.Iummjr

HEWLETT' ﬁl PACKARD

HP 3000 SERIES III
COMPUTER SYSTEM

REFERENCE/TRAINING MANUAL |

Manual Part No 30000 90143

Printed in U.S.A. 6/79

Fon

HEWLETT-PACKARD COMPANY
5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95060

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied or reproduced without the prior written consent of
Hewlett-Packard Company.

Copyright ©1979 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition. Within
the manual, any page changed since the last edition is indicated by printing the date the changes were made on the bottom
of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears as a
prior update.

All pages in this manual are original issue.

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition

are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

First Edition. Jun 1979

PREFACE

This manual contains hardware-oriented reference information for
the HP 3000 Series III Computer Systems. Specifically, this man-
ual contains reference reading material for all persons that are
to attend Hewlett—Packard’s 3000 Series III Computer System Hard-
ware Training Cour ses. Since the information contained in this
manual 1is approximately the same as that presented during class-
room lectures, this manual should be used for classroom refer-
ence, ncte taking purposes, and post schocl reference.

The HP 3000 Series III Computer Systems are divided into two pro-
duct lines; the HP 32421A Series III and the HP 32435A Series
III. Unless otherwise stated, the content of this manual applies
equally to both product lines.

CONTENTS

SECTION I - INTRODUCTION
Paragraph

SYSTEM FEATURES
Stack Architecture

® © 9 0 0 ¢ 0 O 0O 00 PP L OO OGN 0 C OO L 00 L LRSI OEEEL OGO

© 0 © 00 00 00 0 0 00 00 0 0 0SB L0000 0O eSS0 e 0o

Microprogrammed OperatiONS ..e.eeeeceesccecscscsssssccncnns

Data Base Management Facilities
Five Programming Languages

Virtual Memory

® 0 00 0 ° 00 00 00 00000000000

® © 00600 00 00 0 00 00 0000000000000

Fault COntrol MEMOIY .seeeccccecsescccssssesossssssssscsscs

Concurrent I/0 and CPU

Reentrant Code and Private Data

Operations ..eecececccscessccccsese

e 0 0 0 0 0 00 20 00 000000

Operating System ® 6 6 0 0 06 0 00000 069 00600060 00000 0002000000000

HARDWARE FEATURES
SOFTWARE FEATURES
SYSTEM CONFIGURATIONS ...

© 6 6 0606 006 00 000 000 00 0000000 e

SECTION I1 - SYSTEM/CPU OVERVIEW

Paragraph

HARDWARE ORGANIZATION ...
Bus System ..eeeecceee
CTL BUS ® ® o 0 0 0 0 0 00

IOP BUS ® e 0 00000000

SELECTOR CHANNEL BUS

PORT CONTROLLER BUS
MULTIPLEXER CHANNEL
POWER BUS

MAIN MEMORY
MULTIPLEXER CHANNEL

PORT CONTROLLER/SELECTOR CHANNEL

DEVICE CONTROLLERS
CTL Bus Priority

OPERATING ENVIRONMENT ...
Virtual Memory ...

® 0 0 0006000 00 000 00 00 0000000000000
© © 0606 00000 00600600005 00000000000
® 0 6.0 06 02 0 9 5 0 0 0 00 0 000 00 000200000t
© 6 06 0 000 0 00 00 095 00000000 00000000000

® 0 0 00 00 ¢ 00 00 0 000000000000 e
® 9 © 9 0 9 065 00 5000 9 0000 00 0000l

BUS ® 0 00 00 00 0 0 00 00 00000000 0o

® © 0 0 0 0 0 0 09 O SO0 0E PO GO PO LE OO NN SO0l eN o

Functional Hardware Elements
CENTRAL PROCESSOR MODULE cceecoe

® ©6 06 00 0009 00 06000 00000000000

® e 0 00600 0000000000000

® 8 0 8 060 00 0 0606000 06000000 0000000000
® @00 00 09 00000000000
® 8 92 0 00000 000 000 0° 000 00 00000000

® 5 2 9 9 6 0 00 0 0 0 0 05 0 006 560000000

® 0 0 0 0600 00 0 060 00 06000 0000000000000 00

® 0 060 0 2 0 00 00 0 00 000 0000000000 LL L sEe 00 e

® © 0 0 00 05 0 00 00 ¢ 00 08 0 00000 00" SO0 eSO

Variable—-Length Segmentation .cccececsesoscescccsccssssses

Processes
Data Stacks
CPU Registers

Basic Table Structures

® 08 00 0 06 000 0 e 00 00000 0s 0000000
® 060 0 06 085 000 00 00000200

CODE SEGMENT TABLE AND CODE SEGMENT TABLE EXTENSION

vi

® ® 2 0 09 000 0 0 092 0 00 ¢ 00 00 000000000 L NN ESOE
® © 00 00 0 00 000 00000 0P PO NSO EL NSNS e

0 00 0 0 0 0 00 00 00 L OGO B OO N DTS00 E N0 0s0e e0

CODE SEGMENT REGISTERS
DATA SEGMENT REGISTERS

Page

1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-3
1-3

1-4
1-4

)
[V}
Q
D

NN DN N
[T S T T N TR B
AP WWWWWNN =

f
W0 W o3~ IO

CONTENTS (continued)

SECTION II (CONT)

Paragraph Page

DATA SEGMENT TABLE .vcececccesccoccessccccsssccccscsscces 2-16

Code Segment LinNKage «.eeeeececcccecsccescsccssscscssssses 2-16
Stack OperatioOn eceeeecessscesosssscssssacsscssssscsscsnsssas 2—22
INSTRUCTION AND STATUS WORD FORMATS teesecocccscccccocccses 2-27
Instruction FOrmats ieeeeeeeeeeceseceeeescnosonsnanansnas 227
GENERAL FORMAT +eceeecsocoecasossonoosscscsscssssssssescs 2-28

STACK OP

SHIF T uteeeeeeeeeessoeasoacsasessnsssssssscsssncsses 2-28
BRANCH 4 vteeceoccoscoosasoscscsscsoasscnscssnosssscscossscsss 2-28

BIT TEST eeeecocsccsocecsscecassoscccssscsscscssosnssssssca 2-30

MOVE ciceveeoroascsnssscsssssscsssscssossssossesssssssscsecss 230
SPECIAL teeosceecoccsoscscacscscscssscsscssascscsscscsssscsoscssa 2-30
IMMEDIATE 4 eeececocooscssccssscescsasncscscscssoasssscsssssse 2-30
FIELD 4 ieecocessocscsccccascscsssasoscssccsososssscscsscscse 2-30
REGISTER CONTROL sveeesoocccccccccscsscsoscsscsscsascsss 2-30
PROGRAM CONTROL +sesesecccsscssccscccscssscscsscssssese 2-30
I/0 AND INTERRUPT tvcecocsccccccsccsoscsccsosscsccccncnes 2-30
LOOP CONTROL .oeeeceocscsccccscesasasnsscsssascssssscsscscs 2-30
MEMORY ADDRESS ceececcooscoscscsososoasoosssscssscnscsssoss 2-31
Status Word FOrmat .eeeececsccscsesscscseasosscasssesscseasssss 231
Condition COAES ceeeescescosesscsscssonssosescasscssosans 2-32
OPERATING MODES .+ eeeeoescsccsescssscsssscsscscsoscscsssssssscsoss 2-34
ADDRESSING CONVENTIONS cceeceecvoccsscsosccscsccscssnsossssceos 2-35
Memory AJAreSSiNg ceeeesecccscssssscccssssssssssocccssssas 2-35
Indirect AQAresSSinNg .ceeececcecccsccsccscscssssccsccssnsnase 2-36
CODE INDIRECT ..ceocececcecscccscacsesoscscscsasacscscssanssscs 2-38
DATA INDIRECT teeeececoccocccscscsscoscscsocsssssssnscscnscses 2-38
INAEXIiNg tueveeececccoccaccocsocsssscsossssssccssscssssese 2-38
CODE INDEXING tveeeeccoscoscscscecsccsscosscssscscscsncsesns 2-38
DATA INDEXING ceecococoscscocosscasscscccscscsscsoassesocscssscs 2-40
Byte AdAressing .eeeeececseccscsccsccccccsscssscscoccssssssses 2-40
DIRECT BYTE ADDRESSING tceeeecccvccccsoccsscscsssesscscnscs 2-40
DIRECT, INDEXED BYTE ADDRESSING :tecceocccccccccsccansce 2-41
INDIRECT BYTE ADDRESSING teceeecoccccscscccoccscccssecss 2-41
INDIRECT, INDEXED BYTE ADDRESSING sececccecoccccccccsccs 2-41
Double-Word INdeXinNg eeeesecesscessscossccsssssscscssecncs 2-42
ACCESSING DB~ AY€A eeoeescccccccocscsoccccccscsssscsccssoconses 2-42
WORD ADDRESSING ceccecescecescscccsascscscssascsssascanccas 2-42
BYTE ADDRESSING .eeeescccccccccsccccsccccsscasosssasnses 242
Bounds CheCKINg ceveeeeeoescccscesosscacscscccsscvsssnscosnees 243
PROGRAM TRANSFER LIMIT .veceecscccecccscsccssnnscscscnass 2-45
PROGRAM REFERENCE LIMITS ceeecccocccccccosccccccccanse 2-45
DATA REFERENCE LIMITS .cecccscccescscoccssacssssscscsos 2-45
STACK OVERFLOW LIMIT coccccsccccscscsssassscssssconccscacs 2-45
STACK UNDERFLOW LIMIT veceoovoccscscossascccsssscssansess 2—-45
CPU OVERVIEW 4 vevseveeescaseccccseonoeosacasssassssasnessnee 2-45
PIPEliNeS teitiuieeeeeeeneoseosaesssasonssesnsesnnnnnnee 2-46
DATA PIPELINE 4eeeececceccceecsosocaocssascsscscscsoses 2-46
MICROCODE PIPELINE 4teeeeecocccececscsosocoosansscsseaes 2-49

CPU Component DesSCriptiOnS .seeececescccccscssscscscseass 2-50
NIR

® 006 000 0 060600 00 8000000900002 0000000000000 000 0000 2“28

® © 000000000 00000 00000008 P 0O L OE OO PO LOLIOEOBNLE OSSOSO SO 2“50

vii

CONTENTS (continued)

SECTION II (CONT)

Paragraph

CIR ® 0 0 0 6060606000 00000060 02 000 00 6000000000000 00000000000

CMUX AND CMUX CONTROL

MAPPER AND MAPPER CONTROL

® ® 00 0 00060 0000 000N Oes 0L s 0 e

® 0 0 00 0000000000000 00000 00

LUT ROM ® 0 ® 0 0 0 ° 0 0 P 0 0P OO O C OGO 00000 LS00 e0 L0000 00 s o

VBUS MUX AND VBUS CONTROL

® 0 0 0 0 0606 006 060 0000000006000 00000

RAR ® 0 0 9 00 00 00000 00008 060600000 0000600 0500806000900 085000000

SAVE REGISTER ® 0 0 060 95 00 05 00 0 00 00 0SSO C O LSOO OEEPP S OSSP

ROM
ROR1 AND ROR2

® 0 0 0 0 000060600 000 900 00 500 OGSO 0P S0 0O S0 000 e

® © © 0 0 0 0000 000 00 0PGSO OO Ce SN eOes NSNS

Microcode Jumps ® ® O & 0 © 6 6 & O &6 0 0 0 0 00 00 OO OO BSOSO SN PG
S“BUS Fie ld Decoder (S) ® ® 00 0000000000 0800000000000
Store Field Decoder (STORE)

Function Field Decoder

Skip Field Decoder

(SKIP)

MCU Option Field Decoder

R-Bus Field Decoder (R)

PROCESSOR REGISTERS

(FCN)

® 0 8 0 069 06000 000000000000

® 060 000000000 000000000

Shift Field Decoder (SHIFT)
Special Field Decoder (SP

(MCU)

® 06 8 06008 000000000000

® © 6 9 006 0 0 0 00 0000 L0000 00NN eSS

Renamer LOgiC ® 0 0 0 0 0 0 00 0 00 0000 00 09 000000000000 00000
TOS Registers ©® 0 0 0 00 060 0 08 00 50 000 0 000000 O LSS

Index Register (X)

Stack Register

Data Limit Register

Stack Memory Register (SM)

Data Base Register

Scratch Pad 3 Register
Process Clock Register

.
© 0 065 06000 00 0060 0000000000000 0000

Stack Limit Register (2)
Program Limit Register (PL)
Scratch Pad 0 Register (SPO0)
Scratch Pad -1 Register (SP1l)

(DL)

(PB)

® 9 00000008000 00 00

(SR) eeveeeosescsacsssssscsscsssonses

Program Base Register

® © 05 0606000000060 0000000 00

® ©® 000 900 0000000000000

(DB) ® © 00 00 0600 000000000000 0000

QRegister (Q) ® ® © © 6 0 0 0 0 0 0 0 O 6 OO O OO SO O N O OSSN S0 0o
Scratch Pad 2 Register (SP2)

Program Counter Register

Operand Register (OPND)
Status Register (STA)
Counter Register (CNTR)
OVERFLOW FLIP-FLOP (OVFL)

CARRY FLIP-FLOP (CRRY)

CONDITION CODE LOGIC (CCO AND CCl)

(SP3)
(PCLOCK) eoeoscecocsccs

(P)

® 0 00 006 ¢ 0060 00000000000 00000

® 0606 0 060 000600000 00060000000 0000

® ® 606 00 000 00000 000000000000

® 00 00 5 0606 060000 090 0600000600000

PRE‘ADDER ® 60 00006 00 000060 00 0 00005 000000000000 ONSE OSSN TCLIOS
R.‘BUS REGISTER ® 0 0 0 00 0 0 0 00 0 00 0 000000000 LOL OSSOSO OS DSOS DNOES

S-BUS REGISTER
ALU
SHIFTER

® © 0006000000000 0000080000000

® 0 0 5 0 0 0 0 0000000000 0000 0E S0 0 0O N0 PO NSNS NDNO

DECIMAL CORRECTOR ® 00 0 00 00 000 9 0 8 00 00000000 S LN EL N OINOSODS

ADDRESS COMPUTER OUTPUT REGISTER (ACOR)
DATA COMPUTER OUTPUT REGISTER (DCOR)
INTERRUPT STATUS REGISTER 1 (CPX1)

viii

® e o 00000 09000

® 0 & 0 0 0600 0000 0 080 0

Page

2-50
2-51
2-51
2-51
2-52
2-52
2-52
2-53
2-53
2-54
2-55
2-55
2-55
2-55
2-55
2-55
2-55
2-55
2-56
2-56
2-57
2-57
2-57
2-57
2-57
2-57
2-57
2-58
2-58
2-58
2-58
2-58
2-58
2-58
2-58
2-59
2-59
2-59
2-59
2-59
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-61

CONTENTS (continued)

SECTION II (CONT)

Paragraph Page
INTERRUPT STATUS REGISTER 2 (CPX2) ceeecesccoccenssnse 2-61
CPU Servicing INnformation eceececeeccesessasssassscsscssssce 2-61
READ-ONLY MEMORY (ROM) PCA .cececcesoscccscscscsscscsccse 2-61
SKIP AND SPECIAL FIELD (SSF) PCA
S-BUS PCA teeececosscscssscssossnscscscscsssssssssssssacsse 2-63
CURRENT INSTRUCTION REGISTER (CIR) PCA .veeeccoccsces 2-64

e s s 000 0s0 0 2—62

SECTION III - SYSTEM VERIFICATION AND TROUBLESHOOTING

Paragraph

g
s}
Q
®

DIAGNOSTIC AND VERIFICATION PROGRAMS
On-Line Verification ProOgramsS ..eececssscccccccoccssssossse
Stand-Alone DiagncstiC PrOgramsS cessescescsscscscocsocscs
Microdiagnostics .
SLEUTH 3000 ciceeeeccscccsansscoccssoossosscsososcsssasssccnccss

SYSTEM TROUBLESHOOTING AND REPAIR tceceocccccsocccsnscscac

SYSTEM CONTROL PANEL

MAINTENANCE PANEL cecececoccocscscsccscsccscsscsocsscocssscsnscscscoca
Switch/Lamp Identification and Description ..cceececeses
Operating PrecautiOnsS ..eeeecsccceccssssssccssscssscsscscs
Preparation FOr USE .eesesssccssccccccesssscssscsscnsssoss
General Operating Method ..ceceececcscccccccoccssosssonss
Using Maintenance Panel and System Control Panel .ceeeee
Stack Register LoadinNg .ececeececscccccoscscscsssosssnccns
CPU Register DiSPlayS seeseccecscececsccnssccscscccssssnosse
General -Use DiSPlay eececececsssossessssasscsscscsscsssssnss 3-26
Maintenance Panel TeSt .eeeececscscscccsccccscscsssccsscsss 3-26

LAMP TEST ceceoecsccecccoscssscsscscssscscssscssocccssassscscsssce 3-26
SWITCH TEST

[

]

wwww
t

© 0 0 60 0000 06 0060 0000000606500 0006000000000

t

[{
MO NDNDNDEEREE

.
wwwwutfwwwww

® ® 06 0 0 000060060000 0006000000000 000000008080 3‘.28

SECTION IV - MACHINE INSTRUCTIONS AND STACK OPERATIONS
Paragraph Page

INSTRUCTION DECODING ceeocescscsccsscsoscccoscssccsonsscacssssssse 4-1
TRAPS AND INTERRUPTS ccoeccccccccccscsccsosscscscscsscsscsssosscsce 4-1
CONDITION CODE coeecccecssoosocssssscscsscscssssscssssasssssscss 4-3
INSTHJCTION FORMATS © © 0 000060 0606 0600606060060 000600060060 806000600 006000 4"‘3
INSTRUCTION DEFINITIONS ceececcccoccscccsscscscocssssscsscscscssccos 4-3
Stack Op INSErUCLiONS eeveesvecsssscsssccassssscosnasnsee 4-3
Shift INStrUCLIONS sevevscscccscsccscsssscsasascscssssasss 4=1
Branch INStrUCtiONS sueeseosesescccsscssssasssssscsssess 4-11
Move INStrUCLiONS ceeeesccoscescssccsscssscscscssassnosses 4-12
Privileged Memory Reference INStructionsS .cceeeesscssses 4-13
Immediate INStruUCtiONS sveeeessecsccsesosssscsssscccsnses 4-13
Register Control INStrucCtiOnNS .s.ceeeseccccccsscsccssscsecss 4=14

Program Control and Special Instructions .eeeecesecceeses 4-15
I/O Instructions ® 9 © 0 0 ©® 9 O O " OO O OO O S OO OO 0 OSSO OO e SO SO SO 4‘17

ix

CONTENTS (continued)

SECTION IV (CONT)
Paragraph

Memory Address INStructionNsS .ecescccescscsccccecccosccccne

Instruction Commentary ® 9 © & 0 0 0 0 0 00 5 0 0O 00 OO0 OSSOSO SO PN
STACK OPERATION EXAMPLES

Basic Arithmetic
Procedure Calls
RECUISION +veeecsscesssccsscscssosscssscsssssosscsscscsosscscscscess

MAIN PROGRAM CALL

TEST FOR ZERO ®© 9 00 0600 0 0006000600606 060 0000000000000 000000
FIRST RECURSIVE CALL

SUCCESSIVE RECURSIONS
FIRST EXIT ccecocssocccscscscecscascsscoscscsscccscsscsane
FIRST RECURSIVE EXIT
SUCCESSIVE EXITS

® 06 0 000 0000 00 00000 000000 0N o
® 9 0 00 0 00 00 00 000 00 00 OO0 OLP OO LSS SE N e

® 0 0 6 002 9200 00 00 000 00 0 8 0D 0 S OO OO OeLS LSS
© 0 8 0 0006000000 00000 000000000050 000000

®© 0 0 00 006 006060600000 00000800000 0000 00

® © 6 0 006 0 006 0 006060 06 5600060000085 00 0000

® ® © © 0 9 9 0O P OO O SO C O OO P OO O eSS0 0N s 0

SECTION V - SYSTEM MICROCODE
Paragraph

GENERAL INFORMATION . cceccsoccoccoccssocccsscscoscscccsssscscsscscccce
Stack Element LOCAtiONsS eececessssccccscsscccsscsossosce
PUSH

POP

QUP vteeeoesscscsscssososssssscsssscscsossoncscessscsscsnscscsscs
ODWN 4 eeeecscsccscososcssssoscsssscsssessssscnsssnsnsocsssss
Reading Microprogram LiStingsS eececececssscscccscscsnscse
MICROINSTRUCTION DESCRIPTIONS
R-Bus Field
S-BUS Field .ceveecececscosassosssssccssesscssscsscssscsncscossssacs
Function Field
Shift Field
StOre Field eeeeeceoscscecccsscsosscssssossossosscsscsscsccsssossssconcs
Special Field .iceeeesesssccscccscssccssscccssccsscscsocccnce
MCU Option Field

Skip FiEld © 9 0600660008066 00060606 0060060600606060 0000000000080 00 0000
MICRODIAGNOSTICS

© © 06 00 000060060060 0600000606060 0060606000000 000000000000 00

© 92 060 069 0860600600030 0606006606000 0600060060080 000000s00000000 0

2 ® 06 0 0 0 06 06060060606 0000 060000000 050 00

© 0 0 0000 006 0 60 0606000606000 0006006006000 00000 00000

® 060 00 00660000000 06060060 0500006000600 0000000000 0000

© 0 0 0 0 000 0000600000000 0060000000000 000 000>

9 00 006 0060606060606 0608 0000006060060 0000600000000 0000

SECTION VI - MODULE CONTROL UNIT/MAIN MEMORY OVERVIEW
Paragraph

MCU OPERATIONS ceccecoovocccscsscoscscescscscscsscsccscscscscssossccnsccocse
Fetch Next Instruction QperatiOnsS .cceececesessscsccccscs
CPU ADDRESS TRANSMIT .cccecceccocscccscosccaccscsccccacse
MEMORY RECEIVE AND TRANSMIT

CPU RECEIVE .ttteecscscccssaccssosesscsccsssssssssoccas

Fetch An Operand OperatioOnNsS .eceeececessossoscscccscocsss
CPU ADDRESS TRANSMIT .cccsoscccccsccocsosscssscoccsccance

MEMORY RECEIVE AND TRANSMIT ® 6 06 00 @0 00 00 00000000000
CPU RECEIVE 9 6066 0060 00606006000 0009 0006060060000 0000000000 0>

®© 9 0 00 60 00 0060000600008 00 0500

Page

4-19
4-21
4-37
4-37
4-39
4-43
4-46
4-46
4-46
4-46
4-48
4-48
4-48

Page

Y

w NN

oo o,
[S A

t
ottt LTI LT > WW

)
8% (B

t
oo WiE - Q

e

0\0\0\?0\0\
t

!

i

A O

CONTENTS (continued)

SECTION VI (CONT)

Paragr aph

g
[}
Q
o

Store An Operand OperatiOnNS .eceeceececcoccsccscsscssssscccs
CPU ADDRESS TRANSMIT cecccoscccccoscccscsssossccsscsscssnse
MEMORY RECEIVE cececeocsccsecsccossccscccsccsscscscccssscsscsosce
CPU DATA TRANSMIT
MEMORY RECEIVE

Command A MOAULE .ececovssocsosssoscsscascsscscsscscsccsocssse

MCU SERVICING INFORMATION
ENABLE
READY tceecececccscecsooscscscsosscccsosscscsossoscsscscscsasscssccse
CPU NUMBER teeeescecscecsscscesasancscssscscoscsscsscssscsce
CPU MODULE NUMBER ctcccocecccccsccancscssscscccscscccsscs
MCU RESET
MAIN MEMORY ceeeecooccococncocsscccscsssosscsssscscsscssosecsssosca

Memory PCA INterfaCiNg eeeecececcccccssscsssccccssscsense

CTL BUS

IOP BUS ® © 9 0 00 00000 00 ¢ 0006 20 00 050000 0850000000000 00000

FAULT LOGGING INTERFACE BUS ® 00 0 006 0600600 0060000000080
POWER BUS T EEEEEEEEEXE I I A I A I A I R AR B A I A A N A N

Memory PCA DeSCriptiOnsS seeeecesccscscsscssscsscscccscsssnce

SMA PCA ® © 0 0 0 9 0 00 000 006006000005 00000000 0000000000000

MCL PCA ® 0000000000000

FLI PCA ® © 9 0 5 0 0 060 2 0 00 000 00000005 005 5005 80000 6-12
Memory Operations ® 0 0 0 0 8 00 0 0000 000000 2000 OSSSL LN e e 6—12

o O
t ot

® © 0 0 060 0600000800 08 0000000000 S OO eSS T OO

{

® © 6 0 006 06 59 000005000 05 000 000000000000 LSS LL NS OSLOSS

[

mﬁxac?c\?<moxoxm
1
i WOWW VWD ODD AR AN

© 0 0 006 0 000006060 0200606000 060000000 060000000 000000

(B}

® © 9 85 © 0 0 0060000 0 00 08 00000 000 00000000000

|

o

!

AN OY D
{

'

t
el el
NN

® © 00 0060 06006 0600000000000 0660000 05000 6.‘12

READ ® © 6 0 000006 06006000 000060000000 00006050000 0000s090 000000 6_.]_3
WRITE ® © 0 0 0 0 0 O O SO OO C OO OO OO OO0 S 0L 00 L 0O LO LS 0NN Se NS e 6-].3
NOP ® 0 0 0 86 0600600 0000000600006 0000000600800 00000000 509006000 6—14

FAULT CORRECTION AND ERROR LOGGING :vocesesccsccceceses 0-14
Memory Servicing INformation s..eeeecesesssssccccscsssecse 6-14
FAULT CORRECTION +eveeeeececsccccscscsasssasccasescccsssecs 0-14
MEMORY ERROR LOGGING FACILITY ceeececcccsncsoscascses 0-17
OULPUL ceeevecocoscsocscscscscsscsossssssccsssnsssse 021

Errors‘......l..‘....................‘.. 6.‘21
Obtaining Memory Errors COPY sesscecsccssscesessass 621

FLI PCA PROGRAMMING .+2eeessnecoscsccscssscsscosnccssecs 0-21
TIO COMMANA s eeeesecconoocssccscnssssssssesscsssses 023
CIO COMMANA seseessceossosnssnssnsssssonsnsonssasss 0-24
WIO Command
RIO COMMANA eeveesssoccccossssscosssscscssassasnsss 60=27

SMA PCA SERVICING

MCL PCA SERVICING eeceeccccocossscsossnssscosscocsssss 0-28

FLI PCA SERVICING cceeeccecocscccscsssscccccssscncosscssocse 6-29

© ©® 0 0 0 0 000 00 000 000 PO 0O 0L OOL S OSSO L e e o0 6—26

® © 0 000 00 0 006 0 0060000 00000000000l 6‘27

SECTION VII - I/O SYSTEM

Paragraph Page

INTRODUCTION «ecoeecosocccossssoccooscssscsccsossscoscssoscscsss
FILE SYSTEM OPERATION
DEFINITION OF TERMS
I1/0 INSTRUCTIONS

3 8 9 25 9 3 9 5 2 0 P S 8 0 P N OB OO0 LN LN e e

® 9 6 00 88 C TG 0 PO OE PO OIS PSP L LD LS SN S PO

\l\l\‘l\l
ANw D+

® 8 T 9 2 3 0 6 O E T 9 S O L E S PSSO D P S eSSBSy

xi

CONTENTS (continued)

SECTION VII (CONT)
Paragraph

GENERAL I/0 OPERATION e eececocccoccocnsoocsnsnsaccoacocssscsss
DIRECT I/0 OPERATION seeeccecccacscocscccasocscccosscsccsecsss
Direct Read
DireCt WEIte ceeeecevsccecccssccsoscsccsoocacsassscssssoncscsss
BLOCKELD /UNBLOCKED I/0 ceesoceosccsccacescscsccscssscssescsscesse
BloCked I/0 ceececocscscsossscscscoscssoccscoscscscncsnscsnccsccsnss
Unblocked I/O ® O O 0 0 0 5 O P OO O OO OO OO OO OO L O OO N OO0 C OO OO e 0
I/0 HARDWARE ELEMENTS eececececcccecscsscccscsocscscsssoccoscssccscs
I/O PrOCESSOL cocecccoocscscscsceoosossososssscsccsscsososcscsosse
I/0 COMMAND teeoeccsoccoscossccscsosssscssecssocsscsseocs

JOP CONTROL ceecceccoancscscssossosscsssoscsssonscscsasssasssscs
INTERRUPT CONTROL

INT DEVNO 4eceecceecccaacsacstsoanncoososossacescccescnss

DATA OUTPUT REGISTERS

DATA INPUT REGISTERS
Module CONtrol UNit ceeececcsscosccccsascscssssscsscsccscse
Multiplexer ChannNel ..eeeeesescsccscscsscscssscssscsscsscecs
Selector ChannNel ..cececcccccscoccsscscscsoscsscsasnscssnccccs
I/0 SYSTEM FUNCTIONAL OPERATION .coceocccccocscsscscsccssccaccses
I/O Prioriti€sS seeeesccccecssccocsossassscasssscsssssccsescs
I/0 Data ROULES eececosoccccstssssosscssosnosnnsncssasnscssssass
I/0 Transfer MOAES eeseccccosscscocscsssssonasssssossscscccss
DIRECT I/0 ceececesoscsacoscscsososssscsscssscsncsscsssscss
PROGRAMMED I/0 ceeeescosscscsacsnsosscscscscssscssosssscncssssssce

I/0 Program WOrd eeeceeecececocssccssssccasscsscscss

Typical I/0 Program OperatiOn ceeeesescccsscccccses
Multiplexer Channel Transfers .seeeeecceccssccscscccscs

Selector Channel TransferS ceeececcscecscssccccccccsns

Multiplexer Channel OperatioOnNS .seeessescccscecccccccecosns
INI.IIIALIZE ® & 0 5 0 & O & OO & O O SO O O OB SO OO SO OO B O OO OO S S0 SO0

DRT FETCH ® 0 0 5 0 0 0 00 9O 0O OO O O ORGSO OSSO E SO PNDS

I/O PROGRAM WORD TRANSFERS ® 9 S % 06 0 0 e PO eSS S0 CO OO SN PO
IOCW FetCh ® 0 0 0 0 00 0 00 00 00 S0 O0 OO0 SO OL O N OSSNSO

JOAW FetCh seeeeecscsscssscccsnscsssssscssscccsccssssns
IOAW Store ® 9 © 0 0 0 0 0 0 0 0 0D OO OSSP OO OSSP e eSS0 0O 0
Next OperatioOn cieeeesececscscsscsccscsssscsscscsccscans
DATA TR.ANSFERS ® 0 @ 0 0 0 0 0 O OO O GO SO OO OC L OO O E OO OO OO OO e e
Address TransSfer ceeeeesssssssosesssssscssccccscsssns
Output Transfer .ececeesecsccccccsscssccscssscssscsas
Input Transfer ceeeeeecccsossccccensssscscscncoccans
End Of Transfer By Word COUNt .s.ceeescccccccsnscns
End Of Transfer By DEVICE ceesesssccsssscssncsscscscs
Selector Channel and Port Controller OperatiOnNsS eceeeseaes
PORT CONTROLLER ® @ 0 ¢ 0 00 8 0 O O OO OO ST OO0 OO S SO O OO OO N e OO O
INITIATOR SEQUENCE +ceeevoccecscscoccccsssocscscscscsccnssass
FETCH SEQUENCE . cecescoscescsscascscacsscsscesoscsssnncsss
EXECUTE SEQUENCES ® 0 ¢ 6 & 5 0 0 OO0 ¢V OO SO OO OSSO SO OSSO e 0D
Sense ® ® 0 ¢ O 0 0 0 0 O ST O OO O OO GO O E O eSO E SO0

Interrupt ® ® ® 0 0 0 00 000 00D OO OO OGO E OO0 OO OSSN SN OS PSS O

Jump ...'C.......QQ.........."'..O.....'..bl.....

® 9 5 0 5 0 00 00 0T S OO OO OO OSSO BSOS OO SN 0

® 0 5 0 0 0 0 0 9 0 90 00 000 O SO0 OSSO0 0 0

LI I I B N B B IR I BN BN BN B BN BRI BN B BN I B N

Control 90 © & 06 00 0 00 8 00 O OV OO 00T OS VO LSOO NE OO OO ECOE PSS

xii

- CONTENTS (continued)

SECTION VII (CONT)
Paragraph Page

Set BANK seeececesscssscccsaccscsscosssoassocnassscsee [1—43

Read R E R EEEEEE R T ar ar By A B B N R B B B B B NN B Y) 7”43
REtUrn RESIidUE ceveesceccsssssossssacosnsesssncssees [/—44

Write

ENQ teeeeeooccesosssscsosssssscsosnssasssssosssssssse 1—46

I/0 SYSTEM SERVICING INFORMATION eceecesvocscscscecsccscecsnsssscs 7-46
IOP PCA Servicing
ENABLE/DISABLE cececcccccccaccssoscscsnsscccscsscascnseas [—46
MEMORY SIZE eeeeecsesesssacsssecascsscscsccsssossscsccocsscsss 1—46
MEMORY INTERLEAVING cecoococcsocscscoscscascscscsscscsscosse 7-46
Selector Channel Maintenance Board PCA .ceeocesssnsaseee 1—46
Multiplexer Channel PCA ServiCing ceeeeeecsscccscccsccses [1—47
Port Controller PCA Se€rviCinNg seeececsscesscscccssssecccccs [/—48
Selector Channel ServiCiNg ceeessesacssssscsssccssocssese [1—48
SELECTOR CHANNEL REGISTER PCA ccesecoccscsessssosscsce 748
Port Controller Channel NUMDEr seccescecsccsssscsss 71—48
MEMOrY SiZ@ eveeecoccsccssscsssssssssssssoscsssssese 7—48
Memory Interleaving ceeeceseccecssscesscssscsssssse 1—48
SELECTOR CHANNEL CONTROL PCA ctececececcessccssossoscsscssce 7-48
SELECTOR CHANNEL SEQUENCER PCA ceceeccscscoscscsosccsse 7-48

® ® 9 52 0 50 ¢ 60 S G0 OO0 0SS T 0000 OO L SO E SO SNBSS PN TDNDS 7—45

® 9 0 0 0 00000 000 00T B EOE O OO L OSSO S SOOI 7-46

SECTION VIII - INTERRUPT SYSTEM

Paragraph

)
Q
Q
o

INTRODUCTION c.ceocecoccccsccscssssoscsscssssscossssoscsnascasccocs
INTERRUPT SYSTEM OVERVIEW e4vcececcccccscccsscsssoscacscsasscocs
INTERRUPT CONTROL STACK cccccscssccsascscsscsscssssacccsssccce
INTERRUPT TYPES cceeccsccscrcccscccscssascscsssssscsscscascsccans
External INterruUptsS ceeeceessesceccsceccsctscsssssccssnssancsne
ICS Internal INtErrUPtS ceccesescccssssaccccccsssnocsnsnse
Non-ICS Internal Interrupts .sceececececccccsccccoccsossnsscnnse
EXTERNAL INTERRUPT PROCESSING sescscccccesccccsccscscscccccscns
Interrupt PrioritieS ceeececccccccccccsossscsscccscsccsccans
Interrupt Program POINtEr ..ceececcccccsoscccccsscscacncans
Sequence Of OperatiOnNS .eecasssescescccrssscscssccscscsscccscse
INTERNAL INTERRUPT PROCESSING ccccoccscocscscscsoscscsscccsoesce
General DeSCriptiONS ceeeecscssssesscccsscssccscssscscacosne
BOUNDS VIOLATION @ 9 8 ¢ 0 05 5 08 8¢ 000 00 00O OO OO0 0O SO S OGS e
ILLEGAL MEMORY ADDRESS tceeccccocccococsssssancsscsscccs
NON“RESPONDING MODULE 8 8 0 0 00 0 0 9 85 5O 000V G OO OSSOSO SO OSSO
SYSTEM PARITY ERROR e 00 060000000000 00RO LOERIOEOIEPODOTOTOD 8“14
ADDRESS PARITY ERROR © 00 00000 CLOCOEGEOLEOIOOIIOEOCEOEECROIOSEEDOSEOEOLNEOOLTCOODC 8'14

DATA PARITY ERROR R EEEER R EEE T I S I A B B NN N S Y) 8‘14
MODULE INTERRUPT © 0060 ¢6 0000000000 ORCOLEOCEOOIOEOEPBOSOICGEOIEGOOINOTOEEOSESTOSIO 8”15
POWER FAIL 9 0 0 0 00 60 © ¢ 0 0O 000 OO OO T O OO L CO OO Ne LRSS NS 8‘15
UNIMPLEMENTED INSTRUCTION secesecacscescscscsscsnsssssass 8-15
STTVIOLATION ® 8 0 00 000 00 000 00 80 0 00 08T OO0 S OE SO OE RN NS 8.‘15

CST VIOLATION © 00920 60 00000000 C000QC0ECSEIRROGEOEOEOCRORIRTOEOIOCOTOTCETE 8—15

DST VIOLATION ® 8 © 8 ¢ 0 0 0 000 00 00O 00N O C OB L OO S OL OO 8.-]-5

{
WO UVTWH M-

>

w

!
i
PN

0000 CO COCO OO 0O CO 00 00 00 OO 0 OO OO O
!

xidi

CONTENTS (continued)

SECTION VIII (CONT)

Paragraph

STACKUNDERFLOW ® © 0 9 0 09 0 00 00 0 0SSO PO OO OSSO0 0N OO SC PN CEE

PRIVILEGED MODE VIOLATION ® 0 @ & 0 000 00 00" OO PO SO0 OSSO0
STACK OVERFLOW IR I IR S B SR S B Y B B R BRI B B BN BB B BN B BN I LI R N R A A AR A J

INTEGER OVERFLOW S 9 9 0 5 9 8 0 0 0 000 0 08 00O OO 0T OGO OO0 OO OO SO OE

FLOATING-POINT OVERFLOW

® @ 8 9 00 0 0 9 S0 SO OO0 OSSOSO OSSOSO

FLOATING—POI‘-‘]T UNDERFLOW ® 90 6 9 6 00008 ¢SO0 OSSO SO OISO

INTEGER DIVIDE BY ZERO

FLOATING-POINT DIVIDE BY ZERO

® 0 ® 00 0 00 002 O C 000 OO ON eSO OO NSO

EXTENDED PRECISION FLOATING-POINT OVERFLOW .cceeceses
EXTENDED PRECISION FLOATING-POINT UNDERFLOW ..ccceeee
EXTENDED PRECISION FLOATING-POINT DIVIDE BY ZERO

DECIMAL OVERFLOW ¢ccees
INVALID ASCII DIGIT
INVALID DECIMAL DIGIT
INVALID WORD COUNT

® © 0 02 0 0 0 000 00 OO0 SO OB OO Oe O PN SOOS

® 9 0 0 0 0 090 0 0 0 S 0GP O CO OO RO OC OSSO POTSONTS
® 9 0 0 09 0 0 0 00 S S0 00O OO OO OCE NS S OOCE

IEEEEEEEE I I A I R R I I BRI R BRI I I B A

RESULT WORD COUNT OVERFLOW ® 0 095 060 0 00 0209 00000 S0 OO0 e

DECIMAL DIVIDE BY ZERO
ABSENT CODE SEGMENT
TRACE
STT ENTRY UNCALLABLE
ABSENT DATA SEGMENT
POWER ON
COLD LOAD s ceceoccorcnn

® 9 ©® 060 000 0 ¢ ¢ 00T OSSOSO OSSO

® @ 0 0 00 00 0 9T 000 GO O E O OL S OCL OSSOSO
R R EEEE I I A A I B A S B AN SR B BRI B I I BN B I I LI A

® 00 00 060 5 00 000 00 00000 0O GOSN OGP GLSODS
 © 0 060 00 0 20000 PP OO0 OO OSSP S OO N S0

R EREEEEEEEE I I A S A I A I BT A BN A S A B I I I A R A A

© 00 000 020 000 00000 S OO OO SO 0L

Sequence For ICS-Type InterruptsS ceiceceescscescccscccsacs
Sequence For Non-ICS Type Interrupts .eceecececccecccccsscas

INTERRUPT HANDLER ® @ & 0 " 0 0 0 00
DISP Instruction .eceeeeese

® 9 9 © 00 0 0 6 00 00 0O O OGO OL OO OO TCCS

© 9 0 0 ¢ 0 8 00 00 20 8000 000NN e SR

Pseudo Enabling/Disabling The Dispatcher .ceceeccccecscsee

IXIT Instruction

SECTION IX - HP 32421A SERIES
Paragraph
INTRODUCTION

HP 30310A OPERATION (ceeooces
Primary Power Circuit

® ® 0 00 00 0 9 000 00 S 00 S0 OO OO OSSOSO L LIS

INTERRUPT SYSTEM SERVICING INFORMATION

® 90 000 00000 s 000 e

III POWER SUPPLIES

R EEEEEREEEEEEEEE I I A A N B N A R SR B AN IR A A A IR A A

® 92 0 0 00 0 0 0 00 G E LSOO OE OIS OSSOSO

® ® 0 00 0 60 200 00 008 SO0 O OO SO PN

Prereglllator A9 © © 9 00 0 00 000G CEI S0 OO0 S0 OOOOEOSOIOOGEINOLESEOIEBOEOEIETTE

Preregulator Control Al ..
Inverter A7

® © 2 0 00 00 0 000 2 O SO0 OOO OGP PSES

EEEEREEEEEEN I E SR SN B AN I EE IR R I N R I I I B A A

Inverter Driver A2 ® © 0 0 0 0 00000 00 0 00 00 000 OO 0N LSS SL SIS TOES

Full-Wave Rectifiers and Filters

20-Volt Regulators
Current Limiter A4

® 00 0 000 0 OB E SO0 OSSOSO

€ ® 8 0 0 0 00 0O I OO OO OO OO L O e OSSO OSSOSO

® ® © 0 0 0 0 0 0 0 000 0000 S0P LSS e eL NS Es e

Voltage Protection and Control A5 .ceceecceccccceccnnnce
HP 30310A SERVICING INFORMATION cseccesesccscoccscccoscscccscos

Preventive Maintenance

PREREGULATOR ADJUSTMENT

® © 9 0 00 00 0 9SO OET OO PO OO eSS N0t s

HP 30310A Adjustments ® 0 ® 00 000 000000 oo

e o o000 8000000

9 8 00 9 0 0 0 0 00 0 0GOSV EN S OO PSS PO O

Xiv

)
Q
Q
(0]

t t

[

\O\O\O\D\O\!D\O\D\O\D\D

{
WWOWOOUI UL DD

\O\.'O\D\O
!

CONTENTS (continued)

SECTION IX (CONT)
Paragraph

ZO‘VOLT ADJUSTMENT R R R R R R R N I N I I I B RN N N N N A) 9“10
VOLTAGE PROTECT PCA ADJUSTMENT
HP 30310A TroubleshoOtinNg eeeeececcccoscssocsssssecsoccsasss 9I—11
303112 OPERATION cecesccsoscccoscscssscscssscsssccsscsscscses 9-11

303llA SERVICING INFORMATION ® ® © © © © 0 9 & 8 O 08 PO O OO OO OO PSS 0 9_14
Preventive Maintenance

® 9 9000 0 0009000000 00 e 9“10

ZRE

- A

VOLATGE CHECKS LR R A S A N A AN IR A IC R S A B Y S AP S B R R B B R B SR N B) 9"15
BATTERY TEST 00000000 0000000000000 0 000G RCEELEOLIEOCSEOEOSTOTTSETS 9—16

HP 30311A Adjustments LI R A A A A A A I I I IR IR A O B A A B A B B B I I B I 9“16

BATTERY (FLOAT) VOLTAGE ADJUSTMENT
+12 VOLT ADJUSTMENT cecoescoocoscesosasssacsscassccscssce 9-18
+5,00 VOLT INTERNAL REFERENCE ADJUSTMENT eseececcescca 9-19
Replacement ProCedUrES ..eeeseccccsccsscscsccssscscsccscses I—19

e 000 s e st 0 0000 9-.]_6

POWER SUPPLY REPLACEMENT ® 0 © 8 99 006009 9000 00000 0000000 9—19
BATTERY PACK REPLACEMENT ® 8 0 56 00 00 508 00 000000 ON SNBSS 9-20
CONTROL PCA RE PLACEMENT ® © 0 00 000 0000000000 s s S0 es L Oe e 9-20

MOTHERBOARD PCA REPLACEMENT
I-IP 30312A OPERATION ® © 9 © © O O VO VOO SO OO OSSOSO OGO T OSSO E OO 9..2]—

Overcurrent ProtecCtioOn .eeeecescecescscssccssescsccsnssssce 922
Undervoltage ProteCtiON .ceeeecccccscsssssscsscscnsnsnces 9I—22
Power Failures
DC ENGD1le cesevecossccsvsscoscsocsssnsscssssncsscscasssncsss I-24
HP 30312A SERVICING INFORMATION eeeceecscccscsccsscsscscscscsce 9-24

® 60 08 00 00 0P C LT O SO OSSO OO 9_20

® ® 8 0 0060 00869 0000005 0 O C SO0 s N OSSOSO S D 9—22

SECTION X — HP 32435A SERIES III POWER SUPPLIES
Paragraph Page

INTRODUCTION ® © 0 0 0 00 0% 00 PSS SO LT SO GOS0 EL SN0 SO0 00 0S SO N0 10‘.1
POWER SUPPLY TROUBLESHOOTING ® 98 & 0 0 0 0 00 0SSN 0P OSSN B NSO lO"l

POWER SUPPLY ADJUSTMENTS cceeevccsccsscscscacscncsacessssass 10-3
REPAIRAND REPI_IACEMEN.P 2 0 0 0 00 0 0P 2P E SR T L P T ST TSSO PO OE OSSO OO OE 10“5

SECTION XI - SYSTEM INSTALLATION
Paragraph Page

PART 1
HP 32421A SERIES III COMPUTER SYSTEM INSTALLATION

EQUIPMENT BAY INSTALLATION
Power Distribution Unit
Power Control Unit ® 90 006 000 0606060006060 006009006 0600080 00060060000 11“5
Power Control Module .eeeececes
Bus Cable CONNECtiONS eeeeescecsscccscosssssssccssccssssce 11-9
Interrupt Poll, Data Poll, and MCU Clock Connections ... 11-9

PERIPHERAL DEVICE INSTALLATION eveccococssccoccssccossasnssssse 11-11

NEW INSTALLATION TURN-ON +eceeococscsosccsoossssasascnsessecsses L1-11

SYSTEM VOLTAGE ADJUSTMENTS eeeooccecccccsoscsscscscsaccassccsss 11-12

® © 0 0 9 5 00 0005000 T E P 00O OO OO e e ll-‘l

® 0 © 0 8 000 060000 28 000008 CE oSO OD 11-2

S0 0000 eeece 2000 0RO LTOEOINOLTLTOES 11“8

Xv

CONTENTS (continued)

SECTION XI (CONT)
Paragraph
SYSTEM VERIFICATION

PART 2

® ¢ 00 0 006 00 0 000 00 000000000

HP32435A SERIES III COMPUTER SYSTEM INSTALLATION

EQUIPMENT BAY INSTALLATION

Isolation Transformer Strapping

® 6 0606 0 000 00 00 00 000000 0

Cable CONNECLiIiONS teveeerseccesocecccsscsssascessssscssace
PERIPHERAL DEVICE INSTALLATION . ¢ececcececeacsasacocssonassscs
NEW INSTALLATION TURN-ON .cceocoeesocccascssccoscsccssocssscass
SYSTEM VOLTAGE CHECKS .t eceeeceocossoscscscoscssscecscssscscocescos
SYSTEM VERIFICATION .cceeccocccoosoccscsccascccsoscsscsssocscsscss

xvi

Page

11-14

11-15
11-15
11-18
11-18
11-18
11-19
11-19

ILLUSTRATIONS

Title Page

HP 3000 Series III Computer System Software eeceeecseeccecse 1-5

HP 32421A Series III Computer System, 2-Bay Model .eeeeee. 1-6

HP 3242]1A Series III Computer System, 3-Bay Model ..eecec. 1-6

HP 32435A Series III Computer System, 1-Bay Model .ceecees 17

HP 32435A Series III Computer System, 2-Bay Model eeeveees 1-7

HP 3000 Series III Computer System Hardware Organization . 2-2

CTL Bus Priority Number ASSignments .seecececcsssccccscssss 28

Typical Data StaCK ececescsssscssssssssscssscsscsssaccssss 2-10
CPU Segment Pointer Registers
Basic Data StrUCLULES .eeeececccccscsssosssessssssccccsnscs 2-17
Formats Associated With Code SeGMENLS cessesssasccsccssees 2-18
Data Segment Table Entry FOrMAt eeecescecscsscccscsacccscess 2-19
Code Segment Linkage ceeeeecccsscccccassssassssscsccccsscecse 2-20
CPU Registers and Stack Basic Operations .eeseceescececcssse 2-23
CPU TOS RegiSterS $6 6000060000000 000 0000000000000 0000c0sOIECDS 2"24
StaCk Dda.rk Chain R R EEREEEEEEE N E N I A A I S A Y B B N R N BB R NI R 2"25
Standard Stack Marker FOrMAt eeeececcecessosssscssscsscscse 228
INStrUCtion GrOUPS eeeeecsscssascascssossssscsssscascssscsss 2729
Memory Addressing MOAES eseececsccscsssscsscsccscsccssssscscss 236
Indirect Addressing EXampPleS eeeeeescccssscsscccscccssosss 2-37
Indexing Examples R N NN RN NN NN NN NN 2"39
Byte Addressing EXamMPleS ceeecsssccssscsccscsccccsnssssssces 2-41
ACCESSING DB= AIL€3 eesevsceosscscacssssascsssscssssscccccsces 2-43
Addressing and Stack BOUNAS eececsccssccssssscscccsssscses 244
CPU Simplified LOgiC Diagram © 9 0 06060 000000000 C0QOOOLOEESIOSEOSOSTLEE 2"47
ROM PCA Jumper LOCAtiONS ciceesssessscsccscscssccscccscssass 2762
SSF PCAJumper T_Dcations R R E R R EEEEEE N I I I I SN B B IR B] 2"63
S-Bus PCA Switch LOCAtiONS cecssceccscsccscssssaccsccssscsas 2-65
CIR PCA Jumper LOCAtiOnS tieeeesescscsscssscscscccsccscccces 266
System Control Panel
Maintenance Panel €0 060000000600 00606068 000000000000 0060C0OCO0CIOCEGSIESES 3"5

Maintenance Panel I/O OVErlay seeecsccscsscsscecsssccscocsss 3—24
Maintenance Panel Operating COnnectionsS .eeesecescscceceess 3-25
Switch Test Lamp Indications
Sub-Opcode (00 Formats
Sub-Opcode 01 Formats
Sub-Opcode 02 Formats
Sub-Opcode 03 FOrMAtS ececeecccccccssoosscscsscccssscscscccncscs
Sub"'OpCOde 04 thru 17 Formats 200006 00006000 ¢0000006000000O0TOCEL
Deleting A High Order WOrd eeeseecesccccecsssssscscscccccce
Single mrd Shifts .00..0...l..‘...........’..Q..l....l.l.
Indirect Branch Via Stack
Move EXampPleS .ecececcecccscscsscssccscscnscasscsascsscccccansocns
Subroutine Call and Exitl...."".'..l..........O....
PCAL Instruction Flowchart cececcecccescccccecssccsassscssccns
EXIT Instruction Flowchart ceceeeecscccesscscccscccscscccsns

96 0 00 0 0606 00 008 00 500000000000 2—-13

© 6 0 0 6 00 00 0 ¢ 00 0 000 00O P E0 O ES OO SONEEDO NS 3..3

® 0 & 0 00 00 00 0 00 500 000000000 3‘-29

© 0 € 0 06 02 6 00 0 ¢ 00 060600 00000 00 55800000 000 4..4

9 0 ©@ 0 00 00 0060 060 00600 000 008000 ¢ 00 00900800

® 9 © 0 2 0 00 80 000 00O 00 0SSOSO HO S ON ORI NS

B>
|

t

t
W NN DD JOOV
O N0 Wk

® 80 000060000608 00 00000000000 ee 0o

.h.bnbu'b-h L

xvii

ILLUSTRATIONS (continued)

Title

IXIT Instruction Flowchart
I/O Order Pairs ®. 0 0 0 0 0 & 0 0 00 O 00 O OO OO OO O SO OO O OO OO O E O OO OO S POOSOS
Basic Arithmetic Stack Operations .eeeececececsccscscsccscss
Declaring and Calling A ProCedUrL€ ..eseessscessssssscsccss
Executing A Simple ProCe€dUrE .eceesscscscscsccccscscscscse
RECUrSive PrOQIrAM seeesecsscsccscsossscssccscsssancscsssnssnsses
Recursive Procedure Flowchart ..eeeeecesccsoccscsccsscscsces
Stack Operations During Recursive CallS .eceecccccccscscnns
Stack Operations During Recursive EXitS seecececscceccscns
Microinstruction SUMMALY cececeescsccscccsssscsscscsscsccns
MCU Simplified LogiC Diagram seeesecceccceccoascsscsssscscsacscs
Memory Module Simplified LogiC Diagram ..eseeccesceccceccccsce
MCU PCA Jumper LOCatiONS .seeeescecossscssccscssscnsossnccsns
Memory Module Interface Diagram ..ecececccceccssccccccsascse
SMA PCA Chip Arrangement sceeesescesesescscsssscscssssscas
Error Correction COdeS ceeesecsesssnsasssscscessssscsssnasscse
Decode of HOl through HO5 tceeecccococsessccscscscssnssssances
NEMLCGAN Table ® & & 0 0 ¢ 5 005 P O 0 O O OO O OO OO OO OSSO0 e OO OO OSSOSO
Typical ME MLOGAN Printout e 0 ecsesssscescsessss o000 0es0ROOLOLE
TIO Word Format
CIO Word Format
WIO Word Format
RIO WOrd FOIMat eceeeeccesccscscassscocssssscsssssscsscsscacsnos
SMA PCA Switch Location
MCL PCA Switch Locations
Basic I/0 Access MethOdS ceeeeccececccscscsssscssssccsscnscne
File System Basic Operation .cescesccscccescsscccsssscsccs
I/0 System Fundamental ElemMeNtS ceeecccccscccsossscccsssccscse
Device Reference Table seesesecscsccscsscssessscnsssasscas
I/0 System OVEIVIEW eeeeeecsccccscsccccossssssscssssnssasscs
Direct Read For Terminal DEVICES eeeececcccsccscsscsnsccns
Direct Write For Terminal DEViICES eseecsccccccocoscncsscas
Blocked and Unblocked I/0 steeececseccccscccssccscssccssssncocs
I/0 Hardware ELEementS cueeeesescsosscssssessssscsssnsosses
IOP Simplified LOQicC DiQgram eeceecsssecscscsscsasssssscsscs
Interrupt Poll and Data POl]l ccceoeccecscccscscscscssnsans
I/O Data Routes ® 9 0 9 0 S O O O OO O PO P OO OO O OO OO SO OO0 OO OSSOSO S SO OOSS
I/0 Program OperatiOn seessesssessescsscscsaccsssscsscssens
Multiplexer and Selector Channel COMPAriSONS eeesseeccsoces
Multiplexer Channel and Device Contrcller Simplified

LOgiC DiAgram sececececoccsccsccscsccsocssscscsossscsscccsccss
Multiplexer Channel Simplified Logic Diagram seeeseecscesse
Port Controller Simplified LOGiC Diagram eecesssccossssccese
Selector Channel and Device Controller Simplified

Logic Diagram ® & 5 0 0 0 & 0 6 ¢ O O O OO S OO O OO OO OO OO GO OO 0SS SO OO O
Selector Channel Simplified Logic Diagram ceecesceccccscces
IOP PCA Jumper and Switch LoCatiOnsS seeeeccscccccccscsccscse
Multiplexer Channel PCA Jumper LOCAtiONS seeeeececcccccces
Selector Channel Register PCA Jumper /Switch Locations
ICS Dispatcher Marker .eeeeescessesscsscsscscsscacsssscnss
Interrupt System OVEIVIEW eecsecossccsscosscsscsccssscsssnses
First Level External INterruPt eeeeescsccccsscscscsccscses
Second Level Interrupt or Dispatcher Interrupted .eceeeecese

® 9 © 0 9 0 00 00 OO TSSOSO e OO OSSP SO

® © 0 5 00 00" 000 OO OO0 OSSO OO OSSOSO SO0 O NS OSSOSO
® 000 00000000 H PO LLOOLROLEOEELINOEOINOIOGEOIOEOINOEOEOCEOETOSPOEONTOITOTS

® 9 0 09 0 0 S OO0 SO O OO OO OSSOSO Oe OO OSSOSO SIS

® 0 0 0 000 OO OO OO OO OO OO OO OSSO O PO

xviii

ILLUSTRATIONS (continued)

Title Page

ICS-Type Internal INterrupt .seeeesccecsscscccscscsscsssccsess 0-20
Non-ICS Type Internal INterruptsS eeeeceececcccccssscscsssces 8-22
Interrupt Handler FlowcChart seeeececscccccccscsccsescscsaes 8-25
Power Controls and INdiCatOrS seecesccsscecccccccsccsossse 92
HP 30310A Power Supply Block Diagram .eeeesecececcccsssccsecs 93
HP 30311A Power Supply Block Diagram seeeeececccccccccscss 9-1
Control Board Adjustment LOCAtiONS seeecceccccscsccsscsces I—1
HP 30312A Power Supply Block Diagram eeeeececcscecccsessess 9-23
Power Supply Control and Display AsSembly ecececcccsccccess 10-2
PDU SchematicC DiAgram eecececceccecesscssacscsossscscnscscsssese Ll—4
PCU SchematicC Diagram eeececececccescsccoscscsscsssssenscssscoscsss L1—6
PCU/PCM Line Filter CONNECLtiONS ceessscscescscsccssscssccece 11=7
PCU to PCU/PCM Interconnecting Cable eesesecscsccccscocsssese 117
PCM SchematicC Diagram eeecececesescasscscesscsconssscscscsccsssssse 11-10
Isolation Transformer Strapping OptionNsS .eseesecccsecsccses 11-17

Xix

TABLES

Title Page
HP 32421A Series III 2-Bay Model PCA Slot Assignments 1-8

HP 32421A Series III 3-Bay Model PCA Slot Assignments e... 1-9

HP 32435A Series III PCA Slot Assignments
Central Processor Module FeatuUreS ..eseecccccccccsssscecces 2-5

Main Memory ConfigurationsS ceeeeeecceeccosccscssessccnssocece 2-6

Machine REgIiSterS seeeccescccocnosssessssosscsssscsssasssnsss 212
Recserved Low Main Memory LOCALiONS seceesscoccsscssesscecsse 216
Condition COde‘s ® 0 0 O 0 0 O O O O OO S OO0 OSSO OO PO N OO OSSO ON 9SO NN e 2..33
Bounds CheCKkS SUMMALY eececcsccescsscscsaccsosccscscsssssssss
TOS Namer RelatioOnShipPsS eceesccesscsscsscsccscoscsccsscccscsse
Memcry Interleaving Switch ConfigurationsS eeeeecccecccsccosce
System Control Panel Switches and LamPS seeecessccccccccss
Maintenance Panel Switches and LamPS eeeessscssccssssssccss
MPI PCA J3 Pin ConnecCtiONS seesececsscsscsccsss
Stack Element LOCALiONS seeeescescccossscccosssssscscssssscs
R-Bus Field Code Definitions
S"'Bus Field &)de Definitions ©06 060600 0000000 ss RS RINCSEOEOSIOIEOEOSIEPOETOEOS
Function Field Code Definitions
Shift Field Code Definitions
Store Field Code DefinitioOns eeeeeccccssccococcssccssscccnce
Special Field Code DefinitiONS seeesccesscssccoscscsccscsncnse
MCU Option Field Code DefinitiONS ceeeecsesscscccccscsscssssce
Skip Field Code Definitions
Interrupt TYPES eccoceoscccccsocssscscsssscssscsscasccsscscocssse
HP 30310A Dc Output VOltagesS sececcecesccsssscscscsccccccsccs
HP 30311A Power Supply Controls and InGicatOrs eeeecescsccs
Dc Output VOltageS eeeesccssscsscsssscoscscscscscsssossccssccs
Float Voltage Versus TemperatUr® .eeeseesesccsssscscssssscce
DC Power Supply SpcificatioOnsS .eecesecevrssccsccsscccccsees 10-3
DC STATUS/POWER Indicators and SwitcCheéS ceeeeeecccsccceess 10-4
PDU Strap Connections at TBl eeeeeessccsoscscscssssscosssssse 11-3
PDU to PCM CONNECLIONS ceseesssescccssscssccssosssosnsessses 11-5
PDU Ac Service Strip Wiring
HP 30311A Test Jack VOltagesS eeeeevreccocccccsoncscsoscecsococse 11-14
Primary Power Voltage TOLEranCeS eeeececsccsccsccssccsssee 11-16
System DC Voltage TOleranCesS sesceecsccoccsssrssccrcecsseess L1119

es 000 eeer s 1*10

!
>
)]

i
w O U
> Oy

t

~

® @ 0 00 000 000

® ® 0 0 O O O 0O PO SO S OO O OSSO OO O SS

U'lkJ’IUIw(iJWNNN

® 9 9 0 0 000 00 00O OO C OSSP OE IO

® 0 0 0 &0 00 00" O O PO OO0 OSSO ee SN

t

Q>0 U W

® 0 8 9 00V S OO S E OC T PO O S L OE SO N0

t
FFRPOMNMNWWNONNMHOYOAOANNS

U >

[VeRVeJVo VN e JU, WO, O O, VLR
f

{
[
[e o}

® 5 0 00 00 0 0 0 0P OO PO OO O SO e O OO PO EOC OO 11—5

XX

INTRODUCTION

The HP 3000 Series III Computer Systems are general purpose com-
puters with true multiprogramming and multilingual capabilities.
They can simultaneously handle many interactive and batch opera-
tions; each in any of several programming languages. The HP 3000
Series III Computer Systems feature hardware stack architecture,
variable-length code segmentation in a hardware-—assisted virtual
memory scheme, user protection, dynamic storage allocation, and
integrated hardware/software design. The hardware and software
work together in an interrelated manner with the hardware per-
forming many operations conventionally performed by software.
The HP 3000 Series III Computer Systems have a single, comprehen-
sive operating system, the Multiprogramming Executive (MPE). MPE
is a general-purpose, disc-based software system that supervises
the processing of user programs. MPE relieves the user of many
program control, input/output, and other housekeeping responsi-
bilities by monitoring and controlling the compilation, run prep-
aration, loading, execution, and output of user programs. MPE
also controls the order in which programs are executed and allo-
cates the hardware and software resources they require.

H. SYSTEM FEATURES
The HP 3000 Series III Computer Systems incorporate many features
usually found only on very large computer systems. These fea-

tures are summarized in paragraphs 1-2 through 1-10.

12 Stack Architecture

The system’s stack architecture provides private, hardware-
protected data storage for each user as well as an automatic
method for moving this data to and from the central processor
registers. The major operating features derived from this design
are:

a. Fast execution

b. Code compression

c. Hardware-protected execution

d. Dynamic allocation of subprogram data space

e. Ease of parameter passing

f. Efficient subprogram linkage

g. Rapid interruption and restoration of user environments

h. Subprograms being able to call themselves (recursion)

1-1

Introduction

13. Microprogrammed Operations

Many system operations that were previously programmed in soft-
ware are now microprogrammed. These operations are requested by
machine instructions which in turn execute multiple microin-
structions built into the central processor hardware. Micropro-
gramming eliminates repetitive coding otherwise required for
recurring operations.

H4. Data Base Management Facilities

The computer systems provide software facilities that allow the
user to create, access, and maintain large data bases. The in-
formation in these bases can be accessed both interactively from
a keyboard terminal and programmatically from user programs writ-
ten in any of the the available programming languages.

15. Five Programming Languages

The computer systems provide the user with a true multilingual
programming environment. The six available languages are COBOL,
RPG, FORTRAN, BASIC, SPL (a language developed especially for the
HP 3000 Series Computers), and APL.

16. Virtual Memory

The operating system’s hardware-assisted virtual memory scheme
offers each user program a memory space that exceeds the maximum
main memory size of 1024K words. Virtual memory consists of both
main memory and a flexible storage area on disc. Virtual memory
is implemented using a segment trap frequency algorithm that en-
sures the automatic presence in main memory of only those seg-
ments of code and data which are «currently required by the
executing program. Main memory is thus efficiently shared by
the users in a manner that gives each programmer the impression
of working with a much larger computer system.

+. Fault Control Memory |

The computer systems employ high-speed semiconductor memory mod-
ules that provide automatic fault detection and single-bit cor-
rection with no loss in per formance.

18. Concurrent 1/0 and CPU Operations

Many I/0 operations can be performed concurrently with Central
Processor Unit (CPU) and memory operations. This is possible
because, in addition to the CPU, the computer has an Input/Output
Processor (IOP) with its own dedicated data transfer path (IOP
bus) to which are connected a Multiplexer Channel(s) and one or
more Asynchronous Terminal Controllers. All of this hardware
operates under control of the MPE operating system which handles
all queuing and device scheduling.

Introduction

19. Reentrant Code and Private Data

Within the MPE environment, many user and system functions can be
active concurently without interferring with each other because
the hardware provides protection of programs and guarantees the
privacy of user data areas. The hardware keeps code and data
physically separate by organizing them into reentrant code seg-
ments and data segments. (The code segments can be shared among
users, but not altered. The data segments cannot be shared, but
can be altered by the creating user.) This segmenting ability
facilitates the operation of virtual memory in that 1; code seg-
ments need never be swapped out since an identical copy always
exists on disc, and 2; code segments can be swapped indirectly
from wherever the program file resides on disc without having to
be copied first to a special swapping disc.

+10. Operating System

A single, comprehensive operating system (MPE) supervises the
processing of all user programs and provides the user with an
extensive set of system functions. The major features of MPE are:

a. Interchangeable batch and interactive processing

b. Uniform, device-independent, and language- independent file
system

c. File coordination and security
d. Input and output spooling (concurrent usuage of I/0 devices)
e. Console job control

f. Automatic scheduling (under control of the installation’s
management)

g. System back-up facility

h. Power fail/auto restart

i. System tailoring (under control of installation’s management)
j. System logging facility

1. HARDWARE FEATURES

The hardware design of the HP 3000 Series 1III Computer System
will be discussed in detail throughout the remainder of this man-

ual. Briefly, the hardware features are:

a. Up tc 1024K words of high-speed, fault correcting, semicon-
ductor memory

b. High-speed selector channels for block transfers between main
memory and high-speed I/0 devices such as discs

1-3

Introduction

c. I/0 multiplexer channels for word transfers between main
memory and low- to medium-speed I/0 devices such as card
readers, line printers, and magnetic tape units

d. Asynchronous terminal controllers for data transmissions be-
tween main memory and interactive terminals

e. High-speed disc storage devices that provide storage capaci-
ties from 15 to 120 million bytes and data transfers of near-
ly one megabyte per second

f. 800 or 1600 character-per-inch magnetic tape units

g. Line printers with operating speeds from 165 to 1800 lines
per minute

h. CRT display terminals

i. Card readers and high-speed punched tape equipment

+12. SOFTWARE FEATURES

The HP 3000 Series III Computer Systems offer a wide range of
software including the MPE operating system, six programming lan-
guages, a text editor, a flexible file copier, a fast sort/ merge
package, two libraries of commonly used mathematical, statisti-
cal, and utility procedures, data base management facility, and
data communications products. Currently available software is
shown in figure 1-1.

+13. SYSTEM CONFIGURATIONS

The HP 3000 Series III Computer Systems are available in two pro-
duct lines; the 32421A Series III and the 32435A Series III. The
32421A Series III is available in two hardware models; a standard
2-bay model and an optional 3-bay model (Option 200). The 32435A
Series III 1is also available in two hardware models; a standard
l-bay model and an optional 2-bay model (Option 200). All models
use the same operating system, language processors, utility pro-
grams, data base management programs, and data communications
programs. All models operate in both batch and interactive modes
with full spooling capabilities. Rack layouts for the four mod-
els are shown in figures 1-2 through 1-5. (HP 29425A Cabinets
that contain the system discs are not shown.) The printed cir-

cuit assembly (PCA) slot assignments for the models are listed in
tables 1-1 through 1-3.

Introcduction

OPERATING SYSTEM
System c d File Input/
Configurator Initiator Console | :mma: Management Output
Manager nterpreter System System
Virtual Disc Private Serial Tape
Memory Space Volumes Disc Labels
Manager Manager Facility Interface Facility
. . User
Spooling Job/Session Process
Facility Scheduler Dispatcher Segmenter Loader Trap
Manager
Utility Accounting Logging Backup/ Povyer
Intrinsics Facilit Facilit Restore Fail/
acility acility Facility Auto Restart
LANGUAGES
COBOL RPG FORTRAN BASIC SPL APL
UTILITIES
Data
. File Compiler Scientific
Text Editor . Sort/Merge - . Entry
Copier Library Library Library
DATA MANAGEMENT DATA COMMUNICATIONS
DBMS
KSAM (Image & Query) FORMS DS RJE MRJE MTS

Figure 1-1.

HP 3000 Series III Computer System Software

Introduction

BAY NO. 2

PERIPHERAL BAY

1 N

T [(g
o Wis
|
- HP 79708 i
Tape ORIve | CARD CAGE NO. }

/
i

N~

o)

i

| CARD CAGE NO.7

INOT USED}

i FAN FILTER

i

CARD CAGE NO. 2

CARD CAGE NO. 3
CABLE GAP

CARD CAGE NO. 4

FAN FILTER

FRONT VIEW

(DOORS OMITTED FOR CLARITY)

BAY NO. BAY NO. 2
CPU BAY - PERIPHERAL 1/0 BAY
. .
°° MR 30310 ° % HP30310A
frebvuyppaurLuLy
o HP 300624 -
POWER
DISTRIBUTION UNIT
POWER CONTROL [O)]
[‘I MODULE
O
C
-
[|

REAR VIEW
(DOORS REMOVED FOR CLARITY)

Figure 1-2.

HP 32421A Series

III

Computer System, 2-Bay Model

BAY NO. 3 BAY NO. 2 BAY NO. 1 BAY NO. 1 BAY NO. 2 8AY NO. 3
PERIPHERAL BAY 1/0 BAY CPU BAY o CPU BAY 1/0 BAY. PERIPHERAL BAY
I l Oees voe
) D CARD CAGE NO. §
HP 7970E
TAPE DRIVE CARD CAGE NO. 1
|| =
i .
ii CARD CAGE NO. 6 A HP 30310A °
i CARD CAGE NO. 2
| | S
[] “ Q CABLE GAP
CARD CAGE NO. 7 CARD CAGE NO. 3
CABLE GAP
(BLANK PANEL)
HP 303134 JuuptuugnbLULLY
INOT USED) CARD CAGE NO. 4 = HP 300624 o
= == =
POWER O O power
' DISTRIBUTION UNIT DISTRIBUTION UNIT
{NOT USED) HP 30311A POWER CONTROL {BLANK PANEL)
| MODULE
C] 3
s _@ 0| ‘FAN FILTER
FAN FILTER FAN FILTER AN FLTER | S
L1l Ll | [[|
. FRONT VIEW REAR VIEW
{DOORS OMITTED FOR CLARITY) (DOORS REMOVED FOR CLARITY}

Figure

1“’30

HP 32421A Series III Computer System, 3-Bay Model

1-6

Introduction

[0
SYSTEM CONTROL PANEL

P02 P31
HP 63312F HP 62606M

suyuuuLLUVILY

= HP30062a 9
= e —

CARD CAGE NO. 1

CARD CAGE NO. 2 CARD CAGE NO. 2

CARD CAGE NO. 3
CARD CAGE NO. 3

o o

CARD CAGE NO. 4

CARD CAGE NO. 4

POWER SUPPLY CONTROL
AND DISPLAY ASSY
o o]
o|
O
o
FILTER o
o o
g e °
ISOLATION I o 9|
«f| TRANSFORMER o |, POWERCONTROLUNIT |
el 5 >
FRONT VIEW REAR VIEW
(DOOR REMOVED FOR CLARITY} (DOOR REMOVED FOR CLARITV!

Figure 1-4. HP 32435A Series III Computer System, 1-Bay Model

1/0 BAY CPU BAY CPU BAY 1/0 BAY
o) o o 0 o
SYSTEM CONTROL PANEL Po2 P31 P31 H
WP 63312F | | HP 62605M HP 62605M o
o o o ° L o
juuoauuyeuLY o
CARD CAGE NO. 5 CARD CAGE NO.1 = Hp30062A = CARD CAGE NO. 6
— | mmnnem | —_—
H [o
CARD CAGE NO.2 CARD CAGE NO. 2
CARD CAGE NO. 6 CARD CAGE NO. 6
CARD CAGE NO.3
CARD CAGE NO. 3
o[s =
HI [o
CARD CAGE NO. 4
CARD CAGE NO. 4
POWER SUPPLY CONTROL ° °
AND DISPLAY ASSY
o
cl -]
f d
o ol [°
o
0
. m"f‘,:;:g,"?‘"“ : POWER CONTROL UNIT ° °
o 0 Y L3 o o
FRONT VIEW REAR VIEW
(DOOR REMOVED FOR CLARITY) (DOOR-REMOVED FOR CLARITY)

Figure 1-5. HP 32435A Series III Computer System, 2-Bay Model

Introduction

SLOT PRINTED CIRCUIT ASSEMBLY
Al Reserved for maintenance panel PCA.
A2 30012-60001 Expanded Read Only Memory
A3 30003-60021 Read Only Memory
A4 30003-60022 Skip and Special Field
CARD AS 30003-60003 Arithmetic and Lagic Unit
CAGE AB 30003-60004 R Bus
NO.1 A7 30003-60025 S Bus
A8 30003-60006 Current Instruction Register
A9 30003-60007 Module Control Unit
A10 30003-60028 Input Output Processor
Al 30032-60001 Terminal Data Interface
A2 30061-60001 Terminal Control Interface
A3 Reserved for 204 Modem capability
A4 30009-60002 Fault Logging Interface
CARD A5
CAGE AB 30008-60003 Memory Array {128K)
NO.2 A7 Available to add 128K
A8 Available to add 128K
A9 Available to add 128K
A10 30007-60005 Memory Control and Logging
Al Available for add-on memory
A2 Available for add-on memory
A3 Available for add-on memory
A4 Available for add-on memory
CARD A5 Available for add-on memory
sLoT PRINTED CIRCUIT ASSEMBLY CAGE A6
NO.3 A7 30030-60020 Selector Channel Port Controller
A1l Available for programmed (S10) or direct 1/0 A8 .30030-60021 Selector Channel Register
A2 30215-60002 Magnetic Tape Controlier Processor A9 30030-60003 Selector Channel Control
A3 30215-60006 Magnetic Tape Controller A10 30030-6001 1 Selector Channel Sequencer
A4 Available for programmed (SIO) or direct 1/0
CARD A5 Available for programmed (SIO) or direct 1/0 Al 30036-60002 Multipiexer Channet
CAGE A6 Available for programmed (SIO) or direct 1/0 A2 Available for programmed (SI10) or direct 1/0.
NO.7 A7 Available for programmed (SIO) or direct 1/O A3 Available for programmed (S10) or direct 1/0.
A8 Available for programmed (SIO) or direct 1/0 A4 Reserved for Selector Channel maintenance.
A9 Available for programmed (SI0) or direct 1/0 CARD A5 30031-60001 System Clock
A10 Available for programmed (S10) or direct |/O CAGE A6 Reserved for maintenance.
NO.4 A7 30229-60001 7905A/20A/25A Interface
A8 13037-60028 Disc Controller
A9 13037-60024 Error Correction
A10 13037-60001 Microprocessor
Table 1-1, HP 32421A Series III 2-Bay Model PCA Slot Assignments

Introduction

SLOT PRINTED CIRCUIT ASSEMBLY sLoT PRINTED CIRCUIT ASSEMBLY
A1l 30036-60002 Multiplexer Channel Al Reserved for maintenance panel PCA.
A2 30215-60002 Magnetic Tape Controller Processor A2 30012-60001 Expanded Read Only Memory
A3 30215-60006 Magnetic Tape Controller A3 30003-60021 Read Only Memory
A4 30031-60001 System Clock Ad 30003-60022 Skip and Special Field
CARD A5 Available for programmed (SIO) or direct 1/0 CARD A5 30003-60003 Arithmetic and Logic Unit
CAGE A6 Available for programmed (S10) or direct 1/0 CAGE A6 30003-60004 R Bus
NO5 A7 Available for programmed (SI0) or direct 1/0 NO.1 A7 30003-60025 S Bus
A8 Available for programmed (S10) or direct 1/O A8 30003-60006 Current Instruction Register
AS Available for programmed (SIQ) or direct 1/O A9 30003-60007 Module Control Unit
A10 Available for programmed (SI10) or direct 1/O A10 30003-60028 Input Output Processor
Al Available for programmed (S10) or direct 1/0 Al 30032-60001 Terminal Data Interface
A2 Auvailable for programmed (SIO) or direct /O A2 30061-60001 Terminal Control Interface
A3 Auvailable for programmed (SI0) or direct 1/O A3 Reserved for 203 Modem capability
Ad Available for programmed (SI0) or direct 1/0 A4 30009-60002 Fault Logging Interface
CARD A5 Available for programmed (S10) or direct 1/O CARD A5
CAGE A6 Available for programmed (SI0) or direct 1/0 CAGE A6 30008-60003 Memory Array (128K)
NO.6 A7 Available for programmed (SIQ) or direct 1/0 NO.2 A7 Auvailable to add 128K.
A8 Available for programmed (S10) or direct 1/0 A8 Available to add 128K.
AS Auvailable for programmed (SI10) or direct 1/O A9 Available to add 128K.
A10 Available for programmed (SI10) or direct 1/0 A10 30007-60005 Memory Control and Logging
A1l Available for programmed (SI10) or direct 1/0 Al Available for add-on memory
A2 Available for programmed (S10) or direct 1/0 A2 Auvailable for add-on memory
A3 Available for programmed (SIO) or direct 1/0 A3 Available for add-on memory
A4 Available for programmed (SI10) or direct |/O Ad Available for add-on memory
CARD A5 Available for programmed (S10) or direct 1/0 CARD A5 Available for add-on memory
CAGE A6 Available for programmed (SI10) or direct 1/0 CAGE AB
No.7 A7 Available for programmed (SIO) or direct 1/0 NO.3 A7 30030-60020 Selector Channel Port Controller
A8 Reserved for second disc controller AB 30030-60021 Selector Channel Register
A9 Reserved for second disc controller A9 30030-60003 Selector Channel Control
A10 Reserved for second disc controller A10 30030-60011 Selector Channel Sequencer
Al Reserved for second Selector Channel
A2 Reserved for second Selector Channel
A3 Reserved for second Selector Channel
. . A4 Reserved for Selector Channel maintenance.
CARD AB Reserved for second 7905A/20A/25A Interface
CAGE - A6 Reserved for maintenance.
NO4 A7 30229-60001 7905A/20A/25A Interface
A8 13037-60028 Disc Controller
A9 13037-60024 Error Correction
A10 13037-60001 Microprocessor

Table 1-2., HP 32421A Series III 3-Bay Model PCA Slot Assignments

Introduction

Slot PRINTED CIRCUIT ASSEMBLY Slot PRINTED CIRCUIT ASSEMBLY
A1l Available for programmed (S10) or direct 1/0 Al Reserved for maintenance panel PCA.
A2 Auvailable for programmed (S10) or direct 1/0 A2 30012-60001 Expanded Read Only Memory.
A3 Auvailable for programmed (S10) or direct 1/0 A3 30003-60021 Read Only Memory
A4 Available for programmed (S10) or direct |/0 A4 30003-60022 Skip and Special Field
. CARD | A5 | Available for programmed (SIO) or direct 1/0 CARD [A5 | 30003-60003 Arithmetic and Logic Unit
CAGE | A6 | Available for programmed (SIO) or direct 1/0 CAGE | A6 | 30003-60004 R Bus
NO.5 | A7 | Available for programmed (SIO) or direct 1/0 NO.1 | A7 | 30003-60025 S Bus
A8 Available for programmed (S1Q) or direct 1/0 A8 30003-60006 Current Instruction Register
A9 Available for programmed (S10) or direct 1/0 A9 30003-60007 Module Control Unit
A10 Available for programmed (SI10) or direct 1/0 A10 | 30003-60028 Input Output Processor
A1l Available for programmed (SI10) or direct 1/0 A1l 30008-60003 Memory Array {128K)
A2 Auvailable for programmed (SI10) or direct 1/0 A2 Available to add 128K
A3 Available for programmed (SI10) or direct 1/0 A3 Available to add 128K
A4 Available for programmed (SIO) or direct 1/O A4 Available to add 128K
CARD A5 Available for programmed (SI0) or direct 1/0 CARD A5 30007-60005 Memory Control and Logic #1
CAGE A6 Available for programmed (S10) or direct I/0 CAGE A6 Available to add Memory Control and Logic #2
NO. 5 A7 Auvailable for programmed (SI10) or direct 1/0 NO.2 A7 Available to add 128K
A8 Available for programmed (SI10) or direct 1/0 A8 Available to add 128K
A9 Available for programmed (SI0) or direct 1/0 A9 Available to add 128K
A10 Available for programmed (SIO) or direct 1/0Q A10 Available to add 128K
A1l 30135-60063 System Clock/FLI
A2 30032-60001 Terminal Data Interface
1/0 BAY A3 30061-60001 Terminal Control Interface
A4 30030-60020 Selector Channel Port Controller
CARD | A5 | 30030-60021 Selector Channel Register
NO. 3 A6 30030-60003 Selector Channel Control
' A7 30030-60011 Selector Channel Sequencer
A8 Available for programmed (SIO) or direct 1/0
A9 Available for programmed (SI10) or direct 1/O
A10 Available for programmed (SI0) or direct 1/0
A1l Available for programmed {SIO) or direct |/O
A2 Available for programmed (SIO) or direct 1/O
A3 Available for programmed (SI0) or direct 1/0
CARD A4 Available for programmed (SIO) or direct 1/0
CAGE AB Available for programmed (SI10) or direct 1/0
NO. 4 A6 Available for programmed (SIO) or direct 1/O
’ A7 30215-60002 Magnetic Tape Controller Processor
A8 30215-60006 Magnetic Tape Controller
A9 30036-60002 Multiplexer Channel
A10 30229-60001 Disc Control Interface

CPU BAY

Table 1-3. HP 32435A Series III PCA Slot Assignments

1-10

Introduction

NOTES

1-11

Introduction

NOTES

1-12

SYSTEM/CPU OVERVIEW

This section contains a brief description of the computer sys-
tem’s hardware organization and detailed discussions of the sys-
tem’s operating environment, instruction formats, addressing
conventions, and CPU operations. The topics that are summarized
in this section are discussed in more detail throughout the re-
mainder of this manual. 1In addition, this section contains prin-
ciples of operation and servicing information for the CPU.

21 HARDWARE ORGANIZATION

The hardware elements of the computer system are organized as
shown in figure 2-1. This basic structure of independent modules
organized around a Central Data (CTL) Bus permits high-speed in-
ternal data rates. When not communicating over the CTL Bus, each
module can run independently at its own speed. This structure
also allows new equipment to be added without going through a
major hardware reconfiqguration. The separate Input/ Output Pro-
cessor (IOP) Bus is totally dedicated to input/output (I/0) data
transfers which allows the computer system to immediately respond
to I/0 device needs regardless of what transfers are currently in
progress between the various system modules. The 1IOP Bus also
permits many I/0 operations to be handled concurrently with CPU,
Main Memory, and Selector Channel operations. Data can be
transferred directly between Main Memory (Bank 0 through Bank 15)
and high-speed I/0 devices in block mode via the Selector Channel
Bus, Selector Channel, Port Controller, and CTL Bus. For lower-
speed I1/0 devices, data can be multiplexed on a word-by-word
basis via the IOP, IOP Bus, Multiplexer Channel, and Multiplexer
Channel Bus. 1In both cases, the I/0O channels operate in parallel
with CPU operations. 1In addition, 1I/0 devices attached to the
IOP Bus can be directly controlled through the use of the CPU’s
direct I/O instructions.

2-2. Bus System

The computer s bus system is a network of data, control, and pow-
er lines necessary to effect the transfer of data between comput-
er modules and between I/0 devices and memory. The individual
buses are discussed in paragraphs 2-3 through 2-8.

2-3. CTL BUS. The CTL Bus provides the communications path
between all computer modules. This bus consists of a 50-conductor
flat cable and connectors and is connected to each Module Control
Unit (MCU) and Port Controller in the computer system. (Refer to
paragraph 2-15.)

System/CPU Overview

M

C |Banks0-7

U

Lower Memory Module

M

C|Banks8-15

U

Interactive Terminals
Upper Memory Madule (Up to 16 terminals per controller)
Central Multiplexer
g Processing Multiolex Channel Bus ' Asynchronous Asynchronous
@ ™ Unit (l;h“r)\: ler Terminal Terminal
« CPU anne Contrcllsr Controller
- C
g U - X __
Upto 16

3 Input/Output Device additional
E Processor Controller | device
2 1op IL controllers J'
& B

|
¥

I0P BUS

Device
Controller

Note: Each device controller on

the Multiplexer Channel can
Port Selector have from 1 to 8 devices
Controller Channel connected to it depending
Selector Channel Bus on the type of device.

Figure 2-1. HP 3000 Series III Computer System Hardware
Organization

2-4. 1I0P BUS. The IOP Bus provides the means for the IOP to
send control signals and control words to any Device Controller
and for the IOP to accept interrupts from any Device Controller.
(For multiplexed 1I/0 devices, all data transmissions also occur
via the IOP Bus. For high-speed devices connected to the Selec-
tor Channel Bus, data transmissions for direct I/O instructions
also occur via the IOP Bus.) This bus consists of a 50-conductor
flat cable and connectors and connects the IOP to every Device
Controller and Multiplexer Channel in the computer system.

2-5, SELECTOR CHANNEL BUS. The Selector Channel Bus (one for
each Selector Channel) provides the communication path for the
Selector Channel to select one of up to eight I/0 devices for
transmission. Data transmissions on the Selector Channel Bus,
occuring as a result of an SIO instruction, are by block transfer
(data burst). This bus consists of a 50-conductor flat cable and
connectors and connects a Selector Channel to each of its as-
sociated high-speed Device Controllers.

System/CPU Overview

2-6. PORT CONTROLLER BUS. The Port Controller Bus (not shown
in figure 2-1) provides the communication path between each
Selector Channel and the Port Controller which interfaces with
the CTL Bus. This bus consists of a 50-conductor flat cable and
connectors and connects each Selector Channel to the Port
Controller.

2-7. MULTIPLEXER CHANNEL BUS. Except for minor signal nomen-
clature differences, the Multiplexer Channel Bus (one per Multi-
plexer Channel) 1is identical to the Selector Channel Bus. This
allows certain high-speed 1I/0 devices to be connected inter-
changeably to either bus. The major difference 1is that data
transmissions are under control of a Multiplexer Channel instead
of a Selector Channel. All data transmissions in this case are
via the IOP Bus and are multiplexed among the I/0 devices on a
word-by-word basis. (The equivalent data lines on the Selector
Channel Bus are used as service request lines on the Multiplexer
Channel Bus.) This bus consists of a 50-conductor flat cable and
connectors and connects each Multiplexer Channel to each of its
associated Device Controllers.

2-8. POWER BUS. The Power Bus (not shown in figure 2-1), unlike
the previously discussed flat-cable buses, 1is a rigid PCA with
fixed 56-pin connectors. The Power Bus provides dc power and and
some IOP Bus related signals for each PCA mounted in a particular
card cage module. There is one Power Bus for each card cage mod-
ule and each Power Bus is individually wired to the computer’s
power supply. Al though dc power is not distributed from card
cage module to card cage module via the Power Bus, a 20-conductor
flat cable is connected between the Power Buses for the distribu-
tion of the IOP Bus related signals. In addition, each Power Bus
contains connector pins reserved for the data poll, interrupt
poll, and system clock signals.

2-9. Functional Hardware Elements

Brief descriptions of the principal hardware elements illustrated
in figure 2-1 are contained in paragraphs 2-10 through 2-14.

2-10. CENTRAL PROCESSOR MODULE. The Central Processor Module
determines the basic characteristics of the computer system’s
hardware and consists of the MCU, CPU, and 1IOP. Significant
features of the module are listed in table 2-1.

The MCU resolves CTL Bus priority conflicts between the CPU and
IOP and interfaces both to the CTL Bus. Refer to paragraph 2-15.
A detailed discussion of the MCU is contained in Section VI.

The CPU translates received instruction words into microprogram
starting addresses, decodes microprograms into fixed control sig-
nal sequences, executes various arithmetic functions, and either
transfers the results out of the Central Processor Module or
stores the results in various internal registers for future use.
The CPU shares the MCU with the IOP. A detailed discussion of
the CPU is contained in paragraphs 2-71 through 2-133.

2-3

System/CPU Overview

The IOP provides the I/0 control link for the computer system and
resolves priority conflicts for 1I/0 interrupts and multiple
Multiplexer Channel access tc the CTL Bus. The IOP performs
different functions for each of the three T/0 transfer modes.
(Refer to Section VII.) During direct F/0 transfer mcde and
depending on received direct I/0 instructions (RIO, WIO, TIO,
CIO, SIN, and SMSK), the 1IOP transfers either data, device
status, or control information between the CPU and a Device Con-
troller. During programmed I/0 transfer mode via a Multiplexer
Channel, the IOP transfers I'/O program words between memory and
the Multiplexer Channel, and transfers data between memory and a
Multiplexer—-Channel-selected Device Controller. During pro-
grammed I/O transfer mode via a Selector Channel, the IOP only
transfers initialization information tc a Device Controller
asscciated with the Selectcer Channel; it does not become invclved
in any part of the I/O program execution. During all I/O trans-
fer modes, the IOP interrupts the CPU on behalf of the Device
Controllers. The IOP shares the MCU with the CPU.

Physically, the Central Processor Module consists of nine PCA’s
contained in slots A2 through Al0 of Card Cage No. 1 of all HP
3000 Series III Computer System models. Card Cage No. 1 is a
dedicated card cage module and the nine PCA’s must be installed
exactly as shown in tables 1-1 through 1-3.

2-11. MAIN MEMORY., Main Memory is a high-speed, semiconductor,
randan access memory that provides high-speed stcrage for the
computer system. Main Memory operates as an error correcting
memory with single-bit fault correction and some double-bit de-
tection. (Main Memory can operate as a non-error correcting mem-
ory with a parity bit, but this is not the normal operating
mode.) Main Memory can vary in size from 128K (K=1024) words to
1024K words and, due to its modular design, it can easily be ex-
panded from one size toc another.

A maximum word capacity system .consists of 16 64K-wcrd memory
banks (Bank 0 through Bank 15) divided into twc 512K-word memory
modules. Each 512K-word memory module contains its own MCU which
controls werd transfers between the module and the other system
modules connected to the CTL Bus. The word length transmitted
over the CTL Bus is 17 bkits; 16 bits of data (one word or two
bytes) and one parity bit. (Within the memory modules, word
length is expanded to 22 bits; 16 bits of data and six bits for
automatic fault detection and correction.) A detailed discussion
of Main Memory is contained in Section VI.

Physically, Main Memory consists of three basic PCA%s configured
as shown in table 2-2. It should be noted that each Semiconduct-
or Memory Array (SMA) PCA contains 128K words of memory, that one
Memory Control and Logging (MCL) PCA canh support up to four SMA
PCA’s (512K), and that one Fault Logging Interface (FLI) PCA can

support the computer system’s maximum memory capacity of eight
SMA PCA’'s (1024K). The Main Memory PCA’s are arranged in Card

Cages No.2 and No.3 as shown in tables 1-1 thrcugh 1-3. Conven-
tionally, card cage slots 2346 through 2A9 (HP 32421A Series III)

2-4

System/CPU Overview

Table 2-1. Central Processor Module Features

I
ARCHITECTURE

Hardware-implemented stack
Separate code and data
Non-modifiable reentrant code
Variable-length code segmentation
Virtual memory for code

Dynamic relocatability of programs

IMPLEMENTAT ION

I
I I
| I
I I
I I
| I
| I
| |
I I
I I
I |
I I
I Microprogrammed CPU I
I 175 nanosecond microinstruction time I
| Automatic restart after power failure |
| CTL Bus |
| Bus parity checking I
: Concurrent CPU and I/0 operations 1
‘ INSTRJCTIONS l
I I
I I
I I
| |
I |
| |
| I
I I
I I
I

209 instructions

All instructions except stack operations are 16 bits
in length. (Stack operations can be packed two per
per word.)

16- and 32-bit integer arithmetic

32- and 64-bit floating point arithmetic

28-digit packed decimal arithmetic

Special instructions that optimize operating system
efficiency

or 2A1 thrcugh 2A4 (HP 32435A Series IIL) are reserved for the
Lower Memory Module (Banks 0 - 7) and card cage slots 3A2 through
3A5 (HP 32421A Series II1) or 2A7 through 2A10 (HP 32435A Series
III) are reserved for the Upper Memory Module (Banks 8 - 15).

2-12. MULTIPLEXER CHANNEL. The Multiplexer Channels are design-
ed to operate with moderate-speed I/0 devices. Each Multiplexer
Channel can handle up toc 16 Device Controllers. The Multiplexer
Channel, in conjunction with the IOP, allows its associated De-
vice Controllers to run concurrently, interleaving their trans-
fers to or from Main Memory on a wcrdi-by-word basis. The
Multiplexer Channel resolves priority conflicts between its
associated Device Controllers for access to the 1IOP, translates
I/0 program doubleword instructions intc operating commands for
its Device Controllers, and maintains the operating status of
each Device Controller. Physically, the Multiplexer Channel con-
sists of one PCA which is conventicnally installed in Card Cage
No. 4 or 5 (depending on the ccmputer system model) as shown in
tables 1-1 through 1-3. A detailed discussion of the Multiplexer
Channels is contained in Section VII.

2-5

System/CPU Overview

Table 2-2. Main Memory Configurations

| T T I
| | | PCA ‘s Required |
| | | I
| Bank | System I T77771 T |
| No. | Word Capacity | MCL | SMA | FLI | Total |
I I | I I I I
| | - T T I T T
I 2 I 128K Il 1 | 1 1 1 | 3 I
| 4 | 256K I 1 | 2 | 1 | 4 |
| 6 | 384K I 1 | 3 |1 1 | 5 |
| 8 | 512K | 1 | 4 | 1 | 6

| 12 | 768 K I 2 | 6 | 1 | 9 |
} 16 % 1024K i 2 | 8 | 1 | 11 |

—— . — | ——— o - " " ——— .- t— S———

2-13. PORT CONTROLLER/SELECTOR CHANNEL. The Port Controller and
Selector Channels are designed to operate with high-speed 1I/0
devices. The Port Controller contains the MCU logic required to
interface the Selector Channels with Main Memory via the CTL Bus
and also resolves priority conflicts between Selector Channels
for accessing the CTL Bus. (Although the Port Controller contains
three selector channel ports, only two Selector Channels can be
installed in the computer system at one time.) Physically, the
Port Controller <consists of one PCA and, as shown in tables 1-1
through 1-3, is conventionally installed in Card Cage No. 3. De-
tailed discussions of the Port Controller and Selector Channel
are contained in Section VII.

Each Selector Channel can handle up to eight Device Controllers.
Unlike the Multiplexer Channel which switches between Device Con-
trollers on demand (based on hardware priority), the Selector
Channel uses only one Device Controller at a time and that Device
Controller monopolizes the channel until the device’s I/0 program
is complete. Thus, only one I/O program is current at a given
time for any one Selector Channel. Also, the Selector Channel
directly accesses Main Memory for data and 1I/0 program word
transfers rather than indirectly as the Multiplexer Channel does
through the IOP. Physically, each Selector Channel consists of
three PCA's and, as shown in tables 1-1 through 1-3, are conven-
tionally installed in Card Cage No. 3 and Card Cage No. 4 depend-
ing on the computer system model.

2-14, DEVICE CONTROLLERS. The computer system can handle up to
125 Device Controllers. Device Controllers provide the hardware
I1/0 linkage between the computer system and external I/0O devices.
Primarily, a Device Controller translates programmed I/O commands
(from a Multiplexer or Selector Channel) or direct I/0 commands
(from the IOP) into unique control signals required by its as-
sociated external I/0 device(s). A Device Controller also gen-
erates the interrupts required by its associated I/0 device (s)
and the interrupts required by direct or progr ammed commands.

2-6

System/CPU Overview

A Device Controller consists of one or more PCA’s and, depending
on the particular type of controller, can drive one or several
external I/0 devices. There are three types of Device Control-
lers; controllers used only for direct I/0, controllers used only
for programmed I/O, and controllers used for both direct and pro-
grammed I/0. Regardless of the type, every Device Controller can
accept all or some direct I/O instructions, can dJenerate inter-
rupts, and has a unique device number for addressing. Device
Controllers can be installed in any of the available card cage
slots designated in tables 1-1 through 1-3.

2-15. CTL Bus Priority

All computer system modules contain MCU logic that interfaces
each module to the others via the CTL Bus. Each module gains
access and control of the CTL Bus on a priority basis via its MCU
logic. (The CTL Bus is only available to one module at a time.)
For example; if two modules attempt to gain access to the CTL Bus
simultaneously, the module with the higher priority will get the
bus and the module with the lower priority will not get the bus
until it is released by the higher-priority module. CTL Bus
priority is resolved by assigning priority numbers to each system
module with jumper switches located in each module’s MCU logic.
The system modules assigned the lowest priority numbers have the
highest priority for accessing the CTL Bus.

Figure 2-2 illustrates the CTL Bus priority number assignments
for each module in a typical computer system. It should be noted
that the highest CTL Bus priorities (lowest priority numbers) are
reserved for Main Memory and that the lowest CTL Bus priority
(priority number 5) is reserved for the Central Processor Module.
The lower memory module responds to both priority numbers 0 and
1. The upper memory module responds to both priority numbers 2
and 3. The required MCU logic for Main Memory is contained on
the MCL PCA(s). (Priority for Memory Banks 0 through 7 is con-
trolled by one MCL PCA and priority for Memory Banks 8 through 15
is controlled by a second MCL PCA.) If installed, the Selector
Channel(s) has the next highest CTL Bus priority (priority number
4) after Main Memory. The required MCU logic for the Selector
Channel(s) is contained on the Port Controller PCA. As previous-
ly discussed, the Central Processor ‘s MCU resolves CTL Bus prior-
ity conflicts between the IOP and CPU. The IOP always has higher
priority than the CPU. Therefore, the CPU always has a lower CTL
Bus priority than any other module in the computer system.

2-16. OPERATING ENVIRONMENT

2-11. Virtual Memory

Virtual memory is a memory management scheme that uses semicon-
ductor Main Memory and disc storage secondary memory. Due to a
technique called memory segmentation, many programs stored in
secondary memory can concurrently access the computer system and
share its Main Memory. The system organizes programs into vari-
able-length segments of code and data in secondary memory which

2-7

System/CPU Overview

CTL BUS
PRIORITY PRIORITY PRIORITY PRIORITY
NO. @ AND 1 NO. 2 AND 3 NO. 5 NO. 4
512 K WORDS 512 K WORDS
PORT
LOWER MEMORY MODULE UPPER MEMORY MODULE CPU/ioP COTEQOb
BANKS @ -7 BANKS 8- 15

Y
MAIN MEMORY

Figure 2-2. CTL Bus Priority Number Assignments

can be transferred in and out of Main Memory on demand. (Code
consists of executable instructions and unchanging constants of a
program or subprogram. As the code is executed, the manipulated
values are referred to as data.) When a program is executed, only
those segments of code and data required at a particular time
actually reside in Main Memory and all other related segments
remain in secondary memory until they in turn are required. When
a particular code segment is no longer needed, it is overlayed in
Main Memory by the next required code segment. (Code segments
are non-modifiable and reentrant.) If a code segment is needed
again, it is again copied from the secondary memory disc where it
resides. Data segments, howevér, are dynamic and their contents
can be changed during the programs execution. Therefore, when a
particular data segment is no longer needed, it is copied back
into the secondary memory disc and replaces the original data
segment version. The vacated Main Memory space is then available
for other segments. This process of transferring segments be-
tween secondary memory and Main Memory is referred to as swapping
and permits large programs that actually exceed Main Memory’s
word capacity to be executed concurrently and still allow Main
Memory space for additional user programs.

2-18. Variable-Length Segmentation

Var iable-length segmentation of code and data is used to facili-
tate multiprogramming. It minimizes waste of memory resources
due to internal fragmentation and allows the operating system to
deal with logical rather than physical entities. This means that
a particular subprogram can be contained within one segment
rather than arbitrarily divided between two physical pages, thus
minimizing the amount of swapping that need be accomplished while
executing the subprogram. The location and size of all executing
code segments are maintained 1in a Code Segment Table and the lo-
cation and size of all associated data segments are maintained in

2-8

System/CPU Overview

a Data Segment Table. These tables are known to both software
and hardware. Software uses the tables for dynamic memory man-
agement by the operating system. Hardware uses the tables to
perform references and transfers between segments and to make
sure that all the segments required for current execution are
present in Main Memory. (Refer to paragraph 2-24.) Code segments
can be up to 16K words in length and data segments can be up to
32K words in length.

2-19. Processes

In an MPE environment, programs are run on the basis of processes
created and handled by the operating system. A process is the
basic executable entity in MPE. A process is not just a parti-
cular program; it is the unique execution of a particular program
by a particular user at a particular time. When a user requests
the execution of program, the system creates a private, hardware-
protected data segment called a stack for that particular execu-
tion. Data segments separate from the stack can be obtained
dynamically during process execution. Data segments can also be
expanded and contracted by the operating system as required.
This includes system handling of the stack overflow interrupt
(paragraph 2-69) during which the data segment may automatically
be expanded to accommodate operation of the stack. The program’s
changing set of code segments operating on the data stack consti-
tute the process. (The code segments used by a particular pro-
cess can be shared with other processes, but each individual
process data stack is private.) In order for a process to exe-
cute, its data stack and code segment containing the procedure
currently in execution by the CPU must be present in Main Memory.

2-20. Data Stacks

As previously discussed in paragraph 2-19, data for each user is
organized into a data stack. In general, a stack is a storage
area where the last item stored in is usually the first item tak-
en out. In actual use, programs have direct access to all items
in the stack by specifying addresses relative to several CPU reg-
isters. (Refer to paragraph 2-21.) All features of the stack,
including the automatic transferring of data to and from CPU reg-
isters and checking for stack overflow and underflow, are imple-
mented in the hardware. When programming in high-level languages
such as COBOL or RPG, all stack manipulations are accomplished
autcmatically by the language processor. The user can, however,
manipulate the stack directly by writing programs in SPL. Figure
2-3 illustrates the general structure of a data stack as viewed
from a subprogram. The white areas represent locations filled
with valid data and the shaded area represents available unfilled
locations. The stack area is delimited by the locations defined
as Data Base (DB) and Stack Pointer (S-pointer). The DB and S-
pointer addresses are retained in dedicated CPU registers. (Re-
fer to paragraph 2-21.) The Q-minus relative addressing area con-
tains the parameters passed by the calling program. The area
between the S-pointer and Q contains the subprogram’s local and
temporary variables and intermediate results.

2-9

System/CPU Overview

bB

GLOBAL VARIABLES DB - plus direct relative
addressing {up to DB+255)

GLOBAL ARRAYS DB - plus indirect relative
addressing

PARAMETERS Q minus relative

addressing {up to Q - 63)

LOCAL VARIABLES Q - plus direct relative

addressing (up to Q+127)

LOCAL ARRAYS Q - plus indirect relative

addressing

TEMPORARY VARIABLES &

INTERMEDIATE RESULTS S - minus relative

addressing (up to S - 63)

P U7 A N

Z

Figure 2-3., Typical Data Stack

The data in the DB location is the oldest element on the stack.
The data in the S-pointer location is the most current element on
the stack. (The S-pointer location is referred to as the Top of
the Stack (TOS). Conventionally, TOS is represented downward
from DB to correspond to the normal progression of writing soft-
ware programs where the most recently written statement is fur-
ther down the page than previously written statements. The area
from S+1 to Z is available for adding elements to the stack.
When a data word is added to the stack, it is stored in the next
available 1location and and the S-pointer is automatically incre-
mented by one to reflect the new TOS. (This process 1is said to
"push" a word onto the stack.) When data is deleted from the
stack, the S-pointer is decremented which puts the deleted word
in an undefined area. S-minus relative addressing is used to
refer to recently stacked elements of data and is one of the
standard addressing conventions. Under this convention, S-1 is
the second element on the stack, §S5-2 is the third element on the

stack, etc. The other standard addressing conventions are
DB-plus relative addressing, Q-minus relative addressing, and

2-10

System/CPU Overview

Q-plus relative addressing. (Q separates the data of a calling
program or subprogram from the data of a called subprogram.)

Since the four TOS elements are the most frequently used, there
are four corresponding CPU registers (RA, RB, RC, and RD) that
can at various times contain these four elements. The use of the
four CPU registers increases stack operation execution speed by
reducing the number of memory references needed when manipulating
data at or near TOS. The four CPU registers are implicitly ac-
cessed by many of the machine instructions and whenever stack
locations S, S-1, S-2, or S-3 are specifically referenced. (Refer
to paragraphs 2-96 and 2-97.) During execution, data stacks are
automatically expanded by the operating system up to a maximum of
32K words.

The system is also capable of operating in a split-stack mode.
(Refer to paragraph 2-64.) In split-stack mode, the DB Register
points to the current extra data segment and the other stack reg-
isters continue to point to the stack data segment. This is par-
ticularly efficient for system routines with tables in system
data segments. In split-stack mode, these data segments can be
accessed relative to the DB Register while using the other stack
registers for computation. In addition to split-stack mode, the
system contains instructions for moving data between data seg-
ments. These instructions cause an "absence trap" if either of
the required data segments is not present in Main Memory. There-
fore, the system can access very large address spaces outside of
the stack and can provide buffering and other data storage facil-
ities without having to reserve space for these functions within
the stack data segment.

2-21. CPU Registers

The computer system contains 38 special purpose registers which
perform the specific functions summarized in table 2-3. Since
all addressing of code and data segments is accomplished relative
to hardware address registers, the segments can be dynamically
relocated in memory by simply changing the register base
addresses. (The few instances where absolute addresses are re-
quired are privileged operations handled by the operating
system.) Several of the hardware registers are used for defining
the 1limits and operating elements of the code and data segments.
As shown in figure 2-4, four of the CPU registers point to loca-
tions in a code segment and eight of the CPU registers point to
locations in a data segment. It should be noted that there will
normally be several segments in Main Memory at one time, but only
one code segment and one data segment will be active at any given
time. The CPU registers always point to the currently active
segment. The functions of the CPU segment pointer registers are
discussed in paragraphs 2-22 and 2-23. The remaining special
purpose registers will be discussed later in this manual.

System/CPU Overview

Table 2-3. Machine Registers

| 1 [1 |
| Register | Function | Register | Function n
| | I |

I I | l |
PB		SWCH	Switch Register
P	Code Segment		
PL	Pointers	PCLK	Process Clock
PB-Bank	: I Register =		
I			

| CIR | Current Instruction| SPO | |
| | Register | SP1l | |
| | | sp2 | I
| NIR | Next Instruction | sP3 | Scratch Pad, Flag, |
I | Register | CTR | and Interrupt |
| | | ABS-Bank | Registers |
| DL I | CPX1 I |
| DB | | CPXx2 I I
I Q I | MOD I I
| sM | Data Segment | | |
| SR | (Stack) Pointers | I0A | I/0 Registers |
| 2 I | 10D I I
DB-Bank			
S-Bank		ACOR	Memory Address and
		DCOR	Data Registers
RA		OPND I , I	
RB	Top Of Stack (TOS)		
RC	Registers	RAR	Firmware Address
RD		SAVE	Registers ’

| X | Index Register | STA | Status Register I
| | | I

!
!
!

2-22. CODE SEGMENT REGISTERS. The functions of the CPU code
segment registers are as follows:

The PB Register defines the program base of the cocde segment be-
ing executed. The PB Register contains a 16-bit absolute address
pointing to the first memory location of the code segment.

The PB-Bank Register is a 4-bit register used in conjunction with
the PB Register to define in which memory bank the code segment
resides.

The PL Register defines the program limit of the code segment
being executed. The PL Register contains a 16-bit absolute ad-
dress pointing to the last memory location of the code segment.

The P Register is the program counter. The P Register contains a
l6-bit absolute address pointing to the memory location of the

instruction being executed. The P Register can never point to a
location beyond the 1limits defined by the PB and PL Registers.

2-12

System/CPU Overview

CODE SEGMENT DATA SEGMENT
POINTING POINTING
REGISTERS REGISTERS

PB Stack
CODE DATA
Bank SEGMENT Bank SEGMENT
D h PB Register l——> D l DL Register } >
(Program Base} (Data Limit)
DB
Bank
D I DB Register
(Data Base)
I P Register }——b
(Program Counter)
I PL Register -

(Program Limit) [Q Register

{Stack Marker)

(Top-of-Stack in Memory)
{ [SM Register }
; r-——--=="
Displacement S Pointer
=0,1,23,4 e e - —
@ I/L\‘SSFESSSS'ES (Logical Top-of-Stack)
r Z Register J >
(Stack Limit)

Figure 2-4. CPU Segment Pointer Registers

2-23. DATA SEGMENT REGISTERS. The functions of the CPU data
segment (stack) registers are as follows:

The DL Register defines the data limit of the current data seg-
ment. The DL Register contains a 16-bit absolute address point-
ing to the first word of memory available to the user’s data
space.

System/CPU Overview

The DB Register defines the data base of the current wuser’s
stack. The DB Register contains a 1l6-bit absolute address point-
ing to the first memory location of the directly addressable glo-
bal area of the stack.

The DB-Bank Register is a 4-bit register used in conjunction with
the DB Register to define in which memory bank the stack or split
stacks (paragraph 2-64) reside.

The Q Register defines the current stack marker in the current
data segment. The area of the stack between Q and S represents
data that is incurred by the current procedure or routine. The
Q Register «contains a 16-bit absolute address pointing to the
fourth word of the current stack marker being used within the
stack. The location pointed to by the Q Register must be within
the limits defined by the DB Register and Z Register. (During
privileged mode (paragraph 247), Q can be moved below DB.

The SM Register defines the last memory location of the current
stack. The SM Register contains a 16-bit absolute address point-
ing to the 1last accessed data location in memory. It should be
noted that the contents of the SM Register may not necessarily
point to the actual (or logical) TOS. The location pointed to by
the SM Register must be within the limits defined by the DB Reg-
ister and Z Register.

The SR Register defines the number of TOS elements that are 1in
the CPU stack registers. The SR Register contains a 3-bit number
that has a value from 0 and 4. This number is a positive dis-
placement which, when added to the address contained 1in the
SM Register, indicates the logical TOS. (The contents of the
SM Register plus the contents of the SR Register always defines
the S-pointer.)

The S-pointer is not a physical register, but is logically com-
posed by adding together the contents of the SM Register and
SR Register. The S-pointer always defines the logical TOS. (The
principle of using two physical registers to create the S-pointer
is employed for hardware convenience in achieving fast execution
times.) The following relationship exists between the S-pointer
and the CPU stack registers:

RA = S-pointer = SR Register + SM Register
RB = S-pointer - 1
RC = S-pointer - 2
RD = S-pointer - 3

The Z Register defines the stack 1limit of the current user’s
stack. The Z Register contains a 16-bit absolute address point-
ing to the last memory location available to the stack. (Actual-
ly, each data segment has several locations beyond Z that are
used for bounds checks (paragraph 2-65) and stack markers due to
an interrupt (paragraph 2-28).

2-14

System/CPU Overview

The S-Bank Register is a 4-bit register used in conjunction with
the S-pointer and DL, Q, and Z Registers to define which memory
the S-Bank is not necessarily equal to the DB-Bank.

2-24. Basic Table Structures

The first few locations of Main Memory are reserved for the sys-
tem pointers 1listed 1in table 2-4. During system c¢old load,
memory location 0 1is set to point to the location of the Code
Segment Table (CST) as shown in (1), figure 2-5. The CST con-
tains a single four-word entry for each Segmented Library segment
currently in use in the system. (Segmented Libraries permit
separate programs to share procedures.) Memory location 1 (2),
figure 2-5 points to the Code Segment Table Extension (CSTX) area
allocated to the program being executed by the CPU. The CSTX is
used to keep track of the code segments in the various program
files being executed. Therefore, the contents of memory location
1 will shift to point to various sections of the CSTX as differ-
ent programs are executed by the CPU. For example, figure 2-5
shows that Program X is currently being executed by user process
A. Also during system cold load, memory locations 2 and 3 are
set to point to the Data Segment Table (DST) and Process Control
Block (PCB) Base respectively. See (3) and (4), figure 2-5.
There is a four-word DST entry for each data segment 1in use in
the system as discussed in paragraph 2-26. There is a PCB allo-
cated to each process running in the system. The PCB entry for a
process points to the DST entry for 1its stack data segment
although, for simplicity, this is not shown in figure 2-5.
Memory location 4 is set by the software to point to the PCB of
the currently executing process (5), figure 2-5. The linkage
from the PCB to the CSTX area (6) is used to set memory 1location
1. It should be noted that if process B and process C happen to
be executing the same program (7), the program file segments will
be shared. The CPU Status Register (STA Register) then points to
the current segment of the current process holding CPU resources.

2-25., CODE SEGMENT TABLE AND CODE SEGMENT TABLE EXTENSION. The
CST contains a list of code segments that are being referenced by
executing programs. Its length is determined at system genera-
tion time. The actual number of entries in use at any time is
variable, limited only by the length of the table. Entries are
dynamically allocated by the operating system as programs are
loaded and unloaded. Each entry contains control information
about the segment and gives its length and starting address in
the format shown in figure 2-6. The first %300 entries are re-
served for Segmented Library segments. The CST entry for segment
0 contains control information. Segment 1 contains the routines
needed to service internal interrupts. Segments 2 through 191
(%277) contain code such as service routines for external inter-
rupts, system intrinsics, and library procedures. The remainder
of the CST entries fall in the CSTX area and keep track of pro-
gram segments. Each program can have up to 63 segments. The
table is accessed via the PCAL, EXIT, IXIT, and DISP instructions
(Section IV) and is completely invisible to the user. ,

System/CPU Overview

Table 2-4. Reserved Low Main Memory Locations

Memory Location Contents

|

I

|

I
Code Segment Table Base |
de Segment Table Extension |
Data Segment Table Base |
| Process Control Block Base |
| Current Process Control Block]|
| Interrupt Stack Base l
| |
I I
l

|

I

|

I

|

I

|

NoundWuro

Interrupt Stack Limit
Interrupt Mask
$10-%13 | Reserved
$14-%777(max.) | Device Reference and External
| Interrupt Table
%$1000 | System Global Table (Pointers
I

to resident tables, etc.)

Note: The % symbol preceding a number indicates
an octal value.

2-26. DATA SEGMENT TABLE. The DST contains a list of the various
data segments currently in use by the operating system and user
programs. These segments include I/0 buffers, system and user
process stacks, and extra data segments. The DST length is de-
termined at system generation time and it contains a four-word
entry for each data segment in the format shown in figure 2-7.
The actual number of entries in use at any one time is variable,
limited only by the length of the table. Entries are dynamically
allocated by the operating system as programs are loaded and un-
loaded or as special capability processes request or release ad-
ditional data segments.

2-21. Code Segment Linkage

During the execution of one user process, there will usually be
several code segments in memory and a single data segment. As-
sume that the current process presently has two code segments in
memory as shown in figure 2-8. The purpose of figure 2-8 is to
illustrate how the system keeps track of where code segments are
and to show how references can be made from one segment to anoth-
er. Although figure 2-8 illustrates hardware, it is the respon-
sibility of the MPE operating system to control the tables shown.

The CST Pointer is permanently resident 1in ILocation 0 and it
contains an absolute address pointing to the starting location of
the CST (1), figure 2-8. The CST tells where each code segment
(present or absent) is located. If the segment 1is a program
segment, Location 1 is used. Each entry in the CST has a unique
number (code segment number) that identifies the particular seg-

2-16

System/CPU Overview

Low Main Memory
CSTBase L
CST Extension . @
[~ DST Base
- PCB Base
Process Control — Current PCB .
Block Table L Segment Tables (4-w03d entries)
I I]
: | | |
| paTa I
I |) SEGMENT Data
- | TABLE | Segment
Process @ | I Entries
A
PCB T I |
I\ l]
| I I 1
| | | '
Process | Segmented
8]) I CODE [Library
PcB ©) | SEGMENT Code
TABLE ' Segment
, ! | | Entries
| | ' |
Process
¢ 7 CST
pce EXTENSION
_ —
' 7 Program X
: Code Segment
|\ é Entries
Program Y
Code Segment
& Entries

Figure 2-5. Basic Data Structures

2-17

System/CPU Overview

CODE SEGMENT TABLE Doubleword

071727374 5 6 7 8 91011112713 1415
AlMIRlTl L/a
Reserved
Reserved 8
Address

A Absence Bit = 1 if segment is absent from main
memory.
M Mode Bit = 1 if segment executes in Privileged
Mode (Code only).
R Reference Bit = 1 if segment has been referenced
{set by microcode}.
T Trace Bit = 1 if trace feature is used. Checked by
PCAL instruction.
* L Length Field = segment length divided by 4.
B Bank Address. Points to memory bank (if resident
in main memory) in which segment resides.
ADDRESS Absolute address of PB within B if the
segment is present, otherwise the 3rd
and 4th words contain the absolute
disc address.

SEGMENT TRANSFER TABLE Words
STT Length
1'2'3]4'5'617'8'9110'11'12'13'14'15

=)

[ofufo o o o o o] LENGTH

U Uncallable bit

LENGTH Maximum = 255 (Calls from external
segments may reference only the first 127
entries. PL-1 thru PL-127 {PL-0= STTL.)

Local Program Label
0 1'2'3'4‘ 5 sl 77 s'9|m'n'uzl13'u‘1s

lo]u] ADDRESS

U Uncallable bit
ADDRESS PB relative, + only

External Program Labe!
o1 2" 314' 5'5]7' 8" 9|w'n'12|13’14 15

| STT # | SEG #

STT # STT entry number in target segment,
maximum = 127

SEG # Target segment

STATUS word

of172"3 4'5'617'8'9]10'11'!2'13'14'15

[m]ifr[r]o]c] cc] SEGMENT #
M Mode bit (=1 for privileged mode)

| Interrupt enable (1)/disable(0), external

T Traps enable(1)/disable(0), user

R Right Stack Opcode bit (pending = 1)

O Overflow bit

€ Carry bit

CC Condition Code
SEGMENT # currently executing

Figure 2-6. Formats Associated With Code Segments

2-18

0'1 2 34 5 6 7 8 910 11 12 13 14'15

A|C|R L/4
Reserved
Reserved B
Address

Absence Bit = 1 if segment is absent from main memory.
Clean bit. Used to eliminate unnecessary output swapping.
Reference Bit = 1 if segment has been referenced (set by microcode).
Length Field = segment {ength divided by 4.

= Bank Address. Points to memory bank (if resident in main memory) in which segment resides.
DDRESS = Absolute Segment Address within given bank in third word of segment. If segment is
absent, words 3 and 4 contain absolute disc address.

won

A
Cc
R
L
B
A

90020-6

Figure 2-7. Data Segment Table Entry Format

ment. Each entry consists of a four-word descriptor which in-
cludes the absolute address of the related segment and its
length. Entry number 0 in the table is unique in that it simply
points to the final entry in the table (2). This defines the
length of the table for the benefit of the operating system in
allocating space for the table itself. Segment number 0 does not
exist. Assume that one wuser is executing a process which re-
quires code segments 22 through 25. Also assume that segments 22
and 23 are in Main Memory and that segments 24 and 25 are not
presently needed and, therefore, are on disc. The process is
presently executing instructions in code segment 23. This means
that the address value contained in the fourth word of CST entry
23 has been loaded into the PB Register. Therefore, the PB
Register is pointing to PB(a) as shown in (3), figure 2-8. The
PL Register, using a value derived from the segment length, is
pointing to PL(a). The P Register is advancing from PB(a) toward
PL(a) .

The last nine 1locations of segment 23 are not part of the seg-
menit s code, but are added by the operating system when the seg-
ment is loaded into virtual memory. These locations contain
linking references for every procedure call (PCAL) in the Segment
Transfer Table (STT). A PCAL is an instruction that references a
set of instructions elsewhere in the code segment. This set of
instructions is structured as a procedure to perform a standard-
ized operation or computation and then return control to the
instruction immediately following the <call instruction. It
should be noted that entries in the STT are numbered from the end
back towards the code. Entry number 0 gives the STT length as
shown in figure 2-6. This indicates the number of the last STT
entry (4), figure 2-8 , so that the hardware can make validity

2-19

System/CPU Overview

L CST POINTER Location O or 1
— _CSTEND _
——————— ®
I . I
Code :
Sogmeml P I
Number | M l @ CODE SEGMENT 22
. PB(b)
G :
2f— — — — — —; .
——FB(F)__ BEiIN <+
I END
______ (30) .
(® PB(a) AN \ :
_______ 5
28— — — — — e o] U] PB Rel Address SEGMENT
——————— : 3 TRANSFER
________ | f TABLE
]
________ PL(b)
A % -) 0
———t
o)
SEG I [' |
[
No 22 | . | | CODE SEGMENT 23
I : I | —p PB(a)
_______ — | :
_______ 1 I PCAL (4) ————u
——————— | .
. : ®
l L]
| PCAL (5) ———
I .
. : D
| —» BEGIN
3 ¥
T TETRS T T T - EvP
Entry :
Number []
8
7
6)
—_ 5[1] sTT# | sec# SEGMENT
—1 4 [0]u] PB Rel Address J&——— } TRANSFER
3 TABLE
2
@
N—— 0 LastSTT# =8 PL(a)

Figure 2-8.

Code Segment Linkage

2-20

Systemi/CPU Overview

checks on PCAL references. For example, a call toc entry to num-
ber 9 would be invalid. (If a call from within the segment is
made to entry 0, the reference will be taken from the TOS instead
of from the STT. A call from outside a segment toc entry 0 starts
execution at P = PB after checking the U bit.) When the execution
sequence reaches the first PCAL instruction, a reference (5) 1is
made to the fourth entry of the STT. (Since the PCAL instruction
uses PL-addressing, the instruction references cell PL -4.) This
location contains a local program label (figure 2-6) which im-
plies that the called procedure is located within the same seg-
ment. The reference 1is a PB-relative address pointing to the
beginning of a procedure or block (6), figure 2-8. After some
preparatcry operations, which include saving the return address
on the stack, the PCAL instruction transfers control toc the pro-
cedure. When an EXIT instruction is encountered in the proced-
ure, control is returned to the instruction immediately following
the first PCAL. In this example there were no references outside
the current segment. In the following example, an external ref-
erence is made.

When the execution sequence reaches the second PCAL, another call
(7), figure 2-8 is made to the STT. The call requests the fifth
entry in the table which happens tc be an external program label
(indicated by a logical 1 in bit 0). This implies that the called
procedure is in some other segment. The 1label contents tell
which segment and alsc give the STT number in that segment which
must contain the lccal reference. The PCAL instruction, after
the usual preparatory operations (which include bringing the seg-
ment intc Main Memory if it is absent), transfers control to the
called procedure as follows. The segment number given in the
external program label (8) points tc a specific entry in the CST,
assumed to be entry number 22. A value for PB is picked up in
the fourth wcrd of this entry and lcaded intc the PB Register.
This causes the PB Register to point (9) to the starting location
of code segment 22; PB(b). The limit, PL(b), is also establish-
ed. Meanwhile, the STT value given in the external program label
is pointing to entry number 4 (10) of the STT. This causes a
PB-relative address to be picked up for the P Register. The P
Register now points tc the starting address of the procedure or
block (11) and execution begins. If an STT number of 0 was giv-
en, execution would begin at PB(b). Calling procedures outside
the segment in this manner 1is subject to a number of rules,
checks, and safeguards to ensure that the call is allowable and
that other users are fully protected from invasions of privacy.
The manner in which the operating system sets up the STT ensures
that all transfers are legal for that process. At the conclusion
of the called procedure, control is returned to the original seg-
ment by the EXIT instruction. This instruction restores the STA
Register which gives the caller s segment number, and the PB Reg-
ister value (12) returns back to PB(a). The saved P-relative
address on the stack reestablishes the return point and execution

continues at the location immediately follcwing the second PCAL
instruction.

[*]
|

21

System/CPU Overview

2-28. Stack Operation
No te

When the letters P, @, DB, etc., are
used alone in the follcwing paragraphs,
the letter is interpreted to mean "the
location pointed to by the P Register,
Q Register, DB Register, etc."

Figure 2-9 1illustrates the basic construction of the stack area
and how the CPU stack registers delimit the various areas. It
should be noted that there will normally be several stacks 1in
memcry (one for each process), but only one stack will be active

at a given time. The CPU stack registers always point to the
currently active stack.

As shown in figure 2-9, the stack area is bounded at the low end
by the DL Register and bounded at the high end by the Z Register.
The DB Register points to the base location of the stack and di-
vides the stack area into two major parts. (The area between DB
and Z is the actual user stack. The area between DB and DL is
not part of the stack itself, but is closely associated with the
stack. This area provides a dynamic area for such applications
as dynamic arrays, symbol tables, etc.) The SM Register points to
the current top-of-stack (TOS) location in memory.

Whereas the contents of the DB Register and Z Register are stat-
ic, the content of the SM Register is constantly changing as the
program progresses, moving up and down the stack area. The area
between DB and SM is always filled with valid data and the area
between SM and Z is always available for additional data. (If the
quantity of data should exceed the available space, the attempt
to move SM past Z will cause an interrupt to the operating system

which may then grant additional space (new Z value) one or more
times.

Unl ike the cell-at-a-time movement of SM, Q moves sporadically in
jumps. The purpose of the Q Register is to retain the starting
point of data relating to the current procedure. Therefore, when
a new procedure begins, Q jumps ahead to establish a new starting
point at the current TOS. Conversely, when a procedure ends, Q
jumps back to the place it had marked previously for the preced-
ing procedure. As far as the current procedure is concerned,

stack data consists of the locations from a base of Q to the
current TOS.

In the previous discussion, the SM Register was assumed to point
at the absolute TOS. This is true only for the portion of the
stack in memory. Actually, as many as four of the top words of
the stack <can spill over into TOS registers RA, RB, RC, and RD.
Figure 2-10 illustrates where three of the topmost words are in
TOS registers RA, RB, and RC. It should be noted that the SM
Register points to the last stack element in memory, but that

2-22

System/CPU Overview

CPU MEMORY
Stack Registers Stack and Array Area
I DL Register 'r P I
® Own
® Array
) . Area
L]
L]
L]
1 _ ——“——-
r DB Register | P [}
Base
of *
Stack :
[]
L]
L]
L]
: Filled
I Q Register }
- []
.
L]
L]
I SM Register } } -y
‘ ﬁ i
Top *
of *
L]

Increasing
Addresses

Avail-
l able

l Z Register T /

90020-35

Figure 2-9. CPU Registers and Stack Basic Operations

the 1logical TOS is in the third CPU register and is defined by
the S-pointer (S). The four TOS registers are reserved for the
four topmost wcrds of the stack and are employed only by CPU
hardware. The TOS registers cannct be addressed externally.
Externally, the programmer is interested only in location S and
and the hardware defines this address for him. Using figure 2-10

2-23

System/CPU Overview

CPU MEMORY

Stack

[Q Register IL »

| SM Register i

SR Register
| S U U |
S _ (SM) + (SR)

Address Address + 3

Figure 2-10. CPU TOS Registers

as an example, the hardware will define address S as being equal
to the SM Register value plus three. The value three is obtained
from the SR Register which, as previously discussed, retains the
number of TOS elements that are in the TOS registers. (S = SM +
SR; RA =S, RB =S - 1, etc.) The address value S cbtained by
adding the SR Register contents to the SM Register contents is a
completely valid address. In fact, when the CPU must be cleared
for some other operation (e.g., a new procedure or an interrupt),
the register cocntents are physically transferred to the numeri-
cally corresponding memory locations. In this example, SM would
move up by three and the SR Register contents would become zero.

Figure 2-11 illustrates the actions of the C Register in marking
the starting 1location for each procedure’s data. Figure 2-11
shows that the currently executing code segment was working with
data in the temporary stcrage area immediately following the
First Q area. At that time, the 0 Register was pointing at First
Q, S was defining TOS, and the Z Register was pointing to the end
of the data segment. (If the executing code segment never <called
another procedure, the stack would never get more complicated.)
As illustrated however, the code called a procedure at some point
by means of a Procedure Call (PCAL) instruction that caused ad-
ditions to the stack as indicated by Procedure A. New data was
incurred as the procedure began and S pointed to the top of that
data as it was generated. Then, Procedure A called Procedure B

2-24

System/CPU Overview

DB—
GLOBAL
- —— —DATA — — —
AREA
First @
(
1
|
|
|
! Temporary
: Storage
|
|
!
|
|
. |
| I
) Procedure Parameters
I
\ ~
Previous Q
(
i
Procedure A :
|
I
|
{
i
|
|
_[__ |
|
| Procedure Parameters
1
\\
Previous Q
(
1
1
Procedure B |
t
|
i
t
|
|
|
y I
1
Alg)cattnons $— | P! procedure Parameters
ue to
calling ! '\
Procedure C | S
=10
| Local Variables
|l F_e_——_——_———— —
|
Allocations :
local to <
Temporary
Procedure C : Storage
|
|
IR
Z ——p

}

}

Primary
{256)

Secon-
dary

Stack
Marker

Stack
Marker

Stack
Marker

Figure 2-11.

Stack Mark Chain

2-25

System/CPU Overview

and caused new additions to the stack as indicated. Next, Pro-

cedure B called Procedure C and caused the final stack picture as
shown.

As the program progresses, Procedure C will end and, after saving
its answer in a convenient place for Procedure B to access, issue
an EXIT instruction. Then, all the other stack additions due to
Procedure C will be eliminated by moving S and Q back and Pro-
cedure B will <continue its computations on its own data stack.
In the same manner, Procedure B will end, save its data, and
exit. This eliminates the data stack for Procedure B. Finally,
Procedure A will exit and return the net answer to the new TOS on
the main temporary storage area.

Each time control is returned from the called procedure tc the
caller ‘s procedure (within the code segment), the stack registers
also return to the <caller’s data area. Thus, the stack marker
chain virtually eliminates system overhead in keeping track of
nested procedures. For example, the simple return sequence pre-
viously discussed (C-to-B-to-A-to main program) is not impera-
tive. Procedure C could have been called again before the return
to the main program was complete or other procedures could have
been called. Regardless, the return for both code and data will
always remain perfectly in step; from the called to the caller.

Note that the area between DB and First Q in figure 2-11 is the
global data area. The locations in this area are reserved by the
process for variables which the process has declared tc be global
for all procedures called by that process. That is, any proce-
dure wusing this particular data segment may reference the vari-
ables in this area. The individual locations in the glcbal area
can contain an actual value or an indirect address pointing to
some other location that either contains the value or is the
start of an array. Since DB-relative addressing (paragraph 2-49)
is restricted to a maximum of DB+255, only the first 256 loca-
tions of this area can be addressed directly. These areas are
called the primary global data area. If the number of entries
exceed 256, indirect addressing (paragraph 2-50) must be used.
These locations are called the secondary global data area.

When the operating system has completed assigning space for the
global variables, it points Q at the next succeeding location
(First Q, figure 2-11). This is the actual start of the data
stack. Since there is not data on the stack, S also points to
this location. As the executing code segment proceeds to obtain,
manipulate, and generate data for the stack, S moves away from Q,
always indicating the top of such data. At some time during the
execution of the code segment, it is assumed that Procedure A is
called. Usually, a set of procedure parameters accompany the
call and these parameters are placed on the stack just prior to
the issuance of the PCAL instruction. These are actual param-
eters to be substituted for formal parameters in the procedure
and are referenced by Q addressing. (Refer to paragraph 2-49.)

System/CPU Overview

Calling the procedure causes a four-wcrd stack marker to be
placed on the stack as shown in figure 2-11. The marker format
is shown in figure 2-12. The first word saves the current con-
tents of the Index Register (X Register). The second word saves
the return address for the code segment (P Register address plus
one relative to the PB Register contents). The third word saves
the STA Register contents (M, I, T, R, 0, C, and CC) and the code
segment number of the caller in <case the called procedure is
external to the current code segment. The fourth word contains a
value called Delta Q which designates how far back it is to the
previous location to which the Q Register was pointing. In this
case, Delta Q is pointing to First Q. The Q Register now points
at this Delta Q location.

The previously described sequence of events are repeated when
Procedure B (figure 2-11) and Procedure C are called. Each time,
the Q Register will point to the Delta Q liccation of the <current
stack marker and the contents of that location will point to the
previous Q setting. Therefore, when Procedure C 1is executing,
there 1is a chain of Delta Q stack marks linking the present Q
setting back to the First Q.

The links are used and eliminated as the procedures are exited
the same as they were established when the procedures were
called. When Procedure C ends, the EXIT instruction returns S to
equal Q, essentially placing the Delta Q value temporarily on the
TOS. This allows the EXIT instruction to compute a new value for
the Q Register (Previous Q) and it appropriately moves Q back.
The EXIT instruction causes S to decrement step-by-step through
the staick marker, restoring status, P Register contents, and X
Register ccntents for Procedure B.

Lastly, S is moved back to eliminate the unwanted parameters of
Procedure C. Presumably, one or more parameters will be answers
computed by procedure C and, therefore, S is only moved back so
far as tc preserve the desired answers which are now on the TOS.
The sequence of events discribed in the last two paragraphs is
repeated wuntil all stack marks are eliminated and only the final
answer is on the TOS. For additional information on stack oper-
ations, refer to paragraph 4-17.

2-29. INSTRUCTION AND STATUS WORD FORMATS

2-30. Instruction Formats

The machine instruction set is designed for maximum efficiency of
bit usage in the instruction words and, therefore, the instruc-
tion formats do not necessarily fall into rigid field boundries.
There are 23 distinct instruction set formats. In addition to
the instruction formats, there are 13 instruction groups as shown
in figure 2-13. The formats of the individual instruction groups
are discussed in paragraphs 2-31 through 2-44. For additicnal
information, refer to Section 1IV.

System/CPU Overview

ol1'2'3]la's' 6|7 8 910 11 12[13 14 15

X Register Contents

PB Relative Return Address for P Reg
mii[T[rR[o][c| cc | codesegment #
Delta Q

Figure 2-12. Standard Stack Marker Format

2-31. GENERAL FORMAT. The first format shown in figure 2-13 is
the general scheme for dividing the instruction word into code
fields. Only the first field is rigidly adhered to. This field
(bits 0 through 3) defines either a specific instruction code in
the memory address group (or loop control group) or one of the
sub-wopcode groups. There are four sub-iopcode groups; 1, 2, 3,
and stack ops. The field for the sub-cpcodes varies. For sub-
opcode groups 2 and 3, bits 4, 5, 6, and 7 are used as shown.
For subopcode group 1, bits 5 through 9 are used and, for stack
ops, the remainder of the word is used. In some cases, the sub-
opcode will enable a third field (mini-opcode or special opcode)
in bits 8 through 11. The remainder of the word has a variety of
special uses and commonly is part of an argument field.

2-32, STACK OP. The stack op format is defined by four 0°s in
the first four bits. The remaining 12 bits are divided into two
fields; stack op A and stack op B. Either or both of these
fields may contain any of the 63 stack cp instruction codes.
Execution sequence is from left to right (A first, then B). 1In-
terrupts may occur between the execution of A and B. It should
also be noted that indicators (Carry, Overflow, and ondition
Code) are set by the last executed stawck cp. If using only one
of the two stack op fields, it is more efficient to use stack op
A since the hardware always looks ahead to see if stack op B is a

NOP. This permits the hardware to ignore the second field which
results in saving time.

2-33. SHIFT. The shift instructions use about half of the sub-
opcode group 1 codes. . Sub-opcode group 1 is defined by 0001 in
the first four bits. If the index bit (bit 4) is 1, the contents
of the Index register (X Register) is added to the shift count in
bits 10 through 15 tc specify the number of places each data bit

is shifted. Bits 5 through 9 encode the specific shift
instruction.

2-34. BRANCH. The branch instructions use 11 of the sub-opcode
group 1 codes. Bit 4 is used as an indirect bit (indirect if bit
4 is 1 and direct if bit 4 is 0). Bits 5 through 9 encode the
specific branch instruction. Bits 11 through 15 give a P-rela-

tive displacement from 0 through 31 and bit 10 specifies whether
the displacement is + or - relative to P (0 =+, 1 = =).

System/CPU Overview

01 234566 7 8 9101112131415

CoRma L] l [1] I | | I [[[11]
" S b de M o
Opcode " 4
or Special
Sub-opcode Opcode
Group
01 23456 7 8 9101112131415
STACK

op [ofefefol [ITTTTTTIT[]

Stack Op A

Stack Op B

01 23456 7 8 9101112131415

SIFT [ofolob I TTTTTTITII]
\ A J
Sub-o;code 1 Slzﬂ
Index Count
Bit
01 23 45 6 7 8 910111213 1415
BRANCH [ololo DT TTTTI-TTTTT]
Except [v VI XN v Y]
BR, BCC Sub-opcode 1 ’ P Relative
Indirect +/ Displacement
Bit Relative

01 2 3 45 6 7 8 910 111213 1415

FIELD AND [oToTo[1]x]] | | | [[[1 14

BIT L

v v
Sub-opcode 1 Bit Position

Index
Bit

0O 1 2 345 6 7 8 910111213 1415

1 2 3 4 5 6 7 8 9101112131415

|MMED|ATEI[I1IOJIIIIII|I|IIJ

Sub- opcode 2
or: 1 Sub-opcode 3

Immediate
Operand

01 2 3 456 7 8 9101112131415

FIELD [ofolifo] TT T IHERREEEN
\ A J
Sub- opcode 2 J- Flold K-F;old

REGISTER 01 23 456 7 8 910112131415

controt Lofeftfof [[flef [T T TT1]

Except e——\—— DBDL ZStaX Q S

XCHD, ADDS, Sub-opcode 2 .

SUBS R:'gl:::r
PROGRAM 01 2 34 56 7 8 91011121314 15
contror Lololt [l [[T [ITTT][]]
AND gfig: AL Sub-opvcoda 3 N-Fvield

PAUS, HALT

XEQ, IXIT,
DiSP
01 2 3 45 6 7 8 9101112131415
1/0 AND

m'rsnaup'rlolol'[Iol Iolol 11 I [11]

K- led
(or not
used)

Spocual
Opcode

Sub- opcode 3

0 1 2 3 4 5 6 7 8 9101112131415

MOVE [oToTtToloJofolo] TTTRI T T 1] |conrror [l Tel T TTelsITTTTTTTT]
Except ————— A —_ \ J [y)
M)‘\"'B‘;V Sub-opcode 2 Move SDEC Opcode 'P Relstive

Opcode PB/DB Displacement
Relative or +/-
Additional Relative
Code Bit
0 1 2 3456 7 8 9101112131415 0 1 2 3 45 6 78 9101112131415
S’E?AL [oToT*TofoToTolol T T [[ofoo]] |Mooness LII T X' TTTTTTTTTT]
xcept \ v A v J \ v J \ v I}
LLBE Sub-opcods 2 oMini;” E"‘Dc;g' Pgom‘:‘ry D]Vk:dc and
pco Additional LDPN peods isplacement
Code Bit Index Indirect
Bit Bit
2152-33

Figure 2-13.

Instruction Groups

2-29

System/CPU Overview

2-35. BIT TEST. The bit test instructions are also in subop—
code group 1 and use bits 5 through 9 to encode the spe01flc in-
struction. Bits 10 through 15 specify a bit position in the TOS
word for testlng. If the index bit (bit 4) is 1, the contents of
the X Register is added to the specified bit position.

2-36. MOVE. The move instructions use 12 of the codes spe01f1ed
by the sub- opcode group 2 code 0000. Sub-opcode group 2 1is de-
fined by 0010 in the first four bits. Bits 8 through 10 encode
the specific move instruction. Bit 11 is used by some instruc-
tions to specify whether the source of the moved data is PB-rela-
tive (bit 11 = 0) or DB-relative (bit 11 = 1). In some cases,
bit 11 is also used as an additional code bit for specifying the
instruction. Bits 12 and 13 are not used. Bits 14 and 15 are
used to specify an S-decrement value to delete, if desired, the
move parameters from the TOS.

2-37. SPECIAL. The special instructions use four mini-opcodes.
The mini-opcode group is also specified by the sub-opcode group 2
code 0000. Bits 8 through 11 plus bit 15 encode the specific
special instruction. Bits 12 through 14 are not used.

2-38. IMMEDIATE. The immediate instructions use codes in both
sub-opcode group 2 (coded 0010) and sub-opcode group 3 (coded
0011). Bits 4 through 7 encode the specific immediate instruc-
tion. Bits 8 through 15 are used for the immediate operand.

2-39. FIELD. The field deposit and extract instructions are
specified by two of the sub-opcode group 2 codes. Bits 4 through
7 encode the specific field instruction. Bits 8 through 15 are
divided into a J-field and a K-field. The J-field specifies the
starting bit number and the K-field specifies the number of bits.

2-40. REGISTER CONTROL. The register control instructions use
bits 9 through 15 to name a register. Bits 4 through 7 encode
the specific register control instruction.

2-41. PROGRAM CONTROL. The program control instructions use four
of the sub-opcode group 3 codes. Sub-opcode group 3 is specified
by 0011 in the first four bits. Bits 4 through 7 encode the spe-
cific program control instruction. The N-field (bits 8 through
15) is used for either a PL-displacement (PCAL and SCAL) or to
specify a number of parameters to be deleted on return from a
procedure or subroutine (EXIT or SXIT).

2-42. 1/0 AND INTERRUPT. The I/O and interrupt instructions use
11 of the special opcodes (bits 8 through 11) defined by the
subopcode group 3 code 0000. The K-field (bits 12 through 15) is
used by some of the instructions for an S-displacement to 1locate
a device number given in the stack.

2-43. LOOP CONTROL. The loop control instructions are defined by
a special coding of bits 4, 5, and 6 for memory opcode 05 (which
is otherwise defined as the STOR instruction). Bits 8 through 15
give a P-relative displacement for a branch address and bit 7

2-30

System/CPU Overview

specifies whether the displacement is + (bit 7 = 0) or - (bit 7 =
l) relative to P.

2-44. MEMORY ADDRESS. Bits 0 through 3 encode the specific mem-
ory address. Bits 6 through 15 give both an addressing mode and
a displacement. (Refer to paragraph 2-48.) Bit 5 is wused to
specify direct or indirect addressing (1 = indirect, 0 = direct).
Bit 4 is used to specify indexing (1 = indexing), if desired. If
both indirect addressing and indexing are specified, post-index-
ing (paragraph 2-54) will occur.

2-45. Status Word Format

There is a status word for each code segment in the system. At
all times, the status word associated with a given process indi-
cates the machine status following the execution of the most re-
cent instruction in that segment. The status for the currently
executing segment is resident in the STA Register and is con-
stantly being updated as each instruction is executed. For seg-
ments that are not current (suspended by either an interrupt or
procedure call), the status word exists in a stack marker in a
data stack as discussed in paragraph 2-28. As shown in figure
2-6, status word bits 8 through 15 indicate the segment number of
the currently executing code segment (when the particular status
word is resident in the STA Register). Therefore, when a status
word is pushed into a stack marker by an interrupt or procedure
call, bits 8 through 15 identify the segment that is to be re-
turned to when execution is later resumed. The following des-
criptions of the status bits assume that the status word under
discussion is resident in the STA Register. All references to
"current" conditions can also be inferred as "then current" con-
ditions in the case of suspended segments or procedures.

Bit 0 is used to indicate whether the current segment is running
in privileged mode (bit 0 = 1) or user mode (bit 0 = 0). (Refer
to paragraph 2-47.) The state of this bit cannot be changed by
machine instructions while resident in the STA Register except in
privileged mode. (The PCAL, IXIT, and EXIT instructions include
checks to prevent illegal mode changes by altering the noncurrent
status mode bits.)

Bit 1 is used to enable or disable external interrupts. This bit
cannot be changed in user mode while current and the EXIT in-
struction invokes a trap if a non-privileged user illegally al-
ters the bit while non-current. The state of bit 1 can only be
changed in privileged mode.

Bit 2 is used to enable or disable user traps. The state of this
bit can be changed in any mode while current or non—current with
a SETR instruction. (The state of this bit is not affected by the
EXIT instruction.)

System/CPU Overview

Bit 3 is normally used only by the hardware which sets this bit
to 1l if the right stack opcode (bits 10 through 15) contains a
valid instruction other than NOP. The hardware redquires this
information in case an interrupt occurs between the execution of
the left and right stack ops. The state of bit 3 cannot be
changed in user mode while current.

Bit 4 is the overflow bit and is one of the three indicators
which are set or cleared as an incidental operation by many of
the machine instructions. 1In general, bit 4 is used only by
signed integer and floating-point computations. If bit 4 is set
(1), it indicates that the result of the computation is too large
to be represented in the number of available bits in the data
format. (For floating point, it can also indicate that the result
is too small.) If user traps are enabled (bit 2 = 1), an inter-
rupt to segment 1 will occur in lieu of setting bit 4; except for
integer overflow which causes both bit 4 to be set and an inter-
rupt to segment 1. This permits the system to generate a message
to the user which indicates which type of overflow or underflow
occurred. All user traps will set bit 4 if traps are disabled.

Bit 5 is the carry bit and is one of the three indicators which
are set or cleared as an incidental operation by many of the
machine instructions. Bit 5 is used primarily by logical and
integer arithmetic and wusually indicates a carry (bit 5 =1) or
lack of carry (bit 5 = 1) out of the most significant bit during
a computation. Bit 5 is also used by some instructions as an
indicator for special purposes which are stated in the individual
machine instruction definitions. (Refer to Section IV.)

Bits 6 and 7 are used to encode the condition codes discussed in
paragraph 2-46 and are one of the three indicators which are set
or cleared as an incidental operation by many of the machine
instructions.

2-46. Condition Codes

Although several instructions make special use of the condition
code bits (status word bits 6 and 7), the condition code typi-
cally indicates the state of an operand or a comparison result
with two operands. The operand can be a word, byte, double word,
or triple word and can be located on the TOS, in the X Register,
or in a specified memory location. Three codings are used; 00,
01, and 10. (Code 1ll1l.is not used.) Except for special interpreta-
tions, there are four basic patterns for interpreting the codes.
The four patterns (CCA, CCB, CCC, and CCD) are summarized in
table 2-5 and discussed in the following paragraphs.

2-32

System/CPU Overview

Table 2-5. Condition Codes

. o o it S . P T S T, ——— .

Q
0
>
0
o
ct
0]
Q
O
"

l

| CCG (00) if operand > 0
| CCL (01) if operand < 0
| CCE (10) if operand =

l

I

|

o . - . " T 2 . OO . o —

CCB sets CC = CCG (00) if numerical (%060 - 071)
CCL (01) if special character (all
other octal values)
CCE (10) if alphabetic (uppercase,
$101 - 132; lowercase, %141 -
172)

— .t . e T S o Sk k. V. W " T+ O o - ———— -

CCC sets CC = CCG (00) if operand 1
CCL (01) if operand 1
CCE (10) if operand 1

WAV
DN

— -——— ———— — ——

CCD sets CC = CCG (00) if device is not ready
CCL (01) if non-responding Device
Controller
CCE (10) if responding Device
Controller and/or external
device is ready

—— —— —— - —— ——

|
|
|
|
Notes: CC = Condition Code |
[
|
|
|

CCG = Condition Code Greater
CCL = Condition Code Less
CCE = Condition Code Equal
The most common condition code pattern is pattern A (CCA). In

CCA, the condition code is set to 00 if the operand is greater
than zero; to 01 if the operand is less than zero; and to 10 if
the operand is exactly zero.

Condition code pattern B (CCB) is wused with byte oriented
instructions. In CCB, the condition code is set to 00 if the
operand byte is an ASCII numerical character which would be
represented by octal values 060 through 071. The code is set to
10 if the byte is an ASCII alphabetic character which would be
represented by octal values 101 through 132 for upper-case
letters and 141 through 172 for lower-case letters. The code 1is
set to 01 if the byte is an ASCII special character which would
be represented by the remaining octal values.

Condition code pattern C (CCC) is used with comparison instruc-
tions. In CCC, the condition code 1is set to 00 if operand 1 is
greater than operand 2; to 0l if operand 1 is less than operand
2; and to 10 if operand 1 is equal to operand 2.

2-33

System/CPU Overview

Condition code pattern D (CCD) is used with some (not all) I/0’
instructions. In CCD, the condition code 1is set to 00 if the.
external device is not ready. (This condition is wusually caused
by the device being busy.) This code is only used with instruc-
tions that will (WIO and RIO) or could (SIO) require data to be
moved. The code is set to 01 if the Device Controller does not
respond. (This condition can be caused by loss of power in the
external device or Device Controller, a malfunction in the ex-
ternal device or Device Controller or, more normally, the ex-
ternal device or Device Controller waiting for a response to an
interrupt request.) The condition code is set to 10 if the ex-
ternal device or Device Controller has responded normally and the
instruction has been completed properly.

2-4]. OPERATING MODES

The computer system can be operated in either privileged or user
mode and has the capability of switching from one mode to the
other depending on the type of operation being executed at a
given instant. The operating mode currently in effect is indi-
cated at all times by the STA Register ‘s bit 0 as discussed in
paragraph 2-45,

Privileged mode operation is characterized by the ability to ex-
ecute privileged instructions and to call segments that have been
declared uncallable. (The method of declaring a code segment un-
callable 1involves the use of the uncallable bit (bit 1) in the
associated STT 1local program label shown in figure 2-6.) Priv-
ileged operations such as I/0 operations are performed by the
operating system operating in privileged mode. For an non-priv-
ileged wuser to perform such operations, it is necessary to call
one of the callable intrinsics of the operating system which, in
turn, will call the uncallable intrinsics that will perform the
operation on behalf of the nonprivileged user. However, a priv-
ileged mode user can use the computer as if he were the operating
sys tem.

CAUTION

The normal checks and limitations that apply to
the standard non-privileged users in MPE are
bypassed during privileged mode. It is possi-
ble for a privileged mode program to destroy
file integrity including the MPE operating sys-
tem software. Hewlett-Packard cannot be respon-
sible for system integrity when programs
written by wusers operate 1in the privileged
mode.

2-34

System/CPU Overview

2-48. ADDRESSING CONVENTIONS
2-49. Memory Addressing

Throughout this manual the terms "displacement", "effective ad-
dress", "relative address", and ‘"base" are used in connection
with memory addressing. These terms are defined as follows:

Displacement is a positive number given in the instruction
word pointing to a location plus or minus that number of lo-
cations from a given reference cell which is also given in the
instruction word.

Ef fective address 1is always an absolute address. It may or
may not be the location indicated by the displacement number.
The effective address is the final computed address after
displacement calculation, indirect addressing (if any), and
indexing (if any) have all been resolved.

Relative address 1is the address obtained by subtracting the
base from the effective address.

Base is either the program base (PB) address or the data base
(DB) address.

The computer system uses relative addressing almost exclusively.
Addressing can be relative to the location pointed to by the
P Register, DB Register, Q Register, or S-pointer. As shown in
figure 2-14, memory address instructions (paragraph 2-44) use
bits 6 through 15 for "mode and displacement" and addressing can
be + or - relative to P or Q, but only + relative to DB and -
relative to S. The relative addressing displacement ranges for
the various modes are also shown in figure 2-14. (It should be
noted that these ranges apply only to direct, unindexed addres-
sing. 1Indirect addressing and indexing are discussed separately
in paragraphs 2-50 and 2-53.) The variety of displacement ranges
is due to the particular coding required to specify a given mode.
For example, only two bits (6 and 7) are required to specify the
P+, P-, and DB+ relative modes. This leaves bits 8 through 15
available for displacement which, therefore, can be any value
from 0 through 255. For Q+ relative mode, bits 9 through 15 give
a displacement range from 0 through 127. For Q- and S-relative
modes, bits 10 through 15 give a displacement range from 0
through 63. 1In order to provide the most efficient usage of
bits, the mode codes are assigned according to the respective
needs of each displacement range.

Referring to figure 2-14, note that the DB+, Q-, Q+, and S-ranges
can overlap. Also, DB+, Q+, and S- can actually address words
currently held in the TOS registers. P+ and P- addressing modes
are typically used for branches and referencing of literals. The
DB+ mode is used for referencing global variables and pointers
(i.e., indirect addresses). The Q+ and Q- modes are useful for
local variable storage and passing of procedure parameters
respectively. The S- mode is typically used for accessing param-

2-35

System/CPU Overview

ADDRESS INSTRUCTION BITS
MODE 6 l 7[8 I 9 1101 1 112] 13 1141 15
P+ Relative 0 0 |« Displacement 0: 255 ———»
P- Relative 0 1 Displacement 0: 256 ———»
DB+ Relative 1 0 e Displacement 0: 255 ———
Q+ Relative 1 1 —0—!1————— Displacement 0: 127 ——»
Q- Relative 1 1 1 0 [4—— Displacement 0: 63 ——»
S- Relative 1 1 1 1 |&——— Displacement 0: 63 —»
CODE DATA
SEGMENT SEGMENT
P8 DL
DB —
DB+ Relative 255
P- Relative 255 Q- Relative }63
Q—»
P— Q+ Relative } 127
P+ Relative 255
S- Relative }63
S
PL > 4 >

Figure 2-14. Memory Addressing Modes

eters in subroutines. Not all memory address instructions are
capable of using all six relative modes. Each instruction defi-
nition (Section IV) will specify which modes are applicable for
each instruction.

2-50. Indirect Addressing

As shown in figure 2-15, indirect addressing uses the location
referenced by the initial displacement (the Indirect Cell) to
specify another location within the same code or data segment.
For code references, the Indirect Cell <contains a self-relative
address. For data references, the Indirect Cell contains a DB+
relative address. For memory address instructions (paragraph
2-44) , indirect addressing is specified by bit 5 of the instruc-

2-36

System/CPU Overview

CODE, Indirect

LOAD P+4, | LOADP-4,1
PB P8
P-7 j
P-4 3 Indirect
j Cell
P —» j P —
P+4 3 Indirect
) Celi
P+7
PL —» PL—w
DATA, Indirect
LOAD Q-4.!
LOAD DB+4,1 LOAD Q+4,1 or LOAD S-4,1
DB DB DB
DB+4 7 Indirect
Cell
DB+7 DB+7 DB+7

Q-4 7 Indirect
j Cell
Q —¥»f

Q —» :]
Q+4 7 indirect

Cell S-4 7 Indirect
Celt
S —¥
Z —+ z—» Z —»

Figure 2-15. Indirect Addressing Examples

2-37

System/CPU Overview

tion word. (A logic 1 specifies indirect addressing.) For most
branch instructions (paragraph 2-34), indirect addressing is
specified by bit 4.

2-51. CODE INDIRECT. Both P+ and P- examples of indirect ad-
dressing in a code segment are shown in fiqure 2-15. The first
example shows the actions occuring for an assumed "LOAD P+4, 1I"
instruction. The displacement (+4) points to the Indirect Cell
at P+4. The Indirect Cell contains a +3 self-relative address.
This points to a location three addresses higher, or P+7. 1It is
the contents of P+7 that will be loaded onto the TOS by the "LOAD
P+4, I" instruction. The second example shows the actions occur-
ing for an assumed "LOAD P-4, I" instruction. The displacement
(-4) points to the Indirect Cell at P-4. The Indirect Cell con-
tains a -3 self-relative address. This points to location P-7
which is the effective address for th "LOAD P-4, I" instruction.

2-52. DATA INDIRECT. The first example in figure 2-15 of indi-
rect addressing in a data segment shows the actions occur ing for
an assumed "LOAD DB+4, I" instruction. The displacement (+4)
points to the Indirect Cell at DB+4. The Indirect Cell contains
a DB+7 relative address. This is not a self-relative address
and, therefore, the effective address is at location DB+7. It
should be noted that it is possible for the effective address to
be below as well as above the Indirect Cell. The second example
shows the actions occuring for an assumed "LOAD Q+4, I" instruc-
tion. The displacement (+4) points to the Indirect Cell at Q+4.
The Indirect Cell contains a DB+7 relative address and, therefore,
the effective address is again at location DB+7. The third ex-
ample shows the actions occuring for an assumed "LOAD S-4, I" or
"LOAD Q-4, I" instruction. The displacement (-4) points to the
Indirect Cell at either S-4 or Q-4 depending on the instruction
and, since the contents of the Indirect Cell is assumed to be+7,
the effective address for both instructions is again DB+7.

2-53. Indexing

The memory address instructions (paragraph 2-44) use indexing to
modify an operand address. Indexing is specified by bit 4 of the
instruction word. (A logical 1 specifies indexing.) Figure 2-16
shows examples of indexing when combined with positive and neg-
ative addressing modes (both direct) and an example of indirect,
indexed addressing (positive mode only) for both code and data
segments. It should be noted that in each example, the index is
assumed to be 5. This is established by the "LDXI5" instruction
that preceds each LOAD instruction used in the examples. This
instruction loads the value 5 in the Index Register (X Register).

2-54. CODE INDEXING. The first example in figure 2-16 shows the
actions occuring for an assumed "LOAD P+4, X" instruction. The
displacement (+4) would by itself point to location P+4. How-
ever, by adding the index of 5 to the displacement, the 1locaticn
P+11 (octal) 1is addressed. It is the contents of this location
that will be loaded onto the TOS by the "LOAD P+4, X" instruc-
tion. The second example shows the actions occuring for an

2-38

System/CPU Overview

CODE, Indexed

LDX! 5 LDXI 5 LDXI &
LOAD P+4, X LOADP-11, X LOAD P+4,1, X
P8 —+] P8 P8
(LIS RTY
? P —»
X=6
P-4 ‘
P+4 3 indirect
Cell
F—s P—» | (2] St
j X :=5
@[TITIIIC] bra
X 5
P+11
PL PL—» PL —
DATA, Indexed
LDXI 5 LDXiI 5 LDXI 5
LOAD DB+4, X LOADS 11, X LOAD Q+4, 1,X
o8 DB 0] :] >
o3 [T T T
11T T3 I
X 5
X =6
DB+10
DB8+11
A
X=5
'
a R —
S —» / j
Q-+4 3 Indirect
Cell
z Z 2 —>
Note: Address Calculations in Octal

Figure 2-16. 1Indexing Examples

2-39

System/CPU Overview

assumed "LOAD P-11, X" instruction. The displacement (-11) is
added to the positive index of 5 and the final address is P-4.
The third example shows code indexing combined with indirect
addressing. In all cases, post-indexing 1is used; i.e., the
indirect addressing is accomplished first (either positive or
negative direction), and then indexing proceeds in a positive or
negative direction from the indicated location. As shown in the
example for the "LOAD P+4, I, X" instruction, the displacement of
+4 points to the Indirect Cell at P+4. The contents of P+4 is a
self-relative address of 3 that points to P+7. However, indexing
adds 5 to this value and the final effective address becomes P+14
(octal).

2-55. DATA INDEXING. The first example in figure 2-16 shows the
actions occuring for an assumed "LOAD DB+4, X" instruction. The
displacement (+4) points at DB+4 which is then modified by the
index of 5 to point at DB+l1. The second example shows the ac-
tions occuring for an asumed "LOAD S-11, X" instruction which is
similar to the actions occuring for the "LOAD P-11, X" instruc-
tion discussed in paragraph 2-54. Since a positive 1index 1is
specified, indexing proceeds in a positive direction from the
location indicated by the displacement. The third example shows
data indexing combined with indirect addressing. Again, post-
indexing is used. The displacement (+4) points to the Indirect
Cell at Q+4 which contains the value 3. Since indirect addresses
for data are always DB+ relative, this points at 1location DB+3.
This is modified by the addition of the index 5 and the final
effective address becomes DB+10 (octal).

2-56. Byte Addressing

The Load Byte (LDB), Store Byte (STB), and five Move Instructions
(Section IV) use the byte addressing convention. Since the CPU
is not specifically organized as a byte processor, the byte ad-
dressing convention uses the contents of the X Register, an in-
direct «cell, or a stack word to specify the desired byte. For
memory addressing (Load Byte and Store Byte instructions), the
displacement value remains a word displacement. The byte data
label in an indirect cell is an inflated value of two times the
word displacement from DB. The contents of the X Register and/or
an indirect cell indicate the desired byte in a byte array. For
Move instructions, one or two of the TOS locations give a PB+ or
DB+ relative byte index. The byte addressing range is therefore
restricted to 32K words; 15 bits for word addresses and one bit
for byte number. Four examples of byte addressing for memory
address instructions (LDB and STB) are shown in figure 2-17. (The
convention for the Move Instructions corresponds to the Direct,
Indexed example in figure 2-17. The difference is that the byte
index would be obtained from a TOS word rather than the
X Register.)

2-57. DIRECT BYTE ADDRESSING. For direct, unindexed byte ad-
dressing, the displacement value given in the instruction word is
strictly a word displacement and only the left byte of each word
is addressable. As shown in figure 2-17, an "STB DB+7" instruc-

2-40

System/CPU Overview

DIRECT DIRECT, INDEXED INDIRECT INDIRECT, INDEXED
LDXI 5 LDXI 5
STB DB+7 STB DB+7, X STB DB+7,1 STB DB+7,1, X
DB —¥ DB DB —¥ DB—T
+1 +1 +1 ’
+2 +2 +2 +2
‘3 Not +3 +3 3
> Acces > ' ¥
+5 +5 +5 ‘5
+6 +6 +6 +6
+7 +7 0 1 —+7 46 +7 40
2 3
4 5
+20 |- 40 41 +20 0 1
+21 42 43 +21 2 3
+22 44 45 +22 4 5
\» .23 a6 47
S —9 S — S —» S —

Figure 2-17. Byte Addressing Examples

tion would store a byte from the TOS into the left byte of the
DB+7 location.

2-58. DIRECT, INDEXED BYTE ADDRESSING. In the examples shown in
figure 2-17, the index is assumed to be 5. This is established
by the "LDXI5" instruction that precedes each STB instruction.
The "STB DB+7, X" instruction directly addresses location DB+7
and the index of 5 accesses the sixth byte. It should be noted
that the byte index starts at zero and that all even indexes are
left bytes and all odd indexes are right bytes.

2-59., INDIRECT BYTE ADDRESSING. For indirect, wunindexed byte
addressing, the byte index is given in the indirect cell. As in
all indirect data addressing, the indirect reference is relative
to DB. Therefore, the "STB DB+7, I" instruction shown in figure
2-17 initially addresses the 47th byte in respect to DB. This
will be the 1left byte of DB+23. (Since there are two bytes per
word, divide the byte index by two to identify the word location;
a remainder of =zero indicates the left byte and a remainder of
one indicates the right byte.)

2-60. INDIRECT, INDEXED BYTE ADDRESSING. For indirect, indexed
byte addressing, the displacement points to the indirect cell,
the indirect cell points to the start of the byte array, and the
index in the X Register points to the desired byte in the array.
This is shown by the "STB DB+7, I, X" instruction in figure 2-17.
The index in the X Register is again assumed to be 5. The dis-

2-41

System/CPU Overview

placement points to the indirect cell at location DB+7 that con-
tains the value 40. Dividing 40 by two gives the starting word
address of the array as DB+20. Since the index is five, the lo-
cation accessed is the sixth byte of the array. In this manner,

the X Register acts as a byte index for ease of stepping through
byte strings or byte arrays.

2-61 Double-Word Indexing

The Load Double Word Onto Stack and Store Double On TOS Into Mem-
ory instructions (Section IV) permit double-word indexing. When
indexing 1is specified for these instructions, the hardware auto-
matically multiplies the X Register contents by two during compu-
tation of the effective address. Therefore, an index value of 4
would imply the fifth double word in a double-word array.

2-62. Accessing DB- Area

The area between DB and DL can be accessed through indirect ad-
dressing and indexing. Figure 2-18 illustrates the technique of
indirect addressing to access this area using both word address-
ing and byte addressing.

2-63. WORD ADDRESSING. The first example in figure 2-18 shows
how to load the contents of the location at DB-10 onto the stack
assuming that location DB+4 can be used for the indirect cell.
The "LOAD DB+4, I" instruction initially references the indirect
cell at DB+4. Instead of the usual positive number, location DB+4
contains the two s complement of the desired DB displacement. In
octal, the two’s complement of 10 is 177770. Remember that the
contents of an indirect cell in a data segment is always DB+ re-
lative displacement. Therefore, since addressing arithmetic is
modulo 65K, adding 177770 to DB causes wrap-around and addresses
the desired DB-10 location. From this point, indexing via the
X Register can be applied.

2-64. BYTE ADDRESSING. The second example in figure 2-18 shows
how the DB-10 byte can be loaded onto the stack assuming that
location DB+4 can again be used for the indirect cell. The "LDB
DB+4, I" instruction initially references the indirect cell which
contains the two’s complement (177770) of the desired byte dis-
placement (-10) from DB. Remember that byte indexes are con-
verted to word indexes by dividing by two. This would indicate
location DB+77774 (left Dbyte) which may or may not exceed the
upper limit of memory, depending on the current absolute value of
DB. (To allow for byte addressing in additional data segments
where DB may not be between DL and Z, a check for this condition
is made. Refer to paragraph 2-65.) If DB is not between DL and 2
(this should happen only during privileged mode and is then
called split stack), the byte will then be accessed without fur-
ther bounds checking. If DB is between DL and Z, then the LDB
instruction (or any other byte addressing instruction) tests this
address to see if it is within the required DL to Z range. If
the address is not within the range (which should be the case
whe ther or not wrap-around has already occured), the instruction

2-42

System/CPU Overview

WORD BYTE
ADDRESSING .) ADDRESSING o] ‘
LOAD DB+4, | LDB DB+4, |
oL —¥
DL—¥ \ 4
D8-4 -10

+

IR IRK
el B (2] B EF]

<
(o] LN1R3 [o2] Bed

DB-10 DB —¥

DB+4 177770
DB —»
S —¥
DB+4 177770
Z—» j
LLRZZ2] it aiain Y \
177777 177777]

Address Calculations in Octal: WORD DB+ 177770-DB- 10
BYTE DB+ (177770~ 2) + 100000 = DB - 10

Figure 2-18. Accessing DB- Area

will add 32K (%100000) tc the DB+77774 value. Assuming that
wrap-around has not yet occured, this addition will cause it to
occur and thus address the byte at byte address DB-10 (left byte
in location DB-4). At this time, a second test is made to check
if the effective address is within the DL to Z range. If the
technique has been applied properly, the test will be affirmative
and the byte will be transferred. If the test fails during user
mode, there will be a bounds violation interrupt. If the test
fails during privileged mode, the test results will be ignored
and execution will continue (even if out of bounds), wusing the
second referenced byte.

2-65. Bounds Checking

The CPU routinely checks all address references and TOS movements
to ensure that such operations remain within legal bounds. Suf-
ficient <checks are made for all machine instructions to ensure
that a nonprivileged user cannot adversely affect other users or
the operating system. The basic bounds checks that are made for
the applicable instruction types are discussed in paragraphs 2-66
through 2-70 and summarized in table 2-6. The boundry 1limits
checked are illustrated in figure 2-19. 1If any of the bounds
check fail during non-privileged user mode, there will be a
bounds violation interrupt. Those checks whose results are ig-
nored during privileged mode are so indicated.

2-43

System/CPU Overview

CODE
PB — -
Legal
Addresses
\ (for Program
Transfers
P —» and User
References}
PL —] J
DATA
Stack
Underflow
DL—¥
DB —» <
Legal
Addresses
for
User
References
User
» Stack
Area
SM —>
S —
z ’ <
Stack
INCREASING
ADDRESSES Overflow
: J

Figure 2-19. Addressing and Stack Bounds

2-44

System/CPU Overview

2-66. PROGRAM TRANSFER LIMIT. Program control cannot be passed
to any location beyond the 1limits defined by the contents of the
PB and PL Registers. For indirect branches, both the indirect and
direct references must be within limits. This also applies when
branching indirect via the data stack, except that the initial
reference must be within data stack limits DB and S rather than
code segment limits PB and PL.

2-67. PROGRAM REFERENCE LIMITS. Some of the Memory Address in-
structions, all Ioop Control instructions, and some Move instruc-
tions are capable of addressing locations in the code segment.
During privileged mode, these references can be made as desired.
During non-privileged user mode however, these references (both

direct and indirect) must be within the limits defined by PB and
PL.

2-68. DATA REFERENCE LIMITS. During privileged mode, data ref-
erences are not subject to bounds checking. During non-privileged
user mode however, these references (both direct and indirect)
must be within the user’s area defined by DL and S.

2-69. STACK OVERFLOW LIMIT. Stack overflow is defined as moving
the S-pointer beyond the stack limit. Stack overflow occurs when
SM exceeds Z. Since SM is not necessarily the actual TOS (SM may
equal S or be up to four 1locations lower) and to allow marker
space for the remote possibility of a procedure call and an in-
terrupt while SM is at 2, there is a zone of approximately 128
locations beyond % which could be filled with stack related data.
A stack overflow causes an interrupt which, under discretion of
the operating system, may extend the stack limit.

2-70. STACK UNDERFLOW LIMIT. Stack underflow is defined as mov-
ing the S-pointer below the data base or, more strictly, moving
SM below DB. Since SM may not equal S, underflow can occur even
though S is up to three locations above DB. During privileged
mode, stack underflow 1is not subject to checking. buring non-
privileged user mode however, stack underflow will cause an in-
terrupt. Users can access the area between DL and DB by indirect
addressing or indexing (paragraph 2-62) as long as SM does not
become less than DB. Although the hardware does address arithme-
tic modulo 64K, code segments and data stacks can not cross mem-—

ory bank boundries. This restriction is handled by the operating
system.

2. CPU OVERVIEW

Operation of the CPU is controlled by the software set of in-
structions and the microprogram. Logically, the CPU (figure
2-20) consists of three sections; a microprocessor, processor
registers, and an arithmetic logic unit (ALU). The microproces-
sor receives an instruction word from Main Memory and translates
it into a microprogram starting address. The microprogram is
then read out of read-only memory (ROM) and is decoded into a set
sequence of control signals. The processor registers are flip-
flop registers that can be loaded from the U-Bus (i.e., output of

2-45

System/CPU Overview

Table 2-6. Bounds Checks Summary

Check Definition Mode
Program Transfer PB < E < PL Privileged, User
Program References PB ¢ E < PL User only

(except moves)

Data References DL < E < S User only
Stack Overflow SM > Z Privileged, User
Stack Underflow SM < DB User only

‘

E = effective address of memory address

the ALU) and read onto the R-Bus and/or S-Bus (inputs to ALU).
The ALU executes various functions (add, subtract, etc.) on the
R- and S-Bus inputs (with or without a shift) and outputs the
result to either of the CPU registers for transmission out of the
Central Processor Module or to the U-Bus for storage in one of

the internal registers. For a more detailed discussion of the
CPU logical components, refer to paragraph 2-75.
2-712. Pipelines

There are two pipelines in the CPU; a microcode pipeline and a
data pipeline. Basically, the microcode pipeline consists of the
Current Instruction Register (CIR), CMUX, Mapper, Look Up Table
(LUT), VBUS MUX, ROM, RORl, and ROR2. See figure 2-20. The data
pipeline basically consists of the Store Iogic, various regis-
ters, R- and S-Bus Logic, ALU, Shifter, and Decimal Corrector.

2-73. DATA PIPELINE. In general, the data pipeline picks up two
operands via the R- and S-Bus Logic and R- and S-Bus Registers
(figure 2-20) and inputs them to the ALU where a mathematical
calculation can be performed. The result is then outputed to
either the Shifter or Decimal Corrector where it can be either
shifted (shift left 1, shift right 1, or swap bytes with or
without clearing either byte), or its decimal arithmetic cor-
rected. The final result is then put on the U-Bus and either
stored in any one of the registers or input to the ALU a second
time for additional calculations.

To give the data time to propagate through the entire pipeline,
the data 1is stepped through in two steps. The first step is to
read the operands from the two source registers to the input
lines for the R- and S-Bus Registers. This is accomplished in
one l75-nanosecond clock cycle. The second step is for the data

to go through the ALU, Shifter or Decimal Corrector, and Store
Logic and then be on the input to the selected store register.

This is accomplished by the next 175-nanosecond clock cycle.

2-46

System/CPU Overview

CIR
PREADOER CONT PREADDER CONT
usuUs N U-BUS
ROM OPND
PRE
b ADOER savE RAR
CONT
Ly
NG
A .
)
o
° " v ROR1
€ " . s ROR2
- s v STORE STORE }——
A Rl S WO s FON FoN_H—
, RAR T
e ~ rom +—{ sk SKIP
€ ot J— u SHIFT SHIFT
R et x 5P/ MCU| SP/MCU
SRPY = -
™ [srez
mMcuo NOP:
z2 H A A NOP 2
o H
rct 12
NIP w
F ==
CMUX MAPPER
CONT CONT
SP/MCU
NEXT AN
CONT C SKIP
Qg J
BMuU X
—— R PRE veus
cont [arenomng | SoometorUST s CONT FCN
SR
INT
ADDRESS
Vv EXT INT EXTINT
CPX 2
r CPX 1
e |
R] CPX1 (8 BITS r
CPU

Figure 2-20. CPU Simplified Logic Diagram (Sheet 1 of 2)

2-47

System/CPU Overview

MATES WITH 10P

cR
PREADDER CONT
uBUS U.8US
—
SHIFT
FCN FCcN
1
MOD
STORE ~4—f— DCAD
FCN 4= <
0o
€ R
SHIFT — \ Y
_ PRE. Ve
X ADDER Me
x| ™ AT —<
[Lo
x R
R
R
ROM OPND ROMOPND 8
v 8
r <~ TROR 1 M s g M
M | _—
: AN TRIR —— ; L A A
- TR2R 1 o R L F »—4
sP/MCU 4 o e £ P € v ets] T
R R+ TR3IR - R ¢ : — sus| [
—] - d ¢] ul — CRL
L Z s
o PL
G
! SPo
c sP1 ~
M
{sr A
+ STORE 1 MOD RRY .
E
4 s s
cco
. J TNAMEO) 8 w
EanEns —1] WU .
cPx2 cc M
., a "
3
PANEL G M
“WITCHES Cc
R U.BUS U
cPX1 PREG
ACOR & MUX
N TROS ™ R
U-BUS TRIS — 4
TRz —1 ¢ .
TR3S — & .
i — SP/MCU
DL L
s o “
M
¥ G ‘
o o8 |
R [c MOD
E P2 s SELECT
L—- i
. SP3 TO1 T02
PCLOCK AT01,AT02
o —>ACOR MAP
G P
' OPND r
¢ FAST OPND
LCNTR |
STORE G loaw 77
8 L ABS BANK
o ™
a2 PB BANK "
Ny DeBANK |]
X ¢ STACK BANK |—
SP/MCU B J
uBUS 1oN SP/MCU
OPINP
19
T — -
ePxt ONIR ¢ 7 x1
T
STORE U-_US 10A 10D :'Wl'
PARITY

Figure 2-20.

2-48

CPU Simplified Logic Diagram (Sheet 2 of 2)

System/CPU Overview

The entire data calculation is accomplished by one microcode in-
struction which is also executed in two steps. During the first
step, the microcode instruction is held in RORL. Ef fectively,
the only two microcode instruction fields being decoded during
this clock cycle are the R- and 5-Bus fields. (Refer to Secticn V
for microcode instruction format descriptions.) These two £fields
cause the R- and S-Bus Logic to select the correct registers for
the two operands and gate the operands to the R- and S-Bus Reg-
isters. The same clock cycle that gates the operands into the
R- and S-Bus Registers also gates the current microcode instruc—
tion into ROR2 and gates the next microcode instruction into ROR1
as discussed in paragraph 2-74. It also gates the previous mic-
rocode instructions’s final result into the register specified by
the instruction’s Store field. ©During the second step (current
microcode instruction in ROR2) , the instruction’s Function field
specifies what calculation is to be accomplished by selecting
either the Shifter or Decimal Corrector and the instruction’s
Shift field specifies what the Shifter or Decimal Corrector is to
accomplish. Also, the instruction’s Store field specifies to the
Store Iogic which register to select to gate the final result
appearing on the U-Bus. During the next clock cycle, the now
conpleted microcode instruction is discarded by loading the next
microcode instruction into ROR2 and the final result of the exe-
cuted instruction 1is gated into the register specified by the
Store Iogic.

Each microcode instruction also contains two octher fields that
are decoded during execution; a Skip field and a Special field.
The Special field controls the hardware that performs such oper-
ations as setting condition codes, popping the stack, and incre-
menting and decrementing the stack’s SR Register. A complete
listing of the operations specified by the Special field is con-
tained in Section V. The Skip field specifies test conditions
such as the status of internal flags, the contents of the
SR Register as compared to zero through four, and operand results
that appear on the T-Bus as compared to zero, non-zero, odd, and
even. A complete listing of the test conditions specified by the
Skip field is contained in Section V. The Skip field determines
which condition will be tested for a possible skip. If the con-
dition is met, ROR2 executes a No Operation (NOP), effectively
skipping one microinstruction word. Other signals, such as NEXT,
also come from the Skip field.

2-74. MICROCODE PIPELINE. 1In general, the microcode pipeline
receives a requested instruction from Main Memory via the CTL
Bus, MCU, and Next Instruction Register (NIR). See figure 2-20.
The instruction 1is clocked into the CIR and then intoc the CMUX.
If the pipeline has not been previously filled, the NIR output is
clocked into the CIR and CMUX simultanecusly, thus saving one
clock cycle. Ten bits of the CMUX output go to the Mapper and 8
bits go to the Mapper Control. The 8-bit cutput of the Mapper
goes to the Look Up Table (LUT) ROM. The LUT ROM produces a
12-bit microprogram starting address from the received instruc-
tion and also eight special use bits. The SRP0, SRP1, and SRP2
special use bits go to the SR Preadjust Adder. The Z, PCO, PCIL,

2-49

System/CPU Overview

and W special use bits go tc the Preadder Control. (The W bit
also goes to the Mepper Contrcl.) The JULI special use bit goes
to the BMUX Control and CMUX Control.

The 12-bit microprogram starting address from LUT is applied to
the VBUS MUX. The VBUS MUX outputs 16 bits tc the ROM and In-
crement (INC). The 16 bits applied to the ROM 1is the starting
address for the microcode instruction providing no special con-
diticns such as stack pre-adjust are needed. The 32-bit RCOM
output 1is clocked 1into ROR1. At the same time that the ROM is
being accessed, the starting address is being sent tc the INC
circuit. During the same clcck cycle that clocks the RCM output
tc RORl, the address-plus-one 1is applied to the Address Register
(RAR) . The output of RAR goes back to the VBUS MUX. When, docing
the next clock cycle, the incremented address goces to ROM, the
new microcode instruction goes tc RORL and the criginal microccode
instruction g¢oes from RCR1 to ROR2. The microcode pipeline is
now packed, functioning, and incrementing one stepr at a time
through the microccode. (Refer tc paragraph 2-86 for microcode
jump information.)

2-75. CPU Component Descriptions

The logical components of the CPU shown in figure 2-20 are des-
cribed in paragraphs 2-76 through 2-128.

2-76. NIR. The NIR is a 1l6-bit register that is Joaded with an
instruction from Main Memory and provides storage for that in-
struction until the current instruction has been executed. This
allows an instruction to be fetched from memcry concurrently with
the execution of the current instruction. The NIR is 1lcaded by
an NIP signal from the MCU operation decoder. The NIP signal is
gdenerated as a result of a microccde instruction Skip field code
NEXT or the MCU field code NIR as described in Section V.

2-77. CIR. The CIR is a 16-bit register that contains the in-
struction currently being executed by the CPU. The CIR is lcaded
by an NIRTOCIR signal from the Next Control. The NIRTOCIR signal
is generated as a result of a microcode instruction Skip field
code NEXT or by the clock cycle after a Special field code CCPX
as described in Section V. As previously discussed, if the pipe-
line has nct been filled, the contents of the NIR goes directly
tc both the CIR and CMUX to save cne clock cycle. The NIR and
CIR allow one clock cycle to fetch one instruction from memory
while the previous clock cycle is still executing an instruction.
Instruction translation is accomplished from the CIR two clcck
cycles after the execution has begun until the execution is com-
plete unless it is the right instruction of a stack-op. In the
case of a Right Stack-Op instruction, the entire translation is
accomplished from the CIR. The controlling factor concerning the
execution of a Right Stack-Op instruction is the BMUX Control.

System/CPU Overview

2-78. CMUX AND CMUX CONTROL. The CMUX is controlled by the Next
Control and CMUX Control to determine whether the instruction

from the NIR or CIR goes into the Mapper.

2-79. MAPPER AND MAPPER CONTROL. The Mapper comb ines the inputs
from the CMUX and Mapper Control and generates an 8-bit output
that addresses a specific location in the LUT ROM.

2-80. LUT ROM. The LUT ROM outputs a 12-bit address and eight
special use bits as determined by the Mapper. The 12-bit address
is applied to the VBUS MUX and the VBUS MUX generates a l6-bit
output that addresses the initial microccde instruction that
starts the accomplishment of the instruction from the NIR or CIR.
The eight special use bits specify the mode of addressing being
utilized for the memory reference instructions. The SPO, SP1,
and SP2 bits are applied to the SR Preadjust Adder to define how
many TOS registers must be valid before execution of the in-
struction can begin. Data bit 0 in the LUT ROM is the W-bit and
bits 1 through 12 contain the starting address of the micropro-
gram for the instruction to be executed. When a new instruction
is to be executed, the W-bit is stored in the W-Bit Register.
The W-bit has different meanings for different instructions and
has a fixed, known value for every instruction as follows:

a. For STACKOPS (CIR (0:3) = %00) instructions, the W-bit has no
meaning; it is set to logic 1 merely for convenience.

b. For SUBOP 1 (CIR (0:3) = %01) instructions:

(1) The W-bit is set to logic 1 for instructions regarding
P-relative addresses (some branches). In this case, CIR
(10) is treated as a sign bit for the P-relative dis-
placement in CIR (11:15). This bit controls the function
of the Pre-Adder (add or subtract) so that a positiv or
negative number can be obtained from it. -

(2) The W-bit is set equal to logic 0 for shift instructions.

In this case, the pre-added output is CIR (10:15), a
6-bit shift count, with zeros in all other bit positions.

c. For SUBOP 2 (CIR (0:3) = %02) instructions, the W-bit con-
trols the function of the Pre-Adder. 1In all cases, the input
to the Pre-Adder is CIR (8:15). When the W-bit is logic 0,
the Pre-Adder is set to add. Since the second input to the
Pre-Adder is logic 0 (no indexing), the output is -CIR (8:15)

= 317 - CIR (8:15)), a negative number.

d. For SUBOP 3 (CIR (0:3) = %03) instructions:

(1) For SPECOP 00 (CIR (0:3) = %03), the W-bit 1is set to
logic 0 which forces the Pre-Adder to the add function.
In addition, only CIR (12:15) is applied to the Pre-Adder
input. Therefore, the output is the K-field CIR (12:15).

System/CPU Overview

(2) For SPECOP 01 through 17 (CIR (4:7) = %01 - $17), the WwW-
bit causes the same action as in paragraph c akove.

e. SUBOP %04 through %17 (CIR (0:3) = %04 - %17) instructions
generally reference an operand in memory. The operations
necessary to obtain the effective address is this operand are
common to most of the instructions and, therefore, one micro-
program is used for this calaculation. When one of these
instructions is to be executed, it maps through the LUT to
this microprogram to obtain the operand address. When this
is done, the instruction then jumps to the microprogram that
executes the specified instruction and the W-bit now becomes
effective. The W-bit is set to logic 1. When the foregoing
address calculation routine has been completed, a micro-
operation (JLUI) in the ROM Skip field is executed. If the
instruction dces not specify indirect addressing or if one
level of 1indirect addressing has been completed, the execu-
tion of JULI forces a microprogram Jjump to an address
contained in the LUT. Since the contents of the CIR have not
changed, the LUT would normally still be pointing to the
address of the foregoing address calculation routine and an
infinite loop would result. However, the W-bit now modifies
the LUT entry address to a different, but related, address.

This LUT address contains the microprogram address of the
desired instruction tc be executed.

2-81. VBUS MUX AND VBUS CONTROL. One of the nine inputs to the
VBUS MUX is selected by the VBUS Control to be fed through the
VBUS MUX which becomes a 16-bit address for the ROM. This ad-
dress 1is also applied to the 1Incrementor (INC) which increments
the address by one and applies this new address to the ROM Ad-
dress Register (RAR).

2-82. RAR. The RAR is a 16-bit register that holds the address of
the next microinstruction to be executed if no preempting condi-

tions (interrupt, jump, etc.) occur. The RAR is loaded with the
ROM address incremented by cne and is automatically incremented
every 175 nanoseconds by the INC until the end of the micropro-
gram for the instruction is reached. Normally, the RAR is loaded
from the INC. However, if a repeat is specified, the contents of
the RAR does not change until the repeat is terminated. In ad-
dition tc the 12-bit output from the LUT ROM, the RAR can be
locaded from the ROM Output Register Rank 2 (ROR2), by a JMPGATE
signal generated in response to a Function field code Jump (JMP)
or Jump .To Subroutine (JSB), by the interrupt logic due to an
interrupt or power failure, from the U-Bus in response to an RAR
store specified, or from the Hardware Maintenance Panel.

2-83. SAVE REGISTER. When a JSB is decoded by the Function Field
Decoder, a JSB1 signal is generated and the contents of the RAR
is lcaded into the Save Register until a Return from Subroutine
(RSB) is decoded by the Skip Field Decoder. The RSB signal lcads
the contents of the Save Register back into the VBUS MUX and from
there back into the ROM which continues executing the micropro-
gram with the microinstruction follocwing the JSB.

2-52

System/CPU Overview

2-84. ROM. The ROM accepts 16-bit addresses from the VBUS MUX
and outputs 32-bit microinstructions of a microprogram toc the ROM
Output Registers (ROR1 and ROR2). The ROM contains 4096 (%7777),
32-bit instruction words. Each instruction generally calls sev-

eral microinstructions from the ROM. For example, instructions
that affect TOS will first call a microprogram routine to check
that there are encugh filled or vacant TOS registers tc carry out
the operation. Then, after one or more memory transfers to ad-
just the stack, the remaining microinstructions called by the
instruction will begin. Updated addresses for succeeding micro-
instructions called by the instruction are furnished to the ROM
every 175 nanoseconds by the RAR.

2-85. ROR1 AND ROR2. The 32-bit microinstruction words from ROR1
and ROR2 are divided into eight fields, each field containing
from three to five bits. Each field, when decoded, produces a
set of microcode signals that control the operation of the CPU.
(Refer to Section V of this manual.) The 32-bit output of the ROM
is lcaded into ROR1l on each 175-nanosecond clock cycle. On the
next clock cycle, six of the seven microinstruction word fields
are transferred from ROR1 into ROR2 while ROR1l is receiving the
next microinstruction word. (Initially, it takes two clock cycles
to fill the pipeline, but thereafter ROR2 receives a new micro-
instruction wocrd on each successive clock cycle.) Twc ROM output
registers allow the S- and R-Bus fields to be decoded in advance
of the rest of the instruction word. Therefore, the S- and R-bus
selection occurs is ROR1 and the selected data will be ready and
waiting on the U-Bus by the time the rest of the word is decoded
in ROR2. Each field of the ROM output word is separately decoded
as discussed 1in Section V. The S-Bus field selects one of 31
registers or sets of lines to be locaded intc the S-Bus Register.
The R-Bus field selects one of one of 15 processor registers or
sets of lines to be loaded into the R-Bus Register. The Stcore
field selects one of 29 registers in which to store the U-Bus
data. The Function field specifies the function that the ALU is
to perform on the two operands in the S- and R-Bus Registers. The
Shift field specifies how the T-Bus data will be shifted ontc the
U-Bus. The Special field performs many varied operations in-
cluding the generation of POP and memory opcode and CTL Bus re-
quest signals.

The Skip field specifies a test condition, which if true, causes
the microcode instruction in the next ROM address not to be exe-
cuted. (A complete list of test conditions that can be specified
by the Skip field is contained in Section V.) However, if the
current instruction is a microcode jump instruction, the jump
will be executed only if the condition being tested is true. In
the case where the next microcode instruction is not to be ex&-
cuted, the skip condition is tested while the microcode instruc-
tion 1is in ROR2. This means that the instruction to be skipped
is in RORl. The clock cycle that moved the instruction to be
skipped from ROR1 into ROR2 also sets the NOP2 flip-flop. This
causes the ALU to add, forces the shift field to a pass function,
and the Store field not to be decoded. However, the operands
specified by the R- and S-Bus fields of the instruction to be

2-53

System/CPU Overview

skipped were already clocked into the R- and S-Bus Registers so
that the data on the U-Bus at the end of the NOP cycle is the sum
of the contents of the source registers.

2-86. Microcode Jumps. Microcode jumps can be taken from either
ROR1 or ROR2. The jumps can be taken from ROR1 only under the
condition that the jump has an unconditional skip code and the
instruction in ROR2 meets one or more of the following condi-
tions: 1is cancelled by NOP2; is a ROM Immediate type instruction
without a data-dependent skip; contains a NOP skip function;
and/or contains a non-data-dependent skip test (skip codes 14
through 27, 32, 33, and 34) which is not met or if an ROR1l jump
has just been completed. All other microcode jumps will be ex-
ecuted from ROR2.

An unconditional jump is a jump that occurs without regard to the
data. If the microcode calls for an unconditional jump, a jump
target address is selected out of the Shift, Special, and R-Bus
fields of the microcode instruction in ROR1 (ROR2 if previous
microcode instruction contained a data-dependent skip condition)
and applied back to the VBUS MUX so that the new ROM microcode
instruction is sent to RORl. The target address goes to the INC,
is incremented by one, and the new target address plus one is
stored in the RAR until the next clock cycle when it is applied
to the VBUS MUX for consecutive addressing of the micrococde in-
structions.

The jumps that are executed from ROR2 because none of the
fast-jump conditions were present for RORl and the conditional
jumps that are always executed from ROR2 behave as follows: Not
Taken, next line in sequence executed on next clock;
Non-Da ta -Dependent Taken, one overhead clock required (NOP2 ef-
fective) before target line executed; Data-Dependent Taken, two
overhead clocks required (FREEZE, NOP2) before target line ex-
ecuted. Execution of jumps in ROR2 inhibit any fast jumps from
ROR1 being executed. Therefore, if there are two consecutive
lines of microcode containing jumps, the jump in ROR2 will be
taken and the jump in RORl will be ignored.

The microcode instruction calling for a jump comes out of ROM and
into ROR1 which decodes the R- and S-Bus fields as discussed in
paragraph 2-85. The R- and S-Bus field information 1is sent
through the R- and S-Bus Iogic and is waiting at the inputs of
the R- and S-Bus Registers. On the next clock cycle, the jump
instruction goes to ROR2 and the R- and S-Bus field data is
clocked fthrough the R- and S-Bus Registers. The T-Bus data is
loaded from ROR2 to feed ROM so that, on the next clock cycle,
the address of the jump-tc-microcode instruction goes to ROM. As
the new instruction is clocked intc ROR2, the jump-to-microcode
address plus one goes into the RAR and the operation resumes
stepping through the microcode.

2-54

System/CPU Overview

2-87. S-Bus Field Decoder (S). The S-Bus Field Decoder (bits 0
through 4) selects one of 32 registers or sets of lines to be

loaded into the S-Bus Register. S-Bus field code definitions are
contained in Section V.

2-88. Store Field Decoder (STORE). The Store Field Decoder (bits
5 through 9) selects one of the Store ILogic registers or other
destinations outside the CPU for the U-Bus data. Steore field
code definitions are contained in Section W.

2-89. Function Field Decoder (FCN). The Function Field Decoder
(bits 10 through 14) specifies the function to be performed by
the ALU on the twc operands in the R- and S-Bus Registers. Func-
tion field code definitions are contained in Section V.

2-90. Skip Field Decoder (SKIP). The Skip Field Decoder (bits 15
through 19) determines which condition will be tested for a pocs-
sible skip. If the condition is met, ROR2 will execute a NOP,
effectively skipping one microinstruction word. The Skip field
also specifies the conditions under which a JMP or JSB will be
executed if coded in the microinstruction. Other signals, such
as NEXT which calls the next instruction from memory, are also
decoded from the Skip field. Skip field code definitions are
contained in Section V.

2-91. Shift Field Decoder (SHIFT). The shift Field Decoder (bits
20 through 22) specifies how the T-Bus data will be shifted. 1In
addition, the shift field generates the Scratch Pad 1 and Scratch
Pad 3 Register shift signals used in conjunction with the Func-

tion field. The Shift field code definitions are contained in
Section V.

2-92. Special Field Decoder (SP). The Special Field Decoder (bits
23 through 27) performs varied operations such as generating mem-
ory operation code signals and the POP signal. Special field
code definitions are contained in Section V.

2-93. MCU Option Field Decoder (MCU). The MCU Option Field De-
coder (bits 23 through 27) uses the same bits as the Special
Field Decoder. The Special Field Decoder is disabled and the MCU
Option Field Decoder is enabled when executing an S-Bus field
code RBR or a Store field code BUS, BSP0O, BSPl, or SBR. The MCU
Option Field Decoder initiates transfers to or from memory and
transfers from ACOR to the Operand, Next Instruction, or Command

Registers via the CTL Bus. MCU Option field code definitions are
contained in Section V.

2-94. R-Bus Field Decoder (R). The R-Bus Field Deccder (bits 28
through 31) selects one of 16 registers or sets of lines for
loading into the R-Bus Register. R-Bus field code definitions
are contained in Section V.

2-55

System/CPU Overview

2-95. PROCESSOR REGISTERS. Except for the Operand (OPND), 1I/0
Address, 1I1/0 Direct Data In, CPX1l, and CPX2 Registers, the pro-
cessor registers «can be selectively loaded from the U-Bus and
selectively read into the R- and/or S-Bus Registers. The proces-
sor registers are illustrated in similar readout groups in figure
2-20. For example, the X, Z, PL, SP0O, and SR Registers can be
read out only to the R-Bus Register. The SPl Register can be
read out to either the R- and/or S-Bus Registers. Similarily,
the ©PB, DL, SM, DB, Q, SP2, SP3, PCLOCK, and OPND Registers can
be read out only to the S-Bus Register. Descriptions of the ird-
dividual processor registers, including the renamer logic, are
contained in paragraphs 2-96 through 2-115. In addition, the
actions of many of the processor registers in an operating envi-
ronment are discussed in paragraphs 2-16 through 2-70.

2-96. Renamer Logic. The renamer logic consists the Namer, Adder,
three Mappers, four TOS registers (TRO through TR3), and the
SR Register. These components are designated as the TOS register
renamer, or simply, the renamer. The renamer permits fast access
to the TOS elements by renaming the registers when stack elements
are added or deleted (rather than transferring data from register
to register). The ROM microprograms know TR0 through TR3 only by
the names RA (top), RB, RC, and RD. The namer includes a 2-bit
Namer Register that tells the Mappers which of the four TOS reg-
isters (TRO through TR3) is RA, RB, RC, and RD as listed in table
2-7. [The Namer Register is decremented each time a stack element
is added (PUSH) and incremented each time a stack element is de-
leted (POP). To keep track of how many elements are in the TRO
through TR3 registers, the 3-bit SR Register 1is incremented by
PUSH and decremented by POP in step with the Namer Register.
When the SR Register count is zero, there are no elements in the
TRO through TR3 registers. This would indicate to a ROM micro-
program not to look for the TOS in the CPU and that one or more
memory fetches may be required. The Adder combines the outputs
of the Namer Register, SR Register, and Scratch Pad 1 Register
(SP1) and generates the TNAME signals (bits 0 and 1) for the
Mappers. (Refer to table 2-7.) The Mappers use the TNAME code to
control access to the TOS registers (TR0 through TR3). The TNAME
code specifies which of the TOS registers is RA, RB, RC, and RD
as listed in table 2-7.

Table 2-7. TOS Namer Relationships

| |
I I
I RA = TRO TR1 TR2 TR3 |
| |
| RB = TR1 TR2 TR3 TRO |
| , |
: RC = TR2 TR3 TRO TRl |

[
| RD = TR3 TR0 TR1 TR2 |
|

T - —" —_——— Y —— " ——— . —— .~ — ———————— -

System/CPU Overview

2-97. TOS Registers. The TOS registers consist of eight 16-bit
registers designated TROR through TR3R and TROS through TR3S.
The two groups of registers always contain the same data (i.e.,
TROR = TROS, TRIR = TR1S, etc.). The registers contain up to
four of the top elements of the current data stack. The TOS
registers are read by R-Bus field ccdes RA, RB, RC, RD, and MREG
and by S-Bus field codes RA, RB, RC, RD, and QDWN as discussed in
Section V. The TOS registers are licaded by Store field codes RA,
RB, RC, RD, PUSH, and QUP as discussed in Section V.

2-98. 1Index Register (X). The Index Register (X Register) is a
16-bit register that contains the index word to be used by memory
reference instructions if indexing is specified. Certain other
instructions use the X Register for parameters or addresses.
(Refer to paragraph 2-48.) The X Register is read by R-Bus field
codes X and XC and locaded by Store field code X.

2-99. Stack Limit Register (2). The Stack Limit Register (Z
Register) 1is a 16-bit register that contains an absolute address
pointing to the top memory location available tc the current data
stack. Al though there are 128 word 1locations above the stack
limit, they are reserved for stack markers in the event of .an
interrupt. (Refer to paragraph 2-28.) The Z Register is read by
R-Bus field code Z and locaded by Store field code Z.

2-100. Program Limit Register (PL). The Program Limit Register
(PL Register) 1is a 16-bit register that contains the absolute
address of the upper location of the current program segment.
(Refer to paragraphs 2-24 through 2-23.) The PL Register is read
by R-Bus field code PL and lcaded by Store field code PL. ’

2-101. Scratch Pad 0 Register (SP0). The Scratch Pad 0 Register
(SPO Registeri) is a 16-bit register that is used by the CPU to
store partial results during various CPU routines and as address-
es during memory transfers. The SP0 Register is read by R-Bus
field code SP0 and lcaded by Store field codes SP0O and BSPO.

2-102., Scratch Pad 1 Register (SP1l). The Scratch Pad 1 Register
(SP1 Register) 1is a 16-bit register that is used by the CPU to
store partial results during various microprogram routines. The
SP1 Register can be left shifted and provides serial data input
to bit 15 and output from bit 0. The SPl Register is read by
R-Bus field code SP1l, loaded by Store field code SPl, and shifted
by PFPunction field codes CTSD, DVSB, and QASL. In addition, the
SP1 Register can be read onto the S-Bus by S-Bus field cocde SP1
(code is not the same as R-Bus field code SPl).

2-103. Stack Register (SR). The Stack Register (SR Register) is
a 3-bit register counter that provides the number of TOS regist-
ers that are currently in use. The SR Register works in con-
junction with the Namer Register to lccate and access any of the
top four elements of the data stack. (Refer to paragraph 2-21.)
The SR Register is read by R-Bus field code SR and modified by

Store field code PUSH and Special field cocdes INSR, DCSR, POPA,
CLSR, and POP.

System/CPU Overview

2-104. Program Base Register (PB). The Program Base Register (PB
Register) is a 1l6-bit register that contains the absolute address

of the bottom location of the current program segment. (Refer to
paragraphs 2-21 through 2-28.) The PB Register 1s read by S-Bus

field code PB and loaded by Store field code PB.

2-105. Data Limit Register (DL). The Data Limit Register (DL
Register) is a 1l6-bit register that contains the absolute address
of the bottom usable location in the current data stack. (Refer
to paragraphs 2-21 through 2-28.) The DL Register is read by
S-Bus field code DL and loaded by Store field code DL.

2-106. Stack Memory Register (SM). The Stack Memory Register (SM
Register) is a 16-bit register that contains the absolute address
of the top element of the data stack in memory. Depending on the
number of TOS registers in wuse (specified by contents of
SR Register), this address can be from zero to four locations
below the actual TOS. (Refer to paragraphs 2-21 through 2-28.)
The SM Register 1is read by S-Bus field code SM and 1loaded by
Store field code SM.

2-107. Data Base Register (DB). The Data Base Register (DB
Register is a 16-bit register that is one of the stack limit reg-
isters. The DB Register contains the absolute address of the
first 1location of directly addressable storage in the current
data stack. (Refer to paragraphs 2-21 through 2-28.) The DB
Register is read by S-Bus field code DB and loaded by Store field
code DB.

2-108. Q Register (Q). The Q Register is a 16-bit stack marker
register that contains the absolute address of the current stack
marker being wused within the data stack. (Refer to paragraphs
2-21 through 2-28.) The Q Register is read by S-Bus field code Q
and loaded by Store field code Q.

2-109. Scratch Pad 2 Register (SP2). The Scratch Pad 2 Register
(SP2 Register) 1is a 16-bit register that is used by the CPU to
store partial results during various microprogram routines. The
SP2 Register is read by S-Bus field code SP2 and loaded by Store
field code sP2.

2-110. Scratch Pad 3 Register (SP3). The Scratch Pad 3 Register
(SP3 Register) 1is a 16-bit register used by the CPU to store
partial results during various microprogram routines. The
SP3 Register can be right shifted and provides serial data input
to bit 0 and output from bit 15. The SP3 Register is read by
S-Bus field code SP3, loaded by Store field code SP3, and shifted
by Function field codes CTSD, MPAD, and TASR.

2-111. Process Clock Register (PCLOCK). The Process Clock Reg-
ister (PCLOCK Register) is a 16-bit register counter. The
PCLOCK Register is 1loaded and read by software instructions and

is continuously incremented as long as the CPU is not executing
on the Interrupt Control Stack (ICS FLAG = 0) or is not halted.

2-58

System/CPU Overview

The clocking interval is 1.001 ms. The maximum range of the
clock before rollover is approximately 65.5 seconds.

2-112. Program Counter Register (P). The Program Counter Regis-
ter (P Register) is a 16-bit register that contains the absolute
address of the next program instruction to be fetched from mem
ory. During execution of Skip field code NEXT, the P Register and
PB-Bank Register are used to select a memory module and prefetch
the instruction following the one which is about to be executed.
(Refer to paragraphs 2-21 through 2-28.) The P Register 1is read
by S-Bus field code P and loaded by Store field code P.

2-113. Operand Register (OPND). The Operand Register (OPND
Register is a 16-bit register that provides storage for data read
from memory by the CPU. The OPND Register is loaded by an OPINP
signal from the Operand In Process (OPINP) flip-flop in the MCU
operation decoder as a result of MCU options OPND, RNWA, RWA, and
RWAN. The OPND Register is read by an RDOPND signal from the
S-Bus Decoder as a result of S-Bus field code OPND. When the CPU
freezes for an operand, the operand from memory goes directly to
the S-Bus Logic as well as into the OPND Register. It is then
loaded into the S-Bus Register to await CPU operation.

2-114. Status Register (STA). The Status Register (STA Register)
is a 16-bit register that indicates the current status of the CPU
hardware. (The status word format is discussed in paragraph 2-
45.) The STA Register 1is read by ©S-Bus field code STA and
loaded by Store field code STA. Status bits are also affected by
Function field codes CADO, SUBO, INCO, and ADDO; and by Special
field codes CCB, SCRY, CCRY, POPA, SOV, CLO, CCZz, CCL, CCG, CCE,
and CCA.

2-115. Counter Register (CNTR). The Counter Register (CNTR
Register 1is a 6-bit register that is used as a repeat counter by
the CPU. The two’s complement of the desired count is loaded into
the CNTR Register and the register is then incremented for each
repeated execution until it contains all ones as 1indicated by a
CTRM code from the Skip field. The CNTR Register is affected or
referenced by S-Bus field <codes CTRI and CTRH, Function field
code REPN, Store field codes CTRL and CTRH, Special field code
INCT, and Skip field ccde CTRM. Additionally, the CNTR Register
saves the contents of the SR Register when the CPU is put in the
Halt Mode. Therefore, after a halt has occured, the CNTR Register
can be displayed to show what the contents of the SR Register was
just prior to the halt.

2-116. OVERFLOW FLIP-FLOP (OVFL). The Overflow flip-flop con-
trols the status word overflow bit (bit 4) and stores the state
of the Overflow signal from the ALU when the OFCENB signal is
true. The Overflow flip-flop is set and cleared by Special field
codes SOV and CLO respectively. Refer to paragraph 2-45.

System/CPU Overview

2-117. CARRY FLIP-FLOP (CRRY). The Carry flip-flop controls the
status word carry bit (bit 5) and stores the state of the Carry
signal from the ALU when the OFCENB signal is true. The Carry
flipflop is set and cleared by Special field codes SCRY and CCRY
respectively. Refer to paragraph 2-45.

2-118. CONDITION CODE LOGIC (CCO AND CCl). The condition code
logic controls the condition code. Refer to paragraph 2-46.

2-119. PRE-ADDER. The Pre-Adder is used to gain a speed in-
crease for instructions that use or perform computations on CIR
bits. For example, when executing indexed memory reference in-
structions (not indirect), the proper CIR displacement field is
pre-added to the X Register contents. Therefore, the final abso-
lute address can be computed in only one clock «cycle by adding
the output of the Pre-Adder to the contents of the base register
(B, DB, Q, or Z).

2-120. R-BUS REGISTER. The R-Bus Register is a 1l6-bit register
that provides buffer storage between the R-Bus and the ALU. The
R-Bus Register <can be left-shifted one bit position (refer to
Function field code QASL, Section V) and is 1loaded from the
R-Bus. Refer to R-Bus field code definitions.

2-121. S-BUS REGISTER. The S-Bus Register is a 16-bit register
that provides buffer storage between the S-Bus and the ALU. The
S-Bus Register can be right-shifted one bit position (refer to
Function field code QASR, Section V) and is locaded from the
S-Bus. Refer to S-Bus field code definitions.

2-122. ALU. The ALU combines the R- and S-Bus data and gener-
ates functions that are divided into two modes or groups; arith-
metic functions and 1logic functions. The 16-bit output of the
ALU is placed on the T-Bus for either the Shifter or Decimal
Corrector.

2-123. SHIFTER. The Shifter performs all shifts and rotates (left
shift, right shift, right-left swap, etc.) on the T-Bus data as
directed by the Shift Field Decocder. The output of the Shifter
is placed on the U-Bus for storage in one of the U-Bus registers.

2-124. DECIMAL CORRECTOR. The Decimal Corrector adds six to each
group of four bits in the output from the ALU and generates car-
ries to the next group as required to yield a correct decimal
addition. Each group of four bits in the source operands must be
in the range of 0 to 9. If an invalid digit is detected during
the add cycle, overflow will be true.

2-125. ADDRESS COMPUTER OUTPUT REGISTER (ACOR). The ACOR is a 16-
bit register that functions as a memory address buffer between
the U-Bus and the CTL Bus. -

2-126 . DATA COMPUTER OUTPUT REGISTER (DCOR). The DCOR is a 16-

bit register that functions as a buffer for memory bound data and
operand address transfers between the U-Bus and the CTL Bus.

2-60

System/CPU Overview

2-127. INTERRUPT STATUS REGISTER 1 (CPX1l). The Interrupt Status 1
Register (CPX1l Register) provides 16 bits that are used to monit-
or the system Run Mode interrupt status. When a Run Mode inter-
rupt occurs, the CPU reads the CPX1l Register and checks its con-
tents for the cause of the interrupt. The CPX1l Register is read
by S-Bus field code CPX1l and is affected by Special field code
CCPX as discussed in Section V. Each of the CPX1 Register's 16
bits (when true) signifies a specific Run Mode interrupt as fol-
lows:

Bit 0: Integer Overflow Bit 8: External Interrupt
Bit 1l: Bounds Violation Bit 9: Power Fail Interrupt
Bit 2: Illegal Address Bit 10: O

Bit 3: CPU Timer Bit 11: ICS Flag

Bit 4: System Parity Error Bit 12: DISP Flag

Bit 5: Address Parity Error Bit 13: Emulator

Bit 6: Data Parity Error Bit 14: I/0 Timer

Bit 7: Module Interrupt Bit 15: Option Present

2-128. INTERRUPT STATUS REGISTER 2 (CPX2). The Interrupt Status 2
Register (CPX2 Register) is used to monitor the system’s Halt
Mode interrupt status. When a Halt Mode interrupt occurs, the
CPU reads the CPX2 Register and checks its contents for the cause
of the interrupt. The CPX2 Register is read by S-Bus field code
CPX2 and is affected by Special field code CCPX as discussed in
Section V. Each of the CPX2 Register’s 16 bits (when true) sig-
nifies a specific Halt Mode interrupt as follows:

Bit 0: Run Switch Bit 8: Execute Switch

Bit 1: Dump Switch Bit 9: Increment Address
Bit 2: Load Switch Bit 10: Decrement Address
Bit 3: Load Register Bit 11: O

Bit 4: Load Address Bit 12: 0

Bit 5: Load Memory Bit 13: Inhibit PFARS

Bit 6: Display Memory Bit 14: System Halt

Bit 7: Single Instruction Bit 15: Run Flip-Flop

2-129. CPU Servicing Information

Physically, the basic CPU consists of the nine PCA’s contained in
slots A2 through Al0 of Card Cage No. 1 as shown in tables 1-1
through 1-3. All CPU PCA’s are nonrepairable PCA’s and must be
replaced if found defective. No repair procedures are required.
However, four of the six CPU PCA’s contain jumpers or switches
that must be properly configured as discussed in paragraphs 2-130
through 2-133,

2-130. READ-ONLY MEMORY (ROM) PCA. The ROM PCA contains four
jumpers (W5 through W8) that must be installed to reflect the
type of ROM's loaded on the PCA. If the ROM PCA is 1loaded with
ROM’s having a capacity of 1K words, install the four Jjumpers
nearest the 1K marking as shown in figure 2-21. If the ROM PCA

is loaded with ROM’s having a capacity of 2K words, install the
four jumpers nearest the 2K marking.

System/CPU Overview

TOP 1,3, 79

BOTTOM 2,4, 80 , 4,
CUTITTINIIO (W

N
aw
8

ROM PCA
30003-60021

BOTTOM 1,3, =49

} 1K POSITIONS

s
a

} 2K POSITIONS

N
Vel

Figure 2-21. ROM PCA Jumper Locations

2-131. SKIP AND SPECIAL FIELD (SSF) PCA. The SSF PCA contains
two synchronizing jumpers (Wl and W2) that must be installed to
reflect that there is only one CPU in the system. Ensure that
jumpers W1 and W2 are installed exactly as shown in figure 2-22.

2-62

System/CPU Overview

TOP 1,3,
BOTTOM 2,4

o1 [TTTTTTTTTNVON TV ORTRININN T mmmm | TR

3

&

N
o
283

u1s

u3s

u1?
u27
u37

._E_. SKIP AND SPECIAL

FIELD PCA
II\ g
w2} m
oS

30003-60022
J1 J2 J3

TOP 2,4, ~———*50
BOTTOM 1,3, =49

- N
w

g
N
W
&8

Figure 2-22., SSF PCA Jumper Locations

2-132. S-BUS PCA. The S-Bus PCA contains three selector switch-
es (S1, S2, and S3) as shown in fiqure 2-23. Set switch 83 to
match the computer system’s Main Memcry size. Switches S1 and S2
are used for memory interleaving. At present, memory interleav-

ing 1is not factory supported and switches S1 and S2 must be con-
figured for non-interleaving in accordance with table 2-8.

Memory interleaving requires two Memory Control and Logging PCA ‘s
be installed in the system, each supporting one, two, or four
Semiconductor Memory Array PCA's. The memory sizes that can be
interleaved are limited toc 256K, 512K, and 1024K words. The re-
quired switch configurations of switches S1 and S2 on the S-Bus,
IOP, and Selector Channel Register PCA’'s for memory interleaving
are listed in table 2-8.

System/CPU Overview

Table 2-8. Memory Interleaving Switch Configurations

A S —— - " — Y ——— —- - ———]~ - —— o — ——— L —— — ————— - ——— v ——

11 213141516111 21314151]°¢6]I

—— o

|
1
|
|
|
)
!
{
i

|

| | |
Mode :—‘-T"'T"'T'-'T""T"“-I””‘T"-_T--’T""T-—"T'-‘I

|

|

ing 1 to 4
PCA’ s/MCL

O
@]
{
; *0

{
|
{
|
i
|
|
1
|
{
{
|
|
|
|

Interleaving
1024K
4 PCA ‘s/MCL

@]
(@]
* 0

——

512K
2 PCA“s/MCL

* 0

|
i
|

Interleaving
256K
1 PCA/MCL

*

I
I
I
I
|
|
|
|
|
Interleaving ;
|
I
|
|
|
|
|

0

On the S-Bus, IOP Bus, and Selector Channel Register PCA’s,
open all switch positions of S1 and S2. Then, close those
switch positions indicated with a C on all three PCA’s for the
applicable mode.

2-133. CURRENT INSTRUCTION REGISTER (CIR) PCA. The CIR PCA con-
tains eight jumpers (W1l through W8) as shown in figure 2-24. If
neither the HP 32105A APL (A Programming Language), HP 32233A
COBOL ‘74 or, the Extended Instruction Set (EIS) PCA, part no.
30012-60001 are installed in the system, W1 through W8 are all
installed. If the EIS PCA is installed in the system, remove
jumpers W1 and W8 from the CIR PCA. Removing jumper W1 enables
the floating point instructions and removing jumper W8 enables
the decimal instruction set. If the HP 32105A APL ROM’'s are in-
stalled on the EIS PCA, remove jumper W2 from the CIR PCA to en-
able the APL instructions. If the HP 32233A COBOL ‘74 ROM s are
installed on the EIS PCA, remove jumper W4 to enable the COBOL
“74 instructions.

System/CPU Overview

TOP 1,3,

82

BOTTOM 2,4

5
TOP 2,4, =60
BOTTOM 1,3, 49

MEMORY SIZE

(WORDS)
S3

1-128K
2 - 256K
3 - 384K
4-512K
5-768K
6-1024K

S-BUS PCA

[st][s2]

2,4 ~—"50

1,349

N
o
83

O,

2,4~—"50

1,349

Figure 2-23.

S-Bus PCA

2-65

Switch Locations

System/CPU Overview

TOP 1,3,
BOTTOM 2,4

83
[y
s W
83

CIR PCA
30003-60006
XwW
o
N 92 43
TOP 2,4, ~———*50 2,4=———*50 2,450
BOTTOM 1,3, ~—————49 1,3~——=49 1,3——=49

P1 ﬂlll|lllllllllllllllllllllllllllllllllm |

7522-37
Figure 2-24. CIR PCA Jumper lLocations

2-66

System /CPU Overview

NOTES

System /CPU Overview

NOTES

SYSTEM VERIFICATION AND
TROUBLESHOOTING || m

This section contains a brief discussion of available verifica-
tion procedures that can be used to determine if the computer
system is operating properly, a brief discussion of system
troubleshooting procedures, and a discussion of how to use the
System Control Panel and the HP 30354A Maintenance Panel.

3-1. DIAGNOSTIC AND VERIFICATION PROGRAMS

The computer system uses three types of test programs; on-line
verification programs, stand-alone diagnostic programs, and
microdiagnostics.

3-2. On-line Verification Programs

The on-line verification programs are used to confirm proper op-
eration of peripheral devices (i.e., printer, terminals, readers,
punches etc). These programs run concurrently with other programs
under control of the Multiprogramming Executive Operating System
(MPE) and permit uninterrupted system operation. If the minimum
hardware configuration required for MPE is inoperable, on-line
verification programs cannot be run and the stand-alone diagnos-
tics must then be used. For detailed information on the use and
functions of the on-line verification programs, refer to the in-
dividual on-line verification program manuals.

3-3. Stand-Alone Diagnostic Programs

The stand-alone diagnostic programs allow Customer Engineers to
run maintenance and troubleshooting tests on system hardware and
peripheral devices. Each of these programs 1is independently
operated and runs directly on the central processor. MPE is not
required and the operating system is shut-down while stand-alone
programs are running. When a problem occurs that prevents the
use of both on-line or stand-alone programs, then the microdiag-
nostics must be used. The stand-alone diagnostic tapes are cre-
ated under control of SDUPII (Stand-Alone Diagnostic Utility Pro-
gram II). Updating stand-alone diagnostics is also accomplished
under control of SDUPII. For detailed information on the use and
functions of SDUPII, refer to the Diagnostic Utility Program II
Manual, part no. 03000-90125. For detailed information on the
use and functions of stand-alone diagnostic programs, refer to
the individual stand-alone diagnostic program manuals.

3-4. Microdiagnostics

The microdiagnostics are microprograms that are built into the
system. These are microprograms that replace the instruction set
microprograms in the central processor and in some controllers.

3-1

System Verification and Troubleshooting

They identify problems by checking the hardware from the most
basic level. The operating procedures for the built in micro-
diagnostics are contained in the HP 3000 Computer System Install-
ation Manual, part no. 30000-90147. The program is listed in the
HP 3000 Series III1 Computer System Microprogram Listing, part no.
30000-90136.

3-5. SLEUTH 3000

SLEUTH 3000 is a stand-alone utility written in SPL/3000. It 1is
designed to give Customer Engineers the capability of generating
unique I/O test programs that run under the <control of SLEUTH
3000. These programs allow isolation of I/0 problems and ease
the troubleshooting of these problems. SLEUTH 3000 has the abil-
ity to run up to five different types of I/0 devices concurrent-
ly. It can also write and execute SIO programs, store and
restore programs on magnetic tape, and edit the programs.
Peripheral devices that do not have on-line and/or stand-alone
verification programs require that SLEUTH 3000 programs be writ-
ten to test these devices. For additional information, refer to
the Stand-Alone SLEUTH Diagnostic D411A, manual part no. 03000-
90123.

3-6. SYSTEM TROUBLESHOOTING AND REPAIR

The HP 3000 Series III CE Handbook, part no. 30000-90172 con-
tains system troubleshooting procedures that are designed to iso-
late malfunctions to specific functional areas of the system.
Repair of a defective functional area is usually accomplished by
replacing the defective PCA. Only the main memory PCA's are re-
paired to the component level.

In order to run the available diagnostic and verification pro-
grams and to be able to perform the system troubleshooting pro-
cedures, it is mandatory that Customer Engineers know how to use
both the System Control Panel and the Mintenance Panel. De-
tailed information on how to use these panels and "hands-on" ex-
perience will be obtained while attending the hardware training
course. For reference purposes, the panels are described in par-
agraphs 3-7 and 3-8.

3-7. SYSTEM CONTROL PANEL

The System (ntrol Panel (figure 3-1) is located at the top front
of the CPU Equipment Bay and provides the switches and lamps re-
quired to perform the following operations:

a. Cold load and run diagnostics.

b. Load and run user programs.

c. Halt programs.

d. System dump.

e. Observe Current Instruction Register.

f. Reset CPU.

g. Enable and disable auto restart function after power failure.

System Verification and Troubleshooting

PF/ARS PANEL cpPu
DS8L ENBL DSBL ENBL RESET

X X
NOTE: \ \ 4
1. SWITCHES LOCATED BEHIND FACEPLATE. f\’. ."\ H
' Lo [
2. PLACARDING LOCATED ON REAR COVER PLATE
OF SYSTEM CONTROL PANEL.

-
])
1 L4

CURRENT INSTRUCTION REGISTER SYSTEM HALT RUN

o 1 2 3 a 5 3 7 8 9 10 " 1”2 13 14 15

SYSTEM SWITCH REGISTER

[1 2 3 a 5 L} 7 8 9 10 1" 12 3 14 15

10BEBRAHBRABEBEBE HLAB

oump

ENABLE

Figure 3-1. System Control Panel

All front panel switches are three-position, spring-return, rock-
er switches with a center-off position. To perform a specific
operation, press either the top or bottom half of the appropriate
switch as indicated by the placarding. When released, the switch
will return to its center-off position. The switches and lamps
shown in Figure 3-1 are identified and described in table 3-1.

In addition to the switches described in table 3-1, there are
three switches locted behind the upper-right corner of the panel
that are accessible when the cabinet door is opened. See figure
3-1. The CPU RESET switch is a two-position, spring-return
switch that resets the CPU circuits. The PANEL DSBL/ENBL switch
is a two-position switch that disables or enables the System Con-
trol Panel for use. The PF/ARS DSBL/ENBL switch is a two-posi-

tion switch that disables or enables the auto restart program in
the event of a power failure.

Table 3-1. System Control Panel Switches and Lamps

Panel Marking | Function

CURRENT INSTRUCTION
REGISTER (lamps)

Displays the contents of the CIR.

| I
| I
| l |
I ! |
| l I
I I |
I | I
| SYSTEM SWITCH REGISTER | Displays the contents of the Switch|
| (lamps and switches) | Register as determined by pressing |
I | the switches on or off. Switches |
| | provide a 16-bit word to be used as |
I | a device number and control byte |
I | for cold load procedure. }
| |

| | I
l |

l |

RUN (lamp) Indicates the system is executing a
program.

s

System Verification and Troubleshooting
Table 3-1. System Control Panel Switches and Lamps (Continued)

I Panel Marking I Function |

Indicates a system halt caused by
an irrecoverable error detected by
the firmware.

SYSTEM HALT (lamp)

I
I
[
I
RUN/HALT (switch) Reverses the run/halt condition of |
the system. |
|
|
|
|
|
|

ENABLE (switch) Must be held in the ENABLE position
| to permit the LOAD or DUMP switch
| function to become active.
I
DUMP (switch) Sends the contents of memory and
CPU registers to the system mag-
netic tape unit.
LOAD (switch) Used to load memory from a device
specified by the SYSTEM SWITCH
REGISTER contents.

3-8. MAINTENANCE PANEL

The Maintenance Panel (figure 3-2) is a troubleshooting aid for
the computer system. When the pPanel is connected to the system,
switches on the panel are used to select specific registers whose
content may be observed or changed to assist in localizing system
faults. Additionally, lamps on the panel show the contents of
many computer registers and the state of principal signals, al-
lowing analysis of system functioning. (For the most part, the
visual displays are used only when the computer is halted.) Op-
erating power is provided by the computer system. An interface
PCA, installed in the CPU card cage, 1is required for the Main-
tenance Panel.

The names of switches and indicators on the Maintenance Panel are
marked on an overlay which installs on the face of the unit. A
smaller overlay (the 1I/0 overlay) can be placed over a certain
row of lamp names on the main overlay to extend the display func-
tion of those lamps. A switch permits display of the signals
named on the small overlay; other displays remain unchanged. The
small overlay can be turned over to provide another set of names;
these signals are displayed by making an additional cable connec-
tion to the computer. The Maintenance Panel also has a self-test
capability which allows the operability of most panel circuits to
be verified without the use of test equipment .

3-4

System Verification and Troubleshooting

(REF.
ONLY)
CENTRAL DATA BUS
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 i5
~To o olo o olo o ols o> olo o O |
MCUD MCUD DATA SYSTEM SYSTEM TO T0 T0 FROM FROM FROM MOP MOP CPU cPU CPU
PARITY PE PE PE PARITY 0 1 2 1 2 0 1 LORQ HIRQ SELECT
McTo o ololo o olo o olTo olo o © |
READY READY READY READY READY READY ENABLE ENABLE ENABLE ENABLE ENABLE o o uo
[+] 1 2 3 a 5 cB14 o 2 3 4 CcB1S LORQ HIRQ SELECT
[fo o o 5o o olTo o o o o olo o ol
FLAG FLAG FLAG TNAME TNAME ALY ALU CcPU OPND INSTR "o PANEL
1 2 3 o 1 SKIP NOP 2 REPEAT CARRY OVFL TIMER WAIT WAIT WAIT FREEZE FREEZE
MR- o olo olo o olo olo o o ©o ©0 O |
ics DIsP c NEXY‘ INTRPT JsB LT INTRPT u RAR SAVE JUMP JUMP 2 JUMP
FLAG FLAG MUX +1 FF FLAG NOP BNDV GATE GATE GATE GATE GATE GATE GATE FREEZE
N oTo o o o o olo o o o o o o ol
DIRECT SERVICE SERVICE DATA SI0 DRT 108 DRT Ho XFER INTRPT INTRPT INTRPT EXT
ACTIVE uT IN POLL ACTIVE INBOUND REQ JUMP ENABLE SYOﬁE TIMER ERROR REQ POLL ACK INTRPT
o o) 5 o o o o o o o olo o o ol
o 1 l 2 3 a l 5 6 7 I 8 9 10 l 112 13 |I4 15 16 l 17 18 19 lzn 21 22 I 23 24 25 lze 27 28 | 29 30 31
S0 0000000000000 00000C000O0O00000000
FUNCTION sKIp [swer | SPECIAL 1 R
S STORE JMP, JSB 3 JUMP TARGET
ANY ROM I ROM CONSTANT
Vv BUS
B12 B13 2 3 L} 5 6 8 9 10 1" 12 13 14 15
lNlo o olo o olo o olo o olo o o |
Vv BUS COMPARE REGISTER
6 13 14

[DI

o 0 al

«© *
«© -

lolo o ol 0

V BUS JUMP REGISTER

| B12 | B13 2 3 4 5 6 | 7 8 9 | 10 " 12 | 13 14 15 |
y 8us SINGLE CYCLE | yyqeps | ERROR | \yTReT | 10P SINGLE STEP RESET cLock
COMPARE I REGISTER DISPLAY FREEZE
ENABLE HALT REGISTER ALT INHIBIT ENABLE INHIBIT ENABLE EXT INHIBIT
INHIBIT JUMP HALT EXECUTE U BuS NORMAL ENABLE INHIBIT ENABLE INHIBIT EXECUTE cPU "o INT FREE SINGLE
EXIT JumP RUN CYCLE
REGISTER SELECTION ’
O O O O O @] O O O O O O O O O O O O
MOD CMD "o Ule]
SP2 sP3 OPND PADD CcPXY CPX2 SR NO. IDN DEV NO. 100 op DATA MAP PCLK TEST R RGTR S RGTR
R B8 8 & 8 £ 8 6 5 3 8 68 3 8
MEM MEM
ADRS DATA STATUS x P8 P PL oL oB Q S 2z RA RB RC RD CNTR CIR
O O O O O O O O O O O O O O O O O O
REGISTER DISPLAY
814 B15 [1 2 3 4 5 8 7 8 9 10 1 12 13 14 15
Mo ololo o olo o olo o olo o olo o o |
L 'l L ! d
Lo L] L] T 1
SWITCH REGISTER
| Bta 815 || o | 1 2 3 I 4 5 L] | 7 8 9 | 10 " 12 13 14 15
~
¢ olloclo 9 0lg 0 010 @ Jfe @ 4 lg 0 ¢ |
BKPT SYSTEM
HALT HALT RUN
LOAD REGISTER ADDRESS CONTROL MEMORY BREAKPOINT EXECUTE e} e} O
DECR INCR READ WRITE
ENABLE ENABLE ENABLE ENABLE
FROM MEM ADRS INMIBIT INHIBIT DISPLAY STORE INHIBIT INHIBIT SW RGTR SINGLE SYSTEM LOAD RUN/HALT
SW AGTR FROM DSPL INSTR RESET

Figure 3-2. Maintenance Panel

3-5

System Verification and Troubleshooting

3-9. Switch/Lamp Identification and Description

Figure 3-2 illustrates Maintenance Panel switches and lamps. The
shaded numbers on the right side of figure 3-2 identify the row
number of lamps or switches and are used in table 3-2 as an aid
to locating the switch or lamp. The I/0 overlay is shown in fig-
ure 3-3. When referring to a switch or lamp, this manual uses the
name physically marked on the equipment. The name is quoted in
capital letters to indicate it is an equipment marking. There
are three types of switches on the panel as follows:

a. Bistable switches. These switches have two positions, and
can remain in either the up or the down position. In the
down position they have no effect on normal computer func-
tioning, and they are left in this position except when their
particular function is required. 1In figure 3-2, the bistable
switches can be identified by the fact that they are in the
down position.

b. Two-position spring-return switches. These switches are
pressed down when their function is required. When released,
they return tc the up position.

c. Three-position spring-return switches. These switches have a
center-off position. They are pressed up or down to produce
the desired function. When released, they return to the cen-
ter position. All switches of this type are in row 12 of
figure 3-2.

Lamps which display register contents are lighted when the par-
ticular position of the register contains a binary 1. Lamps
which display the state of a signal are lighted when the signal
is in the asserted state. That is, a lamp is lighted when a
"not" signal is low; for other signals, a lamp is lighted when
the signal is high.

3-10. Operating Precautions

The operating system, if in use, may cause unexpected changes in
computer functioning when the Maintenance Panel switches are ac-
tuated. These unexpected changes result from such factors as
stack overflow, etc. Therefore, the operator should be thorough-
ly familiar with the operating system before attempting to use
the Maintenance Panel.

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps

T 1
|Panel| Panel Marking |
| Row |
| | 1
| | |
| 1 | CENTRAL DATA |
I | BUS 0 through |
| | 15 (lamps) :
I |
| 2 | MCUD PARITY |
| | (lamp) |
I I I
} 2 = MCUP PE (lamp)}
| | [
| 2 | DATA PE (lamp) |
| | |
I | |
I | |
2	SYSTEM PE
	(lamp)
I	
2	SYSTEM PARITY
	(lamp)
I	I
	I
2	TO 0, TO 1,
: 1 TO 2 (lamps)	
2	FROM 0, FROM 1
	FROM 2 (lamps)
I	
I	
2	MOP 0, MOP 1
I	(lamps)
I	
I	
2	CPU LORQ
I	(lamp)
I	I
I I	
2	CPU HIRQ I
RO	
2	CPU SELECT I
e	
3	READY O
	through 5
= I (Lamps) I
I I

Use

-

These lamps display the data word which
is on the CTL-Bus (MCUD 0:15).

Indicates the state of the CTL-Bus par-
ity bit.

tected on the CTL-Bus.

I
|
I
I
I
|
Indicates a parity error has been de- 5
I
Indicates there was a parity error de- |
tected in the data received by the cepu |
from memory. |
Indicates a parity error was detected in
the information transferred on the TO,
FROM, MOP, and SYSTEM PARITY lines.

Indicates the state of the parity bit
generated from the TO, FROM, and MOP
codes .

|
|
l
|
I
|
|
|
|
Display the address for which the word |
on the CTL-Bus is intended. |
I
l
|
|
l
I
l
|
l
I
|

Display the address of the module from
which the word on the CTL-Bus is being
sent.

Display the memory operation code. This
code is used by the addressed memory
module.

Indicates the CPU is issuing a low pri-
ority request for a transfer to a mod-
ule.

Indicates the CPU is issuing a high pri-
ority request for use of the CTL-Bus.

I
|
I
I
I
Indicates the CPU is currently selected |
to use the CTL-Bus. I
I
I
I
I
|

Display the module ready lines. Each
line is associated with a like numbered
module and, when true, indicates the
module is ready to receive a transfer.

3-7

System Verification and Troubleshooting

I ——-—_T---—-——'----—--—__

Panel| Panel Marking

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

Row

. o e

3

4

——— e

——— o ——_— — -

ENABLE 0
through 4
(lamps)

CB14, CB15
(lamps)

1/0 LORQ
(lamp)

1/0 HIRQ
(lamp)

1/0 SELECT
(lamp)

FLAG 1, FLAG 2
FLAG 3 (lamps)

TNAME O, TNAME
1 (lamps)

SKIP (lamp)

NOP 2 (lamp)

ALU CARRY
(lamp)

ALU OVFL

|
|
|
|
[
I
|
I
|
I
|
REPEAT (lamp) |
I
|
I
I
I
I
I
|
(lamp) 1

— - -

———— i ———— o ——— -~ — v — -

- — " —— - Yo — . —, a7 o — —— — —p— - " -~

Display the module enable lines. Each
line is associated with a like numbered
module and, when true, indicates a mod-
ule is transferring data. The enable
lines are monitored by the modules to
resolve priorities.

Display MSBs of address on CTL-Bus.

Indicates the IOP
ority request for

Indicates the IOP
ority request for

Indicates the IOP
CTL -Bus.

is issuing a low pri-
use of the CTL-Bus.

is issuing a high pri-
use of the CTL -Bus.

is selected to use the

Indicate the states of the three Flag
flip-flops controlled primarily by the
Special Field microinstructions.

Indicate the states of the TOS namer

bits. These bits

specify the mapping

between the TOS registers RA, RB, RC,
RD, and the associated physical regist-

ers.

Indicates a skip condition is met during
the current clock cycle.

Indicates the state of the NOP 2 bit.
When true, causes a "no operation" by
Rank 2 of the ROM Output Register.

Indicates the Repeat bit is true, caus-
ing the microporcessor to repeat the
current microinstruction until the skip

condition is met.

Indicates the carry signal from the
microprocessor ALU is true.

Indicates the overflow signal from the

microprocessor is

T . ——— ——— — ————— ——— ———-—

true.

. —— ——— - - ——— ———— — i —

|
I
|
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

System Verification and Tr oubleshoot ing

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

the V-Bus are turned off caused by any
one of the following:

CPU Reset
PWR ON
UGATE on (RAR in the Store Field)

I I |
Panel| Panel Marking | Use |
Row | | |
I | |
I I I
4 | CPU TIMER | Indicates that a module did not respond |
| (lamp) | to the CPU within a specified time. |
I I |
4 | OPND WAIT | Indicates the CPU is waiting for an op- |
| (lamp) | erand from memory. I
I I I
4 | INSTR WAIT | Indicates the CPU is waiting for an in- |
| (lamp) | struction from memory. |
| I I
4 | I/0 WAIT | Indicates a multiplexed I/O operation is|
| (lamp) | fetching a word from memory. |
I I |
4 | PANEL FREEZE | Lighted when a microprogram halt is in |
(lamp)	effect or when the V-Bus carries the
	same number as the V BUS COMPARE REGIST-
	ER switches.
I I	
4	FREEZE (lamp)
	stopped.
I	
5	ICS FLAG
(lamp)	flop is set.
I I	
5	DISP FLAG
(lamp)	
I [
5	C MUX (lamp)
	coded. Lighted = current instruction;
	off = next instruction. :
I I	
5	NEXT + 1
(lamp)	sequence" state. I
I I	
5	INTRPT FF
(lamp)	flip-flop. When lighted, an external or
	internal interrupt is pending.
I I	
5 JSB FLAG	Indicates the microcode is executing a
(1 amp)	subroutine.
I I	
5 NOP (lamp)	Indicates one of the normal inputs of ‘
I	
I |

o v——a

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I
|
|
I
|
I
|
| For direct commands; the command
|
|
|
I
|
I

code, device address, and data on
on the bus are valid.
For SIO transfers inbound; data on

For SIO transfers outbound; data on
bus is valid. :

| T [- B |
|Panel | Panel Marking | Use i
| Row | | I
| | I . _
I		
5	NOP (lamp) [INTG on (A CPU interrupt is forcing	
	(Cont)	the V-Bus to address 3).
I I The execution of a V-Bus jump with I		
I	panel switches.	
I I		
5	BNDV (lamp)	Indicates a memory instruction refer- [
		ences an address outside the limit reg-
I I	isters.	
I I	I	
5	LUT GATE	Indicates an instruction target address
	(lamp)	is being sent to the V-Bus. I
		I
5	INTRPT GATE	Indicates when doing a NEXT + 1 cycle
I	(lamp)	and a microcode interrupt is pending or
		when a bounds violation has been de- I
I		tected. I
I I I		
5	U GATE (lamp)	Indicates the U-Bus is gated onto the V-
I		Bus.
I I I I		
5	RAR GATE	Indicates the current address + 1 is put
	(lamp)	on the V-Bus. I
I	I	
5	SAVE GATE	Indicates the microcode return address
	(lamp)	is being gated onto the V-Bus.
I		
5	JUMP 1 GATE	Indicates the jump target from Rank 1 is
I	(lamp)	being gated onto the V-Bus. I
I I I I		
I 5	JUMP 2 GATE	Indicates the jump target from Rank 2 is
	(lamp)	being gated onto the V-Bus.
I	I	
5	JUMP FREEZE	Indicates a one cycle freeze is taking
	(lamp) place to allow a new V-Bus address. I	
6	DIRECT ACTIVE Indicates the IOP is sending out a di-	
	(lamp) rect I/0 command. [
	I	
6	SERVICE OUT Indicates to device controller: [
I (lamp) I
I

I

I

I

I

|

|

I

I
|
|
|
the bus is anticipated. I
I
I
I

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

a
Row

|]
| Panel |

Panel Marking

T

Use |

6

I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I

|
I
I
I
I

SERVICE IN
(lLamp)

DATA POLL
(lamp)

SIO ACTIVE
(lamp)

-

INBOUND (lamp)

DRT REQ (lamp)

JUMP (lamp)

I0B ENABLE
(lamp)

DRT STORE
(lamp)

1/0 TIMER
(lamp)

XFER ERROR
(lamp)

INTRPT REQ
(lamp)

INTRPT POLL
(lamp)

INTRPT ACK
(lamp)

EXT INTRPT
(lamp)

|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I

Indicates a response to an IOP Service
Out or Data Poll.

Indicates the IOP has received a request
for a transfer to or from memory.

Indicates a multiplexed I/O operation is
in progress.

Indicates the IOP is executing an in-
bound memory transfer.

from an SIO multiplexer to fetch a DRT
entry.

Indicates the IOP is currently updating
the DRT pointer during the execution of
a jump order.

Indicates the outbound data is on the
IOP Bus.

|
I
|
I
I
|
|
|
|
|
I
I
|
Indicates the IOP has received a request|
I
I
I
|
|
|
|
I
|
‘ |
Indicates the IOP is updating the DRT |
pointer. :
Indicates the Service In signal has
failed to occur within a period of time
after a Service Out signal.

|
[
|
|
Indicates an I/0 data parity exists. |
|
[
Indicates the state of the Int Req line |
from the devices.

I
|
Indicates the state of the Int Poll sig-|
nal from the IOP to the devices. ‘

I

Indicates that an Interrupt Acknowledge
signal has been received in response to
an interrupt poll.

|
I
|
Indicates an external interrupt has been|
acknowledged by the IOP. |

|

I

-

System Verification and Troubleshoot ing

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

——

——

|) 1 T |
|Panel | Panel Marking | Use I
| Row | I I
		_ R
	I	
7	ROM 0 through	Displays the contents of the ROM output
	31 (lamps)	registers. Lamps (0:4) and (28:31) dis-
: I : play ROR1. Lamps (5:27) display ROR2. ‘		
7	Bl2, B13	Display two MSB bank bits.
	(lamps) I I	
8	V BUS 2	Display the address of the ROM data cur-
	through 15	rently being accessed. Since the ROM is
	(lamps)	two levels removed from the actual mic-
I	roinstruction being executed out of I	
		ROR2, the address is normally two ahead
: | | of the address being executed. ' !

I |
| 9 | V BUS COMPARE | These switches specify the microprogram |
I | REGISTER 0 | address at which a V TRIG pulse will be |
| | through 15 | supplied. (The pulse is available at I
	(bistable	test point E3 at the front of the MPI
	switches)	PCA. It is also available at J3, pin 3
		on the MPI PCA.)
I I		
I I	These switches also specify a micropro-	
I		gram jump address or halt address when
I I	the V BUS COMPARE ENABLE/INHIBIT switch	
l		is at ENABLE.
I	I	
		The V TRIG pulse or breakpoint halt
l I	takes place at the completion of a par-	
I		ticular clock cycle. To bring about the
		effect at the desired clock cycle, the
		microinstruction address set into the
I		V BUS COMPARE REGISTER switches should
I I : be as follows: I		
		Address +1 for completion of execution]
		of the R-Bus and S-Bus fields.
	I	
		Address +2 for completion of execution
		of the remaining microinstruction
I	I fields.	
I I I		
10	B12, B13 (bi-	Used to set bank bits B12 and B1l3.
	stable	
I | switches) |

I I
| 10 | Vv BUS JUMP | These switches specify the jump target
| | REGISTER 2 | for:
: | through 15 I

I

3-12

Table 3-2. Maintenance Panel Switches and Lamps

System Verification and Tr oubleshoot ing

(Cont inued)

lamp.

With the switch at the U BUS posi-
tion the U-Bus is displayed. For
this function, the CLOCK INHIBIT/
FREE RUN switch (panel row 11)
must be at INHIT (single cycle
operation).

I T 1 T
|Panel| Panel Marking | Use
| Row | |
| | |__ L
I | |
| | (bistable I Jump resulting from the V-Bus contents
| | switches) | being equal to the contents of the
| I | V BUS COMPARE REGISTER switches.
| I I
| I I Jump resulting from the V BUS EXECUTE
| | | JUMP switch being pressed.
I | |
| 11 | V BUS COMPARE | Enables the V BUS COMPARE HALT/JUMP
| | ENABLE/INHIBIT| switch.
| | (bistable |
= : switch) ‘
| 11 | V BUS COMPARE | When enabled by the switch listed above, |
| | HALT/JUMP | selects halt or jump when the V-Bus con- |
| | (bistable | tents are the same as the V BUS COMPARE
| | switch) | REGISTER switches.
l | I
| 11 | V BUS COMPARE | When pressed, starts the microprogram
| | HALT EXIT | after:
| | (spring-return|
| | switch) | A halt brought about by the V BUS
| I | COMPARE REGISTER switches.
| | |
| | | A freeze brought about a CCPX-14
: : | Special field microinstruction.
|
| 11 | V BUS EXECUTE | When this switch is pressed, the micro-
| | JUMP (spring- | program jumps to the address in the V
| | return switch)| BUS JUMP REGISTER switches. This func-
| | | tion should be used only when the com-
I | | puter is halted.
I | |
| 11 | SINGLE CYCLE | Selects the REGISTER DISPLAY lamp read-
| | REGISTER | out as follows:
I | DISPLAY, |
I | REGISTER/U BUS| With the switch at the REGISTER posi-
I | (bistable I tion, the display is identified by
‘ switch) = the lighted REGISTER SELECTION
| |
I |
| |
| |
| |
| l
I I
|

3-13

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

—m——y—- [- -
Panel| Panel Marking | Use
Row | |
I | _
| |
11 | SINGLE CYCLE | With this switch at the NORMAL position,
| REGISTER | RA, RB, RC, and RD on the S-Bus PCA can
| DISPLAY, ALT/ | be displayed by the REGISTER DISPLAY
| NORMAL | lamps. With the switch at ALT, RA, RB,
| (bistable | RC, and RD on the R-Bus PCA can be dis-
| switch) | played. Also, with the switch at NOR- |
| | MAL, SP1 and Pre-adder are displayed I
| | from the S-Bus; with the switch at ALT, |
| | SP1 and the Pre-adder are displayed from|
I : the R-Bus. 1
I | This switch must be at NORMAL to store |
| | into RA, RB, RC, RD, or SP1 from the |
I | Maintenance Panel. I
I I I
11 | TIMERS (bi- | Enables or disables the CPU, memory, I
| stable switch)| IOP, and Selector Channel timers. {
| I
11 | ERROR FREEZE | In the ENABLE position, this switch |
| (bistable | causes a freeze when any of the follow- |
| switch) | ing occurs: :
I |
| | Illegal memory address |
I l Memory address parity error |
| I MCUD parity error |
I I System parity error I
I I I/0 data parity error |
I | I/0 address parity error :
| I
| | To end the freeze, the ERROR FREEZE |
: | switch is set to the down position. I
I I
11 | INTRPT (bi- | When the computer is running, setting |
| stable switch)| this switch to INHIBIT causes all inter- |
| | nal and external interrupts to be ignor-|
| | ed, with the exception of the power fail]
| | interrupt. When the switch is returned
I | to the ENABLE position, the previously
| | ignored interrupts are processed. The
| | switch performs no function when the
I | computer is halted.
I |
11 | IOP SINGLE | Enables or disables the IOP SINGLE STEP
| STEP ENABLE/ | EXECUTE switch.
| INHIBIT |
| (bistable |
: switch) I
I

3-14

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I 1 T |
|Panel | Panel Marking | Use |
Row | | l
|
|
11 | IOP SINGLE When enabled by the IOP SINGLE STEP EN- |
| STEP EXECUTE ABLE/INHIBIT switch, the IOP executes I
| (spring-return| one step each time this switch is used. |
| switch) |
| |
11 | RESET CPU The CPU and MCU are reset when this |
| (spring-return| switch is pressed. To avoid improperly |
| switch) changing the contents of registers, the |
| switch should be pressed only when the |
u computer is halted. |
|
11 | RESET 1/0 All I/0 subsystems are reset when this |
| (spring-return| switch is pressed. |
switch) :
11 CLOCK EXT/INT At the INT position, this switch allows |

(bistable
switch)

the CPU to use the clock pulse generated|
within the CPU. At the EXT position, thel
switch selects a clock pulse produced byl
an external pulse generator. =
|
I

The external clock pulse must have the’
following characteristics:

Source impedance: 50 ohms or less |
Source must sink up to 60 ma. I
High level: +2.5V to +5.0V |
Low level: 0.0V to +0.4V : I
Maximum rise time: 10 nsec |
Maximum fall time: 10 nsec |
High time: 20 nsec to infinite time |
Low time: 20 nsec to infinite time |
Maximum frequency: 25.0 MHz |
Minimum frequency: 0 Hz :

To equal the internal clock-pulse rate,
the external clock-pulse frequency must
be 22.8571 MHz. This corresponds to a
period of 43.75 nsec, which, because of
a divide-by-four action in the CPU, pro-
vides a 175-nsec computer clock cycle.

The external clock pulse is supplied to
a BNC-type connector on the CPU back-
plane. The connector is labeled EXT -
CLOCK. A 50-ohm termination impedance
is provided in the CPU.

o s o

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I 1 T - o
|Panel| Panel Marking | Use
Row | |
I | .
I |
11 | CLOCK INHIBIT/| In the INHIBIT position, this switch
| FREE RUN | permits the CPU to execute one machine
| (bistable | cycle each time the CLOCK SINGLE CYCLE
| switch) | switch is pressed. In the FREE RUN po-
| | sition, the CPU operates continuously
I | using either internal or external clock
: | pulses.
I
11 | CLOCK SINGLE | When enabled by the CLOCK INHIBIT/FREE
| CYCLE (spring-| RUN switch, pressing this switch causes
! return switch)} execution of one CPU machine cycle.
12 | REGISTER | When pressed up or down, each switch
| SELECTION | lights the lamp above or below it, and
I
|

I
I
I
I
|
I
|
I
|
l
I
I
I
I
I
I
I
I
|
I
I
|
I
I
I
l
I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
[

(Lamps and
center-off
spring-return
switches)

turns off any other lighted lamp in the
group. The lighted lamp identifies the
register displayed by the REGISTER DIS-
PLAY lamps. The Bl4 and Bl5 lamps re-
main extinguished except as stated be-
low.

The lighted REGISTER SELECTION lamp also

identifies the register which will be
loaded by either of the LOAD REGISTER
switches.

The following registers cannot be loaded
by the LOAD REGISTER FROM SW RGTR
switch; these are identified below as
"display only" registers. Special com-
ments are as follows:

OPND, display only.
PADD, display only.
CPX1l, display only.
CPX2, display only.
SR, display only

. MOD NO., display only. The module
number appears in positions 5, 6, and
7 of the REGISTER DISPLAY lamps.
REGISTER DISPLAY lamp 13 is lighted
indicating CPU No. 1.

IDN, display only.

3-16

Table 3-2.

System Verification and Troubleshooting

Maintenance Panel Switches and Lamps (Continued)

r

Panel Marking

r

Use

I
I
I
I
I
I
I
I
I
I
I
I
I
I
[
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I

CMD DEV NO., display only. The I/O
command is displayed in positions 5
through 7; the device number is in
positions 8 through 15. Positions 0
through 4 of the display do not 1light

I
|
I
I
7
I
I
I
I
I
I
10D, display only. Displays (via the|
S- Bus) the contents of the IOD Input |
Register. I
I

10P, display only. Displays the con-|
tents of the Data-In Register. |
I

I

I

I

|

I

|

|

I

1/0 DATA, display only. Displays the
data on the IOD (0:15) bits. On the
I0P bus,these bits are in "not" form;
however, the "not" bits are inverted
before display. Thus, there is no
overbar over the mnemonic.

1/0 MAP, display only. To identify
the I/0 Map bits, the I/O overlay
(part no. 30354-80012) is placed over
the REGISTER DISPLAY lamps.

PCLK, display only.

TEST, display only. Displays any 16
bits applied to J3 on the Maintenance
Panel Inter face PCA.

R RGTR, display only.
S RGTR, display only.

MEM ADRS displays the memory address
(SPO) in REGISTER DISPLAY (0:15), and
the ABS-Bank Register in Bl4 and B1l5.
This lamp is called MEM ADRS because
SPO contains the address when memory
is accessed by means of the MEMORY
STORE or MEMORY DISPLAY switches.

I
I
I
I
I
I
I
I
|
I
I
|
I
I
I
|
|
|
I
|
|
|
MEM DATA displays the memory data |
(SP1) in REGISTER DISPLAY (0:15). |
Bl4 and B1l5 will be zero. This lamp |
is called MEM DATA because SPl re- I

3-17

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

r —_—
Panel| Panel Marking
Row |

Use

I
|
I
I
I
I
I
I
I
I
I
|
I
I
I

|
I
I
I
I
I
I
I
|
I
|
l
I

I
I
|
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[
I
I
I
I
I
I
I
I |
I
I
I
I
I
I
I
I
I
|
I
I
I
|
I
I
I
I
[
I

—— s o e S . .

played by means of the MEMORY DISPLAY
switch.

SP2 displays the contents of the
Scratch Pad 2 Register, used by the
microcode. B1l4 and B1l5 will be zero.

|
|
|
|
|
ceives the data when memory is dis- |
I
I
|
I
I

SP3 displays the contents of the
Scratch Pad 3 Register, used by the
microcode. Bl4 and B1l5 will be zero.

RA displays the contents of the TOS
register. Bl4 and B1l5 will be zero.

RB displays the contents of the 2nd
stack register. Bl4 and B1l5 will
zero.

RC displays the contents of the 3rd
stack register. Bl4 and B1l5 will be
zero.

RD displays the contents of the 4th
stack register. B1l4 and B1l5 will be
zero.

ister.

PB displays the PB Status Register
in REGISTER DISPLAY (0:15). B1l4 and
B1l5 display the PB-Bank Register.

P displays the P Register in REGISTER
DISPLAY (0:15). B1l4 and B1l5 display
the PB-Bank Register.

PL displays the PL Register in REG-
ISTER DISPLAY (0:15). Bl4 and B15
display the PB-Bank Register; these
two bits are display only.

DL displays the contents of the DL
Register in REGISTER DISPLAY (0:15).

B1l4 and B15 display the stack regist-

I
|
|
I
|
|
|
I
I
I
|
I
|
|
|
I
I
I
|
I
I
STATUS displays the CPU Status Reg- |
I
I
I
I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
er; these two bits are display only. |
|

3-18

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I I

Panel Marking

Panel

e Use
Row

I
|
|
|
I
DB displays the Data Base Register in|

REGISTER DISPLAY (0:15). Bl4 and B1l5|
display the DB-Bank Register. |

I |

I I

I |

| I

I |

I |

| |

I |

| | Q displays the Q Register in REGISTER

| | DISPLAY (0:15). Bl4 and B1l5 display

| [the Stack-Bank Register; these two

| | bits are display only.

| I
| S displays the S Register in REGISTER

| | DISPLAY (0:15). B1l4 and B1l5 display
| the Stack-Bank Register; these two
I bits are display only.
I
I
I
I
I
I
|
I
|
I
I
I
I
I

Z displays the Z Register in REGISTER
DISPLAY (0:15). Bl4 and Bl5 display
the Stack-Bank Register.

CIR, display only. Display valid only
| when the CLOCK INHIBIT/FREE RUN switch
| is at INHIBIT position (single cycle

| operation).

I

13 | REGISTER Display the register identified by the

| DISPLAY 0 lighted REGISTER SELECTION lamp. The

| REGISTER DISPLAY lamps also indicate the
| data which will be loaded by the LOAD

I

|

|

I

REGISTER, MEM ADDRS FROM DISPL switch.

through 15,
B15, and Bl4
(lamps)
14 SWITCH
REGISTER
| 0 through 15, |
| B15, and Bl4
| (bistable
| switches)

|
|
I
I
|
|
|
I
I
|
I
I
|
I
I
CNTR, display bits 10:15. I
I
I
|
|
I
|
|
I
|
I
I
|
Switches 0 through 15 provide a 16-bit |
word to: :
Load in a selected register by means
of the LOAD REGISTER FROM SWITCH RGTR
switch.

Store in memory by means of the MEMORY
STORE switch.

Use as an instruction word when the
EXECUTE SW RGTR switch is pressed.

Match with a word read from memory to
cause a read breakpoint halt (using

I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
|
I
I
I
|
| the BREAKPOINT READ ENABLE switch).
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

3-19

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

i

Panel Marking

R e ———

Panel Use

Match with a word stored in a memory
storage operation to cause a store
breakpoint halt (using the BREAKPOINT
STORE ENABLE switch).

|
I
I
|
I
|
I
|
| Switches B14 and B1l5 (row 14) and B1l2
| and B13 (row 10) are used to change the
| contents of the following bank registers
| by means of the LOAD REGISTER FROM SW
I RGTR switch:
I ABS-Bank Register (MEM ADRS Register
selected)

PB-Bank Register (PB Register select-
ed)

Stack-Bank Register (Z Register sel-
ected)

DB-Bank Register (DB Register select-
ed)

Except as listed above, switches Bl4 and|
B15 produce no effect when registers arel
manually loaded. I

—_—_—————,—, e —_—

A further use of switches Bl4 and B1l5 is
to specify the memory module number for
breakpoint halts (using the BREAKPOINT
STORE ENABLE/INHIBIT switch).

BKPT HALT
(Lamp)

Lighted during a breakpoint halt caused
by either of the following switches:

BREAKPOINT READ ENABLE/INHIBIT

SYSTEM HALT
(lamp)

Lighted during a system halt (caused by
an irrecoverable error).

RUN (lamp) Lighted when the CPU is running.
LOAD REGISTER

FROM SW RGTR
(spring-return

When pressed, the register indicated by
the lighted REGISTER SELECTION lamp is
loaded with the contents of the SWITCH

— -

I
I
I
I
I
I
I
I
I
I
I
BREAKPOINT STORE ENABLE/INHIBIT 1
I
I
I
I
I
I
I
I

— — e e —— T — — — — — — A s e — — T . . s s . — — — T . e

3-20

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

7
|Panel |

| Row

T
Panel Marking |
|

———— -

Use

16

16
16

I
I
|
I
I
l
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
|
l
I
I
| 16
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I

switch)

LOAD REGISTER, |
MEM ADDRS FROM|
DISPL (spring-|
return switch) |

ADDRESS
CONTROL, DECR
ENABLE/INHIBIT
(bistable
switch)

ADDRESS
CONTROL INCR
ENABLE/INHIBIT
(bistable
switch)

MEMORY DISPLAY
(spring-return

|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
switch) |
|
|
|
|
|
|
I
|
|
|
|
I
I
I
|
|
|
I

- —

REGISTER switches. The bank registers
may also be loaded, as explained in the
SWITCH REGISTER description above.

I
I
|
I
|
|
|
I
I
When pressed the Memory Address Register|
(SPO) is loaded with the bits displayed |
by the REGISTER DISPLAY (0:15) lamps. I
Also, the ABS-Bank Register is loaded I
with the bits displayed by the REGISTER |
DISPLAY B14 and B15 lamps. The MEMORY |
DISPLAY or MEMORY STORE switch can' then |
display or store at the 18-bit address. 1
|
I
|
|
I
I
|
|
|
I
|
I
|

When this switch is at ENABLE, the Mem-
ory Address Register (SPO) is decrement-
ed by 1 each time the MEMORY DISPLAY oOr
MEMORY STORE switch is pressed. (The
ADDRESS CONTROL INCR ENABLE/INHIBIT
switch should be at INHIBIT.

When this switch is at ENABLE, the Mem-
ory Address Register (SPO) is increment-
ed by 1 each time the MEMORY DISPLAY or
MEMORY STORE switch is pressed. (The
ADDRESS CONTROL DECR ENABLE/INHIBIT
switch should be at INHIBIT.
When this switch is pressed, the follow-
ing takes place:

|

I

|

I

The REGISTER SELECTION MEM DATA lamp |
lights. Any other lighted lamp in this|
group goes out. I
The REGISTER DISPLAY (0:15) lamps show|
the contents of the memory address |
specified by the ABS-Bank Register and |
the Memory Address Reglster (SPO). |
Lamps Bl4 and Bl5 remain ext1ngu1shed.=
I

I

I

I

|

|

I

|

The Memory