
Systems Reference Library

IBM 1620 SPS III Programming System
Reference Manual

This publication describes the specifications and operating
procedures for both 1620 SPS III and 1620-1443 SPS III Pro-

gramming Systems.

File No. 1620-21
Form C26-5793-0

This publication supersedes the following two publications:

IBM 1620 SPS III (Form C26-5749-1)
IBM 1620 SPS III for IBM 1443 Printer
(Form C26-5736-0)

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Comments concerning the contents of this publication may be addressed to:
IBM, Product Publications Department, San Jose, Calif. 95114

© 1963,1964 by International Business Machines Corporation

ii

Contents

Page Page

IBM 1620 SPS III 1 1620 SPS III Processor Program 52
Introduction 1 Storage Layout 52

Symbolic Programming 1 Paper Tape Processor Program 54
Coding Sheet 1 Card Processor 54
Statement Writing 4 Condensed Object Deck Alterations 59

Programming the 1620 Using SPS 10
Declarative Statements 10 Operating Procedures............................ 60

Imperative Statements 14
Processor Control Statements 22

Switches .. 60
Loading the Processor 60

1620 Subroutines 29
Subroutine Macro-Instructions 30

Processing the Source Program 61
Editing the Source Program 62

Floating Point Arithmetic 32 Error Messages 62

Description of 1620 Subroutines 34
Subroutine Error Messages 43

Adding Subroutines 44
Adding a Subroutine to a Card Deck '" 44

1620-1443 SPS III
Operating Procedures 64

Adding a Subroutine to Tape'.. 46
Writing a Subroutine 48 Index .. 66

iii

Preface

The Symbolic Programming System permits the pro­
grammer to code in a symbolic language that is more
meaningful and easy to handle than numerical machine
language. SPS automatically assigns and keeps a record
of storage locations and checks for coding errors. By
relieving the programmer of these burdensome tasks,
SPS significantly reduces the amount of programming
time and effort required.

This manual is intended to serve as a reference text
for 1620 SPS III and 1620-1443 SPS III. It assumes the
reader is familiar with the methods of data handling
and the functions of instructions in the IBM 1620 Data
Processing System. For those without such knowledge,
information may be found in the following publications:

IBM 1620 Central Processing Unit, Modell (Form
A26-5706)

iv

IBM 1620 Central Processing Unit, Model 2 (Form .
A26-5781)

IBM 1620 Input/Output Units (Form A26-5707)
IBM 1620 Data Processing System, Model 2 Binary

Capabilities and Index Registers (Form A26-5764)

Machine Requirements

The minimum machine and special feature require­
ments for assembling with 1620 SPS III are as follows:

1. 1620 Data Processing System with 20,000 positions
of core storage.

2. 1621 Paper Tape Unit or 1622 Card Read-Punch.
3. Indirect Addressing (standard feature of 1620-2).

In addition to the above requirements, the 1443 Printer
is required when assembling with 1620-1443 SPS III.

Introduction

The SPS III Programming System may be divided into
the symbolic language used in writing a program, the
library containing the subroutines and linkage instruc­
tions (macro-instructions) that may be incorporated
into the pr9gram, and the processor that is used to as­
semble the user's programs.

Symbolic Language

Symbolic language is the notation used by the pro­
grammer to write (code) the program. The program
written in sps language is called a "source program."
This language provides the programmer with mne­
monic operation codes, special characters, and other
necessary symbols. The use of symbolic names (labels)
makes a program independent of actual machine loca­
tions. Programs and routines written in SPS language
can be relocated and combined as desired. Routines
within a program can be written independently with
no loss of efficiency in the final program. Symbolic in­
structions may be added or deleted without reassigning
storage addresses.

Macro-instructions

The macro-instructions that are written in a source pro­
gram are commands to the processor to generate the
necessary linkage instructions. Linkage instructions
provide the path to a subroutine and a return path to
the user's program. These subroutines may be any of
seventeen IBM Library subroutines like floating divide,
square root, and arctangent; or special subroutines pre­
pared by the user. The ability to proc~ss macro-instruc­
tions simplifies programming and further reduces the
time required to write a program.

Processor Program

After a source program is written, it is punched into
cards or into paper tape. The source program is then
assembled into a finished machine language program
known as the object program.

Assembly is accomplished by the SPS III Processor
program. The function of the processor is to translate
the symbolic language of the programming system into
the machine language of the 1620. The translation is one
for one - the processor produces one machine language
instruction for each source statement (except macro­
instructions) .

IBM 1620 SPS III

Symbolic Programming
Symbolic programming may be defined as a method
wherein names, characteristics of instructions, or closely
related symbols are used in writing a program. The core
of the symbolic language is the operation code. SPS per­
mits the programmer to write (code) in a more simple,
familiar language and does not require as detailed ma­
chine knowledge because, in coding the program, the
programmer uses operation codes that are in easily re­
membered mnemonic form rather than in the numerical
language of the machine. Operation codes are of three
types: Declarative, Imperative, and Control.

Declarative Operation Codes

Declarative operation codes are used for assignment of
core storage for input areas, output areas, and working
areas. The assigned areas are utilized by the object pro­
gram and may contain the data to be processed and/or
the constants (numerical or alphameric characters) re­
quired in the object program when the data is processed.
Declarative statements never generate instructions in
the object program, but may generate constants that are
assembled as part of the object program.

Imperative Operation Codes

Imperative operation codes specify the operations or
instructions that the object program is to perform. In
this group are included all arithmetic, branching, and
input/ output statements. Most statements on the cod­
ing sheet prepared by the programmer are of this type.
These statements are translated one for one and are
assembled as the machine language instructions of the
object program.

Control Operation Codes

Control operation codes are commands to the processor
that prOvide the programmer with control over portions
of the assembly process. Instructions of this type do not
normally generate instructions in the object program.

The actual and mnemonic operation codes within
these categories are presented under PROGRAMMING

THE 1620 USING sPS.

Coding Sheet
The programmer enters all information relevant to the
coding of the source program and subsequent assembly

1

of the object program on coding sheet, Form X26-5627
(Figure 1). Figure 2 shows a sample input card, Form
J59692. The format of the input card or paper tape
record follows the headings on the coding sheet. In
paper tape, the first punching position of a record is
said to be column l. The card columns assigned to a
single heading are referred to as a field. Following is an
explanation of the headings in the order of their ap­
pearance on the sheet.

Heading Line

Space is provided at the top of each page for the name
of the Program, Routine, and Programmer, and for the
date. This information does not constitute part of the
source program language and is not punched.

Page Number (Columns 1-2)

A 2-digit page number is entered to maintain the order
of the program sheets. This entry (normally numerical)

becomes the first two digits of each statement that is
punched from the sheet.

Line Number (Columns 3-5)

A 3-digit line number is entered on the sheet to main­
tain the sequence of the statements coded. The first 20
lines on each sheet are prenumbered 010, 020, 030, etc.,
through 200. At the bottom of the sheet, six nonnum­
bered lines are provided for inserts or for continuing
the line numbering. The inserted statement should be
numbered so that it falls sequentially between the state­
ments immed!ately preceding and following it. The
arrangement of the prenumbered lines, 010, 020, etc.,
permits up to nine statements to be inserted between
any two statements. After the cards for each of the lines
are punched, they should be placed in correct numerical
order.

IBr., 1620/1710 Symbolic Programming System
Coding Sheet

Program: _______________________ _ Date: ______ _ Page No. ~ of __ _

Routine: _______________________ _ Programmer: _______________ _

Line Lobel bperation Operands & Remarks

3 5 6 11 12 15 16 20 25 30 35 40 45 50 55 60 65 70 75

o 1 0 · ·
0,2,0 · · · ·
0,3 0 · · I

o 4 0 I I ·
o 5 0 I · ·
o 6.0 I · I

o 7 0 · ·
o 8 0 · · ·
o 9 0 · I I I

I 0 0 I I · . ·
1 I 0 · I I -~

1 2 0 · · ·
I 3 0 · ·
1 4 0 I I I I I

I 5 0 · I . · · '-

I 6 0 I t · · · .
I 7 0 ~. I I I

I 8 0 · I I

1 9 0 I I I _J

2 0 0 I I ; I ·
, I I 1 · ·

1 1 I I I · I

· · · 1 I I I I

I I · [1 --L

I I I I I I . I I --'

Figure 1. 1620/1710 SPS Coding Sheet

2

OPER. OPERANDS AND REMARKS

OPER. OPERANDS ANO REIIlARKS

000
12345'7"~"UUM~~U~"~~nn~~~nHH~~UU~~.n.H~~UU~U.UUUM~n~~ "~~M"~~~~~U"~Uh~nnnu~

111

222

33333333333

44444444444

55~5555

999
1 2 3 4 5 6 7 • 9 10 11 12 13 14 15 16 11 .. 19 ~ ~ 222324 25 26 27 28 29 30 31 37 3J ~ 353& 37 38 39 40 41 4243 ~ 45 4& 47 4& 49 50 51 52 ~ ~ 55 ~ 57 58 5HO 61 62 &3 646566 67 68 69 10 1\ 72 lJ 74 75

.... J59fi92

Figure 2. SPS Source Program Card

Label (Columns 6-11)

The label ReId represents the machine location of either
data or instructions. The ReId may be left blank or may
be RIled with a symbolic address. Only the data or in­
structions that are referred to elsewhere in the program
need have a label.

A label may consist of up to six alphameric characters
beginning at the left-most position in the label ReId. At
least one of the characters must be alphabetic or one
of four permissible special characters, namely, the equal
sign (=), slash symbol (/), at sign (@), and period
(.).

The best labels to select are those that are mne­
monically descriptive of the area or instruction to which
they are assigned. Labels that have an obvious mean p

iilg not only provide easily remembered references for
the original programmer but also assist others who may
assume responsibility for the program.

Operation (Columns 12-15)

The four-position operation ReId contains the actual
two-digit numerical operation code or the mnemonic
representation of the operation code to be performed.
If the Rrst character is numerical, no check of the oper­
ation code occurs and the numerical parts of the two­
digit internal representation of the Rrst two characters
is taken as the operation code, that is, if the program­
mer writes 4BNF, the resulting operation code is 42.

In either case, the Rrst character of the operation code
must start in the lefbnost position, column 12, of the
operation ReId. Listings of permissible mnemonic codes
and actual operation codes are shown under PROGRAM­

MING THE 1620 USING SPS.

Operands and Remarks (Columns 16-75)

The operands and remarks ReId is used to specify the
information that is to be operated upon and may con­
tain, if desired, any· additional remarks concerning the
statement.

For declarative operation statements, the Rrst oper­
and usually deRnes the length. The remaining operands,
if present, specify constants, an address, and remarks.

For imperative operation statements, the operands
and remarks ReId contains, at most, four items: three
of these are operands and the fourth, remarks. The Rrst
two operands may be the symbolic or actual address
of data or instructions, the P and Q portions of the in­
struction. The third operand, which should be numeri­
cal, is called the Hag indicator operand and is used to
set Hags in the assembled instruction. The Rnal item
consists of the remarks associated with each statement.
Imperative statements need not contain all four items.
Anyone or more than one may be omitted.

A control operation statement normally consists of
only one operand.

3

Statement Writing
Certain rules must be observed in writing or coding the
statements that make up the source program. This sec­
tion contains rules that apply to the statements and their
elements, rules governing the length and types of state­
ments, use of special characters, the Hag indicator oper­
and and immediate (Q) operand, types of addresses
used as operands, and address adjustment by arithme­
tic, a method that relieves the programmer of consid­
erable eHort and reduces the number of symbols re­
quired for a source program.

Statements

Symbolic statements are classed according to the oper­
ation code they contain, and thus are designated De­
clarative, Imperative, or Control statements. In addi­
tion to the page and line number, a statement may con­
tain a label, operation code, operands, and remarks.
No statement in the source program may exceed 75
characters in length. Since page number, line number,
label, and operation require 15 positions, the operands,
and remarks field may not exceed 60 characters. In the
case of the paper tape sps, the end-of-line character is
considered to be part of the operands and remarks field.

Use of Special Characters in Statement Writing

The comma, asterisk, end-of-line character, blank, at
(@) sign, and dollar sign are special characters which
possess distinct meanings in the writing of source pro­
grams. Their use as well as that of the special characters
used as operators for address adjustment are explained
in detail in this section.

COMMA

The comma is normally used to separate items in a
statement. The term item refers here to parts of the
operands and remarks field, such as the P and Q oper­
ands, the Hag indicator operand, remarks, length, con­
stants, etc. An imperative statement may consist of four
items: the P and Q operands, the Hag indicator oper­
and, and remarks, but need not contain all four items.
Anyone or more than one may be omitted.

If one item is omitted and more items follow, the
comma that normally follows the omitted item must be
present. For example, if the Hag indicator operand is
omitted but remarks are present in the instruction, the
format of the field will be:

Operands & Remarks

1$" 20 2S JO lS 40

4

All imperative statements that contain remarks must
include three commas in the operands field, even when
the operands are omitted. During assembly, the omitted
P or Q operands will be replaced by zeros in the P or Q
portion of the assembled instruction.

Commas indicating omission need not be present in
statements in which the last item (s) is omitted. For
example, in the statement in which both the Hag indi­
cator operand and remarks are omitted, no commas
need be used follOWing the second operand.

Ope,ands & aomarks

2S JO .. 50

Examples

Statement 010 which is a halt operation requires three
commas (, , ,) in front of the remarks, to take the place
of the P, Q, and Hag indicator operands. In statement
020, the first two commas set oH the P and Q operands,
whereas the third comma takes the place of the omitted
Hag indicator operand. The number of commas required
for declarative statements may be one or two as ex­
plained under DECLARATIVE OPERATIONS.

ASTERISK

The asterisk has three uses: in writing comments (only),
as an operand or term of an operand, and in address
adjustment.

Lines of descriptive information may be inserted in
the program by placing an asterisk (~) in column 6 of
the label field. Comments then may be written in col­
umns 7 through 75. Comments inserted in this way will
appear in the symbolic output, but will not aHect in
any way the operation of the program. A comment
statement does not produce an entry in the object pro­
gram.

so

Statements 010 and 020 are remarks that do not gener­
ate instructions.

The asterisk is used as the first character or term of
an operand in an imperative statement and is inter­
preted by the program as the address of the high-order
(leftmost) position of the address of the instruction. It
may be used as any term of the operand to indicate the
high-order (leftmost) position of the address of the
instruction.

When the asterisk is used in address adjustment as an
operator, it indicates to the processor that a multiplica­
tion must be performed in order to adjust the address.

PARENTHESES

Parentheses are used to enclose the integer that specifies
which index register is to be used in modification of the
operand.

Operand, & lema"',

NET

END-OF-LINE CHARACTER

An end-of-line character ® is required on source
statements that are to be processed on paper tape. Use
of this character allows statements to be located on the

Line Lobel Operotiof1

-.l 5 6 11 12 15 16 ~ 25 30 3S

0,1.0 5)(2 8, o DDV.N.
.c)

tape immediately adjacent to each other, with no inter­
vening blank characters. The statements are in "free"
form; that is, they are not assigned a fixed number of
positions.

Source statements that are to be processed in punched
card form do not require an end-of-line character; the
remainder of the line is left blank and this is recognized
by the processor as the end of the statement.

When the end-of-line character is punched in a card
for off-line conversion to paper tape, it is represented
by a 12, 5, 8 punch combination.

BLANK CHARACTER

A blank character in operands of the source statements
is ignored by the processor except in DAC statements
(alphameric constants), in which blanks are considered
valid characters. In effect, the statement is condensed
before it is processed.

Because blanks are ignored by the processor, the pro­
grammer, to achieve clarity on his coding sheets and
output listing, may write his statements in modified
"fixed" fonn as shown in the example at the bottom of
the page. In this example, columns 16, 36, and 57 are
arbitrary choices for the locations of the operands. The
comma following or replacing the P operand may be
in any column from 16 through 35; the comma follow­
ing or replacing the Q operand must be in column 56,
the position preceding the flag indicator operand.

Operands & Remarles

.s SO 55 .., 6S 70 75

0.2.0 A, A RE.A. ",1'EJIJ',J - .4, " t, FOt F.H.E
1.,3,0 ~, 1.No/,7 1 AI.l Z,A,T I OJ'/. FOil F.S1l8.0,J>..~ I I I I I I & I I I I I' I I I I I I. I I I I I I' · o • 0 TF. :X,s'UIN. 1 ,.'p,E! rA ___ x .-1 --' -'-

o 5 0 r.FH. f.f,V,L T+ II ".4- · "LO · ·
10,6.0 TJ),I(Sw'2+J, ,9 · · ·
I II 7 e TF Atc,H, ,liZ I ·
10 • 0 r.F TE,ItI,P3 . ,tiP E l T A,X · 1 I

10 '.0 A. T£H.P3 .L
_ TI.H.P.3. · · ·

I 0 0 8. ill,S I,N,£ - 3" L
, 1 0 ODD,VN. A, 'A,c CIl", I I , . I • I I I I I I I "I1"aE.~P'J. I I t I I I I I I I I I I I I I I I I. I I I I I I I I I.
, 2 • A X S lJBJI. t, r.lJrl.p.J. · · -'

, 3 • C, ~ S fl8.N. , NIH,IS · L -'

1 • 0 8.N.H, lA,S Il'I.l- "' •• ,L. • . I I I I

1 S 0 'ftI.II.LT 'Ml'l ~,c~.tI.1f I · ·
1 6 0 $F, '.11 .L ·

5

Blanks are not permitted within a Bag indicator oper­
and. For paper tape input, this operand must begin
immediately following the second column and must be
immediately followed by a comma or end-of-line char­
acter. For card input, the Bag indicator operand can
be followed by a comma, record mark, or blanks in the
remainder of the card. A blank or blanks in the address
operand of a declarative statement, when set off by
commas, is interpreted by the processor as a zero ad­
dress.

When the "at" sign (@) is used as part of a constant be­
ing defined by a DC, DSC, or DAC statement, a record mark
(=F) is created by the processor and inserted into the
constant in place of the @. Specific rules for use of the
@ are covered under DECLARATIVE OPERATIONS

DOLLAR SIGN

The dollar sign ($) is used in an operand to instruct the
processor that the symbolic address in an operand has
a specific heading character. The $ is written between
the heading character and the symbol. For example, in
an operand the' heading character "5" and the symbol
"SUM" appear as 5$SUM. For additional information on
the use of the $, refer to HEAD-HEADING in the Control
Operations section.

Operands

FLAG INDICATOR OPERAND

The flag indicator operand specifies the positions that
are to be Bagged in the assembled instruction. These
positions are numbered from left to right, 0 through 11,

and must be listed sequentially. For example, if posi­
tions 2, 7, and 10 are to be Bagged, the Bag indicator
operand should be coded 2710, not 2107. All positions
may be Bagged, if desired. The operand then will be
coded 01234567891011 and must be written in that
order.

Normally? no Bags are set when the Bag indicator op­
erand is omitted. However, if the flag indicator operand
is omitted from all immediate instructions, except TDM,

a flag is automatically set in position Q •. If the operand
is present, only the positions indicated are flagged.

The flag indicator operand can be used to insert a Bag
over the units position of the P and Q addresses, if the
source program is written for a 1620 or 1710 that has
Indirect Addressing.

IMMEDIATE (Q OPERAND)

With immediate-type instructions such as Add Im­
mediate (AM), Subtract Immediate (SM), and with
actual operation codes that begin with the digit 1, the
Q operand represents the actual data to be used by the

6

instruction. It may be absolute or symbolic as previous­
ly defined. High-order zeros of absolute data may be
eliminated.

During assembly, the processor automatically places
a flag over position Q. of an immediate instruction un­
less a Bag indicator operand indicates otherwise. For
example, the statement

Operand. & Remark.

20 :IS)0

TOTI! L, 1002,3

causes the numbers 10023 to be subtracted from the
field called TOTAL because the Bag that terminates the
field to be subtracted is automatically placed over po­
sition Q •. However, the statement

Operand. & Remark.

will cause only the number 23 to be subtracted from
the field called TOTAL because the flag indicator oper­
and directs that the field terminating Bag be placed
over position QIO rather than Q •. There is one excep­
tion to this rule: a Transmit Digit Immediate instruction
(TDM, code 15) does not require a Bag; therefore, none
is automatically set by the processor.

MASK DIGIT OPERAND

A mask digit operand is required to specify the mask
digit for the Branch on Mask and Branch on Bit in­
structions. The D in the following examples shows the
position of the mask operand in the source statement.

Operand. & Romark.

40 .,

which assembles to: 91 PPPPP DQQQQ

Operand. & ""

which assembles to: 90 PPPPP DQQQQ
The mask operand may be symbolic or absolute. The

P, Q, and Bag operands are processed in the same man-

ner as for other instructions. If the mask operand is an
absolute value, the units character replaces the Q7
character of the Q operand. For example:
Given:

line label Ps>-at Operand. & __ rIl.

'1 S, 1112 '" 20 H JO » 00 .S SO

I.IA. Iffs ,12344
0.2.. lB. 11>.$, .214-$'.'

will assemble to: 91 12344 13456
If the mask operand is a symbol, the units position

of the symbolic address will be inserted in the Q. po­
sition of the assembled instruction. For example:
Given:

Operands & Remark!

will assemble to: 91 12344 53456

Types of Addresses Used as Operands

Operands assembled by the processor may be of three
types: actual, symbolic, and asterisk. The individual
applications for a particular type of address are de­
scribed in the section PROGRAMMING THE 1620 USING

SPS.

ACTUAL ADDRESS

An actual address consists of five digits 00000-19999
for a standard capacity machine and is, as the name
implies, the actual core storage address of a piece of
data or an instruction. High-order zeros of an actual
address may be eliminated. For example, the statement

Operand. & Remark.

368*".12251

causes the data in storage location 12251 to be added
to the data in storage location 03684.

SYMBOLIC ADDRESS

A symbolic address is the name assigned by the pro­
grammer to the location of an instruction or a piece of
data. A symbolic address is valid only if it is defined
(given an actual numerical value) by a declarative
statement somewhere in the source program or if it is
used as the label of an instruction. Symbolic addresses
may contain from one to six characters (letters, digits,
or special characters) with the follOWing restrictions:

a. At least one character must be nonnumerical.

b. The only permissible special characters are: equal
sign (=), slash symbol (/), at sign (@), and
period (.).

It should be noted that blanks have no meaning
within a symbol because they are eliminated during
assembly.

The example shown below contains both an actual
address and a symbolic address.

Operand. & Remark,

lS

.1225J

In this example, the data in the field whose actual
address is 12251 is added to a field whose address is
the symboliC name TOTAL.

ASTERISK ADDRESS

\Vhen the asterisk is used as the first character of an
operand in an imperative operation, it is interpreted
by the processor as meaning the address of the high­
order (leftmost) position of the instruction itself. For
example, the statement

Operands & Remarlts

indicates to the processor that the Q portion ~f the in­
struction should contain the address of the instruction
itself. This instruction is assembled as 44 01234 01876
where START equals 01234 and the address assigned to
the instruction is 01876. Thus, when executed in the oh­
ject program, this instruction examines its own leftmost
position (01876) for a flag and either branches to the
instruction at location 01234 or continues, on the hasis
of the examination, to the next instruction located at

. 01888.

7

When an asterisk (~) address is used with either
declarative or control operations, it refers to the right­
most position of storage last assigned by the location
assignment counter of the processor - not to the left­
most character of the instruction. For example, the
statements

line label ~otion O!>orands & Remarlc.

3 5. "'2 IS 16 20 2S 30 lS SO

In 1 0 TFJt(12o.4~, 70.0.0.0. ,
0,2,0 \D,c 1,1>, •

produce the instruction _

16 12045 7000*

Since record marks can be defined only in declara­
tive operations, an imperative statement should be fol­
lowed by a DC statement when a record mark is re­
(luired in the instruction. The rightmost position of the
instruction is the rightmost position of storage last as­
signed; therefore it is also the position where the =4=
(constant) is stored.

Address Adiustment of Operands

Address adjustment is used to tell the processor to
arithmetically adjust the addresses in operands. It is
permitted with all types of addresses: actual, symbolic,
and asterisk, and is used to refer to a location that is a
given number of positions away from a specific ad­
dress. Use of this feature of the l~nguage reduces the
number of symbols necessary for a source program.

By writing a + (plus sign) for addition, - (minus
sign) for subtraction, and 0 (asterisk) for multiplica­
tion, immediately after the first or subsequent tenn of
an operand (an asterisk as a term of an operand does
not represent multiplication but means the address of
the instruction, as previously explained), the program­
mer indicates to the processor that the address is to be
adjusted.

Arithmetically adjusted operands may take the form
(I, (I, #

of A -+- B -+- C -+- D, where the tenns A, B, C, and
D may be numerical quantities. The number of terms
in the operand is limited only by the size of the oper­
and and remarks field. Thus the operand A + B 0 C
- D may be further adjusted by writing after the last
term another term, E, e.g., A + B • C - D + E.

In arithmetically adjusted operands, the opera­
tion or operations of multiplication are -always per­
formed first, followed by the addition and subtraction
required to calculate the adjusted address. Intennedi­
ate results that are greater than 10 digits, or a fin~l re-

8

suIt (adjusted address) that is over 5 digits, cannot be
calculated by the processor.

In using address adjustment, the programmer should
be careful that insertions or deletions do not affect the
adjusted address. For example, if a P operand in a
branch (B) instruction refers to an address as (I, + 48
(i.e., branch to the instruction that follows the next
three sequentially higher instructions), the program­
mer must ensure that no new instructions are intro­
duced within the three instructions to make the ~ + 48
incorrect. In this example the asterisk (~) is the left­
most position of the instruction itself.
Examples

The operands shown will produce the adjusted ad­
dresses, as indicated, provided the location 1000 has
been aSSigned to the symbolic address ALPHA, the loca­
tion 4 has been assigned the symbolic address L, and
the instruction location «I,) is equivalent to 2000.

In some instructions such as the branch instruction,
the Q address is not used, although a zero (00000) ad­
dress is generated. Thus the instruction uses 12 storage
positions. By using an (I, address in the following state­
ments

Operands & Remarks

IS •• III

the instructions are condensed, to eliminate four posi­
tions of the unused (zero) Q address, and are stored as

49136680161204570000
whereas the statements

line loIN! b,.erafioo Operands & Remarks

I) S. 1111 .,. 10 " JO J5 '0 .5 50

0.' Ii. 13668
'- ~

0.' N.EXT TFM 1t.O.r,70000 , -----'--"--'

are stored as

491366800000161204570000

because the unused Q address is not eliminated. In the
first example, only four positions of storage are saved;
however, a considerable amount of storage can be
saved in a program that contains many instructions
where the Q or both the Q and P portions of instruc­
tions are unused. Because the # in the DORG statement
(see CONTROL OPERATIONS) refers to the rightmost po­
sition of storage last assigned (Ql 1 of the B instruc­
tion), # -3 is the address where the next instruction
starts.

By placing a minus sign in front of the first term of
an operand, a Hag (minus sign) can be inserted over
the units position of the adjusted address. This feature
of address adjustment can be used for inserting Hags
required for Indirect Addressing. However, an operand
written as -0 (minus zero) does not insert the Hag in
the units position over the zero. When the minus sign is
written in front of the first term in order to set a Hag
over the units position, other signs following the first
term should be reversed so that the correct address is
obtained.

Operand Modification with Index Registers

Any operand that can be indirectly addressed may be
modified with an index register. The index register is
specified by placing the number of the index register
in parentheses, as shown in the following examples,

line label f:>perat;""
3 5 , 1111 lS16 ,. " JO 3'

I .• A ADDR-5(3),5U8R(')
Oel.D A ADDR-S(A3),SUBR.(4')

either of which will be assembled as
21 XXXXx XXXXX

Operands & Remarks .. ., '"

The number in parentheses must be an integer from
o to 7. The processor decodes the number and places
the proper Hags over the operands. In the second ex­
ample, the A in the index register portion of the P
operand is ignored by the processor; however, it may
be included by the programmer as an aid in keeping
track of the index register band currently selected. The
processor decodes the rightmost numerical character
within the parentheses as the index register number.

9

Programming the 1620 Using SPS

This section describes the various steps to be followed
in writing a program for the 1620 using sps. The
material is divided into three categories: Declara­
tive Statements, Imperative Statements, and Control
Statements.

Declarative Statements
In programming the 1620, all records and any other
data that is to be processed by the program must be
assigned storage areas. Normally, all records and data
to be processed consist of fields of known length and
arrangement. Unless otherwise specified, areas are
automatically assigned core storage locations in the
order in which they appear in the source statements.

To assign addresses for instructions, constants, etc.,
the processor uses an address assignment counter. This
counter is adjusted for .each assignment made by the
processor. If an address is assigned by the program­
mer, the counter is not adjusted.

The declarative statements provide the object pro­
gram with the input/output areas, work areas, and
constants it requires to accomplish its assigned task.
These statements do not produce instructions that are
executed in the object program. The entries, DS, DSS,

DAS, and DSB assign storage for work areas in the object
program. The entries, DC, DSC, DAC, DSA, and DNB usually
assign storage, and also produce, in the object program,
both the machine address of the area assigned and the
constants that are to be stored in this area. Constants
are then loaded with the object program.

Declarative statements may be entered at any point
in the source program. However, these statements are
normally placed by themselves, preferably at the be­
ginning or end of the program - not within the instruc­
tion area. If not placed at the beginning or end, the
programmer is required to branch around an area as­
signed to data so the program will not attempt to exe­
cute what is in a data area as an instruction.

The declarative mnemonic operation codes and their
description are as follows:

Code Description

DS Define Symbol (Numerical)

DSS Define Special Symbol (Numerical)

DAS Define Alphameric Symbol

DC Define Constant (Numerical)

10

DSC Define Special Constant (Numerical)

DAC Define Alphameric Constant

DSA Define Symbolic Address

DSB Define Symbolic Block

DNB Define Numerical Blank

DS - Define Symbol (Numerical)

A DS statement may be used to define symbols used in
the source program (i.e., to assign storage addresses
or values to symbolic addresses or labels) and to assign
storage for input, output, or working areas. A DS state­
ment does not cause any data to be loaded with the
object program.

The length of the field is defined by the first oper­
and. This operand may be an absolute value or a sym­
bolic name. If a symbolic name is used, the symbol
must previously have been defined as an absolute
value, that is, it must have appeared in the label field
in a statement of the source program preceding the
one in which it is used. Address adjustment may be
used with this operand.

The address in core storage of the field being defined
may be assigned by the programmer or the program­
mer may let the processor assign the address. If the
processor assigns the address, the statement is termi­
nated after the first operand. If the programmer assigns
the address, a second operand, which may be symbolic,
asterisk, or actual, is used to establish the address of
the field. Since data fields are addressed at their right­
most (low-order) digit the processor assigns this po­
sition as the address of the field. Address adjustment
may be used with the second operand. If the second
operand is symbolic, it also must previously have been
defined. Addresses assigned by the programmer do not
disrupt the sequence of addresses assigned by the
processor.

A DS statement may also be used to define a symbol,
without assigning any storage, i.e., to define it as an
absolute value. In this case, the first operand is omitted
(or written as 0) and the second operand represents
the value (may not exceed five digits in length). The
second operand may be an actual value or a previously
defined symbol. To define storage which will not be
referred to symbolically, the label of the DS statement
may be omitted.

The following statements define the field length only.
When remarks are added to the statement, the field
length must be followed by two commas.

line label ~i"" Operand rtu

5. 1112 lSI' 1O 2$ JO l5 00 45 50

, D.EL rA}' lD.s 7

., DEL TA.>l OS 7 .•.• i.frl.O COilA-AS IlE(}.l/.! RoE/), ,F,oB- ,R,{ tM.!..,K,S, I

In the next example, the programmer assigns the
address of the field and excludes the field length (the
first operand) from the statement and replaces it with
a comma. The following statements cause the processor
to associate the address 12930 with the label SUM:

D

Again, in this example, two commas are required
when remarks form part of the statement.

The following statement, which is similar to the one
previously given, is assigned a value that is other than
an address.

This statement defines the symbol FL as being equiv­
alent to the value 17. Subsequent uses of this symbol
are permitted because the symbol has been defined.

It should be noted that an area defined by the proc­
essor for a DS statement is always addressed at the
rightmost position. However, to use this area for in­
put/ output, the leftmost digit must be addressed. This
is done by using a DSS statement in place of a DS state­
ment or by address adjustment with a DS statement,
which subtracts a number that is one less than the
length of the area from the address of the area. In a
previous example, where DELTAX was defined as having
a field length of 7, the operand of another instruction
to read numerical data into the DELTAX field should be
written as DELTAX-6.

DSS - Define Special Symbol (Numerical)

The DSS statement is similar to the DS statement with
one exception: when the second operand is omitted,

the processor assigns the leftmost position as the ad­
dress of the field. If a second operand is aSSigned by
the programmer, this address is assumed to be equiv­
alent to the leftmost position of the field. A DSS state­
ment is normally used to define a storage area for in­
put/ output. The data in such an area may be moved
during execution of the object program by a Transmit
Record instruction which requires that an address as­
signed to an area be that of the leftmost position.

DAS - Define Alphameric Symbol

The DAS statement is similar to the DS statement with
two exceptions:

Il

1. The length specified by the first operand is auto­
matically doubled by the processor to allow for
alphameric data. Each alphameric character re­
quires two storage positions.

2. The address of the field, if generated by the pro­
cessor, is the leftmost position of the field plus one.
The position is always odd-numbered, as it must
be with any alphameric field.

The following example illustrates a DAS statement.

Line label Pr-ati<>'1 Operands & Remarks

5. 1\1' 151, >0 " 1O " 00 ., 10

la '.0 T I T.L..{ j),AS iB.o ~

,
10.10 TI TL£ DA.S ~.O,J, ,R E/'tAR K S R EQ,U litE TW.O b,OHI1AS

This statement defines an area for input/output that
can contain 30 alphameric characters. The processor
assigns 60 positions in core storage to accommodate
alphameric coding. The omission of the second operand
causes the processor to assign an address. During in­
ternal transmission of a field which utilizes an input/
output area that is defined with a DAS, the area must be
addressed at its rightmost position. In the example, the
address may be achieved through address adjustment,
i.e:, TITLE+2°30-2.

DC - Define Constant (Numerical)

The DC statement may be used to enter numerical con­
stants into the object program, and, for ease of refer­
ence, to assign names to the constants. The lahel field
contains the name by which the constant is known. DC

statements consist of three operands. The first operand
indicates the length of the constant field; the second,
the actual constant; the third, the storage address of
the constant. The third operand is not used when the

11

programmer prefers to let the processor assign the
storage address. The assigned address is the rightmost
storage position of the constant. The leftmost storage
position is the position over which the processor places
a Hag.

Whenever remarks form part of a DC statement, three
commas must be included in the statement. The first
and third operands may be symbolic or actual. They
are subject to address adjustment. A symbolic address
must previously have been defined to be valid.

If the first operand (length of constant) is smaller
than the constant, an invalid condition results. If it is
larger than the constant, zeros are inserted to the left
of the constant so that the number of zeros plus the
number of positions in the constant equals the length
of the field (first operand) .

A constant that is a positive number will be stored
in the form of an unsigned integer; a negative number,
in the form of a signed integer. A negative number has
the minus sign written in front of the constant as part
of the second operand. During assembly, a negative
number produces a Bag (minus sign) over the units
position of the constant.

If the constants 0100000 and -0004337769 are re­
quired, they may be defined as follows:

Line Lobel p.-iOl1 Operonel. , Remark.

13 S, III' 151' 20 7S 20 lS 40 .s SO

1 •. 1 •• It! ON.ST.J. be .7..100.000

~JA ic,o.N.S.T DC 7iJ 1 00000.,,1 3 COI'(lf.AS roON ,R,fI1.A,fK~.

030 CONST.2 DC J,O, ,,-,4.:3 37769 I I , I I I

I •• Ie.G'N-,s T.2 PC ILO,-.4.33..L7.6,9, ,,3, ,c,otfl1~..£.1,O& NlH,A,RKS

In both cases, constant 1 and constant 2, the length of
field is greater than the constant, and the addresses of
the constants are assigned by the processor. These
constants will appear in the object program as

0100000
0004337769

A record mark may be used in a constant but must
be in the units position and must be written as the
character @. The follOWing example contains state­
ments that:

1. Store a record mark by itself as a constant.

2. Store a constant 6 and record mark.

3. Store a minus 0773 and record mark.

12

,

These constants appear in the object program as:

=t=
6=t=
0773 =t=

A constant 7 with a Bag ('7) is generated by either
of the following statements:

line Lobel ~o"on Operands & Remorks

1 S, 10 'S JO 40

I •. ' • C O,I{S T~zID.C 1, - 7, , S TQY_A.. ?_:~/J IfI..~~~ f J.AG~ ~ L~

, •• CO,N,S,T.2lP.C. Il.J,7,J".STO·iii A 7 :WI,TI!."A7j,A{t:~_:-:-:::::

A Bag is always placed over a one-digit constant (ex­
cept a record mark), regardless of the sign. Therefore
the programmer must use two positions to define a
positive one-digit constant.

Constants may not exceed 50 characters. The follow­
ing statement generates a constant containing 50 zeros.

,----y----r----.----.--,--------.- -- ---
Operands & Remorh

To store a zero with a Bag at location 00401, the fol­
lowing statement can be used:

r-~--~~------------------------
Operonds & Remarks

Because a label is not included in this statement, the
actual address (00401) must be uSed by any other in­
struction when referring to this constant.

DSC - Define Special Constant (Numerical)

The DSC statement is similar to the DC statement with
two exceptions:

1. When the third operand is omitted, the address
assigned by the processor to the field is that of
the lefbnost position of the field. If the third
operand is present, the address of the constant is
assumed to be the leftmost position of the field,
and the constant will be stored with its leftmost
digit at this address when the object program is
loaded.

2. A Hag is not placed in the leftmost position of the
field.

DAC - Define Alphameric Constant

To define a constant consisting of alphameric data, the
mnemonic DAC is used. The DAC statement is similar to
the DC statement with three exceptions:

1. The first operand (length) is automatically
doubled by the processor to allow two storage
positions for each alphameric character.

2. The storage address of the constant is the address
of the leftmost position plus one. This address
must be an odd-numbered address to comply
with the requirements for alphameric data stor­
age. An odd-numbered address will automatically
be assigned, if it is assigned by the processor. If
it is specified by the programmer (as in line 020
of the following example), the processor assigns
the specified address and provides that the con­
stant is stored beginning one position to the left
of the specified address. In the latter case, the
processor makes no test of whether or not the
address is odd-numbered or whether the address
(or the position to the left) has been previously
assigned.

3. High-order zeros are not automatically inserted
in the constant by the processor, as in the case
with a DC statement when the field length exceeds
the number of characters. The number of char­
acters including blank characters should not be
greater or less than the specified length (first
operand). When the rightmost position or posi­
tions of the constant are blank characters, they
should be followed by a comma or end-of-line
character. For card input, the rightmost position
must be followed by a comma or a record mark.

NOTE: Only DAC and DNB instructions may be used
to insert blank characters into storage.

line label ~oti"" Operands & Remarks

1 5' 1112 151' 20 2S)0)S 40 .$

10.I.oNOT£1 VA' J.7"DECH 3lf78 PUNCHED, ,ENp' !r1.£S!i.AG£

,901,STORE , ALPHA BlKS

010 'RMARI< ID,AC 1"", AL PH A, 1f~ F,OR OU,1~P,UT, :A:R:E:C2
.. CDNST In,AC 13,D£LTAX=O.OOo~,,'s'iA~~ ~C.N'S'T,'R:M--,~_

In the example shown:

1. Statement 010 uses 34 storage positions to store
the 17 -position constant (deck 3478 punched).

2. Statement 020 places 6 alphameric blanks into
storage locations 00900 through 00911. Also, a Hag
is set in location 00900.

3. Statement 030 records an alphameric record mark
in storage.

4. Statement 040 places a 13-position constant, in­
cluding a record mark, in storag~.

A 50-character alphameric constant (maximum
allowable) occupies 100 positions of storage. A flag is
set over the leftmost position of the field. Addressing
this constant for internal field transmission requires the
address OUTPUT +50 (t 2-2, where OUTPUT is the sym­
bol (label) which represents the leftmost address plus
one.

DSA - Define Symbolic Address

The DSA statement may be used to store a series of up
to ten addresses as constants, as part of the object pro­
gram. These addresses can be used for instruction
modification or for setting up a table of addresses
through which the programmer may index to modify a
routine.

Each entry (symbolic or actual) in the operands
field, with the exception of the last entry, is followed
by a comma. The equivalent machine address of each
entry is stored as a 5-digit constant. The constants are
stored adjacent to each other with a flag over the high­
order position of each. The label field of this state­
ment must contain the symbolic name by which the
table of constants may be referred to. An address at
which this table is stored in core storage may not be
assigned by the programmer nor may any remarks be
included in the DSA statement. The address assigned
by the processor is the address at which the rightmost
digit of the first constant will be located.

NOTE: If the last operand is followed by a comma, an
additional zero address (00000) is assembled in the
table.

In the example that follows, symbols ALPHA, ORIGIN,

and OUTPUT are equivalent to addresses 01000, 00600,
and 15000, respectively.

Operand. & Remarks

ORIGIN 1234 OUTPUT-50

The constants are stored as

01000006000123414950

(0120t) 1
(01204)

13

If the lefbnost digit of these four constants is located
at 01200, then the address equivalent to TABLE will be
01204, the location of the rightmost digit of ALPHA.

DSB - Define Symbolic Block

A DSB statement is used to define an area of storage for
storing a numerical array. A DSB statement does not
cause any data to be loaded with the object program.
The label of this statement is converted to the address
at which the first element of the array is stored (i.e.,
the righbnost position of the first element). The first
operand indicates the size of each element, the second,
the number of elements.

Either or both operands may be symbolic or actual.
If symbolic, the symbol must have been previously
defined. A third operand is required if the programmer
wishes to assign the address. For example, to store an
array of 75 elements, each element containing 15 digits,
the statements llsed would be:

Operands & R.marles

In this example, the array begins at location 01500
(lefbnost position of the first IS-digit element). ARRAY

is equivalent to 01514 (address of the first element).

DNB - Define Numerical Blank

A DNB statement is used to define a field of numerical
blanks. (The 8-4 card code denotes a numerical blank.)
Up to fifty blanks may be specified in each DNB state­
ment. In addition to a label, two operands can be
aSSigned by the programmer. The first of these specifies
the number of blank characters desired (field length)
and. the second, the rightmost address of the field
where the blanks are stored in the object program.

If the second operand is omitted and the statement
is labeled, the address assigned to the label by the
processor is the rightmost storage position of the blank
field. The blank field does not contain a Hag in its
leftmost position.

If the programmer wishes to move a blank field in
core storage, he must either define a single-digit con­
stant with a Hag bit in the position in front of the left­
most position of the blank field or a record mark in the
position follOWing the rightmost position of the blank
field.

If six numerical blanks are required, they may be
defined as follows:

14

Operands & Remarles

3S

The processor assigns the storage address of the six
blank positions to the label BLANKS. In the example
that follows, the programmer assigns the storage
address as 01625.

Operands & R.ma s

20 2S JO

625. STa1U s,)(LANHS

In a DNB statement, two commas are required when­
ever remarks are included in the statement; the first
after the length operand and the second after, or in
place of, the address operand.

Summary of Declarative Statements

As stated earlier, areas being defined by the processor
are assigned core storage locations in the order in
which they are processed. To do this, the processor
program uses a location assignment counter to keep
track of the address of the last assigned storage loca­
tion. Table 1 shows the amount added to the location
assignment counter for each instruction and sum­
marizes the coding and operation of each declarative
operation. "Alpha Record Address" in the table refers
to the leftmost position plus one of an alphameric
field, whereas "Field Address" refers to the rightmost
position of a field. The term "Numerical Record Ad­
dress" refers to the leftmost position of a field.

Imperative Statements
This section describes the five classes of Imperative
statements and· gives examples of statements in sym­
bolic form. For a detailed description of the function
of each instruction, refer to the appropriate machine
reference manual.

Imperative statements are divided into five classes:
1. Arithmetic
2. Internal Data Transmission
3. Logic
4. Input/Output
5. Miscellaneous

Arithmetic Statements

Table 2 lists the Arithmetic statements, some of which
pertain to special features. Since some features are
"speciar for the 1620 Model 1 and "standard" for the

Table 1. Summary of Declarative Operations

DECLARATIVE STATEMENT AMOUNT ADDED TO LOCA-
FORMA nON ASSIGNMENT COUNTER

lABEL OP OPERANDS IF ADDRESS (A) IS BLANK
CODE

SYM OS l,A l(length).
If L is blank, Ois added.

SYM DSS l,A l (length).
If l is blank, 0 is added.

SYM DAS l,A 2 x l is added. If L is blank,
o is added.

SYM DC L,C,A l is added.

SYM DSC l,C,A l is added.

SYM DAC L,C,A 2 x l is added •

SYM DSA D,E,F,G, 5 x (number of addresses) is
H, I, J, K, added.
L,M

SYM DS8 L,N,A length of each element times
the number of elements is added •

SYM DN8 l,A l is added.

1620 Model 2, no indication is made in the table to
differentiate between the two types.

Examples

These statements cause the following operations to be
performed:

Line 010 - Add labor amount to cost amount.
020 - Same as line 010 except three commas

are required for remarks.
030 - Subtract a constant 02 from the field lo­

cated at STORE plus 4.
040 - Add a constant 05 to the field at storage

. location 00088.

VALUE STORED IN SYMBOL DATA FIELDS WHICH ARE
TABLE AS EQUIVALENT lOADED AS A PART OF

TO "SYMBOL" THE OBJECT PROGRAM

A address. If A is blank, the None.
field address from the location
assignment counter is stored.

A address. If A is blank, the None.
numerical record address from
the location assignment counter
is stored •

A address must be add. If A is None.
blank, the alpha record address
from the location assignment
counter is stored.

A address. If A is blank, the C, the (numerical) constant.
field address from the location
assignment counter is stored.

A address. If A is blank the C, the (numerical) constant.
numerical record address from
the location assignment counter
is stored .

A address must be odd. If A is
blank, the alpha record address

C, the (alphameric) constant.

from the location assignment
counter is stored.

Field address of the first address A I ist of the actual addresses
on list. that correspond to D,E,F, etc.

A address. If A is blank, field None.
address of the first element is
stored.

A address. If A is blank, the Number of blank choracters
field address from the location that equa I L.
assignment counter is stored.

050 - Move DDND (dividend) to the product
area (storage location 00097).

line Operands & bmorks

1.5

Table 2. Arithmetic Instructions

NOTE: Indire'ct Addressing and indexing are allowable with all P address operands listed below. An * to the left of the Q operand indicates
these features may be used with it.

OPERATION CODES OPERANDS
OPERATION MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Add A 21 Storage address of units position of augend *Storage address of units position of addend

Add Immediate AM 11 Same as code 21 Q 11 of instruction is units position of addend

Subtract S 22 Storage address of units position of minuend *Storage address of units position of subtra-
hend

Subtract SM 12 Same as code 22 Q 11 of instruction is units position of
Immediate suBfrahend

Multiply M 23 Storage address of units position of *Storage address of units position of
multiplicand multiplier

Multiply MM 13 Same as code 23 Q
1l

of instruction is units position of
Immediate mul iplier

Load Dividend LD 28 Storage address in product area to which *Storage address of units position of dividend
units position of field (dividend) is to be
transmitted

Load Dividend LDM 18 Same as code 28 Q 1 J of instruction is units position of
diVidend

Divide D 29 Storage address at which first subtraction *Storage address of units position of divisor
of the divisor occurs

Divide DM 19 Same as code 29 Q 11 of instruction is units position of divisor
Immediate

Floating Add FADD 01 Storage address of units position of exponent *Storage address of units position of exponent
(Special Feature) of augend of addend

Floating Subtract FSUB 02 Storage address of units position of exponent *Storage address of units position of exponent
(Special Feature) of minuend of subtrahend

Floating Multiplr FMUL 03 Storage address of units position of exponent *Storage address of units position of exponent
(Special Feature of multiplicand of multiplier

Floating Divide FDIV 09 Storage address of units position of exponent *Storage address of units position of exponent
(Special Feature) of dividend

060 - Divide the dividend by successive sub­
tractions of the DVR (divisor), starting in
storage location 00086.

Internal Data Transmission Statements

Table 3 lists the mnemonics for Internal Data Trans­
mission statements. Some statements pertain to in­
structions that require special features; however, some
special instructions for the 1620 Model 1 are standard
on the 1620 Model 2. No indication is made in the
table to differentiate between the two types.

These statements cause the following instructions to
be executed:

16

Line 010 - A numerical digit at the location called
DIGIT is moved to the location called
FIELD.

line

_~, I ,0

20

030

so

of divisor

lobel ~oti"" Operands & Remarks

1117 1516 20 75 40 .. s 50

T.D, FIELD DIGIT

TFI'I. srOR.£ 13$,25" ,,11.0V£ ~>~ ,TO. ,S,TO,lU

rFM,'.tt-l1",4,i,JO"CflG£ PIUV O,P, C,O,I>.£"r,O ,NOP.

TNoS IhB"CON,VE,Rr fL.~~-;/~C:~

rNF C,D"CONVERT FLI> DT.O ALPHA COI!J.~

020 - A digit 3 is moved to the location called
FIELD.

030 - RATE 1 is moved to the field called STORE.

040 - A constant 3525 is moved to the location
called STORE.

050 - A constant 41 is moved to 0 0 and 0 1

positions of the preceding instruction in
the object program.

070 - Field D is moved to field C and con­
verted from numerical coding to alpha­
meric coding.

Logic Statements
060 - Field A is moved to field B and converted

from alphameric coding (2 digits per
character) to numerical coding (1 digit
per character).

Table 4 lists the mnemonics for Logic statements. Note
that the Branch Indicator (BI) and Branch No Indica-

Table 3. Internal Data Transmission Instructions

NOTE: Indirect Addressing and indexing are allowable with all P address operands listed below. An * to the left of the Q address operand
indicates these features may be used with it.

OPERATION OPERA liON CODES OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Transmit Digit TD 25 Storage address to which single digit is *Storage address of single digit to be trans-
transmitted mitted

Transmit Digit TDM 15 Same as code 25 Q 11 of .instruction is the single digit to be
Immediate transm i tted

Transmit Field TF 26 Storage address to which units position of *Storage address of units position of field to
fi eld is transmitted be transmitted

Transmit Field TFM 16 Same as code 26 Q 11 of instruction is the units position of the
Immediate fielCl to be transmitted

Transmit Record TR 31 Storage address to which high-order position *Storage address of high-order position of the
of the record is transmitted record to be transmitted

Transmit Record TRNM 30 Same as code 31 *Same as code 31
No Record Mark

Transfer TNS 72 Storage address of rightmost position of *Storage address of the units position of the
Numerical Strip alphameric field to be transmitted numerical field

Transfer TNF 73 Storage address of rightmost position of *Storage address of the units position of the
Numerical Fill alphameric field numerical field to be transmitted

Floating Shift FSR 08 Storage address to which units (rightmost) *Storage address (rightmost) digit of mantissa
Right (Special digit of mantissa is transmitted to be transmitted
Feature)

Floating Shift FSL 05 Storage address to which high-order digit *Storage address of low-order digit of mantissa
Left (Special of the mantissa is transmitted to be transmitted
Feature)

Transmit TFL 06 Storage address to which units position of *Storage address of units position of exponent
Floating exponent is transmitted of field to be transmitted

Move Address MA 70 Storage address of units position of 5-digit *Storage address of units position of 5-digit
(Special Feature) field to which data is transmitted field to be transmitted

OR to Field ORF 92 Storage address of leftmost position of first *Storage address of leftmost position of second
(Special Feature) field for OR logic input field for OR logic input

AND to Field ANDF 93 Storage address of leftmost position of first *Storage address of leftmost position of second
(Special Feature) field for AND logic field for AND logic

Exclusive OR to EORF 95 Storage address of leftmost position of first *Storage address of leftmost position of second
Field (Special field for Exclusive OR logic field for Exclusive OR logic
Feature)

Complement CPLF 94 Storage address of leftmost position of field *Storage address of leftmost position of field to
Octal Field to which data is transmitted be complemented
(Special Feature)

Octal to OTD 96 Storage address of the units position of *Storage address of leftmost position of field to
Decimal Conver- the power-of-eight table be converted
sion (Special
Feature)

Decimal to Octal DTO 97 Storage address of the units position of the *Storage address of leftmost position of field to
Cpnversion (Spec- highest power-of-eight required be converted
igl Feature)

17

Table 4. Logic (Branch and Compare) Instructions

NOTE: Both the BI (Branch Indicator) and BNI (Branch No Indicator) instructions require one of the switch or indicator codes listed in Table 21 as
a Q address. The code indicates the switch or indicator to be interrogated for status. To relieve the programmer of having to code a Q address,
unique mnemonics are included in SPS language for both BI- and BNI-type instructions. For a unique mnemonic, the processor generates the actual
mochine language code 46 (Branch Indicator) or 47 (Branch No Indicator) and the Q address that represents the switch or indicator.

Indirect Addressing and indexing are allowable with all P address operands listed below except Branch Back. An * to the left of the Q address
operand indicates these features may be used with it.

OPERATION OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Compare C 24 Storage address of units position of the field *Storage address of units position of the field
to which another field is compared to be compared with the field at the P address

Compare CM 14 Same as code 24 Q 11 of instruction is units position of the
Immediate fiele to be compared with the field at the P

address

Branch B 49 Storage address of the leftmost digit of the Not used
next instruction to be executed

Branch No Flag BNf 44 Storage address of the leftmost digit of next *Storage address to be interrogated 'for
instruction to be executed if branch occurs presence of a flag bit

Branch No BNR 45 Same as code 44 *Storage address to be interrogated for
Record Mark presence of a record mark character

Branch No BNG 55 Same as code 44 *Storage address to be interrogated for
Group Mark presence of a group mork character

Branch On BD 43 Same as code 44 *Storage address to be interrogated for a
Digit digit other than zero

Branch BI 46 Storage address of leftmost position of next Q
S

and Q
9

of instruction specify the program
Indicator instruction to be executed if indicator tested SWitch or indicator to be interrogated (see

is on Table 5)

Unique Branch
Indicator
Mnemonics:

Branch High BH 46 Same as BI None required

Branch Positive BP 46 Same as BI None required

Branch Equal BE 46 Same as BI None required

Branch Zero BZ 46 Same as BI None required

Branch Overflow BV 46 Same as BI None required

Branch Any Data
Check

BA 46 Same as BI None required

Branch Not low BNL 46 Same as BI None required

Branch Not BNN 46 Same as BI None required
Negative

Branch Band A BBAS 46 Same as BI None required
Selected

Branch Band B BBBS 46 Same as BI None required
Selected

Branch Neither BNBS 46 Same as 81 None required
Band Selected

Branch Console BCl 46 Same as BI None required
Switch 1 On

Branch Console BC2 46 Same as BI None required
Switch 2 On

18

Table 4. Logic (Branch and Compare) Instructions (cont' d)

OPERATION
OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Branch Console BC3 46 Same as BI None required
Switch 3 On

Branch Console BC4 46 Same as BI None required
Switch 4 On

Branch last Card alC 46 Same as BI None required

Branch Exponent BXV
Check (Special

46 Same as BI None required

Feature)

Branch on BCH9 46 Same as BI None required
Channel 9

Branch on Channel BCOV 46 Same as BI None required
Overflow

Branch No BNI 47 Storage address of leftmost position of Q
8

and Q
9

of instruction specify program
Indicator next instruction to be executed if indicator sWitch or indicator to be interrogated (see

tested is off Table 5)

Unique Branch
No Indicator
Mnemonics:

Branch Band A BANS 47 Same as BNI None required
Not Selected

Branch Band B BBNS 47 Same as BNI None required
Not Selected

Branch Either BEBS 47 Same as BNI None required
Band Selected

Branch Not High BNH 47 Same as BNI None required

Branch Not BNP 47 Same as BNI None required
Positive

Branch Not Equal BNE 47 Same as BNI None required

Branch Not Zero BNZ 47 Same as BNI None required

Branch No BNV 47 Same as BNI None required
Overflow

Branch Not Any BNA 47 Same as BNI None required
Data Check

Branch low Bl 47 Same as BNI None required

Branch Negative BN 47 Same as BNI None required

Branch Console BNCI
Switch I Off

47 Same as BNI None required

Branch Console BNC2
Switch 2 Off

47 Same as BNI None required

Branch Console BNC3 47 Same as BNI None required
Switch 3 Off

Branch Console BNC4 47 Same as BNI None required
Switch 4 Off

Branch Not last BNlC 47 Same as BNI None required
Card

19

Table 4. Logic (Branch and Compare) Instructions (cont' d)

OPERATION OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Branch Not BNXV 47 Same as BNI None required
Exponent Check
(Special Feature)

Branch and BT 27 P address minus one is the storage address to *Storage address of units position of the
Transmit which the units position of the Q field is field to be transmitted

transmitted. P address iii leftmost digit of
the next instruction to be executed

Branch and BTM 17 Same as code 27 Q 11 of instruction is units position of field to
Transmit be transmitted
Immediate

Branch and BTA 20 Same as code 27 *Storage address of units position of the
Transmit field to be transmitted
Address

Branch and BTAM 10 Same as code 17 Q 11 of instruction is units position of field to
Transmit Address be transmitted
I.,mediate

Branch Back BB 42 Not used Not used

Branch and BTFL 07 P address minus one is the storage address to *Storage address of units position of exponent
Transmit Floating which the units position of the exponent of field to be transmitted

portion of the Q field is transmitted. P is
the storage address of the leftmost digit of the
next instruction to be executed

Branch and BS 60 Storage address of the leftmost position of Q 11 specifies condition to be selected
Select the next instruction

Unique Branch
and Select
Mnemonics:

Branch and BSIA 60 Same as BS None required
Select Indirect
Addressing

Branch and BSNI 60 Same as BS None required
Select No I/A

Branch and BSBA
Select Band A

60 Same as BS None required

(Special Feature)

Branch and BSBB 60 Same as BS None required
Select Band B
(Special Feature

Branch and BSNX
Select No Index

60 Same as BS None required

Register (Special
Feature)

Branch and Modify BX 61 Same as BS **Storage address of units position of field
Index Register
(Special Feature)

to be added to selected index register

Branch and Modify BXM 62 Same as BS **Five digits of Q field are added to
Index Register selected index register
Immediate (Special
Feature)

Branch Condition- BCX 63 Same as BS if (after modification) IX sign has Same as BX
ally, Modify Index not changed or result is not zero
Register (Special
Feature)

20

Table 4. Logic (Branch and Compare) Instructions (cont'd)

OPERATION
OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Branch Condition- BCXM 64 Same as BCX Same as BXM
ally I Modify Index
Register Immediate
(Special Feature)

Branch and Load BLX 65 Same as BS **Storage address of units position of 5-digit
Index Register
(Special Feature)

field to be loaded to selected index register

Branch and Load BLXM 66 Same as BS **Fivedigits of Q field are loaded to
Index Register selected index register
Immediate (Special
Feature)

Branch and Store BSX 67 Same as BS **Storage address of units position of field
Index Register where selected index register data is to be
(Special Feature) stored

Branch on Bit BBT 90 Storage address of the leftmost position of *Q -11 specifies storage address of units
(Special Feature) next instruction if comporison is successful pos~ion of field to be compared with bits

of the Q
7

digit

Branch on Mask BMK 91 Same as code 90 *Q~-ll specifies storage address of units
(Special Feature) pas I ion of field to be compared with Q 7

digit

** Specific index register is selected by flogs over the Q 8-10positions of the instruction.

labeled START. tor (BNI) instructions require one of the switch or in­
dicator codes listed in Table 5 to be a Q address. The
code indicates the switch or indicator to be interro­
gated for status. To relieve the programmer of having
to code the Q address, unique mnemonics are provided
for most of the possible combinations of operation
codes and indicators.

060 - Branch unconditionally to an instruction
whose address is saved in IR-2 or PR-l.

line label ~atiOl' Operands & Remarks

) s,
ie,' 0 C B" A 7' COH.P1RLL.IJ.JJLA~.I.!i. F/lL,lJ .B.

liti.o 8, S,l,A.Rr., , ,B~A.NCH :7;0 ,LA:BE,L, ,S:T.A,RT.-~

0) 0 B,l S,TA:~T..,'100,',J; 'S'W/ ot,BR:~O: /T;A'RT ~

~,o

.--"-,
0, 0

These statements cause the following operations to be
performed in the object program, as follows:

Line 010 - Compare field A with field B.
020 - Branch to an instruction labeled START.

030 - If Program switch 1 is on, branch to the
instruction labeled START.

040 - Same as line 030 with the exception that
the unique mnemonic operation code
used does not require a Q address.

050 - If Program switch 1 is not on, branch to
the third instruction following the one

Table 5. Switch and Indicator Codes used as Actual Q
Addresses in BI and BNI Instructions

Q ADDRESS SWITCH OR INDICATOR

°7 Qa Q9 °10 °11

X 0 1 Y ~ Program Switch 1
X 0 2 Y Program Switch 2
X 0 3 Y r.' Program Switch 3
X 0 4 Y Y Program Switch 4
X 0 6 Y r.' Read Check Indicator*
X 0 7 Y -y Write Check Indicator·
X 0 9 Y r.' Last Card Indicator (special feature)
X 1 1 Y Y High/Positive Indicator
X 1 2 Y Y EqIJal/Zero Indicator
X 1 3 Y Y High/Positive or Equal/Zero Indicator
X 1 4 Y Y Overflow Check Indicator
X 1 5 Y Y Exponent Check Indicator
X 1 6 Y Y MBR-Even Check Indicator*
X 1 7 Y Y MBR-Odd Check Indicator·
X 1 9 Y 'y Any Data Check
X 2 5 Y Y Printer Check·
X 3 3 Y Y Channel 9
X 3 4 Y Y Channel 12
X 3 5 Y Y Printer Busy

X indicates any digit value or blank is permissible
Y indicates any digit value is permissible
• indicates the Any Data Check indicator (19) also is on when

this indicator is on.

21

Input and Output Statements

Table 6 lists the mnemonics for Input/Output state­
ments. If a two-character mnemonic (for example, RA)

is used, the unit ~ode must be included as part of the
Q operand. The unit codes are shown in Table 7.

Examples

line label p,..rot;.,.. Operands & Remarks

1 5 , 1112 lSI' 20 H 30 lS <0 " SO

'0.' • WA. OUT.PIJ.T,JOO
~

~

~"~. WilT} OUTPUT, "SAI'I.E AS L I.N.E 010

f-' ,1()1:': ,'s.l,,[AS L'lIfE'
I I I I , I I , I I I I I

W. 0,/f.0 0.1..0 "--'--'--'~ ______ .--'--.l

I I I I ~

I •• 0 spn
~..L....L.....J~ I I

These statements cause the following operations to be
performed in the object program.

Line 010 - Type out alphameric data from a storage
location called OUTPUT.

020 - Same as line 010, however, a unique
mnemonic is used.

030 - Single space on the typewriter.
040 - Same as line 030; however, a unique

mnemonic is used.

Miscellaneous Statements

The statements that are listed in Table 8 are those that
do not fit in any group already described.

Examples

line label ()peroti"" Operands & Remarks

151' 20 2S

CF OUTPUT-5"

0.3.0 H , , J"'fttLTt' I

'0 NOP

These statements cause four different operations to be
performed in the object program, as follows:

22

Line 010 - Clear a Hag at the storage location, OUT­

PUT minus 5.
020 - Move a Hag from storage location 01694

to storage location 03352.
030 - Cause the program to halt.
040 - Perform no operation but proceed to the

next sequential instruction.

Processor Control Statements
Control statements are orders to the processor (SPS III

assembly program) that give the programmer control
over portions of the assembly process. The sps language
includes the following control statements.

DORe Define Origin
DEND Define End
SEND Special End
HEAD Heading
TeD Transfer Control and Load
TRA Transfer to Return Address

\Vith the exception of the TRA and DORe, none of the
above statements may be labeled.

DORG - Define ORiGin

The DORe statement instructs the processor to override
its automatic assignment of storage and to begin the
assignment of succeeding entries at the particular loca­
tion specified by the programmer. In this way the pro­
grammer is able to control assignment of storage to
instructions, constants, and data. If a Define Origin
statement is not the first entry in a source program,
the processor begins the assignment of storage at loca­
tion 00402.

A Define Origin statement is coded as follows:

Operands & Remarks

20

o

This statement directs the processor to reset its loca­
tion assignment counter to the particular address speci­
fied in the operand (actual or symbolic), and this
causes the assignment of succeeding entries to begin
at this address. When an actual address is entered by
the programmer, care must be taken to avoid inadver­
tent overlapping with areas assigned by the processor.

If the operand is left blank, assignment of storage
starts with address 00000. Since the arithmetic tables
are stored in locations 00100 through 00401, (constants
and instructions cannot occupy these storage locations.

If a symbolic address is entered, it must appear as a
label earlier in the program sequence. An ~ address
refers to the current contents of the location assign­
ment counter. A Define Origin statement can take any
of the following individual forms:

Line label Operot;"" Operand. & Remarks

5 , 1112 IS" 20 :IS 30 15 .. '5 SO

I .• O.OA.G Xyz

2 •• OA.IG/Ii DOR/; X.Y.z. + .5.0

o l ORI.(i,/1i DO.R.G -+S.O,.LOCA,TI()N A.SSIGH. C.Ou.N.T.£R.+S.O

Table 6. Input and Output Instructions

NOTE: Indirect Addressing and indexing are allowable v.i th all P address operands, where a P operand is required. None of the Q operands
shown may be used with Indirect Addressing or Index Registers.

OPERATION
OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Read RN 36 Storafe address at which leftmost (first) num- Q 8 and Q 9 of instruction specify input unit
Numerically erica character is stored

Unique Read
Numerically
Mnemonics:

Read RNTY 36 Same as RN None required
Numerically
Typewriter

Read RNPT 36 Same as RN None required
Numerically
Paper Tape

Read RNCD 36 Same as RN None required
Numerically
Card

Write WN 38 Storage address from which leftmost (first) Q
8

and Q
9

of instruction specify output unit
Numerically numerical character is written

Unique Write
Numerically
Mnemonics:

Write WNTY 38 Same as WN None required
Numerically
Typewriter

Write WNPT 38 Same as WN None required
Numerically
Paper Tape

Write WNCD 38 Same as WN None requ ired
Numerically
Card

Print PRN 38 Same as WN None required
Numerically

Print Numerically PRNS 38 Same as WN None required
and Suppress
Spacing

Dump ON 35 Same as WN Same as WN
Numerically

Unique Dump
Numerically
Mnemonics:

Dump DNTY 35 Same as WN None required
Numerically
Typewriter

Dump DNPT 35 Same as WN None required
Numerically
Paper Tape

Dump DNCD 35 Same as WN None required
Numerically
Card

Printer Dump PRO 35 Same as WN None required

Printer Dump PROS 35 Same as WN None required
and Suppress
Spacing

Read RA 37 Storage address at which numerical digit Q
8

and Q
9

of instruction specify input unit
Alphamerically of I eft most (first) character is stored. (Zone

digit of first character is at P minus one.)

23

Table 6. Input and Output Instructions (cont' d)

OPERATION OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS
Unique Read
Alphamerically
Mnemonics:

Read Alpha- RATY 37 Same as RA None required
merically
Typewriter

Read Alpha- RAPT 37 Same as RA None required
merically
Paper Tape

Read Alpha- RACD 37 Same as RA None required
merically Card

Read Binary RBPT 37 Same as RA None required
Paper Tape
(Special Feature)

Write Alpha- WA 39 Stora~e address of numerical digit of left- Qa and Q
9

of instruction specify output unit
merically most first} character to be written. (Zone

digit of first character is at P minus one.)

Unique Write
Alphamerically
Mnemonics:

Write Alpha- WATY 39 Same as WA None required
merically
Typewriter

Write Alpha-
merically

WAPT 39 Same as WA None requ ired

Paper Tape

Write Alpha- WACO
merically Card

39 Same as WA None required

Write Binary WBPT 39 Same as WA None required
Paper Tape
(Special Feature)

Print Alpha- PRA 39 Same as WA None required
merically

Print Alpha- PRAS 39 Same as WA None required
merically and
Suppress Spacing

Control K 34 Not used Q§ and Q
9

specify input/output unit. Q ll sp cifies control functions

Unique Control
Mnemonics

Backspace BKTY 34 Not used None required
Typewriter

Tabulate TBTY 34 Not used None required
Typewriter

Index Type- IXTY 34 Not used None required
writer

Return Carriage RCTY 34 Not used None required
Typewriter

Space Type- SPTY 34 Not used None required
writer

Skip Immediate SKIP 34 Not used See Table 14

Skip After SKAP 34 Not used See Table 14
Printing

24

Table 6. Input and Output Instructions (cont' d)

OPERATION OPERATION CODE OPERANDS

MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Space SPIM 34 Not used See Table 15
Immediate

Space After SPAP 34 Not used See Table 15
Printing

Seek 34 Storage address of disk control field X07Xl

Read Disk;WLRC 36 Same as Seek

Write Disk/WLRC 38 Same as Seek

Check Disk/WLRC 36 Same as Seek

Read Disk 36 Same as Seek
Track/WLRC

Write Disk 38 Same as Seek
Track/WLRC

Check Disk 36 Same as Seek
Track/WLRC

Read Disk 36 Same as Seek

Write Disk 38 Same as Seek

Check Disk 36 Same as Seek

Read Disk Track 36 Same as Seek

Write Disk Track 38 Same as Seek

Check Disk 36 Same as Seek
Track

If xyz (label) is preViously defined as 01002, the first
entry directs the processor to begin the assignment of
succeeding entries at location 01002. The second entry
directs the processor to begin the assignment of suc­
ceeding entries at the location that has been assigned

Table 7. Input and Output Unit Codes Used as Actual
Q Addresses in RN, WN; DN, RA, and WA
Instructions

Q ADDRESS DEVICE

Q7 QS Q 9 QlO Qll

X 0 1 Y Y Typewriter

X 0 2 Y Y Paper Tape Punch

X 0 3 y y Paper Tape Reader

X 0 4 Y Y Card Punch

X 0 5 Y Y Card Reader

X 0 9 Y Y Printer

X indicates any digit value or blank is permissible
Y indicates any digit value is permissible

X07XO

X07XO

X07X1

X07X4

X07X4

X07X5

X07X2

X07X2

X07X3

X07X6

X07X6

X07X7

to the symbol xyz plus 56. The symbol ORIGIN can be
used at any point in the program to refer to that
address. The third entry directs the processor to begin
the assignment of succeeding entries at the address
specified by the current contents of the location assign­
ment counter plus 50. A comma must follow the oper­
and when remarks are included in a DORG statement.

DEND - Define END

The DEND statement is the last statement entered in the
source program, it instructs the processor that all state­
ments of the source program have been processed. A
DEN:Q statement may also be used to cause execution
of the object program to begin immediately after it has
been loaded. To do this, the DEND statement requires
the presence of an operand representing the starting
address of the program. The operand may be actual
or symbolic. The 1620 will halt at the completion of
loading of the object program, and execution then will
begin at the address corresponding to the starting
address, upon depreSSion of the Start key. If the
operand specifying the starting address is omitted, the
program will halt and the operator will have to start
the program manually.

25

Table 8. Miscellaneous Instructions

OPERATION OPERATION CODE OPERANDS
MNEMONIC ACTUAL P ADDRESS Q ADDRESS

Set Flag SF 32 Storage address at which flag X bit is placed Not used

Clear Flag CF 33 Storage address from which X flag bit is cleared Not used

Move Flag MF 71 Storage address to which flag X bit is moved Storage address of flag bit to be moved X

Halt H 48 Not used

No Operation NOP 41 Not'used

The following statements illustrate both types of
entries.

line label Operoti"" Operands & Remarks

J S. Ill, 1516 20 25 30 lS <0 ., so

10 D.EN~
0'

O.lO lJfNlJ STA.RT.

The program is halted after loading by either state­
ment. In the second case, execution begins at the
address corresponding to START, upon depression of the
Start key.

When a DEND statement includes comments but -no
operand, the operand must be replaced by a comma.

SEND - Special END

A SEND statement is provided to halt the tape pro­
cessor on both passes of the source program. If a SEND

statement is encountered by the card processor, the
card processor will not be halted. This statement does
not produce any output in the object program.

The SEND statement is used:
1. To halt the processor after one tape of a source

program is processed and to allow the remainder
of the source program from another tape to be
threaded and then processed.

2. To halt the processor so that program switch
settings may be changed and processing resumed.

The SEND statement takes the following form and
requires no operands.

Operands & Remarks

When this statement in the source program is en­
countered by the processor, the program halts and the

26

Not used

Not used

message "LOAD NEXT TAPE" is typed. The operator
threads the next tape or changes switch settings or
both, and then depresses the Start key.

If the first part of the source program is entered
from the typewriter, Program Switch 1 will be off and
the statements will be entered one at a time. When the
SEND statement is entered, the processor halts. The
operator may then tum on Program Switch 1, thread
the source program tape, and continue processing the
source program. SEND is especially useful where a long
source program is punched in tape and certain ad­
dresses associated with labels being defined by that
tape must be changed. For example, the following
statements, part of source program A, may require that
addresses 01000 and 02000 be changed to 01250 and
02500, respectively.

line labol ~ati"" Operands & Remarks

l S. 1112 1516 20 2S 30 l5 40 ., SCI

I CONTR.L ID.S ,.01.0.00
O.? NJ).1 G1.1 DS ,02000

To change these addresses, the operator will enter the
following statements at the typewriter

line labol p,..atiQr1 Operands & Remarks

l , . 1112 1516 20 2S 30 l5 <0 ., SO

' •• 1 CONTRL DS ,01250
~. ND1 G1.1 DS ,0.2500
1 •• 3 IS.EN,ll

and follow them by source program A. The first time
labels CONTRL and NDIGIT are encountered by the pro­
cessor, they are assigned addresses; the second time
they are encountered, no addresses are assigned but
an error message is typed. In this case, the operator
can ignore the error message.

In some cases, the programmer may choose to end
a source program with a SEND statement rather than a
DEND statement. This situation allows the programmer
to enter additional statements, either additional decla­
rative statements or corrections to imperative state­
ments. However the last additional statement entered
must be a DEND statement.

HEAD - HEADing

It is frequently convenient, and sometimes necessary,
to write a source program piecemeal, and to assemble
these pieces into the total program. Parts of the pro­
gram may be written by different programmers, or by
the same programmer at different times with consider­
able time lapses between.

Suppose, in such a situation, that a program block,
say Bl has been written; that another program block,
B2, is in the course of being written; and that Bl and
B2 eventually are to be joined to compose a single pro­
gram. Certain symbols may already have been used
in writing block B1 , and certain symbols, varying from
the symbols used in Bl, may be used in writing block
B2. To avoid duplication of symbols in each block, the
programmer writing block B2 must be concerned with
the symbols used in B1 •

Symbols used in block B2 can duplicate those in Bh
provided they are less than six characters in length
and have been prefaced by a HEAD statement. The pro­
grammer can completely ignore the symbols in Bl by
prefacing B2 with the following control statements:

Operands & Remarks

~

where the single character X may be anyone of the
characters A to Z, 0 to 9, or blank.

The control instruction, HEAD x generates no instruc­
tions or data in the object program. When the processor
encounters a HEAD statement, it treats the symbols
in the label or operands fields of the following state­
ments, provided the symbols are less than six charac­
ters in length, as though they were headed by the
character X. The processor continues to do this until
it encounters another HEAD statement.

Thus the symbols used in block Bl which contain
less than six characters cannot possibly conHict with
the symbols used in block B2. Six-character symbols are
not affected, that is, a six-character label, COMMON, fol­
lowing the control instruction HEAD 9 is not treated as
9COMMON, for it would be a seven-character symbol,
and only a maximum of six characters can be handled
by the symbol table.

A symbol is said to be "unheaded" if, and only if,
its representation uses exactly six characters. The sym­
bol COMMON, for example, is unheaded. The symbol
ALPHA whose length is less than six characters is con­
sidered to be headed, whether under a HEAD control
instruction or not. If ALPHA is under control of HEAD x,
then ALPHA is said "to be "headed by X." If ALPHA is
not under control of any HEAD instruction, then ALPHA
is said to be "headed by blank."

A symbol, ALPHA, headed by the character X, is not
identical with the symbol XALPHA. The leading charac­
ter is essentially on a different level from the characters
which make up the symbol. However, ALPHA headed
by a blank should be regarded as identical to the sym­
bol ALPHA used without a heading statement.

If a HEAD statement with a nonblank character does
not occur in the entire source program, all considera­
tions of heading can be ignored.

A HEAD statement with a blank character must be
used if the programmer desires to modify the heading
process in the example. Note that the statement HEAD
and the statement HEAD 0 are quite different. For ex­
ample, if block Bl and B2 are to be jOined in one pro­
gram, and B2 must be nested somewhere in the middle
of Bh as follows:

Operation

HEAD

HEAD

Operands

: } first part of block B,

X

:} block B,

: } second part of block B,

the entire program might have been prefaced by a HEAD
statement with a blank character operand. As implied
previously, however, such a HEAD instruction is super­
fluous, since the symbols in the first part of block Blare
automatically headed by blank, being under the control
of no HEAD instruction at all.

Often it is inconvenient to refer to a symbol that is
defined in another headed region because of the re­
quirement that the symbol be six characters in length.
To facilitate cross referencing between headed blocks,
the following convention can be used:

Suppose that a symbol, say SUM, under HEAD 1, has
been defined by some instruction. Suppose further that
this symbol is to be referred to in an instruction under

27

the control of the instruction HEAD 2. Then the desired
reference can be made by writing l$SUM as it appears
in the following instructions.

Operand, & Remark,

50

In general, if the two-characte~s "C$", where C is any
allowable heading character, is placed in front of the
headed reference symbol SUM, then the result is SUM

headed by C. To specify SUM headed by blank, one
simply ~ writes $SUM, with no character preceding the $

character.
If the processor finds an operand containing a six­

character symbol plus a head character, such as 9COM­

MaN, the processor will produce an error message indi­
cating that the symbolic address contains more than six
characters (see ERROR MESSAGES, ER 5) .

If a label is used in a HEAD statement, it is ignored.

TCD - Transfer Control and loaD

The TCD statement may be used to cause the processor
to produce an unconditional branch instruction. When
this instruction is encountered during the loading of the
object (machine language) program, it causes the
loader to stop the normal loading process and to branch
to the location (ADDR) specified in the operand.

Operand, & Rlmark.

ADDR may be actual or symbolic.
This statement allows programs which are too large

to fit into core storage to be loaded and executed piece­
meal, by terminating each piece with a TRA statement.
In effect, a TCD instruction can be used in conjunction
with a DORG statement to execute portions of the pro­
gram that have already been loaded into storage and to
overlap these with other instructions.

Whenever the processor encounters a TCD statement,
it causes the arithmetic tables, an unconditional branch
instruction, and the loader program, to be punched into
the object program tape or cards in that order. There­
fore, when the object program is being loaded, the arith­
metic tables will be loaded into storage before the
branch occurs. Because the arithmetic tables are loaded
into a portion of storage previously occupied by the
loader program, the loader program will be destroyed.

28

However, it will be restored (again loaded into stor­
age) when a TRA statement is encountered in the object
program. That statement will be at the end of the por­
tion of the object program that has been executed.

During assembly, the TCD instruction does not affect
the location assignment counter or alter the symbol
table.

TRA - Transfer to Retu,rn Address

The TRA statement causes the normal loading sequence
of an object program to be resumed once it has been
broken by a TCD statement. When a TRA statement is en­
countered by the processor, a read-a-record (card or
tape) instruction and an unconditional branch instruc­
tion to the loader program are produced in the object
program. This processor control operation increments
the location assignment counter by 24. The last state­
ment of that part of a source program that is executed,
when loading is interrupted by a TCD statement, must be
a TRA statement. When the TRA instruction equivalences
are encountered in the object program, the program
loader is reloaded and the normal loading process cO.n­
tinues. The TRA statement, which takes the following
form, uses no operands.

Operand. & Remark,

The following example illustrates the use of the TCD

and TRA mnemonics.

Lint Label p,..raljo" Operand, & Remark,

1112 1$1' 20 '5 50

1.0 S TAR T (fi,..t jlLStrucf,o,,)

0.2.0

• .. 0

o • 0

o 5.0 TRA
rep START.

10,10 DOH,' ST A 'RT.

10, ' ••

1.0.

110

12,

The TCD statement causes a branch to the location as­
signed to the symbol START, followed by the execution
of instructions from START through the TRA statement.
The TRA statement causes a branch to the load program,
which resumes loading of the remainder of the object
program beginning with the location labeled START.

The use of a macro-instruction preceding a TCD state­
ment is not allowed.

1620 Subroutines
A program or routine is a set of coded instructions that
are arranged in a logical sequence; it is used to direct
the 1620, or any IBM data processing system, to perform
a desired operation or series of operations. Generally,
programs contain one or more short sequences of in­
structions that are parts or subsets of the entire program
and that are used to solve a particular part of a prob­
lem. These parts of the program or routine are called
subroutines.

Usually, a subroutine performs a specific function, is
common to a number of programs, and may be executed
several times during the course of the program of which
it is a part (main program). For example: a subroutine
that extracts the square root of a number may be re­
qUired several times during the execution of a pipe
stress analysis program. The same subroutine may be
used to extract a square root in a bridge and truss design
program.

An efficient programming procedure is obviously one
in which all necessary subroutines are coded only once,
are retained on file, and are incorporated into a program
whenever the operation performed by the subroutine is
required. IBM Programming Systems has developed a
group of subroutines that are more frequently required
because of their general applicability. Seventeen sub­
routines are available; they fall into three general cate­
gories: arithmetic, data transmission, and functional.

Arithmetic subroutines
Floating Point Add
Floating Point Subtract
Floating Point Multiply
Floating Point Divide
Fixed Point Divide

Data transmission subroutines
Floating Shift Right
Floating Shift Left
Transmit Floating
Branch and Transmit Floating

Functional subroutines
Floating Point Square Root
Floating Point Sine
Floating Point Cosine
Floating Point Arctangent
Floating Point Exponential (natural)
Floating Point Exponential (base 10, common)
Floating Point Logarithm (natural)
Floating Point Logarithm (base 10, common)

The methods used hy the functional floating point
subroutines to evaluate the functions of arguments are
shown in Table 9.

Table 9. Subroutine Method for Evaluating Arguments

METHOD

SUBROUTINE FIXED LENGTH VARIABLE LENGTH

Square Root Odd integer Odd integer

Sine and Based on Hastings' Ser ies approx imation
Cosine approx imation*

Arctangent Truncated series Series opprox imation fOj'
arctangent

Exponential Hastings' approximation Series approximations of
(natural and JOB. 108 is converted J08 and convert to e B
base 10)

8 to e

Logarithm Truncated series for Series approx imation of
(natural and In 8. In 8 is converted In 8 and convert to log B

base 10) to log lOB

* Hastings, Cecil Jr., Approximations for Digital Computers,
Princeton University Press, Princeton, New Jersey. The
Rand Corporation, 1955.

The combined subroutines are written in machine
language and are provided in card or paper tape form
for floating point numbers with either a fixed-length or
variable-length mantissa. The term "variable length" or
"fixed-length," as applied to subroutines in this manual,
refers to the number of digits (L) in the mantissa, not
to the length of the subroutine itself.

The five types of subroutine card decks or paper tapes
are:

1. Fixed length subroutines for machines not
equipped with the automatic divide feature.

2. Fixed length subroutines for machines eqUipped
with the automatic divide feature.

3. Variable length subroutines for machines not
equipped with the automatic divide feature.

4. Variable length subroutines for machines eqUipped
with the automatic divide feature.

5. Variable length subroutines for machines equipped
with automatic floating point feature (automatic
divide feature, prerequisite).

Although type 2 and type 4 subroutines are designed
to work with the· automatic· divide feature, the "fixed
point divide" subroutine is included as part of the sub­
routine package. Type 5 variable length subroutines
that are designed to work with .the automatic floating
point feature include a complete set of subroutines as
part of the package.

29

A PICK subroutine is included in the object program
with any of the 17 subroutines previously mentioned.
This subroutine performs the function of getting the
data specified for a subroutine and storing the result
produced by that subroutine.

The processor selects the subroutines used by the
source program that are to be included in the object
deck or tape. When the object deck or tape is loaded,
the subroutines are loaded to the first even-numbered
address following the object program. Although this ad­
dress is assigned by the processor, care must be exer­
cised by the programmer to provide a storage area, be­
tween the position assigned by the processor and posi­
tion 19999 (standard capacity machine), that is large
enough to accommodate the subroutines called for. To
find the amount of storage required for the subroutines,
the programmer may total the storage requirements of
the subroutines used.

The fixed point divide subroutine (DIV) is used by
some floating point functional subroutines. For this
reason it will automatically be incorporated into a pro­
gram which uses these subroutines when the machine
used to run the program is not equipped with automatic
divide.

In addition to the subroutines provided, the user may
include up to twelve subroutines of his own. The meth­
od used to incorporate these routines into a program is
explained under ADDING SUBROUTINES

Subroutine Macro-Instructions
All linkages for the 1620 subroutines are generated
automatically through the use of certain macro-instruc­
tions. The programmer places the macro-instruction that
is :related to a particular subroutine in the source pro­
gram at the point at which the subroutine is desired.
This causes the SPS processor, during assembly, to gen­
erate linkage to the desired subroutine. In addition, the
processor arranges for the subroutine to be added to the
object program.

The data and addresses required by the subroutine
and supplied in the macro-instruction are incorporated
into the linkage instructions where they are made avail­
able for use. In this way the subroutine obtains the in­
formation it requires to perform its given task and also
to compute a return address to the main program. Con­
trol is returned to the main program at the completion
of the subroutine by transferring to the return address.
The macro-instruction statement related to each subrou­
tine is as' follows:

30

Arithmetic Subroutines Macro-instructions

line label ~otion Operand. & lomarles

5, 1112 1516 20 H '5 50

10,' FA A,1J (Flo.fins AJJ)
1 •• 1.1 FS A .)1, (F/oafins SIIP1,.,d) . I I I I I I

1 •• 2 F,M. A,B (F/o.tl/l~ Mufti,I.,) , I I I I I I I

Lt". FD A,a (Flo.t inS Divide) L....1--L.., I I I I I I I

.5 D.IV IA,B,A1,}J,J (DiviJe)
~_...L...i.._I' a I;

Data Transmission Subroutines Macro-instructions

Line label p,..otioo Operand. & lomarll.

~ 5, 1112 IS"

-.l. '.1, FSRS A .:B.
.2 .• FSLS A .• '.

0.100 TFLS A I 1J.
0" IBTF.5 A, B

Functional Subroutines Macro-instructions

line label p,..otion Operand. & lomarll.

.l. 5, 1111 lSI' 20 ... '5 50

La FSQR. A. B (Ffoaflll9 Sal/Gr. Root) . I I

.2.0 FS If'4 A,B (Floa("'5 Sine)
I I I I I

.2.0 FeDS A,B • (Flocrt"'~ Cosine)
L, I I I , I I I

0" It,A/t'l A",B, I (f/OCl.t"'~ Aret.IISent) u I
I I I I I I I

.50 F£X A"A I (Float/lIS E.ponent/cr/, N.fll,../) • L..L
I I I I I

.0 FEXT A,~ I (f"fo«tt'ns fI,on.ntiClf, BOIse 10) I I ,
I I I I I I I

7.0 FLN A."B C Floffti"8 Lo".,.iflt",. N.tllrfll)
L ~ .. I I ... FLO.G f4.~ 13 CFltI<lt11t1 L05.';O,,,,,,. 11 .. ,.10)
L' I I I I

In the arithmetic statements, the B operands repre­
sent the addresses of quantities to be added, subtracted,
etc., to quantities at addresses specified by the A oper­
ands. For the fixed point divide routine, two additional
operands, Al and Bl, are required. These operands, as
well as the A and B operands, are explained in greater
detail under each macro-instruction as it is described.
In the data transmission statements, the B operand gen­
erally represents the address of the field to be trans­
mitted, whereas the A operand represents the address
to which the field is to be transmitted. The function of
the A and B operands differs slightly for functional sub­
routine macro-instructions. In this case, the B operand
represents the address of the argument to be evaluated
and the A operand represents the address where the re­
sult is to be placed in storage.

Indirect addressing can be used with the operands of
all macro-instructions on machines with or without the
automatic Boating point feature. To indicate an indirect
address, an operand should be preceded by a minus
sign. An indirect address in the form XXXXX is generated

by the processor. A flag is automatically placed in the
leftmost and rightmost positions of the address. If in­
direct addressing is attempted on a machine that does
not have the indirect addressing feature, the flagged
operand is not interpreted as an indirect address.

For each macro-instruction statement in a source pro­
gram, two machine language linkage instructions, and
a 5-digit address for each operand, are generated by the
processor in the object program. These linkage instruc­
itons replace the macro-instruction, which never ap­
pears in the object program. A label written with a
macro-instruction references the leftmost position of the
first linkage instruction generated. If the programmer
wishes to use this label in address adjustment, he must
remember that the instruction location folloWing a
macro-instruction is not LABEL + 12.

When using a macro-instruction, the programmer
must code the exact number of operands required for
that macro-instruction. Every macro-instruction must
have at least two operands. Remarks and flag operands
are not permitted in macro-instructions. Omitted oper­
ands require the insertion of commas as in Imperative
statements.

All operands in macro-instructions may be symbolic
or actual; all are subject to address adjustment. If an 0

is used as an operand, its address is that of the left-most
position of the first linkage instruction.

The linkage instructions generated for a macro-in­
struction by the processor are eqUivalent to the follow­
ing series of symbolic instructions:

Line Label ~ation Operand. & Remarles

3 5. 1112 IS 16 20 2S JO 35 ... " SO

'0,10 TF,fr(PICK+ll.-+23
0,',0 B SUBR

,3,0 l.D,o~,G .-,~
0.0 ID,SA A $.,C,."p

where PICK is the address of the first instruction in the
Pick subroutine; SUBR is the secondary linkage for the
desired subroutine (the subroutine specified by the
macro-instruction); and A, B, C, D ... are the series of
5-digit addresses or constants that are equivalent to the
operands specified by the macro-instruction. This link­
age allows the macro-instruction to contain any number
of operands, an ability that is significant for "adding
subroutines."

During execution of the object program, the sec­
ondary. linkage instructions set up the address of the
first instruction in the desired subroutine as a part of one
of the instructions in the Pick subroutine. Secondary
linkage instructions are generated by the processor for
each subroutine used by the source program. They are
equivalent to the following symbolic instructions.

For arithmetic subroutines (not including DIV) :

SUBR TFM PICK + 402, ADDR
B PICK

For data transmission subroutines (not including
FSRS, FSLS) :

SUBR TFM PICK + 402, ADDR
B PICK + 104

For functional subroutines:
SUBR TFM PICK + 402, ADDR

B PICK + 104
For DIV, FSRS, and FSLS subroutines:

SUBR TF ADDR + 11, PICK + 11
B ADDR

PICK is the address of the first instruction of the Pick
subroutine, and ADDR is the actual address where the
first instruction of the desired subroutine is located. In
the secondary linkage, PICK + 402 is the address equiva­
lent for the variable length subroutines only. That ad­
dress should be replaced by PICK + 414 for fixed length
subroutines. For variable length subroutines using the
floating point feature, the secondary linkage instructions
generated are eqUivalent to the follOWing symbolic in­
structions:

For arithmetic subroutines:
SUBR TF ADDR + 11, PICK + 11

B ADDR
For data transmission subroutines (not including FSRS,

FSLS) :

SUBR TF PICK + 174, ADDR
B PICK + 24

For functional subroutines:
SUBR TF PICK + 174, ADDR

B PICK + 24
The subroutine card deck or paper tape will contain

the subroutines in the order shown. All except the first
three are floating point subroutines.

1. Subroutine Processor
2. Pick
3. Divide (fixed point)
4. Subtract - Add
5. Multiply
6. Divide
7. Square Root
8. Cosine - Sine
9. Arctangent

10. Exponential (natural
and base 10)

11. Logarithm (natural
and base 10)

12. Shift Right
13. Shift Left
14. Transmit Floating
15. Branch and Transmit

Floating

31

Many subroutines have been paired (i.e., add and
subtract, sine and cosine, natural and base 10 exponen­
tial, natural and base 10 logarithm), into single subrou­
tines to conserve storage by sharing program steps
which are common to both. The individual subroutines
within each pair are distinguished from each other
solely by the point at which they are entered. The cor­
rect entry point is obtained through use of the macro­
instruction pertaining to the particular subroutine de­
sired.

Because the arctangent subroutine and both log­
arithm subroutines (natural and base 10) require the
fixed point divide routine, the macro-instructionsFATN,
FLN, and FLOG cause the fixed point divide subroutine to
be added to the object program output (provided the
machine is not eqUipped with automatic divide). For
the.fixed length mantissa subroutines, any of the previ­
ously listed subroutines 3-8, 10,12-15, may be called for
and added to the object output without calling any
other subroutine; i.e., floating add-subtract may be
called without calling floating multiply. For the variable
length mantissa subroutines, any of the four arithmetic
macro-instructions (FA, FS, FM, FD) will cause all three
arithmetic subroutines (4. floating add-subtract, 5. Boat­
ing multiply, and 6. Boating divide) to be called for and
added to the object program output. However, the
other subroutines may be called for independently of
each other.

In the object program output, each subroutine except
the Pick subroutine is preceded by its secondary link­
age. However, when the object program is loaded, the
secondary linkages for all of the subroutines are stored
in storage positions that immediately follow the object
program, starting with the first even-numbered address.
PICK and other subroutines are loaded into sequentially
higher addresses (in the order previously listed).

The subroutine processor is loaded into an area of
storage which is occupied by the sps processor, thereby
destroying a portion of the sps processor. To restore the
sps processor to its original status, the part destroyed
must be reloaded after selection of the subroutines is
completed. Restoration of the sps processor is accom­
plished automatically with the data which follows the
last subroutine of the subroutine deck or tape. This data
includes the loader, arithmetic tables, and that part of
the sps processor previously destroyed. The subroutine
processor is never a part of the object program output
or final object program.

Floating Point Arithmetic
Scientific and engineering computations frequently in­
volve lengthy and complex calculations necessitating
the manipulation of numbers that may vary widely in

32

magnitude. To obtain a meaningful answer, problems
of this type usually require retention of as many signi­
ficant digits as possible during calculation, and correct
positioning of the decimal point at all times. When the
computer is used for such problems, several factors must
be considered, of which the most important is the loca­
tion of the decimal point.

In general, a computer does not recognize the pres­
ence of a decimal point in any quantity during calcula­
tion. A product of 41454 results whether the factors are
9.37 x 44.2; 93.7 x .442; or 937 x 4.42; etc. The program­
mer must be cognizant of the location of the decimal
point during and after the calculation and arrange the
program accordingly. In adding, the decimal points of
all numbers must be lined up to obtain the correct sum.
The programmer facilitates this arrangement by shifting
the quantities as they are added. In the manipulation of
numbers that vary greatly in magnitude, it is conceiv­
able that the resulting quantity could exceed allowable
working limits.

Processing numbers expressed in ordinary form, e.g.,
427.93456, 0.0009762, 5382, -623.147, 3.1415927, etc.,
can be accomplished on a computer only with extensive
analysis to determine the size and range of intermediate
and final results. The percentage of time reqUired for
this analysis and subsequent number scaling is fre­
quently much larger than the percentage of time re­
qUired to perform the actual calculation. Moreover,
number scaling requires complete and accurate in­
formation regarding the bounds on the magnitude of all
numbers that come into the computation (input, inter­
mediate, output). Since prediction of the size of all
numbers in a given calculation is not always pOSSible,
analysis and number scaling are sometimes impractical.

To alleviate this programming problem, a system
must be employed which provides information regard­
ing the magnitude of all numbers in the calculation
along with the quantities in the calculation. Thus, if all
numbers are represented in some standard, predeter­
mined format that instructs the computer in an orderly
and simple fashion as to the location of the decimal
point, and if this representation is acceptable to the
routine that performs the calculation, then quantities
that range from minute fractions haVing many decimal
places to large whole numbers having many integer
places can be handled. The arithmetic system most com­
monly used, in which all numbers are expressed in a
format that has these characteristics, is called «floating
point arithmetic."

The notation used in floating point arithmetic is
basically an adaptation of the scientific notation that is
widely used today. In scientific work very large or very

small numbers are expressed as a number, between one
and ten, times a power of ten. Thus,

427.93456 is written as 4.2793456 x 102
,

and 0.0009762 is written as 9.762 x 10-4

In the 1620 floating point arithmetic system, the range
of the fractional part of the number is modified to ex­
tend between .10 000 and .99 999, that is, the
decimal point of all numbers is placed to the left of the
high-order (leftmost) nonzero digit. Hence, all quan­
tities may be thought of as a decimal fraction times a
power of ten. For example,

427.93456 becomes .42793456 x 103

and 0.0009762 becomes .97620000 x 10-3

where the fraction is called the mantissa, and the power
of ten, indicating the number of places the decimal
point was shifted, is called the exponent. The use of
floating point numbers during processing, besides offer­
ing advantages inherent in scientific notation, eliminates
the need for analyzing operations in order to detennine
the positioning of the decimal point in intennediate and
final results, since the decimal point is always immedi­
ately to the left of the high-order, nonzero digit in the
mantissa.

In 1620 floating point operations, a floating point
number is a field consisting of a variable length or fixed
length mantissa and a 2-digit exponent. The exponent is
in the two low-order positions of the field, and the man­
tissa is in the remaining high-order positions, as shown:

M MEE
For the subroutines, the variable length mantissa may

have a minimum of two digits and a maximum of 45
digits. Two operand fields that are added together must
-have mantissas of the same length. A flag over the high­
order digit marks the extremity of the field. A fixed
length mantissa must have eight digits.

The exponent is established on the premise that the
mantissa is less than 1.0 and equal to or greater than 0.1.
It always consists of two digits ranging between -99
and + 99. A flag over the high-order (tens) digit defines
the exponent.

The high-order digit of the mantissa and the high­
order digit of the exponent must contain flag bits to
operate properly with floating point subroutines.

The mantissa and the exponent, if negative, must have
an algebraic sign, represented by a flag, over .the units
position of the respective fields; if they are positive, they
are not flagged. A floating point number with a nega­
tive mantissa and a negative exponent is represented as
follows:

M MEE
Sign control of the results of all computations is main­
tained according to the standard rules of arithmetic
operations.

In all floating point numbers the decimal pOint is
assumed to be at the left of the high-order digit, which
must be a nonzero digit. Such a number is referred to as
normalized. When a number has one or more high-order
zeros, it is considered to be unnormalized. An unnor­
malized number resulting from a floating point sub­
routine computation is nonnalized automatically, but
unnonnalized tenns are not recognized as such when
entered as data. Therefore, it is necessary for all data
to be entered in nonnalized fonn. Although unnonnal­
ized numbers will be processed, correct results cannot
be assured. For example, the number 0682349405 should
be entered as 6823494004, assuming the fixed point num­
ber is 6823.494, and an 8-digit mantissa is required.

The floating examples demonstrate the conversion of
numbers in ordinary form to 1620 floating point nota­
tion for an 8-digit mantissa.

NUMBER

123.45678
.00765438
-.12348693
-.00000070

.00000000

NORMALIZED

.12345678 X 103

.76543800 X 10-2

- .12348693 X 100

-.70000000 X lo- fl

.00000000 X 10-99

1620 FLOATING

~

1234567803
7654380002
1234869300
7000000006
0000000099

NOTE: A zero mantissa is associated with a 99 exponent.
The result of a floating point operation is nonnalized

automatically. For example, the result .00123456 when
nonnalized becomes I23456NN02, where N is an in­
serted digit and 02 is the exponent. The value of the N
digit (0 through 9) is determined by the programmer,
who in most cases will c,hoose to use zero. The storage
location of the N digit is the first odd-numbered location
following the last secondary linkage of the assembled
program. The programmer must always store the N
digit. He may do this by using the following statements>
where the constant (N digit) is zero.

line label bp.,ation Operands & Remarks

3 5. 1112 1514 20 25 30 35 '" '5 50

..10 ~.AC 1,0
0···· ~.E,NP

In nonnalizing, certain low-order digits in a mantissa
may lose significance. To recognize these digits, the
floating point arithmetic can be perfonned twice, using
a different N digit for each run, e.g., zero for the first run
and nine for the second run. The significance of these
digits can be readily distinguished by comparing the

33

two results. For example, if the programmer compares
the following:

Mantissa Exponent
Result, 1st run .12345000 04
Result, 2nd run .12345099 04

he will see that the two low-order positions of the man­
tissa have lost significance because they are significantly
different.

When intermediate floating point results enter into
additional floating point calculations, inserted digits
may become a part of the result of the additional cal­
culation.

In the case of lengthy computations using floating
point results, precision gradually decreases because of
truncation. The magnitude of the truncation error de­
pends on the individual computation process and can­
not be predicted without a knowledge of the process in
question. However, the truncation error in such cases
is usually no greater than the degree of error present
in a rounded amount. Results in floating point subrou­
tine are not rounded. The maximum truncation error
for a fixed length mantissa will not exceed 10-8 or for a
variable length mantissa, 10-L , except under certain
conditions described in the explanation of floating point
functional subroutines.

Exponent Overflow and Underflow

In the 1620 floating point subroutines, numbers with a
magnitude equal to or greater than 10!W create a condi­
tion called exponent overflow; those with a magnitude
of less than 10-H

!J create a condition called exponent
underflow. If either of these conditions is generated as
a result of an arithmetic operation, the programmer has
two options.

Overflow
1. To halt the program or
2. To cause 9 999 to be placed in the result field

and to continue executing the subroutine.

Underflow
1. To halt the program or
2. To cause 0' 099 to be placed in the result field

and to continue executing the subroutine.
The options function independently of each other.

Therefore, it is possible to halt on an overflow and place
zeros in the result field on an underflow, or to halt on an
underflow, and place nines in the result field on an
overflow.

The detection of an overflow or underflow condition
causes the subroutine being executed to examine core
storage position 00401 to determine the course of action.
Options available to the programmer must be repre­
sented in position 00401 by one of the following
characters.

34

UNDERFLOW
Halt Store Zeros in

Result Field

0
V Halt 0 0
E
R
F Store All
L Nines in Result 1 1
0 Field
W

To store the code determining the option in 00401, an
unlabeled Define Constant (DC) statement may be
used, as shown in the following example:

Operands & Remarks

~ ~ ~ ~ ~ ~

D1 NAL T ON OFLO It OR ilNDERFLOW

Positive codes ,0 or 1) need not be preceded by a plus
sign.

Overflow and/or underflow conditions can only arise
in six of the floating point subroutines presented in this
manual; namely, the four arithmetic subroutines and
the two exponential functional subroutines.

If the subroutine halts on an overflow or underflow
condition, the operator can continue processing by de­
pressing the Start key on the console. In the case of an
overflow, execution of the subroutine begins after
9 999 is placed in the result field; in the case of
an underflow, after o 099 is placed in the result
field.

Description of J 620 Subroutines
In this section, the various subroutines are described
and examples are given to show how the associated
macro-instructions are written. Table 10 shows the stor­
age requirements for each subroutine.

During execution of the arithm.etic subroutines, the
overflow, high/pOSitive, and equal/zero indicators are
used. The overflow indicator is always reset at the be­
ginning of each arithmetic subroutine. If it is desired to
determine its status prior to the execution of an arith­
metic subroutine, the indicator must be tested and its
condition stored before the linkage instructions are
executed. The high/positive and equal/zero indicators
are set according to the mantissa of the result. When-
ever a zero mantissa results (0 099), the equal/
zero indicator is turned on.

Table 10. Subroutine Storage Requirements and Identification Data

NUMBER OF STORAGE POSITIONS REQUIRED

SUBROUTINE

PICK

DIV

FA

FS

FM

FD

FIXED LENGTH
WITHOUT

AUTOMATIC
DIVIDE

872

1047

WITH
AUTOMATIC

DIVIDE

872

187
. a]a

...... . ~ J543
239 239

523 335

WITHOUT
AUTOMATIC

DIVIDE

1136

1035

VARIABLE LENGTH
WITH

AUTOMATIC
DIVIDE

1136

199

WITH
AUTOMATIC

FLOATING POINT

896

199

1207 1163 639

. . .. ~
579 579 659 659 659 FSQR

FCOS

FSIN

· ... "}~; T~;·····'····}:······ ... r:~······· ... } 1054

..
FATN 1077 989 1487 1379 1379 · ... T :~ .. · · "} ~~ · · T~·· · "r:

1

:· •••• •• • •• } 1118 FEXT

FEX
1-•••••••••••• a.- -· · · · ·•.....•... a .. _ a.- a._ ~•......... I

......... ·r~;·.·. ~. ~ ·.1 ~: ~ 1·~~·.· ... · .. · .. ·.·. J:~~~) 1145

FLOG

FLN

FSRS 279 279 279 279 96

FSLS

TFLS

BTFS

Identification
Number (Col. 77
of card deck

372

31

79

2

372

31

79

3

At the conclusion of a functional subroutine, the
status of the high/positive, equal/zero, and overflow
indicators does not necessarily reflect the result of the
operation, because the indicators are disturbed during
the execution of a functional subroutine. Therefore,
their status at the conclusion of a functional subroutine
should not be assumed to be the same as it was prior
to the execution of the subroutine.

Pick

This subroutine is common to all fixed length and vari­
able length mantissa subroutines. The pick subroutine,
during execution of the object program:

372 372 96

31 31 31

79 79 43

4 5 6

1. Sets up A and B operands (more, if designated)
to be operated upon, calculates the return address
to the mainline program, and branches to the sub­
routine.

2. Stores the calculated result in the proper storage
area and branches back to the mainline program.

3. Initiates typing of error messages and branches to
the subroutine if the error condition allows proc­
essing of the subroutine to be resumed.

4. Provides constants and working storage for the
other subroutines.

35

The average execution time for the pick subroutine
can be determined by the formula:

Average time (in p.s) = l00L + 8320
where L equals the length of the mantissa and the num­
bers are expressed in microseconds. Therefore, an 8-
digit mantissa (same as fixed length mantissa) requires
9120 p.s.

100 X 8 = 800
8320
9120 (p.s)

or approximately 9 milliseconds (ms). If indirect ad­
dressing is used, the average time is increased according
to the number of levels of indirect addreSSing used.

NOTE: For the variable length subroutines used with
the automatic Boating point feature,

Average time (in p.s) = 100L + 4500
The above timings apply to object programs being

executed on the 1620 Model!. The 1620 Model 2 timings
for the Pick subroutine are:

Fi~ed length and variable length
A verage time (in p.s) = 318L + 2470

Floating Add

Macro-instruction

Operand. & I ",.

The A and B addresses refer to the units position of the
exponents of the fields:

MMMMMMMMEE

t
address of field

where Ms represent digits of the mantissa and Es repre­
sent digits of the exponent.

Operation
Field B is added to field A. The floating point sum re­
places field A; field B remains unchanged.

Average Execution Time (1620 Modell)
Fixed length

Average time = 9 ms
Variable length

Average time (in p.s) = 5V~ + 482L + 6854
where L ;:: length of mantissa

Average Execution Time (1620 Model 2)

36

Fixed length
Average time = 4,100 p's

Variable length
Average time (in p.s) = 70L + 3420

Floating Subtract

Macro-instruction

2S

The A and B addresse$ refer to the units position of the
exponents of the fields:

Operation
Field B is subtracted from field A. The floating point
difference replaces field A; field B remains unchanged.

Average Execution Time (1620 Modell)
Fixed length

Average time = 10.5 ms
Variable length

Average time (in p.s) = 5L2 + 482L + 7474

Average Execution Time (1620 Model 2)
Fixed length

A verage time = 4,200 p's
Variable length

Average time (in p.s) = 70L + 3500

Floating Multiply

Macro-instruction

Operand. & Romark.

50

The A and B addresses refer to the units position of the
exponents of the fields:

Operation
Field A is multiplied by field B. The floating point prod­
uct replaces field A; field B remains unchanged.

Average Execution Time (1620 Modell)
Fixed length
Aver~ge time = 18 ms

Variable length
Average time (in p.s) = 168L2 + 240L + 7400

Average Execution Time (1620 Model 2)
Fixed length

Average time = 5,300 p.S.
Variable length

Average time (in p.s) = 36.6L2 + 48L + 3420

Floating Divide

Macro-instruction

Operation

Operand. & I.mort.

Field A is divided by field B. The Boating point quotient
replaces field A; field B remains unchanged.

Average Execution Time (1620 Model 1)

Fixed length
With automatic divide

Average time = 55 ms
Without automatic divide

Average time = 70 ms
Variable length

With automatic divide
Average time (in fLS) = 520L2 + 1500L + 7890

Without automatic divide
Average time (in fLS) = 1.9 (520L2 + 1500L +

7890)

Average Execution Time (1620 Model 2)
Fixed length

Average time = 10,900 fLS

Variable length
Average time (in ftS) = 98.5L:! + 200L + 3490

Fixed Point Divide

Macro-instruction

lO H

B,A1,B1

Operand. & lemarlo.

In addition to the A and B operands, representing the
addresses of the dividend and divisor, the divide macro­
instruction requires two additional operands; one spe­
cifies the number of zeros to be inserted to the right of
the dividend (AI operand) and the other, the shift fac­
tor needed by the subroutine (B1 operand). Specific­
ally, the

A operand is the core storage address of the
dividend.

B operand is the core storage address of the divisor.
Al operand is 00099 minus the number of zeros de­

sired to the right of the units position
of the dividend.

B1 operand is 00100 minus the length of the quo­
tient. The quotient must be at least two
digits in length.

NOTE: The quotient address after the division is exe­
cuted will be equal to 00099 minus the length of
the divisor.

Prior to the divide operation, the divide subroutine
always resets to zeros (clears). the positions 00080
through 00099, the product area where the 20-digit quo­
tient and remainder are developed. For the variable
length mantissa subroutines, where L (length of man­
tissa) is greater than 10, the number of positions which
are reset to zeros is equal to 99 -2L. When the quotient
plus the remainder exceeds the number of positions
cleared to zeros, positions lower than the last position
cleared must be reset to zeros by p1·ogramming. One
additional position should also be cleared to allow for
a possible overdraw. For example, if 25 positions are
required for the quotient and remainder in a fixed length
mantissa subroutine, 00074-00079 will have to be reset to
zeros before the divide macro-instruction is given.

The fixed point divide macro-instruction may be used
with any of the subroutine packages. Whenever it is
used, the fixed point divide subroutine will be incor­
porated into the user's program. For the subroutine
packages that are designed to work with automatic
divide, the fixed point divide subroutine uses auto­
matic divide in performing its operation. For the sub­
routine packages that are designed to work without the
automatic divide feature, the fixed point divide subrou­
tine performs its operation as instructed by the routine
without the aid of the automatic divide feature. Coding
of the macro-instructions is the same for all of the sub­
routine packages.

Operation
The product area (00080-00099) is automatically reset
to zeros. The dividend (A address) is transmitted to the
product area (AI address), beginning at the low-order
dividend digit and terminating at the Bag bit marking
the high-order position of the dividend field. The Al
address is 00099 minus the number of zero positions de­
sired to the right of the dividend.

The algebraic sign of the dividend is automatically
placed in location 00099, regardless of where the right­
most dividend digit is placed by the Al address. A Bag
bit automatically marks the high-order digit of the divi­
dend.

The divisor (B address) is successively subtracted
from the dividend. The B 1 address of the divide macro­
instruction positions the divisor for the first subtraction
from the high-order position (s) of the dividend, as in
manual division. The B1 address is determined by sub­
tracting the number of digits in the quotient from 100.
For the subroutines using program divide, the value of
B1 must be between 0 and 99. For subroutines using
automatic divide, the value of B1 is not restricted.

37

The quotient and remainder replace the dividend in
the product area. The address of the quotient is 00099
minus the length of the divisor. The algebraic sign of
the quotient (determined by the signs of the dividend
and divisor) is automatically placed in the low-order
position of the quotient. The address of the remainder
is 00099 and a flag bit is automatically placed in that
position. The remainder has the sign of the dividend
and the same number of digits as the divisor.

The high/positive indicator is on if the quotient is
positive and not zero; the equal/zero indicator is on if
the quotient is zero. Neither indicator is on if the quo­
tient is negative.

The quotient must be at least two digits in length.
One position is required for the sign and one for the field
mark (flag bit).

Examples
1. The macro-instruction

DIV A, B, 99, 96
will perform the division for 0273) 3972 and store
the result 0014 in storage locations 00092,through
00095.

2. The macro-instruction
DIV A, B, 96, 93

will perform the division for 0273) 3972.000 and
store the result 0014.549 in storage locations 00089
through 00095.

NOTE: In both examples (1 and 2), A represents the
address of the dividend 3972 and B represents
the address of the divisor 0273.

Incorrect Positioning of Divisor
The following error conditions are caused by an incor­
rect B1 address.

An incorrectly positioned divisor can cause more than
nine successful subtractions and an incorrect quotient.
The divide operation is terminated, the Overflow indi­
cator and Overflow Arithmetic Check light are turned
on, but processing wi,ll not stop unless the Overflow
Check switch is set to STOP.

The high-'order digit of the dividend is assumed by
the 1620 to be one position to the left of the high-order
digit of the divisor. The high-order digits of the divi­
dend are lost if the divisor is positioned too far to the
right. Processing continues with no indication of an
incorrect quotient.

If the B address is less than 10000, i.e., between 00100
and 09999, the divide operation will terminate when a
subtraction occurs at OXX99. This, in effect, restricts the
size of the dividend to 10,020 digits if only 20,000 posi­
tions of core storage are installed.

38

Average Execution Time (1620 Modell)

Fixed length and variable length with automatic
divide

Average time (in ms) = 980 + .040 LDVD +
(.520 LDVR + .740)
(100 - B1)

where LDVD is length of the dividend field,
LDVR is length of the divisor field, and
B1 is value specified in the macro-instruction.

NOTE: Multiply 3.2 times the result to find the average
execution time for the fixed length and variable
length subroutines without automatic divide.

Average Execution Time (1620 Model 2)

Fixed length and variable length without automatic
divide '

Average time (in ms) = 8.265 + .015 LDVD +
(.465 + .027 LDVR)

(100 - B1)
where LDVD is length of the dividend field,

LDVR is length of the divisor field,
and B1 is the value specified in the macro­
instruction.

Floating Shift Right

, Macro-instruction

Operands & Remarks

The effect of this macro-instruction is to shrink the
mantissa by shifting it to the right and truncating the
low-order digits. The A address is normally the units
position of the mantissa.

MMMMMMMMEE

t. ..
umts pOSItion
of mantissa

The B address specifies the· digit of the mantissa
which will become the low-order digit of the mantissa.

Operation

The field at the B address (the portion of the mantissa
to be retained) is shifted right to the location specified

by the A address. The exponent is not moved or al­
tered. For example, the macro-instruction

FSRS 00097,00093

causes the mantissa

30590011325701
t t

Storage
Address
00093

Storage
Address
00097

to be shifted, producing the following result

00003059001101
t t

Storage Storage
Address Address
00093 00097

Vacated high-order positions are set to zeros. An exist­
ing flag at the A address is retained for algebraic sign;
the field flag bit" is transmitted with th.e high-order
digit of the B field.

Average Execution Time (1620 Modell)

Fixed length and variable length
Average time (in fLS) = 4960 + 960L - 880 (A

- B)

Average Execution Time (1620 Model 2)
Fixed length and variable length

Average time (in fLS) = 2270 + 45 (A - B)

Floating Shift Left

Macro-instruction

,---,------,-----,--------- -- ----- -- - - ---- -- -- -----
Operands & Remor~s

The effect of this macro-instruction is to expand the
mantissa by shifting it to the left and filling the vacated
positions with zeros. It is important to note that the B
address is the low-order position of the field moved,
and the A address is the high-order position of the re­
sulting field.

Operation

The field at the B address, which is the low order
digit of the mantissa, is shifted left so that the high order
digit is moved to the location specified by the A address.

The exponent is not moved or altered. For example, the
macro-instruction:

FSLS 00090, 00097

causes the mantissa

0011325701
t t

Storage
Address
00090

Storage
Address
00097

to be shifted, producing the following result

1132570001
t t

Storage
Address
00090

Storage
Address
00097

An existing flag bit at the B address is retained for
algebraic sign; the field flag bit is transmitted with the
high-order digit of the B field.

Average Execution Time (1620 Modell)

Fixed length and variable length
Average time (in fLS) = 6460 + 1520

(B - A) - 360L

Average Execution Time (1620 Model 2)

Fixed length and variable length
Average time (in fLS) = 3830 + 350(B - A)

7.5(B - A)2

Transmit Floating

Macro-instruction

------ ---- ------
Operonds & Remo ,Its

The B address refers to the low-order digit of the float­
ing point field exponent, whereas the A address refers to
the low-order position to which the field is transmitted.

Operation

The field at the B address is transmitted to the location
speCified by the A address. The B field remains un­
changed in storage. Flag bits in the three low-order
positions of the B field are also transmitted; starting
with the fourth low-order position, only one additional
flag bit is transmitted, and it stops transmission. For the

39

variable length subroutine, L must be :::; 49, where L
equals the number of mantissa digits in the field to be
transmitted. For the fixed length subroutine, L must be
:::; 19.

Average Execution Time (1620 Modell)

Fixed length and variable length
Average time (in p.s) = 400 + 40L

Average Execution Time (1620 Model 2)

Fixed length and variable length
Average time (in p.s) = 530 + 15L

Branch and Transmit Floating

M aero-instruction

Operands & Remarks

The B address is normally the low-order position of the
floating point field exponent, whereas the A address is
the leftmost position of the next instruction to be exe­
cuted.

Operation

The address of the next instruction is saved at a storage
location equivalent to BTFS + 78 and the field at the B
address is transmitted to the A address minus one. The
nonnal exit of a routine which is entered by a BTFS is a
Branch Back (BB) instruction. The instruction at the A
address is the next one executed. The B field remains
unchanged in core storage. Any flag bits in the three
low-order positions of the B field are transmitted;
starting with the fourth low-order position, only one ad­
ditional flag bit is transmitted, and it stops transmission.

Average Execution Time (1620 Modell)

Fixed length and variable length
A verage time (in p.s) = 2280 + 40L

Average Execution Time (1620 Model 2)

Fixed length and variable length
Average time (in p.s) = 645 + 15L

Floating Square Root

Macro-instruction

40

The A and B addresses refer to the units position of the
exponents of the fields.

Operation

The square root of argument B is extracted and the re­
sult, in floating point fonn, is stored at A. The argument,
which must be in floating point fonn, is unchanged by
the operation.

The floating point square root subroutine accepts all
numbers within the floating point range that are greater
than or equal to zero. If the argument is less than zero,
the subroutine executes a programmed halt. The oper­
ator has two options:

1. Using the infonnation found in the halt instruction,
he may branch back to the main routine, or

2. Continue the execution of the subroutine and com­
pute the square root of B.

Average Execution Time (1620 Modell)

Fixed length
Average time = 120 ms

Variable length
Average time (in p.s) = 620L2 + 9776L + 5328

Average Execution Time (1620 Model 2)

Fixed length
A verage time = 29 ms

Variable length
Average time (in p.s) = 100L2 + 2000L + 5500

Floating Sine

M aero-instruction

Operand. & •• morlrs

The A and B addresses refer to the units position of the
exponents of the fields.

Operation

The sine of argument B is computed and the result, in
floating point form, is stored at A. The argument must
be in radians and in floating point form. The computa­
tion does not disturb the original value of the argument.

The floating point sine subroutine accepts all numbers
of floating range up to and including exponent 08 (fixed
length mantissa) or L (variable length mantissa). The
operator may branch back to the mainline program as
explained under SUBROUTINE ERROR MESSAGES.

For arguments with exponents less than 03, the mag­
nitude of the maximum truncation error in the mantissa
of the result does not exceed 10-L • Accuracy in the man-

tis sa of the result decreases as the size of the argument
(exponent of 03 or greater) increases. The operator has
the option of branching back to the main program or
proceeding with the computation. Any result so com­
puted will contain an error that varies directly with the
magnitude of the exponent.

Average Execution Time (1620 Modell)

Fixed length
Average time = 150 ms

Variable length
With automatic divide

Average time (in fLS) = 168U{ + 3792L2 +
13340L + 4708

Without automatic divide
Average time (in fLS) = 1.9 (168L3 + 3792L2 +

13340L + 4708)
NOTE: For all Floating Sine and Floating Cosine sub­

routines, arguments greater than 271" are reduced
by subtractions of 271" until within range. There­
fore, the time required to perform these sub­
tractions" should be added to the average time
required for an argument less than 2".

Average Execution Time (1620 Model 2)
Fixed length

Average time = 33.3 ms
Variable length

Average time (in fLS) = 5Ul + 320L:! +
3100L + 4900

Floating Cosine

Macro-instruction

Operond. & Remort.

The A and B addresses refer to the units position of the
exponents of the fields.

Operation

The cosine of argument B is computed and the result,
in floating point fonn, is stored at A. The argument must
be in radians and in floating point fonn. The computa­
tion does not disturb the original value of the argument.

The allowable range of the argument, maximum ac­
curacy, etc., for the cosine subroutine are the same as
those previously described for the sine subroutine.

Average Execution Time (1620 Modell)

Fixed length
Average time = 155 ms

Variable length
With automatic divide

Average time (in fLS) = 168L3 + 3792L2+
13420L + 5228

Without automatic divide
Average time (in fLS) = 1.9 (168L3 + 3792L2 +

13420L + 5228)

Average Execution Time (1620 Model 2)

Fixed length
Average time = 33.3 ms

Variable length
Average time (in fLS) = 5L3 + 296L2 +

2950L + 5400

Floating Arctangent

Macro-instruction

Operond. & •• morb

3S

B ."

The A and B addresses refer to the units position of the
exponents of the fields.

Operation

The floating point value of the arctangent of B is com­
puted and the result stored at A. The argument must be
in floating point fonn; the result in radians will be in
floating point fonn.

The arctangent subroutine accepts any number with­
in the floating point range.

During the evaluation of the arctangent of B, use will
be made of the divide subroutine.

The maximum truncation error in the mantissa of the
result is -+-10-L, except for results having an exponent
less than or equal to 02 (E ~ (2). The maximum error
for these results is -+- 1 in the (L + 1) th decimal place.
L = 08 for the fixed length mantissa.

Average Execution Time (1620 Modell)

Fixed length
Average time = 260 ms

Variable length
With automatic divide

Average time (in fLS) = 168L3 + 2996L2 +
7792L + 7260

Without automatic divide
Average time (in fLS) = 1.9 (168L3 + 2996L2 +

7792L + 7260)

Average Execution Time (1620 Model 2)
Fixed length

Average time = 31.7 ms

41

Variable length
Average time (in p..s) = 35L3 + 570L2 +

400L + 7500

Floating Exponential (Natural)

Macro-instruction

Ope,and. & •• rnarb

Operation

•

The A and B addresses refer to the units position of the
exponents of the fields. The value of eB , where B is in
floating point form, is computed and the result, also in
floating point form, is stored at A.
An input value that exceeds

227.955924206n n (227955924206n n03)

causes an exponent overflow and one which is less than

-227.955924206n n
(227955924206n n03)

causes an exponent underflow. An exponent overflow or
underflow causes the subroutine to examine core stor­
age position 401 to determine the course of action.

For negative arguments, the subroutine uses the ab­
solute value of the argument to evaluate the function,
and then finds the reciprocal value.

For positive and negative arguments, the maximum
truncation error in the mantissa of the result is -+-10-L •

Average Execution Time (1620 Modell)

Fixed length
Average time = 160 ms

NOTE: Add 70 to the average time if B is negative.

Variable length
With automatic divide

Average time (in p..s) = 168L3 + 35824L2 +
15890L + 26418

Without automatic divide
Average time (in p..s) = 1.9 (168L3 +

35824L2 + 15890L +
26418)

NOTE: For a negative argument, add the result of
520L2 + 1880L + 1480 to the average time.

Average Execution Time (1620 Model 2)

Fixed length
Average time = 38 ms

NOTE: Add 1104 ms if B is negative.

42

Variable length
Average time (in p..s) = 21L3 + 240L2 +

6000L - 1300

NOTE: Add time for VL Divide if B is negative.

Floating Exponential (Base 10)

Macro-instruction

Ope,and. & .ernarb

20 2S 50

The A and B addresses refer to the units position of the
exponents of the fields.

Operation

The value of lOB, where B is in floating point form, is
computed and the result, also in floating point form,
is stored at A.

An input value which exceeds 98.9n n
(989n n02) causes an exponent overflow and
one which is less than -98.9n n (989n n(2)
causes an exponent underflow. An exponent overflow
or underflow causes the subroutine to examine core
storage position 401 to determine the next course of
action.

This subroutine handles negative arguments in the
manner they are handled by the natural exponential
subroutine. Maximum accuracy is the same.

Average Execution Time (1620 Modell)

Fixed length
Average time = 145 ms

NOTE: Add 70 ms to the average time if B is negative
Variable length

With automatic divide
Average time (in p..s) = 168L3 + 3656L2 +

15414L + 24538
Without automatic divide

Average time (in p..s) = 1.9 (168L3 + 3656L2 +
15414L + 24538)

NOTE: For a negative argument, add the result of
520L2 + 1889L + 1480 to the average time.

Average Execution Time (1620 Model 2)

Fixed length
Average time = 39.8 ms

NOTE: Add 11.4 ms if B is negative.
Variable length

Average time (inp..s) 23L8 +240L2 +
6050L -1300

NOTE: Add time for VL Divide if B is negative.

Floating Logarithm (Natural)

Macro-instruction

»

The A and B addresses refer to the units position of the
exponents of the fields.

Operation

The floating point value of the In B is computed and
. stored at A. Input arguments must be in floating point
form.

This subroutine accepts all arguments greater than
zero within the floating point range. An input argument
equal to or less than zero results in a programmed halt.
A branch back to the main program can be effected as
described under SUBROUTINE ERROR MESSAGES.

Average Execution Time (1620 Modell)

Fixed length
Average time = 290 ms

Variable length
With automatic divide

Average time (in /Ls) = 168L3 + 3440L2 +
10530L + 12180

Without automatic divide
Average time (in p.s) = 1.9 (168L3 + 3440L2 +

10530L + 12180)

Average Execution Time (1620 Model 2)

Fixed length
Average time = 51.7 ms

Variable length
Average time (in /Ls) = 36.5L3 + 590L2 +

1500L + 8600

Floating Logarithm (Base 10)

Macro-instruction

Operand. & a.marks

The A and B addresses refer to the units position of the
exponents of the fields.

Operation

The floating point value of the loglOB is computed and
stored at A. Input arguments must be in floating point
form.

This subroutine accepts all arguments greater than
zero within the floating point range. An input argument
equal to or less than zero results in a programmed halt.
A branch back to the main program can be effected as
described under SUBROUTINE ERROR MESSAGES.

Average Execution Time (1620 Modell)

Fixed length
Average time = 305 ms

Variable length
With automatic divide

Average time (in /Ls) = 168L3 + 3608L2 +
11610L + 15108

Without automatic divide
Average time (in /Ls) = 1.9 (168L3 + 3608L2 +

11610L + 15108)

Average Execution Time (1620 Model 2)

Fixed length
Average time = 56.6 ms

Variable length
Average time = 33.5L3 + 680L2 +

2100L + 5900

Subroutine Error Messages
In 1620 subroutines the presence of special conditions
causes an error message. This message is typed out in
the following form:

XXXXXOOXX
R S

where R is a return address to the main program
and S is a code that identifies the special condition.

With the exception of exponent overflow or under­
flow, where the course of action depends upon the digit
at location 00401, a subroutine always halts immedi­
ately after typing the error message. The error message
code indicates the reason for the halt. The operator may
insert a branch instruction at storage location 00000.
The branch instruction will contain the return address
to the main program. In cases such as floating square
root, execution of the subroutine may be made to con­
tinue, after a halt, by depressing the start key.

Table 11 lists the error codes for special conditions
and the appropriate action to be taken.

43

Table 11. Subroutine Error Codes

ERROR
CODE

01

DESCRIPTION OF ERROR

FA or FS, Exponent Overflow

FA or FS, Exponent Underflow

FM, Exponent Overflow

FM, Exponent Underflow

FD, Exponent Overflow

FD, Exponent Underflow

OPERATOR'S ACTION WHEN
SUBROUTINE HALTS

May continue execution of subroutine by
depressing start key

Same as code 01

Same as code 01

Same as code 01

Same as code 01

Same as code 01

02

03

04

05

06

07 FD, Attempt to divide using a number with a zero mantissa
divisor

May not continue execution of subroutine
but may branch back to main program using
return address

08 FSQR, Attempt to find the square root of a negative number Pressing the start key causes the subroutine
to extract the square root of the absolute
value of the argument

09 FSIN or FCOS, Input argument has an exponent value greater
than 08 (fixed length mantissa) or L (variable-length mantissa)

Same as code 07

10 FSIN or FCOS, For a fixed-Iengt~ mantissa, ~he input argument
has an exponent (X) such that 03 < X < 08. For a variable­
length mantissa, the input argument has an exponent (X) such
that 03 ~ X ~ L where L = length of a mantissa.

Same as code 01

11

12

13

14

FEX or FEXT, Exponent Overflow

FEX or FEXT, Exponent Underflow

FLN or FLOG, Input argument has a zero mantissa

FLN or FLOG, Input argument is negative

. Adding Subroutines
up to 12 subroutines may be added to any of the card
or paper tape subroutine packages.
In brief, the steps required to add a subroutine are:

1. Write the subroutine and assemble it in condensed
form.

2. Add the new subroutine to the card or tape pack­
age.

3. Add the macro-instruction mnemonic to the SPS

processor.
The specific details of adding a subroutine or its macro­
instruction are covered in ADDING A SUBROUTINE TO A

CARD DECK or ADDING A SUBROUTINE TO TAPE.

Adding a Subroutine to a Card Deck
After a subroutin~ is written, it must be assembled in
condensed form. Then, discard the first two loader
cards and the last seven table cards of the object deck.

44

Same as code 01

Same as code 01

Same as code 07

Pressing the start key causes the subroutine
to continue execution, using the absolute
value of the argument

(Discard the last seven cards if assembly was made for
a Modell; discard the last 6 cards if assembly was
made for a Model 2.) These cards are replaced by a
subroutine header card and a subroutine trailer card.
The formats for the subroutine header and trailer cards'
are described below. The new subroutine, together
with its header and trailer cards, is inserted into the
subroutine deck between the trailer card of the last sub­
routine presently in the deck and the "end of deck"
card (identified by a record mark (=F) in column 76).

Header Card Format

Columns 1-4 Length of subroutine - 4 digits in
the form xxxx.

5-13 Subroutine numbers (each in two
digits xx) followed by a record
mark; a subroutine may have up
to four entry points, with each entry
represented by a unique mne­
monic.

14-23 Number of storage positions (three
digits xxx), between the second
(third and fourth) entrance (s)
and the regular entrance of the
subroutine. These 3-digit fields
must be terminated by a record
mark (for example, 120186=1=). If
the subroutine has only one en­
trance, a record mark should be
punched in column 14.

24 0 (zero) for subroutine deck with­
out automatic divide; 1 for subrou­
tine deck with automatic divide;
=1= for variable length subroutine
decks with divide or with auto­
matic floating point; '0 for variable
length subroutines without auto­
matic divide.

25-43 The secondary linkage in ma~hine
language. The linkage contains two
instructions, the second of which
is always a branch (operation code
49). The operation code in the first
instruction and the three addresses
can be specified by the program­
mer. The breakdown of these col­
umns is as follows:

25-26 Two-digit numerical opera­
tion code for the first in­
struction. Modification to
the P and Q addresses is in­
dicated by a flag or no flag
on the first and second
digit, respectively. A flag
implies that the address is
relative to the subroutine
itself while no flag means it
is relative to the Pick sub­
routine.

27 -31 P address of the first in­
struction, expressed as an
increment to IJICK or the
subroutine. For example,
IJICK + 23 will be 00023
and SUBR 1 + 59 will be
00059.

32-36 Q address of the first in­
struction, expressed as an
increment to PICK or the
subroutine. For example,

44-75
76
77-80

Trailer Card Format

PICK + 23 will be 00023
and SUBR 1 + 59 will be
00059.

37 -38 Operation code 49; a flag or
no flag on digit 4 indicates
modification to the P ad­
dress with respect to the
subroutine or PICK.

39-43 P address expressed as an
increment to PICK or the
subroutine.

Blanks.
o (zero).
Sequence number.

Column 76 1
77-78 Subroutine number.
79-80 Sequence ntlmber.

Sample Problem Illustrating Header Card,

Subroutine, and Trailer Card

In this example the subroutine is to be inserted in the
variable length subroutine deck without automatic
divide. The Floating Branch and Transmit subroutine
(BTl'S) is used as the new subroutine; thus it is assumed
that the subroutine deck contains no BTFS subroutine.
This example shows the header card coding, the mod­
ifier constants, the 0" and 0 1 flag indicators associated
with the new subroutine, and the trailer card coding.
For each field of the header and trailer cards, the data
contained in the field as well as a description of the
data is given.

HEADER CARD

Columns 1-4

5-13:

14-23:

24:

25-43:

0079

17=1=

=t=

0

16 00402

Program requires 79
storage positions.
Subroutine identify­
ing number.
Subroutine has only
one entry point.
Variable length sub­
routine without auto­
matic divide.
00000 49 00104
These instructions cor­
respond to the secon­
dary linkage:
TFM PICK + 402,

ADDR
B PICK + 104

45

44-75:
76:

77-80:

Blanks
o
4000

The P operands of the
TFM and B will be
modified by adding
the address of PICK

when it is found. The
Q operand of the TFM

will be modified by
adding the starting
address of the BTFS

subroutine to it.

The 4 is the identify­
ing number of the
subroutine set. The
000 is the card se­
quence number.

SUBROUTINE

BTFS1

46

DORC 5000
Standard DORG statement for all subroutines.

DC 14, 05000005050500, 314
This statement provides the modifier digits for
the seven instructions which follow.

TF 0 + 66, STORE + 6, 0

A flag over 00 indicates to the subroutine pro­
cessor that the P operand must be modified with
respect to the relocated addresses of the BTFS

subroutine. With respect to PICK, the Q operand
is modified by the second digit of the pseudo
constant.

TF 0 + 30, 0 + 54,01

The P and Q operands need only be modified
with respect to the BTFS subroutine. Therefore,
the only modification required is flagging 00 and
01.

SM 0 + 18,3,010

o + 18 is modified with respect to its own sub­
routine. The Q operand needs no modification
since 03 ~s wanted. The flag on QI0 is needed in
the computation.

TF ,BETA-2

With respect to PICK, the Q operand is modified
by the eighth digit of the pseudo constant.

TF 0 + 30, STORE +30, 0

0 0 flagged to modify 0 + 30 with respect to
BTFS subroutine. Q operand was previously
modified. With respect to PICK, the Q operand
is modified by the tenth digit of the pseudo
constant.

BT ,BETA

With respect to PICK, the Q operand is modified
oy the twelfth digit of the pseudo constant.

B
No modification.

DEND

No modification.

TRAILER CARD

Column 76 1

Library Change Card

For each macro-instruction added, a library change
card must be prepared for insertion in the processor
deck. These cards must· be inserted immediately in
front of the last nine cards of the processor deck.

The programmer must assign a unique mnemonic
operation code to each macro-instruction. New macro­
instruction mnemonics must be four alphameric char­
acters in length.

The format of the library change card is as follows:

Columns 1-8

9-10
11
12
13-62
63-64
65-69

Mnemonic operation code in 2-
digit form (column 1 must be
flagged, columns 2 to 8 must not
be flagged).
subroutine number.
7.
record mark (0, 2, 8 punches) .
blanks.
01 (column 63 must be flagged).
address of leftmost location where
data from columns 1-11 is to be
stored. Column 65 must be Bagged.

70-74 address plus 1 of rightmost loca­
tion where data from columns 1-11
is to be stored. Column 70 must be
flagged.

75 blank.
76 -(Bag only).

The address in columns 65-69 for subroutine 18 can be
found by referring to the program listing (symbol
XDEND+ 12). This number must be increased by 11 for
each subsequent subroutine. The address in columns
70-74 is 11 greater than the address placed in columns
65-69 for subroutine 18. This address must also be in­
creased by 11 for each subsequent subroutine being
added.

Adding a Subroutine to Tape
A tape modifier program is included in the SPS III Pro­
gramming System. Its purpose is to allow the addition
and/ or deletion of subroutines and subroutine macro­
instructions to or from the subroutine tape.

Procedure

A brief summary of the procedures to be followed
when using the tape modifier program is:

1. Write the subroutine in SPS language with origin
at 05000 (DORG 5000).

2. Assemble the subroutine.
3. Prepare the subroutine header data so that it may

be entered at the keyboard when called for by the
tape modifier program.

4. Load the tape modifier program.
5. Produce a new SPS III processor as directed by the

typed messages.
6. Produce a new subroutine tape as directed by the

typed messages.

Program Switches

The following switch infonnation is typed out after the
tape modifier program has been loaded.

SSWl - ON TO ADD SUBROUTINES
SSW2 - ON TO DELETE SUBROUTINES
SSW3 - ON TO BYPASS SPS III PROCESSOR

MODIFICATION
SSW4 - ON TO CORRECT ENTRY ERROR SET

SWITCHES THEN DEPRESS START

Program Switches 1, 2, or 3, or all three can be turned
on at this time.

Adding and Deleting Subroutine

Macro-Instruction Mnemonics

After the switches are set and the Start key is depressed,
either of the following messages or both are typed, de­
pending on the switch settings:

ENTER NEW MACROS, ONE AT A TIME
FOLLOW LAST ENTRY WITH A RECORD MARK

ENTER MACROS TO BE DELETED, ONE AT A TIME
FOLLOW LAST ENTRY WITH A RECORD MARK

NOTE: New macro-instruction mnemonics must be
four alphameric characters in length followed by the
new subroutine number. Deleted mnemonics are en­
tered as they actually appear in the present op-code
table, e.g., FA for Floating Add, etc. Deleted mne­
monics must also be followed by the subroutine num­
ber they represent. After each entry of an added or
deleted mnemonic, a Release and Start must be exe­
cuted prior to entering the next mnemonic. The last
entry must be followed by a record mark, e.g., FA03=j=.

If Switches 1 and 2 are on, the second typeout occurs
after all new macro-instruction mnemonics are entered.

If Switch 3 is on, the processor modification is by­
passed and the program calls for the subroutine proces­
sor tape as described below. However, if Switch 3 is off

after entering the new or deleted macro-instruction
mnemonics, the message

LOAD SPS III TAPE AND DEPRESS START

is typed. This loading results in the creation of a new
SPS III tape which reflects the addition and/or deletion
of the mnemonics that were typed in.

If the op-code table cannot accommodate all the new
mnemonics (a maximum of 12 have already been en­
tered), the following message is typed, followed by a
list of all mnemonics that could not be entered:

OP-CODE TABLE FULL
THE FOLLOWING MACROS HAVE NOT BEEN ENTERED

If the op-code table can handle all new mnemonics,
the program calls for the subroutine processor tape by
the following typeout:

LOAD SUBROUTINE TAPE AND DEPRESS START

Adding and Deleting Subroutines

\\Then the subroutine tape is loaded, a new tape is
punched. If a subroutine (s) is being added, punching
stops when the beginning of the "end of tape" record
is reached. The program then calls for the header data
pertaining to the new user-written subroutine (s). If
no subroutines are being added, the modification is
complete when punching stops. The header infonna­
tion is entered when the following message is typed.

ENTER HEADER INFORMATION FOR NEW
MACHO XXXX

where XXXX is the name of the new macro. The header
data called for consists of the following:

LENGTH = Four digits in the fonn XXXX.
SUBROUTINE NUMBER (S) = Two digits in the fonn

XX=j=. If more than one number applies, the fonn
XXXX=j= is used. Up to four numbers (two digits
each) can be used.

ENTRY POINT DIFFERENCES = Three-digit field for
each additional entry point. If there is only one
entry point, only a record mark is entered. For
each additional entry point, the number entered is
the difference between the first entry and the sec­
ond or third, etc.; the fonn is XXxXXX=j=.

SECONDARY LINKAGE FORMAT = Secondary linkage in
machine language.

NOTE: If a subroutine is written that has multiple mne­
monics and numbers, such as FSIN and FCOS, the header
data should be entered when anyone of the relevant
mnemonics appears in a call for header data.

47

After each bit of data is entered, a Release and Start
allows entry of more data until all necessary informa­
tion is entered. The program then calls for the object
tape associated with the header data just entered. The
typeout is

LOAD OBJECT TAPE FOR MACRO XXXX
AND DEPRESS START

Here, XXXX is the mnemonic of the new subroutine
being added. Run out the subroutine tape from the
reader using the Nonprocess Runout key. Then load
the object tape and depress the Start key.

After the new subroutine has been punched into the
subroutine tape along with the appropriate header and
trailer data, the program calls for more header data if
more subroutines are to be added. If no more are to be
added, an "end of subroutines" record is punched, the
message

RELOAD LIBRARY SUBROUTINE TAPE

is typed, and the machine halts. Reload the subroutine
tape (from the beginning) and depress the Start key.

After the remainder of the library subroutine tape is
processed, the message

MODIFICATION COMPLETE

is typed, and the machine halts.

At any time during the operation, operator entry
errors can be corrected by turning on Program switch
4, depressing the R-S key, turning off Switch 4, and re­
entering the data.

Writing a Subroutine
When writing a subroutine, the programmer should be
aware of certain information concerning PICK, namely,
the functions of PICK, PICK address equivalents, linkage,
common work areas in PICK, and the means of signify­
ing instnlCtions that are relative to PICK.

Functions of PICK

PICK is common to all subroutines in the subroutine
package, except DIV, FSRS and FSLS. Therefore, it is to the
advantage of the subroutine writer to make use of PICK.
The listing of the appropriate Pick subroutine (fur­
nished with the library package) should be studied.
Briefly, PICK performs the following operations. It:

48

1. Moves the A operand into ALPHA (exponent and
mantissa).

2. Moves the B operand into BETA (exponent and
mantissa).

3. Calculates the return address to the mainline pro­
gram.

4. Resets location 00401 (subroutine error digit) .

5. Stores the computed result (which is in ALPHA)
back into the address of the A operand.

6. Contains constants and storage areas that are
common to other subroutines in the package.

Subroutines Linkages

The following linkage is generated in the mainline pro­
gram for all subroutine macro-instructions.

TFM
B
DORG
DSA

PICK + 11, 0 + 23
SUBR
0_4
A,B

The branch is to the secondary linkage for the specific
subroutine used. The secondary linkage is generated by
the subroutine processor at the time the subroutines are
being relocated and punched into the object deck. For
example, the secondary linkage for a variable length
subroutine is:

1. SUBR TFM
B

2. SUBR TFM
B

PICK + 402, ADDR }
PICK two operands

PICK + 402, ADDR t
PICK + 104 fone operand

ADDR is the address of the first instruction of the sub­
routine in question.

This linkage moves the starting address of the sub­
routine into PICK to allow a later branch to the subrou­
tine (B ADDR). Next, the secondary linkage branches to
PICK. PICK moves the data contained in the A operand
into ALPHA and the data in the B operand into BETA. It
also computes the return address to the mainline pro­
gram and branches to the subroutine. After the subrou­
tine is executed, the program branches back to the Pick
subroutine.

Figure 3 shows the sequence of events that occur
when the macro-instruction equivalence is encountered
during execution of the object program.

NOTE: When the A operand in the diagram is used in
the computation, the secondary linkage branches to
PICK; when the A operand is not used in the computa­
tion (as in the functional subroutines), the secondary
linkage branches to PICK + 104 (variable length) and
the B operand alone is placed in BETA.

Note that if the macro-instruction contains more
than two operands, arrangements must be made in the
programmer's subroutine to store the B, or Band C
operands in some location other than BETA. This is to
prevent the B, or Band C operan~ds from being de­
stroyed, for PICK automatically stores any operand, after
the first operand, in BETA.

The return address to the mainline program, calcu­
lated by the Pick subroutine is correct only if all oper­
ands associated with the subroutine have been pro­
cessed.

The computed result is always assumed to be stored
in ALPHA. In addition, the result at ALPHA is stored by
the Pick subroutine at the address specified by the A
operand, prior to the return to the mainline program.

There are various working areas for constants in the
Pick subroutine that may be used (shared) by the add­
ed subroutines. The programmer may refer to the sub­
routine program listing (provided with the library
package) to make effective use of the Pick subroutine.

Bypassing PICK

The subroutine writer may, if he desires, bypass PICK

completely by setting up the secondary linkage in
columns 25-43 of the subroutine header card (see
HEADER CARD FORMAT).

Since the first linkage puts the address of the A oper­
and in PICK + 11, the secondary linkage can move it
from there to any place in the subroutine itself (and
branch to the subroutine). This is what is done in the
DIV, FSLS, and FSRS subroutines, where the secondary
linkage is of the form

TF ADDR + 11, PICK + 11,0
B ADDR,,0

When the programmer bypasses PICK, he is respon-

Table 12. Pick Address Equivalents

ADDRESS EQUIVALENTS

FIXED VARIABLE AUTOMATIC

LENGTH LENGTH FLOATING
POINT

sible for performing all necessary operations normally
performed by PICK.

PICK Address Equivalents

Listed in Table 12 are certain PICK address equivalents
for fixed length and variable length subroutine decks,
as well as for the subroutine deck which uses automatic
Boating point.

Instructions Relative to PICK

When writing a subroutine, the programmer must set a
Bag over position 0 0 and/or 0 1 of instructions where
the P and/or Q operands are relative to the origin (lo­
cation 05000), e.g., an instruction located at 05300,
such as

TF 0 + 23,0_1

in machine language should be 260532305299. There­
fore it should be written as

TF 0 + 23, 0 - 1, 01

If the P operand alone is relative, then only 0 0 should
be Bagged, as

AM 0 + 18, 5, 07

The Q. digit is Bagged because the instruction is of the
"immediate" type.

Operand Modification

Whenever PICK is used, the programmer must use in­
structions in his subroutine which make reference to
the Pick subroutine. The subroutine relocator program
must adjust the operands of these instructions to make

DESCRIPTION

PICK PICK PICK Entry for subroutines that ~A operand data in the computation.

PICK + 104 PICK + 104 PICK + 24 Entry for subroutines that do not use A operand data in the computation.

PICK + 140 PICK + 140 PICK + (fJ Re-entry to pick up additional operand {other than the A and B operand.

PICK + 414 PICK + 402 PICK + 174 Address of subroutine {P address of instruction that branches to the subroutine}

PICK + 416 PICK + 404 PICK + 176 Re-entry from subroutines to store result of computation.

PICK + 482 PICK + 434 PICK + 194 Return address of mainline program {P address of instruction that branches to
mainline program}.

PICK + 711 PICK + 657 PICK + 417 Alpha (A operand data itself).

PICK + 743 PICK + 802 PICK + 562 Beta (B operand data itself).

49

Figure 3. Basic Flow Chart of User's Subroutine - PICK Relationship

1.

2.

50

Mainline
Program

Instructions

Macro, e.g.
FS A, B
FSIN A, B

f.Iove Address
of A operand
to PICK + 11.

Branch to
secondary
linkage.

Instructions

{contd}

Secondary

Linkage

Branch to PICK,
load one

argument

Mainline Program 0
Pick Subroutine •

User's Subroutine 1!!i:!ii!!i!ii~i!i!!!!ii!!j!1

Move Address

of Subroutine

into PICK

Branch to PIC K ,
load two

arguments

them correspond to the actual addresses of PICK in the
object program. This is done by using a pseudo con­
stant (DC statement). The constant does not become a
part of the object program; its only function is to indi­
cate to the subroutine relocator program that the in­
structions that follow are to be modified.

One DC statement can modify up to 25 instructions.
Each instruction, whether or not it is to be modified,
requires two digits in the pseudo constant, one for the
P operand and one for the Q operand. The statement
itself consists of three operands: the first specifies the
length of the constant which may not be greater than 50
nor less than 2; the second, the actual constant; the
third, the storage address of the constant. This address
must be specified as an absolute value in the following
form: 00320 for a 20-digit constant, 00342 for a 42-digit
constant, etc. The P and Q operand modifier constants
follow.

P and Q Operand
Modifiers

o
1
2
3
4
5

6

Modification

No Modification
AddL
Subtract L
Add2L
Subtract 2L
Modify with respect to PICK,
no L modification
Modify with respect to PICK,
add L

7

8

9

Modify with respect to PICK,
subtract L
Modify with respect to PICK,
add 2L
Modify with respect to PICK,
subtract 2L

The following example shows how a variable length
mantissa subroutine may be modified, by use of modi­
fier constants, to use three operands in its computation.
Secondary linkage 1 (two operands) is used in this
example.

The A operand data is stored in ALPHA (PICK + 657)
and the B operand data is in BETA (PICK + 802). There­
fore:

6,275050,306 DC
SUBR TR GAMMA - 1, 801, 0 Transmit beta into

TFM 402,0 + 20, 17

B 140

DORG 0 - 4

gamma
Set up return ad­
dress to added sub­
routine
Go to Pick subrou­
tine. to obtain next
operand

NOTE: Intervening DORG statements and constants be­
tween instructions are never modified in this manner.

Data from the last operand processed will be in BETA
(PICK + 802). The maximum number of operands al­
lowed in secondary linkage 1 is two; however, the A
and B operands may be the same.

51

1620 SPS III Processor Program

The SPS III processor, which is available in card or paper
tape form, is a two-pass program. The user's source
program, written in symbolic language, is the input for
both passes. The functions of Pass 1 and Pass 2 are
listed below:

Pass 1

1. Checks for valid mnemonic operation codes. In­
valid operations are considered Nap and are proc­
essed as such if Program Switch 2 is off.

2. Processes symbolic labels and prepares a table of
the symbolic labels and their assigned addresses
for use in the second pass.

3. Assigns storage positions to instructions, work
. areas, and constants.

4. Performs checking necessary to produce error
messages.

Pass 2

1. Processes operation codes. Converts mnemonic
program operation codes to their corresponding
1620 machine language codes.

2. Processes operands according to the type of oper­
ation code. Looks up assigned addresses and sym­
bolic operands in the symbolic table prepared dur­
ing Pass 1. Performs address adjustment, if neces­
sary, to complete the operands. Sets Hags in the
assembled instruction, as specified by the Hag in.,.
dicator operand.

3. Types error messages for those statements that
cannot be assembled properly.

4. Prepares the assembled output and lists the sym­
bol table, if desired.

Storage Layout
The storage layout of the SPS processor is shown in
Figure 4. The operation code table contains all valid
mnemonic operation codes and their equivalent ma­
chine language codes. Any alterations to the processor
will change the addresses shown in this figure.

52

Symbol Table

A variable length label entry is used to store as many
labels as possible in the area reserved for the symbol
table. Each label when stored takes the following form:

N

Head
Char- Variable Length Label Associated

Address

A

where N = number of characters in label plus head
character (2-6)

H = head character (two-position alphameric
coding)

L Ln = five characters of label (two-po­
sition alphameric coding)

AAAAA = assigned address (five numerical
positions)

NOTE: The rightmost position of Ln contains a Hag for
any true 6-character label.

A label entry will always contain N, H, and A data
and at least one L character. Therefore, the minimum
size label (one character) requires 10 storage positions.
Each additional L character will use two additional
storage positions up to eight positions. The maximum
size label (5 or .6 characters) requires 18 storage posi­
tions.

A six-character label is stored without a head char­
acter and the leftmost character of that label occupies
the head character (H) storage position. For the six­
character label, a Hag is placed in the rightmost position
of Ln so that the processor may distinguish between a
5-character label with a head character and a true 6-
character label without the head character. When a
label which is not preceded by a HEAD statement is
placed in storage, the head character (H) is assigned
as blank by the processor.

1626 SPS III

Cord Tope

00000 00000

00401 00401

00402 00402

01943 01811

01944 01812

16115 15193

16116 15194

16384 15380

16385 15381

17999 16995

18000 16996

19980 19911

Figure 4. Storage Layout

1111,11,11111:::~~;t:~ilimt~~::~m~~~~::::I!I!III!lilll!111IIIIII!III!I!IIIIIIIIIIIIIII!IIIIII!IIII!IIII!II!
Input/Output Areas,

Work Storage,
Constants

Processor
Program

Input/Output Areas, Work Storage,
Constants

Operation Code Table
{Mnemonics}

Symbol Table

1620 - 1443
SPS III

Cord Tape

00000 00000

00401 00401

0:>402 00402

01937 01807

01938 01808

16161 15817

16162 15818

16394 15988

16395 15989

18196 17790

18197 17791

19980 19911

53

CAPACITY

The maximum number of symbols or labels cannot be
specified due to their variable length. However, the fol­
lowing formula may be applied to find the allowable
number of symbols (within -t- 1) for any given source
program.

[

e-5]
K = 2:: Le (8 + 2e)

e=l

e = number of characters in label

Le = number of labels of length "e"

L(j = number of six-character labels

K = the storage capacity of the symbol table. K can
have a maximum value of:

Card
Paper Tape

1620 SPS III

1980
2715

1620-1443 SPS III

1783
2120

for 1620 Systems with 20,000 positions of core storage.
K should be increased by 20,000 or 40,000 when the
assembling system is equipped with 40,000 or 60,000
positions of storage, respectively.

Paper Tape Processor Program

The paper tape processor program accepts input for the
first pass in either paper tape form or directly from the
typewriter, depending upon the setting of the program
switch. If the typewriter is used to enter the source
statements, the processor produces a source program
tape to be used as input for the second pass.

When subroutines are used in the source program,
the subroutine program paper tape must follow the
source program as input for the second pass.

Output from the secbnd pass may include an object
program tape andlor a typewriter listing. Error mes­
sages indicating errors in the source program are typed
out during Pass 1 or Pass 2. The programmer has the
option of correcting these errors either as indicated or
after assembly is finished.

Make-up of Output Tap~

The output .tape produced by Pass 2 contains the as­
sembled machine language instructions, constants, and
other data that are part of the object program. Loading
instructions appear. at the beginning of the object tape
followed by the object program, selected subroutines,
and multiplication and addition tables (condensed

54

form) in that order. A complete self-contained program
tape is produced, ready to be entered in the 1620.

Card Processor
Input may be from cards or the typewriter. If the type­
writer is used, a source program card deck is punched
as output for Pass 1. This card deck becomes the input
for Pass 2. Error messages are typed out for both passes.
AHected statements may be corrected when the mes­
sage is noted or at the completion of Pass 2 after all
messages have been recorded.

The input for Pass 2 is the source program deck fol­
lowed by the subroutines, provided they are used. The
typewriter output from this pass may consist of the
object program with error messages, or error messages
only, as determined by the program switch setting.

An object program card deck is produced in con­
densed form or uncondensed form, depending upon
the setting of the program switches. The condensed
card contains up to five machine language instructions,
thus requiring fewer cards than the un condensed ver­
sion, which has multiple cards for each statement. Im­
mediately after an uncondensed object deck is obtained
from Pass 2, the programmer can get a condensed deck
by processing the source cards a third time as described
under OPERATING PROCEDURES.

Both the condensed and uncondensed card decks
are complete with loader and arithmetic tables. The un­
condensed deck contains both symbolic and absolute
information, but only absolute data is loaded.

Make-up of Output Deck

The object program is preceded by two loader cards
and followed by seven cards that perform the following:

1. Interrupt the loading sequence of the object pro­
gram.

2. Load the arithmetic tables.
3. Branch to the start of the object program or branch

to a halt.

Uncondensed Obiect Deck Format

The individual card format of each type of statement is
given. The number of cards per statement may range
from one to several, depending on the type of operation
(imperative, declarative, control, macro-instruction,
comments) or type of individual statement. For the
SEND or HEAD statements, no output cards are produced.

Imperative Operation Cards

Card 1. Same as source statement card with the ex­
ception of a:- 0 in column 76 and card number
in columns 77-80.

Card 2. Columns 1-5 page and line number.
6-10 high-order leftmost address

where assembled instruction
is to be stored.

11-22 assembled instruction.
23 =F

63-64 11.
65-69 leftmost address where as­

sembled instruction is to be
stored.

70-74 rightmost address plus one,
where assembled instruction
to be stored.

76 9.
77-80 card number.

Control Operation Cards

DORG,DEND

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77-80.

Card 2. Columns 1-5 page and line number.
6-10 address specified.

76 9.
77-80 card number.

TRA

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77-80.

Card 2. Columns 1-5
6-10

page and line number.
leftmost address where in­
struction is to be stored.

11-22 assembled instruction (first
instruction) .

23 =F
63-64 11.
65-69 leftmost address where in­

struction is to be stored.
70-74 rightmost address plus one,

where instruction is to be
stored.

76 9.
77-80 card number.

Card 3. Same as card 2 (11-22 is second instruction).

TeD

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77-80.

Card 2. Columns 1-5 page and line number.
6-10 address specified.

76 9.
77 -80 card number.

Cards 3-9. Arithmetic tables.
Cards 10-11. Loader program.

Declarative Operation Cards

DS, DSS

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77-80.

Card 2. Columns 1-5 page and line number.
6-10 rightmost address of field.

13-17 field length.
76 9.

77-80 card number.

NOTE: For the DSS operation, columns 6-10 of card 2
contain the leftmost address of the field.

DAS

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77-80.

Card 2. Columns 1-5 page and line number.
6-10 leftmost address plus one, of

field.

DSB

13-17 field length (number of al­
phameric characters).

76 9.
77-80 card number.

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77 -so.

Card 2. Columns 1-5 page and line number.

DSA

6-10 rightmost address of first ele­
ment of array.

13-17 element length.
76 9.

77-80 card number.

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77-S0.

Card 2. NOTE: A card of this type is punched for each
operand.
Columns 1-5

6-10

13-17
lS-22

23
63-64

page and line number.
rightmost address where field
is to be stored.
field length (constant 00005).
the 5-digit field (address
itself) being stored.
=F
Is.

55

DC,DSC

65-69 leftmost address where field
is to be stored.

70-74 rightmost address plus one,
where field is to be stored.

76 9.
77-80 card number.

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77-80.

Card 2. Columns 1-5 page and line number.
6-10 rightmost address where

con'stant is to be stored.
13-17 field length of the constant.

76 9.
77-80 card number.

Card 3. Columns 1-5 page and line number.
6-n the cortstant itself starts in

column 6 and is terminated
by a record mark (=F) in the
first column following the
constant.

63-64 00.
65-69 leftmost address where con­

stant is to be stored.
70-74 rightmost address plus one,

where constant is to be
stored.

76 O.
77-80 card number.

NOTE: For the DSC statement, columns 6-10 of card 2
contain the leftmost address where the constant is to be
stored.

DNB

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77-80.

Card 2. Columns 1-5
6-10

page and line number.
rightmost address where con­
stant (blank) is to be stored.
field length.

Card 3. Columns

56

13-17
76 9.

77-80 card number.
1-5 page and line number.
7-n the numerical blanks (coded

4, 8) start in column 7 and
are terminated by a record
mark (=F) in the first col­
umn following the constant.

63-64 07.
65-69 leftmost address where con­

stant (blanks) is to be stored.

DAC

70-74 rightmost address plus one,
where constant is to be
stored.

76 0
77-80 card number.

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77-80.

Card 2. Columns 1-5 page and line number.
6-10 leftmost address plus one,

where constant is to be
stored.

13-17 field length (number of al­
phameric characters).

76 9.
77-80 card number.

Card 3. NOTE: A constant that contains over 25 char­
acters causes two cards to be punched
in this format. Up to 25 characters
may be punched on each card.

Columns 1-5 page and line number.
6-n the constant itself starts in

column 6 and is terminated
by a record mark (=F) in the
first column following the
constant.

63-64 06.
65-69 leftmost address where con­

stant is to be stored.
70-74 rightmost address plus one

where constant is to be
stored.

76 O.
77-80 card number.

Macro-instruction Cards

Card 1. Same as source statement card with the ex­
ception of a 0 in column 76 and card number
in columns 77-80.

Card 2. Columns 1-5 page and line number.
6-10 leftmost address where first

linkage instruction is to be
stored.

11-22 assembled instruction.
23 =F

63-64 II.
65-69 leftmost address where in­

struction is to be stored.
70-74 rightmost address plus one,

where instruction is to be
stored.

76 9.
77-80 card number.

Card 3. Same as card 2 (second linkage instruction).
Card 4. NOTE: A card of this type is punched for each

operand.
Columns 1-5 page and line number.

6-10 leftmost address where field
is to be stored.

13-17 field length (constant 00005).
18-22 the address itself (5-position

field) to be stored.
23 =F

63-64 18.
65-69 leftmost address where field

is to be stored.
70-74 rightmost address plus one,

where field is to be stored.
76 9.

77-80 card number.

Comments Cards

Card 1. Same as source statement with the exception
of a 0 in column 76 and card number in col­
umns 77-80.

Card 2. A digit 9 in column 76 and card number in col­
umns 77-80.

Listing the Uncondensed Object Deck

Figures 5 and 6 show control panel wiring diagrams
designed for listing an uncondensed object program
on the IBM 407 and on the IBM 407-E8.

Condensed Object Deck Format

Condensed cards are punched as described under the
particular card type.

Figure 5. 407 Control Panel Wiring Diagram for Listing Uncondensed Output

57

Cards Containing Instructions

Columns 1-12
13-24
25-36
37-48
49-60 five instructions.

61 =t= (record mark) .
62 O.

63-64 ill.
65-69 lefbnost address where in­

structions are to be loaded.
70-74 righbnost address plus one,

where instructions are to be
loaded.

76 (Hag only).
77-80 card number.

Cards Containing Constants

Columns 1-61 constants may be from 1 to

60 characters followed im­
mediately by a record mark

(=t=).
62 1.

63-64 01.
65-69 lefbnost address where con­

stants are to be loaded.

70-74 righbnost address plus one,
where constants are to be
loaded.

76 (Hag only).
77-80 card number.

Figure 6. 407 -E8 Control Panel Wiring Diagram for Listing Uncondensed Output

58

Condensed Object Deck Alterations
While testing an object program, it is often necessary
to change or patch some of the original instructions.
To do this, the sps source deck and the condensed deck
must be updated each time an instruction is changed.
If the sps output is an uncondensed deck that is later
condensed, it is necessary to update three card decks
(the source, uncondensed, and condensed decks). The
procedure described here provides an orderly, rapid,
and accurate means of correcting the source program.

Patch Card and Coding Sheet

When an instruction requires correction, the corrected
machine language instruction as well as the sps coding'
should be recorded on a patch coding sheet. The coding
sheet shown in Figure 7 or a similar coding sheet can
be used for this purpose. Each entry on the coding
sheet is punched into a prepunched patch card. The
prepunched data is arranged on the patch card as fol­
lows:

Columns 13 =l= (0, 2, 8 punches)
62-65 Oi)I-

70 - (flag only)

Instruction in
Mlchine Language OP

Page Line Label Code

Column 1-12 14-15 16-18 19-24 25-28

One Instruction Per Card

SPS

75 blank
76 0
77 9

Use of Patch Cards

Patch cards are placed in front of the last seven cards
of the condensed object deck but no cards are removed
or changed. The condensed object deck is loaded in the
same manner as it was before the patch cards were
added.

Corrections to the Source Program

After the object program is tested, the source program
deck can be corrected by selecting patch cards with a
code 9 in column 77 from the object deck. Card col­
umns 14 through 61 in the selected cards should be
reproduced into columns 1 through 48 of blank cards.
The reproduced cards should then be inserted in page
and line number sequence into the source program
deck, and the cards that are being replaced should be
discarded.

Patch cards may then be returned to the condensed
object deck or the source deck may be reassembled to
produce a new object deck.

Actual
Actual Machine

Operands
Machine Location Patch
Location +12 Number

29-61 65-69 70-74 78-80

Patch Cards Are To Be Placed In Front Of The Last Seven Cards Of The Condensed Deck.

Figure 7. Patch Card Coding Sheet

59

Operating Procedures

This section describes the procedures to be followed
when using the 1620 SPS III Processor.

Switches
Both the Parity switch and the I/O switch should be
placed in the STOP position, and the Overflow switch in
the PROGRAM position. Program switches for controlling
the processor should be set as outlined in Table 13.
Note. the different functions of the Program switches
during the "Loading Processor - Pass 1 - Pass 2 -Post
Assembly" phases.

Program Switch 1

The processor is set up to punch the add table (re­
quired for Model Is only) in the object program under
control of Program Switch 1. Switch 1 is interrogated
when the processor is being loaded, and, if the switch
is off, the add table will be punched in the object pro­
gram. If Program Switch 1 is on during loading of the
processor, the add table will not be included in the
object program. This option enables the 1620 Model 2
user to load programs (even with TRA-TCD operations)
without loading over the area of the index registers.
During loading, the message

1620 SPS III, MODEL 1

or

1620 SPS III, MODEL 2

is typed depending upon the setting of Program switch
1.

Loading the Processor
(a) Card system

1. Depress the console Reset key.
2. Set Program switch 1 to the desired setting.
3. Place the processor deck in the read hopper.
4. Depress the Load key. .

(b) Paper Tape System
1. Thread the processor tape on the paper tape

reader.
2. Depress the Reset and Insert keys.
3. Set Program switch 1 to the desired setting.
4. Enter 360000000300 from the typewriter.
5. Depress the R-S key.

60

Table 13. 1620 SPS III Program Switch Settings

SWITCH POSITION
NO. ON OFF

LOADING 1 No add table wi II Add table wi II be
PROCESSOR be punched in ob- punched in ob-

ject program. ject program.

2,3,4 Not used.

PASS 1 1 Input is from the Input is from
card reader or paper typewriter.
tape reader.

2 The machine stops Processing con-
after an error mess- tinue$ after error
age has been typed message is typed,
so that corrected but error is ad-
statement can be justed as describ-
entered at the type- ed under ERROR
writer. CORRECTIONS.

3 Not used.

4 Turn on to correct r- ~then off, and re-
typing error made enter the entire
while entering a statement at the
statement, and de- typewriter. Leave
press R-S key,- off when assembl-

ing program.

PASS 2 1 The source statement No listing is typed
and assembled in-
struction is typed
out.

2 Same as Pass 1 Same as Pass 1

3 a. For card process- For the card pro-
or, when the object censsor, when the
program is to be in obtct program is
condensed form. to e in unconden-
b. Must be on for sed form.
editing.

4 a. No object pro- The object pro-
gram will be punch- gram is punched.
ed. b. Must be on
for editing.

POST 4 Symbol table is not Symbol table is
ASSEMBLY listed. listed.

NOTES:
1. If listing and/or uncondensed output has just been obtained,

set switch 3 ON to obtain condensed deck (re-enter source
input).

2. If edit just completed, set switch 4 OFF to obtain condensed
deck (re-enter source input).

3. T a re-enter Pass 1, turn switch 3 OFF (set switches 1, 2, and
4 also, and load source input).

Upon completion of loading, 48 will appear in the
Operation Register.

While the processor is being loaded, the size of the
assembling machine is determined by programming.

The size of the object machine is set to the same size
as that of the assembling machine. When the processor
is used on a system with more than 20,000 positions of
core storage, the additional storage allows a larger area
for source program labels and their assigned addresses.

Processing the Source Program
The processor is ready to start the assembly process as
soon as the processor has been loaded.

Pass 1
(a) Card Input:

1. Place program source deck in card reader
hopper.

2. Depress Reader Start key.
3. Set Program switches (see Table 13).
4. Depress the console Start key.

(b) Paper Tape Input:
1. Thread the input tape (source program).
2. Set Program switches (see Table 13).
3. Depress the console Start key.

(c) Typewriter Input:
1. Thread blank tape on tape punch or place

blank cards in card punch and depress the
Punch Start key (see NOTE below).

2. Set Program switches (see Table 13).
3. Type the source statement and follow it with

a record mark.
4. Depress the R-S key (repeat steps 3 and 4

until all statements have been processed).
At the completion of Pass 1, the message "END OF

PASS I" is typed out and the program halts. The proc­
essor is ready to begin Pass 2.
NOTE: Source statements entered on the typewriter
during Pass 1 are outputted on paper tape if the tape
processor is being used or outputted to cards if the
card processor is being used. This output then becomes
the input for Pass 2.

Pass 2

(a) Card Input:
1. Place program source deck in the card reader

hopper.
2. Place blank cards in the punch hopper.
3. Depress the Reader Start key and Punch

Start key.
4. Set Program switches (see Table 13).
5. Depress console Start key.

(b) Paper Tape input:
1. Thread the input tape (source program) on

the paper tape reader.
2. Thread blank tape on the paper tape punch.

3. Set Program switches (see Table 13).
4. Depress console Start key.

When Pass 2 is completed, the message

LOAD SUBROUTINES

will be typed out if subroutines are required by the
source programs (see LOADING SUBROUTINES). If subrou­
tines are not required, the message

END OF PASS II

is typed out. At the end of this message the symbol
table is typed out if Program switch 4 is off.

Typewriter Output

With Program switch 1 ON during Pass 2, the typewriter
types each statement starting at the left margin. After
the last character of each statement is typed, the type­
writer carriage returns and tabulates into position for
typing the storage address and assembled instruction.
Statements are typed in the format in which they are
entered; however, a space is inserted before and after
the operation field.

To set up the typewriter, the operator must:

1. Set margins to the extreme right and left positions.
2. Set a single tab stop at least 21 spaces to the left

of the right margin.

Symbol Table Typeout Format

When the symbol table is typed, the labels and their
aSSigned addresses are typed five to a line. The fonnat
of each address and label is as follows:

Assigned
Address Label
~~
xxx xx xxxxxx

or

xxxxx 0-xxxxxx

where the leftmost position of the label contains the
head character. Any true 6-character label is indicated
by an asterisk in the leftmost position next to the 6-char­
acter label.

The symbol table typeout may be suppressed by
turning Program switch 4 to the ON position when the
message

END OF PASS II

is being typed, or during the typeout of the symbol
table.

61

Condensed Obiect Deck

A condensed object deck can be obtained during Pass 2
of the card processor by having Program switch 3 in the
ON position and switch 4 in the OFF position. If uncon­
den sed output is obtained during Pass 2, condensed
output can also be obtained (without reloading the
processor) by:

1. Setting Program switch 3 to the ON position.
2. Placing the program source deck in the card

reader· hopper.
3. Depressing the Reader Start and Punch Start keys.
4. Depressing the console Start key.

Loading Subroutines

Subroutines must be loaded after the message

LOAD SUBROUTINES

is typed out. Only those subroutines used by the object
program are punched out as part of the object program.
To load subroutines from Paper Tape input:

1. Thread the subroutine tape.
2. Depress the console Start key.

Card Input:
1. Place the subroutine card deck in the card reader

hopper.
2. Depress the Reader Start key.
3. Depress the console Start key.
Errors that occur while the subroutine deck (or

tape) is being processed cannot be corrected by man­
ual intervention because any information inserted in
locations 00000 through 00099 will result in erroneous
address modification.

If the subroutine being processed is a variable man­
tissa length subroutine, the message

ENTER MANTISSA LENGTH

is typed and the program halts. The operator enters
the two-digit number from the typewriter. The range
of the number to be entered is from 02 to 45. If no num­
ber is entered, the mantissa length is automatically
set to 08. The R-S key must be depressed to continue
processing. Table 10 shows the identification numbers
and storage requirements for the subroutines provided
with SPS III and SPS III for Printer. The identification
number is punched in column 77 of the subroutine card
decks and is punched in the leader of the subroutine
tapes. Subroutine secondary linkages are typed out
(printed with 1630-1443 SPS III) as the subroutines
are added to the object deck.

After the subroutines are processed, the message

END OF PASS II

is typed out.

62

Editing the Source Program
When a large program is to be assembled, the operator
ma y choose to perform an edit operation prior to actual
assembly of the object program. During the edit oper­
ation, error messages are typed out for Passes 1 and 2,
no listing is typed, and no object program is punched.
For this reason, edit data may be obtained in less time
than is required for normal assembly. The error listings
from the operation enable the programmer to correct
the program prior to assembling the object program.

The operating procedures are the same as those for
passes 1 and 2 described for a normal assembly except
that Program switches 3 and 4 (see Table 13) must be
on during Pass 2. '

Error Messages
The error message codes that might be typed out on the
typewriter during Pass 1 and/or Pass 2 of an assembly
are listed in numerical sequence.

Error
Message
Code

ER1

ER2

ER3
ER4

ER5

ER6
ER7

ER8

Description of Error

A record mark is in the label or operation
code field.

For address adjustment, a product greater
than ten digits has resulted from a multi­
plication.

An invalid operation code has been used.
A dollar sign, which is being used as a HEAD

indicator, is incorrectly positioned in an
operand.

1. A symbolic address contains more than
six characters.

2. An actual address contains more than five
digits.

3. An undefined symbolic address is used in
an operand.

4.' A HEAD ($) character is improperly speci­
fied.

5. More than six characters precede the
number in the index register field.

6. Improper position of left or right index
register parenthesis.

7. Index register > 7 specified.
8. Non-numeric index register specified.
A DSA statement has more than ten operands.
A DSB statement has the second operand
missing.
1. A DC, DSC, DAC, or DNB has a specified

length greater than 50.
2. A DC, DSC, or DAC statement has no con­

stant specified.

ERg

ERIO

ERII

ERI2

ERI3

ERI4

3. A DC, or DSC has a constant which has a
greater number of digits than its specified
length.

4. A DAC statement has a specified length
not equal to the number of characters in
the constant itself.

The symbol table is full.

A duplicate label is defined (defined more
than once).

An assembled address is greater than five
digits.

An invalid special character is used as a
head character in a HEAD statement.

A HEAD statement operand contains more
than one character.

An invalid special character is used in a
label. The eight invalid special characters
are: "blank) +$0_, (". An all-numerical
label is also invalid.

Error messages are in the following form:

LABEL
adjustment

count

XXXXXX + XXXX

error
code

ERn

Where LABEL refers to the last defined label and the
"adjustment count" refers to the number of statements
between the label and the statement in error. If the first
statement of a source program contains the label START,

and the second statement has an error "ER1," the fol­
lowing message will be typed:

START + 0001 ER1

If the second statement has the label XYZ, the mes­
sage still would appear as START + 0001, not as XYZ +
0000.

The messages will appear in the form just shown
during Pass 1 or Pass 2, if Program switch 1 is off. If
Program switch I is on during the second pass, only
the error code "ERn" will be typed opposite the state­
ment in error, at the right-hand side of the page.

Error Correction

Each erroneous statement can be corrected individu­
ally after the error message is typed and the machine
is halted or all statements containing errors can be cor­
rected after the object program is assembled. If there
are few errors, the first procedure may be advisable;
where there are many errors, it is advisable to correct
the source deck at the end of the run and reassemble
the program.

Some errors in source statements entered from cards
or tape on Pass I are detected again during Pass 2.
Therefore, they must be corrected twice. If errors in
source statements entered from the typewriter on Pass
1 are corrected, they do not have to be corrected dur­
ing Pass 2, since the output of Pass I becomes the input
to Pass 2 and contains the corrected statement.

Program Switch 2 On

With Program Switch 2 on, the processor stops after
typing the error message and the carriage returns. The
operator enters the corrected statement and depresses
the R-S key.

Program Switch 2 Off

With Program Switch 2 off, the processor does not stop
for an error; however, errors can be corrected after as­
sembly. Errors affect the assembly process as indicated
in the following list.

Error
Code

EH1, ER3

ER2, ER4,
EH11

ERS

EB6

EB7

ER8

ERg, ERIO,
ER14

ER12

ER13

Assembly Process

A NOP instruction (410000000000) is as­
sembled.

The label is treated as a blank.

The operand is assembled as 00000
(zero) address.

1-6. The operand is assembled as an ab­
solute 00000.

7, 8. Operand is assembled, but no index
register flags are set.

The first ten operands are assembled;
those over ten are ignored.

The statement is assembled in the same
manner as a DS statement with a length
of 50.

H the operation code is;
DC - it is assembled in the same manner

as a DS statement with a length of 50.
DSC - it is assembled in the same manner

as a DSS statement with a length of 50.
DAC - it is assembled in the same manner

as a DAS statement with a length of 50.
DNB - it is assembled as a DNB with a

length of 50.

The label is treated as blank.

The head character is replaced by a blank
character.

The first non-blank character specified in
the operand is used as the head char­
acter.

63

1620-1443 SPS III

1620-1443 SPS III is a printer-oriented version of the
1620 SPS III previously described in this manual. IBM

1620-1443 SPS III contains mnemonics for printer opera­
tion codes; during assembly, the source statements
and assembled instructions can be listed on the printer.
The printer instructions and unique mnemonics are
given in the following examples. The programmer need
not be concerned with the actual Q-address modifiers
when coding with the SPS language.

>

Examples

label p.-.. ." Operands & R.mar •• . 1112 1516 ,. H)0 lS 40 .s 50 " ..
P.RN. p,ArA. P/lINT NUll.£R/CALL,Y,

PR,N,s DA,TA •.• , PRI,H,T NIJIfIRIC.A.lLy~/a) SUPPRESS SP}l,CI/'I,G

SKU 2~ •• SJ(.IP, IJfltf.EP.I.A,Ti T.O CA,R,RIAlU, C,JI,AHNlL 2,

S,KAP .5, ,,,j.~/P, AFT.E..R PRINTING T.O CA,R.lVA,G£ CHII.Nfl,EL 5.

3P.JM ,,3, "Jr10 VE C "RIll A G,E. J .5.PA.C£s,.J /'(1(£ DI II T.£

S.PAP ,3, "H.O,V,£ C.ARR.I,A.GE J. jPACES AFTER P~I NTI/!.,G

The operand DATA represents the storage address of
data to be printed, the operand control codes (2,5, .3, 3)
are taken from Tables 14 and 1.5 for carriage skipping
and spacing, respectively.

Operating Procedures
Only the operating procedures and messages that are
different from those descrihed for 1620 SPS III are given
in this section.

During loading of the 1620-1443 SPS III processor pro­
gram, the message

1620 SPS III FOR PRINTER, MODEL 1

or

1620 SPS III FOR PRINTER, MODEL 2

is typed out at the console typewriter, depending on
the setting of Program Switch 1. Switch 1 should be
set to the ON position if the object program is to be
executed on a 1620 Model 2; Switch 1 should be set to

64

Table 14. Carriage Skip Operations (Q Address) Control
Codes

ACTUAL 010 011 MODIFIERS

AFTER PRINTING
CONTROL CODES IMMEDIATE (DELAY)

Skip to Channel 1 71 41

2 72 42

3 73 43

4 74 44

5 75 45

6 76 46

7 77 47

8 78 48

9 79 49

10 70 40

11 33 03

12 34 04

the OFF position if the object of the program is to he
executed on a 1620 Modell.

\Vith Program Switch 1 on during Pass 2, the state­
ments and assembled instructions are printed on the
144.3 Printer. The assembled instruction is printed start­
ing at the left margin and the source statement is print­
ed to the right of the assembled instruction. Statements
are printed in the same format as they are entered ex­
cept that spaces are inserted between the mnemonic
and P operand, and between the P and Q operands to
aid in the readability of the listings.

Output Change

Only a condensed object deck (or tape) can he ob­
tained from 1620-1443 SPS III. The list deck or "one­
instruction-per-card" output is not produced since the
listing can be obtained during the processing of the
source program.

Symbol Table Listing

At the conclusion of Pass 2, the symbol table can be
listed on the printer. The labels and their assigned ad-

Table 15. Carriage Space Operations (Q Address) Control
Codes

ACTUAL 010 Q 11 MODIFIERS

AfTER PRINTING
CONTROL CODES IMMEDIATE (DELAY)

Number of Spaces 1 51 21

2 52 62

3 53 63

dresses are printed five to a line in the same format as
that described for SPS III.

Error Messages

All error messages are still typed out on the typewriter
for the convenience of the operator. The only descrip­
tion for error messages that changes is that for ER2.
The description is expanded to include «printer con­
trol operation code was improperly specified." With
Program switch 2 off, the Q operand is assembled as
00900.

Table 16 shows the Program Switch settings for 1620-
1443 SPS III.

Printer Operation

To set up the printer, the operator must:
1. Prepare a carriage control tape with punches in

channell where printing is to start and channel 12
where printing is to stop on the page. Place the
tape on the carriage tape drive.

2. Put forms in the printer and adjust forms so that
the print bar is set where printing is to begin on
the page.

3. Disengage the carriage clutch and depress the
Carriage Restore key to position the carriage tape
at channelL

4. Engage the carriage clutch and depress the Printer
Start key.

Table 16. 1620-1443 SPS III Program Switch Settings

SWITCH POSITION

NO. ON OFF

LOADING 1 No add table will Add table will be
PROCESSOR be punched in ob- punched in object

ject program. program.

2,3,4 Not used.

PASS 1 1 Input is from the Input is from type-
card reader or pape writer.
tape reader •

2 The machine stops Processing continues
after an error mess- after error message
age has been typed, is typed, but error
so that corrected is adjusted as des-
statement can be cribed under ERROR
entered at the type- CORRECT IONS.
writer .

3 Not used.

4 T urn on to correct ~hen off, and re-
typing error made enter the entire
while entering a statement at the
statement, and typewriter. Leave
depress R -S key, off when assembling

program.

PASS 2 1 The source state- No listing is
ment and assembled printed.
instruction is print-
ed.

2 Same as Pass 1 Same as Pass 1

3 Not used.

4 a. No object pro- The ob ject program
gram will be punch- is punched.
ed. b. Must be
on for editing.

POST 4 Symbol table is Symbol table is
ASSEMBLY not listed. listed.

NOTES:
1. After Pass 2 is completed, a 48 appears in the operation register.

Depression of the Start key sends control to Pass 1 again.

65

Index

Page

Add (A) instruction " 16
Add Immediate (AI) instruction " 16
Adding macro-instructions to processor 46,47
Adding subroutines " 44, 46
Address Adjustment 8
Addresses

actual ... " 7
asterisk. .. 7
symbolic. 7

Alpha. '" " , , , '" ., '" 48
AND to Field (ANDF) instruction " 17
Any Data Check code " 19
Arithmetic instructions 16
Arithmetic subroutines " 30
Asterisk (special character) 4
At(@)sign (special character) 6

Backspace Typewriter (BKTY) instruction 24
Beta .. 48
Blank

special character .. 5
defining (DNB) 14

Branch and Load Index Register
Immediate (BLXM) instruction " 21

Branch and Load Index Register
(BLX) instruction 21

Branch and Store Index Register
(BSX) instruction " 21

Branch and Transmit Address
Immediate (BTAM) instruction 20

Branch and Transmit Address
(BT A) instruction 20

Branch and Transmit (BI) instruction 20
Branch and Transmit Floating

instruction (BTFL) 20
subroutine (BTFS) " 40

Branch and Transmit Immediate
(BTM) instruction 20

Branch and Select Band A (BSBA) instruction 20
Branch and Select Band B (BSBB) instruction " 20
Branch Conditionally, Modify Index

Register (BCX) instruction " 20
Branch and Modify Index Register (BX) instruction " 20
Branch and Modify Index Register

Immediate (BXM) instruction .. 20
Branch and Select' (BS) instructions 20
Branch and Select Indirect Addressing (BSIA) instruction .. 20
Branch and Select No II A (BSNI) instruction " 20
Branch and Select No Index Register (BSNX) instruction .. 20
Branch Any Data Check (BA) instruction " 18
Branch Back (BB) instruction 20
Branch Band A Not Selected (BANS) instruction 19
Branch Band A Selected (BBAS) instruction 18
Branch Band B Not Selected (BBNS) instruction. 19
Branch Band B Selected (BBBS) instruction 18
Branch Conditionally, Modify Index Register

Immediate (BCXM) instruction , 21

66

Page

Branch Console Switch instructions
(BCl, BC2) 18
(BC3, BC4) 19

Branch Either Band Selected (BEBS) instruction. 19
Branch Exponent Check (BXV) instruction 19
Branch Equal (BE) instruction 18
Branch High (BH) instruction .. 18
Branch Indicator (BI) instructions 18

indicator codes summary , 21
switch codes summary .. 21

Branch Instructions. .. 18
Branch Last Card (BLC) instruction 19
Branch Low (BL) instruction 19
Branch Negative (BN) instruction , 19
Branch Neither Band Selected (BNBS) instruction 18
Branch No Flag (BNF) instruction , 18
Branch No Group Mark (BNG) 18
Branch No Indicator (BNI) instruction 19

indicator codes summary , 21
switch codes summary 21

Branch No Overflow (BNO) instruction 19
Branch No Record Mark (BNR) instruction 18
Branch Not Any Data Check (BNA) instruction. '" .. , ... 19
Branch Not Equal (BNE) instruction 19
Branch Not Exponent Check (BNXV) instruction 20
Branch Not High (BNH) instruction. 19
Branch Not Last Card (BNLC) instruction 19
Branch Not Low (BNL) instruction 18
Branch Not Negative (BNN) instruction , 18
Branch Not Positive (BNP) instruction. 19
Branch Not Zero (BNZ) instruction 19
Branch on Bit (BBI) instruction 21
Branch on Channel 9 (BCH9) instruction. 19
Branch on Channel Overflow (BCOV) instruction. 19
Branch on Digit (BD) instruction .. 18
Branch On Mask (BMK) instruction , 21
Branch Overflow (BV) instruction .. 18
Branch Positive (BP) instruction 18
Branch Zero (BZ) instruction , 18

Card Input .. , 61
Carriage Control Codes, printer .. 65
Clear Flag (CF) instruction .. 26
Coding Sheet 1,2
Comma (special character) 4
Compare (C) instruction. .. 18
Compare Immediate (CM) instruction 18
Complement Octal Field (CPLF) instruction 17
Condensed object deck

format ... 57
alterations 59
how to·obtain 62

Control Codes
input/output instructions 25
carriage, printer .. 64

Control (K) instruction ., .. 24
Control Statements

DEND .. 25

Page
DORG .. 22
HEAD .. 27
SEND .. 26
TRA .. 28
TCD .. 28

Core storage layout 53

Data transmission subroutines 30
Declarative operations

card format 55
codes ... 10
functions .. 10

Decimal to Octal Conversion (DTO) instruction " 17
Define Alphameric Constant (DAC) statement 13

output card format .. 56
Define Alphameric Symbol (DAS) statement 11

output card format .. 55
Define Constant (DC) statement .. 11

output card format 56
Define END (DEND) statement. .. 25
Define ORIGIN (DORG) statement 22
Define Numerical Blank (DNB) statement 14

output card format .. 56
Define Special Constant (DSC) statement 12

output card format .. 56
Define Special Symbol (DSS) statement 11

output card format " 55
Define Symbol (DS) statement .. 10

output card format 55
Define Symbolic Address (DSA) statement 13

output card format " 55
Define Symbolic Block (DSB) statement , 14

output card format .. 55
Divide instruction (D) 16
Divide Immediate (DM) instruction , 16
Divisor, positioning of 38
Dollar sign (special character) 6
Dump Numerically (DN) instruction 23
Dump Numerically Card (DNCD) instruction , 23
Dump Numerically Paper Tape (DNPT) instruction 23
Dump Numerically Typewriter (DNTY) instruction 23
Duplicate Symbols (labels) 27

Editing source programs 62
End-of-line character 5
Equal sign (special character) .. 3
Error Correction 63
Error Messages

processor .. 62
subroutine 43,44

Evaluation of arguments (subroutines) 29
Exclusive OR to Field (EORF) instruction " 17
Exponent, defined .. 33

Field '. 2
Flag indicator operand .. 6
Floating Add

instruction (F ADD) 16
subroutine (FA) 36

Floating Arctangent subroutine 41
Floating Cosine subroutine 41
Floating Divide

instruction (FDIV) .. 16
subroutine (FD) .. 37

Floating Exponential (Base 10) subroutine 42

Page
Floating Exponential (Natural) subroutine 42
Floating Logarithm (Base 10) subroutine 43
Floating Logarithm (Natural) subroutine 42
Floating Multiply

instruction (FMUL) 16
subroutine (FM) 36

Floating Point Arithmetic .. 32
Fixed Point Divide subroutine .. 37
Floating Shift Left

instruction (FSL) 17
subroutine (FSLS) 39

Floating Shift Right
instruction (FSR) 17
subroutine (FSRS) 38

Floating Sine subroutine .. 40
Floating Square Root subroutine .. 40
Floating Subtract

instruction (FSUB) 16
subroutine (FS) 36

Format, output
condensed 57
patch card 59
uncondensed 54

Functional subroutines " 30

Halt (H) instruction .. 26
Header card format, subroutine .. 44
Heading (HEAD) statement .. 27
Heading line, coding sheet .. 2

Immediate-type instructions .. 6
Imperative statements. .. 14
Index Registers ,.................... 9
Index Typewriter (IXTY) instruction 34
Indicator codes

(branch instructions) 21
Indirect addressing 30
Input and Output Unit Codes

Table 7 " , , 25
Input and Output Statements 22-25
Internal Data Transmission statements 16, 17

Label, coding sheet 3
Library change card .. 46
Line number, coding sheet. .. 2
Linkages, subroutine 48
Load Dividend Immediate (LDM) instruction 16
Load Dividend (LD) instruction 16
Loading the processor .. 60
Location assignment counter .. 10, 15
Logic statements 17-21

Machine requirements iv
Macro-instructions, subroutine .. 30
Mantissa

defined " 33
entering length 62

MAR Check Indicator code '" .. 21
Mask Digit operand 6
Miscellaneous statements 22, 26
Messages

processor .. 62
subroutine 43, 44

Move Address (MA) instruction .. 17
Move Flag (MF) instruction .. 26

67

Page

Multiply Immediate (MM) instruction 16
Multiply (M) instruction. .. 16

N digit " 33
No Operation (NOP) instruction " 26
Normalized, defined 33

Object deck
condensed 57
uncondensed 54'

Object program .,. .. 1
Octal to Decimal Conversion (OTD) instruction " 17
Operands and Remarks, coding sheet " 3
Operands

Flag .. , , ... , ' , 6
Immediate (Q operand) 6
Mask Digit 6
Modification .. 9, 49

Operating procedures
1620 SPS III 60
1620-1443 SPS III .. 64

Operation code field, coding sheet .. 3
OR to Field (ORF) instruction .. 17
Output Unit Codes 25
Overflow, exponent 34

Page number, coding sheet .. 2
Parenthesis (special character) 5
Paper tape input .. 61
Patching source programs .. 59
Period (special character) 3
Pick, subroutine 31,35

bypassing .. 49
functions 48
address equivalents .. 49

Print Alphamerically (PRA) instruction 24
Print Alphamerically and Suppress Spacing

(PRAS) instruction " 24
Print Numerically and Suppress Spacing

(PRNS) instruction 23
Print Numerically (PRN) instruction 23
Printer Dump and Suppress Spacing (PRDS) instructions ... 23
Printer Dump (PRD) instruction .. 23
Printer Operation '. 65
Processor Control statements

DEND .. 25
DORG 22
HEAD .. 27
SEND .. 26
TRA .. 28
TCD .. 28

Processor program
1620 SPS III .. 52
1620-1443 SPS III " 64

Product area 37
Program switch settings

1620 SPS III .. 60
1620-1443 SPS III 65

Q address, disk instructions .. 25
Quotient address ., .. 37

Read Alphamerically Card (RACD) instruction , 24
Read Alphamerically Paper Tape (RAPT) instruction 24
Read Alphamerically (RA) instruction 23

68

Page

Read Alphamerically Typewriter (RA TY) instruction 24
Read Binary Paper Tape (RBPT) instruction 24
Read Numerically Card (RNCD) instruction 23
Read Numerically Paper Tape (RNPT) instruction. 23
Read Numerically (RN) instruction 23
Read Numerically Typewriter (RNTY) instruction , 23
Record Mark .. 12
Return Carriage Typewriter (RCTY) instruction 24

Secondary linkage format .. 48
Set Flag (SF) instruction .. 26
Skip After Printing (SKAP) instruction , 24
Skip Immediate '(SKIP) instruction 24
Slash (special symbol) 3
Source program

assembling .. 61
card .. 3
defined '" , , , .. 5
editing .. 62
patching (altering) of .. 59

Space After Printing (SP AP) instruction 2.5
Space Immediate (SPIM) instruction , 2.1)
Space Typewriter (SPTY) instruction 34
Special characters

Asterisk ... 4
At @ sign " 6
Blank ... 5
ComIna ,........ 4
Dollar sign .. 6
Equal sign .. 3
End-of-line character , 5
parenthesis .. 5
period , '" .. , .. ' . " , 3
slash. .. 3

Special END (SEND) statement .. 26
Statement writing , 4
Statements,

Control .. 22
Declarative 10, 15
IInperative , 14

Arithmetic 14, 16
Internal Data Transmission 16, 17
Input and Output 22-25
Logic. .. 17-21
Miscellaneous 22,26

Storage layout, processor .. 52, 53
Subroutines

Adding
to card .. 44
to paper tape , 46

Arithmetic 30
Data Transmission 30
Error Messages 43, 44
Functional 30
Header card format , 44
Library change card , 46
Linkages .. 48
Macro-instructions 30
Sample , , '" 45
Storage requirements 35
Trailer card format 45
Writing ... 48

Subtract Immediate (SM) instruction , 16
Subtract (S) instruction .. 16

Page

Symbol table .. 52
capacity ... 54
listing ... 64

Tabulate Typewriter (TBTY) instruction 34
Tape Modifier program 46
Trailer card format, subroutine 45
Transfer Control and Load (TCD)

instruction 28
card format 55

Transfer Numerical Fill (TNF) instruction 17
Transfer Numerical Strip (TNS) instruction 17
Transfer to Return Address (TRA)

instruction 28
card format 55

Transmit Digit (TD) instruction .. 17
Transmit Digit Immediate (TDM) instruction 17
Transmit Field (TF) instruction .. 17
Transmit Field Immediate (TFM) instruction 17
Transmit Floating

instruction (TFL) 17
subroutine (TFLS) 39

Page

Transmit Record (TR) instruction .. 17
Transmit Record No Record Mark

(TRNM) instruction 17
Typewriter input 61

U ncondensed output .. 54
Underflow, exponent 34

Variable lenth, defined .. 29
Variable length mantissa subroutine 29

Wiring diagrams for 407 listing of object programs 57, 58
Write Alphamerically Card (W ACD) instruction 24
Write Alphamerically Paper Tape (W APT) instruction 24
Write Alphamerically Typewriter (W A TY) instruction 24
Write Alphamerically (W A) instruction 24
Write Binary Paper Tape (WBPT) instruction 24
Write Numerically Card (WNCD) instruction , 23
Write Numerically Paper Tape (WNPT) instruction 23
Write Numerically Typewriter (WNTY) instruction 23
Write Numerically (WN) instruction 23
Writing subroutines 48

69

C26·5793·0

Intarnational BU.inaaa Machinea Corporation
Data Procaasing Diviaion
112 East Past Road, White PlaiDs, N. Y. 10601

84

