HP Series 64800
Cross Compilers

Pascal and C Languages

Technical Data January 1985

(D

HEWLETT
PACKARD

VAX 11/730

1 % 9000

Table of Contents

Introduction 1
Linking Programs 3
HP 64000 Cross Compiler Operations 3
C Cross Compiler Information 5
Pascal Cross Compiler Information 6
Run-Time Libraries 8
Real-Number Options 8
Character Set 8
Microprocessor Specific Cross Compiler Information

6800 Family and 6301 9
6809 11
8086/8088/80186/80188 13
68000/68008/68010 16
Z8001/Z8002 18
Z80/NSC800 20
8085/8080 22

Introduction

Software development is a highly labor-intensive process.
Development managers recognize that the productivity of
software engineers can be significantly improved when software
is designed, coded, debugged, and maintained in a high-level
programming language.

Supported Microprocessors
The Hewlett-Packard 64000 Logic Development System offers
both Pascal and C Cross Compilers for the following
MiCroprocessors:

= Motorola 68000, 68008, and 68010

® Motorola 6800 family

® Motorola 6809

= Intel 8086, 8088, 80186, 80188

= Intel 8080, 8085

= Zilog 780

= Zilog Z8001, Z8002

® National Semiconductor NSC800

®= Hitachi 6301

Operating Environment
These software development tools are available for the
following host environments:
= HP 64100A and 64110A development stations
= HP 9000/series 500 HP-UX computer systems
®* Digital Equipment Corporation VAX/VMS computer
systems

The HP 64000 Pascal and C Cross Compilers are much more
than language translators. Not only are the language
implementations optimized for microprocessor-based design
applications, but the compilers are integrated into the HP 64000
Logic Development System and generate the database needed
to operate HP’s powerful emulator-based analysis tools.

C Language Description

The HP 64000 C Cross Compilers provide a full implementation
of the C programming language as defined in The C
Programming Language by Brian W. Kernighan and Dennis M.
Ritchie (Prentice-Hall, 1978) and the supplement published
November 15, 1978.

Hewlett-Packard has also extended the standard C language to
improve its utility as a tool for microprocessor system
programming and to make optimum use of the HP 64000 System
software development tools. For applications requiring porta-
bility to other C Compilers, these extensions may be ignored.

The “standard 1/0 library” functions (printf, getchar, etc) are
not included. Register variables are treated as an automatic
storage class and are not specially optimized.

Additional language implementation details are in the
REFERENCE INFORMATION section under “C Language
Extensions and Restrictions”.

Pascal Language Description

The HP 64000 Pascal Cross Compilers implement a dialect of
the Pascal programming language which is specifically designed
and optimized for microprocessor development applications.
Although closely aligned with the Pascal language as defined in
Pascal User Manual and Report — Second Edition by Kathleen
Jensen and Niklaus Wirth (Springer-Verlag, 1976), the HP 64000
System Pascal language contains most features of and many
extensions to the Jensen and Wirth “standard”.

Specific language implementation details may be found in the
REFERENCE INFORMATION section under “Pascal Language
Extensions and Restrictions”.

Selecting a Programming Language

There are three primary reasons for programming in a high-level
language such as Pascal or C, rather than a low-level assembly
language:
1 Reduce Development Time It is easier to write programs
in a high-level language. Programmers can express alogrithms
in a more natural notation than the underlying hardware
allows. With high-level languages, software can be written
and debugged in less time.
2. Improve Program Readability It is easier to read and
understand a program written in a high-level language.
Since professional programmers spend much of their time
revising programs, written by themselves or others, this issue
has a major economic impact in many development
organizations.
3. Improve Program Portability High-level language source
code is machine independent. A single program can be
compiled to execute on several different processors.

Most users select a programming language based upon organi-
zational standards, past experience of the design team, or
application requirements. When the correct choice is not readily
apparent, the following comparison of language benefits

may help:

Pascal was developed for teaching students how to program.
Many language features are included to help the programmer
quickly identify and avoid common errors, reducing the time
required to obtain functionally correct programs.

Pascal’s strong type checking and highly structured syntax
encourage source code that is easier to read and understand. For
this reason, maintenance costs for software written in Pascal
tends to be lower than equivalent software written in C.

C was developed for writing operating systems by highly
experienced programmers at AT&T Bell Laboratories. C provides
the programmer with a powerful language in which programs
can be tersely worded. The C language contains very few features
which protect the programmer from programming errors and
oversights.

The standard C language provides the low level facilities needed
to support microprocessor development applications. For this
reason, the HP 64000 System C language is highly standard and
software written in C can be moved to and from the HP 64000
System development environment at lower cost than equivalent
software written in Pascal.

Host Computer Selection

Software development strategies are based on organizational
structure and microprocessor applications. To best meet YOUR
needs, the HP 64000 System Pascal and C Cross Compiler
products operate on several host computers.

Each of the cross compiler products will execute on the

HP 64100A or 64110A development stations. In this environment,
compilation speeds are very fast, typically in excess of 600
lines per minute.

Each of the Pascal and C Cross Compilers are also available to
execute on the HP-UX 9000/500 or VAX/VMS computer
systems. In a host computer environment, the cross compiler can
be accessed from a time-sharing terminal. This is a particularly
effective environment for microprocessor applications involving
large software development teams. When the time needed to
complete an compile-link iteration is longer than convenient,
the program can be executed as a background process, allowing
the programmer to continue working on other tasks. Typical
compiler speeds in various host environments are documented
in technical data supplements, HP P/N 5953-9252 and HP P/N
5953-9254.

Pascal and C, native-mode compilers are available for the
HP-UX and VAX/VMS computer systems. This allows testing
Pascal or C source code using a host computer as an execution
environment. The relative difficulty of implementing this soft-
ware development strategy depends upon both the programming
language selected and the microprocessor application.

HP 64000 System C is a highly standardized language. C
programs can be compiled and tested in the host environment,
and later moved into the HP 64000 System environment with
relatively little change. Changes required include: addition of
“C” and “target microprocessor” directives, deletion of standard
I/0 function calls, deletion of references to HP-UX or VMS
execution environment resources, revisions to development
environment-unique file naming conventions, and revisions to
any inherently machine-dependent code. Moving software from
the host to the development station or visa versa is very fast
using the high-speed link software.

HP 64000 System Pascal is an extension to most native-mode
Pascal compiler languages. Pascal programs that use only the
common-denominator subset of both HP 64000 System and the
native-mode Pascal can be compiled and tested in the host
environment, and later moved into the HP 64000 system
environment with relatively little change. Other Pascal
programs may require such extensive changes as to make the
implementation of this strategy impractical.

Strong Linkage between Language
Systems and HP 64000 Test and Analysis Tools

Symbolic interface to measurement tools is important for
programming productivity. All the HP 64000 language-linked
analysis tools support symbolic interface. These tools support
code execution and module test prior to the existence of target
hardware, as well as real-time system analysis using in-circuit
emulation for software/hardware integration. The HP 64000
emulator-based analyzers and other logic analysis tools can be
used independently or interactively for different levels of testing
and system integration. Transition from “functional testing”
(without target hardware) to “system testing” (with target
hardware) is straightforward since common tools and environ-
ments are used for both phases.

Emulator analysis in combination with the HP 64000 networking
to host computer systems significantly reduces the equipment
cost per engineer. Many users can access this test environment
via remote control feature through the host computer. This
emulation analysis arrangement provides many advantages over
traditional “simulation” products:

HP’s emulators can be operated out-of-circuit — Code can be
fully written and functionally debugged prior to the availability
of any target hardware.

Execution is real time — resulting in maximally short test and
debug time. The host computer is not loaded down when testing
instruction intensive code. The quick turnaround in the find-fix-
verify cycle encourages good code documentation and insightful
testing.

Execution is real, not modeled — Emulation does not require
the inevitable compromises between accuracy and the speed of
the simulator.

All of HP's powerful, emulator-based analysis tools are available
to evaluate program execution — The programmer can locate
faults quickly. Testing can be accelerated even further through
the HP 64000 logic analyzers, powerful tools that show the
bus activity while the designed system is running at operational
speed.

Multiple emulators can be operated together — System test in a
true multiprocessor execution environment can be very complex.
However, the HP 64000 system is a “universal system”; processors
from different families and different manufacturers can be
emulated. The HP 64000 emulators simplify emulation in a
multiprocessor design.

The transition from functional test to system test is ‘graceful’ —
As target hardware is completed, it can be added to the software
test bed. There is no dramatic shift from a “simulated” to “true”
execution environment with the attendant subtle surprises.

Source Code Generation

Pascal and C source code can be entered in a variety of ways.
On the HP 64100A/64110A development stations, a
softkey-driven editor provides a user-friendly means of writing
and editing Pascal, C or assembly language source code. In the
HP-UX or VMS environment, the programmer can select any of
several editors for generating source code.

Optimization of Object Code

Software development often involves trade-offs between the
labor investment to develop a program, the execution efficiency
of the program, and the subsequent maintainability of the code.

Software developed with the HP 64000 System Pascal and C Cross
Compilers typically generates less efficient code — in terms of
both memory utilization and execution speed — than the same
program written in assembly language. The labor, however,
required to write, debug, and subsequently maintain the program
will be significantly lower; many users report 5 to 10 times
labor savings due to the use of high-level programming languages
such as Pascal and C.

The HP 64000 System Pascal and C Cross Compilers include
optimization algorithms to generate efficient code. Often,
however, the compiler designer had to choose between tight,
high-speed code and code which will execute safely in all possible
situations. In HP 64000 System, the trade-offs are always made
to achieve safe, reliable code. Compared to a native-mode
compiler, the optimization of cross compiler code is exacerbated
by the extremely wide range of possible execution situations.
Assumptions cannot be made about the target operating system,
e.g., external variables may really be an I/O port, necessitating
reloading for each reference, etc.

A programmer, writing software for a specific microprocessor
application, frequently identifies more efficient generated code
constructs by simply inspecting an assembly language listing. It
is important to identify those few key program areas where
optimizing code will have maximum impact on the overall
software system performance.

The HP 64000 System supports a 4-step methodology and
provides a set of tools to achieve high-leverage code
optimization:
1. Write and functionally debug as much of the program as
possible in C or Pascal.
2. Use the HP Model 64310A Software Performance Analyzer
to locate and flag those areas of the code which primarily
affect program performance.
3. Use the ASM_FILE compiler directive to generate assembly
code for all modules flagged by the Software Performance
Analyzer.
4. Edit or recode the assembly language files for maximum
performance.

Linking C, Pascal, and
Assembly Language Programs

Relocatable object code modules generated by the Pascal and
C Cross Compilers and the Cross Assembler (for a given target
microprocessor) are all compatible and processed by the same
HP 64000 System Linker.

Each Pascal and C Cross Compiler has a $LIST_CODES directive
which generates a symbolic assembly language listing of the
compiled object code. By turning LIST_CODE on when an
assembly language routine is called, the assembly language
programmer obtains a “roadmap” for establishing the proper

linkages.

Three product notes address the issues of linking code modules
from cross compilers and cross assemblers: Communicating
Between 68000 Pascal Modules and 68000 C Language Modules
(HP P/N 5957- 7339); Communication Between 68000 C
Language Modules and 68000 Assembly Modules (HP P/N
5957-7340); and Communication Between 68000 Pascal Modules
and 68000 Assembly Modules (HP P/N 5957- 7341). Although
the 68000 microprocessor is used as the example, these product
notes provide information about the general subject of linkage
between assembly language, C, and Pascal program modules.

Linking Relocatable Code and Compatibility
with Other Execution Environments

The HP 64000 System Pascal and C Cross Compilers generate
relocatable object code. The HP 64000 System Linker combines
multiple relocatable modules into a single, absolute load file.
This file can then be used by the HP 64000 system for execution in

an emulation environment, on a target system, or programming
PROMs (Programmable Read Only Memory).

Please refer to the HP 64000 System Cross Assembler/Linker
Technical Data Sheet (HP P/N 5953-9251) for more information
about the HP 64000 System Linker.

By reformatting, HP absolute object file can be loaded to other
emulation or target systems. Complete information is contained
in the HP 64000 Logic Development System File Format
Reference Manual (HP P/N 64980-90933), HP-UX File Format
Manual (HP P/N 64880-90903), and VAX/VMS Hosted File
Format Manual (HP P/N 64882-90903).

HP 64000 Cross Compiler
Operations (Pascal and C)

Operation

The compiler is invoked by using the “compile” softkey on a
HP 64000 development station and by executing the “comp”
command in HP-UX and in VMS. The first line of the C language
source code must be “C” in quotes. The second line of the C
language source code and first line of Pascal language source
code must be the processor directive, e.g., “80186”", “68010”,
"6809", “BZ80”, etc. The compile syntax is in UNIX* format in
the HP-UX environment and is in VMS* format in the VMS
environment.

*UNIX is a trademark of AT&T Bell Laboratories.
VMS is a trademark of Digital Equipment Corporation.

Options

nolist No listing except error messages. All $LIST$
directives in the source program are ignored.

List Lists source program without expansions. All
$NOLISTS$ directives in the source program are
ignored.

expand Specifies a list of all source lines with an expansion
of the assembly language. Also shows INCLUDE
files and expanded MACRO:s if used. All
$LIST_.CODES$ and $FULL _LIST$ directives in the
source program are ignored.

nocode Suppresses the generation of object code. Only the
source code will be listed in pass 2.

xref Specifies a symbol cross-reference listing for the

source file. All $XREFS$ directives in the source file
are ignored.

listfile On HP 64000 development stations, the assembly
output listing is generated and stored in the
specified destination. On HP-UX, the assembly
output listing will go to “stdout” and is subject for
redirection. On VAX/VMS, if the output file name
is given, the listing is stored in the specified file;
otherwise, the source file name will be used for the
listing file with extension .LIS.

Generates an entire compiler symbol table for

use in creating the comp_db file by the linker.

comp_sym

Reference Information

Information common to all HP 64000 cross compilers is
discussed in this section. Information about specific cross
compilers is discussed in the section on that product.

Index to General Pascal and C Programming Information
1. Compiler Directives
Common to All HP 64000 Pascal and C Cross Compilers
C Compiler Directives
Pascal Compiler Directives
2. C Cross Compiler Information
Language Extensions
Language Restrictions
Dynamic Memory Allocation Extensions
Intrinsic Data Types
Derived Data Types
3. Pascal Cross Compiler Information
Language Extensions
Language Restrictions
Dynamic Memory Allocation Extensions
Intrinsic Data Types
Derived Data Types
3. Run-Time Libraries
4. Real-Number Operations
5. Character Set

Compiler Directives
Common to All HP 64000 System Pascal and C Cross Compilers

$AMNESIAS causes the compiler to forget register contents after
each use of the register. May be used to ensure that variables
representing memory mapped I/O ports are reloaded each
time they are needed.

$ASM_FILES creates an assembly language source file intermixed
with Pascal or C source lines displayed as assembler comments.
This file will be accepted by the assembler for the selected
microprocessor. Critical modules can be modified and
reassembled for better performance.

$ASMB_SYM OFF$ causes the compiler to omit the generation
of an assembler symbol file (used by the analysis tools during
emulation); results in shorter compile time.

$DEBUGS checks for run-time overflow in addition, subtraction,
negation, multiplication and absolute value operations. Also
checks for division by zero in division and modulus operations.

$EMIT_CODE OFF$ causes the compiler to omit the generation
of the relocatable object code.

$FULL LIST$ causes INCLUDE files to be listed and MACROs
to be expanded in the compiler listing file. A complete listing
for documentation and debugging is generated.

$LINE NUMBERS OFF$ halts generation of symbols (for
inclusion in the assembler symbol file) corresponding to the
Pascal or C source code line numbers for use by the analysis tools
during emulation and results in shorter compile time.

$LIST OFFS$ halts generation of the compiler listing file. This
allows users to selectively list segments of a program.

$LIST_CODES generates a listing file containing an expanded
assembly language listing intermixed with the Pascal or C source
code. This allows users to selectively list segments of a program
with expanded assembly instructions.

$LIST_OBJ$ specifies that the listing file contain the relocatable
object code (hexadecimal representation) when the
$LIST_CODES directive or expand option is used.

$ORGS$ and $SEND_ORGS$ allow variables to be allocated at
sequential absolute memory addresses beginning at a specified
location.

$PAGES$ generates a form feed output to the compiler listing file.

$RECURSIVES causes local data and temporaries to be allocated
on the stack. Memory requirements for the generated code may
be greater and execution speed may be slower than with

$RECURSIVE OFFs.

$SEPARATES$ causes code related to program and constants to
be separated from data. The specific implementation will vary
depending on the target microprocessor.

$TITLES prints a specified header line at the top of each
subsequent page of the compiler listing file.

$WARN OFF$ prints error messages, but inhibits warning
messages in the compiler listing file.

$WIDTHS specifies the number of significant characters in the
source line to be compiled; additional characters are ignored.

C Compiler Directives
The following compiler directives are available for C only.

$ENTRY OFF$ disables the automatic use of the ‘main’ function
as the program entry point and allows the user to establish an
application-unique program initialization and entry procedure.

$SEXTENSIONSS allows the use of HP 64000 System extensions
to the C language. Specifically permits use of HP 64000 format
for defining binary, octal, decimal, and hexadecimal constants.

$FIXED_PARAMETERSS specifies that subsequent functions
will always pass the same types and number of parameters. May
result in more efficient code and ensures compatibility with the
parameter passing conventions of HP 64000 System Pascal
procedures and functions.

$INIT_ZEROES OFF$ inhibits initialization to zero of all static
and external variables not explicitly initialized.

$LONG_NAMES OFF$ causes identifiers to be truncated at eight
characters instead of fifteen.

$SHORT_ARITHS causes arithmetic with ‘short’ and ‘char’
variables to occur without conversion to type ‘int’, and arithmetic
with 'float’ to occur without conversion to type ‘double’.

$STANDARDS causes warnings to be printed in the compiler
listing file whenever any “non-standard C” feature (as defined by
Kernighan and Ritchie) is used.

$UPPER KEYSS$ instructs the compiler to recognize upper-case
keywords instead of lower case.

$USER_DEFINEDS$ permits redefinition of certain operators in
the language and results in calls to user provided run-time
routines. Allowed operators: +, —, *, /, %, ==, |=, (=,)=,
y, and «.

Pascal Compiler Directives

The following compiler directives are available for Pascal only.

$ANSIS$ causes a warning message to be issued when any

HP 64000 System Pascal feature is used which is not part of
‘standard’ Pascal. This directive is useful for identifying program
areas which are likely to create transportability problems.

$EXTENSIONSS$ allows programmers to use the microprocessor
oriented language extensions. These include: functional type
changing, the address function, the BYTE data type, built-in
functions, SHIFT and ROTATE, and nondecimal constant
representations.

$EXTVARS causes subsequently defined variables to be declared
EXTERNAL, allowing data communication among modules. A
variable declared EXTERNAL is imported from another program.

$GLOBPROCS$ causes subsequent main block procedures to be
declared GLOBAL and exported for use in other programs.

$GLOBVARS causes subsequent main block variables to be
declared GLOBAL and exported for use in other programs.

$IOCHECK OFF$ causes input/output procedures and functions
to return with an error code in the event of an I/O error. With
$IOCHECK ONS, an I/O error causes all input/output activity
and program execution to terminate.

$RANGE ONS$ causes the compiler to generate code to check
array indices, value parameters, variable set elements, and
subrange assignments for legal values.

$USER_DEFINEDS$ permits redefinition of certain operators

in the language and therefore results in calls to user provided
run-time routines. Allowed operators: +, -, ¥, /, DIV, MOD, =,
0, (=,)=,(and).

C Cross Compiler Information
Compiler Operation

A four-pass compilation process translates C source programs
into relocatable code for the target microprocessor. In the first
pass, the compiler reads the C source code, checks for errors,
and creates an intermediate language file. The next pass inserts
parameters related to the newly created file. The third pass is
microprocessor dependent, and the intermediate language file is
translated into a tokenized assembler file. In the final pass, the
compiler generates a relocatable object file. A listing file, an
assembler source file, an assembler symbol file, and a compiler
symbol file may also be generated during the final pass. An
additional preprocessor pass may be executed to process macros,
include files, and conditional compilation.

Language Extensions

Program code and constants may be compiled to a relocatable
area separate from data and variables, allowing the design of
ROM and RAM memory systems.

Variables can be assigned to absolute memory locations
permitting easy access to memory I/O addresses and other fixed
memory location entities.

The first fifteen characters of an identifier are significant,
permitting more meaningful names to be used. Truncation to
eight characters can also be forced.

Arithmetic may be done with ‘short’ variables without con-
version to type ‘int’, or with ‘float’ without conversion to type

‘double’.

The keywords may be defined to be upper case instead of the
standard lower case at the user’s preference.

Binary, decimal, hexadecimal, and octal constants in HP 64000
format (B, D, H, and O or Q suffixes) may be used in addition
to the standard C forms.

Structures may be assigned, compared for equality and
inequality, passed as parameters, or returned from functions.
This simplifies operations on variables of structure types.

The enumeration type is supported, allowing the use of symbolic
identifiers instead of integers for classifying data.

A shift by a negative value is allowed (equivalent to a shift in the
opposite direction by a positive value, i.e., a»b and a«b are
equivalent if b is a signed type).

Large constants are optimized and those which match in full or
in part may be in the same memory location.

The user may selectively redefine the following operators: +, —,
* /,%, ==,!=,) «¢=, and »=. This allows users to extend
the meaning of an operator to the operands of a user defined type.

Dynamic Memory Allocation Extensions

Because library routines are common between the Pascal and
C Cross Compilers, the dynamic memory allocation routines
required for Pascal programming may also be used in C programs
as external functions.

INITHEAP to initialize a block of memory as a memory pool
or ‘heap’.

NEW and DISPOSE to allocate and deallocate blocks of
memory from the 'heap’.

MARK and RELEASE to simplify ‘heap’ management for short
term memory usage. The state of the heap is contained in a
pointer variable.

Language Restrictions
The “standard 1/0 library” functions are not included.

Register variables are treated as an automatic storage class and
are not specially optimized.

The HP 64000 System C Cross Compilers do not presume any
specific host operating system environment; therefore the

C preprocessor #include ¢ilename is not available. (However,
the #include “filename” refers to any user-defined file, and is
available.)

A string constant may not be extended across multiple source
code lines, and its maximum length is therefore limited to 238
characters.

The C preprocessor ‘#line’ instruction is not implemented.

Intrinsic Data Types

short An 8-bit signed integer

unsigned An 8-bit unsigned integer

int A 16-bit signed integer

unsigned A 16-bit unsigned integer

long A 32-bit signed integer (implemented as 16-bit
on 6800 and 6809)

unsigned long A 32-bit unsigned integer (implemented as
16-bit on 6800 and 6809)

char An 8-bit value defined by the ASCII character

set. Equivalent to an unsigned short.

float A 32-bit binary floating point number in the
IEEE single-precision format.

double A 64-bit binary floating point number in the
IEEE double-precision format.

Derived Data Types

The following derived data types have an implementation
representation that is target microprocessor dependent. They
may contain holes (unused bytes) due to memory alignment
requirements. For statically allocated variables, these holes are
filled with zeroes.

struct structures

union unions

typedef type definitions
enum enumeration type

Pascal Cross Compiler Information
Compiler Operation

A three-pass compilation process translates Pascal source
programs into relocatable code for the target microprocessor. In
the first pass, the compiler reads the Pascal source code, checks
for errors, and creates an intermediate language file. The second
pass is microprocessor-dependent, and the intermediate language
file is translated into a tokenized assembler file. In the final
pass, the compiler generates a relocatable object file. A listing
file, an assembler source file, an assembler symbol file and a
compiler symbol file may also be generated during the final
pass. An additional special preprocessor pass may be executed
to process MACROs, INCLUDE files, and conditional
compilation.

Language Extensions

Full facilities for separate compilation are provided. Procedures
and variables may be declared EXTERNAL (imported from
another program) and GLOBAL (exported to other programs)
for use by separately compiled or assembled program modules.
The HP 64000 System Linker satisfies these external references
between separate modules, or with relocatable library files.

Program code and constants may be compiled to a relocatable
area separate from data and variables, allowing the design of
ROM and RAM memory systems.

Variables may be assigned to absolute memory locations,
permitting easy access to memory mapped I/O locations and
other fixed memory location entities. These absolute variable
assignments can be made in one program module and externally
linked in all other modules.

The direct access file I/O procedures READDIR and WRITEDIR,
and the string I/O procedures STRREAD and STRWRITE are
implemented in addition to the standard READ, READLN,
WRITE, and WRITELN. The auxiliary functions and procedures,
LINEPOS, POSITION, MAXPOS, REWRITE, APPEND, RE-
SET, PUT, GET, CLOSE, OPEN, SEEK, PROMPT, PAGE, OVER-
PRINT, EOF and EOLN are also implemented.

Since the I/O hardware on the target system is undefined, the
libraries supplied with the Pascal Cross Compilers will cause
I/0O to be implemented via simulated I/O using the HP 64000
System printer and disc files, HP 64100 development station
keyboard, display, and RS-232C serial interface port. By re-
writing the ten primitive routines in the simulated I/O library,
the user can redirect the HP 64000 System Pascal I/O facility to
work with an application-specific target I/O system.

The CASE statement may contain an OTHERWISE clause to
specify action when the CASE expression fails to match any of
the listed values. '

The CONST, TYPE, and VAR declarations may be made in any
order, and more than one declaration is allowed. This extension
improves program readability.

Constant-valued expressions are allowed wherever constants are
allowed in “standard” Pascal.

The first 15 characters of an identifier and letter case are
significant (“standard” Pascal uses only 8), permitting more
meaningful names to be used.

MARK and RELEASE procedures enhance the “standard” Pascal
facilities for dynamic memory management by simplifying the
‘heap’ management for short term memory usage.

The built-in function ADDR returns the address of any variable,
providing users with greater power in manipulating data
structures. The result is a pointer that is compatible with any
pointer type. “Standard” Pascal only allows pointers to
dynamically allocated memory space.

Predefined integer types of SSIGNED_8, SIGNED_16, SIGNED_32,
UNSIGNED_8, UNSIGNED_16, and UNSIGNED_32 permit
selection of a variable’s memory implementation independent
of the target microprocessor.

The built-in functions SHIFT and ROTATE, permit bit-level data
manipulation via logical and circular shifting of data.

Expressions and variables are permitted to have their implicit
type changed by being included as the parameters of a “function”
call of any named TYPE. “Standard” Pascal allows this by using
variant type records.

With the $USER DEFINEDS$ option, the meaning of the
arithmetic operators (+,—,*,/,DIV,=,0,(),4=, and »=) may be
selectively redefined. This allows users to extend the meaning of
an operator to the operands of a user defined type.

A string data type is defined with a maximum length of 255
characters. The length of a string variable is dynamic and can
be changed during program execution.

An additional special preprocessor pass provides the ability to
have INCLUDE files, conditional compilation, and MACRO
expansion.

Language Restrictions
HP 64000 System Pascal is a subset of the Jensen and Wirth
“standard” Pascal with the following constraints:

Procedures and functions are not allowed as parameters.

Set subranges are not implemented. Also, sets are limited to 256
elements or less of any ordinal type.

The standard function SQR is not implemented.

Packing of data is not carried below the byte level. The PACKED
key word is ignored by the compiler, except when defining a
string, and the standard procedures PACK and UNPACK are not
implemented. Bit packing in 8-bit, 16-bit, or 32-bit data item
can be performed using the SET construct “*’(AND), “+”(OR),
and “—"(set difference) operators, and the predefined SHIFT
and ROTATE functions in conjunction with the functional type
change operations.

Program parameters are not implemented since the compiler
does not presume the existence of a host operating system. The
predefined variables, INPUT and OUTPUT, may be used
without mentioning them in a program parameter list.

Intrinsic Data Types
BYTE An 8-bit signed integer.
CHAR An 8-bit value defined by the ASCII character

set. Equivalent to the UNSIGNED.8.

INTEGER A 32-bit signed integer. (except, implemented
as a 16-bit signed integer on 6800 and 6809)

REAL A 32-bit binary floating point number in the
IEEE single-precision format.

LONGREAL A 64-bit floating point number in the IEEE
double-precision format.

STRING A 256-byte array equivalent to PACKED
ARRAY [0..255] of CHAR. Byte 0 contains
the run-time string length.

TEXT Type FILE variables of type TEXT are called
‘textfiles’. The components of a textfile, of type
CHAR, are further structured into ‘lines’
separated by ‘line markers'. Line markers are
written to a textfile using WRITELN. When
reading a textfile, line markers are detected
by using EOLN.

SIGNED_8 An 8-bit integer.

UNSIGNED_8 An 8-bit unsigned integer

SIGNED_16 A 16-bit integer.

UNSIGNED.16 A 16-bit unsigned integer

SIGNED_32 A 32-bit integer. (Not implemented on
6800 and 6809.)

UNSIGNED_32 A 32-bit unsigned integer. (Not implemented
on 6800 and 6809.)

User Defined Types

Enumerated Type Identifiers are assigned ordinal values based
upon their enumerated order. Each
enumerated type variable occupies one byte
of memory.

Subrange Type Compiler generates run-time range checking

to verify that values of the variable are

restricted to a sequential subset range of the
ordinal base type.

Structured Types

The structured types ARRAY, RECORD, SET and FILE are
characterized by component type and structuring method. A
structured type definition may contain the term PACKED as an
indication to the compiler that memory is to be economized at
the expense of execution speed.

ARRAY An ARRAY is made up of a fixed number of
components, each of which can be accessed via the
index. The index specifies the array size and must be
an ordinal type. The components can be any type,
but all components must be of the same type. Both
single- and multi-dimensional arrays can be used.
SET A SET is the power set (set of all subsets) of any
ordinal base type. The base type is limited to 256 or
fewer elements. Subsets are allowed, but the value
of the maximum element of the SET may not
exceed 255.

RECORD A RECORD, like an ARRAY, is a structured variable
with several components. The components of a
RECORD may have different types; however, they
are accessed by name, not by index value.

FILE A FILE consists of a sequence of components which

are all of the same type. Only one component in a

FILE is accessible at a time. FILEs are usually

associated with peripheral storage devices and their

length is not specified in the program.

Pointer Type

In ‘standard’ Pascal, dynamic variables can be generated by using
the standard procedure NEW(p). New memory space is allocated
for the new dynamic variable, and the pointer variable ‘*’ holds
the address of the new dynamic variable. With the ADDR(p)
function, HP 64000 System Pascal permits a pointer variable

to hold the address of any variable. The memory representation
for a pointer type is microprocessor dependent.

Run-Time Libraries

Run-time libraries are supplied with each compiler as relocatable
code modules that are linked with the relocatable program
modules. These libraries perform commonly encountered tasks,
such as the real number operations, moving and comparing
structured data, and error handling. Both the Pascal and C Cross
Compilers use common microprocessor-specific run-time library
routines, which may be shared in programs composed of
modules from both languages.

If the libraries as supplied do not fully conform to the needs of
the program being developed, they may be replaced with user
supplied routines by simply specifying the new modules at
link time.

Real Number Operations

An integral part of the compiler and library routines are real
number operations. HP 64000 System Pascal and C both use the
IEEE floating point formats with the Pascal type ‘real’ and

C type 'float’ implemented as an IEEE single-precision (32-bit)
format and the Pascal type ‘longreal’ and C type ‘double’
implemented as an IEEE double-precision (64-bit) format.

IEEE Floating Point Formats

s e f

63 0
Double-precision format

s e f

31 0
Single-precision format

SINGLE-PRECISION, DOUBLE-PRECISION,

32-Bit Binary 64-Bit Binary

Floating-point Floating-point

Format: Format:

s—1-BIT SIGN s—1-BIT SIGN

e—8-BIT BIASED e—11-BIT BIASED
EXPONENT EXPONENT

f—23-BIT FRACTION f—52-BIT FRACTION

The Pascal and C Cross Compilers handle operations on single
and double precision real numbers by generating calls to value-
returning functions from the run-time libraries. Calls are
generated automatically whenever floating point operations, as
listed, are encountered in the source code.

Both single and double precision versions of the following
routines are included in the run-time libraries.

General Operators:
ADD (+) SUBTRACT (-) MULTIPLY (*) DIVIDE (/)
NEGATE (—) [C only]

Value Comparisons:

EQUAL (=) NOT EQUAL (o or [=) LESS THAN ()
GREATER THAN (») LESS THAN OR EQUAL
(=) GREATER THAN OR EQUAL (=)

Predefined Functions:

ABS (absolute value) ARCTAN (arctangent) COS (cosine)
SIN (sine) EXP (exponent) LN (natural logarithm)
SQRT (square root)

Data Conversions:

Single- and double-precision real numbers may be converted
to and from 8-, 16- and 32-bit integers. Language access differs
between Pascal and C. Implementation specifics vary with the
target microprocessor.

Number Ranges

8-bit signed —128 to 127
unsigned 0 to 255

16-bit signed —32,767 to 32,768
unsigned O to 65,535

32-bit signed —2,147,483,648 to 2,147,483,647
unsigned 0 to 4,294,967,295

32-bit real -10E 38to 10E 38
or float

64-bit longreal = —10 E 308 to 10 E 308
or double

Character Set

Alphabetic Characters — All upper and lower case characters
(‘A through ‘Z’ and ‘a’ through ‘7).

Numeric Characters — Digits ‘0’ through ‘9’ for decimal numbers
and including ‘A’ through ‘F' (and also ‘a’ through ‘f’ for
C language) for hexadecimal numbers.

Special Characters — blank, dollar sign, apostrophe, left and
right parentheses, comma, plus, minus, equals, less than, greater
than, decimal point, slash, colon, semicolon, left and right
brackets, left and right braces, caret (), asterisk (*), and
underscore (_). The C language also includes: ampersand (&),
exclamation point, quotation mark, pound sign(#), percent
sign (%), tilde (), backslash, and question mark.

6800 Family and 6301

The HP 64811 Pascal Cross Compiler or HP 64821 C Cross
Compiler provides high-level language software development
support for the 6800 microprocessor. The generated 6800 code
will also execute on the 6801, 6802, 6803, 6808, and the
Hitachi 6301 microprocessors.

Models 64811AF and 64821AF compilers are hosted on the
HP 64100A or 64110A development stations.

Models 64811S Pascal Language System or Model 64821S C
Language System each provides two cross compilers and two
cross assembler/linkers. One of the cross compilers and one of
the assembler/linkers executes on the HP 64100A/64110A
development station. The other cross compiler and assembler/
linker are hosted on an HP 9000/500 HP-UX or a VAX/VMS
computer system, depending on the option selected.

Regardless of the host computer execution environment, the
cross compilers and assembler/linker generate identical
relocatable and absolute code for a given source program.

Both compilers generate the necessary information for symbolic
debug in emulation. Programmers can troubleshoot the code
using source program line numbers and global symbols,
eliminating the task of looking up addresses. The compilers also
generate files for use with other analyzers which provide high
level debugging facilities such as source lines display and module
and global variable tracing in terms of the language being used to
develop the software.

Pascal Cross Compiler

Model 64811 Pascal cross compiler provides a complete
implementation of the HP 64000 System Pascal Language (with
16-bit integer). Code for procedures and functions can be
generated for recursive execution. Pascal routines can be written
to handle interrupts from external signals or software programs.
An extensive Pascal I/O facility simplifies software debug. By
rewriting the ten primitive routines in the simulated I/O library,
the user can redirect the HP 64000 System Pascal I/O facility to
work with an application-specific target I/O system.

C Cross Compiler

Model 64821 C Cross Compiler provides a complete imple-
mentation of the HP 64000 System C Language (with 16-bit
integer). Code for functions can be generated for recursive
execution. C functions can be written to handle interrupts from
external signals or software programs.

Operation

The compiler directive “6800” appearing in the first line invokes
the 6800 Pascal cross compiler. If the directive is preceded by line
“C”, the 6800 C cross compiler will be invoked.

The 6800 compilers generate code for the 6800 microprocessor.
The code will also execute on 6801, 6802, 6803, 6808, and 630L.

Reference Information

Pointers are represented as 16-bit values. There are five
run-time libraries supplied with the 6800 compilers for real
number operations, error handling, and Pascal I/O functions.

Compiler Directives

$OPTIMIZES causes the compiler to generate short jump
instructions for all the forward branches, providing a savings of
three bytes for each forward branch operation. An error message
will be displayed to inform the user to turn ‘optimize’ off at the
given location where a forward branch is out of range.

$DEBUGS causes arithmetic error checking such as overflow,
underflow, or divide by zero error conditions to be performed
using subroutine calls to the routines in the debug library.

$RANGES used to check array index expressions, value
parameters, and variable assignments for correct subrange values
before performing the operation. Range-checking code will also
be produced if the variable is a scalar data type or is a subrange
data type. (Pascal Only)

$PASCALvarPARAMSS used with SFIXED_PARAMETERSS to
modify the standard parameter passing technique in C to support
$USER _DEFINEDS$ routines written in Pascal. (C only)

Ordering Information

Model

64811AF
64811AR
64811AX

64811S
Opt 001
Opt 003
64811SR
Opt 001
Opt 003
64811SX
Opt 001
Opt 003
64821AF

64821AR
64821AX

64821S
Opt 001
Opt 003

6482ISR
Opt 001
Opt 003

648215X

Opt 001
Opt 003

Description

Pascal Cross Compiler for 6800 Family

License to use a second copy of 64811AF
One-Time Update to current revision for 64811AF

Pascal Language System for 6800 Family
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

License to use a second copy of 64811S
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

One-Time Update to current revision for 64811S
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

C Cross Compiler for 6800 Family
License to use a second copy of 64821AF
One-Time Update to current revision for 64821AF

C Language System for 6800 Family
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

License to use a second copy of 64821S
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

One-Time Update to current revision for 64821S
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

10

HP 64813 Pascal Cross Compiler or HP 64822 C Cross Compiler
provides high-level language software development support for
the 6809 microprocessor.

Models 64813AF and 64822AF compilers are hosted on the
HP 64100A or 64110A development stations.

Models 64813S Pascal Language System or Model 648225

C Language System each provides two cross compilers and two
cross assembler/linkers. One of the cross compilers and one of
the assembler/linkers executes on the HP 64100/64110A
development station. The other cross compiler and assembler/
linker are hosted on an HP 9000/500 HP-UX or a VAX/VMS
computer system, depending on the option selected.

Regardless of the host computer execution environment, the
cross compilers and assembler/linker generate identical
relocatable and absolute codes from a given source program.

Both compilers generate the necessary information for symbolic
debug in emulation. Programmers can troubleshoot the code
using source program line numbers and global symbols,
eliminating the task of looking up addresses. The compilers also
generate files for use with other analyzers which provide high
level debugging facilities such as source lines display and module
and variable tracing in terms of the language being used to
develop the software.

Pascal Cross Compiler

Model 64813 Pascal cross compiler provides a complete
implementation of the HP 64000 System Pascal Language. Code
for procedures and functions can be generated for recursive
execution. Pascal routines can be written to handle interrupts
from external signals or software programs. An extensive Pascal
I/O facility simplifies software debug. By rewriting the ten
primitive routines in the simulated I/O library, the user can
redirect the HP 64000 System Pascal 1/0O facility to work with
an application-specific target I/O system.

11

C Cross Compiler

Model 64822 C compiler provides a complete implementation
of the HP 64000 System C Language. Code for functions can be
generated for recursive execution. C functions can be written
to handle interrupts from external signals or software programs.

Operation

The compiler directive “6809” appearing in the first line of the
program invokes the 6809 Pascal cross compiler. If the directive
is preceded by line “C”, the 6809 C cross compiler is invoked.

Reference Information
Other Implementation Specifics

Pointers are represented as 16-bit values. The default size of
the run-time stack is 512 bytes. If the debug library is linked,
the stack is assigned in the program area of the linked modules.
If the LIB_6809 library is linked, the stack will be assigned in
the data area of the linked modules. The stack size can easily be
changed to other sizes.

All procedures and function parameters are passed on the stack.
The addresses of reference parameters in Pascal and structure
parameters and parameters with ‘&’ operator in C, are pushed
onto the stack. For value parameters in Pascal and C, the values
of the parameters are pushed onto the stack.

There are four run-time libraries supplied with the 6809 compiler
for real number operations, error handling, and Pascal I/O
functions.

Compiler Directives

$OPTIMIZES causes the compiler to generate short jump
instructions for all forward branches to save memory space. The
compiler also heuristically selects one of the three stack offset
sizes (5 bits, 8 bits, and 16 bits) for parameter addressing in a
recursive routine instead of the default offset size (16 bits).

$DEBUGS causes arithmetic error checking, such as overflow,
underflow, or divide by zero, to be performed using subroutine
calls to the routines in the debug library.

S$INTERRUPTS insures that the subsequent Pascal main-level
procedure or C function will be suitable for use as an interrupt
routine. Nothing special is done upon entry. On exit, a return
from interrupt (RTI) is generated to return control instead of the
normal RTS instruction.

Ordering Information

Model Description

64813AF Pascal Cross Compiler for 6809
64813AR License to use a second copy of 64813AF
64813AX

648135
Opt 001
Opt 003

64813SR
Opt 001
Opt 003

648135X
Opt 001
Opt 003

64822AF

64822AR
64822AX

648225
Opt 001
Opt 003

64822SR
Opt 001
Opt 003

648225X
Opt 001
Opt 003

One-Time Update to current revision for 64813AF

Pascal Language System for 6809
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

License to use a second copy of 64813S
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

One-Time Update to current revision for 648135
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

C Cross Compiler for 6809
License to use a second copy of 64822AF
One-Time Update to current revision for 64822AF

C Language System for 6809
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

License to use a second copy of 648225
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

One-Time Update to current revision for 648225
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

8086/8088/80186/80188

The HP 64814 Pascal Cross Compiler or HP 64818 C Cross
Compiler provides high-level language software development
support for four microprocessors: 8086, 8088, 80186, and 80188.
Both compilers will optionally generate library calls to utilize
an 8087 numeric coprocessor for floating point operations. Both
8086 and 80186 code will execute on an 80286 operating in
‘compatibility mode’.

Models 64814AF and 64818AF compilers are hosted on the
HP 64100A or 64110A development stations.

Model 64814S Pascal Language System or Model 648185

C Language System each provides two cross compilers and two
cross assembler/linkers. One of the cross compilers and one of
the assembler/linkers executes on the Model 64100A/64110A
development station. The other cross compiler and assembler/
linker are hosted on an HP 9000/500 HP-UX or a VAX/VMS
computer system, depending on the option selected.

Regardless of the host computer execution environment, the
cross compilers and assembler/linker generate identical
relocatable and absolute codes from a given source program.

All code generated for procedures and functions is suitable for
recursive or reentrant execution.

Executable code and constants are compiled to a separate
relocatable area, apart from data and variable areas.

The 8086 address space is divided into 64k-byte segments.
More efficient code is generated if only a single segment is
used. Different compiler directives are provided for optimal
management of multiple code segment routine calls and multiple
data segments variable accesses.

Compiler directives are available to include constants in PROG
segments, implement multiple DATA segments, implement
multiple PROG segments, place the stack in a separate DATA
segment, and implement one or more dynamic memory (heap)
DATA segments for large applications.

The compiler can also generate position-independent code,
permitting decisions regarding program location in memory to
be deferred until run time.

Both C and Pascal cross compilers support interrupts from
external control signals or from software programs. Trap-
handling routines may be written to implement system calls.

Both compilers generate necessary information for symbolic
debug in emulation. Programmers can troubleshoot the code
using source program line numbers and global symbols,
eliminating the task of looking up addresses. The compilers also
generate files for use with other analyzers which provide high-
level debugging facilities such as source lines display and module
and global variable tracing, in terms of the language

being used.

Pascal Cross Compiler

Model 64814 Pascal compiler provides acompleteimplementation
of the HP 64000 System Pascal Language. An extensive Pascal
I/O facility simplifies software debug. By rewriting the ten
primitive routines in the simulated I/O library, the user can
redirect the HP 64000 System Pascal 1/O facility to work with
an application-specific target I/O system.

C Cross Compiler

Model 64818 C compiler provides a complete implementation of
the HP 64000 System C Language.

Operation

Four compiler selection directives are recognized: “8086”, “8088”,
“80186” and “80188”. Although the 8086/8088 and 80186/80188
have identical instruction sets, the “8088” and “80188" directives
are required to inform the linker that the 8088 and 80188 use

8- instead of 16-bit memory and to correctly select the 8088/80188
library routines.

The 80186/80188 compilers generate identical code to that
produced by the 8086/8088 compilers, except that tests are
made to generate more optimized code for the 80186/80188 in
six functional areas: The 80186/80188 instructions ‘ENTER’ and
‘LEAVE’ permit subroutine calls and exits to be made with less
code and faster execution speed. The 80186/80188 instructions
‘PUSH Immediate’, ‘ROTATE Immediate’, ‘SHIFT Immediate’,
and ‘Integer MULtiply Immediate’ are also used. The 80186/80188
compilers do not use the ‘'PUSH All', ‘POP All’ instructions, the
string manipulation instructions ‘INS’ or ‘OUTS’, and the array
checking ‘BOUND’ instruction. The run-time libraries for the
80186/80188 are the same as for the 8086/8088.

Reference Information

Other Implementation Specifics

The default of the run-time stack is 512 bytes. The stack will be
allocated in the data area of the linked modules. The stack can
easily be modified to other sizes.

Eight separate versions of the run-time libraries are supplied.
One set of four supports the 8086/80186; the other set supports
the 8088/80188. Selection of the appropriate library is determined
by whether the PROG area is limited to one segment (NEAR) or
occupies multiple segments (FAR), and whether the DATA area
is limited to one segment (SHORT) or occupies multiple segments
(LONG). The NEAR/FAR and SHORT/LONG selections are
independent; thus, versions of the libraries are provided to
support all four combinations.

Compiler Directives

$ALIGNS causes data and temporaries to be aligned on word
boundaries; NEW and DISPOSE will always be called with an
even number of bytes; and constants are sized to occupy an

even number of bytes. This improves memory access efficiency
on the 8086 and 80186.

$DEBUGS causes code to be generated to check for run-time
arithmetic overflow, division by zero, and Pascal case errors.

$SEPARATES$ has no effect since PROG and DATA are always
separate.

$INTERRUPTS causes subsequent C functions and Pascal
main-level procedures to be generated suitable for use as an
interrupt routine. On entry, all registers will be pushed onto
the stack. On exit, the registers will be restored and ‘IRET’
will be used to return instead of the normal ‘RET’.

$INT n$ causes the subsequent C function or Pascal main-level
procedure to be used as the interrupt service routine for interrupt
number ‘n’, where ‘n’ is in the range of 0 to 255. A call to the
function or procedure name, results in the generation of software
interrupt number ‘n’.

$RANGES$ generates code to check that values are within
expected range and array indices are within bounds. Constants
are tested at compile time and variables are tested at run time.

$FAR EXTVARSS, $DS_EXTVARSS, $CS_EXTVARSS,
$ES_EXTVARSS, and $SS_EXTVARSS$ are mutually exclusive
options for selecting the addressing mode used in the generated
code to access external variables. Applies to external variables
which are subsequently declared.

$FAR EXTVARSS$ causes the ES (extra segment) register to be
loaded prior to accessing the variable. Thus, the variable may be
located in any segment.

$DS_EXTVARSS is the default selection and will cause external
variables to be accessed via the current contents of the DS (data
segment) register. If variables can be stored in multiple memory
segments, users must be cognizant of the run-time segmentation
environment.

$CS_EXTVARSS causes external variables to be accessed via
the current contents of the CS (code segment) register.

$SS_EXTVARSS causes external variables to be accessed via
the current contents of the SS (stack segment) register.

$ES_EXTVARSS causes external variables to be accessed via the
current contents of the ES register. Compiler assumes proper
initialization of the contents of the ES (extra segment) register.

$SEPARATE CONST OFF$ causes constants to be placed in the
PROG relocatable area and accessed via the CS register.
Otherwise, constants will be in DATA and accessed via the DS
register. When constants are in PROG, 32-bit pointers should be
used (except when PROG and DATA are located in the same 64k
memory segment).

$FAR PROCS$ causes subsequent procedures and functions to
be declared “FAR” so that they can be called by programs located
in other memory segments. If pointers are set to be 32-bit values,
the contents of DS register will be saved prior to the call and
restored after the return.

$POINTER SIZE 32$ causes pointers to be 32-bit values.
Otherwise, the pointer size is 16-bits, and the user is responsible
for determining that memory addressing outside the current
segment can be performed correctly.

14

$SHORT_LIBRARIES OFF$ causes libraries to be called which
operate with 32-bit pointers. Otherwise, libraries are limited to
16-bit pointer operation.

$FAR_LIBRARIESS causes libraries to be called “FAR” and be
consistent with 32-bit pointers.

Ordering Information

Model Description

64814AF Pascal Cross Compiler for 8086/186/88/188
64814AR License to use a second copy of 64814AF
64814AX One-Time Update to current revision for 64814AF

64814S Pascal Language System for 8086/186/88/188
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

64814SR License to use a second copy of 64814S
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

64814SX One-Time Update to current revision for 64814S
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System’

64818AF C Cross Compiler for 8086/186/88/188
64818AR License to use a second copy of 64818 AF
64818AX One-Time Update to current revision for 64818 AF

64818S C Language System for 8086/186/88/188
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

64818SR License to use a second copy of 64818S
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

64818SX One-Time Update to current revision for 64818S
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

68000/68008/68010

The HP 64815 Pascal Cross Compiler or HP 64819 C Cross
Compiler provides high-level language software development
support for three microprocessors: 68000, 68008 and 68010.

Models 64815AF and 64819AF compilers are hosted on the
HP 64100A or 64110A development stations.

Models 64815S Pascal Language System or 64819S C Language
System each provides two cross compilers and two cross
assembler/linkers. One of the cross compilers and one of the
assembler/linkers executes on an HP 64100A/64110A
development station. The other cross compiler and assembler/
linker are hosted on an HP 9000/500 HP-UX or a DEC
VAX/VMS computer system, depending on the option selected.

Regardless of the host computer execution environment, the
cross compilers and assembler/linker generate identical
relocatable and absolute codes from a given source program.

All code generated for procedures and functions is suitable for
recursive or reentrant execution. All executable code and
constants are compiled to a separate relocatable area, apart
from data and variable areas. Three addressing modes: absolute
short, absolute long, and address register indirect with
displacement are provided for optimal static variable access
management. Variables may be accessed through different
address modes in different modules. Provisions are made for the
compiler to generate position-independent code, permitting
decisions regarding program location in memory to be deferred
until run time. Both C and Pascal cross compilers support
interrupts from external control signals or from software
programs. Trap-handling routines may be written to implement
system calls.

Both compilers generate the necessary information for symbolic
debug in emulation. Programmers can troubleshoot the code
using source program line numbers and global symbols,
eliminating the task of looking up addresses. The compilers also
generate files for use with other analyzers which provide high
level debugging facilities, such as source line display and module
and variable tracing, in terms of the language being used to
develop the software.

16

Pascal Cross Compiler

Model 64815 Pascal compiler provides a complete implementa-
tion of the HP 64000 System Pascal Language. An extensive
Pascal I/O facility simplifies software debug. By rewriting the
ten primitive routines in the simulated I/O library, the user
can redirect the HP 64000 System Pascal I/O facility to work
with an application-specific target I/O system.

C Cross Compiler

Model 64819 C compiler provides a complete implementation of
the HP 64000 System C Language.

Operation

Two compiler selection directives are recognized: “68000” and
“68008". The “68000” directive is used for both the 68000 and
68010 microprocessors. Although the 68008 and 68000 instruc-
tion sets are identical, the “68008” directive is required to inform
the linker that the 68008 uses 8-bit instead of 16-bit memory
and to correctly select the 68008 library routines.

Reference Information

Other Implementation Specifics
Pointers are allocated 4 bytes of memory.

The default size of INTEGER is 32 bits. Variables that required
only 16 bits can be declared as type SIGNED_16. Significantly
more efficient code is generated for multiplications and divisions.

The size of the run-time stack provided by the standard libraries
is 256 words. It can easily be modified for other sizes.

Registers A5, A6, A7, and D7 have special uses. A7 is the stack
pointer; it always points to the last item on the stack. A6 is the
local frame pointer; it always points to the highest address of
the data area for the currently executing procedure or function.
AS is the static data pointer; whenever SCOMMONS$ is ON in
some part of a program, it is used to access external and other
statically allocated variables. D7 is the function value return
register.

All procedure and function parameters are passed on the stack.
When a parameter is passed by reference, its address is pushed
onto the stack. Only parameters of 4 bytes or less are passed by
pushing their value onto the stack. Nested Pascal procedures
access outer-level variables via a ‘static link’ parameter which
is pushed onto the stack.

There are seven libraries provided for the 68000/68010 and seven
libraries for the 68008 processor for real number operations,
error handling, and Pascal 1/O functions in various addressing
modes.

Compiler Directives

$BASE PAGES$ causes external variables to be accessed by the
absolute short-addressing mode. This can be used to force
absolute short-addressing mode for all program level variables.

$CALL_PC_SHORT OFF$ turns off the default program counter
plus dispacement-addressing mode for calling Pascal procedures
and functions and C functions.

$CALL PC_LONGS causes Pascal procedures and functions and
C functions to be called using the program counter plus
displacement plus index-addressing mode.

$CALL_ABS_ LONGS causes Pascal procedures and functions
and C functions to be called using the absolute long-addressing
mode.

$CALL_ABS_SHORTS causes Pascal procedures and functions
and C functions to be called using the absolute short-addressing
mode.

$COMMON OFFS$ turns off the default variable addressing
mode of A5 register indirect plus displacement.

$FARS$ causes external variables to be accessed by the absolute
long-addressing mode. This can be used to force absolute long-
addressing mode for all program level variables.

$INTERRUPTS insures that the subsequent Pascal main-level
procedure or C function will be suitable for use as an interrupt
routine. On entry, the contents of all registers will be saved on
the stack. On exit, the registers will be restored and RTE is used
to return control instead of the normal RTS instruction.

$LIB_PC_LONGS causes predefined procedures and functions
to be called using the program counter plus displacement plus
index-addressing mode.

$LIB_ABS_LONGS causes predefined procedures and functions
to be called using the absolute long-addressing mode.

$LIB_ABS_SHORT'S causes predefined procedures and functions
to be called using the absolute short-addressing mode.

17

$OPTIMIZES improves the efficiency of generated code by not
reloading register contents following a store indirect or a store
to an external variable. Forward jumps are assumed to be within
a 128 byte range, providing a savings of two bytes of memory
for each forward jump.

$SEPARATES has no effect since PROG and DATA are always
separate.

$TRAP=n$ causes the subsequent Pascal main-level procedure
or C function to be the handling routine for TRAP number ‘r’,
when ‘1’ is in the range 0 to 15.

Ordering Information
Model Description
6481SAF Pascal Cross Compiler for 68000/68008/68010
64815AR License to use a second copy of 64815AF
64815AX One-Time Update to current revision for 64815AF
64815S Pascal Language System for 68000/68008/68010
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System
64815SR License to use a second copy of 648155
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System
64815SX One-Time Update to current revision for 648155
Opt001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System
64819AF C Cross Compiler for 68000/68008/68010
64819AR License to use a second copy of 64819AF
64819AX One-Time Update to current revision for 64819AF
64819S C Language System for 68000/68008/68010
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System
64819SR License to use a second copy of 64819S
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System
64819SX One-Time Update to current revision for 648195
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

Z8001/7Z8002

The HP 64816 Pascal Cross Compiler or HP 64820 C Cross
Compiler provides high-level language software development
support for the Z8001 and Z8002 microprocessors.

Model 64816AF and 64820AF compilers are hosted on the
HP 64100A or 64110A development stations.

Model 64816S Pascal Language System or Model 64820S

C Language System each provides two cross compilers and two
cross assembler/linkers. One of the cross compilers and one of
the assembler/linkers executes on the HP 64100A/64110A
development station. The other cross compiler and assembler/
linker are hosted on an HP 9000/500 HP-UX or a VAX/VMS
computer system, depending on the option selected.

Regardless of the host computer execution environment, the
cross compilers and assembler/linker generate identical
relocatable and absolute code for a given source program.

Both compilers generate the necessary information for symbolic
debug in emulation. Programmers can troubleshoot the code
using source program line numbers and global symbols,
eliminating the task of looking up addresses. The compilers also
generate files for use with other analyzers which provide high
level debugging facilities, such as source lines display and module
and variable tracing, in terms of the language being used.

Pascal Cross Compiler

Model 64816 Pascal cross compiler provides a complete
implementation of the HP 64000 System Pascal Language. All
code generated for functions and procedures is suitable for
recursive or reentrant execution. Pascal routines can be written
to handle interrupts from external signals or software programs.
An extensive Pascal I/O facility simplifies software debug. By
rewriting the ten primitive routines in the simulated I/O library,
the user can redirect the HP 64000 System Pascal I/O facility to
work with an application-specific target I/O system.

C Cross Compiler

Model 64820 C compiler provides a complete implementation
of the HP 64000 System C Language. All code generated for
functions and procedures is suitable for recursive or reentrant
execution. C functions can be written to handle interrupts from
external signals or software programs.

18

Operation
Two compiler selection directives are recognized: “Z8001” and

“78002". “Z8002” directive is suggested when nonsegment
mode is used.

Reference Information
Other Implementation Specifics

Pointers are represented as 32-bit values in Z8001 and are
represented as 16-bit values in Z8002. The default size of the
run time stack is 512 bytes. If the PLIB is linked, the stack will be
assigned in the program area of the linked modules. For linking

of other library files, the stack will be assigned in the data area
of the linked modules.

There are three real number libraries and four unique run-time
libraries supplied for use with Z8001 compilation and two
unique run-time libraries supplied for use with Z8002 compila-
tion for real number operations, error handling, and Pascal

1/0 functions.

Compiler Directives

$OPTIMIZES causes the compiler to remember the contents of
registers and use the values when the corresponding variables
are referenced. The compiler also generates short jump
instructions for all forward branches to save memory space. An
error message will be displayed to inform the user to turn
‘optimize’ off at the given location where a forward branch is
out of range.

SC allows declaration of routines as System Call (SC) routines
and results in the generation of SC instructions in place of call
instruction.

$SEPARATE CONST$ when separate addressing spaces are
used for program and data, $SEPARATE CONST ONS$ causes
all constants and case tables to be placed in the DATA section.

$SAME SEGMENTS$ (Z8001 only) indicates that the data is
to be placed in the same segment as the program and can be
accessed using PC relative addressing.

$SHORT'$ (Z8001 only) all external variables defined while
SHORT is on are accessed using short offset addressing.

Options that apply uniquely to the Z8001 are ignored during
78002 compilations.

Ordering Information
Model Description

64816AF Pascal Cross Compiler for Z8001/Z8002
64816AR License to use a second copy of 64816AF
64816AX One-Time Update to current revision for 64816AF

648165 Pascal Language System for Z8001/Z8002
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

64816SR License to use a second copy of 64816S
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

648165X One-Time Update to current revision for 64816S
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

64820AF C Cross Compiler for Z8001/Z8002
64820AR License to use a second copy of 64820AF
64820AX One-Time Update to current revision for 64820AF

64820S C Language System for Z8001/Z8002
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

64820SR License to use a second copy of 64820S
Opt001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

64820SX One-Time Update to current revision for 64820S
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

780/NSCS00

The HP 64823 Pascal Cross Compiler or HP 64824 C Cross
Compiler provides high-level language software development
support for the Z80 and NSC800 microprocessors.

Models 64823AF and 64824AF compilers are hosted on the
HP 64100A/64110A development stations.

Models 64823S Pascal Language System or Model 64824S

C Language System each provides two cross compilers and two
cross assembler/linkers. One of the cross compilers and one of
the assembler/linkers executes on the HP 64100A/64110A
development station. The other cross compiler and assembler/
linker are hosted on an HP 9000/500 HP-UX or a VAX/VMS
computer system, depending on the option selected.

Regardless of the host computer execution environment, the
cross compilers and assembler/linker generate identical
relocatable and absolute code for a given source program.

Both compilers generate the necessary information for symbolic
debug in emulation. Programmers can troubleshoot the code
using source program line numbers and global symbols,
eliminating the task of looking up addresses. The compilers also
generate files for use with other analyzers which provide high
level debugging facilities, such as source lines display and module
and variable tracing, in terms of the language being used to
develop the software.

Pascal Cross Compiler

Model 64823 Pascal compiler provides a complete implementa-
tion of the HP 64000 System Pascal Language. Code for functions
and procedures can be generated for recursive or reentrant
execution. Program code and constants may be separated from
data in ROM-based applications. Pascal routines can be written
to handle interrupts from external signals or software programs.
An extensive Pascal I/O library simplifies software debug. By
rewriting ten primitive routines in the simulated 1/O library, the
user can redirect the HP 64000 System Pascal I/O facility to work
with an application-specific target I/O system.

C Cross Compiler

Model 64824 C compiler provides a complete implementation
of the HP 64000 System C Language. Code for functions and
procedures can be generated for recursive or reentrant execution.
Program code and constants may be separated from data in
ROM-based applications. C functions can be written to handle
interrupts from external signals or software programs.

Operation

The compiler selection directive is “BZ80” for Pascal and “Z80”
for C. The “B” nomenclature in the Pascal directive is required

to avoid conflict with an earlier Model 64812AF Pascal compiler.
The NSC800 and Z80 have identical instruction set architectures
and a unique NSCB800 directive is not needed.

Reference Information
Pointers are represented as 16-bit values.

The default size of the run-time stack is 128 bytes in the data
area of the linked modules. The stack size can easily be changed
to other sizes.

The Z80/NSCB800 compilers allow undisturbed access to the
processor’s alternate registers (A, B, C', D, E, F, H, and L).
The compiler generated code and run-time libraries use only the
main registers (A, B, C, D, E, E H, and L) and the index registers
IX and IY. The main and alternate register swap instructions
(EXX, EX, AE and AF) are reserved for the user to use for
interrupt processing or assembly language routines where rapid
context switching is required.

Procedure and function parameters are passed by being pushed
on the stack, and then accessed relative to IX or SP. If a function
has a one-byte result, it will be returned in the A register;
two-byte values are returned in the DE register; and the address
of values larger than two bytes is returned on the stack.

20

Compatibility with Earlier Pascal Compilers
The HP 64823 Pascal Compiler use different code generation
conventions than the earlier Model 64812AF Pascal Compiler,
thus relocatable object code from the two compilers are not
compatible. Pascal source code must be recompiled before it can
be linked with other Model 64823 generated code. A user
transporting Pascal source files from the 64812AF to 64823
compilers needs to be aware of six syntactical changes:
1. The compiler selection directive is “BZ80" instead of
11280”.
2. The default size of an INTEGER is 32 bits instead of 16 bits.
3. The built-in function ADDR now returns a type that is
compatible with any pointer type, rather than being
compatible with type INTEGER.
4. The default width of the source text is 240 characters instead
of 120 characters.
5. The built-in function ROTATE replaces the earlier SHIFTC
function, although SHIFTC will also remain available.
6. The default setting is SRECURSIVE OFFS$ instead of
$RECURSIVE ONS.

In addition to the syntactical changes, there may be semantic
differences which will cause a program to function differently.
Type changes, and expressions or assignments that mix operands
of different sizes are potential sources for such differences.

Compiler Directives
$DEBUGS causes code to be generated to test for run-time errors
in arithmetic operations and size conversions.

S$INTERRUPTS causes subsequent C functions and Pascal main-
level procedures to be generated suitable for use as an interrupt
handling routine.

$OPTIMIZES causes the generated code to be more aggressively
optimized. In particular, relative jumps to forward references
will be used where the destination address may exceed the range
of the relative offset. If such an error does occur, it will be
flagged, and can be corrected by setting $SOPTIMIZE OFF$ for
the line causing the error.

$RECURSIVES$ causes local data and temporaries to be allocated
on the stack. Memory requirements for the generated code will

be greater and execution speed will be slower than with
$RECURSIVE OFFs$.

21

Ordering Information
Model Description
64823AF Pascal Cross Compiler for Z80/NSC800
64823AR License to use a second copy of 64823AF
64823AX One-Time Update to current revision for 64823AF
64823S Pascal Language System for Z80/NSC800
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System
64823SR License to use a second copy of 648235
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System
64823SX One-Time Update to current revision for 648235
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System
64824AF C Cross Compiler for Z80/NSC800
64824AR License to use a second copy of 64824AF
64824AX One-Time Update to current revision for 64824AF
64824S C Language System for Z80/NSC800
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System
64824SR License to use a second copy of 64824S
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System
64824SX One-Time Update to current revision for 64824S
Opt 001 Hosted on HP-UX 9000/500 Computer System
Opt 003 Hosted on VAX/VMS Computer System

8085/8080

HP 64825 Pascal Cross Compiler or HP 64826 C Cross Compiler
provides high-level language software development support for
the 8085 and 8080 microprocessors.

Models 64825AF and 64826AF compilers are hosted on the
HP 64100A or 64110A development stations.

Models 648255 Pascal Language System or 64826S C Language
System each provides two cross compilers and two cross
assembler/linkers. One of the cross compilers and one of the
assembler/linkers executes on the HP 64100A/64110A
development station. The other cross compiler and assembler/
linker are hosted on an HP 9000/series 500 HP-UX or a
VAX/VMS computer system, depending on the option selected.

Regardless of the host computer execution environment, the
cross compilers and assembler/linker generate identical
relocatable and absolute code for a given source program.

Both compilers generate the necessary information for symbolic
debug in emulation. Programmers can troubleshoot the code
using source program line numbers and global symbols,
eliminating the task of looking up addresses. The compilers also
generate files for use with other analyzers which provide high
level debugging facilities, such as source lines display and module
and variable tracing, in terms of the language being used to
develop the software.

Pascal Cross Compiler

Model 64825 Pascal compiler provides a complete implementa-
tion of the HP 64000 System Pascal Language. Code for
procedures and functions can be generated for recursive or
reentrant execution. Program code and constants may be
separated from data in ROM- based applications. Pascal routines
can be written to handle interrupts from external signals or
software programs. An extensive Pascal I/O library simplifies
software debug. By rewriting ten primitive routines in the
simulated I/O library, the user can redirect the HP 64000 System
Pascal 1/0 facility to work with an application-specific target
1/0 system.

C Cross Compiler

Model 64826 C compiler provides a complete implementation
of the HP 64000 System C Language. Code for functions and
procedures can be generated for recursive or reentrant execution.
Program code and constants may be separated from data in
ROM-based applications. C functions can be written to handle
interrupts from external signals or software programs.

Operation

The compiler selection directive is “B8085” for Pascal and “8085”
for C. The “B” nomenclature in the Pascal directive is required
to avoid conflict with an earlier Model 64810AF Pascal compiler.
Generated code is compatible with the 8080 microprocessor.

Reference Information
Other Implementation Specifics

Pointers are represented as 16-bit values.

The default size of the run-time stack is 128 bytes in the data
area of the linked modules. The stack size can easily be changed
to other sizes.

The compiler generated code and run-time libraries make use of
the registers A, B, C, D, E,EH, and L.

22

Procedure and function parameters are passed by being pushed
on the stack, and then accessed relative to SP. If a function has
a one-byte result, it will be returned in the A register; two-byte
values are returned in the DE register; and the address of values
larger than two bytes is returned on the stack.

Compatibility with Earlier Pascal Compilers
HP 64825 Pascal Compiler use different code generation
conventions than the earlier Model 64810AF Pascal Compiler,
thus relocatable object codes from the two compilers are not
compatible. Pascal source code must be recompiled before it
can be linked with other Model 64825 generated code. A user
transporting Pascal source files from HP 64810AF to HP 64825
compilers needs to be aware of six syntactical changes:
1. The compiler selection directive is “B8085” instead of
“8080" or “8085”".
2. The default size of an INTEGER is 32 bits instead of 16 bits.
3. The built-in function ADDR now returns a type that is
compatible with any pointer type, rather than being
compatible with type INTEGER.
4. The default width of the source text is 240 characters instead
of 120 characters.
5. The built-in function ROTATE replaces the earlier SHIFTC
function, although SHIFTC will also remain available.
6. The default setting is SRECURSIVE OFF$ instead of
$RECURSIVE ON.

In addition to the syntactical changes, there may be semantic
differences that will cause a program to function differently.
Type changes and expressions or assignments that mix operands
of different sizes are potential sources for such differences.

23

Compiler Directives
$DEBUGS$ causes code to be generated to test for run-time errors
in arithmetic operations and size conversions.

$INTERRUPTS causes subsequent C functions and Pascal main-
level procedures to be generated suitable for use as an interrupt
handling routine.

$OPTIMIZES causes the generated code to be more aggressively
optimized. In particular, relative jumps to forward references
will be used where the destination address may exceed the range
of the relative offset. If such an error does occur, it will be
flagged, and can be corrected by setting SOPTIMIZE OFF$ for
the line causing the error.

$RECURSIVES causes local data and temporaries to be allocated
on the stack. Memory requirements for the generated code will

be greater and execution speed will be slower than with
$RECURSIVE OFF$.

Ordering Information

Model

64825AF
64825AF
64825AX

648255
Opt 001
Opt 003

64825SF
Opt 001
Opt 003

648255X
Opt 001
Opt 003
64826AF

64826AF
64826AX

648265
Opt 001
Opt 003

64826SF
Opt 001
Opt 003

648265X

Opt 001
Opt 003

Description

Pascal Cross Compiler for 8085

License to use a second copy of 64825AF
One-Time Update to current revision for 64825AF

Pascal Language System for 8085
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

License to use a second copy of 648255
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

One-Time Update to current revision for 648255
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

C Cross Compiler for 8085
License to use a second copy of 64826AF
One-Time Update to current revision for 64826AF

C Language System for 8085
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

License to use a second copy of 648265
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

One-Time Update to current revision for 648265
Hosted on HP-UX 9000/500 Computer System
Hosted on VAX/VMS Computer System

24

(lf HEWLETT Printed in US.A. 1/85
ﬁ PACKARD 5953-9250

For more information, call your local HP Sales Office or nearest Regional Office: Eastern (301) 258-2000; Midwestern (312) 255-9800;
Southern (404) 955-1500; Western (213) 877-1282; Canadian (416) 678-9430. Ask the operator for Instrument Sales. Or, write: Hewlett-Packard,
1501 Page Mill Road, Palo Alto, CA 94304. In Europe: Hewlett-Packard S.A., 7, rue du Bois-du-Lan, PO. Box CH-1217 Meyrin 2, Geneva,
Switzerland. In Japan: Yokogawa-Hewlett-Packard Ltd., 29-21, Takaido-Higashi 3-chome, Suginami-ku, Tokyo, 168.

