CASE SOLUTIONS FOR MICROPROCESSORS

: HP 64430
M;L_-A 68030 Emulator
User’s Guide

Designlenter

¥ y £
. o, e
o P Ly e X

ROV R M

HP 64430

68030
Emulator

User’s Guide

HEWLETT
[ﬁla] PACKARD
HP Part No. 64430-97000

Printed in U.S.A.
February 1990

Edition 1

C

Certification and Warranty

Certification

Warranty

Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements
are traceable to the United States National Bureau of Standards, to
the extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

This Hewlett-Packard system product is warranted against defects
in materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s
facility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at Buyer’s
facility only upon HP’s prior agreement and Buyer shall pay HP’s
round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping charges
to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP
from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its
programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the
instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the
product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies J

The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Servic o Dffice.

L,

Notice

Hewlett-Packard makes no warranty of any kind with regard to

this material, including, but not limited to, the implied warranties

of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability

of its software on equipment that is not furnished by
Hewlett-Packard.

Copyright 1990 Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

HP and HP-UX are trademarks of Hewlett-Packard Company.
UNIX is a registered trademark of AT&T.
TORX is a registered trademark of Camcar Division of Textron,

Inc.

Hewlett-Packard Company

Logic Systems Division

8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the u
version level of the software product at the time the manual was

issued. Many product updates and fixes do not require manual

changes, and manual corrections may be done without

accompanying product changes. Therefore, do not expect a

one-to-one correspondence between product updates and manual
revisions.

Edition 1 64430-97000, February, 1990

C

Electromagnetic Interference

What Is
Electromagnetic
Interference?

All types of electronic equipment are potential sources of
unintentional electromagnetic radiation which may cause
interference with licensed communication services. Products which
utilize digital waveforms such as any computing device are
particularly characteristic of this phenomena and use of these
products may require that special care be taken to ensure that
Electromagnetic Interference (EMI) is controlled. Various
government agencies regulate the levels of unintentional spurious
radiation which may be generated by electronic equipment. The
operator of this product should be familiar with the specific
regulatory requirement in effect in his locality.

The HP 64000-UX has been designed and tested to the
requirements of the Federal Republic of Germany VDE 0871
Level A. They have been licensed with the German ZZF as Level
A products (FTZ C-112/82. These specifications and the laws of
many other countries require that if emissions from these products
cause harmfull interference with licensed radio communications,
that the operator of the interference source may be required to
cease operation of the product and correct the situation.

Reducing the Risk

Of EMI 1. Ensure that the top cover of the HP 64120A
Instrumentation Cardcage is properly installed and that all '
screws are tight (do not over tighten).

2. When using a feature set which includes cables that egress
from the chassis slot of the HP 64120A, insure that the
knurled nuts and ferrels, or brackets that ground the cable
shields are clean and tight (Do not overtighten). The
EEPROM Programmer cable has an exposed shield that
must make contact with the cable clamp.

3. During times of infrequent use, disconnect the EEPROM
Programmer and cables from the card cage and the target
system.

4. Use only shielded coaxial cables on the four external BNC
connectors on the rear of the HP 64120A

5. Use only the shielded IMB cable supplied with the g
HP 64120A for connection to additional HP 64120A
Instrumentation Cardcages.

6. Use only shielded cables on the IEEE 488 interface
connector to the host computer.

C

Reducing
Interference

In the unlikely event that emissions from the HP 64000-UX System
result in electromagnetic interference with other equipment, you
may use the following measures to reduce or eliminate the
interference.

1. If possible, increase the distance between the emulation
system and the susceptible equipment.

2. Rearrange the orientation of the chassis and cables of the
emulation system.

3. Plug the HP 64120A into a separate power outlet from the
one used by the susceptible equipment (the two outlets
should be on different electrical circuits).

4. Plug the HP 64120A into a separate isolation transformer
or power line filter.

You may need to contact your local Hewlett-Packard sales
office for additional suggestions. Also, the U.S.A. Federal
Communications Commission has prepared a booklet
entitled How to Identifyand Resolve Radio - TV Interfrence
Problems which may be helpful to you. This booklet (stock
#004-000-00345-4) may be purchased from the
Superintendent of Documents, U.S. Government Printing
Office, Washington, D.C. 20402 U.S.A.

Manufacturer’s Declarations

U.S.A. Federal
Communications
Commission

Federal Republic of
Germany

Warning - This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in accordance with
the instructions manual, may cause interference to radio
communications. Operation of this equipment in a residential area
is likely to cause interference in which case the user at his own
expense will be required to take whatever measures may be
required to correct the interference.

Wenn Thr Gerit in der Bundesrepublik Deutschland einschl.
Westerlin betrieben wird, senden Sie bitte die beiliegende
Postkarte ausgefiillt an [hr zusténdiges Fernmeldeamt.

-’

C

Safety

Summary of Safe
Procedures

The following general safety precautions must be observed during
all phases of operation, service, and repair of this instrument.
Failure to comply with these precautions or with specific warnings
elsewhere in this manual violates safety standards of design,
manufacture, and intended use of the instrument. Hewlett-Packard
Company assumes no liability for the customer’s failure to comply
with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must
be connected to an electrical ground. The instrument is equipped
with a three-conductor ac power cable. The power cable must
either be plugged into an approved three-contact electrical outlet
or used with a three-contact to two-contact adapter with the
grounding wire (green) firmly connected to an electrical ground
(safety ground) at the power outlet. The power jack and mating
plug of the power cable meet International Electrotechnical
Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases
or fumes. Operation of any electrical instrument in such an
environment constitutes a definite safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers.
Component replacement and internal adjustments must be made
by qualified maintenance personnel. Do not replace components
with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed.
To avoid injuries, always disconnect power and discharge circuits
before touching them.

Warning

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another
person, capable of rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument J

Because of the danger of introducing additional hazards, do not
install substitute parts or perform any unauthorized modification
of the instrument. Return the instrument to a Hewlett-Packard
Sales and Service Office for service and repair to ensure that safety
features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially
dangerous procedures throughout this manual. Instructions
contained in the warnings must be followed.

Dangerous voltages, capable of causing death, are present
in this instrument. Use extreme caution when handling, J
testing, and adjusting.

Safety Symbols Used
In Manuals

The following is a list of general definitions of safety symbols used
on equipment or in manuals:

Instruction manual symbol: the product is marked with this symbol
when it is necessary for the user to refer to the instruction manual
in order to protect against damage 1o the instrument.

Indicates dangerous voltage (terminals fed from the interior by
voltage exceeding 1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical
shock in case of a fault. Used with field wiring terminals to indicate
the terminal which must be connected to ground before operating
the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a
signal common, as well as providing protection against electrical
shock in case of a fault. A terminal marked with this symbol must
be connected to ground in the manner described in the installation
(operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of
the equipment which normally includes all exposed metal
structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Note i

Caution ‘

Warning a

The Note sign denotes important information. It calls your
attention to a procedure, practice, condition, or similar situation
which is essential to highlight.

-

The Caution sign denotes a hazard. It calls your attention to an
operating procedure, practice, condition, or similar situation,
which, if not correctly performed or adhered to, could result in
damage to or destruction of part or all of the product.

The Warning sign denotes a hazard. It calls your attention to
a procedure, practice, condition or the like, which, if not
correctly performed, could result in injury or death to

 personnel.

o

C

Notice

Caution

CONDUCTIVE FOAM OR PLASTIC OVER EMULATOR
PINS MAY CAUSE ERRATIC OPERATION.

The emulator user assembly pins are covered at the time of
shipment with either a conductive foam wafer or a conductive
plastic pin protector. This is done for two reasons:

1) to protect the user interface circuitry within the emulator
from electro-static discharge (ESD),

2) to protect the delicate gold plated pins of the probe
assembly from damage due to impact.

Both the foam and plastic protection devices are conductive. This
may cause erratic performance of the emulation or analysis system
during operation, and also during option_test performance
verification. Therefore, it is recommended that the foam or plastic
device be removed before using the emulation or analysis system or
before running option_test performance verification.

When not using the emulator, the foam or plastic assembly should
be replaced to retain protection for the probe pins and protection
from ESD.

Notes

PRE-
INSTALLATION

SOFTWARE DEVELOPMENT TOOLS

HP TEAMWORK

main()
i
cha stri80);
srtCanter seng:)

gets
primi(\ oy enteredr "%

XDEF START,
XDEF TRANSFE|
SECT TABLE

MESSAGE_10CB 'The ex

0C8 ‘messag

HP 64000
COMPILERS

HP 64000
ASSEMBLERS/
LINKERS

76 7 5gnan satement ot

switen(d

20 cose

5o oo T by
break:
2 defoult: be+;

HP 64000

BBA/
DEBUGGERS

LOCAL AREA
NETWORK

SEE HP 64700
MANUAL MAP

INTEGRATION TOOLS

MEASUREMENT <WSTE\/I

INTERMODULE BUS)-—r——~ —~—

Em

i
TIMING UR|
ANALYSIS STATE/ SOFTWARE PREPROCESSOR i

TNSTRUMENTATION e Anirsis ANALYSIS i,
CHRCASE (150) R . N B

= L= < < <

comersion
N

16/32-BIT

N
4

1
|
1
1
|
1

ULATION WITH |
INTERNAL ANALYS\S

PROM
PROGRAMMER

HW & SW
INSTALLATION

2

e
HP 64000-UX

HARDWARE
INSTALLATION &

|

]

CONFIGURATION
MANUAL

L

4]

DEVELOPMENT
SYSTEM

(4]

-«

81 [

HP 64000-UX
MANUAL MAP

Effective for HP 64000-UX Microprocessor Development System
Manuals printed after December 1986.

PROCESSOR asis
PROCESSOR —

WP mM;f;K ‘ e asSbiBlER ANALYSIS/ r(| | |
UseR: N DEBUGGER |
MANUAL [A ANUALS MANUALS | < < | < < | < -

g ¥ :
— EMULATION, ey
i it et !
PERPHERAL | TN [PREPROCE SSOR EMULATION evuLATION |
J—— nrERrAGE MANUAL AALYS: ANALYSIS GrcRATING | e [PROGRAWER |
neRC orasact i oPERATING i erePROCESS0R I orenkTic
SA/RT/M OPERATNG ANUAL * MANUA MANUAL OPERATING * it
i i I
PREPROCESSOR o ! L i
— INTERFACE - B 1
TQ OPERATING *
MANUAL F
SoFTvEY
DRVEN
P TEAMWORIC TR |
OPERATNG]
e e SOFTWARE SMULATED 1 s
PERFORMANCE it | RefERENCE
OPERATING i T !
OPERATING MANUAL :
A \ |
roruAT e
REFERENCE OPERATING
WPoRATON

P TEAMYORK F
ACCESS —
pocess wersugewenr .

OPERATING < < <
WANUAL
| < —‘ |
TEST | <E < < <] oy
AND == o = e :
0CESSOR LSS RO

ice PERIPHERAL PROCESSOR oPTION TIMING SRS lPREPROCESSOR ereprocesSon SPECIFIC SERVICE PROGRAMMER
service PACKAGE HARDWARE ANALYSIS < WANUAL SeRvice
SPEciFiC SeRvIe v SERic Service |
VANUAL SERVICE SERVICE SERVICE SERVICE pritig WAL | | MANUAL ||
MANUAL INFORUATION UALS MANUAL . |
MANUAL 3 1 J

HP SUPPORT
REFERENCE
MANUAC

If All Else Fails:

AEE0

AEFO

AEED

AE=D

4

1

AEZEO

AEEO

AEEO

REV. 3 4/89

HOW TO USE THIS MAP

Tasks ore listed down the left~hand side of the rows. Hardwore
and software are shown along the top of the columns.
Row/column intersections show the manuals you need when
performing the tasks using the hardware and _software.

EXAMPLE: All manuals needed to use an emulator are shown at
the intersection of the USE row and EMULATION -column. Further,
the emulation reference manual is in the same binder with the
processor—specific manual for your emulator.

KEY

= Use the monual(s) pointed to by the arrow when

performing the task (on the left) with the product
<
*

(shown above)

Indicates manuals contained in same binder.

= HP 9000 Reference Monuals may need to be used.

Software installation Manual includes information for
the product shown above.

Your friendly, fast, efficient, reliable,

results—oriented HP Customer Support staff.

shown here are combined into one manual

A

]

Automated version for hardware and software
system installation

Conversion Kit = Makes an existing HP 641004 or HP 64110A station
into an HP 64000-UX supported package consisting
of o terminal, cordcage, and flexible disc drives
(if drives were part of the original product).

Peripheral Package

Operation = Shows you how to operate the parts of
your converted HP 84100A or HP 64110A station.

= For some emulators, the contents of the two manuals

(ﬁ HEWLETT
PACKARD

O

USING THIS MANUAL

Organization

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Introducing The 68030 Emulator contains a brief description of
the 68030 emulator.

Installing Emulation Hardware contains information on installing
your 68030 emulation system hardware into the instrumentation
cardcage and making a measurement system. This chapter also
contains information on connecting the emulator to your target
system.

Getting Started steps you through the emulation process from
creating an example program to performing measurements on the
execution of that program in emulation.

The Getting Started chapter discusses preparing your program
modules and the files that are generated by assembling, compiling,
and linking programs. See the appropriate cross assembler/linker
and compiler manuals for more detailed information on preparing
program modules for emulation.

Configuring Your Emulator shows how to access the emulation
configuration questions, describes the options available when
configuring the emulator, and shows how to load configuration
command files from a previous emulation session.

DeMMUer - What It Is And How It Works describes what the
deMMUer is, how the deMMUer operates, when to use the
deMMUer, and the restrictions you need to observe when using the
deMMUer.

Chapter 6 Target System Interface provides information about the 68030 pins
and how the emulator interacts with those pins. It also provides
guidelines for using the emulator with a target system and provides
information you need to know about how the emulator interacts

with your target system. J

Chapter 7 The Emulation Monitor Program provides a detailed description
of the emulation monitor progmm and how to modify it for your
system requirements.

Chapter 8 Using Custom Coprocessors describes how to make a custom
coprocessor register format file and how to modify the emulation
monitor so that your emulation system can display and modify
COProcessor registers.

Chapter 9 Using Simulated I/O And Simulated Interrupts describes how to
set up your emulator to use host I/O resources to simulated target
system I/O and how to use the simulated interrupt features of the
emulator.

Chapter 10 How The Emulator Works provides a detailed description of how J
many of the emulator features work. Understanding how the
emulator works helps you use the emulator more effectively and
helps you resolve problems you may encounter.

Appendix A Emulation Error Messages contains descriptions of the most
serious error messages you may encounter and information on how
to correct the errors.

Appendix B Demonstration Source Files provides listings of the demonstration
programs used in this manual as a reference for you when working
through the examples.

Appendix C Timing Comparisons lists timing comparisons between 68030
processors and the HP 64430 Emulator. It also provides the DC : I’
electrical specifications for the HP 64430 Emulator.

Understanding The Examples

L This manual assumes that you are using the User-Friendly
Interface Software (HP 64808S) which is activated by executing the
HP 64000-UX pmon command. This means that the manual will
show you how to enter HP 64000-UX system commands (edit,
compile, assemble, link, msinit, msconfig, etc.) by telling you to
press various softkeys.

If you are not using "pmon", you will find the User
Interface/HP-UX Cross Reference appendix of the 68030
Emularion Re rence Manual especially useful. The cross reference
table shows you how the "pmon" softkeys translate into commands
that can be entered from the HP-UX prompt.

The examples provided throughout this manual use the following

structure:
PRESS edit module.S
‘ PRESS means you should enter a command by selecting the

or press softkeys and/or typing in any file names or other
variables which are not provided in the softkey
selections.

edit softkeys will appear in bold type. Usually you will not
be prompted to use the ---ETC--- softkey to search for
the appropriate softkey template. Three softkey
templates are available at the HP 64000 system
monitor level.

module.S this is the name of a file which you must type in.
Softkeys are not provided for this type of selection
since it is variable. However, a softkey prompt such as
<FILE> will appear as a softkey selection.

For most commands, you must press the Return (or Enter) key
‘ before the command is actually executed.

Notes

Contents

C

1

Introducing The 68030 Emulator

Overview e 1-1
Safety Considerations, 1-1
Purpose of the 68030 Emulator 1-2
Emulator Features 1-2
Software Debugging o oL 1-2
Symbols 1-2
Real-Time Operation 1-2
ClockSpeed e 1-3
EmulationMemory 1-3
Analysis L e 1-3
Registers 1-4
Single-Step 1-4
Breakpoints L oL 1-4
ResetSupport 1-4
MemoryManagement, 1-4
Custom Coprocessors Support 1-5
FunctionCodes 1-5
Foreground or Background Emulation Monitor 1-5
Out-of-Circuit or In-Circuit Emulation 1-6
Manual Coveraget 1-6

Installing Your Emulator

OVEIVIEW e e 2-1
Introduction, L L o o 2-1
Safety Considerations 2-3
Preinstallation Inspection 2-4
Installing Your Emulation System Hardware 2-5
Installation Instructions 2-5
Turn Off Power 2-6
Remove The Card Cage Cover 2-6
Connect The Emulator Pod Cables
To The EmulatorBoards 2-7
Install Boards Into The CardCage 2-8

Contents-1

2-Contents

Secure ThePodCables 2-10

Reinstall Card Cage Access Cover 2-10
Installing The Emulation Probe Into The Target System 2-10
Install Software 2-13
Installing 68030 Emulation Software Updates 2-13
Turning On The HP 64120A 2-14
Getting Started
Overview 3-1
Introduction 3-1
Emulation System Used For Examples 32
Making A Subdirectory For Your 68030 Project 32
Initializing And Configuring Your Measurement System3-4
Preparing Your Program Modules 3-6

Creating The Absolute File In
Your Own Subdirectory 3-7
Using The Absolute File In The Demo Directory 3-8
Preparing The Emulation System38
Accessing The Emulation System 39
Modifying The Default Emulation Configuration39
Loading EmulationMemory 3-11
UsingThe Emulator 3-11
Displaying Global Symbols 3-12
Displaying Local Symbols 3-13
DisplayingMemory 3-14
ModifyingMemory o oo 3-15
Running from the Transfer Address316
Displaying Registers 3-17
Using The Step Function 3-19
Tracing Processor Activity 3-20
Using Software Breakpoints 3-24
Using Simulated /O 3-27
UsingtheDeMMUer 3-30
Ending The Emulation Session 3-34
Using Command Files33

4 Answering Emulation Configuration Questions

OVEIVIEW . . . v i ittt 4-1
Introduction o o 4-1
Running Emulation 4-2
Modifying The ConfigurationFile 4-3
Selecting Real-Time/ Nonreal-Time RunMode 4-4
Enabling Emulator Monitor Functions 4-6
Resetting Into The Monitor 4-8
Enabling Emulator Use of Software Breakpoints 4-12

Selecting The Software Breakpoint Instruction Number . . 4-12
Defaulting The Stack Pointer For

The Background Monitor 4-15
Select To Block ECS, OCS Signals
During Background Monitor Cycles 4-16
Select To Perform Periodic Foreground Accesses 4-17
Selecting Address for Periodic Foreground Access 4-18
Enabling The Foreground Monitor 4-20
Interlock or Provide Termination for
the Foreground Monitor 4-20
Using Custom COprocessors 4-21
Specifying The Custom Coprocessor File 4-24
Modifying a Memory Configuration 4-25
Selecting to Block BERR on Non-interlocked
EmulationMemory 4-28
MappingMemory o oL 4-28
Memory Map Display Organization. 4-30
Memory Map Definition. 4-31
Emulation Monitor Program
Memory Requirements. 4-32
Using The Map Command 4-32
Using The Map_overlay Command 4-36
Memory Mapping Example 4-38
Using The Modify Command 4-41
Modify Defined_Codes. 4-41
Modify <ENTRY>. 4-44
ModifyDefault., 4-46
Deleting Memory Map Entries 4-46
Modify the DeMMUer Configuration 4-46
Ending The Mapping Session 4-48
Modifying The Emulation Pod Configuration 4-49
Configuring for In-circuit Emulation Session 4-50

Contents-3

Enabling DMA Transfers 4-52

Enabling DMA Transfers Into Emulation Memory 4-52
CPU Clock Rate Determination of Wait States 4-53
Disabling On-chipCache 4-54
Enabling MMU For Use During Emulation Session4-54
Modifying Simulated I/O Configuration 4-54
Modifying Simulated Interrupt Configuration 4-55
Naming The ConfigurationFile 4-55

5 DeMMUer - What It Is And How It Works

Overview e 5-1
Introduction e 5-2
What The DeMMUerlIs 5-2
How The DeMMUer Operates 5-2
When ToUse The DeMMUer 5-4
When To Turn Off The DeMMUer 5-5
Under What Conditions The DeMMUer Will Fail To Work . .5-5
When To Start The DeMMUer 5-6
Startup With The Emulator 5-6
The Emulator Was Running Without Using
The DeMMUer, And Now I Want ToUseIt 5-6
How To Turn On And Turn Off The DeMMUer 5-7
Turn On/Off By Using Emulation Configuration Questions .5-7
Turn On/Off By Setting The Analysis Mode 5-8
DeMMUer ConfigurationSetup 5-8
How To Access The DeMMUer Configuration Display5-10

6 Target System Interface

OVerview 6-1
68030Signals 6-2
CLK .. 6-2
ABLO) .o e 6-2
FC2-FCO e 6-3
R/W 6-3
CBREQ 6-3
RMC . . . 6-3
SIZO-SIZ1 e 6-3
CIOUT . . . e 6-3
AS e 6-4
DS,DBEN 6-4
ECS,0CS e 6-5

4-Contents

DBI0) ottt 6-5

DSACKI-DSACKO 6-6
BERR 6-6
HALT,AVEC i e 6-6
STERM e 6-7
CIIN ... 6-7
CBACK 6-7
BG ... 6-8
IPEND 6-8
STATUS,REFILL 6-8
BR,BGACK 6-8
IPL2-IPLO oo 6-8
CDIS,MMUDIS 6-9
RESET e 6-9
VCC .. e 6-9

Emulation And Target System DSACK and STERM Signals . 6-10
Interlocking Emulation Memory DSACK

and STERM and Target DSACK and STERM Signals . . 6-10

DSACK and STERM Signal Problems In Target Systems . 6-11

Use Of Open Collector Drivers 6-11
Early Removal Of DSACK Signals 6-12
Isolating The DSACK Problem 6-12
Using The Vector Base Register 6-13
Using The Internal 68030 Caches 6-14
CacheControl 6-14
AnalysiswithCache 6-15
Using Breakpoints With Caches Enabled 6-15
Target Memory Breakpoints 6-16
Emulation Memory Breakpoints 6-16
Using Function Codes For Displaying
And Modifying Reserved Address Space 6-17
Enabling/Disabling BERR 6-19
UsingDMA 6-19
Using The Run From ... Until Command 6-22
Using The Emul- ation Foreground
Monitor 6-24
Loadingthe Monitor 6-24
Resetting Into The Monitor 6-24
Memory Access Timing Issues 6-26
33 MHz 68030 Microprocessor 6-26
HP 64430 68030 Emulation System 6-26

Contents-5

6-Contents

Loading An Absolute File 6-27

Debugging Plug-in Problems 6-29
Review the Configuration 6-29
Use the Internal Analyzer 6-30
Use the Status Messages 6-30
Run Performance Verification (PV) 6-31

IfAllEIseFails... 6-31

The Emulation Monitor Programs

OVEIVIEW o e 7-1
Introduction 7-2
Comparison of Foreground and Background Monitors 7-3
Background Monitors oL 7-3
Foreground Monitors 7-3
Using Both Foreground and Background
Monitors in the HP 64430 Emulator 7-4
When to Use the Background Monitor 7-4
When to Use the Foreground Monitor 7-5
Customization of the Monitor Programs 7-6
The Break Function And The Emulation Monitor 7-6
Emulation Monitor Description 7-7
The Exception Vector Table R 7-7
Emulation Monitor Entry Point Routines 7-8
Monitor_entry L L o 7-8
Swbk entry o 7-8
Jsrentry L 7-9
Reset_entry 7-9
Exception_entry, 7-9
Emulation Command Scanner 7-9
Emulation Command Execution Modules 7-10
Are_you_there 0 0, 7-10
Exit_monitor 0 7-10
Synch_start_enable, 7-10
Copy_memory 7-10
Copy alt reg 7-10
Mon_alt_registers o 7-10
Simint_enable 7-11
Simint disable oL 7-11
Sim_interrupt Lo oo 7-11
Customizing The Emulation Monitor 7-12
Modifying The Exception Vector Table. 7-14

Continuing Target System Interrupts

While In The Emulation Monitor 7-18
Sending Messages From the User
Program To the Emulator Display 7-18
Emulation Monitor Memory Requirements For The 68030 . .7-21
Linking The Emulation Foreground Monitor 7-22
Loading The Emulation Monitor 7-22
Using Reset Into Foreground Monitor 7-23

Using Custom Coprocessors

Overview e 8-1
Introduction L L 8-1
The Custom Register FormatFile 83
Address Specification L oo 8-4
Size Specification L oL 8-4
Name Specification 8-4
Register Set Display Specification 8-5
Emulation Monitor Changes 89
Defining a Coprocessor Register Buffer 8-9
Modifying The MON_CPU_REG- ISTERS Table 8-10
Modifying The MON_ALT REGISTERS Table 8-11
Writing Coprocessor Copy Routines 8-11

Answering Emulation Coprocessor Configuration Questions . 8-13

Using Simulated 1/O And Simulated Interrupts

OVEIVIEW o 9-1
Configuring Simulated I/O 9-2
Restrictions On SimulatedI/O 9-4
Simulated Interrupts Lo L oL Lo 9-5
How Does A Simulated Interrupt Function? 9-5
Simulated Interrupts Versus Real Interrupts 9-6
Simulated Interrupt Configuration 9-8
Restrictions On Simulated Interrupts 9-10
Moditying The Monitor To Use Simulated Interrupts 9-11

Contents-7

10 How The Emulator Works

Overview 10-1
Introduction 10-2
Are You There Function? 10-3
The RunCommand 10-4
Run From Command 10-4
Run UntilCommand 10-5
Run From ... UntilCommand 10-5
Software Breakpoints, 10-7
Setting A Software Breakpoint 10-7
Executing A Software Breakpoint 10-8
Executing A Run Command After
Executing A Software Breakpoint 10-8
"run from ADDR" o L 10-9
Single Stepping With Foreground Monitor 10-10
Single Stepping With Background Monitor 10-11
Target Memory Transfers 10-12
Displaying Target Memory 10-15
Copying from Target System Memory 10-16
Modifying Target Memory 10-16
Copying to Target System Memory 10-17
Displaying The CPU Registers 10-18
Modifying The CPU Registers 10-19

A Emulation Error Messages

68030 Emulation Error Messages A-1
Attempt to read guarded memory, addr = XXXX A-1
Attempt to write guarded memory, addr = XXXX A-1
cannot break intomonitor L. A-1
Could not disable breakpoint at address XXXX A-2
Could not enable breakpoint at address XXXX A-3
monitor did not respond to exit request A-3
No breakpoint exists at address XXXX A-4
(no termination) message in tracelist A-4
nomemorycycles Lo o oo A-4
Reset (withcapital"R") A-4
reset (with lowercase"r") A-5
FUNNING . . . o o e A-5
runninginmonitor L. A-5

slowdevata= XXXX (YY) A-5

8-Contents

&

Illustrations

B Source Files For Getting Started Examples

Introduction e B-1
Source File Fortowers.c B-2
Source File Forsimint.c B-9

C Timing Comparisons

Figure 2-1. Instrumentation Cardcage Features 2-2
Figure 2-2. Removing the Cardcage Access Cover 2-6
Figure 2-3. ABG Protective Plastic Cable Cover 2-8
Figure 2-4. Board Installation Into Cardcage 2-9
Figure 2-5. Installing Emulation Probe Into PGA Socket . . .2-12
Figure 3-1. Demonstration Configuration File 3-10
Figure 4-1. Restrict To Real-Time Runs Display 4-5
Figure 4-2. Enable Emulation Monitor Display 4-7
Figure 4-3. Reset Into Monitor Display 4-9
Figure 4-4. Enable Emulator Use of INT7 Display 4-10
Figure 4-5. Enable User IPEND Display 4-11
Figure 4-6. Software Breakpoint Instruct No. Display 4-13
Figure 4-7. Default Stk Pointer for Background Display4-14
Figure 4-8. Block ECS, OCS During Background Monitor . . 4-15
Figure 4-9. Foreground Accesses in Monitor Display 4-16
Figure 4-10. Address for Foreground Access Display 4-17
Figure 4-11. Enable Foreground Monitor Display 4-18
Figure 4-12. Interlock or Terminate Foreground Display . . . 4-19
Figure 4-13. Any Custom Registers Display 4-21
Figure 4-14. Name of Custom Reg. Format File Display4-23
Figure 4-15. Block BERR on Non-interlock Em Mem Display 4-25
Figure 4-16. Default Memory Map Display 4-27
Figure 4-17. Overlay Addressing Within Physical Blocks 4-33
Figure 4-18. Hexadecimal Address Bit Definition 4-33
Figure 4-19. Sample Overlay Mapping #1 4-35
Figure 4-20. Sample Overlay Mapping #2 4-36
Figure 4-21. Modify DeMMUer Configuration Display4-42

Contents-9

10-Contents

Figure 4-22. Configuring for In-circuit Emul. Display 4-44

Figure 4-23. Enable DMA Transfers Display 4-45
Figure 4-24. CPU Clock Rate Display 4-47
Figure 4-25. Disable On-chip Cache Display 4-48
Figure 4-26. MMU Enabled During Session Display 4-49
Figure 5-1. DeMMUer Configuration Display 5-9
Figure 6-1. Memory Access Timing, No DSACK Interlock . .6-11
Figure 6-2. DMA Bus Request/Bus Grant Timing 6-19
Figure 6-3. DMA Timing Diagram, DMA Disabled 6-21
Figure 6-4. Example Stack Frame 6-22
Figure 8-1. Sample Custom Register Specification File 8-6
Figure 8-2. Custom Reg. Spec. Include File fpu_spec 8-7
Figure 8-3. Custom Reg. Spec. File Using Include Files 8-8
Figure 9-1. Simulated Interrupt Test Program 9-7
Figure 9-2.Simulated Interrupt Function Code 9-12

Figure 10-1. Target Memory Transers in Automatic Mode . 10-13
Figure 10-2. Monitor Operation At End Of Transfer 10-14

J

. Introducing The 68030 Emulator

Overview

Safety
Considerations

This chapter provides the following information:
m Safety considerations for your emulator
m Purpose of the 68030 emulator
a Features of the 68030 emulator

s What information is given in this manual

The HP 64000-UX Microprocessor Development Environment,
along with the HP 64430 Emulation Subsystem, is a Class 1
instrument (provided with a protective earth terminal) and meets
safety standard IEC 348, "Safety Requirements for Electronic
Measuring Apparatus”. This Class I instrument meets
Hewlett-Packard Safety Class I and has been shipped in a safe
condition. Review both the instrument and the manual for safety
markings and instructions before operation. Read and become
familiar with the "Safety Summary", which follows the
Certification/Warranty page of this manual, in addition to the
items listed in chapter 2.

Introduction 1-1

Purpose of the
68030 Emulator

The 68030 emulator is designed to replace the 68030
microprocessor in your target system so you can control operation
of the microprocessor in your application hardware (usually
referred to as the target system). The 68030 emulator performs just
like the 68030 microprocessor, but is a device that allows you to
control the 68030 directly.

Emulator Features

Software Debugging

Symbols

Real-Time Operation

1-2 Introduction

The HP 64430 Real-Time Emulator for 68030 microprocessors is a
poverful tool for both software and hardware designers. Using the
HP 64430 Emulator’s emulation memory (up to 2Mega bytes),
software debugging can be done without functional target system
memory.

Symbolic debugging lets you debug programs using the same
symbols that you defined in your source code. You can control
program flow using software breakpoints, single-stepping by
opcode, and run-from and run-until commands.

Real-time signifies continuous execution of your program at full
rated processor speed without interference from the emulator.
(Such interference occurs when the emulator needs to break to the
monitor to perform an action you requested, such as displaying
target system memory.)

Emulator features performed in real time include: running and
analyzer tracing.

Emulator features not performed in real time include: display or
modify of target system memory; load/dump of target memory, and
display or modification of registers.

o

Clock Speed

Emulation Memory

Analysis

Measurements can be made using the emulator’s internal 20 MHz
clock or an external clock from 20 to 33.33 MHz with no wait states
added to target memory.

Memory mapping during an emulation configuration session maps
physical memory only. If the MMU is enabled, the user is
responsible for knowing user physical memory usage.

Dual-ported memory allows you to display or modify physical
emulation memory without halting the processor.

Flexible memory mapping lets you define address ranges over the
entire 4 Gbyte address range of the 68030. You can reference
emulation memory or target system memory in 256-byte blocks.
Blocks can be defined as (1) emulation; RAM or ROM,
interlocked, synchronous, asynchronous with a data port width of
8-bits, 16-bits or 32-bits (2) target; RAM or ROM, bus error

_ blocked, cache disabled, burst mode blocked, or (3) guarded access.
“(Refer to the "Answering Emulation Configuration Questions"

chapter for information on memory mapping.)

The 68030 emulator will attempt to break to the emulation
monitor upon accessing guarded memory; additionally, you can
configure the emulator to break to the emulation monitor upon
performing a write to ROM (which will stop a runaway program).

The integrated emulation bus analyzer provides real-time analysis
of all bus-cycle activity. You can define break conditions based on
address and data bus cycle activity. In addition to hardware break,
software breakpoints can be used for execution breakpoints. You
can select any one of the eight 68030 software breakpoint
instructions to be used by the emulator.

When the MMU is enabled, analysis data is physical addresses only,
with no symbols. When the deMMUer is enabled, the analyzer can
see logical addresses and can display symbols.

Analysis functions include trigger, storage, count, and context
directives. The analyzer can capture up to 2047 events, including all
address, data, and status lines. N

Commands for the HP 64430 emulator and HP 64404A and
HP 64405A integrated analyzers have been integrated into one

Introduction 1-3

Registers

Single-Step

Breakpoints

Reset Support

Memory Management

1-4 Introduction

softkey package, making it easy to make both emulation and
analysis measurements.

You can display or modify the 68030 internal CPU register
contents. This includes the ability to modify the program counter
(PC) value so you can control where the emulator starts a program
run. You can also display or modify the 68030 MMU register
contents.

You can direct the emulation processor to execute a single
instruction or a specified number of instructions. (If a foreground
monitor is selected, the target system trace vector must point to
MONITOR_ENTRY in the foreground monitor code for single
step to function properly). Refer to the "Single Stepping with
Foreground Monitor" and "Single Stepping with Background
Monitor" paragraphs in chapter 10 for further information.)

You can set the emulator/analyzer interaction so the emulator will

- break to the monitor program when the analyzer finds a specific

state or states, allowing you to perform post-mortem analysis of the
program execution. You can also set software breakpoints in your
program. With the 68030 emulator, setting a software breakpoint
inserts a 68030 BKPT instruction into your program at the desired
location.

The emulator can be reset from the emulation system under your
control; or your target system can reset the emulation processor.

Memory can be accessed either logically or physically, depending
on whether the emulator deMMUer is configured to be active or
inactive. The on-chip Memory Management Unit (MMU) of the
68030 translates logical (virtual) addresses to physical addresses
that are placed on the processor address bus. The deMMUer
hardware filters the physical address bus to the analyzer. When the
deMMUer is disabled, it passes the data through unchanged
(physical). Symbols, which are in logical memory, are not
meaningful when the deMMUer is disabled. If the deMMUer is
configured with MMU information and some ranges of interest, it
can track table walks. Tracking the table walks allows the
deMMUer to maintain a cache of physical to logical translations.

>

-

-

C

C

Custom
Coprocessors
Support

Function Codes

Foreground or
Background
Emulation Monitor

By filtering the physical trace data and substituting logical
addresses, the analyzer can then show this logical data with symbols.

The 68030 emulator does not contain an on-board floating point
processor and does not provide support for custom coprocessors in
the background monitor mode. It does, however, support custom
coprocessors when operating in the foreground monitor mode. In
foreground monitor mode, the custom coprocessor instructions
can be disassembled in trace displays. You can also display and
modify the custom coprocessor registers.

The HP 64430 emulator supports the use of 68030 function codes.
Emulation memory can be mapped to any of the functional address
spaces (CPU, supervisor or user, program or data, or undefined).
Function codes can be used as an additional specification when
referencing memory.

The 68030 emulator is supplied with both a foreground and a
background monitor. This allows you to trade off between:

= Not using the target system resources but having full
logical/physical support with the background monitor.

a Having full interrupt handling and custom coprocessor
support with the foreground monitor.

The emulation monitor is a program that is executed by the
emulation processor. It allows the emulation controller to access
target system resources. For example, when you display target
system memory, it is the monitor program that executes 68030
instructions which read the target memory locations and send their
contents to the emulation controller.

The monitor program can €xecute in preground, the mode in which
the emulator operates as would the target processor. The
foreground monitor occupies processor address space and executes
as if it were part of the target program.

Introduction 1-5

The monitor program can also execute in background, the emulator
mode in which foreground operation is suspended so that
emulation processor can be used to access target system resources.
The background monitor does not occupy processor address space.

Out-of-Circuit or The HP 64430 emulator can be used for both out-of-circuit
In-Circuit Emulation emulation and in-circuit emulation. The emulation can be used in
multiple emulation systems using other HP 64000-UX
Microprocessor Development Environment emulators.

Manual Coverage This manual provides detailed information on operating the
HP 64430 emulator for the 68030 processor. The information in
this manual gives 68030 processor specific information. The 68030
Ernulation Reference Manual provides additional information
about using 32-bit emulation, including detailed syntactical
descriptions of the emulation commands. Detailed operating
information for the HP 64404 and HP 64405 integrated analyzers is
given in the Analysis Reference Manualfor 32-Bit Microprocessors J
and the 68030 Analysis Specifics manual.

1-6 Introduction

C Installing Your Emulator

C

Overview

This chapter:

Reviews the safety considerations for installation.
Provides preinstallation inspection instructions.

Shows you how to configure boards in the HP 64120A
Instrumentation Cardcage.

Shows you how to install the emulation system hardware.

Shows you how to connect the emulation probe cable to
your target system.

Shows you how to turn on the HP 64120A
Instrumentation Cardcage.

Introduction

If you are installing your HP 64000-UX components as a new
installation, refer to the HP 64000-UX Installation and
Configuration Manual for instructions concerning the installation
of the HP 64120A Instrumentation Cardcage. Also, refer to the
preinstallation instructions given in this section. After you have
done these, install the emulation system as instructed later in this

section.

Figure 2-1 identifies some key features of the HP 64120A
Instrumentation Cardcage. The identifying labels used in this
figure are used throughout this manual. Note the location of the

Installation 2-1

power switch. For more information on the hardware

configuration, refer to the Installation and Corfiguration Manual.

SELF TESTS PASSED
INDICATORS

Hll=1— POWER ON INDICATOR

C

N el

ON
WFQ

— POWER SWITCH

— POWER CONNECTOR

— FUSE

— VOLTAGE SELECT

1 2 3 4
s 0% 00] ()
e._
MB EXTENDER \ ———— HP-B 220
l;_)].l_/._lt_lc\)l L1—
/ / \
EXTERNAL LOAD ADDRESS HP-IB CONNECTOR
IMB EXTENDER SWITCHES AND XFT
CONNECTOR SWITCHES

Figure 2-1. Instrumentation Cardcage Features

2-2 Installation

-

&

Safety

Considerations

Warning

Warning

The HP 64000-UX Microprocessor Development Environment
along with the HP 64430 Emulation System is a Class 1 instrument
(provided with a protective earth terminal) and meets safety
standard IEC 348, "Safety Requirements for Electronic Measuring
Apparatus". This Class I instrument also meets Hewlett-Packard
Safety Class I requirements and has been shipped in a safe
condition.

The user should review both the instrument and manual for safety
markings and instructions before operation. Read and become
familiar with the "Safety Summary", printed following the

~ Certification/Warranty page of this manual, and the additional

items listed below.

SHOCK HAZARD! DO NOT ATTEMPT TO DISRUPT
PROTECTIVE GROUND!

Any interruption of the power cord protective conductor
(third prong of power cord plug) inside or outside the

HP 64120A Instrumentation Cardcage or disconnection of
the protective earth terminal in the power source (wall
outlet) is likely to make the HP 64000-UX Microprocessor
Development Environment DANGEROUS! Intentional
interruption of the power cord protective conductor is
prohibited.

SHOCK HAZARD! ONLY QUALIFIED PERSONNEL SHOULD
SERVICE.

Any adjustment, maintenance, or repair of the opened
instrument must ONLY be carried out by QUALIFIED
PERSONNEL aware of the HAZARDS involved.

Installation 2-3

Warning

Preinstallation
Inspection

2-4 Installation

SHOCK HAZARD! DO NOT USE IF SAFETY FEATURES
HAVE BEEN IMPAIRED.

If the safety features of the instrument have been damaged
or defeated, the instrument shall not be used until repairs
are made which restore the safety features. The safety
features of the instrument could be disabled in the following
instances:

1. The instrument shows visible damage.

2. The instrument fails to perform correct measurements.
3. The instrument has been shipped or stored under
unfavorable environmental conditions. Refer to the Service

Supplement portion of this manual for information on the
environmental specifications of storage and shipment.

Unpack all of the emulation system circuit boards, cables, pod, and
related equipment. Carefully inspect the equipment for damage
that may have occurred during shipping. If any damage is found,
please contact your nearest Hewlett-Packard Sales/Service Office
as soon as possible.

Verify that all of the items that you ordered have been shipped. If
any equipment is missing, please contact your nearest
Hewlett-Packard Sales/Service Office as soon as possible.

Installing Your

Emulation System

&’ Hardware

&

Warning

Installation
Instructions

Warning

Caution

This section tells you how to install your emulation hardware into
the HP 64120A Instrumentation Cardcage.

SHOCK HAZARD! INSTALLATION SHOULD ONLY BE
PERFORMED BY QUALIFIED PERSONNEL.

Any installation, servicing, adjustment, maintenance, or
repair of this product must be performed only by qualified
personnel. Make sure power is off prior to performing any of
the installation instructions given below.

Proceed as follows to install the Emulation System and related
equipment:

SHOCK HAZARD! HAVE YOU READ THE SAFETY
SUMMARY?

Read the safety summary at the front of this manual before
installation or removal of the Emulation Subsystem.

DAMAGE TO CARDS AND CAGE!

Power to the HP 64120A Instrumentation Cardcage must be
removed before installation or removal of option cards (emulation,
etc.) to avoid damage to the option cards and the development
environment.

Installation 2-5

2-6 Installation

Turn Off Power

Turn OFF power to the HP 64120A Instrumentation Cardcage
(see figure 2-1 for the location of the power switch on the
HP 64120A Instrumentation Cardcage).

Remove The Card Cage Cover

The HP 64120A Instrumentation Cardcage access cover is held in
place by four screws on the top of the instrumentation cardcage as
seen in figure 2-2. Loosen the four screws, and remove the access
cover.

ACCESS SCREWS

g ——— 7

Figure 2-2. Removing the Cardcage Access Cover

Connect The Emulator Pod Cables To The Emulator Boards

There are six cables from the emulation pod that must be
connected to various cards in the card cage. Connect these cables
as follows:

1. Connect the two 44-conductor cables from the pod to the
Emulator Control Board (HP 64430-66512). There are no
color dots to follow because it does not matter which of
the 44-conductor cables are connected to each of the
44-pin connectors.

2. Connect the 50-conductor cable from the pod to the
Emulator Control Board (HP 64430-66512).

3. If you are not using the DeMMUer board, connect the
three 64-conductor cables from the pod to the Analysis
Bus Generator (ABG) board (HP 64411-66503) following
the yellow, red, and brown color dots for proper
connections.

4. If you are using the DeMMUer board, connect the three
64-conductor cables from the pod to the DeMMUer board
(HP 64431-66501) following the yellow, red, and brown
color dots for proper connections.

The pod cables connected to the ABG board (64411A) or the
DeMMUer board (64431A) are protected by a plastic cover. After
connecting the three 64 position cables to the applicable board,
secure the plastic cable cover to the board by connecting four
screws as shown in figure 2-3. Use a Torx TX 6 screwdriver.

Installation 2-7

Figure 2-3. ABG Protective Plastic Cable Cover

Install Boards Into The Card Cage

Installation of the circuit boards is accomplished by sliding each
circuit board into the circuit board guide slots. As you face the
front of the HP 64120A Instrumentation Cardcage, the component
side of the boards should face the right side of the instrumentation
cardcage. Align the connector at the bottom of the board with the
motherboard connector at the bottom of the card cage, then apply
a downward pressure until the board is seated in the motherboard
connector. Be sure the ejector handles are in their full horizontal
position when the board has reached its full downward travel.

Caution ' POSSIBLE CABLE DAMAGE! Be careful to avoid scraping the
cables or individual wires with the backs of the printed circuit J
boards. This will strip insulation from the cables and cause short J
circuits.

2-8 Installation

Four adjacent card cage slots are required for the circuit boards.
Install the boards as follows:

1. Install the boards in the card cage in the order shown in
‘ figure 2-4.
2. Install the Interconnect Board across the three analysis

boards as shown in figure 2-4.

3. Install the power bus cable between the top left edges of
the deMMUer board or the analysis bus generator and the
emulator control board. This bus is not essential, but will
improve reliability of the emulator/analyzer system.

INTERCONNECT BOARD

64405
ANALYZER/EXPANDER

64404
ANALYZER BOARD

INTERMODULE
BUS (IMB) CABLE

64411
ANALYSIS BUS \POWER BUS
GENERATOR BOARD CABLE
OR 64431 HP 64120A ICC

DEMMUER BOARD 64430 FRONT
EMULATOR CONTROL

i BOARD

Figure 2-4. Board Installation Into Cardcage

Installation 2-9

Secure The Pod Cables

Each pod cable has a metal ferrule for strain relief. Snap the
ferrule into one of the cable clamps on the instrumentation
cardcage. If your instrumentation cardcage does not have cable
clamps, you can order them from Hewlett-Packard Co.

Reinstall Card Cage Access Cover

Reinstall the card cage access cover and secure in place with the
hold-down screws.

Installing The
Emulation Probe
Into The Target
System

Caution '
AN

2-10 Installation

POSSIBLE DAMAGE TO EMULATION PROBE!

PROTECT AGAINST STATIC DISCHARGE! The emulation
probe contains devices that are susceptible to damage by static
discharge. Therefore, precautionary measures should be taken
before handling the microprocessor connector attached to the end
of the cable from the emulation probe to avoid damaging the
internal components of the probe by static electricity.

Caution

Caution

Caution

¢
AN

POSSIBLE DAMAGE TO EMULATION POD! Do not install the
emulation probe into the processor socket with power applied to
the target system. The pod may be damaged if power is not

removed before installation.

When installing the emulation probe, be sure the probe is inserted
into the processor socket so that pin Al of the emulation probe
aligns with pin A1 end of the processor socket. Damage to the
emulation equipment may result if the probe is incorrectly installed.

POSSIBLE DAMAGE TO TARGET SYSTEM!

PROTECT YOUR CMOS TARGET SYSTEM COMPONENTS! If
your system includes any CMOS components--turn on the

HP 64120A Instrumentation Cardcage first, then turn on the target
system; likewise, turn off the target system first, then the
development environment.

The emulation probe is provided with a pin protector that prevents
damage to the probe when not in use (see figure 2-4). DO NOT
use the probe without a pin protector installed. If the emulation
probe is being installed on a densely loaded circuit board, there
may not be enough room to accommodate the size of the probe. If
this occurs, another pin protector may be stacked onto the existing
pin protector.

To install the microprocessor connector in a target system with a
Pin Grid Array (PGA) socket (see figure 2-5), proceed as follows:

POSSIBLE DAMAGE TO PGA PINS !

PROTECT PGA PINS FROM DAMAGE! To avoid damaging the
PGA (Pin Grid Array) probe connector pins, use an
insertion/extraction tool (such as Augat P/N TX 8136-13) for
removing the PGA probe connector.

Installation 2-11

2-12 Installation

PIN Al

Figure 2-5. Installing Emulation Probe Into PGA Socket

1. Remove the 68030 processor from the target system
processor PGA socket.

2. Store the 68030 processor in a protected environment.
Note the location of pin Al on both the microprocessor
connector and the target system socket.

3. Install the active probe into the target system processor
socket.

—_—

2

w

Install Software

Refer to the Installation Notice that you received with your
HP 64000-UX media for complete software installation
instructions.

Installing 68030
Emulation
Software Updates

After installing a new copy of the 68030 Emulation Software on a
system, cycle the power off and then back on for all cardcages
containing 68030 emulators. This updates and initializes all
emulation software data structures. Run msinit before you run
your next emulation session. Refer to chapter 3 for a description
of msinit.

When installing a different revision of the 68030 emulator
software, delete all existing ".EB" emulation configuration files.
Emulation configuration file names are suffixed by ".EA" and
".EB". The ".EA" file is created when you end out of a "modify
configuration" session after giving the configuration a filename. It
is an editable file that you can use to modify your configuration
without going through the "modify configuration" process during
an emulation session. If you do modify it, delete the existing ".EB"
file. The ".EB" file is created from an original "EA" file. It
becomes the executable file that the emulation software looks for
when you load your emulation configuration file. For this reason
you need to delete this file after updating your emulation software,
since the new software may have changed something that is in the
old ".EB" file. If there is no ".EB" file, the emulation software will
use the ".EA" file to build a new one. You need not do anything
with the "EA" file. Questions that are answered in that file but are
no longer in the configuration questions are ignored. New
questions added to the configuration that are not answered in the
"EA" file are assigned the default answer in the created ".EB" file.
You may want to go through the "modify configuration" process
and answer all the questions to make sure that your ".EA" file is
current after you update your emulation software.

Installation 2-13

Turning On The The power switch for the HP 64120A Instrumentation Cardcage is
HP 64120A identified in figure 2-1.

-

Caution ' POSSIBLE DAMAGE TO TARGET SYSTEM!
PROTECT YOUR CMOS TARGET SYSTEM COMPONENTS!
If your system includes any CMOS components--turn on the
HP 64120A Instrumentation Cardcage first, then turn on the target
system; likewise, turn off the target system first, then the
development environment.

Turn the cardcage power on. Three green LED?’s are visible from

the front of the cardcage as seen in figure 2-1. All three should be
illuminated to indicate proper operation of the development

environment. If all three LED’s do not light up, refer to the

HP 64120A Instrumentation Cardcage Service Manual for '
information on correcting any problems. J

2-14 Installation

& Getting Started

Overview This chapter describes how to do the following tasks:

a Create a subdirectory in which you can store your 68030
related files.

a Initialize and define a measurement system.

s Assemble, compile, and link the emulation monitor and
demonstration programs by using a makefile.

= Access the emulation system from the monitor level
softkeys.

a Modify the default emulation configuration and map
memory by loading a configuration file.

a Run an emulation session.

Introduction This chapter gives an operational overview of the emulation
process. The chapter leads you step-by-step through the tasks you
must do to prepare your system for emulation and leads you
through an emulation session. Emulation features are not
explained in depth in this chapter. Its purpose is to familiarize you
with the emulation process. Read the entire chapter and go
through all exercises in the order presented. This will give you an

L understanding of the basic operation of the emulator.

Getting Started 3-1

Emulation System The examples given in this chapter (and throughout this manual)
were developed with an emulation system including the
Used For components listed below.

Examples |
a HP 64430SX Emulation System (includes Analyzer)
a HP 64874 Cross Assembler/Linker for MC68030

a HP 64907 68030 C Cross Compiler

Making A Before you start a new project, make a subdirectory for the project.
: This enables you to keep your files for each project separate from
SUbd"eCtory For other files. Follow the rules listed below when you make your

Your 68030 Project subdirectory.

a Give the subdirectory a name consisting of from one to
fourteen characters. If more than fourteen characters are
used, all characters after the fourteenth character are
truncated.

= Any characters may be used in the name. Avoid conflict
with special characters used in the HP-UX system software
by restricting your subdirectory names to alphanumeric
characters and the underscore (_) character.

» Upper and lower case alphabetic characters are significant,
i.e.,, "FILENAME" is a different name than "filename".

v

3-2 Getting Started

Note

The path /usr/hp64000/bin must be added to the PATH parameter
in your ".profile" file in order to execute HP 64000-UX commands
as given in the examples in this manual. Otherwise, you must type
the entire path name for HP 64000-UX commands, €.g.,
/usr/hp64000/bin/pmon instead of pmon.

Do the following steps to make a subdirectory for your 68030
project:

1. Log in to the system using your login and password.

2. Enter pmon Return. This accesses the HP 64000-UX
system monitor. The HP 64000-UX system monitor is
softkey driven. You should see softkey labels displayed on
your screen.

3. Press the ---ETC--- softkey repetitively until the makedir
softkey appears as an option on the softkey label line.

4. Press the makedir softkey and type in the name you wish to
use for your directory (the name em68030 is used
throughout this manual). Press the Return key on the
keyboard.

makedir em68030 Return
You now have a subdirectory named em68030.

Whenever you log in to your system to work on the 68030 project,
you should change to this directory (using the chng_dir softkey). If
you do most of your work on the 63030 project, you can modify
your ".profile" file to change to this directory whenever you log in.
If the permissions are set so that you can alter your own ".profile"
file, add the line "cd SHOME/em68030" to your ".profile" file. You
will then be in the new subdirectory each time that you log in. If the
permissions are set so that you cannot modify your ".profile" file,
see your HP-UX system administrator. The examples in this
manual use the chng_dir command to change directories.

Getting Started 3-3

Initializing And
Configuring Your
Measurement
System

Note ‘

Note i

3-4 Getting Started

If you have already initialized the instrumentation cardcage and
defined your measurement system, skip this section and go to the
next section titled "Preparing Your Program Modules".

Refer to the Measurement Systemn manual for the HP 64000-UX
Microprocessor Development Environment for detailed
information on initializing and configuring measurement systems.
The following procedure gives you a brief overview of the
initialization and configuration process.

To initialize your HP 64120A Instrumentation Cardcage and
configure your 68030 emulation system, do the following steps:

1. Press MEAS_SYS.

The MEAS_SYSsoftkey is displayed after you enter the
HP 64000-UX system monitor by executing the pmon command.

You are now in the measurement_system application. The
softkeys displayed at this level enable you to initialize and
configure your measurement system.

2. Press msinit Return.

If you have only one system in your instrumentation
cardcage, the softkey label line will disappear and the
message "Working" will appear on the STATUS line. After
a few seconds, the message "Hit return to continue" will

appear under the STATUS line. Press Return. The
message will disappear and the softkey labels will return.

If you have more than one system in your instrumentation
cardcage, the softkey label line will disappear and the
message "Working" will appear on the STATUS line. After
a short time, a list of boards in the card cage may be
displayed on the screen. Messages may appear on screen
asking you to identify the boards in the different systems.
After you have identified any boards requested by the
system, the message "Hit return to continue" will appear
under the STATUS line. Press Return. The message will
disappear and the softkey labels will return.

. Press msconfig Return.

The screen now displays the module(s) available to be
assigned (top of the screen) to a measurement system
(middle of the screen).

. Enter make_sys emul683k Return.

. Press add. If your 68030 emulator is the only system in the

instrumentation cardcage, it will be assigned as module 0
as shown at the top of the display. If more than one system
is installed in the instrumentation cardcage, the 68030
system module number may be different from O. Identify
the module number of the 68030 emulator shown at the
top of the display and type it in from the keyboard. Press
name_it, type in em68030 from the keyboard, and press
Return. The command line will appear as follows:

add 0 naming_it em68030

. Press end Return.

This command causes the system to exit the measurement
configuration mode and return to the measurement system
level.

Getting Started 3-5

7. Press -GOBACK- to exit the measurement system level and
return to the HP 64000-UX system monitor.

The 68030 Emulation module is now defined as module em68030
in the measurement system (shown in the center of the screen). i

P reparing Your Program modules must be assembled or compiled and then linked
to create an absolute file. The emulator must be configured with a

Program Modules memory map that allocates memory to the addresses used during
execution of the absolute file. Then the absolute file can be loaded
into the emulator.

Memory mapping is done for the demonstration programs in this
chapter by loading a configuration file supplied with your
demonstration software. Memory mapping is described in Chapter
4. The assembly and compile procedures are not described in this
manual. Refer to your assembler/linker/librarian and compiler
manuals for detailed instructions on these processes.

The next two subparagraphs obtain an absolute file to use for J
running the getting started procedure. If you have the HP 64874

68030 Assembler/Linker and the HP 64907 68030 C Cross

Compiler, create the absolute file by following instructions in the
paragraph titled, "Creating The Absolute File In Your Own

Subdirectory".

If your system does not have the Assembler/Linker and C Cross
Compiler specified above, you can still perform the demonstration
emulation procedures in this manual. Follow the instructions in
the paragraph titled, "Using The Absolute File In The Demo
Directory. A complete absolute file is provided on the media with
your emulation software.

Whether you create the absolute file in vour own subdirectory or
use the absolute file in the demo directory, the absolute file is
composed of the following source program modules: II
simint.c Simulated interrupt routines for the

demonstration program.

3-6 Getting Started

@

Note d

Creating The
Absolute File In Your
Own Subdirectory

towers.c The demonstration program. This program
solves the popular "Towers of Hanoi" brain
teaser puzzle. The program demonstrates
many features of the emulator, including
simulated I/O and simulated interrupts.

entry.s and 0s.s These two programs together set up a virtual
system by mapping the 68030 MMU.

Listings of the simint.c and towers.c demonstration programs are
included in appendix B of this manual.

The README file in the demo directory contains more
information about the demonstration files and their use. To read
the README file, enter the following command:

!more /usr/hp64000/demo/emul32/hp64430/README

The demonstration programs used in this manual are provided on
the media shipped with your 68030 emulation system in directory
/usr/hp64000/demo/emul32/hp64430. Copy these programs to your
subdirectory by using the following command:

copy /usr/hp64000/demo/emul32/hp64430/* em68030 Return
Now enter your subdirectory by using the following command:
cd em68030 Return

A makefile has been included in the demonstration directory. Use
the following commands to have the makefile create the absolute
file for the getting started procedure:

make clean Return

Your display will show files being removed from your directory.
These files were built to support the absolute file when it was
resident in the demonstration directory.

Getting Started 3-7

Now create a complete absolute set of files in your own directory
by entering the following command:

make Return

During execution of the make file, you will see two "Warning"
messages appear on screen. These messages refer to symbols and a
variable in the spmt_demo.c source file. Both of these Warning
messages are normal. They involve a source file that won’t be used
during the getting started procedures in this manual.

Now go to the paragraph titled "Preparing The Emulation System".

Using The Absolute Follow this paragraph if your system does not have the HP
File In The Demo compiler and linker needed to create the absolute file for the

Directory getting started procedure. An absolute file is supplied in directory
/usr/hp64000/demo/emul32/hp64430. To run this absolute file, you
must change to that directory. To change directories, press the
chng_dirsoftkey and enter the directory pathname
/usr/hp64000/demo/emul32/hp64430. The command line should
appear as follows:

cd /usr/hp64000/demo/emul32/hp64430 J

Press the Return key. You should now be in the 68030 demo
subdirectory. You can verify this by executing the HP-UX pwd
(present working directory) command.

P reparlng The Preparing the emulation system consists of the following steps:

Emulation SVStem 1. Plugging the emulator probe into your target system (for
in-circuit emulation), not done in this getting started
procedure.

2. Accessing the emulator through the MEAS_SYS -

application. ‘ § ‘

3. Modifying the default emulation configuration to match
your system requirements by loading a configuration file.

3-8 Getting Started

4. Loading your absolute file into emulation memory
(or target system memory when used).

The following procedures use the emulator in out-of-circuit mode
: (no target system). Target system plug-in issues are discussed in
‘ detail in Chapter 6 of this manual.

Accessing The Access your emulation system as follows:
Emulation System 1. Press MEAS._SYS.

2. Press emul683k em68030 Return.

You are now in the emulation system application. The emulation
softkeys are displayed at the bottom of your screen.

Modifying The When you accessed the emulator, the default emulation
Default Emulation configuration file supplied with your system was loaded. You need
Configuration to modify this default emulation configuration to create a
configuration that supports your demonstration programs. A
configuration file was supplied in the demonstration directory to
L make these modifications for you. All you need to do is load it.

Load the demonstration configuration file using the command:
load configuration config Return

A listing of the demonstration configuration file is shown in figure
3-1. The configuration file sets up the emulation memory map, and
answers the emulation configuration questions.

When the emulator is finished loading the memory mapper and
background monitor, the STATUS line will show that the
emulation processor is Reset. The emulator is ready to be used.

Note 6 You have two configuration files named "config" in your directory.
File config.EB is a binary file used by the emulator. File config. EA
is an ASCII file you can edit using an editor on your host system.
‘ Emulation configuration files provide an easy method to
L reconfigure your emulator for desired applications.

Getting Started 3-9

PRI 00000400 00000 000 R0 R R AR AR R AR R AR A A
#

This is the configuration file for the HP 64430 68030 Emulator/Analyzer

demonstration software.

If blocks of memory are mapped noncontigously the emulator allocates chunks
in multiples of 4k bytes.

FRERRRRRRRRR RN R AR AR AR AR AR A2 0

BEGIN MEMORY MAP

modify default guarded

modify valid_codes none

Map 124k memory for all prog and const sections to RAM.

map 00H thru OlefffH emulation ram asynchronous width32

Map 12k memory for the emulation monitor to RAM.

map 020000H thru 022fffH emulation ram asynchronous width32

Map 32k memory for the stack.

map 07fff8000H thru O07fffffffH emulation ram asynchronous width32
Map 88k memory for all data sections.

map 0fffea000H thru OffffffffH emulation ram asynchronous width32
END MEMORY MAP

Enable polling for simulated 1/0? yes

Function code data space ? none

Simio control address 1? systemio buf

Enable polling for simulated interrupts?z yes

Function code data space ? none

Simulated interrupt control address? _sim_int_ca

Maximum delay (in milliseconds) for simulated interrupt? 3000
Restrict to real-time runs? no

Enable emulator use of the monitor? yes

Reset into the monitor? yes

Enable emulator use of INT7? yes

Enable user IPEND line during emulator breaks? no

Enable emulator use of software breakpoints? yes

Software BKPT instruction number (0..7)? 7

Default stack pointer for background? 07ffffff8h

Perform periodic foreground accesses while in monitor? no
Address for periodic foreground access? 0

Enable foreground monitor? yes

Interlock or provide termination for foreground?z terminate
Any custom registers? no

Name of custom register format file?

Break processor on write to ROM? no

Block BERR on non-interlocked emulation memory? no
In-circuit emulation session? no

Enable DMA transfers? yes

Enable DMA transfers into emulation memory? no

CPU clock rate faster than 25 MHz? no

Disable on-chip cache? yes

MMU enabled during session? no

Figure 3-1. Demonstration Configuration File

3-10 Getting Started

Simio control address 2? SIMIO_CA_TWO
simio control address 3? SIMIO_CA_THREE
Simio control address 4? SIMIO_CA_FOUR
Simio control address 5? SIMIO_CA_FIVE
Simio control address 6? SIMIO_CA SIX
i File used for standard input? 7dev/simio/keyboard
‘ . File used for standard output? /dev/simio/display
File used for standard error? /dev/simio/display
Block ECS, OCS signals during background monitor cycles? yes

Figure 3-1. Demonstration Configuration File (Cont’d)

Loading Emulation You are ready to begin an emulation session. Before performing
Memory emulation, you must load emulation memory with the absolute file
created from your source program modules. To load emulation
memory, enter the following command:

load memory towers Return

.

Using The This section demonstrates the use of some of the basic emulator

Emulator commands. Work through the examples in the sequence given in
this section. Otherwise, the displays you get on your workstation
screen may not be the same as those shown in the manual. After
you have worked through the examples in this section, you may
then execute other commands to gain a better understanding of the
emulator’s operation. See the 68030 Analysis S pecifics User’s Guide
and the Regrence Manual for 16- and 32 - Bit Internal Analysis for
detailed information on using the emulator’s analysis features.

Note # The displays you obtain on your system for the examples in the
- following sections of this chapter may vary from those shown in
L' this manual, depending on the type of terminal or workstation you
are using.

Getting Started 3-11

Displaying Global The display global_symbols command displays global (externally
Symbols defined) symbols in the program modules you have loaded into

emulation or target memory. To display global symbols, enter the
following command:

display global_symbols Return. J
You should see a display similar to the following display on your
screen.

Global symbols in towers

Procedure symbols

Procedure name Address range Return _ Segment Offset

_ _fflush 00005B04- 00005BBB 00005BBA PROG 000000F2
_bufsync 00005ED2-~ O00005FOF 00005F0E PROG 000004CO
_dbl_to_str 00003728~ 00003C15 00003C14 COMM 000001ES8
_doprnt 00003F3C- 00004F7D 00004F7C COMM 000000AC
_doscan 00004FD6- 00005291 00005290 PROG 00000000
_exec_funcs 00001E86- O0O0001EAS 00001EA4 PROG 00000032
_filbuf 000058E8- 00005A11 00005A10 PROG 00000000
_findbuf 00005D86- 00005E27 00005E26 PROG 00000374
_flsbuf 00005BBC- 0000S5CE9 00005CES8 PROG 000001AA u
_memccpy 000061E0- 0000620B 0000620A PROG 00000000
_startup 000009AE- 0000OAES 00000AE4 PROG 00000000
_wrtchk 00005E28- 000OS5ED1 00005EDO PROG 00000416
_xflsbuf 00005CEA- 00005D85 00005D84 PROG 000002D8
atexit 00001E54- 00001E85 00001E84 PROG 00000000

atof 00002B42- 00002BC7 00002BC6 COMM 00000CSA
STATUS: M68030--Reset eeeReut

display global_symbols
run trace set step display modify end -—-ETC—--

3-12 Getting Started

You can use the UP and DOWN cursor keys and the NEXT and ; .
PREYV keys to scroll or page through the global symbols listing. u

Displaying Local You can view local symbols within a file or module using the
Symbols display local_symbols_in command. To view local commands in
the demonstration program, enter the following command:

L display local_symbols_in towers.c: Return.
Symbols in towers.c:
Procedure symbols
Procedure name Address range Return _ Segment Offset
ask_for_number 0000120C- 0000138B 0000138A PROG 000000BO
init_display 00001612~ 000016C7 000016C6 PROG 000004B6
main 00001162~ 00001205 00001204 PROG 00000006
move_disc 00001584~ 0000160B 0000160A PROG 00000428
pause 00001392~ 000013C7 000013Cé6 PROG 00000236
place_disc 00001526~ 0000157D 0000157C PROG 000003CA
remove_disc 000014D2- 0000151F 0000151E PROG 00000376
show_discs 000013CE~ 000014CB 000014ca PROG 00000272
towers 000016CE- 00001745 00001744 PROG 00000572
Static symbols

L Symbol name Address range Segment Offset
s_from 0000000C
S_reg_paraml 00000008
S_reg_paramlO 00000014
STATUS: M68030~--Reset «eeReces
display local_symbols_in towers.c:

run trace set step display modify end ---ETC-~

Note that the ".¢" file extension is used to specify C language files
and the ".s" file extension is used to specify assembly language files.

Getting Started 3-13

Displaying Memory The display memory command enables you to view the contents of
either emulation or target memory locations. Enter the command:

display memory main mnemonic Return

u

Memory smnemonic
address data
1162 4E560000 LINK.W A6,#$0000
1166 2FO0B MOVE.L A3,-(A7)
1168 2F0A MOVE.L A2,-(A7)
116A 45ED800C LEA ($800C,A5),A2
116E 47FA0222 LEA ($0222,pC),A3
1172 4EB90000+ JSR $00000036
1178 42AD8008 CIR.L ($8008,A5)
117C 60000068 BRA.W $000011E6
1180 4E71 NOP
1182 48780001 PEA $00000001
1186 4EBSODEE JSR $00000DEE
118A 588F ADDQ.L #4,n7
118C 42AD8010 CLR.L ($8010,A5) F
1190 42a7 CLR.L -(A7) . J
1192 4EBAO47E JSR ($047E,PC)
1196 588F ADDQ.L #4,A7
STATUS: M68030--Reset essReven
display memory main mnemonic
run trace set step display modify end -—-ETC--

The first address listed in the display is 1162h, the address

corresponding to the local symbol main in the local symbols

display of the towers program. Use the UP and DOWN cursor keys

and the NEXT and PREYV keys to scroll or page through the

memory display. -

J

3-14 Getting Started

Modifying Memory

You can modify emulation memory locations mapped as either
RAM or ROM. The speed of the towers demonstration program is
controlled by the variable loc_delay. We will set the value of
loc_delay to 0 so that the program runs at maximum speed. In
order to watch the memory display change as the variable is
modified, we will display an area in memory repetitively and then
modify the memory. Enter the following command:

display memory loc_delay long repetitively Return

You should see a display similar to the following on your
workstation screen.

thex
09095075 7A7A6C65
20646973 63732063
6C766564 20696E20
2E202020 20200A00
6520276D 6F646966
72645F74 6F5F7369
6E20656E 74657220
68652066 6F6C6C6F
756D6265 72206F66
6F207573 65205B31
2720746F 20657869
6DOA0927 43272074
6E74696E 756F7573
206C6173 74206E75
65726564 OAOAOO3F
616C6964 20726570

tblocked :repetitively

20776974
616E2062
2564206D
OAOA4578
79206B65
6D696F27
6F6E6520
77696E67
20646973
2D25645D
74207072
6F207275
6C792075
6D626572
00256400
65617420

tascii
... .Pu
h %d dis
e solved
oves.
ecute 'm
yboard_t
then en
of the f
: . .Numbe
cs to us
..'0" to
ogram. .’
n contin
sing las
entered

invalid

zzle wit
cs can b
in %d m
«osEX
odify ke
o_simio’
ter one
ollowing
r of dis
e [1-%d)]
exit pr
C’ to ru
uously u
t number
...?.%d.

repeat

«..R....

Memory :long words
address data
1748-57 000001F4
1758-67 68202564
1768-77 6520736F
1778-87 6F766573
1788-97 65637574
¢ 1798-a7 79626F61
L 17A8-B7 20746865
17B8-C7 6F662074
17C8-D7 3A0A0Q094E
17D8-E7 63732074
17E8-F7 0A092730
17F8-07 6F677261
1808-17 6E20636F
1818-27 73696E67
1828-37 20656E74
1838-47 20696E76
STATUS: M68030--Reset
R run trace set

step

display memory loc_delay long repetitively

display

modify end

-—-ETC--

Getting Started 3-15

Enter the command:

modify memory long loc_delay to O Return

Note that the first long word in the display (memory location 3
loc_delay) now shows a long word value of 00000000h. J
Memory :long words :blocked :repetitively
address data thex tascii
1748-57 00000000 09095075 7A7A6C65 20776974 es....Pu zzle wit
1758-67 68202564 20646973 63732063 616E2062 h %d dis c¢s can b
1768-77 6520736F 6C766564 20696E20 2564206D e solved in 8d m
1778-87 6F766573 2E202020 20200A00 OAOA4578 oves. . essEX
1788-97 65637574 6520276D 6F646966 79206B65 ecute 'm odify ke
1798-A7 79626F61 72645F74 6F5F7369 6D696F27 yboard_t o_simio’
17A8-B7 20746865 6E20656E 74657220 6F6E6520 then en ter one
17B8-C7 6F662074 68652066 6F6C6C6F 77696E67 of the £ ollowing
17c8-D7 3A0A094E 756D6265 72206F66 20646973 :..Numbe r of dis
17D8-E7 63732074 6F207573 65205B31 2D25645D cs tous e [1-%d]
17E8-F7 0A092730 2720746F 20657869 74207072 ..'0’ to exit pr
17F8-07 6F677261 6DOA0927 43272074 6F207275 ogram..’ C'’ to ru J
1808-17 6E20636F 6E74696E 756F7573 6C792075 n contin uously u
1818-27 73696E67 206C6173 74206E75 6D626572 sing las t number
1828-37 20656E74 65726564 OAOAOO03F 00256400 entered ...?2.%d.
1838-47 20696E76 616C6964 20726570 65617420 invalid repeat
STATUS: M68030--Reset [-
modify memory long loc_delay to 0
run trace set step display modify end —---ETC--

Running from the Now that you have used some of thedisplay and modify features of
Transfer Address the emulator, it is time to run the demonstration program and use B
some of the run time features of the emulation system. Enter the T3

following command: J

run from transfer_address Return

3-16 Getting Started

The STATUS line displays "M68030--Running". This indicates that
the demonstration program is executing.

of the 68030’s CPU registers and the contents of the on-board

‘ Displaying Registers The display registers command enables you to look at the contents
MMU registers. Enter the following command:

display registers cpu Return

The contents of the following 68030 CPU registers are displayed on
the screen:

program counter (PC)

source function code register (SFC)
destination function code register (DFC)
data registers (D0--D7)

address registers (A0-A7)

M68030 Registers
NextPC 00000C18 SFC 0 MOT RSVD DFC 0 MOT RSVD
‘ DO-D7 00000092 00000001 00000092 000058E8 000000FF 00000000 00000064 00000000
AO0-A6 000000FF FFFEAO0S57 FFFEA484 FFFEA574 FFFEA054 FFFF21A8 7FFFFDFO
USP 7FFFFFFO 1t0s m i X n z VvV cC CAAR 00000000
MSP 7FFFFFFO STATUS 2708 0 0 1 O 7 O 1 0 0 O VBR 00000000
*ISP 7FFFFDE4 wa dbe fd ed ibe fi ei
CACR 0000 0 0 0 0 0 0 (4]
; STATUS: M68030--Running .+.R.ec..
(display registers cpu
run trace set step display modify end ---ETC--

Getting Started 3-17

user stack pointer (USP)
vector base register (VBR)
cache address register (CAAR)
master stack pointer (MSP)
interrupt stack pointer (ISP)
status register (STATUS)
cache control register (CACR)

Press the break softkey, then press Return.

The registers display is updated and the status line now reads
"STATUS: M68030--Running in monitor’. If a display registers
command has been executed in the current emulation session, the
registers display is updated whenever a break to the emulation
monitor program OcCCurs.

M68030 Registers

NextPC 00000C18 SFC 0 MOT RSVD DFC 0 MOT RSVD
DO-D7 00000092 00000001 00000092 0000S58E8 000000FF 00000000 00000064 00000000
AO-A6 O000000FF FFFEAO057 FFFEA484 FFFEAS574 FFFEA054 FFFF21A8 7FFFFDFO
USP 7FFFFFFO0O 1t0s m i x n z Vv c CAAR 00000000
MSP 7FFFFFFO STATUS 2708 0 0 1 O 7 0 1 O O O VBR 00000000
*ISP 7FFFFDE4 wa dbe fd ed ibe fi ei
CACR 0000 V] 0 0 0 0 0 0
NextPC 00000C12 SFC 0 MOT RSVD DFC 0 MOT RSVD
DO-D7 00000000 00000001 00000092 00O00S8E8 000000FF 00000000 00000064 00000000
AO-A6 000000FF FFFEAOS57 FFFEA484 FFFEA574 FFFEA054 FFFF21A8 7FFFFDFO
USP 7FFFFFF0 1t0s m i x n z Vv c CAAR 00000000
MSP 7FFFFFFO STATUS 2704 0 0 1 0o 7 0 O 1 o0 O VBR 00000000
*ISP 7FFFFDE4 wa dbe fd ed ibe fi ei
CACR 0000 0 0 0. 0 0 0 0
STATUS: M68030--Running eeeReu.
break
load store copy break reset ---ETC--

3-18 Getting Started

si e step function enables you to step through your program
Using The Ste The step f bl p through your prog
Function opcode by opcode. Each time the step command is executed, one
program instruction is executed. Enter the command:

step from transfer_address Return

The register display is updated each time a step is executed. In the
last entry on the display an additional line is displayed. The address
of the instruction executed by the step command and the executed
instruction are displayed on the first line of the new register display
entry. The step feature is a powerful tool for debugging programs
because it enables you to watch the register activity for each
executed instruction.

M68030 Registers

NextPC 00000C18 SFC 0 MOT RSVD DFC 0 MOT RSVD
DO-D7 00000092 00000001 00000092 000058E8 O0000OFF 00000000 00000064 00000000
AO-A6 O0000OOFF FFFEA057 FFFEA484 FFFEA574 FFFEA054 FFFF21A8 7FFFFDFO

USP 7FFFFFFO 1tds m i x n z v c CAAR 00000000
MSP 7FFFFFF0Q STATUS 2708 0 0 1 0 7 0 1 0 0 O VBR 00000000
*ISP 7FFFFDE4 wa dbe fd ed ibe fi ei
CACR 0000 0 0 0 0 0 0 0
PC 00000400 Opcode LEA $80000000,A7 4FF98000
NextPC 00000406 SFC 0 MOT RSVD DFC 0 MOT RSVD

DO-D7 00000092 00000001 00000092 000058E8 000000FF 00000000 00000064 00000000
A0-A6 000000FF FFFEAO57 FFFEA484 FFFEA574 FFFEA054 FFFF21A8 7FFFFDFO

USP 7FFFFFFO 1td0s m i x n z Vv c CAAR 00000000
MSP 7FFFFFFO STATUS 2708 0 0 1 0 7 0 1 0 0 O VBR 00000000
*ISP 7FFFFFF8 wa dbe fd ed ibe fi ei
CACR 0000 0 0 0 0 0 0 0
STATUS: M68030--Running ceeRecen

step from transfer_address

run trace set step display modify end ---ETC--

Getting Started 3-19

Enter the command:
step Return

Note that the emulator executes the instruction stored in the
NextPC memory location. Press Return repetitively. The emulator J
executes one instruction each time you press Return.

The step instruction enables you to specify a number of steps. This
is useful when stepping through program structures such as delay
loops. Enter the command:

step 25 Return

Notice that the screen is updated with register information each
time a program step is executed. While the step command is being
executed, the status line displays the message "MC68030--Steps left
#n" where n is the number of steps remaining. You can use the
NEXT and PREY keys and the UP and DOWN keys to look at
register information that has scrolled off of the screen.

Tracing Processor The trace function (with analyzer present) enables you to watch .
Activity each cycle on the processor bus as it occurs. The following J
examples illustrate some simple uses of the trace function. For
more information on the trace function, refer to the Analysis
Reference Manualfor 32-Bit Microprocessors and the 68030 Analysis
Specifics User's Guide.

Enter the command:
trace TRIGGER_ON a= long_aligned main Return

This sets up a trace of all activity of the bus for 2k bus cycles before
and 2k bus cycles after the address labeled main occurs. The
STATUS line will indicate "Trace in process". Enter the command:

run from main Return

3-20 Getting Started

After the STATUS line indicates "Trace complete”, enter the
command:

display trace Return

The trace list is displayed on the screen with the trigger state
displayed in the center of the screen. Notice the lines prior to the
trigger state. The address field shows that these lines represent
emulation monitor execution and stack accesses. User program
activity is displayed starting with the trigger state (00001160h).

Trace List

Label:
Base:
-0007
-0006
-0005
-0004
-0003
-0002
-0001
trigger
+0001
+0002
+0003
+0004
+0005
+0006
+0007

STATUS:

Address
hex

00000638
00001FFO
0000063C
7FFFFDE4
7FFFFDEA
7FFFFDE6
TFFFFDES8
00001160
00001164
00001168
7FFFFDES8
0000116C
TFFFFDE4
T7FFFFDEO
00001170

S$S4E714E73

$00000BF6
$2704----
$----007C
$----0000
$1162-~~~
$4E714ES6
$00002F0B
$2FO0A45ED
$7FFFFDFO
$800C47FA
SFFFEA574
SFFFEA484
$02224EB9

M68030--Running

display trace

run

trace

set step

Mode:logical

Opcode or Status

supr
supr
supr
supr
supr
supr
supr
supr
supr
supr
supr
supr
supr
supr
supr

mnemonic

prgm long rd log addr
prgm byte rd log addr
prgm long rd log addr
data word rd log addr
data word rd log addr
data long rd log addr
data word rd log addr
prgm long rd log addr
prgm long rd log addr
prgm long rd log addr
data long wr log addr
prgm long rd log addr
data long wr log addr
data long wr log addr
prgm long rd log addr

Trace complete

data

(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)
(ds32)

time count
relative
0.12us
0.1l6us
0.08us
0.76us
0.24us
0.24us
0.20us
0.40us
0.24us
0.28us
0.24us
0.24us
0.24us
0.28us
0.28us

«e.Rov

display modify

end

~=~<~ETC--

Getting Started 3-21

The address and data values in the default trace list are displayed as
hexadecimal numbers. The emulator can also display values in
assembly language mnemonics. Enter the command:

display trace disassemble_from_line_number O Return J

Trace List Mode:logical data
Label: Address Opcode or Status time count
Base: hex mnemonic relative
trigger 00001160 NOP 0.40us

= 00001162 LINK.W A6,#$0000
+0001 0.24us

= 00001166 MOVE.L A3,-(A7)
+0002 00001168 MOVE.L A2,-(A7) 0.28us

= 0000116A LEA ($800C,A5),A2
+0003 TFFFFDES8 $7FFFFDFO supr data long wr log addr (ds32) 0.24us
+0004 0.24us

= 0000116E LEA ($0222,pC),A3
+0005 TFFFFDE4 $FFFEAS574 supr data long wr log addr (ds32) 0.24us
+0006 TFFFFDEO $FFFEA484 supr data long wr log addr (ds32) 0.28us
+0007 0.28us J

= 00001172 JSR $00000036
+0008 00001174 $00000036 supr prgm long rd log addr (ds32) 0.28us
+0009 00000034 NOP 0.36us
STATUS: M68030--Running Trace complete ...R....
display trace disassemble_from_line_ number 0

run trace set step display modify end ---ETC--

Note that in the updated trace display, the trigger line (line 0) is

the first line in the trace display. Address 00001160h corresponds
to the main label in the demonstration program. The instruction
MOVE.L on the trigger line is the first instruction in the example

program. g

3-22 Getting Started

You can also display the source program lines corresponding to the
traced assembly level code in the trace list. Enter the command:

)L display trace source on inverse_video on Return

+0001

+0002

+0003
+0004

Trace List Mode:logical data

Label: Address Opcode or Status w/ Source Lines time count

Base: hex mnemonic relative

trigger 00001160 NOP 0.40us
####4#4###towvers.c - line 1 thru 128 ##fhdddppdtttadatstSFF AR

STATUS:

main()
{
= 00001162 LINK.W A6,#$0000
0.24us
= 00001166 MOVE.L A3,-(A7)
00001168 MOVE.L A2,-(A7) 0.28us
= 0000116A LEA ($800C,AS5),A2
7FFFFDE8 - $7FFFFDFO supr data long wr log addr (ds32) 0.24us
0.24us
= 0000116E LEA ($0222,pC),A3
M68030-~Running Trace complete «e.Ruue.
display trace source on inverse_video on
trace set step display modify end ---ETC--

run

static void towers();
static int ask_for_ number();

The display is updated with the source code line displayed in
inverse video immediately before the related traced assembly level
code.

You can use the UP and DOWN cursor keys or the NEXT and
PREYV keys to scroll or page through the entire trace listing. You
can copy the trace list to the printer or a file as well.

Getting Started 3-23

Using Software
Breakpoints

3-24 Getting Started

The set sw_breakpoints command lets you set software breakpoints
in your program code. This useful feature lets you break execution
of your program at the point you select. You can then use the many
display and modify commands available in the emulator to examine
and debug your code. The emulator replaces the code at the
memory location you specify with a 68030 BKPT instruction. You
select the appropriate BKPT instruction when answering the
emulation configuration questions. Enter the command:

break Return

You are now running in the emulator monitor program. Enter the
command:

modify sw_breakpoints set one_shot towers.c:ask_for_number
Return

This command causes the emulator to replace the instruction at
the address reference by the symbol ask_for_number (0000120CH)
with a BKPT 7 instruction. The address specified in the command
must be the first address of an opcode. Enter the following
command:

display memory towers.c:ask_for_number mnemonic Return

v

The display shows a BKPT 7 instruction at address 0000120CH.

Memory :mnemonic
address data
120C 484F BKPT #7
120E 000048E7 ORI.B #SE7,DO
1212 3E38242E MOVE .W $0000242E,D7
1216 0008200D ORI.B #$0D,A0
121A O0680FFFF+ ADDI.L #SFFFF82DC, DO
1220 2440 MOVEA.L DO,A2
1222 47FB8170+ LEA ($00004FES8,PC),A3
122A 49FB8170+ LEA ($00005030,PC) ,A4
1232 2042 MOVEA.L D2,A0
1234 2610 MOVE.L (A0),D3
1236 4AAD8008 TST.L ($8008,A5)
123A 6600013E BNE.W $0000137A
123E 48780001 PEA $00000001
1242 4EBSODEE JSR $O0000O0ODEE
1246 588F ADDQ.L #4,A7
1248 48780007 PEA $00000007
STATUS: M68030--Running Trace complete S : S

display memory towers.c:ask_for_ number mnemonic

run trace set step display modify end ---ETC--

Enter the command:
run from transfer_address Return

The demonstration program runs from the transfer_address
(_main) until the BKPT instruction is executed. The BKPT
instruction causes the emulator to break into the emulation
monitor and the message "STATUS: Software breakpoint hit at
address = 120CH" is displayed on the status line.

The emulator’s ability to let you set software breakpoints provides
you with a method of stopping program execution at a specified
point in your program. You can then examine register values,

Getting Started 3-25

display or modify memory locations, and perform other operations
before continuing execution of your program.

Enter the command:

display memory towers.c:ask_for_number Return J
Note that the instruction LINK.W is now displayed at address

120CH in the memory listing. After breaking into the emulation

monitor, the emulator replaces the BKPT instruction with the

original contents of the memory location (LINK.W instruction).

Memory smnemonic
address data
120C 4E560000 LINK.W A6,#$0000
1210 48E73E38 MOVEM.L rm=$3E38,-(A7)
1214 242E0008 MOVE.L ($0008,A6),D2
1218 200D MOVE.L A5,DO
121A 0680FFFF+ ADDI.L #$FFFF82DC, DO
1220 2440 MOVEA.L DO,A2
1222 47FB8170+ LEA ($00004FES8,PC) ,A3
122A 49FB8170+ LEA ($00005030,PC),A4 J
1232 2042 MOVEA.L D2,A0
1234 2610 MOVE.L (AO),D3
1236 4AAD8S8008 TST.L ($8008,A5)
123A 6600013E BNE.W $0000137A
123E 48780001 PEA $00000001
1242 4EBSODEE JSR $00000DEE
1246 588F ADDQ.L #4,A7
1248 48780007 PEA $00000007
STATUS: M68030--Running in monitor Trace complete eseRecsn
display memory towers.c:ask_for_ number
run trace set step display modify end ---ETC--

3-26 Getting Started

y\ To continue execution of your program from the point the break
occurred, enter the command:

run Return
Notice that the status line now reads "M68030--Running".

Refer to chapter 10 for a description of how the software
breakpoint function is implemented in the 68030 emulator. See
chapter 2 of the 68030 Emulation Re frence Manual for the
software breakpoint command syntax.

Using Simulated I/O The demonstration program uses simulated 1/O for both entering
parameters and displaying the solution to the towers of Hanoi
problem. To display the simulated I/O screen, enter the command:

display simulated_io Return

Getting Started 3-27

Your screen should appear as shown in the following display.

Simulated I/0 display
display is open

Execute 'modify keyboard to_simio’ then enter one of the following:
Number of discs to use [1-7]

‘0’ to exit program

'C’ to run continuously using last number entered

STATUS: M68030--Running
display simulated_io

run trace set

Simulated I/0 command: read

Return code: OOH ‘

Trace complete ««R.c.

step display modify end ---ETC--

3-28 Getting Started

The keyboard must be assigned to simulated I/O before it can be
used to specify the number of discs to be used in the program.
Enter the command:

modify keyboard_to_simio Return

The keyboard is now assigned to simulated I/O and is accessible to
the demonstration program. Enter the number 7 and press Return.

—

v

The program then uses simulated I/O to display the solution to the
problem on the screen as shown in the following display.

Simulated I/O display Simulated I/O command: write
display is open) Return code: OOH
333|333

H
[
H
4444|4444 nl

55555| | 55555 ||
666666 ||666666 |
7777777) 7777777 22|

Solution for Towers with 7 discs.
Move #3: Move disk 1 from peg 2 to peg 1
0 simulated interrupts have been serviced.

STATUS: M68030--Running Trace complete cesessna

suspend

To return control of the keyboard to the host system, press the
suspend softkey. The normal emulation softkeys will be restored.

For more information on using simulated 1/O, see chapter 4 and
the Sirmulated I/O O perating Manual supplied with your
HP 64000-UX system.

Getting Started 3-29

Using the
DeMMUer

3-30 Getting Started

Use this procedure only if you have a deMMUer in your
emulation/analysis system hardware, and you intend to include the
functionality of the 68030 MMU in your system. This procedure
briefly shows how the deMMUer translates physical addresses
which are created by the 68030 MMU into logical addresses for use
by the internal analyzer. For more detailed information on
DeMMUer operation, refer to the 69030 Internal Analyzer User's
Guide.

The internal analyzer needs logical addresses in order to accept
commands you specifyv using source-file symbols and segment
names, and to provide trace lists that show address values using the
names of symbols and segments defined in the source file.

Enter the following commands:

reset Return
load configuration virtual Return
load memory physical os Return

The "os" program is a short operating-system script that sets up the
68030 MMU to manage memory for this demonstration program.
It allocates 1 megabyte of physical memory for the emulator. It
also sets up the deMMUer to match the MMU configuration in
"0s.8".

In this particular operating system script, physical memory is
mapped 1:1 to logical memory. As a result, addresses do not
change when the MMU is enabled. Mapping the memory 1:1 is not
required for operation of the emulator, but it serves to simplify this
example. Enter the following command:

set analysis mode logical Return

This command turns on the deMMUer so that it will supply logical
addresses to the analyzer for storage in its trace memory. Notice
that you can select the storage of either logical or physical
addresses with this command. You will find logical address
information most useful when developing application programs,
and physical address information most useful when developing
operating systems. The analyzer memory cannot store both logical
and physical addresses for each state in trace memory; that is why
you make this selection before you start the trace.

>

Start the analyzer and run the operating system program "os" by

entering the following commands:

trace Return
display trace symbols on Return
run from entry Return

The "entry" symbol used in the last command is a symbol in the
data base of the "os" program. This starts the "0s" program running
at the appropriate point. Your screen should appear as shown in
the following display.

Trace List

Label: Address
Base: symbols
-0007

-0006

-0005

-0004

-0003

-0002

-0001

trigger AB|entry.s:reset
+0001 abs 00000004
+0002 ABS|STACKTOP
+0003 abs 000FOFO02
+0004 abs 000FOF04
+0005 abs 000FOF06
+0006 ABS | STACKTOP
+0007 abs 000FOF06
STATUS: M68030--Running

run from entry

run trace set

$00000E2A
$00000A00
$2700----
$----000F
$0000----
$~----0000
$2700----
$----0000

step

Mode:logical address

Opcode or Sta

tus

mnemonic w/symbols

supr prgm
supr prgm
supr data
supr data
supr data
supr data
supr data
supr data

Trace complete

display

time count

relative

long rd log addr -----—-————=
long rd log addr 0.40us
word wr log addr 338.ms
long wr log addr 12.2us
word wr log addr 0.60us
word wr log addr 12.1us
word rd log addr 21.4us
word rd log addr 0.40us

...Re..

modify end ---ETC--

Getting Started 3-31

Enter the following commands:

break Return
load memory towers Return

The above command causes the towers program to be loaded _ ’
logically through the monitor. (This requires several minutes.)

trace TRIGGER_ON a= long_aligned main Return
run from transfer_address Return

The program will run about 15 seconds before the analyzer finds its
trigger pointer and captures a trace.

display trace disassemble_from_line_number 0 Return
display trace source on inverse_video on Return

In the resulting display that follows, you can see lines of source

code (shown in inverse video on your screen), followed by the

states in the trace memory that were emitted by those source lines

The trigger line in the display shows the beginning of execution in

the towers program. This program will run just like it did before

you set out to use memory management. The deMMUer will

provide all of the translations required to allow symbols to be used

in analyzer commands, and to allow symbolic addresses to be ;
shown in analyzer trace lists. J

3-32 Getting Started

Trace List Mode:logical address
Label: Address Opcode or Status time count
Base: symbols mnemonic w/symbols relative
trigger 000010E8 NOP 0.40us
###4##4##4towers.c - line 1 thru 128 ##difddddRaddR a4 4R R4S R B RS
static void towers();
static int ask_for_ number();
main()
{
= 000010EA LINK.W A6, #$0000
+0001 TFFFFFC8 $00000AS5C supr data long wr log addr (strm) 0.40us
+0002 0.40us
= 000010EE MOVE.L A3,- (A7)
+0003 000010F0 MOVE.L A2,-(A7) 0.48us
= 000010F2 LEA ($800C,A5) ,A0
+0004 T7FFFFFC4 $7FFFFFFO supr data long wr log addr (strm) 0.40us
+0005 0.40us
STATUS: M68030--Running Trace complete sesssene
display trace source on inverse_video on
run trace set step display modify end ---ETC--

Getting Started 3-33

Ending The To end the emulation session, enter the command:
Emulation Session

end release_system Return ‘

The system will return to the MEAS_SYS application level.

This completes your introduction to the 68030 emulation system.
You have assembled and compiled program modules, linked your
program modules, and used a few of the basic features of the
emulation system. For more detailed operational information,
refer to the information contained in the other chapters of this
manual and the 68030 Emulation Reference Manual. See the
Analysis Reference Manualfor 32_Bit Microprocessors and the
68030 Analysis Specifics User’s Guide for detailed information on
the analysis features provided in the emulator.

Using Command A command file is a file that lists a series of commands that must
: be performed to accomplish a particular function. Command files

Files . . : .
are ideal for setting up, and accessing, the emulation system. Once
the file is created, all you need to do is type the file name and press
Return The commands in the file will be executed, allowing you to
easily enter your emulation session. Refer to the "Creating and
Using Command Files" chapter of the HP 64000-UX User’s Guide
for detailed information on command files.

3-34 Getting Started

“ Answering Emulation Configuration Questions

Overview

This chapter:
a Explains each of the emulation configuration questions.

a Describes how to configure the emulator for compatibility
with your 68030 target system.

a Describes how to map your 68030 system memory to
emulation and target system memory resources.

&

Introduction

The 68030 emulator is configured from within the emulation
application. When you run emulation for the first time, a default
configuration file is loaded. You can modify this file to match your
particular system needs by answering a series of emulation
configuration questions displayed on your workstation display.
After modifying the emulation configuration, you can save it to a
file which you can then load each time you enter emulation.

Your answers to the emulation configuration questions define how
your 68030 emulator is configured, how resources are shared
between the emulator and your target system, how the emulator
and target system interact, and what operations are enabled in the
emulation environment.

Configuring The Emulator 4-1

The configuration questions enable you to do the following
emulation configuration tasks:

a Selecting real time or nonreal-time run mode.
= Enabling breaks to the emulation monitor. J

m Selecting whether to reset into the emulation monitor or
to use the user reset exception vector.

a Configuring the foreground and background monitors.

= Enabling and selecting the software breakpoint instruction.
a Configuring custom coprocessor functions.

= Configuring memory.

a Configuring the emulator pod.

a Configuring simulated /O and interrupts.

v

a Naming your emulation configuration command file.

Running Emulation The command sequence to run emulation depends on how you
configured your emulation system and what you named it. In this
chapter, the example names from chapter 3, Getting Started, are
used. To run emulation, do the following steps:

1. Press MEAS_SYS.

2. Press emul683k em68030 Return.

4-2 Configuring The Emulator

o

Modifying The
Configuration File

Note ‘

To modify the configuration, enter the following command:

modify configuration Return

A series of questions are displayed on your workstation screen.
Your answers to these emulation configuration questions specify
the configuration of the emulation hardware and software for a
specific application. Each question is displayed with a default
response. Additional options are shown in this chapter in
parentheses. The default response is selected by pressing the
Return key. Other responses are selected by pressing the
appropriate softkey or by typing in an appropriate response, and
then pressing Return. If you are modifying an emulation
configuration file which you previously made, the default responses
are those responses stored in that configuration file.

If you need to return to a question you have already answered,
press the RECALL softkey. Each time you press RECALL, the
emulator backs up to the configuration question that was displayed
prior to the question currently displayed. You may then make any
corrections needed.

Configuring The Emulator 4-3

Selecting Real-Time/
Nonreal-Time Run
Mode

o

Caution ' POSSIBLE DAMAGE TO CIRCUITRY!
When the emulator detects a guarded memory access or other
illegal condition, or when you execute a command that causes the
emulator to break into the emulation monitor, the emulator stops
executing the user program and enters the emulation monitor. If
you have circuitry in your target system that can be damaged
because the emulator is not executing your code, you should use
caution. Restrict the emulator to run in real-time mode only. Do
not execute commands that cause breaks to the emulation monitor.

Real-time refers to the continuous execution of your 68030
program without interference from the development environment
except as specified by you. All commands which cause momentary
breaks to the emulation monitor are disabled. Momentary breaks J
are breaks asserted by the emulation software which momentarily
diverts 68030 execution to the emulation monitor and then
resumes execution of your program. In real-time run mode, you can
execute any command which does not cause a break to the
emulation monitor. Commands requiring target memory or
register accesses are disabled when a user program is running.
These commands can only be executed while running in the
emulation monitor. An attempt to execute a run/step from
<ADDR> command while executing the user program in real time
causes a break to the emulation monitor.

If the emulator is not restricted to real-time run mode, all selected
emulation functions are enabled. Commands requiring access to
target memory, logical memory with the MMU, or registers cause a
break to the emulation monitor if a user program is running.

All real-time interference can be avoided by disabling the "’
emulation monitor functions. You can select this option later in
the configuration questions.

4-4 Configuring The Emulator

Figure 4-1 shows the display that appears with the following
question.

Restrict to real-time runs? no (yes)

no All selected emulator functions are enabled. The
emulation system is enabled to break to the emulation
monitor whenever a command requiring breaks to the
emulation monitor is executed.

yes Target memory and register accesses are disabled when a
user program is running.

Not restricted to real time

- All selected emulation functions are available.
- Target memory or register accesses will cause a break/exit.
- Run/step from ADDRESS will cause a break into the monitor.

Restricted to real time

- Target memory or register access, run/step from ADDRESS, etc

only allowed while the emulator is running in monitor.

STATUS: configuring M68030
Restrict to real-time runs? no

yes no RECALL

Figure 4-1. Restrict To Real-Time Runs Display

Configuring The Emulator 4-5

Enabling Emulator
Monitor Functions

The next question asks you if you want to enable emulator use of
the monitor. If you answer yes, all emulation commands and
features implemented by the emulation monitor are enabled. If
you answer no, the next question asked is "Modify memory
configuration?" and configuration questions that refer to functions
requiring the emulation monitor will not be asked. They will be set
to the following default values:

Reset into the monitor? N“~*no
Enable emulator use of INT7? “ no
Software BKPT instruction number (0..7)? T
Default stack pointer for background? Offfffffth
Block ECS, OCS signals during background monitor cycles? yes
Perform periodic foreground accesses while in monitor? no
Enable foreground monitor? no

4-6 Configuring The Emulator

If the emulation monitor is not loaded, all emulation functions that
require the monitor for execution will be disabled and their
associated softkeys turned off. The functions that require the
emulation monitor are:

automatic reset to monitor

break

copy target (logical memory with MMU enabled)
copy registers

display target (logical memory with MMU enabled)
display registers

emulator use of software breakpoints

load logical memory

modify target (logical memory with MMU enabled)
modify registers

run from/until <ADDR>

set break_on

step

store target memory (logical memory with MMU enabled)

Figure 4-2 shows the display that appears with the following
question.

Enable emulator use of the monitor? yes (no)

9

Monitor disabled

Configuration questions that refer to monitor functions will
not be asked and will be defaulted. The host software will
disable all features that rely on monitor support.

Monitor enabled

All emulation features using the monitor are enabled.

STATUS: configuring M68030

Enable emulator use of the monitor? yes

yes no RECALL

Figure 4-2. Enable Emulation Monitor Display

yes All emulation commands and features implemented with

the emulation monitor are enabled.

no Configuration questions that refer to functions requiring
the emulation monitor are not asked. If no emulation
monitor is loaded, all commands and features requiring
the emulation monitor are disabled and their associated
softkeys are turned off. If the MMU is enabled (in a later
question), only direct physical memory accesses will
succeed because logical address accesses are made through
the monitor. The next question asked is "Modify memory
configuration?".

Configuring The Emulator 4-7

Resetting Into The
Monitor

Note i If you answered no to the previous question, the following question u
will not be displayed on your screen.

The next question lets you select whether the emulation reset
command causes the processor to be reset into the emulation
monitor or to the memory location specified by the user reset
exception vector. This question only affects reset commands
entered from the workstation keyboard or processor reset on entry
@5 e \/f to the emulation module. It has no effect on reset signals generated
. L within the user’s target system.

pliec™ i Figure 4-3 shows the display that appears with the following
question.

Reset into the monitor? yes (no)

yes The emulation reset command causes the processor to be -
reset into the emulation monitor. The user-defined reset
vector and initial stack pointer are ignored.

no The emulation reset command causes the processor to

fetch the user-defined reset vector and begin execution
from that address.

4-8 Configuring The Emulator

Reset to monitor enabled

A reset command, followed by a run command will cause the processor
L to enter the foreground monitor if it is enabled and loaded. The

background monitor will be entered automatically after reset if the
foreground monitor is not enabled. The user-defined reset vector will
be ignored.

Reset to monitor disabled

A reset command, followed by a run command, will cause the processor

to fetch the user-defined reset vector and execute from that point.

STATUS: configuring M68030 ceeseens
i Reset into the monitor? yes
yes no RECALL

Figure 4-3. Reset Into Monitor Display

Figure 4-4 shows the display that appears with the following
question.

Enable emulator use of INT7?/§§S (no)

The emulation break function uses the level 7 interrupt autovector
(INT?7) processor resource to force the user program to be
interrupted and the emulation monitor program to be entered.

, 1) & This question lets you enable or disable the emulation break
L et < M function, as required for your target system. If your target system
PV .\ cannot share INT7 with the emulator, you need to answer no to
> \‘],\ A VL ‘f this question.
Gy et \\J
v Y
U -
- GO

e Configuring The Emulator 4-9

Emulator use of INT7 enabled

All selected emulation functions are available.

Emulator use of INT7 disabled

All emulation break signals are blocked to the processor.
The following are the only ways to enter the monitor:

- user program jumps to the monitor

- exectuted exception vector points to the foreground monitor
- a software breakpoint is hit

- reset command with reset-to-monitor function enabled

STATUS: Cconfiguring M68030 [
Enable emulator use of INT7? yes

yes no RECALL

Figure 4-4. Enable Emulator Use of INT7 Display

yes All selected emulation functions are available.

no All emulation break signals to the processor are disabled.

The only ways to enter the monitor program are:
m user program jumps to the monitor

m ¢€xecuted exception vector points to the foreground

monitor

a software breakpoint is executed

a reset command with reset-to-monitor function

enabled.

4-10 Configuring The Emulator

Note ‘ If you answered no to the previous question, this question will not
be displayed on your screen.

Figure 4-5 shows the display that appears with the following
question.

Enable user IPEND line during emulator breaks? no (yes)

no The interrupt pending signal (IPEND) is
blocked (driven high) for emulator driven
interrupts. Target system generated

IPEND during emulation breaks disabled

An emulator-generated break will not send an interrupt pending
signal (IPEND) to the target system. Target system interrupts
will be acknowledged normally.

IPEND during emulation breaks enabled

Any interrupt will send the interrupt pending signal (IPEND) to
the target system.

STATUS: Cconfiguring M68030 ceseeses
Enable user IPEND line during emulator breaks? no

yes no RECALL

Figure 4-5. Enable User IPEND Display

Configuring The Emulator 4-11

interrupts cause the IPEND signal to be
unblocked (driven low).

yes Any interrupt sends the interrupt pending
signal (IPEND) to the target system. J

Enabling Emulator Software breakpoints must be enabled to allow the language
Use of Software system to pass messages into the background monitor. The next
i question lets you specify whether or not the emulator can use the
Breakpoints 68030 BKPT instructions to do software breaks from the user

program into the emulation monitor. The modify sw_breakpoints
set and run until commands are disabled if you answer no to this
question. You should answer noonly if your target system must use
all eight 68030 BKPT instructions.

Enable emulator use of software breakpoints? yes (no)

<yes ' The emulator software breakpoint functions
—= are enabled.
no Emulator use of software breakpoints is
disabled. u

Selecting The The following question lets you specify which of the eight 68030
Software Breakpoint BKPT instructions the emulator uses to execute software breaks

Instruction Number into the emulation monitor.

Note i If you answered no to the previous question, this question will not
be displayed on your screen.

Figure 4-6 shows the display that appears with the following
question.

Software BKPT instruction number (0..7)? 7 (<number>)

/

4-12 Configuring The Emulator

Software breakpoint instruction number

This sets the breakpoint number for the emulation software
breakpoint (i.e. BKPT #x, where x is the breakpoint number
selected).

STATUS: configuring M68030 cecesses
Software BKPT instruction number (0..7)? 7

< number > RECALL

Figure 4-6. Software Breakpoint Instruct No. Display

Configuring The Emulator 4-13

Defaulting The Stack This question allows you to set the address value to be used to exit
Pointer For The the background monitor if the monitor is entered from reset. The
Background Monitor default value (Offffffffh) is not valid so the user must select and
enter the correct value in answer to this question, or
reset-into-monitor must be disabled. J

Figure 4-7 shows the display that appears with the following
question.

Default stack pointer for background? Offffffffh (<addr>)
I/r 4 l v ‘\\
m’:’n\& Lt

Default stack pointer

This value is used to exit the monitor when the background monitor

is entered from reset. If the default value, OFFFFFFFFH is invalid, so
the user should either disable reset into monitor, or enter the correct
value of the default stack pointer.

STATUS: Configuring M68030
Default stack pointer for background? OffffffffH

Addr RECALL

Figure 4-7. Default Stk Pointer for Background Display J

4-14 Configuring The Emulator

Select To Block ECS, Figure 4-8 shows the display that appears with the following
OCS Signals During question.

Background Monitor
g Block ECS, OCS signals during background monitor cycles? yes

‘ Cycles (n0)

yes Causes the ECS and OCS signals to be blocked to the
target system during background monitor execution.

no Causes the ECS and OCS signals to be unblocked
to the target system during background monitor
execution. This causes the processor to look as
though it is executing out of cache.

ECS, OCs signals blocked

During background monitor execution, these signals will be blocked to the

target system.

b ECS, OCS signals not blocked

ECS and OCS signals will be visible during background monitor execution.
This will cause the processor to look as though it is executing out of

cache.

+

STATUS: Configuring M68030 cseaess .
ECS, OCS signals during background monitor cycles? yes

‘ 3 yes no RECALL

Figure 4-8. Block ECS, OCS During Background Monitor

Configuring The Emulator 4-15

Select To Perform This question determines whether keepalive cycles are generated
Periodic Foreground during background monitor execution. The keepalive function
Accesses causesaread cycle, at a specified address, to happen periodically.
Some target systems need to see continuous cycles. When the
background monitor is executing, AS, DS, and DBEN signals are
blocked. Figure 4-9 shows the display that appears wth the
following question.

Note i If you answer no to this question, the next question will be not be
asked.

Perform periodic foreground accesses while in monitor? no (yes)

Perform periodic foreground accesses while in monitor

Answering yes will cause the background monitor to periodically
access an address in foreground space. This is useful for triggering
memory refresh strobes in the target, etc.

STATUS: Configuring M68030_ ______ desesess
Perform periodic foreground accesses while in monitor no

yes no RECALL

Figure 4-9. Foreground Accesses in Monitor Display

4-16 Configuring The Emulator

Selecting Address for
Periodic Foreground
Access

Note ‘

&

Figure 4-10 shows the display that appears with the following
question.

If you answer no to the previous question, thus question will be not
be asked.

Address for periodic foreground access? 0 (<addr>)

Foreground access address

STATUS: configuring M68030

This address will be used by the background monitor to access
the foreground address space. The access will be a read cycle.

‘ Addr

Address for periodic foreground access? 0

RECALL

Figure 4-10. Address for Foreground Access Display

Configuring The Emulator 4-17

Enabling The This question allows you to choose whether or not to use the

Foreground Monitor foreground monitor. The foreground monitor may be loaded by
the background monitor. If you choose to use the foreground
monitor, only the load memory command (of all the commands
that require the monitor) is allowed. The foreground monitor can J
operate without disabling any interrupts, and it allows full user
defined coprocessor support. However, the foreground monitor
takes up target resources, and does not allow physical memory
access when the MMU has been configured to be enabled. Figure
4-11 shows the display that appears with the following question. If
this question is answered no, the sequence will skip to the "Modify
memory configuration?" question.

Enable foreground monitor? no (yes)

Foreground monitor enabled

The user may load a foreground monitor to provide functionality. This
monitor may be loaded using the background monitor. Other than the
memory access for the load, no commands requiring monitor functionality
are allowed until the foreground monitor has been loaded. The foreground "
monitor can run without disabling interrupts and also allows the emulator d
to support user-defined coprocessor registers access. A foreground
monitor takes up target system resources and will not support physical
memory access when the MMU is enabled in configuration.

Foreground monitor disabled

The background monitor will be used for all monitor functionality.
Generic coprocessor register access is not supported and interrupts are
blocked during the monitor execution. Both logical and physical memory

accesses are supported and target resources are not used.

STATUS: configuring M68030
Enable foreground monitor? no

yes no RECALL J

Figure 4-11. Enable Foreground Monitor Display

4-18 Configuring The Emulator

O

—

Interlock or Provide This question allows you to determine whether the foreground

Termination for the monitor CPU space cycles will be terminated immediately as an

Foregroun d Monitor asynchronous cycle or if the cycles will be interlocked with the
target system cycles.

Figure 4-12 shows the display that appears with the following
question.

Interlock or provide termination for foreground? terminate
(intrlck)

Interlock foreground cycles

Foreground monitor CPU Space cycles will be interlocked with the
target cycles, as determined by the map entry for the foreground
address space.

Emulator terminates foreground cycles

The cycle is terminated immediately as an asynchronous cycle.’

STATUS: Configuring M68030

Interlock or provide termination for foreground? terminate

........

intrlck term RECALL

Figure 4-12. Interlock or Terminate Foreground Display

Configuring The Emulator 4-19

Using Custom
Coprocessors

Note i Custom register access is only supported with the foreground J
monitor enabled, except in the case of the MMU registers. MMU
registers display and modification are supported for both
foreground and background monitors.

The 68030 emulator has the capability to access floating point
processors, memory management units, and other coprocessors in
your target system. You can both display and modify coprocessor
register sets. In order to use custom coprocessors with the
emulator, you must provide a custom register format file defining
the coprocessor register set and modify the emulation monitor
program as described in chapter 8 of this manual. This must be
done prior to modifying the emulation configuration.

Figure 4-13 shows the display that appears with the following
question. . u

Any custom registers? no (yes)
yes The emulator is enabled to access the
custom coprocessors that you have defined

in you custom register format file.

no Use of custom coprocessors is disabled.

4-20 Conflguring The Emulator

Custom coprocessor support

This question should be answered "yes" is it is desired to access
coprocessor register sets, such as an external FPU. The user is
expected to supply monitor code to read and write register contents.

STATUS: configuring M68030 TR
Any custom registers? no

yes no RECALL

Figure 4-13. Any Custom Registers Display

Configuring The Emulator 4-21

Specifying The
Custom Coprocessor
File

Note i If you answered yes to the question "Any custom registers?”, the
following question will be displayed on your screen.

Figure 4-14 shows the display that appears with the following
question.

Name of custom register format file? (<FILE>)

The default answer to the question is NULL. The MMU is

supported internally. There is an example custom register format

file provided with your emulation software. The example is located

at /usr/hp64000/inst/emul32/0410/0204/custom_spec. If you are

using custom coprocessors, you must enter the full pathname of

the custom register format file that you made for these

COProcessors. J

4-22 Conflguring The Emulator

Custom register format file

This file supplies the format specification for the custom
L register sets that are enabled. Information about the register

sets is present including the display format. The MMU is
excepted from needing this formatting data.

STATUS: Configuring M68030 ceseesen
" Name of custom register format file?

FILE RECALL

Figure 4-14. Name of Custom Reg. Format File Display

Modifying a Memory When you begin your initial emulation session you must configure
Configuration (map) the memory space you will be using. The configuration you
need is based on your user program requirements and on the
configuration of your target system, if one is available. As you
progress with your program development, your memory map
requirements will probably change. As your requirements change,
you will need to modify your configuration file.

C The following questions let you review and modify the memory
configuration stored in the emulation configuration file.

Configuring The Emulator 4-23

Note i If you answer noto the "Modify memory configuration?" question,
the sequence will skip to the "Modify emulator pod configuration?"
question.

Modify memory configuration? no (yes)

yes Allows memory mapping and deMMUer configuration to
be modified. The current memory map is displayed.
Memory configuration is explained in the following
sections.

no Allows you to skip memory configuration if you do not
want to change memory usage. A no response causes the
memory to be configured as specified by the current
emulation configuration file. If no is entered, the next
question is "Modify emulator pod configuration?"

Break processor on write to ROM? yes (no) i ‘

yes A break to the emulation monitor occurs if the processor
attempts to write to a memory location mapped as
emulation or target ROM.

no Breaks are not generated when the processor attempts to
write to memory locations mapped as emulation ROM.

If write operations to emulation memory mapped as ROM are
attempted during program execution, the contents of emulation
memory are not modified. Write operations resulting from
emulator commands that modify memory (e.g., load and modify)
will modify the contents of emulation memory locations mapped as
ROM if the MMU is disabled or it is a physical access.

Write operations to target memory mapped as ROM may or may J
not alter memory contents, depending on your target system

hardware.

4-24 Configuring The Emulator

«

Selecting to Block Figure 4-15 shows the display that appears with the following
BERR on question.
Non-interlocked

Emulation Memory Block BERR on non-interlocked emulation memory? no (yes)

yes Bus errors (BERR) that occur during emulation memory
cycles (if the address is configured as non-interlocked) are
blocked. This allows the monitor or other user program to
run in a memory space not usually allowed by the target
system hardware. This does not prevent retry operations
from happening.

BERR disabled

Bus errors (BERR) that occur during emulation memory cycles when
the emulation memory address is configured as non-interlocked
will be blocked. This allows the monitor or other user programs
to run in a memory space not normally allowed by the target
system hardware. The BERR signal is not blocked if it is part
of a retry operation.

BERR enabled

All bus error signals not excluded by a unique mapping are admitted to
the processor.

STATUS: configuring M68030 teseesne

Block BERR on non-interlocked emulation memory? no

yes no RECALL

Figure 4-15. Block BERR on Non-interlock Em Mem Display

Configuring The Emulator 4-25

no All bus error signals (BERR) are transmitted to the
processor.

Mapping Memory \J

After you answer the question "Break processor on write to
ROM?", the emulation memory map is displayed. The 68030
processor memory space required for your applications must be
mapped to emulation memory, target memory, or guarded
memory. Emulation memory is memory that is physically located in
the emulation pod. Target memory is memory that is physically
located in your target system. Memory mapped as guarded is
memory that, under normal conditions, should not be accessed by
your target system. Any reference to the address space mapped as
guarded memory will result in an emulation memory break and the
display of the following error message:

STATUS: 68030--Running in monitor Guarded access a= <ADDR> (<FC>)
where <FC> is a two letter mnemonic describing the
function code of <ADDR>.

The memory mapper must be properly programmed to correspond
to emulation memory and target system memory resources in
order for emulation to work correctly. The memory mapper allows
you to divide the processor’s address space into blocks that can be
individually configured to have any of the following attributes:

s Emulation memory; RAM or ROM; synchronous;
interlocked; or asynchronous with 8-bit, 16-bit, or 32-bit
width;.

a Target memory; RAM or ROM; bus error blocked; cache
disabled; burst mode blocked. _

s Guarded memory. \J

4-26 Configuring The Emulator

During emulation, the memory mapper monitors the address bus
and provides the attributes for the address present at any given
time. This information is used by the emulator hardware to control
the flow of data between the emulation processor and the memory
resources.

Memory Map Display Organization. The default memory map
display is shown in figure 4-16. Each entry line shows the entry
number, address range starting value, address range ending value,
function code of the address range, attributes of the entry, and
overlay definition. The overlay definition shows the number of the
entry being overlaid, and the address in the memory map entry
being overlaid that corresponds to the starting address of the

overlay entry.
Mapping memory: Function codes = OFF
ENTRY START END ATTRIBUTES OVERLAY
1 OH FFFFFFFFH TARGET RAM (Cs)
STATUS: Mapping emulation memory, default mapping: guarded_ = ...R...
end
map map_over modify delete display deMMUer end

Figure 4-16. Default Memory Map Display

Configuring The Emulator 4-27

Softkey labels are displayed for the commands available in the
memorymapper. You can specify individual map entries, overlay

existing map entries, modify existing entries (including the default

mapping attributes), modify the deMMUer configuration, delete

currently defined entries, or end the map definition session. These J
commands are described in the following sections.

Memory Map Definition. The memory map partitions the
processor address range into blocks defined as emulation RAM or
ROM, target RAM or ROM, or guarded (illegal) space. Each entry
defines a particular address range as one of the five possible
memory types.

Memory entries can be further defined by function code.
Emulation memory can also be assigned cycle type of synchronous,
interlocked, or asynchronous with a bit-width of 8, 16, or 32. Based
on the cycle type, emulation memory returns the appropriate
signals to the 68030 processor.

Any address range not defined by an entry is mapped to the
- memory default. The addresses entered are physical addresses at

the appropriate 68030 pins. ; ,

The memory mapper has a resolution of 256 (ffH) bytes. Once the
mapper software processes the inputs, the entry range is rounded
to integral multiples of 256 bytes. The final range includes all of
the specified memory space, plus the remainder of any 256-byte
blocks which were partially specified. Any parts of the 68030
address range not defined by an entry are mapped to the memory
default.

4-28 Configuring The Emulator

C\

Note ‘

If the end address of a specified address range is the same as the
first address of a 256-byte memory block (e.g. 100h, xxooxx00h, etc),
the end address value is rounded down one byte (e.g. to Offh,
xoooxtth, etc.)
This can cause a problem if you attempt to specify an address range
with the same start and end address corresponding to the first
address of a 256-byte memory block. If your enter the command:
map 100h thru 100h emulation ram Return
the error message "ERROR: Lower address in range greater than
upper address" is displayed. This command is not allowed by the
emulator because the ending address (when rounded down to Offh)
is less than the starting address (100h).

All emulation memory is displayed and loaded directly by the
emulation software by way of the memory port assigned to the host
processor. If the MMU is enabled, logical addresses are done using
the emulation monitor. Physical addresses are still done using the
host port. Any attempt by the 68030 CPU to write to memory
mapped as emulation ROM will not change the contents of that
memory location.

When target memory is specified for a given address range, all
memory cycles using that address range access the target system.
All memory load and display operations for your target system are
done via the emulation monitor.

Multiple processor address ranges can be overlaid onto the same
physical emulation memory by using the map_overlay command.
Overlaying applies only to emulation memory. The emulator has
no control over your target system memory resources.

Emulation Monitor Program Memory Requirements. You
need to know certain information about the emulation monitor
(delivered as part of your emulator software package) prior to
linking the monitor program and mapping memory space. Chapter
7 gives a detailed description of the emulation monitor, including
memory requirements for the program. Refer to the paragraphs
titled "Emulation Monitor Memory Requirements" in chapter 7 for
a full description of the emulation monitor memory requirements.

Configuring The Emulator 4-29

Using The Map Command

All memory map entries are made up of an address range and

attributes which specify the type of memory accessed by the

specified address range. In addition, a specific function code and u
address width (port size) can be assigned to a memory map entry.

Memory mapping is done using the map command.

Mapper blocks are entered using the following command syntax:

map

fcode >-| <F_CODE>

C.{ 0or> (o H<Aooa>j) ﬂ

synchronous

asynchornous

width 32

J\)

interlocked

guorded

where:

fcode lets you assign a function code to a memory map entry.
The function codes enabled for your particular
configuration are displayed on softkeys after you press
the fcode key. If you specifymodify defined_codes
none, the fcode attribute is disabled and the softkey is
not displayed. You can specify user-defined function
codes by typing in the numeric value of the function.
See the section in this chapter on the modify
defined_codes command for more information on
function codes.

(\

4-30 Configuring The Emulator

<ADDR> defines a bit pattern of up to 32 bits which specifies a

guarded

emulation

rom

ram
inter-
locked

synch-
ronous

asynch-
ronous

width8
width16
width32

target

particular location in memory. That bit pattern can be
entered as a binary, octal, hexadecimal, or decimal
number.

designates an address range which is not expected to be
accessed. Any processor access to a location within
such a range will result in a break of the program
execution. No emulation memory is used when an
address range is specified as guarded.

designates memory supplied by the emulation system.
designates memory which cannot be modified by the
68030 processor. Emulation memory that is actually
RAM but is mapped as ROM performs as ROM
during emulation. The host can read and write t0
ROM.

designates memory which can be read from or written
to without restriction.

designates that the memory entry is defined to
interlock cycles with your target system.

designates that the memory entry is defined for
synchronous cycle access.

designates that the memory entry is defined for
asynchronous cycle access.

defines the memory map entry to be an 8-bit data port.
defines the memory map entry to be a 16-bit data port.
defines the memory map entry to be a 32-bit data port.
designates memory supplied by your target system.

Mapping an address range to target space requires no
emulation memory.

Configuring The Emulator 4-31

burst enables the burst mode access.

cache_dis disables caching for address range. ‘
berr_en enables bus errors for the entry. -
The first <ADDR > of a range specification should be the starting
address of a block boundary. If an address inside a memory block
area is entered, the system converts this address to the starting
address of the block prior to its mapping. Leading zeros may be
deleted as long as the most significant digit is numeric.

The minimum map entry size is 256 bytes. The maximum size is the
number of available blocks.

Using The Map_overlay Command

When making a memory map, you can enter "overlay" addresses in
emulation memory hardware blocks. With this feature, you can

cause a single block to function as if it were several different

blocks, each corresponding to a different set of addresses. Memory ;
overlaying applies only to emulation memory. The emulator has no J
control over target system resources.

Map overlays are entered using the following command syntax:

((map_overlay } :{ <ADDR> I-—»((hru)—-l <ADDR>
L-(fcode) <F_CODE> ’—J

rom
;»(over) »[<ADDR> |»{<RETURN>]
\—b(fcode }-l <F_CODE> }—j

Map_overlay command parameters have the same definitions as
those listed for the map command parameters.

There are some restrictions imposed on the map overlay function
by the physical structure of emulation memory. Emulation memory
is physically made up of 4K byte blocks of memory as shown in

4-32 Configuring The Emulator

figure 4-17. The memory mapper hardware has a resolution of 256
bytes, the minimum map entry size.

When specifying a memory address, the two least significant digits
in a hexadecimal address (see figure 4-18) specify the address

within the 256 byte entry. The third least significant digit specifies
one of the 16 256-byte entries within the 4K byte physical memory

block.
PHYSICAL OVERLAY
BLOCK ADDRESS
0 }255 BYTES)
] 1
; VALID OVERLAY 2
3 3
4K BYTE
MEMORY
BLOCK . ILLEGAL OVERLAY
c C
5 D
c E
. F

Address of overloy ond address to be overlaoid must be
mapped to the same 256 byte block.

Figure 4-17. Overlay Addressing Within Physical Blocks

[x x x x x[v[z z]

\W_"
L Address Location within 256 Byte Block

Location of 256 Byte Block within
4K Physical Memory Block

Address of 4K Physical Memory Block

Figure 4-18. Hexadecimal Address Bit Definition

Configuring The Emulator 4-33

When overlaying memory, the address of the memory overlay and
the address of the memory location must be mapped to the same
256 byte block in the 4K byte physical memory block, e.g., the third
least significant hexadecimal digit in the specified addresses must
be identical. For example, the command:

map_overlay fcode SUPER_DATA 0f00f800h thru
0f00f8ffh rom over fcode SUPER_PROG
0002800h Return

is a valid command. However the command:

map_overlay fcode SUPER_DATA 0f00f800h thru
0f00f8ffh rom over fcode SUPER_PROG 0002a00h
Return

is not a valid command. An attempt to execute the last command
would cause the error message "Offset for overlay does not match
emulation address" to be displayed.

Memory Mapping Example

The following example shows how to map memory in a system
made up of a target system with some memory installed and the
68030 emulator. This example shows how to use the map and
map_overlay commands. Before defining the new memory map,
delete all entries in the current map. Enter the following
commands:

delete all Return
modify defined_codes all Return

The memory map display will appear as shown in figure 4-19. Note
that one entry is still displayed. The CPU_SPACE mapping to
target RAM cannot be deleted by the user. This address space is
required for vectored exception processing.

4-34 Configuring The Emulator

Mapping memory: Function codes = ON

ENTRY START END FC ATTRIBUTES OVERLAY
1 OH FFFFFFFFH (CS) TARGET RAM
STATUS: Mapping emulation memory, default mapping: guarded «..R....

modify defined_codes all

map map_over modify delete display deMMUer end

Figure 4-19. Sample Overlay Mapping #1

CPU_SPACE must be mapped to target memory so that vectored
exceptions will not interfere with emulation functions.

Type the following entries into the memory map.

map fcode USER_DATA 0 thru Offffh emulation ram
asynchronous width32 Return

map fcode USER_PROG 18000000h thru 1800ffffh
emulation rom asynchronous width32 Return

map fcode SUPER_DATA 0 thru 3ffh target rom burst
cache_dis berr_en Return

Configuring The Emulator 4-35

map fcode SUPER_PROG 0 thru 3ffh target rom burst
cache_dis berr_en Return

map fcode SUPER_PROG 0f000000h thru0f000fffh
emulation ram asynchronous width32 Return

map_overlay fcode SUPER_DATA 0f000000h thruOf000fffh
ram over fcode SUPER_PROG 0f000000h Return

The memory map resulting from these commands is shown in
figure 4-20.

Mapping memory: Function codes = ON

ENTRY START END FC ATTRIBUTES OVERLAY

OH FFFFH (UD) EMUL RAM [32 bits]

2 18000000H 1800FFFFH (UP) EMUL ROM [32 bits]

3 0OH 3FFH (SD) TARGET ROM [burst/berr]

4 FO00000H FOOOFFFH (SD) EMUL RAM [32 bits] FO000000H (6)

5 OH 3FFH (SP) TARGET ROM [burst/berr]

6 FOO0000H FOOOFFFH (SP) EMUL RAM [32 bits] FO00000H

7 OH FFFFFFFFH (CS) TARGET RAM

STATUS: Mapping emulation memory, default mapping: guarded ceeReeen
map overlay fcode SUPER_DATA 0f000000h thru 0f000fffh ram over fcode SUPER
_PROG 0£000000h

map map_over modify delete display deMMUer end

Figure 4-20. Sample Overlay Mapping #2

4-36 Configuring The Emulator

The entries in the memory map correspond to the following
address spaces:

. User application data space

User application program space

Exception vector table space

Emulation monitor data space

Exception vector table space

Emulation monitor program space

. CPU_SPACE

The emulation monitor data space (entry 4) has been overlaid onto
the emulation monitor program space, This enables the 68030
processor to access data locations in the emulation monitor. The
overlay is indicated in the OVERLAY column of the memory map
display for entry 4. The "(6)" indicates that entry 4 is overlaid onto
entry 6. The address fO00000H is the address in entry 6 that
corresponds to the starting address of entry 4. This memory map
shows you a typical 68030 memory map.

NOL R LN

Using The Modify Command

The modify command lets you modify the memory map. The
modify defined_codes command lets you selectively enable or
disable the 68030 function code signals (FCO through FC2). The
modify <ENTRY > command lets you modify the range,
attributes, fcode, and overlay parameters of a memory map entry.
The modify default command lets you change the default memory
parameters.

Modify Defined_Codes. The modify defined_codes command
lets you selectively enable or disable the 68030 function code
signals. The command syntax is shown in the following diagram:

(" modify }—=(defined_codes <RETURN>

Configuring The Emulator 4-37

where:

all enables the memory mapper to use all three function
code lines (FCO through FC2) in mapping memory. If
all is selected, you can specify any of the eight function
code states except CPU_SPACE. The function codes
SUPER_PROG, S! i R_DATA, USER_PROG,
AND USER_DATA can be entered from softkeys.
The remaining function codes must be entered as
numeric values. Function code 3 is user definable.
Function codes 0 and 4 are reserved for use by the
processor manufacturer. Function code 7 specifies
CPU address space. If you enter fcode 3, USER_RSVD
is displayed in the FUNCTION CODES column of the
memory display. If you enter fcode O or 4, MOT_RSVD
is displayed in the FUNCTION CODES column.

none disables all three function code lines. when none is
selected, the emulator memory mapper ignores the
function code lines and monitors only the 32-bit
address bus during emulation. With none selected, the 3
fcode parameters are not available in the emulation J
commands. The FUNCTION CODES column is
deleted from the memory map display.

4-38 Configuring The Emulator

Modify <ENTRY>. The modify <ENTRY > command lets you
modify the range, attributes, fcode, and overlay parameters of a

existing memory map entry. The command syntax is shown in the
following diagram:

—(_modity)| <ENTRY> }) <RETURN>

[—(range)| <ADDR> | thru)+ <ADDR> | <
\-(attributesHemulction

synchronous

asynchronous

interlocked
A
guorded <

\-(fcode)——I <F_ CODE> /
\—C overlay remove) J
fcode)= <F_CODE> |+ <apoR> J,[

where:

range lets you specify a new range for the memory map entry
(<ADDR> thru <ADDR>).

attributes lets you change the entry to:

emulation memory, RAM or ROM, interlocked,
synchronous, asynchronous with a data port width
of 8-bits, 16-bits, or 32 bits

target memory, RAM or ROM, bus error blocked,
cache disabled, burst mode blocked

guarded

Configuring The Emulator 4-39

fcode lets you modify the function code address mapping for
the entry. The selections available to you depend the
definition of the defined_codes parameter.

overlay lets you remove an overlay from an entry, e.g., the J
entry is converted to the physical address
corresponding to address specified in the entry, or it
lets you change the function code or address range of
the address space being overlaid.

Modify Default. Any address ranges which are not mapped when
the mapping session is terminated are assigned the memory
attribute specified as the default. The default attribute can be set
up to be target RAM, target ROM, or guarded by using the modify
default command. Initially, the system assigns all unmapped
memory to guarded memory. The command syntax is shown in the
following diagram:

Crrodity) defautt v/

guarded

where:

target designates memory supplied by your target system.

When default is mapped to target, the attributes are

set to: caches enabled, burst enabled, and BERR

enabled. —
guarded designates an address range which is not expected to be J

accessed. Any processor access to a location within

such a range will result in a break of the program

execution.

4-40 Configuring The Emulator

delete

Modify the DeMMUer
Configuration

@

Deleting Memory Map Entries

Any one or all of the memory map entries can be removed by using
the delete command with the exception of the default
CPU_SPACE entry. The syntax for the delete command is shown
in the following diagram:

[
o

You can modify the DeMMUer configuration while in the "modify
memory configuration" environment. To modify the deMMUer
configuration you must press the deMMUer softkey. The
configure_deMMUer label will appear on the command line. Press
the Return key. The display will be as shown in figure 4-21. The
deMMUer is described in some detail in chapter 5 and fully in the
68030 Internal Analysis User’s Guide.

Configuring The Emulator 4-41

deMMUer confiquration
deMMUer hardware disabled
Translation Control - 00000000H
<e sre fcl ps is tia tib tic tid>
0 0 0 -——— 0 - - - -

Virtual Address start - 00000000H

Root Descriptor Type -Invalid Descriptor

Range List - start End
A undefined range
B undefined range
[undefined range
D undefined range

STATUS: Configuring DeMMUer [| S

configure_deMMUer

range enable disable set display return

Figure 4-21. Modify DeMMUer Configuration Display

Ending The Mapping Session

The memory map configuration session is exited by pressing the
endsoftkey followed by Return.

4-42 Configuring The Emulator

C

Modifying The
Emulation Pod
Configuration

Note

v

Configuring for
In-circuit Emulation

Note

Session

v

The following question asks you whether or not you want to modify
the current emulation pod configuration.

If you answer no to the "Modify emulator pod configuration?"
question, the sequence will skip to the "Modify simulated I/O
configuration?" question.

Modify emulator pod configuration? no (yes)

no The emulation pod configuration questions are skipped
and the emulation module uses the current pod
configuration. The emulator will skip to the "Modify
simulated I/O configuration?" question. The default pod
configuration is as follows:

In-circuit emulation session? no

Disable on-chip cache yes

MMU enabled during session no
yes You must answer the following emulator pod

configuration questions in order to reconfigure the
emulator pod.

Figure 4-22 shows the display that appears with the following
question.

If you answer no to the "In-circuit emulation session?" question,
the sequence will skip to the "Disable on-chip cache?" question.

Configuring The Emulator 4-43

In-circuit emulation session

The emulator may be adjusted to the target system by controlling ;
DMA and the processor clock rate. J

Oout of circuit emulation session

The clock rate is locked at 20 MHz.

STATUS: configuring M68030 emulator pod tiieeees

In-circuit emulation session? no

yes no RECALL

Figure 4-22. Configuring for In-circuit Emul. Display

In-circuit emulation session? no (yes)

no The emulator is configured out-of-circuit. As such the
clock rate is set to 20MHz. This question has no other
action than to control whether clock or DMA questions
are asked next. The question does not force the emulator
to be used either in or out of circuit.

yes The emulator is configured in-circuit, operating with

target hardware. As such the emulator may be adjusted to
the target system by controlling the DMA and clock rate.

4-44 Configuring The Emulator

Enabling DMA Figure 4-23 shows the display that appears with the following
Transfers question.

L Note i If you answer no to the "Enable DMA transfers?" question, the
sequence will skip to the "CPU clock rate faster than 25 MHz?"
question.

Enable DMA transfers? no (yes)

DMA transfers enabled

Bus requests will be admitted to the processor. 1If the AS, address,
and data lines are active at the processor pins during the DMA cycles,

the analyzer will capture those states.

b DMA transfers disabled

Bus requests are blocked to the processor.

STATUS: Configuring M68030 emulator pod ceesesne
Enable DMA transfers? no

‘ yes no RECALL

Figure 4-23. Enable DMA Transfers Display

Configuring The Emulator 4-45

no Bus requests are blocked to the processor. The processor
ignores the BR and BGACK input signals and does not
respond with BG.
yes Bus requests are admitted to the processor. If the AS, J
address, and data lines are active at the processor pins
during DMA cycles, the analyzer will capture those states.
The processor responds normally to the assertion of the
BR (Bus Request) and BGACK (Bus Grant

ACKnowledge) signals.
Enabling DMA
Transfers Into
Emulation Memory
Note d If you answered no to the previous question, this question is not

displayed on your screen.

>

Enable DMA transfers into emulation memory? no (yes)

no DMA transfers to memory addresses mapped as emulation
memory are disabled.

yes DMA transfers to memory addresses mapped as emulation
memory are enabled. The DMA device must generate all
required control signals (AS, DS, R/W, SIZ, etc.) and meet
the 68030 timing specifications.

CPU Clock Rate Figure 4-24 shows the display that appears with the following
Determination of Wait question.
States

CPU clock rate faster than 25 MHz? no (yes)

4-46 Configuring The Emulator

CPU clock rate
If the external clock rate is greater than 25 MHz, six wait states will be
‘ added to emulation memory accesses. If the external clock speed is less
than or equal to 25 MHz, four wait states will be added for emulation memory
accesses.
STATUS: Configuring M68030 emulator pod cesssane
‘ CPU clock rate faster than 25MHz? no
yes no RECALL

Figure 4-24. CPU Clock Rate Display

no If the clock rate is less than or equal to 25.0MHz, all
emulation memory accesses will occur with four wait states.

yes If the clock rate is greater than 25.0MHz, six wait states

will be inserted for emulation memory and interlocked
emulation memory accesses.

Configuring The Emulator 4-47

Disabling On-chip Figure 4-25 shows the display that appears with the following
Cache question.

Disable on-chip cache? yes (no) ’

no If the cache is enabled by answering no to this question
and is also enabled by the target system hardware, the
analyzer may not show all memory accesses (the analyzer
cannot detect cache hits). You must answer yes to this
question in order to use all of the analysis features.

on-chip cache disabled

Analysis functions perform normally.

on-chip cache enabled

The cache may be enabled by the target. 1If this is done, then:

* the analyzer will not be able to capture a cache hit, as
this access is not apparent on the processor pins

* entry into the foreground monitor causes monitor instructions
to be stored in the cache

STATUS: Configuring M68030 emulator pod ceeenaas

Disable on-chip cache? yes

yes no RECALL J

Figure 4-25. Disable On-chip Cache Display

4-48 Configuring The Emulator

yes The processor caches are enabled. A yes answer improves
system performance but much analysis capability is lost.

‘ The enable (E) bits of the CPU CACR regiéter must be set
by the target software for the caches to be enabled.

The 68030 has both program and data cache with separate enables
in th CACR. Refer to chapter 6, "Target System Interface”, for
more information regarding the on-chip cache.

Enabling MMU For Figure 4-26 shows the display that appears with the following
Use During Emulation question.
Session

MMU enabled during session

This option does not explicitly enable the MMU, but rather allows
the target to enable the MMU. If the user intends to use the MMU
during the emulation session, this option should be chosen.

MMU disabled during session

The hardware will pull on the MMUDIS line and so the MMU can not be
enabled by the target system. Certain emulation features (e.g.
memory access or analysis) can optimize behavior (or provide greater
functionality) by knowing that logical addresses equal physical
addresses. This selection will disable the deMMUer hardware.

STATUS: configuring M68030 emulator pod ceeceees
MMU enabled during session? yes

L yes no RECALL

Figure 4-26. MMU Enabled During Session Display

Configuring The Emulator 4-49

MMU enabled during session? no (ves)
no The emulator disables the internal MMU.

yes If the MMU is enabled, the keywords logical and physical J
are meaningful for memory access. The deMMUer
configuration (described during memory configuration)
will be loaded. The target system is expected to enable the
MMU hardware and set up all of the translation tables,
root pointers, etc.

Modifying Simulated The simulated I/O subsystem must be set up by answering a series
I/0 Configuration of configuration questions. These questions deal with enabling
simulated I/O, setting the control addresses, and defining files used
for standard I/O.

Modify simulated 1/0 configuration? no (ves)

Answering yes to this question causes a series of simulated 1/O

questions to be asked. For information on how to answer these

questions to configure your system, refer to chapter 9 of this A
manual. For additional information about simulated I/O, refer to u
the Simulated I/O Reference Manual.

Answering no to this question bypasses all other simulated I/O
questions.

Modifying Simulated Simulated interrupts are enabled by answering a series of
Interrupt configuration questions.

Configuration

Modify simulated interrupt configuration? no (yves)

If you answer yes, the simulated interrupts questions will be asked.
If you answer no, the questions will be skipped. Simulated
interrupts enable you to write and test software which depends
upon the occurrence of preemptive interrupts using an emulator
that is out of circuit. Information describing how to configure your u
system for simulated interrupts is contained in chapter 9 of this

manual.

4-50 Configuring The Emulator

.

Naming The
Configuration File

Note ﬂ

Note i

This question lets you name an emulation configuration file
containing the emulation configuration information you have just
entered. The configuration file is stored on disc and can be called
up for use during a future emulation session.

Configuration file name?
Type in the filename you want and press Return.

If you press Return without entering a name, the current
emulation session will be configured as you specified in your
answers and the information will be saved as the new default
configuration of the emulator. To restore the original default file
provided with the emulation software, you must reinitialize the
HP 64120A Cardcage.

If you assign a new name to the configuration file and you are using
a command file to enter your emulation session, remember to
modify your command file to change the name of your emulation
configuration file (refer to the HP 64000-UX User’s Guide for more
information relating to command files).

Emulator configuration files are slot dependent. Use of a given
configuration file on one emulator and subsequent reuse on an
emulator in another cardcage slot will result in the message "Bad
Module File". This message indicates that the configuration file
specified was not associated with the current emulator. The
message is displayed as a warning only. The emulator software will
automatically rebuild the configuration file with correct cardcage
slot information for the current emulator.

Configuring The Emulator 4-51

Notes

4-52 Configuring The Emulator

L DeMMUer - What It Is And How It Works

Overview This chapter:

Describes what the deMMUer is.
Describes how the deMMUer operates
Describes when to use the deMMUer.
Describes when not to use the deMMUer.

Describes the conditions under which the deMMUer will
not perform reverse-address translations.

Describes the restrictions associated with deMMUer
operation.

Describes when to start the deMMUer.
Describes how to turn the deMMUer on and off.
Describes the deMMUer configuration setup.

Describes how to access the deMMUer configuration
display.

DeMMUer Operating Information 5-1

Introduction You will need to read this chapter only if you are using the MMU
of the 68030 and your internal analyzer is operating from input
supplied by a deMMUer board. If you are not using the 68030
MMU active mode, no address translations occur, and you can u
ignore this chapter.

Note d For more specific information on the deMMUer, refer to the 68030
Internal Analyzer User's Guide, especially for detailed instructions
on how to set up the deMMUer.

What The The DeMMUer consists of hardware and software that is used to
facilitate the display of trace data when the 68030 MMU is active.
DeMMUer Is Without the DeMMUer, the analyzer only has access to the ;
physical bus, so only physical addresses (that is; no symbols, source J

reference, etc.) would be displayed. The deMMUer tracks MMU
table walks to get the latest logical-to-physical translation
information. As a result, the deMMUer is able to effectively
translate the physical address information to logical. This allows
the analysis display software to perform symbol lookups on the
addresses (as well as source referencing).

How The The on-chip Memory Management Unit (MMU) of the 68030
DeMMUer translates logical (virtual) addresses to physical addresses that are
placed on the processor address bus. The deMMUer translates the
Operates physical addresses back to logical addresses in real-time. The]
deMMUer tracks only the physical addresses in the ranges '
specified in the deMMUer configuration display.

5-2 DeMMUer Operating Information

Note

The physical address from the 68030 MMU is supplied as an input
to the deMMUer. The deMMUer contains a set of translation
tables like those in the 68030 MMU. The deMMUer translation
tables provide the reverse function of the translation tables in the
MMU (given a physical address, they look up the logical address
from which it was derived). The deMMUer outputs the logical
address corresponding to the physical address from the 68030
MMU.

Each time the 68030 MMU performs a table search, the deMMUer
detects the event and follows MMU activity to build a
corresponding set of tables for its reverse-address translations.

If you have the deMMUer running from the time you start the
68030 MMU, the deMMUer will have current translations to
reverse each of the translations performed by the MMU.

Be sure to flush the address translation cache (ATC) of the MMU
before enabling the MMU. Otherwise, out-of-date translations
(logical to physical) may reside in the ATC. There is no facility in
the 68030 emulator/analyzer to flush the ATC. You can include an
option to the command that loads the TC register or loads the root
pointer to ensure that the ATC is flushed after reset.

For addresses for which the deMMUer has no translation, it
supplies the physical address that was output by the 68030 MMU,
and tags it as being a physical address. The analyzer will show this
address in its trace list, but it will not be able to show any symbol
associated with this address, nor will it be able to recognize any
trace commands occurring on this address if those commands are
specified using source-file symbols.

DeMMUer Operating Information 5-3

When To Use The You need to use the deMMUer when the 68030 MMU is active,
DeMMUer and you want to use any of the following features during analysis of
a program:

1.

5-4 DeMMUer Operating Information

You want the trace list to show the assembly language
form of the activity it captured during a trace. The inverse
assembler requires sequential logical addresses in order to
look up the next piece of program information. Physical
addresses will probably be non-sequential when crossing a
page boundary.

. You want to enter a trace specification that will be met

when a certain source-file event appears during a trace.
To do this, you enter the name of the source-file symbol
that identifies that event. Basic trigger/store/count
features are not supported for code in physical addresses.
The symbols in a file are always logical. In a dynamic
environment, the relationship between an instruction or
data location and its physical address may not be constant
throughout the running of a program.

. You want the trace list to show address values in terms of

the symbol names assigned in the source files. Symbol and
source line referencing operates on the fact that a symbol
or source line resides at a particular logical address. That
relationship is established with the language tools. The
source referencing has no knowledge of physical addresses.

. You want to perform high-level analysis on the program

vou are developing by using such tools as the HP Software
Performance Measurement Tool (SPMT). High-level
analysis tools, such as SPMT, gather data based on logical
address information. These tools have no facilities for
performing physical-to-logical address translations.

J

When To Turn Off Turn off the deMMUer when you want to trace activity that shows

The DeMMUer the addresses within physical memory. This information may be
: useful when you are analyzing the behavior of your operating
‘ system.
Under What There are two conditions under which the deMMUer will not
Conditions The perform reverse-address translations:
DeMMUer Will Not 1. If the root pointers use page descriptor DT fields. In this
case, no table searches will occur. Physical addresses will
Perform equal logical addresses plus the offset specified in the root
Reverse-Address pointer.
‘ Translations 2. If the two root pointer Descriptor Type (DT) fields are

different types (for example, one short and the other long),
and both root pointers are used, the deMMUer will fail to
work because the deMMUer has facilities for only one
root-pointer definition. Refer to how to select a root
pointer descriptor type in the 68030 Internal Analyzer
User’s Guide for suggestions of how to handle this problem.

DeMMUer Operating Information 5-5

When To Start The
DeMMUer

Startup With The
Emulator

The Emulator Was
Running Without
Using The DeMMUer,
And Now | Want To
Use It

You can start the deMMUer at the same time as the 68030 MMU
starts, or you can turn on the deMMUer after the MMU has been
operating. Each case is discussed in the following paragraphs:

The best time to start the deMMUer is just before beginning a run
of program. The deMMUer flushes its reverse translations as part
of the processor reset procedure. This ensures that the translation
tables within the deMMUer contain no old translations. Then the
deMMUer waits to detect the first table search performed by the
68030 processor. Logical address information is available
immediately after reset. All table searches are monitored, keeping
the deMMUer physical-to-logical address translations up to date.

If the deMMUer was configured and enabled properly prior to
running your program, the deMMuer may be turned on (by
configuration or by the set analysis mode logical command) later,
and will contain the current reverse translations.

5-6 DeMMUer Operating Information

J

v

How To Turn On
- And Turn Off The
L DeMMUer

Note d

Turn On/Off By Using
Emulation
Configuration
Questions

There are two ways to turn on and turn off the deMMUer: one is by
setting the analysis mode, and the other is by invoking the
emulation configuration set of questions. Each is described below.

You may turn on the deMMUer and still have only physical
address information. The deMMUer can only supply logical
address information after you have (1) enabled the MMU of the
68030 processor, (2) set up a valid deMMUer configuration, and
(3) enabled the deMMUer. The way to set up the deMMUer
configuration display and enable the deMMUer is discussed in the
68030 Internal Analyzer User’s Guide

You will always have logical addresses when the 68030 MMU is off.

Invoke the emulation configuration questions by using the modify
configuration command. Proceed through the questions until the
following configuration question can be answered, then answer it
yes:

Modify memory configuration?
In the memory mapping display, enter the following command:

configure_deMMUer

In the deMMUer configuration display, enter the following
command:

enable_deMMUer

Even though you have activated the deMMUer, it will still provide
physical address information for analysis until it has been loaded
with a valid configuration.

Once turned on, the deMMUer will track the MMU activity, and
update its translation tables each time the MMU makes a change
to its translation tables. Note that the MMU is turned on or off by

DeMMUer Operating Information 5-7

Turn On/Off By
Setting The Analysis

DeMMUer
Configuration
Setup

Mode

another emulation configuration question that appears after the
memory mapping display:

"MMU enabled during session? yes"
disable_deMMUer

This turns off the deMMUer. Only physical addresses will be
supplied to the analyzer. Therefore, only the physical analysis
mode will be available.

If you have the 68030 MMU enabled, and you have a valid value in
the Translation Control (TC) register of the deMMUer
configuration, and you have enabled the deMMUer, then you can
turn on the deMMUer from within an emulation session, by
entering the following commands:

set analysis mode logical

This turns on the deMMUer, providing logical addresses to the
analyzer. The analyzer uses these addresses to perform symbol
searches to satisfy trace specifications and show symbols in trace
lists.

set analysis mode physical

This turns off the deMMUer. Physical addresses will be supplied
to the analyzer. The trace lists will show the physical addresses, but
the analyzer will not accept or display source-file symbols.

The deMMUer default configuration display is shown in figure 5-1.
You must set up this configuration with valid entries before the
deMMUer can perform its reverse address translations. Setup
instructions for the 68030 deMMUer are described in the 68030
Internal Analyzer User’s Guide.

5-8 DeMMUer Operating Information

deMMUer configuration

deMMUer hardware disabled

Translation Control - 00000000H

<e sre fcl ps is tia tib tic tid>
0 0 0 —-=——- 0 - - - -
Virtual Address start - 00000000H
Root Descriptor Type -Invalid Descriptor
Range List - Start End
A undefined range
B undefined range
C undefined range
D undefined range
STATUS: Configuring DeMMUer «eRoces
configure_deMMUer
range enable disable set display return

Figure 5-1. DeMMUer Configuration Display

DeMMUer Operating Information 5-9

How To Access Invoke the emulation configuration questions by using the modify

configuration command. Proceed through the questions until the
The PeMM_Uer following configuration question can be answered: g
Configuration J
Display

Modify memory configuration? yes
In the memory mapping display, enter the following command:
configure_deMMUer

In the deMMUer configuration display, you can turn the
deMMUer on or off and define values and ranges to be used by the
deMMUer during its operation. The procedures you follow to
make these entries are discussed in the 68030 Internal Analyzer
User’s Guide.

When you are finished configuring the deMMUer, return to the

memory mapping display by using the return command. With a

valid configuration setup, the deMMUer will be able to perform its J
reverse address translations.

5-10 DeMMUer Operating Information

C Target System Interface

Overview k This chapter provides information on:

68030 pins and how the emulator pod interacts with those
pins.

It also provides information on the appropriate use of the
following emulator and processor features when the emulator is
used with a target system (in-circuit emulation):

Emulation and target system DSACK and STERM signals
Vector base register
The internal 68030 caches

Using function codes for displaying and modifying
reserved address space

Enabling/disabling the bus error signal (BERR)
Using DMA

Using the run from ... until command

Using the emulation foreground monitor
Memory access timing issues

Loading absolute files.

Read this chapter before attempting to connect and operate the
emulator with your target system.

Target System Interface 6-1

68030 Signals

CLK

A(31-0)

6-2 Target System Interface

The following section discusses each of the 68030 pins and how the
pod interacts with each of those pins. For a summary of the timing
specifications, and the AC and DC specifications of the 68030
emulator refer to appendix C. In this section, the emulator/target
electrical interface is shown for each signal. The interface diagram
is either with the signal definition or is referenced to a signal that
has an identical interface. All circuitry referred to is on the active
probe.

The clock signal line is unbuffered to the 68030 processor so that
synchronous timing relationships are maintained. The emulator is
more of a load on the clock signal than the 68030 processor. For
the timing specifications given in appendix C to be valid, the clock
signal must meet the rise and fall time of specifications 4 and 5 in
appendix C.

CLK o— 68030

CLK
170

The 68030 address bus is not buffered to the target system. The
emulator loads these signals so that the amount of capacitance they
can drive is reduced.

68030 A31-AQ
+—— FC2-FCO
| 'H<5®},LA 1 R/W
CIN<30pf | ¢ = RMC
+— SIZ1, SIZ0
—— CIOUT

FC2-FCO The Function Code (FC2-FCO) lines are not buffered to the target
system. The emulator loads these signals so that the amount
capacitance they can drive is reduced. The emulator/target
electrical interface is the same as shown for the address bus.

R/W The Read/Write line is not buffered to the target system. The
emulator loads this signal so that the amount capacitance it can
drive is reduced. The emulator/target electrical interface is the
same as shown for the address bus.

CBREQ The Cache Burst Request line is not buffered to the target system.
The emulator loads this signal so that the amount capacitance it
can drive is reduced. The emulator/target electrical interface is the
same as shown for the address bus.

RMC The Read-Modify-Write Cycle line is not buffered to the target
system. The emulator loads this signal so that the amount
capacitance it can drive is reduced. The emulator/target electrical
interface is the same as shown for the address bus.

t SIZ0-SIZ1 The Size signal lines are not buffered to the target system. The
emulator loads these signals so that the amount capacitance they
can drive is reduced. The emulator/target electrical interface is the
same as shown for the address bus.

CIOUT The Cache Inhibit Out signal line is not buffered to the target
system. The emulator loads this signal so that the amount
capacitance it can drive is reduced. The emulator/target electrical
interface is the same as shown for the address bus.

Target System Interface 6-3

DS, DBEN

6-4 Target System Interface

The 68030 Address Strobe signal line is buffered by the emulator
prior to going to the target interface. AS is driven to the target
when the processor is running except when the emulator is in the
background monitor, or when the bus has been relinquished. The
ASsignal from the target system is also treated as an input during
DMA so that emulation memory and the analyzer can see those
cycles.

+5vDC

FCT244A é”‘(
68030 —~‘>———‘ S

PAL
7ns

Buffering the AS signal causes it to be delayed to the target system.
This delay may be significant in some systems, but in a system
which has AS heavily loaded, it may not even be noticable.

The 68030 Data Strobe and Data Buffer Enable signal lines are___
buffered by the emulator prior to going to the target interface. DS
and DBEN are driven to the target when the processor is running
except when the emulator is in background monitor, or when the

bus has been relinquished. Buffering these signals causes them to
be delayed to the target system.

5vDC

FCT244A 10K

68030 I *

’O'
v

|w)
o
m
pzd

ECS, OCS

D(31-0)

The 68030 External Cycle Start and Operand Cycle Start signal
lines are buffered by the emulator prior to going to the target
interface. ECS and OCS are driven to the target when the
processor is running except when the emulator is in background
monitor (when they are optionally driven), or when the bus has
been relinquished. Buffering these signals causes them to be
delayed to the target system.The emulator/target electrical
interface for these signals is the same as shown for the DS signal.

The data bus is buffered between the 68030 and the target
interface. The buffers only drive the target system during write
cycles mapped to target memory, or during read cycles in DMA
that are mapped to emulation memory. The processor receives the
data from the target system when a read cycle is mapped to target
memory during normal program operation. Buffering the data bus
lines causes the emulator to require more setup time than the
Processor.

+5VvDC

10K FCT245A

D31-D0 68030

Target System Interface 6-5

DSACK1-DSACKO

BERR

HALT, AVEC

6-6 Target System Interface

The Data Transfer and Size Acknowledge signals are buffered
between the target system and the 68030. The signal from the
target system is only sent to the processor during normal cycles
mapped to target memory, during interlocked emulation memory
cycles, or during foreground data space cycles. During all
interlocked or monitor cycles and during emulation jams, the
DSACK once asserted, is forced to a 32-bit access. During
interlocked emulation memory cycles, the target DSACK signals
are not allowed until the emulation memory has data valid.
Buffering the DSACK lines causes the emulator to require more

. setup time than the processor.

DSACKO e—
DSACK1 e—=f PAL
BERR e——= 7ns 68030
HALT *——»

AVEC *—

The Bus Error signal is buffered between the target system and the
68030. The BERR signal can be blocked from going to the
processor during target cycles and/or emulation memory cycles. It
is always blocked during monitor and other special emulation
cycles.

If the HALT signal is asserted at the same time as the BERR
signal, the BERR signal is not treated as a bus error; but as a retry.
Retry cycles are never blocked by the emulator. The
emulator/target electrical interface is the same as shown for the
DSACK signals.

The Halt and Autovector signals are not blocked by the emulator.
The emulator/target electrical interface for these signals is the
same as shown for the DSACK signals.

v

STERM

CIIN

CBACK

The Synchronous Termination signal is buffered between the
target system and the 68030. The signal from the target system is
only sent to the processor during normal cycles mapped to target
memory, during interlocked emulation memory cycles, or during
interlocked foreground data space cycles. During interlocked
emulation memory cycles, the target STERM signal is not allowed
until the emulation memory has data valid. Buffering the STERM
signal line causes the emulator to require more setup time than the
processor.

+3.25vDC +3.25VDC

STERM
CIiN
CBACK

-3.25VDC

The Cache Inhibit In signal is buffered between the target system
and the processor. It is not blocked by the emulator. The
emulator/target electrical interface for these signals is the same as
shown for the STERM signal.

The Cache Burst Acknowledge signal is buffered between the
target system and the processor. The signal is blocked except
during normal target cycles mapped to allow bursting. The
emulator/target electrical interface is the same as shown for the
STERM signal.

Target System Interface 6-7

BG The Bus Grant signal is buffered between the processor and the
target system. The signal is blocked when DMA is disabled.

86 -’

68030 ol L+ IPEND
STATUS
REFILL

. IPEND The Interrupt Pending signal is buffered between the processor and
the target system. The signal is blocked during interrupts caused
by the emulator break facility. Whether or not the signal is
blocked can be configured. Refer to chapter 4 for configuration
information.

STATUS, REFILL The Microsequencer Status and Pipe Refill signals are not blocked

by the emulator. The emulator/target electrical interface for these
signals is the same as shown for the BG signal.

BR, BGACK The Bus Request and Bus Grant Acknowledge signals are buffered

between the target system and the processor. These signals are
blocked when DMA is disabled.

BR
BGACK

68030 - P2 PO
cDIS
MMUDIS

IPL2-IPLO The Interrupt Priority Level signals are buffered between the target
system and the processor. These signals are blocked while the T
emulator is in the background monitor. Use of the emulator J
foreground monitor can delay handling of an interrupt. his is
because the emulation monitor is an interrupt handler itself and
maskable interrupts are normally disabled during execution of the

6-8 Target System Interface

CDIS, MMUDIS

RESET

vCC

monitor. Maskable interrupts can be enabled during execution of
some parts of the emulation monitor by customizing the emulation
monitor code for the specific application. For further information
on the emulation monitor and how to customize the code refer to
chapter 7. The emulator/target electrical interface for these signals
is the same as shown for the BR signal.

The Cache Disable and MMU Disable signals can be blocked by
the emulator. Whether or not these signals are blocked is
determined by how you configure the emulator (refer to chapter 4
for more information on emulation configuration). The
emulator/target electrical interface for these signals is the same as
shown for the BR signal.

The Reset signal is not buffered by the emulator, although the
emulator can drive this signal because it is an open collector signal.

RESET » 68030

42
N7
\/FCTA GAL :E%;
i !

The emulator monitors the target system VCC to determine when
the emulation pod is connected to an active system. The target
system interface is disabled until VCC is detected. The current
draw from the target VCC is a few milliamps.

Target System Interface 6-9

Emulation And

Target System |
DSACK and w
STERM Signals

i your target system memory requires wait states, vou shou
Interlockin If g i i hould
Emulation Memory interlock the emulation memory DSACK and STERM signals with
DSACK and STERM the target system DSACK and STERM signals. This causes
oA accesses to emulation memory and accesses to target memory to
a?jd%gﬁt g_SACIK properly reflect system performance when the emulator is removed.
an ignals

Note ‘ When operating the emulator at 25 MHz, four wait states will be
added EVEN if the target system responded with a zero-wait-state
termination during interlock operation. At 33 MHz, the emulator
adds six wait states to emulation memory accesses. J

If target system memory requires wait states, the first target
memory access after an emulation memory access may fail if
emulation and target DSACK and STERM signals are not
interlocked. See the timing diagram in figure 6-1.

The following rules should be used to determine whether or not to
interlock emulation and target DSACK and STERM signals.

1. If the target system generates DSACK and STERM signals
for all emulation memory address ranges, emulation and
target DSACK and STERM signals should be interlocked.

2. If the target system does not generate DSACK and
STERMsignals for a range of emulation memory, -

emulation and target DSACK and STERM signals must d
not be interlocked.

6-10 Target System Interface

S I e B e

Target

DSACK
L]

Emulation

Memory

2

DSACK
L

1. An access to emulation memory.
2. Emulation memory DSACKs terminate cycle
properly.
3. Access to target memory.
4. Target DSACKs from emulation memory accesses
(1) prematurely terminate the cycle before
correct data is available from target memory.

Figure 6-1. Memory Access Timing, No DSACK Interlock

3. If there is no target system (that is; out-of-circuit
emulation), DSACK and STERM signals cannot be
interlocked.

Each block of emulation memory can be individually interlocked
during emulation configuration.

DSACK and STERM Many target systems violate 68030 DSACK and STERM signal
Signal Problems In specifications. These violations are usually marginally acceptable
Target Systems to the 68030 CPU in the target system, but cause problems when
the emulator is plugged in. These specification violations usually
result in improper data fetches from memory and cause target
system failure with the emulator installed.

Use Of Open Collector Drivers

One of the most common problems is associated with the use of
open-collector drivers on the DSACK and STERM lines. DSACK
and STERM lines often have pullup resistors that pull the DSACK
and STERM signals high at the termination of a memory cycle.

Target System Interface 6-11

Improper values for pullup resistors can cause DSACK and

STERM S signals not to be pulled up fast enough and may interfere
with the next cycle. This occurs when the pullup resistor value is

too large to return DSACK and STERM to a proper high level

before the next cycle begins. In this case, the still low DSACK and u
STERM signal causes a premature termination of the second cycle,
resulting in improper data fetches by the CPU.

Early Removal Of DSACK Signals

Some target system designs do not adhere to the 68030
specification which states that the DSACK signals must not be
removed prior to the negation (low to high transition) of the
address strobe at the end of a cycle. In the simplest case, this results
in "no DSACK" messages appearing in the tracelist, which in turn
causes inverse assembly failure. More seriously, the emulator may
completely malfunction depending on how early the DSACK signal
is removed prior to address strobe transition.

Isolating The DSACK Problem

If you suspect that your target system may have either of the J
preceding problems, use a timing analyzer to help isolate the

problem. Take a trace of the CPU clock, address strobe, data

strobe, and the DSACK signals during the failing cycle (use the

BNC’s on the back of the HP 64120 cardcage to drive the trigger, if
possible). Examine the results and compare your findings to the

electrical specifications of the 68030 processor and the HP 64430
emulator.

6-12 Target System Interface

Using The Vector The 68030 CPU gets exception vectors from the exception vector
i table located at the address contained in the Vector Base Register
Base Register (VBR).

" The 68030 emulator uses a jamming technique for breaks and
software breakpoints. Therefore, the value of the VBR is not
needed to perform most monitor functions. This implies that the
vector table may be located anywhere without adversely affecting
emulator operation.

The single-step feature, when using the foreground monitor, does
require the use of the trace exception vector (VBR + 24H). If the
single-step feature is to be used, you must make sure that the trace
exception vector always points to the monitor
(MONITOR_ENTRY).

The monitor can handle various exceptions by displaying a status
message, entering a loop within the monitor, and then waiting for
user intervention. These exceptions include Bus Error, Address
) Error, Divide by zero, etc. If you use these exceptions, you must
L maintain the exception vector table so that the vectors in use
always point to the appropriate monitor location.

Target System Interface 6-13

Using The Internal Using the internal 68030 caches affects several functions of the
68030 emulator. The following sections discuss use of the internal

68030 Caches caches and their effect on emulator operation. '
Cache Control When the emulator is operating out-of-circuit, the "Enable

Caches?" configuration question has a different interpretation than

when plugged into a target system. When using the emulator

out-of-circuit, a "yes" answer to the "Enable Caches?" configuration

question forces the CDIS signal high within the pod. When using

the emulator in-circuit, a "yes" answer connects the target system

CDIS signal to the emulator CPU’s CDIS input, allowing the

emulator to track target system CDIS. In both cases, a "no" answer
forces CDIS low within the emulator.

Recall also that the target system CDIS must be high, and bit zero
of the Cache Control Register (CACR) must be set to 1 for the
instruction cache to be enabled and bit 8 of the CACR must be set
to 1 for the data cache to be enabled.

If the target system uses the internal 68030 caches, the caches must ’
be enabled by answering "yes" to the "Enable Internal Caches?"
configuration question.

When the CDIS signal from the target system is set to 1, the caches
still are not enabled until bits 0 and 8 of the (CACR) aresetto 1,
as shown in the following example:

MOVEQ.L S#11,D0
MOVEC DO0,CACR ;software enable cache

Enabling the caches affects analysis trigger, store, count, and
Global Context functions. Additionally, some program read states
may be missing from the trace list.

The caches are not frozen on entry to the foreground monitor. This
results in overwriting the cache contents.

If a breakpoint is set for an address currently contained in cache,
the breakpoint will not be recognized until the CPU fetches from J
that address in main memory again. The run until command is

similarly affected since breakpoints are used in the command
implementation.

6-14 Target System Interface

o

&

@

Analysis with Cache

Using Breakpoints
With Caches Enabled

The 32-bit internal analyzer can capture any cycle that occurs
external to the 68030 CPU. When caches are enabled, read cycles
may occur only internal to the CPU. This is the general case with
tight program loops and with high performance code segments that
are frequently locked in cache. Since the analyzer cannot capture
internal cycles, it has no way to display these cycles in the tracelist.
This can result in missing trace data and high-level source lines,
and even improper disassembly. The analyzer will also miss the
occurrence of trigger, store, count, sequence or context patterns if
they occur only as internal cycles.

In general, any program segment that executes from cache will
generate some external cycles, the major exception being timing
loops. In these cases, you may be able to select trigger and store
patterns that correspond to external cycles. If no external cycles are
normally generated, you may be able to place "markers" in the
cached code such that the code will generate an external cycle for
analysis purposes when executed.

The mapping function allows pages of target memory to have
caching disabled for analysis purposes

Since the analyzer contains a high precision cycle-to-cycle timer,
you can usually examine the tracelist to determine where cache
execution occurred.

You may see situations where breakpoints do not appear to be
functioning properly when the instruction cache is enabled. This
can happen when you are using the "run until" command as well as
breakpoint commands.

Consider the following segment of code (a simple software timing
loop), and assume that the cache is enabled:

Address Code

1000: RELOOP NOP

1002: NOP

1004: NOP

1006: NOP

1008: NOP

100A: SUBQ.L #1,D0 ; decrement loop counter
100cC: BNE RELOOP ; reloop if not 0

Target System Interface 6-15

Because the instruction cache is enabled, no external memory
cycles are generated for addresses 1000H thru 100CH after their
initial load into cache. Breakpoints set at any cache resident
address may never be encountered. This situation occurs when the
CPU does not generate an external program read cycle to memory
and therefore never "sees" the breakpoint that was set.

Target Memory Breakpoints

Breakpoints set in target system memory differ from those set in
emulation memory. If the breakpoint address is mapped to target
system memory, the monitor must intervene in order to set the
breakpoint. Execution of the monitor overwrites cache locations
previously occupied by the user program. When the emulation
monitor is exited, the user program is fetched again from memory,
breakpoint included. This results in normal breakpoint behavior.

Emulation Memory Breakpoints

. This problem is worse when the breakpoint address is mapped to

6-16 Target System Interface

emulation memory. Due to the dual-port nature of the memory
system, the host sets breakpoints in emulation memory without
requiring execution of the emulation monitor. In this case, the
mechanism of setting breakpoints does not clear cache and force a
refetch of the newly specified breakpoint.

For breakpoints to function properly out of emulation memory,
you need to clear the cache before setting or resetting the
breakpoint. Do the following steps before setting a breakpoint:

1. Break to the emulation monitor program.

2. Display CPU registers.

3. Modify CACR bit C to 1 and then to 0.

4. Set the breakpoint or enter the run until command.

5. Exit the monitor by executing a run command.

—
/

Using Function
Codes For
Displaying And
Modifying
Reserved Address
Space

When the breakpoint is hit, you can remove it from cache by
adding 68030 instructions to the emulation monitor that will set
and clear the CACR C bit.

The preceding comments apply to setting software breakpoints as
well as disabling software breakpoints.

When the use of function codes is enabled during a memory
mapping session, the display and modify commands use the
function codes specified in the command. When function codes are
disabled, function code 0 is used for all memory reference
commands.

Some target systems do not use function codes to differentiate
between user and supervisor space or program and data space, but
do decode the "reserved” address spaces (function codes 0, 3 and 4)
to generate interrupts or inhibit DSACK generators. In these
cases, the emulation monitor may be customized to allow the use
of a non-zero function code for the display, modify, load, and store
emulator commands.

This modification requires changing two assembly statements in
the monitor "COPY" routine as shown in the following listing:

Target System Interface 6-17

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

RN TR A TR AT AR AR R EARERRA AR AR AR A AR AR R A AR TR AR TR AR A e bbbl kb b s ke de sk b o b b e b b b
*

* command 2 access user memory
*

KRR RRR TR AN RAR AR AR AN RAAA AR AN AN AR AR AR AR NI T AR R A A d e h ok drddrdededde b dede e de ke e e e e ok
COoPY
* copy parameters from CPU space (SFC and DFC were setup by MONITOR_LOOP)

* copy byte count from parameter slot 1
MOVES.L PARM1,DO

* copy source address from parameter slot 2
MOVES.L PARM2,A0

* copy source function code from parameter slot 3
* MOVES.L PARM3,D1

+* force user data function code
MOVES.L #2,D1

* copy destination address from parameter slot 4
MOVES.L PARM4,Al

* copy destination function code from parameter slot 5
* MOVES.L PARMS,D2

* force supr data function code
MOVES.L #5,D2

* copy access mode from parameter slot 6
MOVES.L PARM6,D3

Modifications to the emulation monitor code for non-zero
function code access to target system memory include adding the
two new source lines shown in lower-case and commenting out 2
lines as shown in the listing. The added and modified lines are
indicated by arrows (>>>).

6-18 Target System Interface

Enabling/Disabling The 68030 emulator allows the bus error (BERR) signal to be
BERR received or not received during accesses 10 emulation memory.
- If the target system generates bus errors for emulation memory
address ranges, the reception of BERR should be disabled. This

would normally occur if DSACK or STERM signals are not
generated for emulation memory accesses.

If the target system generates DSACK or STERM signals for
emulation memory accesses, then it probably does not generate
BERR for these cycles. In this case, BERR actually indicates a
failure, and should be enabled in the emulator.

Using DMA If any devices share the 68030 bus and are able to perform DMA,
then DMA should normally be enabled. This enables the CPU to
L receive the Bus Request (BR) signal, generate a Bus Grant (BG)
response signal, and receive the Bus Grant Acknowledge
(BGACK) response from the bus requester. The handshake
sequence for DMA transfers is shown in figure 6-2.

1) External device requests the bus.

2) The 68030 indicates that the bus will be granted.
3) External device indicates that the bus is in use.
-~ 4) External device relinquishes the bus.

Figure 6-2. DMA Bus Request/Bus Grant Timing

Target System Interface 6-19

If DMA is disabled, the CPU will not receive the bus request
signal, and will not allow DMA cycles. This would be desirable in
order to characterize system performance in a situation where
DMA could not occur.

The user who has enabled DMA has a secondary option of J
enabling or disabling DMA to/from emulation memory.

If DMA to emulation memory is enabled, the DMA hardware has
access to read from or write to emulation memory. If DSACK or
STERM signals are interlocked, the DSACK or STERM signals
for these accesses are supplied by the target system. The DMA
master must generate cycles that conform to 68030 timing
requirements.

If DSACK or STERM signals are NOT interlocked, then no
DSACK or STERM signals are returned to the target system. This
would cause the DMA hardware to hang if DSACK or STERM
signals are required for cycle termination.

If the option to DMA to/from emulation memory has been
DISABLED, the DMA cycle will still be allowed to occur, but no
information will be written to, or read from emulation memory.
See the timing diagram in figure 6-3.

6-20 Target System Interface

- 2
e I
BCACK4I3 Bl_
& R e A e W IO
target emulation emulation target
memory memory memory memory
write read write read

DMA device requests the bus.

The 68030 indicates that bus will be relinquished.

DMA device indicates that the bus is in use.

DMA device generates a write with a target memory address. This cycle
occurs normally.

DMA device generates a read with an emulation memory address. This cycle
does not return valid data since DMA to emulation memory is disabled.

DMA device generates a write with an emulation memory address. This cycle
does not modify emulation memory since DMA to emulation memory is disabled.
DMA device generates a read with a target memory address. This cycle occurs
normally.

DMA transaction is complete.

Figure 6-3. DMA Timing Diagram, DMA Disabled

Target System Interface 6-21

Using The Run
From ... Until
Command

The run command must be used properly to avoid serious, stack
related problems in the software being executed.

One of the main causes of target system "failure” while using the u
run command is the stack not being setup and/or restored properly

by the software being executed. One common situation is for

parameters to be placed on the stack prior to calling a procedure.
(Parameter stacking code including the actual procedure call is

usually referred to as the "calling sequence.") Assume for example

that a procedure, PROCI expects the stack frame shown in figure

6-4.

Return Address 1FFQH (A7) -——— — Stack Pointer

Parameter C 1FF4H (A7+4) u

Parameter B 1FF8H (A7+8)

Parameter A 1FFCH (A7+12)
/ AN

/ 2000H
A
Ll

Uninitialized Area
L]

(data values unknown)

2020H

Figure 6-4. Example Stack Frame

6-22 Target System Interface

Often, PROC1 will access the stacked parameters by referencing
parameter requests to the stack pointer. This means that parameter
"A" can be found at address A7+ 12, parameter "B" at address
A7+8, etc.

If the parameters are not stacked, and/or the return address is not
present, then the usual parameter references A7+12, A7+8, etc.
may reference uninitialized stack areas. Also, the return address
used by PROC1 will be incorrect. This will usually result in a
software failure both within PROCI1 (because the parameter values
are wrong) and on exit from PROC1 (because the return address
was not set properly). Depending on emulator memory mapping,
the "stack" areas referenced by A7+12, etc. may actually fall within
guarded memory area, resulting in a guarded memory access
message.

Executing the command "run from PROC1" prior to stacking the
parameters and setting the return address is one case where this
could happen. Problems also occur if a "run from <address>"
command is executcd and CPU registers, or memory locations are
not properly initialized for the code to be executed at <address>.

Using the command "run until” can also cause problems. This case
is different from the "run from" case in that software problems may
occur on a subsequent "run" command after the "until” condition is
satisfied. If a "run" command is executed after executing the "until”
breakpoint, no problems should result, because the CPU will
continue executing the user program from the point where it left
off. If a "run from" command is executed after the "until"
breakpoint, the stack, CPU registers and memory locations may be
improperly set for the code to be executed at the "run from"
address.

These situations cannot be corrected within the feature set of the
emulator. You must be aware of your software requirements, and
the mechanism used to implement the run commands. A detailed
explanation of how the run command works is given in chapter 10.

Target System Interface 6-23

Using The Emul-
ation Foreground

Monitor \J

Loading the Monitor The following rules must be followed when loading the emulation
monitor:

1. Both program and data spaces of the monitor must be
mapped to RAM as opposed to ROM. The monitor
ransfer buffer, as well as many monitor "housekeeping”
variables must be read and write accessible, and must
therefore be mapped to RAM.

In addition, portions of the monitor must write to other
monitor program locations. Since writes to ROM are
always blocked, the program section, as well as the data
section, of the monitor must be mapped to RAM.

2. The emulation monitor is executed in response to a level 7
interrupt. Therefore, it is always executed within
supervisor space and must be located in supervisor space.
If the supervisor/user function code bit is not in use, this
restriction does not apply.

The emulation software recognizes only program symbols. In the
case of the monitor, the symbol addresses are assumed to be
associated with the SUPR_PROG function code (since the
monitor is basically an interrupt routine). Thus, when the host
writes control information to, or reads information from the
monitor, it must use the SUPR_PROG function code.

Resetting Into The The "reset into monitor” facility of the emulator makes use of
Monitor internal jamming circuitry to supply both an initial stack pointer
and an initial program counter to the CPU. These values
correspond to the values of monitor symbols SP_TEMP and
RESET_ENTRY respectively.If the background monitor is being J
used, the initial stack pointer must be defined since stacking is
done in foreground monitor.

6-24 Target System Interface

Jamming from reset occurs only if the emulator caused the reset via
the "reset” softkey. If the target system asserts the CPU reset signal,
the jamming circuitry is disabled and startup from reset occurs
normally, with stack pointer and program counter values being
supplied from memory system addresses 0-7.

The setting of the initial stack pointer value is critical to proper
system operation. Since SP_TEMP is only provided as a small
temporary stack for use with the monitor, the stack may be easily
overflowed once a "run from ..." command is given, and the target
system program begins execution. Portions of the monitor may be
overwritten if the SP_TEMP stack overflows.

To ensure proper operation, be sure to either extend the
SP_TEMP stack to meet target system requirements, or modify the
SP_TEMP value to point to the usual target system stack. This can
be done by including an appropriate "equate" statement in the
monitor, while commenting out the normal SP_TEMP label in the
monitor. For example:

SP_TEMP EQU <target system stack address >

Another approach is to be certain that software execution as a
result of the "run from ..." command properly initializes the stack
pointers to values appropriate to the target system.

When the emulator is in a reset condition, one of two messages
appears on the emulator status line above the softkeys. If the word
"Reset" appears, the present reset condition occurred as a result of
the emulator. The presence of a lower case "reset" indicates that
the target system is presently asserting the CPU reset signal. The
68030 emulator can be instructed to enter the emulation monitor
when a "run" command is issued after "Reset" (jamming only occurs
if the reset signal is asserted by the emulator). This causes the
initial program counter and initial stack pointer vector to be
ignored. Instead, the jamming circuitry supplies these values based
on the current location of the monitor.

A possible difficulty exists if the target system performs some
hardware and/or software initializations on reset. If "reset into
monitor" is used, these initializations are not performed before
monitor execution is begun.

Target System Interface 6-25

Memory Access
Timing Issues

33 MHz 68030
Microprocessor

HP 64430 68030
Emulation System

6-26 Target System Interface

Access time is the time interval during a 68030 microprocessor

read cycle beginning when the 68030 microprocessor places an

address on the address bus and ending when valid data is present o
on the microprocessor’s data pins. J

Appendix C contains tables listing timing comparisons between the
MC68030 processor and the HP 64430 emulator.

For a 33 MHz 68030 microprocessor running at maximum speed in
synchronous mode with no wait states:

Access Time = Cycle Time + Clock Pulse Width - Specification 6 -
Specification 27

Spec. 6 = Clock High to FC,Size, RMC,CIOUT,Address Valid
= 14 ns (max),
Spec. 27 = Data-in Valid to Clock Low (Synchronous Setup)
= 1 ns (min),
Cycle Time = 30 ns (min), ,
Clock Pulse Width = 14 ns (min). u

Therefore:

Access Time (max) = 30 ns +14ns -14 ns -1 ns = 29 ns

For the HP 64430 68030 emulation system, the emulator adds the
following delay:

Data lines buffered with a 74FCTA245 = 5 ns (max)

An easy way to calculate the maximum access time allowed by the
emulator is to use the timing comparison tables provided in
appendix C of this manual. The relevant worst case specifications
for the emulator are as follows:

*Access Time (max) = Cycle Time + Clock Pulse Width - _
Specification 6 - Specification 27 ! ’

*Specification 27 includes value added because of data line
buffering shown above.

Spec. 6 = 14 ns (max)

Spec. 27 = 6 ns (min)

Cycle Time = 30 ns (min)

Clock Pulse Width = 14 ns (min)

Therefore:

Access Time (max) = 30ns +14 ns -14 ns -6 ns = 24 ns

Loading An When an absolute file is generated, it frequently is composed of

Absolute File

CODE

DATA

CODE

various "sections” containing code or data:

0000H
OFFFH
1000H
2FFFH
3000H
3FFFH

B Absolute File Test.X

A memory map resembling that shown below might normally be

generated:

Addr. Range

0000H - OFFFH
1000H - 2FFFH
3000H - 3FFFH

Attribute Function Code

EMUL RAM SUPR_PROG
EMUL RAM SUPR_DATA
EMUL RAM USER_PROG

default = guarded

Target System Interface 6-27

Note that upon execution of the following command, a guarded
access will occur:

load memory Test. X fcode SUPR_PROG Return

This is due to the fact that the "load" mechanism attempts to load J
the entire file using the SUPR_PROG function code. In the case of

Test. X (with the memory map above), address range 0000H -

OFFFH is mapped to emulation memory when the function code is
SUPR_PROG. The remaining address ranges of Test.X are

actually mapped to GUARDED memory when the function code is
SUPR_PROG. This is because the default is set to GUARDED,

and because there are no mapping definitions for SUPR_PROG

covering the remaining address ranges of Test.X.

Similar symptoms would be observed with either of the following
commands:

load memory Test. X fcode SUPR_DATA
load memory Test. X fcode USER_PROG

The "load memory " command is defined as a vehicle to "load all
memory areas” present in a given absolute file. (Guarded as well as "‘
target and emulation memory.)

The "load memory emulation . . ." command is used to "load only
areas mapped to emulation memory" in a particular absolute file.

Thus, to properly load Test. X, the following three commands
would be issued:

load memory emulation Test.X fcode SUPR_PROG
load memory emulation Test.X fcode SUPR_DATA
load memory emulation Test. X fcode USER_PROG

The "load memory target . .." command is provided to "load only
areas mapped to target memory" in a given absolute file.

6-28 Target System Interface

&

Debugging Plug-in
Problems

Review the
Configuration

When the emulation pod is connected to a target system, the
emulator operation becomes more complex. More hardware has
been added to the entire system and the user must be
knowledgeable about the target system resources. The following
information should be used as a guide to isolate problems that are
encountered when connecting the emulation pod to a target system.

If the target system has tight timing specifications, the emulator
may cause some signals to violate either the emulator 68030 or the
target system timing requirements.

An incorrect configuration file can result in improper operation.
Review the entire configuration file to make sure that all of the
questions are answered correctly for your target system. If you are
not sure how to answer a particular question refer to chapter 4 and
sections of this chapter for details concerning configuration and
information about the target system interface. The command
"'more <configfilename> .EA" can be used to view the entire
configuration file.

Target systems that are able to operate without the emulation pod
should be able to start with the default configuration file. This file
is used whenever a new emulation session is started. The default
configuration enables all of the target system signals, maps all
memory as target RAM and specifies that the emulation monitor is
not loaded. Verification of proper operation should be made using
the internal analyzer and indications from the target system.
Plug-in failures with the default configuration should be isolated
before attempting to use configurations that use emulation
memory or the emulation monitor. Once the default configuration
works properly add emulation memory and an emulation monitor.

Target System Interface 6-29

Use the Internal The internal analyzer can be used with any configuration without
Analyzer interfering with the emulation of the processor. It passively
monitors each bus cycle that the processor executes. All of the
analyzer data can be displayed without disrupting the emulation
process. The analyzer can be used to verify the proper operation of
the program being executed and the proper operation of the
hardware.

Debugging plug-in failures with the internal analyzer should start
with a "trace TRIGGER_ON a= 0h" specification before allowing
the processor to run. This will capture all bus cycles starting with
the reset address. Particular attention should be given to the bus
size bit (B)and the data field of the first few cycles. The triggering
capability of the analyzer can be used to capture conditions that are
the result of a failed interface by using the "trace TRIGGER_ON
<failure_condition>" specification. These conditions are usually
incorrect code branches or status conditions such as halt or
shutdown.

Failures that occur only during certain types of operations such as
a CPU space address or a particular place in memory can be
debugged using the capability of the analyzer to drive one of the J
rear panel BNC outputs or the Intermodule Bus (IMB). The
trigger condition should be set up for the bus cycle in error and the
trigger should be enabled to drive the BNC or IMB. These outputs
can then be used with measurement tools such as timing analyzers
or oscilloscopes that can be used to monitor the target system.
When observing the data, keep in mind that the trigger pulse
actually occurs between one and two CLK cycles after the end of
the bus cycle.

Use the Status Appendix C contains a complete list of emulation status line
Messages messages and their causes. Many of these conditions are not

displayed unless no bus cycles have occurred for more than 250
milliseconds. If your system creates conditions that result in the
68030 not generating a bus cycle for more than 250 milliseconds,
then the status message related to that condition can be ignored.
Status messages such as "Write to ROM fc=<code>", "halted" and
"slow device fc=<code>" provide address or status information
that can be used by the analyzer as a trigger specification to trace
the error condition.

6-30 Target System Interface

¢

Run Performance
Verification (PV)

If All Else Fails . ..

A

Refer to the HP 64430 HP-UX Hosted 68030 Emulator Service
Manual for instructions for running performance verification on
the emulation system.

If the emulator is configured properly, and the target program and
foreground monitor are loaded, unexplained behavior may still
exist. This is frequently due to foreground monitor interaction
with the target software and/or hardware.

In the software category, check that it is appropriate to disable
interrupts while in the foreground monitor. Some systems with
delta-time-interrupt structures for real-time clocks, operating
system functions, etc., will crash if the delta-time-interrupt is not
serviced within a preset time limit. The foreground monitor can be
customized to enable or disable interrupts as required. See the
"Continuing Target System Interrupts While In The Emulation
Monitor" section of chapter 7.

It is possible to "disable” the normal target system function of the
level 7 (NMI) interrupt through vector table modifications, and a
small amount of additional foreground monitor code.

Ensure that the program being executed is not accidentally
overwriting the foreground monitor or vice versa.

Use of the analyzer to examine software behavior is an effective
means to solve emulation problems.

Obitain a listing of the foreground monitor and the program being
executed, and use the analyzer to verify proper operation of both.

Set the analyzer to trigger on the foreground monitor entry point
(MONITOR_ENTRY), with the trigger position set to the center
of the trace. This will allow you to examine CPU activity
surrounding the foreground monitor entry. Your can observe the
stacking activity of the level 7 interrupt, as well as emulator
generated jam cycles. This will enable you to determine if the
foreground monitor is being initiated properly.

Target System Interface 6-31

Ensure that the foreground monitor exits and returns to the

normal program properly. Set the analyzer to trigger on the

foreground monitor exit point (EXIT_MON), and observe the

unstacking as a result of the RTE instruction. Be sure that the [
stack contents have not been corrupted, and that the program J
returns to the expected location.

Remember that the use of any foreground monitor function will
affect the timing of executing programs, and may be the cause of
hardware and software anomalies.

6-32 Target System Interface

. The Emulation Monitor Programs

Overview This chapter:

m Provides a comparison of the emulation foreground and
background monitor programs.

a Discusses the need for, and when to use, the emulation
foreground and background monitor programs.

a Discusses the break function as related to the emulation
monitor programs.

i a Describes the emulation foreground monitor program.

s Provides information for customizing the emulation
foreground monitor.

m Describes the emulation foregrond monitor memory
requirements.

= Describes the emulation foreground monitor linking
requirements.

a Describes the rules for loading the emulation foreground
monitor.

See chapter 6, Target System Interface, and chapter 10, How the

Emulator Works, for additional information about the emulation

monitor and its interactions with the host computer and your
h target system.

Emulation Monitor 7-1

Introduction The emulation monitor program is the means by which many of the
emulator functions are implemented. Functions implemented with
the emulation monitor are:

Read/write target memory. J
Display/modify 68030 registers.

Display/modify coprocessor registers.
Execute user program.
Break from user program by:

- analyzer generated break
keyboard break
software breakpoint
jump from user program

- memory access violation break.

a Reset into monitor.
Single step by opcode.
a Coordinated emulation start.

A standard emulation foreground monitor source file is supplied
with each emulation system. This file must be assembled and linked
by the user before using. Typically, the emulation monitor is
assembled and then linked with the user program to form one
software module. This module is then loaded into memory. The
loaded foreground monitor program enables emulation system
functions to operate properly.

You can modify the emulation foreground monitor to
accommodate a particular target system or to expand the
emulation monitor’s capabilities. Comment delimiters must be
removed from some functions in the monitor before they can
function. If you modify the emulation foreground monitor, the
basic communication protocol between the emulation foreground
monitor and the emulation software must be maintained. A
detailed description of the communication protocol and the
standard emulation monitor is given in this chapter.

7-2 Emulation Monitor

C

Comparison of
Foreground and
Background
Monitors

Background Monitors

Foreground Monitors

An emulation monitor is required to service certain requests for
information about the target system and the emulation processor.
For example, when you request a register display, the emulation
processor is forced into the monitor. The monitor code has the
processor dump its registers into certain memory locations, which
can then be read by the emulator system controller without further
interference.

A background monitor is an emulation monitor which overlays the
processor’s memory space with a separate memory region. Entry
into the monitor is accomplished by jamming the monitor
addresses onto the processor’s data bus.

Usually, a background monitor will be easier to work with in
starting a new design. The monitor is immediately available upon
powerup, and you don’t have to worry about linking in the monitor
code or allocating space for the monitor to use the emulator. No
assumptions are made about the target system environment;
therefore, you can test and debug hardware before any target
system code has been written. All of the processor’s address space
is available for target system use, since the monitor memory is
overlaid on processor memory, rather than subtracted from
processor memory.

However, all background monitors sacrifice some level of support
for the target system. For example, when the emulation processor
enters the monitor to display registers, it will not respond to target
system interrupt requests. This may pose serious problems for
complex applications that rely on the microprocessor for real-time,
non-intrusive support. Also, the background monitor code can’t be
modified to handle special conditions.

A foreground monitor may be required for more complex
debugging and integration applications. A foreground monitor is a
block of code that runs in the same memory space as your program.
Foreground monitors allow the emulator to service real-time
events, such as interrupts or watchdog timers, while executing in
the monitor. For most multitasking, interrupt intensive
applications, you will need to use a foreground monitor.

Emulation Monitor 7-3

Using Both
Foreground and
Background
Monitors in the
HP 64430
Emulator

When to Use the
Background Monitor

7-4 Emulation Monitor

You can tailor the foreground monitor to meet your needs, such as
servicing target system interrupts. However, the foreground
monitor does use part of the processor’s address space, which may
cause problems in some target systems. You must also properly
configure the emulator to use a foreground monitor (refer to
chapter 4 "Answering Emulation Configuration Questions").

‘You may link the foreground monitor with your code. However, if
possible, linking the monitor separately is preferred. This allows
the monitor to be downloaded before the rest of your program.
Linking monitor programs separately is more work initially, but it
should prove worthwhile overall, since the monitor can then be

loaded efficiently during the configuration process at the beginning

of a session.

Most conventional emutstors are implemented with either a

- background or foreground monitor as the emulation control

program. The emulator designer makes the appropriate
compromises regarding the emulator’s transparency during
running the emulation monitor and picks one type of monitor or
another in implementing the emulator.

Due to the on-chip MMU of the 68030 processor, however, and
due to the full virtual system support provided by the HP 64430
emulator, both background and foreground monitors are provided
and supported in the product. The decision by the user to enable
either monitor is governed by the development stage and nature of
the target system.

It is recommended that background operation be chosen during
the early stage of hardware development where full functionality of
the target’s interrupt, bus error, and other asynchronous events is
not needed yet. The background monitor in that case has the
advantage of being easy to use and can enable the emulator to be a
stimulus for aiding in turning on the target hardware without

J

v

C

C

When to Use the
Foreground Monitor

requiring the target system to be fully functional. For example, the
display/modify target memory feature can be used to stimulate the
target’s memory interface and help the designer in troubleshooting
any defects in that part of his circuitry. All the emulator would
show while in background is the bus cycle referencing the target
address. With the aid of an external timing analyzer (for example
the HP 16500A), the user can monitor the target’s signal behavior
during that cycle and find any problem(s) the target might be
having.

Another feature that is provided by the background monitor and
not supported in foreground is the display/modify physical
memory. The implementation of this function requires that the
on_chip MMU be temporarily turned off so that logical and
physical addresses are identical. This is not possible during
foreground operation since the foreground monitor is running as
part of the virtual system.

If the target system hardware is close to being completely
functional, then foreground monitor operation is more desirable.
The emulator runs in a more transparent mode than with
background. Interrupts, bus errors, and all other exceptions can be
handled by the target system software as if the emulator were not
present. All emulation and analysis functions are available to the
user. The monitor program customization allows the user to add,
delete, or change the source code to fit the particular application.
Messages relating to certain events can be added and diplayed on
the emulation terminal, and the target programs can jump to the
monitor at any time. Display/modify of coprocessor registers can be
acheived by adding the proper code to the monitor program.

In systems using the on-chip MMU of the 68030 processor,
external memory in the target system and emulation memory are
accessed as physical addresses. Since the emulation host
communicates with the emulation monitor through the logical
space, and due to the paging and swapping nature of the 68030
MMU, the requirement that the foreground monitor be mapped to
emulation memory was waived. Hardware was added to the
emulator to allow for the foreground monitor to be linked in the
logical space with the rest of the target code where the eventual
physical location is defined at run time. The special data area of the
monitor, where the host communication happens, is located in a

Emulation Monitor 7-5

special memory mapped to the untranslated CPU space of the
processor. This makes it much easier for the foreground monitor to
be installed and used.

Customization of the The background monitor can not be customized by the user. J
Monitor Programs

The source code for the foreground monitor is provided with the
HP64430 product and can be modified to best fit the target
application. Customizing the emulation foreground monitor is
discussed in another section later in this chapter.

The Break The emulation break circuitry uses the NMI (INT7) resource of the

Function And The processor to force the user program to be interrupted and the
emulation monitor to be entered. A break can be generated for an

Emulation Monitor illegal memory reference, a bus condition that the analysis card
detects, a request by the emulation software, or from the keyboard.

7-6 Emulation Monitor

o

o

C

Emulation Monitor
Description

Note d

The Exception Vector
Table

This section applies to both foreground and background monitors
except the user has no access to symbols or entry points in the
background monitor.

The emulation monitor is made up of the following major sections.
a The processor exception vector look-up table.

a The entry points into the monitor.
s The emulation command scanner.

a The command execution modules.

Each of these sections is discussed in the following paragraphs.

The emulation foreground monitor is entered through processor
exceptions. The emulation monitor program contains pseudo
instructions that load the vector table with the addresses of the
emulation monitor exception handlers. The emulation monitor
exception table defines 68030 exception vectors for the
convenience of the user.

The emulation monitor program is shipped from the factory with
all of the exception vectors (except RESET and MONITOR
SINGLE STEP) contained in comment fields. This is done to allow
you to supply the addresses for your own exception routines. If you
have not written any exception handlers, you should remove the
comment delimiters (*) from those provided in the monitor. This
enables the processor to use the exception vector lookup table
provided with the monitor program.

If the user application has its own RESET handler, the reset vector
in the monitor must be modified to point to the user reset handler.

Emulation Monitor 7-7

Note i

Emulation Monitor
Entry Point Routines

7-8 Emulation Monitor

Also, the reset-to-monitor function must be disabled. This is done
by modifying the emulation configuration. You must answer no to
the configuration question "Reset into the monitor?". See chapter
4 for detailed information.

The portion of the monitor defining the exception vector table is
ORG’ed to OH, and is not relocatable as is the rest of the monitor.
When configuring the emulator, be sure to map the first block of
memory (OH) to supervisor_data emulation ram. Otherwise, locate
the vector table in ROM in the target system. Refer to the section
in this chapter titled "Loading the Emulation Monitor" for details
on mapping the emulation monitor into memory.

The emulation monitor entry point routines provide input handler
routines for the various entry paths. Six separate paths are defined
for monitor entry. Each path is distinguished from the others by
means of a unique ENTRY_ID code which is stored upon entry
into the monitor. The emulation monitor entry point routines are
MONITOR_ENTRY, SWBK_ENTRY, JSR_ENTRY,
RESET_ENTRY, and EXCEPTION_ENTRY.

Monitor_entry

MONITOR_ENTRY is the entry point into the emulation
monitor for breaks from the user’s program. On a break to
MONITOR_ENTRY, the 68030 PC and status register should be
placed on the stack as is normally done when an exception occurs.
On entry to the monitor, the processor’s registers are saved and the
interrupt mask is restored (if you have modified your monitor to

- enable this function). The emulation monitor then executes the

command scanner routines.

Swbk_entry

SWBK_ENTRY is the entry point into the emulation monitor
when a software breakpoint (i.e., a BKPT instruction inserted in
your code by the HP 64000-UX system) is processed.

J

—

9

Emulation Command
Scanner

Jsr_entry

JSR_ENTRY (foreground monitor only) is the entry point into the
emulation monitor that should be used if the user wants to jump
directly to the emulation monitor. If running in supervisor mode,
you can use the instruction "JSR JSR_ENTRY" to jump to the
emulation monitor. If the 68030 processor is running in user mode,
a trap exception should be used. The trap vector should point to
MONITOR_ENTRY.

Reset_entry

RESET_ENTRY is the entry point into the emulation monitor
when the 68030 processes the reset exception. RESET_ENTRY
sets up a default stack and sets the processor’s registers to default
values.

Exception_entry

A set of exception entry points (foreground monitor only) are
provided to give status messages for the ten exception vectors after
reset. These exception vectors are provided for the convenience of
the user and may be deleted or modified. For more information on
the exception vector entry points, see the emulation foreground
monitor source program and the section in this chapter entitled
"Modifying The Exception Vector Table".

The emulation command scanner normally rests in an idle loop
labeled MONITOR_LOOP. The system global
MONITOR_CONTROL is repetitively examined. If bit 15 is set to
zero, the idle loop is resumed. If bit 15 is set to one, a command is
present and the program branches to the appropriate command
routine.

Bit 15 of MONITOR_CONTROL is set by the Host and cleared by
the monitor program. The lower byte of MONITOR_CONTROL
contains a command number against which the command table is
compared. If a match is found, a command entry point will be
retrieved from the table and the command will be executed. If a
match is not found, the program will return to the idle loop. The
command is considered complete when bit 15 of
MONITOR_CONTROL is set to zero.

Emulation Monitor 7-9

Emulation Command The Emulation Monitor command execution modules are
Execution Modules ARE_YOU_THERE, EXIT MONITOR, COPY MEMORY,
COPY_ALT REG, MON_ALT REGISTERS,
SYNCH_START ENABLE, SIM_INT _ENABLE, |
SIM_INT_DISABLE, and SIMULATED_INTERRUPT. J

Are_you_there

ARE_YOU_THERE is used by the host (the HP 64000-UX) to
determine whether the processor is executing in the monitor or in
the target system code. It can also pass an ASCII message to be
displayed on the host system status line.

Exit_monitor

EXIT_MONITOR reloads the processor’s register image and exits
to the user’s program.

Synch_start_enable

SYNCH_START_ENABLE causes EXIT to be delayed. The]
monitor will loop waiting for an emulator status bit that indicates a J
synchronized start among multiple emulators has been received

before EXIT is executed. This waitloop may be aborted by any

command.

Copy_memory

COPY_MEMORY moves data between the monitor parameter
block areas and target system memory. This command is used to
modify and display target system memory.

Copy_alt_reg

COPY_ALT_REG reads from and writes to coprocessor registers.

Mon_alt_registers

MON_ALT_REGISTERS is a jump table which contains the J
address offset of the coprocessor register load/unload routine for
each of the 8 possible coprocessors.

7-10 Emulation Monitor

The MON_ALT_REGISTERS table should be set up to contain
the load routine names - the table start. Offsets from the start of
the table are stored so the entries will fit in 16 bits.

Simint_enable

SIMINT_ENABLE is a user defined simulated interrupt function
which allows you to implement interrupt driven code on an
emulator which is out of circuit. This command must set the local
simulated interrupt enable flag TRUE and store
SIM_INTS_TRUE at SIM_INT_CONTENTS to reenable
simulated interrupts on exit. If simulated interrupts are not
disabled on entry to the monitor, the break softkey will not work.

Simint_disable

SIMINT_DISABLE is a user defined simulated interrupt function
which allows you to disable interrupt driven code on an emulator
which is out of circuit. This command must set the local simulated
interrupt enable flag FALSE and store SIM_INTS_FALSE at
SIM_INT_CONTENTS to keep simulated interrupts disabled on
exit. If simulated interrupts are not disabled on entry to the
monitor, the break softkey will not work.

Sim_interrupt

SIM_INTERRUPT is a user defined simulated interrupt function
which allows you to implement interrupt driven code on an
emulator which is out of circuit. This command will typically cause
a branch to your interrupt handler by way of a trap instruction.
When the command is complete, the host processor expects the
processor to be in the monitor.

Emulation Monitor 7-11

Customizing The
Emulation Monitor

o

Caution ' POSSIBLE LOSS OF WORK SESSION!
SYSTEM MAY BECOME UNUSABLE. Your customized portion
of the emulation monitor must not exit the monitor program.
Exiting the monitor will cause the entire system to become
unsynchronized and, therefore, unusable.

You should not make any changes to portions of the monitor other
than those described in the following paragraphs. Changes in other
sections of the monitor may cause some features to stop working
due to modifications on the stack, or because the information that
is passed to and from the various sections has been affected.

For most systems, the emulation foreground monitor supplied with
your emulator enables all emulation features to operate. Some J
systems, however, require modification to the emulation monitor

program in order to maximize the effectiveness of the emulator.

For this reason, the source program for the monitor has been

provided and is thoroughly commented. Each of the standard

routines within the code has been described so that you can easily

make your modifications.

Caution ‘ POSSIBLE LOSS OF ORGINAL MONITOR SOURCE
PROGRAM!
Do not modify original monitor source program. You should copy
the 68030 emulation monitor source program to your subdirectory
before making any modifications. Do not modify the copy supplied
with your emulation system software. You should keep that copy
as a backup. -

2

7-12 Emulation Monitor

Note

If you haven’t already done so, copy the emulation monitor to your
subdirectory by executing the following command:

cp /usr/hp64000/monitor/mon_68030.s mon_68030.s
You must execute the command "chmod 666 mon_68030.s" on the

file before you modify it. It is shipped with "read-only" permissions.

You should now modify the copy in your subdirectory.

After modifying the monitor, be sure to reassemble and relink the
monitor program.

Emulation Monitor 7-13

Modifying The Find the following program block in the emulation monitor:
Exception Vector

Table.
* ORG $000 0: reset
* DC.L SP_TEMP
* DC.L RESET ENTRY
*
* ORG $008 2: bus error
* DC.L EXCEPTION_ENTRY
* ORG $00C 3: address error
* DC.L EXCEPTION_ENTRY
* ORG $010 4: illegal instruction
* DC.L EXCEPTION_ENTRY
* ORG $014 5: divide by zero
* DC.L EXCEPTION_ENTRY
* ORG $018 6: CHK instruction
* DC.L EXCEPTION_ENTRY
* ORG $01C 7: TRAPV
* DC.L EXCEPTION_ENTRY
* ORG $020 8: privilege violation
* DC.L EXCEPTION_ENTRY
* ORG $024 9: monitor single-step entry
* DC.L MONITOR_ENTRY
w*
* ORG $024 9: trace
* DC.L EXCEPTION_ENTRY
* ORG $028 10: "A" Line
* DC.L EXCEPTION_ENTRY
* ORG $02C 11: "F" Line
* DC.L EXCEPTION_ENTRY
* ORG $030 12: unassigned and reserved by Motorola
* DC.L EXCEPTION_ENTRY
* ORG $034 13: coprocessor protocol violation
hd DC.L EXCEPTION_ENTRY
* ORG $038 14: stack frame format error
* DC.L EXCEPTION_ENTRY
* ORG $03C 15: uninitialized interrupt
* DC.L EXCEPTION_ENTRY
* ORG $040 16: unassigned and reserved by Motorola
* DC.L EXCEPTION_ENTRY
* ... other unassigned reserved entries
* ORG $05C 23: unassigned and reserved by Motorola
* DC.L EXCEPTION_ENTRY
* ORG $060 24: spurious interrupt
* DC.L EXCEPTION_ENTRY
* ORG $064 25: interrupt level 1 autovector
* DC.L EXCEPTION_ENTRY
* ORG $068 26: interrupt level 2 autovector

* DC.L EXCEPTION_ENTRY

7-14 Emulation Monitor

ORG $06C 27: interrupt level 3 autovector
DC.L EXCEPTION_ENTRY

ORG $070 28: interrupt level 4 autovector
DC.L EXCEPTION_ENTRY

ORG $074 29: interrupt level 5 autovector
DC.L EXCEPTION_ENTRY

ORG $078 30: interrupt level 6 autovector
DC.L EXCEPTION_ENTRY

ORG $07C 31: interrupt level 7 autovector
DC.L EXCEPTION_ENTRY

ORG $080 32: TRAP #0
DC.L EXCEPTION_ENTRY

... other TRAP #n entries

ORG $0BC 47: TRAP #15
DC.L EXCEPTION_ENTRY

ORG $0CO 48: floating point coprocessor unordered condition
DC.L EXCEPTION_ENTRY

ORG $0C4 49: floating point coprocessor inexact result
DC.L EXCEPTION_ENTRY

ORG $0C8 50: floating point coprocessor divide by zero
DC.L EXCEPTION_ENTRY

ORG $0CC 51: floating point coprocessor underflow
DC.L EXCEPTION_ENTRY

ORG $0DO 52: floating point coprocessor operand error
DC.L EXCEPTION_ENTRY

ORG $0D4 53: floating point coprocessor overflow
DC.L EXCEPTION_ENTRY

ORG $O0D8 54: floating point coprocessor signaling Not a Number
DC.L EXCEPTION_ENTRY

ORG $0DC 55: unassigned and reserved by Motorola
DC.L EXCEPTION_ENTRY

ORG SOEO 56: PMMU configuration error
DC.L EXCEPTION_ENTRY

ORG $O0E4 57: PMMU illegal operation

DC.L EXCEPTION_ENTRY

Now, using your editor, remove the comment delimiters (*) from
the start of each line of code (except the second ORG $24
statement) to make your program look as follows:

ORG $000 0:
DC.L SP_TEMP
DC.L RESET_ENTRY

reset

ORG $008 2: bus error
DC.L EXCEPTION_ENTRY
ORG $00C 3: address error
DC.L EXCEPTION_ENTRY
ORG $010 4: illegal instruction

DC.L EXCEPTION_ENTRY

Emulation Monitor 7-15

ORG $014 5: divide by zero
DC.L EXCEPTION_ENTRY

ORG $018 6: CHK instruction
DC.L EXCEPTION_ENTRY
ORG $01C 7: TRAPV
DC.L EXCEPTION_ENTRY
ORG $020 8: privilege violation
DC.L EXCEPTION_ENTRY
ORG $024 9: monitor single-step entry
DC.L MONITOR_ENTRY
ORG $024 9: trace
DC.L EXCEPTION_ENTRY
ORG $028 10: "A" Line
DC.L EXCEPTION_ENTRY
ORG $02C 11: "F" Line
DC.L EXCEPTION_ENTRY
ORG $030 12: unassigned and reserved by Motorola
DC.L EXCEPTION_ENTRY
ORG $034 13: coprocessor protocol violation
DC.L EXCEPTION_ENTRY
ORG $038 14: stack frame format error
DC.L EXCEPTION_ENTRY
ORG $03C 15: uninitialized interrupt
DC.L EXCEPTION_ENTRY
ORG $040 16: unassigned and reserved by Motorola

DC.L EXCEPTION_ENTRY
... other unassigned reserved entries

ORG $05C 23: unassigned and reserved by Motorola
DC.L EXCEPTION_ ENTRY

ORG $060 24: spurious interrupt
DC.L EXCEPTION_ENTRY

ORG $064 25: interrupt level 1 autovector
DC.L EXCEPTION ENTRY

ORG $068 26: interrupt level 2 autovector
DC.L EXCEPTION_ENTRY

ORG $06C 27: interrupt level 3 autovector
DC.L EXCEPTION_ENTRY

ORG $070 28: interrupt level 4 autovector
DC.L EXCEPTION_ENTRY

ORG $074 29: interrupt level 5 autovector
DC.L EXCEPTION_ENTRY

ORG $078 30: interrupt level 6 autovector
DC.L EXCEPTION_ENTRY

ORG $07C 31: interrupt level 7 autovector
DC.L EXCEPTION_ENTRY

ORG $080 32: TRAP #0

DC.L EXCEPTION_ENTRY
... other TRAP #n entries

7-16 Emulation Monitor

.

ORG $0BC 47:
DC.L EXCEPTION_ENTRY

ORG $0CO 48:
DC.L EXCEPTION_ENTRY

ORG $0C4 49:
DC.L EXCEPTION_ENTRY

ORG $0C8 50:
DC.L EXCEPTION_ENTRY

ORG $0CC 51:
DC.L EXCEPTION_ENTRY

ORG $0DO 52:
DC.L EXCEPTION_ENTRY

ORG $0D4 53:
DC.L EXCEPTION_ENTRY

ORG $0D8 54:
DC.L EXCEPTION_ENTRY

ORG $0DC 55:
DC.L EXCEPTION_ENTRY

ORG $OEO 56:
DC.L EXCEPTION_ENTRY

ORG $0E4 57:
DC.L EXCEPTION_ENTRY

TRAP #15
floating
floating
floating
floating
floating
floating

floating

point
point
point
point
point
point

point

unassigned and

coprocessor

coprocessor

coprocessor

coprocessor

coprocessor

coprocessor

coprocessor

reserved by

PMMU configuration error

PMMU illegal operation

unordered condition
inexact result

divide by zero
underflow

operand error

overflow

signaling Not a Number

Motorola

End out of your edit session, making sure that you save your
changes.

By removing the comment delimiters from this section of the
monitor, you have made the exception vector table usable. The
table provides all addresses that the monitor needs to operate.

Emulation Monitor 7-17

Continuing Target The processor interrupt mask can be restored to its prebreak value
System Interrupts 1 enable target system interrupts while in the monitor. You must
While In The ¢dit the monitor program if you want to enable the interrupts while

. . running in the emulation monitor.
Emulation Monitor " 1&! wat

Under the MONITOR_ENTRY label, you will find a commented
section that describes re-enabling the interrupts.

MONITOR_ENTRY
* return from exception if already in the monitor

TAS MONITOR_SEMAPHORE
BPL.B BREAK_OK
RTE
BREAK_OK
*+ block interrupts
ORI.W #BLOCK_INTERRUPTS<INT_HSK_SHIFT,SR

Comment the instruction ORLW
#BLOCK_INTERRUPTS<INT_MSK_SHIFT,SR to use the
interrups while in the monitor. Be sure to save your changes.

Sending Messages
From the User
Program To the
Emulator Display

Note d This option is only available with the foreground monitor.

The PUT_MONITOR_MSG routine in the emulation monitor
gives you a way to send messages to the display status line. In order
to use this feature, you must do the following steps:

1. Define the message in your user code.

2. Set a trap vector to point to the PUT_MONITOR_MSG
routine.

7-18 Emulation Monitor

Q

3. Initiate the appropriate trap. This will cause a "message
breakpoint" and leave the processor running in the
emulation monitor.

‘ 4. If you want to continue execution of your user program,
your program should pop one long word off the stack to
clean up the stack after the trap.

An example program implementing the "message breakpoint" is
shown below.

KAAK A A AR AR A AR AR AR AR AR AR AR AR AR AR A AR AR A AR AR A AR AR AR A AR AR AN AN A AN A AR AR A AR AR

PUT_MONITOR_MSG is entered if you set up a trap vector

to point to it. The purpose of PUT _MONITOR_MSG is to send a
monitor message to the emulator, even if the request is not
in supervisor space.

The protocol for using PUT_MONITOR_MSG is as follows:

*
*
*
»*
*
*
*
*
* 1) Set a TRAP #n vector to point to PUT_MONITOR_MSG.
* 2) Push the address of the message onto the stack.
* The message must be in data space.

* 3) Initiate the appropriate trap. This will cause a

* "message breakpoint", and leave the processor running
* in the monitor.

* 4) If you continue the run, your program should pop

* one long word off the stack to clean up.

*

»*

Fede e h A hh R AR A A Ak A e A e e e e A A Ak e e ok e e e o e e e e e e e e e e o e o e e e e e e o ok g e e o o o e e ke R e

PUT_MONITOR_MSG
* return from exception if already in the monitor

TAS MONITOR_SEMAPHORE
BPL.B PUT_MON_MSG_OK
RTE

PUT_MON_MSG_OK
* block interrupts
ORI.W #BLOCK_INTERRUPTS<INT_MSK_SHIFT,SR

* save registers
MOVEM.L D0-D7/A0-A6 ,PREGS

MOVEC SFC,A0
MOVE.L A0, SFC_REG
MOVEC DFC, A0

MOVE.L AO0,DFC_REG
* read emulator status register

MOVEQ #FC _CPU_SPACE, DO
MOVEC Do, SFC
; MOVEC DO, DFC
‘ MOVES.L EMUL_STATUS,DO
* clear low in_monitor bit
BCLR #LINMON, DO

MOVES.L DO,EMUL_STATUS

Emulation Monitor 7-19

* if a supervisor space break (- 8 because memory reference BTST is a byte op)
BTST #SUPRVISOR_STATE-8, (SP)
BEQ.B USER_FRAME

PUT_MON_MSG_1

* put supervisor data function code into message parameter area

MOVE.L #FC_SUPER_DATA,MON_MSG_FC

* save message address from below trap frame on stack
MOVE.L (FOUR_WORD_SIZE*2,SP),MONITOR_MESSAGE
BRA.B FINISH MESSAGE

USER_FRAME

+ else stack is in user data space
* put user data function code into message parameter area
MOVE.L #FC_USER_DATA,MON_MSG_FC

* get user stack pointer
MOVE.L $FC USER DATA,DO
MOVEC DO,SFC
MOVE USP,A0

* save message address from top of stack
MOVES.L (A0),DO
MOVE.L DO, MONITOR_MESSAGE

FINISH_MESSAGE
* set message pending bit and set why_there to MON_MSG_RECVD

MOVEQ $FC_CPU_SPACE, DO

MOVEC DO, SFC

MOVEC DO, DFC

MOVES.W MONITOR_CONTROL,DO

BSET #MON_MSG_PEND, DO

MOVEQ $MON_MSG_RECVD, D1

BFINS D1,DO{WHY_ THERE_START:WHY_ THERE_WIDTH}
MOVES.W DO,MONITOR_CONTROL

BRA.W MONITOR_MAIN

e de de o e de e A o e e b e v o e A e e e e de e e e e e e e A e e e e e s e e e ok R e T T e e W ok e e e e e e o b W e W b e W e W e e e e b o e e ke e e o e o

7-20 Emulation Monitor

Emulation Monitor The memory available in the emulation hardware is divided into

Memory

256-byte blocks of address space by the emulation system. Each
256-byte block begins on an even address multiple of 100H.

Requirements For

The 68030

MODULE SUMMARY

MODULE

‘ mon_68030

SECTION:

9:

mon_prog:
mon_data:

The relocatable program area of the emulation monitor requires
approximately 3900 bytes of memory. You can determine this if
you look at the MODULE SUMMARY section of the linker listing
file (see below). You can see, in this example, that the emulation
monitor begins at address 100H and ends at address 1023H. The
program takes up OA6B hexadecimal locations of memory. The
value OF23H is approximately 3900 decimal. Therefore, the
emulation monitor can be mapped into 16 256-byte blocks of
memory.

START SECTION:END FILE

00000000 9:00000000 /hp/emul32/processor/mé68030
/monitor/mon_68030.0

00000100 mon_prog:00000B6B
00000B6C mon_data:00001023

100000024 :00000027

These memory requirements assume that the blocks each start on a
256-byte boundary and that the standard emulation monitor is
being loaded. To check the memory requirements for the
emulation monitor being used, the linker listing file should be
checked.

The monitor program must reside in supervisor space. See the
section "Loading The Emulation Monitor" in this chapter for
deuails.

Emulation Monitor 7-21

Linking The The emulation foreground monitor must be assembled and linked

Emulation before it can be used by the emulation system. It can be; linked with

the target system code to produce one absolute file or it can be j
Foregrou nd linked by itself. J
Monitor
Loading The The following rules must be followed when loading the emulation

Emulation Monitor monitor:

1. Data space of the monitor must be mapped as RAM as
opposed to ROM. The monitor transfer buffer, as well as
many monitor "housekeeping” variables must be read and
write accessible, and must, therefore be mapped as RAM.

In addition, portions of the monitor must write to other
monitor program locations. Since writes to ROM are
always blocked, the program section, as well as the data
section, of the monitor must be mapped to RAM.

2. The emulation monitor is executed in response to a level 7
interrupt. Therefore, it is always executed within
supervisor space and must be located in supervisor space.
If the supervisor/user function code bit is not in use, this
restriction does not apply.

The emulation software recognizes only program symbols. In the

case of the monitor, the symbol addresses are assumed to be

associated with the SUPR_PROG function code (since the

monitor is basically an interrupt routine). When the host writes -
control information to, or reads information from the monitor, it u
must use the special data spece located in CPU space.

7-22 Emulation Monitor

Using Reset Into If reset into the foreground monitor is specified as an option
during emulation configuration (refer to chapter 4), some memory
Fore_ground - either target or emulation - must be mapped to OH SUPR_PROG.
‘ Monitor

Emulation Monitor 7-23

Notes

7-24 Emulation Monitor

& Using Custom Coprocessors

Overview This chapter provides the following information:

m A discussion of the requirements for using custom
COProcessors.

s A detailed description of the custom coprocessor format
file.

a A detailed description of how to modify the emulation
monitor for use with custom coprocessors.

a A description of the emulation configuration questions
b related to custom COprocessors.

Introduction

Note ‘ Custom register access is only supported with the foreground
monitor enabled, except in the case of the MMU registers. MMU
registers display and modification are supported for both
foreground and background monitors.

o The 68030 emulator has the capability to access floating point
U coprocessors and other coprocessors in your target system. You
can both display and modify coprocessor register sets.

Custom Coprocessors 8-1

In order to use custom coprocessors with the emulator, you must:

a Provide a custom register format file defining the
coprocessor address, size, and name and defining the

register display format. 5 a

= Modify the emulation monitor program to include a
storage buffer for the coprocessor registers, read/write
routines to access coprocessor registers, and a pointer to
the coprocessor read/write routines.

m Specify the custom register format file to the emulator
during emulation configuration.
An example custom register format file is provided with your
emulation software. This file is named:

/usr/hp64000/inst/emul32/0410/0204/custom_spec.

Read/write routines for the MMU are provided in the emulation
monitor program.

8-2 Custom Coprocessors

1| he CUStOm A custom register format file must specify the coprocessor you
Register Format want to use with emulation. This file specifies:

(_ File

s Which coprocessors should be used.

= Which coprocessor space the coprocessors should be
located in.

s How large the register buffer should be for transfers.
a What the display should look like for each coprocessor.

a What register names there are for register modifies.
This file is read when the emulation configuration file is processed.
The custom register format specification is fairly simple. For each
coprocessor register set defined in the file, the following items
must appear in the order specified:

1. the coprocessor address
2. the coprocessor size
3. the coprocessor name

4. the display spec
You may place comments in C language format (enclosed by "/*"
and "*/") or blank lines before or after any register set, as well as

between the specification fields. You can specify C language format
include files using a control line of the form:

#include "filename"
or
#include <filename>

where the register set description could be placed in the include
file. Filename must be the full pathname for the include file.

Custom Coprocessors 8-3

Using include files simplifies your custom register specification file
and allows you to easily remove a register set from the specification
file, if necessary. ‘

A listing of a sample custom register specification file is shown in J
figure 8-1 at the end of this section. Figures 8-2 and 8-3 show how

the same file could be written using a sample include file and

include command lines.

Address Specification The address specification is of the form:

ADDR=n

where n is the coprocessor identification code that defines the
coprocessor space. The address must be a number between 0 and 7,
inclusive. If two register sets in the format file have the same
address, only the last specified register set is used. The first register
set is ignored. ADDR 0 is reserved for the MMU. The address
specified for the "fpu” coprocessor must match the external FPU
coprocessor identification code.

Size Specification The size specification is of the form: J

SIZE=n

where n is the size (in bytes) of the register set transfer buffer. The
transfer buffer is used to transfer the register contents between the
emulation monitor and the host system. This number must be
between 0 and 1020, inclusive.

Name Specification The coprocessor name specification is of the form:

NAME="string"

where string is a unique name for the coprocessor. If the name is

not unique, any previous register specs with the same name will be ‘
ignored. The string must only contain alphanumeric characters. B i
Register set names are available on softkeys during display, copy, J
and modify commands. Register set names are also placed in the

header of the register display if the coprocessor set is active during

the display.

8-4 Custom Coprocessors

Register Set Display The register set display specification is enclosed by two lines as
Specification follows:

DISPLAY_START
L <display specification >
DISPLAY_END

The DISPLAY_START and the DISPLAY_END lines cannot
have any trailing blanks. Any statements within these lines are used
to generate the register display. These lines also provide
information to the emulator for setting up register names for the
modify command. Register specifications have the form:

NAME %OFFSET.WIDTH

where: NAME is the name that the register should be
referenced by during display and modify
commands.

OFFSET is the index into the register buffer
(in bytes) to the location of the register contents.

‘ WIDTH is the register width (in bytes).

All other text and white space in the register specification is
presented in the display exactly as specified in the format file.

C

Custom Coprocessors 8-5

/i**t****l‘ﬁ*i*ﬁiiii*i**i*ﬁ'i*iﬁii***tti***t**t**i*/

/* */
/* COPROCESSOR DISPLAY FORMAT SPECIFICATIONS */
/* */

/*************tt*tt*****ﬁ*tt*tt*t.**t*t*****t*t**i/
/* This file contains the display format specifications for all coprocessors */

/* configured for this system. It may contain up to 7 other coprocessor */
/* specifications. */
/* */

/* The entry below describes the format for an 68882 fpu, and is wused */
/* as an example. There are several pieces of data which MUST be supplied */

/* for each specification: */
/* */
/* ADDR=n, where n is in the range 0-7. This is the coprocessor id-code */
/* for the current entry. Please note that ADDR=0 is reserved for */
/* the MMU, and that all ADDR designations should appear only */
/* once in this file. */
/* */
/* SIZE=n, where 0 < n < 1020 bytes. SIZE describes the number of bytes */
/* in the monitor register buffer the user has defined for this */
/* coprocessor. */
/* */
/* NAME="string", where "string"™ is the UNIQUE name of the current */
/* coprocessor. The name is made up of alphanumeric characters */
/* only. This name will show up on a softkey when */
/* attempting to display/modify registers within emulation. */
/* */
/* DISPLAY START marks the start of the display format spec for the */
/* ~ current coprocessor. */
/* */
/* DISPLAY END marks the end of the display spec, and also the end */
/* ~ of the information for the current coprocessor. A new speci- */
/* fication may follow each DISPLAY_ END. */
/* */
/* Within the bounds of DISPLAY START and DISPLAY END is the information */
/* needed to generate the display for each coprocessor. Each register */
/* description contains a name field and a register format field. The format */
/* field is in the form: */
/* */
/* SOFFSET.WIDTHr, where OFFSET is the index into the register buffer */
/* defined in the monitor (in bytes), and WIDTH is the width of */
/* the register (also in bytes). All other text, white space, */
/* etc, are preserved in the display. */

Figure 8-1. Sample Custom Register Specification File

8-6 Custom Coprocessors

[hruEkhkhhhkhhkhhhhhhhhkhhkkkkkhhk kb kkk /
/* */
/* EXAMPLE 68882 FPU SPECIFICATION */
/* *

/****t*******************************/

ADDR=1 /* the fpu id-code (special: set by configuration) */
SIZE=108 /* number of bytes in the fpu register buffer */
NAME="fpu" /* name of the fpu coprocessor (do not change) */

DISPLAY_START

FPO %00.12r FP1l %12.12r FPCR %96.4r
FP2 %24.12r FP3 %36.12r FPSR %100.4r
FP4 %48.12r FP5 %60.12r FPIAR %104.4r

FP6 %72.12r FP7 %84.12r

_DISPLAY_END

/* Other custom coprocessor display formats follow...

*/

Figure 8-1. Sample Custom Register Spec. File (Cont’d)

/**********************t*************/

/* */

/* EXAMPLE 68882 FPU SPECIFICATION */

/* */
/************************************/

ADDR=1 /* the fpu id-code (special: set by configuration) */
SIZE=108 /* number of bytes in the fpu register buffer */
NAME="fpu" /* name of the fpu coprocessor (do not change) */

DISPLAY START

FPO %00.12r FP1l %12.12r FPCR %96.4r
FP2 %24.12r FP3 %36.12r FPSR %100.4r
FP4 %48.12r FP5 %60.12r FPIAR %104.4r

FP6 %72.12r FP7 %84.12r

DISPLAY_END

Figure 8-2. Custom Reg. Spec. Include File fpu_spec

Custom Coprocessors 8-7

/*********i'*f*i***i*****tttttt*i*'******i********/

/* COPROCESSOR DISPLAY FORMAT SPECIFICATIONS */

/* */

/***t*****i************ﬁtﬁtt**ttt'********t**it*i*/
This file contains the display format specifications for all coprocessors
configqured for this system. It may contain up to 7 other coprocessor
specifications.

The entry below describes the format for an 68881 fpu, and is used
as an example. There are several pieces of data which MUST be supplied
for each specification:

ADDR=n, where n is in the range 0-7. This is the coprocessor id-code
for the current entry. Please note that ADDR=0 is reserved for
the MMU, and that all ADDR designations should appear only
once in this file.

SIZE=n, where 0 < n < 1020 bytes. SIZE describes the number of bytes
in the monitor register buffer the user has defined for this
coprocessor.

NAME="string", where "string” is the UNIQUE name of the current
coprocessor. The name is made up of alphanumeric characters
only. This name will show up on a softkey when
attempting to display/modify registers within emulation.

DISPLAY_START marks the start of the display format spec for the

current coprocessor.
DISPLAY_ END marks the end of the display spec, and also the end
of the information for the current coprocessor. A new speci-

fication may follow each DISPLAY_ END.

Within the bounds of DISPLAY START and DISPLAY END is the information
needed to generate the display for each coprocessor. Each register
description contains a name field and a register format field. The format
field is in the form:

SOFFSET.WIDTHr, where OFFSET is the index into the register buffer
defined in the monitor (in bytes), and WIDTH is the width of
the register (also in bytes). All other text, white space,
etc, are preserved in the display.

tinclude "/users/em68030/custom_spec/fpu_spec”

8-8

Figure 8-3. Custom Reg. Spec. File Using Include Files

Custom Coprocessors

Emulation Monitor In order to access coprocessor register sets, you must make some
Changes miqor changes to the gmulatiun monitor. Yog must declare a ‘
: register buffer for storing the coprocessor register values, modify
L two table entries, and provide register buffer read/write routines
for each coprocessor register set that the emulation monitor will
access.

Defining a A coprocessor register buffer must be allocated in the emulation
Coprocessor monitor for each custom coprocessor you use with the emulator.
Register Buffer The emulator uses this buffer for storing register values read from
or written to the custom coprocessor. An example buffer
(MMU_REGS) is provided with the emulation monitor program.
This buffer is declared in the emulation monitor as follows:

MMU_REGS

SRP_REG DC.L 0

- DC.L 0

CRP_REG DC.L 0

DC.L 0

TC_REG pC.L 0

i TTO_REG DC.L 0
TT1_REG DC.L 0

MMUSR_REG DC.W 0

Locate this declaration in the emulation monitor program and
insert your custom coprocessor register buffer declarations
immediately following it in the emulation monitor. For example, if
you are using an MC68882 coprocessor in your target system, you
might add the following register buffer declaration:

FPU_882_REGS

FP_REG DS.L 24
CONTROL_REG DC.L 0
STATUS_REG DC.L 0
IADDR_REG DC.L 0

FPU_882_END

Custom Coprocessors 8-9

Modifying The After declaring your register buffers, you need to modify the
MON CPU REG- MON_CPU_REGISTERS table. This table has entries labeled

ISTERS Table 'COPROC_REG_n", where n is the coprocessor identification
number. The coprocessor identification numbers specified in the ‘
format file must have their corresponding table entry set to point J
to a buffer that will be used to transfer the register data to and
from the monitor. These are the buffers that you declared in the
previous section. The default MON_CPU_REGISTERS table
provided with your emulation monitor is shown in the following
listing:

MON_CPU_REGISTERS

COPROC_REG_0 DC.L MMU_REGS
COPROC_REG_1 DC.L 0
COPROC_REG_2 DC.L 0
COPROC_REG_3 DC.L 0
COPROC_REG_4 DC.L]
COPROC_REG_5 DC.L 0
COPROC_REG_6 DC.L o
COPROC_REG_7 DC.L 0

For example, if you want to add an FPU in your target system at ‘
coprocessor address 1, vou might want to modify the J
MON_CPU_REGISTERS table as follows:

MON_CPU_REGISTERS

MMU_851_ REGS
FPU_882 REGS

COPROC_REG_0
COPROC_REG_1

COPROC_REG 2

COPROC_REG 3

COPROC_REG_4

COPROC_REG_5

COPROC_REG_6

COPROC_REG_7

RBRRRRES

[l ol Nl ol ol ol
[=N-Ne NN N

8-10 Custom Coprocessors

&

&

Modifying The
MON_ALT _REGISTERS
Table

Writing Coprocessor
Copy Routines

The second table you must change is

under the symbol

"MON_ALT_REGISTERS?". This table has entries labeled
"COPROC_LOAD_n", where n is the coprocessor identification
number. These entries point to a coprocessor’s read/write routine.
An example read/write routine (FPU_881_COPY) is provided in
the emulation monitor for use with an external FPU. The default

MON_ALT_REGISTERS table provided with your emulation
monitor is shown in the following listing:

MON_ALT_REGISTERS

COPROC_LOAD_O0 DC.W
COPROC_LOAD_1 DC.W
COPROC_LOAD_1 DC.W
COPROC_LOAD_2 DC.W
COPROC_LOAD_3 DC.W
COPROC_LOAD_4 DC.W
COPROC_LOAD_5 DC.W
COPROC_LOAD_6 DC.W
COPROC_LOAD_7 DC.W

MMU_COPY-MON_ALT REGISTERS

INVALID_CP_ID-MON_ALT REGISTERS
INVALID CP_ID-MON_ALT REGISTERS
INVALID_CP_ID-MON_ALT_REGISTERS
INVALID_CP_ID-MON_ALT REGISTERS
INVALID_CP_ID-MON_ALT_REGISTERS
INVALID_CP_ID-MON_ALT REGISTERS
INVALID_CP_ID-MON_ALT REGISTERS
INVALID_CP_ID-MON_ALT REGISTERS

If you want to use a FPU in your target system as in the previous
example, you would modify the MON_ALT_BUFFER table as

follows:

MON_ALT_REGISTERS

COPROC_LOAD_O DC.W _

COPROC_LOAD_1 DC.W FPU_882
COPROC_LOAD_1 DC.W INVALID
COPROC_LOAD_2 DC.W INVALID
COPROC_LOAD_3 DC.W INVALID
COPROC_LOAD_4 DC.W INVALID
COPROC_LOAD_5 DC.W INVALID
COPROC_LOAD_6 DC.W INVALID
COPROC_LOAD_7 DC.W INVALID

MMU_COPY-MON_ALT REGISTERS

COPY-MON_ALT_REGISTERS
CP_ID-MON_ALT REGISTERS
CP_ID-MON_ALT REGISTERS
CP_ID-MON_ALT REGISTERS
CP_ID-MON_ALT REGISTERS
CP_ID-MON_ALT_REGISTERS
CP_ID-MON_ALT REGISTERS
CP_ID-MON_ALT REGISTERS

where FPU_882_COPY is the copy routine you have written for

your FPU registers.

The coprocessor copy routine must both read from and write to the
coprocessor registers. If the emulation monitor symbol
"MON_COMMAND" contains the value "6", then the routine
should perform a read into the register data buffer specified above.
If the symbol = 7, the routine should write the register set using

the values in the register data buffer.

Custom Coprocessors 8-11

An external FPU read/write routine (FPU_882_COPY) is shown
in the following listing. The external FPU copy routine provides
you with a good example of how to write your copy routine.

HRAAAA N AE AR AR AR A AT AR AN AR AR A AR AR AR AR R AR AR AAR AN AN AR AR AR N R A AR TR NN NN

FPU_881_COPY is an example routine that transfers the FPU registers
to/from the FPU_881 REGS data area. This code is commented out since
there is no coprocessor in the emulator as shipped.

FPU_881_ COPY may be used as an example load/unload routine for
other coprocessors.

If this code is activated by uncommenting it, then an entry of the form
COPROC_LOAD_1 DC.W FPU_881_COPY-MON_ALT REGISTERS

should be placed in the MON_ALT REGISTERS table above.

The block that defines FPU 881 REGS in the data segment must also be
uncommented and an entry placed in the appropriate COPROC_REG_n

variable e. g.

COPROC_REG_1 DC.L FPU_881_ REGS

* % % % * % % % * * % % * % F * * * * *

*

i 2222222 2222222222222 22222 R 22 22 22 2 2 X 22222 22 X2 222 X2 R 22X 22222 2 X2 X222 X222 XX 22
*FPU_881_COPY

* CMPI.W #READ_ALT_REGISTERS,MON_COMMAND

* BEQ.B FPU_881_READ

*

*FPU_881 WRITE

** Jocal copy of FPU data -- FPU

* LEA FPU_881_REGS,A0

* FSAVE -(sP) ~

* FMOVEM.X (AO0)+,FPO-FP7

* FMOVEM.L (A0)+,CONTROL/STATUS/IADDR
* FRESTORE (SP)+

* BRA.W LOOP_REENTRY

*

*FPU_881_ READ
** FPU -- local copy of FPU data

* LEA FPU_881 END,A0

* FSAVE -(sP) ~

* FMOVEM.L CONTROL/STATUS/IADDR,-(AO)
* FMOVEM.X FPO-FP7,-(A0)

* FRESTORE (SP)+

*

BRA.W LOOP_REENTRY

LA AR SRR Rl R iR 2Rt X R 22X 2 2

*
* Custom coprocessor register load/unload routines (if any) should

* be inserted into the monitor here. Please note that the default

* coprocessor id for the assembler is 1. 1In order for the assembler
* to generate the correct code for other ids, the assembler flag

* "FOPT ID=n", n=0-7, should be set appropriately.

*

*

22 A2 2222222222222t At i i 2 2 2222l 22 2222 AR R S S

8-12 Custom Coprocessors

Answering
- Emulation
L Coprocessor
Configuration
Questions

After modifying the emulation monitor, you must reassemble the
emulation monitor and relink your emulation monitor with your
user file.

The final step in setting up your 68030 emulator to use custom
COprocessors is to answer the emulation configuration questions
relating to custom coprocessors. In the default emulation
configuration, you will be asked the question:

Any custom registers?
Answer yes 10 enable use of custom coprocessors.

If you answered "yes" to the above question, the next question will
be:

Name of custom register format file?
Enter the full pathname of your custom register format file.

Complete the remainder of the emulation configuration questions
and save your changes to a configuration file. You are now ready to
run emulation using custom COprocessors.

A complete and detailed description of the emulation
configuration questions is given in chapter 4.

Custom Coprocessors 8-13

Notes

8-14 Custom Coprocessors

& Using Simulated 1/0O And Simulated Interrupts

Overview This chapter provides the following information:

s A description of how to configure simulated I/O, with a
section on simulated I/O restrictions.

s A discussion of simulated interrupts which includes:
- How simulated interrupts functions.

- Simulated interrupts versus real interrupts.

- Simulated interrupt configuration.

“ a A description of how to modify the monitor to use
simulated interrupts.

Note i Simulated I/O will work with either the foreground or the
background monitor. Simulated interrupts will work only with the
foreground monitor. When the MMU is enabled, all addresses
used for the simulated I/O configuration must be mapped
transparently. In a target system, it is expected that I/O space will
be mapped transparently.

Simulated 1/O & Interrupts 9-1

1Configuring The simulated I/O subsystem must be set up by answering a series

i of configuration questions. Your answers to these questions enable
SlmUIated |/0 simulated I/O, setthe control addresses, and define files used for

standard I/O. ‘J

Detailed information on using simulated I/O with the emulator is
provided in the HP 64000-UX Simulated 1/O Reference Manual.

Modify simulated I/O configuration? yes (no)

no Answering no causes the simulated I/O questions to be
skipped. The current simulated I/O configuration is not
modified.

yes Answering yes enables you to modify the simulated I/O

configuration. The following questions are asked.
Enable polling for simulated 1/0? no (ves)

. no Prevents the emulation software from reading the control
address for simulated I/O commands. Answering no to this
question enables you to disable simulated I/O while J
maintaining the current simulated 1/O configuration.
Later, when you need to enable simulated 1/O, you can do
so without having to re-enter control addresses or the file
names for standard input, standard output, and standard
error output. Answering no also causes the remaining
simulated 1/O questions to be skipped.

yes Causes the emulation software to frequently read the
control address to determine if the user program has
requested any simulated I/O commands. Answering yes
causes the following questions to be asked.

Function code data space? none (SUP_DATA) (USR_DATA)

This question asks you to specify the data space where the simio
control addresses are located.

If during memory configuration, you specified modify
defined_codes none, you should use the default answer (none) here.

9-2 Simulated I/O & Interrupts

If you specified modify defined_codes all, you should select
SUP_DATA or USR_DATA as appropriate for your system.

If you specified modify defined_codes prog_data, you should select
USR_DATA.

Simio control address 1? SIMIO_CA_ONE (<Addr>)
Simio control address 2? SIMIO_CA_TWO (<Addr>)
Simio control address 3? SIMIO_CA_THREE (<Addr>)
Simio control address 4? SIMIO_CA_FOUR (<Addr>)
Simio control address 5? SIMIO_CA_FIVE (<Addr>)
Simio control address 67 SIMIO_CA_SIX (<Addr>)

The symbol SIMIO_CA_ONE is the default symbol associated
with the first simulated I/O Control Address. The default symbol
may be replaced with any valid symbol or an absolute address. If a
symbol is specified, polling of that control address will not begin
until a file containing that symbol is loaded. If an absolute address
is specified, polling of that address will begin immediately.

The control address must be loaded into memory space assigned as
RAM. User programs will run faster if the control address is
located in emulation memory. Using target RAM causes the
emulator to break into the monitor program every time the control
address is polled for simulated I/O commands or data.

The following questions relate to the files associated with the three
reserved file names "stdin”, "stdout”, and "stderr".

File used for standard input? /dev/simio/keyboard (<FILE>)
File used for standard output? /dev/simio/display (<FILE>)
File used for standard error? /dev/simio/display (<FILE>)

The default answers for these questions are "/dev/simio/keyboard",
"/dev/simio/display”, and "/dev/simio/display" respectively.

These files are not opened until Open (90H) is called with the file
names "stdin", "stdout", and "stderr". These files are provided to
allow easy redirection of input and output from the keyboard or
display to a file or device without modifying the user program.
(The compiler standard I/O libraries may open some or all of these
reserved files automatically if simulated I/O is used. For more
deztails, see the documentation on the simulated 1/O libraries for
the compiler you are using.)

Simulated 1/O & Interrupts 9-3

Restrictions On Restrictions on the use of simulated 1/O are:
Simulated 1/0

m There is a limit of 12 open files at any one time. J

s There can only be four active simulated I/O processes at
any one time.

s When using MMU, all simulated I/O control addresses
must be mapped 1:1.

a When using MMU, the memory for simulated I/O must
always be accessible from the supervisor state of the
processor.

Since any simulated I/O file that is opened is associated with a file
descriptor, opened files are independent of the control address. Up

to 12 files can be opened with a single control address (CA). A

total of six control addresses are allowed so that you can execute .
simulated I/O commands concurrently. Remember, a maximum of u
12 simulated I/O files (between the six control addresses) may be

open at any one time.

9-4 Simulated I/O & Interrupts

C

Simulated
Interrupts

How Does A
Simulated Interrupt
Function?

Simulated interrupts enable you to test software which depends
upon the occurrence of preemptive interrupts using out-of-circuit
emulation. The simulated interrupt facility is enabled by writing a
value of Offh to the simulated interrupt control address. The
control address is defined during the emulation configuration
session. The simulated interrupt facility, when enabled, generates
approximately six interrupts per second, depending on what other
emulation activities are occurring concurrently, i.e., simulated I/O
and display updates.

The simulated interrupt facility can be used to test applications
such as a preemptive scheduler in a multitasking system or
interrupt driven I/O. Interrupt driven I/O can be simulated by
executing simulated I/O commands when a simulated interrupt
occurs.

An interrupt is a request by an external device that causes the
processor to temporarily suspend normal execution in order to
service the interrupting device. Normal execution resumes after the
device has been serviced. Interrupts are asynchronous to normal
execution. To simulate this action out of circuit, the emulation
software running on the host system acts as the external device
requesting service.

There are only two ways that the emulation software can interrupt
the emulator. The first is to reset the processor in the emulator.
Since a reset causes the current instruction counter to be lost,
continuation of program execution is not possible. Therefore, reset
is not usable for simulated interrupts. The second way to interrupt
the emulator is to break to the monitor. This is the method used to
implement simulated interrupts. Therefore, the emulation monitor
must be loaded in order to use simulated interrupts.

The simulated interrupt begins when a value of Offh is written into
the simulated interrupt control address. The emulation software
polls this address just as it polls simulated I/O control addresses.
When emulation finds the value Offh at the simulated interrupt
control address, it causes a break to the emulation monitor.

Simulated 1/O & Interrupts 9-5

The emulation monitor saves all registers as a normal part of the
monitor entry sequence. The emulation monitor then loops,
waiting for a command. The emulation software then sends a
simulated interrupt command to the emulation monitor. The
emulation monitor supplied with the emulator contains only a stub
which immediately indicates completion.

However, a simulated interrupt is user definable. To create your
own simulated interrupt, you must modify the emulation monitor.
The modification must include the interrupt code needed to
perform the action you want to happen when an interrupt occurs.
Be aware of the time constraints discussed in the following section
"Simulated Interrupts Versus Real Interrupts”. A typical action is
a TRAP instruction which vectors to your interrupt handler. See
the example program given in figure 9-1. This feature is not
available without modifying the monitor. For information on
modifying the monitor for simulated interrupts, refer to the section
of this chapter entitled "Modifying the Monitor to Use Simulated
Interrupts”.

Finally, after the interrupt is serviced, emulation sends the exit

monitor command to the emulation monitor. The exit monitor u
command restores the registers that were saved upon entry to the

monitor, which causes normal program execution to continue at

the point where it was interrupted.

Simulated Interrupts There are some important differences between simulated

Versus Real Interrupts interrupts and real interrupts. A simulated interrupt handler must
return within a fixed amount of time. Part of the simulated
interrupt configuration is the specification of the maximum
amount of time that emulation should wait for an interrupt handler
to complete execution. If the interrupt handler does not complete
within the specified time, emulation forces a break to the monitor,
reports a failure, and causes the simulated interrupt to terminate.
It is not al ways possible to wait for simulated 1/O to complete an
interrupt handler.

o

9-6 Simulated I/O & Interrupts

R R R R R EE x

*
*
*
*
*
*
*
*
*
*
*
*
*

This is a simulated interrupt test program.
The SIM_INTERRUPT command

of the monitor must be modified to execute a TRAP #14. Notice

that the SMIINT CA is enabled, then a delay loop is executed,

- INT_HANDLER increments the location
COUNTER to provide a count of the number of interrupts tha occurred.

TRAP #14 is pointed to INT HANDLER.

then SIMINT CA is disabled.

NOTE

Simulated interrupts must be enabled in the emulator configuration
and the control address must be set to SIMINT CA.
number of interrupts occuring, use the following command:

display memory COUNTER thru COUNTER+7 blocked long repetitively

L2222 SRR RS2SRRSR st R R XX XX R X 'R

The vector for

*
*
*
*
*
*
*
*
To observe the *
*
*
*
*

iSet up a memory location to

be the control address.

;Set up a memory location that

the program writes to.

;Notice that the address of the

interrupt handler routine is
contained in the vector address
for a TRAP #14.

;Clear the contents of the counter

address.

;Enable simulated interrupts.
;Set up a delay counter value.
;Delay for a while.

;Disable simulated interrupts now.
;Continuous loop.

;This is the interrupt handler

routine.

;Increment the contents of COUNTER.
;Return from exception.

CHIP 68030
XDEF START,END1, INT_HANDLER
XDEF LOOP, SIMINT_CA, COUNTER
SECTION INTR_DATA
SIMINT_CA DC.L 0
;
COUNTER DC.L 0
;
ORG 038H ;TRAP #14
DC.L INT_HANDLER
;
;
i
SECTION INTR_PROG
START MOVE.L #0,COUNTER
;
MOVE.B #OFFH,SIMINT_CA
MOVE.L #O0FFFFFFFH,DO
LOOP SUBQ.L #1,D0
BNE LOOP
MOVE.B #0,SIMINT CA
END1 BRA.B ENDI
INT_HANDLER
H
ADDQ.L #1,COUNTER
RTE
END START

.
I
.
'

;Define the transfer address so that

you may run or step from
transfer_address.

Figure 9-1. Simulated Interrupt Test Program

Simulated 1/O & Interrupts

9-7

While the emulation software may appear to be doing several

things concurrently, for example; polling up to six simulated I/O

control addresses, polling a simulated interrupt control address,

and updating a display, it is in fact only a single HP-UX task i
performing each of these emulation tasks sequentially. This means J
that the simulated interrupt must complete before any of the other

tasks can begin. That is a motivation for limiting the execution of a
simulated interrupt handler to a very short period.

If the handler is permitted to execute for an indefinite period of
time, it is possible for the entire emulation program to be ’locked
up’ by an interrupt handler that is waiting for an event that never
occurs.

The final difference between simulated interrupts and real
interrupts is that it is not possible for a simulated interrupt to
occur while a simulated interrupt is being handled or while the
emulator is executing in the monitor.

Simulated Interrupt The simulated interrupt facility is not available in real time mode.
Configuration If real time mode is enabled, the simulated interrupt configuration
questions are not asked. When real-time mode is not enabled, the J
command line displays the following question:

Modify simulated interrupt configuration? no (ves)
Press Return for the default (no) response.
Press yes Return to modify the simulated interrupt configuration.

If you answer no, the questions will be skipped. If you answer yes,
the simulated interrupt questions will be asked. The simulated
interrupt questions are:

Enable polling for simulated interrupts? no (yes)
no if no is selected, emulation does not poll a simulated
interrupt control address and never causes a simulated
interrupt to occur.

yes if yes is entered, the configuration questions are asked: ‘J

9-8 Simulated I/O & Interrupts

Function code data space ? none (SUP_DATA) (USR_DATA)

This question asks you to specify the data space where the
simulated interrupt control address is located.

If during memory configuration, you specified modify
defined_codes none, you should use the default answer (none) here.

If you specified modify defined_codes all, you should select
SUP_DATA or USR_DATA as appropriate for your system.

If you specified modify defined_codes prog_data, you should select
USR_DATA.

Simulated interrupt control address? SIMINT_CA (<Addr)

Enter the value of the simulated control address in response to this
question. The value may be a symbolic value or a numeric value.
The default is the symbolic value SIMINT_CA.

If you are not linking the emulation monitor program with your
target system program, you must be careful when using a symbolic
control address such as SIMINT_CA.

The monitor program will store the location of the control address
each time that it executes. If you modify your program, and then
reload the program without loading the monitor, there is a chance
that the symbolic control address will have changed. The monitor
program will not recognize a change unless you reload it.

If you do not reload the monitor each time that you load the target
system program, you must ORG the control address to a specific
location. If you ORG the address, make sure that you modify the
"Simulated interrupt control address" configuration question to
point to the new address.

Another solution is to link the monitor program with your
program. This causes the monitor 10 recognize any new address
because it loads with your program.

A similar consideration occurs if you modify the control address
configuration question. If you are running your program, and then
modify the configuration, you must reload your program (and the
monitor). Otherwise, the system software does not recognize the
new control address and may write to an unknown address.

Simulated /O & Interrupts 9-9

Maximum delay (in milliseconds) for simulated interrupt? 25
(<NUMB>)

The final simulated interrupt configuration question requests the

time, in milliseconds, to allow a simulated interrupt handler to

execute before assuming that execution of the handler has failed J
and generates a break to the monitor.

The default time is 25 milliseconds. The default time is
approximately equal to the time required to initiate a simulated
interrupt and check for its completion on an HP 9000. Even
though the resolution of this specification is one millisecond,
because of the time that is required to check for completion, the
effcctive resolution is approximately 15 milliseconds. For example,
changing the maximum delay from 25 milliseconds to 26
milliseconds probably has no effect on execution. Emulation does
not always wait for the maximum delay to pass. If the interrupt
handler completes any time before the maximum delay time,
emulation forces an immediate return to the interrupted code.

The input to this question is limited to the range of 1 through

10000. Therefore, the maximum delay is 10 seconds. This upper

limit was chosen to prevent ’locking up’ emulation by an interrupt wJ
handler that fails to terminate.

If the user’s interrupt handler routine exceeds the maximum delay
allowed, the following error message appears on the status line:
"ERROR: Simulated interrupt failed to complete".

Restrictions On Restrictions on the use of simulated interrupts are:
Simulated Interrupts

a Simulated interrupts are not supported by the background
monitor.

s When using MMU, all simulated interrupt control
addresses must be mapped 1:1.

a When using MMU, the memory for simulated interrupts J
must always be accessible from the supervisor state of the
processor.

9-10 Simulated I/O & Interrupts

Modifying The
Monitor To Use
Simulated
Interrupts

The user defined simulated interrupt function allows you to
implement interrupt driven code on an emulator which is out of
circuit. This command will typically cause a branch to your
interrupt handler by means of a TRAP instruction. This command
must set the boolean variable SIM_INTS_ENABLED to TRUE
and copy the control address to SIM_INT_CA so that the monitor
can disable simulated interrupts on entry. If simulated interrupts
are not disabled on entry to the monitor, the break softkey will not
function.

The monitor program must be modified before you can use the
simulated interrupt feature. Find the following block of code
shown in figure 9-2 in the monitor program.

The TRAP #14 instruction will cause the interrupt routine to be
serviced. You must uncomment the instruction or, if you wish to
use a different instruction, you must provide the instruction in the
same area of the monitor as the TRAP #14 instruction. If you use
another TRAP or different instruction, you must be sure that the
routine will be found by the monitor. For example, if you use the
TRAP #14 instruction, you must make sure that the address
information for your exception routine is in the vector table at
address 038h.

When you are finished editing the emulation monitor, be sure to
save your changes. It will be necessary to re-assemble and relink
the monitor in order to use the simulated interrupts feature.

Simulated I/O & Interrupts 9-11

L2222 22 2222222222222 R 2 22 2 2 X 2232 222 2222 2 22 X222 22 X2 R X3

COMMAND 9 ... USER DEFINED SIMULATED INTERRUPT FUNCTION

THE USER DEFINED SIMULATED INTERRUPT FUNCTION ALLOWS THE USER TO
IMPLEMENT INTERRUPT DRIVEN CODE ON AN EMULATOR WHICH IS OUT OF
CIRCUIT. THIS COMMAND WILL TYPICALLY CAUSE A BRANCH TO THE USERS
INTERRUPT HANDLER VIA A TRAP INSTRUCTION. THIS COMMAND MUST SET
THE BOOLEAN SIM_INTS_ ENABLED TO TRUE AND COPY THE CONTROL ADDRESS
TO SIM_INT CA SO THE MONITOR CAN DISABLE SIMULATED INTERRUPTS ON
ENTRY. IF SIMULATED INTERRUPTS ARE NOT DISABLED ON ENTRY TO THE
MONITOR, THE break SOFTKEY WILL NOT WORK.

THE 64000 WILL SET UP MONITOR CMD_BUF; SCR_ADDR TO Simulated
interrupt control address and issue COMMAND 8009H.

WHEN THE COMMAND IS COMPLETE, THE 64000 EXPECTS THE PROCESSOR
TO BE IN MONITOR.

* % % % * F F ¥ F ¥ F F F F ¥ ¥ * %

SIM_INTERRUPT

* A NON-ZERO VALUE INDICATES THAT SIMULATED INTERRUPTS ARE ENABLED
MOVE.B #O0FFH, SIM_INTS_ENABLED

* STORE OFFH AT SIM_INT CONTENTS TO KEEP SIMULATED INTERRUPTS ENABLED
MOVE.B #0FFH, SIM_INT CONTENTS

* STORE THE INTERRUPT CONTROL ADDRESS THAT WAS PASSED BY THE 64000
MOVE.L SRC_ADDR, DO
MOVE.L DO,SIM_INT CA

* INSTRUCTIONS TO BRANCH TO THE USERS INTERRUPT HANDLER GO HERE
* THIS WILL TYPICALLY BE A TRAP INSTRUCTION.

* TRAP #14
JMP LOOP_REENTRY

L2222 222222222 R 22222222t 2ttt X2 i 82 X2 a2 22 R X2 2]

Figure 9-2.Simulated Interrupt Function Code

9-12 Simulated 1/O & Interrupts

10

\' How The Emulator Works

Overview This chapter describes how the following emulator functions work:

The are_you_there monitor function.

The run command.

Software breakpoints.

Single stepping with foreground monitor.
Single stepping with background monitor.
Target memory transfers.

Displaying CPU registers.

Modifying CPU registers.

How Emulation Works 10-1

Introduction

Note d

10-2 How Emulation Works

The information provided in this chapter will give you a better
understanding of how the emulator works and how the emulator
interacts with your target system. This information, along with the
information provided in chapter 6, Using the Emulator, should
help you use the emulator more effectively and avoid problems that

can occur when the emulator is used with a target system (in-circuit
emulation mode).

The algorithms described apply to both background and
foreground monitors unless otherwise specified.

C

Are You There
Function?

The "are_you_there" monitor function is the means by which the
host computer determines whether or not the 68030 CPU is
executing the monitor at a particular time. It is used primarily to
display the "running" and "running in monitor" status line messages.

It also performs the important function of checking to see that a
break request (level 7 interrupt) resulted in a successful entry to
the monitor. The host computer issues break requests for all
emulation functions requiring the use of the monitor. If the break
fails, the host computer is unable to complete the user specified
command, and displays a "cannot break into monitor" message.

The following algorithm describes how the are_you_there function
works.

1. The host computer writes the value 8000h (bit 15 = 1) to
the monitor data location MONITOR_CONTROL.

2. If the emulation monitor is executing, and has completed a
previous command, it executes an idle loop. In the idle
loop, the monitor is waiting for a user command or for the
host to make an "exit monitor" request.

If the idle loop is executing and MONITOR_CONTROL is
set to 8000h by the host, the monitor responds by clearing

bit 15 (MONITOR_CONTROL = 0), and returning to the
idle loop.

If the 68030 CPU is executing in the user program, bit 15
is not cleared, leaving MONITOR_CONTROL set to
8000h.

3. The host computer reads monitor data location
MONITOR_CONTROL.

If bit 15 of MONITOR_CONTROL = 0, the monitor is executing.
If bit 15 of MONITOR_CONTROL = 1, the user program is
executing.

How Emulation Works 10-3

The Run
Command

Run From Command

10-4 How Emulation Works

The run command starts execution of your user program. The
command allows you to run from a specified address, run until a
specified address is executed, or run from a start address until a
specified address. The following algorithms describe how the run
command is implemented.

When you execute the command "run from
{SUPERVISOR_STATE | USER_STATE} <address>", the
following algorithm is executed.

1. The host computer initiates a break to the monitor (level 7

interrupt).

2. The host verifies that the 68030 CPU is executing in the

emulation monitor. If the monitor is not executing, the
error message "cannot break into monitor" is displayed.

3. The host modifies the monitor copy of the return address

obtained on entry to the monitor from the level 7
interrupt. It sets the return address to the value specified
in the run command.

4. The host modifies the monitor copy of the CPU status

register obtained on entry to the monitor from the level 7
interrupt.

a. If the command specifies "SUPERVISOR_STATE",
the host sets the SUPERVISOR/USER bit to 1
(supervisor) so that the 68030 CPU will execute in
supervisor mode on exit from the monitor.

b. If the command specifies "USER_STATE", the host
sets the SUPERVISOR/USER bit to 0 (user) so that
the 68030 CPU will execute in user mode on exit from
the monitor.

. The host initiates a return (RTE) to the user program

from the monitor by writing the "exit monitor" command
(value 8001H) to monitor variable
MONITOR_CONTROL.

o

»)

6.

The host verifies that the 68030 CPU has exited the
monitor. If the emulator monitor is still executing, the
error message "monitor did not respond to exit request” is
displayed.

Run Until Command When you execute the command "run until <address>", the
following algorithm is executed.

1.

The host computer initiates a break to the monitor (level 7
interrupt).

. The host verifies that the 68030 CPU is executing in the

emulation monitor. If the monitor is not executing, the
error message "cannot break into monitor" is displayed.

. The host computer reads the 16-bit word at <address>

and saves it internally.

. The host insciis a BKPT instruction at <address>. The

breakpoint is marked internally as a one-shot breakpoint.

. The host initiates a return (RTE) to the user program

from the monitor by writing the "exit monitor" command
(value 8001H) to MONITOR_CONTROL.

. The host verifies that the 68030 CPU has exited the

monitor. If the emulator monitor is still executing, the
error message "monitor did not respond to exit request” is
displayed.

Run From ... Until When you execute the command "run from
Command {SUPERVISOR_STATE | USER_STATE} <address1> until
<address2>", the following algorithm is executed.

1.

2.

The host computer initiates a break to the monitor (level 7
interrupt).

The host verifies that the 68030 CPU is executing in the

emulation monitor. If the monitor is not executing, the
error message "cannot break into monitor" is displayed.

How Emulation Works 10-5

10-6 How Emulation Works

. The host computer reads the 16-bit word at <address2>

and saves it internally.

. The host inserts a BKPT instruction at <address2>. The

breakpoint is marked internally as a one-shot breakpoint.

. The host modifies the monitor copy of the return address

obtained on entry to the monitor from the level 7
interrupt. It sets the return address to the value
<address1> specified in the run command.

. The host modifies the monitor copy of the CPU status

register obtained on entry to the monitor from the level 7
interrupt.

a. If the command specifies "SUPERVISOR_STATE",
the host sets the SUPERVISOR/USER bit to 1
(supervisor) so that the 68030 CPU will execute in
supervisor mode on exit from the monitor.

b. If the command specifies "USER_STATE",then the
host sets the SUPERVISOR/USER bit to 0 (user) so
that the 68030 CPU will execute in user mode on exit
from the monitor.

. The host initiates a return (RTE) to the user program

from the monitor by writing the "exit monitor" command
(value 8001H) to MONITOR_CONTROL.

. The host verifies that the 68030 CPU has exited the

monitor. If the emulator monitor is still executing, the
error message "monitor did not respond to exit request” is
displayed.

.

@

Software
Breakpoints

Note d

Setting A Software
Breakpoint

The following sections describe how the software breakpoint
function is implemented in the 68030 emulator. Software
breakpoints enable you to enter software breaks into your user
program as an aid in debugging your user software. Software
breakpoints are also used in the implementation of the run until
command.

When using the foreground monitor, the exception vector table is
referenced only in the case of permanent breakpoints, which make
use of the trace exception vector (VBR +24h). If one-shot
breakpoints are working correctly, but permanent breakpoints fail,
verify that the trace exception vector properly references the
monitor (memory location MONITOR_ENTRY).

When you execute the command "modify sw_breakpoint set
{permanent | oneshot} <bkpt_addr>", the system executes the
following algorithm.

1. The host computer initiates a break to the monitor (level 7
interrupt).

2. The host computer detects that we actually got to the
monitor, issuing an error message "cannot break into
monitor” if not.

3. The host gets the 16-bit word at <bkpt_addr> and saves it
in ORIG_INST in host system memory.

4. The host inserts the BKPT instruction at <bkpt_addr>.

5. The host initiates a return (RTE) to the user program
from the monitor.

6. Host verifies that the emulation monitor was exited, and
issues an error message if not.

How Emulation Works 10-7

Executing A Software When the 68030 CPU executes the BKPT instruction specified
Breakpoint during emulation configuration, the following events occur:

1. Emulation circuitry detects the occurrence of a BKPT
instruction and responds by jamming into the emulation '
monitor at SWBK_ENTRY.

Note i Only the BKPT instruction specified during emulator
configuration is recognized by the emulator.

2. The host detects that a breakpoint was executed and issues
the message "breakpoint hit at address XXXX."

3. The host restores the original instruction saved in
ORIG_INST to <bkpt_addr>.

4. The emulation monitor enters the idle loop, waiting for a
user command.

>

Executing A Run When you specify a run command after executing a software
Command After breakpoint, the following events occur:

Executing A Software
Breakpoint

n "

run
1. The host computer determines if the last BKPT instruction
detected is permanent or one-shot.

2. If the breakpoint is one-shot, the emulation monitor
returns (RTE) to the user program to begin execution at
address BKPT_ADDR.

3. If the breakpoint is permanent, the 68030 CPU is
instructed to single-step the instruction at BKPT_ADDR
and return to the monitor.

10-8 How Emulation Works

4. The host computer reads the emulation monitor variable
MONITOR_CONTROL to verify that the emulator is
executing the emulation monitor. If the emulator is not
executing in the monitor, the message "cannot break into
monitor" is displayed and the run command is aborted.

5. The host resets the breakpoint and returns (RTE) to the
user program as described in steps 2 through 6 of the
"Setting A Software Breakpoint" section.

“run from ADDR"

1. The host computer determines if the last BKPT instruction
executed was permanent or one shot.

2. If the breakpoint is oneshot, the emulation monitor
returns* (RTE) to the user program and begins execution
at address ADDR.

3. If the breakpoint is permanent and the "run from" address
is set equal to the breakpoint address BKPT _ADDR, the
68030 CPU is instructed to single-step the instruction at
BKPT_ADDR and return to the emulation monitor.

4. The host resets the breakpoint as described in steps 2
through 4 of the "Setting A Software Breakpoint" section
and then returns* (RTE) to the user program. User
program execution begins at ADDR.

*The returns to the user program are accomplished by
modifying the stack so that the RTE instruction in the
monitor will return to address ADDR, rather than the
address originally contained on the stack.

How Emulation Works 10-9

Single Stepping The following algorithm describes how the single-stepping function

H is implemented in the forground monitor. The single-step function
Wlth. Foreground uses the trace exception vector in the exception vector table. If this
vector + is set incorrectly, single stepping will fail.
Monitor VBR+24h) is set i ly. single stepping will fail

When the user executes a step command, the following events
occur:

1. The host computer initiates a break to the emulation
monitor program by means of a level 7 interrupt.

2. The host computer reads the emulation monitor variable
MONITOR_CONTROL to verify that the emulator is
executing the emulation monitor. If the emulator is not
executing in the monitor, the message "cannot break into
monitor" is displayed and the step command is aborted.

3. The host instructs the monitor to set the trace bits in the
68030 microprocessor status register (T1=1, T0=0). This
enables the 68030 trace function. u

4. If the user specified a "from <address>" the host sets the
program counter value on the return stack to <address >
so that, upon returning from the monitor to the user
program, program execution will begin at <address>.

5. The host initiates a return (RTE) to the user program
from the monitor.

6. The 68030 CPU executes a single instruction, and takes the
trace exception which reenters the monitor at
MONITOR_ENTRY. Note that the trace exception vector
(VBR+24h) must reference MONITOR_ENTRY for this
to function correctly.

—
’

7. The host verifies that the emulator is executing in the \ ’
monitor as described in step 2.

10-10 How Emulation Works

8. The host instructs the monitor to clear the trace bits in the

68030 microprocessor status register (T1 = 0, TO = 0).
This disables the 68030 trace function.

9. The emulation monitor enters an idle loop, waiting for a

user command.

Single Stepping The following algorithm describes how the single-stepping function
With Backgroun d is implemented in the background monitor.

Monitor

When the user executes a step command, the following events

occur:

1.

The host computer initiates a break to the emulation
monitor program by means of a level 7 interrupt.

The host computer reads the emulation monitor variable
MONITOR_CONTROL 1o verify that the emulator is
executing the emulation monitor. If the emulator is not
executing in the monitor, the message "cannot break into
monitor" is displayed and the step command is aborted.

The host puts the emulator in "single step"” mode by setting
a control bit (STEP) to 1.

If the user specified a "from <address>" the host sets the
program counter value on the return stack to <address>
so that, upon returning from the monitor to the user
program, program execution will begin at <address>.

The host initiates a return (RTE) to the user program
from the monitor.

How Emulation Works 10-11

6. The STEP bit, being set to 1, initiates a BREAK action
after one instruction has been executed. This forces the
CPU to reenter the monitor at MONITOR_ENTRY.

7. The host verifies that the emulator is executing in the d
monitor as described in step 2.

8. The emulation monitor enters an idle loop, waiting for a

user command.
Target Memory The following section describes the two modes the emulator uses
Transfers to transfer data to and from target memory. In the automatic mode,

the emulation monitor always attempts to longword align the
transfer. Due to the dynamic bus sizing facility of the 68030, this
alignment improves total transfer time with 8 and 16-bit memory
systems, but is most effective with 32-bit memory systems. This
algorithm can be tuned to meet specific target system requirements.

Alternately, the display/modidy command can be issued so that all -
transfers can be made in a "byte", "word", or "longword" mode.

The "auto" mode is described below:

1. At the beginning of the transfer, the monitor examines the
lower two bits of the initial target system address to be
read from or written to.

a. If bit 0 of this address is 1, the monitor transfers a
single byte to or from the target system using a
MOVES.B instruction. Following this, the target
system address is incremented by one to reflect the
next address to be transferred.

b. If bit 0 of the initial target system address is O, the byte
transfer and address increment does not occur.

This first step causes the target system address to be u
aligned to a word address, where bit O of the address is 0.

10-12 How Emulation Works

2. The monitor examines bit 1 of the target system address.

a. If bit 1 of this address is 1, the monitor transfers a
single word to or from the target system using a
MOVES. W instruction. Then, the target system address
is incremented by two to reflect the next address to be

transferred.

b. If bit 1 of the initial target system address is 0, the word
transfer and address increment does not occur.

This step aligns the target system address to a longword
address, where bits 1 and 0 of the address are 0.

3. The target system address is now longword aligned; that is,
address bits 1 and 0 are both 0. The bulk of the transfer is
then carried out using longword transfers. The operation
of the transfer up to this point is summarized in figure 10-1.

Starti Add
Bits 1 and O

1 1 a
b.
c.
d.
e.

1 0 a.
b.
c.
d.
e.

[¢] 1 a.
b.
c
d.
e
f.
g.

0 0

QuUe

. Copy a byte to longword align

Increment target address by 1
Copy a longword

Increment target address by 4
Repeat steps "c¢" and "d"

Copy a word to longword align
Increment target address by 2
Copy a longword

Increment target address by 4
Repeat steps "c" and "d"

Copy a byte to word align
Increment target address by 1

. Copy a word to longword align

Increment target address by 2

. Copy a longword

Increment target address by 4
Repeat steps "e" and "f"

. Copy a longword

Increment target address by 4

. Repeat steps "a" and "b"

Figure 10-1. Target Memory Transers in Automatic Mode

How Emulation Works 10-13

4. After each longword transfer, the monitor examines the
number of bytes remaining in the transfer. If the number is
0, the transfer is complete, and the monitor returns to the
idle loop. If the number of bytes remaining to be copied is
less than 4 prior to a longword transfer, longword transfers
are no longer used, and control passes to monitor code
that finishes up the remaining bytes (3, 2 or 1) of the
transaction.

a. If 3 bytes remain, a word transfer followed by a byte
transfer is executed.

b. If 2 bytes remain, a single word transfer is performed.

c. If a single byte remains, a byte transfer is used. This
monitor function is summarized in figure 10-2.

y £ Byt c s £ ipti
4 a. Copy a longword

b. Increment target address by 4
c. Return to monitor idle loop

3 a. Copy a word
b. Increment target address by 2
c. Copy a byte
d. Increment target address by 1
e. Return to monitor idle loop

2 a. Copy a word
b. Increment target address by 2
c. Return to monitor idle loop

1 a. Copy a byte
b. Increment target address by 1
c. Return to monitor idle loop

0 a. Return to monitor idle loop

Figure 10-2. Monitor Operation At End Of Transfer

10-14 How Emulation Works

Displaying Target
Memory

When you execute a display memory command with an address
range mapped to target system memory, the emulation monitor
reads the specified areas of target memory and copies the memory
locations to an internal monitor buffer for transfer to the host
computer. This process is described in the following steps:

1. The host computer initiates a break to the monitor (level 7
interrupt).

2. The emulation monitor enters the idle loop, waiting for a
host command. The idle loop is located at monitor
program symbol MONITOR_LOOP.

3. The host computer detects that the 68030 CPU is
executing in the emulation monitor. If the CPU is not
executing in the monitor, the host issues the error message
"cannot break into monitor".

4. The host computer writes the mcmory transfer parameters
to designated monitor locations listed as follows:

Dascription Monitor
Location

Number of bytes to read..ieeeeecesescsescscssssns ««+PARM1
Starting address of target system read............ « « « PARM2
Function codes for target system read........cccee.. .PARM3
Starting address of monitor data buffer write........PARM4
Function codes for monitor data buffer write......... PARMS
AccesSs MOdE€.sesravsnsnns Ceesetstsesr sttt ssananns e+ o+ PARM6

moQaUDR

The monitor data buffer begins at monitor data symbol
MON_XFR_BUF and is always referenced with the
CPU_SPACE function code for the foreground monitor.

5. The host writes the "read user memory" command (8003H)
to MONITOR_CONTROL. This causes the monitor to
exit the idle loop and begin execution at monitor program
symbol COPY.

How Emulation Works 10-15

6. The monitor sets up the transfer according to the six
parameters listed above, and begins to copy target system
memory values to the monitor data buffer using the
algorithm described in the previous section. See the
emulation monitor listing for additional details. Look at
the monitor code following monitor program symbol
COPY.

7. The host computer detects that the transfer has completed
by observing a value of 0000H in MONITOR_CONTROL.
The host then reads and displays the information in the
monitor data buffer. If the display memory command
requested a display of more data bytes than the monitor
transfer buffer can hold, the host computer sets up a new
transfer for the remaining information by repeating the
steps beginning with step 4.

8. The host computer initiates a return (RTE) to the user
program from the monitor. This occurs as a result of the
host writing the "exit monitor” command (8001H) to
MONITOR_CONTROL. This operation does not occur if
the display memory command was issued while executing
in the emulation monitor.

Copying from Target The algorithm for copying data from target memory is identical to
System Memory that used when displaying target memory.

Modifying Target When you execute a modify memory command with an address
Memory mapped to target system memory, the emulation monitor writes to
the specified areas of target memory, copying data from the
emulation monitor data buffer. The data in the emulation monitor
buffer is put there by the host computer. The process for modifying
target memory is described in the following steps:

1. The host computer initiates a break to the emulation
monitor (a level 7 interrupt).

2. The monitor enters the idle loop, waiting for a command
from the host computer. The idle loop is located at
monitor program symbol MONITOR_LOOP.

10-16 How Emulation Works

3. The host computer detects that the 68030 CPU is
executing in the emulation monitor. If the CPU is not
executing in the monitor, the host issues the error message
"cannot break into monitor".

L 4. The host writes the memory transfer parameters to the
designated monitor PARM1 through PARMS.

5. The host writes the "write user memory" command
(8004H) to MONITOR_CONTROL. This causes the
monitor to exit the idle loop and begin execution at
monitor program symbol COPY.

6. The monitor sets up the transfer according to the six
parameters listed above, and begins to copy monitor data
buffer values to the target system memory using the target
memory transfer algorithm described previously. See the
emulation monitor listing for additional details. Look at
the monitor code following monitor program symbol
COPY.

b 7. the host determines that the transfer has completed by
observing a value of 0000H in MONITOR_CONTROL. If
the modify memory command requested a modify of more
data bytes than could be held by the monitor transfer
buffer, the host sets up a new transfer for the remaining
information by repeating the steps beginning with step 4.

8. The host initiates a return (RTE) to the user program
from the monitor. This results from the host writing the
"exit monitor" command (8001H) to
MONITOR_CONTROL. This operation does not occur if
the modify memory command was issued while executing
in the emulation monitor.

. Copying to Target The algorithm for copying data to target system memory is
‘) System Memory identical to that used when modifying target memory.

How Emulation Works 10-17

Displaying The When you execute a display registers cpu command, the following

CPU Registers algorithm is executed:

1. The host computer initiates a break to the monitor (a level u
7 interrupt).

2. The emulation monitor enters the idle loop, waiting for a
command from the host computer. The idle loop is located
at monitor program symbol MONITOR_LOOP.

3. The host detects that the 68030 CPU is executing in the
emulation monitor. If the CPU is not executing in the
monitor, the host issues the error message "cannot break
into monitor". The "are_you_there?" function is used to
determine whether or not the monitor is executing.

4. The host reads and displays the register image save area
that was constructed on entry into the monitor (i.e. the
monitor data area starting with symbol PCH and ending

with DFCT).)

5. The host initiates a return (RTE) to the user program
from the emulation monitor. This results from the host
writing the "exit monitor" command (8001H) to
MONITOR_CONTROL. This operation does not occur if
the display registers cpu command was issued while
executing in the emulation monitor.

10-18 How Emulation Works

¢

Modifying The
CPU Registers

When you execute a modify registers cpu <regname> to <value>
command, the following algorithm is executed:

1.

The host computer initiates a break to the emulation
monitor (a level 7 interrupt).

The monitor enters the idle loop, waiting for a command
from the host computer. The idle loop is located at
monitor program symbol MONITOR_LOOP.

The host detects that the 68030 CPU is executing in the
monitor. If the CPU is not executing in the emulation
monitor, the host issues the error message "cannot break
into monitor". The "are_you_there?" function is used to
determine whether or not the emulation monitor is
executing.

The host writes the modified register value to the
corresponding location in the register image save area
constructed on entry to the monitor (i.e. the monitor data
area starting with symbol PCH and ending with DFCT).

The host initiates a return (RTE) to the user program
from the emulation monitor. This results from the host
writing the "exit monitor" command (8001H) to
MONITOR_CONTROL. This operation does not occur if
the modify registers cpu command was issued while the
CPU was executing in the monitor.

When exiting the monitor, the register image save area is
read to reload all CPU registers with their original values
on initial entry to the monitor (see monitor program
symbol RTN3). Since the modify registers command
changes values in the register image save area, these new
values are loaded in the CPU registers on exit from the
monitor.

How Emulation Works 10-19

Notes

10-20 How Emulation Works

& Emulation Error Messages

&

68030 Emulation
Error Messages

Attempt to read
guarded memory,
addr = XXXX

Attempt to write
guarded memory,
addr = XXXX

cannot break into
monitor

This appendix contains a list of 68030 emulation error messages
with descriptions of the error and information on how to correct
the error, when appropriate. This list describes the most serious
emulation errors that you may encounter.

Messages are listed in alphabetical order.

This message appears when an attempt is made to display a
memory location mapped as "guarded” via the "display memory"
command. The offending address is displayed in the XXXX field.

This message appears when an attempt is made to modify a
memory location mapped as "guarded"” via the "modify memory"
command. The offending address is displayed in the XXXX field.

This message is displayed when the host expects to find the CPU
executing the monitor, but the "are_you_there?" function indicates
otherwise. This message occurs after issuing a command that
normally causes a break to the monitor. '

If SUPERVISOR_PROG and SUPERVISOR_DATA areas are
not overlayed for the emulation monitor, the "are_you_there?"
function cannot function properly, resulting in this error message.
If function codes are not in use, mapping overlays are not required.

To determine the cause of the failure, setup an analysis trace to
trigger on the acknowledge cycle for the level 7 interrupt:

trace trigger_on a= Offffffffh s= fcode CPU_SPACE

Error Messages A-1

Could not disable
breakpoint at
address XXXX

A-2 Error Messages

If the analyzer does not trigger, then it is likely that no level 7

interrupt was generated by the emulator. Check that the "Enable

emulator use of INT7?" configuration question has been answered

"yes". If so, a hardware error has occurred or the CPU is in a Reset,

halt or DMA state (in which case the CPU will not respond to the J
level 7 interrupt in a timely manner.

The tracelist should show an emulator generated jam cycle.
MONITOR_ENTRY should be the address supplied by these
cycles. Compare the tracelist of the monitor entry point to a
monitor listing. Determine that the monitor has not been
inadvertently overwritten. Be sure that the monitor area is
overlayed with SUPERVISOR_DATA and
SUPERVISOR_PROGRAM space (not necessary if function
codes are turned off).

Check to see that the monitor enters, and stays in the monitor idle
loop. If interrupts are enabled in the monitor, an external interrupt
routine may be exiting the monitor and not returning properly. Or,
if there are frequent interrupts being processed, the
"are_you_there?" function may be simply timing out.

Next, setup the analyzer to trigger on the "are_you_there?" monitor u
command:

trace trigger_on a= MONITOR_CONTROL
d= 8000xxxxH s= access READ

The address and data specifications may differ, depending on the
address of MONITOR_CONTROL, and the width of the memory
system being referenced.

Determine that the "are_you_there?" function in the monitor
(ARE_THERE) is functioning properly by observing the trace
after capturing the condition where MONITOR_CONTROL is
read as 8000H. Compare this trace to the monitor listing.

This message normally results from attempting to clear a

breakpoint in target system memory, but for some reason, the .
emulator could not break into the monitor in order to clear the J
breakpoint.

@

Could not enable
breakpoint at
address XXXX

monitor did not
respond to exit
request

This message normally results from attempting to set a breakpoint
in target system memory, but for some reason, the emulator could
not break into the monitor in order to set the breakpoint. This
message also occurs when attempting to set a breakpoint in target
ROM, but does not occur when setting a breakpoint in emulation
RAM or ROM. Trying to set a breakpoint in a guarded area of
memory will also result in this error message.

This message is displayed when the host expects to find the CPU
executing somewhere other than in the monitor, but the
"are_you_there" monitor function indicates otherwise. This
message occurs after issuing a command that results in a return to
the user program from the monitor (i.e. display registers while the
user program is executing, or "run” while in the monitor, etc.).

If SUPERVISOR_PROG and SUPERVISOR_DATA areas are
not overlayed for the emulation monitor, the "are_you_there?"
function cannot function properly, resulting in this error message.
If function codes are not in use, mapping overlays are not required.

To determine the cause of the failure, setup an analysis trace to
trigger on the "exit monitor" command. This can be done with the
following trace specification:

trace trigger_on a= MONITOR_CONTROL
d= 8001xxxxH s= access READ

Note that the address and data specifications may differ, depending
on the address of MONITOR_CONTROL, and the width of the
memory system being referenced.

If the monitor is not executing (i.e. in an interrupt routine or
elsewhere) at the time of an "exit monitor" command, the
command cannot be recognized and this error message will result
after a timeout.

Observe the exit mechanism from the monitor, and compare the
acquired trace to the monitor listing. Be certain that the monitor
has not been overwritten inadvertently.

Once the monitor is exited, check that the user program executes
properly. If the user program returns to the monitor immediately
after the "exit monitor" command is issued, this message appears.

Error Messages A-3

No breakpoint exists This message is emitted if the user attempts to clear a breakpoint
at address XOOO(atan address for which no breakpoint was previously specified. The

emulation system is only aware of breakpoints set by the "modify
sw_breakpoints set ..." command. If a "modify memory ..."
command was used to set the breakpoint, or if the breakpoint J
existed in the absolute code loaded into the emulator, it is not
possible to clear such breakpoints using "modify sw_breakpoints
clear ..." commands.

(no termination) This message normally indicates that a particular CPU cycle was

message in tracelist terminated by LBERR or LHALT instead of the usual termination
by DSACKs or STERM.

This message can also be a clue that the target system is violating
the MC68030 specification which specifies that the DSACK signals
must not be negated before address strobe is negated by the CPU.
This is the case because the analyzer uses a derivative of address
strobe as an analysis clock. If DSACKs are high prior to the
low-to-high transition of address strobe, a "no DSACK" message
can result.

no memory cycles This status line message indicates that the emulator has not J
received a low-to-high or high-to-low transition on address strobe
for at least 25-30 ms. This message most often appears when
executing from cache, if there are no external cycles for long
periods of time.

Any device that drives address strobe will inhibit the message,
including the emulator 68030, DMA devices, and coprocessors. If a
DMA mechanism, for example does not drive address strobe, this
message may appear after the specified timeout. (Note that bus
cycles where address strobe is not driven cannot be captured by the
analyzer.)

This message is simply a warning that address strobes are
infrequent.

Reset (with capital This message indicates that the CPU is being reset due to the use d
"R") of the reset softkey in the emulation software.

A-4 Error Messages

reset (with lower case This message indicates that the CPU is being reset by target system
"r") hardware.

L running This message indicates the emulator is running in a user program.
running in monitor This message indicates the emulator is running in the monitor.

slow dev at a= XXXX This status line message indicates that the CPU is presently
(YY) attempting to run a bus cycle, but the cycle has not completed after
approximately 25 ms. This means that although the CPU asserted
address strobe (set it low), the addressed memory (I/O device, etc.)
has not yet returned DSACKs, STERM, BERR, and/or HALT as
appropriate.

The XXXX field above indicates the address of the attempted
cycle, and the YY field indicates the function code applied to the
cycle according to the following table:

L SD = Supervisor Data

SP = Supervisor Program

UD = User Data

UP = User Program

RO = Reserved Address Space 0
R3 = Reserved Address Space 3
R4 = Reserved Address Space 4
CS = CPU Space

Note that this message is simply a warning that the current cycle is
taking an unusually long time to complete.

Error Messages A-5

Notes

A-6 Error Messages

« Source Files For Getting Started Examples

Introduction This appendix contains the listings of the "towers.c" and "simint.c"
source files. These two source files were compiled and linked with
the emulation monitor program to form the towers.X absolute file
which was used in all the examples in this manual that show the
internal analyzer making trace measurements. The towers.c source
listing is first in this appendix. The simint.c source listing is last.

Demonstration File Sources B-1

Source File For
towers.c

/* 1LSD:@(#) 0.06 88/06/16
/* @(mktid) (02.10 24Jun88)

/* This program demonstrates the solution to the popular

/* "Towers of Hanoi" brain teaser puzzle. The puzzle consists
/* of 3 pegs and a number of discs of different diameters which
/* fit over the pegs. The discs are ordered by their diameter,
/* largest on the bottom, on one peg. The object is to move

/* all of the discs from one peg to another such that they end
/* up in the same order on the new peg using the minimum number
/* of moves. Only one disc can be moved at a time, and a larger
/* disc may never be placed on top of a smaller disc.

/* The solution can be visualized wusing "display simulated io"
/* command. The number of discs is selected by responding to
/* the input request using the "modify keyboard_to_simio”

/* command and entering a number between 1 and 7. Multiple

/* numbers separated by spaces can be entered before hitting

/* return to get multiple executions of the program, and "C"

/* may be entered to run the program continuously.

/* The speed of the program can be modified in real time with
/* the variable loc_delay and the "modify memory" command.

/* NOTE: This file has been designed with the use of "ifdef"
/* to allow it to be compiled and run on the host as well as
/* cross compiled for the emulator.

/* If not the AxXLS 68030 C compiler, then probably not an ANSI
/* compiler so we must remove the const and void keywords.
$ifndef m68030

tdefine const

#define void char

#endif

#include <stdio.h>
#include <stdlib.h>

#define TRUE 1

#define FALSE 0O
#define NOVALIDENTRY 1
#define STDOUT 1
#define FIRSTCOL 0
#define LEFT O

$#define MIDDLE 1
#define RIGHT 2

#define MAX DISC 7
#define MAX_CHARS 16
#define MAX TOWERS 3
#define REPEAT 99

B-2 Demonstration File Sources

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

typedef struct ({
char disc_char[MAX_CHARS];
} DISC;

typedef DISC TOWER[MAX_ DISC];

static int run continuous;

static int num:ﬂiscs = 4; /* we will use 4 discs as the default */
static int move num;

static int free_level [MAX_TOWERS];

static int disc_level[MAX DISC];

static TOWER display[MAX_TOWERS];

/* This variable may be modified during emulation to change */
/* the speed of the program. */
const int loc_delay = 500;

static DISC blank_disc

{l N A R Il I e e e B A A A B B R A A 2 R O
4 ! 1 ’ ! ’ ! 1 1 ’ ! 1 }

L}

static TOWER disc word = {
{l [T,I e, I,! ;'11/’1 /,/ I,Ill,l ', I,l LA I,I '}I
{I I,l),l I,l III l,lzl,lzl,l l,l !,Izl,lzl,l I,l l,l I’I l'l ’}I
{I I,l l,l I,I 1'131,13II13I'I l'l III3I'131,/3I'I I’I I’I I,I I}'
{l l,l l,l l,l4l,l4lll4lll4lll I,I l,l4l,l4l,l4l,l4l,l l,l l,l I},
{I I,I I,ls’,lsl,lsl,lsl,lsl,l I’l l,lsl,lsl,lsl,lsl,lsl,l I,I I},
{l 1,161,161,!6/,161,/6!,'6/,' I’I ’,'6’,’6',’6’['6’,’6’,'6’,’ l),
{I7I’I7l,I7l,l7l,l7l,l7l,/7l,l I,) I,I7I,I7I,I7l,I7I,I7I,I7I’I7l}

Yi

/* Enabling an analysis trace on activity within a function */

/* may not perform properly if the processor prefetches */

/* the function return (RTS) due to a previous branch. */

/* The AXLS C Compiler provides a debug */

/* capability that adds NOP instructions to prevent this cx/

/* condition (default options, or -0G should be used). */

/* */

/* A less desirable alternative would be to modify the */

/* source using a dummy statement to provide the padding. */

/* As an example, a write to the variable "rts_prefetch” */

/* just before the function return could be used. */

/* Because the prefetch can be up to 3 words long, we want */
/* the access address mode to be absolute long and will org */
/* it outside of base page, thus forcing a 3 word opcode. */
/* We will put it at the upper end of the monitor data block.*/

#ifdef _ m68030

#ifndef DEBUGG

#pragma SECTION DATA=0x20ff0
int rts_prefetch;

#pragma SECTION UNDO

#endif

$else
int rts_prefetch;
#endif

/* externals */

#ifdef INTERRUPTS
#pragma SECTION PROG=simint

Demonstration File Sources B-3

extern void enable_int();
extern void disable _int();
extern int sim_ints_ “serviced;
extern int sim_ 1nt ca;
#pragma SECTION UNDO

#endif

/* for local forward referencing */
static void pause();

static void show_discs();

static void init_display();

static void towers();

static int ask_for_number();

main()

{

#ifdef INTERRUPTS
enable_int();

fendif

run_continuous = FALSE;

while (ask_for_number(&num_discs) == TRUE) {
#ifdef m68030
- clear_screen(STDOUT) ;

fendif
move num = 0;
init dlsplay(LEFT),
show _discs();
pause();

towers (num_discs,LEFT,RIGHT,MIDDLE) ;

show_discs();
/* ANSI supports concatenated strings, AXLS simio has cursor control */
tifdef _ m68030

pos_cursor (STDOUT, FIRSTCOL, num_discs+5);
printf(~\t\tPuzzle with %d discs can be solved in "

"%d moves. \n",num_discs,move_num);
felse
printf("\n\t\tPuzzle with %d discs can", num_discs);
printf(" be solved in %d moves. \n", move_num);
tendif
pause();
pause();
}
return(0);
}

/***** Towers routines **#**/

static int ask_for_ number(num)
int *num;
{
char err_ charl,err_char2;
int last™ _num, ret_ val;

last_num = *num;

B-4 Demonstration File Sources

if (run_continuous == FALSE) {

#ifdef _ mé68030
clear screen(STDOUT) ;
print¥("\n\nExecute ’‘modify keyboard to_simio’ then enter"
1 " one of the following:"
‘) "\n\tNumber of discs to use [1-%d]"
“\n\t’0’ to exit program"
"\n\t’C’ to run continuously using last number entered\n\n"

/MAX_DISC);
$else
printf("\n\nEnter one of the following:");
printf (*\n\tNumber of discs to use [1-%d]",MAX DISC);
printf(“\n\t‘0’ to exit program"); -
printf("\n\t’C’ to run continuously using last number entered\n\n");
#endif
while (NOVALIDENTRY) {
printf(»2");
/* scanf will return one of the following three values: */
/* 1) "0" indicates a scanning error */
/* 2) "1" indicates valid input */
/* 3) "EOF" */
ret_val = scanf("%d",num);
switch (ret_val) ({
case 0:
err_charl = getchar();
err_char2 = getchar();
‘ /* If a "C" is entered, the last number will be
*
/

/* used forever (if it was valid). */

if (err_charl == ’'C’)
if ((last_num < 1) || (last_num >
MAX DISC))
- puts (" invalid repeat
number!*®); N
else {

*num = last_num;
run_continuous = TRUE;
return(TRUE) ;

}
}
/* If the user hits the "suspend" softkey, as a
v /* courtesy the emulator sends an escape 1
; / character sequence allowing the program to
*

/* detect that the input was suspended.
~ %/
‘ else if ((err_charl == ’\033’) && (err_char2
puts (" input suspended!");

else puts(" input error, re-enter linet!");

Demonstration File Sources B-5

fflush(stdin);
/* try again! */

break;
case 1:
if (*num == 0)
printf(" exiting!\n");
return(FALSE);
}
else if ((*num < 0) || (*num > MAX _DISC))
printf(" %d is not a valid
number!\n", *num) ;
/* try again! */
else
return(TRUE) ;
break;
case EOF:
return(FALSE) ;
break;

} /* end switch ret_val */

} /* while no valid entry */

} /* if not run continuous */

return(TRUE) ;
}

static void pause()

{

int i,j;

for (i = 0;i < loc_delay; i++)
for (j = 0; j < loc_delay; j++) {
}

#ifndef DEBUGG
rts_prefetch = 0;

#endif

}

static void show_discs()

{
DISC *disc_ptr;
char *string, *p;
int disc, tower, ch;

if ((p = string = (ch&r *) malloc(BUFSIZ)) == NULL) {
fputs("malloc failed\n", stderr);
exit(1);

}

tifdef __m68030
pos_cursor (STDOUT, FIRSTCOL, 1);
#endif
for (disc = 0; disc < num_discs; disc++) {
for (tower = 0; tower < MAX TOWERS; tower++) {
*p++ = '\t’;
disc_ptr = &display[tower][disc];
for (ch = 0; ch < MAX_CHARS; ch++)

B-6 Demonstration File Sources

*pt++ = disc_ptr-disc_char(ch];
}

*p++ = ‘\n’;
%write(string,l,(int)(p—string),stdout);
free(string);

#ifdef mé68030

“If (move_num == 0)
printf("\t-----cememe \tmmm e e »

“\n\t Peg O \t Peg 1 \t Peg 2\n"
*\n\t\tsolution for Towers with %d discs.\n",num_discs);

#else

printf("\t-—-—-cmmee \tommmm e \temom e - \n");

printf("\t Peg O \t Peg 1 \t Peg 2\n");

if (move_num == 0)

printf("\n\t\tSolution for Towers with %d discs.\n\n",
num_discs);

#endif
}

static void remove_disc(disc,from_peg)
register int disc,from_peg;

{
disc--;
display[from_peg][disc_level[disc]] = blank_disc;
free_level[from peg] = disc_level[disc];

}

static void place_disc(disc,on_peq)
register int disc,on_peg;

{
disc--;
display[on_peg][free_level[on_peg]] = disc_word[disc];
disc_level[disc] = free_level[on_peg];
free_level[on_peg]--;

}

static void move_disc(i,from,to)
int i,from,to;

{

move_num++;
show_discs();

printf("\n\n\n\n\t\tMove #%d: Move disk %d from peg %d to ",move_num,i,from);
printf("peg %d \n",to);

#$ifdef INTERRUPTS
if (sim_int_ca == -1)
printf("\t\t%d simulated interrupts have been serviced.\n"
,8im_ints_serviced);
else
printf("\t\tSimulated interrupts have been disabled. \n");
#endif

remove_disc(i,from);
place_disc(i,to);

pause();

Demonstration File Sources B-7

#ifndef DEBUGG
rts_prefetch = 0;

#endif

}

static void init_display(start_tower)
int start_tower;

{
int tower,disc;
/* initialize the display array to be blank */
for (tower = 0; tower < MAX_TOWERS; tower++) {
for (disc = 0; disc < MAX DISC; disc++)
display[tower][disc] = blank disc;
free_level[tower] = num_discs - 1;
}
/* place num_discs on the specified tower */
for (disc = 0; disc < num_discs; disc++) {
display[start_tower][disc] = disc_word[disc];
disc_level[disc] = disc;
free_level[start_tower] = 0;
}

static void towers(n,from_peg,to_peg,aux_peg)
register int n,from_peg,to_peg,aux_peg;

{
if (n == 1)
move_disc(1,from_peg,to_peq);
else {
towers(n-1, from_peg,aux_peg,to_peg);
move_disc(n,from_peg,to_peg); ~
towers(n-1,aux_peg,to_peg, from_peg);
}
}

B-8 Demonstration File Sources

.

Source File For

simint.c
/% LSDIR(#) e eeenereneeenoenseaseesoansenssaastassssseassansnnnnns
/* Q(MKELIA) soeveessoeonsossessossnsosssnssssssssnsssssssssssnnssssnss
/* */
/* This file contains some very simple examples of routines to */
/* use with the simulated interrupt mechanism of the emulator. */
/* */

/* If not the AxXLS 68030 C compiler, then probably not an ANSI */
/* compiler so we must remove the const and void keywords. */

#ifdef _ m68030

#pragma SECTION PROG=simint DATA=data CONST=simint
#else

#define volatile

#define void char

#endif

/* This variable records the number of serviced simulated interrupts. */

int sim_ints_serviced = 0;

/* This variable will be used to control simulated interrupts and is */
/* specified in the emulator configuration file. The host and the */
/* monitor watch this "control address" to decide whether to perform */

/* the interrupt function or not. Simulated interrupts will be */
/* enabled when the control address flag is set to -1 and disabled */
/* if it is set to 0. The "modify memory" command can be used to */

/* enable and disable interrupts in real time once the program has */

/* has been started. */

/* Remember that using the "volatile" keyword restricts the compiler’s */
/* optimization for the entire file, but guarantees proper access of */

/* variable. */
volatile int sim_int_ca = -1;

void enable_int()

{
/* enable simulated interrupts from emulator */
sim_int_ca = -1;

}

void disable_int()

{
/* disable simulated interrupts from emulator */
sim_int_ca = 0;

}

#ifdef _ mé68030

#pragma INTERRUPT

static void sim_int_handler()

{
/* service simulated interrupts from emulator */
sim_ints_serviced++;

Demonstration File Sources B-9

}

/* Initialize the interrupt vector table to point to our routine. */
#pragma SECTION DATA=0xb8

void (*trapl4)() = sim_int_handler;
#pragma SECTION UNDO
#endif

B-10 Demonstration File Sources

| & Timing Comparisons

Introduction This appendix contains tables which list:

a Timing comparisons between the MC68030 and the HP
64430 emulator. g

s DC electrical specifications for the HP 64430.

Timing Comparisons C-1

MC68030/HP 64430 Timing Comparisons

13.5 ACELECTRICAL SPECIFICATIONS -- CLOCK INPUT

33.33 MHZ'® HP 64430
Num Characteristic Min | Max | Min | Max | Unit
Frequency of Operation 20 33 20 33 Mhz
1 |Cycle Time 30 80 30 80 ns
2,3 |Clock Pulse Width 14 66 14 66 ns
4,5 |Rise and Fall Times 3 3 ns
MC68030 electrical specifications reprinted courtesy Motorola, Inc.
13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES
(Vee = 5.0 Vdc +/- 5%; GND = 0 Vdc; Ta = 0°to 70° C)
33.33 MHz'" [HP 64430
Num Characteristic Min | Max | Min | Max |Unit
6 |Clock High to FC, Size, RMC, CIOUT Address Valid o | 4] o0 14 | ns
Clock High to IPEND Valid 0 14 0 24 ns
6A |Clock High to ECS, OCS Asserted 0 | 12| o0 15 | ns
6B |FC, Size, RMC, CIOUT Address Valid to Negating 3 3 - | ns
]IE—P(_:ESN_D Valid to Negating ECS 3 -1 - ns
7 |Clock High to FC, Size, RMC, CIOUT, Address, Data 0 30 0 30 | ns
High Impedance

C-2 Timing Comparisons

13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont’d)

(Vee =5.0 Vde +/- 5%; GND = 0 Vdc; TA = 0°10 70° C)

33.33MHz'® | HP 64430

Num Characteristic Min | Max | Min | Max | Unit
8 |Clock High to FC, Size, RMC, IPEND, CIOUT, 0 0 - ns
Address Invalid
9 |Clock Low to AS, DS, CBREQ Asserted 2 |10 | 2 | 15 | ns
9A! |AS to DS Assertion Skew (Read) -8 8 -8 8 ns
9B |AS Asserted to DS Asserted (Write) 22 22 ns
10 |ECS Width Asserted 8 | — | 7 | — | ns
10A |OCS Width Asserted 8 | —~ | 7 | — | ns
10B’ |ECS, OCS Width Negated 5 - 5 --- ns

11 |FC, Size, RMC, CIOUT, Address Valid to AS Asserted

(and DS Asserted, Read) _ 5 --- 5 ns

IPEND to AS Asserted (and DS Asserted, Read) 5 -1 ns

12 |Clock Low to AS, DS, CBREQ Negated 0 |10]| 0o | 15| ns

12A |Clock Low to ECS/OCS Negated 0 15 0 16 ns

13 |AS, DS Negated to FC, Size, RMC, CIOUT, Address 5 { - 5| | ns
Invalid

14 |AS (and Bg, Read) Width Asserted (Asynchronous 45 - 43 ns
Cycle)

14A! |DS Width Asserted, Write 23 | - | 21 | — | ns

14B |AS (and ERead) Width Asserted (Synchronous 23 --- 21 ns
Cycle)

Timing Comparisons C-3

13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont’d)

(Vee = 5.0 Vdc +/- 5%; GND = 0 Vdc; TA = 0°to 70° C)

33.33MHz'S| HP 64430

Num Characteristic Min | Max | Min | Max | Unit
15 |AS, DS Width Negated 23 | - | 21 | - | ns
15A8 (DS Negated to AS Asserted 18 18 ns
16 |Clock High to AS, DS, R/W, DBEN, CBREQ High — | 30 | -~ | 30 | ns

Impedance

17 |AS, DS Negated to R/W Invalid 5 | - | 3 | - | ns
18 |Clock High to R/W High 0 | 15| 0 | 15 | ns
20 |Clock High to R/W Low 0 | 15| 0 | 15 | ns
218 [R/W High to AS Asserted 5 - 5 - ns
22 [R/W Low to DS Asserted (Write) 35 | - | 35 | —- | ns
23 |Clock High to Data Out Valid --- 14 19 ns
24 |Data Out Valid to Negating Edge of AS 3 3 —- | ns
25411 1S, D_SNegated to Data Out Invalid 5 5 ns
25A°1|Ds Negated to DBEN Negated (Write) 5 --- 5 --- ns
265! [Data Out Valid to DS Asserted (Write) S 5 --- ns
27 |Data-In Valid to Clock Low (Synchronous Setup) 1 --- 6 --- ns
27A |Late BERR, HALT Asserted to Clock Low (Setup) 3 --- 10 --- ns

C-4 Timing Comparisons

13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont’d)

k (Vee = 5.0 Vdc +/- 5%; GND = 0 Vdc; TA = 0°10 70° C)

33.33MHz'® | HP 64430
Num Characteristic Min | Max | Min | Max | Unit
28'% |AS, DS Negated to DSACKx, BERR, HALT, AVEC 0 (3 | 0 | 18 | ns
Negated (Asynchronous Hold)
28A!%|Clock Low to DSACKx, BERR, HALT, AVEC 6 50 6 43 ns
Negated (Synchronous Hold)
2912 5§Negated to Data-In Invalid (Asynchronous Hold) 0 0 ns
29A1° BS_Negated to Data-In High Impedance --- 30 - 27 ns
‘ 30'? |Clock Low to Data-In Invalid (Synchronous Hold) 6 --- 6 --- ns
30A!%|Clock Low to Data-In High Impedance (Read followed | --- 45 --- 35 ns
by Write)
31% |DSACKx Asserted to Data-In Valid (Asynchronous 20 20 ns
Data Setup)
31A% |DSACKx Asserted to DSACKXx Valid (Skew) 5 --- 5 ns
32 |RESET Input Transition Time --- 1.5 --- 1.5 | Clks
33 |Clock Low to BG Asserted 0 [15| 0o | 24 | ns
34 |Clock Low to BG Negated 0 15 0 24 ns
| 35 [BR Asserted to BG Asserted (RMC Not Asserted) 15 | 35 | 1.5 | 35 | Clks
L 37 |BGACK Asserted to BG Negated 15 | 35 | 1.5 | 35 | Clks
37A [BGACK Asserted to BR Negated 0 | 15| 0 | 15 |Clks

Timing Comparisons C-5

13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont’d)

(Vee = 5.0 Vde +/- 5%; GND = 0 Vdc; TA = 0°to 70° C)

3333MHZ'S | HP 64430

Num Characteristic Min | Max | Min | Max | Unit
39° |BG Width Negated 45 | - | 43 | - | ns
39A |BG Width Asserted 45 | - | 43 | — | ns
40 ([Clock High to DBEN Asserted (Read) 0 18 0 19 ns
41 |Clock Low to DBEN Negated (Read) 0 18 0 19 ns
42 |Clock Low to DBEN Asserted (Write) 0 | 18] 0 19 | ns
43 |Clock High to DBEN Negated (Write) 0 18 0 19 | ns
44 |R/W Low to DBEN Asserted (Write) 5 | —- | 5 | —- | ns
45° |DBEN Width Asserted (Asynchronous Read) 30 | - | 28 | - | ns

DBEN Width Asserted (Asynchronous Write) 60 58 ns
45° @Width Asserted (Synchronous Read) 5 --- 5 ns

DBEN Width Asserted (Synchronous Write) 30 28 ns

46 |R/W Width Asserted (Asynchronous Write or Read) 75 75 ns
46A |R/W Width Asserted (Synchronous Write or Read) 45 45 ns
47A |Asynchronous Input Setup Time (m, BERR, 2 --- 9 --- ns

DSACKX) .

Asynchronous Input Setup Time (IPLx) 2 12 - ns
47B {Asynchronous Input Hold Time from Clock Low 6 6 ns
48* |DSACKx Asserted to m, HALT Asserted --- 18 16 ns

53 {Data Out Hold from Clock High 2 2 -—- ns

C-6 Timing Comparisons

13.6 AC ELECTRICAL SPECIFICATIONS -- READ AND WRITE CYCLES (Cont’d)

(Vee = 5.0 Vdc +/- 5%; GND = 0 Vdc; TA = 0°to 70° C)

3333MHz'> | HP 64430
Num Characteristic Min | Max | Min | Max | Unit
55 |R/W Asserted to Data Bus Impedance Change 15 --- 12 --- ns
56 |RESET Pulse Width (Reset Instruction) 512 --- 512 --- | Clks
57 _B-]-E_fi—li—Negated to HALT Negated (Rerun) 0 2 ns
5810 MNegated to Bus Driven 1 - 1 --- | Clks
5910 ENegated to Bus Driven 1 1 --- | Clks
60" |Synchronous Input Valid to Clock High (Setup Time) 2 | - | 4 | - | ns
613 |Clock High to Synchronous Input Invalid (Hold Time) 6 6 ns
62 |Clock Low to STATUS, REFILL Asserted 0 15 0 25 ns
63 |Clock Low to STATUS, REFILL Negated 0 15 0 25 ns

MC68030 electrical specifications reprinted courtesy Motorola, Inc.

NOTES:
1. This number can be reduced to 5 nanoseconds if strobes have equal loads.

2. If the asynchronous setup time (#47A) requirements are satisfied, the DSACKx low to data
setup time (#31) and DSACKx low to BERR low setup time (#48) can be ignored. The data must
only satisfy the data-in to clock low setup time (#27) for the following clock cycle and BERR must
only satisfy the late BERR low to clock low setup time (#27A) for the following clock cycle.

3. This parameter specifies the maximum allowable skew between DSACKO to DSACK1 asserted
or DSACK1 to DSACKO asserted; specification #47A must be met by DSACKO or DSACKI.

Timing Comparisons C-7

4. This specification applies to the first DSACKXx signal asserted. In the absence of DSACKX,
BERR is an asynchronous input using the asynchronous input setup time (#47A).

5. DBEN may stay asserted on consecutive write cycles.

6. The minimum values must be met to guarantee proper operation. If this maximum value is
exceeded, BG may be reasserted.

7. This specification indicates the minimum high time for ECS and OCS in the event of an internal
cache hit followed immediately by a cache miss or operand cycle.

8. This specification guarantees operation with the MC68881/MC68882, which specifies a minimum
time for DS negated to AS asserted (specification #13A in the Motorola MC68881/MC68882 User’s
Manual). Without this specification, incorrect interpretation of specifications #9A and #15 would
indicate that the MC68030 does not meet the MC68881/MC68882 requirements.

9. This specification allows a system designer to guarantee data hold times on the output side of
data buffers that have output enable signals generated with DBEN. The timing on DBEN precludes
its use for synchronous read cycles with no wait states.

10. These specifications allow system designers to guarantee that an alternate bus master has
stopped driving the bus when the MC68030 regains control of the bus after an arbitration sequence.

11.]fwill»not be asserted for synchronous write cycles with no wait states.

12. These hold times are specified with respect to strobes (asynchronous) and with respect to the
clock (synchronous). The designer is free to use either hold time.

13. Synchronous inputs must meet specifications #60 and #61 with stable logic levels for all rising
edges of the clock. These values are specified relative to the high level of the rising clock edge.

14. This specification allows system designers to qualify thg_é—s_ signal of an MC68881/MC68882
with AS (allowing 7ns for a gate delay) and still meet the CS to DS setup time requirement
(specification 8B) of the MC68881/MC68882.

15. The clock signal used during test has 5ns of rise timeand Sns of fall time. For system
implementations that have less clock rise and fall times, the clock pulse width minimum should be
commensurately longer so that: system (t2+(t4+t5/2)) is = or greater than minimum t1/2 and system
(t3+(ta+1s/2)) is = or greater than minimum t1/2.

C-8 Timing Comparisons

HP 64430 DC Electrical Specifications
(Vee = 5.0 Vdc +/- 5%; GND = 0 Vdc; Ta = 0°to 70° C)

Characteristic Symbol| Min | Max |Unit
Input High Voltage VIH 20 | Vcc | V
Input Low Voltage) v | 05 | 08 \%
Input Leakage BR, BGACK, IPLx, MMUDIS, CDIS,| Tin | -25 | 25 | uA
Current
GND =or < Vin =
or < VCC
Input High Current CBACK, CIIN, STERM| Iy 0 uA
BERR, AVEC, DSACKx, HALT 25
CLK, RESET 50
Input Low Current RESET, CBACK, CIIN, STERM| IiL - | -14 | mA
CLK, BERR, AVEC, DSACKx, HALT -- [-0.25
Output High Voltage | A0-A31, AS, BG, D0-D31, DBEN, DS, ECS,| Vou | 24 | - | V
Iox = -400uA R/W, STATUS, REFILL, IPEND, OCS,
RMC, SIZ0-SIZ1, FCO-FC2, CBREQ, CIOUT
Output Low Voltage VoL \Y%
IoL =2.5mA A0-A31, FCO-FC2, SIZ0-S1Z1 - | 05
IoL =32mA BG, D0-D31 - | 05
IoL =4.5mA __CBREQ,R/W,RMC - | 05
IoL =53mA AS, DS, DBEN, IPEND| 0.5
IoL =2.0mA STATUS, REFILL, CIOUT, ECS, OCS 0.5
IoL =93 mA RESET --- 0.5
Power Dissipation Ta=0°C| Pp --- 0 w
Ta=70°C 0
Capacitance (VIN = 0V, Ta = 25°C, f = 1IMHz) Cin --- 20 pF

, |Load Capacitance CL --- | 100 | pF

Timing Comparisons C-9

Notes

C-10 Timing Comparisons

C

Index

.EA configuration file ,2-13
.EA file ,6-29
.EB configuration files ,2-13

absolute files, loading ,6-27

accessing the emulation system ,3-9

address range overlays ,4-29

address specification, custom register ,8-4
address translation cache (ATC), flushing ,5-3
analysis with cache enabled ,6-15

analyzer ,6-29 - 6-30

analyzer, debugging plug-in failures ,6-30
analyzer, use for debugging ,6-30

are you there function, how it works ,10-3

background ,1-5

background monitor ,7-3

background monitor, defaulting stack pointer for ,4-14
BERR, enabling/disabling ,6-19

block size ,4-28

blocking target BERR during emulation memory cycles ,4-25
break function, breaking into the monitor ,7-6

break on write to ROM ,1-3

breakpoints ,1-4

bus cycle ,6-30

bus cycle, none for more than 250 milliseconds ,6-30
bus size bit (B) ,6-30

cache control ,6-14

caches, using the ,6-14

card cage access cover, removing the ,2-6

clock rates, CPU ,4-47

code branches, incorrect ,6-30

command modules, emulation monitor ,7-10
command scanner ,7-9

comparison of foreground/background monitors ,7-3
compiling the demonstration programs ,3-8

Index-1

2-Index

configuration file name ,4-51
configuration file, EA ,2-13
configuration file, .EB ,2-13
configuration file, starting with the default ,6-29
onfiguration file, veiwing ,6-29
configuration file, what to do after modifying ,2-13
configuration file,incorrect ,6-29
configuration, deMMUer ,4-41
configuration, review ,6-29
configuring simulated 1/0 ,9-2
connecting the emulator pod to your target system ,2-10
continuing target system interrupts

while in the emulation monitor ,7-18
controlling flow of data and code ,4-26
coprocessor configuration questions ,8-13
coprocessor copy routine ,8-11
coprocessor register buffer, emulation monitor ,8-9
copying from target memory, how it works ,10-16
copying the demonstration programs to your subdirectory ,3-7
copying to target system memory, how it works ,10-17
CPU clock rates faster than 25 MHz ,4-47
cpu registers, modifying, how it works ,10-19
custom coprocessor, register set display specification ,8-§
custom coprocessors support ,1-5
custom coprocessors, modifying configuration for ,4-20
custom register address specification ,8-4
custom register format file ,8-3
custom register format file, specifving ,4-22
custom register name specification ,8-4
custom register size specification ,8-4
custom registers, emulation monitor changes ,8-9
customizing the emulation monitor ,7-12

debugging plug-in failures with analyzer ,6-30

debugging plug-in problems ,6-29

debugging, use status messages ,6-30

default response to emulation configuration questions ,4-3
defaulting stack pointer for background monitor ,4-14
deleting memory map entries ,4-41

¢

deMMUer ,1-4
addresses for which it has no translation ,5-3
how it operates ,5-2
how to access the deMMUer configuration display ,5-10
how to turn off ,5-7
how to turn on ,5-7
startup with the emulator ,5-6
turn on/off by setting the analysis mode ,5-8
turn on/off using emulation configuration questions ,5-7
what it is ,5-2
when it will not do reverse-address translations ,5-5
when to start ,5-6
when to turn off ,5-5
when to use ,5-4
deMMUer configuration ,4-41
displaying cpu registers, how it works ,10-18
displaying global symbols ,3-12
displaying local symbols, example ,3-13
displaying memory ,3-14
displaying registers ,3-17
displaying target memory, how it works ,10-15
dividing the processor address space ,4-26
DMA enable/disable ,6-19
dma transfers into emulation memory ,4-46
dma transfers, enabling ,4-45
DSACK and STERM, interlocking
emulation memory and target ,6-10
dsack DSACK signal problems, open
collector drivers on DSACK line ,6-11
DSACK signal problems, early removal of DSACK signals ,6-12
DSACK signal problems, isolating the problem ,6-12
DSACK signal problems, target system ,6-11
DSACK signals, using ,6-10

emulation configuration, modifying the default ,3-9
emulation features

Custom COprocessors support ,1-5

foreground or background mmonitor ,1-5

function codes ,1-§

memory management ,1-4

out-of-circuit or in-circuit emulation ,1-6
emulation memory ,4-29

Index-3

4-Index

emulation memory breakpoints with cache enabled ,6-16
emulation memory display operations ,4-29
emulation memory load operations ,4-29
emulation memory, loading ,3-11
emulation monitor

foreground or background ,1-5

monitor ,1-5
emulation monitor changes for custom coprocessors ,8-9
emulation monitor description ,7-7
emulation monitor entry point routines ,7-8
emulation monitor functions, enabling ,4-6
emulation monitor memory requirements ,4-29
emulation monitor, coprocessor register buffer ,8-9
emulation monitor, loading ,6-24, 7-22
emulation pod configuration, modifying ,4-43
emulation system components, example system ,3-2
emulation system hardware, installing ,2-5
emulation system, accessing ,3-9
emulation system, preparing ,3-8
emulator

purpose ,1-2
emulator features

breakpoints ,1-4

processor reset control ,1-4

register display/modify ,1-4

restrict to real-time runs,1-2

single-step processor ,1-4
emulator pod cables, connecting to the emulator boards ,2-7
emulator pod, connecting to the target system ,2-10
emulator use of int7,enabling ,4-9
emulator use of software breakpoints, enabling ,4-12
enabling the foreground monitor ,4-18
ending the emulation session ,3-34
ending the mapping session ,4-42
entering mapper blocks ,4-30
entering mapper blocks, syntax ,4-30
entry point routines, emulation monitor ,7-8
error messages ,A-1
examples, emulation system used for ,3-2
exception vector table ,7-7
EXCEPTION_ENTRY emulation monitor routine ,7-9

executing a software breakpoint, how it works ,10-8
external hardware features of the instrumentation cardcage ,2-1

failures, plug-in ,6-29

flush the address translation cache ,5-3

foreground ,1-5

foreground monitor ,7-3

foreground monitor, enabling ,4-18

foreground monitor, interlock or provide termination for ,4-19
function codes ,1-§

getting started, linking modules ,3-6
guarded memory access ,4-4

halt ,6-30
hardware installation instructions ,2-5
how does a simulated interrupt function ,9-3

i/o operations ,4-29
illegal conditions ,4-4
initializing and configuring your measurement system ,3-4
inspecting the equipment ,2-4
installing boards into the card cage ,2-8
installing emulation system hardware ,2-5
installing hardware, instructions ,2-5
installing software ,2-13
installing software updates ,2-13
instructions on installing hardware ,2-5
interlock the foreground monitor ,4-19
interlocking emulation memory DSACK
and STERM and target DSACK and STERM ,6-10
ipend, enabling target line during emulator breaks ,4-11
isolate problems ,6-29

JSR_ENTRY emulation monitor routine ,7-9

leading zeros ,4-32

linker listing file, example ,7-21

linking the emulation foreground monitor ,7-22

linking the program modules ,3-6

loading emulation memory ,3-11

loading the emulation monitor ,6-24, 7-22

logical (virtual) address to physical address translation ,5-2

Index-5

M making a subdirectory for your 68030 project ,3-2
mapper blocks, syntax for entering ,4-30
mapping display softkey labels ,4-28
mapping memory ,4-26
memory access timing issues ,6-26 J
memory default ,4-28
memory management ,1-4
memory map definition ,4-28
memory map display entries ,4-27
memory map example ,4-34
memory requirements, emulation monitor ,7-21
MMU table walks, deMMUer tracking ,5-2
modify default memory ,4-40
modify defined_codes ,4-37
Modify memory configuration? ,4-24, 4-43
modifying a memory configuration ,4-23
modifying memory ,3-15
modifying target memory, how it works ,10-16
modifying the configuration file ,4-2
- modifying the cpu registers, how it works ,10-19
modifying the default emulation configuration ,3-9 a
modifying the emulation monitor exception vector table ,7-14 J
modifying the emulation monitor to use simulated interrupts ,9-11
modifying the memory map ,4-37
modifying the MON_ALT_BUFFER table ,8-10
modifying the MON_ALT_REGISTERS table ,8-11
monitor (emulation)
background ,7-3
comparison of foreground/background ,7-3
foreground ,7-3
monitor message routine, example ,7-19
MONITOR_ENTRY emulation monitor routine ,7-8
MONITOR_ENTRY, foreground monitor label ,1-4
msinit ,2-13

N name specification, custom register ,8-4
naming the configuration file ,4-51

NMI1,7-6
-

O on-chip cache disabling ,4-48
operational overview ,3-1

6-Index

partitioning the processor address space ,4-28
performance ,6-31

physical address to logical address translation ,5-2
plug-in failures ,6-29

plug-in problems, debugging ,6-29

pod cable, securing ,2-10

preinstallation inspection ,2-4

preparing the emulation system ,3-8

preparing your program modules, getting started ,3-6
problems, isolate ,6-29

purpose of the emulator ,1-2

real-time runs ,1-2

real-time/nonreal-time run mode, selecting ,4-4

register display/modify ,1-4

register set display specification, custom coprocessor ,8-5
removing the development environment card cage access cover ,2-6
reserved address space, using function codes with ,6-17
reset control ,1-4

RESET_ENTRY emulation monitor routine ,7-9
resetting into the monitor ,4-8, 6-24

restoring the processor interrupt mask ,7-18

restrict to real-time runs ,1-2

restrictions on using simulated 1/O ,9-4

restrictions on using simulated interrupts ,9-10

run command after a software breakpoint, how it works ,10-8
run command, how it works ,10-4

run from ... until command, how it works ,10-5

run from ... until command, using ,6-22

run from command, how it works ,10-4

run until command, how it works ,10-§

running emulation ,4-2

running from the transfer address ,3-16

safety considerations ,1-1, 2-3
sample emulation configuration command file ,3-16
securing the pod cable ,2-10
sending messages from the user
program to the emulator display ,7-18
shutdown ,6-30
simint.c source file ,B-9
simulated I/O, configuring ,9-1 - 9-2

Index-7

8-Index

simulated I/O, restrictions on using ,9-4

simulated interrupt, how they function ,9-5

simulated interrupts 9-5

simulated interrupts, modifying the monitor to use ,9-11
simulated interrupts, restrictions on using ,9-10

single stepping with background monitor, how it works ,10-11
single stepping with foreground monitor, how it works ,10-10
single-step processor ,1-4

size specification, custom register ,8-4

software breakpoint instruction number selection ,4-12
software breakpoint, setting ,10-7

software breakpoints ,1-4, 10-7

software breakpoints, using ,3-24

stack pointer for background monitor, defaulting ,4-14
starting address of a block boundary ,4-32

status conditions, incorrect ,6-30

status messages, use for debugging ,6-30

step function, using ,3-19

STERM signals, using ,6-10

SWBK_ENTRY emulation monitor routine ,7-8
symbolic debugging ,1-2

symbols ,1-2

table search ,5-3

target memory ,4-29

target memory breakpoints with cache enabled ,6-16
target memory display operations ,4-29

target memory load operations ,4-29

target memory transfers, how it works ,10-12

target memory, copying from, how it works ,10-16
target memory, modifying, how it works ,10-16
target system ,1-2

target system interface ,6-1

target system memory, copying to, how it works ,10-17
target system program interrupt ,7-6

target system, connecting to the emulator pod ,2-10
terminate the foreground monitor ,4-19

timing issues, memory access ,6-26

towers.c source file ,B-2

tracing processor activity ,3-20

transfer address, running from ,3-16

translation tables ,5-3

translation, logical (virtual) address to physical address ,5-2
translation, physical address to logical address ,5-2
trigger pulse ,6-30

unpacking the equipment ,2-4

using breakpoints with caches enabled ,6-15
using command files ,3-34

using simulated i/o, example ,3-27

using the emulation monitor ,6-24

using the emulator ,3-11

using the modify memory map command ,4-37

vector base register,use of ,6-13

writing coprocessor copy routines ,8-11

Index-9

Notes

10-Index

HEWLETT
(éI”] PACKARD

Printed In U.S.A.

