
HP 3000SERIE5;:11I

COMPUJ"ER SYSTEM
';',.,: .. ,.•.• ,. 'r ", ;

REFERENCE/T~AIN1N,G MANUAL
Manual P~rt,No.~30000-90143

Printed in U.S.A. 6179

HEWLETT·PACKARD COMPANY
5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95060

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER­
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor­
mance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied or reproduced without the prior written consent of
Hewlett-Packard Company.

Copyright©1979 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES I

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition. Within
the manual, any page changed since the last edition is indicated by printing the date the changes were made on the bottom
of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
th.ese bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears as a
prior update.

All pages in this manual are original issne.

iii

I PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is pUblished. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

First Edition Jun 1979

iv

PREFACE I

This manual contains hardware-oriented reference information for
the HP 3000 Series III Computer Systems. Specifically, this man­
ual contains reference reading material for all persons that are
to attend Hewlett-Packard's 3000 Series III Computer System Hard­
ware Training Courses. Since the information contained in this
manual is approximately the same as that presented during class­
room lectures, this manual should be used for classroom refer­
ence, note taking purposes, and post school reference.

The HP 3000 Series III Computer Systems are divided into two pro­
duct lines; the HP 3242lA Series III and the HP 32435A Series
III. Unless otherwise stated, the content of this manual applies
equally to both product lines.

v

CONTENTS

SECTION I

Paragraph

INTRODUCTION

Page

SYSTEM FEATURES •••••••••••••••
Stack Architecture ••••••••
Microprogrammed Operations
Data Base Management Facilities
Five Progrannning Languages
Virtual Memory .
Fault Control Memory
Concurrent I/O and CPU Operations
Reentrant Code and Private Data
Opera ting System

HARDWARE FEATURES
SOFTWARE FEATURES
SYSTEM CONFIGURATIONS

...

1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-4
1-4

SECTION II

Paragraph

SYSTEM/CPU OVERVIEW

Page

....
HARDWARE ORGANIZATION

Bus System
CTL BUS
lOP BUS
SELECTOR CHANNEL BUS
PORT CON'rROLLER BUS
MULTIPLEXER CHANNEL BUS
POWER BUS ••.•••••••••••

Functional Hardware Elements
CENTRAL PROCESSOR MODULE
MAIN MEMORy•.......
MULTIPLEXER CHANNEL ••••••
PORT CON'rROLLER/SELECTOR CHANNEL
DEVICE CONTROLLERS

CTL Bus Pr ior i ty
OPERATING ENVIRONMENT

Virtual Memory
Variable-Length Segmentation
Processes
Data Stacks
CPU Registers

CODE SEGMENT REGISTERS
DATA SEGl-1ENT REG! STERS

Basic Table Structures
CODE SEGMENT TABLE AND CODE SEGMEN'I'

vi

EXTENSION

2-1
2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-5
2-6
2-6
2-7
2-7
2-7
2-8
2-9
2-9
2-11
2-12
2-13
2-15
2-15

CONTENTS (continued)

SECTION II (CaNT)

Paragraph Page

..........

·........

2-16
2-16
2-22
2-27
2-27
2-28
2-28
2-28
2-28
2-30
2-30
2-30
2-30
2-30
2-30
2-30
2-30
2-30
2-31
2-31
2-32
2-34
2-35
2-35
2-36
2-38
2-38
2-38
2-38
2-40
2-40
2-40
2-41
2-41
2-41
2-42
2-42
2-42
2-42
2-43
2-45
2-45
2--45
2-45
2-45
2-45
2-46
2-46
2-49
2-50
2-50

,..

..

..

....

...

....

.....

...

....

.....

...

...

...

.......

·....
·.......

.....

........

.....

........

...

..........

.......

.....

...

.....

.........

DA'rA SEGHENT TABLE
Code Segment Linkage
Stack Operation ••••••

INSTRUCTION AND STAlJ:IUS WORD FORMATS •••••
Instruction Formats ••••••••••••

GENERAL FORttJA'Il
STACK OP •••••••
SHIFT
BRANCH
BIT 'I1EST
MOVE •••••
SPECIAL
IMMEDIATE
FIELD
REGISTER CONTROL
PROGRAM CON'I'ROL
I/O AND INTERRUPT
LOOP CONTROL
MEMORY ADDRESS

Status Word Format
Condi tion Codes

OPERATING MODES
ADDRESSING CONVENTIONS

Memory Addressing
Indirect Addressing

CODE INDIRECT
DATA INDIRECT

Indexing ••••••••
CODE INDEXING
DATA INDEXING •••••

Byte Addres sing ••••••
DIRECT BYTE ADDRESSING
DIRECT, INDEXED BYTE ADDRESSING
INDIRECT BYTE ADDRESSING •••••••
INDIRECT, INDEXED BYTE ADDRESSING

Double-Word Indexing
Accessing DB- Area

WORD ADDRESSING
BYTE ADDRESSING ••••••

Bounds Checking •••••••••
PROGRAM TRANSFER LIMIT
PROGRAM REFERENCE LIMITS ••••
DATA REFERENCE LIMITS
STACK OVERFLOW LIMIT •••
STACK UNDERFLOW LIMIT

CPU OVERVIEW
Pipel ines

DATA PIP EL IN E
MICROCODE PIPELINE

CPU Component Descriptions
N I R ••••••••••••••••••••

vii

CONTENTS (continued)

SECTION II (CONT)

... 2-50
2-51
2-51
2-51
2-52
2-52
2-52
2-53
2-53
2-54
2-55
2-55
2-55
2-55
2-55
2-55
2-55
2-55
2-56
2-56
2-57
2-57
2-57
2-57
2-57
2-57
2-57
2-58
2-58
2-58
2-58
2-58
2-58
2-58
2-58
2-59
2-59
2-59
2-59
2-59
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-61

Page

....· .
·...........
·.....

......

..............

......

.........

....................

..

..... ,....

...

.....

...

CIR
CMUX AND Cr.1UX CON'rROL
MAPPER AND MAPPER CONTROL
LUT ROM ••••••••••••••••••
VBUS MUX AND VBUS CONTROL
.RA.R ••••••••••••••••••
SAVE REGISTER
ROM ••••••••••
RORI AND ROR2 ••••••••••

Microcode Jumps
S-Bus Fie Id Decoder (S)
Store Field Decoder (STORE)
Function Field Decoder (FCN)
Skip Field Decoder (SKIP) ••••••••
Shift Field Decoder (SHIFT) •••••
Special Field Decoder (SP)
MCU Option Field Decoder (MeU)
R-Bus Field Decoder (R)

PROCESSOR REGISTERS
Renamer Logic •••••••
TO S Re g i s te r s •••••••
Index Reg iste r (X) ••
Stack Limit Register (Z)
Program Limit Register (PL)
Scratch Pad 0 Register (SPO)
Scratch Pad 1 Register (SPl)
Sta c k Reg i s te r (SR) ,
Program Base Register (PB)
Data Limit Register (DL)
Stac k Memory Register (8M)
Data Base Register (DB)
Q Re g i s te r (Q)
Scratch Pad 2 Register (SP2)
Scratch Pad 3 Register (SP3) •••••
Proces s Clock Regi ste r (PCLOC K)
Program Cbunter Register (P) •••••••••••••••••
Operand Register (OPND)
Status Register (STA)
Counte r Reg iste r (CNTR)

OVERFLOW FLIP-FLOP (OVFL)
CARRY FLIP-FLOP (CRRY)
CONDITION CODE LOGIC (CCO AND CCl) ••••
PRE-ADDER •••••
R-BUS REGISTER ••••
S-BUS REGISTER ••••
ALU •••••••••••
SHIFTER ••••••••••••••••
DE CI MAL CORRE CTOR •••••••••••••••••••••
ADDRESS COMPUTER OUTPUT REGISTER (ACOR)
DATA COMPUTER OUTPUT REGISTER (DCOR) ••
INTERRUPT STATUS REGISTER 1 (CPXl) ••••••••••••••

Paragraph

viii

CONTENTS (continued)

SECTION II (CONT)

Paragraph Page

............................
INTERRUPT STATUS REGIS'I'ER 2 (CPX2) ••••••••••••••••••

CPU Servicing Information ••••••••••••
READ-ONLY MEMORY (ROM) PCA ••••••••
SKIP AND SPECIAL FIELD (SSF) PCA
S-BUS PCA ••••••••••••••••••••••••••
CURRENT INSTRUCTION REGISTER (CIR) PCA ••••••••••••••

2-61
2-61
2-61
2-62
2-63
2-64

SECTION III - SYSTEM VERIFICATION AND TROUBLESHOOTING

Paragraph Page

. .

.. .. .

..

3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-4
3-6
3-6
3-23
3-24
3-25
3-26
3-26
3-26
3-26
3-26
3-28

DIAGNOSTIC AND VERIFICATION PROGRAMS ••••.•••••••••••••••••
On-Line Verification Programs ••••••••••••••••••••••••
Stand-Alone Diagnostic Programs ••••••••••••••••••••••
Microdiagnostics •••••••••••••••••••••••••••••••••••••
SLEu'rH 3000

SYSTEM TROUBLESHOOTING AND REPAIR •••••••••••••••••••••••••
SYSTEM CONTROL Ph~EL

MAINTENANCE PANEL
Switch/Lamp Identification and Description ••••••••••
Op era t i ng Pre ca ution s ••••••••••••••••••••••••••••••••••
Preparation For Use ••••••••••••••••••••••••••••••••
General Operating Method •••••••••••••••••••••••••••
Using Maintenance Panel and System Gbntrol Panel
Stack Register Loading •••••••••••••••••••••••••••••
CPU Register Displays ••••••••••••••••••••••••••••••••••
General-Use Di splay .
Ma intenance Panel Tes t •••••••••••••••••••••••••••••••••

LAMP TEST •••••••••••••••••••••••••••
SW ITCH TEST •••••••••••••••••••••••••

SECTION IV - MACHINE INSTRUCTIONS AND STACK OPERATIONS

Paragr aph Page

...................................
......................................

....................
..

4-1
4-1
4-3
4-3
4-3
4-3
4-10
4-11
4-12
4-13
4-13
4-14
4-15
4-17

......................................INSTRU CTION DECODING
TRAPS AND INTERRUPTS
CONDITION CODE
INSTIU CTION FORMATS
INSTRU CTION DEF INITIONS

Stack Op Instructions ••••••••••••••••••••••••••••••••••
Shift Instructions •••••••••••••••••••••••••••••••••••••
Branch Instr uctions ••••••••••••••••••••••••••••••••••••
lvbve Instructions ••••••••••••••••••••••••••••••••••••••
Privileged Memory Reference Instructions •••••••••••••••
Immed ia te In s tr uct ions •••••••••••••••••••••••••••••••••
Register Control Instructions ••••••••••••••••••••••••••
Program Control and Special Instructions •••••••••••••••
I/O Instructions •••••••••••••••••••••••••••••••••••••••

ix

CONTENTS (continued)

SECTION IV (CONT)

Paragraph

Memory Address Instructions
Instruction Commentary

STACK OPERATION EXAMPLES
Basic Ar i thme tic
Procedure Calls
Re cur s ion ••••••

MAIN PROGRAM CALL
TEST FOR ZERO
FIRST RECURSIVE CALL
SUCCESSIVE RECURSIONS
FIRST EXIT •••••••••••
FIRST RECURSIVE EXIT •••
SUCCESSIVE EXITS •••••

........
.....

...

Page

4-19
4-21
4-37
4-37
4-39
4-43
4-46
4-46
4-46
4-46
4-48
4-48
4-48

SECTION V SYSTEM MICROCODE

....

Page

5-1
5-1
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-5
5-5
5-5
5-5
5-5
5-5
5-5
5-5...

....

....

· .

·....

·....

·............

.......

...

...
...

.....

...

GENERAL INFORMATION •••••••
Stack Element Locations

PUSH •••
POP
QUP
QDWN

Reading Microprogram Listings
MI CROINSTRU CTION DESCRIPTIONS

R-Bus Field
S-Bus Field
Function Fie ld
Shift Field
Store Field
Special Fie ld
MCU Option Field ••
Skip Field

MICRODIAGNOSTICS

Paragr aph

SECTION VI - MODULE CON'rROL UNIT/MAIN MEMORY OVERVIEW

Paragraph Page

.........................MCU OPERATIONS
Fetch Next Instruction Operations

CPU ADDRESS TRANSMIT ••••••••
MEMORY RECEIVE AND TRANSMIT
CPU RECEIVE •••••••••••••

Fetch An Operand Operations
CPU ADDRESS TRANSMIT
MEMORY RECEIVE AND TRANSMIT
CPU RECE IVE •••••••••••••••••

.....
..

6-1
6-1
6-1
6-3
6-5
6-5
6-5
6-5
6-5

x

CONTENTS (continued)

SECTION VI (CONT)

...........

.............

6-6
6-6
6-6
6-6
6-6
6-6
6-8
6-8
6-8
6-8
6-9
6-9
6-9
6-9
6-9
6-11
6-11
6-11
6-12
6-12
6-12
6-12
6-12
6-13
6-13
6-14
6-14
6-14
6-14
6-17
6-21
6-21
6-21
6-21
6-23
6-24
6-26
6-27
6-27
6-28
6-29

Page

..

....

......

....

..........

.....

.. "

........

......

Store An Operand Operations
CPU ADDRESS TRANSMIT
MEMORY RECEIVE
CPU DATA TRANSMIT
MEMORY RECEIVE

Command A Module
MCU SERVICING INFORMATION

ENABLE •••••
READY ••••••
CPU NUMBER
CPU MODULE NUMBER
MCU RESET

MAl N MEMORY
Memory PCA Interfacing

CTL BUS
lOP BUS
FAULT LOGGING INTERFACE BUS
POWER BUS •••••••••••

l\-lemory PCA Des cr ip tion s
SMA PCA
MeL PCA
FLI PCA

Memory Operations
READ
WRITE
NOP
FAULT CORRECTION AND ERROR LOGGING ••

Memory Servicing Information ••••••••••
FAULT CORRECTION •••••••••••••••••
MEMORY ERROR LOGGING FACILITY

Ou t pu t ••••••••••••••••••••
Errors •••••••••••••••••••••
Obtaining Memory Errors Copy

FLI PCA PROGRAMMING
TIO Command
CIO Command
WIO Command
RIO Command

SMA PCA SERVICING ••••••
MCL PCA SERVICING
FLI PCA SERVICING

Paragr aph

SECTION VI I I/O SYSTEM

Paragraph

INTRODUCTION ••••••••••
FILE SYSTEM OPERATION
DEFINITION OF TERMS
I/O I NS11 RU CTI ONS

...
Page

7-1
7-2
7-3
7-6

xi

CONTENTS (continued)

SECTION VII (CONT)

Paragraph Page

·...............................·.............................·.....................

·.....................

7-7
7-9
7-12
7-13
7-14
7-14
7-14
7-15
7-15
7-16
7-18
7-18
7-18
7-18
7-18
7-18
7-19
7-19
7-19
7-20
7-22
7-23
7-23
7-24
7-24
7-25
7-26
7-28
7-28
7-28
7-30
7-32
7-32
7-33
7-33
7-34
7-34
7-34
7-35
7-35
7-35
7-35
7-36
7-36
7-38
7-40
7-42
7-42
7-42
7-43
7-43

• •

..

·...

·...

·...

·.
·.
·.·.-·.
·.
·.

·.

·...

·.
·.
·.

·.·.
·.·.

........

·..·....·..

......

....

....

.......

.....

.....
..

·........

·.

·.

· .

.....

·....
·...........

·..

...

..............

............

.......

.......

...

·.....

·..
·..

·..

·..

·..

·..·.
·..·..
·..

·..
·..
·..

·..
·..

·..

·..·..

............

....

· .

·....

·................

·....

......

..

·.......

·....

·..........

· .

· .

·..........

....

...

...

..

.............

....

...

.....

...

·.........

·.....
·.................

·..

·...

·...

·........

·.

.......

.......

·.....

·....·.......

.............

...

·.................
·.........

...

..........

...

GENERAL I/O OPERATION •••••••••••••••
DIRECT I/O OPERATION

Direct Read •••••••
Direct Write •••••••••••

BLOCKED!ONBLOCKED I/O
Blocked I/O
Unblocked I/O

I/O HARDWARE ELEMENlrS •••
I/O Processor

I/O COMMAND ••
lOP CONTROL
INTERRUPT CONTROL
INT DEVNO ••••••••
DATA OUTPUT REGISTERS
DATA INPUT REGISTERS

Module Control Unit
MUltiplexer Channel
Selector Channel

I/O SYSTEM FUNCTIONAL OPERATION •••
I/O Priorities
I/O Data Routes
I/O Transfer Modes

DIRECT I/O
PROGRAMMED I/O ••••

I/O Progr am vord
Typical I/O Program Operation ••••••••
MUltiplexer Channel Transfers
Selector Channel Transfers

Multiplexer Channel Operations
INITIALIZE ••••••
DRT FETCH
I/O PROGRAM WORD TRANSFERS

IOCW Fetch
IOAW Fetch ••
IOAW Store
Next Operation •••

DATA TRANSFERS
Address Transfer
Output rrr ansfer
Input Transfer
End Of Transfer By vord Count
End Of Transfer By Device ••••••••••

Selector Channel and Port Controller Operations
PORT CONTROLLER •••
INITIATOR SEQUENCE
FETCH SEQUENCE
EXECUTE SEQUENCES •••••••••••

Sense ••••••••
Interrupt ••••••
Jump •••••••••
Control ••

xii

CONTENTS (continued)

SECTION VII (CONT)

Paragraph Page

7-43
7-43
7-44
7-45
7-46
7-46
7-46
7-46
7-46
7-46
7-46
7-47
7-48
7-48
7-48
7-48
7-48
7-48
7-48
7-48·.

·.·.

..

..

...
...

..

·..

...

.....

...

.....

...

·..

·...

· .

·................

......
.....

...............
...

Set Bank •••••••
Read ••••••••••
Return Res idue
Write ••••••••••
End ••••••••••••

I/O SYSTEM SERVICING INFORMATION
lOP PCA Servicing

ENAB LE /0 I SAB LE
MEMORY SIZE •••••••••••••••••
MEMORY INTERLEAVING

Selector Channel Maintenance Board PCA •••••
Multiplexer Channel PCA Servicing •••••••
Port Controller PCA Servicing •••• • ••••••••••••••
Selector Channel Servicing ••••••••••••••••••••••

SELECTOR CHANNEL REGISTER PCA
Port Controller Channel Number
Memory Size ••••••••••••••
Memory Interleaving ••••••

SELECTOR CHANNEL CONTROL PCA •••••
SELECTOR CHANNEL SEQUENCER PCA

SECTION VIII - INTERRUPT SYSTEM

Paragraph Page

.............................
................................

.......................................
....................................

8-1
8-1
8-3
8-5
8-6
8-7
8-8
8-8
8-8
8-8
8-9
8-13
8-14
8-14
8-14
8-14
8-14
8-14
8-14
8-15
8-15
8-15
8-15
8-15
8-15

• •

·.
·.

·.• • • •

.........

· .

· .·..
·..

.........

· .

·..

.........

...........

............

· .
·...

·..·.·.

• • • • • • • • • • • • • •

.................

·....
·..

·..·..·..

·.....

·..................
·...........

.........
..

..................
...

........
.............

....

................

.......................................

INTRODUCTION •••••••••••••
INTERRUPT SYSTEM OVERVIEW •••••••
INTERRUPT CONTROL STACK
INTERRUPT TYPES •••••••

External Interrupts
ICS Internal Interrupts ••••••••
Non-ICS Internal Interrupts

EXTERNAL INTERRUPT PROCESSING •••••
Interrupt Priorities •••••
Interrupt Program Pointer
Sequence Of Operations

INTERNAL INTERRUPT PROCESSING ••••••
General Descriptions ••••••••••••••••••

BOUNDS VIOLATION ••••••••••••
ILLEGAL MEMORY ADDRESS
NON-RESPONDING MODULE
SYSTEM PARITY ERROR ••
ADDRESS PARITY ERROR
DATA PARITY ERROR ••••••••••••••••••••••••
MODULE INTERRUPT
POWER FAIL •••••••••••••••••••••••
UNIMPLEMENTED INSTRUCTION •••••••••••••
STT VIOLATION
CST VIOLATION
DST VIOLATION •••••••••••••••••••••••

xiii

CONTENTS (continued)

SECTION VIII (CONT)

Paragraph Page

........................
.............................

COUNT OVERFLOW ••••••••••••••••••••••••••

........................ 8-15
8-16
8-16
8-16
8-16
8-16
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-17
8-18
8-18
8-18
8-18
8-19
8-21
8-23
8-23
8-23
8-24
8-24

..

..

...

..

..· .

·.

·.

·.

·.
·.
·.....

. .

· .
·.....

·.....
.........

·..
·..·.....

...........................

............................

......

.......

................................

STACK UNDERFLOW ••••••••••
PRIVILEGED MODE VIOLATION
STACK OVERFLOW •••••••.•••••••••••••••••••
INTEGER OVERFLOW ••••••••••••
FLOATING-POINT OVERFLOW
FLOATING-POINT UNDERFLOW •••••••••
INTEGER DIVIDE BY ZERO
FLOATING-POINT DIVIDE BY ZERO ••••••••••••••••••
EXTENDED PRECISION FLOATING-POINT OVERFLOW ••••••••••
EXTENDED PRECISION FLOATING-POINT UNDERFLOW •••••••••
EXTENDED PRECISION FLOATING-POINT DIVIDE BY ZERO
DECIMAL OVERFLOW ••••••
INVALID ASCII DIGIT
INVALID DECIMAL DIGIT •••••••
INVALID WORD COUNT ••••••••••••
RESULT wORD
DECIMAL DIVIDE BY ZERO •••••••••••
ABSENT CODE SEGMENT
TRACE •••••••••••••••
STT ENTRY UNCALLABLE
ABSENT DATA SEGf\1ENT
POWER ON •••••••••••••••
COLD LOAD

Sequence For ICS-Type Interrupts
Sequence For Non-ICS Type Interrupts ••••••••

INTERRUPT HANDLER •••••••••••••••••••••••••••
DISP Instruction ••••••••••••••••••••••••• • ••
Pseudo Enabling/Disabling The Dispatcher •••••••••••
IXIT Instruction •••••••••••••••••••••••••••••••••

INTERRUPT SYSTEM SERVICING INFORMATION ••••••••••••••••

SECTION IX - HP 3242lA SERIES III POWER SUPPLIES

Paragr aph Page

...~ ...

.. 9-1
9-1
9-1
9-4
9-4
9-4
9-4
9-4
9-4
9-5
9-5
9-6
9-8
9-9
9-9

·....·....
·....·.........

..··············· ············•····..··································· ..··············· ··• .

...........................INTRODUCTION
HP 303l0A OPERATION •••••

Primary Power Circuit ••••••••••
Preregulator A9 ••••••••••••••
Preregulator Control Al ••••••••
Inverter A7 ••••••••••••••••••••
Inverter Driver A2 •••••••••••••
Full-Wave Rectifiers and Filters
20-Volt Regulators •••••••••••••••••••••••••••••••••••••
Current Limiter A4 •••••••••••••••• • •••••••••
Voltage Protection and Control AS •••••••••••••••

HP 303l0A SERVICING INFORMATION
Preventive Maintenance ••••••
HP 303l0A Adjustments

PREREGULATOR ADJUSTMENT

xiv

CONTENTS (continued)

SECTION IX (CONT)

Paragraph Page

• G • • • • • • • • • •

......................

...................................

..................................

9-10
9-10
9-11
9-11
9-14
9-15
9-15
9-16
9-16
9-16
9-18
9-19
9-19
9-19
9-20
9-20
9-20
9-21
9-22
9-22
9-22
9-24
9-24

.................................

.................................

...................................

..

20-VOLT ADJUSTMENT
VOLTAGE PROTECT PCA ADJUSTMENT ••••••••••••••••••••••

HP 30310A Troubleshooting ••••••••••••••••••••••••••
3031lA OPERATION
3031lA SERVICING INFORMATION •••••••••••••••••••••••••••
Pre vent i ve Ma intenance

VOLATGE CHECKS ••••••••••••••••••••••••••••••••••••••
BATTERY TEST

HP 3031lA Adjustments
BATTERY (FLOAT) VOLTAGE ADJUSTMENT ••••••••••••••
+12 VOLT ADJUSTMENT
+5.00 VOLT INTERNAL REFERENCE ADJUSTMENT ••••••••••••

Replacement Procedures
POWER SUPPLY REPLACEMENT ••••••••••••••••••••••••••••
BATTERY PACK REPLACEMENT ••••••••••••••••••••••••
CONTROL PCA REPLACEMENT •••••••••••••••••••••••••
MOTHERBOARD PCA RE PLACEMEN'J.1 •••••••••••••••••••••••••

30312A OPERATION
Overcurrent Protection •••••••••••••••••••••••••••••
Undervoltage Protection ••••••••••••••••••••••••••••••
Power Failures •••••••••••••••••••••••••••••••••••••••
Dc Enab Ie ••
30312A SERVICING INFORMATION

HP

HP

HP
HP

SECTION X - HP 32435A SERIES I I I POWER SUPPLIES

Paragraph Page

..
..INTRODUCTION

POw""ER SUPPLY TROUBLESHOOTING
POWER SUPPLY ADJUSTMENTS
REPAI RAND REPLACEMEN'r

............................ 10-1
10-1
10-3
10-5

SECTION XI - SYSTEM INSTALLATION

Paragraph Page

PART 1
HP 32421A SERIES III CO~1PUTER SYSTEM INSTALLATION

EQUIPMENT BAY INSTALLATION ••••••••••••••••••••••••••••••••
Power Distribution unit ••••••••••••••••••••••••••••••••
Powe r Con t r 01 Un it •••••••••••••••••••••••••••••••••••••
Powe r Con tr 01 Mod u1 e •••••••••••••••••••••••••••••••••••
Bus Cable Connections ••••••••••••••••••••••••••••••••••
Interrupt Poll, Data Poll, and MCU Clock Connections

PERI PHERAL DEVI CE I NST AL LAT I ON ••••••••••••••••••••••••••••
NEW INSTALLATION TURN-ON ••••••••••••••••••••••••••••••••
SYSTEM VOLTAGE ADJUSTMENTS ••••••••••••••••••••••••••••••••

11-1
11-2
11-5
11-8
11-9
11-9
11-11
11-11
11-12

xv

CONTENTS (continued)

SECTION XI (CONT)

Paragraph

SYSrEM VERIFICA'I'ION
Page

11-14

PART 2
HP32435A SERIES III COMPUTER SYSTEM INSTALLATION

EQUIPMEN1' BAY INSTALLATION •••••••••••••••••••••••••••••••
Isolation Transformer Strapping .•..•.•..••••••••••••••
Cable Connections ••••••••••••••••••••••••••••••••••.••

PERIPHERAL DEVICE INS'rALLATION •••••••••••••••••••••••••••
NEW INSTALLATION 'rURN-oN •••••••••••••••••••••••••••••••••
SYS'rEM VOLTAGE CHECKS ••••••••••••••••••••••••••••••••••••
SYSTEM VERIFICATION ••••••••••••••••••••••••••••••••••••••

xvi

11-15
11-15
11-18
11-18
11-18
11-19
11-19

Title

ILLUSTRATIONS I

Page

HP 3000 Se r ies I I I Comp ute r Sys tern Software ••••••••••••••
HP 3242lA Series III Computer System, 2-Bay Model ••••••••
HP 3242lA Series III Computer System, 3-Bay Model ••••••••
HP 32435A Series III Computer System, I-Bay Model ••••••••
HP 32435A Series III Computer System, 2-Bay Model ••••••••
HP 3000 Series III Computer System Hard\llare Organization
CTL Bus Priority Number Assignments ••••••••••••••••••••••
Typ i ca 1 Da ta St a c k •••••••••••••••••••••••••••••••••••••••
CPU Segment Pointer Registers ••••••••••••••••••••••••••••
Basic Data Str uctures ••••••••••••••••••••••••••••••••••••
Formats Associated With Code Segments ••••••••••••••••••••
Data Segment Table Entry Format ••••••••••••••••••••••••••
Code Segment Linkage •••••••••••••••••••••••••••••••••••••
CPU Registers and Stack Basic Operations •••••••••••••••••
CPU TOB Registers ••
S t a c k Ma. r k Ch a in. •
Standard Stack Marker Format •••••••••••••••••••••••••••••
Ins t r uc t ion Group s •••••••••••••••••••••••••••••••••••••••
Memory Addressing ~des ••••••••••••••••••••••••••••••••••
Indirect Addressing Examples •••••••••••••••••••••••••••••
Indexing Examples ••
By te Addre s si ng Ex amp les •••••••••••••••••••••••••••••••••
Accessing DB- Area •••••••••••••••••••••••••••••••••••••••
Addre s sing and Stac k Bo und s ••••••••••••••••••••••••••••••
CPU Simplified Logic Diagram •••••••••••••••••••••••••••••
ROM PCA Jumper Locations •••••••••••••••••••••••••••••••••
SSF PCAJumper Locations •••••••••••••••••••••••••••••••••
S-Bus PCA Switch Locations •••••••••••••••••••••••••••••••
crR PCA Jumper Locations •••••••••••••••••••••••••••••••••
System Control Panel •••••••••••••••••••••••••••••••••••••
1-1a. in te nan ce Pa ne 1 ••
1-1a.intenance Panel I/O Overlay ••••••••••••••••••••••••••••
Maintenance Panel Operating Connections ••••••••••••••••••
Sw itch Tes t Lamp Ind i ca t ions •••••••••••••••••••••••••••••
Sub -opcode 00 Forma ts ••••••••••••••••••••••••••••••••••••
Sub-opcode 01 Formats ••••••••••••••••••••••••••••••••••••
Sub -opcode 02 Forma ts ••••••••••••••••••••••••••••••••••••
Sub -opcode 03 Forma ts ••••••••••••••••••••••••••••••••••••
Sub-Opcode 04 thru 17 Formats ••••••••••••••••••••••••••••
Dele ting A High Order Word •••••••••••••••••••••••••••••••
Single Vbrd Shifts •••••••••••••••••••••••••••••••••••••••
Indirect Branch Via Stack ••••••••••••••••••••••••••••••••
Mo ve Ex amp les ••
Subroutine Call and Exit •••••••••••••••••••••••••••••••••
PCAL Instruction Flowchart •••••••••••••••••••••••••••••••
EXIT Instruction Flowchart •••••••••••••••••••••••••••••••

xvii

1-5
1-6
1-6
1-7
1-7
2-2
2-8
2-10
2-13
2-17
2-18
2-19
2-20
2-23
2-24
2-25
2-28
2-29
2-36
2-37
2-39
2-41
2-43
2-44
2-47
2-62
2-63
2-65
2-66
3-3
3-5
3-24
3-25
3-29
4-4
4-5
4-6
4-7
4-8
4-21
4-23
4-24
4-25
4-27
4-29
4-31

...

ILLUSTRATIONS (continued)

Title

IXIT Instruction Flowchart •••••••••••••••••••••••••••••••
I/O Order Pairs ••
Basic Arithmetic Stack Operations ••••••••••••••••••••••••
Declaring and Calling A Procedure ••••••••••••••••••••••••
Executing A Simple Procedure •••••••••••••••••••••••••••••
Recursive Program ••
Recursive Procedure Flowchart ••••••••••••••••••••••••••••
Stack Operations During Recursive Calls ••••••••••••••••••
Stac k Ope ra t ions Dur ing IE cur s i ve Exi ts ••••••••••••••••••
Microinstruction Summary •••••••••••••••••••••••••••••••••
MCU Simplified Logic Diagram •••••••••••••••••••••••••••••
Memory ~bdule Simplified Logic Diagram •••••••••••••••••••
MCU PCA Jumper Locations •••••••••••••••••••••••••••••••••
Memory Module Interface Diagram ••••••••••••••••••••••••••
S~~ PCA Chip Arrangement •••••••••••••••••••••••••••••••••
Err 0 r Co r r e c t ion Codes •••••••••••••••••••••••••••••••••••
Decode of HOI through H05 ••••••••••••••••••••••••••••••••
MEMLOGAN Table
Typical MEMLOGAN Printout ••••••••••••••••••••••••••••••••
TIO Word Format ••
CIO Word Forma t •••••••••••••.••••••••••••••••••••••••••••
WIO Wo rd Forma t ••
RIO Word Forma t ••
SNA PCA Switch Locat.ion ••••••••••••••••••••••••••••••••••
MeL PCA Switch Locations •••••••••• • ••••••••••••••••••
Basic I/O Access Methods •••••••••• • ••••••••••••••••••
File System Basic Operation ••••••••••••••••••••••••••••••
I/O System Fundamental Elements ••••••••••••••••••••••••••
Device Reference Table •••••••••••••••••••••••••••••••••••
I/O System Overview ••••••••••••••••••••••••••••••••••••••
Di re c t Read For Te rm inal De vi ces •••••••••••••••••••••••••
Direct Wr ite For TerJTl i.nal Devices ••••••••••••••••••••••••
Blocked and Unblocked I/O ••••••••••••••••••••••••••••••••
I/O Hardware Elements ••••••••••••••••••••••••••••••••••••
lOP Simplified Logic Diagram •••••••••••••••••••••••••••••
Interrupt Poll and Data Poll •••••••••••••••••••••••••••••
I/O Data Ro ute s ••
I/O Program Operation ••••••••••••••••••••••••••••••••••••
Multiplexer and Selector Channel Comparisons •••••••••••••
Mul tiplexer Channel and Device COntroller Simplified

Log ic Diagr am •••
Multiplexer Channel Simplified Logic Diagram •••••••••••••
Port Controller Simplified Logic Diagram •••••••••••••••••
Selector Channel and Device Cont.roller Simplified

Log ic Diagr am •••
Selector Channel Simplified Logic Diagram ••••••••••••••••
lOP PCA Jumper and Sw itch IDea tions ••••••••••••••••••••••
MUltiplexer Channel PCA Jumper IDeations •••••••••••••••••
Selector Channel Register PCA Jumper /Switch Locations ••••
ICS Dispatcher Marker ••••••••••••••••••••••••••••••••••••
Interrupt System Overview ••••••••••••••••••••••••••••••••
Fi r s t Leve 1 Ex te r nal In te r r up t •••••••••••••••••••••••••••
Second Level Int.errupt or Dispatcher Interrupted ••••••

xviii

Page

4-34
4-36
4-38
4-40
4-42
4-44
4-45
4-47
4-49
5-4
6-2
6-4
6-9
6-10
6-13
6-15
6-16
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
7-2
7-3
7-4
7-6
7-8
7-10
7-11
7-15
7-16
7-17
7-21
7-22
7-26
7-27

7-29
7-31
7-37

7-39
7-41
7-47
7-49
7-50
8-4
8-5
8-10
8-11

Title

ILLUSTRATIONS (continued)

Page

ICS-Type Internal Interrupt ••••••••••••••••••••••••••••••
Non-ICS Type Inte rnal Interr upts •••••••••••••••••••••••••
Interrupt Handler Flowchart ••••••••••••••••••••••••••••••
Power Controls and Indicators ••••••••••••••••••••••••••••
HP 303l0A Power Supply Block Diagram •••••••••••••••••••••
HP 303llA Power Supply Block Diagram •••••••••••••••••••••
Control Board Adjustment Locations •••••••••••••••••••••••
HP 30312A Power Supply Block Diagram •••••••••••••••••••••
Power Supply Control and Display Assembly ••••••••••••••••
PDU Schematic Diagram •••••••••••••••••••••••••••••••••••••
PCU Schematic Diagram •••••••••••••••••••••••••••••••••••••
PCU/PCM Line Filter Connections •••••••••••••••••••••••••••
PCU to PCU/PCM Interconnecting Cable ••••••••••••••••••••••
PCM Schematic Diagram •••••••••••••••••••••••••••••••••••••
Isolation Transformer Strapping Options •••••••••••••••••••

xix

8-20
8-22
8~25

9-2
9-3
9-13
9-17
9-23
10-2
11-4
11-6
11-7
11-7
11-10
11-17

TABLES

Title

HP 3242lA Series III 2-Bay Model PCA Slot Assignments ••••
HP 3242lA Series III 3-Bay Model PCA Slot Assignments ••••
HP 32435A Series III PCA Slot Assignments ••••••••••••••••
Central Processor MOdule Features ••••••••••••••••••••••••
Ma in Memory Con f igur a t ions •••••••••••••••••••••••••••••••
Machin e Re g i s te r s ••••••••••••••.••••••••••••••••••••••••••
Reserved Low Main Memory Locations •••••••••••••••••••••••
Cort d i t i on Cod e s ••
Bounds Che cks Surnn1ary ••••••••••••••••••••••••••••••••••••
TOS Namer Relationships ••••••••••••••••••••••••••••••••••
Memory Interleaving Switch Configurations ••••••••••••••••
System Control Panel Sw itches and Lamps ••••••••••••••••••
Maintenance Panel Switches and Lamps •••••••••••••••••••••
MPI PCA J3 Pin Connections •••••••••••••••••••••••••••••••
Stack Element Locations ••••••••••••••••••••••••••••••••••
R-Bus Field Code Definitions •••••••••••••••••••••••••••••
S-Bus Field Code Definitions •••••••••••••••••••••••••••••
Function Field Code Definitions ••••••••••••••••••••••••••
Shift Field Code Definitions •••••••••••••••••••••••••••••
Store Fie ld Code Def in it ions •••••••••••••••••••••••••••••
Special Field Code Definitions •••••••••••••••••••••••••••
MCU Option Field Code Definitions ••••••••••••••••••••••••
Skip Field Code Definitions ••••••••••••••••••••••••••••••
Interrupt Types ••
HP 303l0A Dc Output Voltages •••••••••••••••••••••••••••••
HP 303llA Power Supply Controls and Indicators •••••••••••
:Dc Ou tpu t Vol tages •••••••••••••••••••••••••••••••••••••••
Float Voltage Versus Temperature •••••••••••••••••••••••••
DC Power Supply Spcifications ••••••••••••••••••••••••••••
DC STATUS/POWER Ind ica tors and Sw itches ••••••••••••••••••
POD Strap Connections at TBI •••••••••••••••••••••••••••••
POD to PCM Co nne ct ions •••••••••••••••••••••••••••••••••••
POD Ac Se rv ice Str ip Wi ring ••••••••••••••••••••••••••••••
HP 303llA Tes t Jac k Vol tages •••••••••••••••••••••••••••••
Pr irnary Power Vol tage Tolerances •••••••••••••••••••••••••
System DC Voltage Tolerances •••••••••••••••••••••••••••••

Page

1-8
1-9
1-10
2-5
2-6
2-12
2-16
2-33
2-46
2-56
2-64
3-3
3-7
3-27
5-2
5-6
5-9
5-13
5-24
5-25
5-29
5-34
5-38
8-2
9-9
9-14
9-15
9-18
10-3
10-4
11-3
11-5
11-5
11-14
11-16
11-19

INTRODUCTIONI~

The HP 3000 Series III Computer Systems are general purpose com­
puters with true multiprogramming and mUltilingual capabilities.
They can simultaneously handle many interactive and batch opera­
tions; each in any of several programming languages. The HP 3000
Ser ies III Computer Sys terns feature hardware stack architecture,
variable-length code segmentation in a hardware-assisted virtual
memory scheme, user protection, dynamic storage allocation, and
integrated hardware/software design. The hardware and software
work together in an interrelated manner with the hardware per­
forming many operations conventionally performed by software.
The HP 3000 Series III Computer Systems have a single, comprehen­
sive operating system, the Multiprogramming Executive (MPE). MPE
is a general-purpose, disc-based software sys tern that supervises
the processing of user programs. MPE relieves the user of many
program control, input/output, and other housekeeping responsi­
bilities by monitoring and controlling the compilation, run prep­
aration, loading, execution, and output of user programs. MPE
also controls the order in which programs are executed and allo­
cates the hardware and software resources they require.

1-1. SYSTEM FEATURES

The HP 3000 Series III Computer Systems incorporate many features
usually found only on very large computer systems. These fea­
tures are summarized in paragraphs 1-2 through 1-10.

1-2. Stack Architecture

The system's stack architecture provides private, hardware­
protected data storage for each user as well as an automatic
method for moving this data to and from the central processor
registers. The major operating features derived from this design
are:

a. Fast execution

b. Code compression

c. Hardware-protected execution

d. Dynamic allocation of sUbprogram data space

e. Ease of parameter passing

f. Efficient sUbprogram linkage

g. Rapid interruption and restoration of user environments

h. Subprograms being able to call themselves (recursion)

1-1

In t r cd uc t ion

1-3. Microprogrammed Operations

Many system operations that were previously programmed in soft­
ware are now microprogrammed. These operations are requested by
machine instructions which in turn execute multiple microin­
structions built into the central processor hardware. Micropro­
gram~ing eliminates repetitive coding otherwise required for
recurring operations.

1-4. Data Base Management Faciities

The computer systems provide software facilities that allow the
user to create, access, and maintain large data bases. The in­
formation in these bases can be acces sed both interactively from
a keyboard terminal and programmatically from user programs writ­
ten in any of the the available programming languages.

1-5. Fiw Programming languages

The computer systems provide the user with a true multilingual
programmlng environment. The six available languages are COBOL,
RPG, FORTRAN, BASIC, SPL (a language developed especially for the
HP 3000 Series Computers), and APL.

1-6. Virtual Memory

The operating system's hardware-assisted virtual memory scheme
offers each user program a memory space that exceeds the maximum
main memory size of 1024K words. Virtual memory consists of both
main memory and a flexible storage area on disc. Virtual memory
is implemented using a segment trap frequency algorithm that en­
sures the automatic presence in main memory of only those seg­
ments of code and data which are currently required by the
executing program. Main memory is thus efficiently shared by
the users in a manner that gives each programmer the impression
of working with a much larger computer system.

1-7. Fault Control Memory

The computer systems employ high-speed semiconductor memory mod­
ules that provide automatic fault detection and single-bit cor­
rection with no loss in performance.

1-8. Concurrent I/O and CPU Opemtions

Many I/O operations can be performed concurrently with Central
Processor unit (CPU) and memory operations. This is possible
because, in addition to the CPU, the computer has an Input/Output
Processor (lOP) with its own dedicated data transfer path (lOP
bus) to which are connected a Multiplexer Channel(s) and one or
more Asynchronous Terminal Controllers. All of this hardware
operates under control of the MPE operating system which handles
all queuing and device sched uling.

1-2

Introduction

1-9. Reentrant Code and Private Data

Within the MPE environment, many user and system functions can be
active concurently without interferring with each other because
the hardware provides protection of programs and guarantees the
privacy of user data areas. The hardware keeps code and data
physically separate by organizing them into reentrant code seg­
ments and data segments. (The code segments can be shared among
users, but not altered. The data segments cannot be shared, but
can be altered by the creating user.) This segmenting ability
facilitates the operation of virtual memory in that 1; code seg­
ments need ne ve r be swapped out since an ident ical cop y always
exists on disc, and 2; code segments can be swapped indirectly
from wherever the program file resides on disc without having to
be copied first to a special swapping disc.

1-1J. ~erating System

A single, comprehensive operating system (MPE) supervises the
processing of all user programs and provides the user with an
extensive set of system functions. The major features of MPE are:

a. Interchangeable batch and interactive processing

b. Uniform, device-independent, and language-independent file
system

c. File coordination and security

d. Input and output spooling (concurrent usuage of I/O devices)

e. Console job contr 01

f. Automatic scheduling
management)

(under control of the installation's

g. System back-up facility

h. Power fail/auto restart

i. System tailoring (under control of installation's management)

j. System logging facility

1-11. HARDWARE FEATURES

The hardware design of the HP 3000 Series III Computer System
will be discussed in detail throughout the remainder of this man­
ual. Briefly, the hardware features are:

a. Up to 1024K words of high-speed, fault correcting, semicon­
ductor memory

b. High-speed selector channels for block transfers between main
memory and high-speed I/O devices such as discs

1-3

Introd uct ion

c. I/O multiplexer channels for word transfers between main
memory and low- to medium-speed I/O devices such as card
readers, line printers, and magnetic tape units

d. Asynchronous terminal controllers for data transmissions be­
tween main memory and interactive terminals

e. High-speed disc storage devices that provide storage capaci­
ties from 15 to 120 million bytes and data transfers of near­
ly one megabyte per second

f. 800 or 1600 character-per-inch magnetic tape units

g. Line printers with operating speeds from 165 to 1800 lines
per minute

h. CRT display terminals

i. Card readers and high-speed punched tape equipment

1-12. SOFTWARE FEATURES

The HP 3000 Series III Computer Systems offer a wide range of
software including the MPE operating system, six programming la~'

guages, a text editor, a flexible file copier, a fast sort/ merge
package, two libraries of commonly used mathematical, statisti­
cal, and utility procedures, data base management facility, and
data communications products. Currently available software is
shown in figure 1-1.

1-13. SYSTEM CONFIGURATIONS

The HP 3000 Series III Computer Systems are available in two pro­
duct lines; the 3242lA Series III and the 32435A Series III. The
32421A Series III is available in two hardware models; a standard
2-bay model and an opt ional 3- bay model (Opt ion 200). The 32435A
Series III is also available in two hardware models; a standard
I-bay model and an optional 2-bay model (Option 200). All models
use the same operating system, language processor s, utility pro­
grams, data base management programs, and data communications
programs. All models operate in both batch and interactive modes
with full spooling capabilities. Rack layouts for the four mod­
els are shown in figures 1-2 through 1-5. (HP 29425A Cabinets
that contain the system discs are not shown.) The printed cir­
cuit assembly (PCA) slot assignments for the models are listed in
tables 1-1 through 1-3.

1-4

In trodu c t ion

OPERATING SYSTEM

System
Command

File Input/
Configurator Initiator Console

Interpreter
Management Output

Manager System System

Virtual Disc Private Serial Tape
Memory Space Volumes Disc Labels
Manager Manager Facility Interface Facility

Spooling Job/Session Process
User

Facility Scheduler Dispatcher
Segmenter Loader Trap

Manager

Utility Accounting Logging
Backup/ Power
Restore Fail/

Intrinsics Facility Facility
Facility Auto Restart

LANGUAGES

COBOL RPG FORTRAN

UTILITIES

BASIC SPL APL

File Compiler Scientific
Data

Text Editor Sort/Merge Entry
Copier Library Library Library

DATA MANAGEMENT

KSAM
DBMS

(I mage & Query)
FORMS

DATA COMMUNICATIONS

os I RJE I MRJE I,---MTS

Figure 1-1. HP 3000 Series III Computer System Software

1-5

Introduction

CPU BAY PERIPHERAL 1/0 BAY

: :..
HP J0310A ..

HP 30310A

mmmuumuu
cHP JOO62A -:l

= = = 0 POWER 0
DISTRIBUTION UNIT

POWER CONTROL~o MODULE

[Q] ~(~
I

"

I I I I

CARD CAGE NO. 3

CABLE GAP

.

I CARD CAGE NO.4

l

I i
Ii: '.'

I

I> I

! 1-

FAN FILTER___ _ I

BAY NO. Z BAY NO. 1 BAY NO. 2,..---------,----------,
CPU BAY 0

(NOT USEO)

I ---I

IJCARD CAGE NO. 7

il~-I

! ifFAN FILTER

I I' ~

-

FRONT VIEW REAR VIEW

lDOORS OMITTED FOR CLARITY) (DOORS REMOVED FOR CLARITY I

Figure 1-2. HP 32421A Series III Computer System, 2-Bay ~de1

BAY NO. 3 BAY NO. Z BAY NO_ 1 BAY NO 1 BAY NO. Z BAY NO.3

tII~HP7970E

!! TAPE3RIVE

10

CPU BAY I/O BAY PERIPHERAL BAY

.. HP 30310A
..

IBLANK PANELI

muuuuuummu
eHP 30062A":::I

= = = o POWER 0 o POWER 0
DISTRIBUTION UNIT DISTRIBUTION UNIT

POWER CONTROL~ IBLANK PANELIo MODULE

~"LTERIlQJ
1

~
I

1 I I I 1 I

CABLE GAP

CPU BAY 0

CARD CAGE NO. Z

CARD CAGE NO.1

ICARD CAGE NO. 4

0· .. ·.. • ••

I I CARD CAGE NO.3

~

I T

110 BAY

(NOT USED)

l:C~GEND.6
CABLE GAP

I I

(NOT USEDI

r:'LTER

PER'I'HERAL BAY

011

I

• FRONT VIEW

(DOORS OMITTED FOR CLARITY)

REAR VIEW

1000RS REMOVED FOR CLARITY)

Figure 1-3. HP 32421A Series III Computer System, 3-Bay Model

1-6

Introduction

SYSTEM CONTROL PANEL

UUUtiUUliUUUUUUU
CARD CAGE NO.1

c:= HP3OOIl2A =
= = =

CARD CAGE NO.2 CARD CAGE NO. 2

CARD CAGE NO.3
CARD CAGE NO.3

i:il

w

CARD CAGE NO.4

POWER SUPPLY CONTROL
AND DISPLAY ASSY

w

FRONT VIEW
(DOOR REMOVED FOR CLARITY)

REAR VIEW
(DOOR REMOVED FOR CLARITYI

Figure 1-4. HP 32435A Series III Computer System, I-Bay lvbde1

I/O BAY CPU BAY CPU BAY I/O BAY

CARD CAGE NO.6

CARD CAGE NO.5

I
o
o

I----------t~

g
o
o
o
g
o
o

!
I----------tg

CARD CAGE NO.3

c:= HP30062A =
= = =
UUUtiUUUUUUliUUU

CARD CAGE NO.1

10

CARD CAGE NO.2

w

CARD CAGE NO.3

CARD CAGE NO.4

SYSTEM CONTROL PANEL

POWER SUPPLY CONTROL
AND DISPLAY ASSY

01

10

w w

CARD CAGE NO.6

CARD CAGE NO.5

01

w

FRONT VIEW
(DOOR REMOVED FOR CLARITY)

REAR VIEW
(DOOR-REMOVED FOR CLARITYI

Figure 1-5. HP 32435A Series III Computer System, 2-Bay Model

1-7

Introduction

SLOT PRINTED CIRCUIT ASSEMBLY

Al Reserved for maintenance panel PCA.
A2 30012·60001 Expanded Read Only Memory
A3 30003·60021 Read Only Memory
A4 30003·60022 Skip and Special Field

CARD A5 30003·60003 Arithmetic and Logic Unit
CAGE A6 30003·60004 R Bus
NO.1 A7 30003·60025 S Bus

A8 30003·60006 Current Instruction Register
A9 30003·60007 Module Control Unit
Al0 30003·60028 Input Output Processor

Al 30032·60001 Terminal Data Interface
A2 30061·60001 Terminal Control Interface
A3 Reserved for 204 Modem capability
A4 30009·60002 Fault Logging Interface

CARD A5
CAGE A6 30008·60003 Memory Array (128K)
NO.2 A7 Available to add 128K

A8 Available to add 128K
A9 Available to add 128K
A10 30007·60005 Memory Control and Logging

Al Available for add-on memory
A2 Available for add-on memory
A3 Available for add-on memory
A4 Available for add-on memory

CARD A5 Available for add-on memory
SLOT PRINTED CIRCUIT ASSEMBLY CAGE A6

NO.3 A7 30030·60020 Selector Channel Port Controller
A1 Available for programmed (SIO) or direct I/O A8 30030-60021 Selector Channel Register
A2 30215·60002 Magnetic Tape Controller Processor A9 30030·60003 Selector Channel Control
A3 30215·60006 Magnetic Tape Controller Al0 30030·60011 Selector Channel Sequencer

A4 Available for programmed (SIO) or direct I/O
CARD A5 Available for programmed (SIO) or direct I/O Al 30036·60002 Multiplexer Channel
CAGE A6 Available for programmed (SIO) or direct I/O A2 Available for programmed (SIO) or direct I/O.
NO.7 A7 Available for programmed (SIO) or direct I/O A3 Available for programmed (SIO) or direct I/O.

A8 Available for programmed (SIO) or direct I/O A4 Reserved for Selector Channel maintenance.
A9 Available for programmed (SIO) or direct I/O CARD A5 30031·60001 System Clock
Al0 Available for programmed (SIO) or direct I/O CAGE A6 Reserved for maintenance.

NO.4 A7 30229-60001 7905A/20A/25A Interface
A8 13037·60028 Disc Controller
A9 13037·60024 Error Correction
Al0 13037·60001 Microprocessor

Table 1-1. HP 3242lA Series III 2-Bay Model peA Slot Assignments

1-8

Introduction

SLOT PRINTED CIRCUIT ASSEMBLY SLOT PRINTED CIRCUIT ASSEMBLY

A1 30036·60002 Multiplexer Channel Al Reserved for maintenance panel PCA.
A2 30215·60002 Magnetic Tape Controller Processor A2 30012·60001 Expanded Read Only Memory
A3 30215·60006 Magnetic Tape Controller A3 30003·60021 Read Only Memory
A4 30031-60001 System Clock A4 30003·60022 Skip and Special Field

CARD A5 Available for programmed (SIO) or direct I/O CARD A5 30003·60003 Arithmetic and Logic Unit
CAGE A6 Available for programmed (SID) or direct I/O CAGE A6 30003·60004 R Bus
NO.5 A7 Available for programmed (SID) or direct I/O NO.1 A7 30003-60025 S Bus

A8 Available for programmed (SID) or direct I/O A8 30003·60006 Current Instruction Register
A9 Available for programmed (SID) or direct I/O A9 30003-60007 Module Control Unit
A10 Available for programmed (SID) or direct I/O Al0 30003-60028 Input Output Processor

A1 Available for programmed (SIO) or direct I/O Al 30032-60001 Terminal Data Interface
A2 Available for programmed (SID) or direct I/O A2 30061·60001 Terminal Control Interface
A3 Available for programmed (SID) or direct I/O A3 Reserved for 203 Modem capability
A4 Available for programmed (SID) or direct I/O A4 30009-60002 Fault Logging Interface

CARD A5 Available for programmed (SID) or direct I/O CARD A5
CAGE A6 Available for programmed (SID) or direct I/O CAGE A6 30008·60003 Memory Array (128K)
NO.6 A7 Available for programmed (SID) or direct I/O NO.2 A7 Available to add 128K.

A8 Available for programmed (SID) or direct I/O A8 Available to add 128K.
A9 Available for programmed (SID) or direct I/O A9 Available to add 128K.
A10 Available for programmed (SID) or direct I/O Al0 30007·60005 Memory Control and Logging

A1 Available for programmed (SID) or direct I/O Al Available for add-on memory
A2 Available for programmed (SID) or direct I/O A2 Available for add-on memory
A3 Available for programmed (SID) or direct I/O A3 Available for add-on memory
A4 Available for programmed (SID) or direct I/O A4 Available for add-on memory

CARD A5 Available for programmed (SID) or direct I/O CARD A5 Available for add-on memory
CAGE A6 Available for programmed (SID) or direct I/O CAGE A6
NO.7 A7 Available for programmed (SID) or direct I/O NO.3 A7 30030-60020 Selector Channel Port Controller

A8 Reserved for second disc controller A8 30030-60021 Selector Channel Register
A9 Reserved for second disc controller A9 30030-60003 Selector Channel Control
A10 Reserved for second disc controller A10 30030·60011 Selector Channel Sequencer

Al Reserved for second Selector Channel
A2 Reserved for second Selector Channel
A3 Reserved for second Selector Channel
A4 Reserved for Selector Channel maintenance.

CARD A5 Reserved for second 7905A/20A/25A Interface
CAGE A6 Reserved for maintenance.
NO.4 A7 30229·60001 7905A/20A/25A Interface

A8 13037·60028 Disc Controller
A9 13037-60024 Error Correction
Al0 13037·60001 Microprocessor

Table 1-2. HP 32421A Series III 3-Bay Mbdel peA Slot Assignments

1-9

Introduction

Slot PRINTED CIRCUIT ASSEMBLY

Al Available for programmed (SIO) or direct I/O
A2 Available for programmed (SIO) or direct I/O
A3 Available for programmed (SIO) or direct I/O
A4 Available for programmed (SIO) or direct I/O

CARD A5 Available for programmed (SIO) or direct I/O
CAGE A6 Available for programmed (SIO) or direct I/O
NO.5 A7 Available for programmed (SIO) or direct I/O

A8 Available for programmed (SIO) or direct I/O
A9 Available for programmed (SIO) or direct I/O
Al0 Available for programmed (SIO) or direct I/O

Al Available for programmed (SIO) or direct I/O
A2 Available for programmed (SIO) or direct I/O
A3 Available for programmed (SIO) or direct I/O
A4 Available for programmed (SIO) or direct I/O

CARD A5 Available for programmed (SIO) or direct I/O
CAGE A6 Available for programmed (SIO) or direct I/O
NO.5 A7 Available for programmed (SIO) or direct I/O

A8 Available for programmed (SIO) or direct I/O
A9 Available for programmed (SIO) or direct I/O
Al0 Available for programmed (SIO) or direct I/O

I/O BAY

Slot PRINTED CIRCUIT ASSEMBLY

Al Reserved for maintenance panel PCA.
A2 30012·60001 Expanded Read Only Memory.
A3 30003·60021 Read Only Memory

CARD
A4 30003-60022 Skip and Special Field
A5 30003·60003 Arithmetic and Logic Unit

CAGE
A6 30003-60004 R Bus

NO.1 A7 30003-60025 S Bus
A8 30003-60006 Current Instruction Register
A9 30003-60007 Module Control Unit
Al0 30003-60028 Input Output Processor

Al 30008-60003 Memory Array (128K)
A2 Available to add 128K
A3 Available to add 128K

CARD
A4 Available to add 128K
A5 30007-60005 Memory Control and Logic #1

CAGE A6 Available to add Memory Control and Logic #2
NO.2 A7 Available to add 128K

A8 Available to add 128K
A9 Available to add 128K
Al0 Available to add 128K

Al 30135-60063 System Clock/FLI
A2 30032-60001 Terminal Data Interface
A3 30061-60001 Terminal Control Interface

CARD
A4 30030-60020 Selector Channel Port Controller
A5 30030-60021 Selector Channel Register

CAGE
A6 30030·60003 Selector Channel Control

NO.3
A7 30030-60011 Selector Channel Sequencer
A8 Available for programmed (SIO) or direct I/O
A9 Available for programmed (SIO) or direct I/O
Al0 Available for programmed (SIO) or direct I/O

Al Available for programmed (SIO) or direct I/O
A2 Available for programmed (SIO) or direct I/O
A3 Available for programmed (SIO) or direct 1/0

CARD
A4 Available for programmed (SIO) or direct I/O
A5 Available for programmed (SIO) or direct I/O

CAGE
A6 Available for programmed (SIO) or direct I/O

NO.4 A7 30215-60002 Magnetic Tape Controller Processor
A8 30215-60006 Magnetic Tape Controller
A9 30036-60002 Multiplexer Channel
Al0 30229-60001 Disc Control Interface

CPU BAY

Table 1-3. HP 32435A Series III peA Slot Assignments

1-10

NOTES

1-11

Introduction

Introd uc t io n

NOTES

1-12

SYSTEM/CPU OVERVIEWI~

This section contains a brief description of the computer sys­
tem's hardware organization and detailed discussions of the sys­
tem's operating environment, instruction formats, addressing
conventions, and CPU operations. The topics that are summarized
in this section are discussed in more detail throughout the re­
mainder of this· manual. In addition, this section contains prin­
ciples of operation and servicing information for the CPU.

2-1 HARDWARE ORGANIZATION

The hardware elements of the computer system are organized as
shown in figure 2-1. This basic structure of independent modules
organized around a central Data (CTL) Bus permits high-speed in­
ternal data rates. When not communicating over the CTL Bus, each
module can run independently at its own speed. This structure
also allows new equipment to be added without going through a
major hardware reconfiguration. The separate Input/ Output Pro­
cessor (lOP) Bus is totally dedicated to input/output (I/O) data
transfers which allows the computer system to immediately respond
to I/O device needs regardless of what transfers are currently in
progress between the various system modules. The lOP Bus also
permits many I/O operations to be handled concurrently with CPU,
Main Memory, and Selector Channel operations. Data can be
transferred directly between Main Memory (Bank 0 through Bank 15)
and high-speed I/O devices in block mode via the Selector Channel
Bus, Selector Channel, Port Controller, and CTL Bus. For lower­
speed I/O devices, data can be multiplexed on a word-by-word
basis via the lOP, lOP Bus, Multiplexer Channel, and Multiplexer
Channel Bus. In both cases, the I/O channels operate in parallel
with CPU operations. In addition, I/O devices attached to the
lOP Bus can be directly controlled through the use of the CPU's
direct I/O instructions.

2-2. Bus System

The computer's bus sys tern is a network of data, control, and pow­
er lines necessary to effect the transfer of data between comput­
er modules and between I/O devices and memory. The individual
buses are discussed in paragr aphs 2-3 through 2-8.

2-3. CTL BUS. The CTL Bus provides the communications path
between all computer modules. This bus consists of a 50-conductor
flat cable and connectors and is connected to each Module Control
Unit (MCU) and Port Controller in the computer system. (Refer to
paragraph 2-15.)

2-1

System/CPU Overview

M
-CBanksO·7

U

Lower Memory Module

M
_ C Banks8·15

U

Upper Memory Module

Interactive Terrr.inal3
(Up to 16 terminals per controller)

\\\ .. ·111 \\\· ..111
en
::J
OJ_'

M
~ C
~ U
..J
oct
a:
t­
Z
w
U

Central
Processing

Unit
CPU

Input/Output
Processor

lOP

Multiplexer
Channel

Device
Controller

Multiplexer
Channel Bus

De.... ice
Controller

t
r - i --,
, Up to 15 I
, additional I

device
'L controllns I_.,__ ..J

,
+

lOP BUS

Asynchronous
Terrrinal
Controllsr

Asynchronous
Terrri"al

Controller

Port ~ Selector
Controller Channel

Selector Channel Bus

Note: Each device controller on
the Multiplexer Channel can
have from 1 to 8 devices
connected to it depending
on the type of device.

Figure 2-1. HP 3000 Series III Computer System Hardware
Organiza tion

2-4. lOP BUS. The lOP Bus provides the means for the lOP to
send control signals and control words to any Device Controller
and for the lOP to accept interrupts from any Device Controller.
(For multiplexed I/O.devices, all data transmissions also occur
via the lOP Bus. For high-speed devices connected to the Selec­
tor Channel Bus, data transmissions for direct I/O instructions
also occur via the lOP Bus.) This bus consists of a 50-conductor
flat cable and connectors and connects the lOP to every Device
Controller and Multiplexer Channel in the computer system.

2-5. SELECTOR CHANNEL BUS. The Selector Channel Bus (one for
each Selector Channel) provides the communica tion path for the
Selector Channel to select one of up to eight I/O devices for
transmission. Data transmissions on the Selector Channel Bus,
occuring as a result of an SIO instruction, are by block transfer
(data burst). This bus consists of a 50-conductor flat cable and
connectors and connects a Selector Channel to each of its as­
sociated high-speed Device Controllers.

2-2

System/CPU Overview

2-6. PORT CONTROLLER BUS. The Port Controller Bus (not shown
in figure 2-1) provides the communication path between each
Selector Channel and the Port Controller which interfaces with
the CTL Bus. This bus consists of a 50-conductor flat cable and
connectors and connects each Selector Channel to the Port
Co ntroller •

2-7. MULTIPLEXER CHANNEL BUS. Except for minor signal nomen­
clature differences, the MUltiplexer Channel Bus (one per Multi­
plexer Channel) is identical to the Selector Channel Bus. This
allows certain high-speed I/O devices to be connected inter­
changeably to either bus. The major difference is that data
transmissions are under control of a Multiplexer Channel instead
of a Selector Channel. All data transmissions in this case are
via the lOP Bus and are multiplexed among the I/O devices on a
word-by-word basis. (The equivalent data lines on the selector
Channel Bus are used as service request lines on the Multiplexer
Channel Bus.) This bus consists of a 50-conductor flat cable and
connectors and connects each Multiplexer Channel to each of its
a s soc i a te d De vice Co n tr 011e r s •

2-8. POWER BUS. The Power Bus (not shown in figure 2-1), unli ke
the previously discussed flat-cable buses, is a rigid PCA with
fixed 56-pin connectors. The Power Bus provides dc power and and
some lOP Bus related signals for each PCA mounted in a particular
card cage module. There is one Power Bus for each card cage mod­
ule and each Power Bus is individually wired to the computer's
power supply. Although dc power is not distributed from card
cage module to card cage module via the Power Bus, a 20-conductor
flat cable is connected be tween the Power Buses for the distr ibu­
tion of the lOP Bus related signals. In addition, each Power Bus
contains connector pins reserved for the data poll, interrupt
poll, and system clock s.ignals.

2-9. Functional Hardware Elements

Brief descriptions of the principal hardware elements illustrated
in figure 2-1 are contained in paragraphs 2-10 through 2-14.

2-10. CENTRAL PROCESSOR MODULE. The Central Processor Module
determines the basic characteristics of the computer system's
hardware and consists of the MCU, CPU, and lOP. Significant
features of the module are listed in table 2-1.

The MCU resolves CTL Bus priority conflicts between the CPU and
lOP and interfaces both to the CTL Bus. Refer to paragraph 2-15.
A detailed discussion of the MCU is contained in section VI.

The CPU translates received instruction words into microprogram
starting addresses, decodes microprograms into fixed control sig­
nal sequences, executes various ar ithmetic functions, and either
transfers the results out of the Central Processor Module or
stores the results in various internal registers for future use.
The CPU shares the MCU with the lOP. A detailed discussion of
the CPU is contained in paragraphs 2-71 through 2-133.

2-3

System/CPU Overview

The lOP provides the I/O control link for the computer system and
resolves priority conflicts for I/O interrupts and multiple
Multiplexer Channel access to the CTL Bus. The lOP performs
different functions for each of the three IT/O transfer modes.
(Refer to Section VII.) During direct F/O transfer mode and
depending on received direct rio instructions (RIO, vlIO, TIO,
CIO, SIN, and SMSK), the lOP transfers either data, device
status, or control information between the CPU and a Device Con­
troller. During programmed I/O transfer mode via a Multiplexer
Channel, the lOP transfers rio program words between memory and
the Multiplexer Channel, and transfers data between memory and a
Multiplexer-Channel-selected Device Controller. During pro­
grammed rio transfer mode via a Selector Channel, the lOP only
transfers initialization information to a Device Controller
associated with the Selector Channel; it does not become involved
in any part of the rio program execution. During all rio trans­
fer modes, the lOP interrup.ts the CPU on behalf of the Device
Controllers. The lOP shares the MCU with the CPU.

Physically, the Central Processor Module consists of nine PCA's
contained in slots A2 through AIO of card Cage No.1 of all HP
3000 Series III Computer System models. Card Cage No.1 is a
dedicated card cage module and the nine PCA's must be installed
exactly as shown in tables 1-1 through 1-3.

2-11. MAIN MEMORY. Main Memory is a high-speed, semiconductor,
randan access memory that provides high-speed storage for the
computer system. Main Memory operates as an error correcting
memory with single-bit fault correction and some doUble-bit de­
tection. (Main Memory can operate as a non-error correcting mem­
ory with a par ity bi t, but th is is not the normal opera ting
mode.) Main Memory can vary in size from 128K (K=1024) words to
l024K words and, due to its modular design, it can easily be ex­
panded from one size to another.

A maximum word capaci ty system (consists of 16 64K-word memory
banks (Bank 0 through Bank 15) divided into two 512K-word memory
modules. Each 512K-word memory module contains its own MCU which
controls word transfers between the module and the other system
modules connected to the CTL Bus. The word length transmitted
over the CTL Bus is 17 bits; 16 bits of data (one word or two
bytes) and one parity bit. (Within the memory modules, word
length is expanded to 22 bits; 16 bits of data and six bits for
automatic fault detection and correction.) A detailed discussion
of ~~in Memory is contained in Section VI.

Physically, Main Memory consists of three basic PCA':s configured
as shown in table 2-2. It should be noted that each Semiconduct­
or Memory Array (SMA) PCA contains 128K words of memory, that one
Memory Control and Logging (MCL) PCA can support up to four SMA
PCA's (512K), and that one Fault Logging Interface (FLI) PCA can
support the computer system's maximum memory capacity of eight
S~~ PCA's (1024K). The Main Memory PCA's are arranged in Card
Cages No.2 and No.3 as shown in tables 1-1 through 1- 3. Conven­
tionally, card cage slots 2A6 through 2A9 (HP 32421A Series III)

2-4

System/CPU Overview

Table 2-1. Central Processor Module Features

--,_.._"-,--~---~,,._----,--.,---._ .._._----------~--'"'-.:__._------------
ARCHITECTURE

Hardware-implemented stack
Separate code and data
Non-mod ifiable reentr ant code
Variable-length code segmentation
Virtual memory for code
Dynamic relocatability of programs

IMPLEMENTATION

Microprogrammed CPU
175 nanosecond microinstruction time
Automatic restart after power failure
CTL Bus
Bus parity checking
Concurrent CPU and I/O operations

INSTRUCTIONS

209 ins tr uct ions
All instructions except stack operations are 16 bits

in length. (Stack operations can be packed two per
per word.)

16- and 32-bit integer arithmetic
32- and 64-bit floating point arithmetic
28-digit packed decimal arithmetic
Special instructions that optimize operating system

efficiency

:>r 2Al through 2A4 (HP 32435A Ser ies IIIL) are reserved for the
Lower Memory MOdule (Banks 0 - 7) and card cage slots 3A2 through
3A5 (HP 32421A Ser ies IlL) or 2A 7 through 2AIO (HP 324351\ Ser ies
III) are reserved for the Upper Memory Module (Banks 8 - 15).

2-12. MULTIPLEXER CHANNEL. The MUltiplexer Channels are design­
ed to operate with moderate-speed I/O devices. Each Multiplexer
Channel can handle up to 16 Device Controllers. The Multiplexer
Channel, in conjunction with the lOP, allows its associated De­
vice Controllers to run concurrently, interleaving their trans­
fers to or from Main Memory on a wor~-by-word basis. The
Multiplexer Channel resolves priority conflicts between its
associated Device Controllers for access to the lOP, translates
I/O program doubleword instructions into operating commands for
its Device Controllers, and maintains the operating status of
each Device Controller. Physically, the Multiplexer Channel con­
sists of one PCA which is conventionally installed in Card cage
No. 4 or 5 (depending on the computer system model) as shown in
tables 1-1 through 1-3. A detailed discussion of the Multiplexer
Channels is contained in Section VII.

2-5

System/CPU Overview

Table 2-2. Main Memory Configurations

I-----l----·----------·---T------------~----

1 1 1 PCA's Required
1 1 1
1 Bank 1 System 1------1---1---1-------
1 No. I Word Capacity 1 MCL 1 SMA I FLI 1 Total
I I 1 1 1 11-------1----------------1--------1----1----1---------
1 2 1 128 K 1 1 1 1 1 1 1 3
1 4 1 256K 1 1 1 2 1 1 1 4
1 6 1 384 K 1 1 I 3 1 1 I 5
1 8 1 512K 1 1 I 4 I 1 I 6
1 12 1 768 K 1 2 I 6 1 1 I 9
1 16 1 1024 K 1 2 I 8 1 1 I 11
I I 1 I 1 1

2-13. PORT CONTROLLER/SELECTOR CHANNEL. The Port Controller and
Selector Channels are designed to operate with high-speed I/O
devices. The Port Controller contains the MCU logic required to
interface the Selector Channels with Main Memory via the CTL Bus
and also resolves priority conflicts between selector Channels
for accessing the CTL Bus. (Although the Port Controller contains
three selector channel ports, only two Selector Channels can be
installed in the computer system at one time.) Physically, the
Port Controller consists of one PeA and, as shown in tables 1-1
through 1-3, is conventionally installed in Card Cage No.3. De­
tailed discussions of the Port Controller and Selector Channel
are contained in Section VII.

Each Selector Channel can handle up to eight Device Controllers.
Unl ike the Mul tiplexer Cllannel which sw itches between D=vice Con­
troll~rs on demand (based on hardware priority), the Selector
Channel uses only one Device Controller at a time and that Device
Controller monopolizes the channel until the device's I/O program
is complete. Thus, only one I/O program is current at a given
time for anyone Selector Channel. Also, the Selector Channel
directly accesses Main Memory for data and I/O program word
transfers rather than indirectly as the Multiplexer Channel does
through the lOP. Physically, each Selector Channel consists of
three PCA's and, as shown in tables 1-1 through 1-3, are conven­
tionally installed in Card Cage No.3 and Card Cage No.4 depend­
ing on the computer system model.

2-14. DEVICE CONTROLLERS. The computer system can handle up to
125 Device Controllers. Device Controllers provide the hardware
I/O linkage between the computer system and external I/O devices.
Primarily, a Device Controller translates programmed I/O commands
(from a MUltiplexer or selector Channel) or direct I/O commands
(from the lOP) into unique control signals required by its as­
sociated external I/O device (s). A Device Controller also gen-
erates the interrupts required by its associated I/O device(s)
and the interrupts required by direct or programmed commands.

2-6

System/CPU Overview

A Device Controller consists of one or more peA's and, depending
on the particular type of controller, can drive one or several
exte rnal I/O devices. There are three types of Device Control­
lers; controllers used only for direct I/O, controllers used only
for programmed I/O, and controllers used for both direct and pro­
grammed I/O. Regardless of the type, every Device Controller can
accept all or some direct I/O instructions, can generate inter­
rupts, and has a unique device number for addressing. Device
Controllers can be installed in any of the available card cage
slots designated in tables 1-1 through 1-3.

2-15. eTl Bus Priority

All computer system modules contain MCU logic that interfaces
each module to the others via the CTL Bus. Each module gains
access and control of the CTL Bus on a priority basis via its MCU
logic. (The CTL Bus is only available to one module at a time.)
For example; if two modules attempt to gain access to the CTL Bus
simultaneously, the module with the higher priority will get the
bus and the module with the lower priority will not get the bus
until it is released by the higher-priority module. CTL Bus
prior ity is resolved by assigning prior ity numbers to each system
module with jump er sw itches loca ted in each mod ule ' s MCU logic.
The system modules assigned the lowest priority numbers have the
highest priority for accessing the CTL Bus.

Figure 2-2 illustrates the CTL Bus priority number assignments
for each module in a typical computer system. It should be noted
that the highest CTL Bus priorities (lowest priority numbers) are
reserved for Main Memory and that the lowest CTL Bus priority
(priority number 5) is reserved for the Central Processor Module.
The lower memory module responds to both prior ity numbers 0 and
1. The upper memory module responds to both priority numbers 2
and 3. The required MCU logic for Main Memory is contained on
the MCL PCA(s). (Priority for Memory Banks 0 through 7 is con­
trolled by one MeL PCA and priority for Memory Banks 8 through 15
is controlled by a second MCL PCA.) If installed, the selector
Channel(s) has the next highest CTL Bus priority (priority number
4) after Main Memory. The required MCU logic for the selector
Channel(s) is contained on the Port Controller PCA. As previous­
ly discussed, the Central Processor's MCU resolves CTL Bus prior­
ity conflicts between the lOP and cpu. The lOP always has higher
priority than the CPU. Therefore, the CPU always has a lower CTL
Bus priority than any other module in the computer system.

2-16. OPERATING ENVIRONMENT

2-17. Virtual Memory

Virtual memory is a memory management scheme that uses semicon­
ductor Main Memory and disc storage secondary memory. Due to a
technique called memory segmentation, many programs stored in
secondary memory can concurrently access the computer system and
~hare its Main Memory. The system organizes programs into vari­
able-length segments of code and data in secondary memory which

2-7

System/CPU Overview

I CTL BUS

PRIORITY PRIORITY PRIORITY PRIORI
NO.0AND 1 NO.2 AND 3 .NO.5 NO.4

512 K WORDS 512 K WORDS
PORT

LOWER MEMORY MODULE UPPER MEMORY MODULE CPU/lOP CONTROL·

BANKS0-7 BANKS 8-15
LER

TY

\.._------- ---------)y
MAIN MEMORY

Figure 2-2. CTL Bus Priority Number Assignments

can be transferred in and out of Main Memory on demand. (Code
consists of executable instructions and unchanging constants of a
program or subprogram. As the code is executed, the manipulated
values are referred to as data.) When a program is executed, only
those segments of code and data required at a particular time
actually reside in Main Memory and all other related segments
remain in secondary memory until they in turn are required. When
a particular code segment is no longer needed, it is overlayed in
Main Memory by the next required code segment. (Code segments
are non-modifiable and reentrant.) If a code segment is needed
again, it is again copied from the secondary memory disc where it
resides. Data segments, however, are dynamic and their contents
can be changed during the programs execution. Therefore, when a
particular data segment is no longer needed, it is copied back
into the secondary memory disc and replaces the original data
segment version. The vacated Main Memory space is then available
for other segments. This process of transferring segments be­
tween secondary memory and Main Memory is referred to as swapping
and permits large programs that actually exceed Main Memory's
word capacity to be executed concurrently and still allow Main
Memory space for additional user programs.

2-11. Variable-Length Segmentation

Variable-length segmentation of code and data is used to facili­
tate multiprogramming. It minimizes waste of memory resources
due to internal fragmentation and allows the operating system to
deal with logical rather than physical entities. This means that
a particular subprogram can be contained within one segment
rather than arbitrarily divided between two physical pages, thus
minimizing the amount of swapping that need be accomplished while
executing the subprogram. The location and size of all executing
code segments are maintained in a Code Segment Table and the lo­
cation and size of all associated data segments are maintained in

2-8

System/CPU Overview

a Data Segment Table. These tables are known to both software
and hardware. Software uses the tables for dynamic memory man­
agement by the operating system. Hardware uses the tables to
perform references and transfers between segments and to make
sure that all the segments required for current execution are
present in Main Memory. (Re fe r to paragraph 2-24.) Code segments
can be up to 16K words in length and data segments can be up to
32K word s in length.

2-19. Processes

In an MPE environment, programs are run on the basis of processes
created and handled by the operating system. A process is the
basic executable entity in MPE. A process is not just a parti­
cular program; it is the unique execution of a particular program
by a particular user at a particular time. When a user requests
the execution of program, the system creates a private, hardware­
protected data segment called a stack for that particular execu­
tion. Data segments separate from the stack can be obtained
dynamically during process execution. Data segments can also be
expanded and contracted by the operating system as required.
This includes system handling of the stack overflow interrupt
(paragraph 2-69) during which the data segment may automatically
be expanded to accommodate operation of the stack. The program's
changing set of code segments operating on the data stack consti­
tute the process. (The code segments used by a particular pro­
cess can be shared with other processes, but each ind ividual
process data stack is private.) In order for a process to exe~

cute, its data stack and code segment containing the procedure
currently in execution by the CPU must be present in Main Memory.

2-20. Data Stacks

As previously discussed in paragraph 2-19, data for each user is
organized into a data stack. In general, a stack is a storage
area where the last item stored in is usually the first item tak­
en out. In actual use, programs have direct access to all items
in the stack by specifying addresses relative to several CPU reg­
isters. (Refer to paragraph 2-21.) All features of the stack,
including the automatic transferring of data to and from CPU reg­
isters and checking for stack overflow and underflow, are imple­
mented in the hardware. When programming in high-level languages
such as COBOL or RPG, all stack manipulations are accomplished
automatically by the language processor. The user can, however,
manipulate the stack directly by writing programs in SPL. Figure
2-3 illustrates the general structure of a data stack as viewed
from a subprogram. The white areas represent locations filled
with valid data and the shaded area represents available unfilled
locations. The stack area is delimited by the locations defined
as Da ta Base (DB) and Stack Pointe r (S-pointer). The DB and S­
pointer addresses are retained in dedicated CPU registers. (Re­
fer to paragraph 2-21.) The Q-minus relative addressing area con­
tains the parameters passed by the calling program. The area
between the S-pointer and Q contains the sUbprogram's local and
temporary var iables and inte rmedia te results.

2-9

System/CPU Overview

DB ----r-----------"

GLOBAL VARIABLES DB· plus dIrect relatIve

addressing (up to DB+255)

LOCAL ARRAYS

GLOBAL ARRAYS

LOCAL VARIABLES

TEMPORARY VARIABLES &
INTERMEDIATE RESULTS

}

DB . plus IIldlrect relative

addressing

~=============~

I
PARAMETERS I) 0 mlllus relative

addressing (up to 0 . 63)
Q ----:==============~

}

O· plus direct relative

addressing (up to 0+127)

~==============~

}

O· plus Indirect relatIve

addresslllg

~==================~

}
S· minus relative

addressing (up to S . 63)
~::;:::;=;::::::;::;:::::;::::;::::=;::;:::;~

Figure 2-3. Typical Data Stack

The data in the DB location is the oldest element on the stack.
The data in the S-pointer location is the most current element on
the stack. (The S-pointer location is referred to as the Top of
the Stack (TOS). Conventionally, TOS is represented downward
fram DB to correspond to the normal progression of writing soft­
ware programs where the most recently written statement is fur­
ther down the page than previously written statements. The area
fram S+l to Z is available for adding elements to the stack.
When a data word is added to the stack, it is stored in the next
available location and and the S-pointer is automatically incre­
mented by one to reflect the new TOS. (This process is said to
"push" a word onto the stack.) When data is deleted from the
stack, the S-pointer is decremented which puts the deleted word
in an undefined area. S-minus relative addressing is used to
refer to recently stacked elements of data and is one of the
standard addressing conventions. Under this convention, S-l is
the second element on the stack, 8-2 is the third element on the
stack, etc. The other standard addressing conventions are
DB-plus relative addressing, Q-rninus relative addressing, and

2-10

System/CPU Overview

Q-plus relative addressing. (Q separates the data of a calling
program or subprogram from the data of a called subprogram.)

Since the four TOS elements are the most frequently used, there
are four corresponding CPU registers (RA, RB, RC, and RD) that
can at various times contain these four elements. The use of the
four CPU registers increases stack operation execution speed by
reducing the number of memory references needed when manipulating
data at or near TOS. The four CPU registers are implicitly ac­
cessed by many of the machine instructions and whenever stack
locations S, S-l, S-2, or S-3 are specifically referenced. (Refer
to paragraphs 2-96 and 2-97.) Dur ing execution, data stacks are
automatically expanded by the opera ting system up to a maximum of
32K words.

The system is also capable of operating in a split-stack mode.
(Refer to paragraph 2-64.) In split-stack mode, the DB Register
points to the current extra data segment and the other stack reg­
isters continue to point to the stack data segment. This is par­
ticularly efficient for system routines with tables in system
data segments. In split-stack mode, these data segments can be
accessed relative to the DB Register while using the other stack
registers for computation. In addition to split-stack mode, the
system contains instructions for moving data between data seg­
ments. These instructions cause an "absence trap" if either of
the required data segments is not present in Main Memory. There­
fore, the sys tern can access very large address spaces outside of
the stack and can provide buffering and other data storage facil­
ities without having to reserve space for these functions within
the stack data segment.

2-21. CPU Registers

The computer system contains 38 special purpose registers which
perform the specific functions summarized in table 2-3. Since
all addressing of code and data segments is accomplished relative
to hardware address registers, the segments can be dynamically
relocated in memory by simply changing the register base
addresses. (The few instances where absolute addresses are re­
quired are privileged operations handled by the operating
system.) Several of the hardware registers are used for defining
the limits and operating elements of the code and data segments.
As shown in figure 2-4, four of the CPU registers point to loca­
tions in a code segment and eight of the CPU registers point to
locations in a data segment. It should be noted that there will
normally be several segments in Main Memory at one time, but only
one code segment and one data segment will be active at any given
time. The CPU registers always point to the currently active
segment. The functions of the CPU segment pointer registers are
discussed in paragraphs 2-22 and 2-23. The remaining special
purpose registers will be discussed later in this manual.

2-11

Sys tern/CPU Overview

Table 2-3. Mach ine Re giste rs

PB
P
PL
PB-Bank

CIR

NIR

DL
DB
Q
SM
SR
Z
DB-Bank
S-Bank

RA
RB
RC
RD

x

Code Segment
Pointers

Next Instruction
Register

Da ta Segment
(Stack) Pointers

Top Of Stac k (TOS)
Registers

Index Register

SPO
SPI
SP2
SP3
CTR
ABS-Bank
CPXl
CPX2
MOD

lOA
laD

ACOR
DCOR
OPND

RAR
SAVE

STA

Process Clock
Register

Scratch Pad, Flag,
and Inte rrupt
Registers

I/O Reg is te r s

Memory Address and
Da ta Registers

Firmware Address
Registers

Status Register

2-22. CODE SEGMENT REGISTERS. The functions of the CPU code
segment registers are as follows:

The PB Register defines the program base of the code segment be­
ing executed. The PB Register contains a 16-bit absolute address
pointing to the first memory location of the code segment.

The PB-Bank Register is a 4-bit register used in conjunction with
the PB Register to define in which memory bank the code segment
res ides.

The PL Register defines the program limit of the code segment
being executed. The PL Register contains a 16-bit absolute ad­
dress pointing to the last memory location of the code segment.

The P Register is the program counter. The P Register contains a
16-bit absolute address pointing to the memory location of the
instruction being executed. The P Register can never point to a
location beyond the limits defined by the PB and PL Registers.

2-12

System/CPU Overview

CODE SEGMENT
POINTING

REGISTERS

PB CODE
Stack

Bank SEGMENT
Bank

01 PB Register Dr ...
(Program Basel

DB
Bank

D

I P Register ~
(Program Counter!

D
INCREASING
ADDRESSES

DATA SEGMENT
POINTING

REGISTERS

I Pl Register

(Program Limitl

L
I

~~:~,C~!. ·{
-0,1,2,3,4

I Dl Register I

r --
(Data Limitl

I DB Register ~
(Data Basel

I a Register t
(Stack Marker)

(Top-of-Stack in Memoryl

I SMRegister L .-"0.

I

r-------,
L __ ~~.!r__

(Logical Top-of-Stackl

I Z Register L
I

(Stack Limitl

DATA
SEGMENT

Figure 2-4. CPU Segment Pointer Registers

2-23. DATA SEGMENT REGISTERS. The functions of the CPU data
segment (stack) registers are as follows:

The DL
ment.
ing to
space.

Register defines the data limit of the current data seg­
The DL Register contains a l6-bit absolute address point­

the first word of memory available to the user's data

2-13

System/CPU Overview

The DB Register defines the data base of the current use r 's
stack. The DB Register contains a 16-bit absolute address point­
ing to the first memory location of the directly addressable glo­
bal area of the stack.

The DB-Bank Register is a 4-bit register used in conjunction with
the DB Register to define in which memory bank the stack or split
stacks (paragraph 2-64) reside.

The Q Register defines the current stack marker in the current
data segment. The area of the stack between Q and S represents
data that is incurred by the current procedure or routine. The
Q Register contains a 16-bit absolute address pointing to the
fourth word of the current stack marker being used within the
stack. The location pointed to by the Q Register must be within
the limits defined by the DB Register and Z Register. (Dur ing
privileged mode (paragraph 247), Q can be moved below DB.

The SM Register defines the last memory location of the current
stack. The SM Register contains a 16-bit absolute address point­
ing to the last accessed data location in memory. It should be
noted that the contents of the SM Register may not necessarily
point to the actual (or logical) TOS. The location pointed to by
the SM Register must be within the limits defined by the DB Reg­
is te rand Z Re g i s te r •

The SR Register defines the number of TOS elements that are in
the CPU stack registers. The SR Register contains a 3-bit number
that has a value from 0 and 4. This number is a positive dis­
placement which, when added to the address contained in the
SM Register, indicates the logical TOS. (The contents of the
8M Register plus the contents of the SR Register always defines
the S-p ointe r.)

The S-pointer is not a physical register, but is logically com­
posed by adding together the contents of the SM Register and
SR Register. The S-pointer always defines the logical TOS. (The
principle of using two physical registers to create the S-pointer
is employed for hardware convenience in achieving fast execution
times.) The following relationship exists between the S-pointer
and the CPU stack registers:

RA
RB
RC
RD

= S-pointe r = SR Register + SM Registe r
= S-pointer 1
= S-pointer 2
= S-pointe r 3

The Z Register defines the stack limit of the current user's
stack. The Z Register contains a 16-bit absolute address point­
ing to the last memory location available to the stack. (Actual­
ly, each data segment has several locations beyond Z that are
used for bounds checks (paragraph 2-65) and stack markers due to
an interrupt (paragraph 2-28).

2-14

System/CPU Overview

The S-Bank Register is a 4-bit register used in conjunction with
the S-pointer and DL, Q, and Z Registers to define which memory
the S-Bank is not necessarily equal to the DB-Bank.

2-24. Basic Table Structures

The first few locations of Main Memory are reserved for the sys­
tem pointers listed in table 2-4. During system cold load,
memory location 0 is set to point to the location of the Code
Segment Table (CST) as shown in (1), figure 2-5. The CST con­
tains a single four-word entry for each Segmented Library segment
currently in use in the system. (Segmented Libraries permit
separate programs to share procedures.) Memory location 1 (2),
figure 2-5 points to the Code Segment Table Extension (CSTX) area
allocated to the program being executed by the CPU. The CSTX is
used to keep track of the code segments in the various program
files being executed. Therefore, the contents of memory location
1 will shift to point to various sections of the CSTX as differ­
ent programs are executed by the cpu. For example, figure 2-5
shows that Program X is currently being executed by user process
A. Also during system cold load, memory locations 2 and 3 are
set to point to the Data Segment Table (DST) and Process Control
Block (PCB) Base respectively. See (3) and (4), figure 2-5.
There is a four-word DST entry f or each da ta segment in use in
the system as discussed in paragraph 2-26. There is a PCB allo­
ca ted to each process running in the system. The PCB entry for a
process points to the DST entry for its stack data segment
although, for simplicity, this is not shown in figure 2-5.
Memory location 4 is set by the software to point to the PCB of
the currently executing process (5), figure 2-5. The linkage
from the PCB to the CSTX area (6) is used to set memory location
1. It should be noted that if process B and process C happen to
be executing the same program (7), the program file segments will
be shared. The CPU Status Register (STA Register) then points to
the current segment of the current process holding CPU resources.

2-25. CODE SEGMENT TABLE AND CODE SEGMENT TABLE EXTENSION. The
CST contains a list of code segments that are being referenced by
executing programs. Its length is determined at system genera­
tion time. The actual number of entries in use at any time is
variable, limited only by the length of the table. Entries are
dynamically allocated by the operating system as programs are
loaded and unloaded. Each entry contains control information
about the segment and gives its length and starting address in
the format shown in figure 2-6. The first %300 entries are re­
served for Segmented Library segments. The CST entry for segment
o contains control information. Segment 1 contains the routines
needed to service internal interrupts. Segments 2 through 191
(%277) contain code such as service routines for external inter­
rupts, system intrinsics, and library procedures. The remainder
of the CST entries fall in the CSTX area and keep track of pro­
gram segments. Each program can have up to 63 segments. The
table is accessed via the PCAL, EXIT, IXIT, and DISP instructions
(Section IV) and is completely invisible to the user.

2-15

%1000

o
1
2
3
4
5
6
7

%10- %13
%14- %777 (max.)

Sys tern/CPU Overv iew

Table 2-4. Reserved Low Main Memory Locations

I-------.-~----r----·----~-·~--·------·-

I Memory Location I Contents
I I

Code segment Table Base
Code Segment Table Ex tens ion
Da ta Se gment Table Base
Process Control Block Base
Current Process Control Block
Interrupt Stack Base
In t err up t Sta c k Lim it
Inte r r upt Mask
Reserved
Device Reference and Ex ternal

Inte rrupt Table
System Global Table (Pointers

to resident tables, etc.)

I-Nofe:Th~symbor-precedTnga number "indicates
I an octal value.
I ------_.~--_._-~_._-~---------

2-26. DATA SEGMENT TABLE. The DST contains a list of the various
data segments currently in use by the operating system and user
programs. These segments include I/O buffers, system and user
process stacks, and extra data segments. The DST length is de­
te rm ined at sys tern genera tion time and it conta ins a four-word
entry for each data segment in the format shown in figure 2-7.
The actual number of ent.r ies in use at anyone time is var iable,
limited only by the length of the table. Entries are dynamically
alloca ted by the opera ting sys tern as programs are loaded and un­
loaded or as special capability processes request or release ad­
ditional data segments.

2-27. Code Segment Linkage

During the execution of one user process, there will usually be
several code segments in memory and a single data segment. As~

sume that the current process presently has two code segments in
memory as shown in figure 2-8. The purpose of figure 2-8 is to
illustrate how the sys tern keeps track of where code segments are
and to show how references can be made from one segment to anoth­
er. Although figure 2-8 illustrates hardware, it is the respon­
sibility of the MPE operating system to control the tables shown.

The CST Pointer is permanently resident in Location 0 and it
contains an absolute address pointing to the starting location of
the CST (1), figure 2 -8. The CST te lIs where each code segment
(present or absent) is loca ted. I f the segment is a progr am
segment, Location 1 is used. Each entry in the CST has a unique
number (code segment number) that identifies the particular seg-

2-16

System/CPU Overview

Segment Tables (4-word entries)

Low Main Memory

CST Base -a--_

CST Extension

DST Base

;-~---+- PCB Base

----+- Current PCBProcess Control
Block Table

Process
A

PCB

6

DATA
SEGMENT

TABLE

Data
Segment
Entries

Process
B

PCB 2
CODE

SEGMENT
TABLE

Segmented
Library
Code
Segment
Entries

Process
C

PCB

7

CST
EXTENSION

Program X
Code Segmem
Entries

PrOl'am V
Code Segment
Entries

Figure 2-5. Basic Data Structures

2-17

System/CPU Overview

Figure 2-6.

CODE SEGMENT TABLE Doubleword

o I 1 i 2 i 3 i 4 I I 6 1 7 1 8 1 9 '10 111 112 113 114 1155

AIMIRITI L/4

Reserved

Reserved I B

Address

A Absence Bit = 1 if segment is absent from main
memory.

M Mode Bit = 1 if segment executes in Privileged
Mode (Code onlyl.

R Reference Bit ~ 1 if segment has been referenced
(set by microcode).

T Trace Bit = 1 if trace feature is used. Checked by
PCAl instruction.

'L length Field = segment length divided by 4.
B Bank Address. Points to memory bank (if resident

in l'lIain memory) in which segment resides.

ADDRESS Absolute address of PB within B if the
segment is present. otherwise the 3rd
and 4th words contain the absolute
disc address.

SEGMENT TRANSFER TABLE Words

STT length

011 2 31 4 5 61 7 8 91 10 11 12113 14 15

OIUlo 0 0 0 0 01 LENGTH

U Uncallable bit
LENGTH Maximum = 255 (Calls from external

segments may reference only the first 127
entries. Pl-1 thru PL-127.HPL.Q= STTL.)

local Program label

011 2 31 4 5 61 7 8 91 10 11 12113 14 15

01 u I ADDRESS

U Uncallable bit
ADDRESS PB relative, + only

External Program label

011 2 31 4 5 61 7 8 91 10 11 12
1

13 14 15

11 STT # I SEG#

STT# STT entry number in target segment,
maximum =127

SEG # Target segment

STATUS Word

011 2 31 4 5 61 7 8 9110 11 12113 14 15

IM I I I T I A I 0 I c I cc I SEGMENT #

M Mode bit (=1 for privileged mode)
I Interrupt enable (1)/disable(OI. external
T Traps enable(11/disable(OI. user
R Right Stack Opcode bit (pending = 11
0 Overflow bit
C Carry bit
CC Condition Code
SEGMENT # currently executing

90020-7

Formats Associated With Code Segments

2-18

o 23'456]'8'9'10'11'12'13'14'15

AlclRI L/4

Reserved

Reserved I B

Address

A = Absence Bit = 1 if segment is absent from main memory.
C Clean bit. Used to eliminate unnecessary output swapping.
R Reference Bit = 1 if segment has been referenced (set by microcode).
L Length Field = segment length divided by 4.
B Bank Address. Points to memory bank (if resident in main memory) in which segment resides.
ADDR ESS =Absolute Segment Address within given bank in third word of segment. If segment is

absent, words 3 and 4 contain absolute disc address.

90020·6

Figure 2-7. Data Segment Table Entry Format

mente Each entry consists of a four-word descriptor which in­
cludes the absolute address of the related segment and its
length. Entry number 0 in the table is unique in that it simply
points to the final entry in the table (2). This defines the
length of the table for the benefit of the operating system in
allocating space for the table itself. Segment number 0 does not
exist. Assume that one user is executing a process which re­
quires code segments 22 thr'ough 25. Also assume that segments 22
and 23 are in Main Memory and that segments 24 and 25 are not
presently needed and, therefore, are on disc. The process is
presently executing instructions in code segment 23. This means
that the address value conta ined in the fourth word of cs'r ~entry
23 has been loaded into the PB Register. Therefore, the PB
Register is pointing to PB (a) as shown in (3), figure 2-8. The
PL Register, using a value derived from the segment length, is
pointing to PL(a). The P Register is advancing from PB(a) toward
PL(a) •

The last nine locations of segment 23 are not part of the seg­
ment's code, but are added by the operating system when the seg­
ment is loaded into virtual memory. These locations contain
linking references for every procedure call (PCAL) in the Segment
Transfer Table (STT). A PCAL is an instruction that references a
set of instructions elsewhere in the code segment. This set of
instructions is structured as a procedure to perform a standard­
ized operation or computation and then return control to the
instruction immediately following the call instruction. It
should be noted that entr ies in the STT are numbe red fr om the end
back towards the code. Entry number 0 gives the STT length as
shown in figure 2-6. This indicates the number of the last STT
entry (4), figure 2-8, so that the hardware can make validity

2-19

System/CPU Overview

SEGMENT
TRANSFER
TABLE

SEGMENT
TRANSFER
TABLE

I CST POINTER

~
Location 0 or 1

"Q)

-.. CST END --.------
- - - - ---
------ ~

I • ICode •
Segment I • I••Number I • I (9) CODE SEGMENT 22

• PS(b)...

·------ ·22 ------ ··- - PB(bl -- BEGIN ~

---- --- + (jj)
23 ------ END

(3Xi2) ·® - -PB(a)-- ···------ 5

)
24 ------ r+ 4 01 uI PB Rei Address ~------ I 3

I 2
------ I 1

I
0 PL(b)25 ------ I

~ ------ I
_J

I • I
r-- --

EG • I

22 I • I
I

• I CODE SEGMENT 23
•

I • I I ~ PS(a)
•

0+--'"
I ·------ I ··------ I PCAl (4)------ I · ~I ·I ·
I peAL (5)

I ·· (1)I @ ·I ... BEGIN...
I t

~ - - - SrTN"; 4" - - .. - - - Q]) - .J END
STT ·Entrv ··Number ·8

7

6
5 11 STT # I SEG # +--'
4 olu PB Rei Address-
3

~
2
1

'-- 0 Last STT # = 8 PL(a)

S
No

9002()'34

Figure 2-8. Code Segment Linkage

2-20

Sys tern1/CPU Ove rv iew

checks on PCAL references. For example, a call to entry to num­
ber 9 would be inval id. (If a call fr om with in the segment is
made to entry 0, the reference will be taken from the TOS instead
offrom th e ST T . A ca 11 fr om 0 u t sidease gme nt toentry 0 s ta r t s
execution at P = PE after checking the U bit.) When the execution
sequence reaches the first PCAL instruction, a reference (5) is
made to the four th entry 0 f the STT. (S ince the PCAL ins tr uction
uses PL-addressing, the instruction references cell PL -4.) This
location contains a local program label (figure 2-6) which im­
plies that the called procedure is 10ca ted within the same seg­
ment. The reference is a PE-relative address pointing to the
beginning of a procedure or block (6), figure 2-8. After some
preparatory operations, which include saving the return address
on the stack, the PCAL instruction transfers control to the pro­
cedure. When an EXIT instruction is encountered in the proced­
ure, control is returned to the instruction immediately following
the first PCAL. In this example there were no references outside
the current segment. In the following example, an external ref­
erence is made.

When the execution sequence reaches the second PCAL, another call
(7), figure 2-8 is made to the STT. The call requests the fifth
entry in the table which happens to be an external program label
(indicated by a logical 1 in bit 0). This implies that the called
procedure is in some other segment. The label contents tell
which segment and also give the STT number in that segment which
must contain the local reference. The PCAL instruction, after
the usual preparatory operations (which include bringing the seg­
ment into Main Memory if it is absent), transfers control to the
called procedure as follows. The segment number given in the
external program label (8) points to a specific entry in the CST,
assumed to be entry number 2-2. A val ue for PB is picked up in
the fourth word of this entry and leaded into the PB Register.
Th is ca uses the PB Register to point (9) to the starting loca tion
of code segment 22; PB(b). The limit, PL(b) , is also establish­
ed. Meanwhile, the STT value given in the external program label
is pointing to entry number 4 (10) of the STT. This causes a
PB-relative address to be picked up for the P Register. The P
Register now points to the starting address of the procedure or
block (11) and execution begins. If an STT number of 0 was giv­
en, execution would begin at PB(b). Calling procedures outside
the segment in this manner is subject to a number of rules,
checks, and safeguards to ensure that the call is allowable and
that other users are fully protected from invasions of privacy.
The manner in which the operating system sets up the STT ensures
that all transfers are legal for that process. At the conclusion
of the called procedure, control is returned to the original seg­
ment by the EXIT instruction. This instruction restores the STA
Register which gives the caller's segment number, and the PB Reg­
ister value (12) returns back to PB(a). The saved P-relative
address on the stack reestablishes the return point and execution
continues at the location immediately fo11owing the second PCAL
ins tr uction.

2-21

System/CPU Overview

2-28. Stack Operation
~te

When the letters P, Q, DB, etc., are
used alone in the following paragraphs,
the letter is interpreted to mean "the
location pointed to by the P Register,
Q Register, DB Reg ister, etc."

Figure 2-9 illustrates the basic construction of the stack area
and how the CPU stack registers delimit the various areas. It
should be noted that there will normally be several stacks in
memory (one for each process), but only one stack will be active
at a given time. The CPU stack registers always point to the
cur re ntly active stack.

As shown in figure 2-9, the stack area is bounded at the low end
by the DL Register and bounded at the high end by the Z Register.
The DB Register points to the base Location of the stack and di­
vides the stack area into two major parts. (The area between DB
and Z is the actual user stack. The area between DB and DL is
not part of the stack itself, but is closely associated with the
stack. This area provides a dynamic area for such applications
as dynamic arrays, symbol tables, etc.) The SM Register points to
the current top-of-stack (TOS) location in memory.

Whereas the contents of the DB Register and Z Register are sta t­
ic, the content of the SM Register is constantly chang ing as the
program progresses, moving up and down the stack area. The area
between DB and 8M Ls always filled with valid data and the area
between 8M and Z is always available for additional data. (If the
quantity of data should exceed the available space, the attempt
to move 8M past Z will cause an interrupt to the operating system
which may then grant additional space (new Z value) one or more
times.

Unlike the cell-at-a-time movement of 8M, Q moves sporadically in
jumps. The purpose of the Q Register is to retain the starting
point of data relating to the current procedure. Therefore, when
a new procedure begins, Q jumps ahead to establish a new starting
point at the current TOS. Conversely, when a procedure ends, Q
jumps back to the place it had marked previously for the preced­
ing procedure. As far as the current procedure is concerned,
stack data consists of the locations from a base of Q to the
current T08.

In the previous discussion, the 8M Register was assumed to point
at the absolute TOS. This is true only for the portion of the
stack in memory. Actually, as many as four of the top words of
the staLck can spillover into T08 registers RA, RB, RC, and RD.
Figure 2-10 illustrates where three of the topmost words are in
T08 registers RA, RB, and RC. It should be noted that the 8M
Register points to the last stack element in memory, but that

2-22

System/CPU Overview

CPU MEMORY
Stack Registers Stack and Array Area

I DL Register 1 ...

TI ..
• Own
• Array
• Area•
•
•
•
• II

I IDB Register I

/
Base
of •
Stack •

•
•
•
•
•
• Filled•

I a Register 1 ...
I

•
•
•
•
•

tI 1SM Register ...
I • •

•
Top •
of •
Stack •

Increasing
Addresses

~
Avail-

• able
•
•
••
•
•

I Z Register I ...
I

90020-35

Figure 2-9. CPU Registers and Stack Basic Operations

the logical T08 is in the third CPU register and is defined by
the S-pointer (8). The four TOS registers are reserved for the
four topmost words of the stack and are employed only by CPU
hardware. The T08 registers cannct be addressed externally.
Externally, the programmer is interested only in location Sand
and the hardware defines this address for him. Using figure 2-10

2-23

System/CPU Overview

CPU

Q Register

8M Register

SR Register

C:-------.
('-_ - -----.1
S (SM) + (SR)

Address Address + 3

MEMORY

Stack

Figure 2-10. CPU TOS Registers

as an example, the hardware will define address S as being equal
to the SM Register value plus three. The value three is obtained
from the SR Register which, as previously discussed, retains the
number of TOS elements that are in the TOS registers. (S = SM +
SRi RA = S, RB = S - 1, etc.) The address val ue S obtained by
adding the SR Register contents to the SM Register contents is a
completely valid address. In fact, when the CPU must be cleared
for some other operation (e.g., a new procedure or an interrupt),
the register contents are physically transferred to the numeri­
cally corresponding memory locations. In this example, SM would
move up by three and the SR Register contents would become zero.

Figure 2-11 illustrates the actions of the Q Register in marking
the starting location for each procedure's data. Figure 2-11
shows that the currently executing code segment was working with
data in the temporary storage area immediately following the
First Q area. At that time, the Q Register was pointing at First
Q, S was defining TOS, and the Z Register was pointing to the end
of the data segment. (If the executing code segment never called
another procedure, the stack would never get more complica ted.)
As illustrated however, the code called a procedure at some point
by means of a Procedure Call (peAL) instruction that caused ad­
ditions to the stack as indicated by Procedure A. New data was
incurred as the procedure began and S pointed to the top of that
data as it was generated. Then, Procedure A called Procedure B

2-24

System/CPU Overview

DB
Primary

(2561

GLOBAL
~ - - - DAT A - - - - •

AREA
Secon­
dary

FirstQ .",~l=========:::j
(

Temporary
Storage

T Procedure Parameters

"- } Stack
Previous Q

,
Marker

(-
I
IProcedure A I
I
I
I
I
I
I
I
I
I

Procedure ParametersI
I
I.. } Stack....

MarkerPrevious Q
(-

Procedure B

1
Allocations {S-~ Procedure Parameters

due to
calling

I.. } Stack
Procedure C 0-+ Marker

Local Variables

1---------
Allocations

local to TemporaryProcedure C Storage

~ if--.

Z----a.

Figure 2-11. Stack Mark Chain

2-25

System/CPU Overview

and caused new additions to the stack as indicated. Next, Pro­
cedure B called Procedure C and caused the final stack picture as
shown.

As the program progresses, Procedure C will end and, after saving
its answer in a convenient place for Procedure B to access, issue
an EXIT instruction. Then, all the other stack additions due to
Procedure C will be eliminated by moving Sand Q back and Pro­
cedure B will continue its computations on its own data stack.
In the same manner, Procedure B will end, save its data, and
exit. This eliminates the data stack for Procedure B. Finally,
Procedure A will exit and return the net answer to the new TOS on
th e ma in temp 0 r a r y s t or a ge are a .

Each time control is returned from the called procedure to the
caller's procedure (w ithin the code segment), the stack registers
also return to the caller's data area. Thus, the stack marker
chain virtually eliminates system overhead in keeping track of
nested procedures. For example, the simple return sequence pre­
viously discussed (C-to-B.-to-A-to rna in p rogr am) is not impera­
tive. Procedure C could have been called again before the return
to the main program was complete or other procedures could have
been called. Regardless, the return for both code and data will
always remain perfectly in step; from the called to the caller.

Note that the area between DB and First Q in figure 2-11 is the
global data area. The locations in this area are reserved by the
process for variables which the process has declared to be global
for all procedures called by that process. That is, any proce­
dure using this particular data segment may reference the vari­
ables in this area. The individual locations in the global area
can contain an actual value or an indirect address pointing to
some other location that either" contains the value or is the
start of an array. Since DB-relative addressing (paragraph 2-49)
is restricted to a maximum of DB+255, only the first 256 loca­
tions of this area can be addressed directly. These areas are
called the primary global data area. If the number of entries
exceed 256, indirect addressing (paragraph 2-50) must be used.
These locations are called the secondary global data area.

When the operating system has completed assigning space for the
global variables, it points Q at the next succeeding location
(First Q, figure 2-11). This is the actual start of the data
stack. Since there is not data on the stack, S also points to
this location. As the executing code segment proceeds to obtain,
manipulate, and generate data for the st&ck, S moves away from Q,
always indicating the top of such data. At some time during the
execution of the code segment, it is assumed that Procedure A is
called. Usually, a set of procedure parameters accompany the
call and these parameters are placed on the stack just prior to
the issuance of the PCAL instruction. These are actual param-
eters to be substituted for formal parameters in the procedure
and are referenced by Q addressing. (Refer to paragraph 2-49.)

2 -26

System/CPU Overview

Calling the procedure causes a four-word stack marker to be
placed on the stack as shown in figure 2-11. The marker format
is shown in figure 2-12. The first \\ ord saves the current con­
tents of the Index Register (X Register). The second word saves
the return address for the code segment (P Register address plus
one relative to the PB Register contents). The third word saves
the STA Register contents (M, I, T, R, 0, C, and CC) and the code
segment number of the caller in case the called procedure is
external to the current code segment. The fourth word contains a
value called Delta Q which designates how far back it is to the
previous location to which the Q Register was pointing. In th is
case, Delta Q is pointing to First Q. The Q Register now points
at this Delta Q location.

The previously described sequence of events are repeated when
Procedure B (f igure 2-11) and Procedure C are called. Each time,
the Q Register will point to the Delta Q llocation of the current
stack marker and the contents of that location will point to the
previous Q setting. Therefore, when Procedure C is executing,
there is a chain of Delta Q stack marks linking the present Q
set t i ng b a c k to the Fi r s t Q.

The links are used and eliminated as the procedures are exited
the same as they were established when the procedures were
called. When Procedure C ends, the EXIT instruction returns S to
equal Q, essentially placing the Delta Q value temporarily on the
TOS. This allows the EXIT instruction to compute a new value for
the Q Register (Previous Q) and it appropriately moves Q back.
The EXIT instruction causes S to decrement step-by-step through
the stalck marker, restoring status, P Register contents, and X
Register contents for Procedure B.

Lastly, S is moved back to eliminate the unwanted parameters of
Procedure C. Presumably, one or more parameters will be answers
computed by procedure C and, therefore, S is only moved back so
far astc preserve the desired answers which are now on the TOS.
The sequence of events discribed in the last two paragraphs is
repeated until all stack marks are eliminated and only the final
answer is on the TOS. For additional information on stack oper­
ations, refer to paragraph 4-17.

2-29. INSTRUCTION AND STATUS WORD FORMATS

2-30. Instruction Formats

The machine instruction set is designed for maximum efficiency of
bit usage in the instruction words and, therefore, the instruc­
tion formats do not necessarily fall into rigid field boundries.
There are 23 distinct instruction set formats. In addition to
the instruction formats, there are 13 instruction groups as shown
in figure 2-13. The formats of the individual instruction groups
are discussed in paragraphs 2-31 through 2-44. For additional
information, refer to section IV.

2-27

System/CPU Overview

01 112 ' 31 415 ' 61 7 1 8
1

9110111112113'14115

X Register Contents

PB Relative Return Address for P Reg

MIIITIRIOICI cc I Code Segment #

Delta Q

Figure 2-12. Standard Stack Marker Format

2-31. GENERAL FORMAT. The first format shown in figure 2-13 is
the general scheme for dividing the instruction word into code
fields. Only the first field is rigidly adhered to. This field
(bits 0 through 3) defines either a specific instruction code in
the memory address group (or loop control group) or one of the
sub-\opcode groups. There are four sub-lopcode groups; 1,2,3,
and stack ops. The field for the sub-cpcodes varies. For sub­
opcode groups 2 and 3, bits 4, 5,6, and 7 are used as shown.
For subopcode group 1, bits 5 through 9 are used and, for stack
ops, the remainder of the word is used. In some cases, the sub­
opcode will enable a third field (rnini-opcode or special opcode)
in bits 8 through 11. The remainder of the word has a variety of
special uses and commonly is part of an argument field.

2-32. STACK OPe The stack op format is defined by four O's in
the first four bits. The remaining 12 bits are divided into two
fields; stack op A and stack op B. Either or both of these
fields may contain any of the 63 stack cp instruction codes.
Execution sequence is from left to right (A first, then E). In­
terrupts may occur between the execution of A and B. It should
also be noted that indicators (Carry, Overflow, and Cbndition
Code) are set by the last executed statck Ope If using only one
of the two stack op fields, it is more efficient to use stack op
A since the hardware always looks ahead to see if stack op B is a
NOP. This permits the hardware to ignore the second field which
results in saving time.

2-33. SHIFT. The shift instructions use about half of the sub­
opcode group 1 codes. Sub-opcode group 1 is defined by 0001 in
the first four bits. If the index bit (bit 4) is 1, the contents
of the Index register (X Register) is added to the shift count in
bits 10 through 15 to specify the number of places each data bit
is shifted. Bits 5 through 9 encode the specific shift
ins tr uct ion.

2-34. BRANCH. The branch instructions use 11 of the sub-opcode
group 1 codes. Bit 4 is used as an indirect bit (indirect if bit
4 is 1 and direct if bi t 4 is 0) • Bi ts 5 th rough 9 encode the
specific branch instruction. Bits 11 through 15 give a P-rela­
tive displacement from 0 through 31 and bit 10 specifies whether
the displacement is + or - relative to P (0 = +, 1 = -).

2-28

System/CPU Overview

o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
GENERAL
FORMAT

Memorv
Opcode

or
Sub·opcode

Group

Sub-opcode Mini·opcode
or

Special
Opcode

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IMMEDIATE~

,~ J

~
or: 1 Sub·opcode 3 Operand

STACK
OP

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
FIELD

2 4 5 6 7 8 9 10 11 12 13 14 15

Stack Op A Stack Op B Sub·opcode 2 J·Field K·Field

SHIFT
o 1 2 3 4 5 6 7 8 9 10 11 1213 14 15

~' • J

~
Index Count

Bit

REGISTER
CONTROL

Except
XCHD, ADDS,
SUBS

Sub·opcode 2 .
Register

Name

15

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 6 15
BRANCH PROGRAM

CONTROL
Except AND SPECIALBR,BCC

Except Sub·opcode 3 N·Field

Indirect PAUS, HALT
Bit XEO,IXIT,

DISP

2 4 :, 6 7 8 9 10 11 12 13 14 15 9 10 11 12 13 14 15
FIELD AND I/O AND
BIT INTERRUPT

Sub·opcode 3 Special K·Field
Index Opcode lor not

Bit used)

MOVE

Ex..:ept
MVBW

......,.-J
SOEC

PBIOB
Relative or
Additional
Code Bit

LOOP
CONTROL

+1­
Relative

SPECIAL

Except
LLBL

Additional
Code Bit

MEMORY
ADDRESS

Except
LOPP,
LOPN

Memorv
Opcode

Inde"
Bit

Indirect
Bit

2152·33

Figure 2-13. Instr uction Groups

2-29

Sys tern/CPU Overv iew

2-35. BIT TEST. The bit test instructions are also in subop­
code group 1 and use bits 5 through 9 to encode the specific in­
struction. Bits 10 through 15 specify a bit position in the TOS
word for testing. If the index bit (bit 4) is 1, the contents of
the X Register is added to the specified bit position.

2-36. MOVE. The move instructions use 12 of the codes specified
by the sub-opcode group 2 code 0000. Sub-opcode group 2 is de­
fined by 0010 in the first four bits. Bits 8 through 10 encode
the specific move instruction. Bit 11 is used by some instruc­
tions to specify whether the source of the moved data is PB-rela­
tive (bit 11 = 0) or DB-relative (bi t 11 = 1). In some cases,
bit 11 is also used as an additional code bit for specifying the
instruction. Bits 12 and 13 are not used. Bits 14 and 15 are
used to specify an S-decrement value to delete, if desired, the
move parameters from the TOS.

2-37. SPECIAL. The special instructions use four mini-cpcodes.
The mini-opcode group is also specified by the sub-opcode group 2
code 0000. Bits 8 through 11 plus bit 15 encode the specific
special instruction. Bits 12 through 14 are not used.

2-38. IMMEDIATE. The immediate instructions use codes in both
sUb-op code gr oup 2 (coded 0010) and s ub- opcode group 3 (coded
0011). Bits 4 through 7 encode the specific immediate instruc­
tion. Bits 8 through 15 are used for the immediate operand.

2-39. FIELD. The field deposit and extract instructions are
specified by two of the sub-opcode group 2 codes. Bits 4 through
7 encode the specific field instruction. Bits 8 through 15 are
divided into a J-field and a K-field. The J-field specifies the
starting bit number and the K-field specifies the number of bits.

2-40. REGISTER CONTROL. The tegister control
bits 9 through 15 to name a register. Bits 4
the specific register control instruction.

instructions use
through 7 encode

2-41. PROGRAM CONTROL. The program control instructions use four
of the sub-opcode group 3 codes. Sub-opcode group 3 is specified
by 0011 in the first four bits. Bits 4 through 7 encode the spe­
cific program control instruction. The N-field (bits 8 through
15) is used for either a PL-displacement (PCAL and SCAL) or to
specify a number of parameters to be deleted on return from a
procedure or subroutine (EXIT or SXIT).

2-42. I/O AND INTERRUPT. The I/O and interrupt instructions use
11 of the special opcodes (bi ts 8 through 11)" defined by the
subopcode group 3 code 0000. The K-field (bits 12 through 15) is
used by some of the instructions for an S-displacement to locate
a device number given in the stack.

2-43. LOOP CONTROL. The loop control instructions are defined by
a special coding of bits 4, 5, and 6 for memory opcode 05 (which
is otherwise defined as the STOR instruction). Bits 8 through 15
give a P-relative displacement for a branch address and bit 7

2-30

System/CPU Overview

specifies whether the displacement is + (bit 7 = 0) or - (bit 7 =
1) relative to P.

2-44. MEMORY ADDRESS. Bits 0 through 3 encode the specific mem­
ory address. Bits 6 through 15 give both an addressing mode and
a displacement. (Refer to paragr aph 2-48.) Bi t 5 is used to
specify direct or indirect addressing (1 = indirect, 0 = direct).
Bit 4 is used to specify indexing (1 = indexing), if desired. If
both indirect addressing and indexing are specified, post-index­
ing (paragraph 2-54) will occur.

2-45. Status Word Format

There is a status word for each code segment in the system. At
all times, the status word associated with a given process indi­
cates the machine status following the execution of the most re­
cent instruction in that segment. The status for the currently
executing segment is resident in the STA Register and is con­
stantly being updated as each instruction is executed. For seg­
ments that are not current (suspended by either an interrupt or
procedure call), the status word exists in a stack marker in a
data stack as discussed in paragraph 2-28. As shown in figure
2-6, status word bits 8 through 15 indicate the segment number of
the currently executing code segment (when the particular status
word is resident in the STA Register). Therefore, when a status
word is pushed into a stack marker by an interrupt or procedure
call, bits 8 through 15 identify the segment that is to be re­
turned to when execution is later resumed. The following des­
criptions of the status bits assume that the status word under
discussion is resident in the STA Register. All references to
"cur rent" cond it ions can also be infer red as "then cur rent" con­
ditions in the case of suspended segments or procedures.

Bit 0 is used to indicate whether the current segment is running
in privileged mode (bit 0 = 1) or user mode (bit 0 = 0). (Refer
to paragraph 2-47.) The state of this bit cannot be changed by
machine instructions while resident in the STA Register except in
privileged mode. (The PCAL, IXIT, and EXIT instructions include
checks to prevent illegal mode changes by al tering the noncurrent
sta tus mode bi ts.)

Bit 1 is used to enable or disable external interrupts. This bit
cannot be changed in user mode while current and the EXIT in­
struction invokes a trap if a non-privileged user illegally al­
ters the bit while non-current. The state of bit 1 can only be
changed in privileged mode.

Bit 2 is used to enable or disable user traps. The state of this
bit can be changed in any mode while current or non~urrent with
a SETR instruction. (The state of this bit is not affected by the
EXIT instruction.)

2-31

System/CPU Overview

Bit 3 is normally used only by the hardware which sets this bit
to 1 if the right stack opcode (bits 10 through 15) contains a
valid instruction other than NOP. The hardware requires this
information in case an interrupt occurs between the execution of
the left and right stack ops. The state of bit 3 cannot be
changed in user mode while current.

Bit 4 is the overflow bit and is one of the three indicators
which are set or cleared as an incidental operation by many of
the machine instructions. In general, bit 4 is used only by
signed integer and floating-point computa tions. If bi t 4 is se t
(1), it indicates that the result of the computation is too large
to be represented in the number of available bits in the data
format. (For floating point, it can also indica·te that the resul t
is too small.) If user traps are enabled (bit 2 = 1), an inter­
rupt to segment 1 will occur in lieu of setting bit 4; except for
integer overflow which causes both bit 4 to be set and an inter­
r up t to s e grn ent 1. Th i s pe rm i ts the s ys te rn toge ne rate a me s sage
to the user which indicates which type of overflow or underflow
occurred. All user traps will set bit 4 if traps are disabled.

Bit 5 is the carry bit and is one of the three indicators which
are se t or cleared as an incidental opera tion by many of the
machine instructions. Bit 5 is used primarily by logical and
integer arithmetic and usually indicates a carry (bit 5 =1) or
lack of carry (bit 5 = 1) out of the most significant bit during
a computation. Bit 5 is also used by some instructions as an
indicator for special purposes which are stated in the individual
machine instruction definitions. (Refer to section IV.)

Bits 6 and 7 are used to encode the condition codes discussed in
paragraph 2-46 and are one of the three indicators which are set
or cleared as an incidental operation by many of the machine
instr uctions.

2-46. Condition Codes

Although several instructions make special use of the condition
code bits (status word bits 6 and 7), the condition code typi­
cally ind ica tes the s ta te of an operand or a compar ison res ul t
with two operands. The ope rand can be a word, byte, double word,
or tr iple word and can be loca ted on the TOS, in the X Registe r ,
or in a specified memory location. Three codings are used; 00,
01, and 10. (Code ll.is not used.) Except for special interpreta­
tions, there are four basic patterns for interpreting the codes.
The four patterns (CCA, CCB, CCC, and CCD) are summarized in
table 2-5 and discussed in the following paragraphs.

2-32

System/CPU Overview

Table 2-5. Condition Codes

1--·-----------~----.- ----.--- - ---_._._-- --------.-----.------- - - -------- --
I CCA sets CC = CCG (OO) if operand> 0
I CCL (Ol) if operand < 0
I CCE (lO) if operand = 0
I

CCB sets CC = CCG (OO) if numerical (%060 - 071)
CCL (Ol) if special character (all

other octal values)
CCE (10) if alphabetic (uppercase,

%101 - 132; lowercase, %141 ­
172)

CCC sets CC = CCG (OO) if operand 1 > 2
CCL (Ol) if operand 1 < 2
CCE (10) if operand 1 = 2

I CCD sets CC = CCG (OO) if device is not ready
CCL (Ol) if non-responding Device

Controller
CCE (10) if respond ing Device

Controller and/or external
device is ready

Notes: CC = Condition Code
CCG = Condition Code Greater
CCL = Condition Code Less
CCE = Condition Code Equal

__. ~ ._-_._. .__ ._. ._,,__._~_,_. .._. __._._, .._~ .,_._. ._.. .__..._.__..~._:. v_. .

The most common condition code pattern is pattern A (CCA). In
CCA, the cond ition code is se t to 00 if the operand is grea te r
than zero; to 01 if the operand is less than zero; and to 10 if
the operand is exactly zero.

Condition code pattern B (CCB) is used with byte or iented
instructions. In CCB, the condition code is set to 00 if the
operand byte is an ASCII numerical character which would be
represented by octal values 060 through 071. The code is set to
10 if the byte is an ASCII alphabetic character which would be
represented by octal values 101 through 132 for upper-case
letters and 141 through 172 for lower-case letters. The code is
set to 01 if the byte is an ASCII special character which would
be represented by the remaining octal values.

Condition code pattern C (CCC) is used with comparison instruc­
tions. In CCC, the condition code is set to 00 if operand 1 is
greater than operand 2; to 01 if operand 1 is less than operand
2; and to 10 if operand 1 is equal to operand 2.

2-33

System/CPU Overview

Condition code pattern D (CCD) is used with some (not all) I/O'
instructions. In CCD, the condition code is set to 00 if the
external device is not ready. (This condition is usually caused
by the device being busy.) This .code is only used with instruc­
tions that will (WIO and RIO) or could (SIO) require data to be
moved. The code is set to 01 if the Device Controller does not
respond. (This condition can be caused by loss of power in the
external device or Device Controller, a malfunction in the ex­
ternal device or Device Controller or, more normally, the ex­
ternal device or Device Controller waiting for a response to an
interrupt request.) The condition code is set to 10 if the ex­
ternal device or Device Controller has responded normally and the
instr uction has been completed properly.

2-47. OPERATING MODES

The computer system can be operated in either privileged or user
mode and has the capability of switching from one mode to the
other depending on the type of operation being executed at a
given instant. The operating mode currently in effect is indi­
cated at all times by the STA Register's bit 0 as discussed in
paragraph 2-45.

Privileged mode operation is characterized by the ability to ex­
ecute privileged instructions and to call segments that have been
declared uncallable. (The method of declaring a code segment un­
callable involves the use of the uncallable bit (bit 1) in the
associated STT local program label shown in figure 2-6.) Priv­
ileged operations such as I/O operations are performed by the
operating system operating in privileged mode. For an non-priv­
ileged user to perform such operations, it is necessary to call
one of the callable intrinsics of the operating system which, in
turn, will call the uncallablp intrinsics that will perform the
operation on behalf of the nonprivileged user. However, a priv­
ileged mode user can use the computer as if he were the operating
sys tern.

I CAUTION I

The normal checks and limitations that apply to
the standard non-privileged users in MPE are
bypassed during privileged mode. It is possi­
ble for a privileged mode program to destroy
file integrity including the MPE operating sys­
tem software. Hewlett-Pac kard cannot be respon­
sible for system integrity when programs
written by users operate in the privileged
mode.

2-34

System/CPU Overview

2-48. ADDRESSING CONVENTIONS

2-49. Memory Addressing

Throughout this manual the terms "displacement", "effective ad­
dress ", "relative address ", and "base" are used in connection
with memory addressing. These terms are defined as follows:

Displacement is a positive number given in the instruction
word pointing to a location plus or minus that number of lo­
cations from a given reference cell which is also given in the
instr uction word.

Effective address is always an absolute address. It mayor
may not be the location indicated by the displacement number.
The effective address is the final computed address after
displacement calculation, indirect addressing (if any), and
indexing (if any) have all been resolved.

Relative address is the address obtained by subtracting the
base fran the effective address.

Base is either the program base (PB) address or the data base
(DB) address.

The canputer system uses relative addressing almost exclusively.
Addressing can be relative to the location pointed to by the
P Register, DB Register, Q :R:gister, or S-pointer. As shown in
figure 2-14, memory address instructions (paragraph 2-44) use
bits 6 through 15 for "mode and displacement" and addressing can
be + or relative to P or Q, but only + relative to DB and ­
relative to S. The relative addressing displacement ranges for
the various modes are also shown in figure 2-14. (It should be
noted that these ranges apply only to direct, unindexed addres­
sing. Indirect addressing and indexing are discussed separately
in paragraphs 2-50 and 2-53.) The variety of displacement ranges
is due to the particular coding required to specify a given mode.
For example, only two bits (6 and 7) are required to specify the
P+, P-, and DB+ relative modes. This leaves bits 8 through 15
available for displaceme~t which, therefore, can be any value
from 0 through 255. For Q+ relative mode, bits 9 through 15 give
a displacement range fram 0 through 127. For Q- and S-relative
modes, bits 10 through 15 give a displacement range from 0
through 63. In order to provide the most efficient usage of
bits, the mode codes are assigned according to the respective
needs of each displacement range.

Referring to figure 2-14, note that the DB+, Q-, Q+, and S-ranges
can overlap. Also, DB+, Q+, and S- can actually address words
currently held in the TOS registers. P+ and P- addressing modes
are typically used for branches and referencing of literals. The
DB+ mode is used for referencing global variables and pointers
(i .e., indirect addresses). The Q+ and Q- modes are useful for
local variable storage and passing of procedure parameters
respectively. The S- mode is typically used for accessing param-

2-35

System/CPU Overview

INSTRUCTION BITS

8 I 9 I 10 I 11 I 12 I 13 I 14 I 15

o
o
1

1

6 I 7

o 14~------ Displacement 0: 255--+

1 Displacement 0: 255--+

o Displacement 0: 255--+

1 0 Displacement 0: 127--+

1 ~14--- Displacement 0: 63 --+

1 1 114--- Displacement 0: 63 --+'--- -'1

ADDRESS
MODE

P+ Relative

P- Relative

DB+ Relative

0+ Relative

0- Relative

s- Relative

CODE DATA

SEGMENT SEGMENT
PB DL

DB

} 255DB+ Relative

} 255 } 63
P- Relative 0- Relative

0 }mP

} 255

0+ Relative

P+ Relative

} 63S- Relative
S

PL .. Z ...

Figure 2-14. Memory Addres sing Modes

eters in subroutines. Not all memory address instructions are
capable of using all six relative modes. Each instruction defi­
nition (Section IV) will specify which modes are applicable for
each instruction.

2-50. Indirect Addressing

As shown in figure 2-15, indirect addressing uses the location
referenced by the initial displacement (the Indirect cell) to
specify another location within the same code or data segment.
For code references, the Indirect Cell contains a self-relative
address. For data references, the Indirect Cell contains a DB+
relative address. For memory address instructions (paragraph
2-44), indirect addressing is specified by bit 5 of the instruc-

2-36

System/CPU Overview

CODE, Indirect
LOAD P 4, ILOAD P+4, I

PB ----. PB ----.

P-7 iwoJ
P-4 -3 - Indirect

0
Cell

P--+ n P--.

P+4 3 ,..
IndIrect

j Cell

P+7 to-

PL---

DATA, Indirect

PL --Il1o

LOAD 08+4, I

DB-+

08+4 ~_---:..7__-1

08+7~ -1.

IndIrect
Cell

LOAD 0+4, I

DB-+

OB+ 7-----4

LOAD 0- 4, I
or LOAD 5-4, I

08+7~ ~

0-4 loR IndIrect

0
Cell

0--'

0--'

D
0+4 I*' IndIrect

Cell 5-4 7 D'"d'~";,:

s-+

z-+~ __ Z ---tl~L. --' z-~

Figure 2-15. Indirect Addressing Examples

2-37

indirect addressing.) For most
2-34), indirect addressing is

System/CPU Overview

tion word. (A logic 1 specifies
branch instructions (paragraph
spe c if ie d b Y bit 4.

2-51. CODE INDIRECT. Both P+ and P- examples of ind irect ad­
dressing in a code segment are shown in figure 2-15. The first
example shows the actions occur ing for an assumed "LOAD P+4, I"
instruction. The displacement (+4) points to the Indirect Cell
at P+4. The Indirect Cell contains a +3 self-relative address.
This points to a location three addresses higher, or P+7. It is
the contents of ,P+7 that will be loaded onto the TOS by the "LOAD
P+4, I" instr uction. The second example shows the actions occur­
ing for an assumed "LOAD P-4, I" instruction. The displacement
(-4) points to the Indirect Cell at P-4. The Indirect Cell con­
tains a -3 self-relative address. This points to location P-7
which is the effective address for th "LOAD P-4, I" instruction.

2-52. DATA INDIRECT. The first example in figure 2-15 of indi­
rect addressing in a data segment shows the actions occuring for
an assumed "LOAD DB+4, I" instruction. The displacement (+4)
points to the Indirect Cell at DB+4. The Indirect Cell contains
a DB+7 relative address. This is not a self-relative address
and, therefore, the effective address is at location DB+7. It
should be noted that it is possible for the effective address to
be below as well as above the Indirect Cell. The second example
shows the actions occuring for an assumed "LOAD Q+4, I" instruc­
tion. The displacement (+4) points to the Indirect Cell at Q+4.
The Indirect Cell contains a DB+7 relative address and, therefore,
the effective address is again at location DB+7. The third ex­
ample shows the actions occur ing for an assumed "LOAD S-4, I" or
"LOAD Q-4, I" instruction. The displacement (-4) points to the
Indirect Cell at either S-4 or Q-4 depending on the instruction
and, since the contents of the Indirect Cell is assumed to be+7,
the effective address for both instructions is again DB+7.

2-53. Indexing

The memory address instructions (paragraph 2-44) use indexing to
modify an operand address. Indexing is specified by bit 4 of the
instruction word. (A logical 1 specifies indexing.) Figure 2-16
shows examples of indexing when combined with positive and neg­
ative addressing modes (both direct) and an example of indirect,
indexed addressing (positive mode only) for both code and data
segments. It should be noted that in each example, the index is
assumed to be 5. This is established by the "LDXI5" instruction
that preceds each LOAD instruction used in the examples. This
instruction loads the value 5 in the Index Register (X Register).

2-54. CODE INDEXING. The first example in figure 2-16 shows the
actions occuring for an assumed "LOAD P+4, X" instruction. The
displacement (+4) would by itself point to location P+4. How­
ever, by adding the index of 5 to the displacement, the location
P+ll (octal) is addressed. It is the contents of this location
tha twill be loaded onto the TOS by the "LOAD P +4, X" instr uc­
tion. The second example shows the actions occuring for an

2-38

CODE, Indexed

LOXI 5
LOAD P+4, X

LOXI 5
LOAD P-11, X

System/CPU Overview

LOXI 5
LOAD P+4, I, X

PB

F

(P-41

P-ll ~-----i

PL

DATA, Indexed

LOXI S
LOAD 08+4, X

X 5

PB---+

p- 4 ~ -ilr

p---.~------tV

PL ---'~""' ---'

LOXI 5
LOAD S 11, X

t
x : 5

•

PB

P

lnduect
Cell

X'5

P'14 ..--------4

PL

LOXI 5
LOAD 0+4, I,X

uSDB

108-41

08-11 ..-------1

z

X:5

DB

(S

s

z

---.

-111 ~--------;---~--------

J
S-4 .

V---.

~

t
X = 5

•

IDB'31

08-10

Q

0·4 r----=-----i

z

X 5

Induect
Cell

Note: Address Calculations in Octal

Figure 2-16. Indexing Examples

2-39

System/CPU Overview

assumed "LOAD P-ll, X" instruction. The displacement (-11) is
added to the positive index of 5 and the final address is P-4.
The third example shows code indexing combined with indirect
addressing. In all cases, post- indexing is used; i.e., the
indirect addressing is accomplished first (either positive or
negative direction), and then indexing proceeds in a positive or
negative direction fram the indicated location. As shown in the
example for the "LOAD P+4, I, X" instruction, the displacement of
+4 points to the Indirect Gell at P+4. The contents of P+4 is a
self-relative address of 3 that points to P+7. However, indexing
adds 5 to this value and the final effective address becomes P+14
(octal) •

2-55. DATA INDEXING. The first example in figure 2-16 shows the
actions occur ing for an assumed "LOAD DB+4, X" instr uction • The
displacement (+4) points at DB+4 which is then modified by the
index of 5 to point at DB+ll. The second example shows the ac­
tions occur ing for an asumed "LOAD S-ll, X" instr uction wh ich is
similar to the actions occuring for the "LOAD P-ll, X" instruc­
tion discussed in paragraph 2-54. Since a positive index is
specified, indexing proceeds in a positive direction from the
location indicated by the displacement. The third example shows
data indexing combined with indirect addressing. Again, post­
indexing is used. The displacement (+4) points to the Indirect
Cell at Q+4 which contains the value 3. Since indirect addresses
for data are always DB+ relative, this points at location DB+3.
This is modified by the addition of the index 5 and the final
effective address becomes DB+lO (octal).

2-56. Byte Addressing

The Load Byte (LDB), Store Byte (STB), and five Move Instructions
(Section IV) use the byte addressing convention. Since the CPU
is not specifically organized as a byte processor, the byte ad­
dressing convention uses the contents of the X Register, an in­
direct cell, or a stack word to specify the desired byte. For
memory addressing (Load Byte and Store Byte instructions), the
displacement value remains a word displacement. The byte data
label in an indirect cell is an inflated value of two times the
word displacement fr am DB. The contents of the X Registe rand/or
an indirect cell indicate the desired byte in a byte array. For
Move instructions, one or two of the TOS locations give a PB+ or
DB+ relative byte index. The byte addressing range is therefore
restricted to 32K words; 15 bits for word addresses and one bit
for byte number. Four examples of byte addressing for memory
address instructions (LDB and STB) are shown in figure 2-17. (The
convention for the Move Instructions corresponds to the Direct,
Indexed example in figure 2-17. The difference is that the byte
index would be obtained from a IDS word rather than the
X Re g i s te r •)

2-57. DIRECT BYTE ADDRESSING. For direct, un indexed byte ad­
dressing, the displacement value given in the instruction word is
str ictly a word displacement and only the left byte of each word
is addressable. As shown in figure 2-17, an "STB DB+7" instruc-

2-40

System/CPU Overview

DIRECT

STB OB+7

DIRECT, INDEXED

LOXI5
STB OB+7, X

INDIRECT

STB OB+7, I

INDIRECT, INDEXED

LOXI 5
STB OB+7,I,X

DB

s

---..
t1
+2

Not+3
+4 Access-

Ible
+5
;-6
+7

---..

DB

s

--.
+1
+2
+3
+4
;-5
;-6
+7 0 1

2 3
4 5

---.

DB

s

---..
+1
+2
+3
+4
;-5
;-6
;-7 46

+20 40 41
+21 42 43
+22 44 45
+23 46 47

---..

DB

s

~
+1
+2
+3
+4
+5
+6
+7 40

+20 0 1
+21 2 3
+22 4 5

---..

Figure 2-17. Byte Addressing Examples

tion would store a byte from the TOS into the left byte of the
DB+7 loca tion.

2-58. DIRECT, INDEXED BYTE ADDRESSING. In the examples shown in
figure 2-17, the index is assumed to be 5. This is established
by the "LDXI5" instruction that precedes each STB instruction.
The "STB DB+7, X" instruction directly addresses location DB+7
and the index of 5 accesses the sixth byte. It should be noted
that the byte index starts at zero and that all even indexes are
left bytes and all odd indexes are right bytes.

2-59. INDIRECT BYTE ADDRESSING. For indirect, unindexed byte
addressing, the byte index is given in the indirect cell. As in
all indirect data addressing, the indirect reference is relative
to DB. Therefore, the "STB DB+7, I" instruction shown in figure
2-17 initially addresses the 47th byte in respect to DB. This
will be the left byte of DB+23. (Since there are two bytes per
word, divide the byte index by two to identify the word location;
a remainder of zero indicates the left byte and a remainder of
one ind ica tes the right byte.)

2-60. INDIRECT, INDEXED BYTE ADDRESSING. For indirect, indexed
byte addressing, the displacement points to the indirect cell,
the ind irect cell points to the star t of the byte ar ray, and the
index in the X Register points to the desired byte in the array.
This is shown by the "STB DB+7, I, X" instruction in figure 2-17.
The index in the X Registe r is aga in assumed to be 5. The dis-

2-41

System/CPU Overview

placement points to the indirect cell at location DB+7 that con­
tains the value 40. Dividing 40 by two gives the starting word
address of the array as DB+20. Since the index is five, the lo­
cation accessed is the sixth byte of the array. In this manner,
the X Register acts as a byte index for ease of stepping through
byte strings or byte arrays.

2-6\ Double-Word Indexing

The Load Double Word Onto Stack and Store Ibuble On TOS Into Mem­
ory instr uctions" (Section IV) perm it double-word indexing. When
indexing is specified for these instructions, the hardware auto­
matically mUltiplies the X Register contents by two during compu­
tation of the effective address. Therefore, an index value of 4
would imply the fi fth double word in a double- word ar ray.

2-62. Accessing DB- Area

The area between DB and DL can be accessed through indirect ad­
dressing and indexing. Figure 2-18 illustrates the technique of
indirect addressing to access this area using both word address­
ing and byte addres sing. "

2-63. WORD ADDRESSING. The first example in figure 2-18 shows
how to load the contents of the location at DB-IO onto the stack
assuming that location DB+4 can be used for the indirect cell.
The "LOAD DB+4, I" instruction initially references the indirect
cell at DB+4. Instead of the usual positive number, location DB+4
contains the two's complement of the desired DB displacement. In
octal, the two's complement of 10 is 177770. Remember that the
contents of an ind irect cell in a da ta se grnent is always DB+ re­
lative displacement. Therefore, since addressing ar ithrnetic is
modulo 65K, adding 177770 to DB causes wrap-around and addresses
the desired DB-IO location. From this point, indexing via the
X Register can be applied.

2-64. BYTE ADDRESSING. The second example in figure 2-18 shows
how the DB-IO byte can be loaded onto the stack assuming that
loca tion DB+4 can aga in be used for the indirect cell. The" LDB
DB+4, I" instr uction in i tially references the ind ire ct cell which
contains the two's complement (177770) of the desired byte dis­
placement (-10) from DB. Remember that byte indexes are con­
verted to word indexes by dividing by two. This would indicate
loca tion DB+77774 (left byte) which mayor may not exceed the
upper limit of memory, depending on the current absolute value of
DB. (To allow for byte addressing in additional data segments
where DB may not be between DL and Z, a check for this condition
is made. Refer to paragraph 2-65.) If D"B is not between DL and Z
(this should happen only during privileged mode and is then
called split stack), the byte will then be accessed without fur­
ther bounds checking. If DB is between DL and Z, then the LDB
instruction (or any other byte addressing instruction) tests this
address to see if it is within the required DL to Z range. If
the address is not within the range (which should be the case
whether or not wrap-around has already occured), the instruction

2-42

WORD
ADDRESSING

LOAD DB+4, I

or----+---

.,
08-10~ -I

DB ~ -I

08+4 177770

.H

BYTE
ADDRESSING

LDB DB+4, I

System/CPU Overview

0....--+----

Dl---t--+-__---4

,r
08-4 -10 -7

-6 -5
-4 -3
- 2 -1

DB--+ 0 +1

08+4 177770

Address Calculations In Octal: WORD DB + 177770 ~ DB - 10
BYTE DB + (177770 -:- 2) + 100000 = DB - 10

Figure 2-18. Accessing DB- Area

will add 32K (%100000) to the DB+77774 value. Assuming that
wrap-around has not yet occured, this addition will cause it to
occur and thus address the byte at byte address DB-IO (left byte
in location DB-4). At this time, a second test is made to check
if the effective address is within the DL to Z range. If the
technique has been applied properly, the test will be affirmative
and the byte will be transferred. If the test fails during user
mode, there will be a bounds violation interrupt. If the test
fails during privileged mode, the test results will be ignored
and execution will continue (even if out of bounds), using the
second referenced byte.

2-65. Bounds Checking

The CPU routinely checks all address references and TOS movements
to ensure that such operations remain within legal bounds. Suf­
ficient checks are made for all machine instructions to ensure
that a nonprivileged user cannot adversely affect other users or
the operating system. The basic bounds checks that are made for
the applicable instruction types are discussed in paragraphs 2-66
through 2-70 and summarized in table 2-6. The boundry limits
checked are illustrated in figure 2-19. If any of the bounds
check fail during non-privileged user mode, there will be a
bounds violation interrupt. Those checks whose results are ig­
nored during privileged mode are so indicated.

2-43

System/CPU Overview

CODE

PB --.

Legal
Address.
(for Program
Transfers

P ----. and User
References)

PL -..

DATA

DL

DB

SM
S

z

INCREASING
ADDRESSES

D

----.

----.
Legal

Addre...
for

User
References

~

Stack
Underflow

User
Stack
Area

Stack
Overflow

Figure 2-19. Addressing and Stack Bounds

2-44

System/CPU Overview

2-66. PROGRAM TRANSFER LIMIT. Program control cannot be passed
to any location beyond the limits defined by the contents of the
PB and PL Registers. For indirect branches, both the indirect and
direct references must be within limits. This also applies when
branching indirect via the data stack, except that the initial
reference must be within data stack limits DB and S rather than
code segment limits PB and PL.

2-67. PROGRAM REFERENCE LIMITS. Some of the Memory Address in­
str uctions, all wop Control instr uctions, and some ~ve instr uc­
tions are capable of addressing locations in the code segment.
During privileged mode, these references can be made as desired.
During non-privileged user mode however, these references (both
direct and indirect) must be within the limits defined by PB and
PL.

2-68. DATA REFERENCE LIMITS. During privileged mode, data ref­
erences are not sUbject to bounds checking. During non-privileged
user mode however, these references (both direct and indirect)
must be within the user's area defined by DL and S.

2-69. STACK OVERFLOW LIMIT. Stack overflow is defined as moving
the S-pointer beyond the stack limit. Stack overflow occurs when
SM exceeds Z. Since SM is not necessarily the actual TOS (SM may
equal S or be up to four locations lower) and to allow marker
space for the remote possibility of a procedure call and an in­
terrupt while SM is at Z, there is a zone of approximately 128
locations beyond Z which could be filled with stack related data.
A stack overflow causes an interrupt which, under discretion of
the operating system, may extend the stack limit.

2-70. STACK UNDERFLOW LIMIT. Stack underflow is defined as mov­
ing the S-pointer below the data base or, more strictly, moving
SM below DB. Since SM may not equal S, underflow can occur even
though S is up to three locations above DB. During privileged
mode, stack underflow is not subject to checking. During non­
privileged user mode however, stack underflow will cause an in­
terrupt. Users can accebS the area between DL and DB by indirect
addressing or indexing (paragraph 2-62) as long as SM does not
become less than DB. Although the hardware does address arithme­
tic modulo 64K, code segments and data stacks can not cross mem­
ory bank boundries. This restriction is handled by the operating
system.

2-71. CPU DVERVI EW

Operation of the CPU is controlled by the software set of in­
structions and the microprogram. Logically, the CPU (figure
2-20) consists of three sections; a microprocessor, processor
registers, and an arithmetic logic unit (ALU). The microproces­
sor receives an instruction word from Main Memory and translates
it into a microprogram starting address. The microprogram is
then read out of read-only memory (ROM) and is decoded into a set
sequence of control signals. The processor registers are flip­
flop registers that can be loaded from the U-Bus (i.e., output of

2-45

System/CPU Overview

Table 2-6. Bounds Checks Summary

Check Definition Mode

Program Transfer PB ~ E S. PL Pr ivileged, User
Program References PB S. E ~ PL User only

(e xcept moves)
Data Ref erences DL ~ E S. S User only
Stack Ov~rflow SM > Z Pr i vileged, User
Stack Underflow SM < DB User only

I

E = effective addres s of memory address

the ALU) and read onto the R-Bus and/or S-Bus (inputs to ALU) •
The ALU executes various functions (add, subtract, etc.) on the
R- and S-Bus inputs (with or without a shift) and outputs the
result to either of the CPU registers for transmission out of the
Central Processor Module or to the U-Bus for storage in one of
the internal registers. For a more detailed discussion of the
CPU logical components, refer to paragraph 2-75.

2-72. Pipelines

There are two pipelines in the CPU; a microcode pipeline and a
data pipeline. Basically, the microcode pipeline consists of the
Current Instruction Register (CIR), CMUX, Mapper, Look Up Table
(LUT) , VBUS MUX, ROM, RORl, and ROR2. See figure 2-20. The data
pipeline basically consists ot the Store Logic, various regis­
ters, R- and S-Bus Logic, ALU, Shifter, and Decimal Corrector.

2-73. DATA PIPELINE. In general, the data pipeline picks up two
operands via the R- and S-Bus Logic and R- and S-Bus Registers
(figure 2-20) and inputs them to the ALU where a mathematical
calculation can be performed. The result is then outputed to
either the Shifter or Decimal Corrector where it can be either
shifted (shift left 1, shift right 1, or swap bytes with or
without clearing either byte), or its decimal arithmetic cor­
rected. The final result is then put on the U-Bus and either
stored in anyone of the registers or input to the ALU a second
time for additional calculations.

To give the data time to propagate through the entire pipeline,
the data is stepped through in two steps. The first step is to
read the operands from the two source registers to the input
lines for the R- and S-Bus Registers. This is accomplished in
one 175-nanosecond clock cycle. rrhe second step is for the data
to go through the ALU, Shifter or Decimal Corrector, and Store
Logic and then be on the input to the selected store register.
This is accomplished by the next 17S-nanosecond clock cycle.

2-46

NIP

Figure 2-20.

System/CPU Overview

CIR

PREADDER CONT
r- --=l»::ous=... ~~

ROMOl'NO

RDRI

III
U
X

SP/MCU

SKIP

FCN

SR

EXT INT

CPX 2

CPX 1

CPU

CPU Simplified Logic Diagram (Sheet 1 of 2)

2-47

System/CPU Overview

CIR

STORE

FCN

SHIFT

SP/MCU

I'llEADOER CONT

U.IUS U·IUS

SHIFT

FCN FCN

f-f- DeAD

-....< 1""""-
C

r---
o 0
E R

cWH~
C R
I E

X ADDER- MC
X M A T ~

U l 0
X R

R ,.....- ---R
ROMDPND ROM~PND B ~

~
U B

,....'-~ S U

ITf
TRGR

~m -- S f--S f- AI P f-- TR1R l A IT P
~

0 I: f-- TR2R f- P 0 R l T F -----0

R TRJR
f- ~ G E U BUS T

"..!.. f-- I G - E

I'--
E X C ~
L 1 S

"--- "--- f--

0 PL

~
G
I SPO

C SPI

f- STOR7"r
~

MO~ ~L-
gEj

- 8S

TNAMEO
~ B

TNAMEI
U

LB- S f--
CPX2"

R
E

PANel G
"WITCHES -----CIR

U·BUS

CPXl-PREG

gr}-
I ACOR & MUX I

TROS
SU·BUS TRIS

TR2S B I DCOR IU
~

TRJS
S I

PB

DL l
r--

S SM 0)
T

DB
G

0 I

R Q C

~
SW MOD

E SP2 S SELECT

r'--- SPJ TOl T02l
0

PClOCK
r-+ACOR

AT01.AT02

G

rD
P

I 1
OPND

(C FAST OPND

HATtlS

--r-
CNTR

STORE
-;] 10AI' 71

I

L1Dl ""'.'()PB BANK M -
: G I u
K I I DB BANK x ,--

I~!!MCU C

STACK BANK (,---
I

IONU·BUS SPIMCU

OPINP

TONIR It.
CPXl (CPX I

I

MOD

CRL

M
A
T
E
S

W

I

T
H

M
C
U

SP/MCU

MAP

STORE UQIJS IDA

MATES WITH lOP

100 llICUO.
'ARITY

Figure 2-20. CPU Simplified Logic Diagram (Sheet 2 of 2)

2-48

System/CPU Overview

'I'he entire data calculation is accomplished by one microcode in­
struction which is also executed in two steps. During the first
step, the microcode instruction is held in RORI. Effectively,
the only two microcode instruction fields being decoded during
this clock cycle are the R- and S-Bus fields. (Refer to Section V
for microcode instruction format descriptions.) These two fields
cause the R- and S-Bus Logic to select the correct registers for
the two operands and gate the operands to the R- and S-Bus Reg­
isters. The same clock cycle that gates the operands into the
R- and S-Bus Registers also gates the current microcode instr"uc­
tion into ROR2 and gates the next microcode instruction into RORI
as discussed in paragraph 2-74. It also gates the previous mic­
rocode instructions's final result into the register specified by
the instruction's Store field. During the second step (current
microcode instruction in ROR2) ,the instruction's Function field
specifies what calculation is to be accomplished by selecting
either the Shifter or Decimal Corrector and the instr uction'-s
Shift field specifies what the Shifter or Decimal Corrector is to
accomplish. Also, the instruction's Store field specifies to the
Store Logic which register to select to gate the final result
appearing on the U-Bus. During the next clock cycle, the now
cQ~pleted microcode instruction is discarded by loading the next
microcode instruction into ROR2 and the final result of the exe­
cuted instruction is gated into the register specified by the
Store Logi c.

Each microcode instruction also contains two other fields that
are decoded during execution; a Skip field and a Special field.
The Special field controls the hardware that performs such oper­
ations as setting condition codes, popping the stack, and incre­
menting and decrementing the stack's SR Register. A complete
listing of the operations specified by the Special field is con­
tained in Section V. The Skip field specifies test conditions
such as the status of internal flags, the contents of the
SR Register as compared to zero through four, and operand results
that appear on the T-Bus as compared to zero, non-zero, odd, and
even. A c~nplete listing of the test conditions specified by the
Skip field is contained in Section V. The Skip field determines
which condition will be tested for a possible skip. If the con­
dition is met1 ROR2 executes a No Operation (NOP), effectively
skipping one microinstruction word. Other signals, such as NEXT,
also come from the Skip field.

2-74. MI CROCODE PIPELINE. In general, the microcode pipeline
r ece i ves a reques ted ins tr uct ion from l\la in Memor y v i a the CrL
Bus, MC U, and Ne xtIns t rue t ion Reg i s te r (N I R) • Se e fig u r e 2- 2 0 •
The instruction is clocked into the CIR and then into the CMUX.
If the pipeline has not been previously filled, the NIR output is
clocked into the CIR and CMUX simultaneously, thus saving one
clock cycle. Ten bits of the CMUX output go to the Mapper and 8
bits go to the Mapper Control. The 8-bit output of the Mapper
goes to the Look Up Table (LUT) ROM. The LUT ROM produces a
12-bit microprogram starting address from the received instruc­
tion and also eight special use bits. The SRPO, SRPl, and SRP2
special use bits go to the SR Preadjust Adder. The Z, PCO, PCl,

2-49

System/CPU Overview

and W special use bits go to the Preadder Control. (The W bit
also goes to the Mapper Control.) The JULI special USE bit goes
to the BMUX Control and CMUX Control.

The 12-bit microprogram starting addreES from LUT is applied to
the VBns HUX. The VBDS MUX outputs 16 bits to the RO~1 and In­
crement (INC). The 16 bits applied to the ROM is the starting
address for the microcode instruction providing no special con­
ditions such as stack pre-adjust are needed. The 32-bit ROM
output is clocked into RORI. At the same time that the ROM is
being accessed, the starting address is being sent to the INC
circuit. During the same clock cycle that clocks the ROM output
to RORl, the address-pIus-one is applied to the Address l~gister

(RAR). rrhe output of RAR goes back to the VBUSMUX. When, doing
the next clock cycle, the incremented address goes to ROH, the
new microcode instruction gOES to RORl and the original microcode
instruction goes from RORI to ROR2. The microcode pipeline is
now packed, functioning, and incrementing one step at a time
through the microcode. (Refer to paragraph 2-86 for microcode
jump information.)

2-75. CPU Component Descriptions

The logical component.s of the CPU shown in figure 2-20 are des­
cribed in paragraphs 2-76 through 2-128.

2-76. NIR. The NIR is a l6-bit register that is loaded with an
instruction from Main Memory and provides storage for that in­
struction until the current instruction has been executed. This
allows an instruction to be fetched from memory concurrently with
the execution of the current instruction. The NIR is loaded by
an NIP signal from the Meu operation decoder. The NIP signal is
generated as a result of a microcode instruction Skip field code
NEXT or the HCU fie ld code NIR as des cr ibed in Se ction V.

2-77e CIR. The CIR is a l6-bit register that contains the in­
struction currently being executed by the CPU. The CIR is loaded
by an NIRTOCIR signal from the Next. Control. The NIRTOCIR signal
is generated as a result of a microcode instruction Skip field
code NEXT or by the clock cycle after a Special field code CCPX
as described in Section V. As previously discussed, if the pipe­
line has not been filled, the contents of the NIR goes directly
to both the CIR and c~mx to save one clock cycle. The NIR and
crR allow one clock cycle to fetch one instruction from memory
while the previous clock cycle is still executing an instruction.
Instr uction tr'anslat ion is accompl ished f rom the eIR two clock
cycles after the execution has begun until the execution is com­
plete unless it is the right instruction of a stack-op. In the
case of a Right Stack-Op instruction, the entire translation is
accomplished from the CIR. The controlling factor concerning the
execution of a Right Stack-Op instruction is the BMUX Control.

2-50

System/CPU Overview

2-78. CMUX AND CMUX CONTROL. The CMUX is controlled by the Next
Control and CMUX Control to determine whether the instruction
from the NIR or CIR goes into the Mapper.

2-79. MAPPER AND MAPPER CONTROL. The Mapper combines the inputs
"fran the Cf.lUX and Mapper Control and generates an 8-bit output
that addresses a specific location in the LUT ROM.

2-80. LUT ROM. The LUT ROM outputs a l2-bit address and eight
special use bits as determined by the Mapper. The l2-bit address
is applied to the VBUS MUX and the VBUS MUX generates a l6-bit
output that addresses the initial microcode instruction that
starts the accomplishment of the instruction from the NIR or CIR.
The eight special use bits specify the mode of addressing being
utilized for the memory reference instructions. The SPO, SPl,
and SP2 bits are applied to the SR Preadjust Adder tq define how
many TOS registers must be valid before execution of the in­
struction can begin. Data bit 0 in the LUT ROM is the W-bit and
bits 1 through 12 contain the starting address of the micropro­
gram for the instruction to be executed. When a new instruction
is to be executed, the W-bit is stored in the W-Bit Register.
The W-bit has different meanings for different instructions and
has a fixed, known value for every instruction as follows:

a. For STACKOPS (CIR (0:3) = %00) instructions, the W-bit has no
meaning; it is set to logic 1 merely for convenience.

b. For SUBOP 1 (eIR (0:3) = %01) instructions:

(1) The W-bit is set to logic 1 for instructions regarding
P-relative addresses (some branches). In this case, eIR
(10) is treated as a sign bit for the P-relative dis­

placement in CIR (11:15). This bit controls the function
of the Pre-Adder (add or subtract) so that a positive or
negative number can be obtained from it.

(2) The W-bit is set equal to logic 0 for shift instructions.
In this case, the pre-added output is CIR (10: 15), a
6-bit shift count, with zeros in all other bit positions.

c. For SUBOP 2 (CIR (0:3) = %02) instructions, the W-bit con­
trols the function of the Pre-Adder. In all cases, the input
to the Pre-Adder is CIR (8:15). When the W-bit is logic 0,
the Pre-Adder is set to add. Since the second input to the
Pre-Adder is logic 0 (no indexing), the output is -CIR (8:15)
(= 317 - CIR (8:15)), a negative number.

d. For SUBOP 3 (CIR (0:3) = %03) instructions:

(1) For SPECOP 00 (CrR (0:3) = %03), the W-bit is set to
logic 0 which forces the Pre-Adder to the add function.
In addition, only eIR (12:15) is applied to the Pre-Adder
input. Therefore, the output is the K-field CIR (12:15).

2-51

System/CPU Overview

(2) For SPECOP 01 through 17 (CrR (4:7) = %01 - %17), the W­
bit causes the same action as in paragraph c above.

e. SUBOP %04 through %17 (eIR (0: 3) = %04 %1 7) instructions
generally reference an operand in memory. The operations
necessary to obtain the effective address is this operand are
common to most of the instructions and, therefore, one micro­
program is used for this calaculation. When one of these
instructions is to be executed, it maps through the LVT to
this microprogram to obtain the operand address. When this
is done, the instruction then jumps to the microprogram that
executes the specified instruction and the W-bit now becomes
effective. The W-bit is set to logic 1. When the foregoing
address calculation routine has been completed, a micro­
operation (JLUI) in the ROM Skip field is executed. If the
instruction does not specify indirect addressing or if one
level of indirect addressing has been completed, the execu­
tion of JULI forces a microprogram jump to an address
contained in the LUT. Since the contents of the CIR have not
changed, the LUT would normally still be pointing to the
address of the foregoing address calculation routine and an
infinite loop would result. However, the W-bit now modifies
the LUT entry address to a different, but related, address.
This LUT address contains the microprogram address of the
desired instruction to be executed.

2-81. VBUS MUX AND VBUS CONTROL. One of the nine inputs to the
VBUS MUX is selected by the VBUS Control to be fed through the
VBUS MUX which becomes a 16-bit address for the ROM. This ad­
dress is also applied to the Incrementor (INC) which increments
the address by one and applies this new address to the ROM Ad­
dres s Re g iste r (RAR).

2-82. RAR. The RAR is a 16-bit register that holds the address of
fue next microinstruction to be executed if no preempting condi­
tions (interrupt, jump, etc.) occur. The RAR is loaded with the
ROM address incremented by one and is automatically incremented
every 175 nanoseconds by the INC until the end of the micropro­
gram for the instruction is reached. Normally, the RAR is loaded
from the INC. However, if a repeat is specified, the contents of
fue RAR does not change until the repeat is terminated. In ad­
dition to the 12-bit output from the LUT ROM, the RAR can he
loaded from the ROM Output Register Rank 2 (ROR2), by a JMPGATE
signal generated in response to a Function field code Jump (JMP)
or Jump .'Ib Subroutine (JSB), by the interrupt logic due to an
interrupt or power failure, from the V-Bus in response to an RAR
store specified, or from the Hardware Ma intenance Panel.

2-83. SAVE REGISTER. When a JSB is decoded by the Function Field
Decoder, a JSBI signal is generated and the contents of the RAR
is loaded into the Save Register until a Return from Subroutine
(RSB) is decoded by the Skip Field Decoder. The RSB signal Loads
fue contents of the Sa ve Register back into the VBUS MUX and from
there back into the ROM which continues executing the micropro­
gram with the microinstruction folLowing the JSB.

2-52

System/CPU Overv iew

2-84. ROM. The ROM accepts 16-bit addresses from the VBUS MUX
and outputs 32-bit microinstructions of a microprogram to the ROM
Output Registers (RORI and ROR2). The ROM contains 4096 (%7777),
32-bit instruction words. Each instruction generally calls sev­
eral microinstructions from the ROM. For example, instructions
that affect TOS will first call a microprogram routine to check
that there are enough filled or vacant TOS registers to carry out
the operation. Then, after one or more memory transfers to ad­
just the stack, the remaining microinstructions called by the
instruction will begin. Updated addresses for succeeding micro­
instructions called by the instruction are furnished to the ROM
ever y 1 75 nanoseconds by the RAR.

2-85. RORI AND ROR2. The 32-bit microinstruction words from RORI
and ROR2 are divided into eight fields, each field containing
from three to five bits. Each field, when decoded, produces a
set of microcode signals that control the operation of the CPU.
(Refer to Section V of this manual.) The 32-bit output of the ROM
is loaded into RORI on each 175-nanosecond clock cycle. On the
next clock cycle, six of the seven microinstruction word fields
are transferred from RORI into ROR2 while RORI is receiving the
next microinstruction word. (Initially, it takes two clock cycles
to fill the pipeline, but thereafter ROR2 receives a new micro­
instr uction word on each success ive clock cycle.) Two ROM output
registers allow the S- and R-Bus fields to be decoded in advance
of the rest of the instruction word. Therefore, the S- and R-bus
selection occurs is RORI and the selected data will be ready and
waiting on the U-Bus by the time the rest of the word is decoded
in ROR2. Each field of the ROM output word is separately decoded
as discussed in Section V. The S-Bus field selects one of 31
registers or sets of lines to be loaded into the S-Bus Register.
The R-Bus field selects one of one of 15 processor registers or
sets of lines to be loaded into the R-Bus Register. The Store
field selects one of 29 registers in which to store the U-Bus
data. The Function field specifies the function that the ALU is
to perform on the two operands in the S- and R-Bus Registers. The
Shift field specifies how the T-Bus data will be shifted onte the
U-Bus. The Special field performs many varied operations in­
cluding the generation of POP and memory opcode and CTL Bus ra­
que s t s i g na 1 s .

The Skip field specifies a test condition, which if true, causes
the microcode instruction in the next ROM address not to be exe­
cuted. (A complete list of test conditions that can be specified
by the Skip field is contained in Section V.) However, if the
current instruction is a microcode jump instruction, the jump
will be executed only if the condition be ing tested is true. In
the case where the next microcode instruction is not to be exe­
cuted, the skip condition is tested while the microcode instruc­
tion is in ROR2. This means that the instruction to be skipped
is in RORI. The clock cycle that moved the instruction to be
skipped from RORI into ROR2 also sets the NOP2 flip-f~op. This
causes the ALU to add, forces the Shift field to a pass function,
and the Store field not to be decoded. However, the operands
specified by the R- and S-Bus fields of the instruction to be

2-53

System/CPU Overview

skipped were already clocked into the R- and S-Bus Registers so
that the data on the U-Bus at the end of the NOP cycle is the sum
of the contents of the source registers.

2-86. Microcode Jumps. Microcode jumps can be taken from either
RORI or ROR2. The jumps can be taken from RORI only under the
condition that the jump has an unconditional skip code and the
instruction in ROR2 meets one or more of the following condi­
tions: is cancelled by NOP2; is a ROM Immediate type instruction
without a data-dependent skip; contains a NOP skip function;
and/or contains a non-data-dependent skip test (skip codes 14
through 27, 32, 33, and 34) which is not met or if an RORI jump
has just been completed. All other microcode jumps will be ex­
ecuted from ROR2.

An unconditional jump is a jump that occurs without regard to the
data. If the microcode calls for an unconditional jump, a jump
target address is selected out of the Shift, Special, and R-Bus
fields of the microcode instruction in RORI (ROR2 if previous
microcode instruction contained a data-dependent skip condition)
and appl ied back to the VBUS MU X so tha t the new ROM microcode
instruction is sent to RORI. The target address goes to the INC,
is incremented by one, and the new target address plus one is
stored in the RAR until the next clock cycle when it is applied
to the VBUS MUX for consecutive addressing of the microcode in­
s tr uct ions.

The jumps that are executed from ROR2 beca use none of the
fast-jump conditions were present for RORI and the conditional
j LmpS that are always executed fr om ROR2 behave as follows: Not
Taken, next line in sequence executed on next clock;
Non-Data-Dependent Taken, one overhead clock required (NOP2 ef­
fective) before target line executed; Data-Dependent Taken, two
overhead clocks required (FREEZE, NOP2) before target line ex­
ecuted. Execution of jumps in IDR2 inhib it any fast jumps from
RORI being executed. Therefore, if there are two consecutive
lines of microcode containing jumps, the jump in ROR2 will be
taken and the jump in RORI will be ignored.

The microcode instruction calling for a jump comes out of ROM and
into RORI which decodes the R- and S-Bus fields as discussed in
paragraph 2-85. The R- and S-Bus field information is sent
through the R- and S-Bus Logic and is waiting at the inputs of
the R- and S-Bus Registers. On the next clock cycle, the jump
instr uction goes to ROR2 and the R- and S-Bus field da ta is
clocked :through the R- and S-Bus Registers. The T-Bus data is
loaded fr bm ROR2 to feed ROM so that, on the next clock cycle,
the address of the jump-to-microcode instruction goes to ROM. As
the new instruction is clocked into ROR2, the jump-to-microcode
address plus one goes into the RAR and the operation resumes
stepping through the microcode.

2-54

System/CPU Overview

2-87. S-Bus Field Decoder (S). The S-Bus Field Decoder (bits 0
through 4) selects one of 32 registers or sets of Ijnes to be
loaded into the S-Bus Register. S-Bus field code definitions are
contained in section V.

2-88. Store Field Decoder (STORE). The Store Field Decoder (-bits
5 through 9) selects one of the Store Logic registers or other
destinations outside the CPU for the V-Bus data. Store field
code definitions are contained in Section ~.

2-89. Function Field Decoder (FCN). The Function Field Decoder
(bits 10 through 14) specifies the function to be performed by
the ALU on the two operands in the R- and S-Bus Register s. F unc­
tion field code definitions are contained in section V.

2-90. Skip Field Decoder (SKIP). The Skip Field Decoder (bits 15
through 19) determines which condition will be tested for a pos­
sible skip. If the condition is met, ROR2 will execute a Nap,
effectively skipping one microinstruction word. The Skip field
also specifies the conditions under which a JMP or JSB will be
executed if coded in the microinstruction. Other signals, such
as NEXT which calls the next instruction from memory, are also
decoded from the Skip field. Skip field code definitions are
contained in section V.

2-91. Shift Field Decoder (SHIFT). The Shift Field Decoder (bits
20 through 22) specifies how the T-Bus data will be shifted. In
addition, the Shift field generates the SCratch Pad 1 and Scratch
Pad 3 Register shift signals used in conj unction with the Func­
tion field. The Shift field code definitions are contained in
Section V.

2-92. Special Field Decoder (SP). The Special Field Decoder (bits
23 thr"ough 27) performs varied operations such as generating mem­
ory operation code signals and the POP signal. Special field
code definitions are contained in Section ~.

2-93. MCU Cption Field Decoder (MCU). The MCU Option Field De­
coder (bits 23 through 27) uses the same bits as the Special
Field Decoder. The Special Field Decoder is disabled and the MCU
Option Field Decoder is enabled when executing an S-Bus field
code RBR or a Store field code BUS, BSPO, BSPl, or SBR. The MCU
Option Field Decoder ini tiates transfer s to or from memory and
transfers from ACOR to the Operand, Next Instruction, or Command
Registers via the CTL Bus. MeU Option field code definitions are
contained in section V.

2-94. R-Bus Field Decoder (R). The R-Bus Field Decoder (bits 28
through 31) selects one of 16 registers or sets of lines for
loading into the R-Bus Register. R-Bus field code definitions
are contained in Section V.

2-55

System/CPU Overview

2-95. PROCESSOR REGISTERS. Except for the Operand (OPND), I/O
Address, I/O Direct Data In, CPXl, and CPX2 Registers, the pro­
cessor registers can be selectively loaded from the U-Bus and
selectively read into the R- and/or S-Bus Registers. The proces=
sor registers are illustrated in similar readout groups in figure
2-20. For example, the X, Z, PL, SPO, and SR Registers can be
read out onl y to the R-Bus Reg ister. The SPI Reg ister ca n be
read out to either the R- and/or S-Bus Registers. Similarily,
the PB, DL, SM, DB, Q, SP2, SP3, PCLOCK, and OPND Registers can
be read out onl y to the S-Bus Re gis ter . De s cr ipt ions of the i n­
dividual processor registers, including the renamer logic, are
contained in paragraphs 2-96 through 2-115. In addition, the
actions of many of the processor registers in an operating envi­
ronment are discussed in paragraphs 2-16 through 2-70.

2-96. Renamer Logic. The renamer logic consists the Namer, Adder,
three Mappers, four TOS registers (TRO through TR3) , and the
SR Register. These components are designated as the TOS register
renamer, or simply, the renamer. The renamer permits fast access
to the TOS elements by renaming the registers when stack elements
are added or deleted (rather than transferring data from register
to register). The ROM microprograms know TRO through TR3 only by
the names RA (top), RB, RC, and RD. The narner includes a 2 -bi t
Namer Register that tells the Mappers which of the four TOB reg-
isters (TRO through TR3) is RA, RB, RC, and RD as listed in table
2-7. ,The Namer Register is decremented each time a stack element
is added (PUSH) and incremented each time a stack element is de­
leted (POP). To keep track of how many elements are in the TRO
through TR3 registers, the 3-bit SR Register is incremented by
PUSH and decremented by POP in step with the Namer Register.
When the SR Register count is zero, there are no elements in the
TRO through rrR3 registers. This would indica te to a ROM micro­
program not to look for the TOB in the CPU and that one or more
memory fetches may be required. The Adder combines the outputs
of the Namer Register, SR Register, and Be ratch Pad 1 Reg ister
(SPl) and generates the TNAME signals (bits 0 and 1) for the
Mappers. (Refer to table 2-7.) The Mappers use the TNAME code to
control access to the TOB registers (TRO through TR3). The TNAME
code specifies which of the TOS registers is RA, RB, RC, and RD
as listed in table 2-7.

Table 2-7. TOS Namer Relationships

1----------------------------------
I TNAME Code = 00 01 10 11
I
I RA = TRO TRI TR2 TR3
I
I RB = TRI TR2 TR3 TRO
I
I RC = TR2 TR3 TRO TRI
I
I RD = TR3 TRO TRI TR2
I
~-----------------~----------------

2-56

System/CPU Overview

2-97. TOS Registers. The TOS registers consist of eight 16-bit
registers designated TROR through TR3R and TROS through TR3S.
The two groups of registers always contain the same data (i.e.,
TROR = TROS, TRIR = TRIS, etc.). The registers contain up to
four of the top elements of the current data stack. The TOS
registers are read by R-Bus field codes RA, RB, RC, RD, and MREG
and by S-Bus field codes RA, RB, RC, RD, and QDWN as discussed in
Section V. The TOS registers are llooded by Store field codes RA,
RB, Re, RD, PUSH, and QUP as discussed in Section V.

2-98. Index Register (X). The Index Register (X Register) is a
16-bit register that contains the index word to be used by memory
reference instructions if indexing is specified. Certain other
instructions use the X Register for parameters or addresses.
(Refer to paragraph 2-48.) The X Register is read by R-Bus field
codes X and XC and loaded by Store field code X.

2-99. Stack Limit Register (Z). The Stack Limit Register (Z
Register) is a 16-bit register that contains an absolute address
pointing to the top memory location available to the current data
stack. Al though there are 128 word loea tions above the stack
limit, they are reserved for stack markers in the event of·an
inter rupt. (Re fer to par ag raph 2-28.) The Z Reg iste r is read by
R-Bus field code Z and loaded by Store field code Z.

2-100. Program Limit Register (PL). The Program Limit Register
(PL Register) is a 16-bit register that contains the absolute
address of the upper location of the current program segment.
(Refer to paragraphs 2-24 through 2-28.) rrhe PL Register is read
by R-Bus field code PL and leaded by Store field code PL.

2-101. Scratch Pad 0 Register (SPO). The SCratch Pad 0 Register
(SPO Register.) is a 16-bi t register that is used by the CPU to
store partial results during various CPU routines and as address­
es during memory transfers. The SPO Register is read by R-Bus
field code SPO and loaded by Store field codes SPO and BSPO.

2-102. Scratch Pad 1 Register (SPl). The SCratch Pad 1 Register
(SPI Register) is a 16-bit register that is used by the CPU to
store partial results during various microprogram routines. The
SPI Register can be left shifted and provides serial da~a input
to bit 15 and output from bit O. The SPI Register is read by
R-Bus field code SPl, loaded by Store field code SPl, and shifted
by Function field codes CTSD, DVSB, and QASL. In addition, the
SPI Register can be read onto the S-Bus by S-Bus field code SPI
(code is not the same as R-Bus field code SPl).

2-103. Stack :tegister (SR). The Stack Register (SR Register) is
a 3-bit register counter that provides the number of TOS regist­
ers that are currently in use. The SR Register works in con­
junction with the Namer Register to 110ea te and access any of the
t<:p four elements of the data stack. (Refer to paragraph 2-21.)
The SR Register is read by R-Bus field cede SR and modified by
Store field code PUSH and Special field codes INSR, DCSR, paPA,
CLSR, and POP.

2-57

System/CPU Overview

2-104. Program Base Registe r (PB). The Program Base Reg iste r (PB
Register) is a l6-bit register that contains the absolute address
of the bottom location of the current program se9ment. (Refer to
paragraphs 2-21 through 2-28.) The PB Register 1S read by S-Bus
field code PB and loaded by Store field code PB.

2-105. Data Limit Register (DL). The Data Limit Register (DL
Register) is a l6-bit register that contains the absolute address
of the bottom usable location in the current data stack. (Refer
to paragraphs 2-21 through 2-28.) The DL Register is read by
S-Bus field code DL and loaded by Store field code DL.

2-106. Stack Memory Register (SM). The Stack Memory Register (SM
Register) is a l6-bit register that contains the absolute address
of the top element of the data stack in memory. Depending on the
number of TOS registers in use (specified by contents of
SR Register), this address can be from zero to four locations
be 1 ow the actua1 TO S • (Refer topa r agrap hs 2- 21 th r 0 ugh 2 - 28 •)
The SM Register is read by S-Bus field code SM and loaded by
Store field code SM.

2-107. Data Base Register (DB). The Data Base Register (DB
Register is a l6-bit register that is one of the stack limit reg­
isters. The DB Register contains the absolute address of the
first location of directly addressable storage in the current
data stack. (Refer to paragraphs 2-21 through 2-28.) The DB
Register is read by S-Bus field code DB and loaded by Store field
code DB.

2-108. Q Register (Q). The Q Register is a l6-bit stack marker
register that contains the absolute address of the current stack
marker being used within the data stack. (Refer to paragraphs
2-21 through 2-28.) The Q Register is read by S-Bus field code Q
and loaded by Store field code Q.

2-109. Scratch Pad 2 Register (SP2). The Scratch Pad 2 Register
(SP2 Register) is a l6-bit register that is used by the CPU to
store partial results during various microprogram routines. The
SP2 Register is read by S-Bus field code SP2 and loaded by Store
fie ld code SP2.

2-110. Scratch Pad 3 Register (SP3). The Scratch Pad 3 Register
(SP3 Register) is a l6-bit register used by the CPU to store
partial results during various microprogram routines. The
SP3 Register can be right shifted and provides serial data input
to bit 0 and output from bit 15. The SP3 Register is read by
S-Bus field code SP3, loaded by Store field code SP3, and shifted
by Function field codes CTSD, MPAD, and TASR.

2-111. Process Clock Register (PCLOCK). The Process Clock Reg­
ister (PCLOCK Register) is a l6-bit register counter. The
PCLOCK Register is loaded and read by software instructions and
is continuously incremented as long as the CPU is not executing
on the Interrupt Control Stack (ICS FLAG = 0) or is not halted.

2-58

System/CPU Overview

The clocking interval is 1.001 ms. The maximum range of the
clock before rollover is approximately 65.5 seconds.

2-112. Program Counter Register (P). The Program Counter Regis­
ter (P Register) is a l6-bit register that contains the absolute
address of the next program instruction to be fetched from mem­
ory. During execution of Skip field code NEXT, the P Register and
PB-Bank Register are used to select a memory module and prefetch
the instruction following the one which is about to be executed.
(Re fer topa rag rap hs 2- 21 thr oug h 2- 28 .) The P Re g i s te r i s rea d
by S-Bus field code P and loaded by Store field code P.

2-113. Operand Register (OPND). The Operand Register (OPND
Register is a l6-bit register that provides storage for data read
from memory by the cpu. The OPND Register is loaded by an OPINP
signal from the Operand In Process (OPINP) flip-flop in the Mcn
operation decoder as a result of MCU options OPND, RNWA, RWA, and
RWAN. The OPND Register is read by an RDOPND signal from the
S-Bus Decoder as a resul t of S-Bus field code OPND. When the CPU
freezes for an operand, the operand from memory goes directly to
the S-Bus Logic as well as into the OPND Register. It is then
loaded into the S-Bus Register to await CPU operation.

2-114. Status Register (STA). The Status Register (STA Register)
is a 16-bit register that indicates the current status of the CPU
hardware. (The status word format is discussed in paragraph 2­
45.) The STA Register is read by S-Bus field code STA and
loaded by Store field code STA. Status bits are also affected by
Function field codes CADO, SUBO, INCO, and ADDO; and by Special
field codes CCB, SCRY, CCRY, POPA, SOV, CLO, CCZ, CCL, CCG, CCE,
and CCA.

2-115. Counter Register (CN'rR). The Counter Register (CNTR
Register is a 6-bit register that is used as a repeat counter by
the cpu. The two's complement of the desired count is loaded into
the CNTR Register and the register is then incremented for each
repeated execution until it contains all ones as indicated by a
CTRM code from the Skip field. The CNTR Register is affected or
referenced by S-Bus field codes CTRI and CTRH, Function field
code REPN, Store field codes CTRL and CTRH, Special field code
INCT, and Skip field code CTRM. Additionally, the C~TR Register
saves the contents of the SR Register when the CPU is put in the
Hal t MJde. Therefore, after a hal t has occured, the CNTR Register
can be displayed to show what the contents of the SR Register was
just prior to the halt.

2-116. OVERFLOW FLIP-FLOP (OVF'L). The Overflow flip-f lop con­
trols the status word overflow bit (bit 4) and stores the state
of the Overflow signal from the ALU when the OFCENB signal is
true. The Overflow flip-flop is set and cleared by Special field
codes SOV and CLO respectively. Refer to paragraph 2-45.

2-59

System/CPU Overview

2-117. CARRY FLIP-FLOP (CRRY). The Carry flip-flop controls the
status word carry bit (bit 5) and stores the state of the Carry
signal from the ALU when the OFCENB signal is true. The Carry
flipflop is set and cleared by Special field codes SCRY and CCRY
respectively. Refer to paragraph 2-45.

2-118. CONDITION CODE LOGIC (CeO AND CCl). The condition code
logic controls the condition code. Refer to paragraph 2-46.

2-119. PRE-ADDER. The Pre-Adder is used to gain a speed in­
crease for instructions that use or perform computations on CIR
bits. For example, when executing indexed memory reference in­
structions (not indirect), the proper CIR displacement field is
pre-added to the X Register contents. Therefore, the final abso­
lute address can be computed in only one clock cycle by adding
the output of the Pre-Adder to the contents of the base register
(PB, DB, Q, or Z).

2-120. R-BOS REGISTER. The R-Bus Register is a 16-bi t register
that provides buffer storage between the R-Bus and the ALD. The
R-Bus Register can be left-shifted one bit position (refer to
Function field code QASL, Section V) and is loaded from the
R-Bus. Refer to R-Bus field code definitions.

2-121. S-BUS REGISTER. The S-Bus Register is a 16-bi t
that provides buffer storage between the S-Bus and the
S-Bus Register can be r igh t- shifted one bi t posi tion
Function field code QASR, Section V) and is loaded
S-Bus. Refer to S-Bus field code definitions.

register
ALD. The
(refer to
from the

2-122. ALU. The ALU combines the R- and S-Bus data and gener­
ates functions that are divided into two modes or groups; arith­
metic functions and logic functions. The 16-bit output of the
ALU is placed on the T-Bus for either the Shifter or Decimal
Corre ctor .

2-123. SHIFTER. The Shifter performs all shifts and rotates (left
shift, right shift, right-left swap, etc.) on the T-Bus data as
directed by the Shift Field Decoder. The output of the Shifter
is placed on the U-Bus for storage in one of the U-Bus registers.

2-124. DECIMAL CORRECTOR. The Decimal Corrector adds six to each
group of four bits in the output from the ALU and generates car­
ries to the next group as required to yield a correct decimal
addition. Each group of four bits in the source operands must be
in the range of 0 to 9. If an invalid digit is detected during
the add cycle, overflow will be true.

2-125. ADDRESS COMPUTER OUTPUT REGI STER (ACOR). The ACOR is a 16­
bit register that functions as a memory address buffer between
the U-Bus and the CTL Bus.

2-126. DATA COMPUTER OUTPUT REGISTER (DCOR). The DCOR is a 16­
bit register that functions as a buffer for memory bound data and
operand address transfers between the U-Bus and the CTL Bus.

2-60

System/CPU Overview

2-127. INTERRUPT STATUS REGISTER 1 (CPXl). The Interrupt Status 1
Register (CPXl Register) provides 16 bits that are used to monit­
or the system Run Mode interrupt status. When a Run Mode inter­
rupt occurs, the CPU reads the CPXl Register and checks its con­
tents for the cause of the interrupt. The CPXl Register is read
by S-Bus field code CPXl and is affected by Special field code
CCPX as discussed in Section V. Each of the CPXl Register's 16
bits (when true) signifies a specific Run Mode interrupt as fol­
lows:

Bit o: Inte ger Overflow Bit 8: Ex ternal Interrupt
Bit 1: Bounds Viola tion Bit 9: Power Fail Inte rrupt
Bit 2: Illegal Address Bit 10 : 0
Bit 3 : CPU Timer Bit 11 : ICS Flag
Bit 4: Sys tern Par i ty Error Bit 12 : DISP Flag
Bit 5: Address Par i ty Er ror Bit 13 : Emulator
Bit 6: Data Par ity Error Bit 14 : I/O Timer
Bit 7: f\1od ule Interrupt Bit 15: Option Present

2-128. INTERRUPT STATUS REGISTER 2 (CPX2). The Interrupt Status 2
Register (CPX2 Register) is used to monitor the system's Halt
Mode interrupt status. When a Halt Mode interrupt occurs, the
CPU reads the CPX2 Register and checks its contents for the cause
of the interrupt. The CPX2 Register is read by S-Bus field code
CPX2 and is affected by Special field code CCPX as discussed in
Section V. Each of the CPX2 Register's 16 bits (when true) sig­
nifies a specific Halt Mbde interrupt as follows:

Bit 0: Run Sw i tch
Bit 1 : Dump Sw itch
Bit 2: Load Switch
Bit 3: Load Register
Bit 4: Load Address
Bit 5: Load Memory
Bit 6: Display Memory
Bit 7: Single Instruction

2-129. CPU Servicing Information

Bit 8: Execute Switch
Bi t 9: Increment Address
Bit 10: Decrement Address
Bit 11: 0
Bi t 12: 0
Bit 13: Inhibit PFARS
Bit 14: System Halt
Bit 15: Run Flip-Flop

Physically, the basic CPU consists of the nine PCA's contained in
slots A2 through AlO of card Cage No. 1 as shown in tables 1-1
through 1-3. All CPU PCA's are nonrepairable PCA's and must be
replaced if found defective. No repair procedures are required.
However, four of the six CPU PCA's contain jumpers or switches
that must be properly configured as discussed in paragraphs 2-130
through 2-133.

2-130. READ-ONLY MEMORY (ROM) PCA. The ROM PCA contains four
jumpers (W5 through W8) that must be installed to reflect the
type of ROM's loaded on the PCA. If the ROM PCA is loaded with
ROM's having a capacity of lK words, install the four jumpers
nearest the lK marking as shown in figure 2-21. If the ROM PCA
is loaded with ROM's having a capacity of 2K words, install the
four jumpers nearest the 2K marking.

2-61

System/CPU Overview

BOT1!g~ J: ::-:----------:~
P1

1,3, ~
2,4, •

J1
TOP 2,4, 0 0 50

BOTTOM 1,3,--'--_.49

J2

ROM peA
30003-60021

2,4, 0 0 50
1,3,-0---·49

J3
2,4, 0 0 50
1,3,-----·49

W5 •
IN6 •
W7 •
W8 •

nlK POSITIONS

~ 12K POSITIONS

2K

Figure 2-21. ROM PCA Jumper Locations

2-131. SKIP AND SPECIAL FIELD (SSF) PCA. The SSF peA contains
two synchronizing jumpers (WI and W2) that must be installed to
reflect that there is only one CPU in the system. Ensure that
jumpers WI and W2 are installed exactly as shown in figure 2-22.

2-62

TOP 1,3,-·-----------79
BOTTOM 2, 4, • • ~

P1

000
000

System/CPU Overview

1,3,-·------·79
~~- -~

SKIP AND SPECIAL
FIELD PCA
30003-60022

--[!D- M
• S

J1 J2 J3
TOP 2,4, • • 50

BOTTOM 1,3.---------.49
2,4, • I 50
1,3.--·-----·49

2,4, • • 50
1,3,--'------,49

Figure 2-22. SSF PCA Jumper Locations

2-132. S-BUS PCA. The S-Bus PCA contains three selector switch­
es (Sl, S2, and S3) as shown in figure 2-23. Set switch S3 to
match the computer system's Main Memory size. Switches Sl and S2
are used for memory interleaving. At present, memory interleav­
ing is not factory supported and sw itches Sl and S2 must be con­
figured for non-interleaving in accordance with table 2-8.

Memory interleaving requires two Memory Control and Logging PCA's
be installed in the system, each supporting one, two, or four
Semiconductor Memory Array PCA's. The memory sizes that can be
interleaved are limited to 256K, 512K, and l024K words. The re­
quired switch configurations of switches Sl and S2 on the S-Bus,
lOP, and Selector Channel Register PCA's for memory interleaving
are listed in table 2-8.

System/CPU Overview

Table 2-8. Memory Interleaving Sw itch Conf igurations

C

*

C

*

C

*

C

*

1 2 3 4 5 6 1 2 3 I 4

--- ... ---------_ --- --- --- I....-.- ---1---
Non Inter lea v- I
ing 1 to 4 C C C C I
PCA's/MCL r

--_.- -_._-- _._._._...... --- --- --- I---I
Interleaving I
1024K C C C C I
4 PCA's/MCL I

-------------- --- I---I I I I
Interleaving , I I I
512K I C C I C C I I
2 PCA's/MCL I I I I

I 1 I 1---------------,--- ---1--- ---'---1---
Interleaving I 1 I I
256K I I C C I 1 C I C
1 PCA/MeL , I 1 I I

---_._------_._._.- I--- I --- I -_.- I I-_.--_.- ---

-~--------~~--~--~~----~-----'-~--~~~~-~T----------------~------II
Sl S2 I

I
Mode ---T---r---r---T---T--- ---T---T---T---r---r---I

561
I

*Applies to lOP PCA only.

On the S-Bus, lOP Bus, and Selector Channel Register peA's,
open all switch positions of Sl and S2. Then, close those
switch positions indicated with a C on all three PCA's for the
appl icable mode. .,

2-133. CURRENT INSTRUCTION REGISTER (CIR) PCA. The CIR PCA con­
tains eight jumpers (WI through W8) as shown in figure 2-24. If
neither the HP 32105A APL (A Programming Language), HP 32233A
COBOL '74 or, the Extended Instruction Set (EIS) PCA, part no.
30012-60001 are installed in the system, WI through W8 are all
installed. If the EIS PCA is installed in the system, remove
jumpers WI and W8 from the CIR PCA. Removing jumper WI enables
the floating point instructions and removing jumper W8 enables
the decimal instruction set. If the HP 32105A APL ROM's are in­
stalled on the EIS PCA, remove jumper W2 from the CIR PCA to en­
able the APL instructions. If the HP 32233A COBOL-'74 ROM's are
installed on the EIS PCA, remove jumper W4 to enable the COBOL
'74 instr uctions.

2-64

TOP 1,3,-·----------79
BOTTOM 2 4 • 80

P1,...

System/CPU Overview

1,3,-.-------.79
~~. .80

S-BUS PCA

rJ°

J1
TOP 2,4, • • 50

BOTTOM 1,3,-·----·49

MEMORY SIZE

(WORDS)

53

1 ·128K
2 - 256K
3·384K
4·512K
5 - 768K
6·1024K

J2
2,4, • • 50
1,3,-·-----------49

J3
2,4, • - 50
1,3,-·-----49

0,,"",

Figure 2-23. S-Bus PCA Switch Locations

2-65

System/CPU Overview

TOP 1,3,-------------79
BOTTOM 2, 4 - - 80

P1

CIR PeA
30003-60006

1,3,-----------79
2,4, - • 80

7522·37

J1
TOP 2,4, - - 50

BOTTOM 1,3,--------49

J2
2,4, • • 50
1,3,-------·49

J3
2,4, • • 50
1,3,--------49

Figure 2-24. CIR PCA Jumper Locations

2-66

NOTES

2-67

System/CPU Overview

System/CPU Overview

NOTES

2-68

SYSTEM VERIFICATION AND l1li
TROUBLESHOOTING I III I

This section contains a brief discussion of available verifica­
tion procedures that can be used to determine if the computer­
system is operating properly, a brief discussion of system
troubleshooting procedures, and a discussion of how to use the
Sys tern Contr 01 Panel and the HP 30354A Ma intenance Panel.

3-1. DIAGNOSTIC AND VERIFICATION PROGRAMS

The computer system uses three types of test programs; on-line
verification programs, stand-alone diagnostic programs, and
microd iagnos tics.

3-2. On-Line Verification Programs

The on-line verification programs are used to confirm proper op­
eration of peripheral devices (i.e., printer, terminals, readers,
punches etc). These programs run concurrently with other programs
under control of the Multiprogramming Executive Operating System
(MPE) and permit uninterrupted system operation. If the minimum
hardware configuration required for MPE is inoperable, on-line
verification programs cannot be run and the stand-alone diagnos­
tics must then be used. For detailed information on the use and
functions of the on-line verification programs, refer to the in­
d ivid ual on-l ine ver ifica tion p rogr am manuals.

3-3. Stand-Alone Diagnostic Programs

The stand-alone diagnostic programs allow Customer Engineers to
run maintenance and troubleshooting tests on system hardware and
peripheral devices. Each of these programs is independently
operated and runs directly on the central processor. MPE is not
required and the opera ting sys tern is shut-down while stand- alone
programs are running. When a problem occurs that prevents the
use of both on-l ine or s tand- alone p rogr ams, the n the micr ad iag­
nostics mu~t be used. The stand-alone diagnostic tapes are cre­
ated under control of SDUPII (Stand-Alone Diagnostic Utility Pro­
gram II). Updating stand-alone diagnostics is also accomplished
under control of SDUPII. For detailed information on the use and
functions of SDUPII, refer to the Diagnostic Utility Program II
Manual, part no. 03000-90125. For detailed information on the
use and functions of stand-alone diagnostic programs, refer to
the individual stand-alone diagnostic program manuals.

3-4. Microdiagnostics

The micradiagnostics are microprograms that are built into the
system. These are microprograms that replace the instruction set
microprograms in the central processor and in some controllers.

3-1

System Ver ification and Troubleshooting

They identify problems by checking the hardware from the most
basic level. The operating procedures for the built in micro­
diagnostics are contained in the HP 3000 Computer System Install­
ation Manual, part no. 30000-90147. The program is listed in the
HP 3000 Series III Computer System Microprogram Listing, part no.
30000-90136.

3-5. SLE UTH 3000

SLEUTH 3000 is a stand-alone utility written in SPL/3000. It is
designed to give Customer Engineers the capability of generating
unique I/O test programs that run under the control of SLEUTH
3000. These programs allow isolation of I/O problems and ease
the troubleshooting of these problems. SLEUTH 3000 has the abil­
ity to run up to five different types of I/O devices concurrent­
ly. It can also wr i te and e xecu te SIO programs, s tore and
restore programs on magnetic tape, and edit the programs.
Peripheral devices that do not have on-line and/or stand-alone
verification programs require that SLEUTH 3000 programs be writ­
ten to test these devices. For additional information, refer to
the Stand-Alone SLEUTH Diagnostic D411A, manual part no. 03000­
90123.

3-6. SYSTEM TROUBLESHOOTING AND REPAIR

The HP 3000 Series III CE Handbook, part no. 30000-90172 con­
tains system troubleshooting procedures that are designed to iso­
late malfunctions to specific functional areas of the system.
Repair of a defective functional area is usually accomplished by
replacing the defective PCA. Only the main memory PCA's are re­
paired to the component level.

In order to run the available diagnostic and verification pro­
grams and to be able to perform the system troubleshooting pro­
cedures, it is mandatory that Customer Engineers know how to use
both the System Control Panel and the Maintenance Panel. De­
tailed information on how to use these panels and "hands-on" ex­
perience will be obtained while attending the hardware training
course. For reference purposes, the panels are described in par­
agraphs 3-7 and 3-8.

3-7. SYSTEM CONTROL PANEL

The System Cbntrol Panel (figure 3-1) is located at the top front
of the CPU Equipment Bay and provides the switches and lamps re­
quired to perform the following operations:

a. Cold load and run diagnostics.
b. Load and run user programs.
c. Halt programs.
d. Sys tern dump.
e. Observe Current Instruction Register.
f. Reset CPU.
g. Enable and disable auto restart function after power failure.

3-2

System Verification and Troubleshooting

PF/ARS PANEL CPU
DSBL ENBL DSBL EN BL RESET

NOTE:

1. SWITCHES LOCATED BEHIND FACEPLATE.

2. PLACARDING LOCATED ON REAR COVER PLATE
OF SYSTEM CONTROL PANEL.

CURRENT INSTRUCTION REGISTER

.1••• 1••• 1••• 1••• 1•••
o 1 2 3 4 5 6 7 8 9 10. 1 t 12 13 14 15

SYSTEM SWITCH REGISTER

• •
.1••• 1••• 1••• 1••• 1•••

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BBBBBBBBBBBBBBBB
Figure 3-1. System Control Panel

DUMP -- ENABLE

All front panel switches are three-position, spring-return, rock­
er switches with a center-off position. To perform a specific
operation, press either the top or bottom half of the appropriate
switch as indicated by the placarding. wnen released, the switch
will return to its center-off position. The switches and lamps
shown in Figure 3-1 are identified and described in table 3-1.

In addition to the switches described in table 3-1, there are
three switches locted behind the upper-right corner of the panel
that are accessible when the cabinet door is opened. See figure
3-1. 'rhe CPU RESE'1' sw itch is a two-posi tion, spr ing-return
switch that resets the CPU circuits. The PANEL DSBL/ENBL switch
is a two-position switch that disables or enables the System Con­
trol Panel for use. The PF/ARS DSBL/ENBL switch is a two-posi­
tion switch that disables or enables the auto restart program in
the event of a power failure.

Table 3-1. System Control Panel Switches and Lamps

1-- - - _._.- - ~"-------'--1'--'---------'------'----'------'----'-

I Panel Mar king I Function
I I--------._._--'"_._--_._-----_._-- -_._----_._-----_.-----_._---_._-_._--._-----_._---._._--

CURRENT INSTRUCTION
REGISTER (lamps)

SYSTEM SWITCH REGISTER
(lamps and switches)

RUN (lamp)

Displays the contents of the CIR.

Displays the contents of the Switch
Registe r as de te rm ined by press ing
the switches on or off. Switches
provide a 16-bit word to be used as
a device number and control byte
for cold load proced ure.

Indicates the system is executing a
progr am.

3-3

Sys tern Ve r if ica tion and 'It oub leshoot ing

Table 3-1. System Control Panel Switches and Lamps (Continued)

Sends the contents of memory and
CPU registers to the system mag­
netic tape unit.

RUN/HALT (switch)

SYSTEM HALT (lamp)

ENABLE (sw itch)

DUMP (switch)

LOAD (sw itch)

-------------------------T-------------------------------------1
Panel Marking Function 1

1 1------------------------- -------------------------------------1
Indicates a system halt caused by I
an irrecoverable error detected by 1
the firmware. 1

1
Re ve r se s the r un /ha I t cond i t i on of 1
the sys tern. 1

I
Must be he ld in the ENABLE pos i tion I
to permit the LOAD or DUMP switch 1
function to become active. 1

1
1
1
1
1

Used to load memory from a device 1
specified by the SYSTEM SWITCH I
REGISTER contents. 1

1-·_ --.· _· _c__._·_ ... __

3-8. MAINTENANCE PANEL

The Maintenance Panel (figure 3-2) is a troubleshooting aid for
the computer system. When the panel is connected to the system,
switches on the panel are used to select specific registers whose
content may be observed or changed to assist in localizing system
faults. Additionally, lamps on the panel show the contents of
many computer registers and the state of principal signals, al­
lowing analysis of system functioning. (For the most part, the
visual displays are used only when the computer is halted.) Op­
erating power is provided by the computer system. An interface
PCA, installed in the CPU card cage, is required for the Main­
tenance Panel.

The names of switches and indicators on the Maintenance Panel are
marked on an overlay which installs on the face of the unit. A
smaller overlay (the I/O overlay) can be placed over a certain
row of lamp names on the main overlay to extend the display func­
tion of those lamps. A switch permits display of the signals
named on the small overlay; other displays remain unchanged. The
small overlay can be turned over to provide another set of names;
these signals are displayed by making an additional cable connec­
tion to the computer. The Maintenance Panel also has a self-test
capability which allows the operability of most panel circuits to
be verified without the use of test equipment.

3-4

System Verification and Troubleshooting

(REF.
ONLY)

o 0 0 0 O' 0
Meuo MeUO OAT A SYSTEM SYSTEM TO

PARITY PE PE PE PARITY 0

o 0 0 0 0 0
READY READY READY READY READY READY

o 1 2 3 4 5

o 0 0 0 0 0

o
TO
1

o
CB14

o

CENTRAL DATA BUS
7 8

o 0 0) :) 0
TO FROM FROM FROM MOP MOP
2 0 1 2 0 1

000 000
ENABLE ENABLE ENABLE ENABLE ENABLE

o 1 2 3 4 CB1S

000 000

o
CPU

LORa

o
110

LORa

o

o 0
CPU CPu
HIRO SELECT

o 0
110 I/O

HIRQ SELECT

o 0
TNAME TNAME

o 1
ALU

REPEAT CARRY
PANEL

FREEZE FREEZE
FLAG

1

o
FLAG

2

o
FLAG

3

o o o o o o o
ALU

QVFl

o

CPU
TIMER

o
OPND
WAIT

o
INSTR
WAIT

o

110
WAIT

o o o

000 000 000 o 0 000

ICS
FlAG

DISP

FLAG
C

MUX
NEXT INTRPT

FF
JSB

FLAG

o

LUT
GATE

INTRPT
GATE

U
GATE

o

RAR
GATE

SAVE
I3ATE

JUMP 1 JUMP 2 JUMP
GATE GATE FREEZE

DIRECT SERViCE SERVICE DATA SID
ACTIVE OUT IN POLL ACTIVE INBOUND

00000 0

ORT
REO

o
108 OAT

JUMP ENABLE STORE

000

110
TIMER

o
XFEA INTRPT INTRPT INTRPT EXT

ERROR REO POll ACK INTRPT

o 0 0 0 0

0 1 12 3 4 I 5 6 7 I 8 9 10 I 11 12 13 t 14 15 16 117 18 19 I 20 21 22 I 23 24 25 I 26 27 28 J 29 30 31

0 0

I
I FUNCTION I SKIP I SHIFT I SPECIAL I R

S STORE I JMP. JSB I I JUMP TARGET

I ANY ROM I I ROM CONSTANT

V BUS
B12

o
B13

o o o o o o o o o
10

o o o o o o

V BUS COMPARE REGISTER
6 7 8 9 10

B12 B13

V BUS JUMP REGISTER
8 10

V BUS SINGLE CYCLE TIMERS \ ERROR \INTRPT lOP SINGLE STEP RESET CLOCK
COMPARE I REGISTER DISPLAY FREEZE

ENABLE HALT REGISTER ALT INHIBIT ENABLE INHIBIT ENABLE EXT INHIBIT

Q Q ~ ~ Q Q Q Q Q Q a a a Q Q ~
INHIBIT JUMP HALT EXECUTE U BUS NORMAL ENABLE INHIBIT ENABLE INHIBIT EXECUTE CPU 110 INT FREE SINGLE

EXIT JUMP RUN CYCLE

o o o o o o o o
REGISTER SELECTION

o 0 0 / 0 o o o o o o
SP2

R
SP3

8 8 8 8
CPX2

8 8
MOD
NO.

6
ION

8
CMO

OEY NO.

8
100

110
DATA

t3
1i0

MAP TEST

8
R RGTR S RGTR

"3 8
MEM
DATA STATUS

MEM
AQRS

o o o o o o o o o o o o o o o o
CNTR

o o
REGISTER DISPLAY

6

o o II 0
I

o o o o o o o o o
10

o o
12

o o o o

B.4

o Q
SWITCH REGISTER

8 7 10 .2 13

LOAD REGISTER ADDRESS CONTROL

OECR INCR
ENABLE ENABLE

MEMORY BREAKPOINT

READ WRITE
ENABLE ENABLE

EXECUTE

BKPT
HALT

o

SYSTEM
HALT

o
RUN

o

FROM MEM AORS
sw ROTR FROM DSPl

INHIBIT INHIBIT DISPLAY STORE INHIBIT INHIBIT SW RGTR SINGLE
INSTR

SySTEM LOAD RUNIHALT
RESET

Figure 3-2. Ma intenance Panel

3-5

System Verification and 1toubleshooting

3-9. Switch/Lamp Identification and Description

Figure 3-2 illustrates Maintenance Panel switches and lamps. The
shaded numbers on the right side of figure 3-2 identify the row
number of lamps or switches and are used in table 3-2 as an aid
to locating the switch or lamp. The I/O overlay is shown in fig­
ure 3-3. When referring to a switch or lamp, this manual uses the
name physically marked on the equipment. The name is quoted in
capital letters to indicate it is an equipment marking. There
are three types of switches on the panel as follows:

a. Bistable switches. These switches have two positions, and
can remain in either the up or the down position. In the
down position they have no effect on normal computer func­
tioning, and they are left in this position except when their
particular function is required. In figure 3-2, the bistable
switches can be identified by the fact that they are in the
down position.

b. Two-position spring-return switches. These switches are
pressed down when their function is required. When released,
they return to the up position.

c. Three-position spring-return switches. These switches have a
center-off position. 'rhey are pressed up or down to produce
the desired function. When released, they return to the cen­
ter position. All switches of this type are in row 12 of
figure 3-2.

Lamps which display register contents are lighted when the par­
ticular position of the register contains a binary 1. Lamps
which display the state of a signal are lighted when the signal
is in the asserted state. That is, a lamp is lighted when a
"not" signal is low; for other signals, a lamp is lighted when
the signal is high.

3-10. Operating Precautions

The operating system, if in use, may cause unexpected changes in
computer functioning when the Maintenance Panel switches are ac­
tuated. These unexpected changes result from such factors as
stack overflow, etc. Therefore, the operator should be thorough­
ly familiar with the operating system before attempting to use
the Maintenance Panel.

3-6

These lamps display the da ta word which
is on the CTL-Bus (MCUD 0:15).

Indicates the state of the CTL-Bus par­
ity bit.

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps

1-----1---------~--T------'------'------·------------~-------·-

IPanell Panel Marking 1 Use

1 Row I 1

I I I----1----·------------- ---~-- ~-------._----------

1 I CENTRAL DATA
I BUS 0 through
I 15 (lamps)
1

2 I MCUD PARITY
I (lamp)
I

2 1 MCUP PE (lamp) Ind ica tes a par i ty error has been de-

I tected on the CTL -Bus.

I
2 I DATA PE (lamp) Indicates there was a parity error de­

tected in the data received by the CPU
fr om memor y •

2

2

2

2

2

2

2

2

3

SYSTEM PE
(lamp)

SYSTEM PARITY
(lamp)

TO 0, TO 1,
TO 2 (1 amp s)

FROM 0, FROM 1
FROM 2 (1 amps)

MOP 0, MOP 1
(lamps)

CPU LORQ
(lamp)

CPU HIRQ
(lamp)

CPU SELECT
(lamp)

READY 0
through 5
(1 amps)

Ind ica tes a par i ty error was de te cted in
the information transferred on the TO,

FROM, MOP, and SYSTEM PARITY lines.

Indicates the state of the parity bit
generated from the TO, FROM, and MOP
codes.

Display the address for which the word
on the CTL-Bus is intended.

Display the address of the module from
which the word on the CTL-Bus is being
sent.

Display the memory operation code. This
code is used by the addressed memory
mod ul e .

Indicates the CPU is issuing a low pri­
ority request for a transfer to a mod­
ule.

Indicates the CPU is issuing a high pri­
ority request for use of the CTL-Bus.

Indicates the CPU is currently selected
to use the CTL -Bus.

Display the module ready lines. Each
1 i ne is ass oc ia te d withal ike n urribe red
mod ul e and, when tr ue, ind ica tes the
module is ready to receive a transfer.

3-7

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

-----r---------------r---
Panel I Panel Marking I Use

Row I I
----,-----------_._---,---

3

3

ENABLE 0
through 4
(lamps)

CBI4, CB 15
(lamps)

Display the module enable lines. Each
line is associated with a like numbered
module and, when true, indicates a mod­
ule is transferring data. The enable
lines are monitored by the modules to
resol ve pr ior it ies.

Display MSBs of address ,on CTL-Bus.

3 I/O LORQ
(lamp)

3 I/O HIRQ
(lamp)

3 I/O SELECT
(lamp)

Ind ica tes the lOP is issuing a low pri- ,
ority request for use of the CTL-Bus. I

I
Indica tes the lOP is issuing a high pri-I
or i ty request for use of the CTL -Bus. I

I
Indica tes the lOP is selected to use the
CTL -Bus.

4

4

4

4

4

4

4

FLAG 1, FLAG 2
FLAG 3 (lamps)

TNAME 0, TNAME
I (lamp s)

SKIP (lamp)

NOP 2 (lamp)

REPEAT (lamp)

ALU CARRY
(lamp)

ALU OVFL
(lamp)

Indicate the states of the three Flag
flip-flops controlled primarily by the
Special Field microinstructions.

Ind ica te the s ta tes of the TOS name r
bits. These bits specify the mapping
between the TOS registers RA, RB, RC,
RD, and the associated physical regist­
ers.

Indicates a skip condition is met during
the current clock cycle.

Indicates the state of the NOP 2 bit.
When tr ue, causes a "no operation II by
Rank 2 of the ROM Output Register.

Indicates the Repeat bit is true, caus­
ing the microporcessor to repea t the
current microinstruction until the skip
condition is met.

Indicates the carry signal from the
microprocessor ALU is true.

Indicates the overflow signal from the
microprocessor is true.

3-8

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I---'---'---~r----------~-----'-~---~--I--------_..------_._._--~- -...---~ ..--~--._------~---------
IPanel I Panel Marking I Use
I Row I I
I I I1----- _.~--------.- --~----._.--- ---~----~--_.----.--.------------------

I 4 CPU TIMER Indicates that a module did not respond
(lamp) to the CPU within a specified time.

Indicates the CPU is waiting for an in­
struction from memory.

Indicates the CPU is waiting for an op­
erand from memory.

Indicates a multiplexed I/O operation is
fetching a word from memory.

Lighted when a microprogram halt is in
effect or when the V-Bus carries the
same number as the V BUS COMPARE REGIST-
ER s wi tche s •

4 OPND WAI'!'
(lamp)

4 INSTR WAIT
(lamp)

4 I/O WAIT
(lamp)

4 PANEL FREEZ E
(lamp)

4 FREEZE (lamp)

5 ICS FLAG
(lamp)

5 DISP FLAG
(lamp)

5 C MUX (lamp)

Indicates the CPU freezable clock has
stopped.

Indicates the Interrupt Stack Flag flip­
flop is set.

Indicates the dispatcher is executing.

Indicates which instruction is being de­
coded. Lighted = current instruction;
off = next instruction.

5 NEXT + I
(lamp)

Indicates the sequence is in the "next
sequence" s ta te •

5 INTRPT FF
(lamp)

Indicates the state of the Interrupt
flip-flop. When lighted, an external or
internal interrupt is pending.

5

5

JSB FLAG
(lamp)

NOP (lamp)

Indicates the microcode is executing a
sUbroutine.

Indicates one of the normal inputs of
the V-Bus are turned off caused by any
one of the follow ing:

CPU Reset
PWR ON
UGATE on (RAR in the Store Field)

3-9

System Veri fica tion and Tr oubleshoot ing

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

�----r--.-.------~__r~-----·-----·-·--·---·-··-~---I

IPanel I Panel Marking I Use I
I Row I I I
I I I I

5

5

5

5

NOP (lamp)
(Cont)

BNDV (lamp)

LUT GATE
(lamp)

I N'r RPT GATE
(lamp)

INTG on (A CPU interrupt is forcing
the V-Bus to address 3).

The execution of a V-Bus jump with
pane 1 sw itches.

Indicates a memory instruction refer­
ences an address outside the limit reg­
iste r s.

Indicates an instruction target address
is being sent to the V-Bus.

Indicates when doing a NEXT + 1 cycle
and a microcode interrupt is pending or
when a bounds violation has been de­
tected.

5 U GATE (lamp)

5 RAR GATE
(lamp)

5 SAVE GATE
(lamp)

5 JUMP 1 GATE
(lamp)

5 JUMP 2 GATE
(lamp)

5 JUMP FREEZE
(lamp)

6 DIRECT ACTIVE
(lamp)

6 SERVICE OUT
(lamp)

Indicates the U-Bus is gated onto the V­
Bus.

Indicates the current address + 1 is put
on the V-Bus.

Indicates the microcode return address
is being gated onto the V-Bus.

Indica tes the jump targe t from Rank 1 is
being gated onto the V-Bus.

Indicates the jump target from Rank 2 is
being gated onto the V-Bus.

Indicates a one cycle freeze is taking
place to allow a new V-Bus address.

Indicates the lOP is sending out a di­
rect I/O command.

Ind ica tes to de vi ce con troller:

For direct commands; the command
code, device address, and data on
on the bus are valid.

For SIO transfers inbound; data on
the bus is anticipated.

For SIO transfers outbound; data on
bus is valid.

3-10

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

�----l----'------I-------------~·--·---·-------------·

IPanel I Panel Mar king I Use
I Row I I
I I I
----I-~-·------·---I----------

6 I SERVICE IN I Indicates a response to an lOP Service
I (1 amp) I Ou tor Da ta Poll.
I I

6 I DATA POLL I Indicates the lOP has received a request
I (lamp) I for a transfer to or from memory.
I I

6 I SIO ACTIVE I Indicates a multiplexed I/O operation is
I (lamp) I in progress.
I

6 I INBOUND (lamp) Indicates the lOP is executing an in-
I bound memory transfer.

6 DRT REQ (lamp)

6 JUMP (1 amp)

6 lOB ENABLE
(1 amp)

6 DRT STORE
(lamp)

6 I/O TIMER
(lamp)

6 XFER ERROR
(lamp)

6 INTRPT REQ
(lamp)

6 INTRPT POLL
(lamp)

6 INTRPT ACK
(lamp)

6 EXT INTRPT
(lamp)

Indicates the lOP has received a request
from an SIO mUltiplexer to fetch a DRT
entry.

Indicates the lOP is currently updating
the DRT pointer during the execution of
a jump order.

Indicates the outbound data is on the
lOP Bus.

I nd ica tes the lOP is upda ting the DRT
pointer.

Indicates the Service In signal has
failed to occur within a period of time
after a Service Out signal.

I nd ica tes an I/O da ta par i ty exi sts.

Indicates the state of the Int Reg line
from the devices.

Indicates the state of the Int Poll sig­
nal from the lOP to the devices.

Indica tes that an Interrupt Acknowledge
signal has been received in response to
an interrupt poll.

I nd i ca te san exte r nal inte r r up t ha s been
acknowledged by the lOP.

3-11

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

---1----"_._-------1----·--------·-·-----------'-·-------·--_..--,
Panel I Panel Marking I Use I

Row I I I
I I I----. -----,--------. ------.--------.-,----.---.--.----..--.----.-~----" I

7 ROM 0 through Displays the contents of the ROM output I
31 (lamps) registers. Lamps (0:4) and (28:31) dis-I

play RORI. Lamps (5:27) display ROR2. I
I

7

8

9

10

10

B12, B13
(lamps)

V BUS 2
through 15
(lamps)

V BUS COMP ARE
REGISTER 0
through 15
(bi stable
sw itches)

B12, B13 (bi­
stable
sw itches)

V BUS JUMP
REGISTER 2
through 15

Display two MSB bank bits.

Display the address of the ROM data cur­
rently being accessed. Since the ROM is
two levels removed from the actual mic­
roinstruction being executed out of
ROR2, the address is normally two ahead
of the address being executed.

These switches specify the microprogram
address at which a V TRIG pulse will be
supplied. (The pulse is available at
test point E3 at the front of the MPI
PCA. It is also available at J3, pin 3
on the MPI PCA.)

These switches also specify a micropro­
gram jump address or halt address when
the V BUS COMPARE ENABLE/INHIBIT switch
is a tENABLE.

The V TRIG pulse or breakpoint halt
takes place at the completion of a par­
ticular clock cycle. To bring about the
effect at the desired clock cycle, the
microinstruction address set into the
V BUS COMPARE REGISTER switches should
be as follows:

Address +1 for completion of execution
of the R-Bus and S-Bus field s.

Address +2 for completion of execution
of the remaining microinstruction
fie Ids.

Used to set bank bi ts B12 and B13.

These switches specify the jump target
for:

3-12

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I--.-l-------·--~---r_-~--·-·----·----·---------·-·-..-·-----.--.-.--
I Panel 1 Panel Marking 1 Use
I Row I 1

1 I I

(bi stable
sw itches)

Jump resul ting from the V-Bus contents
being equal to the contents of the
V BUS COMPARE REGISTER switches.

Jump resulting from the V BUS EXECUTE
JUMP switch being pressed.

11 V BUS COMPARE
ENAB LE/I NHI BIT
(bi stable
sw itch)

Enables the V BUS COMPARE HALT/JUMP
sw itch.

11 V BUS COMPARE
HALT/JUMP
(bistable
switch)

When enabled by the switch listed above,
selects halt or jump when the V-Bus con­
tents are the same as the V BUS COMPARE
REGISTER switches.

11 V BUS COMPARE
HALT EXIT
(spr ing-retur n
switch)

When pressed, starts the microprogram
a fte r:

A hal t brought about by the· V BUS
COMPARE REGISTER switches.

A freeze brought about a CCPX-14
Special field microinstruction.

11 V BUS EXECUTE
JUMP (spr ing­
return switch)

When this switch is pressed, the micro­
program jumps to the address in the V
BUS JUMP REGISTER switches. This func­
tion should be used only when the com­
p ute r isha1 te d •

Selects the REGISTER DISPLAY lamp read­
out as follows:

SINGLE CYCLE
REGISTER
DISPLAY,
REGI STER/U BUS
(bistable

sw itch)

11

With the switch at the REGISTER posi­
tion, the display is identified by
the lighted REGISTER SELECTION
lamp.

With the switch at the U BUS posi- I
tion the U-Bus is displayed. For 1
this function, the CLOCK INHIBIT/ 1
FREE RUN switch (panel row 11) 1
must be at INHIT (single cycle I
operation). I

___________._~_.. -_._-----------_.._-------_. ----.1

3-13

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

�----l---------~----·---------------·-~----~-----I

IPanell Panel Marking 1 Use I
1 Row 1 1 1

1 1 1 1----- 1-------------1-·--------- ·---·------~-----------I

11 1 SINGLE CYCLE 1 with this switch at the NORMAL position, 1

1 REGISTER 1 RA, RB, RC, and RD on the S-Bus PCA can 1

1 DISPLAY, ALT/ 1 be displayed by the REGISTER DISPLAY 1

NORMAL lamps. With the switch at ALT, RA, RB, I
(bistable RC, and RD on the R-Bus PCA can be dis- I
switch) played. Also, with the switch at NOR- 1

MAL, SPI and Pre-adder are displayed
from the S-Bus; with the switch at ALT,
SPI and the Pre-adder are displayed from
the R-Bus.

This switch must be at NORMAL to store
into RA, RB, RC, RO, or SPI from the
Maintenance Panel.

11 TIMERS (bi­
stable switch)

Enables or disables the CPU, memory,
lOP, and Selector Channel timers.

11 ERROR FREEZE
(bistable
sw itch)

In the ENABLE position, this switch
causes a freeze when any of the follow­
ing occurs:

Illegal memory address
Memory address parity error
MCUO par ity error
System par ity error
I/O data parity error
I/O address parity error

To end the freeze, the ERROR FREEZE
switch is set to the down position.

11 IN'rRPT (bi­
stable switch)

When the computer is running, setting
this switch to INHIBIT causes all inter­
nal and external interrupts to be ignor­
ed, with the exception of the power fail
interrupt. When the switch fs returned
to the ENABLE position, the previously
ignored interrupts are processed. The
switch performs no function when the
computer is halted.

Enables or disables the lOP SINGLE STEP
EXECUTE sw itch.

11 lOP SINGLE
STEP ENABLE/

I INHIBIT
I (bistable
1 sw itch)

____ 1 ------ . -_-_._-_. . . - -_-_._-_.

3-14

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

Use

-~------_.-
1
1
I·

._~ I
1

When enabled by the lOP SINGLE STEP EN- 1
ABLE/INHIBIT switch, the lOP executes
one step each time this switch is used.

lOP SINGLE
STEP EXECUTE
(sp r ing-re tur n

sw itch)

11

I-----T--- .. I
IPanell Panel Marking 1
1 Row 1 1 '
1_-1 1 -__. ._

11 RESET CPU
(spr ing-retur n

sw itch)

The CPU and MCU are reset when this
switch is pressed. To avoid improperly
changing the contents of registers, the
switch should be pressed only when the
computer is halted.

11 RESET I/O
(spr ing-retur n
switch)

All I/O subsystems are reset when this
sw itch is pressed.

11 CLOCK EXT/INT
(bistable
switch)

At the INT position, this switch allows
the CPU to use the clock pulse generated
within the CPU. At the EXT position, the
switch selects a clock pulse produced by
an external pulse genera tor.

The external clock pulse must have the'
following characteristics:

Source impedance: 50 ohms or les s
Source must sink up to 60 mae
High level: +2.5V to +5.0V
Low level: O.OV to +0.4V
Maximum rise time: 10 nsec
Maximum fall time: 10 nsec
High time: 20 nsec to infinite time
Low time: 20 nsec to infinite time
Maximum frequency: 25.0 MHz
Minimum frequency: 0 Hz

To equal the internal clock-pulse rate,
the external clock-pulse frequency must
be 22.8571 MHz. This corresponds to a
period of 43.75 nsec, which, because of
a div ide-by-four action in the CPU, pro­
vides a l75-nsec computer clock cycle.

The external clock pulse is supplied to
a BNC-type connector on the CPU back­
plane. The connector is labeled EXT ­
CLOCK. A 50- ohm termination impedance
is provided in the cPU.

3-15

Sys tern Ver ifi ca tion and Tr oubleshoot ing

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I-"-~-l--'----"-'---'-----'-T---'---'---"~----'----------'-----'---'--'--'-------'1
IPanell Panel Marking 1 Use I

1 Row I I I
I I I 1
----I----·----~-_.._·- -.-.---~.-.--.---.---.---,-----.--.---.-- ..-.-.--'-.--.--_.

11 1 CLOCK INHIBIT/ In the INHIBIT position, this switch
I FREE RUN permits the CPU to execute one machine
I (bistable cycle each time the CLOCK SINGLE CYCLE
I sw itch) sw itch is pressed. In the FREE RUN po-
I sition, the CPU operates continuously

using either internal or external clock
pulses.

11

12

CLOCK SINGLE
CYCLE (spring­
retur n sw itch)

REGISTER
SELECTION
(lamps and
center-off
spr ing-return
sw itches)

When enabled by the CLOCK INHIBIT/FREE
RUN switch, pressing this switch causes
execution of one CPU machine cycle.

When pressed up or down, each swi tch
lights the lamp above or below it, and
turns off any other lighted lamp in the
group. The lighted lamp identifies the
register displayed by the REGISTER DIS­
PLAY lamps. The B14 and B15 lamps re­
main extinguished except as stated be­
low.

The lighted REGISTER SELECTION lamp also
identifies the register which will be
lo~ded by either of the LOAD REGISTER
sw itches.

The following registers cannot be loaded
by the LOAD REGISTER FROM SW RGTR
switch; these are identified below as
"display only" registers. Special com- I
ments are as follows:

OPND, display only.
PADD, display only.
CP Xl, display only.
CPX2, d isplay only.
SR, display only

MOD NO., display only. The module
number appears in positions 5, 6, and
7 of the REGISTER DISPLAY lamps.
REGISTER DISPLAY lamp 13 is lighted
indicating CPU No.1.

IDN, display only.

.......- ------------- _._-_._~_..._--"-_.~--~~-_ ..._---_........--.....----'~..-..._---

3-16

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I-----r---"~·_·--"----r·-----~-"-----"-"--------·-·---".-.-'"----~"_._-"---

IPanell Panel Marking Use
I Row I
I I

CMD DEV NO., display only. The I/O
command is displayed in positions 5
through 7; the device number is in
positions 8 through 15. Positions 0
through 4 of the display do not light

100, display only. Displays (via the
S-Bus) the contents of the IOD Input
Register.

lOP, display only. Displays the con­
tents of the Da ta-In Register.

I/O DATA, display only. Displays the
data on the 100 (0:15) bits. On the
lOP bus, the se bi ts are in "not" form;
however, the "not" bi ts are inverted
before display. Thus, there is no
overbar over the mnemonic.

I/O MAP, display only. To identify
the I/O Map bits, the I/O overlay
(part no. 30354-80012) is placed over
the REGISTER DISPLAY lamps.

PCLK, display only.

TEST, display only. Displays any 16
bits applied to J3 on the Maintenance
Pane 1 Inte r face PCA.

R RGTR, display only.

S RGTR, display only.

MEM ADRS displays the memory address
(Spa) in REGISTER DISPLAY (0:15), and
the ABS-Bank Registe r in B14 and B15.
This lamp is called MEM ADRS because
spa contains the address when memory
is accessed by means of the MEMORY
STORE or MEMORY DISPLAY switches.

--- ----_._--

MEM DATA displays the memory data
(SP1) in REGISTER DISPLAY (0:15).
B14 and B15 will be zero. This lamp
is called MEM DATA because SPl re-

3-17

Use

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I----r-----------r-­
IPanell Panel Marking I
I Row 1 I
I I I--- ---------------- -----~_.----------------~-----~

ceives the data when memory is dis­
played by means of the MEMORY DISPLAY
sw itch.

SP2 displays the contents of the
Scratch Pad 2 Register, used by the
microcode. B14 and B15 will be zero.

SP3 displays the contents of the
Scratch Pad 3 Register, used by the
microcode. B14 and B15 will be zero.

RA displays the contents of the TOS
register. B14 and B15 will be zero.

RB displays the contents of the 2nd
s ta c k reg i s te r • B14 and B15 will
zero.

RC displays the contents of the 3rd
s ta c k reg is te r • B14 and B15 will be
zero.

RD displays the contents of the 4th
stack register. B14 and B15 will be
zero.

STATUS displays the CPU Status Reg­
ister.

PB displays the PB Status Register
in REGISTER DISPLAY (0:15). B14 and
B15 display the PB-Ban k Reg is te r.

P displays the P Register in REGIS'rER
DISPLAY (0: 15). B14 and B15 display
the PB-Bank Register.

-I PL displays the PL Register in REG-
I IS'rER DISPLAY (0: 15). B14 and B15
I display the PB-Bank Register; these
I two bits are display only.
I
I DL displays the contents of the DL
I Register in REGISTER DISPLAY (0:15).
I B14 and B15 display the stack regist-
I er; these two bits are display only.
I

3-18

System Verification and Troubleshooting

Table 3-2. Ma intenance Panel Sw itches and Lamps (Cont inued)

1 T --r
IPanell Panel Marking 1

I Row I 1
1__1______ I_. .__~ _

Use

DB displays the Data Base Register in
REGISTER DISPLAY (0:15). B14 and B15
display the DB-Bank Register.

Q d i sp1 ays the Q Re g is te r in RE GI ST ER
DISPLAY (0: 15). B14 and B15 display
the Stack-Bank Registe r; these two
bits are display only.

S displays the S Registe r in REGI STER
DISPLAY (0:15). B14 and B15 display
the Stack-Bank Registe r; these two
bits are display only.

Z displays the Z Registe r in REGI STER
DISPLAY (0:15). B14 and B15 display
the Stac k-Bank Registe r.

CNTR, display bits 10:15.

CIR, display only. Display valid only
when the CLOCK INHIBIT/FREE RUN switch
is at INHIBIT pos i tion (sing Ie cycle
operation) •

13

14

REGISTER
DISPLAY 0
through 15,
B15, and B14
(lamps)

SWITCH
REGISTER
o through 15,
B15, and B14
(bistable

sw itches)

Display the register identified by the
lighted REGISTER SELECTION lamp. The
REGISTER DISPLAY lamps also indicate the
data which will be loaded by the LOAD
REGISTER, MEM ADDRS FROM DISPL switch.

Switches 0 through 15 provide a l6-bit
word to:

Load in a selected register by means
of the LOAD REGISTER FROM SWITCH RGTR
sw itch.

Store in memory by means of the MEMORY
S'rORE sw itch.

Use as an instruction word when the
EXECU'rE SW RG'rR sw itch is pres sed.

Match with a word read from memory to
cause a read breakpoint halt (using
the BREAKPOINT READ ENABLE sw itch) •

-~_. -~---_._--

3-19

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I-'---r-~--'-'~-'-------T'-'-----'------'-~-~-----'-'------------.--

IPanel I Panel Marking I Use
I Row I I
I I I

Match with a word stored in a memory
storage operation to cause a store
breakpoint halt (using the BREAKPOINT
STORE ENABLE sw itch) •

Switches B14 and B15 (row 14) and B12
and B13 (row 10) are used to change the
contents of the following bank registers
by means of the LOAD REGISTER FROM SW
RG'rR sw itch:

ABS-Bank Register (MEM ADRS Registe r
selected)

PB-Bank Register (PB Register select­
ed)

Stack-Bank Register (Z Register sel­
ected)

DB-Bank Register (DB Reg ister select­
ed)

Except as listed above, switches B14 and
B15 produce no effect when registers are
manually loaded.

A further use of switches B14 and B15 is
to specify the memory module number for
breakpoint halts (using the BREAKPOINT
STORE ENABLE/INHIBIT switch) •

15

15

15

16

BKPT HALT
(lamp)

SYSTEM HALT
(lamp)

ID N (lamp)

LOAD REGISTER
FROM SW RGTR
(spr ing-re tur n

Lighted during a breakpoint halt caused
by either of the following switches:

BREAKPOINT READ ENABLE/INHIBIT

BREAKPOINT STORE ENABLE/INHIBIT

Lighted during a system halt (caused by
an irrecoverable error).

Lighted when the CPU is running.

When pressed, the registe rind ica ted by
the lighted REGISTER SELECTION lamp is
loaded with the contents of the SWITCH

--- - ----~--_._- _.~-_.._----,----

3-20

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

1-'-'-l-------··-.-.~---1"-"-"- - ------------.~--"'-,._~--.----.~-- _._._--
IPanell Panel Marking I Use
1 lbw I I

I I I

16

16

16

16

sw itch)

LOAD REGISTER,
MEM ADDRS FROM
DISPL (spring­
return sw itch)

ADDRESS
CONTROL, DECR
ENABLE/INHI BI'l'
(bi stable
sw itch)

ADDRESS
CONTROL INCR
ENABLE/INHIBIT
(bi stable
sw itch)

MEMORY DISPLAY
(s p ring - retur n
sw itch)

REGISTER switches. The bank registers
may also be loaded, as explained in the
SWITCH REGISTER des cr iption above.

When pressed, the Memory Address Register
(SPO) is loaded with the bits displayed
by the REGISTER DISPLAY (0:15) lamps.
Also, the ABS-Bank Register is loaded
with the bits displayed by the REGISTER
DISPLAY B14 and B15 lamps. The MEMORY
DISPLAY or MEMORY STORE switch can' then
display or store at the 18-bit address.

When this sw itch is a tENABLE, the Mem­
ory Address Register (SPO) is decrement­
ed by 1 each time the MEMORY DISPLAY or
MEMORY STORE switch is pressed. (The
ADDRESS CONTROL INCR ENABLE/INHIBIT
switch should be at INHIBIT.

When this sw itch is a tENABLE, the Mem­
ory Address Register (SPO) is increment­
ed by 1 each time the MEMORY DISPLAY or
MEMORY STORE switch is pressed. (The
ADDRESS CONTROL DECR ENABLE/INHIBIT
switch should be at INHIBIT.

When this switch is pressed, the follow­
ing ta kes place:

The REGISTER SELECTION MEM DATA lamp
lights. Any other lighted lamp in this
gr oup goes out.

The REGISTER DISPLAY (0:15) lamps show
the contents of the memory address
specified by the ASS-Bank Register and
the Memory Address Registe r (SPO).
Lamps B14 and B15 remain extinguished.

The Memory Address Register (SPO) is
incremented or decremented by 1 if one
of the ADDRESS CONTROL switches is at
ENABLE. A carry from SPO does not en­
ter the ABS-Bank Register.

--- -_.__..~._---- ---------------_._.__._--------
3-21

The contents of the SWITCH REGISTER
(0:15) switches are stored in memory
at the address indicated by the ABS­
Bank Register and the Memory Address
Register (SPO).

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I---l------~--------I---------'------- --------'---------1
IPanell Panel Marking i Use I
1 Row 1 1 1
1 1 I I----1------------- 1-----.------ -- ------.---.-----_.- - ---·------1

16 1 MEMORY STORE 1 When this switch is pressed, the folIow-I
1 (spring-return ing takes place. I

1 switch)
1
1

The Memory Address Register (SPO) is
incremented or decremented by 1 if one
of the ADDRESS CONTROL switches is at
ENABLE. A carry from SPO does not en­
ter the ABS-Bank Register.

16

16

16

16

BREAKPOINT
READ ENABLE/
INHIBIT
(bi stable
switch)

BREAKPOINT
w"RITE ENABLE/
INHIBIT
(bistable
sw itch)

EXECUTE SW
RGTR (spring­
return switch)

EXECUTE SINGLE
INSTR (spr ing­
return switch)

In the ENABLE position,this switch halts
the CPU when a 16-bit word read from
memory is the same as the word in the
SWITCH REGISTER (0:15) switches.

In the ENABLE position,this switch halts
the CPU when memory storage takes place
at an address which is in the SWITCH
REGISTER B14, B15, and (0:15) switches.

When this switch is pressed, the CPU
executes the instruction in the SWITCH
REGISTER (0:15) switches. The P Register
contents do not change when the instr ue­
tion is performed unless the instruction
is a branch type; in this case, the P
Register receives the target address if
the branch condition is met. If a stack
operation is performed, stack operation
B should be NOP. (That is, positions 10
through 15 of the SWITCH REGISTER must
conta in ze ros.

When this switch is pressed, the in­
struction indicated by the P Register is
executed. The P Register is incremented
by 1, or it is loaded with a target ad­
dress if the instruction is a branch
type and the branch condition is met.

3-22

Sys tern Ver ifica tion and Tr oubleshoot ing

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

Use
---r-­

Marking I
I
I--1--------·-·-------

EXECUTE SINGLE I If the instruction is of the double
INSTR (Cont) 1 stack type, the switch must be pressed

I twice to execute both halves of the in­
1 struction. The first depression causes
1 execution of stack operation A. The sec­
1 ond depression causes execution of stack
1 operation B. If operation B is other

than Nap, bit 3 of the CPU Status Regis­
ter is set to 1 during stack operation
A. This bit is cleared at the start of
stack operation B. The P Register is in­
cremented during stack operation B un­
less B is Nap, in which case it is in­
cremented during A.

16

1--1­
IPanell Panel
I Row I
I I

16 SYSTEM RESET
(spr ing-return
switch)

When pressed, this switch resets the CPU
and the I/O system.

16 LOAD (spring­
re tur n sw itch)

Stores in memory from an I/O device
specified in the SWITCH REGISTER
sw itches.

16 RUN HALT
(spr ing-return
sw itch)

Pressing this switch halts the CPU if it
is running or starts the computer if it
is halted. Both halves of a stack op in­
struction are always completed before
the halt takes place. If the CPU halts
while an SIO operation is in progress,
the SIO operation continues to its nor­
mal completion.

3-11. Preparation for Use

To use the Maintenance Panel, make preparation as follows:

a. Ensure that the computer system is not in use.

b. Inform potential users that the system is unavailable until
fur ther not ice.

c. For HP 32421A Series III systems, set the SYSTEM DC POWER
switch (inside top of CPU equipment bay door) to STANDBY.
For HP 32435A Series III systems, set the DC POWER switch (on
Power Control and Display Panel) to DISABLE.

3-23

System Verification and Troubleshooting

(lOP ,OP lOP
110 MAP 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

'N

.,. .,. '00 '00 '00 ADRS SY:~EM IlG lIO liD
'N 'N PARITY .,. ." PO AOAS TOI TO'

REAR VIEW

o o o 0 000
CHAN CHAN CHAN XFEA EOT

SA so ACK EAAOA

o
TOX

CHANNEL STROBES

o 0 0 0 0 0
1510 PCMOI PS;~:T ~~~~T P~:I~E ~~~~D

FRONT VIEW

000
AD NEXT SET SET

WOAD JUMP INTAttT

Figure 3-3. Maintenance Panel I/O Overlay

d. Install Maintenance Panel Interface PCA, part no. 30354-60003
in CPU equipment bay card cage slot lAl.

e. At the front of the MPI PCA, set switch Sl to the NORMAL po­
sition. (This switch is labelled NORMAL/LAMP TEST/SWITCH
TEST.)

f. Make the connections shown in figure 3-4.

g. If required, install the 30354-80012 I/O overlay over the
REGISTER DISPLAY lamps. If using the CHANNEL STROBES side of
this overlay, connect jack J3 on the MPI PCA to Jl on the
Selector Channel Maintenance PCA.

h. Set all Ma intenance Panel bistable sw itches to the down pos i­
tion.

i. Reapply DC power to the computer system.

3-12. General Operating Method

When using the Maintenance Panel, operate switches to achieve the
desired results, observing lamp indications. Refer as necessary
to table 3-2 and the applicable program documentation. To pre­
vent unauthorized use of the Maintenance Panel, set switch Sl on
the MPI PCA to the SWITCH TEST position. This prevents Mainten­
ance Panel switch information from entering the computer system.
Note that if a power failure occurs with Sl at SWITCH TEST, the
switch must be returned to the NORMAL position to permit ini­
tialization of the computer system for restart after power is
res tored.

3-24

System Verification and Troubleshooting

...---- MAINTENANCE PANEL INTERFACE PCA

30354~0003

J1 J2 J3

INTERFACE CABLE~
30354~OOO7

.-- FLAT CABLE
30354~OO13

~;o..--- TO J3
REAR OF BAY 1

TO J2
OF CIR PCA

(AS)

~ POWER CABLE
30354-60005

J2

""------- MAINTENANCE PANEL

Figure 3-4. Maintenance Panel Operating Connections

3-13. Using Maintenance Panel and System Control Panel

When the Maintenance Panel is in use, switches and indicators on
the System Control Panel (figure 3-1) function in the normal
manner. The following points apply:

a. The CPU can be started or halted either by the RUN-HALT
switch on the Maintenance Panel or by the RUN/HALT switch on
the System Control Panel.

b. If the LOAD switch on the System Control Panel is used, the
appropriate information must be set into the SWITCH REGISTER
on the System Control Panel. Similarly, use of the LOAD
sw itch on the Maintenance Panel requires that the SWITCH REG­
ISTER on the Ma intenance Panel be used.

c. The RSW instruction acquires the l6-bit word which is in the
SWITCH REGISTER on the System Control Panel, as in normal
operation.

1-25

System Verification and Troubleshooting

3-14. Stack Register Loading

Because of the queue-down function which occurs when the CPU
halts, stack registers must be loaded at their location in mem­
ory. For test purposes it is possible to load the stack regis­
ters which are on the S-Bus PCA and R-Bus PCA. However, when
queue-up takes place after the CPU is started, the register con­
tents will be destroyed.

3-15. CPU Register Displays

When CPU registers are displayed, the register contents are ac­
quired either from the computer S-Bus or R-Bus. A switch on the
Maintenance Panel permits display from either the S-Bus or the
R-Bus. This switch is titled SINGLE CYCLE REGISTER DISPLAY, ALT/
NORMAL (panel row 11) •

3-16. General-Use Display

When the REGISTER SELECTION TEST lamp is lighted, any 16 bits or
16 binary signals can be applied for display to jack J3 of the
MPI PCA (figure 3-4). The bits or signals must have TTL silicon
logic levels. They are displayed in the REGISTER DISPLAY (0:15)
lamps on the Maintenance Panel. The pins in J3 to which connec­
tion is made are listed in table 3-3. The table also shows two
trigger pulses and a +5 volt source. These are supplied by the
MPI PCA. The MR signal is an input to the PCA that is used for
factory test purposes. For any particular application of the
general-use display, a cardboard overlay can be made for the
REGISTER DISPLAY lamps with appropriate signal names marked on
the overlay. (A ticket punch is a suitable device for making the
holes in the cardboard.)

3-17. Maintenance Panel Test

The following tests check the operability of most circuits in the
Maintenance Panel. Most circuits in the MPI PCA are not checked.
If performed as described, and if step a in paragrah 3-18 has
previously been completed, the test can be executed without in­
terfering with normal computer functioning. (Switch information
from the Maintenance Panel does not enter the computer system
when switch Sl on the MPI PCA is at the SWITCH TEST position.)

3-18. LAMP TEST. Perform the lamp test as follows:

a. Connect the Maintenance Panel to the computer system in the
normal manner (figure 3-4). Before making connections be sure
+5 vol ts has been removed from the system and ensure that all
bistable switches on the Maintenance Panel are down.

3-26

System Verification and Troubleshooting

Table 3-3. MPI PCA J3 Pin Connections

1-- 1
I Pin 1

1 I
------------�

1 1
3 1

1
5
7

19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

------------------------1
Signal 1

..------~------- I

MCU TRIG
V TRIG

MR
+5 volts (100 source)
REGISTER DISPLAY a
REGISTER DISPLAY 1
REGISTER DISPLAY 2
REGISTER DISPLAY 3
REGISTER DISPLAY 4
REGISTER DISPLAY 5
REGISTER DISPLAY 6
REGISTER DISPLAY 7
REGISTER DISPLAY 8
REGISTER DISPLAY 9
REGISTER DISPLAY 10
REGISTER DISPLAY 11
REGISTER DISPLAY 12
REGISTER DISPLAY 13
REGISTER DISPLAY 14
REGISTER DISPLAY 15

1------------- -------~~-.-------------------------

1 Note: All even-numbered pins are ground.
I_~ - ~ .. ~-_ ..__- -_- -__.. _

b. At the MPI PCA, set sw itch Sl to the LAMP TEST pos i tion.
Every lamp on the Maintenance Panel should light.

c. Set Sl to the SWITCH TEST position. Some lamps should go out.

I CAUTION I

Before performing step d below, be
sure Sl has been set to the SWITCH
TEST position. Otherwise, switch
information may enter the computer
system. The switch information is
the result of voltage spikes pro­
duced when the plug is removed from
Jl.

3-27

System Verification and Troubleshooting

d. Remove the plug from receptacle Jl on the Maintenance Panel.
All lamps should go ou t., Replace the plug.

3-19. SWI'I'CH TEST. The switches on the Maintenance Panel can be
tested by placing the switch on the MPI PCA to the SWITCH TEST
position. This routes the switch information back to the Main­
tenance Panel to be displayed by lighting or extinguishing one or
more lamps for each switch. The data from the switches ~ill be
displayed by nine groups of lamps. See figure 3-5.

The information for the REGISTER SELECTION switches is coded into
six binary bits. These bits are displayed twice by the lamps in
group five. Figure 3-5 illustrates the individual groups of
lamps and also indicates by each switch which larnp(s) will illum­
inate or extinguish when the switch is exercised.

Note

Although twelve groups of lamps are
designated in figure 3-5, not all
of the groups of lamps will be ex­
er cised d ur ing the sw itch te st.

The bistable switches, shown in the down position, will illumi­
nate the lamp/lamps indicated by the numbers above the switch
when the switch is placed up. The two-position spring return
switches, shown in the up position, will extinguish the lamps
indicated by the numbers below the switch when the switch is held
down. The three-position spring return switches (REGISTER
SELECTION switches) have a code above and below the switch that
will be displayed when the switch is held in that position.
Stenciling on the panel has not been shown for clarity. Where
two pairs of numbers are present, two lamps will be illuminated.
For example, 1,8 and 9,8 signify that group 1 lamp 8 and group 9
lamp 8 will be illuminated when the switch is exercised; the
lamps will extinguish when the switch is off. The reverse condi­
tion applies to the t~c-position spring return switches, extin­
guishing the lamps when the switch is exercised. When exercising
the REGISTER SELECTION switches, a binary coded value is present­
ed by the lamps in group five. The coded value appears twice, in
bits 0-5 and bits 8-13. The indications presented by bits 8-13
should be ignored.

I CAUTION I

After the switch test is complete, be sure all bistable
sw itches on the Maintenance Panel are in the down posi­
tion before restoring Sl on the MPI PCA to the NO~lAL

position. This will prevent information from entering
the computer when the switch is returned to NORMAL.

3-28

SystemVer ification and Troubleshooting

'0 11 12 13 14 15

GROUPO I 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0

10 11 12 13 . 14 15

GROUP 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 11 12 13 14 15

GROUP 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 11 12 13 14 15

GROUP3 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

'0 11 12 13 14 15

GROUP4 I 0 0 0 0 0 0 '0 0 0 0 0 0 0 0 0 0

10 11 12 13 14 15

GROUP 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 00 0 000 000 000 00 000 0 o 0 0000 00000 01

\ GROUP 6
/ \ GROUP 7

/

10 11 12 13 14 15

GROUP 8 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.0 0,1 0,2 0,3 0.4 0,5 0,6 0,7 0,8 0.9 0,10 0,11 0,12 0,13 0,14 0,15

8.0 8.1 8,2 B.3 8.4 8,5 8,6 8.7 8,8 8,9 I 86

0 8,11 8,12

1
8,13 8,14 8,15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1,0 1,1 1,2 1,3 1,4 1.5 1,6 1,7 1,8 1,9 1,10 I,ll 1,12 1,13 1,14 1,15

9,0 9,1 9,2 9,3 9,4 9.5 9,lI 9,7 9,8 9,9 I96

0 9,11 9,12 I 9,13 9,14 9,15

0 0 0 0 0 0 0 0 0 0 0 Q Q Q Q

2,13 2,14
10,13 10,14

28 2,9'''I ...2,4 2,5 2,6 2,7
10.4 10,5 10.6 10,72,0 2.1

10,0 10,1

0 0 l) l) 0 0 0 Q Q Q l) l) l) 0 Q l)
2,2 2,3 2,10 2,11 2,12 2,15

10,2 10,3 10,10 10,11 10,12 10,15

GROUP 12

/0

GROUP9
,

2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l~
43 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
r ~ 41 20 2' 22 23 24 25 21 27 30 31 32 33 34 35 36 37

0 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

\ GROUP 10
I

12 13

I 0 o II 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I
\ GROUP 11

/

5,6 5.7 4,0 4,1 4,2 4,3 4,8 4,10 4,11 4,12 4,13

I 56 0
5

11'0 1'0'
12.2 12,3

1
4,4 4,5 4.6

I
4,7 12,8 4,9

1
'00 12,11 '0

2

1
'03 4,14 4,15

10 0 0 0 0 0 0 Q 0 0 0

'0 11 010 0

REGISTER
SELECTION
SWITCHES

I~
",0

l) I I
3.1

11,1

3.2
11,2

o o
3.5

11,5

3,7
11,7

o
3,11

11,11
3,13

11,13
3,14

11,14
3,15

11,15

Figure 3-5. Switch Test Lamp Indications

3-29

System Verification and TrcUbleshooting

NOTES

3-30

MACHINE INSTRUCTIONS AND __
STACK OPERATIONS I IV I

This section contains information' on the computer system's basic
instruction set and describes representative instructions for
most of the 13 instruction groups and how some of these instruc­
tions affe~t stack operations. For complete descriptions of all
the machine instructions, including extended instruction sets
refer to the HP 3000 Series II/III Computer System Machine In­
struction Set Manual, part no. 30000-90022.

4-1. INSTRUCTION DECODING

As the CPU executes a user program, it fetches the required ma­
chine instructions from memory. A ROM address of a microprogram
stored in a microprogram ROM is generated for the instructions.
There is a microp rogr am in ROM for each of the machine instr uc­
tions. The ROM address is stored in the ROM Address Register
(RAR). The RAR is used first to access the initial microinstruc­
tion and is then incremented to point to the next microinstruc­
tion. Thus, the entire microprogram for a particular machine
instruction is called and executed by the CPU as discussed in
Section I I •

4-2. TRAPS AND INTERRUPTS

Only those traps and interrupts which occur as a result of in­
struction execution over which the user has some control are used
in the instruction descriptions provided in this section. They
are defined here by segment #1 Segment Transfer Table (STT)
number.

a. STT #1; BNDV - Bounds Violation.
is outside of the legal bounds
addressing.

An operand or instruction
for a particular mode of

b. STT #17; STTV - Segment Transfer Table Violation. A variety
of conditions can force this trap as follows:

(1) The STT number in an external progam label is greater
than the STT length pointed to by PL in the referenced
segment. Thi$ error can occur in PCAL, LLBL, and the
firmware interrupt handler while attempting to set up a
new segme nt .

(2) In LLBL, the label fetched from PL-N is an internal
label and N is greater than 128 (%177). This would re-
quire too large an STT number when creating the external
label.

4-1

Machine Instructions and Stack Operations

(3) In PCAL and interrupt handler when setting up a new
segment, the STT number in the external program label
points to an external program label in the new segment.

(4) In SCAL, (PL-N) is an external label.

c. STT #18; CSTV - Code Segment Table Violation. An attempt is
made to transfer to Segment 0 or 192, or a segment number is
greater than the CST length.

d. STT #19; DSTV - Data Segment Table Violation. The data seg­
ment number referenced by MFDS, MTDS, or MDS is greater than
the DST length or is o.

e. STT #20; STUN - Stack Underflow. The process being executed
or being transferred to is non-privileged and SM is less than
DB.

f. STT #21; MODE - Privileged Mode Violation. The code segment
being executed is non-privileged (bit 0 of the Status Reg­
ister is 0) and an attempt is made to execute a privileged
instruction. This violation also occurs in EXIT if an at­
tempt is made to exit from user to privileged mode or, if
exiting from user mode, the External Interrupts bit in the
Status Register has been al tered.

g. STT #24; STOV - Stack Overflow. SM is greater than Z or may
become greater as a result of the current instruction.

h. STT #25; ARITH - Arithmetic. All User Traps will be executed
in the segment #1 routine pointed to by STT #25. The error
conditions and their parameters are as follows:

Inte rrupt Type

Integer Overflow
Floating Point Overflow
Floating Point Underflow
Integer Divide-by-Zero
Floa t ing Poin t Div ide- by-Ze ro

Octal
Parame ters

000001
000002
000003
000004
000005

i. STT #31; ABS CST - Absent Code Segment. The absence bit in
the CST entry for the referenced segment is set. The inter­
rupt handler and PCAL stack a (second) marker; others in-
cluding EXIT, IXIT, etc., do not.

j. STT #32; TRACE - Code Segment Trace. Code segment is being
tr aced.

k. STT #33; UNCALL - Uncallable STT Entry. The uncallable bit
in a local label or, if the STT number is 0, in (PL) is set.
This trap does not stack a (second) marker.

4-2

Machine Instructions and Stack Operations

1. STT #34; ASS DST - Absent Data Segment. The absence bit in
the DST entry for the referenced segment is set.

4-3. CONDITION CODE

Bits 6 and 7 of the CPU Status Register are used for the condi­
tion code. Although several instructions make special use of the
condition code, the condition code typically indicates the state
of an operand (or a comparison result with two operands). The
ope rand may be a byte, word, doubleword, tr ipleword, or quad­
rupleword and may be located on the TOS, in the Index Register,
or in a specified memory location. Refer to paragraph 2-46 for
condition code interpretations.

4-4. INSTRUCTION FORMATS

The machine instruction formats are shown in figures 4-1 through
4-5. For a general discussion of the formats, refer to para­
graph 2-30.

4-5. INSTRUCTION DEFINITIONS

Paragraphs 4-6 through 4-15 contain definitions for 36 of the 191
machine instructions. The definitions are arranged in mnemonic
alphabetical order within each of the instruction groups. When
additional information is required to fully define a particular
instruction, an Instruction Commentary number reference is made
immediately following the instruction's definition. In such
cases, refer to the corresponding reference number in paragraph
4-16. Also, some of the instruction definitions refer to the
first five elements of the stack as A, B, C, D, and E. With this
convention, A is the TOS (8), B is S-l, C is S-2, D is S-3, and D
is S-4.

4-6. Stack Op Instructions

ADD Add

If

Alternate
POSition

The top two words of the stack are added in integer form and are
then deleted. The resulting sum is pushed onto the stack.

Stack opcode: 20
Indictors: CCA, Carry, Overflow
Traps: STUN, ARITH

4-3

Machine Instructions and Stack Operations

SUB OP CODE 00. STACK OP CODE 00·77

011/21314 516171819110111112113114 J151
010 0 01 I I I 1
I I I I I I

0
1
0 I I

•~ ~
Bit14·9 Bit14·9

Mnemonic or 10·15 Mnemonic or 10 . 15

NOP 00 DEL 40
DELB 01 ZROB 41
DDEL 02 LDXB 42
ZROX 03 STAX 43
INCX 04 LDXN 44
DECX 05 DUP 45
ZERO 06 DDUP 46
DZRO 07 FLT 47
DCMP 10 FCMP 50
DADO 11 FADD 51
DSUB 12 FSUB 52
MPVL 13 FMPV 53
DIVL 14 FDIV 54
DNEG 15 FNEG 55
DXCH 16 CAB 56
CMP 17 LCMP 57
ADD 20 LADD 60
SUB 21 LSUB 61
MPV 22 LMPV 62
DIV 23 LDIV 63
NEG 24 NOT 64
TEST 25 OR 65
STBX 26 XOR 66
DTST 27 AND 67
DFLT 30 FIXR 70
BTST 31 FIXT 71
XCH 32 INCB 73
INCA 33 DECB 74
DECA 34 XBX 75
XAX 35 ADBX 76
ADAX 36 ADXB 77
ADXA 37

Figure 4-1. Sub-Opcode 00 Formats

4-4

Machine Instructions and Stack Operations

SUBOPCODE 01, OPCODES 00 - 17

011 1213 415161718 9 10111112113114115

1010 0 1 I I 1
I I

T T
I

01

Mnemonic 4 Bits 5-9 Bits 10 -15

ASL x 00 SHIFT COUNT
ASR x 01 SHIFT COUNT
LSL x 02 SHIFT COUNT
LSR x 03 SHIFT COUNT
CSL x 04 SHIFT COUNT
CSR x 05 SHIFT COUNT
SCAN x 06

'" ",

IABZ I 07 t DISPLACEMENT
TASL x 10 SHIFT COUNT
TASR x 11 SHIFT COUNT
IXBZ I 12 t DISPLACEMENT
DXBZ I 13 t DISPLACEMENT
BCY I 14 t DISPLACEMENT
BNCY I 15 t DISPLACEMENT
TNSL x 16
QASL 0, 17 SHIFT COUNT
QASR 1 17 SHIFT COUNT

x = INDEX BIT
1 = INDIRECT BIT
SHADED BITS ARE RESERVED BITS

SUBOPCODE 01, OPCODES 20 - 37

~
I

I
I

T T01

Mnemonic 4 Bits 5 ·9· Bits 10·15

DASL x 20 SHIFT COUNT

DASR x 21 SHIFT COUNT

DLSL x 22 SHIFT COUNT

DLSR x 23 SHIFT COUNT

DCSL x 24 SHIFT COUNT

DCSR x 25 SHIFT COUNT
CPRB I 26 t DISPLACEMENT
DABZ I 27 t DISPLACEMENT

BOV I 30 * DISPLACEMENT
BNOV I 31 * DISPLACEMENT
TBC x 32 BIT POSITION

TRBC x 33 BIT POSITION

TSBC x 34 BIT POSITION

TCBC x 35 BIT POSITION
BRO I 36 * DISPLACEMENT

BRE I 37 * DISPLACEMENT

Figure 4-2.

CMP Compare

~.~~=o 0 0 000 1 1 1 1

..
Altf'flldtf'

POSltlOIl

Sub-Opcode 01 Formats

The Condition Code is set to pattern C as a result of the integer
comparison of the second word of the stack with the TOS. Both
wor d s are dele te d •

Stack opcode: 17
Ind ica tor s: CCC
Traps: STUN

4-5

~~chine Instructions and Stack Operations

SUBOPCOOE 02. MOVE OPCOOES 00. 0 • 5

SUBOPCODES 02. OPCODES 01 . 17

~
I I

T'
I

I
02

Mnemonic Bitl4·7 Bits'· 1&

DMUL 01 CIR (8:15) - " 170
DDIV 01 CIR (8:15)-"171
LDI 02 IMMEDIATE OPERAND
LDXI 03 IMMEDIATE OPERAND
CMPI 04 IMMEDIATE OPERAND
ADDI 05 IMMEDIATE OPERAND
SUBI 06 IMMEDIATE OPERAND
MPVI 07 IMMEDIATE OPERAND
DIVI 10 IMMEDIATE OPERAND
PSHR 11

*LDNI 12 IMMEDIATE OPERAND
LDXN 13 IMMEDIATE OPERAND
CMPN 14 IMMEDIATE OPERAND
E~F 15 START BIT # I # OF BITS
DPF 16 START BIT # I # OF BITS
SETR 17 i

iBIT 8 = STACK BANK REGISTER
BIT 9 = DB-BANK, DB REGISTER

BIT 10 = DL REGISTER
BIT 11 ~ Z REGISTER
BIT 12 = STATUS REGISTER
BIT 13 = X REGISTER
BIT 14 = Q REGISTER

BIT 15 = S REGISTER

LDEA 16

IXIT 17

LSEA 16

RSW 14

LLSH 14

PSTA 15

SDEA 16

SSEA 16

PCN 17

PLDA 15

Mnemonic

Mnemonic Bits 8 ·10 Bits 11 ·1&

MOVE 0 B SOEC

MVB 1 B SOEC

MVBL 2 0 SOEC

MABS 2 0 SOEC

sew 2 1 SOEC

MTOS 2 1 SOEC
MVLB 3 0 SOEC

MOS 3 0 SOEC
SCU 3 1 SOEC

MFOS 3 1 SOEC

MVBW '4 N U SOEC

CMPB 5 B SOEC

Shaded bits are reserved

A - Alphabetic

B - PB/DB

N - Numeric
SOEC - S Decrement

U - Upshift

Figure 4-3. Sub -Opcode 02 Forma ts

4-6

Machine Instructions and Stack Operations

SUBOPCODE 03, SPECIAL OPCODES 00

~00110000
I I I I I I I I

I I
03 00

r-I
Mnemonic BmB -11 Bits 12 - 15

LST 00 K FIELD

PAUS 01
SED 02 0 0 0 X

XCHD 03 0 0 0 0
PSDB 03 0 0 0 1
DISP 03 0 0 1 0
PSEB 03 0 0 1 1
SMSK 04 0 0 0 0
SCLK 04 0 0 0 1
RMSK 05 0 0 0 0
RCLK 05 0 0 0 1
XEa 06 K FIELD
SIO 07 K FIELD
RIO 10 K FIELD
WIO 11 K FIELD
TIO 12 K FIELD
CIO 13 K FIELD
CMD 14 K FIELD

SST 15 K FIELD
SIN 16 K FIELD
HALT 17 K FIELD

SUBOPCODE 03, OPCODES 01 - 17

~
I

I
I

T
I

03

Mnemonic Bi1$4-7 Bits 8 ·15

SCAL 01 N FIELD

PCAL 02 N FIELD

EXIT 03 N FIELD

SXIT 04 N FIELD

ADXI 05 IMMEDIATE OPERAND

SBXI 06 IMMEDIATE OPERAND
LLBL 07 Pl - DISPLACEMENT
LDPP 10 P+ DISPLACEMENT
lBPN 11 P- DISPLACEMENT
ADDS 12 IMMEDIATE OPERAND

SUBS 13 IMMEDIATE OPERAND
ORI 15 IMMEDIATE OPERAND
XORI 16 IMMEDIATE OPERAND
ANDI 17 IMMEDIATE OPERAND

Shaded bits are reserved and ignored.

x = 1 or O.

Figure 4-4.

DDUP Ibuble Dupl ica te

w
Alternate
Position

Sub-Qpcode 03 Formats

The double word in the top two words of the stack
by pushing a copy of it onto the stack.

Stack opcode: 46
Indicators: CCA on new TOS double word
Traps: STUN, STOV

4-7

is dupl ica ted

Machine Instr uctions and Stack Opera tions

I I I I

Il
Mnemonic Bits 0 • 3 Bits4·1&

LOAD 04 X I MODE AND DISPLACEMENT

TBA 05 0 0 0 ± DISPLACEMENT
MTBA 05 0 1 0 ± DISPLACEM~NT

TBX 05 1 0 0 ± DISPLACEME NT
MTBX 05 1 1 0 ± DISPLACEMENT

STOR 05 x I 1 MODE AND DISPLACEMENT
CMPM 06 x I MODE AND DISPLACEMENT
ADDM 07 x I MODE AND DISPLACEMENT
SUBM 10 x I MODE AND DISPLACEMENT
MPYM 11 x I MODE AND DISPLACEMENT
INCM 12 x I 0 MODE AND DISPLACEMENT
DECM 12 x 1 I MODE AND DISPLACEMENT
LOX 13 x I MODE AND DISPLACEMENT
BR 14 x I 0 ± DISPLACEMENT
BR 14 x 1 1 MODE AND DISPLACEMENT

BCC 14 I 0 1 > =I< I ± I DISPLACEMENT
LOB 15 x I 0 MODE AND DISPLACEMENT
LDD 15 x I 1 MODE AND DISPLACEMENT
STB 16 x I 0 MODE AND DISPLACEMENT
STD 16 x I 1 MODE AND DISPLACEMENT
LRA 17 x I MODE AND DISPLACEMENT

X = INDEX BIT
I = INDIRECT BIT

Figure 4-5. Sub-Opcode 04 thru 17 Formats

DEL Delete A

..
Alternate
POSition

The top word of the stack is deleted.

Stac~ opcode: 40
Indicators: Unaffected
Tr aps: STUN

4-8

..
Alternatf>
Position

Machine Instructions and Stack Operations

DIV Divide

-o 0 0 001 001 1

..
Alternate
Position

The integer in the second word of the stack is divided by the in­
teger on the TOS. The two words are then deleted. The second
word is replaced by the quotient, and the top word is replaced by
the remainder.

Stack opcode: 23
Indicators: CCA on quotient, Overflow
Traps: STUN, ARITH

DUP Duplica te A

-0000100101

..
Alternate

POSition

The top word of the stack is duplicated by pushing a copy of the
TOS onto the stack.

Stack opcode: 45
Ind ica tors: CCA
Traps: STUN, STOV

INCA Increment A

-00000 1 101 1

..
Alternate
POSition

The TOS is incremented by one in integer form.

Stack opcode: 33
Indicators: CCA, Carry, Overflow
Traps: STUN, ARITH

MPY Multiply

-o 0 0 0 0 1 001 0
,

The top two words of the stack are multiplied in integer form.The
two words are deleted and the least significant word of the doub­
le length product is pushed onto the stack. If the high order 17
bi ts of the double length pr od uct (includ ing the sign b it of the
second word) are not all zeros or all ones, Overflow is set.

4-9

Machine Instructions and Stack Operations

Instruction Commentary 1.
Stack opcode: 22
Indicators: CCA, Overflow
Traps: STUN, ARITH

TEST Test TOS

= , . '
Alternate
Position

The Condition Code is set to pattern A according to the content
of the TOS word.

Stack opcode: 25
Ind ica tor s: CCA
Traps: STUN

XOR Logical Exclusive-OR

~o 0 001 101 1 0 .
Alternate
POSition

The top two words of the stack are combined by a logical
exclus ive-OR. The two word s are deleted and the resul t is pushed
onto the stack.

Stack opcode: 65
Ind ica tors: CCA on the new 'IDS
Traps: STUN

4-7. Shift Instructions

ASL Arithmetic Shift Left

..
Shift

Count

The TOS is shi~ted left n bits, preserving the sign bit. The
value of n (modulo 64) is the number specified in the argument
field plus, if X is specified (bit 4), the content of the Index
Re gister .

Instruction Commentary 2.
Sub-opcode l: 00
I nd ica tors: CCA
Traps: STUN

4-10

Machine Instructions and Stack Operations

CSL Circular Sh ift Le ft

~
, I..

Shift
Count

The TOS is shifted left n bits circularly. The value of n (modu­
lo 64) is the number specified in the argument field plus, if X
is specified, the content of the Index Register.

Instruction Commentary 2.
Sub-opcooe 1: 04
Ind ica tor s: CCA
Traps: STUN

4-8. Branch Instructions

BCC Branch On Condition Code

"'----..---" ..
CCF Displacement

The Condition Code in the Status Register is compared with condi­
tions named in the CCF field of the instruction. If the named
conditions are met, control is transferred to P +/- displacement;
otherwise to P+l. The displacement is limited to +/-31. Control
is transferred to the branch address under the following condi­
tions:

If CCF = 0, never branch
= 1, branch if CC = CCL
= 2, branch if CC = CCE
= 3, branch if CC = CCL or CCE
= 4, branch if CC = CCG
= 5 , branch if CC = CCG or CCL
= 6, branch if CC = CCG or CCE
= 7 , always branch

Memory opcode: 14, bits 5,6 = 01
Indicators: Unaffected
Addressing modes: P relative (+/-), direct or indirect
Traps: BNDV if user or privileged

BR Branch Unconditionally

..
Displacement

P Relative

4-11

Machine Instructions and Stack Operations

For P relative mode, control is transferred unconditionally to P
+/- displacement, plus (if specified) the value in X; may be in­
direct. For DB, Q, and S relative modes, control is transferred
indirectly (only) via the location specified by DB, Q, or S +/­
this displacement; the content of the location so specified is
added to PB (plus post-indexing if X is specified) to obtain the
effective address for P.

Instruction Commentary 3.
Memory opcode: 14, bits 5,6 = 00, 10, or 11
Indicators: Unaffected

Addressing modes: P relative (+/-), direct or indirect
DB+ relative, indirect
Q+ relative, indirect
Q- relative, indirect
S- relative, indirect
Indexing available

Traps: BNDV, BNDV on P and P relative if user or privileged

4-9. Move Instructions

Note

All Move instructions are interruptable af­
ter each word (or byte) transfer and will
continue from the point of interrupt when
control is returned to the instruction.

CMPB Compare By tes

PB/DB '--v--'
SDEC

This instruction scans two byte strings simultaneously until the
compared bytes are unequal or until a specified number of compar­
isons have been made. CMPB expects a signed byte count in A, a
DB or PB relative displacement for a source byte address in B,
and a DB relative displacement for a target byte address in C.
As long as the word count in A has not been counted to zero, the
comparison proceeds as follows: The content of the byte address
loca tion specified by DB + B or PB + B is compared wi th the con­
tent of the byte address location specified by DB + C. If the
byte count in A is positive, the source and target displacement
values in Band C are incremented by one after each comparison,
and the byte count is decremented by one. If the byte count in A
is negative, the source and target displacement values in Band C
are decremented by one after each comparison, and the byte count
is incremented by one. Note that the byte count is always chang­
ed by one toward zero. The instruction terminates when either a
compar ison fa ils or the byte count in the TOS reaches ze ro. The
Condition Code is set to a s~ecial pattern to indicate the term­
inating condition. On termlnation, the instruction deletes from
the stack the number of words (0, 1, 2, or 3) specified by the

4-12

Machine Instructions and Stack Operations

SDEC field of the instr uction.

Instruction Commentary 4.
Move opcode: 5
Indicators: CCE if byte count = 0

CCG if target byte > source byte (final)
CCL if target byte < source byte (final)

Addressing modes: Byte addressing
DB+ or PB+ for source
DB+ for targe t

Traps: STUN, STOV, BNDV, BNDV on P relative if user or privileged

~10. Privileged Memory Reference Instructions

LSEA Load Single Word From Extended Address

A bank address is in B and a 16-bit absolute address of a loca­
tion in that bank is in A. The word at that address is pushed
onto the s tac k.

Min i - cp code: 16, bit s 14, 15 = 0 0
Indica tors: CCA
Addressing mode: Absolute
Traps: STUN, STOV, MODE
This is a privileged instruction.

PLDA Pr iv ileged Load From Absolute Address

The content of the Index Register is a l6-bit absolute address in
bank 0: the content of this address is pushed onto the stack.

Mini-opcode: 15, bit 15 = 0
Indicators: CCA
Addressing mode: Absolute
Traps: STOV, MODE
This is a privileged instruction.

~11. .Immediate Instructions

ADDI Add Immed ia te

~
l I•

Immediate Operand

The immediate operand N is added to the TOS in integer form, and
the sum replaces the 'IDs. The value of N is given in the argu­
ment field of the instruction, and is expressed as a positive
integer in the range 0 through 255.

4-13

Machine Instructions and Stack Operations

Sub-opcode 2: 05
Indicators: CCA on the new TOS,
Carry, Overflow
Traps: STUN, ARITH

LDI Load Immediate

~00100010
l ,

Immediate Operand

The immediate operand N is pushed onto the stack. The value of N
is given in the argument field of the instruction, and is expres­
sed as a positive integer in the range 0 through 255.

Sub-opcode 2: 02
Indicators: CCA on the new TOS
Traps: STOV

4-12. Register Control Instructions

PSHR Push Registers

The content of a register (or the displacement it represents)
specified by any bit 8 through 15 is pushed onto the stack. If
more than one register (or displacement) is specified, the con-
tents will be stacked in the order shown below, such that if all
nine were specified, S-Bank would be on the TOS after execution,
DB next, etc. Note that when S-DB is pushed, the value stacked
will be as it existed before the execution of this instruction.
Stack overflow occurs if the original S+9 exceeds Z, regardless
of the number of registers pushed.

If bit 15 = 1, push S-DB
If bit 14 = 1, push Q-DB
If bit 13 = 1, push Index Register
If bit 12 = 1, push Sta tus Register
If bit 11 = 1, push Z-DB
If bit 10 = 1, push DL-DB

*If bit 9 = 1, push DB-Bank and DB Registe r
*If bit 8 = 1, push S-Bank

Sub-opcode 2: 11
Indicators: Unaffected
Traps: STOV, MODE
*Th eseare p r i viIe ged op era t i ons •

4-14

Machine Instructions and Stack Operations

4-13. Program Control and Special Instructions

DISP Dispatch

This instruction is used to transfer to the Dispatcher's entry
point: or to request such a transfer if executed while on the ICS
or within the range of a PSDB-PSEB pair.

Instruction Commentary 7.
Special opcode: 03, bits 12-15 = 0010
Indicators: See instruction commentary.
Traps: MODE, CSTV, TRACE, ABS CST, BNDV if user or privileged
This is a privileged instruction.

EXIT Exit From Procedure

~, ,
N

This instruction is used to return from a procedure called by the
PCAL instruction or by some interrupts. A normal exit occurs by
restoring the return address to P, restoring the previous con­
tents of the Index and Status Registers, and deleting all stack
variables incurred by the called routine plus its marker, plus N
number of procedure parameters. The value of N may be any number
from 0 to 255 for exits from PCAL routines; it must be 0 for ex­
its from interrupt routines. If bit 0 of the return-P marker
word is a "1", control is transferred to Trace, segment #1, STT
#32 (decimal).

Instr uction Commentary 6.
SUb-opcode 3: 03
Indicators: Restored to values before PCAL
Traps: STUN (going to user mode),STOV, MODE, CSTV,TRACE, ABS CST,

BNDV if user or privileged

I XI T In te r r up t Ex i t

This instruction is used to exit from those interrupt service
routines which always run on the Interrupt Control Stack (ICS).
This results in a return to the interrupted process (which may be
another interrupt or the Dispatcher) or a transfer to the Dis­
patcher's entry point. The action taken depends in part on the
sequence of DISP, PSDB, and PSEB instructions which have been ex­
ecuted. IXIT is also used by the Dispatcher to exit to a process
being launched.

4-15

Machine Instructions and Stack Operations

Instruction Commentary 7.
Mini-opcode: 17, bits 12-15 = 0000
Indicators: Restored to those before interrupt or as specified

for t-he Dispatcher
Traps: MODE, STOV,CSTV,TRACE,ABS CST, BNDV if user or privileged
This is a privileged instruction.

PAUS Pause

Not Used

The computer hardware pauses; interrupts may occur.
through 15 are ignored.

Special opcode: 01
Indicators: Unaffected
Traps: MODE
This is a privileged instruction.

PCAL Procedure Call

~
" '

N

Bits 12

Control is transferred to the location pointed to by the evalua­
tion of the program label at PL-N, unless N is zero, the program
label is taken from the TOS and then deleted. Then a four word
stack marker is placed on the stack, and Q and S are updated to
point at this new marker. The program label may be local or ex­
ternal. If the Trace bit is on in the target CST entry, a call
will be made to Trace, segment #1, STT #32 (decimal). If a priv­
ileged user is calling a user segment, it will run in privileged
mode.

Instruction Commentary 6.
SUb-opcode 3: 02
Indicators: Unaffected
Addressing modes:

Indirect via: PL - N (if N does not equal 0)
TOS (if N = 0)

Local Label: PB+
External Label: via CST to local label in target

segment
Traps: STUN, STOV, CSTV, STTV, ABS CST, TRACE, UNCALL, BNDV if

user or privileged

4-16

Machine Instructions and Stack Operations

4-14. I/O Instructions

CIa Control I/O

K

This instruction assumes that the TOS contains a control word and
expects a device number to be given in the stack at S-K. CIa
transmits the TOS to the specified device controller, along with
a CIa signal. If the device controller acknowledges receiving
the word, the TOS is deleted and the Cond i tion Code is set to
CCE. If the device controller does not respond, the Condition
Code is set to CCL and the instruction is terminated.

Special opcode: 13
Indicators: CCE = responding device controller

CCL = non-responding device controller
Traps: STUN, MODE
This is a privileged instruction.

CMD Comrna nd

K

This instruction assumes that the TOScontains a l6-bit data word
to be sent to a system hardware module and expects a command word
in the stack at S-K. Bits 13 through 15 of the command word
specify the module number, and bits 10 and 11 are used to specify
a module command. (The four possible commands are interpreted by
the target module and do not form a part of this instruction's
definition.) CMD sends the 16-bit data word and the 2-bit command
over the Central Data Bus to the specified module, and then de­
letes the TOS. (Note: If the destination module is not ready, the
CPU will not proceed unt il that module becomes ready.)

Special opcode: 14
Indicators: Unaffected
Traps: STUN, MODE
This is a privileged instruction.

RIO Read I/O

K

This instruction expects a device number to be given in the stack
at S-K. RIO first checks if the device is ready by checking bit
1 of the device controller's Status Register. Ifit is ready
(bit = "1"), the l6-bit data word from the device is pushed onto
the stack and the Condition Code is set to CCE. If it is not

4-17

Machine Instructions and Stack Operations

ready (bit = "0"), the content of the device controller's Status
Register is pushed onto the stack and the Condition Code is set
to CCG. If the device controller does not respond to the readi­
ness test, the Condition Code is set to CCL and the instruction
is terminated.

Special opcode: 10
Indicators: CCL = non-responding device controller

CCE = device ready
CCG =device not ready

Traps: STOV, MODE
This is a privileged instruction.

SIO Star t I/O

K

The SIO instruction expects the absolute starting address of an
I/O program to be on the TOS, and a device number to be in the
stack at S-K. The instruction first checks if the device is
ready for an SIO by checking bit 0 of the device controller's
Status Register. Bit 0 is the "SIO OK" bit. If it is ready (bit
= "1"), the TOS is stored into the first location of the DRT en­
try for the device specified at S-K; an SIO command is then issu­
ed to the device controller to begin execution of its I/O pro-
gram. If the device is not ready (bit 0 of the device status =
"0"), the content of the device controller's Status Register is
pushed onto the stack and the Condition Code is set to CCG. If
the device controller does not respond, the Condition Code is set
to CCL and the instruction is terminated. If the device is
ready, the TOS is deleted and the Condition Code is set to CCE.

Instruction Commentary 8.
Special opcode: 07
Indicators: CCL = non-responding device controller

CCE = device ready
CCG = device not ready

Traps: STUN, STOV, MODE
This is a privileged instruction.

TIO Test I/O

K

This instruction expects a device number to be given in the stack
at S-K. TIO obtains a copy of the device status word from the
device controller, pushes it onto the stack, and sets the Condi-
tion Code to CCE. If the device controller does not respond, the
Condition Code is set to CCL and the instruction is terminated.

4-18

Machine Instructions and Stack Operations

Special opcode: 12
Indicators: CCE = responding device controller

CCL = non-responding device controller
Traps: STOVE, MODE
This is a privileged instruction.

WI 0 Wr i te I/O

K

This instruction assumes that the TOS contains a data word and
expects a device number to be given in the stack at S-K. WIO
first checks if the device is ready by checking bit 1 of the de­
vice controller's Status Register. If it is ready (bit = "1"),
the word is transmitted to the specified device and then deleted
from the stack; the Condition Code is set to CCE. If it is not
ready (bit = "0"), the content of the device controller's Status
Register is pushed onto the stack and the Condition Code is set
to CCG. If the device controller does not respond, the Condition
Code is set to CCL and the instruction is terminated.

Special opcode: 11
Indicators: CCL = non-responding device controller

CCE = device ready
CCG = device not ready

Traps: STUN, STOV, MODE
This is privileged instruction.

4-15. Memory Address Instructions

ADDM Add Memory To TOS

~, ,..
Mode and Displacement

The content of the effective address memory location is added in
integer form to the TOS. The result replaces the operand on the
TOS.

Memory opcode: 07
Indicators: CCA, Carry, Overflow
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative

Direct or indirect
Indexing available

Traps: STUN, BNDV, ARITH

CMPM Compare TOS With Memory

~
, I..

Mode and Displacement

4-19

..
Mode and Displacement

Machine Instructions and Stack Operations

The Condition Code is set to pattern C as a result of the compar­
ison of the TOS with the content of the effective address loca­
tion. The TOS is then deleted.

Memory opcode: 06
Indicators: CCC
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative

Direct or ind irect
Indexing available

Traps: STUN

LDD Load Double

~1101Xll

Mode and Displacement

The contents of the effective address memory location (E) and the
succeeding location (E + 1) are pushed onto the stack. The con­
tent of E, the most significant word, is loaded into B; the con­
tent of E + 1, the lea st significa nt word, is loaded into A. If
indirect addressing is used, the word referenced by the initial
address (base + displacement) contains a DB+ relative word ad­
dress. If indexing is used, the effective address is obtained by
adding twice the contents of the Index Register to the relative
word address.

Memory opcode: 15, bit 6 = 1
Ind ica tor s: CCA
Addressing modes: DB+, Q+, Q-, S- relative

Direct or indirect
(for final indirect: DB+ only)
Doubleword Indexing available

Traps: STOV, BNDV

LOAD Load Word Onto Stack

~o 1 0 0 X I ,

The content of the effective address location is pushed onto the
stack.

Memory opcode: 04
Ind ica tor s: CCA
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative

Direct or indirect
Indirect Indexing available

Traps: STOV, BNDV

4-20

•
Mode and Displacement

Machine Instructions and Stack Operations

STOR Store TOS Into Memory

~O'101X11
,

The content of the TOS is stored into the effective address mem­
ory location, and is then deleted from the stack.

Memory opcode: 05, bit 6 = 1
Indicators: Unaffected
Addressing modes: DB+, Q+, Q-, S- relative

Dire ct or ind ire ct
Indexing available

Traps: STUN, BNDV

4-16. Instruction Commentary

1. MPYL, MPY, DTST, FIXR, FIXT, LMPY. These six instructions
provide for the deletion of the most significant word of a
doubleword result. The assumption is that the result of the in­
struction (e.g., multiplication product) does not require more
than 16 bits to represent it. The MPY instruction deletes auto­
matically during execution; the remaining five instructions
simply test the result and provide an indication (Carry bit) to
note whether or not the low order word fully represents the t~ue

resu~t. Thus, for these five, the programmer may choose to In­
sert a delete sequence (see figure 4-6) to delete the high order
word if it is insignificant.

Sign of a Sign of a
Double-length Single-length
Integer Integer

/ /
o 15 0 15

IIIIII I I I II II II I III III I I II II III III
OOOOOOOOOOOO'OOOOOX--------------X

11111111111111111X--------------X

'-------v-------) ''---__.--J

High Order
17 Bits

Example delete sequence:

Significant
Data Bits

MPYL;
Bey· +2;
DELB;

Figure 4-6. Deleting A High Order Word

For MPYL, DTST, FIXR, FIXT, and LMPY, the Carry bit is cleared if
the high order 17 bits are all zeros or all ones. This test en­
sures that the sign bit of the single-length result will be the
same as the sign of the double-length resul t. If this is not the

4-21

Machine Instructions and Stack Operations

case, Carry is set, and the most significant word should not be
deleted. For MPY, Overflow will be set if the test fails, mean­
ing that MPYL should have been used instead of MPY.

2. ASL, ASR, LSL, LSR, CSL, CSR. The actions of the six-single
word Shift instructions are shown in figure 4-7. It is assumed
that the shift count specified in the argument field of the in­
struction, is 3 in each case. The before and after conditions of
the TOS word are shown for each example.

In the case of arithmetic shifts, the sign bit is always pre­
served. When shifting left, the bits shifted out of bit 1 (most
significant bit next to the sign bit) are lost; zeros are filled
into the vacated low order bit positions. When shifting right,
the sign bit is copied into the vacated high order bit positions,
and bits shifted out of bit 15 (least significant bit) are lost.

In the case of logical shifts, all bits are shifted. Bits are
lost out of the high end when shifting left and out of the low
end when shifting right. Zeros are filled into the vacated bit
positions.

In the case of circular shifts, no bits are lost. Bits shifted
out of the high end whep shifting left are filled into the va-
cated low order bit positions. When shifting right, bits shifted
out of the low end are filled into the vacated high order bit
positions.

Note that, for all Shift instructions, the number of shifts is
determined either by the value specified in the argument field of
the instruction or, if X .is specified ("1" in bit 4), by adding
the argument field value to the Index Register contents. This
permits the number of shifts to be computed as well as explicitly
specified.

All Shift instructions except TNSL use the shift count in a mod­
ulo 64 manner. Thus if the final shift count is 100 octal (64
decimal), the data is not shifted at all. Furthermore, if the
number of shifts equals or exceeds the number of magnitude bits
(whether single, double, or triple word), the following 'will
occur: for left arithmetic shifts and all logical shifts, the
magnitude will be all-zero; for right arithmetic shifts, all mag­
nitude bits will be the same as the sign bit; for circular
shifts, the circular shifting will continue until the specified
number of shifts (up to 63) have been achieved. Except for TNSL,
the execution of shift instructions does not alter the contents
of the Index Register.

3. BR. The P-relative mode of BR, the unconditional branch in­
struction, is a conventional P relative branch except for the in­
dexing capability and the extended displacement range. Bits 8
through 15 are available to specify displacement, which therefore
can be up to +/-255.

4-22

Machine Instructions and Stack Operations

Arithmetic Shift Left ASl 3
Lost

o

ArithmetIc ShIft RIght ASR 3

Logical ShIft Left lSl3

o

Logical ShIft RIght LSR 3

o

Circular Shift Left CSL 3

Circular Shift Right

c b •

Figure 4-7.

CSR 3

Single Word Shifts

4-23

Machine Instructions and Stack Operations

The DB, Q, and S relative mode, however, are unconventional in
that they permit indirect branches through the data stack. (It
is both illegal and impossible to have a direct branch to the
stack: the coding of "01" for bits 5 and 6 encodes the Bee
instr uction.)

Figure 4-8 shows an example of the S- relative mode. Assume that
the instruction in location P specifies the S- relative mode,
with a displacement of 4, and indexing. This causes an indirect
branch to S-4 in the data stack. The content of S-4 is then ad­
ded to PB, thus point ing at loca tion "a" in the code segment.
Since indexing is specified, the value contained in the Index
Register is also added to the address being computed. Thus the
ultimate effective address for the branch (next P) is location
"a" displaced by the index value.

CODE DATA

Displacement
4

DB
PB + (S-4)

+ PB + (S-41 + x

a

S-41

S t =

P

a

P8

Next P

Figure 4-8. Indirect Branch Via Stack

Note particularly that the indirect address given in the stack is
relative to the program base, PB, not to P as is usually the
case. Also note that the displacement is relative to a location
in the stack (DB, Q, or S), and that indexing is applied after
the indirect addressing has been accomplished.

the DB, Q, and S modes depends on
For DB+, bits 8 through 15 provide a
For Q+, bits 9 through 15 provide a

For Q- and S-, bits 10 through 15 pro­
-63.

The displacement range for
which mode is se lected.
range of 0 through +255.
range of 0 through +127.
vide a range of 0 through

4-24

Machine Instructions and Stack cperati6ns

4. MOVE, MVB, MVBW, CMPB, SCU,- SCW. These six instructions are
members of the move group and as such deal with strings of words
or bytes. The first three physically move a word or byte string
from one block of locations in primary memory to another. The
CMPB instruction does not move data but compares data in two
complete str ings, byte by byte. The last two also do not move­
data but scan a data str ing tpsting the str ing byte by byte
against a test character and a terminal character.

SOURCES. The MOVE, MVB, and CMPB instructions may take source
data from either the code segment or the data segment. (For ref­
erence purposes, "source" and "target" te rrn inology is retained
for CMPB, even through there is no move operation.) If bit 11 of
the instruction is a "0", source addresses are PB+ relative;
i.e., from the code segment. If bit 11 is a "1",. source addresses
are DB+ relative; i.e., from the data segment. Figure 4-9 illus­
trates both cases. Note that the target for either case is in
the DB+ area. (Disregard move-direction arrows for CMPB.) Both
source and target (MVBW) addresses are DB relative for MVBW, SCU,
and scw. The target need not- be "higher" than the source; figure
4-9 shows examples only.

1

1

DATA
SEGMENT

(-Countl

t

•(+Countl

(-Countl

•,
(+Countl

Target
Source

.:1 Count

DB

DL

(+1 (-I

Incr Decr C
Incr Decr B
Decr Incr A

Z

~

PB Relative Source-

....

DB Relative Source,
....

~

r

Target

CODE
SEGMENT

PB

(-Countl

1+,
(+Countl

P

INCREASING
ADDRESSES

PL t::::========1

Figure 4-9. Move Examples

4-25

~~chine Instructions and Stack Operations

ASCENDING/DESCENDING ADDRESSES. The MOVE MVB, and CMPB instr uc­
tions have the capability of generating ascending or descending
addresses for source and target locations. The direction is es­
tablished by the sign of the count word, which is bit 0 of A, as
shown in figure 4-9. If this bit is a "0", the sign is "+", and
successive addresses are ascending (B and C incremented). If
this bit is a "1" the sign is "_", and successive addresses are
descending (B and C decremented) . Note the +Count and -Count
arrows in figure 4-9. The MVBW instruction uses only ascending
addresses; this instruction does not use a count word, and the
source and target pointers are in A and B instead of Band C.
SCU and SCW also only use ascending addresses; terminal and test
characters are in A, the source pointer is in B.

METHOD OF TERMINATION. The MOVE and MVB instructions are termin­
ated only when the word or byte count becomes zero. The MVBW
instruction is terminated only when a character of a specified
type, either alphabetic or numeric, is encountered. The CMPB
instr uction has two methods of te rm ination; when the byte count
becomes zero, or when any two bytes being compared are unequal.
SCU scans until the term inal or test character is found; SCW
scans while the str ing equals the test character.

SPECIAL FEATURES. The MVBW instruction includes an "upshift" bit
(bit 13). This bit, when set ("1"), will transpose any lower case
sour ce char acte r s to upper ca se dur ing the tr ansfe r. I f not se t
("0"), the source characters are unaltered by the instruction.

MOVES BEYOND TOS. In the event that the source or target of any
move instruction advances into the instruction parameters on the
TOS or beyond, the paramters (top four if more than four) will
not be affected since these values are contained in the TOS reg­
isters. The memory locations directly corresponding to these
registers will be used for the move (or comparison). However,
this situation is normally a software error.

INTERRUPTS. All Move instr uctions are interruptable and will
continue their operation after return from the interrupt. To do
this, the count, source, and target addresses are kept updated
and deleted from the stack (if specified) only upon completion of
the instr uction.

5. SCAL, SXIT. Figure 4-10 illustrates the operations for call­
ing and exiting from a subroutine. Since only local labels may
be used, operation is entirely within the current code segment.
Assume that the system is executing instructions in the code seg­
ment shown in figure 4-10. At some point, P will encounter the
"SCAL N" instruction, where N is some value 0 through 255. If
the value of N is not 0, e.g., 8, this value will be subtracted
from PL (i.e., PL-8), thus pointing at the ninth cell counting
backward from PL. This must be within the Segment Transfer Ta­
ble, whose first entry is PL-l. The eight entry, in this case,
contains a local program label (bit 0 = 0) , which is a PB rela­
tive address pointing to the start of the subroutirie. This
address is converted to absolute (add to PB) and is loaded into

4·-26

Machine Instructions and Stack Operations

the P Register, while the former value of P, plue one, is stored
in the TOS as the re tur n addres s. Howeve r, if N we re 0, it would
be assumed that the TOS contains the local label (subroutine
starting address). This address, then, (made absolute) would be
loaded into the P Register, while the former value of P, plus
one, replaces the label on the TOS as the return address. In
either case, once the P Register has its new address, the loca­
tion so indicated will be fetched and subroutine execution
begins.

SCAL SXIT

Code Stack Code Stack
PB

P

~{{SXIT
Return P --..

Pl

....

}

Segment
Transfer
Table

PB

P seAL N

/

Subroutine ~

....

Pl }N

/
(---....

S...........---ot

j
-

I
I
I
I
I
I
I

~-------- ~-------J
If N =0

·Store P+ 1 In TOS

Figure 4-10. Subroutine Call and Exit

The final instruction of the subroutine is SXIT. At this time
the return address, pushed onto the stack by SCAL, is assumed to
be on the TOS. It is the responsibility of the subroutine to
provide this condition, which normally means deleting all vari­
ables incurred by the subroutine. The SXIT instruction simply
takes the address contained in the TOS and puts it in the
P-register, thus effecting a return to the calling routine. As a
final step, SXIT deletes the TOS, since the return address is no
longer needed, and may additionally move S back some number of
locations specified by N. This would typically be used for
deleting some of the parameters passed to the subroutine.

6. PCAL, EXIT. These two instructions perform basically the same
function as the SCAL and SXIT inst~uctions described above (In­
struction Commentary 5). That is, to call a routine and return
from it to the point where it was called. However, since the
routines in the case of PCAL/EXIT may be external to the current
segment, possibly not even present in main memory, the operation
is somewhat more complex.

4-27

Machine Instructions and Stack Operations

The following paragraphs describe the operations of PCAL and EXIT
on a step-by-step basis, referring to flowcharts. It will fre­
quently be assumed that the reader has a working knowledge of the
intents and purposes of the various steps.

PCAL Sequence. Figure 4-11 illustrates the operations of the
PCAL instruction. If the call is within the current segment
(local label), only the steps shown on the left side of the dia­
gram are performed. For calls outside the current segment, the
steps on the right side are added.

The first step is to fetch the program label. From the PCAL in­
struction definition, we see that the label can be obtained from
one 0 f two pIace s : from t he TO S if N is ze r 0 , or from PL-N if N
is not zero. This operation can be seen in the SCAL operation of
figure 4-10, where the label is fetched from either the Segment
Transfer Table, at PL-N, or from the TOS.

Thus, referring to figure 4-11, peAL initially checks N to see if
the label is on the TOS. If not (block 1), the label is fetched
fram PL-N and a check is made to see if that location is actually
within the bounds of the Segment Transfer Table. (N must be <STTL
value in the PL location.) If out of STT bounds, an STT violation
is incurred: otherwise, the PCAL sequence continues. If the la­
bel is on the TOS (block 2), the label is put into temporary
storage in the CPU and S is decremented to delete the label from
the stack. At this time, the CPU has the label but does not know
whether it is local or external, or if it is valid.

The next step is to place a standard four-word stack marker onto
the stack (block 3) and update the Q pointer by loading it with
the content of S (block 4). Both Q and S are now pointing at the
last word (Delta Q) of the new stack marker.

Now the label is checked to see if it is a local label (bit 0=0) .
If it is, the sequence goes to block 8 (skip to paragraph start­
ing "Block 8 sets").

If the label is external (bit 0 = 1), bits 8 through 15 are
checked to see if the segment number specified is val ide If the
segment number does not have an entry in the Code Segment Table,
a CST violation is incurred. Otherwise, the PCAL sequence con­
tinues. Next, absolute addresses for PB and PL are calculated
fran the CST entry and loaded into these two register's (block 5) .

Block 6 sets the privileged mode in the Status Register if the
mode bit in the CST entry indicates privileged mode, or if the
caller was executing in privileged mode (i.e., if the privileged
mode bit in Status already was set). (Although not shown, the
Reference bit in the CST is set at this time for statistical
purposes.)

4-28

Machine Instructions and Stack Operations

STT Uncallable

STT
Violation
Interrupt

Replace
local label

with 0

Ves

CST
Violation

~ Set PB, PL from
CST entry

Fetch
.~label from

PL- N

®
Set or clear
privileged

mode bit M
in StatuI

Fetch label
from TOS
and delete

7/
Put legment

Ves number of
called leg in
Status (8:15)

Set new P
from local

label

~
Push 4-word
stack marker

onto stack STT
Violation ABS CST

Interrupt

~
Move 0 up
to S (AO

marker word)

Figure 4-11. peAL Instruction Flowchart

4-29

Machine Instructions and Stack Operations

Block 7 stores bits 8 through 15 of the label into bits 8 through
15 of the Status Register. This indicates to the system that we
are now operating in the called segment. A check is then made to
see if the called segment is absent from main memory. If it is,
an absent code segment trap is incurred. A similar check is made
for TRACE by checking the CST entry for the called segment.

The next ch eck is to see if bits 1 thr ough 7 of the label are o.
These bits specify which STT entry in the target segment contains
the desired local label. Since a value of 0 would point at the
STTL word in PL, the value of 0 is specially de fined to ind ica te
that P should be set to PB of the called segment; i.e., the local
label equals O. A check is then made to see if the PB entry is
callable if it is being called from user mode. Assuming that
bits 1 through 7 of the external label are not 0, the value so
indicated will point to one entry in the Segment Transfer Table.
If it does not (i.e., if the value exceeds the STTL value), or if
the entry pointed to is not a local label (i.e., if bit 0 = 1),
there will be an STT Violation. But if the label is valid, it is
then checked to see if the procedure is callable if being called
fr an user mode by checking bit 1 (must be 0) •

Block 8 sets the P Register to the starting address of the pro­
cedure. The CPU at this point has a local label, whether it is
in the same segment as the PCAL or in a segment external to the
calling segment. The value for P is calculated by adding the
contents of bits 2 through 15 of the local label to the contents
of PB. As a final check, this value for P is checked to see if
it is between PB and PL. The resultant absolute value is then
loaded into the P Register, and the location so indicated is
fetched and execution of the procedure begins.

EXIT Sequence. Figure 4-12 illustrates the operation of the EXIT
instruction. If the exit is within the current segment, only the
steps on the left side of the diagram are performed. For returns
to another segment the right side is also executed.

The first step (1) is to fetch the 4-word marker pointed to by Q,
which was placed on the stack when the current procedure was
called. S is set equal to Q, deleting any local storage being
used by the current procedure. If the current procedure is exe­
cuting in user mode, the privileged and external interrupt enable
bits in the marker status are compared with the current status to
ensure that the user has not modified these in the marker. Then
X is restored from the marker.

In step 2, if the current segment and the segment in the mar ker
are the same, steps 3 through 6 are omitted; otherwise continue.

Steps 3 and 4 are similar to the equivalent steps in PCAL (figure
4-11) •

4-30

Machine Instructions and Stack Operations

REPLACE S WITH 0
FETCH 4-WORD
MARKER AT (0)

THRU (0·3)

SET PB.PL
FROM CST

ENTRY

CHECK
PRIVILEGED

BIT IN CST
ENTRY

TRACE

INTERRUPT

ABS CST

INTERRUPT

CST VIOLATION

CHECK PRIVILEGED
AND EXTERNAL

INTERRUPT BITS IN
MARKER

RESTORE X

FROM MARKER

>-_.... BOUNDS
VIOLATION

RESTORE STATUS
FROM MARKER
SETS:'"'O~-N

SET 0:-0-d0 FROM
MARKER

SET P

Figure 4-12. EXIT~Instruction Flowchart

4-31

Machine Instructions and Stack Operations

In step 5, if in user mode, the privileged bit in the CST entry
for the return segment must be off. (Although not shown, the ref­
erence bit in the CST entry is set at this time for statistical
purposes.)

An absent code segment trap occurs following step 5 if the return
segment is absent. A trace trap occurs in step 6 if bit 0 of
Delta P in the marker is set. This bit is normally set by the
trace routine which would have been called when the current pro­
cedure was entered.

At step 7, return "P = P-Del ta P" from the marker must be between
PB and PL. The Status Register is restored from the marker; Q is
set pointing to the previous marker, then S is decremented by 4
to delete the marker on the top of the stack and by N (specified
in the EXIT instruction) to delete any parameters passed to the
procedure being exited. P is set to return P and execution be­
gins within the return procedure.

7. DISP, IXIT, PSDB, PSEB. The Dispatcher, external interrupts,
and some internal interrupts execute on the Interrupt Control
Stack (ICS). Normally the Dispatch (DISP) instruction is used to
enter the Dispatcher and the Interrupt Exit (IXIT) is used to
exit from the Dispatcher. Also, when "ICS" type interrupt ser­
vice routines are entered in response to appropriate events, the
instruction IXIT is used to exit from these. The exit may be
from the Dispatcher to the process being launched or from inter­
rupt service routines to the interrupted procedure or, in certain
cases, to the Dispatcher entry point. The instructions Pseudo
Interrupt Disable (PSDB) and Pseudo Interrupt Enable (PSEB) are
used to prevent entry to the Dispatcher during critical sections
of code.

The instruction DISP causes a transfer to the Dispatcher's entry
point unless it is executed while on the ICS or while the Dis­
patcher is disabled. The Dispatcher is disabled when the Dis­
patcher Flag is non-zero, (QI-18) not O. The address of Ql is
located at 4 times the CPU number plus 1. Condition code CCE is
set when the Dispatcher is entered; the Status Register is set as
specified for the Dispatcher. The transfer is executed in a
manner similar to an ICS interrupt. If a DISP instruction is
executed on the ICS or while the Dispatcher is disabled, bit 0 of
(QI) is set and CCG is set in the Status Register. This bit is
checked by those instructions (IXIT and PSEB) which may remove
the conditions inhibiting the Dispatcher.

The instruction PSDB increments (QI-18); PSEB decrements (QI-18).
Starting the Dispatcher is disabled unless this location is zero.
Outside the Dispatcher and not on the lCS, a PSEB which decre­
ments (QI-18) to zero effectively does a DISP instruction if bit
o of (QI) is set.

4-32

Machine Instructions and Stack Operations

Within the dispatcher, a PSEB which decrements (QI-18) to zero,
clears (QI) eliminating any pending Start Dispatcher requests.
PSDB and PSEB are used at the beginning of the Dispatcher to
prevent any interrupts which request a dispatch from causing the
first portion of the Dispatcher to be unnessarily repeated. PSEB
instructions which do not transfer to the Dispatcher set CCG in
the Sta tus Reg i ster.

Figure 4-13 is a simplified flowchart of IXIT operation. IXIT
operates in one of two manners. The first, (1) ~n the figure, is
by the dispatcher to transfer to a process b~ing launched; the
second, (2) through (6), is to exit from ICS interrupt service
routines.

If an interrupt service routine is not in segment #1, it is as­
sumed to be an external interrupt routine and a "Reset Interrupt"
is sent to the device whose device number is at Q+3. (Q+3) is
assumed to be valid in memory, which is normally the case since
the device n umber supplied to external interrupt routines as a
parameter is written into memory.

I fbi tOof (Q) i s ze r 0, (Q(0)) = 0, then i f Q=Q I , the ret urn is
to the interrupted process (2). Otherwise the return is to a
lower priority interrupt which was interrupted (3).

If (Q(O»= 1 and (QI(O»= 0, the return is to the Dispatcher
which was interrupted (4).

If (Q(O»= 1 and (QI(O»= 1, a DISP instruction has been executed
and the request to start the Dispatcher is still pending. If
(QI-18)= 0, the Dispatcher is not disabled, QI is cleared, and a
transfer is made to the Dispatcher's entry point (5) or (6). It
doesn't matter whether a process, Q=QI, or the Dispatcher, Q not
=QI was interrupted. If (QI-18) not 0, starting the Dispatcher is
disabled and the DISP request cannot be carried out at this time.
Instead IXIT returns to the interrupted Dispatcher,Q not =QI(4a),
or to the interrupted process, Q=QI (2a). The "Start Dispatcher II

reques t i is still pend ing, (QI (0)) = 1.

8. SIO. The I/O instructions in the HP 3000 Command System in­
struction set are as follows:

SIO Start I/O
RIO Read I/O
WIO Wr i te I/O
TIO Test I/O
CIO Control I/O

Additional information for these instructions is contained in
Section VII. The distinction to note here is that the SIO in­
struction is used in conjunction with an I/O program ~nd the
others are not. That is, the SIO instruction commands a device
controller to begin executing its associated I/O program, which
effects a block transfer of data between an I/O device and mem­
ory. This is termed as "SIO transfer" mode. The other instruc-

4-33

Machine Instructions and Stack Operations

IN DISPATCHER
EXIT TO
PROCESS

CD

SEND RIL TO
DEVICE

VES

RETURN TO
INTERRUPTED
PROCESS.

®
VES NO

RETURN TO A
LOWER PRIORITY
INTERRUPT
ROUTINE THAT
WAS ®
INTERRUPTED

RETURN TO
INTERRUPTED
DISPATCHER.

@

START OR
RESTART
DISPATCHER.

@OR@

TRIED TO GO TO RETURN TO

DISPATCHER BUT INTERRUPTED

WASPSEUoo. PROCESS.

DISABLED. @
NO

TRIED TO RESTART RETURN TO
BUT WAS PSEUDO- INTERRUPTED
DISABLED SO CONT· DISPATCHER.
INUE WHERE LEFT @OFF.

Figure 4-13. IXIT Instruction Flowchart

4-34

Machine Instr uctionsand Stack cpera tions

tions, on the other hand, transfer only one word per instruction,
between the device and the TOS in the cpu.

An SIO type data transfer is initiated by the cpu executing a
Start I/O instruction for a particular device. The instruction
assumes that there is an I/O program stored in main memory. The
hardware I/O system executes the I/O program independently of the
cPU. The cpu is then free to continue processing in parallel
with the I/O operations.

Figure 4-14 illustrates the order pair format of the double words
which are used in I/O programs. The general format is shown at
the top of the figure and then the actual format of each of the
nine orders is shown beneath, The first word of an order pair is
designated as the I/O Command Wbrd, or IOCW, and the second word
is designated as the I/O Address Word, or IOAW. The IOAW does
not necessarily always contain an address, as the figure shows.

The nine I/O orders are defined as follows:

JUMP. If bit 4 of the IOCW is a "1", a conditional jump of I/O
program control is made to the address given by the IOAW at the
discretion of the device controller. If bit 4 of the IOCW is a
"0", an uncondi tional jump is made.

RETURN RESIDUE. This causes the residue of the count to be re­
turned to the IOAW. The residue is obtained from the Multiplexer
or Selector Channel. Each Multiplexer or Selector Channel has
its own count. The count is initialized from the least signifi­
cant 12 bits of all IOCWs except Return Residue and Set Bank.

SET BANK. This instruction loads the Bank Register of the Mul­
tiplexer or Selector Channel with bits 12 through 15 of its IOAW.
The execution of an SIO instruction automatically clears the Bank
Register. Therefore, if the data buffer for this device r~sides

in some bank other than 00, the I/O program must contain a SET
BANK order prior to a READ or WRITE order.

INTERRUPT. This order
its Inte r rupt Reques t
CPU.

pair causes the device controller to set
fl ip- flop and, the re fore, to in te r r upt the

END. End of the I/O p rogr am. If bi t 4 of the IOCW is a "1", the
device controller also interrupts the CPU. Returns device status
to the IOAW.

CONTROL. This causes transfer of a l6-bit control word in the
IOAW to the device controller, as well as the 12 low order bits
of the IOCW.

SENSE. This causes transfer of a l6-bit status word from the
device controller to the IOAW.

4-35

Machine Instructions and Stack Operations

1·3 4 15

IOCW ORDER _OF WORDS (NEGATlVE)a/CONTROL INFO

IOAW ,--....;D;.;.A.;.;.T...;,A....;A.;..DDR;;,.....;;E;.;;SSI;.;.,C;;.;O;.;.;N.;.;.TR.;.;.O;;.;L;.;.I;.;.NF;..;;O;.;.;/S;,;E;,;.;,NS;;.;E;..;:S.;.;.TO.;:;.;R.;.;.A.;.;;;G;.;;.E_~

OROER 0 1·3 4 5 15
.,. 1~;.,Ir---JU--M~P~I~C"TI.;;..-.----------;.;;.1

. JUMP TARGET AODRESS

10ew (4) • 1 -+ CONDITIONAL

'"

15

o 1·3 4 r-- .:.:12:.......;.;13:....:..::14--.;.;15

'" n ::K [j'---~-...;.,.---r-~~~It: I x I x I x-I X
XX-BANK ADDRESS

o 1·3 4'" I IINTERRuPTl

'"
o 1·3 4 5 15

I I END "NTI I
.---L.---:ST::=;A~T:':"'U~S~L:-(W1--·II~be-r-t1-ur-ned-:":"'")------~

1"

10ew (4) - 1 INTERRUPT

4
CONTROL WORD # 1

15

12 BITS

o 1·3 4

1111 I I SENSE I
STATUS (will be returned)

15

151 ·3 4

10ew (,1-1-+DATA CHAIN

4

WRITE .OF WORDS (NEGATIVE COUNT)

ABSOLUTE ADDRESS

111

11'

a.OF WORDS for 1/0 order pair ''''096
DC - DATA CHAININ(j

Figure 4-14. I/O Order Pairs

WRITE. This causes "count" words of data to be transferred be­
tween main memory and the device, starting at the address given
by the IOAW, within a given bank.

/

READ. This causes "count" words of data to be transferred be-
tween the device and main memory, starting at the address given
by the IOAW, within a given bank.

Data chaining occurs for write and Read orders if bit 0 of the
IOCW is a "1". Th is bit may be a "1" for a Wr i te orde r followed
by a Wr ite or for a Read order followed by a Read. This will
permit the hardware to treat the counts of each order as a con­
tinuous chained count, without re-initializing for each order.
The DC bit should be "0" for all other orders.

4-36

Machine Instructions and Stack Operations

The count field for Read and write orders contains the least
significant 12 bits of a negative two's complement count value.
The count is a word count, independent of the particular record­
ing format (bytes, words, or records). For a Control order,
these l2 bits are used for control information in addition to th~

16 bits in the IOAW (a total of 28 bi ts) .

'4-17. STACK OPERATION EXAMPLES

4-18. Basic Arithmetic

Figure 4-15 shows a sequence of basic instructions being executed
on some data which is presumed to exist in the stack. The upper
row shows the most elementary method of adding' and removing data
to and from the stack via load and delete instructions. The
lower row shows the effects of four arithmetic instructions. As
shown for the initial stack condition (A), the data consists of
six numbers in six consecutive locations. The Q Register points
to the oldest element of the group, and S points to the element
currently on the TOS. A Delete instruction (DEL), executed be­
tween (A) and (B), causes the number 44 to be removed from the
stack. This is accomplished by simply decrementing the S-pointer
by one. Then, between (B) and (C), a LOAD instruction causes the
number 37 to be loaded onto the stack. This is accomplished by
storing the number 37 (from another memory location) into the
location formerly occupied by the number 44 and then incrementing
the S-poin te r by one.

Between (C) and (D) an ADD instruction is executed. This in­
struction adds the two top elements of the stack together, de­
letes both from the stack, places the answer (100) on the TOS,
and points S at the answer.

Note

As previously discussed, up to four
of the top stack elements may exist
in CPU registers. Obviously, to ex­
ecute the ADD instruciton, at least
the two top elements must exist in
the CPU. To ensure that this is the
case, the hardware checks the con­
tents of the SR Re giste r • I f the
contents of the SR Register is not at
least two, one or more memory fetches
will be made so that the instruction
can be carried out.

Between (D) and (E) a Multiply instruction (MPY) is executed.
This instruction mUltiplies the two top elements of the stack
together, deletes both from the stack, places the answer (700) on
the TOS and points S at the answer.

4-37

Machine Instr uctions and Stack Opera"tions

LOAD/DE LETE After Delete After Load
Initial Stack Instruction Instruction

0-" 1 a---. i Q~ 1

11 11 11

500 500 500

7 7 7

63 S--. 63 63

S---. 44 S---. 37

0 0 ®

ADD/MULTIPLV/SUBTRACT/NEGATE
After Add After Multiply After Subtract After Negate
Instruction Instruction Instruction Instruction

0---+ 1 O~ 1 0----' 1 0--' 1

11 11 11 11

500 500 s---+ -200 S--. 200

7 S -----.. 700

s---+ 100

0 CD 0 ®

Figure 4-15. Basic Arithmetric Stack Operations

To subtract (SUB), the top element is subtracted from the next­
to-top element. Thus the answer at (F) is the result of 500-700,
or -200. (As before, only the answer remains after computation
is performed.) Finally, at (G), negation is performed. This
simply re verses the's ign of the n umber of the TOS. In binary
form, a two's complement operation is performed.

Although the sequence (A) through (G) in figure 4-15 is a very
simple series of operations, it does illustrate the advantages of
the stack technique in computation. First, note that regardless
of how many elements of data there aTe or what memory cells they
occupy, the operand for each instruction is consistently the same
; the TOS. This permits implicit addressing; i.e., since the
operand is understood to be the TOS, it is not necessary to~ive

an. operand address in the instruction word. Thus (except for
LOAD which must specify a relative address to load from), the
instruction can simply say "addu, pr "multiply", etc. The im­
mediate benefit of this is that it allows code compression. Two
instructions can be given in a single word. The sequence (D)
through (G) for example, can be given in two instr uction words.
Since this reduces the number of memory fetches, the speed of
computation is considerably increased. A second point to note is
that temporary storage of intermediate results is automatically
provided. For example, once the parameters 63 and 37 (C) have
been added, they are no longer required and are deleted. The
answer however, which is substituted on the TOS, is automatically

4-38

Machine Instructions and Stack Operations

in position (adjacent to 7) for the ensuing mUltiplication.
Therefore, there is no need to provide a dedicated location to
save the temporary quantity 100 or any of the other intermediate
results.

4-19. Procedure Calls

Figures 4-16 and 4-17 illustrate the operations involved in a
procedure call. Figure 4-16 shows programmatically how a pro­
cedure is set up and called, and figure 4-17 shows what happens
to the stack when the procedure is called and executed. As shown
in the bottom block of figure 4-16, the calling of a procedure
has an equivalency in mathematical terms. That is, a procedure
is like a request to solve the equation for the specific values
of 25 for J and 10 for K. Executing the procedure is to perform
the computation; in this case getting an answer of 2. (To keep
things simple, the example procedure will be made to work strict­
ly with integer numbers; thus the fractional remainder 5/10 will
automatically be discarded.) The upper two boxes in figure 4-16
list two forms of the program that will accomplish the example
procedure. The top box shows how the program is written in the
source programming language. The middle box shows the machine
language code that will be emitted by the compiler. The machine
language code is shown both in assembly or mnemonic form, and in
an octal form of the actual binary machine code.

As shown in figure 4-16, line 1 begins the source language pro­
gram block and line 9 ends it. Although the entire program con­
sists of only one procedure and a call to that procedure, it is
necessary to enclose the progr am between a BEGIN sta tement and an
END statement. These statements define a program. ANSWER is
declared to be a global variable for this program by giving its
name within the BEGIN statement. This will cause the variable
ANSWER to reside in the global data area and thus allow its ac­
cess by another procedure; such as an output routine to print out
the result. The type declaration INTEGER specified that ANSWER
will always be an integer and tells the compiler to reserve one
word for the result rather than two or three. ANSWER is allo­
cated the word at DB+O. Lines 2 through 7 comprise the procedure
declaration which includes the procedure head (lines 2, 3, and
4) and the procedure body (1 ines 5, 6, and 7) • The procedure
declaration in a program cannot cause execution by itself, but it
must be called before any execution can ta ke place. Therefore,
the procedure declaration is always separate and distinct from
the procedure call. They need not be immediately adjacent, how­
ever, as in this example. Line 2 gives the procedure name, QUO­
TIENT, and declares that the procedure is of type INTEGER. This
means that the result will be in integer form. It also gives the
names of the formal parameters, J and K. Line 3 is the value
part of the procedure declaration. Declaring J and K as values
means that a value (r ather than a pointer) will be passed as a
procedure parameter in both cases~ This permits working with a
copy and eliminates any need to change the actual parameter.
Line 4 declares that actual parameters for J and K must be inte­
gers. If any other type is given (e.g., floating point), a com-

4-39

Machine Instructions and Stack Operations

SOURCE LANGUAGE

1 BEGIN INTEGER ANSWER;

2 INTEGER PROCEDURE QUOTIENT (J,K);

3 VALUE J,K;

Pro- 4 INTEGER J,K;
cedure ~ 5 BEGI N

6 QUOTIENT - J/K;

7 END;

Call ~ 8 ANSWER - QUOTIENT (25,10);

9 END:

MACHINE LANGUAGE
Assembly Octal

,.
10 lOAD Q-5 041605

11 lOAD Q-4 041604
Pro- • 12 DIV, DEL 002340
cedure

13 STOR Q-6 051606

14 EXIT, 2 031402

15 ZERO,NOP 000600

16 lDI,31 021031

Call ~ 17 lDI,12 021012

18 PCAl,20 031020

19 STOR DB+O 051000

20 PCAl (to system) 031xxx

MATHEMATICAL LANGUAGE
Procedure:

Call:

Execution:

ANSWER = J/K

Solve ANSWE R for
J = 25 and K = 10

ANSWER =25/10
=2, remainder 5

Note: Decimal 25 =Octal 31
Decimal 10 =Octal 12

Figure 4-16. Declaring and Calling A Procedure

pilation error will result. Line 5 begins the procedure body.
Actually, since this procedure consists of only one statement,
the BEGIN statement and END statement (line 7) are superfluous.
They are included here, however, to illustrate the common form
for a procedure (normally involving a compound statement). Line

4-40

Machine Instructions and Stack Operations

6 is the procedure statement which is the executable part of the
procedure body. This is the statement that will cause the divi­
sion of J by K and temporarily store the quotient as a procedure
result, identified by the procedure name QUOTIENT. The call to
the procedure is given at line 8. This is an executable state~

ment as opposed to a procedure declaration. When this statement
is encountered in the program, it causes the procedute named
QUOTIENT to be executed, passing actual parameter of 25 and 10 to
the procedure, and causes the global variable ANSWER to assume
the value of the result. This completes the program.

Lines 10 through 19 show the machine language code that the com­
piler emits for the two executable statements in the program
(i .e., line 6 causes line 10 through 14 to be generated and line
8 Causes lines 15 through 19 to be generated). In order to ex­
plain the operation of the program in machine language, it is
necessary to examine what is happening on the stack. It is as­
sumed that the user has logged onto the system, has compiled the
program, and is ready to run (or is running a program that will
shortly encounter the statement in line 8). Loading the program
causes space to be allocated for the one global variable, AN­
SWER, which is at DB+O as shown in (A), figure 4-17. Since there
are no other global variables, Q and S initially point at the
immediately following location. (The content of that location
will never be signifiant; in essence it is a dummy Delta Q loca­
tion.) Additionally, during program loading, the operating system
evaluates the program in order to set the Z Iegister appropriate­
ly for an initial estimated stack size. Also, since no dynamic
arrays are declared, DL is set coincident with DB, therefore DL
is not shown. (Refer to paragraph 2-28.)

It is assumed that the user has issued a system command to exe­
cute the procedure carl given in line 8 of figure 4-16. This
causes control to be passed to line 15 in the machine language
program where the sequence to call the procedure begins. The
first instruction is a ZERO,NOP. Executing this instruction puts
a "0" on the stack and increments the S-pointer, (A), figure
4-17. This reserves a location for the procedure result. Next
at (B) and (C) (lines 16 and 17), the parameter values 31 and 12
are passed directly from the instruction words to the stack (area
reserved for procedure parameters). Octal notation is used for
these values. Then at (D), a procedure call instruction (PCAL)
causes a four-word stack marker to be placed on the stack. The
S- and Q-pointers point to the Delta Q location of the marker
which now indicates 7 (the number of locations back to the ini­
tial Q location). It is assumed that entry number 20 in the Seg­
ment Transfer Table will direct the call to the correct procedure
starting point. (Refer to paragraph 2-24.)

Execution of the procedure now begins (line 10) • The first two
instructions (lines 10 and 11) load copies of the procedure par­
ameters onto the TOS (E) and (F), using Q-relative addressing.
The next instruction (line 12) divides the top-of-stack parameter
into the next-to- top parameter and substitutes the quotient "2"
and the remainder "5" on the TOS as shown at (G). The second

4-41

Machine Instructions and Stack Operations

CALLING THE PROCEDURE

Stack After After After After
ZERO Instruction lDI31 lDI12 peAL 20

DB--' (Answer) DB--. DB--' DB ---.
a--. a--. a~ ,--'
S----

0 0 0 I 0I
S---. 31 31 I 31

S~
I

12 I 12
I XI
I Return P
I

StatusI
S,C ---. 7

0 0 0 ®
EXECUTING THE PROCEDURE

After After After After
lOAD 0-5 lOAD 0-4 DIV DEL

DB ----t DB--. DB ___ DB--.

0 0 0 0

31 31 31 31
12 12 12 12

a--. a---+ a---+ a---+
._~~~--. 31 31 2 S---+ 2

S---. 12 S---+ 5

® CD ® 0
SAVING PROCEPURE RESULTS

After After After
STOR 0-6 EXIT 2 STOR 08+0

DB---t DB---+ DB---t 2
,---t a----. s,a ----.
I 2 S---t 2,
I 31
I 12I
I X
I Return PI
I Status ,

s,a---t 7

CD CD 0

Figure 4-17. Executing A Simple Procedure

4-42

Machine Instructions and Stack Operations

half of the same instruction (DEL) discards the remainder word by
decrementing S as shown at (H). To save the result, the STOR Q-6
(line 13) first copies the TOS into the location reserved for the
procedure result, formerly occupied by a 0, as shown at (I).
Then it is possible to exit from the procedure. The EXIT in­
struction (line 14) restores Q to its initial setting, and the
"2" included with the instr uction causes S to move back two
locations past the stack marker. As shown at (J), this leaves
the result, 2, in the location reserved for QUOTIENT (now on the
TOS). The EXIT returns program control to line 19 which causes
the content for QUOTIENT to be stored in the location for ANSw~R

in the global data area. This produces the final result shown at
(K). Finally (line 20), a procedure call to the sys tem returns
control back to the system.

4-20. Re~ursion

This example demonstr a tes the stack principles involved in a re­
cursive procedure. A recursive procedure is one which calls it­
self one or more times during execution. The form of the source
language program for this example (figure 4-18) is nearly iden­
tical to that of the preceding example in figure 4-16. The pro­
cedure simply computes N1 (N factor ial), where N is the formal
parameter. The procedure will be called with an actual parameter
of 4 so that computation of 41 will be: 1 x 2 x 3 x 4 = 24.

This problem consists of repetitively multiplying the previous
product by a parameter which is incremented by one on each repe­
tition. To provide a starting point (initial previous product),
the value 1 is automatically given. The procedure is designed to
perform this multiplication sequence by repetitively calling it­
self after it has been called once by the main program. Thus for
any N, the procedure will be called N+l times. In this example
there will be one call by the main program and four recursive
calls. Figure 4-18 lists the source and machine language forms
of a program block to solve this problem.- Since the source lang­
uage program is similar to the preceding example, it need not be
discussed at this point. The machine language form has been
slightly changed to more closely resemble an actual program list­
ing. Some assumed PB-relative addresses are given for each in­
struction, beginning at address 00114. The assumption is that
this program block is embedded in a larger main program. (Note
that the assigned STT entry for this procedure is assumed to be
026 and that the global assignment for Y is DB+15.) The starting
point for execution is at address 00130.

Figure 4-19 illustrates the program in flowchart form. Box 1 in
the diagram calls the procedure (boxes 2 through 9), box 10 saves
the result, and then control reverts to the main program at box
11. The procedure consists of two phases. The call phase begins
when the procedure is called by the program and is repeated four
times. In this phase, N values are placed on the stack along
with a space for intermediate answers. The N values are decre­
mented to zero and then the exit phase begins. This phase suc­
cessively multiplies an accumulating product by each of the N

4-43

Machine Instructions and Stack Operations

SOURCE LANGUAGE

···
BEGIN INTEGER Y;

INTEGER PROCEDURE FACTORIAL (N);
VALUE N;
INTEGER N;

FACTORIAL := IF N = 0 THEN 1 ELSE N * FACTOR IAl (N-1);
Y := FACTORIAL (4)

END; ···
MACHINE LANGUAGE

PB Relative Octal
Addresses Instruetions Code Comments

00114 lOAD Q- 004 041604 load parameter
00115 CMPI,OOO 022000 Test it for zero
00116 BNE P+ 003 141503 If not zero, branch to 00121
00117 lDI, 001 021001 If zero, load 1 as initial multiplicand
00120 BR 006 140006 Branch to 00126 (to Exit loops)
00121 ZERO,NOP 000600 Save space for intermediate product
00122 lOAD Q- 004 041604 load parameter
00123 SUBI,001 023001 Decrement for use as new parameter
00124 PCAl,026 031026 Recursive call
00125 MPYM Q- 004 111604 Multiply parameter by TOS
00126 STOR Q- 005 051605 Store th is recursion's product
00127 EXIT, 001 031401 Save the product and exit

00130 ZERO,NOP 000600 Save space for final product
00131 lDI,004 021004 load initial actual parameter
00132 PCAl,026 031026 Main program's call to the procedure
00133 STOR DB 015 051015 Save final product in global area
00134 PCAl, XXX 031xxx Return to system

Figure 4-18. Recursive Program

values loaded on the stack in the call phase, in the reverse or­
der. On each loop, unneeded stack information is deleted, saving
only the answer for that loop, until only the final answer is
left. At that time (box 9) the final EXIT instruction finds that
its return address points back to the calling block and the final
answer is stored in the global area. Control then reverts to the
main program. As will be shown in the following detailed discus­
sion, the return address check at box 9 is not literally a test
for a specific address. Rather it specifies a return to the ad­
dress given in each stack marker. Obviously, the last return
(first one placed on the stack) will be a return to the outer
block. Figures 4-20 and 4-21 shaN the overall process of build­
ing up the stack by recursive calls, and then reducing it with
recursive exits. These two figures are used in the following
discussions. Also, the machine language program in figure 4-18
will be referred to. Individual lines will be identified by PB­
relative addresses, omitting the leading zeros.

4-44

Machine Instructions and Stack Operations

Call to
Procedure

Y -FACTORIAL (4)

CAll
PHASE

Main Program
Call-----,

Recursive
Calls

Load on Stack:

1. Space for result
2. Parameter (N)
3. Stack Marker

Result N

(/
1 X 1 = 1
lx2=2
2x3=6
6x 4 = 24

EXIT
PHASE

Continue
(Write Answer)

Figure 4-19. Recursive Procedure Flowchart

4-45

Machine Instructions and Stack Operations

4-21. MAIN PROGRAM CALL. As in previous examples,the main program
has already reserved global space for the final answer (Y) before
the procedure is callede When the call is given, the ZERO,NOP
instruction at address 130 reserves space for the procedure re­
sult, FACTORIAL. (Compare stacks (a), figure 4-20 and (Z), figure
4-21. This is the first stack addition due to calling the pro­
cedure. Next, the actual parameter 4 is loaded on (B), and then
the PCAL instruction is issued. This causes the first stack
marker to be loaded (C). This marker differs from the ones that
follow in that is contains return information to the ovter block
which called the present procedure (i.e., the return P word is a
P-relative address for return to the caller in the code segment
and Delta Q points back to the Q value that the caller was using
earlier in the stack). Now, Sand Q are both pointing at the last
word of the first marker for this procedure.

4-22. TEST FOR ZERO. At addresses 114 and 115 (stack (D) and (E),
figure 4-20), the procedure parameter is first tested for zero.
This is done by copying it onto the top of the stack (LOAD Q-4)
and a CMFI 0 instruction. This instruction sets the condition
code according to comparison results and deletes the tested word
(E). Sin ce the fir s t te s tis non- ze r 0 (i . e., 4), the bra nch
instruction at line 116 transfers control to address 121 (i .e.,
P+ 4). This test and branch will be repeated in each of the fol­
lowing recursion loops until the parameter has become zero.

4-23. FIRST RECURSIVE CALL. The branch to address 121 causes the
procedure to call itself. As usual, the first action of the call
is to load the procedure parameters onto the stack. The para-
meters in this case are the variable FACTORIAL and a decremented
form of the original passed parameter. Thus the ZERO, NOP in­
struction reserves a location for FACTORIAL (F), figure 4-20
strictly for use by this recursion (i.e., distinct from the final
FACTORIAL location reserved at (A). Then (G and H), the new par­
ameter, is obta ined by' cop ying the preced ing val ue to the top of
the stack (LOAD Q-4) and decrementing with a SUBI 1 instruction.
Afte r load ing parameters for the new call, another PCAL instr uc­
tion is issued. This causes a new stack marker (I), figure 4-20
and, via the Segment Transfer Table, control is transferred back
to the starting point of the procedure at address 114. The new
stack marker gives as its return P value the address immediately
following the PCAL which is 125. (This will be important to re­
member when the exit sequence is discussed.) Also, the Delta Q
value is 6 since the previous Delta Q was six locations back.

4-24. SUCCESSIVE RECURSIONS. Next, all the previously des.cr ibed
steps are repeated, beginning with paragraph 4-22. Since the
parameter is 3 on the second recursion, the branch to address 121
again occurs. The first actions, again, are to reserve a loca­
tion for this recursion's answer (J), figure 4-20 and to load a
decremented parameter value of 2 (K) and (L). After this, the
procedure call back to the beginning is made again which results
in another stack marker (M) that is identical to the one gen­
erated on the first recursion. The third and fourth recursions
repeat the entire process again, loading parameters of 1 and 0

4-46

Machine Instructions and Stack Operations

CALL, AND FIRST TEST FOR ZERO

After After After After After
ZERO Instruction lDI4 PCAl26 lOAD 0-4 CMPIO

f- Data Of -
I- Previous _

Procedure

S-+ 0 0 0 0 0
S~ 4 4 4 4

X
133
STA

S,O ---+ ~O 0-+ S,O ---+
s-+ 4

0 ® ® ® ®
FIRST RECURSIVE CALL

After After After After
ZERO lOAD 0-4 SUBI1 PCAl26 AFTER LAST

RECURSIVE CALL
0 0 0 0 {and LOAD 0-41
4 4 4 4

+ 0
I 4

0---+ 04 0-. I
I

s---+ 0 0 0 0 I
s---+ 4 S---+ 3 3 \.

X •
125 (' 0
STA I 3

S,O ---+ 6 j X

CD ® ® CD
I 125
\. STA

6..
SECOND RECURSIVE CALL r' 0

After After After After I 2

ZERO lOAD 0-4 SUBI1 PCAl26 I X

I 125

0 0 0 0 \. STA.....

4 4 4 4 .. 6

r' 0

I 1
I X
I 125

0 0 0 0 \. STA

3. 3 3 3 • 6

X X X X r' 0
I125 125 125 125 I 0

STA STA STA STA I X

0---+ 6 04 6 04 6 6 I 125

S---+ 0 0 0 0 \. STA

S---+ 3 S4 2 2 O----j 6

X S.-+ 0

125
STA ®S,O-+ 6

0) ® CD ®

Figure 4-20. Stack Operations During Recursive calls

4-47

Machine Instructions and Stack Operations

followed each time by a stack marker. Thus, when the final LOAD
Q-4 occurs in preparation for the zero test, the stack appears as
shown at (N).

4-25. FIRST EXIT. The check at address 115 now finds that the
parameter is zero. The checked copy of the parameter is deleted
from the stack (P), figure 4-21 and the branch at address 116
transfers control to address 117 (rather than 121). As mentioned
earlier in paragraph 4-20, an assumed value of 1 is necessary as
an initial previous product in order to begin the mUltiplication
loops. This is accomplished by a LDI 1 instruction (address 117),
which puts a 1 on the top of the stack (Q). Then an uncondition­
al branch at address 120 transfers control to address 126, where
the "1" on the top of the stack is stored into the location re­
served for this recursion's answer as shown at (R). The next
instruction is the EXIT 1 instruction at address 127. This caus­
es Q to move back six locations (Del ta Q = 6) and S five loca­
tions (EXIT 1 deletes one of the two parameters), as shown at
(S). The return address for the P Register is the MPYM Q-4 in-
struction at address 125. This causes the parameter at Q-4 (1)
to be multiplied by the 1 an the top of the stack, leaving the
answer as the new TOS element. Since lxl = 1 there is no appar­
ent change from (5) to (T) but, in fact, a multiplication has
occurred.

4-26. FIRST RECURSIVE EXIT. The answer of the first mUltiplica­
tion is now stored in the location reserved for it (Q-5) as shown
at (U), figure 4-21 by the STOR Q-S instruction at address 126.
The next instruction, at 127, is again the EXIT 1 instruction
which moves back the stack as shown at (V) and returns the P Reg­
ister to the MPYM Q-4 instruction at address 125. The parameter
for multiplication (at Q-4) is now 2 and, therefore, the multip­
lication result at (W) is 2. Again, this is stored back in the
location reserved for it (Q-5) as shown at (X).

4-27. SUCCESSIVE EXITS. After saving the result, the next EXIT 1
is encountered again, causing the Sand Q stack pointers to move
back to the next marker, leaving the answer 2 on the TOS. The
return for the P Register is again 125, the MPYM Q-4 instruction
mUltiplies 2x3, and the following STOR Q-5 puts the answer 6 into
the reserved location as shown at (Y), figure 4-21. Similarly,
the last recursive exit causes the value 6 to be left on the TOS
when the last return to address 125 is made. Then the final mul­
tiplication mUltiplies 6x4 and the last STOR Q-5 instruction puts
the answer 24 into the location originally reserved for the end
result FACTORIAL. The last EXIT instruction finds the return for
the Q Register (Delta Q) pointing back to the origin of an earl­
ier procedure and therefore, is not shown in the stack diagram at
(Z). However, since one parameter is saved, the final answer re-
mains on the TOS as shown. Meanwhile, the P Register returns to
the next instruction in the outer block which is the STOR DB 15
instructi.on at address 133. This saves the answer in the global
area and a final PCAL returns control to the system.

4-48

Machine Instr uctions and Stack Operations

FIRST MULTIPLICATION

After After After After After
CMPIO lOll STOR 0-5 EXIT 1 MPYM 0-4

~ ~ ~ ~ ~·I · I I · I I · I I · I I · I· · · · ·I · I I · I · I · I · I· · I · I · I ·· · · · ·I · I I · I I · I I · I I · I· · · · ·· · · · ·· · · · ·0 a a a 0
1 1 1 (0-4) 1 1
X X X X x

125 125 125 125 125
STA STA STA STA STA

6 6 . 6 0--. 6 0--' 6
a a (1 S--. 1 S--. 1
0 a I a
x x I X

125 125 I 125
STA STA \ STA"-

S,O--' 6 0-' 6 S,O 6
S--. 1

® ® ® CD (!)
SECOND MUlTIPllCATION AFTER NEXT

After After After After STOR 0-5
STOR 0-5 EXIT 1 MPYM 0-4 STOR 0-5

a a a a a
4 4 4 4

t
4

X
I 133
\ STA
" flO

a a a a /' 6(
3 3 3 3 I 3
X X X x I X

125 125 125 125 I 125
STA STA STA STA \ STA

"6 6 6 • 6 S,O--.. 6
a a a (2

G)2 (0-4) 2 2 I 2
X X X I X

125 125 125 I 125
AFTER FINALSTA STA STA \ STA

.JI 6 0--' 6 04 6 s,O~ 6 STOR 0-5
(1 S-. 1 S4 2 land EXIT 1}

I 1
I X S-WI 125
\ STA

"-
S,O --tl 6

® ® ® ® ~0

Figure 4-21. Stack Operations During Recursive Exits

4-49

Machine Instructions and Stack Operations

NOTES

4-50

SYSTEM MICROCODEI~

This section contains a description of the computer system's mic­
rocode and an introduction on how to read the system's Look Up
Table (LUT) and Microprogram Listings. During the hardware
training course, detailed instructions on how to read the LUT and
Microprogram Listings will be presented as well as instructions
on how to use the microcode in conjunction with the Maintenance
Panel as a troubleshooting aid. (Complete LUT and Microprogram
List ing s are conta ined in the HP 3000 Se r ies I I I Comp ute r Sys tem
Microprogram Listing Manual, part no. 30000-90136 and are not
repeated in this manual.)

&-1. GENERAL INFORMATION

The microcode causes the CPU's hardware to execute the functions
required to perform the operations specified by the machine
instruction set. Therefore, in order to fully understand the
microcode definitions contained in this section, it is first
necessary to be completely familiar with the stack and pipeline
operations discussed in Section II. Specifically, review para­
graphs 2-16 through 2-28 and 2-71 through 2-128.

5-2. Stack Element Locations

The stack has a topmost element (TOS) which is logically quantity
A. Similarly, the stack has logical quantities B, C, and D that
correspond to the second (TOS-l), third (TOS-2), and fourth
(TOS-3) words of the stack, respectively. The logical quantities
A, B, C, and D can be either in the CPU TOS registers or in mem­
ory as determined by the Stack Register (SR Register). If the
SR Register's contents equal zero, none of the logical quantities
(A, B, C, or D) are in the TOS registers, but are located in some
memory locations SM, SM-l, SM-2, and SM-3, respectively. At all
times however, there are four TOS registers (RA, RB, RC, and RD
Registers) that are named by the renamer logic as discussed Fin
paragraph 2-96. In the microprogram field codes, RA, RB, RC, and
RD refer to the hardware RA, RB, RC, and RD Registers and not to
the logical quantities A, B, C, and D. There is a relationship
however. For any of the logical quantities (A, B, C, and D), the
state of the SR Register indicates where the quantity is as list­
ed in table 5-1. For example; if the SR Register contents equal
zero (table 5-1), then the logical quantity B is in memory loca­
tion SM and, if the field code RB is used, the content of the
register named RB is affected and not the logical quantity B.
That is, for this case, the RB, RC, and RD Registers can be used
as scratch pads without affecting the logical quantities B, C,
and D. Manipulation of the TOS registers is discussed further in
paragraph 5-3 through 5-6.

5-1

Sys tern Microcode

Table 5-1. Stack Element Locations

,-------.-~"-"-·-·--l-"--------~--.---"--.-.,

I I Loca tions
, SR Registe r ,
'Contents '---1----1---1-----
, , A 'B 'C 'D

, '" ,,---------------", . -',----",---',----
, 0 , SM'SM-l'SM-2'SM-3
, 1 , RA , SM ISM-llsM-2
, 2 , RA , RB , SM ISM-l
, 3 I RA I RB , RC , SM
, 4 , RA , RB , RC , RD

, 'I"
5-3. PUSH. The microinstruction Store Field code PUSH accom­
plishes three things:

a. It stores the output of the Shifter in the RD Register.

b. It increments the SR Register.

c. It renames the TOS registers so that the register named the
RA Register becomes (: =) the RB Register; the registe r named
the RB Register: = the RC Registe r; the register named the
RC Register := the RD Registe r; and the register named the
RD Register := the RA Register. Effectively, combining steps
a and c, PUSH stores the contents of the U-Bus in the TOS
location.

5-4. POP. The micr oin s tr uction Spec ial Field code POP accom­
plishes two things.

a. It decrements the SR Register.

b. It renames the TOS registers so that the register named the
RA Register:= the RD Register; the register named the RB Register
: = the RA Register; the register named the RD Reg ister : = the
RB Register; and the register named the RD Register := the RC
Register. Effectively, POP removes or "pops" the top element
from the stack.

5-5. QUP. The microinstruction Store Field code QUP (Stack
Marker Pointer Up) effectively stores the contents of the U-Bus
in the stack at location SM+l. For example, if stack locations S
and S-l are in the TOS registers and locations S-2 is the first
stack element in memory {SM),QUP places the contents of the U-Bus
in a TOS register at stack location S-2 and 8M := S~3. (To main­
tain stack integrity, the SR Register must be incremented with
the Special Field code INSR to indicate the addition of the TOS
register element.) When QUP is executed, TNAME (output of the
Adder for the Mapper) := NAME (output of Namer Register) plus the
contents of the SR Register to rename the TOS registers. (Refer
to paragraph 2-96.) The register temporarily named RA : = U-Bus as

5-2

System Microcode

follows:

If TNAME = 00 then TRO : = U-Bus
= 01 then TRI : = U-Bus
= 10 then TR2 : = U-Bus
= 11 then TR3 := U-Bus

TOS registers referenced in the R- and S-Bus fields (RA, RB, Re,
and RD) of the following microinstruction will assume the tem-
por ary name.

5-6. QDWN. The microinstruction S-Bus field code QDWN (Stack
Marker Pointer Down) effectively stores the contents of the low­
est valid TOS register in the S-Bus Register. (To maintain stack
integr ity, the SR Register must be decremented with the Special
Field code DCSR to indicate the deletion of the TOS register el­
ement.) When QDWN is executed, TNAME (output of the Adder for the
Mapper) := NAME (output of Namer Register) plus the contents of
the SR Register to rename the TOS registers. (Refer to paragraph
2-96.) The register temporar ily named RD: = S-Bus Registe r as
follows:

If TNAME = 00 then TR3S
= 01 then TROS
= 10 then TRIS
= 11 then TR2S

: = S-Bus Register
: = S-Bus Register
:= S-Bus Registe r
: = S-Bus Re giste r

The TOS registers are returned to their former names on the fol­
lowing clock cycle. TOS registers referenced in the Store Field
(RA, RB, Re, and RD) of the previously executed microinstruction
will assume the temporary name.

5-7. Reading Microprogram Listings

Briefly, to determine what hardware operations are required to
execute a specific machine instruction, it is first necessary to
locate the instruction's mnemonic in the LUT Listing's INSTR
(instruction) column and then to read the instruction's associ­
ated microprogram starting address in the RAR column. (Addi-
tional information that can be obtained from the LUT Listing and
how it can be used will be discussed during the training course.)
After the microprogram's starting address is obtained, refer to
that address in the Microprogram Listing's ADDRESS column and
read the associated microinstructions in accordance with the
following paragraphs.

5-8. MICROINSTRUCTION DESCRIPTIONS

As previously discussed in paragraphs 2-84 through 2-94, each
microinstr uction is a 32-bit word divided into eight fields. Each
field, when coded with a particular micro-order, ca uses the
hardware to perform a specific operation. Figure 5-1 lists the
micro-orders that can be coded into each field and illustrates
the bit number assignments for each field. The eight fields of a
microinstruction are discussed in paragraphs 5-9 through 5-16.

5-3

System Microcode

R-BUS S-BUS FCN SHIFT STORE SPECIAL SKIP MCU

00
01
02
03
04
05
06
07

PL
SR
Z
MREG
PADD
RBUS
X
XC

CIR
SP1
PADD
RBR *
CPX1
MOD
CPX2
SWCH•

QASL
OASR
ROMX
ROMN
JSB
CAND
XOR
AND

LRZ
LLZ
SL1
SR1
RRZ
RLZ
SWAB
NOP

PCLK
lOA
100
MREG
BSP1 *
BSPO *
SBR *
BUS *

eca
CCPX
CLSR
SF3
SIFG
SDFG
CTF
CF3

ZEROT
NZROT
EVEN
ODD
NSME T
BIT6
BIT8
NOFL

ABS
CRL
CMD

WRA
ROA

00
01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

RD
RC
RB
RA
SP1
SPO
UBUS
NOP

ODWN
lOA
10D
PCLK
CTRL
CTRH
UBUS
SBUS

DVSB
UBNT
CADOT
SUBOT
JMP
BNDT
CAD
SUB

PUSH
PL
Z
OUP
SP1
SPO
CTRL
CTRH

INSR
DCSR
INCN
INCT
HBF
FHB
CLiB
LBF

CRRY
NCRY
POS
NEG
F1
NF1
F2
NF2

PB
NIR

RONP
RNP

ROP

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

P
a
DB
SM
STA
SP3
OPND
cc

PNLR+
PNLS+
ROMI
ROM+
REPC+
REPN+
lOR
CTSD+

P
Q

DB
SM
STA
SP3
X
RAR

SF2
CF2
CF1
SF1
SCRY
CCRY
POPAT
POP

SRZ
SRNZ
SR4
SRN4
INDR
SRL2
NPRV
SRL3

DB
DATA
DPOP
ROND
RND

WRD
ROD

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

RD
RC
RB
RA
DL
SP2
PB
NOP

MPAD+
INCO+T
CRS+
ADDO+T
CTSS+
INC+
DCAD+
ADD+

RD
RC
RB
RA
DL
SP2
PB
NOP

SOV
CLO
CCZT

'CCL
CCG
CCE
CCAT
NOP

RSB
JLUI
TEST
CTRM
F3
NEXT
UNC
NOP

S
OPND

RONS
RNS

WRS
ROS

30
31
32
33
34
35
36
37

* These options inhibit execution of the Special field options and enable the MCU field options in their place.

+ These functions cause an "ADD".

T Test is made on the T-Bus.

R-BUSMCU ISHIFT
COUNT

SKIP
REPN

FUNCTIONSTORES-BUS

o 1 I2 3 4 5 6 7 8 9 10 111 12 13 114 15 16 17 18 19 20 21 22 23 24 25126 27 28129 30 31

SPECIAL I
JMP,JSB

ANY ROM o I SKIPOO-17
JUMP TARGET

ROM CONSTANT
1 I

Figure 5-1. Microinstruction Summary

5-9. R-Bus Field

The R-Bus field (bits 28 through 31) selects one of 16 register
contents to be placed into the R-Bus Register. The R-Bus field
code definitions are contained in table 5-2.

5-4

System Microcode

5-10. S-Bus Field

The S-Bus field (bits 0 through 4) selects one
contents to be placed into the S-Bus Register.
code definitions are contained in table 5-3.

5-11. Function Field

of 32 reg is te r
The S-Bus field

The Function field (bits 10 through l4) specifies the function to
be performed by the ALU on the two operands in the R- and S-Bus
Registers or a special function. The Function field code defin­
itions are contained in table ~-4.

5-12. Shift Field

The Shift field (bits 20 through 22) specifies how the T-Bus data
will be shifted. The Shift field code definitions are contained
in table 5-5.

5-13. Store Field

The Store field (bits 5 through 9) selects one of the Store Logic
registers or other destinations outside the CPU for the U-Bus
data.The Store field code definitions are contained in table 5-6.

5-14. Special Field

The Special field (bits 23 through 27) codes perform the various
operations listed in table 5-7.

5-15. MCU Option Field

The MCU Option field (bits 23 through 27) is executed in place of
the Special field when the S-Bus field contains RBR or the Store
field contains BUS, BSPO, BSPl, or SBR. The MCU Option field
codes per form the var ious opera tions Ii sted in table 5-8.

5-16. Skip Field

The Skip field (bits 15 through 19) determines which condition
will be tested for a possible skip and specifies the conditions
under which a JMP or JSB will be executed. The Skip field code
definitions are contained in table 5-9.

5-17. MICRODIAGNOSTICS

The system's microcode also contains diagnostics to test the CPU
registers, Main Memory, I/O channels, magnetic tape subsystem,
and the Asynchronous Terminal Data PCA's. These diagnostics are
executed from the system's Control Panel. Complete information
for these diagnostics is contained in the HP 3000 Computer System
Installat ion Manual, par t no. 30000-90147.

5-5

System Microcode

Table 5-2. R-Bus Field Code Definitions

----------- -
--I-----I---------------~-------------I

No Opera tion.

MREG 0011

NOP 1111
(No Oper a t ion)

, Field 1 1
Label and Name 1 Code 1 Des cr ipt ion I

---------------,-- 1 -------_._------------- - .. 1
I,
1

I
The MREG R-Bus field code is used I
to fetch a memory element that hap-I
pens to lie in a TOS register ,
(i •e., E i s grea te r t han Sttl). P r i ­
or to executing MREG, the value of
S min us Emus t be placed in the SPI
Register. During execution of MREG,
TNAME becomes the sum of NAME and
SPl{14:l5) and the R-Bus Register
is loaded as follows:

If TNAME = 00 then R-BUS : = TROR
If TNAME = 01 then R-BUS : = TRIR
If TNAME = 10 then R-BU S : = TR2R
If TNAME = 11 then R-BUS := TR3R

Due to the pipeline affect, a TOS
register referenced in the Store
field of the preceding microin-
struction assumes the above TNAME.

PADD
(Pre-Adder)

0100 The 16-bit content of the Pre-Adder
is loaded into the R-Bus Register.

PL 0000 The 16-bit content of the PL lEg­
ister is loaded into the R-Bus Reg­
i ste r.

RA 1011 The RA R-Bus field code is used to
read the content of the first TOS
register (location S). SR must be
greate r than O. * Our ing execution,
TNAME becomes NAME and the R-Bus
Register is loaded as follows:

If TNAME = 00 then R-BUS : = TROR
If TNAME = 01 then R-BU S : = TRIR
If TNAME = 10 then R-BUS := TR2R
If TNAME = 11 then R-BUS : = TR3R

*True only if RA:RD are being used as part of the stack. RA:RD
are used by the microprogram as scratch pad registers when not
used othe rw ise.

5-6

-----,----

System Microcode

Table 5-2. R-Bus Field Code Definitions (Continued)

1---1 1

I Field 1 I
La bel and Name 1 Code I Des cr ip t ion I

----~-- I .I ~-~~--~----~---------- :

RB 1010 The RB R-Bus field code is used to 1
read the second TOS register (loca-I
tion S-l). SR must be greater than
1.* During execution, TNAME be-
comes NAME and the R-Bus Register
is loaded as follows:

If TNAME = 00 then R-BUS : = TRIR
If TNAME = 01 then R-BUS := TR2R
If TNAME = 10 then R-BUS : = TR3R
If TNAME = 11 then R-BUS := TROR

R-BUS

RC

RD

0101

1001

1000

The RBUS R-Bus field code causes
R-Bus Reg iste r to rema in unchanged.

The RC R-Bus field code is used to
read the third TOS registe r (loca­
tion S-2). SR must be greater than
2.* During execution, TNAME be­
comes NAME and the R-Bus Register
is loaded as follows:

If TNAME = 00 then R-BUS : = TR2R
If TNAME = 01 then R-BUS := "rR3R
If TNAME = 10 then R-BUS := TROR
If TNAME = 11 then R-BUS : = TRIR

The RD R-Bus field code is used to
read the fourth TOS register (loca­
tion S-3). SR must be equal to 4.*
During execution, TNAME becomes
NAME and the R-Bus Register is
loaded as follows:

I f TNAME = 00 the n R-BUS: = TR3R
If TNAME = 01 then R-BUS : = TROR
If TNAME = 10 then R-BUS : = TRIR
If TNAME = 11 then T-BUS := TR2R

1---'---------------- ------- -,-.---,----------------,----.--------.----"
I*True only if RA:RD are being used as part of the stack. RA:RD
1 often are used by the microprogram as scratch pad registers
1 when not used otherwise.
I

5-7

System Microcode

Table 5-2. R-Bus Field Code Definitions (Continued)

1101

1100

SPO
(Scratch P.a dO)

SPI
(Scratch Pad 1)

--~'-~-~-1'--'--'~--1--~'~---~---~'------'-'-------1

I Field I I
Label and Name I Code I Des cr ipt ion I

____-_- ._- .. I .__ I .~-_._------------_.__._---- ._I
I

The l6-bit content of the SPO Reg- I
ister is loaded into the R-Bus Reg-I
i ste r • I

I
'rhe l6-bit content of the SPI Reg- I
ister is loaded into the R-Bus Reg­
i ste r.

SR
(Sta ck Re gister)

0001 The 3- bit content of the SR Re gi st­
er is loaded into R-Bus Register
bits a thru 2. R-Bus Register bits
3 thru 15 become zeros.

UBUS 1110 The l6-bit U-Bus data word is load­
ed into the R-Bus Reg iste r. The U­
Bus data is established by the pre­
ceding microinstruction.

x
(Inde x)

0110 The 16- bit content of the X Reg i st­
er is loaded into the R-Bus Regist­
er.

XC
(X Conditional)

0111 The XC R-Bus field code is used
with indexed memory addressing. If
the index bit of the current in­
struction (CIR bit 4) is zero, the
R-Bus Register is loaded with zer­
os. Othe rw ise, the R-Bus Re gi ste r
is loaded with the l6-bit content
of the X Register.

0010Z
(Stack Limit)

The l6-bit content of the Z Iegist­
er is loaded into the R-Bus Regist-I
ere I

_______~ .__- ._- ----_._-_._._------_._.__. 1

5-8

System Microcode

Table 5-3. S-Bus Field Code Definitions

1--------------r----------1--1
I I Field I I
I Label and Name I Code I Description I
I I I I

CC 10111
(Co nd i t ion Code)

CIR 00000
(Current Instruc-
tion Register)

CPXl 00100

CPX2 00110

CTRH 01101
(Counter High)

CTRL 01100
(Counter Low)

DB 10101
(Data Base)

DL 11100
(Data Limit)

The CC S-Bus field code is used to
retrieve the condition code (CC)
portion of the status word for use
with certain conditional branch in-
structions. When executed, bits 6
and 7 of the status word are load­
ed into bits g and 9 of the S-Bus
Register and, if both of these bits
are zeros, S-Bus Register bit 7 be­
comes a one. All other S-Bus Reg­
ister bits become zeros.

The 16-bit output of the CIR is
loaded into the S-Bus Reg iste r .

CPXl, a collection of 16 special
signals, is loaded into the S-Bus
Register. Refer to para 2-127.

CPX2, a collection of 16 special
signals, is loaded into the S-Bus
Reg i s te r • Refe r top a r a 2-128 •

The 6-bit content of the CNTR Reg­
ister is loaded into bits 4 thru 9
of the S-Bus Register. All other
S-Bus Register b its become zeros.

The 6-bit content of the CNTR Reg­
ister is loaded into bits 10 thru
15 of the S-Bus Register. All
other S-Bus Register bits become
ze ros.

The 16-bi t content of the DB Re g­
ister is loaded into the S-Bus Reg-
iste r.

The 16-b i t conte nt of the DL Fe g­
ister is loaded into the S-Bus Reg­
iste r.

5-9

System Microcode

Table 5-3. S-Bus Field Code Definitions (Continued)

I---'--~---'---T----"---I--'---'-'------'--'--------------------·--1

i Field I I
I Label and Name Cbde I Description I
I I I-----------------.---- ------ ----.--------------- ---------------1

lOA 01001 The a-bit content of the ION Regis-I
(I/O Address) ter is loaded into bits a thru 15 1

of the S-Bus Register. Bits 0 thru
7 of the S-Bus Register become
zeros.

100 01010
(I/O Data)

MOD 00101
(Module Number)

NOP 11111
(No Operation)

OPND 10110
(Ope rand)

The l6-bit content of the Direct
Input Da ta (DID/MUXMA) Reg ister in
the lOP is loaded into the S-Bus
Register.

The MOD S-Bus field code provides
the CPU with two pieces of infor­
mation. When executed, the 4-bit
content of the IMN Register is
loaded into bits 4 thru 7 of the
S-Bus Register. Also, bit 13 of
the S-Bus Register becomes a 1, in­
dicating MOD 1. These bit are used
to fetch the correct Ql and Zl en­
tries in the CST. All other bits
of the S-Bus Register become zeros.

No operation.

The 16-bit content of the OPND Reg­
ister is loaded into the S-Bus Reg­
ister. An attempt to execute an
OPND while an MCU operand directed
operation is in progress results in
a CPU freeze until the MCU opera­
tion is complete.

PB 11110
(Program Base)

PADD 00010
(Program Base)

P 10000
(Program Counte r)

The 16-bit content of the P Regis­
ter is loaded into the S-Bus Regis-I
te r. I

I
The 16-bit output of the Pre-Adder I
is loaded into the S-Bus Register. 1

I
The 16-bit content of the PB Reg- I
ister is loaded into the S-Bus Reg-I
i ste r. I

I
_- -__- - -_- -_.__.__-__,_-_- . ~ I

5-10

System Microcode

Table 5-3. S-Bus Field Code Definitions (Continued)

I- ~ 1
1 1 Fie ld
I Label and Name 1 Code
1 1

PCLK 01011
(Process Clock)

"---.1
1

Description 1
~-- I

1
The l6-bit content of the PCLK Reg-
register is placed in the S-Bus
Regi ste r.

Q
(S ta c k Ma r k e r
Pointer)

QDWN
(Stack Marker
Poi nte r Down)

RA

RB

RBR
(Read Bank
Register)

RC

RD

SBUS

10001

01000

11011

11010

00011

11001

11000

01111

The l6-bit content of the Q Regis­
is loaded into the S-Bus Register.

The QDWN S-Bus field code is used
to put the content of the lowest
valid TOS register in the S-Bus
Re g is te r • Re fe r top a r a 5-6 •

The register named RA by the Namer
Re g is te r is pIacedin the S-B us
Register.* Refer to para 2-96 and
5-2.

The register named RB by the Namer
Register is placed in the S-Bus
Register.* Refer to para 2-96 and
5-2.

Read Bank :Register onto S-Bus (12:
15). The S-Bus bits 0 - 11 are
zeroed. The Ba nk Reg iste r to be
read is specified in the MCU field.
Execution of the Special field is
inh ib i ted.

The register named RC by the Namer
Regi ste r is placed in the S-Bus
Register.* Refer to para 2-96 and
5-2.

The register named RD by the Namer
Register is placed in the S-Bus
Register.* Refer to para 2-96 and
5-2.

The SBUS code causes the S-Bus Reg­
ister content to remain unchanged.

-.------~----_.__._- -.----~----~----- ---I

*True only if RA:RD are being used as part of the Stack. RA:RD 1

are often used by the microprogram as scratch pad registers 1

when not used otherwise. 1

1

5-11

System Microcode

Table 5-3. S-Bus Field Code Definitions (Continued)

-----~----1----~--1----------~--~------------

I Field I
I Label and Name I Code I Description I
I I I I------_·------'1--·--·_-- --·-~--·--·-~----·--_·-··-·-·--~--'-I

SM I 10011 The l6-bit content of the SM Regis-I
(Stack Memory) I ter is loaded into the S-Bus Regis-I

I ter. I
I I

SPI 00001 The l6-bit content of the SPI Reg- I
(Scratch Pad 1) ister is loaded into the S-Bus Reg­

iste r.

SP3
(Scratch Pad 3)

STA
(STATUS)

SWCH

UBUS

10101 The l6-bit content of the SP3 Reg-
ister is loaded into the S-Bus Reg­
iste r.

10100 The 16-bit status word is loaded
into the S-Bus Reg iste r.

00111 The 16-bit cont~nt of the Switch
Register is loaded into the S-Bus
Regi ste r.

01110 The l6-bit U-Bus data word is load­
ed into the S-Bus Reg i s te r. Th e U­
Bus data is established by the pre­
ceding microinstruction.

5-12

System Microcode

Table 5-4. Function Field Code Definitions

1-----.---~---·-·--l-·-~--·--T~·------·-----·-~---~-·--'-'---"---'-~I
I ~ Fie Id I I
I Label and Name I Cbde I Description I
I I I I
------_._--_._~~ --·---·I-------~-~·_-----_·_----------I

ADD 11111 I The content of the R-Bus Register I
is added to the content of the S- I
Bus Register and the result is
placed on the T-Bus.

ADDO 11011
(Add-Enable Over-
flow)

AND 00111

BNDT 01101
(Bo unds Tes t)

CAD 01110
(Complement and
Add)

The content of the R-Bus Register
is added to the content of the S­
Bus Register and the result is
placed on the T-Bus.

The content of the R-Bus Register
is logically "anded" with the con­
tent of the S-Bus Registe r and the
result is placed on the T-Bus.

The Function field code BNDT is us­
ed to perform a bounds test of an
address. Execution of this code
results in the content of the R-Bus
Register minus the content of the
S-Bus Register being placed on the
T-Bus. If RRZ, RLZ, LRZ, or LLZ is
specified, then BNDT does a "CAD"
instead of a "SUB". The R- and S­
Bus fields are coded so that this
result is a negative number (CARRY=
0) if a bounds violation occurs.
If the CPU is not operating in the
priviledged mode (STATUS (0) = 0),
and a bounds violation occurs, a
microjump to ROM address 0003 is
executed. If no violation has oc­
curred (CARRY = 1) or the CPU is
operating in the priviledged mode
(STATUS (0) = 1), the next microin­
struction will be executed in the
usual manner.

The content of the R-Bus Register
is added to the one's complement of
the content of the S-Bus Register
and the result is placed on the T­
Bus. If the S-Bus Register con­
tains all zeros, CAD results in the

---~~._.__.~-- -~-- ---,-,~-----------,_.--,---.-,--",----

5-13

CADO
(Complement
Add-Enable
flow)

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

------ -----1I-~-----~---'-'l'------T- -
I I Field I 1
I Label and Name 1 Code 1 Oeser iption 1

I-·------·---------II-.-----I-------------------~-.-~.-----11

CAD (Cont) I R-Bus Regi ster contents minus 1 on 1

I the T-Bus. I
I I
I 01010 The content of the R-Bus Register I

and I is added to the one's complement of
Over- the content of the S-Bus Register

and the result is placed on the T­
Bus. Carry and overflow are modi­
fied in the Status Register and the
condition code is set to CCA on the
T-Bus data.

CAND
(Complement-And)

CRS
(Circul ar Sh i ft)

CTSD
(Cont~olled Shift
Doub+e)

00101

11010

10111

The R-Bus Register content is log­
ically "anded" with the complement
of the S-Bus Registe r content and
the result is placed on the T-Bus.

The R-Bus Register content is added
to the S-Bus Registe r content and
the result is placed on the T-£us.
The T-Bus is then circular shifted
one place right or left as speci­
fied in the Shift field (SRI orSLl)
and placed on the U-Bus.

The Function field code CTSD adds
the contents of the'R-Bus Register
and the S-Bus Registe r, puts the
result on the T-Bus, and performs
a double word shift of the T-Bus
and a scr atch pad left or r igh t as
specified by the Shift field code
(SRI or SLI). The type of shift is
determined by the content of the
CI R as followc:;:

If CIR(7) = 1 then circul~r shift
If CIR(7:8), = 01 then logical shift
If CIR(7:8) = 00 then arithmetic

shift

The most significant word is on the
T-Bus. If a left shift is speci­
fied, SPI Register contains the
least significant word. If a right
shift is specified, SP3 Register
contains the least significant

-.----~----,--.._-- ---_._,--~ --_._.-.--_~-.--_........_--------_.__._-_._,----~.

5-14

System Microcode

Table 5-4. Function Field' Code Definitions (Continued)

I r---­
I Field I

Label and Name I Code I
I I

Des cr ip t ion

CTSD (Cont)

CTSS 11100
(Controlled T-Bus
Sh ift Single)

DCAD 11110
(Decimal Add)

DVSB 01000
(Divide-Subtract)

word. Regardless of the direction
of the shift, both the SPI and SP3
Registers are shifted left and
right respectively.

The R-Bus Register content is added
to the S-Bus Register content and
the resul t is placed on the T-Bus.
The T-Bus is then shifted left or
right as specified by the Shift
fie Id code (SRI or SLl). The type
of shift is determined by the con­
tent of the CIR as follows:

If CIR(7) = 1 then circular shift
If CIR(7:8) = 01 then logical shift
If CIR(7:8) = 00 then arithmetic

shift

The contents of the' R- and S-Bus
Registers are added and the result
is placed into the Decimal Correct­
or Adder. The Decimal Corrector
Adder output is placed on the D­
Bus.

The Function field code DVSB per­
forms the subtract, shift, and test
necessary to execute a divide algo­
rithm. The R- and S-Bus fields of
the microinstruction are coded so
that initially the 16-bit divisor
is in the S-Bus Register and the
most significant 16-bits of the
dividend are in the R-Bus Reg i ste r.
The least significant 16-bits of
dividend are in the SPI Register.
Both divisor and dividend must be
positive numbers upon execution of
the DVSB code and Flag 2 (F2) must
be 0 (cleared). An SLI code in the
Shift field of the microinstruction
directs the left shift on the T­
Bus. The following algorithm,is
then executed repeatedly to perform
the complete divide.

5-15

System Microcode

Table 5-4. Function Field Code ~finitions (Continued)

---------------l----.----T.-------.------~-----·-·---~-------.----I
I Field I I

Label and Name I Cbde I Des cr iption I
I 1 . I------.--------- --.-.----.-.- -------_·_-----_·_-_·_----_·_--_·_--------·-1

DVSB (Cont) TBUS := RBUS - SBUS I
UBU S (0 : 14) : = TBU S (1: 15) I
If ALU carry or F2=1 then: I

1

BEGIN I
I

RREG(0:14) := UBUS(0:14)
RREG(15) := SPl(O)
SPl(0:14) := SPl(1:15)
SPl(15) := 1
F2 : = TBU S (0)

END

else:

BEGIN

RREG(0:14) := RREG(1:15)
RREG(15) := SPl(O)
S PI (0 : 14) : = SP 1 (I: 15)
S PI (15) : = 0
f 2 : = RRE G(0)

END

For example, after 17 executions of
the above algorithm, a 16-bit quo­
tient is contained in the SP I-Reg­
ister and the remainder times 2 is
conta ined in the R-Bus Registe r.
When the remainder is unloaded from
the R-Bus Register, it is shifted
right one place (divided by 2) •

INC 11101
(Incremented Add)

INca 11001
(Incremented Add-
Enab Ie Ove r flow)

The R-Bus Register content is added
to the S-Bus Register content plus
1. The result is placed on the T­
Bus.

The R-Bus Register content is added
to the S-Bus Registe r content plus
1, the resul t placed on the T-Bus,
and the carry and overflow is modi­
fied in the Status l€gister. The
condition code is set to CCA on the
T-Bus Da ta.

--------------~-------~ ----

5-16

System r-1icrocofl'"

7able 5-4. Function Field Code Definitions (Continued)

I-.·--"-··-·---·-.-----~·-·I---·-I-~·---··-----~~----·---------,,~_.,,_..-~.-- -----'-1
I I Field I I
I Label and Name I Code I Description I
I I I I

lOR
(lnclusive OR)

JMP
(J ump)

JSB
(Jump to Sub­
routine)

MPAD
(Mul tiply-Add)

lalla

01100

00100

11000

The content of the R-Bus Register
is logically inclusively "ored"
with the content of the S-Bus Reg­
ister and the result is placed on
the T-Bus.

The JMP Function field code directs
a micro-jump to the ROM address
(j ump tar get) specified by bi ts 20
thr u 31 of the ROM Outp ut Regi ste r
if the Skip field condition is met
(a condition must be specified).

The R-Bus, Shift, and Special Field
Decoders are disabled and the U-Bus
and T-Bus become the S-Bus Register
content.

The JSB Function field code directs
a micro-subroutine jump to the ROM
address speci fied by bi ts 20 thr u
31 of the ROM Output Registe r if
the Skip field code condition is
met. If the condition is met and
the JSB is executed, the Save Reg­
ister is loaded with the address of
the line following the JSB and is
used as a return address at the
sUbroutine end (see Function field
code RSB). During execution of the
JSB, the R-Bus, Shift, and Special
Field Decoders are disabled and the
T-Bus and U-Bus become the S-Bus
Register contents.

The Function field code MPAD per­
forms the add, shift, and test nec­
essary to execute a multiply algo­
rithm. The R-Bus field of the mic­
roinstruction is coded so that ini­
tially the l6-bit multiplicand is
in the R-Bus Register. The S-Bus
field code is UBUS which is initi­
ally all zeros. The SP3-Register
contains the 16-bit mUltiplier.
Both mUltiplier and multiplicand

- -----_. ---_._----------_._-----_._-

5-17

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

T--~---l----~----------~-------------'----'I

I Fie 1d i I
Label and Name I Code I Description 1

I I I-----------------.----- ------- --------------------------------1
MPAD (Cont) must be pos it i ve numbe rs upon exe- I

cution of the MPAD code. An SRI I
code in the Shift field directs thel
right shift of the T-Bus. The fol-I
lowing algorithm is executed re- I
peatedly to perform a complete mul­
tiply.

T-BUS := R-REG plus S-REG
U-BUS(1:15) := T-BUS(0:14)
U-BUS(O) := ALU carry
If SP3(15) = 1 then:

BEGIN

S-REG := U-BUS
SP 3 (1 : 15) : = SP 3 (0 : 14)
SP 3 (0) : = T -BU S (15)

END

else:

BEGIN

S-REG{1:15) := S-REG{0:14)
SP3(1:15) := SP3(0:14)
SP3(0) := S-REG(15)

END

After 16-executions of the above
algorithm, the result is a 32-bit
word with the most significant 16
bits in the S-Bus Register and the
least significant 16 bits in the
SP 3 Re g is te r •

PNLR
(Panel Read)

10000 The PNLR Function field code allows
the auxiliary control panel to sel-I
ect and display a CPU register. I
This code appears in the micropro- I
gram during execution of HALT and I
PAUSE routines. When PNLR is exe- I
cuted, the ROM Output Register I
(RORl) and R- and S-Bus fie Id s are I
disabled. The maintenance panel I

I

5-18

System Micr ocode

Table 5-4. Function Field Code Definitions (Continued)

-------1
I
I
I-

I
interface supplies these field I
codes which put the content of the I
selected register in the associated
r-egiste r (R- or S-Bus). The T-Bu s
and U-Bus become the R-Bus Register
content plus the S-Bus Register
content (one of which will be zer­
os). The auxiliary control panel
completes this operation by dis­
playing the U-Busas the selected
register.

----I~-,.---~----

Field I
Cbde I Description

_____.I ~_-~-----_._-- I ,----

I
I
I
I
I
I
I

PNLR (Cont)

Label and Name

PNLS
(Panel Store)

10001 The PNLS Function field code allows
the auxiliary control panel to load
a CPU register with the content of
one of its switch registers. This
code is part of the halt mode in­
terrupt micro-routine for servicing
a maintenance panel interrupt. When
PNLS is executed, the ROM Output
Register (ROR2) Store field is dis­
abled and the maintenance panel in­
ter face card supplies the Store
field code respective of the sel­
ected CPU register. A SWCH S-Bus
field code causes the S-Bus Regist­
er to be loaded wi th the content of
the selected auxiliary control pan­
e 1 s wit ch regis te r • The T-B usa nd
U-Bus become the R-Bus Register
content (zeros) plus the S-Bus Reg­
ister content and, at the end of the
cycle, the selected register is
loaded with the U-Bus data.

QASL 00000 The QASL Function field code causes
a four register arithmetic shift
Ie ft of the U-Bus, SP 3 and SP 1
Registers, and the R-Bus Register
containing the most, next most,
next least, and least significant
words respectively. Shift reft One
code (SLl) is required in the Shift
field. The sign bit is preserved.

------~------_.-~_._,-~ ---------------~----~--~._-_.._.._•.._..._._--_._-

5-19

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

I---·---------.-.-..T---~-T-~------·-·--·--···--··-~~---.----------
I Field I

Label and Name I Cbde I Descr iption
I I

QASL (Cont)

QASR 00001

T-BUS : = S-REG
U-BUS (0) : = T-BUS (0)
U-BUS(l: 14) := T-BUS(2:15)
U- BU S (15) : = S P3 (0)
SP 3(0: 14) : = S P3 (1 : 15)
SP3(15) : = SPl(O)
SP 1 (0 : 14) : = S PI (1 : 15)
SPl(15) := R-REG(O)
R-REG(0:14) := R-REG(1:15)
R-REG(15) := 0

The QASR function field code causes
a four register arithmetic shift
right of the U-Bus, SP3 and SPl
Registers, and the S-Bus Register
containing the most, next most, next
least, and least significant words
respectively. Shift Right One code
(SRI) is required in the Shift
field. The sign bit is propagated.

T-BUS := R-REG
U-BU S (0: 1) : = T-BU S (0)
U-BU S (2 :15) : = T-BUS (1: 14)
SP3(0) := T-BUS(15)
SP3(1:15) := SP3(0:14)
SPI (0) : = SP3 (15)
SPl(1:15) := SPl(0:14)
S-REG(O) : = SPI (15)
S - RE G(1: 15) : = S - REG (0 : 14)

10100REPC
(Repeat Until
Condition)

The REPC Function field code causes
the next microinstr uction to be ex­
ecuted repeatedly until the Skip
field condition of that microin­
struction is met. During execu­
tion, the T-Bus becomes the R-Bus
Register content plus the S-Bus
Register content. The REPC code is
decoded from ROR2 and, at that time I
disables the RAR increment functionl
and RORI load function and sets thel
Repeat FF. The RAR then contains I
the address of the microinstructionl
following the one to be repeated I
and RORI contains the microinstruc-I
tion to be repeated. The next cycle I

- ----- ---------------~_._----__.__.I

5-20

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

1----~---~------l------T----~----'---~-~'--'-'-------'-'------'1

1 I Field I I
I Label and Name 1 Code I Descr iption I
I I I I
-'---'-~----~'-'--'-- -_._-------.; --,_.~--_ .._,-~----~----._ .._--~---..-._.,_._._ ..,_._--_._•._-

REPC (Cont)

REPN
(Repea t N Times)

ROM

RaMI
(ROM Inclusive)

10101

10011

10010

loads ROR2 and executes the micro­
instruction to be repeated. As long
as the Repeat FF remains set, the
content of RORI and ROR2 does not
change and is executed each cycle.
When the Skip field condition is
met, the Repeat FF is cleared, the
pipeline is filled correctly, and
the next microinstruction is fetch­
ed in the usual manner.

The REPN Function field code oper­
ates in the same manner as the REPC
code previously described. The
difference is that REPN loads a Re­
peat Counter Registe r wi th the con­
tents of the microinstruction Skip
field. Bits 1 thru 5 of the count­
er become ROR2 bits 5 thru 9; bit 0
of the counter becomes a 1. The
counter content is then the two's
complement of the number of repeats
to be performed. To utilize the
counter, the repeated microinstruc­
t ion conta ins a Special fie Id code
INCTR (Increment (bunter) and a
Skip field condition CTRM (Cbunter
Maximum) .

The Function field code ROM loads
the R-Bus Register with a l6-bit
constant obtained from the microin­
struction. The ROM code is decoded
from RORl, loading the the R-£us
Reg iste r with bits 16 thr u 31 of
RORI. The T-Busthen becomes the
R-Bus Register content plus the S­
Bus Register content. The R-Bus,
Shift, Special, and Skip Field De­
coders are disabled by the ROM
code.

The Function field code RaMI loads
the R-Bus Register with a 16-bit
constant obtained from the microin­
struction. The RaMI code is decod­
ed from RORl, loading the R-Bus

5-21

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

I-~~-----------r-------I---------------------~--~-----------I

1 1 Field 1 1
I Label and·Name 1 Code 1 Description 1
1 1 1 1

ROMI (Cont)

ROMN
(ROM And)

ROMX
(ROM Exclusive)

SUB
(Subtract)

SUBO
(Subtract-Enable
Over flow)

00011

00010

01111

01011

Register with RORI bits 16 thru 31.
The T-Bus then becomes the R-Bus
Register content inclusive "ored"
with the S-Bus Register content.
The R-Bus, Shift, Special, and Skip
Field Decoders are disabled by the
ROMI code.

The Function field code ROMN loads
the R-Bus Register wi th a l6-bit
constant obta ined fr om the microin-
struction. The ROMN code is decod­
ed from RORl, loading the R-Bus
Register with RORI bits 16 thru 31.
The T-Bus becomes the R-Bus Regist-
e r con te n t log i ca11y "a nde d" with
the S-Bus Register content. The R­
Bus, Shift, Special, and Skip Field
Decoders are disabled by the ROMN
code.

The Function field code ROMX loads
the R-Bus Register with a l6-bit
constant obtained from the microin­
struction. The ROMX code is decod­
ed from RORl, loading the R-Bus
Register with RORI bits 16 thru 31.
The T-BllS becanes the R-Bus Regist­
er content exclusive "ored" with
the S-Bus Register content. The R­
Bus, Special, Shift, and Skip Field
Decoders are disabled by the ROMX
code.

The content of the S-Bus Register
is subtracted from the con tent of
the R-Bus Register and the result
is placed on the T-Bus.

The content of the S-Bus Register
is subtracted from the con tent of
the R-Bus Register and the result
is placed on the T-Bus. Carry and
overflow are modified in the Status
Register and condition code CCA is
set on the T-Bus data.

--------~--........__......--- - ---_.~--- -_._-~---_._---._----_._----_._------_._-_._----_.

5-22

System Microcode

Tab Ie 5-4. Function Fie Id Code De fin i tions (Co nt inued)

Des cr ipt·ion

----------1
1
1

1
----~I

The Function field code UBNT is 1
used to perform an unconditional I
bounds test of an address. Execu- 1
tion of this code results in the I
conte nt of the R-Bus Re gi ste r minus
the content of the S-Bus Register
being placed on the T-Bus. If RRZ,
RLZ,LRZ,LLZ is specified, then UBNT
does a "CAD" instead of a "SUB".
The R- and S-Bus fie Id s are coded
so that this result is a negative
number (CARRY = 0) if a bounds vi­
olation occurs. The response to a
bounds violation is a micro-jump to
ROM address 0003. If no violation
occurs (CARRY = 1), the next micro- t
instruction is executed in the us- 1
manner. I

1
The content of the R-Bus Regi ste r 1

is exclusive "ored" with che con- I
tent of the S-Bus Register and the 1
res ul t is p laced on the T-B us. I

-- 1

00110

-~- ------

XOR
(Exclusive OR)

UBNT
(Unconditional
Bounds Tes t)

I-----------I---T
1 1 Field 1
1 Label and Name I Code 1
I__~ .I I~ _

1 1
1 01001 I

I

5-23

Sys tem Microcode

Table 5-5. Shift Field Code Definitions

------------------r-------r------------------------------------
Field I

Label and Name Code I Description
___- - 1 --------------- _- _

(blank) III

LLZ 001
(Left to left and
Zero)

LRZ 000
(Lef t to Righ t
and Ze ro)

RLZ 101
(Right to left
and Ze ro)

SWAB 110
(Swap Bytes)

RRZ 100
(Righ t to Righ t
and Ze ro)

SLI 010
(Shift Left 1)

No shift, the T-Bus word is placed
directly on the U-Bus.

The Shift field code LLZ places the
left byte of the T-Bus in the left
byte of the U-Bus and places ze ros
in the r igh t byte of the U-Bus. r

I
The Shift field code LRZ places thel
left byte of the T-Bus in the rightl
byte of the U-Bus and places zeros I
in the left byte of the U-Bus. I

I
The Shift field code RLZ places thel
right byte of the T-Bus in the left
byte of the U-Bus and places ze ros
in the right byte of the U-Bus.

The Shift field code SWAB places
the left byte of the T-Bus in the
right byte of the U-Bus and the
right byte of the T-Bus in the left
byte of the U-Bus.

The Shift field code RRZ places the
right byte of the T-Bus in the
right byte of the U-Bus and places
zeros in the left byte of the U-Bus

The Shift fie Id code SLI shifts the
T-Bus one place left onto the U­
Bus. Refer to the Function field
code descriptions for the. action
taken when used with Function field
codes CRS, CTSD, CTSS, DVSB, and
TASL.

SRI all
(Shift Right 1)

The Shift field code SRI shifts the
T-Bus logically one place right on­
to the U-Bus. Refer to the Function
field code descriptions for the ac­
tion taken when used with Function
field codes CRS, CTSD, CTSS, MPAD, I
and TASR. I

___. I

5-24

The Store field code BSPO stores
the U-Bus into ACOR or DCOR, de­
pending on the MCU field option se­
lected and into spa. Disables the
Special field and enables the MCU
op t ions, on e 0 f wh i ch mus t be use d .

System Microcode

Table 5-6. S tore Field Code Def in i tions

1--- ------------ --------------------,--------------'T-----------.--.-.----.--------.-.--.-.----~._-.--.-~~--_. I
I 1 Fie 1d I 1
I Label and Name 1 Code I Des cr ipt ion I

I 1 I I- --------- -- ----._--- ---------.-- 1-------.-,.-- - --- .-.-.-..----------.--.--------- -------.-.-.---.---.------..--~.- I
Nap I 11111 No Operation.

(No Opera tion) I
I

BSPO I 00101
(Bus to Scra tch I
Pad 0) I

BSP1
(Bus to Scr a tch
Pad 1)

BUS

00100

00111

Same as BSPO except SP 1 is used.

Same as BSPO except none of the
scratch pad registers are used.

CTRH
(Counter High)

01111 I The Store field code CTRH stores U­
Bus bits 4 thru 9 in CNTR Register
bits 0 thru 5.

CTRL
(Counte r Low)

DB
(Data Base)

01110

10011

The Store field code CTRL stores U­
Bus bits 10 thru 15 in CNTR Regist­
e r bits 0 thr uS.

The Store field code DB stores the
16-bit U-Bus word in the DB Regist-
er.

DL 11100
(Da ta Limi t)

lOA 00001
(I/O Addres s)

laD 00010
(I/O Data)

The Store field code DL stores the
16-bi t U-Bus word in the DL Re gist­
ere

The Store field code lOA sends the
command on the U-Bus (bits 5 thru
7) to the device whose address is
on the U-Bus in bits 8 thru 15.
U-Bus bi t 0 = 1 send s a service- out
signal to the device.

The Store field code laD stores the
16-bi t word cur rent1y on the U-B us
in the Direct Output Data (DOD)
Register.

5-25

System Microcode

Table 5-6. Store Field Code Definitions (Continued)

I---~-'----~-'-------'-'-----l----.---------.T-~-·--------·-----·-·--·~-~-·--·-----.--.-.-~----..
I I Field I
1 Label and Name 1 Code I Description
1- .__ . . -1__.__- 1_. -_-_-_.._~_- _._-_..~_._ ..~~_.. -_-__. ._.. .__

MREG
(Memory Register)

00011 The Store field code MREG is used
to store data in an address that
1 iesin a TO S reg is te r (i. e ., S > E
> SM where S = SR + SM). Pr ior to
exe cu t i ng MREG, the val ue E min us
S is placed in the SPI Regi ste r.
During execution, TNAME becomes the
sum of NAME and SPl(14:l5) and the
TOS registers are loaded as fol­
lows:

If TNAME = 00 then TRO
If TNAME = 01 then TRI
If TNAME = 10 then TR2
If TNAME = 11 then TR3

:= U-BUS
:= U-BUS
: = U-BUS
:= U-BUS

p

(Progr am CO un t)

PB
(Progr am Base)

10000

11110

Due to the p ipel ine ef fect, a ros
register referenced in the R- or S­
Bus field of the following microin­
struction assumes the above des-
cr ib ed rrNAi\lE:.

The Store field code P stores the
l6-bit U-Bus word ih the P Regist-
er.

The Store field code PB stores the
l6-bit U-Bus word in the PB Regist­
er.

PCLK 00000
(Process Clock)

PL 01001
(Pr ogr am Lim it)

PUSH 01000

Q 10001
(Stack Marker
Pointe r)

The Process Clock, PCLK, is placed
in the S-Bus Re gis te r.

The Store field code PL stores the
l6-bit U-Bus word in the PL Regist­
er.

The Store field code PUSH effec­
tively moves all stack elements
down one location and loads the U­
Bus word on the TOS. Refer to par­
agraph 5-3.

The Store field code Q stores the
16- bit U-Bus word in the Q Reg ist­
ere

5-26

System Microcode

Table 5-6. Store Field Code Definitions (Continued)

1--- . - --~~-------'l'---'----I-------~_._------.-----~-
1 I Field 1
1 Label and Name 1 Code I Description
1 I 1

QUP
(Stack Marker
Pointer UP)

RA

RAR
(ROM Address
Register)

RB

RC

RD

SBR
(Stack Bank
Register)

10001

11011

10111

11010

11001

11000

00110

The Store fie ld code QUP e ffective­
ly inserts the U-Bus word into the
stack at location SM plus one.
Refer to para 5-5.

The Store field code RA stores the
U-Bus word in the register named RA
by the Narner Register.* Refer to
para 2-96 and 5-2.

The Store field code RAR stores
bits 0 thru 15 of the U-Bus in ROM
Address Register bits 0 thru 15. 1
The intent of this code is to force I
the processor to a new microprogram I
address specified by the U-Bus 1
word. Execution of the RAR code re-I
quires three microcycles. The- firstl
cycle loads the ROM Address Regist-
er and the next two cycles are NOPs
allowing the ROM Output Registers
(RORI and ROR2) to be loaded with
the new microinstruction.

The Store field code RB stores the
U-Bus word in the register named RB
by the Namer Register.* Refer to
para 2-96 and 5-2.

The Store field code RC stores the
U-Bus word in the register named RC
by the Namer Register. * Refer to
para 2-96 and 5-2.

The Store field code RD stores the
U-Bus word in the register named RD
by the Namer Register.* Refer to
para 2-96 and 5-2.

The Store field code SBR stores U­
Bus bits 12:15 in the Bank Register
specified in the MCU field code.

1-------------_·_-----_·_--- --.-.-.- -- --.-.-------.------~---.-----------------------
I*True only if RA:RD are being used as part of the stack, RA:RD
I often are used by the microp rogr am as sera tch pad register s
I when not used otherwise.
1

5-27

System Microcode

Table 5-6. Store Field Code Definitions (Continued)

I-.--.----.--..--.-~·--·---I----·---l-·--~·-·-·-·-·--·------ ...-.--..-.--.~- ..-~--.
I I Field I
I Label and Name I Code I Description
I I I

SBR (Cont)

SM
(Stack Memory
Pointe r)

SPO
(Sc ra tch Pad 0)

SPI
(Sc ratch Pad 1)

SP2
(SCratch Pad 2)

SP3
(Scratch Pad 3)

STA
(Sta tus)

X
(Index)

Z
(Stac k Lim it
Pointer)

10010

01101

01100

11101

10101

10100

10110

01010

Execution of the Special field is
inhib ited.

The Store field code SM stores the
U-Bus word in the SM Register.

l
The Store field code SPO stores the
U-Bus word in the SPO Register.

The Store field code SPI stores the
U-Bus word in the SPI Register.

The Store field code SP2 stores the
U-Bus word in the SP 2 Register.

The Store field code SP3 stores the
U-Bus word in the SP3 Register.

The Store field code STA stores the
U-Bus word in the Status Register.

The Store field code X stores the
U-Bus word in the X Register.

The Store field code Z stores the
U-Bus word in the Z Register.

.-'-- -------- -"-"- -,.._- --.-~:- _.- _._-----~--_.~'--_._- --._....- _.--.... ..._-~' '_._-----_._._-"

5-28

System Microcode

Table 5-7. Special Field Code Definitions

I--'~-'-'-·--··-·-----··-·-..-----.1·--·--·-·.-.1-·~- -.---- - --..--.--~.- ..---.---.-.------..-._------ I
I I Field I I
I Label and Name I Code I Description I
I I I I_._-._..--- ---.-.-,_.- ---.-- --_._.- ---.---.----..----.----.-----..-.,-...-.---,,------- I

(blank) 11111 No Special fie Id ope ra tion. I
I

CCA 11110 The Special field code CCA sets the
(Condition Code A) condition code bits to CCL (01) if

the T-Bus word is less than zero
(T(0) = 1), CCE (10) if the T-Bus

word is equal to zero (Signal T = 0
is true), or CCG (00) if the T-Bus
word is greater than zero (T(O) = 0
and signal T = 0 is false).

CCB 00000
(Condition Code B)

CCE 11101
(Condi tion Code E)

I
CCG 11100

(Condition Code G)

CCL 11011
(Condition Code L)

CCPX 00001
(Clear CPXl)

The Special field code CCB sets the
condition code to CCL (01) if bits
8:15 of the U-Bus form a special
ASCII character, CCE (10) if an
alphabetic ASCII character, or CCG
(00) if a numeric ASCII character.

The Special field code CCE sets the
condition code bits to CCE (10).

The Special field code CCG sets the
condition code bits to CCG (00).

The Special field code CCL sets the
condition code bits to CCL (01).

Clears the Interrupt Status Regist­
er bits as specified by the true
bits on the U-Bus.

U-Bus Bit 0 Halt
1 Run
2 Sys tern Hal t
3 (Unused)
Bits 4 (MSB) through 7
(LSB) code the following
functions:

Octal Code 0 NOP
1 Clear BNDV
2 Clear Ille­

gal Address

------_.__ .._--.._.._._---.- -'...._-- -_._--_._-------_._--

5-29

System Microcode

Table 5-7. Special Field Code Definitions (Continued)

I---------~--------·l-------r_---------------·~----

I i Fie Id i
I Label and Name I Code I Description
I I I

CCPX (Cont) 3 Clear CPU
Timer

4 Clear Sys-
tem Par ity
Error

5 Clear Ad-
dress Par-
ity Er ror

6 Clear Data
Parity Er-
ror

7 Clear Mod-
ule Inter-
rupt

10 Clear Ex-
ternal In-
terrupt

11 Power Fail
Turn-Off
Interr upt

16 Reverse
System Par-
ity

17 Reverse
MCUD Par ity

8 Diagnostic NIRTOCIR
9 (Unused)

10 Diagnostic set CPXl
(B its 1: 18)

11 Clear ICS Flag
12 Clear DISP Flag
13 (Unused)
14 Diagnostic Freeze
15 Clear Panel FF's

CCRY
(Clear Carry)

CCZ
(Condi tion Code
Zero)

10101

11010

The Special field code CCRY clears
carry in the Status Register.

The Special field code CCZ sets the
condition code bits to CCE (10) if
the T-Bus word is equal to zero
(signal T = 0 true) or CCG (00) if
the T-Bus word is not equal to zero
(s i g na1 T = 0 fa 1 s e) •

---'-..----_._~---_.__.:---._-... ----_. -----_..._-_._------_.._--------_..--._-_.__._-

5-30

System Microcode

Table 5-7. Special Field Code Definitions (Continued)

1--------------,
I I Fie ld
I Label and Name I Code
I I
---_._-~~------- ---

CFl 10010
(Clear Flag 1)

CF2 10001
(Clear Flag 2)

CF3 00111
(Clear Flag 3)

CLIB 01110
(Clear Indirect
Bi t)

Descr ipt ion

The Special field code CFl clears
CPU Flag 1 FF.

The Special field code CF2 clears
CPU Flag 2 FF.

The Spec ial fie ld code CF3 clears
CPU Flag 3 FF.

At the end of the cycle, CLIB sets
the Indirect Bit FF which masks the
indirect line until a NEXT or JLUI
option in the Skip field is en­
counte red.

CLO
(Clear Over flow)

CLSR
(Clear SR)

CTF
(Set Carry to
Flag 1)

DCSR
(Decrement SR)

FHB
(Flag to High
Bit)

HBF
(High Bi t to
Flag 1)

INCN
(Increment Name)

INCT
(Increment
Counte r)

11001

00010

00110

01001

01101

01100

01010

01011

The Special field code CLO clears
the status word overflow bit.

The Special field code CLSR clears
the SR Register. This is an asyn­
chronous reset. No other SR opera­
tion is allowed during that time.

The Special field code CTF stores
th~ ALU carry bit in the Flag 1 FF.

The Special field code DCSR decre­
ments the content of the SR Regist­
er by a count of one.

The Special field code FHB trans­
fers the content of the Flag 1 FF
to bi t 0 of the U-Bus.

The Special field code HBF trans­
fers the content of U-Bus bit a to
the Flag 1 FF.

The Special field code INCN incre­
ments the content of the Name Reg­
ister by a count of one.

The Special field code INCT incre­
ments the content of the Counter
Register by a count of one.

5-31

System Microcode

Table 5-7. Special Field Code Definitions (Continued)

No cperation

The Special field code pop moves
the stack elements up one location
such that the second element of the
stack (S minus one) becomes the top
element (8), etc. The previous top
of stack element is lost. When ex­
ecuted, this is accomplished by de­
crementing the SR Register and in­
crementing the Namer Register.
Refer to para 5-4.

01000

10111

01111

pop 10111

Nap

LBF
(Low Bi t to
Flag 2)

INSR
(Increment SR)

I----------~------·l-- I --_._-_.__.__._-----------------,,
I I Fie ld I I
I Label and Name I Code 1 Description I

1 . -_. - I__~_-_. l__._~__- I
I

The Special field code INSR incre- I
ments the content of the SR Regist-I
er by a count of one. I

I
The Special field code LBF trans- I
fers the content of U-Bus bit 15 tol
the Flag 2 F F • I,

I
~

paPA 10110
(Pop se t ting CCA)

The Special field code paPA func­
tions the same as Special field
code pop with the addition that the
condition code is set to CCL (01)
if the T-Bus word is less than ze­
ro, to CCE (10) if the T-Bus word
is equal to zero, or to CCG (00) if
the T-Bus word is greater than zero

SCRY
(Set Carry Bi t)

SDFG
(Set Dispatcher
Flag)

SFI
(Set Flag 1)

SF2
(Set Flag 2)

SF3
(Set Flag 3)

10100

00101

10011

10000

00011

The Special field code SCRY sets
Carry in the Status Register.

The Special field code SDFG se ts
Dispa tcher Flag (bi t 12 of Inter-
rupt Sta t u s Re g i s te r CP Xl) •

The Special field code SFI sets CPU
Flag 1 FF.

The Special field code SF2 sets CPU
Flag 2 FF.

The Special field code SF3 sets CPU
Flag 3 FF.

- -----_._~----_._. -----' ----._---_._--_._---_....---_.__.__.._--_._--

5-32

System Microcode

Table 5-7. Special Field Code Definitions (Continued)

, ,--------------------1----------------------------------·----------------~--I

, Fie Id I
I Label and Name Code Description I
I I
I----·---·---~-----------~ ------. -------~----.---_.-.-----------.-----._---~I
I SIFG 00100 The Special field code SIFG se ts I
I (Set Interrupt the Interrupt Flag (bit 11 of In- I
I Flag) terrupt Status Register CPXl) • I
I I
I SOV 11000 The Special field code SOV sets the I
I (Set Overflow) status word overflow bit. I
I I

5-33

Label and Name

System Microcode

Table 5-8. MCU Option Field Code Definitions

1-----------------1----·-1------·---------------------------- I
1 Fie ld 1 1
1 Code 1 Des cr ipt ion 1

________________ 1 - 1 - . 1

ABS
(Absolu te)

CMD
(Command)

CRL
(Control)

DATA

DB
(DB-Relative)

00000

00010

00001

10001

10000

The MCU option code ABS specifies
the ABS Registe r which may be read
into S-Bus (12: 15) wi th "RBR" or
stored from U-Bus (12:15) with
"SBR". This bank register is used
as a scratch pad bank register by
the micr ocode •

The MCU option code CMD enables the
bus options (BUS, BSPO, and BSPl)
in the Store field to store the U­
Bus into the address CPU output
register, ACOR, and to initiate a
lew-request command. When selected,
the AOOR is outputed to the MCU-Bus
and the command and module number
("TO" lines) are obtained from the

TO and MOP Registers.

The MCU option code CRL enables the
Store field bus options (BUS, BSPO,
and BSPl) to load the TO and MOP
Registers from the U-Bus.

MOP(O:l) := U-BUS(lO:ll) Command
TO(2:4) := U-BUS(13:l5) Address

The MOP Registe r then con ta ins a
user defined command for the module
whose address is contained in the
TO Register. The CPU freezes until
any pending MCU requests are com­
pIe ted.

The MCU option code DATA enables
Store field bus options (as in CRL)
to store the U-Bus into beOR and to
initiate a high-request command.

The MCU option code DB functions
the same as ABS except that it
specifies the DB-Bank Register used
with DB-relative addressing.

5-34

The MCU option code NIR enables the
Store field bus options (as in CRL)
to store the U-Bus into DCOR and to
initiate a high-request command. On
the following select cycle, DCOR is
read into the MCU-Bus and stored in
the CPU NIR Register.

System Microcode

Table 5-8. MCU Option Field Code Definitions (Continued)

I---------------I------T~--------·-----·------------~·

1 1 Fie 1d I
1 Label and Name I Code I Description
1 I I----------------·1---· ----~.----~.~--~-------------------

DPOP 1 10010 The DPOP MCU option code functions
(Data-POP) I the same as DATA and also pops the

I stack.
1

NIR I 01001
(Next Instructionl
Reg iste r)

OPND 11001
(Operand Register)

PB 01000
(PB-Re lative)

RND 10100
(Retur ned Da ta)

RNP 10111

RNS 11100

ROA 00111

ROD 10111

Same as NIR except that the MCU-Bus
is stored in the CPU OPND Register.

Same as ABS, except that it speci­
fies the PB-Bank Register used in
PB-relative addressing.

The MCU option code RND enables the
Store field bus options (as in CRL)
to store the U-Bus in ACOR and to
initiate a low-request command. The
DB-Bank Register generates the mod­
ule number used to initiate a data
fetch from memory. The returned
data is loaded into the NIR.

Same as RND, except that the PB­
Bank Register generates the module
number.

Same as RND, exce pt tha t the Stac k­
Bank Register generates the module
numb er.

Same as- RND, except that the ABS­
Bank Register generates the module
number and the returned data is
loaded into the OPND Register.

Same as RND,except that the DB-Bank
Register generates the module num­
ber and the returned data is loaded
into the OPND Register.

-------_._._-_._-_.... -.--.- ------- ----~--------'-,-'~-_._------,-,_._.--'--------_.__...

535

~ystem Microcode

5-8. MCU Option Field Code Definitions (Continued)

1-·------.------.--l~-·----l-------·--·--------·--·-·-.--.-.---------.-.--.-.

1 1 Fie ld I
1 Label and Name I Code 1 Descr ipt ion
1 .__------- 1 .__-- I_~. - .__.__- . _

ROND 10011 Same as RND, except that the re­
turned data is stored in both the
NIR and the OPND Register.

RONP 01011 Same as RNP, except that the re-
turned data is stored in both the
NIR and the OPND Register. 1

I
RONS 11011 Same as RNS, except that the re- I

tur ned da ta is stored in both the 1
NIR and the OPND Register. I

I
ROP 01111 Same as RNP, except that the re- I

returned data is stored in the OPND
Register.

ROS 11111 Same as RNS, except that the re-
turned data is stored in the OPND
Register.

S

WRA

WRD

11000

00110

10110

Same as ASS, except that the Stack­
Bank Register is specified and is
used with DB-, Q-, or S-relative
addressing.

The MeU option code WRA enables the
Store field bus options (as in CRL)
to store the U-Bus in ACOR and to
initiate a low-request command. The
ABS-Bank Register generates the
module number used to initiate a
data store into memory. On the sel­
ect cycle, the addressed memory
module interprets the MCU-Bus data
as an address and goes busy. The
module stays busy until it receives
the data to be stored (normally
sent on the following cycle with a
microcode BUS DATA instr uct ion) and
completes the write cycle, or until
its timer runs down.

Sarne as WRA, exce pt tha t the DB- .
Bank Register generates the module
numbe r.

5-36

System Microcode

Table 5-8. MCU Option Field Code Definitions (Continued)

�-.--.-.-.----..----------1-----.-1------.-.-------------------·-----~----I
I 1 Fie Id 1 I
1 Label and Name -I Code I Des cr ipt ion 1

I I 1 1
I-·----·-----·-----~·I-·------I----·-----·....··-·--·------.----.-----------.---.. I
1 1 I 1
1 WRS I 11110 I Same as WRA, except that the Stack-I
1 I I Bank Register generates the module I
1 I I n umbe r • 1
1 ._._-------_. 1-- -1__.. ._.__.__..__. .. 1

5-37

System Microcode

Table 5-9. Skip Field Code Definitions

I------r---·-·-·--------~~--------------I

I Fie ld I I
Label and Name I Code I Des cr ipt ion I

I I I-.-'-------,-.- --- •.-0__ -_. ._~ ~__

BIT6 00101 The Skip field code BIT6 sets the
NOP2 FF if bit 6 of the U-Bus word
is a logic 1.

BIT8

CRRY
(Car ry)

crRM
(Counter Max)

EVEN

00110

01000

11011

00010

The Skip field code BIT8 sets the
NOP2 FF if bit 8 of the U-Bus word
is a logic 1.

The Skip field code CRRY sets the
NOP2 FF if the ALU carry out is a
logic 1.

The Skip field code CTRM sets the
NOP2 FF if the counter contains all
ones.

The Skip field code EVEN se ts the
NOP2 FF if the U-Bus word is an
even number (U-Bus bit 15 is a
logic 0) •

Fl 01100
(Flag 1)

F2 01110
(Flag 2)

F3 11100
(Flag 3)

INDR 10100
(Indirect)

The Skip field code Fl sets the
NOP2 FF if Flag 1 FF is se t.

The Skip field code F2 sets the
NOP2 FF if Flag 2 FF is set.

The Skip field code F3 sets the
NOP2 FF if Flag 3 FF is set.

The Skip field code INDR s~ts the
NOP2 FF if the Indirect Bit FF is
set and the indirect signal is a
logic 1.

JLUI

NCRY

11001

01001

The Skip field code JLUI causes a
microjump to the ROM address speci­
fied by the LUT providing the indi-
rect condition (Skip field INDR
code) is not met. If the indirect
condition is met, the microjump is
not executed.

The Skip field code NCRY sets the

5-38

System Microcode

Table 5-9. Skip Field Code Definitions (Continued)

t--'-~----~--'----r-'--'-~--'r-~-~--'.--------~----·---·--·----I
I 1 Fie Id 1 I
1 Label and Name 1 Code I Des cr ipt ion 1

I I 1 I
I--·------·--·-·--I--·--·--I---------~---·~---------------I

I NCRY (Con t) I I NOP2 FF if the car ry out fr om the I
I 1 1 AL U is ze r o. I

I 1 I
1 NEG 01011 I The Skip field code NEG sets the 1

I I NOP2 FF if the U-Bus word is a neg-I
1 I ative number (U-Bus bit 0 is a I

I logic 1) • 1

1 I
NEXT 11101 1 Terminates current instruction and 1

I initiates the sequence necessary to
I begin execution of the next in-
I struction. If stackop A has just
1 been executed and stackop B is not
I a NOP, then the hardware executes
I stackop B. Otherwise, the action
I shown in the timing figure below
I ta kes place (a, b, c, d, e, f ar e equal
1 length CPU clock cycles) •
1

a b c d e f

Execute
1 st line
of mic­
rocode
of new
i nstr.

NOP2

P+l-)P
Select cycle
RANKl-)

RANK2
(If memory
reference,
force PADD,
BASE to R,
S-BUS Reg's.)

NEXT

BUSL,RWP
Issue LOREQ

LUT-)
VBUS-)
ROM-)
RANKI

NIR-)CIR

NIR-)LUT

..• Mem. Sel.
cycle

DATA-)NIR

I
I Time periods a, b, c (if present),
I and d occur in the currently exe-
I cuting instruction. Time periods a
I and b must occur before d for rnaxi~

I mum execution speed. Otherwise, a
I CPU freeze will occur at d. Time
I periods a and b result from the
I next instruction prefetch of the
1.....'---_._------~-------'_._- -------- ---_.._~----------~------_._._----,--,--------_.-

5-39

System Microcode

Table 5-9. Skip Field Code Definitions (Continued)

r------T--------------.-.--·~------·-I

I Fie ld I I
Label and Name I Code I Oeser iption I

------~ --I_---_- I_~._. .. ~ ~. .__ I

NEXT (Cont)

NF 1
(Not Flag 1)

NF2
(Not Flag 2)

NOFL
(Not Overflow)

01101

01111

00111

current instruction. Time period c
mayor may not be present depending
on the length of the instruction.
Time period d is the last line of
the current instruction. It initi­
ates a next instruction prefetch,
transfers NIR to CIR, and applies
the address on the VBUS (normally
using the LUT output) to the ROM
input. The ROM word at this ad­
dress is stored in RANKI. In addi-
tion, the NOP2 FF is set. Time
period e is used to increment the P
Register, transfer RANKI to RANK2,
and, if the new instruction is a
memory-reference type, load the R­
and S-Bus Registers wi th the Pre­
adder output and the proper base
register. This is also the select
cycle for the next instruction pre­
fetch if there is no MCU conflict.
During time period f,the first line
of the new instruction is executed.

The above is the normal sequence of
operation of NEXT. This sequence is
modi fied in the eve nt an inte r r upt
is pending or the microcode line is
" •.• DATA NEXT". NEXT also clears
Fl, F2, F3, CNTR, Subroutine Flag
FF, and the ABS-Bank Re gi ste r.

The SklP field code NFl sets the
NOP2 FF if Flag 1 FF is cleared.

The Skip field code NF2 sets the
NOP2 FF if Flag 2 FF is cleared.

The Skip field code NOFL sets the
NOP2 FF if the ALU overflow bit is
not a logic 1. Causes conditional
jump and JSB to be two-cycle in­
structions.

5-40

System Microcode

Table 5-9. Skip Field Code Definitions (Continued)

1----~-------'-~--'l'----~T"-"----'--.----.---.--.----.------.-.---~-..---
I I Fie Id I
I Label and Name I Code I Description
1 . -_. .1 __-_-__ I_._-_.._. ._.._~_.__-_._.__._. -. _

Nap 11111

NPRV 10110
(Not Privileged)

NSME 00100
(Not Same)

NZRO 00001
(Not Zero)

ODD 00011

pas 01010
(Positive)

RSB 11000
(Re t ur n fr om
Subroutine)

SR4 10010
(SR= 4)

SRL2 10101
(SR<2)

SRL3 10111
(SR<3)

SRN4 10011
(SR Not 4)

SRNZ 10001
(SR Not Zero)

No opera tion.

The Skip field code NPRV sets the
NOP2 FF if the privileged mode bit
(status word bit 0) is zero.

The Skip field code NSME sets the
NOP2 FF if all bits of theT-Bus
are not the same.

The Skip field code NZRO sets the
NOP2 FF if the T-Bus word is not
equal to zero.

The Skip field code ODD sets the
NOP2 FF if the U-Bus word is an odd
number (U-Bus bit 15 is a logic 1) .

The Skip field code pas sets the
NOP2 FF if the U-Bus word is a pos­
itive number (U-Bus bit 0 is a log­
ic 0) •

The Skip field code RSB causes a
microjump to the ROM address con­
tained in the Save Register.

The Skip field code SR4 sets the
NOP2 FF if the SR Register content
is equal to four.

The Skip field code SRL2 sets the
NOP2 FF if the SR Register content
is less than two.

The Sk ip f ie Id code SRL 3 se ts the
NOP2 FF if the SR Register content
is less than three.

The Skip field code SRN4 sets the
NOP2 FF if the SR Register content
is not four.

The Skip field code SRNZ sets the
NOP2 FF if the SR Register content
is not zero.

5-41

Sys tern Microcode

Table 5-9. Skip Field Code Definitions (Continued)

,--·------·-·-,-'l---·-·---------.-
I· Field 1

Label and Name I Code , Description
I. I

SRZ
(SR Zero)

TEST

UNC
(Unconditional)

ZERO

10000

11010

11110

00000

The Skip field code SRZ sets the
NOP2 FF if the SR Register content
is equal to zero.

The Skip field code TEST sets the
NOP2 FF if any enabled interrupt is
pending.

The Skip field code UNC and/or un­
conditional JMP's set the NOP2 FF.

The Skip field code ZERO sets the
NOP2 FF if the T-Bus word is equal
to ze rOe

5'-42

NOTES

5-43

System Microcode

System Microcode

NOTES

5-44

MODULE CONTROL UNIT! _
MAIN MEMORY OVERVIEW I VI I

This section contains principles of operation and servicing in­
formation for the computer system's Module Control Unit (MCU) and
Ma in Memory.

6-1 MCU OPERATIONS

As previously discussed in paragraph 2-15, each computer module
gains access to the CTL Bus through its MCU. For any given mod­
ule, the MCU may be located on a single dedicated PCA, distrib­
uted on multiple PCA's, or located on a small part of a PCA.
Whatever its physical configuration may be however, each MCU
performs the same function of interfacing its associated module
with all othe r modules connected to the CTL Bus. Al though the
following discussion of MCU operations is specifically for the
Central Processor Module MCU and Main Memory's MCU logic circuit,
it is representative of any of the other MCU logic circuits.
Since the purpose of the MCU is to control CTL-Bus transmissions,
its operations will be discussed dynamically by following the
sequence of logical operations involved for each of the different
types of CTL-Bus transmissions between the CPU and memory. (For
information concerning the MCU's operations with the I/O Proces­
sor, refer to Section VII.)

6-2. Fetch Next Instruction Operations

The operations involved in order to fetch an instruction from
memory consist of three major steps.

a. The CPU transmits the address of an instruction word to mem­
ory and tells memory what to do with that address.

b. Memory receives the address, reads the contents of the ad­
dressed location, and transmits the contents back to the CPU.

c. The CPU receives the instruction word and loads it into the
NI R.

6-3. CPU ADDRESS TRANSMIT. When a NEXT instruction is decoded
from the ROM Skip field, a NEXT signal loads the contents of the
P Register (address of instruction to be fetched) into the ACOR
Register. (See figure 2-20.} NEXT also transfers the contents of
the NIR into the CIR. The CPU executes the CIR contents. The
objective is to refill NIR while the CIR instruction is being
executed so as to implement the CPU instruction look-ahead fea­
ture. Assuming that the transmission may proceed, NEXT sets the
CPU Low Request (LREQ) flip-flop (figure 6-1) in the MCU. (The
difference between low request and high request is that low re­
quest always che cks to see if the destination module is ready to

6-1

MCU/Main Memory Overview

M

o
D
U
L
E

M

A
T
E
S

W
I

T
H

M

E
M
o
R
y

...-·I
Z -
J '1-1 I·· ~I'\ 'ROII•

- 7 z~

•·..:; r-.f-o~:Jv
lJ 1-0 z .. 'ROM'

" tII

~2~T~7

--<E'~ 5 o----i
--.:.: TO

ENe

l)-{'~S MAP U
II

Jh'~~ ~" co....
ARATOR

2::fl
~FF

~ r:==J
1t~ lr>t=.:=.r ROY

'Un
.... OOWN J }--

L-~

II TQtOMl' k--TO

~~" 1..=::...cc- OP NIli'
I.NCOOE.. FF

~~-
I COll'"."SI I

>--

OPiNF_LIDO,,,,,, Y
CPlll

IOSTIlOB

MODULE

h CONTROL
UNIT

l@cow .
ARATOR

_J
IOlRfO

~ 1~FF

f-IOHRfQ

1~1~
0..-

FF -
IOHSll

IOISEl

IOMOP

10TO

~ S
RUOY r
=OA- -

MAP

51'1
MCU

M
A
T
E
S

W
I

T
H

I
o
P

MOD

M
A
T
E
S

W
I

T
H

C

P
U

Figure 6-1. MCU Simplified Logic Diagram

6-2

MCU/Main Memory Overview

receive a transmission because a memory operation is being initi­
ated, whereas high request assumes that the destination module is
expecting the transmission of data to complete a memorywrite
operation.) By this time, the MCU Encoder has encoded the appro­
priate memory opcode (MOP), which is now in the MOP Register.
The memory opcode is a two-bit code which tells memory what to do
when it receives bus data. There are three possible memory op­
codes: No Operation (NOP), Write (W), and Read (R). NEXT locks
the code in the MOP Register and sets the Next In Process (NIP)
flip-flop. Setting NIP opens the next instr uction re,gister so
that all CTL-Bus transmissions are gated to NIR until NIP is re­
set. NEXT also locks the TO Register which now contains the des­
tination module number.

The LREQ signal reads the contents of the TO Register into the
Ready Comparator which checks the Ready (ROY) line for the in­
tended destination to see if that module is ready to receive. If
not, nothing further happens until the the RDY line is true. The
output of the Ready Comparator, through a set of changeable jump­
ers, pulls the Enable (ENB) line low for this module number.
Since no module can transmit unless all ENB lines of higher pri­
ority modules are high, pUlling the ENB line low disables all
lower priority modules. Provided that no higher priority module
has pulled its ENB line low to this module ,(through a second set
of jumpers), and provided the I/O Processor is not requesting the
bus, the output of the Ready Comparator now sets the CPU Select
(SEL) flip-flop. The SEL signal reads out the ACOR contents to
the CTL Bus as well as TO and FROM module numbers and the memory
opcode. SEL also pulls the destination module's RDY line low for
one cycle so that other modules will not assume that the memory
module is ready before memory has a chance to pull the ROY line
low itself on the next cycle.

6-4. MEMORY RECEIVE AND TRANSMIT. The memory module's TO Cam­
para tOl' (figure 6-2) identifies the code on the TO I ines as its
own module number and se ts the Ready fl ip-f lop and Addres s La tch
flip-flop which locks the address word from the bus into the Ad­
dress Register and the FROM address into the From Register. The
Ready signal also keeps the module's ROY line pulled low (the CPU
had pulled it low temporarily in the preceding cycle) and, to­
gether with the decoded memory opcode, begins the read memory
cycle. The addressed memory location is read into the Read Data
Register. Meanwhile, on the next clock edge, the MCU begins the
process of requesting access to the bus by setting the Enable
flip-flop. (Since memory transmits only to modules that are ex­
pecting the transmission, only high requests are used.) The En­
able signal pulls its enable (ENB) line low to lower priority
modules and, provided no high priority module has pUlled low on
its ENB to this module, pets the Data Out flip-flop on the next
clock edge. The memory loca tion contents are in the Read Da ta
Register and the Data Out signal reads the contents out to the
CTL Bus. The Data Out signal also reads out the wired FROM code
and TO code (which is simply the saved FROM code, since transmis­
sion is back to the CPU).

6-3

MeU/Main Memory Overview

~
1

Figure 6-2. Memory Module Simplified Logic Diagram

6-4

MCU/Main Memory Overview

6-5. CPU RECEIVE. The MCU's TO Comparator (figure 6-1) identi­
fies the code on the TO lines as its own module number, and gives
a true output. Also, the FROM Comparator identifies the trans­
mission as the one it is waiting for by comparing the saved TO
Registe r con tents with the FROM 1 ines of the bus; it therefore
also gives a true output. If the FROM code is not the expected
one, it is loaded into the MOD Register and a module interrupt is
generated to the CPU. The two true outputs together reset the
NIP flip-flop. The NIR, which up until now has been loading all
bus transmissions into itself, is now inhibited from further
loading because it now contains the expected next instruction.

6-6. Fetch An Operand Operations

The operations for fetching an operand from memory are very sim­
ilar to the operations for fetching an instruction. The main
differences are that the initiating signals are different and the
receiving register is the Operand (OPND) Register rather than the
NIR. Therefore, the following discussion primarily only gives
the overall flow of information. Refer back to paragraphs 6-2
through 6-5 for additional details.

6-7. CPU ADDRESS TRANSMIT. The process of sending an address to
memory begins when a signal from the ROM Store field loads the
U-Bus contents into the ACOR Register on the CPU and sets the
LREQ flip-flop on the MCU. (See figures 2-20 and 6-1.) The MCU
Operation Encoder gives a memory opcode to the MOP Register and
sets the Operand in Process (OPINP) flip-flop. The LREQ signal
causes the Ready Comparator to check if the destination module is
ready and, if so, enters the priority. When priority allows (ENB
present), the Select flip-flop is set, causing the address stored
in ACOR to be read out to the CTL Bus.

6-8. MEMORY RECEIVE AND TRANSMIT. The memory module (figure 6­
2), after recognlzlng its TO code and setting the Ready flip­
flop, locks the address from the bus into the Address Register.
The Ready signal, together with the decoded memory opcode, ini­
tiates the reading of the addressed location into the Data Regis­
ter. Meanwhile, the Enable flip-flop is set and priority is
established. When the module has priority to use the bus on the
next clock cycle, the Data Out flip-flop is set causing the oper­
and, now in the Read Data Register, to be read out to the CTL
Bus. The saved FROM code is used to identify the destination
(TO) as the CPU.

6-9. CPU RECEIVE. The TO and FROM Comparators together cause
the OPINP flip-flop to reset, thus locking the operand from the
bus into the OPND Register.

Note

If the CPU is frozen awaiting the operand, the operand
in addition to being loaded into the OPND Register, is
also loaded into the CPU S-Bus Register, thus saving one
clock of instruction execution time.

6-5

MCU/Main Memory Overview

6-10. Store An Operand Operations

The operations for storing an operand in memory involves much the
same logic operations that were discussed in the preceding fetch
transmissions. The main difference is that instead of a CPU to
memory transmission and then a memory to CPU transmission, there
are two consecutive transmissions from CPU to memory. The first
transmission is the address and the second is the operand. The
following paragraphs are again condensed to illustrate only the
overall flow of information.

6-11. CPU ADDRESS TRANSMIT. A signal from the ROM Store field
loads the U-Bus contents into the ACOR Register on the CPU and
sets the LREQ (low request) flip-flop on the MCU. (See figures
2-20 and 6-1.) The MCU Operation Encoder gives a memory opcode to
the MOP Register. In this c~se, the opcode is write rather than
Read as in the previous cases. (Neither the NIP nor OPIND flip­
flops are set.) After checking to see if the destination module
is ready and the Enable (ENB) signals are present, the LREQ sig­
nal sets the Select flip-flop which causes the address to be read
out to the CTL Bus.

6-12. MEMORY RECEIVE. The memory module (figure 6-2) after recog­
nizing its TO code and setting the Ready fl ip-flop, locks the ad­
dress from the CTL Bus into the Address Register. The FROM, MOP,
and Address Registers remain locked and the ROY line goes low so
that no other module can send a new address to this memory
module.

6-13. CPU DATA TRANSMIT. Meanwhile, the CPU has put the operand
on the U-Bus, and a DATA signal from the ROM Store field loads it
onto the CPU DCOR (figure 2-20) . The DATA signal also sets the
High Request (HREQ) flip-flop on the MCU (figure 6-1). Destina­
tion readiness does not need to be checked, however, since memory
is expecting a data transmission from this module. After prior­
ity checks, the HREQ signal sets the CPU Select flip-flop which
reads out the operand to the CTL Bus. (The memory opcode is NOP,
since memory is already holding the appropriate opcode.)

6-14. MEMORY RECEIVE. In the memory module the TO Comparator
recognizes its TO code and the FROM Comparator verifies trans­
mission from the correct module. The true ouputs from both of
these comparators cause the operand from the bus to be loaded
into the Wr ite Data Register and cause the memory timing to start
the memory write cycle. This causes the operand to be stored
into the addressed location.

6-15. Command A Module

The machine instruction set include's a Command (CMD) instruction
that permits privileged mode programs to issue commands directly
to a module (assuming the module is equipped to handle such com­
mands). When programmed, the CMD instruction takes a l6-bit word
from the TOS and sends it to a module whose module number (and

6-6

MCU/Main Memory Overview

two-bi t opcode) are given in another word in the stack. (Refer
to Section IV for the CMD instruction definition.)

WARNING

The normal checks and limitations
that apply to the standard users in
MPE are bypassed in privileged mode.
It is possible for a privileged mode
program to destroy file integrity,
includ ing the MP E ope ra ting s ys tern
software itself. Hewlett-Packard
cannot be responsible for system
integrity when programs written by
users operate in the privileged
mode.

The ROM MCU field codes of Control (CRL) and Command (CMD), in
that order, are used to effect the execution of the CPU instruc­
tion CMD. When the hardware decodes a CRL in the MCU field, it
gates bits 13 through 15 from the U-Bus, through the TO MUX lines
in the M:U, and these bits are clocked into the TO Registe r
(figure 6-1). U-Bus bits 10 and 11 are clocked into the MOP
Register. A following line of microcode then executes a CMD MCU
function which gates that line's U-Bus data into ACORand issues
a Low Reques t (LREQ).

The MCU logic performs the normal sequence of checking for bus
priority. Then the contents of the TO Register are gated to the
TO lines of the CTL Bus, the contents of the FROM jumpers in the
MOD Register are gated to the FROM lines on the CTL Bus, and the
contents of the MOP Register are gated to the MOP lines 'of the
CTL Bus. The contents of ACOR (figure 2-20) are placed on the
MCUO lines of the CTL Bus. What affect the MOP and MCUO lines
have on the addressed module depends on the design of the module.

When a module needs to communicate with the CPU, it cannot pass a
data word to the MCUO lines because the M:U is not expecting the
communication and will not gate the MCUD lines back. The CTL
Bus, however, since it does not use a handshake signal sequence,
is mon i tor ing the bus a tall times and the CPU is able to detect
that the module is trying to communicate. The hardware generates
a module interrupt and sets CPXl (bit 7).

When the module has priority to use the CTL Bus, it places the
CPU module number on the TO lines, CPU address on the FROM lines,
and a value on the MOP lines. The MCU logic recognizes its own
address, but because it is not expecting a value from the calling
module, the FROM lines value is sent to bit positions 5, 6, and 7
of the MOD Register and the MOP value is sent to bit positions 2
and 3. (See figure 6-1.) The microcode will fetch these values

6-7

MCU/Main Memory Overview

from the MOD Register and pass them to the interrupt handling CPU
instruction. To command the TO ME - FROM ME lines, the CPU in­
struction XEQ takes the l6-bit TOS value and executes it as an
instruction. In order to do this, the value must be placed in
the NIR before it can be gated to the CIR to be executed. Be~·

cause the CTL Bus is the only data path into NIR, the value is
placed on the FROM lines of the CTL Bus with an address of TO the
CPU (in essence, TO ME). The FROM lines will have the CPU's port
number (FROM ME) •

The TO ME - FROM ME action is caused by a code of NIR in the MCU
field of a microinstruction. When the MCU detects the NIR code,
the High Request (CPU HREQ) flip-flop and the Next-In-Process
(NIP) flip-flop (figure 6-1) are set and the value placed on the
U-Bus is clocked into DCOR (figure 2-20). The hardware places a
NOP code in the MOP Register and clocks the FROM jumper value
through TO MUX into the TO Register. The MCU, when granted pri­
ority to use the CTL Bus, gates the contents of the TO, MOP, and
DOOR Registers onto the CTL Bus. Because the MCU for the CPU is
monitoring the CTL Bus at all times, the TO Comparator recognizes
that the CPU is being addressed and that the CPU is expecting the
communication (determined by the fact that the values on the FROM
lines match the contents of the TO Register) • The MCU, there­
fore, will accept the value on the MeUD lines and, because the
NIP flip-flop has been set, the value is clocked into NIR. The
same sequence as des cr ibed for TO ME - FROM ME will occur if an
Operand (OPND) code is decoded in the MCU field of a microin­
str uction. The only difference is that the MCU' s OPINP flip-flop
(figure 6-1) is set instead of the NIP flip-flop and the value
will be gated into the OPND Register instead of the NIR.

6-16. MCU SERVICING INFORMATION

The Central Processor Mbdule MCU PCA is a nonrepairable PCA and
must be replaced if found defective. No repair procedures are
required. However, the MCU, PCA does contain jumpers that must be
properly configured. The jumper configurations are discussed in
paragraphs 6-17 through 6-21 and identified in figure 6-3. (Ser­
vicing information for other computer module MCU circuits is pro­
vided with the discussions of the individual modules.)

6-17. ENABLE. The ENABLE signal is used to establish priority for
accessing the CTL Bus. The insertion of jumpers WI through W4 es­
tablish the priority of the MCU PCA. Jumper WI must be installed.

6-18. READY. The READY signal is used to signify that a module
is ready to communicate with memory. The insertion of jumpers W5
(READY 4) through W7 (READY 6) determine which READY line is as­
signed to the MCU PCA. Jumper W6 (READY 5) must be installed.

6-19. CPU NUMBER. The system is designed to have only one CPU
which must be designated as CPU number 1. Ensure that jumper WID
is installed and that jumper Wll has been removed.

6-8

MCU/Main Memory Overview

TOP ,,3,----------79 ,,3,--------.79

BOTTOM 2,4 • - 8OL -.J2g'41,.-iiiiiiiiiiiiiiiiii.0
80L_---,P1 II

W8 - MCURST
W9 •
Wl0- CPUl
Wll • • CPU2

W12 • • CPU
W13 -} MODULE
W14 • • NUMBER

MODULE NUMBER
W13 = 5

MCU PeA
30003-60007

NOTE: JUMPERS ARE SHOWN
INSTALLED FOR THE
NORMAL CONFIGURATION
OF CPU NO.1, MODULE NO.5

rJ°

Wl_}
W2 • • ENABLEW3 • •
W4. •

W5· .}
W6- READY
W7. •

0,,"",

J1
TOP 2,4, • • 50

BOTTOM 1,3,----_a49

J2
2,4, - 50
1,3,-'----49

J3
2,4, • 0 50
1,3,----_049

Figure 6-3. MCU PCA Jumper Locations

6-20. CPU MODULE NUMBER. The CPU connected to the CTL Bus is as­
signed a module number between 4 and 6 by insertion of jumpers
W13 and W14. The module number 5 must be assigned to the CPU by
install ing j urnper W13.

6-21. MCU RESET. Jumper W8 is always installed.

6-22. MAIN MEMORY

As previously discussed in paragraph 2-11, Main Memory is an ex­
pandable memory module that consists of at least three PCA's as
shown in figure 6-4.

6-23. Memory peA Interfacing

6-24. CTL BUS. As shown in figure 6-4, the CTL Bus provides for
the transfer of data between the memory module and the other mod-

6-9

MCU/Main Memory Overview

POWER BUS ,

~ P1

SEMICON DUCTOR
MEMORY ARRAY PCA(S)

30008-60003
(1 TO 4 PCA's)

I CPU

lOP

J1 J2 J3

DATA{ ·
~

ADDRESSING
TIMING

,
...

l
J1 J2 J3

PWR ON
...

ENTIMER
..
...

FRUN CLK IN :
MEMORY CONTROL

.. P1 & LOGG ING PCA
MCUClK ...

J
30007-60005

PF WARN
... FRUN ClK OUT

P2/

~ 4~ ~ Ito ~ ~ ~ ~ ~

CENTRAL (CTL) DATA BUS

MCU

lOP BUS

FAULT
...LOGGING ..

P3 P2
INTERFACE

BUS

\,

,,
P1

FAULT lOGGING
INTERFACE PCA-

'P3

\

-Fault logging interface PCA 30009-60002 for HP32421A Series III
System Clock/FLI PCA 30135-60063 for HP32435A Series 1/1

Figure 6-4. Memory Module Interface Diagram

6-10

MCU/Main Memory Overview

ules on the bus via the MCUD (00-15) lines. Data parity is pro­
vided by the MeUD PRTY line. Addressing information used to
select a specific address of a word in memory is transferred via
the data lines. Control information is provided for the follow­
ing funct ions:

a. To select a module, TO (00-02).

b. To designate the requesting module, FROM (00-02).

c. To indicate whether the module is ready or not, READY
(00-03) •

d. To resolve priority considerations, ENABLE (00-03).

e. To select a specific memory operation, MOP (00-10).

f. To indicate a parity error on transfer of control information
and data parity error during a write cycle, NSYS PEe

g. To indicate parity for the control lines, SYSPRTY.

h. The "not" master reset (NMCU RST) pulse initializes the MCL
PCA during initial power turn-on and during power failure.
Control can be reset during a refresh cycle without loss of
stored data.

i. To indicate an address parity error, NMCUD PEe

6-25. lOP BUS. The FLI PCA interfaces with the lOP Bus to exe­
cute direct I/O commands. The FLI PCA interrogates the MCL fault
logging array and stores the contents into the FLI I/O logging
array. Commands on the lOP Bus then cause a read of the I/O log­
ging array and transfer the contents into a disc file for future
analysis.

6-26. FAULT LOGGING INTERFACE BUS. The Fault Logging Interface
Bus is a flat cable connected between P3 on the MCL PCA and P2 on
the FLI PCA. All communication between these two PCA's occurs on
this bus. When a memory is configured above 5l2K words, this bus
extends to P3 of the upper 5l2K MCL PCA. A single FLI PCA can
communicate independently over the bus to the selected (upper or
lower 512K) MCL PCA.

6-27. POWER BUS. The CPU applies an ENTIMER signal to the MCL
PCA via the Power Bus to enable a timer during every write cycle.
If the data is not received within 2.87 msec during a write oper­
ation, the timer resets the control circuits to prevent memory
from waiting for data. No loss of memory data occurs during an
incomplete write cycle. The system clock (NMCUCLK) is a l75-nsec
square wave from the CPU that provides timing to the MeU cir­
cuits. The NMCUCLK can be halted and pulsed for maintenance pur­
poses, NMCUCLK can be disconnected and replaced wi th an exte rnal
timing signal. Refresh clock timing is automatically selected
from an oscillator internal to the MCL PCA or from the NFRUNCLK

6-11

MCU/Main' Memory Overview

signal input. NFRUNCLK is in sync with NMCUCLK, but cannot be
halted with the single-cycle switch. Power failures are sensed
in the power supplies (Sections IX and X) to initiate the NPF

WARN (power fail warning) to the CPU and memory. The MCL PCA
guarantees 3.0 msec for the CPU to execute its power fail routine
and store the necessary information into memory. After this 3.0­
msec interval, clock timing to memory is disabled to prevent any
further read or write operations until power is restored.

6-28. Memory peA Descriptions

Brief descriptions of the memory PCA's are contained in para­
graphs 6-29 through 6-31. The various memory PCA configurations
are discussed in paragraph 2-11.

6-29. SMA PCA. The SMA PCA contains the data and check bit stor­
age array for the 128K-word dynamic semiconductor memory. The
address/data receivers and drivers that interface with the MCL
PCA are also conta ined on this PCA. All commun ica t ion with the
SMA PCA is governed by the MCL PCA. SMA PCA operations are dis­
cussed in paragraphs 6-32 through 6-36.

The individual semiconductor memory chip is a 16K by 1 storage
device (16 thousand one bit words) • On the SMA PCA, the chips
are physically arranged in eight rows with 22 chips on a line as
shown in figure 6-5. Since a maximum of eight SMA PCA's can be
contained in memory, each SMA PCA contains Switch Sl that iden­
tifies the portion of memory represented by that SMA PCA. Refer
to paragraph 6-48 for the proper setting of Sl.

6-30. MCL PCA. The MCL PCA contains the read/write control cir­
cuits, MCU logic, refresh circuits, address and data registers,
MCU logic, refresh circuits, error logging array, and error cor­
rection logic for the memory module. This PCA also contains the
ch eck b it par i ty gene ra tor sand che cke rs. Since the MCL PCA can
support up to four SMA PCA's, it must be configured to its asso­
ciated ~emory module size. Refer to paragraph 6-49 for the var­
ious switch settings. MCL PCA operations are discussed in para­
graphs 6-32 through 6-36.

6-31. FLI PCA. The FLI PCA (part no. 30009-60002 for HP 32421A
Series III and part no. 30135-60063 for HP 32435A Series III)
contains the control circuits and I/O logging array for interro­
gating the MeL PCA's error logging array. Refer to paragraph
6-50 for FLI PCA switch settings. FLI PCA operations are discus­
sed in paragraphs 6-32 through 6-36.

6-32. Memory Operations

Memory has the following operating modes and specifications:

a. WRITE; 700 nsec cycle time (minimum)

6-12

MCU/Main Memory Overview

P1
P2 P3

0)
0)

:;
...
:>

M M

:; ...
:;

s s
C C"oI M 'l:t It) <0 I""" 00 0) 0Cl Cl Cl Cl Cl Cl Cl Cl Cl

ROW0

ROW 1

ROW2

ROW3

ROW4

ROW5

ROW6

ROW7

0) 0)
'l:t 'l:t

:; C"oI
:>

M M
'l:t 'l:t... C"oI
:> :>

... C"oI M 'l:t It)

0 ... 0 0 s U C"oI M 'l:t It)

Cl Cl () () () () ()

J1 J2 J3

211 Figure 6-5. SMA PCA Chip Arrangement

b. READ; 350 nsec access, 700 nsec cycle time

c. NO OPERATION (NOP); 700 nsec cycle time

These operations plus fault correction and error logging are dis­
cussed briefly in the following paragraphs.

6-33. READ. A read operation (MOP 10) outputs 17 data bits and
a parity bit from the addressed location to the requesting module
via the CTL Bus. Refer to paragraphs 6-2 through 6-14.

6-34. WRITE. A write operation (MOP 01) loads 17 data bits and
a check bit into a given address location. Two transmissions to
the memory module are required to initiate a write operation.
Refer to paragraphs 6-2 through 6-14.

6-13

MCU/Main Memory Overview

6-35. NOP. A NOP (No qperation) memory
similar to a read operation. However,
the originating module. The NOP can
phase when there is a system address
write operation, the MOP code sent with

operation (MOP 00) is
no data is transferred to
occur during an address
parity error. During a

the data is a NOP.

6-36. FAULT CORRECTION AND ERROR LOGGING. During a- read opera­
tion, the error handling circuits detect, log, and correct a~l

single-bit data errors. These circuits also det~ct double-bit
errors and force bad CTL Bus data parity to alert the receiving
module. Error .checking and correction takes place during the
normal memory cycle. An error logging scheme uniquely reports'
all single-bit errors (or groups of double-bit error pairs) so
that problem chips on the SMA PCA's can be replaced during sched-
uled maintenance. Refer to paragraphs 6-38 through 6-42.

6-31 Memory Servicing Information

Since the fault correction and error logging features of memory
are useful maintenance tools, they are discussed briefly in para­
graphs 6-38 through 6-47 on a how-to-use basis when maintaining,
troubleshooting, or repairing Main Memory. For a more detailed
discussion of these features, refer to the Stand-Alone Memory
Diagnostic D430B, part no. 30000-90004. In addition, the repair
philosophy for each of the memory module PCA's are discussed in
paragraphs 6-48 through 6-50.

Note

Throughout the following fault correction and
error logging discussion, the term "FLI PCA"
pertains to the Fault Logging Interface PCA,
part no. 30009-60002 for the HP 32421A Series
III and to the System Clock/FLI PCA, part no.
30135-60063 for the HP 32435A Series III.

6-38. FAULT CORRECTION. The fault correction logic on the MCL
PCA generates a six-bit check field for each l6-bit memory word
and stores this field along with toe data on the SMA PCA. The
construction of the check field is shown in figure 6-6. It
should be noted that check bits CS, C3, Cl, and CO are generated
to provide even parity for the eight data bits they check and
that check bits C4 and C2 are generated to provide odd parity for
the eight bits they check. Each check bit is generated over a
different eight bits of the data word. The check bits are gener­
ated on each data word for each write operation to memory. The
hardware checks parity over the same data word when the location
is read back from memory. The read from memory includes the
check bits processed on a write operation. If the resulting
check of the data with the check bits is zero, no error has oc­
curred in the write-read sequence. If the resulting check of the
data word with the check bits is non-zero, the parity checker
outputs HOI through H05 which are decoded as shown in figure 6-7
and any single data bit error is corrected by complementing that
bit.

6-14

I'%j
1-'-
~
C
t'1
(J)

0'\
I

0'\.
tr:l
t'1

0'\ t'1
I 0

I-' t'1
U1

0
0
t'1
t'1
(J)
()
rT
1-'-
0
::s

g
OJ
(J)

en

DATA BITS CHECK BITS
PARITY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CO C1 C2 C3 C4 C5

* X X X X X X X X X EVEN
5 LSB X X X X X X X X X ODD
B X X X X X X X EVEN
I
T X X X X X X X X X ODD
S

MSB X X X X X X X X EVEN
X X X X X X X X X EVEN

5B* 07 13 23 03 15 25 11 21 16 06 32 22 34 14 24 30 00 20 10 04 02 01

*5B =5-bit octal error logging address HOl - H05

207

~
C

~
1-'­
::s
:3:
(J)

S
o
t'1
"<

o
<
(1)
t'1

<
1-'­
(1)

~

MCU/Main Memory Overview

ERROR LOGGING ARRAY ADDRESS STRUCTURE

BDO I BDl I ROWO IROWl I ROW2 I HOl I H02 I H03 I H04 I H05

I I I I
I

OCTAL
SMA ADDRESS

(0-3)

I
OCTAL

ROW ADDRESS
(0-7)

I
5-BIT OCTAL ADDRESS OF

DATA BITS 0-15 AND
CHECK BITS CO - C5

5-BIT OCTAL ADDRESS TO DATA OR CHECK BIT
CONVERSION TABLE

H01 - H05 BIT H01 - H05 BIT

00 CO 20 Cl
01 C5 21 D7
02 C4 22 D11
03 D3 23 D2
04 C3 24 D14
05 Note 1 25 D5
06 09 26
07 DO 27

10 C2 30 015
11 D6 31
12 Note 2 32 010
13 01 33
14 013 34 D12
15 04 35
16 08 36
17 37

Note 1. Forced double error write.
Note 2. Missing SMA.

Figure 6-7. Decode of Hal through H05

6-16

MCU/Main Memory Overview

Check bit CO is instrumental in detecting double-bit errors.
Double-bit errors are logged, but a unigue address is not gener­
ated for each double-bit error pair and errors are n9t corrected.
Instead, bad parity is generated on theCTL Bus requesting the
receiving module to flag the error. The MCL PCA includes logic
circuits to detect double errors and to force bad CTL Bus parity.
The MCL peA also includes logic circuits to log an error in the
Error Logging Array (ELA) during read operations.

For diagnostic purposes, the SMA PCA(s) can be programmed through
the FLI PCA to disable write error correction. The check bits
write control logic can be disabled during a write operation to
allow data bits to be changed without modifying the check bits.
Error correction is always enabled during read operations. All
detected errors are recorded regardless whether they are single
bit or mUltiple bit. Each single-bit detected error is logged
according to chip location in the ELA. The ELA uses static a lK
RAM located on the MCL PCA. Five bits of memory address and five
bits of error code determine the error logging address in which a
"1" is stored in the ELA.

The lK RAM is organized as a 1024 x 1 bit array requiring 10 bits
of address. The five most significant bits of ELA address cor­
respond to the five most significant bits of memory address; two
bits define one of four SMA PCA's and three bits define one of
eight rows of chips on the particular SMA PCA. The five least
significant bits define one of 22 chips in a particular row and
correspond to the error code HOI through H05. Refer to figures
6-5 through 6-7. The ELA can be read under program control by
means of the FLI PCA. Any ELA location containing a "1" signi­
fies that an error was detected. The location of the faulty chip
can be found by using the 5-bit .octal address portion of the ELA
address and then looking up the bit in the conversion table of
figure 6-7.

6-39. MEMORY ERROR LOGGING FACILITY. The memory error logging
facility permits the system's user to examine the error history
of Main Memory. The facility consists of the following elements.

a. Error correcting memory and the FLI PCA

b. Memory error logging system process (MEMLOGP)

c. Memory error log analysis program (MEMLOGAN)

d. Memory error logging internal update program (MEMTIMER)

Memory error logging is in no way connected to or related to
standard system logging. Both function independently. None of
the operator interfaces to system logging have an effect on mem­
ory logging. Memory error logging will always be invoked if er­
ror correcting memory is present in the system. MEMLOGP is a
system process that runs under MPE. Once initiated, MEMLOGP
automatically and periodically interrogates the FLI PCA to obtain
the latest error information. MEMLOGP is activated during the

6-17

MCU/Main Memory Overview

initialization phase of MPE (coolstart, warmstart, coldstart, re­
load, update). MEMLOGP cannot be activated at any other time.
If MEMLOGP cannot be initiated successfully during initializa­
tion, another attempt cannot be made until the system is brought
up again. Initially, MEMLOGP attempts to obtain the status of
the FLI PCA (DRT 2). If the PCA does not respond, error correct­
ing memory is absent from the system and MEMLOGP immediately ter­
minates. If this occurs, no message relating to error logging
will appear at the system console. If MEMLOGP initiation is suc­
cessful, the following message appears at the system console:

ST/<TIME>/MEMORY ERROR LOGGING INITIATED

The message occurs after the DATE/TIME messages and before the
WELCOME message. MEMLOGP attempts to open the system memory er­
ror disc file MEMLOG (MEMLOG.PUB.SYS). If no such file exists on
the system, a new file will be created. If MEMLOG already ex­
ists, the file will be opened without altering the information
contained in the file. The file remains open as long as the sys­
tem is up. During those periods when MEMLOGP is accessing the
file, it will lock and unlock the file as necessary to ensure no
other access to it. The log analysis program (MEMLOGAN) similar­
ly locks and unlocks the file when it is accessing it. If an
operational error is encountered by MEMLOGP, the process will
display an error message and terminate. The message displayed
is:

ST/<TIME>/MEMORY LOGGING ERROR#<ERRNUM>.LOGGING STOPPED

The range and definitions for <ERRNUM> are:

1-10 Internal MEMLOGP errors.
1 FLOCK error on MEMLOG· file.
2 FUNLOCK error on MEMLOG file.
3 TIO error. Error logging hardware not ready.
4 CIO error during copy operation from logging array.
5 RIO error during scan of logging array. (Errors 6-10

reserved for future use.)
20-500 File system errors involving MEMLOG file. All file

errors encountered by MEMLOGP are fatal to the process
and cause it to terminate. Refer to the MPE Intrinsics
Reference Manual, part no. 30000-90010 for definitions
of the file system error numbers.

Once the MEMLOG file has been opened, MEMLOGP periodically inter­
rogates the error logging array in the MCL PCA via the FLI PCA.
If errors have occurred, the MEMLOG file is updated. The error
logging array is interrogated via the FLI PCA when MEMLOG is
first activated and thereafter once approximately every hour. If
one or more errors have occurred in the hour interval since the
last log update, MEMLOGP will perform the following operations:

6-18

MCU/Main Memory Overview

a. Read the appropriate MEMLOG from disc.

b. Scan the error logging array for errors.

c. Update the error counter in the MEMLOG record for each loca­
tion where an error occurred.

d. Reset the error logging array to a no-error condition.

e. Write the updated MEMLOG record to disc.

MEMLOGAN (MEMLOGAN.PUB.SYS) is the utility that reads and inter­
prets the error information logged and kept in the MEMLOG file.
Because of the security placed on the MEMLOG file by the system,
MEMLOGAN can successfully run from an account other than PUB.SYS
if:

a. The RELEASE command was entered for MEMLOG by the system
manager, or

b. The log on account has system manager capability.

MEMLOGAN will read MEMLOG and output its contents in a meaningful
manner. The formal designator of the output device is "OUrr". To
direct output to the line printer, the following file equation
must be entered:

:FILE OUTiDEV=LP

There is no user dialogue with MEMLOGAN. However, certain MEMLOG
file handling operations are available through the PARM parameter
of the RUN command. The following PARM values are recognized by
MEMLOGAN:

PARM=O'Causes the current contents of MEMLOG to be printed on the
output device. The contents of the file will not be
changed. This is the default PARM value.

PARM=l Causes the current contents of MEMLOG to be printed on
the output device after which the file is reset to a
no-error state. All previously logged errors are deleted
from the log file.

Note

When a system with error correct­
ing memory is initialized for the
first time or the memory size is
changed to cross the Sl2K bound­
ary, MEMLOGAN should be run with
PARM=l as soon as the system is up
and running. This will ,ensure a
clean MEMLOG file and that subse­
quent error counts are valid.

6-19

MCU/Main Memory Overview

PARM=2 Causes the current contents of MEMLOG to be printed on the
output device after which the file is deleted from the
system. (This is the only way to remove the MEMLOG file
fram the system and normally only the system manager would
use this PARM value.)

MEMTIMER (MEMTIMER.PUB.SYS) is the utility program which allows
the user to modify the interval of time between successive memory
log updates. The normal default interval is 60 minutes. This
interval provides the average installation with an adequate log
of the memory system. For other reasons, it may be desirable to
modify the interval to allow increased monitoring of the memory
per formance. It is the function of MEMTIMER to modify the time
interval. MEMTIMER alters the current timing interval to a new
value and terminates the current interval. This causes MEMLOGP
to update the memory log file immediately and periodically
thereafter according to the new interval specified. A new timing
interval is specified through the PARM parameter of the RUN com­
mand. There is no user dialogue with MEMTIMER. The PARM value
is given as a positive integer greater than zero which represents
the number of seconds between log file updates. To begin memory
logging at 10 second intervals, the following RUN command would
be entered:

:RUN MEMTIMERiPARM=lO

To return logging to the default interval (60 minutes), the fol­
lowing RUN command would be entered:

:RUN MEMTIMERiPARM=3600

Three error conditions are detected by MEMTIMER. If the PARM
pararne ter of the RUN command is equal to or less than zero, then
MEMTIMER will terminate after printing the following message:

** INVALID PARM (DELAY) VALUE **

The current time interval remains unchanged.

If MEMLOGP has been terminated, then MEMTIMER will terminate it­
self after printing:

** MEMORY LOGGING PROCESS NOT ACTIVE **

In this case there is no timing interval update.

If MEMLOGP is currently updating the memory log file, the follow­
ing message will appear:

** MEMLOGP TIMER ENTRY NOT FOUND **

In this case, the timing interval will be updated. MEMTIMER
should be run again to ensure that MEMLOGP will recognize the
updated interval immediately. Note that the default timing in­
terval will become the current timing interval each time the sys-

6-20

MCU/Main Memory Overview

tern is brought up. Therefore, if a non-default timing interval
is desired, MEMTIMER must be run after each initialization of the
system.

6-40. Output. MEMLOGAN output will vary according to whether
the MEMLOG file is null or updated and, if updated, whether er­
rors have occurred. If the MEMLOG file is null (after running
MEMLOGAN with PARM=l) MEMLOGAN will terminate after displaying
the mes sage:

NO ENTRIES IN MEMLOG FILE

If the MEMLOG file is not empty, MEMLOGAN will print the date an~

time of the first and last log updates. If errors have been
logged, the date and time of the -first and last error logged will
also be printed. If no errors have been logged, MEMLOGAN will
terminate after displaying the message:

LOGGING STARTED -DATE:
LAST LOG UPDATE -DATE:
NO ERRORS LOGGED

If errors have been logged, MEMLOGAN will continue by printing a
tabular interpretation of the information in the MEMLOG file.
The format of the printout is shown in figure 6-8. A typical
printout is shown in figure 6-9.

6-41. Errors. If an operational error is encountered by MEMLOGAN,
the program will print the appropriate error information and then
terminate. A non-file system error causes the following message
to be displayed:

*MEMLOGAN ERROR: <ERRNUM>:

Where

<ERRNUM> 1= FLOCK ERROR ON MEMLOG FILE
2= FUNLOCK ERROR ON MEMLOG FILE

The occurrence of a file system error will cause an error tomb­
stone to be displayed followed by either *OUT FILE ERROR* or,
LOG FILE ERROR.

6-42. Obtaining Memory Errors Copy. Use the following commands
to obtain a line printer copy of the log file:

:HELLO FIELD.SUPPORT,HP32230
: FILE OUT; DEV =LP
:RUN MEMLOGAN.PUB.SYS

6-43. FLI PCA PROGRAMMING. The FLI PCA only accepts direct I/O
commands. These commands cause the FLI PCA to copy the contents
of the MCL PCA's Error Logging Array into the FLI PCA'S I/O Log­
ging Array (CIO-Read Copy), determine if an error log (1) was
transferred (TIO-Read Cbpy Error), search the I/O Logging Array

6-21

MCU/Main Memory Overview

--~-_._--~--~~-~-~.-.-----~-----~._~----_.-._.---_._---------.

I ADDRESS I EPROF< TYPE I EPROR I
---~----~--~.-._-~_.~--------_.-~--.----------.--------
I CONTPOLlJFR I HUAPD I ROW I TYPF. BIT CHIP I COUNT I--- .• _.~_ ..~----_.._-----~._.~-----._-----~--.-----._----_..---
I
I
I
I

controller
I
I board

I
J

T I
Trow 1

I I
I I

type bit chip
I
I
I
I

cnt
I
I
I
I

..-.~-~._~~-~-._~---~--------~_._-._~----------~------------
where:

controller The memory controller where the error occurred, shown as CONTROLLER A or
CONTROLLER B.

board The memory module board on which the error occurred, indicated by a digit from
o through 3.

row The row designation on the board in which the failing chip is located, indicated as
a digit from 0 through 7.

type Type of error detected, as follows:

CHECK Check bit error.

DATA Data bit error.

MULTIPLE BIT Error in more than one bit.
ERROR

FORCED D.E.W. Forced Double Error Write. Indicated data parity error on
the data transmitted to memory.

MISSING ARRAY Non-responding array board.
BOARD

bit If type = CHECK, bit refers to the failing check bit - CO through C5.

If type = DATA, bit refers to the failing data bit - 0 through 15.

chip Chip on which error occurred, in format:

Un

The variables n is a digit indicating the chip number.

~nt The number of logging intervals during which this error was detected at least once.

NOTE

This value does not represent the number of times that an
error was actually detected.

Figure 6-8. MEMLOGAN Table

6-22

MCU /Ma in Memory Overview

---~--.~---~-----~-~._---~--------------------~~._------------
I ADDRESS T EFHOR rVPE 1 ERROR I

--_._-.~-----------~--~..-.._.-.----~------_._--------
t CONTROLLER t BOARD J ROW I TYP(BIT CHIP I COUNT I

._---~---~-----~--------_._.-------------------------- --------
I rONTROLLFR A T 0 T 1 J (HEel< 0 tJ1QS I 2 I
t T t b T DfI.TA. Q U1C'3 1 1 3 1
T I T 0 T D~TA f) U1Q 1 4 1
T 1 T 0 T tv\l)LTIFLE nIT ERROP I 1 1
T I T 0 T Drtf~ 11 lJ14Y 1 3 l
1 T 2 T 7 1 DATTt 14 tT17'L 1 2 1
1 I 1 1 3 T CHECK c; U246 I 3 1
1 CONTROLI.JER B 1 '2 I n T C,",L'~CK '] U219 I 1 1
J , T 6 T DJ\ f.n 1 1 U143 I 3 I
1 T 3 I 2 , DATa 15 U1S? 1 4 I

---_.-------~~--------_.-~~~--~~._-------_._----------------~-
Figure 6-9. Typical MEMLOGAN Pr intout

for the presence of a "1" (CIO-Read Scan) and send the address of
where the "I" was stored to the lOP Bus (RIO-Address). Direct
commands clear the I/O Logging Array (WID-Load Block) and then
transfer these zeros into the Error Logging Array (WID-Write
Copy). The Er ror Logging Array would then be cleared and able to
start a new fault logging sequence. Interrogating and writing
into the Error Logging Array can only occur during refresh time.
The following paragraphs explain in detail the control word
formats.

6-44. TID Command. Figure 6-10 shows the word format for a TID
instruction. This instruction can be executed any time.

Bit 0,1,
and 2

Bit 3

Bit 4

Bit 5

Bit 7

These bits have the standard I/O significance.

Read Scan. This bit is set when a Read Scan is in
process and remains set until the completion or term­
ination of the scan.

DISWEC. This bit is set if the Disable Error Correc­
tion flip-flop (DISWEC) is set.

L/NU S12K. If bit 5 = 1, then the upper Sl2K Er ror
Logging Array has been selected. If bit 5 = 0, then
the lower S12K Error Logging Array has been selected.

Read Copy Error. This bit is set if there are one or
more errors (l's stored in Error Logging Array) during
a Read Copy. This bit is cleared by any CIO or WID
Instr uction.

6-23

MCU/Main Memory Overview

I I I I I

I 01 2 3 4 5 8 71 s 9 10' 11 12 13 14 15 1

:J \. J
Y

ZEROS

RROR

SIOOK

R/WOK

INT. PENDING

READ SCAN

DISWEC

L!U512K

=0

READ COPY E

TIO

Figure 6-10. TIO Word Format

6-45. CIa Command. CIa instructions may be executed only if TIO
bit 1 = 1 (R/W OK) except for a CIa master clear which can be
executed at any time. Figure 6-11 shows the word format of the
CIa instr uction •

Bit 0 Master Clear. When set, causes the FLI PCA to reset
and inhibits simultaneous Read Copy, Read Scan and/or
DISWEC CIa instructions, or aborts any of these
oper a tions.

Bit 2 Read Copy. Causes the contents of the lower or upper
5l2K Error Logging Array to be transferred to the I/O
Logging Array starting at the address location speci­
fied by bits 6 through 15 and ending at %1777. The
Read Copy is completed when the Address Counter rolls
over to %0000. During a transfer, TIO bit 1 = 0 (R/W
not OK) and goes to a 1 within 50 usec after comple­
tion of a copy. A Read Copy will be terminated by the
occurrence of a PFW, PON, I/O Reset or CIa Master
Clear. Read Copy will inhibi t a simultaneous Read
Scan and is aborted by a Master Clear.

6-24

MCU/Main Memory Overview

CIO I I I I I

I 0 1 234 5 6 718 9 10 11 12 13 14 15
1

MST.CL.,~ MSB LSB

NOT USED \.)

READ COpy Y
10 BIT ADDRESS

READ SCAN

DISWEC

L/U512K

Figure 6-11. CIO Word Format

Bit 3 Read Scan. The I/O Logging Array contents are inter­
rogated starting at the address specified by bits 6
through 15 and finishing at address %1777. The scan
is completed when the Address Counter rolls over to
%0000. The scan will halt at any I/O Logging Array
location containing an error. An RIO instruction may
be executed to retrieve the address of that error lo­
cation. After the RIO completion, the scan will re­
sume. During a scan, TIO bit 1 = 0 (R/W not OK) and
goes to a 1 two usec after a halt on error or a scan
completion. A read scan can be aborted by a Master
Clear.

Bit 4 DISWEC. The Disable Write Error Correction flip-flop
is set on the FLI PCA resulting in a memory operation
with the error correction logic disabled. During a
write operation, the data bits can be changed without
modifying check bits C8 through C5. Note that error
correction is disabled on all MCL PCA's. Bit 4 can be
cleared by I/O Reset, PFW, PON, completion of a Read
Copy or Write Copy (WIO instruction), CIO Master
Clear, or se t ting bit 4 to a O.

Bit 5 L/NU 512K• I fbi t 5 = 1, then the up pe r 512 K Err or
Logging Array is selected. If bit 5 = 0, then the
lower 5l2K Error Logging Array is selected. The
upper or lower 5l2K Error Logging Array is selected
after one CPU clock cycle.

Bits 6-15 Address. The 10 bit address (1024 locations) is the
starting address for a Read Copy of the Error Logging
Array to the I/O Logging Array or a Read Scan of the
I/O Logging Array. The address is loaded on all CIO
instructions and is not affected by Master Clear.

6-25

MCU/Main Memory Overview

6-46. WIO Command. WIO instructions may be executed only if TIO
bit 1 = 1 (R/W OK). Figure 6-12 is the word format for a WIO
instr uction.

WIO I I I I I

I 0 1 234 5 6 'Is 9 10 11 12 13 14 15 I
DATA~ MSB LSB

NOT USED l)
WRITE COpy Y
LOAD BLOCK

10 BIT ADDRESS

LOAD SINGLE

LiU512K

Figure 6-12. WIO Word Format

Bit 0

Bit 2

Bit 3

Bit 4

Bit 5

Data. This bit is used as the data in a WIO Load
Block and Load Single instruction.

Write Copy. The contents of the I/O Logging Array are
transferred into the upper l28K Error Logging Array or
the lower 5l2K Error Logging Array starting at the
address specified by bits 6 through 15, and ending at
address %1777. At the completion of the transfer, the
Address Counter is set to %0000. During a transfer,
TIO bit 1 = 0 (R/W not OK) and goes to a 1 at 50 usec
after a transfer. A CIO Master Clear will abort a
Wr i te Copy.

Load Block. The data in bit 0 (Data) is transferred
to the I/O Logging Array in all locations starting at
the location specified by bits 6 through 15 and ending
at %1777. Upon completion of the transfer the Address
Counter is set to %0000. During the transfer, TIO bit
1 = 0 and goes to a 1 two usec after a transfer. A
Load Block will override simUltaneous Write Copy
and/or Load Single.

Load Single. The data in bit 0 (Data) is transferred
to the I/O Logging Array at the address location
specified by bits 6 through 15. The Address Counter
is not changed after the completion of the transfer.

L/NU 5l2K. If bit 5 = 1, then the upper 5l2K Error
Logging Array is selected and, if bit 5 = 0, then the
lower 5l2K Error Logging Array is selected during a
Write Copy execution. The upper or lower 5l2K Error
Logging Array is selected after one CPU clock cycle.

6-26

MCU/Main Memory Overview

Bits 6-15 Address. The 10 bit address (1024) locations is the
starting address for a Write Cbpy of the I/O Logging
Array to the Error Logging Array, a Load Block of the
I/O Logging Array, or the address for a Load Single of
the I/O Logging Array.

6-47. RIO Command. Figure 6-13 shows the word format for the
RIO instr uction.

RIO I I I I I

I 0 1 2 3 4 5 6 'I as ~ 10 11 12 13 14 15 I
ERROR~ MSB LSB

R/WOK \.. J
=0 Y

10 BIT ADDRESS
READ SCAN

DISWEC

UU512K

Figure 6-13. RIO Word Format

Bit 0

Bit 1

This bit is set if there was an error logged in the

I/O Logging Array during a Read Scan and the address
of that error is specified by bits 6 through 15.

R/W OK. This bit contains the same information as R/W
OK on a TIO instruction.

Bit 3 Read Scan. This bit is set when a
process and remains set until the
mination of a scan.

Read Scan is in
completion or ter-

Bit 4

Bit 5

Bit 6-15

DISWEC. This bit is set if the Disable Error Correc­
tion flip-flop is set.

L/NU 512K. If bit 5 = 1, the upper 512K Error Logging
Array has been selected and, if bit 5 = 0, the lower
512K Error Logging Array has been selected.

Address. This is the I/O Logging Array address of a
logged error during a Read Scan.

6-48. SMA PCA SERVICING. Although the SMA PCA can be repaired to
the component level, repair procedures should be attempted only
by persons specificaly trained for such tasks. The replaceable
components are identified in figure 6-5. (For additional informa­
tion, refer to the HP 3000 Series III Computer System Engineering
Diagrams Set, part no. 30000-90173.) Each SMA PCA in the memory

6-27

MCU/Main Memory Overview

module contains Switch Sl that must be set to reflect which des­
ignated PCA number it is in the memory module (e.g., first l28K
of memory, second l28K of memory, etc.). The SMA PCA's Switch Sl
is identified in figure 6-14. As a convention only, Sl is set to
3 on the PCA installed closest to the MCL PCA, 2 on the next
closest PCA, 1 on the next PCA, and 0 on the SMA PCA installed
furthest from the MCL PCA.

I
P1 P2

SMA

30008-60003

P3

~o L o~

\...----llll!IIDllmmUllllJI.II.l1f---uilllll..!S~11uJJlIIUUlIIIIf--1ll1UUluulliIillIillliJ...-----.-.,..,
J1 J3

204 Figure 6-14. SMA PCA Switch Location

6-49. MCL PCA SERVICING. The MCL PCA is a nonrepairable PCA and
must be replaced if found defecti ve • Howeve r, the MCL PCA con­
tains two switches, one of which (S2) must be set to reflect the
memory module configuration. Both switches are identified in
figure 6-15. In systems with over 5l2K words of memory, set
Switch S2 to position A on one MeL PCA and to position B on the
other MCL PCA. As a convention only, Switch S2 is set to posi­
tion A on the MCL PCA installed for lower memory (banks 0-7) and
and to position B on the MeL PCA installed for upper memory
(banks 8-15). Switch Sl is the ELA Manual Clear Switch and can
be used to clear the MCL PCA's Error Logging Array.

6-28

P1

II I II
P2

MCU/Main Memory Overview

I
P3

MEMORY CONTROL
AND LOGGING PCA

30007-60005

~
A

~ 0 "'" [JlJ::J L 0 '-;

\-.--~1IllnmlIllllunUlllJUJIF'::::;::::::!.-lUllIUllIIIJllIUllllUllUlf---lIUllIUllIUJ[ij"IIIIJjIlUIIIIIII[IIllrI----.J

J1 J3

Figure 6-15. MCL PCA Switch Locations

6-50. FLI PCA SERVICING. The FLI PCA's are non-repairable PCA's
(part no. 30009-60002 for HP 32421A Series III and part no.
30135-60063 for HP 32435A Series III) and must be replaced if
found defective. Both PCA's are preconfigured at the factory
with a DRT number of 2 and their jumpers should not be changed.
No repair br servicing procedures are required.

6-29

MeU/Main Memory Overview

NOTES

6-30

I/O SYSTEMI~

This section contains an overview of the computer's I/O system
which includes discussions on file system operation, I/O system
q>eration, I/O instructions, and I/O system hardware. In addi­
tion, this section contains principles of operation and servicing
information for the computer system's Input/Output Processor
(lOP), Multiplexer Channel, Port Controller, and Selector
Channel.

7-1. INTRODUCTION

The general purpose of any computer system is to input, process,
and output information. Under MPE, this information may be cre­
ated and used by the operating system itself, by compilers or
other systems, by user programs, or by users themselves. To
handle all information in a uniform, efficient way, MPE treats it
as groups of data called files. Specifically, a file is a col­
lection of information or data identified by a name recognized by
MPE. MPE uses media such as discs, cards, and tapes for storing
the information. On any of these media, a file may contain MPE
commands, s ys tern or user p rogr ams, or da ta ; alone or in any com­
bination. Within a file, all information is organized into units
of related data called logical records that for most applications
are similar in form, purpose, and content. The records in the
file can be arranged in almost any order; alphabetically, numer­
ically, chronologically, by subject matter, etc. The logical
record is the smallest grouping of data that MPE can address di­
rectly; you specify its length when you create the file. Indi­
vidual subsystems and user programs, however, also can recognize
fields for data items within each record. In addition, programs
can also recognize and manipulate individual words, eight-bit
bytes, and bits within a byte.

Data is transferred to and from files in units called blocks.
These are the basic units that are physically transferred between
Main Memory and the peripheral device on which the file resides.
On disc and magnetic tape files, a block consists of one or more
logical records; on files of other media, a block normally is
equivalent to one logical record (unless you request input/output
under the multi-record mode). To summarize the interrelation of
files, logical records, and blocks: a file is a collection of
records treated as a unit and recognized by a name; a logical
record is a collection of fields treated as a unit, residing in a
file; and a block is a group of one or more logical records
transmitted to or from a file by an input/output operation. The
purpose of the I/O system, then, is to perform actual .physical
input/output operations for the file system of the MPE operating
system. The user normally does not interact directly with the I/O
s ys te m; 0 n 1yind ire c tly v i a the f i 1e s ys temas shown in fig ur e
7-1. Normally, all I/O operations are invisible to the user.
However, as shown in figure 7-1, privileged users may access the
I/O system directly.

7-1

I/O System

FILE SYSTEM I/O

PRIVILEGED I/O

PROCESS r--~~
FilE

SYSTEM
I/O

SYSTEM

I/O
SYSTEM

Figure 7-1. Basic I/O Access Methods

7-2. FILE SYSTEM OPERATION

Figure 7-2 illustrates the function of the I/O system in the
overall handling of files. The I/O system, as shown, is part
software and part hardware. Several peripheral devices are shown
connected to the I/O system, each of which has some capability
for handling files; entering files, storing files, or both. Of
particular interest in this discussion are the files stored on
disc. (Several physical disc units might be used.) Each disc file
is broken up into one or more extents. (Disc extents are composed
of a number of blocks.) When the file system causes the I/O sys­
tem to transfer data to or from the disc, it does so one block at
a time. As noted previously, the blocks are further subdivided
into records and then into individual words. When the file sys­
tem processes user file requests, it does so on the basis of
records.

The memory management routine is also shown in figure 7-2 (dotted
line) since it frequently makes its own requests to the I/O sys­
tem. Memory management calls the I/O system in order to bring
code and data segments into Main Memory where they can be ac­
cessed by user processes. In a typical operation, a user process
might request the file system to read a file using the FREAD
intrinsic (I). (Refer to the MPE Intrinsics Reference Manual for
a discussion of the FREAD intrinsic.) The file system reads the
stack associated with the user process (3). Note that in this
example, no input/output has taken place. This is because the
named record is already present in a buffer (BUFFER O) in Main
Memory.

Assume another case in which the requested record is not present.
In this case, the file system makes a request to the I/O system
(A) to read the block containing the particular record. The I/O
system accordingly reads this block from the disc (B) and loads
it into one of the buffers (BUFFER I) allocated to the named file
(C). (When you open a file, you specify how many buffers should

7-2

I/O System

PROCESS

Stack

Memory
Management

Disc

I/O
SYSTEM

A

3

FILE
SYSTEM

BUFFER 0 BUFFER 1

File
Request

SOFTWARE HARDWARE

Figure 7-2. File System Basic Operation

be allocated for that file. However, you cannot access the buf­
fers directly; only by naming records within files.) The file
system can now complete the request by reading the requested re­
cord to the stack. Note that in none of the preceding operations
did the user process specify a device. An actual I/O operation
mayor may not have occurred and the user is completely unaware
of such an occurrence. The operating system, however, allows
devices to be specified either by class name or by a specific
logical device number. This permits, for example, inputting or
outputting files via a specific terminal, card reader, or line
printer.

7-3. DEFINITION OF TERMS

As shown in figure 7-3, a Device Controller in the I/O system is
the hardware I/O linkage between the CPU and I/O device. It
typically consists of one or more logic cards. Depending on
particular controllers, the Device Controller may drive only one
peripheral (such as a card reader) or may be capable of driving
several peripherals (such as disc units). Figure 7-3 illustrates

7-3

I/O System

DATA AREA

I/O QUEUE

L
I
I
I
I
I I

tl

Interrupt
Linkage
Table

Device
Information

Table

Unit 0

Device
Information

Table

Unit 1

Device
Information

Table

Unit 2

Device
Information

Table

Unit 3

DEVICE
REFERENCE

TABLE
I/O Prog Pointer

Ext. Prog. Label

OBI

Reserved

DEVICE
CONTROLLER

Unit 0

Unit 1

Unit 2

Unit3

SOFTWARE HARDWARE

Figure 7-3. I/O System Fundamental Elements

some of the important elerne"lts of the I/O system. (This figure is
by no means complete, but rather is intended to define the chain
of linkages that are basic to the I/O system.) For each Device
Controller there is a four-word entry in the Device Reference
Table (DRT). The third word in the four-word table entry con­
tains a pointer to a data area uniquely associated with that
table entry. The data area consists of an Interrupt Linkage
Table (ILT), one or more Device Information Tables (DIT) (depend­
ing on how many units the Device Controller is driving), and an
I/O program area. Along with various other information, the
Driver Linkage Table (DLT) contains Code Segment Table (CST) and
Segment Transfer Table (STT) values for defining the location of
the dr iver routines associated with that particular Dev ice Con­
troller. The DIT contains information relevant to one physical
I/O device and is configured differently for each type of device.
In each case, however, the third word of this table points to an
entry in the I/O Queue (IOQ) when a request is being made.

The IOQ is a single table (only one per system) containing a
fixed number of entries having a fixed number of words per entry.
If there are no I/O requests pending in the system, none of the
DIT entries will be pointing to the IOQ. In this case, all en­
tr ies of the IOQ are un used, and the second word of each entry
points to the first word of the next entry. Thus, all unused
entries are linked together. Assume that the file system makes a
request to use Unit I of the Device Controller shown in figure
7-3. The I/O system will unlink the first free entry in the IOQ
and fill it with information pertaining to the request (including
buffer address and logical device number). Assume that the next

7-4

I/O System

request is for Unit 2 (uses the next available entry), followed
by a second request for Unit 1. This second request for unit 1
causes the first word of the initial request to point to the next
unused entry, which is then filled with information pertaining to
the second request. Therefore, eventually the 10Q will contain a
queue of requests for Unit 1, a separate queue for Unit 2, and so
on, plus a linked list of free entries.

Next, an I/O driver is executed to initiate the request. An I/O
program will then be run on a device, using the request parame­
ters given in the IOQ. When the request is completed, the 10Q
entry is returned to the free list. Note that the IOQ only es­
tablishes the priority of requests for each device on a first-in
first-out basis. Questions of priority in executing I/O drivers
are resolved by the Dispatcher. (Refer to the MPE General Infor­
mation Manual for a description of the Dispatcher.) Once several
Device Controllers are running I/O programs, priority conflicts
are resolved by hardware service priority.

The DRT (figure 7-4) consists of a number of four-word entries
corresponding to the number of Device Controllers present in the
system. The DRT is located in fixed memory locations beginning
at octal address 14. (Locations 0 through 13 are allocated to
other purposes; refer to table 2-4.) The upper limit for the
table is location 777 which limits the maximum number of four­
word entries to 125 (decimal). Because each DRT entry is always
four words in length, it is convenient for the hardware to map
device numbers to DRT addresses simply by mUltiplying by four.
(Leftshift device number two binary places.) Thus the entry for
device number 3 begins at octal location 14 (i.e., %(3x4) = %14).
Because the DRT begins at location 14, device number 3 is the
lowest device number. (Devices 0,1, and 2 do not exist.)

Note

The device number associated with a par­
ticular DRT entry defines a Device Con­
troller, and not necessarily an actual
physical device. Also remember that some
controllers identified by one device num-
ber are capable of driving several physi­
cal devices. Individual identification of
physical devices is made by logical device
numbers. The logical device number is the
value used by the file system in request­
ing I/O, and the I/O system software per­
forms the logical to physical device
number translation.

7-5

I/O System

Octal
Memory

0
Location ORTDevice

Controller .14
#3 38 X 4

15
16

Device 0 17
Controller

48 X 4
• 20

#4 21
22

Device 0 23
Controller .24
#5 58 X 4 25

26
27

30
31
32

FORMAT 33--------
I/O Program Pointer

Ext. Prog. Label

OBI Address
....

....
(Reserved)

....

Device
Controller
#171

8

I
I

I I

714~715

716

717

Figure 7-4. Device Reference Table

7-4. I/O INSTRUCTIONS

There are ten I/O instructions in the system's instruction set,
six of which are defined in paragraph 4-14 of this manual. (All
of the I/O instructions are fully defined in the HP 3000 Series
II/III Computer System M:lchine Instruction Set, part no. 30000­
90022.) The distinction to note he~e is that the SIO instruction
is used in conjunction with an I/O program and that the other
instructions are not. That is, an SIO instruction commands a
Device Controller to begin executing its associated I/O program
which effects a block transfer of data between an I/O device and
memory. This is termed an SIO transfer mode. The other I/O in­
structions transfer only one word per instruction between the
device and TOS in the cpu. This is termed a direct transfer mode
and is used primarily with terminal devices.

7-6

I/O Sys tern

7-5. GENERAL I/O OPERATION

An overview of the I/O system's operations for I/O transfers is
illustrated in figure 7-5. (It should be noted that figure 7-5
does not apply to direct I/O devices.) To provide a complete se­
quence of operations, it is assumed that the file request results
in a need for physical I/O to be performed. (As previously dis­
cussed in paragraph 7-2, this is not always the results.) The
sequence of operations is as follows:

a. An executing user process generates a file request (1, figure
7-5) to the file system.

b. The file system tests the validity of the request and calls
the Attach I/O (ATTACHIO) procedure (2). This is the entry
point to the I/O system.

c. Attach I/O inserts the request parameters (3) in the I/O
Queue for the requested device.

d. When all earlier requests for the device have been
(4), the I/O Monitor Procedure begins execution
reques t.

completed
for this

e. The I/O Monitor ensures that the data buffer for the file is
present in memory_ It then issues a procedure call (PCAL) to
the initiator section (5) of the device driver, passing the
request parameters to that routine.

f. The initiator section assembles the I/O program (using the
request parameters), issues an SIO instruction to the Device
Controller, and exits back to ~he I/O Monitor. The SIO in­
struction initializes the DRT to point at the starting loca­
tion (6) of the I/O program.

g. The I/O program issues commands (7) to the MUltiplexer or
Selector Channel.

h. The Multiplexer Channel or Selector Channel enables (8) the
Device Controller.

i. The Device Controller,
from the I/O program,
from the data buffer.
by the I/O command.

on recelvlng a read or write command
transfers a block of data (9) to or
The length of the block is specified

j. On completion of the data transfer, the I/O program commands
the Device Controller to request an interrupt (10) via the
Multiplexer or Selector Channel. The I/O program then ends.

k. The Device Controller causes a CPU interrupt to an interrupt
routine (11) which tells the I/O Monitor that an interrupt
has occurred.

7-7

I/O System

- INTERRUPTED
USER

PROCESS

I/O MONITOR
PROCEDURE

USER
PROCESS

File Request

o r----@---------~ fi6\
~~ 'roo~_. ·1r-\!.5....
~ ,..--' IATTACH I (2) FILE ~f---_../

100 I/O r SYSTEM ...

~

-t (3)
I
\,------------------,

DATA
BUFFER

DEVICE DRIVER

1

~) ~ t
IINITIATOR IICOMPLETION --@--. ----- -- ---

Section Section

...

DRT ENTRY

DATA
OBI AREA"Ar----...,

ILT

DIT

...

I/O I fi'\
Program ~

,. "
Next I/O Command - :--'

-- - - - - - - - - - - - - - - - - -- - - - - Ext. Prog. Label :
{ PI--~D~B-I-=P~o.;...in;;;;"te;"';r~-t--,

... -....:......------..1II1II"-----' Reserved

INTERRUPT
ROUTINE

(GIP)

MULTIPLEXER CHAN
or

SELECTOR CHANNEL Data

®
,.

~ @ DEVICE
>-------------........f--~----->O' -CONTROLLER

01------.
ICS

~
Interrupt

ZI Control
'"----- Stack

Figure 7-5. I/O System Overview

7-8

!
~

I/O System

Note

There are several interrupt routines for
external interrupts. For example, one is
the General Interrupt Processor (GIP) for
all types of devices except terminals, and
another is the Terminal Interrupt Proces­
sor (TIP) for terminals.

1. The interrupt routine (or the last routine to use the Inter­
rupt Control Stack) exits (12) to the Interrupted User Pro­
cess. (Refer to section VI II.) I t also may activate the
related I/O process if necessary.

m. When the I/O Monitor Procedure is executed again, it recog­
nizes that an interrupt has occurred and accordingly calls
the completion section (13) of the device driver.

n. The completion section checks the results of the transfer.
If necessary, it may initiate additional transfers by telling
the I/O Monitor Process to call the initiator section again.
Otherwise, it updates the I/O Queue with information regard­
ing resul ts of the or iginal request (14). The file system
may then check these results (15).

o. When the user process is dispatched again, a return is made
to a point following the file request (16), depending on
whe the r bloc ked or unbl oc ked I/O was speci f ie d. (Ref e r to
par agr aph 7-9.)

7-6. DIRECT I/O OPERATION

The operations for direct I/O transfer mode involve considerably
more software overhead than the operations for the SID transfer
mode. This is due to the varied nature of the terminal devices
that use direct I/O. The following sequence descriptions present
only a broad generalization of direct I/O terminal operations.
The sequences given should not be construed as representing any
particular device or even a typical device. It is assumed that
the log-on sequence has been accomplished.

Figures 7-6 and 7-7 illustrate the handling of data via direct
I/O terminal devices. Figure 7-6 illustrates input (read) oper­
ations and figure 7-7 illustrates output (write) operations.

In comparison with figure 7-5, note that there is no I/O program
in the data area. Instead, the interrupt routine performs the
functions of an I/O program. The interrupt routine, in this
case, is part of the device driver. It should also be noted that
direct write uses no completion section, and that no MUltiplexer
Channel or Selector Channel is involved.

7-9

I/O System

DISPATCHER
USER

PROCESS

File Request

I
I

+ .. •
Other Processes

DATA
BUFFER

FILE
SYSTEM

,'......,~---~
I
I
I Check

t_ ~-=:-=- _-_-_-= -=- -=- -=- -= =-=-~__:J Results,
I
: Update

IDEVICE DRIVER

ICS

al~---'"

OBI,--" ILT -, 9
I
I

DataI
I

DIT 14- 1

----J

IXIT

To 4---"1
Dispatcher

I
I
I
I
I
I
I__________~ ..2.. 1

INTERRUPT
ROUTINE

'(TIP)

I
I
I
I
I

-j

DRT ENTRY

Not Used
Ext. Prog. Label

OBI Pointer f-

Reserved

DEVICE
CONTROLLER 8

Interrupt
Control

ZI ..JI Stack

Figure 7-6. Direct Read For Terminal Devices

7-10

I/O System

DISPATCHER

l
~
I.. ~

I

+
1
I

+

....,

USER
PROCESS

File Request ~

DATA
BUFFER

Other Processes

Data

®

,Ir

LINE BUFFER1
"I
I
I
I

, -. t3)

IL T

OIT

T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~==:t-_./

FI LE -~__--/
SYSTEM ...

,
: UpddlP
I
I
I
I
I
I
I
I
I
I I

-----I----------~

: _D_A_T_A_A_R_E_A..
~E!.I..r-

: r
I I
I .,

I I
INTERRUPT : I

ROUTINE --' I

!TIP) -------

~-------
IXIT r---..

~
I -- - - - - - - - - -

'-- - - - - - - - - - - -

~~~ (;;\F= 3 ATTACH... I..!J
100 I/O M....-----"'------t

...::= " ~YL. ___I

I -= I

t==-= :Check
I Results,

-----"'"

DEVICE DRIVER

~~N~~~~L f- --------------­
J

CIO

..
DRT ENTRY

Not Used
Ext. Prog. Label

OBI Pointer
Reserved

----~,

To ...-f-----'l
Dispatcher I TlO ',,"

+C~~O Interrupt

01

ICS

.... DEVICE
'------------------t.,"CONTROLLER ~

@'
I/O

Device

Interrupt
Control

ZI ~ ... Stack

Figure 7-7. Direct Write For Terminal Devices

7-11



I/O System

One element not previously present is the terminal buffer. The
ter~inal buffer consists of a linked list of buffers, which are
pointed to by an address word in the Device Information Table
(DIT) for a particular terminal. A sufficient number of these
buffers are used to accommodate the line or record length of the
associated device. Data is transferred between the terminal
buffer and the data buffer on a record basis. Thus, the terminal
buffer reads characters fran the device until the complete line
(or record) is read, then transfers the complete line (or record)
to the data buffer. This scheme conserves Main Memory space by
allowing the data buffer to be absent on disc while the compara­
tively slow terminal device is transferring individual char­
acte rs.

7-7. Direct Read

The sequence of operations for direct read, illustrated in figure
7-6, is as follows. (It is assumed that the file request requires
a p hys ical read fr om the te rm inal. )

a. The executing user process generates a file request (1, fig­
ure 7-6) to the file system.

b. The file system tests the validity of the request and calls
the At tach I/O proced ure (2).

c. Attach I/O inserts the request parameters (3) in the I/O
Queue for the requested device. Unlike SIO which uses a
first-in/first-out queue for the requests, terminal requests
are analyzed for relative importance and are then inserted
into an appropriate place in the queue. (For example, factors
such as whether the request is from the system console are
cons ide red.)

d. When all higher priority requests have been completed, the
TERM procedure (4) begins execution for this request.

e. The Terminal Monitor issues a CIO instruction (5) directly to
the Device Controller, causing TIP to initiate the read
opera tion.

f. The Device Controller enables the device to transmit a char­
acter (6). When a key is pressed, the device returns the the
character to the controller.

g. On receipt of the character,
CPU interrupt (7) to the
(TI P) •

the Device Controller causes a
interrupt routine for terminals

h. TIP issues an RIO instruction to the Device Controller. This
causes the character (8) to be loaded onto the ICS and also
causes a command to be issued to the device to transmit the
next character. TIP now checks the character on the ICS to
determine if it is a data character or a control character.

7-12



i.

j.

k.

1.

m.

I/O System

If the character on the ICS is a data character, it is trans­
ferred (9) by TIP to the terminal buffer. If it is a control
character, TIP performs the appropriate control function.

TIP exits (10) to the Dispatcher and the sequence repeats
back to step g until the entire record has been read.

When a CR (Carriage Return) control character is detected,
TIP sets a flag in the DIT to signify that the record is
complete, then causes the Term inal Monitor to be executed
( 11) .

The Terminal Monitor transfers the content of the terminal
buffer to the user stack (12) and the transmission log in the
I CQ is updated.

The Terminal Monitor releases the line buffer and control is
returned to the user process (13). To read another record,
the file system must make another I/O request to Attach I/O.

1-8. Direct Write

The sequence
figure 7-7.

of operations for direct write is illustrated
The sequence of operations is as follows:

in

a. The executing user process generates a file request (1, fig­
ure 7-7) in the file system.

b. The file system tests the validity of the request and calls
the Attach I/O intrinsic (2).

c. Attach I/O inserts the request parameters (3)
Queue for the requested device.

in the I/O

d. When all higher priority requests have been completed, the
Terminal Monitor begins execution for this request (4).

e. The Terminal Monitor transfers the data (5) from the data
buffer to the line buffer.

f. A CIa instruction (6) is issued to the Device Controller to
initiate the write operation.

g. The Device Conroller causes the CPU to interrupt to TIP (7).

h. TIP transfers a character (8) to the ICS.

i. TIP executes a WIO instruction, transferring the character
(9) from the ICS to the Device Controller.

j. TIP then exi ts to the Dispatcher (10), and hardware takes
control.

k. The Device Controller writes the character (11) out to the
device.

7-13



I/O System

1. On completion of the write, the Device Controller generates
another interrupt (12) to TIP. The sequence repeats back to
step h until all characters in the record have been written
out to the terminal.

m. The Dispatcher then returns control (13) to the user process.

7-9. BLOCKED/UNBLOCKED I/O

At the conclusion of all three of the preceding operating se­
quences (general I/O, direct read, and direct write), control is
returned to the user process. While the I/O operation was in
progress, the user process may have been suspended to await I/O
completion (blocked I/O), or may have continued to execute while
periodically checking for I/O completion (unblocked I/O). The
choice of blocked or unblocked I/O is made in the call to
ATTACHIO. (The file system nearly always uses unblocked I/O.)
Paragraphs 7-10 and 7-11 contain a description of the character­
istics of blocked and unblocked I/O.

7-10. Blocked I/O

As shown in figure 7-8, the user process goes into an I/O wait
state as soon as the I/O request is given. The user process re­
mains in the wait sta te while the I/O opera·tions proceed. The
request is entered into the I/O Queue and is ultimately processed
via the hardware I/O system. At the end of the I/O operation,
the resul ts of the transfer are entered into the IOQ. Control is
then returned to the user process. During terminal writes, the
operation is considered completed when the data has been trans­
ferred to the terminal buffers. The user process now continues
to execute from the point following the I/O request.

7-11. Unblocked I/O

During unblocked I/O (figure 7-8), privileged capability is as­
sumed. The process must also specify the action to be taken on
completion' of I/O; either no action or reactivate the process if
in an I/O wait state. This specification (like the blocked/un­
blocked I/O choice) is made in the call to ATTACHIO. After call­
ing ATTACHIO, the process may then continue to execute and may
generate other unblocked I/O requests. It is the responsibility
of the process to synchronize all unblocked requests and to check
for I/O completion. The process also has the capability to put
itself into the I/O wait state and to change the I/O completion
action for any unblocked request at any time. Obviously, how­
ever, the process should not specify no action for all unblocked
requests and then go into the I/O wait state since there is no
way to recover from this situation. At least one request must
reactivate the process.

While the process continues to execute, ATTACHIO enters the re­
quest into the I/O Queue and hardware processing of the request
begins. At the end of the I/O operation, the results of the
transfer are entered into the IOQ. Then the completion action

7-14



Continue

~

WAIT

(User
Option)

I
I

BLOCKED I/O

USER
PROCESS

UNBLOCKED I/O

USER 1-----_
PROCESS

I/O System

Figure 7-8. Blocked and Unblocked I/O

bit is examined. If the awaken process is specified, the process
will be reactivated if it has put itself into the I/O wait state.
If no action is specified, presumably the process has continued
to execute without any wait, or will be reactivted by some other
process. In any case, the process checks for I/O completion.

1-12. I/O HARDWARE ELEMENTS

The I/O hardware elements are responsible for a large portion of
the execution of an I/O request. When software passes control to
hardware, the I/O hardware elements assume full control fram that
point while the software performs other functions. The comput­
er's I/O hardware elements are the I/O Processor (lOP), part of
the Module Control Unit, the Multiplexer Channel, and Selector
Channel. The following paragraphs contain detailed discussions
for each of these elements.

1-13. I/O Processor

In addition to interrupting the CPU on behalf of the Device Con­
trollers (Section VIII), the lOP performs three specific func­
tions relating to the three different I/O transfer modes shown in
figure 7-9. For direct I/O transfers, the lOP executes the di­
rect I/O instructions (RIO, WIO, TIO, CIa, SIN, and SMSK) and
transfers data, device status, and control information between
the CPU and a Device Controller. For programmed I/O transfers
via a Multiplexer Channel, the lOP transfers I/O program words
between Main Memory and the MUltiplexer Channel and transfers
data between Main Memory and the Device Controller. For pro­
grammed I/O transfers via a Selector Channel, the lOP only trans­
fers initialization information to the Device Controller and is

7-15



I/O System

DIRECT I/O

CPU

Selector I

Channel:
Bus I

Selector
Channel

PROGRAMMED I/O
via SELECTOR CHANNEL

lOP Bus

I/O
Processor

Terminal

.-.-.......- -------IO-P-B---'u-'-s----I c.?~~~~" 1f----.----I8
'--'""""'1""-_---1

I/O Data
Program

Words

Memory

I/O Data
Program

Words

r---............---I Multiplexer
Channel

Figure 7-9. I/O Hardware Elements

not involved in any part of the I/O program execution. A simpli­
fied logic diagram of the lOP is shown in figure 7-10 and discus­
sed in paragraphs 7-14 through 7-19. For additional information
concerning lOP operations in conjunction with the Module Control
Uni t (MCU), Mul tiplexer Channel, Selector Channel, and sys tern in­
terrupt system, refer to paragraphs 7-20, 7-33, 7-42, and Section
VIII, respectively.

7-14. I/O COMMAND. The I/O instruction information is combined
by the CPU into a single word, placed on the U-Bus, and sent
through the lOA logic to the lOP Bus. (See figure 7-10.) The in­
struction from the code segment has been translated into a three­
bit command (IOCMD). The command can now be read out onto the
IOCMD lines of the lOP Bus. The device number has been obtained
from the stack, and can now be read out on the device numbers
(DEVNO) lines of the lOP BuS. The Service Out (SO) bit tells the
addressed device, via the lOP control, to accept and respond to
the accompanying information. (The Device Controller must return
a Service In (SI) handshake signal.)

7-16



I/O System

MATES WITH CPU

r_---------------..-IA'------------------,

o
U

STORE I I u-eus IDA I
100 J Mcuol,Ie IOSTRoe

EXT 1" I -Q 1INT
100 DATA OUT lOA 18151 I I 100 DATA IN I

STORE f j I I C... )IDA lOP DATA OUT

l J 1ORTSTOR 1
I~A I B MUX A II

~
INC

I '2
EXTlNl INTERRUPT

I CONTROL I lOP DATA IN

I
>:C10' REO

INPUT/OUTPUT
lOP CONTROL

PROCESSOR

- - ------~

10HREO-- f-------------

:

10HSEL

10Lsn

I 10MOP

-~-----

10TO

~ r0
~

MOO
SELECT

I Y100 + 'ARITY 17

OEIIf«l 7
10CMO 3

SO

SI

..SPED

DATA POLL

INT REO

INT POLL

INT ACK

lOX 4

DATA DATA

SO SI IOCMO
POLL POLL

100 IOX/4 elEV:NOIiSRf.O OUT IN

lOP
BUS

l"--- y __-------------~---

TO MUX CHANNEL

Figure 7-10. lOP Simplified Logic Diagram

7-17



I/O System

7-15. lOP CONTROL. The lOP control block represents sequencing
logic for transfers between the device and memory, and between
the device and the CPU. Each of the 1 ines shown ente ring or
leaving this block are discussed with their associated transfer
sequences.

7-16. INTERRUPT CONTROL. The interrupt control logic accepts
an Interrupt Request (INTREQ) from the Device COntrollers on the
lOP Bus, interrogates the Device Controllers with INTPOLL to find
the highest-priority request, and, when Interrupt Acknowledge
(INTACK) is received, loads the device address into the lOA Reg­
ister.An External Interrupt (EXTlNT) signal is issued to the cpu.

7-17. INT OEVNO. The I/O Address (lOA) Register holds the
device number of the interrupting device so that, upon command,
the CPU can read the contents onto the S-Bus for interrupt
pr oces sing.

are two data output
for memory data received
Register for direct data
Signals from lOP control

the lOP Bus or transfer the
entr y.

7-18. DATE OUTPUT REGISTERS. There
reg i ste r s, the lOP Oa ta Out Registe r
from the CTL Bus, and the 100 Data Out
received via the U-Bus from the CPU.
can either read the contents out onto
contents into MUX for restoring a DRT

7-19. DATA INPUT REGISTERS. There are two input registers. The
lOP Data In Register is used for sending data to memory via the
CTL Bus. This register is loaded from either the lOP Bus or, for
DRT entry restoring, from the lOP Data Out Register. When doing
a ORT store, the lOP Da ta In Registe r is incremented by two be­
fore the transfer is made. The second input register, IOD Data
In, may be used either as a direct data input register or as a
memory address register. It is loaded from the lOP Bus. During
direct I/O execution, the register contents are read onto the cpu
S-Bus. When addressing memory, the register contents are read
out to the CTL Bus.

7-20. Module Control Unit

As previously discussed in Sections II and VI, the Module Cbntrol
Unit (figure 6-1) contains MCUs for both the CPU and the lOP.
The MCUs operate basically in parallel, but not independently.
Since both MCUs share the same access to the CTL Bus, and also
share the same module number, it is necessary to resolve priority
when both' the lOP and CPU simultaneously attempt to use the bus.
Priority is resolved so that lOP requests take precedence over
CPU requests except that a CPU high request takes precedence over
an lOP low request. This exception means that the CPU is in the
middle of a memory write operation, having sent an address to
memory, and the high request is an attempt to follow up by send­
ing the data. CPU low request represents the beginning of a
transfer (attempt to send an address) and any lOP request will
have priority over the CPU low request.

7-1R



I/O System

An lOP Request (lOP REQ) signal (figure 6-1) is generated when
either a low request (IOLREQ) signal or a high request (IOHREQ)
is about to set one of the select flip-flops (IOLSEL or IOHSEL).
The lOP REQ signal inhibits the setting of the CPU Select flip­
flop. However, a CPU HREQ signal will inhibit IOLRQ from gener­
ating the lOP signal. When data is returned from memory the FROM
comparator compares the data with the contents of the TO Register
to check that the transmission is from the same memory module to
which the address was sent. The TO Comparator also checks that
the transmission is to this module. Together, the outputs of the
two comparators generate an I/O Strobe (IOSTRB) signal which
locks the lOP Data Out Register (see figure 7-10), because it now
contains the correct information from the CTL Bus. The IOSTRB
also tells the lOP that the data is ready for output via the lOP
Bus. The MCU Ready comparator checks to see if a destination
module is ready or that an I/O low request signal can set the I/O
Low Select (IOLSEL) flip-flop. Setting the IOLSEL flip-flop
causes the contents of the lOP Data In Register, FROM, TO, and
MOP signals to be read out onto the CTL Bus for transmission to
Main Memory.

7-21 Multiplexer Channel

The Multiplexer Channel (figure 7-9) acts as a switch to enable
one of its associated Device Controllers to transfer one word of
data to or from memory via the lOP and then to allow another con­
troller, based on priority, to perform its transfer. At all
times, the Multiplexer Channel contains the current I/O program
doubleword (paragraph 7-28) for each of the possible 16 Device
Controllers. To accomplish this, the Multiplexer Channel has a
l6-location, solid-state memory to contain the 16 I/O program
words, and is responsible for fetching the next I/O progam dou­
bleword when necessary. A more detailed discussion of Multi­
plexer Channel operations is contained in paragraph 7-33.

7-22. Selector Channel

The Selector Channel (figure 7-9) acts as a switch, but in a man­
ner different from a Multiplexer Channel. The Multiplexer Chan­
nel switches between Device Controllers on demand, based on
hardware prior ity, wheras the Selector Channel maintains the con­
nection for one Device Controller until it has completed the I/O
program. Therefore, only one I/O program is current at a given
time for one channel. Another major difference, as shown in
figure 7-9, is that the Selector Channel accesses memory directly
for data and I/O program word transfers, rather than indirectly
through the lOP. These features permit a very high speed data
transfer rate. A more detailed lOP discussion of Selector Chan­
nel operations is contained in paragraph 7-47.

7-23. I/O SYSTEM FUNCTIONAL OPERATION

The following paragraphs contain discussions of I/O priorities, a
summary of data routes, a comparison of basic transfer modes, and
detailed discussions of the I/O hardware operations.

7-19



I/O System

7-24. I/O Priorities

There are two types of priority in the I/O system; interrupt
priority and service priority. The ability of a device to inter­
rupt the CPU is based on a priority structure that is separate
and distinct from the priority structure that handles service
requests.

The interrupt poll determines the priorities of all I/O inter­
rupts. The interrupt poll originates in the lOP (figure 7-11)
and is wired in series through every Device Controller in the
system. The proximity to the lOP on this line determines the
interrupt priority of each controller. The desired wiring se­
quence is dependent on system configuration. Physically, the
interrupt poll is a twisted-wire pair (signal and ground) con­
nected into and out of each unit at INT POLL IN and INT POLL OUT
connector pins. Functionally, the interrupt poll is an lOP
response to a received Interrupt Request (INT REQ line in the lOP
Bus). The poll propagates through each non-requesting unit and
stops at the first requesting unit. The unit then returns INT
ACK (Interrupt Acknowledge) and its device number to the lOP.
The lOP then generates an interrupt signal to the CPU. When the
CPU is ready to process the interrupt, it uses the device number
saved in the lOP (Interrupt DEVNO Register) to refer to the
device.

Service priority, unlike the series-linked structure of interrupt
priority, is determined in two levels. For Multiplexer Channel
devices, the first level determines the priority among two or
more Multiplexer Channels. The second level determines the pri­
ority of each Device Controller associated with that Multiplexer
Channel. Figure 7-11 shows only the first-level determination of
priority among Multiplexer Channels by means of a data poll; the
remaining priority determination is by logic not shown. The data
poll operates very much like the interrupt poll. That is, when
the lOP receives a Service Request, it sends out a data poll.
The first requesting Mul tiplexer Channel encountered by the poll
stops propagation of the poll and proceeds to specify the kind of
service required. Therefore, since priority is determined by
proximity to the lOP, the poll is wired through each Multiplexer
Channel in the des ired pr ior i ty sequence. The second -level pr i­
ority determination for Multiplexer Channel devices is by a ser­
vice request number. Since each Multiplexer Channel can handle
16 Device Controllers, there are 16 service request numbers (0
through 15). Each Device Controller associated with a given Mul­
tiplexer Channel is uniquely wired by a jumper to connect to one
of these 16 numbers to give the Device Controller a specific pri­
ority level. (Service request number 0 is the highest priority
and 15 is the lowest priority.)

7-20



I/O System

CENTRAL (CTL) DATA BUS

CPU

Data
Poll

lOP BUS

SELECTOR CHANNEL BUS·

'Device
Cont.

r--- ­
I
I
I
I DIRECT 1/0 DEVICE I
LEONTROL':!R ..J

MUX CHANNEL BUS

Figure 7-11. Interrupt Poll and Data Poll

Note

The service request number has no asociation with
the devuce number. It is simply a convenient way
by which a Mul tiplexer Channel can commun ica te
with and assign priorities to its set of Device
Controllers.

For high-speed Device Controllers, the Port Controller ·determines
the first level of priority. Selector Channell has highest pri­
ority and Selector Channel 4 has lowest priority. Although three
Selector Channel ports are available (port 2 cannot be used), two
Selector Channels is the maximum system configuration. The sec­
ond-level determination is a simple preemptive process. The
first device to be given an SIO instruction on a particular chan­
nel will have exclusive use of that channe 1 unt il its I/O p ro­
gram is finished. No further SIO instructions for devices con­
nected to that channel can be honored until that time.

7-21



I/O System

SELECTOR CHANNEL BUS

_--r--... High Speed
Device

Io
P

System
Clock

Direct """""'--~
I/O
Data

CENTRAL,(CTL) DATA BUS

lOP BUS

DIRECT I/O DATAr--- - -- - -D~ct1

I/O
I Device I
I I
I I
I DIRECT I/O DEVICE I
LCONTROLLE~ --l

* PORT 2 NOT AVAI lABlE FOR USE.

MULTIPLEXED
SIO DATA

MUX CHANNEL BUS

Figure 7-12. I/O Da ta Routes

7-25. I/O Data Routes

Data transfer routes for both low- and high-speed devices and
direct I/O are shown in figure 7-12. At least one of each type
of unit (two low-speed Device Controllers, one high-speed Device
Controller, one MUltiplexer Channel, two memory modules, etc.) is
shown. The routes shown in figure 7-12 are the normal input/
ou tput data routes.

For direct I/O instructions to a Multiplexer Channel device, in­
formation is transferred to or from the TOS in the CPU via the
lOP and lOP Bus. The information could be device status (for TIO
or rejected SIO, RIO, or WIO), control information (CIO), or data
(RIO or WIO). For SIO operation, data is transferred to and from
memory via the CTL Bus, lOP, and lOP Bus.

For direct I/O instructions to a Selector Channel device, the
data route is the same as for a Multiplexer Channel device; to or
from the TOS in the CPU via the lOP and lOP Bus. For SIO opera­
tion, data is transferred to and from memory via the CTL Bus,
Port Controller, Selector Channel, and Selector Channel Bus.

7-22



I/O System

7-26. I/O Transfer Modes

There are three basic modes of data transfer; direct I/O and two
SIO type transfers. Direct I/O operation consists of the trans­
fer of a single word (per CPU instruction) between the CPU and a
Device Controller. The Multiplexer and Selector Channels are not
involved. Direct I/O operations are discussed in paragraph 7-27.

During the two SIO type transfers, the CPU gives the I/O system a
command to "start I/O" for a particular device and the I/O system
proceeds to execute an I/O progam for that device. The program,
which resides in memory, controls the input and output of data.
Specifically, the two SIO transfer modes are moderate-speed
transfers via the Multiplexer Channel and high-speed transfers
via the Selector Channel. Figure 7-12 illustrates the difference
in data routes for these two modes. However ,the significant dif­
ference is in the sequencing of transfers for multiple Device
Controllers. Paragraphs 7-31 and 7-30 describe the difference
between Multiplexer Channel and Selector Channel transfers.

7-27. DIRECT I/O. During direct I/O operations, the CPU trans­
fers information directly to and fram a Device Controller without
invol ving memory, the Mul tiplexer Channel, or Selector Channel.
(See figure 7-12.) For each I/O instruction, one word is trans­
ferred either to or from the CPU TOS. The CPU has four direct
I/O instr uctions; Test I/O (TIO), Control I/O (CIO), Read I/O
(RIO), and Wr ite I/O (WIO).

Note

Some Device Controllers cannot accept all
direct I/O commands (see the specific sub­
sys tern manual). Howeve r , all Device Con­
trollers will accept a TIO or CIO using
bits 0 and/or 1. Bit 0, the standard con­
trol bi t, causes a mas te r clear of the
subsystem. Bit 1 causes the subsystem in­
terrupt logic to reset.

The TIO instruction obtains the contents of the Device Control­
ler's Status Register and pushes it onto the TOS. When the CPU
encounters a TIO instruction, its TIO microprogram sends a com­
mand word to the lOP Cbntrol circuit (figure 7-10) in the lOP.
The lOP then issues a Service OUt (SO) and a TIO command on the
10CMD lines via the lOP Bus to the device addressed by the Device
Number (OEVNO) code. The addressed device is therefore enabled
to accept and decode the command, and accordingly, reads the con­
tents of the Status Register onto the 100 lines. Sl is also is­
sued which causes the lOP to load the status word into the 10D
Oa ta In Register and informs the CPU that the word is present.
The CPU then issues a Read signal which reads the contents of the
100 Data In Register to the S-Bus. From the S-Bus, the status
word is placed on the U-Bus and pushed onto the stack.

7-23



I/O Systelll

/I'h~:: RIO instruction begins by performing a TIO to the Device Con­
troller as previously discussed to check the Read/Write OK status
bit (bit 1) e If status is acceptable, the same sequence is re­
peated except that the command is RIO and data is transferred
from the Data In Buffer rather than the Status Register.

The CIO instruction obtains a control word from the TOS register
(RA) and sends it to the Device Controller's Control Register.
When the CPU encounters a CIO instruction, its CIO microprogram
ioa6s the RA contents into the IOD Data Out Register and then
is~es a command word to the lOP. The command word causes a CIO
IOCMD to be issued to the Device Controller addressed by the
DEVNO code along with so. Simultaneously, the contents of the
IOD Data Register are read out onto the IOD lines. When the De­
vice Controller decodes the IOCMD, it loads the word on the IOD
lines into its Control Register and returns SI to the lOP. When
the lOP receives SI, the lOP returns a signal to the CPU, indi­
cating completion of the instruction.

The WIO instruction begins by performing a TIO to the controller
to check the Read/Write OK status bit. If status is acceptable,
the remaining operations for the Write I/O instruction are the
same as for CIO except that the information sent is a data word,
the IOCMD is WIO instead of CIO, and the information is loaded
into the Device Controller's Data Out Buffer instead of its Con­
trol Register.

7-28. PROGRAMMED I/O. When a driver issues an SIO instruction to
a requested Device Controller, the I/O hardware begins to execute
the I/O program independently of the CPU. The CPU is then free
to continue processing in parallel with the I/O operations. Par­
agraphs 7-29 and 7-30 define the elements of an I/O program and
describe the hardware actions occurring after the SIO instruction
is issued.

7-29. I/O Program Word. The format of an I/O program word is
illustra ted in figure 4-14. Two computer word s are used to ac­
commodate the 32-bit word length. The first word is designated
as the I/O Command Word, or IOCW, and the second word is desig­
nated as the I/O Address Word, or IOAW. Data chaining occurs for
WRITE and READ orders if bit 0 of the IOCW is a "1". This bit
may be a "1" for a WRITE order followed by a WRITE or for a READ
order followed by a READ. This will permit the hardware to treat
the counts of each order as a continuous chained count, without
reinitializing for each order. The DC bit should be "0" for all
other orders. The count field of the IOCW contains the least
significant 12 bits of a two's complement negative count value
for WRITE and READ orders. The count is a word count, indepen­
dent of the particular recording format (bytes, words, or re­
cords). For a CONTROL order, these 12 bits are used for control
information in addition to the 16 control bits in the IOAW (a
total of 28 bits). Complete definitions of the I/O orders are
contained in paragraph 4-16, Instruction Cbmmentary number 8.

7-24



I/O System

7-30. Typical I/O Program Operation. Figure 7-13 illustrates the
sequence of operations occurring as the result of an SIO instruc-
tion. The sequence is as follows:

a. The SIO instruction (decoded by the CPU) fetches the device
number given at S-K (1, figure 7-l3f in the stack (2), and
puts the TOS into the first word of its DRT entry as the I/O
progr am pointe r.

b. SIO then sends the device number (3) to the lOP Control Reg­
ister and sends an SIO command (4) to the lOP.

c. The lOP issues the SIO command (5) to the Device Controller
and execution by the hardware begins. The CPU is now free to
continue execution elsewhere.

d. On demand from the MUltiplexer Channel, the lOP obtains the
program pointer (6) from the DRT. (The Selector Channel ob­
tains the program pointer directly, not via the lOP.) As il­
lustrated previously in figure 7-4, the address is obtained
by mul tiplying the dev ice number by four. The progr am point­
er is the first word of the four-word DRT entry.

e. The program pointer points to the first doubleword of the I/O
program (7). The pointer is Lpdated to point at each I/O
program double word as the program progresses. (The Selector
Channel, to minimize memory fetches, copies the pointer value
into a register and updates the pointer internally; the Mul­
tiplexer Channel updates the pointer directly in the DRT.)

f. The sample I/O program operates as follows. The first dou­
bleword (7) contains a CONTROL order which enables the hard­
ware I/O subsystem for this device. The second doubleword
contains a READ order which causes the subsystem to read 4096
words (or 8192 bytes) into the data buffer (8) whose starting
location is given in the IOAW word. Since the data chaining
bit is on, the next (third) doubleword is also a READ order
which specifies the remaining count required to fulfill the
I/O request. (Additional READ orders could be given for larg­
er requests.) The IOAW will either specify an additional buf­
fer area contiguous to the first 4096-word buffer if desired
or, in another part of memory.

g. When the transfer is complete, the final doubleword contains
an END order, which obtains the result of the transfer (de­
vice status) and loads it into the IOAW; the END order then
tells the controller to generate an interrupt to inform the
software that the transfer is complete.

h. At the completion of an I/O program, the Selector Channel
returns the current program pointer value to the DRT. The
Multiplexer Channel does not take any special action since it
updates the DRT afte r each order fe tch.

7-25



I/O System

STACK
DEVICE

REFERENCE
TABLE

p

Q

Start 1/0
to Hardware Note: SB =SET BANK

SIO INSTRUCTION

4 times
Dev No,

I/O
PROGRAM

4096
Words

..
Remainder

Fig u r e 7-13 • I/O Pr og r am Q?era t i on

7-31. Multiplexer Channel Transfers. A mUltiplexer transfers
data from many sources on an apparently simultaneous basis.
Therefore, it is the function of the Multiplexer Channel to per­
form one discrete operation for one r:evice Controller (such as to
transfer one word to or from memory), and then check to see which
Device Contr'oller has hig,hest priority for the next discrete
operation. The Multiplexer Channel includes a 16-1ocation solid­
state memory as shown in figure 7-14. Each location in this mem­
ory corresponds to one of the 16 Device Controllers connected to
the Multiplexer Channel Bus. Each location contains the informa­
tion required to execute the next operation for that device.
Typically, this would be the current I/O program word. When a
particular Device Controller is selected for service, the stored
word is read out to a set of registers and the Multiplexer Chan­
nel executes the indicated operation. Then, the information is
updated for the next anticipated operation and is stored back in
the memory location.

The overall Multiplexer Channel operating sequence is as follows.
Each time a Device Controller requires a new I/O program, it
causes the Multiplexer Channel to fetch an address from the DRT
(1, figure 7-14) and load it into its solid-state memory loca­
tion. (Some other operation for another device could be inter­
leaved after each of these steps.) Then (2), the I/O program
doubleword is fetched and loaded into the same memory location.
This I/O program word is then read out (3), control signals are
issued to the r:evice Controller (4), and the updated operation
information is stored back into the memory location (5). If the
Device Controller was commanded to transfer data, it issues a

7-26



I/O System

MEMORY

MULTIPLEXER CHANNEL DRT

I/O Prog

D
I/O Prog

I/O Prog

D

2

l6-Cell
Solid-State
Memorv

Device
Cont.

8
Data

MEMORY

Device
Cont.

SELECTOR CHANNEL

_-- (if§l __

DRT

-2]
I/O Prog

D
I/O Prog

D
------"' -- - - --,

l[j+B
Figure 7-14. MUltiplexer and S~lector Channel Comparisons

service request when it is ready (6), causing another readout of
the stored information (7) and a transfer of data (8). Updated
operation information is restored (9). Steps (6) through (9)
are repeated for each word transferred. (For a more detailed
discussion, refer to paragraph 7-33.)

7-27



I/O System

7-32. Selector Channel Transfers. A Selector Channel transfers
data from many sources in a data block manner. That is, it locks
onto one Device Controller until the I/O program for that device
is completed. Then, a check is made to see which Device,Control­
ler has highest priority for the next block transfer. SInce only
one I/O program will be in progress as long as a particular de­
vice is selected, the Selector Channel is designed to facilitate
very high speed transfers. The Selector Channel uses double-buf­
fering for both data and I/O program words. (See figure 7-14.)
For data, this permits device/channel transfers to overlap chan­
nel/memory transfers. For I/O program words, this permits the
next program word to be fetched from memory while the current
word is active. Both of these features contribute to the speed
capablity. In addition, the necessity to repeatedly fetch a DRT
entry for the address of the current I/O program word (as is done
by the Multiplexer Channel) is eliminated by including a Program
Counter in the Selector Channel. The Program Counter is loaded
with the initial address contained in the DRT, but is thereafter
incremented (or altered for jumps) internally in the Selector
Channel. To provide software compatibility with Multiplexer
Channel transfers, the final value of the Program Counter is
automatically restored in the DRT at the end of the program.
Software cannot distinguish whether the transfer occurred by way
of the Multiplexer Channel or the Selector Channel.

The overall Selector Channel operating sequence is as follows.
When the Device Controller is commanded by the CPU to "start
I/O" , it ca uses the Se Ie ctor Cha nne 1 to fe tch the star t in g ad­
dress of the I/O program from the DRT (A). This address is used
to fetch an I/O program doubleword (B) and load it into either
the active control registers or, during order prefetch, into the
buffers (C). The Program Counter is incremented after each
fetch. Control signals are issued to the r.evice Controller (D),
and (E), if the command is a Read, the Device Controller reads
data into buffer A (or buffer B if A is full). If the command is
a Write, the Device Controller writes data from buffer A (or buf­
fer B if A is empty) • Meanwhile (F), the Selector Channel at­
tempts to keep both buffers full for output or both empty for
input, by transmissions to or from memory. At the end of the
block transfer, the next I/O program word is fetched. Repeat
back to step (B). At the end of the I/O program, the Selector
Channel stores its Program Counter contents into the DRT (G).
(For a more detailed discussion, refer to paragraph 7-47.)

7-33. Multiplexer Channel Operations

A detailed discussion of Multiplexer Channel operations is con­
tained in paragraphs 7-34 through 7-46.

7-34. INlTIALIZE~ When the CPU encounters an SIO instruction,
the CPU outputs a command word to the lOP Control Register. (See
figure 7-10.) The lOP relays this information to the Device Con­
troller (figure 7-15) via the lOP Bus. The DEVNO on the lOP Bus
is compared with the internally wired device number. A true re­
sult, together with the SO signal from the lOP, enables the IOCMD

7-28



I/O System

TO lOP BUS

___---------------~A'----------------- .....
(

\

100
16

INT

POLL

IN

FF

SO '~CMO ~{.~EVNO INT OEVNO 'NT REU ~~TK ~~~L
OEVNO .,.---<)

COMP OEVNO r---_ {r~--1
JMPRSI8 r'" -

r-I-'-OC-M-O..l.., ?
DECODER V

~I IACTIVE

MASK RIL I fF ~

::'" "O,~,~ A':::,: · \

• E 0 15 SIN ,---F~'fl L- '" c.", ---IA
INTREO r» r-TI-

I FF I
'-----"'"

I SI LOGIC

16
• STATUS ~
..... ...J_ ~CIO

ICONTROL~'-------'
CONTROL

DATA IN BUffER:
SIO
RIO OEV
WIO INT

CONTROLLER
LOGIC

DEVICE

CONTROLLER

ON A

MULTI PLEXER

CHANNEL

II SII LINES

--...1
I

SET SR

n SR

FF

J
.~MPIN

• WHEEL

15

,. CHAN~O

O£V END

ACKSII

CHAN ACK

O£VNODe

SIO ENAILE

J'JII'MfT

TOGGLE INXFER

TOGGLE SR

TOGGLE OUTXFER

TOGGLE SIO 01(

IIEC

IotUX
BUS
TOIotUX

CHANNEL

PCMOI

SETWI'

PSTATHI

PCONT STI

PWRITE STI

SR CLOCK

~__~SET".T

EOTl
~mn~

P HEAD STI

Figure 7-15. Multiplexer Channel and Device Controller

Simplified Logic Diagram

7-29



I/O System

to be decoded. The IOCMD in this case is SIO which, when decod­
ed, sets the Service Request (SR) flip-flop. The Service Request
(SR) along with a Request (REQ) signal is sent Multiplexer Chan­
nel Bus to the MUltiplexer Channel. (See figure 7-16.) The SR and
REQ cause the Multiplexer Channel, instead of the Device Control­
ler, to return SI and force a DRT FEtch to be the first operation
performed for the Device Controller on the next Service Request
from the Device Controller. An SIO to a Device Controller temp-
orarily inhibits service requests from all other Device Control­
lers. Therefore, the only Device Dontroller requesting is the
one receiving the SIO command. The Priority Encoder/Select De­
coder then issues a 4-bit binary code which corresponds to the SR
line number. The binary code is used as a RAM address to enable
one of the 16 locations in the solid-state mUltiplexer memory.
The solid-state memory contains separate RAM for each of the IOCW
and IOAW parts of the I/O program doubleword, and one to specify
the state (or next operation). In this case, a DRT fetch and an
Auxiliary RAM containing the I/O order. The IOCW is contained in
the Order RAM (16 bits), the IOAW is contained in the Address RAM
(16 bits) and the state is contained in the State RAM (4 bits).
Each of the addressable locations therefore contains 36-bits.

For the initialize operation, the State RAM location for the re­
questing device is forced to the condition required for a DRT
fetch. Once this is done, the Multiplexer Channel returns a DI
signal to the lOP, which in turn, causes the lOP to free the CPU
to execute other instructions. The Auxiliary RAM uses bits 12
through 15 of the Se t Bank I/O order on the IOD lines to send lOX
(B12 and B13) to the CPU Mod Select switches (see figure 7-10)
and to send lOX (B14 and B15) to memory (see figure 6-2) as part
of the IS-bit memory address. The lOP Mod Select Switches (fig­
ure 7-10) supply an IOTa signal to the MCU where it is gated to
memory (figure 6-2). The MUltiplexer Channel will transmit a
bank humber of 0 unles s actually moving data for a Read or Wr ite
order pair. In the following description, unless otherwise spec-
ified, the bank number will be considered to be zero.

7-35. DRT FETCH. The Service Request received at the Multiplexer
Channel from the Device Controller (figure 7-16) causes the
Transfer/Control Logic to send a Multiplexer Channel Service Re­
quest (HSREQ) to the lOP and also sets the SR latch. Any of the
16 SR inputs can set this latch and generate an HSREQ signal.
However, only the highest priority requests will be.honored by
the Priority Encoder. The lOP, when it receives an HSREQ, issues
a DATA POLL to all Multiplexer Channels. The highest priority
Multiplexer Channel stops the propagation of the poll (since SR
Latch is set), and its transfer logic is enabled. First, the
contents of the address RAM location are loaded into the State,
Address, Auxiliary, and Order Registers. The state bits tell the
transfer logic to send out a command to the Device Controller via
the MUltiplexer Channel Bus along with the Service Request number
signal (which is returned on the same line used for Service Re­
quest) and SO. This command tells the Device Controller to read
out its device number to the lOP Bus.

7-30



I/O System

°

TO lOP BUS

.._-----------------------.-JA......------------------------.....,

T
T

C

DATA DATA
POLL POLL 7DEVN
OUT IN

r- ------ - I

I

I

~
I

4 IOCMD COMP
DECODER ARATOR I

TlO I
TRANSFERI

CIO 8 IWIO
CONTROL WR RAMS RIO IlOGIC

DEVNO I
JUMPERS

4

~
I

DIAGNOSTIC I
WR ORDER RAM LOGIC

L_ - -- -- - - - ~

INC ADDR

4 BITS 12·15

~

V
~ ~ I AUX IRAM RAM

J,
IAI Blc I 0 I pC I DC I B121 B131 B141 B151

I I L--JI l l l
L!R 1

U.OO.. ¢Ie?
f

RR

L....-.,

I

}1-----"- ADDRESS RAM HORDER I WORD COUNT
RAM RAM

PRIORITY

::~~~ER/ _ ~ ~ ~
DECODER l-H ADDRESS REG/COUNTER I O~r~R I :~~f'c83~~lA

~-,TJ I I I
SR IHAN SO
DEV END

ACKSR

DEVNO DB
CHAN ACK
SIO ENABLE
JUMP MET

TOGGLE INXFER

TOGGLE SR MUX
oc:;c:a E OUT XFER BUS
OGGLE SIO OK >-TO MULTIPLEXER

REQ DEVICE
PCMDI CONTROLLER CHANNEL
SET JMP

PSTATSTB
PCONTSTB
P WRITE STB
RD NEXTWD

P READ STB

,SET INT
EOT

SR CLOCK

Figure 7-16. Multiplexer Channel Simplified Logic Diagram

7-31



I/O System

The Device Controller, for a DRT fetch, reads out its device num­
ber (DEVNO) onto the IOD lines. Instead of being read onto the
eight least significant lines of the bus (8 through 15), the num­
beris read onto lines 6 through 13, which is left-shifted by two
bits. This effectively mUltiplies the number value by four, thus
automatically providing the correct address for that device's DRT
entry. (Remember that each device uses four locations in the
DRT.) Simultaneously, the Mlltiplexer Channel is returning an Sl
response to the lOP along with an 10CMD which tells the lOP to
accept the address existing on the IOD lines and that a DRT fetch
fr om that address is required.

The lOP then proceeds to fetch the DR'r entry. (See figures 6-1
and 7-10.) The lOP issues an IOLRQ to its MCU with an appropriate
MOP to read memory. When select occurs, the address is transmit­
ted to memory. When memory returns the DRT entry contents, I/O
Strobe (IOSTRB) loads the word into the lOP Data Out Iegister.
The lOP Data Out contents are then read out onto the IOD lines
and SO is issued. Upon receipt of SO, the Multiplexer Channel
loads the DRT word into the Address RAM, restores the Order Reg­
ister contents into the Order RAM, and sets the State RAM to the
condition required for an I/O program word fetch. Meanwhile, the
lOP transfers its copy of the DRT word from the Data Output Reg­
ister to the Data Input Iegister, increments it by two, and sends
it back to the DR!' in memory. (This is an anticipatory move, as
the Address RAM presently conta ins the des ired address for the
next operation; the incremented address in the DRT will not be
used un til the next DRr fe tch.)

7-36. I/O PROGRAM WORD TRANSFERS. Each I/O program word consists
of two words in Bank 0 of Miin Memory; the IOCW and the 10AW".
Therefore, two memory transfers are required. The first transfer
is to fetch the IOCW. Depending on the order that the 10CW con­
tains, the second transfer may be either a fetch or a store.

7-37. 10CW Fetch. The SR fl ip-f lop in the Device Controller is
still set from the previous procedure (DRT Fetch, paragraph 7-4) ,
so HSREQ is still present at the lOP. The lOP therefore issues a
new DATA POLL. The SR Latch in the Multiplexer Channel, which
had reset on the trailing edge of the previous SO, has become set
again since the SR input was still present at the next clock.
Thus DATA POLL is stopped from further propagation, and the
Transfer/Control Logic is enabled again.

The contents of the Address RAM location are loaded into the
State, Address, and Order Registers. The state specifies an 10CW
fetch, so the transfer logic reads out the contents of the Ad-'
dress Register and issues Sl and the 10CMD "transfer from memory"
to the lOP. The address now on the 10D lines is the word pre­
viously fetched from the DRT, indicating the address of the I/O
progr am word. The lOP issues an 10LRQ to the MCU. When pr ior i ty
allows, the MCU transmits the address to memory. When memory
re turns the 10CW, IOSTRB load s this word into the lOP Da ta Out
Register in the lOP. The lOP then reads the word out to the 10D
lines and issues SO.

7-32



I/O System

Upon receipt of SO, the Multiplexer Channel loads the IOCW into
the Order RAM. If the order is Control, the Multiplexer Channel
issues a command through the Multiplexer Channel Bus so that the
Device Controller will also load the IOCW into its Control Reg­
ister. The contents of the Address Register/Counter is incre­
mented by one and restored in the Address RAM. The next state,
fetch or store IOAW, is stored in the State RAM.

The next operation, transfer of the IOAW, begins the same way for
each of the orders. That is, SR to the Multiplexer Channel
causes a HSREQ to be sent to the lOP. The lOP returns a DATA
POLL which enables the Multiplexer Channel to load the addressed
RAM location into the State, Address, and Order Registers. Ac­
tion after this point varies depending on the order that the IOCW
contains.

7-38. IOAW Fetch. The Read, Write, Jump, Control, and Interrupt
orders each cause an IOAW fetch. However, the action taken upon
receipt of the IOAW is different in each case. ,The IOAW fetch
begins by reading the contents of the Address Register (incre­
mented on the trailing edge of DATA POLL in the IOCW fetch pro­
cedure) to the laD lines. The Multiplexer Channel also issues SI
and the IOCMD "transfer from memory" to the lOP. The lOP issues
IOLRQ with MOP to its MCU to request a memory read. When memory
returns the contents of the address location, IOSTRB loads it
into the lOP Data Out Register. The lOP then reads the contents
of the lOP Data Out Register to the laD lines and issues SO. For
Read, Write, Interrupt, and Jump orders, the Multiplexer Channel
will store the word (IOAW) into the Address RAM. For a Control
order, the Multiplexer Channel issues a command via the Multi­
plexer Channel Bus to tell the Device Controller to load the word
into its Control Register. For an Interrupt order, the fetched
information is loaded into the Address RAM but is disregarded.

For Read', Write, and Conditional Jump, a command is sent to the
Device Controller to specify conditions for the next action. For
Read, the in-transfer condition is set. For Write, the out­
transfer condition is set. For Conditional Jump, the Device Con­
troller is given the choice of setting or not setting the "j ump
met" cond i tion. If "j ump met" is tr ue in the next DRT fe tch se­
quence (or if an unconditional jump was given), a store operation
(instead of fetch) will occur. That is, the Multiplexer Channel
will cause the contents of the Address Register to be sent to the
lOP which will increment the value by two before storing in the
DRT. (The Address RAM already contains the correct jump address,
50 a DR!' fe tch is not neces sary.)

7-39. IOAW Store. The Sense, End, and Return Residue orders each
cause an IOAW store operation. This operation begins as the Mul­
tiplexer Channel reads the incremented contents of the Address
Register out to the laD lines and issues SI with a "transfer-to­
memory" IOCMD. The lOP loads this address into its Memory Ad­
dress Register (MAR) and issues IOLRQ to its MCU with a Clear/
Write MOP. The insuing CTL Bus transmission prepares memory for
receiving data. Simultaneously, the lOP has issued SO to the

7-33



I/O System

MUltiplexer Channel to ask for data. Depending on the current
order, the M~l tiplexer Channel either ga tes the Order Register
contents out to the 100 lines (Return Residue order) or issues a
command to the Device Controller, telling it to read out its
Status Register contents (Sense or End orders). When either ac­
tion occurs, SI is returned to the lOP which causes the lOP to
load the 100 information into its Memory Data Input Register.
The lOP then proceeds to transmit this information to memory by
issuing IOHRQ to its MCU. When the transmission occurs, the ap­
propriate information will be stored into the IOAW location of
the I/O program doubleword.

7-40. Next Operation. At this point (after the IOAW fetch or
store), the I/O program word transfer is complete. In addition,
all orders except Read and Write (i.e., Control, Set Bank, Sense,
Return Residue, End, Jump, and Interrupt) are fully executed.
The next operation for any of these orders (except End, which
terminates the program) is to return to the DRT fetch operation.
For Read or Write, however, a data transfer is indicated.

7-41. DATA TRANSFERS. Data transfers are very similar to the I/O
program word transfers previously described, in that the basic
operation is to fetch or store information using a memory address
that has been put in the Address RAM by a. previous operation.
For I/O program word transfers, the previous operation was the
DRT fetch; for data transfers, the previous operation is the I/O
program word transfer. 'fhe main difference is that the data
transfer is device-initiated. That is, when a device is ready
for a transfer, it informs its Device Controller which then is­
sues an SR to the Multiplexer Channel. Another difference is
that the word count and memory address contained in the Order and
Address Registers must be· incremented during each word transfer.
Each data transfer consists of two distinct steps; the transfer
of an address to memory and the transfer of data to or from that
address. The first step (address to memory) is the same for ei­
ther output or input.

7-42. Address Transfer. When the device sets the Device Control­
ler's SR flip-flop, the SR signal to the Multiplexer Channel gen­
erates an HSREQ signal to the lOP. The lOP returns DATA POLL
which enables the MUltiplexer Channel to begin its transfer.
First, the addressed RAM location is read out to the State, Ad­
dress, Auxiliary, and Order Registers. Then the Address Register
contents are read out to the 100 lines and the Auxiliary Register
to the lOX lines. Also, SI and an appropriate IOCMD ("transfer
to memory" or "transfer from memory") are sent to the lOP. The
lOP loads the address and issues IOLRQ to its MCU with a Read/
Restore or a Clear/Write MOP. When priority allows, the MCU will
transmit the address to memory. Simultaneously, the Multiplexer
Channel resets the Device Controller's SR flip-flop via the Mul­
tiplexer Channel Bus and increments the Address and Order
Registers.

7-34



I/O Sys tern

7-43. Output Transfer. When memory returns a data word, 10STRB
loads the word into the lOP Data Out Register. The lOP then
reads the contents of this register out to the 100 lines and is­
sues SO. Upon receipt of SO, the Multiplexer Channel issues a
command to the Device Controller via the MUltiplexer Channel Bus
telling the Device Controller to load the word on the bus into
its Data Out Buffer. The Device Controller returns Sl to the lOP
and proceeds to output the word to the device. Simultaneously,
the Multiplexer Channel restores the contents of the State, Ad­
dress, and Order Registers into the RAM location, and the output
data transfer is complete. Some other operation for another de­
vice could be interleaved here. Otherwise, the entire data
transfer procedure repeats.

7-44. Input Transfer. As the input data transfer procedure be­
gins, memory is expecting the data. The procedure begins when
the lOP sends SO to the Multiplexer Channel to ask for data.
Upon receipt of SO, the Multiplexer Channel issues a command to
the Device Controller via the Multiplexer Channel Bus, telling
the Device Controller to read the contents of its Data In Buffer
out to the 10D lines. When the Device Controller does this, it
also sends an Sl response which causes the lOP to load the data
into its Memory Data Input Register. The lOP then issues 10HRQ
to its MCU with a Write MOP, causing a data transmission to mem­
ory via the MCU Bus. Simultaneously, the Multiplexer Channel
restores the contents of the State, Address, Auxiliary, and Order
Registers into the RAM location, and the input data transfer is
complete. Some other operation for another device could be in­
terleaved here. Otherwise, the entire data transfer procedure
repeats.

7-45. End Of Transfer By Word Count. If the word count rolls
over while incrementing (during the address transfer sequence),
then in the data transfer sequence the Multiplexer Channel will
issue a command which will reset the in-transfer or out-transfer
condition in the Device Controller. Also, an End-of-Transfer
(EOT) signal accompanies the last command from the MUltiplexer
Channel to read or write. The Device Controller logic will there­
fore not transfer any more data to or from the device. It will,
however, issue one more SR. In the Multiplexer Channel, the
transfer logic sets the next state to DR!' fetch, when restoring
the RAMS at the end of the final data transfer. When the Multi­
plexer Channe I re ce ives the SR fr om the Dev ice Contr oller and
when priority conditions are satisfied, a new DRT fetch procedure
will begin. This advances the I/O program to the next IOCW.

7-46. End Of Transfer By Device. On termination of a transfer
by a device, the Device Controller issues an SR to the Multiplex­
er Channel. The MUltiplexer Channel responds with CHAN SO. The
Device Controller returns a Device End signal that causes the
MUltiplexer Channel to initiate a DRT fetch, thus advancing the
I/O program to the next IOCW.

7-35



I/O System

7-47. Selector Channel and Port Controller Operations

A Selector Channel operates only one I/O program and transfers
blocks of data for only one device at a time. Data is passed
back and forth from memory, through the CTL BUs, to the Port Con­
troller, Selector Channel, and through the Selector Channel Bus
to the Device Controller and the operating device. (See figure
7-12.) A detailed discussion of selector Channel and Port Cbn­
troller operations is contained in paragraphs 7-48 through 7-60.
Since there may be two Selector Channels operating in the system,
the Port Controller is discussed first to explain how each Sel­
ector Channel ga ins access to the CTL Bus.

7-48. PORT CONTROLLER. The Port Controller (figure 7-17) pro­
vides three ports (ports 1, 3, and 4) to the CTL Bus for I/O pro­
grams and data transfers be tween Selector Channels and Main Mem­
ory. Figure 7-17 illustrates the logic for only one port; logic
for the remaining ports is identical to the one shown. The Port
Controller Bus contains five sets of signal lines; one set for
each of four ports (port 2 is not available for use) and one set
to data lines which is shared by all four Selector Channels. (It
should be noted that although three ports are available for Sel­
ector Channels, only two Selector Channels can be installed in
the system simultaneously.)

The Port Controller is assigned a module number 4 which gives the
Port Controller a transmission priority higher than the CPU or
lOP as discussed in Section II. A SelectorcChannel requiring
transfer of a word to or from memory, presents the Port Controll­
er with a request for a Write or a Read operation along with the
memory module number (0,1,2, or 3) to which the address will be
sent. A Write operation consists of a Low Request (LREQ) for an
address tr ansfer followed by a ·Low Select (LSEL) of that address
from the Selector Channel to memory via the CTL Bus; then a High
Request (HREQ) for a data transfer followed by a High Select
(HSEL) of that data to memory, via the CTL Bus. A Read operation
consists of a LREQ for an address transfer followed by a LSEL of
the address to the bus and memory. Then, a wait for a return
transfer of data to the Port Controller from the module to which
the address was sent. This return transfer'of data is indicated
to the Selector Channel by the STRB (Strobe) signal. While one
section of the Port Controller is waiting, another section could
be intructing another part of memory to fetch or store a data
word for another Selector Channel. Priority is resolved among
the three ports in the Port Controller on the following basis:
Low requests with the desired destination module ready are grant­
ed first to Selector Channell, next to Selector Channel 3, and
last to Selector Channel 4. A High Request for any Selector
Channel takes precedence over all Low Requests.

The Write sequence is as follows: A Write on the request
the Port Controller sets the LREQ flip-flop and sets
flip-flop to the write state. The TO lines from the
Channel are clocked into the TO Register and the content
compared with the Ready (ROY) line for that module.

7-36

lines to
the MOP
Selector
is then
When the



I/O Sys tern

TO CTL BUS

.--- ...JA..... ---.

}

PORT
CONTROLLER
BUS

RT

ROLLER

READY FROM TO MOP MellO ENB
1J·3 3 3 2 + 1J·4

PARITY1.@I'"~ I I"JCOMP COMP COMP

fgAR:OR ARATOR i-A

:'::'

OE-
RDY
PUll • ~
DOWN j~ ~V

~ +5V

~~

\ PO

CONT

...
LSEl v---

~ WAIT f-J PARITY
CHECKER

FF I
READ

ill W MOP r
REG I

XFER ERROR

I
FF WRITE TO DEVICE

READY COMPARE

~
JSrU1 LSEl r

R
LREO IFF

FF I

.1f1HREO
HSEl r-<

FF
FF

PC HAS PR lOR ITY ENB' 3

"\
ENB4 r 1. PeD + PARITY

READ REO READ REO

WRITE REO WRITE REO

STROB STROB

TO '> PC BUS TO

LSEL LSEl

HSEl

./

Peo 1.+
TO /2 STROB WRITE READ HSEl LSEI PARITY

REO REO

y
TO

SELECTOR
CHANNEL

114 LOGIC SHOWN THE OTHER 3
CHANNElS EACH HAVE THIS
lOGIC OUPLICA TEO

EACH PORT CONTROllER SIGNAL
IEXCEPT PCD lINESI ARE DUPLICATED
4 TIMES ONCE FOR EACH CHANNEl

Figure 7-17. Port Controller Simplified Logic Diagram

7-37



I/O System

destination is ready, the ENB is present, the Port Controller has
priority, and the LSEL and HREQ flip-flops are set. LSEL gates
the address from the Selector Channel to the CTL Bus along with
TO, FROM, and MOP. LSEL also pulls the destination's ROY line
low. Then, when ENB is present, the HSEL flip-flop is set. HSEL
gates data form the Selector Channel to the CTL Bus along with
TO, FROM, and MOP.

The Read sequence is as follows: A Read on the request lines to
the Port Controller sets the LREQ flip-flop and sets the MOP
flip-flop to the Read state. The TO lines from the Selector
Channel are clocked into the TO Register and the content is com­
pared with the ROY line for that module. When the destination is
ready, the ENB is present, the Port Controller has priority, and
the LSEL flip-flop is set. LSEL gates the address from the Se­
lector Channel to the CTL Bus along with TO, FROM, and MOP. LSEL
also sets the Wait flip-fop. Then, when returning data is pre­
sent on the bus and the TO and FROM comparisons match, a STRB
signal is sent to the Selector Channel to tell it to accept the
data on the Port Controller Data (PCD) lines.

7-49. INITIATOR SEQUENCE. The following paragraphs describe how
the Selector Channel's program counter is initialized as the
first step in executing an I/O program for one device. The Sel­
ector Channel Bus or iginates at the Selector Channel and is rout­
ed to all Device Controllers controlled by this Selector Channel.
The Selector Channel Bus is similar to the Multiplexer Channel
Bus in purpose, but differs in that it uses 16 lines for transfer
of control, status, and data words between the Device Controller
and Selector Channel: the corresponding Multiplexer Channel Bus
lines are used as service request lines for up to 16 devices.

The in.itiator sequence begins when the CPU encounters an SIO
instr uction. The CPU, under control of its SIO microprogam, out­
puts a' command word to the lOP Control Register. (See figure
7-12.) This initial command is a TIO to see if there is already
an I/O program active on the channel. The lOP issues the TIO
with SO and DEVNO on the lOP Bus. The Device Controller compares
DEVNO with its internal wired device number and a true compari­
son, with SO, causes the Device Controller to return SI to the
lOP with a 16-bit status word on the lOP Bus. (See figure 7-18.)
The CPU microprogram obtains this status word from the lOP and
checks to see that bit 0, the SIO OK bit, is true. This bit will
be true if the device is ready and the Selector Chapnel is inac­
tive. Assuming that the SIO OK bit is true, the CPU microprogram
outputs an SIO command to the lOP Control Register and the lOP
issues the SIO command to the Device Controller. The DEVNO on
the bus is again compared with the internally wired device number
(figure 7-16) and the true result, with SO, enables the I/O Com-
mand (IOCMD) to be decoded. The IOCMD is now SIO which, when
decoded, issues a Request (REQ) signal to the Selector Channel
control logic. The channel then returns Sl to the lOP as an
acknowledgement response. From now on (except for processing an
interrupt), the lOP is not involved. The data gating logic
routes all data transmissions to the DATA lines of the Selector

7-38



I/O System

TO lOP BUS
,-- AI- ---..

151
SO 10CNID ll7DEVNOI I,..T DEVNO INT INT INT INT I

"~
REO ACK POLL POll

IN OUT

I 51 LOGIC DC~V:pO .,-0

8 ¢I~
DEVNO

JMPRS/8

I '''M' L±JDECODER I
v---II I ACTIVE

MASK I'lL
FF I

PIN
WHEEL

SID· SMSK
SMSK ARESETFbi MASK

~ "H"~~
,.

I
ED

15 FF

SIN
INT REO

1FF
FF

-
~ STATUS rrdCIO

SDATA OUT BUfFER I

CONTROL 16 rtl!f CONTROL

D~~~CE) STATUS

DATA IN BUFFER I
I SIO

RIO DEV
WIO INT

~, ~~

DEVICE

CONTROLLER
CONTROLLER

LOGIC ON A

SELECTOR

CHANNEL

4" •

.- 11 SAIOATAI

Ct4ANSO

DEVENO

ACKSA

Ct4ANACK

DEVNODI

StOENAILE

JUWMn

TOGGLE INXfEA

CHANSR

~s-e
TOGGLE OUTXfEA

TOGGLE SIO OK

liED

PCMDI

sn JUMf'

'STAT STI

'CONT STI

'WRITE STI

RO NEXT wo "
'IIUOSTI

snlNT

EOT

SR CLOCK

'-

00

SCBUS
TO
DEVICE
CONTROLLER

Figure 7-18. Selector Channel and Device Controller Simplified
Logic Diagram

7-39



I/O Sy stern

Channel Bus rather than to the IOD lines of the lOP Bus.

When the Selector Channel (figure 7-19) receives a Request (REQ)
from the Device Controller, it sets the control logic to "ac­
tive". The Selector Channel then issues the Device Number Data
Base (DEVNO DB) to the Device Controller. The Device Controller
gates the DEVNO, left shifted by two, onto the SR (Data) lines of
the Selector Channel Bus. The DRTE address is then loaded into
the DEVNO DBV Register. The Selector Channel is now exclusively
reserved for that device. Only this Device Controller will re­
spond to Channel Service Out (CHANSO) from the Selector Channel.
The Selector Channel now reads the device number from the DEVNO
DB Register and requests a memory transfer by issuing a Read to
the Port Controller (figure 7-17). The Port Controller checks if
memory is ready and, when Enable (ENB) is present, sets the LSEL
flip-f lop. The LSEL signal is returned to the selector Channe 1
(figure 7-19), where it reads the DRTE address onto the peD lines
on the PC Bus. LSEL also reads out the TO, FROM, and MOP codes
in the Port Controller, thus effecting an address transmission to
memor y.

When memory returns the DRT contents, the Port Controller issues
STRB to the Selector Channel. Since the Selector Channel control
logic is expecting a DRT word, it loads the bus data into the I/O
Program Counter. The contents of the I/O Program Counter will
hereafter be used to address the individual locations of the I/O
program an~ no further DRT fetches are necessary. Program execu­
tion will .occur as a result of fetch and execute sequences.

7-50. FETCH SEQUENCE. Fetching an I/O program doubleword re­
quires two memory fetches. Unli ke the Mul tiplexer Channel which
examines the IOCW to determine what to do about the IOAW (fetch
it, store into ·it, or gate it out to the device controller) the
two memory fetches always occur. The different operations for the
various types of I/O orders are accomplished in the execute se­
quence. The fetch sequence begins with the selector Channel
reading out the contents of the I/O Program Counter and request­
ing a memory read. When the Port Controller has obtained trans­
mit priority, it returns LSEL, transmitting the I/O Program
Counter contents to memory as an address. (The Counter is incre­
mented immediately.)

When memory returns the IOCW from the addressed location, the
Port Controller issues STRB to the Selector Channel. The Selec­
tor Channel contorl logic, which is expecting the IOCW, loads the
word into the IOCW Active Register. Then the I/O Program Counter
is again read out with another memory transfer request. The Port
Controller transmits this address to memory and the I/O Program
Counter is again incremented. Then, when memory returns the IOAW
from the addressed location, the Selector Channel loads the word
into the IOAW Active Register. At this point the fetch sequence
is cornple te •

7-40



I/O System

TO I2j STROBj WRIT.Ej READj
REO REO............

SR(DATAI

CHAN SO
DEV END
ACKSR

• A IOCW 0.1.2.3

SCBUS
TO
DEVICE
CONTROLLER

-CHAN ACK

DEVNO DB
SIO ENABLE
JUMP MET

TOGGLE INXFER
CHAN SR

TOGGLE OUTXFER
TOGGLE SIO OK
REO

PCMDI
SET JUMP

PSTAT STB
PCONTSTB

PWRITE STB
RD NEXTWD
P READ STB

CHANNEL
CONTROL
AND
SEQUENCER
LOGIC REGISTER

LOAD/READ
SIGNALS

SELECTOR
CHANNEL

Figure 7-19. Selector Channel Simplified Logic Diagram

7-41



I/O System

The Selector Channel control logic can now examine the order. If
the order specified in the 10CW is Read or Write and, if data
chaining is also specified, a pre-fetch sequence IS enabled.
This operation is the same as the fetch sequence described in the
preceding two paragraphs except that the returned data is loaded
into the 10CW Buffer and 10AW Buffer instead of the 10CW and 10AW
Active Registers. An additional condition for the pre-fetch se­
quence is that data transfer take precedence ~ i. e., pre-fetch
will occur only when both Input Buffers A and B are empty (for
Read) or both Output Buffers A and B are full (for Write). Then,
when the Read or Write order finishes, due either to word count
rollover or to a device end condition (see Read and Write execute
sequences), the 10CW/IOAW Buffers are read into the IOCW/IOAW
Active Registers. The data transfer can thus continue uninter­
rupted. If the new IOCW specifies further data chaining, another
pre-fetch is initiated to refill the buffers.

7-51. EXECUTE SEQUENCES. The following paragraphs contain
separate descriptions of the execute sequence for each of the
nine I/O orders. In each case except End, which terminates the
I/O program, operation returns to the fetch sequence following
completion in order to fetch the next I/O program word.

7-52. Sense. The Selector Olannel issues a P STATUS STB signal
to the Device Controller, with CHANSO, via the Selector Channel
Bus. The Device Controller accordingly reads the contents of its
Status Register onto the channel DATA lines and returns CHAN ACK
(Channel Acknowledge). On receipt of CHAN ACK, the Selector
Channel loads the status information into one of the two input
buffers and prepares for a memory transfer. First the contents
of the I/O Program Counter are decremented by one. This is
necessary because the status word must be stored in the IOAW
location for the current order, whereas the fetch sequence has
incremented the I/O Program Counter to point at the next word.
Once t~is is done, the contents of the I/O Program Counter and
the input buffer containing the status word are read out to the
channel PCD gates (but not gated out yet). The bank number be­
comes the TO address. A number is either loaded into the Bank
Register or Bank 0 is picked up at the Bank Gate (figure 7-19),
ga ted through the MOD select sw iches, and sent as the TO address
to the Port Controller via the TO lines of the Port Controller
Bus. A write request to the Port Controller requests a transmis­
sion to memory and, when the Port Controller returns ,LSEL, the
address from the I/O Program Counter is sent to memory and the
Counter is incremented. An HSEL from the Port Controller (which
follows immediately unless ENB has been preempted by a. higher­
priority module) then reads out the status word to the PCD lines
and sends it to memory. This stores Status in the IOAW location.

7-53. Interrupt. The Selector Channel control logic issues a P
SET INT signal to the Device Controller, with CHANSO, via the
Selector Channel Bus. The Device Controller returns CHAN ACK and
sets its Interrupt Request flip-flop. Provided the Mask flip­
flop is set, the Device Controller issues INT REQ to the lOP via
the lOP Bus. When the lOP returns INT POLL, the device number is

7-42



I/O System

sent to the lOP along with INT ACK. On receipt of INT ACK, the
lOP generates an Interrupt signal to the CPU.

7-54. Jump. The Jump order may be specified to be either
conditional or unconditional. It is the function of an uncondi­
tioned jump or a successful condi tional jump to transfer the con­
tents of the IOAW Buffer (the jump address) to the I/O Program
Counter. (The IOAW Buffer and IOAW Active Register contain iden­
tical contents at this time.) In the case of a conditional jump
order, the Selector Channel issues a Set Jump command to the De­
vice Controller, with CHANSO, via the Selector Channel Bus. The
Device Controller returns a true or false Jump Met signal. If
the jump is not met, operation returns to the fetch sequence. If
the jump is met for an Unconditional Jump order, the channel con­
trol logic gates the contents of the IOAW Active Register into
the I/O Program Counter. Thus, subsequent ordeis will be fetched
and executed from a new I/O program area.

7-55. Control. The Control order routes both the IOCW and the
IOAW to the Device Controller. The Selector Channel first reads
out the contents of the IOCW Active Register to the channel DATA
lines and issues a PCMDl (Programmed Command One) signal, with
CHANSO, for the Device Controller to load the data word. The
Device Controller accordingly loads the word into its Cbntrol
Register and then issues a request (CHAN SR) back to the selector
Channel to send the second word. The Selector Channel reads out
the contents of the IOAW Active Register to the DATA lines and
issues a second command (P CONT STB), with CHANSO, for the Device
Controller to load this new word. When the Device Controller has
loaded the new word and is ready for the next order, it returns
the appropriate response (another CHAN SR) signal to the Selector
Channel.

7-56. Set Bank. When requesting a memory Read or Write (for
data words only), an IOAW word goes into the Selector Channel
(figure 7-19) on the PCD lines and the four least significant
bits are loaded into the Bank Register by the Set Bank order.
Two b its from the Bank Registe r (TOl-l and TOl-2) are ga ted
through the MOD select switches and Port Controller to become the
memory module TO signal on the CTL Bus. The remaining two bits
from the Bank Register (PB14 and PB15) are applied back through
the Port Controller via the PC Bus to become part of the memory
module 18-bit address (see figures 6-2 and 7-17 through 7-19) on
the CTL Bus.

7-57. Read. The Read order causes a block of data to be trans­
ferred from the device to memory. The block size in words is
specified in two's complement form by the word count (IOCW bits 4
through 15) and the absolute starting address in memory is speci­
fied by the IOAW. While the block transfer is in progress, there
are two separate, simultaneous operations taking place: the
device-to-channel transfer and the channel-to-rnernory transfer.
To begin the Read execute sequence, the Selector Channel issues
CHANSO to the Device Controller. (See figure 7-18 and 7-19.) When
the controller returns CHAN ACK, the Selector Channel issues the

7-43



I/O System

initial Read Next Word
When CHANSO is removed,
troller are set to the
transfers.

(Ro NXT WD) with CHANSO still asserted.
both the Selector Channel and the con­

in-transfer condition to enable data

After the device has read a word and the controller is ready to
transfer it to the channel, it sends Channel Service Request
(CHAN SR) to the channel. The channel issues P READ STB and
CHANSO, causing the Device Controller to read its Data In Buffer
onto the channel Data lines and to return CHAN ACK. On receiving
CHAN ACK, the Selector Channel loads the data into either Input
Buffer A or Input Buffer B (depending on which is empty), incre­
ments the word count in the IOCW Active Register, and re-issues
RD NEXT WD. The above transfer sequence repeats for each data
word until the Device Controller asserts DEV END to terminate the
block, or until the word count rolls over. In either case, the
channel sends End of Transfer (EOT) to the controller and, if not
data chaining, clears the in-transfer condition. A CHAN SR from
the controller is required to resume program execution.

Meanwhile, the Selector Channel attempts to keep both Input Buf­
fers empty by transmitting their contents to memory. The control
logic for the A and B Buffers ensures tha data is transmitted to
memory in the same sequence as received from the device. To ac­
complish a memory transfer, the Selector Channel enables the IOAW
Active Register for use as a memory address, enables Input Buffer
A or B for use as a data word, and sends a Wr ite Reques t and a
mapped TO code to the Port Controller. When the Port Controller
(figure 7-17) returns LSEL, the IOAW is gated onto the bus as an
address to memory and the IOAW is incremented to point to the
next data location. When the Port Controller returns HSEL, the
Input Buffer is gated onto the bus to be stored in the addressed
memory location. The preceding operation in this paragraph re­
peats until the Read order completes, via a DEV END or word count
rollover, and all input data has been sent to memory.

If the data chaining bit in the IOCW Active Register is true, the
next order pair will have been prefetched when possible during
the block data transfer. When the Read order completes, the pre­
fetched order pair will be transferred from the IOCW/IOAW buffers
to the Active Registers without the need for a normal fetch se­
quence. Data input can thus continue for the next block with
minimum interruption. If the data chaining bit is not set, the
read termination will be followed by a normal fetch sequence.

7-58. Return Residue. The function of the Return Residue order
is to send the current contents of the Residue Register (which
reflects the results of the most recent Read or Write order) to
the IOAW location of the current I/O program word. The Device
Controller is not involved. To begin the procedure, the channel
control logic decrements the I/O Program Counter (for the same
reason described in the preceding paragraph). The contents of
the I/O Program Counter and the Residue Register are then read
out to the PCD gates, while a Write Request and a mapped TO code
are issued to the Port Controller. When the Port Controller re-

7-44



I/O System

turns LSEL, the address from the I/O Program Counter is sent to
memory. When HREQ sets the HSEL flip-flop, the word count from
the Residue Register is sent to memory. This stores the residue
in the IOAW location.

7-59. Write. The Write order causes a block of data to be
transferred form memory to the device. The block size in words
is specified in two's complement form by the word count (IOCW
bits 4 through 15) and the absolute starting address of the block
in memory is specified by the IOAW. While the block transfer in
progress, there are two separate, simultaneous operations taking
place; the memory-to-channel transfer and the channel-to-device
transfer. To begin the Write execute sequence, the Selector
Channel issues CHANSO to the controller and, when the controller
returns CHAN ACK,. both the Selector Channel and the controller
are set to the out-transfer condition to enable data transfers.

Meanwhile, the Selector Channel proceeds with a memory fetch and
will attempt to keep both Output Buffers full. The control logic
for the A and B Output Buffers ensures that data is transmitted
to the device in the same sequence as it was fetched from memory.
To accomplish a memory fetch, the Selector Channel enables the
IOAW Active Register for use as a memory address and sends a Read
Request and the Bank Register as a TO address to the Port Con­
troller. When the port returns LSEL, the IOAW is gated onto the
bus as an address to memory and the IOAW is incremented to point
to the next data location. When the port returns STRB, the data
on the bus from memory is loaded into an empty Output Buffer.
The preceding operation in this paragraph repeats until the Write
order completes by either a DEV END or word count rollover.

When the controller is ready to accept a data word from the chan­
nel, it sends CHAN SR. The channel issues CHANSO and P WRITE STB
and gates Output Buffer A or B onto the channel Data lines. The
control~er returns CHAN ACK causing the channel to remove P WRITE
STB, increment the word count, and remove CHANSO in that order.
The Device Controller uses the removal of P WRITE STB to latch
the data word from the channel Data lines. The previous transfer
sequence in this paragraph repeats for each data word sent to the
Device Controller until the Device Controller asserts DEV END to
prematurely terminate the block or until the word count rolls
over. In either case, the Selector Cllannel sends EOT (End of
Transfer) to the controller and, if not data chaining, . clears the
out-transfer condition. To resume program execution, a new CHAN
SR from the controller is required by the Selector Channel.

If the data chaining bit is true, (IOCW bit 0) the next order
pair will have been prefetched when possible during the block
transfer. When the Write order completes, the pre-fetched order
pair will be transferred from the IOCW/IOAW buffers to the Active
Registers without the need for a normal fetch sequence. Data
output to the controller can thus continue for the next block
with minimum interruption. If the data chaining bit is not set,
termination of the Write order will be followed by a normal fetch
sequence.

7-45



I/O System

7-60. End. The execute sequence for the End order begins by
duplicating the operations of a Sense order, obtaining the con­
troller's status word and storing it in the IOAW location in the
I/O program. Additionally, if IOCW bit 4 {s true, a P SET INT
signal is also issued to the controller. (Refer to Interrupt order
description.) Then the channel proceeds to store the contents of
its I/O Program Cbunter into the device's DRT location. As pre­
viously discussed, this is to maintain compatibility with I/O
programs run via a Multiplexer Channel. The selector Channel
enables its DEVNO DB Register, enables the I/O Program Counter
for use as data, and sends a Write Request and a TO=O to the Port
Controller. When the port returns LSEL, the shifted device num­
ber is gated out as the DRT address and, when the port returns
HSEL, the I/O Program Counter content is gated out to the bus as
data. This completes all operations for the I/O program. The
channel control logic resets to the inactive condition, thus al­
lowing another program for the same or another device to be in­
itiated via that channel.

7-61 I/O SYSTEM SERVICING INFORMATION

The following paragraphs contain servicing
lOP, Mul tiplexer Channel, Por t Controller,
PCA's.

information for the
and Selector Channel

7-62. lOP PCA Servicing

The lOP PCA is a nonrepair able ,PCA and must be replaced if found
defective. No repair procedures are required. However, the lOP
PCA does contain a jumper and three switches (figure 7-20) that
must be properly configured as discussed in paragraphs 7-63
through 7-65.

7-63. ENABLE/DISABLE.
or disable the lOP PCA.
lOP PCA.

Jumper WI (figure 7-20) is used to enable
Installation of this jumper disables the

7-64. MEMORY SIZE. Switch S3 (figure 7-20) is a 6-position
switch used to select memory word .size. The switch positions and
corresponding memory word sizes are shown in figure 7-20.

7-65. MEMORY INTERLEAVING. Two switches, Sl and S2 (figure 7­
20), are used for memory interleaving. At present, Sl and S2
must be configured for non-interleaving in accordance with table
2-8.

7-66. Selector Channel Maintenance Board PCA

The Selector Channel Maintenance Board PeA was designed to aid in
servicing the Selector Channel and MUltiplexer Channel. Under
software control, this PCA can exercise all Selector Channel data
paths and control circuitry. All I/O program orders can be exe­
cuted and device dependent sequences such as conditional jump,

7-46



I/O System

TOP 13-- ----79 1,3,-------79
BOTTO~1 2: 4: _a ---"-------~L ~2,m4,ri.iiiiiiiiiiiniiiiiii.. m80L_ ____,

lOP peA

MEMORY SIZE

(WORDS)
S3

1 - 128K
2 - 256K
3 - 384K
4 - 512K
5 - 768K
6 -1024K

202 Figure 7-20. lOP PCA Jumper and Switch Locations

device end, and clear interface can be exercised selectively.
Also, device timeout conditions can be simulated causing a time­
out error in the Selector Channel. Complete information on how
to install and use the Selector Channel Maintenance Board is con­
tained in the HP 3000 Series III CE Handbook, part no. 30000­
90172.

7-67. Multiplexer Channel PCA Servicing

The Multiplexer Channel PCA is a nonrepairable PCA and must be
replaced if found defective. No repair procedures are required.
However, the Multiplexer Channel peA does contain jumpers that
must be properly configured. The configuration of jumpers WI

7-47



I/O Sys tern

through W7 (figure 7-21) determine the device number and, there­
fore, the DRT address associated with the Multiplexer Channel
PCA. A logic "1" is represented by the absence of a jumper and,
conversely, a logic "0" is represented when a jumper is install­
ed. The PCA's device number is normally %77 (no jumpers).

7-68. Port Controller PCA Servicing

The Port Controller PCA is a nonre·pairable PCA and must be re­
placed if found defective. No repair or servicing procedures are
required.

7-69. Selector Channel Servicing

The Selector Channel consists of three PCA's; a Selector Channel
Register PCA, a Selector Cllannel Control PeA, and a Selector
Channel Sequencer PCA. Servicing information for the three PCA's
are contained in paragraphs 7-70 through 7-75.

7-70. SELECTOR CHANNEL REGISTER PCA. The Selector Channel
Register PCA is a nonrepairable PCA and must be replaced if found
defective. However, the PCA does contain jumpers and switches
(figure 7-22) that must be properly configured as discussed in
paragraphs 7-71 through 7-73.

7-71. Port Controller Channel Number. Jumper connectors XWl
through XW4 (figure 7-22) are used for the selection of one of
the three available channel ports from the Port Controller. Chan­
nel selection is made by installing a jumper in the jumper con­
nector corresponding to the desired channel.

7-72. Memory Size. Switch S3 (figure 7-22) is a 6-position
switch used to select memory word size. The switch positions and
corresponding memory word sizes are shown in figure 7-22.

7-73. Memory Interleaving. Two switches, S2 and 83 (figure 7­
22), are used for memory interleaving and, at present, must be
configured for non- interlea ving. (Refer to table 2-8.)

7-74. SELECTOR CHANNEL CONTROL PCA. The Selector Channel Control
PCA is a nonrepairable PCA that must be replaced if found defec­
tive. No repair procedures are required. However, the PCA does
contain the Error IDgging Register, a test switch and indicators
used for troubleshooting. Refer to the HP 3000 Series III CE
Handbook, part no. 30000-90172 for complete information on how to
use this PCA as a troUbleshooting aid.

7-75. SELECTOR CHANNEL SEQUENCER PCA. The selector Channel
Sequencer PCA is a nonrepair able PeA and must be replaced if
found defective. No repair or servicing procedures are required.

7-48



I/O System

MULTIPLEXER CHANNEL
PCA 30036-60002

W7. t
W6.
W5.
W4.

• MSB
•
•
•

W3. •
W2. •
W1. • LSB

XW1 DEVICE NUMBER

Figure 7-21. MUltiplexer Channel PCA Jumper Locations

7-49



I/O System

CIRCUITSIDf l:l!l __-­

COMPONENT Slot 2 4 6 ....-
,.. -.----­
135 •

XW1

SELECTOR CHANNEL
REGISTER PCA

30030-60021

CHANNEL NUMBER

XW1 - CHANNEL 1
XW3 • CHANNEL 3
XW4 - CHANNEL4

Figure 7-22.

MEMORY SIZE

(WORDS)
S3

1 - 128K
2 - 256K
3 - 384K
4 - 512K
5 -768K
6 - 1024K

Selector Channel Register PCA Jumper and Switch
Loca tions

7-50



NOTES

7-51

I/O System



I/O Sys tern

NOTES

7-52



INTERRUPT SYSTEMI~

This section contains principles of operation and servicing in­
formation for the computer's interrupt system.

8-1. INTRODUCTION

The computer's interrupt system provides up to 125 external lev­
els. When interrupts occur, the microprogrammed interrupt hand­
ler identifies each interrupt and grants control to the highest
priority interrupt. Current operational status is retained by
the microprogram which then sets up the interrupt processing en­
vironment and transfers control to the interrupt routine.

Interrupt routines operate on a common stack called the Interrupt
Control Stack (ICS) which is known to both software and hardware.
This feature permits nesting of interrupt routines in the case of
multiple interrupts, thus allowing higher priority devices to
interrupt lower priority devices.

The interrupt system also provides for 17 internal interrupts
(user errors, system violations, hardware faults, and power fail/
restart) plus seven traps for arithmetic errors and illegal use
of instructions.

8-2. INTERRUPT SYSTEM OVERVIEW

The interrupt system's interrupt routines are called and exited
in a· manner resembling the way that procedures are called and
exited. An interrupt is therefore an implicit PCAL instruction
(vs. an explicit PCAL instr uction) • (Refer to section IV.) _Also,
code and data domains are kept separate. The primary differences
are that the calling operations are performed by a micropro­
grammed Interrupt Handler rather than the PCAL instruction and,
in some cases, the IXIT (Interrupt Exit) instruction is used for
exiting the interrupt code instead of EXIT. Internal interrupt
procedures are contained in code segment number 1. Interrupt
procedures for I/O devices may be in any code segment other than
segment number 1. Table 8-1 lists the internal interrupts and
traps with their corresponding entry numbers in the Segment
Transfer Table (STT) of the internal interrupt code segment. The

'parameter is a value that is derived by the Interrupt Handler and
which passes relevant information about the interrupt to the
interrupt routine. The Device Reference Table (DRT) contains a
label for each entry, pointing to the interrupt procedure for
each device. Bit 8 of the CPXl Register indicates an external
interrupt. The parameter value for an external interrupt is the
device numbe r.

8-1



Inte rrupt Sys tern

Tab Ie 8-1 • In te r r up t Typ e s

ICS

ICS

ICS
ICS
ICS
ICS

%000010

%000017
%000020

%000011

%000012

%000013
%000014
%000015
%000016

%000001
%000002
%000003
%000004
%000005

Module No.

Interrupt Type

~-"---~-I I
I IExecutingl
IParame ter* I Staek** I
I I I
I I I

-----~--. -------- ---.-- I
Bounds Violation I
Illegal Memory Address
Non-Responding MOdule
System Parity Error
Address Parity Error
Data Parity Error
Module Interrupt
(Unused)
Power Fa i1
(Unused)
(Unused)
(Unused)
(Unused)
(Unused)
(Unused)
Unimplemented Instruction
STT Violation
CST Violation
DST Violation
Stack Underflow
Privileged Mode Violation
(Unused)
(Unused)
Stack Over flow
User Traps
a. Inte ger Over flow
b. Floating-Point Over
e. Floating-Point Under
d. Integer Divide by 0
e. Floating-Point Divide

by 0
f. Ext. Pree. F10ating­

Point Over flow
g. Ext. Pree. Floating­

Point Under flow
h. Ext. Pree. Floating-

Point Divide by 0
i. De c imal Over flow
j. Invalid ASCII Digit
k. Invalid Dec. Digit
1. Invalid Source Word

Count
m. Result Word Count
n. Decimal Divide by 0

1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31

100401
101001
101401
102001
102401
103001
103401
104001
104401
105001
105401
106001
106401
107001
107401
110001
110401
111001
111401
112001
112401
113001
113401
114001
114401

1--·--·-1·------1--·--..----------
IEx t Pr og • 1 STT I

I Label I No. I
I (%) I (%) I
I I I

8-2



Inte r rup t Sys tern

Table 8-1. Interrupt Types (Continued)

ICS
ICS

41
42
43
44

40

120401
121001
121401
122001

120001

1---·-----·-l-,-~--I---'-----------·..~- ..--·-·----I-------·-------1-------
IExt Prog.1 STT I I IExecuting
I Label I No. I I nte r r upt Type IPar arne te r* I Stack**
I (%) I (%) I I I
I I I. I I
----~--- ---'-'. -------------------~-----I~--..-----I--------

115001 32 (Unused) I I
115401 33 (Unused) I I
116001 34 (Unused) I I
116401 35 (Unused) I I
117001 36 (Unused) I 1
11740137 Abse nt Code Segment I

a. On PCAL P-Label I
b. On EXIT N I
c. On IXIT 0 I
Trace I
a. On PCAL P-Label I
b. On EXIT N 1
c. On IXIT 0 I
STT Entry Uncallable P-Label I
Ab sent Da ta Se gment DST No. 1
Power ~ I
Cold Load 1
a. System I/O (SIO) 0 1
b. Direct I/O (DIG) Label 1

I
11--------- ------ ~-------~-~------.---------------- ------~-

I *Unless noted, the parameter is the External Program Label.
I **Unless noted, Interrupts are serviced on the User Stack.
1
I All User Traps (STT No. %31) are enabled by the User Traps
I bit in the Status Register.
1

8-3. INTERRUPT CONTROL STACK

The Interrupt Control Stack (ICS) is a single stack, unique to
the CPU, which is used in common by all external interrupts and
some of the internal interrupts (ICS type). When only minimal
data is to be handled by an interrupt routine, the data is pro­
cessed on the ICS. Otherwise, the separate data area defined in
the DRT must be used for data. The use of a common stack also
permits efficient nesting of interrupt routines by using stack
mar kers. The ICS has a permanent stack marker, set up by the
operating system which is used to enter the Dispatcher. Figure
8-1 illustrates the format of the Dispatcher marker on the ICS.

8-3



Interrupt System

INTERRUPT
CONTROL

STACK

AblOlutp"'e~~.......

Loc 5 t---...;...--t
Loc 6 ",,-~_...."\

a

z

Disp X
Disp P - PB
DisD Status

~ 0
Disp DB-Bank

Disp DB

....

I
Permanent
Marker

Figure 8-1. ICS Dispatcher Marker

It should be noted that unlike the standard four-word stack
marker, the Dispatcher marker contains six words. As will be
explained later, all markers created because of an ICS-type
interrupt include two words to save the current value of DB and
DB-Bank. This information must be saved since all external inter­
rupts automatically alter DB (to the DBI value from word 2 of the
DRT) and DB-Bank. Additionally, DB may be changed when process­
ing an ICStype internal interrupt. The Delta Q location of the
Dispatcher marker always contains a "0" word in bits 1-15 (Bit 0
can be set as described later). The value is zero because there
is no previous marker on the ICS. The Dispatcher Flag is set
whenever the Dispatcher is entered and remains set while the Dis­
patcher is executing. It is cleared when the Dispatcher com­
pletes its execution, or is interrupted.

The segment-number field of the status word (Disp Status) in the
Dispatcher marker permanently points to the CST entry for the
Dispatcher, and the P-PB (Disp P-PB) word permanently points to
the starting point in the Dispatcher code segment. The DISP (Dis­
patch) instruction uses these values for transferring control to
the Dispatcher. The locations preceding the Dispatcher marker
comprise the ICS global area which contains operating system in­
formation. It should be noted that since ICS-type interrupts use
a six-word marker, the parameter is found in location Q+3, rather
than the usual Q+l location. A hardware ICS Flag is set in the
CPX! Register whenever a switch is made to the ICS from any other
stack. The ICS Flag remains set until the ICS is no longer the
current stack.

Figure 8-1 also shows the delimiting of the ICS by QI and XI
("interrupt" Q and Z). These values are given fixed memory loca­
tions 5 and 6. The QI value points to the Delta-Q location of
the Dispatcher marker on the ICS. The Zl value points to the lCS
stack limit.

8-4



Interr upt System

8-4. INTERRUPT TYPES

Interrupts may be divided into three basic types; external inter­
rupts which are signals from the I/O system, and two types of
internal interrupts which typically are unexpected conditions
resulting from program execution. The three interrupt types are
external interrupts (from I/O devices), ICS-type internal inter­
rupts (using the Interrupt Control Stack), and non-ICS internal
interrupts. A comparison of the overall operations of all three
interrupt types is illustrated in figure 8-2. Note that opera­
tions proceed mostly left-to-right. For example, external
interrupts begin by triggering some actions in hadware, then the
interrupt processing environment is set up in software. The
Dispatcher is the part of the operating system which schedules
the execution of processes.

HARDWARE

EXTERNAL
INTERRUPT

ICS·TYPE
INTERNAL
INTERRUP;T

Device
Controller

lOP

CPU

Interrupt
Control_----...,....;;=::-1 Suck

Interrupt
Receiv.
Code

I/O
P'OI

Interrupt
Control

------~Dn:.;;:ta:lStack

DISPATCHER

NON·ICS
INTERNAL
iNTERRUPT

Return to:
Interrupted Process
(Possibly
Dispatcher or
another interrupt)
Start Dispatcher

Figure 8-2. Interrupt System Overview

8-5



Inte rrupt System

N:>te

It is assumed in this discussion that
only one interrupt is being processed.
As will be shown later, interrupt rou­
tines can be interrupted by other
interrupts.

All external interrupt routines are entered with the external
interrupt system enabled. All internal interrupt routines are
entered with the external interrupt system disabled. The follow­
ing paragraphs individually descr ibe each of the three interrupt
types. Only a brief introductory description is given at this
point. Detailed operating sequences are discussed later in this
section.

8-5. External Interrupts

External interrupts interface external events to software proces­
ses. Referring to figure 8-2 (top example), the overall opera­
tion is as follows:

a. The device controller sets the Interrupt flip-flop (1) by one
of the following:

(1) Set Interrupt (SIN) software instruction executed by the
CPU telling the device controller to interrupt.

(2) Set Interrupt (SET INT) command decoded by the device
controller.

(3) End with Interrupt (END,I) command decoded by the device
controller.

(4) The device controller detects an interruptable condi­
tion.

b. The setting of the Interrupt Request flip-flop causes the de­
vice controller to issue an Interrupt Request (INT REQ) sig­
nal to the lOP (2).

c. The lOP issues a poll (INT POLL) to activate the highest­
priority request (there may be more than one request).

d. The device controller se ts the Inte rrupt Active fl ip-flop,
resets the Interrupt Request flip-flop, and sends the device
number to the lOP.

e. The lOP examines the device number and, if the device number
does not equal zero;

(1) Puts the device number into an lOP register.

8-6



Interrupt System

(2) Passes an interrupt signal to the CPU.

(3) Turns on the external interrupt flag (Bit 8 in the CPXl
Register) •

(4) Drops the INT POLL signal.

If the device number equals zero, the lOP disregards the in­
terrupt signal and drops the INT POLL signal.

f. The lOP requests the CPU to set up the interrupt environment
(5). The initial steps are to set up the data segment
registers to point at the Interrupt Control Stack (after sav­
ing the user's environment on his own stack) and to fetch the
device's DRT entry.

g. The external program label in the second word of the DRT en­
try (6) is used to get the CST entry for the interrupt re­
ceiver code which, in turn, is used to set the PB-Bank, PB,
and PL Registers. The starting address for the interrupt
receiver code is obtained from the STT entry pointed to by
the external program label and is loaded into the P Register,
thus transferring control to the interrupt receiver code.

h. The information in the data area for this device (pointed to
by the third word of the DRT) (7) is upda ted by the inter rupt
receiver. This information will tell the I/O monitor process
that the initiator section of the device driver has done its
word and that the completion section should be called.

i. The interrupt receiver code IXITS (8) normally returns con­
trol back to the interrupted process (which may be another
interrupt or the Dispatcher). The interrupt receiver may al­
so request a new dispatch by executing a DISP instruction.
When an IXIT is executed by external interrupt code, a reset
command is sent to the appropriate device.

8-6. ICS Internal Interrupts

ICS-type internal interrupts operate on the ICS and the interrupt
code for each separate interrupt is permanently alloca ted in code
segment 1. (Refer to table 8-1.) Referring to the second example
in figure 8-2, the overall operation is as follows:

a. A condition such as power failure, stack overflow, or module
interrupt causes the CPU to switch to the ICS (1) after sav­
ing the user's environment on his own stack by creating an
Exte rnal Progr am Label which points to a Segment Tr ansfer
Table entry in the internal interrupt segment (CST entry 1) •

b. The PB and PL Registers are set up based on CST entry 1.

c. The Status Register is set to Pr ivileged Mode, Segment 1 with
all other bits cleared (%1000001).

8-7



In te r r up t Sy s tem

d. The P Reg ister is se t fr om the local label, reached via the
STT entry in the External Program Label, thus transferring
control to the internal interrupt code segment (2).

8-7. Non-ICS Internal Interrupts

The non-ICS type interrupts operate on the current user's stack.
Referring to figure 8-2, the overall operation is as follows:

a. A special condition is detected and causes the CPU to save
the user's environment on his own stack and to fetch the CST
entry 1 (1) by creating an External Program Label to the code
for processing the interrupt.

b. The PB and PL Registers are set up based on CST entry 1.

c. The Status Register is set to Privileged Mode, Segment 1 with
all other bits cleared (%100001).

d. The P Reg iste r is se t fr om the local label, rea ched via the
STT entry in the External Program Label, thus transferring
control to the in te rnal inte rr upt code segment (2).

8-8. EXTERNAL INTERRUPT PROCESSING

Prior to discussing the sequence of operations for external
interrupts, there are two important factors that must be con­
sidered; interrupt priorities and interrupt program" pointers.
Servicing of external interrupts is accomplished in descending
order of priority (i.e., the highest priority is serviced first).
A higher priority interrupt can always interrupt the processing
of a lower priority.

8-9. Interrupt Priorities

The interrupt priority of a device is completely independent of
the device number. It is determined by the device's logical prox­
imity to the lOP on the interrupt poll line. The interrupt poll
is wired at system configuration time from one device controller
to another using twisted-pair, clip-on wires. The routing of the
interrupt poll is determined by the desired interrupt priorities
of the device controllers and is completely independent of other
parameters. Each device controller therefore, has a distinct
priority level in relation to all other controllers. The maximum
number of controllers and, hence interrupt levels, is 125.

8-10. Interrupt Program Pointer

The Device Reference Table (DRT) was defined in section VII. As
previously discussed, the second word of each DR!' entry contains
the interrupt program pointer. This is an external program label
pointing to the start of the interrupt routine associated with a
particular device controller. I t should be noted that se veral
controllers could point to the same routine.

8-8



Inte rrupt System

a-u Sequence of Operations

Figures 8-3 and 8-4 illustrate the sequence of operations for
processing external interrupts. Basically, this discussion cov­
ers that portion of the overall I/O operation that establishes
the interrupt processing environment on receipt of an external
interrupt. In previous figures, this corresponds to steps (11)
and (12) in figure 7-5, and to steps (5), (6), and (7) in figure
8-2.

Figure 8-3 illustrates how control is transferred from the point
of interrupt in a user's code segment to the start of the inter­
rupt receiver code. Also shown is the transfer of the data do­
main from the current user's stack to the interrupt control
stack. Figure 8-4 illustrates how a second inte rrupt is handled
and how exit is made from the interrupt routines. The following
paragraphs descr ibe the sequence of operations, step by step. It
should be noted that all operations are under control of the
hardware-implemented Interrupt Handler until control is transfer­
red to the interrupt receiver code in software. Initially, it is
assumed that the current process is operating at point P in some
user's code when the CPU recognizes an external interrupt. The
CPU thereupon passes control to the Interrupt Handler.

a. The first action of the Interrupt Handler is to push into
memory any TOS elements of the current user's data that are
in CPU registers (1, figure 8-3). This takes a maximum of
four memory cycles if all four registers are full. Next, a
normal four-word stack marker is pushed onto the user's stack
followed by the value of the user's DB-Bank and the absolute
value of DB that is currently in use. (DB may not necessarily
point to a location within the user's stack, such as if a
system intrinsic using a split stack had been called at the
time of the interrupt.) This action preserves most of the
user's environment; the current value of S will be preserved
la te r ins te p f.

b. The S-Bank Register (2) is set to O. (The ICS is always in
Ba nk 0.)

c. The Interrupt Handler now goes to location 5 and loads the QI
value into the Q Reg iste r (3). This points a t the Del ta Q
location of the permanent Dispatcher marker. (As explained
previously, this location contains a value of 0.)

d. The contents of location 6 are fetched and the value of ZI is
loaded into the Z Register (4). This establishes the stack
limit for the ICS. (The ICS Flag in the CPXl Register is also
se t.)

e. The DL Register (5) is set to the limit value of %177777.

f. The user's value of S relative to Stack DB (a t QI-4) is cal­
culated and stored in QI-6 (6).

8-9



Interrupt System

USER
CODE
SEG.

DIrBank

DB

.--00)
USER
DATA

S(i) SEG

0

C

B

A

X·REG

ap

STATUS

I......+-O(f) aO

DErBank

~S(f)· DB

Z

Figure 8-3.

~k11,

l CST

A
PB

';~ ® INT

r-----+ AIMIRITIL/4
HANDLER.

CODE
SEG

IB141B15 @
Addr~ss ----.p

~~ ~~

[PB+(L'4IJ~
Glu.\ ap

®
~PL

DB-Bank

0 m ICS

MEMORY 0' DB ILT for

CSTB ~ this Cont.
e

SIOXCSTB
1 Program

DSTB Area
2

PCBB
3

CPCB1 oDisable Flag4
QI1

5
ZI1

6 U ZMASK1

K97
CPCB2 U DL

1(1
012

U S

11 S-BankZI2 U

12
MASK2

U DB

13
:~ ;::. 0 X

0 ap
SlOP o STATUS

Nth ! PLBL ~ 1-..+01 EI aO(G)
Entry 0rBankOBI

2m
o DB-Bank

RESERVED
0 DB

:~ ~~
ABS-Bank

[I] S INT DEVNO
11) GG

SYSTEM 0
Z1

GLOBAL

1377 o DLI 177777 Io STATUS 1__14GGGG......... _

First level Ex ternal Interrupt

8-10

01·18

01-8

01-7

01-6 0
01·5

01-4

~:~:}DIS-
PATCHER

01·1 MARKER

01

01+1

01+2

01+3 @



I nte r r upt Sys tern

1CS
Set during execution of DISP instruction

Reset during execution of IXIT or PSEB
instructions.

Set by microcode if Dispatcher
was interrupted.

~
01 &1 ~O (G)

D DB-Bank

D DB

First INT DEVNO

~~ .~

D

C

B

A

X

~P

I STATUS

a 81 ~o

../" DB-Bank

DB

Second INT OEVNO

Figure 8-4. Second Level Interrupt or Dispatcher Interrupted

g. The CPU obtains the device number from the Interrupt Address
Register in the lOP and calculates the address of the DRT
entry. DB is set to the DBI value in the third word of the
DRT entry (7).

h. The Status Register (8) is set to privileged mode, external
interrupts enabled (%140000).

i. The DB-Bank Register (9) is set to O.

j. The S Register is set to point at location Q+3 (10) and the
device number of the interrupting device is stored into this
location. At this point, the ICS is fully delimited by reg­
ister values and is ready for handling interrupt data.

k. The external program label for the interrupt receiver code is
fetched from the second word of the DRT entry. The CST entry
is obtained from the segment number in the external program
label. Then, the PB-Bank Register (11) is set based on the
CST entry.

1. The PB Register (12) is set based on the CST entry.

m. The PL Register (13) is set based on the CST entry.

8-11



Inte rr upt System

n. The starting address of the interrupt receiver code is ob­
tained from the STT entry pointed to by the external program
label in the DRT entry. The interrupt receiver code segment
number is placed in the Status Register. The P Register (14)
is set to this value and the CPU fetches the instruction at P
and begins executing the interrupt receiver code.

The following steps relate to figure 8-4 and list the actions oc­
curring if a second interrupt of higher priority is received
while processing the first interrupt. Assuming a still higher
priority, another interrupt could interrupt the second routine in
the same manner as descr ibed below. This example shows how sev­
eral levels of interrupts can be nested on the ICS. Since the
ICS is common to all external interrupts, no further switching of
environments is necessary for additional interrupts. This reduc­
es the interrupt response time. If, however, the second inter­
rupt did not occur before completing the processing of the first
interrupt, the sequence of operations would skip from this point
(step a) to step g. The CPU recognizes a second interrupt while
executing the interrupt receiver code for the first interrupt.
The CPU, therefore, again passes control to the Interrupt Hand­
ler. The sequence continues as follows:

a. The Interrupt Handler pushes into memory any TOS elements
that are in CPU registers, and pushes the usual six-word mar­
ker onto the ICS. The fifth and sixth words are the values
that are currently in the DB-Bank and DB Registers respec­
tively at the time of the interrupt.

b. The Q Register is updated to point at the Delta-Q word of the
new mar ker. The Del ta -Q value is the n umber of loca tions
back to the Delta-Q word of the previous marker.

J:\1o te

Unlike the first interrupt, subsequent in­
terrupts do not store S into Q-6 at this
point since such action would overlay one
of the variables associated with the user
who was first interrupted.

c. The CPU obtains the device number from the Interrupt Address
Register in the lOP and calculates the address of the DRT
entry. DB is set to the DBI value in the third word of the
DRT entry.

d. The S Register is set to point at location Q+3 and the device
number is stored into this location. At this point, the ICS
is fUlly delim ited by registe r values and is ready for hand-
ling interrupt data. .

8-12



Interrupt System

e. The external program label for the interrupt receiver code is
fetched from the second word of the DRT entry. The starting
address of the interrupt receiver code is obtained from the
STT entry pointed to by the external program label. The P
Register is set to this value and the CPU fetches the in­
struction at P and begins executing the interrupt receiver
code.

f. Assuming there are no other higher priority interrupts, the
interrupt routine for the second device runs to completion
and then exits using the IXIT instruction. The exit, as us­
ual, is made via the stack marker. The return address is
obtained from the stack marker, the Q Register is restored
back to the previous setting (using the Delta-Q value from
the stack marker), pointing to the Delta-Q word of the Dis­
patcher marker. The S Register is moved back to the location
just preceding the second stack marker. One of the actions
of the IXIT instruction is to issue a Reset Interrupt command
to the interrupting device controller which clears the inter­
rupt active condition and unblocks the interrupt poll line to
lower priority devices.

g. The interrupt receiver code for the first interrupt now runs
to completion and an exit is made, usually back to the user
process. Again, the IXIT instruction issues a Reset Inter­
rupt command to the device controller. This completes the
sequence of operations.

If an external interrupt should occur while the Dispatcher is ex­
ecuting, the interrupt is treated in a slightly different way.
If the CPU recognizes an interrupt while the Dispatcher Flag is
set, the sequence effectively repeats steps b through g above
with the added actions that, in step d, bit 0 of Delta Q is set
to 1 (indicating a Dispatcher interrupt) and the Dispatcher Flag
is cleared.

8-12. INTERNAL INTERRUPT PROCESSING

As listed in table 8-1, there are 35 internal interrupts includ­
ing 14 user traps. These 35 interrupts are processed by the seg­
ment whose CST entry number is 1. Each interrupt has an entry in
the Segment Transfer Table (STT) which points to the start of the
code to process the interrupt. The user-related traps"all share
the same STT entry and the parameter value determines the proces­
sing to be performed. When internal interrupts are being proces­
sed, all external interrupts are disabled. Internal interrupts
therefore have higher priority. Among internal interrupts, how­
ever, there is no priority structure (except in the case of sim­
ultaneous interrupts); any internal interrupt may interrupt the
processing of any other. If multiple interrupts occur simultan­
eously, they stack their markers in the following order and are
therefore, serviced in the reverse order; integer overflow, sys­
tem parity error, memory address parity error, data parity error,
non-responding module, bounds violation, illegal address, module
interrupt, external interrupt, and power fail. In all cases, the

8-13



Inte rrupt System

Interrupt Handler loads a parameter onto the stack. The parame­
ter (listed in table 8-1) passes information regarding the inter­
rupt from the hardware to the interrupt processing software.. In
some cases, the parameter is simply an interrupt identifica tion
number; in other cases, the parameter gives specific information,
such as a program label, to the interrupt routine.

8-13. General Descriptions

8-14. BOUNDS VIOLATION. A bounds violation trap is caused by
attempting to address locations outside of a specified program
dana in or data dana in. (Refer to paragr aph 2-65.)

8-15. ILLEGAL MEMORY ADDRESS. A memory address interrupt is
caused by attempting to access a word of memory that does not
phys ically exi st on the system.

8-16. NON-RESPONDING MODULE. A non-responding module interrupt
occurs when the CPU requests information from some other module
and that information is not received in a reasonable length of
time (a preset time on the order of 4.6 milliseconds).

8-17. SYSTEM PARITY ERROR. A parity error is detected on the
8-bit system information (TO, FROM, COMMAND) transmitted by the
CPU to memory, or by memory to the CPU. This error will also be
generated in the case where the CPU is waiting for data and a
Memory-to-IOP transmission takes place with bad parity. In this
case a transfer error is also sent to the requesting device.
Note that the converse is also true (i.e., if the lOP is waiting
for data and the CPU receives a transmission with bad system par­
ity, a transfer error is sent to the requesting device). The
above is the resul t of the CPU and lOP shar ing the same module
number. A system parity error also results if any module sends
data with bad parity (not addresses) to ~emory.

8-18. ADDRESS PARITY ERROR. A parity error is detected by the
memory on the 16-bit address word sent to it from any module.
Upon detection of the error, the memory sends an appropriate er­
ror signal back to the CPU and prevents the word addressed from
be ing al te red.

8-19. DATA PARITY ERROR. A parity error is detected by the CPU
on the 16-bit data word sent to it from the memory. When a par i­
ty error is detected on a memory transmission, the appropriate
bi t is set in CPXl (the CPU sta tus word for RUN-mode interrupts)
and the instruction runs to completion (with the exception of
certain interruptable instructions such as the group of move in­
structions). The result of the instruction is normally meaning­
less. If the parity error is due to a CPU read cycle (outgoing
system or address information or incoming data), it is possible
that the received data will be used by the CPU as an address for
a follow ing wr ite cycle. In this case it would be possible to
store erroneous data at some location. However, since bounds
checking is done on the address, the worst that can happen is the
destruction of a memory location in the current user's stack (as-

8-14



Int err up t Sys te m

suming user mode; if in privileged mode, a system crash could
occur). With single-bit error correcting memory, the probability
of having a data parity error is very small.

8-20. MODULE INTERRUPT. A module interrupt occurs when a CPU
receives a transmission from a system module (hardware) from
which it is not expecting a transmission. The offend ing module
number (FROM code) is passed to the interrupt routine as a para­
meter. The interrupt routine may then attempt to identify the
source of the error and take appropriate action. The interrupt
is disabled (when bit 1 of the Status Register is 0) • This in­
terr upt can also be used as a flag between the CPU and another
module for i~formation swapping.

8-21. POWER FAIL. This routine saves the software status in a
format sui table for automatic restart, making use of the fini te
time between the detection of a power failure and the loss of
usable power (approximately 10 milliseconds).

8-22. UNIMPLEMENTED INSTRUCTION. This system trap occurs when
the CPU detects a bit pattern in the Current Instruction Register
which is not a valid instruction. This trap cannot be disabled
by the User Traps Enable/Disable bit in the Status Register.

8-23. STT VIOLATION. The STT Violation trap cannot be disabled.
The conditions that can cause this trap are as follows:

a. The STT in an external program label is greater that the STT
length (pointed to by PL) in the referenced segment. This
error can occur while attempting to set up a new segment.

b. In the LLBL instruction, if the label which is fetched from
PL-N is an internal label and N is greater than 127 (%177),
the trap is invoked. (This would require too large an STT
number when creating the external label.)

c. In PCAL, when setting up a new segment, if the STT number in
the external program label points to an external program la­
bel in the new segment, the trap is invoked.

d. If (PL-N) in an SCAL instruction is an external label, the
trap is invoked.

8-24. CST VIOLATION. This trap is caused by an attempt to
tr ans fer to segment 0 or a se gment number referenced thr ough an
external program label that is greater than the CST length.

8-25. DST VIOLATION. The DST segment number referenced by the
MFDS, instruction is greater than the number of entries contained
in DSTL (the first word of the DST).

8-26. STACK UNDERFLOW. The process being exited is non-privil­
eged and SM is less than DB. This might result from deleting too
much information from the stack or from using the SETR or SUBS
instructions incorrectly.

8-15



Interr upt System

8-27. PRIVILEGED MODE VIOLATION. This trap is caused by an
attempt to execute a privileged instruction in user mode (that
is, when bit 0 of the Status Register is 0). This violation also
occurs in EXIT if an attempt is made to exit from user to priv­
ileged mode or if exiting from user mode and the external inter­
rupts bit in the status word has been altered.

8-28. STACK OVERFLOW. A stack overflow results from attempting
to stack more data than can be contained on the current stack (SM
greater than Z). The system makes the decision whether to abort
the p roces s or to expand the s ta ck.

8-29. INTEGER OVERFLOW. An integer overflow occurs when the
result of an integer operation (ADD, SUB, etc.) is outside the
allowable range of integers which is -32768 to +32767.

8-30. FLOATING-POINT OVERFLOW. This trap occurs when the magni­
tude of the result of a two-word floating-point operation is lar­
ger than the largest representable floating-point number which is
1.157921 x 10

8-31. FLOATING-POINT UNDERFLOW. This trap occurs when the mag­
nitude of the result of a two-word floating-point operation is
less than the smallest representable positive number which is
8.63617 x 10 , and is not equal to zero.

-78

Note

Floating-point overflow and underflow can
best be understood by referring to the
chart below showing the range of valid
numbers.

x 10
77

if it is between A and B,C and D, or equal to o.

I
A

where

A = -1.157921

B = -8.63617

C = 8.63617

D = 1.157921

A number is valid

I
B

x 10
77

x 10

x 10

o
I
C

I
D

8-16 .



Interrupt Sys tern

8-32. INTEGER DIVIDE BY ZERO. This trap occurs when the divisor
in a DIV, DIVI, DIVL, or LDIV instruction is equal to zero.

8-33. ,FLOATING-POINT DIVIDE BY ZERO. This trap occurs when the
divisor in an FDIV instruction is equal to o.

8-34. EXTENDED PRECISION FLOATING-POINT OVERFLOW. This trap
occurs when the magnitude of the result of an extended precision
floating-point operation exceeds the largest representable ex­
tended precision value which is 1.157920892373162 x 10

-77
8-35. EXTENDED PRECISION FLOATING-POINT UNDERFLOW. This trap
occurs when the magnitude of an extended precision floating-point
operation is less than the smallest representable positive ex­
tended precision value which is 8.636168555094445 x 10 and is
not zero. -78

8-36. EXTENDED PRECISION FLOATING-POINT DIVIDE BY ZERO. This
trap occurs when the divisor in an extended precision divide op­
eration is zero.

8-37. DECIMAL OVERFLOW. This trap occurs when a packed decimal
result has too many significant digits for the specified storage
size. Except for the NSLD instruction and MPYD with actual
result greater than 28 digits, when this occurs the low order
digits of the result are stored; surplus high order digits are
discarded.

8-38. INVALID ASCII DIGIT. This trap occurs when a decimal
arithmetic instruction encounters an invalid ASCII digit.

8-39. INVALID DECIMAL DIGIT. This trap occurs
arithmetic instruction encounters an invalid
d igi t.

when a
packed

decimal
decimal

8-40. INVALID WORD COUNT. This trap occurs when a word count for
a decimal instruction is less than zero or greater than six.

8-41. RESULT WORD COUNT OVERFLOW. This trap occurs when a digit
count for a decimal instruction < 0 or > 28.

8-42. DECIMAL DIVIDE BY ZERO. This trap occurs when an attempt
is made to divide a decimal number by zero.

8-43. ABSENT CODE SEGMENT. The absence bit in the CST entry for
the referenced segment is set to 1. This check is performed in
PCAL, EXIT, IXIT, DISP, and the firmware Interrupt Handler. If
during PCAL, the program label is passed as the parameter to the
Interrupt Handler; if in EXIT, the number of words to be deleted
from the stack is passed; and if in IXIT, a zero is passed.

8-44. TRACE. Non-local PCAL and external interrupts check the
trace bit in the CST entry for the referenced segment. EXIT and
IXIT check bit two of the return address in the marker stacked by
peAL or the external interrupt (this bit is set by the trace rou-

8-17



Interrupt System

tine software if it is desired to trace exits). In either case,
if the bit tested is 1, the trace routine in entered. For PCAL's
and external interrupts, another marker is stacked first which is
used by the EXIT from the trace routine. For EXIT and IXIT, no
marker is stacked; hence, bit a of the return address of the last
marker stacked (prior to EXITing from trace) must be cleared by
software in the trace routine. Otherwise, an infinite trace loop
could occur. Tracing segment 1 results in a system halt. Trac­
ing external interrupts or the Dispatcher requires special soft­
ware in the trace routine due to the differences in EXIT and
IXIT.

8-45. STT ENTRY UNCALLABLE. The uncallable bit in a local label
(or in PL if the STT number is 0) is set to 1. This label is
referenced by a PCAL from another segment. This trap does not
stack a new marker.

8-46. ABSENT DATA SEGMENT. The absence bit in the DST entry
for the referenced segment is set to 1.

The Power On routine is entered either by an
turn-on or by an automatic restart following a

when automatic restart is enabled by a panel­
computer will halt on restoration of power if auto­
is disabled.) Assuming that automatic restart is
Power On routine will set up the software environ­
control to the operating system.

8-47. POWER ON.
inte rnal power
powe r fa ilure
sw itch. (The
matic restart
enabled, the
ment and pass

8-48. COLD LOAD. Pressing the LOAD switch while simultaneously
pressing the ENABLE switch causes the CPU to start its cold-load
microprogram which begins by reading the operator-set switches on
the panel. The switches will have been set to indicate the cold
load device number and an 8-bit control byte. The microprogram
generates an eight-word I/O program beginning at the DRT entry
locations for the specified device and then'issues an SIO in­
struction to that device and goes into a waiting loop to wait for
an external interrupt from that device. Meanwhile the lOP causes
the device controller to begin executing the eight-word I/O pro­
gram. This program reads in a 32-word bootstrap loader (a larger
program) which in turn reads in still larger blocks (e.g., 128
words) which eventually accomplish the loading of all required
fixed memory locations. This includes overlaying the previously
used DRT locations with normal DRT entries. Finally, the I/O
program causes the device controller to generate the external
interrupt that the CPU has been waiting for, and ends. The CPU
then proceeds to initialize the registers for execution of code
segment 1, with the ICS as the data danain. The Status Register
is set to 100001 (octal) to indicate privileged mode, and code
se gment 1. Then the CPU hal ts • When RUN is pres sed, the cold­
load routine in segment 1 will execute, setting up the operating
conditions for the operating system (software tables, linkages,
etc.). Once this is complete, the system is in full operation.

8-18



Interrupt System

8-49. Sequence For ICS-Type Interrupts

Figure 8-5 illustrates the sequence of operations for processing
ICS-type internal interrupts. The figure shows how control is
transferred from the point of interrupt in the user's code to the
start of the in·terrupt code segment and how the data domain is
switched from the user's stack to the Interrupt Control Stack.

The initial assumption is that the current process is executing
at the point P in the user's code when an interrupt condition
occurs. The CPU then passes control to the Interrupt Handler.
The sequence of operations is as follows:

a. The first action of the Interrupt Handler is to push into
memory any TOS elements of the current user's data that are
in CPU registers (l, figure 8-5). This takes a maximum of
four memory cycles if all four registers are full. Next, a
normal four-word stack marker is pushed onto the user's stack
followed by the value of the user's DB-Bank and the absolute
value of DB that is currently in use. (DB may not necessarily
point to a location within the user's stack, such as if a
system intrinsic using a split stack had been called 'at the
time of the interrupt.) This action preserves most of the
user's environment; the current value of S will be preserved
late r in step f.

b. The S-Bank Register (2) is set to O. (The ICS is always in
Bank 0.)

c. The Interrupt Handler now goes to location 5 and loads the QI
value (3) into the Q Register. This points at the Delta-Q
location of the permanent Dispatcher marker. (As explained
previously, this location contains a value of 0.)

d. The contents of location 6 is fetched and the value of ZI (4)
is loaded into the Z Register. This establishes the stack
limit for the ICS. (The ICS Flag in the CPXl Register is also
set .)

e. The DL Register (5) is set to the limit value of %177777.

f. The user's value of S relative to stack DB (at QI-4) is cal­
culated and stored in QI-6 (6). (Up to this point the opera­
tion has been identical to the sequence of operations for
external interrupts, described earlier.)

g. An external program label (7) is created which points to seg­
ment 1, and whose STT number is a function of the type of
interrupt. (Refer to table 8-1.)

h. S is now set to Q+3 and a parameter is pushed onto the ICS at
that location (8). Most ICS-type internal interrupts pass
the external program label however. For example, a Module
Interr upt passes the module n umbe r.

8-19



Int.errupt System

PROG LABEL

0) I 1 STT I SEG 1 I
J

CST PB-BANK PB

~ I ...
USER ..... INTERRUPT
CODE RECEIVER
SEGMENT CODE

P

P --+ ,..
'-t ~

-,

(11)

@ }sn'\ -;:
MEMORY

PI..
USER
DATA

01-6 CDSEGMENT 5 01 USER S

6 ZI ~,
0

C 0 0
B

DIS-

A >PATCHER
01 MARKER

X-REG
>(0

....
6p

STATUS
S ---. PARAMETER 06°

DB-BANK

DB S-BANK
J

01 I0

ZI...
p

INDEX REGISTER DL

0 ICURRENT INSTR.I 01 177777 I
CPX1 STATUS

®I I ®l 100001 I

Figure 8-5. IeS-Type Internal Interrupt

8-20



Interrupt System

i. The current instruction (9) is placed in the Index Register.

j. The interrupt condition is cleared (10).

k. The PB-Bank, PB, and PL Registers are set up based on CST en­
try number 1 (11).

1. The Status Register (12) is set to privileged mode, segment 1
with all other bits cleared (%100001).

m. The starting address of the interrupt receiver code is ob­
tained from the STT entry (13) pointed to by the external
program label. The P Register is set to this value and the
CPU fetches the instruction at P and begins executing the
interrupt rece iver code.

Additional ICS-type internal interrupts could occur before exit­
ing from the interrupt code segment and they would be stacked on
the ICS in a manner similar to that shown in figure 8-4. If
there are any external interrupts, either suspended on the ICS or
waiting for priority, they will be processed after all internal
interrupts have been processed. (However, external interrupts can
interrupt internal interrupt routines if the software re-enables
the external interrupt system.) After all internal and external
interrupts using the ICS have been processed, an exit back to the
interrupted user will occur or the Dispatcher may be entered.

8-50. Sequence For Non-ICS Type Interrupts

Figure 8-6 illustrates the processing of non~ICS type internal
interrupts. As shown in the figure, the ICS is not used and the
interrupt code segment will operate on the user's stack. Assume
that the user is executing at point P when an interrupt condition
occurs. The CPU passes control to the Interrupt Handler and the
sequence is as follows:

a. Any TOS elements that are in CPU registers (1, figure 8-6)
are pushed into memory.

b. A normal four-word stack marker is pushed onto the user's
stac k (2).

c. The parameter (3)
8-1. )

is pushed onto the stack. (Refer to table

d. The current instruction (4) is placed in the Index Register.

e. The Interrupt Handler generates an external program label (5)
to the interrupt receiver code in segment number 1.

f. The PB-Bank, PB, and PL Registers are set based on r the CST
entry (6).

8-21



In te r r upt Sys tern

PROGRAM LABEL

o 11 STT 1 SEG 1 1
J

CST PB-BANK PB..
..J

1
..

USER
.,

INTERRUPT
CODE RECEIVER
SEGMENT CODE

P

P--. r-t
'-t I-----.

1(';'\
I'"

6
J

}=(8) '--:

PL....
USER
DATA
SEGMENT

I),D

C

0B

A
I ~

XREGISTER

P

0STATUS fQ-t Q
s ___

PARAMETER CD

INDEX REGISTER STATUS REGISTER

0 ICURRENT INST·I 01 100001 I

Figure 8-6. Non-ICS Type Internal Interrupts

g. The Status Register (7) is set to privileged mode, segment I
with all other bits cleared (%IOOOOI).

h. P is set from the local label, reached via the STT entry in

8-22



Interrupt System

the external program label (8), thus transferring control to
the interrupt receiver code.

8-51. INTERRUPT HANDLER

The Interrupt Handler is a microprogram (actually a set of micro­
programs) permanently stored within a read-only memory in the
CPU. The CPU periodically checks for the existence of a waiting
interrupt condition which is stored in one of several bit posi­
tions in a dedicated CPU register (CPXI or CPX2), and then trans­
fers control to the Interrupt Handler. The purpose of the
Interrupt Handler is to save the interrupted environment and
transfer control t~ the interrupt routine in software. The sus­
pended environment is saved in a format that is ready to resume
execution. ~he descriptions that follow are essentially a sum­
mary of the preceding portion of this section. Figure 8-7
illustrates the operations performed by the Interrupt Handler.
Generally, the sequence beg ins with the STAR!' block at the top
left corner and ends with the NEXT CPU INSTRUCTION block at the
bot tom right cor ner.

8-52. DISP Instruction

The DISP instruction calls the Dispatcher which is a system pro­
cess whose primary function is determining which active process
will use the CPU and then transfer control to that process. The
Dispatcher can be called from a user program if in privileged
mode. For example, the last instruction of a user process is a
PCAL to a sys tern process called TERMINATE' which, among othe·r
things, cleans up the CST, DST, and PCB entries for the user pro­
cess. TERMINATE' then issues a DISP instruction. Some system
error handling routines such as trap handlers may use it to call
the Dispatcher after aborting the user program. The DISP in­
struction can be executed by an Interrupt Handler after servicing
all pending interrupts from a multiple device controller. In
this case, the Dispatcher is not actually called, but instead a
condition code of CCG is set and bit 0 of QI is set to instruct
the IXIT instr uction what to do. The next CPU instr uction after
the DISP instruction would then be executed and the Interrupt
Handler would execute the IXIT instruction. The IXIT instruction
then uses bit 0 of QI to determine which path to take. All pro­
grams which use the DISP instruction must be prepared to handle
the condition of the Dispatcher being pseudo disabled. (Refer to
paragraph 4-16, 7.)

8-53. Pseudo Enabling/Disabling .The Dispatcher

The PSDB (Pseudo Disable) and PSEB (Pseudo Enable) instructions
are used to pseudo disable and enable the Dispatcher. (Refer to
paragr aph 4-16; 7.) The two instr uctions must be executed in
pairs; for each disable, there ID.USt be a corresponding enable
within the same .process. The Dispatcher can be locked several
levels deep with PSDB instructions, but must have one PSEB to
unlock each level. A count is maintained in QI-18 for the number
of disables which have not been unlocked. These instr uctions are

8-23



Inte rr upt Sys tern

used to prevent a dispatch during critical sections of code and
to avoid unnecessarily restarting the Dispatcher. If the DISP
instruction is executed and tqe Dispatcher is disabled (QI-18 is
non-zero), then bit 0 of QI is set to 1 and the next CPU instruc­
tion is fetched. This bit is reset either by IXIT or PSEB when
QI-18 becomes zero. If QI-18 is already zero at the start of a
PSEB instruction, a system halt will occur.

8-54. IXIT Instruction

Figure 4-13 is a simplified flowchart of the IXIT instruction.
IXIT operates in either of two ways. The first is by the Dis­
patcher to transfer to a process being launched (1, figure 4-l3).
The second (2) through (6), is to exit from ICS type interrupt
routines. If the interrupt service routine is not in segment
number 1, it is assumed to be an external interrupt routine and a
Reset Interrupt is sent to the device whose device number is in
Q+3. If bit 0 of Q is zero and if Q=QI, the return is to the
interrupted process (2). Otherwise the return is to a lower pri­
ority interrupt which was interrupted (3). If bit 0 of Q is 1
and bit 0 of QI is zero, the return is to the Dispatcher which
was interrupted (4). If both bit 0 of Q and bit 0 of QI are 1, a
DISP instruction has been executed and the request to start the
Dispatcher is still pending. If QI-18 is zero, the Dispatcher is
not disabled, QI is cleared, and a transfer is made to the Dis­
patcher's entry point (5) or (6). It does not matter whether a
process (Q=QI) or the Dispatcher (Q not equal to QI) was inter­
rupted. If QI-18 is non-zero, the Dispatcher is disabled and the
DISP request cannot be carried out at this time. Instead, IXIT
returns to the interrupted Dispatcher (Q not equal to QI (4a}),
or to the interrupted process (Q = QI (2a}). The Start Dispatch­
er request is still pending, (bit 0 of QI is I).

8-55. INTERRUPT SYSTEM SERVICING INFORMATION

Except for checking the' interrupt poll line for proper installa­
tion, no repair procedures are required for the interrupt system.
As previously discussed, the interrupt priority of a divice is
determined by the device's logical proximity to the lOP on a
jumpered interrupt poll line. The interrupt poll line is wired
during system configuration from the lOP to whatever device is
assigned first priority and then from device to device according
to assigned priority. The interrupt poll line terminates at the
device of lowest priority.

The interrupt poll line for any system starts at connector pins
79 (INTPOLL) and 80 (GND) of connector 10Pl of the CPU/lOP back­
plane. The interrupt poll line consists of a twisted pair of
wires; one blue wire and one white wire. This twisted pair is
terminated at each end with a two-pin spring-clip connector that
clips onto pairs of vertically-aligned connector pins. At the
CPU/lOP backplane, the twisted pair must be installed with the
white wire connected to the top pin of the two vertically-aligned
pins. At the device controller interface PCA's, the twisted pair
must be installed with the white wire connected to the bottom pin

8-24



Int err up t Sys te m

of the two vertically-aligned pins.

The interrupt poll line carries the INTPOLL signal from the lOP
to connector PI of the device interface peA with the next highest
priority. It enters this PCA on the fifth vertically-aligned pair
of connector pins from the left; pins 48 (INTPOLL IN) and 47
(GND). The signal is exited from each PCA on the seventh ver­
tically-aligned pair of connector pins from the left; pins 44
(IN'rpOLL OUT) and 43 (GND).

ROM EXTERNAL DEVICE INTERRUPT PROCESSING

YES

--INT5

SECOND OR
GREATER LEVEL
EXTERNAL
INTERRUPT

DISPATCHER BEING
INTERRUPTED OR SECOND
OR GREATER LEVEL EXTERNAL
INTERRUPT

DISPATCHER
BEING INTERRUPTED

-- INT6

0+ 3: = DEVICE
NUMBER.

SAVE CONTENTS
OF CIR IN X.
ZERO ABS-Bank
REG.

CLEAR H/W
DISPATCHER FLAG.

SET 0.(0:11
[ 0.(0:1):=11
FOR IXIT USE.

FETCH INT DEVICE
NUMBER.
CALCULATE DRT ADDR.
DB:=DBI FROM DRT.
STATUSREG:=
%140000.
FETCH PLBL.
DB-BAN K: =00
RESET EXT INT BIT
CPX1.l8:11.

START

FETCH CPX 2
REGISTER

HARDWARE EXTERNAL INTERRUPTS
MAP TO ROM ADDRESS 3 WHICH
JUMPS TO THE INTERRUPT MICROCODE

r------I~--....,- - - IR

,.....-_....._--""1--- INT1
QUEUE DOWN H/W
TOS REGISTERS.
LAY STACK MARKER
ON CURRENT STACK.
PUSH DB-BANK & DB
ON STACK.
ZERO STACK BANK
REGISTER.

'---.....;.....;;.,.---... ---INT2

EXECUTING ON
i-US;.;:E;;.;R..;;,S.;.;TA.;.;C;;.;K .... _ -- INT 3

SET ICS 01 INTO
THE 0 REGISTER.

SET ICS FLAG.

SET ICS ZI INTO
THE Z REGISTER.

SET DL TO -1.

CALCULATE USER
RELATIVE S FROM
USER DB. SAVE AT
Ol~.

(01-6)= $-(01-41

A

Figure 8-7. Interrupt Handler Flowchart (Sheet I of 2)

8-25



Interrupt System

ENTERING PCAL
INSTRUCTION PORTION
OF MICROCODE

DETERMIN CST
TABLE USAGE.
(DETERMINE IF
CST OR XCST IS
TO BE USED.)
FETCH CST BASE
MASK OFF STT
OF PLABEL
VALIDATE CST
TABLE ENTRY.
SAVE A.M.R.T.
BITS OF CST FOR
LATER TEST
SET PB-BANK
SET PB It PL REG.
IF CODE SEG IS
ABSENT, REGISTERS
CONTAIN DISC ADRS.
FOR THE MOMENT

Figure 8-7.

SAVE "P" CALCULATED
IN THE P REGISTER

A· ABSENCE
M - MODE
R - REFERENCE
T- TRACE

THIS WILL FETCH AND
EXECUTE THE FIRST INST.
OF THE SOFTWARE INTERRUPT
RECEIVER'

Interrupt Handler Flowchart (Sheet 2 of 2)

8-26



NOTES

8-27

In te r r up t Sy s te m



Interrupt System

NOTES

8-28



HP 32421A SERIES III POWER SUPPLIES~

This section contains principles of operation and servicing in­
formation for the HP 3242lA Series III Computer System power sup­
plies. The HP 32435A Series III power supplies are discussed in
Section X of this manual.

9-1. INTRODUCTION

The HP 32421A Ser ies II I Compute r Sy stern has four power suppl ies:
two HP 303l0A Power Supplies, one HP 303llA Power Supply, and one
HP 303l2A Power Supply.

9-2. HP 30310A OPERATION

The HP 303l0A Power Supply provides +20V, +15V, +5V, -20V, -15V,
and -5V regulated dc supply voltages by converting a 208/240volt,
single-phase, 50- or 60-Hz power source. The ac input to the
power supply is controlled by the front panel POWER switch shown
in figure 9-1. The dc output voltges are controlled by the Dc
Control Panel SYSTEM switch also shown in figure 9-1. The output
voltages provide status signals for protection of the software
stored in CPU memory. The computer system hardware i"s protected
by circuits that sense overvoltage, overcurrent, or overtempera-

'ture conditions. Circuits within the power supply are protected
by various overvoltage and overtemperature circuits, current lim­
it circuits, and fuses. The power supply is designed to immedi­
ately turn the power off when an oyervoltage condition occurs.
For undervoltage or overtemperature conditions, a short delay is
generated before the power is turned off. This delay permits the
CPU to store data which, in turn, makes power on and restart much
easier.

A block diagram of the power supply is shown in figure 9-2 and
discussed in paragraphs 9-3 through 9-11. (Complete specifica­
tions and detailed theory of operation for the power supply are
contained in the HP 3000 Series II/III Computer Systems service
Manual, part no. 30000-90018.)

9-3. Primary Power Circuit

The ac line voltage enters the power supply through a connector
and passes through a 5-ampere fuse and radio frequency interfer­
ence (RFI) filter to the POWER switch. The POWER switch is lo­
cated on the front panel of the power supply. with the POWER
switch in the ON position, line voltage is applied to the pre­
regulator, cooling fan, and a step-down transformer. The fan and
transformer circui t are protected by a 1- ampere fuse.

9-1



HP 32421A Series III Power Supplies

o

D
o

LO~ER 128K MEMORY

DC BATTERY
POWER ON STATUS. ~ .

STANDBY

UPPER 128K MEMOR Y

DC BATTERY
POWER ON STATUS

• @ •
STANDBY

A. DC CONTROL PANEL

SYSTEM
DC

POWER ON

.@>
STANDBY

5 3 +12 1127 +5

0 0 ~ 0 G U
ON

... o ~:OV ® BATTERY
STATUS•0 0

! ,i •POWER 5A
CROWBAR

© © ON ADJ 250V

® 0 ~ CO
BATT/TEST RESET

© © 9 C?R32
S2

© @ OFF

B. HP 30312A POWER SUPPL Y C. HP 30311 A POWE R SUPPL Y

~ ~~l~AC @
Fl SA
250 VAC @

ONe ~POWER
OFF

PON +20 +15 +S
<i>00000@~1
¢ -20 -15 -S

COM

t
J

(
HEAT SINK

{§}
o

~

+12ADJ 0
BATTERY..n..
TEST (.W

TOGGLE
SWITCH

D. HP 30310A POWER SUPPLY

o = TEST POINT

• = INDICATOR

E. HP 30311A POWER SUPPLY
(REAR VIEW)

Figure 9-1. Power Controls and Indicators

9-2



-

1-1
1-1
1-1

::0
tU

W
N
~

N
.....
:J::l
(J)
(!)

H.....
(!)

CIl

tU
o
~
(l)
H

(J)
c
"0
"0
I-'.....
(!)

en

-20VDC

'20VDC

'1IVDC

-IIVOC

-IVDC

CIOlIM)N

+lVOC

}~

.) OTHlII......
SUfl'LIU

iT;":":T~..:l_ -,
LC~_~I~ ~

-- -- --.-- -- -- .
1 POlIWER I

~~
--+

Fl 'JOV SWITCHING ''lfNIiA

]A ~If"
..EGULATO..:W P..E"EGULATO.. I '13OV "AIL ..ECTIFIE ..S CPA..! OF A3I

"FI LCFILTE" r f--'\, "'31E ANDFILTE"SFILTER '0-+- A' 20 VOLT

~
INVE ..TE ..S A7 M't-. OUTPUT

1 A6.""•• I CIIOllIlIA..
PA..T OF A7

.L ~~c) N ~~E~LT ~ ~I
..EGULATO..

J
IPAIITOF A31

~ I RAIL'
C"OWBA"FAN

CPART OF A71 VX L... W L....W L...1J L....W ---- _.(¥"
r"l ,.,

~
-- ,.,.r"l rwr'i..

• y~~' 1 -I PHASE 1INVE..TE .. INVERTER
D..IVER D"IVE"
IPA..TOf A21 IPA..TOF A21I .nAND +tV I

Y t-l" ~ -RECTIFIEIIS r
I;A..TOF All

TWO-PHASE SVOLT T..IGGE.. PULSE
CLOCK OUTPUT.22V -22V +tV IPA..TOF A21

~
CROWIA.. -

i IIr---. INU INU POll .f 'ISVIII

-JOYr
-¥IV ... -

~~TAGE '-IIVIIi P"E ..EGULATO" +lSV -'CONT"OLAI FEEDIACK '-JOYI
LP\JWIIEGULATOIIS I .IVlal -ISV(PA..TOf All

<tV VOLTAGE

~
P..OTECT AS PIU -

LINE VOLTAGE _ITO" dE- ~~~

I '
IMOUNTEDOlII Ml _

liAS VOLTAGES +15V r - _., DCE _A2THRUAS
-ISV

OVE"CURRENT CU....ENT
'SV L_.JLIMITER A4

-SV THI"_L
CUTOUT

CU....ENT '/S'C
SENSING

T"'GGE .. PULSE

IIIOTE: C
F

=-I'IlASl {'__':.:.N+I__
IOTO_IIZ E

-::IG~N~OI+I--

I

L_

I"Ij.....
1.0
c:
H
(!)

\0
I

N
•

::tl
tU

w
0
W
I-'
0
:J::l

\0 '"0
I 0

W ~
(1)
H

enc:
"0
"0
I-'
'<

~
0
()
7"

a.....
p,

1.0
H
llJ
S



HP 32421A Series III Power Supplies

9-4. Preregulator A9

The preregulator contains a silicon controlled rectifier (SCR)
bridge that converts the ac line voltage to a unidirectional,
pulsed voltage. The pulsating voltage is filtered to become the
regulated +130-volt rail voltage. The rail voltage is applied to
the inverters and is used as a basis for all dc output voltages.
The SCR bridge is controlled by the preregulator control circuit
through an isolating transformer.

9-5. Preregulator Control A1

The stepped-down line voltage is applied to full-wave rectifiers
which supply unregulated +22, -22, and +9 volts dc for the bias
voltage regulators. The regulators provide internal power supply
bias voltages. The preregulator control 'circuit uses the ac line
frequency, -30 volt dc feedback, and status of the current lim­
iter and voltage protect circuits. The preregulator control cir­
cuit supplies trigger pulses to the preregulator that determine
the "on" time of the SCR bridge circuit to maintain proper con­
trol of the +130-volt dc rail.

9-6. Inverter A7

The inverter circuits convert the 130-volt dc output of the pre­
regulator to a square-wave ac voltage that is transformer-coupled
to the rectifiers. The transformer coupling provides isolation
for stages following the inverter; The aOO-Hz operating fre­
quencyof the inverter is determi.ned by the inverter driver.
There are two inverter circui ts wi thin the inverter that operate
90 degrees out of phase with each other. Each circuit is fused
for 3.0 amperes.

9-7. Inverter Driver A2

The inverter driver generates an aOO-Hz, two-phase clock which is
timed to develop Phase 1 and Phase 2 drive signals. The two in­
verter driver circuits are transformer-coupled to the two in­
verte r circu its.

9-8. Full-Wave Rectifiers and Filters

The transformer-coupled inverter output is rectified and filtered
to provide dc outputs of +15, +5, -5 , and -15 volts dc. Addi­
tionally, +30 and -30 volts dc are supplied to the +20 and -20
volt regulators. An independent -30 volt output is fed back to
the. preregulator control circuit to maintain output voltage
re gulation.

9-9. 20-Volt Regulators

The 20-volt regulators consist of a +20 and a -20 volt regulator.
The +20-volt regulator is a switching regulator which converts
the +30 volt rectifier output to a regulated +20 volt dc output.
The -20-volt regulator is a series regulator which converts the

9-4



HP 3242lA Series III Power Supplies

-30 vol t rectifier output to a regulated -20 volt dc output. The
+20 and -20 volts dc are used by a power supply for the semicon­
ductor memory. An analog signal from the memory power supply is
used by the +20-vol t regulator to control the output vol tage.
The -20V-regulator is designed to track the +20-volt regulator so
that the two outputs are equal and opposite in polarity.

9-10. Current LimiterA4

The current limiter circuits monitor the individual dc voltage
drops across the output filter chokes for the +15, +5, -5 and -15
volt outputs. Anyexcessive current drawn from these outputs
results in the immediate generation of an Overcurrent signal.
The Overcurrent signal is used by the preregulator control cir­
cuit to limit' the preregulator output voltage to protect the pow­
er supply.

9-11. Voltage Protection and Control A5

The voltage protection and control circuits contain overvoltage
sensing circuits to protect the computer system hardware and
overvoltage sensing circuits to protect system software. The
overvoltage comparator circuits monitor all dc output voltages,
with the exception of the +20 volt output. When an overvoltage
condition is sensed, an overvoltage latch is set. Transformer­
coupled crowbar trigger pulses are generated which crowbar the
+130V RAIL, +20, -20, +5, and -5 volt dc outputs. Also, when the
latch is set, the Inverter Up (INU) goes low and disables the
inverters and preregulator. Circuits also monitor the internal
thermal cutout switch (overtemperature sense) and the external Dc
Enable (DCE) signal. If the internal power supply temperature
exceeds its fixed limit or an external DeE signal is removed, the
Power Fail Warning (PFW) signal goes low after a 70-ms delay.
After another delay of 12 ms, the INU-signal goes low, turning
the preregulator and inverter off. Since the output voltages go
down, the Power Supply On (PON) signal goes low. The SYSTEM
switch controls the power supply outputs with the DCE signal.
This signal appears as an overtemperature condition to the power
supply and initiates the overtemperature sequence.

The undervoltage comparator circuits monitor all output voltages
with the exception of the +20-volt output. If any of these dc
output voltages drop below specified limits, the PON signal goes
low. An excessive current overload causes the output dc voltages
to drop. The undervoltage sequence i~ initiated due to this
condition. Circuits also monitor the input ac 1 ine voltage. If
it drops below a preset limit, the PFW signal goes low and, after
a minimum delay of 5 ms, the PON signal also goes low. When the
dc output voltages and ac line voltage are above the specified
low limits and the thermal switch is closed, a high PON signal is
provided for the system within 0.6 second.

9-5



HP 3242lA Series III Power Supplies

The undervoltage sensing circuits also provide power supply con­
trol signals for use when mul tiple supplies are "control paral­
leled" in a computer system. These signals are Power Supply Up
(PSU), Line Power Up (LPU), and control common~. PSU indicates
that the dc output voltages are above specified limits. LPU in­
dicates that the AC line voltage is above a specified limit, the
thermal switch is closed and DCE enabled. When the PSU, LPU,
DCE, and control common~signals of multiple supplies are wired
in parallel, any supply can provide the PON and PFW signals to
the system, and all multiple supply outputs can be controlled by
a sing Ie DCE signal.

9-12. HP 30310A SERVICING INFORMATION

The HP 303l0A Power Supply is a nonrepairable unit hinge-mounted
in the cabinets as shown in figures 1-2 and 1-3. The power sup­
ply swings out on hinges for servicing and is removable from the
hinges for replacement.

I WARNING

The HP 303l0A Power Supply weighs 50 pounds
(22.7 kilograms). Two persons are required
to remove the unit from its mounting hinges.

If the power supply is found defective, it must be replaced. Ex­
cept for replacing open fuses, no repair procedures are required.
However, preventive maintenance procedures must be performed on
the power supply at scheduled intervals to prevent or minimize
equipment deterioration. Preventive maintenance, adjustment, and
troubleshooting procedures for the power supply are contained in
paragraphs 9-13 through 9-18.

WARNING

Death or serious injury may occur if the
following precautions are not observed.

While the input power is connected, use
caution when working inside the power sup­
ply. Many exposed conductors carry low dc
voltages which are capable of supplying
heavy currents if short-circuited, result­
ing in high heat and the possibility of
painful burns. Use caution when manipul­
ating metal tools or probes. Wrist watch­
es, metal necklaces, bracelets, or rings
must not be worn. Avoid dropping tools,

9-6



HP 3242lA Series III Power Supplies

screws, or other metal objects onto con­
ductors. Remove power and recover dropped
objects at once; if forgotten, damage
could result later.

Ac power line vol tage and 130 vol ts dc are
exposed when covers are removed. Exercise
extreme caution when working in the power
supply with covers removed, and never work
under this condition unless another person
is nearby and within sight. Also, remem­
ber that the test equipment is floating
with respect to earth ground, so the cases
can be at the same line voltage a~ the
point being measured in the power supply.
Thus, test equipment must be temporarily
enclosed and marked dangerous to alert all
personnel of unsa fe condi tions.

If feasible, be fore per form ing any wor k
inside the power supply, unplug the ac
power cable and wait three minutes for
f il te r capacitor s to discharge. To p re­
vent explosion resulting from internal
heating, always be sure to replace filter
capacitors properly with respect to
polarity.

The highest ac voltage in the power supply is the ac line voltage
(250 volts rms, 350 volts peak). The highest dc voltage in the
power supply is 130 volts. The ac line voltage is exposed at the
input circuits of the power supply and at filter choke Ll. The
130 volts dc is exposed at the preregulator filter circuit and
the inverter assembly A7. Additionally, ac voltages of 240 -volts
peak are exposed at transformers Tl and T2.

If the test equipment has a metal case, the negative test lead
should not be connected to the case. Also, the negative lead
should not be connected to digital voltmeters that have floating
(guarded) inputs, to mul timeters, nor to power supply chassis.
Instead, the test equipment chassis should be connected to the
computer system cabinet earth ground through the test equipment
power cable. Consequently, the oscilloscope case will "float"
with respect to earth ground. All test equipment should be plug­
ged into the ac power convenience outlets provided in the comput­
er system bay cabinets~

All measurements and connections to the power supply must be ref­
erenced to the appropriate common circuit. There are four such
circuits within the HP 303l0A Power Supply: common~, comrnon~,
commonW" and common W. In subsequent paragraphs, all test and
adjustment procedures specify the particular common circuit to be
used.

9-7



HP 3242lA Series III Power Supplies

I CAUTION I

Do not connect test equipment to power supply
chassis ground. All common circuits within
the power supply "float" with respect to
chassis ground. Damage to test equipment or
power supply components, and erroneous mea­
surements may result if this caution is
ignored.

9-13. Preventive Maintenance

The following preventive maintenance procedures are performed at
monthly or semi-monthly intervals. The frequency depends upon
the physical conditions prevailing at a particular site. Routine
maintenance once per month is adequate for most power supplies
that operate 24 hours per day, seven days per week. The interval
can be reduced in accordance with the amount of time the power
supply is turned off. The power supply is not removed from the
computer to perform preventive maintenance. Perform the preven­
tive maintenance procedures as follows:

a. Remove dust.

b. Check PCA's for proper seating.

c. Check cooling fan operation.

d. Check the dc operating voltages at the power supply front
panel.

e. Check the ac voltages for ripple at the PCA cage backplane.

To gain access to the power supplies, open the rear door of the
CPU cabinet bay. The power supplies are hinge-mounted and may be
swung-out by removing the screws that attach the left side of the
front panel to the CPU cabinet bay. In this position, the power
supply top and bottom covers can be removed for maintenance and
test.

If required, use a vacuum cleaner to remove dust and other light
debris from the power supply. Loosen encrusted dust with a soft­
bristled brush, paying particular attention to heat dissipating
areas. With the top cover of the power supply removed, check all
PCA's for proper seating. Adjust where necessary. Set the power
switch to ON and check the cooling fan for proper operation.
Ensure that no objects interfere with fan blade rotation.

Before making voltage checks, the voltmeter must be allowed time
to warm up as prescribed by the manufacturer of the instrument.
Also, the computer must run, with any type of program, for at
least 15 minutes before making the voltage measurement. Perform

9-8



HP 32421A Series III Power Supplies

the voltage checks as follows:

a. Stop the computer program.

b. Measure the six dc voltages listed in table 9-1. These volt­
ages are available for cursory measurement only at test jacks
mounted on the power supply front panel. (See figure 9-1.)

c. Set the oscilloscope for checking ac voltage. On the PCA
cage backplane, check each of the six voltages listed in ta­
ble 9-1 for ripple. For each voltage, the indicated ripple
should be less than that listed. If any voltage is not with­
in specified limits, make the necessary adjustments as de­
scr ibed in paragraphs 9-14 through 9-17.

Table 9-1. HP 303l0A Dc Output Voltages

I--------------'-----I-~----l----,------

1 Voltage 1 Minimum I Maximum I Ripple Voltage
I Test Point I Reading 1 Reading I Tolerance
I I I I
I---------I------~ --------...,..--- 1-------------------------
1 +20 I Refer to para 9-16. 1

1 I 11----------1----------1-------1----------------
I +15 1 +14.7 1 +16.5 1 0.4 volt peak-to-peak
I .__-. -~ I 1_- 1_- - _
1 1 1
I +5 1 Se tat +5 •1 7 1 0 • 3 vol t pea k-t 0-P ea k
1 I 1
I-~----------I-----I-----I--------------------

I -5 I -4.5 I -5.3 I 0.3 volt peak-to-peak
1 I 1 I1------ ·I_·_-_h__- -_-I---~----I---_-----~-_----·--_--·-

1 -15 I -14.7 I -16.5 1 0.4 volt peak-to-peak
I I I 11------_·------1------· -.------.---- 1---------------------
1 -20 IRefer to para 9-16.1
I ~ I .._-- I_~~ -------_.

9-14. HP 30310A Adjustments

Three adjustments should be made to the power supply after it is
installed in the computer. 'l'hese adjustments are accessible
through the top cover of the power supply.

9-15. PREREGULATOR ADJUSTMENT. The +15, +5, -15 volt supply
outputs are controlled by preregulator adjustment resistor AlRl
(+5, +l5V ADJ) on the preregulator control PCA. If one or more
of these voltages are not within tolerance when the voltage check
is made, the preregulator should be adjusted as follows:

9-9



HP 32421A Series III Power Supplies

a. Se t the power supply POWER swi tch to the ON pos ition.

b. Connect the voltmeter between the center conductor of the +5
VDC connector and COM on the peA cage backplane. While ob­
serving the voltmeter, adjust the +5, +15V ADJ resistor
(AIR1) until the +5 volt output is 5.17 volts as specified in
table 9-1.

c. Using the same COM as a return, connect the voltmeter, in
turn, to the +15V, -5V, and -15V test jacks and verify that
each output voltge is within the limits specified in table
9-1.

d. Set the power supply POWER switch to OFF and disconnect volt­
me te r.

9-16. 20-VOLT ADJUST~lliNT. The +20 and -20 volt supply outputs
are adjusted by setting resistor A3R2 (+20V ADJ) fully clockwise.
These voltages are used by the HP 30311A Power Supply which regu­
lates the voltages by applying an analog signal to the HP 30310A
Power Supply's TEMP SENSE input terminal. The value is approxi­
mately 17.3 volts when the battery is fully charged and stabi­
lized at room temperature.

9-17. VOLTAGE PROTECT PCA ADJUSTMENT. The purpose of this pro­
cedure is to check and, if necessary, adjust the +4.22 volt ref­
erence supply and line voltage monitor circuits on the AS voltage
protect PCA. Check and adjust the reference voltage and line
voltage monitor circuits as follows:

r

a. Plug power supply ac line cord into autotransformer.

b. Set POWER switch to ON position.
20 8 vol t sac.

Increase input vol tage to

c. Conne ct a vol tme te r to te rm inal El (+) and E2 ( - ,COMMON 1) on
AS. Adjust A5R2 until voltmeter indicates +4.22 (+/-0.01)
volts dc.

d.

e.

f.

Connect multimeter between TB3, pin 5(+) and TB3, pin
COMMON W ). Set multirneter controls to +10 VOLTS DC.
monitors the PON signal.

Connect digital voltmeter between TB3, pin 7(+) and TB3,
6(-, COMMONW). This monitors the PFW signal.

Both PON and PFW should be a t a h i.gh 1 e vel ( +4 vol ts
min i murn) •

6(-,
This

pin

dc,

g. Slowly reduce the ac input voltage to 160 volts while watch-
ing the PFW voltage. The PFW voltage should drop to approxi­
mately zero vol ts when the ac input vol tage is be tween 170
and 160 volts. If the PFW voltage fails to drop to zero as
the ac voltage is reduced below 170 volts, adjust A4Rl.

9-10



HP 3242lA Series III Power Supplies

Note

Each time PFW goes low, the circuit must be
reset by increasing the ac input voltage to
208 vol ts.

h. Set the ac input voltage to 160 volts. PFW and paN voltages
should be low. Increase ac input voltage to 180 volts. PFW
should go high, followed by paN after a I-second maximum
delay.

i. Reduce ac input voltage to zero.
pos i tion.

Set POWER switch to OFF

j. Unplug ac line cord from autotransformer. Plug into ac power
receptacle.

9-18. HP 30310A Troubleshooting

Troubleshooting in the field is limited to visual checkout, volt­
age checks, alignment, and power supply replacement if necessary.
Proceed as follows:

a. Open rear door of cabinet and observe that the POWER switch
is set to ON and that the indicator light is lighted. If the
switch is ON but the indicator is not lighted, the indicator
is defective or ac input power is not available to the power
supply. Check the fuse.

b. With the power on, observe that the +5-volt red indicator is
lighted. If it is not lighted, check that the DCE signal at
terminal of TB3 is low and that the indicator is good.

c. Use the procedure in paragraph 9-13 to check the output volt­
ages of the power supply at the test points furnished on the
front panel. If the voltages are not correct, follow the
appropriate adjustment procedure in para~raphs 9-14 through
9-17.

d. Replace the power supply if it remains inoperative or does
not respond to al ignment.

9-19. HP 30311A OPERATION

The HP 303llA Power Supply (figure 9-1) provides the semiconduc­
tor memory with backup battery power during the absence of ac
input power. The volatile nature of dynamic MaS semiconductor
memory requires this backup power to prevent data loss. The pow­
er supply receives its input power from the HP 303l0A Power Sup­
ply and, in turn, provides backup battery power for main memory.
The HP 303llA is a self-conta ined modular unit. It occupies one­
half of a standard 19-inch rack mounting as shown in figures 1-2
and 1-3. If only one power supply is mounted in the system, a
filler panel is supplied. The filler panel extends the full

9-11



HP 32421A Series III Power Supplies

width of the cabinet and has a 4 by 2-5/8 inch opening used for
accessing power supply controls. When an HP 30312A Power Supply
is mounted next to this power supply, a half panel covers only
the HP 30311A Power Supply. The power supply provides +12.7V,
+12.0V, +5.0V, -3.0V, and -5.0V for the semiconductor memory.
The Semiconductor Memory Array PCA uses all the dc vol tages ex­
cept -3.0V. The Semiconductor Memory Control PCA uses only the
+5.0V output.

The power supply normally operates from the +20V, -20V, and +15V
outputs of the HP 30310A Power Supply as shown in figure 9~3.

When ac input power to the HP 30310A Power Supply is interrupted,
a 7-cell, lead-acid battery pack in the HP 30311A Power Supply
furnishes the input power and maintains the voltages to the mem~

ory. The amount of time the battery continues to furnish power
depends on the condition of the battery and the size of memory
requiring power. Normally, the battery will furnish power for 40
to 90 minutes before it discharges to a level that activates the
undervoltage circuits and removes all power from memory. The
power supply can be operated without the battery. However, no
power will be available to the memory system if ac power is re­
moved from the HP 30310A Power Supply. When operating in this
mode, the battery status lights are disabled. A battery mode
sw itch on the 30311-60003 Control PCA must be set to operate
without a battery.

The +20-volt output of the HP 30310A Power Supply provides the
charging power for the battery pack and the input power for the
+12.7V, +12.0V, and +5.0V regulators. (see figure 9-3.) The TEMP
SENSE input to the HP 30310A controls the output of the +20V
line. The +20V output also supplies input power to the +5V regu­
lator and the control circuits.

Outputs of -3V and -5V are derived from a source voltage obtained
fr em the +5V sw itching regulator. Load cur rent fr om the -3V line
adds to the -5V load current so that a single current limit on
the -5V line protects both outputs. The maximum comb ined current
for the -3V and -5V loads may be divided between the loads in any
combination.

Over/under voltage detectors can disable the PSU (Power Supply
tp) system dc power line, and shut down the power supply by sens­
ing the +12.0V, +5V, and -5V outputs for undervoltage. The -3V
output is sensed for undervoltage to disable the +12.0V and
+12.7V outputs, thus protecting the memory array chips from lack
of either -3V or -5V substrate bias. Overvoltage conditions
sensed on the +5V and +12. OV outputs cause the power supply to
c-rowbar to protect the TTL elements and memory array chips.

Controls and indicators mounted on the front panel of the HP
30311A Power Supply and on the DC Control Panel are provided to
monitor and control power supply status and operation. In addi­
tion, test points on the power supply front panel are provided as
an aid in troubleshooting. An internal three-position slide­
switch permits power supply operation with a battery or without a

9-12



HP 32421A Series III Power Supplies

-6VB

+12.0VB

-3VB

+5VB

+12.7VB

r----------------------------,
I HP 30311A SEM\cONDUCTOR MEMORY POWER SUPPLY I
I I

I I I
I I ..... ...... I
I .....' V, SERIESI ..

1... REGULATORI I I
I I I ...
I I - I
I - ,

I

~
I

I I I
I I BATTERY

SWITCHING I
I I VOLTAGE ~ REGULATOR ~

REGULATOR 1
I I I
I I

I I
I I I
I~ I ,. I
I I I
I I I ..
I I -3V AND -5V -
I I SERIES I

I I, REGULATORS I -
I I 'Ir , I

1- 1. BATTERY ~

I I STATUS
~

AND •I ",' I

I I CONTROL.. CIRCUITS ...
~I 1 OVER/UNDER

I I ~ VOLTAGE

I I .. DETECTORS

- ~

I I
I I
1 1

1 IL_________
----------------- --~

_.J~----------------,
Ir--

PSU

LPU

t20V

• 16V

-20V

TEMP,
SENSE

------...,
I I
I I
I
I
I
I
I
I HJJ 30310A
I POWER
I SUPPLY

I
I
I
I
I
I
j

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

I

~ - .PCrE_-_-_J ...
r

,

- .1 SYSTEM D,C, CONTROL PANEL I
I I
~--------------------~

Figure 9-3. HP 30311A Power Supply Block Diagram

battery, and in the calibrate position allows setting of the bat­
tery float voltage level. Figure 9-1 illustrates the locations
of the controls and indicators on the power supply panels and on
the Dc Control Panel. Table 9-2 lists the function of each con­
trol and indicator. The BATTERY STATUS indicator is duplicated
on the power supply, on the Dc Control Panel, and on the top of
the cabinet door of the main bay. The power supply +5 indicator
is also duplicated on the Dc Control Panel as the SYSTEM DC POWER
indicator. (Complete specifications and detailed theory of opera­
tion for the power supply are contained in the HP 3000 Series
II/III Computer Systems Service Manual, part no. 30000-90018.)

9-13



HP 3242lA Series III Power Supplies

Table 9-2. Hp 303llA Power Supply Controls and Indicators

,------------- --------·~I---·_·--- -----------~.-------------.-.--
, Cbntrol or Indicator I Function'---_.._---- ------------- '------_..__._._--_._._---.--------------

Power ON/OFF TOggle
Switch

BATTERY TEST Momentary
'Ibgg Ie Sw itch (mount­
ed on rear of unit)

RESET Pushbutton
Switch

+5 LED Indicator

CROWBAR!BATT TEST LED
Indicator

BATTERY STATUS LED
Indicator

In the ON position, connects +20V from
the HP 303l0A Power Supply to the HP
303llA to maintain the charge on the
battery and to develop required memory
vol tages • In the OFF pos i tion, d is­
ab les the HP 30 3llA.

Places power supply in a battery dis­
charge mode for test purposes. (Simu­
lates a powe r fa ilure cond it ion.)

Resets the battery discharge mode, re­
turning the power supply to normal op-
eration. I

Whe n 1 it, i nd i ca te s t hat +5Vis b e ing
produced by the HP 303llA Power Supply

Used in conjunction with the BATTERY
STATUS indicator to determine if the
crowbar circuit has fired and shut
down the power supply.

I nd i ca te s the bat te r y cond it ions as
follows:

a. Remains continually lit for a
fUlly-charged ba t te ry.

b. Flashes at a 2-Hz rate when the
battery is discharging.

c. Flashes at a O.s-Hz rate when the
battery is charging.

d. Remains off if battery is low or
not present.

9-20. HP 30311A SERVICING INFORMATION

Preventive maintenance, adjustment, and replacement procedures
for the power supply are contained in paragraphs 9-21 through
9-32. No high voltage points exist within the power supply.
However, the supply is capable of supplying low voltage at moder­
ate current levels. Use caution when manipulating metal tools or
probes near exposed conductors and terminals. Extra care should
be exercised ~o prevent the possibility of shorting the output
lines of the battery pack.

9-14



HP 32421A Series III Power Supplies

I CAUTION I

When cables are connected to or disconnected
from the power supply, the corresponding
UPPER or LOWER MEMORY DC POWER switch on the
System Dc Control Panel must be placed in
STANDBY and the corresponding HP 30311A pow­
er switch must be in the off (down) position
to pre vent equipment damage.

9-21. Preventive Maintenance

Preventive maintenance is performed at monthly or bi-monthly in­
tervals depending on the physical environment prevailing at the
site. Preventive maintenance consists of measuring the dc volt­
ages at the test jacks on the power supply front panel and per­
forming the battery test procedure.

9-22. VOLTAGE CHECKS. Measure the five vol tages listed in table
9-3 using a digital voltmeter. Allow the recommended warm-up
period for the voltmeter before taking any measurements. If any
voltage is out of tolerance, make the necessary adjustments as
described in paragraphs 9-24 through 9-27.

Table 9-3. Dc Output Voltages

If all voltages are out of tolerance,
perform the +5.00-volt internal ref­
erence adj us tment first. (Refer to
paragraph 9-27.) Also, the +12.7 test
jack vol tage is equal to wha te ve r
voltge is measured at the +12 test
jack plus 0.7 +/- 0.2 volts.

+5.1 +/- O.lV

+12B + 0.7(+/-0.2)V

+12.0 +/- O.lV

-3.0 +/- 0.25V

-5.0 +/ - O. 2V

Note

+12B

-5B

-3B

+12.7B

+5B

I-'-~-----'-~---'---'--------'-<

I Voltage I
I Test Jac k I Indica tion
1__- .. 1 .__._._. _

I
I
1

I
I
I
I
I
I
I
I1------_·_·_--
I
1

I
I
I
I
I
1

I
1

9-15



HP 3242lA Series III Power Supplies

9-23. BATTERY TEST. The battery test certifies that the backup
capability of the power supply is functioning normally. The sys­
tem must be halted before performing this test. Proceed as fol­
lows:

a. On rear panel of the power supply, momentarily press the BAT­
TERY TEST toggle switch. The CROWBAR/BATT. TEST indicator
should light and the BATTERY STATUS indicator should flash at
a 2-Hz rate. Allow the battery to discharge for three to
five min utes.

b. Return the power supply to normal operation by pressing the
RESET pushbuton on power supply front panel.

c. The BATTERY STATUS indicator flashes at a O.5-Hz rate until
the battery is fully charged. Then,the indicator remains con­
tinually lighted.

9-24. HP 30311A Adjustments

The following adjustments should be performed after replacing a
power supply or after replacing a circuit board or battery pack
within the power supply.

9-25. BATTERY (FLOAT) VOLTAGE ADJUSTMENT. Float voltage must be
adj usted whenever a battery pack is replaced.

I CAUTION I

The replacement battery pack must be at a
stable known ambient temperature before the
adjustment is performed. For a change in
ambient temperature, the settling time for
the pack is four to six hours. Failure to
observe this precaution may considerably de­
grade the backup time and/or shorten the life
of the battery pack.

Adjust the float voltage as follows:

a. Power down the system by placing the corresponding UPPER or
LOWER MEMORY DC POWER sw itch on the System Dc Control Panel
to STANDBY and place the corresponding HP 303llA Power Supply
power switch off (down).

b. Remove the power supply from the cabinet and place on a suit­
able s uppor t.

c. Remove the top cover from the power supply.

9-16



HP 32421A Series III Power Supplies

d. Connect a digital voltmeter between the +16.45V test point on
the control board (figure 9-4) and a common ground point on
the edge of the control board.

Note

Allow the digital voltmeter to warm-up before
taking any measurements.

e. Place control board switch Sl in position 1 (calibrate).

f. Power up the system and allow five minutes for power supply
circuits to stabilize.

g. Refer to table 9-4 and determine the float voltage setting.

h. Adjust potentiometer R35 on the control board (figure 9-4)
for the voltmeter indication determined in the previous
step. This assumes that the battery is almost fully charged.
If it is not, the voltmeter indication will be low and grad­
ually increase as the battery charges. A stable indication
must exist before R35 can be satisfactorily adjusted.

i. Set switch Sl to position 2 (normal).

j. ,Power down the system and disconnect the digital voltmeter.

k. Replace power supply top cover.

1. Install the power supply into the cabinet.

+1645V

°O-3V

123

G

OGND

e:P-5V

R35

OGND

o +5.00V
REF.

o
Rl39

D

COMPONENT SIDE

OGND

OGND

012V

O+5V

Figure 9-4. Control Board Adjustment Locations

9-17



HP 3242lA Series III Power Supplies

Table 9-4. Float Voltage Versus Temperature*

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

17.10
17.07
17.04
17.01
16.98
16.95
16.92
16.89
16.86
16.83
16.80
16.77
16. 74
16.71
16.68
16.65
16.62
16. 59
16. 56
16. 53
16. 50
16.47
16.44
16.41
16. 38
16.35
16.29
16.29

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

I
I
I
I
I1---..--------_·_--- ---.---- ---.----.-----.-.--

I *For seven-cell lead-acid battery
I ------------~-_.__._-_.__._._-_._---_._----

1-.------------T--------T~-~--·----I·-------

I Temperature I Float I Temperature I Float
I (0 degree C) I Voltage I (0 degree C) I Voltage
I I --_I ._. ~_I --.

16.26
16.23
16.20
16.17
16.14
16.11
16.08
16.05
16.02
16.09
15.96
15.93
15.90
15.87
15.84
15.81
15.78
15.75
15.72
15.69
15.66
15.63
15.60
15.57
15.54
15.51
15.48
15.45

9-26. +12 VOLT ADJUSTMENT. The +12-vo1t output of the power sup­
ply is adjusted as follows:

a. Connect a dig'! tal vol tmeter between the +12 and (common) test
jacks on the power supply front panel.

Note

Allow the digital voltmeter to warm-up before
taking any measurements.

9-18



HP 32421A Series III Power Supplies

b. Adjust the +12ADJ control located on the rear panel of the
power supply for a +12.0 (+/-0.1) V indication on the digital
voltmeter.

9-27. +5.00 VOLT INTERNAL REFERENCE ADJUSTMENT.
internal reference is adjusted as follows:

The +5. OO-vol t

a. Power down the system by placing the corresponding UPPER or
LOWER MEMORY DC POWER switch on the Dc Control Panel to
STANDBY and place the corresponding HP 30311A Power Supply
power switch off (down).

b. Remove the power supply from the cabinet and place on a suit­
able s uppor t •

c. Remove the top cover from the power supply.

d. Connect a digital voltmeter between the +5.00 volt internal
reference test point on the control board (figure 9-4) and a
common ground point on the control board.

Note

Allow the digital voltmenter to warm-up for
the recommended warm":'up per iod before ta k­
ing any measurements.

e. Power up the system and allow five minutes for power supply
circuits to stabilize. Measure the +5.00-volt internal ref­
erence voltage (+5.00 +/-O.OOSV).

f. If necessary, adjust R139 on the control board for a +5.00
+/-0.005V indication on the digital voltmeter.

tbte

If an adjustment was necessary, the BATTERY
(FLOAT) VOLTAGE adjustment procedure must
also be performed.

g. Power down the system and disconnect the digital voltmeter.

h. Replace power supply top cover.

i. Install the power supply into the cabinet.

9-28. Replacement Procedures

9-29. POWER SUPPLY REPLACEMENT. The power supply is replaced by
performing the following steps:

a. Power down the system by placing the corresponding UPPER or
LOWER MEMORY DC POWER sw itch on the System DC Control Panel
to STANDBY and place the corresponding HP 30311A Power Supply
power sw itch off (d own) •

9-19



HP 32421A Series III Power Supplies

b. Disconnect plugs P2, P3, and P4 on the rear panel of the pow­
er supply.

c. Remove four screws on the front of the cabinet securing the
power supply to the cabinet frame and the two screws on the
right rear of the power supply. Remove the power supply by
sliding it forward.

d. The power supply is installed using the reverse order of the
above procedure.

9-30. BATTERY PACK REPLACEMENT. To replace a battery pack in
the power supply, perform the follow ing steps:

a. Remove the power supply from the cabinet by performing steps
a through c of paragraph 9-29.

b. Remove the top cover from the power supply.

c. Disconnect jack J7 corning fram the battery pack.

d. Remove the battery pack cover plate.

e. Remove the battery pack by lifting it out.

Install a new battery pack by using the reverse order of the
above procedure. The battery float voltage adjustment which is
described in paragraph 9-25 must be performed anytime a battery
pack is replaced.

9-31. CONTROL PCA REPLACEMENT. The control board is replaced by
per form ing the follow ing s te ps :

a. Remove the power supply from the cabinet by performing steps
a through c of paragraph 9-29.

b. Remove two screws holding the control board to the metal
spacers on the top right side of the frame.

c. Disconnect plug P2 on the control board and disconnect the
control board from the motherboard. Lift out the control
board.

Note

The +5.00V internal reference voltage must
be checked and the battery float voltage
must be adj usted after replacing a control
board.

The control board is reassembled by using the reverse order of
the above procedure.

9-32. MOTHERBOARD PCA REPLACEMENT. To replace the motherboard
with its associated heat sink, perform the following steps:

9--20



HP 32421A Series III Power Supplies

a. Power down the system by placing the corresponding UPPER or
LOWER MEMORY DC POWER switch on the Dc Control Panel to
STANDBY and place the corresponding HP 30311A Power Supply
switch off (down).

b. Disconnect plugs P2, P3, P4, and P5 on the rear panel of the
power supply.

c. Remove the power supply from the cabinet.

d. Remove top and bottom covers from the power supply.

e. Free the motherboard by removing four screws, two from the
top and two from the bottom edges of the rear panel frame.

f. Disconnect plug P6 on the motherboard.

g. Slide the two boqrds out of the rear of the power supply
fr arne.

h. Remove the control board from Jl and the motherboard.

Note

Steps i and j should be performed when the
motherboard and heat sink are to be re­
placed.

i. Remove four screws holding the motherboard to the rear panel.

j. Remove four screws securing the heat sink to the rear panel.

The motherboard and heat sink are replaced by using the reverse
order of the above procedure. Power supply output voltages
should be checked after replacing the motherboard.

9-33. HP 30312A OPERATION

The HP 30312A Power Supply (figure 9-1) provides up to 100 am­
peres of 5-volt power for operation of the interface PCA's in the
I/O area of the computer. The power supply is an HP 62605M Power
Supply modified by adding a power switch, fuse, ac receptacle,
and a threshold adjustment circuit. The threshold adjustment
circuit is adjusted when the system is configured to provide
overcurrent shutdown of the HP 62605M Power Supply when the drain
on the power supply exceeds a predetermined amount by ten
amperes.

The following discussion covers only the items and circuits added
to the HP 6260SM Power Supply. The HP 62605M Power Supply is
described in Modular Power Supplies, Land M Series, Models
62605L, 62605M, and 62615M Manual, part no. 5950-1756. The Model
62605M is equipped with cption 106 which enables the power supply
to operate on 187 to 250 volts ac input power. 'I'he HP 303l2A
Power Supply provides 5-volt power over a current range nominally

9-21



HP 3242lA Series III Power Supplies

15 to 100 amperes. It augments the approximate 55-ampere, 5-volt
output of the HP 1303l0A Power Supply which powers the CPU/lOP, the
HP 303llA Power Supply, and portions of the computer I/O area.

Figure 9-5 illustrates the major functional areas of the HP
303l2A Power Supply, Interface Board, part no. 303l2-600J02. The
model 62605M Power Supply is also shown to illustrate the rela­
tionship between the power supply and the interface board. The
interface logic is required to properly sense and control the
62605M Power Supply with the existing HP 303l0A Power Supply sys­
tem dc control lines (DCE and PSU). Input power of 208/230 VAC
is applied to the power supply and interface board by POWER
switch S3 through the eight-ampere fuse. An internal power sup­
ply provides the operating potentials for the circuits including
the reference voltage (adjusted to 4.75 volts by potentiometer
R52) used by several functional circuits on the interface board.

9-34. Overcurrent Protection

The operating current configura tor monitors the +5V load on the
62605M Power Supply and is activated whenever the load increases
10 amperes above the normal load. When switch S2 is pressed, ADJ
potentiometer R32 is adjusted at the normal steady state current
level. When S2 is released, the threshold is automatically in­
cremented to sense a current 10 amperes above the nominal value
se t with R32. Tr ans ie nt ove rcur re nts exce ed ing the 10- ampere
margin cause the over current indicator (located above switch S2)
to light for the transient time interval. The two-second timer
prevents the power supply from shutting down when overloads are
less than two seconds long. When such overloads last longer than
two seconds, the two- second timer se ts the la tch (caus ing the
overcurrent indicator to light continually) and shuts down the
62605M Power Supply output by pulling the Al terminal control
voltage below its turn on value. The Cal/Test switch Sl and Cal
Adj potentiometer R26 are used at the factory to calibrate the
operating current configurator to the resistance of the high cur­
rent wires connected to the power supply. These controls are
normally not used in the field and should be left as they are.

9-35. Undervoltage Protection

The undervoltage detector, connected to the +S (+sense) terminal
of the power supply, sets the Power Supply Up (PSU) signal low
(IV) to the system whenever the output voltage at the load drops
below 4.6lV. The PSU signal is restored to the open circuit con­
dition whenever the output voltage at the load rises above 4.8lV.

9-36. Power Failures

An ac power failure sensed by the HP 30310A Power Supply causes a
Power Fail Warning (PFW) signal to be sent to the cpu. There­
fore, the HP 303l2A does not require a power failure de tector.
Maximum utilization of this detection capability can only be ob­
tained when the HP 30310A and HP 303l2A are supplied from the
same ac power source.

9-22



'"0
o
~
(1)
H

H
H
H

W
N
tC::lo
N
I-'
:J::.I

CJ)
(1)

H.....
(1)

en

::I:
'"0

(J)
C

I'tj
I'tj
I-'.....
(1)
en

VOLTAGE SENSE LEAUS

l
,-----------,

+

2. THIS CIRCUIT NOT USED IN THE
HP 3000 COMPUTER SYSTEM.

I I I

JOo

I G260SM

~ I J 4 - NO. 12 CONDUCTORS
--t-~-

J L;~u

I POWER

i ,
SUPPLY

~ ~r :r r
\

I

\ I

I 5V @ l00A

GP;1/4 - NO 12 CONO~CTORS NOTE 1..,..

I

J
-

I

\
I

I

I
II r:sl I

1
I <>--j

II +5 -

I

I ,"
ACC G~D ~1 II r ~C ~ v- I

..
I

I
+ltV -19V

[QRJ I
-- -----~ 1_

IPOWER I '---- --

+5V

IOFF I
-....

INDICATOR

SA

INTERNAL

-.J

-
POWER

I

AC
0--

~ ~o-
SUPPLY

ACC

1
---J

GRD

~ ~ I I
I I--, I

2081230

I
OPERATING

~
2 SEC r., LATCH ~

VAC

+4.7SV

...lIoJ CURRENT TIMER
PRECISION

±10%

REFERENCE CONFIGURATOR
IJ I

I
I

I 4 4 I f
I

I

I I ~

TURN-OFF

I

@ @

SYSTEM DC~
DELAY ..-

@

@] (0-1

-
10 15SECI

R26R51
CAL IADJ I 10AMP

~

REF
ADJ R32

INC/DEC

-
ADJNOTE 2

0-

.... OVER CURRENT

r I
Sl

INDICATOR

TTL INPUT - J
CAL/TEST

J

_T~~~ LEVEL ON/OFF ....

to - -

CONTROL I

PSU~ UNDER

•
-

VOLTAGE
L-..,. DETECTOR

I J

I'"%j.....
u:::l
C
H
(1)

\0
I

U1.
::I:
'"0

w
0
W
I-'
N
:J::.I

\0
I '"0

N 0
W ~

(1)

H

(J)
c
"0
"0
I-'
"<
tx1
I-'
0
()
~

tj.....
OJ

u:::l
H
OJ
S



HP 3242lA Series III Power Supplies

9-37. Dc Enable

The DeE signal is the same control line connected to the HP
30310A DCE terminal. It turns on (DCE at gnd) and turns off (DCE
approximately +lOV) the +5V output of the HP 303l2A. The inter­
face board receives the DCE signal and generates the appropriate
signal to the Al control terminal on the 62605M Power SUpply.
The interface board circuits delay the turnoff of the +5V line
after release of the DCE signal by about 0.15 second to allow
ample time for the HP 303l0A Power Supply to generate its PFW
signal for the cpu. This delay guarantees the +5V output will be
present for at least 1.0 msec after the CPU rece ives the PEW s ig­
nal.

9-38. HP 30312A SERVICING INFORMATION

WARNING

While the input power is connected, use
caution when working inside the power sup­
ply. Many exposed conductors carry low dc
voltages which are capable of supplying
heavy currents if shortcircuited, resulting
in high heat and the possibility of painful
burns. Use caution when manipulating metal
tools or probes. A wrist watch, or a metal
necklace, bracelet, or ring must not be
worn. Avoid dropping tools, screws, or
other metal objects onto conductors. Re­
move power and recover dropped obj ects at
once; if forgotten, damage could result
later. Ac power line voltage is exposed
when covers are removed. Exercise extreme
caution when working in the power supply
with covers removed, and never work under
this condition unless another person is
nearby and within sight.

The HP 303l2A Power Supply is a nonrepairable unit and, if found
defective, it must be replaced. Except for replacing an open
fuse or the interface board (30312-60002), no repair procedures
are required. If the computer system is down because the 5-volt
output of this power supply is absent, disconnect the wire at
terminal Al of the HP 62605M Power Supply. If power is restored,
the interface board is defective. If power is not restored, the
HP 62605M unit is defective.

9-24



HP 3242lA Series III Power Supplies

NOTES

9-25



HP"3242lA Series III Power Supplies

NOTES

9-26



HP 32435A SERIES III POWER SUPPLIES I~

This section contains servicing information for the HP 32435A
Series III power supplies.

10-1. INTRODUCTION

The HP 32435A Series III Computer System has a maximum of five
power supplies; four power supplies in the CPU Bay and, if the
optional I/O Bay is installed, one power supply in the I/O Bay.
The HP 62605M-P3l/P4l, HP 633l2F-P02, HP 633l2F-P09, and HP
6l3l5D-P07 Power Supplies are located in the CPU Bay as shown in
figures 1-4 and 1-5. A second HP 62605M-P3l/P4l is located in
the I/O Bay of 2-Bay models as shown in figure 1-5.

10-2. POWER SUPPLY TROUBLESHOOTING

The HP 32435A Series III Computer System power supplies ar.e all
controlled and monitored by the Power Supply Cbntrol and Display
Assembly located at the lower front of the CPU Bay as shown in
figures 1-4 and 1-5. The Power Supply Control and Display Assem­
bly (f igur e 10-1) conta ins twel ve tes t point s (i ncl uding a common
ground) and associated LED indicators that monitor all the system
DC vol tage s p r ovid ed by the p ower supplies. The te s t po i nts are
connected directly to the backplane voltages through a lK resis­
tor and can be used to measure any system DC voltage without en­
tering the rear of the equipment bay. The test point DC voltag­
es, associated power suppl ies, and purposes are 1 isted in table
10-1. It should be noted that the LED indicators located below
each test point do not "follow" the ir respective power supplies
and that their status (lighted or not lighted) has no meaning ex­
cept during a power supply failure. (Refer to the following text
and table 10-1 for additional information.)

In addition to the DC VOLTAGES test points and indicators, the
Power Supply Cbntrol and Display Assembly also contains three DC
STATUS indicators and two DC POWER switches located as shown in
figure 10-1. The functions of these indicators and switches are
listed in table 10-2.

If the DC POWER LOGIC switch is set to DISABLE, a power failure
is simulated so that the contents of memory will not be destroyed
and first the PFW indicator and then the PON indicator will no
longer be lighted. In addition, the DC VOLTAGES indicators will
be reset to their lighted status.

When the DC POWER switches are set to ENABLE, the PFW indicator
will light immediately if the system's inp~t AC power is within
specifications. After approximately one or two seconds, the PON
indicator will light if all the system's DC voltages are present.

10-1



HP 32435A Series III Power Supplies

If the PON indicator does not light, one or more of the DC volt­
ages has failed and the DC VOLTAGES indicator (s) that is lighted
indicates the DC voltage that has failed. (Use table 10-1 to de­
termine the power supply source.) If this occurs, all power sup­
plies except memory backup are shut down and their supply vol t­
ages are not available at the DC VOLTAGES test points.

If one or mor e of the DC vol tages fa il dur ing normal system cper­
ation, the PON indicator will no longer be lighted and the faulty
DC voltage(s) will be indicated by the lighted DC VOLTAGES indi­
cator(s). The PFW indicator will remain lighted.

tlGEJtlEJtJGtJGtlGtJ• • • • • • • • • • •+15 +12B +5 CPU +5B +5-V1 +5-V2 +5-V3 TEMP -58 -5 -15 GND

e=====::J DCVOLTAGES ~ _

•••BCHG PFW PON

DC STATUS

LOGIC

ENABLE.

DISABLE

MEMORY

ENABLE.

DISABLE

DC POWER

C)

Figure 10-1. Power Supply Control and Display Assembly

10- 1.



HP 32435A Series III Power Supplies

Table 10-1. DC Power Supply Specifications

I------------r-------------------T----------------r-----------------
I LED 1 Voltage Range 1 I Supplies DC
I and I . . . I Power Supply 1 Vol tage
I Test Point 1---------1---------1 Source 1 To
I 1 Min imum I Maximum 1 1
1 1 I I 1
-----_._~ ...._---- - .....-._- ........__ ... ---....._..-.-._- ~....--~--- ---_._-- .-.__ ... -- ....-.....-.....-...-,---

+15 +1.4.5V +16.5V HP' 63312F-P02 Card Cage 3-6
+12B +11.9V +12.lV HP 6l3l5D-P07 Card Cage 2-6

+5 CPU +5.17V +5.17V HP 62605M-P 31 Card Cage 1-2
+5B +5.0V +5.25V HP 6l3l5D-P07 Card Cage 2

+5-Vl +5.0V +5.25V HP 633l2F-P02 Card Cage 3
+5-V2* +5.0V +5.25V HP 633l2F-P 09 Card Cage 5
+5-V 3* +5.0V +5.25V HP 62605M-P 31 Card Cage 5-6

TEMP N/A N/A See Note See Note
-5B -5.0V -5.25V HP 6l3l5D-P 07 Card Cage 2-6

-5 -4.5V -5.5V HP 633l2F-P09 Card Cage 3-6
-15 -14.5V -15.5V HP 633l2F~P02 Card Cage 3-6

--------_.,--- ...._--_._---- ------.........- - .....-- ... -..-._- .......... -_.- - ............-_._--_.._-----.-
Note: The sense line for TEMP goes through a thermal switch in

the equipment cabinet fan panel to +5-V2 in Card Cage
No.4. High tempera tures open the thermal swi tch which
simulates a power failure. If +5-V2 fails, the +5-V2
and TEMP LED's may both be lighted. However, the TEMP
LED may remain lighted with the +5-V2 LED not lighted.

*On I-Bay Models +5-V3 is internally connected to +5-V2
and, if +5-V2 fails, one or both +5-V2 and +5-V3 LED's
will be lighted.

10-3. POWER SUPPLY ADJUSTMENTS

All HP 32435A Series III Computer System power supplies have vol­
tage and current limit adjustments located at the rear of each
power supply. The HP 633l2F~P02 and HP 62605M-P3l power supplies
are accessed by opening the rear door of the equipment bay(s).
The HP 633l2F-P09 and HP 6l3l5D-P07 power supplies are accessed
by opening the rear door of the equipment bay and then removing
the fan panel located at the bottom of the bay. The current lim­
it adjustments should never be attempted and voltage adjustments
should only be performed when a particular voltage is out of tol­
erance.



HP 32435A Series III Power Supplies

Table 10-2. DC STATUS/POWER Indicators and Switches

I----------T----------------------------------------------------
1 Indicator 1
1 or 1 Function
1 Switch 1

1 1 ----------------------------------- _

DC STATUS
BCHG

Indicator

DC STATUS
PFW

Indicator

DC STATUS
PON

Indica tor

When fUlly lighted, indicates that the system~s

battery is fully charged. When slowly blinking,
ind ica tes that the battery is charging. When rap­
idly blinking, indicates that the battery is dis­
charging. When not 1 ighted, indica tes that the
battery is completely discharged or that the bat­
tery is not installed in the system.

When lighted, indicates that the system~s input AC
power is within specifications. When not lighted,
indicates that the AC power has dropped below
specifications and that DC power from the power
supplies may begin to decay.

When lighted, indicates that AC power is applied
to the power supplies and that the power supplies
are operating properly. When not lighted, indi­
cates that one or more power supplies are not op­
erating properly or that the DC voltages from the
power supplies has begun to decay due to loss of
input AC power.

DC POWER
LOGIC

Switch

DC POWER
MEMORY
Switch

When set to DISABLE, removes DC power from all
PCA's except memory to permit removal and replace­
ment of the I/O and CPU PCA~s without destroying 1
the contents of memory. When set to ENABLE, ap- I
plies DC power to all PCA's except memory PCA's. I

I
When set to DISABLE, removes all DC power from alII
PCA's. When set to ENABLE, applies DC power to I
all PCA's provided that the LOGIC switch is also 1

se t to ENABLE. I

___________ --------------------------------------------- 1

10-4



HP 32435A Series III Power Supplies

I CAUTION I

Never attempt any current 1 imi t adj ustments in the
field. These limits are correctly set at the fac­
tory prior to the system's shipment and must never
be changed. Failure to observe this caution may
result in serious damage to the computer system.

The power supply output voltages should be checked from the Power
Supply Control and Display Assembly DC VOLTAGES test points after
the system is installed and during each scheduled preventive
maintenance interval. If any measured voltage is not within the
limits spe'cified in table 10-1, adjust the associated power sup­
ply to bring its output voltage within the specified limits. It
should be noted that the +15- and -IS-volt outputs of the HP
633l2F-P02 power supply are controlled by the same adjustment.
If either voltage is adjusted, then the other voltage must be
checked and possibly readjusted.

During any power supply adjustment, perform the adjustment slowly
to avoid an overvoltage condition that will shutdown the system.
If an overvoltage condition does occur, rotate the voltage ad­
justment counterclockwise a small amount, reset the system, and
slowly rotate the adjustment clockwise until the output voltage
is within its specified limits.

10-4. REPAIR AND REPlACEMENT

The HP 32435A Series III Computer System power supplies are non­
repairable units and, if found defective, must be replaced. Ex­
cept for replacing open fuses, no repair procedures are required.
All the power supplies are removed from the front of the equip­
ment bay(s) after first removing and labeling all wires attached
to the rear of the supplies.

I CAUTION I

Replacement power supplies may be shipped with a
strap on the terminal board for l20V operation.
This strap must be removed for 220V operation or
the power supply will be damaged when power is
first applied to the computer system.

Early models of the HP 32435A Series III Computer System contain
one or two HP 6260.5M-P31 power supplies; later models contain the
HP 62605M-P41 power supply. In countr ies where VDE Certification
is required, the HP 6260SM-P3l can only be replaced by another HP

1 fl- r;



HP 32435A Series III Power Supplies

62605M-P31or an HP 6260SM-P41. Elsewhere, the HP 62605M-P31 can
be replaced by another HP 62605M-P31, an HP 62605M-P41, or by an
HP 303l2A (Section IX). In order to replace an HP 62605M-P3l with
an HP 30312A, the ~ercurrent Adjust peA MOdule and associated
sheet metal atttached to the rear of the HP 30312A must first be
removed.

NOTES

10-6



SYSTEM INSTALLATIONI~

This section contains information for installing the HP 3000 Ser­
ies III Computer Systems and ensur ing that the systems are oper­
ating in accordance with factory specifications. It should be
noted that before a system can be installed, a site must be pre-
pared in accordance with the information contained in the appli~
able Computer System Site Preparation Manual and COmputer System
Site Planning Workbook. (For HP 32421A Series III Computer Sys­
tems, refer to the HP 3000 Computer System Site Preparation Man­
ual, part no. 30000-90082 and the HP 3000 Computer System Site
Planning WOrkbook, part no. 30000-90086. For HP 32435A Series
III Computer Systems, refer to the HP 3000 Computer System Site
Preparation Manual, part no. 30000-90145 and the HP 3000 Computer
System Site Planning Workbook, part no. 30000-90146.) It should
also be noted that site preparation is the responsibility of the
customer and not Hewlett-Packard's unless it has been negotiated
as a separate contract. For additioqal'installation information,
refer to the applicable HP 3000 Computer System Installation Man­
ual (part no. 30000-90081 for the HP 32421A Series III Computer
Systems and part no. 30000-90147 for the HP 32435A Series III
Computer Systems).

This section is divided into two parts. Part One (paragraphs
(11-1 through 11-10) contains information strictly for the HP
32421A Series III Computer System. Part Two (paragraphs 11-11
through 11-17) contains information strictly for the HP 32435A
Ser ies III Computer System.

PART ONE

HP 32421A SERIES III COMPUTER SYSTEM INSTALLATION

11-1. EQUIPMENT BAY INSTALLATION

WARNING

Do not attempt to slide or swing out any
equipment from the bays, or cabinets until
they are completely installed, the Anti-Tip
Base Extensions extended, and cabine t feet
lowered. Failure to comply may result in
serious injury or death and severe damage
to equipment.



System Installation

Before performing the installation instructions contained in
paragraphs 11-2 through 11-4, mechanically join the equipment
bays in accordance with the instructions contained in the HP 3000
Computer System Installation Manual, part no. 30000-90081. Then,
looking at the equipment bays from the rear, note that the Power
Control Module (PCM) is at the bottom of Bay No.1, the Power
Control Uni t (PCU) is at the bottom of Bay &:>. 2, and that a Pow­
er Distribution Unit (POD) is in each equipment bay except for
Bay No.1. (Refer to figures 1-2 and 1-3.) I t should be noted
that special order systems may consist of more than three equip­
ment bays.

11-2. Power Distribution Unit

Perform the following instructions for each PDU in the system.

a. Ensure that no system ac power cables are connected to any ac
power source and that the MAIN SYSTEM POWER circuit breaker
on the PCM, the EXTENDED SYSTEM POWER circuit breaker on the
PCU, and all ac power switches on power supplies are OFF.

b. Remove the access plate from each PDU.

c. Connect or check straps (0360-1571) between TBI terminals in
each PCU according to the cabinet in which the PCU is located
as listed in table 11-1 and shown in figure 11-1. The PDU
must be connected to the proper phase according to where the
cabinet is located in the system.

d. Connect the five-wire harnessed cable between the PCM in the
CPU Bay (Bay No.1) and the PDU in the I/O Bay, according to
table 11-2.

e. Connect PDU'5 in adjacent bays (if any) through the fi ve-w ire
harnessed cable(s) furnished, to join TBI terminals 1 to 1, 3
to 3, 5 to 5, 12 to 12, and Earth Bus Bar to Earth Bus Bar.
(See figure 11-1.)

f. Check the ac power service strip connections and phase
strapping to TBI of the PDU in the I/O bay as shown in figure
11-1 and tables 11-1 and 11-3. Check the ac power service
strips in the other bays (if applicable) in the same manner.

g. Leave the access plates for each PDU off and proceed to para­
graph 11-3.

11-2



System Installation

Table 11-1. PDU Strap Connections at 'I'B1

NA

NA

NA

1-2
S-6
9-10

NA

NA

NA

2,3,4

Not
Used

Not
Used

2

4,7,10

S,8,11

3,6,9

1---------------------------------------------------------------1
1 Ac Input Voltage
1-------------------------------------r-------------------------

12 0/2 08, 60 Hz 1 230, SO Hz
I-------------r-----------r----------- -------------r-----------

1 I
Bay Number I PDU TB1 I Phase Bay Number PDU TB1

(Counted From 1 Strap I Connected (Counted From Strap
Rea r I.e f t ) 1Con ne c t ionsiRea r I.e f t ) Co nne c t ion s1 1-----1-----

I 111SV , 208V

I I'------------- -----------,-----,----- ------------- -----------
2-3 '*' *4-S I B 'B,C
6-7 I ,
8-9 , I
9-10 I I

I I------------- -----------1-----'----- ------------- -----------
1-2 'C, Not
4-S 1 I Used
7-8 I ,
8-9 , I

10-11 I I
I ,

--.--'-----.---- --------'--- 1---'-- ----- ---.----.------- -----------

1-2 'A
3-4 ,
6-7 I
8-9 I
9-10 ,

I----'--------_. ---'--------,----- ---,-- ------------'- -----------
2-3 I B
4-S ,
6-7 ,
8-9 ,

10-11 I
I1-------·------- ---------,-- ----- ---'-,- ---.--'-------- ---'--'-'-----t

, *In 2-Bay Model Systems, the 220V service strip is not used I
I in cabinet 2. In 3-Bay MJde1 Systems, the 11SV service str ip I
, is not used in cab inet 2. I
I I
I NOTE: The 208V service strip in Bay NO. 1 is connected to I
I phases A and B in the PCM. I
, I



System Installation

POWER DtSTR.1UT1ON ""'T-----

Fl
201'

WHT·REO-G1tN

WHT·RED·YEL

'SEE NOTE 21

IHENOTE21

~~----

........"--,::.1
WHT"R" ~_ I

+---!!£~~-1--:I
I LINE -i 2»VOlT

1
r - ;;;;"-~ Sft:~~FI II r--...__ ....J

ILK I I
------, I I
-!'!!!.. ' J I

I I
I I

Ltl~_..,--.,
-!"!..... _ _ _ _ _ -4 ..!!!U~~ ~~~g I

, rE,2T!L, -t.1T1l1' 'REFIJ

I ..TNOn31

I I I
I I

: J!!!tYli----iJ iI _G!!!tY-U_ __J

I,
I L __ .J.N2.,.5,!!!SJ!.R!!.!E.ll_ }

I L ..J.N2;.4.!!!S~!L __
I L lNO. 3 IUS. ORNI ~:~~E'DUI ----------- - IN NE)(f lAYI L -!N.2;.~~E..!!L__ _ (WHENUSEDI

L.. -!N.2;.'.!.US.:.!L!.L __

NO.5 IUS GRN·YEL

NO. 2 IUS RED

NO.1 ius ILK

NO. 3 IUS ORN

NO.• IUS WHT

CAIU TO
II'CM OR
ANOTHER'OU

NOTES:

1. ALL BUS WIRES ARE AWG 10; ALL OTHERS ARE AWG 12.

2. THESE THREE LINES REPRESENT SYSTEM OPTION 015
STRAPPING CONNECTIONS. SEE "PDU STRAPPING"
TABLE 2·1 FOR OTHER OPTIONS

3. USED ONLY IN PERIPHERAL BAYS

Figure 11-1. PDD Schematic Diagram

11-4



System Installation

Table 11-2. PDU to PCM Connections

1-------------1------------T------------1
I wi re Color 1 PDU at TB 1 I PCN at TB 3 I

I I I I1-------------1------------1------------1
I Black I 1 I 6 I
I Red I 3 I 7 I
I Orange 1 5 I 8 I

I Wh i te I 12 I 9 I
IGreen-Yellow I Earth Bus I Earth Bus I
1 I I I

Table 11-3. PDU Ac Service Str ip Wi ring

---------------r------------r------------------
Service Str ip

Identity Wire Color PCU Terminal

11SV

230V
(CCE-22)

11-3. Power Control Unit

Black
White

Green-Yellow

Brown
Blue

Green-Yellow

TB 1 Term inal 8
TBl Term inal 12

Ear th Bus-Bar

TBl Term inal 9
TBl Term inal 6

Ear th Bus-Bar

If the system does not contain a PCU, proceed to paragraph 11-4.
Otherwise, perform the following instructions.

a. Remove the large and small panels (seen from the rear of the
cabinets) from the PCU. Save all hardware.

b. Verify that jumpers have been installed correctly on TBI as
listed within figure 11-2.

c. Have an electrician perform this step. Connect primary ac
power cable wires to the PCU line filter terminals as shown
in figure 11-3. Then, replace the panels removed in step a.

d. Remove all ac power plugs from all ac power service strips in
the equipment bays.

e. Use the PCu-to-PCU/PCM Interconnecting Cable furnished with
each PCU to connect Jl of the PCU to J 2 of the PCM in the CPU
Bay (par a 11-4). Figure 11-4 shows the wir ing of the cable.

f. Leave the access plates off and proceed to paragraph 11-4.

11-5



tJ)

'<en
rT
CD
:3

NOTES

I INl'UT TERM'NAlSON fLl ARE _RED. AND TAILE
A IS GIVEN,FOR REFERENCE ONl Y I'OMR INl'UT
CONNECTIONS ARE TO IE MADE '10 ACCORDANCE WITH
INSTRUCTIONS IN THE CA_T _AL

Z TERMINAL ILOCK STR.....'NG 'S NOT SHOWN. STR.....,NG
CONNECTIONS ARE I'£R TAIU I

3 TERMINATING 'lUG'ZoeTA,NED FROM JZOF I'CMOR
NEIGHIORING I'CU

• 'ZOF 'NTERCONN£CTlNGCAIU MAUSWITHJ20F I'CM
OR NEIGHIORING I'CU .

S WIRES A. C. S. AND TARE 'ART OF CII W'RES A AND T
ARE SPLICED

I FltS£S F lTHRU FI ARE RATED:IOA

, ails RATED _ IY MANUFACTURER ,"S DE RATED
TO'" FOR THIS .....LICATIQN

......
::J
en
rT
OJ
I-'
I-'
OJ
rT.....
o
::J

TAIU A I'OW£R 'Nl'UT CONNECTIONS

TERMtNAl '2OI201V. Z_
3'",IO"Z 1'",50"1

1 PHASE. A ""ASE A

2 I'HASfI ...a CONN

I'HASE C NEuTRAL

NEUTRAL NO CONN

EAlIIITH EARTH--
""'ILE I STR.....,NG CONNECTIONS

n""fNAl '20'2OIV. ~

ILOCK 3'H.IOHZ '"".50HZ

Til I Z 2 ]

TI' • S 3 •

Til I , ,. I

Til , '0 1-'

----
1:/O,201v nov

J3 3PH 60HZ 1~ !tOHl

A } { 'HASf A 'HASf A
I OtSC 'HASE I 'HASf A

DflIVE
C lOWER ""ASf C 'HASf A

D O"EN NEUTRAL

Ia}liS VOLT {'HASE C ''''''' O"£N
CONVENIENCE

F AEal'TACLE NEUTRAL O"£N

G EARTH IUS EARTH EARTH

~
: } { ""ASf A 'HASf A
I OtSC ""ASE I 'HASE A

Dfl'VE
C lOWER 'HASE C ,,"ASf A

D O"EN NEUTRA~

E liS VOLT 'HASE C ''''''' O"EN
CONVEN'ENCE

F } RECEI'TACLE {NEUTRAL O"EN

~ EARTH IUS EARTH EAPTH

~

1 -2

1 -2

1 .... 2- .,!3

1 wr2 !.

1..
1-2 ..

'.!:M

I "2 !.2

1 - 2

CI1
40A

(SEt NOTE 7)

I •

HP _I'OMA CONTAOL U...N_'T.'I'C..-;UI _I--
I
I

L ~
.. ,EARTH

I IUSIAR

... I L-_--i TOG·LINEi 'LOCAU...ro~RVICE STRII'S

V ~ ~W~,,=NT I'OU 'N NEllT lAY

--

\-,
1

-~I~~
Ltt~

h0
~ ,
2

FAOMJ2OF 3 •
I'CMOR
PREV'OUS I'CU •
ISH NOTE.,

S

I

""IJ.....
1.0
s::
t'1
(l)

J--I
J--I
I

N.
tU

J--I n
J--I c:
I

O"t (J)
()
::r
(l)
S
OJ
rT.....
()

t:l.....
OJ

1.0
t'1
OJ
S



System Installation

TERMINAL 5

PHASE 8

PHASE C

TERMINAL 3 -++-...-1+1'1

TERMINAL 2

A. 120/208V, 3ph, 60·Hz

TERMINAL 4

PHASE A

TERMINAL 1
.......--+-~-

NfUT

EARTH

B. 230V, l·ph, 50-Hz
(System Option 015)

PHASE A

STRAPPING PCM
CONFIGURATION TERMINAL VOLTAGE

208 V between each phase
120/208-volt 120V between each phase

and neutral

230-volt
230V between phase A
and neutral

CONDUIT
ACCESS HOLE

INPUT
TERMINALS
LOCATION

Fi gu r e 11-3 • PCU/PCM Line Fi1te r Connections

P2

WHT

WHT-BRN

WHT-BLK

(LAMP RETURN)

(COMMON)

(24 VDC SWITCHED)

Pl

Figure 11.... 4. PCU To PCU/PCM Interconnecting Cable

11-7



System Installation

11-4. Power Control Module

Perform the following instructions for the peM.

a. Remove the large and small panels (seen from the rear of the
CPU Bay) from the PCM. Save all hardware.

b. Verify that jumpers have been correctly installed on TBI and
TB2 as listed within figure 11-5.

c. Have an electrician perform this step. Connect primary ac
power cable wires to the PCM line filter terminals as shown
within figure 11-3.

d. Remove all ac power plugs from all ac power service strips in
the equipment bays.

e. Have an electrician perform this step. Be sure the ac power
at the Computer Mainframe Power Panel 'and PCM MAIN SYSTEM
POWER and PCU EXTENDED SYSTEM POWER circuit breakers are
turned OFF. Then, connect the other end of the primary ac
power cable wired in step c to the isolation transformer.
Then, turn ON the Computer Mainframe Power Panel main line.

f. Use a suitable voltmeter to check voltages at each of the PCM
line filter terminals for correct value as listed within fig­
ure 11-3.

g. Use a vol tmeter to check the vol tage between ground and neu­
tral. Voltage should not exceed I VAC (rros). Use an oscil­
loscope to check the ripple content of the waveform between
ground and neutral (must not exceed 25 mv p-p).

h. Check that the EMERGENCY OFF pushbutton at the top front of
the CPU Bay is lighted. If it is not, press it once. If it
fails to light, an error exists in that circuit. Do not
proceed further until the error has been corrected and the
pushbutton will light.

i. After confirming that the EMERGENCY OFF lamp lights, set the
PCM MAIN SYSTEM POw~R circuit breaker ON. Then, check the ac
power voltages at the ac power service strips throughout the
cabinets as shown in figure 11-1. If the voltages are in­
correct, set the PCM MAIN SYSTEM POWER and Computer Mainframe
Power Panel circuit breakers OFF and check the ac power ser­
vice strip within the PDU against table 11-3. If any errors
are found, correct them.

j. Set the PCM MAIN SYSTEM POWER circuit breaker to OFF and re­
place the access covers on all PDU's.

k. Connect all fans, card cages, and other devices in the cab­
inets into the appropriate ac power service strips and set
the PCM MAIN SYSTEM POWER circuit breaker to ON. Check that
all fans in the system operate.

11-8



System Installation

1. Press and release the EMERGENCY OFF pushbutton and check for
thre e re s ul ts :

(I) The pushbutton lamp goes out.

(2) All fans in the card cages, cabinets, and other devices
stop.

(3) All circuit breaker handles on the PCM and, if present,
all PCU's, move to the OFF (down) position.

m. Set the circuit breaker in the Computer Mainframe Power Panel
to OFF. Set the circuit breaker in the Computer Peripheral
Equipment Power Panel to OFF.

n. If step 1 is completed successfully, continue this procedure.
Otherwise, go no further until the fault is corrected.

o. Continue installation by connecting the interrupt poll, data
poll, MCU clock signal distribution, and flat cables as des­
cribed in paragraphs 11-5 through 11-6. Then, continue by
retur n in g to s te p p.

p.' Do not turn ON the Computer Mainframe Power Panel or the Com­
puter Peripheral Equipment Power Panel ac power until in­
structed to do so in paragraph 11-8.

q. Leave all equipment bay rear doors off.

11-5. Bus Cable Connections

If the system was shipped with the equipment bays separated,
three flat cables for the lOP bus, Multiplexer Channel bus, and
Power Bus must be connected between the equipment bays. Step-by­
step instructions for installing the bus cables are contained in
the HP 3000 Computer E¥stem Installation Manual, part no. 30000-
90081.

11-6. Interrupt Poll, Data Poll, and MCU Clock Connections

If the system was shipped with the equiment bays separated, the
interrupt poll cable (one white and one blue twisted-pair cable),
Multiplexer Channel data poll cable (one white and one orange
twisted-pair cable), and MCU clock cable (gray coaxial cable)
must be connected between the equipment bays. Step-by-step in­
structions including cabling diagrams for installing these cables
are contained in the HP 3000 Computer System Installation Manual,
part no. 30000-90081.

ll-Q



System Installation

I
I

+----+. +--~

I
I
I
I
I
I
I___ ...J

• z
l~... ---t> 5i?
2=:

•

--, . ~i2
i \1Va

I ;:~~

I O~~ ,v~

~la

I po::
ija :~~

~a li t ~~~ ~~ 0: .. !~
~g~~ ~~ ii~ :h
2~:g i! !~~

;;
:~ ~~

!!2~
"'~ ~~g !~

lill
~= coa

~!
~~ ~~~j

";0

u~ :~

!~
~!~ :~ ~iao:

;8 !~
~Ei~~:; .c

~ -

1-r---------,

I
I

I
I

L ~~~
--~

Figure 11-5. PCM Schematic Diagram

11-10



System Installation

11-7. PERIPHERAL DEVICE INSTALLATION

Installation instructions for peripheral devices that are part of
a s·tandard computer system are contained in the HP 3000 Computer
System Installation Manual, part no. 30000-90081. Installation
instructions for non-standard peripheral devices are contained in
separate instruction manuals specifically for each device.

11-8. NEW INSTALLATION TURN-ON

~ turn-on a newly installed system for the first time, perform
the following steps.

a. Set all power switches OFF on each HP 303l0A, HP 30 3llA, and
HP 303l2A Power Supply in the system. All HP 303l0A Power
Supplies are at the rear of an equipment bay; all others are
behind a front door of an equipment bay.

b. Set the Computer Main Frame Power Panel circuit breaker to
ON.

c. At the rear of an equipment bay, set the PCM MAIN SYSTEM
POWER and CPU EXTENDED SYSTEM POWER circuit breakers to ON.
Then, check for the following conditions:

(1) All fans in card cages and equipment bays or cabinets
are blowing.

(2) At the upper-right corner of the CPU Bay, the EMERGENCY
OFF pushbutton is lighted.

Note

If the EMERGENCY OFF pushbutton is not
lighted or any fan is not blowing, cor­
rect the error before going any further
in this procedure. Refer to paragr aphs
11-2 through 11-4.

d. Behind the front door of the CPU Bay, set Dc Control Panel
toggle switches to ON in the following order. (See figure
9-1. )
(1) LOWER MEMORY DC POWER

(2) UPPER MEMORY DC POWER

(3) SYSTEM DC POWER.

e. On the inside of the front door at the top, set two toggle
switches; PANEL to ENBL (enable) and PF/ARS (Power Fail/
Automatic Restart) to ENBL (enable).

11-11



System Installation

f. At the rear of equipment bays, set the power switch to ON on
each HP 303l0A Power Supply.

g. Behind the front door of equipment bays, set the power switch
to ON on each HP 303l2A Power Supply; then, do so on each HP
303llA Power Supply.

h. Check the BA'I'TERY STATUS lamps for the follow ing ind ica tions :

(1) The battery is charging; the lamp blinks at about a
o• 5-H z rate.

(2) 'rhe battery indica ted is not needed, is absent, or a~

error condition exists; the lamp is not lighted.

(3) After the system has been ON for a while, the battery
should become fully charged; the lamp remains lighted.

i. Close the fr on t door of equipment Bay No.1 and check the pan­
el at the top front. Two BATTERY STATUS lamps indicate the
same condi tions as those behind the door, and the EMERGENCY
OFF pushbutton is lighted.

11-9. SYSTEM VOLTAGE ADJUSTMENTS

Note

The voltage measurements made in the fol­
lowing instructions must be made in refer­
ence to the appropriate common circuit.
The common circuits specified in the fol­
lowing instructions are labeled COM and
the common symbol. For all measurements,
use an HP 3439A Digital Voltmeter with an
HP 344lA Range Selector ~r their equiva-
lents) •

Perform the system voltage checks and adjustments as follows:

a. Allow at least 15 minutes warm-up time, preferably with the
CPU in the RU N sta te. (The RUN lamp is ligh ted.)

b. Check the control panel at the top front of the full length
door on the CPU Bay. If the RUN lamp is 1 igh ted, press the
top of the RUN/HALT switch to turn-off the RUN lamp.

c. Behind the front door of equipment bays, look for the small
panel of an HP 303l2A Power Supply (figure 9-1). For each HP
303l2A Power Supply in the system, perform these steps:

\

(1) Set the ADJ R32 potentiometer fully clockw ise.

(2) Press and hold toggle switch -S2 and turnADJ R32 count­
erclockwise until the LED in the upper-right corner of

11-12



System Installation

the HP 30312A panel lights to indicate "overcurrent".

(3) Release toggle switch S2 and check that the overcurrent
LED goes out and a 5V LED 1 ight s.

d. Open the rear door of equiment Bay No.1, remove the screw(s)
at the left edge of the'HP 30310A Power Supply (figure 9-1)
and swing that Power Supply out of the bay~

e. At the top of the HP 30310A Power Supply, turn R12 fully
clockwise.

f. Connect the digital voltmeter between the +5VDC connector
(BNC type) center conductor and a COM terminal lug on the
back plane of the CPU card cage.

Note

Do not connect the digital voltmeter com­
mon lead to chassis ground. Failure to
comply will produce erroneous and possible
destructive results.

g. Use a small tip screwdriver to reach through the top of ,the
HP 30310A Power ,Supply to ad just AlRl unt il the d igi tal vol t-
meter displays +5.17 volts.

h. Leave the digital voltmeter common lead where it is, but move
input lead to the +15, -5, and -15 test jacks on the HP
30310A rear panel. The voltmeter should display a value be­
tween 14.2 and 16.7 for either the +15 or -15 test jacks, and
between 4.4 and 5.7 for the -5 test jack.

i. Move the voltmeter input lead to the +20 test jack on the lIP
30310A panel. Then, use a small tip screwdriver to reach
through the top of the HP 30310A Powe r Supply to se t A3R2
fully clockwise and leave at this setting. The voltmeter
should display a val ue be tween 16.8 and 18.0 vol ts.

j. Move the voltmeter input lead to the -20 test jack. The same
value (but opposite polarity) noted in step i should be dis­
played.

k. Repeat steps d through j for each HP 30310A Power SUpply in
the sys tern.

1. Move the voltmeter to the front of the equipment bays.

m. Connect the voltmeter common or return lead to the cammon
symbol jack on the fr ont panel of the HP 30311A Power Supply
in the CPU Bay (figure 9-1).

11-13



System Installation

n. Connect the input lead of the vol tmeter to each of the test
jacks on the HP 30311A Power Supply front panel and compare
the value displayed against table 11-4.

o. If all the values displayed are out- of tolerance, proceed no
further until the +5.00V Internal Reference Adjustment pro-
cedure described in the HP 3000 Series II/III Computer System
S~rvice Manual part no. 30000-90018 has been performed on
your HP 3031lA Power Supply.

p. Repeat steps m through 0 for each HP 303llA Power Supply in
the s ys tern.

Table 11-4. HP 3031lA Test Jack Voltages

-----------1-----------------------
Test Jack I Value Required

1
I-----------1-----------------------

+5B I +5.1: +/- 0.1
+l2B I +12 • 0: +/ - O. 1
+12.7B Ivalue of + 12 test jack

I +0.7(+/- 0.2}
- 3B 1 - 3 • 0: +/ - O. 25
- 5B 1 - 5. 0: +/ - O. 2

I
---~-~~-~~- --~~~-~~--~-~~-------~-

11-10. SYSTEM VERIFICATION

To verify that the system operates correctly, turn on all periph­
eral devices and connect them on-line. Then, use the QA Verifi­
cation Tape to exercise the system's System Verification Process.
Also run the appropriate diagnostics in accordance with the in­
structions contained in the HP 3000 Series II/III Computer System
Service Manual, part no. 30000-90018. Next, perform the MPE/3000
Cold-Start Procedure in accordance with the instructions con­
tained in the HP 3000 Computer System Operator's Guide, part no.
32000- 90 013.

11-14



System Installation

PART TWO
HP 32435A SERIES III COMPUTER SYSTEM INSTALLATION

WARNING

Prior to performing any installation procedures,
ensure that the three Power Control Module cir­
cuit breakers (located at bottom rear of the CPU
Bay) are set to their OFF positions and that the
main power cable is not connected to the power
source. Failure to comply may result in serious
injury or death and severe damage to equipment.

11-11. EQUIPMENT BAY INSTALLATION

The system equipment bay(s) are completely assembled and tested
at the factory prior to shipment. If the system to be installed
is a 2-bay model (Option 200), the two equipment bays must first
be mechanically and electrically connected in accordance with the
instructions contained in the HP 3000 Computer System Installa­
tion Manual, part no. 30000-90147. Once this is accomplished or
if the system to be installed is a I-bay model, simply position
the bay(s) as desired, extend and lock the anti-tip base exten-
sion legs in place, and lower the equipment bay feet located at
the end of the extension legs and at the rear of the bay(s).

11-12. Isolation Transformer Strapping

The computer system is shipped from the factory with its isola­
tion transformer pre-strapped for 208 VAC to GO-Hz sites and for
230 VAC to 50-Hz sites. However, to ensure proper system opera­
tion, check and, if necessary, restrap the isolation transformer
as follows:

a. Using a voltmeter, measure the actual steady-state voltage at
the AC receptacle that has been installed to provide power to
the computer system.

b. Refer to table 11-5 and check that the measured steady-state
voltage is within the limits specified for the rated voltage
the customer contracted for during his computer site prepara­
tion. If the voltage is within the limits specified in table
11-5, proceed to step c. If the voltage is not within the
limits specified for the contracted rated voltage, the com­
puter site has not been properly prepared. Do not proceed
with the system installation until the site has been properly
wired in accordance with the inst,r uctions conta ined in the HP
3000 Computer System Site Preparation Manual, part no. 30000­
90145.

c. As viewed from the front, remove the CPU equipment bay right­
side panel.

11-15



Rated
Vol tage

System Installation

Table 11-5. Primary Power Voltage Tolerances

---------------r---------------------------------
I Acceptable Steady-State Voltage
1I-----------------r---------------
1 From 1 To
1 1---------------1-----------------1---------------

200 1 180.0 1 208.0
208 ·1 187.2 I 216.32
220 I 198.0 I 228.8
230 I 207.0 1 239.2
240 I 216.0 I 249.6

1 I

Note: In general, peripherals not receiving
power via the CPU bay Power Control Mod­
ule require a steady-state line voltage
from 10 3 • 5V to 119. 6V for 60- Hz sitesand
from 207.0V to 239.2V for 50-Hz sites.
However, various power options are avail­
able for most HP peripherals. Regardless
of the peripheral power option ordered,
the available steady-state voltage must
be within the limits of +4/-10 percent of
the rated vol tage.

d. Remove the isolation transformer primary side cover plate
shown in figure 11-6.

WARNING

Ensure that all Power ·Control ~dule circuit
breakers are set their OFF positions and that
the main power cable is not connected to the
power source. Failure to comply may resul t
in serious injury or death.

e. Using figure 11-6 as a guide, check that the isolation trans­
former is correctly strapped for the primary power rated vol­
tage available at the site. If necessary, restrap the isola­
tion transformer for the available RATED voltage (not the
actual STEADY-STATE voltage measured in step a) •

The isolation transformer must always be strapped for the
available RATED voltage and not for the actual STEADY-STATE
voltage measured in step a. For example, if the site RATED
vol tage is 208 VAC ana the measured STEADY-STATE vol tage is
216 VAC, strap the isolation transformer for the RATED volt­
age of 208 VAC even though the STEADY-STATE voltage of 216
VAC seems to indicate strapping for 220 VAC. Thecornputer
site must be wired to provide a RATED primary power source

11-16



System Installation

GROUND
LUG

PRIMARY
SIDE COVER

PLATE

ADDITIONAL STRAPPING OPTIONS

ISOLATION TRANSFORMER

(VIEWED FROM RIGHT SIDE OF
ELECTRONIC MAINFRAME. ACCESS
PANEL REMOVED FOR CLARITY:
TYPICAL 208 VOLT STRAPPING EXAMPLE)

WIRE WIRE
VOLTAGE BLACK JUMPER RED

200V PIN 1 PIN 2 PIN 5 PIN 6

208V PIN 1 PIN 3 PIN 5 PIN 6

220V PIN 1 PIN 3 PIN 5 PIN 7

230V PIN 1 PIN 4 PIN 5 PIN 7

240V PIN 1 PIN 4 PIN 5 PIN 8

Figure 11-6. Isola tion Tr ansformer Strapping Otions

that meets the voltage requirements of table 11-5 and the
isolation transformer must always be strapped for the RATED
vol tage.

f. Ensure that all terminal block connections are tight and that
no loose strands of wire are protruding from the terminal
block.

11-17



System Installation

g. Ensure that infinite resistance (open circuit) exists between
all terminal block connections and the ground lug shown in
figure 11-6.

h. If necessary, reconfigure the Power Control Module input VAC
rating plates located under the main circuit breaker to re­
flect the current isolation transformer strapping.

i. Replace the isolation transformer primary side cover plate
and the equipment bay right-side panel.

11-13. Cable Connections

Step-by-step equipment bay(s) cable connection instructions are
contained in the HP 3000 Computer System Installation Manual,
part no. 30000-90147.

11-14. PERIPHERAL DEVICE INSTALLATION

Installation instructions for peripheral devices that are part of
a standard computer system are contained in the HP 3000 Computer
System Installation Manual, part no. 30000-90147. Installation
instructions for all other peripheral devices must be obtained
from the individual instruction manuals supplied with the de­
vices.

11-15. NEW INSTALLATION TURN-ON

Do not attempt to turn-on a newly installed system until the iso­
lation transformer has been properly strapped, all cableconnec­
tions completed, all per ipheral . devices installed, and the I/O
system properly configured in accordance with the instructions
contained in the HP 3000 Compute r Sys tern Installa tion Manual,
part no. 30000-90147. After this has been accomplished, perform
the following steps to turn-on the system for the first time.

a. Se t the Power Control and Display Panel DC POWER LOGI C and
MEMORY sw itches to DISABLE. (The Power Control and Display
Panel is loca ted at the bot tom fr ont of the CPU equipment
bay. )

b. Ensure that the Power Cbntrol Mbdule MAIN POWER, INTERNAL
POWER, and SWITCHED 120V OUTLETS circuit breakers are still
set to their OFF positions and connect the main power cable
to the customer-furnished AC power source.

c. Set the MAIN POWER circuit breaker to its ON position and
then set the INTERNAL POWER circuit breaker to its ON posi­
tion. (The SWITCHED l20V OUTLETS circuit breaker can be set
to its ON position at this time if desired although it is not
necessary until power is required for the two associated AC
power receptacles loca ted on the Power Control Module. (The
two standard AC receptacles are for the system mag tape unit
and disc dr ive .)

11-18



System Installation

d. Set the Power Control and Display Panel DC POWER LOGIC and
MEMORY switches to ENABLE.

e. Check that all Power Control and Display Panel DC VOLTAGES
and DC STATUS ind ica tor s are lighted. (The BCHG ind ica tor may
be slowly flashing to indicate that the battery pack is being
charged. When the batteries are fully charged, the BCHG in­
dicator will stop flashing and remain lighted.) If all the
indicators are not lighted, refer to Section X to determine
the problem.

f. Open the front door of the CPU equipment bay and, at the top,
set the PANEL and PF/ARS (Power Fail/Automatic Restart) tog­
gle sw itche s to ENBL.

11-16. SYSTEM VOLTAGE CHECKS

Prior to performing any system verification procedures, allow the
system to warm-up for approximately 15 minutes and then check
that all the Power Control and Display Panel DC VOLTAGES are
within the tolerances specified in table 11-6. Use the Power Con­
trol and Display Panel voltage and common ground test points to
measure the system vol tages. If any measured vol tage is not
wi thin the lim its specified in table 11-6, adj ust the appropr iate
power supply in accordance with the instructions contained in
Section X.

Table 11-6. System DC Vol tage Tolerances

1------------1-------------------1
I 1 Voltage Tolerance
I Test Point I
1 DC Voltage ---------r---------
1 Min I Max
I I----+1'5----- --+14:-5-- --:;:I'6:5--

+12B +11.9 +12.1
+5 CPU +5.17 +5.17
+5B +5.0 +5.25
+5 VI +5.0 +5.25
+5 V2 +5.0 +5.25
+5 V3 +5.0 +5.25
-5B -5.0 -5.25
-5 -4.5 -5.5
-15 -14.5 -15.5

....'....,.-'... '....~'....._-- ----------------- -- -- ---

11-11. SYSTEM VERIFICATION

To verify that the system operates correctly, proceed as follows:

a.' Run the system microdiagnostics in accordance with the
instructions contained in the HP 3000 Computer S¥stem
Installation Manual, part no. 30000-90147.



System Installation

b. Cold load SLEUTH from the magnetic tape unit and run the I/O
Configuration Test using the SLEUTH CONF (configure) command
in accordance with the instructions contained in Stand-Alone
SLEUTH Diagnostic Manual, part no. 03000-90123.

c. Run all applicable stand-alone diagnostics in accordance with
the instructions contained in the individual diagnostic
manuals supplied with the system.

NOTES

11-20





Manual Part No. 30000-90143
Printed in U.S.A. 6/79


	Preface
	Contents
	Section I - Introduction
	Section II - System/CPU Overview
	Section III - System Verification and Troubleshooting
	Section IV - Machine Instructions and Stack Operations
	Section V - System Microcode
	Section VI - Module Control Unit/Main Memory Overview
	Section VII - I/O System
	Section IX - HP 32421A Series III Power Supplies
	Section X - HP 32435A Series III Power Supplies
	Section XI - System Installation

