File Number 1130-36
Form Y26-3714-0

Program Logic

IBM 1130 Disk Monitor Programming System, Version 2
Program Logic Manual

Program Numbers
1130-05-005
1130—05—006

This publication describes the internal logic of the IBM 1130 Disk
Monitor Programming System, Version 2, The contents are intended
for use by persons involved in program maintenance, and for system
programmers who are altering the program design. Program logic
information is not necessary for the use and operation of the program;
therefore, distribution of this manual is limited to those who are
performing the aforementioned functions.

Restricted Distribution

PREFACE

This publication is composed of four parts. Part 1
is a description of each of the components of the
monitor system. Sections of Part 1 are devoted to:

System Communication areas
System Loader

Cold Start Programs
Resident Monitor
Supervisor

Core Image Loader

Core Load Builder

Disk Utility Program (DUP)
Assembler Program
FORTRAN Compiler
System Library
Stand-alone Utilities

Each description includes a discussion of the logical
structure and functional operation of the component,
table formats, and core storage layouts.

Part 2 is a description of the techniques and pro-
cedures for use by personnel involved in system
maintenance andﬁ)r modification during error diag-
nosis and program analysis.

Part 3 is the flowcharts for the monitor system
components described in Part 1.

Part 4 is the appendices provided to support
Parts 1 through 3.

RESTRICTED DISTRIBUTION: This publication is intended for use
by IBM personnel only and may not be made available to others
without the approval of local IBM management.

First Edition (November 1967)

Specifications contained herein are subject to change from time to
time, Amny such change will be reported in subsequent revisions or
Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com-
ments., If the form has been removed, comments may be addressed
to IBM Corporation, Programming Publications, Department 232,
San Jose, California 95114,

© International Business Machines Corporation, 1967

CONVENTIONS OBSERVED

The following conventions have been observed in this
publication:

1. Numberswritten in the form /XXXX are hexa-
decimal mimbers; numbers written without a
preceding slash (/) are decimal numbers.

2. The diagrims showing the layouts of core storage
are intended to illustrate the contents of core
storage and their relative locations; no exact
representation of size or proportion is intended.

PREREQUISITE PUBLICATIONS

Effective use o this publication requires that the
reader be familiar with the following publications:

IBM 1130 Functional Characteristics (Form A26-5881)

IBM 1130 Input/OQutput Units (Form A26-5890)

IBM 1130 Assembler Language (Form C26-5927)

IBM 1130 Subroutine Library (Form C26-5929)

IBM 1130 Disk Monitor System, Version 2, Program-
ming and Operator's Guide (Form C26-3717)

CONTENTS

SECTION 1. INTRODUCTION ., , ... i.uuvenvnveens 1 Supervisor Control Record Area (SCRA) v i veveeees 22

System Core Dump Program .« s e e o eeoeesosossoees 23
SECTION 2. COMMUNICATIONS AREAS
In-core Communications Area (COMMA) |, v v
Disk-resident Communications Area (DCOM)
Drive- and Cartridge-dependent Parameters

Auxiliary SUPervisor ... eeeereces e oscaasaas 23
Core Layout v o v s s e s e s s oensssssssssssnsnsnss 24

D R A A)

W W ww

SECTION 7., COREIMAGE LOADER .+ e vovevesos 27
Flowcharts ... uv.vinvsesosossssscssncnses 27
SECTION 3. SYSTEM LOADER
Flowcharts
Phase 1 |,
Functions , , , i iiv s v esonsonoennneonnos
Buffers and I/O Areas , , .. uive v vensnonensos
Communication From Phase 1 to Phase 2 , ,

Phase 1 ..ttt ceneaernenecnonssnnneans 27
Phase 2 .. iieevenenvenesrassneroonancens 27
Core Layout 4 eeevseevenessoosocsonsessoos 28
-Debugging/Analysis AidS e v e e v s s e s evessessansss 30

D R A

P T R S O I I T R A A A)

@ 0 6 8 s s e 8 e s e e 8 s a s e et e s s s e e 0 s

© VW YW YW YWY

SECTION 8. CORE LOAD BUILDER. .+ s vesaveessas 33

Phase 2 |, .., .. .veioesneronsasnoensonensasa 10 FlowCharts ¢ v v v e e v evevosesaneaneseoncsnnoseas 33
Functions, Initial Load and Reload ,,,.,.........,. 10 General CommentsSs v v oo s s s o s s soessssoaseseess 33
Functions, Initial LoadOnly, . ., .. v v ev v esee.. 10 Overlay Scheme and Core Layout + s v v e v v eveveesss 33
Functions, Reload Only ., .. vesveeesssorsasss 10 Disk Buffers « . euovoseevvereeceosonceencssss 34
Buffers and I/O Areas + v v v v v vvevevanvasanaass 10 Core Image Buffer (CIB) « e v v o eseaseroveeseoses 34
Subphases . ssouevesnonvssosennssascssass 11 Load Table +uvveveeveoocossssossosensesens 35

Subphase 1 &+ it ereovesnsasessosennsss 11 LOCAL, NOCAL, and FILES Information .. e.¢eeeoss. 35
Subphase 2 . v v v st v eesesnnseososssseneass 11 ISSTable «eveeeeenoveovsnesonossasossoss 35
Subphase 3 .. .v v evevstnrnrareonveanosss 12 Interrupt Branch Table (IBT) + v v evseeseccaseose. 35
Core Layout v v v v essovessseessnenansannsssss 12 Incorporating Programs Into the Core Load «+¢v-0eve. 36
Cartridge Identification SeCtor « « v v o s e e s v avsewses 13 Pass 1 v veseesovevessossosasaseneesens 30
System Location Equivalence Table (SLET)00.... 13 Pass 2 v evveseoevcarersesosesensanssses 36
Reload Table v 4o v v vnsensnoesenssssoseesssss 14 LOCALs and SOCALS e+ e esoossoseoenesosnses 37
Interrupt Level Subroutines (ILSs) v e v evvvveees. 37

SECTION 4. COLD START PROGRAMS . v v e v v oo ooes 15 Transfer Vector (TV) P S A 37
Flowcharts 4 uueeevesoovecroosenossasanaass 15 Linkage to LOCALS ... s v o s esessessseesss 37
Cold Start Loader « v v s e ssosovessacesessssses 15 Linkage to the System Overlays (SOCALs) « o 38
Cold Start Program « o s e s s e s s e sesovsssssesasss 15 DEFINEFILE Table . 4evovsovessoesassossas 39
Core Layout, v v v s s s s s s ssssveasooesssssnssses 15 Phase DesCriptions + . e s s s s s s s s ssssaesssssesss 40
Phase 0 ... ittt innneeennarennenesenaas 40

SECTION 5, RESIDENT MONITOR¢000ve00s. 17 Phase 1 ... nenenonnesnsssssnnsnsaes 40

Flowchartsiesvuevnsonsnsonssnssnsoees 17 Phase 2 ... iiivivenrneorarenransnnnsas 40
COMMA |, ittt esvsessessssnenssannssees 17 Phase 3t ieveeeoconsonnosnnsnnees 41
Skeleton SUPEIVISOT 4 4 v s esevvevenessnssassasss 17 Phase 4 ., . it vevenanssosansnnsnenanss 4l
CALL LINK, CALL DUMP, CALL EXIT Processor ,.,... 17 Phase 5 it it i s eeeoserassasnsensasenss 4l
Error Traps .. v evuveosnosssssansneaneanss 17 Phase 6 .. 4.svveoseoncenosnasssnaseses 42
T 4 Phase 7 44 viuienorenonoansonsonssoanseas 42

Disk I/O Subroutine v v v oo v evesssoossoseossaoas 17 Phase 8 .. ieiiensseencnennorennnonses 42
Phase 9 i i ittt enrnnrransnevnsaass 42
SECTION 6. SUPERVISOR ... cieseeuoseennsosss 19 Phase 10 ., i vt iivenrrvensrnonensonaeass 422
Flowcharts . v uvveeevenensansssesscnssseens 19 Phase 11 ,,........ 42
Monitor Control Record Analyzer - Phase 1 ., .¢.v00so. 19 Phase 12 , ...t iiienniniennnnenennennnns 42
JOB Control Record Processing 4 v v v v o st evossowss 19 Debugging/Analysis Aids .o e v vt e eescnnean 42
System Update Programeeeevsesnseeaeas 20
Other Control Record Processing « e e e v e s v ovsseess 20
XEQ Control Record Processor ~= Phase 2 v v v e v v e v eeses 21 SECTION 9. DISK UTILITY PROGRAM (DUP) 43
XEQ Control Record Processing « « « v o e v e s o000 ooes 21 FlowCharts « o v oo v e vssenastsonnasssonseeness 43
Supervisor Control Record Processing o+ oo esvssoas 21 DUP Operation + e oveenneessssonansssonsass 43
LOCAL/NOCAL Control Record Processing 22 Core Storage Layout . ..o vevvinereeeosnoceoess 43
FILES Control Record Processing « « « o e o s e 0 0 000 s 22 DUP Control RecordS « s v v oo o o 0o v vssosenses

iii

Location Equivalence Table (LET)/Fixed Location

Equivalence Table (FLET)

s e e e

DUP Concatenated Communications Area (CATCO)

DUP Phase Descriptions .« ...
DUP COMMON (DUPCO)

DUP CONTROL (DCTL) .

STORE . . .
FILEQ
DDUMP. . ..

DELETE
DEFINE.
DEXIT

.

N

DUMPLET/DUMPFLET

et e s e

s e e

2501/1442 Card Interface (CFACE)
Keyboard Interface (KFACE) ..
1134/1055 Paper Tape Interface (PFACE)

PRECI
DUP Diagnostic Aids
General
PRECI
STORE

e e e e

SECTION 10. ASSEMBLER PROGRAM

Flowcharts
Introduction

.

Program Operation « « + « o ¢ o«
Assembler Communications Area . .

Overlay Area
Symbol Table .« ...
Intermediate I/O .
Double-Buffering
Phase Descriptions .
Phase 0 « ¢ oo
Phase 1 <o e oo
Phase 1A +. ...
Phase 2 + e vt
Phase 2A .« v s v
Phase 3
Phase 4
Phase 5
Phase 6
Phase 7 ...,
Phase 7A
Phase 8
Phase 8A
Phase 9
Phase 10
Phase 10A
Phase 11 ...
Phase 12 +
ERMSG « oo v
@ARCV ¢ e e s e
@APCV ¢ v e e
Core Layouts « « « « »

.

.

.

“ 4 s s e s s e e e

.

DR R T B

.

D I A A RN R R BT R

.

.

« .

44
45
49
49
51
52
54
55
56
57
57
58
59
60
60
62
63
63
63
63

65
65
65
65
66
66
66
67
67
67
67
67
68
68
68
68
68
68
69
69
69
69
69
69
70
71
71
71
71
71
71
71

iv

SECTION 11
Flowcharts

FORTRAN COMPILER .

DI e)

General Compiler Description . «

Phase Objectives

Core Layout

D A I N]

.

.

D I R N R

FORTRAN Communications Area

Phase Area
String Area

DR R R R R

Symbol Table ..

Statement String

Compilation Errors, .

CompilerI/O v v v v v en e
Fetching Compiler Phases

Phase Descriptions. « « «

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5
Phase 6
Phase 7
Phase 8
Phase 9
Phase 10
Phase 11
Phase 12
Phase 13
Phase 14
Phase 15
Phase 16
Phase 17

Phase 18 .
Phase 19 .

Phase 20
Phase 21
Phase 22
Phase 23

Phase 24 -

Phase 25
Phase 26
Phase 27

SECTION 12.

e s e

.
.
.

SYSTEM LIBRARY

Flowcharts o v v v e v vnovnouas

Contents List

Interrupt Level Subroutines
ILSO2 , vv it v nn e
ILso4ovvnnn

.

Mainline Programs, . v o v v v o v o

Disk Initialization Program (DISC)

Print Cartridge ID (IDENT)
Change Cartridge ID (ID) .
Disk Copy (COPY) o v v v v ™
Delete CIB (DLCIB)
Dump SLET Table (DSLET)

73
73
73
73
75
76
77
77
78
80
81
81
81
82
82
82
83
83
84
84
85
85
86
86
87
88
89
89
90
91
92

SERRE

95
95
96
96
96
96

99

99

99
105
105
105
105
105
106
106
106
107
107

SECTION 13. SYSTEM DEVICE SUBROUTINES

SECTION 14, STAND-ALONE UTILITIES.. ... ¢...
Disk Cartridge Initialization Program (DCIP) ..., ¢ ..
Disk Initialization e e oo v s o v o no oo e oavoson
DiskDUMP v v vt v et vnvvssoonnoeroooasen
Disk COPY 4 v v v e vesnsovosonssossesononsns
UCART 4 ivvs vt ovonosasonesessonnssnnss

PROGRAM ANALYSIS PROCEDURES ., . s v s e v v v nves
Introduction . , ... cv e eenriivennnnnnansas
Program Analysis Procedures Summary « « s s o ¢ « e a’s o s
Identification of the Failing Component or Function » « «
Subroutine Error Number/Error Stop Lists o+ e ¢ s v 00 0o
Core Dump Procedure , , v v v v v ev v oo e sossosenos
Core Block Diagrams . . v vveveeoseooasenosns
Core Location Procedurescsoeoovvovsoeses
N
Arithmetic and Function Subprogram Error Indicators,
1 N
LIBF TVSOCAL Linkage ...eeoevvnanoesass
CALLTV ..ttt tittaearsonnssssosncnan
Disk I/O Subroutine « v o « v e s o s e e s a0 eoaesons
DFT (DEFINE FILE Table) ¢« ¢ v v e e e vt vvnnasnn
AITAYS o e o s e s s s s e s o nsesansessosasesesan
Constants and INtegers + o s s e e s s s s o e s s o e e
COMMON ¢ ¢vosovsesnssosassssssansannee
In-core Subroutines «
LOCAL/SOCAL Flipper (FLIPR) + e vt s v e ouvonos
LOCAL Area v v evoveeetossensoasoacsona
SOCAL ATEZ « v v o v v eesonsssssosanssnoes
Generalized Subroutine Maintenance/Analysis Procedure
Trace Back Procedures + e e s oveoenossooonsons
Subroutine Looping Capabilities « « o e v v e v e v aeenn
System Device Subroutines « ¢ o o s e s s s e s o0 v 0o
Library Subroutines « . s s v v s s eseoossvsas o
Subroutine Data Charts « « ¢ e s s s o s s avs oo oo s e
System Device Subroutine for Keyboard/Console

Printer « . e oo oo e oo e oevsssosetonssnensons

System Device Subroutine for 1442/1442
System Device Subroutine for 2501/1442
System Device Subroutine for Console Printer
System Device Subroutine for 1132 ¢ ¢ e e v e e s e oo
System Device Subroutine for 1403 « s c v s 0 e 0 e s o0
System Device Subroutine for 1134/10585 « ¢ s oo v v
System Device Subroutine for Disk - DISKZ o« « s s«
CARDZ + i v evosavosssasassssssosssccsnas
PNCHZ 4. veeceressttsasecassnossoncs
READZ oot vessocsonsescscssssnacssans
TYPEZ ot veesevtoessstsrsoessasnansaas

109

111
111
111
111
112
112

113
113
113
113
115
115
115
115
115
118
118
119
119
119
119
119
119
119
119
120
120
120
120
120
120
120
120
125

125
126
128
130
132
134
136
138
140
142
144
145

WRTYZ ...
PRNZ
PRNTZ ..

PAPTZ v os s
CARDO « + ¢ » ¢ »

CARDL ¢ v e s s
READO ,.,....
READIL ,.....
PNCHO ,.....
PNCHI
TYPEO
PRNTL ,.....
PRNT3
PAPTL
PAPTN
PLOTL .o,
OMPRLl v
WRTYO. s o0 v
DISKI ...+
DISKN

.
.
.

FLOWCHARTS ...
System Overview .
System Loader ...
Cold Start Programs
Supervisor < ..o
Core Image Loader

Core Load Builder .
Disk Utility Program
Assembler Program

FORTRAN Compiler
System Library + . .

APPENDIX A. EXAMPLES OF FORTRAN OBJECT CODING -

APPENDIX B, LISTINGS.
DCOM .evvvnnecsns

Resident Image ..
Resident Monitor ,
DISKZ ,..¢eave
Equivalences
Cold Start Program
Cross-Reference . .

APPENDIX C. ABBREVIATIONS.
APPENDIX D, MICROFICHE REFERENCE TABLE .

INDEXcevevvoennnvosonns

.

146
147
148
150
152
154
156
157
158
160
162
164
166
168
170
172
174
176
177
180

185
185
186
191
193
203
205
207
220
244
274

307
323
324
324
329
333

334
335

339

345

349

Figures

1. Core Layout During System Loader Operation . .
2, Core Layout During Cold Start v « o ¢« ¢ v e 0 e 0 v e
3. Core Layout During Supervisor Operation . .

4. Core Layout on Supervisor Entry at $EXIT (DISKZ
in Core} » ¢+«
S. Core Layout on Supervisor Entry at $EXIT (DISKZ

.

e e

e s s v e s e e 0.

Notin Core) o oooesososesscsesonsnses
6. Core Layout on Supervisor Entry at $DUMP « v« » &
7. Core Layout on Supervisor Entry at $LINK (Link in
Disk System Format) ., ...
8. Core Layout on Supervisor Entry at $LINK (Link in

Core Image Format)

Tables

1, The Contents of COMMA. + v v v e v e
2. The Contents of DCOM
3, The Contents of the FORTRAN Communications

e e e 00 e 0 00 v

D A I

s e e a e

s e

Area ® 2 2 8 2 0 0 0 0 8 B e e st s
4. The Contents of the FORTRAN Symbol Table

IDWord!0'!..0.0...!000!-.0000.
Flowdiagrams

1. General Procedure for Program Analysis
2, Procedure for Identification of the Failing

Component or Function
3. Core Dump Procedure

Disk Monitor System, System Overview

Flowcharts

DMSO1.,

SYLO1. System Loader,
SYLO2. System Loader,
SYLO3, System Loadenr,
SYLO4. System Loader,
SYLOS. System Loader,

General Flow, .

Phase 1
Phase 2
Phase 2
Phase 2

e e s

e

s e e 4 e s s 0 0 s 0

..

.

13
16
25

28

29
29

30

31

77

79

114
115

185
186
187
188
189
190

ILLUSTRATIONS

9. Core Layout During Core Load Builder Operation . .

10, Layout of the Transfer Vector ..

e s e s s e s e s s e

11. SOCAL Linkage in the LIBF Transfer Vector «....
12, CALL Transfer Vector for SOCALs . . .
13. Core Layout during Disk Utility Program Operation .

14, Core Layout During Assembler Program

Operation ¢ e+ cesoasessoacosce

15. Core Layout During FORTRAN Compiler
Operation « ¢ oo
16. FORTRAN Scan Example « . .

17. Core Layout During User Core Load

Execution . .

5. FORTRAN Statement ID Word Type Codes * ¢ *****

6, Conversion of FORTRAN FORMAT

Specifications
7. FORTRAN Forcing Table « o v v oo
8. Error Number List. o « o v s o ¢ 6 v v v s o
9. Error Stop List

P I L I B .

s e s s e e s et e s e s

s s s e e 0 s s e s e 0w s

“ s e e e

s e s s s 0 s s e s e

R R I A R A T R R R B}

4, Generalized Subroutine Maintenance/Analysis

Procedureicveeertectneseesanconae
5. Trace Back Procedures P T I
CSTOl. Cold StartLoader o e s osoovvesoesonens
CSTO2. Cold Start Program « + s« « « Ceset e eer e
SUPO1. Supervisor, Skeleton Supervisor « e« « s «s oo«
SUPO2. Supervisor, Monitor Control Record Analyzer
SUPO3. Supervisor, JOB Control Record Processor «+ « « +
SUPO4. Supervisor, System Update Program =« - - .- .

34
38
39
39
43

72

76
93

80

87
91
116
118

121
122

191
192
193
194
195
196

SUPOS,
SUPO6.
SUP07.
SUPOS.
SUP09.
SUP10.
CILOL,
CILOZ.
CLBO1.
CLBO2.
DUPOL.
DUPO2.
DUPO3.
DUPO4.
DUPOS.
DUPO06.
DUPO07.
DUPO08.,
DUP09.
DUP10.
DUP11.
bupri2.
DUP13,
ASMO1,
ASMO2.
ASMO3.
ASMO4.
ASMOS.
ASMO6,
ASMO7.
ASMOS8.
ASMO9.
ASM10.
ASMI1.
ASM12,
ASM13,
ASM14.
ASMLS.
ASM16.
ASML17.
ASM18.
ASM109.
ASM20,
ASM21,
ASM22,
ASM23.
ASM24,
FORO1.
FORO2.
FORO3.
FORO4,
FOROS.
FORO06.
FORO7.
FOROS.

Supervisor, XEQ Control Record Analyzer. . « «
Supervisor, Supervisor Control Record Analyzer
Supervisor, Supervisor Control Record Analyzer
Supervisor, Supervisor Control Record Analyzer

Supervisor, System Core Dump Program ...
Supervisor, Auxiliary Supervisor
Core Image Loader, Phase 1 « . e vovev e
Core Image Loader, Phase 2 + v s v v v o0 e
Core Load Builder, Initialization +....«..
Core Load Builder, Master Control

Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Disk Utility Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,
Assembler Program,

CCAT vvvvvnnnnn.
DCTL v evennennss
STORE. « e v v avnns
FILEQ v vevennnns
FILEQ v evvnnann
FILEQ v evevvennnn
DDUMP « « ¢ ot s o v s
DDUMP . .

DUMPLET/DUMPFLET .

DELETE ¢ v ¢ a6 s a0 0 s
DEFINE ¢+ e o0 v e
DEXIT: oo evoaonnas

PRECI ¢ eeeveesonn

General Flow « s ¢ s o
Phase O o ¢ ¢ s s e e 0 s s e
Phase 1 v+ e v cevennsos
Phase 1A «+ s coeeave
Phase 2 ¢ e s e o s v v a v
Phase 2A « ¢+«
Phase 3 « o s s
Phase 4 . .
Phase 5 ¢ e evvevonas
Phase 6 « e oo o o sason
Phase 7 v e e e v nv e e
Phase 7A v v e v vt v v v
Phase 8 v ot v oo s avas
Phase 8A ¢ ¢ v et v e s e
Phase 9 ¢ v v v v e v o
Phase 9 ... ccove v
Phase 9 ..
Phase 10 « v ev v v
Phase 10A ¢ eos v oo
Phase 11 « e e eneas

e e s e e e

Assembler Program,
Assembler Program,
Assembler Program,

Assembler Program,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,

Phase 12
Error Message Phase . . .
Read Conversion Phase .

Punch Conversion Phase .

General Flow ,,.,...
Phasel ,.........
Phase 2 ,,........
Phase 3 .,
Phase400..
Phase 4 . vvvvnnnns
Phase 5 ...
Phase 5 .. ovvvuns

viii

FORO09.
FORI10.
FORI11.
FORI12.
FOR13.
FOR14.
FORI15.
FOR16.
FOR17.
FOR18.
FOR19.
FOR20.
FOR21.
FOR22,
FOR23,
FOR24,
FORZ25,
FOR26.,
FOR27.
FOR28.
FOR29.
FOR30.
UTLOL.
UTLOZ,
UTLO3.
UTLO4.
UTLOS.
UTLOG6.,
UTLO7.
UTLO8.,
UTLO9.
UTL10.
UTL11.
UTL12.
UTL13.
SCAO1.
SCAO02,
SCAO03.
SCAO04.
SCAOS,
SCA06.
SCAO07.
FIOO1.

FI002,

FIOO03.

FIO04.

FIOO05.

FIO06.

FIOO07.

FI008.

FI009.

FI1010.

FIO11.

FIO12.

F1013,

FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
FORTRAN Compiler,
System Library,
System Library,
System Library,
System Library, DISC
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,

Phase 6
Phase 7 « v v v v

Phase 8 . .o ..
Phase O « e o v e v

Phase 10
Phase 11
Phase 12
Phase 13
Phase 14
Phase 15
Phase 16
Phase 17
Phase 18
Phase 19
Phase 20
Phase 21......
Phase 22, « v v+ »
Phase 23,
Phase 24......
Phase 25.
Phase 26.
Phase 27.

.
.

ID ¢t v tnectenans
FSLEN/FSYSU . « « « .«
ADRWS ot vvv e

e s e e s e

RDREC ¢ ¢ e vev s
IDENT oeevevenan
CALPR ¢ ve et oo
COPY ¢ vt eevnnnns
DLCIB: ¢ ¢ s e s v
DSLET + v oo vevunas
MODIF ¢ cvvvennnn
MODIF ... ivennn
MODIF
SCAT2 Call Processing .
SCAT?2 Interrupt Processing
SCAT2 Interrupt Processing
SCATS3 Call Processing . .
SCATS3 Interrupt Processing
SCATS3 Interrupt Processing
SCAT3 Interrupt Processing
FORTRAN Non-disk I/O . .

System Library,
System Library,
System Library,

FORTRAN Non-disk I/0O

FORTRAN Non-disk 1/O ..

CARDZ .

System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,
System Library,

PRNZ

Svstem Tibrarv.

PNCHZ , ,
TYPEZ
HOLEZ

CARDZ ...voevnn
PRNTZ ..o
PAPTZ v o'
READZv0en.
WRTYZ

R R SN

.

.

The 1130 Disk Monitor System, Version 2, consists
of the following components:

Communication Areas

This component consists of the in-core communica-
tion area (COMMA) and the disk-resident communica-
tion area (DCOM).

Generally speaking, COMMA contains only those
parameters required by the monitor system to fetch
a program stored on disk in disk core image format
(DCI).

DCOM contains all the parameters required by
the monitor system that are not found in COMMA.

System Loader
This component provides the means for loading all,
or reloading a part of, the monitor system onto disk.

In other words, the System Loader generates the
monitor system on disk.

Cold Start Programs

This component consists of the Cold Start Loader and
the Cold Start Program.

The Cold Start Loader is the bootstrap loader used
in the IPL procedure to initiate the operation of the
Cold Start Program.

The Cold Start Program reads the monitor system,
i.e., the Resident Monitor, into core storage and
transfers control to it.

Resident Monitor

This component consists of three intermixed parts:
(1) COMMA, (2) the Skeleton Supervisor, and (3)
one of the three disk I/O subroutines -- DISKZ,
DISK1, or DISKN.

COMMA is defined above, under Communication
Areas.

The Skeleton Supervisor consists of the core-
resident coding necessary to process CALL DUMP,

SECTION 1. INTRODUCTION

CALL LINK, and CALL EXIT statements, and
various I/O traps.

One of the three disk I/0 subroutines is present
in the Resident Monitor at all times. The disk I/O
subroutine in the Resident Monitor is the only such
subroutine in core storage at any one time. Any of
the three disk I/O subroutines can be used by the
user. The DISKZ subroutine is used by the
monitor system programs; DISKZ is initially loaded
when a cold start is performed.

Supervisor

This component consists of the Monitor Control
Record Analyzer (MCRA), the Supervisor Control
Record Analyzer, the Auxiliary Supervisor, and
the System Core Dump program,

The MCRA is the program that reads and analyzes
the monitor control records, initiating the actions
indicated on those control records.

The Supervisor Control Record Analyzer is the
program that reads and analyzes the Supervisor
control records, passing the information on these
control records to the Core Load Builder.

The Auxiliary Supervisor is the program called
to perform specialized supervisory functions for the
monitor system.

The System Core Dump program is the program
used to print all or selected portions of the contents
of core storage on the principal print device. The
dump can be dynamic (execution of the calling core
load is resumed after the completion of the dump) or
terminal (a CALL EXIT is executed after the com-
pletion of the dump).

Core Image Loader

This component consists of two parts, the first being
an intermediate supervisor for the monitor system,
the second being a loader for user and system pro-
grams in core image format.

Phase 1 of the Core Image Loader is fetched into
core storage as the result of an entry to the
Skeleton Supervisor. Phase 1 is the program that
determines the type of entry made and the program(s)

Section 1. Introduction 1

to be fetched as a result.

Phase 2 of the Core Image Loader is the program
that fetches into core storage and, if indicated,
transfers control to the program(s) indicated by
phase 1.

Core Load Builder

This component is the program that converts a main-
line program from disk system format (DSF) to a core
load, a program in disk core image format (DCI);
that is, the Core Load Builder relocates the mainline
program and all the subroutines required and con-
structs the other necessary parts of the core load,
e.g., the transfer vector, LOCALs, and SOCALs.

Disk Utility Program (DUP)

This component provides the means for performing
the following functions, largely through the use of
control records only:

1. Make available the contents of disk storage in
punched or printed format -- DUMP,
DUMPDATA.,

2. Print a map of the contents of the variable por-
tions of disk storage -~ DUMPLET,
DUMPFLET.

3. Store information on the disk in disk system
format (DSF), disk data format (DDF), or disk
core image format (DCI) -- STORE,
STOREDATA, STOREDATACI, STORECI,
STOREMOD.

4. Remove information from the User/Fixed Area --
DELETE.

5. Alter the allocation of the Fixed Area on the disk
or delete the Assembler Program and/or the
FORTRAN Compiler from the monitor system --
DE FINE.

6. Initialize the Working Storage area on disk -~
DWADR.

7. Provide file protection for the contents of disk
storage.

Assembler Program

This component is the program that translates the
statements of a source program written in the IBM
1130 Assembler Language into a program in disk
system format (DSF).

FORTRAN Compiler

This component is the program that translates the
statements of a source program written in the IBM
1130 Basic FORTRAN IV Language into a program in
disk system format (DSF).

System Library

This component consists of (1) a complete library

of input/output (except disk I/0), data conversion,
arithmetic, and function subroutines, (2) selective
dump subroutines, and (3) special programs for disk
maintenance.

System Device Subroutines

This component consists of a library of special
subroutines, one for each device (except the disk)
used by the monitor system programs. These sub-
routines and DISKZ are the only device subroutines
used by the monitor system programs.

Utilities

This component consists of the following stand-alone,
self-loading utility programs:

1. The 2501/1442 Card Loader
2. The Disk Cartridge Initialization Program (DCIP)
3. The Core-Dump-to-Printer Program

In general the organization of and flow of control
through the 1130 Disk Monitor System, Version 2,
is shown in Flowchart DMS01.

THE IN-CORE COMMUNICATIONS AREA (COMMA)

COMMA includes, for the most part, only those
system parameters that are required to link from one
core load to another that is stored on disk in disk
core image format (DCI). The exceptions are those
parameters that would create awkward communica-
tion between monitor system programs if they
resided in DCOM.,

COMMA is not a single block of locations in the
Resident Monitor; the system parameters that con-
stitute COMMA are intermixed with the various parts
of the Skeleton Supervisor,

Table 1 is a description of COMMA by parameter.
The entries are arranged in alphabetic sequence for
easy reference. See the listing of the Resident
Monitor in Appendix B. Listings for the absolute
addresses associated with the parameters in this
table.

THE DISK-RESIDENT COMMUNICATIONS AREA
(DCOM)

DCOM contains those parameters that must be passed
from one monitor system program to another but are
not found in COMMA.,

Table 2 is a description of DCOM by parameter.
The entries are arranged in alphabetic sequence for
easy reference. See the listing of DCOM in Appendix
B. Listings for the relative addresses associated
with the parameters in this table.

SECTION 2. COMMUNICATIONS AREAS

DRIVE- AND CARTRIDGE-DEPENDENT

PARAMETERS

Whenever a parameter that is associated with a disk
cartridge is required for system use during a job,

a table of five such parameters (a quintuple), one for
each of the five possible drives, is reserved in
COMMA or DCOM. The first of the five parameters
is assigned a label. Such a parameter is said to be
a drive- or cartridge-dependent parameter, which-
ever term is applicable.

The position in the quintuple indicates the logical
drive number of the drive on which the associated
cartridge is mounted. Thus, the first parameter in
a quintuple is associated with logical drive zero, the
second with logical drive one, etc. The assignment
of logical drive numbers is done during JOB process-
ing; that is, the logical drive numbers are assigned
in the sequence specified on the JOB monitor control
record. Thus, the first cartridge specified is
assigned to logical drive zero, the second to logical
drive one, ete. If no cartridges at all are specified,
then the current logical drive zero is defined as
logical drive zero for the job being defined. The
drive- and cartridge-dependent parameters for all
unspecified cartridges are cleared to zero, except
for logical drive zero as noted above.

JOB processing includes the reading of DCOM and
the ID sector from each specified cartridge and the
setting up of the drive- and cartridge-dependent
quintuples in DCOM on the master cartridge.

Initialization of the quintuples is done during cold
start processing, which defines logical drive zero
(and all associated drive- and cartridge-dependent
parameters for logical drive zero) as the physical
drive selected in the Console Entry switches (see
Section 4. Cold Start Programs). All other values

in the drive- and cartridge-dependent quintuples are
cleared to zero.

Section 2. Communications Areas 3

Table 1. The Contents of COMMA

LABEL

DESCRIPTION

$ACDE
through
$ACDE+4

$ACEX
and
$ACEX+1

$CCAD

$CH12
$CIBA

$CIBA-1

$CLSW

$COMN

$CORE

$CPIR

$CTSW

$ACDE contains the device code for the physical disk
drive assigned as logical disk drive 0. $ACDE+1 through
$ACDE+4 contain the device codes for logical disk drives
1, 2, 3, and 4, respectively. The device code is
contained in bits 11-15.

$ACEX and $ACEX+1 are the locations in which the
contents of the accumulator and extension, respec-
tively, are saved by the Supervisor when entered at
the $DUMP entry point.

$CCAD contalns the address of .the lowest-addressed
word of COMMON to be saved on the Core Image
Buffer (CIB) by the Core Image Loader.

$CH12 contains the address of $CPTR, $1132, or $1403
depending upon the device defined as the principal
print device--the Console Printer, 1132 Printer, or
1403 Printer, respectively.

$CIBA contains the sector address of the first sector of
the Core Image Buffer (CIB) in use by the monitor
system programs durlng the current job. The logical
disk drive number is contained in bits 0-3.

$CIBA-1 contalns 4095 minus the location of $CIBA.
This value is used as the word count (In conjunction
with $CIBA, which contains the sector address of the
CIB) in saving the first 4K of core storage following
an entry at $DUMP.

$CILA contains the address of the end of the disk 1/O
subroutine currently in core storage, minus 4. $CILA
always points to the word count (followed by the
sector address) of phase 1 of the Core Image Loader.

$CLSW is a switch Indicating to phase 2 of the Core
Image Loader the function it Is to perform. The switch
settings are as follows:

Setting Meaning

Positive Locd the indicated disk I/0
subroutine

Zero or Load the indicated core load

Negative and Its required disk 1/O
subroutine., Zero indicates
that the core load has just
been built by the Core Load
Builder; negative Indicates
that the core load is stored
in the User or Fixed Area in
core Image format.

$COMN contains the number of words of COMMON
defined for the core load currently in execution.

$CORE contalns a code indlcating the number of words
of core storage within which the monitor system pro-
grams are to operate. The codes are as follows:

Code Size of Core Storage

/1000 4096 words
/2000 8192 words
/4000 16384 words
/8000 32768 words

$CPTR is a dummy channel 12 indicator for the
Console Printer,

$CTSW is a switch indicating that a monitor control
record has been detected by a monitor system program
other than the Supervisor. The switch settings are s
follows:

Setting Meaning
Positive Monitor control record detected
Zero Monitor control record not detected

LABEL

DESCRIPTION

$CWCT

$CWCT+1

$CXR1

$SCYLN
through
$CYLN+4

$DABL

$DADR

$DBSY

$DCDE

$DCYL
through
$DCYL+14

$DDSW

$DMPF

$DREQ

$DZIN

$CWCT contains the number of words of CCMMON
to be saved on the Core Image Buffer (CIB) by the
Core Image Loader.

$CWCT+1 contains the sector address of the first sector
of the Core Image Buffer (CIB) to be used for the saving
of COMMON by the Core Image Loader. The logical

disk drive number Is contained in bits 0-3.

$CXR1 is the location in which the content: of index
register 1 are saved by the Skeleton Supervisor.

$CYLN contains the sector address of sector 0 on the
cylinder over which the access arm on logical disk
drive O is currently positioned. $CYLN+1 through
$CYLN+4 contain analogous sector addresses for logi-
cal disk drives 1, 2, 3, and 4, respectively.

$DABL contains the second word of the IOCC used

to reset the Synchronous Communications Adapter.
$DABL is, therefore, aligned on an odd wo-d boundary .
$DABL contains /5540, the bit configuraticn of an
Initiate Write with modifier bit 9 on.

$DADR contains the disk block address of the first
sector of the program or core load to be fetzhed into
core storage and executed.

$DBSY is a switch indicating whether or no” a disk
1/O operation is in progress. The switch settings are
as follows:

Setting Meaning

zero Disk I/O not in progress
non=-zero Disk 1/O in progress

$DBSY is simultaneously used as a retry counter by
DISKZ and DISK1.

$DCDE contains the number of the logical cisk drive on
which the program to be fetched by the Core Image
Loader is to be found. The drive number is contained
in bits 0-3.

$DCYL through $DCYL+2 contain the defective cyl-
inder addresses (the contents of words 1, 2, and 3

of sector 0, cylinder 0) for the cartridge mounted

on logical disK drive 0. $DCYL+3 through $DCYL+14
contain anologous addresses for the cartridges on
logical disk drives 1, 2, 3, and 4, respectively.

$DDSW contains the device status word (DSW) sensed
during the last disk 1/O operation performed.

$DMPF contains the contents of the word following
the branch to the $DUMP entry point, i.e., the
dump format code.

$DREQ is a switch indicating the disk 1/O subroutine
that has been requested. The switch settings are as
follows:

Setting Meaning

positive DISKN
zero DISK1
negative DISKZ

$DZIN is a switch indicating the disk 1/O subroutine
presently in core storage. The switch settings are as
follows:

Setting Meaning

negative DISKZ is in core
zero DISK1 is in core
positive DISKN is in core

Table 1. The Contents of COMMA (Continued)

LABEL

DESCRIPTION

$FPAD
through
$FPAD+4

$HASH
through
$SHASH + 11

$IBSY

$I1BT2

$IBT4

$loCT

$IREQ

$KCSW

$SLAST

$LKNM
and
SLKNM +1

$FPAD contains the seetor address of the first sector of
Working Storage on the cartridge mounted on logical
disk drive 0. The logical disk drive number is con-
tained in bits 0-3, fFPAD'H through $FPAD+4 contain
analogous sector addresses for the cartridges on logical
disk drives 1, 2, 3, and 4, respectively.

$FPAD through $FPAD+4 are effectively the file-
protection addresses for the cartridges in use. These
addresses are adjusted in non-temporary mode only.

$HASH through $HASH + 11 are a work area used vari-
ously by the monitor system programs.

$IBSY is a switch indicating whether or not an 1/O
operation involving the principal 1/0Q device is in
progress. The switch settings are as follows:

Setting Meaning
zero Principal 1/O device not busy
non-zero Principal 1/0 device busy

$IBT2 contains the address of the interrupt branch
table (IBT) for interrupt level 2. Since the disk is the
only device on interrupt level 2, $IBT2 contains the
address of the interrupt entry point in the disk 1/O
subroutine currently in core storage.

$IBT4 contains the address of the interrupt branch table
(IBT) for interrupt level 4 used by the program currently
in control.

$1OCT is the 10CS counter for 1/O operations. $IOCT
is incremented by 1 for each 1/O operation initiated.
$1OCT is decremented by 1 for each 1/O operation
completed or terminated. $IOCT equals zero when

all 1/O operations have been completed.

$IREQ contains the address of the subroutine servicing
the INTERRUPT REQUEST key on the Keyboard (interrupt
level 4), This address is supplied by the user core load
using the INTERRUPT REQUEST key. Unless an address
is supplied $IREQ contains the address of the $DUMP
entry point.

$KCSW is a switch indicating whether or not (1) the
Keyboard has been defined as the principal input device
and/or (2) the Console Printer has been defined as the
principal print device. The switch settings are as
follows:

Settings Meaning

negative Either the Console Printer is the princi--
pal print device or the Keyboard is
the principal input device, but not
both

zero Neither is the Console Printer the

principal print device nor is the
Keyboard the principal input device

positive The Console Printer is the principal
print device and the Keyboard is
the principal input device

Depending on the setting on $KCSW, the system device
subroutine for the Keyboard/Console Printer either
permits or inhiblts the overlapping of input and output.

$LAST is a switch indicating whether or not the last

card has been read by the system device subroutine serv~
icing the card input device. The switch settings are as
follows:

Settings Meaning
zero Last card has not been read
non-zero Last card has been read

$LKNM and $LKNM +1 contain the name, in name
code, of the program or core load to be executed next.
$LKNM is aligned on an even word boundary .

LABEL DESCRIPTION

$LSAD $LSAD contains the absolute sector address of the first
sector of the first LOCAL (or SOCAL if there are no
LOCALs) for the core load currently in core. The
logical disk drive number is contained in bits 0-3.

$NDUP $NDUP is a switch indicating whether or not DUP
operations may be performed. The switch settings are
as follows:

Setting Meaning
zero Permit DUP operations
non-zero Inhibit DUP operations

$NEND $NEND is eq]uivalenf to the address of th= end of
DISKN plus 1.,

SNXEQ $NXEQ is a switch indicating whether or not exe-
cution of a user core load may be performed. The
switch settings are as follows:

Setting Meaning
zero Permit core load execution
non-zero Inhibit core load execution

$PAUS $PAUS is a switch set by every ISS that does not set
$1OCT when initiating an 1/O operation, e.g., SCATI.
The switch settings are as follows:

Setting Meaning

zero Exit from the PAUS subroutine

non-zero Branch back to the WAIT in the
PAUS subroutine

$PGCT $PBSY is a switch indicating whether or not an 1/0O
operation involving the principal print device is in
progress. The switch settings are as follows:

Setting Meaning
zero Principal print device not busy
non-zero Principal print device busy

$PGCT $PGCT contains the number, in binary, of the page of
the job listing currently being printed.

$PHSE $PHSE contains the SLET {D number (in bits 8-15) of the
phase of the monitor system program currently in con-
trol, excepting the Cold Start Program and the Skeleton
Supervisor. $PHSE always contains zero when a user
core load is in control. Bits 0-7 of $PHSE sometimes
contain a subphase 1D number.

$RMSW $RMSW is a switch indicating the entry point at which
the Skeleton Supervisor was entered and, hence, the
type of CALL causing the Skeleton Supervisor to be
entered. The switch settings are as follows:

Setting Meaning
positive Entry at $DUMP
zero Entry af $LINK
negative Entry at $EXIT

SRWCZ $RWCZ is a switch indicating the type of operation last
performed by the CARDZ subroutine. The switch settings
are as follows:

Setting Meaning
zero Lost operation a Read
non-zero Last operation a Punch

$SCAN $SCAN through $SCAN+7 are an area used by the 1132

through Printer when printing o line. This area is also used as

$SCAN+7 a work area by the monitor system programs.

Section 2. Communications Areas

5

Table 1. The Contents of COMMA (Concluded)

LABEL

DESCRIPTION

Table 2. The Contents of DCOM

$SNLT

$SYSC

$UFDR

$UFIO

SULET
through
SULET+4

$WRD1

$WSDR

$ZEND

$1END

$1132

$1403

$SNLT is the location used for sense light simulation
by FORTRAN programs. The bits are used as follows:

Bit Sense Light
14 1
13 2
12 3
n 4

$SYSC contains the version and modification level
numbers identifying the 1130 Disk Monitor System,
Bits 0~7 contain the version number; bits 8-15 con-
tain the modification level number,

$UFDR contains the number of the logical disk drive
on which the unformatted |/O area in use by the
monitor system programs during the current job is to
be found. The drive number is contained in bits 0-3.

$UFIO contains the displacement, in sectors, from the
start of the unformatted /O area to the sector at
which the writing or reading of the next logical

record to or from the unformatted 1/O area is to begin.

$ULET contains the sector address of the first sector
of LET on the cartridge mounted on logical disk drive
0. The logical disk drive number is contained in
bits 0-3. $ULET+1 through $ULET+4 contain ana-
logous sector addresses for the cartridges on logical
disk drives 1, 2, 3, and 4, respectively.

$WRD1 contains the address at which the first word of
the core image header of the core load to be/being
executed will/does reside.

$WSDR contains the number of the logical disk drive
on which the Working Storage in use by the monitor
system programs during the current job is to be found.
The drive number is contained in bits 0-3.

$ZEND is equivalent to the address of the end of
DISKZ plus 1.

$1END is equivalent to the address of the end of
DISK1 plus 1.

$1132 is a switch indicating whether or not channel
12 has been detected on the 1132 Printer. The
switch settings are as follows:

Setting Meaning

zero Channel 12 not detected or a skip
to channel 1 executed

non-zero Channel 12 detected

$1403 is a switch indicating whether or not channel
12 has been detected on the 1403 Printer. The
switch settings are as follows:

Setting Meaning

zero Channel 12 not detected or a skip
to channel 1 executed

non-zero Channel 12 detected

LABEL

DESCRIPTION

#ANDU
through
#ANDU+4

#BNDU
through
#BNDU+4

#CBSW

#CIAD

#CIBA
through
#CIBA+4

#CIDN
through
#CIDN+4

#CSHN
through
#CSHN+4

#DBCT

#DCSW

#ENTY

#ANDU contains the displacement, in disk blocks,
from word 0, sector 0, cylinder 0 on the cartridge
mounted-on logical disk drive 0 to the last disk block
of the User Area on that cartridge, plus 1 disk block.
ANDU+1 through #ANDU+4 contain analogous dis=
placements for the cartridges on logical disk drives 1,
2, 3, and 4, respectively.

#ANDU through *ANDU* are effectively the ad-
justed addresses of the ends of the User Arecs on the
cartridges in use. These addresses are adjusted in~
stead of #BNDU through ¥BNDU+4 durin temporary
mode, in parallel with #BNDU through fBNDU+4
during non-temporary mode.

#BNDU contains the displacement, in disk blocks,
from word 0, sector 0, cylinder O on the cartridge
mounted on logical disk drive O to the last disk
block of the User Area on that cartridge, plus 1 disk
block. #BNDU+I through #BNDU+4 contain ana-
logous displacements for the cartridges on lagical
disk drives 1, 2, 3, and 4, respectively.

#BNDU through #BNDU+4 are effectively the base
addresses of the ends of the User Areas on the
cartridges in use. These addresses are adjusted only
during non-temporary mode, in parallel with #ANDU
through fANDU+4.

#CBSW is a switch indicating to the Core Load Builder
the type of exit to be made. The switch settings are
as follows:

Setting Meaning
zero Return to Core Image Loader
non-zero Return to DUP

#CIAD contains the relative location in sector
@IDAD (within DISKZ) where the address of the
Core Image Loader is to be found.

#CIBA contains the sector address of the Core Image
Buffer (CIB) on the cartridge mounted on logical disk
drive 0. The logical disk drive number is contained
in bits 0-3. #CIBA+1 through #CIBA+4 contain
analogous sector addresses for the cartridges on logical
disk drives 1, 2, 3, and 4, respectively.

#CIDN contains the ID (the contents of word 4,
sector 0, cylinder 0) of the cartridge moyntad on
logical disk drive 0. #CIDN+1 through #CIDN+4
contain the IDs of the cartridges on logical disk
drives 1, 2, 3, and 4, respectively.

#CSHN contains the number of sectors available for
expansion of the monitor system programs or: the
system cartridge mounted on logical disk drive 0.

CSHN+1 through #CSHN+4 contain analogous num-
bers for any system cartridges mounted on lcgical
disk drives 1, 2, 3, and 4, respectively.

#DBCT contains the number of disk blocks occupied
by the program, core load, or data file named on a
DUP control record.

#DCSW is a switch indicating to the ADRWS program
the type of exit to be made. The switch seitings are
as follows:

Setting Meaning

zero Branch to $EXIT in Skeleton
Supervisor

non-zero Return to DUP

#ENTY contains the address of entry point 1 in the
program placed into system Working Storage by the
Assembler or FORTRAN Compiler. This addlress is

the address to be placed into word 12 of the DSF pro-
gram header by DUP or the address from which word 1
of the core image header is generated by the Core
Load Builder.

Table 2. The Contents of DCOM (Continued)

LABEL

DESCRIPTION

LABEL

DESCRIPTION

#ECNT

#FHOL

#ELET
through
FFLET+4

#EMAT
through
FFMAT+4

#EPAD
through
#FPAD+4

#FRDR

#FSZE

JBSW

#LCNT

#MDF 1

#MDF2

#FCNT contains the number of files defined for the
core load being built or the execution to be init-
ated.

#FHOL contalns the displacement, in disk blocks,
from word 0, sector 0, cylinder O to the first disk
block of the largest unused (1DUMY) area in the
Fixed Area on the cartridge to which a STORE oper-
ation is to be made.

#ELET contains the sector address of the first sector
of FLET on the cartridge mounted on logical disk
drive 0, The logical disk drive number is contained
in bits 0-3. #FLET+1 through #FLET+4 contain
analogous sector addresses for the cartridges on
logical disk drives 1, 2, 3, and 4, respectively.

#EMAT is a switch indicating the format of the con-
tents, if any, of Working Storage on the cartridge
mounted on logical disk drive 0. #FMAT+1 through
#EMAT+4 are analogous switches for Working Stor-

age on logical disk drives 1, 2, 3 and 4, respectively.

The switch settings are as follows:

Setting Meaning

negative disk core image format (DCI)
zero disk sglstem format (DSF)
positive disk data format (DDF)

#FPAD contains the sector address of the first sector
of Working Storage on the cartridge mounted on
logical disk drive 0. The Jogical disk drive number
is contained in bits 0-3. FFPAD+1 through
#EPAD+4 contain analogous sector addresses for the
cartridges on logical disk drives 1, 2, 3, and 4,
respectively.

#EPAD through fFPAD+4 are effectively the file-
protection addresses for the cartridges in use. These
addresses are adjusted in non-temporary mode only.

#FRDR contains the number of the logical disk drive
on which the cartridge specified by the "FROM"
cartridge ID (in columns 31-34 of the DUP control
record) is mounted. The drive number is contained
in bits 12-15. A negative number indicates that no
1D was specified.

#ESZE contalns the number of disk blocks contained
in the largest unused (IDUMY) area In the Fixed Area
on the cartridge to which a STORE operation is to be
made .

JBSW is a switch indicating the mode of operation
established by the.last JOB monitor control record.
The switch settings are as follows:

Setting Meaning

zero temporary mode
non-zero non-temporary mode.

#LCNT contalns the number of LOCALs specified for
Lhe'axecution to be initiated or the core load being
uilt.

#MDF1 contains, in bits 8-15, the number of DUP
control records to be processed by DUP when called
by the MODIF program. #MDF 1 also contains, in
bits 0=7, the number of errors detected by DUP during
the processing of the DUP control records for the
MODIF program.

#MDF2 is a switch indicating to DUP that control
must be returned to the MODIF program. The switch
setting are as follows:

Setting Meaning

zero Do not return to MODIF
non-zero Return to MODIF

#MPSW

#NAME
and
#NAME+1

#NCNT

#pCID
through
#PCID+4

#PIOD

#PPTR

#RP&7

#SCRA
through
#SCRA+4

#3YsC

#TODR

#MPSW Is a switch indicating to the Core Load Bulilder
whether or not a core map is to be printed for each core
load built during the current execution. The switch
settings are as follows:

Setting Meaning

zero Do not print a core.map
non-zero Print a core map

#NAME and # NAME+1 contain the name, in name
code, of the program, core load, or data file currently
being processed by the Supervisor, DUP, Core Load
Builder, or Core Image Loader. The name is obtained
from a control record or from a LET/FLET search.
#NAME is aligned on an even word boundary.

#NCNT contains the number of NOCALs specified for
the execution to be initiated or the core load being
built.

#PCID contains the 1D (the contents of word 4, sector
0, cylinder 0) of the cartridge mounted on physical
disk drive 0, if that drive is "ready". #PCID+1
through #PCID+4 contain the IDs of the cartridges on
physical disk drives 1, 2, 3, and 4, respectively, if
the corresponding drives are "ready". The entries
for "not ready" drives contain zeroes.

#P1OD is a switch indicating the device defined s the
principal 1/O device for the system. The switch
settings are as follows:

Setting Principal 1/O Device

positive 2501 with 1442, any model
zero 1442, Model 6 or 7
negative 1134 with 1055

#PPTR is a switch indicating the device defined as the
principal print device for the system. The switch
settings are as follows:

Setting Principal Print Device

positive 1403 Printer
zero 1132 Printer
negative Console Printer

#RP67 is a switch indicating the type of card /O
device present on the system. The switch settings
are as follows:

Setting Card |/O Device

zero 2501 with 1442, Model 5
positive 1442, Model 6 or 7

#SCRA contains the sector address of the first sector

of the Supervisor Control Record Area (SCRA) on the
cartridge mounted on logical disk drive 0. The logical
disk drive number is contained in bits 0-3. #SCRAt1
through #SCRA+4 contain analogous sector addresses
for any system cartridges on logical disk drives 1, 2,
3, and 4, respectively.

#SYSC, on a system cartridge, contains the version
and modification level numbers for the currently resi=-
dent 1130 Disk Monitor System. Bits 0~7 contain the
version number; bits 8~15 contain the modification
level number.

#SYSC on a non-system cartridge contains zeroes.

#TODR contains the number of the logical disk drive
on which the cartridge specified by the "TO" cartridge
ID (in columns 36-40 of the DUP control record) is
mounted. The drive number is contained in bits 12-15.
A negative number indicates that no ID was specified.

Section 2. Communications Areas

Table 2. The Contents of DCOM (Concluded)

LABEL

DESCRIPTION

#UHOL

FULET
through
FULET+4

#UsSzE

#WSCT
through
#AWSCT+4

#UHOL contains the displacement, in disk blocks,
from word 0, sector 0, cylinder O to the first disk
block of the largest unused (IDUMY) area in the User
Area on the cartridge to which a STORE operation is
to be made.

#ULET contains the sector address of the first sector of
LET on the cartridge mounted on logical disk drive 0.
The logical.disk drive number is contained in bits 0-3.
FULET+1 through *ULET+4 contain analogous sector
addresses for the cartridges on logical disk drives 1,
2, 3, and 4, respectively.

#USZE contains the number of disk blocks contained
in the largest unused (IDUMY) area in the User Area
on the cartridge to which a STORE operation is to be
made.

#WSCT contains the number of disk blocks occupied
by a program, core load, or data file placed into
Working Storage on the cartridge mounted on logical
disk drive 0. #WSCT+1 through #WSCT+4 contain
analogous disk block counts for the contents of Work-
ing Storage on logical disk drives 1, 2, 3, and 4,
respectively.

FLOWCHARTS
General: SYLO1 P!gé
Phase 1: SYL02 p!??’

Phase 2: SYL03 - SYL05

PW:S’K'WLO

PHASE 1
FUNCTIONS

Phase 1 determines which card I/O subroutine is to
be used, i.e., 2501 or 1442, If 2501, a naturally
relocatable 2501 subroutine overlays the 1442 sub-
routine that is part of this phase.

Phase 1 also reads the Console Entry switches to
get the physical drive number (0-4) for the cartridge
to be loaded. It sets up the PROGRAM STOP key
interrupt trap. The Keyboard INTERRUPT REQUEST
key is made non-effective until the monitor system
programs have been loaded,

Phase 1 reads the Resident Monitor and DISKZ
object decks into core storage and initializes them
preparatory to loading phase 2 of the System Loader
to disk.

Phase 1 picks up defective track data from sector
@IDAD on the cartridge to be used to initialize the
disk 1/0 subroutine.

Phase 1 loads phase 2 to cylinders 198 and 199
(sectors /0630 through /063F) on disk. (These
sector addresses are absolute; they are assembled
as part of the phase 2 deck.) If an initial load is
being performed, subphase 1 is loaded to sector
/0634, overlaying a part of the reload processing
subroutine. Subphases 2 and 3 are loaded to sectors
/063B and /063C.

If an initial load is being performed, phase 1
stores the Resident Image on sector @RIAD, (DISKZ
is stored on disk by phase 2.)

Phase 1 processes the System Configuration
records, saving the data obtained in the phase 1
communications area for use by phase 2. At the
end of the Configuration records processing, the
accumulated data is checked for errors and consoli-
dated for phase 2. If a CORE control record is
present, its contents are processed and replace the
calculated core size.

SECTION 3. SYSTEM LOADER

Phase 1 processes the PHID control record,
checks it for errors, and saves the data obtained
from it for use by phase 2. The version and modifica-
tion level number is taken from the PHID control
record and saved.

Phase 1 fetches phase 2 from disk into core
storage and transfers control to it at MAING.

BUFFERS AND I/O AREAS

Card Input

A: an 80-word buffer that contains card images in
left-justified 12 bit/word format, as read by the 1442
or 2501 card I/0O subroutine.

B: a 60-word buffer that contains the 12-bit/word

data from buffer A after it has been compressed to
16 bits/word,

Paper Tape Input

B: a 60-wo? '-uffer into which binary data from
buffer BIGGB\s compressed.

Disk Input and Output

BUFF1: a 320-word buffer used in all disk I/0O
operations.

COMMUNICATION FROM PHASE 1 TO PHASE 2
The card I/O subroutine (2501 or 1442) that was
selected by phase 1 for use during System Loader

operation is written onto sector /0638 to be used by
phase 2 also.

Section 3. System Loader 9

Information acquired by phase 1 is accumulated
in the area in core storage bounded by EDIT and
EDIT+/0140. This 320-word area, which also con~
tains a number of error messages, is written to
sector /0632 before phase 2 is entered.

PHASE 2

FUNCTIONS, INITIAL LOAD AND RELOAD

Phase 2 checks the phase ID number sequence for
ascending order during initial loads only.

Phase 2 performs a checksum test on all type A
(data) records.

Phase 2 builds the Reload Table in core storage as
the monitor system program phases are loaded.
Each 3-word entry in the table consists of the ID
number of a phase requesting SLET data, the relative
location within the requesting phase where the SLET
data is to be stored, and the number of SLET items
to be supplied by the System Loader. On an initial
load, this Reload Table is written to disk in sector
@RTBL.

If so indicated by the Load Mode control record,
phase 2 bypasses the FORTRAN Compiler and/or the
Assembler Program.

Phase 2 updates the version and modification level
numbers in the parameter #SYSC in sector @DCOM
of the cartridge. These numbers are taken directly
from the PHID control record. No comparison with
previous version and modification level numbers is
made.

Phase 2 determines from the data obtained from
the System Configuration records which devices are
the principal 1/0 and principal print devices. Phase
2 builds five special sets of SLET entries for the
specified devices as well as for the principal I/0 and
print device convers ion subroutines.

Phase 2 steps through the Reload Table and
searches out every phase requesting SLET data. It
then searches out the SLET data that is requested,
places it in the requesting phase, and writes that
phase back to disk. This continues until the end of
the Reload Table (/FFFF) is reached.

Phase 2 substitutes zeros for the SLET data
requested by a phase if that phase requested a
FORTRAN Compiler and/or Assembler Program
SLET entry and the FORTRAN Compiler and/or the
Assembler Program were bypassed or never loaded.

Phase 2 displays appropriate error messages, as
necessary, using the WRTYO0 subroutine in core
storage.

10

FUNCTIONS, INITIAL LOAD ONLY

Phase 2 clears to zero the sectors that will become
the SLET table. The SLET entries are filled in as
each monitor system program is stored.

Phase 2 checks for missing phases. All phases
specified in the PHID control record must be present,
except when the FORTRAN Compiler and/or the
Assembler Program are bypassed.

Phase 2 keeps a record of the highest sector
loaded so that the sector addresses for the Supervisor
Control Record Area (SCRA), Core Image Buffer
(CIB), Location Equivalence Table (LET), and User
Area (UA) on disk may be correctly established.

Phase 2 checks the data obtained from the Load
Mode control record and, if the FORTRAN Compiler
and/or the Assembler Program are to be bypassed,

a gap is forced in SLET and filled with zeros. These
zero entries in SLET occupy as much space as the
bypassed program(s) would ordinarily require.

FUNCTIONS, RELOAD ONLY

Phase 2 verifies that the file-protection address is
not greater than /062F. (Otherwise, phase 2 cannot
be temporarily stored on disk.)

Phase 2 updates the SLET entries for each phase
as that phase is reloaded.

Phase 2 provides for expansion of the system into
the Cushion Area when required. If a phase grows
by more than one sector, it is expanded accordingly.
All subsequent SLET entries are updated each time
an expansion occurs. A check is made to see that
the Supervisor Control Record Area (SCRA) is not
overlaid.

Phase 2 constructs an in-core Reload Table. At
the end of the monitor system program reload, the
data that was accumulated as one or more phases
were reloaded is first compared with the existing
Reload Table on disk. Entries are replaced or added
to the Reload Table as necessary. Then the updated
Reload Table is processed as described above.

BUFFERS AND I/O AREAS

Card Input

A: an 80-word buffer that contains card images in
left-justified 12 bit/word format, as read by the
1442 or 2501 card I/0 subroutine.

A2; an 80-word buffer used in conjunction with
buffer A for double buffering capability. This buffer
is used only by the 2501 card I/O subroutine.

B: a 60-word buffer into which 12 bits/word data is
compressed from buffer A when a 1442 is used as
the input device, or from buffers A and A2 when a
2501 is used.

Paper Tape Input

B: a 60-word buffer into which binary data from
buffer BIGCB is compressed.

C: a l-word buffer used for the Delete character
test when reading binary paper tape records.

BIGCB: a 108-word buffer for binary paper tape
records, 108 frames, left-justified.

Disk Input and Output

BUFF1: a 320-word buffer used in disk I/O opera-
tions.

FSLET: a 320-word buffer used for reading or
writing a SLET sector. During a reload operation
that requires expansion into the Cushion Area of the
cartridge, a sector of SLET from FSLET is saved
by writing it on the first sector of the CIB. The CIB
is not cleared afterward.

RTBFR: a buffer that is used to gather the data that

will become the Reload Table. Its length is variable,
up to 320 words. The word count (never over /0140)

may be found in location RTBFR.

SUBPHASES

Subphase 1

Subphase 1 contains the subroutines that are used
only during an initial load. If an initial load is being
performed, subphase 1 overlays a portion of phase 2
that contains only reload subroutines. Phase 1
determines from the Load Mode control record the
type of load being performed, and either overlays

the described area or bypasses the subphase 1 portion

of the phase 2 deck.

Most of the functions of this subphase involve the
checking of the ID number of each phase as it is
encountered. An error message (error 12, 14, or
15) is displayed whenever a phase ID is encountered
that is out of sequence or was not specified on the
PHID control record.

Subphase 2

Subphage 2 contains the procedures for system
initialization prior to the loading of the System
Library. After the type 81 (end-of-system) record
has been read, phase 2 fetches this subphase and
overlays the area in core storage bounded by /0682
through /07C1.

Subphase 2 modifies the coding for the processing
of those types of records that are no longer expected,
so that if one of these records is encountered, an
error message is printed.

Subphase 2 looks up DISKZ in SLET and saves the
word count and sector address so that DISKZ may be
fetched during processing in subphase 3.

Subphase 2 reads DCOM into the buffer FSLET.
During an initial load DCOM is cleared to zeros,
after which the following entries are initialized:

Location Value Inserted

#SYSC version and modification level from
PHID control record

#RP67 a positive value if a 1442, Model 6 or
T is present

#PIOD the value indicating the principal I/O
device, as determined from REQ control
records

#PPTR the value indicating the principal print
device, as determined from REQ control
records

#CIAD relative location in sector @IDAD where
CIL word count and sector address is
maintained

#ANDU file-protection disk block address

#BNDU file-protection disk block address

#FPAD file-protection or Working Storage

address

Section 3. System Loader 11

#CIDN cartridge ID from word 4 of sector

@IDAD

#CIBA sector address of CIB

#SCRA sector address of Supervisor Control
Record Area

#ULET sector address of LET

#CSHN number of unused sectors between last

system program and Supervisor Control
Record Area.,

During a reload operation, only the following are
updated: #SYSC, #RP67, #PIOD, #PPTR, #CIAD,
and #CSHN, as described above.

Subphase 2 reads the Resident Image from disk in-
to the buffer FSLET. During an initial load the
Resident Image is initialized as follows:

Location Value Inserted

$CH12 address of channel 12 indicator for
the principal print device, as deter-
mined from REQ control records

$CORE core size (may be actual, or set by
CORE control record)

$DREQ a negative value indicating DISKZ

$HASH and word count and sector address of

$HASH+1 CIB

$IREQ address of $DUMP entry point

$ULET sector address of LET for logical
drive 0

$CILA address of the end of DISKZ minus 1
(location in DISKZ where the word
count and sector address of the Core
Image Loader is to be placed)

$DZIN a negative value indicating DISKZ

$FPAD file~protection sector address for
logical drive 0

$DCYL table of defective cylinders (from
sector @IDAD)

$IBT2 address of level 2 interrupt branch

table

12

During a reload operation, only the following are
updated: $CH12, $CORE, $IREQ, $CILA, and
$IBT2, as described above.

The first sector of LET is established and initial-
ized with a 1IDUMY entry, Working Storage disk block
address, User Area sector address, and the number
of unused words in the first sector of LET. All
other words in LET are set to zero until the System
Library is loaded.

Subphase 2, on an initial load, goes to the Reload
Table processing subroutine, and upon return,
fetches and transfers control to subphase 3.

Subphase 3

Subphase 3 clears the sign bits from all sector
addresses in SLET and resets them according to the
data obtained from the System Configuration records.
(The sign bits are used to indicate which, if any, 1/0O
devices are not present on the system.)

Subphase 3, on a reload operation, compares all
entries in the Reload Table built in core storage with
the Reload Table on disk. Phase ID numbers in the
Reload Table on disk that match phase ID numbers in
the Reload Table in core storage are replaced by
those from the table in core storage. Any additional
phase ID numbers from the table in core storage
that are not present in the table on disk are added to
the table on disk. At the conclusion of this update
of the Reload Table on disk, it is completely re-
processed by the W200 subroutine in phase 2.

Subphase 3 places the word count and sector
address of the Core Image Loader, obtained from
SLET, into DISKZ in core storage and into DISKZ
on cylinder 0. If a reload operation is being per-
formed, subphase 3 displays "END RELOAD'" and
halts.

On an initial load, subphase 3 branches to the
Auxiliary Supervisor with a parameter of minus 5,
causing a dummy DUP monitor control record to be
placed in the Supervisor buffer and the Monitor
Control Record Analyzer to be called via the $EXIT
entry point in the Skeleton Supervisor. The Monitor
Control Record Analyzer then calls DUP to load the
System Library.

CORE LAYOUT

Figure 1 shows the layout of the contents of core
storage during System Loader operation.

O) @ ®

1442/2501

COMMA, COMMA
Btozﬁ';p Skeleton Skel efonl
© Supervisor Supervisor
/ DISKZ DISKZ
Reload Reload
Table Table

Phase
1

2777

Communications | Communications | Communications

Area Area Area
Phase
2
Phase Subphase
2 1,2,0r3
Card or Card or Card or
Paper Tape Paper Tape Paper Tape
Subroutine Subroutine Subroutine

7
Y,

Figure 1. Core Layout During System Loader Operation

CARTRIDGE IDENTIFICATION SECTOR

On an initial load, the System Loader uses the con-
tents of the cartridge ID sector (sector @IDAD) as
follows:

The first three words of the sector (the defective
cylinder table for the cartridge, initialized by the
DCIP program) are placed into its disk I/O subroutine

prior to performing any disk operations, and into
locations $DCYL through $DCYL+2 in the Resident
Image.

The fourth word of the sector (the cartridge
identification word, initialized by the DCIP or DISC
program) is placed into location #CIDN in DCOM.

SYSTEM LOCATION EQUIVALENCE TABLE (SLET)

SLET occupies two adjacent sectors on the system
cartridge. Its functions are:

e To provide a convenient means for locating each
monitor system program that has been stored on
the system cartridge.

e To indicate which are the principal I/O devices
for the system.

e To indicate which devices, if any, are not present
on the system.

When the System Loader initially stores a phase
of a monitor system program on the disk, it makes
a 4-word entry in SLET for that program consisting
of:

1. The phase identification (phase ID) number.

2. The core loading address of the phase. This is
the address in which the word count is to be
stored prior to fetching the phase from the disk.

3. The word count of the phase, not including the
two words occupied by the word count and sector
address used in fetching the phase from disk,

4, The sector address of the phase.

During an initial load, the SLET sectors are
cleared to zero. The 4-word entries describing
each phase are built into the table, phase by phase,
as the monitor system programs are loaded. When
a program, such as the Assembler Program, is to
be bypassed, the words in SLET that it would nor-
mally need (the number of phases in the program
times 4) are left at zero and are bypassed. The
SLET entry for the next program phase that is loaded
follows this gap. (A program or phase not included
during an initial load cannot later be included in a
reload operation; a new initial load must be per-
formed.)

All phase ID numbers in SLET are in ascending
order. No duplications exist. The only jumps in
sequence are between programs, not between phases
within a program.

Section 3, System Loader 13

The five 4-word entries describing the principal
I/0 devices and the corresponding conversion sub-
routines are built by the System Loader and do not
come directly from program decks. These special
entries, as well as all I/O phases, are located on
the second of the two SLET sectors,

The contents of SLET can be obtained at any time
by an execution of the DSLET program (see the
description of DSLET under Mainline Programs
in Section 12, System Library).

RELOAD TABLE

requesting phase. Word 3 of each entry contains the
number of 4~-word SLET entries to be inserted into
the requesting phase. The phase ID number of the
requesting phase itself is in 2's complement form
to indicate to the System Loader that SLET data is
requested by that phase.

When completed at the end of an initial load or
reload operation, the Reload Table consists of a

string of 3-word entries, as described above, except
that the phase ID numbers have been recomplemented

by the System Loader. At the end of the string is
/FFFF. It may be at an odd or an even address,
depending upon the length of the string. At the end
of an initial load, the phase ID numbers are in
ascending order. After one or more reload opera-
tions the phase ID numbers may or may not be in

The Reload Table occupies one sector on the system
cartridge. It contains a 3-word entry for each phase
that requests SLET information. Word 1 of each
entry contains the phase ID number of the requesting
phase. Word 2 of each entry contains the number of
the location, relative to the beginning of the phase,
where the SLET entries are to be inserted into the

ascending order.

When a DEFINE VOID ASSEMBLER or DEFINE
VOID FORTRAN operation is performed by DUP,
all phase ID numbers belonging to the voided pro-
gram(s) are removed from the Reload Table. The
remaining 3-word entries in the Reload Table are
packed together and terminated with /FFFF,

14

FLOWCHARTS

Cold Start Loader: CSTO1
Cold Start Program: CST02

COLD START LOADER

The Cold Start Loader is the one-card bootstrap used
to initiate the operation of the Cold Start Program,
which in turn initiates the operation of the monitor
system.

Since it is loaded by the IPL procedure, all
instructions in the Cold Start Loader are in Load
Mode format. Hence, the program must construct
all IOCCs as well as any long instructions required
by it.

The first word set up after entering the program
is the second word of the IOCC for reading the Con-
sole Entry switches. After this is done, the number
of the physical drive to be assigned as logical drive
0 is obtained from the Console Entry switches, The
program then checks to see if the number obtained
is valid (0-4, inclusive). If it is not, the program
comes to a WAIT from which the user may restart
by entering a valid number and pressing the START
key. Once a valid number hag been obtained, the
device code for the drive specified is constructed
and saved (for use by the Cold Start Program as well
as the Cold Start Loader).

After setting up the second word of the IOCC for
sensing the disk (with reset), the program senses the
disk. All bits except the not-ready bit (bit 2) are
masked out. If the drive is not ready, the program
comes to the same WAIT mentioned above.

Four long instructions are built, and the final
steps in the setting up of the IOCC for seeking are
performed. The word count of the Cold Start Pro-
gram plus the word count of DISKZ plus 27 is stored
in DZ000-29, the 27 being the number of words
reserved in sector @IDAD for parameters,

After setting up the second word of the IOCC
for reading the disk, the program initiates a
seek toward the home position, one cylinder at a
time., When the seek is complete, sector zero on
the cylinder currently under the read/write heads
is read from the disk, If no disk error occurs

SECTION 4. COLD START PROGRAMS

during this read and if the sector address is that of
sector @IDAD, then a branch is made to $ZEND,
which is the address of the first word of the Cold
Start Program.

If the sector address is not that of the Cold Start
Program, another seek toward the home position is
initiated. This seek-and-read process is repeated
until the proper sector address is found. (There-
fore,a cartridge with invalid sector addresses causes
the program to function improperly.) Any disk
error results in the program coming to a WAIT with
a /3028 in the storage address register.

COLD START PROGRAM

The Cold Start Program is fetched from the disk by
and receives control from the Cold Start Loader.
Using the same device code that was set up
by the Cold Start Loader for the physical drive
assigned aslogical drive 0, the Cold Start Program
reads the Resident Image into its normal location in
core storage. Once this operation is performed,
location zero is initialized with an MDX to $DUMP+1
and the Auxiliary Supervisor is entered with a
parameter of minus 1, causing it to place a dummy
JOB monitor control record into the Supervisor
buffer and execute a CALL EXIT.

CORE LAYOUT

Figure 2, panel 1, shows the layout of the contents
of core storage after the Cold Start Loader has been
loaded and, in turn, has fetched sector @IDAD from
logical drive 0 into core storage. This sector is
read into core such that the DISKZ subroutine
resides at DZ000, followed by the Cold Start Pro-
gram.

Figure 2, panel 2, shows the layout of the contents
of core storage after the Cold Start Program has
fetched the Resident Image from sector @RIAD
from logical drive 0 into core storage. The
Resident Image, like DISKZ, is fetched so that all
locations occupy their permanent positions in core
storage.

Section 4. Cold Start Programs 15

FLOWCHARTS

CALL LINK, CALL EXIT, CALL DUMP Processor:
SUPO1

The Resident Monitor congists of COMMA, the
Skeleton Supervisor, and a disk I/0O subroutine,
COMMA

For a description of COMMA and its contents, see
Section 2. Communications Areas.

SKE LETON SUPERVISOR

The Skeleton Supervisor is composed of: the CALL
LINK, CALL DUMP, CALL EXIT processor; error
traps for interrupt levels 1, 2, 3, and 4, the PRO-
GRAM STOP key, and preoperative errors; and the
ILSs for interrupt levels 2 and 4.

CALL LINK, CALL DUMP, CALL EXIT PROCESSOR

This portion of the Skeleton Supervisor indicates the
type of entry made to it ~- LINK, DUMP, or EXIT --
then fetches and transfers control to phase 1 of the
Core Image Loader.

On any entry at $DUMP locations $CIBA+1 through
4095 are saved on the Core Image Buffer before they
are overlaid by the monitor system programs re-
quired for the core dump.

On all entries to the Skeleton Supervisor, the
two words following the branch instruction are saved
to prevent their being overlaid and lost. They are
needed only if the entry was at $LINK, at which time
these two words contain the name of the link to be
executed next.

SECTION 5. RESIDENT MONITOR

ERROR TRAPS

There are six error traps in the Skeleton Super-
visor: the preoperative error trap, the PROGRAM
STOP key trap, and one postoperative error trap
each for interrupt levels 1, 2, 3, and 4.

Each error trap except for the PROGRAM STOP
key trap consists of a link word, a WAIT instruc-
tion, and a BSC indirect to the link word. The
PROGRAM STOP key trap employs a BOSC indirect
instead of a BSC indirect.

ILSs

The Skeleton Supervisor contains the ILSs for
interrupt level 2 (ILS02) and interrupt level 4 (ILS04).
These are used in all cases by all monitor system
programs and by user programs in lieu of user-
written ILS02 and/or ILS04 subroutines.

DISK I/0 SUBROUTINE

The Resident Monitor contains one of the three disk
I/O subroutines at all times, The disk I/O sub-
routine in the Resident Monitor is the disk I/O sub-
routine currently in use.

For a description of the DISKZ subroutine, see
Section 13, System Device Subroutines. A listing
of the DISKZ subroutine is contained in Appendix B.
Listings.

For descriptions of the DISK1 and DISKN sub-
routines, see Section 12, System Library.

Section 5. Resident Monitor 17

FLOWCHARTS

Monitor Control Record Analyzer: SUP02 - SUP05
Supervisor Control Record Analyzer: SUP06-SUP(8
Auxiliary Supervisor: SUP10

System Core Dump Program: SUP09

MONITOR CONTROL RECORD ANALYZER -
PHASE 1

The Monitor Control Record Analyzer is the program
that decodes monitor control records and takes the
specified action.

The Monitor Control Record Analyzer is entered
via the $EXIT entry point in the Skeleton Supervisor.
This entry causes the Core Image Loader to fetch
the Monitor Control Record Analyzer and transfer
control to it.

The Monitor Control Record Analyzer utilizes the
system I/0 device subroutines. Three of these sub-
routines (an input, an output, and the appropriate
conversion subroutine) are fetched into core storage
by the Monitor Control Record Analyzer itself,
using SLET information provided by the System
Loader.

The Monitor Control Record Analyzer reads
monitor control records from the principal input
device into the Supervisor buffer, which occupies
locations @SBFR through @SBFR+79 and contains a
monitor control record in unpacked, right-justified
EBCDIC format.

The principal conversion subroutine checks for
monitor control records. If the principal conversion
subroutine detects a monitor control record during
the execution of a monitor system program other
than the Monitor Control Record Analyzer, $CTSW
in COMMA is set to a positive non-zero value, the
monitor control record is converted to unpacked,
right-justified EBCDIC format, and the record is
passed to the Monitor Control Record Analyzer in
the locations assigned as the Supervisor buffer.

SECTION 6. SUPERVISOR

JOB CONTROL RECORD PROCESSING

Upon detecting a JOB control record, the Monitor
Control Record Analyzer initializes the SLET in-
formation for the principal input device, COMMA,
DCOM, and LET.

The entire heading sector (sector @HDNG) is
cleared, "PAGEbbb1" is stored in words 0-3, and
the contents of columns 51-58 of the JOB control
record are stored in words 6-9.

The SLET information for the device other than
the Keyboard normally assigned as the principal
input device replaces the SLET information for the
current principal input device and its conversion
subroutine,

The following parameters in COMMA are
initialized to zero:

$COMN, $LAST, $PST1,
$CTSW, $LINK, $PST2,
$DADR, $NDUP, $PST3,
$DUMP, bo3F $NXEQ, $PST4,
$IBSY, $PBSY, $SNLT,
$I0CT, $PRET, $STOP,

$WRD1

In addition, $PGCT and $UFIO are set to one, and
the address of $DUMP is stored in $IREQ.

The cartridge IDs specified on the JOB control
record are unpacked to one EBCDIC character per
word, converted to binary, and stored in a five-
word ID table to be used by the System Update
program to update the cartridge-dependent tables
in COMMA and DCOM (see System Update, below).

$CIBA in COMMA is set by comparing the ID of
the cartridge on which the CIB for the current job
is to be found, as specified on the JOB control
record, to the list of specified IDs and selecting the
entry in #CIBA that corresponds to the matching ID.
Similarly, $WSDR is set equivalent to the logical
drive number of the ID that matches the Working
Storage cartridge ID, and $UFDR is set equivalent

Section 6. Supervisor 19

to the drive number that matches the unformatted
I/0 cartridge ID.

The address of the adjusted end of the User Area
(#ANDU) is compared to the address of the base end
of the User Area (#BNDU) for each cartridge. If
the two items are unequal for any cartridge, the
temporary items in LET on that cartridge are
deleted. A sector of LET is read and the disk block
counts are accumulated until the sum is equivalent
to #BNDU. The sector address of that sector and
any following LET sectors are stored in a table
(JB936) until a continuation of the disk block
accumulation equals #ANDU. The next entry consists
of a dummy name (IDUMY) and the size of Working
Storage. The size of Working Storage is saved
(JB934) and the entry is cleared. The preceding
disk block counts are added one at a time to JB934,
subtracted from #ANDU, and deleted until # ANDU
equals #BNDU. If an entire sector is deleted before
#ANDU equals #BNDU, it is necessary to fetch the
sector address of the preceding LET sector from
the table JB936 and read in that sector so the
deletion process may be continued. When all the
temporary entries have been deleted (#ANDU equals
#BNDU) 1DUMY is stored as the name, and the disk
block count of the last entry is stored as the size of
Working Storage.

The following parameters in DCOM are set to
Zero:

#CBSW, #FRDR, #MPSW,
#DBCT, #FRMT, #NAME,
#DCSW, #FSZE, #NCNT,
#ENTY, #LCNT, #TODR,
#FCNT, #MDF1, #UHOL,
#FHOL, #MDF2, #USZE,
#WSCT

#JBSW is set to zero unless a '"T' appears in
column 8 of the JOB control record, in which case
#JBSW is set to a positive, non-zero value.

SYSTEM UPDATE PROGRAM

The purpose of the System Update program is to
update the drive- and cartridge-dependent tables of
the system cartridge DCOM to reflect the logical
definition and contents of the cartridge in use during
the current job, as specified by the JOB control
record.

20

The specified cartridge IDs are communicated to
the System Update program in logical order and in
tabular form from core storage or from disk. This
table is referred to as ID LIST,

A table of available cartridge IDs in physical
order is formed by the System Update program by
executing a command to read one word from each
drive successively. If the drive is available and
ready, the DSW, when immediately tested, shows
a busy condition, DISKZ is then called to fetch the
cartridge ID and defective cylinder addresses from
sector @IDAD and the ID is stored in CART LIST.

If a drive is not available or not ready, the
appropriate position of CART LIST is set to zero.

CART LIST is searched for each ID in ID LIST.
When matching IDs are found, DCOM is fetched from
the physical drive represented by the matching ID
from CART LIST. The ID being processed is
located in the #CIDN parameter in the DCOM just
fetched. The entries from the drive- and cartridge-
dependent parameters in DCOM in the position where
the ID is found are moved to the corresponding drive-
and cartridge-dependent parameters in the master
DCOM in the position specified by the logical drive
assignment for that ID. The entries for unspecified
cartridges are set to zero.

At the same time, the device code ($ACDE) and
defective cylinder addresses ($DCYL) in COMMA
are set. $ACDE is the only link between the logical
and physical definition of a drive. The position of
an entry in the $ACDE parameter defines the logical
drive, and the device code defines the physical drive.
The defective cylinder addresses are those fetched
from words 0-2 of sector @IDAD of the cartridge.
These addresses and cartridge IDs were set by the
DCIP program. $FPAD and $ULET in COMMA are
updated from the newly updated DCOM on the
master cartridge.

OTHER CONTROL RECORD PROCESSING

Upon detecting an XEQ monitor control record, the
Monitor Control Record Analyzer tests $NXEQ, the
non-execute switch, in COMMA. If $NXEQ is zero,
the Monitor Control Record Analyzer fetches and
transfers control to the XEQ Control Record
Processor (see below). Otherwise, the Monitor
Control Record Analyzer prints an error message
and reads the next control record for processing.
Upon detecting an ASM or FOR monitor control

record the Monitor Control Record Analyzer fetches
the first phase of the specified program using SLET
information provided by the System Loader, and
transfers control to it.

Upon detecting a DUP monitor control record,
the Monitor Control Record Analyzer tests $NDUP,
the non-DUP switch, in COMMA. If $NDUP is zero,
the Monitor Control Record Analyzer fetches and
transfers control to the first phase of DUP. Other-
wise, an error message is printed and the next
control record is read for processing.

Upon detecting a PAUS monitor control record,
the Monitor Control Record Analyzer comes to a
WAIT at the PROGRAM STOP key trap in the
Resident Monitor. When the PROGRAM START key
is pressed, the Monitor Control Record Analyzer
reads and processes the next control record.

Upon detecting a TYP monitor control record,
the Monitor Control Record Analyzer replaces the
SLET information used to fetch the principal input
device subroutine and its associated conversion
subroutine with the SLET information for the Key-
board input subroutine and its associated conversion
subroutine. These subroutines are then fetched and
used for the reading and converting of subsequent
input records from the Keyboard.

Upon detecting a TEND monitor control record,
the Monitor Control Record Analyzer replaces the
SLET information used to fetch the principal input
device (the Keyboard) subroutine and its associated
conversion subroutine with the SLET information
for the device subroutine and conversion subroutine
used with the device normally agsigned as the
principal input device, i.e., not the Keyboard.
These subroutines are then fetched and used for the
reading and converting of subsequent input records.

Upon detecting a CPRNT monitor control record,
the Monitor Control Record Analyzer replaces the
SLET information used to fetch the principal print
device subroutine with the SLET information for the
Console Printer output subroutine. (This replace-
ment is permanent and can be changed only by a
new initial load of the system,) This subroutine
is then fetched and used for the printing of sub-
sequent output records on the Console Printer.

Upon detecting an EJECT monitor control record,
the Monitor Control Record Analyzer ejects the page
on the principal print device, prints the current
page heading, and reads and processes the next
monitor control record.

XEQ CONTROL RECORD PROCESSOR - PHASE 2

The XEQ Control Record Processor processes the
XEQ monitor control record and the Supervisor
control records - LOCAL, NOCAL, and FILES.

XEQ CONTROL RECORD PROCESSING

The presence of Supervisor control records follow-
ing the XEQ control record is indicated by the con-
tents of columns 16 and 17. If the number in these
columng is not zero or blank, the Supervisor
Control Record Analyzer, the subroutine that
processes LOCAL, NOCAL, and FILES control
records, is called.

#MPSW in DCOM is set non-zero if an 'L' appears
in column 14; otherwise, #MPSW is set to zero.

$DREQ in COMMA is set according to the disk
1/0 subroutine indicated in column 19. If column 19
is blank, $DREQ is set to indicate DISKZ.

If a name appears in columng 8 through 12 of the
XEQ control record, the name is converted to name
code and the Core Image Loader is called via the
$LINK entry point in the Skeleton Supervisor. (The
2-word name of the program to be linked to follows
the branch to $LINK,)

If no name appears in the XEQ control record,
phase 0/1 of the Core Load Builder is fetched into
core storage and control is transferred to phase 0.
The cartridge ID in columns 21-24 is located in
#CIDN to determine the drive on which the program
is to be found. This drive number is stored in
$DCDE in COMMA,

Section 6. Supervisor 21

SUPERVISOR CONTROL RECORD PROCESSING

LOCAL/NOCAL Control Record Processing

22

The mainline program name(s) and subroutine
name(s) found on the LOCAL/NOCAL control
records are converted to name code and stored on
the Supervisor Control Record Area (SCRA), If
a mainline program name is not specified, two words
of blanks replace it in the SCRA.

LOCAL control record information is stored in
sectors 0 and 1 of the SCRA. NOCAL control record
information is stored in sectors 2 and 3.

FILES Control Record Processing

Each file number is converted to binary and stored
in the SCRA. Following each file number in the
SCRA is the file name in name code. If no name was
specified, two words of zeros replace the name.
Following each file name in the SCRA is the cartridge
ID converted to binary. If no cartridge ID was
specified for a file, one word of zeros replaces the
cartridge ID. Both the file name and cartridge ID
may not be unspecified.

FILES control record information is stored in
sectors 4 and 5 of the SCRA.

SUPERVISOR CONTROL RECORD AREA (SCRA)

Sectors 0 and 1 of the SCRA are occupied by the
LOCAL information for the core load or execution
currently in progress (see diagram, below). The
first word of sector 0 contains the word count of the
information stored in the two LOCAL sectors.
Sectors 2 and 3 of the SCRA are occupied by the
NOCAL information for the core load or execution
currently in progress (see diagram, below). The
first word of sector 2 contains the word count of
the information stored in the two NOCAL sectors.
Sectors 4 and 5 of the SCRA are occupied by the
FILES information for the core load or execution
currently in progress (see diagram, below). The
first word of sector 4 contains the word count of the
information stored in the two FILES sectors.
Sectors 6 and 7 of the SCRA are not used.
The format of information in the LOCAL/NOCAL
sectors is as follows:

Word Count, one word specifying the number of words in
the two LOCAL/NOCAL sectors occufied
by LOCAL/NOCAL information, including
the word count .
Mainline name, two words in name code format (blanks
if no mainline name is specified)
Subroutine Name, two words in name ccde for-
mat specifying a LOCAL/
NOCAL subroutine assoc-
iated with the preceding
mainline
Subroutine Name

Subroutine Name Mainline

l Name
Mainline and Subroutine Names l

AN A P e e * k
' ' ' H ;
Secforlll}l:|:I:| 4§ |:|
Subroutine Name
Mainline Name
Subroutine Name
Subroutine Name
Not Used
APy i, e, *)
Sector2|il:|;|=|

<~

The format of information in the FILES sectors
is as follows:

Word Count, one word specifying the number of words in the two
FILES sectors occupied by FILES information, including the
word count,

File Number, one word specifying in binary the number
assigned to the file in a FORTRAN DEFINE FILE
statement and by which the file is referenced

File Name, two words in name code format specifying the

name of the file as it appears in LET/FLET (zeros
if no file name is specified) .

Cartridge ID, one word specifying in binary the 1D
of the cartridge containing the preceding
nomed file (zero if no cartridge 1D is
specified) .

File Number
File Name
Cartridge ID

File Number

y L L L File Numbers and Names
Yv o and Cartridge 1Ds

R

secor| |13 {1141 ,,

File Name

!
]

[4
)

Cartridge 1D
t Not Used

Pt Tt %
Secfor‘ i l

2 {

{
YT

SYSTEM CORE DUMP PROGRAM

If an entry was made to the Skeleton Supervisor at
the $DUMP ‘entry point, the Skeleton Supervisor saves
the contents of location $CIBA+1 through 4095 on the
CIB, then fetches and transfers control to the Core
Image Loader. If $DMPF (the dump format indica-
tor) is zero or positive, the Core Image Loader
fetches into core storage and transfers control to
the System Core Dump program.

The Dump program requires the principal print
device subroutine. This subroutine is fetched into
core storage by the Dump program itself utilizing
SLET information provided by the System Loader.

If dump limits are specified, three checks are
made:

1. If both limits are zero, the lower limit is left
zero and the upper limit is set to core size.

2. If a limit is larger than core size, the limit is
subtracted from the core size and the difference
is used as the limit.

3. If the lower limit is greater than the upper limit,
a wrap-around dump is given. That is, core
storage between the lower limit and the end of
core storage is dumped, then core storage
between location 0 and the upper limit is dumped.

The lower dump limit is checked to determine
which, if any, sections of the CIB must be read into
the dump buffer. If any or all of the contents of the
CIB are to be dumped, the CIB is read into core
storage in sections; sectors 0-3 constituting section
1, sectors 4-7 constituting section 2, and sectors
8-12 constituting section 3. Since the first six words
of core storage were not stored to the CIB, the
contents of the dump buffer are off-set by six words.
These six words are filled in from words 0-5 in the
case of section 1 and are saved from the end of the
previous section in the cases of sections 2 and 3.
Locations greater than 4095 were not stored to the
CIB and are dumped from their original locations.

If the $DUMP entry point containg no return
address (i.e., is zero), the Dump program calls the
Monitor Control Record Analyzer via the $EXIT
entry point in the Skeleton Supervisor.

If the $DUMP entry point contains a return address
(i.e., is non-zero), the Dump program restores the
contents of core storage in three stages. First, the
locations between $CIBA+1 and the beginning of the
disk I/0O subroutine are restored from the CIB.

Second, the locations between the beginning of the
disk I/O subroutine and the beginning of the principal
print device subroutine are restored. Third, the
locations between the beginning of the principal print
device subroutine and location 4095 are restored
from the CIB using the disk read subroutine in
COMMA. Control is then returned to the restored
core load at the location following the dump param-
eters.

AUXILIARY SUPERVISOR

If an entry was made to the Skeleton Supervisor at
the $DUMP entry point and $DMPF (the dump format
indicator) is negative, the Core Image Loader fetches
into core storage and transfers control to the
Auxiliary Supervisor.

The Auxiliary Supervisor has three functions:

1. It stores dummy monitor control records to the
Supervisor buffer for processing by the Monitor
Control Record Analyzer.

2. It prints error messages for errors detected by
the Core Image Loader,

3. It aborts a JOB.

The Cold Start Program calls the Auxiliary
Supervisor with a parameter of minus one (-1). This
parameter causes the Auxiliary Supervisor to place
a dummy JOB monitor control record in the Super-
visor buffer, convert from binary to EBCDIC the
cartridge ID of the cartridge from which the cold
start was made and store it in the Supervisor
Buffer, set $CTSW non-zero, and call the Monitor
Control Record Analyzer via the $EXIT entry point
in the Skeleton Supervisor.

The ILS04 subroutine calls the Auxiliary Super-
visor with a parameter of minus two (-2) if an
interrupt occurs from the Keyboard INTERRUPT
REQUEST key and the user has not provided a servic-
ing subroutine for that interrupt. This parameter
causes the Auxiliary Supervisor to set $I0CT, $IBSY
and $PBSY in COMMA to zero, set $FLSH in
COMMA non-zero, and call the Monitor Control
Record Analyzer via the $EXIT entry point in the
Skeleton Supervisor.

The Core Image Loader calls the Auxiliary
Supervisor with a parameter of minus three (-3) or
minus four (-4). If a program name cannot be
found in LET/FLET, the parameter used is minus

Section 6. Supervisor 23

three. If a name specified as the program or core
load for execution is found to be a data file in LET/
FLET, the parameter used is minus four. In either
case, the Auxiliary Supervisor prints an error
message, sets $NXEQ in COMMA non-zero, and
calls the Monitor Control Record Analyzer via the
$EXIT entry point in the Skeleton Supervisor.

The System Loader calls the Auxiliary Supervisor
with a parameter of minus five (-5). This parameter
causes the Auxiliary Supervisor to place a dummy
DUP monitor control record in the Supervisor buffer
and call the Monitor Control Record Analyzer via
the $EXIT entry point in the Skeleton Supervisor.

A negative parameter other than minus 1 through
minus 5 causes the Auxiliary Supervisor to print an
appropriate error message and call the Monitor
Control Record Analyzer via the $EXIT entry point
in the Skeleton Supervisor.

CORE LAYOUT

Figure 3, panel 1 shows the layout of the contents

of core storage at the time the Skeleton Supervisor
is entered at the $LINK, $EXIT, or $DUMP entry
point.

Figure 3, panel 2 shows the layout of the contents
of core storage after phase 1 of the Core Image
Loader has been fetched into core storage by the
Skeleton Supervisor. If the Skeleton Supervisor was
entered at the $DUMP entry point, the contents of
locations $CIBA-1 through 4095 are saved on the
CIB prior to the fetching of the Core Image Loader.

Figure 3, panel 3 shows the layout of the con-
tents of core storage after phase 1 of the Core Image
Loader, using whichever disk I/O subroutine is in
the Resident Monitor, has fetched phase 2 of the Core
Image Loader into core storage.

24

Figure 3, panel 4 shows the layout of the con~
tents of core storage after the Core Image Loader,
as the result of an entry to the Skeleton Supervisor
at the $EXIT entry point, has fetched the DISKZ disk
1/0 subroutine into the Resident Monitor for use by
the Monitor Control Record Analyzer and has fetched
into core storage and transferred control to the
Monitor Control Record Analyzer. The principal
print device and principal input device subroutines
have been fetched into core storage by the Monitor
Control Record Analyzer. The areas for disk 1I/O
and control record buffers have been allocated by
the Monitor Control Record Analyzer. If & monitor
control record had been detected by a monitor
system program other than the Monitor Control
Record Analyzer, the record would have been passed
to the Monitor Control Record Analyzer in that area
to be allocated by the Monitor Control Record
Analyzer as the Supervisor buffer,

Figure 3, panel 5 shows the layout of the con-
tents of core storage after the Monitor Control
Record Analyzer has fetched the XEQ Control Record
Processor into core storage.

Figure 3, panel 6 shows the layout of the con-
tents of core storage after the Core Image Loader,
as the result of an entry to the Skeleton Supervisor
at the $DUMP entry point with a non-negative param-
eter, has fetched into core storage and transferred
control to the System Core Dump program, The
Dump program, using whichever disk I/O subroutine
is in the Resident Monitor, has fetched the principal
print device subroutine into core storage. The
areas for disk I/O and print buffers have been
allocated by the Dump program,

Figure 3, panel 7 shows the layout of the con-
tents of core storage after the Core Image Loader,
as the result of an entry to the Skeleton Supervisor
at the $DUMP entry point with a negative param-
eter, has fetched the DISKZ disk I/O subroutine
into core storage and has fetched and transferred
control to the Auxiliary Supervisor. The Auxiliary
Supervisor has fetched the principal print device
subroutine into core storage.

®

©)

®

®

®

©®

9)

COMMA, COMMA, COMMA, COMMA, COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton Skeleton Skeleton Skeleton Skeleton
Supervisor Supervisor Supervisor Superyisor Supervisor Supervisor Supervisor
Disk 1/O Disk 1/0 Disk 1/0 Disk 1/0
Subroutine Subroutine Subroutine DISKZ Diskz Subroutine DISKZ
Principal Principal Principal m
C C Print Device Print Device Print Device guﬁrl\;?gr
ore ore Subroutine Subroutine Subroutine P
Image Image
Loader, Loader, Princi . —
rincipal Principal Principal
Phase 1 Phase 1 Input Device Input Device Print Df\,;ce
Subroutine Subroutine Dump Subroutine
MCRA MCRA Program 17
Core
Image JOB Processor, | XEQ Processor,
Loader, System Update SCRA
Phase 2
DCOM Disk 1/0 Disk I/0
/ Buffer Buffer Buffer
/// C. R. Buffer | C.R. Buffer /
User
Core Load
or
Monitor
System
Program
Portion
of
User
Core Load
Above
4095

Figure 3. Core Layout During Supervisor Operation

Section 6.

Supervisor

25

FLOWCHARTS
Phase 1: CILO1

Phage 2: CILO02

PHASE 1

Phase 1 of the Core Image Loader handles the three
entries to the Skeleton Supervisor - LINK, DUMP,
and EXIT, The Core Image Loader is assigned this
task in order to minimize transfer time (via CALL
LINK) from one link to another,

Phase 1 of the Core Image Loader is naturally
relocatable. It is read into core storage by the
Skeleton Supervisor immediately following whichever
disk I/0 subroutine is currently in the Resident
Monitor. (This can be done by the Skeleton Super-
visor with minimal core requirement because the
word count and sector address of this phase per-
manently reside at the end of each disk I/0 sub-
routine,)

If the Skeleton Supervisor was entered at the
$DUMP entry point (JRMSW is positive), phase 1
tests $DMPF, the dump format code indicator.

If $DMPF is negative, phase 1 fetches and transfers
control to the Auxiliary Supervisor. If $DMPF is
not negative, phase 1 fetches and transfers control
to the System Core Dump program,

If the Skeleton Supervisor was entered at the
$EXIT entry point (JRMSW is negative), phase 1
tests $DZ1IN to determine whether DISKZ is in the
Resident Monitor. If DISKZ is in the Resident
Monitor, phase 1 fetches and transfers control to
the Monitor Control Record Analyzer. If DISKZ is
not in the Resident Monitor, phase 1 fetches phase 2
of the Core Image Loader. Using phase 2 as a sub-
routine, phase 1 overlays DISK1 or DISKN with
DISKZ. Phase 1 then fetches and transfers control
to the Monitor Control Record Analyzer.

If the Skeleton Supervisor was entered at the
$LINK entry point (JRMSW is zero), phase 1 tests
$COMN in COMMA to determine if COMMON was
defined by the core load just terminated. If $COMN
is non-zero, phase 1 saves Low COMMON on the
CIB. (Low COMMON is the lowest 320 words that
could have been defined as COMMON by the core
load just terminated.) Depending on the disk I/0
subroutine currently in the Resident Monitor, Low
COMMON is defined as follows:

SECTION 7, CORE IMAGE LOADER

Low COMMON

Disk I/0 Subroutine Decimal Hexadecimal
DISKZ 896 - 1215 /0380 - /04BF
DISK1 1216 - 1535 /04C0 - /O5FF
DISKN 1536 - 1855 /0600 - /073 F

The area occupied by Low COMMON is used by
phase 1 as a disk I/0O buffer during the LET/FLET
search and/or as the area into which phase 2 is
fetched when phase 2 is to be used to fetch DISKZ,

Once Low COMMON has been saved, or if no
COMMON was defined by the core load just ter-
minated, phase 1 searches LET/FLET for the name
of the program or core load to be executed next.
The name of the link has been saved in $LKNM by the
Skeleton Supervisor.

If the link is in disk system format (DSF), phase
1 saves any COMMON defined below 4096 on the
CIB. It then fetches phase 2, uses phase 2 as a
subroutine to overlay DISK1 or DISKN with DISKZ,
fetches phase 0/1 of the Core Load Builder, and
transfers control to phase 1 of the Core Load
Builder.

If the link is in disk core image format (DCI),
phase 1 fetches and transfers control to phase 2 to
fetch the link and the required disk I/O subroutine,
if necessary, and to transfer control to that link.

Special Techniques. Phase 1 of the Core Image
Loader places a disk call subroutine in COMMA at
$HASH+8 through $HASH+19. Using this disk call
subroutine, phase 1 is able to overlay itself when
fetching phase 2, the Monitor Control Record
Analyzer, etc.

PHASE 2

Phase 2 of the Core Image Loader is naturally
relocatable. It is read into core storage (by phase
1) immediately following the end of phase 1 if it is
to be used by phase 1 to fetch DISKZ, or (by either
phase 1 or the Core Load Builder) following the end
of the disk I/O subroutine currently in the Resident
Monitor if it is to fetch and transfer control to a
core load. Phase 2 provides two functions: (1)

to overlay the disk I/0 subroutine currently in the
Resident Monitor with the requested disk I/O sub-

Section 7. Core Image Loader 27

routine and (2) to fetch a core load. It may be used
for either or both of these functions on any single
entry.

If called to fetch and transfer control to a core
load, phase 2 first fetches and processes the core
image header and then the disk I/O subroutine
required by the core load to be fetched if it is not
currently present in the Resident Monitor. The last
thing it does is to fetch and transfer control to the
core load itself,

Special Techniques. Upon entry, phase 2 requires
the disk call subroutine placed at $HASH+8 through
$HASH+19 by phase 1. Using this disk call sub-
routine, phase 2 is able to overlay itself when fetch-
ing a core load. Included in this subroutine, at
$HASH-+13 through $HASH+19, is the coding that
moves the transfer vector from its position at the
end of the core load (as it exists on disk) to the end
of COMMON in core storage. Once the transfer
vector has been moved, control passes to the core
load being fetched.

CORE LAYOUT

Figure 4 shows the layout of the contents of core
storage following an entry to the Skeleton Supervisor
at $EXIT when DISKZ is present in the Resident
Monitor. In panel 1, phase 1 of the Core Image
Loader has been fetched by the Skeleton Supervisor.
In panel 2, the Monitor Control Record Analyzer has
been fetched by phase 1.

Figure 5 shows the layout of the contents of core
storage following an entry to the Skeleton Supervisor
at $EXIT when DISKZ is not present in the Resident
Monitor. In panel 1, phase 1 of the Core Image
Loader has been fetched by the Skeleton Supervisor.
In panel 2, phase 2 of the Core Image Loader has
been fetched by phase 1. In panel 3, DISKZ has been
fetched by phase 2. In panel 4, the Monitor Control
Record Analyzer has been fetched by phase 1.

Figure 6 shows the layout of the contents of core
storage following an entry to the Skeleton Supervisor

28

© @

COMMA, COMMA,
Skeleton Skeleton

Supervisor Supervisor
DISKZ DISKZ

Core Image /
Loader,
Phase 1

MCRA

JOB Processor,
System Update

_

N\

Figure 4. Core Layout on Supervisor Entry at $EXIT (DISKZ in Core)

at $DUMP., In panel 1, locations $CIBA+I1 through
4095 have been saved on the CIB and phase 1 of the
Core Image Loader has been fetched by the Skeleton
Supervisor. In panel 2, the System Core Dump
program has been fetched by phase 1 as the result
of a non-negative parameter following the branch to
$DUMP. In panel 3, the Auxiliary Supervisor has
been fetched by phase 1 as the result of a negative
parameter following the branch to $DUMP.,

@ @ ® ®

COMMA, COMMA, COMMA, COMMA,
Skeleton Skeletgn Skeleton Skeleton
Supetrvisor Supervisor Supervisor Supervisor
DISK1 DISK1 DISKZ DISKZ
or or
DISKN DISKN [/
Core Image Core Image Core Image
Loader, Loader, Loader,
Phase 1 Phase 1 Phase 1
MCRA
Core Image Core Image
Loader, Loader, IO8 Processor,
Phase 2 Phase 2 ystem Ypdate

AN

-
_

Figure 5. Core Layout on Supervisor Entry at $EXIT (DISKZ Not in
Core)

Figure 7 shows the layout of the contents of core
storage following an entry to the Skeleton Supervisor
at $LINK when the program being linked to is in disk
system format (DSF). In this case DISK1 or DISKN
is currently present in the Resident Monitor. In
panel 1, phase 1 of the Core Image Loader has been
fetched by the Skeleton Supervisor, Low COMMON
has been saved by phase 1, and the LET/FLET
search buffer has been allocated. In panel 2,
COMMON defined by the previous core load below
location 4096 (if any) has been saved on the CIB by
phase 1, In panel 3, phase 2 of the Core Image

® ® ®

COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton
Supervisor Supervisor Supervisor
Any Any Any
Disk 1/0O Disk 1/0O Disk /O
Subroutine Subroutine Subroutine
Core Image / SAUXIII?W
Loader, upervisor
Phase 1
Dump
Program

A\

%77

That That
Portion Portion
of of
Core Load Core Load
Above Above
4096, 4096,
Not Not
Saved On Saved On
CiB CiB

Figure 6. Core Layout on Supervisor Entry at $DUMP

Loader has been fetched by phase 1; DISKZ has been
fetched by phase 2. If DISKZ is currently present in
the Resident Monitor, phase 2 is not called as shown
in panel 3, In panel 4, phase 0/1 of the Core Load
Builder has been fetched by phase 1 of the Core
Image Loader.

Figure 8 shows the layout of the contents of core
storage following an entry to the Skeleton Supervisor
at $LINK when the program being linked to is in disk
core image format (DCI). In this case DISKZ is
currently present in the Resident Monitor. In panel
1, phase 1 of the Core Image Loader has been
fetched by the Skeleton Supervisor, Low COMMON

Section 7., Core Image Loader 29

©)

@

®

®

COMMA, COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton Skeleton
Supervisor Supervisor Supervisor Supervisor
DISK1 DISK1 DISKZ DISKZ
or or
DISKN DISKN 7////2 Core Load
Builder,
Core Image Core Image Core Image Plz)cx/s;a
Loader, Loader, Loader,
Phase 1 Phase 1 Phase 1
LET/FLET LET/FLET
Buffer Buffer Core Image
Loader,
Low Low Phase 2
COMMON COMMON

E
T

COMMON
Below
4096,
Saved

s\\\\

A\

has been saved by phase 1, and the LET/FLET
search buffer has been allocated. In panel 2, phase
2 of the Core Tmage Loader has been fetched by
phase 1; the core image header buffer has heen
allocated by phase 2. In panel 3, the disk /O sub-
routine required by the program being linked to has
been fetched into the Resident Monitor. In panel 4,
the program being linked to has been fetched by
phase 2. In panel 5, COMMON defined by the
previous core load below location 4096, previously
saved on the CIB by phase 1 of the Core Image
Loader, as well as the program being linked to, has
been fetched by phase 2. In panel 6, the portion of
the program being linked to that is contained in the
CIB (the portion below location 4096, placed in the
CIB by the Core Load Builder) has been fetched by
phase 2,

DEBUGGING/ANALYSIS AIDS

COMMON
Above
4096,
Not
Saved

Figure 7. Core Layout on Supervisor at $LINK (Link in Disk System

30

Format)

To facilitate the finding of errors in and associated
with the Core Image Loader, NOP instructions have
been placed at critical locations in the Core Image
Loader; they are: CMO000+1, CM118-5, CM180,
LD000+1, GETCL, and LD100+8. These NOPs can
be replaced by WAIT instructions so that core dumps
can be taken at various stages during Core Image
Loader execution. An analysis of the core dump(s)
may provide enough information to locate the problem,
Bear in mind that the Core Image Loader is
naturally relocatable. Thus, all modifications
made to it must be executable irrespective of core
location,

O

®

COMMA, COMMA, COMMA, COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton Skeleton Skeleton Skeleton
Supervisor Supervisor Supervisor Supervisor Supervisor Supervisor
DISKZ DISK1 Required Required Required Required
or Disk 1/0O Disk 1/O Disk 1/0 Disk 1/0O
Core Image DISKN Subroutine Subrautine Subroutine Subroutine
Loader,
Phase 1 Core Image Core Image
Loader, Loader,
Phase 2 Phase 2
LET/FLET
Buffer .
Cl Header élonrlz Thd-t
Low Buffer Load Po;flon
COMMON Core Load
Loaded
From
ciB
Link
Core COMMON
Below
Load 409,
Restored
COMMON That
Above Portion
4095, of
Not Core Load
Saved Above
But 4095,
Not Placed
Overlaid In
Core By
Core Load
Builder
Figure 8., Core Layout on Supervisor Entry at $LINK (Link in Core Image Format)

Section 7. Core Image Loader

31

FLOWCHARTS
Phase 1 (IN): CLBO01

Phase 2 (MC): TLB02

The Core Load Builder builds a specified mainline
program into an executable core load. The main-
line program, with its required subroutines (LOCALs
and SOCALs included), is converted from disk
system format (DSF) to a format suitable for execu-
tion, During the conversion, the Core Load Builder
also builds the core image header record and the
transfer vector. The resulting core load is suitable
for immediate execution or for storing on the disk in
disk core image format (DCI) for future execution.

GENERAL COMMENTS

Each phase of the Core Load Builder has been
broken up into a series of relatively small, self-
contained subroutines, After initialization (phase 1)
control remains in the Master Control subroutine,
which is a part of phase 2. (The labels in this sub-
routine all start with "MC'".) In other words, the
basic control logic is found in the Master Control
subroutine,

The labels assigned to constants and work areas
within subroutines are in the range 900-999. When-
ever noted, even-numbered labels are on even
boundaries, and odd-numbered labels are on odd
boundaries. Constants and work areas in RCOM
(phase 0) are mnemonic and are arranged in four
groups, each ordered alphabetically. Double-word
cells are in one group, indexed cells are in a second;
constants are in a third; and switches and work areas
are in a fourth., The labels of switches are of the
form "LSWx', where 'x" is a number. The labels
of constants are of the form "Kx'', where '"x'" is
either the number, in decimal, defined in the con-
stant or the four hexadecimal digits defined in the
constant,

Patch areas are usually found at the end of a phase.
Each one is defined by a BSS followed by a DC,

SECTION 8. CORE LOAD BUILDER

OVERLAY SCHEME AND CORE LAYOUT

The overlays (phases) of the Core Load Builder have
been organized to allow maximum core storage for
the Load Table while minimizing the flip-flopping of
phases. ""Minimizing" here means that, during a
one-pass building process (no LOCALs or SOCALs),
the phases are executed serially from 1 through 6
(excluding 5). During a two-pass building process
(LOCALs and/or SOCALs required), there is some
flip-flopping of phases 3 and 5,

Phase 0 is never overlaid. It contains the sub-
routines that must never be overlaid, as well as
work areas and constants required by more than one
subroutine.

Phase 1 is fetched along with phase 0. The only
difference is that phase 2 overlays phase 1 but not,
of course, phase 0. Phases 3, 4, 5, 6, and 12 over-
lay the last part of phase 2.

Phases 7-10 contain messages. They all require
that the principal print subroutine be in the data
buffer; these phases themselves are executed from
the LET/FLET search buffer.

Phase 11 prints the file map and phase 12 the core
map. Both of these phases require that the principal
print device subroutine be in the LET/FLET search
buffer. Phase 11 is executed from the data buffer,

Figure 9, panel 1 shows the layout of the contents
of core storage after phases 0 and 1 of the Core Load
Builder have been fetched into core storage by phase
1 of the Core Image Loader or the STORE function
of DUP,

Figure 9, panel 2 shows the layout of the contents
of core storage after phase 1 has fetched phase 2,
overlaying itself. Phase 2 has allocated the areas for
the Load Table and the disk I/O buffers.

Figure 9, panel 3 shows the layout of the contents
of core storage after any one of the overlay phases
has been fetched by phase 2.

Phase 1 includes the subroutines called by the in-
itialization subroutine. In this way, phase 2 can over-
lay phase 1 completely, Phase 2 includes the sub-
routines called by the relocation subroutine, RL. The
order of the subroutines in this phase is important.
Those that are required only during the relocation of
the mainline (MV, ML, CK, DC, DF, and FM) come

Section 8, Core Load Builder 33

@ ©) ®

COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton
Supervisor Supervisor Supervisor
DISKZ DISKZ DISKZ
Phase Phase Phase
0 [} 0
Phase
1 Phase
2

; Phase
2
Phases
3,4,5,6,12
Disk Phases
1/0 7,8,9,10,11
Buffers
Load Load

/ Table Table
That That

Portion Portion

of of

Core Load Core Load

Above Above

4096 4096

last so that they may be overlaid by phase 3. Phase 3
includes the subroutines required to choose a sub-
routine (as opposed to a mainline) from the Load
Table and relocate it. Phases 4 and 6 round out the
one-pass core load building process. Phase 4
determines whether or not SOCALs are required,
and, if so, whether or not they can be employed to
make the core load fit into core storage. It also
processes ILSs. Phase 6 performs the miscellaneous
jobs, such as creating the transfer vector, that can
be done only at the end of the process of building a
core load. Phase 5 is executed only during pass 2

in a two-pass building process. It organizes the
LOCALs and SOCALSs for relocation, including their
special linkages.

w
=

DISK BUFFERS

There are three buffers used by the Core Load
Builder. Each is 320 words long, not counting the
word count and sector address, and each has a
primary use, although it may be used temporarily
for something else. For example, the LET search
buffer is used primarily to hold a sector of LET/
FLET when searching that table. However, it con~
tains one of the message phases (phases 7-10)
whenever a message is printed.

The data buffer is a buffer for the User Area.
The program currently being incorporated into the
core load is read into this buffer, one sector at a
time. For example, after a sector of the mainline
is read into this buffer from the User Area or
Working Storage, the relocation of the mainline can
begin, When this sector of the mainline has been
relocated, another sector (if any) is fetched, and
so on until the entire mainline is relocated.

The main use of the CIB buffer is to contain the
CIB, one sector at a time. For example, if a core
load is to occupy locations 1000 -~ 1639, then the first
sector of the CIB contains the part of the core load
that is to occupy 1000 - 1319 and the second sector
1320 - 1639. As the core load is built, the Location
Agsignment Counter (LAC) reflects the ultimate core
address of the data word currently being relocated.
In this example, the LAC would start at 1000, thus
causing sector 1 of the CIB to be read into the CIB
buffer. This first word of the core load would be
placed in the first word of the CIB buffer and the
LAC advanced by 1. Assuming no data breaks, the
LAC will eventually be incremented to 1320. Then
the contents of the CIB buffer will be written out
on sector 1 of the CIB, and sector 2 will replace
sector 1 in the CIB buffer. In short, each word of
a core load is always transferred to the CIB via the
CIB buffer.

The data and CIB buffers are combined into a
single 640-word buffer for the purpose of fetching
the LOCAL, NOCAL, and FILES information from
the SCRA.

CORE IMAGE BUFFER (CIB)

The Core Image Buffer is used by the Core Load
Builder, the Core Image Loader, and the Skeleton
Supervisor. The Core Load Builder uses it to store
any part of the core load that is to reside (when the

core load is executed) below location 4096. The
first word of the mainline is stored in the first word
of the CIB, and subsequent words follow similarly.
Thus, the mainline must be relocated first, and a
subsequent ORG that would set the Location Assign-
ment Counter below its first value is not allowed.

LOAD TABLE

The Load Table is used by the Core Load Builder
primarily to tell what subprograms to include in the
core load as well as at what time during the process
of core load building to include a given subprogram.
Other uses of the table are discussed below., It
exists only during the building of a core load.

There is an entry in the Load Table for (1) every
LOCAL/NOCAL entry point specified for a given
mainline and (2) for each subprogram entry point
referenced in a core load, via CALL or LIBF, For
example, even though subprogram A is called five
times, there is only one entry in the Load Table for
A. On the other hand, if A and B are different
entry points to the same subprogram and both are
referenced, then there will be an entry for A and
another for B.

Each of the Load Table entries is four words in
length. The first entry occupies locations 4086 -
4089, the second 4082 - 4085, etc. The first two
words of each entry contain the name (in name code)
of the subprogram that caused the entry to be made.
Bit zero of the first word is set if the entry is that of
a LOCAL, bit one is set if the entry is that of a
CALL. Mainlines and interrupt level subroutines
never appear in the Load Table. :

Words three and four of each entry are zero when
the entry is first made. As the relocation of a given
subprogram begins, word three is set with the entry
point, i.e., the absolute, address. In this way, the
Core Load Builder can tell by looking at its Load
Table entry whether or not a subprogram has been
relocated and where it has been relocated to.

Word four is put to several uses, most of which
involve LOCAL processing. The use of this word at
a given time is dependent upon the pass (1 or 2) and/
or whether the subprogram associated with the Load
Table entry is a LOCAL that was specified in the
LOCAL information in the SCRA, For example,

A and B are entry points to the same subprogram,
and A (but not B) appears in the LOCAL information
in the SCRA. Both A and B can be called in the core
load; in such a case A is said to be specified and B
unspecified.

The values stored in word four at various times
are: (1) the class code (for a non-LOCAL), (2) the
address of the Flipper Table entry, (2) /0008 for
every subroutine called by a LOCAL, (4) the word
count of a LOCAL, (5) the address of the Load Table
entry for the specified entry point for the LOCAL
currently being relocated, and (6) the address of the
LIBF TV that corresponds to the entry in the Load
Table.

LOCAL, NOCAL, AND FILES INFORMATION

LOCAL, NOCAL, and FILES information is obtained
from the Supervisor Control Record Area (SCRA).
This information is supplied by the Supervisor Con-
trol Record Analyzer (see Section 6: Supervisor) or
the STORECI function of DUP (see Section 9: Disk
Utility Program). For the format of LOCAL,
NOCAL, and FILES information in the SCRA, see
Section 6: Supervisor or Section 9. Disk Utility

Program,
ISS TABLE

The ISS Table is used by the Core Load Builder as it
constructs Interrupt Branch Tables for ILSs. When
the address to which an ISS is to be relocated be-
comes available, that address is stored in the
appropriate entry in the ISS Table. For example, if
an ISS for the 1132 Printer (ISS number 6) is being
relocated to location /1000, then /1000 is stored in
the fourth word of the 1SS, This address will later
be used during the construction of the Interrupt
Branch Table (IBT) for ILS01.

INTERRUPT BRANCH TABLE (IBT)

Each ILS in the System Library that is filled in by
the Core Load Builder (ILS00, ILS01, and ILS03)
begins with an Interrupt Branch Table (IBT). ILS02
and ILS04, which are a part of the Resident Monitor,
require special treatment to construct their IBTs.
A given IBT consists of the addresses of the
interrupt service entry points for the devices on the
corresponding interrupt level. Thus, if there are
two devices on a level, there are two entries in the
IBT; and each entry consists of one word, that word
being the address of the interrupt service entry point
to the ISS for the device represented by the IBT entry.
For user-written core loads (as opposed to
monitor system programs), the IBT for ILS04 is

Section 8. Core Load Builder 35

constructed by the Core Load Builder and stored in
the core image header record. When the Core
Image Loader fetches a core load (including the core
image header), the address of the IBT for level 4

is stored in location $IBT4, from which it is accessed
by ILS04. The IBT for ILS02 is a single word,
$IBT2, which contains the address of DZ000+4,
regardless of the disk I/O subroutine present in the
Resident Monitor. This address is stored in $IBT2
by the Core Image IL.oader as it fetches the requested
disk I/0O subroutine, The IBTs for the remaining
ILSs are constructed and stored in the ILSs them-~
selves by the Core Load Builder.

After all subprograms have been relocated, the
Core Load Builder constructs the IBTs. The IBTs
for all ILSs except ILS02 are constructed as des-
cribed below. Bear in mind that these ILSs are
written with special constants stored in each IBT
entry. These constants, which will be overlaid by
the Core Load Builder, are as follows: The first
eight bits of each constant represent the increment
to be added to the loading address of the correspond-
ing ISS to get the address of the interrupt service
entry point; for IBM-supplied ISSs, this value is
four, except for the "operation complete' entry point
for the 1442 subroutines, for which the value is
seven. The second eight bits are @ISTV plus the
ISS number; thus, each IBM entry has an identifier
to relate it to a specific ISS.

The Core Load Builder fetches one word at a time
from the IBT, i.e., one of the special constants
occupying the IBT locations in the ILS. The second
eight bits of the word fetched are used to compute
the address of the ISS Table entry for the ISS
number indicated. If the ISS Table entry is non-zero,
it contains the loading address of the ISS itself,
which is then incremented by the value stored in the
first eight bits of the word fetched. The resulting
address, which is the address of the interrupt
service entry point, replaces the special constant
that supplied the two eight-bit values. If the ISS
Table entry is zero, the special constant is replaced
with the address of $STOP, the PROGRAM STOP
key trap in the Skeleton Supervisor. This process
of replacing special constants continues until a zero
is fetched from the IBT, indicating that the entire
IBT has been processed. Except for ILS04, this
zero is the entry point to the ILS itself.

36

INCORPORATING PROGRAMS INTO THE CORE
LOAD

PASS 1

The mainline is relocated first. Any calls found
during this relocation are put in the Load Table.
After the mainline has been converted, each sub-
program represented in the Load Table is re-
located, generally in the order found in the table
itself. An entry is flagged as having been relocated
by storing the address of the entry point in the third
word of the entry. Before an entry is relocated,
the names of all the entry points to the entry being
considered for relocation are compared with the
name of each entry preceding it in the Load Table.
A match indicates that the current entry is simply
another entry point to a previously relocated sub-
program. Thus, the current entry is not relocated;
instead, the absolute address of the entry point is
determined and stored in the third word of the entry
to signify that it has already been relocated.

Furthermore, the names of all the entry points
to the entry being considered for relocation are com-
pared with the name in each entry in the Load Table
following it. If a match occurs, the third words of
both entries are filled in with the absolute address
of the entry point. Thus, the Load Table is scanned
forward and backward for other entry points to the
subprogram currently being considered for re-
location.

PASS 2

The Load Table is scanned during pass-2 in the same
way as during pass 1. The only difference is that
subprograms are relocated in a certain order during
pass 2, thus necessitating multiple passes through
the Load Table; in fact, one pass is required for each
class of subprograms. Thus, all the in-~cores (class
0) are relocated first, followed by LOCALs, sub-
programs in SOCAL 1 (class 1), subroutines in
SOCAL 2 (class 2), and subroutines in SOCAL 3
(class 3), in that order.

LOCALs AND SOCALs

If during the first pass the Core Load Builder
(phase 4) determines that an Assembler core load
will not fit into core storage even with any LOCALs
that have been specified, the core load building
process is terminated. However, for a FORTRAN
core load special overlays (SOCALSs) of parts of the
core load will be created during a second pass if
this will make the core load fit. The decision of
whether to proceed with a second pass is made after
phase 4 accounts for the sizes of the LOCAL area,
if any, the flipper and its table, and each of the
SOCALs. If the check shows that SOCAL option 1
(SOCAL 1 and SOCAL 2) will be insufficient, then

a further check is made for option 2 (all three
SOCALs). If option 2 ig still insufficient, process-
ing is terminated; otherwise, a second pass is made.

During pass 2, the entire core load is built
again, but, unlike during pass 1, subprograms are
relocated in a special order. First, the mainline
and the in-core (class 0) subprograms are relocated,
followed by: the flipper; the LOCALs, if any; the
arithmetic and function (class 1) subprograms; the
non-disk FIO (class 2) subroutines; and, if
necessary, the disk FIO (class 3) subroutines.

The same procedure described above is necessary
if LOCALs are employed without SOCALs. In other
words, LOCALs, as well as SOCALs, require two
passes.

INTERRUPT LEVEL SUBROUTINES (ILSs)

After all other subprograms have been relocated,
the Interrupt Transfer Vector (ITV) is scanned.
Except for the entries for interrupt levels 2 and 4,
a non-zero entry causes the corresponding ILS to be
incorporated into the core load. (ILS02 and ILS04,
unless supplied by the user, are a part of the
Resident Monitor,) See Interrupt Branch Table,
above, for a description of the processing of that
part of an ILS.

TRANSFER VECTOR (TV)

The transfer vector consists of two parts: the
LIBF TV and the CALL TV. The former provides
the linkage to LIBF subprograms, the latter to
CALL subprograms. The LIBF TV was created to

enable the LIBF statement to require only one
storage location during execution, This is desirable
because 1130 FORTRAN object code contains a very
high percentage of calls to subprograms. Long
branches to those subprograms would greatly in-
crease core requirements for core loads over a
method that employs short branches. By replacing
the LIBF statement with a short BSI, tag 3, to a
transfer vector entry, which could then supply the
long branch to the desired subprogram, this problem
is solved. The cost, of course, is that XR3 is taken
away from the user and the transfer vector is limited
to 255 words., This means the LIBF TV has a
maximum of 85 3-word entries, two of which become
the floating accumulator (FAC) and an indicator for
certain arithmetic subroutines. Thus, the user is
limited to LIBFs to not more than 83 separate sub-
program entry points per core load.

There is no theoretical limit on the number of
CALL entry points per core load, for the CALL
statement is replaced by an indirect BSI to the
desired subprograms. However, the number of
CALL and LIBF references combined must not
exceed the capacity of the Load Table, which is
approximately 150 entries.

The CALL TV entry is one word only, the address
of the subprogram entry point. This makes it pos-
sible to replace a CALL statement with an indirect
BSI to the corresponding CALL TV entry, even though
the address of the subprogram itself may not be
known at the time the CALL is processed.

When stored on disk in disk core image format
(DCI), the LIBF TV follows the last word of the last
subprogram in the core load. It may leave one word
vacant in order to make the floating accumulator
(FAC) begin on an odd boundary. The CALL TV
immediately follows the indicator entry in the LIBF
TV. During execution the TV extends downward in
core storage from the lowest-addressed word in
COMMON.

Whereas the CALL TV entry consists of only one
word (the address of the subprogram), the LIBF TV
entry consists of three words. The first is a link
word (initially zero), and the second and third are a
long BSC to the subprogram entry point,

Figure 10 shows the layout of the transfer vector
in core storage.

Linkage to LOCALs

The LOCAL/SOCAL flipper (FLIPR) is included in a
core load if that core load requires LOCALs and/or
SOCALs. The flipper transfers control to a LOCAL,

Section 8. Core Load Builder 37

Dummy one - word entry in CALL TV
(if necessary) to ensure odd address

for FAC
Last First Disk Indicators FAC Last Second First
LIBF LIBF /O CALL CALL CALL
C | Ll 1 | | | | | 1 | | { C |
J T V2 i I I 1) 1 J I T 7S i
- low High
Core o o Cgre
LIBF TV CALL TV COMMON
| S—— J

~v—

Transfer Vector

Figure 10. Layout of the Transfer Vector

fetching it first, if necessary. It does likewise for

a SOCAL, except that it is never entered if a sub-
program is called that is a part of the SOCAL current-
Iy in the SOCAL area (see Linkage to the System
Overlays).

The Flipper Table immediately precedes the
flipper. It consists of a 6~word entry for each entry
point specified in the LOCAL information in the SCRA
(for a given mainline) that is referenced by a CALL
and a 5-word entry for each entry point referenced by
a LIBF, If a subprogram has more than one entry
point but only one is specified in the LOCAL informa-
tion (a specified LOCAL), there is a Flipper Table
entry for each entry point referenced in the core
load.

The format of a 5-word (LIBF) entry in the
Flipper Table is as follows:

Word Description

1-2 BSI L. FL000
3 Word count of the subprogram
4 Sector address of the subprogram
5 Entry point address in the sub-

program

The format of a 6-word (CALL) entry in the
Flipper Table is as follows:

Word_ Description
1 Link word
2-3 BSI L FL010
4 Word count of the subprogram
5 Sector address of the subprogram
6 Entry point address in the sub-

program

38

Linkage to the System Overlays (SOCALs)

In order to assure very fast transfer to a subprogram
that is a part of a SOCAL that is in core storage at

a given time, special transfer vector entries are
made for SOCAL subprograms. They are different
from the standard LIBF and CALL linkages, and they
are different from the linkage to a LOCAL, The
SOCAL transfer time is approximately 20 micro-
seconds, compared to 150-180 microseconds to a
LOCAL., (Both timings assume a 3.6 microsecond
storage cycle.)

Figure 11 shows an entry in the LIBF TV for an
in-core subprogram (entry 2) and the special linkage
in the LIBF TV for SOCAL subprograms (entries
3-8). Entry 1 is the LIBF TV entry for a SOCAL
subprogram. The "disp" is a displacement to the
second word of the linkage for the SOCAL in which
the subprogram is found.

The example represented in Figure 11 is one that
requires SOCAL option 2; TV entries 5 and 8 would
not appear if option 1 were used. Entry 1 is the
last entry in the LIBF TV, i.e,, the highest-
addressed word of the transfer vector. Suppose that
(1) a LIBF to FADD were made and (2) SOCAL 1 were
not in core, The LIBF would be a BSI to the first
word of entry 1, which would then BSI to the second
word of entry 3. Entry 3 would MDX to the first
word of entry 6, which would transfer control to the
LOCAL/SOCAL flipper subroutine (FLIPR) at
FL230, the entry point in FLIPR for fetching the
arithmetic subprograms. The flipper would fetch
SOCAL 1, change the third word of entry 3 to MDX
to *-3, and BSC to the first word of entry 3, which
then transfers control to FADD, The flipper would
also ensure that the third words of entries 4 and 5
were both MDX to *-12,

LOW
CORE

g BSC L | FL210 | BSS 1 | ENTRY 8 - a branch to the entry point
T [| | in the flipper for fetching SOCAL 3;
an unused word

ENTRY 7 - a branch to the entry point
in the flipper for fetching SOCAL 2;
an unused word

|_BSC L | FL220 | BSS 1 I
|

ll BSC L | FL230 | BSS 1 ENTRY é - a branch to the entry point

in the flipper for fetching SOCAL 1;
an unused word

ENTRY 5 = a branch to a subroutine in
SOCAL 3 via word 3 of LIBF TV
entry; a branch to fetch SOCAL 3

L_BSC | | *x |IMD)< *-12‘
{ I

ENTRY 4 - a branch to a subroutine in
SOCAL 2 via word 3 of LIBF TV
entry; a branch to fetch SOCAL 2

| _BSC 1 | *ex | MDX *-12|
!] |

ENTRY 3 - a branch to a subroutine in
SOCAL 1 via word 3 of LIBF TV
entry; a branch to fetch SOCAL 1

| _BSC | et JIMDX *—12=

ENTRY 2 - a link word; a branch to
an in-core subroutine, i.e.,

FLOAT

IDC *i} BSC L = FLOAT JI

|.DC *-* | BS| 3 disp {DC FADD] ENTRY 1 - a link word; a branch to
! I e the SOCAL linkage for a subroutine
in SOCAL 1; the address of a sub=
routine in SOCAL 1, i.e., FADD

HIGH
CORE

Figure 11. SOCAL Linkage in the LIBF Transfer Vector

Suppose now that FADD were called again before
some subprogram in either SOCAL 2 or SOCAL 3
were called. This time the LIBF would cause a
BSI to the first word of entry 1 and then to the
second word of entry 3. The MDX would then be to

the first word of entry 3, followed by a transfer of
control to FADD. The transfer has required only 2
short BSIs, a short MDX, and an indirect BSC.

The linkage for a CALL to a function is somewhat
different from that just described. Suppose that
(1) SOCAL option 2 was used and (2) each SOCAL
congists of two subprograms, FABS and FSQR being
the functions in SOCAL 1.

Figure 12 shows SOCAL 1, SOCAL 2, and SOCAL
3 as they are stored on the disk. The first 2 words
of each of these SOCALs are the CALL TV for
the subprograms in that SOCAL,

A CALL to FSQR, for example, would be an
indirect BSI to the second word of whichever SOCAL
happened to be in the SOCAL area. If this were
SOCAL 1, control would be immediately transferred
to FSQR. Otherwise, control would first be given to
the LOCAL/SOCAL flipper at FL200, the entry point
in FLIPR for fetching the function subprograms.

The flipper would fetch SOCAL 1 and re-execute the
original CALL to FSQR.

DEFINE FILE TABLE

The processing of the DEFINE FILE Table normally
consists of filling in word 5 (the sector address) for
each entry in the DEFINE FILE Table preceding the
mainline program,

However, additional processing is required when
a file must be truncated, i.e., the space available
on the disk is insufficient to store the number of
records defined in the file. If the file is in the User/
Fixed Area, or if it is the only file in a particular
Working Storage, then the Core Load Builder attempts
to truncate it enough to fit.

‘CALL TV for FABS,
consisting of the
entry point address
of FABS

rCALL TV for FSQR,
consisting of the
entry point address FL200, the address of FL200
of FSQR the entry point in
the flipper for
fetching SOCAL 1

WY FABS FSQR

I | I Function LFunctionl [Subroutines 0 Subroutines J
Y ~ ~ % —
SOCAL 1 SOCAL 2 SOCAL 3

Figure 12. CALL Transfer Vector for SOCALs

Section 8. Core Load Builder 39

First, the entire DEFINE FILE Table is fetched
and stored in the unoccupied area allocated to the
Load Table., If the Core Load Builder determines
that a file can be truncated, the number of records
and the disk block count in the appropriate DEFINE
FILE Table entry are modified accordingly. As
each entry is completed, all seven words are relocat-
ed in the same manner as the other words of the
core load.

The processing consists of comparing the file
number of a DEFINE FILE Table entry with each of
the file numbers in the FILES information in the
SCRA, if any. I a match occurs, the name of the
disk area associated with the file number obtained
from the FILES information is found in LET/FLET,
and the sector address of that disk area is placed in
word 5 of the DEFINE FILE Table entry. If none of
the file numbers from the FILES information match
the file number in the DEFINE FILE Table, the file
is set up in Working Storage. In either case, the
system cartridge is assumed unless a cartridge
ID has been specified in the FILES information,

The format of a DEFINE FILE Table entry is as
follows:

Symbolic
Word Description Reference
1 File number @FLNR
2 Number of records in the file @RCCT
3 Number of words per record @WDRC
4 Address of the associated
variable @ASOC
5 Sector address of the file;
initially zero, filled in by
the Core Load Builder @SCAD
6 Number of records per sector @RCSC
7 Disk block count of the file @BCNT

PHASE DESCRIPTIONS

PHASE 0

Phase 0 always remains in core. It consists of two
main sections, (1) the basic subroutines required by
all other phases and (2) the constants and work areas
shared by two or more subroutines. The latter
section is known as RCOM,

The following is a list of the subroutines that
comprise phase 0 and the functions they perform.

40

Subroutine Function
LS000 Search LET/FLET
RHO000 Fetch the mainline program header
record
NwW000 Fetch the next word in sequence
from the data buffer, reading a
new sector when necessary
CN000 Test a subroutine name for disk 1/0
BT000 Add an entry to the Load Table
LKO000 Fetch a phase
EX000 Exit to DUP, Supervisor, or Core
Image Loader
TL000 Print a message and transfer to
EX000
PMO000 Fetch one of the message phases
and transfer control to it
GP000 Read from or write to the disk
PHASE 1

Phase 1 performs the initialization functions that
must be done prior to the relocation of the mainline.
Initialization consists of, principally, fetching
DCOM and extracting the parameters that are needed
by the Core Load Builder, and fetching the mainline
header record and saving the information therein,

In addition, phase 1 makes an entry in the Load
Table for each LOCAL and NOCAL specified in the
LOCAL and NOCAL information in the SCRA, if any.

The following is a list of the subroutines that
comprise phase 1 and the functions they perform.

Subroutine Function
IN000O Initialize the Core Load Builder,
process the mainline header
LN000 Enter LOCAL and/or NOCAL
names in the Load Table
PHASE 2

After the execution of phase 1, part of phase 2 re-
mains in core until the core load is completed,

Phase 2 contains the Master Control subroutine,

the relocation subroutine, and the transfer subroutine,
among others (see below). Master Control supplies
the basic logic for the Core Load Builder. The re-
location subroutine supplies the logic for relocating

a program, i.e., incorporating it into the core load.

The transfer subroutine provides the logic for trans-
ferring a relocated word of the core load to the CIB,
the CIB buffer, or Working Storage, whichever is
appropriate. These three subroutines are basic to
the process of building a core load.

The following is a list of the subroutines that
comprise phase 2 and the functions they perform.

Subroutine Function

MC000 Master control for the Core Load
Builder

RL000 Relocate a program; convert it
from disk system format to disk
core image format

TS000 Process the IBT

TR000 Output one data word to core or
disk

XC000 Fill in exit control cells during
pass 2

DCo000 Process DSA statements

MV000 Output the DEFINE FILE Table

ML000 Check mainline loading address
for validity

CK000 Check for overlay of core load and
COMMON

DF000 Process the DEFINE FILE Table
entries

FMO000 Print a map of the DEFINE FILE
Table

PHASE 3

Phase 3 performs four functions., It checks the
information in subroutine header records (except
ILSs) and stores it in RCOM. It also ensures that
during pass 2 the subprograms are relocated by
class, i.e., class 0 first, LOCALs second, class 1
third, class 2 fourth, and class 3 fifth. It compares
the reference to each subprogram, i.e., CALL or
LIBF, with the type (from the program header
record)., Lastly, as a subprogram is chosen for
relocation, phase 3 checks whether or not it has
already been relocated under a different name, i.e.,
another entry point,

The following is a list of the subroutines that
comprise phase 3 and the functions they perform,

Subroutine Function
HR000 Process the program header
record for subroutines
CC000 Control the loading of subroutines
by type
TY000 Verify subroutine references
SV000 Scan Load Table for multiple
references
PHASE 4

Phase 4 performs two functions., It incorporates
ILSs into the core load and it determines whether or
not a core load fits in core storage or can be made
to fit with SOCALs by computing the core that can
be saved by employing SOCALs.

The following is a list of the subroutines that
comprise phase 4 and the functions they perform,

Subroutine Function
IL000 Fetch and relocate an ILS
ET000 Calculate core load size
PHASE 5

Phase 5 creates the Flipper Table if LOCALs have
been specified, sees to it that the flipper is relocated,
and provides the logic for building each SOCAL.
This phase is flip-flopped with phase 3. It is brought
into core storage once if there are LOCALs and once
for each SOCAL, which implies a maximum of four
times.

The following is a list of the subroutines that
comprise phase 5 and the functions they perform.

Subroutine Tunction
PL000 Process LOCAL subprograms
PS000 Process SOCAL subprograms
FF000 Relocate the LOCAL/SOCAL

flipper, FLIPR

Section 8. Core Load Builder 41

PHASE 6

Phase 6 performs several miscellaneous functions
that must follow the actual building of most of the
core load. The most important of these is the con-
struction of the transfer vector from the Load Table.
Other functions performed in phase 6 are filling in
exit control cells and completing the core image
header.

The following is a list of the subroutines that
comprise phase 6 and the functions they perform.

Subroutine Function
TV000 Build the transfer vector
TP00O Complete core image header, fill
in exit control cells, etc,
PHASE 7

Phase 7 formats and prints (via the principal print
device subroutine) all messages from R00-R10,
These messages contain no variables.

PHASE 8

Phase 8 formats and prints (via the principal print
device subroutine) all messages from R16-R23,
These messages contain a 5-character name follow-
ing "R XX,

PHASE 9

Phase 9 formats and prints (via the principal print
device subroutine) all messages from R39-R47,
These messages contain a hexadecimal address
following "R XX,

PHASE 10

Phase 10 formats and prints (via the principal print
device subroutine) all messages from R64-R68,
These messages contain a 5-character name follow-
ing "R XX,

42

PHASE 11

Phase 11 formats and prints (via the principal print
device subroutine) the files portion of the map, It

is entered only if (1) a map is requested and (2) there
are files defined.

PHASE 12
Phase 12 formats and prints (via the principal print

device subroutine) the allocations of core storage.
It is entered only if a map is requested,

DEBUGGING/ANALYSIS AIDS

Stopping the Core Load Builder at the proper time
is often the key to pinpointing problems in monitor
system and, in some cases, user programs, There
are NOP instructions in several critical locations in
the Core Load Builder; they are: LK000+1, PM000+1,
IN000+1, MC000, E1000+1, E2000+1, E3000+1, and
E4000+1, These NOPs can be replaced by WAIT
instructions so that core dumps can be taken at
various stages of the core load building process.
A WAIT replacing the NOP at PM000+1 is often the
most useful, for it can be used to stop the Core Load
Builder just before an error message is printed.

Bear in mind that, even though an error is detect-
ed by the Core Load Builder, it may well be due to a
failure somewhere else in the monitor system. The
message printed may not be a very good indication of
the error; many checks are present in the Core Load
Builder simply to keep it from destroying itself.
For example, a common message is R16, and the
name given in the message may well be something
that makes no sense or was not referenced in the
core load. The problem may well be erroneous
output from the FORTRAN Compiler or Assembler
Program or a destroyed User Area. In such a case
an analysis of the contents of the data buffer BUFLO
usually provides the clue to the error.

To facilitate path tracing through the Core Load
Builder, all subroutines in the Core Load Builder
are entered with BSI instructions.

FLOWCHARTS

CCAT: DUPO1
DCTL: DUPO2
STORE: DUPO03
FILEQ: DUP04-06
DDUMP: DUP07-08
DUMPLET: DUP09
DELETE: DUP10
DEFINE: DUP11
DEXIT: DUP12
PRECI: DUP13

The Disk Utility Program (DUP) is actually a group
of programs provided by IBM to perform certain
frequently required operations involving the disk
such as storing, moving, deleting, and dumping
data and/or programs. These operations are called,
for the most part, by user-supplied DUP control
records.

DUP OPERATION

When DUP is called, the phases CCAT and DUPCO
are brought into core storage. CCAT forms the re-
quired DUP 1/0 subroutine sets (phases 14, 15, 16)
and records them. CCAT also forms the balance of
UPCOR, including CATCO and the principal print
device subroutine, and is completely overlaid by
part of UPCOR, leaving only the DUPCO part of
phase 1 in core storage as part of UPCOR.

Control is passed to REST (of DUPCO) and REST
in turn calls DCTL into core storage.

In general, DCTL reads, prints, decodes and
checks the control records,and then calls in the re-
quired phase to continue processing as the function
requires.

The called phase completes the function, includ-
ing the printing of the terminal message. Control
is then passed to REST (of DUPCO), which restores
CATCO areas to zero as required for initialization,
fetches DCTL if it is not already in core (4K system),
and branches to DCTL to read the next record.

When a monitor control record is read, a CALL
EXIT is executed by DEXIT,

SECTION 9.

DISK UTILITY PROGRAM (DUP)

CORE STORAGE LAYOUT

Figure 13 shows the layout of core storage during

DUP operation.

Panel 1 shows the overlay scheme

used for 4K systems, panel 2 for 8K systems, panel
3 for 16K systems, and panel 4 for 32K systems.

COMMA, COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton Skeleton
Supervisor Supervisor Supervisor Supervisor
DISKZ DISKZ DISKZ DISKZ
Overlay Overlay Overlay Overlay
Area Area Area Area
STORE/DUMP STORE/DUMP STORE/DUMP STORE/DUMP
Buffer Buffer Buffer Buffer
UPCOR
Phase DCTL DCTL DCTL
W7/ %/7%
Phase
STORE STORE

Phase

Phase

7277777

UPCOR
Phase

DUMP
Phase

p

UPCOR
Phase

Figure 13. Core Layout During Disk Utility Program Operation

Section 9, Disk Utility Program (DUP) 43

DUP CONTROL RECORDS

In the table below, DUP control records are classi-
fied by type according to the phases required to com-
plete their processing.

Type Phases Required

STORE

STOREMOD

STOREDATA DCTL,STORE,DUPCO

STOREDATACI

STORECI DCTL, FILEQ,STORE,
DEXIT, Core Load
Builder, PRECI, DCTL,
STORE, DUPCO

DUMP

DUMPDATA DCTL,DDUMP,DUPCO

DELETE DCTL,DLETE,DUPCO

DEFINE FIXED AREA

DEFINE VOID

ASSEMBLER DCTL,DFINE,DUPCO

DEFINE VOID FORTRAN

DUMPLET

DUMPFLET DCTL,DMPLT,DUPCO

DWADR DCTL,DEXIT,ADRWS
Program, DUPCO

LOCATION EQUIVALENCE TABLE (LET)/FIXED
LOCATION EQUIVALENCE TABLE (FLET)

LET is the table through which the sector addresses
of programs and data files stored in the User Area
may be found. Each entry in this table consists of
three words, the first two of which are the program
or file name in name code. The third word is the
disk block count of the program or file. Bits 0 and 1
of the first word denote the format of the entry, i.e.,
DSF, DCI, or DDF. The corresponding bit patterns
are 00, 10, and 11. The 01 pattern is reserved for

44

future use. For a DSF subroutine having multiple
entry points, the disk block count is zero for all
entry points except the first.

Padding, wherever required to ensure that DCI
programs and data files are sectorized, is reflected
in LET as if a program called "1DUMY" were stored.
That is, each instance of padding generates a
IDUMY entry in LET, and the block count for each
of these entries is the number of disk blocks to the
nearest sector boundary. The last entry in LET is
always a 1IDUMY entry that reflects the number of
disk blocks from the end of the last program stored
in the User Area to the end of the disk.

Each sector of LET contains a header, which
occupies the first five words of the sector. The first
word contains the sector number, whichis 0, 1,...,
or 7. The second contains the sector address of the
User Area for this cartridge. The third is reserved
for future use. The fourth contains 315 minus three
times the number of LET entries found in this sec~
tor, i.e., the number of words unused (available) in
this sector. If this is not the last sector of LET on
this cartridge, then the fifth word contains the ad-
dress of the next sector of LET. If it is the last
sector of LET and if there is no FLET on this car-
tridge, this word contains zero; otherwise, it con-
tains the address of the first sector of FLET. In
other words, this fifth word (chain address) is used
to chain from LET through FLET, sector by sector.
Bits 0-3 of the fifth word are always zeros. Note
that, when referring to a dump of LET, the above
header words are expressed in hexadecimazl.

FLET is the table through which the sector ad-
dresses of programs and data files stored in the
Fixed Area may be found. FLET is analogous to
LET in the format of its entries and its use by the
monitor system programs.

LET/FLET is searched by LETSR of DCTL for
the name decoded from DUP control records of the
STORE, DUMP, and DELETE types. The informa-
tion required by other DUP phases is recoxrded in
CATCO. If a DSF program is being storec!, then
LETSR also searches LET/FLET for the secondary
entry point names as well.

STORE inserts the required entries into LET/
FLET (one entry for each entry point). If a DCI
program or data file is being stored and padding
is required, then a IDUMY LET/FLET entry is
inserted prior to the named LET/FLET entry. All
secondary entry points have their entries on the
same sector as the LET/FLET entry for the primary
entry point.

DUP CONCATENATED COMMUNICATIONS Relative Address

AREA (CATCO) Location (decimal)
CATCO contains the following elements: #MDF1 13
#MDF2 14
e DCOM values that are read from DCOM and #MPSW 12
placed in CATCO by CCAT of DUPCO. #NAME 4
#NCNT 15
® ITOAR headers (word counts and sector addresses) #PCID 50
required by DUP, furnished to CCAT by the #PIOD 25
System Loader, converted by CCAT to two-word #PPTR 26
entries each, and placed in DCOM by CCAT of #RP67 17
DUPCO. #SCRA 65
#TODR 18
e Words used only by DUP for switches, small #UHOL 22
work areas, and communications between various #ULET 80
DUP phases. #USZE 23
#WSCT 85

e I/0 addresses used by DUP, initialized by CCAT
of DUPCO. These parameters are referred to by an index regis-
ter that contains the address of the first word of
DCOM plus the displacement given above.

DCOM VALUES Whenever a parameter in DCOM has been changed
by DUP and control is being relinquished to another
DCOM is read from the master cartridge by CCAT monitor system program, DUP writes the DCOM
of DUPCO whenever DUP is called by the Monitor values in CATCO to DCOM on the master cartridge
Control Record Analyzer. The following parameters before exiting. If a change has been made that
in DCOM are used by DUP: refers to a satellite cartridge, the DCOM values are
also written to DCOM on the affected cartridge.
Relative Address See the description of DCOM in Section 2. Com-
Location (decimal) munication Areas for details regarding the above
parameters.
#ANDU 35
#BNDU 40
#CBSW 10 I0AR HEADERS
#CIAD 27
#CIBA 60 CATCO contains the IOAR header for each phase of
#CIDN 55 DUP required by other phases during the execution of
#CSHN 90 the various DUP functions; they are:
#DBCT 6
#DCSW 24 Location Phase Name Phase Number
#ENTY 16
#FCNT 7 DCHDR DCTL 2
#FHOL 20 STHDR STORE 3
#FLET 75 FLHDR FILEQ 4
#FMAT 70 DMHDR DDUMP 5
#FPAD 45 DLHDR DMPLT 6
#FRDR 19 DTHDR DLETE 7
#FSZE 21 DFHDR DFINE 8
#JIBSW 9 DXHDR DEXIT 9
#LCNT 11 UCHDR UPCOR 10

Section 9. Disk Utility Program (DUP) 45

Location Phase Name Phase Number
PIHDR KFACE 11
SIHDR CFACE 12
PTHDR PFACE 13
CIHDR PRECI 17

These headers are initialized by CCAT of DUPCO
whenever the Monitor Control Record Analyzer calls
DUP. The contents of these headers are not altered

by any phase of DUP.
Each IOAR header consists of two words, word 1

containing the word count and word 2 containing the
sector address of a phase. Each pair is aligned on
an even boundary.

SWITCHES

The following DUP switches are initialized by CCAT
of DUPCO and not altered by any function of DUP,

ADDR2 -- Keyboard interrupt address, to be put in
location /0045 by MASK of DUPCO so that during
a masked operation, the Keyboard interrupt is
delayed by DUP until a critical operation is
completed.

KBREQ -- Contents of location /0045, saved by
CCAT of DUPCO when DUP is given control, and
restored by DEXIT of DUP when leaving DUP.

INOUT -- Indicator for the principal 1/0 device
when DUP was called by the Monitor Control
Record Analyzer.

Negative = Paper Tape.
Zero = Cards.
Pogitive = Keyboard.

PTPON -- A non-zero value if paper tape devices are

are present on the system.

IBT -- Nine locations containing the interrupt branch
table for level 4, initialized by CCAT of DUPCO
and the card and paper tape interface phases.

The following locations are used by DUP for in-
ternal communication, and are initialized to zero
by REST before each DUP control record is proc-
essed.

46

ASMSW -- Set non-zero by DFCTL of DCTL when a
DEFINE control record indicates that the Assem-
bler Program is to be deleted from the master
cartridge. Used by DFINE for functional flow
control.

BITSW -- Set non-zero by RE015 of DCTL to allow
the MDUMP subroutine in DUPCO to call the
System Core Dump program while executing var-
ious DUP phases. It is set on the basis of the
contents of column 35 of the DUP control records.
This column is not normally used, but it may be
used to obtain snap-shot core dumps while per-
forming DUP operations. A zero punclhed in this
column causes all possible DUP dumps to occur.
Other numbers cause core dumps to be taken
when the phase with the same phase ID is in con~-
trol (See DUP Diagnostic Aids.).

BLKSW -- Set by the DUP I/0 interface subroutine
(in IOBLK) when reading control records if the
record is neither a monitor control record (//) or
a DUP control record (*D or *S), If turned on,
DCTL turns it off and returns to the GETHO entry
of the DUP I/0 interface subroutine. This permits
DUP to pass non-control records, including blanks,
at the maximum rate of 1000 per minute with a
single buffer.

CIERR -- Set to a DUP error code for an error
detected by PRECI during a STORECI operation.
DCTL checks CIERR when entered from PRECI
(CISW is non-zero) and goes to DEXIT thru
LEAVE of DUPCO with the specified error code.
PRECI cannot go directly to LEAVE because DUP
UPCOR may not be in core storage at this time
due to the possibility of being overlaid by the core
load being built.

CISW -- Set by DCTL when *STORECI is the function
specified on the DUP control record. Used by
DCTL to detect an entry from PRECI (during a
*STORECI function). Used by STORE to determine
the functional path to be used.

CLBSW -- Set non-zero by PRECI. Used by STORE
to indicate an entry from PRECI after the Core
Load Builder has built the core load for the
STORECI function.

CL1, CL2 -- The addresses of the lower and upper
limits, respectively, of parameters in CATCO
to be cleared to zero by REST of DUPCO.

CNTNO -- Used by GETBI of the DUP I/O interface
subroutine (in IOBLK) to record the count of
binary records being read or punched. Permits
checksum and sequence check operations.

DATSW -- The binary equivalent of the decimal
value in the count field of the DUP control rec-
ord. Entered by DACNT of DCTL. A non-zero
value represents either STOREDATA,
DUMPDATA, DEFINE FIXED AREA couat, or
STORECI with *FILES, *LOCAL, and *NOCAL
control records following. Contents are in disk
blocks if the input is from disk, records if from
an 1/0 device. Used by DUMP, STORE, DETFINE
and FILEQ as a count; also used to control func-
tional flow. FILEQ clears DATSW before calling
STORE.

DBADR -- Set by LETSR of DCTL to the disk block
address of the program represented by the last
LET/FLET entry searched. Used by DUMP and
DELETE to indicate the disk block address of the
desired program or data file.

DELSW -- Set by LETSR of DCTL to point to the re-
quired entry in LET/FLET minus one word.
Actually contains a value somewhere in the buffer
LETAR. Used by DMPLT when dumping the
entry point(s) or name of a single program. Used
by DELETE to point to an entry in LET/FLET
that is to be deleted. Used by STORE to point to
an entry in LET/FLET where the entry point(s)
is to be inserted.

DFNSW -- Set by DFCTL of DCTL to indicate a
DEFINE FIXED AREA operation. Used by
FRLAB of DCTL to bypass the decoding of the
FROM field.

DKSAD -- Set by DUP30 and DUP34 of DUPCO to
indicate the sector address (without a logical drive
code) of the current GET or PUT operation.

DUMPP -- Two words located on even boundary, set
by all DUP phases requiring special monitoring
dumps. Used by MDUMP of DUPCO to specify
lower and upper limits to be dumped to the
printer.

FRWS -- Set non-zero by SC130 if the FROM field
is Working Storage. Used by DCTL for functional
flow control and error checking.

FXSW -~ Set non-zero by SC130 or SC170 of DCTL
when either the FROM or the TO field, respec-
tively, of the DUP control record specifies the
Fixed Area or when the control record specifies
DEFINE FIXED AREA. Used by DCTL for error
checking and functional flow control. Used by
DFINE, STORE and DUMP for functional flow
control.

FORSW -- Set non-zero by DFCTL of DCTL when a
DEFINE control record indicates that the
FORTRAN Compiler is to be deleted from the
master cartridge. Used by DFINE for functional
flow control.

HOLSW -- Set non-zero by DCTL when a
STOREDATA or a DUMPDATA control record
containg an H in column 11, Used by STORE and
DUMP to allow data movement without any con-
version for the I/O devices, i.e., 1 word to 1 col-
umn or 1 frame.

IOSW -- Set non-zero by either SC130 or SC170 of
DCTL when any I/O device is specified in the
FROM or TO field of the DUP control record.
Used by DCTL for error checking and functional
flow control. Used by DUMP and STORE for func-
tional flow control.

LETSW -- Set positive by LECTL and negative by
FLCTL of DCTL. Used by DUMPLET to indicate,
respectively, a full LET/FLET dump or a FLET
dump only.

LSTLF ~- Set by LETSR of DCTL to the sector ad-
dress (with a logical drive code) of the last LET/
FLET sector searched. If only one sector was
searched, then the address of that sector is
entered in LSTLF. Used by DUMP and DELETE
to identify the logical drive required.

MODSW -- Set non-zero if STCTL of DCTL detected
a STOREMOD function specified by the DUP con-
trol record. Used by STORE for functional flow
control.

NAMSW -- Set non-zero by LETSR of DCTL when a
name is found in LET/FLET that matches the name

Section 9. Disk Utility Program (DUP) 47

specified on the DUP control record. Used by
DCTL for error detection and functional flow con-
trol. Used by DUMPLET to indicate that only the
specified LET/FLET entry is to be dumped.

NEGSW -- Set non-zero by DFCTL of DCTL when a
minus sign is detected in column 31 of a DEFINE
FIXED AREA control record. Used by DEFINE
to indicate expansion (zero) or contraction (non-
zero) of the Fixed Area.

PGMHI, -- Word count (length) of the program head-
er in DSF programs. Set by RDHDR of DCTL to
the actual program header length. Used by
STORE to start the placement of the first data
header in the DSF output. Set by DUMP from the
program header. Used by STORE to update LET
with the required number of entries.

P1442 - Set by CCAT of DUPCO to contain the word
count and sector address of the System 1442 sub-
routine. Used by DDUMP to read the System
1442 subroutine into core when dumping to cards.

PHDUP -- Duplicate of $PHSE to permit printed
identification of the DUP phase requesting a core
dump.

PRPAR -- Two words specifying the default limits
to be dumped by MDUMP. Set by any module of
DUP desiring to use MDUMP for monitoring DUP's
status. Usually set to point at key parameters
and work areas.

PRSW -- Set non-zero by SC170 of DCTL when
printing is specified as the desired output on the
DUP control record. Used by DCTL for error de-
tection and by DUMP for functional flow control.

PTSW -- Set non-zero by SC130 or SC170 when
paper tape is specified in the FROM or TO field
of the DUP control record. Used by DCTL for
error detection and functional flow control. Used
by DUMP for functional flow control.

SDWDS -- The number of words yet to search in the
current LET/FLET sector. Set by LETSR of
DCTL. Used by LETSR of DCTL to test for the
sector search complete condition.

STCSW -- Set non-zero by ST400 of DCTL when the
)T is detected in columns 11 and 12 of the

48

STOREDATACI control record. Used by STORE
for functional flow control.

STSW -~ Set non-zero by STCTL of DCTL when a

STORE control record is found. Set by LETSR of
DCTL to the sector address (with a logical drive
number) of the LET/FLET sector that contains the
IDUMY entry that may be replaced by the entry
for the program to be stored. Used by DCTL for
functional flow control. Used by STORE to hold
the LET/FLET sector address and drive code
prior to inserting the LET/FLET entry for the
program or data file to be stored.

TEMP1, TEMP2 -- Two words, on an even houndary,
used by various phases of DUP for miscellaneous
purposes; i.e., DUP10 of DUPCO returns four
EBCDIC characters in TEMP1 and TEMP2 as the
result of converting from binary to hexadecimal
for purposes of printing.

TOWS -- Set non-zero by SC170 if the TO field is
Working Storage. Used by DCTL for error check-
ing and functional flow control.

T3MSW -- Set non-zero by STCTL of DCTL when a
type 3 or 4 subroutine contains a SOCAL level
number specified on the DUP control record. Used
by STORE to modify the type field in the program
header before storing the subroutine to disk.

UASW -- Set non-zero by SC130 or SC170 of DCTL
when either the FROM or TO field of the DUP
control record specifies the User Area. Used by

DCTL for error checking and functional flow control.

Used by STORE for functional flow control.

WSSW -- Set non-zero by SC130 or SC170 of DCTL if
the FROM or TO field of the DUP control record
specifies Working Storage. Used by DCTL for er-
ror detection. Used by DUMP and STORE for
functional flow control.

XEQSW -- Set non-zero by PLUS2 of DCTL when
calling in the required DUP phase to indicate that
execution of that phase is desired rather than re-
turning to PLUS2. Set non-zero by any other DUP
phase using GET of DUPCO to fetch other phases
from the disk that are to be executed immediately,
Used by GET of DUPCO to determine whether to
return to the link address (zero) or to execute
the phase just fetched (non-zero).

The following switches are initialized to zero by
CCAT of DUPCO, set by PLUS2 of DCTL, and not
reset by REST of DUPCO. These are cleared by
DEXIT before UPCOR is saved in preparation to
calling the Core Load Builder. This forces DCTL
on return from the Core Load Builder via PRECI to
fetch STORE again as it may have been overlaid by
the core load being built.

PH2 -- Set non-zero by PLUS2 of DCTL when fetch-
ing another DUP phase. Used by REST of
DUPCO: if zero, DCTL must be fetched from
disk; if non-zero, DCTL has already been
fetched.

PH3 -~ Set non-zero by PLUS2 of DCTL when fetch-
ing STORE. Used by PLUS2 of DCTL: if zero,
STORE must be fetched from disk; if non-zero,
STORE has already been fetched.

PH4 -- Set non-zero by PLUS2 of DCTL when fetch-
ing DDUMP, Used by PLUS2 of DCTL: if zero,
DDUMP must be fetched from disk; if non-zero,
DDUMP has already been fetched.

IOREQ -- Set non-zero by PLUS2 of DCTL in case
I/0 other than from the specified I/0O device is
required (i.e., Keyboard input when the DUP
operation is a STORE from cards). Checked by
READ of DCTL, and, if still non-zero, the princi-
pal 1/0 section (DUP phase 14) is brought back
into core storage.

I/O ADDRESSES

The following are the I/O addresses required by the
various DUP phases. They are initialized by CCAT
of DUPCO when DUP is given control. All except
THIS and NEXT remain as initially set. All (except
SDBUF) contain the address of an I/0 buffer in
UPCOR. Thus, the locations of the referenced
buffers are dependent on core size; in any case, they
always reside in the upper 4K of core storage.
SDBUF always resides in the first 4K of core storage.

CRBUF -- Set to the address of an 81-word buffer
used for reading DUP control records in unpacked
EBCDIC.

HDBUF -~ Set to the address of the buffer used for
printing the page heading after each page restore

performed during any DUP operation. The con-
tents of this buffer are in packed EBCDIC,

IOBLK -- Set to the starting address for the I/0O
block portion of UPCOR. The I/O block contains
one of phases 14, 15, or 16 of DUP.

SDBUF -- Set to the address of the 322-word buffer
used by the STORE, DDUMP, and DELETE func-
tions of DUP. This buffer always resides in the
first 4K of core storage.

LETAR -- Set to the address of the 322-word buffer
used for the LET/FLET search of DUP. This
buffer is also a one-sector buffer, or the second
half of a two-sector buffer used in disk I/0 oper-
ations.

PEBUF -~ Set to the address of a buffer used for
printing the DUP control records (41 words in
packed EBCDIC) or for printing a LET dump, a
FLET dump, a program dump, or a data dump
(61 words in packed EBCDIC).

THIS -~ Set to the address of one of two buffers used
for double buffering of binary input (see NEXT).
The buffer is 81 words long.

NEXT -- Set to the address of one of two buffers

used for double buffering of binary input (see THIS).
The buffer is 81 words long.

DUP PHASE DESCRIPTIONS

DUP COMMON (DUPCO)

e [Initializes the I/O phases required by DUP and
builds the DUP Communications Area (CATCO).

o Performs functions commonly required by other
DUP phases.

The initialization function of DUPCO is performed

by a subroutine known as CCAT. CCAT resides in an
area reserved for the System print subroutine, but is

not overlaid by it until all other initialization has been
completed. This initialization includes:

e Construction of the DUP paper tape I/0 phase if
paper tape is attached. This phase is written to

Section 9. Disk Utility Program (DUP) 49

the disk area reserved for DUP phase 16 at
System generation time,

e Construction of the DUP principal I/O phase
(without Keyboard). This phase is written to the
disk area reserved for DUP phase 15 at System
generation time,

e Construction of the DUP principal I/O phase.
This phase is written to the disk area reserved
for DUP phase 14, This phase is left in core
storage at IOADR.

e Initialization of all I/O-dependent switches in
CATCO,

e Incorporation of DCOM from the master cartridge
into CATCO.

o Incorporation of IOAR headers (word counts and
sector addresses) of other DUP phases into
CATCO. This information is supplied to CCAT
by the System Loader.

e Initialization of DUP's page heading buffer with
the heading contained in sector @HDNG.

e TFetching the System device subroutine for the
principal print device. This subroutine over-
lays all but a few words of CCAT. These last
words are cleared to zero just before branching
to REST.

The functions that are common to all DUP phases
are included in the non-overlaid section of DUPCO.
These functions are provided by the following sub-
routines:

WRTDC -~ This subroutine is used by STORE,
DELETE, and DEFINE when it is necessary to
update DCOM. This includes the updating of
DCOM on any affected satellite cartridge as well
as on the master cartridge.

PHIDM -- This subroutine is used to modify the
next-to-high-order hexadecimal digit of $PHSE
in COMMA, Tt is used primarily by DUP's I/O
functions to illustrate in a core dump the I/O
operation last performed. The modifications are:

1 Read from disk
2 Write to disk

50

Convert binary to EBCDIC
Print terminal messages
Read cards

Read paper tape

Read Keyboard

[I-IIC IS N

PHID -- This subroutine is used to record the phase
ID of the phase in execution in $PHSE of COMMA.
It is also used by some DUP phases to illustrate
the progress of execution from one section of the
phase to the next. When used for this purpose,
the high~order digit of $PHSE is changed to the
appropriate phase section modifier. A core dump
indicates the last section of the phase that was
executed.

MASK -- This subroutine is used to prevent recogni-
tion of the INTERRUPT REQUEST key. The func-
tion of this key is to terminate the current job,
but DUP must not allow this termination to take
place while in a critical operation. Therefore,
functions that affect LET/FLET, the User or Fixed
Area, the CIB, and DCOM delay its recognition
(STORE, DELETE, DEFINE).

LEAVE -- This subroutine is used to fetch DUP's
exit phase (DEXIT) to print an error message or
service a special exit, such as an exit to the Core
Load Builder (STORECI function), an exit to the
ADRWS program (DWADR function), or an exit to
the Supervisor following the trapping of a monitor
control record.

MDUMP -- This subroutine makes selective calls to
the System Core Dump program. See DUP Diag-
nostic Aids.

BINEB -~ This subroutine is used to convert binary
numbers to EBCDIC hexadecimal characters. It
is used primarily to convert a number for inser-
tion into a phase termination message, e.g.,

a cartridge ID, a disk block count.

PRINT -- This subroutine is used to print a line on
the principal print device. It interfaces with the
System principal print device subroutine.

PAGE -- This subroutine is used to skip to channel 1
and print a page heading if the principal print de-
vice is the 1132 or 1403 Printer. If the Console
Printer is the principal print device, five carriage
returns are executed before the page heading is
printed.

LINE -- This subroutine is used to single-space the
principal print device.

REST -- This subroutine is used to chain from one
DUP function to the next. When a function is
completed without errors, the DUP phase in con-
trol prints its termination message and exits to
REST. REST determines whether or not it is
necessary to bring DCTL into core storage (i.e.,
core size is 4K, or DCTL has not yet been loaded),
and, if necessary, fetches DCTL. REST then
exits to DCTL.

ENTER -- This subroutine is used to save the ac-
cumulator and extension, the overflow and status
indicators, as well as XR1, XR2, and XR3. XR1
is then loaded with the address of the CATCO
pointer.

RTURN -- This subroutine is used to restore the
contents of the accumulator and extension, the
overflow and carry indicators, as well as XR1,
XR2, and XR3, as saved by the ENTER subrou-
tine.

GET -- This subroutine is used to read the disk using
DISKZ. XR3 points to the IOAR header for this
read when GET is entered, and XR1 contains the
address of the CATCO pointer.

PUT -- This subroutine is used to write to the disk
using DISKZ. XR1 and XR3 are initialized in the
same manner as described for the GET subrou-
tine. Some error checking is done of the word
count and sector address in the case of GET and
PUT. No check is made in GET or PUT as to the
validity of the logical drive code associated with
the sector address. GET and PUT assume the
proper logical drive code has been included with
the sector address.

Errors Detected

The following DUP errors are detected in DUPCO by
the GET and PUT subroutines: D92 and D93.

DUP CONTROL (DCTL)

e Reads, prints and decodes DUP control records.

e Sets switches in CATCO to reflect the parameters
specified on the DUP control record.

e Searches LET for the name specified on STORE,
DUMP, DUMPLET and DELETE type control
records.

o Detects errors in the fields of the DUP control
records.

e Calls into core storage the required DUP phase
and exits to it.

DCTL remains in core storage during DUP opera-
tions for configurations of 8K or larger, except dur-
ing STORECI. DCTL is executed after the REST
function of DUPCO for each DUP control record as
well as after PRECI during the processing of a
STORECI control record.

DUP Control (DCTL) may be considered in three
logical parts: the READ subroutine, the DCTL sub-
routines, and the PLUS2 subroutine.

READ Subroutine

This is the entry point into DCTL. It performs the
following functions:

o Reads and prints DUP control records.
o Flushes invalid DUP subjobs.

® Checks for a monitor control record and exits
when one is detected.

® Ensures that the required DUP I/0 subroutine
set is in core storage.

e Decodes the function field of the DUP control
record into the various DUP types.

o Goes to one of the subroutines in the second logical
part of DCTL to continue the decoding and process-
ing of the specified type of DUP control record as
follows:

Control Record Subroutine Called

*STORE STCTL
*DUMP DUCTL
*DUMPDATA DACTL
*DUMPLET LECTL
*DUMPFLET FLCTL
*DELETE DLCTL
*DEFINE DFCTL
*DWADR WACTL

Section 9. Disk Utility Program (DUP) 51

DCTL Subroutines

These subroutines make up the second logical part
of DCTL. These subroutines perform the following
functions for their particular control record type.

e Decode the balance of the Function field as
required.

o Decode the FROM and TO device or area fields.

e Decode the Name field and perform a LET/FLET
search if the name is required.

& Decode the Disk I/0O subroutine required with
STORECI.

o Decode and record the Count field as required.
If the operation is a STORECI, FILEQ is brought
into core storage using the PLUS2 subroutine.

o Decode the FROM and TO Cartridge ID fields.

e Check the validity of all fields and go to the
DEXIT phase if any errors are detected.

e Prevent restricted phases from being called in
and executed during Temporary mode of operation.

e Record all required data in CATCO for use by the
required phase.

e Go to the appropriate entry point in the PLUS2
subroutine to fetch and transfer control to the
DUP phase required to finish the processing of
the specified DUP subjob.

PLUS2 Subroutine

This subroutine is the third logical part of DCTL

and is the normal-exit subroutine. The various entry
points to PLUS2 set up respective IOAR headers that
cause the desired DUP phase to be called into core
storage and executed. This subroutine performs the
following functions:

e Sets up the IOAR header if the required DUP
phase is not already in core storage.

e Fetches and/or executes the required DUP phase.

52

Buffers Used By DCTL

Control records are read into the area defined by
CRBUF and converted to packed EBCDIC in the area
defined by PEBUF. It is from PEBUF that the control
record is printed by the principal print device sub-
routine and from which the various fields are decoded.
Binary records read for STORE are placed into the
two buffers specified by THIS and NEXT in order to
process secondary entry points that are on the header
record,)
LET/FLET sectors are read one at a time into
the area specified by LETAR to be searched for the
name specified on the control record.

Errors Detected

The following DUP errors are detected in DCTL:
Do1, D02, D03, D05, D06, D12, D13, D14, D15,
D16, D17, D18, D19, D20, D21, D22, D23, D24,
D25, D26, and D27.

STORE

The STORE phase of DUP resides in the DUP phase
overlay area if the core size is 4K or 8K, or in the
overlay area plus 8K if the core size is 16K or 32K,
This phase is read into core storage the first time
DCTL recognizes a STORE control record. It re-
mains in core storage on a 16K or 32K machine as
long as DUP has control of the system (i.e., must be
brought back into core storage when performing a
STORECI operation).

STORE may be considered in seven logical parts,
each of the following subroutines constituting one
logical part.

ST 000 Subroutine

This is the entry point to STORE, It serves as a
master control for STORE, causing various other
sections of STORE to be executed as they are required
for various STORE operations.

IOWS Subroutine

This subroutine is executed whenever a STORE op-
eration is from card or paper tape. It provides the
following functions:

e Reads card or paper tape records punched in
system, data, or core image format.

o Moves data from card or paper tape buffer(s) to a
disk buffer.

e Writes the disk buffer to Working Storage (or to
the User Area or Fixed Area if the operation is a
STOREDATA or STOREDATACI to the User
Area or Fixed Area). If the operation is to Work-
ing Storage, Working Storage of the cartridge de-
fined as the TO cartridge is used. By default,
this is the System Working Storage.

o Updates the Working Storage disk block count and

format when operation is to, or through, Working
Storage.

WDO000 Subroutine

This subroutine is executed whenever a STORE op-
eration (except STORECI, STOREDATA, or
STOREDATACI from cards or paper tape) is to the
User Area or the Fixed Area. It performs the fol-
lowing functions:

o Adjusts the destination User Area or Fixed Area
disk block address to the next sector when not at
a sector boundary, if the operation is a STORE -
DATA or STOREDATACI.

e Makes the required disk block adjustment when
moving a system format program to the User
Area.

e Moves data or a program in Working Storage to
the User Area or the Fixed Area. If the opera-
tion is from Working Storage, Working Storage
of the cartridge defined as the FROM cartridge
is used. By default, this is the System Working
Storage. If the operation is a STORE from cards
or paper tape, System Working Storage is used.

DOLET Subroutine

This subroutine is executed whenever a STORE oper-
ation is to the User Area or Fixed Area (except
STOREMOD). It performs the following functions:

e Reads the LET or FLET sector to which the entry
point name (or names) is to be added.

o Checks if a IDUMY padding entry is required be-
fore the name is entered when storing data or core
image programs to the User Area.

e If a LET sector cannot contain the entry, updates
the header words of the LET sector and writes the
completed LET sector to disk.

e Enters a name (or names) in a LET or FLET sec-
tor and updates the ''words available' entry in
the header. In the case of a LET sector, the
terminal 1IDUMY disk block size is decremented
by the number of disk blocks stored.

o Decrements the IDUMY size in the FLET sector
by the number of disk blocks stored. All entries
that follow this FLET entry are pushed to the right
by the size of one entry (3 words).

UPDCM Subroutine

This subroutine is executed whenever the STORE op-
eration is to the User Area (except STOREMOD). It
updates DCOM as follows:

e Clears the Working Storage disk block count
(#WSCT) of the TO drive in DCOM to zero.

o Puts the disk block address of the end of the User
Area (plus one disk block) into #ANDU in DCOM
(in the entry in the drive-dependent parameter for
the cartridge affected by the STORE operation).

® Determines if the STORE operation is in Tempo-
rary mode; does not put the disk block address
of the end of the User Area into #BNDU of the TO
drive during Temporary mode.

e Updates the base file-protection address in DCOM
(#FPAD) of the TO drive if the STORE operation
is not during Temporary mode.

Section 9. Disk Utility Program (DUP) 53

SNOFF Subroutfine

This subroutine is executed by all STORE operations.

It terminates the STORE function as follows.

o Moves the cartridge ID of the TO drive into the
STORE terminal message.

e Moves the disk block address where the data or
program was stored into the STORE terminal
message.

e Moves the disk block count of the program or data
into the STORE terminal message.

o Uses the PRINT subroutine in DUPCO to print
the terminal message.

e Exits to the REST subroutine in DUPCO to clear

the CATCO switches and restore DCTL if it is not
in core storage.

ST700 Subroutine

This subroutine is executed when performing a
STOREMOD operation. It performs the following
functions:

o Computes the location within the User Area or
Fixed Area sector at which the old version of the
program begins.

e Moves the new version of the program into the
buffer to replace the old version, one word at a
time.

When an output sector is completed, it is written
to the User Area or Fixed Area. The next User or
Fixed Area sector is then read into the buffer to
allow the word by word replacement to continue.

The entire STOREMOD process is under control
of the disk block count. The number of disk blocks
replaced by the new version is determined by the
disk block count of the old version, as found in LET/
FLET. STOREMOD does not alter this count.

Buffers Used By STORE

The disk buffer used for moving data or programs
between Working Storage and the User Area or the

Fixed Area is the buffer specified by SDBUF. It is
one sector long if the core size is 4K; otherwise,
it is seven sectors long.

LET/FLET sectors are read and written one at
a time, using the buffer specified by LETAR.

When STORE reads binary records, it reads them
into the area specified by THIS and NEXT. If storing
from cards, double buffering is used; THIS and NEXT
are each considered to be 80 words long. If storing
from paper tape, double buffering is not used; THIS
and NEXT are considered to be an extended buffer,
large enough to contain the maximum length record
(108 words).

Errors Detected

The following DUP errors are detected in STORE:
D30, D31, D33, D90, and D93.

FILEQ

This phase of DUP is read into core storage by DCTL
when the Count field (27-30) of the STORECI control
record is non-zero. The function of FILEQ is to
process the records following the STORECI control
record and place the processed records into the
SCRA for use by the Core Load Builder. Three types
of STORECI control records are processed by this
phase; *LOCAL, *NOCAL, and *FILES. FILEQ
consists of the subroutines LLC000, FR000, and
LF200.

LC000

This subroutine processes *LOCAL and *NOCAL
control records. A mainline name is not specified
on these records when they follow the STORECI
control record; an error is indicated if one is speci-
fied. Thus, the mainline name is set to blanks. All
subroutine names specified in *LOCAL or *NOCAL

control records are converted to name code.
LOCAL information for the core load to be built

is stored in sectors 0 and 1 of the SCRA, NOCAL
information in sectors 2 and 3. The first word of
the LOCAL information is the number of words in
the LOCAL sectors used to store the LOCAL infor-
mation. A like word count precedes the NOCAL
information in the NOCAL sectors.

The format of LOCAL/NOCAL information in the
SCRA is shown below.

Word Count, one word specifying the number of words

in the two LOCAL?NOCAL sectors occupied
by LOCAL/NOCAL information, including
the word count

Mainline Name, two words of blanks in name code
format

Subroutine Name, two words in name code format
specifying a LOCAL/NOCAL
subroutine to be included in the
core load

Subroutine Name
Subroutine Name

‘) Subroutine Names

Sector 1 ' | | IJ L.L 7{)/' j

Subroutine Name
Not Used

A
Sector 2 I é l 7{)(l

FR000

This subroutine processes *FILES control records.
File numbers are converted to binary. File names,
if specified, are converted to name code; if unspeci-
fied, the name is set to blanks. Cartridge IDs, if
specified, are converted to binary; if unspecified,
the ID is set to zeros.

FILES information for the core load to be built
is stored in sectors 4 and 5 of the SCRA. The first
word of the FILES information is the number of
words in the FILES sectors used to store the FILES
information.

The format of FILES information in the SCRA is
shown below.

Word Count, one word specifying the number of words in the two
FILES sectors occupied by FILES information, including the
word count,

File Number, one word specifying in binary the number
assigned to the file in a FORTRAN DEFINE FILE
statement and by which the file is referenced

File Name, two words in name code format specifying the

name of the file as it appears in LET/FLET (zeros
if no file name is specified) .

Cartridge ID, one word specifying in binary the ID
of the cartridge containing the preceding
named file (zero if no cortridge ID is
specified) .

File Number
File Name
Cartridge ID

File Number

File Numbers and Names and Cartridge 1Ds l

YY VY ¥

A A A A b A — A
o L L6 N 1]
File Name
Cartridge ID
Not EJsed
SectorL i I 1 1

LF200

This subroutine provides the exit for FILEQ. When
all *LOCAL, *NOCAL, and *FILES control records
have been processed, DCTL is read into core stor-
age using the GET subroutine in DUPCO with the
execute switch (XEQSW) set. DCTL begins the
processing of the header of the mainline program
that is to be stored in core image format.

Buffers Used By FILEQ

The buffer used for writing the processed control
records to the SCRA is referred to as SCRAB.
SCRAB is another name for BUF7, known indirectly
through CATCO as SDBUF.

Errors Detected

The following DUP errors are detected in FILEQ:
D41, D42, D43, D44, D45, D46, D47, and D48.

DDUMP

The DDUMP phase of DUP resides in part of the
first or fifth 4K block of core storage, depending
on whether the core size is 4K, 8K, 16K, or 32K.
Only on a 32K machine does the DDUMP phase
reside in the fifth 4K block of core storage.

This phase is read into core storage the first
time DCTL recognizes a DUMP control record
and remains there on a 32K system as long as DUP
is in control. This phase uses all the subroutines
in DUPCO that are needed, e.g., disk reading and
writing.

DD000
This is the mainline of the DDUMP phase. It
initializes the parameters of the subroutines, sets

up the IOAR headers for the areas used for input/
output, and directs the execution of the subroutines.

XG000

This subroutine gets the words from the disk and, if
the program is in DSF, the words are typed as to
data, header indicator, or last data word.

Section 9. Disk Utility Program (DUP) 55

XW000_

This subroutine places the data or program in
Working Storage.

XF000

This subroutine formats the data into a system or
data record to be punched.

XP000

This subroutine checksums, unpacks, and punches
the record formatted by XF000 on either cards or
paper tape as specified.

X1,000

This subroutine prints the data or program on the

principal print device.

XCo000

This subroutine clears the print area as directed
by XL000.

X1000

This subroutine inserts the data or program words
into the print area as directed by XL000.

Buffers Used By DDUMP

PEBUF -- 61-word buffer to hold printed output.

THIS -- 81-word buffer to read in cards to check
to see if they are blank.

NEXT ~-- 111-word buffer from which the output
is punched.

LETAR -- 322-word buffer to be used to get data
from disk.

SDBUF -- 320-word buffer to be used to place data
in Working Storage.

56

Errors Detected

The following DUP error is detected in DDUMP: D50.

DUMPLET/DUMPFLET

This phase of DUP prints the contents of the Location
Equivalence Table (LET) and/or the Fixed Area Lo-
cation Equivalence Table (FLET) in an easily readable
format on the principal print device. The extent of
the dump depends on the setting of the following three
DUPCO switches:

LETSW. When this switch is positive, both LET
and FLET are to be dumped; when negative, only
FLET is dumped.

DRIVE. When this switch is negative, LET and/
or FLET from all cartridges are dumped; when not
negative, LET and/or FLET is dumped from the
cartridge specified only.

NAMSW. If this switch is on, only the LET or
FLET entry corresponding to the name in #NAME
is printed.

One sector of LET/FLET is printed per page.
Each sector of LET/FLET dumped is preceded by
two lines of header information. The first header
line contains the contents of the following locations
from COMMA /DCOM: #CIDN, $FPAD, #FPAD,
#CIBA, #ULET, and #FLET.

Following this line is a second header line that
reflects information concerning the LET/FLET
sector being dumped, i.e., the

sector number (SCTR NO.),

User Area/Fixed Area (UA/FXA),

words available (WORDS AVAIL), and

chain address (CHAIN ADR).

Following these two header lines are the LET/
FLET entries. Twenty-one lines of entries are
printed, made up of five entries per line but se-
quenced by column.

Once LET and/or FLET have been dumped ac-
cording to LETSW, DRIVE, and NAMSW, DUMPLET
prints a terminal message and exits to the REST
subroutine in DUPCO.

Buffers Used By DUMPLET/DUMPFLET

PRNTA -- 61-word buffer in UPCOR used for
printing a line.

LETAR -- 322-word buffer in UPCOR used for
reading a sector of LET/FLET.

DELETE

The DELETE phase removes programs and data
files from either the User or Fixed Area, along
with their corresponding LET/FLET entries.

DCTL passes control to DELETE after having
read a DELETE control record and having found
the specified entry in LET/FLET. This sector
of LET/FLET is left in the buffer LETAR with
DELSW pointing to the location previous to the
specified entry. DBADR is set with the User or
Fixed Area disk block address of the program to
be deleted.

DELETE compresses LET/FLET by the number
of words made available by the deleted entry., If
the deletion is to be from the Fixed Area, the
specified entry is replaced by a IDUMY entry of
the same size. If there are adjacent IDUMY en-
tries, they are combined to form a single 1IDUMY
entry and FLET is compressed by 0, 3, or 6 words
depending upon whether there are 0, 1, or 2 adjacent
IDUMY entries.

If the deletion is to be from the User Area, the
amount of the compression of LET is dependent
upon the number of words made available by the
specified LET entry. This number varies since
DSF programs with multiple entries may be stored
in the User Area. As in the case of FLET, adjacent
1DUMY entries may cause additional compression
of 3 or 6 words.

The packing of LET/FLET begins in the sector
containing the entry to be deleted and continues
throughout the remainder of LET/FLET. Since
multiple entries must reside in a single LET sector,
they are moved across a LET sector boundary only
when room exists in the previous sector for all the
entry points. LET is packed until a DCI program
or data file is encountered. If a IDUMY entry pre-
cedes this entry, the IDUMY entry is updated to
reflect the number of disk blocks required to make
the DCI program or data file start at a sector
boundary after it is moved the appropriate number
of sectors. If a IDUMY entry did not precede the
DCI program or data file, one of the appropriate
size is inserted, if required, to sectorize the DCI
program or data file. The shrinkage or packing
continues until the last IDUMY entry of LET is
found.

Packing of the User Area begins with the sector
containing the program to be deleted. Subsequent
DSF programs are shifted by disk blocks into the

area made available until a DCI program or data
file is encountered. If the User Area is being
packed by an amount equal to or greater than one
sector, the remaining programs are moved by
whole sectors.

After all required disk movement of the specified
DELETE operation is complete, DELETE prints a
terminal message to signify completion.

Buffers Used By DELETE

LETAR -- used for storage of LET/FLET sectors.
Up to 2 sectors may reside in core storage with
the addresses of the first word of each saved in
DE918 and DE919.

SDBUF -- used to process the User Area. Two or

eight sectors of core storage are used depending
upon core size.

Errors Detected

The following DUP errors are detected in DELETE:
D70, D71, and D72.

DEFINE

To initially provide a Fixed Area on a system
cartridge or to increase its size, the Core Image
Buffer (CIB), LET, and the User Area are moved
toward and partly into Working Storage. Working
Storage is reduced by the increased size of the
Fixed Area. The sector address of the CIB is
updated in DCOM and the Resident Image on the
updated system cartridge. If a Fixed Area is
defined on a non-system cartridge, LET is not
shifted because it precedes the Fixed Area sector
address.

To decrease the size of the Fixed Area on a
system cartridge, the Core Image Buffer (CIB),
LET, and the User Area are moved away from
Working Storage and into a part of the existing
Fixed Area. Working Storage is increased by the
amount of the decrease in the size of the Fixed Area.
DCOM and the Resident Image on the updated
system cartridge are updated with the new sector
address of the CIB. If the size of the Fixed Area
is decreased on a non-system cartridge, LET is not
shifted, as it precedes the Fixed Area sector address.

Section 9. Disk Utility Program (DUP) 57

To delete the FORTRAN Compiler and/or the
Assembler Program from a system cartridge, all
succeeding programs and special purpose areas on
the disk are moved away from Working Storage
toward the voided area. Working Storage is in-
creased by the size of the voided program(s).

Once the FORTRAN Compiler and/or the Assem-
bler Program have been eliminated, neither can be
restored without an initial loag of the disk cartridge,

including all the programs in the User or Fixed Area.

DEFINE determines if a system or non-system
cartridge is being processed by testing the cartridge
ID sector for the presence of the version and modi-
fication level number, which is zero on non-system
cartridges.

If the FORTRAN Compiler and/or the Assembler
Program are deleted, all SLET entries for that
program(s) are cleared to zero. SLET is also
revised to reflect the new sector addresses of
those programs that are shifted.

All entries in the Reload Table indicating SLET
lookups requested by the deleted program(s) are
removed and the remaining Reload Table entries are
packed together. The revised Reload Table is then
reprocessed to generate new sector addresses where
necessary in the monitor system programs.

Buffers Used By DEFINE

LETAR -- a disk I/O buffer.

SDBUF -- a disk I/O buffer.

Switches and Indicators

FORSW -- non-zero when the FORTRAN Compiler
is to be deleted.

ASMSW -- non-zero when the Assembler Program
is to be deleted.

FXSW -- non-zero when the Fixed Area is to be
defined or modified.

DATSW -- indicates the disk block adjustment of
the Fixed Area.

NEGSW -- non-zero when the Fixed Area is to be
decreased.

58

Errors Detected

The following DUP errors are detected in DEFINE:
D80, D81, D82, D83, D84, D85, and D8E.

DEXIT

This phase is brought into core storage and executed
by the LEAVE subroutine in DUPCO. DEXIT per-
forms the following functions:

e Prints DUP error messages

o Traps monitor control records and exits to the
Supervisor

o Links to the System Library program ADRWS
for DWADR

e Passes control to the Core Load Builder for
STORECI

o Returns control to MODIF when a modification
includes changes to the Systém Library.

e Exits to the Supervisor upon recognition nf the
INTERRUPT REQUEST key interrupt.

DEXIT is called with an indirect branch via
LEAVE. Following the branch instruction is a
parameter that specifies the function to be per-
formed by DEXIT.

If the parameter is a positive integer, DEXIT
prints a DUP error message. The message printed
corresponds to the integer parameter.

If the parameter is zero, DEXIT moves a trapped
monitor control record from the buffer CRBUF to
the Supervisor buffer @SBFR, $CTSW in COMMA
is set to minus one (/FFFF) to indicate to the Super-
visor that the next monitor control record has already
been read.

DEXIT checks to see if control should be returned
to the System Maintenance program, MODIF. If
#MDF2 in DCOM is non-zero, DEXIT reads DUP
phase 18 into core storage and transfers to it. This
phase contains part of MODIF, written on this sector
when MODIF was last in control. In this manner
MODIF is able to use DUP to delete an old version
of a program or subroutine from the System Library,
and then use DUP to store the new version.

If control is not given to MODIF, DEXIT trans-
fers to $EXIT in the Skeleton Supervisor.

If the parameter is minus two (-2), the interrupt
caused by the INTERRUPT REQUEST Kkey is recog-
nized, causing the Supervisor to read records from
the principal input device until the next JOB monitor
control record is encountered. DEXIT exits via the
$DUMP entry point in the Skeleton Supervisor with
a dump format code of minus two (-2).

If the parameter is minus three (-3), DEXIT
transfers control to the Core Load Builder so that
the DSF program currently in Working Storage can
be converted to core image format for the STORECI
operation. Before DEXIT transfers control to phase
0/1 of the Core Load Builder, the area in core
storage bounded by IOADR and the end of core stor-
age is written to DUP phase 13 (UPCOR). DUP
phase 17 (PRECI) restores this area to core stor-
age after the DCI program has been moved to the
User or Fixed Area.

If the parameter is minus four (-4), DEXIT
initiates a CALL LINK to the System Library pro-
gram ADRWS to complete the DUP DWADR oper-
ation, DEXIT enters the Skeleton Supervisor at
the $LINK entry point with the name ADRWS speci-
fied in name code. The ADRWS program initializes
the Working Storage sector addresses on the
cartridge whose logical drive code is found in
#TODR in DCOM. ADRWS causes control to be
returned to DUP by placing a dummy DUP moni-
tor control record into the Supervisor buffer @SBFR
before returning control to the Skeleton Supervisor
via the $EXIT entry point.

All DEXIT functions write DUP's DCOM buffer to
sector @DCOM on the master cartridge before
exiting.

Buffers Used By DEXIT

CATCO -- used to write DCOM on sector @DCOM of
the master cartridge. The buffer size is 112
words.

IOADR -- used to write UPCOR on DUP phase 13.
The buffer size is approximately 1528 words.

B -- used to read phase 0/1 of the Core Load
Builder into core storage. This read is exe-
cuted from core locations 32-39. Approximately
480 words are read.

@SBFR - /0140 —- used to read the MODIF phase
(DUP phase 18) into core storage. This read
is executed from core locations 32-39. The
number of words read is 320.

2501/1442 CARD INTERFACE (CFACE)

This phase serves as an interface between DUP
programs and the system device subroutine for
card I/0. CFACE consists of four subroutines;
they are listed below along with their primary
functions:

GETHO -- Reads a card and converts from IBM
Card Code to unpacked EBCDIC.

GETBI -- Reads a binary card.

PACKB -- Converts from card binary (1 column
per word) to packed binary (4 columns per 3
words), with checksumming.

PCHBI -- Punches a card from an 80-word buffer.

The phase has four entry points, one correspond-
ing to each of the functions listed above. Each sub-
routine is entered by an indirect BSI instruction to
the symbolic name listed above. Upon entry to each
subroutine, the registers and status conditions of
the calling program are saved using the ENTER
subroutine in DUPCO. The PHIDM subroutine in
DUPCO records the phase identification of CFACE.

Upon completion of the required function and
prior to returning to the calling program, the orig-
inal conditions of the calling program are restored
using the RTURN subroutine in DUPCO.

GETHO

This subroutine is used by DCTL to read DUP control
records. The system device routine for the 2501 or
the 1442 is used to read the card. An 81-word buffer
specified by CRBUF in CATCO is used for card input.
GETHO examines each card for either //, *S, or *D
in columns 1 and 2. If this information is not found
in the first two columns of the card, the subroutine
returns immediately to DCTL. In this way non-DUP
control records can be bypassed at maximum card
speed without using a double buffering technique.

Section 9. Disk Utility Program (DUP) 59

If //, *S, or *D is found in columns 1 and 2, the
subroutine loops till the whole card is read, then
converts it from IBM Card Code to unpacked
EBCDIC using the system conversion subroutine
CDCNV.

GETHO packs the unpacked EBCDIC data from
the 81-word input buffer to a 41-word packed
buffer specified by PEBUF.

The subroutine then exits to DCTL.

GETBI

This subroutine reads a binary card into an 81-word

buffer specified by THIS., The system device sub-

routine for the 2501 or 1442 is used to read the card.

PACKB

This subroutine converts card binary (one word
per column) in an 81-word input buffer (NEXT)
to packed binary (four columns per three words)
in a 55-word output buffer (NEXT). The packed
data overlays the unpacked data.

After packing, the checksum of the 54 words
is verified. If the checksum is correct, the sub-
routine returns to the calling program. A check-
sum error causes an exit to LEAVE in DUPCO
with an error parameter.

PCHBI
This subroutine, using the system device subrou-

tine for the 1442, punches a card from an 81-word
buffer specified by NEXT.

Buffers Used By CFACE

THIS -- 81-word input buffer used by GETBI for
reading binary records.

NEXT -- 81-word buffer used by PACKB for pack-
ing binary records (4 columns per 3 words).
The packed data overlays the unpacked data.
Also used by PCHBI for outputting to the punch.

CRBUF -- 81-word input buffer used by GETHO

for reading control records in unpacked
EBCDIC.

60

PEBUF -- 41-word buffer used to hold the packed
EBCDIC control record, converted from the
unpacked EBCDIC in CRBUF.

KEYBOARD INTERFACE (KFACE)

KFACE serves as an interface for DUP programs
when the principal input device is the Keyboard.
KFACE is used by DCTL to read DUP control
records from the Keyboard.

The PHIDM subroutine in DUPCO is used to
record the KFACE phase identification. The ENTER
subroutine in DUPCO is used to save the conditions
of the calling program. A control record of up to
80 characters is read and converted from Keyboard
code to unpacked EBCDIC by the system device
subroutine for the Keyboard.

An EOF character causes the termination of
input and the filling of the remainder of the buffer
with blanks or a word count of 80, whichever is first.

The record is read into the 81-word buffer speci-
fied by CRBUF in CATCO in unpacked EBCDIC,
then converted to packed EBCDIC and stored in the
41-word buffer specified by PEBUF in CATCO. The
RTURN subroutine in DUPCO is used to restore the
conditions of the calling program.

Buffers Used By KFACE

CRBUF -- 81-word input buffer used to hold a
control record in unpacked EBCDIC.

PEBUF -- 41-word buffer used to hold the packed
EBCDIC control record, converted from the
unpacked EBCDIC in CRBUF.

1134/1055 PAPER TAPE INTERFACE (PFACE)

This phase serves as an interface between DUP
programs and the system device subroutine for
paper tape I/0. PFACE consists of four subrou-
tines; they are listed below along with their primary
functions:

GETHO -- Reads a paper tape record punched in
PTTC/8 code and converts it to both unpacked
and packed EBCDIC.

GETBI -- Reads a binary paper tape record.

PACKB -- Converts from unpacked binary (two
frames per word) to packed binary, with
checksumming.

PCHBI -~ Punches a binary paper tape record.

The phase has four entry points, one corre-
sponding to each of the functions listed above.
Each subroutine is entered by an indirect BSI
instruction to the symbolic name listed above.
Upon entry to each subroutine, the registers
and status conditions are saved using the ENTER
subroutine in DUPCO. Another DUPCO subrou-
tine, PHIDM, modifies the phase identification
with the PFACE identification.

Upon completion of the requested function and
prior to exiting to the calling program, the orig-
inal conditions of the calling program are restored
using the RTURN subroutine in DUPCO,

GETHO

This subroutine is used by DCTL to read DUP
control records. The system device subroutine
for the 1134/1055 is used to read the record. An
81-word buffer specified by CRBUF in CATCO is
used to contain each record read. All conversion
from PTTC/8 code to EBCDIC is performed by
the system device subroutine. When the control
record has been read, it is converted to packed
EBCDIC within the 41-word buffer specified by
PEBUF in CATCO. The subroutine then exits

to DCTL.

GETBI

This subroutine reads a binary paper tape record
into a 109-word buffer specified by THIS in CATCO.
The system device subroutine for the 1134/1055 is
used to read the record.

Note that THIS and NEXT are reversed for each
record read when reading binary cards. When
reading paper tape DCTL places the address of the
buffer having the lowest core address into THIS,
since the reading of binary paper tape records
requires an extended buffer. The system device
subroutine reads each frame (eight bits of data)
into one word of the buffer.

The word count preceding each binary paper tape
record is punched into a single frame, and is read
separately from the body of the record. After the
word count is read, it is checked for validity, If it is
valid, it is used to read the record that follows.

If it is not valid, the next frame is read to deter-
mine if it is a word count. In this way, delete
characters and other special codes may appear
between binary records or between a control record
and the first binary record.

PACKB

This subroutine packs the binary record as read by
GETRBI into normal binary data. The packed data
overlays the unpacked data.

After packing, the checksum of the words read
is verified. If the checksum is correct, the sub-
routine returns to the calling program. A check-
sum error causes an exit to LEAVE in DUPCO with
an error parameter.

PCHBI
This subroutine uses the system device subroutine

for the 1134/1055 to punch a binary paper tape
record from a 109~-word buffer specified by NEXT.

Buffers Used By PFACE

THIS -- 109-word buffer used by GETEI for reading
binary paper tape records.

The two buffers THIS and NEXT, used for
double buffering when reading binary cards,
constitute one extended buffer when reading
binary paper tape records. Double buffering
is not used for binary paper tape records.

NEXT -- 109-word buffer used by PCHBI for punch-
ing binary paper tape records, consisting of
THIS and NEXT taken as consecutive buffers.

CRBUF -- 81-word input buffer used to hold a control
record in unpacked EBCDIC.

PEBUF -- 41-word buffer used to hold the packed
EBCDIC control record, converted from the
unpacked EBCDIC in CRBUF.

Section 9. Disk Utility Program (DUP) 61

PRECI

This phase is read into core storage by the Core
Load Builder after a core load has been built for
a STORECI function. This phase resides in the
DUP overlay area. It moves the core load to the
User Area or Fixed Area before restoring DUP
phase 13 (UPCOR). Since UPCOR is not available
to PRECI, copies of the DUPCO subroutines PHID,
PHIDM, GET, and PUT have been incorporated
into PRECI.

PRECI is composed of five sections or logical
parts -- PC000, PC040, PC100, PC180, and PC240.

PC000

This is the entry point to PRECI from the Core
Load Builder. DCOM from the master cartridge
is read into PRECI's work area, as is the core
image header from the CIB. If the inhibit DUP
function switch ($NDUP) has not been set by the
Core Load Builder, PRECI proceeds. Otherwise,
the PC240 section is used to exit to DCTL after indi-
cating an error has occurred.

DCOM is used to determine the logical drive
code of the destination drive, as well as the start-
ing sector address to which the program is to be
moved. From the core image header the total
length of the core load in sectors is determined.
A check is then made to determine if the program
can be contained in the User Area or Fixed Area.
If the core load is too large, the PC240 section is
used to exit to DCTL after indicating an error has
occurred.

PC040

This section moves LOCAL/SOCAL sectors (if
any) from Working Storage to their position at the
end of the core load after it has been moved to the
User Area or Fixed Area. The Working Storage
sector address from which the LOCALs/SOCALs
are moved includes an adjustment for Working
Storage files when they are present. LOCALs/
SOCALs are moved to the User or Fixed Area one
sector at a time. The number of sectors required
for Working Storage files and the number of LOCAL/
SOCAL sectors are obtained from the core image
header.

62

PC100

This section moves that part of the core load (in-
cluding the core image header) that resides in the
CIB to its destination in the User Area or Fixed
Area. The length of the program (in words) and
the starting address of the core load are used to
control the number of sectors moved from the CIB
to the User Area or Fixed Area, The core image
header also indicates if the core load exceeds the
4K boundary; i.e., the core load's load address
plus the number of words in the core load produces
a number greater than 4095.

The core load residing in the CIB is moved to
the User Area or Fixed Area four sectors at a time.
This move continues until the CIB sector containing
that part of the core load that resides at location
4095 has been moved.

PC180

This section moves that part of the core load that
resides in core storage above location 4095 to the
User or Fixed Area. The last sector of the core
load written to the User or Fixed Area from the

CIB is read into core storage so as to be contiguous
with the part of the core load residing in core, i.e.,
above location 4095. The remainder of the core
load, starting with the first word read into core
storage from the User or Fixed Area, is then writ-
ten to the User or Fixed Area, starting at the sector
read into core storage.

PC240

This section restores DUP phase 13 (UPCOR),
DCTL (phase 2), and then exits to DCTL. Before
exiting to DCTL, however, termination data is
placed in the DCOM buffer in CATCO, and in CATCO
itself, The interrupt locations in low core storage
are restored for DUP operation, and phase switches
are cleared in order to ensure that DDUMP and
STORE are reloaded from disk, If any errors have
been detected during PRECI operation, the DUP
error message number is communicated back to
DCTL through CIERR in CATCO.

Buffers Used By PRECI

The disk I/0O buffer used to move all parts of the
core load to the User Area or Fixed Area is located

at BUF7. All references are direct, rather than
indirect through SDBUF in CATCO, since UPCOR

is not in core storage during the operation of PRECI.

DUP DIAGNOSTIC AIDS

GENERAL

DUP has provided a selective, dynamic dump of
various core storage areas to facilitate problem
analysis. The core dumps are under the control
of column 35 of individual DUP control records.
In general, to obtain a dump of a particular DUP
phase, column 35 should contain the phase ID
number of that phase. If column 35 contains
zero, all DUP phases associated with the function
named on the control record yield a core dump,
starting with the execution of DCTL. The column
35 codes and the corresponding DUP phase yleldmg
core dumps are shown below.

Code in column 35 Phase(s) dumped

0 All associated phases, starting
with DCTL

DCTL

STORE

FILEQ

DDUMP

DUMPLET

DELETE

DEXIT

O 1w WN

The core dumps include the following:

Disk I/0 Areas -- The buffer area used for the
disk I/0 operation, including the area into
which DUP phases are read, is dumped. The
number of words dumped is dependent on the
number of words read or written.

Buffer Areas —- The buffers between BUF4 and
PRPNT are dumped in DCTL execution. This
dump occurs when the LET search begins,
when the LET search on one cartridge is
complete and the next cartridge LET search
begins, and before the required DUP phase
(STORE, DUMP, or DELETE) is read.

CATCO -- This area of core storage is dumped in
conjunction with any dump mentioned above.

If a dump (or dumps) is desired during CCAT
execution, the next to the last card (i.e., the last
type A card) of DUPCO should be removed before
reloading this phase with a System Loader reload
function. This change in DUPCO causes all possible
core dumps within DUP to occur regardless of the
contents of column 35 in any DUP control record.

Core dumps are not allowed when the DEFINE or
PRECI phase is in execution. The System Core
Dump program uses the CIB to save the contents of
core storage, and, since the CIB moves during a
DEFINE operation and the core load to be stored by
PRECI is in the CIB, serious errors occur if core
dumps are taken when executing either DEFINE or
PRECI.

PRECI

When PRECI is entered from the Core Load Builder,
the phase identification word in COMMA ($PHSE) is
initially set to /0011 by the PHIDP subroutine in
PRECI. As each subroutine of PRECI is executed,
$PHSE is modified by PHIDP as follows:

Subroutine in execution Contents of $PHSE

PC040 /1011
PC100 /2011
PC180 /3011
PC240 /4011

In addition, the second hexadecimal digit of $PHSE
is modified by the IDMP subroutine in PRECI each
time a disk I/O operation is performed.

Digit 2 of $PHSE Disk I/0 Operation

1 Read from Disk
2 Write to Disk

STORE

When STORE is entered from DUP control, the
phase identification word in COMMA ($PHSE) is
initially set to /0003 by the PHID subroutine in
DUPCO. As each subroutine of STORE is exe-
cuted, $PHSE is modified by PHID as follows:

Section 9. Disk Utility Program (DUP) 63

64

Subroutine in execution

Contents of $PHSE

IOWS
WD000
DOLET
UPDCM
ST700
SNOFF

In addition, the second hexadecimal digit of
the phase identification is modified by the PHIDM

/1003
/2003
/3003
/4003
/5003
/6003

subroutine in DUPCO each time an I/O operation

is performed.

Digit 2 of $PHSE

© o Ol N

1/0 operation

Read from Disk

Write to Disk

Convert Binary to EBCDIC
Print Terminal Message
Read Binary Cards

Read Binary Paper Tape

FLOWCHARTS
General: ASMO1
Phase 0: ASMO02
Phase 1: ASMO03
Phasc 1A: ASMO04
Phasec 2: ASMO05
Phase 2A: ASMO06
Phase 3: ASMO07
Phase 4: ASMO08
Phase 5: ASMO09
Phase 6: ASM10
Phase 7: ASM11
Phase TA: ASM12
Phase 8: ASM13
Phase 8A: ASM14
Phase 9: ASM15-ASM17
Phase 10: ASM18

Phase 10A: ASM19
Phase 11: ASM20
Phase 12: ASM21

ERMSG: ASM22
@ARCV ASM23
@APCV: ASM24

The Assembler Program is designed to translate the
statements of a source program written in 1130
Assembler Language into a format that may be
dumped and/or stored by DUP or executed directly
from Working Storage.

Basically, the functions of the Assembler are:

1. Convert the mnemonic to machine language
(except for Assembler control records).

2. Assign addresses to statement labels.

3. Insert the format and index register bits into
the instruction, if applicable.

4. Convert the instruction operands to addresses
or data.

INTRODUCTION

The Assembler Program is structurally divided into
two parts, the resident portion and the overlay por-
tion. The resident portion consists of the Assembler
Communications Area (ASCOM), part of phase 0,

SECTION 10. ASSEMBLER PROGRAM

phase 9, and the phase 9 Communications Area
(PHSCO). All of the other phases are called into
core storage as overlays.

The Assembler Program is functionally divided
into two parts, pass 1 and pass 2. The source pro-
gram is read and processed, one statement at a
time, during each of the two passes. During pass 1,
the source program is read into core storage from
the principal I/0 device. Unless the user specifies
by control record that two-pass mode is in effect,
the source program is stored on the disk, from
which it is reentered for pass 2 processing. If two-
pass mode is specified or required, the source pro-
gram is reentered via the principal I/O device for
pass 2 processing. (If a list deck or paper tape
object program is desired, the assembly must be
made in two-pass mode.)

PROGRAM OPERATION

When the Monitor Control Record Analyzer detects
an ASM monitor control record, it reads the first
sector of the Assembler Program (phase 0) into
core storage and transfers control to it.

Phase 0 reads into core storage all the subrou-
tines required during assembly processing for 1/0,
and phase 9. The word counts and sector addresses
of all the buffers and major overlay phases are init-
ialized in ASCOM and in phase 9, and the boundary
conditions are set for the Symbol Table. Phase 1
is then fetched and control is passed to it.

Phase 1 reads and analyzes control records, set-

ting the appropriate switches in ASCOM for the options

specified. Upon detection of the first non-control
record, phase 1A is fetched and given control.

Phase 1A initializes the core addresses for the
buffers, then fetches and transfers control to phase
2 to start statement processing.

Statement processing is performed by an op code
search in phase 9 and a transfer through a branch
table (that precedes every major overlay) to the
overlay phase currently in core storage. If the re-
quired overlay phase is in core storage, execution
of the phase proceeds. If it is not in core storage,
the branch table causes a return to phase 9 to fetch
the required overlay phase. The op code search is
performed again and control is passed to the overlay

Section 10. Assembler Program 65

phase. When the overlay phase completes the nec-
essary processing, another record is read and the
entire process is repeated.

All overlays exit by branching to either the
LDLBL or the PALBL subroutines within phase 9 and
then to STRTY (the op code search). A branch is
taken to LDLBIL when the statement just processed
is permitted to have a label. A branch is taken to
PALBL when a label is not permitted or is to be ig-
nored. Both LDLBL and PALBL branch to the
RDCRD subroutine (within phase 9) to read the next
record just prior to their return to the overlay phase
that called them.

ASSEMBLER COMMUNICATIONS AREA

The Communications Area (ASCOM) consists of all
the indicators and switches referenced by more than
one phase of the Assembler Program. All communi-
cation between phases is done through ASCOM.
ASCOM resides in core storage following DISKZ and
preceding the Overlay Area.

Refer to the program listings for details regarding
the contents of ASCOM.

OVERLAY AREA

The Overlay Area is the area in core storage into
which the statement processing (overlay) phases are
loaded as required. Phase 0 is initially loaded into
this area by the Monitor Control Record Analyzer
(see Section 6. Supervisor). Phases 1, 1A, and 2
are sequentially loaded into this area at the start of
passes 1 and 2, Phases 2A, 5, 6, 7, TA, 8, 8A,
@ARCV, and @APCYV are loaded into this area during
passes 1 and 2 as they are required to process
specific mnemonics and constants, to handle output
options, etc. Phase 12 is loaded into this area when
the END statement is encountered in passes 1 and 2.
Phase 4 is loaded into this area at the completion of
pass 2. Phases 3, 9, 10, 10A, 11, and ERMSG
are not loaded into the Overlay Area.

The Overlay Area resides in core storage follow-
ing ASCOM and preceding phase 9.

SYMBOL TABLE

As the source program is read and processed in
pass 1, the Symbol Table is built. An entry is made

66

in the Symbol Table for each valid symbol defined

in the source program. Each entry in the Symbol
Table consists of three words. The first word con-
tains the value of the symbol. Words 2 and 3 contain
the symbol itself in name code. The following
example shows the conversion of the symbol 'START'
to name code for a Symbol Table entry:

Symbol Table Entry 2+ 2 8 C 1 6 6 3
00[0001010001]000001 DlIOOllOOOlI

b—-\’——/%"—’b\l—l\.-—v—-’\—v—/

Multiply-defined indiculor
Relocation mode indicator
Input EBCDIC EBCDIC
Character (hexadecimal) (binary)
Character (hexadecimal
S £2 1 l 10 0010
E3 llllO 00N

T

A (a4} 1 00 0001
3 09 ny o 1001
T E3 I].]D 0011

*Digit 1 varies depending on the settings of the Relocat on mode and
Multiply-defined indicators .

The Symbol Table is built starting at the high-
addressed end of core storage. Entries are added
to the Symbol Table (see below) until its lower limit,
the end of the principal print device subroutine, is
reached. If symbols are added to the Symbol Table
after the in-core Symbol Table has been filled (i. e.,
the lower limit has been reached), the overflow
Symbol Table is saved, one sector at a tirae, in
Working Storage on the disk. Note that Symbol
Table overflow is possible only if the Assembler
control record *OVERFLOW SECTORS reserving
the required sectors on disk is present in the
source program; otherwise, the assembly is ter-
minated at the point of Symbol Table overflow.

Third Entry Second Entry First Entry
-~ — s
Symbol
Valve Symbol Name
—— ——
! 1 1] L] L I L
-« Low High f
Core Core

As the source program is again read and proc-
essed in pass 2, the Symbpol Table is searched each
time a reference to a symbol is encountered. The
in-core Symbol Table is searched first. If the sym-
bol is not found in the in-core Symbol Table and

Symbol Table overflow has been written on disk,
Phase 10A is fetched into core storage to perform
the search of the overflow sectors.

A binary search technique is used in the Symbol
Table search.

INTERMEDIATE I/0

During pass 1 of an assembly made in one-pass
mode the source program statements are saved on
disk for input to pass 2. Each source statement is
saved starting at column 21 and ending with the
rightmost non-blank column. Ags saved on disk each
statement consists of a prefix word containing the
number of words up to and including the prefix word
for the following statement and the source statement
packed two EBCDIC characters per word.

The intermediate I/0 is written on disk in Working
Storage, starting at the first sector of Working
Storage if no OVERFLOW SECTORS were specified,
or starting at the first sector following the last sec-
tor of Symbol Table overflow.

If a LIST Assembler control record is not present
in the source program, comments statements are not
saved in the intermediate 1/0.

During pass 2 of an assembly in one-pass mode,
the intermediate I/0 is read into core storage, one

sector at a time. The source statements are unpacked

and placed into the two I/O buffers such that they are
indistinguishable from statements read from the prin-
cipal 1/0 device.

DOUBLE-BUFFERING

All card, paper tape, or Keyboard input to the
Assembler Program is double-buffered, with one
exception; if the assembly is being made in two-pass
mode and the LIST DECK or LIST DECK E option has
been specified, input during pass 2 is single-buffered
to facilitate punching.

The Assembler Program uses two 80-word buffers
for double-buffering. While a record is being read

into one buffer, the record in the other buffer is being

converted and processed.
Two locations in ASCOM are used to point to the
two input buffers. One location (RDBFR) always con-

tains the address of the buffer in which a record is
being processed. The other location (RDBFR+1)
always contains the address of the buffer into which
a record is being read. The RDCRD subroutine in
phase 9, which interfaces with the principal I/0 de-
vice subroutine, exchanges the buffer addresses in
RDBFR and RDBFR+1 after each record is read.

PHASE DESCRIPTIONS

PHASE 0

Phase 0 serves as the Assembler Program's loader.
First, the Communications Area (ASCOM) is initial-
ized by phase 0, and the required I/0O device subrou-
tines are fetched into core storage. Phase 9, the
resident portion of the Assembler Program, is also
fetched into core storage. Phase 0 initializes the
sector addresses and word counts of the various
buffers utilized by the Assembler Program, and the
boundary conditions for the System Symbol Table
are established. Phase 0 then fetches phase 1 into
the overlay area and transfers control to it.

The switches $NDUP and $NXEQ (in COMMA) are
set non-zero to inhibit program execution and/or
DUP functions in the event the assembly is termina-
ted before completion.

A Master Overlay Control subroutine (P0130), the
subroutine interfacing with DISKZ (DISK1), and the
index register restoring subroutines (STXRS and
LDXRS) are part of phase 0 and remain in core
storage during the entire assembly; the rest of phase
0 is overlaid by phase 1. The Master Overlay Control
subroutine performs the fetching of all the overlay
phases and transfers control to the phase just read
into core storage.

PHASE 1

Phase 1 reads, analyzes, and lists the Assembler
control records. As each control record is analyzed,
the various options specified by the control record
are indicated in the Assembler Program's Communi-
cations Area (ASCOM). When the first non-control-
type record is encountered, phase 1 transfers to the
Master Overlay Control subroutine to fetch phase 1A
and transfer control to it.

Section 10. Assembler Program 67

PHASE 1A

Phase 1A determines the address of the DSF buffer
and initializes its IOAR header information in the
Assembler Program's Communications Area
(ASCOM). If the principal input device is either the
1134 Paper Tape Reader or the Keyboard, the cur-
rent record is moved over 20 positions to the right
and the read-in address is set for position 21 of the
I/0 area.

The number of overflow sectors assigned is
checked for a maximum of 32 and the adjusted Work-
ing Storage boundary for the disk output of the source
and object programs is initialized. Phase 1A then
transfers control to the Master Overlay Control sub-
routine to fetch phase 2, which begins statement
processing.

PHASE 2

Phase 2 handles the processing of all ENT, ISS,
LIBR, ABS, EPR, SPR, ILS, and FILE statements.
These statements are header mnemonics and must
appear as the first non-control-type statements if
they are included in the source program. For this
reason phase 2 is the first overlay phase loaded into
core storage to begin statement processing. As each
particular header mnemonic is processed, the nec-
essary indicators are set in the Assembler Program's
Communications Area (ASCOM). The ordering and
compatibility of the various header mnemonics is
checked, and the program header record information
is built and saved in ASCOM. When a mnemonic not
handled by phase 2 is detected, control is transferred
to the op code search (STRT9) in phase 9.

PHASE 2A

Phase 2A is called into core storage when a FILE
statement is detected by phase 2. Phase 2A is loaded
by a flipper routine within phase 2 and overlays part
of phase 2. Phase 2A obtains the file information
from the FILE statement and builds the 7-word
DETFINE FILE Table. At the completion of phase 2A
processing, control is returned to the flipper routine
in phase 2. The flipper routine restores the over-
laid portion of phase 2 and branches to the op code
search (STRT9) in phase 9.

68

PHASE 3

Phase 3 is called into core storage as part 1 of the
Assembler Program's exit to the Supervisor. Due
to the size of phase 3, it overlays part of phase 9
instead of the Overlay Area.

The options of printing, punching, or saving the
Symbol Table,as requested by the user on Assembler
control records, are performed. At the completion
of the Symbol Table options processing, phase 4 is
fetched into core storage and control is transferred
to it.

PHASE 4

Phase 4 performs the final processing for the Assem-
bler Program and is called into core storzge by
phase 3. If overflow sectors were specified by
Assembler control record, and if Symbol Table over-
flow occurred in assembling the program, the object
program, which is residing on the disk, is moved
back to the sector boundary at the start of Working
Storage. Phase 4 then updates DCOM on all ready
drives. The last record read by the Assembler Pro-
gram, the record following the END staternent, is
moved to the Supervisor buffer.

In terminating the assembly, phase 4 prints four
sign-off messages:

The number of errors flagged in the assembly
The number of symbols defined

The number of overflow sectors specified
The number of overflow sectors required

AW N

«

Phase 4 then exits to the Skeleton Supervisor at the
$EXIT entry point.

PHASE 5

Phase 5 is called into core storage to process HDNG,
ORG, BSS, BES, EQU, LIST, EJCT, or SPAC
statements. These mnemonics are all non-imperative
type statements requiring similar processing and

are all grouped, therefore, in the same overlay
phase.

PHASE 6

Phase 6 processes all imperative instruetions and
the DC statement. Since these mnemonics are used
most frequently, the processing for them was
grouped into one overlay phase.

PHASE 7

The two mnemonics processed by phase 7 are
XFLC and DEC. The conversion of the data in the
statement operands to binary is handled in phase
7A. TUpon completion of the conversion, the data is
formatted into the appropriate floating, fixed, or
decimal format.

PHASE 7A

Phase 7A is fetched into core storage by a flipper
routine within phase 7. Phase 7A converts the man-
tissa of a decimal integer, a fixed- or floating-point

number to the binary equivalent.
Phase TA containg a scanning process that con-

verts the operand to its binary equivalent and a post-
scanning process that converts from powers of 10
to powers of 2.

The converted decimal data is saved in a buffer
that is part of the flipper routine, When the conver-
sion is completed, phase 7A returns to the flipper
routine that restores phase 7 and transfers control
to it.

PHASE 8

Phase 8 processes the LIBF, CALL, EXIT, LINK,
EBC, DSA, and DN statements. The processing of
the program linking mnemonics -- LIBF, CALL,
EXIT and LINK -- is combined with the processing
of the data definition mnemonics ~- EBC, DSA, and
DN -- since otherwise they would constitute two
small phases. This is satisfactory in terms of
assembly time since EBC, DSA, and DN are not
frequently used mnemonics.

PHASE 8A
Phase 8A processes the DMES statement. The DMES

processing is performed by a scanning subroutine and
a conversion subroutine. The scanning subroutine

scans and evaluates the operand field, one character
at a time. The conversion subroutine contains a
table of packed Console Printer codes and a table of
packed 1403 Printer codes. The conversion is per-
formed using an algorithm.

PHASE 9

The phase 9 communications area (PHSCO) consists
of the entry addresses of the common subroutines
within phase 9. Immediately following PHSCO is the
op code search.

STRTY

The op code obtained from the input record is saved
in ASCOM. All possible op codes are resident in a
table, which has for each op code a two-word indica-
tor followed by a corresponding one-word machine
language mnemonic. The op code search is per-
formed by means of a table lookup. When a match
is found, the corresponding machine language
mnemonic is picked up and saved in OPCNT in
ASCOM. Bits 13-15 of OPCNT form a branch table
displacement. Using this displacement, an indirect
branch is taken thru the table to the overlay prepared
to process this op code. If the overlay is in core
storage, execution proceeds. If it is not, a return
is made to the op code search to fetch the required
overlay phase into core storage. Control is then
passed to the overlay and statement processing
continues.

BTHEX

BTHEX is a binary-hexadecimal conversion subrou-
tine. The binary data is entered in the accumulator
left-justified, and the hexadecimal output is stored
by index register 1. The number of characters to be
converted is in index register 2.

B4HEX

The B4HEX subroutine is entered when four hexadec-
imal output characters are desired. Index register 2
is set to four and a branch is made to BTHEX.

Section 10. Assembler Program 69

SCAN

The SCAN subroutine collects the elements of the
operand field, character by character, performs
any arithmetic functions necessary, and evaluates
the operand.

GTHDG

GTHDG is the new page subroutine. Branches are
made to the principal print subroutine to skip to
channel 1, and print the heading as specified in the
last HDNG statement encountered.

LDLBL

The LDLBL subroutine scans the label field of the
statement. In pass 1, valid labels are added to the
Symbol Table if they do not already appear there.
The record is saved in the intermediate output buffer
by INT1 and a branch is made to read the next record
(RDCRD). When the next record is in core, a check
is made for the last card. If the last card has been
detected, a branch is made to the principal conver-
sion routine (CVADR), and control is returned to

the calling program.

In pass 2, the record is listed, if a listing has
been requested or the record is in error, The next
record is fetched and control is returned to the
calling program.

PALBL

The PALBL subroutine is a secondary entry to the
LDLBL subroutine. PALBL is entered when a label
is not permitted on a statement being processed.
GETER

A branch is made to GETER when an error occurs
during the assembly. GETER fetches the error mes-
sage phase (ERMSG) into the first disk buffer (BUFI).
RDCRD

RDCRD is the interface subroutine for the principal
input device subroutine. The input buffer is cleared

70

to EBCDIC blanks, the input buffer addresses in
ASCOM are exchanged, and a branch is made to the
principal input device subroutine to read a record.
Index register 1 is set to point at the current input
buffer and control is transferred back to the calling
program.

If the record previously read was a monitor con-
trol record, phase 4 is fetched into core storage and
control is transferred to it.

POIMVE

The POMVE subroutine moves the input record from
the input buffer to the print buffer. As it moves the
record, each character is checked for validity. At
the completion of the move, a branch is made to the
principal print device subroutine to list the record
and control is returned to the calling program.

INT1

INT1 is the subroutine used in pass 1 to pack the in-
put record into two EBCDIC characters per word and
save it in the intermediate output buffer. INT1 is
overlaid by phase 11 for pass 2 processing. INT2 is
the entry address for phase 11 during pass 2.

PHASE 10

Phase 10 consists of two subroutines: DTHDR and
WRDFO. Phase 10 is fetched by phase 12 in pass 2
processing. Phase 10 overlays that section of phase
9 dealing with the inserting of labels into the Symbol
Table.

DTHDR

DTHDR enters a data header into the object program
output in disk system format (DSF) when required and
completes the previous data header.

WRDFO

This subroutine writes one sector of disk system for-
mat (DSF) output when the DSF buffer is full. After the
sector is written, those words past the 320th word of
the buffer are moved back to the beginning of the buffer.

In the event the buffer is not full and WRDFO is
entered from phase 12 END statement processing,
the DSF buffer is written to Working Storage.

PHASE 10A

Phase 10A is fetched into core storage whenever
necessary to handle Symbol Table overflow. When a
symbol is to be added to an overflow sector in pass 1
or when the overflow sectors are to be searched

for a symbol in pass 2, phase 10A is called. Phase
10A overlays the INT1 subroutine in phase 9 when
called during pass 1; it overlays phase 11 (the INT2
subroutine) when called in pass 2 of an assembly in
one-pass mode.

PHASE 11

Phase 11 is fetched into core storage in pass 1 during
phase 12 END statement processing if the assembly
is in one-pass mode. The function of phase 11 is to
read the source statements from the disk during

pass 2. The source statements saved in pass 1 are
read back onto core storage in pass 2 in such a way
that they are indistinguishable from statements read
from the prineipal I/O device.

PHASE 12

In pass 1, phase 12 builds the program header record
in the DSF buffer. Several counters are reinitialized
in ASCOM and the buffer pointers are reset for disk
system format (DSF) output. Phase 10 is fetched
into core storage.

If the assembly is in two-pass mode, phase 1 is
fetched and control is passed to it. If the assembly
is in one-pass mode, the END statement is saved in
the intermediate I/0 buffer and the buffer is written
to the disk. Phase 11 is fetched into core storage
and the first sector of intermediate I/0 is read into
the first disk buffer (BUFI). A branch is then made
to phase 11 to transfer the first statement from the
intermediate I/O buffer to the source input buffer.
Phase 1 is then fetched onto core storage and con-
trol is transferred to it.

In pass 2, phase 12 branches to DTHDR to build
the end-of-program data header. If the source pro-
gram is a type 3, 4, 5, 6, or 7 (not a mainline), an
execution address of zero is saved in ASCOM and in

the source statement buffer. If the source program
is a type 1 or 2 (a mainline), the execution address,
i.e., the END statement operand, is saved in
ASCOM and in the source statement buffer. The last
sector of DSF output is written to the disk and the
disk block count of the program is saved in ASCOM.
Phase 12 then fetches phase 3 and transfers control
to it.

ERMSG

ERMSG is called by the GETER subroutine within
phase 9 when an error occurs during the assembly
process. It is loaded into the first disk buffer (BUFI).
A list of error messages is contained within ERMSG.
This list is referenced by index register 2, which
contains the appropriate error code at the time of
entry to ERMSG. The error message is printed and
control is then returned to GETER.

@ARCV

The Assembler Program's card conversion subrou-
tine converts IBM Card Code to EBCDIC on input
from the 2501 Card Reader or from the 1442 Card
Read Punch, Models 6 and 7. The conversion is
handled by a direct table access method, utilizing a
256 EBCDIC character table.

@APCV

The Assembler Program's punch conversion subrou-
tine handles both the conversion and the punching of
data on card output options. The punch conversion
subroutine is fetched into the overlay area to per-
form the LIST DECK and LIST DECK E output
options. It overlays the op code search (STRT9)

in phase 9 to perform the PUNCH SYMBOL TABLE
output option.

CORE LAYOUT

Figure 14, panel 1 shows the layout of the contents
of core storage after phase 0 of the Assembler Pro-
gram has been fetched and given control by the Mon-
itor Control Record Analyzer.

Figure 14, panel 2 shows the layout of the con-
tents of core storage during pass 1.

Section 10, Assembler Program 71

Figure 14, panel 3 shows the layout of the con- Figure 14, panel 4 sl}ows the layout of the con-
tents of core storage during pass 2 of an assembly tents of core storage during pass 2 of an assembly
in two-pass mode. in one-pass mode.

® @ ® ®@ ® ®
COMMA, COMMA, COMMA, COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton Skeleton Skeleton Skeleton
Supervisor Supervisor Supervisor Supervisor Supervisor Supervisor
DISKZ - DISKZ DISKZ DISKZ DISKZ DISKZ
ASCOM ASCOM ASCOM ASCOM ASCOM
Resident Resident Resident Resident Resident
Phgse Phase 0 Phase 0 Phase 0 Phase 0 Phase 0
Overlay Overlay Overlay Overlay Overlay
Area Area Area Area Area
Phase Phase Phase Phase Phase
9 9 9 9 9
Phase 10 Phase 10 Phase 10
INT? Phase 10A INTI Phase 11 Phase 10A
HDNG HDNG HDNG
Buffer Buffer Buffer
Card 1/0 Card |/O Card |/O Card 1/0 Card I/O
Buffers Buffers Buffers Buffers Buffers
Print Print Print Print Print
Buffer Buffer Buffer Buffer Buffer
Disk 1/0O Disk 1/0O Disk 1/0 Disk 1/O Disk I/0
Buffer Buffer Buffer Buffer 1 Buffer 1
Principal Principal Principal . .
1/O Device 1/O Device 1/O Device %'SIf(f I/(2:) g's}} I/?
Subroutine Subroutine Subroutine uiter utrer
Principal Principal Principal Principal Principal
Print Device Print Device Print Device Print Device Print Device
Subroutine Subroutine Subroutine Subroutine Subroutine
S. T. S. T. S. T. S. T. S. T.
Overflow Overflow Overflow Overflow Overflow
Buffer Buffer Buffer Buffer Buffer
I I N __..____1._____
Symbol Symbol Symbol Symbol Symbol
Table Table Table Table Table

Figure 14. Core Layout During Assembler Program Operation

N

FLOWCHARTS
General: FORO01
Phase 1: FORO02
Phase 2: FORO03
Phase 3: FOR04
Phase 4: FOR05-FOR06
Phase 5: FORO7-FORO08
Phase 6: FORO09
Phase 7: FOR10
Phase 8: FOR11
Phase 9: FOR12
Phase 10: FOR13
Phase 11: FOR14
Phase 12: FOR15
Phase 13: FOR16
Phase 14: FOR17
Phase 15: FOR18
Phase 16: FOR19
Phase 17: FOR20
Phase 18: FOR21
Phase 19: FOR22
Phase 20: FOR23
Phase 21: FOR24
Phase 22: FOR25
Phase 23: FOR26
Phase 24: FOR27
Phase 25: FOR28
Phase 26: FOR29
Phase 27: FOR30

The FORTRAN Compiler translates source programs
written in the 1130 Basic FORTRAN IV Language into
machine language object programs, The compiler
also provides for the calling of the necessary arith-
metic, function, conversion, and input/ output sub-
routines during the execution of the object program.

GENERAL COMPILER DESCRIPTION

The FORTRAN Compiler consists of 27 sequentially
executed phases:

Phases 1 and 2 are initialization and control phases,
processing the control records and building the
initial statement string.

SECTION 11.

FORTRAN COMPILER

Phases 3 thru 10 are specification phases, process-
ing the specification statements and other defini-
tive information and building the basic Symbol

Table.

Phases 11 thru 18 are compilation phases, analyzing

and processing the source statements and re-
placing them with object coding.

Phases 19 thru 26 are the output phases.

Phase 27 is a recovery phase, terminating the com-
pilation and executing a CALL EXIT,

Thus, the FORTRAN Compiler is a ""phase'
compiler; the compiler is passed-by the source
program, which resides in core and is massaged

into the object program.

PHASE OBJECTIVES

The following is a list of the compiler phases by
number and name, and their major functions:

Phase
Number Phase Name
1 Input
2 Classifier
3 Check Order/
Statement
Number

Function

Process the control
records; read the
source statements
and build the string.

Determine the state-
ment type and place
the type code in the
ID word.

Check for the presence
and sequence of
SUBROUTINE,
FUNCTION, Type,
DIMENSION,COMMON,
and EQUIVALENCE
statements; place
statement numbers in
the Symbol

Table.

Section 11. FORTRAN Compiler 73

Phase
Number Phase Name
4 COMMON/SUB-
ROUTINE or
FUNCTION
5 DIMENSION/
REAL, INTEGER,
and EXTERNAL
6 Real Constant
7 DEFINE FILE,
CALL LINK,
and CALL EXIT
8 Variable and
Statement
Function
9 DATA Statement
10 FORMAT

74

Phase

Function Number Phase Name
Place COMMON variable 11 Subseript
names and dimension in- Decomposition

formation in the Symbol

Table; check for a

SUBROUTINE or FUNC-

TION statement and, if

found, place the name 12
and dummy argument

names in the Symbol

Table.

Place DIMENSION var- 13
iable names and dimen-
sion information in the
Symbol Table; indicate
the appropriate mode
for REAL and INTEGER
statement variables.

14

Place the names of real
constants in the Symbol
Table.

Check the syntax of

DEFINE FILE, CALL

LINK, CALL EXIT

statements; determine

the defined file specifi- 15
cations.

Place the names of

variables, integer con- 16
stants, and statement

function parameters in

the Symbol Table.

Check the syntax of the

DATA statement, check

its variables for validity,

and reformat the state- 17
ment.

Convert FORMAT

statements into a spec-

ial form for use by the 18
input/output subroutines

during execution of the

object program.

Ascan I

Ascan I

DO, CONTINUE,
ete.

Subscript
Optimize

Scan

Expander I

Expander I

Function

Calculate the constants
to be used in subscript
calculation during exe-
cution of the object
program,

Check the syntax of all
arithmetic, IF, CALL,
and statement function
statements.

Check the syntax of all
READ, WRITE, FIND,
and GO TO statements.

Replace DO statements
with a loop initializa-
tion statement and in-
sert a DO test state-
ment following the DO
loop termination state-
ment; process BACK-
SPACE, REWIND,
END FILE, STOP,
PAUSE, and END
statements.

Replace subscript
expressions with an
index register tag.

Change all READ,
WRITE, GO TO,
CALL, IF, arithmetic,
and statement function
statements into a mod-
ified form of Polish
notation.

Replace READ, WRITE,
GO TO, and RETURN
statements with object
coding.

Replace CALL, IF,
arithmetic, and state-
ment function statements
with object coding.

Phase
Number

Phase Name

19

20

21

22

23

24

25

26

27

Data Allocation

Compilation
Errors

Statement
Allocation

List Statement
Allocation

List Symbol
Table

List Constants

Output I

Output IO

Recovery

Function

Allocate a storage area
for variables in the
object program.

List unreferenced
statement numbers,
undefined variables,
and error codes for
erroneous statements.

Determine the storage
allocation for the object
program coding.

List the relative state-
ment number addresses,
if requested.

List the subprogram
names in the Symbol
Table and the System
Library subroutine
names in the string,
if requested.

Compute the addresses
of the constants; list
the addresses, if
requested.

Build the program
header and data header
records and place them
in Working Storage;
place the real and inte~
ger constants into
Working Storage.

Complete the conver-
sion of the string to
object coding and place
the object program into
Working Storage.

Print the compilation
termination message;
exit by executing a
CALL EXIT.

CORE LAYOUT

Figure 15, panel 1 shows the layout of the contents
of core storage after the Monitor Control Record
Analyzer has fetched phase 1 of the FORTRAN
Compiler into core storage and has passed control
to the control record analyzer portion. The princi-
pal print and principal input device subroutines
have been fetched by phase 1. The card input and
print buffers have been allocated by phase 1.

Figure 15, panel 2 shows the layout of the con-
tents of core storage after the control record analy-
zer portion of phase 1 has passed control to the
statement input portion. The control record analy-
zer portion of the phase is overlaid by the input
statement string.

Figure 15, panel 3 shows the layout of the con~
tents of core storage during the execution of
phases 2 through 18, During these phases the boun-
dary separating the statement string and Symbol
Table fluctuates as the string and Symbol Table
are massaged.

Figure 15, panels 4 and 5 show the layout of
the contents of core storage during the execution
of phases 19 through 24. Panel 4 reflects the
contents of core storage before any printing has
been performed in those phases. In panel 5 the
lower-addressed portion of these phases has been
overlaid by the print buffer when printing has
been performed.

Figure 15, panels 6 and 7 show the layout of
the contents of core storage during the execution
of phase 25. Panel 6 reflects the contents of
core storage before any object coding has been
generated and written to disk. In panel 7 the
lower-addressed portion of the phase has been
overlaid by the disk output buffer when object
coding has been generated and written to disk.

Figure 15, panel 8 shows the layout of the
contents of core storage after control has been
passed to phase 26. The disk buffer has been
allocated by phase 26 and is not an overlay.

Figure 15, panel 9 shows the layout of the
contents of core storage after control has been
passed to phase 27. The principal print device
subroutine has been fetched by the phase. The
DCOM buffer has also been allocated by the
phase.

Section 11. FORTRAN Compiler 75

COMMA, COMMA, COMMA, COMMA, COMMA, COMMA, COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton Skeleton Skeleton Skeleton Skeleton Skeleton Skeleton
Supervisor Supervisor Supervisor Supervisor Supervisor Supervisor Supervisor Supervisor Supervisor
DISKZ DISKZ DISKZ DISKZ DISKZ DISKZ DiISKZ DISKZ DISKZ

LV PCOM
Buffer
Statement Statement Statement Statement Statement Statement Statement
String String String String String String String
/ Phase
Phase 1, 27
Control
Record
Analyzer
Portion T S R E I S I]
Print Print
Buffer Buffer Symbol Symbol Symbol Symbol Symbol Symbol
Table Table Table Table Table Table
Primary Primary
Card Buffer Card Buffer
FORTRAN FORTRAN FORTRAN FORTRAN FORTRAN FORTRAN FORTRAN FORTRAN
Communications | Communications | Communications | Communications | Communications | Communications | Communications | Communications
Area Area Area Area Area Area Area Area /
Principal Principal Print Disk Disk
Input Device Input Device Buffer Buffer Buffer
Subroutine Subroutine
Secondary Card Phases Phases /
Card Buffer Buffer 19-24 19-24
Phase 1, Phase 1, Phases Phase
Statement Statement 2-18 25
‘:n:T;_'" ﬁ:{;’:ﬁ" Phase Phase
Portion Portion 2 % / /
Principal Principal Principal Principal Principal
Print Device Print Device Print Device Print Device Print Device
Subroutine Subroutine Subroutine Subroutine Subroutine
ROL ROL ROL ROL ROL ROL ROL ROL / /
Subroutine Subroutine Subroutine Subroutine Subroutine Subroutine Subroutine Subroutine A

Figure 15. Core Layout During FORTRAN Compiler Operation

FORTRAN COMMUNICATIONS AREA

The FORTRAN Communications Area consists

of 16 words of storage where information obtained

76

from the FORTRAN control records and compiler-
generated addresses and indicators are kept.

This information is available to any phase needing
it. The contents of the FORTRAN Communications
Area words are described in Table 3.

Table 3,

The Contents of the FORTRAN Communications Area

Word

Symbolic Name

Description of Contents

A

SOFS
EOFS
SOFST
SOFNS

SOFXT

SOFGT

EOFST
COMON

CSIZE

ERROR

FNAME

SORF

CCWD

10Cs

DFCNT

The address of the start of the string.
The address of the end of the string.
The address of the start of the Symbol Table,

The address of the start of the non-
statement-number entries in the Symbol
Table,

Phases 1-20. The address of the start of
the Symbol Table entries for SGTs (subscript=
generated temporary variables).

Phases 21-25, The work area word count,

Phases 1-20, The address of the start of
the Symbol Table entries for GTs (generated
temporary storage locations),

Phases 21-25, The constant area word
count,

The address of the end of the Symbol Table.

Phases 1-19, The address of the next
available word for COMMON storage.

Phase 20, The address of the highest-
addressed word reserved for COMMON
storage.

Phase 21, Not used,
Phases 22-25. Relative entry point,

All phases except Phase 20, The
COMMON area word count,

Phase 20, The address of the lowest-
addressed word reserved for COMMON
storage,

Bit 15 set to 1 indicates overlap error,
Bit 14 set to 1 indicates other error,

The program name (obtained from the NAME
control record, or a SUBROUTINE or
FUNCTION statement) stored in name code.

Set positive to indicate FUNCTION,
Set negative to indicate SUBROUTINE,
0 indicates mainline.

Control card word.

Bit 15 set fo 1 indicates Transfer Trace.

Bit 14 set to 1 indicates Arithmetic Trace.

Bit 13 set to 1 indicates Extended Precision.

Bit 12 set to 1 indicates List Symbol Table.

Bit 11 set to 1 indicates List Subprogram
Names

Bit 10 set to | indicates List Source Program.

Bit 9 set to 1 indicates One Word Integers.

10CS Control Card Word.

Bit 15 set to 1 indicates 1442 Card Read
Punch, Model 6 or 7.

Bit 14 set to 1 indicates 1134/1055 Paper
Tape Reader Punch.

Bit 13 set to 1 indicates Console Printer.

Bit 12 set to 1 indicates 1403 Printer,

Bit 11 set to 1 indicates 2501 Card Reader.

Bit 10 set to 1 indicates Keyboard.

Bit 9 set to 1 indicates 1442 Card Punch,
Model 5.

Bit 8 set to 1 indicates Disk Storage.

Bit 7 set to 1indicates 1132 Printer.

Bit 3 set to 1 indicates 1627 Plotter.

Bit 1set to 1 indicates Unformatted Disk
1/0 Area.

The number of files defined.

PHASE AREA

The Phase Area is the area into which the various
phases of the compiler are read by the ROL subrou-
tine. The size of the Phase Area is determined by
the size of the largest phase of the compiler.

Each phase, when loaded into the Phase Area,
overlays the preceding phase. There are two phases,
however, that are exceptional in that they are loaded
at some location other than the Phase Area origin.
The ROL subroutine in phase 1 is loaded into high~
addressed storage by phase 1 so that it occupies
initially the position it will occupy throughout the
compilation. The control record analysis portion
of phase 1 is loaded into the String Area. This por-
tion of the phase is in use only until the FORTRAN
control records have been processed and is overlaid
by the source statements. Phase 27, the Recovery
Phase, which is executed after the object program
has been produced, is also read into the String Area.

STRING AREA

During compilation the String Area contains both the
statement string and the Symbol Table. The state-
ment string is built by the Input Phase in an ascend-
ing chain beginning in the low-addressed words of
the String Area. The Symbol Table is built during
the compilation process in a descending chain be-
ginning in the high-addressed words of the String
Area.

The statement string expands and contracts as it
is massaged during the compilation process. The
Symbol Table expands as items are removed from
the statement string and added to the Symbol Table.
In addition, some phases move the entire statement
string as far as possible toward the Symbol Table.
The last statement of the string then resides next
to the last Symbol Table entry. As the phase oper-
ates on the statement string, now referred to as
the input string, it is rebuilt in the low-addressed
end of the String Area. The rebuilt string is refer-
red to as the output string. This procedure allows
for expansion of the statement string.

Section 11. FORTRAN Compiler 77

o .

If at any time during the compilation an entry
cannot be made to the statement string or the Symbol
Table due to the lack of sufficient storage, an overlap
error condition exists. In the event of such an over-
lap condition, the remaining compilation is bypassed
and an error message is printed (see Compilation
Errors). Either the size of the source program or
the number of symbols used must be decreased, or
the program must be compiled on a machine of larger
storage capacity.

SYMBOL TABLE

The Symbol Table contains entries for variables,
constants, statement numbers, various compiler-
generated labels, and compiler-generated temporary
storage locations.

The first entry of the Symbol Table occupies the
three highest-addressed words of the String Area,
i.e., the 3 words just below the first word of the
FORTRAN Communications Area. The second entry
is positioned in the lower-numbered words adjacent
to the first entry, etc.

During the initialization of the Symbol Table in
phase 1, three words are reserved for the first
Symbol Table entry., This entry is not made, how-
ever, until phase 3. From this point the size of the
Symbol Table varies from phase to phase until it
achieves its largest size in phase 18. Its size always
includes the three words reserved for the next
Symbol Table entry.

During phases 3 through 18, the Symbol Table con-
tains variables, constants, and statement numbers.
Information for these entries has been removed from
the statement string and has been replaced by the
address of the ID word of the corresponding Symbol
Table entry. Also, the Symbol Table contains the
various compiler-generated labels and temporary
storage locations used in compilation.

78

During the output phases, 19 through 26, these
entries in the Symbol Table are replaced by object
program addresses that are inserted into the object
coding by phase 26.

Format

All entries in the Symbol Table consist of three
words -- an ID word and two Name-Data words.
The entrics for dimensioned variables are exception-
al, however, in that they are six-word entries, the
additional three words containing the dimension
information.

The ID word occupies the lowest-addressed word
of the three word entry. The Name-Data words
occupy the two higher-addressed words.

A typical three~-word entry is illustrated in the
following example of the entry for the integer con-
stant 290.

ID Word Data Word 1 Data Word 2
2 9 0 blank blank
gt
|110000000000000001100101110011100000000000000000 |

Lowest ~Addressed Highest-Addressed
Word Word

Entry in hexadecimal form —E000 65CE 0000

The entry for the subprogram name COUNT would
appear as:

1D Word Name Word 1 Name Word 2
C @) 9] N T
| ©000000010000000 11000011010110100110001010110001 11

Lowest-Addressed Highest-Addressed
Word Word

Entry in hexadecimal form - C080 86B4 C563

ID Word

The layout of the Symbol Table ID word is given in
Table 4. The ID word is formed when the entry is
placed in the Symbol Table.

Name-Data Words

The Name-Data words of Symbol Table entries have
the following format:

Word Bit Contents
1 0 0, if the following 15 bits contain

the first half of a constant; 1, if
the following 15 bits contain any-
thing other than the first half of a
constant.

1-15 First 15 bits of the 30-bit Symbol
Table entry

Same as bit 0 of word 1

1-15 Second 15 bits of the 30-bit Symbol
Table entry

Dimensioned Entries

The Symbol Table entry for a dimensioned variable
requires six words: two for the array name, one

for the ID word, and three for the dimension infor-
mation. The dimension information occupies the
three lowest-addressed words, the ID word occupies
the next higher-addressed word, and the Name-Data
words occupy the two highest-addressed words.

Table 4. The Contents of the FORTRAN Symbol Table ID Word

Pogilffion Status and Meaning
0 1 = Constant
0 = Variable
1 1 = Integer
0 =~ Real
2 1 - COMMON
3-4 01 = One dimension
10 - Two dimensions
11 ~ Three dimensions
5 1 = Statement function parameter/dummy argument
6 1 = Statement number
7 1 =~ Statement function name
8 1 = Subprogram name
9 1 - FORMAT statement number
10 1 - Referenced statement number or defined
variable
n 1 - External
12 1 - Generated temporary storage location (GT)
13 1~ Subscript-generated temporary variable (SGT)
14 1 = Allocated variable
15 Not Used

Three words are always used for the dimension
information regardless of the number of dimensions.

For one-dimensional arrays, all three dimension
words contain the integer constant that specifies the
dimension of the array. For example, the entry for
array ARRAY (10) would appear as:

Dimension Information Array Name
r A 2 — A N
0 10 A 10 { 10 llD Wordl , |
Lowest= Highest-
Addressed Addressed
Word Word

For two-dimensional arrays, the first (highest-
addressed) dimension word contains the integer
constant of the first dimension; the middle and
last (lowest-addressed) dimension words both
contain the product of the first and second dimen-
sion integer constants. Thus, the dimension in-
formation for array B(5,15) appears as:

Section 11. FORTRAN Compiler 79

Dimension Information Array Name
A. A

r Al r R}

75 75 5 lI D Word \

| | 1 1]

For three-dimensional arrays, the first dimen~
sion word contains the integer constant of the first
array dimension; the middle dimension word con-
tains the product of the first and second dimension
integer constants; the third dimension word con-
tains the product of the first, second, and third
integer constants of the array dimensions. The di-
mension information for array C(9, 9, 9) appears as:

Dimension Information Array Name
A Y Y, A
729 81 9 ID Word
l] | l 1] I

4

STATEMENT STRING

The source statements are read by the Input Phase,
converted to EBCDIC, and stored in core storage.
The first statement is stored starting at $ZEND, and
each succeeding statement is placed adjacent to the
previous statement, thus forming the source state-
ments into a string. The area within which the
source statements are stored is referred to as the
String Area.

ID Word

For identification purposes, as each statement is
placed in the String Area, an ID word is added at
the low-address end of each statement. The ID
word has the following format:

Bit Contents
0-4 Statement type code
5-13 Statement Norm
14 Varied; used for interphase
communication
5 1, if statement is numbered; otherwise, 0

The Norm is the only portion of the ID word com~
pleted by the Input Phase. The Norm is a count of

80

the number of words used to store that statement,
including the ID word and statement terminator.

The statement type codes, shown in Table 5, are
added in the Classifier Phase (except for FORMAT
statements).

Table 5. FORTRAN Statement ID Word Type Codes

Code Statement Types
00000 Arithmetic
00001 BACKSPACE
00010 END

00011 END FILE
00100 SUBROUTINE
00101 REWIND

00110 CALL

00111 COMMON
01000 DIMENSION
01001 REAL

01010 INTEGER

o101 DO

01100 FORMAT

01101 FUNCTION
01110 GO TO

01111 IF

10000 RETURN

10001 WRITE

10010 READ

10011 PAUSE

10100 Error

10101 EQUIVALENCE
10110 CONTINUE
10111 STOP

11000 DO test

11001 EXTERNAL
11010 Statement Function
11011 Internal Output Format
11100 CALL LINK, CALL EXIT
11101 FIND

11110 DEFINE FILE
[RRRN DATA

Statement Body

Each statement, after being converted to EBCDIC,
is packed two EBCDIC characters per word., This
is the form in which the statements are initially
added to the statement string.

Statement Terminator

Statements are separated by means of the statement
terminator character, a semicolon. The statement
terminator character indicates the end of the state-
ment body. This character remains in the string
entry throughout the compilation process for that
particular statement type.

All statements in the statement string carry the
statement terminator except for FORMAT and CON-
TINUE statements and compiler-generated error
statements., Error statements inserted into the
string by the compiler are inserted without the
terminator character.

COMPILATION ERRORS

When an error is detected during the compilation
process, the statement in error is replaced by an
appropriate error statement in the statement string.
Each error statement is added during the phase in
which the corresponding error is detected and the
procedure is the same in all phases.

1. The type code in the erroneous statement's ID
word is changed to the error type.

2. The statement body is replaced by the appro-
priate error number. The statement number,
if present, is retained in the Symbol Table and
the Symbol Table address is retained in the
error statement on the string.

3. The statement string is closed up, effectively
deleting the erroneous statement from the state-
ment string.

Error statements in the statement string are ex-
ceptional in that they do not carry the statement
terminator character (semicolon).

Error indications are printed at the conclusion of
compilation. If a compilation error has occurred,
the message

OUTPUT HAS BEEN SUPPRESSED

is printed and no object program is placed in Working
Storage.
Error messages appear in the following format:

CAA ERROR AT STATEMENT NUMBER
XXXXX+YYY

where C indicates the FORTRAN Compiler, AA is the
error number, XXXXX is the last encountered
statement number, and YYY is the count of state-
ments from the last statement number.

See the Programming and Operator's Guide publi-
cation for a list of the FORTRAN error numbers,
their explanations, and the phases during which they
are detected.

In addition to the errors, undefined variables are
listed by name at the end of compilation. Undefined
variables inhibit the output of the object program.

The initialization of each phase includes an overlap
error check. If, at any time during the compilation,
the statement string overlaps the Symbol Table, or
vice-versa, or the remainder of the compilation is
bypassed and the message

PROGRAM LENGTH EXCEEDS CAPACITY

is printed.

COMPILER I/0

The compiler uses the DISKZ subroutine for all disk
1/0 operations required during compilation.

The compiler uses the principal input device sub-
routine to read the control records and source state-
ments to be compiled, and the principal input con-
version subroutine to convert the source input to
EBCDIC.

The principal print device subroutine is used to
perform any printing required during the compilation.

FETCHING COMPILER PHASES

The ROL subroutine loaded into high-addressed stor-
age as part of phase 1, obtains from each phase the
word count and sector address of the next phase to be
loaded. This subroutine then reads the next compiler
phase into core storage and transfers control to it.
This subroutine also examines the Console Entry
switches. If a request to dump is indicated in the
switches, it calls the System Core Dump program via

Section 11. FORTRAN Compiler 81

the $DUMP entry point in the Skeleton Supervisor to
dump the statement string, the Symbol Table, and
the FORTRAN Communications Area. At the com~-
pletion of the dump the ROL subroutine regains
control. It then fetches and transfers control to the
next phase.

PHASE DESCRIPTIONS

PHASE 1

e Reads the control records; sets the correspond-
ing indicators in the FORTRAN Communications
Area.

e Reads the source statements; stores them in the
String Area; precedes each statement with a
partially completed ID word.

e Checks for a maximum of five continuation rec-
ords per statement.

e Lists the source program, if requested.

Phase 1 is composed of two major segments; the
first analyzes the control records and the second
inputs the source statements. The control record
analysis portion of phase 1 is loaded into the String
Area, while the statement input portion is loaded at
the normal Phase Area origin. The control record
analysis subroutines, therefore, remain in storage
until the processing of the control records is com-
pleted. They are then overlaid by the source state-
ments as the string is built by the statement input
portion,

Errors Detected

The errors detected by phase 1 are: 1 and 2.

PHASE 2

o Determines the statement type for each statement;
inserts the type code into the statement ID word.

o Places the statement terminator character (semi-
colon) at the end of each statement.

82

e Converts subprogram names longer than five
characters to five-character names.

o Converts FORTRAN-supplied subprogram names
according to the specified precision.

® Generates the calls and parameters that initialize
I/0 subroutines during execution of the object pro-
gram, if the IOCS control indicators are present.

According to the indicators set in the IOCS word
(word 15) of the FORTRAN Communications Area by
the previous phase, phase 2 generates the required
calls to FORTRAN I/O. If the Unformatted Disk I/0
Area indicator is on, a 'LIBF UFIO' followad by its
parameter is inserted into the string. If the Disk
indicator is on, a 'LIBF SDFIO' followed by its par-
ameter is inserted into the statement string. If any
other indicator in the IOCS word is on, phase 2 in-
serts the 'LIBF SFIO' followed by its parameters
into the statement string. The table of device ser-
vicing subroutines (ISSs) is also built and inserted.

Phase 2, beginning with the first statement of the
string, checks each statement in order to classify it
into one of the 31 statement types. FORMAT state-
ments, already having the type code, and compiler-
generated error statements are not processed by this
phase. Each statement name is compared to atable
of valid FORTRAN statement names. Each recog-
nized statement name is removed from the string
and the corresponding ID type code is inserted into the
statement ID word.

Arithmetic statements are detected by location of
the equal sign (=) followed by an operator other than
a comma. Because of this method of detection,
arithmetic and statement function statements both
carry the arithmetic statement ID type until phase 8,
which distinguishes them.

Names within the statement body are converted
into name code and stored. Names with only one or
two characters are stored in one word.

Phase 2 converts all parentheses, commas, etc.,
into special operator codes. Each operator is stored
in a separate word. Also, each arithmetic operator
+, -, /, %, **) is stored in a separate word, and a
statement terminator character (semicolon) is placed
after each statement, except for CONTINUE and
FORMAT statements and compiler-generated error
statements.

NOTE: The string words containing name or con-
stant characters have a one in bit position 0. Bit

position 0 of string words containing arithmetic op-
erator characters has a zero,

The standard FORTRAN-supplied subprogram
names specified in the source program are changed,
if necessary, to reflect the standard or extended
precision option specified in the control records.
Also, the six-character subprogram names of
SLITET, OVERTFL, and SSWTCH, which are allowed
so as to be compatible with System/360 FORTRAN,
are changed to SLITT, OVERF, and SSWTC, respec-
tively.

The word FUNCTION appearing in a Type state-
ment and the statement numbers of DO statements
are isolated by the Classifier Phase. Isolation is
accomplished by placing a one-word special oper-
ator (colon) just after the word or name to be isolated.
This process aids later phases in detecting these
words and numbers.

Errors Detected

The error detected by phase 2 is: 4.

PHASE 3

® Checks the subprogram and Specification state-
ments for the proper order; removes any state-
ment numbers from these statements.

® Checks to ensure that statements following IF,
GO TO, CALL LINK, CALL EXIT, RETURN,
and STOP statements have statement numbers.

® Removes CONTINUE statements that do not have
statement numbers.

e Checks the statements for statement numbers;
checks the Symbol Table for a previous entry of
the same statement number.

e Places the statement number into the Symbol
Table; places the address of the Symbol Table
entry into the string.

Phase 3 makes two passes through the statement
string. The first pass checks to ascertain the sub-
program and Specification statements are in the fol-
lowing sequence:

SUBROUTINE or FUNCTION statement
Type statements (REAL, INTEGER)
EXTERNAL statements

DIMENSION statements

COMMON statements

EQUIVALENCE statements

A check is also made to ensure that all DATA and
DEFINE FILE statements appear within the Specifi-
cation statement group. Placement of these two
statement types is optional; however, they must not
be intermixed with EQUIVALENCE statements.

The SORF word (word 13) in the FORTRAN Com-
munications Area is appropriately modified if a
SUBROUTINE or FUNCTION statement is present.

The second pass of phase 3 scans the statement
string for statements with statement numbers. Each
unique statement number is placed into the Symbol
Table and the address of the Symbol Table entry is
placed into the string where the statement number
previously resided.

All statements having statement numbers pre~
viously added to the Symbol Table (duplicates of other
statement numbers) are in error.

Errors Detected

The errors detected by phase 3 are: 5, 6, and 9.

PHASE 4

e Places COMMON statement variables into the
Symbol Table; includes dimension information in
the Symbol Table entries, if present; removes the
statement from the string.

® Checks for a SUBROUTINE or FUNCTION state-
ment; places the names and dummy arguments
of the SUBROUTINE or FUNCTION statement into
the Symbol Table; deletes the statement from
the statement string.

® Checks REAL and INTEGER statements for the
word FUNCTION,

Phase 4 is a two-pass phase. The first pass proc-
esses COMMON statements; the second pass proc-
esses a SUBROUTINE or FUNCTION statement, in-
cluding a FUNCTION designated in a REAL or
INTEGER statement.

Section 11, FORTRAN Compiler 83

Pass 1 of phase 4 examines all COMMON state-
ments, checking all variable names for validity.
Valid, unique variable names found in COMMON
statements are placed into the Symbol Table. Dupli-
cate variable names are in error.

When dimension information is present in a
COMMON statement, the Symbol Table entry for the
dimensioned variable is expanded to six words, the
dimension constants are changed to binary format,
and this binary information is inserted into the
Symbol Table entry. The Symbol Table ID word is
updated to indicate the presence of the dimension
information and the level of dimensioning.

When all the variables in a COMMON statement
have been processed, it is removed from the string.

The second pass of phase 4 checks for a SUBROU-
TINE or FUNCTION statement among the Specifica-
tion statements. If either is found, the SORF word
(word 13) in the FORTRAN Communications Area is
modified to indicate whichever is applicable. The
subprogram name is checked for validity. If valid,
the name is added to the Symbol Table and the ad-
dress of the Symbol Table entry is placed into the
FNAME words (words 11-12) in the FORTRAN Com-
munications Area. The subprogram parameters are
checked and, if valid, they are added to the Symbol
Table and the statement is removed from the string.

The first REAL and INTEGER statements are
examined for the presence of the word FUNCTION.
If the FUNCTION specification is found, the REAL
or INTEGER statement is processed in the same
manner as a FUNCTION statement, except that the
subprogram mode is specified explicitly by the
statement type.

Errors Detected

The errors detected by phase 4 are: 7, 8, 10, 11, 12,
12, 13, 14, and 15.

PHASE 5

o Places DIMENSION statement variables into the
Symbol Table; places dimension information into
the Symbol Table entries; removes the statement
from the string.

e Places variables and dimension information from
REAL, INTEGER, and EXTERNAL statements
into the Symbol Table.

e Indicates in the Symbol Table ID word the
variable's mode (real or integer).

® Checks EXTERNAL statements for the names
IFIX and FLOAT, which are not allowed.

The processing of phase 5 is done in two passes.

The first pass analyzes DIMENSION statements. Each
variable name found in a DIMENSION staternent is
first checked for validity. If the name is valid, the
Symbol Table is searched for a duplicate. If no dupli-
cate is found, the variable name, along with its di-
mension information, is added to the Symbcl Table.

If a duplicate is found that has not yet been dimen-
sioned, the dimension information from the variable
name is added to the existing Symbol Table entry. If
a duplicate is found that has already been dimen-
sioned, the variable name is in error.

In a subprogram compilation, a comparison is
made to ensure that no variable name duplicates the
subprogram name.

The second pass of phase 5 examines the REAL,
INTEGER, and EXTERNAL statements fourd in the
statement string. Each variable found in these types
of statements is checked for validity. Valid variables
are compared to the Symbol Table entries. Those
variables duplicated in the Symbol Table as the result
of prior COMMON or DIMENSION statement entries
are in error. Those not equated to Symbol Table
entries are added to the Symbol Table in the same
manner as in the first pass of this phase.

Errors Detected

The errors detected by phase 5 are: 7, 8, 15, 17,
18, 19, 20, 21, and 22.

PHASE 6

e Scans all IF, CALL, and arithmetic statements
for valid real constants.

e Converts real constants to standard or extended
precision format, as specified.

Each valid real constant encountered in an arithmetic,
IF, or CALL statement is converted to binary in the
precision indicated by the FORTRAN Communica-
tions Area indicators. The Symbol Table is checked
for a previous entry of the constant. If a previous

entry is found, no new entry is made. The constant
operator, a special code indicating that the follow-
ing word is the Symbol Table address of a constant,
followed by the Symbol Table address of the con-
stant already entered is inserted into the statement
string in place of the constant.

If no previous entry in the Symbol Table is found,
the converted constant is added to the Symbol Table.
The constant operator along with the Symbol Table
address replaces the constant in the statement string.
The statement string is closed up following the alter-
ation of the string.

Errors Detected

The following errors are detected by phase 6: 23
and 50.

PHASE 7

e Checks the syntax of DEFINE FILE, CALL EXIT,
and CALL LINK statements.

o Determines the defined file specifications.

All variable names in DEFINE FILE, CALL LINK,
and CALL EXIT statements are checked for validity
and are added to the Symbol Table. All valid con-
stants are converted to binary and are added to the
Symbol Table.

Phase 7 checks to ensure that a DEFINE FILE
statement does not appear in a subprogram.

This phase computes the file definition specifica-
tions, that is, a DEFINE FILE Table consisting of
one entry for each unique file. Each entry consists
of the file number, the number of records per file,
the record length, the associated variable, a blank
word for insertion of the file's sector address at the
time the program is loaded for execution, the num-
ber of records per sector, and the number of disk
blocks per file. A count is kept in the DFCNT word
(word 16) in the FORTRAN Communications Area
of the number of files defined.

Errors Detected

The errors detected by phase 7 are: 3, 70, 71, "2,
and 73.

PHASE 8

e DPlaces variables and integer constants into the
Symbol Table.

e Places parameters from statement function state-
ments into the Symbol Table.

e Replaces operators with pointers to the Forcing
Table to be used in phase 16.

o Converts the left parenthesis of subscripts to a
special dimension indicator.

Phase 8 checks the variable names found in the state-
ment string for validity. Valid variables are added
to the Symbol Table. A second check is made to en-
sure that all variable names conform to the implicit
or explicit mode specifications (real and integer).
Integer constants are also added to the Symbol Table,
provided they are unique. However, names and inte-
ger constants that are found in subscript expressions
are not added to the Symbol Table until a later phase.

When adding names and constants to the Symbol
Table, phase 8 replaces them in the string by the
address of their respective Symbol Table entries. The
address replacing a constant or name is the address
of the ID word of the Symbol Table entry for that
constant or name.

Internal statement numbers are located in the
Symbol Table and are replaced by the address of their
corresponding Symbol Table entries; those state-
ment numbers not found in the Symbol Table (i.e.,
not previously entered) are in error.

Phase 8 changes the ID word of the statement
function statement, until now identical to that of an
arithmetic statement, tothe statement function type.
Also, the statement function name and the param-
eters of statement functions are added to the Symbol
Table. These entries in the Symbol Table are dis-
tinguished by their lack of a sign bit in the second
word of the name.

During phase 8, the left parenthesis on subscripts
is changed to a special left parenthesis operator that
indicates the order of the dimension that follows.

This phase also converts all operators, except
those in subscript expressions, from the 6-bit
EBCDIC representation to a pointer value. This
pointer value is derived from the Forcing Table. The
conversion is done in preparation for the Scan Phase,

Section 11. FORTRAN Compiler 85

¥ phase 16, when an arithmetic operational hierarchy
will be determined through these pointer values.

Errors Detected

The following errors are detected in phase 8: 7, 24,
25, 26,and 43.

PHASE 9

e Checks the DATA statement for correct syntax
and valid variable references.

e Reformats the DATA statement into a string of
data groups.

Each variable in the DATA statement is checked to
ensure that it has been previously entered into the
Symbol Table, A check is also made to ensure that
a subscript expression for a DATA statement vari-
able does not exceed the level of dimensioning indi-
cated in the Symbol Table entry for the referenced
variable.

Phases 9 converts the DATA statement into the
following form:

ID

1 Word JData G}{CMP]J Data Group 2y Data Group n |
42 149 L [43

Each data group has the following form:

Data Data Data Data
Header Constant Pointer ll Pointer 2 | Pointer nJ

D e |y
123 124

Each data header has the following form:

Bits Contents
0 0
1-12 Duplication factor
13-15 Length of the following constant

86

The constant may be one word in length (an integer),
two or three words in length (a real number in stand-
ard or extended precision), or n words in length (a

literal).
Each data pointer has the following form:

Word Bit Contenis_
1 0 1
1 0, if no displacement word follows
1, if a displacement word follows
2 0, non-extermally subscripted
variable
1, externally subscripted variable
3-4 Zeros
5-15 Symbol Table address of the variable
2 0-15 Displacement word (present only if

variable is subscripted)

A displacement word follows data pointers to sub-
scripted variables; its contents are the adjusted sub-
script offset.

The statement terminator is removed from the
DATA statement in phase 9.

Errors Detected

Phase 9 detects the following errors: 75, 76, 77,
78, 79, 80, and 82.

PHASE 10

e Converts FORMAT statements into a chain of
format specifications for interpretation by the
FORTRAN I/0 subroutines.

e Converts the Apostrophe (') type format to
H type.

In decomposing the FORMAT statement, phase 10
converts each format type into a format specification
(see Table 6). Where required, the Field Repeat,
Group Repeat, and REDO counts are computed and
inserted. At the completion of phase 10, the
FORMAT statement is simply a chain of format
specifications.

The conversion of a FORMAT statement i3 shown
below:

ID
1 |

Word 999 H,3 AP =b F,3,6 E4,10 / 1,8 RR,4 -3 T,1 H,10 bA N, W,E Rb I,S H,3 XY =b F,49 RR,16
L 1 ! I I 1 I] 1 1 L1 | i] 1]

Table 6. Conversion of FORTRAN FORMAT Specifications

Format Format Specification (output)
Type
(input) 4 Bits 5 Bits 7 Bits 16 Bits
- —* N A— N T\ N
E 0000 DD ww
F 0001 DD wWw
| 0010 ww
A 0011 ww
X 0100 ww
H 0101 ww
T 0110 cc
/ 0111 Undefined
Group Repeat 1000 NO RRy gg I
Field Repeat 1001 NO
1010 Not Used
REDO 1011 RR
DD (decimal width) Maximum = 127 (used only in E and NO (number) Positive count of the number of
F type formats). repetitions to be made of a field or
group.
WW (total field width) Maximum = 127 in E and F type for=
mats, 145in 1, A, X, and H type RR, (group repeat) Negative count of the number of words
formats. back to the first specification of a group
to be repeated,
CC (carriage control) Positive count of the number of
character positions to be skipped. RR (REDQ) Positive count of the number of words

Errors Detected

back to the rightmost left parenthesis in
the statement,

o Sets up dummy arguments for the insertion of
variables in the object coding.

The following errors are detected in phase 10: 27,

28, 29, and 30.

Phase 11 bypasses all FORMAT, CONTINUE, and
compiler-generated error statements. All other
statements are scanned but only those statements

PHASE 11 that contain the special left parenthesis operator
inserted by phase 8 are operated upon.
o Calculates the constants needed for object pro- The subscripting information for each variable

gram subscript computation.

is checked for validity.

Section 11. FORTRAN Compiler

87

Phase 11 then calculates the subscript constant
D4 and, depending on the dimensioning level, the
constants Dy, Dg, and D3. (See below for the
method of derivation of these constants.)

These subscript constants are inserted into the
subscript expression with the subscript indices.

The right and left parenthesis enclosing the subscript
expression are then changed to special operators to
be used in a later phase.

Calculation of the Subscript Constants

Assuming the maximum subscript form
ckv+c!

where
v represents an unsigned, nonsubseripted, integer
variable and ¢ and c¢' represent unsigned integer

constants,

phase 11 computes the subscript constants (D-factors)
as follows:

For a 1-dimension array --
*T +
A(Cl CZ)
= *g
D1 Cl
= —-— *
D4 (C2 1) *S
For a 2-dimension array --
* *J +
A(C]_ I+ Cz, 03 J 04)
= *
D1 C1]
=1, % *
D2 L C3 S
= ~1)+ L * - *
D4 (C2 1)+ L (C4 1)| *S
For a 3-dimension array --
XT + * + * +
A(C1 1 CZ’ C3 J C4, C5 K CG)
= *
D C1 S

1
= k %
D2 L C3 S

88

= * * *
D3 L*M C5 S

= - + * - —+ * * - *
D4 (02 1)+ L (C4 1)+ L*M ('06 | *S

In the above formulas,

L = first dimension factor
M = second dimension factor
S = size in words of the array entries

= 1 for one-word integers
= 2 for standard precision
= 3 for extended precision

C1 and C2 = constants in the first dimension value

C3 and C 4 = constants in the second dimension
value
C 5 and C 6 = constants in the third dimension

value

I, J, and K are the subscript indices.

Errors Detected

The following errors are detected in phase 11: 31,
32, 33, 34, and 35.

PHASE 12

o Checks the syntax of arithmetic, IF, CALL, and
statement function statements.

e Checks statement function calls, including nested
calls, for valid names and the correct number of
parameters.

e Checks for the definition of variables; checks for
valid statement number references in IF state-
ments.

The syntax of all CALL statements is checked. A
call operator is inserted between the subprogram
name and its dummy arguments for use in the Scan
Phase, phase 16.

During the analysis of statement function state-
ments a table is built containing the statement function
name and the number of parameters associated with

that function. This table is used in analyzing state-
ment function calls, including nested calls, to check
for the proper number of parameters.

The syntax of the record number expression in
Disk READ/WRITE statements is checked. The right
parenthesis is changed to a colon operator which
facilitates the scan of the Disk READ/WRITE state-
ment in the following phase.

Errors Detected

The following errors are detected in phase 12: 36,
37, 38, 39, 40, 41, 42, and 43.

PHASE 13

e Checks FIND, READ, WRITE, and GO TO state-
ments for correct syntax, valid FORMAT state-
ment references, and valid variables.

e Detects implied DO loops in READ and WRITE
statements; generates the indicators necessary
for later processing of the DO loop.

When READ and WRITE statements are encountered
in a mainline program, a check is made for the pres-
ence of IOCS indicators in the FORTRAN Communi-
cations Area. All READ and WRITE statements in a
SUBROUTINE or FUNCTION subprogram do not
require the presence of IOCS indicators.

READ, FIND, and WRITE statements are checked
for valid variables and for proper syntax. READ
and WRITE statements are checked for a valid
FORMAT statement reference. Disk READ and
WRITE statements are differentiated by means of the
apostrophe (') separating the file number and record
number parameters. The appropriate disk or non-
disk I/0 operator is generated for and inserted into
each READ or WRITE statement.

READ and WRITE statements are also checked
for implied DO loops. The necessary DO initialize
and DO test operators are generated and inserted into
the statement body.

Errors Detected

The following errors are detected in phase 13: 43,
44, 45, 46, 47, 48, 49, 50, and 68.

PHASE 14

o Checks for valid syntax in DO statements and in
nested DO loops. ‘

o Generates and inserts at the appropriate points
the coding needed to perform the DO test.

o Checks the syntax of DO, CONTINUE, BACK-
SPACE, REWIND, END FILE, STOP, PAUSE,
and END statements.

e Checks for a GO TO, IF, STOP, CALL LINK,
CALL EXIT, or RETURN statement as the last
executable statement of the source program.

BACKSPACE, END FILE, and REWIND statements
are checked for valid unit addresses. Valid unit
addresses are placed into the Symbol Table as
integer constants. BACKSPACE, END FILE, and
REWIND statements are then replaced on the state-
ment string by a generated LIBF followed by the
Symbol Table address of the unit address. This
Symbol Table address becomes an argument to
the LIBF,

Statements which follow STOP statements are
checked to ensure that they are numbered statements.
All integers found in PAUSE and STOP statements
are checked to ensure that they are not greater than
9999, Valid integers are added to the Symbol Table
as integer constants,

As the DO statements are analyzed for correct
syntax, phase 14 constructs a DO Table in the follow-
ing format:

Word Contents

1 Index

2 DO test statement number or
Generated Label

3 Test value

4 Increment

5 DO range statement
number

Section 11. FORTRAN Compiler 89

A DO Table entry is made for each DO statement
when it is detected. As the statements following
the DO statement are scanned, the statement num-
bers are compared with the contents of word 5, the
range limit, of the DO Table entries. When the
range limit is found the DO test coding is inserted
into the statement string.

The DO Table is built from low-to-high-addressed
storage. It is scanned, however, from high-to-low-
addressed storage. In this manner, nested DO loops
that violate range limits are detected.

Errors Detected

The following errors are detected in phase 14: 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, and 62.

PHASE 15

e Scans READ, WRITE, IF, CALL, and arithmetic
statements for subscript expressions.

e Optimizes subscript calculation by means of the
Subsecript Expression Table.

o Generates SGTs (Subscript-generated temporary
storage locations) as necessary.

Each unique subscript expression is placed into a
table called the Subscript Expression Table. Each
entry in this table appears as follows:

Word Contents
1 D 4
2 I, first dimension subscript index
3 D 1
4 J, second dimension subscript index
5 D 9
6 K, third dimension subscript index
D
7 3
8 /8010, if entry is not used

/0010, if entry is used on this statement
/0000, if entry was used on a previous
statement

90

Also, each unique variable of a subscript expression
is placed into a table called the Bound Variable
Table.

As each subscript expression is entered into the
Subscript Expression Table, it is removed from the
string. The subscripted variable is then tagged with
SGT indicator bits pointing to the Subscript Expres-
sion Table entry.

An SGT (Subscript-generated temporary storage
location) is generated for each entry made to the Sub-
script Expression Table., The SGT is placed into an
SGT Table. The SGT is also placed into the Symbol
Table and the address of the Symbol Table entry is
inserted into the statement in the string.

For each subscript expression encountered, a
scan is made of the Bound Variable Table. If one or
more of the variables in the subscript expression are
not located in the Bound Variable Table, the subscript
must be recalculated. Thus, a unique entry is made
to the Subscript Expression Table for the expression
and an associated SGT is generated.

If, however, all the variables of the subscript
expression are located in the Bound Variable Table,
the Subscript Expression Table is then scanned to
determine if a duplicate subscript expression is al-
ready located in the table. If no equivalent is found,
the subscript expression is added to the table as a
unique entry and an associated SGT is generated.

If a duplicate expression is found in the Subscript
Expression Table, the subscript expression is re-
moved from the string and is replaced by a pointer
to its duplicate in the Subscript Expression Table.
Thus, identical subscript expressions share the same
indices of a common entry in the Subscript Expression
Table and the same SGT.

Whenever a variable is assigned a new value (i.e.,
appears to the left of the equal sign in an arithmetic
expression, in the argument list of a subprogram,
etc.), that variable, if found in the Bound Variable
Table, is removed from the table. This removal
from the Bound Variable Table causes all entries in
the Subscript Expression Table containing that vari-
able to be removed. The associated SGTs are also
removed from the SGT Table but remain in the Sym-
bol Table. The addresses in the string of the SGTs
in the Symbol Table also remain.

If a statement is encountered containing a subscript
expression and having a statement number that is
referenced by some other statement, the entire Sub-
script Expression Table is cleared and all subscripts,

beginning with the subscript expression in the ref-
erence statement, must be recalculated.

The Subscript Expression Table is also cleared
whenever a DO statement is encountered. Following
subscripts must be recalculated. Implied DO loops,
as in READ and WRITE statements, cause only those
entries involving the index of the implied DO to be
cleared. Only the subscripts involving that index
must be recalculated.

Errors Detected

The following error is detected in phase 15: 63.

PHASE 16

e Converts all FIND, READ, WRITE, IF, GO TO,
CALL, statement function, and arithmetic state-
ments into a modified form of Polish notation.

e Establishes the order of arithmetic operational
performance.

e BSets up the arguments for subroutine calls to be
generated.

Phase 16 converts all READ, WRITE, GO TO, arith-
metic, statement function, CALL, and IF statements
to a modified form of Polish notation. This conver-
sion is accomplished through the use of a Forcing
Table, strings, and an Interpreter.

The Forcing Table is a table of 2-word entries.
The first word contains the left and right forcing
values for each operator. The first 8 bits constitute
the left forcing value and the last 8 bits, the right
forcing value. The second word of the 2-word entry
contains the address of the string to be used by the
Interpreter when the corresponding operator is
forced. (See Table 7.)

The string address (word 2 of each Forcing Table
entry) for each operator is a pointer used by the
Interpreter. This pointer designates to the Inter-
preter a string of operations that must be per-
formed by the Interpreter in order to convert the
forced operator and its operands to the modified form
of Polish notation.

NOTE: Strings may also contain pointers. These
pointers designate substrings, which are detailed

Table 7. FORTRAN Forcing Table

Forcing Value String

Operator Definition Left | Right Pointer
N Name Operator 63 00 0
) Normal Right Parenthesis 01 32 0
; Statement Terminator 3C 3C 0
+,- Add, Subtract 0A 0A 1

Divide, Multiply 05 05 1
Exponentiation 05 04 1
Assign 3B 3C 1
Normal Left Parenthesis 31 01 2
Comma 31 30 3
Call Operator 01 01 4

Special Parenthesis for Literals,
Special Parenthesis for

/ot
J
(

@ @ Dimensioned Arrays 31 01 6
@ Unary Minus 0A 0A 7
@ Range Operator 31 01 8
Special Right Parenthesis in

Implied DOs 31 01 9

Subscripting Right Parenthesis

in Implied DOs 31 01 10
1/0 Operator before Scan 30 01 1
1/0 Operator during and after

Scan 30 01 12
Equal Sign in Implied DOs 31 01 13

extensions of the string and which are used by the
Interpreter in the same manner as the strings.

A forcing condition exists if the forcing value of
the right operator is equal to or greater than the
forcing value of the left operator. This condition re-
sults in the left operator being forced; that is, the
operation to the left has precedence. Whenever a
non-forcing condition exists, the operands and oper-
ators involved remain in the statement. Operands
and operators are removed from the string only when
an operator is forced and the Interpreter-generated
symbol FAC replaces them.

The Interpreter controls the conversion of the
statement to the modified form of Polish notation. As
each operator is forced, the Interpreter, using the
string address from the Forcing Table, selects the

Section 11, FORTRAN Compiler 91

associated string and performs the string opera-
tions. These operations result in the output of the
forced operator and its operands, resequenced in
the order of operational performance. The forced
operator and its operands are put out into the output
buffer by the Interpreter and are replaced in the
statement body by the symbol FAC.

The scan begins with the string pointer moving
from left to right. When an operator is encountered,
the scan looks two words to the left for a second op-
erator. If none is found, the string pointer moves
to the right, one word at a time, in search of another
operator. If an operator is found to the left, the
scan converts the left and right operators to their
respective forcing values and checks for the forcing
condition.

If a forcing condition does not exist, the scan
again resumes, moving the pointer to the right. If,
however, a forcing condition does exist, the Inter-
preter handles the operator and operands involved.

Upon return to the scanning process, the string
pointer is positioned to the same operator that
caused the previous force, the symbol FAC resides
one word to the left in place of the forced operator
and its operands, and a new operator resides two
words to the left. These operators are then con-
verted and the check is made for the forcing condi-
tion.

If at any time the symbol FAC is an operand of a
forced operator, FAC is replaced by a GT (generated
temporary storage location). The GT is then output-
ted as the operand in place of FAC, FAC again re-
places the forced operator and operands in the state-
ment body. New GTs are created as they are needed
in order to maintain FAC in the statement body.

At the completion of the scan process the state-
ment body has been reduced to the symbol FAC; the
statement body now consists of less than four words.
The output buffer contains the entire statement con-
verted to the modified form of Polish notation.

If in looking for a left operator the scan must by-
pass the argument list of a call operator, the ele-
ments of this argument list are stored temporarily
in a special buffer called the Push-down List. When
the call operator is forced and placed into the output
buffer, the Push-down List is then emptied into the
output buffer in reverse order so that the arguments
are restored in their original sequence following
the call operator.

92

When the scan detects that the statement consists
of less than four words (the symbol FAC only), the
output buffer is placed into the statement string
overlaying the symbol FAC, and the scan moves to
the next statement.

The statement terminator (semicolon) serves as
an operator that is scanned as any other operator.

Figure 16 illustrates the scanning process.

Errors Detected

The following error is detected in phase 16: 64.

PHASE 17

e Replaces FIND, READ, WRITE, GO TO, and
RETURN statements with compiler-generated
coding.

o Replaces those parts of arithmetic, IF, CALL,
and statement function statements that involve
subscripting of variables with compiler-generated
coding.

o Checks subprograms for a RETURN statement;
generates the return linkage coding.

Phase 17 replaces READ, WRITE, and FIND state-
ments by a call to the appropriate I/0 subroutine,
along with the necessary arguments. Generated
labels are added to READ and WRITE statements in-
volving implied DO loops.

Also, statement function, arithmetic, IF, and
CALL statements are examined for subscripted var-
iables. Those parts of these statements that involve
subscripts are replaced by compiler-generated cod-
ing.

In order to produce more efficient coding, phase
17, by means of an SGT Table, eliminates redundant
loads of the same subscript offset. Also, the instruc-
tions used to load literal subscripts are placed im-
mediately before the indexed operations.

Errors Detected

The following error is detected in phase 17: 69.

Arithmetic Statement
A=B+C*D-E

Contents of Contents of the
Step the string Output Buffer Comments
1 A = B+C*D-E A is not an operator, so the pointer, P, moves to the right. When scanning to the right for an
operator, non-operators are simply skipped. When scanning for an operator to the left with which
P to force, non-operators are added to the push-down list.
2 A = B+C*D-E There is no operator to the left with which a forcing condition test can be made; therefore, the
pointer moves to the right until an operator is encountered.
P
3 A = B+C*D-E; Using the forcing table, the pointer indicates the RV (right forcing value) and P - 2 (two positions
to the left) indicates the LV (left forcing value), The RV of +is 0A; the LV of = is 38. OA is not
[equal to or greater than 3B. The left operator is not forced, and the pointer moves to the next
operator .
4 A = B+C*D-E; The RV of * is 05; the LV of +is 0A. 05 is not equal to or greater than OA.. The left operator is
not forced, and the pointer moves to the next operator.
P
5 A - B+C*D-<E; *CD The RV of - is 0A; the LV of * is 05. OA is greater than 05, Hence, the left operator is forced.
? ! *CD is placed in the output buffer and the symbol FAC replaces the outputted operator and
p operands. The pointer is not moved; an attempt is made to force the new left operator.
<] A = B+FAC-E; *CD+B The RV of - is OA; the LV of +is 0A, OA s equal to OA. Hence, the left operator is forced.
f +B is added fo the output buffer, The symbol FAC still replaces the contents of the output buffer.
P The pointer is not moved; an attempt is made to force the new left operator.
7 A = FAC-E; *CD+8 The RV of - is 0A; the LV of =is 3B. OA is not equal to or greater than 3B. The left operator
is not forced and the pointer moves to the next operator.
P
8 A = FAC-E; *CD+B-E The RV of ; is 3C; the LV of - is 0A. 3C is greater than OA. Hence, the left operator is
forced. -E is added to the output buffer. The symbol FAC still replaces the contents of the
P output buffer. The pointer is not moved; an attempt is made to force the new left operator.,
9 A = FAC; *CD+B-E=A The RV of ; is 3C; the LV of =is 3B. 3C is greater than 3B. Hence, the left operator is
forced. =A is added to the output buffer. The symbol FAC stil! replaces the contents of the
P output buffer.
10 FAC; *CD+B-E=A The original statement now consists of three words or less. This indicates that the statement has
been scanned. The symbol FAC is now replaced by the contents of the output buffer.
11 *CD+B-E=A; The scan is complete.
Figure 16, FORTRAN Scan Example
PHASE 18 This phase generates the coding necessary to replace

o Replaces arithmetic, statement function, CALL,
and IF statements not involving subscripted var-
iables by compiler-generated coding.

e Completes the replacement of arithmetic, state-
ment function, CALL, and IF statements that do
involve subscripted variables by compiler-

generated coding.

e Optimizes IF statement branch instructions.

e Handles mixed-mode arithmetic.

arithmetic, statement function, CALL, and IF state-
ments. This phase wholly converts statements of
these types that include no subscripted variables and
merely completes the conversion, which was partially
completed in phase 17, of statements of these types
that do include subscripted variables.

Phase 18 generates the code to perform integer,
real, and mixed-mode arithmetic. Where possible,
integer arithmetic is done in-line. The remainder of
the coding consists of calls to System Library sub-
routines, followed by argument lists.

As needed, calls to the FORTRAN-supplied FUNC-
TION subprograms IFIX and FLOAT are generated.

Section 11, FORTRAN Compiler 93

All calls to these subprograms are made LIBFs.
However, calls to exponentiation subroutines gen-
erated by phase 18 are made CALLs.

GTs (generated temporary storage locations) de-
tected in the string by this phase or generated by
this phase for storing intermediate results of arith-
metic calculations are made to agree in mode with
the function of which they are a part.

Errors Detected

There are no errors detected in phase 18.

PHASE 19

e Fetches the principal print device subroutine for
use by phases 19-24; also provides a print inter-
face subroutine for these phases.

o Allocates storage for COMMON variables.

e Allocates all storage assignments aligned accord-
ing to EQUIVALENCE statements.

e Assigns all allocations according to the specified
precision of the program.

e Prints the allocations of the variables as they
are assigned, if requested.

Phase 19 performs the allocation of the variables
found in the Symbol Table; i.e., these variables are
assigned storage addresses in the object coding.
These addresses replace the Symbol Table entries
for the variables.

The COMMON area resides in high-addressed
storage during execution of the object program.
Thus, all COMMON variables are assigned absolute
addresses within this high-addressed area. The
variable area resides in storage just below the ob-
ject program during execution. All variables not
in COMMON are assigned relative addresses within
this area.

Phase 19 first allocates COMMON variables found
in the Symbol Table. EQUIVALENCE statements
that include COMMON variables are examined and
the addresses are aligned during allocation to obtain
an equivalence. A check is made to ensure that the
equivalence does not cause a variable or array ele-
ment to be allocated beyond the beginning of the
COMMON area.

94

Variables that appear in EQUIVALENCE state-
ments are allocated next, one combined equivalence
nest at a time. The remaining variables in the
Symbol Table are finally allocated, real variables
first, followed by integer variables.

Phase 19 also computes the core requirements for
constants after all defined variables have keen allo-
cated. The core requirements for variables and for
COMMON are then stored in the FORTRAN Commun-
ications Area.

Errors Detected

The error detected by phase 19 is either: 85, 66,
or 67.

PHASE 20

e Lists any errors that were detected during the
compilation process.

o Rearranges the statement string if there were no
errors detected.

Phase 20 deletes from the statement string EQUIV-
ALENCE statements that do not have an error indica-
tor and replaces EQUIVALENCE statements that have
an error indicator by error statements.

The Symbol Table is scanned twice. The first
scan detects unreferenced statement numbers and
lists them on the principal print device. The second
scan detects undefined variables and lists these also
on the principal print device.

The statement string is rearranged (if there were
no errors in the compilation) so that, if they are
present, the DEFINE FILE Table, format specifica-
tion strings, and arithmetic statement functions pre-
cede the first executable statement.

The statement string is scanned for error state-
ments. Two counters are maintained during the scan.
The first (STLAB) contains the statement number of
the last numbered statement encountered. The second
(STCNT) contains a count of the statements encoun-
tered since the last numbered statement. Compiler-
generated statements and statement numbers are dis-
regarded in these counts.

When an error statement is detected, these coun-
ters are inserted into the error message along with
the error number for printing.

A check is made on all DATA statements. If a data
constant is defined in COMMON, error 81 is indicated.

Errors Detected

The following error is detected in phase 20: 81.

PHASE 21

e Assigns the relative addresses to statement func-
tions and numbered statements; inserts the allo-
cations into the string.

o Creates the subroutine initialization call, if
required.

o Calculates the core requirements of the program;
stores the result in the FORTRAN Communica~
tions Area.

o Generates the statement function return linkage
coding.

Phase 21 allocates relative addresses to all num-
bered statements and statement functions. The allo-
cation is placed into the statement string entry,
following the statement number or function label. A
calculation of the object program storage require-
ments is made from the Location Counter at the end
of allocation and stored in the SOFNS word (word 4)
in the FORTRAN Communications Area.

If the program being compiled is a subprogram,
this phase also creates the subroutine initialization
call, CALL SUBIN, along with its dummy arguments;
this subroutine directs the insertion of arguments
during execution of the object program.

Errors Detected

There are no errors detected in this phase.

PHASE 22

o Inserts the statement allocations into the Symbol
Table.

o Lists the statement allocations on the principal
print device, if requested.

This phase scans the statement string for statement
function statements and numbered statements. The

allocation found in each of these statements is
entered in the Symbol Table. The allocation and the
label are then deleted from the string entry.

Errors Detected

There are no errors detected in this phase.

PHASE 23

e Lists the Features Supported by the program as
indicated in the FORTRAN Communications Area.

e Lists the System Library subroutines used by the
program, if requested.

e Lists the subprogram names found in the Symbol
Table, if requested.

Using the indicators in the CCWD word (word 14) in
the FORTRAN Communications Area, phase 23
recreates the control records that were recognized
in phase 1. These control records (with the exception
of *IOCS) are listed on the principal print device
under the title '"FEATURES SUPPORTED.'

According to the indicators in the CCWD word,
phase 23 also alters (for purposes of printing only)
the names of subprograms in the compiler-generated
calls to reflect extended precision, if specified.
(The actual compiler-generated coding is not altered
until phase 26.)

If requested, a list is made of all the subprogram
names that appear in the Symbol Table (all CALLs).

Phase 23 also scans the statement string, bypass-
ing all one-word statements and tagging the names in
the System Library table that are called by the pro-
gram (all LIBFs), While scanning the System
Library table, phase 23 checks the indicators in the
IOCS word (word 15) in the FORTRAN Communica-
tions Area. A tag is added to the names of those
subroutines that service the devices indicated in the
IOCS word (i.e., the devices listed in the *IOCS
control record). The names of the associated con-
version subroutines (if required) are also tagged.
The Subroutine table is then scanned and, if requested,
the tagged System Library subroutine names are
listed.

Section 11. FORTRAN Compiler 95

Errors Detected

There are no errors detected in this phase.

PHASE 24
e Lists the Core Requirements.

e Lists the constants and their addresses, if
requested.

Under the heading 'CORE REQUIREMENTS, ' phase
24 prints the amounts of storage used by the program,
COMMON area, and variables. The program name
is printed from the FNAME words (words 11-12) in
the FORTRAN Communications Area.

If a list request is specified in the CCWD word
(word 14), the real and integer constants are con-
verted to output coding and listed with their relative
addresses according to the specified precision.

Real constants are listed first, followed by integer
constants.

A check is made to see that the core requirements
do not exceed 32767 words. If they do, the ERROR
word (word 10) in the FORTRAN Communications
Area is set and output to Working Storage is sup-
pressed.

Errors Detected

There are no errors detected in this phase.

PHASE 25

o Builds the program header and data header rec-
ords; places these records onto the disk in
Working Storage.

e Places real and integer constants into Working
Storage in absolute mode.

Phase 25 initially builds the program header and
data header records. These records and the Buffer
Communications Area carry information to phase 26.
The program header and data header records are
placed in Working Storage.

The statement string is searched for DEFINE FILE
statements. These statements are analyzed and then

96

placed into Working Storage. The file specifications
are outputted in absolute mode, except for the asso-
ciated variable, which is in relocatable mode (the
only relocatable constant). The statement string is
also searched for DATA statements. All data con-
stants are placed in Working Storage in absolute mode.
The Symbol Table is scanned twice. The first scan
extracts real constants, computes their allocations,
and inserts the allocations into the Symbol Table. The
second scan performs the same operations for integer
constants. All constants are placed into Working
Storage in absolute mode.

Errors Detected

There are no errors detected in this phase.

PHASE 26

o Converts the compiled statement string to object
coding.

e DPlaces the object program into Working Storage.

According to the indicators in the CCWD word (word
14) in the FORTRAN Communications Area, phase 26
alters the subroutine names referenced by the com-
piled program to reflect, if necessary, extended pre-
cision as specified by the user. Phase 23 made the
same conversion for listing purposes; this phase
makes the conversion during the generation of the
object program.

Phase 26 converts the statement string into the
object program, which is written in Working Storage.
At the completion of the output, the termination
subroutine (OUTER) inserts the necessary data into
the FORTRAN Communications Area so that the Re-

covery Phase can complete the compilation.

Errors Detected

There are no errors detected in this phase.

PHASE 27

e Sets up the switches and parameters needed by
the Monitor Control Record Analyzer to assume
control.

This phase is the means by which the compiler re-
turns control to the monitor system. The phase is
entered under the following conditions:

1. Normal end of compilation, with or without
program errors.

2. Disk work area exceeded.

3. Control record trap during input phase.

In each case the Recovery Phase sets indicators
in the FORTRAN Communications Area in order to
inform the monitor system program called next as

to the results of the compilation. Compilation errors,

the exceeding of Working Storage, and the trapping of

a monitor control record all cause the compilation
output to be suppressed, the non-execute switch
($NXEQ) to be set, and the non-DUP switch ($NDUP)
to be set.

If the compilation is successful, the program
length, the number of disk blocks used to store the
program, and the execution address are all trans-
mitted to DCOM on the master cartridge and to
DCOM of the Working Storage cartridge if it is other
than the master cartridge.

Errors Detected

There are no errors detected in this phase.

Section 11. FORTRAN Compiler 97

FLOWCHARTS

Write Cartridge ID (ID):

Fetch Phase IDs From SLET (FSLEN):

Fetch System Subroutine (FSYSU):

UTLO1
UTLO02
UTL02

Write Working Storage Addresses (ADRWS): UTL03

Initialize Disk Cartridge (DISC):

Read *ID Record and Convert (RDREC):

Print Cartridge ID (IDENT):

Call System Print Subroutine (CALPR):

Copy Disk Cartridges (COPY):
Delete Core Image Buffer (DLCIB):
Dump SLET (DSLET):

Maintenance Program (MODIF):

SCAT2, Call Processing:
SCAT2, Interrupt Processing:

SCAT3, Call Processing:
SCAT3, Interrupt Processing:

Function

Utility

Selective Dump on Console Printer
Selective Dump on 1132 Printer
Dump 80 Subroutine

Common FORTRAN

Test Console Entry Switches
Divide Check Test
Functional Error Test
Overflow Test

Sense Light Control and Test
FORTRAN Trace Stop
FORTRAN Trace Start
Selective Dump

FORTRAN Sign Transfer

Extended Precision Transfer of Sign

Standard Precision Transfer of Sign
Integer Transfer of Sign

Extended Precision Arithmetic/Function

Extended Precision Hyperbolic
Tangent
Extended Precision A**B Function

UTL04
UTLO05
UTL.06
UTLO7
UTLO08
UTLO9
UTL10
UTL11-
UTL13
SCA01
SCA02-
SCA03
SCA04
SCA05-
SCAO07

Name(s

DMTDO, DMTXO0
DMPD1, DMPX1
DMP80

DATSW
DVCHK
FCTST
OVERF
SLITE, SLITT
TSTOP
TSTRT
PDUMP

ESIGN
FSIGN
ISIGN

ETANH, ETNH
EAXB, EAXBX

SECTION 12. SYSTEM LIBRARY

FORTRAN Non-disk 1/0 (SFIO):

CARDZ:

PRNTZ:
PAPTZ:
READZ:
WRTYZ:
PRNZ:

PNCHZ:
TYPEZ:
HOLEZ:

FI1O01-
F1003
FIO04-
FI1005
F1006
F1007
FIO08
F1009
FI1010
F1011
FI1012
F1013

The System Library consists of (1) a complete
library of input/output (except disk 1/0), data
conversion, arithmetic, and function subprograms,
(2) selective dump subroutines, and (3) special
programs for disk maintenance.
The following is a list of the contents of the

System Library.

Type Subtype Reference Deck ID
4 0 CALL U5B00010
4 0 CALL U5C00010
4 0 CALL U5A00010
4 8 CALL T3F00010
4 8 CALL T3G00010
4 8 CALL T3H00010
4 8 CALL T3J00010
4 8 CALL T3L00010
4 8 CALL T3M00010
4 8 CALL T3N00010
4 0 CALL T3K00010
4 8 CALL S2F00010
4 8 CALL R2F00010
4 8 CALL T3100010
4 8 CALL 52100010
4 8 CALL $2C00010

Section 12, System Library 99

Function

Name(s

Extended Precision Arithmetic/Function (Cont'd)

Extended Precision Natural Logarithm

Extended Precision Exponential
Extended Precision Square Root
Extended Precision Sine-Cosine

Extended Precision Arctangent
Extended Precision Absolute Value
Function

Standard Precision Arithmetic/Function

Standard Precision Hyperbolic
Tangent

Standard Precision A**B Function

Standard Precision Natural Logarithm

Standard Precision Exponential

Standard Precision Square Root

Standard Precision Sine-Cosine

Standard Precision Arctangent
Standard Precision Absolute Value
Function

Common Arithmetic/Function

Fixed Point (Fractional) Square Root

Integer Absolute Function

Floating Binary/EBCDIC Decimal
Conversions

System

LOCAL/SOCAL Flipper
DCOM Update

FORTRAN Trace

Extended Floating Variable Trace
Fixed Variable Trace

Standard Floating IF Trace
Extended Floating IF Trace
Fixed IF Trace

Standard Floating Variable Trace
GOTO Trace

FORTRAN 1/0
Non-Disk Formatted FORTRAN I/0

FORTRAN Find

100

ELN, EALOG
EEXP, EXPN
ESQR, ESQRT
ESIN, ESINE,
ECOS, ECOSN
EATN, EATAN

EABS, EAVL

FTANH, FTNH
FAXB, FAXBX
FLN, FALOG
FEXP, FXPN
FSQR, FSQRT
FSIN, FSINE,
FCOS, FCOSN
FATN, FATAN

FABS, FAVL

XSQR

IABS

FBTD (binary to
decimal), FDTB
(decimal to binary)

FLIPR
SYSUP

SEAR, SEARX
SIAR, SIARX
SFIF

SEIF

SIIF

SFAR, SFARX
SGOTO

SFIO, SIOI, SIOAI,
SIOF, SIOAF,
SIOFX, SCOMP,
SWRT, SRED,
SIOIX

SDFND

Type Subtype
4 8
4 8
4 8
4 8
4 8
4 8
4 8
4 8
4 8
4 8
4 8
4 8
4 8
4 8
4 8
4 8
4 0
3 0
4 0
3 0
3 0
3 0
3 0
3 0
3 0
3 0
3 3
3 1

Reference Deck ID
CALL $52E00010
CALL 52D00010
CALL $82H00010
CALL 52G00010
CALL $2B00010
CALL $2A00010
CALL R2I100010
CALL R2C00010
CALL R2E00010
CALL R2D 00010
CALL R2H00010
CALL R2G00010
CALL R2B00010
CALL R2A00010
CALL T1C00010
CALL T1B00010
CALL T1A00010

- Us5D00010

- U5E00010
LIBF S2J00010
LIBF T6B00010
LIBF R2K00010
LIBF S2K00010
LIBF T6C00010
LIBF R2J00010
LIBF T6A00010
LIBF T4C00010
LIBF T4B00010

Function

Disk FORTRAN I/0O

Unformatted FORTRAN I/0
Common FORTRAN

FORTRAN Pause

FORTRAN Stop

FORTRAN Subscript Displacement
Calculation

FORTRAN Subroutine Initialization

FORTRAN Trace Test and Set

FORTRAN I/O and Conversion

FORTRAN Card 1442 (Read/Punch)

FORTRAN Card 1442-5 (Punch)

FORTRAN Card 2501 (Read)

FORTRAN Paper Tape

FORTRAN 1132 Printer

FORTRAN 1403 Printer

FORTRAN Keyboard/Typewriter

FORTRAN Typewriter

FORTRAN Hollerith to EBCDIC
Conversion

FORTRAN Get Address Subroutine

FORTRAN EBCDIC Table

FORTRAN Hollerith Table

Extended Precision Arithmetic/Function

Extended Precision Get Parameter
Extended Precision A**I Function
Extended Precision Divide
Extended Precision Float Divide
Extended Precision Float Multiply

Extended Precision Subtract Reverse

Extended Add-Subtract

Extended Load-Store

Standard Precision Arithmetic/Function

Standard Precision Get Parameter
Standard Precision A**I Function
Standard Precision Divide Reverse
Standard Precision Float Divide
Standard Precision Float Multiply

Standard Precision Subtract Reverse

Name(s)

SDFIO, SDRED,
SDWRT, SDCOM,
SDAF, SDF, SDI,
SDIX, SDFX,
SDAI

UFIO

PAUSE
STOP

SUBSC
SUBIN
TTEST, TSET

CARDZ
PNCHZ
READZ
PAPTZ
PRNTZ
PRNZ

TYPEZ
WRTYZ

HOLEZ
GETAD
EBCTB
HOLTB

EGETP
EAXI, EAXIX
EDVR, EDVRX
EDIV, EDIVX
EMPY, EMPYX
ESBR, ESBRX
EADD, ESUB,
EADDX, ESUBX
ELD, ELDX, ESTO,
ESTOX

FGETP
FAXI, FAXIX
FDVR, FDVRX
FDIV, FDIVX
FMPY, FMPYX
FSBR, FSBRX

Type Subtype Reference Deck ID
3 1 LIBF T4A00010
3 1 LIBF T4D00010
3 2 LIBF T2A00010
3 2 LIBF T2B00010
3 0 LIBF T2D00010
3 0 LIBF T2C00010
3 0 LIBF T2E00010
5 3 LIBF T5A00010
5 3 LIBF T5G00010
5 3 LIBF T5J00010
5 3 LIBF T5F00010
5 3 LIBF T5H00010
5 3 LIBF T5100010
5 3 LIBF T5K00010
5 3 LIBF T5L00010
3 3 LIBF T5D00010
3 3 LIBF T5C00010
3 3 - T5B00010
3 3 - T5E00010
3 2 LIBF S1E00010
3 2 LIBF S1B00010
3 2 LIBF S1D00010
3 2 LIBF $51C00010
3 2 LIBF S1G00010
3 2 LIBF S1HO00010
3 2 LIBF S1A00010
3 0 LIBF S1F00010
3 2 LIBF R1E00010
3 2 LIBF R1B00010
3 2 LIBF R1D00010
3 2 LIBF R1C00010
3 2 LIBF R1G00010
3 2 LIBF R1HO00010

Section 12,

System Library 101

Function Name(s Type Subtype Reference Deck ID

Standard Precision Arithmetic/Function (Cont'd)

Standard Add/Subtract FADD, FSUB,
FADDX, FSUBX 3 2 LIBF R1A00010
Standard Load/Store FLD, FLDX,
FSTO, FSTOX 3 0 LIBF R1F00010

Standard Precision Fraction Multiply XMDS 3 2 LIBF $3100010
Common Arithmetic/Function
Fixed Point (Fraction) Double Divide XDD 3 2 LIBF $3G00010
Fixed Point (Fraction) Double

Multiply XMD 3 2 LIBF S3H00010
Sign Reversal Function SNR 3 2 LIBF S3F00010
Integer to Floating Point Function FLOAT 3 0 LIBF S$3C00010
Floating Point to Integer Function IFIX 3 0 LIBF S3D00010
I**J Integer Function FIXI, FIXIX 3 2 LIBF S3B00010
Normalize NORM 3 0 LIBF S3E00010
Floating Accumulator Range Check FARC 3 2 LIBF S3A00010
Interrupt Service
Card Input/Output (No Error

Parameter) CARDO 5 0 LIBF T2A00010
Card Input/Output (Error

Parameter) CARD1 5 0 LIBF U2B00010
Disk Input/Output (No Preoperative

Parameter Checking) DISKZ* - - Special -
Disk Input/Output (No Simultaneity) DISK1* - - LIBF -
High-Speed Disk Input/Output

(Simultaneity) DISKN* - - LIBF -
Paper Tape Input/Output PAPT1 5 0 LIBF U2D00010
Single Frame Paper Tape Input/Output PAPTX 5 0 LIBF U2F00010
Simultaneous Paper Tape Input/Output PAPTN 5 0 LIBF U2E00010
Plotter Output PLOT1 5 0 LIBF U2G00010
1132 Printer Output PRNT1 5 0 LIBF U2J00010
1403 Printer Output PRNT3 5 0 LIBF U2K00010
Keyboard/Console Printer Input/Output TYPEO 5 0 LIBF U2N00010
Console Printer Output WRTYO 5 0 LIBF V2000010
1231 Optical Mark Page Reader OMPR1 5 0 LIBF U2C00010
2501 Card Input (No Error Parameter) READO 5 0 LIBF U2L00010
2501 Card Input (Error Parameter) READ1 5 0 LIBF U2M00010
1442 Card Output (No Error Parameter) PNCHO 5 0 LIBF U2H00010
1442 Card Output (Error Parameter) PNCH1 5 0 LIBF U2100010

*Note: Whereas DISKZ, DISK1, and DISKN are not strictly ISS subroutines (they are stored in the Sysfem Area
by the System Loader), they are included in this list because they possess many characteristics of ISS
subroutines.

102

Function
Conversion

16 bits to 6 Decimal Characters (Card
Code)

32 bits to 11 Decimal Characters

16 Bits to 4 Hexadecimal Characters
(Card Code)

6 Decimal Characters (Card Code)
to 16 bits

11 Decimal Characters to 32 bits

EBCDIC to Console Printer Output
Code

Card Code to EBCDIC, EBCDIC to
Card Code

Card Code to Console Printer
Output Code

4 Hexadecimal Characters (Card
Code) to 16 bits

PTTC/8 to EBCDIC, EBCDIC to
PTTC/8

PTTC/8 to Card Code, Card Code
to PTTC/8

PTTC/8 to Console Printer Output
Code

Card Code to EBCDIC, EBCDIC to
Card Code

Fast multi-purpose conversion

Conversion Tables

EBCDIC and PTTC/8 Table

Card Code Table

Console Printer Output Code Table

EBCDIC to IBM Card Code

1403 Code to Console Printer Code

Console Printer Code to 1403 Code

1403 Code to EBCDIC

EBCDIC to 1403 Code

IBM Card Code to Console Printer
Code

Console Printer Code to IBM Card
Code

Console Printer Code to EBCDIC

EBCDIC to Console Printer Code

PTTC/8 Code to IBM Card Code

IBM Card Code to EBCDIC

IBM Card Code to 1403 Printer Code

SCA Subroutines

Name(s)

BINDC
BIDEC

BINHX

DCBIN
DECBI

EBPRT

HOLEB

HOLPR

HXBIN

PAPEB

PAPHL

PAPPR

SPEED
ZIPCO

EBPA
HOLL
PRTY
EBHOL
PT3CP
CPPT3
PT3EB
EBPT3

HOLCP

CPHOL
CPEBC
EBCCP
PTHOL
HLEBC
HLPT3

SCAT1

PRNT2
HOLCA
STRTB

Section 12.

Type Subtype Reference Deck ID
3 0 LIBF U4B00010
3 0 LIBF U4A00010
3 0 LIBF U4C00010
3 0 LIBF U4G00010
3 0 LIBF U4H00010
3 0 LIBF U3A00010
3 0 LIBF U3B00010
3 0 LIBF U3C00010
3 0 LIBF U3D00010
3 0 LIBF U3E00010
3 0 LIBF U3F00010
3 0 LIBF U3G00010
3 0 LIBF U3H00010
3 0 LIBF U3100010
3 0 - U4K00010
3 0 - U4P00010
3 0 = U4Q00010
3 0 - U4J00010
3 0 - U4R00010
3 0 - U4F00010
3 0 = U4S00010
3 0 - U41.00010
3 0 - U4000010
3 0 - U4E00010
3 0 - U4D00010
3 0 - U4100010
3 0 - U4T00010
3 0 - U4M00010
3 0 = U4N00010
- - LIBF W1F00010
- - LIBF WI1E00010
- - - W1C00010
- - - W1G00010

System Library 103

Function Name(s Type Subtype Reference Deck ID

SCA Subroutines (Cont'd)

HXCV - - - W1D00010
EBC48 - - - W1A00010
HOL48 - - - W1B00010
Mainline_
Initialize Disk Cartridge DISC 2 - - UBC00010
Print Cartridge ID IDENT 2 - - U6F00010
Write Cartridge ID D 2 - - UsG00010
Copy Disk Cartridges ‘ COPY 2 - - UsB00010
Write WS Addresses ADRWS 2 - - U6A00010
Delete CIB DLCIB 2 - - UsD00010
Maintenance Program MODIF 2 - - UGHO00010
Dump SLET DSLET 2 - - UBE00010
Paper Tape Utility PTUTL 2 - - UBI00010
System/Miscellaneous
Call System Print Subroutine CALPR 4 0 CALL U7TA00010
Fetch Phase IDs from SLET FSLEN 4 0 CALL U7B00010
Fetch System Subroutine FSYSU 4 0 CALL U7B00010
Read *ID Record and Convert RDREC 4 0 CALL U7C00010
Interrupt Level Subroutines
Interrupt Level Zero Subroutine ILS00 7 - - U1A00010
Interrupt Level One Subroutine 7 - - U1B00010
Interrupt Level Two Subroutine 7 1 - U1C00010
Interrupt Level Three Subroutine ILS03 7 - - U1D00010
Interrupt Level Four Subroutine (il;SOéL* > 7 1 - ULE00010
1627 Plotter Subroutines
SCALE - - - VIN00010
SCALT - - - V1000010
EGRID - - - V1C00010
FGRID - - - VI1H00010
EPLOT - - - V1D00010
FPLOT - - - V1100010
POINT - - - VIM00010
ECHAR - - - V1A00010
FCHAR - - - V1iF00010
ECHRX, ECHRI,
VCHRI - - - V1iB00010
FCHRX, FCHRI,
WCHRI - - - V1G00010
ERULE - - - V1E00010
FRULE - - - V1J00010
PLOTI - - - V1K00010
XYPLT - - - V1iP00010
PLOTX - - - V1L00010

*These are special versions that consist only of IBT information.

104

INTERRUPT LEVEL SUBROUTINES

INTERRUPT LEVEL TWO SUBROUTINE (ILS02)

This interrupt level subroutine is actually a part

of the Skeleton Supervisor. However, the Core

Load Builder requires that a dummy ILS for level

two be stored in the System Library. The dummy

supplied by IBM is stored in the System Library

as subtype 1, type 7. The coding in the dummy

ILS02 is immaterial, because the Core Load Builder

merely bypasses it when it discovers the subtype 1.
If the user supplies his own ILS02, it must be

stored in the System Library as subtype 0, type 7.

INTERRUPT LEVEL FOUR SUBROUTINE (ILS04)

This interrupt level subroutine is actually a part
of the Skeleton Supervisor. However, the Core

Toad Builder requires that a dummy ILS for level
four be stored in the System Library. The dummy
supplied by IBM is stored in the System Library
as subtype 1, type 7. The dummy ILS04 consists
only of a nine-word table followed by a zero, as
follows:

D¢, | /, RESERVED |\ \ v\ oy i a0
DC,_, /0455 s RESERVED st
X /.45.4#...‘,./25.5‘521/.50
DC,, /G45B . 71237, 4 1 4 oiga st iaa
DC, . /84380 74 3 i
oC, 3; /

DC.

oC,

D,

e,

A 1 0 S S T W N N RN TN TN TN O U GOt T SN JY S B W] | I Y T W S |

The leftmost eight bits of each word contain the
relative entry point to the ISS for the associated
device, and the rightmost eight bits contain @ISTV
plus the ISS number. These eight words are used
by the Core Load Builder to construct the IBT for
interrupt level 4.

If the user supplies his own ILS04, it must be
stored in the System Library as subtype 0, type 7.

MAINLINE PROGRAMS

DISK INITIALIZATION PROGRAM (DISC)

The disk initialization program has three basic
functions:

o Establishes that the cartridges specified in the
*ID record have no more than 3 defective cyl-
inders and that cylinder 0 is not defective

e Changes the cartridge labels as specified in the
*ID record

o Initializes portions of sectors 0, 1, and 2 to set
up the cartridges specified as non-system car-
tridges

DISC first reads an *ID record to obtain FROM
and TO cartridge IDs. It then reads current car-
tridge IDs from the master cartridge DCOM
(#PCID) and compares them with the FROM IDs
specified in the *ID record. If there are any IDs
not found, an error message is printed on the
principal print device.

DISC next seeks home on all drives to be
initialized (up to four), and writes each of 3
patterns to an entire cylinder, one sector at a time.
The patterns used, in sequence, are /AAAA, /5555,
and /0000.

DISC then reads back each sector and compares
it with the pattern written (including the sector ad-
dress). If no error occurs, DISC writes the next
pattern to the same cylinder.

If the error bit of the DSW is set at any time or
if the data read does not compare with the pattern
written, DISC repeats the write/read sequence for
the entire cylinder 50 times, using the same pattern.

If a second error occurs, DISC puts the address
of the first sector on the cylinder in which the error
occurred in the defective cylinder table.

DISC performs this write/read sequence for
each of the 203 cylinders.

Section 12, System Library 105

If (1) cylinder zero is defective, (2) more than
three cylinders are defective, or (3) it is impossible
to write a sector address, DISC types out an error
message indicating that the cartridge may not be
used.

If the cartridge is good, DISC writes the defective
cylinder addresses, if any, in the first three words
of sector @IDAD. Wherever a defective cylinder
does not exist, 0658 is written in the first three words
of sector @IDAD. DISC also writes the cartridge ID
in word four of sector @IDAD, writes zeros in words
7-30, and stores an error message program beginning
in word 31. If a cold start is attempted using this
non-system cartridge, control is passed from the
Cold Start Loader to the error message program
instead of the Cold Start Program. An error mes-
sage is printed on the Console Printer and no cold
start is effected.

DISC initializes the following words of DCOM
(sector @DCOM):

Location Value Inserted
#ANDU /0200
#BNDU /0200
#FPAD /0020
#CIDN Cartridge ID
#CIBA /0008
#ULET /0002

DISC initializes LET (sector 2) as follows:

Word Contents
1 /0000
2 /0020
3 /0000
4 /0138
5 /0000
6 /7112 | The name
1DUMY (in
7 /4528 | name code)
8 /0620

DISC terminates with a CALL EXIT.

PRINT CARTRIDGE ID (IDENT)

This program prints out the ID and the physical drive

number of each disk cartridge mounted on the system.

IDENT first fetches the principal print device
subroutine IOAR header from SLET using the

106

subroutine FSLEN. This IOAR header is used to
call in the principal print device subroutine when
it is needed by FSYSU,

Next, IDENT reads DCOM to obtain #PCID, the
table of disk cartridge IDs and their related physical
drive numbers.

IDENT then prints the cartridge ID and physical
drive number from the table until all available car-
tridge IDs have been printed.

IDENT terminates with a CALL EXIT.

CHANGE CARTRIDGE ID (ID)

This program changes the ID on up to four disk car-
tridges.

The IOAR headers for the principal input device,
principal print device, and principal conversion
subroutines are obtained from SLET on the system
cartridge. These subroutines are used for input/
output.

Using the RDREC subroutine, the *ID record is
fetched. RDREC also builds two tables in core
storage from the FROM-TO fields of the *ID record,
one in packed EBCDIC for printer output, the other
in binary for matching the cartridge IDs. DCOM
is fetched from the master cartridge to obtain the
cartridge ID table (#CIDN).

Each drive on the system is selected. If the
selected drive is present, the cartridge ID is
fetched. The ID is matched with the IDs in #CIDN.
If no matching ID is found, the ID is printed with
an error message and the job is terminated. The
cartridge ID of the selected drive is matched to the
IDs in the FROM-TO table. When a match occurs, the
cartridge ID is changed to the 'TO' ID; the ID for
the cartridge in #CIDN is changed and the '"TO’ ID
is written onto the selected drive. IDs that do not
match entries in the FROM-TO table are bypassed.

When all IDs have been processed, #CIDN is
written back to the master cartridge and the FROM-
TO table is printed. After printing the FROM-TO
table, ID terminates with a CALL EXIT.

DISK COPY (COPY)

This program copies the contents of one or more
cartridges (except words 0-3 of sector @IDAD) onto
from one to four other cartridges.

COPY first fetches the system device subroutine
IOAR headers from SLET using the RDREC subroutine.

The system device subroutines are called in by the
RDREC subroutine as they are needed by the pro-
gram. The RDREC subroutine also reads the *ID
record and converts the numbers to binary and
stores them in the FROM-TO table.

COPY then checks the FROM and TO field IDs
to ensure that each specified cartridge is available.
An error message is printed for the unavailable
FROM or TO cartridges.

All available FROM-~-TO cartridge combinations
are then processed. Sectors 0 thru 7 of cylinder 0
of each source cartridge are read and written, ex-
cept for the defective cylinder table, to each speci-
fied destination cartridge. Sectors 0 thru 7 of the
next 199 logical cylinders of each source cartridge
are copied, 4 sectors at a time to each specified
destination cartridge.

One cartridge at a time is processed and at the
end of each, a check for a Keyboard interrupt is
made. If any occurred during the previous copy,
the interrupt is now processed.

After all cylinders from the specified cartridge
have been copied, a completion message is printed
using the principal print device subroutine.

COPY terminates with a CALL EXIT.

DELETE CIB (DLCIB)

This program deletes the Core Image Buffer (CIB)
from a non-system cartridge to provide additional
disk storage area for the User Area and Working
Storage. An *ID record is used to specify the car-
tridge on which the CIB is to be deleted.

DLCIB uses the subroutine RDREC to obtain
the system device subroutine IOAR headers from
SLET on the master cartridge and to fetch the *ID
record containing the affected cartridge ID. The
RDREC subroutine also converts the specified
cartridge ID to binary.,

If the specified cartridge is not present, DLCIB
prints an error message and terminates with a
CALL EXIT.

The CIB of the specified cartridge is deleted.
The User Area and Working Storage are moved
one cylinder closer to cylinder zero. Accordingly,
the file-protection address for the specified car-
tridge is altered in the $FPAD quintuple in COMMA.

DCOM of the master cartridge is then read.
The sector addresses of the CIB, User Area, and
Working Storage are altered. DCOM is written
back to the master cartridge and to the altered
cartridge.

DLCIB prints the new User Area and Working
Storage addresses for the specified cartridge using
the principal print device subroutine.

DLCIB terminates with a CALL EXIT.

DUMP SLET TABLE (DSLET)

DSLET dumps the System Location Equivalence
Table (SLET) to the principal print device. Four
4-word SLET entries are printed per line.

DSLET reads the SLET table into a 640-word
buffer in core storage, prints the SLET table using
the principal print device subroutine, and terminates
with a CALL EXIT.

Section 12. System Library 107

The system device subroutines are a group of
special subroutines used exclusively by the moni-
tor system programs. These are the only device
subroutines used by the monitor system programs,
aside from DISKZ. They are listed below:

DISKZ
1403 Subroutine
1132 Subroutine

SECTION 13, SYSTEM DEVICE SUBROUTINES

Console Printer Subroutine

2501/1442 Subroutine

1442/1442 Subroutine

1134/1055 Subroutine

Keyboard/Console Printer Subroutine

2501/1442 Conversion Subroutine

1134/1055 Conversion Subroutine (dummy)

Keyboard/Console Printer Conversion Sub-
routine (dummy)

Section 13, System Device Subroutines 109

DISK CARTRIDGE INITIALIZATION PROGRAM

(DCIP)

When DCIP is entered, a message is printed in-
structing the user to select the particular DCIP
function desired. Depending on his choice, one of
the functions described below is performed.

All messages, entries through the Console Entry
switches, and operator instructions are printed on
the Console Printer. All user options are entered
through the Console Entry switches.

DISK INITTALIZATION

A message is printed instructing the user to specify
the number of the physical drive on which is mounted
the cartridge to be initialized. At the same time,
the user is given the option of doing an "address
only" initialization, that is, an initialization that
writes correct addresses on a cartridge without
disturbing any of the data on that cartridge. The
user is then asked to specify the cartridge ID.

An entire cylinder of the cartridge is written with
one of three test patterns. The patterns used are
/AAAA, /5555, and /0000. The cylinder is then
read back into core storage, one sector at a time,
using double-buffering.

While one sector is being read, every word of
another is being examined to see that it compares
with the data that was written. If no errors occur
in any sector of the cylinder, the same procedure is
repeated for the next pattern, and so on until all
three patterns have been tested.

However, if any disk operation causes the error
bit of the disk device status word (DSW) to be set, or
if the data read does not compare with that written,
then the entire write/read/compare procedure is
repeated fifty times on the same cylinder with the
same test pattern. A second error, while in the
retry mode, causes DCIP to indicate the cylinder as
being defective.

If (1) cylinder zero is defective, (2) more than
three cylinders are defective, or (3) it is impossible
to write a sector address, DCIP types out an error
message indicating that the cartridge may not be
used.

SECTION 14. STAND-ALONE UTILITIES

After every cylinder on the cartridge has been
tested in the above manner, the program writes three
defective cylinder addresses and the cartridge ID into
the first four words of sector @IDAD. Where defec-
tive cylinder addresses do not exist, /0658 is written.
Words 7-30 of sector @IDAD are set to zeros. DCIP
also writes an error message program, beginning at
word 31. If a cold start is attempted using this non-
system cartridge, the error message program prints
an appropriate message and no cold start is effected.

DCOM (sector @DCOM) is initialized as follows:

Location Value Inserted
#ANDU /0200
#BNDU /0200
#FPAD /0020
#CIDN Cartridge ID
#CIBA /0008
#ULET /0002

LET (sector 2) is initialized as follows:
Word Contents

/0000
/0020
/0000
/0138
/0000
} /7112 | The name 1DUMY (in name
/4528 | code)
/0620

O =1 O Ul W

A message indicating that the initialization is com-
plete and the addresses of any defective cylinders are
printed on the Console Printer.

At this time, the user is given the option of doing
additional testing of the disk; i.e., the write/read/
compare sequence may be repeated up to 31 times.

DISK DUMP

The principal print device is determined by first
initiating a carriage space operation on the 1403
Printer. The device status word (DSW) for the 1403
is then sensed to see if the 1403 is busy. If it is not,

Section 14. Stand-Alone Utilities 111

the same procedure is followed with the 1132 Printer.
On the basis of the results of the above test, a word
that points to the appropriate conversion table and a
branch instruction that branches to the proper printer
call are set up.

The user enters through the Console Entry
switches the sector address (with the drive code) of
the first sector to be dumped and the number of con-
secutive sectors to be dumped.

The logical sector address is determined in the
following manner. The physical sector address is
decremented by eight for each defective cylinder
that has a lower sector address less than the cylinder
to be dumped from. If the sector being dumped is on
a defective cylinder, the sector is assigned the log-
ical sector address of DEAD. Defective cylinder
data for the cartridge is obtained from sector @IDAD.

Each of the 320 data words of the sector is con-
verted from binary to four hexadecimal characters of
the appropriate printer code. The data is then
printed, sixteen words per line.

DISK COPY

DCIP requests the user to enter the numbers of the
source and destination drives in the Console Entry
switches. The defective cylinder table from the
source cartridge is fetched and checked to verify that
the values in it are under 1624 and in ascending
order.

The source cartridge is copied sector by sector
onto the destination cartridge. The cartridge ID
and defective cylinder table in sector 0, cylinder 0
are not copied onto the destination cartridge. If a
system cartridge is being copied, the cartridge ID
found in DCOM is also not copied.

112

If a cylinder on the source cartridge is defective,
the following cylinder is copied to the destination
cartridge. If a cylinder on the destination cartridge
is defective, the cylinder to be copied from the source
cartridge is copied onto the following cylinder.

UCART

The user receives the 1130 Disk Monitor System on a
disk cartridge. The contents of this cartridge are

as follows: cylinder 0 contains a copy of the Resident
Image, including DISKZ, a copy of the CARDO sub-~
routine, a special cold start program, and a disk-to-
card dump program; cylinders 1 through 202 contain
the system decks stored in card images, four cards
per sector.

The execution of a cold start with this cartridge
causes sector 0, cylinder 0 to be fetched. Bector 0,
cylinder 0 contains DISKZ and the special cold start
program. DISKZ is loaded into the locations it
normally occupies in the Resident Monitor; the spec-
ial cold start program immediately follows it. Con-
trol is transferred to the special cold start program.

The special cold start program fetches the Resi-
dent Image (sector 2, cylinder 0) into the locations it
normally occupies in low core storage, fetches the
CARDO subroutine (sector 3, cylinder 0) into core
storage at /0250, and fetches the disk-to-card dump
program into core storage at /0390, Control is
transferred to the disk-to-card dump program, which
punches the system decks and terminates.

The disk-to-card dump program uses a one-
cylinder buffer origined at its high-addressed end.

INTRODUCTION

The purpose of the Program Analysis Procedures
is to provide the user with a step-by-step method
for analyzing the execution of any monitor system
or user program. The procedure is problem-
oriented; it begins with some program malfunc-
tion, assists the user in defining the failing com-
ponent or function, and provides the facility for
detailed analysis of that component or function.

Step Analysis Procedure

Determine which program is failing. If it is
a subroutine, determine its name and its
location in core .

PROGRAM ANALYSIS PROCEDURES

PROGRAM ANALYSIS PROCEDURES SUMMARY

Flowdiagram 1 shows the procedure used for program
analysis. At each step in the procedure, the parts of
this document that apply to that step are indicated.

IDENTIFICATION OF THE FAILING COMPONENT
OR FUNCTION

Flowdiagram 2 shows the procedure used to identify
the component or function failing, Where applicable
the parts of this document that are pertinent to that
identification are indicated.

Supporting Documentation

Failing sub-
routine 1D

Subroutine
error number
list

Get a full core dump.

y

Block out and identify the significant items
in the core dump listing .

/
Analyze the failing subroutine:

=Correct input -Data
parameters -To and from Linkage
~Function code -1/0 area

P

)
If necessary, determine which program

called the failing subroutine and where it
is located in core.

Analyze the calling program for correct
parameters and linkage . If necessary, con-

tinue tracing back all the way to the source
program.

© © O o 6 O

-

Flowdiagram 1. General Procedure for Program Analysis

Core Dump
Procedures

_/

Core Layouts

Core

Location Pro-|
cedures

General Sub-
routine Analy-
sis Procedure

Subroutine
Data
Charts

Subroutine
Looping
Capabilities

Trace Back
Procedures

e

Subroutine
Data Charts

\/—

Program Analysis Procedures 113

Refereﬁt_e Analysis Procedure Supporting Documentation

Monitor System Program execution

g:i:;zms of Non-Zero o) ~A DSLET Listing will provide
reference to phase 1D
User
Program
Execution
Contents of \ Pre-operative 1/0 Error
$PRET Halt Yes o) -Invalid Control Function
at $Py -Device Not Ready
No <
' — — — i — —
Error number in ACC T Subroutine
should identify subroutine. | Error Number
Go to Subroutine list
Maintenance Analysis Procedure |
I

Contents of:

$PST1 Level 1 Post-operative /O Error

g;gg tzv:: g 1 —Error Bits in DSW
%
$PST4 Level 4
Using 1AR contents, go to step 11 T Trace Back
» in Trace Back Procedures | Procedures

I
|
[
——

Using IAR, XR1, XR2, XR3, ACC,
ol EXT, attempt to correlate back to
r " |program. Go to step 11 in Trace
Back Procedures

Other Errors;
Incorrect
Answer, etc.

Dump as soon
as possible
after the fail-
yre .

Procedures

Flowdiagram 2. Procedure for Identification of the Failing Component or Function

SUBROUTINE ERROR NUMBER/ERROR STOP
LISTS

Table 8 lists the errors detected by the System
Library ISSs and system device subroutines by
error code, describes the conditions under which
the error is detected, and provides a list of cor-
rective actions for those errors.

Table 9 lists the error stop addresses and their
meanings.

CORE DUMP PROCEDURE

To obtain a dump of the contents of core storage,
perform the following (see Flowdiagram 3):

1. If the error symptoms indicate that an error
has occurred in the disk or disk I/O subroutine
(i.e. DISKZ), the System Core Dump program
should not be used, because this same disk I/0O
subroutine is used to load the System Core
Dump program, thus destroying the information
needed.

2. Was there a3 NOCAL Duymp included in the core
load? If there was, it may be used to obtain
the core dump, To obtain the core dump, set
the TIAR to the entry point of the NOCAL Dump
and start.

3. If the error symptoms indicate an error in the
principal print device, then the System Core
Dump program should not be used, as it would
destroy any information needed.

4, To retain the maximum information, the off-
line dump procedure should be used.

a. By displaying core storage, copy down
locations /0000 to /0050.

b. Use the stand-alone printer dump to dump
the rest of core storage.

5. To obtain the core dump using the System Core

Dump program, set the IAR to /0000 and start.
SToP PesET STHRT
CORE BLOCK DIAGRAMS

Figure 17, panel 1 shows the layout of the contents
of core storage during the execution of a user's
FORTRAN core load in which LOCAL subprograms,

Retain Console
Information-
-ACC, EXT,
XR1,XR2,XR3
-Lights
=Device Status

Error
In Disk
Subroutine

Perform
NOCAL
Dump

NOCAL Dump
Subroutine

Perform
Off-Line
Dump

in Principal
Print Device
Subroutine

s

Perform Obtain
System Full Core
Dump Dump

Flowdiagram 3. Core Dump Procedure

files, arrays, and COMMON variables were defined
and SOCALs were employed.

Figure 17, panel 2 shows the layout of the contents
of core storage during the execution of a user's
FORTRAN core load in which files, arrays, and
COMMON variables were defined. No LOCALS were
defined; no SOCALs were employed.

Figure 17, panel 3 shows the layout of the contents
of core storage during the execution of a user's
FORTRAN core load in which no LOCALs, files,
arrays, or COMMON variables were defined and no
SOCALs were employed.

Figure 17, panel 4 shows the layout of the contents
of core storage during the execution of a user's
Assembler Language core load.

CORE LOCATION PROCEDURES

The following core load elements are located by
means of the procedures given with the elements.

FAC (Floating Accumulator)
-- 3 words used as FORTRAN Floating Accumulator
-- Located at XR3 + /007D.

Program Analysis Procedures 115

Table 8. Error Number List

DETECTING DETECTING DETECTING
HEXADECIMAL SYMBOLIC SUBROUTINE SUBROUTINE SUBROUTINE
ERROR NUMBER | ERROR STOP | DURING SYSTEM DURING DURING ASSEMBLER ERROR EXPLANATION CORRECTIVE ACTION
IN ADDRESS PROGRAM FORTRAN LANGUAGE CORE
ACCUMULATOR EXECUTION CORE LOAD | LOAD EXECUTION
EXECUTION
1000 $PRET System 1442/1442 CARDZ _ 1442 - Device Not Ready 1442 - Ready the Device
Subroutine PNCHZ
- - CARDO 1442-6,-7 - Device Not Ready
CARD1 - Read initiated with
Last Card Indicator
on
PNCHO 1442-5 - Device Not Ready
PNCH1
$PST4 System 1442/1442 CARDZ CARDO 1442 - Device Not Ready 1442-5 - Run out the punch
Subroutine PNCHZ CARD1 - Ready the Device
PNCHO
PNCH1 1442-6,-7 ~ Ready tha Device
1001 $PRET - - CARDO 1442 - Invalid Device 1442 - Use Trace Back Procedures
CARDI Specified to analyze calling program
PNCHO - Device not on system
PNCH1 - Invalid Function
Specified
- Word Count over +80
- Word Count zero or
negative
2000 $PRET System Keyboard TYPEZ TYPEO Console Printer/Keyboard Console Printer/Keybcard
Subroutine, WRTYZ WRTYO ~ Device Not Ready - Ready the Device
System Keyboard/
Console: Printer
Subroutine
$PST4 System Keyboard TYPEZ TYPEO Console Printer/Keyboard Console Printer/Keybcard
Subroutine, WRTYZ WRTYO - Device Not Ready - Ready the Device
System Keyboard/
Console Printer
Subroutine
2001 $PRET - - TYPEO Console Printer/Keyboard Console Printer/Keyboard
WRTYO - Device not on System - Use Trace Back Procedures
~ Invalid Function to analyze calling program
Specified
- Word Count zero or
negative
3000 $PRET System 1134/1055 PAPTZ PAPTI 1134/1055 - Device Not Ready [1134/1055 - Ready the Device
Subroutine PAPTX
PAPTN
$PST4 System 1134/1055 | PAPTZ PAPTI 1134/1055 - Device Not Ready |1134/1055 - Ready the Device
Subroutine PAPTX
PAPTN
3001 $PRET - - PAPT1 1134/1055 - Invalid Function 1134/1055 - Use Trace Back
PAPTX Specified Procedures to
PAPTN ~ Invalid Check Digit analyze calling
~ Word Count zero or program
negative
4000 $PRET System 2501/1442 READZ READO 2501 - Device Not Ready 2501 - Ready the Device
Subroutine READ1
$PST4 - READZ READO 2501 - Device Not Ready 2501 ~ Ready the Device
READ1 - Read Error - Run out the reader and
- Feed Check retry with last card read
and cards run out

116

Table 8. Error Number List (Continued)

~ Invalid Subfunction
Specified

4001 $PRET - - READO 2501 - lnvalid Function 2501 ~ Use Trace Back Procedures
READ1 Specified to analyze calling program
- Word Count over +80
- Word Count zero or
negative
5000 $PRET DISKZ DISKZ DISKZ Disk -~ Device Not Ready Disk - Ready the Device
DISK1
DISKN
5001 $PRET - - DISK1 Disk - Invalid Device Specified | Disk - Use Trace Back Procedures
DISKN - Device not in System to analyze calling program
- Invalid Function
Specified
- Area to be written
File-protected
- Word Count zero or
negative
- Starting Sector Address
over +1599
$PST2 DISKZ DISKZ DISKZ Disk - Power Unsafe Disk = Turn power down, wait for
DISK1 - Write Select CARTRIDGE UNLOCKED
DISKN light to come on, turn
power up, then retry
- Call CE on persistent error
5002 $PST2 DISKZ DISKZ DISKZ Disk - 16 retrys made without Disk - Initiate 16 more retrys
DisK1 success - Use another drive
DISKN - Use another cartridge
- Reinitialize cartridge
5003 $PRET DISK1 - - Disk - Invalid Device Specified | Disk = Use Trace Back Procedures
DISKN - Device not in System to analyze calling program
- Invalid Function
Specified
- Area to be written
File-protected
- Word Count zero or
negative
- Starting Sector Address
over +1599
5004 $PST2 DISKZ DISKZ DISKZ Disk - Disk Error Disk = Turn power down, wait for
CARTRIDGE UNLOCKED
light to come on, turn
power up, then retry
- Call CE on persistent error
6000 $PRET System 1132 PRNTZ PRNTI 1132 - Device Not Ready 1132 - Ready the Device
Subroutine PRNT2 - End of Forms
PRNT3
6001 $PRET - . PRNTI 1132 ~'Invalid Function 1132 - Use Trace Back Procedures
PRNT2 Specified to analyze calling progrom
PRNT3 - Word Count over +60
- Word Count zero or
negative
7000 $PRET - - PLOT1 1627 - Device Not Ready 1627 - Ready the Device
$PST3 - - PLOTI 1627 - Device Not Ready 1627 - Ready the Device
7001 $PRET - = PLOTI 1627 - Invalid Device Specified| 1627 - Use Trace Back Procedures
- Device not on System to analyze calling program
- Invalid Function
Specified
- Word Count zero or
negative
8001 $PRET - - SCATI ~SCA - Invalid Function SCA - Use Trace Back Procedures
SCAT2 Specified to analyze calling program
SCAT3 - Invalid Word Count

Program Analysis Procedures

Table 8., Error Number List (Concluded)

8002 $PRET - - SCAT1 SCA - Receive operation SCA - Use Trace Back Procedures
not completed to analyze calling program
- Transmit operation
not completed
8003 $PRET - - SCAT1 SCA - Synchronization not SCA - Use Trace Back Procedures
established before to analyze calling program
attempting to perform
some Transmit or
Receive Operation
- Attempting to Receive
before receiving INQ
sequence
9000 $PRET System 1403 PRNZ PRNT3 1403 - Device Not Ready 1403 - Ready the Device
Subroutine - End of Forms
$PST4 System 1403 PRNZ PRNT3 1403 - Device Not Ready 1403 - Ready the Device
Subroutine ~ Print Error
9001 $PRET - - PRNT3 1403 - Invalid Function 1403 - Use Trace Back Procedures
Specified to analyze calling program
~ Word Count over +60
- Word Count zero or
negative
A000 $PRET - - OMPR1 1231 - Device Not Ready 1231 - Ready the Device
$PST4 - - OMPR1 1231 - Device Not Ready 1231 - Ready the Device
- Timing Mark Error - Retry with the sheet that
- Read Error has been selected into
the stacker
A001 $PRET - - OMPRY 1231 - Invalid Function 1231 - Use Trace Back Procedures
Specified to analyze calling program)
Table 9, Eror Stop List ARITHMETIC AND FUNCTION SUBPROGRAM
ERROR INDICATORS
Absolute Address| Symbolic Address| Program Explanation -~ 3 words preceding FAC.
/0014 _ Cold -Invalid disk drive number -- First word (XR3 + /007A) is used for real arith-
Start in Console Entry Switches metic overflow and underflow indicators.
Loader | oot disk drive not -- Second word (XR3 + /007B) is used for divide
check indicator.
/0044 - Cold]-Disk read error -- Third word (XR3 + /007C) is used for function
Start -Waiting for interrupt from . L
Loader seek operation subroutine indicators.
-- The loader initializes all three words to zero.
/0046 - Cold -Waiting for interrupt from
Start reading sector @IDAD
Loader
/0029 $PRET+1 All 1SSs |-Preoperative Error
LIBF TV (Library Function Transfer Vector)
/0082 $PSTI AT evel 1 |-Post-operative Eror on -- One 3-word entry for each LIBF listed in the
core map.
/0086 $PST2+1 evel 2. |-Post-operative Error on -- Located just preceding ARITH/FUNC ERROR
s eve
INDICATORS.
/008A $PST3+1 Level 3 |-Post-operative Error on -- Higher core end is located at XR3 + /0079,
ISS level 3 . i ' .
: eve -- First LIBF Entry (the beginning of LIBF TV) is
/008E $PST4 +1 Level 4 |-Post-operative Error on located at (XR3 + /0077) - (3 times the number
1555 level 4 of LIBFs listed in core map).

O,

@

®

®

COMMA, COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton Skeleton
Supervisor Supervisor Supervisor Supervisor
DISKZ DISKZ DISKZ DISK1
or
D
DEFINE FILE DEFINE FILE C ISKN
Table Table onstants,
Integers
Format
Arrays Arrays Parameters
Constants, Constants,
Integers Integers
Mainline Mainline
Format Format Program Program
Parameters Parameters
Mainline Mainline
Program Program
In-Core
Subroutines
In~Core In-Core
Subroutines Subroutines
In-Core
] Subroutines
F_I|_(l]pbp|v:r Interrupt
Level
Subroutines
FLIPR
Interrupt
LOCAL Level Interropt
Area Subroutines Subroutines
SOCAL
Area /
Interrupt
Level
Subroutines
LIBF TV LIBF TV LIBF TV
CALL TV CALL TV CALL TV /
COMMON COMMON COMMON LIBF TV
CALL TV

Figure 17. Core Layout During User Core Load Execution

LIBF TV SOCAL LINKAGE

-- The 6 or 9 words used to link to the SOCAL/
LOCAL Flipper.

-~ Located just preceding the First LIBF Entry in
the LIBF TV.

-- 6 words long if SOCAL option 1; 9 words long if
SOCAL option 2.

CALL TV (Call Transfer Vector)

-~ One single~word entry for each call listed in the
core map.

-- Located immediately following FAC.

-- First CALL TV Entry is at XR3 + /0080 (add 1 if
address comes out odd).

-- The Last CALL TV Entry is at (First CALL TV
Entry-1) - (Number of CALLs listed in the core
map).

DISK 1I/0 SUBROUTINE
-- All Disk I/O subroutines are loaded beginning
at CORE LOCATION /00F2.
-- The Disk I/0 subroutines vary in length (see table)
-- The type of disk subroutine in core is contained in
$DZ1N (see table)

Disk I/0 Location in First
Subroutine Core Word
Contents Currently First | Last of User's
of $DZ1N in Core Word | Word | Program
FFFF DISKZ /00F2 | /01DF| /O01FE
0000 DISK1 /00F2 | /0293 | /02B2
0001 DISKN /00F2 | /03A1 | /03CO

DFT (DEFINE FILE Table)
-- 7 words for each file defined by the user.
-- Located at 1 plus the end of the disk I/0 subroutine.

ARRAYS (In User's Program Area)
-~ Located immediately following DEFINE FILE
Table, if any.

CONSTANTS AND INTEGERS (In User's Program
Area)
-- Located immediately following ARRAYS, if any.

COMMON (The area at "End of Core'" defined by

COMMON statement)

-- Length of COMMON is contained in $COMN.

-- Start of COMMON is highest core address, (XFFF),
minus the Length of COMMON.

IN-CORE SUBROUTINES (subroutines that are in

core all the time)

~- Located immediately following user's mainline
program.

Program Analysis Procedures 119

-- Those subroutines listed in core map that are

not SOCALS or LOCALS are In-Core subroutines.

-~ The load address of these subroutines is listed
with subroutine name.

LLOCAL/SOCAL FLIPPER (FLIPR)
-- Load address given in core map under the head-
ing SYSTEM SUBROUTINES.

LOCAL AREA (The '"Load-on-Call" overlay area)

-- Size depends upon largest LOCAL subroutine
used.

-- Beginning core address is FLIPR + /0066.

-- Ending core address is address of SOCAL Area
minus 1.

SOCAL AREA (System overlay area)

-- Located immediately following LOCAL Area.

~- Beginning core address is found at FLIPR
+/004D.

-- The first word in SOCAL Area contains the
word count of SOCAL Area.

-- Ending core address is the beginning address
+ the word count of the SOCAL Area.

GENERALIZED SUBROUTINE MAINTENANCE/
ANALYSIS PROCEDURE

Flowdiagram 4 provides the procedure to be used for
detailed analysis of an I/O subroutine. The proce-
dure is applicable to FORTRAN device, general ISS,
and system device subroutines.

TRACE BACK PROCEDURES

Flowdiagram 5 provides the procedure to be used to
trace back from a failing subroutine to the preceding
portion of the core load, which called the subroutine.
This procedure can be used to trace all the way back
to the mainline program.

SUBROUTINE LOOPING CAPABILITIES

SYSTEM DEVICE SUBROUTINES

The linkages to system device subroutines are of
the form:

120

LDD LIST
BSI L ENTRY POINT

LIST DC PARAMETER
DC PARAMETER

To place the subroutine into a loop:

1. Obtain link word from the system device
subroutine.

2. The contents of this link word point to the loca-
tion following the long BSI instruction.

3. Insert into the location following the long BSI
instruction an MDX instruction back to the LDD
instruction.

LIBRARY SUBROUTINES (except 'Z' subroutines
and PLOTX)

The linkage to the System Library device subroutines
(ISSs) are of the following form:

LIBF CALL
BSI 3 TVDISP BSI I CALLTV
DC CONTROL DC CONTROL
DC ARG 1 DC ARG 1
DC ARGN DC ARGN

To place the subroutine into a loop:

1. Insert in the location following the last argument
an MDX instruction back to the BSI instruction.

2. Some of the arguments may have to be changed
to point to the BSI instruction because they are
error exits or busy addresses.

3. Refer to subroutine data charts for unique
operating characteristics.

Determine
Last
Function

Assumes Core
Location Pro-
cedures have
been done

Obtain Last
1OCC and
Parameters at

1/O Address

Valid
Parameters
at 1/0
Address

Did
Device
Perform
Correctly

Possible Device
Failure, Run
Diagnostics or
Loop Call

-

Yes

Test, Seek
Skip, Feed,
Space, efc

Valid
Parameters
at 1/O
Address

Caller

A
Examine Ar- Trace Back
guments in Procedures
Calling Se-
quence of

Go to
That Sub-
routine

y

Loop Sub-
routine

Looping
Capabilities

Check Logic
of Subroutine
for Incorrect
Flow

Examine
Device and

- No Invalid
WRITE Function
Yes
Valid
Arguments No
an
10CC
Yes
E Device
=rror Yes Failure,
.Blfs on Ron
in DSW Diagnostics
No]
v _
Loop Sub- Looping
routine Capabilities

Any

its DSW

Flowdiagram 4. Generalized Subroutine Maintenance/Analysis Procedure

Ovutstanding
Interrupts

Program Analysis Procedures

| Preceding

Determine

Function

121

Step

OO O

© O OO0

® © G

Flowdiagram 5.

122

Pro

cedure

Start
some

with
failing

Subroutine

This procedure assumes the user has already
analyzed the subroutine per Subroutine
Analysis Procedures and has blocked out

a core dump per Core Location Procedures.

Get the core map printed during program

loading

Multiple
entry points in

A core map is obtained by punching an
"L" in column 14 of the XEQ card if the
program being loaded is in disk system
format,

Get the symbolic en

try point from the

Subroutine Data Charts

Find the symbolic entry name in the core

map

'

Determine which function was being used]

Step 19

" This is the Core Load Address of that
entry point.

The subroutine type is obtained from the
Subroutine Data Charts

I

Add 2 to the Core Load Address obtained

instep 5

Get the contents of

the word located at

the address computed in step 8

Get the first word o
entry

f the transfer vector

Step 11

Trace Back Procedures

No
[J
The contents of the address [~ — =~ T The Ccre Load
derived in step 5 is the Link Address contains
Word back to the calling the Link Word
statement in the calling back to the
program caller.

This gives the address of the word that
points to the transfer vector.

" This gives the address of the transfer
vector.

T T T T T T T TThis is the Link Word back to the calling
statement in the calling subroutine.

Step Procedure

Continue now
having the ad-
dress of calling
statement

Now determine the name of the failing
subroutine,

Any
SOCALs No

in the core
ma/

Yes '

Match the address of the calling pro-
gram to the addresses in the core map

®

Step 17

Determine which overlay 1s in core.

Locate the SOCAL linkage words in the Use the Core Dump Analysis Procedures
core dump to locate SOCAL linkage words, 3 for

each overlay

-SOCAL LINKAGE-

® ©

AN L xxxx | xxxX | 70FX_| Overlay 3
The word group containing "FOFD" is XXXX | XXXX | 70FX Overlay 2
the overlay in core XXXX | XXXX | 70FX Overlay 1
-The overlay in core contains 70FD in
third word

-Overlays not in core contaln
70F4 2SOCAL level 2) or

70F7 (SOCAL |evz| 1) in I'hgrd wortli
T . - - Make a table of subroutines by overla:
Mark the core map to identify all sub- : 4 Y
@ routines in the incore overlay assignment
y
Match the address of the calling program
obtained in step 7 (CALL) or step 10
(LIBF) to the addresses marked instep 15
’ — — —— — —— N — — —
The address closest to and less than the You now have name of calling subroutine.
calling program's address identifies
the nome in core map
y

Analyze this subroutine using Subroutine
Analysis Procedures

Flowdiagram 5. Trace Back Procedures (Continued)

Program Analysis Procedures 123

wv
=

ONOBONO

®

Flowdiagram 5.

124

Procedure

Get the symbolic location of function
code from the Subroutine Data Charts

Find the symbolic location in the
subroutine listing

Get the relative address of the location
of function code

Get the load point address for this
subroutine from core map

Calculate core location of function
code

Get the function code from core dump
and decode with Subroutine Data Chart

Get the symbolic name for each function|
entry point from the Subroutine Data

Chart

Trace Back Procedures (Concluded)

The different entry points are related to
the various "functions" performed by the
subroutine.

Microfiche reference to subroutine list-
ing is given in Appendix D.

The address at the symbolic location
determined in step 20 is the relative
address.,

The relative address determined in step
21 plus the load point address determined
in step 22 gives the location of the
function code.

SUBROUTINE DATA CHARTS

SYSTEM DEVICE SUBROUTINE FOR KEYBOARD/CONSOLE PRINTER

Phase ID: @ KBCP

Used by: Monitor system programs
Subroutines required: I1LS04

Linkage:

LDD

BSI L

LIST

DC

DC

Preoperative input parameters:

LIST
KB000+1

FUNCTION CODE
1/0 AREA ADDRESS

. 1/0 Area
Function ACC EXT Address
Read, Convert, /7002 Address of 1/0 Word Count
Print Area
Postoperative conditions and entry points:
. Symbolic Return Interrupt Return Interrupt
Function at KB080 entry point address at entry point address at level
gi’;ft’ Convert, | /7002 KB000-+1 KB000+1 KB020+1 KB020+1
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from
Mainline symbolic location
Used X X X X
Significant variables:
Symbolic location Contents/Use

KB080

KB160

KB170
KB270

KB280

KB290

KB370 and KB370+1

Original word count.

Remaining word count.

The function is placed here.

Original I/0 area address.

Read/Print Control I0CC.

It becomes an MDX *+2 when executed.

Character buffer area, containing a 12-bit character read from the Keyboard, the
rotate/tilt code character printed, or a control character.

Data area pointer, pointing to the next word in the data area into which the EBCDIC
character will be placed.

Program Analysis Procedures

125

SYSTEM DEVICE SUBROUTINE FOR 1442/1442

Phase ID: @ 1442

Used by: Monitor system programs

Subroutines required: ILS04

Linkage: LDD
BSI

LIST DC
DC

L

LIST
CD000+1

FUNCTION CODE
1/0 AREA ADDRESS

Preoperative input parameters:

Function ACC EXT I/0 Area Address
Read /7000 Address of the I/0 No word count is used but an
Area 80 position area must be
specified.
Punch /7001 Address of the 1/0 No word count is used but an
Area 80 position area must be
specified.
Read /7002 Address of the I/O No word count is used but an
Area 80 position area must be
specified.
Feed /7003 Not used Not used
Postoperative conditions and entry points:
. Symbolic Return Interrupt Return Interrupt
Function at CD090 entry point address at entry point address at level
Read /7000 CD100+1 CD100+1 CD016+1 CD016+1 0
CD010+1 CD010+1 4
Punch /7001 CD000+1 CD000+1 CD016+1 CD016+1 0
CD010+1 CD010+1 4
Read /7002 CD000+1 CD000+1 CDO016+1 CDO016+1 0
CD010+1 CD010+1 4
Feed /7003 CD000+1 CD000+1 CD010+1 CD010+1 4

126

Register status:

ACC | EXT XR1 XR2 XR3 Status
Saved at/restored from
Mainline symbolic location CD120
Used X X
Saved at/restored from
Interrupt symbolic location CD190 CD190+1 CD018
level 0 Used X
Saved at/restored from
Interrupt symbolic location
level 4 Used X X X X X
Significant variables:
Symbolic location Contents/Use
CD120 First column indicator.
CD250 Current column address.
CD260 Second half of the last IOCC performed, read or punch.
CD230 Second half of the last IOCC performed, start read or punch.
CD188 Skip indicator; non-zero = take one feed cycle.
$LAST Last card indicator; non-zero = last card.
$CTSW Control card switch; non-zero = control card read.
$IBSY Busy indicator for 1442; non-zero = busy.

Program Analysis Procedures 127

SYSTEM DEVICE SUBROUTINE FOR 2501/1442

Phase ID: @ 2501

Used by: Monitor system programs

Subroutines required: ILS04
LDD
BSI

Linkage:

LIST

DC
DC

L

LIST
RP000+1

FUNCTION CODE
1/0 AREA ADDRESS

Preoperative input parameters:

Function AcCcC EXT 1/O Area Address
Read /7000 Address of I/0 Area Word count
Punch /7001 Address of 1/0 Area Not used
Read /7002 Address of 1I/O Area Word count
Feed /7003 Not Used Not used
Postoperative conditions and entry points:
. Symbolic Return Interrupt Return Interrupt
Function at RP360 entry point address at entry point address at level
Read /7000 RP000+1 RP000+1 RP020+1 RP020+1 4
Punch /7001 RP000+1 RP000+1 RP040+1 RP040+1 0
RP020+1 RP020+1 4
Read /7002 RP000+1 RP000+1 RP020+1 RP020+1 4
Feed /7003 RP000+1 RP000+1 RP020+1 RP020+1 4
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from RP440
Mainline symbolic location
Used X X
Saved ‘i‘.t/ nestored from | RP480 |RP480+1 RP060
i
Interrupt symbolic lo n
level 0 Used X
Saved at/restored from
Interrupt symbolic location
level 4 Used X X X

128

Significant variables:

Symbolic location

Contents/Use

RP500
RP520
RP600

RP200

$LAST

$CTSW

$IBSY

Current column address.
1/0 address for restart information.
Word count for 2501 Reader.
Device last used:
/1702 = 1442
/4F01 = 2501

Last card indicator; non-zero = last card.

Control card switch; non-zero = control card read.

Busy indicator; non-zero = busy.

Program Analysis Procedures

129

SYSTEM DEVICE SUBROUTINE FOR CONSOLE i’RINTER

Phase ID: @ CPTR
Used by: Monitor system programs
Subroutines required: ILS04

Linkage:

LIST

LDD

BSI L
DC

DC

LIST
CP000+1

FUNCTION CODE
1/0 AREA ADDRESS

Preoperative input parameters:

. I/0 Area
Function ACC EXT Address
Restore /7000
Write /7001 Address of 1/0 Word Count
Area
Skip /7002
Postoperative conditions and entry points:
Function at CP120 Symboli.c Return , I.nterrupt Return Interrupt
entry point address at entry point address at level
All CP000+1 CP000+1 CP020+1 CP020+1
Register status:
ACC EXT XR1 XR2 XR3 Status
o e trom
Mainline y
Used X X X X

130

Significant variables:

Symbolic location

Contents/Use

CP120

CP200

CP350

CP350+1

CP370

CP380

CP450

The function is placed here. This word is executed to decode the function.
/7000 is a MDX *
/7001 is a MDX * + 1
/7002 is a MDX * + 2
Carriage return counter, used for counting carriage returns for restore.
I0CC for printing on console.
CP350 contains address of CP450,

Actual word count of message not including trailing blanks,

Data area pointer, pointing to the word containing the 2 EBCDIC characters,
one of which is being printed.

Print character buffer word. The IOCC points to this word, which contains
the character or control character just printed.

Program Analysis Procedures

131

SYSTEM DEVICE SUBROUTINE FOR 1132

Phase ID: @1132
Used by: Monitor system programs
Subroutines required: ILSO01

Linkage: LDD LIST
BSI L PNO00O
LIST DC FUNCTION CODE
DC I/0 AREA ADDRESS

Preoperative input parameters:

. 1/0 Area
ACC
Function EXT Address
Print /7001 1/0 Area address | 0< word count
<80
Skip to Channel 1 /7000 1/0 Area is
referenced
Space Immediate /7002 Not used Not used
Postoperative conditions and entry points:
Function at PN380 Symbohfz Return Interrupt Return Iinterrupt
entry point address at entry point address at level
Print /7001 PN000+1 PN000+1 PN010+1 PNO10+1 1
Skip /7000 PN000+1 PN000+1 PNO010+1 PN010+1 1
Space /7002 PNO000O+1 PN000+1 PNO10+1 PN010+1 1
Register Status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from PN400+1 | PN400+3 | PN400+5
symbolic location
Mainline
Used X X X X X X
Saved at/restored from PN200 [PN200+1 | PN440+1 | PN440+3 | PN440+5 PN450
Interrupt symbolic location
level 1
Used X X X X X X

132

Significant variables:

Symbolic location

Contents/Use

PN040
PNO050
PN060
PNO070
PN080
PN090
PN100
PN110
PN120
PN130
PN150
PN170
PN180
PN370+1
PN460+1
PN470+1

$PBSY

$CHI12

Last emitter character read as a result of a read emitter response interrupt.
Second word of Sense-DSW-with-reset IOCC.

Last DSW sensed in interrupt.

Second word of Sense-DSW-with-no-reset IOCC.

First word of Read emitter IOCC, contains the address of location PN040,
Second word of Read emitter IOCC.

First word of Start Printer IOCC, also the idle scan counter.

Second word of Start Printer IOCC.

Print scan counter,

Second half of Stop Printer IOCC.

Second half of Start Carriage IOCC.

Second half of Stop Carriage IOCC.

First half of Stop Carriage IOCC and mask to check bits 3, 5, and 6 of Printer DSW,
Address of the 1/0 area.

Word count.

Address of message.

/0001 indicates 1/0O buffer is busy and 49 print scan cycles have not been
completed.

/0000 indicates routine may still be busy completing the 16 idle scans; however,
1/0 buffer is ready to accept new input.

Zero = Channel 12 has not been sensed.

Non~Zero = Channel 12 has been sensed and skip to channel 1 has not been
performed.

Program Amnalysis Procedures 133

SYSTEM DEVICE SUBROUTINE FOR 1403

Phase ID: @1403

Used by: Monitor system programs
Subroutines required: ILS04

Linkage:
BSI
DC
DC

LIST

LDD

L

Preoperative input parameters:

LIST
PRO00+1

FUNCTION CODE
1/0 AREA ADDRESS

. 1/0 Area
Function ACC EXT Address
Print 1 Line /7001 Address of 0 < word count < 60
1/0 Area
Skip /7000 Address of 1/0 Area is
1/0 Area referenced
Space Immediate /7002 Not used Not used
Postoperative conditions and entry points:
Function at PR150 1/0 Area Location Symboh‘c Return I:nterru.['zt
word count reference entry point address at entry point
Print /7001 Non-Zero PR000+1 PR0O00+1
Skip /7000 Not used
Space /7002 Not Used
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from PR230+1 | PR240+1 | PR250+1
v symbolic location
Mainline
Used X X X X X X

134

Significant variables:

Symbolic location

Contents/Use

PR140

PRO80
PRO80+1

PR110

PR300
PR300+1

PR090
PR0O90+1

PR290+1

PRO60

PRO70
PR110
PR330
$PGCT

$CHI2

$PBSY

A NOP after the following areas have been adjusted to the correct address as a
result of relocation:
PR300
PR500+1
PR180+2
PR280+2
PR170+1
PR220+2
PR080
PR400+1
PR430+1

First word of Print IOCC, contains address of print buffer.
Second half of Print IOCC.

Second half of Sense-without-reset IOCC.

First word of Skip~to-channel-12 IOCC,
Second word of Skip-to-channel-12 IOCC,

First word of Space immediate IOCC,
Second word of Space immediate IOCC.

Address of the user's I/0 area.

Storage location for the last DSW sensed during interrupt; also, first word of
Sense-DSW-with-reset IOCC.

Second word of Sense-DSW-with-reset IOCC.
Second word of Sense-DSW-without-reset IOCC.
60-word buffer from which the line is printed.
Binary page count, where 0 < page count < 32767

Channel 12 switch indicating channel 12 detected in DSW during interrupt;
not reset until a skip to channel 1 is requested by the user.

Printer busy switch, modified during execution of routine.

($PBSY) Zero: routine and printer not busy.

= Positive: transmission to printer is in progress; transmission
complete has not been received; subroutine I/0 buffer is busy.

= Negative: transmission complete has been received; subroutine

1/0 buffer can now be set up with new message.

Program Analysis Procedures

135

SYSTEM DEVICE SUBROUTINE FOR 1134/1055

Phase ID: @ 1134

Used by: Monitor system programs

Subroutine required: none
Linkage: LDD
BSI L

LIST DC
DC

Preoperative input parameters:

LIST
PT000+1

FUNCTION CODE
1/0 AREA ADDRESS

1/0 Area
i E

Function ACC XT Address
Read with con- /7000 Address of I/0 Area Word Count
version
Punch /7001 Address of I/0O Area Word Count
Read without /7002 Address of 1/0 Area Word Count
conversion

Postoperative conditions and entry points:
Function at PT060 Symboll.c Return Interrupt Interrupt
entry point address at entry point level
Read with con- /7000 PT000+1 PT000+1 PT010+1
version
Punch /7001 PT000+1 PT000+1 PT010+1
Read without /7002 PTO000+1 PT000+1 PT010+1
conversion
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from
Mainline | symbolic location
Used X X X

136

Significant variables:

Symbolic location Contents /Use
PT000+1 Return address to caller from main line.
PT010+1 Return address from interrupt.

PT060 Function code, executed as follows:

/7000 = MDX *
/7001 = MDX *+1
/7002 = MDC *+2

PT340 Data area pointer,

PT360 Remaining word count.

PT370 Switch used for reading or punching: /0001 = punch, /0002 = read.
PT380 Switch used to indicate if conversion of information read is needed:

zero = no conversion,
non-zero = conversion.

PT460 and PT460+1 | IOCC for read and punch,
PT480 Data buffer. The character to be read or punched is contained here.

PT500 Counter for counting first 3 characters,

Program Analysis Procedures 137

SYSTEM DEVICE SUBROUTINE FOR DISK -- DISKZ

Phase ID: @DZID

Used by: Monitor system programs
Assembler Language programs
FORTRAN programs

Subroutines required: ILS02

Linkage: LDD LIST
BSI L DZ000
LIST DC FUNCTION CODE
DC 1/0 AREA ADDRESS

Preoperative input parameters:

] 1/0 Area 1/0 Area
Function ACC EXT Address Address + 1
Read /7000 or Address of the 0 < word count Drive code and
/0000 1/0 Area (must | < length of defined | sector address
be even) data area
Write /7001 Address of the 0 < word count Drive code and
1/0 Area (must < length of area sector address
be even) to be written
on disk
Find /0000 Address of the /0000 Drive code and
1/0 Area (must sector address
be even)
Postoperative conditions and entry points:
Function at DZ945 Symbohf: Return Interrup.)t Return Ig‘terrupt
entry point address at entry point address at level
Read /0000 DZ000 DZ100+5 DZ150 DZ150 2
Write /0100 DZ000 DZ100+5 DZ150 DZ150 2
Find /0000 DZ000 DZ100+5 DZ150 DZ150 2
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved a_t/resto?ed from DZ100+1 | DZ100+3
. s symbolic location
Mainline
Used X X X X X

138

Significant variables:

Symbolic location Contents/Use
DZ350+1 Address of the word in COMMA containing the current position of the heads on the
referenced disk,
DZ230+1 Address of the first word of the 1/O Area.
ClC(DZ230+1)] = originally requested word count
CIC(DZ230+1) + 1] = originally requested sector address
DZ904 and First and second words of the last IOCC performed (excluding sense DSW),
DZ905
DZ908 and First and second words of forced-Read after-Seek IOCC.
DZ909
DZ901 Sector address of previously executed forced Read.
DZ906 and IOCC developed for user-requested function.,
DZ907
DZ975 Second word of Read-Back-Check I0CC.
DZ912 Word count remaining to be read or written from original,
DZ913 Next sector to be read or written.
DZ910 Second word of Seek 10CC,

Program Analysis Procedures 139

CARDZ

Flowcharts: FIO04-05
Used by: SFIO
Subroutine required: HOLEZ, ILS01, 1LS04
Linkage: LIBF CARDZ (BSI 3 TV DISP)
where ACC = FUNCTION CODE
XR1 = 1/0 AREA ADDRESS
XR2 = WORD COUNT

Peroperative input parameters:

Function ACC XR1 XR2
Read /0000 1/0 Area Address Word Count
Write /0002 I/0 Area Address | Word Count
Postoperative conditions and entry points:
. Symbolic Return Interrupt Return Interrupt
CZ912
Function at entry point address at entry point address at level
Read /0000 CARDZ LIBF TV link CZ100 CZ100 1
word (column) {column)
Write /0002 CARDZ LIBF TV link CZ110 CZ110 4
word (op complete) | (op complete)
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from
Mainline symbolic location
Used X X X X X

140

Significant variables:

Symbolic location

Contents/Use

CZ904
CZ904+1

CZ902

CZ923
CZ925
CZ920

CZ010

$RWCZ

CZ913

CZ918-3
thru
CZ918

Start read or punch IOCC, set by program depending on function used to
initiate operation.

If read, CZ904 + 1 = CZ906 + 1

If write, CZ904 + 1 = CZ908 + 1

Read or Punch IOCC, set by program depending on function to read or punch
columns,

If read, CZ902 + 1 = CZ906

If write, CZ902 + 1 = CZ908

Address pointer to I/0 area, incremented on each column interrupt.
Original I/O area address -1.
DSW is saved here on an operation-complete interrupt.
Switch used for waiting for interrupt:
Set positive when waiting for any interrupt.
Set zero when column interrupt occurs.
Set negative when op-complete interrupt occurs.
Previous operation switch:
/0000 = previous operation was a read.

/0002 = previous operation was a write,

If a write function is to be performed and the previous operation was a write,
this switch causes CARDZ to read a card and test for // in columns 1-2.

Switch used to test for // card before writing on it; zero means only reading
or previous operation before write was a read.

Buffer area for saving first 3 columns; rest of card is read into fourth word
when reading before write.

Program Analysis Procedures

141

PNCHZ

Flowchart: FIO11
Used by: SFIO
Subroutines required: HOLEZ, ILS01, 11S04
Linkage: LIBF PNCHZ (BSI 3 TV DISP)
where ACC = FUNCTION CODE
XR1 = 1/O0 AREA ADDRESS
XR2 = WORD COUNT

Preoperative input parameters:

Function ACC XR1 XR2
Write /0002 1/0 Area Address Word (character) count
of 80
Postoperative conditions and entry points:
Function Symbolic Return Interrupt Return Interrupt
’ entry point address at entry point address at level
Write PNCHZ LIBF TV link | PZ060 PZ060 0
word (column)
PZ080 PZ080 4
(op complete)
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from
Mainline symbolic location
Used X X X X X

142

Significant variables:

Symbolic location Contents/Use
PZ340 Address pointer to 1/0 area; First word of Punch IOCC, Incremented on
each column interrupt.
PZ340+1 Second word of Punch I0CC.
PZ360 and Feed IOCC for initiating punch operation.
PZ360+1
PZ400 Error display indicator.
PZ400+1 Second word of last card feed IOCC.
PZ120+1 Original I/O area address.
PZ040 Switch used for waifing for operation -- complete interrupt:

zero = op complete interrupt has occurred
non-zero = waiting for op-complete

Program Analysis Procedures 143

READZ

Flowchart:

F1008

Used by: SFIO
Subroutines required: HOLEZ, ILS04

Linkages:

LIBF READZ (BSI 3 TV DISP)

where XR1 =1/0 AREA ADDRESS

Preoperative input parameters:

Function

XR1

Read

1/0 Area Address

Postoperative conditions and entry points:

Function Symbolic Return Interrupt Return Interrupt
entry point address at entry point address at level
Read READZ LIBF TV RZ060 RZ060 4
link word
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from
Mainline symbolic location
Used X X X X X
Significant variables:
Symbolic location Contents/Use

non-zero = waiting for interrupt
zero = set by occurrence of interrupt

RZ360 1/0 Area Address; also, first word of Read IOCC.
RZ360+1 Second word of Read IOCC.
RZ380 Switch used for interrupt processing:

144

TYPEZ

Flowchart: FIO12

Used by: SFIO

Subroutines required: HOLEZ, GETAD, 1LS04

Linkage: LIBF TYPEZ (BSI 3 TV DISP)
where ACC = FUNCTION CODE
XR1 =1/0 AREA ADDRESS
XR2 = WORD COUNT
Preoperative input parameters:
Function ACC XR1 XR2
Read /0000 1/0 Area Address Word count, set to 80 by
TYPEZ
Write /0002 1/O Area Address Character count

Postoperative conditions and entry points:

. Symbolic Return Interrupt Return Interrupt
Function at Kz910 entry point address at entry point address at level
Read /0000 TYPEZ TYPEZ+2 KZ7Z100 KZ100 4
Write /0002 TYPEZ TYPEZ+2 KZ100 KZ100 4
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from
Mainline symbolic location
Used X X X X
Significant variables:
Symbolic location Contents/Use
KZ911 Original character count plus one.
KZ210+1 Original 1/0 area address.
K7Z910 Read-Write function indicator word.
KZ906 I0OCC used to print characters from KZ914.
KZ914 Buffer word used to hold character to be printed.
KZ913 Saved DSW from Sense-with-reset in interrupt routine.
KZ900 I0CC used to read Keyboard character into I/O area.
KZ902 I0OCC used to release Keyboard.
KZ912 Number of remaining characters to be typed. (Each character read is typed.)

Program Analysis Procedures

145

WRTYZ

Flowchart: FIO09
Used by: SFIO
Subroutines required: GETAB, EBCTR, ILS04
Linkage: LIBF WRTYZ (BSI 3 TV DISP)
where XR1 =1/0 AREA ADDRESS
XR2 = WORD COUNT

Preoperative input parameters:

Function

XR1

XR2

Write

I/0 Area Address

Character Count

Postoperative conditions and entry points:

Function Symbolic Return Interrupt Return Interrupt
entry point address at entry point address at level
Write WRTYZ WRTYZ+2 TZ100 TZ100 4
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from
Mainline symbolic location
Used X X X X
Significant variables:
Symbolic location Contents/Use

TZ907 Number of characters remaining to be printed.
TZ908 Output buffer for printing character.
TZ902 IOCC used to print character out of TZ908.

146

PRNZ

Flowchart: FIO10
Used by: SFIO
Subroutines required: ILS04
Linkage: ILIBF PRNZ (BSI 3 TV DISP)
where XR1 =1/0 AREA ADDRESS
XR2 = WORD COUNT

Preoperative input parameters:

Function XR1 XR2

Print 1/0 Area Address Word count, including 1 for
carriage control character

Postoperative conditions and entry points:

Function Symbolic Return Interrupt Return Interrupt
entry point address at entry point address at level
Print PRNZ PRNZ+2 INTZ INTZ 4
Register status:
ACC EXT XR1 XR2 XR3 Status

Saved at/restored from

Mainline symbolic location

Used X X X X X

Significant variables:

Symbolic location Contents/Use
PRNT First word of Print IOCC, Address of output area.
SIO+1 Address for store after character conversion.
COUNT Counter for character conversion.
TABL EBCDIC-to-1403-Printer-code conversion table,
TRCSW Transfer complete switch: zero = transfer complete.
CHAR EBCDIC character being converted.

Program Analysis Procedures 147

PRNTZ

Flowchart: FIO06
Used by: SFIO

Subroutines required: ILS02

Linkage:

LIBF

PRNTZ

(BSI 3 TV DISP)

where XR1 =1I/0 AREA ADDRESS
XR2 = WORD COUNT

Preoperative input parameters:

Function

XR1

XR2

Print

Output buffer address (first char-

acter is carriage control)

Word count, including carriage

control character.

Postoperative conditions and entry points:

Function Symbolic Return Interrupt Return Interrupt
' entry point address at entry point address at level
Print PRNTZ PRNTZ+2 AZ100 AZ100 2
Register status:
ACC EXT XR1 XR2 XR3 Status

Saved at/restored from

Mainline symbolic location
Used X X X X X
Saved at/restored from

Interrupt symbolic location

level 2

Used

148

Significant variables:

Symbolic location

Contents/Use

AZ150+1

AZ919

AZ900

AZ922

AZ914

AZ924

AZ918

Address of first data word in output buffer.

Word count.

Interrupt exit switch:
+ , if line is complete
-, if idles complete
0 , if waiting

Space counter (positive number of spaces).

DSW storage.
Scan counter (print).

Emitter-character storage.

Program Analysis Procedures 149

PAPTZ

Flowchart: FIO07

Used by: SFIO

Subroutine required: ILS04
Linkage: LIBF PAPTZ

where

Preoperative input parameters:

(BSI 3 TV DISP)
ACC = FUNCTION CODE

XR1 =1/0 AREA ADDRESS

XR2 = WORD COUNT

Function ACC XR1 XR2
Read /0000 Address of I/O Area Word count, set to 120
by PAPTZ
Write /0002 Address of 1/0 Area Word count

Postoperative conditions and entry points:

.) Symbolic Return Interrupt Return Interrupt
Function at BZ924 entry point address at entry point address at level
Read /0000 PAPTZ PAPTZ+2 BZ100 BZ100 4
Write /0002 PAPTZ PAPTZ+2 BZ100 BZ100 4
Register status:
ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

Used

150

Significant variables:

Symbolic location Contents/Use
BZ924 Read/Write indicator.
BZ929 Number of words remaining to be read or punched.
BZ300+1 Address of 1/0 Area.
BZ010 Routine busy indicator: zero, no interrupt waiting to be processed; non-

zero, an interrupt waiting to be processed.

BZ902 IOCC used to Start paper tape reader.
BZ904 IOCC used to Read paper tape.
BZ925 Read area for BZ904, Read paper tape IOCC.

Write area for BZ906, Punch paper tape IOCC,
BZ926 DSW from sense-with-reset in interrupt subroutine.
BZ906 IOCC used to Punch paper tape.

Program Analysis Procedures 151

CARDO

Used by: Assembler Language programs
Subroutines required: ILS00, ILS04

Linkage: LIBF CARDO (BSI 3 TV DISP)
DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3 I/0O Area Address
Test /0000 Return to this word if Return to this word if not Not used
busy busy
Read /1000 1/0 Area Address NSI Word count
Punch /2000 1/0 Area Address NSI Word count
Feed /3000 Not used NSI Not used
Stack /4000 Not used NSI Not used
Postoperative conditions and entry points:
. Symbolic Return Interrupt Return Interrupt
Function at CA20 entry point address at entry point address at level
Test CARDO CA34+1
Read /7000 CARDO CA34+1 INT1 INT1 0
INT2 INT2 4
Punch /7001 CARDO CA34+1 INT1 INT1 0
INT2 INT2 4
Feed /7002 CARDO CA34+1 INT2 INT2 4
Stack /7003 CARDO CA34+1
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from | oo CA30+1 | CA31+1 CA32
. symbolic location
Mainline
Used X X X

Significant variables:

Symbolic location Contents/Use
COUNT Number of words left to be transferred.
COLM Address being transferred to or from.
RSTRT Word count for restart.
RSTRT+1 Starting address for restart.
BUSY Busy indicator; non-zero = busy.
CHAR ' Second half of the Sense DSW IOCC that was last executed.
ERROR Skip indicator; non-zero = feed a card.

Program Analysis Procedures 153

CARD1

Used by: Assembler Language programs
Subroutines required: ILS00, ILS04

Linkage: LIBF CARDl1 (BSI 3 TV DISP)
DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARGS3 1/0 Area Address
Test /0000 Return to this word if | Return to this word Not used
busy if not busy

Read /1000 1/0 Area Address Address of user Word count

error routine
Punch /2000 1/0 Area Address Address of user Word count

error routine
Feed /3000 1/O Area Address Address of user Not used

error routine
Stack /4000 Not used Not used Not used

Postoperative conditions and enter points:
. ; Symbolic Return Interrupt Return Interrupt
Function at CR24+1 entry point address at entry point address at level
Test CARD1 EXIT+1
Read /0001 CARD1 EXIT+1 INT1 INT1 0
INT2 INT2 4
Punch /0002 CARD1 EXIT+1 INT1 INT1 0
INT2 INT2 4

Feed /0003 CARD1 EXIT+1 INT2 INT2 4
Stack /0004 CARD1 EXIT+1

154

Register status:

ACC EXT XR1 XR2 XR3 Status
Saved at/restored from | ppoyn | GRgost | CR44+1 CR46
. symbolic location
Mainline
Used X X

Significant variables:

Symbolic location

Contents/Use

RESTR

RESTR+1

RESTR+2

ERROR

INDIC

INIT

COLM

COUNT

CHAR

Count information for restart.

1/0 area address for restart,

Address of error routine; also, busy indicator.

Skip indicator; non-zero = feed a card.

Feed check at read station indicator; non-zero = feed check,
Last initiate command given.

Address being transferred to or from.

Number of words to transfer.

Second half of the Sense DSW IOCC used.

Program Analysis Procedures 155

READO

Used by: Assembler Language programs

Subroutines required: ILS04

Linkage:
DC
DC

LIBF READO
ARG1
ARG2

Preoperative input parameters:

(BSI 3 TV DISP)

Function ARG1 ARG2 1/0 Area
Test /0000 Return to this word if busy Not used
Read /1000 Address of word count Word count
Feed /1000 Address of word count Word count

(must be zero)

Postoperative conditions and entry points:

Functi Symbolic Return Interrupt Return Interrupt
unction entry point address at entry point address at level
Test READO RE180+1
Read READO RE180+1 RE048 RE048 4
Feed READO RE180+1 RE048 RE048 4

Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from RE324 RE144+1 | RE156+1 RE168
s symbolic location
Mainline
Used X X
Significant variables:
Contents/Use

Symbolic location

RE228

RE264

1/0 area address.

Busy indicator; non-zero indicates busy.

156

READ1

Used by: Assembler Language programs
Subroutines required: ILS04
Linkage: @ LIBF READ1 (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3 1/0 Area Address
Test /0000 Return to this word if busy | Return to this word if not Not used
busy
Read /1000 1/0 Area Address Address of user's error Word count
routine
Feed /1000 1/0 Area Address Address of user's error Word count
routine (must be zero)

Preoperative conditions and entry points:

Function Symbolic Return Interrupt Return Interrupt
entry point address at entry point address at level
Test READ1 RE180+1
Read READ1 RE180+1 RE048 RE048 4
Feed READ1 RE180+1 RE048 RE048 4
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from RE324 RE144+1 | RE156+1 RE168
- symbolic location
Mainline
Used X X
Significant variables:
Symbolic location Contents /Use
RE228 Busy indicator; non-zero indicates busy.
RE264 1/0 Area address.
RE360+2 Address of user's error routine for read error.
RE370+2 Address of user's error routine during last card.

Program Analysis Procedures

157

PNCHO

Used by: Assembler Language programs
Subroutines required: ILS00, ILS04

Linkage: LIBF PNCHO
DC ARGl
DC ARG2
DC ARG3

(BSI 3 TV DISP)

Preoperative input parameters:

Function ARG1 ARG2 ARG3 I/0 Area Address
Test /0000 Return to this word if busy | Return to this word if not Not used
busy
Punch /2000 Address of 1/0 Area Return to this word Word count
following call
Feed /3000 Not used NSI Not used
Postoperative conditions and entry points:
. Symbolic Return Interrupt Return Interrupt
Function at cA20 entry point address at entry point address at level
Test PNCHO CA34+1
Punch /7001 PNCHO CA34+1 INT1 INT1 0
INT2 INT2 4
Feed /7002 PNCHO CA34+1 INT2 INT2 4
Register status:
ACC EXT XR1 XR2 XR3 Status
Savesof‘itc/ 1;22;:::1? from | pyvp CA30+1 | CAS31+1 CA32
Mainline ym
Used X X

158

Significant variables:

Symbolic location

Contents/Use

CHAR

COLM

BUSY

COUNT

ERROR

RSTRT

RSTRT

Second half of DSW last sensed.
Address being punched from.
Non-zero indicates bﬁsy.

Number of columns to be punched.
Non-zero indicates feed a card (SKIP),
Word count for restart.

Data address for restart.

Program Analysis Procedures

159

PNCH1

Used by: Assembler Language programs
Subroutines required: ILS00, I1LS04

Linkage:
DC
DC
DC

LIBF PNCHI1
ARG1
ARG2
ARGS3

(BSI 3 TV DISP)

Preoperative input parameters:

Function ARG1 ARG2 ARG3 1/0 Area Address
Test /0000 Return to this word if busy. Return to this word if not Not used
busy
Punch /2000 Address of 1/0 Area Address of user's error Word count
routine
Feed /3000 Not used Address of user's error Not used
routine
Postoperative conditions and entry points:
. Symbolic Return Interrupt Return Interrupt
Function —at CA20 entry point address at entry point address at level
Test PNCH1 CA34+1
Punch /7001 PNCH1 CA34+1 INT1 INT1 0
INT2 INT2 4
Feed /7002 PNCH1 CA34+1 INT2 INT2 4
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from | 1oy CA30+1 | CA31+1 CA32
. symbolic locations
Mainline
Used X X

160

Significant variables:

Symbolic location

Contents/Use

CHAR

COLM

BUSY

COUNT

ERROR

INDIC

RSTRT

RSTRT+1

RSTRT+2

Second half of Sense DSW IOCC.
Address being punched from.

Busy indicator; non-zero = busy.
Number of columns to punch.
Non-zero indicates feed a card (SKIP).
Read station feed check if non-zero.
Word count for restart.

Data address for restart.

Address of user's error routine,

Program Analysis Procedures

161

TYPEO

Used by: Assembler Language programs
Subroutine required: ILS04

Linkage: LIBF TYPEO
' ARG1
ARG2

DC
DC

Preoperative input parameters:

(BSI 3 TV DISP)

Function ARG1 ARG2 1/0 Area Address
Test /0000 Return to this word if opera-
tion is not complete
Read-Print /1000 I/O Area Address Word Count
Print /2000 1/0 Area Address Word Count
Postoperative conditions and entry points:
. Symbolic Return Interrupt Return Interrupt
Function at TY24 entry point address at entry point address at level
Test TYPEO EXIT+1
Read Print /7000 TYPEO EXIT+1 INT1 INT1 4
Print /7001 TYPEO EXIT+1 INT1 INT1 4
Register status:
ACC EXT XR1 XR2 XR3 Status
o Saved at/restored from | o,y 0 | gavaqer | saviel | savesr SAVST
Mainline symbolic locations
Used X X X

162

Significant variables:

Symbolic location

Contents/Use

TY24

READ

READ+1

RSTRT+1

RSTRT+2

COUNT

PRINT

INTT

DSWRD

RIGHT

TEMPI

TY90+1

TY92+1

Functional branch instruction:
/7000 = MDX * if Read/Print.
/7001 = MDX *+1 if Print.

Pointer to data input area.

Last half of Read IOCC.

Data area address.

Word count.

Contents depend on the function:
/7000 -~ number of words remaining to be read.
/7001 - count of remaining characters to be printed, initially set to twice the
word count.

IOCC used to print character from TEMPI.
I0CC used to release keyboard.
Device status word from sensing device in interrupt routine.
Switch indicating which character in TEMPI will be used next:
/0000 = Use right character
/0001 = Go get next word from data area and use left character.
Contents depend on the function:
/7000 - rotate/tilt character converted from hollerith input character from
keyboard. Character is printed on console from this area.
/7001 - Temporary storage for printing a character (high order 8 bits was last
character printed),

Address of Hollerith table.

Address of Rotate/Tilt character table.

Program Analysis Procedures 163

PRNT1

Used by: Assembler Language programs
Subroutines required: ILS01

Linkage: LIBF

DC
DC
DC

PRNT1
ARG1
ARG2
ARG3

(BSI 3 TV DISP)

Preoperative input parameters:

Function ARG1 ARG2 ARG3
Test /0000 Returns to this word if Returns to this word if routine
routine is busy is not busy
Print /20X0 1/0 Area Address Error routine address
X = space control
0 , space after print
1, suppress space
Control /3XY0 Return to this word.
Carriage X = immediate control
Y = after print control
Print /40X0 1/0 Area Address Error routine address
Numeric X = space control
0 , space after print
1, suppress space

Postoperative conditions and entry points:

Function at PARL ei?xgbgii;t ang:Zg at enmtgr:zip rtt acﬁi‘f: sr: at hiiiiﬁu >
Test PRNT1 EXIT+1
Print /02X0 PRNT1 EXIT+1 INT1 INT1 1
Control Carriage /3XY0 PRNT1 EXIT+1 INT1 INT1 1
Print Numeric /40X0 PRNT1 EXIT+1 INT1 INT1 1

164

Register status:

ACC EXT XR1 XR2 XR3 Status
Saved at/restored from
Mainline symbolic location AQ AQ+1 FC58+1 | FC58+3 FC58+5
Used X X X X X
Saved at/restored from
Interrupt symbolic location OUT+1
level 1 Used X X
Significant variables:
Symbolic location Contents /Use
ILLGL+1 Address of call +1.
NEGWD 2's complement of the word count.
CLEAR Last entry to the clear print buffer routine.
DSW DSW from the last interrupt.
SPSK Space count if (-). Skip if (+). _ Compare for skip response interrupt.
PASS Interrupt switch.
FC16+1 Address of call +2,
STRE3+2 Address of call +3,
SCAN+1 End of the I/0 area.
CTRA48 Scan counter to determine when line is complete,
CTR16 Counter for 16 idles,

Program Analysis Procedures 165

PRNT3

Used by: Assembler Language programs
Subroutines required: ILS04
Linkage: LIBF PRNT3 (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3
Test /0000 Return to this word if Return to this word if not
busy busy
Print /20Z0 Address of 1/O Area

Z = space control
1, space suppressed
0, space after print

Control /3XY0
X = immediate control
Y = control after print

Postoperative conditions and entry points:

Function Symbolic Return Interrupt Return Interrupt
entry point address at entry point address at level
Test PRNT3 W3160+1
Print Third digit at PRNT3 W3160+1 w3020 w3020 4
W3540
Control | Third digit at PRNT3 W3160+1 w3020 w3020 4
W3540
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from W3520 | WS3520+41 | W3100+1 | W3120+1 W3140
s symbolic location
Mainline
Used X X ' X X X

166

Significant variables:

Symbolic location Contents/Use
W3540 First word of the Sense-DSW-without-reset IOCC; also, Carriage control
character.
W3540+1 Routine busy switch, non-zero indicates the routine is processing a message.
w3920 First word of 60-word output buffer.
W3900 DSW in interrupt, except carriage interrupt; also carriage control in interrupt.
W3260+1 Address of user output area.

Program Analysis Procedures 167

PAPT1

Used by: Assembler Language programs

Subroutines used:
LIBF

Linkage:
DC
DC
DC

I1L.S04
PAPT1
ARG1
ARG2
ARG3

Preoperative input parameters:

(BSI 3 TV DISP)

Function ARG1 ARG2 ARG3 1/0 Area Address
Test /0000 Return to this word if | Return to this word if
the operation is not previous operation is
complete complete
Read /1X00 1/0 Area Address Address of user error | Word count (1/2 the
X=0, Check routine number of char-
X=1, No check acters)
Punch /2X00 1/0 Area Address Address of user error | Word count (1/2 the
=0, Check routine number of char-
X=1, No check acters)
Postoperative conditions and entry points:
. Symbolic Return Interrupt Return Interrupt
Function at DEVIC entry point address at entry point address at level
Test PAPTI1 RET+1
Read /0002 PAPT1 RET+1 INT1 INT1 4
Punch /0001 PAPT1 RET+1 INT1 INT1 4
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from
- symbolic location SAVA XRL+1 XRL+2
Mainline
Used X X X

168

Significant variables:

Symbolic location Contents/Use °

DEVLC Function indicator:
/0002 = Read.
/0001 = Punch,

CHECK Switch for controlling checking function:
/FF00 = Do not check. -
/0000 = Check for a Delete or Stop character.

WDCNT Count of remaining words,
IOAR Data area pointer.
USERR+2 " Address of user error roﬁtine.‘
BUF Temporary storage for word containing 2 charactei‘s to be punched.
SENSE ~ Sense DSW for paper tape.
" READS I0CC for starting paper tape reader.
IOCC : o Réad or punch control word.
CHART ' Character switch:

(Punch) Even Both characters in the word have been punched, go get

the next character.

Odd = Punch the right character.
. (Read) Even = Second character of word was just read.
Odd = First character of word was just read.

Program Analysis Procedures 169

PAPTN

Used by: Assembler Language programs
Subroutine required: I1.S04

LIBF
DC
DC
DC

Linkage:

PAPTN
ARG1
ARG2
ARG3

Preoperative input parameters:

(BSI 3 TV DISP)

Function ARG1 ARG2 ARG3 1/0 Area
Address
Test /0000 Return to this word if Return to this word if
Test reader the previous operation previous operation is
/0001 is not complete complete
Test punch
Read /1X00 1/0 Area Address Address of user Word count
=0, Check error routine (1/2 the number)
X=1, No check of characters)
Punch /2X00 1/0 Area Address Address of user Word count
X=0, Check error routine (1/2 the number
X=1, No check of characters)

Postoperative conditions and entry points:

Function Symbolic Return Interrupt Return Interrupt
entry point address at entry point address at level
Test PAPTN RET+1
Read RDTBL PAPTN RET+1 INTN INTN 4
Punch PNTBL PAPTN RET+1 INTN INTN 4
Register status:
ACC EXT XR1 XR2 XR3 Status
Mainline i?rvm?lfoi‘:c/ Iiszm:f rom SAVA XR1+1 XR2+1 XR2+2
Used X X X X

170

Significant variables:

Symbolic location

Contents/Use

CHECK
WDCNT
RWDCT

IOAR
RIOAR

USERL1
RUSE1

BUF
RBUF

Index Register 2
I0CC

READS

CHAR

(RCHAR)

SENSR

RIOCC

10CC2

/0000 = Check for a Delete or Stop character.
/FF00 = Do not check.

Number of words remaining to be punched.
Number of words remaining to be read.

Address pointer to user data area (punch).
Address pointer to user data area (read).

Address of user error routine (punch).
Address of user error routine (read).

Temporary storage for word to be punched.
Temporary storage for word to be read into.

Address of RDTBL, if reading.
Address of PNTBL, if punching.

IOCC used for punching a character.
IOCC used to start tape reader.

Switch used to indicate which half of the word is to be used:

Even = Both characters in word used.
0Odd = First character of word was used.

DSW received from Sense-with~reset IOCC.
IOCC used to read paper tape.

IOCC used to punch a Delete character.

Program Analysis Procedures

171

PLOT1

Used by: Assembler Language programs

Subroutines used:

Linkage: LIBF
DC
DC
DC

ILS03
PLOT1
ARGl
ARG2
ARG3

Preoperative input parameters:

(BSI 3 TV DISP)

Function ARG1 ARG2 ARG3 1/0 Area Address
Test /0000 Return here if routine Return here if routine Not used
busy not busy
Plot /1000 1/0 Area Address Address of user's Word count
error routine

Postoperative conditions and entry points:

Function Symbolic Return Interrupt Return Interrupt
entry point address at entry point address at level
Test PLOT1 RET+1
Plot PIOT1 RET+1 INT1 INT1 3
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from SAVAQ | SAVAQ+1 | XRi+1 XR1+2
s symbolic location
Mainline
Used X X

172

Significant variables:

Symbolic location Contents /Use
DEVIC Non-zero indicates invalid device,
BUSY Non-zero indicates busy.
DIGIT Counter to determine which section of packed word is being used.
SENSE Word count, number of words for this plot,
IOAR Output area address in user program,
BUF Word being decoded for plotting,
FIRST Non-zero indicates first command,
DUPCT Non-zero indicates repeat some command or plot.
CTRL Last plot command executed.
WORK Command that has been separated out of BUF.

Program Analysis Procedures 173

OMPR1

Used by: Assembler Language programs
Subroutines required: ILS04

Linkage: LIBF OMPR1 (BSI 3 TV DISP)
DC ARGlL
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3 EXT
Test /0000 Return to this word if | Return to this word if
program is busy program is not busy
Timing /0001 Return to this word if | Return to this word if bit
Mark bit 8 on in DSW 8 is off in DSW
Test
Read /2000 I1/0 Area Address Address of user error /X -
routine X =1, Stacker Select
X = 0, No Stacker
Select
Read /3000 NSI (return to this NSI /X-==
word after feed) X =1, Stacker Select
X =0, No Stacker
Select
Disconnect /4000 NSI (return to this NSI
word after disconnect)
Stacker /5000 NSI (return to this NSI
Select word after Stacker
Select)
Postoperative conditions and entry points:
. Symbolic Return Interrupt Return Interrupt
Function at FUN entry point address at entry point address at level
Test OMPR1
Timing Mark OMPR1
Test
Read /FFFE OMPR1 INT1 INT1 4
Feed /0000 OMPR1 INT1 INT1 4
Disconnect OMPR1
Stacker OMPR1
Select

174

Register status:

ACC EXT XR1 XR2 XR3 Status
Saved at/restored from | g\ y.q | savaq+i | savki | MPRazel MPR34
- symbolic location

Mainline |

Used X X X X
Significant variables:
Symbolic location Contents /Use
Accumulator At entry to a user error routine:

ACC = 0001, Master Mark detected.

ACC = 0002, Read Error and/or Timing Mark Error.
ACC = 0003, Hopper Empty.

ACC = 0004, Document Selected.

ERREX+2 Entry to user's error routine.
FUN Function:

/FFFE = Read (2000)
/0000 = Feed (3000)

READ TIOCC for Read function.

READ+1 Address of user 1/0 area.

FEED /0000, Feed has already been performed.
/0001, Feed has not been initiated for this Read function.

CNTRL and I0CC for Feed function.

CNTRL+1

STKSL and IOCC for Stacker select.

STKSLA+1

DSCNT and IOCC for Disconnect function.

DSCNT+1

BUSY Program busy indicator:

zero = Not Busy.
non-zero = Busy.

FCI Zero, No first character interrupt.
Non Zero, Have received first character interrupt.

MMARK Master mark indicator switch:
zero = No master mark.

non-zero = Master mark read.

Index Register 1 Address of the calling sequence.

Program Analysis Procedures 175

e

WRTYO0

Used by: Assembler Language programs
Subroutines required: ILS04

Linkage: LIBF WRTYO
ARG1
ARG2

DC
DC

Preoperative input parameters:

(BSI 3 TV DISP)

Function ARG1 ARG2 1/0 Area Address
Test /0000 Return to this word if
operation is not complete
Print /2000 I/0 Area Address Word Count
Postoperative conditions and entry points:
Function Symbolic Return Interrupt Return Interrupt
entry point address at entry point address at level
Test WRTYO WR36+1
Print WRTYO WR36+1 INT1 INT1 4
Register status:
ACC EXT XR1 XR3 Status
Saved at/restored from SAVA WR30+1 | WR32+1 WR34
- symbolic location
Mainline
Used X X X
Significant variables:
Symbolic location Contents/Use
COUNT Dynamic word counter; number of words remaining to be printed.
IOAR Pointer to data area, address of last word used.
TEMP1 Character to be printed, high order 8 bits was last character printed.
PRINT First word of IOCC to print character out of TEMPL.
PRINT+1 Second word of IOCC to print character out of TEMP1.
RIGHT Switch indicating which character in TEMP1 will be used next:
/0000 = Right character.
/0001 = Go get next word from date area and use left character.
TEMP Right half of Sense-with-reset IOCC.

176

DISK1

Used by: Monitor system programs, Assembler Language programs
Subroutines required: ILS02 ’
Linkage:* for monitor system programs

LIST

LDD

BSI L
DC

DC

LIST
D0000

FUNCTION CODE

1/0 AREA ADDRESS

for Assembler Language programs

LIBF
DC
DC
DC
DC

DISK1 (BSI 3 TV DISP)

ARG1
ARG2
ARG3
ARG4

*This subroutine may be entered by user-written Assembler Language programs via the LIBF TV or by

monitor system programs via a direct branch.

If a direct branch is used, DISK1 uses the parameters contained

in the ACC and EXT to construct the parameters of a LIBF and simulates a LIBF entry by calling on itself.

Preoperative input parameters (for LIBF entry)T :

Function ARG1 ARG2 ARG3 ARG4 1/0 Area Address -
Test /0000 Not used - Return to this Return to this | Not used
" word if busy word if not busy
Read /1000 Address of the Address of user | Return to this | Word 1 = word
1/0 Area error routine word after count
: initiating Word 2 = drive code:
operation and sector
address
Write /2000 Address of the Address of user | Return to this Word 1 = word
wW/0 1/0 Area error routine word after count
RBC initiating Word 2 = drive
operation code and
sector
address
Write /3000 Address of the Address of user | Return to this Word 1 = word count
With 1/0 Area error routine word after Word 2 = drive
RBC initiating code and sector
operation address
Write /4000 Address of the Address of user | Return to this Word 1 = not used
Immediate) 1/0 Area error routine word after ini- |Word 2 = drive
tiating operation| code and sector
address
Seek /500x Address of the Address of user | Return to this Word 1 = not used
X = seek option 1/0 Area error routine word after ini- |Word 2 = drive
displacement ting operation code and sector
address

pplies to simulated LIBF.

Program Analysis Procedures

177

Postoperative conditions and entry points:

. Symbolic Return Interrupt Return Interrupt
Function at D0945 entry point address at | entry point | address at level

Test /0000 DO0000 (branch) D0030 D0004 D0004 2
D0007 (LIBF)

Read /0001 D0000 (branch) D0030 D0004 D0004 2
D0007 (LIBF)

Write W/O RBC /0002 D0000 (branch) D0030 D0004 D0004 2
D0007 (LIBF)

Write W/RBC /0003 D0000 (branch) D0030 D0004 D0004 2
D0007 (LIBF)

Write Immediate /0004 DO0000 (branch) D0030 D0004 D0004 2
DO0007 (LIBF)

Seek W/O Seek /0005 D0000 (branch) D0030 D0004 D0004 2

Option D0007 (LIBF)

Seek With Seek /0005 D0000 (branch) D0030 D0004 D0004 2

Option (D0946=x000) | D0007 (LIBF)

Register status:

ACC EXT XR1 XR2 XR3 Status

Saved at/restored from

. . D0918 D0919 D0020+1 | D0020+3 D0010
symbolic location

Mainline

Used X X X X X

178

Significant variables:

Symbolic location

Contents/Use

D0006

D0008+1

D0235+1
(D0310+1)

D0280+1
D0305+1
(D0330+1)

D0350+1
(D0390+1)

D0901

D0904 and
D0905

D0906 and
D0907
D0909
DO0910
D0911
DO0912
D0913
D0938

D0947

D0908

DBUSY

D0902 and
D0903

If DISK1 was entered by a monitor system program at D0000, this word is used by
DISK1 to simulate a LIBF link word. The contents of this word should reference the
simulated LIBF at symbolic location D0060,

Address of the link word in the LIBF TV if called by a user-written LIBF; address
of D0006 (simulated LIBF TV) if routine was entered from a monitor system program
via a direct branch.

Address of the word containing the beginning of the file-protected area of the disk
on the specified drive.

Address of a table in COMMA containing the list of defective cylinders of the disk
on the referenced drive.

Address of the device code to be used corresponding to the referenced drive.
Address of the word in COMMA containing the current position of the heads on the
referenced disk.

Sector address of previously executed Forced Read.

First and second words of the last IOCC performed (excluding Sense Device).
First and second words of the IOCC for the user-requested operation: D0906 = address
of the next I/O area; D0907 = area code/function to be performed and current or
next sector address.

Second word of Read-after-Seek JOCC.

Second word of Seek IOCC.

Second word of Sense IOCC.

Word count remaining to be read or written from originally requested word count.
Next sequential sector to be read or written.

Current sector address,

If seek option was envoked, this word contains the displacement from the originally
requested sector address.

Second word of Read-back-check IOCC.

Non-zero indicates routine is busy; this word must be cleared to zero before entry
to this routine is permitted.

Last 2 words of sector just read or written,

Program Analysis Procedures 179

DISKN

Used by: Monitor system programs, Assembler Language programs
Subroutines required: ILS02
Linkage:* for monitor system programs

LDD
BSI L

LIST DC

DC

LIST
D0000

FUNCTION CODE

I/O0 AREA ADDRESS

for Assembler Language programs

LIBF
DC
DC
DC
DC

DISKN
ARG1
ARG2
ARG3
ARG4

(BSI 3 TV DISP)

*This subroutine may be entered by user-written Assembler Language programs via the LIBF TV or by moni~

tor system programs via a direct branch.

If a direct branch is used, DISKN uses the parameters contained in

the ACC and EXT to construct the parameters of a LIBF and simulates a LIBF entry by calling on itself,

Preoperative input paramaters (for LIBF entry)T:

Function ARG1 ARG2 ARG3 ARG4 I/O Area Address
Test /0000 Not used Return to this Return to this Not used
word if busy word if not busy
Read /1000 Address of the Address of user { Return to this Word 1 = word
1/0 Area error routine word after ini- count
tiating operation | Word 2 = drive
code and sector
address
Write W/O /2000 Address of the Address of user | Return to this Word 1 = word
RBC 1/0 Area error routine word after ini- count
tiating operation | Word 2 = drive
code and sector
address
Write With /3000 Address of the Address of user | Return to this Word 1 = word
RBC I/O Area error routine word after ini- count
tiating operation| Word 2 = drive
code and sector
address
Write /1000 Address of the Address of user | Return to this Word 1 = not used
Immediate I1/0 Area error routine word after ini~ | Word 2 = drive
tiating operation| code and sector
address
Seek /500x Address of the Address of user | Return to this Word 1 = not used
x = seek option 1/0 Area error routine word after ini- | Word 2 = drive
displacement tiating operation] code and sector
address

TApplies to simulated LIBF,

180

Postoperative conditions and entry points:

Function at D0995 Symbol%c Return Interrupt Return Interrupt
entry point address at entry point | address at level
Test /0000 D0000 (branch) | D0000 (branch) | D0004 D0004 2
D0025 (LIBF) D0900+5 (LIBF)
Read /0001 D0000 (branch) | D0000 (branch) | D0004 D0004 2
D0025 (LIBF) | D0900+5 (LIBF)
Write W/O /0002 D0000 (branch) | D0000 (branch) | D0004 D0004 2
RBC D0025 (LIBF) D0900+5 (LIBF)
Write With /0003 DO0000 (branch) | DO000 (branch) | D0004 D0004 2
RBC D0025 (LIBF) D0900+5 (LIBF)
Write /0004 D0000 (branch) | D0000 (branch) { D0004 D0004 2
Immediate D0025 (LIBF) D0900+5 (LIBF)
Seek W/O /0005 D0000 (branch) | D0000 (branch) | D0004 D0004 2
Seek Option D0025 (LIBF) D0900+5 (LIBF)
Seek With /0005 D0000 (branch) | D0000 (branch) | D0004 D0004 2
Seek Option D0025 (LIBF) | D0900+5 (LIBF)
Register status:
ACC EXT XR1 XR2 XR3 Status
Saved at/restored from | 1,514 | Dog1ge1 | D0900+1 | D090+ D0080
. symbolic location
Mainline
Used X X X X X
Significant variables:
Symbolic location Contents/Use

D0020

D0025+2

D0010+1

D0010 and

drive in the table.

If DISKN was entered by a monitor system program at D0000, this word is used by
DISKN to simulate a LIBF link word. The contents of this word should reference

the simulated LIBF at D0010-1.

Contents of the LIBF link word if called by a user-written LIBF,

Simulated LIBF parameters for direct branch input:

D0010 = /1100 for read input
= /2200 for write input
D0010+1 = address I/0 area

DISKN is capable of executing 5 drives simultaneously. Reference to the proper disk drive work areas
is accomplished by use of a table.

XR1 is used to point to the relative starting position for each specific
The starting address in the table is computed as follows:

Program Analysis Procedures 181

Significant variables:

(Continued)

Symbolic location

Contents/Use

The contents of location D0800 + (drive code x 2)

Example: Assume drive 1 is referenced. The address would be:
D0800 +(1 x 2) = D0O800+2

XR1 contains this computed address. References to specific significant variables used in the routine
is X1 + some displacement value. The table (DT) contains many significant variables concerning the

referenced drive.

VWXYZ and
VWXYZ+1

STOX1+1

Index Register 2

D0800
XR1 + 1)

SVIOIand
SVIOI+1
(XR1 + 10)
(XR1 + 11)

RSTRT
(XR1 + 20)

SFLAG
(XR1 + 21)

D0995
(XR1 + 30)

SCNTR
(XR1 + 31)

10CC and
10CC+1

(XR1 + 40)
(XR1 + 41)

ORIGS
(XR1 + 50)

SADR
(XR1 + 51)

First and second words of Seek IOCC if one is required; also used as temporary
storage.

Drive determination: the drive currently being referenced may be determined by
the contents of XR1 corresponding to the relative starting address in the drive table,
or by examining the contents of STOX1+1. This location contains the drive code.

Drive code and I1/0 area address at various times during execution of this routine.

Current position (sector address) of the heads on the referenced drive.

Last two words of the 1/0O area just read into

Address of the user's error routine.

Current seeking status of the drive:
/FFFF = drive is seeking, has just seeked, or seek is required.
/0000 = seek not required, or not in process.
Originally requested user function.
Error counter for referenced drive for this operation:
50 - C(DT + 31) = total errors occurred for this drive during requested function

10 (DT + 30)

IOCC for the current user-requested operation, except for Seek and Sense DSW,

Originally requested sector address.

Current sector address for current IOCC.

182

Significant variables: (Continued)

Symbolic location Contents/Use
WCNT Remaining word count to be read or written.
(XR1 + 60)
COUNT Word count to be used in next I/0 operation.
(XR1 + 61)
IOADR | Current I/O area address.
XR2 + 70)
RBCNT Read-back-check counter:
(XR1 + 71) 10010 = C(DT + 71) = total errors occurred attempting to perform RBC.
$DRBRSY Current status of each of the 5 possible drives; i.e., if drives 0 and 2 are both
busy, bits 0 and 2 of $DBSY are set to 1.

Program Analysis Procedures 183

E)'S':m Cold Start
oader
Flowcharts: — F|Ic;\c/)vc::c|"1eorrt'
SYLO1 - 05 CSTO1
Cold Start
Program
" “Flowchart:
CST02
LH'\lK DUMP EXIIT
Y i
Skeleton
Supervisor
Flowchart:
SUPO1
Core Image
Loader
Flowcharts:
CILOT - 02
[| T I
EXIT LINK DUMP DUMP LINK
entry entry, entry, entry, entry,
DSF negative non-negative DCI
program parameter parameter program
Monitor Control Auxiliary System Core
Record Analyzer Supervisor Dump Program
Flowcharts: Flowchart: Flowchart:
SUP02 - 08 SUP10 SUP09
DuP FOR ASM XEQ Terminal Dynamic
record record record record Dump Dump
Y
USER
EXECUTION
DCI DSF
program program
1 A Y
Disk Utility FORTRAN Assembler Core Load
Program (DUP) Compiler Program Builder
Flowcharts: Flowcharts: Flowcharts: Flowcharts:
DUPO1 -13 FORO1 - 30 ASMO1 -24 CLBO1 - 02
{ & \ \‘ Y \ Y \
EXIT EXIT EXIT LINK LINK EXIT EXIT LINK DUMP EXIT

Flowchart DMSO1. Disk Monitor System, System Overview

FLOWCHARTS

Subroutine
Library
Flowcharts:
UTLO1-13
SCA01-07
FIO01-13

Flowcharts

185

Al A2 senns
#MAMUAL LOAD OF o * FETCH PHASE 2 =
BUOOTSTRAP ee X FROM DISK
. LOADER - - .
sresssacssens snsssendsante
H PHASE2 X
ssunesBlenvessnsnasn -;“;;B%:Qo-n:aaop

. . -
. BOOTSTRAP - . H&gKés T -
LOADER LOADS * RESIDENT .
. PHASE 1 . . MONITOR .
-
wsesssssussne ssasssssersnnsnne
X .
PHASEL ot X
cl e sanssC2sannvanssn
. .. - *UPDATE SERSION -
1442 *. YES « AND MODIF. *
*. READER USED .%.... * NUMBER ON ID =»
LS - - # CARTRIDGE -
o -" - - -
fe u® . .
NO

ssssesD]lesusennnas

* OVERLAY 1442 «»
CARD I1/0 WITH
#2501 CARD I/0=

tnssssananuse

sXeeossssases

ssenaf [05!10,00!'.'

.

» PROCESS LDAD =

* MODE CONTROL =

- CARD -
.

-
ssenIBsNDRERRELE

snsssHlessnsnsse

© STORE PHASE 2
« ON CARTRIDCGE
:

-
suannusssannene

e 00

ssenc)lesnnnenenn
- -
#PROCESS SYSTEM =
CONFIGURATION
- OECK .

- -
sessncssnansasnae

e sae e

aseeaK]esnnsrsann

PROCESS PH
:CONY&
-

- -
sssssassnnnsenney

Flowchart SYLO1L.,

186

[
60 EE8RD LN

tsasse

T :OR:

[+]
Bed® &
:

sxsanse

O~

mam

-
.
X
.
N
H
L
.
:
M
X

a*ssssfFlecsansansras
- -
EXPAND INTO
® CUSHION WHEN
NECESSARY

ETYTIITIY SRR Y Y

.
LT Y

.
-
-
.

-
.
N
»
-
-
-
-
-
.
.
-
.
-
.
.
.
.
-
.
-
-
.
-
.
.
.
.
-

System Loader, General Flow

Resssplresssnenne A4 LS
. HECK EAgH - .o
PHASE 1 OR & e EN OF e, NO
aes XKRAGREEMENT HST“ . saeX®, YSTEM a%ease
. s PHID CAR H . *. DECKS .
. -e
- SNSRI RBIENE - B, oW X
- - - « YES LX Y]
. . . . - .
.02 =
. -
- . . . rrrys
. b VENDSY X
- esssapinassasenne . AN naBhatennsnane
. . - . . | .
. # BUILD SLET . - $ET _LP -
. ® TABLE AS EACH # . bt FRINC}PA 1/0 =
- #PHASE 1S LOADED# . & DATA IN SLET =
- . - . . -
. - .
. . X
. T essmeaCissnasnssene sesseCSunesananes
. . -
. . FETCH AND ENTER INITIAL -
. . 'SUBsHAgE l-LOiD. ...x:Resu')Er'n gEGE -
- .. 2-RELOAD » . : H
. - sesnennasnnee T sssensmsnsesssess
. P X . X
. « o SusseeD4y . DS
- o . . - .
. . . #SET CIL ADDRESS# . * INITEALIZE -
- . THAT 1S - P IN gls v . *FIRST SE%TDR OF »
M ENCOUNTERED H P *WRITE TO DISKw - : L 4
e ssssusssnenne : 4nsnsssnenenEnsay
. X . X
. ansesfl - ES
. IUP?ATE CUSN(]JDN - .
- 3 sE IN Dg M. . #FETCH AND ENTER#
. e AND_CORE SIZE e . SUBPHASE 3
.. # IN RES IMAGE : . . -
s T Ty Y Y . tessnnnsannns
X : :
- . ot . X
. o F& ., . snassFSasasansnns
.. .® .. . * INDICATE IN
.. o lNlTsAL *. YES . * SLET THE 1/0 =
. . -« . . LOA e¥eoanae # DEVICES NOT
® ENCOUNTERED =o . PRESENT .
- - . e .. ot . *
CLITTRY TR TEY - e ., .® tnessnsnanssasne
. . e * NO -
p . [
: & : i
: G4 : . GS :
. lFE}CH AND ENTER# . # PROCESS THE #
- UBPHASE 3 . # ENTRIES IN -
. - * . M RELOAD TABLE M
: szsensessnsae : SesssnssnaueIasEs
. . . X
. X - - e
. -4 - H5 L
. ATE IN e . .
. HE 1/0 « . «® INITIAL #. NO
- ES NOT = . .. LOAD etiane
. SENT - . .. - .
. -tk .
. eszuseens . L~ .
. . . * YES .
X : X : x .
essas)lecessnasen . an-cnﬂl.uu-n\uun. . asessjSanenssnunne .
*FORCE A GAP IN # . * UPDATE THE
#SLET JUST AHEAD# - & RELOAD TABLE = . * MONITOR TQ = .
® OF CIL PHASE #..ceaa e ENTRIES ON «...... ® FETCH DUP TO -
- Ip*'s . * CARTRIDGE - . 3 . .
- - ¢ SUBROUTINES # .

saesKSesesnuane
- -
® END OF RELOAD =
- -

ssesnsenssscann

b4 - #0024 *002+
» A2 # Ada » A5«
- - . ® . »
rrrys - -
- - -
. . .
X . .
Al L ABSSC X EOP X
Az L FREseALeERER RN RS aressASevunnesrRE
"l"ll:"iulﬂ'" * FILE LAST * FILE LAST -
= ENTER 0 - * TEST Tue 4 NO - SEgTOR - - SECTOR .
* BOOTSTRAP LDR # XCARD FOR *%eeee e*eson * PROCESSED TO *« PROCESSED TO #
- - . ot - . . DISK - - DISK *
seasRssssnsenen - . - - - -
“a. 0" X . sENRRBERERGEAREANS sRRENERENEERIRARS
- nonn . . .
. 3 - . . .
. (2 - . - .
. - - . . -
M snen . . -
X . X X
Bl -, locchZ!.I.llnh.C ssnplennsnnnnns - ssasuBiasannnnane snanubSatnunsannasn
- - . . - . -
AS “e. NO H TEST FUR LDAD ' - . #INITIALIZE FOR = « SET _XCARD TO »
. 2501 READER e®eoee - E CAl O.... * . - BEGINNéN? OF = # TEST FOR _SCON »
USE - * 0 * . # NEW SECTOR * » CARD NEXT L3
e, et - . - - - * » - »
L - ORI X . caes Ty T Y
* YES . LLLed . .
. - sune - 2 - . .
. » * F2 » - .

. .. * C2 .o . - - -

. . . ., rrYes . . .

. - “ane . - . -

X . X
sensaClanne : waensCannnnsnane annnew . snsenCliancnnsnans wennslSnunnssceny
* * . . » - . - S?CTOR ADDR, # .
OVERLAY 1442 « . # TEST FOR PHID @ - . # WILL BE_TAKEN # DCALCULATE CORG -
#SUBR. WITH 2501+ . - CARD ., - . *FROM NEXT DATA » SI1ZE AND SAVE +
» SUBR. . . ol » . . CARD . FOR PhASE 2 =

- . - * . - . » -
LYY YR YY YT . sessssnsnERIT RN . ERRBEREERARIRRRSY
-
e . . anny - . LIz . rene
«002% eXeosooscssne ® - - .
* D1 Xe * D2 w.., . eeX# DI = «sX® DI @
. L weve aesessssscacs - » 3 .
enne . ane . . srne anse
STARY X X .
--.an]ncn.oosq-o snssnD2essasensnn X
. - T HEL T T
OREAD CARD INTO . « TEST FOR SCON » D DlSPLAV ERROR '
BUFFER A [4 CARD -
: - 3 :
- . - [T —— anen
FEERNBRRBRANSERBAN AuseBERRIBEBEREEN -ogz-
- . 5
. s
.
REQ X
. #sANSESRASRRIRRIRE
.. « CONVERT COLS. *
ARD - H%TH DEC!MAL
ECTO . *DATA TO BINARY +#
K . . *STURE IN TABLE »
. -
- . REBERERNERRE RN,
* YES . -
. . . caen
. - .
. . seX® D1 #
- .
. . saew
X -
suanafbhrnsnnnnany .
- - .
. ESTABLIS - .
OSECFON AODRESS - -
WORD 11 = .
- . anne
SRR RERABRER NN, - «002=
. . # G5+«
. . . w
eXesosesncese .
. .
eessesnscaeXe .
. Py .
. X TBL2 X
X ssesaGinnnannsans sensaGSnsansnsnne
anasGlenanssnen - - » -
- . # TRANSFER DATA # « TEST REQ DATA «
#DISPLAY ERROR 3# #T0 DISK BUFFER # # FOR ERRORS “
- * - » -
sassezssNenEENS - - -
» sRARSRRBEERNNSRE.

.
3
.
..
P N
.. .
.. :
.. N
.. .
.. x
.. srsesHSersenannes
w#assHINGINERNEN .« e
« 22 = COMPRESS DATA -
#DISPLAY ERROR 9% . . » AND_SAVE FOR
- - » ASE 2 e
ABENANERENBENNS »
N onunsanrssnvanes
- « YES wene .
. e - - » .
ccoceecs P~ . * Dl e .
P . - . N
....s B.se002 A4 aamsasasnsans s . sene :
<MODE..002 F3 X . % X
ansuR jIenassnsnes n-n--J#n-n..-..-e ANBARJSRBERREAREY
.DATA..002 E4 «INITIALIZE DISKs Soq ERIABLISH e
* 1/0 WITH . kE TH *PRINCIPAL PRINT®
cessEOP...002 AS *DEFECTIVE TRACK®-secrn AND Ber - *DEVICE AND 1/0
. - DATA . * INDICATORS
eeeeS/0.0.002 D1 ansne * - P .
. 002+ SERRBANBANBR RN, -u-no-n---a-a.u-n FERRRAARBPUNERTEY
+REQ...002 ES « K2e . .
s D eees D enes
.TERM..002 G5 . M :
. SeX® DL ® .X® D1 *
«-CORE..002 K2 . - . .
- T Y anen
col X
#aansK2udinunanane
.
® USE VALUE IN
v CoReVORRE Ml o
CPU SIZE »
I.II..DI.Q.Q.OQ’:
T asas
seX® DL *
cone

Flowchart SYL0O2, System Loader, Phase 1

Flowcharts 187

MAING
ll..ﬂé'ﬂ‘l...ﬁl
* ENTER FROM -
- PHASE 1

-

ssuscsensnsenae

e s ae

UVERM
sesesClosessnsunnn

- -
#UPDATE VERSION «
*AND MODEL LEVELe
b NUMBER -
- -

sessusnissRsERENS

p1” s,
. .,
INITIAL “w,
LOAD .

. . -
. . "
X Se oW
wenn * NO
- -
® Fl = -
. N .
anse .

X
surneClensnasenns
#SAVE_ADDRESS OFe
- SECTOR .
- FOLLOWING .
- CUSHION -
- -

.

snessflansanunsas
» -
* WAIT FOR 1/0
+ OPERATIONS .
- COMPLETE -

-

.

-
sespeRREaBaRORE.

.
.
.

Cesons

sarea s

-
-

.
-

PR

sesscsecevanns
X

= BUFFER A

sssusssusuann

sesuNGlennencenuy
- -
#PACK DATA_FROM =
M A OR A2 TO B M

- -
sEnsNasRBRERGERNS

WAS A2 NO
PAEKED e®enacnanaXe

xeos e 8

sruanjJ2eennnnnane

- .
& CLEAR A2 BUSY «
: INDICATOR -

- -
ssusnenensessEEn

Flowchart SYLO3. System Loader, Phase 2

188

esersranesas

-
:
.
X anss
buB .o .
82" e, 83
-* - ES s
.t ., Y -
ot aupfir A MlelExel® B3s
v, BUSY .a .
- -t L
e o ¥ * g
- -
: s
: :
. :
X X

ssnsaClessssnsnne

-
» POINT ADDRESS =
«IN READ &UCC T0s
: BUFFER A2 :

LYY TT YR YY 2

qoa.-on3¢5o||¢n.|--

- READ _INT -
BUFFEI Ag
- .

EYITTTTYYYY Y VY

PTTY I YRS TY YT 2
.

anasrHIsnanranen.
»
® CLEAR A BUSY
ENDICATOR *
- -
- .
trnnsnesnasnERY
-
i
-
.
* AS
-

-

sns

ssnaBlhennsasnsn
.VES

LYY IY T YT Y Y Y

$.8+..003 D5
.DATA..004 Al
tee.EOP...003 G5
tee.EDS...005 AL

.
X

-
. COHPL?IE SLET =
ENTRIES FOR «
THIS PHASE -
- -

»

e

.
.
X
senuajSEennzannns

-
#UPDATE SLET ON «
. DISK -
»

-

. b
sERRBRINRRIRBEERS
. uen

. ® »

ceX® F1 »

* *

anw

..
s. NO

ARD
-
G ..-'--.-....Xl... SgaEER

ES
OLLOH'-
K

YES

.,
o
C%ecaaaceeXes PHA% I
- lVg

FEAT ate
A3 e

o

*. NO

efeoee

*.NEG

FRO

NE

0--'0A40.--..---¢

...X' THIS PHA

'SEARCH SLET FDRO
M

: LORERK SESHIVE, : :
. L .. % . o eeeesnsneesanens
. * NO «"YES ..
. wees
- -
. * B2 *oXe
- . - - . s
. “ane - - o o X
T scsnsB2ecesssenss -0...03050.00.000 pa aa'.'..
- - . T 1
. - #_ TRANSFER DATA « STDRE PHASE % P PHi
- . OTU DISK BUFFER = «AND _DTHER DATA # .. . LDNGER
. : :lN RELOAD TABLE: .. RIGI
: Sessessasnscsnsen ssessnssassnsnren b e,
. - . .. L4
. : Xeessosooane o .
x : X : i
snsnsClasencnnans . c2’ .o. . wsnsaCiovsnnsanas
- - - - - -
- CLgAR BYPASS & - % BUFFER #. NO - #G0_TO EXPND_TO #
- WITCHES ., . . FuLL eBeens . * EXPAND INTO «
- - ., CUSHION -
* - .. - .
PYYTTTNTETTIN PR YY 29 ", o% BN NNBERERARRO NS
» YES PTyres .
. #003# .
. « Fls .
. - » -
. - .
. X
X FINLD X ot
sesssD2annaananes assneicencsnsanas D4 -,
. - ..
FILE THIS _ » # POINT XR2 TO = «# CUSHION #, NO
#SECTOR _AND GET « # NEXT SET IN = LN USED UP eMecee
. NEXT . . SLET » . . .
- - - - .. .® .
SHasRENsRRcen AR EEYTRYTTTT YT YT 2 a, .e
- - * YES R
. - . . -
s . . " B2 »
X . . - »
sunse . . ann
*003+ . .
* Fle FI12Z X o
LI sanseClensnnsenns
* * VERIEY THAT o S OTSRUAY ERROR
-
OPHASE lD lS IN M . 1n M
- ansexsassessana
cresssessERRSERRR

. LA
-
..XO B2 “

-uno

Flowchart SYLO4, System Loader, Phase 2

Flowcharts 189

*005%
Al
. e sane
- - .
. * A3 s...
. * .
XSL4 X X
crsssAlessnsnenne eA3nese - - #A4n sasusASenasas
- . 4 . 4 # PLACE CURRE
- ETURE FEEF AT # * PROCESS IH . 'UPBALE PHA?? 2. . ? SK YaBL
® END OF RELOAD » = IN-CURE TABLE esaX® COMMUNICATION « eeo X*ENTRY AT _ENI
= TABLE STRING = . . - - AREA - . # CORE STRING «
- . - . - . . - .
rrenessnee e - . . [
. . . .
. . - .
.
. . " . .
SETPD X . X - .
wnaenBlen asene - ssesap2 B - -
- . [. - - . BR .
SET PRINCIPAL « - 'FETCH AND_ENTER® * FILE lN—CBR . . «T0 F .
= 1/0 _DATA IN @ . : Ng OVERLAY * TABLE 7O DISK = . .
- . UBPHASE 3 . - - . *SUBRO .
- - . . - » . .
SEeaNsINRNEIGUNEY - Serensesnnsnansss sasansnssssansene - .
. . . - . .
-
. . . - . .
. - - - . .
- . . - . .
.
X «MASK X INI2 X . - .
QO..!C[Q.'.ID.QCQ - sasns(Oavannanens sssssClsnsscessas - . ..
- & CLEAR SLET OF e :
DFEI’CH AND ENTERO - ® ALL SIGN BITS « FETCH DISKZ AND# . . .® END OF . YES
* SUBPHASE 2 - . IN SECTOR - ...XOINS RT CIL DATAe . . #. DISK STRING «%..a.
. . ADDRESSES - . e . . L . .
- M - . - - H - . [T . .. o -
thasesne snnaes . - . . . - .. X
- - . - - * D4 » * NO "“taw
- - - - - - - -
. - . - . ecans * Als
- . . -
. - - . - - . - adee
X «TNOT2 X . «COMTL X . X
sassdD]lusesnssans - essesD2ensen (1 - . snvesuDien - DS
. - . n . - . . 3 . - .
*=FETCH glh DATA » . SET SIGN B Tg- - . *LOAD A PHASE 1De # FETCH NEXT -
FROM SLET FOR » . DF R _THE DEVICES® . . ¢ OF CORE TABLE s ® ENTRY OF DISK
- DISKZ : . NOT PRESE : . - STRING . . 4 STRING -
. - . bl
csassennsasnnsans - - . sesnssdncnsssnsee . NesersntIeeennes
. - - . . .
- - - . X
- . . - ssan
- - X . . bl *
X . %o -CDT X . * D4 =
cnnclEl;lc.ccmn.a - ., - sanssElennnsssnes . - -
s FETCH OCON . e e - - . . tsoe
'UPDATE CUSN - . " RELOAD 4. NO - * CLEAR SVSTSH - .
IZE_AND F - . #. OPERATION .®.c.... # LOADER FRi - -
BACK - - DISK . .
» - . .., .® . .
sssssasrtanseaces . 8, . Aesecrsasenses .
. - * YES . .
.
. N . - .
. - . - .
N
. . . .
ate «C200 X . .
- sasesF2esne X
. - *sssF3nensansns -
. ® FETCH RE ® DISPLAY END = .
- TABLE FRO : RELOAD - .
. .
. -
. .
. X
#enseGlesssnsunee - weseaGlevsenannan
- - - . 8ET FASDR LCI
. UPDATE . - «POINT TG _END OF#
* ADDITIONAL . . #IN-CORE _RELOAD =
* WORDS IN DCOM « - . TABLE -
- - . .
ssccsnesssneennne . CITITTTYRY YT YTy
. . .
. . .
. . .
X «GETR X
o-ou-u]oq--o-.n.c - essssH2snsansasas
H . . .
NITIALIZE . . . READ DISK -
'FlRS'l’ SECTOR OFw» . # RELOAD TABLE
LET : . = INTO BUFFL -
- -
---oo-oonuuunuu - SsENBENRBRENERY .. csee
. .
. .
X .
Sasssjlessnsatsase -
- -
® INITIALIZE .
*NUMBER OF -
IN RES I
.
sassnsssne

Flowchart SYLO5. System Loader, Phase 2

190

eeesveacsscacscsesnacncssns

Flowchart CSTOL.

seesasssssesesssassenssene
-

PL
ssssesAlsssennsnane

#LOAD COLD STARTe
CAgD gh LaAD
- MODE .

srasacsssruny
.

»xeew oo

saBlsssssusans
- -
#BEGIN EXECUTIONs®
* AT LssATlDN .
- 0000 .

. »
ssasssassesnanune

sessensecsssescsvccaccssce

0n61|§nanloooa
BUILD 10cC TO .
RRAYShEnE,

EXT T TTTI YT Y T 0N

sssense

.l...!Dl!:.lQll...l
sREAD NUHBER OF =
LOGICAL IVE 0
«FROM SWITCHES®

assssssannnee

exe o8

E1" ..
. .,
B
“w. NORBER .e°
. s

esensfFlessveonnes
- -
- BUILE DEVICE »
lCDDg QR _DRIVE #
: PECIFIED »

-
asee assnse

:
.
X

seGlvedoscsnse

R ICAT SR N

- -
CTIYYTYYRYTEYYY ¥ 3

seseses sttt st At s

.
srecacX® WALT
-

anee

E2

-
.
.
X
sssssE2ansnansnanse
» -
.
-
.
.

-
Sassussasnsnasane

Cold Start Loader

eXeeovesavescessrncnsscscsscncsnncsoacs

essses sttt ses e

n«-unna;u{cn-nnuo‘u

#SENS K WiTH=
sense gig

unlonn3¢§..‘00000
- -
:BUILD REQUIRED «
INSTRUCTIONS =
- -

LYY YT T YYY YT Y T
-

PEEEY)

esassElssnsasasne

-
. BUng 10CC TO »
M EEX M

- -
tBsesenpuneqsREy

AnsesGlasnesusnse

: :

D TRAE

- -

: :

AGBEBERIGIRBRBEES
X

sascssHInasenoas e

. SESK TO _HOME =
. OSITION .

sussnssnsesen
-

Xeve e

ssssssjlenssnnansas
LOAD ngl AND
TARY

. 0
PRgGkRM (SECTOR.
. 0) »

LTI YT TS
-

ceene

X

saaKlessnseanss
+ SHAReTPaB0kRu

asdspnspssInesen

.
*. NO *
eBaaceX® E2 #

Flowcharts

191

seanploserssaen

#ENTER_FROM COLD#
START LOADER =
» -

snenannnse

e

snscaCleessesnnan
- -
#* INITIALIZE -
#LOCATION O WITHe
“BRANCH TO $DUMPs»
» -

AEAEHERNEDENANENTS

wenesFlensonsnsen

“
SET $DBSY _AND
» $CYLN TO ZERO

-

..

.
SnsasIBanENSRRERD

e a0 an

wsanasClanensnesans

*FETCH RESIDENT =
IMAGE
- -

tassnansnssn

X
sssseH]seserenans
. -
* INITIALIZE .
#$ACDE ENTRY FORw
. LOG(CAL O
.

-
-
sassnaNassRGRERES

SOR
*sasee

Flowchart CSTO2.

192

Cold Start Program

sttunpAlennasnney

* $DUMP ENTRY &
- POINT .
- -

SEEBANBRERNBERN

SBBRA28nunsEnEn
s SEXIT ENTRY «
* POINT -
.

RRRERREIRE RS

SasRAInNBRRANNY
® SLINK ENTRY e
bt POINT 3

‘nsssnsseandees

e onn

ssanapBlensnssanse
- .
*INDICATE ENTRY

: H%&E AT SLINK
:-..---.-ounuu-o

»
-
.
-
.

eXeeeoseensecesnscacrcscscas

.

: :

: :

p :

. :

eXeesovseonces -

X : N

ot X
Bl - REsEaBunnanunane
-t ES SINDICATE ENTRY #
#. YES. *IND hd
«. INTERRUPTS o®.cav * MADE AT SEXIT
PENDING .# . »
. Je . M
B, o8 (IR 22222282222

» NO .

. :

:

X X
neansClasnunsanan enaan(2annuananse
SR AREIASES . © SAVE ENTRY
= 'DUMP FORMAT # ceoxs SNGICATER :
- CODE - - . -
- L] - - -
aresnecen :

. : .

: : :

: : :

: N :

: M M

. : X

% : ..

#aasasD]lsesnsunnauy - D2
- - ",
» SAVE FIRST 4K « : - *
OF CORE ON CIB 1 el INIERRUPTS
. . : *. PENDING .
- LD -
SEnEEERBNRBNS - *, oW

- - + NO

: : .

: : :

: : :

% : X
#ssesClessasnanes ps ssuseClasssannany
SINDICATE ENTRY . SYNCHRGNOUS *
- - . -
2 MADE'AT SDUMP s.....l sCOMMUNICATIONS
- M . DAPTER =
- - - -

.

:

X
RRBRRF2RRuRRRRNRR.
* GET AND SAVE »
=LINK NAME, ThO #
*HORDS FOLLOWING®
s CALLLINK %
H
EXZXTRT 2SS 3

.

X

BREssu2unuanennnan
FETCH COR| -
lHiGE LUADER.

- PHASE 1 .
FYTITYIY Y LY Y

Xeoe oo

saseH2esannasay
EXIT TO CORE »
. IMAGE LOADER M

ERBEERRONRBENE

Flowchart SUPOL. Supervisor, Skeleton Supervisor

Flowcharts

193

. -
® A3 »
. .
snen
X
ety iy
A3 .. A4 .. snsssnsASsasassnsunn
n) .. .» ..
NTE M_COR -t pup a. YES «® SNDUP, #. NO = FETCH DUP -
M IHAGE LIJADER - . RECORD e¥ecimocoo X, NON-DUP t#eceiceasX DUPEO, AND OCTL
. e o #.SWITCH ON.» - -
® eunnoussnnesens .. ." .. -®
. ., @ . LYY YT YT Yy
. * NO YES
. . caen .
. - eeX® C2 & -
- X anss .
X ™ -
ssssasBlesnesvanncs B3 .. sssasbBianssnsnane X
-® -, #WAITy, CONTINUE = ssssbSensnanrnas
*FETCH REgulRED - .o PAUg *. YES # WHEN PROGRAM +» -
e RECORD e®avecesen Xt STARE S ®eeee * EXIT TO DUP =
& SUBROUTINES = L o - PRESSED - . * -
., - . - . srsnsesessanens
snassassesnes e o® SrannsRssNsEENSS
- * NO sann
- - . -
. - M . C2 ®
. - . - -
. N . sons
X . X
., RACAO X oo
[} .. assssaClesnnsasanes c3 ., a-o-ngl,n-.ulolc;.
ot [" ., « ASSIGN THE . snse
-# CONVROL ®. NO . e Tvp “s YES KEY QARD AS - . -
*. RECgRE N .-......X READ A RECORD o RECORD .0........X¢PRINC Aé INPUT®. . oK C2 o
« BUFFER o LN " DEVI - - .
- L o 0 TEMPORARILY = cnen
8. W@ essesnssacsse .. o® sesssssnsasssesns
* YES - * NO
sXeonasscsccecsssssnccancone -
X X
ey %
Dl 0. D3 L sssssDisssnnsens
- .. # REASSIGN THE o snen
. N . TEHR YES * UNIT NORMALLY # - -
. COLU”NS 1- 2 . RE D evesesecX® SED A? foeooX® C2 @
" 'PRIN 1PA HPUT# . -
“e. .o’ . " EVICE - “ane
. .8 S, o® ---ono.nooo-n;u..
* YES « NO
X X
o, e
El 0. ES ., n-cn.E. sessensens
sS THE . anne
- i ‘e, VES PRNT YES s ; . -
. RE “%eesnenas RECORD -.-..--.XOPRI 8 PA* IN UTO....)(O c2 »
.. .. X " VICE - . -
.. -® .. " a PER Y = anne
., .e ., .® cesnene sase
* NO * NO
X
-®e
ssesense F3 ., 4sss0sfF4usasnnssnny
-® ., L2127
R1 THE - .. JECT », YES ®EJECT PAGE AND # . -
RECORD o RECORD s®%escanvesX PRINT HEADING oveoX® C2 »
- ., o - - .
., . snes
sasssvsenssen *, o8 sssssssessnes
. * NO
X
..
Gl L
e .. sane
-® #. YES » -
. COHHENIS a®ieaaX® C2 &
®, RECORD .= - -
.. o cans
C—
-
X
By
H1 L ssassnH2vasssnsnsns
- . sesal3uensanssn
Aa" - FETCH THE - §Xé .
.~ RECORD easeX . ASSEHGEER, o Toneneee ASSEMBLER :
.. . cssssasesrnsese
., L0 sssssasesssnn
* NO
X
.
J1 e it 2

sessas
.o .. F ocang-.oono.n-
- FOR «, VES EXIE g FORTRAN'
L RECORD .0.-"....)(CDNP OMPILE

.

HASE vsecscessX®
-

., . a..n..naaco-o.c
2, o0 ssessesasanne
* NO
X
-, .ty
K1 'S K NesessK3assensunsee
-t - 2 SK4nonananas
- XEQ *. YES -ONON-E)(eUYEO. NO EE 58 - EXlT TO_XEQ =
. RECORD e¥eocsenacX®, SW. & Hy PLERTTTRTRY | CONTR L RE RD-.X' PROCESSOR -
.. o .. o # PROCESSOR =
», o-® .. o-» QIIQQ’IID..!IC.
., .® . e densanesensee
¢ NO €S
X
eses ssme
. - . -
4 A3 @ * C2 »
. . . -
“ane LrTYs

Flowchart SUPO2. Supervisor, Monitor Control Record Analyzer

194

*003e
® Ale
- %
-
JBOOO X
stsansAlesssnsnnes
M
¢ INITIALIZE »
. ACE/OATE &
. BUFFER .

aRaBNIssENRRIERRY

Meoeae

SENEnaBlennnssonnne
*SKIP CARR%AGE- hd
PRINT THE

- RECOR

sanaesRRENERS

Xe oo

sssnsClovnnsnsnes

INITIALIZE
COMMA

-
.
-
-
.

-
-
-
-
-

AnsBsERERRRRRRE

MO et e KAND VAo s s e

senesClassnsennan
*SYSUP 008ALw
W e i
- -
* UPDATE DCOM &
. .

SRsencsRRNRERELE

xs e es

sssasFlocnsnsnsas

-
* UPDATE COMMA
- FROM DCOM

sasan

-
assRsENNRERSEORND

“enew

#DELE
s MA

Mme
.
—rnes s aess

-
-

2 -

- -
lTENP”gA eGHDDE -
- -
-

SEapneERNRRSERAY

HSBERH2 NN ERENDRY
- .

YES * SET $JBSW, «
S e XeTERPORARY HODE =
* SWITCH, ON -

. -
SeRNSEBRERSERIRES

b
SRENN
X 0
wsansjlensnnsnenn)
M .
STERPORARY HODE =
STERRTTCR, ore

(X}

-
ssssEncEnsaBERNL

X
ansee

Flowchart SUPO3. Supervisor, JOB Control Record Processor

Flowcharts 195

Flowchart SUP04.

serseBlusnnssans

-
-
FETCH ID L1ST =
- FROM CORE »
- STORAGE *

-

-

-
ensmasERIARSRRRY

"o
. NEG

e%evoancen

Adnns

snnassplusy

* FETCH ID llST -
FROM DI

wasnsanssanse

Cetrieaats i

eXeeoveacsosnecccsnsecsnnane

X
annnsaClenssncnnann
« FETCH 1D FROM »
EACH AVAlLABLE

CARTRID!

sesssncnrnnae

e 00500

nezessDletssssnsnns

® PRINT SYSUP =
HEADING

[T YT YY)

-

:

X
sessuElesnanse
FETCH ID FOR

MASTER
#CARTRIDGE FRO

1D LIsT
ssssERBIRRRIRARG

X

ot

Fl ..
. *a
% CARTRIDGE w.
#.WITH THIS ID
#.AVAILABLE.»
.. ..
L

* YES

.

X

sunssrClensnsnannee
*FETCH gCgM FROM#
* CARTRIDGE

sEensRNREIREN

X

UPDA 1€
= "DCOM TABLES

- -
Er I YRR Y YN Y YT Y T

> &
Mo e o m AMMM X oS s o

196

e®eeosnceanX

sranssF2esassnnnare
PRINT ERROR »
MESSAGE

saBssnssanaRn

saw Gz---------
l EXIT Tg ggxlr -
« IN -
« SU PERVISOR L]

sassncassesnnse

.

||QQ.BBI|Q||Q|¢IQ

OFETSH 1D F 2 A :

TELL]
. CARTRIDGE :
.
SRSEAEANBTENARRSY

e e s

-

*EETCH R%OH FROM#®
THIS SATELLITE
® CARTRIDGE =

asHssRRENI RS

|-..|F3uncnuaocnn
*SU50

unuarE‘E STE
N TABLES 3

ssaE3encnnnsucus

evassaseX

«PRINT REMAININGs
PROCESSED =

sasssananRNEY

e sar e

#eussaBluannasecans
T ATED =

DCG# ;O MASTER

CARTRIDGE =

LYY T YT YT Y

Xeseases

Qco-gﬁonlou
GCALLING ROUT!NE'

-ll-l..a.-n.n.o

sennnuDinssnneresen

® PRINT ERROR &
MHESSAGE

SU500

seneaF4usnuannene
0 THE 1D IN

=CIDN la ocoM

CARTRIDGE

(XYY}

-
Z

[YTYs

Supervisor, System Update Program

wesneGhe
QMOVE AL

FROM P
OlN HIS
-

« SYSTE
asannsan

Oraxs s ssoe

* _OO0m ®
BOZ O

[=]
sessnee

Xe s e s s u s X

ssseHisNs BRSNS
* RETURN TO -
«CALLING ROUTINE=
- *

senBRNNARNIEREN

wassAlsesenanes
- -
#ENTER FROM MCRA®
. .

sasssssnnsnunas

.
.
X
sesssplessrcansan
.
. CONVERT »
* MAINLINE NAME »
+ TO NAME CODE
- »
Trescsrsenananese
[} 'n. sansaClusnrsannans
.. .. » .
. L IN *. NO +SET snP;u. CORE'
#. COLUMN 14 o%cecocceoaX®MAP SWITCHy OFFs
., o . .
.. Rl - .
", e . ssssssessnse
YES .
.
.. - .
- » .
] . .
-l - .
» . .
- . .
asssncensrrsnenen .
. .
. .
.

sessaaiGlessunasuaae

YES #FETCH CORE LOAD®
#csesaeaaX BUILDER PHASES
. 0s 1 -

sessasannases

- '000H2¢§I¢|0"'
INK = ® EXIT TO CORE
ON : : LOAD BUILDER :

sssenrennavenae

Flowchart SUPO5. Supervisor, XEQ Control Record Analyzer

Flowcharts 197

LFCO0
drrasAlesenssease
- .

T WSEL Lot
N tds

Ch .
-mmcnons OFF =
-

H sussssesansese

seen

#005e
e 8l xo
. .
. .
X

sssBlessanven
007

READ AND PRINT
« A RECORD -
weasn
sasssansessas w005
- * Che
ane . e
*005e .
' Cl .. X. .
erat & M
.. ... X
clL ., c3 .. sansssbonanasnsnne
.
. acaA #. N *, NO ® FILES *. NO * PR]NT ERROR
© REORb O eixs T kel RELHER eeeaagex ESSAGE
. .

“e. YES

Y .
L ol e. RE A leiiiieees
- . .
. ., .
X
* NO raene NG
. «C06e
. A3 A
- LN] LR 4
. . . .
H X
sevssnElesns eevsssE2uesnensnnnn arssesEloanassnsnes
WRO0OO Q07E4 WRO00 Q07E4
.- S
W BLEFER 10 WRITE BUFEER T0 WRITE EEFF R _TO
'SCRA(,’ SECTORSe 4SCR é SE% RSl «SCRA RS e
aesesvesevens etessnersrnaes nunnu-n
. ¥
X X
.*e ot
FZ .. F3 .,
.. . -® -, L2 XZ)
. YES .¢" NOCA . YES .* FILES *. YES ® »
e%oaas .. lNDéCAYOR .0-... ¢, INDICATOR .#,...Xe C4 »
. ON . .
. “eee
X L
aves .
. - -
® Ch o .
. . .
YT .
- » sessaGG2uer » soo-ccao
- - l L -
- - SET NOCAL - SET FILES L3
- . ' INDICATOR ON # ' INDICATOR ON »
- . . .
. . . .
sesssusrenRsnnnee Treresesacescness Tesssssrensasenes
X X X
srnve ey e
2006 =006e #006¢
e Als * Ade « Als
. . L2 . »
. . .

Flowchart SUPO6. Supervisor, Supervisor Control Record Analyzer

198

canen
*006s
» Ale

e o0

sesssplansesanass

- -
®SET WORD COUNT
» TO ONE -

- .
Bensssecsessnesse

X

sensoBlensssencas

.
*POINT TQ COLUMNs
- 8 -

seessciriane

AND
' CDNVERTEFILE

csnenen

Seeressrsnennece
.
X

sesssDissrasnenne
IFBOOO

007A10

178”85?42-

ODIgK
.

007A3e

-oo.-clafo..onaoo
OFBODO 007 l'
OSTORE FILE NAHEO

T0 1/0 BUFFER :

IR

sasesjlsesssnenss
.
SET_CARTRIDGE
1D BLANK

-
-
.
.
.

.
.
-
.

BUFFER 0

Flowchart SUPO7,

-smae'cin?nxocs-........x-.
16 10 170

.-o.ooAzoono.n-uoco
RROOO__ 091__.

READ ANg PRlNT

adsssesnssans

YEs .o°"

esevecact,

wsesaf2essenanans
-

® SET FlkE NAME =

ee X0 BLANK -
. .

- .
ssssssssssenssns

e ev oo

2aesssenase
007A1

*
FILE NAME®
0 BUFFER #

»
sssspavsas

Xeasseeersssseeresnne

.
-
.
.
.
I
N
.
.
-

. FETCH AND .
couX® ONVERT -
« CARTRIDGE ID
. .

*

€sssssesrnsenses

**e. NO

...xc STORE NANE T0

cesr et e

ssasedlessssnsnns

.
#SET HURB COUNT
TO ONE

»*
.
»

.
sessscnesansasane

PR EY]

“sevsBlesessesens

-
*POINT TO COLUMN#
. 7

....X' NA

.

.

X
sesswDIssrensavss
lFNOOO OOTABO

AND 0
ERT

E NAME «»
crnennes

Xvoovesessascaseasnsancan

Xesesss 0Z<T

sreasE3eiorsasane
00 Q00

/0 BUFFER

Cesvsesanncucene

“ssaee

o® FDLLON!NG *., YES
*. COLUHN A sPecensenaX READ

asass)4nsscanvane

takseChrass
.

. SET HAINLINE

LANK

:
ssssenasessrenses

- -
#POINT TQ COLUMNe
- 8 -

Supervisor, Supervisor Control Record Analyzer

FBCOO ...

'.
. -. YES
ol t/o BLFFER
.
.. -
..

o "Ro

X

» STORE FILE

*NAME, CARTRIDGES®
I R SUBR,

* NAME [N DISK &
1/0 BUFFER

ansselsnrnscarae
. .
*INCREMENT WORD #
- ; »
® ACCCRDINGLY »
- .

smnsanasaenseene

(ST NP

srseD]lessessuas
- RETURN TO .
sCALLING ROUTINE®
. .

*sssssanscesnes

RROCO o e
El ..
o ..
RECORD YES
«, COUNT ZE
‘.
P
* NO
%

seevssFlecssseannes
. .
READ A RECORD
. .

ssnssnssssess

sesnaeGle

- PRINT THE -
RECORD

cnsassse

sesvsrnansana

o 400

ennerHlasnnarenesy
. .

REMENT -
iiECORD CCUNT BYs
.

.

pooo.coo--n-cono-

[T

srenjloresssnse
L3 RETURN TO *
*CALLING ROUTINE®
- -

*ssnaccesssnsoe

ET
........X-CUUNT NEbATlVE

X
ssene
=005
* Che

. e

sssseflasretannae
- .

LAST WORD »
.
.
.
.

Tesarsssssscsess

PIEEREE)

sassanF2eansesnsens

eWRITE DISK 1/C »
BUFFER TO SCRA
. .

sesssssnesnes

X

*. NO

aaes
.
-
-
-
.
ssvsea
. ..
- *. YES
. e®ecaoncas
- X
. . -
. -
X -
03 .. -
. -
. e NEXT “. YES .
- .. COLUMN “®isrnae
- « BLANK .
. .. -
- e o8
- & NC
X
.0, WR
E3 ..
. THIS
eane®s COLUMN THE .»
- SIXTH .

Flowchart SUPO8. Supervisor, Supervisor Control Record Analyzer

200

asnssChancsansanse

- »
#CONVERT NAME TO#
NAME CODE -

.
sesavasssscsennss

seRsDLsBRERRERS
- RETURN TO .
¢CALLING ROUTINE®
. -

srcesnrasnrranun

000 ot
..
- ISK ‘el YES
0. I/U EUFFER LR
.
'-_ o
* NO
X

sseessFiassnsanenss

nHllTE DISK 1/0 =
FER TO SCRA

sacsnssasanse

ssenee

LEAR DISK 1/0
BUFFER

.
»
.
.
-
-
.

sensarncsaconan

Xeoesoancan

e e enon

erssHosoe
. RETURN .
*CALLING ROUTINE:
.

.
.

Cerernanss

. »
® A3 e,.,
- .
anne X
oo oo
A3 .. A4 “.
sERAlacunnssne - .. ., o ..
*ENTER _FROM COREs *e LOWER *. NO LOWER
* [MAGE LOADER = .t . T LESS CMeesecasoXel LIHIT LES
- . .. N 2566.% HAN 4096.%
sEseBIRNRERRRNS o p Ca. o*
. 3 0y L
. * YES * YES * YES
. - .euw . waa .
. . *009% . #0099+ .
. . * B3 w.X. * B4 #.Xe
. . - . . . - .
o . .nee o sane .

X X MM2 X M3
tnssssplessnsnnnnan wesesnBess B3 eesnenBirenannennnn
#FETCH_PRINCIPAL# . - - # FETCH WORD L # FETCH WORDS &

INT DEVICE . PRINT HEADING 1286-2565 FR%H 2566—4095 FROM
SUBRDUTINE = . » - . cIB - - (213 .
-
zessnnsesense - nEsRREEIERBRR crnnesssansne LYY T YT YT T
-
. . - .
. cvaccssecceXe -
- . . .
% . - -
- X X X
atnnaClnsnnnnenes assselingsnnsnans snnnaCliansnsunnun
» - - - * .
CONVERT NEXT # INDICATE NEXT # # INDICATE NEXT e
* ADDRESS AND # « SECTION IS 3 = # SECTION IS 4 =
M NEXT 16 WORDS « - - *
- » - - *
LI Y TY YT Y Y Y YT Py T saRnENEREERRRR RS
. . . .
. . . s
. . X X
. . “one “ene
- X - - - -
. X ot A2 # * A2 #
. ansuaplassesennes D2 . - - - -
. *SET LIMITS FOR # o* e anen wesy
. - COMPLETE - NO «e ARE TH ..
. # HEXADECIMAL #c.cc weeo®s 16 WORD o
. oump - #s EQUAL .=
D) .. o®
sesEnRsREBRARENEY %, o®
* YES
. . .
. . -
. PO .
ecscvevescnes .. .
. LY X
X . oty
SesnnsElassanansnan % s
TCH .. .0 L NE AHE *s YES
I ﬁ g FRBM ClB .. lS P2
o . - -® -
P . -
TessasNesenny P “ae o»
. . -
.
oXew sevses saee
. . -
X X < X
nesanefFlesnsnnonany sananeFlesuvassnann o.o.cFLou.un-uann
. -
#PRINT REGISTERS» - - # INDICATE NEXT 0
AND INDICATORS PRINT THE LINE * SECTION IS 1
. - - - -
. . -
sasxacsnanane sassBnansRREn . sesennsnasnsannes
. - - .
- . . .
. eXeesssecnnss s
. . X
. - enan
. X - .
X ot .y * A2 =
anssvaGlensnsnssanse G2 - G3 L - *
ot o . ., annn
- . . DUMP . YES <% RETURN . YES
PRINT NEADING. ®. COMPLETE ..-........x-.. ADDRESS o%ceeeces
» - . . .
- . .
ssssessnsnEey ., e .
- .
- - .
- . .
. . .
. . .
X . .
.t . .
H2 - X - sensstHionvsaunasann
seanHINERNEERRE .
o BUFFER #s NO * EXIT TO $EXIT = . * RESTORE CORE »
. DUMPED e®aees - N SKELETON « «eeX LOAD FROM CIB
.. L3 . « SUPERVISOR - » .
. - . sRsenERRNERENES
. o ansssaRsRBREY
- S anen .
. . . .
. * A2 . .
. . - .
. LrYes -
X .
ate .
aussssjlevasunennnn J2 -, X

"o SIS RBAOR

LTI YR Y YY)

-

.

.

X
“saK]lssssnnuann
-
INDICATE NEXT -
SECY :

.
-
.
-
-
-
-

-
I LI TR Y T YT Y

Flowchart SUP09,

- .,
.. NEXT .
", SECTION -

leee3u000.009 B4
feeehenasl 009 E4

can.g4¢¢¢¢¢.unn
ETURN TO -
i CALL]NG LOAD M

--uouqnqu--.nnc

Supervisor, System Core Dump Program

*ane

*. NG .
S e®eceeX® E4 »
-

LYY

-

Flowcharts

201

.
ssszsusenssenes
.

(X112
*010e
* A3s
WA2
-
AS100 X
sennsplenssnunanse
ENTER PR N CORE SFETCH CARTRIDGES
.
:Exnnee LOADER “u FoCHRARTRARS :
-
:

PIEEREX
Xeoa e

ssssnplsesusesces

AS200

SREesAbanennsanan
#SENSE_AND R Tw
ﬁLL lNTERRUs;g

-

ssssennannens
.

xee oo

sasssBhasencanane

.
- »
« SEYT $DUMP TO = : . CONVERT . ® SET $FLSH =
« “ZIERQ, FETCH . $CARTRIOGE 1D TO3 * NON-ZERO .
. sbupE . : « " EBCDIC . H H
- - - - - » 3
avenunuan » - .
. . . .
. M . .
X . N .
ata - X .
ci . . snesalIssnsnsenas X
L "o - s DUMMY UP J0OB = anssCiesanasnnn
.+ pump .. . 2CONTROL RELORD » s EXIT D SEXIT .
*. FORMAT CODE .+ . « IN SUPERVISGR » « "IN SKELETON w
. . . . BUFFER . ® SUPERVISOR e
., o . e * snefosasenanany
. o - . .
- : .
=1....010 A3 Ceeeeenee I
teee=2....010 A4 X
wnesssDinsesensene
M .
* SET $CTSW
% NON-ZERD .
- -
* -
AR NORBRBRBEEN
X
ssssfIvssesaneny
® EXIT TO SEXIT »
e "IN SKELETON ®
® SUPERVISOR
ARABBORARNERGES

Flowchart SUP10. Supervisor, Auxiliary Supervisor

202

L

*010%
* ASw
FeH
.
AS300 X
SRS RNASERINRORREN
. .
* INDICATE THE =
« APPRQPRIATE ®
* MESSAGE :
-

.

Xe 040

sesressfSenansunsens
#FETCH PRINCIPAL#
PRINT D%leE
* SUBROUTINE =

ssensssananse

esaenC5e
.

CONVER
- INSE
. MES

»
CEXTTYYYY

-
-
X
san
T
R
S

B

ssesnsD5aannnennne
* -
PRINT MESSAGE
- -

SEssssnnsnsse

w#4safSe
-

SET
NON~

Nop WX e es s

-
-
-
-
-

sstsssansussunn

CMO00

wnasplsencssees

EsusRBALENSERSERERE

* ENTER _FROM - SAYE LO MMON
s SSkECeTOR o b
« SUPERVISO - . -
ARBNBBBRIBRIENEN

- HRBRARRBESRES

. .

. .

X .. cM220 X
sensnBlarssanssen 82 -, #sesanBl B4 (YY)
- - -l g, . -
*MOVE DISK READ ¢ FORMAT *, YES #FETCH AUXILARY = «L00K UP NAME OFw
+ ROUTINE TO - e%essaceneX SUPERVISOR LINK IN -
: $HASH - » * . LET/FLET .

- -

: : . :

. . < .

. N - .

X . - X

oW, - - .,
. sesensl2nenncsunsen X JOh e
- uuc-cannnuncan.
. * FETCH gUHP - XIT 10 .*" NAME lN “ae N
. PROGRAM ' LARY - #. LET/FLET
- - - SUPE VISOR (3 . -

wanssGlannrunsnnsn
-

AT

OLDAD

[P

waen .

- .

« Hl Xe

- .,
sene -
LDCOO X

sussnsHlensenasnone

+ FETCH CORE

IMAGE LOADER

PHASE 2

SAOtxe s o0 0 a0

Flowchart CILO1.

LI T AR TR
asEBENSREARS
.

Xeeoene

.nuaooca-
» " TRRASE
* DUMP PROGRAH

-
lolooooaoocun..

LI FIITITY YT
*ENTER FRUH CURE‘
* [MAGE t
- PHASE

Q!IQQQCQQ.QQ.QQ

SesnRaFlevennssnnns

FETCH MONITOR «
«X CONTROL RECCRD
+ ANALYZER -

srsERBENSNER.

X
P 1S Ty X
- Glunsnsns
. ®EETCH CORE LOA XITO10 HON
: SIEDER Snkg E" H or‘cxngkascﬁTOR'
-
: Messnnaaracanans
BERBRARBRRNERS
.
:
X
EnenH2avanasNEs
. EXTTOTO CORE
« COAD BUILDER =
. ¢ HORBHRSE 0T .
T2+ S,

Core Image Loader, Phase 1

- ..
«* DSF OR *. D
bCI

0

sresesess e x

CI

.-D........X'LgADER

NO
.o o' .
o o X
#* YES nhen
. . »
* Fl #
. »
cane

Ill!llséialnlluilil
. BETNE N LDH *
CD HON NE 4096
3 18 =

sEsRBNBEEERRS
.

. anan
- -
seX® F1 »
. »
sene

sreuCSesssnneny

-
e®ecsorseeX® EXIT TO SDUMP =
- . .

ARRREBENRBEBENY

senssESerecncssny

CDRg MAGE 0
W YCH

LSW, TO ZERD

llllln.a!nll.l..n

Flowcharts

203

AERSAREIBERRENY
*ENTER FROM CORE®
* IMAGE LOADER, ®
. PHASE
EstaRIRRREEEEY
X
- ¥,
81 .. B2 .. wnspsplesrsnsnena
-* CORE .t . . -
o* LOAD 1 -* DISKZ *, YES * PREPARE 10 -
. SWITCH cesessesX#, REQUESTED aeseceaaX® FETCH DISKZ #....
+ SCLSH, .. " * .
.. .. o . . .
PPy ., .» AR BEB RN R OTEN .

« 0 « NO .

. . reew .

- . . * .

- - » C3 #,.. -

- . - LY -

. X rree . .

X ¥ .
eneunsClunuenennnen c2 .. #xaraC3annssnernn .

o . - - .

* FETCH CORE - " 0ISK1 YES # PREPARE 10 » .
YMAGE HEADER #. REQUESTED #ieeeeseaX® FETCH DISK1l -

- » *, e . . .
'S .. » » .

PLIT YT T YT IRy TN e e sEARRBRASRRSRENRS N
* NO - -

wane . AL .

- - . . - eXessasesaoan

. * D2 #.X. i D3 l X.

- * - -

. enw . Teane’

X
“nzasD]Anurnnnnen EBeaD2NsnneE RN ssssnnDle EnENEEE

TRANSFER - - o---us---u....
*PARAMETERS FROM= ® PREPARE - #FETCH REQUESTED» RETURN TO CORE
* CORE IMAGE * * FETCH OISKN %easeoasoX DXSK 170 SUBR eevas ..XO IMAGE LOADER
*HEADER TO CCMMAe . « . M P -

- - - EENSBNBRANARARS
sERCRRARRNETEEELY ERRTRERRREIRANAER crnanannRERE.

. ene -

X X
CunnsElRnsRranIne TranERELRRERRRR RUES
*STURE ABS SCTR »

. AUDRESSES CF = D X .
CALS AND - FETCH CDRE LOAD

!SUCALS, IF ANY,+ . -

#IN C.I. HEADER #

FURRRARBEBRER RN R, RERSFORABRNNRN

X -

-®e -

Fl .. X

¢ SRERFLeBEREEELS
C

EXIT TO CORE #
LUAD -

.
"
»

.
L T e LY T

vevesensaan .
N weny
. . -
. * H3 »
. . .
. “ne
: X
. ot
1 rEsH2#RBRRS IR . CERRC
LL ¢ PREPARE TQ - . - *.
RE L FETCH ALL OF = X «% NECESSARY #, YES
BELD ORE LOAD BELCW®.cowauaaX®#.TO FETCH DISKu®occaaaaoaXn,
4096 4096 - L 170 A
.
“ . EResnsnENERNRHERY we o%
* YES = NO
. . rnan
eseacenceeXa . ® *
- caXt E4 @
. . -
ey

X
T L NI TI LYY sranniSRsansesenn
- - -

-
* PREPARE TO

. . ND . EPARE TO_ »
* FETCH ALL OF = TNl xe EEFERREIIK. &
* CORE LOAG = . - -
. . . .
ErranEeRRw R EERR ErssaREREREARANEY
. rean
: . .
X S.X® D3 *
P . .
waun
® H3 »
M
P

Flowchart CILO2. Core Image Loader, Phase 2

204

seesAlressanensy
#ENTER VIA PHASEe
ol 0 »*

- -
cssasnenssntuey
.

Meesens

sanaseblensnasusany
. FEYCH DCOM

sEsssnnasaven

» -
sRsssERSNRERBERRN

sssnseDlessnnannnen
#FETCH MAINLINE «
vEADER SHOOO—PE

LYY Y YR YR Yy Y

¢

sesnsElesannnanen
- -
* SAVE REQUIRED »
'PARAMETEsg FRBHO
#MAINLINE HEADER®

. -
CXYT Y YR YT YRS Y I

.

.

.

.

X
snssuFlansnses
#ENTER DISK 1/l
« NAME IN LOAD =
#TABLE BTOOO—PH =
- 0 -
- .
AReeRERRNEARNRRE.

Sabr s o
>XO
oMy

antanatlntsennsnnen

FETCH PHASE 2 »
. LKO0O-PHO .

EXTTY XYY T2

X

nasejlesnennoen
) -
*EXIT YO PHASE 2+
» -

Snsessnnasasaes

Flowchart CLBO1. Core Load Builder, Initialization

Flowcharts 205

wIesplavesenian

* ENTER FROM -
PHASE 1 -

TTTLY Y

b
X

nensnsBinanssnnsene

-
. o
- *s YES RINT R47 -
- . RLAYS -'...-....X HESSAGE PHOOO -
- . € LOAD.=
- . o
- - *. .® tasavasencnne
. . . ¢ NO .
- - . . -
. ix....................... .
. - .
X . X MC170 ., MC18
ssessClannunsnose - sessaC2enssssnane RBEBANCLABRNSRARNDSY
. - . REIiOCAVE -
#CHECK LENGTH OF# . - R§8U RED ILS = OPR§NT EXECBTIDN'
«COMMON CKOOO-PH# . BROUTINES # - «oX MESSAGE PM00O -
- 2 . s ILOOO PH 4 H - PH 0 .
- o -®
ssaBEssHRGRERERRS . FRYTYTY YT TR YY ., L LYY T YT TP Ty ¥
. . - * YES .
asne . - . - .
- - - . . .
. 0l
.- . . . - .
aane - . . X
MCO30 X - X X o',
sassesDlossssnncans . ssseeD2 D3 sannes D4 ' seasesDSunaressunne
. - - o ..
® FETCH PHASE 3 - %ALCULATE - IERH[NATE - - # FETCH CORE -
LKOOO -PH © N #AVAILABLE CORE » 'LDAD NG TLOOO ~®.cavcaneXes STORECI e®ceeaceeeX IMAGE LOADER
. . . T000 PH 4 - PH O - - . PHASE 2 -
. - -
- sue [TTTTTTTR Y2 - sesvsnRnIRReY
YES .
asse . -
- - . .
. ® E3 #.c. . .
- - . . -
- snne . . .
9. X - MC150 X Mc270 X .
asdnsElisunenneny - - E3 E4 aas X
- - . ., PH 2 no'?$5;olnaanoc
*GET_ENTRY FROM - ANY FETCH PHASE - * EX 2] E »
LOAD TABLE - *, LOCALS OR ...X L 800 PH é FETCH DuP # IMAGE LOADER
. . #. SOCALS L - -
- - - . ow ssscsnsesiannnn
ssseescrsssnesany . . ow sesnsensnesen 4essansnacane
. * YES . .
. . . .
. . - .
. . .
X X s
P
ssesssF2ensuncasnae sssassFlesnasscanse X
ssssFhessenanes
SFETCH DVS EAVEDO #PRINT CORE_MAP . -
PART PHAS eeen FOR SUBROUTINES + RETURN TO DuP &
® LKOOO-PH 0 & *M2000 — PH 12s - L
- ssssesesssnansn
sessesnsunene X sessssssnanne
sane - anes
- - . -
* G2 ®... - * G4 #...
LA - - -
. cses o
€160 X C120 X
*ssenaGiessennscnns sEReBRGh . G5
. .
?%V *. YES - FEI%H PHASE 6 - ® FETCH PHASE 5. #PROCESS SOCALS »
.0.... LKOOO Xi PSO00 - PH 5 »
. - .
.0 . . -
., L@ X sess .. sesssssns . reasenve
N anse - .
- - .
* El « . .
. . . .
asan - .
. .
X .
in':u - -noc-n;ooo--uou-o .
- .
#CHECK NAME FOR TE - OCR ATE TRAN ERO . . *. N
« CALL OR LIBF ENTRY « #VECTOR TVOOO-PH .. . IS TN
e CNOOO-PH O H 3 . - 6 H . . . -
- - - . . o ® -
sssnsnssusnsasasn ssasscsne Anssesssesnsnnans . ., .0 X
- - - - . * YES rene
. . - - - - » -
. - - . . . * Dl#
» . X - . . » *
. - nena . . - cnsn
X X - . X . .
ote o ¥ 5 A3 e MC330 o®e . X
Jl ., J2 'N - - I4 .. . esesns Senssssesess
. ., " . waes o .. .
ot 15K ». NO - #. YES - ANY =. NO - # FETCH PHASE 4
.. IIO ENTRY .%...a .. BYPASS a¥even o LOCALS e%easans LKOOO - PH 4
., " - .. .o -
.. ..
C_— sennssevansee
* YES .
- .
X X
q-ounxl..nuoncqoc sansaKSeannn
. » RE&OEATE .
-PRUCES; LOCALS,» * REQUIRED ILS
& ADD LIPPER e SUBROUTINES #
PH'5 » ® 10000 - PH & =
.

Flowchart CLBO2., Core Load Builder, Master Control

206

REERNRERSRENSBRNS

CCAT
snsaples

.
.
= ENTER FRO - .
« SUPERVISOR . -
« . -
sNERBRBRERERRES »
. -
.
.
X
ate
B2 ., ssssnbinsnsnensnn
.. ., * »
" PAPER . YES #SET _CATCO PTPON=
., TAPE_ON Pececasas XESHITCH NON-ZERO#
%, SYSTEM .» » -
- -
‘e a CIET YRR RY T TN 29
.
-
X
sssse(lusnnnsnnen Cc3
. SET . # BUILD PAPER = -
® CATCO, SLINK *Xeooe TAPE PHASE
#SWITCH NON-ZERD® . -
- -
ansesEssaREsREREN . sasssnsununse
p . :
. - .
- . .
4esscanae -
X X
sanssaD2enssnnnnnsn sanssnDissassnnngses LY
.
#BUILD CARD 1/0 = SWRITE PHASE 16 » »
PHASE TO DISK bl
. * " . »
-
snsnune saensesensenn -
. .
. .
- .
. .
. X
X oo
wEsnsnE2encnsnnnone E3 ®. crsanny
«# PRIN. #. ?.
*WRITE PHAgE 15 = NO .*1/0 W/0 KB e. CE »
TO DISK ecssect, PAPER ot
- - *. TAPE "
.. -
sEsnReRsNEERS L PO
* YES
-
. .
% .
ssansnfFlensnsasen i

neesF4RnEnRaNEE

-
¢ EXIT TO REST
* .

sEEBRNBRRNERRES

SWRITE PHAgE 15 »
. T0 DISK .

SEnEERNREERES
-
.
-
Xeeveoeensonssncoccssssnce

.
.
.
.
.
.
.
.
.
.
X
-

62 -, BeRessGlasnnanneae
-t »
. PRINCIPAL =, YES #BUILD KEYBOARD «
- a®esenscesX PHASE
-.5EVBUARD o - .
- -®
e o8 AARBRBRRBNOGEN
* NO .
. .
. .

. .
eXeososeseseccccssocncccncs

--o-n.Hzc‘ouoon.-uo
#WRITE PHASE 14 «
. TO DISK .

(XYY Ty Y

EX1 00 8 ~MDZOSXNI 000

Flowchart DUPO1. Disk Utility Program, CCAT

Flowcharts 207

sessAlessessree
*ENTER FROM REST»
- IN DuPCo -

snsasasnsnennae

*x0 80800

Bl ..

" .
«% RETURN
#. FROM CLB

. '

s e a

17
sssazaDlesvesensnns
*«FETCH DUP PHASEe
14 (p . (4]

* SUBR. SET)

LT Y Ty

:
:
RD170 X :
:
:

Xeeoesaanan

-nloan[.§¢ol.l»n..

CONTROL

#READ
RECDRD

sxasesnsnnEne

Gxs v e e

Fl ..

. ..
CONTROL =,
RECORD -"

.
-

NO .o
sas®a
.C. ,i.
. ow
#"YES

Measas 2

sasnap]lazunassans
®SET UP DEXIT TOe

»
& SUPERVISOR -
» -

csenue

tessnanew
.

Sxsoeana

snsananse
OEXXI VlA LEAVE 0

iuo.olo.....onl

“nea

- -

* A2 #,44

- . .
suee o

[rs

Bep2ecsnsancunn

« PRINT CONTROL #
RECORD
.
sasnsuncasane

STCTL
ssnnef

-PROC

30.000-0.00
%S 'STO E

ubp
conv ‘ﬁscnkns-

|.l.ll|¢olllnll.|

DUCTL
an--qcaa-nnnoloan
..
0 wouwe lIERLLLLx "’""“gs PDATA" " Seeune
[. X sCONTROL ﬁECORDS
e uet D temesecansnsusevs
* NO -
X
oty DACTL
p2" “e. etzseD3enssannene
. .

- "
* PROCESS COUNT
Xe FIELD

-
. «DUMPDATA

- . -
- RERESRIAABOBRRNNN
+"ND
:
X
e LECTL
E2 #e non-.E3oo.¢..|||9
-® .,
-" %. YES
#l ®DUMPLET .-........x-ser LET/FLET su-.....i
L -®
. .. H .
e o .o-o..u.n..-.o.no .
« NO -
. :
X :
. FLCTL .
4o etesaFlucencananse -
..
. . * SET FLET ONLY :
#, @DUMPFLET o®..cceacaX® SW Beacena
.. .. H

- -
sEecansRNRERETRRS

DLCTL
sssvaGlnnsnanasae

" » -
*. YES #PROCESS 'DEBETE.
--'..-...-.X:CDNTROL RECORD

.
slpusNsANsRBEcONE

X
#ALeERARBEONS

»
FETCH PRECI
- PHASE

-
-
.

ssuss

LYY Y TR YT Y

pPLO3O
sssneBbesssananne
. -

FETCH STORE

-
se X
-

- .
CERTEYYYT R YT YT E ¥

PLOSO

¢n|||c4-¢-n¢nonuu
-

FETCH DUMP -

..Xl
- -

-
P Y YTy Y Y Y T YT)

X
wness
*008#
* Ale
. »
-
FL100
sasasELeanannnene

1 BROCESS T e
*DUMBLE .
..Xs__ SDUMPELEE o

CONTROL' RECORDS®

.Il'l..l.."l

e a0

PLOGO

SEnsEF4RSRANRRENY
- -
- -
FETCH DUMPLET
- -

- »
“snuRasRNRORRRREY

snue
«010%
Xe Al =
- -

“nne

. _*0l}e
Soxe AL e
""nn
DFCTL PLO8O
I..IINBQI'.'CI... .I...Hl'...l.....l
- -
. “e. YES <PROCESS RDEEINE .
o1, DEFINE le.ll.....XSCONTROL R GRo" -........x- FETCH DEFINE 3
- -®
-, - . -
®, o .Ill...'..'l".l. I.".Il'.'l....
: NO LX)
: *012+
: Toxe Al e
N . e
X LITT)
e WACTL
J2 .. -o-a-JB---onn-ou-
.
: ROCESS sDWADR =
®l eDWADR ..‘XICONTROL RECORD .
* 3 ‘l.' ’ ARBRAEQNBRANEDED
e o @ ll"l.ll.l.lll...
«"NO
:
%

'll.nKZl..lOc..c.
aK3nsessane

UP DUP CTR L 'EXIT VlA LEAVE 0
DREC ERROR EXIT 0......--X'

----onnoo-n-n-.c-

Flowchart DUP02. Disk Utility Program, DCTL

208

Tenansannasannne

#003e
* Als
.
-
X
STORE " o,
Al AL e, essrusASeasananansy
" ., -* LXY
. 1/0 #. YES o *. NO #_ READ SYSTEM =
=. REQUIRED e®iecesscennoessssesecescssovencaccssncscssasscsensssascocnssseX®, STOREDATA .#....0...X FORMAT RECORDS
.. FEREN . .
.. o .. o
., o® - sENsERsRNERNS
* NO « YES
ssnn - -
- - - -
* Bl s.X. . .
-
LX T Y X . X
.t X ohe
81 .. sasseuBlessnsanenns sensesBhrnsanrarues 85 w.
" *. MOVE_PROG. OR . *e
» #. YES #DATA TO FXA OR = - READ DATA - RECORD
#. STOREMOD ateo FORMAT RECORDS TYPE VALID
. # REQUIRED o .
.. " . . .
R, L% SRSAREBRNE RN EERRRBRBRREEN ®, oW X
* NO - + YES Ladid
. . - . »
- . . * E2#
. . " e
. cceseas “ena
X .
L .o X
C1 s c2 L 3 srnsesCSesnnennnare
" . - ", - R
o* *. YES o® CORE *. YES - E - WRITE TO »
L0 STORECI e®ocvceneeX®, LOAD BUILT o%scvscaneX® WH 3 WORKING STORAGE
- o *o T .. 3 -
-, " ", -
. aw *. a® . X sussnpenensvy
« NO « NO * NO rreYs .
. - - - - - “ees
. . - . E2 » - ¥ *
. . - - - seX® Bl @
- - - LTy » *
X - - anan
ote X .
D1 . sunsuD2essscnncen .
% - #DUP EXIT CALLS .
STORE "+, YES *CL8 WHICH CALLS* .
*o TO _WORKING o%.404 ¢ DDUP®S PRECI '« -
STORAGE . . PHASE . .
'™
B, o X EERNERBRRBARNBRINS -
» NO anes . .
- - - LR L) . -
. ® HZ2 = & * . .
. . = » E2 s,X, .
. seen @ ., .
X "o - -
.t . .
El *o X -
+eFXA OR ®, seseE2eunsunnes .
«% UA HOLE ». NO - .
*o LARGE +®encecneeX® EXIT TO LEAVE # -
« ENOUGH .» - - .
", -® ARBNERRRBAREES -
., .® .
* YES .
. .
. veecsscsscscsscoscsccssccan
X .
LY X .
Fl ., wsanseF2usncsannane
" ..
NO oo DSF *, # UPDATE_LET OR #
cavets PROGRAM L] ceeX ELET AS
. .. -" . * REQUIRED L
. . .

4spussvenaans

:
%

sussaGlasssnsnses
- .

R
s ae0as

sessaG2esssnnnnes

.
#UPDATE DCOM AS
. REQUIRED

.

- 08 ADJUST .
«PROGRAM TO END +
OF USER AREA
-
.

.
sessNBIERBERRESE

-
. .
CEITTRYTYTTTYY YT 2

.
snun .

.
-

- .,
& H2 ».X.
- . .

nese .

X
-o.oonH[n..u.c.a;oc
M PROGRAM
N SN T
EXA _AS
« REQUIRED -

X
ssaNsEH2NNEIRRRESR.

*PRINT SIGN OFF
. MESSAGE .

sERERARSERRAIEN BRERBBRRARNES
- .
. . .
. . .
. . .
X .
sesnallessnnsnan X

sEREjonnsunnane

*
& MASK, DO NOT =
- LLOW - -
. REQUEST - ® EXIT TO REST =
I - »
-
.

- INTERRUPY
. PYTYYTYY I YY Y Y ¥
LT YT YY Y YT YYTY TS

-
.
-

Flowchart DUPO3. Disk Utility Program, STORE

Flowcharts 209

LFCQOC
sRRssAlannnnsaene

.
+ WSET LocaL

= NO LEs
:mmcﬂons OFF

Ssusssrasssenesen

sssesn

2see
#0054

' Bl ., X.
e’ 2

ceassspletesnnenses
RRUOO OO'IEl

READ l\ND PRXNT

“EBES
LXITTTRYTY FY R *005%
- * Che
L] - L
=005 L]
: €1 s.xo .
hes X .
.. ' N .
c1 .. c2 .. c3 0. X
. Chnnsnunnne
o LOCAL «. NO " NOCAL ®. NO o® is “s. NO -
ECORD ECORD CtiiaeaieaXel R e®sacessseX® EXIT TD LEAVE =
., 2 X - -
.. . ssssessssaseans
., .. -
* YES nese
. .
. C4 »
.
. sens
X
.
o3 ..,
.. ..
" LAST
4, RECORD A
-~ FILES .
*, - LA sdl]
", e «006%
senun «“NO . Alw
*006w - L
. Alw . .
- w .
% X
secusaElesssecsasns ..n...gz.-.---..... sanesuE3assnnnsenns
HROOO 0075‘0 000 00TE4 WROOO 007E4
B FFER TO TE B! FF R 10 E FF R TO
éR" gECYDRSO (l. E ORS= (l, RA gg RS o
..o...-...... uu-o-oc
.
i
s,
F1 .. '.
-*
.® LOCA #, YES A . Y
o2 inbiEbor *1aTES, ng 'fon "l
- ON .. . o
.. .. e, o
., e . a®
* NO * NO
:
X X
sssesGlussnsessan essseG2asensesnse seeseGInnrnenenns
. . .
- SET LOCAL L3 SET NOCAL . . SET FILES .
: INDICATOR ON : 0 lNDlCATDR ON : ' INDICAYDR ON =
.
-::
. . .
: < .
X X
sanan
«006e
® Ale
“« e
.

Flowchart DUPO4. Disk Utility Program, FILEQ

210

ansne
#006#
* Ale

e oo ¥

ssnssAl

3
*SET WORD
: TO ON

.
.
X

sBlesessnnsas

- - .,

#POINT TO COLUMNs RECORD -

. 8 X - SAME TYPE -

- - #. AS LAST .=

- r .. ot

EenpNseBRORRERNEY . o
. & NO

- -
e Cl #.X

X
anpes
#0058
* Cls
seseaClasssnsenss L)
- -

.
FETCH AND

CONVERT FILE

NUMBER

- .,
FYYYS -

-
-
-
-
.

sssssD]leanase
«FB8000 0

B e e i
«STORE NBHBER 10e
«DISK 1/0 BUFFERe
- -

sensasssanaRBESNe

SE2%snunaunse
-
® SET FILE NAME
oXe BLANK
.

sses

- -
sEIRBRssRs RS RSN

sasssfFlesnnssanne -c-onFannaolu-u.
*FNOQO 007A3e «FB0O0 007ALs
SFETCH FILE NAME# «STORE FILE NAMEs
«AND CON&SST T0 = * 70 E/O BUFFER #
* NAME CODE - - -

Xees0eraesssresasseas

sesanH2unnnnna N
- - .

A ». NO FETCH_AND -
s¥eccncevsX® CONVERT .
-® « CARTRIDGE ID =
o - .
REEsEERRENERRERS
* YES -
. .
. .
. .
. .
X -
tansujlenssnasnne -
. - .
SET CARTRIDGE « .
- 10 BLANK . .
- - .
. * .
sessssensesERIRRS .
-
-
.
.

srssNsRuRRERsRa s

Flowchart DUPOS.

snene
*006%
* Ale

e oo @

assasniAdsssnssnnne
- -
#SET WORD COUNT »
. TO ONE .
- -
- -
LITTTYY YRR YT P
-

e o808

aénsublasennsnnan

.
*POINT T9 COLUMN»
. .
- -

- -
EITTY T YT 2 YT YR Y T

Xeoooe u

wssnaHInenssasnan
:ENOOO 007A3«

E *,

NO

-
.
.
.
5
e
c3 .,
. ..
o COLSMN *. NO
*e A COMMA .®.c.cecny
-, . X
- - L1 33.3.4
. ot *005+
» YES . Co®
- LR
- -
.
X
esssuD3ansnnannnn
- -
= SET MAINLINE #
® NAME A BLANK =
. .
- -
-
—
eseX® ST
. : 170 BUFFER :
.
- AFANBRBEBRANARINN
- .
. -
. .
. -
- .
- X
- oy
. F3 ..
- " .
. NEXT *. YES
- e COLUMN A o#%.ccceaes
. *. BLANK .+ X
- - - L Db bl
. *. o0 #005¢
. * NO » Blw
. snse . .
- -
. * G3 m.Xo
. .
- X
- ..
- .. AnENERGhHeEaINIRERRRY
. RRO0OO
: bR 2. X"RERY ANBERINT,
. eessvene
. LAN - 2 RESDRD -
.
.
-
.
.
.

e e e
FETCH ANE -
- CDNVERT SUBR. :

-
YT T TS ST Y Y Y 2

Disk Utility Program, FILEQ

Xessoe w

EXT T NI Y TR Y Y Y

-
#POINT TO COLUMNe
- 8 3
- -

- -
sEERsvseRRRERRRES

: [TYS
P »
eeX# G3 #
- -
snen

e%eessncns

Flowcharts 211

FBOOO

e
..
.. ..
" 0 SK -
L 1/0 BUFFER
*. FULL
-. .o
0, .w
« NO
X

non--Blnna..--u-.

ORE FILE .

.
X

sensaC)essse

e
. *
#INCREMENT_WORD :
.

® ACCORDINGLY &
- .

sssearnAcseERBREES

-

Q.QQD[I!....I'.
- RETURN TO
scm LING RoUTines

l-..l.l.ll..bl.

RRO0O e
E}

- ..

. RECORE “u.
*, COUNT ZERQ .w.
.. "

..

NO

Xesssa w

ssnnesFlesnssnesn

) -
READ A RECORD
. -

Tenessnsesene

1 eas o

nessnaGlensansssnan

- PRIN? THE -

CEYYTTTYYY Y TS
-

e s

ssnasH]lensee

. -
* DECREMEN -
'RECURO CUUNT BV!

..

“nrasespnsnsnnan

Xesss 0

canzjlassnaanas

- RETgRN T0 -
*CALLING ROUTINE=
3 -

snssunsananan

Flowchart DUPO6.

212

n.-.-gz-o-o---.o.
.
ES * SET _LAST WOR .
.......X-CUUNY NEGATIV M

.Aa....!nio.ncao.

e s oo

snesssfFlossenan

.
@WRITE DISK [/0 «
§UFFER T0 SCRA.

-

daensangusnse

susnG2esnsucnne
- -
:RETURN TO DCTL :

sannesasansesas

Disk Utility Program, FILEQ

0 .
pa N

. NU
X
saone

i

“e
CDLUHN THE
.o

susae
*0Q5%
& Che

WROO0O .,
E4

assanslhsnnaananen
- .

#CONVERT NAME TOe
X: NAME CODE -
. .
#etesnscanssnnsue

Mo v esan

#easDisnesnnnse
- RETgRN TQ -
#CALLING ROUTINE®
- -

sssenssnnsasans

o

.. ».

o DISK ..

%, 1/0 BUFFER .«

¢, CLEAR .+
. ..

-
NO

Xesoen w

stnnssFinannnnnenn
*HRITE DISK 1/0 «
BUFFER TO SCRA
- -

EXTTTTT YT Y

e aane

sasssliunsnsnnnes
®CLEAR DISK 1/0 =
. BUFFER -
.
. .
seaERsERREANSRRS

Xeveanns

xo 0

'...Hk.'l...i'.
- ETURN 10
SCALLING RDUT!NE!
.

n-n----.---..--

YES

Peseesassesatr et et enean e s

0D000

R

cer e

.
-
-
.
.
.

cssatty

DD440

12313

*008%
* Alw
.
-
X XG000
sspssAlessnsanans sssnnsAlansnnnnsane
Nl‘é‘kl{gE -
- RAM OF » * GET DATA WORD #
- . FROM DISK
M SUBROU'”NES :
CYTYRY YR TT Y TXY 2 ssssanusRRREY
. .
. .
. .
X .
L D300 X X1.000
Bl ., waenenB2 - Biasnansunen ssnnafSasusannane
.‘DEMP[NGD. * . 1000 009 D3l
«#T0 CARDS A =, YES * FORMAT DSF - - ND CATE THE « #e———eeoe—a——- -
- DSF ePenccscsak READER RE ORD * TYPE OF DATA « #LINK TO INSERT #
*. PROGRAM .= e HORD OBTAINED # « DATA IN PRINT «
.. .* - - - BUFFER .
. @ EEREBENRABEGS P I YT T Y R TR sRsERRERANRREIER
* NO . . .
. . . .
. . . .
. . - -
.
. - . - X
X . X . L140 LN
esnsaCisnsnnnnnes - sEReaC2nneusnnnan X #ennanCiraneiansnes cs '.
*X6000 008A3» . *XP00O 009A4« sanellancnnenns 0
Xe LINK 10 GET A + - "LINK TO _PUNCH ¢ RETURN . * PRINTRERPVT ¢ e DA‘I’A Toro 2
ves ssecse® essscsest, o®
DA A HORD ERDH » * QUTPUT BUgFER - - X -
DISK - . RRERBRREERERERS . “a. .
LT R Y P . . on
. . . * NO
. . . .
. . . .
. . . .
X . . X
ot X e
81 'S sesasD2sassssanes uunol)uuuunnnu 05 .
+*0UTPUT =, *XL000 00885+ ¢xco 009A3 o* e
.t T0 BE ®. YES BT A « YES .# LAST ..
%s PLACED ON <%cceeseseX® LINK TO PLACE @ * LINK YD CLEAR . evesev®s DATA WORD .
#. PRINTER .# #DATA ON PRINTER# * PRINT AREA - . -
., o - " - ., .t
- HEBAREIBENRRD NN ARRBERERIERRR RN, “, o
* NO . . * NO
ix......................... secccccescscscsoresncocs
.0 XF000 ca XL200 .
E3
.-[)u'rp - CERsESHRERIRERY
£ 'PL?";‘EVDPA!EQEEORD. RETURN H
* . -
UN - OUTPU¥ RECORD = - *
!. » - sEBssRERRREERRS
..
- -
. . ryY Yy
. . - -
. - * F5 #,.4
o Xeo . . *
X X L abdd
oo e ot XF140 -
F1l -, ssanaF2enannsanan F3 .. F4 ..
«#OQUTPUT =, *XW000 009Al# - .. ., SERAFESHuERERRNY
.® SE *e YES B " LAST #. NO OUTP *. NO -
®. PLACED IN «®iceaceceX® LINK TO PLACE » ®. DATA WORD $eaeanseaXte RECDRD FULL e%eoeveven Xt RETURN -
.. WS -* #DATA_IN WORKING# " - X * .
*e - - S GE L ., -® FRHARNBRERBRBABES
, o PXTTIRT TPy Ny 2 . o® . .w .
* NO . * YES YES .
.
. - . . .
i)(................---u.... eXeoeseeerssacecsocsscscavass .
.u. X .
., l'ﬂ..g]l.l.ll..&- -
o AST *o *XPOO 009A4* .
" ., e ————— .
DA%A WORD o # LINK TO PUNCH # .
o® M OUTPUT BUFFER = .
.- . -
“u. snsansssenenennan .
» YES . .
- - .
. - .
. - .
. . .
. X .
D X ot .
sssssnH]lrssnnsannne H3 L -
* LAST . .
"extTiNG WESSAGE” 1t PGLARRD :
aMeeccsseeacsrcosevssccscaccssocscan
- - #. PROGRAM .+
seanansevanen .. .e
. * YES
. .
. .
. .
- P
. XF240 X
X nuoc.j;nmuuunu HEARIonnnRRERRE
sansjlassasnsae - !XPOO 009A‘ol
————— u

Flowchart DUPO7. Disk Utility Program, DDUMP

- -
#RETURN TO DCTL =
. 3

SassRERRNNIRREY

'TRA]LER R CORD l.-..-.-.X' I.INK TD P\) CH

lnnnn-aoun--c"c-

UTPUT BUFFER :

ncoounuo..uuu-u

. snse
. -
eaX® F5 @
» -
ean

Flowcharts

213

XW000
F2OR/\laNsesneens
™

sPLACE DATA WORDe
- IN BUFFER -
-

.
B2" el
.
LAST *. NO - BgFFER %o NO
DATATMORD LeccoacncaXes uLL efacee
-.n .'. .0. ...
e ow P
* YES * YES

“Xsoasoeaassesocasaccacssne

XW100 x
unesanClusssnssnans

#PLACE _BUFFER ONe
- DISK .

snnssssananes
.

seEs eI et asaasas

-
eXesooaoas
.

sesscecncscrccsecssncee

X
ssesDlssssanves
- -
- RETURN .
- -
“sscassesssnees

XC000

sassafIsesannnnns

- -
*CLEAR THE PRINTe
- AREA a
- -
- .
- CYYRYYYY YTy Yy
X
ssssBlscacanacs
. -
- RETURN L
- .

sesnERRBERRBREN

X1000
asssuDlessnssvansne

-
:PLACE DATA WORD#
: IN BUFFER :

- -
EYTYTTTY YT YRy YR

>xe

sesssfF3nsnsnsens

. -
L4 RETURN .
- -

Flowchart DUP0O8. Disk Utility Program, DDUMP

214

XP000

ANNBSAL4o0NAREREY

-
SPLACE CHECKSUM o
+AND_WORD COUNT o
- F -
-

IF NEEDED

X
XP120 ... P165
B4 ., ssnseapSesesnnansen
*OUNPGEON - NO #PUNCH_RECORD ONe
- -
L I CARDS
TAPE .+ B N
- -
. o LT LT Y Y Y T
* YES N
: .
:
.

ssssseinnscnsnanas
#PUNCH RECORD ON#
PAPER TAPE
-

sesssennasses

ssrercsessceasoct

.
.

Xp280 %
ssanDinvuansanae
- .
- RETURN »
. .
sansssrsssnnene

L3331
s010¢
» Alw
LA 4
-

DUMPLET X
onc-A[-...-cccn.
ECUT u
Doy
:lNlTlALlZATIONS:

sSasssssssassenaes

snesauClrsnussennns
- -
RESTORE PAGE
- -

PIEEEEE)

avnesaDlenonsanensn
® READ A_SECTOR e
OF LET/FLET

ssssnvsnanane

xeseae

sranssClesssnnsnsan
« PRINT DCOM .
HEADER LEINE
. -

sresasennnen

Misase

ssensufFlunssansnnse

“PRINT LET/FLET #
. HEADE LINE

sansssesnseEs
.
-

[P

. loa..GlIf..-cnn..
. . AT AND _
T SerinT 2u9 LINE #
D OF LETZELET
- - -
. -
- SERNERERRECNBRRES
. :
. %
. ..
: T e
DN et TsecTor "Ce. vEs
eecel ALUTPRINTER Te.co..
.- ..
LI
.

R R R R I I A)

lAZin.np.-oo
O GET LET/FLE
FROM

-
.
-
.
-

.uno.non.---.ceu.

xe o000

SsRrsanBennunsennne

* PRINT DCOM *
. HEADER LINE "

sEnsnassansse

w3 e

CZ el

['A §§co~5nnv Z-'.“.]. .
.n. .0

YES

Xeeeoo s

sassnD2esnannadan

- FIND PRIMARY
- NTRY
.

sasas

-
ERITTYYY R YYYTYY
-

eveseevesccscsssvecns

Xe oo e e

oo -
unu.pEzounun-‘ll« E3 0. .

.a
0 FORMAT _AND “e. YESI
DPR[NT DN? ENYRY'.....-..X’. ENTR&?S TO .'.-.-

.
--q-n-cn-o-n-u--- . o0

* NO
. e
PO -
esX® H2 #
- *
wann
|0QnQF3‘non?¢¢u|-
-
YES = PRO NEXT -
e PSEERGR :
el LET *
- *
snssseseRRRNRRRRS
M nes
. ® -
aeX® C1 @
- -
wnnn

seseaGInussreteny

o ., .
«® ANOTHER #. YES .
., cAR?R[EG .-........x- PR3CESS NEXT]
'-sEQUlRED..C CARTRIDGE :
‘e oul rerrrressesanens

* NO .

L T B . esas
- . . . I3
» H2 s X. aeX® Cl #
. P . .

enen wans

sRssssH2naRusRRNIRY

'HRITE SIGN-OFF »
MESSAGE

saanases

Xeeas o

ness 2 unsnnnnne

* EXIT TE DgPCD .
» VIA RES .

- *
ARBenssERERERR.

Flowchart DUP09, Disk Utility Program, DUMPLET/DUMPFLET

Flowcharts 215

(222212

*0l1s

. AL®
“ .
-

e 0o

DELETE
ulno.Aluuc-nun---
'BAOOO ’
OINlTlALllE FOR =
EIIOUS DUMY

ARRBBINUIRABEOS

Keesane

esassBlonses
*NU0O0O :
e e e
*COMPUTE SIZE OF#
® ENTRY TO BE #
- DELETED -
REBRBRSDEGRTEBDEION

X
Q.“Q.Clbo.!l-ao..
OHUOOO
'lNlT E _FOR =
'FULL &é DUNY =

ANY -
-lnoun-on-onnqn.u

.

.

%
o----01-¢.¢--¢¢¢.
DC
OSNRINK
* UN
.

--«o-

Xeveeas

sensuElesnnnvonna
»
INSERT DUMY =
» E -
- NECESSARY :
.
RERBBERARBRBRRRNE
.

>xs e

-o«n-F[oooaonouo.
»SHO00
i S
. SHRINK -
REMAINDER OF «
- LET/FLET g

sansnns EXTT YT

sessuGunnansnnan
000

—————
UPDATE T = ..«XODELEYE PRUGRAM 0

-
- LA
DUMY ENTR

LY

-
XTI T Y sssnenssasans

Prsasencsenesa

eXenseescesscsnoncssssccnce

-

X
sesnjlesesannes
*EXIT TO REST IN=»
- ouPCo -

- -
seressannBansE.

Flowchart DUP10. Disk Utility Program, DELETE

216

DEF INE
seapsAlasncsannes

.
!ENTER FROM DUP &
CONTROL :

-

nllulllol.......l

%
... LS ..
Bl L2 .., 83 L
" ., *, ot '
.. vo1lp #. NO ER . YES ." FORTRAN "e. VES
=, ASSEMBLER .0........)(-. FORTRAN eFreceassa X, PRESENT e%eone
.. . . X
.. o
. o ¥ X
N ans
- - -
. Dl ®
. . »
- “an
.
X
snenClesnas
. .
csseX® ERROR -
X X - -
. . seasasasRNsRsR.
. :
. .
: .
... : ov. N
01 .. . D2 . .
.
- FIXED #, YES . <% MODIFY *, NO .
- AREA e*eoecoas %, FIXED AREA <%ceccee
#a PRESENT .o L o*
.. . [N ..
. L . .
« NO * YES
M .
. .
; z
sssesElansesvanss €2° . ssseanE3ven P
- - - e
YOID PROGRAM # * PREYIO *. YES # GET _LAST FLET
® AND CLOSE GAP » SteTRES AREA "TeYEd L x skCTbr
- : «ASSIGNED . » -
-, -
sansssenevEn , o ABARSOBRBBERS
- « NO
. N
X X
essseFlasnnnnasne SesnsF2esnsunnnne
- REMOVE . - »
* CORRESPONDING ® * EXPAND FOR »
- ENTRgES FROM = * FIXED AREA - ceccsescsccssn
- LET . . -
- - - »
REBENBAIRBRBBENER HEANRRANBRIRANAREE -
. - * NO -
. anen . . .
- b . - -
eaX® H2 # . - -
anen : i
X e
"'"fﬁ""""" G3 -, -
* BUL SECT - o® '. -
= HEADER_ AND - " SPACE ®. YES .
sDUMMY _ENTRY FOR® L FOR ANOTHER e%®sesesscsscenscccseXe
FLET - EN .
REBRERNBAABTRARE. B, o® .
. -
*SRan - -
- - - - -
* H2 #*.Xe . .
. 070 . .
aus . . n
X X X
sapssH2eansnsonne annael3 H4
» - - - - -
- - # UPDATE HEADER « * BU{LO OR -
* UPDATE SLET = * AND WRITE TO = eeeX® REBUILD DUMMY »
- . - DISK » - - ENTRY -
. - »
SEBARERBARARNANES SRERRGRBAROERRRENS - RARBRARBARNBRSEREY
: . : :
: . :
. . . .
X X . X
sssanj2esesnsnnse YT T NEY - Joansasnanensn
- -
- REPROCESS L4 - BUILD NEW - M #«WRITE SECTOR TO#
RELOAD TABLE = # SECTOR HEADER ®eeceee DISK
- - - - “ -
- - - -
(X221 EL) *e EREZ T2 222222
: .
. .
. .
eXesosseseosoesssscsscssscscsacscsoconcsssccnvnscancncnan
i
sessnK2usasnnsons
- - neeKIenssunvey
« UPDATE LET DR 'REYURN TO REST =
*FLET DCON AND'-...-...X' IN DUPCO el
BENT 1AAGE = H

#RESI
-
sEnssasRERERIREEN

oucncoaolldluno

Flowchart DUP11. Disk Utility Program, DEFINE

Flowcharts 217

sosspAlesencases
« ENTER FROM .
#LEAVE IN DUPCO +
. .

sesssneanEnsERn

:
%
oo EX020
Bl o ssssspSanarEsnEse
.. 180 3
- ENTRY ®. YES e - @
", (‘.ODE EQUALS @B eetanasneecseianacatasestetassaaananseccsaatcatstonatncasasatesessanoaascanasansoassaaaXt -
¢ WRITE DCOM -
.- a' - -
.. . PYTY Y I FY TY TN Yy
* NO .
.
X N
. X
., srunsCSasnnananns
- #PLACE CTL. REC.®
NTRY TRAPPED IN .
ODE Xu . SUPER¥[SUR *
IIIVE.- = WRITE DCOM . BUFFER H
- - -
- Secensdnensensansy “sEssasansrEReRES
+ NO - .
. . .
. . :
X . X
L EX100 X -t
D1 .. sessaDissesesenan . 05 “,
. ., OEXlGO 013H4e ?UP
.o ENTRY ®. YES #m——e————ee—ea —— E .® ENTERED . YES
LS CODE EQUAI.S -...................,..............X] .. FROM e¥eeee
& WRITE DCOM . D #. MODIF .= -
‘e .o -
— . . - . .
+ NO . * NO -
. - - -
M : . :
X . - .
oty . . .
El -, sssesflonscnsansse X X -
80 0 . ssesEinsnnsenae sensESenersnene
.® ENTR “s. YES . EX . lEXlT 10 REST IN' . EXIT TO 3;)([1‘ * .
*o CODE EQUALS feasocanaXs - e VIA L . DU * IN KELE » -
* WRITE DCOM . . DuPCO . « SUPERVISOR - .
“a. ot - . tasavssstsennes Tevsscssnncennas’ TTTTEYR T2y -
“, . sessnuanseansesne .
* NO . .
. . .
. . seececasesnne
EX050 X X X
ssssuflesavessans sassssfF2enncenssnss ensseaFSannNER s Ny
X180 013H4»
- .HR(TE UPCOR TQ # FETCH MODIF
. - UP PHASE 13 EXIT PHASE (12}
* WRITE DCOM - - . -
»
4nsnensEsassnednn sanssassansne sesassesuanne
. .
: :
% .
sesssaGlensusnvanse X

-
SEY_uP DI
iFDRH T % ODE OF =

Flowchart DUP12,

218

senaGSuananunan

'FET%H PHASES 0 .
«LOAD BUngE

. -
« EXIT TO MODIF
- -

sessssssessanne

EX180
srsenspinne

« WRITE DCOM TO &
* CARTRIOGE =

sssssssRERRGY

ssee

exs e e

J4 .

" .
<* L JNTERRURT Ce. vES
., %eese
RERRERLCKEY.- :
. 3 -

L — X

wnns
P
. Gl =
M
"hee

Xesese e n

FRBEK4RBNERER RN
- RETURN TO -
«CALLING ROUTINE®
* L3

“snsuneBREEEREY

Disk Utility Program, DEXIT

annse
=014
* Alw

PRECI

e o0

wssusunae

sasall
#ENTER FROM COREw

: LOAD BUILDER

3
»

ssssspassasnsany
»

-
NO »

‘e
OR
HOLE w. SET_ERROR -
RgE e%ceenoesee XS INDICATORS FOR #
UGH L3 : STORE .
-

»
sssnsnsasssRENEES

.
snne .
. L
* C2 .
- .
aens .
ssesne ucc-ocz-!.....nlo
AND -

sCLEAR $NDUP TO #
- ALLOg Fg THER =
: DUP FUNCTIONS :
csssssenonsBRERES

Xees oo

ssnsD2ensenssve

-
EXIT TO REST =
. .

X
ssanesflasnssanenen

MOVE G

- PROG. .
ABOVE 4K TO FXA
- OR UA .

sansensensnss

X

snsanaFlessnsnsasen
#BRING DUP UPCOR#
(PHASE 13) BACK
INTO CORE »

Seassanannnne
. asse

.« ® -
eeX# C2
- -

znen

Flowchart DUP13,

Disk Utility Program, PRECI

Flowcharts

219

*00 *001e
* A " A4
- - o
- -
: CXueereesessescessnctcncssacracnonasans
881 X 883 X :
sssesples tesnspbnassnses sEs SRS RERBDERRNS .
arreAlenanssnen #PHASES *PHASE7 *PHASETA - .
» . -
#ENTER FROM MCRA® * HEADNG . .
. . *ETC. STh .
SRRESRIUIRERRRY - PROCE -
- ruesnsnse
. MY T eses
. l.xe Fl e TeXe F1
- - . . -
e e
(
connrBlenransnans
*PHASED .
B g et L
. ASSEMBLER -
- LOADER .
I
ABEPEBBIHAERRELNS 2
TL
. L .
« Cl #.Xa -
» . .
care .
B8B6 X
ssswsC] sRnEee
HASE] »
. o e e e * v -
«CONTROL RECORD * # END_STAT NENT -
- PROCESSOR - - PROCESSO -
. » - .
SEVNTBBAGITSSRIRNS RESERRIONBIRERERES
X
-tg
D3 .. sssnanDiesnsnnanens
.. ..
- -
.. PASS ecsenseX EETCH PHASE 10.
T o
., .e sansessaseses
.2 -
; X
sunanEleane . wesesE2nane N €3 €4
#PHASEZ - #PHASE2A - . L o
s HEADER ®eeeeeecoXeFILE STATEMENT v...0 wl PASS
- STATEMENT - . PROCESSOR - .
e PROCESSOR e . . .
seseneeRINNT RS PETTY YT YR Y P “.
X
ssussfFinsensnse - ssF4uenasennany
. . .
rr o H H FETCH PHASE 11
- PROCESSOR - - QUTPUT * -
- - » PROCESSOR - - -
arsacssansetsanes secsacsanrnesrene cannnonnnanes PETY TR T YT VT T
: : sene M mnen
- P I3 P -
- eeX# C1 » ceX® F1 »
- - - -
. neee cans
X

suaesaGlensnnnnesny
. -
FETCH PHASE 4
- .

as snanny

-
.FETCHPsEggIREO * :Eg_u ER-——'

. .
- » - TERHENg%Uﬂ -
- »
ssssaRnstRInsse RN

.
sxssnsHlesennununse
.
.
senssnnsennan .

Meeanee

sasuj3eeassanse

sessERsARGRESYY

eeeBecees001 C5
+eBAcee.001 F5

eeel2000.001 C3

Flowchart ASMO1. Assembler Program, General Flow

220

ssessAluane
. -
*ENTER FROM MCRAs
- -

sssenanseRanAn.

.
:
N
X
ssseneBlassese
EICH PRINCIPA
ol PRINT, ANDs
NVERSION
* SUBROUTINE
PR
.
.
:

sssessClesensessnae

. »
FETCH PHASE 9
* -

assnssennense

® READ A CARD #

esasnsnennene

e aeen

aGlesssssncsen

- -
FETCH PHASE 1
- -

LT YT YTy S

xese v e

ssssHlssnesnsnse
- »
*EXIT TO PHASE 1e
- .

sesscINRNERRERY

Flowchart ASMO2, Assembler Program, Phase O

Flowcharts 221

ncllAélc.lllIll
ENTER FROM -
*PHASE O—-PASS lé:

#PHASE 12-PASS
AsrsseINeEIRNSE

.
. TWO -
PASS MODE

..
* YES

“e

-

.. PASS 1 cesnaXe

..
[

..
*.

.
e

* YES
sess
. o o
* Cl ®.X.
- ® oXeecesssseance
cenn .

xe o0 e

wsvesaClareassonnne eesassC2nesnansanns
RDCRD 015€3 RP0O0O

FETCH NEXT .
+ CRECORD : * READ A CARD »
asrssanusanuns : seessessnsane

e s aan

CVADR
ssrcnD]saessnsn
-

-
.
& CONVERT THE «
- RECORD -
» .
. .
- -

sssssssanasaney

e 00

- .®a
..

.

El
-® e
«®* CONTROL e. YES -
RECORD

“®esanance X, oo
3

PASS 2
..

o*

sesnsuflesnennncres
- -
FETCH PHASE 1A
» -

sssaGlaevrennan
* EXIT TO PHASE «
- 1A b3

.
cneansssnisanee

#u3assH2ensncnnsnan
PIMVE 0174l
PRS- ot

PRINT CONTROL
“ RECORD *

sassas

sase

L3 .
¢ FlL »
. .

seea

.
%o YES

L
*. NO N =
e®eacanaaeX® COLUMN 1 T& A #
: MINUS :

Flowchart ASM03, Assembler Program, Phase 1

sessaFlsavansnans

*
» HANGE &

sesesnnsEsaREsRLY

Bl ", ssnseflesnsnssnss

.t .. - -
T N ®. YES @ INDICATE BUFI «

.-, PASS MODE eececoesX® AS DSF BUFFER »....

- - - . .

., " . . -

LI sesunee nese .

* ND .

. .

X .

. -

sssenC2ssnsunene -

- -

NDICATE DFSUF -

® AS DSF BUFFER » .

- - .

. - -

sARBEARESIISRESEY .

. .

cevecncans

n-n.n.ol.gnoouaaonn T
OSF
- . -
FETCH PHASE 2 IN =
- - -
cuesessansnes wnosen
:
.
X Ty
sessElesasvnane

“w. VES .

»* .
SEXIT YO PHASE 2%
. .

ensspsnsnsssuns

..
+ NO

e%eneoce

s sesraneen

sRRREGIGRSRENENS
-

« INITIALIZE

",
.. *. YES X _* SYMB
. o TteYERL K ks SUERRLG
. € .o + PRINT B
.® -
222222 22)
o
- anen
l.Xxs D1 oe
.
X
snsH2sssannensan
ETER 01543

Bt i e et e
PRINT ERROR
. MESSAGE -

sssessuss
.

e ene

....gz..-...-o.
- X1T TS -
M SUPERVISOR :

[TRYTYTY YR YY ¥

Flowchart ASMO4. Assembler Program, Phase 1A

Flowcharts 223

enssAlosasncsne
« ENTER FROM -
» PHASE 1A o
.
susasacasnsnune
.

xevo e

ssasspBlosnnssases
ISETOUP ADDRESS =

. R PHAS -
*RETURN TO PHASE®
. 2 N

. -
#escsesscneeannee

Xe0eenn

erenClessnesnss
. -
SEXIT TO PHASE 9%
» "

seansrssnesaney

esssDluossranss
ENTER FROM .
PHASE 9 -

H

-
-
-

sasssssssNRaRAN

ceveenat

S . ENT...005 A2
sete I155.4.005 A3
<LIBR..005 D4
.ABS...005 E3
Cee EPR...005 A4
eeeSPR...005 A4
eeILS...005 A3
<.FILE..005 A5

Y1

YES .»°

centy

X
sssssplannsanee
.

« PERFORM ENT
®ERROR CHECKING
-

sssenne

-
Ssecsnvssscsnnns
.

x
seasaplescssnssns
-

INITIALIZE -
PROGRAM TYPE
AND ENT COUNT =
.

sensspanssesseane

LR R

axe e e

c2” Ce.

-
PASS 1

|aooo£2|§.lolo.|l
#B4HEX 016Cle
L,

T -

DY PO

€ .
ENTRY POINT
wnscane

.
L)

xees @ RO
i

.

PERFORM
ERROR" CHECRTNG®

-
-
-

-
sene

#005«
o A4e
- &
.
X
sA4one .
ERMINE THAT
AT A
. SPEEIQ ED .
- -

X
ssnseBisensnnanes
*SCAN 015A5»
B o L]
e _EVALUATE 4
:ISSIILS NUNBER :
asansnsssensnes

.

>xeuoae

asellssnssasnne

.
#SET UP PRgGRAN -
HEADE .
INFORMATION =
-

4
sssssE3ensesencse

:
EERSSﬁFgﬁgcﬁfﬁc

X
F3an
H

SET UP PROGRAM
ET UEADERCRAM ¢
INFGRATION

sSrennns

?? sens
#RELOCAT azEOOEl
SR TIBNRRoes
- COUNTE .
Tesesssasesaversa X
cane
-
. F4
.
R 2]

Flowchart ASM0S. Assembler Program, Phase 2

224

sssaDien

.
PERFORM LIBR »
RROR CHECKING :

E

ssnsen

-
ssesssnssennresEe
-

Xesena

sasenE4ssnnsenean
.

2SET UP PROGRAM
- HEADE

« INFORMATION

-
sesnsssaNERRRNSY

sennes

< IGNORE LABEL; &
2GET NEXT REco&o:
SEERRNGRIRINGIAREN

xe s ee s

sesaChosnsnnnan
- .
#EXIT TQO PHASE 9
- .

sesEnesannasnEn

. -
FETCH PHASE 2A
- .

Sonsensancass

POEEEE

esssBSenesnusan
* EXIT TO PHASE *
. 2A .

-

-
.. Senancanas

4nseDS5unnssnene
ENTER FROM -
- PHASE 2A .

-
SEssedasEnERREN

PEEEEES

ssssasCSennssscanes

®FETCH OVERLAYEDw
PART OF PHASE 2
- -

ssENcuRAsREne

Xe e a0

esssfFSasnsansns
. -
*EXIT TO PHASE 9e
- »

Sassnapesanance

seespAlensunsses
® ENTER FROM .
:PHASE 2 FLIPPER:

HEANIBRENEREREEN

X o000

sssenBlecnanconss

»
® PERFORM FILES =
’S‘ATEMSNT ERROR®
M CHECKING :

.

SrnsNeNENERRERENY

.
X
ot
cl .. sanasC2unnnnnenes
- ., - -
" ». NO # BUILD FILES #
L PASS 1 e%esocasneX® TABLE »
., o) -
-, o .
- »
* YES .
. .
. Iy
X DFOUT X
sssenD]enssaranns snsnsD2unnansnnn

- -
* ALLOCATE ROOM »
* "FOR FILES _ ®
:IABLE' 7 WORDS :

snBEsRRSEARNSRREN
-

X
SesnsElusnnnansn

.
-

e -
*SCAN LABEL, GET#
=7 NEXT RECARD :

HERRERBRENER NGRS

e vesew

sunnElansnesins
*EXIT _TO PHASE 2«
* FLIPPER -
» .

XTI YR Y Yy Y

Flowchart ASMO6, Assembler Program, Phase 2A

-
-
SAVE OBJECT &
OUTPUT IN OSF =
BUFFER :

*

SEsRNSRRSHOSRENRY
-

-
eXeossosnconcosvonovscnsson

Flowcharts

225

4nunpAlrevsnseny
& ENTER FROM
- PHASE 12 b

- -
SasNBENBEINEESS

.
M
.
X
alty
B1" el
. .
NO o® SYMBOL e,

wevevs TABLE SAVE .+
. «.REQUESTED.#
. *e -®
- e o
: «“YES
. x
: o P3200
. cl o stsenuClennuinsnnann
. ot 'S
. ® symBgL “e. NO ® PRINT_ERROR
: TABLE SAVE 2%scesecasX MESSAGE
. “.PERMITTED.» .
- "y -
- ., . SEERERARBDANS
: *"YE .
: X :
. FemsscD]lessssssssse
T« WRITE SYMBOL = .
- YABLE TO DISK -
- * - -
M rrnsssnsenane M

sssnsensnases

.---Fzgﬁnunao-.
-

#EXIT TO PHASE 4+«
. .

sssezasan

Xesseem
.

. 0
PRINT HEADER
- -

sEBERNRTEERSR

.
- ssssnaGlescsssnnany

.
X

NOPRT
wassesHlsssnuannsun
B LOAD 1442 -
ROUTINE
- -

sresususennes

R

ssnsanjlessnnsanans

LOAD DCOM

sapsnsssansee
.
.
X
cane
- »
* B3 »
* »
sene

Flowchart ASMO7. Assembler Program, Phase 3

226

- - NO .»
eeX FETCH PHASE 4 Xeesoceoe®.
- - .

3335 %
stnanCIsenssunense
:

NYERT
 chaRALIER 1O+
« "PRINT/PUNCH &
SOANANRANRARARNRS

p
x
oo
03" e, sasensD4uonsnnsonns
e L
«% PRINT #. YES # PRINT SYMBOL «
#. REQUIRED c®acesenss TABLE
- " . N
.. ..
e o8 caNBSARNNSORN
» NO -
sane . .
- s . .
s E3 .o .
. ® 4Xeeeessseassseccsosencaccs
anne X
PUNCH 8.
E3 e,
4 L
PUNCH #
REQUI%ED
. .
.. .o
. L
. YES
.
%
%,
F3° e, ananssF4nnennneansn
" .
" 6#42 YES ® PUNCH SYMBOL =
L2 MODEL 5 e%esncssneX TABLE
., " X - -
* N asseacsnsensy
N T emes
- P .
. eeX® E3
. [T
.

ERROR
ssseas jlesansenenss

® PRINT ERROR
MESSAGE

waesK3
- *
® PROGRAM WAIT o
- -

sassncenansesss

M wsaw
» .
TeXe 63 %
anen

PE NENT WS @
:SECTOR BDUNDARV:

SRBSARIRNICSRNEES
eXeooavcosse

P

ssnnanf]lnassssanasn

#PRINT ASSEMBLER®
.END MESSAGES .

HEBERRRRERRNS
-

xeen e

savssflesnen -
- -
- .
* UPDATE COMMA =
- -
- .
RBRERBRBOBRRBEERS

Xe e e

sresseGlesnsnsenane
. FETCH DCOM

SuBERENNIR RO
-

PIREEK]

sessaHlennnnnnnen
. -

UPDATE DCOM

sxse
sese

CEITYTYTYT YT R Y Y Y

e o800

4sasanjlensenannans

WRITE DCOM
L]

Srennaasaseen

sBesKenNsRRtEY
. - EXIT 10 -
®esaseseeX® SUPERVISOR -
- - .

aGnINIEERNRNERG

Flowchart ASMO8. Assembler Program, Phase 4

Flowcharts 227

-
-
.

susshlensenes
ENTER FROM
PHASE 9

densssnssnnnn

81
o®
. [v] 4 CODE
. HDNG

e
-
-
-

tiieeeaaXel

sssssClesssssnnsne

#PREVENT FURTHER®
-

MNEMONICS

aEANARAREISONBRES

«0RG...009

t.e.BSS...009
“eeeBES...009
leeeEQU...009
<eeeLIST,..009

«esEJCT..009
1...SPAC..009
l...0UMP..009
Ze<PDMP,.009

H1
H2
F5
A5

YES

-ty
82
cew
PASS 1

.. o

YES

e CZ -,
e

--.-o-oz..ococn--.n
GTHD OISAh.
FRINT THE
HEADING

cemsess

sanssE2rsnnsnns
lPALBL

Ll -
« IGNORE_LABE L .
GET NEXT RE ﬁo:

l.ll..l..ll'..!..
.

Xesaaan

seneF2asensnsan
- -
®EXIT TO PHASE 9+
- -

tansEnEBEREBEEN

XA8G2 X
tsnsanH2nssannnnnany
% RESTORE THI .
€ PAGE €

sasasnssansae

. cnou
. .
ceX® E2 ®
- -

snne

Flowchart ASM09, Assembler Program, Phase 5

228

RN N N R S I I I

sasne

XABA3 X
ooonnA;onoono.on-

'SCAN 5AS5e

-
0 EVALUATE THE &
- OPERAND :

-
CTY YT YR YY R YR Y 1Y

- NO

PASS 1 e%one
.

C. olnvo.onul

PN
BRevfob3yY

sENgaRSREEERRERS
.

Xevnsonasas

seneeEde sesene
-

SAVE _OBJECT
QUTPUT IN_INT
170 BUFFER

LTI Y YT Y 2

s
LT

B
sses -
. » .
* F3 &.X.
* .
sane -

sanseFlsssnsunane
HDLBL. 016ALs
-scan LABE% “GETe

NEXT RECORD »

.
QQI. senane

X

sesnGlasssnsase

.
*EXIT TO PHASE 9+
- -

SEanBIRSNERERRE

seses cnnan
«009% *009#
* Abw * AS5#
.. ..

. »

. .

XA8A% X XABAS X
SRRRBALARRBERRBRS sansspASannnnusnny
*SCAN O015A5% #*SCAN 015A5«
® EVALUATE THE # EVALUATE DUMP #
- OPERAND . -LIMITS DEDRHAI -
* .
sRRRNERBTRERRT R QOCIQD!IQCQODQIQ.

. .

5 i
SRSROBLERRERRS RN 2eusnpSensennennn
- - * GENERATE AND »
PERFDRM BES/BSS# « OQUTPUT CALL «

«eo#ERROR CHECKING # * DUMP FOLLOWED »
» » # BY PARAMETERS »

- - -
%
%o
Cc5 ..
.. ..
«% DUMP DR %, P
- PDMP on,
L .
.. .
., o
* DUMP
. -
- -
- .
%
ssansDSeananensns,
- -
* GENERATE AND
= QUTPUT CALL =
EXIT 4
- .
sssunasnnaRRRRRR.
anan
- -
eoX® F3 w
- »
anaw
nnee
*009+
* F5a
.
.
XABF5 X
sransFSesrennnnnn
#SCAN 015A5-
P ctacknd ot
* EVALUATE THE u
OPERAND -
-
BEaERNNERERRRR.
.
X
SORERECS RN BN RSN
SPACE THE
¢ SPECIFIED »
NUMBER OF
- LINES -
wesnn
#0009+ L e Y
* Hbse

. s waen

- . -

. aeX® F3 »

- - "

. nens

XA8H4 X
saessHirnsennne
#SC.

- -
REEBRNENRNSRRBEL

e o0 ee

sEnsejiensunnnnne

CHECK FOR

[TETTE]

DMP

seusAlensunsuny

= ENTER FROM (3

. PHASE 9 -

- -

sEesRvuSURRRES
.

.
X
snseaBlesssnunnes
- -
:PREVENT FURTHER®

-
. MNEMONICS hod
. -

Ly I T T RS T Y

X
H ot
c1 LS c2 e sasanClnennentnne
- .. o . +SCAN 015A5¢
. 0P CUEE *o YES o L) B —— e
-, 1s D a*eccenceaXWa PASS 1 steesonccsa X ESALUATE »
. o " . - PERAND »
-, -l ., -® - -
gy oW *, ¥ RABBRERGRREBBRERS
= NO * YES - -
- - "unw - L2 2]
- - - - -
- esX® Gl eeX® F2 @
.
X sane nan
%o
31 ., ARERGD2RBERERNRNEN
" .
- P CODE = «CHANGE _QP CODE #
L lg B&ARCH «Xe TO 17800 83 -
"o - - 74C00 -
"o -t -
", o® REFRBATABRRINRANS
* NO -
- .
. .
. .
X -
XN X PRy
El .. ssunaE2snensnsnes E3" e,
-t ", - - L2
«®* DPERAND «. YES ® EVALUATE TAG . *s YES
#. REQUIRED essemaceX® AND FORMAT Beoeeevee Xty PASS 1 e®esoe
. . - FIELDS . - * .
., -t - -, " -
LI A P YT Y YT TS e o X
«“NO *°NO e
- (Y Ye) - - -
. . . . * Gl
. * F2 #,.4 - - -
- - - - ke
% wnee o X
. X N
tasusF2nosndinnnse F3 ", ssanafFLnsasnnnans
L3 UTPUT HEX - - - *SCAN 015A5+
. « NO «INSTRUCTION, 1 # - SHORT #. YES B e
L e%eenccees X¥OR 2 WORDS, TO # #¢ INSTRUCTION e#eccecaccX® EVALUATE L
. = 170 BUFFERS # . - » OPERAND
o -® - ., - »
e @ BREBRNBRANBARANGE RN e W ® RIS 22222222223
* YES . * NO -
neee . . .
. » -
* Gl - .
- - - -
e . X ;(
o®.
arnaGlennnnansen reus », .l.l‘gk.'ll'.l‘.l
16A «#0P CODEw. - OMPUTE -
o* iS .. . DISPLAEEMENT. -
#. COND TéDNAL *%eencse * FORM WORD #....
#, BRANCH .#» . * INSTRUCTION = .
-, - - - - -
e “sRHansan e o - SREANBRBABREBREERS X
. * YES - “nne
. . . - I3
. . . . F2 »
. - - - -
- - - rene
. X
X srsasHInsssennany sasnnH4nsnRnesnne
stesHlessnronen - - - - -
- . EVALUATE - X #FORM WORD 1 OF «
SEXIT TO PHASE 9# - SPECIFIED ®ooesevco X -
- - e CONDITION » # INSTRUCTION e
BRBBRBEARBBEBRS - - -
.
.
.
.
%

Flowchart ASM10. Assembler Program, Phase 6

srnnejieranannnnn
ASw

sesenx

SesssEREREsRBREN
- saue

- ® -
eeX# F2 @
- -
aann

Flowcharts

[\
N

FLIP1

sass/]essanusne
» ENTER FROM -
* PHASE 9 .
@ -

[T TTITTTT LY XY

:

<

X
GRasRBlesssncents
“ -
:PREVENT FURTHER:
- MNEMONICS -

- - sess
cusrsesnsasansens - .
- . L2 »
- - -
. wase
X M
oo X
c1 .. snsseC2enssennseen
. . OLBL 16A1e
" «, YES e e o e e e
.. PASS 1 e®eoceeeens XRSCAN LABEL SETI
. -t NEXT RECORG =
. . - -
. .® sssdesesnsenanNan
* NO -
- -
X N
senunaD]lsnssearnnes X
esssaD2ensssscan
. . -
FETCH PHASE 7A ®EXIT TO PHASE 9+«
- - - -
srssscasnesanes
wessrssnsnang
:
.
X
sessElansssansy

* EXIT TO PHASE »
- TA -
*

.
ARsERnsEERBERES

Flowchart ASM11. Assembler Program, Phase 7

230

#sssplscnnnuasa
ER_FROM -

A -

-

* ENT
- PHASE
-

[Ty

lolll053|§.| srenEa
*FETCH DXERLAVEDI
PORTION QF
- PHASE 7 .

LT XYY TN

M
:
X
.e.
c3” e,
. ..
<#7 0P CODE “w. VES
IS XFL

essesca X

aeneaCluneranEben

. CONVERT -
+ MAGNITUDE AND + * DgTPUT -
%ceeesees X®CHARACTERISTIC
¢ COMPLIMENTARY # - IN HEX *
- FORM

SRBRERBRBRRIBIRER

sresaCSnusnsunusE
- -

- -
snpsasaREERNERSEY

X
.
p
E
1
»

#ssesDSH
-

» ouT
*CHARACT
- INB
*

sessanws

seeencscvsnscescssescanne

ssanefbinnnsannans

- -
* QUTPUT TwO -

ceesc X® WORD

$ 08 exh
SCONSTANT IN HEXs

Y R YT

.
.
DFOUT X

anseaFiunsssunsny

« QUTPUT THO

% WORDS OF

® CONSTANT IN

s BINARY .

L] -

- -

-nocAluuuolcooo
« ENTER FROM
DPHASE 7 FLIPPERl

u-ol|on¢¢.o|u|¢

PR

sasenBlrcsnassene
- -
*RESET SWITCHES #
-AND BUFFERS TO e
ZERO .

-

»

I
SHRERRERERBRERNS

.
.
X
csunallun
- .
* ANALYZE THE »
. SIGN
- -
"
N

-
asasssnenERRETEn

e ea e

saswsDisssnvasnan

-
« COMPUTE TH -
:BXNARV HAN}!ESA:

- -
EassssmsaRERBREAN

Xeov e

|||c¢Ell¢|u-l|-|n

'ANALYZE SPECXAL'
CHARACTER

- n
ssnsBsERENRRIRES.

.
X
oty
F1 -
o
-® €/8 “u.
#. SPECIFI
#, CATIONS .»
. e
R, o ®
*"NO
-
.
%
ranenGles

sK1letnunanen
OEXITFTO PHASE 7'

noooo-col.-aoo-

YES
- .'.......-X' SPEClFlChT

-
ALYZE E/B ¢

ON »

l.ll..l...ll.ll'!

Xesooosesssssasscsaveccncs

......XOAND EéPUNEN

.-nannaunqunluocc
ADJUST MANT#SSAO
WERS 10

nu.oon.o.oonu..nv

X

SERAN IABEORRERNN
STRANSZER SIGNs '+
* MANTISSA, AND #

BINARY .
? CHARACTER T0 »
PHASE 7 BF -
ABERBBNRNGRERNENS

Flowchart ASM12. Assembler Program, Phase 7A

Flowcharts

231

Flowchart ASM13.

232

c

.®
.o P
.. o]

wasshlesssnsune

= ENTER FROM -
- PHASE 9 -
» -
Ty

s 60000

-
*
.
.
.
@
e
.
»

SARBEN
#PREVENT FURTHER®
- P 2 .
. MNEMONICS .

- .
SESISTIRRNEINIBNRRS

axe 0 8 s

tee.LIBF..013 Fl

<CALL..O13 Fl
«DSA...013 Fl
SLINK..O013 F1
l...EXIT..013 F1
ee-EBC...013 A3
leeeDNeel.013 Fl

sessaGlesennsnnns
016

OLDLBL

-SCAN LABEL, GETAX.
NEXT RECORD :

Q.Q..oaao.nl..noo

ORI

seanH|nesesnase

-

*EXIT TO PHASE 9+
- »

assssINNEsnaEn.

creee

YES

wEasep2anrasens
*ADJUST LAC, SE
o UP RELOCATION

H TS AS =

» APPROPRIATE =

H

SrHeBERERRS

- -
CXT YT YT TYYTYRYY X

xeeo e

saeseFZekansessee

OOUTPUT WORD IN l
& HEX TO 1/0
BUFFER

o0 e

seseC2onunnse

-
QUTPUT WORD 1
IN BINARY TO =
DSF BUFFER :

.

sEEReRNsEREERES

-
-
.
-
.
.
-

a0 00

HZ '.
.'PRO%ESS!NG l..
.STAT HENT.-

xetas e n

eRBERJ2RnRNBINES

0 QUTPUT WORD 2 =
INHEX TQ1/0
BUFF .
BERBRDISLRRNNRAINE

Xreees

ssssaK2scensasnss
- -
QUTPUT WORD 2
+ IN BINARY TO
DSF BUFFER

sssssnnennanRne

-
-
.
: sena

. ® -

«aX® Gl @

- -

Assembler Program, Phase 8

xx2

lI..lAaillllllcll
OSCAN DsLlHlTERS'
OCHARACTER COUNT:

0 1/0 BUFFER
rsencsanrunanse

OC?AREE}Eg CUUNT§

u.nooc;.{.unoc..u

PACK INPUT
CHARACTERS

.
-
.
-
-

cescsscaX¥
-

ssnesDinnnncnnees

*
OUTPUT EBC DATA«
0 DSF BUFFER «

LYy

-
snssannes

. renn

. ®

eeX® Gl =
- -

anee

RERsAlenannanne
= ENYER FROM *
- PHASE 9 :
.

seassdRNsRRRARN

.
.
X

ssBlusnsnne

-
ESET SHITCHE§

L)
-
-
-
-
-
-

.
*AND FLAGSy GE
« A CHARALTER
THrERAREENERRERS
Tsae . snen
. . o - .
* CL #.Xs s C2 #,..
- ., . . .
rhne X ‘enw .
N DMSO3 o, o OMS15
sansn(2snusnnsnen Cc3 ., Ca4 L2 snsunCSrennssannn
- * «#% NEXT .y o ", * L3
YES * CHECK NEXT - . CHARACTER *, NO o 1 3 . YES . COMPUTE L3
* CHARACTER ®esoesosa XIS APOSTROPHE«#ecosoaoeXty DIGIET e%eecceosoX® MULTIPLIER »
- - ., o *. " - -
- s, o . o - -
EREsERERERNRNSERY e o *e o ¥ ERRRREAR RN RN
YES + NO .
. . N “eun
. . . -
' [-.)(, . eeX®# C2 @
S . . .
X X X (X223
DMS10 ot . DMS17 ote N
Dé ., . D4 *o 05 L
«*DEVICE e, . o R .
«® INDICATOR #. NO . o VAlle *. YES VALID *. YES
*o IS 0y 1y OR .#ee.s . . CONTROL HeieeaasoXul FOR DEVICE o%....
#. BLANK . . - #2CHARACTER. * .
", .® . - .. o “a. .
*, e . - L .
* YES . - + NO e
. . . . - -
. . . . * Ol=
. . - . - *
. Enny
. . - X -
CONAB X . . e DMS22 X
QQQI.E&C!I!O.!.DQ . . £E4 l. #nansESunansnnane
- CONVERT * - - .0
CHARACTER TO - - NO « INDICATE THE =
* APPROPRIATE +« . . .CONTINUAT[ON .ﬁ........)(' ERROR *
DEVICE CODE » - - «CH RACT -
. - - . . .
BAARANNESRARONDRS - . LX) .. 000!90.'.’.000...
. . . * YES .
.
eXesoaosonsee . - .
. . . -
. . . .
X . . .
e . DMS20 X DMS24 X
Fl -, - #ensaFisnsunsanns QQQQ.FS.Q.!!Q'.IQ
. *. . * -
-t THO =. NO . QUTPUT - ET CHARACTER -
-, CHARACTERS n'-o...-............ - #CHARACTER COUNTe EUAL TO BLANK
#. PACKE . . # TO 1/0 BUFFER M
- - - - » -
", . . LYY
. VES . - . .
-
. . . . s
- . - . X
. . . . sene
X X . . * .
o ot . X * D1 «
Gl G2 .. . nuu-ct,u-n--n-nn. - -
. . " .. . oLm_B - Prees
.® *. NO - NEXT ®, YES. #mmm—me—ea- - .
.. PASS 2 e¥ecsenseaXty CHARA%TER eteane 'SCAN LABEL— GET#
.. .. X #.1S REPEAT.# NEXT RECORD =
e - . o «® -
. .e . . o® earassanannexane
* YES . * NC .
. . - .
N . N .
. . . .
. . . .
. . . -
DFOUT X . X .
ansssHlanssnesnas - sasnaH2ennannnnee X
- - . - ssnaHinnanununy
SOUTPUT WORD IN # - - ET NEXY . -
BINARY TO DSF #.....0 b HARACTER » #EXIT TO PHASE 9«
- BUFFER . . . L3 .
- . - . D I Y
ARBRTAENBRB R RN R LTI Y T
-
. rans
P .
coX® Cl #
. .
sana

Flowchart ASM14. Assembler Program, Phase 8A

Flowcharts 233

GETER GTHDG
sEsasAlsscanennan Ajsans Enene
- *

. . « FEICH PHASE - *SKIP PR%NTER TO=
* ENTER PHASE 9 ERMSG INTO BUFI HANNEL ONE
* - * . * .
:--.--------.---: SEERBENBARNSN rEBRATERIRRNS

: : .

. . .

sXecoscececncrecccscvccncssnansonssrncanse . .

X . . .

X

sessaplacanansens

sessssBlensunssnnus saassaBlesssnsansnn
EMOOO

022A1

. «LDLBL 0l6Als o
- ®. YES .
#2 ASTERISK IN o%ecnesecoX8SCAN LABEL, GET®.eos
».COLUNN 21.% « "NEXT RECORD
&0 a : :
Be o N sHen aRNRNENS
« NO
X

esessClennssornes

- -
PACK AND SAVE
: THE OP CODE =
» .
SenseBIERISEIRIENG

e boan

seusaDlosasnnaane
PERFORM TABLE
LOOK _UP _OF OP

-
»
-
-
-
-

SHEABNBIRNINIREN

b
seesaflne
-

*INDICATOR WORD

-
-
. FETCH N
= CORRESPONDING
-
- -
ABARBOBRSBRREIRAN

.
X
asnssFlnssanntsen
* BRANCH VIA _ =
=BRANCH 'A?LE TO»
- EXIT 10
*REQUIRED PHASE =
-
SRAFGRBRBRRRBTRRS
.
5
ot
Gl .
3.4 *a
«% REQUIRED #. YES
*. PHASE IN efooae
#, CORE -
.. e

e
N

PR ERY

- -
FETCH PHASE
. -

nisesnHlndnennsasne
.
.
"ansesaneseee .
- .

Heeeesnsane

e 0 e

saenjlssnansnce
- EXéT T0 -
:REQUIR D PHASE :
Rass

e

Flowchart ASM15, Assembler Program, Phase 9

234

»
PRINT ERROR PRINT HDNG
* MESSAGE .
ABRPRBARANTEY -8 SRREETRON
.
. s
. X
X waressChrnnunen
ResnCIrsannannn
* RETURN TO - . -
- CALLER - SPACE A LINE
- - - -
AEREERBBRNRIBNS

ENNsERBERBARS

Xeeraese

rsssDinnsnnanne
- RETURN TOD -
- CALLER -

" -
ssssuenRReEREES

esE3sssssssnss
-

.
® CLEAR NEXT -
*INPUT BUFFER TOe

EBCDIC BLANKS M

- .
“NSERNNRBEEINRRLS

-

« NC

.

.

H

63" e, aasRseGhenunensnsny
«® LAST .
. CARD *. YES - -
®. INDICATOR .®.ceseeeeX FEED A CARD
. ON - . -

[T YTy YY

.
-
.
:
.
X

essnni3nessenanens

L} -
FETCH PHASE 3
- .

sesssnssnnnes

EIEEEEE)

sansKisnansaasns

- -
:EX]T TO PHASE 3:
asssnes

[YTYYYY

SCAN

BEusRASEROEERRERS
. »

CLEAR BUFFERS *
: AND SWITCHES :

» *
aEABIEARATEROREEN

PO EEE]

assuspSesussasse
-

SCAN OPERAND

* FOR SPECIAL

= CHARACTERS
-

BARRATRARIRERORAN

LR TR

xo e

*EeCSencanenann

.
EVALUATE EACH #
ELEMENT :

» -
R T e e

- .
*MOVE EXPRESSION®
#VALUE TO ASCOM #
. -

» -
ERRCNNR NI RN B ERY

SR RESEREARRREN

RETURN TO -
- CALLER L
» .

srsasesusnBRRNe

ansnnalSeannnne

- *
seeX READ A RECORD
. .

ansnssrannsan

cRERRjSRRNBsRRRNE
. -
*EXCHANGE [.
* BFR ASDRégSgg -
- -
- .
SRRFERBRBARBNBINY

PR

ssssKSesanaNERE
- RETURN TO

- CALLER
-

txs

SEneassRBRNRRRN

LOLBL

ssssnplssrsasnnss
- -
. CgNVERT LABEL =
-

:RIGHT JUST[FIED:

ABRBUBBIRRERINNSY

B4HEX

PALBL

Flowchart ASM16. Assembler Program, Phase 9

n-o-oc1.§.n.n¢|a¢
-

-
®DETERMINE LABEL®
* VALUE, GUTPUT #
» VALUE'IN HEX 3
H
esassssenansenne

Mo eas e

aseseDlnssasnnnen

:

RMINE T
SosreRne AT
:

*

KIN RAGE#
1S AVAILABLE «

- -
ARRBERRBENBNRRRNS

e %
* YES
:
.
X
ota
Fi .o
- LD
. ONE ¢, NO
#. PASS MODE .
., .
.. ..
. o
* YES
p
X
.. Glesasesssns
:l 017!2:
#SAVE STATEMENT ».
« IN INT 1/0 M
- BUFFER .

ssssBEBESSEREREES

senneB2encosnnanen

oo RGBS, Bt}

vses e

csssssceX
X

Cv,

» »
PYTY YR YT ETTYY

SARRBSF20 ARt RRE
RDCRD 015E3

[phbutubim ————
GET NEXY RECORD
- .

SsnsnsansRNES

e oo s e

ADR
TessaG2ennsennann
- -

. .
#CONVERT RECORD :
.

- .
SRBRRAIBEOBRRRNES

e oo 0a

ananHouasnanany
e RETURN TO &

- CALLER #Xooo
. .

-
ERRARBEBANRRERY

RN

APBL

XS 002 @

.

3
-
.
X
"o

- .,
&7 THD e, YES
€. PASS MODE <%escesecoX#n
. Ll -

0

k4
w

o
e o®
NO

Xevesen

astEs jlinssenensann
02 *

-

RD#
-

-

ansus

feRBRARNN

"
)

Y PLITRTYRRYY § LIST THE
S .

»

Ni

Xeoooeosoacsonssesscscnes

SRBUBABRERNRS
.
.
.
.

tececcesrecsetsrscsncnens

“RasseFL4annnsnnnen
PIMVE 017A1

STATEMENT «

CXYITT TS Y TS
.

"

PR

(XYY Y NPT RTY YT T TYYY

- .
PUNCH A CARD
) *

sEsnENERRRREY
.
-

X
resn

seun

Flowcharts

235

POMVE

assusjileassopnenan A2 a, sssenAluvansunsess
SSCANSBEETSE FORL - **u. NO *SCAN RECORD FORa
. .. H
 CHARACTERS, e ASTERISK_IN Senv. ... xe CHORDEERORTORE
+ REPLACE THER » * COLUMN 21.% %" .
- - L2 " - - .
-e HHssnaes - e o8 - e
- # YES . .
: . M :
: . M .
: N : :
Xeesosrsanas N : .
X : X : X
.. - s . RN
Bl -, - B2 -, - B3 e sssnsesBinnnscensans
Y - ..
. PRINT “e. YESI .¢" LISTING “=. VES . .¢" INT 170 "s. YES * WRITE_CURRENT =
2l ROUTINE o%eeas o, SPECIFIED .%iceese #. BUFFER FULL +®ecseccasX BFR TO DISK
#. BUSY ® ., -t * -
. -®, .o
", . - , o F LT T YT Y YT YYY Y
«“NO «"No «"NO .
. . . :
: : :
: . .
: . :
. : .
% . %
#nsnallenrssnnsses X ssnaell
“ - assnaC22ae - - *
PACK_AND MOVE * s RETURN TD = *SET WORD COUNT *
» INPUT BFR TO » ® CALLER . » AS PREFIX IN &
“ PRINT BFR - [- - BFR -
Ll - #ENBBTRRNSRRERE -
Gnsrsesnessensans Tercescensrvreens
: :
X X

wnneenDlessnnounnen
" -
PRINT A LINE
- -

[IITEYYYY TR T RN

sssssDisescanness
.
PACK AND SA
+ RECGROMIMSINE &
P L0 R e
1 3

-
SEBRIERDERERENEY

. .

. -

. Y

X X
sussElennassnns sansElens
® RETURN TO = * RETURN «
& CALLER » ol CALLER ¢
-

-
LLITI RS YT EY Y Y

Flowchart ASM17. Assembler Program, Phase 9

236

-
SsnsnssEsrEssne

DTHCR
sraaspAlenssensane
-

.
COMPUTE DSF »
= BLOCK WORD -
- COURT -
. .
asessvseccasrense
X
ansssBlausnsasses
*SAVE WORD COUNTe
#PLUS TWO IN ;NDO
* WORD OF LAS -
DATA HEADER =
- -
shasssessnusRERRY

e oo 0

sressClasvasse
-

» RESET DSF
*BUFFER POINTERS»
-

ey

.

.
sesssennussnsunes

e sas e

sssssD]lsnnsnsnsne
. .
. INCREMENT -
#BUFFER OVERFLOW®
* WORD COUNT -
.

-
PR R YRR Y T
.

PIEEEE)

ssasElesssaness
- RETURN TO -
- CALLER -

#asnanscvananes

Flowchart ASM18, Assembler Program, Phase 10

-

.

.

X
CBageB2utnnssnnnn
#DTHDR 018A1%

b e o ——————
GENERATE DATA
. HEADER .

* .
Brenpenusasiantne

@xe s o008 LM OsXs s s

Xeoses w

sressElusassannn
* MOVE WORDS
HICH

-
-
- WHIC At -
*OVERFLOWED DSF # .
#BUFFER BACK TO .
® STARY OF BFR = .
SaRcssnessnnanEny .
.
eXeo
eXeooo

sessf2ensnsnons
- RETURN TO
- CALLER

san

ssesssssraNsany

Xeooooeooosoovevescssnovne

.
.
.
.
.

seessrsresaesss s

seevseccscscsscsosvcccsrsscss

Flowcharts

237

o*
.. PASS 1

Meso e ¥

*SAVE A PARTIAL =
SECTOR
- .

.
.
arsasep|sesarsssens .
ssvoaresenuns -

.
CERTYR Y TR Y RYY Y T

PR

.
.
.
.

Qlonooologoocounovc

* READ OVERFLOW #
SECTOR .
®

susapensnunne

SessRE|Rsnsnnnce

- -
*SEARCH OVERFLOWS®
: SECTOR .

.

- .
Y Y YT Y Y

sesesF2econoseane F3" Te.

. - - .
*. YES . INCREMENT - % SYMBOL *. NO
e®cveeness XERETURN ADDRESS ®cccececoX®, TO BE ADCED .%e0na
L3 - - .., . -

- - .
. essnstscancananse

* NO

. .
X :

et

61 ..
34 HORg *,
«*SECTORS TQ ». NO

o s®ceseaserosnscsenssenscesscncnnccs
G.EEARCHED..!

. L@
* YES

-
. sensssssasang

eaXaXeesaaonanas

sescnscsaca

X
ansendHiasasnasanae
®RESTORE _PARTIAL®
SECTOR
. -

sssssccassnas

X
FENRES sssessjiesnsannnnse
o L
o *. YES L} .
.. PASS 1 e®ecevesasX RESTORE INTL
*, s . -
e, .l'. csnsessracass
NO
. .
X s
assnanK3nnane X

srseKbfussnnanan

- RETERN T? -
«X*CALLING ROUTINE#

. .

I T T Y T

- RESYD?E PHASE =

- -

assnassssnsae

Flowchart ASM19. Assembler Program, Phase 10A

238

INT2

Flowchart ASM20. Assembler Program, Phase 11

ArenssAlesanannany
.
FETCH DISK -
- BgFF «
- ADDRESSES :
.
BEERINRRRERIRENNS
-

X
snsenBlesnesnsess

- .
« CLEAR 82 WORD
sINPUT BUFFER TO»

EBCDIC BLANKS »

» -
asaspreREREERSURS
.

X

Ccl *.

sessClesnnsnnen
- RETURN TO -
- ALLER -
»

.
sRRsNEAVERARSNSY

. ..
INT #. YES
o2 170 BUkFER Tlertliiaix
o CEMPTY

Flowcharts

239

senaplevasnnses
* ENTER FROM -
- PHASE 9 .

.
sassannenannsss

.

X

.
Bl ». seswsB2rsnassnans
. .. DOTHDR 0184A1s
. *. NO ——————
.. PASS 1 .D---..---X'HRIYE LAST DAYAI
. . Ry EQP @

HE ADE
< DATR"HEaGER o

tHRRBaBNRNEEIRRSE

o.oaoDza:--nooono
:S AN 015

FEYCH XEQ '
ADDRESS -

-
Ry LYY Y

X

sessslesseasanne

»
® ALLOW FURTHER »
. .
» MNEMONICS -
. .
.

snsenusae

rasne

e o000

-o.o.clnon|oonoo|

lCLEAR FIRST 51
'HURDS OF HEADER!

IQQOOIQ!IQ'QI!QQ.

.

X
sssssFlasessssane
. .
* BUILD PROGRAM «
« HEAGER RECORD
- M
-

-
sassescassnsensne

n;l.ocxuicinnncco
- -
*INITIALIZE DSF #
*BUFFER POINTERS#
- .
. .

assssnasasssesese

.
.
X

ssHlevsssesanns

- -
FETCH PHASE 10
. -

sasassnannecs
.

---..quf....--.n
.

d ORIGENAL lIST 0
' CONDITION '

..o-comoo..ouoo-o

Flowchart ASM21,

240

“e. YES

s®eeeaX

R R N N T N N T

",
TING =.
1

e ea o

sasesEles
COMPUTE DB

-
»

® PRUGRAM, SAVE
- IN ASCOM

-

»

:
.
.
-

PR TR

usassese

.
.

Xeesean

sannnaFIsannsessse
. -
FETCH PHASE 3
- -

sssensenaanes

Xeeenee

snseGlesennneny

. *
*EXIT TO PHASE 3%
- *

“sneesen

Assembler Program, Phase 12

ssssseBbhonsssnsanasn
9MVE

YES

0®cacanandX MGVE SYA
-

YES

OLTAl

o¥
. ONE
#. PASS MODE

.. .ot

L
YES

Xees v g
*

sessspBSensunnnansy
*INT1 017A2+

sneasChencsnanose

. .
#CONVERT RECORD =

eceeceesX® FOR PUNCHING =
. .

- -
srsassecnasennEes

e oos e

» sssssnDinnvnsananas

Xeoosasas

-

-
PUNCH RECORD
- -

ansssensasens
L2

- .

» E4 *...

.
snen X

..
T .,

.
<
m
“w

.

X
-
P
13
A
.

eretresicaeaneeaX

NO

e%acsane

P R R I

assssn(Sensnnensnny
¢ WRITE_INT 1/0 «
BFR TO DISK
.

ssensssnansan

xe oo ae

spsssaDSnnaRanIRNNE

. -
FETCH PHASE 11
. -

Sanssssnsanin

Xo oo e

aeRBRMESTRERSI D RARNS

e FETCH FIRST «
SECTOR OF INTER
. 1/¢ .

crsesunnnseen

“aEaNaGSEEREsRRRRE
. »
FETCH PHASE 1
. .

Tesesssatnonn

H

senaSeseeneane
. .
#EXIT TO PHASE 1»
* »

2T TR YY)

EM00O

sRssnplensnsnsrns

- -
FETCH
APPROPRIATE

ERROR MESSAGE
ALz -

seens
sanxs

Meessoe &

mesunaClonnanasosnn

* PRINT ERROR &
. MESSAGE .

sENBEeRRRBRED

PR

susaDlnsnnsanes

.
#RETURN TO GETER#
. -

[T TY YT YT YUY

Flowchart ASM22. Assembler Program, Error Message Phase

Flowcharts 241

sssnapAlanannssnas
.

ol tER1HA -840
+ 10 8 RITS

senxee

-
tRsEERANINRGENES
a

X
esnceBlensnanes
-

-
.

¢ USE_VALUE OF

* BITS 0=6 AS «»

TABLE DISPL .

-

ERBBISRBENSRBRNNS

.

.

x
sussaClesnsensnes
. -
4 FETCH TABLE =
- ENTRY .
- .
- .

EsERERINREN

.

.

X

oy
D1 -, assasD2easanssane

o .. .
" . NO & OUTPUT LEFT =
. 9 PUNCH aMeccesnaeX® HALF_OF TABLE s«
- o ENTRY -

.
sEsEesNREREREERED

X
sanscElesnenanase

- .

* DUTPUT RIGHT &

® HALF _OF TABLE +#

- ENTRY :

-

ssssnnensEEsRREEY
-

saessssesusssr e

eXessseocensecascsscccnces

“nnefF .5.......
- RE T0
#CALLING ROUTINE
»

sasBonnsRsRanE.

Flowchart ASM23., Assembler Program, Read Conversion Phase

242

ansssplesannnsias

-
3 Solfgedes

sess

3 3
ensssaspBsRsNEERE

ssssaBensesssane

L .
*. NO * INITIALIZE A #
«eX® WORD %OUNV OF #.4.
» 9 .

- -
CYYTI YA Ry YT YT

shasaCuunnussuns

. .

“s. NO #SCAN FROM RIGHT»

E e%e0esegeX® FOR BLANKS :
-

o® X

- » .
. sssnssssnssennees

* YES - .

. . .

. . eXeonsavasas

. . .

- - .

X . X
ssnanDlesnsnsnnen : assnsD2essunvanen
- - -
*CLEAR FIRST 17 = . . CONVERT 1 *
4 COLUMNS ®esoose " COLUMN -
. - - -
- -

-
sesssennsnE

nesssEZusnenaunRe
- -
« INCREMENY 1/0 =
* AREA POINTER &

- -
BEGBNSNANENRARE RS
.

>xesa 00

wnansF2usnnunsnann

. -
#DECREMENT WORD «
: COUNT :

- -
SrmssEnsOINEREBED

R R R N A I i N I P S S I N N AP N RPN AP AT ST ST IP SPSP AP)

LAST
CHARACTER

.

-

.

.

.

X
ssnasH2es
- OR_L
#CHARACTE

* PUNCH
. CHARA

-

srnssnine
.

.

.

.

Anepakjoarasnrnesren
RP0OO
e a e ————— e
PUNCH DATA =

LT TTTTYY YR YY

.
.
X

anak2annunsnny
- RETURN TO .
eCALLING ROUY[NE:
-

sansndesnssuen

Flowchart ASM24. Assembler Program, Punch Conversjon Phase

Flowcharts 243

Bensplesncnnnne
» #
«ENTER FROM MCRAw
- a

NBENCNCANIRRNES

X o auns

n.nn.ﬂllcnocnil'l
-PHASEI

OINPUT CHAR! FOR'

.Qll'.l"ll.llll‘
.

xe a0 e

spuasclesecassess
«PHASE2

it A,
* CLASSIFIER
« CHART FOR 02 #
- -

ANSRANERRENGRINSY

e e st e

.n-.-olnq.¢¢o-noa
HASE

CHECK ORDER .
HTZ NO. € HAR]

l....'ll'!li.l!ll

e o000

.--.;51--.--.-.-.

SCOMMON_SUBR. OR+
ZFUNCS CRART FORs
e B4y 05

ilini!cc.uo.un-n.

.
:
X

sseneFlsnusasnane
P 5 -

-mmk. XTN
SENART EOR DO D7
.’I..'.IQ'.Q”‘.QQ

Xeoes o

asacuGlosnesnsnes
0PHhSE

REAL CONSTANT #
CHART FOR €8

SDEFINE FILEy

sCALL me Exn-
« CHART FOR 09 #
.l'........l....l

Xt esess

-l.qulQ-onclo.D'

sPHASER
A __.
* VARTABLE AND
asIuT. FUNCTIONSO
« CHART FOR 10
PRI T

.

essessecssccsne

Flowchart FORO1,

244

-
.
.
.
-
-
.
.
.
.
-
.

.
.
-
-
.
.

-
.
-
-
.
o
-
-
.
-

.
.

essssccascace

X X
lannuAZanunauncn .uo-AJ.ilnunuocn sassRrflsuninnnane
#PHASE9 SPHASEL7 #PHASE25 »
SDATA STATEMENT o ® EXPANDER I . GOUTPUY 1 CNART :
: CHART FOR 11 = : CHART FOR 19 : FOR 27

. -

SEEBNBNRBERERI RS FrRBENENIRASHINSE SEEENNERERRRNNS S

. . .

. < <

. . -

. . .

. . .

X X

.oacosZoe.ann-nou
#PHASELO

0...-5305.:0.-0-0
#PHASELS

-.cclebooncon¢-oo
#PHASE26

. FORMAT - * EXPANDER II = #0UTPUT II CHART#
'STAYEHENY CHART# : CHART FODR 20 - FOR 28 -
- . - .
fERnsRBERsSERIRER eersessanse - 4esaRsERRRE NSRS

.

. S

X X
sanalonsEnsnsnnsn lOOG'CQGOIOOUOCI!
*PHASEL1 . #PHASE2
* UBSCRIPT * #RECOVERY CHART
DECOMPOSITION » . FOR 29 -
CHART FOR 13 = -
DR T T T T »

. . <

. : .

; ; :
lI"IDzI...GI.lQI ln.l.D3.|¢n|¢l|.¢ X
#PHASEL2 #PHASE2 ssseDinsantnnEY

e EXIT TO SEXIT »

ASCAN I CHART
: FOR 14 .

CXITTYR Y YRy Y™

» COHP[LAYIUN «
- ERRDRS HART «
. Fi 2 .

P TR T Y Y

:

X
ssnesE2e seansw asnseE3ee
#PHASEL3 M #PHASE21
SASCAN IT CHART » 1 ASIAIEMENT™ s

FOR 15 . s ALLOCATION =
. « CHART FOR 23 »
REERESERNNS -

B :

X X
susneF2asssssnens ennesFlansosnuans
*PHASEL4 *PHASE22
* DO, CONTINUE, SLIST STATEMENT «
o “stop, ETC. '« 1 cAtLGearions’ »
& CRART'FOR 16 % CHART FOR 24 #
H

: :

: :

X %
wessaG2esnannniny ¢n¢||G3|||¢||n|p-
«PHASELS *PHASE2
e SUBSCRIPT ¢ LIST symwsoLIc
«OPTYRIZE CHART » ¢ CHART .
o " CFOR 17 M *

Xt envae

|n¢naM2¢.o|o.nloo
*PHASELG

Xeseren

coooon3.o--¢|¢ooo
*PHASE24

#SCAN CHART FOR
- 18 »

» -
SEEnsRNSERIERRNSE
.

8 8 8 8 8 8 8 8 P68 68 a6 0 a0 B8 80 8888 AU a eI e Bt ee et abenas At es st e A Eles et at ot ant e NNt O et sntonnun

OLIST CONSTANTS :
CHART FOR 26

sessenusnBRsRRREN

FORTRAN Compiler, General Flow

84040 08000800000 0800000 800008060 s0a00s00ratocetssetsasessstonstoanasatisnoesetetaatiiilsssisersanesarseetsnsrentnsae

. S T 0l -
.. UPERVI SOR *

LT YT TR Y YT

sRne
YE - *
Tereixe 4

-
LYY

-
-
«
.
-
-

£1501 -

ssnenBlennsnnnnny

ACHINE = - . . o

o END *. YES - -

#. STMNT READ o%eeeeneseX#SET END SWITCH :
*, - -

- ., o » -
#secsscsseRansRDE ., .% ARRRERRAGABIRENEY

NO .

* Cl #.X
- -

Xsssen g

aine
F1000

F1500 00242

LE1300_____002hz,
READ_INPUT

* CRECORD @ = .

SsesssunnsEne

seae

sesr st st esteaane

- »
* D1 =,
. .

esessescssscccssssccanscne

Xsseeas

F1512 .
nasaD2asnnssen

-

RETURN :

cERBRENIOIRER.

wanw
F1001
anssssDlanasnannson
002A2

- - - -
EAD INPUT -
- RECORD * -

sEnBREENRERES

SREERFONRBERB NSRS
-

* ANA%YZE ANg *
«X# STORE CONTROL =
+ RECORD DATA »

.
AERBAABBBO IR NRRED

F1004

X
SnstesGlonsssavsnne
® PRINT SOURCE =
STATEMENT IF
s REQUIRED -

H1 .
- ",
«®* CONTROL ®. VES
.. RECORD PL P
.. o .
L
« NO wnwe
. - »
. * Cl »
X - -
wewn rene
- -
* A4 w
- -
wene

Flowchart FOR02. FORTRAN Compiler, Phase 1

o ..
#o YES
R ENT o%ece
., . -
.. .. .
e o X
* NO e
. . .
N «Cl e
. . .
. “nnn
X
F1006 o*. F1016 ..
B4 w. 85 .
. .. .* TOO s,
.. “. YES o” " MANY *. YES
@ CONTINUATION e®uceeeeesX®CONTINUATION o#ou..
. STHT . SOSTHTS . :
., - - - -
Hy oW e oW -
. «"NO .
: . .
F1009 X . .
*esnaCorsasnssnes . .
M . N
LLECT . . :
* SYATEMENT = . .
" NUMBE - - .
- - - -
Reansressnernnshe M :
.
ceseessscant

F1017
RReRaDiRRRERRNRRS
-

#PACK STATEMENT «
« AND PLACE ON =
STRING *

. .
EReEEIRRRURENERRS
T wmas

. .

auX® D1 =

* .

ROL
BusanFonnnunannne
- -
#SET UP TO LOAD #
NEXT PHASE -

- -

- -
P Y T YT T Y Y
.

>xese 00

xe e

F1054

WEseaDSaREsssnunE
- -

* REPLACE »
«STATEMENT WITH
- ERROR M

-
ETTY YT Y YR PR 2 YS

. snae
P -
asX# D1 #
- -
snue

HERERNGLHR RN RRERERY

* GEY PHASE ID #
FROM BIT
SWITCHES .

SRR RRRRRREN.

.
%
..
Ha' el sarERHSeRReRE RS
ot *o # DUMP STRING =
" EQUAL %, YES #_ AREA, SYMBOL =
%o TO ID THIS e®.ucueces-X*TABLE AREA, AND®
®, PHASE .+ - FCOM :
.. o
., o® SRBEFERARAREI RN
* NO -
N N
. :
eXeosssssvacsvavsassssosacnscs

RL

- .
LOAD NEXT PHASE
* -

saRBEENARRRRY
-

PR

RRSEKLiRERRRRNNY
® EXIT TO NEXT +
» PHASE «

- .
SRRNEARCRRRRRRE

o010 X
ARRERRjonmanennanan

Flowcharts

245

.
®. YES

YES

.o
..

—~T
mx
xTm
Ze m-
=

3
s
. oy

D=t
" Zm
-

.
.
.

ZAS

GETID
#aessFlenssssnnes

.
® SEARCH TABLE
* FOR STATEMENT »
. TYPE M
.

P

-
Fassenssansesans

.
.
X

ZA1A
sasearH]lveasennans

-
4 PUT END 1D ON
® QUPUT STRING
.

ssmne

.
cssssaesssssazess
X

“ene
. -
* F3 =
. -
cnse

Flowchart FORO3,

246

e®essnsanaX

u
ut 10
.».....,..x- STR]NG EN RV

FORTRAN Compiler,

MOVE
assaaClavssunsons

- -
SRR .

RING

.
lo.ocona.ooo.oao-

246
ssesnD2ensnsnnsns

MAKE

-
-
-
.
-
-
.

asaen

o.n-ccznn..:-ncon

OP T _PDUMP CAL .
i ONDgrRIﬁG t Seenee

- Q
dseRnnsRRREREEORS

MOVEL
aseasCivsnanncess

«INITIALIZE FOR
..X:NEXT S%iTEHEN

ane

A nne
- ARAREEABIBERBRES

.

.

. e

- - -

. * F3

- - -

N aens

N .

~cALLC X

. sssesFlsssessseess

- - -

- OREgNl‘IALle TOe

. = SCAN STRING

. » AGAIN

: L2221 3

:

- WALT

: o, ssnaGhessnsanss
. . YES ¢EXIT T0 THE ROLs
. PLITRTTYRYS {3 ROUTIN

..l'.l...!.l'.l

IDAHO e 22v2
. srasaHSeeRRnaneny
<% NAM - .
SSWTCH CONVERT T0 5 #
eereessaXeo OVERFL &R ER_NAME e
.. ., sn.m‘:r *CLOSE UP STRINGs
:

.. ¥ SARERRBRERNBIRBIRNRS

* NO -

. .
eXeoosonesssasacacsvsnsosesascessoscacrssvsocoscsncansns

MOVIE X
“ae J3ssnsssuses
- -
1 MOYE TO NEXT
» STATEMENT IN =
» INPUT STRING +
. M
RAE iRl 2] L]

Phase 2

START
SEsRaplenRERRRRL

* L
SINITIALIZE PASSY
. on H

- -
ARERBEABISRNRER Y

.
senw .
Lt
o Bl w.X0
s Bl asX
Y X
sT1 ..
17 .. wann
LUBROUTINE ». VES « PO
-t -
#2 OR_FUNCTION s#ecseaoesXs
ATEMENT. .
e
.
TENT

Xeoer e n

EnssaD2aRaNNONE TS

. . . M
.. *. YES . REMOVE .
o sT Te.llexs e STATEMENT
. . P NUMBE .
. T .
- XY YT IYT YN Y YYTY Y
M
M ceeeenes
:
:
CKRL 2 JACK
- ..
STATEHENT *. NO
oY1 oF e
. ROER .»
", o
*e oW
*'YES
.
TAG3 X
aF2annssnnsnse
.. . REPL ACE .
o £ AR, “tLo e
- e®oee * *
-.g TTeee STRING .
.
AURBESTARERBREGRY
S 2
® Xeeocaseses
- 62 g.x:

sERnaG2usennanuns
. .
* MOVE TO NEXT
* STATEMENT -
: M
.

.-u..lo-qlunu-nun

.
LI
..Xl Bl l
“erne’

EFF oty MOVES
.....HZQCIIDO..O.
l MOVE YO NEXT H
Xs STATEMENT -
-
»
- RI-

. .
. .
X
N
J1 e,
" .. onn

- END *. YES » L

#a STATEMENT .#%#.,..X® B4 =

. " .

", .. wene
.
« NO
[YTes
eeX# Bl #
.
ey

Flowchart FOR0O4, FORTRAN Compiler,

ssessestssnesaetinee

PR R S R W SN i)

Phase 3

RHOVI

-® L2
-t *. YES
*, STATEMENT ®eson
.. .
. I .
[X
- Nu “any
. »
. * G2
- -
. rene
X
#enClnsnsanrann
0 REMOVE
lSTATEHENT FROM «
%NG- MOVE TO»
lNEX STATEMENT »
»
I..I..IQI"."“.
T sess
- »
eeX® Bl
"R

IN

Ty

END

PUT

sne
» .
. B4 »
« M

YY)

-
.

T

!liuiiﬂkntilncrnlu

. .
#INITIALIZE PASSw
- TWO -
. .

- -
ERARRNBRBRREE RN,

Q

»
.
-
-
-
-
-
.
-
-
-
-
-
-

.
-
-

(222 :
» . 2
» Ch w.Xo
- - -
tane X
ST ..
*e
o EnaCSrenansnns
o END .. YES oEXIT I8 THE ROL
#. STATEMENT <®ccveecosXe OUT INE
.. .
*, ¥ SRBAREE IQQII
®e o ¥
* NO
. are
N P
- * D5 =.,,
. - * .
X R XY -
oo MOVS
D4 - snenaDSessnnsnnns
- . * MOVE TO NEXT
- - M
#0 STATEMENT o#ececcesoX® STATEMENT
*. NUMBER _u% .
. .
‘n, Lo SeREBEREREEN RO
«"YES .
- - LEX]
- - .
. l.xe co
- *
X R
K e CLOZE
E4 ., SRRRAESHnRRRTRES
L -
oo STATEMENT ». YES * PUT_ERROR ON
*. NUMBER "IN X STRING
*. SYMBOL .
#.TABLE .
%, o¥ ESSRNERERRRE RN
= NO .
N D maas
. T e
. LoX® DS
. .
. LYY L
N %
SERREF4uRRRRR RN
- -
« PUT NUMBER IN #
* SYMBOL TABLE =«
. H
M .
BRABARBRSARERNRER

e esen

no.oockuonunnnonn
.

* _PUT_SYMBOL

. TABLE ADDRESS ﬂ
- NG

-

-

SERNAERBOINRREEY

. annn
- -
asXe DS @
- -
nens

PH
essueAlrannsansns

INITIALIZE
PHASE

-
-
*
»

sEmresEERNRRREY

ansn -

"
cans X
PN
Bl -
o ..
- END *. YES
%, STATEMENT .®....uees
.. - X

'’ " snnan
»

sssssC2esnnsanunn
-

INITIALIZE 10 «
SCAN COMMON =
- STATEMENT e

-
CE YRy Yy LYY Y

waen -
- . . 3 . .
* D1 *.X. * D2 #.X.
* ® . - .,
“nEs - LI 2 2] X
MV X PTB ate DD2 vy
enesaD]soansssnan D2 .. D3 e, nasseDbonnransnne
" THI; . .. * 4
* MOVE TO NEXT = «* WORD STMT =, NO o LEGAL *. NO # PUT ERROR ON =
L4 TATEMENT - *. TERMINATOR .®.ccccaeoX®, NAME s®ecncesca X® STRING -
- - . -® ., - X - -
- - ., -t *, -® - -
ARRSBRBERBABEREES R, o ® e, ¥ AEBNBFRBIBRIRANNS
. * YES * YES -
. sunn . - .
.« ® I3 . . . ® -
“uX® Bl # . . Tex# DL ®
» - - o - -
2T . X snae
RMOVE X ZORRO oo
SssssE2anssnsanny E3 e
- - -t .,
* REMOVE . X NANS IN =
#STATEMENT FROM e - SYMBOL .
- STRING L4 *. TABLE .+«
- - . e
SHERBARNGRAIREBESN B, o8
. * NO
- “nne “ans -
.« * - #005# .
eeX® D1 & ® F3 ».Xa
- - - - -
s . -
PLAC X
ssessfFlevasvescse
- *
PUT NAME IN =
* SYMBOL TABLE o
- -
- *
SRSHENBBRANEEROSS
X
e
G3 .o
" L2
. NAME *. NO
#. DIMENSIONED o%.oea
- ¥
-, «®
e o#
* YES
.
PRTE X
seH3enEseesene
CONVERT -
CONSTANTS TO =
- BINARY -
. .
sessensasnznasean

Flowchart FOROS. FORTRAN Compiler, Phase 4

248

DD

X
ssenajlenessasany
.

3
sseseK3

Xeveae

-
*PLACE CONSTANTSe
®IN SYMBOL TABLE:

-
ssesersaasan

Cse et ettt esan bt assase PN

I S

)
%GO T
s IN ST
.

NXT

TRY

Flowchart FOR06. FORTRAN Compiler, Phase 4

PQ

crsplsnsunesnae

.
-
-
-
-

QRN

.
.

cl ..

- -
® E1 #.Xo
. .
anne o
.
X

anusElssuvsnune
sEXIT_TO_THE ROL«
- ROUTINE -

-
sesssennasusene

-® A ., s
:* ruRcTion "IeYES.
L] -

.
.
-
.
.
%
¢
1
{
nenn
- . - -
* E2 ®oX. * €3 #..0
- - - .
ssve X xaas -
002 ot
E2 . snsnsEIesnnNnnnE
.. 'S - -
o* LEGAL *. NO = PUT %RROR ON »
.. NAME e¥ecsccsvaX® STRING -
.. - X * -
L o . L4 -
*, on . EITTY T Y YT Y YTy
= YES - -
. - . snns
. - P »
- . esX® E1 #
X M aans
v, .
F2 ., -
-t .
- NAME IN -
®. SYMBOL TBL .%cecees
o OR COM .«
*e "
", o®
* NO
.
.
X
anen
- -
" A4 =
. .
sese

PLACL

SLO

RMV

ERnushbunsennrnen
- -
. PLA .
'SUBPRDER&E NAME»
:IN SYMBOL TABLE»

»
[T Y TR YT T YY TS

e sa 80

#REBEBHABERRR RGNS

PUT SYM TBL =

:ADDR OF SUBPROG:

#COMMUNICATIONS =

AREA (FNAME)

ETXTTTTRY T XS Y
-

Xe e e

anssalisnnnsrensnn
- -
« INDICATE REAL #
#0R INTEGER MODE«
«IN SYMBOL TABLE=
. -

L Y R Y e Y Ty

[Ty .

* . .
* D4 w.X.
- .

[reey .
P X
ReaneDiynEsanusann
MOVE TO NEXT

LEYY)

- VARIABLE
»

- »
SEBRABENRRERRNR NS

.
.
x
ote FLOP oty
E4 L €5 LT
ot
<% STATEMENT #. NO % VALIO *. NO
#o TERMINATOR o®cecccceeX#, PARAMETER .#....
- o® #. NAME . .
. " *e - -
®e o ¥ e o # X
* YES * YES “hun
. - . .
. . » E3%
- . - -
. . cenn
. X
X ZARRO -®,
assnsFinnsusannnn F5 *,
- - o #PARAM, =,
L REMOVE . ® NAME IN =,
iSTAYEHENY FROM » L SYMBOL .
- TRING L #. TABLE . -
- - L2 - .
P T Y T L
- * NO “nne
- "nan . - -
.- ® L4 . * E3e
seX® E1 @ - - 3
. » . "ene
s .
PIECE X
wnssaGhunsnnnnney
»
* PUT NAME IN «
« SYMBOL TABLE »
- »
- .
HARSERBERRB O RN,
.
- YY)
ceX® D4 »
-
anee

Flowcharts

249

PHAS
sEsssAlsanessanes

.
« INITIALIZE -
* PHASE -
- .
- -
sasnsssressssaeas
.
sens .
* Bl *.X.
anen X
a %
Bl -
. ..
-t END ®., YES
e STATEMENT .#ccencees
L - X
.. o sesse
., .% #0088+
« NO e Ale
N ..
-
X
o MIX
Ccl ., sssnsl2scannnanas
- - -
- !Nl?alhllE 10
DIMENS Xx#SCAN_DIMENSION
- STATEM - STATEMENT -
. - .
L2 #sRessaNRsRERNENY
-
“ree - waua
. . -
. DL *.X. * D2 .
. . . » -
wauw . aven .
X SIP X
ssasnaD]loe assssl3esnsnncenn
. -3 T s REMOVE
* MOVE TO - ® s, YE - -
- STATE T .0........XDSTATE§EN¥ FROM #
.. - STRING -
L
seasnes
- anee
. .
eeX® D1 =
wean
PADS
.n
-
.
..
.
X
Z0ORRO ., PREV e UBN
F2 . F3 .. sssssfhecnananens
o [.t . ® SPREAD SYMBOL =
«® NAME IN . YES . SgBPROs. *. NO 4 E_FOR -
3 SYMBOL aesesaaeX8.NAME OR PREVse®eseacasaX® Déﬁ NSION *
#. TABLE .» #, DIMENS. * INFORMATION =
. - L .. - -
. . . ow
* NO YES .
- sene . .
. . .
- 4 G3 ®*.X.
. - - sese
o wene - - -
PLACE X ER X * D3«
sssna2nssanpanss anssslGlsnnsasanes - -
. . . - wane
* PUT NAME IN # + pyT ;RROR ON =
« SYMBOL TABLE « - STRING -
- - - .
- - -
sxussrnescssEnes -
.
ONL X
sasssHIensutncann ensses
COLLECT . . .
CONSTANTS TO # TH_»
#BINARY. PUT IN -
® SYMBOL TABLE .
. . - .
CETT YR YT YT Y Y sssnes
.
. -
- X Bl #
. -
. anns

NEX
ssrnejlnsannnsnesn

.
MOVE TO NEXT
ELEMENT

-
-
-
.
-

sEsEEBacRRERS

Flowchart FORO7. FORTRAN Compiler, Phase 5

250

BEGIN %
ansnsAlssnsnsansy

»
= INITIALIZE
- PHASE

-
-
- -

. -
anssnasaasEnneRas

asen .
- -
* Bl ®#.Xo
. .
nne X
DAP L s0s
Bl .
-® *o sRERBoesusunnun
-t END *. YES *EXIT_TO_THE ROL®
®#. STATEMENT .'........X: ROUTINE :
., X3
.. .t AREERRBNRRAORRS
*, %
* NO

AP
susenClasssnnuns
-

ann

-
INITIALIZE TO

.XISCA& STAT%MENT -
. -
- -
sEsusEssRsRsRERES
[YTT I

- . .

* D2 #.Xo

» . .
annn X

D2 *e

«
>
]

. ..
o® STATEH;NT *. YES
#, TERMINATOR o%.cces.
-, ¥
-, -t
e o
* NO
-
-
X
ot
€2 Ly
-®
ot %, YES
*. SW3A ON e®ecenes
.. % X
- 4 -
. . .
*+ NO -
sesn .
. * . .
* F2 w.Xa -
L] LAY .
sanw X -
- -
wanesFlasnensuans .
- - -
« MOVE 70 NEXT -

.
. STATEMENT -
- .

»

ceesscrsrnsrarens
: L2221]

- - -

ceXe Bl #

- -

anne

AXo 004 @

ZO0R

.

G2 [

o ..
<% NAME IN «. NO
*. SYMBOL

#. TABLE ..I

- .

e®ooevee

-
"YES

Flowchart FORO8. FORTRAN Compiler, Phase 5

sune
CLQSE

808

annesDIvunnnsuran
- »

REM
..X:STATESEH¥EFROH :....
» STRING - .

- -
ARSNGB NIIRNRRRIRE

waan
- -
E3 #..,
- . .
.

Q.Q.IEBI{IQ!G...

-
PUT_ERROR ON
co X# STRING
-

txssas

hissssannrasusen
. sunn

. *
seX® F1

-

nen

»
-
-

PLACQ
snsnaiGlnensussnne

» -
PLACE NAME IN =
..X: SYMBOL TABLE :

- -
PTT 2Ry YY YT I Y YT YT

“nne
- .
* B4 ®
- »
ssun
.
.
X
oty
B4 .
o . wann
o #. NO »
#. EXTERNAL e*eeeeX® E4 @
#. STATEMENT. # . .
“, o “nay
. ¥ P
v, on
* NO anaw
. [3 .
. * E3 #
. . -
o wean
X
TICKK L
D4 .,
O L
L NANE #. YES
EQUAL FLOAT o%....
*, LR .
*. o s
%o o¥ X
« NO “nne
- »ane . . »
- Ps » £33 =
a E4 a X - -
- » oun
sue .

»
LAPS
RERBRELRBEREER RN

- -
aSET APPROPRIATE®
INDICATORS IN
: SYMBOL TABLE :

ARRRBBAARRNBRBREY

X s e 0

F4 L
. ..
o NAH? -
#, DIMENSIONED .
*, -

.. ..

-
.

.
=

*"YES
susQ X
...'.84.'..’
. OLLECT
! coRluensio
ONSTAN
SLVHEEE YRE
RX 2222222222
YELP bt
“HaneRHLORERERNRRN
*
. MO TRING
poTNYERSTE NExTe
: ELEMENT :

BHEARSRBRRERNNESE

YES

e®osons
-

.
X

BERARKLRRBBURR BN

. *
* MOVE STRING _#
#POINTER TO_NEXT#
- ELEMENT .

» .
SRR RNBRRNBEN
. swas

p— »

ecX® F2

- -

nue

Flowcharts

251

START

MOVE

Flowchart FOR09. FORTRAN Compiler, Phase 6

252

sransplenssususen

INITIALIZE
PHASE

nsen
[EET Y]

BeRBENNBARSBEERE

- .,
* Bl ®.Xe
- -

.
raue X

c1 -.
..

. ARIIHHET!C
*o STATEMENT.»
.. .*

. e

.
A e s @

o
-
.
.

- "o

- IF -
- STATEMENT .

.. o
L
= NO
X
ot
El L2

- LT
o ALL ..
*. STATEMENT
*o

1 -
£
- WRI1T -
#. STATEME
.'- ...
y, o®
* NO
M
X
-,
HI *.
.. ..
. FIND *a
#. STATEMENT
“u. ..
. as

e a0 8
.

KsuseKlusenenaees

- -

MOVE TO NEXT =
- STATEMENT -

- -
. H

Rranssnssensacsas
. wene

. »

aeX® Bl #

. »

YES

efaeeaX

YES
NT e#aeaaX
»

.
-
.
-
.
.
.

GuT

“e. YE
*PucananoeXi,
X -

~N
oy

~
~

sansBlenssssnns
+ EXIT 7O ROL
ROUTINE

-
-
OPERATOR

E2 e

-
-
.. DECIMAL
- .
. o*

-
YES

mRsReaG2enaarasany
.

ECT
CDNS k % T0

-
TR YT YT YT TR

LX)

xe oo ne

&c--.uz..o-...--.

#PUT CONSTANT INO
: SYMBOL } BLE

asew o.-nnoo

X
.
N
A
s
1
-

NUMM

seausK2ananusnass

MENT
ARY

#PACK STAT
: IF NECES

» NO
s%aanscascX®
3

-
« REPACK STRING
.».X: If NECE§$A Y

#. NO -
e®eoca X
- .

ssasaCinsesinsces
-

® MOVE TO NEXT
ELEMENT

- .
BREENSTANBEERENSN

cLsyp

snsseD3essunncsss

-
sesERIENSSRIREREN

anns

-
C3 =
.

anee

JBR
o.nooFanncnuu.oun

PLACE
XOSTATEHENT W
ERRDR MESS

»

l.llll!l...

asse

- -
SeeeeXs C2 @
- - -

wase

-

PHST

CK

1DSV1
*

sraasAlesansusene

* INITIALIZE -

- PHASE -

- L

- -

REBRBBRRBERRRE RN
L2 2 L] :

- .

* Bl ®.X.

- .
“nan .

1
#psssBleassesusune

-
« INITIALIZE TQ
:SCAN STATEMENT

Eaen

- -
SEBBUBRAARRROEO Y

DF1 oty DFS
c3 w. #HBRaChRRRNRERREN
*e » ., -
*, YES .+ SORF *, YES #CHECK FOR VALID#
#Mevesvesssessscsssevcssencvonsssnccs Xty LERD ..X: NAMES AND -

CONSTANTS -

* -
FEBERRRBERREER RS

.
.
CEl ER72 XR2R X
asnsnaD2undsnnnane “hana) D4
" SHODLEY TQ MATCHa + PUT_ERROR ON & S COMPUTE EILE *
*. YES *MODIFY H® * PY - * E ®
TMeceieeceX® CALL EXIT = #..ee M STRING M osPEETHIEAFIbRs =
. . - » - -
- - - - -
P T R P Ty Y Y EE Y T T T T e Ry Y EREEREB AR B RN ER RN
. .
. .
- . .
. . .
- . .
. . .
1 - - DF3 X
wrEntE2anansunune - . ABBsRELHuRRERGRERE
- . M » -
*. YES # CHECK SYNTAX # X . * ADD FILE .
esescvseX® AND MODIFY ®ease . #INFORMATION TO »
- - . . * SYMBOL TABLE e
- ., . - .
cHERBARRRNRERERAN . . SRREBERIRERIRNEES
. . .
. . .
. .
. .
. . .
ED1 . - X
. . nrenaFLinsnananane
. sanaF2ennunsinan - . . »
ND ¢, YES #EXIT_TO _THE ROL* - . * .
EMENT .o.--onoooox. ROUTINE . . . : UPDATE DFCNT :
. » -
o LI YRR T T Y X Y M * -
" - RERRBRERBERUD RS
* NO . . .
. . . .
. - . .
. X X

.
aXeooosarnsensucarnsrcscrestonstesreestetsnsstrsessrtrissetanncecacsostossiteses

u¢-61-§--¢.u.-o

-
-
- MOV$ JO NEXT «
. STATEMENT *
. -
3 -
ssvsenesan -

. nanw

. = -
aaX® Bl &
- .

Flowchart FOR10. FORTRAN Compiler, Phase 7

Flowcharts

253

ORGIN

SEnnsAlinsnananse
INITIALIZE .

PHASE *
.
.
.

essassanssnvene

Lzt -
ssansBlusasnnesnn
INITIALIZE 1O

Al Y OF
STATEMENT

L Y R Y Y T Y T

*a
END #e YES
#. STATEMENT o®cucceccaX®
-, -
. @
+ NO
.
o
X
ote
El e,
.o
o TINGE *. YES
. P
-.E?ATEHENY -
. - -
", .e X
= NO anuw
N . -
. * C4 »
- - -
- tnen
Cv2 X

sssunFlesssncanns
-

snsssC2ansncancne

-
o MO TO NEXT =
¥$ATEHENT .

.

.

c
sssssscseuRRRARS.

ssesD2ossnssune
OEXlT 0_THE ROL+
ROUTINE .

-
CY Y YT Y 2

® SET SWITCHES &
s 08 e, 6OTO, o
*READ, OR WRITE &
. . neen
AERRFRCRAENERNATNN - -
- « G2 «
- - -
: anee
M N
X X
cv3 .. cv2sa L
61" e, 62" "u.
.o LEGAL s,
D *. YES <# STATEMENT ».
a2 STATEMENT <#sscesceaXss NUMBER I
. . w. SYMBOL .
o ot =, TABLE.
Be oW LR B4
« NO * YE
“Ean - -
#* HI #.Xo -
sans X -
¢tvs e %327 X
H& - ssH2ussen
- -
L HRITER iF. *. NO s _PUT_SYMBO
w2 OR_GaT . s TABLE Anok%ss .
. STATEHENT. + : + ON ST
e -® - -
- o® X l!!lo'l!ui..l.qn.
* YES anee
- - - nsne
. * B3 e ® -
X « e w2
anbe anen
P vees
MVt c
. - wanan e
wsen H
» MOVE
s
»
.

Flowchart FOR11.

254

- ean
-

eeX® HL »
eane

cvl3

cvl

cvt

-

T

N .l...-....X
-

-

S

FORTRAN Compiler, Phase 8

cvss ot

B4 e,
« YES .. S ATEMENT «. NO
eceeeccoX®. TERMINATQ

ot
'.. OPERATOR

« =

5D
ncnpnn4o-co.oo-no

GCLUSE up STRING'

cve

P R R)

.
X
¥
Cc5 LR
. -
L4 *. NO
#. CONSTANT P T
#.0PERATOR
. o®
o o
+ YES
.
X

T TYLLTT YT YTy Y ey

. -
*REMOVE CONSTANT#
- OPERAT! -
- »

« [F NECESSARY OR
L
. . . -
HERRSRRRAIRNRIRBER SERBEERARAEREREEN
- - "nen
. .t .
X euXt J2 w
“nee . »
- - L X33
. C2w
- -
wenn
"tew
.
= F4 #,..
- -
weas X
7 cv2, L cv1o
eseseFlesavsssnan F4 errerFSennsarInen
- - - CONVE
= FIND OR PUT & o® LEGAL ¢ OPERATUR
#NAME [N SYMBOL . . XNT; * FORCING TABLE #X..
: TABLE hod #.CONS » POINTE
. . .
AHEANRABERNBTEERB NS X ., BEERRBRARER AR
asae - -
*ran . » . * . mess
» » ® HL » . . .
& G3 e, - * . - ea X2 J2 ®
- * - L2 22 -
“ann - . “wnn
2 X coot X

SnssaGlacunssasen --au-cqo-.o-cinco

* PUT ;RROR ON = ICDLLECT lNTEGERD
. . CONSTA
.
I - «
RGBS EACERRNBEN EITYYYYY
-
.

X
anne
. .
. C2 »
- -
anen -
' FlND OR PYT *
ONSTANT IN =
' SYHBOL TABLE =
.
.I'.I.. EEERERES
“aas
- -
asXe 42
- -
“nae

- »
* A4 =
- -
wunw
.
X
BEGIN NXTN4 a¥,
ssasspleupasnnanns A4 .,
INTIALIZE -2 NANG NO
. * o .
- PHASE - #. CONSTANT afaeen
- - #, COMPAT- .» .
- - #.IBLE .» .
nEsszansRRE He ¥ X
» YES “nen
sene . . -
- L . . K2 #
" Bl #.X, . - .
. ., . wnen
sane X .
FINDD o EXIT EXIT1 NXTN8 X
Bl ., sssusBlensnsnnnnn -u..thu.uuuu-.lu
- ., - - esnsBIrcnsanss n
. END *o YES » COMPRESS . OEX[T |’O TNE RDL- BUIL YMBOL o
®. STATEMENT c®ccsccescX® STATEMENT G........X' TIN 'TAELE POINTER, »
L] " - STRING . #SET DEFINED BIT#
., . - Yernseneransniun " -
4o a® Svsesansenuraersn ERERsRRRIRGRSRRLS

- .

. .

- .

. .

. .

X .

o ¥, X X

c1 .. sunesClunanssnnus neasaCirnenennaey
. [- - -
- DATA %, NO MOVE TO NEXT & #PUT POINTER IN #
% STATEMENT e%ccecsese STATEMENT : - WORK AREA -
", " - - - -
L sERBIRTREEARRGEN. ERERRERARRERRENN .
* YES .
“ene . . wnuw .
- . . .
* D1 s.X. seX# Bl # .
- .. .
#une - anve X
FINDC X o,
sassaDlesesensnes 04" Ce.
- - .
- . .. ‘e
#LOCATE CONSTANTs= .. SUBSCRIPT eteses
. - ., .
. - ., et .
ssusene saven *, o0 .
* YES .
. .
. .
. .
NEXTC NXTN2 X .
ensnsE2unnannonen .-uo-Eq-.u-onn..o -
- * .
. SAVE - UIL » -
eeceesX® DUPLICATICN = CSUBSCRIPT. PUT - .
- FACTOR * IN WORK AREA » -
. * - -
"y oW ARNNSARARAAERENER c-nuuuu»uuno-n "

« ND . - -

. . . .

. . sXooeovsooren

. . .

- . %

X X NXTN9 .. NXTN
ssuanFlasesnssnss suanafFlanssnnnstasn - ERNRRFSEEERRARERR
- - - - " ., - -
#SEY DUPLICATION® - . #. NO * DECREMENT .
- FACTOH %D 1 #LOCATE CONSTANT# %o CONSTANT e®eosvseseX® DUPLICATION =
. - » # EXHAUSTED. # » FACTOR *
- - - ., s - *
arasnensaesneny SeRsrENResIRRRNEY ., .® ERERARNERRRRRE NS

. . * YES -

- N - .

- . . .

- - . X

eXeoseasessescascscnssasses . aese

X » .
BLPH SLSH2 o * J2 =
G4 .. - 3
- . .. senn
«PUT HEADER MORD! .t aLASH *. NO
+ IN WORK AREA %, ENCOUNTERED <%#....
-
- ' . o .
atssNsasseRERRRES *, o® X

. » YES Eene

- . - »

. . + DL =

- . » -

. . ween

. X

X SLSH o,

QO.D.H[U‘!!’.O..Q L
" NAH S w.
'PUT CONSTANT lNl ¥ AN -
WORK ™ AREA #o CONSTANTS
.. ALANCE "
- - anse .
SesssRsesRRRERRES - * »,

. *J2 = . VES

. * - .

. “uny .

- . .

% . .

o, GCON X SLSH1 X

J1 ., sesanj2ansunnenes seaanjiennsnnruny
- ., »
PREVIOUS =. YES 4 LOCATE NEXT #MOVE WORK AREA =

NAME eRecaconacX® NANE - #T0 STRING AREA «

#.EXHAUSTED. » * * »
., o “ - » -
., .8 fRssesssssEREREES ARnsARsERRREE RSN

- . .

. . .

. . -

ix......................... N

NXTN3 e RR NXTD e CONTS

K1l ., sennnK2uan waas sezanKInnsansnnny K4 0. #asseKSenrunsanns
o® *, - . - - .

<% NAME IN #, NO « PUT ERRDR ON = # COMPRESS - YES .® STATE E * REINITIALIZE »
L SyMBOL .'........XO STRING PecesscseX® STATEMENT #Xeovsnaasts RMINATO * FOR _NEXT .
%. TABLE . X » » STRING » . STATEMENY -

- - - » hd » *o - -

., .® eneansassanenvas RusIRERNSERERRRRNS ., e dsnnEnsRnRRNRRIEY

* YES - -

- - . (222

. - . ® *

X . esX® D1

sene - -

- » anee
. AL w
- -
senn

Flowchart FOR12, FORTRAN Compiler,

Phase 9

Flowcharts

255

START

sHsnsAlasnannny
. .
+ INITIALIZE -
- PHASE .
. .
- .
ERNEREPRNRANUHINNS
sann -
* Bl #,.X.
.,
e X
P
Bl *,
.w *. eansBoerunsssne
»* END *. YES «EXIT TO THE ROL®
@, STATEMENT .®ccneccaaoX® ROUTINE -
.. . .
.. e sescessasnannas P
Ve o - -
+ NO %« C3 »
. - .
. e
X N
CBEL L DECEM %, BAKER X
c2 "o ansenies LTTY 2
- " - -
3 PUT _ERROR ON »
STATEMENT STRING *
+. NUMBE . -
. . - .
. o # sBsessERIRIIRND S
- * YES .
. - - sene
- - - - -
- aaXe® Bl
. - - .
. . wnun
NOVEM X INDIC X
HesseDlesosnnrnan sesssD2svanenanee
. 3 -
* MOVE TO NEXT @ « INITIALIZE 7O #
- STATEMENT - *SCAN STATEMENT :
- »
- - - -
sanszesnesensnany e T YT TP T T
I sewe YT
.« ® - - .,
seX# Bl @ * E2 #.Xe
- - . o
anus nne X
ato
E2 .
o
-+ END OF *. YES
*. STATEMENT .#....
.. . -
-, -® -
- . X
« NO L2 2]
. - -
. e Bl »
. - -
- tnas
X
sesassF2essnansenn
» -
*SCAN FOR VALID #
*FORMAT TYPE AND+
- SYNTAX -
- -
KRB NBBERQARRNANY
X
TST o ¥,
62 .
. . seen
«#® SYNTAX #. NO - -
®. AND TYPE a®eceaX® (3 #
#, VALID .« = -
*e ." wres
% o @
* YES
M
HAN1 X

sEassH2esncensuen
. -
#PUT _OUT FURMAT =
#SPECIFICATIONS :
-

. .
tEncesRRCRUEERRRY

e s 00

enne j2enannnanne

*
- HOV% 10 NEXT
- STATEMENT
3

EETY]

LTRSS S22 2222]
P YT

. ® -

aeX® E2 ®

. »

sase

Flowchart FOR13., FORTRAN Compiler, Phase 10

256

(2233

- -
® A3 =
. -
rrees
.

START ABELL X
snssaplassnnssany ERRNBATRRERARANRRY
.

* INITIALIZE - # GET DIMENSION
- PHASE - . G;ARRME%EE% .
a . - -
- - » "
» SERRREERRSRARNNE,
.
.
.
ke X
snsanBissennsenne
ansaBansansnnn -
END YES #EXIT _TO _THE ROL% ® CALCULATE D
#. STATEMENT c®ceccenceXw ROUTINE * » VALUES »
. o - - - »
'S . YR YT Y T . -
P ARBRBRRE RN AR
+ NO .
nenn -
- - - .
. ® C2 #..0 -
. - ., .
X nan - .
N 22221 X
c1 ' srnuaCunnunanaes BenenCInsnasnense
o . - . #STORE D_VALUES #
o® ERROR *. YES ® MOVE_TYO _TH » - IN aT lNg -
#s STATEMENT o#.ccceseaX#NEXT STATEMENT # FOLLOWED BY =
.. o X - . » SPECIAL -
.. . - - * - OPERATOR -
", .. . nune LY
* NO . . .
. . . wnan M
. - » - .
- . aeX# Bl # .
. - - * eeveccecssaXe
X - anan . .
L . oL X
D1 *o - . sssnsDInnsnsnsenn
- ., - - * -
+% FORMAT *e YES o . # MOVE TO NEXT »
%o STATEMENT «s.c.oXe . - ELEMENT -
L - - - o el
. . . - * "
. e . . P T P Ty
* NO . . .
- . . . seen
. . . .« _® -
. . . eeX® Hl #
. - - - *
X . - “unn
- - .
: :
. .
- .
. .
. .
- .
. .
. :
. .
. .
. . :
. - -
. - .
: . :
X - :
sransGlevasenneny - -
" * . .
* INITIALIZE TO # . .
*SCAN STATEMENT = . .
. . . -
. . . .
e Y T T . .
aaar L . .
-
« H) %.X. . -
- . - .
trae . .
TESTL N - .
H1 ., - -
.4 .. . -
«® STATEMENT ®. YES . .
#. TERMINATOR Fecasea -
e - -
.. o-w -
., .e .
* NO .
X .
", -
J1 .. .
" e .
+% DIMENSION #. NO .
.. LEVE'R # 29 e¥enecsvasassscccccsncescccorencas

wresaK2ennnnnsnan

:
YES . .xesragRERNACE L %
essesessX®

#ERROR STATELENIO

: :

SRR RUAABAERRERR N

z senn

- - - -
x eoX® €2 @
anan - -

- - anen

* A3 =

- -

Flowchart FOR14. FORTRAN Compiler, Phase 11

Flowcharts 257

START
sessnplssssssssan

»
INITIALIZE -
- PHASE -
- -
- -
RRBBCRSRBBEDINEEN
e -
- - .
* Bl s.Xa.
s ..
anen X
LN OVERF
Bl =,
ot . seanflessnansan
-® END *. YES *EXIT TO_THE ROL®*
i, STATEMENT Ce.ll.ec..xe ROUTINE .
. - LTTIYYYNYY
.. %
* NO
. .
. .
X Py
XYs ¥, X
cl . C2an
- e MODIFY -
" » s - ARXTHNSTIQ -
*. ARITHMETIC evecsneee XSEXPRESSION FOR
l.SYlTERENI. « SCAN PROCESS :
., - -
. G ANBSsENSOEERRBESS
= NO -
- .
. .
X X
XY23 o¥a -t XY13
o1 *a 02 .
- .. " ..
04 IF 4. YES % #, YES
#, STATEMENT .%.... L ARITMHETX? e®esaccaceX¥
., ¥ . #.STATEMENT . #
., - . . .
o a® X e @
. sens N
- * - -
. « B4 ® M
. - * .
- “aen -
X .
X¥25 oty LIST X
(Y L sesssE2ranannanas
" .. . I
«% CALL ®. YES #CHECK STATEMENT»
e STATEMENT .#.... «NUMBER LIST FORw
", - - “ VALIDITY -
.. -
L X
“w"NO wase
- - -
. * E4 &
- - -
- “nan
X
Xv28 et
Fl L
o® .. v
" #. YES «® STA
#e STATEMENT o®ccecesnoX®. INi
#.FUNCTION .+
L -t
L X
« NO * YES seen
“nen - - - -
“ . o . . E3 s
Gl ".X. . - .
” - - - e
naen o .
X X
csnsaGlecssnansan sesssGlesnansusas
. = PUT srnsnem .
= MOVE TO NEXT @ - FUNCTION -
- STATEMENT - * OPERATOR ON_ =
- L ® STRING. COUNT #
- - ARGUMENTS -
- L33} ASSARTRRBRRGIROEN
-« ® - -
eoX* Bl @ -
. . -
nnee X
%y
H2
-t
LESS
THAN 15
..
LY ¥
..

Flowchart FOR15. FORTRAN Compiler, Phase 12

258

LYYy
. .

* B4 w0

- » .

sene .
canrssBlanennrnney

» .
4PUT_IF OPERATOR®
: ON STRING -

-

- -
e Y S T

START XYé ot
EassaAlevasesesen
M .

ane
* INITIALIZE
TEM

RERERALuENRBRRERD
-

-
« PUT_ERROR ON
STRING

10
ENT

.
*SCAN _STA - - se X8
- STRING - . - .
- - - - - »
SERRGNERRERRBEREN - . HABERRERER RO RN DR
. . . .
wosn LZ XL
- . . . PR
* Bl w.Xa. - . eoX® Gl ®
. »
EE 22 X - - sese
xy2 X2 . .
Bl e, . .
" .. !0.’_3%!..---... . :
- END %, YES #EXIT TO THE ROL» - .
®. STATEMENT o%ccecececeX® ROUTINE - - -
.. PR L3 . .
.. N SBRABERBAHBRB RN - .
L— - .
=+ NO - .
. . .
. . .
. . .
X . -
XY3 oo - X .
cl -, - saesaClnsnsannnne -
"
.+ __READ ® PUT OUT 1/0 =« -
%, STATEMENT - OPERATOR L .
-y - - - * -
L -® - » el -
*, oW - HENBBAERGBNERTEER -
« NO . - -
. - . .
- . - .
. . . .
% . % .
. .
xvé oe. :
. o1 *, - 03 ., .
Y WRITE Te. vES : SREAD/WRITE s. NO ©
- - . . .
STATEMENT <#cccececcccccaccsacnsesscocccaake #. STATEMENT o%ccenea
- o® - %4 NUMBER .#
.. o® . #.VALID.»
", @ - e W%
=+ NO - * YES
. - .
- . -
. . -
. . .
X - X
ota . oo
ElL =, . E3 e,
) ", - % .
- F%ND *. YES . «% VARIABLE #. NO
L TATEMENT e®ccccssccconccccnacscncsscccncsne ., etecne
L " #o FOLLOWS «» .
.. - e " .
e o e o % -
* NO + YES -
. . .
“ .
. .
% .
- .
XY24 oo xY27 XY14A X .
(31 -, ensusF2unn Flesn .
-® ., - - - - -
. 010 *, YES #CHECK STATEMENTe SCHECK LIST FOR # .
. STATEMENT o%eececesseX®NUMBER LIST FOR# *VALID VARIABLE # .
. o ® VALIDITY - - NAMES »
L -® - - - -
o, % ABBRBEBRRABRARONAR ARSEHRBRARBUREEORN
* NO . . .
anes - - - -
. - - eXeoesosscans
* Gl *.X. . .
- # wXeesscescscssesccenrcscscscs s
"nnn X
XY15 .t oo
tpenaGlessnennorns 3 ., G4 o
- - ¥ L - L) "enn
* MOVE TO NEXT « o RANGS L o# STATEMENT #. NO L -
. STATEMENT - #, OPERATOR e%eeescseeX®. TERMINATO atoseeX® AL w
- L] LE3 ot - - -
- - -, -t L2 2]
ERNERECREINNERR. .,
- + YES
- s .
. » .
ceX® Bl ® . ceX® Gl »
- - .
wsen X sann
XY1é o,
H3 e,
4 neee
« *NON=DIMEN NO - «
. INTEGER ®oeeoX® A4 @
#.VARIABLE -
*, - RN
", o
YES

Xeoeeo w

".unnJauuu-o-u-c

-
* PUT OUT DOA
v PEPeRiToR™ &
- »
- -
BEARGNRBRERENGOEN
:
.

Xy21 %
SannekIesasanannn
o " REARRANGE @
Lor SRS
g SEAN :
-
BRBARBRBRERB RO

. s
.
ToXxe Gl s
.
sens

Flowchart FOR16., FORTRAN Compiler, Phase 13

Flowcharts 259

START

EksenAlunnraNNRR,

« INITIALIZE

- PHASE

-

-
SrEnaRcEnERRRRTY
T .

- * .
* Bl *.X.
- -

“
»
»
»
-

NO *
THeresseaaX® OUTPUT ERROR
*

rarn X
ABEL %
- -I
NO . END .
ceae®*. STATEMENT ox
: Tu.
: ..
: .
: X
JooTeL Le
. ot e
N -: 1anLE" EMPYV
: el .ot
- *e o ¥
. * YES
: .
: reawReENrERREy

R e

o, FULL .%o
El .-, €2 . n--qcejaun.-¢n.oa
.. .. .
-* Tl YES o® LEGAL %, YES 'BUILD DO TABLE,
.. 5TATEMENT a¥enansnsaXE, Lo *-...-.-.Xl EXCEPT WORD 2 '..-...-.XU lN(T.
*. S.STATEMENT . »
. .* .. "
. o . .e fererrsssesseeree
« NO -
. . ann
- . - *
. caX® H3 =
. - -
X LT
o, PRy a®a
F1l *o FZ *o F3 ..
. . . . -
¥ *. YES PAUSE *. S -
o ACKSPACE +¥acesassaXiy OR STOP e®aasuveaa X, SEMI-COLON
%, STATEMENT . % X . - #, FOLLOWS .#
. .*
L . . o ., .e
* NO - * NO N
. . . . ey
. . . . * -
- . . aaX® J2
- . - - -
X . X Ly
oo « SHUT ot
Gl #e . G2 *e
¥ - - -t
-® REWIND *. YES . INTEGER =. YES
*e STATEMEC e®eeaaXe . CONSTANT B ETET
-
. *, o % -
. L X
. * ND e
. - - pene
- . % K2 % # -
. - « & H3} =
- . ravn .
N X ane .
« SHOE a®e CLOSE X
. . ll.c.H3llhl|||lun
. - .
. . NTEGER #. NO ' PUT ERRUR ON =
. *. CONSTANT 0........X' »
- - - -
. ", .* . »
. . a® ARTREREARNE RN
. * YES .
. e . . nene
. . . -
. % J2 =, X. aeX# C5 =
. -
. nen . s
. X
. ERERR 2 unReeranns
. * -
- N *PUT IN SYM TBL,#
o 3 . * PUT SYM TBL #
. *ADDR ON STRING =
. . “
. seERBRERRAERSRNRS
. e .
. * . .
. * K2 #.X.
- - - -
. nEw .
. X
. eEAREEK2eREREERIEEE
o . .
-* PAUSE *. YES . - PUT OUT
%o STATEMENT o#..s APPROPRIATE
- g " CALL
. o
o P N LT
* NO -
. . e
. . .
X caX® C5 %
wane » -
* e
. A3
.
rwen

Flowchart FOR17.

260

srERBC2eavnenaent
» »

-
-
-
-
-

=
Py

Bacet et s e ar s a et a i s

FORTRAN Compiler, Phase 14

BAKER

..X'

“*
.

. .
+ YES

sXenssenannes

o ¥ -
o% STATEMENT ».
HAVE

NO

L sHteaee

#. NUMBER .«

wnusnDIsaxnnerren
*

= PUT ERROR ON
-

.

. "
AR RERAEER SRR N
T aes
P *
aeX® C5 =
® *

wenn

*. YES
«*eecasessX* TABLE POINTER =
» .

LIz

o*

o

#. CONTINU

L STATEMENT.
*o

. .o

Xt e e w

erEBEChERRRRER SRS

*
M STATEMENT -
-

-
T T Y YT

- “nae
. . -
saX® C5 #
. -
rree

q!n»uEk»ocnqn.i-u
po_ s
MO E TO
NEXT STATEMENT «

-

-SRI

serseFsrnnesanins

~0UTPUT I3 SVMBGL'

- -
e Y

axan

Lo .
ceXE U2 -
. .

sene

“xun

MOV

®eaeecaaa XW

STNO

-,
-
% BS
- -
hnn
X
SERRBUS AR R A RE .
% PLACE DO TEST =
#IN STRING OVER
. CONTINUE »
- STATEMENT b
-
FrsnABAREEERTEARS
senn .
» .
* C5 %aXa
- .
e -
E X

SEReRChuNERnan e

-
H MOVE TO NEXT
STATEMENT

*EEwE

»
AEBSRARARRREBNE Y

. wenw

. * »

eeX® Bl #
» -
wnue

#. NUMBER .+

X
REERRGSERRREER BN
PUT STHT NUMBER®

» LABEL IN HD 2 l
- OF 00 TBL -

»
AEBEBERNEAR RO

- EXTYY
P »
eeX® C5 #
» *
e

. A4 =
- -
cann
X
START oW
AnaasAlessannnann A4 .
. .. .
& INITIALIZE * o suBsc *, YES
. PHASE » *#, EXPRESSION o#ceseaces
- . #,IN TABLE .«
- . -, "
AERBERRAB TN RN R N, . ¥ .
. * NO -
waee o . .
. . .
X P -
*. Gur X TS5TS X
sRunsBisnnnsnnsne tranapSEEERERRERS
ArEnBleRREEERRY . PUT IN - = -
« EXIT TO ROL = . SUBSCRIPT - * *
Xs ROUTINES * * EXPRESSION » L TAG NAME *
- . - TABLE * » -
BERURARBRER RPN, - - - -
RANRSEB AR RNA R NN, AEABERRB SRR R AR TR
enn . .
. . . .
* C2 %, . .
.
sexs X . .
¥ o X TSTS5A X
cz . €3° T, rennnClennsnnnnnn -uucsuuuun
DL - »
.. NO o L3 » MOVE
l. CALL RIH *oaaaecesX®, Do - TAG NAME - ’bXPRESSlUN FROHI.-
h . . . STATERM
.. . - .
“x. . SaRRBRERAR AR NN NN, R
- YES - . ne
. . . weun . .
- - . » . F4w
. . - * D5 w,., . .
. . N - reue
. . . LT T I
X X OPEN X PURG X
HARBED2HARRRAERE nuuoa-".u.u- srxaninunnnsnnnn SRR RESERABRBEREN
- - * PUT SUBSC * % PURGE INDEX #
= INITIALIZE TQ = I'Cl.EAR SUBSCRIPI’! * GENERATED - SERUM SUBSCRIPT =
#«SCAN STATEMENT = ESSIG # TEMPORARY ON = + EXPRESSIUN %eoee
- - - ABLE - » STRING - - TABLE - .
- » . » * » PR
» P T YT T T LT EAERREERER AR RA NN seansnnennnnnnnes X
. . L
. R . *unw - -
. - . . - * F4m
eoX® C2 . L
- - ntan
enw o
X
*RuRRELNARRRRRERE
' *
MOVE STRING # NI
'POINTER TO END = ®aaen
- * OF SUBSCRIPT .
. - - .
- AEERRRARAR AR BN X
- - . ‘ERAR
. . FETT I = w
. - * . . . = (2%
. . * F4 m.X, . . w
. . . R . wanw
. . ras . .
X - TLR
ReBEEF2aRRARR AR L EnnnaFbsnnanennny sesnstSesnenenunn
*#PUT ASSOCIATED * .o i - .
* VARIABLES IN_ » - * MOVE STRING » #CLEAR SUBSCRIPTw
- #«BOUND_VARIABLE » . - POINTER » # EXPRESSION -
. . . - TABLE P » » " TABLE .
-, - - » - - - - -
. .w REREERNRREE R AN, L T T ArRRrsREEEERRRSNS
Tel ot . ‘. o .
L *e oW
* NO L = NO rene
. » . . -
. * ES » . * D5 =
- - - . - -
. new . wean
X X .
TEST2 o, - ®. JAY X
H1 *, H2 *, #RARRHEARSERRR NS
* BOUND =, o . .
«# VARIABLE %. YES +*SUBSCRIPTS #., NO » CLOSE up *
TABLE LERRT #. Oy Ly 24 e¥eoan * STATEMENT [F #
*. EMPTY .» . .. 3 g . * NECESSARY »
., «® -, ,- . - -
. oo X .. X ARNAEREARE AR R RN
* NO anan . YES _nan .
- » * - - - B4R -
. * C2 = . * F4 @ » ..
. » . J4 *.X
o —enw . “enn » .
. . aene .
X TST4 X
argaejlaousnunnny #EBBR J24RNADRNNERS R RRJLnnNAnnnnny
- - » *
* PURGE BOUND # - GET SUBSCRIPT - - MOV% TO NEXT
- VARIABLES - * RESSION - I STATEMENT »
- - * . - .
» . » » M -
EraREARREEERSREER seREERRREERRERER. PEerREREINRRE RN
. “new . M LYy
P . . P "
saX® C2 » X ceX® BL =
- * I . .
e » » rve
AL
. .
anne

Flowchart FOR18. FORTRAN Compiler, Phase 15

Flowcharts 261

EDY SCAN

1
ernuAlevarenane avesnazensacanane

. . :
. INITIALIZE * SINITIALIZE FOR

. PHASE . ++X2SCAN' STATEMENT .
M .

H :
H :

. e
EREREBERUNCRENS . cserssennsenasnen . »
. . * B3 =
ceen . . . » .
. . wene
* Bl #.X. - . .
*
wane X . . .
SETLP o%a . X PLACE X
B1 ", . --cnazanunucuo senseBleaseneence
<% ARITH +#. - * PERFORM ALL
.+ ASF CAL -RESET GENERATEu- « FUNCTIONS OF #
%*. GOTO_IF R/ RARIES = # INTERPRETER =
STMT - - PACKAGE L4
- - - -
- ABREBRARB BB R BN ERRBBRAB AT RANGRAY
“ .
. .
sXeossossoascasasaccannsnee
X
CKNM o®,
c2 L
o

*a ..
e, .. .
*a o ¥ -
«"ves «"YES .
N PTPOL X NAME Le. ADV :
X nnclcUZanl.u.ol« D3 ., sRREEDLENEERERIE .
ausa)]erantnuny " ., » . .
* EXIT TO ROL » CALCULATE .« sorH “. NO « MOVE STRING * .
* ROUTINE . -sn\nmsw NORM - %l SYMBOL CeesisalX® POINTER teeer
* . OPERATORS. % X" .
ARERRRBERET R . g . - i
nn.n.nunluanuunl& . . . SERERRNRANEREINEN
. * YES -
. . :
M X :
X FORCE .. .
PYTTE Y T F .
* .
[F NFCESSARY # :

-
-
.
* (OPEN OR CLOSE #
* STRING -
-
*

-
e LTI

. X
. anen
N - =
CRTNM X * B3 =
sanrsafF2rnenannann - -
- - naw

- CORRECT »
#STATEMENT NORM
» -

. -
SRR AERENRRRE .

MOVE X
nn-.nczoocna:uu».

H PLACE POLIS
'TABLE ON STRINGO

no.-nnngacnnn..o-

NEXTS
trnesH2eunvnnvnny
- -
MOVE TO NEXT
* STATEMENT -
» -
. -
eesrsnnsnanavEsne

sensa)lonnsnnaney
M ;
* REINITIALIZE =
X* FOR SCAN -
. .
M .
Ferresrusnennnuer

- enu

P L3
«oX® BL *
- -

Yy “sen

Flowchart FOR19. FORTRAN Compiler, Phase 16

262

ENQ

sEaenplensnonanny

INITIALIZE
PHASE

X -
seansl]lanvannsnay -
- - -
2 INITIALIZE TO ¥ :

SCAN NEXT # .

+ SYAVEMENT = :
M . :
TasrEssrasasEReE :
: .

X :

. ©1051 :

D1 -, BRARBD2RFRABRTRRR -

¥ ", - - -
" STMT el YES « MOVE DUMMY e o
%27 FUNCTION ¥ I#scceceoaX® VARIABLE TO * &
s STHT s » OUTPUT STRING = ©
. . : o

y R AEARERERRERRRERRR -

+"No . :

. : :

% : :

N cro61 % :

El *. HRRBRED2ARBURARAER -

B . #MOVE_TO OUTPUT » &
ARITH e, YES = CSTRING .

: PROCESSING %euuy

SUBSCRIPT X

OPERATORS .

-4 844000 St SR

* -

X :

.. p2011 :

F1l -, ‘.IQQFZDOIDQQ.&MI -
4 *, -
60T “#. YES . PROCESS GOTO * o
STATEMENT s#ecsecesoX® STATEMENT #....
- o (3 » X
* . o »* - -
», % AFREARRRARRATRATS -
«"No :

X -

.. PLO53 :

Lo T FETRP. S .
.. M .

o %, YES * PROCESS READ, * o
. HRITE. hND leeilovecaX® WRITEp FIND' wee.s
* STATEMENT 77k

n. e » » .
.. RS

= NO -
P2031 :

HERRRH2 AR R RE NN, -

. » - .

*. YES %PROCESS RETURN « =

.

e¥eeenaseaXe STATEMENT *eae
* - -

» »
PRARREERRRRBRNS LS

Q1041
saune)le

»
*MOVE ST
* UNALTE
* QUTPUT
-

DB wXs e e

R

nensK2Rnsrenany
1 GXIT TO ROL
--X* TROUTINE .

uunolo.rola.lq.

. EYY Y]
-

aoX® Cl »
-

XY

Flowchart FOR20. FORTRAN Compiler, Phase 17

Flowcharts 263

T

ETasNALERRRBERRRS

.
* INITIALIZE -
- PHASE -
* »
- *
- *

ANAEBHE AR

e s s s

START
EERsRplEsanannnny
o MOVE STRING =
SNEXT 1O SYMBOL *
. .
s INITIALIZE
. M
.

. N
DU
. C1oe.xe
MR

rene
P1G21

X
*ransClunannnnnsn

»
« INITUALIZE TO #
- SCAN NEXT *
- STATEMENT -
- * “xnu
EREEBEAAERA RN LR » -
* D3 »
. - .
. wona
- eXeutaseeaneseeascanarssisaccnsconasanesevrosaccsssnntosnancanasansnans
X . .
%o P1051 X .
Dl . ErnuaD2Rcanancans crnveDIenssnnune .
- o 3 - *MOVE TO DUTPUT « B
. *. YES « MOVE DUMMY » # STRING TILL = .
#e STATEMENT o#.cecceeeX® VARIABLE TO #.iceecseaXe EXT ®evrneaaXty .
#.FUNCTION o» # QUTPUT STRING * NON-PROCESSED # -
*. o - e - OPERATOR e .
P sEERERERHARRSRERS ARBEEIEIRBEERRRAY .
= NO * .
. . -
X X .
B LR P5011 .
El EvmanEInannnesnan suesRESRcennRENuS -
o * - - » .
" READ YES = - *MOVE 2ND CALLS # .
*. WRITE, cecsasasX es-seX® QUTPUT ERROR & «X*W/ARG_TU UUTPUT» .
- FIND " * * STRING . X
-, P - . * » .
Faouw AR RRERERE RN ERRS EERAERERREAN RN L
* NO . L .
. - . o . .
- - . . N .
- - eeX® C1 » . -
Xeasennosaancsnossoacanann M . . .
X rres X .
PE oo P3011 -
Fl . [EREREFSHEREREARNE .
- *. s - * - .
«* ARITH *. YES * - « iF #MOVE OPER.NAMES® .
. CALL, D& IF %, 00X D3 = + OPERATOR caseX® TQ _QUTPUT *enon
#.STATEMENT. .« i - *. - STRING »
*g ¥ “ane -, ¥ - *
. o P aREREERIDERBRNRER
= NO = NO
. .
P1041 X P2G13 X
rnrusGlessanneann PEETRCLHRN KRNI REEE
* * » .
«MOVE STATEMENT * * MOVE OPERATOR «
UNALTERED TO = ® AND NAMES TO «
= QUTPUT STRING +# ® QUTPUY STRING #
- L . .
AARERACR AR BERREREEEENERE N
X
e
- .
* D3 =
. .
xnw

-
X

asss)lonsnncann
EXIT TO ROL
ROUTINE

.
*

axx

ABBBERBARERIN S

Flowchart FOR21. FORTRAN Compiler, Phase 18

264

[
saaREAlRanananans

INITIALIZE
PHASE

“rean

"
-
-
*
-

L Y Y

S J- D PRI

.
.
"
E #
»*
-
-

seasnsNNRRROERN

1PO16 X
snsnal]snsansnsns
» INITIALIZE =
*COMMON LIMITS, *
«VARIABLE SIZES, s
* FIND_EQUIV.
. STMTS
HEBFREREARRBRAERN
:
:
MLO10 X

ML

ssaxsD]lnnnnsannnn
- -

- »
#ALLOCATE COMMON#
- -

-

-
EARARESBEANE.

X

R REINER RN RN

M
. QCESS N
« EQUIVALENCE +
" STMNTS *
- *
. M

UERRBAEBARARGS

020

--nc.F)-&acnunno-
ALLOCATE AND
* LIST REAL
* VARTABLES

-
-
»
. -
(R T Y ST T Y Y 2

e e ee

ananaHleRtasnEnnt
"

"
* GUTPUT ANY *
*UNPRINTED LINE #
- -

- -
ERABAACARCRERENNE

ana lenssennnr
« EXIT TO ROL «
- SUBR -
» -

EREEsNRERARRES .

ERARAZENERERARNN
* ENTER PRINT =
- SUBR .

" .
raRanEREERRERRS

:
PRINT X
rERERR2ANNERENRRE
.
#PACK CHARACTERS®
*INTO PRINT A

REA®
-

seansaC2snssnsninny
&«PRINT ON SYSTEM»
PRINT DEVICE
. .

RBEERENCEEREY

Xesavas

senuD22snosanunn
- -
- RETURN »
s -

Py T Y P Y Y Y Y

NEWPB
AransnBIsERANRRNENE

Flowchart FOR22. FORTRAN Compiler, Phase 19

wnmEAdRERENBNR
= ENTER NEWPB
- SUBR

»
RERRBRREE RN NN

Xeranre

RESTORE PAGE
AND PRINT
. HEADING »

SensesREERRRE

Xesavue

“nsnC3nenssnnen
-

* RETURN

-

RERBAAREREENNE N

-
-

-

-
-
.

Flowcharts

265

ENT

resasAlanennrnenn
- M
* INITIALIZE 0
- PHASE_AND -
- PRINTER -
- .
. -

AERNRE BB B RR Y

#«STMTS, IF ERROR®
* NOTED INSERT =
- ER

3

-
BRRRGETERBRR RN

PO

Al011

EusasuClesnnnnenunn
UNREFERENCE
STATEMENTS =
[P
:
A1021 X
susesaDlensessennse
'LIST UNDEFINED =
ARIABLES
renvenseseras
eune
e
3 El w.X
a s
weun
El1011 .
El

o

«* END OF

Xng STRING
-

e
.

“xe s oo &
.

YES

El031

-c..-ﬁlof--un-:uu
DHOVE STATEMENT l
aea® UNALTERED
M OUTPUT STR]NG '

'l'nili..ll.l.ll.

.
.

Flowchart FOR23.

266

. E2011

aXaeeesaanscnsecaccacannne

COMM
AREA ERROR
ND

-

e
YES

.-

Kesssess w2 TOTE
OO >3

saBEnENy
SSAGE dsssFlaennannes
HAS = * EXIT TO ROL +
secasess X ROUTINE -
SED? -
FrEREERERRRS
rane

eren
.
* G3 #.,.
.
£1051 X
RRNANEGIBRNANBONGES
LIST ERROR AND
YES #STMT REFERENCE.
DELETE FROM
STRING .
saneanensubnn
"REN
-
. El =
. .
snae

FORTRAN Compiler, Phase 20

ADR

cesreserr st e

P R Y

AREREAlARREREER
* MOVE STRING =+
* NEXT TO_SYM =
* TBL. INITIATE =
* FOR STMT SCAN #
» » sens
AREEARERCRRENNRRS - .

. * B2 »

. - .

. wuew

sevassvnveXse .
X X
M1G21 ot M1051 . ¥e
B1 ., B2 *e
o % NEXT =, a% NEXT #,
«#STMT FORMAT#, NO . STMT .
#.STATEMENT OR e#ceceaceoX®s STATEMENT L%.ecccecccccncnsose
#.CALL I/C .= # FUNCTION .= -
.. o . o .
L *. W W .

* YES * YES .

X X M1071 X
wenenClENEERRRUN serxeC2rennnannuy EERRRCINRRRER RN
* MOVE STMT TO - * #INSERT REL ADDR#
« OUTPUT STRING # NSERT * # OF 1ST EXEC »

caa® INSERTING * «ALLOCATION INTO# #STMT IN COMMUN,*
= ALLOCATION . * QUTPUT STRING # - AREA -
* x . . - »
RRERRRE R RE AR RE RN SRERERERRRIRERANS ARRRRRRABER RN AN
- X
X ¥
RARRRD2AER R R R AR, 03 .,
UTPUT CALL = o *,
* SUBIN W/0 ARG # ¥ 1s %o NO
AND STMT BDDY = #. SUBPROGRAM .#....
* TRKSW IS O IN « *. o
UBR - *. ..
e T L.
. * YES
. .
X .
xew .
» I3 o
* B2 * M108L X
» » P T T T T T YT
anu * OUTPUT CALL «
* SUBIN W. ARG #
*TRAKSW IS 1 IN »
- SUBR -
*
EEARRERRERN AR RN
.
“Xesesooosansa
M1092 X
LA Lttt
#QUTPUT STRING, =
- INSERT #*
ALLOC,TRACKSW
« IS 2 IN SUBR =
. .
P
.
EXIT X
CERERGIANRERARERE
% STORE PROGRAM #
* LENGTH IN L]
* COMMUNICATION »
* AREA *
. »
EAER KRR NN RN
.
.
X

Flowchart FOR24, FORTRAN Compiler, Phase 21

L O ELL e Ty 2
EXIT TO ROL *
L] ROUTINE *

- -
FERERRERNER AR

Flowcharts

267

-®
» YES

#PRINT STATEMENT»
« ALLOCATION +

sansansassnen .
eXacevsosnona

CllmlFll}OQl.lI.l
«INSERT ALLOC INs
#SYH TBL, DELETE®
*LABEL, ALLOC OFs
. 13144 M

- -
ABRorssRIsRE RN

. sesassElesnassnesnn
.

sreesscasaXe

X
SEEBRGLANEREEERES
.

-
- MOVE STMT -
* UNALTERED TQ =
DUTPUT STRING =
- -
asansaannsenerexn
%
-,
H1 .
LASY ". N
STMT WAS ePanee
- D . .
- " -
. @ X
« YES seew
- - -
- * §1 «
- - -
. nene

sean]lssnunenan

-n
*« EXIT 7O ROL =
* ROUT INE el
- -

sssrnanssasnsnn

Flowchart FOR25. FORTRAN Compiler, Phase 22

268

ENT
srseRAlaasrnnsENy
:
SINITIALIZE THE =
H PHASE .
: :

- -
sessEsenrasRRRRRY

. :

X . X
snnaneBlasssnnannas . sesesplrssnneanns
- -
® LIST FEATURES » T #SCAN STATEMENT »
SUPPORTED 1 aSTRING FOR ONE
. . <+ WORD CALLS &
H
: REERRNBE AR RERRS

. -
. .
X X .
ARARNBRREN snsensCinrnansnssnne
LLED SUBR#* .
AMES 1IN - *LIST SUBR NAMES# -
TINE QUT « WHICH HAVE BEEN .
N ABLE - - TAGGED - .
- .
. ansasanene P T YY)
* YES
.
. .. . eXeoosnsecese
.
. . . .
X X .
sEsBRDlaERSRRREES : sRaneD2nwnnnenann X
#ALTER SUBR NAMEs . . - - snnuDIvnnennann
- TABLE 1O - .. *MOQVE POINTER TO# * EXIT TO ROL =
- REFLECT - » eeso®NEXT STATEMENTS= - ROUTINE -
. EXTENDED - . - - -
- PRECISION - . L3 - FRBBNBAARS R,
REBRSIESRREEREREN . LIy T Y Py Y Y
eXesaososones
X
R I3 LTy T T
* TAG NAMES | -
«SUBROUTINE OQUT «
«TABLE INDICATED®
#IN I0CS WORD INe
. COMM AREA .
LT e T T L
-
X
L1035 o'

tesvsecaasasar et

INITIALIZE

-
»
*STRING POINTER
-

»
cnsESReRERERRNNRS

Flowchart FOR26. FORTRAN Compiler, Phase 23

Flowcharts 269

ENT
ernsEAleRTRRII RN
" -

INITIALIZE *
“ PHASE AND *
" PRINTER :
»
RRRAABREERRRET RN
X
Lacll e
B1 *,
-
«% SYM TBL ., NO
2. LISTING aFevan
#.REQUESTED.»
., o
a. o
* YES
X
"

. e
. .
: X
- enseaN resIRREREE
- *MCDIFY FOR EXT #
. # PREC. INSERT
- *PARAMETERS FOR #
. * CONV. :
: FERERIANAGINBE RSN

cssascnsnaXe

L4021 X
srasesClRrennuREen

= -

LIST REAL
CONSTANTS

NARR RN RRE R

St ls e stes s er e esasetaen

.

eXaevonseseana

COREQ X
snresa)eennncneney
A LIST CORE -
REQUIREMENTS
. -

sessanREEREEN

cereeasaX®,

oo
J2 .
. ..

% MAXIMUM “w. NO
CORE SIZE
#.EXCEEDED «#
" -k
.

. o ¥

e aaan %

REasAK2REBNRERNED
* -
* -
*#SET ERROR CODE ®#.....
- -

- -
dssaneRRERRIRIENY

Cesersen e x

Flowchart FOR27. FORTRAN Compiler, Phase 24

270

®eeanaasaX®
-

rane deennsnrns
EXIT TO ROL
ROUTINE

L TR YY)

-
-
-

ENT
sensplenas

INITIALIZE
PHASE

-
-
-
-
.
»
EABRUBERBREERIN
nes .
* .
® Bl #.X.
* .
“nee X
.®, Q10
Bl ..
o* .
«® DEFI *. YES
ILE §$MT
-
o

e e¥ecasranesen sensocesX
»

-
.,

11

ERaRRBINRARSEERNN
. -
SET UP DEFINE
:FlLE PARAMETERS#

»

» -
LYy R T YT T

*, oW

N .

B

.

F1021 X
ansEaC2essunnnsen SansuClenennnnene
. - - » -
*. YES * OUTPUT DATA = * OUTPUT DEFINE
Releeas.X® STATEMENT » « FILE TABLE +
o - M . M
M . . M

: :

B S 39

F1015
sanesnD]lransannany snsseD3esnsnvnsans
- *
* SCAN SYMBOL * MOVE TO NEXT @
s TTABLE FOR « » STATEMENT =
» CONSTANTS . .
- - - -
EXXTITT AR LS 23 A2 21222222223
: D eses
: .
X% Bl *
- -
“nan
q1032
RmsRE2aununsnnen
- -

YES * QUTPUT IN .
.'.-...i..Xl ABSOLUTE MODE :
-

» *
FEZIT TR TR YYY T

Q1033

BrevsF2eanansanse
»

-
“w. YES 1« PLACE
Sw.cl.el ®ALLOCATION I
. + SYMBOL TABL
-

.
SEBRSANERSNRIERRS

»
NTO»
E =

- .,
* END _OF *. NO
#. CONSTANTS o#.q0e

. .. .
LY X
* YES LYTY)
. » »
: Dl *
. - »
. sane
-

wensH2eRusRnung
= EXIT TO ROL
. ROUTINE

e

WEBAEA AN ARG,

Flowchart FOR28., FORTRAN Compiler, Phase 25

Flowcharts

271

cauasAlennasansnn
»

* INITIALIZE o
- PHASE -
. -
- -
sERAsRENSRESRERES

Cetesiert eIt r

seaxaClevatiasude

*ALTER SUBR NAME#®

- TABLE TO -

. REFLECY .

- EXTEND;D

- PRECISION .

PEE T Y YT ST S Y
.
«Xasaoaeosse
X

sessosD]vANSRERNEES
Ni

PROGRAM.
sassaREESRARS

Xeos e

enesElesesssnes
+ EXIT TO ROL »
- ROUTINE »
-

-
rRRRBEBRESEIENY

Flowchart FOR29. FORTRAN Compiler, Phase 26

272

RC0O00

-bc.nAznuoun.uun-
:

INITIALIZE
¢RECOVERY PHASE '

QCDOOQI"QQCOIDOI

e v e 0e

HEBRAEB2ANNRENREN.
* LOAD SYSTEM =
* SUBROUTINE #

LTI RN YY ey

Xe s oesa
.
Xeseres

RC600 RC100 oo
sunneDlasenanense D3 cuno.o4oola-nol¢.

*,
.' ERROR #. SYSTEM :

[} *
% SET NODUP * ND A
:NUXEE SHX?C&ES : . CUMPILATIUN .0....---.X0CAR¥ ISGE DCOM !

. . e, ..
AERRTRSERABRERBASR AR *, oW ﬁ.Ql’l..O'.l.Ol..
. * YES -
. . .
: . .
. < X
X RC300 X o,
annsuaElennnpnnnnan u.uuugaun.-bnn--u E4 -, AREHSESHRRRRINRRE
PRINT MON CTL * o . . .
* ENCGUNTERED Noi‘éé SaTVehes o Gl N0 xe RONCsyeTen™ &
bd - eRessnne - = *
. MSG . * *e.CARTAIDGE.¢* " Xy ORIRNEE Ok
» *, * - -
HERRRBRRRRBEN II.!.GQ....Q..DQ. -, P" HARRBABRNQRERONNS
. = YES .
. . .
X . -
. #s0esecsesprreannacensinssrssscssnntnoesstsancessrsXeXeevocnsessesessvoccen .
X RC200 H
-ncnunF;;: nn-o-Fb-uno..-n-u
* COMPIL ' SET_YO PRINT =
DISCONT . M
MS #COMPILATION MSGe
- -
RS YBERNRRRSEAGRRORY
: :
. -
i i
ErEnaClennnananny HRBRRRGHERNBRBRER SN
*
#MOVE CTL RECORD# -
TO SUPERVISOR # PRINT MsG
I/P BUFFER - .
-
RRBBRABAASBRECRRS SEBRBLRABRBRDY
: :
- .
. .
% X
wanaHlrnnesnun sansH4nERRE R BN
* CALL EXIT YO # CALL EXIT TO »
: SUPERVISOR : # SUPERVISOR ‘
.
TEsanmReTEReEEY anRkrsneirnnnn

Flowchart FOR30. FORTRAN Compiler, Phase 27

Flowcharts 273

CARID
shscssAlensnsrnsnne
DISKZ

¢ READ SLET =

EITEYYRYY YN ™

ETCH 1
FOR PRINCIPAL =
DEVICE RTNS

[LEER]
e

asssssanssnEEROe

xe e

ssessClensnaseosy
.

- FETCH #ID
*RECORD. SET up
FROM-TO TABLE

-
SsassnsNEansEEIRY

e v e

sessnsl]erennsanaan
DISKZ

« READ DCOM =

LIITT YT TTY Y T
.

wense -

- s

. El

C
E
"
“ * NO -
" . .
o . -
- - -
- . .
- . X
b3 - o,
snssesFleoncssnssnne - F3 .,
DISKZ . o® CART, »
e g - -*10 &S D?DH *, NO
WRITE UPDATED - 2,10 FROM THIS .®#au..
- DCOM . . ®. DRIVE . .
. .. .* .
ERERBBDEERESS - ®e oW
. « YES wase
sers o - . .
. . o . . * Gl #
* Gl e X, . - - -
. - . wane
LT T R . b3
X . N N
sesssaGlansssensnss . G . G4~ . ne
. % LAST o, s .. *P
« PRINT FROM-TC « . «#FROM=TD NO.*. NOD «® CART ID =. YES * Up
TABLE - *s IN “‘ABI.E eMeccecsaaXte IS TABLE ID v®cacecsoaX®
- . - *.PROCESSED.% . % * TAB
- - - -
ssssarenssnne . annes
. -
. -
. . X
X - ew
ssanHlessnsrune .
* EXIT TO SEXIT » . -
AN SKEL| . - - W .
« SUPERVI - - * ON Ek CTED «
[T e T LYY - ART.
AABBERBRERERORARD HEURSERUDIRRS
. .
. esen . cxnn
- 3 - -
eeX# E1 @ caX® HE »
- - " -
ases wnnn

Flowchart UTLO1. System Library, ID

274

FSLEN
sansghlenssuinnen
-

-
*FETCH PHASE 1D #
« OF REOUES;ED -
#SYSTEM ROUTINE =
. -
sEBsBERRRRIRSERES
X

nsssuBlassunssans
- -
#FETCH PHASE 1D #

OF REQUESTED =
#SYSTEM ROUTINE #
- -
EITTIYR Y YR Yy TYY ¥y

.

e o0 e

seassaClosseassnses

#FETCH_SLET FROM»
SYSTEM DCOM
. -

sssnennananny

.
.
X
- RNBRBERE
. -
- H FOR el
- E ID -
- -
- »
ansRsEEREEREETERS
:
.
5
E1" e sessseE2ensannssne
. .. " M
. PHASE ®. NO ® PLACE ﬁERD IN =
=. ID IN DCOM esecnvnX® A-REG :
.I. ... - -
., o# AREEBNSARNREREERR
* YES -
.
%

ssssaFlasnnunensy

« FETCH WORD .
- COUNT AND -
:SECTUR ADDRESS :

-

BrSEsNNNBRNRERRS
.

eXsossonccssvencancaccscns
.
X

snsaGlusssnsans

- RETURN TQ -

SCALLING ROUTINEs

. -

sREReENANEENREN

asseH]lensnssnns
3 -
® ENTRY FSYSU e
. .

“nssssansannene

.
X
.

vannunglann
00

QUES
FRO

E
€
seues

X
sesklannanannen
PLACE SYSTEM
ROUTINE ENTRY

POINT IN A-REG

sessnnsnsnRteen

seneK2enennanse
-
..X:RETURN TO USER :

RBpESARENNRBEE.

ALY
sssus

Flowchart UTLO2. System Library, FSLEN/FSYSU

Flowcharts 275

ADRWS

.
.

-
YES .
-

snEaeplaanseans
= FIND SECYOR
OBEF&RE aoaK?NB
: STORAGE
CIXITETYTT YT T YR 7Y

Y
*
-
-

Xe s ea

assseBlensesansian
INCREMENT =
SECTOR NUMBER »
BY 8 -

.

#sRrnsensasRERRES

aXI e e

c1” e,
- ..
NEW L)
o CYLINDER]
.. "
.. ..
e o®
« NO

S T

X
esssuDlennasvssns

.
* SEEK TO NEXT

- CYL INDER .
- .
- .
SRNARBERTOARANERG
-

- -
cacsasccaeasXe

Flowchart UTLO3.

276

X
ssensElasesse

-
FORMAT AND 3
WRITE DAE! ON =
CYLINDER -

-

-
-
.
-
-

SesassenoRsentny

exe s 00

F1° el
» .

ssasnGlensenansns
- .
% WRITE EXITING »
- MESSAGE ol
* -
.
-

-
“nnsen

sennaanss

PR

seasHlesnanssas

.

s EXIT -
. -

sesassassesnnes

sssesF2un

- -
. AST %o NO = INCREMEN
.. 5%C§0R .-........x: ﬁEXTEC$L

. -

- -
SssnesonnasRBRnER

System Library, ADRWS

esesass s e ettt acssbiedet s

DISC

Flowchart UTLO4.,

---n'Alo.c-.-u-cu
«CALIO

__-__-_________.

-
-READ 10 RECORD @
. -

SENBEENBNSESERERY
.

X ee e

sxsasBlunousnnnne

'CALPR 007&1'

H PRINT llb .
* RECORD .

3
LY TR YYYRTYR YN Y

e et e

ssnssC]lsanvscanne
BCBI -

e e e e e
: CONVERT #1D =
. RECORD TO -
- BINARY -

SEERsSRBRANESRENS

>xses a0

sssvnsD]lvsnssavensn
*READ Dg?ﬁ FROM »
CARTRIDGE +

sesssessnsnse
.

PR

sssssElussnznnane
: SEY FLAG T0

PREVEN
'INITIAL! AIION
= OF LOGI
-

LTI YT YN YYYTYY

Hsvesee

sanseflusssnannas
.

-
0 lN]YIA 1ZE -

FECTIVE .
'CVL!NDER TA BLES!

conaluonanonlnnoc

e oo e

IQDDI;%%!'Q!O!QQ.C.
« CARTRIDGES TO
+ INITIALIZED «

srsnsenunanne
-

Kevasaosnes

.
X
enassuH]lssnannonnngy
WREITE_AND READ
#BACK 3"PATTERNS
* CARTRIDGES =

sEEBRESR RSN

LYYy

BZ -.

NO
™ DlSK ERRORS eteoas

‘e o
. .e

* YES

cessseC2e
REWRI
*RER| Ag
THA A

- Tl

LTI TYYR Y'Y

AXE S 200 8 TDARXS 0 400

.
o
N

“e. NO

" ANY
", DISK EnROR e
o

‘e, o®
*. o®

YES

Xeve oo s

sesesE2usansansny
-

M FLA YLINDER #
gFECYlVE :

-
onouo.ooun-.noncl
-

.

R R R T R N N R W W ¥

eXeoosossvans

.
W BXeos e @

n
~
.
.
.

R “CviiNper""
® e OEFECTIVE.
-, .

(=)

.

OZD exseecw
z

H2 .
D €
-. -
-

. F
. CYLINDERS -
“ue o
* NO

eXessosocsoscsscssscenssenae

nuuooJZQ§n|QQ¢000
ISKZ e

: éﬁ%éé 61862 ¢
« BN GOOD EAR% .
Sha

-n---

Xess v e e

ssesK2eunsnenny
- -
- EXIT .
- -

SRRBENBEBRBENEN

System Library, DISC

B et

X

Flowcharts

277

RDREC
sssssdlecssnarnns
FSL 002A1+

m
z

o
*,

» -
WALID
10 RECORD

.
.
.
.

-
*a

Xt eses ®

ssessClasnsvennon
&« PACK EBCDIC =
NUMBER AND -
ORE IN_USER'Se
PRINT TABLE e

.
snsu

-
*sT
-

-
CTYTIT YT YY)

.

.

.

X
scsss]lsnsensrace
CONVERT 10 .
» NUMBERS TO .
+ _BINARY AND .
#STORE_IN USER*Se
. TABLE -
EFRRNBERBRETREANE.
.
-
s
X
-

Mo P aebeseetes P tar Nt 0 e set o saentanse

SRENSE2nBRORANINS

-

NO ® PRINT ERROR «
Wescocscad® MESSAGE -
- -

-

-
sessssssRNONRRRES

wosssf}

STORE CNT FOR
. USER
*

sssseen

-
sesssaausasReREn

xees e

#eaesHlesensonnen
.

- PRINT =ID

- RECORD

seene

TET R YR Ty R Y Yy Y 2y

Xeessaaaaocscaconnnonocnas
.
.
X
anssjlensennnns
« RETURN TQ e
SCALLING ROUTINES
H

sSusssssnncscans

Flowchart UTLOS. System Library, RDREC

278

Als
-

-
*PRINT HEADINGS :

-
sSEsEsEsRsERRRRA G

Neenes

ssenssBlensvsesnssn
DISKZ
e ———
* READ DCOM #

Erasnnunn

eXeseeocoansee

.
X
apnssClevnssasens
«FETCH CARTRIDGE®
+1D AND PHYSICAL#

« DRIVE NUMBER
- FROM DCOM -

— i
* AND
#PHYSICAL DRIVE #»
- R -

N
aBEBEEIRERRRBRREY

e e

senave
10 -
ISOR :
srnnens

Flowchart UTLO6. System Library, IDENT

Flowcharts 279

CALPR

ssessAlsinesnsscos

-
« SYORE LINE »
- COUN -
- -
- .
NensRSSIEREREEDS

-

1
sasanBletnnscnnns
.

& STORE PRINY =
® LINE ADDRESS o
- -
- -

EXTTTTRTYR YYR LYY 1Y

ssaasElnsnncances
FSYSU -

|
-
- FETEH SYSTEM
*SUBROUTINE FOR
- PRINTER

SaERERIAREERNS:

e
©. YES

e®eoenne

sssessesee

%eeesne

... -,
«X®. COUNT ZERQ
.

%

D2 ..
-
LINE

., .8
HhO

.
X

esensE2esrannnnns
.

2CET_WORD COUNT =
PRINT

. -
BesasRsEBETRENSEN

e vee

PRINT

X
enaG2enssnonsue
»

ByMP_0/
RDDRESQ

ernn

sessessensEsaBaee
.

xe oo 0.

ssasaH2sesssnnase

. -
SDECREMENT LINE #
M COUNT BY ONE =

o -

. LINE
®. COUNT ZERO
L -
. "

, @
* YES
.

sssFlevssansanve

sanacacX

T RN R R N N N R I I R R S R A N R A I A S A I I S P AT I PP I

asseDIne
SPRINT HEADING, »
SPACE ONE um‘:.

sanuoe

srssssnsenses

D N R R I R R I R R N I N N I N N N I S R I R R N P I I R I I IR

Flowchart UTLO7. System Library, CALPR

280

X
ssesKIsseescene
. -
. EXIT *
. .

StsgnsansnaRRen

cop

Flowchart UTLO8. System Library, COPY

!IODQAI..'OIQ..I'
:RDREC 00 Al:
FETCH SYSTEM »
«DEVICE ROUTINES#
.

.

"
tRBEBBENEBREBARS

.

xe 00

ssennbleasnnssncs

#RDREC 005A1%

ottt SOttt
. FETCH »1D ®
. RECORDy -
#CONVERTy STORE
stsesiesnnRsanten

%
L)
c1’ el
“2pphhL e
.»"SPECIFIED +. NO
RTRIDGE
AILAB
., o
- -
v

X
snnnsDissnnsananse
- 1] -

coPy
- AVAILABLE -
- FROM-TO ol
- CARTRI -
« COMBINATIO -

P et ———————

snesFlesuvsenes
- -
- EXIT .
- -

sssassssRNREREY

eBessconacX®

CITY Y YRS TYYY YT

ecscvnsssesccscnsssscssacscscccnsse

Flowcharts

281

oLcie

ssssaplesnanndann

#RDREC 005Al.
B o i o e
FETCH SYSTEM e

:DEVICE ROUTINE

NBGEeSERRRNRORNSR
-

X
wsasaBlussssan
*ROREC

ARE

canssaElessnrnonone
#FETCH DCOM FROM#
® CARTRIDGE =

vens sassen

scnenFlessssnnnne
« ALTER SECTOR &
s ADDRESSES QF »
* " CIB, USER =
* AREA,NORKING ®
*STORAGE 1N DCOM#
CisuRnEEsarsuseen

conunuGlosssvenasue
* WRITE DCOM ON +«
CARTRIDGE =

assssEnanssne

.

.

X
saseaH]snvanssnne
ALTER FILE .
#PROTECT ADDRESS#
* IN RESIDENT
* MONITOR OF -
#SPECIFIED CART #
P T Y™

.

X

sdasssjlesnannniiny

® WRITE DCOM ON #
SPECIFIED
@ CARTRIDGE «

ssnsussssenre

X
.Q.‘.K%...IC.....
» PRINT NEW UA

AND WS .

» ADDRESSES OF =
s U SPECIFIED w
CARTRIDGE
Trssseasasnnsessr

T sese

aXe D2 w

wane

BeoenoaneX

snssns(lesnsnnsusnn

4 PRINT ERROR
MESSAGE

seseonnEsRRETE

Flowchart UTLO9. System Library, DLCIB

282

DSLET

PR YT VSCITYYRY YRS
#DISKZ .

Hm e e -
*READ SLET TABLE®
- INTO CORE M

-
PYTTY YR Y YT R YT

POEEX

ansessBlrsanensnse

-
« SET UP HEADER
- LINE

3

- -
CETTTY YRR Y YT Y Y Y Y T

-
-
——- e 4

SKIP YO NEW_#
#PAGE AND PRINT &
. HEADER .
AREBSRRNIARGRENSY

-
eXoseoooesons
.

oooooDllﬁncoiuo.o
* FORMAT A LINE »
- 4 SLgY .

ENTRIE .

-
sSasanBeensanee

xeos e

sssssElennnssnnes

4 PRINT A LINE »

LTI YR RY Y ST Y

.

Fl ..
- L0
«® ALL 40 #. NO
L L NEE
'.'PRINT 0 .

wnsaGlensansune
-

- EXIT -
- -

ssssssensnsanee

Flowchart UTL10. System Library, DSLET

Flowcharts

283

M0000
oo..oA[.nno

:‘%76’%#;;&?’35

-o-nomn.n.o«c

-
-
-
-

>xe s s

MDO20

evseneglnssncasense

SFETCH SLET FROM®
DISK

EaRINBRRRERES

Mesaes

ansses(lencnnasense

M00S0

M0100

sesasC2onnse

-
* COMPARE DCOM

-a--.AZ
OAND HOE
. lNDY

sans

X
sscasef2ucsnncsanan

¢ PRINT SIGN-ON =
. MESSAGE

sasssansenane

Mo o000

-
-
#FETCH PRINCHPA
PRI T DE5 gﬁﬂ L - :
& INDICATORS -
- -
SRR BRBANTION BBRBRRRGBNBBIINES
. .
.
M X
X L
asssssljasnsacensan D2 .,
..
*FETCH PRINCIPAL®
1/0_DEVICE
SUB - L
s
ARBFPRBVBEBTEN s @
. * NO
.
.
X
@. ssesE2uisnssnne
*. YES -
B ITETTY . ERROR 7 -
- -
- SRRNGRORIRNEIERS
-
.
. .
i N
£1 . F2
. .
- FETCH - « SET P.T., IND =
CONVERSION . NEGATIVE .,
- SUBR. -
-
SRERRNERBRBRSNN ...II.IDQII.....:

- -,
2501 IN =,
CORE

MO070 o *,
H1 .,
" ..
1132 *. YES
®. ROUTINE
«_ CORE
LTS o
R,
NO

M00B0 X
sansejlasasnone
-

-
:SET 187 ADDRESS:

- -
saNBERBENSERDEIEY

e se s

0090
snenssKlosnnsnsnane
® FETCH ID AND =
DCOM_SECTORS

FROM DISK =

EXITITT YT T Y

Flowchart UTLI11.

284

YES

PLETTTYRYYY L4
»

-
-
eXeseensassosssassccacnscns
X
-

IN a®ccccccceXs
o 3

sneseaGRasuannense

- -
- SET CDIND -
POSITIVE :

- -
sssssssessnsernns

SEsussas st aar It eb e

Keicessenas
.

oo.c.HZ'-.-nnnn.o

* CLEAR PRIND
SET LEVEL {

-
-
ADDR| -
.
-

-
.

Xeeosansconecococasevenens

System Library, MODIF

YES

.
-
.

.
.
3 »
..
- .® VALID «. NO
- .. HEADER
. LE3 -
. *o L d
- %o o2
- * YES
-
X

EXTRACT _AND
SAVE PATCH
COUNT

.
.
3
-
-

ssasasRRRBEIRRNEY

ssean

-
asene .
.

.
» E3 ®.X.
- LS

“nn
Hos10
€3

4 .,
«® CHANGE «.
#. LEVEL NO.
.. .
-

YES
HIGH

[
.
Exs s ®
.

Zzs

o e

F3 ..
- ..
«® CHANGE *. YES
%. LEVEL NO. ..
.. LOW

eXess0 8w

M0520

@
w

" ..'-
.#" HEADER e
oo TYPE

-
®ecnacocaX®
»

sHeccccane X®

e%enneceseX®
*

*B4anssnnces
ERROR 6

(T R T T Y2y Y Y Y

sennChosnssense

ERROR 1

CTTY YIS Y TS

saneffenannnsnn
ERROR 4

» LYYy

ERROR 5

scssnsnanEREREN

sanee

* NO
.
.
%
sEaeesBSevessantnny
- * READ PATCH -
*Xeosns HEADER
- - - -
: ABRRRARBRANEE
. .
. :
: X
- -ty
- cs .o
. .o ..
- «YES +% MONITOR =,
#Xese esee®s CONTROL .
. ®, RECORD ’.-
. "*e*No
. .
: .
. .
. X
. .
. D5 ..
. ot .,
- ¥ VALID .,
. HEADER -"
", ¥
., -t
*. .®
* YES
;
ssuusESensnnnsnan
- -
#DECREMENT PATCH»
- - COUNT »
-
-
..
T sese
. . »
eeX® E3 =
- -
ey

esecaas

630

0 X
SReeeaGSossEnnsaRns
#READ DEND CARD,*
READ DCOM TO
BUFFER

sassesnensan

R

-

.
-
B

- -
. A4 @
. -
sane
.

M0530 X
n.u-oA]--cuolncoq HRRRRALERDRB RGNS
- - -
. v Al . * PLACE PATCH
g P ouags apie
- - - BUFFER -
- . . .
sassssssscnnssnse BUEANEANERBERINES

: :
. -
. -
. .
: X
31' 'o. .----52---»...-.- HERBBRBLARRRRNBRNNS
- e . ausnBIvcsusanne
- lGBTAlN DISK_AND . - # WRITE DISK #
.. ABSOL%TEX'CORE ADORESSEE 0-— e ERROR 9 - SECTOR OR
%, PATCH VIA SLET SEAR! H . b SECTORS .
. ssssassnssnnnne
L Quol!!..coc.i..l! suausnnseeRen
* YES .
. .
. .
X .
nssnaClennensvans -
- . .
#OBTAIN DISK AND»
UBERLVABERE <3 08 .
® FROM HEADER e -
. .
sessscsnsnssrenes :
. -
. .
. -
. .
eXeeoosoosssoecosccscasncnce
cescssnsesek
. o,
. E4 »,
.. .) -, wsseESsnnnusns
- n;x e NO . «% BINARY #. NO
L2 PATCH R O R SRR L R R LR LR LTS ., ATCH ..0........X: ERROR 1 M
el ' e .- ensusnansensiny
*, o
* YE
.
.
.
- .
MO570 X X
“essesFlresevsnevan snnusFiaonssnnsas
REAQ H ATA ® .nnunFZDnccl.nc.. : SET NARY .
-
PATCH gEC RD —mmmmm———w ERROR 3 - - SH?‘CH .
- - » . - .
snsnsensananNes - »
ssassnnsssene snspanNessEeNERES
. .
. -
. :
Py .
X M0590 X
assesGlesssensnen RessneGlansnsavenus
»
CONVERT AND o # READ BINARY »
!STORE RECORD AN' PATCH RAIA
BINARY BUFFER # - RECORD
M .
CETTTITR Y TR YRR T LYTTTRE YT TY Y
. .
. :
. .
eXeeseoosesoee .
. X
X .%o
- H4 .o
T -® ., suasHSesnasnaras
(1] " *. YES -
$ *e ELETTERTRYY () ERROR 2 -
CHE - - -

SNssINBBEERREES

et eresseras

escecescsscecsssssncsscssccccvosaane

sescsccscssacsscsccane

l”_c 'S sennj2snnusunas
- P, H ®. YES - -
#.° T00 BIG a#ccceseecXe ERROR A .
AL ot - -
., a® NRANBNDERBNRNS
N, o8

-

.

:

%

ssesssKjusasnnsusen

. SRRt
A4

ssan

Flowchart UTL12, System Library, MODIF

Flowcharts 285

“enen

«013e
» Ale
P
.
N
SRO00 %
anssuplennsenssnn
» - BasupZene - sassAlscnasanns
s UPDATE =MDF1 ¢ . - . .
® AND =MDF2 IN #=—vmmmau-s ERROR 1 - #ENTER FROM DUP #
. DCOM . . . M .
- L] (23ISR] sResesEn -
SERBBRIABRARARIEN
. :
. .
SR020 x RY000 X
ssssssBlannsnunnass essanaBlesasnnencnes
sWRITE MODIF ON # ® FEICH DCOM, _»
DISK PRINCIPAL PRINT
* . * DEV. SUBR =
#SBEHANANBDEN afRaves *ees
. :
)I(X
-ty
ssassnClasssncennns c3 ., ssnsnCieosnnnnnnn
. . . -
FETCH DUP FROM = o =MED2 . .
DISK . EQUAL 0 ok WAIT .
»
.. .. M .
ansETERINS RSN " o REENNENBBNIRR UGS
. «"YES
: .
M M
- X
- -
X

dnssDlusrsessus ssssDisnsssnnse
NO - .
ssacsecX® ERROR 8 »

- -

sssanssusaRREEY

-
* EXIY TO DUP »
" -

ceEARAREEERRNE

anenE4qew

.

cesX® ERROR B L4
. »

sesNtnSRBERENEY

aene

sssanFlecssnassne

e ety |
:VERS]&N NUMBERS®

-
asanssasansnsnsns
-

Xe e

aGlensensens

.
*
CLEAR MODIF =
INDICATORS -
-
.
-

[LLETT]

sssnsnenane

Flowchart UTL13. System Library, MODIF

286

SCAT2
stessAlansesneney

.
“SAVE REGISTERS,%
1 ARZ IS BASEL s
* ADDRE3S 15 T .
.

aneun

s X®AND
-

TES; FOR BUSY
ET UP EXIT

seunsBlesssrnunns

.
-

-
-

- -
asasssnRNIRNSREES

Y
. FUNCTIONS 1#eeionsossanensescsronaoncescotesactacsannacs
o 0-3 .e

.
. - -
"o o# -
* NO -
- .
. .
. .
sXeoooeosasse .
X . X
TEST ot « CLOS L AUTOA
D1 ., - sanuaaD2eesnsnsunan D3 ., senasuDinnasnsnanss
¥ LX) - ¥ .
ROUTINE #. YES. * 3 . *. 1 L3 ENABLE OR
. BUSY e RESET SCA Xeovoosoe®e FUNCTIONS o#ecececaeX DISABLE AUTD
. . b *. 19203 .t * ANSHWER .
- . - .
., .w “ssnessavanse L
* NO .2
. .
. .
- .
. . - -
X ALARM X * K2 %
IIIIITT RS susERens sasssnElessnsnnnnun - »
NCTION = » Ty
ngv IS = AR - * TURN ALARM ON #
IS 0Oy TORS - OR OFF
Is + - . - »
-
wsansnens RERBIERIRRRBINERR senERanERRENS
. : :
. . .
. X X
. “sen wans
. - » . -
X " K2 = * K2 #
sessunFlassnnenunne - * - -
“san [T
#PUT SYN IN IDLE®
REG.
- »
sscsssvansnes
.
.
H
wesnsGlenssunesun
» »
- -
:SAVE PARAHETERS:
- -
snsssssaRRRNNERES
cnnanew
-
R XMIT#
ORS »
- -
BHEEARRRASRNGEERY
X
sessns)lunsvsesanes
- START SCA .
OPERATION
“naw
SENNEBANBRES - b
- . K2 =
. . -
. snne
. .
N :
X EXIT .
X

ssKlunsnnsnnnn

. . .
#SET INDICATORS ®cccsccceX®
» - *

- -
sEsBERIRNNRRO NN

“anaK2nanannnsy
EXITY

cBssasssRRRRNS

Flowchart SCAOL. System Library, SCAT2 Call Processing

Flowcharts

287

NT2
Sdussaflecanssannns
4SENSE AND RESET#
A DSk
)

-
®, YES

X
enseBSensrRuNEn
-
EXIT .
.

L T]

- NO -
PP TR 11
-

essseans
X

L X233

%003+

* ASe

L
-

srus

srssejSusunnansnn
- 3

* .
e®seecccseX® CLEAR RTBSY =

- -
*
.

.
LYY YT YT TRY ¥ Y

rsesnnnnnsne
.
.
X
-t oy LY o,
81" “w. 82" e 83" e, 84" e.
S e Thd ., - - - .
.0 AUTO el NO " READ .. NO . WRITE =. NO .
o, ANSWER CTeol......Xel RESPONSE l#.c..c...Xel RESPONSE levae..c..Xel TIMEOUT
. - - " L - - -
", - *a -* " -® *, -
., .= “w .= .. o ., .e
»"YES *"YES *"YES «"YES
. . . .
: : : M
- N X M
ANS1 X %
(3} c2 eeve €3 e, :
034 .. .
#SET_INDICATOR, ®READ CHARACTER » *"FUNCTION "o .
DISABLE AUTO INTO BUF CODE :
* ANSWER (FCODE) .» .
- ., - -
SEBRNEEBIEBIN “sERRBRBESRES X .. .o' -
- - sdnee « RCVY .
. : «0Q3e N .
. : e Ale .
X : e N
aenn - - -
“ . X X
i+ BS » -, -t
. 02" e, 04" .
ane
END .« FUNCTION ~#. RCV XMIT .« FUNCTION ~*. END
®messscsacecscanan®, e%acencsese sessncant, .
. *. (FCODE) .« X ®. (FCODE) .
: . . neane . .
- e o " #003e ", oW
. « XMIT . F *“RCV
- - - -
N : .
M : %
- eescesessencaccssenssasas e ansas
- #003»
- XMTRD -, # H5=
- E3 ., -
: S [-
- +® CORRECT =#. YES # »
N #2 ACK OF DLE a®eeeeXe J4 ®
- . ACK o -
: seun . .. weun
: - . . e
: *F2 ® *"NO
. - " -
N vene :
X . X
ENDRD .. x .
Fl », asssasFlasncnnnnnne sssanfF4ntannanan
-t - -
.+" EOT OF * RESET SCA . & ERROR 0400
*l DLE EO see.X CLOSE SCAf2 eeseoXs RETRY, CLOSE,
. . . ACCEPT
. H
*, *NSBNIBBRERS BESBBREIRTRRBRANS
T ewms N
- . -
T.X® BS X
. M seee
seas - -
* B5
Gl ., anseaC2ensnnnanne » -
«® “, - - anew
. EOT OF w. YES * EOT TO USER
.l EOT eeliaieeaXs AREA .
¥ -
. .. .
B, R -
«“NO
:
X
2%y
HL .. seaneH2essunannns H3 '™
.. wnnn
.. .. YES e ENQ TQ USER » .+" EOT OF YES _» .
. €NQ teciicesaXn AREA . wl OLE EOT .weecooXs F2 #
'R " . » ", . - .
-y - - -, . anEs “tne
®, ¥ #4880 RNSBEEN ., o - -
* NO . = NO . Jb »
eens : . H M
. . 1 . . eone
* g1 mux0 x X .
- - . annn ane -
R 1L - - - - - X
NENQ * BS # . Jl e ...
sassnjlosnannonue - - . . J4 e,
. sone [TYYy . -
® ERROR 0200, *# 10
RETRY OR cLode : sl MESSAGE
.
RGBS ABRNIBAREDENS . o®
ND

Flowchart SCAO2. System Library, SCAT2 Interrupt Processing

288

Xeeere

ssssnuKisnnunnnnaen

START SYNC
-

[TTYTRT Y TRV Y

Xesaas

sesseKSenarrennan
. .
» ALTERNATE
ceansascX® ACKNOW=
- LEDGMENTS

PR LY YT Y

EYY)

sense sunen aneng
#003e *003« #0033«
* Ale * Ads * ASe
.. . .

- L3 .

. . .

X X X

RCVRD oo XMTHT o ENDTM o,
., ARRNBARAZABARNANERNS A3 0, SRBRABALEBAEBRARBEN -,
. *e - " ..
o *. YES . - *%. YES * WRITE ENQ . .+ EOT AND «. NOD
l-. ENQ .-'.-......X . START SYNC . " . XﬂlT ENG UN e*eencasee X . START REAb *e CLOSE efeeea
.
., ot . ‘e, et
cnsensutasnny . ., .e wrpsessnnnann .. X
. 0 . * YES “nes
13333 . . LY TS . .
2003 . . " I . . C2»
* B2 #,.. - aeX® C2 » - -
. - “nun
nese . . sene .
.u-nszuuuuu < un¢'-85|§¢.o|n-nu
. . - .
- ITs ACKS - - -
cxe ulBRTeolfE0s 5 - . * CLOSE SCATZ *
* 0y RTBSY OFF M . . - -
- - . »
- Seansenenssnsenan » . . resserssrnsusnan

* NO . - * YES . -

. S, waes

. eXeosooeanoos - . . %

. ' c2 l.X- . . eeX® C2 w

. . . - -

. uoo! . . X suun
ncn.uc]nfrca-nluo i nocanuCJ.%n..:..a.p 04...1. seansulSanannsunens
- - ansnl2ennsnnnne o -,

STORE DATA IN 0 » - *WRITE DATA FROMe o ANS. #. NO - RITE BCC, .
- 1 . EXIT - AREA *e END CH, e*eceasueeX START READ

o hEReEN. % . . . NEEDED ..

- - sasaussesassNSS -

ResenenseERRREREN sassnasesnuss “w. tresusanennee

. - - YES .

. . . . wuua

. . . . @ .

- . . ceX# C2 »

. . . - -

. . . wens

X X X
ansenDlre #usuaDInsnsnnense *ennanDieRsnnEnGREN
* UPDAT:! »

- CALCUEA - PO]NTERS' - - HR&TE DLE ETB w»
#WHEN NEC - g » OR DLE EXT

. S InGIEATORs & .

- senne » »

sEGsIBRENCEERNENE -Oggn AERRBREDINRRBERR R tREBRRRRRERES

. » E2e - .

. .. . anae . sune

- - PO . .« ® -

. . aeX® C2 @ eeX# C2 #

e . - . - .

X X wane “ann

N RCVWT oo
El . E2 -, sstuusElnnstnnnstian
..
.. “e. NO . “e. YES .
L CNAR- RCVED e¥esae #o XMIT-NAK ON o®ceaecessX WRITE NAK
., . L3 -t -
e -0 . *e o« ® antan
L X . .® sERERBRRNR S #003«

« YES “nne * NO . Fé&

. » [} . . . w

. # C2 » . . *

. - . . - .

. wnne . . .

. . . X

X X X XMTTM ¥,
snssnFlasseanvaes HREBRNFIRNBENNRRRRS sasnnafFlansnsannsun F4 ., snenasFSesdansenney
- 3 - .,

COMPARE BCC « WRITE CURRENT # - INIYIA 1€ - o XMIT *. YES # _START PRUG. «
« RCYED TO BCC » OLE ACK eceassceaX INDICAT ng . TRANS e¥eesecneeX TIMERy INSERT

= "ACCUMULATED * + START REA .. . » UDLE YR e
- .. o

Sussusssannnenses atsssssEnenns EnsusesERuNE. .. L% nesnssnenenns

. - « NO .

- LYY . . ey
. - . *
caX2 C2 = . ceXe C2
» » .
anen . anse
X
2ensssnnans BREBACLER SRR RN
NATE ACKS.' . »
UNT « ERROR 0200 *
TN# RTBSY ! #RETRY OR CLOSE :
.
- " - “nues
. o -.-«n.---o.ns-n;n ARARERNENRBRORE RN #«003»

= NO - - * H5=

N . “sne . enne . ®

. P . P - »

. eeX® C2 eaX® C2 & .

. . - - - .

. wune wene .

X RCVTM X
srsssHlonassssens s eaHSHERsERERN
- - - -
RETRY, CLOSE R OERITIERO%y 4

-
SRETRIECERY . -RETRV ok eLB% *
» - ansny .
BESRRRNSERRREIRNE «003» -.n-noun-.--cn---

. . J2s -

- anae " . rrres

. ® - - . -

aeX® C2 » caXe C2 @

- - - -
sane caon

Flowchart SCAO3.

*,

o
NO

Xreoos e

X
ssgnsRK2enanusennes

#WRITE PAD CHARy®
CL SE SCAT2 .

sensneKIessannannne

SWRITE DLEy EOT.s
PAD ON

sEERsEERERERS sssRnmARREN.
. ures - nemn
. * »
-.XO c2 ! coXe C2 #
- -
IQ.Q wasn

System Library, SCAT2 Interrupt Processing

. *e. YE
-+ XelSUB-FUNCTION le..
e 0 -t
- "

LTI TR TR TP Y TS

* WRITE EQT, =+
X START READ .
»

ERpERANSERENY

.
. sane
.« .
caX® C2 #
- -
[YYes

Flowcharts

289

SCAT3

sisarAlessazarnse

H
fouts secyprgns.d
: I e S

ETTYRY YT YYYYYY 24

IIBZQ'III"QQ:
TEST_FOR y_ e
NSSSE; UPagilf:

- »
sEBRGREREINRIRNRY

" L]
#o FUNCTIONS
- 2-3

- -

®, a0 -
« NO .

-

. -

sXeesosonnsae .

X - X

TEST oha . .. €Los

D1l ., - D2 -, snssssD3ascnscrnsen

" L . e ..

-* ROUTINE *. YES. - ®. 3 .

L2 BUSY ePiane 4o FUNCTIONS o®cuccaaedX RESET SCA

-, - .. . -

., - ., .
., e ., o® LI TR Y

* NO .2 -

. . .

. . -

. . -

. . .

X ALARM X X
ssssaElesnsansnan NesaanE2unansannnes #sssafElnnesunnees
SET FUNCTION = -

«(FCODE) TO — IF# # TURN ALARM ON @ - stEAR -
*RCV, IF _MNTR,# OR OFF # INDICATORS -
. + 1 1T - - . -
- . - .
tescsanssensRRRES sesssnscannes “resensEsansETenn

. . .

- X

M ssan enew

- - . . -

X * K2 = . K2 »

susREsFlensnsannBIN » - . .
aese sene

#PUT SYN IN IDLE#
. REG. .

assnaGle [Ty
» -

- -
:SAVE PARAHETERS:

. .
4BBssINRBEREENRGN

e aeans

sssenj{lensnnnsnen

-
#SET RCVy XMIT, @
- .

M INDICATORS -

-
CEXY YT T RR Y YT Y 3

.

e aaes

snsses|lassssansony

* START SBA .
OPERATION

sssnERnsssanS
.

aeresklebensannes
“

« - -
“SET INDICATORS #ccccanecaX®
* - -

» - sassessnsnsssen
ABsastesnseNansae.

Flowchart SCAO4. System Library, SCAT3 Call Processing

290

oty Py
83 .. X
- ., 3 ., csnaBhonennnsng
#. NO *. NO o# - -
e¥ecvesec X e%eccenocs Xty TIMEOQUT *®esesevecXh EXIT -
ot - . «® -
-, ¥ NEERBBBRRBRRE N,
- ®, L@
* YES * YES
. .
. .
. .
X -
- seClesannnsnnns c2
o ..
*READ CHARAEIER . XMIT «# FUNCTION ®. RCV .
INTO BUI cante e®eocovees .
- L4 . #, (FCODE) .+ .
- .. o seens .
tREBNRENS . X e o® ®003» -
- (1333 #* MNTR . J3a -
. #003e . L -
- * Ade - -
- L X .
- - 113343 -
X *004w X
o * Abe o®o
Dl e, .
-

- ..
RCV .# FUNCTION &

..
*. RCV

'.oococooi

.
. #. (FCODE) .+ X o
e . o wenne wnsse ., . “nsan
X LN #004s *003s . +003w
adane * XMIT * Als * Gae & MNTR * E2«
2003 % . s . . P
Al - - -
. . . X
- o aune
X *004e
XMTRD .e, * D3s
El .y - »
o® .. -
¢ CORRECT #. NO
ACK OF DLE o®cccvcccccecavsecsosccccnccrenscscscccansnccsnss
LS ACK - .
- -
- .
YES .
.
.
.
X
.t
aesasFlasnsennens F3 =, sssesFhusnannnses
. . » o .. - -
.o . - -® YES # ERROR 0400 -
"o eeX® CLEAR RTBSY .. NAK eseence X#RETRY, MON]T(’]R.-
.. - - - .. . - OR ACCEPT *
", e - - - . - -
. o% cRREERINRNRRRUERY L TRERRRERERRRNSRLY
« NO - « NO .
. . . . suue
. . - . -
. . - asX® B4 »
. . . . -
. % X —eae
X L
ssnssaClesvasssnase aEnenGlensanannns G3 ., BRRNBCHRRERBRN AR
. 3 ., - -
L3 - ALTERNATE - .* EOT OF *. YES * EOT TO USER =
START SYNC escccsceXm AC NgN— * . EOT e%cesecaccX® AREA -
- * LEDGMENTS - .. o - »
- - .. .e - -
srssasenssaan sesssssnsensREN R ., o® srassRRscERREERES
. * NO .
. N . “ran
o . P -
X - eaX® B4 »
esnn - - .
- - X “ann
» B4 w s
- . “seneHinsaRuERRS
“nen ., . -
*. YES ¢ ENQ TO USER
I LTTTRER RS L] AREA -
o - -
- -
ARRERARRNBNRENRNS
.
.
X
wnne
. »* -
NENQ X * B4
EIYIYNETYY YT Y RY Y2 - -
- snas
ERROR 0200, =
RETRY QR .
- MONITOR
.
REasERNERREIERES

Flowchart SCAO5,

System Library, SCAT3 Interrupt Processing

Flowchart SCAO6.

292

WRITE CURRENT «

DLE

ACK

ssnssnsssanss

System Library, SCAT3 Interrupt Processing

esvesnank

conne
*#003« «003s
* Ale * Ad»
. a ‘e
- -
X X
RCVRD ata XMTHT %
1 .. sasessAlsaesesenses A3° Te. snsasaALurusasunas asassASerssananne
- s, .. ., -
- L - - o RETURN TO -
l.. ENQ .-!E?.....x START SYNC ameaa e XMIT-EOT ON .-.-......x gﬂ“ Eg emamnecseX®] -
., - .. - - OPERATION -
., .o »
L snsennoessses ssssasnnssnes sevsssansssRRENSY
: Doeees
. P -
. ceX# C2 #
. - -
X nene
81'.'0. ReassB2anasssesss ssssnsfiansanasensns
- "e. vES S INET, ACKSy s o YE T -
o2 07 SEROSIPRRRTY: - L BV, ' ol PR . xnn-sno on I !nﬂng keds
.. R H 0y RTYBSY UFF : -
fo o®. sesssenssasssnsne sEsassesEBNNE
: “hee . M “new
. sXooocoevooce .- " e
- * €2 woXe ceXe C2 ®
- . . . - -
. sene - “nne
ssesaClessssnosss X
- sssaC2assnesace .,
' SYOR!: DATA IN = - .e” ! s, NO
f L - EXIT - L HES AGE e%cvecvevcersvsrscanes
TS O 1 T N . . .
- » sssasssvensenes .. y -
srsssnissnssasees . o® .
. . YES .
; : s
sapssD]lscnnssnnne asssesDlessencrnsay 04" '-. ssenasDSennnnsunsnnn
- . " ",
% CALCULATE BCC = #WRITE DATA FROMNe .% _TRANS. *. NO » WRITE BCC .
SWHEN MECESSARY = AREA *. END CHAR ePancssseek START Rgﬁb
- - - - L 29 NEE ED - - -
- . wsaew
sRsesessesssEnee 003 susensnsensse ‘e, .8 ssnsasennenns
- . E2% . « YES .
. LK . . . 2T
- . . - - .
. - - . “eX® C2 #
- - - - - -
X . - . “nny
% RCVTM X X X
El . =, E2 E3 sansasE4nsasnaaneas
o™ . & ERROR 2000 b - PDATS -
- END . b X“l}—ﬁﬂs ON = . P 6NTE Sy - - HR&TS DI.E ETB »
#. CHAR. RCVED . « RETRY OR L4 . gﬂ;a - LE ETX
. - . * TMONITOR « INSICATERS » .
"o .. . - » - -
fe o® x . anseansnasane
= YES auan . -
. » - sens . ases . nns
. 02 » - ® - . - .« ® L]
. L * eaX# C2 = weXe C2 & «oX® C2 »
. onns - . . .
. seue onns nunn
senesFlessasenans
.
2 et gos
: ACEUHULATE :
CETTTTYYTYTRYY 2
be
G]'.'o. sssssG2esssssasen sanessC5asnsensnnnn
. [SALTERNATE ACKS,y» e
<2 COMPARE =, YES .U COUNY = "= *. YES ® _START Fﬂgg. .
e EQUAL e®acesesceX® LENGTH; RTBSY = e®ecasescseX TIMERy INSERT
. . ofr . .. « oLt SYN
.. .. -
. .® - nessssensanes
: : »e
. T.Xe C2 e
. e
n-nouyu-’.(nunu-. sanesHieannsennes
- -
ERROR 0800 - * ERROR 0200 .
*RETRY, MONIYOR,® . RETRY_DOR -
OR ACCEPT = . MONITOR -
- - ssasa - -
asnssssasnssasesa 2003» SS22%0008000000
- * J3s
. sane e - snsn
- * - PO 2
aeXe £2 & - seXs C2 @
- . - . -
e X aane
RC VKT e
J3 .-, snsens jonansssnsnen
R
YES
-l XHIY—NAK ON .D-...-...! WRITE NAK
-, . et .
., .® sescosssanane
#* NO -
X X
ETYYYYTEY K&

*004= #0044
* Al * Ab4e
.. - »
) .
- .
. .
x X
MONRD . o¥e MONWT LR
Al -, A2 *, snusepA3enannsassan A4 -y
" e -t .. . o *e
«% CONTROL . YES «®% SOH_OR *. YES # CONTROL _MODE o* Ni
L MGOE “fecssevesXu, STX eMeescnccc X OFF . *. XMIT-NAK ePecccsercsscacsvene
. . . ot - *o -
., . ., ot - - ", .
L— n, .® P YT YT Y RY T L
* NO * NO . * YES -
- . . "hEn . -
- - - - - -
. . eeX® 'F1 # - -
sXaaesoavasos . - - - -
X . X naen . .
ate . %y X X
Bl . . 82 .. ssansaBiannnsnnnaes anssenBSesnsrananes
" L . o e
NQ .« TURN- " - NO .« POLL OR =, * WRITE NAK - * WRITE EOQT .
wee®l AROUND .® cee...®. SELECT o» START READ START READ
€, RCVED .» - - -
.. e
" o sEnnsRRRBRNE. seNBEIRNIERRNS
* YES - .
. cnne wuen
. » I3 .« ® .
. caX® F1l eeX® F1 »
. . - . .
. rrYes wone
X
seseseCennnsnnsnns
#SET IND. ETART .
WRIT
- - - *
.w . “esew
o . sssanssenssns «004#
* YES . . * D3+
. . . LTY) a»
. . . - L]
. . TeX® FL # .
- - 3 » .
. . ennse .
X - MONTM X
suasuDlennansnnes - sssveDlunnscnneny
- . - . -
. . . # CONTROL MODE #
#CONTROL MODE ON= - » OFF .
* - . - .
» - . - -
sesERERRRTIRRRS D . HRsseBERESERERERS
. . .
eXeoensooenaa -
.
. .
x X
snanssElnenevesuaes tesnssElssnsnnnnene
END 0Py START » # END 0Py START »
reko REkD
. . - -
EaasenenenEne anssnnsnneREn
wsse . .
- . . .
* Fl #.Xo .
* % Xesesesasscesvscssevatccenserssverscacssenactedseasos

Y Y R e T

Flowchart SCAO7., System Library, SCAT3 Interrupt Processing

Flowcharts 293

SFTL SRE
revaflusnnnenen
-

ENTRY

- »
» -
B AR EEARNRAN

eXssoosenssee
X

wrsaaBlrenunnnnen

- -

« SET TO BYPASS
*SFIQ OM RESTART#
» -

* M
REERREERS R UE
X
ERreaC]ERRER RN
*SAVE ADORESS Of»
«L IGF CALLS FOR #
SUBSEQUENT -
- ENTRIES *

.
KERE RS R RCRA RN N

>e e a0

EassaDlesnnnEnnun
»

D

»
-
-
-

-

-
-

eREADRER AR
.

ENTRY]

-

ARaRBURRRERERES

Xevesnan

ExkuBlavesrnnavn

.
INITIALIZE FGR &
READ -
"
.
ARRAEANNINERS LD
X
-

»
* SAVE TRACE * .
* DEVICE AND . ot
* PRECISICY * . -
* - .. .®
T T TR TR T L
- * NO
- essvascersaXe
X - .
%, «SFUL10 X
£1 ., . AR RE RN AR AR RE
. - * SAVE FORMAT =
«* INITIAL *. NO . ® STMT LOC AND =
*a ENTRY efeoncas + GET DEVICE *
.. ¥ - NUMBER *
L o . .
A, o0 HERKERE SRR REENE
* YES .
. X
. .t
X F2 *e
BasuflekRsannan o ..
- RETURN TG » NO o# UNIT NO =,
3 MAINLINE - tee¥. VALID .
* . . . ¥
CrraseRRERERCRE . 'S .
X LENER
L + YES
3 .
+ Jl1 = .
. .
wwuw .
X
..
wEkeaGlennnneunnn G2 ..
.
* StT UP ERROR = NU -' ALT .
* FOO08 taeasrasts OR READ OR .=
" *o WRI R
» . .. R
T Y T ..
. . YES
. ey .
.o * .
e X® D4 -
« - .
e .
X
ReraaHleseuno R
- -
SET UP BUFFER =
SIZE AND ZERO «
* COUNT *
. .
HeEREEERERSERE SR
T
Jl *e..
« . .
e .
X

cnnnsjlaReERERnEY
-
SET UP ERROR =
- FOOL #Xeenoaase
“ .
* -
WRsvEErERRRREER RS
. P
. . .
e Xw D4 @
M »

anan

Flowchart FIO01.

294

-

.
.
-
-
.
3

eresk2rEvancensy
CLEAR 1/0
FFER LEEXE)
*

-
AREERR R R RN,

eMeencanna

SwRT
eaneATennanrnen
ENTRY

CersEERERBRRRES

. -
- .
-

Xewanea

ereseflannvasnase
. .
#INITIALIZE FOR #
* WRITE -
.

. *
AEREEEREE RN RN

Xessaesessssosessssaacacsens

cassraClnvanvnecnns

« DISPLAY ERROR »
F000

ARERUBRIREREE

" DX=aw
ACMORXE v 008 00

enns
«001*

* 63 -.X
..

>

'
SFOQO

EeEEEGlenEesnrvEn

*
*= STORE EXIT *
- ADDRESS *
. *
. *
sEscEsRuRRRIRNERAR

Xtaeew

envsHincunnnnnnn

T CL oF
CHARA S 10
READ OR WRITE =

-

-
»
.
*
-
-
»

AEEBBARENRARENS

Xeeeas w

[AARLELL AL L

OBUFFER lF READ
UPERATIGN

-

System Library, FORTRAN Non-disk I/O

-

- -

. A4«

M .
e
X

EnunsAbuanannnian
» -
» CLEAR 1/0 ‘
#*BUFFER IF WRITE#
L3 OPERATION -

- .
LT T T 2

S, e
- B4 -.x. * BS ...
* - .
Qiii X rEEE -
N X
B4 .. FreBnBORRERERRRES
. . « RESET READ _ #
o' EXIT TO ", YCS « INDICATGR AND
%1 CONTINUE <®.ceesseeX® BUFFER FULL
. . « INDICATJR «
M “
MY I
ren s
*001¢ o
« €5 w.Xo
aves .
X
el Senanrnunnann
sanaClesnsnunnn
. . RESET BUFFER
. RETURN . . POINTER .
. M M
rervannenruan ey . .
v eER bR REn kR

e
#001%
* D4 #...
. .

$F385

.
oaaeaensX
-

X
T T R T T T

OSET UP DISPLAY #
FOON AND NAIT

BRsEEEEERER N

X
oo SF390
E4 el SEcesESHERRIRILES
-® L O
. E *, YES
*, FOOly FOO8-...XISET Fool SNITCHO
.. .
. e carersannsures
* NO
X .
o, X
F4 e, sevesFSrsnnunnsen
o "
" ERROR «CLEAR BUFFER [F+
*. FO02 - READ .
. . - -
.. . » .
.. . SEREERRIRARERERER
- - -
. . .
% . .
ERRsEGLERrERER REY . X
. * . ERnAGSEERR R NN
* UPDATE FORMAT = . *
co® POINTER " . #EXIT TO CALLER #
. . . »
» - - ARERERCR TR
EREERERREERNNESNY .
-5 .
3« .
EL .
b -
ceeeancaas
- FI10 oo
H4 LD HS "o
*, 54
. g *. NO . ERRGR ..
*=, FOO v516' e%ieosanea s X, F009 o
.. o *. o
LR . L .
LI , .®
* YES * NO
X X

LN YT T T

-
* UPDATE BUFFER
. POINTER

*
»

" *
REEEE AR RA N

ARERUBKSRERRRRBRRNY

*GOTO 1/0 DEVICE#
SUBROUTINE

ssEuNnesnuRnE

ERruE)SnanernnEen
. -

* *
%.eeessa X¥SET FAC TO 2ERO#
- - -

- -
ERERRERBERRRRE RN

X
ennw
*003=
« F3w

T

*

S101X

BraeAlanranEnan
. ENTRY .
* SUBSCRIPTED
» VARTABLE *
RARRRERREBRIEERE

S10F S10A1

.--nAz.---o-a-: snsaAdsnsnunnne
* - *
l SUBSCR[PTION [3 " ARRAY *
- * .

..-nn:nnnunlccn BARRRBRRBAREGEY

: : :

: : :

X X X
snsanBlonnnnusann i AERRRDI RN BN RN
SUSET e M SET uP #SET UP ADDRESS =
» DISPLACEMENT = #*DISPLACEMENT OF# « OF FIRST ELT, «

FROM BAgE - % ZERQ, ARRAY # SET UP_ARRAY #
« ADDRESS; SET = « “sizé Ts . . S1ZE .
SARRAY STZE TO 1w : M .
EERBRAERRTARARRIES ARBEERERARRRERE RN AERARRERARRBRGREY

. . .

: : :

: : :

eXeoesasosecsssnsescsencansae -

% :
.nﬁloClo-un..o.nn .

ADD BASE .
ADDRESS - .

-
" Q
- -
- -
* -
* -

sEsERENENASNGE
.

eXeososonoosse

.

n-oolD[o{n.nnonnu
-STURE ADDRESS, H
2> ArRAY »
¥ EXIT XobRest :

-.-no-a.nnaan.onu

-
.
.
.
X

CasERFlRsnnRRERER
» »

- *
#CLEAR WORK AREA®
. .

- -
SRBNASEENERERNES

s e eene

savanGlasvessanan
- -
* GET _WORD _FROM =
» T .
. STATEMENT -

.

.
T Y Ry

.
X
PxY
HLT Te

e .

- TYPE
#. EsF, ORI
*. -

o
YES

xe e e eaaw

sssaKlesnnsnann
* .
#RETURN TO M.bL. #
- *

L R T Y TS

Flowchart FIO02,

»
*
-
-
*
.o
.

X
EEREED2 AR ARG NN
»

. ET y
s NON=DIGIT =
« CQUNT, [=2, =
* F=3, E=7 .
H M
RREARERRERABRRRAEN
).'(teesEeeesa003 A4
. feeeFeeasl 003 A4
..
TYPE E
OR
-'.
..
« YES .
: leeaTeses 002 AS
: Se..SLSH..002 G4
X eesGaR...002 C4

seserF2enneruanes

»
+ STORE DECIMAL 0
. SH?DYH f

.

e FeR...002 D4
1+..REDD..002 H4

bD)

-
cnundnuuoncndonnn

st sesectsssnr e

eXeevevosces

c-.--sz.‘.a.-..-.
. »
* STORE TOTAL «
+ FIELD WIDTH =
* {WW) "
" *
ErsRERRS RN EEE R,
.
X
LN
*o
RMAT #, enn
TYPE *, NO » *
I5A) OR +%ecaoX® D3 &
X o . .
o e
LEIY
* YES
.
X

HEamnJoennunnnuny

:
£ neBucE eyl |

* -
ERBARARARNE R AR

.QanKB.-n-u.lni.

",
*o YES l SET UP ERRDR *
MeceeaceasX® M
- - *
» *
AERREARERREREERN,
ane Iy
- «001%
* D3 # * Diw
. . . »
tanw

System Library, FORTRAN Non-disk I/O

nenew
#002#
* Abw

> o

SF125

CrrusAfunensannun
» -

. lNCREMENT :
UFFER PT
*COUNT SPECl?lED'

uon.n:n&ou-aun-ug

.-.-.cq.§--...u-.

.
INCREMENT #
lFORMAT BOINTER
.
.-.....--.......:

X
RSB ERRER

**D4
INCR REPEAT
OUNTER BY

wnnuw
*002#
® Abs

PO

SF122

AEERRASHREREN SRS
- 0

+ SET BUFFER
HPDINTER START- ll

|-

ssausFordasanauss

$ l
...nFoaMA 36155er
M
N » -
X wnensnesesnussans
e
[y

l El -0020
Feee
a!nun u .
rrrys
SF160

X
CRRRRGLERRRE RN REN
* .

* SET REQO
i INDICATOR

-

*002»

® Hé Beoe
* .
csse .

HRRBRHL SRR AR BN
.

s RESET FORMAT #
. POINTER .
. .
.
M

.
ERERAURSRERA N

e oo oo

HRBER OGN R R AR RN EE
- -

* SET -
* [NDXCATUR *
» *
* *
FRECEERRANERBERRE

Exe e e

o .

o ARRAY *. YES
#. COUNT ZEROD
.

......-.X'RETURN T0 M.L.

o»noksnn-uoncun

a-.u-n---n-

-
-
»

Flowcharts

295

SF140

adnsnAlenssnnunen
- I3
*5ET DATA PT

* NEXTAFDRMAT -

- LOCATION e
* "

FEEAREEANEBCARARE

e
*003w .
= Bl %.X.
» * .
Ty .

SF180 X

|ln~~ﬂloul§o«pi|n

UP CHARS #
'PER HﬂRD FROM A'
- SVECIFICATION :
«

qn-.onnli.nnlnl!.

X
SF165 LN
(53 ..
"
- WRITE *. YES
«, FUNCTION .'..¢-..
.. -
., s
e o
* NO
X

snasaDlnrnunnnsan
- -
#*MOVE DATA FROM #
4 1/0 _BUFFER TO #
* STORAGE *

- *
FEAERR A RARE RN N

SF220

TeeraC2nusansnnne
! -

MOVE DATA FRUM #
..XOSTURAGt TO 1/G =
"
-
-

cnuw.onnncn-.uaq

NO -
e¥eaaaX®

iy H
*1 FORMAT
.

*a

TN
« YES

wrErs

#0024«

* Ele

. =
3

Flowchart FIC03. System Library,

296

en
"
K3 =
.

TTYY]

wraw
“«001e
« D4=

ERERRHIRRER RN
. .

»
- FIX DATA
-

- "
O T YT

sasacnente 0D
X .

. %
-

SF365

SF3

YES

YES

#Xoeoeanoots
.

X
CeanaBIaRARE RN
. .
* SET UP ERROR «
* F009 *
» .
. M
EsanRRRARKRKEO RS
ren
*003%

C3 #.a0
. aXaoosaas

*
] .
I

.

sesnaDlnannnannun
. AN .
. .
« CHARS FROM =
»* BUFFER .
M .
. H

FenmTeNRREIRERE

*,

ERRQR " #,

FOD3/5¢6y %

. OR'T e
.

e
20 X

eansFlannnnnneun
. .
“STORE NUMBER [N
- FAC .
. .

- -
HrrRensdNENRARRES

o

o

eceasssasrecssecancesencasXe

..
SF340

X
CENEERREEE

* J3
- -
- ORE DATA IN #
o ST ELEMENT »
* .
- -
EREE AR I KRR REREN
nua :

#003%

- K& ., X.

*

-...-K)-§ .
*DECREMEN T
TA
1
-

OADDRESS it
- ARRAY "CauR

resnswsrunusn

L2324
T LIS
BY DA
WER
T

Axmnue s

X
“reuw
«002%
« Elw

. .

-

FORTRAN Non-disk 1/0

.
.
.

SF430

BrrraConsnneracer

NO *CONVERT NUMEtR
cesssaceX® FOR QU
-

0
-
-
3
.

-
LR YRR T TN Ty

*e

YES

xe se s e x

ERBNREANRRRE RN,

»

YES * OUTPUT NUMBER «

ceen - TO BUFFER -

. * *

. . .

X AknsEasEERRRRE SN

“rEnn .

«00] T wess

* Daw .o »

* esX® K3 =

. . .

whan

SCOomMP
CURRFLRREREEE KN
. .
*WRITE COMPLETE «
* -

P T Y Y T

YES

eM®eaonnraaXW
.

SF590
aRnsaDGeRnERRERRE

.
* PACK BUFFER ®
FIELD WITH -
ASTERISKS -
- .
EERERERRERNER AR
. e
P .
seXk% K3 w
. *

aunn

e*asseanas

Ty

REREJLRRE RN R

*
#RETURN TO M.L.
*

TEvRERRRENREE Y

Ty

- » .
* A2 » * A3 =
* » - * et
T eun .
B B * A5 ...
. . " -
. . rune .
CARDZ X cz270 X Cl265 X
EEERRAZE SRR AR PanEsAdEE RN Aan, ERREEAS R R AR EA T
wAEnAlennnnnuny P - « SET PREVIOUS » " "
«ENTRY VIA LIBF « « SET UP FOR . * OPERATION - *WAIT AT LOC /BE=®
- CARDZ - * WRITE 10CC * + INDICATOR TO essse X®WITH A DISPLAY «
* - - CURRENT * . - Of /1000 *
EREARRERERARRE . » » OPERATION . . .
EEEAEBE AR R AR Ly . ERAERRARNSERER A
ey
. . - . .
* B2 *.Xo . . .
.
- - . . X
€2240 X X . o*e
EEARKDIRRRNRNER RS AxnnneBlennnnnnnnn . 8S .
*« INITIALIZE » . * *.
* READ/WRITE - # START READER « . «% PREVIOUS «. YES
J0CC, CLEAR # PUNCH . #, OPERATIUN .#....
. *LAST INDICATOR » * - « READ . .
- * - ", - -
. EAEEEERRRA R RANNS EREAE RN . e o
. . . M * ND I
. euw . . . * M
. * . . . * C2»
- * C2 #,X. . - - -
- * . Xeooasosonas . . ene
. wnuw . . . X
. Cz260 X . - %o
. BensrClenrncannny FeRkEaCOununnnun Ry . . cs ..
. *HOLEZ O13Al1« . . v ..
. R — e m el » . - *. NU . . NO . ERROR _ »,
. * CONVERT EBC SENSE DEVICE e¥eose o seen®, SWITCH SET .»
. * CARDS TO » - - P %o "
. - HOLERITH - - . -
. HERARR R A AR A RRR R EAERRRR RSN - ., o ®
. - . DY * YES
-
. X . . X
.o
. 228 ., RRRERDLGEBP A RER RN RN o D5 ..
. o LN
. «* PREVIOUS s NO *#. YES - SET _ERROR . .. «%* COLUMN *. YES
. L OPERATION +%ecee ¥eaee e*eeanssace X¥ SWITCH *eone o . READ e*eeen
. *. WRITE .= . *. o¥ » - . *e . .
. L » » . . .
. LIRSS . . FERRRREBR R R R e o ®
. » NO rewn *NO *"ND P
. wnen . * . . »
. * . * Fl = . secevrrcscesXa * C2»
. * El #.X, . - . . . -
. - R rane . . rnaw
. . X .
«C2210 X e *e X
. seensElrnnnnnanue E3 .. R T T TN T Y YTy EE A RAES R Ay
. . - s .. - »
- # SET _UP FOR * *. YES o LAST *, YES L3 SET S$LAST »
. * wWRITE [0CC L e®oaae *o CARD e®acanssraX® INDICATOR - FEED CARD
. » . *. . . ., o » .
. . . . o . .. o » *
. AEEERRREARRR O RRER . o X e o% AR RRARERREERE RN reresnnnRERen
N . * NO e * NO .
. . e . - * . . “ren
. .. * . * A5 « - - - -
. saX® B2 = X * - . . X C2
. * * L L] sXeesvensnassscacsancsnsane * .
. rewn X cunn
- * A3 # e Cz330
. sesunFlesnaunnnen * » F3 . RemnaFLenRERRERNn
. - - e o . .
+ *WALT AT LOC 12A% % //BLANK "%, YES » CLEAR //BLANK
. *wlTH DISPLAY OF*X... *. TEST SWITCH e¥.cceceeaX® TEST SWITCH «
. . /1000 . . *o SET o * .
. * - . . o * -
. e . . .x ARREERNERRRER SN,
. e * NG .
. rxes . - .
. * . * Fl o« .
. * Gl *aes * . -
. . PR reww . .
. ene . X X
.C2220 X e o,
. PEEERG Rk RN RNy 63 .. G4 .
. » o . o .. wrsaGSRREE R,
. * SET // BLANK = o* READ *. YES .. FIRST *. YES * *
. * TEST SWITCH # #, OPERATION ®eeeesseeX®s THREE CHAR ®esseneesX® CALL SEXIT -
. . L3 . o *o //BLANK .= * -
. . . ", .. . o ERREEERARR AR A,
. TenEERARERRRRRERY . a® . ow
. = NO = NO
. . . .
. - . X
.C2230 . ot
o RsssasHlenenesnannn X Ha .
. EENRHIER R R o .
- - - * RETURN TO * -* READ *o
“eeX SENSE DEVICE " CALLER * %, OPERATION o¥eses
-
KRAREREREE PR, ' o .
rEEEERARE R, e oow
. * YES pres
. . * *
. . * EL *
. . * -
- . _En"
X .
%o X
J1 *, P AN L T R Y]
o ", LI *HOLEZ 013Al«
o* LAST #. NU * - #omm————— e m— e g
L CARD eheansX¥ A2 % * CONVERT HOLL. =
*, o - * * TO EBCDIC *
*. o . wmes * .
. . . HERRAREARRRR AR,
* YES . .
. . .
X - .
RansnaKlennunnennnn X
. sRRRKLRERERE RS
» - . - RETURN TO -
FEED LAST CARD . * CALLER *
. " . * -
. RERRBARBRB R RN
T .
csescenncanaes

Flowchart FIO04. System Library, CARDZ

Flowcharts 297

#saHAlransnsnnn ssssplssnanssse

® COLUMN . % OP-COMPLETE
®INTERRUPT LSOO+ #INTERRUPT ILSO4#
M . M M
SBELRERBSLERRES BENNABENANERENN
. .
: :
N N
: :
i .
€z400 o cz110 X
Bl .. SenasB2NNeNENOREY aassenplnnnasunsbun
- . * SET_TO_READ #
.* //BLANK #. YES + FBIRST THREE « * SENSE DSW TQ #
®. TEST_SWITCH .+ CARD COLUMNS # RESET INTERRUPT
we T USET e INTQ SPECIAL « * CAND SAVE #
. o * BUFFER .
", .8 Er 2T Y Y Y Y Y ResenEnanG e
s NO .
X M
sasasClessnnncsne -
- - -
« INCREMENT 1/0 .
#BUFFER ADDRESS # .
* - -
- - -
FREFSRRNLBRAFERRRS -
: .
: : H
X M
snnsssD]lnssesnnsnes X
ssneDInsssansen

SEN DSW TO » »
RESE?EIN§ERRUP1 #RETURN TO ILSO4#
. « - -

ssangssNsBRERRE
(XTI TR Y LYY T

Xessnesn

sEsussilessnavanuns

® READ OR PUNCH «
ONE COLUMN
- *

ARSGBNURER NS

xeoanen

seesFlsvanenens
® -
#RETURN TO ILSOO*
- -

FEABORREBRRENG Y

Flowchart FIO05. -System Library, CARDZ :

298

PRNTZ
truuAlennensan
lENfRV l LIBF
»
-
ERREEREEEERREE.
.

*

*
*
-

e s ene

AZ200
Sessvnlessssesuas

'KN[TIALIZE SCAN-
#CT=49, [OLECT= len

-
oanucnun---ua-onn

Az21
-
SENSE DEVICE
- »

(XTI T TR YY)

xe 0.

AZ270
L

HNAXT AT _LOC /2A
...'HITH D[SPLAV OF'

.n.llillli.ll}u.o

Fl61 X
ansunFlennnunannn
. M
« LOAD CONTROL
* " CHARACTER =
.
M
.

.
sERRRERISRERIRR.

Flowchart FIO06.

210 X
BesruaClesnensonuns

nnulnAZ»c&uunoa..

! SET_SPA .
+ COUNT=1 FOR *
M SINGLE SPACE M
HEARBARRRARB RN

PIREEE

EnERNNB2NRRRR SRR

#START CARRIAGE #
SPACE
L3 .

EERERNIRAREY

ERRRED2RRNRN R

»
#INCREMENT SPACE=*
* COUNT BY 1 *
» *

. *
EARRARUNRERERRA Y

“nsn

-
awn
AZ220

SinasE2enernnrany

AR PRINT
E%EN BGFFER

IETEE]

enresvssabsuEuEn

.
:
&
PRy
F2 '.~
o CHARACTER *. YES
*, e¥esae
. .GT.I o -
. - -
.. v
* NO e
. .
. * A3
. .
: wnse
AZ230 X

CREANRG2uNERRANERRY

« *
SENSE DEVICE X
. 3

SERRBUBRENNEY

:
. :
. E2 ® .
. .
.
. .
..
3
=0
'a. ot
PP
* YES
- -
* -
. .
y
X

BEREK2esunnunne
. .
#EXIT TO CALLER =
- -

BENBERRRARRRREY

System Library, PRNTZ

AZ2

AZ245

ey
- .
* F3 #,,4
LIYY X
AZl45 oo
k3 *a
o* .
DECR « NO
*. SPACE CTRy o#%esae
CTR=0
.. o
. ow
« YES
» -
- .
* .
X

nnn
* -

* A3 w..,
M P

e
40
ExsernAInunenRnEREN

*
START PRINTER
* *

EARBERERNRE N,

axen
* -

® A4 wa.,
» ® 0

AZ300 X
ERREREAbREanRanEREE

seesssven

X
*ERERASRBREERERBED

CLEAR PRINT

- -
START CARRIAGE SCAN BUFFER
- -

resesx

ERERECRAR NN R AR

-
»
.
*
RRBERRET RN IS »

.
.
.

: . .

. . .

. . .

X X X
EREERDIRRNRREERNE enneRBhERRRERRORS EREBERS A NI NN RS RE
» * * -
*CLEAR TERRUPT' * CLEAR CHANNEL - *DECREMENT SCAN »
. SNITCH' » - - COUNTER *
. . . -
* - . - . - -
HRERREEBHERRERERS FRBAEAHERERRRBURBEEN - ERBRARERER RN BRAR

. . .

i
e,
Ccs *.

03 *o
ot *o
o IDLE *. NO
- SCANS s¥saee
#.COMPLETE .»
. o
. v
YES

Xesoone n

“nanElanunennay
* *
#EXIT TO CALLER »
» »

ARRRRRAE R R R,

ransRaGIuNnavEEREES
» *
SPACE PRINTER
» -

tranusRREREES
e
» .
*« H3 #..,
. .
LT X

.,

H3 "o

. .
«# CHANNEL ». NO
*. 1

Xesone n

ARERERJInsnnnRnE Ny
» .
STOP CARRIAGE
. .

SRARERE NN

Xesene

un'.uK3o|lnllubuu
0 SET INTERRUPT '
- ITCH 10

ICHANNEL 1 FOUND#*
* *

Y Ty

e¥sscans

nRRChunnunuNE
+INTERRUPT FROM *
» ILS01 -

.

" .
. SCAN
#o COUNT .CT.
*. [o]

cxsunnannRRERRE . .
. * ow
: . o VES
: .
: :
I Az150 X
AEenREDS AR NN RERREN
: . .
: READ EMITTER :
. * - .
M SRERERERC RN :
:
: :
: X
M SENRRESEERRERI RS
: «SCAN BUFFER FOR*
: « EMITTED CHAR, *
: * SET BITS IN' «
: s PBRINT SCAN »
: « BUFFER
: PR 144 SRS
: . :
: : :
. . :
: X :
. wunnFSesernnnnn .
- - - .
: *RETURN TO ILSOL* .
- - -
M AEERERE RN .
: .

: : i'..‘...-....
RERERGLUNBERRRERS : SRERAGSHERERRRANS
* OR CHANNEL 12 = . e

BIT éNTD . . *DECREMENT IDLE #
HANNEL 12 o * COUNTER -
SWITCH . :
- *
ERRNEERRRRENRENS . LT T Ty T Y T
. . .
. . .
. . -
X X
¥, .0
H4 *, H5 "o
¥ L ..

o% EMITTER *. YES. NO «* 10LE *.
* INTERRUPT e%c0ee coeate COUNY ZERO .+
" " - -*
o o - ’. "

*e . “, .n

« NO . * YES
. . .
. . .
: : X
. . EERRBESERERNRBEEIN
. R
. . STOP PRINTER
. . . -
: . ErasnnesEnuns
. . :
. . .
eXeo . .
. .
AZ195 . X
X sanse S anenennnn

nn-uxaqnu----nn

*
.

SET .

........X'RETURN T0 lLSOl-X........OSHITCH T0 IDLE :
* . M

.

#SCANS COMPLETE
AR RAR RN »

Flowcharts 299

hd -
aw X
PAPTZ BZ400 a®.
EEARAEA2eRESERNRERY wresRAdRERNERTRR Y A4 w,
EranpluenERREEn » . aE
“ENTRY VIA LIBF = * SET UP FOR - . PUNCH *. NO
» PAPTZ * ««X START READER aaeX® UPPER CASE Foaea . READY LYY
* L3 . L3 - * CONVERSION - . . - .
ERARERRAA RO AR . . - . . 'R . .
. ARareEREEARER . REERRARCERR RN X . X
. » “nen * YES wrun
N “ann . . . *
. * * Fl = . Jl =
. * B3 =... - - »
. M . e . anne
X e N X
82200 o, N
B1 *. *. drnusBinensnnnnny B4 ».
¥ .. o ., - - o .,
YES o# WRITE e «#% INTERRUPT #. NO . # SEY UP FOR - Rl NL *. NO
eaes*s FUNCTION - *. SWITCH a¥aaan * LOWER CASE *oaae #o SWITCH SET o%.ea.
. . - . SET «* + CONVERSION * . #.FOR EXIT .+ .
. *. . .. o - »
- *, o L EEERABETRERERER AN X . ¥ -
. * NO * YES “nny ® YES .
. . - ene - . . -
. - - . - » F1 # - .
. . - * C3 =... - - -
. . . . N e . .
. . . wese . . .
X X X - -
EnunaClannsnvnnns wrnesClrnunrvunany snunalinnnunnanne .
. * . - » CONVERT . eRnCLYENEREN Y .
#*SET CHAR COUNT # *CLEAR INTERRUPT# CHARACTER * * RETURN TO . .
. [0 MAXIMUM FOR » - SWITCH * « ACCORDING TO = - CALLER b -
. * READ * - - #«CASE, STORE IN * - -
. * * * * * UFFER ERAARRERARS NN -
- RAREARRRR A RN IR N BARNERERARCERAR NN ARBABCENBERRARND BN -
esscacenansXe .

X
ExranDlnReABaRRER
*

X
susnaDInnn
® INCREM

»INCREMENT CHAR = » BUFFER
«COUNT BY 1 FOR # #DECREMENT
. NI CHAR . . COUN
* . M
CERRaRIRRARAHRRER . Eansavanan
. e * NO .
.
. * AG % . .
. « . . .
: e . N
. . X
X ..

ERRARE | kUrRanen R
M
*SET NL NQ _EXIT #
« OUTPUT CASE
v SHIFY .
. .
ERARABRDREARDEREN,
FITTI
. . .
* Fl #.Xo
* .
srwe L

Bz210 X
P S T

* *
seeX SENSE DEVICE
“ .

. AR EERERE R .
. . rne
. . - -
. - % F1 «
. . - *
. . LT
. X
. ot
. 61 *o
. - -
- - WRITE -
. *. FUNCTION
"o - .
* o -k -
PR
. * NO aun
. . L3
. . s A4 o
- - *
. . LTYYS
- X
. v
. H1 .
- -
. -% READER =. YES
L READY e®aaaa
@, . .
*. - .
-
« NO e
rann . - "
. . *® A2 %
* Jl *,.Xa L4 "
« . e

waun .
BZ350 X

snennjlannennunes
-

-
*WALT AT LOC /2A%
aeo®WITH DISPLAY OF#
- /3000 »

= -
AR R AR ARE RN

sanaKlennnnennn
-

* CALL S$EXIT

-

AR RN

#Xeoaoena
*

x
PEEEERE2 R AR EE RSN
- »
READ CHARACTER
. .

BEsERETRINBR R,

St eh e e e n e eas s RN et s s e e A s et AN et Atttk b A

X
L
F2 *, F4 .
*
u R CHAR
S H COUNT 0
.. -
.. ..
. .e . LT
« NO - * NO
X . .
-®e . X
G2 ", trvesGlusnasannns . CERRUGLERR R
o .. - . » .
- LOWER ®. YES # SET NL SWITCH = #CONVERT CHAR TO#=
* CASE CHAR .=.. - FOR EXIT *Xe *PTTC/8 AND SAVE#
. .. » . % .
-

. - .
LR T T T YTy Ly R Ty T

e asaee

srnnuHisnnsnnneny
* .
» SET UP 10 -
#0UTPUT NL CHAR =
» .

* -
R Y R ITL Y

- . . -
. . e . .
. P . . .
. e X¥ K4 . .
. » . . .
X e . .
. #2450 « BZ&430 X

*anEs jisnnnnannng - EERRRJGRBRE RGN

* » . - -

% SET_TQ OYTPUT » o « CLEAR CASE

* "PROPER CASE ®Xous % SWITCH LOAD =

. CHAR - * CHARACTER b4

- . . .

LT T TR Y TP TP KEBERARR TR AR
. .
. “enn “nun .
P * * « .
eaX® K& » % Kb #,Xe
. * - . .
YT e .

AARBRRKLG BB NE
sanaKIessnuvaen

-
RETURN -
-

EEERERIRERNGES

. -
. X® PUNCH CHARACTER
- . .

L Y T
. nnw

P .

caXe B2 &

* *

“nnw

Flowchart FIO07. System Library, PAPTZ

300

READZ

ErnnAlErERRRERS
«ENTRY_VIA LIBF «
. READZ

M

*
*

L L T I TRy)

RZ100 X .
R I .
. :
SENSE DEVICE .
* .
ceveresernann :
I T T
o
R . NO *WALT AT LOC /2A%
I CeeseeeesX*WITH DISPLAY OF*
. o » 74800 .
*, - * * *
. . hrrearrERRRRRNEY
«“vES
X
CEaraDl R AR E AR
® SET (P 10CC,
« "BLACE WORD' ®
«CQUNT IN FRONT *
+ 0OF 1/0 BUFFER #
M M
FeswrevrsrnsrRnay
X

wamnenElaNERR AR R RN

READ CARD

Ly Y Y]

Xeosssasoonn

PR

eeruaGlaenennnnnn

3 -
#RESET INTERRUPT#
- SWITCH -
» -

- -
EREEARERRRNE RN R

.
N *. YES
0
ARD.#
*
-
« NO
X
reman lanneennnen
*HOLEZ O13A1#
.

ww

EERRRRERR R RN

HRERH2 R RN
-

.
e*sosaesssX¥® CALL $EXIT »
. *

FRERERRA RO

Flowchart FIO08. System Library, READZ

RZ060

sanspAdusnnnnrnn

*INTERRUPT FROM =
‘ LS04 *

* s
ARBRRA R AR B RR .

Xe o n

L Y

-
SET_INTERRUPT »
* SWITCH *
» -
- "
HERERARUEAR U RS

X
wansunClusn
» SENSE D

WITH R

RRBEERERREANN

:
X
ote
03 -, *nERnD
o e * SE
.. *. YES * INTE
.. ERRO