File No. 1130-36
Order No. GC26-3717-10

Systems Reference Library

IBM 1130 Disk Monitor System, Version 2,
Programmer's and Operator's Guide

Program Numbers: 1130-05-005
1130-05-006

Eleventh Edition (June 1974)

This is a reprint of GC26-3717-9 incorporating changes released in Technical Newsletter GN34-0183
dated February 1974,

This edition applies to version 2, modification 12, of the IBM 1130 Disk Monitor Programming System;
to version 1, modification 5, of the IBM 1130 Remote Job Entry Work Station Program, and to all
subsequent versions and modifications until otherwise indicated in new editions or Technical Newsletters.
Changes are periodically made to the information herein, Before using this publication in connection
with the operation of IBM systems, consult the latest SRL Newsletter, GN20-1130, for the editions

that are applicable and current.

Text for this manual has been prepared with the IBM Selectric ® Composer.

Some illustrations in this manual have a code number in the lower corner. This is a publishing control
number and is not related to the subject matter.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form has been removed,
send your comments to IBM Corporation, Systems Publications, Department 27T, P. O. Box 1328,
Boca Raton, Florida 33432,

© Copyright International Business Machines Corporation 1966, 1968, 1969, 1970, 1971, 1972

Preface

This publication contains reference information for controlling and operating the 1130
Disk Monitor System, Version 2. The publication assumes you are familiar with the pro-
gramming language needed to do your jobs.

Chapter 1 of this publication describes how you use this book. The rest of the chapters:
® Describe the disk monitor system (DM2) programs and disk areas

Describe the control records for controlling the functions of the disk monitor system
® Provide tips and techniques for more efficient use of DM2

® Provide sample operating procedures for loading, reloading, and using DM2

® Describe the 1130 RJE Work Station Program

The minimum system configuration required to operate the IBM 1130 Disk Monitor
System, Version 2, Program Number 1130-0S-005 (card input/output) is:

e An IBM 1131 Central Processing Unit, Model 2A or 4A (with an internal single disk
storage drive and 4096 words of core storage)

e An IBM 1442 Card Read Punch, Model 6 or 7, or an IBM 2501 Card Reader, in
combination with an IBM 1442 Card Punch, Model 5

or
An IBM 1131 Central Processing Unit, Model 1B (with 8192 words of core storage)
An IBM 1133 Multiplex Control Enclosure
An IBM 2311 Disk Storage Drive, Model 12

An IBM 1442 Card Read Punch, Model 6 or 7, or an IBM 2501 Card Reader, in
combination with an IBM 1442 Card Punch, Model 5

The minimum system configuration required to operate the IBM 1130 Disk Monitor
System, Version 2, Program Number 1130-08-006 (paper tape input/output) is:

e An IBM 1131 Central Processing Unit, Model 2A (with an internal single disk storage
drive and 4096 words of core storage)

e An IBM 1134 Paper Tape Reader

o An IBM 1055 Paper Tape Punch
The following publications provide further information about the 1130 computing system:

IBM 1130 Functional Characteristics, GA26-5881

IBM 1130 Operating Procedures, GA26-5717

IBM 1130/1800 Assembler Language, GC26-3778

IBM 1130/1800 Basic FORTRAN IV Language, GC26-3715

IBM 1130 RPG Language, GC21-5002

IBM 1130 Subroutine Library, GC26-5929

IBM 1130 MTCA 1I0CS Subroutines, GC33-3002

IBM 1130 Synchronous Communications Adapter Subroutines, GC26-3706

IBM 1130/1800 Plotter Subroutines, GC26-3755

IBM System/360 Operating System and 1130 Disk Monitor System: System/360 1130
Data Transmission for FORTRAN, GC27-6937

IBM System/360 Operating System and 1130 Disk Monitor System: User’s Guide for Job
Control from an IBM 2250 Display Unit Attached to an IBM 1130 System, GC27-6938

IBM System/360 Operating System: Remote Job Entry, GC30-2006

Publications that provide information about IBM 1130 COBOL, a program product, are:

IBM 1130 COBOL General Information Manual, GH20-0799
IBM 1130 COBOL Language Specifications Manual, SH20-0816

Preface iii

Summary of Amendments .
Chapter 1. How to Use This Publication

Chapter 2. Disk Organization .

System Cartridge .

Cylinder O on a System Cartndge

IBM System Area on a System Cartndge

Fixed Area . . .

User Area and Workmg Storage .
Nonsystem Cartridge

Cylinder O on a Nonsystem Cartndge

IBM System Area on a Nonsystem Cartridge
Summary of the Contents of Disk Cartridges

Chapter 3. Monitor System Programs

Supervisor
Resident Momtor
Disk-resident Supervisor Programs
Disk Utility Program .
General Functions of DUP
Assembler
FORTRAN Compﬂer
RPG Compiler
Core Load Builder .
Construction of a Core Load .
Core Image Loader .

Chapter 4. Monitor System Library .

System Library ISS Subroutines
System Library Utility Subroutines
System Library Mainline Programs

IDENT e e e

DISC .

DSLET

ID .

COPY

ADRWS .,

DLCIB

MODIF .

MODSF .

DFCNV

PTUTL

Chapter 5. Control Records

Monitor Control Records
// JOB
/] ASM
// FOR
/| RPG
/| COBOL
// DUP
// XEQ . .
/] * (Comments)
/]| PAUS .
/] TYP
// TEND .
/] EJECT
// CPRNT
// CEND .

vii

Supervisor Control Records . .
*LOCAL .
*NOCAL
*FILES .
*(G2250 . e e e
*EQUAT

DUP Control Records . e
Altering LET and FLET . . .
-Information Transfer and Format Conversion
Restrictions Caused by Temporary Mode
*DUMP . . .
*DUMPDATA
*DUMPDATA E
*DUMPLET .

*DUMPFLET

*STORE .

*STOREDATA .

*STOREDATAE

*STOREDATACI

*STORECI

*STOREMOD

*DELETE

*DEFINE

*DWADR

*DFILE . . e e e
*MACRO UPDATE e e e

Assembler Control Records .
*TWO PASS MODE
*LIST .

*XREF
*LISTDECK« .+ «
*LIST DECKE . . . e
*PRINT SYMBOL TABLE

*PUNCH SYMBOL TABLE

*SAVE SYMBOL TABLE .

*SYSTEM SYMBOL TABLE .

*LEVEL., . . .
*OVERFLOW SECTORS

*COMMON .

*MACLIB .

FORTRAN Control Records
*[OCS
*LIST SOURCE PROGRAM .

*LIST SUBPROGRAM NAMES .

*LIST SYMBOL TABLE . . .

*LIST ALL . e e e
*EXTENDED PRECISION e e e e
*ONE WORD INTEGERS .
*NAME. . .

** (Header Informatxon)

* ARITHMETIC TRACE

*TRANSFER TRACE .

*ORIGIN P

RPG Control Card . .

End-of-File Control Card

5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-20
5-20
5-22
5-22
5-24
5-26
5-28
5-29
5-30
5-33
5-34
5-37
5-38
5-42
5-44
5-45
5-47
5-48
5-49
5-50
5-52
5-53
5-56
5-57
5-59
5-59
5-59
560
5-60
561
5-61
5-63
5-63
5-64
5-65
5-66
5-66
5-67
567
5-68
5-68
5-69
5-69
5-70
5-70
5-71
5-74
5-74

iv

Chapter 6. Programming Tips and Techniques .

Tips on Monitor Control and Usage

Stacked Job Input Arrangement .

How to Use Temporary Job Mode

Using the Disk I/O Subroutines

Restoring Destroyed Cartridges . .

How to Avoid Overprinting When Usmg // CPRNT

How to Avoid Overprinting When Linking Between
Programs .

Usage of the EJECT Monrtor Control Record

Duplicate Program and Data File Names .

Disadvantages of Storing a Program in DCI Format

Size Discrepancies in Stored Programs

Dumping and Restoring Data Files

Use of Defined Files .

Mainline Programs that Use All of Core .

The Use of LOCALs .

LOCAL-Calls-a-LOCAL . .

LOCAL and NOCAL Control Record Usage

The Use of NOCALs .

The Use of SOCALs .

Reading a Core Map and a Flle Map P

Locating FORTRAN Allocation Addresses .

Reading the Transfer Vector

SYSUP .

Data File Processing .
FORTRAN Disk File Orgamzatlon and Processmg .
Assembler and RPG Disk File Organization and

Processing . . .
Calculating Sequentrally Orgamzed and ISAM Frle
Sizes . . RN
Contents of an ISAM Frle .o
Deleting Duplicate Records Caused by a Drsk Error
During an ISAM Add Operation .
Tips for Assembler Language Programmers
Grouping of Assembler Mnemonics
Assembler Program Use of Index Register 3
Double Buffering in Assembler Programs
Assembler Program Use of 1403 Conversion
Subroutines . .

Writing ISSs and ILSs e

Assembler INT REQ Service Subroutme

Tips for FORTRAN Programmers .

Tips for Use of the EQUAT Control Record

Invalid Characters in FORTRAN Source Cards .

FORTRAN Object Program Paper Tape Data Record
Format

Keyboard lnout of Data Records Durmg FORTRAN ’

Program Execution .

FORTRAN Program Control of the Console Prmter

Length of FORTRAN DATA Statement

// Records Read During FORTRAN Program
Execution . . .

FORTRAN /O Errors .o

Dumping FORTRAN DSF Programs to Cards

RPG Object Program Considerations .

Chapter 7. Operating the 1130 Disk Monitor System .

Readying the 1131 Central Processing Unit .
Readying the 2310 Disk Storage Drive
Readying the 2311 Disk Storage Drive
Readying the 1132 Printer .

Readying the 1403 Printer . .

Readying the 1442 Model 6 and 7 Card Read Punch
Readying the 1442 Model 5 Card Punch .
Readying the 2501 Card Reader

Readying the 1134 Paper Tape Reader
Readying the 1055 Paper Tape Punch
Readying the 1627 Plotter .

RV A A

el R e N e A AR A AN X

......
DR O VR Wm S OOV ©

w N (Y OO D et s i

d d
~

[= 3 e W W= AN =2 ?\O’\O\O\O\O\O\G\O\O\

Readying the 1231 Optical Mark Page Reader
Cold Start Procedure . .
Card System Cold Start Procedure .
Paper Tape System Cold Start Procedure
Using the 1130 with the Monitor System
Entering Jobs from the Card Reader .
Entering Jobs from the Paper Tape Reader .
Entering Jobs from the Console Keyboard
Functions of Console Operator Keys During Momtor
System Control

Displaying or Altering the Contents of a Selected Core

-Location
Manual Dump of Core Storage

Chapter 8. Monitor Svstem initial Load and System
Retoad .o

IBM-Supplied System Loader Control Records .
SCON and TERM Control Records . .
Phase Identification (PHID) Control Records
Type 81 Control Record .

System Loader Control Records that you Punch
Load Mode Control Record . .
System Configuration Control Records .
CORE Control Record .

Preparation of Load Mode and System Conﬁguratron ’

Control Tapes . . .
Card System Initial Load Operatmg Procedure .
Card System Reload Operating Procedure
Card System Preload Operating Procedure
Paper Tape System Initial Load Operating Procedure
Paper Tape System Reload Operating Procedure

Chapter 9, Stand-alone Utility Programs

Console Printer Core Dump
Printer Core Dump Program .
Disk Cartridge Initialization Program (DCIP)
Disk Initialization Subroutine
Disk Copy Subroutine .
Disk Dump Subroutine
Disk Patch Subroutine .
Disk Analysis Subroutine .
Disk Compare Subroutine
DCIP Operating Procedures
Paper Tape Reproducing Program . .
Stand-alone Paper Tape Utility Program (PTUTL)

Chapter 10. Remote Job Entry Program

Machine and Device Requirements
Communication Considerations

Communication Considerations for Swrtehed Lmes
Input at the Work Station .

Generation of the 1130 RJE Work ”itatron Program
JECL for the 1130 Work Station .

End-of-File Indicators .
Output to the Work Station

Discontinuing and Continuing Output

User-Exit Subroutine .o
Operating Procedures

Work Station Startup

The Null Command .

Console Keyboard Procedures

Error Recovery Procedures

Restart Procedures .

Messages Sent to Work Statrons

RJE Program Console Entry Switches

Error Statistics . Coe

7-8

7-9
7-10
7-10
7:11
7-11
7-11
7-11

8-1

8-2
8-2
8-3
8-7
8-7
8-8
89
8-10

8-10
8-15
8-19
8-25
8-28
8-33

9-1

9-1
9-4
9-8
9-8
9-8
9-9
9-9
9-9
9-9
9-9
9-42
9-46

10-1

10-1
10-1
102
10-2
10-3
10-5
10-6
10-6
10-7
10-8
109
10-9
10-10
10-10
10-11
10-11
10-12
10-12
10-12

Contents v

Appendix A. Monitor System Operational and Error
Messages

Assembler Error Codes and Messages .
FORTRAN Messages and Error Codes .

DUP and MUP Messages and Error Messages .
System Loader Messages and Error Messages
Satellite Graphic Job Processor Error Messages .
RJE Messages and Error Messages .

Supervisor Messages and Error Messages .

RPG Compiler Messages and Error Notes

Core Load Builder Messages Lo
Auxiliary Supervisor Error Messages .

Monitor System Library Mainline Programs Messages and

Error Messages . .
IDENT Messages
DISC Messages and Error Messages
ID Messages and Error Messages
COPY Messages and Error Messages
DLCIB Messages and Error Messages .
MODIF Messages and Error Messages
MODSF Messages and Error Messages
DFCNYV Messages and Error Messages

Appendix B. Monitor System Error Wait Codes

Cold Start Program Error Waits .
ISS Subroutine Preoperative Error Waits .
1/0 Device Subroutine Errors .

1442 Card Subroutine Errors .

2501 Card Subroutine Errors .

Console Printer Subroutine Errors

Paper Tape Subroutine Errors

Card Core Image Loader Wait Code . .
Paper Tape Utility Program (PTUTL) Error Walt Codes
FORTRAN /0 Wait Codes .o e
RPG Object Program Wait Codes .

Appendix C. Monitor System Library Listing

Appendix D. LET/FLET

LET/FLET Disk Format
LET/FLET Dump Format .

Appendix E. System Location Equivalence Table {SLET).

vi

A-1

A-2

A-T7
A-13
A-22
A-26
A-217
A-35
A-33
A-54
A-53

A-59

B-3

Appendix F. Core Dump .

Appendix G. Resident Monitor {Including Table of
Equivalences) Ce e e e e e e

Appendix H. Monitor System Sample Programs

1. FORTRAN Sample Prograrn .
FORTRAN Sample Program Run on 4K
FORTRAN Sample Program Run on 8K
Assembler Sample Program .
RPG Sampie Program . .

Using FORTRAN Untornmtted I/O

L

Two Cartridges . .

6. Processing on Two Disk Dnvns a Filc that E\tends over
Two Cartridges., . .

7. Calculating ISAM File Pammetcrs

Appendix I. Formats

Disk Formats
Card Formats
Paper Tape Formats
Print Formats
Data Formats

Appendix J. Field Type Examples for DFCNV .

I-Field Type .
J-Field Type .
R-Field Type
B-Field Type
C-Field Type
D-Field Type
E-Field Type
F-Field Type
X-Field Type

Appendix K. Decimal and Hexadecimal Disk Addresses
Appendix L. Disk Storage Unit Conversion Factors
Appendix M. Character Code Set

Glossary-Index

Processing on One Disk Drive a File that h(tends over

F-1

H-1

H-1
H-2
H-5
H-7
H-9
H-12

H-13

H-16
H-17

I-1
1-2
I-6
I-11
I-13
I-15

J-1

J-1
32
12
J4

I-5
J-6
J-6
J-7
K-1
L-1
M-1

X-1

Summary of Amendments

GC26-3717-9 UPDATED BY VERSION 2 MODIFICATION 11
2311 Disk Storage Drive

New Hardware Feature. The 2311 Disk Storage Drive is a new feature that adds a larger
online storage capacity and quicker online storage retrieval.

DCIP Function

New Programming Feature. The DCIP initialize and copy functions now have a wait for
verifying that the console entry switches you turn on for the physical drive number and
cartridge ID are correct before initialization and copying begins.

FORTRAN Messages

New Programming Feature. Messages describing errors in FORTRAN statements now indi-
cate which statement is in error.

Summary of Amendments vii

Chapter 1. How to Use This Publication

Chapters 2, 3, and 4 include information for the systems planner who is interested in the
contents and organization of disks, core storage, and the functions of the programs and
storage areas that comprise the IBM 1130 Disk Monitor System, Version 2. The information
in these chapters assists you in planning the contents of your disks, as well as

maintaining them. The disk maintenance programs are described in Chapter 4.

Chapters 5 and 6 contain information that is frequently referenced by programmers.
Chapter 5 contains descriptions of all control records that control the functions of the
disk monitor system (DM2). Use the programming tips and techniques in Chapter 6 for
more efficient use of DM2,

Chapters 7, 8, and 9 include operating information for using the disk monitor system.
Chapter 7 contains procedures for readying the devices that are a part of your computing
system, for performing a cold start of the monitor system, for entering jobs and for
displaying, altering, and dumping core storage.

Sample procedures for loading and reloading the system are shown in Chapter 8. You may
use these operating procedures as they are presented, or modify them to meet the needs
of your computing system.

Chapter 9 describes stand-alone utility programs. These programs provide for dumping
core storage to a print device, for initializing, copying, patching, analyzing, dumping and
comparing disks, and for punching paper tapes. Operating procedures for using

the utility programs are listed.

The functions of the flowchart blocks that are used in the sample procedures in Chapters
7,8, and 9 are:

The steps of the procedure that
you perform. Each block contains
a heading that describes the
purpose of the block.

| A system action that occurs (
‘ during a procedure. '
|

I
L e

References procedures that
are described elsewhere in
this publication.

How to Use This Publication 1-1

1-2

Chapter 10 describes the 1130 RJE Work Station Program.

When errors occur during monitor system processing, refer to Appendix A for error
messages and codes, and to Appendix B for wait codes displayed on the console display
panel.

The remaining appendixes contain information that you will need to reference at various
times, such as, the names of the programs and subroutines in the system library and
listings of LET, FLET, SLET, the resident monitor, and sample programs.

The terms disk, disk cartridge, and cartridge are used in this publication to refer to the
single disk in an IBM 2315 Disk Cartridge or to any one of the 3 or 5 usable disks in
an IBM 1316 Disk Pack, Model 12 or 11, respectively. Each usable disk in a 1316 Disk
Pack is treated by DM2 as one 2315 disk, thus:

—

TN

A disk in an IBM 1316 Disk Pack is the same as one IBM 2315 Disk Cartridge.

Each disk in the 1131 CPU and 2310 Disk Storage or 2311 Disk Storage Drive is assigned
a physical drive number when the devices of an 1130 computing system are installed.
Physical drive numbers are assigned in this order:

Disk locations

Physical drive number 1131 CPU 2310 Disk Storage or 2311 Disk Storage Drive
0 Internal disk
1 - First 2310, first disk First 2311, first disk
2 - First 2310, second disk First 2311, second disk
3* —— | Second 2310, first disk First 2311, third disk*
4* e | Second 2310, second disk | First 2311, fourth disk*
5 First 2311, fifth disk
6 Second 2311, first disk
7 Second 2311, second clisk
8* Second 2311, third disk*
9* Second 2311, fourth disk*

10 Second 2311, fifth disk

*Not used when a 2311 Disk Storage Drive is a Model 12

From one to 5 of these disks, depending on the configuration of your computing system,
can be specified for use by assigning logical drive numbers to them. You assign logical
drive numbers to disks with a // JOB monitor control record or when you code your pro-
gram to call SYSUP (see ““// JOB” in Chapter 5 and “SYSUP” in Chapter 6). The logical
drive numbers do not have to be assigned in the same order as the physical drive numbers.
The organization of disks is discussed in Chapter 2.

- All hexadecimal addresses in this manual are shown in the form /xxxx.

Symbolic addresses rather than absolute addresses are used throughout this publication.
Certain constants are also denoted symbolically. Appendix G contains a listing of the resi-
dent monitor,

$xxxx All symbolic labels whose first character is a dollar sign ($) are found in the
core communications area (COMMA).

XXX All symbolic labels whose first character is a number sign (#) are found in the
disk communications area (DCOM).

@xxxx All symbolic labels whose first character is a commercial at sign (@) are con-

sidered to have absolute values (such as @HDNG refers to the page heagding
sector, sector 7, and thus has a value of 7).

Note. The number sign and commercial at sign are not included in the 1403 Printer or
1132 Printer character set; therefore, an equal sign (=) replaces the # and an apostrophe
() replaces the @ in printer listings.

How To Use This Publication 1-3

1-4

Chapter 2. Disk Organization

Two disk devices are used by the IBM 1130 Disk Monitor System, Version 2 (DM2):

e The IBM 2315 Disk Cartridge in an IBM 1131 Central Processing Unit internal disk
drive and in IBM 2310 Disk Storage drives

o The IBM 1316 Disk Pack in IBM 2311 Disk Storage Drives, Models 11 and 12

An IBM 2315 Disk Cartridge contains a single disk on which DM2 stores information on
the top and bottom surfaces.

An IBM 1316 Disk Pack contains 6 disks mounted on a vertical shaft. The top surface of
the top disk and the bottom surface of the bottom disk cannot be used for recording data,
which leaves 10 possible recording surfaces. The monitor system programs consider the
lower surface of one disk and the top surface of the disk immediately below as a disk

(disk cartridge or cartridge). The arrangement of disks in a 1316 Disk Pack is illustrated by:

Top surface; not used

First disk

Second disk
*Third disk

*Fourth disk

Fifth disk

Bottom surface; not used

*The third and fourth disks are not used if
the 2311 Disk Storage Drive is a Model 12.

Disk Organization 2-1

The storage area of all disks used by DM2 is arranged into circular patterns called tracics.
Two tracks one above the other constitute a cylinder. A disk contains 203 concentric
cylinders; 200 of these are available to the monitor system. The 3 remaining are reserved
for use if defective cylinders are detected. The following illustrates the innermost and the
outermost cylinders on a disk.

Innermost cylinder

203 two-track_

¢ k
Upper surface trac [~ cylinders

Lower surface track

Outermost cylinder / '
Upper surface track I
Lower surface track \|

Note. The thickness of the disk has been greatly exaggerated in order to
show the relative positions of the upper and lower surface tracks.

To complete the picture, the 201 intermediate cylinders, or pairs of tracks, should be
visualized; they are omitted for the sake of clarity of the diagram.

For convenience in transferring data between core storage and disk storage, each track is
divided into 4 equal segments. These segments are called sectors. Thus, each cylinder con-
sists of eight sectors. Sectors O through 3 divide the upper surface track and 4 through 7
divide the lower. The following illustrates how sectors are numbered.

Sectors 0 through 3
(upper surface tracks)

Sectors 4 througn 7
(lower surface tracks)

A sector contains 321 data words. The first data word is used for the sector address. This
address is the number of that sector, counted in sequence from sector 0 on cylinder 0.
Another unit of storage within a sector is the disk block. Each sector is divided into 16
disk blocks, each 20 words long. A disk storage word contains 16 data bits. The organiza-
tional components of disk storage are shown by the following chart.

Word Disk block Sector Track Cylinder Disk
Bits 16 320 5112 20,480 40,960 8,192,000
B
Data words 20 320 1,280 2,560 512,000
Disk blocks 16 64 128 25,600
Sectors 4 8 1,600
Tracks 2 400
Cylinders 200

These follow the first actual word of each sector, which is used for the address.

Before continuing with the descriptions of the contents of disk cartridges used by the
monitor system, several terms must be defined.

o System cartridge. An initialized cartridge that contains the IBM 1130 Disk Monitor
System. If your 1130 has-only one disk (the internal disk in the 1131 CPU), all

cartridges must be system cartridges.

o Nonsystem cartridge. An initialized cartridge that does not contain the monitor system.

® Master cartridge. A system cartridge that is designated as logical drive 0 by the cold
start program, or by a monitor // JOB control record. This cartridge continues in use
until another cold start, another // JOB control record, or a CALL instruction to
SYSUP switches control to a different system cartridge. The disk on an 1130 with
only one disk drive (the internal disk in the 1131 CPU) is both a system and a master

cartridge.

® Note: If your system has only one disk drive (the internal disk in the 1131 CPU, or
one 2311), you should cold start after changing cartridges, or packs, to avoid possible
errors in the location of disk areas on system cartridges.

o Satellite cartridge. On an 1130 with more than one disk drive, this is any cartridge that
is not the master cartridge. This cartridge can be either a system or a nonsystem car-

tridge.

The organization of programs and areas on system and nonsystem cartridges is described
and illustrated in the following text.

Disk Organization 2-3

SYSTEM CARTRIDGE

24

A system cartridge is divided into 5 logical areas as illustrated by the following:

Fixed User Working
Cyi0 area area stora

ll IlJILl ‘“'J

00C
OOARIRRRRI OOOADANIIDS IBRBRRRRANS RRRRRRGS

1BM
system area

Each area is described in the following text. The last section of this chapter, “Summary of
the Contents of Disk Cartridges,” contains a chart that indicates when these areas are
present, or can be removed, on system cartridges.

Cylinder 0 on a System Cartridge

The contents of cylinder O on a system cartridge are defined during disk initialization and
system load. The contents of cylinder O are as follows:

Cyl O
Sector Labe!
e 0 @IDAD
I T ——— 1 @DCOM
ID and o~ 2 @ RIAD
cold 3,4,5 @SLET
start Resident Reload } Page 6 @ RTBL
prog. DCOM | image SLET table heading 7 @ HDNG
Sector 0 1 2 3.4,5 6 7

sector @IDAD

The following is a discussion of each sector.
Sector @IDAD on a system cartridge consists of:
The defective cylinder table

The cartridge ID

The cartridge copy code

The disk type

A reserved area

The DISKZ system device subroutine

The cold start program

The contents of sector @IDAD on a system cartridge are shown in the following illustra-
tion.

DCYL (defective cylinder table)
CIDN (cartridge 1D)

COPY {copy code)

Reserved

r— DTYP (disk'type)

Y Yy rrﬁ}

DISKZ (this copy of Cold
Reserved | D'SKZ is used only °
during the cold start start
procedure.) program
Words: 0 1 2 3 4 5 6 7 29 30 269 270 319

The defective cylinder table (DCYL) contains the addresses of the first sector of any
cylinders that are not capable of accurately storing data. This table is defined during disk
initialization. If no defective cylinders are found, each of the 3 words of DCYL contains
/0658 (hexadecimal). A cartridge with a maximum of 3 defective cylinders can be used
by the monitor system.

The cartridge ID (CIDN) is a hexadecimal number in the range /0001 through /7FFF

that uniquely identifies the cartridge. The ID is placed on a cartridge when the cartridge is
initialized.

The cartridge copy code (COPY) identifies the copy number of a cartridge that has been
copied from another cartridge. When a disk is initialized, this word is zero. Each time the
disk is copied, word 5 of the cartridge being copied to is incremented by one; that is, the
copy code of the receiving disk is one greater than the copy code of the source cartridge.

The reserved areas of sector @IDAD are for possible future expansion.

The disk type (DTYP) is a code that indicates whether or not the disk is a system cartridge.
The appropriate code is placed in DTYP when the cartridge is 1n1tlallzed by DCIP or DISC
and when the monitor system is loaded onto the disk.

The DISKZ subroutine is stored in sector @IDAD and in the system:device subroutine
area in the IBM system area (see “IBM System Area on a System Cartridge” in this chap-
ter) when the monitor system is loaded on the disk. The cold start program uses DISKZ
stored in sector @IDAD. All other times that DISKZ is called, the copy stored in the sys-
tem device subroutine area is used.

The cold start program is placed in sector @IDAD when the monitor system is loaded onto
the disk.

Disk Organization 2-5

2-6

sector @ODCOM

sector @RIAD

SLET

sector ©RTBL

sector @HDNG

Program product

FLET is contained on a disk only if a fixed area is defined on the disk.
See ““Fixed Area’’ in this chapter.

Sector 1 contains the disk communications area (@DCOM). This area contains parameters
that are passed from one monitor program to another. These parameters contain informa-
tion such as:

® The number of LOCALs associated with the program in working storage

® The temporary job indicator switch

® The cartridge IDs for cartridges on the system

® The format of programs in working storage for all cartridges on the system

e The block count of the programs in working storage for all cartridges on the system

These parameters are listed in Appendix G. They are set and reset during the processing of
JOB monitor control records or during the DCOM update operation called SYSUP. The
parameters obtained frorn nonsystem disks are merged into DCOM on the master cartridge
during one of the previous operations. The parameter table entries for the nonsystem disks
are cleared to zero.

Sector 2 contains the resident image (@RIAD). The resident image is a copy of the skele-
ton supervisor and the COMMA portion of the resident monitor. (A description of the
resident monitor is in Chapter 3, “Monitor System Programs.”) The resident image is used
to initialize the resident monitor during a cold start.

Sectors 3, 4, and 5 are the system location equivalence table (@SLET). SLET is composed
of an identification number, core loading address, word count, and sector address for
every phase of every monitor program. Chapter 4 contains information about obtaining a
listing of SLET, and a sample of a SLET printout is in Appendix E.

Sector 6 is the reload table (@RTBL). This table is established during an initial system
load. @RTBL contains a 3-word entry for each monitor system program phase that re-
quests SLET information during a load or reload operation. Each entry consists of the ID
number of the requesting phase, the location in the requesting phase where the SLET in-
formation is to be placed, and the number of SLET entries to be inserted. The reload
table is updated during a system reload when phases that request SLET information are
added or modified. The last entry in the reload table is followed by the hexadecimal word
/FFFF.

Sector 7 (@HDNG) is used to store the heading that appears at the top of each page printed
by monitor programs other than RPG.

1BM System Area on a System Cartridge

Monitor programs and disk areas are loaded onto a disk during a system load. This entire
area is called the IBM system area, and is illustrated by the following:

System device
subroutines, DISK1,

systém area

system device
subroutine area

cushion area

SCRA

The monitor programs in this area are described in Chapter 3. These programs are:
Disk utility program (DUP)

FORTRAN compiler (FOR)

COBOL compiler (COB) program product

Supervisor (SUP)

Core load builder (CLB)

Core image loader (CIL)

RPG compiler (RPG)

Assembler (ASM)

The disk areas of the IBM system area are described in the following text.

The system device subroutine area consists of the following:
¢ The subroutines used by the monitor programs to operate these print devices

1403 Printer
1132 Printer
Console Printer

e The subroutines used by the monitor programs to operate these 1/O devices

2501 Card Reader/1442 Card Punch, Model 5, 6, or 7
1442 Card Read/Punch, Model 6 or 7

1134 Paper Tape Reader/1055 Paper Tape Punch
Console Keyboard/Printer

® The I/O character code conversion subroutines used in conjunction with the I/O sub-
routines for these devices

2501 Card Reader/1442 Card Punch
1134 Paper Tape Reader/1055 Paper Tape Punch
Console Keyboard/Printer

® The disk I/O subroutines

DISKZ
DISK1
DISKN

All of the subroutines in the system device subroutine area, except the disk I/O sub-
routines, are naturally relocatable and are intended for use only by monitor programs. The
disk I/O subroutines are located in this area rather than in the monitor system library
because they are processed by the core load builder differently from subroutines stored

in the monitor system library.

DISKZ is stored twice on a system cartridge; once in sector @IDAD with the cold start
program, and once in the system device subroutine area with DISK1 and DISKN. Cold
start uses DISKZ in sector @IDAD; all other times that DISKZ is called, the copy that is
stored in the system device subrouiine area is used.

The cushion area immediately follows the system programs and provides for the possible
expansion of the monitor system programs in a reload operation. This area occupies the
remaining sectors of the last cylinder occupied by the system programs, plus the next
complete cylinder.

The supervisor control record area (SCRA) is the area in which supervisor control records
(LOCAL, NOCAL, FILES, G2250, and EQUAT) are saved. These records, except the
EQUAT record, are read from the input stream (following an XEQ or STORECI control
record) and are stored in the SCRA for subsequent processing by the core load builder.
The processing of the EQUAT record is similar to that of the other supervisor control
records, but it is read from the input stream following a JOB control record.

Disk Organization 2-7

248

FLET

ciB

LET

The fixed location equivalence table (FLET) is a directory to the contents of the fixed
area for the cartridge on which it appears. There is one FLET entry for:

® Each program stored in-disk core image (DCI) format
e Each data file stored in disk data format (DDF)

® The padding required to permit a DCI program or data file to be stored beginning on
a sector boundary

Each FLET entry includes:

® The name of the DCI program or the data file

® The format of the program or data file

® The size, in disk blocks, of the program or data file
® The disk block address of the program or data file

Each cartridge on which you define a fixed area has a FLET (see “Fixed Area” in this
chapter). Regardless of the fixed area sizes FLET occupies the cylinder preceding the be-
ginning of the fixed area.

The sector address of the first sector of FLET on a given cartridge is obtained from the
location equivalence table (LET). The last item (#FLET) in the first header line of a
LET dump contains this sector address. A listing of a LET/FLET dump is in Appendix D,

The core image buffer (CIB) is the disk area in which the portion of a core load that is

to reside in core storage below decimal location 4096 in a 4K system (decimal location
5056 in larger systems) is built by the core load builder. The CIB is also used by the core
image loader during the transfer of control from one link to the next to save any COMMON
defined below decimal location 4096 or 5056.

The location equivalence table (LET) is a directory to the contents of the user area on the
cartridge. On a system cartridge, LET occupies the cylinder preceding the user area. There
is one LET entry for:

® Each program stored in disk system format (DSF)
® FEach program stored in disk core image (DCI) format
® Fach data file stored in disk data format (DDF)

® The padding required to permit a DCI program or data file to be stored beginning on
a sector boundary

Each LET entry includes:

® The name of the program or data file

® The format of the program (DSF or DCI) or data file
® The size in disk blocks of the program or data file

® The disk block address of the program or data file

A listing of a LET/FLET dump is contained in Appendix D. The starting location of the
beginning of LET on each disk on the system is included in the resident monitor.

UA

Fixed Area

The fixed area (FX) is the area in which you store programs and data files when you want
them to occupy the same sectors at all times. Programs stored in this area must be in

disk core image (DCI) format. This is an optional area and is defined on any 1130 cartridge
by the use of the DEFINE FIXED AREA operation of the Disk Utility Program (DUP).
This DUP operation is also used to increase or decrease the size of the fixed area. (See
Chapter 3, “Monitor System Programs” for a description of DUP operations.) The contents
of the fixed area are illustrated by the following:

Fixed area

Your programs
and data files

A program or data file stored in the fixed area starts at the beginning of a sector. When a
program or a data file is deleted from this area, the fixed area is not packed. Programs and
data files stored in this area reside at fixed sector addresses and can be referred to by
sector address.

User Area and Working Storage

The user area (UA) on a system cartridge contains the monitor system library and programs
and data files that you write and store there. Programs are stored in this area in disk

system format (DSF) or in disk core image (DCI) format. Data files are stored in disk

data format (DDF). The following illustrates the user area and working storage.

Working
User area storage

X QNG
R BREBIRRRISS

Monitor system
library

Your programs
and data files

Disk Organization 2-9

2-10

The user area is defined on any 1130 cartridge during disk initialization. The monitor
system library is placed in this area during an initial system load. This area occupies as
many sectors as are required to contain the system library plus any user programs and/or
data files that are stored there.

When a program or a data file is entered, it is placed at the beginning of working storage;
that is, immediately following the end of the user area. The area occupied by the new pro-
gram or data file is then incorporated into the user area during a store operation. Working
storage is decreased by the size of the program or data file. The fcliowing illustrates the
contents of the user area and working storage before and after a store operation.

Floating
boundary
User area Working storage
A A
r Al 14 ™
Before a \\\\
o Unused »
operation . :

\ P '
| Programs and data | Program | l

previously stored |0f data |
| to be
I lstored | |

Floating |
l boundary '
! I I
i : User area : ' Working storage |
! A H A |
i] N
After a
store
operation

\

Y
Programs and
«Jata now stored

DSF programs are stored in the user area starting at the beginnning of a disk block; DCI
programs and data files are stored starting at the beginning of a sector.

WS

The user area is packed when a program or data file is deleted from this area; that is, the
programs and data files are moved so as to occupy the area formerly occupied by the
deleted program or data file. During packing, DSF programs are moved to the first disk
block boundary in the vacancy; DCI programs and data files are moved to the first sector
boundary. All remaining programs and data files are similarly packed. The area gained by
packing the user area is returned to working storage as illustrated by:

Floating
boundary
User area Working storage
A
'e
Before a
delete
operation
\ 1 7
I Stored programs | |
| and data | I |
|. 1 !
| ! I I
' Floating l
| boundary |
' I | Working !
User area | | storage |
l _A l |
r 4 N
After a
delete
operation

— I\
Y Y
Programs and -
data now stored '

available by
deléte operation

On all cartridges, working storage (WS) is the area that is not defined as cylinder O, the
IBM system area, the fixed area, or the user area. Working storage is available to monitor
programs and user programs alike as temporary disk storage. This area extends from the
sector boundary immediately foliowing the user area td the end of the cartridge.

Disk Organization 2-11

NONSYSTEM CARTRIDGE

2-12

A nonsystem cartridge on an 1130 that has more than one disk drive can be used exclu-
sively for the storage of data and/or programs, and is called a satellite cartridge. The 5
logical areas of a nonsystem cartridge are:

Working
Fixed area storage

system area

The contents of cylinder 0 and the IBM system area are described in the following sections.
The contents of the fixed area, the user area, and working storage are the same as described
for system cartridges, except that the user area does not contain the monitor system
library. The last section of this chapter, “Summary of the Contents of Disk Cartridges,”
contains a chart that indicates when these areas are present or can be removed.

Cylinder 0 on a Nonsystem Cartridge

The contents of cylinder 0 on a nonsystem cartridge are established when the cartridge is
initialized, and are illustrated by:

Cyl 0

~~
l ~
| —~
~~
| ~
~
| IDand ~~
error =
message
program DCOM LET
Sector 0 1 2-7

sector @ DAD

sector @DCOM

LET

FLET

CiB

The first 8 words of sector @IDAD on a nonsystem cartridge are the same as described for
a system cartridge. The remaining words of this sector are a reserved area, an error message
program, and an error message. The error message is printed if an attempt is made to cold
start a nonsystem cartridge. This message and the program that prints it plus part of the
reserved area are overlaid by the cold start program and the DISKZ subroutine when the
monitor system is loaded onto a cartridge. Sector @IDAD on a nonsystem cartridge con-
sists of:

DCYL (defective cylinder table)
CIDN (cartridge I1D)

COPY - (copy code)

Reserved

— DTYP (disk type)

. Error message
Reserved and error
message program

Words: 0 1 2 3 4 5 6 7 269 270 319

The information in sector @DCOM of cylinder 0 on a nonsystem cartridge is similar to a
system cartridge. The difference is that the information on a nonsystem cartridge applies
only to that cartridge.

The remaining sectors of cylinder O are the location equivalence table (LET) for the car-
tridge. The contents of LET are described under the description of the IBM system area
on a system cartridge.

IBM System Area on a Nonsystem Cartridge

The IBM system area of a nonsystem cartridge can contain the fixed location equivalence
table (FLET) and the core image buffer (CIB). This area is illustrated by:

FLET

1BM
system area

FLET is described under the description of the IBM system area on a system cartridge.
This table is on a nonsystem cartridge only if you define a fixed area on the cartridge.

The CIB is described under the description of the IBM system area on a system cartridge.
This area is optional on a nonsystem cartridge, and can be deleted with the disk mainten-
ance program called DLCIB (see Chapter 4).

Disk Organization 2-13

SUMMARY OF THE CONTENTS OF DISK CARTRIDGES

Figure 2-1 is a chart of the contents of the 5 logical areas of system and nonsystem car-
tridges. This chart indicates when these areas are present on system and nonsystem car-
tridges, and when it can be removed if the area is optional.

L.ogical area Subareas Present
Cylinder O On system and nonsystem cartridges
IBM system area DUP Only on system cartridges
SUP
CLB
System device subroutines
CIL
Cushion area
SCRA
CiB On system and nonsystem cartridges;
can be removed from nonsystem
cartridges
Assembler Only on system cartridges; can be
removed
FORTRAN compiler Only on system cartridges; can be
removed
RPG compiler Only on system cartridges; can be
removed
COBOL compiler ' Only on system cartridges; can be
(program product) removed
LET On system and nonsystem cartridges
FLET Only if a fixed area is defined by user
Fixed area (FX) User programs Only if defined by user
User data files
User area (UA) Monitor system library On system and nonsystem cartridges.
{only on system As the result of a system load, the
cartridges) UA contains the monitor system
User programs library.
User data files
Working On system and nonsystem cartridges
storage (WS)

Figure 2-1. The 5 logical areas of disk cartridges

2-14

Chapter 3. Monitor System Programs

The IBM 1130 Disk Monitor System provides continuous operation of the 1130 com-
puting system with minimal setup time and operator intervention. The monitor system
consists of a system library and 7 interdependent system programs. The monitor system
programs perform monitor control functions and include:

® The supervisor (SUP), which performs the control functions of the monitor system
and provides the linkage between user programs and monitor programs.

® The Disk Utility Program (DUP), which performs operations that involve the disk,
such as storing, moving, deleting, and dumping programs or data files or both.

® The assembler (ASM), which translates source programs written in 1130 Assembler
language into object programs,

® The FORTRAN compiler (FOR), which translates source programs written in 1130
basic FORTRAN IV language into object programs.

® The RPG compiler, which translates programs written in 1130 RPG language into ob-
ject programs.

® The core load builder (CLB), which constructs an executable core load from programs
in disk system format (DSF). The DSF program and all associated subprograms are
converted into disk core image (DCI) format, and the resultant core load is ready for
immediate execution or for storing as a core image program.

® The core image loader (CIL), which transfers core loads into core storage for execution
and serves as an interface between some monitor programs.

Although the COBOL compiler (COB) resides in the IBM system area when the monitor
system is loaded onto a cartridge, the COBOL compiler is not a monitor program, It is
an IBM program product.

A flowchart of the general logic flow of the monitor system programs is included under
“Logic Flow of the Monitor System” at the end of this chapter. The monitor system
library is a group of disk resident programs that performs I/O functions, data conversion,
arithmetic functions, disk initialization, and maintenance functions. This library is
discussed in Chapter 4, and the monitor system programs are discussed in the following
text. The disk placement of these programs is shown by the following.

Monitor system

programs

Cushion
area

DUP|FOR

CiB | LET

18BM
system area

(1

Program product

Monitor System Programs 3-1

SUPERVISOR

32

COMMA

skeleton supervisor

The supervisor is 2 groups of programs that control the monitor system and link the user
and monitor programs. One portion of the supervisor, the skeleton supervisor, is stored in
sector @RIAD of cylinder 0. The other portion of the supervisor is stored in the IBM
system area.

The skeleton supervisor initially gains control of the monitor system through the cold start
program. During a cold start, the skeleton supervisor is loaded from sector @RIAD into
the resident monitor section of core storage.

Resident Monitor

The resident monitor resides at the beginning of core storage and contains (1) the core
communications area (COMMA), (2) the skeleton supervisor, and (3) a disk I/O sub-
routine (DISKZ, DISK1, or DISKN). Appendix G is a listing of the resident monitor.

The core communications area (COMMA) consists of parameters required by the core
image loader to link from one core image program to another. These parameters are
interspersed with parts of the skeleton supervisor in the resident monitor.

The skeleton supervisor is interspersed with COMMA in the resident monitor and is com-
posed of:

® Entry points for linking from one core load to another ($LINK), for linking from a

core load to monitor system programs ($EXIT), and for dumping core storage (SDUMP).

® (nterrupt level subroutines (ILS02 and ILS04) for handling interrupts on levels 2 and
4. Disk devices interrupt on level 2, and since disks are used in all operations of the
monitor system, ILS02 is included. Since the console keyboard INT REQ key inter-
rupts on level 4 and can be pressed at any time, the ILS04 subroutine for handling
level 4 interrupts is included.

® A preoperative error trap that is entered by all interrupt service subroutines (ISS) when
an error is detected before an operation is performed. The trap consists of a WAIT
instruction and a branch instruction. (The address of $SPRET+1 is displayed in the
INSTRUCTION ADDRESS indicator on the console display panel during the wait.)
Pressing PROGRAM START causes the branch to be taken, and execution resumes.
(Under certain conditions, such as a FORTRAN PAUSE statement, this trap is entered
when an error has not occurred.)

® Postoperative error traps (one for each interrupt level) that are entered by all ISS sub-
routines when an error is detected after an I/O operation has been started. Each trap
consists of a WAIT instruction and a branch instruction. (The address of $PSTI,
$PST2, $PST3, or $PST4 plus one is displayed in the INSTRUCTION ADDRESS indi-
cator on the console display panel during the wait.) Pressing PROGRAM START re-
turns control to the ISS subroutine, which may retry the operation in error.

® The PROGRAM STOP key error trap that is entered when the PROGRAM STOF key
is pressed (unless a user-written subroutine associated with interrupt level S is in core).
If a higher level interrupt level is being serviced when PROGRAM STOP is pressed,
the PROGRAM STOF interrupt is masked until the current operation is complets.
This trap consists of a WAIT instruction and a branch instruction. (The address of
$STOP+1 is displayed in the INSTRUCTION ADDRESS indicator on the console
display panel during the wait.) Pressing PROGRAM START continues execution of
the monitor system.

disk 1/0 subroutine The disk 1/O subroutine (DISKZ, DISK 1, or DISKN) required by the program in control
resides in core storage immediately following the skeleton supervisor. DISKZ is the sub-
routine used by all system programs. DISKZ is initially loaded into core storage with the
resident image during a cold start.

Prior to the execution of a core load that requires DISK1 or DISKN, the core image

loader overlays DISKZ with the required disk I/O subroutine. When control is returned

to the supervisor, the core image loader overlays the disk I/O subroutine currently in

core (if DISK1 or DISKN) with DISKZ. Source programs written in assembler, FORTRAN,
RPG, or COBOL can call any of the 3 I/O subroutines; however, only one disk I/O sub-
routine can be referenced in a given core load. The entry in column 19 of an XEQ moni-
tor control record specifies the version of the subroutine to be used during execution of
the core load. (Monitor control records are described in Chapter 5.)

Disk-resident Supervisor Programs

The portion of the supervisor that resides in the IBM system area includes programs that
analyze monitor and supervisor control records and perform the functions specified, the
auxiliary supervisor, and the System Core Dump Program.

monitor control The monitor control record analyzer (1) reads a monitor control record from the input

record analyzer stream, (2) prints the control record on the principal print device, and (3) calls the re-
quired monitor system program and transfers control to it.

supervisor control The supervisor control record analyzer reads a supervisor control record from the input

record analyzer stream, and stores the information in the control record in the supervisor control record
area (SCRA) on disk.

auxiliary supervisor The auxiliary supervisor is used by the Cold Start Program, ILS04 subroutine, core image

loader, and system loader as a pre-entry to the monitor control record analyzer, The
auxiliary supervisor i§ entered via the SDUMP entry point in the skeleton supervisor.

This program sets appropriate parameters in COMMA, writes dummy monitor control
records (such as the JOB monitor control record printed during a cold start), and prints
error messages for errors detected by the core image loader. Control is then transferred to
the monitor control record analyzer through the $EXIT entry point in the skeleton

supervisor.
Supervisor Core The Supervisor Core Dump Program provides a hexadecimal printout and an EBCDIC trans-
Dump Program lation of the contents of core storage. (A portion of a core dump is shown in Appendix F.)

This program is entered through the SDUMP entry point in the skeleton supervisor in 2 ways.

® A special calling sequence during execution of an Assembler or FORTRAN program
(see the publications IBM 1130 Assembler Language, GC26-3778, and IBM 1130/1800
Basic FORTRAN IV Language, GC26-3715). The portion of core storage specified in
the assembler or FORTRAN statements, or all of core storage if limits are not specified,
is dumped. Execution of the core load in process then continues with the statement
following the one that called the dump.

® A manual dump of core storage through $DUMP+1 (see “Manual Dump of Core
Storage” in Chapter 7). The contents of core storage are dumped, and the dump program
executes a CALL EXIT, which terminates the execution of the core load in progress.

Monitor System Programs 3-3

DiSK UTILITY PROGRAM

3-4

The Disk Utility Program (DUP) allows you to perform the following operations through
the use of DUP control records:

® Store programs and data files on disks

® Make programs and data files on a disk available as printed, punched card, or punched
paper tape output

Delete programs and data files from a disk

Determine the status of disk storage areas through a printed copy of LET and FLET
Define a fixed area on a disk, and delete monitor system programs from a disk
Maintain disk macro libraries

Reassign sector addresses on a disk

Reserve space for a data file or macro library

DUP control records are described in Chapter 6. DUP error messages are listed in
Appendix A.

General Functions of DUP

DUP is called into operation when a DUP monitor control record (// DUP) is recognized
by the supervisor. The control portion of DUP is brought into core to read the next
DUP control record from the input stream. The DUP control record is printed and analyzed.

The DUP program required to perform the operation specified in the control record is
read into core storage from the disk and assumes control. The DUP program performs the
functions specified in the control record, and when complete, a message is printed on

the principal printer, and control is returned to the control portion of DUP. The next
control record is read from the input stream.

If the next record is a monitor control record, other than a comments control record

(// *), system control is returned to the supervisor to process the record. Comments moni-
tor control records are printed; blank records are passed. If the record is a DUP control
record, DUP maintains control and reads the next record.

ASSEMBLER

The source language and macro capabilities for the assembler are described in the publi-
cation IBM 1130/1800 Assembler Language, GC26-3778. This section of this chapter con-
tains only a general description of the Monitor System Assembler Program. Assembler
control records are described in Chapter 6. Assembler error detection codes and error
messages are listed in Appendix A.

The assembler can be deleted from the monitor system if desired (see “*DEFINE” under
“DUP Control Records” in Chapter 5). The assembler cannot, however, be operated
independently of the monitor system.

A monitor control record, // ASM, is used to call the assembler into operation. The
assembler reads assembler control records and the source deck from the principal input
device. The assembler interprets and performs the functions specified in the control
records and translates the source program into an object program. Control records cause
the assembler to:

Pass the source deck through the assembler twice

List the source deck and cross-reference symbol table on the principal printer
Punch object decks into cards

Print the symbol table on the principal printer, or punch the symbol table into cards
Save and add to the symbol table on disk

Specify the interrupt level for assembly of ISS subroutines

Specify additional sectors for overflow of the symbol table

Specify the length of COMMON used when linking between FORTRAN and assembler
programs

® Specify the use of the macro library during assembly

After assembly is complete, the object program resides in working storage. The program
can now be (1) called for execution, (2) stored in either the user area or the fixed area,
or (3) punched as a binary deck or tape.

Monitor System Programs 3-§

FORTRAN COMPILER

RPG COMPILER

The source language for the FORTRAN compiler is described in the publication /BM
1130/1800 Basic FORTRAN IV Language, GC26-3715. This section of this chapter con-
tains only a general description of the monitor system FORTRAN compiler. FORTRAN
compiler control records are described in Chapter 6. FORTRAN error codes and error
messages are listed in Appendix A.

The FORTRAN compiler can be deleted from the monitor system if desired (see “*DE-
FINE” under “DUP Control Records” in Chapter 5). The FORTRAN compiler, however,
cannot be operated independently of the monitor system.

A monitor control record, // FOR, is used to call the FORTRAN compiler into operation.
The compiler reads FORTRAN compiler control records and the source program from
the principal input device. The compiler interprets and performs the functions specified
in the control records and translates the source program into an object program, Control
records cause the compiler to:

& Specify the I/O devices to be used during program.execution

® List the source program, the names of all subprograms associated with the source
program, and symbol table information on the principal print device

® Specify that all variables and real constants are stored in 3 words instead of 2
® Specify that all integer variables are stored in one word instead of the standard 2 words

® Print header information at the top of each printed page, and print the program name
at the end of a listing

® Trace the values of variables, IF expressions, and computed GO TO statements during
program execution

® Specify the origin of an absolute program

After compilation is complete, the program resides in working storage in disk system
format (DSF). The program can now be (1) called for execution, (2) stored in the user
area or fixed area. or (3) punched in binary form into cards or paper tape.

The source language specifications for the RPG compiler are described in the publication
IBM 1130 RPG Language, GC21-5002. This section of this chapter contains a generzl
description of the monitcr system RPG compiler. RPG compiler control cards are des-
cribed in Chapter 6. RPG error messages and error notes are described in Appendix A.

The RPG compiler can be deleted from the monitor system if desired (see “*DEFINE”
under “DUP Control Records” in Chapter 5). The compiler, however, cannot be operated
independently of the monitor system.

A monitor control record, // RPG, is used to call the compiler into operation. The com-
piler reads the RPG compiler control card and the source program from the principal
input device. The compiler interprets and performs the functions specified in the control
card and translates the source program into an object program. After compilation is
complete, the object program, in disk system format (DSF), resides in working storage.
The program can now be (1) called for execution, (2) stored in the user area or the fixed
area, or (3) punched in binary form into cards.

CORE LOAD BUILDER

CLB use of the CIB

The core load builder constructs an executable core load from a program in disk system
format (DSF). The DSF program and all required subroutines (including any LOCALs,
SOCALs, and NOCALs) are converted from disk system format into disk core image
(DCI) format. The resultant core load is ready for immediate execution or for storing.

The core load builder is called by any of the following programs.

® Supervisor. When an XEQ monitor control record is read by the supervisor, the infor-
mation specified in any supervisor control records that follow is written in the super-
visor control record area (SCRA). Then, the core load builder is called to begin con-
struction of the core load, When the core load is complete, the core image loader
transfers the core load into core for execution.

® Disk Utility Program. When a STORECI control record is read by the Disk Utility Pro-
gram (DUP), information specified in any supervisor control records that follow are
written in the supervisor control record area (SCRA). Then, if the specified program
is not in working storage, the program is loaded into working storage, and the core
load builder is called to begin construction of the core load. When the core load is com-
plete, DUP stores it as a core image program in the user area or fixed area as specified
in the STORECI control record.

® Core Image Loader. When a core load calls for a link to another, the core image loader
determines the format of the program from its LET or FLET entry. If the format is
DSF, the core load builder is called to begin construction of the core image program,
When the core load is complete, the core image loader transfers the core load for
execution.

Construction of a Core Load

When the core load builder (CLB) is called by one of the previous monitor programs, the
core load is constructed by the functions described in this section. The core load builder
uses 3 storage areas while constructing a core load. These areas are the core image buffer
(CIB), working storage (WS), and core storage.

The core load builder places in the core image buffer the parts of a core load that are to
reside below core location 4096 (decimal) for a 4K system, or 5056 for larger systems,
during execution. These parts can be the core image header, the main-line program, and
subroutines. The contents of the CIB during core load construction are illustrated by:

That part of COMMON saved
core load below Not used from last core
4096 (or 5056) load

Core image buffer

Monitor System Progiams 3-7

CLB use of WS The core load builder reserves enough space in working storage for any data files that are
specified for use by the core load, as well as any LOCAL and/or SOCAL subroutines that
are referenced by the core load (see “Processing Data Files” and “Incorporating Sub-
routines” in this section). The contents of working storage during core load construction
are shown by:

Data files
dofined by | LOCAL [SOCAL Not used
core load subroutines | subprograms

Working storage

CLB use of core In systems larger than 4K, the core load builder places in core storage the parts of a
storage core load that are to reside above core location 5055 during execution. These parts of
a core load can be subroutines and the transfer vector. The contents of core storage during
construction of a core load are illustrated by:

Cors Core
location End of location End
0 DISKZ 5056 of core

Resident | Core load That part of core
monitor builder above 5055

........................

Core storage

When construction of a core load is finished and is executed immediately, the core image
loader is called to transfer it into core storage. The layout of a core load in core that is
ready for execution is illustrated by:

LOCAL/
Resident rmonitor Mainline Subprograms | SOCAL LOCAL area | SOCAL area | Unused | Transfer vector | COMMON
)
{

flipper B
Locati { éE
ocation nd
NOCALs of
core

Core image header

3-8

When a core load is stored immediately following construction, it is placed in the user
area or the fixed area as follows:

LOCAL/
SOCAL LLOCAL | SOCAL | Transfer
Mainline | NOCALs | Subprograms | flipper area area vector LOCALs | SOCALs
))))
L C([¢

= Core image header

When the core load builder is called, the core load is built by the following functions, but
not necessarily in the order described.

Construction of the Core Image Header

The core image header is established at the beginning of the construction of a core load.
Throughout the building of a core load, information is placed in this header. The infor-
mation placed in the header is used by the core image loader to transfer the core load inio
core storage and start program execution. The core image header is a part of the core

load and resides in core storage during execution.

Note. The area of core storage occupied by the core image header should not be considered
as a work area, because FORTRAN subroutines access information in the header during
execution,

Assignment of the Origin of a Core Load

The core location where the core image loader begins loading a relocatable core image pro-
gram is assigned by the core load builder. This loading address is placed in the core image
header, and is called the origin. The origin is determined by adding decimal 30 to the next
higher-addressed word above the end of the disk I/O subroutine used by the core load.
The following chart lists the origin locations (in decimal and hexadecimal) used by the
core load builder.

Disk 1/0 Core load origin

subroutine

in core Decimal Hexadecimal
DISKZ 510 /01FE
DISK1 690 10282
DISKN 960 /03C0

Monitor System Programs 3-9

3-10

Subroutines in general

The origin of absolute programs is assigned by the assembler or FORTRAN programmer,
not by the core load builder. The assembler programmer assigns the origin of a program
with the ORG statement in his program. The FORTRAN programmer defines the origin of
his program with an *ORIGIN control record. The origin that you define must not be

less than those in the preceding chart, dependmg on the disk 1/O subroutine used by the
core load. When the programmer assigns an orlgm the addresses printed in a program
listing are absolute; thus, he can see exactly where his statements and constants are in

core during executiqn.

‘Note, When DISKZ is in core, the assembler programmer must specify an even address

in an ORG statement. Also, an ORG statement specifying an even address must not be
followed by a BSS or BES statement of an odd number of locations.

Processing the Contents of the SCRA

’
The core load builder analyzes the LOCAL, NOCAL, FILES, G2250, and EQUAT con-
trol records stored in the SCRA on disk, and builds tables for the respective control

.record types from the information specified. The information placed in these tables

is used in later phaseg of the construction of the core load.

Processing Data Files

The core load builder uses the information in the FILES control records stored in the
supetvisor control record area (SCRA) to equate data files defined in the mainline
program to data files stored on disk. The mainline program statements that define these
files are the FORTRAN DEFINE FILE statement and the assembler FILE statement.
During compilation or assembly, a define file table is buﬂt from the DEFINE FILE
statements or FILE statements.

The core load builder compares a file number from a define file table entry with th: file '

" numbers specified in the FILES supervisor control records stored in the SCRA. If

amatch occurs, the name of the disk area associated with the file number on the FILES
corttrol record is found in LET or FLET, and the sector address of that disk area (including
the logical drive code) is placed in the corresponding define file table entry. If the rumber
in the define file table entry does not match any of the file numbers for FILES control
records or if a name is not specified on the FILES control record, the core load builder
assigns an area in working storage for the data file. The sector address of the data file,
relative to the start of working storage, is placed in the define file table entry. This
procedure is repeated for each.define file table entry in the mainline program.

Conversion of the Mainline Program

The mainline program is converted from disk system format into disk core image format.
The mainline is always converted before any of the other portions of the core load.

Incorporating Subroutines

All the subroutines called by other subroutines, by the mainline program and all sub-
routines specified as NOCALs are included in the core load, except for (1) the disk I/O
subroutine, (2) any LOCAL subroutines specified, and (3) SOCAL subroutines employed.

EQUAT subroutines
or symbolic names

FLIPR

CLB provision
for LOCALs

CLB provision for
SOCALs

Subroutines called by the core load that is being built can be replaced if indicated in
EQUAT monitor control records stored in the SCRA. Symbolic names in assembler DSA
statements are replaced by other symbolic names if so indicated in EQUAT control records.

The LOCAL/SOCAL flipper, FLIPR, is included in each core load in which LOCAL sub-
routines are specified or in which SOCAL subroutines are employed. FLIPR is entered
by special LOCAL/SOCAL linkage through the transfer vector. FLIPR checks to deter-
mine if the required LOCAL or SOCAL is already in core. If not, FLIPR reads the re-
quired LOCAL or SOCAL into the LOCAL or SOCAL area in core. If the subroutine or
subprogram is already in the LOCAL or SOCAL area of core, FLIPR transfers execution
control to them.

When execution immediately follows the building of a core load, FLIPR reads a LOCAL or
SOCAL, as it is called, from working storage into the LOCAL or SOCAL area of core.

If the core image program was stored following the building of a core load, FLIPR

reads a LOCAL or SOCAL, as it is called, from the user area or the fixed area (where it
was stored following construction of the core load) into the LOCAL or SOCAL area

of core.

LOCALSs (load-on-call) are subroutines that you specify as overlays with LOCAL
supervisor control records when error messages indicate that a core load is too large to
fit into core.

If LOCALS are specified for use by a core load, the core load builder reserves an area in
the core load as large as the largest LOCAL subroutine specified. LOCAL subroutines

will be read by FLIPR into this area as required during execution. LOCAL subroutines are
stored in working storage following any data files stored there. If the core load is executed
immediately, each LOCAL subroutine is read as it is called from working storage into

the LOCAL area by FLIPR. If the core load is stored in disk core image format before

it is executed, LOCAL subroutines are stored following the core load, and will be read
from the storage area (user area or fixed area) during execution.

SOCAL:s (system-overlays-to-be-loaded-on-call) are groups of subroutines (by class, type,
and subtype) that are made into overlays by the core load builder. SOCALs make it
possible for FORTRAN core loads that are too large to fit into core to be loaded and
executed. (SOCALSs are not built for mainline programs written in assembler or RPG
language.)

If, in constructing a core image program from a FORTRAN mainline program, the core
load builder determines that the core load will not fit into core, SOCALSs are created. An
area as large as the largest SOCAL overlay (usually SOCAL 2) is reserved in the core
load. SOCAL overlays will be read by flipper into this area as required during execution.
The SOCAL overlays are placed in working storage following any data files and LOCALs
stored there. If the core load is executed immediately, each SOCAL overlay is read,

as it is called, from working storage into the SOCAL area by flipper. If the core load is
stored in disk core image format before it is executed, SOCALs are stored following the
core load and any LOCALs. SOCALs are then read from the storage are (user area or
fixed area) during execution,

Monitor System Programs 3-11

3-12

The core load builder creates SOCAL overlays by subroutine class, type, and subtype
(program types and subtypes are described under “Disk System Format” in Appendix 1.)
SOCAL overlays are numbered 1, 2, and 3. The classes of subroutines, their types and
subtypes, that can be included in each SOCAL overlay are:

SOCAL overlay Subroutine class Type Sub-
type
w includes
1 Arithmetic 3 2
Function 4 8
2 Nondisk FORTRAN 3 3

1/0 and ““2" conver-
sion subroutines

“2" device 5 3
subroutines

3 - Disk FORTRAN 3 1
1/0

Each SOCAL overlay does not contain all the subroutines of the specified classes, types,
and subtypes that are available in the monitor system library; only those subroutines
required by the core load are included in the SOCAL. The names of the subroutines
included in the SOCALs associated with a program are listed in a core map. A printout of
the core map is obtained by placing an L in column 14 of an XEQ monitor control
record (see “Reading a Core Map and File Map” in Chapter 6).

Two options are used by the core load builder in creating SOCAL overlays.

® SOCAL Option 1. An attempt is made to make the core load fit into core by using
SOCAL overlays 1 and 2. This option reserves enough space in the core load for
the largest of the 2 SOCALSs (usually SOCAL 2) and approximately 115 additional
words that are required for the special SOCAL linkage. SOCALs 1 and 2 are placed in
working storage. When this option has been tried and the core load still does not fit
into core, the second option is used.

® SOCAL Option 2. An attempt is made to make the core load fit into core by using
SOCAL overlays 1, 2, and 3. This option reserves enough space in the core load for the
largest of the 3 SOCALs (usually SOCAL 2) and approximately 120 additional words
that are required for the special SOCAL linkage. If, after both SOCAL options have
been tried, the core load still does not fit into core, an error message is printed.

If you specify as a LOCAL subroutine a subroutine that would usually be included in a
SOCAL, the core load builder makes that subroutine a LOCAL and does not include it in
the SOCAL in which it would ordinarily be placed. Further information is contained

in “The Use of SOCALs” in Chapter 6.

CORE IMAGE LOADER

SEXIT entry

$DUMP entry

Transfer Vector

The transfer vector (TV) is a table included in each core load that provides linkage to
subroutines, This table is composed of:

® CALL TV—the transfer vector for subroutines referenced by CALL statements
® LIBF TV—the transfer vector for subroutines referenced by LIBF statements

Each CALL TV entry is a single word containing the absolute address of an entry point
in a subroutine included in the core load that is referenced by a CALL statement. In the
case of a subroutine referenced by a CALL statement but specified as a LOCAL, the
CALL TV entry contains the address of the special LOCAL linkage instead of the sub-
routine entry point address. If SOCALs are required, the CALL TV entries for function
subroutines contain the address of the special SOCAL linkage instead of the subroutine
entry point address.

Each LIBF TV entry consists of 3 words. Word 1 is the link word in which the return
address is stored; words 2 and 3 contain a branch to the subroutine entry point. In the
case of a subroutine referenced by a LIBF statement but specified as a LOCAL, the
LIBF TV entry contains a branch to the special LOCAL linkage instead of to the sub-
routine entry point address. The core load builder inserts the address in word 1 of the
transfer vector entry (link word) into the entry point+2 of the associated LIBF sub-
routine. If SOCALSs are required, the LIBF TV entry for a SOCAL subroutine contains
a branch to a special entry in the LIBF TV for the SOCAL of which the subroutine is
a part. This special entry provides the linkage to the desired SOCAL.

The core load builder can build a core load that references up to approximately 375
different LIBF and CALL entry points; 80 LIBFs plus 295 CALLs (the maximum
number of LIBFs allowable is 83 due to the size of the LIBF TV). If the core load is
built on an 1130 system with core size of 4K, the maximum number of different LIBF
and CALL entry points is approximately 110.

See “Reading the Transfer Vector” in Chapter 6 for more information.

The core image loader (CIL) has 2 functions:
® Transfer control between some monitor programs
® Transfer core loads into core for execution

On an entry to the skeleton supervisor at $EXIT, $DUMP, or SLINK, the core image
loader is called and control transferred to it. The core image loader determines where the
skeleton supervisor was entered and calls the appropriate monitor or mainline program.

When the skeleton supervisor is entered at the SEXIT entry point, the core image loader
calls the DISKZ I/0 subroutine if DISKZ is not already in core. Then, the CIL calls and
transfers control to the monitor control record analyzer to read monitor control records
from the input stream.

When the skeleton supervisor is entered at the SDUMP entry point, the core image loader
saves words 6 through 4095 (decimal) in the core image buffer. Then the CIL calls and
transfers control to the Supervisor Core Dump Program. When the dump is complete,

the dump program either restores core from the CIB and transfers control back to the
core load in process or terminates execution with a CALL EXIT (see “Disk Resident
Supervisor Programs™ in this chapter).

Monitor System Programs 3-13

SLINK entry When an entry is made to the skeleton supervisor at the $LINK entry point, the core image
loader saves the sector of core referred to as low COMMON. The sector saved depends on
the disk I/O subroutine that is in core; locations (in decimal) 896 through 1215 if DISKZ,
1216 through 1535 if DISK 1, or 1536 through 1855 if DISKN. Then the CIL deterrnines
from COMMA the lowest-addressed word of COMMON if any was defined by the core
load just executed. Any COMMON in core below location 4096 (4K system) or 5056 in
larger systems is saved in the CIB. The following illustrates the saving of COMMON.

Core address Core storage Sector Core image buffer
0000 1
2
3
4 Core load
5
6
If DISKZ 896 7
If DISK1 1216 8
If DISKN 1636 9
1856 10
2176 1
2496 12 | Saved COMMON
2816 13
3136 14
3456 15
3776 16
4096
Next, the CIL determines from the LET or FLET entry for the program being called
whether the program is in disk system format or in disk core image format.
If the called program is in disk system format, the core load builder is called to construct
a core load from the mainline program. After the core load is built, the core image loader
is called to transfer the core load into core for execution.
If the called mainline program is stored in disk core image format, the disk 1/O subroutine
required by the core load is called, if it is not already in core. Any COMMON defined by
the core load just executed and saved in the CIB is restored, and the called core load is
transferred into core for execution.
The following illustration is the layout of a core load in core ready for execution.
l I LOCAL/
Resident monitor Mainline Subprograms | SOCAL LOCAL area | SOCAL area | Unused { Transfer vector | COMMON
)))) .)) ipper))
Location" ¢ AR v ((Eng
0000 NOCALs of

3-14

core

Core image header

sweIdorg walsAS JOIIUOW

1-€

LOGIC FLOW OF THE MONITOR SYSTEM

Cold start
record

Y

Cold start program
(sets negative param-

eter for DUMP entry)
LINK ent +
entry DUMP entry EXIT entry
Skeleton
supervisor

Y

Core image loader

determines where

skeleton supervisor
was entered

Y

Subroutine
library

I 1 1 1 1
EXIT LINK DUMP DUMP LINK
entry entry, entry, entry, entry,
OSF negative positive DCi
program parameter parameter program
Monitor
control record
analyzer Auxiliary DUMP
’ supervisor Program
I I I | 4
JOB DUP FOR RPG ASM XEQ '_!__l
record record record record record record Terminal Dynamic
dump dump
USER
DCI DSF EXECUTION
program program
 / iL { i
. Disk Utility FORTRAN RPG Assembler Core load
Supervisor . . !
Program(DUP) compiler compiler Program builder
{ ! } y ! ! ooy |
EXIT EXIT EXIT EXIT EXIT LINK LINK EXIT EXIT LINK DUMP EXIT
DCI positive
program parameter

3-16

Chapter 4. Monitor System Library

The monitor system library is a group of mainline programs and subroutines that performs
the following functions for the monitor system:

Input/output

Data conversion
Arithmetic functions
Disk initialization

Disk maintenance

Paper tape utility

Appendix C is a listing of the names, types and subtypes, required subroutines, and ID
fields for the programs and subroutines in the monitor system library.

Monitor system subroutines can be added to or deleted from the monitor system library.
You add or delete them with Disk Utility Program (DUP) store and deiete functions (see
“*STORE” and “*DELETE” under “DUP Control Records” in Chapter 5). Each program
in the IBM-supplied system deck used in an initial load is preceded by a DUP *STORE
control record.

This chapter contains general information about:
® System library ISS subroutines

® System library utility subroutines

e System library mainline programs

Additional and more detailed information about the system library is contained in the
publication IBM 1130 Subroutine Library, GC26-5929,

Monitor System Library 4-1

ISS Subroutines

SYSTEM LIBRARY 1SS SUBROUTINES

The interrupt service subroutines (ISS), in the monitor system library, manipulate the
1/0 devices that are part of the computer configuration. Each subroutine has a symbolic
name that must be used when the subroutine is available, although only one for each
I/O device can be selected for use in any one program (including subroutines). The fol-
lowing is a list of the devices available on the 1130 and the names of the ISS subroutines

42

nameZ

name0

namel

that are available for each device.

1/0 device

1442 Card Read Punch

2501 Card Reader

1442 Card Punch

Disk

1132 Printer

1403 Printer

Console keyboard/printer
Console printer

1134/1055 Paper Tape Reader Punch
1627 Plotter

1231 Optical Mark Page Reader

Synchronous Communications
Adapter

1/0 device subroutine
CARDZ, CARDO, or CARD1
READZ, READO, or READ1
PNCHZ, PNCHO, or PNCH1
DISKZ, DISK1, or DISKN
PRNTZ, PRNT1, PRNT2
PRNZ, or PRNT3

TYPEZ, or TYPEO

WRTYZ, or WRTYO
PAPTZ, PAPT1, PAPTN, or PAPTX
PLOT1, or PLOTX

OMPR1

SCAT1,SCAT2, or SCAT3

The last character or digit (Z, 0, 1, or N) of an ISS name indicates the general character-

istics of the subroutine:

The nameZ versions are designed for use in an error-free environment; preoperative error
checking is not provided. FORTRAN and RPG use the nameZ versions of the ISS sub-

routines.

{

The name0 versions are shorter and less complicated than the namel or nameN versions.
The nameO versions handle error conditions automatically.

Use the namel versions rather than the nameO versions when you write an error exit. The
name0 versions handle error conditions automatically.

nameN

ISS Subroutines

The nameN versions are available to operate the 1134/1055 Paper Tape Reader/Punch
simultaneously and to minimize extra disk revolutions when transferring more than 320
words to or from the disk. DISKN. offers more options than DISK 1. Depending on your
computer configuration, it also offers simultaneous operation of any one of the following
disk combinations.

e Up to five 2315 Disk Cartridges

e One 2315 Disk Cartridge (the 1131 CPU internal disk) and one disk in each of one or
two 1316 Disk Packs

e One disk in each of two 1316 Disk Packs
Preoperative and postoperative errors that occur during the operations of the I/O device
subroutines are included in Appendix B.

Extra space on a system cartridge can be gained by deleting the I/O device subroutines that
are in the system library for devices that are not a part of your computer configuration.
The following is a list of the subroutines that can be deleted for each device:

Disk blocks
Device not in 1/0 device subroutines gained
configuration that can be deleted {hexadecimal)
1442 Card Read Punch CARDO, CARD1, CARDZ /4E
(input/output)
2501 Card Reader READO, READ1, READZ 162
1442 Card Punch PNCHO, PNCH1, PNCHZ 122
1134/1055 Paper Tape PAPT1,PAPTN, PAPTX, PAPTZ, 175
Reader/Punch PAPEB, PAPPR, PAPHL
1132 Printer PRNT1,PRNT2, PRTZ2, PRNTZ, /69
DMPD1
1403 Printer PRNT3, PRNZ, EBPT3, CPPTS3, /40
HLPT3, PT3EB, PT3CP, PTHOL
1627 Plotter PLOT1,PLOTI, PLOTX, FCHRX, /B0
ECHRX, SCALF, SCALE, FGRID,
EGRID, FCHAR, EQHAR, FPLOT,
EPLOT, FRULE, ERULE, POINT,
XYPLT
Synchronous SCAT1,SCAT2, SCAT3, PRNT2, /FA
Communications PRTZ2, IOLOG, EBC48, HOL48,
Adapter HXCV,STRTB, HOLCA
1231 Optical Mark OMPR1 /15
Page Reader
MTCA MTCAO, MTCAZ, TSM41, TSTTY, /9A
FEB41

Monitor System Library 4-3

Utility Subroutines

You should not delete subroutines that are called by subroutines left in the monitor system
library (see Appendix C for lists of the subroutines cailed by each subroutine in the moni-
tor system library).

The mainline programs required for devices not on the system that can be deleted from
the system library are:

Disk blocks
Device not in Mainline programs that gained
configuration can be deleted (hexadecimal)
1134/1055 Paper Tape PTUTL /0A
Reader/Punch
2310 Disk Storage or DLCIB, ID, COPY, DISC, /9D
2311 Disk Storage Drive IDENT

SYSTEM LIBRARY UTILITY SUBROUTINES

A group of subroutines that perform utility functions for the monitor system are included
in the monitor system library. These subroutines are:

4-4

SYSUP, disk communications area (DCOM) update subroutine, that you call in an
assembler or FORTRAN program when you need to change disk cartridges or packs
during execution of a core load. This subroutine updates DCOM on the master cart-
ridge with the IDs and DCOM information from all satellite cartridges that are mount-
ed on the system and that are specified in the special SYSUP calling sequence. Uses
and calling sequences of SYSUP are discussed in Chapter 6.

CALPR, call system print subroutine, that calls the print subroutines into core storage
for printing informatior: on the principal printer.

FLIPR, LOCAL/SOCAL flipper overlay subroutine, that calls LOCAL (load-on-call) and
SOCAL (system-load-ori-call) subroutines into core storage during execution of.a core
load. LOCALs, SOCALSs, and FLIPR are discussed under “Incorporating Subroutines”
in Chapter 3 and in Chapter 6, “Programming Tips and Techniques”.

FSLEN, fetch phase IDs and fetch system subroutines, that performs 2 functions. The
first function obtains system program phase ID headers from SLET as requested by
monitor system programs. The second function calls system subroutines into core
storage as needed.

RDREC, Read *ID Record, that is called by the disk maintenance programs, discussed
in this chapter, to read *ID control records.

Note. SYSUP is the only one of these utility subroutines that can be called by FORTF.AN
programs. The other subroutines are called as needed by monitor system programs or by
assembler language programs.

Disk Maintenance Programs
IDENT

SYSTEM LIBRARY MAINLINE PROGRAMS

disk maintenance
programs

PTUTL program

messages and
halt codes

The 1130 system library mainline programs provide for disk maintenance and paper tape
utility functions, These programs (except the disk maintenance program, ADRWS) are
called for execution with a monitor XEQ control record, and are described in the following

sections of this chapter. These programs can be executed in a stacked job stream.

The disk maintenance programs reinitialize cartridges, modify the contents of cartridges,
and print information from cartridges. The disk maintenance programs are:

IDENT that prints cartridge IDs

DISC that reinitializes satellite cartridges

DSLET that prints the contents of the system location equivalence table
ID that changes cartridge IDs

COPY that copies the contents of one cartridge onto another

ADRWS that writes sector address in working storage

DLCIB that deletes thev core image buffer from a nonsystem cartridge
MODIF that modifies the monitor system programs

MODSEF that modifies programs and subroutines in the system library

DFCNV that converts 1130 FORTRAN and/or commercial subroutine package (1130-
SE-25X) disk data files to disk files acceptable to 1130 RPG programs.

For execution, some disk maintenance programs require in addition to the monitor XEQ
control record, special control records. The fields and uses of these special control records
are described when required in the descriptions of these programs in this chapter.

The Paper Tape Utility (PTUTL) Program accepts input from the paper tape reader or
console keyboard and provides output to the console printer and/or the paper tape punch.

Messages printed by the disk maintenance programs are described in Appendix A. Halt
codes displayed in the console ACCUMULATOR are described in Appendix B.

The following sections of this chapter describe the functions and calling sequences of the
system library mainline programs,

IDENT

The Print Cartridge ID (IDENT) mainline program prints the cartridge ID and physical
drive number of each disk cartridge that is mounted on the system and is ready, not just
the cartridges that are specified in the current JOB monitor control record (see “Monitor
Control Records” in Chapter 5). Invalid cartridge IDs, including negative numbers, are
printed.

The IDENT program is called for execution with a monitor XEQ control record:

1 5 10 15 20 25 30 35 40 45 50

N/ IXER |71DEMT]

Monitor System Library 4-5

Disk Maintenance Programs
DISC

DISC

*The Satellite Disk Initialization (DISC) mainline program requires at least 8K of core stor-
wge to run. DISC reinitializes from one to four satellite cartridges; all but the master cartridge.
(All new cartridges must be initialized with the stand-alone DCIP utility program, see
Chaptér 9). On each cartridge being reinitialized, the DISC program:
® Tests disk sectors to determine which, if any, are defective, and fills in the defective
cylinder table accordingly

® Writes a sector address on every sector, including defective sectors
® Establishes a file-protected area for the cartridge
® Places an ID on the cartridge

® Establishes a disk communications area, sector @DCOM, a location equivalence table
(LET), and a core image buffer (CIB)
If an error occurs during testing, the cylinder on which the error occurred is retested. If
the error occurs again, the address of the first sector on that cylinder is written in the
defective cylinder table. The monitor system I/O subroutines operate with up to 3
defective cylinders on a cartridge. That is, 3 cylinders that contain one or more defective
sectors. A cartridge cannot be initialized if cylinder 0 is defective, or if a sector address
cannot be written on every sector.

A message and the program that prints it are written in sector @RIAD. The message is:

NONSYST. CART. ERROR

This message is printed when an attempt is made to cold start a nonsystem cartridge that
is initialized with DISC.

The DISC program is called for execution with a monitor XEQ control record followed by
an *ID control record:

1 5
/11l XEQ
K /DIA/D|,

10 15 20 25 30 35 40 45 50

¢
1D, A2 T D2] L |- FL DI, [T) DY

N~

-+ B

*1D fields FID1 Through FIDn, Replace FID1 through FIDn with the current IDs on the satellite
cartridges that are being reinitialized. This program overrides the cartridges that are
specified in the current JOB monitor control record.

TID1 Through TIDn. Replace TID1 through TIDn with the new IDs to be placed on the
satellite cartridges during initialization. A valid cartridge ID is a hexadecimal number from
/0001 to /7FFF.

4-6

*I1D fields

Disk Maintenance Programs
DSLET 1D
COPY

DSLET

The Dump System Location Equivalence Table (DSLET) mainline program prints the
contents of SLET on the principal printer. Each SLET entry printed includes a symbolic
name; phase ID, core address, word count, and disk sector address. Appendix E is a
printout of a SLET dump.

The DSLET program is called for execution with a monitor XEQ control record:

1 5 10 15 20 25 30 35 40 45 50

il ﬁﬁ Sl 1i1i:
| |

ID

The Change Cartridge ID (ID) mainline program changes the ID on from one to four
satellite cartridges. The ID program is called for execution with a monitor XEQ control
record followed by an *ID control record:

1 5 10 15 2 25 30 35 40
N XELQ 111D AR
IDAADLLTVDLL IFID2L T D2, | - | -1 1FI | Dl [711 1D

FID1 Through FIDn. Replace FiD1 through FIDn with the IDs currently on the satellite
cartridges that are to be changed. These IDs must be coded in the same logical order as
those coded in the current JOB monitor control record.

TID1 Through TIDn. Replace TID1 through TIDn with new IDs that you want placed on
the satellite cartridges. A valid cartridge ID is a hexadecimal number between /0001 and
[7FFF.

copPYy

The Disk Copy (COPY) mainline program requires at least 8K of core storage to run. COPY
copies the contents from one cartridge (source) onto another (object cartridge). The
defective cylinder data and cartridge ID are not copied. The copy code (word 5 of sector
@IDAD) on the object cartridge is incremented to one greater than the copy code on the
source cartridge. (The stand-alone DCIP program described in Chapter 9 provides «

similar disk copy function.)

If a copy is made of a system cartridge from a system with a different configuration, the
object cartridge must be reconfigured before a cold start can be performed (see Chapter
8 for information about reconfiguration).

The COPY program is called for execution with a monitor XEQ control record followed
by an *ID control record:

1 5 10 15 20 25 30 35 40 45~ o 56
A/ XElQ| |col]
X/ \DIFI /DI 714D 2| 3 \FLE |D\2) o | 711 \DI2) s | - |- - | 5| I/ DIl s [T DV |-

Monitor System Library 4-7

Disk Maintenance Programs

ADRWS DLCIB
MODIF

*1D fields

*1D field

FID1 Through FIDn, Replace FID1 through FIDn with the IDs of the cartridges that are
being copied. When multiple copies are being made from a single cartridge, replace FID1
through FIDn with the same cartridge ID. This program overrides the cartridges that are
specified on the current JOB monitor control record.

TID1 Through TIDn. Replace TID1 through TIDn with the IDs of the object cartridges.

ADRWS

The Write Sector Addresses in Working Storage (ADRWS) mainline program writes a
sector address on every sector of working storage of a cartridge. This program is not
executed with an XEQ monitor control record as the other disk maintenance mainlire
programs are. ADRWS is Jinked to from the Disk Utility Program (DUP) when a DWADR
DUP control record is read from the job stream. (The DWADR control record is described
under “DUP Control Records” in Chapter 5.)

DLCIB

The Delete Core Image Buffer (DLCIB) mainline program deletes the CIB from a nonsystem
cartridge. The areas on the cartridge that followed the CIB before it was deleted are moved
back 2 cylinders closer to cylinder 0. The new addresses of the areas moved are placed in
DCOM on the master cartridge and in COMMA on the cartridge from which the CIB was
deleted.

The DLCIB program is called for execution with a monitor XEQ control record followed
by an *ID control record:

1 5 10 15 20 25 30 35 40 45 50
A4 XE@ e icls|3)
H/loiclAlRT

CART. Replace CART with the cartridge ID of the nonsystem cartridge from which the
CIB is being deleted.

MODIF

The System Maintenance (MODIF) mainline program allows you to make updates to the
monitor system programs and/or the system library. This program changes the word of

the disk communications area (DCOM) that contains the version and modification level

of the monitor system, (Information stored in the user area in disk system format can

also be changed with the MODSF disk maintenance program described later in this chapter.)

A card deck or paper tape containing corrections to update the monitor system to the
latest version and modification level is supplied by IBM. All modifications included must
be run, even if an affected program has been deleted from the system, to update the
version and modification level.

*MON patch
control record

A MODIF job

Disk Maintenance Programs
~ MODIF control records

The MODIF program is called for execution with a monitor XEQ control record:

1 5 10 15 20 25 30 35 40 45 50

/1| (XEQ Mo/ |F]

Note. A system program phase that contains reload table entries (references to other
entries in SLET generated by the system loader during an initial load or reload operation)
cannot be replaced with MODIF; a system reload must be used (see Chapter 8 for reload
information). MODIF cannot be used if temporary mode is indicated in the current
monitor JOB control record. A cold start procedure is recommended prior to a system
reload if the reload precedes the execution of MODIF, as in a system modification update.

MODIF Patch Control and Data Records

The MODIF patch control records that can follow the monitor XEQ control record are:
® *MON that identifies a monitor program phase that is being modified

e *SUB that identifies a change to the system library

® // DEND that specifies the end of MODIF execution

The *MON patch control record, patch data records, and a // DEND control record
modify monitor program phases. A typical input card deck for system program mainten-
ance is:

{N.”

/I DEND

| je——- Next monitor control record

g~ MODIF define end record

Following system program maintenance control
records and data records (if any)

{ *MON
Data records

// XEQ MODIF

|__J<¢~——— System program maintenance control record

j<¢—— System maintenance program call

Each program phase that is changed requires a *MON control record and patch data
records that specify the changes. If MODIF determines from SLET that the FORTRAN
compiler or the assembler has been deleted from the disk, any modifications that are
included for these programs cannot be made; however, the version and modification levels
for these programs are updated in DCOM.

Monitor System Library 4-9

Disk Maintenance Programs
MODIF control records

*MON patch Card column Contents Explanation
control record
format 1 through 4 *MON These characters identify a patch to

any of the monitor system programs
and/or the system device subroutines.

5 Blank

6 through 8 vmm A hexadecimal number;
v is the monitor version, and
mm is the monitor modification
level.

9 QorGorR 0 indicates system modification
update.
G indicates general temporary fix.
R indicates restricted temporary
fix.

10 Blank

11 through 14 XXXX The SLET ID (in hexadecimal) of
the monitor program phase to which
the patch is being made. 0000
indicates an absolute patch (see
columns 28 through 31 and 33
through 36).

16 Blank

16 through 19 nnnn The numbers (in hexadecimal) of
patch data records that follow this
control record.

20 Blank

21 -BorH This character identifies the format
of the patch data records that follow.
B indicates binary system format.
H indicates hexadecimal patch format.

22 Blank

23 through 26 PPPP A hexadecimal number that specifies
the total number of patch control
records to be processed. This field is
required only on the first patch
control record.

27 Blank

28 through 31 dsss A hexadecimal number;

d is the disk drive code, and

sss is the sector address of the
program being patched. Use this
field only when columns 11 through
14 contain 0000.

4-10

additional field
information

patch data
records

hexadecimal
patch data
record format

Disk Maintenance Programs
MODIF data records

Card column Contents Explanation

32 Blank

33 through 36 cecce A hexadecimal number that specifies
the core address of the sector
specified in columns 28 through 31.
Use this field only when columns 11
through 14 contain 0000.

37 through 80 Not used

*MON. The programs that can be patched are: the FORTRAN compiler, RPG compiler,
COBOL compiler (program product), assembler, Disk Utility Program, supervisor, core
load builder, core image loader, and the system device subroutines. Modifications to the
system device subroutines must be made with a *MON patch, not a *SUB, *DELETE, and
*STORE patch.

0or G or R. A system modification update (0) can be made only on a system of one level
lower than the level indicated in columns 6 through 8. A general temporary fix (G) can
be made only on a system of the same or one higher level than the level indicated in
columns 6 through 8. A general temporary fix does not change the level of the system.

A restricted fix (R) can be made only on a system of the same level as the level indicated
in columns 6 through 8.

pppp. A MODIF job can modify more than one system program and can modify both
system programs and the system library.

In the latter case, the specified count in columns 23 through 26 must include the *SUB
patch control record. The // DEND control record is not included in this count.

ccce. Core addresses can be obtained from the microfiche listings.

Patch data records are in either hexadecimal patch format or binary system format. These
data records specify the beginning address of the patch, and the new data for the patch.
Patch data records cannot contain CALLs or LIBFs, and the relocation indicators will
not be used.

Card column Contents Explanation

1 through 4 aaaa The beginning core address (in
hexadecimal) of the patch. Each
patch data record must contain the
core address.

5 Blank

6 through 9, Each 4-column field is one word of

11 through 14, patch data (in hexadecimal). Up to

16 through 19, 13 words of patch data can be in-

. cluded in one data record. A blank
must separate each word of data.

66 through 69

70 through 72 Blank

73 through 80 Not used

Monitor System Library 4-11

Disk Maintenance Programs
MODIF control records

Hexadecimal patch records can contain ID/sequence numbers in columns 73 through 80.
- Zeros must be punched; leading blanks are not assumed.

binary system " Word Contents
patch data .
record format 1 Location
2 Chacksum
3 Type code (first 8 bits) 00001010
4 through 9 Relocation indicators
10 through 54 Data words 1 through 45
55 through 60 1D and sequence number or blanks

Note: Checksum verification is not made if word 2 is blank.

*SUB patch The *SUB patch control record, DUP *DELETE and *STORE functions, new versions of
control record system library programs and subroutines, and a // DEND control record are used to modify
the system library. A typical input card deck for system library maintenance is:

{//...

(/i DEND
£ —— |__J<¢———— Next monitor control record

[MODIF define end record.

A MODIF job

Next DELETE and STORE and new
version of system library program, . . .

(*STORE XXXXX
New version of system library program XXXXX

f *DELETE XXXXX

{ *SUB

// XEQ MODIF

DUP control records

| ¢ System library maintenance control record

- e System maintenance program call

4-12

Disk Maintenance Programs
MODIF control records

Only one *SUB control record is used in a MODIF job; however, any number of deletes
and stores can be included after a *SUB control record, When a MODIF job is used to
modify system programs and the system library, the *SUB control record must be the
last patch control record before // DEND in the MODIF job. The *SUB control record
is also included in the count of MODIF patch control records coded in columns 23
through 26 of the *MON control record.

¥SUB patch Card column Contents Explanation
control record
format 1 through 4 *sus These characters identify a patch

to the monitor system library.

5 Blank
6 through 8 vmm A hexadecimal number;
v is the monitor version, and
mm is the monitor modification
level.
9 OorGorR 0 indicates system modification
update.
G indicates general temporary fix.
R indicates restricted temporary
fix.
10 through 15 Blanks
16 through 19 nnnn The number (in hexadecimal) of
delete and store control records
that follow this control record.
20 through 80 Not used
additional field 0 or G or R. A system modification update (0) can be made only on a system of one level
information lower than the level indicated in columns 6 through 8.

A general temporary fix (G) can be made only on a system of the same or one higher level
than the level indicated in columns 6 through 8. A general temporary fix does not change
the level of the system,

A restricted fix (R) can be made only on a system of the same level as the level indicated
in columns 6 through 8.

// DEND patch All MODIF jobs must end with a define end control record (// DEND). This record termin-
control record ates MODIF execution and passes control to the supervisor.
// DEND patch Card column Contents Explanation
control record
format 1 through 7 //SDEND I indicates blank.
8 through 80 Not used

Monitor System Library 4-13

Disk Maintenance Programs
MODIF example

4-14

MODIF Example

This example illustrates how to change an instruction in the Disk Utility Program (DUP).
The following data is used to make the change:

® The SLET phase ID of the subroutine is /0009.

Hexadecimal patch format is used.

The instruction address (from an assembly listing) is /03B6.

The instruction is /D7FO.

The instruction is to be changed to /D7D6.

The new modification level is 12.

One patch data record is required.

Only one patch control record (// DEND) follows the *MON control record.

The coding sequence for making this change is:

1 5 10 15 20 25 30 35 40 45 50
1]/] JI0|B]
/\/] IXIEIQl MolDl/|F
Mol| l2lolcid| loleldl9| 1eleldle] bl oot
'QEPF plzple| | | [|]
/1) |DEWD

The following is printed on the console printer when the example is executed:
MODIF EXECUTION 020B

MON 20C0 0009 0001 H 001
DAAA REL-WD ADDR OLD NEW
002E 0096 03B6 D7F0 D7D6
SW 0 OFF=PATCH
SW 0 ON =ABORT

MODIF COMPLETED 020C
Where:
MODIF EXECUTION 020B Execution of MODIF starts on DM2, Version 11
DAAA Drive code and sector address of the patch
REL-WD Relative word within the sector that is to be patched.
ADDR Instruction address (from an assembly listing)
OLD Original instruction
NEW New instruction
SW 0 OFF=PATCH The system waits after these 2 lines are printed for
SW 0 ON =ABORT operator intervention. Set data entry switch O to OFF

and press PROGRAM START to write the patch to
disk or set data entry switch O to ON to prevent the
patch from being made.

Note. To prevent the printing of patch information, set data entry switch 1 to ON.
MODIF COMPLETED 020C The patch is installed, and the new level is 12.

MODSF

MODSF

The Library Maintenance (MODSF) mainline program allows you to update programs
that are stored in the user area in disk system format. (Monitor system programs are modi-
fied or replaced with the MODIF program discussed in the previous section of this chapter.)

MODSF updates a program by replacing existing code and/or inserting additional code
at the end of the program. Existing code is replaced in the program as it resides in the
user area. The existing code of several programs can be updated in one MODSF job,

but code can only be added to the last program included in the MODSF job. When
additional code is added to a program, MODSF moves the program into working storage
before inserting the new code. The modified program is still in working storage when
MODSF execution is finished and can be transferred back to the user area with DUP
*DELETE and *STORE functions.

On the basis of where the addresses you specify are in the program being modified, MODSF
determines whether a particular update is a replacement or an addition of code. A maxi-
mum of 31 words can be updated in one MODSF job.

The MODSF program is called for execution with a monitor XEQ control record:

1 5 10 15 20 25 30 35 40 45 50

M el WololsiA]

Monitor System Library 4-14.1

This page intentionally left blank

4-14.2

*PRO patch
control record

Disk Maintenance Programs
MODSF control records

MODSF Patch Control and Data Records

The MODSF patch control records that can follow the monitor XEQ control record are:
o *PRO that identifies the program that is being modified.

o *END that specifies the end of MODSF execution.

The *PRO patch control record, patch data records, and an *END control record are used
to modify programs and subroutines stored in the user area. A typical input card deck
for library program maintenance is:

{ *STORE WS UA
L*DE LETE
{ *END These DUP control records are
included only if last program

was expanded.

et MODSF terminator record

Any number of programs may be

= updated, but only the last may be
Patch data expanded.
records
*PRO
Patch trol
(r:c:";'; ro Patch control and data records
F if second program is to be updated.
~ (Patch dat
records
*PRO)
{Patch control Patch control and data records for
record) modification of first (or only) program.
ﬁ/ XEQ MODSF

/1408

Each program or subroutine that is being modified requires a *PRO control record and
patch data records that specify the changes being made.

Monitor System Library 4-15

Disk Maintenance Programs
MODSF control records

4-16

*PRO patch
control record
format

Card column

1 through 4

5

6 through 8

9

10 through 14

15

16 through 19

20

21

22

23 through 26

27,37, 47,57

28 through 31

"38 through 41

48 through 51
£8 through 61
32, 42, 52, 62
33 through 36
43 through 46

53 through 56
63 through 66

67 through 72

73 through 80

Contents

*PRO

Biank

vimm

Biank

pname

Bfank

nnnn

Blank

Blank

XXXX

Blanks
asaa
asaa

aeaa
agaa

Blanks
ww
ww
ww
W

Raserved

Not used

Explanation

These characters identify a MODSF
patch control record.

A hexadecimal number;

v is the current monitor version, and

mm is the current monitor modification

level.

The name of the DSF program being
updated. (If the program has
secondary entry points, this must be
the name of the primary entry point.)

The number (in hexadecimal) of
patch data records that follow this
control record.

indicates addressing mode, where
m is:
P for program-address mode, or

D for disk-displacement mode.

3

Cartridge 1D of the cartridge on
which the program being modified
is stored. (A cartridge ID is not
necessary if the program is stored
on the master cartridge.)

Each of these optional fields specifies
an address (in hexadecimal) at which
the current content of the program
is compared with the values specified
beginning in column 33.

The value (in hexadecimal) that is
being compared with the program
content at the addresses specified
beginning in column 28. These
optional fields are used when

the aaaa fields are used.

additional field
information

patch data
records

Disk Maintenance Programs
MODSF data records

m. Addresses at which modifications are being made to the program are expressed as
either P for P-mode (program-address) or D for D-mode (disk-displacement). In P-mode,
each address represents a relative address within the program such as is printed on the left
of an assembly listing.

In D-mode, each address represents a relative location on a disk;a location that the number
of words indicated by the displacement beyond word 0 of the DSF program header. Each
D-mode address corresponds to an address on a DUP *DUMP of the program to the printer.

Note, D-mode should be used if the program or subroutine being updated contains a back-
ward origin. If P-mode is used when a program contains a backward origin, the results of
MODSF execution are unpredictable.

aaaa. . . and vvyy . . . These optional fields allow you to verify whether or not a specific
update has been made by checking the contents of the program at specified addresses
(aaaa . . .) with specified values (vvvv . . .). If the contents of the words checked are not
exactly as specified, the MODSEF job is terminated. The addresses (aaaa . . .) are inter-
preted by MODSF as P-mode or D-mode according to the addressing mode specified in
column 21 of this control record.

Note, The second word of a LIBF or CALL cannot be verified.

Code can be replaced or added in either P-mode or D-mode. You specify the addressing
mode in column 21 of the *PRO control record. The patch data records for MODSF are
in either P-mode or D-mode format. For the patch data records, choose the format
according to the addressing mode you specify in the *PRO control record.

In P-mode, you can update any word in a program, including the relocation code for

that word. (You cannot update the program header or any data header in the program
text because these are not a part of the program.) You can add words to the end of a
program; a relocation code must be specified for each new word. The program length and
the disk block count in the program header are automatically updated by MODSF when
an addition is made.

Because the object code of a LIBF occupies 2 words as stored on disk but only one
word in a subsequent core load of the program, you can only replace a LIBF with another
LIBF.

Monitor System Library 4-17

Disk Maintenance Programs
MODSF data records

P-mode patch data Card column

record format
1 through 4

7

8 through 11

12

13

14

16 through 18
64 through 67

68 through 72

73 through 80

4-18

Contents

Blank

Blank

XXKX

Blank

Blank

XXX

Reserved

Not used

Explanation

The address (in hexadecimal) in the
program of the first word being
changed.

Relocation code of the first word
being changed; enter:

A for an absolute expression or the
second word of an LIBF or a CALL
(relocation code 0),

R for a relocatable expression or the
second word of a DSA statement
(relocation code 1),

L for the first word of an LIBF
(relocation code 2)—an update with
an L relocation code must be im-
mediately followed (on the same
patch data record) by a second update
word with an A relocation code,

C for the first word of a CALL or
DSA statement (relocation code 3).

The vatue (in hexadecimal) that is
being inserted in the first location.

Relocation code of the second word
being changed (see column 6).

The value that is being inserted in the
next location. As many as 9 con-
secutive words can be updated with
one data record. A relocation code
must precede each value specified,
and a blank must separate a relocation
code from a value.

D-mode data
control record
format

*END patch
control record

*END control
record format

Disk Maintenance Programs
MODSF control records

In D-mode, you can change any word in a program. You can also change the program
header or any data headers in the program text. You must update the program length and
the disk block count in the program header when you add code to the end of a program.
You must also modify any data headers and indicator data words affected by your changes
or additions. Be careful to change only the required information in headers.

Card column

1 through 4

5

6 through 9

10
11 through 14
66 through 69

70 through 72

73 through 80

Contents Explanation

aaaa Disk displacement (in hexadecimal) of
the first word being changed with this
data record.

Blank

XXXX The value (in hexadecimal) that is
being inserted in the location
specified by columns 1 through 4.

Blank

XXXX The next value that is being inserted
in the next location. As many as
13 consecutive words can be updated
with one data control record. Each
value specified must be separated
from the next with a blank.

Reserved

Not used

All MODSF jobs must end with a MODSF terminator record (*END). This record termin-
ates MODSF execution and passes control the the supervisor.

Card column

1 through 4

5 through 72

73 through 80

Contents Explanation

*END These characters signify the end
of input for MODSF.

Reserved

Not used

Monitor System Library 4-19

Disk Maintenance Programs
MODSF example
DFCNV

MODSF Example
This example illustrates how to change three instructions to NOP instructions. The fol-
lowing data is used to make the changes:

e The name of the program is FADD.

® The instruction addresses (from an assembly listing) are 001B, 001C, and 001D
(hexadecimal).

e The values that are compared with the contents at these locations are C900, D839, and
18D0, respectively.

The instructions are all changed to 1000.

[]

e The addressing mode is P.

® One P-mode patch data record is used.
[]

The modification level is 9.

The coding sequence for making these changes is:

w
p
(=]
-
(¥

25 30 35 40 45 50 55 60 65 72,

PDeININT-
—

bl e ot

o

83

41

|

4-20

When execution is complete, the following messages are printed on the principal printer:
MODIFICATIONS MADE

SUCCESSFUL COMPLETION This message is printed when the *END record is read
and the program is not expanded.

The changes are made and did not expand the program.

DFCNV

The Disk Data File Conversion (DFCNV) mainline program converts 1130 FORTRAN and/
or commercial subroutine package (1130-SE-25X) disk data files to disk files acceptable

to 1130 RPG. The program operates in a minimum 8K core DM2 system and uses DISK1
and the system device subroutines for the principal input device and principal printer.

DFCNV accepts all FORTRAN and commercial subroutine package (CSP) disk data for-
mats for conversion to acceptable RPG disk data format, FORTRAN or CSP input to
DFCNV can be a disk fils created with or without 2-word integers, or a deck of cards
produced by a DUP *DUMPDATA operation.

Prior to executing DFCNV, use a DUP *STOREDATA or *DFILE operation to reserve
an output file in the user or fixed area and to enter its file name in LET or FLET. The
DFCNV output file can be defined on the same disk as the input file or on a cartridge
residing on another drive. DFCNV converts one input file to one output file; subsequent
DFCNV program executions must be performed to convert more than one file.

RPG programs can process the converted files sequentially or randomly, but not as in-
dexed sequential access method (ISAM) files.

Note, The disk file protection indicators $FPAD-$FPAD+4 in COMMA are modified
during the conversion portion of DFCNV. These modified indicators must be restored
prior-to further monitor processing if unforseen problems, such as accidentally pressing
IMM STOP, cause abnormal ending of DFCNV. Normally, these indicators are restored
by DFCNYV after a successful file conversion.

file description
control record

Disk Maintenance Programs
DFCNV control records

The DFCNYV program is called for execution with a monitor XEQ control record:

1 5 10 15 2 25 30 35 40 45 50
| X FCWV] 1
DFCNYV Control Records

Three types of control records are required by the conversion program:
® File description
® Field specification

o End-of-file

A file description control record is required and must immediately follow the XEQ con-
trol record. Only one file description record is used. A typical input card deck for the con-
version program is:

et End Of file card

Field specification card

{

// XEQ DFCNV 1

jgr—— File description card

Monitor System Library 4-21

Disk Maintenance Programs
DFCNYV control records

4-22

file description

control record
format

The file description control record contains the following information.

Card column

1 through 6

6

7 through 11

12

13 through 17

19 through 21

22

23 through 25

26

27

28

31

32

34 through 71

72

73 through 80

Contents

Name

Btank

RPG name

Blank
Number of
input records
Blank
Input-file
record size,
in words
Blank

RPG file
record size,
in characters

Blank

SorE

Blank

1 or blank

Blank

C or blank

Blank

W or blank

Blanks

D

Not used

Explanation

The file name(left-justified) of the
file whose data is being converted.
This field is ignored if card input is
specified in column 31.

The file name (left-justified) of the
file where the RPG data is to be placed.

A right-justified decimal number with
leading zeros or blanks and in the
range 1 through 32767.

A right-justified decimal number with
leading zeros or blanks and in the
range 1 through 320.

A right-justified decimal number with
leading zeros or blanks and in the
range 1 through 640.

$ indicates standard precision.

E indicates extended precision.

1 indicates one-word integers are
used.

C indicates input from cards.

Blank indicates that input is from disk.

W indicates that an object time
warning message is to be printed if

a real number (see ‘‘R-Field Type" in
Appendix J) is out of range upon
conversion.

Biank indicates that the object time
warning message is not printed.

This character identifies this record as
a file description record.

additional field
information

computing
file sizes

Disk Maintenance Programs
computing DFCNYV file sizes

Name, Use the exact name of the FORTRAN or CSP file that is being converted.

RPG name. The RPG file name cannot contain any special characters, although the input
file name can contain the character $. DFCNV does not check the RPG file name for §.

Both the input and RPG file sizes are calculated from the information that you specify
in the file description control record. These computed sizes are checked against their
corresponding LET or FLET entries for correct size. The following formulas are used
to calculate the input and output file sizes.

1. Compute the number of words (L) in a record:

_C
L=
where
C is the record size in characters. Round the answer to the next higher number
if the answer has a remainder,

2. Compute the number of records (V) that can be contained in one sector:

_320
N=T

where

L is the length in words of each record computed in Step 1, and 320 is the
number of words in a sector. Disregard the remainder, if any.

3. Compute the input file size (/) in sectors:

R
=
where
R is the number of records in the file, and &V is the number of records per
sector computed in Step 2. Round the answer to the next higher number if

the answer has a remainder.
4. Compute the output file size (O) in sectors:

_ R+l
=X
where
R is the number of records in the file, and &V is the number of records per
sector computed in Step 2. Round the answer to the next higher number if
the answer has a remainder.

These are the same formulas that you use to calculate record and file sizes of sequentially
organized files, see “File Processing™ in Chapter 6.

Monitor System Library 4-23

Disk Maintenance Programs
DFCNV control records

field specification The second required control record, field specification, describes the RPG fields for the
control record converted data. Descriptions and examples of each field type supported by the program
are in Appendix J.

Caution: DFCNV does not check data format; therefore, you must know in detail the
format of the fields of your FORTRAN or CSP input file.

You can use as many complete field specifications on a field specification control record
as can be placed in columns 1 through 71. Column 72 of each record must contain an S.
Field specifications must be placed on the control records in the same order as the cor-
responding fields of the input record. Each field specification must be separated from
the next with a comma. Blanks embedded in specifications or blanks between specifica-
tions are not allowed. The following is an example of a field specification control record:

_.
@
)
I
3

25 30 35 40 45 50 55 60 65

72
1[-RI3].|0]s|5|-[Tl4] . [1]0|1]2]-[R7]. 5]~ |2] 1] -[B8] . |2[~[3}A - TIEY . |2 " }g
i

Selected field conversion can be done by using the X-field type. See Appendix J for a
description of this field type. Data can be rearranged and field size can be modified with
the m term of field types. When data is rearranged or fields are expanded, you must pre-
vent data overlay in the converted field.

repeat specification Identical fields that are sequentially repeated can be specified with only one field specifi-

option cation for any field type except the X-field type. You specify the repeat option by im-
mediately following the specification being repeated with the character R and the total
number of identical fields. Each repeat field begins in the first vacant output column after
the previous field; that is, columns are not skipped when the repeat specification is used.

For example, the following field specification describes three integer fields, the first
beginning in column 15 of the RPG record. Each field is packed and is five characters long
with 2 places to the right of the decimal point:

15-15.2(P)R3

The 3 resulting output fields start in the eighth word of the output record as:

Word: 8 9 10 11 12
Contents: XXX0 0FXY YOOF 7770 0F40
where
XXX, YYY, and ZZZ represent the three integer fields.
optional control When any F-field type conversions are specified on the field specification control record,
record an optional control record is required. This control record must contain the 40 character

translation table for CSF A3 format and the character A in column 72. This control record
immediately precedes the first field specification control record that specifies F-field

type conversion. Only one conversion table is allowed per file; if more than one is in-
cluded in the control records, the additional tables are ignored. The conversion table

must correspond to the original table used to convert to CSP A3 format.

4-24

end-of-file
control record

Paper Tape Utility Program
PTUTL

The third required control record for DFCNV is the end-of-file control record. All other
DFCNYV control records must precede the end-of-file (/*) control record.

DFCNV Example

This example illustrates how to convert the FORTRAN file named FORFL to an RPG
file named RPGFL. The FORTRAN file contains 1,000 records, each 10 words long.
The file is standard precision with one-word integers. One such FORTRAN record is as
follows:

Word: 1 2 3 4 5 6 7
Content: 3A7E D64B 40D5 D540 D4Cl BCOO 0080
Word: 8 9 10

Content: 03C8 C000 0083

The RPG file consists of records 40 characters long. The coding for converting the
FORTRAN file is:

1 5 10 15 20 25 30 35 40 65 72|
/] 1JofB |
/L IXEIQL DIFCINV i
FORFAL RPGFIL| a1 1 4 |S D
11-R3[1815~ 1714|111 |2]2]-[RI71.|5]5 [2|1]-1BE - 2] -|3H-| 18 - |2 Tl 3
/ 1

|

|

After conversion, the RPG record that corresponds to the previous FORTRAN record is
stored on disk as:

Word: 1 2 3 4 5 6 7 8
Content: FOFO D440 F9F6 F8F0 4040 40F0 FOF5 F3F1
Word: 9 10 11 12 13 14 15 16

Content: F2D5 4040 D4C1 D540 40D5 D64B 40F0 F1F4

Word: 17 18 19 20
Content: F9F7 F4F0 F040 4040

PTUTL

The Paper Tape Utility (PTUTL) mainline program accepts input from the keyboard or
the 1134 Paper Tape Reader and provides output on the console printer and/or the 1055
Paper Tape Punch. You can make changes and/or additions to FORTRAN and assembler
language source records and monitor control records with PTUTL.

The PTUTL program is called for execution with a monitor XEQ control record:

1 5 10 15 20 25 30 35 40 45 50

/7T el PO H l l” H

' .
B
|
The PTUTL program is also available as an IBM-supplied stand-alone program on tape
BP17. The operating procedure for both PTUTL programs is in Figure 9-12, Chapter 9.
An example of using this program is also included under “Stand-alone Paper Tape Utility
Program (PTUTL)” in Chapter 9.

Monitor System Library 4-25

Monitor Contro! Records
how to code

Chapter 5. Control Records

You use control records to specify operations performed by the Disk Monitor 2 System.
The use of these control records provides for stacked jobs with a minimum of operator
intervention. The order of control records, source statements, and data in stacked jobs
is described under “Stacked Input Arrangement” in Chapter 6.

The control records in this chapter are grouped according to the monitor program that
they are associated with. These groups are:

® Monitor control records

® Supervisor control records

e DUP control records

® Assembler control records

® FORTRAN control records
® RPG control records

Each section of this chapter consists of a general function description, the order in which
the control records are placed in the input stream, general coding considerations, and a
description of each control record.

Other less frequently used control records are included in Chapter 4, “Monitor System
Library.” The control records described in Chapter 4 apply to specific, infrequently per-
formed procedures.

Note. The System 2501/1442 conversion routine interprets the following character punches
asequal: *and @, + and &, = and #,) and ¢, (and %.

The characters’, +, =,), and (are printed. The conversion routine is used during analysis
of control records, source input for language processors, and DUP input/output data.
This routine provides uniformity for 024 and 029 prepared input.

MONITOR CONTROL RECORDS

functions

coding

The monitor control records described in this section define control and load functions

that are performed by the monitor system. These functions are:

® Initializing jobs

® Loading the assembler, the language compilers, or the Disk Utility Program into core
for execution

® Starting the execution of your programs

® Printing comments during monitor system operations

® Changing print devices during monitor system operations

The JOB monitor control record defines and initializes the beginning of jobs. Other
monitor control records are placed behind the JOB control record to specify the operations
to be performed during a job. A detailed description of the order of control records, pro-
gram statements, and data files in the input stream is in Chapter 6 under “Stacked Input
Arrangement,”

Information must be coded in the indicated card columns in monitor control record for-
mats. Columns 1 and 2 always contain slashes (//). The character B and reserved card
columns indicate that the columns must be blank, You can replace card columns shown as
not used with comments.

Control Records 5-1

Monitor Control Records
// JOB

/] JOB

A JOB monitor control record defines the start of a new job. This control record causes
the supervisor to initialize a job, which includes:

general function

® The initialization of parameters in the core communications area (COMMA) and in
sector @DCOM

® The setting of the temporary mode indicator if the job is executed in temporary mode

® The definition of the cartridges to be used during the current job

® The definition of the cartridge that contains the core image buffer used for the current
job

® The definition of the cartridge that contains working storage used during the current
job

® The definition of the cartridge that contains the unformatted I/O disk buffer area for
use during the current FORTRAN job

® The definition of a new heading printed on each page printed by the principal print
device

® The reading of EQUAT supervisor control records into the supervisor control record

area (SCRA)

format Card column Contents Explanation
1 through 6 //6JOB
7 Reserved
8 Temporary mode T or blank. A T indicates that

indicator

temporary mode is desired for
this job.

9 through 10 Reserved

11 through 14 First ID This is the ID of the master cartridge
(logical drive 0).

15 Reserved

16 through 19 Second 1D This is the ID of the cartridge on
logical drive 1.

20 Reserved

21 through 24 Third 1D This is the ID of the cartridge on
logical drive 2.

25 Reserved

26 through 29 Fourth ID This is the 1D of the cartridge on
logical drive 3.

30 Reserved

31 through 34 Fifth ID This is the ID of the cartridge on
logical drive 4.

35 Reserved

36 through 39 CiB ID This is the ID of the cartridge con-

taining the CIB to be used during
this job.

Card column
40

41 through 44

45

46 through 49

50

51 through 58

59

60 and 61

62 through 80

Contents
Reserved

Working
storage ID

Reserved
Unformatted disk
1/0 1D

Reserved

Date, name, etc.

Not used

EQUAT
record count

Not used

Monitor Control Records
~/1J08B

Explanation

This is the ID of the cartridge con-
taining the working storage to be
used by the monitor during this job.
See *FILES, for details on working
storage for your programs.

This is the ID of the cartridge con-
taining the unformatted disk /O
area to be used during this job.

This information is printed at the top
of every page of the listing on the
principal print device during this job.

This number specifies how many
EQUAT records follow this JOB
record.

Control Records 5-3

Monitor Control Records
/1 JOB

54

additional field
information

Temporary Mode Indicator. A T in column 8 causes all programs and/or data files stored
by DUP in the user area during the current job to be deleted from the user area when the
next // JOB control record is read. Temporary mode places restrictions on some of the
DUP operations as shown in the followng chart:

DUP operations Restrictions
DuUmMP None
DUMPDATA, DUMPDATAKE None
STORE None
STORECI To UA only
STOREDATA,STOREDATAE To UA and WS only
STOREDATACI To UA only
STOREMOD Not allowed
DUMPLET None
DUMPFLET None
DWADR Not allowed
DELETE Not allowed
DEFINE FIXED AREA Not allowed
DEFINE VOID ASSEMBLER Not allowed
DEFINE VOID FORTRAN Not allowed
DEFINE VOID RPG Not allowed
DEFINE VOID COBOL Not allowed
DF{LE To UA only
MACRO UPDATE Not allowed

First ID through Fifth ID, These IDs define the cartridges that are used during the current
job. These cartridges can be mounted on the physical disk drives in any order; the order of
the IDs on the JOB control record specifies the logical assignments for the cartridges.

The first through the fifth IDs correspond to logical drives O through 4, and must be speci-
fied consecutively. When 3 drives are being used, only the first through the third IDs are
specified.

The cartridge-related entries of the core communications area (COMMA) and sector @DCOM
are filled according to the logical order specified by the JOB control record. The first ID can
be left blank, in which case the master cartridge for the last JOB will also be the master
cartridge for the current JOB. A cartridge ID is not required when only one cartridge is used
during the current JOB. In this case, the master cartridge from the last JOB or that was
specified during a cold start is used.

The first cartridge ID can be used to define a system cartridge that is different from the one
currently being used as logical drive 0. The specified cartridge must be the same monitor
modification level as the one it replaces.

CIB ID. This is the ID of the cartridge that contains the core image buffer to be used
during the current job. The CIB ID is optional. If this ID is omitted, the CIB on the master
cartridge is assumed by the system. If the CIB on the specified cartridge has been deleted,
the CIB on the master cartridge is assumed for the current job. Core image programs are
built faster when the specified CIB is on a cartridge other than the master cartridge.

Working Storage ID. This field specifies the cartridge that contains the working storage
that is used during the current job. The working storage ID is optional, If this ID is
omitted, working storage on the master cartridge is used except when otherwise specified
on DUP control records (see “DUP Control Records” in this chapter).

Core image programs are built faster when the specified working storage is on a cartridge
other than the master cartridge. They can be built even faster when the IBM system area,
the CIB, and working storage are all on separate cartridges.

®@0Q

Monitor Control Records
// JOB
!/ ASM

Programs are assembled or compiled faster when system working storage is on another car-
tridge. (See “*FILES” under ““Supervisor Control Records” in this chapter for specifying
working storage for use by your programs.)

Unformatted Disk I/O ID. This field specifies the cartridge that contains the unformatted
1/0 disk buffer area to be used during the current job. The unformatted disk I/O ID is
specified when only unformatted I/O (data file named $$$$$) is used during execution
of a FORTRAN program. (See “Initializing $$$$$ Data Files for Use With FORTRAN
Unformatted I/O” in Chapter 6 for more information.)

Date, Name, Etc. This information is printed on the top of each page printed by monitor
system programs, except RPG. This causes a skip to channel 1 on the 1132 or 1403 printer
or 5 consecutive carriage returns on the console printer. The page count is reset to one,
and the current page heading is replaced with whatever appears in columns 51 through

58 of the JOB control record. HDNG statements (assembler language) and ** records
(FORTRAN header control record) cause additional information to be printed.

EQUAT Record Count. This parameter specifies the number of EQUAT supervisor con-
trol records (if any) that follow the JOB control record. These records are read and
written in the supervisor control record area (SCRA).

general function

format

// JOB Examples
1 5 10 15 20 25 30 35 40 45 50 55 60 65
/] W8l
/A WoB| |7 AME 0|2 |
/Y| Wo 1]¢41¢ 1|4 7.r.ERnY
SENENAaERNEE N 5
4
o This is all that is necessary for a one-drive system.
0 This specifies temporary mode for the current job, a heading
for each printed page, and that 2 EQUAT control records
follow. '
6 This specifies disk |Ds 1004, 1005, and 1006 on log.ical drives
0, 1, and 2, respectively, and that 1005 contains the CIB and
1006 contains working storage for this job.
S A S Y T T T TP S I A" A
A A e e
// ASM

This control record causes the supervisor to read into core storage and transfer control to
the assembler. Any assembler control records used and the source program statements to
be assembled must follow an ASM control record. Monitor comments control records

{(// *) cannot follow an ASM control record.

Card column Contents Explanation
1 through 6 /IBASM
7 through 80 Not used

Control Records 5-5

Monitor Control Records
// FOR // RPG
/1 cOBOL // DUP

general function

format

general function

format

general function

format

general function

format

5-6

/l FOR

This control record causes the supervisor to read into core storage and transfer control to
the FORTRAN compiler. Any FORTRAN control records used and the source statements
being compiled must follow a FOR control record. Monitor comments control records

(/] *) cannot follow this control record.

Card column Contents Explanation
1 through 6 /16FOR

7 through 80 Mot used

// RPG

This control record causes the supervisor to read into core storage and transfer control to
the RPG compiler. RPG control cards and specification statements must follow an

RPG control record. Monitor comments control records (// *) cannot follow an RPG
control record.

Card column Contents Explanation
1 through 6 //IBRPG

7 through 80 Not used

// COBOL

This control record causes the supervisor to read into core storage and transfer control to
the COBOL compiler (a program product). Monitor comments (// *) control records
cannot follow a COBOL control record.

Card column Contents Explanation
1 through 8 {/6COBOL

9 through 80 Not used

// DUP

This control record causes the supervisor to read into core storage and transfer control to
the control portion of the Disk Utility Program (DUP). A DUP control record (see “DUP
Control Records” in this chapter) must follow this control record. Only one // DUP moni-
tor control record is required to process any number of DUP control records. Monitor
comments control records (// *) can follow the DUP monitor control record.

Card column Contents Explanation
1 through 6 1/16DUP
7 through 80 Not used

general function

format

// XEQ

Monitor Control Records

// XEQ

This control record causes the supervisor to initialize for execution of a core load.

Comments control records (// *) can follow an XEQ control record if supervisor control
records do not follow and if data is not entered through the principal input device
during execution. The comments control records are printed after execution is complete.

Card column
1 through 6
7

8 through 12

13

14

16

16 and 17

18

19

20

21 through 24

25

26

27

28

29 through 80

Contents
/MXEQ
Reserved

Name

Reserved

Core map
indicator

Reserved

Count

Reserved
Disk 1/0
subroutine
indicator

Reserved

Cartridge ID

Not used

LOCAL-call-

LOCAL indicator

Not used

Special ILS
indicator

Not used

Explanation

This is the name (left-justified) of the
DSF program or DCI program to be
executed.

L or blank. An L indicates that a core
map is to be printed for this and all
DSF programs linked to during this
execution.

A decimal number (right-justified)
that indicates the number of
supervisor control records that follow.

This specifies the disk 1/0 subroutine
to be loaded into core by the core
image loader for use by the core load
during execution.

The ID of the cartridge that contains
the mainline program in its working
storage (valid only if a name is not
specified in columns 8 through 12;
blanks in this field indicate that the
program is in system working storage
when a name is not specified in
columns 8 through 12).

A punch in this column enables a
LOCAL subroutine to call another
LOCAL.

A punch in this column indicates that
ILSs for this core load should be
chosen from the special ILSs.

Note: When column 14 is blank, no warning is given if a file is truncated while a
FORTRAN core load is being built.

Control Records

5-7

Monitor Control Records

/1 XEQ

5-8

additional field
information

Name, This is the name of the program, stored in the user area or fixed area, that is execu-
ted.

When this field is omitted, the program to be executed is assumed to be stored in system
working storage, or in working storage on the cartridge specified in columns 21 through
24 of this control record.

Core Map Indicator. An L punched in column 14 of this control record causes the printing
of a core map for the program being executed and for all programs linked to during
execution (see “Reading a Core Map and a File Map” in Chapter 6 for examples of core
maps).

Count, A right-justified decimal number in columns 16 and 17 indicates the number of
supervisor control records (LOCAL, NOCAL, FILES, and G2250) that follow this control
record.

Disk IO Subroutine Indicator. A decimal number in column 19 identifies the disk I/O
subroutine used by the core load during execution.

Column 19 Disk I/O subroutine

blank.or Z DISKZ
Oorl DISK1
N DISKN

Any other character is invalid and causes execution to be bypassed. All DSF programs that
are linked to during execution must use the same disk I/O subroutine as the program that
calls them.

LOCAL-Call-LOCAL Indicator, A punch (any character) in column 26 provides for a
LOCAL subroutine to call another LOCAL subroutine during execution, provided the
restrictions listed under “LOCAL-Calls-a-LOCAL” in Chapter 6 are met.

Special ILS Indicator. A punch (any character) in column 28 indicates that special interrupt
level subroutines (ILSs named with an X before the number, as ILSX4) are used for this
core load, If column 28 is blank, the standard set of ILSs is used.

In addition to the functions of the standard ILSs, special ILSs at the beginning of their
execution save the contents of index register 3 and set this register to point to the trans-
fer vector. Special ILSs restore the original contents of index register 3 at the end of their
execution. Because the special ILSs save and restore the contents of index register 3,

you can use this register in your programs.

Special ILSs require 5 more words of core storage per ILS than standard ILSs. The special
ILSs for interrupt levels 2 and 4 are loaded, together with other subroutines, as part of
the core load. You can write ILSs to replace any of the IBM-supplied ILSs, standard or
special.

general function

format

Monitor Control Records
!l XEQ
!/ * (comments)

// XEQ Examples
1 5 10 15 20 25 30 35 40 45 ;
O /1 NXEd
@ [/ XEQ Wakg z X X I T
© |//] xde L 11444
,_};,, 44

o This specifies execution of the program stored in working T
storage on the master cartridge.

e This specifies that the named program (in the UA or WS} is
to be executed, that two supervisor control records follow,
that a LOCAL calls another LOCAL, and that the special
ILSs are to be used for this core load.

9 This specifies the printing of a core map, and that the pro-
gram stored in working storage on disk 1004 is to be
exectued.

ERnaRARRRRRRAEEE!

I
i

// * (Comments)

This control record causes the alphameric comments contained on the // * controi record
to be printed on the principal print device. The information is read and printed, and the
next control record is read from the input stream. Comments control records can be used
preceding a PAUS monitor control record to instruct the operator as to what he is to do
during the pause in monitor system operations.

When the console printer is used to print monitor and supervisor control records as a
result of a CPRNT monitor control record, comments control records are printed on the
principal printer.

Comments control records cannot immediately follow an ASM, RPG, FOR, or COBOL
monitor control record. Comments. control records can follow an XEQ control record if
supervisor control records do not follow and if data is not entered from the principal input
device during execution.

Card column Contents Explanation
1 through 4 1e*
5 through 80 Comments Any alphameric characters can be used.

Control Records 5-9

Monitor Control Records
/| PAUS /I TYP
// TEND

510

general function

format

general function

format

general function

format

/1 PAUS

This control record causes the supervisor to pause at a WAIT instruction. Sipervisor opera-
tion continues when you press PROGRAM START on the console. This pause allows you
to perform operator actions, such as add cards to the card reader, change satellite disk
cartridges, or change paper tapes within a JOB stream. The status of the monitor system

is not changed during a pause.

Monitor comments control records (// *) preceding a PAUS control record can describe
the operator actions performed during the pause.

Card column Contents Explanation

1 through 7 /IBPAUS
8 through 80 Not used
1/ TYP

This control record temporarily assigns the console keyboard as the principal input device.
The keyboard replaces the card or paper tape reader as the principal input device until a
TEND monitor control record is entered through the keyboard.

The use of the keyboard as the principal input device for entering control records, program
statements, and data is described under “Entering Jobs from the Console Keyboard™ in
Chapter 7.

Card column Contents Explanation
1 through 6 /1/6TYP

7 through 80 Mot used

// TEND

This control record reassigns the card or paper tape reader as the principal input device.
The reassignment is to the device that was the principal device before the TYP monitor
control record was read.

A TEND control record can be entered only from the keyboard.

Card column Contents Explanation
1 through 7 /BTEND
8 through 80 Mot used

Monitor Contro! Records
/] EJECT /1 CPRNT
// CEND

// EJECT

general function This control record causes the 1403 Printer or 1132 Printer, whichever is the principal
print device, to skip to a new page and print the page header. When the console printer is
assigned as the principal printer, or when a CPRNT monitor control record has been
processed, 5 lines are skipped and the page header is printed.

format Card column Contents Explanation

1 through 8 //BEJECT
9 through 80 Not used
// CPRNT
general function This control record causes monitor and supervisor control records that follow CPRNT to be

printed on the console printer. All other control records and monitor comments control
records are printed on the principal print device.

An EJECT monitor control record read after a CPRNT affects the console printer rather
than the principal print device.

A CEND monitor control record is used to return the printing of monitor and supervisor
control records to the principal print device. A system reload and/or the DEFINE VOID
function of the Disk Utility Program (DUP) also restores the original principal print

device.
format Card column Contents Explanation
1 through 8 //6CPRNT
9 through 80 Not used
// CEND
general function This control record restores the printing device that was the principal printer before a

CPRNT monitor control record was processed.

.

format Card column Contents Explanation
1 through 7 //BCEND

8 through 80 Not used

Control Records 5-11

Supervisor Contro! Records

how to code

SUPERVISOR CONTROL RECORDS

5-12

functions

coding

Supervisor control records are used by the core load builder to:
® Provide for subroutine overlays during execution, *LOCAL
e Include in the core load subroutines that are not called, *NOCAL

® Equate disk storage data files defined in a mainline program during compilation or
assembly to specific files that are stored on disk, *FILES

® Provide graphic display capabilities, *G2250
® Substitute a subroutine with another subroutine, *EQUAT

LOCAL, NOCAL, FILES, and G2250 supervisor control records are placed in the input
stream:following an XEQ monitor control record, which names a mainline program stored
in disk system format, or following a STORECI DUP control record.

(*G2250 (*G2250
(*FILES {*F“—ES
['NOCAL A L*NOCAL
(*LOCAL] (*LOCAL
/I XEQ 04 *STORECI 04

In either case, the control records are written on disk in the supervisor control record
area (SCRA), from which the core load builder reads them for processing during con-
struction of a core load.

Up to 99 supervisor control records can follow an XEQ or STORECI control record.
Supervisor control records do not have to be placed in any special order by type; how-
ever, all the control records of one type must be kept together.

EQUAT control records are placed after a JOB monitor control record and maintain
their function until the next JOB control record is read from the input stream,

(*EQUAT

- //JOB 01

The supervisor reads EQUAT control records and writes them into the SCRA, from which
the core load builder reads them for processing during construction of a core load.

An asterisk (*) is coded in column one of all supervisor control records. The rest of the
information specified in supervisor control records, except the G2250 control record, is
coded continuously; that is, blanks (referred to as embedded blanks) cannot be coded
within the characters in a record. Information specified in the G2250 control record must
be coded in the fields indicated in the G2250 format description in this section.

The program name that is coded in all types of supervisor control records can be either
the primary entry point name or any secondary entry point name in the program,

general function

format

additional field
information

continuation
records

continuation
example

Supervisor Control Records
*LOCAL

*LOCAL

This control record specifies the names of LOCAL (load-on-call) subroutines that are to
be read, when called during execution, into the LOCAL overlay area of a core load.
(See “Rules for LOCAL and NOCAL Usage” and “LOCAL-Calls-a-LOCAL” in Chapter 6.)

1 5 10 15 20 25 30 35 40 45 50

XL lolclaliMAl W], [8lulBl], 18luiBlzl, -]][, 8luiB Ar}

|
Note: Embedded blanks are not allowed in a LOCAL control record.

MAIN1. You replace MAIN1 with the name of the DSF mainline program that is already
stored in the user area on disk.

SUB1,SUB2, . ..SUBn. You replace SUB1 through SUBn with the names of the sub-
routines that are used as LOCALs with the specified mainline program.

The specification of LOCAL subroutines can be continued from one LOCAL control
record to another by placing a comma after the last subroutine specified on each LOCAL
control record, except the last. The name of the mainline program is not included on the
continuation control records.

1 5 10 15 20 25 30 35 40 45 50
NEERAT AT AREREAREERAR 11T ,
LIOCIAILIBIIBL3] s { 1l |

d rJAL i S - - —
LolclalL]suB SERREENI
[T 110

The results would be the same if the control records were:

1 5 10 15 20 25 30 35 40 45 50
RLIOTAIIAL W] 818l T TTTTHHH L
YL lolelalcal Wiz sliBl2 | 1 1T
A0l A M2[, SlUBl IREERRERRERERREEE

1 HHH

Control Records 5-13

Supervisor Control Records
*LOCAL
*NOCAL

5-14

coding for
linked programs

example

mainline program in
working storage

example

general function

format
examples

All LOCAL subroutines that are used by each mainline program during execution must be
specified on LOCAL control records following the XEQ monitor control record that
starts execution.

Separate LOCAL control records must be used for each mainline program that calls
LOCAL subroutines during execution,

1 5 10 15 20 25 30 35 40 45 50
XLI0ICIAlLAAL ML, 1SliBLE 5 |SU1BI2) s ISUIBIS] 5] - | | .| »1S|UBIm:
X 21518|U/1B|3 s |S|UBI4]s || - || |51UiBIn,

LIOCAIL MAIT M,

MAIN2. You replace MAIN2 with the name of a mainline program that is called by the
program represented by MAIN1.

When the mainline program is to be executed from working storage, the name of the
mainline program is omittzd from LOCAL control records. This same format is used when
LOCAL control records are specified with the Disk Utility Program (DUP) STORECI
operation.

1 5 10 15 20 25 30 35 40 45 50
LIOCAILL»|SIUIBI1] 5 |SIUIBL 25|+ |- 15 ISILB!

*NOCAL

This control record specifies the names of NOCAL (load-although-not-called) subroutines
that are to be associated with a specified mainline program. NOCAL subroutines are in-
cluded in the core load even though they are not called. (See “The Use of NOCALs” and
“Rules for LOCAL and NOCAL Usage” in Chapter 6.)

NOCAL control records are coded in the same format as LOCAL supervisor control
records, except that *NOCAL is coded in place of *LOCAL.

1 5 10 15 20 25 30 35 4 45 50
XIMOICIALL MA| 1 W]1 ,80#1 28|UIB|215 || -|-]5|5ViBIn

Ny
~
>
(Y
<
(7]
£l

olclalc]s|suilz| s|uipiz]

In the first format example, the specified NOCAL subroutines are included in the core
load built for the stored raainline program, MAINI. In the second format example, the
specified NOCAL subroutines are included in the core load built for a mainline program
in working storage. See “*LOCAL” for information about continuing a control record
to another, and coding for linking between programs.

general function

format

additional field
information

continuation
records

continuation
example

Supervisor Control Records
*FILES

*FILES

This control record equates the file numbers specified in FORTRAN DEFINE FILE state-
ments or in assembler FILE statements to the names of data files that are stored in the
user area and fixed area, or in working storage other than system working storage.

All the data files in the user area or fixed area that are used by core loads during execution
must be defined on FILES control records following the XEQ monitor control record

that starts execution, All files thus defined are available for use by each core load in the
execution.

Data files that are equated for a program that is stored in disk core image (DCI) format
must be stored in fixed areas for successful execution of the program. (See “Disadvan-
tages of Storing a Program in Disk Core Image Format” in Chapter 6.) When data files
are equated for a DCI program and are stored on other cartridges, the data files must be
stored in the same location on the other cartridges as they were when the DCI program
was stored for successful program execution. Also, the other cartridges must be on the
same logical drives as they were when the DCI program was stored. These restrictions are
necessary because the core load builder places in the define file table in the DCI program
header an absolute sector address, including the drive code, for each equated data file.

No more than 159 data files can be equated for one execution.

1 5 10 15 20 25 30 35 40 45 50
AANCESIAA L ET L WAMETD T LTI LU Ll e MERD] TTTTT T]
XANLESI A ILIEZ L WHMELL s IClAlRIL) ol - - |- [s I |FI/ 1L IEIm| s WA MIELR] » [€14 2] 7])

KA NLIEISICIALLIEL |51 1CARL) 5] o | =| - 5| (1FI/IL [Elmlo | 2| 1A 1R 7))

Note: Embedded blanks are not allowed in a FILES control record.

FILEI Through FILEn, You replace these with the file numbers that are specified in the
FORTRAN DEFINE FILE statements or assembler FILE statements in your program.

NAME1 Through NAMEn. You replace these with the names of the data files that are
stored on disk. Names can be omitted as in the third *FILES record in the format. When
omitted, 2 commas are required in the control record format, and the file is placed in
working storage on the specified disk.

CAR1 Through CARn. These are the IDs of the cartridges on which the respective data
files are stored. The cartridge ID can be omitted. When omitted, the corresponding data
file is assumed to be on the cartridge on the lowest logical drive.

The specification of data files can be continued from one *FILES control record to
another by placing a comma after the last right parenthesis on each *FILES control record,
except the last.

Control Records 5-15

Supervisor Control Records
*G2250

*G2250

general function This control record causes the graphic subroutine package (GSP) communication module
(GCOM) to be included in a core load immediately following the mainline program. Other
supporting subroutines are also loaded into this area depending on the parameters speci-
fied in the *G2250 control record. (See the publication IBM 1130/2250 Graphic Sub-
routine Package for Basic FORTRAN 1V, GC27-6934, for instructions on properly.
loading the mainline program, and for information concering the use of GSP subroutines
as LOCALSs and core storage layout requirements.

format Card column Contents Explanation

1 through 11 *G2250mimne Specifies that graphic support is
required for the named mainline
program. You replace m/mne with
the name of the program. |f the
program being executed is in
working storage, the program name
is omitted.

12 Reserved

13 U, blank, or N U indicates the character stroke
subroutine containing upper case,
numeric, and special characters is
loaded.

Blank indicates the character stroke
subroutine containing upper case,
lower case, numeric, and special
characters is loaded.

N indicates that a character stroke
subroutine is not loaded.

14 Reserved
15 Blenk or N Blank indicates the scissoring

subroutine is loaded.

N indicates the scissoring subroutine
is-not loaded.

16 Reserved

17 Blenk or N Blank indicates the ICA area
expansion subroutine is loaded.

N indicates the ICA area expansion
subroutine is not loaded.

18 Reserved

19 Blank or N Blank indicates the index controlled
entity subroutine is loaded.

N indicates the index controiled
entity subroutine is not loaded.

20 Reserved

21 Blank or N Blank indicates the level controlled
direct entry subroutine is loaded.

N indicates the level controlled
direct entry subroutine is not loaded.

22 through 80 Not used

5-16

examples

general function

format

additional field
information

example

Supervisor Control Records
*G2250

*EQUAT
1 5 10 15 20 25 30 35 40 45 50
R621215[oMILIMNIE] N[INE N IN] In L
146121215[gMLMNIE] U
X161212|5|@IM LIMNIE
T 10T |

*EQUAT

With this control record, you specify the substitution of subroutines during the building of
a core load. This control record can also substitute symbolic names in assembler language
DSA statements (limited to assembler programs). The EQUAT control record cannot be
used to substitute subroutines for RPG programs,

More than one EQUAT control record can be used if the exact number of records used
is punched in columns 60 and 61 of the preceding // JOB monitor control record. (Infor-
mation about using EQUAT control records is under “Use of the EQUAT Record” in
Chapter 6.)

1 5 10 15 20 25 30 35 40 45 50

EQUATI(TSIUBl] ISIUBI2DT o[- [] [(TS[UIBIm 5 [S|UBRD) H‘HH

SUBI1, SUBm represents the name of the old subroutine. SUB2, SUBn represents the name
of the new subroutine, SUB2 is substituted for SUB1. This same order of substitution is
used when substituting symbolic names for DSA statements.

Note. The maximum number of pairs of subroutines that can be specified is 25.

During the following functions, the substitution of SUB2 for SUBI is accomplished in the
execution of the mainline program from working storage and the storing of MAIN.

5 10 15 2 2 50 55 60 65
/| 1410\, M
EQUAITI(180\B)1]518I/B2]) RN

——
J
1

Control Records 5-17

DUP Control Records
how to code

DUP CONTROL RECORDS

functions DUP control records are used to specify operations to be performed by the Disk Utility
Program, The types of operations that DUP control records specify are:

® Dumping and deleting programs and data files from disk
® Storing programs and data files on disk

® Printing the contents of the fixed location equivalence table (FLET) and the location
equivalence table (LET)

Rewriting sector addresses in working storage
Defining a fixed area on disk
Deleting monitor system programs from disk

Allocating disk space for data files and macro libraries

Calling the Macro Update Program (MUP) into operation

DUP control records are placed in the input stream after a DUP monitor control record
(// DUP) as follows:

Data cards =

(*STOREDATA

(*STORE PROG

Source program

Assembler control records

coding DUP control records ger.erally follow the format described in the following text, All fields
in the control record, except the count field, are left-justified and, unless otherwise
stated, are required. Additional field information is included, when necessary, in the
description of the specific control record.

5-18

DUP Control Records
how to code

Column 1, Column 1 always contains an asterisk (*).

Operation Field, Code the name of the desired DUP operation in columns 2 through 12
(2 through 21 for the DEFINE operation, and 2 through 13 for the MACRO UPDATE
operation). Columns 2 through 6 identify the basic operation (STOREDATACI);
columns 7 through 12 (or 21) identify the extended operation (STOREDATACI). Where
shown in the control record format, a blank character () is required within or following
the operation name.

From and To Fields. Code the from symbol in columns 13 and 14; that is, the symbol
specifying the disk area or I/O device from which information is to be obtained (the
source). Code the fo symbol in columns 17 and 18; that is, the symbol specifying the
disk area or I/O device to which information is to be transferred (the destination). The
valid from and fo symbols are:

Symbol Disk area or /O device
UA User area on disk
FX Fixed area on disk
WS Working storage on disk
cD Card 1/0 device. If the 1134 Paper Tape Reader is defined as the principal input
device, CD is equivalent to PT.
PT Paper tape
PR Principal print device

Note. The symbols UA, FX, and WS, when used, each specify an area on disk but do not identify
the cartridge on which the area is found.

Name Field, Code the name of the program, data file, or macro library involved in the
specified operation in columns 21 through 25. The name that you specify in this field
for a store operation is the name assigned to the program, data file, or macro library, and
is used to generate or search for a LET or FLET entry. The name can consist of up to 5
alphameric characters, and must be left-justified in the field. The first character must be
alphabetic (A-Z, $, #, @), and blanks (embedded blanks) are not allowed between charac-
ters of the name.

When referencing a program or data file stored on disk, the specified name must be an
exact duplicate of the LET or FLET entry.

Count Field, The count coded in columns 27 through 30 is a right-justified decimal inte-
ger. The function of the count field is defined in the individual control record formats
for those operations that require it.

From and To Cartridge ID Fields. Code the from cartridge ID in columns 31 through 34;
that is, the ID of the cartridge that contains the disk area from which information is to
be obtained. Code the to cartridge ID in columns 37 through 40; that is, the ID of the
cartridge that contains the disk area to which information is to be transferred.

Either or both of these cartridge IDs can be omitted. When a cartridge ID is omitted, and
the corresponding from or to field (columns 13 and 14 or 17 and 18) is the user area or
fixed area, a search is made of the LET (and FLET) on each cartridge specified in the
current JOB monitor control record. The search starts with the cartridge on logical drive
zero (the master cartridge) and continues through logical drive 4. If the from or to field
(columns 13 and 14 or 17 and 18) is working storage, a default to system working
storage is made when cartridge IDs are omitted. When a cartridge ID is specified, the
LET (and FLET) only on the specified cartridge is searched, or working storage on the
specified cartridge is used.

Control Records 5-19

DUP Control Records
altering LET/FLET
summary of operations

5-20

The use of the from and to cartridge IDs makes it possible for DUP (1) to transfer
programs and data files from one cartridge to another without deleting them from the
source cartridge, and (2) to process a program or data file even though the same name
appears in the LET or FLET on more than one cartridge.

Unused Columns. All columns indicated as reserved between column 2 and the last format
field on each control record must be left blank. The columns between the last format field
and column 80 are not used by DUP and are available for your remarks.

Altering LET and FLET

The 2 tables, location equivalence table (LET) and fixed location equivalence table (FLET),
are directories to the contents of the user area and fixed area, respectively, on disk. You
can alter the contents of these 2 tables through the use of DUP store and delete operations
only.

Before storing a program or data file, DUP searches LET and FLET for the name specified
in the control record. When a cartridge is specified in the to cartridge ID field on the con-
trol record, LET (and FLET) on only that disk is searched for the specified name. When a
to cartridge ID is not specified, LET (and FLET) on all cartridges defined in the current
JOB monitor control record is searched. If the specified name is not found in any LET or
FLET, disk storage is allocated for the program or data file. The specified name is assigned
to the program or data file and is used to generate a new entry in LET or FLET.

When dumping or deleting a program or data file from the user area or fixed area, the
name specified in the control record is searched for in LET and FLET in the same order
as the search before a store operation. If the specified name is found, the program or data
file is dumped or deleted as specified in the control record.

Information Transfer and Format Conversion

Figure'5-1 summarizes the DUP operations that transfer information from one device or
disk area to another device or disk area. In addition, the format conversions that are made
during the transfer of information are shown. The different formats are described in
Appendix I. The acronyms used in Figure 5-1 for the various formats are:

Acronym Forimat
DSF Disk system format
DDF Disk data format
DCI Disk core image format
CDs Card system format
cDD Card data format
cDC Card core image format
PTS Paper tape system format
PTD Paper tape data format
PTC Paper tape core image format
PRD Printer data format
NCF Name code fcrmat

You should pay particular attention to Figure 5-1 when performing dump, store, and
delete operations, such as, dumping to cards and later using the cards to store the infor-
mation back on the disk. Note that more than one way to dump and store data and por-
grams is allowed, such as dumping a program to cards and later storing it back to disk.

SpI099Y [011U0))

12-§

ngi

suonerado UOISIOAU0D pue Iojsuer} 1 JO Arewwing ‘1-§ of

From Arsa To Assa Symbols, with Formats
with
Formats uA £ ws co PT PR
DSF DDF) DDF oct DSF DOF eI cos cop coc TS PTD PTC PRD
DSF DUMP DUMPDATA pump DUMPDATA DUMP DUMPDATA bump
DUMPDATA
vA ooF DUMP DUMP puUMP oume
DUMPDATA DUMPDATA DUMPDATA DUMPDATA
pumP
et DUMPDATA oump DUMPDATA Dume DUMPDATA pump e DATA
oOF DuMP puMP DUMP pume
DUMPDATA DUMPDATA DUMPDATA DUMPDATA
FX
e DUMPDATA pume DUMPDATA DUMP DUMPDATA DUMP oume
DUMPDATA
STORE DuMP
DSF R MOD | STOREDATA| sToRect [sToReDaTA| sTORECI DUMP DUMPDATA pumP DUMPDATA S DATA
ws DOF STOREMOD STOREMOD DumP oume pume
STOREDATA| STOREDAT DUMPDATA DUMPDATA DUMPDATA
STOREMOD STOREMOD DUMP
pct storepata |STOREMOD | sToreDATA| STOREMOD DUMPDATA puMP DUMPDATA DUMP S DATA
cos STORE | STOREDATA| STOREC! |STOREDATA| STORECI STORE | STOREDATA
co cop STOREDATA | STOREDATACI| STOREDATA| STOREDATAC! STOREDATA| STOREDATACI
coc STOREDATA | STOREDATACI| STOREDATA| STOREDATAC! STOREDATA | STOREDATACI
PTS STORE | STOREDATA| STORECI |STOREDATA| STORECI STORE | STOREDATA
PT PTD STOREDATA | STOREDATACI| STOREDATA | STOREDATACI STOREDATA | STOREDATAC!
PTC STOREDATA | STOREDATACI| STOREDATA | STOREDATAC! STOREDATA | STOREDATAC!

Note: DUMPDATA E and STOREDATAE are the same as DUMPDATA and STOREDATA,
respectively, except that information on disk for DUMPDATA E is assumed to be in packed
EBCDIC format, and input for STOREDATAE is converted to packed EBCDIC format.

suonesado Jo Asewwins

'$P1023Yy]041u0) dNa

DUP Control Records
restrictions in T-mode
*DUMP

5-22

general function

Restrictions Caused by Temporary Mode

When temporary mode is indicated in the current JOB monitor control record, some DUP
operations are restricted or not allowed. The following chart shows the restriction, if any,
on DUP operations when temporary mode is indicated.

DUP operations Restrictions
DUMP None
DUMPDATA, DUMPDATALBE None
STORE None
STORECI To UA only
STOREDATA, STOREDATAE To UA and WS only
STOREDATACI To UA only
STOREMOD Not allowed
DUMPLET None
DUMPFLET None
DWADR Not allowed
DELETE Not allowed
DEFINE FIXED AREA Not allowed
DEFINE VOID ASSEMBLER Not allowed
DEFINE VOID FORTRAN Not allowed
DEFINE VOID RPG Not allowed
DEFINE VOID COBOL Not allowed
DFILE To UA only
MACRO UPDATE Not allowed
*DUMP

This control record (1) transfers information from the user area or fixed area to working
storage, or (2) makes information from the user area, fixed area, or working storage
availabie as card, paper tape, or printed output. Card, paper tape, and print formats are
illustrated in Appendix I.

DSF programs are transferred from the user area or fixed area to output devices in 2 phases.
The programs are first moved to system working storage, then to the output device. As a
result, information residing in working storage before the DUMP operation is destroyed.

DCI programs and data files are transferred directly from the user area or fixed area to the
output device. The contents of working storage remain unchanged.

DUP Control Records
*DUMP

DUP obtains the number of disk blocks to be dumped from the LET or FLET entry for a
DSF program or a data file, or from the appropriate working storage indicator in sector
@DCOM if the dump is from working storage. The actual core load length in words of a
DCI program is dumped. The word count is obtained from the core image header. Dumps
of a DSF program and a DCI program are contained in Appendix I.

format Card column Contents Explanation
1 through 6 *DUMPH
7 through 12 Reserved
13 and 14 From symbol See the following summary chart.
15 and 16 Reserved
17 and 18 To symbol See the following summary chart.
19 and 20 Reserved
21 through 25 Name A name is required except when the
dump is from working storage to the
printer.
26 through 30 Reserved
31 through 34 From
cartridge 1D
35 and 36 Reserved
37 through 40 To
cartridge ID
41 through 80 Not used

The following chart is a summary of the information transfers and format conversions per-
formed by the DUMP operation.

*DumP From symbols, To symbols,
summary chart including formats including formats
UA(DSF) WS(DSF)
UA or WS(DSF) CD(CDS)
PT(PTS)
PR(PRD)
UA or FX(DDF) WS(DDF)
UA, FX, or WS(DDF) ‘ CD(CDD)
PT(PTD)
PR{(PRD)
UA or FX(DCH) Ws(DCH)
UA, FX, or WS(DC!) CD(CDC)
PT(PTC)
PR(PRD)

Control Records 5-23

DUP Control Records
*DUMP
*DUMPDATA

§-24

additional field
information

general function

From Symbol, When a dump is from working storage and the corresponding working
storage indicator is zero, an error message is printed.

To Symbol. When a dump is to cards and a 1442, Model 6 or 7, is used, each card is
checked to see that it is blank before it is punched. If a nonblank card is read, the monitor
system prints an error message and waits at $PRET with /100F displayed in the ACCUMU-
LATOR.

Note 1. The program name in a DSF mainline program header is cleared to zeros when the
program is transferred from the user area to working storage.

Note 2. The subtypein a subroutine header is set to zero when the subroutine is durnped
from the user area to cards.

*DUMP Examples
5 10 15 20 25 30 35 40 45 50
(1) fD]IUWP Wl | PR
(2] ﬂwﬁp lA ils Al
© [XDuMP FIX iw%s MTAMH 1i¢¢i3

This dumps a program from working storage to the printer.

This dumps a program named MAIN from the user area to
working storage.

® ©0Q

This dumps a program named MAIN1 from the fixed area
on disk 1003 to system working storage.

.........

Attt T

lL

—

*DUMPDATA

This control record (1) transfers information from the user area or fixed area on disk. to
working storage, or (2) makes information from the user area, fixed area, or working
storage available as card, paper tape, or printed output. Card, paper tape, and print formats
are illustrated in Appendix I.

The contents of working storage are not changed when dumping to output devices, be-
cause information is transferred from the user area, fixed area, or working storage directly
to the output devices.

The DUMPDATA operation differs from the DUMP operation in that the information is
always in data format after transfer. Also, the amount of information transferred depends
on the count field, if present, of the DUMPDATA control record or the block count of
the program or data file.

format

*DUMPDATA

summary chart

éafglco!u‘mn‘ .
j'tllm;‘yoh 10 |
11and 12
13and 14
1éapd 16

17 and 18

19 and 20

21 through 26

26

27 through 30

31 through 34

35 and 36

37.through 40

o1 troueh 0

DUP Control Records

*DUMPDATA

Contents '. Explanation

*DUMP:I#A;I'A“

Rqserved- e

From symbol o See the following summary chart.

Resgrved‘ .

Tovsvmbol - See the following summary chart.

Reserved -

Name . A name is required except when the
dump is from working storage to the
printer.

Reserved

Count The count (a right-adjusted decimal
number) specifies the number of

" sectors to be dumped. I f this field is
blank, the working storage indicator
or disk block countin LET or FLET
is used.

From
cartridgé 1D

Reserved

To- - ..
cartridge ID

Not used

The folloWing chartisa summary"bf the information transfers and format conversions
performed by DUMPDATA.

From symbols,
including formats

UA(DSF)

UA or WS(DSF)

UA or FX(DDF)

UA, FX, or WS(DDF)

UA(DCI) or FX(DDF)

UA, FX, or WS(DCI)

“To symbols,
including formats

'WS(DDF)
¢D(CDD)
" PTIPTD)
PR(PRD)
WS(DDF)
cD(CDD)
" PT(PTD)
PR(PRD)
WS(DDF)
CD(CDD)

‘PT(PTD)
PR(PRD)

Control Records 5-25

DUP Control Records
*DUMPDATA
*DUMPDATA E

5-26

additional field
information

general function

To Symbol. When a dump is to cards and a 1442, Model 6 or 7, is used, each card is
checked to see that it is blank before it is punched. If a nonblank card is read, the monitor
system prints a message and waits at SPRET with /100F displayed in the ACCUMULATOR.

Count. This field specifies the number of sectors to be dumped. If present, the count
overrides the contents of the working storage indicator or the disk block count in the
LET or FLET entry; when present, this number of sectors is dumped regardless of
the length of the program or data file.

*DUMPDATA Examples

1 5 10 15 20 25 30 35 40 45 50
(1] ¥DU}MPDATA ulal T lelo] [Dlalrlal | oleliip
(2] -XDu}MvDATATTH Ws| | blalT]alL 1 |3 14197
© |DuMPDATA lws i | DAl | | [] mlﬁ}z

This dumps a data file named DATA from the user area to cards.

This dumps a data file named DATA1 from the fixed area on
cartridge 1003 to working storage on cartridge 1007.

This dumps a data file named DATA2 from working storage
on cartridge 1002 to paper tape.

® ©0

FEErEEE e e e e e

*DUMPDATA E
This control record (1) transfers information from the user area or fixed area to working

~ storage, or (2) makes information from the user area, fixed area, or working storage

available as card or printed output.

The DUMPDATA E operation to output devices differs from the DUMPDATA operation
in that the information on disk, which is assumed to be in packed EBCDIC fornt, 40
words per 80 card columns, is converted to card image format. Thus; the information
printed on a printer is one line per source card (80 print positions), and card output is an
exact, full 80 column duplicate of the input cards in the corresponding STOREDATAE
operation. When the destination is working storage, format conversion does not occur.

format

*DUMPDATA E
summary chart

additional field
information

DUP Control Records
*DUMPDATAE

The contents of working storage are not changed when dumping to output devices, be-
cause information is transferred from the user area, fixed area or working storage directly
to the output devices.

Card column Contents Explanation

1 through 11 *DUMPDATABE

12 Reserved

13 and 14 From symbol See the following summary chart.

15 and 16 Reserved

17 and 18 To symbol See the following summary chart.

19 and 20 Reserved

21 through 25 Name A name is required except when the
dump is from working storage to the
printer.

26 Reserved

27 through 30 Count The count (a right-adjusted decimal

number) specifies the number of
sectors to be dumped. If this field is
blank, the working storage indicator
or disk block count in LET or

FLET is used.
31 through 34 From
cartridge ID
35 and 36 Reserved
37 through 40 To
cartridge 1D
41 through 80 Not used

The following chart is a summary of the information transfers pérformed by DUMPDATA
E.

From symbols To symbols
UA or FX WS
UA, FX, or WS " CD

PR

To Symbol. When a dump is to cards and a 1442, Model 6 or 7, is used, each card is
checked to see that it is blank before it is punched. If a nonblank card is read, the system
prints a message and waits at SPRET with /100F displayed in the ACCUMULATOR.

Count. This field specifies the number of sectors to be dumped. If present, the count

overrides the contents of the working storage indicator or the disk block count in the
LET or FLET entry; when present, this number of sectors is dumped regardless of the
length of the program or data file,

Control Records 5-27

DUP Control Records
*DUMPDATA E
*DUMPLET

5-28

general function

format

additional field
information

*DUMPDATA E Examples

i0 15 20 25 30 35 40 45 50

1 5
(1] t]MHD ATA el UiA] | W] | [DAITA
(2] *l])u% DATIAl LE] IFIx] | lCD) | IDla[TiAlL 1l¢
© [DUMPDAITA E+wls Dip
0 This dumps a data file named DATA from the user area to
werking storage.
9 This dumps a data file named DATA1 from the fixed area to
cards.
9 This dumps a data file from working storage to the printer.
CH T T
*DUMPLET

This operation prints the contents of the location equivalence table (LET) on the principal
print device. Also, the contents of the fixed location equivalence table (FLET) are

printed if a fixed area has been defined on the disk. A program name or data file name can
be specified in this control record to dump only the LET or FLET entry for that program

or data file. A printout of a DUMPLET operation is in Appendix D.

Card column Contents Explanation

1 through 8 *DUMPLET

9 through 20 Reserved

21 through 25 Name Name specifies that only the LET

or FLET entry for that program or
data file is printed.

26 through 30 Reserved
31 through 34 From The cartridge ID specifies that only
cartridge ID the LET (and FLET) on that
cartridge is dumped.
35 through 80 Not used

Name. This optional field specifies the name of a program or data file whose LET or FLET
entry is to be printed. LEET and FLET on all cartridges defined in the current JOB monitor
control record are searched unless a cartridge ID is specified in columns 31 through 34,
When the name field is omitted, the entire contents of LET (and FLET) are printed.

From Cartridge ID, The from cartridge ID specifies that only the LET (and FLET) cn
that cartridge is printed or searched when a name is specified in columns 21 through 25.
When the from cartridge ID field is omitted, LET (and FLET) on all cartridges defined by
the current JOB monitor control record are printed or searched.

general function

format

additional field
information

DUP Control Records

*DUMPLET
*DUMPFLET
*DUMPLET Examples
1 5 10 15 20 25 30 35 40 45 50
(1 IUH‘PLET ' i
[2) xvluu*m 1ilg4 il
© YDuMPILET WAl v 1]
@ This dumps LET (and FLET) from the disks defined by the
current JOB monitor control record.
@ This dumps LET (and FLET) from cartridge 1004.
0 This dumps the LET (or FLET) entry for the program named
MAIN.
e ettt et bt bl b L
HllllIIIIHIIIIIIIIIIIIIIHP[T1ITIIIII 1
*DUMPFLET

This operation prints the contents of the fixed location equivalence table (FLET) on the
principal print device. A program name or data file name can be specified in this control
record to dump the FLET entry only for that program or data file,

Card column Contents Explanation

1 through 10 *DUMPFLETB

11 through 20 Reserved

21 through 25 Name Name specifies that only the FLET
entry for that program or data file
is printed.

26 through 30 Reserved

31 through 34 From The cartridge 1D specifies that only

cartridge 1D the FLET on that cartridge is printed.
35 through 80 Not used

Name, This optional field specifies the name of a program or data file whose FLET entry
is to be printed. FLET on all cartridges defined in the current JOB monitor control
record is searched for the name unless a cartridge ID is specified in columns 31 through
34. When the name field is omitted, the entire contents of FLET are printed.

From Cartridge ID. The from cartridge ID specifies that only the FLET on that cartridge
is printed or searched when a name is specified in columns 21 through 25. When the car-
tridge ID field is omitted, the FLET on all cartridges defined by the current JOB monitor
control record is printed or searched.

Control Records 5-29

DUP Control Records
*DUMPFLET
*STORE

5-30

general function

*DUMPFLET Examples
1 5 10 15 20 25 30 35 40 45 50
Q@ [XDUMPIFLEET
@ [XDUMP|FILEE|T Mia i V|4
© XDUMPIFILET IMA\Nz MIM

This dumps FLET from the disks defined by the current

JOB monitor control record.

e This dumps the FLET entry for the program named MAIN1.
0 This dumps the FLET entry for the program named MAIN2

from cartridge 1002.

*STORE

This operation (1) transfers information from working storage to the user area, or (2)
accepts information from the input devices and transfers it to working storage or the user
area.

All transfer of information from the input devices to the user area is accomplished in 2
phases. The information is first moved to system working storage, then to the user area.
Because of this, information residing in working storage before the STORE operation is
destroyed, and the appropriate working storage indicator in sector @DCOM is set to zero.

The Disk Utility Program (DUP) makes the required LET entry for the program being
stored. The name you specify in columns 21 through 25 is assigned to the program and

is used to generate the LET entry. The LET entry includes the program name, the format
of the program, the number of disk blocks the program occupies, and the disk block
address. An entry is also made in LET for each entry point in the program being stored.

format

*STORE summary chart

Card column
1 through 6
7 through 10

1"

12

13 and 14
15and 16
17 and 18
19 and 20

21 through 25
26 through 30
31 througi-\ 34

35 and 36

37 through 40

41 through 80

Contents
*STORE
Reserved

Subtype (0, 1,
2,3,0r8)

Reserved
From symbol
Reserved

To symbol
Reserved

Name

Reserved

From
cartridge 1D

Reserved

To
cartridge 1D

Not used

DUP Control Records
*STORE

Explanation

For type 3, 4, 5, and 7 subroutines
only.

See the following summary chart.

See the following summary chart.

A name is required except when the
STORE operation is to working
storage.

The following chart is a summary of the information transfers and format conversions

performed by the STORE operation,

From symbols,

including formats

WS(DSF)
CD(CDS)

PT(PTS)

To symbols,

including formats

UA(DSF)
UA or WS(DSF)

UA or WS(DSF)

Control Records 5-31

DUP Control Records
*STORE

5-32

additional field
information

Subtype. This optional field places a subtype number in the header of a subroutine, type
3,4,5, or 7. The subtype number that can be specified for each type of subroutine is:

Code in
Subroutine description Type subtype field

In-core subroutines .4
Disk FORTRAN 1/0 subroutines
Arithmetic subroutines

Nondisk FORTRAN /0O and ‘2"
“2Z'* device subroutines

Function subroutines

Dummy 1LS02, |LS04 stored in
monitor system library

User-written 1LS02, LS04 that 7 0
replace dummy 1LS02, 1LSO4

N D W W W W
- 0 W W N = O

From Symbol, If the STORE operation is from working storage and the corresponding
working storage indicator is zero, an error message is printed.

*STORE Examples
) 5 10 15 20 25 30 35 40 45 50
Q@ [XstloRle elpl | lwis
O [¥TlorlE ws| [Jula] | mlali v
© [XSToRE: 15& cpl | U |]riLls 4I
I

This reads a program from cards and stores it in working i

storage.

it in the user area.

9 This names a program in working storage MAIN and stores

This reads from cards an 1L.S04 you have written and stores

it in the user area.

I 1 I A T I
I T

14 [
rrrrT FrrrrrrerrrrerrTTd

general function

format

DUP Control Records
*STOREDATA

*STOREDATA

This control record (1) transfers information from working storage to the user area or
fixed are, or (2) accepts information from input devices and moves it to working storage,
the user area, or fixed area. DUP assumes that input to this operation is in data format;
output from this operation is always in data format.

Information is transferred directly from the input devices to the user area or fixed area.
Thus, the contents of working storage remain the same if the STORE operation is to the
fixed area. Because the boundary between the user area and working storage is moved by
store and delete operations, a STOREDAT A operation to the user area destroys informa-
tion residing in working storage before the STOREDATA operation,

DUP makes the required LET or FLET entry. The name you specify in columns 21 through
25 is assigned to the data file or macro library and is used to generate the LET or FLET
entry. DUP also supplies the disk block count required in the LET or FLET entry if the
source is cards or paper tape. If the source is working storage, the sector count coded

in the STOREDATA control record is used.

Card column Contents Explanation

1 through 10 *STOREDATA

11 and 12 Reserved

13 and 14 From symbol See the following summary chart.
15 and 16 Reserved

17 and 18 To symbol See the following summary chart.
19 and 20 Reserved

21 through 25 Name A name is not required when the

STOREDATA operation is from cards
or paper tape to working storage.

26 Reserved

27 through 30 Count If the source is working storage, the
count is the number (in decimal) of
sectors of data to be stored. This
count overrides the contents of the
working storage indicator. If the
count field is blank, the contents of
the working storage indicator are
used. If the source is cards, the
count is the number (in decimal) of
cards to be read. |f the source is
paper tape, the count is the number
(in decimal) of paper tape records
to be read.

31 through 34 From

cartridge 1D
35 and 36 Reserved
37 through 40 To
cartridge |D
41 through 80 Not used

Control Records 5-33

DUP Control Records
*STOREDATA
*STOREDATAE

5-34

*STOREDATA
summary chart

general function

The following chart is a summary of the information transters and format conversions per-
formed by STOREDATA.

From symbols, To symbols,
including formats including formats
WS(DSF, DDF, DCI) UA or FX(DDF)
CD(CDS, CDD, CDC} UA, FX, or WS(DDF)
PT(PTS, PTD, PTC) UA, FX, or WS(DDF)

Note. When temporary mode is indicated in column 8 of
the current JOB monitor control record, the STOREDATA
operation is restricted to storing in the UA and WS only.

¥STOREDATA Examples

1 5 10 15 20 25 30 35 40 45 50
@ TORERATA [P | WS R
9 SITIOREDIATIAL | WSl | Ul | [FDILE!] (9ll@ls 11pi¢l5
© xsirioRieplAl | el | U | FliUeR] [pZad
O STOREDATAL | WS| | WA _LIFIUUES LI

working storage.

This transfers a data file named FILE1 that occupies 5
sectors from system working storage to the user area on
cartricdge 1005.

This reads a data file named FILE2 from cards, and stores
it in the user area. 200 cards are read.

0 This reads a data file from paper tape, and stores it in system

to the user area. Count is in the working storage indicator.

‘o This transfers a data file named FILE3 from working storage

*STOREDATAE

This control record (1) transfers information from working storage to the user area or
fixed area, or (2) accepts information from the card reader and transfers it to working
storage, the user area, or fixed area.

When input is from cards, the source cards are converted to packed EBCDIC format, that
is 2 columns per word, or 3 cards per sector. Thus, the input is assumed to be any of the

256 EBCDIC characters in card code. When the source is working storage, no conversion

takes place.

Information is transferred directly from the input device to the user area or fixed area.
Thus, when the STOREDATAE operation is to the fixed area, the contents of working
storage are not changed. When the STOREDATAE operation is to the user area, the
contents of working storage are destroyed because the boundary between the user area and
working storage is moved back and forth by delete and store operations.

DUP Control Records
*STOREDATAE

The Disk Utility Program (DUP) makes the required LET or FLET entry. The name that
you specify in columns 21 through 25 is assigned to the data file and is used to generate
the LET or FLET entry. Also, DUP supplies the disk block count required in the LET or
FLET entry if the source is cards or paper tape. If the source is working storage, the
sector count specified in the STOREDATAE control record is used.

format Card column Contents Explanation

1 through 11 *STOREDATAE

12 Reserved

13and 14 From symbol See the following summary chart.
15 and 16 Reserved

17 and 18 To symbol See the following summary chart.
19 and 20 Reserved

21 through 25 Name A name is not required when the

STOREDATAE operation is from
cards to working storage.

26 Reserved
27 through 30 Count If the source is working storage,
the count is the number (in decimal)
of sectors of data to be stored. This
count overrides the contents of the
working storage indicator. If the
source is cards, the count is the
number (in decimal) of cards to be
read.
31 through 34 From
cartridge ID
35 and 36 Reserved
\
37 through 40 To
cartridge 1D
41 through 80 Not used

The following chart is a summary of the information transfers performed by STOREDATAE.

*STOREDATAE Frem symbols, To symbols,
summary chart including formats including formats
WS UA or FX
CcD UA, FX, or WS

Note. When temporary mode is indicated in column 8
of the current JOB monitor control record, the
STOREDATAE operation is restricted te storing in the
UA and WS only.

Control Records 5-35

DUP Contro! Records

*STOREDATAE
additional field Count, The corresponding dump operation, DUMPDATA E, transfers a whole number of
information sectors to cards. To avoid unwanted output, the number of cards stored should conse-

quently be a multiple of 8 (blank cards can be added for that purpose).

*STOREDATAE Examples

1 5 10 o ;5_— 20 25 30 35 40 45 50
@ HSrlorleplalialel Wis 1 IFIX | IFliLES] [giglgl2
(2] STOQEDAT&’EWCDF"[\HE 45%56 1¢|¢3

This transfers a data file named FILES from working storage

to the fixed area. The file occupies 2 sectors.

e This reads a data fite of 56 cards into working storage on

cartridge 1003.

I

5-36

general function

format

DUP Control Records
*STOREDATACI

*STOREDATACI

This control record (1) transfers information from working storage to the user area or
fixed area on disk, or (2) accepts information from input devices and moves it to working
storage, the user area, or fixed area.

If the input is from cards or paper tape, the STOREDATACI operation assumes the input
is in card or paper tape core image format. If the input is from working storage (the
information has been previously dumped to working storage or stored in working storage
from an input device), the appropriate working storage indicator must indicate disk core
image (DCI) format; otherwise, the STOREDATACI operation is not performed. Output
from the STOREDATACI operation is always in disk core image format.

All transfer of information from input devices to the user area or fixed area is done directly;
that is, the transfer is not made via working storage. Thus, when the STOREDATACI
operation stores information from an input device to the fixed area, the contents of
working storage are not destroyed. Note, however, the contents of working storage are
destroyed when storing from an input device to the user area because the boundary
between the user area and working storage is moved back and forth by delete and store
operations.

The Disk Utility Program (DUP) makes the required LET or FLET entry. The name that
you specify in columns 21 through 25 is assigned to the data file and is used to generate

the LET or FLET entry. Also, DUP computes the disk block count required in the LET

or FLET entry from the count specified in the STOREDATACI control record.

Card column Contents Explanation

1 through 12 *STOREDATACI

13 and 14 From symbol See the following summary char{.
15 and 16 Reserved

17 and 18 To symbol See the following summary chart.
19 and 20 Reserved

21 through 25 Name A name is not required when the

STOREDATACI operation is to
working storage.

26 Reserved
27 through 30 Count The count {a right-justified decimat
number) is the number of records
{sectors, cards, or paper tape
records) in the core image input. The
count is not required if the source is
working storage; however, when used
in this case, the count overrides the
contents of the working storage
indicator.
31 through 34 From
cartridge 1D
36 and 36 Reserved
37 through 40 To
cartridge I1D
41 through 80 Not used.

Control Records 5-37

DUP Contro! Records
*STOREDATACI
*STORECI

*STOREDATACI
summary chart

general function

5-38

The following chart is a summary of the information transfers and format conversions
performed by STOREDATACI.

From symbols,
including formats

To symbols,
including formats

WSs(DCH) UA or FX(DCI)
CD(CDC, CDD) UA, FX, or WS(DCI)

PT(PTC,PTD) UA, FX, or WS(DCI)

Note. When temporary mode is indicated in column 8
of the current JOB monitor control record, the
STOREDATACI operation is restricted to storing in
the UA only.

¥*STOREDATAC! Examples

5 10 15 20 25 30 35 40 45 50

1
O XS[TORED
(2] '3-ITOIPE TAGLCD | WS 010

T
—
Tom
0
i)
<
"
—
'\
™
n
by
[

]
=]
Y

cartridge 1001 to the fixed area on the system cartridge.

This reads a data file from cards and stores it in working

o This transfers the data file, FILES, from working storage on
storage. 108 cards are read.

T

S A
I 1 I

} |
rerrrreertd T

*STORECI

This control record obtains an object program from working storage or from an input de-
vice, converts it into a core image program using the core load builder, and stores the core
image program in the user area or fixed area.

The core load builder (CLB) is called to build a core image program for the STORECI
operation as if execution were to follow; that is, that portion of the core load residing below
core location 4096 (decimal) in 4K systems, or 5056 in larger systems, is placed in the sys-
tem core image buffer, and LOCALSs and/or SOCAL:s are placed in system working storage.
(See “Construction of a Core Load” in Chapter 3.) The STORECI operation stores all

these portions of the core image program in the user area, fixed area, or working storage.

A DCI program stored in the user area or fixed area includes the transfer vector built by the
core load builder; however, neither the disk I/O subroutine nor COMMON, if any, is in-
cluded.

DUP Control Records
*STORECI

The Disk Utility Program (DUP) makes the required LET or FLET entry for the core image
program as it is stored. The name that you specify in columns 21 through 25 is assigned

to the DCI program and is used to generate the LET or FLET entry. Also, DUP obtains

the disk block count required in the LET or FLET entry from the core load builder.

Card column

format Contents Explanation
1 through 8 *STORECI
9 Disk 1/0 This column specifies the disk 1/0
subroutine subroutine to be used by the core
indicator load during execution.
10 Reserved
1 LOCAL-can- A punch (any character) in this
call-LOCAL column enables a LOCAL sub-
indicator routine to call another LOCAL.
12 Special ILS A punch (any character) in this
indicator column indicates that ILSs for this
core load should be chosen from
the special ILSs.
13 and 14 From symbol See the following summary chart.
15and 16 Reserved
17 and 18 To symbol See the following summary chart.
19 and 20 Reserved
21 through 25 Name
26 Reserved
27 through 30 Count A decimal number (right-justified)
that indicates the number of
supervisor control records (FILES,
LOCAL, NOCAL, and G2250) that
follow.
31 through 34 From
cartridge 1D
35 and 36 Reserved
37 through 40 To
cartridge |D
41 Reserved
42 Core map N or blank. An N indicates that a core
indicator map is not to be printed for this core
load. A blank causes a core map to be
printed.
43 through 80 Not used

Control Records

5-39

DUP Control Records
*STORECI

540

*STORECI
summary chart

additional field
information

The following chart is a summary of the information transfers and format conversions per-
formed by STORECI.

From symbols, To symbols,
including formats including formats
WS(DSF) UA or FX(DCI)
CD(CDS) UA or FX(DCI)
PT(PTS) UA or FX(DCH

Note. When temporary mode is indicated in column 8
of the current JOB monitor control record, the
STORECI operation is restricted to storing in the UA
only.

Disk 1/O Subroutine Indicator. This column specifies the disk I/O subroutine that is loaded
into core by the core image loader for use by the core load during execution. The charac-
ter punched in this column for each disk I/O subroutine is:

Column 9 Disk 1/0 subroutine
Oorl DISK1
N DISKN
blank or Z DISKZ

Any other character is invalid and causes the printing of an error message.

LOCAL-Call-LOCAL Indicator. A punch (any character) in column 11 allows a LOCAL
subroutine to call another LOCAL subroutine during execution if the restrictions listecl
under “LOCAL-Calls-a-LOCAL” in Chapter 6 are met.

Special ILS Indicator. A punch (any character) in column 12 indicates that special interrupt
level subroutines (ILSs named with an X before the number, as ILSX4) are to be used for
this core load. If column 12 is blank, the standard set of ILSs is used.

In addition to the functions of the standard ILSs, special ILSs at the beginning of their
execution save the contents of index register 3 and set this register to point to the trans-
fer vector. Special ILSs restore the original contents of index register 3 at the end of
their execution. Because the special ILSs save and restore the contents of index register 3,
you can use this register in vour programs.

Special ILSs require 5 more words of core storage per ILS than standard ILSs. The special
ILSs for interrupt levels 2 and 4 are loaded, together with other subroutines, as part of the
core load. You can write ILSs to replace any of the IBM-supplied ILSs, standard or special.

DUP Control Records
*STORECI

Count, A right-justified number in columns 27 through 30 that indicates the number of
supervisor control records following this control record. DUP reads these control records
for use by the core load builder before the STORECI operation is performed. The program
name (columns 21 through 25 of this control record) must not be used on the LOCAL,
NOCAL, and G2250 control records. Data files specified in the FILES supervisor control
records that follow must be stored in the fixed area (see ““Use of Defined Files” in Chapter

6).
*STOREC! Examples

1 10 15 20 25 30 35 40 4; 50
© [FRTORECHT | [T WSl TT0A | MAITNA
@ [XSTORECH 2] | XD [FIXI | MAlINEZ 103 L
© X3]

el TR T oA T MalNZ gedz | 11T
L j%] |

This converts the DSF program, MAIN1, into DCI format

and transfers it from working storage to the user area.

This specifies that DISK1 is to be used by this core load,

® @

and that special | LSs are to be used. The program,

MAIN7, is read from cards and stored in the fixed area

on cartridge 1003. A in column 42 suppresses the

printing of a core map.

This reads program MAIN2 from paper tape and stores

®

it in the user area. The X in column 11 indicates that a

LOCAL. calls another, and 0002 in 27-30 indicates that

two supervisor control records follow.

R RARAARRRRRARARA RS AR IR AR AR EARA

Control Records

5-41

DUP Control Records
*STOREMOD

542

general function

format

*STOREMOD

This control record transfers information from working storage into the user area or fixed
area,

If the name specified in columns 21 through 25 is identical to an entry in LET or FLET,
the information in working storage overlays the DSF program, DCI program, or data file
in the user area or fixed area for that entry, The format of working storage must match
the format of the LET or FLET entry that is replaced.

The STOREMOD operation pemmits you to modify a DSF program, DCI program, or

data file stored in the user area or fixed area without changing its name or relative posi-
tion within the storage area. However, the length of the program or data file in working
storage after being changed cannot be greater than the length of the old version of the
program or data file that it replaces in the user area or fixed area. No change is made to the
LET or FLET entry as a result of this operation.

If the name on the STOREMOD control record does not match an entry in LET or FLET,
the contents of working storage are stored by STORE, STOREDATA, or STOREDATACI,
when the respective format is DSF, DDF, or DCI. The STOREMOD operation is not allowed
when temporary mode is indicated in the current JOB monitor control record.

Card column Contents Explanation
1 through 10 *STOREMODbB
11 Subtype
12 Reserved
13 and 14 From symbol The source is a/lways working storage.
16 and 16 Resarved
17 and 18 To symbol See the following summary chart.
19 and 20 Resarved
21 through 25 Name
26 through 30 Reserved
31 through 34 From
cartridge |ID
35 and 36 Reserved
37 through 40 To
cariridge ID
41 through 80 Not used

*STOREMOD
summary chart

DUP Control Records
*STOREMOD

The following chart is a summary of the information transfers and format conversions
performed by STOREMOD.

From symbals,
including formats

WS(DSF)
WS(DDF)

WSs(DCI)

To symbols,
including formats

UA(DSF)
UA or FX(DDF)

UA or FX(DCI)

Note: The format and size indicators of a data file in working storage must match those
of the existing LET or FLET entry. Since the execution of your program that references
data files stored in working storage does not set these indicators, a subsequent STOREMOD
does not work. These indicators can be set prior to execution by performing a DUMPDATA

operation of the stored data file to WS.

*STOREMOD Examples

1 5 10 15 25 30 35 40 45 50
Q K3 le%m{ov WW U 1 1 il
@ XITOREMAD les FIX | IF[LEl] |] w{‘z 1IM3!“

This replaces the program, MAIN1, stored in the user area
with an updated version from working storage.

This replaces the data file, FILE1, stored in the fixed area
on cartridge 1002 with an updated version from working
storage on cartridge 1003.

N - —

AR T

Control Records 543

DUP Control Records
*DELETE

*DELETE

general function This operation removes a specified DSF program, DCI program, or data file from the user
area or fixed area. The deletion is accomplished by the removal of the program or data
file LET or FLET entry, including the dummy entry for associated padding, if any. The
DELETE operation is not allowed if temporary mode is indicated in the current JOB
monitor control record.

When a program or data file is deleted from the user area, that area is packed so that

(1) the areas represented by the remaining LET entries are contigious, and (2) working
storage is increased by the amount of disk storage formerly occupied by the deleted
program or data file. The contents of working storage are not destroyed by the DELETE
operation.

When a DCI program or a data file is deleted from the fixed area, that area is not packed.
The FLET entry for the deleted DCI program or data file, including the dummy entry

for associated padding, if any, is replaced by a single dummy entry (1DUMY). This IDUMY
entry represents the area formerly occupied by the deleted DCI program or data file, and
its padding. DUP store operations can place new entries in the deleted areas of the fixed
area.

format Card column Contents Explanation
1 through 8 *DELETEY
9 through 20 Reserved
21 through 25 Narne
26 through 30 Reserved

31 through 34 From The deletion is performed on the
cartridge ID specified cartridge only. If a

cartridge ID is not specified, and the
program or data file name (columns
21 through 25) is present in LET or
FLET of more than one cartridge
specified for this JOB, deletion is from
the first logical drive on which the
name is found.

35 through 80 Not used

*DELETE Examples

1 5 10 15 20 25 30 35 40 45 50
(1) Fl E[TE MAIN]4
@ [XDELETE | FliLE] MW

This deletes LET or FLET entry for the program, MAIN1,
from the cartridge on the first logical drive where the name
is found.

e This detetes the data file, FILE1, from cartridge 1004,

T U TS S Y NN SN VO SN WA NN TN VY SN T S0 S

I A I A O

544

general function

definea FX

increase or
decrease the FX

delete FX

format of
DEFINE
FIXED
AREA

DUP Control Records
*DEFINE FIXED AREA

*DEFINE

This control record performs 4 functions.

e It initially establishes the fixed area and its size on disk.

o It increases or decreases the size of the fixed area,

o It deletes the fixed area and FLET.

® It deletes the assembler, FORTRAN compiler, RPG compiler, or COBOL compiler, ot
any combination of these 4 programs from the IBM system area on the master cartridge.

The definition of a fixed area on disk allows you to store in fixed locations the programs
and data files, which you can subsequently refer to by their sector addresses. The fixed
area is defined in cylinder increments; the minimum required storage space is one cylinder.
When a fixed area is defined, the system uses one cylinder for the fixed location equiva-
lence table (FLET). This cylinder used for FLET is included in the total size of the fixed
area; therefore, the initial definition of the fixed area must be at least 2 cylinders,

The fixed area is increased in cylinder increments. It is decreased in cylinder increments
by deleting unused cylinders after the last program or data file stored in the fixed area.

If all DCI programs and data files have been deleted from the fixed area (by using
*DELETE), the fixed area and FLET can be deleted by specifying a number in the count
field that reduces the fixed area and FLET to one cylinder or less.

Card column Contents Explanation

1 through 8 *DEFINEWB

9 through 18 FIXEDBAREA

19 through 26 Reserved

27 through 30 Count In initial definition of the fixed area,

the count is the number {in decimal)
of cylinders to be allocated as the
fixed area; a minimum of 2 must be
specified. After initial definition, the
count is the number of cylinders by
which the fixed area is to be increased
or decreased.

31 Sign Blank if the fixed area is being increased;
a minus sign if the fixed area is being
decreased.

32 through 36 Reserved

37 through 40 Cartridge ID This ID specifies the cartridge that is

being altered; when omitted, the system
cartridge is assumed.

41 through 80 Not used

Note. The DEFINE FIXED AREA operation is not allowed if temporary mode is
indicated in the current JOB monitor control record.

Control Records 5-45

DUP Control Records
*DEFINE FIXED AREA
*DEFINE VOID

546

delete the assembler
or compiler

format of
DEFINE
VOID

*Define Fixed Area Examples

1 5 10 15 2 25 30 35 " 40 45 50
© FDENE FLXED ARER m 5
O X EF%NE FIIXED INREA }dilz- 1(15l Iz

o This defines a 5 cylinder fixed area on the master cartridge.

e This decreases the size of the fixed area on cartridge 1002

by 2 cylinders.

A

Deletion of the assembler, FORTRAN compiler, RPG compiler, or COBOL compiler
causes the specified monitor program to be removed from the IBM system area on the
master cartridge. The IBM system area is then packed so that remaining programs and
areas occupy the area formerly occupied by the deleted monitor program. SLET entries
are updated to reflect the new disk storage allocations for the monitor programs. The
reload table is used to make adjustments in the programs that use disk storage addresses
from SLET.

When the assembler, FORTRAN compiler, RPG compiler, or COBOL compiler is to be
deleted, you must perform this deletion before defining a fixed area on the cartridge, or
after completely removing a defined fixed area (see the previous discussion of decreasing
the size of the fixed area). Once one of these programs is deleted, it can be restored by
performing an initial load only.

Card column Contents Explanation
1 through 8 *DEFINEY
9 through 13 VOIDY
14 through 22 ASSEMBLER or
FORTRANL®b or
RPGUBBBBIBY or
COBOLbBY®Ib
23 through 80 Not used

Note. The DEFINE VOID operation is not allowed when temporary
mode is indicated in the current JOB monitor control record.

The processing of a DEFINE VOID operation restores the original system principal
printer if a CPRNT monitor control record has specified that monitor and supervisor
control records be printed on the console printer,

general function

format

DUP Control Records
*DWADR

*DWADR

This operation causes a sector address to be written on every sector of working storage

on the cartridge specified by the DWADR control record or, if a cartridge ID is not speci-
fied, on every sector of system working storage. The operation restores correct disk sector
addresses in working storage if they have been modified during execution of your program.
The contents of working storage prior to the DWADR operation are destroyed.

A dummy // DUP monitor control record is printed on the piincipal printer following the
printing of the *DWADR control record and the DUP exit message.

Card column Contents Explanation

1 through 6 *DWADR

7 through 36 Reserved

37 through 40 Cartridge 1D This ID specifies the cartridge

on which the working storage
sector addresses are to be re-
written.

41 through 80 Not used

Note. The DWADR operation is not allowed if temporary mode is indicated in the current
JOB monitor control record.

Control Records 547

DUP Control Records

*DFILE
*DFILE
general function This operation reserves disk space in either the user area or fixed area as a named data file
or macro library. Data is not moved as a result of the DFILE operation; this function pro-
vides disk space allocation only. The contents of working storage are not changed except
when defining space in the user area; the contents of working storage on that drive are
destroyed since the user area and working storage are adjacent areas. (See “Use of Defined
Files” in Chapter 6 for a suggested use of this control record.)
DUP makes the required LET or FLET entry. The name specified on the DFILE control
record is assigned to the area and is used to generate the LET or FLET entry. DUP uses
the sector count specified on the DFILE control record to supply the disk block count in
the LET or FLET entry.
format Card column Conzents Explanation

1 through 6 *DFILE
7 through 16 Reserved
17 and 18 To symbol Area in which the file is to be

reserved: UA for user area,

FX for fixed area.
19 and 20 Reserved
21 through 25 File name The name assigned to the area

reserved for the data file or

macro library.
26 Reserved
27 through 30 Count The number (in decimal) of

sectors to be reserved
31 through 36 Resarved
37 through 40 To

cartridge ID

41 through 80 Not used

Note. The DFILE operation is restricted to reserving space only in the UA when
temporary mode is indicated in the current JOB monitor control record.

5-48

general function

format

DUP Control Records
*MACRO UPDATE

*MACRO UPDATE
This operation causes execution of the Macro Update Program (MUP). The MUP performs:

® Initialization of a macro library

Physical or logical concatenation of macro libraries
Addition, deletion, or name redefinition of stored macros

Statement addition or deletion within a stored macro

Punching of stored macros into cards
® Listing of macro library contents either at statement or macro level

The functions to be performed by MUP are indicated by means of MUP control statements.
The format and functions of these control statements are described in the publication

IBM 1130/1800 Assembler Language, GC26-3778. The MUP control statements immedi-
ately follow the MACRO UPDATE DUP control record in the job stream,

The Macro Update Program requires an IBM 1131 Central Processing Unit, Model 2 or 3,
with 8192 (decimal) or more words of core storage, If the MACRO UPDATE DUP contrdl
record is read by a system with 4096 words of core storage, it is considered an invalid con-
trol record. The MUP cannot be used if temporary mode is indicated in the current JOB
monitor control record.

Card column Contents Explanation
1 through 13 *MACROBUPDATE

14 through 36 Reserved

37 through 80 Not used

Note. Keyboard or paper tape input to the MUP of the Disk Utility Program assumes a
one-to-one relationship with any corresponding card input record. Thus, position 1 of
assembler statements that are input record for MUP corresponds to card column 1 and not
to column 21.

Control Records 549

Assembler Control Records

ASSEMBLER CONTROL RECORDS

functions Assembler control records are used to specify optional operations that affect the assembler
and assembly output. These control records are placed in the input stream as follows:

le————— Next monitor
control record

Assembler source statements

]Assembler control records

Assembler control records can be entered in card or paper tape form along with the source
program card deck or paper tape, or they can be entered from the console keyboard (sze
“Entering Jobs From the Console Keyboard” in Chapter 7).

In most cases, the source program is passed through the assembler only once. This is always
true when input is from the keyboard or paper tape reader. When input is from cards,
passing the source deck through the assembler a second time (2-pass mode) may be re-
quired. Further information about 2-pass mode is presented in the descriptions of the

TWO PASS MODE, LIST DECK, and LIST DECK E control records in this section. These
3 control records and the PUNCH SYMBOL TABLE control record are ignored when en-
tered from the keyboard or paper tape reader.

5-50

coding assembler
control records

coding keyboard and
paper tape input

Assembler Control Records
how to code

All assembler control records have the following format:

Card column Contents Explanation

1 * Asterisk

2 through 71 Option Replace option with the key-
words for the control record
being used.

72 through 80 Not used

Note. Assembler control records are coded in free form; that is, any number of
blanks can occur between the characters of the option. However, only one blank
can separate the last character of the option and the first character of any required
numeric field. Remarks can be included after the option or numeric field; how-
ever, at least one blank must separate the last character of the option or numeric
field and the remarks.

If an assembler control record contains an asterisk in column one, but the option is not
identical with the format shown for the control record, the control record followed by an
assembler error message is printed in the control record listing. The control record in error
is ignored; an error does not result, but the specified option is not performed.

Assembler control records are coded the same for card, paper tape, and keyboard input.
Assembler language source statements are coded the same for keyboard and paper tape
input as for cards, with the following exceptions:

® The source statements do not contain leading blanks corresponding to card columns
1 through 20.

® The source statements are limited to 60 characters

The first record processed by the assembler is checked for an asterisk as the first character.
If an asterisk is the first character, the record is considered an assembler control record.
This procedure continues until the first nonasterisk character is detected as the first charac-
ter. For this record, and all following records (up to and including the END statement),
the first character of each record is treated as if it were in card column 21; therefore, the
first noncontrol record should not be an * comments statement.

Note 1. Paper tape input to the assembler is punched into paper tape in PTTC/8 code, one
frame per character. Any delete codes punched in paper tape are passed over by the
assembler; assembly is continuous until the end.

Note 2. Keyboard and paper tape input to the Macro Update Program (MUP) of DUP
assumes a one-to-one relationship with the corresponding card input. Thus, position one
of assembler statements that are input for MUP corresponds to card column 1 and not to
column 21.

Control Records 5-51

Assembler Control Records
*TWO PASS MODE

*TWO PASS MODE

general function This control record causes the assembler to read the source program deck twice. TWO
PASS MODE must be specified when:

® You want a list deck punched by the 1442 Card Read Punch, Model 6 or 7 (see “*LIST
DECK” and “*LIST DECK E” in this chapter).

® A one-pass operation cannot be performed because the intermediate output (source
records) exceeds the capacity of working storage.

This control record is ignored if source statements are entered through the keyboard or the
paper tape reader.

format Card column Contents Explanation
1 * Asterisk
2 through 71 TWO PASS
MODE
72 through 80 Not used

If a copy of the source deck, including all assembler control records, is placed behind the
original, the source deck is read twice, and a stacked job is possible in 2-pass mode.

When a deck is being assembled in 2-pass mode, the assembler is ready to read another card
as soon as pass one processing of the END card is completed. Therefore, the source deck
or a copy of the source deck must be placed immediately behind the END card of the
first-pass deck. A monitor control record after the first END card causes the assembler to
execute a CALL EXIT; the assembly is not completed.

If the source deck has not bezn copied, the END card must be the last card in the hopper.

To continue:

1. Press START on the card reader and PROGRAM START on the console to process
the END card when the reader goes not ready.

2. Remove the source deck from the stacker and place it in the hopper.

3. Press START on the card reader and PROGRAM START on the console again.

The operation can be made continuous if you remove the source cards from the stacker

during pass one and place them behind the END card in the hopper.

To complete the assembly at the end of pass 2, press START on the card reader and
PROGRAM START on the console to process the END card for the second pass.

5-52

general function

format

Assembler Control Records
*LIST

*LIST

This control record causes the assembler to provide a printed listing of the source program
on the principal print device (1403 Printer, 1132 Printer, or console printer). If a LIST
control record is not used, only those statements in 'which assembly errors are detected
are listed. When 2-pass mode is specified, all BSS, BES, ORG, and EQU statements that
contain errors are listed during pass one of the assembly.

Card column Contents Explanation
1 * Asterisk

2 through 71 LIST

72 through 80 Not used

Control Records 5-53

Assembler Control Records
*LIST

The format of a printed listing for an 8K or larger system is shown by:

o022 __2

AVE+2 DIVIDE BY (I1+J)

100F 0 AB1l4 cools M

1010 0 8012 00019 M A SAVE+1 AND ADD (A+BI/C
1011 0 3000 00020 WALT

1012 0 6038 00021 EXIT

1014 0000 00022 BSS E O

1014 00 0000C000 00023 B DEC 49152

1016 00 Q000EQ0Q0 00024 F DEC 57344

0 Address of the instruction; address of the label, if any
o Relocation indicators

9 One of the following:
a. First word of the assembled code
b. For EBC statements, the number of EBC characters
c. For BSS and BES statements, the number of words reserved for the block
d. For ENT, ILS, and ISS statements, eand eare the entry label in name code
e. For LIBF and CALL statements, e and e are the name of the subroutine in name code

e One of the following:
a. Second word of assembled code
b. For ENT, ILS, and ISS statements, eando are the entry label in name code
c. For LIBF and CALL statements, o and o are the name of the subroutine in name code

e Statement number
e Error fiags, if any
o Macro code indicator, if any

e Label

e Operation code

@ Format
0 Tag

@ Operands (and your comments)

@ 1D and sequence number, if any

5-54

Assembler Control Records
*LIST

When LIST is specified for a 4K system, or with 2-pass mode, the format of the printed
listing is:

100F 0 AB8l4 M D SAVE+2 DIVIDE BY (I+J)
1010 0 8012 M A SAVE+] AND ADD (A+B)/C
1011 0 3000 WAILT

1012 0 6038 EXIT

1014 0000 BSS E O

1014 00 0000C000 B DEC 49152

1016 00 0000EOOO F DEC 57344

o Address of the instruction; address assigned to the label, if any
e Relocation indicators

e One of the following:
a. First word of the assembled code
b. For EBC statements, the number of EBC characters
For BSS and BES statements, the number of words reserved for the block
d. For ENT, ILS, and 1SS statements, eand e are the entry label in name code
e For LIBF and CALL statements, eand eare the name of the subroutine in name code

o

One of the following:

a. Second word of assembled code

b. For ENT, ILS, and ISS statements, Oand eare the entry label in name code

c. For LIBF and CALL statements,e and °are the name of the subroutine in name code

e Error flags, if any

e Macro code indicator, if any

o Label

e Operation code

0 Operands (and your comments)

@ 1D and sequence number, if any

A complete sample program listing is in Appendix H.

Control Records 5-55

Assembler Control Records
*XREF

*XREF

general function This control record causes the assembler to produce a statement numbered listing and a
statement numbered cross-reference symbol table on the principal print device if the core
size is 8K or larger. This control record is invalid if the core size is 4K, and, if detected,
is ignored. A waming message is printed.

A LIST control record is not needed when XREF is used. When neither an XREF nor a
LIST control record is used, only those statements in which assembly errors or warnings
are detected are listed. When 2-pass mode is specified, all BSS, BES, ORG, and EQU state-
ments that contain errors are listed during pass one of the assembly.

The cross-reference symbol table is not printed if 2-pass mode is specified or if symbol
table overflow occurs during assembly. When either of these conditions occur, the XREF
control record produces only a listing.

The assembler does not assign sequence numbers to comments statements when a LIST
OFF statement in your program is in effect. Because of this, the statement numbers in a
cross-reference symbol table listing for the same program may be different from one assem-
bly to another, depending on whether or not the program contains LIST OFF (and LIST
ON) statements.

format Card column Contents Explanation
1 * Asterisk
2 through 71 XREF

72 through 80 Not used

5-56

K1
K1é
K20
K32
K40
K640
LINE
LINES
LooOP

0 Symbol

Assembler Control Records
*XREF
*LIST DECK

The format of the statement-numbered listing is the same as the format shown under
“*LIST” for a system with a core size of 8K or larger. The format of the cross-reference
symbol table is:

9

1050 0 0000 7+R 00013sR 00038sR 000579R 00063sR
106C 0 00083 001234R

105E 0 00072

105F 0 00073

1060 0 00074 00065sR

1061 0 00075 00003sR Q0019sR

159F 0 00131 000449R 001169R 00117sR 001219R

1064 0 00078 00062sR 000649M D000689M

1022 0 00026 000408

O-Value of the symbol

e Relocation indicator

OStatement number of statement that defines the symbol

Statement numbers and associated reference type indicators (B for branch to, M for modification,
or R for reference to) for the statements that use the symbols

general function

format

Multiply defined symbols are flagged in the cross-reference symbol table with the message
MULTIPLY-DEFINED, Undefined symbols are listed separately under the header
***UNDEFINED SYMBOLS*#*_ Symbols that refer to the system symbol table are
flagged with SYSMB in the statement number field of the cross-reference entry.

A list of the statement numbers of all statements flagged with errors or warnings is printed
at the end of the statement numbered listing under the header: ERROR STATEMENT
LINE NUMBERS.

*LIST DECK

This control record causes a list deck to be punched when the principal I/0 device is a
1442 Model 6 or 7 Card Read Punch. This control record is ignored if entered from the
2501 Card Reader, the paper tape reader, or the keyboard.

Card column Contents Explanation
1 * Asterisk

2 through 71 LIST DECK

72 through 80 Not used

Control Records 5-57

Assembler Control Records
*LIST DECK

The LIST DECK option requires 2 passes of the source deck (TWO PASS MODE) through
the assembler. Object information is punched into columns 1 through 19 during pass two.

5-58

The card column contents of a punched list deck card are:

Card column

1 through 4

6and 7
8

9 through 12

13 through 16

17

18 and 19

20

21 through 25
26

27 through 30
31

32

33

34

35 through 71
72

73 through 80

Contents

Address of the instruction; address assigned to the
label, if any.

Blank
Relocation indicators
Blank

One of the following:

1. First word of the assembled code.

2. For EBC statements, the number of EBC
characters.

3. For BSS and BES statements, the number of
words reserved for the block.

4. For ENT, ILS, and ISS statements, columns
9 through 16 contain the entry label in name
code.

5. For LIBF and CALL statements, columns 9
through 16 contain the name of the subroutine
in name code.

One of the following:

1. Second word of the assembled code.

2. For ENT, ILS, and ISS statements, columns
9 through 16 contain the entry label in name
code.

3. For LIBF and CALL statements, columns 9
through 16 contain the name of the subroutine
in name code.

Blank

Error flags, if any

Macro code indicator, if any

Label

Blank

Operation code

Blank

Format

Tag

Blank

Operands (and your comments)

Blank

ID and sequence number, if any

general function

format

general function

format

general function

format

Assembler Control Records
*LIST DECK E
*PRINT SYMBOL TABLE
*PUNCH SYMBOL TABLE

*LIST DECK E

This control record causes a list deck to be punched when the principal I/O device is a
1442 Model 6 or 7 Card Read Punch. This control record is ignored if entered from a
2501 Card Reader, paper tape reader, or the keyboard.

The LIST DECK E option requires 2 passes of the source deck (TWO PASS MODE) through
the assembler. Only error flags, if any, are punched (columns 18 and 19) during the second
pass. Assembler error detection codes are described in Appendix A.

Card column Contents Explanation
1 * Asterisk

2 through 71 LIST DECKE

72 through 80 Not used

*PRINT SYMBOL TABLE

This control record causes the assembler to print a listing of the symbol table on the prin-
cipal print device. The printed symbols are grouped 5 per line. Multiply defined symbols
are preceded by the letter M. Symbols with absolute values in a relocatable program are
preceded by the letter A, These M and A flags are not counted as assembly errors.

Card column Contents Explanation
1 * Asterisk
2 through 71 PRINT
SYMBOL
TABLE
72 through 80 Not used

*PUNCH SYMBOL TABLE

This control record causes the symbol table to be punched as a series of EQU source cards.
Each source card contains one symbol. These cards can be used as source input to the
system symbol table when the SAVE SYMBOL TABLE control record is used with an
assembly in which they are included.

This control record is ignored if entered from the paper tape reader or the keyboard.

Card column Contents Explanation
1 * Asterisk
2 through 71 PUNCH
SYMBOL
TABLE
72 through 80 Not used

Control Records 5-59

Assembler Control Records
*SAVE SYMBOL TABLE
*SYSTEM SYMBOL TABLE

If the principal input device is the 1442 Model 6 or 7 Card Read Punch, sufficient blank
cards must be placed between the source program END card and the next monitor control
record when stacked job input is being used. In estimating the number of blank cards re-
quired, allow one card for each symbol used in the source program. Unnecessary blank
cards are passed. (If a nonblank card is read when punching on the 1442 Model 6 or 7, the
assembler waits at SPRET with /100F displayed in the ACCUMULATOR.)

If the system configuration is 2501/1442, place blank cards in the 1442 hopper and press
START on the 1442 before beginning the assembly.

Note. Do not place nonblank cards in the 1442 Model 5. The punch may be damaged if
an attempt is made to punch a hole where a hole exists. An error is not detected.

*SAVE SYMBOL TABLE

general function This control record causes the symbol table generated by this assembly to be saved on
disk as a system symbol table. This system symbol table is saved until another assembly
with a SAVE SYMBOL TABLE control record causes a new system symbol table to re-
place the old one. This control record is also used with the SYSTEM SYMBOL TABLE
control record to add symbols to the system symbol table.

Note. The SAVE SYMBOL TABLE requires that the assembly be absolute (an ORG state-
ment defining the core load origin must be used in your program). Thus, all symbols in the
system symbol table have absolute values.

When the symbol table punched by a PUNCH SYMBOL TABLE control record is included
in the system symbol table being generated by this assembly, place the punched EQU cards
after the SAVE SYMBOL TABLE control record.

If any assembly errors are detected, or if the symbol table exceeds 100 symbols, the sys-
tem symbol table is not saved, and an assembler error message is printed.

format Card column Contents Explanation
1 * Asterisk
2 through 71 SAVE SYMBOL
TABLE
72 through 80 Not used
*SYSTEM SYMBOL TABLE
general function This control record causes a previously built system symbol table to be added to the sym-

bol table for this assembly as the assembly begins. This allows you to refer to symbols in
the system symbol table without redefining the symbols in your source program, Also,
this control record can be used with a SAVE SYMBOL TABLE control record to add
symbols from this assembly to the system symbol table.

Note. All symbols in the system symbol table have absolute values.

format Card column Contents Explanation
1 * Asterisk
2 through 71 SYSTEM
SYMBOL
TABLE
72 through 80 Not used

5-60

general function

format

general function

format

Assembler Control Records
*LEVEL
*OVERFLOW SECTORS

*LEVEL

This control record specifies the interrupt levels serviced by an ISS and the associated ILS
subroutines. This control record is required for the assembly of an ISS subroutine. The
interrupt level number is a decimal number in the range 0 through 5. If the device operates
on 2 interrupt levels (for example, the 1442 Card Read Punch), one LEVEL control
record is required for each interrupt level on which the device operates. The assembler
accepts no more than 2 interrupt levels for a device. At least one blank must separate

the word LEVEL and the interrupt level number,

If a LEVEL control record is not used when assembling an ISS subroutine, an error message
is printed at the end of the assembly.

Card column Contents Explanation

1 * Asterisk

2 through 71 LEVELBn n is an interrupt level number
(decimal)

72 through 80 Not used

*OVERFLOW SECTORS

This control record allows you to specify the number of sectors of working storage to be
used by the assembler for symbol table overflow and/or macro processing, When this con-
trol record is used, the assembler allocates one more sector than the total number speci-
fied. This additional sector is used as a working sector by the assembler.

If more than one OVERFLOW SECTORS control record is used, the last record is used to
allocate the overflow sectors.

Card column Contents Explanation

1 * Asterisk

2 through 71 OVERFLOW n1 is the number of sectors for
SECTORSH symbol table overflow; n2 is the
nt, n2,n3 number of sectors for macro

parameter list overflow; n3 is
the number of sectors for temp-
orary macro definition.

72 through 80 Not used

Note. |f any of the number fields are not specified in an OVERFLOW SECTORS
contro! record, the commas within the record cannot be eliminated.

Control Records 5-61

Assembler Control Records
*OVERFLOW SECTORS

5-62

additional field
information

ni

n2

compute largest
parameter list size

compute n2

n3

compute n3

OVERFLOW SECTORS. The decimal numbers coded after OVERFLOW SECTORS specify
the number of sectors tc be allocated for (1) symbol table overflow, ni, (2) macro param-
eter list overflow, #n2, and (3) temporary macro definition overflow, n3.

The number of sectors (1) reserved for symbol table overflow is specified as a decimal
number in the range 0 through 32. When the entry is zero or not specified, symbol table
overflow is not allowed. If the entry is greater than 32, only 32 sectors are assigned for
symbol table overflow. If, during assembly, the symbol table overflow exceeds the number
of sectors allocated by the OVERFLOW SECTORS control record, an error message is
printed. The approximate maximum number of symbols that can be defined in a program
is determined by the size of core storage:

Size of core storage Approximate maximum
(in decimal words) number of symbols
4096 3500
8192 4165
16384 6895
32768 12355

The macro processor portion of the assembler uses working storage to contain macro
parameter list overflow. The OVERFLOW SECTORS control record specifies the number
of sectors (n2) to be reserved. If n2 is zero or not specified, a comma must be coded, but
macro parameter list overflow is not allowed.

The size (in words) of the total parameter list storage required for an assembly is the size
of the largest parameter list within the assembly. The size of a parameter list (in words)
can be estimated by using the following formula:

N
Number of words = 3+N+ X %(mj+1)

i=1
where

N is the number of parameters, including nested macros, within a macro call.
Mj is the number of characters per parameter.

For example, the macro call:
EXPND APHA BETA,C is computed as 3+3+%(5+1 +%(4+1)+%(1+1)=12 words.

If the computed size of the largest parameter list within an assembly does not exceed 100
words, parameter list overflow sectors are not required. Otherwise, the number of sectors
(n2) required can be computed with the following formula:

n2=1/100(x~100)

where
x equals the size (in words) of the largest parameter list.

The macro processor portion of the assembler uses working storage to store temporary
macro definitions (macros that apply only to the assembly in which they are defined). The
OVERFLOW SECTORS control record specifies the number of sectors (n3) to be reserved
for storing the temporary macros. If n3 is zero or not specified, a comma must be coded,
but storage of temporary macro definitions is not allowed,

The number of working storage sectors (n3) required for storing temporary macro defini-
tions is calculated as: K/40

where
K is the sum of the number of statements in each temporary macro definition,

general function

7

format

general function

format

additional field
information

Assembler Control Records
*COMMON
*MACLIB

*COMMON

This control record aliows you to specify the length (in words) of COMMON that is shared
by the program being assembled and a FORTRAN program compiled prior to this assembly.
The number of words of COMMON used by the FORTRAN program can be obtained from
a listing of the program. The use of this control record provides for the saving of COMMON
when linking between FORTRAN mainlines and assembler mainlines.

Card column Contents Explanation
1 *) Asterisk
2 through 71 COMMONWY nnnnn is the number (in deci-
nnnnn mal) of words of COMMON
to be saved between links.
72 through 80 Not used
*MACLIB

This control record specifies that the macro library is used during assembly. The MACLIB
control record is invalid on 4K systems and with both LIST DECK options.

Card column Contents Explanation
1 * Asterisk
2 through 8 MACLIBY
9 through 13 Macro library
name
14 through 71 Reserved
72 through 80 Not used

Macro library name, This name must be an exact duplicate of the name given to the macro
library when it was defined by a STOREDATA or DFILE DUP control record. A MACLIB
control record is ignored if an invalid macro library name is specified.

Control Records 5-63

FORTRAN Contro! Records

how to code

FORTRAN CONTROL RECORDS

5-64

furictions

coding

FORTRAN control records specify optional operations that affect the FORTRAN com-
piler and program execution. These control records are placed in the input stream as fol-
lows: !

| Next monitor
control record

FORTRAN source statements

FORTRAN control records

FORTRAN control records can be entered in card or paper tape form along with the
source ‘program deck or tape, or they can be entered from the console keyboard (see
“Entering Jobs from the Console Keyboard” in Chapter 7).

The IOCS, NAME, and ORIGIN control records can be used only with mainline programs;
the others can be used with both mainline programs and subprograms.

All FORTRAN control records have the following format:

Card column Contents Explanation
1 * Asterisk
2 through 72 Option Replace option with the

keywords for the control
record being used.

73 through 80 Not used

Note. FORTRAN control records are coded in free form; that is, any number
of blanks can occur between the characters of the option. Remarks are not
allowed.

If a FORTRAN control record contains an asterisk in column one, but the option is not
identical with the format shown for the control record, the asterisk is replaced with a minus
sign on the control record listing. The control record in error is ignored; an error does not
result, but the specified option is not performed. This same action is taken if the specified
address is not valid in an ORIGIN control record.

general function

format

FORTRAN Controt Records
*10Cs

*10CS

This control record specifies the I/O devices that are used during execution of a FORTRAN
core load. Only the devices required should be included. Any number of IOCS control
records can be used to specify the required devices.

All I/O devices that are used by FORTRAN subprograms called in a FORTRAN core load
must be included on the IOCS control records associated with the mainline FORTRAN
program. Assembler language subroutines that are included in a FORTRAN core load can
use any of the other I/O device subroutines in addition to those specified on the IOCS
control records for the FORTRAN mainline program.

Card column Contents Explanation
1 .
2 through 72 10CS d is a valid device name
(d,d,...,d) selected from the following
list.
73 through 80 Not used

Names for I/O devices to be used are specified in the IOCS control record. These names
are enclosed in parentheses and separated by commas. The devices, their associated I[OCS
names, and the I/O subroutines called for each device are:

Device *10CS device name Subroutine called
1442 Card Read/Punch, CARD CARDZ
Model 6 or 7

2501 Card Reader 2501 READER READZ
1442 Card Punch, Model 5 1442 PUNCH PNCHZ
(1442 Model 6 or 7 if used

as a punch only)

Console printer TYPEWRITER TYPEZ
Keyboard KEYBOARD WRTYZ
1132 Printer 1132 PRINTER PRNTZ
1403 Printer 1403 PRINTER PRNZ
1134/1055 Paper Tape PAPER TAPE PAPTZ
Reader/Punch

1627 Plotter PLOTTER PLOTX
Disk DISK DISKZ
Disk (unformatted disk 1/0) UDISK DISKZ

Note, CARD is used for the 1442 Card Read/Punch, Model 6 or 7, and 1442 PUNCH is
used for the 1442 Card Punch, Model 5 (1442 PUNCH can be used for a 1442, Model 6
or 7, if the function is punch only; 1442 PUNCH uses less core storage). CARD and

1442 PUNCH are mutually exclusive; therefore, the use of both of these names in I0CS
control records for the same compilation is not allowed.

Control Records

5-65

FORTRAN Control Records
*LIST SOURCE PROGRAM
*LIST SUBPROGRAM NAMES

5-66

general function

format

general function

format

*I0CS Examples.
1 5 10 15 20 25 30 35 40 45 50
*lq?s(CA D!,/ 114103 PR INITIER] DIt |slkD

#1005 (PAPER [TIAPIE|11]3120 PRI INTIERDI![S]K) L

*LIST SOURCE PROGRAM

This control record causes the source program, as it is entered, to be listed on the princi-
pal print device.

Card column Contents Explanation
1 x Asterisk
2 through 72 L.IST SOURCE
PROGRAM
73 through 80 Not used

*LIST SUBPROGRAM NAMES

This control record causes the names of all subprograms (including subprograms called
by EXTERNAL statements) called by the compiled program to be listed on the principal
print device.

Card column Contents Explanation
1 * Asterisk
2 through 72 ILIST
SUBPROGRAM
NAMES
73 through 80 Not used

general function

format

general function

format

FORTRAN Control Records
*LIST SYMBOL TABLE
*LIST ALL

*LIST SYMBOL TABLE

This control record causes the absolute or relative addresses for the following items to be
listed on the principal print device.

® Variable names

© Numbered statements
® Statement functions
o Constants

The addresses are relative unless an ORIGIN control record specifies the core address where
the first word of the core load is placed for execution.

A constant in a STOP or PAUSE statement is treated as a hexadecimal number, This hexa-
decimal number and its decimal equivalent appear in the list of constants. The hexadeci-
mal number is displayed in the ACCUMULATOR when the system waits at SPRET during
the execution of the PAUSE or STOP statement,

Card column Contents Explanation
1 * Asterisk
2 through 72 LIST
SYMBOL
TABLE
73 through 80 Not used
*LIST ALL

This control record causes the source program, associated subprogram names, and the sym-
bol table to be listed on the principal print device. When this control record is used, the
previously described LIST SOURCE PROGRAM, LIST SUBPROGRAM NAMES, and
LIST SYMBOL TABLE control records are not required.

Card column Contents Explanation
1 * Asterisk

2 through 72 LIST ALL

73 through 80 Not used

The FORTRAN sample program in Appendix H is listed by a LIST ALL control record.

Control Records 5-67

FORTRAN Control Records
*EXTENDED PRECISION
*ONE WORD INTEGERS

5-68

general function

format

general function

format

*EXTENDED PRECISION

This control record allocates 3 words of core storage for arithmetic values (real and integer)
instead of the standard two and generatds linkage to the extendéd precision subprograms.

The FORTRAN compiler normally operates in standard precision; that is, 2 words (a sign,
23 significant bits, and an exponent) of core storage are allocated for each arithmetic
value, Through the use of the EXTENDED PRECISION control record, the compiler can
be made to yield 31 significant bits by allocating 3 words of core storage for each arith-
metic value,

Standard precision, extended precision, and arithmetic subprograms are discussed in the
publication IBM 1130 Subroutine Library, GC26-5929,

Card column Contents Explanation
1 * Asterisk
2 through 72 EXTENDED
PRECISION
73 through 80 Not used

*ONE WORD INTEGERS

The FORTRAN compiler normally assigns 2 words of core storage for each real and inte-
ger value (see the previous discussion of the EXTENDED PRECISION control record).
The ONE WORD INTEGERS control record causes all integer values to be assigned one
word of core rather than the standard 2 words, or 3 words when an EXTENDED PRECI-
SION control record is used.

An 1130 FORTRAN integer can have any value in the range of —21°+1 to 2'*-1. Any
value in this range can be contained in one word (16 bits) of core storage; therefore, inte-
ger values can contribute rather significantly to inefficient use of core storage because of
the extra word allocated for standard or extended precision, Because of this, the use of
the ONE WORD INTEGERS control record conserves core.

Note, If this control record is used, the program does not conform to the USASI Basic
FORTRAN standard for data storage, and will require modification for use with non-
1130 FORTRAN systems.

Card column Cantents Explanation
1 A Asterisks
2 through 72 OWE WORD
INTEGERS
73 through 80 Not used

general function

format

general function

format

FORTRAN Control Records
*NAME
**(header information)

*NAME

This control record causes the specified program name to be printed at the end of the pro-
gram listing.

Card column Contents Explanation
1 * Asterisk
2 through 72 NAMEBxxxxx xxxxx is the name of the

mainline program and is five
consecutive characters {includ-
ing blanks) starting in the first
nonblank column after NAME.
At least one blank must separ-
ate NAME and the mainline
program name.

73 through 80 Not used

** (Header Information)

This control record causes the information specified in columns 3 through 72 to be printed
at the top of each page printed during compilation when a 1403 Printer or 1132 Printer

is the principal print device. When the first statement of the program is read, the printer
skips to a new page (a skip to channel 1), prints the heading, and begins listing the program
statements.

Card column Contents Explanation
1and 2 *x Asterisks
3 through 72 Any string of
characters
73 through 80 Not used

Control Records 5-69

FORTRAN Control Records
*ARITHMETIC TRACE
*TRANSFER TRACE

general function

format

general function

format

5-70

*ARITHMETIC TRACE

This control record causes the value of each variable to be printed each time it is changed
during program execution. An asterisk immediately precedes each printed value,

Console entry switch 15 must be turned on, and an I0CS control record specifying the
console printer, 1132 Printer, or 1403 Printer must be included in the FORTRAN con-
trol records. When more than one of these print devices is specified, the fastest device is
used for printing the traced values. Tracing is stopped if console entry switch 15 is turned
off. This provides for tracing only a part of a program. Tracing can be restarted by turning
console entry switch 15 back on.

You can trace selected portions of your program by placing statements that start and stop
tracing in the source program. These statements, CALL TSTRT and CALL TSTOP, are
placed where needed in the program. In addition to these statements, console entry switch
15 must be on and an IOCS control record specifying a print device and an ARITHMETIC
TRACE control record must be included in the FORTRAN control records.

Card column Contents Explanation
1 * Asterisk
2 through 72 ARITHMETIC
TRACE
73 thrqugh 80 Not used

*TRANSFER TRACE

This control record causes the values of IF expressions and computed GO TO indexes to
be printed during prograrn execution. Two asterisks immediately precede each printed
value of an IF statement. Three asterisks immediately precede the value printed for the
index of a computed GO TO statement.

Console entry switch 15 must be turned on, and an 10CS control record specifying the
console printer, 1132 Printer, or 1403 Printer must be included in the FORTRAN control
records. When more than one of these print devices is specified, the fastest device is used
for printing the traced values. Tracing is stopped if console entry switch 15 is turned off.
This provides for tracing only a part of a program. Tracing can be restarted by turning
console entry switch 15 back on.

You can trace selected portions of your program by placing statements that start and stop
tracing in the source program. These statements, CALL TSTRT and CALL TSTOP, are
placed where needed in the program. In addition to these statements, console entry switch
15 must be on and an IOCS control record specifying a print device and a TRANSFER
TRACE control record must be included in the FORTRAN control records.

Card column Contents Explanation
1 * Asterisk
2 through 72 TRANSFER
TRACE
73 through 80 Not used

general function

format

additional field
information

RPG CONTROL CARDS

functions

FORTRAN Control Records
*ORIGIN
RPG Control Cards

*ORIGIN

This control record allows you to specify the core address where the core image loader
starts loading a program into core for execution. When an ORIGIN control record is used,
absolute addresses are printed in the listing that is produced by the compiler. This allows
you to see exactly where the program statements and constants are during execution.

Card column Contents Explanation

1 * Asterisk

2 through'72 ORIGINbddddd or This is the starting core address
ORIGIN/xxxx expressed as a decimal number

(ddddd) of 3 to 5 digits or as a
hexadecimal number (/xxxx)
of 1 to 4 digits preceded by a
slash.

73 through 80 Not used

ORIGIN. The origin of a program cannot be specified below the disk I/O subroutine that
is used by the core load. The origin is determined by adding decimal 30 to the next higher
addressed word above the end of the disk I/O subroutine used by the core load. If the
address you specify is an odd number, the system uses the next highest even address as
the origin. The following chart lists the lowest possible origins. If an invalid address is
specified, the control record is ignored.

Disk 1/0 Core load origin

subroutine

in core Decimal Hexadecimal
DISKZ 510 /01FE
DISK1 690 10282
DISKN 960 /03CO

Two RPG control cards specify operations to be performed by the RPG compiler. The
first, the RPG control card, acts as a header for the source deck. Information coded in this
control card indicates the compiler operations to be performed.

The second control card, the RPG end-of-file control card, is required as the last card of a
source program or a data file,

The RPG control cards are placed in the input stream as follows:

Source program

Control Records 5-71

RPG Control Cards

The following illustrates the stacked input required to compile an RPG source prograrn,
store the object program in the user area, and execute the object program:

[

{Data file
rll XEQ PROGN X

Le¢— End of file signals end of data card input file

f——— RPG data file (if file not already stored on disk)

(*STORE WS UA

PROGN Execute the program. X or any other entry in column 28
: = will bring in the special 1LS routines required by RPG.
(// DUP Get PROGN (program name) from working storage and
{ I store it in the user area.
;E_ -#——— Disk utility program call

l¢———End of file card for source deck

RPG source deck (specification statements)

// JoB lg——— RPG control card

___‘<-—- Monitor contro! card to call the RPG compiler
-«—— Monitor control card to initiate the job

If the // DUP and *STORE records are omitted, the program is executed from working
storage; however, the program is not available for future execution because it is not szved.
If the program being compiled is not executed often, storing it on cards rather than on disk
may be advisable. The following illustrates the stacked input required to compile an FPG
program and punch an object deck:

Blank cards

*DUMP WS CD
PROGN Blank cards for object program
{ /f DUP Punch the named program (PROGN) into cards.
(7 * The program is in working storage.
E - |__J—— Disk utility program call

l¢— End of file card for source deck

RPG source deck (specification statements)

// JOB | == RPG control card

f¢=—— Monitor control card to call the RPG compiler

- Monitor control card to initiate the job

5-72

RPG Control Cards

Then, the input stacked required to execute the object program from cards is illustrated

by:
("
= =
/- R - [<—— End of file signals end of data card input file
‘(Data file |
_{ /I XEQ X I‘| RPG data file (if file not already stored on disk)

Execute the program. X or any other entry in column 28

Object deck will bring in the special LS routines required by RPG.

(STORE CD WS RPG object program
{ // DUP
/] JOB | _je&~— Store a program from cards to working storage.

|__J<&— Disk utility program call

}——— Monitor control card to initiate the job

Most RPG programs require input data during program execution. This data can be on
data cards at execution time or can be stored at any time before execution in a predefined
data file on disk. The following illustrates how a data file can be built on disk by an RPG
program:

(Data file ~<¢—— End of file signals end of data card input file.

{// XEQ PROGN X
Data cards to be stored on disk in FILE1.

(*STORE WS UA

PROGN Execute object program. X or any other entry in column 28
{ // DUP — will bring in the special |LS routines required by RPG.

(/* %= Store object program

= T jg—— Disk utility program call

—

(H J=¢—— End of file card for source deck

‘ // RPG RPG source deck including control card. On the File Description

- Specifications forms, define input fite as cards, output file as disk.

DFILE Object program to load data cards to FILE1.

UA FILE1 100

L__Je—— Monitor control card to call the RPG compiler

P
(” ou Reserve 100 sectors on disk and label this area FILE1; *STOREDATA
// JOB — can also be used to reserve the disk storage space.

| &= Disk utility program call

r—— Monitor control card to initiate the job

Control Records §-73

RPG Control Cards
RPG control card
end-of-file card

5-74

general function

format

general function

format

The RPG compiler prints addresses of various routines in the key addresses of object pro-
gram table. For example, the close files routine (located near the end of the mainline
program) is included in this table. This routine may require from 2 to 16 additional words
(hexadecimal) depending on the type and number of files to be closed. The address of this
routine can be helpful when dealing with programs that exceed the available core storage.
By adding the number of additional words to the address of the close files routine, the
size of the generated mainline program can be determined.

RPG data files may be sequential or indexed-sequential (ISAM). On an ISAM load function,
the compiler prints the following information:

® Filename
® Number of sectors required if overflow is not needed
® Number of sectors required if 10 percent overflow is needed

This information can be used to reserve file space for ISAM records. See “Assembler and
RPG Disk File Organization and Processing” in Chapter 6 for detailed information about
RPG disk data files.

RPG Control Card

This first card of an RPG source program immediately following the RPG monitor control
record must be an RPG control card. The information coded in columns 6 and 11 of this
card indicate the functions that are to be performed by the RPG compiler. All other entries
in the control card are described in the publication IBM 1130 RPG Language, GC21-5002.

Card column Contents Explanation

1 through 5 Described in /1BM
1130 RPG Language

6 H Identifies this card as an
RPG control card

7 through 10 Reserved

1 Blank, B, or D Blank indicates compilation
with a listing of the program.
B indicates compilation only.
D indicates a listing only.

12 through 80 Described in /1BM

1130 RPG Language

End-of-File Control Card

This control card designates the end of an RPG source program and an RPG data file;
therefore, an end-of-file control card must be the last card of an RPG source program and
an RPG data file.

Card column Contents Explanation
1and 2 /*
3 through 80 Not used

Monitor Contro)
stacked job input

Chapter 6. Programming Tips and Techniques

The information in this chapter is planned to help you use the 1130 Disk Monitor System,
version 2, more efficiently. The information is presented in the following order:

General tips on monitor control and usage
Data file processing

Tips for the assembler programmer

Tips for the FORTRAN programmer
RPG object program considerations

Sl M

TIPS ON MONITOR CONTROL AND USAGE

The tips in this section are of general interest to all programmers of the 1130 DM2 system.
These tips include:

Arranging stacked jobs

Using temporary job mode

Using the disk I/O subroutines

Restoring destroyed cartridges

Avoiding overprinting

Using programs and data files more efficiently
Using LOCALSs, NOCALs, and SOCALs
Reading core maps and file maps

Reading the transfer vector

Using SYSUP for changing cartridges during program execution

Stacked Job Input Arrangement

Input to the monitor system includes control records, source programs, object programs,

and data that are arranged logically by job. The monitor JOB control record designates

the start of a job. You should consider the following when arranging the input for any

job:

® Any number of comments (// *) control records can be used before ASM, RPG, FOR,
COBOL,DUP, or XEQ monitor control records. Comments control records cannot
immediately follow ASM, RPG, FOR, or COBOL control records.

When an *EQUAT supervisor control record is used after a JOB monitor control
record, a comments control record cannot be placed between the JOB record and the
EQUAT record. A comments control record cannot be placed between a // DUP con-
trol record and the following DUP control record (*...).

When supervisor control records are used after an XEQ or STORECI control record,
comments control records cannot be placed between the XEQ or STORECI and the
following supervisor control records,

@ Any records other than monitor control records that remain after completion of an
assembly, compilation, or a subjob (XEQ) are passed until the next monitor control
record is read. Also, after a Disk Utility Program (DUP) operation is completed, any
records other than monitor control records or other DUP control records are bypassed.

Programming Tips and Techniques 6-1

Monitor Control

stacked job input

® If anerror is detected in an assembly or compilation or during the building of a core
load for execution (XEQ), the resulting object program and any program or programs
that follow within the current job are not executed. Also, all DUP functions are passed
until the next valid ASM, FOR, RPG, or JOB control record is read if an error is de-
tected in an assembly or compilation or during the building of a core load because of a
DUP STORECI function.

® If a monitor control record is read by the assembler, by one of the compilers, or during
Macro Update Program (MUP) operations, execution of the assembler, compiler, or MUP
is ended. The function indicated by the monitor control record is performed.

The following stacked input arrangement assembles or compiles, stores, and executes pro-
grams A and C, if source program errors do not occur and if working storage is large
enough,

Monitor Control
stacked job input

{ // JOB
(7/ XEQC

Source program C ——f-

FORTRAN control records -

{ // FOR
{ // PAUS

{ /! *comments

// JOB
Object program B '—f —
(
{ *STORE B
(1/oue
{ /1 PAUS
{ // *comments
{ 1/ J0B
{ /I XEQ A
{:STORE A
// DupP
Source program A g ____,
Assembler {
control =
records (
(11 ASM
(/1 PAUS

{ // *comments

(/1 JOB

Cold start card (see cold
start operating procedure)

Programming Tips and Techniques 6-3

Monitor Control

temporary job mode
disk 1/0 subroutines

uses and how
to call

functions

If an error occurs in one of the source programs, the DUP *STORE operation is not per-
formed for that program, and all following XEQ requests before the next JOB control re-
cords are bypassed. Thus, if the successful completion of one program depends upon the
successful completion of the previous one, both programs should be considered as one
job and the XEQ control records should not be separated by a JOB record.

How to Use Temporary Job Mode

Temporary job mode (indicated by a T in column 8 of a monitor JOB control record)
causes all programs stored in the user area during the temporary job to be deleted auto-
matically when the next JOB control record is processed.

In some cases, the available space in the user area may not be large enough for storage of a
newly assembled or compiled program. When this happens, you must use the DUP delete
function to clear the user area of old programs, and then store the new program. The nec-
essity for such deletions can be avoided by using temporary mode when running jobs that
included programs likely to be replaced at a later time, or that are infrequently used.

Temporary mode is particularly useful when debugging a new program,

Using the Disk 1/0 Subroutines

All core loads, whether they use disk I/O or not, require one of the 3 disk 1/O subroutines.
As a minimum, a disk subroutine reads the core load into core and executes CALL EXIT,
CALL LINK, CALL DUMP, and/or CALL PDUMP.

Source programs written in assembler, FORTRAN, RPG, or COBOL can call any of the

3 1/0 subroutines; however, only one disk I/O subroutine can be referenced in a given
core load. Because of this, all programs and subroutines linked to in a core load must use
the same disk I/O subroutine. The subroutine used by a core load is indicated in an XEQ
monitor control record or a STORECI DUP control record. (Control records are described
in Chapter 5.) Generally, DISKZ is used by FORTRAN, RPG, and COBOL core loads

and DISK1 or DISKN by assembler language core 1oads.

DISKZ is intended for use in an error-free environment, because it does no preoperative
error checking, DISKZ is the shortest of the disk subroutines.

DISK1 and DISKN provide more functions than DISKZ. These additional functions in-
clude:

® Validity checking of word count and sector addresses
File protection

LIBF-type calling sequence

Validity checking of the function indicator

Write without readback check option

Write immediate

® Word count can be on an odd boundary

DISKN provides 2 more functions than those just listed:

e Simultaneous operation of as many as 5 disks

® Faster operation when transferring more than 320 words

Moere detailed information about the disk I/O subroutines is in the publication IBM 1130
Subroutine Library, GC26-5929.

Monitor Control
restoring cartridges
printer control

Restoring Destroyed Cartridges

Cartridges containing data and/or programs in the user or fixed area that are difficult to
replace can sometimes be restored for use after access to information on the cartridge is

destroyed.
use DCIP Use the disk analysis function of the stand-alone utility program DCIP to restore sector
disk analysis addresses if only sector addresses are affected. (DCIP is described in Chapter 9.)
use a system A system reload can be performed if part of the monitor system (except LET, FLET, user
reload and fixed area) is destroyed. Include in the reload the entire monitor system, except the

system library.

use DCIP patch Use the patch function of the stand-alone utility program DCIP to restore individual words
. that are destroyed on a cartridge.

How to Avoid Overprinting When Using // CPRNT

In order to avoid overprinting when using the monitor CPRNT control record, the FOR-
TRAN programmer should provide for spacing an extra line after the last output state-
ment in a program,

The assembler programmer should provide for spacing after printing following the last
output statement in the program.

How to Avoid Overprinting When Linking Between Programs

Overprinting when linking between programs can be avoided by coding your program to
space one line before linking to another program. This should be done because the core

load builder assumes that a space before printing is not necessary; all monitor programs

have a space after print. Overprinting should be avoided because an important core load
builder message may not be readable.

Usage of the EJECT Monitor Control Record

An EJECT monitor control record is used during a job to start printing of a new page on
the principal printer. For example, comments control records can be placed in a more
readable position for the operator if followed by an EJECT control record.

1 5 10 15 20 25 30 35 40 45 50
T /0B

; | il
I (CMESSAGE [Tl DPERAToR T
T EABCT i
T BAUSE

Programming Tips and Techniques 6-5

Monitor Control
store functions

6-6

Duplicate Program and Data File Names

Names that are duplicates of IBM-supplied programs should be avoided in DUP store and
delete operations. (The names of IBM-supplied programs are in Appendix C.) If a program
being stored or deleted has the same name as an IBM program, the results of subsequent
operations are not predictable.

Because the DUP store functions check for duplicate names, 2 programs or data files with
the same name cannot be stored on one disk. Two programs or data files can, however, have
the same name if stored on separate disks, If your system has more than one disk drive,
having programs with the same name on more than one disk on the system can cause
problems when an attempt is made to execute or delete the named program.

25 30 35 40 45 50

_.
[
=)
G
3

This sequence of control records cause PROG1 on the cartridge labeled 1111 to be exe-
cuted when you may have wanted PROGI on 2222 executed. A similar problem can occur
in the delete operation. In this example, PROG1 on 1111 is deleted; you may have wanted
to delete the program on 2222,

To avoid this problem:
® Assign a unique name to each program and data file.

® If you do not know the contents of a cartridge that is on the system, and the cartridge
is not needed for your job, make the drive not ready.

system maintenance

size of working storage

data files not in
working storage

difference in
core size

Monitor Control
store functions

Disadvantages of Storing a Program in DCI Format

Before you decide to convert to and store a program in disk core image (DCI) format, con-
sider the advantages gained in loading time of a DCI program against the following dis-
advantages.

An important consideration is the effect that system maintenance can have on a DCI pro-
gram, Subroutines from the IBM-supplied system library that are called by a program are
stored with a program in DCI format. If system maintenance changes a subroutine after

a DCI program is stored, the subroutine in the system library is changed; however, the
copy stored with the DCI program is not. In this case, the DCI program must be deleted
and rebuilt (STORECI) after the maintenance modification is made.

If the user or fixed area is expanded after a DCI program is stored, working storage files
that are referenced by the DCI program may extend beyond the available working storage
during execution. This problem is not recognized until an attempt is made to perform
disk I/O operations past the end of the cartridge.

Another important consideration concerns DCI programs that reference files that are not
placed in working storage during execution. An error occurs if an attempt is made to
store in DCI format a program that references a file in the user area, because the location
(sector address) of the referenced file may change as a result of program deletions. The
DCI program subsequently references such a file by the old sector address. The results
are unpredictable.

A similar problem can occur if the DCI program references a file stored in the fixed area,
even though the operation is allowed. The file might be deleted and another stored in its
place after the DCI program is stored. This problem can be complicated by the fact that
not only are sector addresses built into a DCI program, but the logical drive codes are
also. In this case, you must make certain that every time the program is executed that all
the required disk cartridges are mounted on the same logical drives as when the program
was originally stored.

A DCI program can be executed on a system with a configured core size different from the
system on which the core load was built, if the size of the core load does not exceed the
different core size.

Size Discrepancies in Stored Programs

The disk block count of a program is printed and becomes a part of the LET or FLET
entry when the program is stored. When a program is stored from cards to the user or
fixed area, the disk block count can be greater than when the same program is stored from
working storage, The reason for this discrepancy is that a DSF header is created for each
card when a program is stored from cards to disk. Therefore, any 2 headers in the stored
file are a maximum of 51 words apart. When the program is stored from working storage,
the distance between headers is limited by the disk buffer size, 320 words.

The increased disk block count noted when the program is stored from cards accommo-
dates the expanded size of the file caused by the additional headers.

Programming Tips and Techniques 6-7

Monitor Control
store functions

Dumping and Restoring Data Files

Dumping of important data files to cards is often advisable so that the files can be restored
later if the cartridge containing them is destroyed. Use DUMPDATA to dump a file to cards
and STOREDATA to store these cards back on disk.

DUMPDATA dumps by sector count. For example, the control record:

10 15 20 25 30 35 40 45 50

ol T INIAMEIF] | 183

S
)
-—|

5
DluMP
*ujl(

causes 3 sectors to be dumped to 18 cards; 17 cards of 54 words and one card of 42 words.
The last 12 words of card 18 do not contain data.

STOREDATA stores by card count. To store the cards in this example, the control
record: :

causes the contents of these 18 cards, excluding the contents of the 12 unused words on
card 18, to be stored back in 3 sectors. Note that if you use DUMPDATA to dump to
cards, the number of cards (same as the last—highest—sequence number in cc 78—80 of
the cards dumped) is the number to enter in the count field of the STOREDATA card.

STOREDA TA for Cards Not Processed by DUMPDATA

If you use STOREDATA to store cards produced by a function other than DUMPDATA,
some of the words in the last card may not be stored. To prevent this, use the following
formula (based on the number of cards) to determine the card count to specify in the
count field of the STOREDATA control record:

Cx 54

1. Use the formula: 0 - S
where
C is the actual number of cards; 54 is the number of data words that can be
contained in a card; 320 is the number of words that can be contained in a
sector, and S is the number of sectors required for the file.
2. If this formula produces a remainder that is less than 54 and not zero, add one to
the card count to be specified in the STOREDATA control record, and place a

blank card at the end of the data deck.

6-8

Monitor Control
defined files
use of LOCALs

Use of Defined Files

When an *FILES supervisor control record follows a // XEQ monitor control record, the
core load builder searches LET and/or FLET for a specified file name. If the name is
found, the sector address of the file is inserted in the file table identified by the associated
file number specified on the *FILES control record. (A file table is created during program
assembly or compilation by the assembler FILE statement or the FORTRAN DEFINE
FILE statement, respectively.) If the file name is not found in LET or FLET, the file is
defined in working storage.

An *FILES control record after an *STORECI DUP control record is processed in the
same way, except that files found in the user area are flagged as invalid.

A suggested way of initially allocating a disk area for a data file in the user area or fixed
area is to use the DUP *DFILE function, The number of sectors to be reserved is deter-
mined on the basis of the number of records the file is to contain, and the size of each
record. Use the following to calculate the number of required sectors for a file:

1. Compute the number (N) of records that can be contained in one sector:

_320
N=T
where
L is the length in words of each record in the file, Disregard the remainder,

if any,
2. Compute the number of required sectors (S):

M
STN
where
M is the total number of records in the file.
N is the number of records computed in Step 1.
Round the answer to the next higher number if the answer has a
remainder. This answer is the sector count that you specify in an
*DFILE control record to reserve file space in the user area or fixed
area,

Mainline Programs that Use All of Core

Before you write a program that occupies all of core storage, consider that extensive re-
writing may be required if IBM-supplied subroutines called by the core load are expanded
due to modifications.

The Use of LOCALs

A core load that is too large to fit into core for execution can be executed by specifying
as LOCALs some of the subroutines called by the core load. Since a core load that utilizes
LOCALSs does not execute as fast as it does without LOCALS, keep the following in mind
when specifying LOCALs:

® Specify infrequently called subroutines as LOCALs.

® Plan your program so as to minimize the number of times that LOCALSs are called into
core.

® Keep the number of specified LOCALSs to a minimum.

Programming Tips and Techniques 6-9

Monitor Control
use of LOCALs
use of NOCALs

LOCAL-Calls-a-LOCAL

The assembler language programmer can execute core loads in which a LOCAL calls another
LOCAL. Any character punched in column 26 of the XEQ control record causes all DSF
core loads for that execution to allow LOCALS to call LOCALSs. In a series of LOCAL-
call-LOCAL subroutines, you must pass the link word (mainline program return address)

in all LOCALSs (type 4 or 6 subroutines) that are referenced by CALL statements. The
return address must be passed in order to return from the last LOCAL to the place from
which the first LOCAL was called. Assembler is the only language that allows the return
address to be passed. Therefore, LOCAL-calls-a-LOCAL is restricted to assembler lan-

guage use.

For a FORTRAN program, the core load builder cannot detect a LOCAL-calls-a-LOCAL

condition between FORTRAN format I/O routines and the I/O subroutines that they
call. Therefore:

e A FORTRAN format 1/0 routine and any routine that it calls cannot both be
specified as LOCALs in the same core load.

® A user subroutine that contains I/O statements and the FORTRAN I/O routines
that are used to execute those statements cannot both be specified as LOCALs
in the same core load.

LOCAL and NOCAL Control Record Usage
When using LOCAL and NOCAL control records, keep the following in mind:

® A subroutine cannot be specified as a LOCAL if it calls another subroutine also speci-
fied as a LOCAL. For example, if A is a LOCAL subroutine and A calls B and B calls
‘C, neither B nor C can be specified as LOCAL subroutines for the same program. The
assembler programmer can avoid this restriction by using the LOCAL-calls-a-LOCAL
option discussed in the previous section of this chapter,

o If a subroutine is specified as a LOCAL and SOCALs are employed, the subroutine is

made a LOCAL even though it otherwise would have been included in one of the
SOCAL overlays.

® If a subroutine is specified as a LOCAL, it is included in the core image program even
if it is not called.

® When using LOCAL control records, the total number of mainlines and subroutines
specified cannot exceed:

3M + 28 < 640

where
M is the total number of mainlines specified in the LOCAL control records.
S is the total number of subrouitnes specified in the LOCAL control records.

If execution is from working storage, the mainline program in working storage is
counted as one, although it is not specified on a LOCAL record. This restriction also
applies to NOCAL control records.

® Only subroutine types 3, 4, 5, and 6 can be named on LOCAL and NOCAL control
records. (A description of subprogram types is included in Appendix 1.) Subprogram
types 3 and 5 are referenced by LIBF statements, and types 4 and 6 with CALL state-
ments. Types 5 and 6 are ISSs; types 3 and 4 are subprograms.

Conversion tables, such as EBPA and HOLTB, cannot be used as LOCALs. The conver-
sion tables are listed in Appendix C.

® SCATI1, SCAT2, and SCAT3 cannot be used as LOCALs, A

o Although a subroutine’s instructions or data areas may be altered during execution,
later LOCAL/SOCAL reloading may put the subroutine back into its original state.

6-10

Monitor Control
use of NOCALs

The Use of NOCALs

NOCALS: provide a method of including a subroutine in a core load even though the sub-
routine is not called. The advantages of NOCALs can be illustrated by the following.

manually executed You can write debugging subroutines, such as a specialized dump subroutine, and include
debug subroutines them in a core load as NOCALs. Then during program execution, you can execute the
debugging subroutine by manually branching to its entry point.

If an interrupt service subroutine (ISS) for level 5 is made a NOCAL during a core load,
you can execute it by pressing PROGRAM STOP; an interrupt on level 5 is made, and
PROGRAM START returns execution to the mainline program. A subroutine to monitor
execution of a mainline program or to gather statistical information can be designed.

ISS trace subroutine The following sample trace subroutine for interrupt level 5, ILSO5, determines when the
using NOCAL contents of a core location are destroyed by being changed to zero. - Location /0500 is
used in the example. This subroutine is written and stored as subtype zero in the user
area. The sample ISS is assembled as level 5 and stored in the user area. The ISS trace
subroutine is specified as a NOCAL when the mainline program is executed; the ISS and
associated ILS05 are included as a part of the core load. During a WAIT instruction in
the mainline program, the console mode switch is turned to INT RUN to cause a level 5
interrupt after execution of each mainline statement. The trace subroutine is entered
and, in this example, waits when core location /0500 becomes zero. A dump of the program
can be used to determine the conditions that caused the change to zero.

Programming Tips and Techniques 6-11

Manitor Control
NOCAL example

Label Operation| |F]T - Operands & Remarks r.

21 25 27 30| B233 |35 40 45 50 55 | 60 65 70
X 2y %, ORI 360 X XTI 93 S0 0 3 D TSI HE 0 ST 2 KD €05 3, 561 565 D065 3 6136 Dy 3%
X1 [[N LN SN TN TN U NN T N TS T NN TS NN S S S S S NN U0 SN A M O U MO AN AW Y.
] L1 JEX AlMIDlL E O I/IL|5’| lslUlBlplolulTl /lNlEl |Fl0|2| lLlEIVIElLl |5| I N T N TS O | l
% 1 aTlo] AL LIOW RAC I MG DURILNG I NTERRUPT, RUN MODE |, | | ¥
l I . | Lt 1 | I OO N Y TN TN (NN VAU NN (NN INNY SN N SN NN WY O (NN U NN [N (N SRS N (NN N WU N N N N . . l
*| *L*IXIX /N xlz{|¥|¥ >< X? *[Xlxl)ﬁmxael*l%*ﬁ)‘lxl*)ﬂ)@*l*l%%l*l*l*&({*l*l Xl*l*l*l*lxl*l*l*l*l’x

i1 1 1 ,l lsl | | L1) IS WO W W Y S N I | L) | I | [} 111t .k J I | 13 i 1 1.1 1
ADDR G v A
Xl 1 1 J¢ ¢ = IEINIT p T pllElLl lTlol 1 /lsél IB[E|Gl IAlNlDl J l7l=l ’J /LSITI V|+l /l .5,[‘5’1 INIOI | |
X 1 CIORE, (LD BILIDR, PUT S ACTUAL ENT, PT, .OF 1,38 /N ADDR
INT <G a3 v,y R EE I M N B B WA A O AN M ST N O N N 0 B O S A S A A A

L1 57D TEMP 4 SAVE ACCEXT « v v 400 v a0 10

| S | i 3[TLS'J RIEI TI(/IPI L1 11 ISIA I VIEI . lslTlAl TlUlsl | S W T S S N . | S . . |

L4 ST X, 1)(ll?l-zl+l-lt i SAVE O XRL v a1y

L1 57X 2| XR2+L, v SAVE XRZ v v iy

| . | 1 B‘sl /I ’ AlDlDl’pl 1 & 1 1 L1 3 _1 1.1 i b 1 | Y T T | i1 L L+ 1 1 & & 4 1 1 1
plElTlUlp LlDISI al 1 l» 1 11 1 J!—ls TO]RE S TA TUS 1 L] L 1 i j § 1 L1 L 1.

Lt i 1 LlDlDl 7-IEMP1 O O O [[5[5’17;0[P] IA]C,ICI IE XL { N OO S U RO Y VO JWRN WU S SO |
XR, | LD.X, L|1 Xn"l*[_ Ll IPIEISITIOIQIEI .2 R
lel 1 | LLDIXI L 2 XL—I-XI i 1 111 IPL'— 15l7—lO|PlEl lXJRZl L4 1+ 3 1 1 8 | S O

L1 BOSC| |/ IWMT oy EXIT S TTURNMN OFF (LNT, L El\/IEL L1
TEMP, ?f/lg £] 2 GACCGEXT) v v a1y
ATV ra PaNYa FalPadra vatra: Fad ad Fal Ale%l%%*l*l%)ﬁX%?éXn%*1)(&6*1*1*1%:* VAraSradras Tatratrarat X.XX.XM&(.*

)elll

11 1

1 1 1 lIJllllllLlIllllIllIIllllLJl*

*Ill

£

AMPL

,/-5¢§. ,TRACLEL]SUBIPOIUIT/JNEI TN T N N NN S N S WA O O S | fo

X1

£

<X

TERE

7‘IE-IPI IEIAICH MAI NLI | LEI I/NSITZ?XUJC'ITI/OM Ll L1 {1 I*

Xlll

lll‘lIIIIALllllLlllllllll]llllJllLlllI*

25 XK€ AR NI IR X H D HHH KK A I M A IEHIDEIDEA A HHE XK KK K]

) |

1

[SS

7-IPIAIC’I\/IIllLI'II'Sl’~5l/\/IOllIl*s'll@llllllJllllll}

TRLAIGV

DG

%—IXI [

| I -] i /Dl | LIOICI 1 F I N N W | I&JSDEICITED }LIOCIA 7-l/ OM S O I S S W | 1
L1 1| |5C1 A g g L e 1-5«7-1 IAINDI WIAII Tl F |O|Pl iQpﬁRAlTIQR;
| I S WIAIIIT | N S "SSN V N O N I | lAlcl7-l/ IOM IWHlENI lFl/lpl&5:7—; IZIEPIOI S |
L1 1| BSC / HRACY, 1 111 RIEI7IUIPIN1 R ST LL NIOIMZE'ZPIQ L1y
LOC £ QU j_l5lllllllljlllIIIlJlLIIIlIllIllIlIll
L1l MDD, TS Y T TN U Y0 00 Y O 0 U WA N T T T S U N TN U U N T O SO S S O |

Note. Provision must be made to test the device status word for the keyboard/console printer if you want to distinguish between fevel 5
interrupts initiated by the PROGRAM STOP key and interrupts from INT RUN (see /BM 71130 Functional Characteristics, GA26-5881).

6-12

restrictions

decreasing execution
time

Monitor Control
use of SOCALs
core maps

The Use of SOCALs

A subroutine that is included in one SOCAL overlay must not call a subroutine included
in another SOCAL overlay or cause another SOCAL overlay to be loaded into core before
execution of the current SOCAL is complete. This restriction is required because the IBM-
supplied 1130 subroutines that are used in SOCALSs are not re-enterable.

Note that disk I/O is used every time a SOCAL is read into core, thus disk I/O is sometimes
entered without your direct knowledge.

When the 1627 Plotter is used by a program, the following subroutines must not be in a
SOCAL for that program: EADD, FADD, FMPY, EMPY, XMD, XMDS, and FARC. These
must instead be incore subroutines. You can accomplish this by:

1. Dumping these programs to cards or WS
2. Deleting the programs
3. Storing the programs with subtype zero

The use of SOCALSs increases the length of time for execution of a program. Some of the
extra time can be avoided by planning your program so as to minimize the number of times
that SOCALS are called into core, Ideally, your program should be written in sections,

each employing a single SOCAL; input, computation, and output. Plan input and output
carefully so as to separate disk and nondisk operations whenever possible.

Reading a Core Map and a File Map

The core maps described in this section are taken from the sample programs supplied with
the monitor system. Sample program listings are in Appendix H. These maps include:

® The execution address of the mainline program
® The names and execution addresses of all subroutines in the core load

® The file allocations

Programming Tips and Techniques 6-13

Monitor Control

assembler- core map

6-14

assembler
core map

The following is the core map from the assembler sample program (program 2):

// XEGQ L
R 41 7908 (HEX) WCS UNUSED BY CORE LOAC
CALL TRANSFER VECTGCR

FSCR 0248

LIBF TRANSFER VECTCR

FARC 0694

XMCS 0€TE

HCLL 062E

PRTY 05DE

EBPA 058E

FACOD 04CO

FDIvV 053C

FLD 0488

FACDX O4E3

FMPYX 049E

FSTO 046C

FGETP 0452

NCRM 0428

TYPECO 0312

EBPRT 02AC

IFIX 0280

FLCAT 0230
SYSTEM SUBROUTINES

ILS04 O0CC4

1LS02 0083 .

O1FE (HEX) IS THE EXECUTICN ADODR

Message R41 (not an error message) indicates that /7908 words of core storage are not
occupied by the core load. Only one subroutine (FSQR) is called with a CALL statement,
but several subroutines are called with LIBF statements. The ILS02 and ILS04 subroutines
are required; however, their addresses indicate that they are a part of the resident monitor
and not in the core load. The entry point address to the mainline program is /01FE.

The following is the core map from the FORTRAN sample program run on a 4K system
(program 1):

FORTRAN
core map
on 4K
system

Monitor Control
FORTRAN core map

// XEQ L 2
*LCCAL,FLCAT,FARC,IFIX,PAUSE,HOLEZ

*FILES{1C03,FILEA)
FILES ALLCCATICN

103 02EA 0001 OEDO FILEA

101 C0O00 0001 OEDO O2EC

102 C001 0001 OEDO OZ2EC
STORAGE ALLOCATION
40 O03BF (KEX) ACDITIONAL CCRE REQUEIRD
43 0124 (HEX) ARITH/FUNC SCCAL WD CNT
44 06B2 (HEX) FI/0, 1/0 SOCAL WD CNT
45 02B6 (HEX) CISK FI/C SOCAL WO CNT
41 0004 (EEX) WDS UNUSED BY CORE LCAD
LIBF TRANSFER VECTOR

VRN

XMCS 0SAA SCCAL 1
EBCTB OF51 SCCAL 2
HCLTB OF15 SCCAL 2
GETAC OED2 SOCAL 2
NORM 07CO

FACDX 0955 SCCAL 1
FSBRX 092C SCCAL 1
FMPYX O8F8 SCCAL 1
FOIV 08A6 SCOCAL 1
FSTCX 076C

FLLCX 0788

SCCOM 0978 SCOCAL 3
SDFX 08E3 SCCAL 3
SDWRT 0901 SCCAL 3
SICFX O09A6 SOCAL 2
SUBSC 07A2

SICI 09AA SOCAL 2
SCCMP 0983 SCCAL 2
SWRT 08A2 SCCAL 2
SRED 08A7 SCCAL 2
FSTO 0770

FLD 078C

PRNTZ ODFB8 SOCAL 2
CARDZ 0048 SCCAL 2
SFIO 09BF SCCAL 2
SDFIC 0960 SCCAL 3

HCLEZ 086A LOCAL
PAUSE 086A LOCAL
IFIX 086A LCCAL
FARC 086A LOCAL
FLCAT 086A LOCAL
SYSTEM SUBROUTINES

ILS04 00GC4
ILS02 0083
ILSOl OF56
ILSO0 OF6F

FLIPR 0804
04C1 (HEX) IS THE EXECUTION ADDR

Programming Tips and Techniques 6-15

Monitor Control
FORTRAN core map

6-16

The principal difference between the assembler core map and this FORTRAN core map is
that the FORTRAN core map includes a file map.

File 103 is equated to a disk data file named FILEA by the *FILES control record. Under
FILES ALLOCATION, file 103 is listed with a beginning sector address of /02EA, is one
sector in length, and is stored on a cartridge labeled OEDO. If file 103 had required more
than the 2 sectors available in FILEA, the record count would have been reduced to make
the file fit in FILEA, and the file map entry would be:

103 /2EA 0002 OEDO FILEA TRUNCATED

Files 101 and 102 are in working storage and are not defined in the *FILES control
record. The last entry for each file indicates whether the file is in the user or fixed area,
or in working storage. If the file is in the user or fixed area, this entry is the name of the
file (FILEA in this case). If the file is in working storage, the last entry for each file is the
sector address of working storage.

The second entry for eack: file in the user or fixed area is the absolute sector address of the
first sector of the file. For files in working storage, the second entry is the address rela-
tive to the first sector of working storage. Thus, the absolute sector address of file 101 is
/0000 + /02EC; for file 102, /0001 + /O2EC.

Note that this program when run on a 4K system requires both LOCALs and SOCALs.
The programmer defines the LOCALs in the ¥*LOCAL control record. These subroutines
are identified by the term LOCAL in the core map. The core load builder selects the
SOCAL subroutines, and these subroutines are identified by the term SOCAL followed by
a SOCAL overlay number in the core map. SOCAL option 2 is used for this program be-
cause all 3 SOCAL overlay numbers are used. SOCAL option 1 uses SOCAL overlay 1

and 2 only.

Under STORAGE ALLOCATION, message R40 indicates that the core load exceeds the
capacity of core storage before SOCALs are employed by /O3BF words. Messages R43,
R44, and R45 indicate that SOCALs 1, 2, and 3 require /0124, /06B2, and /02B6 words
of core, respectively. This information indicates that since SOCAL 2 is much larger
than SOCAL 1, more arithmetic and function subprograms can be called at little extra
cost in core. Message R41 indicates that after SOCALs are employed, /0004 words of
core are not used by this core load.

Monitor Control
FORTRAN core map

The following is the core map from the same FORTRAN sample program (program 1),
but run on an 8K system:

FORTRAN /1 XEQ L 2

core map

on 8K *LCCAL ,FLCAT,FARC, IFIX
system

*FILES(1G3,FILEA)
FILES ALLCCATICA
1G3 02EA COCl1 OECO FILEA
-1C1 CO0C 0CO01l OEDO O02EC
102 0001 0OCOl1 OECcc OZ2EC

STCRAGE ALLCCATICA
R 41 0C08 (HEX) WDS UNUSEC BY CORE LOAD
LIBF TRANSFER VECTCR

EBCTB 12BF

HCLTB 1283

GETAC 1240

XMCS 1224

FCLEZ 11EE

PAUSE 11C8

NCR¥ 11AE

FACDX 1159

FSBRX 1130

FMPYX 1CFC

FCIV 1CAA

FSTCOX 1C52

FLCX 1C6E

SCCCV 0842
SCFX 07aC

SCWRT 07CB

SICFX 0B26

SUBSC 1cG88

SICI oRp2a

SCCMP 0BO3

SWRT 0A22

SRED 0a27

FSTC 1C56

FLC 1672

PRNTZ COF78

CARDZ OECS

SFIO OB3F

SCFIC 082A

IFIX 1238 LOCAL
FARC 1338 LCCAL
FLCAT 1338 LCCAL
SYSTEM SUBRCUTINES
ILS04 CCC4

ILS02 ocB3
ILSO1 1366
ILSOC 137F
FLIPR 1202

04C1 (HEX) IS THE EXECUTION ADDR

Note that fewer LOCALS are specified, and that SOCALs are not necessary; the entire pro-
gram can be contained in 8K core.

Programming Tips and Techniques 6-17

Monitor Control

RPG core map
FORTRAN allocation addresses

6-18

RPG core
map

The following is the core map from the RPG sample program (problem 3):

/7 XEQ L R
R 41 6016 (HEX) WDS UNUSED BY CORE LOAD
CALL TRANSFER VECTOR

RGERR 0C24
HLEBC O0A1lA
LIBF TRANSFER VECTOR
RGSIS 11E4
RGBLK 11AA
RGEDT 108A
RGMV2 OFAé6
RGADD 0DDD
RGSI1 0D8o
RGMVS 0CT72
RGMV3 0D50
RGCMP OCFE
RGMV1 0C6A
PRNT1 OA9A
ZIPCO O097A
CARDO 087C
SYSTEM SUBROUTINES
ILSX4 1249
ILSX2 126D
ILSX1 1286
ILSX0O 12A3

020F (HEX) IS THE EXECUTION ADDR

The information in the RPG core map that is different from the assembler or FORTRAN
core maps is that the special ILS subroutines (named with an X, as ILSX4) are used. The
special ILS subroutines are required by RPG and are called when any character is punched

in column 28 of the // XEQ control record.

Locating FORTRAN Allocation Addresses

Variable, constant, and statement allocation addresses are relative to the loading address
of a FORTRAN program if an *ORIGIN control record is not used. The loading address
(origin) is determined by adding decimal 30 to the next higher addressed word above the
end of the disk I/O subroutine used by the core load. The following chart lists the lowest

possible origins, depending on the disk I/O subroutine in core:

Disk 1/0 Core load origin

subroutine

in core Dacimal Hexadecimal
DISKZ 510 /01FE
DISK1 690 /02B2
DISKN 960 /03C0

VARIABLE
A(R
V3l(I
L2(1
K(I

D(R
M1(I
N(I

Monitor Controf
transfer vector

The absolute addresses of variables, constants, and statements are found by adding their
allocation addresses (obtained from a listing) to the loading address.

If an *ORIGIN control record is used, you designate the loading address (not lower than
the addresses in the previous chart). In this case, the allocation addresses printed in a
listing are absolute addresses.

The variable allocations that follow are taken from the FORTRAN sample program
(program 1) in Appendix H.

ALLCCATICNS

}=C0CC-0016 X(R)=00F0-00DE B(R)=01EC-00F2
)=01F2 M(I)=01F3 L{I)=01lF4
)=01F8 N1(I)=01F9 N (I)=01FA
)=01FE ' IK(I)=01FF I1(I)=02CO
)=01EE V(I)=01F0 v2(I)=01F1
}=01F5 M2(I)=01F6 L1l)=01F7
)=01F8 I(I)=01FC J(I)=01FD

The real variable array A is allocated between the loading address + /00DC and the loading
address + /0016, Constant and statement allocations are calculated in a similar manner.
Notice that the 100-element array A requires 200 core locations (2 words per element).
Because all FORTRAN arrays are allocated in reverse order, A (1) is assigned the two rela-
tive addresses /00DC and /00DD, A (2) begins at /00DA, and A (3) begins at /00DS.

The relocation factor (the actual core address of the first word) of a FORTRAN sub-
program is obtained by subtracting the relative entry point address (from the subprogram
compilation listing) from the actual entry point address (in the core map).

Reading the Transfer Vector

The contents of the transfer vector are determined from a core dump by starting at the
high end of core and marking off words backwards as illustrated by the following:

Dummy one-word entry
(if necessary) to ensure
odd address for FAC

Second First Indicators FAC Last Second First

LIBF CALL CALL CALL

Low core

LIBF TV CALL TV d common §

End of
core

High core

Programming Tips and Techniques 6-19

Monitor Control
SYSUP

Continuation of the job must be delayed until any newly mounted cartridges are ready.
The assembler WAIT statement and the FORTRAN PAUSE statement provide the necessary
delay.

The IDs of the cartridges being used must be specified. If zero is specified for the master
cartridge (logical drive 0), the master cartridge for the current job is assumed. When less
than 5 cartridges are used, specify the IDs for the cartridges to be used and an ID of zero
to indicate to SYSUP that all cartridges have been specified. If, for example, 3 cartridges
are used for a SYSUP operation, the cartridge ID list is coded as follows:

Label Operation Operands & Remarks
25 27 30 35 40 45 50 55 60 65 70
L1l 1ol | NN N T WY YT TN U O U U T U ST N YT A Y W NI
L1 1o | N U S YOON YO U T A U U5 W N O U U O TN T WS A TN AN A A S WO U U0 U Y 0 Y MO OO
L1 1 1 1*1 1 P 1 1 1] & 1 1 & 1 1t 1 3 i 1 1 L 1 i 1 t 4 ¢ 1+ 0.4+)o.).oro_&
L /ST, DC. /.¢.¢1¢1¢1 A |(|A|515LU1/”191 ma,ster car 7‘ "llldlqné’)\
L1 C ALL4? o, W CGCanrt (LD of olql/lalal L |14)| L1
1 11 1 D[c[1 /IZIZIZIZI 3l .J 11 l(laall‘l*l 1 /Dl lolfl l/ olqll c al /l |Z)l | U
L1 1 1 chl 1 /l¢l¢l¢¢l) S 1 11 l(l /‘nld ,Iclaf el‘s'l lg” d] lol-PL l/ I gLf-) 1 1
| L1 [U NN TS YOO NN N TN N U N N N N U UG NN W U OO U A0 T A N WY Y O O

The FORTRAN calling sequence for SYSUP is:

1 5 10 15 20 25 30 35 40 45 50
PAVEIE 234)
(\Clhlalnlglel |cialr#|Al/|d|qlels)]
(|Prlelss| |PROGRAM |SITIART]

where
a indicates the last item in an array that contains the IDs of the cartridges being used’
for the SYSUP operation. For example:

CALL SYSUP (K(5))

K is a one-word integer array. Because FORTRAN arrays are stored in reverse order, the
first item read by SYSUP is the last item K(5) stored in the array. Thus, K(5) is the entry
for logical drive 0, the master cartridge. This item in the array can contain zero, in

which case, the master cartridge defined for the current job is assumed.

The array cannot be longer than 5 words, but it can be shorter. If less than 5 words are used,
the first item K(1)-placed in the array must be zero to indicate to SYSUP that all cartridges
have been specified. For example, a 3-cartridge FORTRAN array is specified as (K(4)) with
K(1) containing zero.

After execution of SYSUP is completed, a list of the cartridges is printed. Error messages
printed during SYSUP operation are included in Appendix A.

Programming Tips and Techniques 6-21

Monitor Control
SYSUP, reeling

on a single
drive system

Reeling

Reeling is the process of continuing a long data file from one cartridge to other cartridges
and is done with SYSUP and program linking. This operation might be performed as fol-
lows,

Suppose your system has only one disk drive, the internal disk in an 1131 CPU, and you
want to sequentially process a long data file that does not fit on one cartridge. The first
part of the file can be defined on one cartridge and the second part on another. The pro-
gram that accesses this file can be written as 2 parts and linked together. The first part
processes the first part of the data file, and the second part of the program processes the
rest of the data file.

Assume the program is written in FORTRAN, and the termination of the first link con-
sists of a PAUSE (to allow for mounting the second cartridge in place of the first), fol-
lowed by CALL SYSUP and CALL LINK to the second part of the program. When
SYSUP is called, DCOM and COMMA are updated on the second cartridge.

1 5 10 15 25 30 35 40 45 50 55 60 65 72
1] TIEL 1(13(s]4]d))] |
| RMAT] I(|AGMALIIMK Wiol-] 1] (EXEICluT|ED]. | ICHAMGIE] ICLARITIRI DBELS] .)
%./SE 11111
CALILT ISVIsIUPL (1Ll d2)])
CAILILL L]/imid 1CIL/IMAIZD] |]

6-22

on a multidrive
system

The only constraint is that the second cartridge must be a system cartridge. If the FOR-
TRAN compiler is not on the second cartridge, the second part of the program can be com-
piled on the first cartridge, dumped to cards, and stored on the second cartridge. Sample
program S in Appendix H illustrates how this is accomplished. For this sample program,
both cartridges are systern cartridges, both contain a fixed area, but only cartridge 0EDO
includes the FORTRAN compiler. The second part of the program (LINK?2) is compiled
on the first cartridge, dumped to cards, and stored on cartridge OED4 that contains the
second part of the data file.

One-word integers are specified for both parts of the program. Thus, the 2-word array
referenced in LINK1 contains a zero in L(1), and the second cartridge ID in L(2). Be-
cause FORTRAN arrays are stored in reverse order, SYSUP first reads L(2) that identifies
the new cartridge on the system and L(1) that indicates no more cartridges.

Another method of using SYSUP that is suitable to any FORTRAN precision is to call an
assembler language subroutine, with undefined precision, that calls SYSUP.

Sample program 6 in Appendix H illustrates sequential file processing with 2 cartridges
and 2 disk drives. If your system has more than one disk drive, you can avoid the SYSUP
and CALL LINK sequence of sample program 5 by naming both cartridges on the // JOB
control record. As in the description of program 5, you must write your program to
process the 2 portions of the data file separately, even though they may have the same
name, In the case of duplicate names, the *FILES control record can name the 2 files,
both with the same name but with different cartridge IDs.

All files referenced in a given core load must be stored in the user or fixed area when the
core load is built. This applies to *FILES references and assembler DSA statements alike.
If you desire to, you can divide your program into links, each with its own associated
file.

Data File Processing
FORTRAN disk files

reeling in general If sufficient drives are not simultaneously available for all cartridges involved to be speci-
fied, a reeling method must be used. Any cartridge that contains a data file that is named
in an *FILES control record must be on the system at the time the *FILES control record
is processed after either a // XEQ or *STORECI control record. Similarly, a DCI program
that accesses files in a fixed area must be executed with the same cartridges on the same
drives as when the program was built,

For example, if sample program 5 in Appendix H is stored in DCI format with cartridge
OEDO on logical drive 0 and cartridge OED4 on logical drive 1, these cartridges must be
on the same logical drives each time the program is executed.

These requirements are due to the fact that the core load builder assigns absolute sector
addresses, including logical drive codes, for files in the user or fixed area as a core load is
built.

DATA FILE PROCESSING
This section describes disk data file organization and processing as follows:
® FORTRAN formatted and unformatted I/O
® Assembler and RPG sequential and indexed sequential access method (ISAM) files

File organization includes defining the required disk space for a new file, and how data is
placed in the file. File processing includes how information in files is used and modified.

FORTRAN Disk File Organizatidn and Processing

The FORTRAN READ and WRITE statements call disk I/O subroutines to access disk
data files. The disk files are organized sequentially like magnetic tape files, except that
random access is possible. This analogy to magnetic tape files is helpful in understanding
the processing of the file records. Data conversion is not possible with FORTRAN I/O.
The terms formatted and unformatted refer only to the organization of records within
files.

The logical unit numbers and maximum record sizes that are used in FORTRAN READ
and WRITE statements are listed in Figure 6-1. Avoid the use of the actual logical unit
numbers in READ and WRITE statements; the use of integer variables provides for easier
program modification.

Programming Tips and Techniques 6-23

Data File Processing
FORTRAN disk files

Logical
unit Kind of
number Device transmission Record size allowed
1 Console Printer Output only 120
2 1442 Card Read/ Input/output 80
Punch
3 1132 Printer Output only 1 carriage control + 120
4 1134/1055 input/output 120, plus max. of 80
Paper Tape case shifts for PTTC/8
Reader Punzch code, plus NL code
5 1403 Printer Qutput only 1 carriage control + 120
6 Keyboard Input only 80
7 1627 Plotter Qutput only 120
8 2501 Card Reader Input only 80
9 1442 Card Punch Output only 80
10 UDISK Unformatted 320*
input/output
without data
conversion

*Unformatted disk I/O comprises 320 word records (including a 2-word header). The
first word of the header must contain the count of the physical record within the
logical record (see exampie following). The second word of the header must contain
the number of effective words in the individual physical record. The second word of
the header of the last physical record within a logical record must have the sign bit
(-) on. Unformatted disk characters are stored in as they appear in core storage.

Example:

DIMENSION A (400) 800 words
WRITE (10) A

Physical records {(maximum record length
320 words due to disk sector size)

| 1] 318 | paTaworbs |

Logical record
{total number of [2] 318 [paTAwoRbDs |
words to be written)

[3]-164 | paTaworDs |

164 and sign bit (/80A4). Not /FF5C.

An end-of-file record occupies one sector. Word one of the header must be 1 and
word two must be a negative zero (/8000).

Figure 6-1. FORTRAN I/O logical units and record sizes

6-24

Data File Processing
FORTRAN formattéd 1/0

Formatted FORTRAN |/0 Statements

A formatted disk file is created by a FORTRAN DEFINE FILE statement. The file is
assigned to working storage unless the file number is equated to an existing file in the user
area or fixed area by an *FILES supervisor control record (see “Use of Defined Files” in
this chapter). The DEFINE FILE statement specifies the number of records in the file and
the record length. In analogous magnetic tape terminology, a formatted file contains fixed
length records with a maximum record length of 320 words.

File records are written backwards in the physical sectors; the first record begins at the end
of the first sector. Records are filled backwards, with an exact core image of each variable
written adjacent to the previously written record. The following illustrates how sectors
and records are filled.

* %"

SECTOR 1 SECTOR 2 SECTOR 3
Record Record | Record| . Record Record | Record Record Record | Record
n 2 1 2n n+2 n+1 3n 2n+2 2n+1

~ W 18 . 2

N a——

Unused / N N Unused Unused

/ ! N
AN
/ \
/ \
/ \
/ \

Variable 2 | Variabte 1

formatted data
file example

If writing of variables specified in a WRITE statement exceeds the record size, writing
continues into the next record until the variable list is exhausted. However, if the total
size of the file is exceeded because of data exceeding the defined record size, the I/O
operation halts with /F101 displayed in the ACCUMULATOR.

This example assumes a FORTRAN program with the following specification statements:

\ 5 10 15 20 25 30 35 40 45 50
AEATERENAERAGAL B BT Z) JENgNEE
IMEMS|TIOM 1RG5 (T1(15) 41
ATA R 1-¢92- ’3- 34' 95- ,I 92939 ’5

i T

For this example, file 1 is equated to a 2-sector file named DATA1 (in the user area or
fixed are) by the following *FILES control record:

1 5 10 15 20 25 30 35 40 45 350

FIl LIEISICIE s DAITALLD

Programming Tips and Techniques 6-25

Data File Processing
FORTRAN unformatted 1/0

Word | Word | Variable | Variable

1

The following shows the contents of the first 2 records of DATA1 after each of the
WRITE statements under“l/O executed” is executed. (Assume that the words of DATA1
contained FFFF before execution. XXXX entries indicate unreferenced FORTRAN

. fill words.)

Pracision specified

*ONE WORD INTEGERS
*ONE WORD INTEGERS

*ONE WORD INTEGERS

None
*EXTENDED PRECISION
*EXTENDED PRECISION

*EXTENDED PRECISION
*ONE WORD INTEGERS

1/0 statements axecuted

Record 2 of DATA1

Record 1 of DATA1

DO5J=12 FFFF FFFF FFEF 0002 FFFF FFFF FFFF 0001
WRITE (1:)1(J)
DO5J=12 0002 4000 0082 0002 0001 4000 0081 0001

WRITE (1")1(J),R(J},1(J)
WRITE (1"1)(1(J),J=1,5)

DO5J=12
WRITE (1'I1)

DO5J=1,2
WRITE (1°3)1(J)

DOS5J=1,2
WRITE (1'J)IRJ)

WRITE (1"1)H1),R(1),1{2)

FFFF FFFF FFFF 0005

FFFF FFFF 0002 XXXX

FFFF 0002 XXXX XXXX

FFFF 0082 4000 0000

FFFF FFFF FFFF 0002

0004 0003 0002 0001

FFFF FFFF 0001 XXXX

FFFF 0001 XXXX XXXX

FFFF 0081 4000 0000

0081 4000 0000 0001

2

SECTOR 1

1

2

Unformatted FORTRAN 1/0 Statements

FORTRAN I/O subroutines can be used for unformatted disk I/O; an analogy to magnetic
tape files is that unformatted files contain variable length records. A data file for unfor-
matted I/O must be named $$$3$ and can reside in either the user area or fixed area (see
“Initializing $$$8$$ Data Files for Use With FORTRAN Unformatted 1/O” in this chapter).

The logical record length is determined by the size or the object code of the I/O-statement
variable list and is limited only by the total file size. If the length of a record exceeds 318
words, it is segmented to fit into consecutive sectors. Every sector begins with a 2-word
header. Word 1 contains the relative sector number within that logical record, and word 2
is the count of the data words following the header. The following illustrates how unfor-
matted sectors are filled:

6-26

| [
| -= Sector data word count

SECTOR 2 SECTOR 3
. Word | Word Word | Word
1 2 DATA WORDS 1 2 DATA WORDS
.)) |))
{ " € ((€

e Sector count within logical record

Data File Processing
FORTRAN $$$$$ data files
ASM and RPG data files

The last sector of a logical record has a sign bit set in the second word of the header. The
remaining words of the last sector are not used. Therefore, an unformatted WRITE state-
ment containing a single one-word integer variable uses only three words of each sector;
the 2-word header and the data word.

The FORTRAN I/0 statements BACKSPACE, REWIND, and END FILE statements are
used only with unformatted disk files. These statements provide a further simulation of
magnetic tape file processing, and position the I/O pointer to the correct logical record
within a file.

Initializing $8$$$ Data Files for Use With FORTRAN Unformatted 1/0

You must define in the user area or fixed area a data file with the name $$$$$ prior to
executing a FORTRAN mainline program or subroutine that uses unformatted I/0. One
file can be defined on each cartridge; however, only one $$$$$ file can be referenced in
any one job.

The following example shows the control records for defining a $$$$$ file on a satellite
cartridge and executing the program ML1 that uses unformatted I/O, where:

® The satellite cartridge ID is 1004
® The system cartridge ID is 1001
® A data file of 100 sectors is defined

1 5 10 15 20 25 30 35 40 45 50
/ 0B 101! | | 1 -
FIIINE IFI/ XED] |AR 14 1 1] ')
SITOREDATIAL | WIS| | [F sal3i9l8l | [1lod1l@a1l | 111004] L[]
VOB, 101 1004
Qﬁ LiL nE

1
11 IR

Note that an *FILES control record defining the $$$$$ file is not required after the XEQ
control record.

Sample program 4 in Appendix H uses unformatted I/O and END FILE, BACKSPACE,
and REWIND statements. The program writes 3 logical records of different lengths to a

- $$83$ data file. Each logical record begins on a sector boundary and extends into addi-
tional sectors as required.

After the completion of each WRITE statement (of records A, B, and C), a pointer is
moved to the beginning of the next logical record. In the case of the END FILE statement,
the pointer is similarly positioned beyond the record generated by END FILE. The

second BACKSPACE statement moves the pointer to the beginning of record C, which is
subsequently read into area F,

The REWIND statement sets the pointer to logical record A, then a READ statement with
no area specified advances the pointer to record B. Only the first half of B is read into
area E, since the record lengths are in the ratio 2:1.

Assembler and RPG Disk File Organization and Processing

The disk I/O subroutines supplied with Disk Monitor 2, direct access, sequential access,
and indexed sequential access method (ISAM), are used by both assembler and RPG lan-
guage programmers. The key to the use of the disk I/O subroutines is an understanding of
the basic principles of disk file organization and processing.

Programming Tips and Techniques 6-27

Data File Processing
sequential
ISAM

sequential file
organization

indexed sequential
(ISAM) file organization

sequential processing
of sequential files

random processing of
sequential files

sequential processing of
ISAM files

random processing
of ISAM files

File Organization

File organization is the method of arranging data records on a direct access storage device;
that is, building the file. Two types of file organization are available with DM?2; sequential
and indexed sequential (ISAM).

A sequentially organized file is one in which records are placed on the disk in the same
order they are read in, one after another, That is, record 6 cannot be written until record
5 is written, record 5 until record 4. Sequential files can be processed sequentially or
randomly.

An indexed sequential file is one in which records are placed on the disk in ascending se-
quence by a record key. The record key can be a part number, man number, or any other
identifying information that is present in the records in the file. In addition, an indexed
sequential file uses an index table to indicate to the processing program the general loca-
tion of desired records. Each index entry contains a cylinder address and the highest record
key on that cylinder. For cylinders that have overflowed, the index also contains the
overflow sector address and the key of the first sector overflowed from that cylinder (see
the descriptions of overflow sectors and areas under “Indexed Sequential Access Method
Files and “Contents of an ISAM File” later in this chapter).

Index tables are analogous to the index card file in a library. If you know the title of a
book (the record key), you can look in the card file (index table) until you: find the card
(index entry) for that book. On the card is a number (cylinder address) where the book
(record) is located. You go to the shelf and find (seek) the number (cylinder address)
you are looking for. Now you can search for the particular book (record) by title (record
key).

Records in an indexed sequentially organized file can be processed sequentially or randomly,

File Processing

File processing is the method of retrieving data records from a file; that is, using the file,
Four methods of file processing are available with DM2.

® Sequential processing of sequentially organized files

® Random processing of sequentially organized files

® Sequential processing of indexed sequential (ISAM) files
® Random processing of indexed sequential (ISAM) files

When sequentially processing sequential files, all records in the file are processed in the
order of the file starting with the first physical record in the file.

When sequential files are randomly processed, the sequence of record processing is not
related to the physical sequence of the records in the file. To find a record in a sequentially
organized file, your program must specify the record number. The record number indicates
the relative position (sequential location) of the record in the file. The disk I/O subroutine
calculates the sector address from the record number and reads the proper record.

When sequentially processing ISAM files, all records in the file are available in a sequence
determined by the record key. Processing can start at the beginning of the file or at any
point within the file.

To find a random record in an ISAM file, code your program to search the index table
using the record’s key. The matching index entry points to the cylinder that contains the
record. The indicated cylinder is then searched for the desired record; the match is made
by record key. This kind of processing can be called processing in a random sequence
with record keys.

Data File Processing
sequential
ISAM

Calculating Sequentially Organized and ISAM File Sizes

You initially define a file on a disk with the DUP *DFILE or *STOREDATA function.
These functions set aside a specified number of sectors for the file, and enter the file
name in LET or FLET. This file name that you assign to the file must be used in all
future references to the file.

Sequentially Organized Files

The number of sectors required for a file depends on the size of records and the number of
records. The records are fixed in length and can be defined as any size between one word
(2 characters) and 320 words (640 characters). Records cannot be extended across sector
boundaries; thus, a 320 word record (one sector) and a 161 word record each require one
sector of disk space. Careful planning is required in calculating optimum record size for
your file.

1. Compute the number of words (L) in a record:

C
L=
2
where
C is the record size in characters, Round the answer to the next higher number

if the answer has a remainder.
2. Compute the number of records (V) that can be contained in one sector:

_320
N=7T
where
L is the length in words of each record computed in Step 1. Disregard the re-

mainder, if any. 320 is the number of words in a sector.
3. Compute the number of required sectors (S):

=Rl

$=7N

where
R is the number of records in the file, and N is the number of records per
sector computed in Step 2. Round the answer to the next higher number if
the answer has a remainder. This answer is the sector count that you specify
in an *DFILE or *STOREDATA control record to reserve file space in the
user area or fixed area.

To change record sizes or add records to a sequential file, the file must be rebuilt. If
a revised file requires additional sectors, it must be redefined and rebuilt. A sequen-
tially organized file is built using the sequential access routine. A sequential file

can be processed by either the sequential access subroutine or the direct access sub-
routine, These subroutines are described in the publication IBM 1130 Subroutine
Library, GC26-5929.

Indexed Sequential Access Method Files
The number of sectors (S) required for an ISAM file is computed by the following formula:
S=P+I+0+F

where
P is the number of prime data sectors, / is the number of index sectors, O is the num-
ber of overflow sectors, and F is always one sector for the file label.

Programming Tips and Techniques 6-29

Data File Processing
ISAM

compute prime
data sectors

compute index
sectors

overflow sectors

file label

6-30

The number of prime data sectors (P) is computed as follows:

_R#N-1

P="x

where
R is the approximate number of records in the file, and N is the number of records
per sector. Disregard the remainder, if any. The number of records (V) is compuied

where
L is the length in words of each record. The maximum record length in words is
318; records cannot cross sector boundaries.

The number of index sectors (I) is computed as follows:

_C+E-1

==

where
C is the number of prime data cylinders, and £ is the number of index entries per
sector. Disregard the remainder, if any. The number of prime data cylinders is com-
puted as follows:

_Pt7
C=73

where
P is the number of prime data sectors. Disregard the remainder, if any. The number
of index entries (E) per sector is computed by:

_320

E=%X

(disregard any remainder)

where
X is the index entry size computed by:

X=2K+3

where
K is the key length in words; maximum 25 words (50 characters). If the length of
the key in characters is an odd number, add one when calculating the number or
words; that is, 49 characters require 25 words.

You decide on the number of sectors to be provided for overflow before the file must be
rebuilt, This overflow area is automatically assigned to start at the sector following the
last sector of prime data. This assignment is done by the ISAM load (close) subroutine.

When computing file size, always add one sector for the file label.

If you wish, an assembler language program can be used to perform the preceding calcula-
tions. You need know only the index entry size (X) as previously discussed, the length of
a record in words, the approximate number of records in the file, and an estimate of the
number of sectors of overflow area needed. A program to calculate all values previously
discussed is included as sample program 7 in Appendix H. The values calculated by the
program or by you are required as entries in the disk file information (DFT) tables for the
ISAM subroutines. An indexed sequential file is built using the ISAM load subroutine, ex-
panded using the ISAM add subroutine and processed by either the ISAM sequential or
ISAM random subroutine. These subroutines are described in the publication, IBM 1130
Subroutine Library, GC26-5929,

ISAM file label

Data File Processing

ISAM

Contents of an ISAM File
An indexed sequential access method (ISAM) file is composed of:

o File label

® Index

® Prime data area

® Overflow area

The relative position of these components within the ISAM file is:

File label

Index Prime data area Overflow area

The first sector of any ISAM file is the file label. This label contains information required
by the ISAM subroutines for processing the file. The file label is built by the ISAM load
function, updated by ISAM add, and used by ISAM random and sequential subroutines.
All label operations are performed automatically by the ISAM subroutines. The only file

label operation that you perform is to reserve one sector for the label when the file is
initially defined.

The format of an ISAM label is:

Word number

1

2

10

1

Label entry description

Key length

Record length

Number of index entries per sector
Index entry length

Number of records per sector

Record number of last prime data record
Index entry number of last entry in file
Sector address of last prime data record
Sector address of last index entry
Sector address of next overfiow record

Record number of next overflow record

Programming Tips and Techniques

6-31

Data File Prceessing
ISAM

ISAM file index The ability to read or write records anywhere in an ISAM file is provided by the file index.
An ent1y in this index contains a cylinder address and the highest record key that is asso-
ciated with that cylinder. The ISAM subroutines locate a given record by searching the index
for the key and then searching the specified cylinder for the desired record, again searching
by key. To increase the efficiency of the ISAM subroutines, one sector of the index is re-
tained in core storage for each file.

The key can be a part number or an employee name or any other identifying information
that is contained in any record in the file. The key entries in the index are the numbers in
ascending collating sequence of the highest key on each cylinder. The end-of-file record
key is the key with the highest possible value; all bits are ones.

The following is a portion of an index table. Note that each entry contains 2 sets of the
same information, The second set is overlaid to show overflow data when the affected
cylinder overflows.

4
First First e Second Overflow
Key | cylinder | Key | cylinder . Key cylinder | Key | sector Record
156 | address | 15 | address o 30 address 31 | address |number
s

Normal entry Overflow entry

All nth All 1 nth
1 cylinder 1 cylinder
bits address bits | address

Third Third
Key | cylinder | Key| cylinder
45 | address | 45 | address

© 0= 0N

Normal entry Last entry in index

6-32

prime data area

overflow area

Data File Processing
ISAM

The prime data area contains the data records that are placed in the file by the ISAM load
subroutine. The records must all be the same length (maximum 318, decimal, words). The
ISAM subroutine adds a 2-word control field to each record. This control field, called the
sequence-link control field, is used in the overflow area as a chaining indicator. The control
field indicates whether or not a cylinder has overflowed.

Prime data area records appear as follows:

Data record 1word 1 word Data record 1word 1 word
T T ¥ i
Ke ! | Key ! |
v | Zeros | Zeros | Zeros § X‘FFFF
75 1 i 520 | I
1 1 1] 1
Sequence-link Sequential-link
control field control field
| - v
— ~ g

4
Last data record on a
prime data cylinder
that has overflowed

Data record on a
prime data cylinder

When a new record is added to an indexed sequential file, it is placed according to key se-
quence. If records were to remain in precise physical order, the insertion of each new
record would require all records with higher keys to be shifted up. However, because ISAM
files have an overflow area, a new record can be entered into its proper position and only
cause records with higher keys to be shifted on that cylinder. The record that is forced off
the end of the cylinder by the addition of the new record is written in the overflow area.

The index entry of any cylinder that has overflowed points to the overflow sector address
and record number of the record placed in the overflow area. When 2 or more records are
added in key order, the overflowed records are chained together through the entries in
their sequence-link control field. The entry in the first record points to the second, the sec-
ond to the third, and the third to the fourth. The last overflow record in the chain has a
sequence-link control field of all zeros.

You specify the number of cylinders for the overflow area when you initially define the
file. Then the ISAM subroutines place the records in the overflow area in the order that
they overflow, not in key sequence,

Programmming Tips and Techniques 6-33

Data File Processing
ISAM

To illustrate the overflow area, assume that on cylinder 6 of a defined file, the last 3 entries
have keys 150, 152, and 154. Key 154 identifies cylinder 6 in the index. When you add a
record with key 153, a record on another cylinder, and a record with key 151, the over-
flow area appears as follows:

Overfliow area

T | T Y T 1
Ke 1 | | Ke I Overflow fe
151 | zZeros|zeros | Zeros §Zeros 15; | sector 0081
T) O e e S

T — T ———— " —— N m—

First record overflowed. Record overflowed Last record overflowed.

The sequence-tink con- from another cyl!- The sequence-link con-
trol field is zeros indica- inder trol field points to the
ting the end of a chain. next key in sequence.

In this case it's key 154
in the overflow area.

Key 152 now identifies cylinder 6 in the index; the overflow entry in the index for cylinder
6 points to the overflow area.

Deleting Duplicate Records Caused by a Disk Error During an ISAM Add Operation

If a disk error (/5004 displayed in the console ACCUMULATOR) occurs during an ISAM
add operation, a record may be duplicated in the file. To check for a duplicate record,
list the file or part of the file using the ISAM sequential retrieve. If a duplicate record is
found, one copy must be deleted.

To determine which record to delete, dump the file using a DUP *DUMP function, and
check the index entry for the affected cylinder, If the key of the duplicate record is less
than or equal to the first key in the index entry, delete the second of the 2 records. If the
key of the duplicate record is greater than the first key in the index entry, delete the first
of the 2 records. In both cases, the remaining record is the one that is processed by the
ISAM random retrieve function.

Note that the duplicate record is not physically deleted; it is deleted by performing a se-
quential read and flagging the copy that is no longer to be used.

6-34

Assembler Programmer Tips
grouping mnemonics
use of XR3
double buffering

TiPS FOR ASSEMBLER LANGUAGE PROGRAMMERS
The tips in this section are provided to help you with:
® Grouping assembler mnemonics to shorten assembly time
® Usingindex register 3

Double buffering for faster I/O operations

Using the 1403 conversion subroutines

Writing ISSs and ILSs

Grouping of Assembler Mnemonics

The Monitor System Assembler Program is divided into overlay phases, each phase pro-
cessing a certain group of mnemonics. Each time a mnemonic is processed during assembly,
the overlay phase required to process it is read into core, unless the overlay is already re-
siding in core. :

Assembly time can be shortened by grouping mnemonics of a common type in your source
program; thus fewer disk reads of overlay phases are required by the assembler. The fol-
lowing is a list of the mnemonics as they are grouped within the assembler program:

HDNG, ORG, EQU, BSS, BES, LIST, SPACE, EICT, DUMP, PDMP
LIBF, CALL, DSA, LINK, EXIT, EBC, DN

1. ABS, FILE, ENT, ISS, ILS, SPR, EPR

2. DCsand imperative instructions, such as A, LD, EOR, BSC
3. DECand XFLC

4., DMES

5.

6.

Assembler Program Use of Index Register 3

In general, index register 3 (XR3) is reserved to point to the transfer vector. Normally,
you can use this register in your program; however, if you use LIBF statements, you must
code your program to do the following:

1. At the beginning of your program, save the contents of XR3

2. Before each LIBF, save your program’s contents of XR3 and restore the original con-
tents (the pointer to the transfer vector) to XR3

3. After each LIBF, restore your program’s contents to XR3

Under certain conditions, you cannot use index register 3 even if you code your program
to save and restore its contents, These conditions include core loads that overlap I/O
operations and core loads that use the synchronous communications adapter, When these
conditions exist, you can use index register 3 if you specify that a special set of interrupt
level subroutines (named with an X as ILSX4) be included in a core load. You specify the
use of the special ILSs in a monitor XEQ control record.

Double Buffering in Assembler Programs

The IBM 2501 Card Reader, Model A2, rated at 1000 cards per minute, presents a special
problem when you want maximum performance from card I/O operations. If any conver-
sion of the card data is required, the reading speed can drop to 500 cards per minute, The
use of double buffering can prevent the loss of speed.

The principle of double buffering is to read into one buffer while converting and processing
the data from another buffer. This scheme uses additional core for the extra buffer and
additional programming involved, but in most cases, card throughput should remain at
1000 cards per minute. The following coding example illustrates the double buffering
technique used for reading cards from the 2501, and converting them to EBCDIC.

Programming Tips and Techniques . 6-35

Assembler Programmer Tips
double buffering

Label Operation FIT Operands & Remarks T .
21 25] 127 _ 30| PB2[33] 135 40 45 50 55 60 65 70
L4 1 L|/|B|F PIEIAIDI¢I [lPlPI/MIEI lZ)JOlUIBlLJEl—lBlUlFlFLEJ_ lElDl Ld L1
N DICJ 1 /l 1|¢1¢1¢1 Lto11 IXLCIALPLDJ WREA IDI /IMGI e lTllL/i / 1‘5.1 IPIEIAIDI L
Xl 11 |Cx] Ql(-/lFlil [I N I*IDI IPIFIOIPMEIDI IOJNCJEI IONL YL i1 11
Ay)1y Lo I WO S (D DN WY TN NN NN N T N I N N OO O N N N T (T O O OO SO | L
DLEAIDI LI / IBIF pLElAlDl¢J [JI[HL4'5i4P£JA LWI/ L Ll |N|O Tl ISTAPI Lk
Ll 1 4 |C| 1 /l-ZlMx@l {1 g1 I*IU(MT/LLI 1PQEV/OxU5’1 LPEADI § A W S B |
LT L C\ B_LUnFlzl ST N T 1*1/15L ICIOIMDRLIELEEIDI TR N N OO U NN WS N W S S |
ltJl Ll | l[llJlLIllllLlllILlllllllllIILlLlLll
L L BF ZIPCO { , BR TO EXECUTE FAST CGONVERT,

DG,

/l-zlllﬁl-zl 1

lIJBlML ICIAIPID IGOIDIEI lTIOl IEIBICIDI/I | T W

X

A1

| —

.+ . ¢ ¢ & 1y 4t ¢ ¢ 4 or ¢ o ro¢2 x4) 4 4 p gy 1oy i 4.1 1

X

i WS IS TN S N NN TN Y SNV O VNN U WG IO N N (NN [N U (NN NN TN [N [N (S VOV N VSN N S U N 1

| S T | 11 1
\?I£J7-IZI Cr BU1F111+J-11 v ONPUT, AREA JADDRESS, v v i
&érljl DC, BUF L+) IOIUITIPIUETI AREA IAI-DDPLEI'SIS; Loy Jo4oJi1
L1 C 88 ., o NO., OF COLUMNS TO CONVERT ,
111t L1t S S U S W W S U N SO U T U U VO S OO U N SO S O W I | .
xl 1 CIAILIL HILIEJBICI AR |COMVEP|0(ONM IT‘AIBIL E, lFlOpl |Z/ BPCC,
1) L1 AT A AT RN U NS A ST N R S S A U T H A A S S A A S O S S A E O -
N . | IDJDI BlEA'lDlpl T T TR W W N B | 1
Loi 41 'SLTJOx fs:EILL [IR LC}JALN Gl i IPJElAIDI IBIUIF F E Z?: IA_LDEDI;? E 5'1'—-'1
L1l T.E 16, 0 EXCHANGE, BUFFER ADDRESSES |
i iﬂ& gﬁADR.J.J*ﬁQR NEXT, T IME THRU LOOP., ,
| L1 WWE v e i a1
L1 5:7]01 SETZ 110 ICL/'/ALNGEI S MNMPUT, |A NDI QUTBUT. BFR
[| SL7-IOI (52517.&\31 T N G | XAD:DJ?ESSES FOQI ICONLVEQ‘S'/ OM °1
;gltlll Ll lI!lllilllﬁi4illlllllLlLlll!llllllLJ*
gél -t JO0D| [NG FIOR] |D|E|Q|U1 RED, PROCESS I NG SHOULD, FOLLOW | lzé(
X Lol PR S N N N T U U N N S S WY A U N S S NN S N S ST ST O WA T WA Y.
) S T | hell B | SN T W ORS WUN SN VU VAU O VY O NN Y N U T N s T U N O O S T T N O Y |
Lt B .. READ | y ¢ v g0 i vt a1
X | I | | | N RN N (S N S N O Y O TN T SN N [N TN TN O OO VN S N N O (N (S (OO T o | l*
raTEN NN, L1 [| 1 L1 1 AT BRI U B S A SRR S S S R A SN S A N .
% . CIONSTA MTIS| |AND, IWIOIQIKI IAIQ[EIALSJ_l I A T A AN S AT I AT A v..
¥ L1 R A S A A S S A S S A A S A S A S AR A ST SRR s
X L1 AR VOO NN O T N NN W YONY VO S WA SO A UG O N N N YOO T N N Y N W T O |
ONE, | DC Lo v CGONSTANT, I\/[AILLIELIOIF} L L4 1o1
B|U|F|11 C 88 . 1 WORD COUNT FOR CARD, 1B|F1R| I
1 1 bl ‘5']5'1 8l®l | W WS U SO N S IC;AIQLDI IauFlFIEKPI Jll L1 L1 1 .t I TR U W T | 1
BUF 2 DC 81_¢1 Loca a1 WMORD CGOUNT FOR CARD BFE 2
1L B33 8D v CARD BUFFER 2 a0 a1
X 1o L I TN N AT T N U ST U N S S N SN S N T S T S ST H T AT N W ST MO . |
X1 L1 IR SO S A WO S U S T Y N S S WY TN UM N N N N 0 N S S0 N B O L%
X . THE FOLILIOMING PALR OF ADDRESSES, \ARE \E xlClHAiNGl D, ¥
X . EAICH TUIME| \[THROUGH, THE CARD READING LOOP ., ., .. . X

X

| -

B33

QLI i O U W T O A | ﬁMKE-I INEIXITI IL OCALI IOIM_ 1ELVEJ_14L L1

BEADD

D|CI 1

LULFL-ZL { N S S S | I/QDIDIPEI*S,I ! IOIFI ICAPDI JBL}IFFEQR 111 1.1

{ L4

DC

B,

UIFIZI | S T | I/JDIDPIEI‘S,ISI IOFL ICAQIDI IBlUL IFLEIPLI) I -

6-36

Assembler Programmer Tips
1403 conversion subroutines
ISS subroutines

Asserﬁbler Program Use of 1403 Conversion Subroutines

Two monitor system subroutines can be used by assembler object programs to convert from
EBCDIC to 1403 Printer code. These subroutines are EBPRT and ZIPCO.

By using the execution times listed in the publication IBM 1130 Subroutine Library,
GC26-5929 EBPRT requires an average of 156 ms (milliseconds) to convert a 120 charac-
ter line compared to an estimate of 72 ms per line for ZIPCO.

The speeds at which the 1403 Printer can print a line are:
Model 6 (340 LPM) — 176 ms/line; Model 7 (600 LPM) — 100 ms/line

Considering these speeds, running the printer at rated speed is difficult or impossible,
depending on the model when EBPRT is used. If overlapped I/O is attempted, running
either model at rated speed is impossible. Because of this, the assembler language pro-
grammer is advised to use ZIPCO for all EBCDIC-to-1403 Printer code conversions,

Writing ISSs and ILSs

Interrupt service subroutines (ISSs) for all 1130 devices and interrupt level subroutines
(ILSs) for all 1130 interrupts are provided with the monitor system; however, if you want
to, you may write your own,

ISS subroutines These rules must be followed when writing 1SSs:

1. Precede the ISS statement (see rule 3) with a LIBR statement if the subroutine is to
be called by a LIBF rather than a CALL.

2. Precede the subroutine with an EPT (extended) or an SPR (standard) statement if
precision specification is necessary.

3. Precede the subroutine with an ISS statement (only one) that defines the entry
point and the ISS number. The ISS numbers used in the IBM-supplied ISS and ILS
subroutines are listed in Figure 6-2, The assembler ISS statement is described in the
publication IBM 1130/1800 Assembler Language, GC26-3778. Note that the ISS
numbers assigned by the IBM-supplied subroutines range from 1 through 11. You
can assign ISS numbers from 12 through 20; assign these numbers starting with 20,

Device interrupt

ISS number Device level assignments n
1 1442 Card Reader Punch 0,4 +4, +7
2 Input keyboard/console 4 +4

printer
3 1134/1055 Paper Tape 4 +4
Reader/Punch
4 2501 Card Reader 4 +4
5 Disk storage 2 +5
6 1132 Printer 1 +4
7 1627 Plotter 3 +4
8 Synchronous 1 +4

Communications Adapter
9 1403 Printer 4 +4

10 1231 Optical Mark 4 +4
Page Reader

1" 2250 Display Unit 3 +4

Figure 6-2. 1/O device ISS numbers and ILS interrupt levels

Programming Tips and Techniques 6-37

Assembler Programmer Tips
ISS subroutines

4. When assembling an ISS, include an assembler *LEVEL control record for each in-
terrupt level associated with the device.

5. The entry points of an ISS are defined by the related ILS. Consider this when you
write an ISS that is to be used with an IBM-supplied ILS. The IBM ILS executes a
BSI statement to the ISS entry point plus n (see the +n column in Figure 6-2). Your
ISS subroutine must return to the ILS via a BSC statement (not a BOSC).

The following listing is an example of an ISS subroutine.

// ASM

*XREF

*LEVEL 4
CC001 B o o o ook o o e ok oo o o e e ool s ofe e ol e ok ode ol oo o o ol o o o o o o ol o o ol ool ool ol R e ok]SSCOOZO
CCo02 *TITLE- REACC * [SSCC0030
ccocs #*FUNCTICN/CPERATICN- * [SSCC040
CC0O04 * TRIS 1130 SUBRCUTINE CPERATES THE PRINMARY * [5500050
CCcoos * 2501 CARD REACER. IT INITIATES REQUESTED * 15500060
CcCoce % CPERATICNS, PRCCESSES CPERATICN CCMPLET * 1SSCCO70
ccecer * INTERRUPTS, ANC ALTOMATICALLY INITIATES *]15SCC080
co008 * ERRCR RECCVERY PRCCEDLRES. * 15500090
CCco009 * * [§5C0100
ccole *ENTRY PCINTS~- * [S5CO110
ccoll * 1. REACC CALL ENTRANCE FCR TEST CR READ * 1SSC0120
ccole * CPERATICAS. E.G. LIBF READO * [SSCO130
Cco013 * DC /1CCO * 1SS00140
CCO14 * DC ICBUF * [SSCO150
CCO15 * 1 bl ICHUF * [SSCO150
CCOle * 2. REO48 CPERATION COMPLETE INTERRUPT ENTRY * [SSCO160
cco17 * PCINT., * 1SSCO170
Ccole *INPUT— NCKNE I THER THAN FROM THE PARAMETERS IN * 15500180
CCols * LIEF CALLINC SEQUENCE. * 1S500190
ccoac *CLUTPUT- RCUTINE WILL TRANSFER O TC 80 COLS FROM * [SSC0200
ccoz2l o * CARC TC I/C BLFFER AS SPECIFIEC BY CALLING * 5500210
CC022 * SECUENCE. FCORMAT IS 12 BITS PER BUFFER WORD*®* 15500220
ccoe3 * LEFT JUSTIFIEC. * 1§5C0230
CC024 *EXTERNAL SUBROLTINES— NCNE. * 15500240
ccozs ®EXITS~ * 15500250
CCco2e ¥ NCRMAT- * [SSC0260
ccozv * 1. RE180 IF NC PRE-CP ERROR HAS BEEN CE- * 1S5C0270
ccozs * TECTEC, THE EXIT FROM REL1BO 1S * 15500280
cCco029 * TG THE CALLER AFTER THE REQUESTED * 158500290
cco3o * 2501 CPERATICN HAS BEEN INITIATED * ISSCO0300
Cco31 * 2. RE348 THE EXIT FROM RE348 IS BACK TO THE * ISS00310
CCco32 % CALLER VIA ILSO4 AFTER GP-COMPLETE * [SS00320
cco33 *) PRCCESSING HAS BEEN FINISHED. * 1S$C0330
CCO34 * ERRCR- * 158500340
CC035 * 1. RE180 IF A PRE-CP ERROR OR NCT REACY * [SSC0350
CC036 * CONDITION IS CETECTEC, SUBROLTINE # 1SS00360
c0037 * WILL BRANCH TC HEX 0C29 VIA RE180 * ISSC0370
cco3s % ANC CISPLAY CNE OF TwC CCDES IN * [1SSC0380
Cco039 * ACCUMULATCR. * 15500390
CCo040 * 4000 IS CISPLAYED IF 2501 IS NOT * 1$SC0400
CCo41 * REACY. 4COl1 IS DISPLAYED IF AN * [55SC0410
CCO42 * ERROR IS DISCCVERED IN CALLING * [SSC0420
CCO043 * PARAMETERS OR AREAS REFERENCED BY * [SSC0430
CCO044 * THEV, * [S500440
CCO45 #*TARLES/WCRK AREAS- NCNE. * 15500450
CCO46 *ATTRIBUTES- REULSABLE, CAN READ UP TC B8O CGLUMNS * ISSC0460
CC047 ¥ CF BINARY CATA. [IF A WORD CCUNT * [$SSC0470
CCo4e * CF 2Z€RC IS SPECIFIED, THE READ * 1SSC0480
CCo49 * CPFRATICN ACTS AS A FEED. * [S$SC0490

6-38

cccce

0Gco ©
0col Co
cCcC3 ¢
CC04 ©
0c05 01

occe
cccs
cces
ccca
ccce
cccc
CCCE
CCCF
cC1cC
ccl1
cc1e
cc13 C1
ccis ¢
0ele C1
ccle C
CCls (1
CCle CC
0C1C ©
cole ¢
CClF C1
ccel ©
6e22 C1
CC24 «
0c2s C
cc2¢ C

C

(

¢

OCOOCCOoOODCaCOo
—

cC21?
cc2s
cc2Aa C
CCc2e o
ccec ¢
ccet ¢
CC?2F (C
cc3c co
cc32 ¢
cc23 CC
0C35 ¢
CC2¢ G
cC37 C
CC3& C1
CC2A O
Ce2E
cC3ac ¢
GC2e C
CC3F C

15141130

6G2E
658CCCCC
7C03
ccco
4CCCCO4R

CC42
2829
6827
clice
18CcC
4C2G0012
cC31
4418
7101
7C19
SC2F
4C2CCC35
cczaa
4C2CCC1S
oe2n
4CC4CC37
c58C0Ca1
4E18
7CCH
4C28003%
9C24
4C3CCO035
7101
clce

-CC10

74C10032
6816
CE&L9
7101
cCle
6SCh
6e5cCCCee
gececeee
ZCCO
4CCCCcCCcCe
cCli3
1CCAa
1eCl
4CC4C0LR
cecon
T1FF
eLCcCcee
€129
cee

ccosc
CCo51
€Co0s52
€0053
CCOo54
€C0055
CC0S56
CCOs57
ccose
CC059
ccoec
CCo61
CCo62
CCoe3
CCO64
CC065
CcCoee6
ccoat
CCoer
CCo069
cecorc
cco71
ccor?
cCcor3
CCO074
CCo7s
ccove
ccerv
ccore
ccors
ccosc
ccoeal
ccoee
ccoes
ceesa
ccoss
cCose
ccosv
ceoee
ccosy
ccoac
ccogl
cco9e
CCo93
cCo094
ccnsy
ccose
ccos7
CCOgE
cCoss
colcce
celcel
ceclcee
ccic3
CClCa
CGleY
cCl1cCe
cec1cy
celee
ccles
CCl1C
celtl
cGlre
[
CCll4
ccr1s

Assembler Programmer Tips
ISS subroutines

LIBR ’
113C ISS C4 READO 4
e A e oo oo 2o o o ol o o ook o e o K o ok o o R K R R
* o LCACER DEFINEC LOCATICNS *
e oo ol o oo o R Kl oo o ool o o ook o ok oK OB ot o ol o bk R Ok o ok R R O
REACO STX 1 REl44+] LIBF ENTRANCE

LDX 1 *-% LCADER STORES Tv ACOR(+2)

MCX REO60 BR TO PROCESS CALL
REOC48 CC LEd CP-CMPLTE INTERRUPT (+4)

BSC L RE336 BR TC PROCESS INT
0 e ot o ol oo o ok o A ok o o o ok o e o e ko ook o o o o o e o o o ok o o o
% : LIBF PRCCESSING %
0o st 3R e o ok o o o ool o ol ok oo ok o o oo ok o e ok o o R RO o ok Kok ok
THIS PCRTICN STCRES CALLING SEGUENCE INFO %
¥ ANC CHECKS THE CEVICE STATUS BEFCRE ANY I/C =
% CPERATICON IS INITIATEC. A CALLING ERRCR OR =
* NCT REACY 2501 CALSES AN ERROR EXIT TC *
LCCATICN 41, IF THE OPERATICN wILL CAULSE AN %
* INTERRUPT, THE ROLTINE IS SET BRUSY AN THEAN *
* ICCS CCUNTER IS INCREMENTED TC INCICATE *
* AN INTERRULPT IS PENDING. *
e e oot e o ol o oK o ol o ke oo ook o o e o Rl o Ol ok oK ok ko ok o R
REQ60 STC RE324 SAVE ACC

STS REL68 SAVE STATUS

STX 2 REL56+1 SAVE XR2

LC 10 XR1 = ADCR CF CALL+1

SRA 12 IS FUNCTION TEST

BESC L RECT2.¢ BR IF NCT

LC REZ28 IS SUEBR BUSY

¢SC *=- SKIP IF YES

MEX 1 +1 NCy EXIT TC CALL+3

MEX RE120 EXIT TO CALL+2
REC72 S RE24C IS FUNCTICN LEGAL

PSC L RELS2,27 BR IF NCT
xEOB4 LC RE?228 IS SuBrR BUSY

RSC L REC84,4!7 YES, LCOP
RECSE XIC RE288-1 1S DEVICE REACY

BSC L RE204,E BR IF NCT

LC 111 OBTAIN WORC CCUNT

BSC +-

ML X RF108 BR CN 2 wD CNT

BSC L RE192,2+ BR IF wD CNT NEG

S RE?2T6 0 THRU 80 IS LEGAL

ESC L REL924Z- BR 1F CVER 80
REL1C8 MLX 1 +1 XRL PCINTS TO 2ND PARAM

LC 10 SAVE DATA ACCR

STC RE264

MEX L $ICCT,1 INCRENMENT ICCS CCUNTER

STX C RE228 SET SUBR BLSY INCR

XI1C RE2€4 INITIATE REAC
REL2C MCX 1 +1 XR1 PCINTS TC RTN ADOR

Le RE324 RESTCRE ACC
RE13? STX 1 RELI&O+1 SET RUTURN ACDRESS
RE144 LOX L1 *=x RESTORE STATUS
RELIS6 LUX L2 *=x% ANC INDEX REGISTERS
RELER LCS ek
RELE0 KSC L %-% EXIT
*KEL1GSZ LL RE212 ERROR CCDE - ILLEGAL CALL

MLX RE?216 BRR TC SET RETURN ALDRS
KE2C4 SKA 1 1S CEVICE BLSY

' BSC L REQGELE BR IF YES

LL RE3CC ERRGR CUDE - CVCE NCT RDY
RE216 MLX 1 -1 XR1 = CALLING ACCRESS

STX L1 $PRET STCRE CALL ACCR IN 4G

LCX 1 $PRET+] XR1 = ExIT ACCRESS

MEX RE132 BR TQ EXIT

1§S00510
15500520
15500530
15500540
1SS00550
[SS00560
I1SSCO0570
15SC0580
15500590
1S5C0600
15500610
1SSC0620
1SS0C630
1S5C0640
15500650
15500660
1SS00670
15SC0680
15500690
1SS00700
1SSC0710
155CQ720
155C0730
155C0740
155C07%0
1SSCC760
1SSC0770
ISSC0780
1SS00790
1SSCo0800
15500810
15SSC0820
155C0830
[SSC0840
[ssocsasce
1$SC0860
[SS00870
15500880
[SS00890
1SSC09CO
1SSC0910
[55C0920
15500930
[SSC0940
1SSC0950
1S5C0960
1SS00970
1S5C0980
15SS0C990
1S501000
ISS01010
15501020
1S5C1030
15501040
15501050
I1$SC1060
ISSC1070
[S501080
1S501090
1SSC1100
1SSC1110
1Ss0l120
15501130
[SSC1140
ISSC1150
1SS01160

Programming Tips and Techniques 6-39

Assembler Programmer Tips
ISS subroutines

CCl16 o o o ok K Mok R Kok o o o ook e sk Aok ok ok B ke s ol ok ok ok ek Aok R Rk R R kR Rk [SSOLLTO
cec117 ® CONSTAANTS * [SSCL1180
CCllé oo gl ok Ko e o e ol e ok ok b ok s ok ke ok ROk R ok gk R R ok ok ko ok R b ok ok kA% [SSO1190
ac4C ¢ CCCC cclis RE2z8 LC o] SURR BUSY INDR 1SS012C0
CC4q2 ccce cer2c BSS € O) I1SSC1210
€CC42 C CCC1 cci21 RE240 [C +1 CCNSTANT 1sS01220
CC43 C 4FC1 co122 RE2S2 LC /4F01 SENSE WITH RESET 1SS01230
0C44 ¢ CCCC co123 REZ64 [C &k 1/C BUFFER ALCDRESS. [SS01240
CC45 € 4ECC CCl24 oe /4€ECO IGCC TC INITIATE READ ISSC1250
C04¢& C CCHC ccl25 RE276 L:C +80 CCNSTANT ISS01260
CC47 O 4FCO CO0126 RE2E8 CC /4FCO SENSE DSw WITHOUT RESET 1SS01270
0C48 ¢ 4CCC col127 RE3CC CC /4C00 CUNSTANT FCR OVC NCT ROY [1Ss0o128¢0
. 0C45 € 4CC1 cclzeg RE312 CC /4001 CST FCR BAC CALL 1S$01290
CC4A ¢ CcCC co129 RE324 [OC *=k SAVEL ACOD 1SS01300
ccoe CC13cC $PRET ECU /28 PRE-OPERATIVE ERROR TRAP 15§S01310
cC2? CC131 $ICCT ECL /32 1/C COUNTER [SS01320
ceecC cc132 $PSTe EGL /8cC PLST-(CPERATIVE ERRCR TRAP [SS0O1330
CC133 ke s o o ol ko e A AR RO Bk Rk R X e keoR kR kR kR ek ko k kR kR [SS01340
CCl134 * OP-CONMPLETE INTERRUPT PRCCESSING % [SS01350
cCC13% s o o e e el o R R o ok R R R R ok R R Rk R kAR R ARk kR kR [$SS01360
CC1l3e * THIS PCRTICN IS ENTERED FRCM AN INTERRUPT * 15501370
€CC137 % LEVEL SUBRT. I1F NC ERRCR HAS BEEN DETECTED * ISSC1380
ccl3e * THE RCLTINE IS SET NOT BUSY AND THE ICCS * 1SSC1390
cCl13s * CCUNTER IS DECREMENTELC TO INDICATE *]SSC1400
COl40 * INTERRLPT PROCESSING COVMPLETEC. CTHERWISE * 15501410
CC1lal * THE SURR, GCES TC THE POST-CPERATIVE ERRCR- % JSSCl420
CCl42 * TRAP ANC WAITS UNTIL THE CPERATCR HAS % [SS01430
CCl43 ¢ INTERVENEC ANLC THE 25C1 BECOMES READY, AT * [SSC1440
CCla4 % wHICH TIME THE CARDS ARE PCSITICNED AND THE * 1SS01450
CC1l45 % 1/C CPERATICN IS RE-INITIATED. *]SS01460
CCl46 ek ok o o e o o ok ok o ok o o sk ok ok ko ko ok ok ok R ROk Rk kol k [SS01470
CC4B C C8Fé6 CCl47 RE336 XIC RE252-1 SENSE CSW WITH RESET 1S501480
0c4Cc C 1CC3 CCla8 SLA 3 IS CPERATICN CK 15501490
CC4rC C1 4CC2CC56 00149 BSC L RE360,C BR If ERRCR 1SSC1500
CC4F CC 74FFCC32 CClS0 MCX L $ICCT,-1 DECRENMENT 1I0OCS 1SSC1510
cCs1 0 1Cco CCl51 NCP IN CASE OF SKIP 1SS01520
cCs52 ¢ 1€10 co1s2 SRA 1¢ 15501530
cC¢s2 ¢ CCEC cG152 STC RE228 CLEAR RUUT BUSY INCIC ' 1SS01540
CC84 Cl 4CrCCCC4 CC154 RE348 BSC 1 REO48 EXIT 1SSC1550
C05¢ ¢ cece CCl155% RE3EC XIC REZ252-1 SENSE DSW FCR RFEADY 1SS01560
0CE7 C1 4CC4CCH5R CCl5¢ £SC L RE365,E TC ERRCR EXIT I+ NCT RDY I1SSC1570
CC56 C Q&EA cC157 xIcC RE?264 RE=-INITIATE FUNCTICN 1SS01580
C05A4 ¢ 7CF9 co1s8 MEX RE348 BR TO EXIT 15501590
cG5e ¢ CCEC cQols59 RE3€5 LC RE300 LD NOT REALY ERRCR CODE 15501600
CCSC CC 44CCO08BC CCl6C BST L $PST4 PCST-0OPERATIVE ERRCR TRAP ISSCl610
OCSE ¢ 7CF7 Colel vEX RE360 TRY AGAIN 1SS01620
COecC CCle2 ENL 1SS01630

6-40

SYVMBCL

REACO
REC48
RECEO
RECT72
RECB4
RECG6
RE1CS8
RE120
RE132
REl44
RE1S6
REL168
RE180
RE192
RE204
RE216
RE228
RE240
RE252
RE264
RE276
RE288
RE3CO
RE312
RE324
RE336
RE348
RE360
RE3¢€S
$ICCT
$PRET
$PST4

Coo
cce
c32

NC

VALLE

coec
CoC4
coct
colz
Ccol5
cole
C024
coze
co2cC
CO2E
003¢C
C032
c033
0035
cc3r
ccae
coacC
€042
C043
C044
Co4¢
c047
C048
0049
C04A
co4t
C054
C056
cose
co32
coze
cosec

REL

O OO rt 1t 1t s ot ot ot ot it ot Pt Pt ot b et b ot et et P P ot et ot b ot Pt et et

CRCSS-REFERENCE

CEFN

c00S55
ccose
€Co72
coog2
coocesq
coose
C0094
colccC
colce
C01C3
001C4
CQ0105
ColcCé
coilc?
C0o109
colle
co119
co121
col22
00123
Co125
C0126
col27
colzg
col129
C0147
C0154
C0155
C0159
co131
00130
ccl132

Assembler Programmer Tips
ISS subroutines

REFERENCES

CCCS514R
C0154,8
CCCS74B
CCCT77,8
ccoes,s
CCllicC,e
CC090,48
CO0H1,48
C011%5,8
CO0554M
CCQT4,V
CCCT3,4W¥
CClC24M
cooe3,s
CG087,8
CCl108,8
CCC78,4R
C0082,4R
CO01474R
000964 M
00092,R
C0086yR
00111,4R
001C7,4R
CCO72,¥
C00%9+8
C0158,8
C0149,8
CCl5%648
CO0097,4M
CO113,M
CO0l¢CyB

CVERFLCW SECTCRS SPECIFIED
CVERFLCW SECTCRS REQUIRED
SYVMBCLS CEFINED
ERRCR(S) ANC

NG WARNING(S)

C00G61,8 CC093,8
CCO844yR CCO984yM COL53,M
CO159,R

0CCS9yR CO157,4R

CO1594R

CC1ClyR

CO161,8

CO15CyM
CCl14,R

FLAGGED IN ABOVE ASSEMBLY

Programming Tips and Techniqués 6-41

Assembler Programmer Tips
ILS subroutines

1LS subroutines An ILS is included in a core load only if requested by an ISS that is a part of the same core
load. The IBM-supplied ILS02 and ILS04 subroutines are a part of the resident monitor
unless you delete them from the system library and replace them with ILSs that you write
for interrupt levels 2 and 4. These rules must be followed when writing an ILS:

1. Precede the subroutine with an ILS statement that identifies the interrupt level in-
volved.

2. Precede all statements with an ISS branch table. If the associated interrupt level
status word (ILSW) is not scanned (that is, a single ISS handles all interrupts on the
level involved) in the ILS, a one-word table is sufficient; the minimum table size is
one word, A zero must follow the branch table. If the ILSW is scanned, the ISS
branch table must include one word for each used bit of the ILSW:

ISS branch table
ILSW bit X (highest bit used)

Define one word
. for each bit used.
ILSW bit 1
ILSW bit 0

Each entry in the ISS branch table identifies the entry point within an ISS for the
associated ILSW bit. The actual linkage is generated by the core load builder, Before
processing by the CLB, each word in the ISS branch table has the following format:

® Bits 0 through 7 contain an increment that is added to the entry point address of
the corresponding ISS subroutine to obtain the interrupt entry point address within
the ISS for the ILSW bit. (In IBM-written ISSs, this increment is +4 for the pri-
mary interrupt level and +7 for the secondary interrupt level. See column +n in
Figure 6-2.)

e Bits 8 through 15 contain the value of @ISTV plus the ISS number of the ISS asso-
ciated an ILSW bit. The value of @ISTV can be obtained from the cross-reference
symbol table at the end of the resident monitor listing in Appendix G.

@ISTV is the address of the interrupt transfer vector (ITV) in low core. Any ISS
branch table entries that represent unused bits in an ILSW must have the value
@ISTV.

During the building of a core load, the CLB places the entry point address of an

ISS in the location of the ITV that corresponds to the ISS number specified in the
ISS statement. The CLB generates an ISS entry point address by adding the incre-
ment in bits O through 7 to the address in the location of the ITV pointed to by

bits 8 through 15. Then the CLB replaces the ISS branch table word with this genera-
ted interrupt entry point address. (See Step 4 for the use of these addresses.)

3. The ILS entry point must immediately follow the ISS branch table and must be
loaded as a zero. The core load builder assumes that the first zero word in the pro-
gram is the end of the branch table and is also the entry point of the ILS. An in-
terrupt causes a BSI to this entry point.

4. The ILSW bit that is on is determined with a SLCA statement. At the completion of
this statement, the specified index register contains a relative value equivalent to
that bit position in the ISS branch table. The address in the ISS branch table can
then be used by a BSI instruction to reach the ISS that corresponds to an ILSW bit
position.

5. To clear the interrupt level when an ILS that you write is used with an IBM-supplied
ISS, code your ILS tc exit via the return linkage with a BOSC statement.

6-42

Assembler Programmer Tips
ILS subroutines

6. When you write an ILS, it must replace the equivalent IBM-supplied ILS. Delete the
IBM ILS, and stcre your ILS as ILSOx, where x =0, 1, 2, 3,4, or 5.

7. The IBM-supplied ILS02 and ILS04 subroutines are stored as subtype one. An ILS
that you write to replace either of these must be stored as subtype zero.

8. The ISS branch table for the IBM-supplied version of ILS04 can have no more than
9 entries. An ILS that you write to replace ILS04 can support all 16 possible ISS
branch table entries.

The following listing is an example of an ILS subroutine.

Programming Tips and Techniques 6-43

Assembler Programmer Tips
ILS subroutines

// ASM
*XREF
00001 sk o o o o e ok ofe ok o o o o e e ok o oo ook ok ol ok e ok ek ek ko ok ok kR ob ok ok k ke kk kx J1J00020
00002 * * UYlJ00030
00003 *NAME - ILSX4 * Ul1J00040
00004 * * U1J000S50
00005 *FUNCTION/OPERATION — INTERRUPT LEVEL SUBROUTINE * U1J00060
00006 * FOR LEVEL 4., * Ul1Jo0070
00007 * * U1J00080
00008 *ENTRY POINT — ENTERED AT IX420 BY A HARDWARE * U1J00090
00009 * BSI VIA LOCATION 12 DECIMAL. * U1J00100
00010 * * UlJOoOl10
00011 *INPUT - NONE. * U1J00120
00012 * * U1J00130
00013 *QUTPUT - NONE. * UlJon1l40
00014 * * UlJoon1ls0
00015 *EXTERNAL SUBROUTINES — NONE. * UlJonleo
00016 * * UlJOD170
00017 *EXITS - * UlJoolso
oools * NORMAL - BOSC INDIRECT THROUGH IX420 * UlJOon190
00019 * ERROR = NONE * UlJon200
00020 * * UlJ40on210
00021 *TABLES/WORK AREEAS — NONE * Ul1J00220
00022 * * U1Jon230
00023 *ATTRIBUTES - REUSABLE * UlJ400240
00024 * * U1J00250
00025 *NOTES - INDEX REGISTERS 1, 2, AND 3, STATUS, * U1J0n260
00026 * ACCUMULATOR AND EXTENSION ARE SAVED UPON * Ul1J00270
00027 * ENTRY AND RESTORED AFTER INTERRUPT SERVICED. #* U1J00280
00028 * * UlJ00290
00029 o 3 e ke o ook e ok ok ol ok Ak ok e sk e ool ok ok o ok o ok ok okok ek ok ok ok ok ok k ok ok kR k% J1 JOO300
00030 ILS 04 ulJon31o0
0000 O 0033 00031 IX410 OC /9033 DEVICD *-% AND ISS NO. *-%* U1J00320
0001 0 0033 00032 DC /0033 DEVICD #*-% AND ISS NO. *-* Ul1J00330
0002 0 0033 00033 DC /0033 DEVICD *-% AND 1SS NO. *-* U1J00340
0003 0 043D 00034 DC /043D 1231 +4 AND 1SS NO. 10 UlJ00350
0004 0 043C 00035 DC /043C 1403 +4 AND ISS NO. 9 Ul400360
0005 0 0437 00036 DC /0437 2501 +4 AND ISS NO. 4 ulJon37o
0006 0 0734 00037 DC /0734 1442 +7 AND ISS NO. 1 U1J00380
0007 O 0435 00038 DC /0435 CONSOLE +4 AND ISS NO. 2 ulJon390
0008 0 0436 00039 DC /0436 113471055 +4 AND ISS NO. 3 U1J00400
Q009 0 0000 00041 X420 0C 0 INTERRUPT ENTRY UlJ00420
000A O D818 00042 STD [K480 SAVE ACC AND EXTENSION, ul1J00430
000B O 280F 00043 STS [X430 *STATUS, U1J00440
000C 0 6910 00044 STX 1 [X441+1 *XR1l, UlJ00450
000D 0 6All 00045 STX 2 1X442+1 *XR2, Ul1J00460
000E 0 6B12 00046 STX 3 1X443+1 *XR3 UlJ0o0470
0O0OF 00 678000E4 00047 LDX I3 $XR3X POINT TO TRANSFER VECTOR UlJon480
001l 0., 0818 00048 XI10 1X495~1 SENSE KEYBOARD Ul1J00490
0012 0 1002 00049 SLA 2 IS IT INTERRUPT REQUEST Ul1J00500
0013 00 44A8002C 00050 BST 1 S$IREQ,+Z *KEY, BR IF YES u1lJons1o
0015 0 1000 00051 NOP U1J00520
0016 0 6109 00052 LDX 19 NUMBER OF DEVICES ON LEVEL. UlJ00530
0017 O 0810 00053 XIO0 1X490-1 SENSE ILSW U1J00540
0018 0 1140 00054 SLCA 1 0 SHIFT AND DECREMENT XR1 U1J00550
0019 01 4S580FFFF 00055 BST I1 1Xx410-1 BR TO DEVICE ISS UlJ00560
0018 0 2000 00057 X430 LDS 0 RESTORE STATUS, U1J00580
001C 00 65000000 00058 [X441 LDX L1 #-% *XR1 u1J400590
001E 0OC 66000000 00059 IX442 LDX L2 *-% xXR2y Ul1J00600
0020 00 67000000 00060 IX443 LDX L3 *-% *XR3, ulJonélo
0022 0 (€803 00061 LDD I1X480 *ACC AND EXTENSION U1J00620
0023 01 4CC00009 00062 80SC I 1X420 TURN OFF INTERRUPT, RETURN U1J00630
0026 0002 00064 IX4R0 BSS E 2 ACCUMULATOR AND EXTENSION U1400650
0028 0 0000 00065 DC 0 ul1Joone660
0029 0 0300 00066 I X490 DC /0300 I0OCC TO SENSE ILSW ul1J00670
002A 0 0000 00067 DC 0 U1J00680
0028 0 OFO0O0 00068 IX495 DC /0FQ0 SENSE IOCC FOR KEYBOARD Ul1J00690
002C 00069 $IREQ EQU /002C ADD OF ISS FOR INT REQ ul1J0o0700
00E4 c0070 $XR3X EQU /00E4 ADDR OF TRANSFER VECTOR ulJoo0o71o0

002C 00071 END ul1Joon720

6-44

Assembler Programmer Tips
INT REQ service subroutine

SYMBOL VALUE REL DEFN REFERENCES
IX410 0000 1 00031 00055,8
1X420 0009 1 00041 00062,4B
1X430 ools 1 00057 000434M
1X441 001C 1 00058 00044, M
I1Xa442 001E 1 00059 000454 M
I1X443 0020 1 00060 00046 4M
1X480 0026 1 00064 00042,M 00061,R
IX490 0029 1 00066 00053,R
I1X49%5 0028 1 00068 00048,R
$IREQ 002¢C 0 00069 0005048
$XR3X 00E4 0 00070 00047,4R

000 OVERFLOW SECTORS SPECIFIED

000 OVERFLOW SECTORS REQUIRED

011l SYMBOLS DEFINED

NG ERROR({S) AND NO WARNING(S) FLAGGED IN ABOVE ASSEMBLY

Assembler INT REQ Service Subroutine

Pressing the interrupt request key (INT REQ) on the console keyboard causes the ILS in
use for interrupt level 4 (ILS04 or ILSX4) to execute a BSI I $IREQ. Thus, the function
of the INT REQ key depends on the contents of location $IREQ. The system initializes
$IREQ with the address $1420 in the resident monitor, This setting terminates the current
job, and all control records are bypassed until the next JOB monitor control record is
read. You can alter the function of the INT REQ key by coding your program to place, in
$IREQ, the address of an INT REQ service subroutine that you have written,

An INT REQ service subroutine that you write can read the console entry switches and
set program indicators. You should remember that your subroutine is executed with in-
terrupt level 4 on, preventing recognition of other interrupts on level 4 or 5. Because of
this, the following should be kept in mind when you code an INT REQ service subroutine:

® A LIBF or CALL to a subroutine from your service subroutine can cause a recurrent-
entry problem. If the called subroutine is already in use when you press INT REQ, the
new LIBF or CALL in your subroutine destroys the original return address and disrupts
the operation of the called subroutine.

® A LIBF or CALL to an ISS can cause an endless loop if the called ISS operates on level
4 and a test for operation completed is performed by your service subroutine. This
loop occurs because the interrupt indicating the operation is complete is delayed until
the INT REQ key interrupt is turned off.

® Your subroutine must perform an XIO sense keyboard/console with reset before re-
turning.

® Your subroutine must increment the return address by 6 when returning to the ILS
subroutine. A BSC instruction must be used to go back to the ILS where the interrupt
is turned off,

Note. When the core load of your program contains the TYPEZ, WRTYZ, TYPEO, or
WRTYO subroutine, the XIO sense keyboard/console with reset can be omitted. In this
case, code your subroutine to return to the return address plus one,

Two sample subroutines are included in this section to illustrate how the function of the
INT REQ key can be altered temporarily. These subroutines can be called by either FOR-
TRAN or assembler programs. Both subroutines perform the same function; when INT
REQ is pressed, the console entry switches are read. If console entry switch zero is off,
program execution continues from where it was interrupted. If console entry switch

zero is on, the system exits to the next job. The first of the sample INT REQ service
subroutines (Figure 6-3) illustrates the coding that can be used by any core load. The
second of the sample INT REQ service subroutines (Figure 6-4) illustrates the coding
that can be used by a core load that contains TYPEZ, WRTYZ, TYPEO, or WRTYO.

Programming Tips and Techniques 6-45

Assembler Programmer Tips
INT REQ service subroutine

Label Operation F
21 25(|27 30| 132

Operands & Remarks
35 40 45 50 55 60 65 70

2K 6 2 KKK 6 X MR X K K KK X HHK KK KK KA RN HK X KKK KK KKK AN KKK

A ICALL TH.3 BUBROUTINE WILL \CHANGE THE 1.

MT.EN

S URT. REQUEST. KEY, 15 _PRESSED, AFTER A

OF. 8/REQ .IN_,THE. RESIDENT, MONI.TOR.. JF. .
H1.5. SUBROUT.LNE, HAS, BEEN, EXECUTEDos. A .

o

H.
CALL, 7]

K

ANCH THE, . SECOND PART ,0F THE SUBRQUTILNE,

MO 1O XKi8 -
X

PLACE ., \T1H 13 SUBRAUTINE, CAN, BE USED TN

X, 0AD_AND. W/ LL PREVENT FLUSHING T0 THE

=

r\

™~
< O
o] 1O
~{~

Fi THE (NT REG KEY 1S BRESSED .. v\ 1,

%(ll Lol.l

) N T O N S U T S N N N I (N TN NN NN NN TN N (NN U (NN (NN TN NN NN NN N U A T (N U N A

336 34, 4 3¢ IR, 8 4 X Xl X K KX K R KA R AR R A KK K AR AR ALK
Qiiﬁ ENT, IRED T T T
X THILS PORTIION_WILL BE ENTERED. WHEN. A CALL JREQ.
XI 1 i 1/5 |E|XIECU EDI 1 i 1 L 1 1 i i 11 1 L i L1 1 1 L 1 1 1 1 L 1 1 1 1 1 1 1 1 1 1
*J Lt 1 1 1 1 1! i] L 11 | I Ty | [] it ¢t ¢t bt 11 1 1 1 1
/IRIEJQJ chl | %—lxl ! L1 J4 IM7RVI IpOl |N7-I) T N T T O N T S B R
| 1 1 1 Sﬁxl /Iploljlol +I 'll S@IE; lx pl 1 1 i 1 1 1 1 1 1 | 1 11 1 1 1 1 1

L1 1 LIDIX’I /IMTIR 1 1 15,IEI7'I IXJEl-tl:IAIDlDIpI IOIF.I l/INl.Tlpl 1DIOIRITINI

S LN LN

[Lo
o L ISTX L B WREQ o (SET LINMTERRUPT, BRANCH ADDR |
/pLolea L,D,X, L I—J¥L B S W T I | lRIELSIEIVTI lylplil Y T N | I T S N B |
J 1 1 1 BISICI / /IP1£|QI T | 11@@1‘}1/?1“1 17—101 ICIAILILI/ A/Gl IPGM | S S |
5.1REQ EGU 002,y i u s i

Xl L1 17 Iq /ISI |POR7 / OIM IWI/ !LILI IBIEI IéJA/lTIEIEIEID lwﬂ EM ITIHIEI 1/1A/|7I£|Rl'elulpl7—
)él L 1££ OIUIEIST K£ Yl 1/|5| |P|E1£L§L51£1& S N Y 1S N T T 15 Y Sl Y U S D s S |
Xllll 11 1 S W Y N Y N SN T SO T U N T N VN TS U W OO OO O SO U H S TN Y Y U Y IO S T I |
/1N|7-1R1 chl 1 xl —JXI I T S Y ! IEIMTLEXYI |P|01/1MT| IFIRIOIMI 1/1L151 N T W Y Y |
I XI/IOI /IN1911101 111 1 IRIEJAIDI ITI/'{IEI ICIOINISIOILIEI LSJWI/lTllCIHIEISI]
I | LIDI ! /N19|3101 | O I - ILIQL 1“/1//1/4171 1/'/1'415| IBIEIEIA/] 1'?151’4101 I S W |
I | BISJ/J L I/I4I2101)lzl+l 1 IFILJQISI'L/I ITIOI M61X|7—1 IJIOIBI l/ IF] 1’V1£16l I 1
| XI/IOI /MQLZlOI 11 1 1 lsléills‘lgl l/(IEI YIBlOIAIElDI M/l/l_rﬂqj l’elglslglrl 1
I - MIDIXI L /MTL/el). 16] Y I I/NlclelngEINlTL l'€l£l7l(jl£IA/l IAIDIDleL B N W W |
I BISLCJ [/Mrlkl’ T T I Pjﬂuﬁﬂl 17 01 |/ L Sl IS U U TS W T T S T Y |
*IILL L1 1 | I S S TSR Y SO (NN (N N N (N T U5 S U 0 U 1O ot A N ST I o N T oy |
N G | Blslsl E ol I I Y T N S LCIE EIA TEI IE VIEA/I IAID Dl/el Y VY N T N T T |
/I/VI91110 DICJ ! /1N|9|3|01 11 1 | / OCCI 17101 1/€£|A Dl IC 0'1/5‘ 0 Lg B U N W S |
) N 1 Dc 1 /I3AIOIOI b N U I | *Sw / TC#E Sl § W S e | 1) S S T |

[MS20 IDC, %-% . ., J0CC 7,0 SENSE REVBOARD W ITH
L1 1 chl 1 /101;‘10111 11 1 1 Xl’eé‘l IEI) NS SO N VO S VO S N N O W | | T |
[N330 |£60, TN920 ., ., VALUE READ FRON CONSILE 3W,
$1/l4 20 £lG)l‘Jl /lOlolflél | W N O O [N [(N N O Y A Y U VO N Y N RN O R W S |
T | EIMDI | S VU N U WD N N GOSN N N U TN N Ny NS SN U U S W v S s Y N N O W B |

Figure 6-3. INT REQ scrvice subrautine for any core load

6-46

Assembler Programmer Tips

INT REQ service subroutine

Label Operation FIT Operands & Remarks
21 25| {27 30| [B2{33] |35 40 45 50 55 60 65 70
*I;él*l *IX X é(lxl *.'% 9(9(tadcad X% x* *I*l**lxlxﬁ(lxl P61 €06 K61 90) 1K X1 2 KX 90K M i
[[1 U I N N TN O I Y OO O | N TSN T O Y O O O Y |
XI Ll IA CIAILIL 710 7IHEI |s U18 O|U|T|/A/£1 JW/ LL; 1CHANG£| IT/'/IEI IO T N N |
’)(l (. LC‘OMTIEIA/TS 0 1 |$|/|’e£0| 1/1M |7//£J 1P£ISI/ID£|'V7 MON/ Top'l lll'rl. 1
L THE I MTIERRIURT, KEQUEST, KEY, /S PRESSED AFTER A\
*L L ICA LILI |70 7”/3 1SUBPOUT//V£| IHASL |B|[£M 1£J/YEICUT£Q)| IAI 11
')(l L1 IBPAIMCLH Ti0 THE: ISECONDI IPAP7-1 10[‘1 17-1”5 ISJUBIPOUIT/ 'v£ 11
[IW/ LJLJ 17 /4 /(E plL /4 C,El 1 |7|/‘/|/ Sl ls UIBIPOL()LTl l/VEL 1CA 'Vl 10|UJL s/l |BI£I ()
L] IUSEIDI :/ F TVPEO: B 1WP|7|y01 i |7|yPE ZI ! 10/?1 1WPTYZ / S 1/4A/| i1
*I]t ITH £-l 1C10P£ L OIAIDI I/4 NDI IM/ é Ll IPPEIVLEIIVIZ IFZ IUIS# /JA/GJ ITIOI l7‘ll/J£L
[EXI] l‘j OB / F‘I ITI;'/IEI 1/|/V|7-l IPIE-IOI 1/(151% I/lsl RPIEISISIQQ‘L [T T T OO O |
*I L1] L1 N IS O TN T TN T T T U T T Y O TSN T LU W T T A O o T o
X DD 1€, 9€ 2 XK K IISEIAN I 96 K DI SGIEIDE M I X K DEHE D D6 XN K DK K€ I
*J L1t L1t TS N TN N U U TN I NV SO (N U O N T N U T T N T 1O T |
Lt 4| ElN17—; /135@1 TS T VNN NN U U T VN YO U U Y U JNUUN U GO JUUOW N N NN I I VU VO Y O O W o B
*1 . 1o) SR U T N T TN S N N U N OO N O U (N (S TN U U N T O OO O OO0 Y SO O N |
*L 1 .1 ITH ILSJ lpoPT / OIM IM/L/ ILILI JBIEI IEIA/lTlElplgLDI IMHIEIA/I IAI IClAJLlLI I/IPIE.-I.QJ JA
Xl | I/s Ié-lA/lECU-f.EDI'I YT TN VAN NN WY VSR N WU TG U W TN OO T G Y U PO N W T T T T O OO S A |
I 1 1 1 TR N U NS T N U O N T (N T T T T WO I N T N N O O O Tt S O
A'Q&Q D|C| 1 ;(!—IXJ [I S R | 1£'V7-t'eyl IPOL/ 'V7| AN T N VOO T OO S NN TN N T BN N S |
S N SleX! z /leol-zlol*l-zl L1 |S|A vlé‘l |X|P1 [N N O I Y
Ll LIDIXI LiZ /|/V.7}(3 T I | |SE 7-; |XP11 1A1D| |'€1 loj'rl l/ NTPI |'D0|PTM
o L ITX e B IRER . SET I NTERRUPT, BRANCH ADDR |
/JQOILO LIDIXI (|1 'Xl"l')(L T T IPESE-Tn IXP-ZL TN I TR N W | Lol J_1.1
[lslcl / |P£Q T |/P1€7UPU| 170 CAL(-/'UGl lpG'”L T O W |
T | 111 TSN NN VO N T Y W N 1O Y I Y U Y VUt T T VO Y S S N Y A Y T A o
$|/|pr£|0 EIQIUI /Oloec N A U TN T T NN TN T Y S U U O 1O W W A 1‘ T O OO TS SO O W O
Y | L1 I N I | TN O VRO NN O WU O N S | | T U O O |
X, TIHL.S, PORITION, W/ L, L .816’. EMTERE D ‘W/.EIV T HE, ./,A/TfPPUP.
'Xl 1L IEEOlUIEIST kE)/l l/sl 1p|PE|SS€DL1 [N W VU U U OO WOUON N W W NS (NN U VO U Y AU NN Y S N B
¥ 411 IS S N TN O N N TN WU U NN (N U JUUN VNS VSO U (SN NN U U (N NN N O VO VRN JUY O N O SO S |
/IM7-IPI EIOIUI /0|021 TR T N Y Y T A I T T Y U W T N U A T W W U W W
Xl 1 |- | I T | L1 1 N W N S T [S S [N W S T |
'Xi’ 11 17 /ISI IPOPT / OINI IWI/ l- LI LBEI IENT£ PED 1W|H|£|”1 1T1/‘/|£4 I/IMITI£IPIPIUIPIT
*J 11 IPEOIMEIST K£)/I I/L‘S\l lplegLSJSIEL__ N IS N U) (O A T s Al A N Wl S Y W[s S I
'X| i1 || T IS Y N S DUV AU VY (SO T T YOO U N T U N U T N O W I O Y O 8
/LMTu(’; DC | Xi=1% 1 g1 IEIMTIPI)/I |p10|/l/Vl7-l IFIROMI |/ILISI U T N U A I
Ll X|/|O| /n’vlgn-zlal [1916£1D| 17//51 ICONSOLE SW/ T|Q”£ L
Lt1 0D /1”9421 Ly 1ty 1‘ oL 1W//'4 TL l//IA sl 136’6—// E[A DLJ A
[B|S|/| L $ /4|2| ,,|Z| | xF;L MSHI |70| IM£ XIT JOBL J/ F lMEIG 11
[MIDIXI L IN TIPI 1-11 L1 1 LlllVLCJ/egnMné:ﬂVlTJ 17-|’L/|£ P€ TUIPA/ lAnDlDMe i
*I L I 1 Blslcl / /A/TP | I S 1 lpé TUPM 17—01 l/ é S L1 1 | L [I WO W N O
| BSIS £ Ol IS I T T T Y B | lcl'egAJTLl lﬂl/lé.M IA DDE. IR W DY N T N T O Y |
/|M9|110 DICI 1 /llvx 91210| | / OCCI ITOI IPE'A Dl lCOlNSOL E S W T
A1 DC /|31A|OIO| 111 I%IS W/ TC /—/lgsl [VA N S O U W 1ot Lt.1
/|U|9|8|0 0C, *1" l%l L3 111 LVIA L UE: 11061'4 D IF-PQM lCO'V 50 L E- ISIM
$1/|412|0 £LOIUI /10]Ol£l6l | N | | SN VNS N N O W F I U IR SO SO NV KOOGS SN RPN AOON VU WS SN WO SN S B | L
[E\'VlDl TSN W N Y S N NN T U U U D WO UM NN SN U NS SO AU YO O OO NN (Y G O S T OO T IO N |

Figure 6-4. INT REQ service subroutine for core load using TYPEZ, WRTYZ, TYPEQ, or WRTY ()

Programming Tips and Techniques 6-47

FORTRAN Programmer Tips
Use of EQUAT

TIPS FOR FORTRAN PROGRAMMERS

The tips in this section will help you when:

® Referencing different data files by using the supervisor *EQUAT control record
e Using valid input data during program execution

@ Controlling the console printer during program execution

.

Entering data for arrays so as to provide efficient dumping of a DSF program

Tips for Use of the EQUAT Control Record

The supervisor *EQUAT function is used to substitute a subroutine for another called sub-
routine in core loads that are being built. Thus, a program does not have to be recompiled
or reassembled to reference different subroutines.

For example, suppose that your FORTRAN mainline program prints on the 1132 Printer,
and you want to have it print on the 1403 instead. Without an EQUAT control record, you
would have to change the *IOCS control record and recompile the program. With EQUAT,
you have only to specify on the EQUAT control record that PRNZ (the 1403 subroutine)
is to be substituted for PRNTZ (the 1132 subroutine) when the core load is built, When
EQUAT is used, the core load builder compares each call in the program with the left-hand
name of each specified subroutine pair on the EQUAT control record. Each time a match
is found, the core load builder substitutes the right-hand name of the EQUAT subroutine
pair for the name in the calling statement of the program. Note that the EQUAT contrcl
record is associated with the monitor JOB control record, which implies that all core loads
that are built for the job be built from the same substitution list.

The use of EQUAT is not restricted to I/O substitutions. You might, for example, have
several versions of a subroutine, each stored under a different name, With EQUAT, any of
these subroutines can be used without recompiling or reassembling the calling programs.

You must remember that the calling sequence of any substitute pair must be identical
since the core load builder does no more than substitute one name for the other. Thus,
CARDZ cannot be substituted for PRNZ because the 80-column count associated with
CARDZ is incompatible with the 120-word count associated with PRNZ. The equatable
FORTRAN I/O subroutines are:

Console
1442 Card Roeader printer 1055 Punch
1132 Printer 1403 Printer 2501 Card Reader Punch keyboard 1134 Reader 1627 Plotter Notes
PRNTZ PRNZ
READZ CARDZ TYPEZ Input only
TYPEZ PAPTZ *VCHRI,WCHRI OQutput ornly
WRTYZ PAPTZ *VCHRI,WCHRI Output only

*VCHRI — extended precision

6-48

WCHRI -- standard precision

FORTRAN Programmer Tips
invalid source characters
paper tape data record format

The following lists the possible entries in a FORTRAN *IOCS control record and the sub-
routine each entry implies:

*“10CS entry Subroutine called
CARD CARDZ
2501 READER READZ
1442 PUNCH PNCHZ
TYPEWRITER WRTYZ
KEYBOARD TYPEZ
1132 PRINTER PRNTZ
1403 PRINTER PRNZ
PAPER TAPE PAPTZ
PLOTTER PLOTX
DISK DISKZ

UDISK DISKZ

The FORTRAN programmer should also remember that the name of a function subroutine
as stored in the system library must be used in an EQUAT control record; not the function
name that is coded in FORTRAN statements.

EQUAT can also be used to allow a FORTRAN program to overlap the operations of the
1132 Printer with the synchronous communication adapter (SCA). The operations of
these I/O devices cannot be overlapped unless the 1132 is serviced by PRNT2. EQUAT
can change PRNTZ (the subroutine used by FORTRAN I/O for 1132 printing) to the
name PRTZ2 (a special subroutine to interface between PRNTZ and PRNT?2). 1132
printing is then performed by PRNT2 and can be overlapped with the SCA.

Invalid Characters in FORTRAN Source Cards

Any invalid FORTRAN character in a FORTRAN source card is converted to an amper-
sand, causing the compiler to print an error message. The error message that is printed
depends on the kind of statement in which the invalid character is found. The FORTRAN
character set is listed in Appendix C of the publication IBM 1130/1800 Basic FORTRAN
IV Language, GC26-3715.

FORTRAN Object Program Paper Tape Data Record Format

Data records of up to 80 EBCDIC characters in paper tape PTTC/8 code can be read or
written by FORTRAN object programs. Delete and newline codes are recognized. Delete
codes and case-shifts are not included in the 80 characters. When a newline code is read
before the 80th character, the record is terminated. If the 80th character is not a newline
code, the 81st character read is assumed to be a newline code.

Programming Tips and Techniques 6-49

FORTRAN Programmer Tips
keyboard input
console printer controi

6-50

keyboard operation

buffer status after
keyboard entry

Keyboard Input of Data Records During FORTRAN Program Execution

Data records of up to 80 characters can be read from the keyboard by a FORTRAN READ
statement. Data values must be right justified in their respective fields.

If you want to key in less than 80 characters, press EOF to stop transmittal, Also, pressing
ERASE FIELD or the backspace key (<) allows you to reenter a record when you make a
mistake during data entry. If the keyboard appears to be locked, press REST KB. Seleit
the correct case shift before entering data.

The input buffer is filled with blanks before you enter a data record. Therefore, when you
press EOF before you have entered 80 characters, the rest of the buffer remains blank.

If more data is necessary to satisfy the list items in the DATA statement, the remaining
numeric fields (I, E, or F) are stored in core as zeros, and alphameric fields (A or H) are
stored as blanks. Processing is continuous; errors do not result from the previous condition.

Note. Information about buffer status after pressing ERASE FIELD or the backspace key
(+) is under “Functions of Console Operator Keys During Monitor System Control” and
“Entering Jobs from the Console Keyboard,” respectively, in Chapter 7.

FORTRAN Program Control of the Console Printer

You can code your program to control spacing, tabulating, and shifting on the console
printer by assigning unique values for desired operations to variables. These variables must
be assigned as integers, and A-conversion must be used in the FORMAT statement for these
variables.

The operations that can be performed and the values that are assigned to them include:

Operation Value
Backspace 5696
Carrier return 5440
Line feed 9536

Shift to print black 5184

Shift to print red 13632

Space 16448

Tabulate 1344
As an example of console printer control, assume that a variable, X, is printed in the exist-
ing black ribbon shift and that another variable, Y, is printed in red after a tabulation.
Following the printing of Y, the ribbon is shifted back to black. The following statements
perform these functions:

1 5 10 15 20 25 30 35 40 45 50
1[=11|314\4
Jl=1113l6l3]2
K=|5/1]84
=1
1TIEL (1L]al3DIX]s 1]alu]e]Y]s K
3 [1] FFlolRMia (Fiz.é,ZAl,qu.6,A1)
|

FORTRAN Programmer Tips
DATA statement
// records read
1/0 errors

FORTRAN logical unit 1, as specified in the WRITE statement, is the console printer. The
sequence of operations to be performed are:

® Print X

e Tabulate

® Shift to print red

® PrintY

® Shift to print black

Each control variable counts as one character and must be included in the count of the
maximum line length.

Length of FORTRAN DATA Statement

An error (DATA statement too long to compile, due to internal buffering) occurs if:
(G1 G, +...+G)>355

where
N is the number of constants in this DATA statement.

Each G is a constant with the factor:
G=1+C+(K; +Ky +...+Ky)

where .

C'is the length in words of this constant and V is the number of variables loaded with
this constant.

Each such variable has a factor of:

K =1 for a nonsubscripted variable or K = 2 for a subscripted variable

// Records Read During FORTRAN Program Execution

Any //B record read by CARDZ, READZ, or PAPTZ during a FORTRAN program execu-
tion causes an immediate CALL EXIT. Only the //# characters are recognized by CARDZ,
READZ, or PAPTZ. Any other data punched in this record is not available to programs in
the monitor system, and the record is not printed. After the //B record is read, the super-
visor searches for the next valid monitor control record entered from the reader.

For offline listing purposes, however, this record can contain comments, such as // END
OF DATA.

FORTRAN 1/0 Errors

If input/output errors are detected during execution, the program stops. The error is
indicated by a code displayed in the console ACCUMULATOR (see Appendix B for a list
of the codes and their causes).

When an output field is too small to contain a number, the field is filled with asterisks and
execution continues.

The I/O subroutines used by FORTRAN (PAPTZ, CARDZ, PRNTZ, WRTYZ, TYPEZ,
PNCHZ, READZ, PRNZ) wait on any I/O device error or device not in a ready condition,
Ready the device, and press PROGRAM START to continue.

Error detection in functional and arithmetic subroutines is possible by the use of source
program statements. Refer to “Machine and Program Indicator Tests” in the publication
IBM 1130/1800 Basic FORTRAN IV Language, GC26-3715.

Programming Tips and Techniques 6-51

FORTRAN Programmer Tips
dumping DSF programs to cards
RPG object program considerations

Dumping FORTRAN DSF Programs to Cards

Arrays are always allocated backwards in core storage by the FORTRAN compiler. Because
of this basic principal of the compiler, DSF output may be somewhat inefficient when
dumped to cards if arrays are included in DATA statements. Such statements can cause
cards to be punched with oaly one data word each.

To circumvent this inconvenience, write every element of an array explicitly in a DATA
statement, starting with the element of the highest order.

RPG OBJECT PROGRAM CONSIDERATIONS

6-52

An RPG object program requires the special interrupt level subroutines (ILSs named with
an X, as ILSX4). You code any character in column 28 of an XEQ monitor control record
and in column 12 of a STORECI DUP control record to cause the special ILSs to be in-
cluded in a core load. If the program is stored in core image (STORECI), the special ILSs
are stored with the program on disk.

The storing of programs in disk core image format on disk is not recommended (see
“Disadvantages of Storing & Program in DCI Format” in this chapter).

Chapter 7. Operating the 1130 Disk Monitor System

This chapter contains procedures that are used frequently during the operations of the
1130 Disk Monitor System. These procedures include:

® General procedures for readying the components of the 1130 for operation
® Procedures for performing a cold start of the monitor system
® General operating procedures that are used while the monitor system is in operation

The procedures for readying the 1130 components are performed when a device is to be
used and is not ready. The central processing unit must be the first device readied as the
console POWER switch, when turned on, supplies power to the entire 1130 computing
system. The procedures for the I/O devices need not be performed in the order presented;
however, if the disk drives are readied first, other devices can be readied while the disk
drives are reaching operating speed. Detailed procedures for changing forms, tapes, and car-
tridges are not included here; they are in the publication IBM 1130 Operating Procedures,
GA26-5717.

The functions of the cold start program and operating procedures for performing a cold
start from cards or from paper tape are described in detail.

The procedures used while the monitor system is in operation are:
® Loading control records, program statements, and data records

e Controlling the system with the PROGRAM STOP, PROGRAM START, INT REQ,
and IMM STOP function keys on the console

® Displaying and altering selected core storage locations

e Manually dumping core storage

Operating the 1130 Disk Monitor System 7-1

Ready-iEDevices
1131 CPU

READYING THE 1131 CENTRAL PROCESSING UNIT (with an internal disk)

Operator action

1. Move the console POWER
switch to ON. This switch
supplies power to the entire
system, and must be on before
any of the 1/O devices are
readied.

2. Insert a cartridge in the
single disk drive.

3. Move the DISK switch on the
disk drive to ON. The disk drive
requires approximately 90 sec-
onds to reach operating speed.

Indicator lights

ON
ALARM SPARE
OFF

System response or Error indicator and
corrective action

If the FORMS CHECK light comes on,
insert or adjust the paper in the console
printer. If the DISK UNLOCK light comes
on, it indicates that the DISK switch on the
disk drive is set to OFF. See step 3.

The FILE READY light comes on when
the disk drive reaches operating speed.

If any other indicator lights on the conscle
are on, press RESET.,

Function keys

CONSOLE
KEYBOARD
KEYBOARD
PROGRAM IMM
START STOP

RUN

_ KaB.
SELECT

PROGRAM

STOP
LOAD PROGRAM
1AR LOAD

*These indicators are blank on an 1131 CPU that does not contain an internal single disk drive.

READYING THE 1131 CENTRAL PROCESSING UNIT (without an internal disk)

Operator action

1. Move the console POWER
switch to ON. This switch
supplies power to the entire
system, and rhust be cn before
any of the 1/0O devices are
readied.

2. Ready the 2311 Disk Storage
Drives as described under
“Readying the 2311 Disk
Storage Drive” in this chapter.

7-2

System response or Error indicator and
corrective action

If the FORMS CHECK light comes on,
insert or adjust the paper in the console
printer. '

If any other indicator lights on the
console are on, press RESET.

READYING THE 2310 DISK STORAGE DRIVE

Operator action

Be sure system power is turned
on.

Insert the disk cartridges

Move the START/STOP switch
to START.

Be sure the ENABLE/DISABLE
switch on the 1133 Multiplex

Control Enclosure is in the:ENABLE

position.

Move the START/STOP switch to
START position for the cartridges
being used. The drives require Ap-

proximately 90 seconds to reach
operating speed.

Move the ENABLE/DISABLE switch
on the disk storage drive to ENABLE.

START
STOP

8

CARTRIDGE START
UNLOCKED STOP

Readying Devices
2310 Disk Drive
2311 Disk Drive

System response or Error indicator and
corrective action

If the CARTRIDGE UNLOCKED light comes
on, it indicates that the START/STOP switch
is set to STOP. See step 3.

The READY light on the 1133 is on.

The indicators showing the drive numbers
come on when the disks reach operating speed.

'CARTRIDGE

ENABLE
UNLOCKED DISABLE

READYING THE 2311 DISK STORAGE DRIVE

Operator action

~

Be sure system power is
turned on.

Be sure the ENABLE/DISABLE
switch on the 1133 Multiplex
Control Enclosure is in the
ENABLE position.

Insert a disk pack in the 2311,
if necessary.

Move the START/STOP switch
to the START position. The
disks require approximately

60 seconds to reach operating
speed.

Move the ENABLE/DISABLE
switch on the disk storage
drive to the ENABLE position.

System response or Error indicator and
corrective action

The READY light on the 1133 is on.

The green indicator showing the drive
number comes on when the disks reach
operating speed.

SELECT
LOCK

ENABLE START
DISABLE STOP

Operating the 1130 Disk Monitor System 7-3

Readying Devices
1132 Printer
1403 Printer

READYING THE 1132 PRINTER

Operator action

1. Move the printer MOTOR switch
to ON.

2. Press CARRIAGE RESTORE.
3. Press START.

System response or Error indicator and cor-
rective action

The printer POWER ON light comes on.

If the printer FORMS CHECK light comes
on, insert or adjust the paper in the printer.

The READY light comes on.

PRINT
SCAN Indicator lights

CHECK

CARRIAGE CARRIAGE
SPACE STOP

Function keys

sToOP

READYING THE 1403 PRINTER
Operator action System response or Error indicator and cor-
rective action
1. Be sure system power is turned If any indicator lights on the printer other

on.

2. Be sure the ENABLI:/DISABLE
switch on the 1133 Multiplex
Control Enclosure is in the
ENABLE position.

3. Press the CARRIAGE RESTORE
key on the printer.

4. Press START.

Function keys

than PRINT READY are on, correct the con-
dition (see the publication IBM 1130 Opera-
ting Procedures, GA26-5717).

The READY light on the 1133 is on.

The PRINT READY light comes on.

Indicator lights

RESET STOP | READY CHECK |

{ END OF |

Risuouecactcosonion | FORMS |

CARRIAGE {CARRIAGE: SINGLE t |
5 . FORMS SYNC

SPACE RESTORE i CYCLE L CHECK ___ CHECK _}

7-4

CARRIAGE
STOP

READYING THE 1442 MODEL 6 AND 7 CARD READ PUNCH
Operator action

1. Be sure system power is turned
on.

2. Press the NPRO key.

3. Place the cards to be processed
in the hopper, face down, 9-
edge first.

4. Press the START key.

Readying Devices
1442 Card Read Punch
1442 Card Punch

System response or Error indicator and cor-
rective action

The 1442 POWER ON and HOPR indicator
lights are on.

If the CHIP BOX light is on, empty the chip
box.

If any indicator lights other than HOPR are
on, correct the condition (see Appendix B).

The HOPR light goes off.

The READY light comes on.

fHopr ™ “reep READ|

Indicator lights

'READ CcLu REG |
| STA PUNCH |
| PUNCH overl
272‘::3 e : CHECK
b e e o — o — .|

: CHIP BOX

STOP Function keys

READYING THE 1442 MODEL 5 CARD PUNCH
Operator action

Follow the procedure for readying
Models 6 and 7 with one exception;
use blank cards in Step 3 rather
than cards ready for processing.

Operating the 1130 Disk Monitor System 7-5

Readying Devices
2501 Card Reader
1134 Paper Tape Reader

READYING THE 2501 CARD READER

Operator action

1. Be sure system power is turned
on.

2. Press NPRO.

3. Place cards to be processed
in the hopper, face down, 9-
edge first.

4, Press START.

System response or Error indicator and cor-

rective action

The card reader POWER ON and FEED

CHECK lights are on,

If any other indicators are on, correct the con-

dition (see Appendix B).
The FEED CHECK light goes off.

The READY light comes on.

READ

ATTE
TTENTION CHECK

READYING THE 1134 PAPER TAPE READER
Operator action

1. Be sure system power is turned
on.

2. Insert a tape to be processed
in the paper tape reader; posi-
tion under the read starwheels
any of the delete codes that
follow the program ID in the
tape leader.

Indicator
lights

Function
keys

/ (o0 00000000
000000 ORO
9000000000

Delete 000000000
® 0 6000 0 0 00

codes ¢eccocoee
©900000000
©0 00000000

-«—Feed holes C’ . . |
S

<r Tape movement |

Readying Devices
1055 Paper Tape Punch

READYING THE 1055 PAPER TAPE PUNCH
Operator action

1. Be sure system power is turned
on.

2. Insert a blank tape in the paper
tape punch, -

3. Press the DELETE key on the
punch and hold down while per-
forming Step 4. Do not release
the DELETE key.

4, With the DELETE key held down,
press the FEED key and hold
down to punch several inches
of delete codes.

5. Release the FEED key before
the DELETE key.

Tape Tension Lever

Note: The tape tension
lever must be down in
order to ready the 1055.

Operating the 1130 Disk Monitor System 7-7

Readying Devices
1627 Plotter
READYING THE 1627 PLOTTER

Operator action System response or Error indicator and cor-
rective action

1. Be sure system power is
turned on.

Turn the 1627 POWER The POWER ON light comes on.
switch to the ON position.

E\)

If the pen is not in the up position, move the
PEN switch first to DOWN, then to UP.

If a single sheet of chart paper is used, be
sure the CHART switch is in the OFF position.

3. With the pen in the UP posi-
tion, use the 2 DRUM (X
axis) and the 2 CARRIAGE
(Y axis) controls to position
the pen for the first plot.

CARRIAGE
SINGLE
STEP \

Q

2 CARRIAGE
@ FAST
RUN
— OFF
@ POWER

ON
o7
N\

7-8

READYING THE 1231 OPTICAL MARK PAGE READER

Operator action

1. Be sure system power is
turned on.

2. Place the data sheets in
the hopper with the
side to be read facing
up and the top edge
positioned to feed
first,

3. Move the FEED MODE
switch to ON-DEMAND.

4, Press PROGRAM LOAD.
5. Press RESET.

6. Press START.
7. Press START again.

Readying Devices
1231 OMPR

System response or Error indicator and cor-
rective action

The 1231 POWER ON light is on.

The PROGRAM LOAD light comes on.

The hopper is raised to the ready position. The
RESET light goes off and the START light
comes on.

The PROGRAM LOAD light goes off.

The START light goes off. All indicator
lights should be off, with one exception: the
SYSTEM STOP light can be on.

MASTER
2 MARK

@),

OFF CONTINUOUS
TIMING MARK CHECK FEED
MODE
ON-DEMAND
YES
CONTROL
TIMING @
MARKS
NO

—
POWER ON

: PROGRAM

POWER OFF
PROC CHECK
L]
READ LIGHT
I——
S R
RE-FEED FEED
SEL DOC CHECK J STOP
== —

Operating the 1130 Disk Monitor System 7-9

Ec_ﬂd Start

COLD START PROCEDURE

The cold start procedure is initiated when the cold start record is read by the card reader
or the paper tape reader. This record causes the cold start program stored in cylinder 0 of
the system cartridge to be read into core storage. The cold start program gains control and
reads the resident image and the DISKZ subroutine from cylinder 0 into the resident moni-
tor portion of low core storage. Program control is then assumed by the skeleton super-
visor portion of the resident monitor.

During the cold start program, a dummy // JOB control record is printed on the principal
printer, and the following cartridge status information is printed:

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE

XXXX XXXX XXXX XXXX
VX -MXX ACTUAL XXK CONFIG XXK
where

LOG DRIVE is always a single entry of zero.
CART SPEC is the cartridge ID written on the system cartridge when initialized.

CART AVAIL is the same as CART SPEC. When more than one disk drive is on the
computer, the IDs of any other disk cartridges that are ready are also listed.

PHY DRIVE is the physical drive number you enter in the console entry switches.
This drive is also logical drive zero. When more than one disk drive is on the com-
puter, the physical drive numbers of any other disk cartridges that are ready are
also listed.

VX MXX is the versicn and modification of the monitor system on the current
system cartridge.

ACTUAL X XK is the physical core size of the 1130.
CONFIG XXK is the configured core size on the system cartridge.

Note. The monitor system is not supported unless the physical core size at least
equals the configured core size.

The monitor system is now operational and is ready to receive the first JOB monitor
control record.

Note. If your system has only one disk drive (the internal disk in the 1131 CPU or one
2311), you should cold star after changing cartridges, or packs, to avoid possible errors in
the location of disk areas on system cartridges.

If an attempt is made to cold start a nonsystem cartridge, an error message (THIS IS A
NONSYSTEM CARTRIDGE or NONSYS. CART. ERROR) is printed on the console
printer. Error stops can occur during the cold start procedure. They are listed and
explained under “Cold Start Program Error Waits” and “ISS Subroutine Preoperative
Error Waits” in Appendix B.

Note. Do not perform a cold start with an uninitialized cartridge online.

The cold start procedure is started from the card reader or the paper tape reader as
described in the following procedures.

Cold Start
card system
paper tape system

Card System Cold Start Procedure

1.
2.

5.
6.
7.

Ready the devices to be used.

If your 1130 has only one disk drive, be sure all console entry switches are off. For
systems with more than one disk drive, be sure switches O through 11 are off; set
switches 12 through 15 to the drive number (in binary) of the physical drive that
contains the system cartridge:

Drive 0—Switches 12 through 15 off
Drive 1—Switch 15 on
Drive 2—Switch 14 on
*Drive 3—Switches 14 and 15 on
*Drive 4—Switch 13 on
Drive 5—Switches 13 and 15 on
Drive 6—Switches 13 ‘and 14 on
Drive 7—Switches 13, 14, and 15 on
*Drive 8—Switch 12 on
*Drive 9—Switches 12 and 15 on
Drive 10—Switches 12 and 14 on
*Not used on a 2311 Disk Storage Drive, Model 12

Place the cold start card in the card reader wired for cold start. Then place cards to
be processed in the card reader.

Press START on the card reader. (If both a 2501 and a 1442, Model 6 or 7, are
present, make the reader wired for cold start ready and make sure the other reader
is not ready by pressing STOP.)

Press IMM STOP on the console.

Press RESET on the console.

Press PROGRAM LOAD on the console.

Paper Tape System Cold Start Procedure

1.
2.

Ready the devices to be used, except the paper tape reader.

-If your 1130 has only one disk drive, be sure all console entry switches are off, For

systems with more than one disk drive, be sure switches O through 11 are off; set
switches 12 through 15 to the drive number (in binary) of the physical drive that
contains the system cartridge as follows:

Drive 0—Switches 12 through 15 off
Drive 1—Switch 15 on

Drive 2—Switch 14 on

Drive 3—Switches 14 and 15 on
Drive 4—Switch 13 on

Insert tape BP15, cold start paper tape record, in the paper tape reader. Position
under the read starwheels one of the delete codes after the program ID.

Press IMM STOP on the console,

Press RESET on the console,

Press PROGRAM LOAD on the console.

Operating the 1130 Disk Monitor System 7-11

Entering Jobs

card or paper tape reader
console keyboard

USING THE 1130 WITH THE MONITOR SYSTEM

7-12

starting keyboard
operation

When the I/0 devices required for a job are online and ready, and the monitor system is
running, jobs can be entered from the card reader, the paper tape reader, or the console
keyboard. The following procedures describe how jobs are entered.

Entering Jobs from the Card Reader

1. Place the cards to be processed in the card hopper, face down, 9-edge first, and
press START on the card reader.

2. Check that the console mode switch is set to RUN.

Press PROGRAM START on the console.

4. When the last card is indicated (hexadecimal /1000 for the 1442 Card Reader or
/4000 for the 2501 Card Reader) in the ACCUMULATOR on the console display
panel, press START on the card reader and PROGRAM START on the console so
that the last card is released. This step need not be done if blank cards follow the
last card processed.

w

Entering Jobs from the Paper Tape Reader

1. Insért the tape to be processed in the paper tape reader. Position under the read
starwheels one of the delete codes after the program ID,

2. Check that the console mode switch is set to RUN.

3. Press PROGRAM START on the console.

Entering Jobs from the Console Keyboard

A single monitor control record or an entire program including all required control records
and data records can be entered from the console keyboard. Monitor control is transferred
to the keyboard when a // TYP monitor control record is read from the principal input
device.

Control is returned to the principal input device when a // TEND monitor control record
is entered from the keyboard. The formats of these 2 control records are described in
Chapter S under “Monitor Control Records.”

When the // TYP control record is read, the console printer performs a carriage return
and the KB SELECT light on the keyboard operator’s panel comes on. The system is now
in a WAIT state at $PRET with /2002 in the accumulator, awaiting keyboard input.

Enter all control records, program statements, and/or data records in their correct format.
Use the space bar for blanks. As each character is entered, it is printed on the console
printer. Press EOF to indicate the end of each line. When this key is pressed, an NL (new
line) character is placed in the next character position of the input buffer, and the typing
element is returned to the left margin of the next line.

Up to 80 characters can be entered in one line through the console keyboard. If an error
is made during entry of a line, you can either backspace to correct the error or erase the
entire line and reenter it.

When the TYPEOQ I/O subroutine is being used, a line is corrected during entry by pressing
the backspace (<) key as many times as required until you reach the first character that
has to be corrected. The first time that you press the backspace key, the last character
printed on the console printer is slashed. The location address of the next character to be
entered in the input buffer is decremented by one each time the backspace key is pressed.

ERASE
FIELD

REST
KB

stopping keyboard
operation

PROGRAM
sTOP

PROGRAM
START

INT
REQ

IMM
STOP

Operating DM2
console operator keys

For example, assume that you have entered *DELET and want to change it to *DEFINE.

1. Press the backspace key 3 times. (The T is slashed: *DELET.)

2. Enter the correct characters. (The corrected line appears as *DELETFINE on the
console printer. The input buffer now contains *DEFINE; the characters FIN re-
place LET in the buffer.)

Note, When the TYPEZ I/O subroutine is being used, the backspace key functions the same
as the ERASE FIELD key.

A line can be erased when you press ERASE FIELD. This key signals an interrupt response
subroutine that the previously entered characters are incorrect and are being reentered.
Two slashes are printed on the console printer (when the TYPEOQ I/0O subroutine is being
used), and the typing element is returned to the left margin of the next line. The correct
characters that you enter replace the previously entered characters in the input buffer.

The previous message is not deleted from the input buffer; if the previous message is longer
than the new one, the characters from the previous message remain (following the NL
character that terminates the new message).

Note, When the TYPEZ 1/0 subroutine is being used, the two slashes are not printed when
ERASE FIELD is pressed.

If the keyboard appears to be locked (keys cannot be pressed), press REST KB (the restore
keyboard key). The correct case shift must be selected before data is entered.

Continue entering control records, program statements, and/or data records as just des-
cribed until all are entered. Then enter a // TEND control record, and press EOF. Control
is returned to the principal input device.

Functions of Console Operator Keys During Monitor System Control

Pressing PROGRAM STOP causes an interrupt of the monitor system programs. This is a
level S interrupt and causes an entry to the PROGRAM STOP key trap in the skeleton
supervisor, if no user-written subroutines are associated with level 5.

If a higher interrupt level is being serviced when you press PROGRAM STOP, the PRO-
GRAM STOP interrupt is masked until the current operation is complete.

The PROGRAM STOP key trap consists of a wait and a branch. Execution of the monitor
system programs is continued when you press PROGRAM START. The status of the moni-
tor system and of core storage is not changed when the system is stopped with the PRO-
GRAM STOP key.

Pressing PROGRAM START also continues execution of the monitor system programs
from ISS subroutine waits. A code in the ACCUMULATOR on the console display panel
indicates the reason for the wait. ISS subroutine waits and their causes are listed in Appen-
dix B.

Pressing the interrupt request (INT REQ) key immediately terminates the current job. Sys-
tem control returns to the supervisor, which searches through the input stream for the
next JOB monitor control record. You have the option of programming this key for a
different use (see Chapter 6. “Programming Tips and Techniques”). Portions of the moni-
tor system that cannot be interrupted before completion, such as SYSUP, delay the inter-
rupt until the operation is complete when INT REQ is pressed. Because the keyboard
remains selected during interrupt request processing when in // TYP mode, you must be
careful not to press any keys until the /2002 halt at $PRET is displayed.

Pressing the immediate stop (IMM STOP) key immediately stops processing.

Note, Do not press IMM STOP when the monitor system is running. The contents of a
system cartridge can be destroyed, necessitating a reload of the system.

Operating the 1130 Disk Monitor System 7-13

Operating DM2
displaying or altering core locations
manually dumping core

7-14

select a core
location

display contents
of the location

alter contents of
location

return to system
control

Displaying or Altering the Contents of a Selected Core Location
| To select a specific core location to be displayed or altered:

1. Press PROGRAM STOP on the console.

2. Turn the console mode switch to LOAD.

3. Set the console entry switches to the desired 4-character hexadecimal core address.
Switches 0 through 3 represent the first hexadecimal character, 4 through 7 the
second, 8 through 11 the third, and 12 through 15 the fourth.

4. Press LOAD IAR on the console. The selected address is loaded into the IAR and is
displayed in the INSTRUCTION ADDRESS indicator on the console display panel.

To display the contents of the selected core location:

1. Turmn the console mode switch to DISPLAY.

2. Press PROGRAM START. The contents are displayed in the STORAGE BUFFER
indicator on the console display panel. Repeatedly pressing PROGRAM START dis-
plays the contents of consecutive core locations.

To alter the contents of the selected core location:

1. Set the new contents (in hexadecimal) in the console entry switches.
2. Turn the console mode switch to LOAD,
3. PressPROGRAM START.

After the contents of the selected core location have been displayed and/or altered, return
to system control:

1. Turn the console mode switch to RUN.
2. Press PROGRAM START. Execution begins at the location specified in the IAR,

Manual Dump of Core Storage

When a problem occurs during the execution of a core load and a dump of core storage is
needed, you can execute a manual dump of core storage:

1. Press PROGRAM STOP,

2. Turn the console mode switch to LOAD.

3. Set the address plus one of the dump entry point ($DUMP+1) to the skeleton supei-
visor in the console entry switches.

4. Press LOAD IAR on the console.

5. Turn the console mode switch to RUN,

6. Press PROGRAM START. '

A dump of the contents of core storage is printed in hexadecimal, then the dump program
(see “Disk-Resident Supervisor Programs” in Chapter 3) executes a CALL EXIT to termin-
ate execution of the core load in progress.

1f the $IOCT, $DBSY, or $SCAT indicators in the resident monitor are nonzero when the

branch to $DUMP+1 is made, the skeleton supervisor begins a loop testing these indicators.
When this occurs:

1. Press PROGRAM STOP.
2. Display, and change to zero if necessary, the contents of each of these locations.
3. Restart the manual dump of core storage.

initial load

reload

Chapter 8. Monitor System Initial Load and System Reload

An initial load is the process of loading the complete disk monitor system onto an
initialized disk cartridge. An initial load is performed when:

® An 1130 computing system is installed
® Data contained on a system cartridge has been destroyed making the disk unuseable
® The assembler and/or any of the compilers are to be loaded onto a system cartridge

A system reload is the process of loading modifications to the disk monitor system onto
a system cartridge. A system reload is performed when:

o Existing phases of system programs are being added or expanded
® New system programs are being added
® The I/O device configuration is being changed

Any combinations of the previous functions can be performed during a reload. The follow-
ing should be kept in mind when preparing to perform a reload:

® The cushion area must be large enough to absorb the increased length of system programs
when they are added or expanded.

® Program additions must follow the last system program currently on the cartridge.
Working storage must be equal to or larger than the length of the program being added,
plus 31 sectors.

® System configuration is performed each time a system reload is performed. Reconfigu-
ration is necessary when a system cartridge is copied from a system with a different
configuration.

Initial load and reload procedures are performed with IBM-supplied system loaders,
control records, system programs, and with control records that you punch. The informa-
tion supplied by IBM is contained on paper tapes for paper tape systems and on disk
cartridges for card systems. The contents of the disk cartridge must be dumped to cards
before the system can be loaded. A preload operating procedure for dumping the monitor
system to cards is contained in this chapter.

This chapter:

1. Describes the general functions and contents of IBM-supplied control records

2. Discusses the general functions, formats, ana uses of the control records that you
must punch

3. Presents sample operating procedures for punching paper tape control records,
performing a card system preload, initial load, and reload, and performing a paper
tape system initial load and reload

You may use these operating procedures as they are presented, or you may modify them
to meet the needs of your computing system. For those who are already familiar with
similar procedures, the headings in each block can be used as reminders as you perform
the procedure. For those who need more information, detailed steps for performing these
procedures are provided. Not all steps of each procedure need to be done every time it is
used; do only those steps that are necessary.

Appendixes A and B contain descriptions of error messages and halt codes that can occur
during the operations of any of the initial load and reload procedures.

Monitor System Initial Load and System Reload 8-1

System Loader Control Records

SCON
TERM

IBM-SUPPLIED SYSTEM LOADER CONTROL RECORDS

general function

SCON and TERM
control record
formats

The IBM-supplied control records for initial load and reload operations are:
® SCON and TERM (for card systems only)

® Phase identification (PHID)

® Type 81

These control records must be used in all initial load and reload operations. The placement
of these control records in the card decks and paper tapes is illustrated at the beginning of
each of the procedures for load and reload at the end of this chapter.

The general functions and formats of these control records are discussed in the following
text.

SCON and TERM Control Records

These control records, together with the REQ control records that you punch, comprise
the system configuration contro!l record. They define the beginning and ending of the
system configuration control record. A system configuration control record must be
included. in an initial load, a reload, and a configure operation.

SCON and TERM cards are included with the information supplied from IBM for card
systems. For a paper tape system, you punch the SCON and TERM control records in the
system configuration tape as described in ‘“Preparation of Load Mode and System Configu-
ration Control Tapes” in this chapter.

Card column Contents
1 through 4 SCON or TERM
5 through 80 Blanks

general function

format of first PHID
card

System Loader Control Records
PHID

Phase Identification (PHID) Control Records

Each monitor system program, except the resident monitor and the cold start program, is
divided into several parts called phases. PHID control records contain the beginning and
ending phase ID numbers of the programs in the monitor system. All numbers in the ID
fields of the PHID control records are in ascending sequence and in the order in which the
system programs are loaded onto a disk. The ID entries in the PHID control record are
loaded into the system location equivalence table (SLET), a directory to the disk locations
of the monitor system programs.

When system programs are added or modified during a reload, the PHID control record
must be changed to reflect any new phase ID limits of the programs and/or phases.

Card column Contents

1 through 4 PHID

6 through 8 IDs of the first and last phases of DUP
and ’

10 through 12

14 through 16
and
18 through 20

22 through 24
and
26 through 28

30 through 32
and

34 through 36
38 through 40
and

42 through 44
46 through 48
and

50 through 52
54 through 56
and

68 through 60
64

66 through 68
70 through 72

73 through 80

IDs of the first and last phases of the FORTRAN compiler

IDs ot the first and last phases of the COBOL compiler
program product

IDs of the first and last phases of the supervisor

I1Ds of the first and last phases of the core load builder

IDs of the first and last phases of the system 1/O device
subroutines

1Ds of the first and last phases of the core image loader

1 (indicates continuation to the second PHID card)
Vxx {where xx is the disk monitor system version number)
Mxx (where xx is the version modification number)

Card identification and sequence number

Note: All card columns omitted in this format contain blanks.

Monitor System Initial Load and System Reload

8-3

System Loader Control Records
PHID

sector break cards

8-4

format of second
PHID card

Card column

1 through 4

6 through:8
and

10 through 12
14 through 16
and

18 through 20
22 through 24
and

26 through 28
29 through 65
66 through 68
70 through 72

73 through 80

Contents
PHID

IDs of the first and last phases of the RPG compiler

IDs of the first and last phases of DUP, part 2

IDs of the first and last phases of the macro assembler

Blanks

Vxx (where xx is the disk monitor system version number)

Mxx {where xx is the version modification number)

Card identification and sequence number

Note: All card columns omitted in this format contain blanks.

If you have a paper tape system, the IBM-supplied PHID control record is on tape BP03.

System Program Sector Break Cards (Card Systems)

In order to allow you to load only a portion of a monitor program during a card system
reload, each program phase is preceded with a sector break card that identifies the phase.
These cards have a 1 punch in column 4, and the monitor system version and modification
level are punched in the cards starting in column 67 (VxMxx). A description of the function
of sector break cards is in Appendix I.

The following is a list of the monitor system sector break cards.

System Loader Control Records
sector break cards

Phase ID starting in Phase ID starting in
nurnber Program or program phase name column 73 number Program or program phase name column 73
XX KES SKELETON SUPY, Part of 30 FOR EXPANDER Il PHASE K18
COMMA, DISKZ, COLD system 31 FOR DATA ALLOCATION PHASE K19
START PROGRAM loader EMN 32 FOR COMPILATION ERROR PHASE K20
XX SYS LDR—PHASE 2—OVERLAY 0 FP2 33 FOR STATEMENT ALLOCATION
XX SYS LDR—PHASE 2—OVERLAY 1 FP2 PHASE K21
XX SYS LDR—PHASE 2—OVERLAY 2 FP2 34 FOR LIST STATEMENT ALLOCATION K22
XX SYS LDR—PHASE 2—OVERLAY 3 FP2 35 FOR LIST SYMBOL TABLE PHASE K23
36 FOR LIST CONSTANTS PHASE K24
DUP 37 FOR OUTPUT | PHASE K26
o1 DUP COMMON SUBROUTINES, CCAT JO1 gg igg g:;;u::&p)‘zi) OHASE g‘;
02 DUP CTRL RECORD PROCESSOR Jo2
03 DUP STORE PHASE Jo3 ,
04 DUP *FILES, *LOCAL, *NOCAL COBOL compiler (program product)
PHASE Joa 51 PHASE NUMBERS USED BY THE
05 DUP DUMP PHASE Jo5) COBOL COMPILER
06 DUP DUMP LET/FLET PHASE Jo6 .
07 DUP DELETE PHASE Jo7 5C
08 DUP DEFINE PHASE Jos
09 DUP EXIT PHASE JO9 Supervisor
0A DUP CARD 1/O INTERFACE J10 6E SUP PHASE 1—MONITOR CONTROL
oB DUP KEYBOARD INPUT INTERFACE J11 RECORD ANALYZER NO1
oc DUP PAPER TAPE 1/0 INTERFACE 2 oF SUP PHASE 2—JOB CONTROL
oD DUP UPCOR PHASE SAVED BY RECORD PROCESSOR NO1
DEXIT DURING STORECI n7 70 SUP PHASE 3—DELETE
OE DUP PRINCIPAL INPUT WITH TEMPORARILY STORED
KEYBOARD N7 PROGRAM LET NO1
OF DUP PRINCIPAL W/O KEYBOARD n7 7 SUP PHASE 4—XEQ CONTROL
10 DUP PAPER TAPE 1/0 317 RECORD PROCESSOR NO1
" DUP STORE Ci n7 72 SUP PHASE 5—SUPERVISOR
12 DUP MODIF DUMMY PHASE "7 CONTROL RECORDS PROCESSOR NO1
73 SYSTEM DUMP-CORE-TO-PRINTER NO2
FORTRAN compiler : 74 AUXILIARY SUPERVISOR NO3
1E FOR INPUT PHASE Ko1
20 FOR CLASSIFIER PHASE K02 _ Core load builder
z FOR CHECK ORDER/STMNT NO. 78 CORE LOAD BUILDER, PHASE 0/1 ocs
PHASE Ko3 79 CORE LOAD BUILDER, PHASE 2 ocB
2 FOR COMMON SUBR OR FUNCTION 7A CORE LOAD BUILDER, PHASE 3 ocB
PHASE Ko4 7B CORE LOAD BUILDER, PHASE 4 ocB
23 FOR DIMENSION, REAL, INTEGER K05 70 CORE LOAD BUILDER, PHASE & oce
24 FOR REAL CONSTANT PHASE Koé 7D CORE LOAD BUILDER, PHASE 6 ocs
25 FOR DEFINE FILE, CALL LINK EXIT KO7 7E- CORE LOAD BUILDER. PHASE 7 ocE
26 FOR VARIABLE, STMNT FUNC 7F CORE LOAD BUILDER, PHASE 8 ocB
PHASE Kos 80 CORE LOAD BUILDER, PHASE 9 ocs
27 FOR DATA STATEMENT PHASE K09 81 CORE LOAD BUILDER, PHASE 10 ocs
2 FOR SUBTRACT DECOMPOSITION 83 CORE LOAD BUILDER, PHASE 12 ocB
PHASE K11 84 CORE LOAD BUILDER, PHASE 13 ocB
2A FOR ASCAN | PHASE K12
28 FOR ASCAN 1l PHASE K13
2¢ FOR DO, CONTINUE, ETC. PHASE K14
2D FOR SUBSCRIPT OPTIMIZE PHASE K15
2E FOR SCAN PHASE K16
2F FOR EXPANDER | PHASE K17

Monitor System Initial Load and System Reload 8-5

System Loader Control Records -
sector break cards

Phase 1D starting in Phase 1D starting in
number Program or program phase name column 73 number Program or program phase name column 73
System device subroutines, disk 1/0 Assembler
8C SYS 1403 PMN CF ASM INITIALIZATION PHASE PTM
8D SYS 1132 PMN DO ASM CARD CONVERSION PHASE PTM
8E SYS CONSOLE PRINTER PMN D1 ASM DSF OUTPUT PHASE . PTM
8F SYS 2501 PMN D2 ASM INTERMEDIATE INPUT PHASE ~ PTM
90 SYS 1442 PMN D3 ASM END STATEMENT PHASE PTM
91 SYS 1124 PMN D4 ASM ASSEMBLY ERROR PHASE PTM
92 SYS KEYBOARD PMN D5 ASM CONTROL CARDS 1 PTM
93 SYS 2501/1442 CONVERSION PMN D6 ASM CONTROL CARDS 2 PT™M
94 SYS 1134 CONVERSION PMN D7 ASM DUMMY PHASE (SYST
95 SYS KEYBOARD CONVERSION PMN SYMBOL TBL) PTM
96 DISKZ c PMN D8 ASM SYMBOL TABLE OPTIONS PHASE PTM
97 DISK1 PMN D9 ASM EXIT PHASE PTM
98 DISKN PMN DA ASM PROG HEADER MNEMONICS
PHASE PTM
Core image loader DB ASM FILE STATEMENT PHASE PTM
A0 CORE IMAGE LOADER, PHASE 1 PMN bc ASM COMMON SUBROUTINES,
A1 CORE IMAGE LOADER, PHASE 2 PMN ' ASCOM PT™
DD ASM PROG CONTROL MNEMONICS
RPG compiler PHASE PTM
DE ASM IMPERATIVE STATEMENTS
BO RESIDENT , PR1 PHASE PTM
B1 ENTER FILES PR2 DF ASM DECML EFLC PROCESSING
B2 ENTER INPUT PR3 PHASE PTM
B3 ENTER CALCULATION , PR4 EO ASM DECIMAL CONVERSION PHASE ~ PTM
B4 ENTER OUTPUT PRS 3 ASM PROG LINKING PHASE PTM
B5 ASSIGN INDICATORS ' PRE E2 ASM DMES PROCESSING PHASE PTM
86 ASSIGN FIELD NAMES PR7 E3 ASM PUNCH CONVERSION PHASE PTM
B7 ASSIGN LITERALS PR8 E4 ASM INTERMEDIATE DISK OUTPUT PTM
B8 EXTENDED FILE AND INPUT ES ASM SYMBOL TABLE OVERFLOW PTM
DIAGNOSTIC PR9 E6 ASM G2250 PH1 PTM
B89 EXTENDED CALCULATION AND E7 ASM DIVISION OPERATOR PHASE PTM
OUTPUT DIAGNOSTIC PRA E8 ASM CONTROL CARDS 3 PTM
BA DIAGNOSTIC MESSAGE 1 PRB E9 ASM MACRO PHASE 1—SPECIAL OP
BB DIAGNOSTIC MESSAGE 2 PRC AND PREPROCESSING PTM
BC DIAGNOSTIC MESSAGE 3 PRD EA ASM MACRO PHASE 1A—SPECIAL
BD ASSEMBLE 1 1/0 PRE PSEUDO OPS PTM
BE ASSEMBLE 2 1/0 PRF EB ASM MACRO PHASE 1B—
BF ASSEMBLE 3 1/0 PRG CONDITIONAL ASSEMBLY PTM
co ASSEMBLE 4 1/0 PRH EC ASM MACRO PHASE 2—-MACRO
C1 ASSEMBLE TABLES PRJ DEFINITION PTM
Cc2 ASSEMBLE CHAIN AND RAF PRK ED ASM MACRO PHASE 2A--MACRO
Cc3 ASSEMBLE INPUT FIELDS PRL DEFINITION PTM
ca ASSEMBLE CONTROL LEVELS PRM EE ASM MACRO PHASE 2B—MACRO
C5 ASSEMBLE MULTI FILE LOGIC PRN DEFINITION PTM
c6 ASSEMBLE GET ROUTINES PRO EF ASM MACRO PHASE 3—EXPANSION PTM
c7 ASSEMBLE CALCULATIONS 1 PRP FO ASM MACRO PHASE 3A—EXPANSION PTM
c8 ASSEMBLE CALCULATIONS 2 PRQ F1 ° ASMMACRO PHASE 3B—EXPANSION PTM
co ASSCMBLE OUTPUT FIELDS PRR F2 ASM CROSS REFERENCE—PART 1 PTM
CA ASSEMBLE PUT ROUTINES PRS F3 ASM CROSS REFERENCE—PART 2A PTM
c8 ASSEMBLE FIXED DRIVER PRT F4 ASM CROSS REFERENCE—PART 28 PTM
cc TERMINATE COMPILATION PRU F5 ASM CROSS REFERENCE—PART 2C PTM
F6 ASM CROSS REFERENCE—PART 3 PTM
DUP part 2
cD DUP CTRL—PART 2 PSO
CE MACRO UPDATE PROGRAM PS1

System Loader Control Records
type 81

Type 81 Control Record

general function The type 81 control record defines the end of the loading of the monitor system programs
and/or phases. After the type 81 control record is read, a record of the principal print
device and the principal I/O devices is placed in the system location equivalence table
(SLET). (Principal I/O devices are discussed under ‘‘System Configuration Control Records’
in this chapter.) Also during an initial load, the disk communications area (DCOM) and
location equivalence table (LET) are initialized, and the reload table is established.

format of type 81 Card column Contents
control record
1and 2 Blanks
3 A 6 punch
4 A 1 punch
5 through 80 Blanks

Note. These punches are /8100 in card data format (CDD) in word 3,
thus, the name type 81.

If reconfiguration is all that is being done by a reload operation, place the type 81 control
records immediately after the PHID control record.

SYSTEM LOADER CONTROL RECORDS THAT YOU PUNCH
The control records that you punch for initial load and reload operations are:
® Load mode that defines whether the operation is an initial load or a reload
e System configuration that defines the I/O devices of your system

® CORE (optional) that allows you to define a core size other than the actual core size
of the computer

The general functions, formats, and uses in initial load and reload operations for these
control records are described in the following text.

Note. When the 1627 Plotter is used by a program, the following subroutines must
not be in a SOCAL for that program: EADD, FADD, FMPY, EMPY, XMD, XMDS,
and FARC. These must instead be incore subroutines. You can accomplish this
during a system load by storing the programs with subtype zero.

Monitor System Initial Load and System Reload 8-7

System Loader Control Records

load mode
Load Mode Control Record
general function The load mode control record informs the system loader whether the operation is an
initial load or a reload. This control record can also be used to bypass the assembler,
FORTRAN compiler, COBOL compiler, or RPG compiler during an initial load or reload.
format Card column Contonts Explanation
1 through 4 MODE
5 through 7 Blanks
8 lorR / indicates initial load.
R indicates reload.
9 through 11 Blanks
12 A or blank A indicates the assembler is
not being loaded.
Blank indicates the assembler
is being loaded.
13 F or blank F indicates the FORTRAN
compiler is not being loaded.
Blank indicates the FORTRAN
compiler is being loaded.
14 R or blank R indicates the RPG compiler
is not being loaded.
Blank indicates the RPG com-
piler is being loaded.
15 C or blank C indicates the COBOL compiler
(a program product) is being
loaded.
Blank indicates the COBOL com-
piler is not being loaded.
16 through 80 Blanks
Nots. |f the assembler or the FORTRAN, RPG, or COBOL compiler is not loaded in an
initial load or was deleted by a DUP DEFINE VOID operation, they can be loaded by an
initial load operation only. Columns 12, 13, and 14 must contain A, F, or R, respectively,
and column 15 must be blank for a reload operation to reflect the status of the cartridge.
card system use For a card system, a load mode control card is placed in an initial load or reload card deck
immediately behind the first part of the system loader. The order of cards for an initial
load and reload is illustrated in Figures 8-2 and 8-4 under “Card System Initial Load
Operating Procedure” and “Card System Reload Operating Procedure,” respectively, in
this chapter.
paper tape system For a paper tape system, this control record is entered between the IBM-supplied tapes,
use BPO1 and BPO03, as illustrated in Figures 8-7 and 8-9 under ““Paper Tape System Initial

Load Operating Procedure’ and “Paper Tape System Reload Operating Procedure” in
this chapter. A procedure for punching a load mode control tape is included under
“Preparation of Load Mode and System Configuration Control Tapes™ in this chapter.

8-8

general function

format

card system use

paper tape system
use

principal 1/0 devices

System Loader Control Records
system configuration

System Configuration Control Records

System configuration control records (REQ) allow you to define the system I/O devices
that are a part of your computer system. Punch one control record for each device.
Missing or extra REQ records may cause initial load operations to fail.

Card columns
Device 1 through 3 9 and 10’ 18 through 20
1442 Card Read/Punch REQ 1 1442-5 whichever
Card Punch 1442-6 . s

14427 is applicable

Paper Tape Reader REQ 3 1134
and/or Punch . .
2501 Card Reader REQ a 2501 oD 8
1132 Printer REQ 6 1132 P
1403 Printer REQ 9 1403
Note. 1/O devices not listed are initialized as part of the system; REQ control records are
not required. If an REQ control record is punched for a 1442, columns 15 through 20
must be coded to indicate the model.
Yiss numbers, right justified. Maximum entry number 1SS 20.

For a card system, REQ cards are placed in an initial load or reload card deck between the
IBM-supplied SCON and TERM cards. If the optional CORE card is used, it must be
placed before or after the REQ cards, not between any of them. The order of cards for an
initial load and reload is illustrated in Figures 8-2 and 8-4 under ““Card System Initial
Load Operating Procedure” and “Card System Reload Operating Procedure,” respectively,
in this chapter.

For a paper tape system, these control records are punched in the system configuration
tape. The procedure for punching this tape is included in *“Preparation of Load Mode and
System Configuration Control Tapes™ in this chapter. The system configuration tape is
entered between the IBM-supplied tapes, BP02 and BP03, as illustrated in Figures §-7 and
8-9 under “Paper Tape System Initial Load Operating Procedure” and “Paper Tape System
Reload Operating Procedure” in this chapter.

When more than one input device or output device of a type is configured for a system,
the fastest device defined in the REQ control records is used by the system. The following
chart lists the principal I/O devices selected by the system.

Device specified on REQ control records Principal 1/0 device
2501, 1442, paper tape 2501 input, 1442 output
1442, paper tape 1442 input/output
Paper tape Paper tape input/output
1403, 1132 1403 output

Monitor System Initial Load and System Reload 8-9

System Loader Control Records
CORE

When both a 1403 Printer and an 1132 Printer are configured, the 1403 is used by the
system as the principal printer. You can specify the use of the console printer as the
principal print device with // TYP and // CPRNT monitor control records. (These contro!
records are described in Chapter 5.)

CORE Control Record

general function This control record is an optional record that allows you to define a core size that is
different than the actual size of core.

format Card column Contents Explanation
1 through 4 CORE
5 Blank
6 through 8 04K, 08K, 16K, The entry chosen specifies the
or 32K core size you are defining.
9 through 80 Blanks
card system use For a card system, a CORE control card is placed in an initial load or reload card deck

before or after the REQ card and between the IBM-supplied SCON and TERM cards. The
order of cards for an initial load and reload is illustrated in Figures 8-2 and 8-4 under
“Card System Initial Load Operating Procedure” and ““Card System Reload Operating
Procedure,” respectively, in this chapter.

paper tape system For a paper tape system, this control record (when used) is punched in the system configu-

use ration tape. The procedure for punching this tape is included in “Preparation of Load
Mode and System Configuration Control Tapes™ in this chapter. The system configuration
tape is entered between the IBM-supplied tapes, BPO2 and BP03, as illustrated in Figures
8-7 and 8-9 under “Paper Tape System Initial Load Operating Procedure” and “Paper Tape
System Reload Operating Procedure” in this chapter.

Preparation of Load Mode and System Configuration Contro! Tapes

Paper tape control records must be punched in PTTC/8 (perforated tape transmission
code). The load mode and system configuration control tapes are punched by using the
Paper Tape Utility Program (PTUTL). Initially, these control records are punched by using
the stand-alone PTUTL tape, BP17, that is supplied by IBM.

The materials that you need to prepare the load mode and system configuration control
tapes are:

® The Paper Tape Utility Program (PTUTL) tape, BP17
® A blank tape

The preparation of the load mode and system configuration control tapes do not have to
be punched consecutively as in the procedure in Figure 8-1. These control records can be
prepared separately by using the portions of the procedure that are applicable to the
record being punched.

8-10

Turn on system power

Move the console POWER switch
" to ON.

Load the PTUTL Program tape,
B8P17

1.

Insert the PTUTL tape, BP17,
in the paper tape reader.

Position under the read star-
wheels one of the delete codes
after the program 1D.

Move the console mode switch
to RUN.

Press {MM STOP on the console.

. Press RESET on the console.

. Press PROGRAM LOAD on the

console.

. Press PROGRAM START to

finish the reading of PTUTL.

. Press PROGRAM START again.

Turn console entry switches 2
and 3 on.

Ready the paper tape punch

1.

Insert a blank tape in the paper
tape punch.

Punch a leader of delete codes
with the DELETE key.

B2

A2

Paper Tape Load and Reload
preparation of control tapes

The core image loader is read into core
storage, and the system waits with /006C
displayed in the ACCUMULATOR.

When the reading of BP17 is complete, the
system waits with /00C9 in the ACCUMU-
LATOR.

The system waits again with /1111 in the
ACCUMULATOR.

2 indicates keyboard input.

3 indicates that records are to be punched
by the paper tape punch.

Complete operating procedures for PTUTL
are in Chapter 8.

Figure 8-1 (Part 1 of 4). Preparation of paper tape load and reload control tapes

Monitor System Initial Load and System Reload

8-11

Paper Tape Load and Reload
preparation of control tapes

8-12

Prepare the paper tape load mode
control record

1. Enter MODE through the
keyboard.

2. Press the SPACE BAR three
times.

3. Enteran | or an R.
4. Press the SPACE BAR three
times.

5. Enter an A or press the SPACE
BAR once.

6. Enter an F or press the SPACE
BAR once.

7. Enter an R so that references to
the RPG compiler are ignored
during loading.

Were
mistakes made
during entry?

Finish the load mode control racord
1. Press ECF.
2. Punch a trailer of delete codes

with the DELETE key on the
paper tape punch.

A3

/ indicates initial load.
R indicates reload.

A indicates that the assembler is not being
loaded.

F indicates that the FORTRAN compiler
is not being loaded.

Prepare another load mode control
record

Punch another leader of delete
codes.

B2

Figure 8-1 (Part 2 of 4). Preparation of paper tape load and reload control tapes

Paper Tape Load and Reload
preparation of control tapes

Prepare the system configuration If errors are made during the preparation
tape of this tape, repeat from here.

1. Punch a leader of delete codes
with the DELETE key on the
paper tape punch.

2. Enter SCON through the key-
board.

3. Press EOF to end the SCON
record.

Define the system 1/0 devices
1. Enter REQ.
2. Press the SPACE BAR six times

(6 times if a 2-digit 1SS number
is being entered in Step 6).

3. Enter the ISS number for an 1/0 device 1SS number
1/O device being configured.

1442 Card Read 1
Punch/Card Reader

Paper tape reader 3
and/or punch

2501 Card Reader 4
1132 Printer 6

1403 Printer 9

Note: Maximum ISS entry is 20.
4. Press EOF.

Are
ali devices
defined?

No

Figure 8-1 (Part 3 of 4). Preparation of paper tape load and reload control tapes

Monitor System Initial Load and System Reload 8-13

Paper Tape Load and Reload
preparation of controi tapes

8-14

A4

Are you
defining the size
of core storage?

Define core storage size
1. Enter CORE.
2. Press the SPACE BAR once.

3. Enter the size of core that you
are defining.

4. Press EOF.

Finish the system configuration tape
1. Enter TERM.

2. Press EOF.

3. Punch a trailer of delete codes

with the DELETE key on the
paper tape punch.

Finish the preparation of the
control recerd tapes

1. Remove the tapes from the
paper tape reader and punch.

2, Separate the load mode control
record from the system con-
figuration control record by
cutting them apart at the delete
codes that separate them on
the tape just punched.

04K defines core size of 4K,
08K defines core size of 8K.
16K defines core size of 16K.
32K defines core size of 32K. -

Figure 8-1 (Part 4 of 4). Preparation of paper tape load and reload control tapes

Card System Initial Load
operating procedure

CARD SYSTEM INITIAL LOAD OPERATING PROCEDURE
The materials that you need to perform a card system initial load procedure are:
e An initialized disk.
e [BM-supplied system cards»

® [oad mode and REQ (and CORE, if used) cards that you punched. An I must be
punched in column 8 of the load mode card

The initial load cards and card decks that are being used in the initial load procedure must
be arranged in the order shown in Figure 8-2.

Note. If your computing system has 2311 Disk Storage Drives, replace the DISKN
subroutine included in the system device subroutines with the DISKN subroutine
included with the stand-alone utilities. The DISKN included in the system device sub-
routines is identified by the letters PMN beginning in card column 73. The sequence
numbers are included in the materials supplied with the modification level of your
system. The DISKN included with the stand-alone utilities is identified by the letters
PMNDN beginning in card column 73.

You perform a card system initial load procedure as shown in Figure 8-3.

=

rSystem library

{Type 81 card
=

System programs
=i - |

PHID cards

{ TERM card

CORE card

(REQ cards

SCON card “’ System configuration deck

System loader—part 2
columns 73-75 iD: FP2 Iy

System loader—part 1
columns 73-75 ID: DP1
(with 7 card core image
loader 1D: DCL)

Figure 8-2. Card system initial load cards

Monitor System Initial Load and System Reload 8-15

Card System Initial Load
operating procedure

8-16

Turn on system power

Move the console POWER switch
to ON.

Is DM2
on cards or
cartridge?

Perform the ‘“Card System
Preload Procedure’’ in this
chapter.

Cartridge

Ready a cartridge for initialize-
tion

1. Place a disk cartridge or
pack in a disk drive.

2. Ready the disk drive (see
Chapter 7 for information

about readying disk drives).

~~
Is cartridge

Yes

freshly initialized?

Initialize the cartridge
using the DCIP program
(see Chapter 9).

Note: f your system
has 2311 Disk Storage
Drives, be sure all disks
in a disk pack are ini-

or 1403?

tialized.
\\ Ready the 1132 Printer
Is the 1. Move the printer MOTOR
principal 1132 switch to ON.
printer 1132

2. Press CARRIAGE RESTORE.

3. Press START.

B2

Figure 8-3 (Part 1 of 3). Card system initial load procedure

Card System !nitial Load
operating procedure

Ready the 1403 Printer

1. Besure the ENABLE/
DISABLE switch on the 1133
Muitiplex Control Enclosure
is in the ENABLE position.

2. Press CARRIAGE RESTORE
on the printer.

3. Press START on the printer,

B2

Ready the IBM system deck

Place the user-punched control
cards in the IBM system deck
where indicated in Figure 8-2,

Ready the 2501 Card Reader

1. Press NPRO.

2. Place the first of the IBM system
cards in the hopper, face down,
9-edge first.

Is input
from 1442,
Model 6 or 7,

or 2501? 3. Press START (if both a 2501

and a 1442, Model 6 or 7,

1442, Model 6 or 7 are present, make sure the

1442 is not ready by press-
ing STOP on the 1442).

Ready the 1442, Model 6 or 7

1. Press NPRO.

2, Piace the first of the IBM
system cards in the hopper,

face down, 9-edge first.

3. Press START.

A

A3

Figure 8-3 (Part 2 of 3). Card system initial load procedure

Monitor System Initial Load and System Reload 8-17

Card System Initial Load
operating procedure

8-18

Start the reading of the IBM
system: deck

1. Set the console entry switches
12 through 15 to indicate the
physical drive number of the
drive that contains the
initialized cartridge (switches
0 through 11 must be off).

2. Turn the console mode switch
to RUN.

3. Press IMM STOP on the con-
sole.

4. Press RESET on the console.

5. Press PROGRAM LOAD on
the console.

l"———_l—_'_'—"l

Reading of the IBM system deck |
begins. |

____]___.___I

Finish procedure

!
|
-

Continue placing IBM system
cards in the reader hopper
until all of the cards have been
placed in the hopper.

The system prints a message on |
the principal printer when loading |
of the monitor system is complete. |

Perform the ‘’Cold Start
Procedure'’ in Chapter 7
to make the monitor
system operational.

Drive 0 — all off
Drive 1 — switch 15 on
Drive 2 — switch 14 on
*Drive 3 — switches 14 and 15 on
*Drive 4 — switch 13 on
Drive 5 — switches 13 and 15 on
Drive 6 — switches 13-and 14 on
Drive 7 — switches 13, 14, and 15 on
*Drive 8 — switch 12 on
*Drive 9 — switches 12 and 15 on
Drive 10 — switches 12 and 14 on
*Not used on a 2311 Disk Storage Drive,
Model 12

If the system halts (halt codes displayed
in the ACCUMULATOR on the console
display panel), refer to Appendix B. If

the system prints a message on the con-
sole printer, refer to Appendix A.

Figure 8-3 (Part 3 of 3). Card system initial load procedure

Card System Reload
operating procedure

CARD SYSTEM RELOAD OPERATING PROCEDURE

system
reconfiguration

phase and
program
revision or
addition

The materials that you need to perform a card system reload procedure are:
® A system cartridge

o An IBM-supplied cold start card and blank cards.(2 are enough)

® IBM-supplied system cards

® Load mode and REQ (and CORE, if used) cards that you punched. An R must be
punched in column 8 of the load mode card

The reload cards that are being used in the system reload must be arranged in the order
shown in Figure 8-4.

Reconfiguration is done each time a reload procedure is performed and is necessary when
a system cartridge is copied from a system with a different configuration. If reconfigura-
tion is all that is being done by a reload operation, place the type 81 control record
immediately after the PHID control records.

Be sure the phase identification (PHID) control records reflect the phase ID limits of the
system programs being added or in which phases are being revised or added. The programs
or phases being revised or added by the reload procedure must be placed in ascending
phase ID sequence immediately behind the IBM-supplied PHID control records.

The record immediately following the Jast phase being loaded must be an end-of-program
card (see “End-of-Program (EOP) Card” in Appendix I). In this case, the EOP card can
have words 1, 2, and 4 through 54 blank. The message END OF RELOAD is printed on
the console printer when a system reload is complete.

Monitor System Initial Load and System Reload 8-19

Card System Reload
operating procedure

8-20

{ Type 81 card
é_ = e _} Two blank cards

= | (Revised and/or added
_ﬂf’HlD cards programs and/or phases.)
n

(TE&RM card J

FORE card

W) System configuration deck

columns 73-75 1D: FP2

— I.Il

{Fold start program ‘
é_g——_——_ — —= |

/rResident monitor (ID: EMN -

(Load mode card

System loader—part 1
columns 73-75 1D: DP1
{with 7 card core image
loader ID: DCL)

Figure 84, Card system reload cards

The reload function can link to MODIF if a // XEQ MODIF control record follows directly
after the type 81 control card. This function can be performed together with any combi-
nation of the reload functions. The END OF RELOAD message is not printed, but the

// XEQ MODIF control record is printed on the principal printer. You perform a card
system reload procedure as shown in Figure 8-5.

Turn on system power

Move the console POWER
switch to ON.

Is
reload
information

Cartridge

Card System Reload
operating procedure

on cards or
cartridge?

Perform the “’Card
System Preload
Procedure’’ in this
chapter.

Ready the system cartridge to
be used

1. Place a system cartridge in a
disk drive.

2. Ready the disk drive (see
Chapter 7 for information
about readying disk drives).

Is the

principal 1132

printer 1132
or 1403?

Ready the 14Q3 Printer

1. Be sure the ENABLE/
DISABLE switch on the 1133
Multiplex Control Enclosure
is in the ENABLE position.

2. Press CARRIAGE RESTORE
on the printer.

3. Press START on the printer.

Ready the 1132 Printer

1. Move the printer MOTOR
switch to ON.

2. Press CARRIAGE RESTORE.

3. Press START.

A2

Figure 8-5 (Part 1 of 4). Card system reload procedure

Monitor System Initial Load and System Reload 8-21

Card System Reload
operating procedure

Ready the I1BM system deck

Place the load mode and
REQ (and CORE, if used)
cards that you punched in
the system deck where
indicated in Figure 8-4.

A3

Figure 8-5 (Part 2 of 4), Card system reload procedure

8-22

Card System Reload
operating procedure

Ready the 2501 Card Reader

1. Press NPRO,

2. Place the first of the reload
deck in the hopper, face
2501 down, 9-edge first.

Is input
from 1442,
Model 6 or 7,
or 25017

3. Press START (if both a
2501 and a 1442, Model
6 or 7, are present, make
sure the 1442 is not ready

Ready the 1442, Model 6 of 7 ‘1’:4"2')"“‘"9 STOP on the

1. Press NPRO.
2. Place the first of the reload
deck in the hopper, face

down, 9-edge first.

3. Press START.

il

Start the reading of the IBM
system deck

1. Set the console entry switches Drive O - all off
12 through 15 to indicate the Drive 1 — switch 15 on
physical drive number of the Drive 2 — switch 14 on
drive that contains the system *Drive 3 — switches 14 and 15 on
cartridge (switches O through *Drive 4 — switch 13 on
11 must be off). Drive 6 — switches 13 and 15 on

Drive 6 — switches 13 and 14 on
Drive 7 — switches 13, 14 and 15 on
*Drive 8 — switch 12 on
*Drive 9 — switches 12 and 15 on
Drive 10 — switches 12 and 14 on

*Not used on a 2311 Disk Storage
Drive, Modei 12
2. Turn the console mode
switch to RUN.

3. Press IMM STOP on the
console,

4, Press RESET on the console.

5. Press PROGRAM LOAD on
the console.

A4

Figure 8-5 (Part 3 of 4). Card system reload procedure

Monitor System Initial Load and System Reload 8-23

Card System Reload
operating procedure

8-24

Reading of the |1BM system deck
begins.

="

R |
|
|
|
-

Finish procedure

Continue placing IBM system
cards in the reader hopper until
all of the cards have been placed
in the hopper.

o

The system prints END OF |
RELOAD on the console |
printer when the reload is

complete. !

I |

Perform the “Coid Start
Procedure’’ in Chapter 7
to make the monitor
system operational agairi.

Figure 8-5 (Part 4 of 4). Card system reload procedure

if the system haits (halt codes displayed

in the ACCUMULATOR on the console
display panel), refer to Appendix B. If
the system prints a message on the con-
sole printer other than END OF RELOAD,
see Appendix A.

Card System Preload
operating procedure

CARD SYSTEM PRELOAD OPERATING PROCEDURE
The materials that you need to perform a card system preload procedure are:
e A preload (UCART) cartridge
o An IBM-supplied cold start card
® Blank cards; the dump of the monitor system requires approximately 5400 cards

The dump is accomplished by loading the Monitor II cold start card supplied with the
cartridge from IBM. The format of the preload cartridge is such that the same cold start
card that is used to make the monitor system operational is used to call the disk-to-card
dump program (UCART).

You perform a card system preload procedure as shown in Figure 8-6.

Monitor System Initial Load and System Reload 8-25

Card System Preload
operating procedure

8-26

Ready the preload cartridge

1. Place the preload cartridge
in a disk drive.

2. Ready the disk drive (see
Chapter 7 for information
about readying disk drives).

3. Set the console entry switches
12 through 15 to indicate the
physical drive number of the
drive that contains the pre-
load cartridge (switches 0
through 11 must be off).

Input\

Model 6 or 7,
or 25017

Drive 0 — all off
*Drive 1 — switch 15 on
Drive 2 — switch 14 on
Drive 3 — switches 14 and 15 on
Drive 4 — switch 13 on
*Drive 6 — switches 13 and 14 on

*1f your preload cartridge is on a
1316 Disk Pack, the DM2 system
is on either physical drive 1 or 6.

from 1442, S 2501

Ready the 1442, Model 6 or 7

1. Press NPRO.

2. Place the cold start card
followed by blank cards in
the hopper, face down,

9-edge first.

3. Press START.

Ready the 2501
1. Press NPRO.

2. Place the cold start card in the
hopper, face down, S-edge
first.

3. Press START (if both a 2501
and a 1442, Model 6 or 7,
are present, make sure the
1442 is not ready by pressing
STOP on the 1442).

Start cold start

1. Turn the console mode switch
to RUN.

2. Press IMM STOP on the
console.

3. Press RESET on the console.

4. Press PROGRAM LOAD on
the console.

Figure 8-6 (Part 1 of 2). Card system preload procedure

Card System Preload
operating procedure

Ready the 1442 for punching

1. Press NPRO.

§ystem Yes 2. Place blank cards in the
waits be?fore hopper, face down, 9-edge
punching first.
begins?
3. Press START on the 1442,
No
4, Press PROGRAM START on
the console.
|
| Punching of the monitor system |
" begins. |
b e e — _I. _— =
Finish the procedure
1. Continue adding cards to the If the system halts (halt codes displayed in
card punch hopper until the the ACCUMULATOR on the console display
system halts with hexadecimal panel) refer to Appendix B.
/03CC displayed in the
ACCUMULATOR on the
console display panel.
2. Remove the 9s cards (a 9 If a 1442, Model 5, punch is being used,
punched in columns 1 through the first card through the punch is blank.
80) that separate the object Throw this card away.
decks punched by this
procedure. The stand-alone
utility programs, sample pro-
grams, and the DISKN
subroutine for the 2311 Disk
Storage Drives are the last
decks punched during an
initial load; remove these.
Initial Reioad Return to "’Card System

load or
reload?

Initial load

Reload Procedure” in
this chapter.

Return to “Card System
Initial Load Procedure’
in this chapter.

Figure 8-6 (Part 2 of 2). Card system preload procedure

Monitor System Initial Load and System Recload

Paper Tape Initial Load
operating procedure

PAPER TAPE SYSTEM INITIAL LOAD OPERATING PROCEDURE

8-28

The materials that you need to perform a paper tape system initial load procedure are:
® An initialized disk cartridge

® DCIP (Disk Cartridge Initialization Program) tape, BP16

® [BM-supplied system tapes, BPO1-BP14

® Load mode control record tape and system configuration record tape that you punched

If the assembler or the FORTRAN compiler is not being loaded, the corresponding tapes
(BPOS5 or BP0O7) can be omitted; however, if they are not loaded, they cannot be loaded
during a system reload procedure. The assembler and the FORTRAN compiler can be
loaded during an initial load procedure only.

Load only those system library tapes (BP09 through BP14) that are required for your
system, Tapes BPO1-BP14 that are being used in the initial load must be arranged in the
order shown in Figure 8-7.

Tape BP15 is the cold start record that is used to make the monitor system operational
after the initial load is complete. Tapes BP16-BP20 are stand-alone utilities and are not
loaded as part of the monitor system. However, you use BP17 (PTUTL) to punch the
load mode and system configuration tapes that are used during initial load and BP16
(DCIP) to initialize the disk cartridge during initial load. Tapes BP21 and BP22 are sample
programs that you can execute under monitor system control after the initial load is
complete (see “Entering Jobs From the Paper Tape Reader” in Chapter 7).

You perform a paper tape system initial load procedure a shown in Figure 8-8.

Paper Tape Initial Load
operating procedure

Sample Programs

Console Printer
Core Dump Program

1132/1403 Printer
Core Dump Program

Paper Tape Repro-
ducing Program

PTUTI. Paper Tape
Utitlity Program

DCIP Disk Cartridge
Initialization Program

Stand-alone Utilities

Cold Start Paper Tape Record——-ﬁ“

Communication subroutines

Plotter subroutines

ILS, ISS, conversion,
and utility subroutines

Common LIBFs and CALLs
Extended precision LIBFs and CALLs

Standard LIBFs and CALLSs

End of system tapes control
record (Type 81 record)

Assembler

Supervisor, core load builder, system 1/Q
subroutines, core image loader, DUP part 2

FORTRAN Compiler
Disk Utility Program
Phase 1D (PHID) control record

System configuration record you punched

System loader, part 2, with resident
monitor and cold start

Load mode control record you punched

System loader, part 1

Figure 8-7. Paper tape system load tapes

Monitor System Initial Load and System Reload 8-29

Paper Tape Initial Load
operating procedure

8-30

Turn on system power

Move the POWER switch on the
consoie to ON.

Ready a cartridge for initialization

1. Place a cartridge in the single
disk drive (the cartridge can
be placed on any drive on the
system),

2. Move the DISK switch cn the
disk drive to ON. The drive
requires approximately 90
seconds to reach operating
speed (see Chapter 7 for
readying the 2310 Disk
Storage Drive).

Is cartridge
freshly initialized?

Initialize the cartridge
using the DCIP program
(see Chapter 9).

Is t?\
principal \ 1132

printer 1132
or 1403?
/

1403

Ready the 1403 Printer

1. Be sure the ENABLE/
DISABLE switch on the 1133
Multiplex Contro! Enclosure
is in the ENABLE position.

2. Press CARRIAGE RESTORE
on the printer.

3. Press START on the printer.

Ready the 1132 Printer

1. Move the printer MOTOR switch
to ON.

2. Press CARRIAGE RESTORE.

3. Press START.

A2

Figure 8-8 (Part 1 of 3). Paper tape system initial load procedure

Ready the IBM system tapes

Place the user-punched control
tapes in the |BM system tapes
where indicated in Figure 8-7.

Ready the paper tape reader

1. Insert BPO1, system loader,
Part 1, in the paper tape
reader.

Start the reading of the Monitor
System

1. Set the console entry switches
12 through 15 to indicate the
physical drive number of the
drive that contains the
initialized cartridge (switches
0 through 11 must be off}.

2. Turn the console mode
switch to RUN.

3. Press IMM STOP on the
console.

4. Press RESET on the console.

5. Press PROGRAM LOAD on
the console.

6. Press PROGRAM START to
finish the reading of Part 1 of
the system loader.

7. Press PROGRAM START
again.

8. Place the user-punched load
mode control record tape in
the reader.

9. Press PROGRAM START.

A3

Paper Tape Initial Load
operating procedure

When loading tapes, position under the
read starwheels any of the delete codes
that follow the program ID in the tape

leader.

Drive 0 — all off

Drive 1 — switch 15 on

Drive 2 — switch 14 on

Drive 3 — switches 14 and 15 on
Drive 4 — switch 13 on

The core image loader is read into core

storage from BPO1, and the system waits

with /006C displayed in the ACCUMU-

LATOR.

When reading of BPO1 is complete, the
system waits with /00C9 displayed in

the ACCUMULATOR.

The system waits again with /3000
displayed in the ACCUMULATOR.

The system waits with /3000 in the
ACCUMULATOR when reading of
the tape is complete.

Figure 8-8 (Part 2 of 3). Paper tape system initial load procedure

Monitor System Initial Load and System Reload

8-31

.
.

Paper Tape Initial Load
operating procedure

8-32

A3

Continue the reading of the
Monitor System

10. Insert BP0O2, system loader,
Part 2, in the paper tape

reader.

11. Press PROGRAM START.

12. Insert the user-punched
system configuration tape
in the reader.

13. Press PROGRAM START.

Load tapes BP(G3 through BP14
1. Insert the next higher
numbered tape in the paper

tape reader.

2. Press PROGRAM START.

Was
last tap»
BP14?

Yes

Perform the ’Cold Start
Procedure’’ in Chapter 7
to make the monitor
system operational.

The system waits with /3000 displayed
in the ACCUMULATOR when reading
of BP02 is complete.

The system waits with /3000 displayed
in the ACCUMULATOR when reading
of the user-punched tape is complets.

The system waits with /3000 displayed
in the ACCUMULATOR when reading
of each tape is complete.

Figure 8-8 (Part 3 of 3). Paper tape system initial load procedure

Paper Tape System Reload
operating procedure

PAPER TAPE SYSTEM RELOAD OPERATING PROCEDURE
The materials that you need to perform a paper tape system reload procedure are:
® A system cartridge
o Cold start paper tape record, BP15
® System tapes
® Ioad mode control record tape and system configuration record tape that you punched

The paper tapes to be used in the reload must be arranged in the order shown in Figure 8-9.
The tapes for the system programs and/or phases that are being added or expanded must
be arranged in ascending tape number order. Also, all programs being loaded must have
phase ID numbers within the limits of the IDs punched in the PHID tape, BPO3.

Note. If the assembler and/or FORTRAN compiler have been deleted or were not loaded
during an initial load, they cannot be loaded during a system reload procedure. An initial
load must be performed to load these 2 programs onto a cartridge.

You perform a paper tape system reload procedure as shown in Figure 8-10.

BPO3

End-of-system tapes
control record (type 81)
Revised programs

or program phases

Phase ID (PHID)
control record

System configuration records
that you punched

System loader, part 2, with
resident monitor and cold start

e

Load mode control record that you punched
System loader, part 1

Cold start paper tape record

Figure 8-9. Paper tape system reload tapes

Monitor System Initial Load and System Reload 8-33

Paper Tape System Reload
operating procedure

8-34

Turn on system power

Move the POWER switch on
the console to ON.

Ready the system cartridgo to
be used

1. Place a system cartridge in
the single disk drive (the
cartridge can be placed on
any drive on the system).

2. Move the DISK switch on
the disk drive to ON. The
drive requires approximately
90 seconds to reach oparating
speed (see Chapter 7 for
readying the 2310 Disk
Storage Drive).

Is the \\
principal 1132

printer 1132
or 1403?

Ready the 1132 Printer

1. Move the printer MOTOR
switch to ON.

2. Press CARRIAGE RESTORE.

3. Press START.

Ready the 1403 Printer

1. Be sure the ENABLE/
DISABLE switch on the 1133
Multiptex Control Enciosure
is in the ENABLE position.

2. Press CARRIAGE RESTORE
on the printer.

3. Press START on the printer.

A2

Figure 8-10 (Part 1 of 4). Paper tape system reload procedure

Perform a cold start

1. Insert tape BP15, cold start
paper tape record, in the
paper tape reader.

2. Set the console entry switches
12 through 15 to indicate the
physical drive number of the
drive that contains the system
cartridge (switches O through
11 must be off).

3. Turn the console mode switch
to RUN.

4, Press IMM STOP on the
console,

5. Press RESET on the console.

6. Press PROGRAM LOAD on
the console.

Ready the 1BM system tapes

Place the load mode and system
configuration control record tapes
that you punched between the
IBM reload tapes where indicated
in Figure 8-9.

A3

Paper Tape System Reload
operating procedure

A cold start is recommended prior to a
reload operation in order to restore certain

parameters in DCOM on the system
cartridge.

Drive 0 — all off

Drive 1 — switch 15 on

Drive 2 — switch 14 on

Drive 3 — switches 14 and 15 on
Drive 4 — switch 13 on

The system waits with /3000 in the
ACCUMULATOR when reading of
the cold start record is complete.

Figure 8-10 (Part 2 of 4). Paper tape system reload procedure
Monitor System Initial Load and System Reload

8-35

Paper Tape System Reload
operating procedure

Start the reading of the reload
tapes

1. Insert tape BPO1, systein
loader, Part 1, in the paper
tape reader.

2. Press PROGRAM START on The core image loader is read into core
the console. storage from BPO1, and the system waits
with /006C displayed in the ACCUMU-
LATOR.
3. Press PROGRAM START When reading of BPO1 is complete, the
again to finish the reading system waits with /00C9 displayed in
of Part 1 of the system the ACCUMULATOR.
loader.
4. Press PROGRAM START The system waits again with /3000
again. displayed in the ACCUMULATOR.

5. Place the user-punched load
mode control record tape in
the reader.

6. Press PROGRAM START. The system waits with /3000 in the
ACCUMULATOR when reading of
the tape is complete.

7. Insert tape BP0O2, system
loader, Part 2, in the paper
tape reader.

8. Press PROGRAM START. The system waits with /3000 in the
ACCUMULATOR when reading of
BP02 is complete.

Configure system

1. Insert the user-punched
system configuration tape
in the reader.

2. Press PROGRAM START. The system waits with /3000 in the
ACCUMULATOR when reading of
the system configuration tape is
complete.

A4

Figure 8-10 (Part 3 of 4). Paper tape system reload procedure

8-36

Paper Tape System Reload
operating procedure

A4

Load tapes BP03, revised
programs or phases, and BP08

1. Insert the next tape.

The system waits with /3000 in the
ACCUMULATOR when reading of
each tape is complete.

2. Press PROGRAM START.

Was
last tape
BPO8?

No

Perform the ’Cold Start
Procedure’’ in Chapter 7
to make the monitor
system operational.

Figure 8-10 (Part 4 of 4). Paper tape system reload procedure

Monitor System Initial Load and System Reload 8-37

8-38

Stand-alone Utilities
console printer core dump

Chapter 9. Stand-alone Utility Programs

The stand-alone utility programs are each self-loading and complete with subroutines.
These programs are separate from the monitor system library and enable you to perform
operations without monitor system control. The stand-alone utility programs are:

e Console Printer Core Dump

® Printer Core Dump

® Disk Cartridge Initialization Program (DCIP)

e Paper Tape Reproducing

® Paper Tape Utility (PTUTL)

The first 3 of these are available in cards and paper tapes; the last 2 on paper tape only.
This chapter:

1. Describes the general functions of each of the stand-alone utility programs.
2. Presents sample operating procedures for using these programs.

You may use these operating procedures as they are presented, or you may modity them
to meet the needs of your computing system. For those who are already familiar with
similar procedures, the headings in each block can be used as reminders as you perform
the procedure. For those who need more information, detailed steps for performing these
procedures are provided. Not all steps of each procedure need to be done every time the
procedure is used; do only those steps that are necessary.

-Appendix B lists the halt codes that are displayed in the ACCUMULATOR on the console

display panel if errors occur during these procedures.

CONSOLE PRINTER CORE DUMP

dump format

Selected portions of core storage are printed on the console printer when you use the
Console Printer Core Dump Program.

Each core location is dumped as a 4-digit hexadecimal word with a space separating each
word. The first word dumped is from the starting address that you specify through the
console entry switches.

The materials that you need to use the Stand-alone Console Printer Core Dump Program
are:

® Console Printer Core Dump Program card
-or-
® Console Printer Core Dump Program paper tape, BP20

Figure 9-1 is the operating procedure for the stand-alone Console Printer Core Dump
Program.

Stand-alone Utility Programs 9-1

Stand-alone Utilities
console printer core dump

9-2

Ready the console
1. Press IMM STOP.
2. Press RESET.

3. Turn the conscle mode
switch to RUN.

4. Set the margins on the
console printer.

5. Set the address (in binary)
of the starting core location
in the console entry switches.

Is
the program
on a card or
paper tape?

Card

o~

Is input
from a 1442,
Model 6 or 7,

ora 2&

1442

Ready the 1442, Model 6 or 7

1. Press NPRO.

2. Place the console printer core
dump program card in the
hopper, face down, 9-ecige

first.

3. Press START.

2501

Set the number of print positions to a
multiple of 5 so each line will be printed
in the same format.

Ready the paper tape reader

1. Insert tape BP20, console
printer core dump, in the
paper tape reader.

2. Position under the read star-
wheels one of the delete codes
beyond the program ID.

Ready the 2501 card reader
1. Press NPRO.

2. Place the console printer core
dump program card in the
hopper, face down, 9-edge
first.

3. Press START (if both a 2501
and a 1442, Model 6 or 7, are
present, make sure the 1442
is not ready by pressing STOP
on the 1442).

A2

Figure 9-1 (Part 1 of 2). Consols printer core dump operating procedure

Start the dump program

Press PROGRAM LOAD on the
console keyboard.

Do you
want to interrupt

Stand-alone Utilities
console printer core dump

Yes

the dump
program?

No

2. Press PROGRAM START on

Temporarily interrupt the dump

1. Press IMM STOP on the
console keyboard.

the console keyboard to
continue

r——=—"=—"==-771

| The dump continues until |
| complete. |

|

Perform a “Cold Start
Procedure’’ to continue
monitor system opera-
tions (see Chapter 7).

Figure 9-1 (Part 2 of 2). Console printer core dump operating procedure

Stand-alone Utility Programs 9-3

Stand-alone Utilities

Printer Core Dump

PRINTER CORE DUMP PROGRAM

9-4

dump format

This program dumps core storage (in hexadecimal) beginning at location $ZEND on
either the 1403 Printer or the 1132 Printer. The printer selected is the one that is ready;
when both are ready, the 1403 is selected.

Each line begins with a 4-digit hexadecimal address that is followed by sixteen 4-digit
hexadecimal words. A space separates the address and each word in the printed line. An
additional space is inserted between each group of 4 words.

To decrease dump time, the program does not print consecutive duplicate lines. Before
printing a line, the program compares the next 16 words of core with those just printed.
If they are identical, the program goes on to the next 16 words of core. The program con-
tinues comparing lines until the first line not identical to the last line printed is found. The
printer then spaces a line and the 16 words of the unidentical line are printed. The address
printed at the beginning of this line is that of the first word of the unidentical line.

The materials that you need to use the Stand-alone Printer Core Dump Program are:

® Printer Core Dump Program card deck, SDMP punched in column 73 through 76
-or-

® Printer Core Dump Program paper tape, BP19

Figure 9-2 is the operating procedure for the stand-alone Printer Core Dump Program.

Stand-alone Utilities
printer core dump

Ready the console
1. Press IMM STOP.
2. Press RESET.

3. Turn the console mode
switch to RUN.

Ready the printer
1. Press CARRIAGE RESTORE.

2. Press START.

Ready the paper tape reader

1. Insert tape BP19, printer core
Tape dump program, in the paper
tape reader.

Is
the program on
cards or paper
tape?

2. Position under the read star-
wheels one of the delete codes
beyond the program ID.

B2

Figure 9-2 (Part 1 of 3). Printer Core Dump Program operating procedure

Stand-alone Utility Programs 9-5

Stand-alone Utilities
Printer Core Dump

Ready the 2501 card reader

1. Press NPRO.

2. Place the printer core dump
Is input program card deck in the
from a 1442, 2501 hopper, face down, 9-edge

Model 6 or 7, first.
or a 25017

3. Press START (if both a 2501
and a 1442, Model 6 or 7, are
present, make sure the 1442 is
not ready by pressing STOP
on the 1442).

Ready the 1442, Mode! 6 or 7

1. Press NPRO.

2. Place the printer core dump
program card deck in ths
hopper, face down, 9-edge
first.

3. Press START.

) —
|/

Start the dump program

Press PROGRAM LOAD cn
the console keyboard.

A3

Figure 9-2 (Part 2 of 3). Printer Core Dump Program operating procedure

9-6

Stand-alone Utilities
printer core dump

Is the
printer an 1132
or 1403?

1132

Temporarily interrupt the dump
(cannot be done when an 1132
printer is used)

Do you want
to interrupt the dump
program?

Yes 1. Press IMM STOP on the
console keyboard.

2. Press PROGRAM START on
the console to continue.

No

Y
J

————d-———-—ﬂ

i The dump continues until |
| complete. |

I —_——_——

Perform a ‘’Cold Start
Procedure’’ to continue
monitor system operations
(see Chapter 7).

: Figure 9-2 (Part 3 of 3). Printer Core Dump Program operating procedure

Stand-alone Utility Programs 9-7

Stand-alone Utilities
DCIP

DISK CARTRIDGE INITIALIZATION PROGRAM (DCIP)

9.8

The Disk Cartridge Initialization Program (DCIP) is composed of:
® A disk initialization subroutine

® A disk copy subroutine

® A disk dump subroutine

® A disk patch subroutine

® A disk analysis subroutine

® A disk compare subroutine

[nitialization of a cartridge is required before the monitor system can be loaded onto the
cartridge. If sector @IDAD and/or sector @DCOM are destroyed on a disk, disk initializa-
tion is the only DCIP subroutine that can be performed on the disk.

The following text describes the functions of DCIP and provides sample operating proce-
dures for using all of the functions of DCIP.

Disk Initialization Subroutine

This subroutine prepares a new disk cartridge for use and makes an old cartridge available
to be used for other purposes. The initialization subroutine:

® Tests sectors to determine which, if any, are defective and fills in the defective cylinder
table accordingly.

Writes a sector address on every sector, including defective sectors.
Establishes a file-protected area for the disk cartridge.
Places an ID on the disk cartridge.

Establishes a disk communications area (sector @DCOM), a location equivalence table
(LET), and a core image buffer (CIB).

The monitor system disk I/ subroutines operate with up to 3 defective cylinders on a
cartridge. That is, 3 cylinders that contain one or more defective sectors. A cartridge
cannot be initialized if cylinder O is defective, or if a sector address cannot be written on
every sector.

The contents of sectors @IDAD, @DCOM, and @RIAD in cylinder O are established during
initialization (see Chapter 2 for a general description of the contents of these sectors). A
message and the program that prints it are written in sector @IDAD. The message is:

THIS IS A NONSYSTEM CARTRIDGE

This message is printed when an attempt is made to cold start a nonsvstem cartridge that
is initialized with DCIP.

Disk Copy Subroutine

This subroutine copies the contents from one cartridge (the source cartridge) onto another
cartridge (the object cartridge). Before the copy is performed, the subroutine checks to
ensure that the cartridge being copied and the object cartridge have been initialized. The
cartridge 1D, copy code, and defective cylinder data are not copied from the source
cartridge.

Stand-alone Utilities
ocip
operating procedures

Disk Dump. Subroutine
This subroutine dumps sectors of a cartridge that you select on the principal printer.

Each sector is preceded by a 3-word header and is printed in 20 lines; sixteen 4-digit
hexadecimal words per line. Two sectors are printed on each page.

The first digit of the first header word is the drive number; the remaining 3 digits are the
physical sector address of the sector being dumped. The second header word is the actual
address of the sector being dumped. The third word is the logical sector address, taking
into account any defective cylinders. If you dump a sector that is in a defective cylinder,
the third word of the header contains DEFC,

Disk Patch Subroutine

This subroutine allows you to change the contents, word-by-word, of selected disk sectors.
The contents of the sector being modified are printed, on the principal printer, both before
and after the changes are made.

A one-word buffer is used to store the contents of a specified word as you are modifying
it. Six special characters are used to control the use of this buffer. These characters and
their functions are listed in the disk patch operating procedure in Figure 9-7 under
“DCIP Operating Procedures” in this chapter.

Disk Analysis Subroutine
This subroutine reads each sector of a selected cartridge 16 times.

If a read error occurs, the address of the sector being read is printed. You can then dump
the contents of the sector in error if you wish.

If a sector address is incorrect, the incorrect address is printed, and the correct address is
then written on the sector. :

Disk Compare Subroutine

This subroutine of DCIP reads the corresponding sectors of 2 cartridges and compares the
contents word by word. The addresses from both cartridges of any sectors that do not
compare are printed.

DCIP Operating Procedures

The operating procedures in this section include a program load procedure (Figure 9-3)
for DCIP and procedures (Figures 9-4 through 9-9) for performing the 6 functions of
DCIP.

The foilowing general comments should be kept in mind while using any of the DCIP
functions®

1. If a disk drive is not ready, the system halts with /S0XO displayed in the ACCUMU-
LATOR on the console display panel; X is the number of the physical drive that is
not ready.

2. If your system has 2 card readers, ready only the reader that you use for cold start.

3. The messages printed during DCIP functions refer to the console entry switches as
bit switches.

4, All console entry switch settings that you enter are printed on the console printer as
4-digit hexadecimal numbers. -

5. If you turn on an invalid console entry switch during any of the DCIP functions,
ENTRY ERR .. .RETRY is printed. To continue, turn off the incorrect switch,
turn on the correct one, and press PROGRAM START,

Stand-alone Utility Programs 9-9

Stand-alone Utilities
DCIP operating procedures

6. A DCIP function can be stopped at any time by pressing INT REQ on the console
keyboard. The system prints the DCIP option message. This gives you the choice
of repeating the current function or selecting a new one. Following the option
message, you can change disk cartridges or packs, if necessary, before continuing.
If you wish to discontinue using DCIP at this point, perform a cold start procedure
(see Chapter 7) to make the monitor system operational.

Note. If you press INT REQ while a disk is being copied or initialized, the results
of the use of the object cartridge (in the copy operation) or the partially initialized
cartridge are unpredictable.

The materials that you need to perform the function of DCIP are the IBM-supplied
_ DCIP card deck (DCIP punched in columns 73 through 76) or paper tape (BP16) and any
of the following depending on the function you are using:

® An uninitialized disk for disk initialization

e A system or nonsystem cartridge and an initialized disk for the copy function. The
copy function is usable only if your system can contain more than one disk at a time.
A system or nonsystem cartridge for the dump function

A system or nonsystem cartridge for the disk patch function

A system or nonsystem cartridge for disk analysis

Two system or nonsystern cartridges whose contents are supposed to be the same for
the disk compare function. The compare function is usable only if your system can
contain more than one disk at a time.

Have all of the cartridges you are zoing to use ready before you load the DCIP program as
follows.

9-10

Stand-alone Utilities

load DCIP

Ready the console

1. Press IMM STOP.

2. Press RESET.

3. Turn the load mode switch

to RUN.

Ready the printer

1. Press CARRIAGE RESTORE. Note. If the 1403 or 1132 Printer is not
ready when you load DCIP, or if your

2. Press START. system does not have a 1403 or 1132, the
console printer is the principal print device.

Ready the disk drives to be used
during the DCIP functions

1. Place the disk cartridges or packs
to be used in the disk drives.

2. Turn the disk drives on (see
Chapter 7 for more information
about readying disk drives).

A2

Figure 9-3 (Part 1 of 4). Load DCIP operating procedure

Stand-alone Utility Programs 9-11

Stand-alone Utilities
load DCIP

9-12

~
Is DCIP Tape
on cards or \
paper tape? /

Is input\
from a 1442, \ 2501

Ready the paper tape reader

1. Insert tape BP16, Disk
Cartridge Initialization
Program, in the paper tape
reader.

2. Position under-the read
starwheel one of the
delete codes beyond the
program ID.

Model 6 or 7,
or a 26017

Ready the 1442, Modal 6 or 7

1. Press NPRO.

2. Place the Disk Cartridge
Initialization Program card
deck in the hopper, face
down, 9-edge first.

3. Press START.

Ready the 2501 Card Reader
1. Press NPRO.

2. Place the Disk Cartridge
Initialization Program card
deck in the hopper, face
down, 9-edge first.

3. Press START (if both a 2501
and a 1442, Model 6 or 7, are
present, make sure the 1442 is
not ready by pressing STOP
on the 1442),

A

A3

Figure 9-3 (Part 2 of 4). Load DCIP operating procedure

Stand-alone Utilities
load DCIP

Start the loading of DCIP

Press PROGRAM LOAD on the
console.

Continue the reading of tape BP16

1. Press PROGRAM START on
Yes the console.

Does the system
halt with /006C in the
ACCUMULATOR?

2. Press PROGRAM START again
when the system waits with
/00C9 in the ACCUMULATOR.

No

DCIP is read into core storage
and the system prints:

-

]

|

| TurNoON:

| SWOTOINITLZ

| SW1TOCOPY
SW2 TO DUMP

| sw3TOPATCH

| SW4TOANALYZE

| SwsTOCMP

L _SW6TO INITLZ NEW DISK

S

Figure 9-3 (Part 3 of 4). Load DCIP operating procedure

Stand-alone Utility Programs 9-13

Stand-alone Utilities

load DCIP

9-14

Salect the DCIP function to be
performed

1. Turn off all console entry
switches.

2. Turn on the console entry
switch that corresponds to
the DCIP function you are
doing.

3. Press PROGRAM START.

If switch O or 6 is on

I1f switch 1 is on

Figure 9-4

1f switch 2 is on

Figure 9-5

If switch 3 is on

Figure 9-6

If switch 4 is on

Figure 9-7

If switch 5 is on

Figure 9-8

Figure 9-3 (Part 4 of 4). Load DCIP operating procedure

Figure 9-9

VoV oV VNV

ENTER DR NO. (BITS 12-15)]
I_ is printed on the console printer.

____]. —_——d

Initialize a cartridge
1. Turn off console entry switch 0.

2. Enter through console entry
switches 12 through 15 the
physical drive number (in binary)
of the drive that contains the
cartridge being initialized.

3. Press PROGRAM START
4. Turn off all console entry switches.

5. If the pack has not been previously
initialized, be sure that the access
arm is at sector 0. On a 2311 car-
tridge, turn off the disk drive and *
turn it on again before initializing
each disk surface.

6. Enter through the console entry
switches the cartridge 1D (binary
representation).

7. Press PROGRAM START.

Are switches

correct for the No

Stand-alone Utilities
DCIP initialize procedure

ENTER CART ID is printed.

A valid cartridge |D is a hexadecimal
number between /0001 and /7FFF.

The cartridge |D you entered is
printed, and the system waits
with the cartridge ID in hexa-
decimal displayed in the
ACCUMULATOR.

Interrupt the initialize function
to reenter the physical drive

physical drive number
and cartridge ID?

Start initialization

Press PROGRAM START again.

N P

r The cartridge is initialized. -;
| |
I I
| |

The entire surface is cleared,
disk addresses are written, and
three distinct patterns are
written on each sector and
read back for testing purposes.

number and the cartridge ID.

Press INT REQ.

N

r The DCIP option message is
I printed.
] TURN ON:
| SWO TO INITLZ

SW1 TO COPY
| SW2 TO DUMP
| SW3 TO PATCH

SW4 TO ANALYZE
| swsTocwmp

SW6 TO INITLZ NEW DISK

LA L SR LRl

Restart the initialize function

1. Turn off all console entry
switches.

2. Turn on switch 0.

3. Press PROGRAM START.

Figure 9-4 (Part 1 of 5). Operating procedure for DCIP initialize function

Stand-alone Utility Programs 9-15

Stand-alone Utilities
DCIP initialize procedure

Any of the following messages
are printed:

NO DEF CYLS
(if all of the cartridge is usable)
or

DEF CYLS:
XXXX ...

{if defective cylinders are found)

and/or

(if more than 3 defective
cylinders are printed in the
previous message. This message
is also printed if cylinder Q is
defective, or if sector addresses
cannot be written on every
sector.)

After any of the previous
messages are printed, this
message is printed:

TURN ON SW0 FOR MORE
TESTING

L — =

— e — e —— . o — —— —— —— — . — —— — — =]

|
|
|
|
|
|
|
|
|
| DEFCART
|
|
|
|
|
|
|
|
|

!
!
!
I
L

Do you
want to do more
testing?

N‘\\\\kNo

A4

\

Figure 9-4 (Part 2 of 5). Operating procedure for DCIP initialize function

9-16

Stand-alone Utilities
DCIP initialize procedure

Continue testing the cartridge

1. Turn off all console entry
switches.

2. Turn on switch 0.

3. Press PROGRAM START. ENTER REPEAT CNT: (BITS 11-15)

is printed.
4. Enter through console entry A maximum of 31 (decimal) can be
switches 11 through 15 the entered.

number (in binary) of times
you want the cartridge tested.
(This provides an additional
opportunity to find marginal
cylinders and reduce chances
of disk errors later on.)

6. Press PROGRAM START.

- - = L

Initialization is repeated. Each
cylinder is tested the number of
times you specified. |

1

—_—_—— g — — =J

Figure 9-4 (Part 3 of §). Operating procedure for DCIP initialize function

Stand-alone Utility Programs 9-17

Stand-alone Utilities
DCIP initialize procedure

9-18

Continue or finish DCIP
operations

1. Turn off all console entry
switches.

2. Press PROGRAM START.

r———

The DCIP option message is
printed.

| TuRNON:
| SwoTOINTLZ
SW1TO COPY
| Sw270DumP
SW3 TO PATCH
| swatoanaLYzE
| SwsTocwp
SW6 TO INITLZ NEW DISK

S

e

Do you

No

Note. If your system has 2311
Disk Storage Drives, be sure all
disks in a disk pack are initialized.

Do one of the following:

Perform a "'Cold Start
Procedure’’ {see Chapter

want to continue
DCIP?

©

Figure 9-4 (Part 4 of 5). Operating procedure for DCIP initialize function

7) from-a-system cartridge.

Perform an initial system
load on the cartridge just
initialized (see Chapter 8).

Stand-alone Utilities
DCIP initialize procedure

Select the DCIP function to be
performed

1. Change cartridges or packs
and ready the disk drives,
if necessary.

2. Turn off all console entry
switches.

3. Turn on the console entry
switch that corresponds to -
the DCIP function you are
doing.

4. Press PROGRAM START.

If switch O or 6 is on

Figure 9-4
If switch 1 is on

Figure-9-56
If switch 2 is on

Figure 9-6
Hf switch 3 is on

Figure 9-7
If switch 4 is on

Figure 9-8
If swi i

switch 5 is on Figure 9.9 >

Figure 9-4.(Part § of 5). Operating procedure for DCIP initialize function

Stand-alone Utility Programs 9-19

Stand-alone Utilities
DCIP copy procedure

—— - — e

-
ENTER: I
SOURCE DR (BITS 0-3) |
|

_l

OBJECT DR (BITS 12-15)
is printed on the console printer.

|
|
I
L — = — —

Copy a cartridge

1. Turn off console entry switch 1.

2. Enter through console entry
switches O through 3 the physical
drive number (in binary) of the
drive that contains the cartridge
being copied (source drive).

3. Enter through console switches
12 through 15 the physicat drive
number {in binary) of the drive
that contains the cartridge onto
which information is being copied
(object drive).

4, Press PROGRAM START.

Are switches

correct for the \No
physical drive numbers

The source and object cartridge 1D's
are printed as follows:

SRC ID = XXXX
OBJID = YYYY

A system wait follows.

Interrupt the copy function to
reenter the physical drive numbers

for the source
and object
drives?

Start the copy function

Press PROGRAM START again.

A2

for the source and object drives.

Press INT REQ.

A3

Figure 9-5 (Part 1 of 8). Operating procedure for DCIP copy function

Stand-alone Utilities
DCIP copy procedure

A2

The DCIP option message is
printed.

TURN ON:

SWO TO INITLZ

SW1 TO COPY

SW2 TO DUMP

SW3 TO PATCH

SW4 TO ANALYZE

SW5 TO CMP

SW6 TO INITLZ NEW DISK

Restart the copy function

1. Turn off all console entry
switches.

2. Turn on switch 1.

3. Press PROGRAM START.

A1l

F———— = — =

SOURCE or OBJECT is printed
in place of X.

The DCIP option message is
printed.

I
I
I
Is Yes | TuRNoON:
X CART NOT INITLZED l SWO TO INITLZ
I
I
I

printed? SW1 TO COPY
SW2 TO DUMP
SW3 TO PATCH
SW4 TO ANALYZE
SW5 TO CMP

L_SWG TO INITLZ NEW DISK _'

P ——

A4

Figure 9-5 (Part 2 of 8). Operating procedure for DCIP copy function

Stand-alone Utility Programs 9-21

Stand-alone Utilities
DCIP copy procedure

—————— — =
The object cartridge is a DM2 -I

UCART master cartridge.

|
I The DCIP option message is
printed.

is
OBJ CART IS UCART MSTR
printed?

//

No

TURN ON:
SWO TO INITLZ

| SW1 TO COPY
SW2 TO DUMP

| SW3 TO PATCH
SW4 TO ANALYZE

| SW5 TO CMP

L SW6 TO INITLZ NEW DISK _

Yes

OBJ CART NOT Yes The object cartridge is a DM2
FRESH LY INITLZED system cartrdige '
printed? L_ __l
o
Do you
want to continue with
copy or initialize
the cartridge?
Continue
Contiriue the copy function
Press PROGRAM START.
AS

Figure 9-5 (Part 3 of 8). Operating procedure for DCIP copy function

B3

Stand-alone Utilities
DCIP copy procedure

r—— === ="

| Copying of the specified l Int(?rr\'lp.t.tl:.e cc?py function to
l cartridge begins. I gf:;: l';'_:_';';?)t'on

L - — —

THe DCIP option message is —I
printed.

| |

' Tumn ON: |

| swoTOINITLZ |
SW1 TO COPY

| sw2To oume I

| swaToPATCH |
SW4 TO ANALYZE

| swsTocwmp |

| SWETOINITLZNEWDISK |

Initialize the cartridge

1. Turn off all console entry
switches,

2. Turn on switch 0.

3. Press PROGRAM START.

Figure 9-4 >

A6

Figure 9-5 (Part 4 of 8). Operating procedure for DCIP copy function

Stand-alone Utility Programs 9-23

Stand-alone Utilities
DCIP copy procedure

9-24

-—-——

-

eoin

The contents (less defective
cylinder data and the cartridge
ID) of the source cartridge are
copied onto the object cartridge.

Word 5 of sector @ DAD of the

by one when written on the
object cartridge. Because of this,
the copy number of the object
cartridge is-always one greater
than the copy number of the

source cartridge.

source cartridge is incremented I

—_—— e

Is

A7

DISK ERR...TURN
ON SWO0 TO RETRY

Drinte‘d?/

No

===

A disk read, write, or seek
error has occurred.

/5003 is displayed in the
ACCUMULATOR

/

I
|
I
The ACCUMULATOR I
EXTENSION contains /XYYY, l
where X is the drive code, and

YYY is the address of the sector l
in error. ._l

- —————

Figure 9-5 (Part 5 of 8). Operating procedure for DCIP copy function

Do you want
the sector in error
rewritten or
reread?

Stand-alone Utilities

DCIP copy procedure

Have sector in error rewritten
or reread

1. Turn off all console entry
switches.

2. Turn on console entry switch 0.

3. Press PROGRAM START.

—r————l————

L —— - -

The sector in error is rewritten
or reread and the copy function
continued.

-

Continue copy function

1. Turn off all console entry
switches.

2. Press PROGRAM START.

-—---

L —— —

The read or write error is ignored,
and the contents of the object
cartridge refiect the last attempt
to copy the sector in error.

Figure 9-5 (Part 6 of 8). Operating procedure for DCIP copy function

Stand-alone Utility Programs

—
I
I
I

J

9-25

Stand-alone Utilities
DCIP copy procedure

9-26

r————+——=

The copy function is completed
and the DCIP option message is
printed.

I |
l |
| TURNON: I
SWO TO INITLZ
| swiTocopy |
| sw270Duwmp |
SW3 TO PATCH
| swatoANALYZE |
| swsTocm |

SW6 TO INITLZ NEW DISK

L - - -

Do you\\ No
want to continue >

DCiP?

Perform a “’Cold Start
Procedure’’ (see Chapter
7) to make the system
operational.

Figure 9-5 (Part 7 of 8). Operating procedure for DCIP copy function

Stand-alone Utilities
DCIP copy procedure

Select the DCIP function to be
performed

1. Change cartridges or packs
and ready the disk drives,
if necessary.

2. Turn off all console entry
switches.

3. Turn on the console entry
switch that corresponds to
the DCIP function you are
doing.

4. Press PROGRAM START.

If switch O or 6 is on

Figure 9-4

If switch 1 is on
Figure 9-6

I1f switch 2 is on
Figure 9-6

If switch 3 is on
Figure 9-7

If switch 4 is on
- Figure 9-8

if switch 5 is on
. Figure 99

Figure 9-5 (Part 8 of 8). Operating procedure for DCIP copy function

Stand-alone Utility Programs 9-27

Stand-alone Utilities

DCIP dump procedure

9-28

ro-o o= 1

'ENTER. ..PHYS DR NO. (BITS 0-—3:|
SECTR ADDR (BITS 4—15|
|is printed on the console printer |

I

Dump specified sectors of a disk
cartridge

1. Turn off console entry switch 2.

2. Enter through console entry
switches O through 3 the
physical drive number (in
binary) of the drive that
contains the cartridge from
which data is being dumped.

3. Enter through the console entry
switches 4 through 15 the
physical address of the first
sector being dumped.

4, Press PROGRAM START,

5, Enter through the consols entry
switches the number of
consecutive sectors to be
dumped.

6. Press PROGRAM START.

—_— e e — -y

1
Dumping of the cartridge begins. |

—_—— . —— — -

=1

The sector address is a right-adjusted
hexadecimal number, maximum /0657.
(A logical sector address, obtained from
LET or FLET, must be adjusted for
defective cylinders.)

ENTER NC. OF SCTRS TO DUMP is
printed.

The number is a right-adjusted hexadecimal
value; the maximum value depends on the
starting address entered in Step 2.

Figure 9-6 (Part 1 of 4). Operating procedure for DCIP dump function

Stand-alone Utilities
DCIP dump procedure

Is
DISK ERR...TURN
ON SW O TO RETRY
printed?

A disk read error has occurred. |

e e e e —— —

No

Do you want
the sector in error
reread?

Have sector in error reread

1. Turn off all console entry
switches.

2. Turn on switch 0.

3. Press PROGRAM START.

| The sector in error is reread. |

|
e —_ — — R —

Continue dump function

1. Turn off all console entry

switches.

2. Press PROGRAM START.

A3 B3

Figure 9-6 (Part 2 of 4). Operating procedure for DCIP dump function

Stand-alone Utility Programs 9-29

Stand-alone Utilities
DCIP dump procedure

A3

The read error is ignoréd. The

| sector in error is printed as it |
was last read, and the dump |
' continues,

L e e - — =

'_____JL. - ——

The dump continues until all the
specified sectors are dumped.

The DCIP option message is
printed.

SWO TO INITLZ

SW1 TO COPY

SW2 TO DUMP

SW3 TO PATCH

SW4 TO ANALYZE

SW5 TO CMP

L SWeTOINITLZNEWDISK __ _|

|
|
|
TURN ON: |
|
|
|

Perform a *‘Cold Start

Do you No .
want to continue Procedure’’ (see Chapter
DCIP? / 7) to rpake the system
operational.

Figure 9-6 (Part 3 of 4). Operating procedure for DCIP dump function

9-30

Stand-alone Utilities
DCIP dump procedure

Select the DCIP function to be
performed

1. Change cartridges or packs
and ready the disk drives,
J if necessary.

2. Turn off all console entry
switches.

3. Turn on the console entry
switch that corresponds to
the DCIP function you are
doing.

4. Press PROGRAM START.

If switch O or 6 is on

Figure 9-4
If switch 1 is on

Figure 9-5
if switch 2 is on

Figure 9-6
If switch 3 is on

Figure 9-7
If switch 4 is on

Figure 9-8
If switch 5 is on

Figure 9-9

Figure 9-6 (Part 4 of 4). Operating procedure for DCIP dump function

Stand-alone Utility Programs 9-31

Stand-alone Utilities
DCIP patch procedure

| ENTER: |
PHYS DR NO. (BITS 0-3)

| SCTR ADDR (BITS 4-15) '

| is printed on the console printer. |

Lo e e e e — - 4

9-32

Start the patch function

1. Turn off console entry switch 3.

Enter through console entry
switches O through 3 the
physical drive number {in
binary) of the drive that
contains the cartridge being
patched.

. Enter through console entry
switches 4 through 15 the
address of the sector being
patched.

4, Press PROGRAM START.

A2

The sector address is a right-adjusted
hexadecimal number, maximum /0657.

The specified sector is dumped, and the
following message is printed:

5. Enter through the console
enrty switches the relative (EZzZIEIZI?LTV ADDR OF SCTR WD TO
address of the sector word '
being changed.

6. Press PROGRAM START.

The relative address of the sector word is
a right-adjusted hexadecimal number in
the range /0000 through /013F.

"Note: |f the sector address is being

changed, enter /FFFF (-1).

The KEYBOARD SELECT indicator on
the console keyboard is turned on.

Figure 9-7 (Part 1 of 4). Operating procedure for DCIP patch function

Stand-aione Utilities
DCIP patch procedure

A2

Six special character keys of the
console keyboard are used to
control patch functions. The 6
keys and their functions are:

EOF — causes the last 4 hexa-
decimal characters entered
through the keyboard to be
stored at the relative address
displayed in the ACCUMU-
LATOR EXTENSION.

> — causes the relative address
in the ACCUMULATOR
EXTENSION to be incremented
by one word.

|

|

I

I

I

|

|

I

l < — causes the relative address

| inthe ACCUMULATOR

l EXTENSION to be decremented
by one word. The address

l cannot be decremented past the
first data word (relative address

I /0000) by this character. /FFFF

| must be entered through the
keyboard.

|

|

|

|

I

i

|

|

|

|

R — causes printing of the
message that requests the relative
address of the sector word to be
changed. Thus, the relative
address can be changed by more
than one word.

— causes all remaining words
of the sector from the address
in the ACCUMULATOR
EXTENSION to the end of the
sector to be filled with the last
4 hexadecimal characters entered
through the keyboard. Then
patching is terminated.

* — terminates the patch function.
The modified sector is stored

on the disk, and is dumped to the
principal printer,

Figure 9-7 (Part 2 of 4). Operating procedure for DCIP patch function

Stand-alone Utility Programs 9-33

Stand-alone Utilities
DCIP patch procedure

9-34

=)

/

Continue the patch function

1. Enter through the keyboard
the 4 hexadecimal characters
that comprise the new word
to be stored.

2. Use any of the special control
characters previously listed
to perform the desired patch
functions.

No

-———

Is the patch
function terminated
by the use of the
o or * keys?

The DCIP option message is
printed.

TURN ON:

SWO TO INITLZ

SW1 TO COPY

SW2 TO DUMP

SW3 TO PATCH

SW4 TO ANALYZE

SW5 TO CMP

SW6 TO INITLZ NEW DiSK

)

T T

The characters are printed on the console
printer as you enter them.

ENTRY ERR ... RETRY is printed if
you press an invalid key; use the correct
key to continue.

Figure 9-7 (Part 3 of 4). Operating procedure for DCIP patch function

Stand-alone Utilities
DCIP patch procedure

Select the DCIP function to be
performed

1. Change cartridges or packs
and ready the disk drives,
if necessary.

2. Turn off all console entry
switches.

3. Turn on the console entry
switch that corresponds to
the DCIP function you are
doing.

4. Press PROGRAM START.

1f switch O or 6 is on .
Figure 9-4

If switch 1 is on

Figure 9-56

If switch 2 is on

Figure 9-6

If switch 3 is on

Figure 9-7

If switch 4 is on

Figure 9-8

If switch 6 is on

Figure 9-9

VoV VOV VS

Figure 9-7 (Part 4 of 4). Operating procedure for DCIP patch function

Stand-alone Utility Programs 9-35

Stand-alone Utilities
DCIP analysis procedure

9-36

ENTER DR NO. (BITS 12-15) I
is printed on the console keyboard. |

I
I
S

Start the analyzing of disk sectors

1. Turn off console enrty switch 4.

2. Enter through console eritry
switches 12 through 15 the
physical drive number (in
binary) of the drive that
contains the cartridge being
analyzed.

3. Press PROGRAM START.

r—=-- - - =
| |
| !
i |

Each disk sector is read 16 times.

Al

printed?

e - -

No

Do you want

in error?

A3

Figure 9-8 (Part 1 of 4). Operating procedure for DCIP analysis function

A disk read error has occurred.

to dump the sector

S ——

No

Stand-alone Utilities
DCIP analysis procedure

Dump the sector in error

1. Turn all console entry
switches off.

2. Turn on console entry
switch 0.

3. Press PROGRAM START.

r—"'—"' L

The sector containing the error
is dumped, and sector analysis
continues. l

L e e —

Continue disk analysis

1. Turn off all console entry
switches.

2. Press PROGRAM START.

A1l

Figure 9-8 (Part 2 of 4). Operating procedure for DCIP analysis function

Stand-alone Utility Programs 9-37

Stand-alone Utilities
DCIP analysis procedure

An incorrect sector address has

l been read.
ADDR ERR ON SCTR nnnn Yes |

)

|

BAD SCTR ADDR WAS nnnn The system writes the correct
printed?)
~

sector address on the disk, and
sector analysis continues.

L - — = —_——

r———4 ——=—

Disk analysis continues until all
sectors have been analyzed.

The DCIP option messags is
printed.

|

I

|

i

| TurNoON:

| SWOTOINITLZ
SW1 TO COPY

| sw2Ttoopbump

| SW3TOPATCH
SW4 TO ANALYZE

| swsTocmp

| swe TO INITLZ NEW DISK]

e et e e

Perform a “Cold Start

Do yo
you \ No Procedure’’ (see Chapter 7)

want to continue
to make the system

DCIP? operational
" '

Figure 9-8 (Part 3 of 4). Operating procedure for DCIP analysis function

9-38

Stand-alone Utilities
DCIP analysis procedure

Select the DCIP function to be
performed

1. Change cartridges or packs
and ready the disk drives,
if necessary.

2. Turn off all console entry
switches.

3. Turn on the console entry
switch that corresponds to
the DCIP function you are
doing.

4. Press PROGRAM START.

If switch 0 or 6 is on

Figure 9-4
If switch 1 is on

Figure 9-5
If switch 2 is on

Figure 9-6
If switch 3 is on

Figure 9-7
If switch 4 is on

Figure 9-8
If switch 5 is on .

Figure 9-9

Figure 9-8 (Part 4 of 4). Operating procedure for DCIP analysis function

Stand-alone Utility Programs 9-39

Stand-alone Utilities
DCIP compare procedure

SOURCE DR (BITS 0-3) |
OBJECT DR (BITS 12-15)
is printed on the console printer.

(. —_———

I

Start the compare function

————_ — - —
| ENTER:]
|
I

1. Tutn off console entry switch 5.

2. Enter through console entry
switches O through 3 the
physical drive number (in
binary) of the drive that
contains one of the cartridges
being compared (source
drive).

»

Enter through console eatry
switches 12 through 15 the
physical drive number (in
binary) of the drive that
contains the other cartridge
that is being compared
(object drive).

4. Press PROGRAM START.

I————l_"_’l

The program compares each logical l
sector of the source cartridge with l
its counterpart on the object
cartridge. |f the contents of the I
2 sectors do not compare, this
message is printed:

CMP ERR ON SCTRS xxxx yyyy
until it is complete.

printed.

TURN ON:
SWO TO INITLZ
SW1.TO COPY
SW2 TO DUMP
SW3 TO PATCH
SW4 TO ANALYZE
SW5 TO CMP
L. SW6 TO INITLZ NEW DISK

|

|

I

I

|

| : .
' The compare function continues
|

I

I

I

I

|

|

I
I
|
|
I
The DCIP option message is |
I
I
I
|
|

Figure 9-9 (Part 1 of 2). Operating procedure for DCIP compare function
9-40

Do you want
to compare more
cartridges?

Do you

Yes

Stand-alone Utilities
DCIP compare procedure

Compare more cartridges

1. Change cartridges or packs
and ready the disk drives,
if necessary.

2. Turn off all console entry
switches.

3. Turn on console entry
switch 5.

4. Press PROGRAM START.

A1

Perform a “Cold Start
Procedure’” (see Chapter

want to continue
DCIP?

Reload the DCIP
Program (Figure 9-3).

7) to make the system
operational.

If one of the DCIP functions other than
CMP is selected, this message is printed:

CMP OPTION USED ... RELOAD DCIP

Figure 9-9 (Part 2 of 2). Operating procedure for DCIP compare function

Stand-alone Utility Programs = 9-41

Stand-alone Utilities
paper tape reproducing procedure

PAPER TAPE REPRODUCING PROGRAM

9-42

This program, available only with the paper tape system, copies information from one
paper tape onto another. The program reads and punches characters with no intermediate
conversion.

The materials that you need to reproduce paper tapes are:

® The Paper Tape Reproducing Program tape, BP18

® The tape being reproduced

® Blank tape

Figure 9-10 is the operating procedure for the stand-alone paper tape reproducing program.

Load the paper tape reprcducing
program, BP18

1. Insert tape BP18 in the paper
tape reader.

2. Position under the read star-
wheels one of the delete
codes beyond the program ID.

3. Move the console mode
switch to RUN.

4. Press IMM STOP on the
console.

5. Press RESET on the console.

6. Press PROGRAM LOAD on the The program is read into core storage, and
console. the system waits with /1111 displayed in
the ACCUMULATOR.

7. Remove BP18 from the paper
tape reader.

Ready a tape to be reproduced

1. Insert the paper tape that is to
be reproduced.

2. Position under the read star-
wheels one of the delete codes.

A2

Figure 9-10 (Part 1 of 4). Paper tape reproducing operating procedure

Stand-alone Utilities
paper tape reproducing procedure

Ready a blank tape

1. Insert the blank tape in the
paper tape punch.

2. Press the DELETE key on the
punch and hold down to punch
several inches of delete codes
in the tape. Do not release the
DELETE key.

3. With the DELETE key held
down, press the FEED key and
hold down to punch a header
of sufficient length.

4. Release the FEED key before
the DELETE key.

Start the paper tape reproduction
operation

Press PROGRAM START on the
console.

B2

Temporarily interrupt the tape
reproducing program

Do you want Yes
to interrupt the
operation?

1. Press PROGRAM STOP on
the console.

2. Press PROGRAM START

No on the console to continue.

A3

Figure 9-10 (Part 2 of 4). Paper tape reproducing operating procedure

Stand-alone Utility Programs 9-43

Stand-alone Utilities
paper tape reproducing procedure

program continues until either
the paper tape reader or punch

' The: paper tape reproducing
l becomes not ready.

I

L

Is the

/2222 displayed in the ACCUMULATOR
indicates that the paper tape reader is not
ready.

/3333 displayed in the ACCUMULATOR
indicates that the paper tape punch is not
ready.

Ready the paper tape punch

1. Insert a blank tape in the paper
tape punch.

more tapes to be

P
reader or the punch unch
not ready? /
/ -~
Reader
Are Yes

2. Punch several inches of delete
codes and a header.

3. Press PROGRAM START on
the console keyboard.

B2

Ready the paper tape reader

1. Insert the next tape to be
reproduced.

2. Position, under the read star-

reproduced?

wheels, one of the delete
codes.

3. Press PROGRAM START on

the console keyboard.

B4

Figure 9-10 (Part 3 of 4). Paper tape reproducing operating procedure

9-44

Stand-alone Utilities
paper tape reproducing procedure

A4

L

An unlimited number of tapes can I
be reproduced with this procedure.
Be sure to punch a trailer and |
header in the output tape after |
each tape is reproduced. This is |
done so that the output tape can

be cut apart after the reproducing |
procedure is completed. |

r—="""71

S —

Finish procedure

1. Punch a trailer of delete codes
in the output tape.

2. Remove the tapes from the
paper tape reader and punch.

Perform the ’Cold Start
Procedure’’ in Chapter
7 to make the monitor
system operational.

Figure 9-10 (Part 4 of 4). Paper tape reproducing operating procedure

Stand-alone Utility Programs 9-45

Stand-alone Utilities
Loading PTUTL

STAND-ALONE PAPER TAPE UTILITY PROGRAM (PTUTL)

9-46

This program, available only with the paper tape system allows you to enter records from the
the 1134 Paper Tape Reader or the console keyboard. Program output is to the 1055

Paper Tape Punch and/or the console printer. This program is also included as an executable
program in the Monitor System Library (see Chapter 4).

The materials that you need to use the PTUTL program are:

® The PTUTL (Paper Tape Utility Program) tape, BP17

® Blank tape if output from the PTUTL program is to be punched into tape
e Previously punched tape if they are being changed

Figure 9-11 is the operating procedure for loading the stand-alone PTUTL program, and
Figure 9-12 is the operating procedure for using both the stand-alone PTUTL and the
PTUTL mainline program from the system library.

L.oad the PTUTL Program, BP17

1. insert the PTUTL tape, BP17,
in the paper tape reader.

2. Position one of the delete
codes beyond the program
ID under the read starwheels.

3. Move the console mode
switch to RUN,

4. Press IMM STOP on the
console.

5. Press RESET on the console.
6. Press PROGRAM LOAD on The core image program is read into core

the console. storage, and the system waits with /Q06C
displayed in the ACCUMULATOR.

7. Press PROGRAM START to When the reading of BP17 is complete,
finish the reading of PTUTL. the system waits with /00C9 in the
ACCUMULATOR.
8. Press PROGRAM START The system waits with /1111 displayed
again. in the ACCUMULATOR.
Figure 9-12

Figure 9-11. Loading the stand-alone PTUTL tape

Is

PTUTL stand-alone library

Stand-alone Utilities
PTUTL operating procedure

System

or in the system
library?

Stand-alone

Read system library version of
PTUTL into core

1. Insert the tape that includes
the // XEQ PTUTL control
record.

2. Press PROGRAM START on
the console keyboard.

'—.—-—_L..-__-_

displayed in the ACCUMULATOR

1
The system halts: with /1111 |
|
on the console display panel. |

Paper
tape

Is input

from paper tape or
the keyboard?

Keyboard

Ready the paper tape reader
1. Insert the source tape.

2. Position under the read star-
wheels one of the delete codes.

Paper
Is output tape

to paper tape or the
console printer?

Console printer

Ready the paper tape punch

1. Insert a blank tape in the
paper tape punch.

2. Punch several inches of delete
codes and a header.

A2

 Figure 9-12 (Part 1 of 4). PTUTL operating procedure

Stand-alone Utility Programs = 9-47

Stand-alone Utilities
PTUTL operating procedure

Make changes and/or additions

1. Turn on the appropriate

console entry switches to Console entry PTUTL function
itch on rformed
perform the PTUTL functions sw pe
vou want. 0 Print record after
reading
1 Read records from the

paper tape reader
2 Accept keyboard input

3 Punch records on the
paper tape punch

14 Wait after punching
with /3333 in the
ACCUMULATOR

15 Wait after printing
with /2222 in the
ACCUMULATOR
All other console entry switches must be off.

2. Press PROGRAM START.

A3

Figure 9-12 (Part 2 of 4). PTUTL operating procedure

948

The indicated functios e}

The indicated functions are
performed.

I
|
!
|
!
|
I
!
n
!
|
|
|
!
|
|
-

—_——— e ——]

'Figure 9-12 (Part 3 of 4). PTUTL operating procedure

Stand-alone Utilities
PTUTL operating procedure

If you want to ornit a record just read and
printed (switches 0, 1, and 15 on) from an
output tape, do not change the switches
and press PROGRAM START again.

A record just read and printed (switches 0,
1, and 15 on) is replaced by keyboard input
if you turn on console entry switch 2 just
before pressing PROGRAM START.

The system subroutine TYPEOQ is used by
PTUTL during keyboard input. These
operating features of that subroutine apply:

1. An input record cannot exceed 80
characters.

2. Pressing the backspace key (-#=) canceis
the last character entered.

3. Pressing ERASE FIELD cancels the
entire record so you can reenter the

record.

4. Pressing EOF indicates that input of a
record is complete.

Stand-alone Utility Programs 9-49

Stand-atone Utilities
PTUTL operating procedure

9-50

Are all
changes and additions
complete?

No

Finish procedure

1. Turn off all console entry
switches.

2. Press PROGRAM START.

Stand-
alone

: Was
! PTUTL stand-alone

| A2

or in the system
library?

System library

Continue with next monitor job

1. Insert the tape for the next
monitor job to be processed.

2. Press PROGRAM START.

Figure 9-12 (Part 4 of 4). PTUTL operating procedure

Perform the “‘Cold Start
Procedure’’ in Chapter 7
to make the monitor
systemn operational.

PTUTL Example

Stand-alone Utilities
PTUTL example

This example shows you how to change previously punched records. Assume that the

following records are punched in a tape:

// JOB

/] * (comments record)
/| ASM

// DUP

ASM control records
Source program

You have decided to alter the comments record, insert a // PAUSE control record after the
comments record, and delete the // DUP control record. The procedure you follow is:

Your action
1. Load into core storage and start

execution of PTUTL.

2. Insert the source tape and ready
the paper tape punch and the
console printer. Punch a leader
of delete codes in the output tape.

3. Turn on console entry switches 1,
3, and 14.

4. Press PROGRAM START.

5. In addition to the console entry
switches already turned on, turn
on 0, 2, and 15.

6. Press PROGRAM START.

7. Press PROGRAM START again.

8. Enter the new comments record
in the proper format.

9. Press EOF.

10. Turn off console entry switch 1.

11. PressPROGRAM START,

12. Enter the // PAUS control record.

13. Press EOF.

14, Turn off console entry switches
0, 2, and 15.

System response

The system waits with /111 1displayed in the
ACCUMULATOR on the console display
panel.

The // JOB control record is read, punched
in the output tape, and the system waits
with /3333 in the ACCUMULATOR.

The comments record is read and printed on
the console printer. The system waits with
/2222 in the ACCUMULATOR.

The K.B. SELECT indicator on the console
keyboard turns on and /3333 is displayed in
the ACCUMULATOR.

The new comments record is punched in the
output tape; the system waits with /2222 in
the ACCUMULATOR.

The K.B. SELECT indicator turns on, and
/3333 is displayed in the ACCUMULATOR.

The // PAUS control record is punched in
the output tape; the system waits with /2222
in the ACCUMULATOR.

Stand-alone Utility Programs

9-51

Stand-alone Utilities
PTUTL example

9-52

Your action

15..

16.

17.

18.

19.

20.

21.

23.

24,

25,

Turn on console entry switch 1.
(Switches 3 and 14 should still
be on.)

Press PROGRAM START.

Turn off all consola entry
switches except 1.

Turn on console entry
switches 0 and 15.

Press PROGRAM START.,

Press PROGRAM START again.

Turn off consoie entry switches
Oand 15.

Turn on console entry switch 3.
(Switches 1 and 3 should be on.)

Press PROGRAM START.

Turn off all console entry
switches.

Press PROGRAM START.

System response

The // ASM control record is read and
punched in the output tape; the system
waits with /3333 in the ACCUMULATOR.

The // DUP record is read and printed on the

printer but is not punched in the output tape.
The system waits with /2222 in the ACCUM-

ULATOR.

The next input record is read into the 1/0O
buffer, overlaying the // DUP control record.
{The // DUP control record is deleted.)

The remainder of the source tape is read in
and reproduced in the output tape, record
for record. The paper tape reader not-ready
wait (/3005 in the ACCUMULATOR) occurs
when all of the source tape has been repro-
duced.

A CALL EXIT is executed.

Chapter 10. Remote Job Entry Program

The remote job entry (RJE) feature of the IBM System/360 Operating System allows you
to enter jobs into the operating system job stream via communication lines from terminals
(work stations) at distant locations. RJE includes a unique job entry control language
(JECL) that controls operations of the work station. For a general description of RJE, RJE
terminology, and JECL, see the publication IBM System/360 Operation System Remote
Job Entry, GC30-2006.

This chapter provides information for operators and programmers using an 1130 as a re-
mote work station in an RJE environment, and describes machine and device requirements,
input and output at the work station, communication considerations, operating procedures
user-exit subroutine, and generation and loading of the work station program.

Messages printed by the RJE program are included in Appendix A.

MACHINE AND DEVICE REQUIREMENTS

The RJE program for an 1130 work station requires at least an 1131 Central Processing
Unit, Model 2B, a card reader;, and a line printer (with a 120 character print line). The

1130 computing system must be connected to a 600—2400 bit-per-second line via a synchro-
nous communications adapter in binary mode.

An optional compress-expand feature requires 16K words of core storage if the 1132
Printer is used, or 8K words if the 1403 Printer is used. The compress-expand feature
eliminates blanks from data transmitted across the communication line.

An IBM-supplied RJE exit subroutine stores data from your IBM System/360 Operating
System job on an 1130 disk. The data thus stored can be processed by other programs
that you write. You can write an exit subroutine to replace the one supplied by IBM and
direct the output from your System/360 job to any available 1130 I/O device. When you
write an exit subroutine, an 1130 system with 16K words of core storage is required.
Information about writing an exit subroutine is included under “User-Exit Subroutine”
in this chapter.

COMMUNICATION CONSIDERATIONS

monitor mode

The 1130 RJE Work Station Program provides the standard RJE communications interface
to the System/360 Operating System (the operating system) RJE communications network
by using the SCAT2 and SCAT3 binary synchronous communications subroutines. These

subroutines are stored in the monitor system library and provide the following capabilities:

® Point-to-point contention operation on leased lines
& Point-to-point operation on switched lines
& Multipoint operation with the 1130 system as slave station

All data transmissions between the operating system and an 1130 work station are in
EBCDIC transparent mode, except headings, which are transmitted in normal mode. The
1130 RJE Work Station Program communicates with the operating system in 3 modes:
monitor, receive, and transmit,

The work station program enters monitor mode from either transmit or receive mode. In
this mode, the work station waits for output from the communication line or input from
the card reader or console keyboard.

Remote Job Entry Program 10-1

receive mode

transmit mode

The work station, program enters receive mode when output is available for the work
station. In this mode, the work station program reads output from the line until it receives
an end-of-data indication from the operating system or until the operator discontinues the
output (presses PROGRAM STOP on the console keyboard), The work station program
then enters monitor mode.

This mode is entered at work station startup and when input is available at the work station.
The work station program writes to the communication line in transmit mode. Transmis-
sion to the line continues until a logical end of file (the . . null command) or an RJEND
commarnd is encountered in the input stream. (RJE work station commands are described

in the publication IBM System/360 Operating System Remote Job Entry, GC30-2006.)

If monitor mode is entered from transmit mode with a logical end-of-file indication caused
by a .. null command, transmit mode is not entered again until operator intervention
indicates that more input is available,

Communication Considerations for Switched Lines

The operating system disconnects the line if a switched communication line is inactive for
a period of approximately 21 seconds. This occurs when:

o A work station output device error is not corrected within the specified time.

® A user-written exit subroutine fails to return control within the specified time (see
“User-Exit Subroutine” in this chapter).

® An operator response to an RJE message is not entered within the specified time.

Note. Some RIE messages allow approximately 3 minutes for an operator response, The
RIJE Work Station Program operator messages are included in Appendix A.

INPUT AT THE WORK STATION

10-2

card input

keyboard input

disk input

Input to the RJE program is accepted from the card reader, the keyboard, and from one
or more disk storage units.

System/360 jobs (with or without JED statements) and job entry control language (JECL)
statements are accepted as input from the card reader. The first JECL statement at work
station startup must be an RISTART command submitted from the card reader. After
that, JECL statements are not sequence checked.

The only valid input from the keyboard is work station commands and responses to RJE
operator messages. Input is accepted from the keyboard between jobs being entered from
the card reader when the operator indicates that he has input to submit (only in a
point-to-point line configuration). The 1130 RJE Work Station Program checks this input
only for the JECL identifier (, . . followed by at least one blank).

A special 1130 RJE control card is used to specify that input is from one or more disk
storage units. This control card, . . DATA, is described under “JECL for the 1130 Work
Station” in this chapter. A .. DATA control card can be placed in the card input stream
or on disk. 1130 work station commands are placed on disk with the STOREDATAE
operation of the Disk Utility Program (see “DUP Control Records” in Chapter 5).

The . . DATA control card contains information that allows the RJE program to read input
alternately from the card reader and from the disk, Data to be read from disk must be
stored there prior to RJE processing by you. This data must be stored in 80-character
records in 8-bit packed code (EBCDIC) format (eight records per disk sector) in consecutive
sectors. Data can be stored on disk by:

e Using the STOREDATAE function of the Disk Utility Program prior to executing the
RIJE Work Station Program

® Specifying that output from a job be placed on a disk

After the information on disk has been read to the end of file (see “JECL for the 1130
Work Station” in this chapter for a description of the end-of-file indications), the RJE
program resumes reading from the card reader.

Note, Although work station commands can be submitted from disk, only System/360
jobs and input data sets are recommended to be placed on disk in order to simplify work
station operation.

changed LOGON If you are logged on because of a LOGON command entered from the card reader or disk,

affect on input and you enter a new LOGON command from the keyboard, all pending input meant for
the previous LOGON from the card reader and/or disk is submitted under the new LOGON
ID entered from the keyboard. To prevent this, the LOGON that was entered from the
card reader or disk must be resubmitted as the last command entered from the keyboard
before card or disk input is continued.

Generation of the 1130 RJE Work Station Program

The 1130 RJE Work Station Program is supervised by the 1130 Disk Monitor System
Version 2. You store the IBM-supplied RJE program in the user area by using the
*STORE function of the Disk Utility Program (DUP). You then define your work station
configuration by executing a program that is part of the RJE program and that is named
RJEOO. This program reads a data card that you code with the following optional parame-
ters:

['—'NE:P } [,UEXIT=(address 1, address 2)] [,COMPRESS=NO]

LINE=S - -
LINE=M (x,y) MUEXIT=USER ,COMPRESS=YES

LINE=P specifies that the work station is connected over a point-to-point leased
line.

LINE=S specifies that the work station is connected over a point-to-point switched
line.

LINE=M (x,y) specifies that the work station is connected over a multipoint line,
where
x is the polling character
y is the selection character.

UEXIT=(address 1, address 2) specifies the starting and ending addresses of the area
on disk that has been reserved for storing data directed to the user exit, where
address 1 is the starting address
address 2 is the ending address.

The addresses must be in the form xaaa, where
x is the logical disk drive number from O to 4
aaa is the sector address.

This area must be reserved prior to executing the RJE Work Station Program.
UEXIT=USER specifies that the IBM-supplied user-exit subroutine is replaced by
one that you have written.

COMPRESS=NO specifies that blanks are not to be eliminated from data transmitted
across the communication line.

COMPRESS=YES specifies that blanks are to be eliminated from data transmitted
across the communication line.

Remote Job Entry Program 10-3

104

work station RJE
generation

These optional parameters can be used in any order, and if more than one of them is speci-
fied, they must be separated by commas. The default options assumed when the RJE Work
Statiorﬁ Program is first generated, are a leased point-to-point contention line, no reserved
disk space for user-exit output, and no elimination of blanks. When this data card is used
to redefine the RJE configuration and the LINE and/or COMPRESS parameters are omit-
ted, the program assumes the last parameters specified as the current line configuration;
however, if the UEXIT parameter is omitted, space is not reserved on disk for user-exit
data.

The RIEQO program saves the information specified by these parameters in a disk data
file reserved for common constants used by the RJE program.

The following example shows the coding for generating the 1130 Work Station Program:

1 5 10 15 20 25 30 35 40 45 50

T

LI/WE=M(IAls /Bl . UEX 117]|(|2|11Bd} | 212 t@),co PRIEIS|S|=|YIELS|
: |

The first 2 cards are the monitor control records needed to load the program that proces-
ses the information in the third card. The third card specifies that the RJE work staticn
is on a multipoint line, that its polling character is A, and its selection character is B, and
that it will compress input to the operating system program and expand output from the
operating system program, For storing data that is directed to the user exit, an area is
reserved on disk drive 2 starting at sector 1BO and ending with sector 2BO.

JECL FOR THE 1130 WORK STAT!ON

The job entry control language (JECL) used with the 1130 work station is described under
“Job Entry Control Language” in the publication IBM System/360 Operating System
Remote Job Entry, GC30-2006, with one addition.” The additional command allows you
to alternate the source of input between disk and cards. The format of this command is:

iD Operation Operand
DATA DMS §, C
l, D, xaaa [, bbbb]

is the JECL identifier and must be in columns one and two.

DATA must be preceded and followed by at least one blank.

DMS identifies the card as an 1130 JECL command.
C indicates that input follows from cards.
D indicates that input follows from disk, where

x is the logical disk drive number,

aaa is the disk sector address (hexadecimal), and

bbbb is a hexadecimal number specifying the length of the disk data

file in blocks, two blocks per 80-character record (16 blocks per sector).

If D is specified, the logical disk drive number and the sector address are required, but the
block count is optional. When the block count is not specified, you must indicate the end
of data on disk by using a .. DATA command to transfer reading data either to the card
reader or to another disk area. The optional block count for disk data causes the RJE pro-
gram to read data from disk until the specified number of blocks has been read, unless an
end-of-file indicator (. . DATA command, . . null command, or . . RJEND command)

is read first. When the specified number of disk blocks is read or an end-of-file indicator

is read, reading from disk stops, and input continues from the card reader.

Data on disk must start at the beginning of a sector and continue on to consecutive sectors
if necessary. Each sector must contain eight 80-character records in 8-bit code (EBCDIC),
except the last sector, which can be less than 320 words.

The . . DATA command is not recognized between a // DD DATA statement and the
corresponding /* in an IBM System/360 Operating System job.

Note 1. Restart problems may occur if jobs are chained on disk (that is, referenced by
only one ., DATA command from the card reader), and a line error occurs that requires
the work station to resubmit the RISTART command and all unacknowledged input. To
avoid these problems, reference each job with a. . DATA command from the card reader.

Note 2. You must specify the cartridges that are used during RJE on a monitor JOB
control record. A logical drive number as specified on the JOB contro! record must be
used in the . . DATA command.

Remote Job Entry Program 10-5

End-of-File Indicators

The end-of-file indicator on disk is the . . DATA command. This command passes reading
to another disk file or to the card reader. The end-of-file indicators for the card reader are
the . . null command and the . . RJEND command. ’

Note. The . . null command and the . . RJIEND command can be read from disk and have
the same effect as if they were read from the card reader; that is, reading is stopped both
from the card reader and from the disk.

OUTPUT TO THE WORK STATION

10-6

Output to the work station consists of job output and messages. Job output, consisting of
SYSOUT data sets created by the job, is directed to the printer, the card punch, or a
user-exit subroutine. Each job output data set is directed to the device associated with

the SYSOUT class specified in the DD statement for that output data set. RJE system
messages are directed to the console printer or the line printer.

You can specify carriage control for printer output with a special control character as the
first byte of each data record; either System/360 machine code or ASA control characters
are allowed. Output is single spaced with a skip to channel one when channel 12 is sensed
in the carriage tape and control characters are not specified or are not recognized by the
equipment,

You can specify stacker-select for punched output, if available, by specifying a special
control character as the first byte of each data record; either System/360 machine code or
ASA control characters are allowed. Stacker one is selected if control characters are not
specified or are not recognized by the equipment.

The 1130 RJE Work Station Program includes a user-exit subroutine that accepts data sets
directed to it and writes them on disk in an area that you reserve prior to executing the
RIJE program,

The IBM-supplied user-exit subroutine can be replaced by an exit subroutine that you
write. Your subroutine can process data directed to the user-exit and write output to any
available device (see “User-Exit Subroutine” in this chapter for more detailed information).

If you do not write a user-exit subroutine, the IBM RJE program user-exit subroutine
writes data sets consecutively on disk, each data set beginning at a disk sector boundary.
However, when the RJE program is reloaded at a later time, data sets previously written
on disk are unprotected and may be destroyed since any user-exit data sets written after
RIJE is reloaded begin at the first sector of the reserved area. For each data set written,
information is printed on the principal printer.

The primary output device for messages is the console printer. The secondary device is
the line printer. You select the line printer as the message device by turning on console
entry switch 0.

Note. Data directed to disk can be referenced later by a .. DATA command. To do this,
you muist define your data set as fixed blocked or unblocked with a logical record length
of 80 bytes and no control characters.

Discontinuing and Continuing Output

Job output is discontinued by operator intervention. The operator presses the console
keyboard PROGRAM STOP key, then the PROGRAM START key, and the system prints
the J90 OCR=message. The operator then responds by typing D to discontinue output.

Output is also discontinued by the 1130 RJE Work Station Program when a user-exit
subroutine is not present for output directed to the user-exit and one of the following
errors Occurs:

® An area is not reserved for user-exit output.
@ The reserved output area is exhausted.
® An unrecoverable disk write error occurs,

These errors are indicated to the operator in error messages. To correct the first 2
problems, terminate the RJE program by submitting an RIEND command (after all
pending input has been transmitted), and then specify a reserved area on disk by executing
the RJEOO program (see “Generation of the 1130 RJE Work Station Program” in this
chapter). Reload the RJE program (see “Work Station Startup” in this chapter), and dis-
continue output immediately by operator intervention. Then, enter a CONTINUE com-
mand with the BEGIN operand; otherwise, data is lost.

To correct the third error, enter a CONTINUE command with the BEGIN operand. The
data set is then written again, starting at a new sector,

In general, once output is discontinued, no other output is transmitted to the work station
until the disposition of the discontinued output is specified by a CONTINUE command.

Other conditions that cause output to be discontinued are:

® A change in form numb