
Systems Reference Library

IBM System/360 Model 20
Disk Programming System
Control and Service Programs

File Number S360(Mod.20)-36
Form ~24-9006-4

This publication describes the purpose and funct ~')ns of
the Control and Serv~ce programs of the IBM System/360
Model 20 Disk Programming System (OPS).

The publication is designed to help you use the OPS
Control and Ser~ ice programs to build, run" and main-
tain a disk-resident system. '

The disk-resident system controls the compilation~
assembly. and execution of problem programs. It offers
you many advantages: a core-image library to store your
programs, batch job processing for continuous opera­
tion~ inquiry for access to specific information while
another program is runningr multiphase loading for
particularly long programs, and symbolic addressing of
I/O devices for greater flexibility.

To benefit from this publication" you should have a
basic knowledge of the IBM System/360 Model 20, and be
familiar with either the Assembler language or RPG.

You can find the titles and abstracts of related
publications in IBM System/360 Model 20" Bibliography.
Form A26-3565.

DPS

r---1 I' I
IFifth Edition (March~ 1969) I
I , !\ I
IThis is a major revision Qf. pnd obsoletes C24-9006-3 and Technical Newsletters I
IN33-9045 and N33-9049 and N33-9042. I
I, I

I Most of the text has been rewritten and reorganized to make the publication I
leasier to understand. These improvements are not marked. I
I I
IThe technical changes incorporated in the publication relate to the delivery ofl
IIBM System/360 Model 20, Submodel 5, and to the addition of the COPSYS andl
I BACKUP programs to the DPS. These technical changes and additions are markedl
lin t:he following way: Changes to the text, and small changes to illustrations. I
lare indicated by a vertical line to the left of the change; changed 0r addedl
lillustrations are denoted by the symbol. to the left of the caption; addedl
Ipages are flagged by the symbol • to the left of the page number. I
I I
IThis edition applies to the following components of IBM System/360 Model 201
IDisk Programming system and to all subsequent versions and modifications until
lotherwise indicated in new editions or Technical Newsletters.
I
I Version Modification
I Backup and Restore Program 1 0
ICopy System Disk Progzdm 1 0
I Core!- Image Maintenance Program 4 0
ICore!-Image Service Program 3 0
IDirectory Service Program 3 0
IDisk-Resident Control Programs 3 0
ILibrary AlI~cation Organization Program 3 0
ILinkage Editor Program 3 0
ILoad System Disk Program 3 0 I
IMacro Library Service Program 1 0 I
IMdcro Maintenance Program 3 0 I
IPhysical and Logical Unit Tables Service Program 3 0 I
I I
I Changes are continually made to the specifications herein; before using thisl
Ipublication in connection with the operation of IBM systems., consult the latestl
IIBM System/360 Model 20 SRL Newsletter, Form N20-0361, for the editions that I
lare applicable and current. I L ___ J

This publication was prepared for production using an IBM computer to update the
text and to control the page and line format. Page impressions for photo-offset
printing were obtained from an IBM 1Q03 Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed. comments ma. be addressed to IBM Laboratories, Prograrrming
publications" 703 Boeblingen/Germany, P.O. Box 210.

c copyright IBM Germany 1966 "".
C copyright International Business Machines corporation 1967, 1968, 1969

I

Introduction

Prerequisites ••

Terms and Abbreviations ••

principal Features and Advantages ••
Program Library Facility ••
Macro Library Facility. • • • • •
Batch Job Processing. • • • • • •
Multiphase Loading •••••••
Symbolic Addressing of Input/Output
Devices. • ••••

Machine Requirements •
Minimum System Configuration. •
Maximum System Configuration.

Summary of System Programs
Control Programs ••••
Service Programs ••••
Language Translators. •
Other IBM-Supplied Programs •

5

5

6

6
6
6
6
6

6

6
6
7

7
8

• 10
11

• 12

Organization of the System Disk Pack •• 12

IlPS Control Programs 1 4

Monitor Program ••••••••••••• 14
Generative Monitor Concept •••••• 14
Communication Region. • • • • • • • • 16
Logical and Physical Unit Tables ••• 17
Physical IOCS for the

printer-Keyboard •••••••••• 18
Inquiry Routines. • • • • • • 18
Inquiry Attention Routine •••••• 18
Inquiry Initiator Routine. • 19
Physical Disk and Tape I/O Routines. 19
Job Closing Routines. • • •••• 19
Fetch Routine. • • 19
Monitor I/O Area. • • •• 20
Transient Area. • • • • • • • 20
Transient Routines. • •••• 21
Transient Tape Error Recovery •••• 21
Rollout Routine. • •••• 21
Rollin Routine. • • • •••• 21

Job Control Program. • • • •
Control Statement Conventions •
Order of Input. • • • • • • •
Format of Job Control Statements ••
I/O Device Assignments. • • • • • •
Label Information processing ••••
Permanent and Temporary Disk Label

Information. • • • • • •

Disk Initial Program Loader (IPL).

Card Initial Program Loader (IPL).

• 21
• 22
• 23
• 24
• 28
· 30

• 33

• 35

• 35

, Contents

Libraries and Relocatable Area • • 36

Core-Image Library • • •• • 36
Purpose of the Core-Image Library •
Organization of the Core-Image

• 36

Library. • • • • • • •••• • 36
Use of the Core-Image Library • • 37

Macro Library. • • • • • • • • • •• 37
Purpose and Use of the Macro
Library. • • • • 37

Organization of the Macro Library • • 37

Relocatable Area •

DPS Service Programs

Directory Service Program (DSERV)
Job Control Statements.
Program Control Statements ••

Core-Image Service Program (CSERV)
Job Control Statements ••••
Program Control Statements ••
Output on SYSOPT. • • ••

Macro Service Program (MSER~.
Job Control Statements ••

• 38

• 39

• 39
• • 39
• • 39

• 40
· 40
• 40

• • • 42

• • 42
• 42

Program Control Statements ••
Output on SYSOPT. • • • • • • • • •

• 43
• 44

Core-Image Maintenance Program
(CMAINT). • • • • • • • • • • •

Job ContrQl Statements •••••
Program Control Statements ••

Macro Maintenance Program (MMAINT)
Job Control Statements ••••
Program Control Statements •••

Library Allocation Organization
Program (AORGZ) • • • • • • •

Job Control Statements ••••
Program Control Statements ••

Physical and Logical Unit Tables
Service Program (PSERV) • • • •

Job Control Statements ••••
Program Control Statements ••

• 45
45

• 45

· 47
• 47
• 48

• 50
• 50

• • 50

• • 51
• 51

• • 52

Linkage Editor Program (LNKEDT). • • 53
Functions of the Linkage Editor

Program. • • • • • • • • • •• • 53
Job Control Statements. • • •• • 53
Input to the Linkage Editor Program • 54
Output of the Linkage Editor
Program. • • • • • • • • • • • • • • 59

Use of the Linkage Editor Program •• 60
Examples. • • • • • • • • • •• • 61

Load System Disk Program (LDSY~ • 64

Purpose of the Load System Disk
Program. • • • • • • • • •

Job Control Statements. • •
Program Control Statements.
Sample LDSYS Run. • • • • •

• 64
• 65
• 65
• 66

Copy System Disk Program (COPSYS). • 69
Job Control Statements. • • • • • 69
Program Control Statements. • • • 69

Backup and Restore Program (BACKUP). •
Create a Backup Tape. • • • • • • •
Job Control Statements. • • • • • •
Program Control Statements •••••
Initialize One or More Disk Packs •
Job Control Statements. • •
Program Control Statements.
Restore One or More Disk Backup
Files. • • • • • • • • • •

Job Control Statements. • • • •
Program Control Statements. • •
Punch or Display One or More Card

• 69
• 70
• 70
• 71
• 73
• 73
• 74

• 74
• 74
• 75

• 75 Backup Files • • • • • • •
Job Control Statements. • •
Program Control Statements.

• • • 75

IBM Distribution Package

Methods of System Operation

Disk-Resident Control System •

Card-Resident Control System • •

Glossary

Appendix A. Disk Labeling Conventions

Standard IBM Volume Label. • •

Standard IBM Disk File Labels.

Disk Label Processing.

• 76

• 78

• 79

• 79

• 79

• 81

. • 84

• 84

84

• 85

Appendix B. Tape Labeling Conventions • • 87

• 87
• • • • 87

Standard IBM Tape Labels • •
Standard IBM Volume Label
Additional Volume Labels.
Creation of Volume Labels
Standard IBM Tape File Label.
Additional Tape File Labels •
User Tape File Labels • • • • • •

• 87
• • 87
• • 87
• • 88
• • 88

Tape Organization with Standard Tape
Labels. • • • • • • • • • •• • 88

Standard IBM Tape Label Processing • • • 89

Nonstandard Tape Labels. • • 90

Unlabeled Tape Files • • • 90

Appendix C. Standard IBM Volume Label,
Tape or Disk 91

Appendix D. Standard IBM Tape Fila Label. 92

Appendix E. Standard Disk Pile Label, Format 1. 94

Appendix F. Standard Disk File Label, Format 2. 97

Appendix G. Standard Disk File Label, Format 3. 100

Appendix H. Standard Disk File Label, Format 4.101

Appendix I. Model 20 DPS Program and
Phase Names102

Appendix 1. Methods of Using the Disk
Programming System103

Index • .104

I

This publication is designed to help you
use the Control and Service programs of the
IBM System/360 Model 20 Disk Programming
System (DPS). The publication is divided
into four main sections:

Introduction
DPS Control Programs
Libraries
DPS Service Programs
IBM Distribution Package.

The glossary defines the terms and abbrevi­
ations used in this publication.

The appendixes contain:

• Information on the System/360 magnetic
tape and disk labeling conventions.

• An alphabetic list of the Model 20 DPS
program and phase names.

• A diagram indicating the use of the Disk
Programming System.

The purpose of the DPS Control and Ser­
vice programs is to help you operate a
Model 20 configuration equipped with disk
drives and an optional selection of other
input/output devices including magnetic
tape units and the printer-keyboard.

The DPS Control and Service programs
enable you to build and maintain a disk­
resident control system which supervises:

(1) the translation and execution of
problem programs written in the DPS
Assembler or the RPG language, or PL/I,

(2) the execution of IBM-supplied Model 20
Disk Sort/Merge and Utility programs,
and

(3) the execution of IBM-supplied Model 20
DPS Tape Sort/Merge and Utility pro­
grams.

Your disk-resident system will make data
processing easier. It enables you to load
and retrieve programs rapidly, reduces card
handling to a minimum, and provides program
and data storage space adequate to your
needs.

Prerequisites

You should be familiar with the charac­
teristics of the Model 20 as described in
the publication

IBM System/360 Model 20
Functional Characteristics
Form A26-5847

Introduction

and learn about the use of disk storage
equipment from the publication

IBM System/360
Component Descriptions
Form A26-5988.

You will find a detailed description of
the procedure for generating a Monitor in
the publication

IBM System/360 Model 20
Disk Programming System
System Generation and Maintenance
Form C33-6006.

If you have an IBM Binary Synchronous
Communications Adapter (BSCA), refer to the
publications:

General Information
Binary Synchronous Communications
Form A27-3004

IBM System/360 Model 20
Input/Output Control System for the Bi­
nary Synchronous Communications Adapter
Form C33-4001.

Depending on the language you wish to
use, you should be thoroughly familiar with
the appropriate Systems Reference Library
(SRL) publications listed below.

IBM System/360 Model 20
Disk and Tape PJ:'ogramming Systems
Report Program Generator
Form C24-9001

IBM System/360 Model 20
Disk and Tape Programming Systems
Assembler Language
Form C24-9002

IBM System/360 Model 20
Disk Programming System
Input/Output Control System
Form C24-9007

IBM System/360 Model 20
Disk Programming System
PL/I
Form C33-6007

If you intend to use the Model 20 Disk
Sort/Merge or Utility programs or the Model
20 DPS Tape Sort/Merge or Utility programs

Dotted line flags planning information Introduction 5

supplied by IBM, you should be familiar
with the pertinent SRL publications.

Titles and abstracts of other related
publications are listed in the SRL publica­
tion IBM System/360 Model 20, Bibliography,
Form A26-3565.

Terms and Abbreviations

The ~lossary contains a summary of the
terms and abbreviations used in this publi­
cation and offers a brief definition of
each entry.

Principle Features and Advantages

The following description briefly details
the prime features and advantages of the
Model 20 disk-resident system.

PROGRAM LIBRARY FACILITY

The disk-resident system contains a
core-image library. This library can be
used to store all programs that you have
written to meet your specific requirements
and that IBM has written to perform gener­
ally useful operations. Each of the pro­
grams stored in the library can be loaded
into main storage and executed at any time.
You can add new programs to the library at
any time, and you can delete programs you
no longer require~

MACRO LIBRARY FACILITY

In addition to the core-image library, your
disk-resident system may also contain a
macro library. This library is used to
store macro definitions that you have writ­
ten or that IBM has supplied. The macro
definitions can only be used within pro­
grams written in the DPS Assembler lan­
guage. They are called from the macro
library through macro instructions such as
GET, PUT, or FETCH. A maintenance program
is available from IBM that enables you to
update the macro library by adding or
deleting macro definitions according to
your needs.

BATCH JOB PROCESSING

The disk-resident system makes it possible
to execute a number of problem programs
consecutively in one system run. The con­
trol programs provide for automatic job-to­
job transition. The operator's activities
are reduced to (1) determining the sequence
of programs to be executed, (2) supplying
the system with certain information by
means of control statements, and (3)
handling card, disk or magnetic tape devi­
ces.

6

MULTIPHASE LOADING

Because of this feature of the disk­
resident system, your program written in
the Assembler language may consist of a
number of independent or inter-dependent
phases to be loaded and executed
consecutively and selectively. The loading
of one such phase is initiated by the
preceding phase.

SYMBOLIC ADDRESSING OF INPUT/OUTPUT DEVICES

The DPS programs use symbolic addresses to
refer to input/output (I/O) devices. These
symbolic I/O device addresses consist of
standardized names, some of which can be
placed in the problem program to refer to
disk or magnetic tape units. The assign­
ment of physical device addresses to the
symbolic addresses takes place at execution
time. It is achieved by means of ASSGN
control statements and the logical and
physical unit tables of the Monitor pro­
gram.

Machine Requirements

MINIMUM SYSTEM CONFIGURATION

• An IBM 2020 Central Processing Unit,
Model BC2 (12,288 bytes of main
storage) ;

• an IBM 2311 Disk Storage Drive, Model 11
or 12;

• one of the following card reading devi­
ces:

IBM 2501 Card Reader, Model A1 or A2,
IBM 2520 Card Read-Punch, Model A1,
IBM 2560 Multi-Function Card Machine
(MFCM) , Model A 1 ;

• one of the following printers:

IBM 1403 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model A1.

Submodel 4

• An IBM 2020 Central Processing Unit,
Model BC4 (12,288 bytes of main
storage) ;

• an IBM 2311 Disk Storage Drive, Model
12 ;

• an IBM 2560 MFCM, Model A2;

• an IBM 2203 Printer, Model A2.

I,

Submodel 5

• An IBM 2020 Central Processing Unit,
Model BC5 (12,288 bytes of main
storage) ;

• an IBM 2311 Disk Storage Drive, Model 11
or 12;

• an IBM 2560 MFCM, Model A1;

• an IBM 2203 Printer, Model A1.

MAXIMUM SYSTEM CONFIGURATION

Submodel 2

• An IBM 2020 Central Processing Unit,
Model D2 (16,384 bytes of main storage) ;
with or without IBM Binary Synchronous
Communications Adapter, Feature
No. 2074;

• two IBM 2311 Disk Storage Drives, Model
11 or 12 (both must be the same model)

• an IBM 2415 Magnetic Tape Unit, Model
through 6;

• an IBM 2501 Card Reader, Model A1 or A2;

• an IBM 1442 Card Punch, Model 5;

• one of the following card units:

IBM 2520 Card Read-Punch, Model A1,
IBM 2520 Card Punch, Model A2 or A3,
IBM 2560 MFCM, Model A1;

• one of the following printers:

IBM 1403 Printer, Model N1, 2, or 7,
iBM 2203 Printer, Model A1;

• an IBM 2152 Printer-Keyboard;

• one of the following magnetic character
readers:

IBM 1419 Magnetic Character Reader,
Model 1 or 3, ,
IBM 1259 Magnetic Character Reader,
Model 1, 31, or 32;

Submodel 4

• An IBM 2020 Central Processing Unit,
Model D4 (16,384 bytes of main storage)
with or without IBM Binary Synchronous
Communications Adapter, Feature
No. 2074;

• two IBM 2311 Disk Storage Drives, Model
12 ;

• an IBM 2560 MFCM, Model A2;

• an IBM 2203 Printer, Model A2;

• an IBM 2152 Printer-Keyboard;

Submodel 5

• An IBM 2020 Central Processing Unit,
Model E5 (32,768 bytes of main storage);
with or without IBM Binary Synchronous
Communications Adapter, Feature No.
2074;

• four IBM 2311 Disk Storage Drives, Model
11 or 12;

• an IBM 2415 Magnetic Tape Unit, Model 1
through 6;

• an IBM 2501 Card Reader, Model A1 or A2;

• an IBM 1442 Card Punch, Model 5;

• one of the following card units:

IBM 2520 Card Read-Punch, Model A1,
IBM 2520 Card Punch, Model A2 or A3,
IBM 2560 MFCM, Model A1;

• one of the following printers:

IBM 1403 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model A1;

• an IBM 2152 Printer-Keyboard;

• one of the following magnetic character
readers:

IBM 1419 Magnetic Character Reader,
Model 1 or 3,
IBM 1259 Magnetic Character Reader,
Model 1, 31, or 32;

Summary of System Programs

The primary element of the Model 20 DPS is
the disk-resident system built to meet your
particular requirements. The disk-resident
system contains the disk-resident Monitor
program and a core-image library. It may
also contain a macro library.

The core-image library contains the
disk-resident Job Control program and may
contain any of the following IBM-supplied
programs:

• service programs,

• language translator programs,

• utility programs, and

• other DPS programs.

Introduction 7

You may also place any of your own pro­
grams in the library of the disk-resident
system.

A disk-resident system can be used to
control the execution of programs contained
in its own core-image library. Before a
disk-resident system can be used, the disk­
resident Monitor program must be loaded
into main storage. This is achieved by
means of the Initial Program Loader.

Figure 1 shows the IBM-supplied programs
which make up the Model 20 Disk Programming
System. The Model 20 DPS program names are
listed in detail in Appendix I.

CONTROL PROGRAMS

The term "control programs" refers to the
IBM-supplied Initial Program Loader, the
Monitor program, and the Job Control
program, each of which can be used in a
card and a disk version. The functions of
each version of the three control programs
are essentially the same. The disk­
resident control programs supervise the
compilation ~r assembly) and execution of
all programs running under the control of
the system.

The following is a brief discussion of
each type of control program.

Disk Initial Program Loader (IPL)

The function of the disk Initial Program
Loader is to initiate the system operation.
It consists of two parts; the first part,
which comprises three punched cards, causes
the second part to be read into main
storage from the system disk pack.

The IPL loads the Monitor into main
storage from the system disk pack. The
Monitor remains in main storage throughout
the system run, and calls the Job Control
program into storage whenever a program
reaches the end of the job. Hence, the
Initial Program Loader need not be used
again during the system run. The Initial
Program Loader is discussed in detail in
the section DPS Control Programs.

Disk Monitor Program

Throughout a system run, the Monitor
resides in main storage to provide informa­
tion and perform operations required by all
jobs. The Monitor consists of the follow­
ing parts, depending on the desired fea­
tures you specify at Monitor generation
time:

8

1. Communication Region -- This area con­
tains information required by all pro­
grams. It includes fields for record­
ing the date. the name of the current
job, and the current state of program
switches.

2. Logical Unit Table -- An area for
recording the current I/O device
assignments.

3. Physical Unit Table -- An area contain­
ing the physical disk and magnetic tape
device addresses.

4. Physical Disk I/O Routines -- A set of
routines that perform disk I/O opera­
tions for the 110ni tor and problem pro­
grams, including the disk and magnetic
tape XIO routine.

5. Fetch Routine -- A routine that loads
problem programs from the core-image
library into main storage so that they
can be executed.

6. Monitor I/O Area -- An area that is
used by Monitor routines for reading
from disk.

7. Tape Error Recovery Routine -- A set of
routines to control the execution of
error-recovery procedures when magnetic
tape I/O errors occur.

8. Tape Error Statistics Routine -- A
routine that analyzes the interrupts
and magnetic tape I/O errors occurr~ng
during the execution of a program.
This routine provides a useful service
aid.

These routines and areas correspond to
the standard version of the Monitor. You
can tailor a Monitor with fewer or more
routines according to your needs. The
generation of a Monitor is described in the
section Generative Monitor Concept.

The storage requirements of the Monitor
vary with the features it supports. The
minimum version of the Monitor occupies
about 3300 bytes of main storage, the maxi­
mum version about 4270 bytes. For details
refer to the SRL publication IBM System/360
Model 20, Disk Programming System, Perfor­
mance Estimates, Form C33-6003.

The Monitor is described in detail in
the section DPS Control Programs.

I

· · · · · · · · ·

- Language
Translators

---1 Report Program
Generator

- Assembler

--- PL/I

- Control
Programs

Service
Programs

- Initial _ Linkage Editor
Program Loader

- Monitor

l...- Job Control

Physical 'gJ
-- Logical Unit

Tables Service

f-- Load System I
Disk

_ Copy Sy:stem
Disk

Backup .ond
Restore

MODEL 20

DISK PROGRAMMING

SYSTEM (DPS)

- library
Management

_ Core-Image

-

-

-

Maintenance

Allocation
Organization

Directory
Service

Core-Image
Service

f-- Macro
Maintenance

Macro
Library
Service

Utilities

- Initialize Disk

- Initialize Tape

Alternate Track r-
Assignment

r- Clear Disk

_ Disk Fi Ie-to­
File (6)

i- Tape Fi Ie-to­
File (4)

"""- Disk Dump

• Figure 1. Summary of IBM-Supplied Model 20 DPS Programs

Dotted line flags planning information

Macro
DefinitiOAI

Others

Monitor Gen­
- eration Macro

Definitions
- Sort/Merge

-

'-

Monitor Macro
Definitions

IOCS·

• including BSCA,
1419/1259 MeR,
2152 Printer-Keyboard

Introduction 9

Lisk Job Control Program

The Job Control program is executed between
jobs to prepare the system for the next job
to be executed. It is first called by the
Monitor program at IPL time, and after that
it is called each time a program reaches
the end of the job. The job control state­
ments you insert supply the system with the
information required to direct the opera­
tions of the Job Control program.

The Job Control program changes the
temporary I/O device assignments and cer­
tain areas of the Monitor communication
region in main storage. It also stores
disk and tape label information for label
checking. The Job Control program is dis­
cussed in detail in the section DPS Control
Programs.

Card-Resident Control Programs

The control programs are also used in a
card version~ which is referred to as a
card-resident system.

An installation that operates primarily
under the control of the disk-resident
system can use the card-resident system:

• to test problem programs that are avai­
lable in absolute card format before
they are placed into the core-image
library,

• to execute problem programs that are
available in absolute card format.

SERVICE PROGRAMS

The term "service programs" refers to the
Library Management programs, the Physical
and Logical Unit Tables Service program,
the Linkage Editor program, the Load System
Disk program, the Copy System Disk program,
and the Backup and Restore program.

Library Management Programs

The Library Management programs are a group
of programs that maintain the disk-resident
libraries.

The programs enable the libraries to be
modified by:

• adding or deleting information,

• redefining the limits of the libraries,

• printing the contents of the library
directories, and

• printing or punching the contents of the
libraries.

· · · · ·

A program is placed temporarily in the
core-image library during load-and-go,
compile-and-execute, or assemble-and­
execute operations. If the programs are
run frequently, the Core-Image Maintenance
program (CMAINT) can be used to make them a
permanent part of the core-image library.
Otherwise, the area in the library where
they are placed is overlaid by the next
program that is temporarily or permanently
included in the core-image library.

The Library Management programs are
discussed in detail in the section DPS
Service Programs.

Three libraries are used with the disk­
resident control system. They are:

1. A required core-image library that
contains the Job Control program, and
may also contain the Library Management
programs, the Physical and Logical Unit
Tables Service program, the Linkage
Editor, the Assembler program, RPG,
PL/I, the Sort/Merge programs, the
Utility programs, and problem programs
in core-image format, i.e., in
immediately executable form. A program
is stored in the core-image library as
one or more program phases.

2. An optional macro library that contains
Logical IOCS, Monitor macro defini­
tions, Monitor generation macro defini­
tions, and user-written macro defini­
tions.

3. An optional relocatable area that is
used to temporarily hold the output of
one assembly or one RPG or PL/I compi­
lation that is to be edited and execut­
ed immediately.

The libraries are discussed in detail in
the section Libraries and Relocatable Area.

Physical and Logical Unit Tables Service
Program (PSERV)

The main function of the PSERV program is
to list or change the permanent device
assignments in the Monitor on the system
disk pack. Its other functions are to
alter the configuration byte in the Monitor
communication region and to display infor­
mation about the Monitor type and features
that have been generated. The PSERV pro­
gram is discussed in detail in the section
DPS Service Programs.

Linkage Editor Program (LNKEDT)

Programs that are output from the Assembler
may be processed by the Linkage Editor
program before they are placed in the core­
image library. The Linkage Editor program
combines separately assembled programs or

10 Dotted line flags planning information

I

phases into an integral program that. can be
executed under control of the Monitor
program.

The Linkage Editor program is discussed
in detail in the section DPS Service Pro­
grams.

Load System Disk Program (LDSYS)

The Load System Disk program loads the
disk-resident system onto the disk pack
destined for system residence. It can be
executed under control of the disk-resident
or card-resident control system.

The minimum disk-resident system you
build must include the disk-resident part
of IPL, the Monitor, and the core-image
library containing the Job Control program.
At your discretion, the system may also
include the Assembler program, the Report
Program Generator, PL/I, the Linkage Edi­
tor, and other DPS programs. You may also
allocate disk areas for a macro directory,
a macro library, and a relocatable area.

The Load System Disk program is dis­
cussed in detail in the section DPS Service
Programs.

The Copy System Disk program writes the
contents of a system disk pack onto another
disk pack.

The Copy System Disk program is des­
cribed in detail in the section DPS Service
Programs.

Backup and Restore Program (BACKUP)

The Backup and Restore program copies the
contents of a disk pack onto magnetic tape
for backup and writes the contents back
onto disk. Optionally, a card file can be
included on the backup tape and restored to
its original medium.

The Backup and Restore program is dis­
cussed in detail in the section DPS Service ------Programs.

LANGUAGE TRANSLATORS

The three DPS language translator programs
are the Report Program Generator (RPG), the
Assembler/IOCS program, and PL/I.

The DPS Report Program Generator

The DPS Report Program Generator compiles
source programs written in the RPG language
into object programs. The object program
can be obtained either in punched cards and
executed in a subsequent run, or it can be

stored permanently in the core-image
library through a CMAINT run and called
into main storage repeatedly for execution.
The object program can also be executed
immediately after compilation
(compile-and-execute), but the CMAINT pro­

gram is also required on the system disk
pack because the object program must be
stored te~porarily in the core-image
library. In addition, as for all RPG runs,
a relocatable area must have been speci­
fied.

Note that RPG programs cannot be linked
or relocated. Therefore, the Linkage Edi­
tor program is not used with RPG programs.

DPS Assembler/IOCS Program

The DPS Assembler program translates source
programs written in the DPS Assembler lan­
guage into object programs. The object
program can be obtained either in punched
cards and executed in a subsequent run, or
it can be stored permanently in the core­
image library through a CMAINT run and
called into main storage repeatedly for
execution. The object program can also be
executed immediately after assembly
(assemble-and-execute), but the CMAINT

program is also required on the system disk
pack because the object program must be
stored temporarily in the core-image
library. In addition, a relocatable area
must have been specified.

Any macro definition to be used, IBM­
supplied or user written, must be
incorporated in the macro library of your
disk-resident system. The macro defini­
tions are called from the macro library by
means of the macro instructions you issue
in your problem program. The macro
instructions of the DPS IOCS and the BSCA
IOCS and the IOCS for the 1419/1259 MCRs
are described in the pertinent SRL publica­
tions.

DPS PL/I Compiler

The PL/I compiler translates source pro­
grams written in PL/I into machine language
and performs the necessary link-editing to
transform compiled object modules into an
executable object program.

By submitting certain program control
statements to the compiler, the user can
either

(1) compile
or (2) compile and link-edit
or (3) compile, link-edit, .and execute
or (4) link-edit and execute
or (5) just link-edit

a source program in one job.

Dotted line flags planning information Introduction 11

OTHER IBM-SUPPLIED PROGRAMS

The remaining Model 20 DPS programs sup­
plied by IBM are described in the para­
graphs that follow.

DPS Disk Sort/Merge Program and DPS Tape
Sort/Merge Program

The DPS Disk Sort/Merge program and the DPS
Tape Sort/Merge program allow you to:

(1)

(2)

(3)

Sort a single data file, which con­
tains data in an unknown or unordered
sequence, and arrange the logical
records according to the sequence you
specify.

Merge two to four previously sequenced
input files into a single ordered
file.

Sequence-check a single file while
copying it. You can also reblock the
records if you wish.

The DPS Disk Sort/Merge program and the
DPS Tape Sort/Merge program can be executed
under control of the card-resident system
if they are contained in punched cards.
Otherwise, they must be contained in the
core-image library of the disk-resident
system.

For further details on these two pro­
grams, refer to the SRL publications:

IBM System/360 Model 20
Disk Programming System
Disk Sort/Merge Program
Form C26-3806, and

IBM System/360 Model 20
Disk and Tape Programming Systems
Tape Sort/Merge Program
Form C26-380 /L

DPS Disk Utility Programs and DPS Tape
Utility Programs

rBM supplies fifteen Utility programs for
Model 20 systems with disk storage equip­
ment. Ten of the Utility programs transfer
data from one storage medium to another,
for instance from disk to magnetic tape, or
from card to disk. The remaining programs
are used for preparing and maintaining the
format of the disk pack or magnetic tape
reel, for example, to initialize the tape
reel, or to allocate alternate tracks.

The DPS Disk Utility programs and the
DPS Tape Utility programs can be executed
under control of the card-resident system
if they are contained in punched cards.
Otherwise, they must be contained in the

12

core-image library of your disk-resident
system and executed under control of the
disk Monitor program.

For further details on the Utility pro­
grams refer to the SRL publications:

IBM System/360 Model 20
Disk Programming System
Disk Utility Programs
Form C26-3810, and

IBM System/360 Model 20
Disk and Tape Programming Systems
Tape Utility Programs
Form C26-3808.

Organization of the System Disk Pack

The system disk pack contains your disk­
resident system. The disk-resident system
consists of the IPL part 2, the Monitor
program, and the core-image library.

Figure 2 illustrates the organization of
the system disk pack and indicates the
extents of the IPL part 2, the Monitor, and
the core-image library.

The standard IBM volume label, which
identifies the volume, and the label
information area (LIA) for Job Control,
which contains the disk label information
for I/O files, reside on track 1 (or tracks
1 and 2) of cylinder O. The Volume Table
of Contents (VTOC) contains a disk file
label that indicates the extent of the disk
area occupied by the system. The VTOC
resides on tracks 2-9 (or tracks 3-9) of
cylinder 0, if you make no other assign­
ment. For precise details of the format of
disk labels, refer to Appendixes A and C.

The Monitor is stored in a fixed loca­
tion (cylinder 4, tracks 0-1). The librar­
ies, however, are variable in extent. The
core-image directory will always begin at
cylinder 4, track 4, and the libraries and
other directories will follow consecutive­
ly. The core-image and macro libraries and
directories are discussed in the section
Libraries and Relocatable Area.

The library work area is used by the
Core-Image Library Maintenance program to
update the Monitor or IPL, and to store
tape label information in assemble-and­
execute runs.

Alternate tracks (cylinders 1-3) are
available for use when a track on the
system disk pack becomes defective.

The system directory contains informa­
tion on the extent and location of the disk
areas allocated to the core-image direc­
tory, the core-image library, the macro
directory, the macro library, and the relo­
catable area. Each of the five entries in
the directory takes up 14 bytes. The for­
mat of a directory entry is:

Contents

0-1 Entry identifiers and indicators.

2-5 Disk address of the beginning
of the area

6-9

10-13

Disk address of the last sector
allocated to the area.

Disk address of the last currently
occupied sector of the area.

The disk addresses are in the form chhr,
where c represents the cylinder number, hh
the track number, and ~ the record number:

The total area occupied by the system
directory is 70 bytes.

r----------------------T---------------------T---------------------T------------,
I Contents I Begin Address 'End Address ,Sector Total,
, ~--------T-----T------t--------T-----T------~ I
, /Cylinder/Track/Sector/Cylinder,TrackISectorl'
t----------------------t--------t---,--t------t--------t-----t------t------------~
, Disk IPL / 000 , a / 0 / 000 / 0 , 9 / 10 ,
I Volume Label I 000 , 0 I 0 I 000 , 1 / 0 / 1 /
, LIA (Standard) / 000 / 1 , 1 / 000 , 1 / 9, 9 I
/ VTOC (Standard) ,000, 2 / 0 / 000 / 9 / 9, 80 ,
, Alternate Track Area' 001 , 0 / 0 , 003 I 9 I 9 , 300 ,
I System Directory I 004 , a , 0 I 004 , 0 I 0 I 1 I
I t'loni tor I 004 I a I 1 I 004 I 1 I 9 j 19 I
I Library Work Area I 004 I 2 I 0 I 004 , 3 I 9 I 20 ,
, Core-Image Directory*, 004 , 4 I 0 I 'I' I
I Core-Image Library* t--------i-____ i ______ i ________ i _____ i ______ i _________ ---~

, Macro Directory* ,*Specified according to your actual requirements. ,
, , These areas immediately follow the library ,
, Macro Library* I work area and are adjacent to one another. I
I I The area occupied by a directory must not I
I Relocatable Area* I be greater than 100 sectors. I
l ______________________ i __ J

Figure 2. Organization of the System Disk Pack

Introduction 13

DPS Control Programs

The DPS Control programs are the Initial
Program Loader, the Monitor program, and
the Job Control program. Each of these
three programs can be used in a card and a
disk-resident version. The functions of
the two versions of each control program
are essentially the same. Their differen­
ces are described in the appropriate sec­
tions below.

The Initial Program Loader loads the
Monitor program into main storage and
transfers control to it, causing it to load
the Job Control program. After execution
of this program, control is returned to the
Monitor program. The Job Control program
is used (1)_to assign physical input/output
addresses to the symbolic addresses used in
the programs, (2) to specify other environ­
mental data (for example, the date or the
storage capacity) g and (3) to place the
name of the next program to be executed
into the communication region of the Moni­
tor.

The card-resident control programs are
used to control the execution of object
programs that are contained in punched
cards.

The disk-resident control programs are
required for the execution of the programs
supplied by IBM -- such as the DPS Report
Program Generator -- and for the execution
of any other programs contained in the
core-image library of your disk-resident
system.

The subsequent text describes the con­
trol programs and their functions.

Monitor Program

The Monitor program is the main control
program. Its principal functions are (1)
to load the program phases to be executed
into main storage, (2) to allow inter­
program communication, (3) to store
physical I/O addresses, (4) to process
requests for magnetic tape, disk and
printer-keyboard I/O operations, (5) to
control the initialization of inquiry pro­
grams, and (6) to schedule interrupts.

You can generate a Monitor that is tail­
ored to your requirements. This section
explains the generative concept. It also
describes several areas and routines that
are part of the Monitor.

14

GENERATIVE MONITOR CONCEPT

The generative Monitor concept permits you
to tailor a Monitor to the actual tasks it
must perform in executing programs, and to
adapt the Monitor to the installed system.

Not all available I/O devices (magnetic
tape units, disk units, etc.,) may be
attached to your system. Through Monitor
generation, you can generate the routines
that support your I/O devices, and omit
those routines from the Monitor that sup­
port I/O devices your system does not have.

The Monitor is generated by means of
Monitor generation macro definitions in an
assembly run. The special features the
Monitor is to have are submitted to the
Assembler by means of macro instructions,
operands, and detail specifications.

The generated Monitor is classified into
four types:

1. Card-resident
The generated Monitor is always punched
into cards. In this =orm, it executes
non-relocatable object modules con­
tained in cards.

2. Disk-resident
The generated Monitor is written onto
the system disk pack and loaded into
main storage by the IPL program. It
executes object modules contained in
the system libraries.

3. Disk-resident with transient routines
This Monitor is used in the same way as
the disk-resident Monitor. Routines
that are only temporarily needed reside
on the system disk pack (for example,
the Fetch routine). These transient
routines are executed in the transient
area of the Monitor, an area two sec­
tors in length. This technique reduces
the storage requirements of the Monitor
to a minimum.

4. Disk-resident with inquiry support
Basically, this Monitor is like the
Monitor with transient routines, but it
also supports inquiry. The major part
of the routines used for inquiry sup­
port are transient and reside on the
system disk pack.

The usage of Monitor generation macro
instructions, the Monitor gBneration proce­
dure, and the insertion Of the Monitor in
the system disk pack are described in the
publication IBM System/360 Model 20, Disk
Programming System, System Generation and
Maintenance, Form C33-6006.

I

Figures 3 and 4 show the storage maps of
the DPS Monitor for a card-resident and a
disk-resident system. The Monitor occupies
the lower area of main storage. The com­
munication region, the logical unit table,
the physical unit table, and the physical
disk I/O routines reside permanently in
main storage.

0000

Reserved Area (Hardware)

Start of
Monitor

Pennanent Link Data Area

Communication Region

Logical Unit Table

Physical Unit Table

Disk / Tape PIOCS

Printer - Keyboard PIOCS CD
Disk Error Recovery

BSCA Routines CD
Disk / Tape XIO Routines

Fetch Routines

Monitor I/O Area

.End of
.. P ~otec ted J

.JVIonltor AreQ/

Tape Error Recovery Routine CD (])
Tape Error Statistics CD @

Program Area

End of
Monitor

168

@
2340-3560

@

3300-4200

CD Only included if specified during Monitor generataon

@ May be overlaid by user progrcms if tape I/O or tope
error statistics are not required

® End address depends on the operands specified at
Monitor generation time

• Figure 3. Storage Map Showing Areas Allo­
cated to the Card-Resident or
Disk-Resident Monitor with no
Transient Routines

The program area followS the Monitor
area in main storage. This area is used
for program compilation, assembly, and
execution. Tape label information is
stored at the end of main storage.

0000

Reserved Area (Hardware)

Start of
168

Monitor

Permanent link Data Area

Communication Region

Logical Unit Table

Physical Unit Table

Disk/Tape PIOCS

Printer - Keyboard procs CD
Inquiry Attention Routine CD
Inquiry Iniliotor Routine CD
Disk Error Recovery

BSCA Routines CD
Disk/Tape XIO Routines

Fetch Routine (Core-Resident)

Monitor I/o Area

Transient Area
CD

Printer - Keyboard Input Area CD
Printer - Keyboard Output Area CD

End or 3180-4050
\.M;rqtec'ld

001 tor rea

Tape Error Statistics CD® CD
3830-4270

End of
Monitor

-..... Pr ram Area _L... og

lIL------------~~~~~~t:rage~~-------------Jr~
o Only included if specified during Monitor generation

® May be overlaid by user programs if tape error
statistics are not required by the job

@ End address depends on the operands specified at
Monitor generation time

.Figure 4. Storage Map Showing Areas Allo­
cated to the Disk-Resident Moni­
tor with Transient Routines and
with Inquiry Support

DPS Control Programs 15

Field CO Date

Month Day Year Day of
Year

Storage Capacity

End Address of Monitor

Inter -Program and
Intra - Program
Conwnun I cation

Program
Name

@Monitor Area

Byte 0 1 2 3 4 5 6 7 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

~St""'''' CaoacHy R d Not u..d

au! ~_ '21:r::::r-
1 x 1 = 12,288 bytes
x x 1 = 16,384 bytes
1 1 x = 24,576 bytes
x 1 x· 32,768 bytes

• Figure 5. Monitor Communication Region

You can specify the following features
at Monitor generation time:

• number of additional logical unit blocks
to assign the symbolic device addresses
SYSOOO to SYS019

• I/O support for up to four disk drives

•

•

•

•

•

I :

I/O support for up to six magnetic tape
drives

tape error statistics

I/O support for printer-keyboard

inquiry facilities

BSCA support

I/O request queuing

Read/compute write/compute overlap.

COMMUNICATION REGION

The con~unication region is an area of 40
bytes within the Monitor area. You can
address the communication region in problem
programs written in the Assembler language
by means of certain macro instructions
described in the publication IBM Systernl360
Model 20, Disk Programming System,
Input/Output Control System, Form C24-9007.

You can use the communication region to
insert certain information into problem
programs, or exchange information between
various problem p.rograms.

Figure 5 shows the layout of the com­
munication region. The circled numbers
identify its various fields.

'I'he fields in the communication region
are filled in by the Job Control program

16

from information you supply by means of
control statements. The following list
describes the contents of each field. The
item numbers refer to the areas circled in
the figure.

Field

(1) Date

(2) Storage
capacity

Byte (s) Contents

0-8 The Job Control pro­
gram sets this field
from information you
supply in the DATE
control statement. It
records the month,
day, year, and day of
year in zoned decimal
format. August 14,
1969, for example, is
recorded as 081469227.
The field is in prin­
table format. You can
access the field, or a
portion of the field,
by means of Assembler
move instructions and
use it to date
reports. The last
five bytes of the
field are used inter­
nally by the label
processing routines to
check the expiration
dates of files.

9 This byte records the
storage capacity of
your IBM 2020 cpu. It
is set to the speci­
fied value during
Monitor generation
time or when you sub­
mit a CONFG control
statement in a PSERV
run. The first three
bi ts (0, 1, 2) contain
a code indicating the
storage capacity:

I

1 x1
xx1
11x
x1x

12,288 bytes
16,384 bytes
24,576 bytes
32,768 bytes

Bit 3 is reserved,
bits 4 through 7 are
not used.

(3) End 10-11 This field gives the
end address of the
storage area used for
the Monitor. The
address is supplied
autoLlatically.

Address
of Monit.or

(4) User 12-19 This area can be used
for inter-program and
intra-program communi­
cation. It is not
reset by the Job Con­
trol program between
jobs. This area can­
not be used during the
execution of PL/I
object programs ..

Area I

(5) User 20-22 This area can be used
for intra-program
communication. It is
reset to binary zeros
at the end of a job by
the Job Control pro­
gram.

Area II

(6) UPSI 23 This field contains
user prograw switch
indicators. Each time
the Job Control pro­
gram is called, it
initializes the byte
to binary zero. From
the information you
supply in the UPSI
control statements, it
then sets the speci­
fied bits (switches)
to 1. Each bit in the
field can be set and
tested in a problem
program.

(7) Program
Name

24-29 This field contains
the name of the pro­
gram phase to be exe­
cuted. It is set by
the Job Control pro~
gram from information
you supply in the JOB
control statement, or
by the FETCH and EOJ
macro instructions.

(8) r10ni tor
Area

30-39 This field is used
only by the Monitor.

LOGICAL AND PHYSICAL UNIT TABLES

The logical unit table is a component of
the Monitor and resides in main storage
throughout the system run. It relates
symbolic addresses used in problem programs
to physical addresses (for example, it
relates SYSIPT to the physical address of
the card reading device in your
configuration) •

The DPS Control and Service programs and
the other IBM-supplied programs use symbol­
ic addresses to refer to input/output devi­
ces. Some of these symbolic I/O addresses
can be employed in problem programs.

The logical unit table consists of up to
26 entries, one associated with each device
name, each entry occupying an area of 2
bytes. These entries are called logical
unit blocks (LUBS). Each LUB is reserved
for information about one specific symbolic
device address. Thus, a particular LUB,
although its contents may change, always
refers to the same symbolic device address
(SYSRDR or SYSIPT, and so on) •

When a disk or magnetic tape drive is
assigned to a symbolic device address (by
means of an ASSGN control statement) , the
Job Control program records a pointer to
the physical unit block (PUB) containing
the physical address of the device to be
assigned. When a card I/O device or a
printer is assigned, actual information
about the device is placed in the appropri­
ate LUB. Whenever a statement containing a
symbolic device address is encountered
during the execution of a job, the
appropriate LUB is consulted to determine
the associated physical address. The I/O
device defined in this manner then executes
the specified input/output operation under
control of the Monitor program.

Figure 6 shows the sequence of the LUBs
in the logical unit table.

Device aSSignments are either permanent
or temporary. Permanent device aSSignments
are written onto the system disk pack.
They are loaded into main storage as part
of the Monitor. Temporary device aSSign­
ments are made at Job Control time. They
change the assignments currently in main
storage, but do not alter the permanent
device assignments on the system disk pack.

Figure 6. Sequence of LUBs in the Logical Unit Table

Dotted line flags planning information IDPS Control Programs 17

You can make permanent device assign­
ments at Monitor generation time. By means
of the ASSGN macro instructions you issue,
the assignments for all physical devices
(disk drives, magnetic tape drives, prin­
ter, etc.,) in the configuration can be
inserted into the respective LUBs and PUBs.
Permanent device assignments for a disk­
resident system may also be made by running
a LDSYS or PSERV program.

The permanent device assignments of the
Monitor resident in main storage during a
system run remain in effect for all jobs
until the Job Control program encounters an
ASSGN control statement indicating a
temporary device assignment. The temporary
device assignment then remains in effect
until it is changed by another ASSGN con­
trol statement. The permanent device
assignments ~n the system disk pac~ are
not affected by ASSGN control statements
submitted to the Job Control program. Such
ASSGN statements affect only the Monitor
resident in main storage. The section Job
Control Program describes the format of the
ASSGN control statement.

The following table lists the symbolic
addresses you must use to refer to 1/0
devices:

r--------T--------------------------------,
ISymboliclRefers to I
IAddress I I
~--------+--------------------------------~
lSYSRES* IDisk-resident system: disk drivel
I Ion which system disk pack is I
I lmounted; card-resident system: I
I Idisk drive on which Job Control I
t Iwrites label information I
.--------+--------------------------------~
ISYSRDR* ICard reading device for control I
I I statements . I
~--------+--------------------------------~
ISYSIPT ICard reading device, disk or I
I Itape drive used as input device I
I Ifor programs I
.--------+--------------------------------~
ISYSOPT ICard punching device, disk or I
I Itape drive used as output devicel
I Ifor programs I
.--------+--------------------------------~
ISYSLST IPrinter that lists the output ofl
I I programs I
.--------+--------------------------------~
ISYSLOG IPrinter that logs control state-I
I Iments I
.--------+--------------------------------~
ISYSOOO IDisk and tape drives used as I
I linput and output for all I
I I programs; card I/O devices for I
ISYS019 ISort/Merge program I L ________ ~ ________________________________ J

*SYSRES and SYSRDR must be assigned at IPL
time. In a disk-resident system, SYSRDR
may be reassigned during any following Job
Control run.

18

PHYSICAL IOCS FOR THE PRINTER-KEYBOARD

The physical IOCS for the printer-keyboard
controls all printer-keyboard input and
output operations.

These physical IOCS routines interpret
programmed commands to the printer-keyboard
and direct the transfer of information
between the printer-keyboard and main stor­
age. They also test for errors in the
transmission of data, and control the exe­
cution of error recovery procedures.

INQUIRY ROUTINES

The Inquiry routines are included in the
Monitor if you specify TYPE=INQRY at Moni­
tor generation time.

To initiate an inquiry, the operator
presses the Request key on the printer­
keyboard. If the execution of the mainline
program can be suspended for the execution
of an inquiry prog~am, a Read instruction
is initiated on the printer-keyboard,
whereupon the operator types in the name of
the inquiry program. A second Read
instruction is initiated to read data that
might be required by the inquiry program.
The mainline program is rolled out of main
storage onto the system disk pack. Then
the inquiry program is called into main
storage for processing. After execution is
completed, the mainline program is loaded
back into main storage and resumes execu­
tion. Each of the routines involved in
processing inquiry programs is described in
detail in the paragraphs that follow.

INQUIRY ATTENTION ROUTINE

This routine is called after the operator
presses the Request key on the printer­
keyboard. It first checks the status of
the inquiry control bits in the communi­
cation region of the Monitor to test
whether the current job can be interrupted
by an inquiry program. If it can, the
routine prints the message ENTER PROGNAME
on the 2152, provided you specified
INQI1SG=YES at Monitor generation time.

If the current job cannot be interrupt­
ed, the routine prints the message NOINQ
and returns control to the mainline pro­
gram.

If the mainline program requires data
transmission by means of BSCA, the Inquiry
Attention routine also tests whether BSCA
transmission is in progress. If so, the
routine informs the remote terminal that
transmission is to be discontinued.

I

INQUIRY INITIATOR ROUTINE

If a printer-keyboard input area is speci­
fied, control is transferred to this rou­
tine when the operator presses the End of
Transmission (EOT) key on the printer­
keyboard for the second time after having
initiated an inquiry. If no printer­
keyboard input area is specified, control
is transferred to this routine after the
operator presses the EOT key once.

This routine saves all data significant
for the current status of the mainline
program and loads the Rollout routine from
the core-image library into the transient
area of the Monitor.

PHYSICAL DISK AND TAPE I/O ROUTINES

The physical disk and tape I/O routines
perform input/output operations.

They are used by the DPS IOCS, thE~
Report Program Generator, PL/I, the disk
utility programs, and other IBM-suppl~ed
programs.

The functions of these routines are (1)
to handle the initiation of disk and mag­
netic tape I/O operations, (2) to analyze
interrupts and errors, and (3) to control
the execution of error recovery procedures
in case of I/O errors.

The Tape Error Recovery and the Tape
Error Statistics routines are included in
the Monitor if you specify the pertinent
operands at Monitor generation time. You
can omit them if you do not need tape I/O
support.

In a card-resident and a disk-resident
Monitor, these routines are generated
behind the Monitor I/O area. In a Monitor
with transient routines, they reside on the
system disk pack and are executed in the
transient area of the Monitor.

The count fields for tape error statis­
tics are located in the last positions of
the Monitor.

If they are generated as an integral
part of the Monitor, the Tape Error Statis­
tics routines may be overlaid by every
program phase if magnetic tape I/O is not
required for a specific job. They are
always restored at end-of-job time by the
Job Closing routines.

JOB CLOSING ROUTINES

The functions of the Job Closing routines
are:

• printing tape error statistics

• printing BSCA communications error sta­
tistics

• restoring the Tape Error Recovery and
Tape Error Statistics routines

• calling the Job Control program which
prepares for the next job by analyzing
the control statements that follow.

These routines are executed and restored
at the end of a job before the transition
to the next job.

By specifying certain operands when you
generate the Monitor, you determine which
of these routines will be generated.

Tape error statistics are printed only
if you include the control statements OPTN
TES and LOG in the job control statements
preceding the job.

BSCA communications error statistics are
printed only if a LOG control statement was
submitted in a preceding Job Control run
and is still effective, that is, not negat­
ed through a NOLOG statement submitted in a
subsequent Job Control run.

FETCH ROUTINE

The Fetch routine loads program phases into
main storage so that they can be executed.

• In a card-resident Monitor, the Fetch
routine loads only phases contained in
punched cards.

• In a disk-resident Monitor, the Fetch
routine loads only phases that are writ­
ten on the system disk pack.

• In a Monitor with transient routines,
the Fetch routine consists of a core­
resident part and a transient part that
resides in the core-image library. The
core-resident part loads only the
transient routines, for example the
transient Fetch routine. The transient
part loads any other program phases that
reside in the core-image library.

• In the disk-resident system, all pro­
grams must be placed in the core-image
library by the CMAINT program, either
permanently or temporarily, before they
can be loaded by the Fetch routine. Any
phases that require relocation or link­
ing must be processed by the Linkage
Editor program before they are placed in
the library. The Fetch routine scans
the core-image directory and compares
the phase names in the entries of this
directory against the phase name sup-

Dotted line flags planning information DPS Control Programs 19

plied in the JOB control statement. It
locates the program phase in the core­
image library and determines its loading
address from information supplied in the
core-image directory. Then it loads the
appropriate phase into main storage and
initiates execution.

Loading Conventions

You must observe the following rules when
loading problem programs from the core­
image library or from the device assigned
to SYSIPT (in cards or card-image format)

1. You will encounter a variety of
situations:

• If the phase load address is within
the Tape Error Statistics routine:

This routine is switched off by the
Fetch routine and no magnetic tape
error analyzation and printout is
performed.

• If the phase load address is within
the Tape Error Rec6very routine
(applies only to card-resident Moni­
tors and disk-resident Monitors with
no transient routines) :

This routine is switched off by the
Fetch routine and no magnetic tape
I/O requests can be performed during
this phase.

• If the phase load address is lower
than the end address of the Monitor
I/O Area (and lower than the tran­
sient area and printer-keyboard
input area, depending on the type of
Monitor generated) :

A halt is displayed to prevent an
overlay of the protected Monitor
area. The job must be cancelled. A
Linkage Editor run or a reassembly
or recompilation is required.

2. The general registers 8, 14, and 15 are
used in the loading process. For this
reason, any values in these registers
that must be saved have to be moved to
an intermediate storage area, from
where they can be reloaded into the
appropriate registers after completion
of the loading process.

3. If you use the DPS IOCS to handle the
card I/O requirements in a problem
program, a WAITC macro instruction must
precede each FETCH macro instruction in
the program.

4. The Fetch routine of the card-resident
Monitor can only load object programs
that are contained in punched cards and
require neither relocating nor linking.
If relocation or linking is required,
this must be done by means of the Lin­
kage Editor program before loading.

The input to the Fetch routine can be
Assembler output, RPG output, PL/I
output, or Linkage Editor output. How­
ever, only the card types listed below
are recognized by the Fetch routine
(all other card types are ignored) •

The TXT cards contain the instructions
and constants to be loaded. Each TXT
card also contains the address of the
first byte of the storage area into
which the text is to be loaded.

The REP cards are used to substitute
new text for portions of assembled
text. Each REP card also contains the
assembled address of the first byte to
be replaced. No diagnostic is made on
the format of the REP card.

An XFR card is inserted at the end of
each phase. It contains an instruction
that causes a transfer to the entry
point of the phase loaded. This makes
it possible to execute the phase
immediately after loading. If the XFR
card does not contain a branch address,
it is ignored.

An END card appears at the end of each
program. It causes a transfer to the
entry point of the program. If the END
card does not contain a branch address,
it is ignored.

MONITOR I/O AREA

A Monitor I/O Area is generated for all
card-resident and disk-resident Monitors.
This area is 270 bytes in length; it is
used by the Monitor routines.

TRANSIENT AREA

This area is generated for disk-resident
Monitors with transient routines and Moni­
tors with inquiry support. The transient
area is used

• by Monitor routines as I/O area

• for executing transient routines

• for intercommunication between transient
routines.

20 Dotted line flags planning information

I

The transient area is 580 bytes in
length. A total of 540 bytes are used for
executing transient routines; the remaining
40 bytes serve as intercommunication area
for the transient routines. The first 270
bytes of the transient area are also used
as Monitor I/O Area.

If inquiry facilities are supported, a
printer-keyboard input area is generated
behind the transient area.

TRANSIENT ROUTINES

Transient routines are only generated for
Monitors with the transient feature. They
are generally two sectors in length and
reside in the core-image library.

The basic transient phases are

• transient Fetch routine

• Tape Error Recovery routine

• Rollout routine

• Rollin routine.

The Fetch routine fetches each transient
phase from the core-image library when
needed and loads it into the 580-byte tran­
sient area of the Monitor; each transient
phase overwrites any previously loaded
transient phase. The transient concept
optimizes the efficient use of main storage
allotted to the Monitor.

TRANSIENT TAPE ERROR RECOVERY

If the Monitor contains transient routines,
the Fetch routine loads the first phase of
the Tape Error Recovery routine into the
transient area whenever an error occurs
during magnetic tape I/O operations. If
the error is a read error or an irrecovera­
ble tape error, the Fetch routine loads the
second or third phase of the Tape Error
Recovery routine into the transient area
for execution.

ROLLOUT ROUTINE

The Rollout routine is called by the
Inquiry Initiator routine when an inquiry
program is to be executed.

The Rollout routine writes the whole of
main storage located behind the Monitor
into the dummy phase of the core-image
library reserved for this purpose at Moni­
tor generation time. Then the Rollout
routine fetches the inquiry program whose
name the operator entered on the printer­
keyboard.

If you submitted a CONFG control
statement in a previous job to temporarily
change the storage capacity specification
in main storage, the amount of main storage
rolled out into the dummy phase depends on
the storage capacity specification in main
storage and on the system disk pack.

If the storage specification in main
storage is lower than the storage specifi­
cation on the system disk pack, the Rollout
routine automatically rolls the lower stor­
age area into the dummy phase. If the
storage specification in main storage is
higher than the storage specification on
the system disk pack, a halt occurs, and
the operator can either discontinue or
continue the inquiry run. If he continues
it, the Rollout routine rolls the storage
area specified on the system disk pack into
the dummy phase. The remaining part of the
storage area is not rolled out, and is
therefore not protected during the inquiry
run.

The Rollout routine is always transient
and resides in the core-image library.

ROLLIN ROUTINE

After the inquiry program has been execut­
ed, the Fetch routine reads the Rollin
routine into the transient area of the
Monitor. The Rollin routine restores the
status of the mainline program that pre­
vailed before the mainline program was
interrupted by the inquiry program, and the
mainline program resumes execution. The
Rollin routine is always contained in the
core-image library as a transient phase.

Job Control Program

This section describes the functions of the
Job Control program and shows you how to
code the control statements required to
perform these functions.

For a disk-resident system, the Job
Control program is contained in the core­
image library of the system disk pack.

The disk-resident Job Control program is
executed between programs to prepare the
system for the next program run. It
obtains information about the next job from
the job control statements you supply. It
processes these control statements, records
this information in the communication
region of the Monitor, processes tape and
disk file labels, and returns control to
the Monitor so that the prepared job can be
executed.

The Job Control program is called into
storage initially by the Monitor program.

DPS Control Programs 21

Subsequently, each time an EOJ macro
instruction is encountered, indicating the
end of a job, the Job Control program is
called to prepare the system for the next
job to be executed.

For a card-resident system, the Job
Control program is generated together with
the card-resident IPL and card-resident
Monitor program.

The card-resident Job Control program
deck must precede every problem program
deck. Control statements may be placed
between the Job Control deck and the prob­
lem program deck if the 1/0 device assign­
ments for the job are to be changed. The
Fetch routine of the Monitor loads the Job
Control program into main storage. After
the Job Control program has processed the
job control statements, it returns control
to the Monitor. The storage area in which
the Job Control program was stored can be
overlaid by the problem program.

CONTROL STATEMENT CONVENTIONS

Control statements that are common to all
programs are called job control statements.
They are read by ·the Job Control program
before each job is executed. Their meaning
and formats are described in the section
Format of Job Con·trol Statements.

Some control statements are applicable
only to certain system programs. They
instruct the program about the functions it
is to perform. Since they are read by the
program itself, they are called program
control statements. Each program control
statement is described together with the
program to which it applies in the section
DPS Service Programs.

The following conventions serve as a
guideline to help you code the control
statements described in this publication:

1. Upper-case words (example: ASSGN) must
appear in the control statement exactly
as shown in the format.

2. Lower-case words symbolize additional
information you must supply. For exam­
ple, if the word "program" appears in
the format, you must supply the name of
the program to be processed. The text
below the format explains what kind of
information the lower-case words rep­
resent.

3. Brackets [] indicate optional informa­
tion.

4. Three dots indicate that information
may be repeated.

22

The general format of all control state­
ments described in this publication is:

r----T---------T--------------------------l
INamelOperationlOperands I
t----+---------+--------------------------~
I I I I opera tion I [operand] [, operand] ••• I l ____ ~ _________ ~ __________________________ J

/1
Identifies the statement as a control
statement. The slashes must appear in
the first two columns of the control
statement and must be followed by at
least one blank column.

operation
Indicates the function of the control
statement. For example, the word ASSGN
indicates that the control statement
specifies an I/O device assignment. The
operation field can be up to five char­
acters long and must be followed by at
least one blank.

operands
Supply additional information about the
control statement. For example, the
operands of an ASSGN control statement
specify the symbolic device address and
the characteristics of the actual
device. The operand field may be blank
or may contain one or more operands,
separated by commas, with no intervening
blanks~ A blank to indicate the end of
the field must follow the last operand
in the field. The field must not extend
beyond column 71 of the punched card.

Programmer's Comments

To help you document your program, you may
insert comments to the right of the control
statements described in this publication.
In doing so, follow these rules:

1. If the control statement has one or
more operands, leave at least one blank
column between the last operand and
your comment. Example:

II FILES SYS008,2 SKIP 2 TAPEMARKS
t

2. If an operand is not allowed, insert at
least one blank column between the
operation code and your comment. Exam­
ple:

II PAUSEtPUT CARDS IN HOPPER

3. If you wish to omit an optional oper­
and, you must insert a comma in place
of the operand and then leave at least
one blank column between the comma and
your comment. Example:

II DELET, DELETE ALL PERMANENT LABELS
t

I

Programmer's comments have no effect on
the program. They are printed together
with the control statements on the device
assigned to SYSLOG. The comments must not
extend beyond column 71 of the statement.

ORDER OF INPUT

The Job Control program precedes every job
except the execution of an inquiry program.

It prepares the system for the execution
of the following job by reading and proc­
essing the set of job control statements
that you supply. These job control state­
ments are always read on the device whose
symbolic address is SYSRDR.

Figure 7 is a summary of these job con­
trol statements and their functions. A
detailed description of each statement
follows in the section Format of Job Con­
trol Statements.

Normally the first statement of a set of
control statements for a particular job is
a JOB statement. Only PAUSE, LOG, and
NOLOG statements may precede a JOB state­
ment. The last statement ~f a set of job
control statements must be an EXEC state­
ment.

Except where noted, the remalnlng job
control statements of a set may be arranged
in any order between the JOB and EXEC
statements.

r-------------T---------------------------,
I Operation I Function I
/Specificationl I
~-------------t---------------------------i
I ASSGN Ichanges I/O device assign- I
I Iments in logical unit table/
~-------------t---------------------------i
I CONFG Iplaces storage capacity I
I / specification into cOIHmun.i-1
/ Ication region I
~-------------t---------------------·-----i
I DATE Iplaces date into communi- I
I Ication region I
t-------------t---------------------------i
I DELET Icauses permanent labels to /
I Ibe deleted from the label I
/ /information area I
~-------------t---------------------------i
I DLAB Isupplies disk label infor- I
/ Imation for individual file /
~-------------t---------------------------i
I DSPLY Icauses listing of all per- I
/ /manent labels contained in /
/ /the label information area I l _____________ ~ ___________________________ J

Figure 7. Job Control Statements and
Their Functions, Part 1 of 2

r-------------T----------------------------,
I Operation I Function /
lSpecification/ I
t-------------t---------------------------~
/ EXEC lindicates end of control l
/ lstatements and returns I
I Icontrol to Monitor I
t-------------t---------------------------~
I FILES Ipositions magnetic tape I
I Ireel by skipping specified /
l /number of tapemarks or by I
/ /rewinding it I
~-------------t---------------------------~
I JOB Ispecifies name of program I
t-------------t---------------------------i
I LOG Icauses listing of control I
l Istatements on SYSLOG; I
I lallows tape error statis- J
/ /tics, communications error I
I I statistics, and permanent I
l llabels to be listed on I
I ISYSLOG if listing has been I
I I requested I
t-------------t---------------------------~
I NOLOG Icauses listing of control I
I Istatements to be discontin-I
l lued; prevents tape error I
I I statistics, communications I
I /error statistics, and per- I
I /manent labels from being I
/ Ilisted even if listings arel
I I requested I
.-------------+-~-------------------------~
l OPTN /indicates that the printout I
I lof tape error statistics isl
I Irequired by the job; indi- I
l Icates that the execution ofl
l la job is not to be inter- I
l lrupted by an inquiry pro- I
I Igram I
t-------------+---------------------------~
l PAUSE Icauses immediate halt I
t-------------t---------------------------i
I TPLAB Isupplies tape label infor- I
I Imation for individual file I
r-------------t---------------------------~
I UPS I Ichanges setting of UPSI /
I Ibyte in communication I
I I region I
~-------------+---------------------------i
I VOL Ispecifies name of file to I
/ Ibe processed; specifies thel
I /symbolic address of the I
/ Idrive on which this file is/
/ /mounted I
t-------------t---------------------------~
I XTENT Idefines the extents used byl
/ la file on a disk pack; I
I Ispecifies the symbolic /
I laddress of the drive on /
I Iwhich this pack is mounted I l _____________ ~ ___________________________ J

Figure 7. Job Control Statements and Their
Functions, Part 2 of 2

Figure 8 shows an example of how job
control statements are inserted into the
input deck.

DPS Control Programs 23

suspend operation --_

discontinue logging control statements ___

set program switches ---.... ~ II UPSI 10111

II JOB TEST
execute

program obtained
from core-image

library ;*

I I EXEC LOADER

execute object program

compi Ie and execute source progran

supply date-
assemble, but do not edit and execute source program

I I JOB ASSEMB

Figure 8. Example of Using Job Control Statements

FORMAT OF JOB CONTROL STATEMENTS

This section describes the format of each
job control statement and explains its
function.

JOB Control Statement

The JOB control statement indicates to the
Job Control program that a set of control
statements follows. The JOB control state­
ment specifies the name of the program to
be executed; the program name is placed
into the communication region (bytes 24
through 29). The format of the JOB control
statement indicates whether the program is
to be executed, or assembled, or compiled.
The JOB control statement has one of the
following formats:

r-----T---------T-------------------------,
IName IOperationlOperands 1

r-----+---------+-------------------------~
1// IJOB I program 1
r-----+---------+-------------------------~
1// IJOB 1 ASSEMB,program 1
r-----+---------+-------------------------~
1// IJOB 1 RPG,program 1
r-----+---------+-------------------------~
1// IJOB IPL1,program 1 L _____ L _________ L _________________________ J

program
The name of the program to be executed.
The name is not restricted in length.
However, if the length exceeds six char­
acters, only the leftmost six characters
are recognized.
If the name appears by itself, it is the
name of either a phase in the core-image
library or an object program stored on
cards or magnetic tape.

24 Dotted line flags planning information

I.

If the name is preceded by the word
ASSEMB, the program is a source program
to be first assembled, then executed,
provided no linking or relocation is
necessary. If the name is preceded by
the word RPG, the program is a source
program to be first compiled, then exe­
cuted. If the name is preceded by the
word PL1, the program is a source pro­
gram to be first compiled and link­
edited, and then executed.

If the program is to be only assembled
or compiled and not executed at once,
the word ASSEMB or RPG appears alone as
the program name. If the program is to
be only compiled and/or link-edited, but
not executed, the word PL1 appears alone
as the program name.

If you wish to assemble or compile a
source program and then exeQute it
immediately (// JOB ASSEMB,program, // JOB
RPG, program, or // JOB PL1, program) you
must fulfill two requirements. First, a
relocatable area must be on your system
disk pack. The relocatable area is
required to temporarily store the output
from the Assembler, RPG, and PL/I programs.
Second, the CMAINT program must be perman­
ently stored in the core-image library.

• This program is used internally to store
: the Assembler, RPG, or PL/I output in the

core-image library as a temporary entry.
The object program is then loaded from the
core-image library and executed automat­
ically.

UPSI Control Statement

The UPSI (user program switch indica'tor)
control statement is used to set the pro­
gram switches in the communication r,egion
(byte 23). Each time the Job Control pro­

gram is called it initializes the byte to
binary zero. From the information you
supply in the UPSI control statement, it
then sets the specified bits (switches) to
1 •

You can include one or several UPSI
control statements at Job Control time.
The program that follows must be one that
is to be executed immediately, not just
assembled or compiled. During the execu­
tion of the program, you can test the UPSI
byte by using the COMRG or MVCOM Monitor
macro instructions, and make further proc­
essing dependent on this test. For exam­
ple, you can include in the problem program
a routine that causes two output listings
to be printed if the UPSI byte is set to 1.
Whenever you run this problem program, you
can insert the control statement // UPSI 1
into the deck of job control statements if
you want two printouts, or omit the control
statement if you want only one.

The format of the UPSI control statement
is:
r-----T---------T-------------------------,
IName I Operation 1 Operand I

t-----+---------+-------------------------~
1// IUPSI Ixxxxxxxx I L _____ i _________ i _________________________ J

xxxxxxxx
One to eight characters except blank or
comma;

1 = corresponding bit set in UPSI byte;
not 1 = corresponding bit remains
unchanged.

You don't have to specify trailing not-1
bits.
Example: 1xx11xxx = 1xx11

DATE Control Statement

The DATE control statement is required for
the first job that follows IPL. This con­
trol statement must contain the last two
digits of the current year and the day of
the year. The Job Control program records
the month, the day, the year, and the day
of the year in the communication region.
This information is used in the jobs that

• follow to check.the expiration dates of
disk and tape labels.

RPG 'automatically dates reports from the
date supplied in the DATE control state­
ment. In programs written in the Assembler
language, you can access the date by means
of Monitor macro instructions and Assembler
move instructions and use it for dating
output listings and reports.

The format of the DATE control statement
is:
r-----T---------T-------------------------,
IName I Operation 1 Operand I

t-----+---------+-------------------------~
1// 1 DATE Iyyddd I L _____ L _________ L _________________________ J

last two digits of the current year

ddd
---the day of the year. Obtain this by

adding the day of the month to the fol­
lowing constants:

Jan 0 Jul 181
Feb 31 Aug 212
Mar 59 Sep 243
Apr 90 Oct 273
May 120 Nov 304
Jun 151 Dec 334

Add one extra day after Feb 28 for Leap
Year.

Dotted line flags planning information DPS Control Programs 25

CONFG Con tro 1 Sta temen t

When you generate the Monitor, you also
specify the storage capacity of your sys­
tem. This specification is permanently
stored in byte 9 of the communication
region, and loaded into main storage as
part of the Monitor. If you wish to change
the storage specification temporarily from
job to job (not on the system disk pack) ,
you can insert a CONFG control statement at
Job Control time with the format:

r----T---------T--------------------------,
INamelOperationlOperand I
~----+---------+--------------------------~
1// ICONFG Ixx 1 L ____ ~ _________ ~ __________________________ J

xx
bytes of main storage
12 12,288
16 16,384
24 24,576
32 32,768

Since tape label information is stored
in upper main storage, the CONFG control
statement must precede all VOL and TPLAB
statements.

OPTN Control Statement

The OPTN control statement has the format:

r----T---------T--------------------------,
I Name I Operation I Operands 1

~----+---------+--------------------------~
1// IOPTN I NOINQ,TES I L ____ ~ _________ ~ __________________________ J

NOIN...Q

TES

No program may be executed as an inquiry
program until the next Job Control run
is completed.

--Indicates that tape error statistics are
to be kept during the job that follows
and printed before the next Job Control
J::-un.

You may specify one operand or two oper­
ands in any order separated by a comma.

We recommend that you take advantage of
the Tape Error Statistics routine because
it provides you with a powerful service
aid. If your job does not require magnetic
tapes, you can overlay the routine with the
problem program.

As the sample printout shown in Figure 9
indicates, the addition of tape error sta­
tistics provides you with the means of
determining the total activity on each
magnetic tape unit and the number of errors
encountered.

You may use the TES option in:

• all IBM-supplied system programs that
support magnetic tape I/O

• problem programs written in RPG

• problem programs written in
Assembler/laCS.

LOG Control Statement

You must insert a LOG control statement
with the format:

r-----T---------T-------------------------,
IName I Operation I Operand 1

~-----+---------+-~-----------------------~
1// I LOG 1 1 L _____ ~ _________ ~ _________________________ J

into the input deck if you want a listing
of

• all control statements starting with the
LOG statement itself

• tape error statistics

r---,
I Tape Error Statistics 1

~----T------------T-----T-------------T------T------T------1
ITapelTotal No. of IRe ad IIrrecoverablelNoise IWrite IErase I
IUnit\Requests IError\Read Error I Record \ Error IGaps I
~-~--+------------+-----+-------------+------+------+------~
\ 80 I 320 I 0 I 0 I 0 I 0 I 0 I
I 81 I 100 I 12 I 3 \ 6 I 0 I 0 1
I 82 I 752 I 0 \ 0 I 0 I 0 I 0 I
I 83 I 110 I 0 I 0 \ 0 I 1 I 1 I
~----~------------~-----~-------------~------~------~------~
IUnits 84 and 85 were not used, and therefore no tape errorl
Istatistics were printed for these devices. I
L __ J

Figure 9. Sample Tape Error Statistics Printout

26

I

• BSCA communications error statistics

• permanent labels.

You may place the LOG control statement
either before the JOB statement or anywhere
between the JOB statement and the EXEC
statement.

The LOG control statement is effective,
only if a printer is assigned to SYSLOG.

The Job Control program continues print­
ing the listings for all jobs until it
encounters a NOLOG control statement.

NOLOG Control Statement

When the Job Control program encounters a
NOLOG control statement, it stops the list­
ing of subsequent control statements, tape
error statistics, BSCA communications error
statistics, and permanent labels for all
jobs. The format of the NOLOG control
statement is:

r-----T---------T-------------------------,
IName I Operation 1 Operand 1
~-----+---------+-------------------------~
1// 1 NOLOG 1 1 l _____ ~ _________ L _________________________ J

It may be placed either before the JOB
statement or anywhere between the JOB
statement and the EXEC statement.

The Job Control program resumes printing
the listings only if it encounters another
LOG control statement.

?AUSE Control Statement

The PAUSE control statement immediately
interrupts processing. It only suspends
operation and does not affect the contents
of main storage. To resume operation,'
merely press the Start key on the CPU con­
sole.

The PAUSE control statement has the
format:

r-----T---------T-----------------~-------,
IName IOperationlOperand 1

t-----+---------+-------------------------~
1// 1 PAUSE 1 1 l _____ ~ _________ L _________________________ J

The Job Control program executes the
PAUSE statement as soon as it encounters
it. You may place PAUSE anywhere in the
set of job control statements, except with­
in the control statement groups VOL, DLAB,
XTENT and VOL, TPLAB.

EXEC Control Statement

The EXEC control statement indicates to the
Job Control program that the reading of a
set of control statements has been complet­
ed and that control is to be returned to
the Fetch routine in the Monitor program.
The EXEC control statement has the follow­
ing formats:

r-----T---------T-------------------------,
IName 10perationiOperand 1
r-----+---------+-------------------------~
1// 1 EXEC I 1
t-----+---------+-------------------------~
1// I EXEC IR 1
t-----+---------+-------------------------~
J// IEXEC 1 LOADER I
t-----+---------+-------------------------~
1// 1 EXEC I LOADER,R 1 l _____ L _________ L _________________________ J

No operand

R

Disk-resident system: The program has
been assembled or compiled and stored in
the core-image library. Now it is read
from the core-image library into main
storage and executed. Card-resident
system: The object program (in cards) is
to be read on the card reading device
assigned to SYSRDR. This is the only
format you may use in a card-resident
system.

Used only for Ct1AINT and LNKEDT runs.
The input is read from the relocatable
area.

LOADER
The execute-loader function is to be
used. The problem program is read from
the card reading device or magnetic tape
drive assigned to SYSIPT. The CMAINT
program, which must be on the system
disk pack in this case, is internally
used to store the problem program in the
core-image library as a temporary entry.
The program is then automatically loaded
from the core-image library and execut­
ed.

LOADER,R
The execute-loader function is to be
used. The problem program is read from
the relocatable area and executed.
Since the problem program is temporarily
stored in the core-image library before
it is loaded into main storage, the
CMAINT program must be contained in the
core-image library.

The table in Figure 10 shows you the
relationship between the JOB and EXEC con­
trol statements for a variety of jobs. The
comments in the right column indicate what
I/O device assignments are required to do
each job.

DPS Control Programs 27

r------------------------------T---,
I 1. // JOB ASSEMB I Input from SYSIPT = Card or Tape I
I // EXEC 1 Output onto SYSOPT = Card or Tape, and RL I
t------------------------------+---~
I 2. // JOB LNKEDT 1 Input from SYSIPT = Card or Tape. If R is specified, I
1 I input from RL. I
I / / EXEC [R] I Output onto SYSOPT = Card or Tape, and RL I
t-----------------------------t---~

~-:~-~~-~~~~:~~::------------l-::~::-::::-::::::--:-~~~~~:!;~~~:~~~~~!~~::;~~-~:-------J II
I 4. // JOB program I Disk-resident system: Load program from core-image I
I // EXEC 1 library and execute. I
I I Card-resident system: Load program from SYSRDR and I
1 1 execute. 1
r-----------------------------+---~
I 5. // JOB program 1 Read, program from SYSIPT, temporarily I
1 // EXEC LOADER [,R] I include in core-image- library, and execute. 1
I I Input in card image from SYSIPT = Card I
1 I or Tape. If R is specified, input from RL. I
r-----------------------------+---~
1 6. // JOB ASSEMB,program I Assemble, temporarily include in core-image library, 1
1 // EXEC 1 execute program. Input same as 1. Output from I
1 I Assembler in RL. I
r-----------------------------t---~
1 7. // JOB RPG 1 Input from SYSIPT = Card I
I // EXEC I Output onto SYSOPT = Card and RL I
r-----------------------------+---~
I 8. // JOB RPG,program I Compile, temporarily include in core-image library, I
1 // EXEC 1 execute program. Input same as 7. Output from RPG 1
I 1 into RL and on SYSOPT. 1
t-----------------------------+---~
1 9. // JOB PL1 1 Compile and/or link-edit source program, but do not 1
1 // EXEC 1 execute. SYSIPT = Card or Tape. SYSOPT = Card or Tape I
r------------------------------+---~
110. // JOB PL1,program I Compile, link-edit and execute source program. 1
I // EXEC I SYSIPT = Card or Tape. Output on SYSOPT = Card or Tape I
1 1 and RL. I L _____________________________ ~ ___ J

RL = Relocatable Area
Tape = Magnetic Tape

Figure 10. Relationship Between the JOB and EXEC Control Statements

As mentioned under points 5, 6, and 8 of
Figure 10, phases may also be included
temporarily in the core-image library.
That means they are deleted automatically
when the CMAINT program is used again.
These temporary phases ca~ only be executed
in the job that immediately follows.

When ~he procedure listed in point 5, 6,
or 8 is used, the Job Control program sets
special switch indicators. From this
information, the CMAINT program sets a
temporary job switch. This switch is
always tested by the Fetch routine. If it
is on, only temporary phases can be loaded.
Therefore, mixed fetching of permanent and
temporary phases is never possible. The
advantage of temporary phases is that they
are deleted from the core-image library
after execution, leaving more room in the
library for permanent phases that are exe­
cuted frequently.

I/O DEVICE ASSIGNMENTS

When you generate a Monitor, you also gen­
erate up to 26 permanent device assign­
ments.

Devices are aSSigned by means of the LUB
table and the PUB table in the Monitor.
The LUB table contains the symbolic device
addresses of all I/O devi~es and a pointer
to their physical device addresses.

If a LUB refers to a disk or tape drive,
the pointer points to the address of the
PUB that contains the physical device
address. If a LUB refers to any other
device, the pointer points to the physical
device address contained in the LUB itself.

Before each program is executed, the
ASSGN control statements submitted for each
job cause the Job Control program to insert
into the respective LUB the pointer that

28 Dotted line flags planning information

points to the physical device address sub­
mitted in the ASSGN control statement.
This freedom gives you great flexibility in
switching from one physical device to
another, without altering the logic of the
program.

Figure 11 shows an example of how I/O
devices were assigned for two specific
jobs.

II EXEC

ASSGN
SYSOO3,X'802' ,03

II JOB RPG,NEW

II EXEC

.Figure 11. Example of I/O Device Assign­
Il1€nt

ASSGN Control Statement

When you generate a Monitor, you also gen­
erate permanent device assignments by means
of ASSGN macro instructions. These perman­
ent device assignments are written onto the
system disk pack and loaded into main stor­
age together with the Monitor at IPL time.

Permanent device assignments lo~ded into
main storage are in effect for all jobs,
unless you alter them by submitting ASSGN
control statements to the Job Control pro­
gram. These new device assignments then
remain in effect for all subsequent jobs
unless you change them ag&in by submitting
other ASSGN control statements. If the
operator reloads the Monitor into main
storage through an IPL run, the permanent
device assignments written on the system
disk pack are reloaded into main storage
and take effect, cancelling any assignments
that may have been made by ASSGN control
statements.

The temporary device assignments alter
only the device assignments in main stor­
age, not the permanent device assignments
on the system disk pack. If you want to
alter the permanent device assignments, you
either have to run the PSERV program or
generate a new Monitor.

The formats of the ASSGN control state­
meni:; used to alter device assignments tem­
porarily are:

r-----T---------T-------------------------,
IName I Operation I Operands 1

t-----+---------+-------------------------~
1// 1 ASSGN ISYSxxx,X'cuu',dd[,X'ss'] 1
t-----+---------+-------------------------~
1// IASSGN ISYSxxx,UA I L _____ L _________ L _________________________ J

r---,
ISYSxxx symbolic device address: I
t---~
I I
ISYSRES system disk pack containing disk-\
I resident system (assigned only at
I IPL time)
I
ISYSRDR card reading device for reading
I job control statements
I
ISYSIPT input device
I
ISYSOPT output device
I
ISYSLST printer for output listings
I
ISYSLOG printer for logging statements
I and statistics
I
ISYSOOO }
I • other I/O devices
ISYS019
1 L __ _

r---,
1 X'cuu' physical device address: I
}---~
1 c attachment point: I

~---~
1 1 2501 Card Reader 1
1 2 2520 or 2560 I
I 3 1442 Card Punch I
I 4 1403 or 2203 Printer I
1 7 2415 Magnetic Tape Unit I
I 8 2311 Disk Storage Drive I
~---~
I uu unit: I
~---~
I 01 disk I
I 02 disk I
I 03 disk I
I 04 disk I
I 08 } I I magnetic tape I
I I
I FD I
I 00 all other devices I L ___ J

DPS Control Programs 29

r---,
I dd device type: I
t---~
I D3 2311 Model 11 ,
I D4 2311 Model 12 ,
I L1 1403 Printer I
I L3 2203 Printer ,
I P2 1442 Card Punch I
I P3 2520 Card Punch I
'R4 2501 Card Reader I
I R5 2520 Card Read Punch I
'R6 2560 MFCM Primary Feed ,
I R7 2560 MFCM Secondary Feed I
I T1 2415 7-track magnetic tape I
I T2 2415 9-track magnetic tape I l ___ J

r---,
I X'ss' specification for 7-track tape: I
t--------T-----T------T---------T---------~
I Code 'BPI I ParitylTranslate I Convert I
t--------+-----+------+---------+---------~
I I I I , I
I X' 10' I 200 I odd I off I on I
I X'20'1 200 I even I off I off I
I X ' 2 S" 2 0 0 I even I on I off I
I X'30'1 200 I odd I off I off I
I X' 3 s' I 200 I odd I on I off I
t--------+-----+------+---------+---------~
I X'50'1 556 I odd I off I on I
I X'60'1 556 I even I off I off I
I X'6S'1 556 I even I on I off I
I X'70'1 556 I odd I off I off I
I X'7S'1 556 I odd I on I off I
t--------+-----+------+---------+---------~
I X'90'1 soo I odd I off I on I
I X'AO'I SOO I even I off I off I
I X'AS'I SOO I even I on I off I
I X, BO' I 800 I odd I off I off I
I X'B8' I 800 I odd I on I off I l ________ L _____ L ______ L _________ L _________ J

r---,
IX'ss' specification for 9-track tape: I
t---~
I CO 1600 BPI I
I CS SOO BPI I l ___ J

r---,
I UA unassigned I
t---~
I The pointer to the corresponding PUB is I
I chang'ed to a dummy entry. I l ___ J

Examples: The following examples illustrate
how to use the ASSGN control statement.

1. / / ASSGN SYS001,X'70S',T2,X'CO'

2.

30

This control statement assigns SYS001
to a 2415 9-track magnetic tape drive
whose unit number is OS, specification
1600 bytes per inch.

// ASSGN SYS002,X'S02',D3

This control statement assigns SYS002

3

to a 2311 disk drive, Model 11, whose
unit number is 02. We assumed that
this Monitor supports at least two disk
drives. Otherwise the assignment would
have to read X'S01'.

// ASSGN SYS003,UA

This control statement releases SYS003
from a device assignment.

FILES Control Statement

The FILES control statement rewinds a reel
of magnetic tape or positions it on the
tape drive. For example, a tape can be
positioned at the beginning of the first
file or the fourth file on the reel by
using this control statement. Since the
FILES control statement is executed as soon
as it is encountered, the magnetic.ta~e
drive to which the FILES statement refers
must be correctly assigned. The formats of
a FILES control statement are:

r-----T---------T-------------------------,
IName I Operation I Operand I
r-----+---------+-------------------------~
1// IFILES ISYSxxx,nnn 1
t-----+---------+-------------------------~
1// IFILES ISYSxxx,REW I l _____ L _________ L _________________________ J

SYSxxx

nnn

REW

Symbolic device address of the tape
drive on which the reel of tape is
mounted. For the correct symbolic
device address, see the ASSGN control
statement.

A number from 1-999 representing the
number of tapemarks to be skipped,
counting from the position of the tape
when the statement is read.
(In unlabeled files, a tapemark follows

each file. In labeled files, a tapemark
also follows the label) .

Causes the specified tape to be rewound.

LABEL INFORMATION PROCESSING

Whenever you use disk or labeled tape files
in a program, you must include information
about the labels of these files in the job
control statements that precede the problem
program. The Job Control program processes
this information and supplies it to the
label processing routines of system pro­
grams.

For each disk file, you must supply at
least three control statements: VOL, DLAB,
and XTENT. For each indexed sequential

I

file, however, you must supply at least two
XTENT statements, one for the prime data
area and one for the cylinder index.

For each labeled tape file, you must
supply two control statements: VOL and
TPLAB.

The order in which these control state­
ments must be inserted is mandatory:

1. VOL

2. DLAB or TPLAB

3. XTENT for every disk area, in the order
in which these areas are to be used.

The following sections describe how to
code each of these control statements.

VOL Control Statement

You must insert a VOL control statement for
every labeled tape and disk file used in
the program. The VOL control statement
indicates the symbolic address of the
device on which the volume (disk pack or
tape reel) is mounted, and identifies the
file by name.

The £Jrmat of the VOL control statement
is:

r-----T---------T-------------------------,
IName IOperationlOperand I
t-----+---------+-------------------------~
1// IVOL ISYSxxx,filname 1 L _____ L _________ ~ _________________________ J

SYSxxx
Symbolic address of the device on which
the volume is mounted. For the correct
symbolic device address, see the ASSGN
control statement.

filname
Name of the file to be processed. May
be 1-7 characters long. The file name
is the same as the file name on an RPG
File Description Specifications form or
in the DTF file definition statement of
the IOCS.

If SYSxxx refers to a magnetic tape
drive, a TPLAB control statement is expect­
ed as the next control statement. If it
refers to a disk drive, a DLAB statement is
expected to follow.

TPLAB Control Statement

The TPLAB control statement contains infor­
mation about the tape file specified in the
VOL control statement. This information is
the same as the information contained in
fields 3-10 of the standard IBM tape file
label fully de3cribed in Appendix D.

The format of the TPLAB control state­
ment is shown below. Note that the TPLAB
statement, like all other job control
statements, is variable in format~ not
fixed. This means that you may insert more
than one blank between the name field and
the operation field, and between the opera­
tion field and the operand field. But to
help you count the columns, only one blank
has been used to separate the fields.

The format of the TPLAB control state­
ment is:

®

Col.10-27. Insert an apostrophe fol­
lowed by unique identification for file.
Seventeen characters long including
blanks.

Col.28-33. Six-byte numeric code ident­
ical to number written on exterior of
tape reel.

Col.34-37. Volume sequence number.
0001 for first volume of this file, 0002
for second volume, etc.

Col.38-41. File sequence number. 0001
for first file of multi-file set, 0002
for second file, etc.

Col.42-45. Code starting with 0001
representing which edition of the file
this is.

Col.46-47. Code starting with 01 rep­
resenting which version of the file this
is. Followed by one blank.

Col.49-53. Creation date of file (for
format see DATE control statement) •
Followed by one blank.

® Col.55-60. Expiration date of file (for
format see DATE control statement).
Followed by apostrophe.

DLAB Control Statement

The DLAB contrJl statement contains infor­
mation about the disk file specified in the
VOL control statement.

This information is similar to the
information contained in fields 1-8 of the
standard IBM disk file label fully des­
cribed in Appendix E.

DPS Control Programs 31

'l'he format of the DLAB control statement
is shown below. Note that the DLAB state­
ment, like all other job control state­
ments, is variable in format, not fixed.
This means that you may insert ~ore than
one blank between the name field and the
operation field, and between the operation
field and the operand field. But to help
you count the columns, only one blank has
been used to separate the fields.

The format of the DLAB control statement
is:

1 10 <40

0n+HBII', *1".11*I)JI4:111 tlr III II I {

Continuotion Card 16 J.4 <40

II I I I I II IIII I Illvlvlvlvl,lylyldldldl, lylyldldldl,I' •
.oil .017 eo

"2'11'1111111111111111 111111 1111111 I 111I

First Card:

CD

o
Q)

Col.9-53. Insert an apostrophe followed
by unique identification for file.
Forty-four characters long including
blanks.

Col.54. Insert decimal 1.

Col.55-62. Six-byte file serial number.
Followed by apostrophe, followed by
~omma.

Col.63-64. Insert the code P followed
by a blank if this label is to be per­
manent. Leave both columns blank if
this label is to be temporary.

Col.72. You must alway~ insert a con­
tinuation punch in this column.

Continuation Card:

®

32

Col.16-19. Must always begin in column
16. Four-byte volume sequence number
followed by a comma.

Col.71-25. Creation date of file (for
format see DATE control statement) •
Followed by a comma.

Col.27-31. Expiration date of file (for
format see DATE control statement) •

Optional code indicating which program­
ming system is used. Code up to 13
characters long. If you use this field,
you must insert a comma in col.32 and
enclose the code in apostrophes.

XTENT Control Statement

In addition to a VOL control statement and
a DLAB control statement, you must insert
at least one XTENT control statement for
sequential or direct access files and at
least two XTENT control statements for an
indexed sequential file (one for the prime
data area, one for the cylinder index) •

The format of the XTENT control state­
ment is shown below. Note that the XTENT
statement, like all other job control
statements, is variable in format, not
fixed. This means that you maj insert more
than one blank between the name field and
the operation field, and between the opera­
tion field and the operand field. But to
help you count the columns, only one blank
has been used to separate the fields.

The format of the XTENT control state­
ment is:

.oil eo

Islvlsl+1xI1111111111111 II 1111 I 1111 111I1 1111I
(Z)

Col.10.
followed
Code 1
Code 2
Code 4

Insert code for type of extent
by a comma:
data extent
independent overflow extent
cylinder-index extent

Col.12-14. Extent sequence number
000-255 followed by a comma.

Col.16-22. Begin address of extent.
Followed by a comma.

Col.24-30. End address of extent. Fol­
lowed by a comma and an apostrophe.----

Col.33-38. Volume serial number fol­
lowed by an apostrophe and a comma:--

Col.41-46. Symbolic address of drive on
which disk pack containing this extent
is mounted (see ASSGN control
sta temen t) •

Here are some additional guidelines to
help you code the XTENT control statement
correctly.

For every direct-access file and for
every sequential disk file, you must insert
at least one XTENT statement with the code
1 in column 10.

For every indexed sequential file you
must insert at least two XTENT statements.
The first statement is for the prime data

I

area. It must contain the code 1 in column
10. The second statement is for the cylin­
der index. It must contain the code 4 in
column 10.

If you specify an overflow extent (type
2) you must also specify a cylinder-index
extent (type 4). In this case the data
extents (type 1) must be on cylinder boun­
daries, that is, the begin address must be
ccccOOO and the end address must be
cccc009.

The volume serial number of the first
XTENT statement must be identical to the
file serial number of the DLAB statement
(col. 55-62),.

If several extents refer to the same
file, they must be specified in ascending
order. Example:

XTENT 1,001,0011003,0011006,'ssssss',SYS002
XTENT 1,003,0201000,0202001,'ssssss',SYSOG5

One disk volume can contain many files,
each with its own XTENT statement. The
volume serial number ('SSSSSS') must be the
same for all these files. The symbolic
device addresses (SYSxxx) may be different
for these files, but the physical device
assignments (X'cuu') in the ASSGN state­
ments must be the same. The correct
assignments in our example would be:

ASSGN SYS002,X'S01',D3
ASSGN SYS005,X'S01',D3

When you create a disk file and specify
its extents, don't attempt to overwrite the
volume label, the label information area
(LIA), the Volume Table of Contents (VTOC),
or the alternate track area.

The volume label described in Appendix C
always begins on cylinder 0, track 0 of the
disk pack. The alternate track area always
begins on cylinder 0, track 1 and extends
over three tracks. The extents occupied by
the LIA and the VTOC depend on how you
initialized your disk pack.

If you attempt to overwrite these areas,
Job Control will print a halt and issue a
warning message.

Figure 12 shows you several examples of
how to code VOL, TPLAB, DLAB, and XTENT
control statements. If you study these
examples, what we discussed in this section
will become clearer.

PERMANENT AND TEMPORARY DISK LABEL
INFORMATION

For every disk file to be opened during a
job, the pertinent label information must

be available in the label information area
of the system disk pack so that the label­
processing routines can check or create the
file labels in the job that follows.

The disk label information you supply by
means of job control statements may be
either temporary or permanent.

Permanent label information is located
at the beginning of the label information
area. It remains in that area until it is
deleted by the DELET control statement
described later. Temporary label
information immediately follows permanent
label information in the label information
area. It is cleared in each s~ccessive Job
Coritrol run.

Permanent label information as well as
temporary label information may be added to
the label information area in any Job Con­
trol run.

To identify permanent label information,
the DLAB control statement must contain the
code P~ in the two-character field follow­
ing the file serial number. If both per­
manent and temporary label information
control statements are specified in the
same Job Control run, the control state­
mentsproviding permanent label information
must precede those providing temporary
label information. The sequence is checked
and a halt occurs when a sequence error is
detected, causing the Job Control run to be
discontinued.

The file names of different label infor­
mation blocks in the label information area
must never be identical. The Job Control
program checks the file names of any label
information to be added against the file
names of all permanent label information
blocks already located in the label infor­
mation area. If the file name of the label
information to be added differs from the
file name of all existing permanent label
information blocks, the new label informa­
tion is added adjacent to the last label
information block. If the new label infor­
mation has the same file name as a perman­
ent label block, a halt occurs. The opera­
tor then has the option of ignoring the new
label information or else overwriting the
old permanent label block, but only if the
new label information is to be stored per­
manently. If the new label information is
to be stored temporarily, the Job Control
run is discontinued.

We recommend that you use permanent
label information (1) in cases where a job
that processes the same disk file is exe­
cuted frequently, and (2) for inquiry pro­
grams.

DPS Control Programs 33

r--,
11 1 2 3 4 5 6 7 81
1 0 0 0 0 0 0 0 01
t--~
1// JOB FIRST 1
1// ASSGN SYS001,X'708',T2 1
/ / FILES SYSOO 1, 1 1
// VOL SYS001, KEY 1
// TPLAB 'KEY TAPE FILE 00038400010001000102 65085 66085' 1
// EXEC 1

//
//
//
//
//

JOB
ASSGN
ASSGN
VOL
DLAB

SECOND
SYS002,X'801',D3
SYS005,X'801',D3
SYS002,INPUT
'INPUT DATA SET

MULTI-VOL, SINGLE DRIVE
lSSSSSS' ,P C

1
1

//
//
//

XTENT
XTENT
XTENT

0001,65032,66033,'0000000000000'
1,001,0011003,0011006,'SSSSSS',SYS002
1,003,0201000,0202009,'SSSSSS',SYS005
1,008,0050008,0060006,'TTTTTT',SYS002

// EXEC

// JOB THIRD
// ASSGN SYS 0 19, X' 802' , D3
// VOL SYS002,OUTPUT MULTI-VOL, TWO DRIVES
// DLAB 'OUTPUT DATA SET 1SSSSSS', C

0001,65032,66033,'0000000000000'
// XTENT 1,004,0023001,0023001,'SSSSSS',SYS005
// XTENT 1,099,0050008,0060006,'A12BCZ',SYS019

1// EXEC l ________________ . ___ _

eFigure 12. Examples of VOL, TPLAB, DLAB, and XTENT Control Statements

DELET Control Statement

You have the option of deleting permanent
labels from the label information area by
means of the job control statement:

r----T---------T--------------------------,
INamel Operation 1 Operands 1

.----+---------+--------------------------~
1// IDELET 1 [filenamel,filename2, •••] 1 l ____ ~ _________ ~ __________________________ J

If the operand field is blank, all per­
manent labels will be deleted from the
label information area.

If the operand field contains a file
name, the permanent label information for
that file will be deleted.

The DELET control statement enables you
to make room for new labels if the label
information area is full, or if the file to
which the label refers has expired.

You may insert the DELET control state­
ment anywhere between the JOB and EXEC
statements, but (1) not after the statement
group VOL, DLAB, XTENT, and (2) not between
VOL and TPLAB.

34

DSPLY Control Statement

You have the option of displaying all per­
manent labels by using the contrcl state­
ment:

r----T---------T--------------------------,
I Name 1 Operationl Operand I
.----+---------+--------------------------~
1// IDSPLY I 1 l ____ ~ _________ ~ __________________________ J

You may insert the DSPLY control state­
ment anywhere between the JOB and EXEC
control statements, but (1) not between
VOL, DLAB, and XTENT, and (2) not between
VOL and TPLAB.

The DSPLY statement is executed as soon
as it is encountered. The information
displayed consists of the file name, the
symbolic device address, the expiration
date, the extent type, and the extents of
the pertinent file.

The DSPLY statement enables you to
determine which label information is per­
manent and to check the expiration date of
your files.

I

Disk Initial Program Loader (IPL)

At the beginning of a system run, the disk
Initial Program Loader (IPL) loads the
Monitor from the system disk pack into main
storage. The Monitor then remains in main
storage throughout the system run in order
to control processing.

IPL is an IBM-supplied program in two
parts. Part 1 consists of three punched
cards, Part 2 resides on the system disk
pack on cylinder 0, track O.

The card deck required to initiate pro­
gram loading is shown in Figure 13.

./

(II ASSGN SYSROR, ...

01 ASSGN SYSRES, •••

I"Oisk IPL Part I -

Figure 13. Card Deck Required to Initiate
Program Loading

The first three cards are Part 1 of IPL.
Then follow the ASSGN control statements
for SYSRES and SYSRDR.

You load the first card by setting the
address switches on the CPU console to an
even address lower than X'1000' and press­
ing the Load key. The cards that follow
are automatically loaded to a fixed loca­
tion in main storage.

After IPL Part 1 is loaded, it loads IPL
Part 2 from the system disk pack into main
storage. IPL Part 2 then loads the Monitor
into lower main storage.

The IPL then fills the logical unit
blocks associated with SYSRES and SYSRDR
and transfers control to the Fetch routine
of the Monitor, which caals the Job Control
program to begin processing the job control
statements for the first job to be execut­
ed. After this, the Monitor remains in
main storage throughout the current system

If a system run is discontinued (not
temporarily suspended by a PAUSE control
statement, or by one job being
discontinued), the Initial Program Loader
must be used to re-initiate system opera­
tion, that is, to initiate the subsequent
system run.

Card Initial Program Loader (IPL)

The IPL program for the card-resident sys­
tem is generated together with the card­
resident Job Control program and the card­
resident Monitor program.

The card-resident IPL program loads the
card-resident Monitor into main storage.

Figure 14 shows you how to arrange the
input deck to initiate program loading.
Place the generated IPL deck on the card
reading device to be assigned to SYSRDR •
If you wish to change the generated
assignments included in the IPL deck,
replace the ASSGN cards for SYSRES and
SYSRDR. If you do not wish to process disk
file labels, you must unassign SYSRES (//
ASSGN SYSRES,U~ •

run. The Job Control program is called .Figure 14. Typical Input Deck for Card­
Resident System automatically after each job.

DPS Control Programs 35

Libraries and Relocatable Area

As an introduction to the DPS service
programs described in this publication,
this section discusses the core-image
library, the macro library, and the reloca­
table area, all three of w~ich are allocat­
ed, managed, and maintained by the DPS
service programs.

Core-Image Library

This section explains the purpose, organi­
zation, and use of the core-image library.

PURPOSE OF THE CORE-IMAGE LIBRARY

All executable programs are permanently
stored in the core-image library. 'I'hese
programs are in core-image format; that is,
they can be loaded directly into main stor­
age by the Fetch routine and executed with­
out preliminary cross-referencing and relo­
cation.

You can store in the core-image library
all IBM-supplied programs that you need for
the operation of your system. You can also
store problem programs there that you run
frequently. Once the problem program is
stored, each phase can be executed either
by itself or in combination with other
phases.

A problem program goes through the fol­
lowing states before it is placed into the
core-image library.

1. A problem program is written as a set
of source statements in RPG or Assem­
bler language or PL/I. To make it
easier to write and test large pro­
grams, a program in Assembler language
can be written in parts, each part
conSisting of one or more complete
control sections. Such parts are
called source modules. An Assembler
source program may consist of one or
more source modules. An RPG source
program can be only one source module.

2. The Assembler translates the source
modules into a set of object statements
(machine-language statements). The set

of object statements, which again is
made up of one or more complete control
sections, is called an object module.
An object program can consist of one or
more object modules. An RPG compila­
tion produces one object module with
all linkages resolved.

3. Then the Linkage Editor processes the
object module, performing cross­
referencing and relocation where
necessary. The output of the Linkage
Editor is called an executable program
and consists of one or more program
phases.

4. Programs which are to be disk resident
are then placed in the core-image
library by means of the Core-Image
Maintenance program.

The core-image library is also used
internally by system programs to temporari­
ly store an object module before it is
executed. This special application is
described in more detail in the section Use
of the Core-Image Library.

ORGANIZATION OF THE CORE-IMAGE LIBRARY

The core-image library is stored in the
library section of the system disk pack.
Since the program phases in the library are
variable in length and random in order, a
core-image directory is used to record the
location of each program phase in the core­
image library. The phase-name entries in
the core-image directory are arranged
according to the collating sequence. A
Library Management program (CMAINT) updates
the directory whenever a phase is added to
or deleted from the core-image library.

There is one 30-byte entry in the core­
image directory for each program phase in
the core-image library. Each entry
contains the following information:

1. Identifier for permanent or temporary
phase.

2. Name of the phase.

3. Starting disk address of the phase.

4. Starting main storage address for load­
ing the phase.

5. Control transfer address.

6. Number of sectors completely occupied
by the phase. (Each sector consists of
270 bytes, and there are 10 sectors to
a track) •

7. Number of bytes occupied by the phase
in the last sector.

8. Version identification of the phase.

36 Dotted line flags planning information

I

The Fetch routine uses the core-image
directory to determine where a phase to be
loaded is located, how much storage it will
occupy, and where it is to be placed in
main storage.

USE OF THE CORE-IMAGE LIBRARY

The JOB and EXEC control statements and the
FETCH macro instruction are used to ini­
tiate the loading of program phases from
the core-image library into main storage
for execution. The JOB and EXEC control
statements are explained in the section Job
Control Program; the Fetch routine called
by the FETCH macro instruction is explained
in the section Monitor Program.

The diagram in Appendix J shows the
various methods of using the JOB and EXEC
statements in relation to the DPS.

If a source module is to be both assem­
bled and executed, the following control
statements are required.

//
//

JOB
EXEC

ASSEMB,program

This module is then temporarily included
in the core-image library and can only be
executed immediately.

If a source module is to be both com­
piled and executed, the following control
statements are required.

//
//

or

//
//

JOB
EXEC

JOB
EXEC

RPG,program

PL1,program

This module is then temporarily included
in the core-image library and can only be
executed immediately.

If an object module stored on a medium
other than the system disk pack is to be
executed, the following control statements
are required.

//
//

JOB
EXEC

program
LOADER

This module is then temporarily included
in the core-image library and can only be
executed immediately.

If a vhase is a permanent item of the
core-image library and is a complete pro­
gram or the first phase of a multiphase
program, the following control statements
are required.

//
//

JOB
EXEC

phasnam

If a phase is a permanent item of the
core-image library and is the second or a
subsequent phase of a multiphase program,
the following macro instruction must be
used in the text of the preceding phase.

FETCH phasnam

Within a job, either permanent or tem­
porary phases can be loaded from the core­
image library, not both. Mixed fetching of
permanent and temporary phases is not
possible.

Each phase can consist of up to nine
subphases. Each subphase can be called
into main storage only by means of the
FETCH macro instruction without an operand.
This loads the next consecutive subphase.

Phases of programs compiled by the PL/I
compiler -- called segments -- are loaded
by issuing the PL/I 3tatement CALL OVERLAY.

Macro Library

This section explains the purpose, organi­
zation, and use of the macro library.

PURPOSE AND USE OF THE MACRO LIBRARY

A macro definition is a sequence of Assem­
bler and macro-language statements that is
given an identifier and placed into the
macro library. A macro instruction in an
Assembler-language program causes the gen­
eration of a sequence of Assembler-language
statements depending on parameters which
are specified as operands in the macro
instruction.

The macro library may contain IBM­
supplied macro definitions that refer to
the Monitor and/or the logical IOCS, and
user-written macro definitions.

Macro definitions must be written in the
macro language, which is an extension of
the Assembler language. The macro language
is described in the publication IBM
System/360 Model 20, Disk and Tape
Programming Systems, Assembler Language,
Form C24-9002.

ORGANIZATION OF THE MACRO LIBRARY

The macro library is stored in the library
section of the system disk pack. A macro
directory is used to record the location of
macro definitions in the macro library.
The macro-name entries in the macro direc-

Dotted line flags planning information Libraries and Relocatable Area 37

tory are arranged according to the collat­
ing sequence.

The macro directory consists of 15-byte
entries, one entry for each macro defini­
tion in the library. The entry contains
the following information:

1. Macro name.

2. Starting disk address of the macro
definition.

3. Number of sectors occupied by the macro
definition. (Each sector consists of
270 bytes, and there are 10 sectors to
a track.)

4. Number of bytes used in the last sec­
tor.

5. Version and modification level of the
macro definition.

The Assembler program uses the macro
directory to retrieve the macro definition
from the library when the program that
contains the macro instruction is assem­
bled.

Ralocatabla Araa

The relocatable area is located on the
system disk pack. You can allocate its
size through the Library Allocation Organi­
zation program (AORGZ).

The relocatable area is used as work
area by the RPG, the Linkage Editor pro­

: grarn~ and by PL/I.

When you assemble, compile, or link-edit
a problem program, the object program ic:
stored in the relocatable area. This ena­
bles you to perform additional job steps,
such as cataloging the object program in
the core-image library, with a minimum of
card handling.

You also have the option of using the
relocatable area as input area for the
Linkage Editor and Core-Image Maintenance
programs. These options are described in
the sections that deal with these programs.

The diagram in Appendix J shows several
ways in which the relocatable area may be
used.

38 Dotted line flags planning information

I,

This section describes the functions of the
DPS service programs, and shows you what
job and program control statements to use
in order to perform a certain task.

In the first part, the service programs
that deal with the libraries and director­
ies are groupEd together. These are: the
Directory Service program (DSERV), the
Core-Image Service program (CSERV), t~he
Macro Service program (MSERV), the Core­
Image Maintenance program (CMAINT), t~he
Macro Library Maintenance program (MMAINT),
and the Library Allocation Organization
program (AORGZ).

In the second part, individual system
programs that will help you operate the
disk-resident system are described one by
one. These are: the Physical and Logical
Unit Tables Service program (PSERV), the
Load System Disk program (LDSYS), the
Backup and Restore program (BACKUP), the
Linkage Editor program (LNKEDT), and the
Copy System Disk prograffi (COPSYS).

The boxes drawn with heavy black lines
contain the job control and program control
statements you need to run the program in
qUestion. All statements that require
further explanation are described in detail
Delow these boxes.

Diractory Sarvica Program (DSERV)

The Directory Service program (DSERV) lists
the contents of the system directory, the
core-image directory, and the macro direc­
tory on the printer. Each directory entry
is listed on a separate line.

JOB CONTROL STATEMENTS

The job control statements required for a
DSERV run are:

//'LOG
// JOB
// DATE
// ASSGN SYSLST
// ASSGN SYSLOG
// EXEC

optional
required
1st job after IPL only
required
optional
required

JOB Control Statement

The JOB control statement used to request a
directory service function has the follow­
ing format:

DPS Service Programs

r-----T---------T-------------------------,
IName IOperationlOperand I
.-----t---------t-------------------------i
1// IJOB I DSERV I l _____ L _________ L _________________________ J

DSERV
---rDdicates that one or more directories

are to be listed.

ASSGN Control Statements

You must assign SYSLST to the printer so
that the directories can be listed. We
recommend that you also assign SYSLOG to
the printer. If these assignments are
already effective, you need not submit them
again.

The remaining job control statements are
not described here. You can £ind their
formats in the section Job Control Program.

PROGRAM CONTROL STATEMENTS

The program control statements required for
a DSERV run are:

1// DSPLY
// END

required
required

DSPLY Control Statement

The DSPLY control statement specifies which
directories are to be listed. One, two, or
all three of the directories can be speci­
fied. The DSPLY control statement has one
of the following formats:

r-----T---------T-------------------------,
IName I Operation I Operands I
r-----t---------t-------------------------~
1// I DSPLY I ALL I
r-----t---------t-------------------------i
1// I DSPLY I SD [, CD] [, MD] I l _____ L _________ L _________________________ J

ALL
---Indicates that all three directories are

to be listed.

SD

CD

Indicates that the system directory is
to be listed.

Indicates that the core-image directory
is to be listed.

DPS Service Programs 39

MD
Indicates that the macro directory is to
be listed.

When two or three directories are speci­
fied on one DSPLY control statement, the
order in which they are specified is not
significant. You may also use separate
control statements.

END Control Statement

The format of the END control statement is

r----T---------T--------------------------,
INamel Operation I Operand I
~----+---------+--------------------------~
1// lEND I I L ____ ~ _________ ~ __________________________ J

Figure 15 is an example of using job and
program control statements to list the
system directory and the macro directory.

II END

II DSPLY SD,MD

II EXEC

II ASSGN SYSLST/X'400',Ll L JOB DSERV
...... __.._--required only if

not yet assigned

.Figure 15. Exam~le of Using Control State­
ments to Request Directory
Service Functions

Core-Image Service Program (CSERV)

The Core-Image Service program (CSER~
lists the contents of the core-image
library on the printer, or writes or punc­
hes the contents on the device assigned to
SYSOPT.

When the contents are listed, the prin­
ter lists the entries in the core-image
directorJ, and then lists each phase in the
core-image library together with its sub­
phases in hexadecimal notation.

When the contents are punched or writ­
ten, the output consists of a card deck or
a card-image file on magnetic tape or disk,
depending on your specifications.

You can use the output of a CSERV run as
input to the CMAINT and LDSYS programs.

40

JOB CONTROL STATEMENTS

The job control statements required for a
CSERV run are:

// LOG optional
// JOB required
// DATE 1st job after IPL only
// ASSGN SYSOPT depends on job
// ASSGN SYSLST depends on job
// ASSGN SYSLOG optional
// VOL t // DLAB depends on job
// X'I'EN'I' j
// OPTN TES recommended for tapes
// EXEC reguired

JOB Control Statement

The JOB control statements used to request
a core-image service function has the fol­
lowing format:

r----T---------T--------------------------,
I Name I Operationl Operand I
~----+---------+--------------------------~
1// IJOB ICSERV I L ____ L _________ L __________________________ J

CSERV
---rTIdicates that one or more phases, with

their subphases, or the entire contents
of the core-image library are to be
listed, written, or p~nch~d.

ASSGN Control Statements

To punch or write the output, assign SYSOPT
to a card punching device, a magnetic tape
drive, or a disk drive.

To obtain a listing of the output,
assign SYSLST to the printer.

We recommend that you also assign SYSLOG
to the printer.

If these assignments are still effec­
tive, you need not submit them again.

VOL, DLAB, XTENT Control Statements

You must supply disk label information if
SYSOPT refers to a disk drive. The file
name you insert must be SERVO.

The remaining job control statements are
not described here. You can find their
formats in the section Job Control Program.

PROGRAM CONTROL STATEMENTS

The program control statements required for
a CSERV run are:

I

// DSPLY t // PUNCH depends on job
// IPL ~ // MONTR
// END required

DSPLY Control Statement

The DSPLY control statement specifies which
phase is to be listed. The DSPLY control
statement has one of the following formats:

r----T---------T--------------------------,
1 Name 1 Operation 1 Operands 1
~----+---------+--------------------------~
1// 1 DSPLY 1 ALL 1
~----+---------+--------------------------~
1// 1 DSPLY 1 phase 1
~----+---------+--------------------------~
1// 1 DSPLY Iphase.ALL 1
~----+---------+--------------------------~
1// 1 DSPLY 1 1 L ____ i _________ i __________________________ J

ALL
---Indicates that all phases are to be

listed.

phase
Name of the phase to be listed together
with its sUbphases. The name may be up
to six characters long. The first char­
acter must be alphabetic, the others may
be alphabetic or numeric.

phase.ALL
Indicates that all phases whose names
begin with the characters preceding .ALL
are to be listed. The name may be up to
six characters long.

No Operand
Indicates that another control statement
follows immediately. This control
statement must have one of the following
formats:

r----T---------T-~------------------------,
INamel Operation 1 Operand 1

.----+---------+--------------------------~
1// IIPL 1 1
~----+---------+--------------------------~
1// 1 MONTR 1 1 l ____ i _________ i~ _________________________ J

IPL
---Indicates that the disk-resident IPL

program is to be listed.

MONTR
-----rndicates that the disk-resident Nonitor

program is to be listed together with
its Job Closing routines (SYSEND) and
transient phases ($$$ •••).

PUNCH Control Statement

The PUNCH control statement specifies which
phase is to be punched into cards or writ­
ten onto disk or magnetic tape. The PUNCH
statement has one of the following formats:

r----T---------T--------------------------,
INamelOperationlOperands 1

.----+---------+--------------------------i
1// 1 PUNCH 1 ALL 1
t----+---------+--------------------------~
1// 1 PUNCH 1 phase 1
.----+---------+--------------------------i
1// 1 PUNCH Iphase.ALL 1
.----+---------+--------------------------i
1// 1 PUNCH 1 1 l ____ i _________ i __________________________ J

ALL
---Indicates that all phases are to be

punched or written.

phase
Name of the phase to be punched or writ­
ten together with its sUbphases. The
name may be up to six characters long.
The first character must be alphabetic,
the others may be alphabetic or numeric.

phase.ALL
Indicates that all phases whose names
begin with the characters preceding .ALL
are to be punched or written. The name
may be up to six characters long.

No Operand
Indicates that another control statement
follows immediately. This control
statement must have one of the following
formats:

r----T---------T--------------------------,
lNamelOperationlOperand 1

.----+---------+--------~-----------------i
1// IIPL 1 1
.----+---------+--------------------------~
1// 1 MONTR 1 1 l ____ i _________ i __________________________ J

IPL
---Indicates that the disk-resident IPL

program is to be punched or written.

MONTR
-----rndicates that the disk-resident Monitor

program is to be punched or written
together with its Job Closing routines
(SYSEND) and transient phases ($$$ •••).

PUNCH statements for the IPL and the
Monitor program must precede all other
PUNCH statements. If both IPL and MONTR
statements are to be used, IPL must be
specified before MONTR.

DPS Service Programs 41

END Control Statement

The format of the END control statement is:

r----T---------T--------------------------,
INamelOperationlOperand I
~----+---------+--------------------------~
1// lEND I I L ____ ~ _________ ~ __________________________ J

Figure 16 is an example of using job and
program control statements to list and
punch the contents of the core-image
library.

r; I DSPLY PROG2

'II PUNCH PROGl

VI ASSGN SYSLST, X' 400' , L 1

VI ASSGN SYSOPT, X' 300' ,P2

r; I JOB CSERV

• Figure 16. Example of Using Control State­
ments to Request Core-Image
Service FUr.ctions

OUTPUT ON SYSOPT

The output of the CSERV program on SYSOPT
contains the following cards or card-image
records:

~roqram

II IPL identification
TXT cards
END card

Monitor
---I-;-MONTR identificationlfeatures

TXT cards
END card
all transient and Job Closing phases
belonging to Monitor

Other phases
II CATAL
PHASE card
TXT cards
END card

42

TXT cards for all subphases
END card

The formats of these cards are described
in the section Linkage Editor Program.

The CSERV program writes or punches an
EOF record at the end of the output file.

Output

card deck
magnetic tape
disk

EOF Record

1* and /1 END
1/ END and tapemark
/*

Macro Service Program (MSER V)

The Macro Service program (MSERV) lists the
contents of the macro library on the prin­
ter, or writes or punches the contents on
SYSOPT.

When the contents are listed, the prin­
ter lists the entries in the macro directo­
ry, and then lists each macro definition
either in internal format or in source
format, whichever you specify.

When the contents are written or
punched, the output consists of a card deck
or a card-image file on magnetic tape or
disk, depending on your specifications.

You can use the output of an MSERV run
as input to the MMAINT program •

JOB CONTROL STATEMENTS

The job control statements required for an
MSERV run are:

/1 LOG optional
/1 JOB required
/1 DATE 1st job after IPL only
II ASSGN SY$lOPT depends on job
II ASSGN SYSLST depends on job
/1 ASSGN SYSLOG optional
/1 ASSGN SYSOOOJ
II VOL depends on job
II DLAB
II XTENT
II OPTN TES recommended for tapes
/1 EXEC required

JOB Control Statement

The JOB control statement used to request a
macro service function is:

r----T---------T--------------------------,
INamelOperationlOperand I
~----+---------+--------------------------~
III IJOB I MSERV I L ____ ~ _________ ~ __________________________ J

I

MSERV
---rlldicates that one or more macro defini­

tions or the entire contents of the
macro library are to be listed, written,
or punched.

ASSGN Control Statements

To punch or write the output, assign SYSOPT
to a card punching device, a magnetic tape
drive, or a disk drive.

If the output is to be in source format,
assign SYSOOO to a disk drive.

To obtain a listing of the output,
assign SYSLST to the printer. v~e recommend
that you also assign SYSLOG to the printer.

If these assignments are still effec­
tive, you need not submit them again.

VOL, DLAB, XTENT Control Statements

You must supply disk label information if
SYSOPT refers to a disk drive. The file
name you insert must be SERVO.

If the output is to be in source format,
you must assign a work area with the file
name WORKM to SYSOOO, and supply the cor­
responding disk label information.

The remaining job control statements are
not described here. You can find their
correct format in the section Job Control
Program.

PROGRAM CONTROL STATEMENTS

The program control statements required for
an MSERV run are:

// DSPLY 1 // PUNCH
// INTERN) depends on job
// SOURCE
// END required

DSPLY Control Statement

The DSPLY control statement specifies which
macro definition is to be listed. The
DSPLY control statement has one of the
following formats:

r----T---------T--------------------------,
1 Name 1 Operation 1 Operand 1
t----+---------+--------------------------~
1// 1 DSPLY 1 ALL 1
t----+---------+--------------------------~
1// 1 DSPLY 1 macro 1
t----+---------+--------------------------~
1// 1 DSPLY Imacro.ALL 1 L ____ ~ _________ ~ __________________________ J

ALL
---Indicates that all macro definitions are

to be listed.

macro
Name of the macro definition to be list­
ed. The name may be up to five charac­
ters long. The first character must be
alphabetic, the others may be alphabetic
or numeric.

macro.ALL
Indicates that all macro definitions
whose names begin with the characters
preceding .ALL are to be listed. The
name may be up to five characters long.

PUNCH Control Statement

The PUNCH control statement specifies which
macro definition is to te punched into
cards or written onto disk or magnetic
tape. The PUNCH statement has one of the
following formats:

r----T---------T--------------------------,
jNamel Operation 1 Operands 1

t----+---------+--------------------------~
1// 1 PUNCH IALL 1
t----+---------+--------------------------~
1// 1 PUNCH 1 macro 1
t----+---------+--------------------------~
1// 1 PUNCH Imacro.ALL 1 L ____ L _________ ~ __________________________ J

ALL
---Indicates that all macro definitions are

to be punched or written.

macro
~me of the macro definition to be

punched or written. The name may be up
to five characters long. The first
character must be alphabetic, the others
may be alphabetic or numeric.

macro.ALL
Indicates that all macro definitions
whose names begin with the characters
preceding .ALL are to be punched or
written. The name may be up to five
characters long.

INTERN Control Statement

The INTERN control statement specifies that
the macro definitions named in the follow­
ing control statements up to the next
SOURCE control statement are to be listed,
written, or punched in internal format. By
internal format we mean the format in which
the macro definition is stored in the macro
library.

The INTERN control statement has the
format:

DPS Service Programs 43

r----T---------T--------------------------,
INamelOperationlOperand I
t----+---------+--------------------------~
1// I INTERN I I l ____ ~ _________ ~ __________________________ J

If you want to obtain all macro defini­
tions in internal format in an MSERV job,
you don't have to insert the INTERN control
statement. The internal format will be
automatically assumed even if you leave the
control statement out.

However, if you want one macro defini­
tion in source format and the following
macro definitions in internal format, you
must insert the INTERN control statement
immediately before the DSPLY or PUNCH con­
trol statement that refers to the second
macro definition. Example:

// SOURCE
// DSPLY MACR1
// INTERN
// PUNCH MACR2
/ / DSPLY t'iACR3

When you wish to punch macro definitions
for backup purposes, we recommend that you
specify the internal format. Fewer cards
will be punched, and both the current MSERV
job and the MMAINr job you may wish to run

END Control Statement

The format of the END control statement is:

r----T---------T--------------------------,
INamel Operationl Operand 1

t----+---------+--------------------------~
1// lEND I 1 l ____ ~ _________ ~ __________________________ J

Figure 17 is an example of using job and
program control statements to list and
punch the contents of the macro library.

/,1 END

/,1 PLNCH MACR2

'II INTERN

'II DSPL Y MACR2

r;; PLNCH MACRl

later will be much faster. .Figure 17. Example of Using Control State­
ments to Request Macro Service
Functions

SOURCE Control Statement

The SOURCE control statement specifies that
the macro definitions named in the follow­
ing control statements up to the next
INTERN control statement are to be listed,
written, or punched in source format. By
source format we mean the macro language in
which the macro definition was written.

The format of the SOURCE control state­
ment is:

r----T---------T--------------------------,
INamel Operation 1 Operand I
~----+---------+--------------------------~
1// 1 SOURCE I 1 l ____ ~ _________ ~ __________________________ J

If you want to obtain a macro definition
in source format, insert the SOURCE control
statement immediately before the first
DSPLY or PUNCH control statement that
refers to this macro definition.

We recommend that you specify the source
format if you wish to use the output list­
ing or output card deck to modify the macro
definition.

44

OUTPUT ON SYSOPT

The output of the MSERV program contains
the following cards or card-image records
for each macro definition:

in internal format
// INCLD
MACRO card
IMT cards
MND card

For the format of these cards, see the
section Macro Maintenance Program.

In source format
// CATAL
MACRO header statement
prototype statement
model statements
conditional assembly instructions
MEND trailer statement

For the format of these cards, see the
SRL publication IBM System/360 Model 20,
Disk and Tape Programming Systems,
Assembler Language, Form C24-9002.

1-

The MSERV program writes or punches an
EOF record at the end of the output file.

Output

card deck
magnetic tape
disk

EOF Record

// END
tapemark
/*

Core-Image Maintenance Program (CMAINT)

The Core-Image Maintenance program (CMAINT)
maintains the core-image library. It adds
any number of phases to, and deletes any
number of phases from, the core-image
library in one job.

JOB CONTROL STATEMENTS

The job control statements required for a
CMAINT run are:

// LOG optional
// JOB required
// DATE 1st job after IPL only
// ASSGN SYSIPT depends on job
// ASSGN SYSLST depends on job
// ASSGN SYSLOG optional
// VOL } // DLAB depends on job
// XTENT
// OPTN TES recommended for tapes
// FILES may be required
// EXEC required

JOB Control Statement

The format of the JOB control statement is:

r----T---------T--------------------------,
1 Name 1 Operation 1 Operand 1

~----+---------+--------------------------~
1// IJOB ICMAINT 1
l ____ L _________ L __________________________ J

CMAINT
Identifies the operation as a mainten­
ance operation on the core-image
library.

ASSGN Control Statements

If the input to the CMAINT program is not
in the relocatable area, you must assign
SYSIPT to an input device so that the phase
to be added can be read. This input device
can be a card reading device, a magnetic
tape drive, or a disk drive.

If the input to the CMAINT program is
the output of an Assembler run, an RPG
compilation, or a Linkage Editor run, this
input can be read directly from the reloca-

table area on the system disk pack. In
this case, SYSIPT need not be assigned.

The assignments of SYSLST and SYSLOG are
optional, but we recommend that you use
them.

If these assignments are already effec­
tive, you need not submit them again.

VOL, DLAB, XTENT Control Statements

You must supply disk label information if
SYSIPT refers to a disk drive. The file
name you use must be SYSIF.

FILES Control Statement

If the input text is stored on magnetic
tape, you must position the tape to the
first record of the phase to be added, or
to the beginning of the volume or header
label that precedes the phase. Use the
FILES control statement for this purpose if
necessary.

EXEC Control Statement

The EXEC control statement required for the
CMAINT program has one of the two following
formats:

r----T---------T--------------------------,
INamelOperationlOperands I
t----+---------+--------------------------~
J// I EXEC I I
~----+---------+--------------------------~
1// IEXEC IR I
l ____ L _________ L __________________________ J

No operand

R

The input is read from the device
assigned to SYSIPT.

The input is an object program read from
the relocatable area.

The remaining job control statements are
not described here. You can find their
correct formats in the section Job Control
Program.

PROGRAM CONTROL STATEMENTS

The program control statements required for
a CMAINT run are:

//
//
//
//
//

DELET t CATAL
IPL
MONTR
END

depends on job

required

DPS Service Programs 45

DELET Control Statement

The DELET control statement is used to
specify which phase is to be deleted from
the core-image library. The DELET control
statement has one of the following formats:

r----T---------T--------------------------l
INamel Operation I Operand 1

~----+---------+--------------------------1
1// IDELET I phase 1
~----+---------+--------------------------1
1// IDELET Iphase.ALL 1 L ____ ~ _________ ~ __________________________ J

phase
The name of the phase that is to be
deleted from the core-image library.

phase.ALL
Indicates that all phases whose names
begin with the characters preceding .ALL
are to be deleted from the core-image
library. The name may contain from one
to six characters.

Phases whose names begin with SYS or $$$
must not be deleted.

CATAL Control Statement

The CATAL control statement is used to add
a phase to the core-image library. The
text of the new phase is read from the
system input device {SYSIPT) to which a
card reading device, a magnetic tape drive,
or a disk drive may be assigned. The CATAL
control statement has one of the following
formats:

r----T---------T--------------------------,
INamel Operation 1 Operand 1

~----+---------+--------------------------~
1// ICATAL 1 phase 1
~----+---------+--------------------------1
1// ICATAL 1 1 L ____ ~ _________ ~ __________________________ J

phase

46

The name of a particular phase to be
read f~om the syster,l input device
(SYSIPT). The name may contain up to
six characters. If SYSIPT and SYSRDR
are assigned ~o different devices this
form of the CATAL statement causes the
CMAINT program to scan the input medium
for a PHASE statement with a matching
name. The phase named is then added to
the core-image library. If SYSIPT and
SYSRDR are assigned to the same card
reading device the operand of the CATAL
statement is ignored.

If more than one statement of this for­
mat is used, the statements must be in
the same order as the corresponding
phases on the input medium.

No Operand
Indicates that the text of the next
sequ~ntial phase is to be read from the
system input device (SYSIPT).

When phases are to be added to the core­
image library, a PHASE card is required in
addition to the TXT cards produced by the
Assembler or RPG programs. The PHASE card
provides information for the CMAINT pro­
gram. The format of the PHASE card is
described in the section Linkage Editor
Program. If SYSIPT and SYSRDR are not
assigned to the same card reading device,
the input on SYSIPT must be terminated by
the /* card.

IPL Control Statement

The IPL control statement is used to
replace the Initial Program Loader on the
system disk pack. The IPL control state­
ment indicates that the card deck contain­
ing the new IPL program is to be read on
the device assigned to SYSIPT. The IPL is
loaded into its fixed location on the sys­
tem pack (cylinder 0, track 0). The IPL
control statement has the following format:

r----T---------T--------------------------,
I Name I Operation 1 Operand I

,----+---------+--------------------------1
1// IIPL I 1 L ____ ~ ______ ~ __ ~ __________________________ J

If both the IPL and the Monitor are to
be replaced, the IPL statement must precede
the MONTR statement and every additional
CATAL statement.

MONTR Control Statement

The MONTR control statement is used to
replace the Monitor program on the system
disk pack. The MONTR control statement
indicates that the card deck containing the
new Monitor program and its transient and
Job Closing routines, if any, is to be read
on the device assigned to SYSIPT. The
Monitor is loaded into its fixed location
on the system disk pack (beginning at sec­
tor 1, track 0 of cylinder 4) , and the
corresponding transient and Job Closing
routines, if any, are included in the core­
image library. The MONTR control statement
has the following format:

r----T---------T--------------------------,
INamelOperationlOperand I
t----+---------+--------------------------~
1// 1 MONTR 1 I L ____ L _________ L __________________________ J

The MONTR statement must precede every
additional CATAL statement.

I

END Control Statement

The format of the END control statement is:

r----T---------T--------------------------,
INamelOperationlOperand I
~----+---------+-------------+------------i
1// 1 END 1 I l ____ ~ _________ ~ __________________________ J

Figure 18 shows an example of using job
and program control statements in a
maintenance operation on the core-image
library.

II END

I I JOB CMAINT

eFigure 18. Example of Using Control State­
ments to Request a Core-Image
Library Maintenance Function

Rules for Subphases

Normally, a phase that is to be placed into
the core-image library must consist of one
or more complete control sections. The end
of a phase is indicated to the CJ:vlAIN,]~ pro­
gram by means of the PHASE statement that
precedes the subsequent phase, or by means
of an END control statement, or by means of
an EOF record (/* or tapemark) •

Normally, only one END or XFR statement
appears within one phase. However, you may
insert up to nine XFR or END cards into the
TXT cards of one phase. This allows you to
build additional subphases within one con­
trol section. The following guidelines
will help you in building subphases:

1. Literals must be defined within the
phase or subphase in which they are
required.

2. The load point for each subphase is
derived from the load address of the
first TXT statement within each sub­
phase.

3. The entire phase (including all
subphases) is placed in the core-image
library under the phase name in the
associated PHASE statement.

4. Thus, all subphases are listed under
the name of the phase to which they
belong. However, the last byte of the
subphase name stored in the core-image
directory contains one of the digits 1
to 9 to identify each subphase.

5. All subphases of a phase can be fetched
in sequential order by means of FETCH
macro instructions without an operand.

6. A phas~ that contains one or more sub­
phases is added to or deleted from the
core-image library by means of only one
CATAL or DELET control statement.

The formats of the XFR, TXT and END
cards are described in the section Linkage
Editor Program.

Macro Maintenance Program (MMAINT)

The Macro Library Maintenance program
(MMAINT) maintains the macro library. It

adds any number of macro definitions to,
and deletes any number of macro definitions
from, the macro library in one job.

JOB CONTROL STATEMENTS

The job control statements required for an
Mf'.1AINT run are:

// LOG optional
// JOB required
// DATE 1st job after IPL only
// ASSGN SYSIPT depends on job
// ASSGN SYSLST optional
// ASSGN SYSLOG optional
// VOL l // DLAB) depends on job
// XTENT
// OPTN TES recommended for tapes
// FILES may be required
// EXEC required

JOB Control Statement

The format of the JOB control statement is:

r----T---------T--------------------------,
I Name 1 Operation I Operand I

~----+------~--+--------------------------i
1// IJOB IMMAINT I l ____ ~ _________ ~ __________________________ J

MMAINT
Identifies the operation as a mainten­
ance operation on the macro library.

DPS Service Programs 47

ASSGN Control Statements

If you wish to add or replace a macro defi­
nition, you must assign SYSIPT to a card
reading device, a magnetic tape drive, or a
disk drive so that the input text can be
read.

If you only wish to delete macro defini­
tions in a job, you must unassign SYSIPT
V/ ASSGN SYSIPT,UA) •

The assignments of SYSLST and SYSLOG are
optional, but we recommend that you use
them.

If these assignments are already effec­
tive, you need not submit them again.

VOL, DLAB, XTENT Control Statements

You must supply disk label information if
SYSIPT refers to a disk drive. The file
name you insert must be SYSIF.

FILES Control Statement

If SYSIPT refers to a magnetic tape drive,
you must position the tape to rhe first
record of the macro definition to be added.
Use the FILES control statement for this
purpose if necessary.

The remaining job control statements are
not described here. You can find their
correct formats in the section Job Control
Proqram.

PROGRAM CONTROL STATEMENTS

The program control statements required for
an MMAINT run are:

// DELET
// CATAL
// INCLD
// END

depends on job

required

DELET Control Statement

To delete macro definitions from the macro
library, use the following control state­
ment:

r----T---------T--------------------------,
INamel Operation \ Operand I
~----+---------+--------------------------~
1// IDELET I macro I
~----+---------+--------------------------~
I / / I DELET P~LL I l ____ ~ _________ ~ __________________________ J

48

macro
~e name of the macro definition that is

to be deleted from the macro library.
The name may be up to five characters
long.

ALL
---Indicates that all macro definitions are

to be deleted from the macro library.

CATAL Control Statement

If the macro definition you wlsh to insert
is in source format, that is, written in
the macro language, use the control state­
ment:

r----T---------T--------------------------,
INamelOperationlOperand I
t----+---------+--------------------------~
1// ICATAL I I
l ____ L _________ L __________________________ J

The text of the macro definition you
wish to add as a new entry, or wish to
insert in the place of an old entry, is
read from the device assigned to SYSIPT and
cataloged in the macro library. The macro
definition statements are listed on the
printer assigned to SYSLST.

A typical macro definition in source
format consists of a header statement, a
prototype statement, model statements,
conditional assembly instructions, and a
trailer statement. Details of the DPS
Assembler macro language are contained in
the SRL publication IBM System/360 Model
20, Disk and Tape programming Systems,
Assembler Language, Form C24-9002.

INCLD Control Statement

If the macro definition you wish to insert
is in internal format, that is, the format
in which it is written into the macro
library, use the control statement:

r----T---------T--------------------------,
I Name I Operationl Operand I
t----+---------+--------------------------~
1// IINCLD I I
l ____ L _________ L __________________________ J

The text of the macro definition you
wish to add as a new entry, or wish to
insert in the place of an old entry, is
read from the device assigned to SYSIPT and
cataloged in the macro library.

A typical macro definition in internal
format consists of a header statement, IMT
cards, and an MND card. You can also
change the text of a macro definition by
inserting MOD cards into the input stream.
The purpose and format of the IMT, MND, and
MOD cards are described in the following
section.

I

END Control Statement

The format of the END control statement is:

r----T---------T--------------------------,
I Name I Operation I Operand I
~----+---------+--------------------------~
1// lEND I / L ____ ~ _________ ~ _____________________ ---__ J

If you wish to delete old macro defini­
tions and add new macro definitions in the
same job, delete the old macro definitions
first. This is advisable because the macro
library is automatically compressed before
the first addition is made.

If you wish to replace old macro defini­
tions with new macro definitions, delete
the old macro definitions first. No error
will occur if you don't do it this way.
However, compression takes place more than
once, and this has a negative effect on
performance.

Figure 19 is an example of using job and
program control statements to maintain the
macro library.

V / ASSGN SYSLST IX' 400' ,L1

.Figure 19. Example of Using Control State­
ments to Request a Macro
Library Maintenance Function

Input Card Formats

If the input to the MMAINT program is in
cards, you have the option of changing the
input text by means of HOD cards. This can
only be done if the output of the MSERV run
was punched into cards.

If the output was written onto disk or
magnetic tape, the output records have the
same format as the output cards, but ,they
cannot be modified by means of MOD cards.

The following sections describe the IMT
and I'1ND cards generated by the MSERV pro­
gram and used as input to the MMAINT pro­
gram, and explain how you can modify the
input text by means of MOD cards.

IMT Card
IMT cards contain macro definitions in
internal format. The cards also specify
the location of the text within the
macro definition.

MOD Card
You have the option of punching MOD
cards and inserting them into the macro
definition deck to replace text con­
tained in an IMT card. Each MOD card
contains the location of the first byte
to be replaced. It may contain from 2
to 22 bytes of text. The text is sub­
stituted, byte for byte, for the origi­
nal text, beginning at the specified
location. Both the address and the new
text must be written in hexadecimal
notation. Remember that MOD cards must
never precede the IMT cards they are
supposed to modify.

MND Card
The MND card indicates the end of the
macro definition.

Figures 20, 21, and 22 show the format
of IMT, MOD, and MND cards, respectively.

r-------T---------------------------------,
/ColumnslContents ,
t-------+---------------------------------~
,1 112-3-9 punch 1
~-------+-------.--------------------------~
,2-4 IIMT 1

~-------+---------------------------------~
J 5 ,blank ,
t-------+---------------------------------~
I 6-8 Isequential number of first byte I
I lof text in this card I
t-------+---------------------------------~
,9-10 I blank I
t-------+---------------------------------~
I 11-12 Inumber of bytes of text in this I
, I card I
~-------+---------------------------------~
I 13-16 Iblank I
t-------+---------------------------------~
I 17-72 jup to 56 bytes of macro defini- 1
I Ition text in internal format I
r-------+---------------------------------~
I 73-80 loptional identification (MSERV I
I linserts the first and the last I
1 Itwo characters of the macro name 1
1 land a card serial numbe~ I L _______ L _________________________________ J

.Figure 20. Format of the IMT Card

DPS Service Programs 49

r-------T---------------------------------,
IColumnslContents I·
~-------+---------------------------------~
1 1 112-3-9 punch 1
~-------+---------------------------------~
1 2-4 1 MOD 1
.-------+---------------------------------~
1 5-6 Iblank I
~-------+---------------------------------~
1 7-12 Isequential number of the first I
1 Ibyte to be replaced (in hexadeci-I
1 Imal notation with leading zeros, 1
1 I right-justified) I
~-------+---------------------------------~
I 13-16 Iblank I
~-------+---------------------------------~
1 17-70 lfrom one to eleven 4-digit fieldsl
1 I (in hexadecimal notation), sepa- 1
1 Irated by commas, each field 1
I Ireplacing one half-word of text. 1
1 IA blank column indicates the end I
1 lof information in this card. 1
.-------+---------------------------------~
1 71-72 Iblank 1
~-------+---------------------------------~
1 73-80 loptional identification (If an I
1 lidentification is punched in 1
1 lthese columns, the entries in I
1 Icolumns 73-76 must not differ 1
1 Ifrom the entries in the corres- I
1 Iponding IMT car~ 1 L _______ ~ _________________________________ J

Figure 21. Format of the MOD Card

r-------T---------------------------------,
IColumns I Contents I
t-------+---------------------------------~
1 1 112-3-9 punch 1
~-------+---------------------------------~
1 2-4 IMND (indicating end of macro I
1 I definition) t
t-------+---------------------------------~
1 5-72 1 blank 1
t-------+---------------------------------~
1 73-80 loptional identification (MSERV I
I linserts the first and the last I
1 Itwo characters of the macro name I
1 1 and a card serial number) 1 L _______ ~ _________________________________ J

.Figure 22. Format of the MND Card

Library Allocation Organization Program (AORGZ)

The Library Allocation Organization program
(AORGZ) redefines the limi ts of the core­

image library and directory, the macro
library and directory, and the relocatable
area on the system disk pack.

By means of the AORGZ program, these
areas can be allocated to or eliminated
from the system disk pack, or their size
can be increased or decreased.

50

JOB CONTROL STATEIYJENTS

The job control statements required to
request an allocation function are:

II LOG
II JOB
II DATE

optional
required
1st job after IPL only
optional II ASSGN SYSLST

II ASSGN SYSLOG
II EXEC

optional
required

JOB Control Statement

The JOB control statement used to request a
reallocation operation has the following
format:

r-----T---------T-------------------------,
IName IOperationJOperand 1
t-----+---------+-------------------------~
III IJOB I AORGZ I L _____ ~ _________ ~ _________________________ J

AORGZ
~entifies the operation as

reallocation.

The remaining job control statements are
not described here. You can find their
correct formats in the section Job Con­
trol Program.

PROGRAM CONTROL STATEMENTS

The program control statements required for
an AORGZ run are:

II LIMIT
II END

required
required

LIMIT Control Statement

The LIMIT control statement specifies which
libraries and directories are to be reallo­
cated. Any number of areas can be reallo­
cated within a Single job. The format of
the LIMIT control statement is:

r-----T---------T-------------------------,
IName IOperationlOperands I
t-----+---------+-------------------------~
III I LIMIT I xx, nnn [, xx,nnn • ••) I L _____ ~ _________ ~ _________________________ J

xx
Code indicating which of the libraries
or library directories are to be reallo­
cated.

I·

nnn

CD
CL
MD
ML
RL

Core-Image Directory
Core-Image Library
Macro Directory
Macro Library
Relocatable Area

---Code in decimal notation indicating how
many tracks are to be allocated. Lead­
ing zeros are not used.

It doesn't make any difference in what
order you specify the areas to be allocat­
ed. But each area must be followed by a
comma and the number of tracks it is to
occupy. If you want to reallocate three
areas, the operand will be:
xx,nnn,xx,nnn,xx,nnn.

If you specify a 0 after the area code
xx, the area will be eliminated from the
system disk pack. If you want to leave an
area unchanged, don't specify it in the
control statement.

The total number of tracks you allocate
must not exceed the number of tracks on the
disk pack (1986 tracks for Model 11, 986
tracks for Model 12).

If the total number of tracks you allo­
cate extends into a data file that has not
expired, a halt occurs. If the data file
has expired, it is overwritten.

The macro directory and the core-image
directory must not occupy more than ten
tracks apiece.

If you eliminate the macro library from
the system disk pack, eliminate the macro
directory as well (ML,O,MD,O).

Never eliminate the core-image library
and the core-image directory.

END Control Statement

The format of the END control statement is:

r----T---------T--------------------------,
INamelOperationlOperand !
t----+---------+--------------------------~
1// lEND I I l ____ ~ _________ ~ __________________________ J

Figure 23 is an example of using job and
program control statements to reallocate
several areas on the system disk pack.

II END

Figure 23. Example of Using Control State­
ments to Request Library Allo­
cation Functions

Ph-'ysical and Logical Unit Tables Service Program
(PSERV)

This section explains the functions of the
Physical and Logical Unit Tables Service
program (PSERV) and describes the control
statements required to request these fUnc­
tions. The PSERV program is used to list
or change the permanent device assignments
of the Monitor resident on the system disk
pack. It can also be used to change the
configuration byte in the communication
region of the f10ni tor.

JOB CONTROL STATEMENTS

The job control statements required for a
PSERV run are:

// LOG optional
// JOB required
// DATE 1st job after IPL only
// ASSGN SYSLST depends on job
// ASSGN SYSLOG optional
// EXEC required

JOB Control Statement

The format of the JOB control statement is:

r----T---------T--------------------------,
INamelOperationlOperand !
r----+---------+--------------------------~
1// IJOB !PSERV ! l ____ ~ _________ ~ __________________________ J

PSERV
---rdentifies the operation as a PSERV

function.

ASSGN Control Statements Preceding EXEC

If you want a listing of information from
the PSERV run, you must assign SYSLST to
the printer. Remember that this ASSGN
control statement must precede the EXEC

DPS Service Programs 51

control statement. The assignment of SYS­
LOG is optional. If these assignments are
already effective, you need not submit them
again.

EXEC Control Statement

The control statements that follow the EXEC
statement indicate to the PSERV program
which functions it is to perform.

The remaining job control statements are
not described here. You can find their
correct formats in the section Job Control
~ram.

PROGRAM CONTROL STATEMENTS

The program control statements required for
a PSERV run are:

IT
/ DSPLY

// ASSGN
// CONFG
// END

der:;ends on job

required

2~f~Y Control Statement

The DSPLY control statement instructs the
PSERV program to list all entries of the
logical unit table, all entries of the
?hysical unit table, and information about
the type of Monitor resident on the system
disk pack. This operation requires a prin­
ter " which must be assigned to SYSLST.

The format of the DSPLY control state­
ment is:

r----T---------T--------------------------,
I Name I Operation I Operand I
~----+---------+--------------------------~
1// I DSPLY I I l ____ ~ _________ ~ __________________________ J

The logical unit table is listed first.
The entries are listed in the same format
as the corresponding ASSGN statements. The
listing includes the device types that the
entries refer to. This printout is fol­
lowed by a listing of all device addresses
contained in the physical unit table, and
finally by information about the type of
Monitor resident on the system disk Vack.

A~SGN Control Statements FollowinSL~XE~

You can insert ASSGN control statements
after the EXEC statement to change the
permanent device assignments in the Monitor
resident on the system disk pack. The
physical and logical unit tables of the
Monitor in main storage are not affected by
the resulting assign operations. Changes

52

of the permanent assignments will affect
processing operations only after an IPL
procedure has transf~rrEd the modified
Monitor from disk to main storage.

The format of the ASSGN control state­
ment is described in the section Job Con­
trol Program. All ASSGN control statements
accepted by the Job Control program are
also accepted by the PSERV program.

The ASSGN control statements may be
submitted to the PSERV program in any
order. ASSGN control statements are
required only for those entries in the
logical unit table whose standard assign­
ments are to be changed. However, if the
standard assignment or the unit number of
one magnetic tape drive is to be changed,
all magnetic tape drives must be reassigned
by changing the corresponding entries.

CONFG Control Statement

You can use the CONFG control statement to
alter the storage-capacity byte in the
communication region of the Monitor.

However, if the i"loni tor currently on the
system disk pack supports inquiry facili­
ties, its storage-capacity information must
not be altered by a PSERV run, because the
dummy phase used to save the contents of
main storage while the inquiry program is
executed was generated to accommodate the
original storage capacity specified at
Monitor generation time.

The format of the CONFG control state­
ment is described in the section Job Con­
trol Program.

END Control Statement

The format of the END control statement is:

r-----T---------T-------------------------,
IName IOperationlOperand I
r-----+---------+-------------------------~
1// lEND I I l _____ ~ _________ L _________________________ J

You may insert all three control state­
ments -- DSPLY, ASSGN, and CONFG -- after
the EXEC control statement. The order in
which you arrange them, however, must be
meaningful.

The first step is to display the current
permanent assignments, the second is to
alter them, and the third step is to dis­
play the modified assignments.

Figure 24 shows an example of using job
and program control statements to request a
PSERV function.

I

II END

II DSPLY
display new

II CONFG

II EXEC display old

II JOB PSERV

• ~igure 24. Example of Using Control State­
ments to Request a PSERV FUnc­
tion

Linkage Editor Program (LNKEDT)

The Linkage Editor program is used to link
separately assembled programs or phases
into an integral program that can be exe­
cuted under control of the Monitor program.
The Linkage Editor program can also be used
to relocate assembled programs.

The Linkage Editor program is not
required to edit

• RPG output because programs written in
the RPG language cannot be relocated or
linked

• PL/I output because the PL/I compiler
itself edits the source program

• a single-phase program assembled in one
Assembler run whose starting address is
higher than the end address of the Moni­
tor.

The following sections discuss in detail
what the fUnctions of the Linkage Editor
program are, what control statements you
must supply to request these functions,
what input statements you must supply, what
output you will obtain, and how you can use
the Linkage Editor program effectively.

FUNCTIONS OF THE LINKAGE EDITOR PROGHAM

The Linkage Editor program performs the
following functions:

1. It links separately assembled program
phases into one executable object pro­
gram that can be placed into the core­
image library. (The output may also be

executed under control of the card­
resident Monitor program.)

2. It relocates assembled programs, if
required. By means of the PHASE
statement you supply, you can load the
program into any location of main stor­
age. The Linkage Editor program will
cross-reference all symbols defined as
EXTRN and ENTRY statements in the var­
ious control sections.

3. It checks the input cards for certain
types of errors and determines

• any unresolved External Reference
(ER) items,

• the number of unresolved ER and RLD
items,

• the number of REP and TXT cards that
are outside the bounds of a phase •

It also prints a linkage table, provided
that you assigned SYSLST to a printer.

JOB CONTROL STATEMENTS

The job control statements you must supply
to request a Linkage Editor function are:

// LOG recommended
// JOB required
// DATE 1st job after IPL only
// ASSGN SYSIPT depends on job
// ASSGN SYSOPT depends on job
// ASSGN SYSLST recommended
// ASSGN SYSLOG recommended
// OPTN TES recommended for tapes
// FILES may be required
// EXEC required

JOB Control Statement

The format of the JOB control statement is:

r----T---------T--------------------------,
INamelOperationlOperand I
t----+---------+--------------------------~
1// IJOB I LNKEDT I l ____ ~ _________ ~ __________________________ J

LNKEDT
Identifies the operation as linking or
relocating separately assembled pro­
grams.

ASSGN Control Statements

Input to the Linkage Editor program may be
from the relocatable area, from punched
cards, or from magnetic tape. If you do
not want input from the relocatable area,
you must assign SYSIPT to a card reading
device or to a magnetic tape drive.

Dotted line flags planning information DPS Service Programs 53

The output from the Linkage Editor run
is always written into the relocatable
area. If you also want the output to be
punched into cards or writt~~ onto magnetic
tape, you must assign SYSOPT to a card
punching device or a magnetic tape drive.
If SYSOPT is not assigned, the output will
only be written into the relocatable area.

The assignments of SYSLST and SYSLOG are
optional, but we recommend that you make
them.

If these assignments are still effec­
tive~ you need not submit them again.

FILES Control Statement

If yo~ furnish the input on a magnetic tape
drive, you must position the tape to the
first data record. Use the FILES control
statement for this purpose if necessary.

EXEC Control Statement

The EXEC control statement has one of two
formats, depending on how you furnish the
input to the Linkage Editor run:

r----T---------T--------------------------,
INamelOperationlOperand I
~----+---------+--------------------------~
1// I EXEC I I
~----+---------+--------------------------~
\// I EXEC IR I l ____ ~ _________ ~ __________________________ J

No operand

R

Indicates that the input is to be read
from the device assigned to SYSIPT.

Indicates that the input is to be read
from the relocatable area.

The remaining job control statements are
not described here. You can find their
correct formats in the section Job Control
Proqram.

INPUT TO THE LINKAGE EDITOR PROGRAM

The input to the Linkage Editor program
~hat is, the output of one or more assem­
bly runs} can be in the form of punched
cards, or in card-image format on magnetic
tape, or in card-image format in the relo­
catable area.

If the input is in cards, you have the
option of replacing portions of assembled
tex·t with new text by means of REP car:1s.

In the following sections, we assume
that the input to the Linkage Editor pro­
gram is in cards v in order to better des-

54

cribe the input and how you can modify
portions of assembled text.

This section describes the input cards
used for a Linkage Editor ru~. Figure 25
is a list of these cards. The first four
cards shown in this figure -- PHASE,
ACTION, REP, and ENTRY -- are the ones you
must furnish. The remaining cards are
produced by the Assembler in the assembly
run.

r------T----------------------------------,
ICard I Function I
t------~----------------------------------~
IFurnished by User I
t------T----------------------------------~
IPHASE lindicates the beginning of a I
I Iphase, specifies name and load I
I laddress of the phase I
~------+----------------------------------~
IACTIONlindicates whether XFR cards are tol
I I be duplicated I
t------+----------------------------------~
IREP Isubstitutes new text for portions I
I lof assembled text I
t------+----------------------------------~
IENTRY lindicates end-of-input to the I
I ILinkage Editor program; may be I
I lused to specify transfer point I
I Ithat replaces the address in the I
I I (output) END statement of the I
I Ifirst phase I
t------~----------------------------------~
IProduced by Assembler I
r------T----------------------------------~
IESD Icontains external symbol dictiona-I
I I ry I
t------+----------------------------------~
ITXT Icontains program instructions and I
I I constants I
t------+----------------------------------~
IRLD Icontains relocation dictionary I
t------+----------------------------------~
lEND lindicates the end of a program andl
I Imay specify a program entry I
I I address I
r------+----------------------------------~
IXFR Ispecifies program entry address I l ______ L __________________________________ J

Figure 25. Summary of Input Cards to the
Linkage Editor Program

If the source deck to be assembled con­
tains a PHASE or ACTION card, you can
instruct the Assembler to reproduce these
cards in the object deck by sUbmitting a
REPRO statement. If you submit an AOPTN
statement to the Assembler, the Assembler
will generate an ENTRY card without an
operand in the object deck.

The following sections describe each of
the input cards listed in Figure 25.

PHASE Card. Any program that is either to
be processed by the Linkage Editor or to be

I

included in the core-image library of the
disk-resident system must be preceded by a
card that contains a PHASE statement. If a
program consists of more than one phase,
each of the program phases must be headed
by a PHASE card.

The PHASE card must precede the phase,
and not appear somewhere within it. This
would cause an undetectable error and
result in incorrect 2rogram loading.

The PHASE card furnishes the name and
the load address of a phase. The load
address of a phase can be relative (1) to
the last location of main storage, or (2)
to the end address of the Monitor, or (3)
to a ~reviously defined symbol. It can
also be an absolute address. The format of
the PHASE card is:

r----T---------T--------------------------,
INamel Operation I Operands I
t----+---------+--------------------------~
I I PHASE Iname,i,ddddd I
I I I [, address, vvmm] I l ____ ~ _________ ~ _________ ~ ________________ J

PHASE
Leave at least one column blank before
and after PHASE

name
--The name of the phase. Thi,s name may

consist of 1 to 6 characters. It must
be different for each phase if more than
one phase is to be link-edited. We urge
you not to choose a name whose first
three characters are identical with the
first three characters of the phase
names of IBM-supplied programs (see
AppenJix I). Should the remaining char­
acters be identical as well, the system
program is in jeopardy. The phase name
must not include embedded blanks or
special characters. The first character
of the name must be alphabetic, the
remainder may be alphabetic or numeric

i

(the symbols # I @, and $ are considered
alphabetic characters) •

The indicator for the load address.
This can be one of the letters A, C, L,
or S.

A -- indicates that the phase is to be
loaded at the absolute address
specified in the next operand
(ddddd) •

C -- indicates that the address is rela­
tive to the last location of stor­
age.

L indicates that the address is a
name defined in a previous phase.

S indicates that the address is rela­
tive to the end address of the
110ni tor.

ddddd
~e displacement. This operand permits

you to mOdify the load address you spec­
ified in the preceding operand (i). You
can specify a positive displacement if
the load address is A, L, or S. (If the
load address is A, the displacement is
the absolute address.) You may specify
a negative displacement if the load
address is C or L.

Positive and negative displacements can
be expressed in decimal or hexadecimal
notation:

Positive
nnnnn
Z:' nnnn'

Negative

(up to five digits)
(four digits)

-nnnnn (up to five digits)
-X' nnnn' (four digits)

address
Symbolic address used only if the load
address is L. The symbolic address must
have beeh defined in a previous phase
either in an ENTRY, CSECT, or START
Assembler statement.

vvmm
Four numeric characters identifying the
version and modification level of the
phase. This operand is optional.

Se0arate the operands from each other by
commas. Do not insert any blanks. If an
operand is not required, insert a comma in
its place (refer to the third example in
Figure 26) •

The Linkage Editor pIogram derives the
load address of a phase from the informa­
tion contained in the PHASE statement.

Figure 26 shows five examples of PHASE
statements. The circled numbers in the
left-hand margin of this figure refer to
the text below.

CD
CD
o
CD
®

PIN

PJI
Pw

PIH

PH

PH

-
ASE

1A5E
AS£

ASE

ASE

lAs IE

.
PiA

PII
PA

IFA

Ip!A

IPA

""""',~ I. ..
R,T tJ1 • C

I"

RIT ¢;l I. L
R,T (112 I. L

I'

11n fk~ L

I~T ¢14 lOlA

-- f-

R7 ~5 S

ID ,(

"--
" '" " '" " -5 :;3 --

f---

1 .. 12 fh -po ll~ T3
- --

::LX '6 01 8' , p orN IT3 f-

f-t-

f--'-- I- ~t-
"Po riff TI; -I'

.-f--
IfB I"'''' Itfl dl 1~1a.

f-r- f-

lilff -I---+-

Figure 26. Examples of the PHASE Statement

DPS Service Programs 55

1. This PHASE statement causes loading to
begin 503 bytes below the last byte of
storage.

2. Loading begins at the address
POINT3+24. POINT3 is a name defined in
a preceding control section. The dis­
placement may also be specified in
hexadecimal notation as shown in the
second line of this example.

3. Loading of PART03 begins at the address
of POINT4, which is a previously
defined symbol.

4. Loading of PART04 begins at storage
location 4800~ The last operand is
used as a version and modification
level of the phase.

5. Loading of Pru~T05 begins 240 bytes
beyond the last byte occupied by the
Monitor.

ACTION Card. This card enables you to
create subphases. The ACTION card
instructs the Linkage Editor program to
duplicate into the output deck all XFR and
END cards encountered in the input deck.
The format.s of the ACTION card are:

r----T---------T--------------------------,
INamelOperationlOperand I
t----+---------+--------------------------~
I I ACTION IDUP I
t----+---------+--------------------------~
I I ACTION I NODUP I l ____ ~ _________ ~ __________________________ J

ACTION must be preceded and followed by
at least one blank column. The card ACTION
DUP instructs the Linkage Editor to dupli~
cate this card and all XFR and END cards
subsequently encountered, and to discontin­
ue duplicating as soon as a card ACTION
NODUP has been read and duplicated.

You can place ACTION cards anywhere in
the input stream behind the first PHASE
card. You will normally instruct the
Assembler to reproduce the ACTION cards
from the source deck by means of a REPRO
statement, but you may supply an ACTION
card yourself and insert it into the input
stream.

If the ENTRY card for the Linkage Editor
contains an operand, an exception is made
to the above description. Refer to the
section Output of the Linkage Editor Pro­
gra!!!.

REP Card. The REP card is used to substi­
tute new text for portions of assembled
text. Each REP card contains the assembled
address of the first byte to be replaced.
It may contain Leom 2 to 22 bytes of text.
The text is used to replace the original

56

text byte for byte, beginning at the speci­
fied address. Both the address and the new
text must be stated in hexadecimal nota­
tion. The format of the REP card is shown
in Figure 27.

r-------T---------------------------------,
IColumn IContents I
t-------+---------------------------------~
I 1 112-2-9 punch I
t-------+---------------------------------~
I 2-4 lREP I
~-------+---------------------------------~
1 5-6 I blank I
t-------+---------------------------------~
I 7-12 lassembled address of the first I
I 1 byte of text to be replaced (in I
I lhexadecimal notation with leading I
I lzeros; right-justified) I
~-------+---------------------------------~
I 13-14 Iblank I
t-------+---------------------------------~
I 15-16 IESID* number of the control sec- I
I Ition containing the text (in I
I Ihexadecimal notation) I
t-------+---------------------------------~
I 17-70 Ifrom 1 to 11 four-digit fields I
I I (in hexadecimal notation) sepa- I
I Irated by commas, each field I
I Ireplacing one half-word of text. I
I IA blank column indicates the end I
I lof information in this card I
~-------+---------------------------------~
I 71-72 Iblank I
t-------+---------------------------------~
I 73-80 Iprogram identification (optional) I
l _______ ~ ________________ -----------------J
*See the section ESID Numbers

Figure 27. Format of the REP Card

'l'he REP card is accepted by all programs
that read TXT cards (card-resident IPL,
card-resident Monitor, LDSYS, CMAINT,
LNKEDT). For all programs except the Lin­
kage Editor program, columns 15-16 of the
REP card may be left blank.

The REP card must be placed behind the
text that is to be modified.

If the segment in which this text is
contained consists of input for more than
one phase, place the REP card within the
bounds of the phase to which the text
belongs. The Linkage Editor program will
produce a new TXT card that has been cor­
rectly relocated. This card contains the
information and data needed to modify the
text.

Do not modify address constants by means
of REP cards. RLD relocation applies only
to TXT cards contained in the input stream.

A REP or TXT card must not cause infor­
mation to be loaded into locations outside
the limits of a phase or subphase. Howev-

I

er, the Linkage Editor will also process
such cards.

ENTRY Card. The ENTRY card indicates the
end of input to the Linkage Editor program.
The ENTRY card has the following format:

r----T---------T--------------------------,
INamelOperationlOperand I
t----+---------+--------------------------~
I I ENTRY I [address] I L ____ L _________ L __________________________ J

ENTRY
~st be preceded and followed by at

least one blank column.

address
The operand is a symbol defined as the
operand of an ENTRY statement or the
name of a CSECT or START Assembler
statement in any phase of the input.
The symbol to which the operand refers
must be unique. use of the operand is
optional. If the operand is used, the
ENTRY card causes the name specified in
it to replace the transfer point speci­
fied in the first phase processed.

ESD Card. ESD cards contain the informa­
tion required to link one segment to other
segments. It contains all symbols defined
in one segment but referred to in another
segment. It also contains all symbols
referred to in one segment but defined in
another segment.

The Linkage Editor program recognizes
three types of ESD cards: SD, LD, and ER.

1. SD -- Section Definition.
This type of ESD card is prod~ced
whenever a START or CSECT Assembler
instruction is contained in the source
program. The SD-type of ESD card is
used to specify the name, the load
address, the ESID number, and the
length of the control section.

2. LD -- Label Definition.
The LD-type of ESD card is produced
whenever the source program contains an
ENTRY Assembler instruction. The LD­
type of ESD card defines a name that
may be used in any other segment as an
entry point, or as tbe name of a
constant or storage area.

3. ER -- External Reference.
This type of ESD card is produced
whenever the source program contains an
EXTRN Assembler instruction. The ER­
type of ESD card specifies a name that
is used in this segment to refer to a
point in some other segment(~.

The format of the ESD card is shown in
Figure 28.

r-------T---------------------------------,
I Columns 1 Contents I

t-------+---------------------------------~
I 1 112-2-9 punch I
t-------+---------------------------------~
I 2-4 I ESD I
t-------+---------------------------------~
I 5-10 1 blank I

t-------+---------------------------------~
I 11-12 lnumber of bytes of information I
I 1 contained in this card 1
t-------+---------------------------------~
I 13-14 lblank I
t-------+---------------------------------~
1 15-16 IESID number of the first SD or ERI
1 I in this card* (blank for LD) I
t-------+---------------------------------~
I 17-24 lname (defined in a START, ENTRY, 1
1 1 EXTRN, or CSECT staterr.ent) I
t-------+---------------------------------~
I 25 1 code to indicate SD, LD, or ER 1
1 I type 1
1 lSD -- 12-0-1-8-9 punch I
I I LD -- 12-1- 9 punch 1
I IER -- 12-2-9 punch I
t-------+---------------------------------~
1 26 112-0-1-8-9 punch I
t-------+---------------------------------~
I 27-28 IER -- 12-0-1-8-9 punches I
1 lSD,LD -- load address I
t-------+---------------------------------~
I 29 I blank I
t-------+---------------------------------~
1 30 112-0-1-8-9 punch I
t-------+---------------------------------~
1 31-32 ISD length of control section I
I ILD -- ESID* number of the SD I
1 I containing the name I
1 I ER - - bl ank I
t-------+---------------------------------~
1 33-72 Iblank 1
t-------+---------------------------------~
1 73-80 Iprogram identification (optional) I L _______ ~ _________________________________ J

*See the section ESID Numbers

Figure 28. Format of the ESD Card

ESID Numbers. External Symbol
Identification (ESID) numbers are pointers
assigned by the Assembler. These pointers
are used by the Linkage Editor program to
correctly recompute the constants referred
to in the RLD entries. ESID numbers are
also used to identify the cards belonging
to a particular control section within a
segment. ASSignment of ESID numbers in a
segment begins with 01 and continues
sequentially to the maximum of 31. The
first ESID number assigned in a control
section is a pointer to this control sec­
tion and its internal constants. The
remaining ESID numbers aSSigned within a
control section pertain to the external
symbols defined in this control section.

DPS Service Programs 57

r-------T---------------------------------,
I Columns 1 Contents I
t-------t---------------------------------~
I 1 112-2-9 punch I
t-------t---------------------------------~
1 2-4 I TXT I
t-------t---------------------------------~
1 5 Iblank I
t-------t---------------------------------1
1 6 112-0~1-8-9 punch (binary zero) I
t-------t---------------------------------~
I 7-8 Iload address of first byte of I
1 Itext in this card* 1
t-------t---------------------------------~
1 9-10 1 blank 1
t-------t---------------------------------~
1 11-12 Inumber cf bytes of text to be I
I Iloaded* 1
t-------t---------------------------------1
1 13-14 Iblank I
t-------t---------------------------------~
I 15-16 IESID number of the control sec- I
1 Ition containing the text* I
t-------t---------------------------------~
1 17-72 lup to 56 bytes of text I
1 1 (instructions and/or constants) 1
1 I to be loaded* I
t-------t---------------------------------~
1 73-80 1 program identification (optional) 1 L _______ ~ _________________________________ J

*in EBCDIC card code

Figure 29. Format of the TXT Card

TXT Card. The TXT cards contain the prob­
lem program in machine language. A TXT
card contains the load address of the
instructions or constants in the card. It
also contains a reference to the control
section in which this information occurs,
enabling the Linkage Editor program to
derive the relocation factor involved. TXT
cards can be modified by the Linkage Editor
wi th the informat.ion contained in RLD
cards. The format of the TXT card is shown
in Figure 29.

RLD Card. The RLD cards identify portions
of the text (address constants) that
require modification owing to relocation.
They furnish the Linkage Editor w~th infor­
mation required to perform the relocation.

The format of the RLD card is shown in
Figure 30.

END Card. The END card specifies the
transfer address for program execution and
indicates the end of a phase or sUbphase.
To the Linkage Editor program, it indicates
that the end of a segment has been reached.

58

r-------T---------------------------------,
I Columns I Contents I
t-------t---------------------------------~
I 1 112-2~9 punch I
r-------t---------------------------------~
I 2-4 lRLD 1

t-------t---------------------------------~
I 5-10 Iblank 1
t-------t---------------------------------~
I 11-12 Inumber of bytes of information 1
I 1 contained in variable field 1
I I (multiple of 8) * I
r-------+---------------------------------~
I 13-16 Iblank I
t-------+---------------------------------~
t-------t---------------------------------~
I 17-72 IVariable Field*
I IThis field contains from one to
I Iseven 8-column groups of informa-
I Ition. Each group contains:
1 12 cols. -- ESID number assigned
lito the control section
I I in which the contents
I 1 of the constant occur.
I 12 cols. -- ESID number assigned
lito the control section
I I in which this constant
I I occurs.
I 11 col. 12-4-9 punch indicat-
I I ing that the address
I I correction factor is
1 I to be added to the
I I constant; or 12-6-9
1 1 punch indicating that
lithe address correction
I I factor is to be sub-
I 1 tracted from the con-
I I stant
I 11 col. 12-0-1-8-9 punch
I 12 cols. assembled address of
I I load constant I
t-------+---------~-----------------------~
1 73-80 I program identification (Qptional) I l _______ ~ _________________________________ J

*in EBCDIC card code

Figure 30. Format of the RLD Card

When processed by the Linkage Editor,
the transfer address in an END or XFR card
need not be a transfer point defined in
the pertinent program. It may be defined
by means of an EXTRN statement that refers
to an entry point in another program. In
this case, the transfer address cannot be
modified by means of a displacement rela­
tive to a symbol.

When processed by another program, the
transfer address must not be symbolic; it
must be a fixed (assembled) storage loca­
tion or blank.

If the transfer address is blank, the
address in the PHASE card or the load
address of the first TXT card of a sub-

phase is assumed to be the control trans­
fer point.

The END card is produced by the Assem­
bler when an END Assembler instruction is
encountered. The format of the END card
is shown in Figure 31.

r-------T---------------------------------,
IColumn IContents I
r-------t---------------------------------i
I 1 112-2-9 punch I
~-------t---------------------------------i
I 2-4 I END I
.-------t---------------------------------i
I 5 I blank I
~-------t---------------------------------i
I 6-8 IControl transfer address I
I I (assembled address of the operand I
I I in the Assembler END statement) I
I lor blank. If blank, col.17-24 I
I Imay contain a symbolic transfer I
I Ipoint. I
.-------t---------------------------------i
I 9-14 I blank I
.-------t---------------------------------~
I 15-16 IESID number of the control sec- I
I Ition to which this END card I
I Irefers.* Or blank if Assembler I
I lEND statement has no operand. I
.-------t---------------------------------{
I 17-24 Isymbolic transfer point if this I
I Iwas the operand of an EXTRN I
I lstatement. Or blank. I
.-------t---------------------------------i
I 25-72 ,blank I
~-------t---------------------------------i
I 73-80 I program identification (optional) I
l _______ L _________________________________ J

*in EBCDIC card code

Figure 31. Format of the END Card

The section Output of the Linkage Editor
Program describes how the Linkage Editor
handles the END and XFR cards.

XFR Card. The XFR card contains the trans­
fer address for program execution and indi­
cates the end of a phase or subphase. It
has the same function as the END card
except that it does not indicate the end of
a segment to the Linkage Editor. (Any
number of XFR cards may be contained in
each segment of a program.) For further
details, refer to the description of the
END card.

The XFR card is produced by the Assem­
bler when an XFR Assembler instruction is
encountered in the source program. Figure
32 shows the format of the XFR card.

r-------T---------------------------------,
I Columns I Contents I
r-~-----t---------------------------------~
I 1 112-2-9 punch I
~-------t---------------------------------i
I 2-4 IXFR I
r-------t---------------------------------~
,5 I blank 1
.-------t---------------------------------t
I 6-8 IControl transfer address 1
I I (assembled address of the operand I
I I in the Assembler XFR statement) I
, lor blank. If blank, col.17-24 I
I Imay contain a symbolic transfer I
I Ipoint. I
r-------t---------------------------------t
, 9- 1 4 I blank I
t-------t---------------------------------~
I 15-16 IESID number of the control sec- I
, Ition in which the transfer I
, loccurs.* Or blank if Assembler I
I IXFR statement has no operand. I
.-------t---------------------------------t
I 17-24 Isymbolic transfer point if this I
I Iwas the operand of an EXTRN ,
, Istatement.* Or blank. ,
t-------t---------------------------------i
, 25-72 Iblank I
r-------t---------------------------------t
, 73-80 I program identification (optional) I
l _______ L _________________________________ J

*in EBCDIC card code

Figure 32. Format of the XFR Card

OUTPUT OF THE LINKAGE EDITOR PROGRAM

The output of the Linkage Editor program
can be punched into cards or written onto
magnetic tape in card-image format.

To make it easier to understand the
contents of the output, we will assume in
this section that the output is in punched
cards.

Each output phase produced by the Lin­
kage Editor program consists of the follow­
ing in the order shown:

•
•
•
•
•
•

J :

one CATAL card,
one PHASE card,
one ESD card,
a number of TXT cards,
one END card,
possibly a number of ACTION and XFR or
END cards reproduced by means of ACTION
statements,
one /* card,
one // END card.

The output is in the form of a single
control section per phase, even if the
input consisted of several control sec­
tions.

The Linkage Editor program generates a
CATAL card for every PHASE card. (The

DPS Service Programs 59

CATAL card is required if the output of the
Linkage Editor program serves as input to
the CMAINT program.) All CATAL cards and
blank cards that were already in the input
deck prior to the Linkage Editor rUn are
ignored.

The Linkage Editor program produces one
SD-type ESD card per phase immediately
following the PHASE card.

The output TXT cards contain the infor­
mation from the input TXT cards modified
according to the input RLD cards for cor­
rect relocation and linking.

All ACTION cards are reproduced in the
output deck.

The ACTION DUP card is effective for all
following input cards as long as no ACTION
NODUP card is encountered. When ACTION DUP
is effective, all input XFR and END cards
are reproduced in the output deck. The
transfer addresses are modified for correct
relocation or linking. When ACTION NODUP
is effective, XFR and END cards are not
reproduced in the output deck. As long as
no ACTION card is encountered in the input
stream, ACTION NODUP is assumed.

The Linkage Editor produces one END card
at the end of each phase, that is, at the
end of the last subphase. This END card
determines the transfer point of the last
(or only) subphase of a phase.

The transfer address inserted into this
END card is determined in the following
way:

1. If the phase contains an XFR or END
card that (a) does not follow an ACTION
DUP card (that is, ACTION NODUP is
effectiv~, and (~ specifies a defin­
ite address (address fields not blank) ,
the transfer address from the first of
these cards is taken.

2. If no such card as specified under
point 1 exists, the load address of the
phase is inserted into the END card.

If the last card of a phase is an XFR or
END card and ACTION DUP is effective, this
card will be reproduced into the output
deck and the Linkage Editor will not gener­
ate an END card as described above.

If the ENTRY card contains an operand,
this address replaces the transfer address
of the END card at the end of the first
phase, and ACTION DUP is ineffective for
this END card.

The output deck does not contain an
ENTRY card.

60

If SYSLST has been assigned, the Linkage
Editor program prints a listing of informa­
tion concerning the output of the Linkage
Editor run.

USE OF THE LINKAGE EDITOR PROGRAN

The output of the Linkage Editor program is
always written into the relocatable area.
This object program can be loaded into main
storage for execution by supplying the two
job control statements // JOB program and
// EXEC LOADER,R. It can also be cataloged
in the core-image library by the CMAINT
program using the control statement // EXEC
R.

If you assigned SYSOPT to a card punch­
ing device, the output of the Linkage Edi­
tor run is also punched into cards. This
object program can be executed under the
control of the card-resident Monitor~ or
placed into the core-image library on the
system disk pack.

If you assigned SYSOPT to a magnetic
tape drive, the output of the Linkage Edi­
tor run is also written onto tape. The
output tape contains an object program in
card-image format. To execute this object
program, it must first be placed into the
Gore-image library by means of a CMAINT
run, or loaded into main storage by means
of the control statement // EXEC LOADER.

The Linkage Editor program can be exe­
cuted only as a separate job. The follow­
ing example illustrates the manner in which
the Linkage Editor program is used for an
assemble-and-execute run.

r----T---------T--------------------------,
INamelOperationlOperands I
r----+---------+--------------------------~
1// IJOB ASSEMB
1 1
1// 1 EXEC
I 1 1
I 1 I
1 1 V
1// IJOB LNKEDT
1 1
1// 1 EXEC R
1 I I
I I 1
1 I V
1// IJOB program
I I I
1// I EXEC I LOADER,R L ____ ~ _________ ~ __________________________ J

The output of the Assembler program is
placed in the relocatable area. Thus, it
is available as direct input for the Lin­
kage Editor program. Since the output of
the Linkage Editor program is also placed
in the relocatable area, the problem pro­
gram is temporarily included in the core­
image library and can be executed without
the need for card handling or tape
positioning.

The program name in the last JOB state­
ment is only checked for presence. It is
not compared with the name in the PHASE
statement, if any.

ThE problem program may be permanently
included in the core-image library by means
of the control statements shown in the
following example.

r----T---------T--------------------------,
INamelOperationlOperands I
r----+---------+--------------------------~
1// IJOB ASSEMB I
I I I
1// I EXEC 1
1 1 1 I
1 1 1 I
1 1 V 1
1// IJOB LNKEDT 1
1 I 1
l// I EXEC R I
1 1 I
I 1 1
I V I
1// JOB CMAINT I
1 1
1// EXEC R 1
I I 1
I 1 I I
1 V I I
1// JOB 'program ,

" , 1// EXEC I I L ____ ~ _________ L __________________________ J

The output of the Assembler program is
placed in the relocatable area. Thus, it
is available as direct input to the Linkage
Editor program. Since the output of the
Linkage Editor program is also placed in
the relocatable area, it is available as
input to the CMAINT program. The object
program is now a permanent entry in the

core-image library and can be executed
whenever required with only a minimum of
cctrd handling.

EXANPLES

This section contains three examples that
illustrate the use of the Linkage Editor
program and its functions. Each of the
sample programs must be processed by the
Linkage Editor program before it can be
executed or placed into the core-image
library.

Example 1

Figure 33 shows a typical example of two
separately assembled programs that are
assumed to be linked through ENTRY and
EXTRN Assembler statements. Figure 33 also
shows the associated output of the Linkage
Editor program.

The object program (Linkage Editor
output) has been relocated according to the
specifications in the PHASE statement.
Moreover, the object program has been
assigned fixed storage locations beginning
with 4700. Further details concerning this
example are listed in the column Comments
of Figure 33.

Example 2

Figure 34 illustrates a multiphase source
program for single assembly, the output of
the Assembler, and the output of the Link­
age Editor program. The final object pro­
gram has been relocated according to the
specifications in the PHASE statement.
Multiple control sections within an input
phase have been combined into one control
section per output phase.

Example 3

Figure 35 also illustrates a multiphase
source program, but in this example the
phases are assembled separately. Figure 33
shows the Assembler output and the output
of the Linkage Editor program.

The final object program has been relo­
cated. It can be executed under the con­
trol of the card-resident Monitor program.
It can also be placed in the core-image
library of the disk-resident system.

DPS Service Programs 61

Source Program

LOCATN OBJECT CODE ADDl ADD2 STMT SOURCE STATEMENT

0001 REPRO
PHASE PROGA,A,4700

0000 0002 A START 0
0003 EXTRN B
0004 EXTRN C

0000 OD80 0005 BEG BASR 8,0
0002 0006 USING *,8

OOCA 48AO 819A 019C 0010 LH 10, =Y (B)
OOCE 48BO 819C 019E 0011 LH 11, =Y (C)
00D2 OD9B 0012 BASR 9,11

019C 0000 0016 #= Y (B)
019E 0000 0017 #= Y (C)
0000 0018 END BEG

0001 AOPTN ENTRY
07DO 0002 B START 2000
07E4 0003 ENTRY C
07DO 0004 USING *,11

07E4 4AEO B400 OBDO 0008 C AH 14,=H'5'

OBDO 0005 0011 #= H' 5'
OBD2 0011 D CSECT
OBD2 ODBO 0012 BASR 11 ,0
OBD4 0013 USING *, 11

1084 07F9 0017 BR 9
07DO 0018 END B

r----------------------T---------------------T--,
IAssembler Output/InputlOutput of the LinkagelComments l
Ito the Linkage Editor IEditor I I
.----------------------+---------------------+--~
I 1// CATAL ILinkage Editor generates this card. I
IPHASE PROGA,A,4700 IPHASE PROGA,A,X'125C' ICard is reproduced. Indicates the name I
I I and begin address of the phase.
f I
ESD A (SD, ER) I ESD

TXT

RLD
END

ESD
ESD

TXT

A

A
A

B (SD, LD)
D (SD)

B

I
I
I
I TXT
I
I
I
I
I
I
I
J
I TXT
I

(SD)

A

B

SD's and ER's are relocated, ER's are
combined with LDfs of section B. Only one
SD is produced for the whole phase.

TXT for section A.

RLD's are relocated.

ESD information for sections Band D has
been relocated and SD has been combined
with ER of section A.

TXT for section B.

TXT D I TXT D TXT for section D.
lEND B lEND A END B is rendered ineffective since an END
I I card was previously encountered in this
I 1/* phase. END A remains effective since the
\ ENTRY 1// END ENTRY statement has no' operand.
l ________________ . ______ L _____________________ L _____________ ---------------______________ J

.Figure 33. Using the Linkage Editor Program, Example 1

62

I x
~.

~
C\..

L
I
>-
w
Vl

~
C\..

L
r
N
w
Vl

~
C\..

L

"-

,," if;

A

pirllI N iJ"1

U~ if:
.13

It'

IFI~~ f:
ll'

"-",-
" "

IRIEIPIR
X • III

1sT IA~n
E~ I"rRY
-- _. -

-1- ---
~IF~

IRIEI': lfl

IV IL
S ctT

-- ---

ls leT -----

X

IIlE plRIo
lz L lr
r-s ElriT
------- ---
'et1ID

PHASE X, C,-4096

" "

196

R~ I~2

PO ll~ rr 1

IGr INl2

~l ~T2

01 NITI:l

0..-
, .. Note: The use of EXTRN or ENTRY Assembler statements

(or the name of a START or CSECT statement) is
required to define the o/mbols used as origin
specifications in the PHASE cards. This is not shown
in the example.

Assembler Output / Input
to the linkage Editor

~E-N~TR~Y~--------~

Linkage Editor Output/Input
Monitor loader or CMAINT

f/ END

.Figure 34. Using the Linkage Editor Program, Example 2

DPS Service Programs 63

rs: ~OURCE PROGRAM

- - Unkage Editor Input Unkage Editor Output . .. "

IPIol AI~IE)t C -I' I~~
A~ ~II IA~' g

EI" 11~Y
Assembly of
Phase X

---l-

I- ---
lit -I- I- - -

~~Il: 11M IN 11

iPIH IAIS 1£ IY L III I" IW2
Assembly of

Yl aa ~
--!- >-

" -- 8 :>
I.J.J
I.f) E,.ID ~ r~ T!2 If
«
J: a.

t
r

N

~ «
J: a.
L

~r-

lPlH ASE
Dill

;';)/ ~IICI' " --I-I"
~- ---
F~"

Rf RIG
~ ~

Plf ~~II ~

EI~II: IPIO II~ Tj

Note: The use of EXTRN and ENTRY Assembler
statements is required in the above pro­
gram but is not shown in the example.

Assembly of
Y2

Assembly of
Phase Z

PHASE X,C,-4096
ESD AA
ESD ORGIN2

~XT
RLD ~]
END (PO~NT 1)

PHASE Y, L, ,ORGIN2
ESD aa
~TXT
RLD

aa] aa
END (POINT2)

ESD CC

~XT CCJ
RLD CC
END (ANYPNn

PHASE Z,L" CC
ESD DO

~XT
RLD

DO]
DO

END (POINT3)
ENTRY

//CATAL
PHASE
ESD
TXT

~ND

/ / CATAL
PHASE
ESD
TXT

END

/ / CATAL
PHASE
ESD
TXT

END

I /*
II END

X,A,xxx
X
X

xxx (POINT!)

Y,A,xxx
Y
Y

xxx (POIN T2)

Z,A,xxx
Z
Z

xxx (POINT3)

eFigure 35. Using the Linkage Editor Program, Example 3

Load System Disk Pl'ogram (LDSYS)

This section describes the functions of the
LDSYS program and the control statements
you must supply to request these functions.

PURPOSE OF THE LOAD SYSTEM DISK PROGRAM

The LDSYS program enables you to build a
disk-resident system that is especially
tailored to your needs.

It loads the disk-resident portion of
IPL and the Monitor into their fixed loca­
tions.

The LDSYS program furthermore enables
you to build a core-image library that
includes all IBM-supplied programs and
executable problem programs that you need
to operate your system effectively.

The LDSYS program can be executed under
the control of both the disk-resident and
the card-resident control systems.

In order to use the LDSYS program to
create a disk-resident system, the input

64

you furnish must be in punched cards or in
card-image format on magnetic tape.

The minimum components your disk­
resident system must include are:

• the disk-resident portion of IPL

• the Monitor

• the core-image library containing the
Job Control program.

The disk-resident portion of IPL is a
standard program supplied by IBt-1. You
obtain this program in punched cards or in
card-image format on magnetic tape by means
of the CSERV program, and use this output
as input to the LDSYS program.

The Monitor in the distribution package
is the standard Monitor. If the features
of the standard Monitor do not reflect your
requirements, you can generate a Monitor
tailored to your specific needs. The input
you use for the LDSYS program can be (1)
the standard Monitor obtained in punched
cards or in card-image format on magnetic
tape by means of the CSERV program, or (2)
the output of a Monitor generation run.

The core-image library must contain the
Job Control program. In addition, it may
contain a selection of IBM-supplied
programs and object programs that you will
run frequently. You can obtain all IBM­
supplied programs in punched cards or in
card-image format on magnetic tape by means
of the CSERV program. The problem programs
you will run frequently must be in punched
cards or in card-image format on magnetic
tape and immediately executable (tha"t is,
already assembled or compile~ before you
can use them as input to the LDSYS program.

You may also include the remaining
components of the Disk programming System
in the system disk pack you create.

Before you can begin creating a disk­
resident system, you must first initialize
the disk pack as described in the SRL
publication IBM System/360 Model 20, Disk
Programming System, Disk Utility Proqrams,
Form C26-3810.

If you wish to execute programs that are
not already stored in your core-image
library, you must include the CMAINT pro­
gram on your disk pack. Then you can use
the execute-loader function and read your
program from SYSIPT (II EXEC LOADER) or
from the relocatable area (II EXEC
LOADER,R) •

In addition, if you wish to assemble and
execute or compile and execute source pro­
grams in one job, you must include the
Assembler or RPG program and a relocatable
area in your disk~resident system.

In order to store additional programs in
the core-image library, you must also
include the C~~INT program on the system
disk pack.

JOB CONTROL STATEMENTS

The job control statements that are
required for a LDSYS run are:

II LOG optional
II JOB required
II DATE 1st job after IPL only
II ASSGN SYSIPT required
II ASSGN SYSOPT required
II ASSGN SYSLOG optional
II EXEC required

JOB Control Statement

The format of the JOB control statement
required to create a disk-resident system
is:

r----T---------T--------------------------,
I Name I Operationl Operand I
t----+---------+--------------------------~
III IJOB ILDSYS I
l ____ L _________ L __________________________ J

LDSYS
---rndicates that a disk-resident system is

to be built.

ASSGN Control Statements Preceding EXEC

Depending upon the medium on which input is
stored, SYSIPT may be assigned either to a
card reading device or to a magnetic tape
drive.

SYSOPT must be assigned to the disk
drive on which the disk-resident system is
to be written.

We recommend that you assign SYSLOG to
the printer so that all control statements,
PHASE statements, and diagnostic messages
can be printed.

If these assignments are still effec­
tive, you need not submit them again.

The remaining job control statements are
not described here. You can find their
correct formats in the section Job Control
Program.

PROGRAM CONTROL STATEMENTS

The program control statements required for
a LDSYS run are:

II LIMIT
} l:equired II IPL

II MONTR
II ASSGN optional
II CONFG optional
II END required on SYSRDR if "" SYSIPT
II END required on SYSIPT

LIMIT Control Statement

The LIMIT control statement specifies the
areas of the system disk pack to be allo­
cated to the directories, the libraries,
and the relocatable area. The format of
the LIMIT control statement is:

r----T---------T--------------------------,
I Name I Operation I Operands I
t----+---------+--------------------------~
III I LIMIT Ixx,nnn[,xx,nnn •••] I
L ____ L _________ L __________________________ J

Code indicating which of the libraries
or library directories are to be allo­
cated.

DPS Service Programs 65

Code Area

CD Core-Image Directory
CL Core-Image Library
MD Macro Directory
ML Macro Library
RL Relocatable Area

nnn
---Code in decimal notation indicating how

many tracks are to be allocated. Lead­
ing zeros are not used.

It doesn't make any difference in what
order you specify the areas to be allocat­
ed. But each area code xx must be followed
by a comma and the number of tracks it is
to occupy. If you want to allocate three
areas, the operand will be:
xx,nnn,xx,nnn,xx,nnn.

If you specify a 0 after the area code
xx, the area will be omitted from the sys­
tem disk pack. A specification of zero has
the same effect as omitting an area code
entirely. The total number of tracks you
allocate must not exceed the number of
tracks on the disk pack (1986 tracks for
t<lodel 11, 986 tracks for Model 12).

The macro directory and the core-image
directory must not occupy more than ten
tracks a piece.

If you omit the macro library from the
system disk pack, omit the macro directory
as well (ML,O,MD,O or omit both area
codes) •

Never omit the core-image library and
the core-image directory.

IPL control Statement

The IPL control statement instructs the
LDSYS program that the disk-resident IPL
deck follows and is to be loaded. The
format of the IPL control statement is:

r----T---------T--------------------------,
INamelOperationlOperand I
}----+---------+--------------------------i
1// IIPL 1 J L ____ ~ _________ ~ _________________________ _

MONTR Control Statement

The MONTR control statement instructs the
LDSYS program that the disk-resident Moni­
tor program is to be loaded. The MONTR
statement also informs the LDSYS program
that ASSGN statements and possibly a CONFG
control statement may follow. The format
of the MONTR control statement is:

66

r-----T---------T-------------------------,
IName I Operation I Operand 1

r-----+---------+-------------------------i
1// 1 MONTR 1 1
L _____ L _________ L _________________________ J

ASSGN Control Statements Following EXEC

The ASSGN control statement is used to
insert or change device assignments in the
physical and logical unit tables of the
Monitor of the disk-resident system to be
created. The format of this control state­
ment is described in the section Job Con­
trol Program.

CONFG Control Statement

The CONFG control statement is used to
change the storage-capacity specification
in the communication region of the Monitor
of the disk-resident system to be created.
It should not be used if the Monitor sup­
ports inquiry facilities. The format of
this control statement is described in the
section Job Control Program.

END Control Statements

Two END control statements are used in
building the disk-resident system. One END
control statement terminates the input from
SYSIPT. The other END control statement
terminates the input from SYSRDR. If
SYSRDR refers to the same device as SYSIPT,
the second END statement is not required.

The format of the END control statement
is as follows:

r----T---------T--------------------------,
INamelOperationlOperand 1

r----+---------+--------------------------i
1// lEND I I L ____ ~ ___ - _____ ~ __________________________ J

SAMPLE LDSYS RUN

This example shows how a disk-resident
system can be created by means of the LDSYS
program operating under the control of the
card-resident control system.

The following sequence of control state­
ments and card decks are'used to build the
system. The comments below refer to Figure
36.

1. Card Initial Program Loader deck.

2. ASSGN control statements for SYSRES and
SYSRDR.

3. Card-resident Monitor deck.

4. Card-resident Job Control deck.

5. JOB control statement for LDSYS pro-
gram.

6. DATE control statement, to supply the
date for the communication region.

7. ASSGN control statements affecting the
card-resident Monitor in main storage,
for example assigning SYSOPT to 1:he
disk unit that is to accommodate the
disk-resident system to be created.

8. EXEC control statement. After this
statement every interspersed blank card
is ignored, therefore it is possible to
partition the input card deck.

9. Load System Disk program deck.

10. LIMIT control statement for library and
directory allocations.

11. IPL control statement to indicate the
beginning of the disk-resident IPL.

12. Disk-resident IPL card deck.

13. MONTR control statement to indicate the
beginning of the disk-resident Monitor.

EX~~Ele A: Standard Monitor

14. Standard Monitor distributed by IBM.

15. Optional ASSGN control statements used
to alter the permanent device assign­
ments of the standard Monitor.

16. Optional CONFG control statement used
to alter the standard storage specifi­
cation in the communication region of
the lVloni tor.

17. END control statement. Optional if
SYSRDR=SYSIPT.

18. PHASE card for Job Closing routines.

19. Job Closing routines card deck.

20. PHASE card for Job Control program.

21. Job Control program deck.

22. Core-image library phases in card-image
format beginning with a PHASE state­
ment. A CATAL statement preceding the
PHASE statement will be ignored.

23. END control statement signifying the
end of phases for the core-image
library. This card terminates the
execution of the Load System Disk pro­
gram.

Example B: Generated Monitor

14. Generated Monitor. Note that the first
three cards in the output deck of a
Monitor generation run are: // JOE
CMAINT, // EXEC, and // MONTR. Since
they apply only to a CMAINT run, they
must be removed. The Monitor contains
the permanent device assignments speci­
fied at generation time. It includes
the Job Closing routines.

15. PHASE card for Job Control program.

16. Job Control program deck.

17. Core-image library phases in card-image
format beginning with a PHASE state­
ment. A CATAL statement preceding the
PHASE statement will be ignored.

18. END control statement signifying the
end of phases for the core-image
library. This card terminates the
execution of the Load System Disk pro­
gram.

DPS Service Programs 67

disk-resident

Example A
Standard Monitor

Example B
Generated Monitor

* Read from SYSIPT. All
others read frorn SYSRDR.

Figure 36. Sample LDSYS Run Under Control of the Card-Resident System

68

Copy System Disk Program (COPSYS)

The Copy System Disk program (COPSYS) is a
service program that operates under the
control of either the disk-resident or the
card-resident Monitor.

The function of the COPSYS program is to
transfer the system file from the system
disk pack onto another disk pack for backup
purposes.

The input to the COPSYS program is sup­
plied by the system disk pack that is to be
copied. The output of the program is writ­
ten onto the disk pack assigned to SYSOPT.
This disk pack must previously have been
initialized by means of the INTDSK utility
program so that it will contain a volume
label and a VTOC.

JOB CONTROL STATEMENTS

The job control statements you must supply
in order to request a COPSYS function are:

// LOG optional
// JOB required
// DATE 1st job after IPL only
// ASSGN SYSIPT required
// ASSGN SYSOPT required
// ASSGN SYSLOG optional
// EXEC required

LOG Control Statement

We recommend that you insert the LOG con­
trol statement so that all error messages
and diagnostics can be printed on the
device assigned to SYSLOG. In addition, a
header statement and a concluding statement
will then be printed on the printer by the

SYSOPT must be assigned to the disk
drive on which the system file is to be
written.

We recommend that you also assign' SYSLOG
to the printer.

If these assignments are still effec­
tive, you need not submit them again.

The remaining job control statements are
not described here. You can find their
correct formats in the section Job Control
Program ..

PROGRAM CONTROL STATEMENTS

No program control statements are required
for a COPSYS run.

Figure 37 shows a typical example of
using job control statements to request a
COPSYS function.

/ / JOB COPSYS

COPSYS program to help you document your .Figure 37. Example of Using Control State­
ments to Request a COPSYS Func­
tion

COPSYS .run.

JOB Control Statement

The format of the JOB control statement
required to request a COPSYS run is:

r----T---------T--------------------------,
INamel Operation I Operand I
.----+---------+--------------------------1
1/1 I JOB ICOPSYS I L ____ ~ _________ ~ __________________________ J

COPSYS
Indicates that the system disk pack is
to be copied.

ASSGN Control Statements

SYSIPT must be assigned to the disk drive
on which the system disk pack to be copied
is located.

Backup and Restore Program (BACKUP)

The Backup and Restore program enables you
to create a backup tape from a disk file
or, optionally, from a disk file and one or
more card files, and to restore the backup
information to its original media.

One application of the program is to
make a backup tape of every disk file
before you modify any data on that file.
Then, if the modified disk file is acciden­
tally destroyed, you can easily restore the
backup file onto anotheI disk pack.

The Backup and Restore program has four
functions:

DPS Service Programs • 69

• create a backup tape

• initialize one or more disk packs

• restore one or more disk backup files

• punch or display one or more card backup
files.

The first function, create a backup
tape, runs under the control of the disk­
resident system. It causes a tape-resident
control system, the DPS Initialize Disk
program, and the phases required for the
remaining three functions to be written
onto the backup tape in sequential order.
It also punches a bootstrap card later used
to initiate retrieval from the backup tape.

The last three functions then run under
the control of the tape-resident control
system on the backup tape. They are
initiated by means of the bootstrap card
punched when the backup tape was created.

Each function of the Backup and Restore
program is described in detail in the fol­
lowing, together with the job control and
program control statements you need to
request each function.

CREATE A BACKUP TAPE

This function of the Backup and Restore
program allows you to create a backup tape
from a disk file and, optionally, from one
or more card files. It also punches a
bootstrap card that will initiate the
retrieval of information from the backup
tape when you require it.

Since a backup tape is created under the
control of the disk-resident system, the
Backup and Restore program must be con­
tained in the core-image library of the
system disk pack mounted on SYSRES. In
addition, the DPS Initialize Disk utility
program must also be contained in the core­
image library, since this program is
automatically written on every backup tape
you create.

JOB CONTROL STATEMENTS

The job control statements required to
create a backup tape are:

.70

// LOG recommended
// JOB required
// DATE 1st job after IPL only
// ASSGN SYSIPT required
// ASSGN SYSOPT required
// ASSGN SYSOOO depends on job
// ASSGN SYSOOl depends on job
// UPSI 1 depends on job
// OPTN TES recommended
// EXEC required

Job Control Statement

The format of the JOB control statement
required to create a backup tape is:

r----T---------T--------------------------,
1 Name 1 Operation 1 Operand 1

t----+---------+--------------------------~
1// IJOB 1 BACKUP 1
l ____ L _________ L __________________________ J

BACKUP
Indicates that a backup tape is to be
created.

ASSGN Control Statements

The use of ASSGN control statements depends
on the job you wish to perform.

SYSIPT must be assigned to the disk
drive on which the disk file to be copied
is mounted. The assignments of SYSIPT and
SYSRES may be identical.

SYSOPT must always be assigned to a
magnetic tape drive. It is the symbolic
device address of the drive on which the
backup tape will be created.

SYSOOO must be assigned to a card punch­
ing device if you want a bootstrap card to
be punched. If you specify the option
NOBOOT in the program control statements,
you need not assign SYSOOO.

SYSOOl must be assigned to a card read­
ing device if you want to include one or
more card files on the backup tape (OPTN
CARDFILE included among the program control
statements). Otherwise SYSOOl need not be
assigned. The a£signment of SYSOOl and
SYSRDR may be identical.

The assignment of SYSLOG is optional.
We recommend that you make this assignment
so that error messages, tape error statis­
tics, and the file identificat~ons of bac­
kup files can be printed.

If any of these assignments are still
eff~ctive, you need not submit them again.

UPSI Control Statement

An UPSI control statement with the format

r----T---------T--------------------------,
I Name I Operation I Operand I
~----t---------t--------------------------i
1/1 I UPSI I 1 I L ____ ~ _________ ~ __________________________ J

is ~equired if an uninitialized tape is at
load point. This statement causes label
checking to be skipped.

The remaining job control statements are
not described here. You can find their
correct formats in the section Job Control
Program.

PROGRAM CONTROL STATEMENTS

With the exception of the END statement,
all program control statements described
here are optional. If you do not submit
them, the program will copy the entire disk
pack onto tape up to cylinder 102 or 202,
and punch the bootstrap card later used to
initiate retrieval.

By submitting program control state­
ments, you can select the files you wish to
write on the backup tape, and request or
suppress certain options. These program
control statements are:

II START optional
II ENDTR optional
II COpy optional
II IDENT optional
II OPTN depends on job
II END required
1& NAME depends on job
1& depends on job

Start Control Statement

By means of the START c0ntrol statement,
you indicate to the program the address of
the first track of the disk pack to be
written onto tape. The format of this
control statement is:

r----T---------T--------------------------,
INamelOperationlOperand I
r----t---------t--------------------------i
~/I I START Iccchh I L ____ ~ _________ ~ __________________________ J

ccc
---Cylinder number in decimal notation

hh
Track number in decimal notation

The START control statement is optional.
If you do not submit it, START 00000 is
assumed.

The START control statement does not
apply to the disk volume label and the
VTOC, which are always written onto the
backup tape.

ENDTR Control Statement

This control statement indicates to the
program the address of the last track of
the disk pack to be written onto tape. The
format of the ENDTR control statement is:

r----T---------T--------------------------,
INamelOperationlOperand I
r----t---------t--------------------------i
III IENDTR Iccchh I L ____ ~ _________ ~ __________________________ J

ccc
---Cylinder number in decimal notation

hh
Track number in decimal notation

The ENDTR control statement is optional.
If you do not submit it, ENDTR 10209 or
20209 is assumed, depending on the model of
the disk drive you assigned as input.

The ENDTR control statement does not
apply to the disk volume label and the
VTOC, which are always written onto the
backup tape.

COpy Control Statement

The COpy control statement indicates which
data files are to be written onto tape.

The formats of the COpy control state­
ment are:

r----T---------T--------------------------,
I Name I Operation I Operand I
r----t---------t--------------------------i
III ICOPY IALL I
r----t---------t--------------------------i
1/1 lCOPY IUNEXP I
r----t---------t--------------------------~
III I COpy IEXP I
r----t---------t--------------------------i
1/1 I COpy I NAME I L ____ ~ _________ ~ __________________________ J

ALL
---All files completely within the limits

defined in the START and ENDTR control
statements are written onto tape

UNEXP
~l unexpired files completely within

the limits defined in the START and
ENDTR control statements are written
onto tape

DPS Service Programs .71

EXP
---All expired files completely within the

limits defined in the START and ENDTR
control statements are written onto tape

NAME
---~fhe disk files specified in the cards

"that immediately follow this statement
are to be written onto tape.

The cards specifying the files have the
format:

Col. 1-15
Col. 16-59

Col. 60-80

blank
file identification (44
characters as they appear in
the DLAB statement)
comments or numbering

If you do not submit the COpy statement,
COpy ALL is assumed.

IDENT Control Statement

By using the IDENT control statement, you
have the option of writing an identifying
code on the backup tape. The format of the
IDENT control statement is:

r----T---------T--------------------------,
INamelOperationlOperand 1

~----+---------+--------------------------~
1// IIDENT 1 code 1
l ____ L _________ L __________________________ J

The identifying code you insert into the
operand field will be printed out on SYSLOG
when the information on the backup tape is
written back onto disk.

OPTN Control Statement

The format of the OPTN control statement
is:

r----T---------T--------------------------,
INamel Operation I Operands I
~----+---------+--------------------------~
1// IOPTN ICARDFILE I
~----+---------+--------------------------~
1// IOPTN I NOBOOT I
l ____ L _________ L __________________________ J

CARDFILE
---Use an OPTN statement with this operand

if you want to write one or more card
files on the backup tape. Remember that
in this case SYS001 must refer to the
card reading device on which the card
files can be read.

NOBOOT
---Use an OPTN statement with this operand

if you do not want a bootstrap card
punched. You may still have bootstrap
cards available from previous runs.

• 72

END Control Statement

The END control statement is always
required. Its format is:

r----T---------T--------------------------,
I Name IOperationl Operand I
t----+---------+--------------------------~
1// lEND I I l ____ L _________ L __________________________ J

/& NAME Control Statement

If you wish to include one or more card
files on the backup tape (OPTN CARDFILE
among the control statements) , you must
precede each card file on SYSOOl with the
control statement:

r----T---------T--------------------------,
I Name I Operation I Operand I
r----+---------+--------------------------~
1/& I NAME I name I
l ____ L _________ L __________________________ J

name
~--The name of the card file to be written

onto tape behind the disk backup file.
The name may be up to six characters
long. The first character must be
alphabetic, the others may be alphabetic
or numeric.

The name of the card file is written
onto the backup ta~e and later used to
retrieve the file.

You can write several card files on the
backup tape in one job. You must precede
each card file with a /& NAME control
statement, and the names must be in ascend­
ing order according to the collating
sequence.

/& Control Statement

This control statement indicates to the
program that no further card files are to
be included on the backup tape. The format
of the control statement is:

r----T---------T--------------------------,
I Name 1 Operation I Operand I

t----+---------+--------------------------~
1/& I I I L ____ ~ _________ L __________________________ J

This control statement must be inserted
behind the last card file on SYS001.

Figure 38 is an example of using job
control and program control statements to
create a backup tape •

read on r--, SYSOO1L---.J

• Figure 38. Example of Using Control State­
ments to Create a Backup Tape

INITIALIZE ONE OR MORE DISK PACKS

The input for this function of the Backup
and Restore program is the backup tape, on
which the DPS Initialize Disk program was
written at creation time.

This program runs under the control of
the tape-resident control system included
on the backup tape, therefore a system disk
pack is not used. All you need is the
backup tape and the bootstrap card. After
you initiate the retrieval of information
from the backup tape by means of the boots­
trap card, you request the initialize func­
tion of the Backup and Restore program if
your disk pack is not yet initialized.

By means of the initialize function you
can initialize one disk pack or several
disk packs in succession and write a volume
serial number on each of them.

JOB CONTROL STATEMENTS

Use the following job control statements to
initialize a disk pack using the Backup and
Restore program:

// JOB
// DATE

// ASSGN SYSRDR
// ASSGN SYSOPT
// RPT

// EXEC

required
required if the execu­
tion of the program
immediately follows the
loading of the bootstrap
card
depends on job
required
required for each addi­
tional disk pack you
wish to initialize
required

Job Control Statement

To call the DPS Initialize Disk program
from the backup tape into main storage, use
the control statement

r----T---------T--------------------------,
INamelOperation/Operand I
t----+---------+--------------------------~
1// IJOB /INTDSK I L ____ ~ _________ ~ __________________________ J

INTDSK
Identifies the job as an initialize-disk
run.

ASSGN Control Statements

To initialize a disk pack, you must assign
SYSOPT to the disk drive on which the disk
pack to be initialized is mounted.

If the card reading device in your con­
figuration is not a 2501 Card Reader, and
if initialization is the first job after
loading the bootstrap card, you must assign
SYSRDR to your card reading device.

RPT Control Statement

If you wish to initialize more than one
disk pack in succession, use the control
statement

r----T---------T--------------------------,
IName/OperationlOperand I
t----+---------+--------------------------~
1// IRPT 1 / L ____ ~ _________ ~ __________________________ J

For each additional disk pack you WiSh
to initialize, you must repeat all the
control statements required for JOB INTDSK
and insert the RPT control statement before
the EXEC statement.

The RPT control statement causes the
backup tape to be rewound and spaced for­
ward to the point where initialization of
the additional disk pack can begin.

The remaining job control statements are
not described here. You can find their

DPS Service Programs .73

correct format in the section Job Control
Program.

PROGRAM CONTROL STATEMENTS

The program control statements required to
initialize the disk pack are described in
the SRL publication IBM System/360 Model 20
Disk Programming System, Disk Utility Pro­
grams, Form C26-3810.

RESTORE ONE OR MORE DISK BACKUP FILES

The input for this function of the Backup
and Restore program is the backup tape, on
which the restore phases were written at
creation time.

This program runs under the control of
the tape-resident control system included
on the backup tape, therefore a system disk
pack is not used. If the first ~unction
you request is the restore function, you
initiate the retrieval of information from
the backup tape by means of the bootstrap
card and submit job control and program
control statements on the device assigned
to SYSRDR.

By means of the restore function, you
can restore the disk backup file onto one
disk pack, or onto several initialized disk
packs in succession.

JOB CONTROL STATEMENTS

Use the following job control statements to
restore a disk backup file onto a disk
pack:

II LOG
II JOB
II DATE

II ASSGN SYSRDR
II ASSGN S¥SOPT
II RPT

II EXEC

recommended
required
required if the execu­
tion of the program
immediately follows the
loading of the bootstrap
card
depends on job
required
required for each addi­
tional disk pack onto
which you restore the
backup file
required

LOG Control Statement

We strongly urge you to insert the LOG
control statement.

Before the backup file is transferred to
disk, the program compares the extents of
the backup file with the extents of unex-

• 74

pired files already on the disk pack. If
they overlap, the unexpired files will have
to be deleted before the backup file can be
transferred to disk. If you insert the LOG
control statement, the ~rogram will print
the file identification of such unexpired
files so that you can decide whether to
continue the job or not.

The program will also print information
about the contents of the disk pack.

JOB Control Statement

The J03 control statement required to res­
tore a disk backup file onto a disk pack
is:

r----T---------T--------------------------,
INamelOperation\Operand I
t----+---------+--------------------------~
III IJOB I RESTOR I
L ____ L _________ L __________________________ J

RESTOR
Identifies the job as a restore opera­
tion.

ASSGN Control Statements

To restore a disk backup file onto disk,
you must assign SYSOPT to the disk drive
onto which the backup file is to be writ­
ten.

Note that you need not submit an ASSGN
control statement for SYSIPT. Instead, the
operator will use the console switches to
insert the physical device address of the
backup tape drive.

If the card reading device in your con­
figuration is not a 2501 Card Reader, and
if restoring a disk backup file is the
first job after loading the bootstrap card,
you must assign SYSRDR to your card reading
device.

RPT Control Statement

If you wish to restore the disk backup file
onto more than one disk pack in succession,
use the control statement

r----T---------T--------------------------,
INamelOperationlOperand I
r----+---------+--------------------------~
III IRPT I I
L ____ L _________ L __________________________ J

For each additional disk pack onto which
you wish to restore the disk backup file,
you must repeat all the control statements
required for JOB RESTOR and insert the RPT
control statement before the EXEC state-,
ment •

The RPT control statement causes the
backup tape to be rewound and spaced for­
ward to the point where the backup file can
be restored to another disk pack.

PROGRAM CONTROL STATEMENTS

The program control statements used to
restore a disk backup file onto a disk pack
are:

// OPTN
VOLlnnnnnn
// END

optional
optional
required

OPTN Control Statement

By means of the OPTN control statement, you
specify whether the information restored
onto the output disk pack is to be veri­
fied, that is, compared with the contents
of main storage.

The formats of the OPTN control state­
ment are:

r----T---------T--------------------------l
INamel Operation I Operands I
t----+---------+--------------------------~
1// IOPTN IVERIFY=YES I
t----+---------+---------·----------------~
1// IOPTN IVERIFY=NO I L ____ ~ _________ ~ __________________________ J

The operands are self-explanatory. If
you do not submit this control statement,
VERIFY=YES is assumed.

VOLl Control Statement

By means of the VOL1 control statement, you
instruct the program to write the specified
volume serial number onto the output disk
pack. The format of this statemen~ is:

r----------T---------T--------------------,
I Name I Operation I Operand I
t----------+---------+--------------------~
IVOLlnnnnnnl I name I L __________ ~ _________ ~ ____________________ J

nnnnnn
Columns 5-10. The volume serial number
to be written onto the disk pack.

name
--Columns 42-51. Owner's name code.

Use the VOLl statement with discretion
and with utmost care. Normally, the volume
serial number of the output disk pack is
compared with the volume serial number of
the disk pack from which the backup tape
was made. But when you use the VOL1 state­
ment, this diagnostic is suppressed. More-

over, the volume serial number you specify
in this statement is written on the output
disk pack, and the file serial numbers of
all files on this disk pack are changed
accordingly. If you have multi-volume
files and the disk pack assigned to SYSOPT
.is the first volume of such a file, all
files on this disk pack are in jeopardy if
the volume serial number (and hence the
file serial numbe~ is changed. So before
you use this statement, make double sure
that the volume serial number you specify
is correct.

END Control Statement

The format of the END control statement is:

r----T---------T--------------------------,
INamelOperationlOperand I
t----+---------+--------------------------~
1// I END I I L ____ L _________ ~ __________________________ J

PUNCH OR DISPLAY ONE OR MORE CARD BACKUP
~

The input for this function of the Backup
and Restore program is the backup tape, on
which the punch and display phases were
written at creation time.

This program runs under the control of
the tape--:resident control system included
on the backup tape, therefore a system disk
pack is not used. If the first function
you request is the punch or display func­
tion, you initiate the retrieval of infor­
mation from the backup tape by means of the
bootstrap card and request the punch and
display function of the Backup and Restore
program by submitting job control and pro­
gram statements on the device assigned to
SYSRDR.

The card files must be retrieved from
the backup tape in the same order in which
they were written onto the backup tape. If
you request a retrieval sequence other than
the collating sequence, a diagnostic halt
will occur.

The punch and display function must be
the last function you request when you use
the backup tape as input, because when this
function is completed, the backup tape is
automatically rewound and unloaded, and no
further functions can be requested.

JOB CONTROL STATEMENTS

Use the following job control statements to
punch or display a card backup file:

DPS Service Programs .75

// JOB
// DATE

// ASSGN SYSOPT
// ASSGN SYSLST
// EXEC

required
required if the execu­
tion of the program
immediately follows the
loading of the bootstrap
card
depends on job
depends on job
required

JOB Control Statement

The JOB control statement required to print
or punch a card backup file has the format:

r----T---------T--------------------------,
INamelOperationlOperand 1

t----+---------+--------------------------~
1// IJOB 1 PUNCH 1 L ____ ~ _________ ~ __________________________ J

PUNCH
----]~dicates that a card backup file is to

be punched or displayed.

ASSGN Control Statements

To punch a card backup file you must assign
SYSOPT to a card punching device.

'1'0 display a card backup file, you must
assign SYSLST to the printer.

Note that you need not submit as ASSGN
control statement SYSIPT. The operator
will use the console switches to insert the
physical device address of the backup tape
drive.

If the card reading device in your con­
figuration is not a 2501 Card Reader, and
if punching or displaying a card backup
file is the first job after loading the
bootstrap card, you must assign SYSRDR to
your card reading device.

The remaining job control statements are
not described here. You can find their
correct formats in the section Job Control
Program.

PROGRAM CONTROL S'rATEMENTS

The program control statements required to
punch or display a card backup file includ­
ed on the backup tape are:

// PUNCH
// DSPLY
// DSPCH
// END

.76

depends on job

required

PUNCH, DSPLY, and DSPCH Control Statements

The PUNCH control statement instructs the
program to punch a card backup file.

The DSPLY control statement instructs
the program to display a card backup file
on the printer.

The DSPCH control statement instructs
the program to dis~lay as well as to punch
a card backup file. These operation are
then performed simultaneously.

The formats of these control statements
are:

r----T---------T--------------------------,
INamelOperationlOperand 1

t----+---------+--------------------------~
1// IPUNCH 1 name I
t----+---------+--------------------------~
1// 1 DSPLY /name 1
t----+---------t--------------------------~
1// IDSPCH Iname / L ____ ~ _________ ~ __________________________ J

name
--The name given to the card-image file

when the backup tape was created.

You can insert these control statements
in any number and any sequence, but the
names specified in the operand fields must
be in ascending order according to the
collating sequence. You may, however,
request a file more than once in succes­
sion.

END Control Statement

The format of the END control statement is:

r----T---------T--------------------------,
I Namel Operation 1 Operand /
t----+---------+--------------------------~
1/(lEND / I
L_~ __ ~ _________ ~ __________________________ J

The END control statement indicates that
no further card backup files are requested,
and causes the backup tape to be rewound
and unloaded.

As we explained in the introduction to
this chapter, the three functions

• initialize
• restore
• punch or display

are stored on the backup tape in sequential
order. Once you load the bootstrap card
that initiates the retrieval of information
from the backup tape, you can request these
functions by submitting the appropriate job
control statements to SYSRDR. But remember
that it is time-saving to request the func-

tions in the same order as they are stored
on tape.

Always request JOB PUNCH last, because
it causes the backup tape to be rewound and
unloaded.

Figure 39 shows an example of job con­
trol and program control statements that
request all three functions, using the
backup 'tape as input.

'/ ASSGN SYSOPT , X' 200
R5

restore
card-image __ ..-'11 JOB ,PUNCH
file

'II EXEC

restore backiUp 'I I JOB RESTOR
file to disk --,-_ -IL.. _______

'/ ASSGN SYSOPT,X'801' ,03

'I I DATE 69301
output disk
pack has 7/ JOB INTDSK
not yet been
initialized 'I I LOG

lood
bootstrap ---1..­
card

Bootstrap Card

MILLER & CO

• Figure 39. Example of Using Control Statements to Initialize a Disk Pack,
Restore a Disk File to Disk, and Punch a Card File

DPS Service Programs • 77

IBM Distribution Package

IBM distributes the entire Model 20 Disk
Pro9ramming System on a disk pack or mag­
netic tape supplied by the user. The dis­
tribution package includes a retrieval
program to copy the disk-resident system
and to punch the card-resident Initial
Program Loader deck.

The distribution package on the disk
pack or magnetic tape you supply includes:

• Disk IPL, Part 2.

• Disk-resident standard Monitor.

• Core-image library containing the IB~
programs listed in Figure 40.

• Macro library containing Monitor genera­
tion macro definitions, IOCS macro defi­
nitions, and Monitor macro definitions.

• Sample programs in absolute card format.

r----------------------------------T------,
I Program I Name I
t----------------------------------t------~
ILibrary Allocation Organization IAORGZ I
t----------------------------------t------~
/Alternate-Track Assignment UtilitylATASGNI
t----------------------------------t------~
IBackup and Restore /BACKUPI
t----------------------------------t------~
ICard-to-Disk Utility ICARDSKI
.----------------------------------t------~
IDPS Card-to-Tape Utility ICARTAPI
r----------------------------------t------~
IClear Disk Utility ICLRDSKI
t----------------------------------t------~
ICopy System Disk I COPSYS I
.----------------------------------t------~
ICore-Image Maintenance ICMAINTI
t----------------------------------t------~
ICore-Image Service ICSERV I
t----------------------------------t------~
IDisk Dump IDDUMP I
t----------------------------------t------~
IDirectory Service IDSERV I
.----------------------------------t------i
IDisk-to-Gard Utility I DSKCARI
t----------------------------------t------i
IDisk-tO-Disk Utility I DSKDSKI
.----------------------------------t------i
IDisk-to-Printer Utility I DSKPRTI
.----------------------------------t------i
IDisk-to-Tape Utility I DSKTAPI
t----------------------------------t------~
/DPS Initialize Tape Utility IINITTPI
.----------------------------------t------i
IInitialize Disk Utility IINTDSKt l __________________________________ ~ ______ J

.Figure 40. IBM Programs in the Core-Image
Library of the Distribution
Package, Part 1 of 2

r----------------------------------T------,
I Program I Name I
t----------------------------------t------~
IJob Control I SYSEOJ I
.----------------------------------t------i
IJob Closing Routines ISYSENDI
r----------------------------------t------i
ILinkage Editor ILNKEDTI
.----------------------------------t------i
ILoad System Disk ILDSYS I
t----------------------------------t------i
IMacro Maintenance IMMAINTI
.----------------------------------t------~
IMacro Service IMSERV I
t--------~-------------------------t------i
IPL/I Compiler IPL1 I
r----------------------------------t------i
IPhysical and Logical Unit IPSERV I
ITables Service I I
t----------------------------------t------i
IReport Program Generator IRPG I
r----------------------------------t------i
lDisk Sort/Merge I SORT I
.----------------------------------t------i
IDPS Tape-to-Card Utility ITAPCARI
.----------------------------------t------i
ITape-to-Disk Utility ITAPDSKI
t----------------------------------t------~
IDPS Tape-to-Printer Utility ITAPPRTI
t----------------------------------t------i
/DPS Tape Sort/Merge ITAPSRTI
.----------------------------------t------i
IDPS Tape-to-Tape Utility ITAPTAPI l ____________________ ---___________ ~ ______ J

Figure 40. IBM Programs in the Core-Image
Library of the Distribution
Package, Part 2 of 2

By means of the IBM programs contained
in the core-image library, you can add your
own programs and delete those components
which are not required in your installa­
tion.

You can also build your own disk­
resident system for special applications.
For information on how to do this, refer to
the section Load System Disk Program
(LDSYS) •

If you want to generate a Monitor
tailored to your needs, refer to the SRL
publication IBM System/360 Model 20, Disk
programming System, System Generation and
Maintenance, Form C33-6006.

The contents of the distribution package
can also be obtained in punched cards. Use
the CSERV program to obtain IBM programs,
use the MSERV program to obtain macro defi­
nitions, and use the Disk-to-Card Utility
program to obtain the sample programs in
punched cards.

78 Dotted line flags planning information

Because of its flexibility(the Disk Pro­
gramming System can be adapted to the envi­
ronment in which it is to operate.

Basically, the Disk Programming System
can be either card-resident or disk­
resident.

The disk-resident system, furthermore,
can operate either as a fixed-job or as a
variable-job system.

The following sections describe how each
of these systems operate, and what
components they contain.

Disk-Resident Control System

The disk-resident control system is used to
translate problem programs written in
Assembler language or RPG.

It consists of the standard programs and
areas found on cylinders 0 and 4 of the
system disk pack (see Figure 2) and the
core-image library. The core-image library
must contain the Job Control program. In
addition, it must contain the programs you
need to compile, assemble, or execute prob­
lem programs.

If you wish to compile-and-execute pro­
grams written in RPG, your disk-resident
system must have the RPG program in the
core-image library and a relocatable area
somewhere on the disk pack.

If you wish to assemble-and-execute
programs written in the Assembler/IOCS
language, your disk-resident system must
have the Assembler program in the core­
image library, a relocatable area somewhere
on the system disk pack, ~nd a macro
library for IBM-Supplied macro definitions.

The core-image library may also contain
a selection of IBM-supplied programs that
will help you operate your disk-resident
system effectively.

Card-Resident Control System

In a card-resident control system, all
three control programs -- IPL, the Monitor,
and Job Control -- are in punched cards and
not on a system disk pack. The object
programs (output of assembly runs or:' RPG
compilations) are executed under the con­
t~ol of this card-resident system.

Methods of System Operation

The card-resident system offers advanta­
ges especially if you have only one disk
drive.

After the source programs are assembled
or compiled under control of the disk­
resident system, they can be executed
without the system disk pack under control
of the card-resident system. The disk
drive is now available as I/O device for
executior..

The card-resident system does not use
any additional disk areas besides the two
areas used for label checking: the label
information area (cylinder 0, track 1 or
tracks 1 and 2) and the area containing the
Volume Table of Contents. ~or more
detailed information, refer to the subse­
quent section Single-Drive System Consider­
ations and the section Disk Label Process­
ing in Appendix A.)

Disk-Resident Fixed-Job System

A fixed-job system must include the stand­
ard programs and areas found on cylinders 0
and 4 of the system disk pack (see Figure
2) , a core-image directory, and a core­
image library containing the Job Control
program and the problem programs to be run
under control of the system.

The program to be executed is loaded
from the system disk pack into main storage
by means of the Fetch routine contained in
the Monitor.

Disk-Resident Variable-Job System

A variable-job system must include the
standard programs and areas found on cylin­
ders 0 and 4 of the system disk pack (see
Figure 2), a core-image directory, and a
core-image library containing the Job Con­
trol program, the CMAINT program, and suf­
ficient space to accommodate the largest
problem program to be run under control of
the system.

When a program is to be executed it is
read into main storage from cards or tape,
temporarily placed into the core-image
library by the CMAINT program, and then
loaded into main storage by the Fetch rou­
tine of the Monitor.

Estimated Disk-Storage Requirements

The following estimates are provided to
assist you in planning your system. They
refer to a minimum variable-job system.

Methods of System Operation 79

No. of Tracks Contents

1 IPL part 2
44 the standard programs and

areas found on cylinders 0
and 4 of the system disk
pack (see Figure 2)

1 Core-image directory
20 Core-image library

Each entry in the core-image directory
is 30 bytes long, so that this track can
accommodate entries for 90 program phases.
Approximately 70 of these 90 phases may be
user-program phases.

Program phases are written in the core­
image library in fixed-length records of
270 bytes each. There are 10 records per
track. A phase always begins with a new
record, but need not begin with a new
track. The above estimate (20 tracks)
includes the requirements for the Job
Control program and the CMAINT program,
which together occupy approximately 10
tracks, leaving 10 tracks for the user's
problem programs. These 10 traGks can, for
example, hold approximately six 4K phases.

Single-Drive System Considerations

Model 20 systems with a single IBM 2311
Disk Storage Drive require at least a sys­
tem disk pack to permit the assembly or
compilation of programs. The user's object
programs thus obtained can be executed
under control of the card-resident system
(no additional core-image library space on

the disk packs) or by means of a disk­
resident fixed-job or variable-job system.

80

Special consideration must be given to
jobs that process files stored on more than
one disk pack.

Single-Phase Programs. Single-phase
programs processing files on a single drive
that are stored on more than one disk pack
can be executed under control of the card­
resident system or a fixed-job or variable­
job disk-resident system.

If the card-resident system is used,
every disk pack used for the file must
contain the label information required for
label checking. This information must be
written on each pack by means of separate
Job Control runs under control of the card­
resident system before the file can be
processed.

The same applies if a fixed-job or
variable-job disk-resident system is used.
In addition, however, the first disk pack
must contain the control programs and the
problem program to be executed.

Multiphase Programs. Multiphase programs
that process mUlti-volume disk files on a
single drive should make use of the disk­
resident fixed-job system. Here, too, the
disk label information must be written on
every pack by means of separate Job Control
runs. In addition, the control programs
and the program phases must be included in
every disk pack for the file to permit
phases to be retrieved selectively.

Alternate Track Area. An area of three
cylinders on the disk pack in which tracks
may be used as alternatives to defective
tracks occurring elsewhere on the disk
pack.

Assemble-and-Execute. An operation in
whic;h a program is first assembled and then
executed immediately in the same jobu

Backup and Restore Program (BACKUP). A DPS
Service program. Enables you to create a
backup tape from a disk file and one or
more card files, and to restore each backup
file to its original medium.

Binary-Synchronous Communications Ad~teE
(BSCA). A feature that may be built into
the Central ProceSSing Unit of a Submodel
2, 4, or 5. It permits the system to
function on a switched or leased communi­
cations network as a processor terminal.

Card-Resident System. Consists of the card
control programs (Initial Program Loader,
Monitor, and Job Control). Used for the
execution of object programs contained in
punched cards.

Communication Region. An area of the Moni­
tor. Contains date, storage-capacity
specification, UPSI byte, user areas 1 and
2, and program-name area. Provides for
inter-program and intra-program communi­
cation.

Communications Error Statistics (CES~ A
record of errors occurring in BSCA trans­
mission. In generating a Monitor with BSCA
support, the user automatically generates
the routine that records and analyzeE these
errors.

Compile-and-Execute. An operation in which
a program is first compiled and then exe­
cuted immediately in one job.

CoPY System Disk Program (COPSYS). A DPS
Service program. Enables you to copy a
system disk pack onto another disk pack.

Core-Image Directory. A table on the sys­
tem disk pack containing the addresses and
extents of the programs and/or program
phases in the core-image library.

Core-Image Format. A format identical to
that used in main storage. It facilitates
rapid loading from the core-image library
into main storage without intermediate
processing.

Glossary

Core-Image Library. A disk area containing
the Job Control program, other IBM-supplied
programs (except the Monitor and the IPL) ,
and user's problem programs. Permits
retrieval of programs and/or phases by the
~loni tor.

Core-Image Maintenance Program (C~ffiINT).
A DPS Service program. Updates the core­
image library and directory. Is used to
add and/or delete phases.

Core-Image Service Program (CSERV). A DPS
Service program. Permits the listing,
writing, or punching of one or more entries
of the core-image library.

Directory Service Program (DSERV). A DPS
Service program. Causes printing of the
system and/or core-image and/or macro
directory.

Disk-Resident System. Contains the Moni­
tor, the disk-resident portion of the IPL,
and the Job Contrcl program. May contain
any IBM-supplied and/or user-written pro­
grams and/or macro definitions as well as a
relocatable area.

DPS Control Programs. A collective term
used to refer to the Initial Program Load­
er, the ~onitor program, and the Job Con­
trol program.

DPS Service Programs. A collective term
used to refer to the Library Management
programs, the PSERV program, the Linkage
Editor program, the AORGZ program, the Load
System Disk program, the Copy System Disk
program, and the Backup and Restore prog­
ram.

External Symbol Identification (ESID).
ESID numbers are Assembler-assigned poin­
ters that are used by the Linkage Editor to
correctly recompute the constants referred
to in RLD entries.

Fixed-Job System. A fixed-job sytem must
include the standard programs and areas
found on cylinders 0 and 4 of the system
disk pack, a core-image directory, and a
core-image library containing the Job Con­
trol program and the user's problem pro­
grams. The programs to be executed are
loaded into main storage from the core­
image library.

Initial Program Loader (IPL). A DPS
Control program. Available in a card and a

Glossary 81

disk version. The card version is con­
tained in punched cards, the disk version
is partly contained in a deck of three
punched cards, partly in an area at the
beginning of the system disk pack. Loads
Monitor into main storage. Is used to
assign physical I/O device addresses to
symbolic addresses SYSRES and SYSRDR.
Required for the initialization of a card­
resident or disk-resident system run.

Inquiry Programs. Inquiry programs are
initiated by pressing the Request key on
the printer-keyboard and typing in the name
of the program. The current contents of
main storage (excluding the Monito~ are
rolled out on the system disk pack; then
the inquiry program is loaded and
processed; after execution is completed,
the old status is restored and execution of
the mainline program resumes. Inquiry
programs can be executed only under control
of a Monitor that supports inquiry facili­
ties. The execution of inquiry programs is
not preceded by a Job Control run.

Inter-Program Communication. The exchange
of data between two or more p~ograms.
Facilitated by the communication region.

Intra-Program Communication. The exchange
of data between two or more phases of a
multi-phase program. Facilitated by the
communication region.

Job Control Program. A DPS Control pro­
gram. Resides in main storage between jobs
and provides for automatic job-to-job tran­
sition. Performs I/O device assignment.
Causes Monitor to load next program.

Library Allocation Organization Program.
A DPS Service program. Used to redefine
the limits of the core-image library and
directory, the macro library and directory,
and the relocatable area.

Label Information Area (LIA). An area on
the system disk pack into which disk file
label information~ as contained in the VOL,
DLAB, and XTENT statements, is placed by
the Job Control program. This information
is used by the label processing routines.
Tape file label information is stored in
the upper portion of main storage when
magnetic tape I/O is required.

Library Management Programs. Collective
term for six DPS Service programs: Core­
Image Maintenance,. Macro Maintenance, Core­
Image Service, Macro Service, Directory
Service, and Allocation Organization
programs.

Library Work Area~ An area on the system
disk pack used by the Core-Image Mainten­
ance program when updating the Monitor
program or IPL, and for storing tape label

82

information in assemble-and-execute and
compile-and-execute runs.

Linkage Editor Program (LNKEDT). A DPS
Service program. Relocates programs or
phases and links separately assembled pro­
grams or phases.

Load System Disk Program (LDSYS). A DPS
Service program. Creates a disk-resident
system from card input. Is executed under
control 0= the card-resident or the disk­
resident system.

Logical Unit Block (LUB). An entry in the
Logical Unit Table.

Logical Unit Table. A feature of the
Monitor program. It has 26 logical unit
blocks, each of which refers to one speci­
fic symbolic I/O address. These symbolic
addresses are related to physical I/O
device addresses by means of ASSGN control
statements.

Macro Directory. A table on the system
disk pack listing the macro names, begin
addresses, and area sizes of the macro
definitions contained in the macro library.
Can be listed on a printer by means of the
Directory Service program.

Macro Name. An entry in the macro directo­
ry that iqentifies the corresponding macro
definition in the macro library. Serves as
an operation code for the associated macro
instruction.

Macro Library. A disk area containing the
macro definitions required by the macro
instructions issued in user-written pro­
grams.

Macro Maintenance Program (MMAINT). A DPS
Service program. Updates the macro library
and directory. Is used to add and/or
delete macro definitions.

Macro Service Program (MSERV). A DPS Ser­
vice program. Permits the listing, writ­
ing, or punching of one or more macro defi­
nitions from the macro library.

Monitor I/O Area. An area of main storage
within the Monitor used as a buffer by the
Fetch routine when loading problem pro­
grams.

Monitor Program. The main control program.
Resident in core storage throughout a sys­
tem run. IBM distribution package contains
the standard Monitor and several Monitor
macro definitions. Instead of employing
the standard Monitor, the user can tailor a
Monitor according to his system require­
ments by specifying certain macro instruc-

tions, and generate it by means of an
assembly run.

Object Module. A set of statements pro­
duced as a result of the translation of the
source statements of a complete control
section.

Permanent Link Data Area. A part of the
Monitor with a fixed location in main stor­
age; used for inter- and intra-program
communication by system programs.

Phase. The smallest addressable unit in
the core-image library of a disk-resident
system.

Physical and Logical Unit Tables Seryice
Program (PSERV). A DPS Service program.
This program is used to print and/or change
the permanent device assignments, and/or to
change the storage-capacity byte in the
communication region of the Monitor stored
on the system disk pack.

Physical Disk and Tape I/O Routines. A set
of routines that is contained in the Moni­
tor program and performs tape and disk I/O
operations for the Monitor and problem
programs.

Physical Unit Block (PUB). An entry in the
Physical Unit Table.

Physical Unit Table. A feature of the
Monitor program. It has up to ten physical
unit blocks, each of which contains a phy­
sical device address. Pointers to these
~ntries are inserted into the logical unit
table by means of ASSGN control statements.

Relocatable Area. An ar:ea on the system
disk pack to tem~orarily hold an object
module, thus permitting the assembly or
compilation and the execution of a program
or program phase in one job.

Segment. A program or phase that has been
separately assembled.

Subph~ A separately executable routine
within a phase of a problem program., It
may be overlaid after execution. The meth~
od of building a program from subphases is
used when a large problem program is to be
executed.

Symbolic Device Address. A symbol used in
IBM-supplied and user-written programs to
refer to an I/O device (e.g., SYSRES,
SYSIPT, SYS005). This address is related
to a phySical device address by means of
the logical unit table.

System Directory.
disk pack listing
of the core-image
the macro library
relocatable area.

A table on the system
the addresses and sizes
library and directory,
and directory and the

System Disk Pack. The disk pack on which
the user's disk-resident system is stored.

Tape Error Recovery Routine (TER). A rou­
tine to control the execution of error
recovery procedures in the case of magnetic
tape I/O errors.

Tape Error Statistics Routine (TES). A
routine to analyze the interrufts and mag­
netic tape I/O errors occurring during the
execution of a program.

User Program Switch Indicators (UPSI). A
field of one byte within the communication
region of the Monitor program. Specified
bi ts (switches)' may be set by means of the
UPSI control statement and tested in user's
programs.

Variable-Job System. A variable-job system
must include the standard programs and
areas found on cylinders 0 and 4 of the
system disk pack, a core-image directory
and a core-image library containing the Job
Control program, the CMAINT program, and
sufficient space to accon~odate the largest
problem program to be run under control of
the system. A program to be executed is
read into main storage from punched cards
or magnetic tape, temporarily placed into
the core-image library by CMAINT, then
loaded into main storage by the Fetch rou­
tine and executed.

Volume Label. The volume label identifies
and protects the entire volume (disk pack
or magnetic tape reel). It is fixed in
length and format, and lies in a fixed
location within the volume. The volume
label contains the volume serial number,
the address of the VTOC, the address of the
last permanent label in the LIA, and an
indicator that specifies whether the LIA
occupies one or two tracks.

Volume Table of Contents (VTOC). A number
of records on a disk pack, composed of disk
file labels, specifying the extents of, and
identifying all files on the pack.

VTOC File Label. The first label in the
VTOC. It identifies the VTOC and specifies
its limits.

Glossary 83

Appendix A. Disk Labeling Conventions

The Model 20 Disk Programming System pro­
vides positive identification and protec­
tion of all disk files by recording labels
on each disk pack. These labels ensure
that the correct pack is used for input and
that no current information is destroyed on
output.

If the Model 20 Disk Programming System
is used, standard disk labels are required
on all disk packs.

The standard label set includes one IBM
volume label for each pack and one or more
file labels for each logical file on the
pack.

Standard IBM Volume Label

The standard IBM volume label identifies
and protects the entire volume Wack). It
is always the first record on cylinder
zero, track one~ It is fixed in length and
format.

The standard IBM volume label contains a
volume serial number. This number is
assigned to the disk pack when it is pre­
pared for use in the system. The number is
normally not changed.

The only fields in the standard volume
label that are used by the Model 20 Disk
programming System are the volume serial
number field and the field with the address
of the area containing the file labels.

The standard IBM volume label for disk
has the same length and format as that for
tape (see Appendix C) •

Creation of Volume Labels

The standard volume label is written by an
IBM-supplied Utility program (Initialize
Disk) at the time a disk pack is prepared
for use. The Initialize Disk program is
described in the SRL publication IBM
System/360 Model 20, Disk programiTiIng Sys­
tem, Disk Utility-Programs, Form C26-3810.

Standard IBM Disk File Labels

A standard file label or a set of standard
file labels (1) identifies a particular
logical file, (2) gives its location (s) on
the disk pack, and (3) contains information
to prevent the premature destruction of the
file.

84

The number and format of labels required
for a file depend on the file organization
and the number of separate areas of the
pack (extents) used by the file.

Volume Table of Contents (VTOC)

All standard file labels are grouped
together and stored in a specific area of
the pack. Because each file label contains
file limits, the group of labels on a pack
is essentially a directory to all data
records on the pack (or volume). There­
fore, it is called the Volume Table of
Contents (VTOC). The VTOC itself is a file
of records (one or more standard label
records per logical file in the volume) and
is defined by a file label. The label of
the VTOC is the first record in the VTOC.
This label identifies the file as the VTOC
and gives the file limits of the VTOC.

The location and length of the VTOC are
determined by control statements submitted
to the INTDSK Utility program when the disk
pack was initialized.

The VTOC may be placed anywhere on the
disk pack, with the following restrictions:

1. It cannot be located within the alter­
nate track area.

2. If it is on the pack used for system
residence, it must be outside the resi­
dence area.

3. It must occupy at least one full track.

4. It may be only ten tracks in length but
is not restricted to cylinder boundar­
ies.

The Initialize Disk program prepares the
VTOC by (1) writing the volume label with a
pointer to the VTOC, (2) writing the VTOC
file label at the beginning of the VTOC
area and (3) writing an EOF sector behind
the VTOC file label.

Standard File Label Formats

All standard disk file labels used with the
IBM 2311 are 135 bytes long. Normally, two
file labels are written into one disk sec­
tor. However, a Format 1 label must always
start at the beginning of a sector. This
may cause some sectors to contain only one
label.

More than one file label may be required
to describe a file. If this is the case,

all file labels for this file form an inte­
gral area within the VTOC.

There are four different formats for
standard disk file labels.

Format 1. This format is used for all
logical files. It is always the first of a
series of labels when a disk file requires
more than one label.

The Format 1 label identifies the logi­
cal file (by a file identification assigned
by the user and included in the label) and
contains file and data-record specifi­
cations. It also provides the addresses of
three separate disk areas (extents) for the
file. If the file is contained in more
than three separate areas on the pack, a
Format 3 label must immediately follow the
Format 1 or Format 2 label.

If a logical file is recorded on more
than one disk pack, the Format 1 label must
be the first label for the file in the VTOC
of each pack.

The Format 1 label is described in
Appendix E.

Format 2. This format is required for any
file that is organized according to the
Indexed Sequential File Management System.
The remaining area contains specifications
unique to this type of file organization.

If an indexed sequential file is record­
ed on two or more packs, the Format 2 label
is used on the first pack only. It is not
repeated on the second pack (as the Format
1 label is) •

The Format 2 label is described in
Appendix F.

Format 3. If a logical file uses more than
three extents on anyone pack, this format
is used to specify the addresses of the
addi tional extents. The Format 3 label, is
used only for extent information. As many
as 12 additional extents can be specified
in one label. If a file uses more than 12
additional extents on a pack, more than one
Format 3 label is required for that pack.

The Format 3 label follows the Format 1
label for the logical file, or a preceding
Format 3 label or a Format 2 label. Format
3 labels are written on the pack on which
the extents they define are located.

The Format 3 label is described in
Appendix G.

Format 4. This format is used to define
the VTOC itself. The Format 4 label is
always the first label in the VTOC. In
addition to defining the VTOC, the label is

used to specify the location and number of
available tracks in the alternate track
area.

The Format 4 label is described in
Appendix H.

Disk Label Processing

All disk label processing is performed by
the label processing routines. These rou­
tines use the information supplied in the
control statements (VOL, DLAB, and XTEN~
that was stored b~i the Job Control program
in the label information area of the disk
pack mounted on SYSRES. Therefore, the
execution of all programs processing disk
files must be preceded by a Job Control
run~ VOL and DLAB statements must be sup­
plied for each logical file, and an XTENT
statement must be supplied for each extent
occupied by the file.

The label processing routines for
seqQential files process the labels of an
input or output file one pack at a time.
When the end of the last extent on a pack
is reached and the file is not yet complet­
ed, the next pack for the file is automat­
ically opened.

The label processing routines for
direct-access or indexed sequential files
require that all packs for a file be on
line for initial opening.

The following cases require special
consideration.

Inquiry Programs. Inquiry programs, which
are initiated by pressing the Request key
on the printer-keyboard, do not begin with
a Job Control run. Therefore all disk
label information required by the inquiry
program must be provided by an earlier Job
Control run. Normally, the label informa­
tionfor inquiry programs consists of per­
manent labels. Should the label informa­
tion consist only of temporary labels, it
must be provided in the last Job Control
run since any intervening Job Control run
would overwrite them (see Permanent and
Temporary Disk Label Information) •

Multi-Volume Files -- Two~Drive System.
When processing mUlti-volume files in a
system with two disk drives, the pack
mounted on SYSRES must remain on line
throughout processing, while the volumes
containing the file (or the remainder of
the file if the first portion is stored on
the pack mounted on SYSRES) should be
mounted successively on the other disk
drive.

Multi-Volume Files -- Single-Drive System.
The processing of multi-volume files on a

Appendix A. Disk Labeling Conventions 85

single-drive system requires additional
preparation. Since the label information
must be on line throughout processing, it
must be written on each pack useJ for the
file before processing can begin. This is
done by means of separate card-resident Job
Control runs for each pack, during which
SYSRES must be ass~gned to the disk drive.
Multi-volume files thus prepared can be
processed under control of the card­
resident system. If the disk-resident
system is to be used, the file must either
start on the system disk pack, or the
problem program must begin with a pro­
grammed halt to permit the operator to
remove the system disk pack and mount the
first pack of the file.

Single-Volume Files -- Single-Drive System.
Single-volume files can be processed in a
system with only one disk drive without a
previous separate Job Control run if either
the card resident control system is used
and the file is mounted on SYSRES, or the
disk-resident control system is used and
the file is stored on the system disk pack.
If the disk resident control system is used
and the file is stored on a pack other than
the system disk pack, the label information
must be written on the pack containing the
file by means of a separate card-resident
Job Control run, and the problem program
must begin with a programmed halt to permit
the operator to remove the system disk pack
and mount the pack containing the file.

Once the label information has been
written into the VTOC, it remains valid for
an indefinite number of program executions.

Label processing consists of the checks
described below.

Disk Input Files

• The volume serial number in the volume
label is compared to the volume serial
numbers in the XTENT statements.

86

• Fields 1-3 of the Format 1 label are
compared to the corresponding fields in
the DLAB statement. Fields 4-6 are then
compared·with their EBCDIC equivalents
in the DLAB continuation statement.

• The extent definitions in the Format 1
and Format 3 labels ~re compared with
the corresponding limit fields in the
XTENT statements.

• In an inquiry program, the second half
of the file type field generated by the
Assembler in the DTF block is compared
with F~eld 10 of the format-1 label to
determine whether the file is protected.

Disk Output Files

• The volume serial number in the volume
label is compared with the volume serial
numbers in the XTENT statements.

• All extent definitions in the labels
contained in the VTOC are checked to
determine whether there is any overlap
with the extents defined in the XTENT
statements. If an overlap exists, the
expiration date of the label concerned
is checked against the date in the
communication region. If the expiration
date has passed, the VTOC is compressed,
overwritjng the entire set of labels for
the file concerned. If the expiration
date has not passed, a programmed halt
occurs.

• In an inquiry program, the second half
of the file type field generated by the
Assembler in the DTF block is compared
with Field 10 of the format-1 label to
determine whether the file is protected.

• The labels of the output file are writ­
ten in the VTOC behind the labels
already present.

A tape file processed by IBM-supplied pro­
grams must conform to certain standards
regarding labels and the placement of tape
marks.

Tape files with standard labels# with
non-standard labels, or without labels can
be processed. If a reel of tape contains
more than one file (multi-file reel) ~ all
labels for these files must be of the same
type (standard, nonstandard, or none) •

Standard IBM Tape Labels

Two basic label types are provided to iden­
tify and protect tape files: volume labels
and file labels. Each of the standard
volume and file labels is 80 characters
long. A volume label identifies a reel of
magnetic tape, which may contain one file,
more than one file, or part of a =ile.
Each tape file, in turn, is identified and
protected by at least bm file label.s: a
header file label and a trailer file label.

The standard set of tape labels consists
of:

• one standard IBM volume label per reel

• up to seven additional volume labels per
reel

• two standard IBM tape file labels (one
header label and one trailer label) for
each file on the reel

• up to seven additional header labels and
up to seven additional trailer labels
for each file on the reel

• up to eight user header labels and up to
eight user trailer labels for each file
on the reel.

If standard labels are specified for a
file, a standard IBM volume label, a stand­
ard IBM header label, and a standard IBM
trailer label must be provided. Additional
volume labels as well as additional and
user file labels are optional.

STANDARD IBf.1 VOLUME LABEL

If standard labeling is used, the standard
IBM volume label is always the first record
on the reel. It is fixed in length and
format. The label identifier (character
positions 1-4) is VOL1.

Appendix B. Tape Labeling Conventions

The standard IBM volume label contains a
volume serial number. This number is
assigned to the reel when it is prepared
for use. The number is never changed. It
is repeated in the standard IBM file labels
for all files on the reel.

The format of the standard IBM volume
label is given in Appendix c.

Standard IBM volume labels are checked
by IBM-supplied programs (e.g., roes, Util­
ity programs, Sort/Merg~.

ADDITIONAL VOLUNE LABELS

The standard IpM. volume label can be fol­
lowed by up to seven additional volume
labels. These labels are fixed in length
(80 characters). The character positions
1-4 must contain one of the identifiers
VOL2-VOL8, according to the relative posi­
tion of the label within the group of vol­
ume labels. The remaining 76 character
pOSitions can contain whatever information
the user requires.

Additional volume labels are bypassed by
IBM-supplied programs.

CREATION OF VOLUME LABELS

All standard volume labels (the IBM label
and any additional labels) are written by
an IBM-supplied Utility program (Initialize
Tap~ when a reel is prepared for use. The
Initialize Tape program is described in the
SRL publication IBM System/360 Model 20,
Disk and Tape Programming Systems, Tape
Utility Programs, Form C26-3808.

STANDARD IBM TAPE FILE LABEL

If standard labels are specified for a
file, the file must be preceded by a stand­
ard IBM header label and followed by a
standard IBM trailer label. These labels
are fixed in length and format.

The label identifier (character pOSi­
tions 1-4) is:

• HDR1 for a header label (preceding the
data file),

• EOF1 for an end-of-file trailer label
(following a data file) ,

Appendix B. Tape Labeling Conventions 87

• EOV1 for an end-of-volume trailer label
(at the End of a tape reel to indi­
cate that file is continued on
another reel) •

The format of the standard IBM tape file
label is shown in Appendix D.

Standard IBM tape file labels are proc­
essed by IBM-supplied programs.

ADDITIONAL TAPE FILE LABELS

Each standard IBM tape file label may be
followed by up to seven additional tape
file labels. These labels are fixed in
length (80 characters). The character
positions 1-3 must contain a label iden­
tifier equal to that in the preceding IBM
file label (HDR, EOF, or EOV). Character
position 4 must contain a number from 2 to
8 to indicate the relative position of the
label within the group of file labels. The
remaining 76 character positions can con­
tain whatever information you require.

Additional tape file labels are not
read, processed or written by the IBM­
supplied Model 20 programs. They are
included only for reasons of compatibility
with the programming systems for other
System/360 models.

USER TAPE FILE LASELS

You may include 1 to 8 user header labels
and 1 to 8 user trailer labels to further

Load
Point ,..-------,,-------r-,..---

ff

Load

Standard Standard
IBM Volume IBM Header
Labe I Lobe I for

File A

Standard Stahdard
IBM Volume IBM Header
Labe I Labe I for

File A

File A

TM

Additional
and/or User
Header
Labels for
File A

Standard
IBM Trailer
Label for
File A

TM

File A

TM

TM =Tape toAark

define your file. These labels have a
fixed length of 80 characters. The charac­
ter positions 1-4 must contain the label
identifiers UHL1 to UHL8 for header labels,
and UTL1 to UTL8 for trailer labels. The
remaining 76 positions of each label may
contain any information that you require.

User header and trailer labels are read
and written, but not processed by the IBM­
supplied Model 20 programs.

Tape Organization with Standard Tape Labels

Figure 41 illustrates the tape organization
for files that use the standard label set.
The sequence of items on the tape is:

1. Standard IBM volume label (required)

2. Additional volume labels (ur to seven,
optional)

3. Header label set:
Standard IBM file header label
(required)
Additional file header labels (up to
seven, optional)
User header labels ~p to eight,
optional) •

4. Tapemark between header label set and
first data record.

5. Physical records of the file.

6. Tapemark between last data record and
trailer label set.

Standard
IBM Header
Label for
File B

TM

File B

TM

TM

(/ TM

Standard
IBM Trailer
Label for
File A

Standard
IBM Trailer
Label for
File B

Additional
and/or User
Trailer
Labels for
File A

~
(

TM TM

~

TM TM

Figure 41. Tape Organization with Standard Labels

88

1. Trailer label set:
Standard IBM file trailer label
(required at end of file and end of

volume)
Additional file trailer labels (up to
seven, optional)
User trailer labels ~p to eight,
optional) •

8. Tapemark after trailer label set.

9. If the file is on a multi-file reel but
is not the last file on the reel (EOF
label) the next standard IBM file
header label is written in this posi­
tion. If the file is on a single-file
reel (EOF label) or is the last file on
a multi-file reel, another tapemark is
written in this position. If the file
is a multi-reel file (EOV label) a
tapemark is written in this position.

Standard IBM Tape Label Processing

Standard IBM Tape Label Processing is per­
formed by the label-processing routines of
the Model 20 Tape and Disk Programming
Systems. These routines use the informa­
tion supplied in the VOL and TPLAB s·ta te­
ments that was stored by the Job Control
program at the end of main storage. Only
one VOL and one TPLAB statement need be
supplied for each logical file, regardless
of the number of reels on which the file is
recorded.

While a program using the laCS is being
loaded, the tape label data is moved to the
label-processing routines, making the upper
area of main storage available to the user.
(The upper area of main storage may be
overwritten when an inquiry program is
initiated, therefore tape labels cannot be
processed by an inquiry program.)

Label processing routines normally con­
sist of two main parts: one to read, check,
and write header labels, the other to read,
check, and write trailer labels.

The operations performed by the label­
processing routines are described below.

Tape Input Files

• If the reel is positioned at the load
point, the standard IBM volume label is
read from the first or only reel used
for the file, and the volume serial
number in this label is compared to the
file serial number in the TPLAB
statement. If the numbers are not iden­
tical, the program halts and displays an
error code. In case of a multi-reel
file, the volume labels of all further

reels used for the file are bypassed.
If the reel is not positioned at the
load point, the volume label is not
checked.

• The standard IBM file header label is
read from the first reel, and the con­
tents of the TPLAB statement are com­
pared to the corresponding fields in
that label. If a multi-reel file is
being processed, the standard IBM file
header labels on the subsequent reels
are also read and compared to the con­
tents of the TPLAB statement after the
preceding reel has been processed. The
volume sequence number read from the
TPLAB statement is increased by one for
each additional reel.

• If a reel of tape contains more than one
file (multi-file reel) , the label proc­
essing routines use the file sequence
number to pOSition the file correctly.
The file sequence numbers in the stand­
ard IBM file header labels are checked
against the file sequence number in the
TPLAB statement, and the corresponding
files are bypassed until a match is
found or the end of the tape is reached.
If the tape is positioned beyond the
desired file when the search is started,
the program halts and displays an error
code.

• If user header labels are specified,
they are read into main storage and thus
made available for processing by the
user's label routines. To provide the
necessary linkage, an exit address must
be supplied by the user. User header
labels are read one at a time, until all
have been processed. If no exit address
is specified the labels are bypassed.

• When a standard IBM file trailer label
is read, the block count in this label
is compared to a count accumulated by
the laCS during program execution.

• If user trailer labels are specified,
they are treated in the same way as user
header labels.

Note: If an input tape contains standard
labels but the user does not want these
labels to be checked, the entry FlLABL=NSTD
should be used in the corresponding file
definition statement. This causes the
standard label set to be bypassed by the
label processing routines.

Tape Output Files

• If the reel is pOSitioned at the load
point, the standard IBM volume label is
read from the first or only reel used
for the file, and the volume serial

Appendix B. Tape Labeling Conventions 89

number in this label is compared to the
file serial number in the TPLAB state­
ment. If the numbers are not identical,
the program halts and displays an error
code. The volume labels of all fUrther
reels used for the file are bypassed.
If the reel is not positioned at the
load point, the volume label is not
checked.

• If a standard IBM file header label is
present on the tape onto which the out­
put file is to be written, this label is
read, and its expiration date is com­
pared to the date in the communication
region. If the expiration date has
passed, the reel is backspaced to write
the new standard IBM file header label.
If the expiration date has not yet
passed, the program halts and displays
an error code. This check is performed
for each reel of a multi-reel output
file. If no file label is present
(tapemark after volume label) the tape
is considered expired.

• The new standard IBM file header label
is written with the information supplied
i.n the TPL1\B statement. For a multi­
reel file, the volume sequence number is
i.ncreased by one for each successive
reel. The creation date of the output
file is taken from the TPLAB statement
before the label is written. If the
output file is to be written on a multi­
file reel and is not the first file on
the reel (i.e., if the output tape is
not initially positioned at load point) ,
the label processing routines of the
Ioes will search for an IBM trailer
label by reading backward from the point
at which. the tape is positioned. When
the label is found, its file serial
number and volume sequence number are
compared to the corresponding
information in the TPLAB statement. If
the numbers are not equal, the program
halts. If the numbers are equal, the
file sequence number of the trailer
label, increased by one, replaces the
file sequence number read from the TPLAB
statement. The IBM header label is then
written immediately after the tapemark
that follows the trailer label(s). Note
that the label processing routines do
not check whether the header labels
destroy a file that started after the
trailer label. The user must position
the tape correctly before opening the
output file.

• If user header labels are specified, the
user's label routine is entered to fur­
nish the labels as each file is opened.
As many as eight user header labels can
be written.

90

• If an end-of-reel condition is sensed
before completion of the file, a stand­
ard EOV trailer label is written with
the information supplied in the TPLAB
statement and the block count accumulat­
ed during processing.

• When the end of file is reached, a
standard EOF label is written with the
same information as indicated for the
EOV label above.

• If user trailer labels are specified,
the user's label routine is entered each
time an EOV or EOF trailer label has
been written. As many as eight user
trailer labels can be written.

Note: Standard labels on a 7-track tape are
written in the same density as the data on
that tape (all information on a tape reel
must be written in the same density). The
standard labels are written with even pari-'
ty in the translation mode.

Nonstandard Tape Labels

Tape labels not conforming to the standard
label specifications ar~ considered non­
standard. Nonstandard tape labels must be
followed by a tape mark. The Model 20 Tape
and Disk Programming Systems do not read,
check, or write nonstandard latels. Non­
standard tape labels are bypassed and proc­
essing begins at the first record following
the tape mark.

Unlabeled Tape Files

Unlabeled tape files must conform to cer­
tain rules if they are to be processed by
the Model 20 Tape and Disk Programming
Systems. The first record may be a tape­
mark, the last record mU$t be a tapemark.
The end of a volume must be indicated by
two tapemarks. All other records are data
records.

If the first record of an unlabeled
input tape file is not a tapemark, the
record is assumed to be a data record.

When an unlabeled output tape file is
specified~ the label processing routines
assume that the mounted output tape is
unlabeled. No label checking is performed,
and any labels present on the output tape
are destroyed. Atapemark is written as
the first record on the output file unless
the entry TPMARK=NO is used in the
appropriate file definition statement.

Appendix C. Standard IBM Volume Label, Tape Dr Disk

The volume label format for tape or disk is as follows:

Field

0-2

2 3

3 4-9

4 10

5 11-20

6 21-30

7 31-40

8 41-50

9 51

10 52-53

11 54-55

12 56-58

13 79

Name and Length

label identifier
3 bytes, EBCDIC

volume label number
1 byte, EBCDIC

volume serial number
6 bytes, EBCDIC

volume security
1 byte, EBCDIC

data file directory
10 bytes
discontinuous binary

reserved - 10 bytes

reserved - 10 bytes

owner name and
address code
10 bytes

volume protection -
1 byte

address of last
permanent label -
2 bytes

number of permanent
labels - 2 bytes

reserved - 23 bytes

length indicator -
1 byte

Description

must contain VOL to indicate that the label is a
volume; label.

indicates the relative position (in this case 1)
of a volume label within a group of volume
labels.

a unique identification code which is assigned
to a volume when it enters an installation. This
code may also appear on the external surface of
the volume for visual identification. It is
normally a numeric field 000001 to 999999, howev­
er, any or all of the 6 bytes may be alphabetic.

not supported by the Model 20 Disk
programming System.

for disk only. The first 5 bytes contain the
starting address (cchhr) of the VTOC.
The last 5 bytes are blank. For tape reels, this
field is not used and should be recorded as
blanks.

reserved for manufacturers.

reserved for American Standards Association.

indicates a specific customer, installation
and/or system to which the volume belongs.
This field may bea standardized code, name,
address, etc.

hexadecimal OF prevents volume from being
accessed by inquiry program

disk address (hr) of last permanent label in
label information area.

total number of permanent labels in the label
information area (hexadecimal notation) •

reserved for future use.

indicates whether the label information area
(LIA) is one or two tracks in length.

Note: All reserved fields should contain blanks to facilitate their use in the future.
Any information appearing in these fields at the present time will be ignored by the
Model 20 Disk Programming System.

Appendix C 91

Appendix D. Standard IBM Tape File Label

The standard IBM tape file label format and contents are as follows:

Field

0-2

2 3

3 4-20

4 21-26

5 27-30

6 31-34

7 35-38

8 39-40

9 41-46

10 47-52

11 53

92

Name and Length

label identifier
3 bytes, EBCDIC

file label number
1 byte, EBCDIC

file identifier
17 bytes, EBCDIC

file serial number
6 bytes, EBCDIC

volume seguence number
4 bytes, EBCDIC

file sequence number
4 bytes, EBCDIC

~eneration number
4 bytes, EBCDIC

version number of
generation
2 bytes, EBCDIC

creation date
6 bytes, EBCDIC

expiration date
6 bytes, EBCDIC

file security
1 byte, EBCDIC

Description

identifies the type of label
HDR Header -- beginning of a data file
EOF End of File -- end of a data file
EOV End of Volume -- end of the physical reel

indicates the relative position (in this case 1)
of a file label within a group of file labels.

uniquely ijentifies the entire file; may contain
only printable characters.

uniquely identifies a file/volume relationship.
This field is identical to the Volume Serial
Number in the volume label of the first or only
volume of a multi-volume file or a multi-file
set. This field will normally be numeric (000001
to 999999) but may contain any six alphameric
characters.

indicates the order of a volume in a given file
or multi-file set. The first must be numbered
0001 and subsequent numbers must be in proper
numeric sequence.

assigns numeric sequence to a file within a
multi-file set. The first must be numbered 0001.

uniquely identifies the various editions of the
file. May be from 0001 to 9999 in proper numeric
sequence.

indicates the version of a generation of a file.

indicates the year and the day of the year
that the file was created;

position Code Meaning
1 blank none

2-3 00-99 year
4-6 001-366 day of year
(e.g., January 31, 1969 would be entered

as 69031)

indicates the year and the day of the year when
the file may become a scratch tape. The format
of this field is identical to that of Field 9.
On a multi-file reel, processed sequentially, all
files are considered to expire on the same day.

not supported by the Model 20 Disk
Programming System.

12 54-59

13 60-12

14 73-79

block count
6' bytes, EBCDIC

system code
13 bytes

reserved - 7 bytes

indicates the number of data blocks written on
the file from the last header label to the first
trailer label exclusive of tape marks. Count
does not include checkpoint records. This field
is used in Trailer Labels.

not supported by the Model 20 Disk
Programming System.

reserved for American Standards Association.

Appendix D 93

Appendix E. Standard Disk File Label, Format 1

The ~ormat 1 disk file label is common to all data files on disk.

Field

0-43*

Name and Length

file identifier
44 bytes, EBCDIC

Description

this field serves as identifier of the file.
Each file must have a unique file identifier.
Duplication of identification will cause retrie­
val errors. The Model 20 Disk Programming System
compares the entire file identifier field against
the identification given in the DLAB statement.
The file identifier for the system disk pack
(bytes 0-21 contain 'SYSTEM 360 MOD20 DPS and
bytes 22-43 contain blanks) must never be used
for other files.

The following fields (2-33) comprise the DATA portion of the file label:

Field

2 44*

3 45-50

4 51-52

5 53-55

6 56-58

7A 59

7B 60

7C 61

8 62-74

9 75-81

10 82-83

94

Name and Length

format identifier
1 byte, EBCDIC

file serial number
6 bytes, EBCDIC

volume seguence number
2 bytes, binary

creation date
3 bytes
discontinuous binary

expiration date
3 bytes
discontinuous binary

extent count
1 byte, binary

bytes used in last
block of directory
1 byte, binary

reserved - 1 byte

system code
13 bytes

reserved - 7 bytes

file type
2 bytes

Description

1 = Format 1

uniquely identifies a file/volume relationship.
It is identical to the Volume Serial Number of
the first or only volume of a file.

indicates the order of a volume relative to the
first volume on which the data file resides.

indicates the year and the day of the year the
file was created. It is of the form ydd, where
y signifies the year (0-99) and dd the day of the
year (1-366).

indicates the year and the day of the year the
file may be deleted. The form of this field
is identical to that of Field 5.

contains a count of the number of extents
for this file on this volume.

not supported by the Model 20 Disk
Programming System.

reserved for future use.

uniquely identifies the programming system.
The character codes that can be used in this
field are limited to 0-9, A-Z, or blanks. This
field is optional for Model 20 DPS.

this field is reserved for future use.

the contents of ~his field uniquely identify the
type of data file:
Hex 4000 Sequential organization
Hex 2000 = Direct-access organization
Hex 8000 = Indexed-sequential organization
The second and fourth half-bytes of this field
contain codes used for file protection.

111 * * 84

12 85

13 86-87

14 88-89

15 90

16 91-92

17 93

18 94-97

19 98-102

20 103-104

21 105

record format
1 byte

option codes
1 byte

block length
2 bytes, binary

record length
2 bytes, binary

key length
1 byte, binary

key location
2 bytes, binary

data set indicators
1 byte

secondary allocation
4 bytes, binary

last record I20inter
5 bytes
discontinuous binary

reserved - 2 bytes

extent tYI2e indicator
1 byte

the contents of this field indicates the type of
records contained in the file:

Bit
Position Contents Meaning

o and 1 01
10
11

2 0
1

3 0
1

4 0
1

5 and 6 01
10
00

7 0
1

variable length records
fixed length records
undefined format
no track overflow
file is organized using track
overflow (Operating System/360
only)
unblocked records
blocked records
no truncated records
truncated records in file
control character ASA code
control character machine code
control character not stated
records have no keys
records are written with keys.

bits within this field are used to indicate
various options used in building the file.

Bit
-0-- If on, indicates data file was created using

Write Validity Check.
1-7 unused.

indicates the block length for fixed-length
records.

indicates the record length for fixed-length
records.

indicates the length of the key portion of the
data records in the file.

indicates the high-order position of the key
portion.

not supported by the lVlodel 20 Disk
Programming System.

not supported by the Model 20 Disk
Progran~ing System.

not supported by the Model 20 Disk
Programming System.

reserved for future use.

indicates the type of extent with which the
following fields are associated:

Hex Code
00 next three fields do not indicate any extent.
01 prime area (indexed sequential) or consecutive

area, etc. (i.e., the extent containing the
user's data records.)

02 overflow area of an indexed sequential file
04 cylinder index or master index area of an

indexed sequential file

Appendix E 95

22 106

23 107-110

24 111-114

25-28 115-124

29-32 125-134

~xtent sequence number
" byte, bi nary

lower limit
II bytes
discontinuous binary

~pper limit
LI bytes
discontinuous binary

additional extent
-:10 bytes

additional extent
-::10 bytes

indicates the extent sequence in a multi-extent
file.

tte cylinder and the track address specifying the
starting point (lower limit) of this extent
compone~t. This field has the format cchh.

the cylinder and the track address sfecifying
the ending point ~pper limit) of this extent
component. This field has the format cchh.

these fields have the same format as the fields
21-24 above.

these fields have the sa~e format as fields
21-24 above.

The end of the active VTOC is indicated by a label that contairls / and blank in thE:
f~rst three bytes and a binary zero in byte 44.

**These fields are not supported by the Model 20 Disk Programming System.

96

Appendix F. Standard Disk File Label, Format 2

The Format 2 disk file label is used only with indexed sequential data files. It is
preceded either by a Format 1 label or by a Format 3 label.

K1 o

K2* 1-7

8-12

K4* 13-19

K5* 20-24

K6 25-43

D1 44

D2 45

D3* 46

D4 47-49

D5 50-51

D6 52

D7* 53

D8 54

Name and Length

key identification
1 hyte

address of 2nd level
master index
7 bytes
discontinuous binary

last 2nd level master
index entry address
5 bytes
discontinuous binary

address of 3rd level
master index
7 bytes
discontinuous binary

last 3rd level master
index entry address
5 bytes
discontinuous binary

reserved - 19 bytes

format identifier
1 byte, EBCDIC

number of index levels
1 byte, binary

high level index
development indicato~
1 byte, binary

first data record
in cylinder
3 bytes
discontinuous binary

last data track
in cylinder
2 bytes, binary

number of tracks for
cylinder overflow
1 byte binary

highest "r" on
high-level index track
1 byte, binary

highest "r" on
prime track
1 byte, binary

Description

this byte contains the Hex Code 02 in order to
avoid conflict with file name.

this field contains the address of the first
track of the second level of the master index,
in the form mbbcchh.

this field contains the address of the last
index entry in the second level of the master
index, in the forIn cchhr.

this field contains the address of the first
track of the third level of the master index,
in the form mbbcchh.

this field contains the address of the last
entry in the third level of the master index,
in the form cchhr.

reserved for future use.

2 = Format 2

the contents of this field indicate how many
levels of index are present with an indexed
sequential file.

this field contains the number of tracks
determining development of master index.

this field contains the address of the first
data record on each cylinder in the form hhr.

this field contains the address of the last
data track on each cylinder, in the form hh.

this field contains the number of tracks in
cylinder overflow area.

this field contains the highest possible r on
track containing high-level index entries.

this field contains the highest possible r on
prime data tracks for form F records.

Appendix F 97

D9 55

. D10* 56

D 11 57-58

D12 59-60

D13* 61-63

D14* 64-65

b15* 66

D16 67-70

D17* 71

D18 72-78

D19* 79-85

D20* 86-92

D21 93-100

D22 101-105

D23 106-110

98

highest "r" on
cverflow track
1 byte, binary

this field contains the highest possible r on
overflow data tracks for form F records.

"r" of last data record this field contains the r of the last data
on shared track record on a shared track.
1 byte, binary

~pare - 2 bytes

tag deletion count
2. bytes, binary

reserved for future use.

this field contains the number of records that
have been tagged for deletion.

non-first overflow this field contains a coun~ of the number of
reference count (RORG3L random references to a non-first overflow record.
3 bytes, packed decimal

number of bytes for
highest level index
2 bytes, binary

number of tracks for
bighest-level index
1 byte, packed decimal

prime record coun~
Ll bytes, binary

status indicator
;\ byte

9ddress of cylinde~
index
-:'7 bytes
discontinuous binary

the contents of this field indicate how many
bytes are needed to hold the highest-level index
in main storage.

this field contains a count of the number 0:
tracks occupied by the highest-level index.

this field contains a count of the number of
records in the prime data area.

the eight bits of this byte are used for the
following indications:

bit description
-0-- last block full
1 last track full
2-7 must remain off

this field contains the address of the first
track of the cylinder index, in the form
mbbcchh.

9ddress of lowest-level this field contains the address of the first
master index track of the lowest-level index of the high
~ bytes level indexes, in the form mbbcchh.
discontinuous binary

9ddress of highest~
level index
-;7 bytes
discontinuous binary

Jast prime data
:record address
8· bytes
discontinuous binary

~ast track index entry
address
~5 bytes
discontinuous binary

Jast cylinder index
~2ntry address
'j bytes
discontinuous binary

this field contains the address of the first
track of the highest-level master index, in the
form mbbcchh.

this field contains the address of the last data
record in the prime data area, in the form
mbbcchhr.

this field contains the address of the last
normal entry in the track index on the last
cylinder in the form cchhr.

this field contains the address of the last index
entry in the cylinder index in the form cchhr.

D24* 111-115

D25 116-123

D26* 124-125

D27 126-127

D28 128-129

D29* 130-131

D30 132-134

last master index
entry address
5 bytes
discontinuous binary

this field contains the address of the last index
entry in the master index in the form cchhr.

last independent this field contains the address of the last
overflow record address record written in the current independent
8 bytes overflow area, in the form mbbcchhr.
discontinuous binary

bytes remaining on
overflow track
2 bytes, binary

this :!:ield contains the number of bytes remaining
on current independent overflow track.

number of independeni: this field contains the number of tracks
overflow tracks (RORG2L remaining in independent overflow area.
2 bytes, binary

overflow record count
2 bytes, binary

this field contains a count of the number of
records in the overflow area.

cylinder overflow area this field contains the number of full cylinder
count (RORG 1) overf low areas.
2 bytes, binary

reserved - 3 bytes this field is reserved for future use.

* These fields are not supported by i:he Hodel 20 Disk Programming System.

Appendix F 99

Appendix G. Standard Disk File Label, Format 3

The Format 3 disk file label is used to describe extra extent segments on thE volume if
these cannot be described in the Format 1 (and Format 2 if it exists) file label. This
file label is preceded by a Format 1 or another Format 3 file label.

Field Bytes

0-3

2-17 4-43

18 44

19-51 15-124

52 125-134

100

Name and Length

key identification
4 bytes

extents
40 bytes

format identifier
1 byte, EBCDIC

additional extents
80 bytes

reserved
10 bytes

Description

each byte of this field contains the HEX Code
03 in order to avoid conflict with a data
file name.

four groups of fields identical in format to
fields 21-24 in the Format 1 label.

3 = Format 3

eight groups of fields identical in format to
fields 21-24 in the Format 1 label.

reserved for future use.

Appendix H. Standard Disk File Label, Format 4.

The Format 4 disk file label is used to describe the Volume Table of Contents and is
always the first file label in the VTOC. There must be one and only one of these Format
4 file labels per volume.

Field

0-43

2 44

3 45-49

4 50-51

5 52-55

6 56-57

7 58

59

8E 60-61

9A 62-63

9B 64-70

9C 71

9D 72-104

10- 13 105- 11 4

14 115-124

15 125-134

Name and Length

key field
44 bytes

format identifier
1 byte, EBCDIC

last active format
5 bytes
discontinuous binary

available file label
records

Description

each byte of this field contains the Hex Code
04 in order to provide a unique key.

4 Format 4

Not supported by the Model 20 Disk
Programming System.

Not supported by the Model 20 Disk
Programming System.

2 bytes, binary
highest alternate track contains the address (in the form cchh) of the
4 bytes
discontinuous binary

number of alternate
tracks
2 bytes, binary

VTOC indicators
1 byte

extent count.
1 byte

reserved - 2 byte&

last cylinder
initialized
2 bytes

reserved
5 bytes

ERASE option
1 byte

reserved
35 bytes

VTOC extent
10 bytes

LIA extent
10 bytes

reserved - 10 bytes

next available track of a block of tracks set
aside as alternates for bad tracks.

contains the number of alternate tracks
available.

Not supported by the Model 20 Disk
Programming System.

contains a count of the number of extents in
the Format 4 label.

reserved for future use.

contains the binary equivalent
of the decimal values 102 or 202, as
appropriate.

reserved for future use.

Bit 4, if on, indicates ERASE option
used; when not on indicates ERASE
option not used.

reserved for future use.

these fields describe the extent of the VTOC,
and are identical in format to fields 21-24 of
the Format 1 file label. Extent type is 01
(prime data area) •

these fields describe the extent of the label
information area ~I~, and are identical in
format with fields 21-24 of the Format 1 file
label. Extent type is 01.

to be left blank.

Appendix H 101

Appendix I. Model 20 DPS Program and Phase Names

The table in Figure 42 lists the phase names of the Model 20 DPS programs. The names
given must not be used as phase na~es for user programs.

r--,
IPHASE NAME I
~---~
\$$$$$A, $$$CMA \
~---~
\ \

\ \
IAORGZ, AORGZ1, ASSEIvlB, ASSEHC, ASSEMD, ASSEME, ASSEMF, ASSEMG, ASSEMH, ASSEMl, ASSEMJ, I
I ASSEMK, ASSEML, 1\SSEMt1, ASSEMN, ASSEMO, ASSEMP, ASSEMQ, ASSEMR, ASSEMS, ASSEMT, ASSEI-'JU, \
I ASSEMV, ASSEMW, l\TASGN I
~---~
l I
\BACKUP, BACKUR, BACKUS, BACKUT, BACKUU, BACKU1, BACKU2, BACKU3, BACKU4, BACKUS, BACKU6 I
~-----------------.--~
I I
ICARDSK, CARD01, CARD02, CARD03, CARTAP, CART01, CART02, CART03, CART04, CARTOS, CLRDSK,\
ICMAINT, CMAlN1, CMAlN2, CMAlN3, Cl'vlAlN4, COPSYS, CSERV, CSERV1, CSERV2, CSERV3, CSERV4 I
~---~
\ I
IDDUMP, DSERV, DSKCAR, DSKC01, DSKC02, DSKDSK, DSKD01, DSKD02, DSKD03, DSKPRT, DSKP01, I
\DSKP02, DSKTAP, DSKT01, DSKT02, DSKT03 I
~---~
I I
IlAE, lNlTTP, lNTDSK I
r-----------------·--~
\ \
ILDSYS, LNKEDT, LNKED2, LNKED3, LNKED4, LNKEDS I
~--------------------------------~--~
\ I
I IvlMAlNA, Mr1AlNB, MMAlNC, MMAlNT, MMAlN1, MMAlN2, MMAlN3, NMAlN4, MMAlNS, MMAlN6, MMAlN7,1
Il'1MAlN8, MMAIN9, MSERV, MSERV1, MSERV2, MSERV3, MSERV4, MSERVS I
~---~
I I
IPL1, PSERV, PUNCH I
~---~
I \
I RESTOR, RPG, RPG#AD, RPG#AE, RPG#AP, RPG#AG, RPG#AK, RPG#AM, RPG#AZ, RPG#BA, RPG#BD, I
IRPG#BG, RPG#BK, RPG#CA, RPG#CC, RPG#CD, RPG#CE, RPG#CF, RPG#CI, RPG#CM, RPG#CN, RPG#CP,I
IRPG#CR, RPG#CS, RPG#CT, RPG#CU, RPG#CX, RPG#DB, RPG#DC, RPG#DE, RPG#DG, RPG#DI, RPG#DS, I
IRPG#EB, RPG#EE, RPG#EH, RPG#EL, RPG#EP, RPG#ES, RPG#EW, RPG#EY, RPG#FB, RPG#FE, RPG#FH, I
IRPG#FL, RPG#FP, RPG#FS, RPG#FW, RPG#FY, RPG#GB, RPG#GE, RPG#GR, RPG#HF, RPG#HG, RPG#HP, \
IRPG#HR, RPG#IB, RPG#IC, RPG#IF, RPG#lG, RPG#IH, RPG#lI, RPG#IK, RPG#lL, RPG#lN, RPG#IO,\
IRPG#lP, RPG#lR, RPG#lU, RPG#IW, RPG#KF, RPG#KK, RPG#KP, RPG#KU, RPG#LB, RPG#LF, RPG#LK,\
IRPG#LP, RPG#LU, RPG#ME, RPG#Ml, RPG#MO, RPG#NA, RPG#WB, RPG#WC, RPG#WD, RPG#WE, RPG#WF,I
IRPG#WG, RPG#WH, RPG#Wl, RPG#WK, RPG#WL, RPG#WM, RPG#WN, RPG#ZA, RPG#ZB \
~--~
I I
ISORT, SORT02, SORT04, SORT06, SORT08, SORT10, SORT12, SORT14, SORT16, SORT18, SORT20, \
ISORT22, SORT24, SORT26, SORT28, SORT30, SORT32, SORT34, SORT36, SORT38, SORT40, SORT42,\
ISORT44, SYSEND~ SYSEOJ \
r----------------·---~
I I
\TAPCAR, TAPC01, TAPC02, TAPC03, TAPC04, TAPCOS, TAPDSK, TAPD01, TAPD02, TAPD03, TAPD04, I
ITAPDOS, TAPPRT, TAPP01, TAPP02, TAPP03, TAPP04, TAPPOS, TAPP06, TAPSRT, TAPS01, TAPS02,1
ITAPS03, TAPS04, 'rAPSOS, TAPS06, TAPS07, TAPS08, TAPS09, TAPS10, TAPS11, TAPS12, TAPS13, I
ITAPTAP, TAPT01, TAPT02, TAPT03, TAPT04, TAPTOS I l ________________ . ___ J

Figure 42. Model 20 DPS Program Names

102 Dotted line flags planning information

Appendix 1. Methods of Using the Disk Programming System

Assembler RPG

II JOB ASSEMB, program
II EXEC

TEMPORARY
CATALOGING IN THE
CORE-IMAGE LIBRARY

execution of
program

II JOB ASSEMB
II EXEC

II JOB RPG
II EXEC

I

rr multiphase progral:

II JOB LNKEDT II JOB LNKEDT
II EXEC II EXFC R

II JOB program
II EXEC LOADER,R

~
I I JOB CMAINT
II EXEC R

I

card-tf'$ident:
I I JOB program
II FXEC

disk-resident:
I I Jail program
I I EXEC LOADER

cord-resident:
I I JOB program
II EXEC

disk-resident:
I I JOB program
I I EXEC LOADER

CATALOGING IN THE CORE-IMAGE LIBRARY

!
I I JOB CMAINT
II EXEC

I

~
II JOB CMAINT
II EXEC

I I JOB program
II EXEC

I I JOB program
II EXEC LOADER,R

I I JOB CMAINT
II EXEC R

II JOB RPG, program
II EXEC

TEMPORARY
CATALOGING IN THE
CORE-IMAGE LIBRARY

execution of
program

Appendix J

Index

/& control statement ~_ •••••• _ ••.••••••. 72
/ & NAl1E control statement •• _ • • • • • • • • • •• 72

ACTION card •••••••••••••••••••••••.• 56,59
Allocating directories ••••••• _ •••••• 50,65
Allocating libraries •••• c ••••••••••• 50,65
Allocating relocatable area e •••••••• 50,65
AORGZ prograrn 50

job control statements •••••••••••• _ •• 50
program control statements ••••••••••• 50

Assemble-and-execute •••••••••••• 25~37,103
ASSGN control statement,

for AORGZ progra.m e •• 50
for BACKUP funct~on •••••••••••••••••• 70
for CMAINT program • _ •• c> _. 45
for COPSYS program _. 69
for CSERV program _. 40
for DSERV program _. 39
for INTDSK function _ ••••••••••• ~ ••• _. 73
for Job Control program 29
fo r LDSYS program • _ _ • • • .. •. 65, 66
for LNKEDT program _ •••• ~ ••••. 53
for MMAINT program ••••• _ ••••• _ •• _ •••. 48
for MSERV program •• _ •• ~ •• _ ••••• ~ ••••• 43
for PSERV program •••••••••••••• ., •• 51,52
for PUNCH function u ••••• 76
for RESTOR function •••••••••••••••••. 74

Backup and Restore program (BACKUP) •••• 69
BACKUP function 69
job control statements 70
program control statements 71
INTDSK function •••••••••••••••••••••. 73
job control statements ••••••••••••••. 73
program control statements ••••••••••. 74
PUNCH function 75
job control statements ••••••••••••••. 76
program control statements 76
RESTOR function •••••••••••••••••••••• 74
job control statements 74
program control statements 75

BACIZUP function 69
BACKUP prograIH co • • • •• 69
BSCA communications error statistics 26,27
Building the system _ • • • • • • • .. • • • •• 64

CARDFILE option •••••••••••••••••••••••• 72
Card Initial Program Loader (IPL) 35
Card IPL e ••••••••• 35
Card-resident IPL •••••••••••• _ •••••••• _ 35
Card-resident Job Control •..••.••••••.. 22
Card-resident Monitor 14
CATAL card ••••• ft • • • • • • • • • • • • • • • • ... • • • •• 59
Cataloging IPL program •• _ 16
Cataloging macro definitions ••••••••••• 48
Cataloging Monitor program ••••••••••••• 46
Cataloging phases 46
CATAL control statement,

for CMAINT proqram 46
for MMAINT proqram 48

104

CMAINT prograrr •••••••••••••••••••.•••.. 45
job control statelcents ••••••••••••.•. 45
program control statements ••••.•••••. 45

Communication reg ion ••••••••.•••.•••••. 16
Compile-and-execute •••••.••••••• 25,37,103
CONFG control statement,

::or .Job Control :rrogralr. ••••.••.••••.. 26
for LDSYS program •••••••••..••••.•... 66
for PSEF~V prograrr, •••••.••••••••••••.. 52

Control statement conventions •••••••..• 22
Control system,

card-resident ••••• _ •••.••••••••••• 10,79
disk-resident •••••• _ ••••••••••.•••. 8,79

COPSYS prograll ••••••••••••••••••••••.•. 69
job control statel[,e::1ts "....... 6 9
program control state~ents ••• a ••••••• 69

COpy control staterrent ••••••••• a ••••••• 71
Copy System ~isk :rrograrr (COPSYS) .••••. 69

job control statements ••• _ ••• _ ••••.•. 69
program control staterrents ••• " .•••.•. 69

Core-Irrage director~ •••••••• ~ •••••••••• 36
Core-ImagE:: library ••••••••• _ 36
Core-Image ServicE ~rogram (CSERV) •••.. 40

job control statements ._ ••••• m ••••••• 40
output on SYSOPT 42
program control staterrents •• _a 41

Core-Image ~aintenance Frograrr (CMAI~~) 45
job control statem~nts •••••• _ ••••••.• 45
program control staterrents ••••••••••. 45

Creating a backup tare ••••••••• _ .••••.• 69
Creating a disk volume label ..••..•. 75,84
CSERV program ••••••••••••••••••••• ~ •••• 40

job control statements ••••••••••••••• 40
program control statements •••••••••.• 41

DF-_TE control statement ••••••••••••••... 25
Date field (communication region) •••••• 16
DELET control statement,

for CB1"iINT program 46
for Job Control progrant ... _ ••••••••••. 34
for tlJMAINT program 48

Deleting IPL program ••••••• _ .•••••••... 46
Deleting macro deiinitions 48
Deleting Monitor program 46
Deleting rer.manent labels 34
Deleting phases •••••••••••••••••.•••.•. 46
Directory Service frogram (DS=aV) ••••.. 39

job control statements ••••••••••••••• 39
program control statements ••••••••... 39

Disk Initial Program Loader (IPL) •••••• 35
Disk IPL •••••••••••••••••••••••••••••.. 35
Disk label information,

perman en t 33
temporary 33

Disk label processing •••••• _ 85
Disk labels,

f 0 rlna t 1 8 4 , 9 4
format 2 .~ ••.•••••••••••••• ••••••• 84,97
format 3 ••••• _ ••••••••••••••• _ ••• 84,100
format 4 84,101
volume .•••••••••••••• _ •• _ ••••••••• 84,91

Disk-resident IPL 35

Disk-resident Job Control ~ ••••••••••••. 21
Disk-resident Monitor •••••••••••••••••. 14
Displaying card backup files ••••••••••• 76
Displaying core-image library •••• A ••••• 41
Displaying directories •• 0 •••••••••••••• 39
Displaying disk IPL •• o ••••••••••• ~ ••••• 41
Displaying disk Monitor •••••••••••••••• 41
Displaying macro library •..•••..••..••. 43
Displaying Monitor features •••••••••••• 52
Displaying permanent labels •••••••••••. 34
Displaying [hysical and logical unit
tables ••••••••.••••••••••••••••••••••. 52

Distribution package ••••••••••••••••••• 78
DLAB control statement ••••••••••••••••. 31
DSERV program 39

job control statements ••••••••••••••. 39
program control statements 39

DSPCH control statement •••••• o •••••• ~ •• 76
DSPLY control statement •• 0 34

for CSERV program ••••••••••••• 0 •••••• 41
for DSERV program ••••• 00 ••••••••••••• 39
for Job Control program •••••••••••••. 34
for MSERV program •••••••••••••••••••. 43
for PSERV program •••••• O •••••• OG ••••• 52
for PUNCH function ••••••••••••• u ••••• 76

END card •••••••••••••••••••••••••••• 58,59
END control statement (all programs) ••• 40
ENDTR control statement ••••••••• ~D ••••• 71
ENTRY card ••••••••••••••••••••••••••••• 57
ER--external reference .•••••••••••••••• 57
ESD card •••••••••••••••••••••••••••• 57,59
ESID number (external symbol

identification) ~ •••••••••• 57
EXEC control statement ••••••••••••••••• 27
Execute-loader function •••••••••••••••• 27
External symbol identification number •. 57

Fetch routine ••••••••••• 0 •••••••••••••• 19
FILES control statement •••••••••••••••. 30
Fixed- job system "........ 7 9
Format of control statements ••••••••••• 22
Format 1 disk label- ".......... 9 4
Format 2 disk label •• 9 •• ~ 97
Format 3 disk label, .••••• · •. 100
Format 4 disk label ••••• ~ •••• .,~ ••••••• 101

Generative Monitor concept 14
Glossary ••..••...••.....••..••.•••••••. 81

IDENT control statement .~ •.•••••••••••. 72
IMT card ~. 49
INCLD control statement •••••••••••••••. 48
Initial Program Loader (I~L),

for card-resident system 35
for disk-resident system ••••••••••••• 35

Inquiry Attention routine •••••••••••••. 18
Inquiry Initiator routine •••••••••••••• 19
Inquiry routines ••••••••••••••••••••••. 18
INTDSK function 73
INTERN control statement 43
IPL control statement,

for CMAINT program ••••••••••••••••••• 46
for CSERV program ••••• .., •••••••••••••• 41
for LDSYS program •••••••••••••••••••• 66

IPL program
card-resident 35
disk-resident •••••••.•••••••••••••••• 35

I/O device assignment •••••• " ••• ., •••• 17,28
changing through PsrRV •••••.••••••••. 51

Job Closing routines •••••••••.• ~ .•••••. 19
Job Control prograrr:,

card-resident " ••••... 22
disk-~esident• ~ •••••.. 21

JOB control statement ••••••••• "., ••••••. 24
Job Control statements,

ASSGN " •••••.. 2:)
CONFG 2{;
DA T E ••••• <> " " • • • • • •• 25
DELET •••• .,,.......... 34
DLAB ••••• .,J •••• ,. •••••••••• 0 ••• ~ ,. • ,. ~ • •• 31
DSPLY ••••. .,............................ 34
EXE C ••••• CJ ••••••••••••••• 0 ••• G • • • • • •• 2 ~,'
FILES , 30
format of ••••••••••••••••••••••••••. 22
JOB ~ ••••• " .•••••••••••••••••. u ••••••• :24
LOG u u • • • • • •• 26
NOLOG •••• .,............................. 27
OPTN ••••• " " ••••••. :26
order of input 23
PAUSE " ••••••••••• .., ••••.•. 27
summary of 2:3
TPLAB,............................. :3 1
UPSI ••••• ., 2~)

VOL •••••• ., ~ • • • • . .. 31
X1'E~T ••• CIJ ,,) ••••••• t') •••• ,. •• 0 •••• 0 IU • III •••

Job information processing

Label information,

32
21

permanent ., ••••• ~ ••••••••••..• 0 ••••• ~. 3:3
temporary ~ •••• o •••• ~ 33

Label information area .~ 12,33
Label information processing ••••••••••• 30
Labels for disk files •••••• n ••••••••••• 84
Labels for tape files •••••• o ••• n ••••••• 87
~D--label definition •••••• ~ 57
LDSYS program •••••••••••••••••••••••.•. 64

job control statements ••••••••••••.•. 6~
probram control statements 65

LIA 12,33
Libraries •••••••••••••••••••••••••••.•. 36
Library Allocation organization program

(AORGZ) " 51
job control statements 50
program control statements ••••••• ~ ••. 50

LIMIT control stateme~t,
for AOHGZ program, 50
for LDSYS program •••••••• .,........... 6~

Linkage Editor program (LNKEDT) 53
functions •••••••••••••••• ~
input cards •••••••••••.•••••••••••...
job control statements •••. , ••••••••••.

53
54
53

output on SYSOPT 59
use of program

Linking assembled phases ••••••••••••••.
Listing card backup files
Listing core-image library
Listing directories ••••••••••••••••••..
Listing disk IPL
Listing disk Iv'JoI)i tor ••••••••••••••••••.
Listing job control statements ••••••• w.

Listing mac~o library••........•..
Listing permanent labels
Listing physical and logical unit
tables

6e
53
76
41
3<)
41
41
26
43
34

Index 105

LNKEDT program ..•• ~ •• to " • • .. •• 53
functions .••...••• " ~ • • • • . • • • • • • .. • • • •. 53
input cards •••••••••.•••••••••••••••• 54
job control statements S3
output on SYSOPT 59
us e of ~Jrograrli ".. 6 0

Load System Disk program (L~SYS) ••••••. 64
job control statements 65
2rogram control statements ••.••••.••. 65

Loading conventions ••••• '" • • .. • • . • • .. • • • .. 20
Loading IPL program 66
Loctding L'l.ioni tor ~)rogram ."................ 6 6
Loading the system "................ 6 4
LOG control statement •••••••••••••••••. 26
Logging BSCA corr~unications error
statistics 26

Logging job control stat.ements 26
Logging ~er~anent labels ••.•••••••••••. 26
Logging tape error statistics 26
Logical unit block ~ • . • • • . • • • ... •. 17
Logical unit table 17
LUB .. 1 7

~liJachine requirements •••• "............... 6
i'1acro directory .••••••.•. , " • • • • • • • •• 37
Macro library 37
I"Jacro Service pro9ram (f'1S':':::RV) 49

job control statements ••.•••••••••••. 42
output in internal :orrnat •• ., 43
output in source format " 44
output on SYSOPT, <' • • • •• 44
program control statements ••••••••••. 43

jvlacro rvlaintenance program (!'lfv1..AINT) ••••. 49
IMT card 49
job control statelt1ents ~ • ., • •. 47
I,lND card " "..... 4 9
MOD card 49
program control statements 48

Maintaining the core-image library ••••. 45
Maintaining the macro library ••.••...•. 47
l"lMI~INT prograrn .·0 " '" • • • ... 47

IMT card .•••••••••••..•••.••••••••••• 49
job control statements •••.••••• u ••••• 47
r-~ND card 49
I·10D card ••••• 0, ,..... 49
program control statements " 48

MND card " ••••• 49
MOD card " •• ., •. 49
Iv]onitor area (corrutlunication region) •••• 17
Monitor end address (communication
region) 17

Monitor generation ••••••••••••••• G ••••• 14
I'Joni tor I/O area 20
Monitor layout, ••••. 15
Monitor program,

card- res ident '0............................ 14
disk-resident •••••••.•••••••••• " ••••. 14

iliJoni tor storage map 15
MONTR control statement,

for CIV]AINT proqram,.. 46
for CSERV program 41
for LDSYS program 66

MSERV program 49
job control statements ••.•••••••••••• 42
output in internal format .•••..•.•••. 43
output in source format 44
output on SYSOPT ••••••••••••••••••••. 44

106

program control statements ••••••••••• 43
["lul tiphase prograrr.s 80

NOBOOT option ••• ~ 72
NOINQ option •••••••••••••••••••••••••.. 26
NOLOG control statement ••••••.••••••.•• 27
Nonstandard ta~e labels 90

OPTN control statement,
f or BACKUP function 72
for Job Control progran~ 26
for HLSTOR fUnction 75

PAUSE control statement 27
Permanent disk label information ••••••• 33
Permanent I/O device assignment 17,28
Phas~ names, summary of 102
PHASE card 54,59
Physical and Logical Unit Tables
Se~vice ~rogram (PSE:i\V) 51

job control statements 51
program control statements •.••••••••• 52

Physical device address ~ •••••• 17
PhYSical disk I/O routines 19
Physical IOCS =or 2rinter-keyboard .•••• 18
Physical ta~e I/O routines 19
Physical unit block 17
Physical unit table " 17
Printer-keyboard physical IOCS ••••••.•• 18
Printing card backu~ files •••.••••••••• 76
Printing cor.e-image library ~ •••••••• 41
printing directories ••••••••••••••••••. 39
f'rinting disk IPi.. 41
Printing disk Monitor, ••••••• 41
Printing job control statements ., ••••••• 26
Printinq macro library ••••••••• u ~ •• 43
Printing per.manent labels D ••••••• 34
Printing ~hysical and logical unit
tables 52

Programmer's comments 22
Program name field (communication

region) ••••••••••••••••••••••••••••••• 17
Program names, summary of •••••••• 9,80,102
Program switches, user 25
PSERV program 51

job control statements 51
program control statements ••••••••••• 52

PU2 1 7
PUNCii contr.ol statem6:nt,

for CSERV program ••••••••••.••••••••• 41
for MSERV program Q ••••••••••• ~ ••••••• 43

PUL~CH function ••••••••••••• ..,............ 75
Punching bootst:r;af card 70
Punching card backup files .~ ••••••••••• 76
Punching cor.e-image library 41
Punching disk IPL •••••••••••••••••••••• 41
Punching disk MOQitor 41
Punching distribution package 78
Punching macr.o library ••••• ~ • • • • • • • .. • •• 43

Reallocating directories G ••• 50
Reallocating libraries 50
Reallocating relocatable area 50
Relocatable area ••••••••••••••• 0 ••••••• 38
Relocating assembled programs .••••••••• 53
REP ca rd 56
RESTOR function 74
Restoring a card backup file ••••••••••• 75

Restoring a disk backup file 0 •••••••••• 74
Rewinding a tape reel •.•• ~ ••• o •• o ••• o •• 30
RLD card •••••••.••••••••••.••••••••.••. 58
Rollin routine •••••••••• m •••••••••••••• 21
Rollout routine •••••••••••••••••••••••. 21
RPT control statement,

INTDSK function ••••••••••• ".......... 7 3
RESTOR function •••• ~ ••••••••.•••••••. 74

Rules for subphases •••••••••••••••••••. 47

SD--section definition •••••••••••••• 57,60
Single-drive system considerations ••••• 80
Single-phase programs ••• ~ •••••••••••••. 80
Skipping tapemarks ••••••••••••••••••••. 30
SOURCE control statement ••••••••••••••. 44
Standard disk file label formats ••••••. 84
Standard disk file label u~ ••••••••••••• 84
Standard tape file label ••••• 0 •••••• 87,92
Standard disk volume label .•.•.•.•.. 84,91
Standard tape volume label .•••••.••. 87,91
START control statement •• ~ ••••••••••••. 71
Storage capacity byte <communication
region) co •••••••• 16

Subphases, rules for ••.•• ., .••••••..••••. 47
Symbolic device address •••••••••••••••. 17
System directory •••••••. " c • • • •• 12
System disk pack,

creation of •••••••.•••••••••••••••••. 64
organization of ".. 12

Tape error recovery,
non-transient 19
transient 21

Tape error statistics printout •••••• 19,26
Tape labels,

additional file •••••••••••••••••••••. 88
additional volume •••••••.••••••••.••. 87
nonstandard •••••••••••••••• " •••••• " •. 90
standard IB1'1 file ••••• "" ••••••• "...... 87
standard IBM volume •••••••••••••••••. 87
unlabeled .••••••••••••••••••••• " ••••. 90
us e r •••••••••••••••••• " •••• " ••• ., •• ".. 8 8

Tape label information area •• " ••••••••• 26
Tape label processing ••• ~ 89

Temporary disk label information .••..•• 33
Te~pora~y I/O device assignment •.••• 17,28
TES oftion •••..••••••••••••••.•••••••.• 26
TPLAB control statement •.•••••••••••... 31
Transient a~ea .•••••••••••••••••.•••... 20
Transient routines •••.••.•••••••••••... 21

Fetch routine •••••••.•..•••.••••••.•. 1 <J
Rollin routine ••••••••••••.•••.•• 0 ••• 21
Rollout routine •.•.•••.• 0 •••••••••••• 21
~ape Error Recovery routine •••.•••..• 21

TXT card •••••••••••••••••••••••••••• 5e,59

Unlabeled tape files •••••••••.••.•••... 90
UPSI byte < communication regio~l) .••••.• 17
UPSI control statement,

for BACKUP function •••••••••••••••.•• 71
for Job Control frogram ••••.••••••.•. 25

User area I (communication region) ••.•. 17
User area II (communication region) •... 17
User program switch indicators .•••••••. 25
Use~ tape file labels •••..••••• u ••••••• 8H

Variable-jo.b system 79
VERIFY option ••••••••.•••.••••••••••••. 75
VOL control statement •.•••••••••••••••. 31
Volume label,

additional for ta~e •• G ••••••••••••••• 87
standard IBM disk ••••••••••••••••• 84,91
standard IBM tare •••.•.••••••••••• 87,91

Volume table of contents (VTOC) •••.• 12,34
VOLl control statement 7 S
VTOC 0 •• 12, 84

Writing backup file on ta~e ••.••••••••. 70
Writing core-image library ••..••...•... 41
Writing disk backup file ••••.•••••••.•. 74
Writing disk IPL ••••••••••• 0 ••••••••••• 41
Writing disk I"ionitor 41
Writing macro library .•...•.••••...•... 43
Writing the system ••••• 0................. 6')

XFR card 5')
XTE]\;T control statement •••• " 32

.Index 107

C24-9006-4

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

READER'S COMMENT FORM

IBM System/360 Model 20
Disk Programming System
Control and Service Programs

• How did you use this publication?

As a reference source
As a classroom text
As a self-study text

D
D
D

• Based on your own experience, rate this publication

As a reference source:

As a text:

• What is your occupation?

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

Very
Poor

Very
Poor

Form C24-9006-4

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address .

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24-9006-4

YOUR COMMENTS, PLEASE ...

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the hack of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold
Fold

n
c
-i

1>
r
o
Z
C>
-i
I
(f)

r
Z
m

.
• e _ •• :

I BUSINESS R EPL Y MAIL

~POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains. N. Y. 10601

Attention: Department 813 BP

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS. N. Y.

...

Fold

Internatianal BUlineel Machinel Corporation
Data Procelling Divilion
112 East POlt Road, White Plainl, N.Y.l060t
[USA Onlyl

IBM World Trade Corporation
821 United Nationl Plaza. NawYork, New York 10017
[In tarnational J

Fold

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110

