to be advanced to 1000, Since the
START statement does not consume any
storage space itself, the specified start
address 1s assigned to the instruction that
follows the START statement. If a symbol
is entered in the name field of a START
statement, 1t is considered to be the pro-
gram name and is entered in the symbol
table, together with the start address of
the program. In addition, the Basic Assenm-
bler program causes the name to be punched

into columns 73 to 76 of each object pro-
gram card.

Note: TFor the purpose of boundary align-
ment, the start address should be an even
number. If it is an odd number, the Basic
Assembler program advances the location
counter to the next higher even value above

the specified start address.

END -- END OF PROGRAM

A program written in Basic Assembler lan-
guage must be terminated by an END state-
ment, which supplies the branch address
required for program execution after the
program is loaded.

The operand of the END statement con-
tains the address of the point to which
control is to be transferred on completion
of the loading process. This is normally
the address o>f the first machine instruc-
tion in the problem progranm.

Example:

T T
Name |Operation|Operand

i | 1

) 1
| |
[l |
T L) T 1
|PBL1|START 1340 I
BGN	BASR 110,0
[
I	
v	
	END
L 1 1 i

In the above example, the start address
for program execution is BGN. When the END
card is read, the address contained in the
operand of the END statement is loaded into
register 12 by the Absolute-Program Loader,
followed by a branch to the address in
register 12, which initiates progranm
execution.

If it is desired to load more than one
program for simultaneous execution, the
Relocatable-Program Loader must be used and
a load terminate (LDT) card must be sup-
plied. In this case, the loader progranm
disregards the END card. - For further
details refer to the SRL publication IBM
System/360 Model 20 Card Programming_Sup-
port, Basic Utility Programs, Functions_ and
Operating Procedures, Form C26-3604.

34 System/360 Model 20 Basic Assembler Language

ORG -— RESET LOCATION COUNTER

The ORG statement is used to reset the
location counter to any desired value,

The statement ORG *+500 causes the present
value of the location counter to be incre-
mented by 500. The operand of an ORG sta-
tement is invalid if it is not a relocat-

able expression, if the expression consists

of or includes a symbol that has not been
previously defined, or if the name field of
the statement contains an invalid symbol.

A valid symbol in the name field is disre-
garded by the Basic Assembler program.
Invalid operands are identified by error
messages in the program listing. The loca-
tion counter should not be reset to a value
lower than the start address of the progranm
unless it is to be loaded by the Absolute-
Program Loader. The ORG statement can be
used when source and object programs exceed
the available main storage capacity and
must, therefore, be assembled and executed
in separate phases.

The program shown in Figure 14 executes
certain scientific-mathematical calcula-
tions and stores the results in a 480-byte
table, which is printed out later. The
calculations are assumed to consist of two
phases, each of which requires 3200 bytes.
This means that (with an available storage
capacity of 4096 bytes) each calculation
routine must be assembled serarately. The
resulting object programs are executed one
after the other.

For this reason, the table area where
the results of the calculations are stored,
was reserved at the first available posi-
tions of main storage, followed immediately
by the constants and program routines
required for all successive calculation
phases. This information occupies storage
locations 013C to N340 (the ‘addresses are
given in hexadecimal notation to facilitate
reference to Figure 14), and will not be
overwritten when subsequent program prhases
for execution of the assembly are loaded.

The statement PPGM MVC X(5),Y, which is
stored at position 0344, is the first sta-
tement of the calculation routine. All
other statements of this procedure have
been omitted, excert those that demonstrate
the chaining of the various program
routines.

When the first result has been calcu-
lated, it is loaded into register 10 (sta-
tement 034A). The program then branches to
LOCP (statement 0330). The following pro-
gram segment stores the result in the first
position of the table area (a detailed
explanation is given in the section DC_--
Define Constant) , and tests a switch to
determine if the program must go through
the calculation routine again to compute
another result.

If this is the case, the progranm
branches to PRGM. Otherwise, the calcula-
tion phase has been completed and the pro-
gram branches to the loader area (statement
033C) to read calculation phase 2 into main
storage.

Calculation phase 2, as a separately
assembled program, also begins with a START
instruction. However, since the loader
does not use it, register 14 has the same
contents as during the previous assembly.
Therefore, the BASR instruction can be
omitted and the START address becomes 318.
However, the USING instruction is required.

Now the previous program part must be
linked to the subsequent one. The ORG sta-
tement is used to reset the location coun-
ter to position 0344, This is the start
address of the calculation routine phase 1,
which is no longer required and can be
overwritten by phase 2.

Since the operand of the ORG statement
must be relocatable and hexadecimal 0344 is
an absolute address, the location counter
is set to 0(*-318) and the desired address
0344, which is egqual to PH2, is added. The
operand *-318+PH2 thus obtained is relocat-
able. The address 0344 can be determined
only from the program listing, after the
assembly of phase 1. It must then be
inserted into a previously prepared state-
ment card.

The location counter setting of 0344
causes the subsequent program (a) to be
loaded, starting at this position, and (b)
to overwrite phase 1.

By following this procedure, any number

of programs can be assembled separately and
then be linked for successive execution.

Definition Instructions 35

[%14 PBL1 START 316 001 0
013cC 0DEO 8GN BASR 14,0 002

013€E USING =,14 002
013E 4TF0 E1lEA 8C 154RTN 002
0142 TABL 0s 120CL4 DEFINE RESULT TABLE 002
0322 0142 ADTA ocC Y(TABL) 003
0324 0004 FOUR oC Ht4? 003
0326 FO - SWIT oc cL1'o0’ 003
0008 R8 EQU 8 003
0009 R9 EQuU 9 003
000A R10 EQU 10 : 003
0328 4880 ElE4 RTN LH R8,ADTA LOAD TABLE ADDRESS 003
032C 4TF0 E206 8C 15,PRGM 003
0330 40A0 8000 Laae STH R10,0(0,R8) BRING RES INTO TABL 003
0334 4A80 ELlE6 AH R8,FOUR INCRM TABLE ADOR 003
0338 9101 E1lE8 ™ SWITy1 TEST FOR PROGRAM END 003
033C 4710 009C 8C 14156 LOAD PHASE 2 003
0340 4TE0 E206 ac 144,PRGM REEXECUTE PHASE 1 003

*

*

*START CALCULATION PHASE 1
*

*

U 0344 D204 0000 600 PRGM MVC X(5),Y 003
®
*
*THIS PROGRAM PHASE REQUIRES CA. 3200 BYTES
*
*
*
E 3
U 0344 48A0 0000 . LH R10,RES LOAD RESULT INTO R10 003
034E 47F0 ELF2 BC 15,L00P INITIATE TABLE ENTRY 003
013¢C END BGN 005
Figure 14 (Part 1). Programmed Routine for Table Look-up and Program Linking M::»
1

#START CALCULATION PHASE 2

013E START 318 001
013€ USING »,14 002
000A R10 EQu 10 002
0326 SWIT EQU X10326" SYMBOL LINKING 002
0330 Loop EQU SWIT+10 SYMBOL LINKING 002
0344 PH2 EQU X'0344°' ADD OPERND AFT ASS3LY PH1 002
0344 ORG *-318+PH2 JUMP TO FIRST AVAIL LOC 002
]
=
0344 92F1 0326 PBL2 MV] SWIT,C'1" BEGINNING OF CALC PH2 002
*
*

*THIS PROGRAM PHASE REQUIRES CA. 3200 BYTES
*

*®
*
U 0348 48A0 0000 LH R10,RES LOAD RESULT INTO R10 002
034C 47F0 0330 8C 15,L00F INITIATE TABLE ENTRY 002
0344 END PBLZ 003
Figure 14 (Part 2). Programmed Routine for Table Look-up and Program Linking []

36 System/360 Model 20 Basic Assembler Language

Input/output operations can be caused in
two ways:

1. by means of the Input/Output Control
System (IOCS), or

2. by writing I/O routines using the Basic
Assembler I/O instructions.

The use of IOCS allows the writing of
macro instructions, as explained in a sub-
sequent section. The second method, the
writing of individual I/O routines, is
explained in the following paragraphs.

Three types of T/0 instructions are
available in the Basic Assembler language:

1. XIO instructions (execute input and
output) .

2. CIO instructions
output) .

(control input and

3. TIOB instructions
put and branch).

(test input and out-

The XIO statement has an SS format, and
CIO and TIOB statements have SI formats, as
explained in the section Machine Instruc-—
tion Formats.

A1l three instructions include the unit
and function (UF) specification field.
Data in this field must be specified in
hexadecimal notation.

XIO -- EXECUTE INP"T/OUTPUT -

The operand entry of an XIO instruction is
written

D1(UF,B31),D2(B2)
or when using symbolic addressing,

Symbol 1 (UF), Symbol 2.

U designates the Unit used as the I/0
device and F designates the assigned Func-
tion, i.e., the operation to be executed.

For example, a 2501 reader is attached
and X'12' is specified in the UF field of
the XIO instruction. The hexadecimal digit
1 tells the Basic MAssembler program that
the 2501 is used and the hexadecimal digit
2 indicates that the unit must read a card.
A complete list of all UF codes is provided
in Appendix C.

INPUT/QUTPUT_INSTRUCTIONS

Depending on the specification in the UF
field of the XIO instruction, the second
symbol designates the amount of data to be
handled during the I/0 operation; i.e., the
number of card columns to be read or
punched, or the number of characters to be
printed. Samples of XIO instructions are
shown in Figure 15. °

Note: 1If the XIO statement refers to a
card unit, the value in the second operand
must not exceed 80. If it refers to a
printer, the maximum value is 144 for a
2203 Printer; 132 for a 1403 Model 2 or N1;
and 120 for a 1403 Model 7.

T T T T n)
| Note|Name|Operation|Operand |
L 1 [l i1 1
I 1 L) T 1
| |CARD|EQU 180 |
| ILINE}EQU 1100]
11. |0UT |XIO |FLDA(X'40') ,LINE |
12. |0OUT |XIO JOUTB (X'40') ,20 |
13. | PNCH|XIO |OUTA(X'36"') ,CARD |
|4. JINPT}|XIO JINT(X*23'),16 f
15. | INPT |XIO |EXAR (X' 24') ,CARD |
[R i 1 L)
Figure 15. Sample of XIO Instructions

1. Prints 100 characters on the attached
1403 or 2203 printer.

2. Prints 20 characters on the attached
1403 or 2203 printer.

3. Punches 80 columns on the attached 1442
Card Punch, Model 5.

4, Reads the first 16 columns of a card
from the se ondary hopper of the
attached 2560 MFCHM.

5. Punches 80 columns of a card from the
primary hopper of the attached 2560
MFCM or 2520.

CIO -- CONTROL INPUT/OUTPUT

CIO instructions are used to control the
operation of attached I/O devices. With
card I/0 devices, the CIO ianstruction is
used for stacker or print-head selection;
with a printer, the CIO instruction is used
to cause spacing or skipping.

The instruction is written in the fol-

Jlowing format:

cI0 D1(B1),UF
or
CI0 S1,UF (S=symbol)

Input/Output Instructions 37

Stacker Selection

For stacker selection of card I/0O devices,
the unit specifications in the UF field is
always a 2. The function specification can
be a 0, 1, or 2, depending on the attached
I/0 device and the function desired. The
stacker is specified by the first operand
of the CIO statement. A summary of I/O
instructions, including the associated unit
and function specification codes, is given
in Appendix C.

Examples:

1. CIO 4,Xx'21°
2. CIO 3,x'22¢
3. CIO 2,X%X'20!

1. It is assumed that a preceding read
instruction caused the feeding of a
card from the secondary hopper of the
attached MFCM. The sanple statement
causes this card to be ejected into
stacker 4.)

2. The card presently in the punch or pre-
print station of the attached MFCM is
ejected into stacker 3.

3. If the attached unit is a 2520 and a
preceding read or punch instruction
caused the feeding of a card, this card
is ejected into stacker 2. If the
attached unit is a 2560 MFCM and a pre-
ceding read instruction caused the
feeding of a card from the primary
hopper, this card is ejected into
stacker 2.

If the I/0 unit is a 2560 MFCY and
stacker selection is not specified, stacker
1 is automatically selected for cards from

the primary hopper and stacker 5 for cards

from the secondary hopper. Therefore, CIO
statements that assign these functions are O
not regquired.

In addition, if 6, 7, 14, or 15 is spe-
cified in the first operand of a CIO
instruction that refers to a 2560 NFCM, the
selected cards are ejected into stacker 1. l

In the programming seguence, the CIO
statement for a 2560 MFCM should follow a
read instruction, if possible, In addi-
tion, it must precede the next read, punch,
or punch-and-feed instruction for the same
hopper. For punch-card stacker selection,
the relevant CIO instruction must be placed
before the next read, punch, or punch-feed
instruction, regardless of the referenced
hopper.

The punch-card stacker select function
(X'22') is specified for stacker assign-
ment, if the respective card is in the
punch unit or in the pre-print station of
the MFCHM.

For a 2520, the CIO statement is
rejuired only to assign stacker 2. In the
programming sequence, this statement should
precede the read, punch, or punch-and-feed
instruction.

Print-Head Selection u\

Print heads are selected by using bits 26
to 31 of the machine-instruction format as
a mask. The mask is specified as a decimal
integer in the first operand of the per-
tinent CIO statement and sets the bits
assigned to the individual print heads to
one. This is illustrated in Figure 16.

r hl
| r—— r— |
|Number of print head: 1 1 2| 31 4 5 6

l ___ 3 | SR) |
| |
}|Assigned bit numbers: 26 27 28 29 30 31 |
| |
| r—— — |
| MASK: 0 1 11 0 1 11 0 0

l | ES— | — | I
I | | |
|) : | | |
|Decimal equivalent of v v

l|the binary bit positions: 25 29 23 22 21 20 |
| | | |
| | | |
| v v |
|Decimal equivalent of r— |
| the mask: 16 + [= |1 20 | |
| te———J]
L 1

Figure 16. Sample of a Mask for Print-Head

Selection

38 System/360 Model 20 Basic Assembler Language

In the above example, print heads 2 and
4 are selected because the bits assigned to
these are set to 1 by the mask. The deci-
mal equivalent of the mask is specified in
the first operand of the CIO statement as
follows:

CIO 20,X'23"

The operand X'23' refers to -a card I/0
device and specifies the print-head-select
function.

The highest decimal number that can be
used as a mask for print head selection is
63, which activates all available print
heads. The mask can also be expressed in
hexadecimal notation or in the format
D1(B1).

Spacing and Skipping

A CIO statement that refers to a printer
must contain the unit address (U) hexadeci-
mal 4. If a spacing function is requested,
the first operand specifies the number of
space to be performed. This can be ex-
pressed in decimal or hexadecimal form, or
as D1(B1). The maximum number of spaces
allowed is 3.

The appropriate function codes are shown
in the summary of I/O instructions in
Appendix C.

This statement causes the immediate
spacing of 2 lines on both carriages of an
attached 2203 Printer.

If a skipping function is requested, the
first operand specifies the channel number
of the carriage control tape that identi-
fies the line at which the skipping is
terminated.

Example:

CIO 6,X'45"

This statement causes the skipping of a
page on the attached 1403 Printer, up to
the line identified by a punch in channel 6

of the carriage control tape.

Serial I/0 Channel

All CIO statements that refer to the serial
I/0 channel must contain the unit address
hexadecimal 6. TFor the appropriate func-
tion specification refer to Appendix C.

The use of the first operand D1(B1) is
described in the following SRL publication:

IBM_System/360 Model 20, 1419 Magnetic
Character Reader, Form A24-1499.

Communications Adapters

A CIO statement that refers to the Model 20
Communications Adapter or the Binary Synch-
ronous Communications Adapter must contain
the unit address hexadecimal 5. For the
appropriate function specification, refer
to Appendix C.

The first operand, D1(B1), of a CIO sta-
tement that refers to one of the communica-
tions adapters is ignored. However, it
must be contained in the statement, and
must resemble a valid address.

TIOB -— TEST INPUT/OUTPUT AND BRANCH

TIOB statements are used to test the opera-
tional conditions of the attached I/O
devices or the proper execution of an I/0
function; e.g., print error, last card,
feed error, device busy.

If a busy condition exists, a branch is
performed to the address specified in the
first operand of the pertinent statement.
Otherwise, the subsejuent program statement
is processed.

The operands of a TIOB statement are
written in the following form:

D1(B1),UF
or
s1,UF
Examples:
1. TIOB AREA,X'24!
2. TIOB *,X'40'"
3. TIOB HALT,X'33!

1. This instruction causes a branch to
position AREA after the last card has
been read on the attached I/0 device
with the device address 2.

2. This statement causes the program to
loop until the attached printer has
completed the current print cycle.

3. This instruction causes a branch to the
procedure named HALT if a punch error
has occurred on the attached 1442 Card
Punch.

A summary of the Basic Assembler I/O
instructions, together with the associated
function specification codes, is provided
in Appendix C.

Input /Cutput Instructions 39

SEQUENCE OF I/0 INSTRUCTIONS

O

The proper sequence of the input¥output instructions for different cases is shown in the

following examples:

CARRIAGE CONTROL: TIOB *,X'46"
TIOB *,X'401
cIo 1, X145

OR cIo 3,X004¢0

PRINTER CONTROL: TIOB *,X'U46"

TIOB *,X'40!

'XIO PRT (X'417),120 (0)
BC 4, *-6

BC 1,HLT

CARD READER CONTROL: TIOB *,X'20°

XI0 CRD(X'22'),80(0)
BC 4, %6
BC 1,HLT

TIOB END,X'24"
TIOB HLT, X' 25!

PUNCH CONTROL: TIGCB *,X'20'
cI10 2,X1220
XI0 PCE(X'25'),80(0) -
BC 5,HLT

TICB HLT,X'21!
TIOB END,X'24"
TIOB HLT,X'25"

INPUT/OUTPUT MACRO INSTRUCTIONS

A major part of most programs written in
Basic Assembler language consists of the
routines required %o read data into the
system and to produce the output of the

TEST CARRIAGE BUSY

TEST PRINTER BUSY

SKIP TO CHANNEL ONE IMMEDIATELY
SPACE THREE TIMES IMMEDIATELY

TEST CARRIAGE BUSY

TEST PRINTER BUSY

PRINT AND SPACE SUPPRESS

BRANCH IF PRINTER WORKING
BRANCH IF PRINTER NOT OPERATIVE

TEST READER BUSY

READ THE CARD

BRANCH IF READER WORKING
BRANCH IF READER NOT OPERATIVE
BRANCH IF LAST CARD

BRANCH IF FEED ERROR

TEST READER/PUNCH BUSY

SELECT STACKER TWO

PUNCH SECONDARY CARD

BRANCH IF PUNCH NOT OPERATIVE
TEST READER/PUNCH ERROR

TEST LAST CARD

TEST FEED ERROR

processing performed on the input data.

IBM provides the user of the Model 20 Basic
Assembler language with a library of tested
1/0 routines, which is part of the IBM
System/360 Model 20 Card Programming Sup-
port, Input/Output Control System (CPS
10CS) .

40 System/360 Model 20 Basic Assembler Lanquage

- e o . e s ey . — — iy ——— — — —

T T

|Macro |

|Instruction|Function

L 1

L] T

|GET |Makes the next record avail-
lable in the area specified by
|the user.

+

|Makes a record (in an area
|specified by the user) avail-
l|able for an I/O operation.

N

T

|Opens the file, i.e., ensures
{that all information neces-
|sary to handle a file has

| been provided.

1

T

|Closes the file, i.e.,
lensures proper handling of
|the file after all records
|have been processed.

.

T

|Moves the information to be
|printed on a card from the
J]work area into the specified
|print area. Used only in
Jconnection with a 2560 MFCHN.

o
(=]
L]

@]
el
=2
=

CLOSE

@]
=]
o
)
=]

1

|Causes the performance of
|certain I,/0 functions, e.qg.,
Iskipping, spacing, stacker
|selection.

CNTRL

oy
@]
=

Starts processing of files in
non-overlap mode.

- — e e

s
@]
=

|Starts processing of files in
|overlap mode, in case of a
|preceding LOM macro
linstruction.

[

T

|Checks for printer overflow
Jconditions.

N

T

|Causes the problem program to
jwait for the completion of
lall pending card I/O opera-
jtions before processing the
jnext sequential instruction.
1

PRTOV

WAITC

e e e e e L e e . M e e e e ke e e e — e e — e — e L J

Figure 17. Summary of IOCS Macro

Instructions

In the source program, the IOCS routines
are called by statements referred to as
macro instructions. The use of IOCS macro
instructions saves programming time because
it relieves the user of coding, testing,
and providing linkages to his own I/O rou-
tines. In addition, the IOCS routines take
advantage of the time-sharing capability of
the Model 20, thereby optimizing
throughput.

For detailed information on the Model 20
I0CS, refer to the SRL publication IBM

System/360 Model 20 Card Proqramming Sup-

port, Input/Output Control System, Fornm
C26-3603.

Figure 17 contains a summary of the IOCS
macro instructions and their functions.

Additional macro instructions, and the
associated I/0 routines, are available to
users of the Communications Adapter and the
1419 Magnetic Character Reader. For
detailed information refer to the following
SRL publications:

IBM System/360 Model 20:

Input/Output Control_ System for the_Com-
munications Adapter, Form C26-3606;

Input/Output Control System for the
Binary Synchronous Communications Adapt-
er, Form C33-4001;

Input-Output Control System for the IBM
1419 Magnetic Character Reader, Form
C26-3607.

I[b ROUTINES ~—- INCLUDING INTERRUPTS

A user program which enables the interrupt
mode with an SPSW statement that changes
the channel mask bit of the current progran
status word from 1 to 0 must ensure that
the pending interrupts caused by the loader
do not inter fere with the execution of the
object program. :

Both the Absolute-Program Loader and the
Relocatable-Program Loader cause two pend-
ing interrupts. Interrupt 1 is caused when
the program is read on a 2501, 2520, or
2560; interrupts 1 and 2 are caused when
the program is read on a 2520 or a 2560.

Interrupt 1: Associated with the last_read
instruction of the loader, interrupt 1 is
pending when the execution of the object
program begins. This interrupt beconmes
effective after the first SPSW instruction
in the user program has been processed.

The program in this case branches to the

" programmed interrupt routine, although the

condition on which the interrupt routine is
based has not occurred.

An example of the programming sequence
that enables the¢ interrupt mode through an
SPSW statement is shown in Figure 18. For
this purpose, the first two TIOB statements
in the figure may be disregarded.

Inte This interrupt is issued at
the end of program loading. After the END
card of the cbject program has been read,
an XIO instruction in the lcader progran
causes a dummy punch _cycle that moves the

Input/Output Instructions 41

END card from the pre-punch station to the
punch unit of the punching device, prior to
execution of the object program. The dummy
cycle is effected by specifying X'40°?
{blank) to be punched into column 1, which
results in nothing being punched.

Interrupt 2 also occurs after the first
SPSW instruction in the user program after
the dummy punch instruction has been
executed.

The XIO dummy instruction may cause a
mispunching of the END card during the ini-
tial phase of the object program. While
the XIO instruction is being executed, the
loader transfers control to the object pro-
gram and, thereby, initiates processing.

If the I/0 device used for loading is a
2560 MFCHM or a 2520 card read-punch and the

loader area is overwritten before execution
of the dummy punch instruction has been
completed, a character other than blank may
be punched into column 1 of the END card,
which makes the END card invalid.

Mispunching of the END card can be
avoided by using a TIOB instruction as the
first statement in the user's program, as
shown in Figure 18.

The mispunching of the END card can also
be avoided if the loader area is not over-
written during the initial processing
phase. (The initial processing phase is
terminated after execution of the first XIO
statement in the user program that refers
to the 2560 that is used for progran
loading) .

r T T
|Name|Operation{Operand
i i 1

¥ T T
| BEG |TIOB | *,X'22! WAIT, when loading from a 2520
| | TIOB 1%,X* 20! WAIT, when loading from a 2560
|MVNP |MVC 1148 (4) ,AXPW GET AUXILIARY NEW PSW
| SPSW | AXPW ENABLE INTERRUPT MODE
PW|DC jX*0100! THIS PSW BRANCHES TO
|DC | Y (SNPS) MAIN PROGRAM

| —> | user's PSW.

i i
] .—MAIN PROGRAM

1 1

|

|AX

|

|SNPS|MVC | 148 (4) , SYMB
|

|

|

L

defining the address of

e e s — . — e —— e e

Figure 18.

Sample‘Routine for Compensation of Pending Interrupts Caused by the Loader

42 System/360 Model 20 Basic Assembler Language

This section describes the coding of the
machine instructions written in Basic
Assembler language and translated into
machine language. The machine-language
format and the functions of each machine
instruction are described and the use of
each instruction is illustrated by an
example.

A machine instruction is a direction
given to the computer to cause the execu-
tion of a certain operation. 1In Basic
Assembler language, these instructions are
written in the form of mnemonic codes,
which are translated by the Basic Assembler
program into System/360 internal or machine
code, respectively. The codes are printed
in the leftmost part of the program list-
ing, next to the location counter
reference.

Machine instructicns are divided into
four groups, according to basic operand
format:

1. RR instructions (register to register),
length: 2 bytes.

2. RX instructions
storage to register), length:

(register to storage or
4 bytes.

3. SI instructions (storage - immediate),
length: 4 bytes.

4. SS instructions (storage to storage),
length: 6 bytes.

A summary of these formats, together
with their associated operation codes, is
shown in Figure 19.

All machine-instruction statements are
automatically aligned at halfword boun-
daries. All bytes skipped are filled with
hexadecimal zeros.

Any machine instruction can be identi-
fied by a symbol, which can be used as a

MACHINE-INSTRUCTION STATEMENTS

branch address in operand(s) of other
statement (s).

Notes Referring to Figure 19

1. R1 and R2 are absolute expressions
that specify general registers. The
general register numbers are 8 through
15.

2. D1 and D2 are absolute expressions
that specify displacements. A value
-of 0 through 4095 may be specified.

3. B1 and B2 are absolute expressions
that specify base registers. Register
numbers are 0-3 and 8-15.

4. M1 is an absolute expression repre-
senting a condition code.

5. L, L1, and L2 are absolute expressions
that specify field lengths. An L
expression can specify a value of 1 -
256. L1 and L2 expressions can speci-
fy a value of 1 - 16. 1In all cases,
the assembled value will be one less
than the specified value.

6. I2 is an absolute expression that pro-
vides immediate data. The value of
the expression may be 0 - 255.

7. S1 and S2 are absolute or relocatable
expressions that specify an address.

8. SI instruction fields that are crossed
out in the machine formats are not
examined during instruction execution.
The fields are not written in the sym-
bolic operand, but are assembled as
binary zeros.

9. UF is an absolute expression repre-

senting an input/output unit address
and a function.

Machine-Instruction Statements 43

o e ——— e e e s e e e A e -, — —

T T T -
| |Assembler Operand |Applicable
{Basic_Machine Tormat "I Field Format llﬂs_t_rl_ls_t;93§
% Bl B T = l
| 8 (L | | |
|Operation]|] | |R1,R2 |AR ,BASR,SR
| Code IR1IR2] | (See note 1) |

RR |— t —+ + t
| 8 (I | | |
{Operation| | | | M1,R2 |IBCR
1 Code 1 M1] | | |
| | | | | (See notes 1 and 4) |
+ f—t—t———— + +— -
| 8 14 14 112] | |
|Operation| | | | | |R1,D2 (0,B2) |STH,LE,CH,AH,SH, BAS
| Code |RT| |B2}1D2] |R1,S2 |
| { | | | | | (See notes 1,2,3,and 7) |

RX - +t—t+— +—t } +
| 8 4| 14 112] | |
|Operation| |] |] }M1,D2 (0,B2) | BC
I Code | M1]1X21B2|D2| |M1,52 |
| } | | { i | (See notes 2,3,4,and 7) |
t +—t—t—rt—4 + +—-
i 8 18 4 112] | |
|Operation| | | { {D1(B1),I2 |CLI,MVI,NI,OI, TM,HPR
| Code {12 }|B1ID1| 151,12 |
| | 11 | | (See notes 2,3,6,and 7) |

STt + +——+ t } +—
| 8 18 14 112) | l
|Operation| | | | | D1 (B1) |SPSW
| Code - |B1ID1| 1S1) |
| | | i { | (See notes 2,3,7,and 8) |
I + L t+ +
| 8 18 4 112] | |
|Operation| | [| b1 (B1) ,UF JTIOB
| Code | UF |B11D1}| 1S1,UF |CIO (D1(B1) detailed
| | | | | | (See notes 2,3,and 7-9) | specification)
+ F— } —+— } t+
l 8 141 4 11214 1124 |
|Operation| | | | | | D1 (L1,B1),D2 (L2,B2) |PACK,UNPK,MVO,AP,
| Code] L1} |B1ID1|B21D2|S1(L1) ,S2(L2) . |cp,DP,MP,SP,ZAP
| | | | | | | | (See notes 2,3,5,and 7)

SSH F—t—i +—t —1 }
| 8 18 14 11214 112] |
|Operation] | | | | |D1(L,B1),D2 (B2) |CLC,MVC,MVN,
| Code |L |B1{D1|B2]D2|S1(L),S2 | MVZ,TR ,ED
| | | | |] | {See notes 2,3,5,and 7) |
¥ + } } +—it t }
| 8 18 T4 11214 1124 |
|Operation] | | | | | D1 (UF,B1),D2 (B2) |IXIO (D2 (B2) detailed
| Code | UF IB11D11B2ID21ST(UF) ,S2 | qveCLflcatlon\
| | | i | 1 | (See notes 2,3,7,and 9) |
1 i i i 1 . i 1

Figure 19. Machine Instruction Formats

44 System/360 Model 20 Basic Assembler Language

O T I N e P L " J A U gy W S S S

MACHINE-INSTRUCTION_ MNEMONIC CODES

The mnemonic operation codes (shown in
Appendix B and Fiqure 19) are designed to
be easily-remembered codes that indicate
the functions of the instructions. The
normal format of the code is shown below;
the items in brackets are not necessarily
present in all codes:

Verb [Modifier] [Data Type] [Machine
Format]

The verb, which is usually one or two
characters, specifies the function. For
example, A represents Add, and MV repre-
sents Move. The function may be further
defined by a modifier and the data type.
For example, the modifier L indicates a
logical function and the C indicates a
character as data type, as in CLC for Com-
pare Logical Character.

The letters R and I are added to the
codes to indicate, respectively, RR and SI
machine instruction formats. Thus, AR
indicates Add in the RR format. Functions
involving character and decimal data types
imply the SS format.

INSTRUCTION_ FORMATS

A distinction must be made between the
instruction format in Basic Assembler lan-
guage and the instruction format in machine
language, as translated by the Basic Assen-
bler program.

Example:

{
| Instruction in

LIR) L}

" |
|Basic R |
| Assembler |YInstruction in |
|Language }YMachine Language |
|[1 =A| T T Al] T T {
10p | 1optl 1 1 | l | |
|Cd|Operands 1YCd{L1JL2{B1] D1| B2]| D2j
t—+ H—t——— } + 1
|DP{WORK(9) ,C2(2) J1FD| 8] 1} D|ODC] D|OEF|
| [D R T | | |
L ‘L 1A 1 1 1 1 1 1 J

In the above example, the DP instruction
causes the dividend that is contained in
the field WORK, with an explicit length of
9 bytes, to be divided by the divisor, con-
tained in the field C2, with an explicit
length of 2 bytes.

Assuming register 13 has been assigned
as base register by an approrriate USING
statement, the Basic Assembler progran
translates this instruction into the format
FD81 DODC DOEF, as shown. The mnemonic
operation code becomes FD; the WORK length
code (9) is contained in the L1 field; and

sing time.

the C2 length code (2) is contained in the
L2 field in the assembled instruction.
(Each assembled length code is one less
than the length of the statement in Basic
Assembler langqguage because the length code
1 is assembled as 0, thus permitting a
length of 16 within the U4-bit L1 and L2
fields.) The operand addresses are split
in a base register and a displacement,
which are contained in the B and D-fields
respectively

RR FORMAT

This is the shortest of the four instruc-
tion formats and requires the least proces-
It is used to specify register-
to-register operation; i.e., data is trans-
ferred from one register to another. In
Basic Assembler language, such a statement
is written as

Op-Code R1,R2 (R=register)

Op—ggde M1,R2 (M=mask)

Example:

AR 9,10 The contents of register 10 are

added to the contents of register
S.

The operand format K1,R2 is used togeth-
er with the Branch-on-Condition-Register
(BCR) operation code. It is applied if the
program reaches a decision point where,
under a certain condition, a branch must be
performed. In this case, the branch
address is contained in the register speci-
fied (R2).

Example:
BCR 8,15

The binary ejuivalent of 8(1000) is used
as a mask to test the condition code in the
Program Status Word. The branch is
executed if the condition code is 00.

(Refer to the section The Condition Code).

RX FORMAT

This format is used to cause data flow
between a register and main storage. The
direction of the flow is determined by the
operation code. The Store Halfword (STH)
instruction transfers data from a register
to storage; the AH instruction causes
information in main storage to be added to
the contents of a register. The address
specified in the second operand of an RX
instruction can be in explicit or implied
form.

Machine-Instruction Statements 45

In Basic Assembler language, the
instruction is written as:

Op-Code R1,D2(X2,B2) when using explicit
addressing,
or
Op-Code R1,S2 when using implied

addressing.
(S = symbol)

When specifying an explicit address, the
X2 sub-field of the operand D2 (X2,B2) must
be set to 0.

Example:

STH 9,AREA+4(0,12)

The contents of register 9 are stored at
the location (AREA+Y4) +(contents of register
12) . However, this statement is valid only
if AREA is defined as an absolute symbol
with an address value not exceeding 4095.

Branch instructions in the RX format
(operation code BC) are written as: :

Op-Code M1,D2(0,B2) when using explicit
addressing,
or
Op~-Code M1,S82 when using implied

addressing.

The field M1 is used as a mask to test
the condition code. The subsequent section
describes how this mask is set up.

The Condition Code

The condition code in the Program Status
Word occupies 2 bits. Therefore,
used to represent four conditions:
10, or 11.

00, 01,

The corresponding masks reflecting these

settings are:

Condition Code Mask
00 8
01 4
10 2
11 1

This means, for example, that a branch
instruction to be performed on condition 8
is executed if the condition code setting’
is 00. Accordingly, a branch can be
requested in a proqram if the condition
code setting is either 01 or 11. The
corresponding mask, in this case, would be
4+1=5.

Thus, the maximum value of a mask is
8+44+2+1=15. Specifying a branch on condi-
tion 15 means that the branch must be per-

it can be

formed, whatever the condition code setting
is. Such a branch is called unconditional.
Masks can also be specified in hexadecimal
notation. Figure 20 contains examples of
branches testing the condition code.

Examples:

T T T 1 1
| |Name|Operation Code|Operand |
1 1 1 1 3
T 1 1 1 1
11. |CALC|SR 19,10 1
I I |BC 18,0UT I
12. |CMPR|CLI {FLDA,X"' DO! |
| | |BC |2, BGN |
13. |SUM |AP | FLDA(10) ,FLDB (5) |
| i | BC 115, TABL (0,8) 1
i 1 [} 1 1
Figure 20. Branches Testing the Condition

Code
Explanation:

1. Fixed-point arithmetic instructions,
like the above SR instruction, set the
condition code to reflect the status of
the result whether or not the result is
equal to, less than, or greater than O.
The branch to the location O0OUT is
executed if the result of the preceding
mathematical operation is 0. Other-
wise, the next sequential instruction
in the program is processed.

2. The CLI instruction causes the value
stored at the lccation FLDA to be com-
pared with the hexadecimal self-
defining term DO. The branch is per-
formed if the contents of FLDA are
greater than DO. Otherwise, the next
sequential instruction in the progranm
is processed.

3. Variable-length arithmetic instructions
also set the condition code to reflect
the status of the result (see paragraph
1). The subsequent branch instruction
is unconditional, i.e., the program
branches under any condition to the
location represented by TABL+(contents
of register 8) .

Thus. the interpretation of the condi-
tion code setting depends on the type of
operation caused by the preceding instruc-
tion. A summary of the relation of the
situation to the condition code setting is

"given in Appendix E.

Indexing with RX Instructions

The index field X2 of the instruction for-
mat Op-Code R1,D2(X2,B2) must always be set
to 0. The base register B2 in an RX
instruction, however, can be used as index
register, if (1) explicit addressing is

46 System/360 Model 20 Basic Assembler Language

O

applied and (2) the D2 displacement is
absolute.

In Figqure 14, the method of indexing
with address constants has been demon-
strated by a table look-up procedure. The
table address was loaded into a register
and successively upndated, thus pointing to
the subsequent table positions. The same
effect is achieved when TABL is used as
displacement D2 in an RX instruction and
register R8 is used as B2 to increment
TABL.

For example, the table area of 480 bytes
is set up in storage with the address TABL,
as in Figure 14, *ach entry in this area
is also considered to have an implied
length of four bytes. It is assumed that
this table will be filled with successive
entries of results computed during
processing.

To use TABL as a displacement in an RX
instruction, it must be made absolute to
retain the relocatability of the program.
expression that references the location
counter.

NULL represents the value of 0 to avoid
altering the address of TABL, assigned by
the Basic Assembler program, when TABL is
being defined. In addition, to make *-NULL
an absolute expression, NULL must represent
a relocatable 0. This can be done as

follows:
START 340
NULL EQU *-340
Here, the expression in the operand of

the EQU statement becomes relocatable
because it contains an odd number of relo-
catable expressions.

Adopting the above procedures, the pro-
gram routine could be as shown in Figure
21.

SI FORMAT
This format is used to load immediate data
that are specified in the instruction into

storage.

In Basic Assembler language, such
instructions are written as:

Op-Code D1(B1),I2 in case of explicit
addressing, and
Example:
Op-Code S1,I2 in case of implied
TABL EQU *-NULL addressing.
r T T T 1
| Name|Operation|Operand |Comments 1
t + t } 1
|PBL1|START]340 ! |
INULL|EQU {%- 340]0=RELOCATABLE |
|BGN JBASR 114,0 | LOAD BASE REGISTER
| | USING |*,4 |ASSIGN BASE REGISTER |
I { SR 18,8 |INITIALIZE INDEX REGISTER]
| PRGM| MVC 1X(5),Y |START COMPUTATION]
(I		
(I		
I Vv I		
	STH 110, TABL(0,8)	RESULT INTO TABLE
	AH 18,INCR	INCREMENT INDEX REGISTER
	CH	8,LIMT
	BC	4,PRGHM
]	ED	PRTA, MASK J]INITIATE PRINTOUT
(
I		
	v	
TABL	EQU	*-NULL
	DS 1120CL4	DEFINE TABLE AREA
PRTA	DS 1120CL4	DEFINE PRINT AREA
X DS 11049	DEFINE AREA X	
1Y	DC	E'00000175'
INCR	DC	H' 4!
LIMT	DC	H*u80¢"
	END	PBL1]
L 1 1 1 g
Figure 21. Sample Program Using TABL as Displacement

Machine-Instruction Statements 47

The field I2 represents the immediate
data, which can be any single self-defining
term with a maximum length of 8 bits.

Examples:

CLI JACK,C'6!
TM MIND,X'40!
MVI PARA,X'AF!'

Some of the input/output instructions
the programmer uses to write his own I/0
routines are also in the SI format. The
field I2 in this case is designated UF and
is used to specify the I/0 unit and its
function.

Accordingly, these instructions are
written as follows:

Op-Code D1(B1),UF
or
Op-Code S1,UF

The Set Program Status Word (SPSW)
instruction causes the current program sta-
tus word to be replaced by a new PSW stored
at the position referenced in the operand
of the SPSW instruction. Since the current
PSW contains the address of the next
sequential instruction to be processed, the
SPSW instruction is equal to a branch
instruction.

In Basic Assembler language, this
instruction is written as follows:
Op-Code D1(B1) or S1

Example:

T T
Name |Operation|Operand
} 1
|
|

+

SW INPSW
1X*N100°
| Y (REGN)
1

— —— e —

SP
NPSW|DC
DC

|
1

R

In this example, the new PSW contained
in the field NPSW is transferred to the
internal location of the current PSW. The
constant X'0100' replaces the leftmost 16
bits and the address constant replaces the
rightmost 16 bits of the U4-byte PSW. Then
the program branches to the address speci-
fied by bit positions 16 to 31 .of the new
PSW storage position BEGN.

The termination of object program execu-
tion is achieved by a Halt-and-Proceed
(HPR) instruction. This instruction also
belongs to the SI-type formats and is writ-
ten as shown in the following example:

HPR X'999',0

The operation code HPR is translated
into the machine code 99 which is displayed
in the UL register panels of the CPU. This
code also appears in the UL.register panels
in case of a programmed halt during execu-
tion of an assembly.

Tp indicate that the program has reached
the HPR instruction (completion of object
program execution), the address X'999' spe-
cified in the first operand of this
instruction is displayed in the STR regis-
ter panels of the CPU.

The second operand of the HPR instruc-
tion is ignored and, though assembled, has
no influence on the program. Normally,
zero is specified as the second operand of
the HPR instruction. It can be omitted,
however, if the comma is written to satisfy
syntax requirements.

SS FORMAT

This format is used to cause data flow from
one area of storage to another. It
requires specification of the field lengths
for the data to be acted upon.

With one exception, which is explained
later, the SS instructions form two major
groups. The first group includes instruc-
tions that require specification of length
codes for both operands. The second group
requires a length specification for the
first operand only.

In Basic Assembler language, the first
group of instructions is written as
follows.

Oop-Code D1(L1,B1),D2(L2,B2) when explicit
addressing is
used, or

Op-Code S1(L1),S2(L2) when implied

addressing is
used.

L1 and L2 in the above format designate
the length fields. The operation codes
belonging to this group are summarized in

Fiqure 19.

PACK AREA(9) ,INPT+5 (9)
MVO 400 (10,8),RES1(13)

The length code of an expression can be
omitted if the length of a field is implied
in its name.

48 System/360 Model 20 Basic Assembler Ldnghage

r Al v |
| Name |Operation|Operand |
L 1 —+ |
r T 4
I [cp |FLDA,FLDB |
| FLDA|DC {C'0000" |
| FLDB|DC [XLu*tQ! |
L 1 4L P

Field B and B each have the implied
length of four bytes. An explicit length
specification, therefore, is redundant. If
a symbol with an implied field length is
accompanied by an explicit length code, the
implied length 1s disregarded.

In explicit addressing, the length code
becomes redundant if the length is implied
in the symbol specified as the
displacement.

Example:

r T v
|Name|Operation|Operand

} [

T 1

1CP |FLDA(2) ,AREA (,8)
AREA|DC jcL2'0!

L 1

- —— -
R

The fields enclosed in parentheses are
referred to as sub-fields. In the above
example, the first sub-field of the second
operand was omitted because the displace-
ment AREA implies the length of two bytes.
Note that the comma separating the sub-
fields must be specified in spite of the
first sub-field having been omitted.
Otherwise, the expression in parentheses is
assumed to be a length code and the displa-
cement AREA is considered an implied
address.

The second grour of SS instructions
requires the length specification in the
first operand only. The operation codes
for this group are summarized in Figure 19.

In Basic Assembler language, these
instructions are written as follows:

Op-Code D1(L,B1),D2(B2) when using ex-
plicit addressing,
or
Op-Code S1(L),S2 when using implied

addressing.

The length may be explicit or implied,
but the comma separating the sub-fields in
the first operand must be entered, even if
the length code in an explicit address is
omitted.,

Example:

MVC FLDA (5),WORK(8)

The expression 5 in the first operand is
evaluated as a length code and the expres-
sion 8 in the second operand is considered
to be a base register, even though the two
operands appear to specify the same itenms.

The Execute Input/Output instruc-
tion is written as follows.

(XI0)

Op-Code D1(UF,B1),D2(B2) when using ex-
plicit address-
ing, or

Op-Code S1(UF),S2 when using im-

rlied addressing.

The length code in the first operand is
replaced by the unit and functions
specification.

xample:
XIO AREA(X'22"),50

This instruction causes 50 card columns
to be read on the assigned card-reading
device. The data is read into the storage
location named AREA. For detailed explana-
tions, refer to the section Input/Output
Instructions.

TYPES OF MACHINE OPERATIONS

There are 3 types of operations:
1. Binary arithmetic operations.
2. Decimal arithmetic operations.
3. Non-arithmetic operations.

These operations differ not only in
their internal logic but also in the format
of data, use of registers, and format of
instructions.

Some operations set a condition code in
bits two and three of the Program Status
Word (PSW). This condition code indicates
the relationship (less than/greater than,
zero, negative, positive etc.) between the

~two operands as a result of the last opera-

tion effecting the condition code setting.
For details about the PSW see the SRL pub-
lication IBM_System/360 Model 20 Functional
Characteristics, Form A26-5847.

BINARY ARITHMETIC

Binary arithmetic is used by binary
instructions for operands like addresses,
indexes, counters, and binary data. The
length of each operand is one halfword
including the sign. Negative numbers are.
given in the twos-complement form. The
first operand must be in one of the general

-

Machine-Instruction Statements 49

registers. The other operand may be either
in a register or in main storage. For
detailed information refer to the SRL pub-
lication IBM System/360 Model 20 Functional
Characteristic¢s, Form A26-5847,.

Data Format

Binary numbers have a fixed length of one
halfword=16 bits. The first (leftmost) bit
contains the sign, the other 15 bits the
binary value. Binary numbers may be stored
in one of the general registers or in main
storage. In main storage, the address of
the left byte must be even.

Binary halfword

r T
|Sign|Binary Value
1 1

(6, I SR

0 1 1

Representation of Numbers

Binary numbers are represented as signed
integers. Positive numbers are represented
in true form with a 0-bit as sign. Nega-
tive numbers are in the twos-complement
form with a 1-bit as sign. The twos-
complement form is found by reversing each
bit (0 to 1 and 1 to 0) and adding a 1 to
the rightmost bit.

A zero is always positive by definition.
The absoiute value of the lowest possible
negative number is higher by one than the
highest possible positive number.

Highest possible positive number:

r 1
10111111111111111[=215-1=+32767
) 4

0 15

Lowest possible negative number:

r 1
11000000000000000)=~ (215)=-32768
L 4

0 15

Machine Formats of Instructions for Binary

Binary operations are in the RR or
RX-Format.

RR-Format

7 B
|Op-code |R1 IR2 |
L L

0 7 1 15

-

R1 indicates a general register contain-
ing the first binary number and R2 a gener-
al register containing the second binary
number. R1 and R2 may refer to the sanme
register. The result of an instruction in
the RR-Format replaces the first operand.

RX-Format

) Ll T 1 ¥ 1
|0p-code |R1]0000|B2 | D2 |
L A L A 1 i |
0 7 11 15 19 20 31

R1 indicates a general register contain-
ing the first operand. The address of the
second operand. is indicated by the fields
B2 and D2 in one of two ways. Either they
give the address directly (0 € B2 £ 3) or
an effective address is formed by adding
the contents of the register named in the
B2-field (8 € B2 £ 15) to the relative
address given in the D2-field.

The result of an operation in the RX~-
Format replaces the first operand. Excep-
tion: After "Store Halfword" the result
replaces the second operand.

Condition Code After Binary Operations

-
|
|
1

-+ ——

|
00 101

- — . =4

I
|
|Condition code
L
i

1

]

10 1]

+ |

Add register	zero	<zero	>zero]-	
Subtract register	zero	<zero	>zero	-
Compare halfword*	equal	low	highj]-	
Add halfword	zero	<zero	>zero}	-
Subtract halfword	zero	<zero	>zero	-
1 1 1 1 1 1

*first operand compared to second.

Binary Arithmetic Error Conditions

Error conditions that may occur during the
execution of binary operations are:

1. Operation code invalid.

2. Addressing error:

a. An instruction address or an
operand address refers to the pro-
tected first 144 bytes of main
storage (addresses 0 to 143).

b. An instruction address or an
operand address is outside avail-
able storage.

c. The last (highest) main-storage
position contains any part of an
instruction that is to be executed.

d. The R1 or R2 fields of a binary
instruction contain binary values 0
through 7.

50 System/360 Model 20 Basic Assembler Language

-

G

3. Specification error:

a. The low-order bit of an instruction
address is one, i.e., no halfword
boundary.

b. The halfword second operand is not
located on a halfword boundary.

c. Bits 12 through 15 of an RX format
instruction are not all zero.

4. Binary overflow check.

S. CPU parity error.

INSTRUCTIONS FOR BINARY ARITHMETIC

r Y ¥ T 1
| | | | |
| Name {Op-codejFormat| Mnemonic|
1 h | 1. 1 5
r ¥ T) L]
}]Add Register 1 13 ! RR | AR]
Subtract Register] 1B	BR	SR
Store Halfword ! 40	RX	STH
Load Halfword 1 48	RX	LH
Compare Halfword	49	RX

|Add Halfword 1 4A { RX | AH |
|Subtract Halfword] 4B | RX | SH |
L X L A1 J
Add Register

Format: RR Op-code 1A

Machine instruction: AR R1,R2

Function: The contents of the first
operand field are added to the contents of
the second operand field. The result is
stored in the register specified by the
first operand. The second operand remains
unchanged.

The sign is determined by the rules of
algebra. A zero result is always positive.
A sum consisting of more than 15 numeric
bits plus the sign causes an overflow. In
detail, this is what happens: First all 16
bits of both operands are added. The
result is correct if the addition results
in a carry out of both the sign-bit posi-
tion and the high order numeric-bit posi-
tion or in no carry at all. However, if
the addition causes a carry out of only one
of the two positions a binary overflow will
take rplace.)

Note: An overflow will change the sign of
the result.

Condition Code:

00 Result=zero
01 Result<zero
10 Result>zero

Example: Assume register 8 contains hexa-
decimal 0123 and register 9 contains hexa-
decimal 0532.

Source statement:

Op-code R1 R2

AR 8,9

From this source statement the Basic Assen-
bler creates th« following object code:

R1
8

Op-code R2

1A 9

- ——— — -
o — = — o
be o e
e e h

After execut Jon register 8 contains hex-
adecimal 0655. The condition code is 10.

Subtract Register

Format: RR Op-code 1B

Machine instruction: SR R1,R2

Function: The contents of the second
operand field are subtracted from the con-
tents of the first operand field. The
result will be in the register specified by
R1. Both operands and the result consist
of 15 numeric bits plus the sign. The

second operand remains unchanged.

The subtraction is performed by adding
the twos-complement of the second operand
to the first operand. All 16 bits of both
operands are added. If this results in a
carry out of both the sign-bit position and
the high order numeric-bit position or in
no carry at all, then the result is
correct. If there is, however, a carry out
of only one of the two positions a binary
overflow will occur.

A register may be cleared to zero by
subtraction from itself.

There is no twos-complement for the
highest negative number. This number
remains unchanged when a complementation is
performed. Nonetheless, the subtraction is
still executed correctly.

Condition Code:

00 Result=zeron
01 Resul t<zero
10 Result>zero

______ Assume register 8 contains hexa-

decimal O47F and register 9 contains hexa-
decimal 00D7.

Machine-Instruction Statements 51

S5ource statement:

Op-code R1 R?2

SR 8,13

From this source statement the Basic Assem-
bler creates the following object code:

)

¥ a1
Op-code|R1|R2|
J

1B 8 |ID

- — -
F—
’-_—l—
N

After execution register 8 contains hex-
adecimal 03A8. The condition code is 10.

Store Halfword

Format: RX Op-code 40

Machine instruction: STH R1,D2(0,B2)
______ The contents of the register
specified by R1 are stored in the halfword
at the main-storage location addressed by
B2 and D2. The first operand remains
unchanged.

Condition Code: No change.

______ Assume register 9 contains hexa-
decimal 68AF, register 11 contains hexadec-
imal 001E, and the displacement in the
second operand is hexadecimal 29E (decimal
670) .

Source statement:

Op-code R1 D2 X2=0 B2

STH 9,670 (0,11)

From this source statement the Basic Assen-
bler creates the following object code:

r | T T Y 1
|Op-code|R1|X2=0|B2}|D2 |
F et ——
1 40 19 1 0 B J29E]
L 1 1 1 1 1

After execution the field starting at
storage location hexadecimal 2BC (decimal
700) contains 68AF.

Load Halfword

Format: RX Op-code Lg

Machine instruction: ILH r1,D2 (0,B2)

Function: The halfword at the main storage
location addressed by B2 and D2 is placed
into the 16 bit positions of the register

specified by R1.
remains unchanged.

The second operand

Condition Code: No change.

_____ Assume register 9 contains hexa-
decimal AAAA, register 12 contains 0032,
the displacement in the second operand is
1F4 (decimal 500), and the field starting
at storage location hexadecimal 226 (deci-
mal 550) contains 80AF.

Source statement:

Op-code R1 D2 X2=0 B2

LH 9,500(0,12)

From this source statement the Basic Assenmn-
bler creates the following object code:

Op-code) R1|X2=0|B2|D2

f
|
[
)
|
L

—t
48 19 | 0
i A

After execution register 9 contains hex-
adecimal B8OAF.

Compare Halfword

Format: RX Op-code 49

Machine instruction: CH R1,D2 (0,B2)
Function: The 16 bits of the register spe-
cified by R1 are compared with the halfword
at the main storage location addressed by
B2 and D2. The comparison is algebraic,
i.e., the signs must be taken into consi-
deration. Both operands remain unchanged.
A condition code is set.

Condition _Code:

00 First operand=second operand
01 First operand<second operand
10 First operand>second operand

Example: 1Assume register 9 contains
decimal 0001, the displacement in the
second operand is hexadecimal 690 (decimal
1680), and register 13 contains hexadecimal
0026, and the halfword at storage location
hexadecimal 6B6 is AF99.

n -
1

hAawva
iiTaa

Source statement:

Op-code R1 D2 X2=0 B2

CH 9,1680(0,13)

From this source statement the Basic Assem-
bler creates the following object code:

52 System/360 Model 20 Basic Assembler Language

f T Al A AJ
Op-code|R1|X2=0|B2|D2
y

|
L
r
|
L

After comparison the resulting condition
code setting will he: 10.

Add Halfword

Op-code LA

Machine instruction: AH R1,D2(0,B2)

Function: The halfword in main storage,
addressed by B2 and D2, is added to the 16
bits of the register specified by R1. The
sign is determined by the rules of algebra.
A zero result is positive by definition.

If the resulting sum is larger than 15
bits plus the sign, an overflow occurs.
All 16 bits of both operands are added. If
there is a carry out of both the sign-bit
position and the high-order numeric bit
position or if there is no carry at all,
the result is correct. A binary overflow
will occur if there is a carry out of only
one position. A condition code is set.

Condition Cogde:

00 Result=zero
01 Result<zero
10 Result>zero

Example: Assume register 9 contains hexa-
decimal O47F, register 11 contains hexadec-
imal 0028, the displacement in the second
operand is 1EA (decimal 490), and the field
at storage location hexadecimal 212 (530)
contains hexadecimal 1F29.

Source statement:

Op-code R1 D2 X2=0 B2

AH 9,490(0,17)

From this source statement the Basic Assenm-
bler creates the following object code:

r]

|Op-code|R1}1X2=0
'l [l
|
1

L
4 19
1

0

T
|
1

+
!
i

After execution register 9 contains hex-
adecimal 23A8 and the condition code is 10.

Subtract Halfword

Format: RX Op-code 4B

Machine instruction: SH R1,D2(0,B2)

Function: This instruction is identical to
the Add Halfword instruction with the fol-
lowing exception: The twos-complement of
the second operand, addressed by B2 and D2,
is added in place of the .true-value.

Condition Code:

00 Result=zero
01 Result<zero
10 Resultd>zero

Example: Assume register 9 contains hexa-
decimal O47F, register 11 contains hexadec-
imal 0050, the displacement in the second
operand is hexadecimal 320 (decimal 800),
and the field starting at storage location
hexadecimal 370 (decimal 880) contains hex-
adecimal 00D7.

Source statement:

Op-code R1 D2 X2=0 B2

SH 9,800 (0,11

From this source statement the Basic Assem-
bler creates the following object code:

T T LI L]
Op-code|R1{X2=0|B2|D2 |
1 +——+ 1
4B 19 0 B 1320}
I} 1

__*__
F—

After execution register 9 contains hexa-
decimal 03A8 and the condition code is 10,

DECIMAL ARITHMETIC

Decimal arithmetic can be performed only
with data in packed format. Packed format
means that there are two digits in one byte
except for the low order byte. It contains
one digit and the sign.

Data is transferred to and from the
external I/0 devices in zoned format.
Thus, the data has to be packed and
unpacked before and after processing re-
spectively. 1In zoned format, each byte
contains a zone in the left halfbyte and a
digit in the right halfbyte except the last
one which contains the sign and a digit.
The address in an instruction always speci-
fies the left-most byte of the operand.
The length field in an assembled instruc-
tion indicates how many bytes are part of
the operand in addition to the addressed
(left) byte.

Data_TFormat
Decimal operations are performed in main

storage. The operands have a length from

Machine-Instruction Statements 53

1-16 bytes. A field may start at any
address including an odd one. In zoned
format there may be a maximum of 16 digits,
in the packed format a maximum of 31 digits
plus the sign in a field. The two operands
may be of different length. Multiplicand
and divisor are restricted to a maximum of
15 digits plus the sign.

The values in the operand fields are
assumed to be right aligned, with leading
zeros where required. The operands are
processed as integers from right to left.
If a result extends beyond the field indi-
cated by the address and the length field,
the extending (high order) part is ignored

~and the condition code is set to 11.

Fields specified in a decimal-arithmetic
instruction may overlap only if the right-
most bytes coincide. Exception: with the
ZAP instruction an overlap to the right is
permissable.

Representation of Numbers

Decimal numbers consist of binary coded
digits and a sign. The decimal digits 0-9
are represented in the four bit code by the
bit combinations 0000-1001. The combina-
tions '1010-1111 are reserved for represen-
tations of a sign (+,-). 1011 and 1101
represent a minus, the other four combina-
tions a plus. The representations 1100,
1101, 1010, and 1011 are created during
calculations in main storage. Negative
numbers are represented in true form.
two decimal formats are:

The

Packed decimal number

T T
Byte | Byte | Byte
| | | | |
|Digit|Digit|Digit{Digit|Digit|Sign
v 1 1 I N 1 1

——
e e

Zoned decimal number

SR —

Machine Formats of Instructions for Decimal
Arithmetic

Decimal operations have the SS format:

SS-Format

1 T 1
|Op-code|Ll1 |L2
L i L

0 7 11 15 19 31 35 47

The fields B1 and D1 give the main-
storage address of the left byte of the
first operand field; L1 gives its length.
In the Basic Assembler created object code,
the number of bytes in a field is equal to
the length code minus one,

The instruction fields B2, D2, and L2
give the respective information for the
second operand.

The address of the leftmost byte is
found by adding the contents of the regis-
ter specified in the B-field and the con-
tents of the D-field.

The result of a decimal operation
replaces the first operand. . It cannot
occupy more storage area than indicated in
the B,D, and L fields. The second operand
remains unchanged. Exception: overlapping
fields.

The general registers are not affected
by decimal operations.

Condition_Code_after Decimal Operations

The results of the decimal operations
listed in the table below set a condition
code.

T T T T T 1
| | 00 | 01 | 10] 11 |
L 1 i } Vi 3
¥ 1 T 1 L i
ZAP	zero	<zero	>zero	-
CP*	equal	1low	high	-
AP	zero	<zero	>zero	overflow
SP	zero	<zero	} >zero	overflow-
1 1 1 1 1 J
*First operand compared tc second.

All other decimal operations leave the
condition code unchanged.

54 System/360 Model 20 Basic Assembler Language

Decimal Arithmetic Error Conditions

The following error conditions- may occur
during the execution of decimal arithmetic
operations:

1. Operation code invalid.

2. Addressing error:

a. An instruction address or an
operand address refers to the pro-
tected first 144 bytes of main
storage.

b. An instruction address or an
operand address is outside avail-
able storage.

c. An instruction occupies the last
two (highest) main-storage
positionmns.

3. Specification error:

a. The low-order bit of an instruction
address is one, i.e., no halfword
boundary.

b. For Zero and Add, Compare Decimal,
Add Decimal, and Subtract Decimal
instructions the length code L2 is
greater than the length code L1.

c. For Multiply Decimal and Divide
Decimal instructions, the length
code L2 is greater than 7 or great-
er than or equal to the length code
L1.

4, Data error:

a. A sign or digit code of an operand
in the Zero and Add, Compare Deci-
mal, Add Decimal, Subtract Decimal,
Multiply Decimal, or Divide Decimal
instruction is incorrect, or the
operand fields in these instruc-
tions overlap incorrectly.

b. The first operand in a Multiply

"Decimal instruction has insuffi-
cient high-order zeros.

5. Decimal divide check:
The resultant quotient in a Divide Dec-
imal instruction exceeds the specified
data field instruction (including divi-
sion by zero) or the dividend has no
leading zero.

CPU parity error.

INSTRUCTIONS FOR DECIMAL ARITHMETIC

T L] T L 1
|Name | Op—code| Format| Mnemonic|
L L 1 L 4
T T T 1 R
Move with Offs e	F1	SS	MVO
Pack	F2	Ss	PACK
Unpack	F3	SS	UNPK
Zero and Add	F8	SS	ZAP
Compare Decimal	F9] SS	Cp	

Add@ Decimal	FA	SS	AP
Subtract Decimal	FB	SS	SP
Multiply Decimal	FC] SS	MP	
Divide Decimal	FD	SS	DP

] 1 1 1]

Move with Offset

Format: SS Op-code F1
Machine instruction:
MVO p1(L1,B81),D2(L2,B2)

Function: The contents of the second
operand field are moved to the location
specified by the first operand. The move
is executed with an offset of half a byte
(one digit) to the left. The right half-
byte of the first operand remains
unchanged. There is no check for validity.
The fields need not have egual lengths.
Leading zeros are inserted if the first
operand is longer than the second. If the
second operand is longer than the first,
the high-order digits of the second operand
are ignored.

The move proceeds from right to left one
byte at a time. The second operand may
overlap the first excluding the rightmost
byte of the first operand.

Condition Code: No change.

Example: Assume register 12 contains hexa-
decimal 0250, register 15 contains hexadec-
imal O40F, the displacement given in both
operands is zero, storage location hexadec-
imal 40F contains hexadecimal 123456, and
storage location hexadecimal 250 contains
hexadecimal 77 88 99 0C.

Source statement:

Op-code D1 L1 B1D2 L2 B2

MYVO 0(4,12),0(3,15)

From this source statement the Basic Assem-
bler produces the following object code:

f Al 1 T T T Bl hl
|Op-code|L1|L2|B1]D1 |B2|D2 |
— t——+—+ +—+ 1
| F1 13 12 {C |000|F (000
L i L L 1 L L J

Machine-Instruction Statements 55

After execution the field at location
hexadecimal 250-253 contains hexadecimal 01
23 45 s6cC.

Pack

Format: SS Op-code F2
Machine instruction:
PACK p1(L1,B%) ,D2(L2,B2)

Function: The unpacked content of the
second operand field is packed and placed
into the first operand field. The second
operand field must contain an unpacked dec-
imal number. It may have a maximum size of
16 bytes. There is no check for validity
of digits and sign.

The lengths of the fields need not be
equal. Leading zeros are inserted if the
first operand field is too long for the
result. The high-order digits of the
second operand are ignored if the first
operand field is too short for the result.
The fields are processed from right to left
one byte at a time.

Condition_Code: ©No change.

Example: Assume register 11 contains hexa-
decimal OW44A, register 9 contains hexadeci~-
mal 02C0, the displacement in the first
operand is hexadecimal 244, in the second
operand it is hexadecimal 180, and that
storage location hexadecimal 440-444 con-
tains hexadecimal ¥1 F2 F3 F4 CS5.

Source statement:

Op-code D1 L1 B1 D2 L2 B2

PACK 580 (u,11),384(5,9)

From this source statement the Basic Assem-
bler produces the following object code:

r T T

T T 1
Op-code|L1|L2IBTID1 |B2

Il 4
Ll L)

!
t }

4 |B 24419 |180
L

S —— L

T

D2

F2 3

o e o

|

3
r
|
i

s i
-

After execution the field at storage loca-
tion hexadecimal 6RE contains 00 12 34 5C.

Unpack

Format: SS Op-code F3
Machine instructiont

UNPK D1(L1,B1),D2(L2,B2)
Function: The packed contents of the
second operand field are changed to zoned
format and stored in the first operand

field. The second operand field must con-
tain a packed decimal number. Sign and
digits are not checked for validity.

After processing, the zoned decimal
number in the first operand contains the
sign (high-order four bits) and one digit
in the rightmost byte. Each of the other
bytes contains a zone and a digit.

The fields are processed from right to
left. If the first operand field is too
long it is filled with leading zeros. If
the first operand field is too short to
contain all the digits of the second
operand, the leading digits are ignored.
The operands may overlap but you must exer-
cise caution.

Condition _Code: VNo change.

Example: Assume register 10 contains hexa-
decimal OFAO, the displacement in the first
operand is hexadecimal FB4, that in the
second operand is hexadecimal 65, and loca-
tion hexadecimal 1004-1007 contains hexa-
decimal 01 23 45 6D.

Source statement:
L1 B1

Op-code D1 D2 L2 B2

UNPK 4020(5,10) ,100(4,10)

From this source statement the Basic Assem-
bler produces the following object code:

A T T L) T
Op-code|L1|L2|B1|ID1 |
—t+—-
3 |A |FBU4}|A

1 1 1

B2|D2

1
|
]
1
I

F3 4 65

- — — o
p—
b — 4 —

After execution location hexadecimal 1F54~
1F58 contains F2 F3 F4 FS5 D6.

Zero_and Add_Packed

Format: SS& Op-code F8

tlachine instruction:

ZAP D1(L1,B1),D2(L2,B2)

Function: The first operand field is
zeroed out and the contents of the second
operand field are placed into the first
operand field. This operation is equiva-
lent to an addition into a zero-field. The
second operand must be in packed format.

A zero result is positive by definition.
The second operand may be shorter than the
first operand. If the second operand is
longer, then a machine stop occurs and the
instruction is not executed.

56 System/360 Model 20 Basic Assembler Language

U

Processing proceeds from right to left.
All digits and the sign of the second
operand are checked for validity. High
order zeros are supplied if needed. The
fields may overlap if the rightmost byte of
the first operand is coincident with, or to
the right of, the rightmost byte of the
second operand.

Condition Code:

00 Result=zero
01 Result<zero
10 Result>zero

Example: Assumne register 10 contains hexa-
decimal 01F4, the displacement in the first
operand is hexadecimal 294, that in the
second operand is hexadecimal 373, and
storage location hpxadec1ma1 56E contains
01 23 4p.

Source statement:

Op-code D1 L1 B1 D2 L2 B2

ZAP 660 (4, 10) ,R90 (3, 10)

From this source statement the Basic Assem-
bler produces the following object code:

r T T T T T T a
|Op-code|L1|L2|B1|D1 | B2|D2 |
F +——t—t— —F+—
| F8 13 12 |2 129412 372}
L 1) i i A 1 J

After execution location 487-48A contains
00 01 23 4D.

Compare Decimal Packed

Format: SsS Op-code F9
Machine instruction:

Cp pt(L1,B1),D2(L2,B2)
Function: The contents of the first
operand field are compared to the contents
of the second operand field and the result
is indicated by a new condition code.

The comparison proceeds from right to
left and is algebraic, i.e. the sign and
all digits are compared one byte at a time.
(Negative values are smaller than positive
values) .

A negative zero is equal to a positive
zero. The sign and all digits are checked
for validity. A halt occurs if the second
operand field is longer than the first
operand field and the instruction is not
executed. If the second operand field is
shorter it is extended with leading zeros.

~ The contents of both operand fields do
not change. An overflow cannot occur. The
two fields may overlap if the rightmost
bytes coincide. Therefore, it is possible .
to compare a number to itself.

Note the difference between "Compare
Decimal Packed" and "Compare Logical Char-
acters" (CLC).

CP: conparison proceeds from right to
left, the sign, zero, and invalid charac-
ters are considered, and fields of unequal
length are extended.

CLC: Comparison proceeds from left to
right, the sign and invalid characters are
not considered.

Condition Code:

00 First operand=second operand
01 First operand<{second operand
10 First operand>second operand

Example: Assume register 12 contains hexa-
decimal 0040, register 11 contains hexadec-
imal 02F0, the displacement in the first
operand is hexadecimal 640, that in the
second operand is hexadecimal 3E8, location
hexadecimal 680-682 contains 01000C, and
location 6D8-6D9 contains 99 99C.-

Source statemen t:
L1 B1

Op-code D1 D2 L2 B2

~Cp 1600(3, 12) ,1000(2,11)

From this source statement the Basic Assemn-
bler produces the following object code:

¥ T T T T v 1 a
|Op-code|L1|L2{B1|D1 [B2|D2 |
k +—t—t————
| F9 12 |1 |C 1640|B |3E8|
L - 1 L 1 A i - J

After comparisor the condition code is 10.

Add Decimal Packed

Format: SS Op-code FA
Machine instruction:
AP D1(L1,B1),D2(L2,B2)

Function: The contents of the second
operand field are added to the contents of
the first operand field. The result
replaces the first operand.

The sign is determined by the rules of
alyebra. A zero result is positive by
definition. Exception: It is possible
that a remaining zero result after an over-

Machine-Instruction Statements 57

flow has a negative sign. A condition code

is set.

If the second operand field is longer
than the first a program error halt occurs
and the instruction is not executed. ' If
the second operand field is shorter than
the first it is expanded with leading zeros
and addition will take place normally. .
Signs and digits are checked for validity.
‘Addition proceeds from right to left., - The
result is in packed format.

The two fields may overlap if the right-
most bytes coincide. Thus, it is possible
to double a number.

Condition Cogde:

00 Result=zero

01. Result<zero

10 "Result>zero ,
11 Overflow

Example: Aésume register 8 contains hexa-
decimal 0014 storage location 329 (hexadec-
imal) contains 00 22 2D, storage location
500 (hexadecimal) contains 01 00 0C, the
displacement in the first operand is- 315
(hexadecimal), and that in the second
operand is U4EC (hexadecimal).

Source statement:
L1 B1

Op-code D1 D2 L2 B2

AP 789 (3,8),1760 (3, 8)

From this source statement the Basic Assem-
bler produces the following object code:

L

|0p- code[L1|L2
t-

| F

L

After execution storage location 329 (hexa-

decimal)- contains N0 77 8C.

Subtract Decimal Packed

Format: SS op-code TFB
Machine instruction:

sp- D1(L1,B1),D2(L2,B2)
Function: The contents of the second
operand field are subtracted from the con-
tents of the first operand field. The '
result is placed into the first operand
field. The sign'is determined by the rules
of algebra. A zero result is positive by
definition. Exception: A zero result
remaining in case of an overflow may pos-
sibly have a minus sign.

"than the first a program error halt occurs

- the second operand field is shorter it is

~adecimal) , and that in the second eoperand

If the second operand. field is longer

and the instruction is not executed. If O
expanded with zeros and subtraction will
take place normally.

All'digits and the signs are checked for
validity. The operation proceeds from
right to left by reversing the sign of the
second operand and then adding the second
operand to the first. The result is in
packed format. '

The fields may overlap if the-rightmost
bytes coincide. Thus it is possible to
clear a field to zero.

Condition Code:

- 00 Result=zer5

01 Result<zero
10 Result>zero
11 Overflow

Assume register 9 contains (hexa-
00C8, register 8 contains (hexa-
decimal) 012C, storage location 898 (hexa-
decimal) contains 012C, storage location
CE4 (hexadecimal) contains 008C, the dis-
‘placement in the first operand is 7D0 (hex-

Example:
decimal)

is BB8 (hexadecimal).

Source statement: ()
(i
Op-code D1 L1 B1 D2 L2 B2

SP - 2000(2,9),3000(2,8)

From this source statement the Basic Assen-
bler produces the following object code:

r T L] L
| Op- code|L1|L2|B1|D1 IB2|D2 |
1 1 } ‘ 4 } 1 d
r T T T T T T 1
| FB [1 11 19 |7D0}8 |BB8|
L. 1 L 1 i L . 1

location 898 (hexa-
Thé condition code

"Rfter. execution storage
decimal) contains 00AQ.
is 10.

BRSBTS SRR

Machine instruction:
up DI(L1,B1) ,D2(L2,B2)

in the first
by the multip-
The pro-

"Function: The multiplicand
operand field is multiplied

lier in the second operand field.

duct is placed into the first operand
field. The second operand may have a maxi- 0
mum-of 15 digits (L2=7) the sign and

plus

58 System/360 Model 20 Basic Assembler Hdnquade

must be shorter than the first operand. If
L2 > 7 or L2 2 L1 a program error halt
occurs and the instruction is not executed.

The length of the product is equal to
the sum of the lenoths of multiplier and
multiplicand. Therefore the multiplicand
must be expanded with leading zeros by the
number of bytes of the multiplier. Other-
wise a halt occurs. An overflow is not
possible. The product may have a maximunm
length of 30 digits plus the sign. It con-
tains at least one leading zero.

The factors and the result are consi-
dered to be signed integers. The sign is
determined by the rules of algebra. The
operand fields may overlap if their right-
most bytes coincide. Thus, it is possible
to square a number.

Note: You can save computing time by using
the larger of the two factors as the second
operand. .

Condition_Code: No change.

Example:

product
PROD

1. Multiplicand x multiplier
MAND X MOR

o

2. Length MAND + length MOR = length PROD

3. The MAND must be right-aligned and have
leading zeros bYefore the multiplication
is executed.)

{ 1
| |
| |
| 1
| |
| |
I ¥ ¥ - 1 l |
| Name | Operation | Operand i | MAND 14215C|
t + - + 1] : —t |
| | . | | | |
|] .] | | PROD before multiplication]
| | - | | | [[I S |

11 | ZAP | PROD,MAND 1 | 100100100]14215C]

2 | | MP | PROD,MOR I | L 1 L 1 1 |
	.			
	.			PROD after multiplication
	.	1	B IO D R R	
MOR	DS	CL3		1011581181 07]15D}
MAND	DS	CL2		L —— 1 4
PROD	DS	CLS]		
	.			Note: Maximum length of
]	.			product is 16 bytes; maximun
	.			length of MOR is 8 bytes.

L L 1] L ']

from the address value of the implicit
address). '

Source statement:

Op—-code D1 L1 B1 D2 L2 B2

ZAP PROD ,MAND

Basic Assembler produced object code:

B2|D2

1 T t T
8 14 11 |C |BO3IC
) 2]

T T T k) R
Op-code|L1|L2|B1{D1 |
IR 1

T

F |
]

BO1

e e d o

=T "
s

and

Op-code D1 L1 B1 D2 L2 B2

MP PROD,MOR

r J T T 3 T T 1
|op-code|L1|L2|B1|D1 |B2]|D2 |
} +———+ +— !
| FC {4 |2 |C |BO3|C |AFE|
1 1 1 1 1 1 A]

The result of the two instructions is shown
in Figure 22.

N
MOR 13712119D|
| ISR RSY I— |

Assume the Basic Assembler has allocated
storage location (hexadecimal)
tement MOR. Then, MAND has location 1C95
amd PROD has location 1C97. Further assume
that the storage locations implicitly
addressed by MOR and MAND contain 37219D
and 425C respectively and register 12 con-
tains (hexadeciral) 1194. (The Basic
Assembler automatically calculates the dis-
placement shown in the object coding by
subtracting the contents of register 12

1C92 to sta-.

Figure 22. Decimal Multiplication

Divide Decimal Packed

Format: SS Op-code FD

Machine instruction:
DP D1(L1,B1),D2(L2,B2Yy

Machine-Instruction Statements 59

Function: The dividend in .the first
operand field is divided by the divisor in
. the second operand field. The quotient and
- the remainder are placed lnto the first
operand field.

The gquotient occupies the left part of
the first operand, i.e. the address of the
quotient is the same as the address of the
.dividend. The remainder occupies the right
part of the first operand and has a length
equal to that of the lelsor.

The guotlent anA the remalnder together
occupy the entire Aividend field (first
operand) . - This means the dividend field
must be large enouah to accomodate a divi-
sor of maximum lenath and a quotient of
maximum length. -'In the extreme case the
dividend field has to be expanded with
zeros to the left by the number of bytes of
the divisor.

The length of the gquotient field: (in
bytes) is L1-L2. The divisor.field may
have a maximum of 15 digits plus the sign
and must be smaller than the dividend
field.

If L2 > 7 or L2 2 L1 a halt occurs and
the operation is not executed. The divi-
dend must have at least one leading zero or
a halt occurs and the operation is not
.executed. ‘

Dividend, divisor, quotient, and
remainder are signed integers. The sign is
determined according to the rules of alge-
bra from the signs of dividend and divisor.
The sign of the remainder is always ident-
‘ical to the sign of the dividend. This
also holds true if the quotient or. the
remainder are zero.

If the -quotient contains more than 29
digits plus the sign, or if the dividend
has no leading zero, then a halt occurs and
the operation is not executed. The divisor
and the dividend remain unchanged and there
is no overflow. The two operands may over-
lap if their rightmost bytes coincide.

Ezémﬁlg=

1. Dividend :
DEND :

Divisor = Quotient
DOR = QUOT

2. Length of proceséing field = length
QUOT + length DOR '

maximum length of processing field
(PROFE) = length DEND + length DOR
(packed bytes).

e ——

1
Name |
+ +
[I
I |
. I :
| ZAP | PROFE,DEND
| DP | PROFE, DOR
. |
I . |
. 1
IDEND | DS |CLu
|DOR | DS |CL2
" | PROFE| DS " JCL5S
1 1. [
| . |
| . |
L L L

3. The dividend must be right-aligned with

at least one leading zero before the
division is performed.

B T
Operation|Operand

e o e e e e e e e e e e

Assume the Basic Assembler has allocated
storage locations as follows: DEND hexa-
decimal A0Y9, PROFE hexadecimal F40, and DOR
hexadecimal CAC. Register 9 contains hexa-
decimal 0400. The Basic Assembler automat-
ically calculates the displacements for the
two operands by subtracting the contents of
register 9 from the respective storage
address values. The source and object cod-
ings for the ZAP and DP are:

Source statement:

Op-code D1 L1 B1 D2 L2 B2

- o———

ZAD PROFE,DEND

Besic Assembler produced object code:

1 i
+

Op— code|L1|L2|B1|D1
F

o]

and
Source statement:

Op-code D1 L1 B1 D2 L2 B2

DP : PROFE ,DOR .

Basic_Assemble; produced ob ject code:

r T ¥ T T T v L
|Op-code|L1|L2|B1ID1 | B2]D2 |
i |] 3 1 3 } 1
r T T 1 T T T 1
| FD 4 11 19 175819 |8AC)
L 1 L 1 L S IR g

The results of the two instructions are
shown in Fiqgure 23.

60 System/360 Model 20 Basic_Assembler Language

| N N
127195]34)3C|

DEND
e 3 1
[IR I N R |
PROFE]00]27195]34]3C|
. L 1
| | |
DOR 12113cC|

— L

Quotient:
| | |] [
11311213C11414C|

L F 1 1 1]

PROFE

—— e e ————— e — o

|Quotient and remainder each
| have their own siqn.

|Note: Maximum length of
]quotient is 16 bytes; maxi-
]mum length of DOR is 8
|bytes.

1

‘Figure 23. Decimal Division

NON-ARITHMETIC OPEPATIONS

There are special-instructions for the non-

arithmetic processing of data. The
operands are processed one byte at a time.
In some cases the left four bits and the
right four bits of a byte are treated
separately.

Processing of data fields in main
storage proceeds from left to right. A
field may start at any address excluding
"the reserved areas. '

In non-arithmetic operations the operand
fields are considered to contain alphameric
data. An exception is the Edit-instruction
which requires packed decimal numbers in
the second operand field.

Data Format

The data are either in main storage or in
the instruction itself. 'They may be a
single character or an entire field. If
two operands are used they must be of equal
length. Exception: the Edit-instruction.
The two formats for non-arithmetic data
are:

Fixed Length

[et —— h
Isingle |
|character |
| IO —— |
0 7

Variable Length

r T T T 1
|character|character| |character|
L 1 I 1 .

0 78 15

In storage-to-storage (SS) operations,
the fields may start at any address with
exception of the first 144 bytes, which are
reserved. The maximum length of a field is
256 bytes. Immediate data is limited to a
length of one byte.

The EDIT operation only handles data of
packed format. The other instructions
handle all bit combinations.

Storage-to-storage instructions may have
overlapping operands. The result of over-
lapping depends on the particular opera-
tion. Overlapping does not influence the
operation if the operands remain unchanged
(e.g. 1in a comparison). If one or both
change, however, execution of the operation
may be influenced by the overlapping and by
the manner in wltich the data are rounded
off and stored.

Machine Formats of Instructions for

Non-Arithmetic Operations

Non-arithmetic instructions are either in
the SI- or the SS-format.

r T | T 1
jOp-code]| 12 |B1 | D1 |
[N

i i 1 1 . 4

0 7 15 19 31

The address of the first operand field
is the sum of the contents of the Bl1-and
D1-fields. The operand has a length of one
byte. The second operand also has a length
of one byte but it is contained directly in
the instruction. The result is placed into
the first operand field. The general
registers are not affected Ly an
SI-instruction.

SS-Format

r T ‘ T T T T 1

| Op-code| L {B1 | D1 1B2 | D2 |

L 1 1 L i 1 I B
0 7 15 19 - 31 35 47

The address of the each operand field 1is
the sum of the contents the respective B-
and D-fields. The first and second operand
fields must have the same length.

The result of an operaﬂion in the S5-
Format is placed into the first opcrand

Machine-Instruction Statements 61

field. The contents of the general regis-
. ters remain unchanged.

Condition Code After Non-Arithmetic -

~ Operations

The results of the operations determine the
condition code. Move-operations do not set
a code. 1In case of the EDIT-instruction
the condition code indicates the status of
the field to be transferred into the mask.

Table of condition codes:

1 T T T T
1 100 j01 110 111)
i } 1 I 1 . |
] L] L ¥ T 1
|Test under Mask]zero |mixed | -— |one|
| And |zero |not zeroj-- |-= 1
|Compare Logicaljequaljlow’ lhigh |-- |
-} Oor |zero |not zerof-- == 1
| Edit " |lzero |<zero |>zero |-- |
L L i i 1 J

Error Condifions

Error conditions which may occur during the
execution of non-arithmetic operations are:

1. Operation code invalid

2. Addressing error)
a. An instruction address or an

operand address refers to the pro-

tected first 144 bytes of main
storage (addresses 0 to 143).

b. An instruction address or an
operand address is outside avail-
able storage.

c. The last (highest) main-storage
position contains any part of an
instruction that is to be executed.

3. Specification error)
The low-order bit of an instruction
address is one, i.e., no halfword
boundary.

4. Data error
An invalid digit code is contained
within the second operand field of an
Edit operation.

5. CPU parity error.

'Condition Code:

_INSTRUCTIONS FOR NON-ARITHMETIC OPERATIONS

! 1 T 1
i | » | Operation|
| Name - | Format | Code |
- - - } + i
|Move Immediate (MVI) | SI] 92]
|Move Characters (MVC)| =SS | D2 |
|Move Numerics - (MVN)] Ss | © D1
.IMove Zones (MVZ) 1 SS | D3 |
|Compare Logical (CLI) | SI | 95 |
|Compare Logical (CLC)| SS | D5 |
|Edit (ED) ' | ss i "DE |
|And (NI) | ST | 94 |
jor (OI) | ST | 96 |
|Test under Mask (THM) | SI | 91 |
|Halt & Proceed (HPR) | ST 1 " 99 |
|Translate (TR) | ss] DC [
L ~ 1 1 1

Op-code 92

Machine Instruction:

‘MVI D1(B1),I2

Function:
directly i

No‘chahge;

Example: Assume register 10 contains (hex-
adecimal) 082E, storage location A22 (hexa-
decimal) contains A, the displacement in
the first operand is 1F4, and the immediate
data is the $. :

Soutce statement:

Op-code D1 B1 12

MVI 500 (10),C's$!

From this source statement the Basic Assem—A

bler produces the following object code:

y-rnde
coae

=
()

e e e - of
o
-

(&)
-

v
fos)
>
—_
]
=

b — e -
R
e e = d

After execution storage location A22 con-
tains $. _ : '

Move Characters

Format: -SS Op-code D2

Machine instruction:

Mve pi1(L,B1) ,D2(B2)

62 System/360 Model 20 Basic Assembler Language

o)

Function: The contents of the second
operand field are placed into the first
operand field. Processing is performed
from left to right one byte at a time.

The two operand fields may overlap. If
the first operand field is to the left of
the second operand field, then transfer
will proceed correctly. If the first
operand field is exactly one byte to the
right of the second operand field, then
this byte will be propagated throughout the
first operand field.

Condition Code: No change.

Example: Assume register 11 contains (hex-
adecimal) 0258, register 15 contains (hexa-

decimal) 04B0, storage location 3E8 (hexa-
decimal) contains optional data, storage
location 7D0 (hexadecimal) contains C9 C2
D4, the displacement in the first operand
is 190 (hexadecimal), and that in the
second operand is 320 (hexadecimal).

Source statement:

Op-code D1 L B1 D2 B2

MVC 400 (3, 11) , 200 (15)

From this source statement the Basic Assem-
bler produces the following object code:

After execution storage location 3E8 con-
tains C9 C2 D4.

Move Zones

Format: SS Op-code D3
Machine instruction:

MVZ D1(L,B1),D2(R2)
Function: The high-order four bits (the
zones) of each byte in the second operand
field are placed into the high-order four
bits of the first operand field. The low
order four bits (the numerics) of each byte
remain unchanged. Movement is from left to
right one byte at a time. The digits are
not checked for validity. The operand
fields may overlap.

Condition Code: ©No change.

Example: Assume register 10 contains (hex-
adecimal) 0890, storage location 8F4-8F7
{hexadecimal) contains F4 F3 F2 Ct1, the
displacement in the first operand is 64

(hexadecimal) , and that in the second
operand is 66 (hexadecimal).

Source statement:
D1 L B1

Op—-code D2 B2

MVZ 100(1,10) ,102(10)

From this source statement the Basic Assenm-
bler produces the following object code:

T 1

B2|D2
|

]
1
T T
|
1

T T
Op-codelL |B1|D1
4
T
|
1

D3 0 |A |064]A | 066

b oo by

L)
]
1
R
]
1

P e

|
1

After execution storage location BF4-8F7
contains F4 F3 F2 F1.

Move Numerics

Format: SS Op-code D1
Machine instruction:
MVYN D1(L,B1),D2(B2)

Function: The low order four bits (the
numerics) of each byte in the second
operand field are placed, from left to
right, into the corresponding low order
four bits of the first operand field. The
high order four bits (the zones) of each
operand remain unchanged. The digits are
not checked for validity. The operand
fields may overlap.

Condition Code: No change.

Example: Assume register 15 contains (hex-
adecimal) 7DA, storage location 8AL-8A7
(hexadecimal) contains F4 F3 F2 C1, storage
location 96A (hexadecimal) contains F9 F8
F7 D6, the displacement in the first
operand is C8 (hexadecimal), and that in
the second operand is 190 (hexadecimal).

Source statement:

Op-code D1 L B1 D2 B2

MVN 200 (4, 15) ,400(15)

From this source statement the Basic Assem-
bler produces the following object code:

r s ' 1 Al L L}
|op-code|L |B1{D1 |B2ID2 |
; f—p ==t ———1
| D1 {3 |F {OC8|F |190]
L A 1 1 1 1]

After execution StOIaQGIIOCdtiOn 8 AL-8 A7
contains F9 F8 F7 Cé6.

Machine-Instruction Statements 63

Compare Logical Immediate

Format: SI Op-code 95
Machine instruction:
CLI D1(B1),I2

Function: The eight-bit symbol of the
immediate-data operand (the second operand)
is compared to the contents of the first
operand field. The result sets the condi-
tion code., The two bytes are treated as
eight-bit unsigned binary values. This
results in the following order of
comparison:

Special characters, lower case letters,
upper case letters, digits (System/360
collating seguence).

All 256 bit combinations are valid.

Condition Code:

00: first operand=second operand

01: first operand<second operand
10: first operand>second operand
Example: Assume register 15 contains (hex-

adecimal) O1F4, storage location 5DC (hexa-
decimal) contains *9, the displacement in
the first operand is 3E8 (hexadecimal), and
the immediate data is the letter A.

Source statement:

Op-code D1 B1 1I2

CLI 1000 (15) ,C*A?

From this source statement the Basic Assen-
bler produces the following object code:

1 4

T T
C1|F |3EB

1 L

T T T T
{Op-code|I2|B1|D1
9

5

- e b -

L
—
|
[}

— =

After execution the condition code setting
is 10.

Compare Logical Characters

Format: SS Op-code D5
Machine instruction:

cLc D1(L,B1),D2(R2)
Function: The contents of the first
operand field are compared with those of
the second operand field. The fields may
have a maximum length of 256 bytes. The
comparison is terminated as soon as inequa-
lity is encountered.

A1l bits are treated alike as part of an
unsigned binary guantity. The order of
comparison is the System/360 collating
sejuence: :

Special characters, lower case letters,
upper case letters, digits.

Comparison proceeds from left to right.
A1l 256 bit combinations are valid.

Condition_Code:

00: first operand=second operand
01: first operand<second operand
10: first operand>second operand

Assume register 11 contains (hex-
adecimal) 0320 storage location AF0-AF3
(hexadecimal) contains D1 D6 C8 D5, storage
location 708-70B (hexadecimal) contains D1
D6 C5 E8, the displacement in the first
operand is 7D0 (hexadecimal) , and that in
the second operand is 3E8 (hexadecimal).

Example:

Source statement:

Op-code D1 L B1 D2 B2

CLC 2000 (4,11),1000(11)

From this source statement the Basic Assem-
bler produces the following object code:

r T LA T T T 1
|Op-code|L |B1|D1 |B2|D2 |
L i3 i l } 4 y]
L] T T T T T 1
] D5 13 |B |7D0]B |3ES8|
1 1 1 L i)]

After having compared the third character
the condition code setting will be 10.

Edit

Format: SS Op-code DE
Machine instruction:

ED D1(L,B1),D2(B2)
Function: The format of the source field
(the second operand) is changed from packed
to zoned and is edited -under of the
pattern field (the first operand). The
edited result replaces the pattern. The
two fields must not overlap. Editing
includes sign and punctuation control and
the suppressing and protecting of leading
zeros. It also facilitates programmed
blanking of all-zero fields. <Several num-
bers may be edited in one operation, and
numeric information may be combined with
alphabetic information. The length field
applies to the pattern (the first operand).
It may have a maximum of 256 bytes. The
pattern has unpacked format and may contain
any character. The source (the second

64 System/360 Model 20 Basic Assembler Language

O

O

O

operand) has packed format and must contain
valid decimal digit-and sign-codes. 1Its
left half-byte must always contain one of
the digits 0-9. The right half-byte may be
a digit or a sign.

Both operands are processed left to
right one character at a time. Overlapping
pattern- and source-fields give unpredict-
able results.

A so-called S-trigger controls the Edit-
operation. Depending on various conditions
during the operation the trigger is set
either to ON or OFF. This setting deter-
mines whether a source digit or a f£ill
character is inserted into the result
field.

As mentioned before, the pattern may
contain any unpacked character. However,
three Bit-combinations have special
significance:

0010 0000 (hexadecimal 20) = digit-select
character

0010 0010 (hexadecimal 22) = field-
separator character

0010 0001 (hexadecimal 21) = significance-

start character.

The digit-~select* character indicates a
position in the result field into which the
corresponding digit of the source field or
a fill character is to be inserted.

The field-separator character is used if
several source fields are to be inserted
into one pattern. By setting the S-trigger
to OFF it causes every source field to be
treated separately. The field-separator
character is always replaced by the fill
character.

The significance-start character sets
the S-trigger to ON. Now every character
in the pattern is replaced by the respec-
tive digit of the source field or the fill
character.

The S-trigger is set to OFF (0) :
1. At the beginning of an Edit-operation.

2. By the field-separator character in the
pattern.

3. By a positive sign (1010,
M.

1100, 1110,

The S-trigger is set to ON (1):

1. By a valid digit
field.

(1-9) of the source

2. By the significance-start character in
the pattern,

3. By a negative sign (1011, 1101).

During the processing of the left half-
byte the sign of the right half-byte is
checked and set accordingly. If a sign
coincides with a valid digit or with a
significance-start character in one posi-
tion of the result field, tle the sign
takes precedence and the S-trigger is set

to OFF (0).

The new S-trigger setting always takes
effect with the subsequent position.

The f£fill character, which under certain
conditions, is placed into the result
field, is always the first (left) character
of a pattern; it is retained in the pattern
(exception: the digit-select character and
the significance-start character).

The S-trigger in OFF position causes:

1. The digit-select character (hexadecimal
20) and/or the significance-start
character (hexadecimal 21) to be
replaced by a valid digit (1-9)
the source field.

from

2. The fill character to be stored in
rlace of a zero in the source field.

3. The fill character to be stored in
place of any character in the pattern
(exception: the digit select and the
significance start characters).

The S-trigger in ON position causes:

1. The digit-select and/or the
significance-start character to be
replaced by every digit (0-9) from the
source field.

2. A character in the pattern to remain
~unchanged (exception: the digit-
select, field-separator, and
significance-start characters).

All digits in the result field receive
the zone 1111.

Condition Code:
The condition code is set to:

1. 00 if the source field contains only
zeros. The setting of the S-trigger
has no e ffect.

2. 01 if the source field is not zero and
the S-trigger is set to ON (1) . (Nega-
tive result) .

3. 10 if the source field is not zero and

the S-trigger is set to OFF (0).
(Positive result).

Machine-Instruction Statements 65

If several fields are edited with one Source statement:
pattern, then the condition code refers to
the field being processed. If the pattern
has a field-separator in the last place, Op-code D1 L BT D2 B2
then the condition code is set to zero. :

ED 0(13,12) ,200(12)
The following symbols are used in the
example: From this source statement the Basic Assem-
bler produces the following object code:

Symbol Meaning
: I T T T k] k] -

b (hexadecimal 40) blank character Op-code|L |B1|D1 |B2|D2 |
((hexadecimal 21) significance-start %* +—t— +—4 1

character | DE JC |C 1000jC }|0C8]
) (hexadecimal 22) field-separator L It 1 =]

character
d (hexadecimal 20) digit-select character Processing proceeds left to right one

, character at a time as shown in Figure 24.
If the number to be edited is a negative

number, then the C® (hexadecimal C3D9) is Condition code=10; result greater than
commonly used in the last two bytes of the. zero.

pattern. Since the minus sign does not .
reset the S-trigger, the CR will be left After execution location 1000-1012 (3E8-
unchanged in the pattern. The CR stems 3F4) contains bb2,574.26bbb.

from business application. It stands for

credit and indicates payments due. If the contents of location 1200-1203

are 00 00 02 6D, the following results are
Example: (The numbers are given in decimal obtained:
notation with the hexadecimal equivalent in

parentheses.) (before) Loc 1000-1012 (3E8-3F4)

bdd,dd (.ddbCR
Assume that register 12 contains 1000 (after) Loc 1000-1012 (3E8-3F4)
(03E8), : bbbbbb. 26 bCR
D1 is 0 (00),
D2 is 200 . (C8), Condition code=1; result less than zero.
storage location 1000-1012 (3E8-3F4) con-
tains bdd,dd({ .ddbCR (unpacked), In this case the significance-start
storage location 1200-1203 (4B0O-4B3) con- character in the pattern causes the decimal
tained 0257426C (packed). point to be left unchanged. The minus sign

o e e e —— —

1 L} 1 T 1
Pattern|Digit|S-trigger|Rule |Location 1000-1012]
1 1 1 1]
Ll) I T L]
b | | 0 |leavet! |bdd,dd (.ddbCR |
d I 0 | 0 |£fill | bbd,dd (.ddbCR |
d | 2 | 1]digit |bb2,dd (.ddbCR2 |
B | | 1 |leave |same |
d 1 5 1 Jdigit |bb2,5d(.ddbCR l
d 17 1 1 |digit |bb2,57 (.ddbCR |
{ [T | 1 tdigit }|bb2,574.33bCR i
. | | 1 |leave |same |
d I 2 | 1 |digit |bb2,574.2dbCR |
d | 6+ | 0 |digit |bb2,574.26bCR3 |
b | | 0 1£i11 |same |
C | | 0]£1i11 |bb2,574.26bbR |
R |] 0 1£i11 | bb2,574.26bbb
A i i i J

Figure 24. Processing of Edit-Instruction

1. This character is saved as the fill character.
2. First non-zero digit sets S-trigger to one.
3. The plus sign in this byte sets the S-trigger to zero.

66 System/360 Model 20 Basic Assembler Language

does not reset the S-trigger so that the CR
symbol is also preserved.

And Immediate

Format: SI Op-code 9y
Machine instruction:

NI D1(B1),I2

Function: The immediate data in the second
operand field and the contents of the
storage location addressed in the first
operand field are connected by the logical
AND. The result (logical product) is
placed into the first operand field.

The connective AND is applied bit by
bit. If there is a 1-bit in both operands,
then the 1-bit in the first operand remains
unchanged. Otherwise the 1-bit in the
first operand will be changed to a O-bit.

Condition_Code: If all eight bits in the
result field are zero, the condition code
is set to 00. Otherwise it is set to 01.

Example: (The numbers are given in decimal
notation with the hexadecimal equivalent in
parentheses) .

Assume that

register 8 contains 4096 (1000),

D1 is 1000 (3E8),

I2 is 2720(AA), in binary notation:

1010 1010,

location 5096 (1060) contains 240(F0), in
binary notation: 1111 0000.

Source statement:

Op-code D1 B1 1I2

NI 1000 (8) ,X*AA?

From this source statement the Basic Assem-
bler produces the following object code:

r BLE T T 1
jop-code|I2|B1|D1

1
Ll T 1
9y 1AA18 |3ES8

1 . 1 1

i |
1
!

r—-!r-

After execution storage location 5096 (1060)
contains 160(A0) or in binary notation 1010
0000.

Condition code setting is 01.

Or_Immediate

Format: SI Op-code 96

Machine instruction:
oI D1(B1) ,I2

Function: The immediate data in the second
operand field and the contents of the
storage location addressed in the first
operand field are connected by the inclu-
sive OR. The result (logical sum) is
placed into the first operand field.

The inclusive OR is applied bit by bit.
A 0-bit in both operand fields will set the
bit in the result field (first operand) to
zero. Otherwise the resulting bit will
always be one.

then
Otherwise the

Condition Code: If all bits are zero,
the condition code is 00.
code is set to 01.

Example: (The numbers are given in decimal
notation with the hexadecimal equivalent in
parentheses).

Assume that

register 8 contains 4096 (1000),

D1 is 1000(3E8),

I2 is 2720(AA), in binary notation:

1010 1010,

storage location 5096 (1060) contains 240 (
FO), in binary notation: 1111 1010.

Source statement:

Op-code D1 B1 I2

oI 1000 (8),X'AA"

From this source statement the Basic Assenm-
bler produces the following object code:

r T 1 T a1
|Op-code | I2|1B11D1 |
I +—+—+ i
| 96]AA|8 |3E8]
1 L 1 L J

After execution storage location 5096(1060)
contains 250 (FA) or in binary notation:
1111 1010.

Condition code is 01.

Test Under Mask

Format: SI Op-code 91
Machine instruction:
TH D1(B1),I12

Functi The bit combination in the first
operand field is compared with the mask in
the I2-field. The result of the comparison
sets the condition code.

The eight bits of the mask correspond
bit by bit to the eight bits defined by the

Machine-Instruction Statements 67

first operand. A comparison with a bit in
the first operand is performed only if the
corresponding bit in the mask contains a
mwin, If the bit in the mask is "O0", the
corresponding bit in the first operand
field will not be tested.

Condition_ Code:

00: all bits tested were zero (also, if
all bits in the mask were zero, i.e.,
no test).

01: some (not all) of the bits tested were
one.

11: all bits tested were one.

Example: (The numbers are given in decimal
notation with the hexadecimal equivalent in
parentheses) .)

Assume that

register 8 contains 2000 (07D0),

D1 is 650 (281),

I2 i1s 217(D9) or in binary notation:

1101 1001,

storage location 2650 (A5A) contains 204 (CC)
or in binary notation: 1100 1100.

Source statement:

Op-code D1 B1 1I2

T™ 650 (8) ,X'D9?

From this source statement the Basic Assem-
bler produces the following object code:

r Rl T T 1
|Op-code|I2|B1|D1 {
F =t
| 91 1D9|8 |28A)
L . 1 1 1

Condition code is 01.

Halt and Proceed

Format: SI Op-code 99
Machine instruction:

HPR D1(B1),D

Function: This instruction is used to halt
the CPU. All input/output operations are
continued to completion.

Execution of the program may be resumed
with the next sequential instruction by
pressing the Start key on the CPU.

This instruction uses the SI-Format in
which the I2 field is ignored. The direct
or effective address derived from the B1-D1
fields may be used to identify the Halt and
Proceed instruction.

Condition Code: No change.

Example: (The numbers are given in decimal
notation with the hexadecimal eguivalent in
parentheses).

O

Assume that

register 10 contains 450(01C2),

D1 is 140 (080),

The halt number 590(24E) is shown on the
E-5-T-R registers on the console as 024E,

Source statement:

Op-code D1 BT I2

HPR 140(10) ,0

From this source statement the Basic Assen~
bler produces the following object code:

I T T T 1
|0p-code | I2|B1|D1 |
1 1 {] 1
1) L T T 1
| 99 100jA |08C|
1 i J

A 1

Translate

Format: SS Op-code DC

Machine instruction:
TR D1(L,B1),D2(B2)

Function: This operation allows you to
replace the values of one operand field by
the corresponding values of a table. Every
byte in the first operand field is used to
look up a value in a table. The binary

value of a byte is added to the starting

address (given by the B2/D2 field) of the
table. The sum is the place of the table-
value wanted. This table-value replaces
the byte in the first operand used to loc-
ate the table-value.

Processing proceeds from left to right
until the end of the first operand is
reached. The maximum length may be 256.
The table must contain as many bytes as
indicated by the highest binary value used
for searching,.

Condition Code: No change.

Example: (The numbers are given in decimal
notation with the hexadecimal equivalent in
parentheses).

Assume that

register 10 contains 0(0000) ,
register 12 contains 0(0000),
D1 is 1000 (3E8),

O

68 System/360 Model 20 Basic Assembler Language

D2 is 2000 (700),

storage location 1000-1012(3Z8-3F4) con-
tains the EBCDIC characters 542156037835
and location 2000-2009(7D0-7D9) contains
the EBCDIC characters 6MB0Ib3-2 where
b=blank.

Source statement:

Op-code D1 L B1 D2 B2

TR 1000 (12, 10) , 2000 (12)

From this source statement the Basic Assem-
bler produces the following object code:

T
Op-code|L |B1{D1 {B2|D2
{

T
|
1
)
|

0B|A

1.

DC 3E81C |7DO

h— e

T
|
4
T
|
1

P_____-
L 2L
e e)

po o o

After execution storage location 1000-1012
(3E8-3F4) contains the EBCDIC characters
bIBMb360-20b where b=blank.

BRANCHING

Normally the CPU processes instructions in
the order of their location in main
storage. Branching operations allow a
departure from this sequence. The machine
can make logical decisions on the basis of
certain conditions, For exanmple:

e The program continues in its normal
sequence.

e The program branches to a subroutire.
e Part of the program is repeated (loop) .

The branch address may be obtained from
one of the general registers or it may be
specified in an instruction. The branch
address is independent of the updated
instruction address.

Branching is determined either by the
condition code in the Program Status Word
(PSW) or by the contents of the general
registers used in the operations.

During a branching operation the right-
most half of the PSW, the updated instruc-
tion address, may be stored before the
instruction address is replaced by the
branch address. The stored information may
be used to link the new instruction
sequence with the preceding sequence.

The condition code set by certain
instructions and the branch instruction are
used to make logical decisions within a
program. The branch operation itself does
not change the condition code.

Machine Formats of Instructions for Branch

Branching instructions can be in the RR or
the RX format.

1 1

| . T
|0p-code |R1 |R2 |
1 h . |

0 7 11 15

The R1 field may specify a general register
into which the updated instruction address
is to be stored as link information, or may
contain a mask which is employed to identi-
fy the bit values of the condition code.

In the latter case it is referred to as the
M1 field.

The R2 field specifies the general
register that contains the branch address.

r T T T T 1
|0p-code | R1 [CO00}| B2 | D2 |
L 1 1 1

i J

19 20 31

0 7 11 15

The R1 field may specify a general register
into which the updated instruction address
is to be stored as link information, or may
contain a mask (then called M1 field) that
is employed to identify the bit values of
the condition code.

The direct or effective address derived
from the B2-D2 fields is the branch
address.

Error Conditions

Error conditions which may occur during a
branch operation are:

1. Operation code invalid.
2. Addressing error.

a. An instruction address or a branch
address refers to the protected
first 144 bytes of main storage.

b. An instruction address or a branch
address is outside available
storage.

c. The R1 field of a Branch and Store
instruction contains binary values
zero through seven, or the R2 field
of an RR format branch instruction
contains binary values one through
seven.

d. An instruction part is located in
the last (highest) two main storage
positions.

Machine-Instruction Statements 69

3. Specification error.

a. The low-order bit of an instruction
address is one, i.e., no halfword
boundary.

b. Bits 12 through 15 of an RX format
instruction are not all zero.

4, CPU parity error.

INSTRUCTIONS FOR B®RANCH OPERATIONS

The branch instructions, their operation
codes, formats, and mnemonics are shown the
following table:

T T T 1
] | |1 Op~ |
| Name | Format | Code

t t t i
| | | |
|Branch on Condition (BCR) | RR | 07 |
{|Branch on Condition (BC) | RX 1 47 3
|Branch & Store (BASR)] RR | 0D |
| Branch & Store (BAS) | RX 1 4D}
1 1 L 1

Branch on Condition Register

Format: RR Op-code 07
Machine instruction:
BCR M1,R2

Function: The condition code is tested
against the four bits in the mask M1. If
the condition is.MelmwidemhdloheReCUEs o
the address. in MAddBsutthdde ShSGhidhedowhy.
RZT"0therwise, the next sequential
TTETruction is executed.

There is a corresponding bit in the mask
for each of the four possible condition
code settings as shown below: v

| 07

L

M1 R2 |

—_—— —
—— —
-

T
|

T
10111

—]

00101

The condition for a branch is met if the
mask bit corresponding to the current con-
dition code setting is a 1-bit. It is
possible to connect several conditions by
specifying a 1-bit in the corresponding
mask-bit positions.. An unconditional
branch occurs if all four bits in the mask
are 1-bits. The branch instruction is
ignored if all four bits in the mask are
0O-bits or if R2 is zero.

Condition_code: No change.

Example: Assume register 9 contains deci-
mal 555 (hexadecimal 22B), the condition

code in the PSW is 01, and the mask is

given as hexadecimal 6.

Source statement:
Op-code M1 R2

BCR - X'6',9

Basic Assembler produced dbject code:

B
Op-code] M1 |R2

9

o — b e
L, gy

(o ——

}
07 10110
1

A branch to the main storage location 22B
will take place.

Branch on _Condition

Format RX Op-code 47
Machine instruction:
BC ®1,D2(0,B2)

Function: The ndition code is tested
against the mask M1 ({four bits). If the
condition is met, a branch occurs to the
address in main storage specified by B2/D2.
Otherwise the next sequential instruction

is executed.

For each of the four condition code set-
tings there is a corresponding bit of the
mask as shown below:
| u7 M1

|
L il
T
I

0000 |B2 | D2 |
L

1)

Al T A |
00101110] 11

|
1
1
I

The condition for a branch is met if the
corresponding condition code exists for at
least one defined bit in the mask.

It is rossible to connect several condi-
tions by defining several bits in the mask
accordingly. An unconditional branch
occurs if all four bits in the mask are
one. The branch instruction is ignored if
all four bits in the mask are zero.

Condition_Code: No change

Example: Assume that

D2 is 875 decimal (36B hexadecimal), .
Register 11 contains 0000,

Condition code in the PSW: 00.

Source statement:

Op-code M1 D2 0 B2

BC X'8',875(0,11)

Basic Assenbler produced object code:

70 <System/360 Model 20 Basic Assembler Language

o

T R
Op-code(M1]0

[l 4

8 1|0
1

B2

u7 B

o — e — 4

- — oy = o

T
|
1

A branch to main storage location 36B (hex-
adecimal notation) takes place (branch on
equal) .

Branch and Store Register

Format: RR Op-code 0D
Machine instructions:
BASR R1,R2

Function: A branch is taken to the address
specified by the contents of the register
in the R2-field. Next, the rightmost 16
bits of the PSW (tYe address of the next
sequential instruction before the branch is
taken) are loaded into the general register
specified in the R1 field. This is to link
the new instruction segquence with the pre-
ceding sequence. Tf R2 contains all zeros,
then only the next sequential instruction
is loaded into the register specified by
the R1 field and no branching takes places.

Condition_Code: ©No change.

Example:

The contents of the register 10 are
arbitrary.

Assume that register 12 contains hexadeci-
mal 0362 (decimal ®66),

PSW 16-31 contains hexadecimal 026D (deci-
mal 621).

Source statement:

Op-code R1 R2

BASR 10,12

Basic Assembler produced object code

r
|Op—-codelR1|R2

c

1
]
.|
1
I
3

e — 4~

+
0D 1A
1

After execution register 10 contains 026D
and a branch is taken to storage location
362 (hexadecimal).

Op-code 4p

Machine instruction:
BAS R1,D2(0,B2)

Function: The rightmost 16 bits of the
PSW, the updated instruction address, are
stored as link information in the general
register specified by R1. VNext, the
address specified by B2/D2 is stored as an
instruction address in the PSW. This
amounts to a branch to the address speci-
fied by B2/D2.

Condition Code: No change.

Exanple:

The contents of register 10 are arbitrary.
Assume that register 11 contains hexadeci-
mal ouuc,

PSW 16-31 contains 036C,

D2 is hexadecimal 12C (decimal 300).

Source statement:

Op-code R1 D2 0 B2

BAS 10,300 (0, 11)

Basic Assembler produced object code:

f T Y T T 1
|0p~code|R1}1X=0 [B2{D2 |
- 1 } ! L r
¥ T T T T 1
| 4D 1A | O IB 112C|
L ' i 11 1

After execution register 10 contains
hexadecimal 036C and a branch to storage
location hexadecimal 578 is taken.

Machine-Instruction Statements 71

THE BASIC ASSEMBLER PROGRAMN

The Basic Assembler program is available in
both card and tape versions. '

The card versions are used if only card
I/0 devices are included in the system con-
figuration. The tape versions can be used
if an IBM 2415 Magnetic Tape Unit Model 1
or 4 is available, in addition to the card
I/0 units.

BASIC ASSEMBLER (CARD VERSIONS)

The card versions require two passes. Dur-
ing the first pass the Basic Assembler pro-
gram (phase 1) produces pass information
required during pass 2. This information
is punched into columns 1-24 of the source
cards. or into the corresponding columns of
duplicated source cards. In addition, a
listing of all source statements is sup-
plied if a printer is attached to the sys-
tem and if an appropriate entry has been
made in the control card.

During the second pass, the source cards
containing the pass information are pro-
cessed by the Basic Assembler progranm
({phases 2 and 3). Then the symbol table
generated in storage is punched into cards,
if desired. At the end of the assembly the
following output is obtained:

e a Clear-Storage card and an Absolute-
Program Loader card for loading of the
object program.

e TXT cards containing the source state-
ments, translated into machine language.

e ESD and RLD cards containing information
for program lin¥ing and relocation.

e A program listing, as shown in Figure

Note: The first three items above are
referred to as the object deck.

In order to assemble a source progranm
written in Basic Assembler language, the
source deck must be supplemented by a con-
trol (CTL) card, specifying the system con-
figuration used for the assembly and the
desired output. The CTL card as well as
the card handling required during an assem-
bly is described in the SRL publication IBM
System/360_Model 20, Card_Programming_Sup-
port, Basic Assembler_ (Card Versions),
Operating Procedures, Form C26-3802.

The control card can also be used to
specify a diagnostic run. 1In this case,

the punching of all cards is suppressed.
The only output produced is a listing of
all statements in Basic Assembler language.

Most of the erroneous statements are iden-
tified by diagnostic messages.

Error Elimination

For the card versions of the Basic Assen-
bler program, a reassembly feature 1is pro-
vided that permits the reassembly of a par-
tially or completely assembled program in
less time than would be reguired by the
repetition of the total assembly. For a
reassembly, at least pass 1, phase 1, and
pass 2, phase 2 of the Basic Assembler pro-
gram (i.e., the punching and/or printing of
the symbol table) must be completed.

A reassembly can be executed to correct
erroneous statements and/or to compensate
for a symbol-table overflow, which occurs
if the number of symbols specified in the
source program exceeds the limit in regard
to the storage capacity used. Refer also
to the sections Symbols and Ex) ressions.

When a reassembly is to be performed,
the same amount of main storage must be
specified to the Basic Assembler program as
for the original assembly.

The symbol-table overflow can be elimi-
nated by:

e making use of relative addressing,
described in the section referenced
above, thereby reducing the number of
symbols in the progranm;

e performing an additional assembly run,
as described in a subsequent section; or

e subdividing the program into segments
and performing a separate assembly for
each segment.

A program that is to be reassembled can
be changed in any manner. New symbols can
be added, existing symbols can be redefined
(Lf there is room in the symbol table),
existing symbols can be deleted except fronm
the symbol table, and new statements can be
added to the program. A statement that is
to be changed must be repunched, leaving
columns 1 through 24 blank.

______ This increases
the number of symbols permitted in reqard
to the storage capacity used during an
assembly.

G

72 System/360 Model 20 Basic Assembler Language

During pass 2 of the original assembly,
the portion of the object deck already
assembled is completed. On completion of
pass 2, a programmed halt occurs to enable
the user to remove this portion of the
object deck.

When the system is restarted after an
overflow, the Basic Assembler generates a
new control card that contains the USING
table and the value of the location counter
at the time the overflow occurred. After
generation of this control card, the
remaining portion of the source deck is
duplicated.

The duplicated source cards contain the
following:

Pass_Information (Columns_1-24) : For
example, a diagnostic message or the punch
12-11-0~7-8, the operation code, and one or
more pointers desianating the location of
storage addresses of related symbols.

(Columns 25-71): The
(columns 73

Source_Statement
identification sequence field
to 80) is not duplicated.

The new control card and the duplicated
source cards are the input for the first
(or only) additional assembly run. If
another symbol-table overflow occurs, this
first additional assembly run is considered
to be the original assembly run and another
additional assembly run can be performed.

This again increases, at the rate per-

mitted for a new assembly, the number of
symbols that can be used in the progran.

BASIC _ASSEMBLER (TAPE VERSIONS)

The tape versions of the Basic Assembler
program use tape as an intermediate storage
medium, which reduces card handling time.
The Basic Assembler program and the first
source program (both contained in punched
cards) are read into the system during the
initial run. Intermediate information is
not punched into cards (as with the pass
information of the card version) but is
written on tape, from which it can be
retrieved by the program when required.

Once the appropriate tape version of the
Basic Assembler is written on a work tape,

it can be used for the assembly of any
number of source programs during the same
run. Each source program is read in after
the object deck for the preceding program
has been punched. The subsequent source
decks must be separated by blank cards.

‘For the assembly of a source program
with the tape version of the Basic Assen-
bler program, a control card similar to the
control card of the card version, must be
created. The control card and the card
handling regquir ed during an assembly run
are described in the SRL publication I3N
System/360 Model 20, Card Programming Sup-

port, Basic Assembler (Tape Versions),

Operating Procedures, Form C24-9011.

The input decks of the tape versions of
the Basic Assembler consist of (1) the
Basic Assembler pre-phase and (2) the five
Basic Assembler phase decks. The pre-phase
is used to read and evaluate the control
card and to write the Basic Assembler pro-
gram onto tape. The first four Basic
Assembler phases are used to read the cards
containing the source program, to check the
statement formats, to translate the progran
into machine language, to print the progranm
listings, and to punch the object program
deck.

The fifth Basic Assembler phase is used
to deal with a possible symbol-table over-
flow. Otherwise it is not used.

In case of a symbol-table overflow, the
tape versions of the Basic Assembler pro-
gram automatically initiate a routine to
compensate for the overflow. The punching
of the object program is discontinued at
the point where the overflow occurs. Phase
5 of the program causes the generation of
additional intermediate information, which
is required by the Basic Assembler program
to initiate another assembly run. The as-
sembly is then repeated, from the begin-
ning, to process the subsequent part of the
source program and punch the remaining
object cards.

The printed output produced by the tape
versions of the Basic Assembler 1s the same
as the printed output produced by the card
versions of the Basic Assembler.

The Basic Assembler Program 73

DIAGNOSTIC MESSAGES

Errors in the syntax of source statements
and other violations of programming conven-
tions are marked by diagnostic messages in
the program listinag to the left of the sta-
tements involved. These diagnostic mes-
sages, produced by both versions of the
"Basic Assembler program, are subdivided
into two groups:

1. Warning messages.
2. ZIrror messages.

Warning messages indicate violations of
programming rules that do not affect execu-
tion of the assembly. The paertinent mes-
sage codes are D, L, R, T, and W.

Error messages identify incorrect state-
ments that prevent the Basic Assembler pro-
gram from completing an assembly. The per-
tinent message codes are C, M, N, O, S, and
U. A summary of all diagnostic messages is
provided in Appendix D.

LOADING_ OBJECT. PROGRAMS

Two routines for the loading of object pro-
grams are available: (1) the Absolute-
Program Loader and {2) the Relocatable-
Pregram Loader.

The Absolute-Program Loader is punched
into a single card by the Basic Assembler
program when the object deck is punched.
Any loader control cards that may have been
produced by the Basic Assembler (ESD and
RLD) are ignored by the Absolute-Progranm
Loader.

If the program is to be relocated on
loading, the operator must replace the
Absolute-Program Loader card with the deck
containing the Relocatable-Program Loader.
The loading routines are described in
detail in the SRL publication, IBM System/
360 Model 20 Card Programming Support,
Basic Utility Programs, Functions and
Operating Procedures, Form C26-3604.

74 System/360 Model 20 Basic Assembler Language

O

This section lists the storage and time
regquirements for the assembly of source
prograns and the execution of object
Frogranms.

MAIN STORAGE REQUIREMENTS

Assembly of Source Programs: Figure 25
shows the main storage requirements for the
assembly of source programs containing the
maximum number of symbols.

Number of Symbols

Storage Capacity in Source Program

T T ¥
| | |
| | !
b ; 4
| 4096 } 165 |
I 8192 I 847 I
| 12288 | 1530 |
] 16384 I 2213 I
1 1 J

Figure 25. Main Storage Requirements for

Assembly

Execution of Object Programs: The
Absolute-Program Loader reguires 160 bytes
of main storage (including the load/read
area) . The Relocatable-Program Loader
requires approximately 500 bytes. The
remaining portion of main storage is avail-
able for object program execution.

Note: If the source program contains
external symbols, additional storage is
required for the External Symbol Identifi-
cation table.

TIME REQUIREMENTS -~ CARD VERSION

Assembly of Source_ Programs: Figure 26
shows the times required to assemble a
source program consisting of 600 cards,
including 165 symbols, on two basic input/
output confiqgurations. The available main
storage is 4096 bytes. The times given
apply to IBM Model 20, Submodel 2.

PERFORMANCE_DATA

If an IBM Model 20 Submodel 3 or 4 is
used, the time requirements shown in Figure
26 will increase by approximately 50%. For
an IBM Model 20 Submodel 5 the time
reguirements will decrease by approximately
10%.

The time regquirements depend on the dis-
tribution of symbols and on the type of

cards (i.e., original or duplicated source
cards) into which the pass information is
punched.

The total times shown in Figure 26 do
not include card handling time or the time
required for loading the two Basic Assem-
bler decks (approximately 10 to 15
seconds) .

I
|I/0 Configuration|Time (in Minutes)
1

}7
[2560 MFCHM

1

I

i !

| Pass 1: 4 to 7 |

| and | Pass 2: _4 to 5 |
12203 Printer | TOTAL: 8 to 12 |
1 Il 1
T i 1
12501 Card Reader |Pass 1: 4 to 6 |
12520 Card Punch |Pass 2: _2__to __3 |
| 1403 Printer 6 to 9 |
L]

| TOTAL:
1

Summary of Time Requirements
for Assembly, Card Version

Figure 26.

Execution of Object_ Programs: The time

required for the execution of an object
program depends on the length of the pro-
gram and on the types of operations
employed.

TIME REQUIREMENTS -- TAPE VERSION

The time required for the assembly of
source programs depends on the distribution
of symbols and on the model of the 2415
used during the assembly. The average time
requirement for a source program comprising
600 cards and 165 symbols is from 6.2 to 8
minutes, when using a storage capacity of
4096 bytes.

Performance Data 75

WRITING A _PROGRAM IN BASIC ASSEMBLER LANGUAGE

This section illustrates the writing of a
program in Basic Assembler language, fron
the first approach to the specified pro-
blem, through the subsequent steps of writ-
ing the statements and executing the assem-
bly and the object program, and concludes
with the result printed as final output.

STATING THE PROBLEMNM

The sample problem used is as follows. In
1627, an Indian sold Manhattan Island for
twenty-four dollars. Determine the result-
ing capital in 1965 if this money had been
immediately transferred to a bank at an
interest of 47 per annum. The interest
earned each year should be rounded to the

(START >

i

INITIALIZING
ACTION

¥ cALC

SET UP
COUNT

-

INITIAL
CAPITAL—
ACCU AREA

nearest cent.

WRITING THE_SOURCE PROGRAM

THE FLOWCHART

To establish a guide line that defines the
steps to be taken towards a solution, a
flowchart can be developed, as shown in
Figure 27.

INITIALIZING THE PROGRAM (STMT1-STHMT3)

According to the flowchart, initializing
the program is the first step. This means
{1) incrementing the location counter to a
tentative loading point and (2) loading and
assigning a base register.

{LOOP

ACCU —
WORK

Y

INTEREST =
CAPITAL
: RATE /100

T

ACCU =
WORK + OUT

y

COUNT =
COUNT -1

These first instructions c¢an now be
entered on an IBM coding form, as shown in
Figure 28. The operand of the START
instruction (STMT1) causes the location
counter setting to be incremented to 340
(hexadecimal 154). The next statement
causes the address 342 (hexadecimal 156) to
be loaded into register 13 (STMT2) and the
USING statement assigns to register 13 the
attributes of a base register (STMT3).

Figure

76 System/360 Model 20 Basic Assembler Language

27.

Sample Program Flowchart

O

o

Short Coding Form

IBM System 360 Assembler

X28-6500
Printed 1n U.S.A.

proGram INDIAN PROBLEM PUNCHING INSTRUCTIONS PAGE OF
GRAPHIC CARD FORM #
PROGRAMMER DATE
G. FISHER 10/10/65 | PONH
STATEMENT
Identification-
Name Operation Operand Comments Sequence
25 30| |32 36] |38 45 50 55 65 71| |73
T[N[O]A s|tlajr[T] [3|4]d sftTm[t s
BlAIS|R 13/, (¢ Ll0]lA 8lals|e| |RIE[G]. siTim[v 2
B U[S|TN[G| [*], 113] A[S[SIT|GIN| [B|AIS|E| [RIE|G S{TIM[T|3
|
= I S I B [—— L 1] [] e S 8 BN B P MR PP N
Figure 28. 1Initialization Routine
DATA CONSTANTS AND WORK AREAS 7. A print (PRT; 17 bytes) large enough to

(STMTL-STMT15)

Next, we must introduce the data and set up
the required work areas. Knowing that the
program must execute arithmetic calcula-
tions, including several division opera-
tions, it appears to be the most convenient
approach to define our data in packed deci-
mal form, as required for decimal arithmet-
ic. 1In addition, we know that DP instruc-
tions require the Aividend to have a cer-
tain number of leading zeros. Therefore,
we define the work areas as a string of
hexadecimal zeros.

The following data constants and work
areas are required:

1. The capital (24.000) allowing for an
additional decimal position, which can
be used for rounding to the nearest
cent (STMTY).

2. The divisor
4% interest

(25) for calculation of the
(STMT10) .

3. The parameter (5) for rounding the last
decimal position (STMT11).

4. The count (338) to control the number
of calculations executed (STMT12).

5. The parameter (1) to decrement the

count (STMT13).

6. The mask required when transforming the
result into unpacked format for print-
ing and for insertion of the necessary
commas and the decimal point (STMT14;
STMT15) .

accommodate the mask (STHMT6).

8. An area (ACCU; 7 bytes) to accumulate
the computed interest and the resulting
new capital (STMTS8).

9. A work area for execution of the divi-
sion and rounding (STMT7), with a
length of 9 bytes, which is equal to
the length of the divisor plus the
length of the dividend.

Figure 29 shows how these constants and
areas are defined.

The BC statement (STMT4) in Figure 26 is
re;quired during execution of the object
program so that it can branch around the
constants.

Register 10 is specified by R10 in the
operand of a program statement (STMT5S)
which facilitates the reading of the state-
ments. The constant ROUN is used to round.

The constant MASK provides a basis for
the ED (Edit) instruction that transforms
data to be printed into unpacked format and
inserts the necessary decimal signs.
Information to be printed is edited into a
field that contains the mask. The mask
causes leading zeros to be suppressed by
its first character (hexadecimal 40). Each
decimal digit printed must be represented
by the select character, 20, 21, or 22 in
the mask -- whichever is applicable. Com-
mas and decimal points are specified by the
characters 6B and 4B, respectively, placed
in the position where they should appear in
the printed data.

Writing a Program in Basic Assembler Language 77

Figure 29.

Before a mask can be set up, the maximum

size of the expected result nmust be deter-
mined. In our program example, we have
analyzed the result and decided to reserve
twelve decimal positions. This means, that
the largest result expected is of the
format:

X, XXX, XXX, Xxx. xx

If the result should be shorter, zeros
are replaced by blanks (hexadecimal 40 in,
the first position of the mask).

The mask may then be determined as follows:

X, XXX, XXX, XXX . XX
RN

40 20 6B 20 20 20 6B 20 20 20 6B 20 20 21 4B 20 20

The digit preceding the decimal point is
specified as 21. ™his code is the initial
start character an? causes zero suppression
to be disregarded from here on. This
allows printing of the decimal point,
case the result is less than 1.

in

PROGRAM ROUTINE (STMT16-STMT24)

Now we can concentrate on the program rou-
tine itself. According to the flow-chart,
we first set up the count. As shown in
Figure 32 (STMT16), this is done by loading
register 10 with the constant 338 (1965 -
1627) . This statement must be named CALC
to link it with the branch instruction pre-
ceding the DC statements. The initial
capital of 24.000 is moved into the ACCU
area used to accumulate the intermediate
interest amounts and incremented capital
(STMT17) . Thus, ACCU now has the contents
shown in Figure 30.

STATEMENT
Identificotion—
Nome Operation Operand Comments Sequence
25 30 32 38 45 50 60 65 71 73 80]
| 8lc 115, clAlLlc glylelalsls] 1alc] [S[rimlTs].] 1Srmr]4
R|1]d £lQly 1|8 slrm|7T]s
PIR|T] D\s clLi1]7 Slrimlrlé
wlolR|K Dic X[LIg11 @1/ SlrmlTi7
Alcicly Dic XIL17]7 181 /] SITIM|T |8
clplrL Dlc X[2]4\6l@ip1C]/ Sirim (9
RlA|T|E Dl X|"|gl2]5]c|/ SlrimiT|1]@
RiOlVIN DlC X\ | o|28|8|2|8|0|2l0 51Cl7 s|rim| (1)1
cIMT DlC H 13138’ SlrimTl1l2
DielC|R D¢ HIL) 0] - S|rmT]1(3
MIALS[K D[c X!/ 4\g12ple|Bl2|021¢! 2016828l 20| 2|8|6|8)" S|Tim|T|1]4
D|C X7 2lglzi@| 21148 2] 2]] - : N Slrim[4|5
% (] | T T =< i I I

Introduction of Data and Work Areas

loo]oo]oo] oo% 24]oo0]oc]|
ACCU ACCU - 4

Contents of ACCU After Execu-
tion of STMT17

Figure 30.

The next step is to bring the contents
of ACCU (accumu lated capital) into the work
area for computation of the interest
(STMT18). This 'is the first of the
instructions to be executed 338 times and,
therefore, becomes the entry point for the
program loop (see flow-chart). The con-
tents of the area WORK are then divided by
25 (STMT19). On execution of the division,
the quotient, including leading zeros, is
placed into the leftmost portion of the
dividend field and the remainder into the
rightmost portion of the dividend field.
Thus, the first calculation is executed as
shown in Figure 31.

loaded from ACCU

[0 010 0[]0 0|0 0|00 |00[24]00]0C]|

ORK ORK +2

WORK ofter execution of the division:

quotient remainder

L0 0]00 000 0]00]96[0C|00]0C,|
tvorx

Execution of the First Calcula-

tion Step

Figure 31.

78 System/360 Model 20 Basic Assembler Language

O

O

—
ClAlLlC LA R[1d], [cIN]T L|0]alp] |clouINIT sitmiT(1]6
Miv|c Alclcul+e[¢[3D 1, [cle|TIL] TL[o]AlD] [Alc]clv sMiT|i7
L|o]o]P MIvIC o RIK[+[2T(17D {s]AlCICIU] TL[olaID] WoRIK sltiMiT]1]8
DlP wioR]k|, RIAITIE cloMpluIT(E| |IINITIE[RIE[SIT S[TM|T|1]9

Ale alclclul, 0R§(7) IINkclr[elMIEIN]T] [cialplTiT]AlC siriM{t]2
P clclul, [RIOJUIN Rlo[u|n[D] DlElC M[AL STiMT(2]1
Vi alclclul+l6], ix11BIC]' RIE[SITIORIE [LIAls[T] D[Tl6lT]T sitiM{T]2]2
SIH Ri1/8[, [DIEIC|R DIEICIRIEIALS cioluiNlT SiriM{T]2]3
[2], |LIO|OP rlelsit] [FlolR] lcloMlplLielr T loINl Is riM[TI2]4

] —~J A4)y - |— 4 1L 3 | 1 L1 1] L1 L]

Figure 32. Calculation Routine

The contents of the leftmost seven bytes result is greater than or egual to zero.

of the area WORK (0.960, after the first If the result is greater than zero, the
iteration) are added to the contents of program branches to LOOP and re-executes
ACCU (STKT20). Accordingly, ACCU now con- the program segment through the condition
tains 24.960, the capital available after code test {(STMT24). Otherwise, the print
one year of deposit. routine (Figure 33) is initiated.

Fractions of cents that are equal to or
greater than one-half are rounded to the

next highest value by adding the constant OUTPUT (STMT25-STMT35)
0.005 to the contents of ACCU (STMT21).
Since the third decimal position contains a STMT 25 causes the mask to be moved into the
zero, the result is not changed. (On the print area. (The length of each operand
next iteration, however, the computed int- need not be explicitly stated, because it
erest and capital equals 25.958, which is implied). The ED instruction (STMT26)
results in a rounded total of 25.963.) The causes the editing of the calculated result
original contents of the last byte of ACCU by moving it into the print area, on top of
(0C) are then restored in preparation for the mask already contained in this field.
the next iteration (STMT22). The first 4-bit hexadecimal digit of ACCU
is placed into the leftmost byte containing
The counter is then decreased by 1 a digit select character 20. Although the
(STMT23). This instruction also sets the addressed byte is PRT, the first byte used

condition code, which indicates whether the to store the result is PRT+1.

MIV]C PIRIT]s [M[A[S |K MA[SIK| [T[o] [PIR[TINIT| [ARIE|A M|T|2]|5
D PIR|T|s [AICICU EDII|T] [RIEISIVILIT S T]2(6
FlIINE x|T|o PIRITICIX|“l4[#]" D}, 1£]7 PIRILINIT[(RIE]SVIL|T siTmMT2]7
B|C 1,[PlElRIR| [TIEISIT] PIRITINITIEIR]| IN[O[T| [O|K} [S|TIM|T[2(8
B|C Lis |[FIX N[E TIEISIT] |PIRIZINITIE[R| |WORIKIN|G] [S|TIM|T|2[9
T/1]/0|B * ‘g TiEls|T| |e|Njp] [o(F] |T]/|0 sirMTi3
T[0[B PIEIRIRI, X" [W]L]" TlElsiT] [elrirIn[TE(R] [ERIR|O[R S T3]
AlLT HiP[R x['1919191'].14] Diris|elL|aly| |9919 SriMlTi3|2
BIC 115], JH[AIL[T Liolclk] [RIE|SITIAIRIT TIMIT[3]3
plelr[R H|P|R Xit(afafaffy]¢ plLls]ellaly] J1l1]1 STM T3y
BIC 1154 [FILINIE RlelrlelalT]| |PIRITINIT TiM T!3[S
N LIN|DIA S[TIMTi3|6
- ~— L~ o B U I B g T B B PP N S L

Figure 33. Print Routine

Writing a Program in Basic Assembler Language 79

Finally, the XIO instruction (STMT27)
causes the printing of the result. The
first operand specifies the area (PRT) in
which the data to be printed is stored.

The code in parentheses refers to a 1403
printer (U=4), and specifies printing as
the function to be performed (F=0). The
second operand gives the number of charac-
ters (bytes) to be printed. At this stage,
the program could be terminated. However,
we would risk a disregard of our print
instruction if, for instance, the printer
were out of service, or busy with a fre-
viously issued I/0 instruction. 1In addi-
tion, we should delay processing of the EPR
instruction until the previous I/O opera-
tion is completed to ensure that no print
errors have been detected.

A11 of these conditions are taken care
of by appropriate test and branch instruc-
tions, represented by STMT28 through
STMT31. STMT28 branches to the instruction
that stops the processing of the program if
the printer is not operational. STMT29
tests to see if the printer is working
("Working" means that the Model 20 is in
the process of setting up mechanical delays
and circuitry or still executing a previous
XIO instruction, not that it is executing
the present XIO instruction.) and causes
the re-execution of the XIO instruction
until the printer has completed the last
I/0 operation. STMT30 tests to see if the
printer is busy ("Rusy" means that the XIO
instruction is actually being executed.)
and causes the proaram to loop around the
same instruction until the last print
operation has been terminated. STMT31
causes a halt, if a print error occurs, and
display of code 111 in the STR register
panels on the CPU (STMT34). 1In the latter
case, pressing the start key of the CPU
causes the print instruction to be re-
executed because of the branch address in
STMT35.
PROGRAM END (STMT3h)

If no print error occurs, the program halts
on reaching the HPR instruction (STMT32).
If the start key of the CPU is pressed,
STMT33 causes the program to re-execute the
previous HPR instruction and to return to
the same halt.

ASSEMBLING THE_SOUPCE PROGRAMN

CONTROL CARD

When the program has been punched into
cards, the source program can be assembled
by either version of the Basic Assembler
program.

In our case, it 1s assumed that the card
version is used and that the available sys-
tem configuration includes a 2560 MFCM and
a 2501 Card Reader. Therefore, the 2501

will read the Basic Assembler program and
the source progranm. i

In addition, the pass information will
be punched into duplicated source cards on
the attached 2560, and the first run will
scan the program statements for possible
errors. Thus, the control card will be
supplied with the following entries:

Columns 1-5://CTL
Column 6: 0 or blank (Indicates a diag-
nostic run; all
punch operations are
bypassed; only the
program listing is
printed.)

0 or blank (Indicates that 4096
bytes of main
storage are used for
the assembly.)

Column 8:

All other columns are left blank.

DIAGNOSTIC RUN

The statement listing printed during the
diagnostic run is shown in Figure 34. To
demonstrate the identification of incorrect
statements by diagnostic messages, two
errors have been deliberately included in
the source deck (see STHMT19 and STMTZ29).

INDA START 34(C STMICY

CASR 13,9 LUAD BASE rEG. STwT2

USING #4173 ASSIGN BAST PrGe STMYTO3

sC 15+CALC CIRCLE THE CONST. STMT %

Bl tQU 19 STMTOS
iy ns cLi? STMT06
WHRK 0C xL9*ne STMTOT
ACCY nc XL7¢0¢ STMYIG8
e ne X*24000C* STMT OO
RATE uc xsg2sC? STMT10
ROUN cc X*000000007CL005C" STMI1]
ONT nc H*338¢ <TMT12
Nk oc Hele STMTL?
MASK oC Xv40206B82020206820202C68" STMT 14
o] X*202021482720° STMT1S

cAtLC LH R10,CNT LOAOD COUNT MEIRTS
MVC ACCU*4(3),CPTL LOAD ACCU STMT LY

Lanp MVC WORK+2(7),ACCU LOAD wWNMirK SINT 1R
M LOnP 714 WCRK9RAFE COMPUTE INTEREST STMI9
AP ACCUWORK(T?} INCREMENT CAPITAL STMTZ0

AP ACCU+ROUN ROUND NECTMAL STMY 21

MVl ACCL+6gx"0C" RESTORE LAST DIGIT STMTZ2

SH R10,0FCR OECREASE COUNT STMT 23

8c 2,L00pP TEST FCR COMPLETION <TMTZ4
MvC PRT 4 MASK MASK TC PRINT AREA STMT2»
to PRT,ACCU EDIT RESULY STMT 26

FINE X1 PRT(X*40°)417 PRINT RESULT STMY 27

ue 14PERR TEST PRINTER NOT UK STMT28

¢ 6C 44 FINF TEST PPINTFR WURKEINGSTMIZ9:
TIOB #,.X'40°¢ TEST END OF 1/0 STMT 30

TIOD PERR,X'41° TEST PRINTER FRROR STMTA}

HALTY HPR X9999¢,0 DISPLAY 999 STMT 42

He 154HALT LOCK RESTARY STMY 53

Pt Rk HPR X*111¢,0 DISPLAY 111 STMT 44

ue 15 FINF REPFAT PRINT STMY ¢

END INDA STME <6

Figure 34. Sample Statement Listing Pro-

duced During the Diagnostic Run

80 System/360 Model 20 Basic Assembler Language

STMT19 is marked by an M, indicating that cated source deck. (For detailed informa-

the symbol in the name field is defined tion refer to the SRL publication IBM
tvwice. System/360 Model 20, Card Programming_ Sup-
port, Basic Assembler (Card Versions),
STMT29 is marked by a C, indicating that Operating Procedures, Form C26-3802.
column 72 of the source card is not blank.
Yote: 1In the case of an erroneous comments During assembly, the symbol-table image
card (i.e., punched in column 72), columns is printed as shown in Figure 36. The pro-
1 to 24 are not printed by the card version gram listing is shown in Figure 37. The
of the Basic Assembler program. The state- punched card output, produced during the
ment is marked by a C. assembly run, consists of the object deck
with an Absolute-Program Loader card pre-
Assembly Run ceding it. When these cards have been
loaded into main storage, the execution of
After correcting these two errors, the the object program produces the result
source program can be assembled. For this shown in Figure 35.

purpose, the entry in column 6 of the con-
trol card must be changed to 3. This

informs the Basic Rssembler program that 13,721,788.77

(1) a 2501 is used for reading, (2) a 2560

MFCM is used for punching, and (3) pass Figure 35. Result Computed by the Problem
information is to he punched into a dupli- Progranm

ACCU 10 0174 06 CALC 10 0196 03 CNT 10 0188 01 CPTL 19 0178 02
DECR 10 018a 01 FINE 10 01D8 05 HALT 10 O01EE 03 INDA 19 0154 00
LOOP 10 0148 05 MASK 10 018C 0A PERR 10 01lF6 03 PRT 19 015A 10
RATE 10 017 Ol ROUN 10 0180 06 R10 00 000A 00 WORK 10 0168 08

Figure 36. Image of the Symbol Table

I154 INDA SiART 3640 STMTO1 not1
0L54 QbN BASR 13,0 LOAD BASE REG. STMT02 002
0156 USING %,13 ASSIGN BASE RE. STMTO3 602
0156 4TFO 0048 BC 15,CALC CIRCLE THE CONST STMTOS 002
000A R10 EQU 10 STATOS 602
0154 PRT DS cL17 STMATO6 002
0168 0000 0000 0000 0000 00 WORK ocC XL9'0* STMTGY 003
0174 0000 0000 0000 00 ACCU DC XL7'0’ STUTO08 GG3
0178 2400 oOC CPTL DC X*24000C"* STATO09 203
017€ 025¢C RATE DC Xx1025C! : STMT10 093
0180 0000 0000 0000 5C ROUN ocC X'0000000000005C"* STUT11 003
0188 0152 CNT DC H'338°" STMT12 003
o18A 0001 DECR oc H'1! STMT13 003
018¢C 4020 6320 2020 6B20 2020 6B MASK DC X140206B2020206R20202068" STMT14 003
0197 2020 214B 2020) oc X'2020214R82020°' STMT15 003
019€ 48A0 D032 CALC LH R10,CNT LOAD COUNT STMT16 003
0142 0202 D022 D025 MVC ACCU+4(3),CPTL LOAD ACCU STMT17 003
01as8 D206 DN17 DOILE Loae MVC - WORK+2(7),ACCU LOAD WORK STMT18 004
01AE FD81 D015 D028 oP WORK,RATE COMPUTE [HTEREST ST4T19 004
0184 FA66 DOLE DO15 AP ACCUWORKI(T) INCREMENT CAPITAL STMT20 004
0184 FA66 DOLE DO2A AP ACCU,ROUN ROUND DEC 1AL STMT21 004
0l1co 920C D024 V1 ACCU+6,X'0C! RESTORE LAST DIGIT STAT22 004
01C4 4BA0 D034 SH R10,0ECR DECRFASE COUNT STMT23 004
oics 4720 D052 BC 2,L00P TEST FOR COMPLETION S$THT24 004
o1cc D210 D004 DO36 MVC PRT,MASK MASK TO PRINT AREA STAT25 004
0102 DE10 DOO4 DOLE ED PRT,ACCU EDIT RESULT STMT26 004
0108 D040 D004 0011 FINE x10 PRT(X'40'),17 PRINT RESULT STMT27 004
01DE 4710 DOAO BC 1+PERR TEST PRINTER NOT OK ST4T28 005
01E2 4740 D082 BC 4,FINE TEST PRINTER WORKNG STi4T29 005
01E6 9440 D090 TIOB #,X'40" TEST ENL OF 1/0 STMT30 005
O1€EA 9441 DOAO TIOB PERRyX'4]1"* TEST PRINTER ERROR STMT31 00§
O1EE 9900 0999 HALT HPR X1999*,0 DISPLAY 999 STMT32 005
01F2 47F0 0098 . BC 15,HALT LOCK RESTART STAT33 005
01F6 9900 0111 PERR HPR X'111%,0 DISPLAY 111 STMT34 005
O1FA 47F0 D082 BC 15,FINE REPEAT PRINT STMT35 005
0154 END INDA STMT36 006

Figure 37. Assembler Produced Program Listing

Writing a Program in Basic Assembler Language 81

APPENDIX A, SUMMARY OF BASIC ASSEMBLER INSTRUCTIONS

r T T L] L)
|Description and Function | Name |Operation|Operand |
F + + : 1
.			
Base Register Instructions			
.			
Use Base Address Register	not used	USING	Reloc. exp.,abs. exp.
Drop Base Address Register	not used	DROP	Simple abs. exp.]
F t+ - } 1			
Program_Linking Instructions			
Identify Entry Point jnot used	ENTRY]Relocatable symbol	

| Identify External Symbol |not used | EXTRN | Relocatable symbol |
k +— + —+ 1
Definition Instructions			
Equate Symbol Joptional	EQU	Expression	
Define Constant Joptional	DC	TLC!	
1 Define Storage loptional|DS |DFL?2

t 1 + t 4
i | | | |
|]Assembler Control Instructions | | |

| | | |
| Start Progranm Joptional| START |]Self-defining value |
| Reset Location Counter jnot used|CRG |Relocatable expression]
| End of Progranm |not used| END | Relocatable expression|
i } 1 1 J
L] T T
]tT--Type (C, X, H or Y) |2D--Duplication Factor |
| L--Lenyth MNodifier | F--Field (C or H) |
| C-—-Constant | L--Length }
L 1)]

82

System/360 Model 20 Basic Assembler Language

APPENDIX B.

SUMMARY OF MACHINE-INSTRUCTIONS

T) T T) T 1
| | | | Basic | I |
| Mnemonic | Name of | Operation | Machine | Operand Field | Page |
| Code | Instruction | Codel | Format | Format | Number]
t 1+ 1 + -+ + 1
| AH | 2dd Halfword | 4a | RX] R1,D2(X2,B2) 153 i
| AR | add | 13 I RR { R1,R2 | 51 |
| AP | Add Decimal] FA | Ss | p1(L1,B1),D2(L2,B2) | 57 |
| BAS | Branch and Store | 4D] RX | R1,D2(X2,B2) 1 71

| BASR | Branch and Store | 0D | RR | R1,R2 1 71 I
| BC | Branch on Condition | 47 | RX | M1,D2(X2,B2) 1 70 |
| BCR | Branch on Condition | 07 | RR | M1,R2 | 70 |
| CH | Compare Halfword | 49 | RX ! R1,D2(X2,32) | 52

| CIO | Control I/0 | 9B | SI | D1{B1) ,UF | 37 |
| CLC | Compare Logical | D5 | ss } D1(L,B1),D2(B2) | 64

| CLI | Compare Logical Immediate | 95 | SI | D1(BY) ,I2 | 64 |
| CP | Compare Decimal] F9 | ss | b1(L1,B1) ,D2(L2,B2) | 57

{ DP | Divide Decimal I FD i Ss | p1{L1,B1),D2(L2,B2) 1 59]
| ED | Edit I DE | Ss | D1(L,B1),D2(B2) | 64]
| HPR] Halt and Proceed | 99 | SI | D1(B1) ,I2 | 68

| LH | Load Halfword | 48 | RX | R1,D2(X2,B2) | 52 |
| MP] Kultiply Decimal | FC | Ss | bD1(L1,B17) ,D2(L2,B2) | 58

| MVC | Move Characters | D2 | SS | DI1(L,B1),D2(B2) | 62 |
| MVI | Move Immediate i 92 | S1 { D1(B1),I2 ' | 62 |
| MVN | Move Numerics | D1 | SS | D1(L,B1) ,D2(B2) | 63 I
| MVO | Move With Offset | F1 | ss | D1(L1,B1),D2(L2,B2) | 55 I
| MVZ | Move Zones } D3 | Ss | DI1(L,B1),D2 (B2) | 63 |
| NI | And Logical Immediate | 9y | ST | D1(B1),I2 | 67

| OI | Or Logical Immediate | 96 | SI] D1(BM ,I2 | 67 1
| PACK | Pack] F2 | ss | D1(L1,B1),D2(L2,B2)] 56

| SH { Subtract Walfword | 4B I RX | R1,D2(X2,B2) | 53 1
| SP | Subtract Necimal | FB] Ss | D1(L1,B1),D2(L2,B2) | 58 1
| SPSW | Set PSW I 81 I SI | D1{B1) | 48 |
| SR | Subtract | 1B | RR | R1,R2 | 51 1
| STH | Store Halfword] 40 I RX | R1,D2(X2,B2) | 52

| TIOB | Test I/0 and Branch] 9A | SI | b1(B1) ,UF | 39 |
| THM | Test under Mask | 91 | ST | D1(B1),I2 | 67

| TR | Translate | DC I SS { D1(L,B1),D2(B2) | 68 |
| UNPK | Unpack | F3] ss ! D1(L1,B1),D2(L2,B2) | 56

| XIO | Execute I/O l DO i SS | D1(UF,B1),D2{B2) 1 37 |
| ZAP { Zero and Add Decimal 1 F8 (Ss | D1(L1,B1),D2(L2,B2) | 56 |
L L i 1 .. L J
1Hexadecimal Equivalent of actual Machine Operation Code.

Appendix B. Summary of Machine-Instructions 83

APPENDIX C. SUMMARY OF INPUT/OUTPUT INSTRUCTIONS

v T 1 ¥ 1
| | ¥nemonic | Operand | |
| Machine | Operation Code | U F Function

¢ + + + —
	XI0	1 2	Read Card
2501	XI0] 1 A	*Read Card, Column Binary	
Card Reader	TIOB	1 0	Test Reader Busy
Model A1 or A2	TIOB	1 1	Test Reader Error
	TIOB	1 4	Test Last Card
- : + 1 1
| | XIO | 2 2 | Read Primary Card |
| | XI0 | 2 A | * Read Primary Card, Column Binary |
| | XIO | 2 3 | Read Secondary Card

| | XIO | 2 3 | * Read Secondary Card, Column Binary |
] | XI0 | 2 4 | Punch Primary Card

| | XI0 | 2 5 | Punch Secondary Card |
| | XI0 | 2 6 | Punch and Feed Primary Card

] | XIO | 2 7 | Punch and Feed Secondary Card 1
] 2560 | XIOo | 2 0 | * Write Card

Multi-Function	TIOB	2 0	Test Reader/Punch Busy
Card Machine	TIOB	2 1	Test Reader/Punch Error
	TIOB	2 2	Test Card Printer Busy
	TIOB	2 4	Test Last Card
	TIOB	2 5	Test Feed Error
	CIO	2 0	Primary Card Stacker Select
i CIO	2 1	Secondary Card Stacker Select	

| | CI0 | 2 2 | Punch Card Stacker Select

|] CIO | 2 3 | * Print Head Select |
k + t t {
	XIO	2 2	Read Card
	XI0	2 A	* Read Card, Column Binary
	XIO	2 4	Punch Card
	XIO	2 6	Punch and Feed

| 2520 | TIOB | 2 0 | Test Reader Busy

| Card Read | TIOB | 2 1 | Test Reader Error |
| Punch | TIOB | 2 2 | Test Punch Busy]
| i TIOB | 2 3 | Test Punch Error |
| | TIOB 1 2 4 | Test Last Card |
} | TIOB | 2 5 | Test Feed Error]
| | CIo | 2 0 | Stacker Select |
t t } } i
	XI0	2 6	Punch Card
2520	TIOB	2 2	Test Punch Busy
Card Punch	TIOB	2 3	Test Punch Error
Model A2 or A3	TIOB	2 5	Test Feed Error

| | CIO | 2 0 | Stacker Select |
F + + + -
| | XI0 | 3 6 | Punch Card |
| 1442 | TIOB I3 2 | Test Punch Busy |
| Card Punch ! TIOR | 3 3 } Test Punch Error i
| Model 5 | TIOB | 3 5 | Test Feed Error |
F t t + 2
.	XI0	4 0	Print
2203 or 1403	XI0	4 1) Print and Space Suppress	
Printer] TIOB	4 0	Test Printer Busy	
] TIOB	4 1	Test Printer Error	
	TIOB	4 2	Test Channel 9
	TIOB	4 3	Test Channel 12

I | TIOB | 4 4 | * Test Channel 9 (upper)

| | TIOB i 4 5 | * Test Channel 12 (upper) |
L i L) J

*Optional Feature

84 System/360 Model 20 Basic Assembler Language

o

©

) T) T

| | Ynemonic | Operand |

| Machine | Operation Code | U F | Function

Jl 1 ! i {

r T T L

| 2203 or 1403 | TIOB | 4 6 | Test Carriage Busy

| Printer | CIO | 4 4 | Immediate Space

| | CcIo | 4 5 | Immediate Skip

| | CIO | 4 6 | Delayed Space

|] CIO | 4 7 | Delayed sSkip

|] CIO | 4 8 | * Immediate Space (upper)
| | CIO | 4 9 | * Imnmediate Skip (upper)
| | CIO | 4 A | * Delayed Space (upper)
| | cIo | 4 B | * Delayed Skip (upp er)

|] CIO | 4 C | * Imnediate Space (both)
| | CIO | 4 D | * Immediate Skip (both)
] | CIo | 4 E | * Delayed Space (both)

| | cIo | 4 F | * Delayed Skip (both)

— t t 1+

| Communica- | XIO 1 5 2 | Receive Record

| tions | X1I0 | 5 4 | Transmit Record

| Adapter | TIOB | 5 0 | Test C.A. Busy

| (C.A.) | TIOB | S 1 | Test C.A Error

| | TIOB 1 5 5 | Test Received EOT

| | CIO | 5 0 | Set Receive Mode

|] CIOo 1 5 2 | Send ECT

| | CIO | 5 3 | Inhibit Audible Alarm

1 [l [] 4

r T L]]

| Binary | XI0 1 5 0 | Transmit and Receive

| Synchronous | XI0 | S 1 | Receive Initial

| Communications | XI0 |1 5 2 | Address Prepare

| Adapter (BSCA) | XIO | 5 3 | Auto Call

| | XIO 1 5 4 | Receive

| | XI0 | 5 8 | Transmit

| | TIOB | 5 0 | Test BAny Indicator Set

| | TIOB | 5 8 | Test Busy

| i cI1o 1 5 0 | Disable ITB

| | CIO I 5 1 | Enable ITB

| i CIO 1 5 2 | Enable BSCA

| 1 CIO |1 5 3 | Disable BSca

| | CIO | 5 6 | Store Current Address
(. | CIO I 5 7 | Store Sense Information
| | CIO | 5 8 | Store ITB Address

L I i 1

r T L) ¥

| Serial | X10 | 6 2 | Read I/0 Device (Time sharing)
| Input/ | XIO | 6 4 | Write I/O Device (Time sharing)
| Output | XIO | 6 10 | Read I/0 Device (Burst)
| Channel | XIO | 6 12 | Write I/0 Device (Burst)
| | TIOB | 6 1 | Test I/0 Transfer 1

| | TIOB | 6 2 | Test I/0 transfer 2

I | TIOB | 6 3 | Test I/0 Transfer 3

| | TIOB | 6 4 | Test I/0 Transfer 4

| | TIOB 1 6 5 | Test I/0 Transfer 5

| | TIOB | 6 6 | Test I/0 Transfer 6

| | TIOB | 6 7 | Test I/0 Transfer 7

| | TIOB | 6 8 | Test I/0 Transfer 8

| | TIOB | 6 9 | Test Read Transfer Error
| | CIO | 6 0 | Unit Control

| | cIO | 6 1| I/0 Select

r + + +

| 2415] XIO | 7 0 | Perform Tape Operation

1 4 } 1

T T 1 R}

| 2311 | XIOo | 8 0 | perform Disk Operation

L 1 L L

* Optional Feature

Appendix C. Summary of Input/Output Instructions

-l - - e]

85

APPENDIX D. SUMMARY OF DIAGNOSTIC MESSAGES

R—

T
MESSAGE] ERRO® CONDITION

-
.
~

Assembly executed using the Basic Assembler (Carad):
(a) columns 1-24% and/or column 72 not blank, or

(b) operation code and/or operand missing.

Assembly executed using the Basic Assembler (Tape):
(a) column 72 not blank, or

{b) operation code and/or operand missing.

3]
.
~

This EQU statement is unnamed.
This START, ENTRY, or EXTRN statement is mispla ced. (The statement is
ignored) .

e e e e — s ——
[\ ey
.
~ ~—

| The value of the location counter has exceeded the storage size for program
jexecution as specified in the Basic Assembler Control card (card column 9).
|Notes: An instruction byte may not occupy the last (highest order) available
|main storage address.

|2 constant or data byte may be located at this position.

=

The name of this statement is defined more than once.

=

he name of this statement does not conform to the rules as follows:
It has more than four characters, or
its first character is not alphabetic, or
it contains an illegal character.

e o o 3

o

8 AN S

IThis mnemonic operation code is invalid.

=+]
[

n this s*atement

) a relocatable expression has been used in an absolute field, or
) an abhsolute expression has been used in a relocatable field, or
) the Y-Register field in an RX-instruction is not zero, or
)

a displacement. (A USING statement is either missing, or wrong, or
misplaced.)

a relocatable expression could not be split into a valid base address and

P.._—_—,_.____.—_..___—_—_—-—_—_-—_—_."_—.V-___-—.-_..‘___—_—.r___."____.__.-__.,_

9]

One of the operands in this statement is invalid. This diagnostic message is

printed when one or more of the following conditions occur:

1.) An invalid character is used as a delimiter.

2.) The first character of a symbol in the operand entry is not alphabetic.

3.) A delimiter is incorrectly used.

4.) The operand of a START, ORG, or EQU statement is invalid.

5.) A symbol or self-defining value in the operand entry contains an invalid
character.
A self-defining value or a symbol in the operand entry contains too many
characters.
A symbol or a self-defining value in the operand entry is followed by an
invalid character.
A self-defining value exceed
An ampersand or an apostrophe
rrectly specified.

) A DS duplication factor is too high.

) A DS statement contains an invalid operand.

) A DC statement is incorrectly specified.

~ o))
. .
~ ~

in

Voo o]
o
= 0

age carnaci ty
age capa)]
within a character constant is inco-

ey

to
se

.
~

— =
N = O
.

U S PR &

'Warning messages that do not suppress the punching of the object deck.

86

System/360 Model 20 Basic Assembler Language

e e e e . T e o — —— — —— S — 0 o i SRR S — i —— i — — . —— i — b —— — — i S —— — o — —— — - g b oo)

o

o

r T 1
| MESSAGE| ERRO® CONDITION {
L 1)
r AL B
| T! |The symbol table was filled by the name of the last jreceding statement. The |
| Iname of this statement cannot be accommodated.]
L 4 1
L] T a
| U2 |1.) The operand entry contains an undefined symbol. |
| {2.) The operand entry of an EQU, ORG, or END statement contains a symbol that |
| | is not previously defined. |
L 1 i
r L R
| W! |The length of a constant defined by a DC statement exceeds the explicit length.|
L 1 J

lWarning messages that do not suppress the punching of the object deck.
2U-messages of type (1) do not suppress the punching of the object deck, those of type
(2) do suppress pnunching.

Appendix D. Summary of Diagnostic Messages 87

APPENDIX E._ CONDITION_CODES

|jones
1

- -

jInput/Qutput Operations
(X10)

| Execute Input/Output
|

|Control Input/Outnut (CIO)

| (referring to the 1403/2203

| carriage only)
L

r AL T RE 1
	1			
Code Setting:	00 i 01	10] 11		
	!	I		
b + t + —+ i				
Mask Used to Test the Code:] 8	4	2	1	
	!			
F } + t t 1				
Fixed Point Arithmetic (RR Format)				
]Add Register (AR)	Result=0	Result<0	Result>0 == 1	
Subtract Register (SR)	Result=0	Result<0	Result>0	==
1 N	1 4 4 i			
r T 1 T Rl 1				
Fixed Point Arithmetic_ (RX Format)				
Add Half-word (AH)	Result=0	Result<O0] Result>0	--	
Compare Half-word (CH)	Opl1=0p2	Op1<0p2]Op 1>0p 2	--	
Subtract Half-word (SE) J]Result=0	Result<O	Result>0	==	
t + } + t 1				
Decimal Arithmetic		I		
{Add Packed (AP)	Result=0	Result<0	Result>0 loverflow	
Compare Packed (CP)	0p1=0p2	Op 1<0p 2]0p1>012	--	
Subtract Packed (SP)	Result=0	Result<0	Result>0 jover flow	
Zero Add Packed {ZAP)	Result=0	Result<0	Result>0	--
t t } } { 4				
Logical Operations]]]				
AND Logical Immediate (NI)	Result=0	Result#0	--	—=
Compare Logical (TLC,CLI) 10p1=0p2	Op 1<0p 2 jop1>0p2	--		
JEdit and Mark (ED)	source field	source field	source field]	
] OR Logical Immediate (OI)	Result=0	Result#0	--	--
Test Under Mask (TM)	Resul t=0	Result mixed	--	JResult all
%				
J

Device
available

g S S

Unit avail.

}
|
JUnit working
|
|
|
|
1

|

i

L)

I

|

|

l -
|

|
o -

T

|)
jUnit not

Joperational
|Device not
|operational

|

88 System/360 Model 20 Basic Assembler Language

APPENDIX F. CHARACTER CODES

This appendix lists all System/360 card codes to which a printer graphic is assigned.

EBCDIC CARD P"NCH PRINTER

CODE_ COMBINATION SRAPHIC DECIFMAL HEXADECIMAL
00000000 12,0,9,8,1 0 00
00000001 12,9,1 1 01
00000010 12,9,2 2 02
00000011 12,9,3 3 03
00000100 12,9,4 4 ou
00000101 12,9,5 5 05
00000110 12,9,6 6 © 06
00000111 12,9,7 7 07
00001000 12,9,8 8 08
00001001 12,9,8,1 9 09
00001010 12,9,8,2 10 0A
00001011 12,9,8,3 1 0B
00001100 12,9,8,U 12 ocC
00001101 12,9,8,5 13 0D
00001110 12,9,8,6 14 0F
00001111 12,9,8,7 15 OF
00010000 12,11,9,8,1 16 10
00010001 11,9,1 17 11
00010010 11,9,2 18 12
00010011 11,9,3 19 13
00010100 11,9,4 20 14
00010101 11,9,5 21 15
00010110 11,9,6 22 16
00010111 11,9,7 23 17
00011000 11,9,8 24 18
00011001 11,9,8,1 25 19
00011010 11,9,8,2 26 1A
00011011 11,9,8,3 27 1B
00011100 11,9,8,u 28 1C
00011101 11,9,8,5 29 1D
00011110 11.9,8,6 30 1E
00011111 11,9,8,7 31 1F
00100000 11,0,9,8,1 312 20
00100001 0,9,1 33 21
00100010 0,9,2 3y 22 \
00100011 0,9,3 35 23
00100100 0,9,4 36 24
00100101 0,9,5 37 25
00100110 0,9,6 18 26
00100111 0,9,7 39 27
00101000 0,9,8 40 28
00101001 0,9,8,1 41 29
00101010 0,9,8,2 42 24
00101011 0,9,8,3 43 2B
00101100 0,9,8,u 4y 2C
00101101 0,9,8,5 us5 2D
00101110 0,9,8,6 u6 21
00101111 0,9,6,7 47 21
00110000 12,11,0,9,8,1 48 30
00110001 9,1 49 31
00110010 9,2 50 3
00110011 9,3 51 33
00110100 9,4 52 4
00110101 9,5 53 3
00110110 9,6 nYy 36
00110111 9,7 55 37

~

¢

Appendix F. Character Codesn 89

00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
‘01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101

WO \O W WO WO WO
. &% N
o 0w ®

LI T T Y

S A% NN oA
OV EWND -

e d 3 e e e =) e e el
NRORNDNNDNONNDNODNDNDNDND
L L T T S T S S N Y
D N T I I L R Y
« N &% % % 8o
DJdoOVUE W -

[eolie e e N Moo Ne BoNoReoNoReNoNe Re)

-

NOAUNMEWN =2 OOWOYOOY

—_
NN

DO dNNTEWN =

blank

M=+~ AT

N |~ w0~ 3% €9 o

2~

VI

123
120
125

90 System/360 Model 20 Basic Assembler Language

7C

01111110
01111111
10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11000000
110000017
11000010
11000011

~N o

PN T Nt VNI T\ SR G N (I (T I ST s o 3N ¢ o]
NN NNNDNONNDNODNDNDNDSY S
LR TR TR TR R T T T R R S Y

e NoNeoNoNoloNo e NoloNo o NoleoNoNe]

-
N
-

~
—_

"

=

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

BA
BB
BC
BD
BE
BF
co
c1
c2
C3

Appendix TF.

Character

Codes

91

11000100 12,4 D 136 cu-
11000101 12,5 E 197 C5
11000110 12,6 F 198 Ccé
11000111 12,7 G 199 c7 : . -
11001000 12,8 H 200 c8 ' O
11001001 12,9 I 201 Cc9 coL
11001010 12,0,9,8,2 202 CA ‘ :)
11001011 12,0,9,8,3 203 CB
11001100 12,0,9,8,4 204 ccC
11001101 12,0,9,8,5 205 CDh
11001110 12,0,9,8,6 206 CE
11001111 12,0,9,8,7 207 CF
11010000 1,0 208 DO
11010001 1,1 J 209 D1
11010010 11,2 K 210 D2
11010011 1,3 L 211 D3
11010100 11,4 M 212 D4
11010101 11,5 N 213 D5
11010110 11,6 0 214 D6
11010111 11,7 P 215 D7
11011000 1,8 Q 216 D8
11011001 1,9 R 217 D9
11011010 12,11,9,8,2 218 DA
1101101 12,11,9,8,3 219 DB
11011100 12,11,9,8,4 220 DC
11011101 12,11,9,8,5 221 DD
11011110 12,11,9,8,6 222 DE
110117111 12,11,9,8,7 223 DF
11100000 0,8,2 224 E
11100001 11,0,9,1 225 . E1
11100010 0,2 s 226 E2
11100011 0,3 T 227 E3
11100100 0,4 U 228 E4
11100101 0,5 v 229 E5
11100110 0,6 W 230 E6
11100111 0,7 X 231 E7
11101000 0,8 Y 232 EB @
11101001 0,9 Z 233 E9
11101010 11,0,9,8,2 234 EA
11101011 11,0,9,8,3 235 EB
11101100 11,0,9,8,4 236 c
11101101 11,0,9,8,5 237 ED
11101110 11,0,9,8,6 238 EE
11101111 11,0,9,8,7 239 EF
11110000 0 0 240 FO
11110001 1 1 241 F1
11110010 2 2 242 F2
11110011 3 3 243 F3
11110100 4 4 244 Fu
11110101 5 5 245 F5
11110110 6 6 246 F6
11110111 7 7 247 F7
11111000 8 8 248 F8
11111001 9 9 249 F9
11111010 12,11,0,9,8,2 250 FA
11111011 12,11,0,9,8,3 251 FB
11111100 12,11,7,9,8,4 252 FC
11111101 12,11,0,9,8,5 253 FD
11111110 12,11,0,9,8,6 254 FE
11111111 12,11,0,9,8,7 255 FI

92 System/360 Model 20 Basic Assembler Language

APPENDIX G. HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLZ

The table in this appendix provides for direct conversion of decimal and hexadecimal num-
bers between 0000 and 4095 (hexadecimal 000 and FFF).

For numbers outside the range of the table, add the following values to the table
fiqures:

Hexadecimal Decimal . Hexadecimal Decimal
1000 4096 9000 36864
2000 8192 A000 40960
3000 12288 BOOO 4505¢€
4000 16 384 co00 49152
5000 20480 DOOO 53248
6000 24576 EOOQ0O 57344
7000 28672 F0O0O . 61440
8000 327F8
0 1 2 3 4 5 6 7 8 9 A B C D E F

00 0000 0001 0002 0003 0004 0005 0006 0007 0008 C009 0010 0011 0012 0013 0014 0015
01 0016 0017 0P18 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02 0032 0033 0034 0035 0036 0037 0038 0039 0040 OO4UT 0042 0043 004U 0045 COUG 0047
03 0048 0049 ON50 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

o 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
05 0080 0081 0N82 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
06 0096 0097 0Mr98 0099 0100 0101 0102 0103 07104.0105 0106 0107 0108 0109 0110 0111
07 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

08 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0a 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0B . 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0130 0191

0cC 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0D 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OE 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

10 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
11 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12 0288 0289 0290 0291 0292 0293 0294 0295 0296 €297 0298 0299 0300 0301 0302 0303
13 0304 0305 006 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

14 0320 0321 0322 0323 0324 0325 0326 0327 0328 €329 0330 0331 0332 0333 0334 0335
15 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
16 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

18 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
19 0400 0401 OLO2 OLO3 0404 0O4OS OUOG6 0407 O4O8 O4UO9 0410 OLTT 0412 D413 0414 0415
1A 0416 0417 0u18 0419 0420 04271 0422 Ou23 0424 0425 0uU26 0427 0428 0u429 0430 0431
1B 0432 0433 0Ou34 0435 0436 037 0438 0439 O4HO 0441 OWL2 OUL3 OuU4Y 0UUS OuU6 OuLT

1c o448 0449 0U50 0451 0452 0uU53 0454 0455 0456 0457 0458 0459 0460 OUGT 0U62 0LGI
1D 0464 0uU65 0uU66 OuE6T 0468 0U69 OUTO OUTT OUT2 0473 O4TU OUTS 0uT6 0477 0478 0UTI
1E 0480 0481 OuB82 0483 0484 OuUB5 0OuB6 QuUBT 0OuUBB 0489 0OUS0O O0H91 0492 0493 0UI9Y 0UYH
1F 0496 0497 0uU98 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

Appendix G. Hexadecimal-Decimal Number Conversion Table 93

9u

0512 0513
0528 0529
0544 0545
0560 0561

0576 0577
0592 0593
0608 0609
0624 0625

0640 0641
0656 0657
0672 0673
0688 0689

0704 0705
0720 0721
0736 0737
0752 0753

0768 0769
0784 0785
0800 0801
0816 0817

0832 0833
0848 0849
0864 0865
0880 0881

0896 0897
0912 0913
0928 0929
0944 0945

0360 0961
0976 0977
09392 0993
1008 1009

1024 1025
1040 1041
1056 1057
1072 1073

1088 1089
1104 1105
1120 1121
1136 1137

1152 1153
1168 1169
1184 1185
21200 1201

1216 1217
1232 1233
1248 1249
1264 1265

System/360 Model 20 Basic Assembler

0514
0530
0546
0562

0578
CR94
0610
0626

0642
0658
0RT4
0690

0706
0722
0738
0754

0770
0786
0R02
0918

0R34
09250
0866
0282

0Rr98
0214
0930
0946

0962
0978
0994
1010

1026
1642
1058
1074

1090
1106
1122
1138

1154
1170
1186
1202

1218
1234
1250
1266

0515
0531
0547
0563

0579
0595
0611
0627

0643
0659
0675
0691

0707
0723
0739
0755

0771
0787
0803
0819

0835
0851
0867
0883

0899
0915
0931
0947

0963
0979
0995
1011

1027
1043
1059
1075

1091
1107
1123
1139

1155
1171
1187
1203

1219
1235
1251
1267

0516
0532
0548
0564

0580
0596
0612
0628

0644
0660
0676
0692

0708
0724
0740
0756

0772
0788
0804
0820

0836
0852
0868
0884

0900
0916
0932
0948

0964
0980
0996
1012

1028
1044
1060
1076

1092
1108
1124
1140

1156
1172
1188
1204

1220
1236
1252
1268

0517
0533
0549
0565

0581
0597
0613
0629

0645
0661
0677
0633

0709
0725
0741
0757

0773
0789
0805
0821

0837
0853
0869
0885

0901
0917
0933
0949

0965
0981
0997
1013

1029
1045
1061
1077

1093
1109
1125
1141

1157
1173
1189
1205

1221
1237
1253
1269

0518
0534
0550
0566

0582
0598
0614
0630

0646
0662
0678
0694

0710
0726
0742
0758

0774
0790
0806
0822

0838
0854
0870
0886

0902
0918
0934
0950

0966
0982
0998
1014

1030
1046
1062
1078

1094
1110
1126
1142

1158
1174
1190
1206

1222
1238
1254
1270

0519
0535
0551
0567

0583
0599
0615
0631

0647
0663
0679
0695

0711
0727
0743
0759

0775
0791
0807
0823

0839
0855
0871
0887

0903
0919
0935
0951

0967
0983
0999
1015

1031
047
1063
1079

1095
1M
1127
1143

1159
1175
1191
1207

1223
1239
1255
1271

0520
0536
0552
0568

0584
0600
0616
0632

0648
0664
0680
0696

0712
0728
0744
0760

0776
0792
0808
og2u

0840
0856
0872
0888

0904
0920
0336
0952

09638
0984
1000
1016

1032
1048
1064
1080

1096
1112
1128
1144

1160
1176
1192
1208

1224
1240
1256
1272

Language

0521
0537
0553
0569

0585
0601
0617
0633

0649
0665
0681
0697

0713
0729
0745
0761

0777
0793
0809
0825

0841
0857
0873
0889

0905
0921
0937
0953

0969
0985
1001
1017

1033
1049
1065
1081

1097
1113
1129
1145

1161
1177
1193
1209

1225
1241
1257
1273

0522
0538
0554
0570

0586
0602
0618
0634

0650
0666
0682
0698

0714
0730
0746
0762

0778
0794
0810
0826

0842
0858
0874
0890

0906
0922
0938
0954

0970
0986
1002
1018

1034
1050
1066
1082

1098
1114
1130
1146

1162
1178
1194
1210

1226
1242
1258
1274

0523
0539
0555
0571

0587
0603
0619
0635

0651
0667
0683
0699

0715
0731
0747
0763

0779
0795
0811
0827

0843
0859
0875
0891

0907
0923
0939
0955

0971
0987
1003
1019

1035
1051
1067
1083

1099
1115
11131
1147

1163
1179
1195
1211

1227
1243
1259
1275

0524
0540
0556
0572

0588
0604
0620
0636

0652
0668
0684
0700

0716
0732
0748
0764

0780
0796
0812
0828

oauy
0860
0876
0892

0908
0924
0940
0956

0972
0788
1004
1020

1036
1052
1068
1084

1100
1116
1132
1148

1164
1180
1196
1212

1228
1244
1260
1276

0525
0541
0557
0573

0589
0605
0621
0637

0653
0669
€685
0701

0717
0733
0749
0765

0781
0797
c813
0829

0845
0861
0877
0893

0909
0925
0941
0957

0973
0989
1005
1021

1037
1053
1069
1085

1101
1117
1133
1149

1165
1181
1197
1213

1229
1245
1261
1277

0526
0542
0558
0574

0590
0606
0622
0638

0654
0670
0686
0702

0718
0734
0750
0766

0782
0798
0814
0830

0846
0862
0878
0894

0910
0926
0942
0958

0974
0990
1006
1022

1038
1054
1070
1086

1102
1118
1134
1150

1166
1182
1198
1214

1230
1246
1262
1278

0527
0543
0559
0575

0591
0607
0623
0639

0655
0671
0687
0703

0719
0735
0751
0767

0783
0799
0815
0831

0847
0863
0879
0895

0911
0927
0943
0959

0975
0991
1007
1023

1039
1055
1071
1087

1103
1119
1135
1151

1167
1183
1199

1215

123
1247
1263
1279

1280
1296
1312
1328

1344
1360
1376
1392

1408
1424
1440
1456

1472
1488
1504
1520

1536
1552
1568
1584

1600
1616
1632
1648

1664
1680
1696
1712

1728
1744
1760
1776

1792
1808
1824
1840

1856
1872
1888
1904

1920
1936
1952
1968

1984
2000
2016
2032

1281
1297
1313
1329

1345
1361
1377
1393

1409
1425
1441
1457

1473
1489
1505
1521

1537
1553
1569
1585

1601
1617
1633
1649

1665
1681
1697
1713

1729
1745
1761
1777

1793
1809
1825
1841

1857
1873
1889
1905

1921
1937
1953
1969

1985
2001
2017
2033

1282
1298
1314
1330

1346
1362
1378
1394

1410
1426
1442
1458

1474
1490
1506
1522

1538
1554
1570
1586

1602
1618
1634
1650

1666
1682
1698
1714

1730
1746
1762
1778

1794
1210
1726
1R42

1858
1874
1”90
1906

1022
1938
1054
1970

1986
2002
2018
2034

1283
1299
1315
1331

1347
1363
1379
1395

141
1427
1443
1459

1475
1491
1507
1523

1539
1555
1571
1587

1603
1619
1635
1651

1667
1683
1699
1715

1731
1747
1763
1779

1795
1811
1827
1843

1859
1875
1891
1907

1923
1939
1955
1971

1987
2003
2019
2035

1284
1300
1316
1332

1348
1364
1380
1396

1412
1428
1444
1460

1476
1492
1508
1524

1540
1556
1572
1588

1604
1620
1636
1652

1668
1684
1700
1716

1732
1748
1764
1780

1796
1812
1828
1844

1860
1876
1892
1908

1924
1940
1956
1972

1988
2004
2020
2036

1285
1301
1317
1333

1349
1365
1381
1397

1413
1429
1445
1461

1477
1493
1509
1525

1541
1557
1573
1589

1605
1621
1637
1653

1669
1685
1701
1717

1733
1749
1765
1781

1797
1813
1829
1845

1861
1877
1893
1909

1925
1941
1957
1973

1989
2005
2021
2037

1286
1302
1318
1334

1350
1366
1382
1398

1414
1430
1446
1462

1478
1494
1510
1526

1542
1558
1574
1590

1606
1622
1638
1654

1670
1686
1702
1718

1734
1750
1766
1782

1798
1814
1830
1846

1862
1878
1894
1910

1926
1942
1958
1974

1990
2006
2022
2038

Appendix G.

1287
1303
1319
1335

1351
1367
1383
1399

1415
1431
1447
1463

1479
1495
1511
1527

1543
1559
1575
1591

1607
1623
1639
1655

1671
1687
1703
1719

1735
1751
1767
1783

1799
1815
1831

1847

1863
1879
1895
1911

1927
1943
1959
1975

1991
2007
2023
2039

1288
1304
1320
1336

1352
1368
1384
1400

1416
1432
1448
1464

1480
1496
1512
1528

1544
1560
1576
1592

1608
1624
1640
1656

1672
1688
1704
1720

1736
1752
1768
1784

1800
1816

1832

1848

1864
1880
1896
1912

1928
1944
1960
1976

1992
2008
2024
2040

1289
1305
1321
1337

1353
1369
1385
1401

1417
1433
1449
1465

1481
1497
1513
1529

1545
1561
1577
1593

1609
1625
1641
1657

1673
1689
1705
1721

1737
1753
1769
1785

1801
1817
1833
1849

1865
1881
1897
1913

1929
1945
1961
1977

1993
2009
2025
2041

1290
1306
1322
1338

1354
1370
1386
1402

1418
1434
1450
1466

1482
1498
1514
1530

1546
1562
1578
1594

1610
1626
1642
1658

1674
1690
1706
1722

1738
1754
1770
1786

1802
1818
1834
1850

1866
1882
1898
1914

1930
1946
1962
1978

1994
2010
2026
2042

Hexadecimal-Decimal

1291
1307
1323
1339

1355
1371
1387
1403

1419
1435
1451
1467

1483
1499
1515
1531

1547
1563
1579
1595

1611
1627
1643
1659

1675
1691
1707
1723

1739
1755
1771
1787

1803
1819
1835
1851

1867
1883
1899
1915

1931
1947
1963
1979

1995
201
2027
2043

1292
1308
1324
1340

1356
1372
1388
1404

1420
1436
1452
1468

1u84
1500
1516
1532

1548
1564
1580
1596

1612
1628
1644
1660

1676
1692
1708
1724

1740
1756
1772
1788

1804
1820
1836
1852

1868
1884
1900
1916

1932
1948
1964
1980

1996 .

2012
2028
2044

1293
1309
1325
1341

1357
1373
1389
1405

1421
1437
1453
1469

1485
1501
1517
1533

1549
1565
1581
1597

1613
1629
1645
1661

1677
1693
1709
1725

1741
1757
1773
1789

1805

1821
1837
1853

1869
1885
1901
1917

1933
1949
1965
1981

1997
2013
2029
2045

1294
1310
1326
1342

1358
1374
1390
1406

1422
1438
1454
1470

1486
1502
1518
1534

1550
1566
1582
1598

1614
1630
1646
1662

1678
1694
1710
1726

1742
1758
1774
1790

1806
1822
1838
1854

1870
1886
1902
1918

1934

1950
1966
1982

1998
2014
2030
2046

1295
1311
1327
1343

1359
1375
1391
1407

1423
1439
1455
1471

1487
1503
1519
1535

1551
1567
1583
1599

1615
1631
1647
1663

1679
1695
1711
1727

1743
1759
1775
1791

1807
1823
1839
1855

1871
1887
1903
1919

1935
1951
1967
1983

1999
2015
2031
2047

Number Conversion Table

96

A0

A2
A3

A4
AS
A6
A7
A8

AR
AB

AC
AD

AF

2048
2064
2080
2096

2112
2128
2144
2160

2176
2192
2208
2224

2240
2256
2272
2288

2304
2320
2336
2352

2368
2384
2400
2416

2432
2u48
2464
2480

2496
2512
2528
254y

2560
2576
2592
2608

2624
2640
2656
2672

2688
2704
2720
2736

2752
2768
2784
2800

2305
2321
2337
2353

2369
2385
2401
2417

2433
2449
2465
2481

2497
2513
2529
2545

2561
2577
2593
2609

2625
2641
2657
2673

2689
2705
2721
2737

2753
2769
2785
2801

2050
2066
2082
2098

2114
2130
2146
2162

2178
2194
2210
2226

2242
2258
2274
2290

2306
2322
2338
2354

2370
2386
2u02
2u18

2u34
2u50
266
2u82

2u98
2514
2530
2546

2051
2067
2083
2099

2115
2131
2147
2163

2179
2195
2211
2227

2243
2259
2275
2291

2307
2323
2339
2355

2371
2387
2403
2419

2435
2451
2467
2483

2499
2515
2531
2547

2563
2579
2595
2611

2627
2643
2659
2675

2691
2707
2723
2739

2755
2771
2787
2803

2052
2068
2084
2100

2116
2132
2148
2164

2180
2196
2212
2228

2244
2260
2276
2292

2308
2324
2340
2356

2372
2388
2404
2420

2436
2452
2468
2u84

2500
2516
2532
2548

2564
2580
2596
2612

2628
2644
2660
2676

2692
2708
2724
2740

2756
2772
2788
2804

2053
2069
2085
2101

2117
2133
2149
2165

2181
2197
2213
2229

2245
2261
2277
2293

2309
2325
231
2357

2373
2389
2405
2421

2437
2453
2469
2485

2501
2517
2533
2549

2565
2581
2597
2613

2629
2645
2661
2677

2693
2709
2725
2741

2757
2773
2789
2805

2054
2070
2086
2102

2118
2134
2150
2166

2182
2198
2214
2230

2246
2262
2278
2294

2310
2326
2342
2358

2374
2390
2406
2422

2438
2454
2470
2486

2502
2518
2534
2550

2566
2582
2598
2614

2630
26U6
2662
2678

2694
2710
2726
2742

2758
2774
2790
2806

2055
2071
2087
2103

2119
2135
2151
2167

2183
2199
2215
2231

2247
2263
2279
2295

2311
2327
2343
2359

2375
2391
2407
2423

2439
2455
2471
2487

2503
2519
2535
2551

2567
2583
2599
2615

2631
2647
2663
2679

2695
2711
2727
2743

2759
2775
2791
2807

2056
2072
2088
2104

2120
2136
2152
2168

2184
2200
2216
2232

22u8
226U
2280
2296

2312
2328
2344
2360

2376
2392
2408
2424

2440
2456
2472
2488

2504
2520
2536
2552

2568
2584
2600
2616

2632
2648
2664
2680

2696
2712
2728
2744

2760
2776
2792
2808

System/360 Model 20 Basic Assembler Language

2057
2073
2089
2105

2121
2137
2153
2169

2185
2201
2217
2233

2249
2265
2281
2297

2313
2329
2345
2361

2377
2393
2409
2425

2441
2457
2473
2489

2505
2521
2537
2553

2569
2585
2601
2617

2633
2649
2665
2681

2697
2713
2729
2745

2761
2777
2793
2809

2058
2074
2090
2106

2122
2138
2154
2170

2186
2202
2218
2234

2250
2266
2282
2298

2314
2330
2346
2362

2378
2394
2410
2426

2442
2458
2474
2490

2506
2522
2538
2554

2570
2586
2602
2618

2634
2650
2666
2682

2698
2714
2730
27u6

2762
2778
2794
2810

2059
2075
2091
2107

2123
2139
2155
2171

2187
2203
2219
2235

2251
2267
2283
2299

2315
2331
2347
2360

2379
2395
2411
2427

2443
2459
2475
2491

2507
2523
2539
2555

2571
2587
2603
2619

2635
2651
2667
2683

2699
2715
2731
2747

2763
2779
2795
2811

2060
2076
2092
2108

2124
2140
2156
2172

2188
2204
2220
2236

2252
2268
2284
2300

2316
2332
2348
2364

2380
2396
2412
2428

244y
2460
2476
2492

2508
2524
2540
2556

2572
2588
2604
2620

2636
2652
2668
2684

2700
2716
2732
27u8

2764
2780
2796
2812

2061
2077
2093
2109

2125
214
2157
2173

2189
2205
2221
2237

2253
2269
2285
2301

2317
2333
2349
2365

2381
2397
2413
2429

2445
2461
2477
2493

2509
2525
2541
2557

2573
2589
2605
2621

2637
2653
2669
2685

2701
2717
2733
2749

2765
2781
2797
2813

2062
2078
2094
2110

2126
2142
2158
2174

2190
2206
2222
2238

2254
2270
2286
2302

2318
2334
2350
2366

2382
2398
2414
2430

2446
2462
2478
2494

2510
2526
2542
2558

2574
2590
2606
2622

2638
2654
2670
2686

2702
2718
2734
2750

2766
2782
2798
2814

2063
2079
2095
2111

2127
2143
2159
2175

2191
2207
2223
2239

2255
2271
2287
2303

2319
2335
2351
2367

2383
2399
2415
2431

2447

2463 .

2479
2495

2511
2527
2543
2559

2575
2591
2607
2623

26 39
2655
2671
2687

2703
2719
2715
2751

2767
2783
2799
2815

BO
B1
B2
B3

BU4
B5
B6
B7

B8
B9

BB

BC
BD
BE

BF

co
C1
c2
Cc3

cu

Ccé
c7

c8
Cc9
CA
CB

CccC
CD
CE
CF

DO
D1
D2
D3

DU
D5
D6
D7

D8
D9
DA
DB

DC
DD
DE
DF

2816
2832
2848
2864

2880
2896
2912
2928

2944
2960
2976
2992

3008
3024
3040
3056

3072
3088
3104
3120

3136
3152
3168
3184

3200
3216
3232
3248

3264
3280
3296
3312

3328
3344
3360
3376

3392
3408
3424
3440

3456
3472
3488
3504

3520
3536
3552
3568

2817
2833
2849
2865

2881
2897
2913
2929

2945
2961
2977
2993

3009
3025
3041
3057

3073
3089
3105
3121

3137
3153
3169
3185

3201
3217
3233
3249

3265
3281
3297
3313

3329
3345
3361

3377

3393
3409
3425
3441

3457
3473
3489
3505

3s21
3537
3553
3569

2818

2734

2250
2866

2882
2R98
2914
2930

2946
2962
2978
2994

3ni0
3n26
3042
3058

3074
3n90
3106
3122

3138
3154
3170
3186

3202
3218
37234
3250

3766
3282
3798
3314

3330
3346
3362
3378

3394
3410
3u26
3uu2

3458
3u7y
3490
3506

3522
3538
3R5Y
3570

2819
2835
2851
2867

2883
2899
2915
2931

2947
2963
2979
2995

3011
3027
3043
3059

3075
3091
3107
3123

3139
3155
3171
3187

3203
3219
3235
3251

3267
3283
3299
3315

3331
3347
3363
3379

3395
L RN
3427
3443

3459
3475
3491
3507

3523
3539
3555
3571

2820
2836
2852
2868

2884
2900
2916
2932

2948
2964
2980
2996

3012
3028
3044
3060

3076
3092
3108
3124

3140
3156
3172
3188

3204
3220
3236
3252

3268
3284
3300
3316

“3332

3348
3364
3380

3396
3412
3428
3444

3460
3476
3492
3508

oy}

VA"
~ =

2821
2837
2853
2869

2885
2901
2917
2933

2949
2965
2981
2997

3013
3029
3045
3061

3077
3093
3109
3125

3141
3157
3173
3189

3205
3221
3237
3253

3269
3285
3301
3317

2822
2838
2854
2870

2886
2902
2918
2934

2950
2966
2982
2998

3014
3030
3046
3062

3078
3094
3110
3126

3142
3158
3174
3190

3206
3222
3238
3254

3270
3286
3302
3318

3334
3350
3366
3382

3398
Juy
3430
Juue

3462
3478
3494
3510

1526
3542
31558
1574

Appendix G.

2823
2839
2855
2871

2887
2903
2919
2935

2951
2967
2983
2999

3015
3031
3047
3063

3079
3095
3111
3127

3143
3159
3175
3191

3207
3223
3239
3255

3271
3287
3303
3319

3335
3351
3367
3383

3399
3415
3431
3uu7

3463
3479
3495
3511

3527
3543
3559
3575

2824
2840
2856
2872

2888
2904
2920
2936

2952
2968
2984
3000

3016
3032
3048
3064

3080
3096
3112
3128

3144
3160
3176
3192

3208
3224
3240
3256

3272
3288
3304
3320

3336

3352
3368
3384

3400
3416
3432
3448

346U
3480
3496
3512

31528
3544
31560
3576

2825
2841
2857
2873

2889
2905
2921
2937

2953
2969
2985
3001

3017
3033
3049
3065

3081
3097
3113
3129

3145
3161
3177
3193

3209
3225
3241
3257

3273
3289
3305
3321

3337
3353
3369
3385

3401
3417
3433
3449

3465
3481
u97
3513

2826
2842
2858
2874

2890
2906
2922
2938

2954
2970
2986
3002

3018
3034
3050
3066

3082
3098
3114
3130

3146
3162
3178
3194

3210
3226
3242
3258

3274
3290
3306

3322.

3338
3354
3370
3386

3402
3418
3434
3450

3466
3482
498
3514

1530
3546
31562

7 3578

Hexadecimal-Decimal

2827
2843
2859
2875

2891
2907
2923
2939

2955
2971
2987
3003

3019
3035
3051
3067

3083
3099
3115
3131

3147
3163
3179
3195

3211
3227
3243
3259

3275
3291
3307
3323

2828
2844
2860
2876

2892
2908
2924
2940

2956
2972
2988
3004

3020
3036
3052
3068

3084
3100
3116
3132

3148
3164
3180
3196

3212
3228
3244
3260

3276
3292
3308
3324

3340
3356
3372
3188

3404
3420
3436
3452

468
3484
3500
3516

3532
3548
1564
3580

2829
2845
2861
2877

2893
2909
2925
2941

2957
2973
2989
3005

3021
3037
3053
3069

3085
3101
3117
3133

3149
3165
3181
3197

3213
3229
3245
3261

3277
3293
3309
3325

3341
3357
3373
3389

34065

Ju21
3437
3453

3469
3u85
3501
3517

19133
3549
1565
3581

2830

2846
2862
2878

2894
2910
2926
2942

2958
2974
2990
3006

3022
3038
3054
3070

3086
3102
3118
3134

3150
3166
3182
3198

3214
3230
3246
3262

3278
3294
3310
3326

2831
2847
2863
2879

2895
2911
2927
2943

2959
2975
2991
3007

3023
3039
3055
3071

3087
3103
3119
3135

3151
3167
3183
3199

3215
3231
3247
3263

3279
3295
3311
3327

3343
3359
3375
3391

3407
3423
34 39
3455

3471
3487
3503
3519

35135
3551
1567
1583

Number Conversion Table

98

3584
3600
3616
3632

3648
3664
3680
3696

3712
3728
3744
3760

3776
3792
3808
3824

3840
3856
3872
3888

3904
3920
3936
3952

3968
3984
4000
4016

4032
4ous
Loe6u
4080

3585
3601
3617
3633

3649
3665
3681
3697

3713
3729
3745
3761

3777
3793
3809
3825

3841
3857
3873
3889

3905
3921
3937
3953

3969
3985
4001
4017

4033
uou9
4065
4081

3586
3602
3f18
3634

3650
3666
3682
3698

3714
3730
3746
3762

3778
3794
3210
3926

3842
3858
3274
3”90

3906
3022
3938
3054

3970
3986
4002
4018

4034
4050
4066
4082

3587
3603
3619
3635

3651
3667
3683
3699

3715
3731
3747
3763

3779
3795
3811
3827

3843
3859
3875
3891

3907
3923
3939
3955

3971
3987
4003
4019

4035
4051
4067
4083

3588
3604
3620
3636

3652
3668
3684
3700

3716
3732
3748
3764

3780
3796
3812
3828

3844
3860
3876
3892

3908
3924
3940
3956

3972
3988
4004
4020

4036
4052
4068
4084

3589
3605
3621
3637

3653
3669
3685
3701

3717
3733
3749
3765

3781
3797
3813
3829

3845
3861
3877
3893

3909
3925
3941
3957

3973
3989
4005
4021

4037
4053
4069
4085

3590
3606
3622
3638

3654
3670
3686
3702

3718
3734
3750
3766

3782
3798
3814
3830

3846
3862
3878
3894

3910
3926
3942
3958

3974
3990
4006
4022

4038
4054
4070
4086

3591
3607
3623
3639

3655
3671

3687

3703

3719
3735
3751
3767

3783
3799
3815
3831

3847
3863
3879
3895

3911
3927
3943
3959

3975
3991
4007
4023

4039
4055

4071

4087

3592
3608
3624
3640

3656
3672
3688
3704

3720
3736
3752
3768

3784
3800
3816
3832

3848
3864
3880
38986

3912
3928
3944
3960

3976
3992
4008
4024

4040
4056
4072
4088

System /360 Model 20 Basic Assembler Language

3593
3609
3625
3641

3657
3673
3689
3705

3721
3737
3753
3769

3785
3801
3817
3833

3849
3865
3881
3897

3913
3929
3945
3961

3977
3993
4009
4025

4041
4057
4073
4089

3594
3610
3626
3642

3658
3674
3690
3706

3722
3738
3754
3770

3786
3802
3818
3834

3850
3866
3882
3898

3914
3930
3946
3962

3978
3994
4010
4026

4042
4058
4074
4090

3595
3611
3627
3643

3659
3675
3691
3707

3723
3739
3755
3771

3787
3803
3819
3835

3851
3867
3883
3899

33915
3931
3947
3963

3979
3995
4011
4027

4043
4059
4075
4091

3596
3612
3628
3644

3660
3676
3692
3708

3724
3740
3756
3772

3788
3804
3820
3836

3852
3868
3884
3900

3916
3932
3948
3964

3980
3996
4012
4028
4044
4060

4076
4092

3597
3613
3629
3645

3661
3677
3693
3709

3725
3741
3757
3773

3789
3805
3821
3837

3853
3869
3885
3901

3917
3933
3949
3965

3981
3997
4013
4029

4o4s
4061
4077
4093

3598
3614
3630
3646

3662
3678
3694
3710

3726
3742
3756
3774

3790
3806
3822
3838

3854
3870
3886
3902

3918
3934
3950
3966

3982

3998
4014
4030

40u6
4062
4078
4094

3599
3615
3631
3647

3663
3679
3695
3711

3727
3743
3759
3775

3791
3807
3823
3839

3855
3871
3887
3903

3919
3935
3951
3967

3983
3999
4015
4031

Lou7
4063
4079
4095

a

Absolute Address

A pattern of characters that identifies

a unique storage location or device

without further modification.

Address

1. An identification, as represented by
a name, or number, for a register,
location in storage, or other data
source or destination.

2. Loosely, any part of an instruction
which specifies the location of an
operand for the instruction.

Address Constant
A value, or an expression representing a
value, interpreted as a storage address.
Address Modification

The process of changing the address part

of a machine instruction by means of

coded instructions.
Address Register

A register that stores an address.
Allocate .

To assign storage locations or areas of

storage for specific routines, portions

of routines, constants, data, etc.
Alphameric

A generic term for alphabetic letters,

numerical digits, and special

characters.
Assemble

To prepare an object-language progranm

from a symbolic-language program by sub-

stituting machine operation codes for
symbolic operation codes and absolute or
relocatable addresses for symbolic
addresses.

Assembler
A program that assembles.

Attribute

A characteristic; e.g., attributes of

data include record length, record for-

mat, data set name, associated device
type and volume identification, use,
creation date, etc.

Base Register
A register used for addressing purposes.
Basic Assembler Language
A symbolic language for the writing of
source programs.
Basic Assembler Program
A program used to translate source pro-
grams written in Basic Assembler lan-
guage into machine language.
Binary
1. A characteristic or property involv-
ing a selection, choice, or condi-
tion in which there are two
possibilities.
2. The number representation system
with a base of two.
Binary Code

APPENDIX H. GLOSSARY

A code that makes use of two distinct
characters, usually 0 and 1.
Binary-Coded Character
One element of a notation system for
representing alphameric characters such
as decimal digits, alphabetic letters,
punctuation marks, etc., by a fixed
number of consecutive binary digits.
Binary-Coded Decimal
A decimal notation in which the indivi-
dual decimal digits are each represented
by a binary code group; e.g., in the
8-4-2-1 coded decimal notation, the
number twenty-three is represented as
0010 0011, in binary notation, twenty-
three is represented as 10111,
Binary Digit
A character used to represent one of the
integers smaller than the radix 2.
Binary-to-Decimal Conversion
Conversion of a binary number to the
equivalent decimal number; i.e., a base-
two number to a base-ten number.
Bit
A binary digit.
Blank Character
Any character or characters used to pro-
duce a character space on an output
medium.
Branch
1. To depart from the normal sequence
of executing instructions in a
computer.
2. A machine instruction that can cause
a departure as in (1). Synonymous
with 'transfer’.
Byte
A sequence of adjacent binary digits
operated upon as a unit.

Card Code
The combinations of punched holes which
represent characters (letters, digits,
etc.) 1in a punched card.

Card Column
One of the vertical lines of punching
positions on a punched card.

Card Field
A fixed number of consecutive card
columns assigned to data of a specific
nature.

Card Punch
A device to record information in cards
by punching holes in the cards to repre-
sent letters, digits, and special
characters.

Card Reader
A device which reads and translates into
internal form the holes in punched
cards.

Card Stacker
A mechanism which stacks cards in a poc-

Appendix H. Glossary 99

ket after they pass through a machine.
Character

One of a set of elementary symbols which

may include decimal digits O through 9,

the letters A through Z, punctuation

marks, and any other symbols acceptable
to a computer for reading, writing or
storing.

Character Set

A list of characters acceptable for cod-

ing to a specific computer or input/

output device.
Clear

To put a storage device into a pre-

scribed state, usually that denoting

zero or blank.
Coded Decimal

A type of notation in which each decimal

digit is identified by a group of binary

ones and zeros.
Column Binary
Pertaining to the binary representation
of data on punched cards in which adja-
cent positions in a column correspond to
adjacent bits of data.
Command
An instruction in machine language.
Communication

The process of transferring information

from one point, person, or piece of

equipment to another.
Computer

1. A device capable of solving problenms
by acceptinag data, performing pre-
scribed operations on the data, and
supplying the results of these
operations. Various types of compu-
ters are calculators, digital compu-
ters, and analog computers.

2. In information processing, usually,
an automatic stored-program
computer.

Computer Instruction
Same as machine instruction.

Constant
A fixed or invariable value or data
item.

Counter

"~ A device such as a register or storage

location used ton represent the number of
occurrences of an event.

Cycle

1. An interval of space or time 1in
which one set of events is
completed.

2. Any set of operations that is
repeated reqularly in the same
sequence. ™he operations may be
subject to variations on each
repetition.

Data
Any representation, such as character
quantities, to which meaning might be
assigned.

Data Conversion
The process of changing data from one
form of representation to another.

Data Processing
A systematic sequence of operations per-
formed on data.
Data Processing Systenm
A network of machine components capable
of accepting information, processing it
according to a plan, and producing the
desired results.
Decimal
1. A characteristic or property involv-
ing a selection, choice or condition
in which there are ten
rossibilities,

2. The number representation systenm
with a base of ten.

Decimal-to-Binary Conversion
The conversion of a decimal number to
the equivalent binary number, i.e., a
base-ten number to a base-two number.

Decision
A determination of future action.

Decision Block
A flowchart symbol whose interior con-
tains the criterion for decision or
branching.

Decision Instruction
An instruction that selects a branch of
a program, e.g., a conditional branch
instruction.

Deck
A collection of punched cards.

Decrement
The quantity by which a variable is
decreased.

Diagnostic (W
The detection and isolation of a mal- S
function or a mistake.

Diagram
A schematic representation of a sequence
of operations or routines.

Diyit :

1. Any of the arabic numerals 1 to 9
and the symhol O.

2. One of the elements that combine to
form numbers in a system other than
the decimal systen.

Displacement
The difference (in bytes) between the
contents of a base register (or the
address represented by a symbol) and a
referenced storage location.

Dummy
The characteristic of having the
appearance of a specified thing but not
having the capacity to function as such.

O

EBCDIC
(Extended Binary Coded Decimal Inter-
change Code). A specific set of 8-bit
codes standard throuqhout System/360.
Edit
To modify the form or format of data;
e.g., to insert or delete characters
such as page numbers or decimal polnts.
Effective Address
The absolute address of the current
operand. This may differ from that of
the instruction in storage.

O

100 System/360 Model 20 Basic Assembler Language

Error
A general term to indicate that a data
value is not correct or that a machine
component is malfunctioning.

ESD card
ESD cards contain all information
required for the linking of program seg-
ments (such as all symbols defined in
one segment but referred to in another
segment) .

Execute
To carry out an instruction or perfornm a
routine.

Explicit Addressing
Specification of an address by a base
register and a *isplacement in the form
D(B) .

File
A collection of related records treated
as a unit, e.g., in inventory control,
one line of an invoice forms an item, a
complete invoice forms a record, and the
complete set of such records forms a
file.

Flowchart
A graphical representation for the
definition, analysis, or solution of a
problem in which symbols are used to
represent operations, data, flow, and
equipment.

Hexadecimal Number Systen
A number system using the eguivalent of
the decimal number sixteen as a base.
Hopper
A device that holds cards and makes thenm
available to a card feed mechanism.
Contrast with card stacker.

Identification
A code number or code name which unique-
ly identifies a record, block, file or
other unit of information.

Image
An exact logical duplicate stored in a
different medium.

Immediate Address
The designation of an instruction
address which is used as data by the
instruction of which it is a part.

Implied Address
The address assigned to a symbol by the
Basic Assembler progranm.

Index Register :
A register whose content is added to or
subtracted from the operand address
prior to or during the execution of an
instruction.

Indexing
A technique of address modification
often implemented by means of index
registers.

Initialize
To set certain counters, switches and
addresses at specified times in a com-
puter routine.

Input

1. The data to be processed.

2. The state or segquence of states
occurring on a specified input
channel.

3. The device or collective set of
devices used for bringing data into
another device.

4. A channel for impressing a state on
a device or logic element.

Input Area

The area of internal storage into which

data is transferred from external

storage.
Input/Output

1. Common atbreviation I/O. A general
term for the equipment used to com-
municate with a computer.

2. The data involved in such
communication.

3. The media carrying the data for
input/output.

Instruction

A statement that specifies an operation

and the values or locations of all

operands. In this context, the term
instruction is preferable to the terms
command or order which are sometimes
used as synonyms. Command should be
reserved for electronic signals. Order
should be reserved for sequence, inter-
polation and related usage.)

Instruction Format

The allocation of bits or characters of

a machine instruction to cpecific

functions.

Interrupt

1. A break in the normal flow of a sys-
tem or routine such that the flow
can be resumed from that point at a
later time.

2. To cause an interrupt.

Language
1. A defined set of characters which
are used to form symbols, words,
etc., and the rules for combining
these into meaningful communication,
e.g., English, French, Algol, FOR-
TRAN, COBOL, etc.
2. A combination of a vocabulary and
rules of syntax.
Linkage
The interconnections between a main rou-
tine and a closed routine, i.e., entry
and exit for a closed routine from the
main routine.
Load
To place data into internal storage.
Location
A position 1n storaqge that is usually
identified by an address.
Loop
A sequence of instructions that is
repeated until a terminal condition
0OCCUrS.

Machine Address
Same as absolute addroess.

Appendix H. Glossary 101

Machine Code
Same as operation code.

Machine Instruction
An instruction that the particular
machine can recognize and execute.

Machine Language
A language that is used directly by a
given machine.

Macro Instruction
A statement that is used in a source
program and replaced by a specific
sequence of machine instructions in the
associated object program.

Magnetic Ink
Ink containing particles of magnetic
substance which can be detected or read
by automatic devices; e.g., the ink used
for printing on some bank checks for
magnetic character recognition.

Magnetic Tape
A tape with a magnetic surface on which
data can be stored.

Main Storage
The fastest general purpose storage of a
computer. Also, for the Fodel 20,
storage within the CPU that can be
addressed both for reading and writing
data.

Mask
An alphameric character string consist-
ing of one or more digits, used to test
or alter the contents of storage
positions.

Mnemonic Code
A mnemonic code resembles the original
word and is usually easy to remember,
e.g., ED for edit and MVC for move
characters.

Name
An alphameric character string, normally
used to identify a program.

Object Progranm
A fully assembled program ready to be
loaded in the computer.

Operand

That which is operated upon. An operand

is usually identified by an address part

of an instruction.
Operation

1. The act specified by a single com-
puter instruction.

2. A program step undertaken or
executed by a computer, e.g., addi-
tion, multiplication, extracticn,
comparison, shift, or transfer. The
operation is usually specified by
the operation part of an
instruction.

Operation Code
The code that represents the specific
operations of a computer.

Output

1. Data that has been processed.

2. The state or sequence of states
occurring on a specified output
channel.

3. The device or collective set of
devices used for taking data out of
a device.
4, A channel for expressing a state on
a device or logic element.
Output Area
The area of internal storage from which
data is transferred to external storage.
Overflow ' _
1. That portion of data that exceeds
the capacity of the allocated unit
of storage.
2. The generation of overflow as in
(n.

Pack
To combine two or more units of informa-
tion into a single physical unit to con-
serve storage.
Padding
" A technique used to fill a block of
information with dummy records, words or
characters.
Printer
A device which expresses coded charac-
ters as hard copy.
Progranm
1. The plan for the solution of a pro-
blem including data gathering, pro-
cessing and reporting.
2. A group of related routines which
solve a given problenm.
Programming Language
A language used to prepare computer
progranms.
Pseudo-Register
A register with fixed contents used in
conjunction with an IBM System/360 Model
20.
Punched Card
1. A card punched with a pattern of
holes to represent data.
2. A card as in 1. before being
punched.

Read
To transfer information from an input
device to internal or auxiliary storage.

Reader

- A device which converts information in

one form of storage to information in
another form of storage.

Register
A device capable of storing a specified
amount of data such as one halfword.

Relative Address
An address expressed by a previously
defined symbol and a displacement.
(e.g., FLD+10).

Relocate
In programming, to move a routine from
one portion of internal storage to
another and to automatically adjust the
necessary address references so that the
routine, in its new location, can be
executed.

Reset
To restore a storage device to pre-

102 System/360 Model 20 Basic Assembler Langquage

scribed initial state, not necessarily
that denoting zeros.

Restart
To return to a previous point in a pro-
gram and resume operation from that
point.

RLD card i
RLD cards identify portions of the text
that require modification owing to relo-
cation (such as address constants).

Self-Defining Term
A term with an implied value (e.g.,
Xraa C'F')

Source Language
A language that is an input to a given
translation process.

Source Program
A program written in a source language.

Special Character
In a character set, a character that is
neither a numeral nor a letter, e.g., —-%*
$ = and blank.

Statement
In computer programming, a meaningful
expression or generalized instruction in
a source language.

300,

Step
1. One instruction in a computer
routine.
2. To cause a computer to execute one
instruction.
Storage

1. Pertaining to a device into which
data can be entered and from which
it can be retrieved at a later time.

2. Loosely, any device that can store
data.

Storage Capacity
The amount of data (in bytes) that can
be contained in a storage device.
Store
1. To enter data into a storage device.
2. To retain data in a storage device.
Subroutine
A routine that can be part of another
routine.
Switch

1. A symbol used to indicate a branch-
ing point, or a set of instructions
to condition a branch.

2. A physical device which can alter
flow.

Symbol Table
A mapping for a set of symbols to anoth-
er set of symbols or numbers.

Symbolic Address
An address expressed in symbols con-
venient to the programmer.

Symbolic Language

An artificial language used in logical

expressions, that avoids all ambiguities

and inadequacies of natural languages.
System

1. A collection of consecutive opera-
tions and procedures reguired to
accomplish a specific objective.

2. An assembly of objects united to
form a functional unit.

Table
A collection of data, each item being
uniquely identified either by some label
or by its relative position.

Table Look-Up
A procedure for obtaining the function
value corresponding to an argument from
a table of function values.

Truncate
To cut off at a specified spot (as con-
trasted with round or pad).

TXT card
TXT cards contain the user program in
machine language.

Unpack ;
To recover the original data from packed
data.

Zero Suppression
The elimination of non-significant zeros
in a number.

Zone
The 12, 11, or 0 punches in IBM card
code.

Appendix H. Glossary 103

U

Absolute addresSSiNg..cceeecesscssececes 22 serial I/0 channel....ceeeeececsseaaes 39
Absolute expressSionNS..c.cceacecacecass 17 SKippPingeeeeeeseaeseseecaccaancaaas 39
Absolute program loader........... 41,74 SPACIiNGeseseeecesocssssoacsannsseas 39
Absolute pProgramminNg..ceccccescscseccace 20 : stacker selectionN.seeeeeocecvessass 38
Absolute symbols............ ceeceasss 15 Coding conventions.......... creeesnaes 9
Add decimal (AP)ececeecceccosccsananass D7 Coding fOLMeseeeccevecnsceanannenaes 9,10
Add halfword (AF) ceeeecceceacossacsnss B3 Comments CardSeecececescscancsaa ceesse 12
Add register (AP) ciscececacscesons eee 51 Comments entrieS..eceeeccccassccaseas 12
Additional assembly rUNe...coeeceseas 712 Communications adapters....c.eeeeee.. 39
Address calculatioONeeeeseeeeeeecoaeaeas b Compare decimal (CP).eeevecoccecasenos 57
Address constantS...eccecceecccccnsscs 31 Compare halfword (CH) ceeeeeceansnseses 52
Addressing, Compare logical (CLC) cecosoecscenssess BU
absolute..c.ceceiieaannn 2eecseceens 22 Compare 10gical (CLI)eueeeeeacseoceas. 64
effective.iieecececreencccnacennssa 20 Compatibility.eeeeececesoasccsannnsaes 7
explicit.ceeeieceneecneannas ceeene . 21 Compound €XpPLeSSiONS..ceceeesns ceeaen . 16
implied.ceeeeeseacsecesececescesneass 20 Condition CO0deieieieceaeecacnnsenesess 46
Frelative.ieieececesesconssarscansnsass 16 Condition codes, summary of.......... 88
SYymboliC.eeeeeenenceocnen 4 ¢ Conditional branches...c.eecececea.. 46,70
ANd (NI) eeeeeeeenconecossncncacanonace D7 ConstantS.eeeececececcssssosnscsoasens 29
Assembly, error elimination..eeeceeee 72 Control input /output......cecceeeees. 37
Assignment of storage addresses...... 18 Control instructions......eeccceeeee.. 34
Conversion table,
Base register address calculation..... 6 hexadecimal-decimal..ceeeceeonesess 93
Base registerS.ececcececes ceeseses 20,23 C-type operand of DS instruction..... 33
Base registers, loading of......ec0... 23
Basic Assembler Control Instructions, DC inStrUCtiONecseccacsscocscaseasassass 29
ENDeeeeeesencosaoncancssnncsasacnnooa 34 DC instructions, grouping of......... 32
ORGeeeoenuacnsonncassnnanas ceeeeann 35 Decimal arithmetic operations........ 53
START v tenecoccnconcncocssascssssss 34U Decimal self-defining terms...... eee. T4
Basic Assembler Instructions....... 5,29 Define constant...ceeeeeeenennns ceeess 29
O ceeccenssecacanes ceeas 29 Define storage....cceeeee.. S 4
DROP. e eeeeecceeaaascanannncs ceeeass 25 Defining symbols.......... cetessaseas 15
S Definition instructions............ 5,29
ENTRY . i eeneoccoconscnnnns ceaseess 27 Definition of constants, sequence.... 32
EXTRN e e ceeencnnaaanse Ceeceseenacann W 27 DiagnostiC MEeSSAgeS.eceteescancaaanan T4
EQUoseseesncesosannaasniaancasnnansas 29 Diagnostic messages, summary of...... 86
summary of..iceeeeeecneieaanen ceees 82 Direct addressing.ceeceeses. cereeaees 22
USING...veueceooancossonscnsaseasnee 23 Displacement..eeececececsocncocans eese 20
Basic Assembler progranm, Divide decimal (DP).e.ceesecaccoeaass 59
card versionNS..eeeeeesea. cecccaness 12 DROP instruction...c.e.eeeeeneuennnnnn 25
tape VersSiONSe.ceecescassens ceeeees 14 DS InStructioN..eeeeeeereeecanaacesss 32
BASR inStructioNe.caceeeeeeeccean eeee 23 DS instruction,
Binary arithmetic operations...... ... U9 C-type operand of DS instruction... 33
Binary Synchronous Communications duplication factor.......... cevesan 33
Adapter.ieeeeceeeeenacsensanesaas 11,39 H-type operand....... e etecat e 32
Branches, conditional.....c.c.c... L6 ,70 Dummy punch cycle...eeieeeeennena. eeea. W1
Branch and store (BAS) ...vecencceaaes 71 Duplication facCtOl....eeeeeneencccnas 33
Branch and store register (BASR)..... 71 :
Branch on condition (BC).cevueeann eess 10 EAlt (ED) e eeevaconccscanccoancans veea.. BU
Branch on condition register (BCR)... 70 Effective addressing...... ceececenan 20
BranChing..eeeeeeeeeeeeeseacecasconas 69 END instructione..e.eeeeceececeaccnaans 34
BSCA.eeeeeeeaeceacaccanaa ceseeaas . 11,39 ENTRY instruction......... cececeaeacs 27
EQU instruction............ cececeaen . 29 ’
Card Versions Basic Assembler program 72 Error e€liminatioN.e.e.ieieeecevecacoas e. 12
Character codes, summary of.......... 89 EITOr MeSSAJeSecieecncecnconnn cacae e T4
Character constantS....ieeeeeencacans 29 Evaluation of exXpressSiolNS.cee.ccecees 17
Character self-defining terms........ 15 Execute input/output.......ccoaa.. eee 37
Character set...... P Explicit addressing.....cceeeiiineae.. 21
CIO instruction.e.....eeeeoan... ceeeas. 37 DX PreSSIlONS. cieeeeenesensasacesonneos 16
CIO instruction, Expressions, '
Communications Adapters....... ceees 39 absolute.......... cedee e ee.. 17 ‘
print-head selection.......... eeee. 38 compound e eeeeeeann. fececcsacseccan o 16

104 system/360 Model 20 Basic Assembler Lanquageoe

evaluation Ofececececccccsoscncacaae 17
relocatablec.icececsccsccscacccscasana 17
External symbolSeeeeeeeseeecseseansses 15
EXTRN instructioNieecececeaccccceeeas 27

Formats of instructionS..seiecascecececss U4
Functions of the assembler language.. 20

General registers..ceeececcececcaceas 22
General registers, restrictions on... 22
Grouping DC instructions............ . 32

Half-word constantS.c.ceececeeescneaas 31
Hexadecimal constantS..eeeeessaceeaess 30
Halt and proceed (HPB)..evevseoo.. U4B,68
Hexadecimal-decimal conversion table. 93
Hexadecimal self-defining terms...... 14
HPReoeeeooaoaososensaansnsoascnsesases UB,68
H-type operand of DS instruction..... 32

Identification-sequence entries...... 12
Inplied addresSsSinNgececceccessesesasass 20
Incompatible instructionS.seeececseaces 7
IndeXinNgeeeeeacreceacscacccensscaasoaas 21
Indexing with RY-format instructions. 46
Input/Output instructions.......... 5,37
Input/Output macro instructions...... 40
Instruction entrieS..icececeesosccases 11
Instruction formatS....cececceescasvs U5
InterrUptS.caeeriereccncccccnancneaas U1
IntroductioNeeccesesecacceesccscnsanssee D
Invalid names, exampleS...cecesseacs. 11
IOCS macro instructionS....c.ceceeese. U0
IOCS macro instructions, summary of . 41
I/0 instructions, sequence of........ 40
I/0 instructions, summary of......... 85
I/0 interruptS.eeeceeeceecceancecenaas U1
I/0O FOUtIneS.cieeeeesecsocncoacnsasas U1

Joint assembly.ieeesvesccocncncacenaas 11
Joint execuUtiONeieeeeeecccacanacacaas 27

Language compatibility......cceuvveee.. 8
Language structure.....cceeeceeceass. . 14
Linkingeseeeeeoeeeesoacanna eees. 6,27,36
Listing........ ceeecsscesecsacassescas O
Load halfword (LH) cecceeveceeacsannsea 52
Loading object programS..c..cee..... s
Loading of base registersS....ceeeecs. 23
Location COUNter.c.eececcecacenoaacasas 17
Location counter,

reference t0..ee.eeieeeeeencacocacnan 19
resetting of... ..., 19,35
Location-counter overfloWw.....s... ees 19

Machine requirements......cceeececees. 6
Machine-instruction formats.......... 45
Machine-instruction formats,
summary of...eeieceieeeercnnaacaas. WU
Machine-instruction statements..... 5,43
Machine instructions, summary of..... 83
Machine operations, Types of......... U9
Binary arithmetic.....ceceveeeeaeea U9
Decimal arithmetic.......... ceencas 53
Non-arithmetiC.eeeeeeaeeeeeeeneeans 61
Main storage requirements, "
asSsembly.eecreciercecacsccacasaaceas 715
exXeCUtion.ciceesececcesaacacacencea 15

Maximum system configuration...eceeees 7
Minimum system configuration....e.e... 6
MNEMONIiCe ceeeceasnsseasoscsscscacscsnsas O
Mnemonic codeSeeeecscerssesescacseass 45,83
Move characters (MVC) evieeveeeeavoesas 62
Move immediate (MVI)eeeceoeaocecoasee 62
Move numerics (MVN) teeveevescancacess 63
Move with offset (MVO).veeeecenceoees 55
Move zZones (MVZ) cieceeceoessecnsnceass 63
Multiply decimal (MP)e.evsoeccaaseceesa 58

Name entryeceeeccresscceccanacscanaans 11
Name specificationsS...eeccecscesceees 11
NI-insStructioNeececeeeessoessecccsanes 67
Non-arithmetic operationsS....ceceecec.. 61

Object program....c.ceceoc.. cee e . 5
OI-inStructioNececesseeecersescncsans 67
Operand entry.ceeeeeecenncecnnncnnasse 12
Operand formatS..eeeeoceeocccaaccnass 12
Operation codeS..ceceeesesceassacaass 83
Operation entry...ecececeeennnnnaceas 11
OF (OI) eeveveeecasccoccocnsassssnsases 67
ORG instructioNe.eecesececenseosesaass 35

PAack (PACK) ceveeeecscccascscssnacaaass D6
Performance dat@e.eeeescacacscssanaas 15
Print-head selectiONececceecevenacees 38
Program linkinge.eeeececesccecsass 6,27,36
Program linking, sample of.....c..... 28
Program 1istingeeeeceeeceseecececoneans 6
PSeUdO-TregiSterS.ecesseeascccosscocans 23

PSOWeteoeeeevcsoacssoncosacocsosocccacsss UB

Reference to the location counter.... 19
Register USage..eceeeneccccccsocaaras 22
Relative addressingeececceececcccecacses 16
Release base register.......ceeeeees.. 25
Relocatability.eeeeeeeeereenenancanncas 6
Relocatable expressSionNS..ccececscscass 17
Relocatable program loader........ 41,74
Relocatable programming....cceeeeve.. 26
Relocatable symbols....eeeeveceneeese 15
Resetting the location counter.... 19,35
Restriction on

general registers..c.c.ceecaccescessss 22

SYMDOlS.eeeeeceanooccsncn ceevee eees 16
RR format....ceieieeeeeeeeeeecccaneaass U5
RY format...eeeeeeeeeeeeeceacancaansa U5

Sample of program linking............ 28

Sample of XIO instructions.......... . 37
Sample program in Basic Assembler
lanquage......... cescesccscs ceaseeas 16
Sample sejuence of statements........ 13
Self-defining termMS...ceceeaceeenea e.- 14
Self-defining terms,
character.......... tececssacenecsan 15
decimaleeeeeeseieeeoacennenannnnnan 14
hexadecimal...ooann... ceeaen ceeeean 14

Sequence >f definition of constants.. 32
Sequence of I/0 instructions......... 40

Serial I,/0 channel....ccececnn.. ceeee s 39
Set program status word....... caceea. U8
Short coding form......... e eee e 10
SI format............. ceesss oo e ee U7
SOULCEe PrOgraAMececesccsecscscancaes ceeee O
Spacing and skippinNge.ee.ceeeeeeesas cees 39

106

SPSHeeeeoeoassosososasassssassssnasnaans U8
SS format.ceeeeeeseeevennasasananaaes U8
Stacker seleCctiON.cicecessnassassesss 38
Statement componentS.eeececcccecscssrons 11
Statement formats....eeceecieecocnaoss 11
Statements, sample sequence of....... 13
START instructioN..ieeceeceececceesss 34
Storage addressSeS....ececscesesses 18,20
Store halfword (STH)....... ceceaneseaas 52
Subtract decimal (SP) eecsccvccesecess 58
Subtract halfword (SH).sseeeeesnnaeaas 53
Subtract register (SR)...... ceesecane 51
Summary of Basic Assembler

InStrucCtionS.eeeeeeeeveceacecssesas 82
Summary of character codes...seceavese 89
Summary of condition codes...ce.ec... 88
Summary of diagnostic messages....... 86
Summary of ICCS macro instructions... 41
Summary of I/0 instructionsS.......... 84
Summary of machine

instruction formatS..eeecieeceveea.. 44
Summary of machine instructions...... 83
Summary Oof UF codeS.cceeecececesosaas 8U
Symbolic addressinNg.c.ececesceeccesaas 20
SYMDOlS.ceeeeeeeneeeeannsnecnnscsones 15
Symbols,

absolute..iieeeeeiieneneinnane eees 15

defining..ceececeeeeeccns cescsceesas 15

external....iiieeiieneieiinreeaneaes 15

relocatable..ciieieciceiacensesenas 15

16

restrictions ON.eeeeioeeccoaceceonas

System /360 Assembler
short coding form...ceeececeeceaases 10
System configuratioONeceeesesenocases 6,7

Table 1OOK=UPeeeeesreesvososoncoensaeas 40
Tape Versions Basic Assembler

Progral..... A
Test input/output and branch...ceee.. 39
Test under mask (TM) cceeccecccoacessas O7
Time requirements,

Card VerSiONeceeessosescsssancnasas 15

tape VerSiONeceeisecececscscnsoccconas 15
TIOB instructioN..cecececcecescaaceas 39
Translate (TR).ceeeececcossccensocecsses D8
Types of constantSe..eeeeceeecceeceaeaes 29

UF COQCecesnccssecncacsssaannse eeeasaas 37
UF codes, summary Of...cceeecceccseosss 8U
Unit and function cod@eeseecececcnacs 37
Unpack (UNPK) eeee.eceecenacecsacesnsae D6
USING instructioON.cieasecsscceacnoses 23

Valid names, exampleS....... ceseesssas 11
Valid operation codes, examples...... 12

WArNing MEeSS5ageSeeecescecossscaasaeass T4
Writing a program in Basic Assembler

language..eeeeeceeceacnn ceeecaceaces 16
XIO instruction....... teeecssascnans 37
Zero and add (ZAP) eeeicececan.. ceeeas . 56

System/360 Model 20 Basic Assembler Language

O

GC26-3602-6

B

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

(1Z-(0Z°PON)09ES) 'Bue "quassy dised SJJ 0T 19POW 09E/S WAl

9-209€-9209 'V'S'N ul pajulid

O

IBM System/360 Model 20

Card Programming Support READER'S
Basic Assembler Language COMMENT
FORM

Order No. GC26-3602-6

This sheet is for comments and suggestions about this manual. We would appreciate your
views, favorable or unfavorable, in order to aid us in improving this publication. This form
will be sent directly to the author’s department. Please include your name and address if
you wish a reply. Contact your IBM branch office for answers to technical questions about
the system or when requesting additional publications. Thank you.

Name
Address

How did you use this manual?
As a reference source
As a classroom text

As a self-study text
What is your occupation?

Your comments* and suggestions:

* We would especially appreciate your comments on any of the following topics:

Clarity of the text Accuracy Index Illustrations Appearance Paper
Organization of the text Cross-references Tables Examples Printing Binding

GC26-3602-6

YOUR COMMENTS, PLEASE . ..

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold

€0 00000 00000000000000000000000C0000C0IsINsotetsisossotiocssncornsiososnsicessosntcesesseesesesissssesessssnsscssssoscsossossvosces

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. V.,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

iBM Corporation
112 East Post Road
White Plains, N.Y. 10601

Attention: Department 813 U

78 00 000 0000000000000 0000000000000 0%00soserrocsssccosrsoccenosssoosososnsecsssoctnsaesn .

Fold

HEN

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
(USA Only)

IBM World Trade Cerporation
821 United Nations Plaza, New York, New York 10017
(International)

0 0 0 080 neaacsnencens 00000000000 0066000000000000000606FCILOCCGCESEESCESOCIREGCEISTOEEOSIOEIEIIIOEIIOOEONES Pl eseeesessiossencenessscososoesencsrsnesscstdoesscecsncsoocssosnsos

Fold

ceescesns

«+ 3NIT SIHL ONOTV LND -~

(1Z-(0Z'POW)09ES) "Bue "quessy diseg SO OZ 18POW 09€/S Wal

9-209£-920D 'V'S'N ul pajutid

o

o

O

IBM System/360 Model 20

Card Programming Support ' ' READER’S
Basic Assembler Language COMMENT
FORM

Order No. GC26-3602-6

This sheet is for comments and suggestions about this manual. We would appreciate your
views, favorable or unfavorable, in order to aid us in improving this publication. This form
will be sent directly to the author’s department. Please include your name and address if
you wish a reply. Contact your IBM branch office for answers to technical questions about
the system or when requesting additional publications. Thank you.

Name How did you use this manual?
Address ' As a reference source
As a classroom text

. As a self-study text
What is your occupation?

Your comments* and suggestions:

* We would especially appreciate your comments on any of the following topics:

Clarity of the text Accuracy Index Iltustrations Appearance Paper
Organization of the text Cross-references Tables Examples Printing Binding

GC26-3602-6

YOUR COMMENTS, PLEASE . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold

ceescccccen €8 00 000000000 000000c0000000000000000000000000000000 0000000000 It0sccosncosnsersocessscnessnsosssscsscses secscvsse

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM ‘Corporation
112 East Post Road
White Plains, N.Y. 10601

Attention: Department 813 U

R R R R I R R I R R R R R R e R R I I I R I I I IR AR N R R AP A AP AR Y

Fold

TBRG

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains N.Y. 10601
(USA Only)

M World Trade Corporation
\ ‘lmtad Nations Plaza, New York, New York 10017

/mtmnal]

* 0 0 0 0 0 8 0s e e ecaracn e tee0 P eeteseeteEet00 bttt ePer ettt e00e000s00s00000000ss0n

ceseeee

Ao enare

«+ 32NIT SIHL DONOTV LND

(12-(0Z'PON)09ES) 'Bue ‘quassy diseg S4O 0T 18POIN 09E/S NGl

9-209€-9209 'V'S'N ul paiulid

-

o

