PROGRAMMING =
MANUAL .

6XOMARK 1 QB
0©0 COMPUTER

LINK DIVISION

@ CENERAL
PREGISION ire.

OOOOOOOOOOOOOOOOOOOOOOO
NNNNNNNNNNNNNNNNNN




. . . N
I
. i
B I

MARK 1
PROGRAM MANUAL

"TWA

Prepared by

. Link Group

General Precision, Inc.

- Binghamton, N,Y,

LP1570-5

30 JULY 1964
24-T7-64

Printed in U,S.A.







|

Section

I

MARK I

TABLE OF CONTENTS

COMPUTER CHARACTERISTICS

1-1
1-7

1-19

1-31

1-43

1-48

1-55

1-60

1-79

1-96

General . .

Main Ar1thmet1c Un1t
1-8 General .

1-9 Organlzatmn

1-13 24-Bit Ar1thmetolc°A;:cumu1atore

1-17 24-Bit Salvage Register .
Magnetic Drum . e e e
1-20 General .

Core Memory.

1-32 General .

1-36 Priority . . .

1-38 Boolean Storage

Analog to Digital Converter

1-44 General .

1-45 Scaling

1-46 Priority . . .

Digital to Analog Output System
1-49 General . o o
Boolean Arithmetic Umt

1-56 General . . .. . .

1-57 Salvage Register . .
Digital Linear Function Interpolator
1-61 General , ., . . . . .
1-64 Scaling . o

1-65 Flow of Informatmn

1-70 Timing

1-73 Two Varlable Functmn
Radio Aids Data Preselector . .
1-80 General . . . . )
1-86 Frequency Inspectlon

1-90 Geographic Position Inspect1on:

1-93 Preselection. . . . e
Keying Function Generator . . .
1-97 General . . . . . . . .
1-98 Priority. . . .. . . . .

LIST OF INSTRUCTIONS

2-1
2-6

General

Instructions o o o o
2-8 Load Accumulator o o o e
2-9 Store Accumulator . .

g
E

Pob ek fmd ek ek fod fmd pd sk ek fd ek fanb ek ek frk ik fud fd ek enh fed ek ped pd ek pd ed pd ped poed ek ek fed
1
DO DO DD DD DI DD bt ok bk ok ok ok fusd ok b Pk ek ek fod fudk ek pd b €O ] T =T P i B WO W WO WD

LONNNER OO BN ROOOO




Section

I

"if'_ .

MR MNNNMDMNDMNMMNMMNMDMNMIMIMNIMNDIDNNDNDNDN D NN
[}
WL WWWDBNDNDNDDNDNDNDNDLNIDN D 2 b b ek pmd ped pod foud pwd pud

fF 3+ 32 s 0 1 ) 8 B

DRWN R OOO-IDONDWNIROWOO=INN WD O

MARK 1

TABLE OF CONTENTS (Cont)

- No-Operation . . .

Add e« o o o oo o o o @
SUbtraCt e & o 6. 98 & o
Multiply . . .

° ° 9 [

Negative Multiphcatmn

Divide. . . . o
Square Root Step. o .
Scale . . . . . . .
Shift . . . . .

Invert Sign. . . . . . .

Absolute Value . .

ZeroSlice. . . . . . &
. Conditional Skip . . .

ooooo

Invert Boolean Accumulator . . .

- Flag Negative . . . .

Index Loado [ ° ° LI Y

Index Store

5'0 L o L

Conditional Stop .

° L] * Q

© ° o o o

° ® ° ° °

® ° e L ] a

No Address Load (Load Constant)

o ° a

Load Boolean Accumulator s o o

BooleanSum . . . . .
Boolean Product ., . .

Tape Stop Code. . . . .

PREPARATION OF PROGRAMS
General Program . . . . ¢ o ¢ & o .

3-1

3-11

3-20 ’

. 3.3 .

3-5

Coding and Constant Sheets ¢ e e
Data Format . . . . . & o

Interpolator Program . . . .

3-13
3-17
3-18

Linear Function Interpolator Data Sheet

~ Store Boolean Accumulator

[} e e e
s o o o o

@ L ] °

¢ o o

@

o

° ° < © ° °

o o s ® o

ooooo

Q

Interpolator Words . . . . . . . . .

Interpolator Tape. . .

Radio Aids Program. . . .

3-22
3-24

3-28

3-37

3-43

Processing Type Code 1 and 2 Inputs

(1=MM,;2=0M) . .

Marker) .

b, e ] ° °

° o ] Q ° v ®

o ° ° ° °

Radio Facility DataSheet s e e s 8 s

[ ° ° ° [N}

Processing Type Code 3 Inputs (Fan Z

°

@ -0 9 [ e L] L]

Processing Type Code 4 Inputs (ILS) .
Processing Type Code 6 Inputs (LF) .

° ° ° © °©

° - ° o © 3 ©

]

DLW LWL W W
]
e ped Q0. = W W DN =t s

| S L I A S S N |

[}
DO DI DD DN b2 b ok ok d b ok ok ek ek ek 2 D OO =T DY D W

NN OO =IO WN =t

w W

|



o - . - - : )
.

Section

MARK 1

TABLE OF CONTENTS (Cont)

3-48 Processing Type Code 7 Inputs (LFRR) . o
3-55 Processing Type Code 5 Inputs (UHF/VHF)
Multiplexer Program . . . o o
Boolean Equations. . . . . ¢ ¢« ¢ ¢ ¢« s o o o 0 o .
3-70 General . . . . « ¢« o ¢ ¢ o o o o o o o o o
Core Memory. . « « o « « « & c o s o e s

3-82 Core Memory LoadData . . . . . « « &
3-83 Core Memory Tape Format . . . . . . =

PROGRAMMING AIDS

4-1

4-14

4-19

4-32

4-36

4-50
4-55
4-61

Boolean Algebra

4.2 General . . . . . . . . . o o o o o o o o o
4-5 VennDiagram . . o , ¢ ¢ o o o o o o o o o
4-8 Identities . . ¢ o o« o ¢ o o ¢ o o o o o o .
Conditional Skipping . o s e o e e s e e
4-15 General . . . o s s s o o o o o
Scaling and Scaling Problems o o s s o s o s o
4-20 General . . . . o . o . © o o o 8 o o o o o
4-26 Multiplication . . . . . . ¢ o .o o s s o e
4-28 Division. . . . . - . o o e o s o 5 o o o
Timers © o o o o s o o o o 6 o . .
4-33 General o o s o e
"I11 Behaved" Functlons For The Lmear Interpolator o
4-37 General . . . . ¢ . o o ¢ o o . o o 0 o o
4-38 Warping. . . . o ¢ ¢ o ¢ o & o o
4-40 Splitting . . . . .
4-47 Coordinate Transfer 6 o o o o o o @ o o o e
Calculations of Engine Transients. . . . o &« « o o« &
4-51 General . . . 5 s o o o o 5 o o o o o o o
Double Numbers (1 Word 2Numbers) © e 6 5 o s e
4-56 General . . . . o o o e
Handling A Number As A "Coarse" And ”Fine"

Sum (1 Number = 2 Words) . e e e e o o o o
4-62 General . . . . . 4 ¢ e 6 0 e e 6 s o e o s

4-63

Latitude - Longitude Information . . . . . . . . .
Coordinate Systems . . . « ¢ « o o o o o o s o o o

Integration. . . . . . . & o« o

4-71 General . . . . o o &« = ¢ o o & o o . .
4-72 X-Y Rectangular System . . . . . . . o o o
4-73 a-b RectangularSystem . . . . . . . . . . &
4-74 R -y PolarSystem . . . . . . . o
4-75 Converting From L -\ to a-b Coordmates .

g
&

J
B i DWW DN DN

WWWWWWoLWwW
J
QI AROTT T =ID

123 1 80 )
DO DD 1t et d b A i A O O T =T DO D

]
ORI DO DD DO D DI D DO
OWOPXROD I OO WM UWWW

iii




|

MARK I
TABLE OF CONTENTS (Cont)

- Section -

4-77 Lambert Conformal Conic Pro;ectlon Calculations
4-80 Emperical Functions . . . . . « ¢ o o o o &
4-83 Marker Beacons .-« o o o o o o o o
4-85 LFRR Calculations . . . « « « « « &
: 4-86 General . . . . . . . o ¢ o e
4-88 A-NAudio. . . . « ¢ ¢ ¢ o o &
4-94 Sawtooth Generation For Continuous Rotation
: ServoDrive . - o o o ¢ o 6 6 s o 6 4 0 0 s e
4-95 General . . . e e e e
4-99 Relationship Betweon 8 and \P
- 4-107 Rate Drive For Continuous Rotation Servos
4-108 General . . . . ¢ ¢« o o e 0 o6 e e
4-114 Diagnostic Program . . « ¢ « o « o s o
4-118 Punched Cards . . . « « o o« o o s o o
4-119 General . . ¢ ¢ o s s o o s o o o
4-124 General Program Card Formats . .
4-127 Linear Function Interpolator Card Format
4-131 Data Preselector Card Format. '
, 4-135 Core Memory Cards . . .
4-136 Tape Formats . . . . o ¢ o o o o
- 4-137 WorkTapes . . « « « « « o
4-138 Work Tape Special Codes e e e o e s
~ 4-139 Master Tapes . o o o o o o s ¢ o o
4-144 Preparation Of Duplicate Tape (Change In One Or
) More Computer Words) . « = « o o o o ¢ o o s

© ° ©
° ° ° °

o ©  © .© e

.
[
]
o
°
L
°

°
"o

° © °
© o ° 3 ° © W "~ o ° o ° - 3 e

Apoendix A

Mark I Computer Mnemonic And Numeric Codes
Tables Of Powers Of 2 . « . ¢« '« o o o o o &
Radio Aids Type Codes . . « « s & o o o .o @
Radio Preséelector Type Code Words . « .- . o
Octal - Decimal Integer Conversion Table . .
Octal - Decimal Fraction Conversion Table .

° °. ° ° ° °
3 ° ° o © Y
3 L3 © ° o °

o
o
]
o
°

- o o ° © ©

o,  o© o ° ° ° o .o . o ° © © - °
© ° o ° - ° © ¢ .a

° o ‘o o °

° ° - ° ° -
° - ° ° ° °

T o3



 MARKI
LIST OF TABLES
 Table

3-1 Control Word, Octal Digit BCode . . . . . . . . e e e e
3-2 Control Word, Octal DigitDCode . . . . . . . . . . .+ . .
3-3 Input Freguency versus OctalOutput . . . . . . . . . . . .
3-4. Size to Upper and Lower Limits . . . . . . . . . SR
3-5 First Four Bits of Data Word D (Type Code 3) . . . . . . .
3-6 Type Code 4 Frequency Bits 1thru 9. . . . . . . . . . . .
3-7 Type Code 4 Frequency Bits 10 and20 . . . . . . . . . . .
3-8 Call Letter Generation . . . © 6 e 6 o o o e o
3-9 Type Code 5 Frequency Bits 10 and 20 e s o s o v s b s
3-10 DataWord D TypeCode 5. . - . « « &« ¢« o o o ¢ & -
3-11 Data Preselector Word Storage Locations . . . . - . . &
4-1 Latitude - Longitude Scale . . . . . . . . o o o b o o o
4-2 .General Program Equation Numbering System o o e o o
4-3 Drum Loader Quadrant Addresses . . « « o o o o o o o o
LIST OF ILLUSTRATIONS
- Figure

Mark I Digital Simulation Computer . . . % ., . &
Mark I Parallel Processes (Block Diagram).
Typical 24 Bit Arithmetic Word . . . . . . .
MagneticDrum . . ; ¢ o o o s s o o o o o
General Program Readout Sequence o o o
DrumReadout . . . . o« « ¢ ¢ o ¢ ¢ o o o
Core Memory ., - o o« o o« o 5 o o o o o & o
192 Word Buffer Core and Translate Register.
Linear Function Curve . . . . o o & o o o
Flow of Information (Interpolator) o o e .
Decoding Scheme Determining ""Location" of X o o
Interpolator, Single Variable Function Arrangement
Two Variable Function . . . . . . o« « o ¢ ¢« o o
Frequency and Geographical Coordinates, Single Transmitter
Instruction Word. . . o o ¢« o o o ¢ o0 o0 o o o o o
Binary Coded Octal - Digit InstructionWord . . . . . .
General Program ComputerWord . . . . . . o « o« o &
Tape Format, General Program Computer Word . . .
General Program (Part A - Coding and Constant Sheet).
(Part B = Punched Pa.per Tape) o e e e
Interpolator InstructionWord . . . . . . . . ST
Interpolator DataWords . . . . . . o . o ¢ o o o o o

[ IS N N R B | 1
<
e o o o o

°©
© o E3 . © -0 _© °
°

° ° ° © © o ° ° °

[

B

Ll ®

° ° ° © ©° o L3 ° ° o, © ° °

°
2
Q
» . [
°
o
®

°

UL

CI QO GO DD D) pmb pk ok Jk ok ek Pk ik Pk ek bk poh ok peh
]

© ° © ° ° © © 3 o .o ° ©° © o o O

ey ° © ° o -0 ° °

W W
s

d

&

llllllllllll!‘
TN DO ~T DD -J )

i i i GO 0O 00 €O GO GO O LD O LD O

DTN NI D DD DD -t

:IJ::

-
pte
Pt

N RN T T D T D O A R T I R I
QO T CODI DI pud bk INJ Pk pud ok ok ok ek QO D DD WO DN
; o =t D CO N O O

GO GO G) GO GO GO DO DD b pd b bk ek ek ok ok b ped b b ek




r- 8 1 1
W DN =

&hohih&hbhbﬁbhrhwww
TN >Wh=DNDNDN

I I
pb b ek ik ek ek s QD
DO LN RO

H

Vi

MARK 1

LIST OF ILLUSTRATIONS (Cont)

Control Word Tape Format .

Control Word Binary/Octal Format

Computer Time Word, Tape Format . .

Interpolator Program (Part A - Function Graph)
(Part B - Data Input Sheet) .
(Part C - Punched Paper Tape)

Data Preselector Word . . . .

Tape Format, Data Preselector Word e e

Data Preselector Program (Part A - Radio Facﬂity Data

Sheet

(Part B - Punched Paper Tape)

Radio Facilities Band Locations (Octal)
Data Preselector Band .
Block Diagram, Multiplexer Flow of Informatlon

. Multiplexer Program.

Flow Chart . .

Aircraft Power C1rcu1t o
Aircraft Power Circuit Flow Chart
Bus Energization o o e
Core Memory Word o e
Core Memory Word Tape Format .

CoreMemory Tapes . . . . ¢ « o« o o o s o o o o o o
T"AND" and "OR" Circuits. . o o o o o ¢ o o o o o o
VennDiagram . . . . « ¢ o o ¢ ¢ o o o o o s o o o
Identities 1through4 . . . . « o ¢« « o ¢« ¢ & o o o o o
Identities Sevenand Eight. . . . . « « ¢ « ¢ ¢ « » s o o
Identity 13. . . . .
- Program Involving Scalmg Operatlon o o
-Compute Mach Number . . . e e 6 e o o e e e s
Time Delay (Part A - Clrcunt) e e e e e o e e s
~(Part B - Flow Chart) e e e s e e
(PartC-Program)
Curve Warping . e e o e e e e .

"I11 Behaved' Function .
Function fX1

Function £X2 .
Inversion of Figure 4- 12 .
Given Data Curve

Coordinate Transfer of F‘1gure4 14 e o e o o .

Wf - Transient (Part A - Flow Chart). . . . . .
(Part B - Program). .

g
£

OO WWWOLWW
' }

DO DN 2t =4 O QO O

OOoONFRO

OTUT WD WO -JO WM

; O 0O OO LY L LWL WWWW
[ I T L ’
o o W R R W WWWW W W

[ L I D R DA R B |
NHROWOW-JHUihWwWwrO

#h###hkh#?pkhhpmpo&n&
DO DO b=t b ek b ek d ek ek =k €O OO U W W IN



MARK I

LIST OF ILLUSTRATIONS (Cont)

O © © © =3 OF b

Figure - Page
4‘17 Ten Le_ast Signi.fica.nt Bits . o 5 s & 8 8 0 & & 4+ o o « & 4.2
4-18 ZOBitNumber...',.........e.o-e..‘. 4‘2
4.19 "Coarse' and "Fine" Sum Program . . . « « « « ¢ o o « 4-2
4.20 Latitude - Longitude Sign Convention . . . . . . « . + . . 4-2
4-21 X-Y Coordinate System Sign Convention . . . . . . . . . 4-2
4-22 a-b Coordinate System Sign Convention. . . . . . . . ., . . 4-2
4-23 R - ¥ Polar System Sign Convention . . . « v « & o « o . . 4-2
4-24 ‘Converting From L - A to a-b -Coordinates . ., . e e et 4-3
4.25 Lambert Conic Projection, Plane Perpendi¢ular to ,
, Projection. . . . . . . . 4-33
4-.26 - Lambert Conic Projection, Chart Plane St e v s e e 4-.34
4-27 A-NCourse Legs . . « « & &« « o« o v o o o o . . 4-37
4-28 A-NRange Rotation ., . . . . . . ¢ ¢ ¢ ¢ ¢ o o o & o & 4-37
4-29 A-N Range AudioServo. . . . . . . . . e o b e o o 4-38
4-30 A-N Range-Vertical Plane . . . . . . . . . . . . 4.39.
4-31 . A-N Range-Horizontal Plane . . . . . . . . . . . - 4-40
4-32 A-N Range DataSheet . . . . . . . S Y X
4-33 A-N Pattern for Row 1 Figure 4-32 . . . . . . .. . . . . . 4-43
4-34 Sawtooth Functions. . . . . . . . . . . . . . . R 4-44
4-.35 Relationship Between 8 anle In Normalized Ordinates e 4-46
4-36 Results of Addition to Figure 4-35 . . . . . . . . . . . . . 4-47
4-37 36008ervoDrive: . . « v v 4 v vt e e e e e e e e s . . 4-48
4-38 Modified "Red"Sawtooth ,,,,, e e e e e e 4-50
4-39 Velocity Servo Drive Program . . . . . . .« 4-52
4-40 Diagnostic Program . . . . . . . e e e e e e e e e - 4-53
4-41 IBM Type 5081 Paper Card . . . . v + « « ¢ « ¢ .. 4-55
vii




I YVIN

Figure 1-1. Mark I Digital Simulation Computer




|

MARK I
SECTION I
COMPUTER' CHARACTEms_TI‘c's o

1.1, GENERAL. “l‘he Mark 1 computer (figure 1- l), operates according to a
written program stored on a magnetic drum. The instructions constituting a
typical flight simulator program are stored on the drum, using a paper tape reader
and drum loader, in the order in which they are to be performed. In this way, dur-
ing the operation of the computer, these instructions are read and performed in
the order in which they were written without waiting and without the necessity of :

addressing the location of the next instruction.,

1-2, II an instruction is read indicating an arithmetic operation, this operation is
performed in the main arithmetic unit.. This unit contains the registers and logic -
circuitry for performing all arithmetic operations. Similarly, instructions indi-
cating Boolean operations are performed in the Boolean arithmetic unit. The

- source of all numerical and Boolean data words for these operations is the main

core memory, a fast, random-access storage unit that serves as the working

| memory of the Mark I

l 8, The Mark I also includes a 16, 384 word linear interpolator that operates in

: parallel with the main program to generate instantanieous values of the many

complex functions encountered in aircraft flight and engine computations. These
functions are constantly being calculated, recalculated, and stored in preassigned
memory locations in the main core memory for use by the main program. Since

“this is a parallel operation, there is no time lost in the main program calculating |

these quantities

1-4, In the Mark I input system, analog and Boolean inputs from the outside
world (i.e., simulator controls) are written into preassigned core memory loca-
tions, where-they may be used by the main program. The output system reads
calculated analog and Boolean data out of core memory to activate simulator equip-
ment. These systems also operate in parallel with the main program, eliminating

. the need for program time to achieve operations. :

) 5. ‘Algo operating in parallel with the main program is a radio pre- |

~selection unit, This unit compares the location of the aircratt and the frequency

to which-each of its receivers is tuned with the location and frequency of 350

possible radio transmitters, It then. selects the best: poseible transmitter; if P

any, that each receiver should be picking up, and stores numerical data con= =
cerning the gelected transmitters in preassigned core memory locations for use .
by the main program. Bince this is a parallel operation, there is again no time
taken up in the main program E

-6 Figure 1-2 is a simplified block diagram of the various prooessee
within the Mark L. L , , e

1.1

CUUIL LA o i)




¢-1

1024 H MAGNETIC. DRUM 512

100
INPUTS INPUTS 7 | | 192 . OUTPUTS
| R} Pt L
AID 24 BIT 18IT LINEAR RADIO [ om
e ' mummsxsn! ARITHMETIC || BOOLEAN " FUNCTION | s - | CONVERTER %OUC;LPEUATN
| AND UNIT ARTH. | . | INTERPCLATOR PRE - " BUFFER T ,
1 lconverTer UNIT SELECTOR ! ; ‘
| - | CORE ! i
I ! 7 A i e |
PC. | 2 7 PC. PC. PC. & * E
ro L 2
| t R} . ~
DRUM — — =8 MAIN CORE _ TRANSLATE chg?oERlATCYC ESS
LOADER MEMOR E— '
PERER Y | REGISTER CONTROL
TAPE KEYING : —
READER ; FUNCTION PC
: | GeNERATOR
70UTPUTS

{RADIO-AIDS)

Figure 1-2. Mark I Parallel Processes (Block Diagram)




 MARKI

- 1-7, MAIN ARITHMETIC UNIT

1-8, General. : The matn arlthmetlc untt acts as the operating center of the
compuler,_This unit consists of a 24-bit accumulator for holding the numerical ~
results of arithmetic operations, all of the necessary logic circuitry for- perform- :

. ing arithmetic operations and transferring numerical data, and a salvage register
. which ealvegee the old contents of the accumulator when a new word is loaded

into tt

1- 9. Or anlzatton. All numertcal operations in the main arithmetic unit are of
the flxea-polnt, Btnary form. All numbers handled by the main arithmetic unit,
either as'inputs to or resuits of arithmetic operations, are in the form of an

" absolute value and a sign. 8ign processes are performed in all arithmetic opera- a |

tions and signs are preserved in the results. All number words are 24 bits in

length, the first bit being the algebraic sign and the rematning 23 bits betng the
' absolute value of the binary number. R

" 1-1@ B the sign bit le a zero, the number is posltive, if it ls a one,- the number te
negative. A typical numerical word in the Mark I is shown in figure 1-3,

SIGNBIT( . 23 MAGNITUDE BITS -
. Flgure 1-3. Typical 24-Bit Arithmetic Word

' l 11, ln ﬂxed-potnt artthmettc the btnary polnt is assumed to be to the lett of the

most significant bit (MSB); therefore, the magnitude of the number is always less

than 1.0. Thatis, if the binary point is to the left of the MSB, then the largest: -

magnitude that may be represented is .0999..... in decimal notation or .1111.....
in binary notation. All numbers handled by the Mark I must be scaled with the -

~ fixed point notation in mtnd

1-12, It the reeult ot any arithmetic operatton in the Mark I is a number whose
magnitude is greater than 1.0, then an automatic averflow process sets each bit
of the number equal to one end preserves the sign of the operation. Overflow is
poasible in the execution of the following lnetructlone- Add, Subtract, Divide,
Square Root Step, and Scale Left. -

1-13. 24-Btt Artthmettc Accumulator, ‘Almost 80 percent of the inetructtone for
the Mark T cause some operation to be performed on the numerical data contained
in the arithmetic aceumulator (e.g., add, eubtra.ct multtply, etc.).

1-3




MARK I

'1414. The bit to the left of the binary peint in the accumulator is reserved as a
sign bit, This bit gives the algebraic sign of the number defined by the remaining

23 bits-zero for a positive number, and one for a negatwe number.

. '1 15. Numerical data may be loaded into the accumulator from the core memory
“and, by virtue of a special instruction, from the drum. Data contained in the

accumulator may be stored only in core memory

1-16. Most operations performed on data in the accumulator may be initiated and

finished in one machine cycle (6.105 microseconds). A few of these operations
(e.g., multiply or divide) require several machine cycles to complete; therefore,
once initiated, care must be taken that no new instructions arrive requiring op-
erations on data in the accumulator until the prevmus, more lengthy operation has
been completed .

1-17. 24:Bit Salvage Register. Associated w1th the arithmetic accumulator is _
a salvage register, 24 bits in length. If an instruction is read that directs a data
word be loaded from some source into the accumulator, whatever data happens to
be in the accumulator at that time would be lost when the new word is loaded. It
is the function of the salvage register to store the data word which has been in

| ' the accumulator prior to a "LOAD" instruction. Hence, if the number X is in the
accumulator at the time an instruction is read directing that Y be loaded into the

accumulator, then one machine cycle later Y will appear in the accumulator and
X will appear in the salvage register. The previous contents of the salvage
register will be lost. _ .

1- 18. The salvage register is an addressable location (0000). That is, it may act
as a source of data with which to perform arithmetic operations on the contents

‘of the accumulator, However, the salvage register may not be addressed for a

"LOAD" instruction.
1-19, MAGNETIC DRUM,

1-20, General. The drum of the Mark I contains sixteen bands of instructions

"and constants. Once this information has been written onto the drum the "write"
equipment may be disconnected and no further information can get into the drum.

The design of the Mark I deliberately prevents any further wrlti‘ng on the drum or

"'modification of in!ormation contained on the drum.

1-21. Once the computer selects a band of instructions to read, then every word
on that band is read in order, at a rate of one word every machtne cycle, until all
the words on that band have been read. At this time another band is selected and

- all of those words are read, etc. As each instruction is read, the operation it

indicates is performed. If the operation requires more than 6,106 microseconds
to complete, it is then necessary to make the immediately following instructions

' no-operation instructions (NO-OP), until enough time has been allowed to complete

the operation.

1-4

H
|
t
]
1



MARK I

© 1-22. The 16 bands on the drum are made up of 240 data tracks, each track being

one bit wide and 4096 bits in length around the circumference of the drum. Thus,
there is a total storage capacity on the drum of over 983,000 bits. The drum
rotates at 2400 RPM and requires 25 milliseconds to complete one revolution.

1-23. All of the bits comprising a word are read in parallel (e.g., ifthe first word
in a band of the main program were being read, then the first bit in each of the 16
data tracks making up that band would be read s1mu1taneously) The read rate of
the drum is approximately 164 kilocycles or 6.105 microseconds per word, ena-
bling all words in a band to be read in one drum revolution,

1-24. Of the 16 bands of words written around the drum, (figure 1-4) 11 are for
the general program, four contain instructions and constants for the linear

i

~ interpolator, and one is for radio aids.

RS

|23456789lOHI2 16
GENERAL PROGRAM BANDS DlGlTAL \
- INTERPOLATCR RADIO AIDS
BANDS BAND

Figure 1-4. Magnetic Drum

1-25. All of the words in the general program portion of the drum are 16 bit
words. There are over 45,000 possible words for this portion of the drum (4096
words per band x 11 bands). The four bands of the digital interpolator portion
are made up of 11-bit words at 4096 possible words per band. This gives a total
of over 16,000 possible words in this section. The 4096 possible words on the
radio aids band are all 20-bit words.

1-26. Each time the drum makes one revolution, three bands of instructions and
constants are read simultaneously; one band is read and performed by the general
program section of the computer, one band by the digital interpolator, and one by
the radio aids band.




MARK 1

1-27. The bands comprising the general purpose portion of the drum are not
simply read in order from one through 11. The reason for this is that in simulator
work some quantities change much niore rapidly than others, and consequently,
they require a higher frequency response of the computer (i.e., it is essential to
recalculate these quantities much more frequently than is necessary for many
other computations in the simulation program.

1-28. The Marik I handles these various computations by dividing the general
program bands into three categories; fast, medium, and slow bands. Fast band
calculations are performed on every other drum rotation (20 times per second).
The instructions for the calculation of those quantities which require frequent up- -
dating are all placed on this band. Medium fast band instructions will be per-
formed on every eighth revolution of the drum (5 timies per second), and slow .
bands are each read at intervals of 32 drum revolutions (1 time per every 0.8
second).

1-29. Figure 1-5 1llustrates the final order in Wh1ch all of the general program
bands are read

| T .SL. TTTIT

i [
M TF Mol F ML 15,1 F ’ E | | Imgl M‘J.F M2|F M3 F *54
. ! i : } :
Cobiobd [ R S A B T L - J__L___i_L.
- - -~ 0.8 SEC. ~—mmem o ~~-—~~-~———————-~—-~4

!

Figure 1-5. General Program Readout Sequence

1-30. Two other bands on the drum are being read simultaneously each time a
band of the general program is read (i.e., on each drum revolution). One of these
bands is the radio aids band which is read every drum revolution, and the other
band is one of the four digital interpolator bands. The four interpolator bands
are read in sequence at the rate of one band per drum revolution. Any given
interpolator band is read once on every fourth drum revolution.

1-31. Figure 1-6 illustrates the f1na1 order in which all of the bands on the drum
are read.

e [T Dl F Ml e TS Tr M T e TM ] F malF s, ¢ Tm [ (mg F sl F Tsf £ Tw J6 Mgl Ma] 55;

L ‘IZ 1311411, 1151131141, (15 15 T4l [Ig{E3tlal1,{I511511a Iu‘[z I3LI4 Iy i1a1T3l1alI, 1o ]13i1a

P Ui S R W SR ¥ SO PO SRR S N S

RaiRalRAIRAIRAIRAIRAIRAIRAIRA Ry Ra|Ra|RA RA RaiRA[RAIRA RA RA RA RalRa[RAIRAIRA RaiRa QATRA Ra
.F' 0.8 SEC.

Figure 1-6. Drum Readout
1-6

o



-

MARK I

1-32. CORE MEMORY.

1-33. General. The core memory of the Mark I is a 2048 decimal word, random
access memory, each of whose 2048 decimal words is an addressable location.
Numerical information may be stored in any word location or the information
contained in any word location may be read out on command (non-destructive
readout). Only one word location in the core may be read out of, or written into
during any given machine operate cycle (approximately 6 micro-seconds). Each
word of the main core is 24 bits long, of which the most significant bit is the
sign bit,

1-34. It is the function of the main core memory to act as the working storage of
the computer. That is, all quantities stored in the main core can be changed, up-
dated, erased, etc.

1-35. All the variables in the simulator system equations are each, individually,
assigned locations in the core storage, and as each of these variables is re-
calculated, or changed, the new value is inserted into the proper core location,
thus replacing the old outdated value. All inputs to the Mark I computer from the -
outside world (e.g. cockpit, instructor'’s station) come to preassigned storage
locations in the main core. All outputs from the Mark I to the rest of the simu-
lator system are read out from their preassigned storage locations in the main
core. Independent variables which are used by the linear interpolator for the
purposes of function generation are read from their assigned location in the core
memory. The linear interpolator also stores computed functional values [:f x),
£(X, Y)| , in preassigned core memory locations. Figure 1-7 shows the core
locations for the various quantities stored in the core memory.

1-36. All mathematical quantities that are needed for a simulator program (with
the exception of constants which may be stored on the drum), are stored in core
memory.

1-37. Priority. Only one word of the entire core memory may be interrogated or
written into during any one machine operate cycle. The many parallel processes
of the computer (function generation, radio pre-selection, input-output reading,
main program arithmetic, etc.) all require memory access. It becomes nec-

* essary, therefore that these various processes be given a priority rating.

Any operation of the main program requiring memory access takes first priority.
Any operations or instructions in the main program that do not require memory
access are considered to be "holes' in the main program and it is during these



8-1

MAIN CORE
OCTAL DETAIL OF BOOLEAN CORE
WORD ' :
ADDRESS |  FUNCTION OCTAL WORD
i — ADDRESS
8388 DIGITAL SWITCH INPUTS MAIN | BOOLEAN
g0 (1024 BOOLEAN WORDS) CORE | CORE
101 BOOLEAN WORKING MEMORY '
0137 | 496 BOOLEAN WORDS) 4999 10-0017 NOT USED
0140 | DIGITAL SWITCH OUTPUTS ,
0177 512 |
0 A/D INPUTS -100WORDS ~ BOOLEAN INPUTS
o . . 64 WORDS X 16 BITS PER WORD =
0375 | 1024 INPUTS
~0300 v
INTERPOLATOR 100 | 36
_______________ AVAILABLE . 2700 BOOLEAN WORKING STORAGE -
. | ExPANDABLE BY 64 WORDS o137 %‘&7); 31X 16=496 WORKING STORAGE LOC.
0700 DATA LOST
0777 | WORKING MEMORY-64WORDS DURING BOOLEAN OUTPUTS
DRUM LOADING ) .
0 A : 32x16=512 OUTPUTS
1000 | RADIO AIDS - 80 WORDS 01771 3777
1117
1120 NOT
WORKING MEMORY - 432 WORDS 1. OCTAL WORDS 3766- 3777 ARE RESERVED
FOR THE ARITHMETIC SCRATCH PAD.
1777 2. BOOLEAN ‘WORDS 276 2777 ARE RESERVED
2000 — FOR THE BOOLEAN SCRATCH PAD.
WORKING MEMORY & T I
"y A, DATA HELD /37 = 360 =277 /
Ar 4Y; DURING .
o DRUM LOADING
CONSTANTS - 1024 WORDS
37177

Figure 1-7. Core Memory

IUYVIN




'MARKI_

"holes'" that the aux111ary processes of the computer gain access to the core
memory. Instructions in the main program such as SCALE, SHIFT, ABSO-
LUTE VALUE, INVERT, ZERO SLICE, FLAG NEGATIVE, and NO- OPERA—
TION are operations wh1ch do not require memory access and thus act as
"holes' to auxiliary sections of the computer. Pmority for all of the parallel
processes of the Mark I is as follows : -

a. Main Program |

b. Digital Function Iriterpolation
c. Radio Aids Data Preselector
d. Analog Input Scanning '

e. 'Avnalog Output Scanning

f. Boolean Output Reading

g. Boolean Input Scanning

1-38. Boolean Storage. Of the 2048 words of memory in the main core, the first
128 words are reserved for use as Boolean storage locations.. Only the first 16
bits in each of the 128 words is used for this purpose. This results in a total of
2048 bits of Boolean storage, since a Boolean word is only 1 bit long. The com-
puter is set up to appear as if there were two separate core memory blocks; one being -
a 2048 word arithmetic core and one being a 2048 word Boolean core. (See ﬁg‘ure 1-7. )

1-39, There is a separate Boolean arlthmetic unit with its accumulator and
salvage register in which all Boolean operations take place. Like its counterpart
the arithmetic core memory, the Boolean core memory acts as the working storage
for all Boolean operations. Boolean variables are assigned storage locations here.
All Boolean inputs from the rest of the simulator system are read into preassigned
storage locations in this memory; and all Boolean outpiits from the Mark I to the
rest of the simulator system are readoutfrom their asslgned storage locatlons in
the Boolean memory ' _ .

1-40. Since the Boolean core memory is really made up from 128 words of the
main core memory, then any instruction requiring access to the Boolean memory
is accessing the main core memory. Any instruction of the main program which
requires access, whether it is Arithmetic or Boolean, represents a "highest
priority" operation

1-41, There is no protective circuitry in the Mark I to prevent using a non-Boolean |
instruction to address the entire contents of a Boolean storage location (the entire -

1-9




MARK I

16 bits of one of the 128 main core words). However, if an attempt were made to
address the contents of the entire block, it would be meaningless, ‘if the bits had
been used for Boolean storage purposes, to try to use it inan ordinary arithmetic
operation. It is conceivable, however, that this sort of operation may be deliber-
ately done in the case where it is desired to provide a direct 16=bit binary output
of an ordinary arithmetic quantity without going through the Digital to Analog (D/A)
converter. In this case, the main word location containing the 16-bits concerned
would be “stolen'" permanently from the Boolean section for use by the main-
arithmetic unit. Any attempt now to write Boolean information into any of the 16
bits of the main word location concerned would destroy the meaning of the arith- -
metic quantity now permanently stored in that main core location. Boolean storage
locations may also be stolen (in blocks of 16) for the purpose of storing an ex-
ternally coded, 16-bit bmary word as an input.

1-42. It is important, if such operations as described in paragraph 1-41 are
employed for the purpose of providing direct binary inputs and outputs of ordinary
arithmetic quantities, that the programmer look on the entire Boolean core as
being reduced in size, and must never address any of the bits concerned for any
Boolean purpose. (Again, there is no protective circuitry to prevent the program-
mer from doing so.)

1-43. ANALOG TO DIGITAL CONVERTER.,

1-44. General. It is the function of the A/D converter to take all of the analog
inputs to the Mark I (from cockpit, etc.) and convert them into 14=bit binary
numbers. There are 100 input lines, expandable to 128. Each of these inputs is
converted sequentially to binary and stored in its own individual core memory
location. This operation is a process which is carried on in parallel with the
main program and is fully automatic. There is a block of core memory locations
containing the digital equivalent of the various analog input quantities necessary
for equations, and all that is required by the programmer is to address the
appropriate core location to employ any of these quantities required in computa- :
tion.

1-45. Scaling. All analog input quantities are scaled in the range of minus 10

volts to plus 10 volts; these reference voltages being provided by the Mark I. The -

A/D converter converts these numbers to binary numbers scaled from mmus one
to plus one.

1-46. Priority. The 100 multiplexed inputs of the A/D converter are sampled and

converted into properly signed 14-bit binary words in two drum revolutions. The
A/D converter will sample inputs only during the first and third quadrant of each
drum revolution, and the 100 A/D channels are spread over the four allowed
quarters of the two drum revolutions, so that approximately 25 channels are
sampled,; converted, and stored in each allowed quadrant. A counter provides the
core memory addresses in which each quantity is stored.

1-10




- 1-51, atorage lo

MARK I

-1-47 Memory access is required for storage, and the A/D converter is under the o

- control of the priority circuitry, (Refer to paragraph 1-37 for A/D priority.)

When an input has been sampled, the binary equivalent is converted and held until
the next input is sampled. At that time the first input is stored in the address
dictated by the counter. The counter is advanced, the next input is held and con-
verted and the process continues until all of the inputs have been sampled. The
process repeats endlessly, and occurs without programming attention or instruc-
tions

1-48. DIGIT'AL' TO ANALOG OUTPUT SYSTEM.

1-49, General Digital to analog conversion in the Mark I operates in parallel with
the main program. There are 128 independent analog outputs in the Mark I with
the ability to expand to 192 outputs. The analog outputs are used to drive indica~
tors, motion. aystems, recordere, etc. in the external simulator equipment.

- 1-80, The equattons representing each analog output quantity is implemented in

the general program to be computed by the Mark I. A fixed word location in the
main core memory-is reserved for each quantity, and as each quantity is recal-
culated in the main program, its new value is stored in its respective memory
location. The block of core memory locations which contains the analog output
quantities is up-dated twice every drum revolution and is sequentially transferred
toabuffer core ‘memory. The words inthe buffer core arethenfedtoindividualD/A
converters whr:;ee outputs appear as analog voltages representing the digital quantities.

tona m the main core which are reserved for output quantities
are all sampled buffer core at a rate of 80 times a second. The buffer core,
in turn, is aampled% y the D/A converter 80 times per second, which represents
the sampling rate of the D/A output system.

1-52. In order that a maximum of 192 words in the main core memory be read into

the buffer,core memory, 182 separate memory accesses are required, All of

these words will be accessed once during the second quarter of drum revolution,
and again during the fourth quarter of drum revolution. Since each word is read
twice during each drum.yevolution (25 milliseconds), the sampling rate is 80 times
per second, The drum plays no actual part in this process, but provides a time
base for examining the D/A conversion.

_‘..:,1.53 The time requlred to read each word is 6.1 microseconds (basic machine

cycle), therefore one-quarter revolution of the drum represents ghqugh time for
1024 possible memory accesses. The D/A converter has access to core memory,
only when the core memory is not being accessed by either the main program, the
digital interpolator or the data preéselector. There must be at least 192
"holes' in the total access requirements on the main core memory during the
second and fourth quarters of a drum revolution or else all of the output words

~ would not get lvampldd. A counter in the Mark I generates the core memory

1-11




MARK I

~ addresses of output quantities which are to be read into the buffer core. As soon

as the first address is accessed, the counter advances to the next address and
holds that address until an opportunity occurs to interrogate that word. The word
is read into the buffer core and the counter advances again. This process contin-
ues until all 192 addresses have been interrogated.

‘1-54. Although the word length in the main core is 23 bits plus one bit for sign, -
~only the sign and the nine most significant bits are read into the buffer core,
utilizing only ten of the available 16 bits per word. As words are read out of the
main core they are read into a 12 bit translate register. Bits 10, 11 and 12¢g othroug
a warbler circuit to produce the round-off bit while bits 1 (20), 2 (2-1), and 3 (2- )
are divided by two and drive the vertical wires strung through the three most
eignificant and three least significant bit positions of all 192 words of the buffer

core (see figure 1-8). The remaining bits drive the vertical wire, which is strung |

through the corresponding bit positions of all 192 words of the buffer core.
, 1;.-55. BOOLEAN ARITHMETIC UNIT,

'1-56. General. The Boolean arithmetic unit is the Boolean counterpart of the main’
- arithmetic unit. It is the purpose of this unit to perform all Boolean operations
indicated by instructions in the general program. The logic circuitry of the Boolean
arithmetic unit is arranged to perform the functions of ""AND" (multiply), "OR"
(sum), YINVERT" (compliment) "LOAD", and "STORE'". As in the main arithmetic’
unit (paragraph 1-7), the Boolean arithmetic unit also has an accumulator and a
salvage register. Boolean words are one bit in length, and the accumulator is a
-'one bit register which is used to hold the results of all Boolean operations.
'Boolean- words may be loaded into the Boolean accumulator from the main core,
“and information in the Boolean dccumulator may be stored in memory locations
"'in the main core. All Boolean operations indicated by instructions in the general

- program are performed on the contents of the Boolean accumulator by the contents
of the address specified in the instruction.

1-57 Salvage Register. The Boolean salvage register performs the same function
as the salvage register of the main arithmetic unit (i.e. to salvage the previous
contents of the accumulator when a new word is loaded). Unlike the main arith-
metic salvage register, which is only a one-word register, the Boolean salvage
register can hold four one-bit words, all of which are addressable. By having a
multi-word salvage register, this unit may act as an intermediate, temporary

storage unit, thus reducing the core memory access. requirementa of the Boolean
arithmetic unit.

1- 58. For the purpose of explaining the operation of the salvage register, consider
the sequence of events as a series of several "LOAD'" instructions read off the
drum (this is a most unlikely series of instructions). Assume the Boolean quantity

1A is h:l the accumulator when an instruction directing that the quantity B be loaded
s read. ‘ :

1-12



1-13 |

2019180y EISURL, PUE 2I0) IOPNE PAOM-ZEY "8-T dIBT

B S . = & G G G G G SR G

HAAAAAAAAAAAA—

YoM

\

T QUM

 MARK1

R
K

X

K
Yoot

A A A

| GUOM

-— T -

| wom |——a|un|a]e ~o lelols]rlcle]




| MARK 1
e e T ‘Contents of Boolean Salvage Register
- Instruction - Accumulator 0000 0001 0002 0003 - -
A A | |
Load B B A
Load C C B A
Load D D . C B A
- Load E E . D c B . A
Load F F E D c B

1- 59 The four words of the Boolean Salvage Register have addresses 0000 through )

0003 and the contents of any of these word locations may be used to perform a
‘logical "AND" or "OR'' with the contents of the Boolean accumulator. That is, they
~ are addressable locations.” The contents of any of these salvage register locations
may be "loaded" into the Boolean accumulator. ‘However, the contents of these
locations may not be stored in the Boolean core. Only the contents of the accumu-
- lator may be stored in the core memory.

1- 60 .DIGITAL LINEAR FUNCTION INTERPOLATOR.

1-61. General. Function generation in the Mark I is a process which is done
continuously, in parallel with the main program of the machine, and thus, because
of the saving of computation time in the main program, contributes largely to the

* - real-time dynamic response of the Mark I. Function generation is accomplished

by means of linear interpolation between the ordinates of fixed "breakpoints'.
Figure! 1-9 illustrates an- arbitrary function of X whose X axis has been divided
-into eight equal segments. These eight segments are defined by nine breakpoint8° '
0 1/8 1/4 3/8 1/2, 5/8, 3/4 7/8 and 1. ] :

R
) 8 2 B 4 .

\‘m}q_ﬂ% .
3

X
Figure' 1«-9; Linear Function Curve

1-14

" WS ES Oy B S SN TP WS s w WS T 3



MARK 1

1-62. If the ordinates of these nine breakpoints are known, (e.g., f (0), f (1/8), £

(1/4), f (3/8), etc.) and if the independent variable X is known, then it is possible
to perform a linear interpolation to determine f (X). For instance, if X lies be-
tween 1/8 and 1/4 then it is possible to interpolate between f (1/8) and f (1/4) to
obtain a very close approximation of f (X).

1-63. The linear interpolator has its own arithmetic unit with a parallel binary
adder and the appropriate registers and logic circuitry to do interpolations.

'1-64, Scaling. All numbers handled by the Mark I must be scaled so that the

magnifude 1s not greater than one. This also applies to the function interpolator.

- Therefore, both the independent variable, X, and the ordinate value, f (X), must be

scaled so that their magnitudes are not greater than one. All numbers handled by
the interpolator are assumed to be positive, so variables and functions must be
scaled accordingly.

1-65. Flow Of Information. The four bands on the magnetic drum which are used
for function Inferpolation serve the purpose of storing the ordinates of the break-
points of all the function curves. The drum also contains the core memory location
of the independent variable, and the core memory location in which the calculated

- value of the function will be stored. Each different function is represented by its

own block of information listed on one of the bands, all of the blocks being listed
in order around the bands. Figure 1-10 Bhows the flow of information for function

generation.

LOCATION OF X

£(0)
o , . ¥
5 | S £(1.0) -
MAGNETIC | LOCATION OF (X)
DRUM  —™ | ° _ —>
i - <:::> S LINEAR
| — - . FX) ‘INTERPOLATOR
MAIN CORE -
MEMORY . T

Figure 1-10. Flow of Information (Interpolator)

- 1-15

LU BN 15 1 A | A a0 210 1




MARK I

- 1-66, It is unnecessary to store the X values of the breakpoints because, since
these breakpoints are fixed at 0, 1/8, 1/4, etc., it i3 only necessary to build the
logic of the interpolator in such a way that it can look at the value of X and _

recognize between which two breakpoints it lies. Consider the binary representa-
tion of the numbers, 0, 1/8, 1/4, etc. .

0 = 0000000000 -
1/8 = 001'0000000
© 1/4 = 010'0000000
3/8 = 011'0000000
1/2 = 100'0000000
5/8 = 101'0000000
3/4 = 110'0000000
7/8 = 111'0000000

1= 1111111111

1-67. An examination of only the first three digits of X will determme between
which two breakpoints X!lies, If X < 1/8 then its first three digits will be 000;
hence 0 € X < 1/8. If 1/8 £ X < 1/4, then the first three digits will be 001,
Figure 1-11 shows how the first three digits of X will determine between which
two breakpoints it lies.

Q00 | 00i C‘?!O ol 1100 {101 | 1O HI'E

i I3 2 4 % . Y 1 1O
8 4 3

0 £ g Z

Figure\;yl-l'l'._‘. Decbding Scheme Determining "Location" of X

1-68. In a block of words on the drum concerning a given function (assume a func-

tion of a single variable), the first word that is listed is a control word which
serves the purpose of identifying a new function and describing whether it is a func-
tion of one, two, or three variables. The second word listed is the memory location
of the independent variable. Following this will be the ordinates of the nine break-
points in order beginning with f (0). The memory location of X, the independent
variable, is listed before the ordinate information. Memory access by the main
program has priority over access requirements by the interpolator; therefore,

" the interpolator may have access to memory only during ""holes" in the main pro- .

gram. In order to ensure that the current value of the independent variable is
obtained from its memory location, its address must be repeated five times. (One
of the rules governing the general parpose program is that memory cannot be
accessed more than four times in a row or more than 60 percent of the program.)

1-16

M uF mN s TN Em 3 O3

-t w’ =



. MARKI

71 69 Once accese to the core memory has been gained the current value of the '

independent variable is read into a register in the interpolator. The first three

- digits of X (the independent varigble) are examined to bracket X between two

breakpoints. This process is completed before the data field is read off; therefore,
before the first ordinate is read, the interpolator already knows which two break-

_points bracket: X.. As the ordinates are read off the drum, only the two ordtnate_e

concerned, f (Xn) and £ (Xp+1), are held for interpolation. The other ordinate

‘words are tgnored by the interpolator. The result of the interpolation is £ (X).
f (X) is held in the linear interpolator until a word is read off the drum directing

that £ (X) be stored and giving the location in the core memory in which to store it.
The location of i (x) muet also be. repeated five times to ensure memory acceee.

170, T t In the event that X was located between 7/8 and 1.0, the. tnterpola-,
~ tor would Eg :
“before it could begin its calculations. This means that some time must be: allowed

. after the last ordinate is listed before the memory location of £ (X) is listed. This

time is to allow the tnterpolator to finish ite calculattons before dlrecting lt to

ve.to wait until the eighth andninth ordinates were read off the drum

~ gtore the reeulte.

1-71, In'the case of a single variable functton, ((X), two blank words (12 usec.

B approximately), allows sufficient time for the [interpolator to finish Its caléu- "
 lations. In the case of a function of two variables (X, Y), four blank words are
- necessary, and, for the three variable function (X. Y. Z), six blank words are

necessary.

1-72. The ﬁnaJ, arranzement for the data and instructione for some single variable
function (x), te ehown tn figure 1- 12.

1a 73 'l'wo Variable Function, . A function of two vartablee as handled by the Me.rk
< { 2 "family" of ntne etngle-varlable functions. (See figure

1-74, T'o'deecrtbeai two veriable functton reqntres 81 ordinates. The address of

Y is listed after llettng the address of X, and must also be repeated five times. to'

~ensuré memory access. The 81 data. potnts are listed in zone five begtnnlng wtth
the f X, Y = 0) curve. and ending with the f (X, Y, = 1) curve.

1 75 There would be a total of 729 data words for a three variable function: ntne

~ data words for X, times nine data words for Y, times nine data words for Z. The
.address location of the independent variable Z is. listed after the Y locatlon and

muet aleo be: lteted ﬂve times to ensure memory access.

i- 76 smce there are four bands. on the drum for the ltnear tnterpolator and 4096 _
words around a single band, there are a total of 16,384 words of storage capacity
on the drum to be used for function generation alone. Twenty-two words are -

- required to deecrthe @ function of a single variable,. eo_tt_only single variable

117




| - MARK I -
cvontrvol-WOrd Zone 1

- Location of X
‘Location of X

- Location of X ‘ 5
Location of X .
Location of X J

che 2

Data Words £(0)
£(1/8)
£(1/4)
(3/8) |
£(1/2) > Zone 5
£(5/8) |
£(3/4)
- o - 1(1/8)
SRR X (1.0)
Computer Time
Computer Time

. Zone 6

Answer Address
Answer Address

- Answer Address
Answer Address

Zone 7

Answer‘A"ddress Zone 0
Figure‘ 1-‘12"' Interpolator, Single Variable Function Arrangement

functions were stored on the drum, there would be sufficient capacity to generate
over 740 different functions. Since two and three variable functions are also

_stored, the capacity is affected accordingly.

1-71. It is possible, by using certain indexing bits. in the ‘control word to use the
same function data or curve with four different independent variables, the results

~ to be stored in four different locations. This reduces the necessity for having to

repeat the data for the same curve several timesonthe drum, thereby saving stor- -

~ age capacity on the drum. The main ""drawback" in using this method is that in-

dexed functions are only recalculated 1/4 as many times as non-indexed functions
which are recalculated at a rate of ten times per second. ' :

1-78. All of the words on the four bands of drum storage for the Linear Function
Interpolator (LFI) are 11 bits long. Of these 11 bits, one, the MSB, is reserved as
~ a control bit and the remaining ten are for data. Numerical data (ordinates of the

1-18

S LD G E S EN SN EE Gy S5 S S GY S WS EN Gm



|

MARK I

X}

Figure 1- 13. Two Variable Function

breakpoints) are only listed with ten binary digit resolution. Arithmetic in the

- interpolator is carried to 14 places and rounded off.

1-79. RADIO AIDS DATA PRESELECTOR

1-80, General. It is the function of the Radio Aids Data Preselector to examine
a total of 350 different radio transmitters and select the best possible station, if
any, that each of the simulated aircraft receivers should be receiving, The Radio
Aids Data Preselector operates in paraliel with the general program of the Mark
I, and it is completely automatic, without need for programmer attention.

i- 81 The automatic radio system treats each transmitter as a separate entlty
Under this concept, an ILS facility would consist of a localizer transmitter, two
75-megacycle marker transmitters, and two low frequency compass marker
transmitters. 8 total of five separate unite.

1-19




n
|
|
|
|

MARK 1

1-82. Each S1mu1ated transmitter is counted separa,tely with the following -
exceptions:

a. The ghdeslope facility is provided as a component of the localizer sys-
tem and does not require a separate transmitter in the total fa.c111t1es count

b. A DME (Distance Measuring Equipment) system, if co-located at a VHF
Omni-Range Station, is associated (from a computational standpoint) with the
related azimuth facility and does not count in the total. -

1-83. The 350 available transmitters are divided into five groups according to the
type of facility; the maximum number of facilities in each group may not be ex-
ceeded, although it is not necessary that all facility channels be employed if a
lesser number is desired. The f1ve groups are: v

a. Low—frequency transmitters: This group includes low-frequency beacons,
low-frequency compass locator facilities and A/N range stations. 127 such facil-
ities can be represented, of which 32 may be A/N range stations.

b. VHF/UHF facilities: These include VOR transmittei's, TACAN trans-
mitters, Navy UHF direction finder transmitters and ILS transmitters. 127
independent VHF/UHF facilities can be represented.

c. Outer Markers: The system can represent 32 Outer Markers.
d. Middle Markers: 'The system can represent 32 Middle Markers.

€. Fan and Z Markers: The system is capable of representing 32 Fan or
Z markers which can be intermixed in any desired proportion.

1-84. All information for the 350 transmission facilities is contained in 4096
successive 20-bit parallel words which occur sequentially at 6.105 microsecond
intervals around the surface of the drum. Except for the 20-hit length, these
words are similar in timing to the instructions and interpolator data contained on
‘the remainder of the Mark I program drum. :

1-85. Since all 350 possible facilities must be scanned every drum revolution (40
times per second), preselection is limited to station frequency, latitude coordinate,
and longitude coordinate. Preselection in this manner permits the use of simple
electronic circuitry and ensures that time-wise, the facility will be inspected.

1-86. Frequency Inspection. For each transmitter represented, an upper and a
lower frequency limit is assigned. The facility preselector system will find a
particular facility acceptable for a particular receiver from a frequency stand-
point, if and only if the frequency of the receiver falls between the upper and
lower frequency limits ass1gned to that facility.

1-20



MARK I

" 1-87. Although all marker transmitters operate on 75 megacycles, arti.ficia.l

frequencies are assigned in the Mark I. The range of these frequencies are 0 to

1.0, 0 to 0.499, and 0.5 to 1.0, The second two frequency ranges are used to

prevent overlaps where more than one marker facility is simuiated at any one
station. = . ... . .

1-88. Low f-requenc'y transmitter facilities are assigned frequency limits by sub-
tracting and adding to the assigned operating frequency a number somewhat
larger than half the receiver bandwidth. The resultant two numbers are used as
the lower and upper frequency hmits

1-89, VHF/UHF receivers employ digital tuning with discrete frequency assign-
ments. The limits (lower and upper) assigned to the transmitter are numerically
close together to ensure that only those transmitters which exactly match the
receiver's frequency will pass the frequency test for a given receiver. .

1-90. Geographic- Position Ingpection. The method employed for geographic in-
spection 1s assigning two pairs of coordinates to each of the 350 possible f acilities.
These coordinate pairs represent the upper, lower, left and right boundaries of a
rectangle which contains a given facility. These rectangles are arbitrarily
assigned.go that the left and right boundaries (limits) are in the East-West direc-
tion, (longitude axis) and the upper and lower boundaries are in the North-South
direction (latitude axis). (See figure 1-14.)

i- ; .
-V I fL
- |
T, ()
Y
LONG, (L) i LoNG, (L)
| ,
i
l
/J—__-'
.///
PR
e
LAT ()

Figure 1- 14,. Fi'equericy and Geographic»alCoerdinates, Single Transmitter

1-21




MARK 1

1-91. Each rectangle is 'a'ssigne'd to be as large as possible, although care must be
taken to ensure that there are no overlaps of rectangles assigned to different
facilities either operating on the same frequency (in the case of markers and VHF/

UHF facilities) or operating on adjacent frequencies so that two or more facilities .

could be within the bandpass of the receiver (in the case of LF fac111t1es)

1-92. The assignment of rectangles to each of the facilities is made by the facility
grouping in ‘the. computer. For. examplé, there’ dre thrée groups of .
markers, Outer, Middle and Fan/ Z markers. Even though all three groups operate
on the same frequency, only one marker transmitter from each of the three groups
can be selected at any one time. Therefore, it is only necessary to assign the

- rectangles in such a way that for a given group, no overlapping rectangles are

- assigned. Overlapping rectangles are permitted between facilities of different ,
groups, and because of the programmed calculations involving range and radiation
pattern, no interference will resultf, unless two or more markers of different types
that in reality do interfere, are represented and can be received simultaneously. .

1-93. Preselection. Preselection of one of the facilities within a group is
accomplished by determining whether or not the aircraft is within a pair of left
and right Longitude coordinates, a pair of upper and lower Latitude coordinates
and whether or not the receiver is tuned to a frequency within a pair of upper and
lower frequency limits. Each transmitter is effectively placed within a rectan-
gular box having North/South and East/West boundaries (i.e., the box cannot be
placed diagonally on a map). The third dimension of the box is frequency, the
three dimensional concept is for convenience is visualizing the physical domain
within which the individual transmitters are eligible for reception.

1-94, It is possible to operate in a space free of any of the individual boxes in
which case no station may be received. This situation is immediately altered if
the receiver tuning is changed since this constitutes an effective movement in the
vertical or frequency coordinate in the imaginary three dimensional space, which
may result in the 'preselection of a station whose ''box" has been entered.

1-95. When a station of a group meets sxmultaneously all three preselected
criteria, the stored data which completely describes that station is transferred
to a specific group of core memory locations associated with the receiver capable
" of receiving that station. The transferred data is used by the programmer to
~calculate signal strength; range by orientation, beam pattern, call letters, and

so forth, according to the type of facility.

1-96. KEYING FUNCTION GENERATOR. |

“"1-97, General. The Keying Function Generator (KFG) is used to simulate the

call letters and characteristic.codes of various types of navigational transmitters.

~ The call letters of seven different transmitters can be stored in 8 core memory
words. Each word is 16 bits long and four words are utilized for each transmitter,

- thus providing up to 64 bits per transmitter. :

¢

1-22

it

- T3 Ty oy o

PR




"MARK I

1-98. Priority. The four binary words forming the call letters of each station
selected by the Data Preselector are transferred from the drumto core memory..
One bit at-a time is retrieved from core memory, with a block of seven bits
-.read out during the first seven machine cycles (approximately 42 usec always = -
reserved for KFG priority) of every fourth drum revolution. During this period,
- one bit is taken from each of the seven stations in storage. The seven bits re-
moved from core memory are shifted into a storage register where they remain
for four drum revolutions (0.1 sec). A new set of seven bits is then shifted into
the register. These are the riext least significant bits (start with the MSB) of each
of the seven core memory words being read. This process continues until all four
‘core. memeory words are read for the seven stations in storage. Since there are
- 64 bits per station, a total of 6.4 sec is used to obtain all the call letter information

stored, .

1- 99 -Since every bit of call letter information represents 0.1 sec of the call
letter9 a dot is equal to a 1 (0.1 sec), a dash is equal to three 1's (0.3 sec), the
space between dots and dashes within a letter is a 0 (0.1 sec), the space between
letters within a call letter group is three 0's (0.3 sec), and the space between
call groups (if they are repeated in one 64 bit segment) is at least five 0's (0.5
sec).

1.23







program bands of the drum, and these instructions are read and perfos

244, When the six octal digit word (figure 2-1) is punched on the Ta.pe Prepara_

MARKT

SECTION II

_ LIST OF INSTRUCTIONS

2-1, GENERAL. This section contains the 26 machine instructions which the

programmer may use in directing the Mark I in a step-by-step solution of an
equation. These machine instructions are all that is written on the 11 ge_,,,,

order in which they are written. One instruction is read every machine cycle S

-+ (6.1 microseconds). All instructions describe an operation which the Mark 1 is to 5
- perform, and they give the location of the data word or constant involved in the"

operaticn

2-2. All instructions fall into three general categories: transfer arithmetic and

- “control, and each mstruction has an identifying code number which is recognized by
- the machme } : e

3.,<
po—

2-3. An instruction word i§ made up of two sections: a two octal-digit section

- which gives the operation (identifying code), and a four octal-digit section Wthh :
- specifies a core memory address. Figure 2-1 is an example of an instruction

~word.to add the contents of memory location 1500 to the contents of the accumula-
tor. _

011500 | 'NOTE: (01 and 1500 are octal numbers)

Figure 2- 1 Instruction Word

tion Unit, it will be automatically converted into a 16-binary-bit word. The first
five bits will be. the binary code for the operation, and the following 11 bits will be

e the binary code for the core memory location. (The eleven general-program bands
~on the drum are all 16 bit wide.) The octal -digit word (figure 2-1) would be. coded
. as shown in figure 2 2. :

222 7

’-»O 1,'11}‘,j5' 0 0

’1‘ 00 | 001 '01',101‘ 000 | 000 |

Figure 2 2 Bmary Coded Octal-Digit Instruction Word

- \ Lo
- 2- 5 Each digit of the instruction™\ coded separately 'I‘his is the bmary coded L
" octal format. Each octal digit of th instruction is separately converted to binary, o

i and the binary equivalents are written in"the same order as the octal numbers '

'“'72:1




VMNMﬁKf

i The first octal digit of the operati.on section code and address section code never s

~exceeds three and thus requires only two binary digits to simulate it, All of the

- other octal digits can take on values from 0 to 7 and each requires three bina.ry

diglts
2 6 INSTRUCTIONS

2-7 "The following paragraphs containthe complete list of Mark I tnsiructions

AF’_':«

e .

,‘r

“complete with the instruction cede, explanation of the operation, the class in which
the instruction falls (control, transfer, or a,rithmetic) , and sample prqgrammlng B

procedures for each 1.nstrusc:t:,ion°

" .‘2—80- Load Accumulator.

Mnemonic O P,

L 'Cl'a.ss o Code  Code

b

~ Address |

R Transfer LD 20

MMMM
it i i

Process

Transfer the contents of the |

accumulator to the salvage :

register. Clear the accumue

MMMM to the accumulator,
| NOTE | -

lator. Transfer the contents
of core memory address

The contents of the salvage register may not be loaded m .
the ac.:cunml.ator° Address 0000 is not allowed '

EXAMPLE X is 1n the accumula.tor and Yla m core memory location 1234 LoadY"""‘:' ok

Mnemonic - 0P,
_ dee Code

- 20

2.9, Store Accumulator.

Transfer ST = 25

. . ' MnemOnic oo‘Pq :
~ Class . ,Code Code

. \

Mem,

Add. Accumulator N §.a1v‘.,

1234

o Address
MMMM -

> S B
y «

' Process

Transfer the contents of the .
. accumulator to core memory -
address MMMM. - The con-
tents of the accumulator will™ -

V

L ; ’ R T A
- s Em oEm T3

-

B it AR T P R

. . oy R T . .

I

et me i g o ki, S e

e e i e e

[P TU

ool s .
i s

Te R L 2

g

Tty o

BT TP 2



MARKI

. Mnemonic | "..'-O,P. - o
Class Code Code  ~ Address 'Process
| remam in the accumulator .
unt11 the next load instruction.
' NOTE '

Address 0000 is not allowed.

EXAMPLE Y is in the accumulatorr Transfer the contents of the accumulator to

. core memory address 1000

\

‘Mnembonic . 0oP. Menm.

Code . Code Add. -Acc_omhlator
ST 281000 Y
NOTE |

Y is stored in core memory location 1000, Y will also re-
main in the accumulator until the next LOAD instruction
when it will automatically transfer to SALV.

. 2 10. No Operatlon

Mnemonic | 0.P.

" Class o Code Code Address Process = |
" Control - NPA. 12 - 0000 Do not transfer information.

NPB 25 377
NOTE

Indicates an unused instruction word location on the drum.
"Time-killer'" gives the Mark I time to perform such in-
structions as multiply, divide, and square root. Priority
control is free to accept any auxiliary process. The.two
NO-OP instructions will be used alternately by the pro-.
grammer. This instruction also functions as a parity
“check on the drum raad heads. An example of a NO OP
'Lnstruction is shown in paragraph 2 13 ,

23

LI




| 21t aa |

o Mmemonic’ OP. .. .
Class ~~ __Code = Code = Address - Process

. Arithmetic . . ADD* 01  XXXX = Transfer the comtentsof = - -
S T AR . "address XXXX to the arith-- = -
' metic unit-and:ADD to.the =

¢ e eera——

‘contents of the accumulator,

o - The automatic overflow procs -

: 3 BT g .. ess operates if required

: EXAMPLE 1t is desired to form the equation Z = x + Y° Asaume Y is stored in
memory location 1235, X in memory location 1234, and Z in memory location 1236 .

Mnemonic . OP.  Mem,
__Code S Code - _Add.. *_Ac'cnmulator

w2 123& x
- ADD 01 o - 1236 - X+ Y
st 23 ' 1236 o X+ Y
| - NOTE‘ |
X+ ¥ is stored in,c'._ofe'_memory XOcaf;ion 1236 (Z), X+Y
will also remain in the accumulator until the next LOAD
_ | instruction when 1.t wm automatically transfer to SALV
2 12, Subtract | | - |

o o Mnemonic. | OP R D
. Class - -~ _Code = Code Address - Process

~ Arfthmetic - SUB 02 . XXXX  Transfer the contents of
L P e “location XXXX to ‘the arith=
metic unit and subtact from -
- the contents of the accumula~
- tor. Overflow process opera
'_ ates if requ,ired -

SR EXAMPLE 1t is desired to form the equation Z X < Y.  Assume X s stored in
memory location 1234 Y in memory location 1235 and Z in memory location 1236

' - a )

i

s

MA




Mnemonic - O.P. :v"Mem. o

_Code = Code - _Add. " Accumulator
b 20 1234 o x
SUB 02 1235 X-Y
sT 23 1236 X-¥
| NOTE

y X-Y is stored in memory location 1236 (Z). X - Y will . |
- also remain in the accumulator until the next LOAD in-
i struction when it will automatically transfer to SALV.

- 2- 13 ultiglz

| Mnemonic ~ o.p. e
Class _- Code . Code - Address.  Process
Arithmetlc  MLT - 03 XXXX = Transfer the contents of loca |

tion XXXX to the arithmetic
unit as multiplicand and

“multiply with contents of the

- accumulator as multiplier.,

- The 48-bit product remains
in the accumulator and -

- Multiply (MQ) Register. (The '
24 most significant bits" F
(MSB's) are in the accumula- ‘
tor.) |

NOTE

A multipllcation requtres an amount of time equal to ﬂve
' machine cycles (80.5 microseconds). Multiplication in-
- structions must be followed by four NO-OP instructions..
Boolean instructions may be- substituted for the NO-OP in-
. structions since they do not involve the use of the main
:arithmettc unit, : \

EXAMPLE Form the equatton W Z (x + Y) Assume X is in memory‘location A _
1234, Y in memory location 1235 Z in memory location 1236, and Win memory I
location 1237 . . o F




i

' 2.15, Square.

Mnemomc | 0P, . Mema_ o
Code. - - Code -+ _Add. ~ Accumulator

LD 20 1286 X
ADD 01 1235 X+ Y
MLT = 08 1236 X+ Y
NPA - 12 (. 0000  X+Y
~ NPB - - 25 T X+ Y
NPA = 12 " 0000 L X+Y L
NPB - 25 - . zgxnr)aw

st 23 1231 zZ(X+YV)=W

- 2-14. Negative Multipncatmn, "

P Mnemonic . O,P; S ' o
Class - __Code =~ Code = Address Procesg

T .

. Arithmetic ~ NMT - 04  XXXX - Same as multiply except

inverted.

~BEXAMPLE: Form the equation W=2 - XYQ Asgume the same memory locati.on '
. ’1or X, Y,Z and W as paragraph 2-13, ' .

Mnemonic - O.P. -~ Mem, S
Code ' Code Add. o Accumulator

‘LD . . 20 1234
NMT . = 04 11285
NPA -~ -~ 12 0000,
NPB 25 3T
NPA 12 0000
'NPB S T I Y 4
ADD 01 1236
ST o 23 1237

bl LI

1%

NN
€€

} Mnemb_ni.c ~ 0.P: _ S .
Claas - Code Code - Address "-Process

Arxthmetxc SQ o 05 viO()-OO , Sa,me as multiply except

transfer contents of accumu- -

lator for use as multiplier -
) and multiphcand

- number transferred has sign

Y

. L - R T S . ST - Bty e o . Lo S e S B Ly S G ST .

-



|

L . . - . N

e
<

MARK I
 NOTE.
0000 is the only allowed address

‘EXAMPLE ‘Form the equation Z = X2 Y. Assume X, Y and z are in the same
- memory locations as in paragraph 2- 13 , .

Mnemonic O,P._{«’ ’- , Mem,-} P . L | Lo
.._..9.9‘1?..'__ - Code . Add. . Accumulator

‘LD 20 1234
sQ 05 0000
NPA B 120 0000
.~ NPB 25 3777
- NPA 12 - 0000
'NPB 25 3
sUB 02 1235
sT 23 1236

b4 D¢ D 4 D4 b D 34

NN DN
1]
[ S

]
v
o

2- 16 Divide.-

- Mnemonic O.P. ) R
~Class~ - __Code - Code  Address  Process

Arithmetic = «DlV . 06 o XXXX  Transfer the contents of -

address XXXX to the main |
'arlthmetic unit as divisor.

and divide into the contents

of the accumulator as divi- =~ =
- dend. Discard remainder of -

dividend from accumulator .-

and transfer quotient to

accumulator. Overflow proc-,'-'_v'._ .'

‘ess operates if required
NOTE |
A divided instruction must be. followed by four NO OP in-

~ structions. (Boolean instructions may be substituted for
NO-OPS) I T

| 'EXAMPLE Form the equation w XY Y2 + 2, Assume W, x Y, and z are in

'z

_ the same memory location as in paragraph 2 13

.




i
]
1

'_ -Mnemo\nic' . 0P, ) . Mem. ..;Arithméttcf D
_Code _ . Code - Add. = Accumulator

LD 20 1234 X

' SUB o.o02 1235 X
~ MLT - 03 1235 X
X

X

X

NPA 12 00000
‘NPB - 25 37711
NPA . 12 0000

... . . . NPB -~ .25 - 83M - - Y(X-Y)
SN DIV 06 . 1236 - Y(X-Y)
T NPA = 12 00000 = YX-Y)

~ NPB oo 25 8Ty Y(X-Y)
~ 'NPA 12 0000, Y (X-Y)
'~ NPB 25 - . 3T Y (X-Y)

~ ADD 01 1286 Y(X-Y)+Z=

XY -Y24Z =W
XXX 4B

e -
- g -.\.,_\r,-

ST 28 1237 XY-Y24zZ=W

2—17 Square Root Step

o Mnemonic ) | - o.P, - Lo -
Class . Code . Code ' Address _‘.-Process _

Arithmetic SRS - 07 . MMMM Take the square root of the S
L . o - ~° contents of the accumulaior, :
by performing one ité¢ration..
of the Newton-Raphson
- app'roximation- w'here*X =VT g
. n -

.The previous result of this .
~ operation, Xp -1, is found in -
. memory location MMMM. =
' The result of this step, Xp, i
~to be stored in memory loca- ©~

, -_tion MMMM o

-




MARK I

NOTE

The square root of 0 is not allowed. A square root instruc-
tion must be followed by four NO-OP instructions (Boolean
instructions may be substituted.)

EXAMPLE: Form Z = X + Y+ VXY. Assume that X is stored in memory location
1233, Y is in 1234 and Z in 1235. : ' - '

Mnemonic 0.P.

_Code Code _Add.
LD 20 1233
ADD 01 1234
LD 20 1233
MLT 03 1234
NPA 12 0000
NPB 25 3777
NPA 12 Q000
NPB 25 arm
SRS o7 1005
NPA 12 o000
NPB . 25 37
NPA 12 Ooh0
NPB 25 3777
8T 23 1000
.ADD 01 000G
ST | 23 1235

2-18, Scale.
_ , - Mnemonic O.F,
Class Code Code Address
Arithmetic SCL 10 lowe
' SCL 10 Ouua

Mem.

Arithmetic
Accumulator Salv.
b4
X+Y
X X+ Y
X X+Y
X X+ Y
X X+ Y
X X+ Y
Y X+¥
XY X+ Y
XY X+ ¥
Y X+¥
XY : A Y
VXY A+ ¥
VXY _ X+Y
X+Y+ VXY X+Y
Z :

Process

The address porticn of this
instruction contains a control
code as follows: If the most
significant bit (MSB) 1« T,
left ghift, I the MED a1,
right shift. The remaining
portion of the address con-
tains the number of places

to be shifted, 001 through 101
(Binary). The MSB of the
accumulator will remain un-
changed to retain the sign bit.

2-9




MARK 1
Mnemonic 0.P. _
Ciass Code Code Address
NOTE

Process

The remainder of the accu- .
mulator contents will be .
shifted by the required num-
ber of bits, with insertion of
zeros starting at the second
most significant bit for scale
right, and with the insertion
of zeros starting at the least
significant MQ bit for scale
left. For scale left, the MSB
of the accumulator (after the

sign bit) will be examined be-

fore each 1-bit shift, If a
"one'' exists in this bit,
OVERFLOW will occur re-
placing the scaling process,
and ending execution of the
instruction.

. Bcaling a number left one place is equivalent to multiplying
that number by two. Scaling right one place i8 equivalent
- 10 dividing by two. The Mark I can shift five places in one

basic machine cycle (6.1 mlcroseconda)

EXAMPLE‘ Form Z = 3X + 8Y, Assume X 18 in memory locatlon 1234, Y in 1235,

"and Z in 1233

" Mnemonic

_Code

8CL

ADD
475}
scL
ADD
BT

2-10

’ O.VP.
‘Code

20

10

01

80
10

01

Mem.

Add.

1284

1001

1234
1235
0003
0000

. 1238

Arithmetic
Accumulator Salv.
X
X
X
'!’ .
Y - 3X
¥
8Y . X
3 8Y | g
+ X
X 7
A A X
- 7

My



MARK I

2-19. Shift.
Mnemonic O.P.
Class Code Code Address
Arithmetic SFT 11 1---
SFT 11 0---
2-20. Invert Sign.
Mnemonic = O.P.
Class Code Code Address
Arithmetic INS 13 0000
NOTE

Process

Same as the "SCALE" in-
struction (paragraph 2-18)
except that the entire contents
of the accumulator, including
the sign bit, will be shifted.
Zeros are inserted at the LSB
for left shifts, and at the MSB
for right shifts. The control
code is the same as for the
scale instruction. '

Process

Reverse the sign (the most
significant bit) of the accu-
mulator.

0000 is the only allowed address.

EXAMPLE: Form Z =X - Y. Assume that Y is already in the accumulator, X is

in 1234 and Z is 1235.
Mnemonic
Code
'SUB
NS
ST

2-21. Absolute Value.

O.p. . Mem.,

Code Add.
02 1234
13 0000
23 1235
O.P

Co.de° Address

Mnemonic
Class Code
Arithmetic ABS

14 0000

Arithmetic
Accumulator

4

- X
(Y -

X)=X-Y

Process

Make the sign (MSB) of the
accumulator positive (0).

2-11




EXAMPLE Form Z = /X Y/.

MARK I

NOTE

0000 is the only b.llowed address.

Assume X.2-8

is stored in memory location 1234

and Y.2-6 is stored in 1235. It is desired to form and store 7.2-7 in location

i .

g e e o 5 ISR, .

1236.
Mnemonic O.P. Mem. Arithmetic

Code Code Add. Scale Accumulator

LD 20 1235 2-6 Y

SCL 10 1002 2-8 Y

SUB 02 1234 2-8 Y-X

ABS 14 0000 2-8 /Y - X/

SCL 10 0001 2-7 /Y - X/

ST 23 1235 2-T yA

- 2-22. Zero Slice.
| Mnemonic O.P.
Class Code Code Address Process
Arithmetic ZSL 15 0000 If the sign of the number in
the accumulator is negative,
make the contents of the
accumulator zero (including
the sign bit). If the sign of
the number is positive, do
nothing.
NOTE

0000 is the ohly allowed address.

EXAMPLE It is desired to form Y = F(X) where /X/ & 1 and Y is described by
the followmg curve. .

TY 5
=1 i
~Tx—

Y = kX for X>0
Y =0 for X£0

| Assume X located in memory location 1234, k in 1235, and Y in 1236.

92-12

i IEA v Com : B L eI e . . ¥ o E

PP

DI



. . e s @ Prwr

Control

Mnemonic
Code

LD

MLT
NPA
NPB
NPA
NPB
ZSL
ST

'2-23. Conditional Skip.
O.P.

Mnemonic
Class Code Code
SKP 26

MARK T
O.P. | Mem.
Code Add.
20 1234
03 1235
12 0000
25 3717
12 0000
25 3117
15 0000
23 ' 1236
Address

_ The octal equivalent
of the number of

steps to be skipped.

NOTE

Arithmetic |
Accumulator

*x
EX M XXX

o]

Process

Skip the next N instructions
only if the Boolean accumu-
lator is 1. (Maximum num-
ber of skips in one instruc-.

~ tion is 127.) The Mark I can

skip to another skip instruc-
tion,

This is the only form of branching in the Mark I.

EXAMPLE: IT is the total load current on a power buss and the problem is to
add 11, and additional load, to ip the minimum load, if switch 81 is closed. If S
is closed 81 = 1, If 81 is open 81 = 0, Assume S1 is in the Boolean accumulator,

1236,

W0

/i'-

io is in.core momory locatton 1234, and i1 is tn 1235. Calculate IT and store in

2-13




~ MARK I
" Mnemonic o.P. M'em. Arithmetic . Boolean |
Code Code ~ Add. Accumulator Accumulator
Lp 20 123 19 . Sy -
BIN - 32 0000 - ' ' : ' S1 -
SKP 26 000 5
ADD ) R 1235:‘ o + i1 .

ST 23 1286=  IT'=1p + i1 S -
o . or ig .

2-24, Invert Boolean Accumulator.

~ Class _Code  Code  Address Proces.

' Arithmetic - BIN .82 0000 Complement the contents of - g
' the Boolean accumulator (i.e., '
alischangedtoa 0, and a
0 is changed to a 1).

NOTE

A :
EXAMPLE:-

1

i
¢
j

. " sV

L = 83 (K1 + 81 82)
81, 82, 83, K1, and L are in storage locations 0100 througti 0104,

2-14

I

]

!

i

]

1

i

0000 18 the only allowed address. | R - l
- ]
I_.

|

i

i

l.

I |



MARK 1
Mnemonic ~ O.P. Mem. | Boolean - SalVage
Code - Code Add. Accumulator 0000 0001 0002 0003
BLD - 33 0103 K4
BIN E 32 - 0000 K1 _
BLD . 33 0100 S1 Ky
AND : 31 0101 S1 82 _
OR 30 0000 K1 + 8182 Ki
AND - 31 - 0102 §3 (K1 + 81 S9)
BST = - 34 0104 L S
2-25. Flag Negative.
SR = Mn_em‘ohic o OP . :
Class - _Code . Code Address Process
Arithmetic R _FLN 16 0000 . Set the Boolean accumulator
: ' the same as the sign bit in
the arithmetic accumulator.
The previous contents of the
Boolean accumulator are
transferred to the salvage
register B 0000.
NOTE

0000 is the only allowed address.

EXAMPLE: Generate Y = kX where 05 X 1, and
S Y = 2kX where -1 2 X <0,

Asvsukme‘x is in location 1234, and k is in 1235, Calculate and store Y in 1236,

2-15




MARK I

Mnemonic O.P. Mem. Arithmetic
Code ' Code Add. — -~ Accumulator
LD 20 1234 X
MLT 03 1235 ) X
NPA ' 12 0000 X
NPB - 25 3777 X
NPA 12 0000 X
NPB 25 3777 kX
FLN 16 0000 kX
BIN 32 0000 kX
SKP 26 0001 kX
" SCL 10 - 0001 ::l 2kX
ST 23 1236 Y
i 2-26. Index Load.
Mnemonic o.p. B :
Class Code  Code Address = Process
Transfer - ILD 21 MMMM Same as LOAD instruction
: ' with the addition that the
LSB of t e eleven address
bits is made to correspond to
the conten s of the Boolean
accumula or.: '
NOTE .

Address 0000 is not allowed. By use of this instruction,
data from either of two locations may be loaded into the
accumulator, depending on some external condition (as
reflected 1n the state of the Boolean accumulator). The only
pairs of adjacent core memory locations allowed consist of
even numbered locations and the next higher number (e.g.,
3776 and 3777; 0900 and 0901; etc.).

EXAMPLE: Generate Y = {(X), where f(X) = kX for 0 X =1 énd f(X)= -C for

-1S X <0, Assume X is in core memory location 1234, -C/k is in 1235, k-is in
1236 and Y 1n location 1237.

2.16




il - =" e e = S e — S e —

MARK I

t Y
el
- X |
-C
Mnemonic O.P. Mem.
Code Code Add.
LD N 20 1234
FLN 16 0000
ILD 21 1234
MLT . 03 1236 .
NPA 12 0000
NPB 25 3777
NPA 12 0000
NPB 25 3777
ST 23 1237
2-27. Index Store.
Mnemonic 0O.P.
Class - Code Code Address
Transfer IST 24 MMMM
NOTE

Accumulator
X
X
f(X)
£(X)
Process

Same as "STORE" instruction
plus the same address -
modification of "ILD".

‘Address 0000 is not allowed;

EXAMPLE: Y1 =kXfor XZ0and Y1=0for X<0
Yo =kXfor X<0andY2=0for X0

Assume X is in location 1230, k in 1231, Y1 in 1232 and Y2 in 1233.

2-117




- Mnemonic .O.P.
Code : - Code
LD 20
FLN 16 .
MLT 03
NPA .12
NPB 25
NPA 12
NPB 25
IST 24

MARKI -

\\éf

Y

" Mem,

Add. -

2-28. No Address Load (Load Constant).

Class

Transfer

| EXAMPLE:

2-18

Mnemonic O.P.
Code Code
LDK 22

1230
0000 -
1231
0000

371717

0000
3777
1232

Address

Accumulator

X
X

kX

Process

Calculate Y=kX + C: - .
X.2-5 is stored in 1234, -

v.2-10 jg desired.
k.2-5 = .86875
C.2-3 = 8500

The address portion of this
instruction word contains an
11-bit constant instead of an
address. This constant is
always assumed to be posi-
tive and is loaded into the

accumulator. The remaining

12 LSB's of the accumulator
are set to zero.

- e un T
. i} RN . e e .. B




1
4
l
|
|

* Mnemonic OP Mem. P - -
Code ' Code Add.  Scale -Accumulator o Salyg_ge N
LDK 22 8687~ 2-5 Kk R
X 'MLT 08 1234 - S
NPA ~ 12 - 0000
NPB - 26 3
NPA 12. 0000 S
 NPB 25 3 2-10 kX o -
LDK 22 .8500 2-3 C kXx.2-10
SCL 10 1005 - 2-8 C kX.2-10
.scL. 10 1002 - 2°10 c
- ADD 01 0000 ° 2-10 kX + C
~sT 23 1235 2-10 Y
 2-29, Conditional Stop.
: o Mnemonic  O.P. F
Class Code _ Code Address = Process
Control ~ STP 27 0000  Stop the program. Hold clock

counter at the last instruction
address. Operates when the
"conditional stop' switch on
the Mark 1 is activated.

NOTE

0000 is the only allowed address. This instruction is pro- . -
grammed only in diagnostic routines. It may also be given
o : during any program by use of a manual control on the Mark
- . I. The program may be restarted at the following instruc- -
o ' ~ tion by means of the conditional stop switch on the Mark I.

. ,2_-3»0?' Load Boolean Accumulator.

L e Mnémonic ~ 0.P.
- Class . Code Code Address Process
" Transfer BLD o '33 - BBBB Transfer the .convtents of the

- Boolean accumulator to
Boolean salvage location -~
0000. Clear the Boolean
accumulator and transfer the
contents of Boolean memory

. location BBBB to the Boolean
-accumulator, ‘ :

2-19




T T I R v,‘»:.w}‘m e -‘m,,,-«w-r»*
 MARKT
NOTES

1. Boolean addresses, 0000, 0001, 0002, and 0003 are allow-
ed. (These are the addresses of the four Boolean sa,lvage
registers. ) :

A

2, The address portion of any Boolean mstruotion word as

written on the drum, is actually a control code which

“describes the Boolean memory location. This code t_eu;s'

which of the 128 main core memory words (that have been

~ set aside for Boolean storage) is involved, and which of the
-16-bits of the word concerned actually is the Boolean word

desired. The four LSB's of the 11-bit control code (address
portion of the instruction word) are transferred to the
Boolean arithmetic unit to provide bit selection on the core
memory output register. The first seven bits are trans-

- ferred to the seven LSB places of the core memory address
register and four zeros are inserted into the four most
‘significant places of the register. This process constructs

a core memory address from 0000 to 0127 as determined
by the. MSB's of the control code. The selected word is

transferred to the core memory output register where the
;. particular bit concerned is selected by the four LSB's of

the control code previously transferred to the Boolean

' ar1thmet1c accumulator,

2-31, Store Boolean Accumulator

Class

_Transfer- ‘

Mnemonic = O.P, .
Code .- Code Address Process | |
BST 34  BBBB  Store the contents of the

Boolean accumulator in

Boolean core memory loca-

tion BBBB

NOTE

Boolean addresses 0000-0003 are not allowed

EXAMPLE X a quantity whn.oh varies from 0to +1 is stored in 1234, Set a flag
to determine whether X is greater or less than 0.5, and store the flag in Boolean
core memory locat,ion 0100 for later use. :

P

T LI S T L T e e



R S s, T R e - e e =T - — R

MARK I
l Mnemonic O.P.  Mem. Arithmetic Boolean
Code Code Add. Accumulator Salvage Accumulator
l LDK 22 4000 5000 |
LD, 20 1234 X . .5000
l SUB - 02 0000 X-.5000 -
. FLN ‘ - 16 0000 X-.5000 s - X-.5000 flag
BST .34 0100 X-.5000 : X-.5000 f_lag
l _ 2-32. Boolean Sum.
l ~ Mnemonic O.P.
Class Code : Code Address Process
. Arithmetic OR 30 XXXX  Transfer the addressed bit to
v . ’ the Boolean arithmetic unit -

and ADD (OR) with the con-
tents of the Boolean accumu-
lator. The sum (OR function)
remains in the Boolean accu-

- mulator.

.EXAMPLE:

The light, L, is on (1) if §1 or S2 are closed (1).  ,", L =Sq +8Sg
Calculate L and store. Si is in Boolean location 1234, Sg is in 1235 and L in 1236.

Mnemonic - 0.P. ‘ Mem. ) Boolean
Code Code Add. Accumulator
BLD 33 1234 S1
OR 30 1235 S1+82

BST = 34 1236 - L

2-31




MARK I
2-33. Boolean Product.
" Mnemonic O.P. . :
Class Code Code Address Process

Arithmetic AND 31 XXXX  Transfer the addressed bit to
- : the Boolean arithmetic unit
and multiply (AND) with con-

tents of Boolean accumulator.

Products remain in the accu-
mulator,

EXAMPLE:

{/GSI /CSZ

+VY

- ® | + |
o L

"L =81 82 + 83 (The light is on (1) when we have either S1 and S2 or S3.)
S1, S2, 83, and L are in Boolean locations 0100-0103

Mnemonic O.P. Mem. Boolean
Code Code Add. Accumulator
- BLD - 33 0100 'S1
AND 31 . 0101 S182
OR 30 0102 S1 82 + 83

- BST 34 0103 L

'2-34. Tape Stop Code..

L Mnemonic O.P. _
- .Class Code Code Address Process
~ External TRS 37 NONE A stop code for the photo‘

electric tape reader. Each
second character on the tape
will be interrogated for this
code.

2.22

[

o ———



MARK 1

 SECTION II
. PREPARATION OF PROGRAMS

3-1. GENERAL PROGRAM

3-2. Upon solution, a General Program problem is placed on a program sheet - -
(Coding and Constant Sheet), punched on paper tape, and wrltten onto the General
Program section of the magnetic drum

3-3. Coding and Constant Sheets, The coding and constant sheets are used by

programmers for general purpose programs. These program sheets are broken
up into 13 individual columns as follows: -

Column 1

Column 2

Column 3
Column 4

Column 5

- Column 6

Column 7

Column 8

Columns 9-12

Column 13

INSTRUCTION NUMBER - Used to count the number of instruc-
tions in a particular program. Decimal numbers are used in this
column., '

MNEMONIC CODE - Abbreviation for the instruction being used
(i.e., Multiply instruction would be listed in the Mnemonic Code
Column as MLT) ‘ :

O.P. CODE - Instructlon number (MLT Instructmn is 03). Octal
numbers only are used in this column,

MEM. ADD. - Memory address of the mstructmn to be used.
Octal numbers only are used in this column

SCALE - Scaling of the number in the Arithmetic accumulators
Scaling is to powers of two only.

ARITHMETIC ACCUMULATOR - The number actually being
operated on. This number is in binary format. -

SALV. - Salvage register column. Stores the contents of the

accumulator after a load instruction.

BOOLEAN ACCUMULATOR - Serves the same purpose as the

‘arithmetic accumulator. Used for Boolean mstructions only,

SALV. 1 - SALV. 4 - Boolean salvage reglsters ‘Serves the
same purpose as column 7, Bits may shift from one register to

. another.

REMARKS - Used for brief explanatmn of instruction where
necessary.

3-1:




MARK I

3 4, The completed progra.m on the Coding and Constants Sheets is punched on
paper tape by an electrical keyboard. The keyboard, which resembles a conven-
- tional desk calculator, eliminates the need for punched card inputs to the tape
preparation unit . .

| 3 5. Data Format. All instructions will be written into the keyboard uslng six
‘octal digits: Most Significant Code digit first second code digit, then address,
| Most Significant Digit first. -

3-6. No-.-Address Load Instructions (LDK), will require a keyboard entry of Octal
""22" to activate a fractional decimal-to-octal translator. The four digit fractional
decimal number will then follow, being entered through the keyboard. :

3-7. Boolean Instructions will have the address portibn tabulated 0000 to 37'7'7
" (Octal), which represents 128 16-bit words. All remaining instructions will be
written as two-digit code and four-digit address or control word.

~ 8-8. An example of a General Program Computer Word and binary equivalent is

shown in figure 3»1 where dn represents each octal digit, 0" stands for binary
bits not recognized, d "X'" represents valid binary bits.

dy- : - dg dg3  d¢  ds dg
OXX XXX OXX XXX XXX XXX
Figure 3-1. General Program Computer Word

3-9. Each Geperal Program Computer Word occupies two lines of punched paper
tape, each ling capable of holding eight binary digits. A punched holes in the tape

signifies a one, and a blank, zero. Tape format for a General Program Computer

Word is ilmstra.ted in ﬁgure 3-2, where "C" is the O.P. Code and "A" is the
addresa,

ccccceAAa
i AAAAA-AAA
lﬁ"igufe. 3-2. ’I'_ape Format, General Progfam Computer Word
3-10. A sample General Program forming the equation I = E/R is illustrated in

~ figure 3 8, Part (A)is the formation of the equation on a "Coding and Constant"
~ sheet, and. Part (B) is the same program on paper tape. .

3-2 -

|

I & U N TS aE En T N ay G Ee G s aam O &y € e



}
)
PATE APRIL 23, 1963 CODING AND CONSTANT SHEET
prosLem __CURRENT () COMPUTATION MARK | COMPUTER -
PROGRAMMER JOHNDOE ==~
. Ppage_1__oF 1.
Fe2214+A
INSTRUCT 10N wemonic Af cwhh wem, w ARITHMETIC  ~ . BOOLEAN o D A
‘NUMBER CODE Syt aoo. < ACCUMULATOR ] ACCUMULATOR I EE
- © 2 g FIEiEIE REMARKS
wmlwnjfnlan
32 .! 4 5'.l7 ;] l)ﬁ B l!['!_ll_lfs -
01 LD 2’ 120 d E Load E Into the Arithmetic_Accumylator
L L T
0 2| DIV 0 _2_,_474.‘.& E _Divide the Contents of the Accumulator By R
T 171 T 1 o
9 3 PA 1 Jl.rﬂ,_ﬂrj E _Instructions 03-06 lsged to Give Computer Time To
T | IR
4 PR 2 3711 E _Complete Divide Instruction i
T 1 17 177 T 7 T 7
T 10 15 NEA. 1! 'Q'V'Q'V'Q‘I"lJ E
UL
NPB 2 5/i3 7171 E/R
T v ¥ 1 ¢ ¢ ¥ T 1 - B
0 7]|ST 2 310 7 177 1=E/R Store the Contents of the Accumulator in the Memary Locationaf |
¥ 1T 17 T T RN B B | - T
I -
LA B T T T b i ‘
¥ T 17 1 T T 1 7
LS N S T 1T

I YV

LD N N B T T 17T

—T T T T T T T 7T

‘Illl)ll ¥ L]

i —T 7 ¥ T T 7 T T 1T

L2NE 2 N B T T 17

T 1 r 1 1 ¥ T T T ¥

T T T T L

T T rrr L LBLE

T ¥ 11 7T T T 177

T T 71 T L

T 1 1 71 T LI |

T T T T ™1 1

T 17 T T 1 T ™1 7T

T T ¥ LT T LI

LS I R B T TT T

T v § rrr T i1

T T T T 1T
w
i
w

Figure 3-3. General Program Part A - (Coding and Constant Sheet)

LY L0 000 MY O 1 A A A M T



MARKI

Figure 3-3. General Program Part B - (Punched Paper Tape)

3-11.. INTERPOLATOR PROGRAM.

3-12. Solutions of flight equations are placed on ""Linear Function Interpolator
Data Input Sheets'', punched sequentially on paper tape, and put into the interpo-
lator bands of the magnetic drum,

3-13. Linear Function Interpolator Data Sheet, The Linear Function Interpolator
Data Sheet is divided into two sections. The first section contains information
concerning the number of variables, whether the variables are indexed scaling of
variables, etc. The second section contains the location of the breakpoints. The
first section is further broken-down into cards 1, 2, and 3, This is done for con-
venience where punched cards and a card reader is used in conjunction with the
tape Preparation Unit, .

3-14, A standardized procedure is required to fill out the LFI input sheets to
maintain full usage anduniformityin all interpolator programs. The standard form
of each item on the LFI input sheet is presented as follows:

CARD 1

Function Numbers - the function number space has twelve blocks
assigned. The first three blocks will be used to show the numerical
function number. The second three blocks are used for the first vari-
able input number, the third set of three blocks for the second variable

‘3-4

D S W BN G W s S =) = U s Mk & By TP e

-



"MARK 1

mput number, and the last three blocks for the third varlable input

:number. Function numbers are arbitrarily assigned by the pro-

grammer. These numbers may be written either decimally or octally
on the input sheet An example of a three variable function number

- follows:

140 M(12), ¢ e(u) a se(11) would be written as

040002 009022 decimally or :
1050002 011026 octally where the input number for M(12) 15 2, ae(11) is

9, and a se(1l)ig 22, The function number used is 40.

The programmer should be consistent when writing the function num-

ber. If the decimal numbering system is used for the function number
- in the rest of the interpolation program, it should be used in any new

programs. The same holds true for octal numbers.

Sort Number - This. number is any convenient combination of alpha-
- betics and numerics which describes the order of this card. Two
‘alphabetics and three numerics will be used (This is only used with
- punched cards and card reader. )

c.mn 2
X Address - (X ADD) - The address will contain the core address (in

octal) of the independent variable X. If the term is to be indexed (the
same set of curves and with different inputs), the X ADD will be the
core address (in octal) of the first item to be indexed and must havea
zero or a four as the last numeric in the octal number. The next three

. serial octal core locations must be the remaining indexed inputs. - Core

locat:lon 145 will appear as 0145

Repeat X (RPX) - The number of tim es the X address will appear in

~ the outpiit data. If the X address is to appear five times, this will be

written on the sheet as 05. As the present, five will always be used.

Index X (IXX) - If X is to be indexed, X will appear. If X is not to be

1ndexecl the space will be left blank

Y Addrese (Y ADD) - Similar to X address except this is for the sec-
ond variable in a two or three variable functi.on. For a smgle variable

. this will be left blank,

. Repeat Y (RPY) - The number of tim'es the Y address is to appear in
‘the output data, Five is the only number used at this time, and it would
“appear on the input sheet as 05. These blocks are only used for a func-
- tion of two or three variables

- 3-5-




36

-MARKI

- Index Y (IXY) - I:E Y is to be indexed, Y will appear. This will be filled
- out only if this isa function of two or three variables. h

Z Address (Z ADD) - Similar to X ADD except for the third variable o

a three variable function. . For single or double variable functions this

Lo will be left blank

’ Repeat Z (RPZ) - The number of times the zZ address is to appear in
"the output data. Five is the only number used at this time and would ap-
~ pear on the input sheet as 05. This will be filled out only for a three
- variable function. __‘ ‘ .

Index Z (IXZ) - ®z is to be. indexed, Z will appear to be filled out
“only for a function of three variables, ‘

Sort Number - Number used to signify the order of this card in the in- |

put data.
CARD 3

~ Answer Address (A ADD) - The answer addres's‘will contain the core

address (in octal) where the answer (dependent variable) will be lo-
cated. For functions which are being indexed, the answer address will
be that of the first answer and the core. location in octal must have a
zero or a four in its last numeric. The next three core locations will

 be the indexed answers.

, Repeat answer (RPA) - The number of times the answer is to appear in
~ the output data., Five is the value of the number to be used and will ap-
. pear on the input sheet as 05, .".

Computer time (CT) - The number of words consisting of all zeros that

‘is to appear in the output data. 02, 04, or 06 will be used for a function
. of one, two, or three variables, respectively. N , o

' Decimal Point (DP) - The number of places the decimal point in the
.input data is to be shifted, The decimal point in the input data is always
‘at the extreme left. 50 written in these blocks implies no shift, 51 im-.
plies a decimal point shift to the right of one place, 52 means a shift to

~-the right of two places, 49 means a shift to the left of one place, 48 shift
.- left two places, etc,

Scale (8C) - The proper power of two. -05 implies that the adjusted

decimal number is to be divided by 82, +07 means the adjusted decimal -

number is to be divided by 0,0078125, As an example, if the largest

~ decimal number for this function is 15,87, the scale factor is -04; or if
_ the largest decimal number was 0, 007753 the scale iactor would be +07 -




I - a - o ! - - RN .

)

MARK I
) Sort Numb}er - Signifies the order of this card in'the resultant card deck.

The lower half of the input sheet contains 81 blocks for the independent
variables. Since a single variable has nine data words (£0, £1/8, £1/4,

- £3/8....f1.0), a single page may contain all the data words for atwo
var1ab1e function (9 x 9 = 81). A three variable function would have 729

~data words (9 x 9 x 9) and require nine input sheets to show the whole

- program.. '

3-15. Information contained in this section is in decimal form. Prior to being

 punched on paper tape, it must be divided by the appropmate scale number and

converted mto octal numbers.

3-16. Data on the Linear Function Interpolator Data Input Sheets is punched
sequentially on paper tape using an electric keyboard which is part of the Tape
Preparation Unit.

3-17. Interpolator Words. Interpolator words written into the keyboard are
divided up into instruction words and data words.

a. Interpolator instructions are written into the keyboard as follows:

(1) When a flag bit is written in the most significant bit position (bit 11),
a separate manual key (F) shall be operated prior to writing the instuction.

(2) For a control instruction word, four octal digits shall be written:
Zero; variable value 1-3; zero; var1ab1e value 0-7. Largest number possible
would be 0307, S ‘ ,

(3) For an address instruction word, four octal digits shall be written:
most significant digit first, with values: 0001 1777. The binary equivalent of

| “interpolator instruction words is shown in figure 3-4, where F is the flag bit,

dn are octal digits, 0 is a bit not recognized and X is a valid binary bit.
4 4 dg  dy
F 00X XXX XXX XXX
1 71 7
| Figure 3-4, Ihterpolator Inetruction Word
b, 'Interpzolator data words shall be written as foIlows;

(1) The flag bit shall be written in the identical manner as the interpo-

| lator instruction flag bit and shall appear with the first data word only. .

3-7




 MARK I

(2) The data words shall be written with four demmal dlglts, in fractlonal

-+ decimal form, the most significant digit first, with- values: .0000 - .9999. These

_ data words are internally translated to a ten-bit fractional binary equivalent, with-
- out roundoff. The binary/octal equivalent is illustrated in figure 3-5, where F is
¢ - the flag bit, dn are octal digits, 0 is a bit not recognized and X is a valid bit.
S | ar g ds da _ ‘
F, XXX XXX XXX X00

v 7 T 4
Figure 3- 5, Interpolator Data Words

3.18. Interpolator Tape. An interpblator program is divided into several zones on
paper fape. The least number of zones allowed is six for a single variable funcs

tion, seven for two variable functions,) and eight for three variables These zones

are as follows: : o

" Zone 1 - Control Word - One word the first bit of which is always ofie
(flag bit) and the second bit always zero. The tape format for a control
word is shown in figure 3-6.

DDDDF.00X
| X000X.XX0
_ Figure 3-6. Control Word Tape Format

D represents the dummy code which is always 0111 and is located at the
beginning of every interpolator word. F is the flag bit which is always
1 in the control word, 0 is bits not recognized and X is valid bits. The
binary/octal format of the control word is shown in figure 3-7, where
octal word A is the flag bit, octal digit C is not used, and octal digits B
and D are coded words. Octal digit B tells whether the function is of

one, two or three variables, D tells which of the variables are indexed. :

A B'Ca_Dv o
FO XXX 000 XXX '~ ,
Figure 3-7. Control Word Binary/Octal Format -
Octal digit B is coded as shown in table 3-1, |
~ Table 3-1. Control Word, Octal Digit B Code

 Number of - Binary
- Variables - Equivalent
2 , 010

3 o 01Y

3-8

T



MARK I
Octal digit D is coded as shown in table 3-2.

Table 3-2. Control Word, Octal Digit D Code

Indexed Binary
Variables ~ Equivalent
None 000
X 001.
Y 010
X, Y 011
Z 100
X, Z 101
Y, 2 110
X, Y, Z 111

Zone 2 - Consists of five identical words. It is the core memory
location of the independent variable X. The first word in zone 2 always
has a flag bit and all five words have the dummy code. The binary
equivalent of zone 2 words is shown in figure 3-4.

Zone 3 - Identical to zone 2 except that it contains the address of the
independent variable Y. ‘

Zone 4 - Identical to zone 2 or zone 3 except that it contains the address
of the independent variable Z.

Zone 5 - The data field consisting of the sequentially stored data words
which describe the function at fixed breakpoints. The first word in this
zone always contains a flag bit, and all words have a dummy code. The

. binary equivalent for the words contained in this zone is shown in figure

3-5.

Zone 8 - Blank words used to allow the computer time to finish the
interpolation. The first word in the zone always contains a flag bit (F) -

~and all words contain a dummy code (D). Tape format for a computer
-time word is illustrated in figure 3-8.

(D)  (F)
0 X X X X . 000
0000 0. 000

Figure 3-8. Computer Time Word, Tape Format

3-9




| | MARK I |
Zone 7 - Cunthiﬂs the core memory address where the result of the inter-f

‘polation £(X, ¥, Z) is to be stored. The address is repeated four times.

The first word always containg a flag bit and all four words have a dummy |

Co code. The blnary equivalentetthe angwer wordis illustrated mtigure 3-4,

z::ne 0 'rhe name a8 sone 7 exmmt j.t is 4 ltnglé word always containlng |

-a flag bit and dummy code, Zone 0 is used to resst the counter, whieh tells
the computer that the mternolator progrum haa beun cqmpl&ted

g

Ly '

c(c o)-aooo |
A f(g)onw o

Can -_"___"}(i)-s 4

'«o).o Tt 4o o T

Figure 3-9 Intarpolator Prozram Part A Functlon Graph

3-10

© @sNINE EQUALLY SPACED BREAKPOINTS




o o5 SN &5 &y a0 AN bu o Sm SN AN OGN SN MR OGN R OGN S |

MARK I

DATE E 26-63 LINEAR FUNCTION INTERPOLATOR | PAGE No. |

DATA INPUT SHEET
: REP.NO.

REV, -~

w O EoE0O0E [TTI11) EEYQ

carD @ X ADD » ;crx 1 D iv a0o | l L] o~ ] |
: Soaxy D 2 Abbm nrz[]:] ixz D " SORT :o.~| I | I I I
CARD @ A ADDI |5| 7’|6| RPA LO_L@J c10l2| DP[Q-LI_J s l- |O|3I .
o . . : | | SORT NO. LJ l ] l } -

'O loo

2110 10800
120 Ikooo
12| 40 5400
- |
| 60 7200
*1 70

* 1 80 [80:

sem. [ 1] LIT LT 0 O 0 J 0 ™

REFERENCE:

NO. CHNANGE NAME DATE

" Figure 3-9. Interpolator (Part B - Data Ihput,sheet)

3-11



~3-12

MARK 1

TAPE LEADER

7 DUMMY CODES

CONTROL WORD - ZONE |

[
.

X ADDRESS - .i123
ZONE 2

'.
o
]
»
L ]
®
.
o
»
s

.
»
o
i-‘v
| “
.
v "“
[ 3
) b
‘.
.

DATA WORDS =+ ¥(0)=.0000
-« £(})= .0630

ZONE -5 *—-——'-?(%)=.ZOOO
- £(3)=.400C
- §(3):. 5314
- £(3)=.6400
- £(3)-.7150
«— £(1)=. 7164
- £(1.0):. 7774

L ]

L A
»
®

o - Co-

EX T T IR L
A A

. : o moa Ll e
" ed Sew esw s e

0805008008 ¥ G600 & & o

COMPUTER TIME - ZONE 6

*

ANSWER ADDRESS - |576
ZONE 7

.

EXEXEEEER A N BEE BN 4 & JoN A 2 N

0B eseSRNEN. 3 SPE0ERH
R R RN }

esrsascErw.

® o & © o
e e

* v 4 w e e

ANSWER ADDRESS - ZONE O

Figure 3-9. Interpolator Program Part C - Punched Paper Tape

(o]

€©3 ¢t3 ==

- L - y




R *

MARK I
3-19. A sample interpolator program involvmg a one variable functions is as
follows: Figure 3-9 Part (A) illustrates a graph of a certain function; Part (B),

the data which would be contained on the Linear Function Interpolator Data Input
Sheet; Part (C) the corresponding program punched on paper tape.

3-20, RADIO AIDS PROGRAM.,

3421. Information pertaining to Radio Aids preselection is placed on a Radio

_ Facility Data Sheet punched on paper tape and loaded onto the Radio Aids band of

magnetic drmm°

3-22. ‘Radio Facility Data Sheet. The Radio Facility Data Sheet is divided into
three sections, Card #1, Card #2 and Card #3. The breakdown of the sheet into
card numbers is for convenience where punched cards and a card reader are
used in conjunction with the tape preparation unit.

 8-23. A standard procedure is required to fill out the Radio Facility Data Sheets
-to maintain full usage and uniformity in all Radio Aids programs. The procedure

for completing the Radio Facility Data Sheet follows:
| Card #1 |

ALL TYPE-Six characters - fill in starting at extreme left Any unused
spaces will appear on the right This will be frlled in for all types of
Radio Aide .

_Exax_,nple@ ILS would appear as ILS |
ALL-CALL LETTERS - Seven characters - fill in starting at extreme

left. Any unused spaces will appear on the right. This will be filled in for
all type Radio Aids. Two or three alphabetics will usually be written, but

for FM, BONE, Z, and LFM, numerics will be written A three will repre- .

‘sent a dash and a one will represent a dot.

Example a. ACY would appear as ACY.
b,. =.= would appear as 13.13.

ALL- LATI'I‘UDE (Point of Touchdown) - Seven dlglts - one digit for sign,
two digits for degrees, and four digits for fractional parts of a degree,
N4.2256 degrees would appear as +04 2256, Tme wrll be filled in for all
types of Radio Aids. ‘

o~

'A.LL-»LONGITUDE' (Point  of ;_*?’l’ouehdown) - Eigiht digits - one digit for

- sign, three digits for degrees, and four digits for fractional parts of a .
degreee E74.8279 degrees would appear as +074 8279. This will be filled
‘in for all types of Radlo Aids.

3-13




 MARK I
ALL- ELEVATION (Feet) - five digits, 518 feet would appear as 00518.
This will be filled in for all types of Radio Aids.

- LF, LFRR-POWER -~ four digits. 512/2048 would appear as 0512, 2048'

conS1dered max power equivalent to 480 NM range. Thus 512 = 120 NM or

-1/4 MAX RGE. This is filled in for types 6 and 7. (See Appendlx A) The

type is the most S1gn1fxcant d1g;1t of the sort number.
ALL FREQUENCY - (MC or KC) - four digits filled in for all types.

a. 400 KC would appear as 0400, for types 6 and.7, but for types 4 and 5
the decimal point will be after the third sxgmfl.cant digit. 117.5 would
appear as 1175 '

b. A special code w111 be used for types 1, 2,‘ and 3.

(1) ‘Zero to fnl_l scale is 0700.
(2) One-halt to full scale is 2700.
(3) Zero to one-half seale is 0300.

VHF, LFRR-COSINE MAG. VAR. (Cosine magnetic variatmn) - four

' declmal dlglts F111ed in for types 5 and 7.

ILS-RL-RTG +1000 (runway length minus distance from threshold to touch-
down plus 1000 feet). This represents the distance between TD and
Localizer in feet - 5 d1g1ts, 997 1 would appear as 09971. Filled in for

- type 4 only.

ALL- COS]NE LATITUDE - Cosme of the latitude in the input data, four
digits with demmal point at extreme left. Filled in for all types.

ALL-SORT NUMBER any convenient combination of alphabetics or
numerics that describe the order of this card (where used). This number
does not enter in the computatlon F111ed in for all types +

Example: 6 NY BGM 1. In this sample 6 represents the type facility, NY

the state, BGM the call letters, and 1 the card number

Card #2

_ MARKERS - SINE. AXlS - gign and four decimal digits. Axis of fac111ty
- is measured positive clockwise from north (negative measured countér-

- clockwise from north). K the angle is between 0 and +909, sign of the sine
is pOS1t1ve If the angle is between 0 and -900, the sign of the sine is

3-14




"MARK I

©* negative. Decimal point @f the sine is always assumed to be at the
extreme left, +.0156 would appear on the form as +0156 Filled in for
}types 1,2 amd 3.

b, COSI‘NE AXIS - Sign and four decimal digits. Axis is measured
positive clockwise from north. Sign of the cosine is always positive.
The decimal peint of the cosine is always assumed at the extreme left.
+.0156 would appear as +0156. Filled in for types 1, 2 and 3.

VHF - a. MAG. VAR. (Magnetic Variation) - write in directly.

b. SINE MAG. VAR. - five digits, one dxglt for sign, four digits
for the decimal value of the sine of the magnétic variation. An
east magnetic variation would have a plus sign, and a west
‘magnetic variation would have a minus sign.

ILS - Cr@ss out facilities not associated with the ILS installation.

a. RNWY BRG (MAG) - Magnetic runway bearing in degrees with 3600
magnetic north, Write in directly.

"b. MAG VAR - Magnetic variation. Write in directly.

" (TRUE = MAG + M V. ) + for East, - for West.

d. SINE ‘BRG - Sine of the tme runway bearing. One d1g1t for the sign of
the sine and four digits for the numerical value of the sine.

e. COSINE BRG - Same as d. except cosine.
f. G/S - Glide Slope Angle (degrees) - three digits. The decimal point
- is assumed to be after the first digit. 4.11 degrees would appear on the

input sheet as 411. Filled in for type 4. Maxunum angle 4,99 degrees,
minimum 2. QO degrees.

LFRR - a. MAG VAR. - Magnetic variation - same as previoulslyv
.e,xplamed o

b. SINE AXIS - Fwe bits, one b1t for sign and four bits for
' magnitude.

S c COSINE AXIS - Fwe bn:sp one bit for sine and four bits for
o magmtude :

d. LEG NO. MAG BRG and DIA

3-15

i

i

i

i

i

i

i

i
1
i1 ¢. RNWY BRG (TRUE) - True runway bearing. Write in directly.
]

i

i

I

i

i

i

i




MARK I

(1) LEG NO. - The four A-N course legs. The leg numbers are
counted, clockwise starting in the northerly quadrant.

(2). MAG° B'RG - Magnetic Bearing, Write in direéfly.
(3) DIA - Dlameter of the circular radiation patterns Consist

of four decimal digits with the decimal pomt at the extreme
left.-

ALL - a. MISC - Miscellaneous - six bits to be used wheﬁéver necessary

(i.e., simulating certain foreign facxhtles) If none used, leave
blank : _

b, SORT NO. - Same as Card #1.. .
Card #3

SIMULATOR NO. - any convenient seven character array that describes
the simulator being worked on. This number does not enter into the
computation. ' :

BASE ADDRESS, J NUMBER - base address will be a four digit number.
and J will be a two digit number. The base address is the octal drum -
address of the start of the preselect data for this facility, and the J number
is an octal number ranging from 00 to 37. A base address of 540 and a J
number of 7 will appear on the sheet as 0540 07, Filled in for all types.

SORT NO. - Same as Card #1.. .

. 3-24, Processing Type Code 1 and 2 Inputs (1 = MM, 2 = OM). Each card of out-
put for the radio aids will contain up to a maximum of seven character words.
Each output card, in addition to the required numerical octal mformation will
~contain the followmg

_ a. Call letters - max. seven alphabetics or numerics.

- b. Type -~ max. six alphabetics.

. 3-16

c. Card number -.two numerics.

d. Octal addréss - four numerics.

e, Simulator - max seven alphabetics or numerics.

; [PNP— A T e [ LT e v e e e e e e . . . - ; N D e : e

[T NCIIE T DI N



MARK I

This output data will be punched out from what appears in the input data.
The remaining two words on the card will be occupied by octal information.

3-25, Preselect Data - The preselect data will be placed on punched cards as

follows. There is one word punched on each card, therefore Card 1 = Word 1
ete.

Card 1. The first two octal words of the preselect data for outer marker -
or middle marker inputs will consist of the data listed below. Items @, b, -
¢, d and e will be punched on the card. The remaining two words will be

~ all zeros.

. At least one space will separate the two octal words. Call letters, type,

. and simulator number will not vary from output card to output card for
each station; but card number and addresses will. For this card, the card
number will be 1-and the address (ADDRESS) will equal the base address
in the input data.

Card 2. The second card to be punched will consist of the same data that
“was punched on the first card, except the address will be incremented by
one (octal), and the card number will be 2. The two octal words will be
000077 330000 and 200077 330000 or 000037 330000, depending upon the

values in the frequency input field. (See table 3-3 )

‘Table 3-3. Input Frequency versus Octal Output

_.Input Card Fréquency ~ Octal Output
0700 000077 330000
2700 200077 330000

0300 000037 330000

Card 3. The third card to be punched will be similar to Card 2 except the
address will be incremented by one and the card number will be 3. The ,
two octal data words will consist of latitude lower and latitude upper, which
will be formed as follows: o

ao The latitude lower and upper will be formed respectwely by subtracting
the size to lower latitude from the latitude, and by adding the size to
upper latitude to the latitude. Table 3-4 gives the size to upper and
Iower latitude, long1tude, and frequency.,

3-17




3-18

MARK I

Table 3-4. Size to Upper and Lower Limits

| " Latitude Longitude Frequency.
Type (Degrees) (Degrees) (KC)
OM, MM, Z, LFM +0,1000 - £0.1000 ‘Not applicable
BONE, FM = +0.6667 £0.6667 Not applicable
ILS, ILSDME +1.0 +1.0 ~ Not applicable
- MVRTAC, TACAN, Power Powe Not applicable -
UHF-DF, LVR HVR, 258 356
MVR, HVRTAC
LOM, LMM, RBN, - Power Power - 06
BC, LFRR 56 56 |

b. The two octal words will be formed in the following manner. The lower
latitude will be divided by 256 to produce a seven digit decimal number
from 0000 to .9999999. This number will be multiplied successively
by two, to produce a ten bit binary number which are the ten most
significant bits of the resultant 20 bit number. After division by 256, the
upper latitude will form the ten least significant bits. The resultant 20
bit binary word will be converted to two octal words as follows:

Octal Word 1

a. lst character - beginning of word definer

b. 1st two significant bits - form octal digit 0 to 3
c. next three bits - form octal digit 0 to 7

d. next two bits - form octal digit 0 to 3

e. next three bits - form octal digit 0 to 7

f. next three bits - form octal digit 0to 17

vg. heXt three bits - form octal digit 0 to 7




P B 2 - - . M= T . - v P - LT v AT - e B

MARKI ~

Octal Word 2
h. next two bits - Iform‘l octal digit 0 to 3
i. next two bits - form octal digit O to 3

Four zeros will make up the last four digits of the second octal word.
This condition is true for the second octal word of all data.

. Card 4. The same process that was used on Card 3 can be used to form

- Card 4 except the sizes will be divided by cos latitude before they are
subtracted or added to longitude. The lower and upper longitude will be
formed with a 20 bit number and converted to octal in the same manner

employed with Card 3. Again, the base address will be incremented by one
and the card nurhber will be 4. '

3-26. Data Words. There are four data words for the.outer or middle markers.

a. Data Word A - latitude - 19 bits, with a leading sign bit (0 = plus,
1 = minus) .

b Data Word B - longitude - 19 bits, with a leading S1gn bit (0 = plus,
: 1 = minus)

c. Data Word C - sine (10 bits) cosine (10 bits)

d. Data Word D - ten leading zeros and elevation +1000 feet (10 bits)

3-27, Each word will be defined by tWo octal words, as was the preselect data.
The call letters, type, card number, base address and simulator will also be
punched on the card.

¢

Card 5. The call letters, type and simulator will be punched the same way
as in Cards 1, 2, 3, and 4. Two hundred will be added octally to the base
address +J to form the octal address for this card, and the card number
will be five. The two octal words representing latitude will be formed in
the following manner: The latitude, which was stored when the input data
was read in, will be divided by 256 and converted to a 21 bit pure binary
number by successive multiplications by two. The first two most signifi- -
cant bits will be ignored, the most significant bit will be made a zero, and
the 20 resultant bits will be converted to octal in the same manner as
Card 3.

Card 6, The same as Card 5 except that longitude will be convefted to two
octal words after division by 256. The most significant bit will be made a

3-19-




3-28.

MARK I

one instead of a zero as in Card 5. The octal address will be formed by

‘octally adding 40 to the octal address of Card 5, and the card number will

be six.

- Card 7. The card,numbér is seven. The addre.ss is octal 40 plus the octal

address of Card 6. The sine and cosine of the axis which is contained in the
input data will be converted to binary and then to octal in the following
manner: the sign of the sine will form the most significant bit. The re-
maining nine bits of the sine will be formed by multiplying by two, nine
times. The cosine will be treated in the same manner to form the ten least

- significant bits of the 20 bit word. The 20 bits will be converted to two

octal words forming data word C.

Card 8. The card number is eight, and the octal address will be octal 40
plus the octal address of Card 7. The 20 bit elevation word will be formed
of the six miscellaneous bits and four zeros, dividing the elevation +1000
feet by 16,384, and multiplying by two ten times to produce the remaining

- ten bits. The 20 bits will be converted to two octal words forming data

word D.

Processing Type Code 3 Inputs (Fan Z Marker). This program will be used

. to process FM, Z, BONE or LFM. The mput data is the same as that used with
- type Codes 1 and 2

- 3-29,

Preselect Data. Formation of the preselect data will be exactly the same

~ technique used for type Codes 1 and 2.

3-30.

Data Words. Data words A, B, and C will be formed in the same manner as

‘type Codes 1 and 2. In the case of data word D, instead of the first ten bits of the
20 bit word containing six miscellaneous bits and four zeros, the first four bits
will be formed according to the type of facility as shown in table 3-5.

©3-20

Table 3-5. First Four Bits of Data Word D (Type Code 3)

Type Binary Bits
LFM " 1000
"BONE | 0100
FM 0010

Z | 0001

ST S

e —— el e



MARK I

3-31, The remammg six bits of the ten most s1gn1f1cant b1ts of data word D will
be ""padded" with zeros, The ten least significant bits will contain elevation and
will be formed in exactly the same manner as the ten blts representing elevation
in Type Codes 1 and 2. .

3-32. Call Letter Generation, Call letters must be generated in this program in
addition to the preselect and data words. There are four 20 bit words of call
letters, although only the 16 most significant bits of each word will be used The
remaining four bits will be miscellaneous bits and/or zeros.

3—330 When a Z marker facility is to be simulated, 16 ones would be used,
making the first octal word for Cards, 9, 10, 11 and 12 equal to 373777,

Card 9. This card will contain the four most significant MISC bits. They
will form binary bits 17, 18, 19 and 20. These are converted to be the
first two octal bits of Card 9's second octal word. The remaining four
octal bits will be zeros.

Card 10. This card will contain the two least significant MISC bits which

- will form binary bits 17 and 18. These bits are converted to the first octal
bits of Card 10's second octal word. The remammg five octal bits are
zeros.

Card 11 and Card 12 will have their second octal word equal to 00000‘()°

3-34. If any of the other types of fan markers (FM, BONE or LFM), are to be
simulated, the call letter words must be generated from the numerical information
contained in the input data word representing the call letters. (A three will
produce three ones followed by a zero. A one will produce one 1 followed by a
zero.) The program will continue to follow this process and count the number

of bits it has formed starting with the most significant digit. A one will be
subtracted from the counter after the last numeric is processed.

3-35. When all the bits are formed, the computer will divide the count into 64 to
determine the quotient and the remainder. '

a. If the quotient is less than or equal to the remainder, the remainder
will be divided by the quotient, and the integer obtained will be the
number of zeros placed between the call letters and after the last call
letter. The call letters will be placed in the 64 bits the fiumber of times
specified by the quotient, :

b. If the quott,i,ent is greater than the remainder, the quotient will be -
reduced by one, and the count will be added to the remainder.

3-21




MARK1

¢. If the reduced quotient multiplied by five is less than or equal to the
accumulated remainder, the remainder will be divided by the quotient.
The integral result will be the number of zeros inserted between the call
letters in the 16 bit words. Any uneven number of zeros left over will
appear at the end of the last call letter.

d. If the reduced quotient multiplied by five is greater than the remamder
repeat steps b and c. :

3-36. The 64 bits will form 16 bits of four binary words. The four least signifi-
" cant bits (17, 18, 19 and 20) of the first word will be the four most significant
MISC bits. The 17th and 18th bits of the second word will be the two least signifi-

cant MISC bits. All remaining bits needed to form four 20 bit words will be zeros.

3-37. Processing Type Code 4 Inputs (ILS}.

3-38. Preselect Data. The preselect data will consist of two octal words consist-~
ing of zeros on the first output card. The second output card will consist of
frequency in the first ten bits. The first nine will be as shown in table 36,
These same nine bits will be the 11 through 19 bits inclusive of the frequency
word. Bits 10 and 20 are illustrated in table 3-7.

Table 3-6. Type »CQde 4 Frequency Bits 1 thru 9

' Frequency Bits 1 thru 5 Frequency Bits 6 thru 9
108 10100 0 1000
109 10101 .1 0100
110 11010 2 1010
111 - 11011 .3 | 0101
112 11100 4 | 0010
113 11101 .5 | | 1001

114 01110 .6 1100
115 - 01111 i 0110
116 | 00110 - .8 0011
117 00111 .9 oooi

3-22



MARK 1

Table 3-6. Type Code 4 Frequency Bits 1 thru 9 (Cont)

Frequency 'Bits 1 t_hru 5 | Frequenéy v Bits 6 thru 9
133 10111 o |
13 o1010
185 01011

- Table 3-7. Type Code 4 Frequency Bits 10 and 20 |

" Type “Bit10. .. Bit 20
ILS 0 0
ILS DME 0o 1

Cards 3 and 4 will consist of latitude and longitude lower and upper.

3-39, 'Daté, Words. Cards 5 and 6 will consist of latitude and longitude (20 bits
each), formed in the same manner as previously described.

Card 7 will consist of true runway bearing sin and cos; one bit for sign
and nine bits for the magnitude of both sine and cosine for a total of 20
bits. A zero in the sign position denotes positive sign and a one denotes
negatwe mgnq ' :

Card 8 will consist of one and zero in the two most significant bits for

ILS and two ones for ILS DME. The next six significant bits will be the MISC.
bits from the input data. The 12 least significant bits (for a total of 20 bits)
will be elevation. The elevation +1000 in the input data will be divided by
13,384 and converted to 12 Dbit binary. ‘

3-40, Call Letterso Cards 9, 10, 11 and 12 will consist of the call letters. The
call letters will be formed once from the alphabetic call letters in the input data
and not repeated, as in the case with markers. The call letter bits will be formed
starting with the first word and any unused bits will be "padded" with zeros.
Spaces between letters will be represented by three zeros as shown in table 3-8.
There will be a maximum of three call letters in the input data.

3-23




3-24

Call Letter

A

% Q@ =\ m Y o w

—

W © W O Z B B R’ O«

< o 3 ®©

MARKTI

Table 3-8. Call Leiter Generati,oh

Binary Equivalent

Number of Bits

10111000
111010101000

11101011101000

1110101000

1000
101011101000
111011101000
1010101000
101000
1011101110111000
111010111000
101110101000
1110111000
11101000
11101110111000
10111011101000
1119111010111000
1011101000
10101000

111000
1010111000,

101010111000

8
19
14
10
4

12
12
10
6
16
12
12
10
8
14
14
16
10
8
6
10

12

z .

AT AN




D oD 0 G G N O &G G G i GE B & G T s e

AM'ARK 1

| Table 3 8. Call Letter Generation (Cont)

Call Letter o Binarvy Equivalent B Number of Bits
w  tomotmo0 12

x 1110101011000 o

Yy 1116101‘110111000» 16

z 1101110102000 14

3-41, The four least significant bits of Cards 9, 10, 11 and 12 will consist of the
binary representation of glide path angle, and runway length minus distance

from threshold to touchdown. Two will be subtracted from the glide path angle in
the input data and the result will be divided by three and converted to binary. The
four most significant bits of glide path angle will be placed in the four least
significant bits (17, 18, 19 and 20) of Card 9. The four least significant bits of
glide path angle W111 be placed in the four least s1gn1ficant bits of Card 10.

3-42, The eight binary bits of runway length minus threshold to touchdown +1000
feet after division by 16,384 will be placed in the four least significant bits of the

- data word on Cards 11 and 12. The four most significant bits will be described by

the second octal word of Card 11 and the four least significant bits will be
described by the second octai word of Card 12.

3-43, Processirigﬁ'_rype Code 6 Inputs (LF).

3-44. Preselect Data. The preselect ddta will consist of two octal words con-
sisting of zeros on the first output card. The second card will consist of the

~ lower frequency in the first ten most significant bits and upper frequency in the

ten least significant bits. Frequency will be formed by subtracting the size
(table 3-4) to lower frequency from the frequency in the input data, and adding the
size to upper frequency, to the frequency in the input data. The two formed num-

~ bers will be divided by 2048 and converted to ten bit binary. Cards 3 and 4

latitude and longitude will be formed as previously described

345, Data Words. Cards 5and 6 w111 be 20 bit latitude and longitude respectively.
Card 7 will be the frequency converted to binary after division by 2048. The 13
most significant bits will contain frequency (with a leading bit of zero), and the
seven least significant bits will be padded with zeros. Card 8 will contain a lead-
ing bit of zero. The next nine significant bits will contain power (divided by 2048)
and converted to nine bit binary. The last ten bits (Card 8) will contain elevation
+1000, formed as previously described. :

3-25




MARK I

3-46. Call Letters. The alphabetlc call letters contained in the input data will be
used to generate the 64 bits of call letters. The call letters will be generated

~ according to table 3-8. Call letters will be generated as many times as possible
for one letter calls, twice for two letter calls, with at least five zeros spacing
between each word, and after the last call letter. Where three ca11 letters are -
used, generate the call only once.

3-47. The process to be used is explained in paragraph 3-34 to 3-39. The four
least significant bits in each of the third and fourth call letter words will be
padded with zeros. The first and second call letter words will have the MISC.

- bits.

3-48. Processing Type Code 7 Inputs ('LFRR)O

3-49. Preselect Data. The preselect data words are formed in exactly the same
manner as used in Type Code 6 (LF).

3-50. Data Words A, B, C, and D.

Data Word A - Card 5 - 20 bit latitude
Data Word B - Card 6 - 20 bit longitude
Data Word C - Card 7 - The most significant 13 bits (with a leading bit of
zero), contain the frequency. The seven least
significant bits are '""padded' with zeros.
- Card 8 - Most significant bit = 1, next nine bits = power

Data Word D
divided by 2048, ten least significant bits = eleva~
tion +1000 divided by 16,384.

3-51. Call Letters. Same as Type Code 4 process, paragraph 3-42 except\ the
first 16 bits of the first call letter word will be zero. Remainder of bits will con-
tain the call letters formulated once, with zero "'padding' for the remaining bits.

3-52, Data Words E, F, G "and H. These data words are used only in the simu-
lation of LFRR fa0111t1es The storage locations of these words can be found by
utilizing table 3-11.

3-53. Data Word E punched on card 13 will consist of the diameters of the first
two circles (LEG NO. 1 and 2), in the input data (ten bits each). Data word F
punched on card 14 consists of the diameters of the last two circles (LEG NO. 3
and 4), in the input data (ten bits each).

3-26

%
vl : 3 .



MARK 1

- 3-54, Data words G and H, cards 15 and 16, will consist respectively of the sine
_ and cosine of the axis, and the sine and cosine of the magnetic variation. The
sine will be made up of one bit for sign and nine bits for magnitude. The cosine -
. will always be positive and consist of a zero and nine magnitude bits. These
. conditions hold true for both axis and magnetic variation.

| 3-55. Processing Type Code 5 Inputs (UHF/VHF)

3-66. Preselect Data The f1rst preselect word will contain 20 bits of zeros.
The second preselect word is frequency which is formed from table 3-6 except
that the 10th and 20th bits are as shown in table 3-9.

Table 3-9. Type Code 5 Frequency Bits 10 and 20

Type ,Eacitityf. Tenth Bit Twentieth Bit:
-vR. 0 0
-VR - TC. o 1
-VRDME | 0o | 1
- | | 1 1

- 3-5T. .The third and fourth preselect words will be two 20 bit words consisting
~ of latitude and longitude lower and upper respectively.

3-58. Data Words. .
latitude (20 bits)

'D_ata Word A - Card 5 -
Data Word B - Card 6 - longitu‘de‘. (20 bits)
Data Word C - Card 7 - Sine and cosine of magnetic variation. One sign
: bit (either 1 or 0) and nine magnitude bits each.
- Card 8 --Type and elevation. The type is formed accord-

Data Word D
= ing to table 3-10.

3-27




'MARK I

Table 3-10, Data Word D Type Code 5 )

Type . ILS DME - VOR UHF-DF TAC BRG
LVR 0 0 01 o 0 0
MVR 0 0 10 0o 0 0
HVR 0 o 11 0 0 0
LVR DME 0 1 01 0 0 O
MVR DME 0 1 10 0 0 0
HVR DME 0 1 11 0 0 o
LVR LTC 0 1 01 0 0 1
LVR MTC 0 1 01 0 1 0
LVR HTC 0 1 01 0 1,1
MVR LTC 0 1 10 0 0 1
MVR MTC 0 1 10 0 1 0
MVR HTC 0 1 10 0 1 1
HVR LTC 0 1 11 0 1
HVR MTC 0 1 11 0 1 0
HVR HTC 0 1 11 1 1

- LTC 0 1 00 0 0 1
MTC 0 1 00 0 1 0
HTC 0 1 00 0 1 1
. UHF-DF 0 0 00 1 | 0 0

~ 3-59. Upon completion of the Radio Facility Data Sheet, data preselector informa- =~

tion regarding each radio station is manually precoded into eight or sixteen 20-
bit binary data words. Each word is written on the keyboard as eight octal digits.
- An example of a data-preselector word and binary equivalent is illustrated in
figure 3-10, where dn is the octal data bits, 0 are bits not recognized and X are
valid bmary bits.

d dz2-...d3 d4 ds de dy dg
/ 0XX XXX O0XX XXX XXX XXX O0XX . 0xXX
Figure_ 3-10. Daté Preselector Word
3-60. Each data preselector word occupies three lines of punched paper tape and

is preceded by a dummy code. F‘igure 3-11 illustrates the tape format for a data
preselector word. N

3-28

|
|

4

ik




]j

MARK 1
D
e A
0 11 1T R . R R R D - Dumimy Code
R RRRIR.RRR R R - Data Preselector

R RRRIR.RRR
Figure 3-11, Tape Format, Data Preselector Word

3-61, A sample "Radio Facilities Data'" sheet for a type 5 is illustrated in figure
3-12 Part (A). Figure 3-12 Part (B) is the information contained in figure 3-12
Part (A) as it would appear on paper tape.

3-62, Figure 3-13 shows the band location in octal of the various radio facilities
simulated in the Mark I. (Marker call letters are used for reference only.) The
symbol J in figure 3-13 and table 3-11 represents the serial number of the indi-
vidual station within a group. The J numbers range from 0 to 37, thus the in-
formation for the twelfth station is obtained by assigning the nunierical value 11
to the algebraic symbol J. '

3-63. Table 3-11 is used in conjunction with figure 3-13 to find the location of

any part of the facilities being simulated. For example: the sine and cosine axis
for the middle marker station located at Kansas City, Mo. required a change. Re-
ferring to paragraph 3-26 it is found that the sign and cosine axis is assigned to
data word ""C" for Middle and Outer Markers. The formula for locating data word
"C" is Base Address +J +100. The data word base address for middle markers is
0200 (figure 3-13) and the J number for Kansas City is 07. The sine and cosine
axis can therefore be found at drum location 0307 octal or 0199 decimal.

3-64. Figure 3-14 illustrates the "layout" of the information on the data pre-
selector band. All numerics in this figure are in octal form.

Table 3-11. Data Preselector Word Storage Locations

Word Card Number chal Address*
1 (Preselector Word 1) 1 Base Address +4J
2 (Preselector Word 2) 2 Base Address +4J +1
3 (Preselector Word 3) 3 | Base Address +4J +2 |
4~ (Preselector Word 4) 4 Base Address +4J +3
5 (Data Word A) . 5 'Base Address +J
3-29




MARK 1

Table 3-11, Data Preselector Word Storage Locationsv'(Cdnt)

Word

6 (Data Word B)

7 (Data Word C)

8 (Data Word D) |

9 (First Call Letter Group)
10 (Second Call Letter Group)

11 (Third Call Letter Group)

12 (Fourth Call Letter Group).

13 (Data Word D)
14 (Data Word F)
15 (Data Word G)

16 (Data Word H)

Card Number

6

10
11
12
13
14
15
16

Octal Address*

Base Address +J
Base Address +J
Base Address +J
Base Address +J

Base Address +J

Base Address +J

Base Address +J

Base Address +J

Base Address +J
Base Address +J

Base Address +J

*All arithmetic performed under this heading is octal arithmetic.

3-30

+40

+100
+140
+200
+240
+300
+340

+400

.+440 -

+500

+540



o oo GRS
--n-_---—n---g-----

F-2256-A  RADIO FACILITY DATA . TYPE CARD #2 CARD #3
ALL TYPES
. 5 - CF _GFS MARKERS MINOR AXIS ANGLE T % ? SIMULATOR NO.
TYPE STATE 1D = 1 "2 3 4 s 6 7
' SINE Ax1S OCrCr] Tiwl[Aal7]2]7
3 7O 11 12 13
TYPE CARD #1 COSINE AXIS E[I:D
T S Y 15.5
+ Oc = O
ALL | 1vpe |MIVIQI l l ] ) v H F MAG. VAR N3 =f 3775 e
N i SINE MAG. VAR. E
g 10 1t 12 13 14 1§
ALL CALL r BASE ADDRESS
CETTERS GIF [Sl l l l l ! LS RNWY BRG (MAGY : ° 9 10 1t 12 13 14
216 17 1'5 19 20 21 22 ¢ MAG VAR + OE_ o, 2 4 4 4 ' I
. X (oM}
LATITUDE [3]5! Lll3l l [l ] (M) RNWY BRG (TRUE)
ALL ] (Lom) '
35 « Q07 s 52,1« (L) Pl 2.3 4
S srs []
¥33_ s 26 27 28 23 30 31g £ 10 11 12 13
wonernoe (=) L1 ]5] [1T7]5]4] LTI
ALL
115 10 » 32,24 G/s o, ;
r 5051 o SORT NO.

[ eIF I8 G

74
ALL ELEVATION mmm T i L F RR MAG. VAR, 4 Ceg - ow

i‘ 2 3 A S
SINE AX(S U
41 42 43 aa S
LF COSINE AXIS *
Y e CTTTY CTTT)

LEG NoO. MAG. BRG DlA

I JUYVIN

17 |
49 50 51 52 16 18 20 REV DATE & NAME
ALL T ereauency Illl r L ] I [ I °
57 56 59 60 : !
COS I NE - 2 ) .
wr | g [Ol6[s[6) — 5 :
LFRA .
3 O a2 :
57 58 59 60 61 : 4 44 o
ILS| RL-RTG4 1000 4 cmcmr——
byl 6869

SINE MAG. VAR, D
65 66 67 68
o [8[1]9]2] e e
ALL Y a7t Tuoe ALL ] l l l JJ

MISC.
4 75 16 77 78 79 74 6 71 78 79
ALL| sorT no. ﬁ SORT NO. . _ F

I~

b
-n

1€-¢

Figure 3-12, Data Preselector Program Part A - Radio Facility Data Sheet

L A

i T



3-32

MARK I
] .MM PRESELECT WORDS
WORD 1 - ZERO
WORD 2 - FREQUENCY
WORD 3 - LATITUDE (U AND L)
WORD 4 - LONGITUDE (U AND L)

DATA WORDS
A - LATITUDE

B - LONGITUDE

C - SIN AND COSINE (MAG. VAR.)
D - TYPE AND ELEYV.

'
-t

CALL LETTERS

Figure 3-12. Data Preselector Program Part B - Punched Paper Tape




Preselector
Words Base™ * 0000 0400 1000 1600 2400 3200 4000 4600 5400 6200 7000
Address -
[} 1] [/} 0 n n /] wn 1] (] w
b 1o I 1 il e Bt - S b 4
@ -2 v | L3 @ -3 vl L2 @ —~ 3 @ ~ 8 Y -3 o ~ 2 @ 2 @ @ o @
=5 =5 a0 — - pey 2, =5 =5 =2 ol o1 =
; a | & B8 | E|G3 || 88| F|G3 | & | EF| & | 8% |5 |88 | & |51 & |38 & |8% | & |R3
0 0 F 11.3 H TBC HV | PGS MV | RBV . -H- | LAX
1 4 | MM | LAX OM | LAX | B 31 I | LAX H ONT MV | LGB LV | STW LO | LA LM | AX -H- | DOW
2 10 | MM | SFO oM | sFO | B 13.1] I {SFO L SMO LV | VTU MV | SAX LO | SF LM | FO MH | FRX
3 14 | MM | MFA OM | MFA 1| MFA L LHS MV { FIM MV | SBJ LO| MF | LM | FA MH | HWD
4 20 | MM | MiIA OM | MIA 1| MIA H PMD MV | GMN | HV | FMN | LO | MI LM | 1A MH | SFG
5 24 | MM | ORD OM | ORD I { ORD L SXC HV | SBA HV | IDL LO | OR LM | RD -H- | MIA
6 30 | MM | IAC OM | 1AC 1|1AC M PYE HV | SAC MV | RVH LO | 1A LM | AC MH | TMT
1 34 | MM | MKC OM | MKC I | MKC L SFO HV | SCK MV | HUO LO| MK | LM | KC -H- | PRR
10 40 | MM | MCI OM | MCI 1| MCI L sJC LV | SAU MV | DAY LO| MC | LM | CI MH | NBU
11 44 | MM | STJ OM | STJ 1| 8TJ M GFsS HV | OAK MV | CLE LO | ST LM | TJ MH | PLV
.12 50 | MM | EWR | OM | EWR 1| EWR L DCA HV | HEC MV | TVE LO| EW | LM | WR MH | FRY
13 54 | MM | LGA oM | LGA 1] LGA L FLL MV | DAG MV | ABE LO | LG LM | GA MH | LIY
14 60 | MM | IDL OM | IDL 1 | IDL M BSY HV | ALS HV | PIT MH| D LM | DL MW | C
15 64 | MM | IWY oM | WY 1)WY M | API MV | PUB HV | ERI Lo | W LM | WY MH | SRI
16 70 | MM | DLX OM | DLX I | DLX L DPA HV | MlA MV | PSB LM | LX
17 74 | MM | DIA “OM | DIA 1| DiA M BDF MV | JOT MV | LDN LO | DI LM | 1A
20 100 H HLC HV | OBK LV | CcsN
21 104 M ICT MV | CGT MV | HRN g
22 110 L FDK LV | RFD MV | MRB >
23 114 L EMI MV { EON LD | LAX =
24 120 L RIS MV | MLI MV¥ APC B
25 124 H BLD HV | DSM LD | OS1
26 130 L BLM | MV | TOP LD | ORD =
27 134 M TRN HV | GCK LD | COL
30 140 L LGA MV | SLN
31 144 L DPK HV | BAL
32 150 M ARD HV | PMM
33 154 M FRR LV STJ -
34 160 H OAF HV | MKC
35 164 M.| BSP HV | STL
36 170 MV | PWE
37 . 174 MV | CYN
MM oM FAN/Z VHF 1 VHF 2 .VHF 3 VHF 4 LF 1 LF2 LF 3 LF 4
Data Words —e 0200 0600 1200 2000 2600 3400 4200 5000 5600 6400 7200
Base Address
MARKERS VHF/UHF LOW FREQUENCY
NOTES: *USED AS MVORDME
TYPE CODE: B = BONE L =LVR MH =MH
F =FM LD = LVORDME MM = MM
-H- =H LM = LMM MV = MVORTAC
H =HVR LO =LOM MW = MHW
HV = HVORTAC LV = LVORTAC OM =OM

1 = 1LS M = MVR

€€-¢

Figure 3-13. Radio Facilities Band Locations (Octal)

i 2 " Y " i ——
N b oo 4 U




MARK I

FIELD I | FIELD2: FIELD 3 FIELD 4 JELD &
MIDDLE OUTER FAN/Z VHF VHF VHF VHF LF LF LF L¥/AN
MARKER ‘MARKER MARKER GROUPL - . GROUP 2 - GROUP 3 GROUP 4. GROUP. 1 GROUP 2 GROUP S | GROUP 4
DRUM WORDS | 0000-0377 0400-0777 1000~1577 1600-2377 | - 2400-3177 3300-3777 4000-4577 4600-5377 §400-6177 6200-6777 7000-7777
BLANK | 0 - 400 - 1000 - 1600 - 2400 - 3200 - 4000 - 4000 - 5400 - - 6200 - 17000 -

LU 1STA O 401 STA O 1001 STA © 1601 STA 0 | 2401 STA 0 | 3201 STA O { 4001 STA 0 | 4801 8TAO 5401 STA 0 | 6201STA 0 | 7001 STAO.

b XIXu | 2STA O 402 STA 0 .
2 Xi¥u ] 38TAQ 403 STA O . - : )
Q- BLANK | 4 - 404 - 1004 - . R . . 7004 - o
g2 (LIU | 58TA1 405 STA 1 )
£ 4 X1Xu | 8STAl 406 STA 1 : : . :
Se YiYu | 7STAL 407 STA 1 -
S BLANK [ 10~ | 410 - 1010 - ; : ) 7010 - ] :
Og (LU | HMSTAZ |-411STA2 P IT AT S U S R 1. i i
ES XiXu | 128TA2 £12STA 2 : STATION PATTERN IDENTICAL FOR ALL FIELDS g D
EE YiYu | 135TA2 413 STA2 v
85 . : . _ ‘
gs , : -
& BLANK | T4 - | 50 - 7 - - | B~ EX (7 T TR - 574 - 74 - TR . :
) LU | 175STA 37| 575 8TA 37 . : ;
© 0 “XIXw | 176 STA 37| 516 STA 31 c - S :
Yive | 1778TA 87 577 8TA 31 : ) ‘
DATA A| 200 5TAD | 600 STA 0 | 1200 STA O | J000 BLANK | 2600 STA 0 | S400STA O | 42005TAU | SOCOSTAU | S600STA U | 6400 STA U | 7200 STAO | \

201 8TA L | 601STA ' 2001 STA 1
2028TA 2 | 602 STA 2

DATAA] 237 STA 371 637 STA 37| 1237 8TA 37| 2037STA 37 | 2657 STA 37 | 3437 STA 37 | 4237 STA 37 5%7 STA 31 7 71 431 STA 37 | 1331 STA 37 |
DATAB| 240STA O | 640STA O | 12405TA 0 | 2040STA 0 | 2040 STAD | 3440 STAO | 42405TA0 STAD | 8640 STA O | 6440 STA O | 7240 STA
1 241STA 1 |. 6418TA 1 ' ’
DATAB| 277STA 37| 617STAST| 1297 STA ST | 2077 STA 37 | 2677 STA 37 | 3477 STA 37 | 4277 8TA 37 50’!'al STA 31 5*11 STA 37 6477 874 31 | 7277 8TA 37
DATA C| 300 iTA o [ 700 ;;m G | 1300 f"‘ 0. | 2100 ‘TA'O W"ft‘l'ﬁ W?TT"‘IW’{TW \ "Wé"ﬂ'b— 00 “ A
DATAC| 337 STA 87| 737 STA $7{ 1337 STA 37 2137STA 31 STA 3537 6TA 37 | 4337STA 37 | 5137 STA 37 | 5737 STAI7 | 9537'STA 37} 7337 8TA 37
: DA’liA D| S40STAO | 740 8TA 0 | 1540 fu 21408TA 0 : 7Y i zszs‘m‘ 0 | SIUSTAO ’mﬂ;ﬂ'ﬂ“
4 - i N
DATAD] 3775TA S| 777STA S| SN STAST| 21195TAST | 11T STA S | SSTUSTASY | 4ST1STA S | 117 ETASY | 4117 g'n 37 | 6877 STA 1 | 7317 STA 3%
3000 STA © 4900 5TA D |

2

[}

Z

<]

=

2

5]

Q

e

' 1400 STA O | 2200 STA O 15300 &

& CALL LETTER GROUP ugz_g'_m 37| 2237 4 il 7 b'1'4\3 3637 éTAﬂ 4437 ‘TA 37 1 8237 }un 0037 STAS? | 6 éTA 37| 148 s‘ﬁ 7

: TA_3 7 8 ) 7 STANT.
1440 STA O | 2240 STAO gi% A0 | S640STA O | 44408TAO | “‘mrm—men—ﬁwn—'vmﬁ&— 3
SECOND CALL LETTER GROUP N ¢ & ¢ [} . $ -
. 1477 STA 37 | 2217 8TA 37 aﬂo% TA 37 | 3677 STA 37 | 4477 8TA 37 | 8277 8TA 37 | €077 8TA 37 W 7477.8TA 81

5 — 1 A0 [TIS00BTAD | S300BTAO | LRK TS0 ETAD |

: THIRD CALL LETTER GROUP ¢ 1 . a3 [ [ [

] 1540 STA 0 | 23408TA O 3140 8TA D | 3740 8TA O 8TAO W [] 0

B
FOURTH CALL LETTER GROUP ¢ ¢ . . g'r { .

a 1577 8TA 37 | 23778TA 37 | 3177 8TA 37 | 3777 STA 37 | 4577 8TA 37 | SMTTSTA 3T | 6177 STAIT | 6717 STA 37 W

2 DATAE ) :

-4 G USSR SUNORg M 1 ;X -1 Y 37
DATA F . &
e e e e e e s e e e ST
DATA G
DATAH

. 7M1 ;TA "
NOTES:
1, All marker stations operate on 75 MCS, « Preselection by X/Y only, 6. Two stations sre deleted due to blanking requirements during
. drum loading. These blank words hive all bits equal to zero
2, X/¥ position required for preselection during interval 2-7177. Core and are non-recoverable words. The stations deleted are:
memory accesa 7200 0000, T

3, VHF receiver froquency required for preselection during interval by ;“{: :' b Groupz l.’!tmm;: !
N c 3
. 1601.4178, Core memory access 0001 1600, e b. Field 8, L¥ Group 2, »htlon
7. Number of stations available for preselection:

4. LF receiver frequency required for preselection during interval 2 Mark
45177170, Core memory access 4200 4800, gﬂ g:f::.u .;n.'r
32 Yan/2 ki
8, Presslection patterns: . 127 VHMF/ 43 /=
Drum Rev #1 ) ) " H el
Middle Mx, Middlo Mk, Middie Mx, Middle M, - ™ :
Outer Mk, Quter Mk, Outer Mk, Outer Mk, :
Fan/Z Mx, Fan/2 Mk, Fan/2 Mk, - Fan/2Z Mk, " :
VHF Revr, #1 VHF Rovr. 42 VHPF Revr, 48 VHF Rove, 4

LF Reve, #1 L¥F Revr, 42 LF Rovr, #1 LF Rovr, #8

3-34 Figure 3-14. Data Preselector Band




MARK I

3-65. MULTIPLEXER PROGRAM.

8- 66 The 100 1nput lines of the A/D cor nverter are programmed sequentially on
‘the"four slow bands (approximately 25 i puts to a band).. This input information
(analog voltages) is transferred sequent ially from the Multiplexer to the Multl—

verter, (where they are converted to digital), and further transferrred to a main
core memory location and on to another core location depending upon the relay
positions in the Redcor Multiplexer. (See figure 3-15.)
3- 67 A Boolean program used in conjunction with the last mult1plexed program
on slow band four is used to simulate resetting the switch positions to 0.. Flgure
3-16 is a sample mult1plexer program for slow band 4.
3-68. The three other multiplexer programs (slow bands 1, 2, and 3) are ended
with g small Boolean program consisting of BLD, BIN, and BST into the same
core location as the BLD instruction. - This is dOne to change switch position (A
to. A to B etc.). .
3-69. BOOLEAN EQUATIONS,
3-170. General There are five basic steps which should be taken into considera-
tion by the programmer prior to programming a Boolean equation.- These steps
will help:the programmer to visualize the system more clearly and eliminate
possible extra program steps. The five basic steps are as follows:
a. Develop a complete "picture' of the system.
- (1) Block diagram or signal flow type.

(2) Show all indicators, lights, etc.

(3) Show all actuators, circuit breakers, etc.

(4) Determine the extent of simulation.

~b. Redraw the system "picture including the results of step 4 of a.
. ¢, Determine any breakdown of the systema

(1) Any indicator, such as a light, must be a Boolean dutputo Any break-
down should be in these terms.

(2) Any term that is used many times should be stored in memory.

3-35




9¢-¢

A/D
. CONTROL
SECONDARY
' 1 HOLD e A/D ' CORE
| { ADVANCE © | CONVERT I TRANSFER LOCATIONS
— . . ‘
| I
! e
.
- V1003 , o
Lé( | 3 REDCOR S REDCOR e — Lu;)u SRR (Még\;l: _4' §
0 -MULTIPLEXER MULTIVERTER 2 s v } o >
= < ~{ ~
= P (5 I o —
3 .
- v e
28 B L
128
‘ ) A
MULT IPLEYER PROGRAM
ADVANCE CONTROL

Figure 3—15. Block Diagram, Multiplexer Flow of Information




oATE 5/9/63 i CODING AND CONSTANT SHEET

prosLev MULTIPLEXER PROGRAM - SLOW BAND 8 QUADRANT 1 : MARK | COMPUTER
procrawer JOHNDOE
. . pagE_1 o2
F-2214-A R .
INSTRUCTION MNEMON1C oY MEM, w ARITHMETIC . BOOLEAN - “. "_ '.
“ NUMBER cooE ;81 oo 2 ACCUMULATOR 2 ACCUMULATOR >{=f={=
@ 3 HERE REMARKS
nimnwljnin
2 3_rATL'l 4 & ‘u ulu‘u: . )
LI A T D ] ) Steps 1 Thru 32 Used To Load Contents Of Main Core
T 1 1T vV U1 T . .
0 2] ST 2 70 ; ) Memory Location And Stare Those ContentaInta A~ |
L L T - -
0 3. LD 2.1 : Certain Other Core Location Dependent Upon The Relay |
T o allsy ‘a7 Position In The Packard-Bell Multiplexer. '
R - .
—ﬁ.T;Pu4 AHZ L, T -
05 LD 20 217 -
T T T 7 LA
1!1]]91 ﬂ 2‘
07]tLD 2
rri1ur1r1 alla'r g
llll1gl ﬂ 1 11
091]1LD 201027
T T 17T 1 T ! O A
1 0]]ST 23 720
— T § F T 7 ¥ L
1 1}]LD 0}l0 2 7
R AR L - 1 LIRS .
12 3112 7 2 g
T.r 1T 01 1 L T T >
1 3|/]LD 0218
LR L L T
§ 41]8T 2 311213 a
I AL L L) T 1
15|/1LD ZOE'Z'I'I
T T T T T T [ o]
1 611ST 3 13
- 7 T Y T T T
117 LD 29 300
Ty T F Y ¥ T
1 811ST 3112740
T v F ¢ 1 1 1 LI |
1 911LD . 301
T 1T 117§ 1 LR )
x!a‘]zlo ﬂ j’ 'll“[
SR 1 PP PRV
’l(l?% ST
L
Tl‘l‘?’ 5“. 'llsl‘
2S5}1LD (1]
T r rrt LR
-4 ST g
21 LD [1] 305
LN L A B T T T
28 78 4
T r F 1T F 7 N T ¥
2 9}ILD 0 306
T T '5'
0]isr 3jp17

LE-¢

Figure 3-16. Multiplexer Program (Sheet 1 of 2) |




ac-¢

DATE 5/9/63 CODING AKD CONSTANT SHEET
prosLew MULTIPLEXER PROGRAM -_SLOW BAND 8 QUADRANT 1 MARK | COMPUTER
procramver _JOHN DOE
PAGE__.2 __OF __2 __
Fa2214.A
INSTRUCT | O8 mEMONIC R -wlhi MEMS u ARITHVETIC - B00LEMN T T
NUMBER CODE S SV aco. 2 ACCUMULATOR > ACCUMULATOR S>> :
. ? S 2= REMARKS
n -3 ciLI<l <
w;inianiwn
12 3 45 87
TV 1T
LD
T .
ST
T Y
LI BLD AorB
LR N rﬁ':L#* -BIN AorR
3 5]/| BLD Aor B
T T T
——r—r T3 '5 AND {Aor B) (Aaor B). Ensure 0
. g ;I BST Q Store Zero In Location Aor B
(LI |
——TT 13 I§ BST _ Store Zera In Location A or-B N
T T T T g
T ;
T T N
T T —
71 T 1 T T
1 T 1 r T
T U 1 & 1 7
T 1 T 1T 1 T
T
L S S G S |
T
T 1 [ rrr
T T T T 1T
L L
T T
T T T T
L T A St
T T TT7 T T T
T T T T T
T T ~T =TT
LI ) T & 1 Ll T 1 T T

Figure 3-16. Multiplexer Program (Sheet 2 of 2)




MARK 1

d. Write the Boolean expressmns for each section of the system break-
down,

(1) Use combinations that are common to several sections of the system
and can be reclaimed from the temporary Boolean register

e. Write the programming instructions.

3 71. In order that the "pictures" of the system transfer the maximum mfor-

mation, a standard method of representation should be used. A variation of the

signal flow graph is most easily understood.

3-72. A function is defined by the lines directed into the circle with that label.
These lines come from other labeled functions or circles labeled with Boolean

functions such as "AND" or "OR". (See figure 3-17.)

Figure 3-17. Flow Chart

'3-73. The function E is defined by the two lines directed into it.” One of these
is the function A, the other is the indicated function of B, C, and D. The equation
for E would be E=A+D (B + C) in Boolean designation.

3-74. The circles can be labeled with the names of switches, lights, c_ircuit
breakers, relays, and other elements of the aircraft's system. Using this method
the systems as shown in the aircraft manufacturer's manuals can be transcribed
to a function diagram. Flow charts are simplified until only the inputs, outputs,
and variables which are to be stored remain as labeled circles.

3-75. The Boolean expressions for the function represented by a labeled circle
can be written directly from the flow chart. The function of any labeled circle is
the sum of the directed lines entering the circle. Any directed line leaving an
"OR'" circle is the sum of the directed lines entering the circle. Any directed

3-39




MARK 1

line leaving an "AND'" circle is the product of the directed lines entering the
circle. Utilization of these ideas result in the Boolean function for all outputs
~ and elements to k2 stored.

3-76. An illustration of this method is shown in figures 3-18 and 3-19. Figures
3-18 is a typical alrcraft power circuit, All details except those necessary to
determine when the three buses are energized have been omitted. Figure 3-19
represents the transition from figure 3-18 to determine the equations for ener-
gization of the three buses. The circles A and B on figures 3-19 represent Gen I
operating and Gen I circuit breaker '"made'’. To the right of Gen I C.B. on figure
3-18 there is a junction corresponding to the "AND" circle (figure 3- 19) which
the arrows from A and B enter, This junction is defined by AB and each arrow
leaving the circle is so designated In the circuit, power from this junction goes
- through GEN 1 RY to a second junction. This junction is represented on figure
- 3-19 by the "AND" circle which the arrows A, B, and C enter. C is the circle for
GEN I RY. Power from this junction feeds LOAD BUS #1, but this bus can also
be fed through the GEN I BUS TIE. Therefore, the arrow ABC must enter an .
"OR" circle which then goes to E (LOAD BUS #1). The first junction also supplies
power to the ESS PWR BUS through the GEN I ESS PWR relay. This is shown by
- the arrow AB going to the upper right hand ""AND" circle in conjunction with the
D arrow. This "AND'" circle goes tc G through an "OR'" circle indicating two
power sources for the ESS PWR BUS ""G'". The rest of the circuit of figure 3-18
is described on figure 3-19 in a similar manner.

: 3-77. The Boolean equations for G, E and K can be determmed from the arrows
_ entering the ""OR" circles which define G, E, and K.

G = ABD + LMN
E = ABC + FHILM
K = JLM + FHABC

~ 3-78. When the Bcolean equations have been developed, a program can be written.

- This program is in terms of storage, input, and output locations in the Mark I. On
& system design sheet such as figure 3-19, a tabulation of the letter designations

- used on that sheet, their corresponding aircraft functions and Mark I storage

locations should be included. This tabulation provides the correlation between the

Mark I locations and the simulated aircraft variables. This tabulation would

appear as follows:

3-40




i

MARK I
GEN 1 OPER | -A- . B2347
GENIC.B. -B-  B1433
GENIRY . -c- B2131
GEN I ESS PWR RY -D- B2134
LOAD BUS 1 - -E-  B3214
GEN I BUS TIE RY -F- B2133
ESSPWRBUS = -G- B3217
GENLBUSTIERY -H- B2132

 GENLIRY -J- ' B2135
LOAD BUS 2 K- B3215
GEN II C.B. | -L- B1435
GEN II OPER | " -M-  B2354
GEN II ESS PWR RY -N- B2136

3-79. A preliminary program sheet can be filled out to ensure the programmer

 that all phases of the problem are included in the program. This step further

eliminates the possibility of errors, or insufficient information to solve a problem
being programmed into Mark I, A program sheet of this type developed for figure

. 3-19 follows

| ACCUM. . SALVAGE REGISTER

'BLD - A A
"AND - B AB
BLD - D D | AB
AND - 0000 ABD AB |
BLD - L L ' - ABD AB .
" AND - M LM | ABD AB .
BLD - N N LM ABD AB
- AND - 0000 LMN LM ABD AB
OR - 0001 ABD + LMN = G LM ABD AB
BST G ‘ LM ABD AB )
BLD yC c . G LM "ABD - AB
AND - 0003 ABC | G LM - ABD" AB
BLD-J - J - ABC G LM ABD
AND - 0002 JLM | ABC G LM ABD
BLD - H H - JILM ABC .= G - LM
AND - F HF JLM ABC G LM
AND - 0000 = HFJLM JLM = ABC G LM
"OR-0001 = ABC+FHJLM=E JLM ABC G LM
- 3-41




- osm|
. ss3

| WMD) FPM0d PedAY §1-§ By

C awema
1
1]

© | o—
1 ,

. WMdSSa

avol

sng

3.42




: ¢ A~ ABC By | 0ADN, | o

'J - % KN

g Figure 3-"1.9'.\Aircraft Power"Circuit Flow Chart

3-43




Bh-g

"paTe 5/1/63 CODING AND CONSTANT SHEET
prosiem __BUS ENERGIZATION ~ MARK 1 COMPUTER
proGRavesgh H. SMITH = -
. o page . __oF 1 _
F.221004 . .
INSTRUCTION MNENMONIC Sull e - ARITHVETIC . BOOLEAN el Bt A
NUMBER CODE SSht. oo < ACCUMULATOR > ACCUMULATOR 1=12121=
© g . . x HEIEHE REMARKS
. wifa|lnin
t 2 3 45 .‘7 J I | 12 12 18}
N SR S s T Tt
o 1 N :L " System Diagram (Figure 3-12):
T T o T X
. 02|} AND 31ll1432 AB Calculate G
T T ¢+ 1 7§ 1T L T v ¥ .
- -BLD. 3,342,131, I
0 41| AND 1 ABD
LI L O A LN ¥
Ftr 17y lovs LLD 3[’ 1'4'3| L
T T P‘l‘ AM’ 3,11 2lxvsl LM
- 017 BLD 3 31121 36 N
LI LI I L ¥ LELEEJ
T T 0'8 AND :ll T
——r 9911 0R 3 0 0'0,0| ABD + LMN - G
S ,lp BST 3'4 3'2‘1'7 G .
1 1}|8LD 3311212 c Calculatc E
1y 1yt i L AR )
b2} | AND sillooa ABC Jost
f3 BLD 3 312 135 J
T 1 L) T v 1 T rrer
—— 1 41! AND 3 yloo002 JLM
T '115 BLD 3[3 2‘1'8' H lost
YTy flvo AND 31 2|113] FH.
i -AND 31110000 HILM
ABC ¢+ FHILM -
T 1 1 ) fl '8 0-8 :‘rl 0101'0' E N
YT ’1:9 BST 3" ’lzlll
T ? '0 BLD 3 '3 Z'l 3 H Caiculate X
2 11| AND 3111213 FH
T T TR B AND 3" Jo"070"2 ABCFH
T T T o | T -
2 3:10R 3 0{:0 001 ABCFH :+ JIM - K
L A A | M T°7T°F
2 4 BST 3413215 X
LA B N B B { - Ty
| L 2 T T v T 1
RER) i v T 1 ¥
o LA L LR
H : T Fr v 7 T Y
T 75 3. 11771 T LIS 2

Figure 3-20. Bus Energization

I MUV




|

MARK I
ACCUM.  BOOLEAN SALVAGE

BST - E E JLM ABC G LM
BLD - H H | " E CJLM ABC G
AND - F FH E JLM ABC G
AND - 0002 FHABC E JLM ABC G
OR - 0001 JLM + FHABC = K E JLM ABC G

" E JLM ABC G

BST - K K

3-80. Figure 3-20 is a sample of this program as it would appear on the standard
form. The letter designations on the flow chart (figure 3-19) are used on this '
sheet with a cross reference to the flow chart under "REMARKS'". The program
is arranged using combinations in the Boolean salvage to reduce the number of -
instructions. ' ' :

3-81. CORE MEMORY.

3-82. Core Memory Load Data. Information to be placed in core memory will be
written, Most Significant digit first, as nine Octal digits, for the loading of 24-bit
binary words. Words will be written in core memory address order. An example
of a core memory word and binary equivalent is shown in figure 3-21.

Where dn = Octal data bits and sign
X = Valid binary bits, '"0" is not recognized
Sign *X = "0" for positive number, ''1" for negative number

dj (sign) dg dg dg ds d¢ . dy dg dg

00X XXX XXX XXX XXX XXX XXX XXX @ XX0
Figure 3-21. Core Memory Word

3-83. Core Memory Tape Format. The form of the Core Memory tape data words
is shown in figure 3-22 where M = memory data and D = dummy code.

D
I's A'j :
011 1 M. MMM
MMMMM.MMM
MMMMM.MMM
MMMMO « 0 0 0

Figure 3-22. Core Memory Word Tape Format
3-84. Figure 3-23 illustrates three different core memory tapes used in testing

the core. "A'" tape is used for loading all ones, '"B" all zeros, and "C' a combi-
nation of zeros and ones.

3-45




TAPE B

Figure 3-23. Core Memory Tapes




MARK I
SECTION IV

PROGRAMMING AIDS

4-1. BOOLEAN ALGEBRA.

4-2. General. Boolean algebra is particularly suited for describing situations
where variables can assume only two values. These two values have many desig-
nations: on-off, yes-no, plus-minus, one-zero, etc. Variables are designated by
letters, and the two possible conditions are_shown by the absence or presence of .
a bar over the letter. To illustrate, A and A designate the two possible conditions
of the variable A. They are read as "A' and "not A", The bar usually signifies
the minor or negative condition. The barred functlon is known as the complement
to its corresponding unbarred function.

4-3. To describe systems of more than one variable, several conventions must
be accepted. Figure 4-1 111ustrates the "AND" and "OR" circuits common to
Boolean algebra.

8
Figure 4-1, "AND" and "OR" Circuits

4-4. In figure 4-1 (A) relay C is energized when switches A and B are both
energized. Thus, C equals A and B. The conventional symbol for the "AND" is a
multiplication sign or implication (C = A-B or C = AB). In (B), the relay F is
?nerglzed )1f switch D or E is closed. The symbol for "OR" is the addition sign
F=D+E _

4-5. Venn Diagram. A more general illustration of the meamng of "AND" and
"OR'" is shown By fhe Venn diagram figure 4-2. .




Figure 4-2, Venn Diagram

4-6, Referring to the Venn diagram, figure 4-2, the area inclosed by any circle
represents the condition ascribed to the designation for that circle. The cross-
hatched area common to both A and B shows the meaning of A.-B. The cross-
hatched area covering both A and B, shows the meaning of A + B.

4-7. Figure 4-2 also shows the meaning of the complement when applied to more
than one variable. Using the circles describing A-B, A-B would be all the area not
cross-hatched including the area outside the circles. This is the area which is
either outside A or outside B. This would be written A + B. This is one of many
useful identities. Considering the area describing A + B, A+ B would be all the
area not cross-hatched. It is the area outside of A which is also outside of B.
This can be expressed as A - B giving us the identity A + B= A - B, '

4-8. Identities. The followihg are a list of identities useful in manipulating
Boolean algebra. '

1. A+1=1 10. (A) = A
2. A-1=A 11. A+ B=%-B
3.A+0=A 12. A-B=A+B
4, A-0=0 13. A+AB=A+B
5. A+ A=A 14. A(A + B) = AB
6. A-A=A 15. (A+ B) (A+C) = AC + AB
7. A+ AB= A 16. (AC+B%=.KC+BC o
g.ﬁ(AfBi=A 17. (A+C)(B+C)=(A+¢) B+ C)
. + = :

'4-9, The one is used to mean the truth or continuance of a function. It can be
compared to a short circuit in a system of switches. Zero is the opposite and can
be compared to an open circuit. Number one and number four identities are
illustrated in figure 4-3. Identities two and three also concur with figure 4-3.

4-10. Figure 4-3 (A) proves the first identity B= A + 1 = 1, The relay B is ‘
always energized whether switch A is open or closed. The fourth identity B = A
- 0 =0, (B) shows that B will never be energized. Identities seven and eight are

~ shown in figure 4-4. : : : -

4-2




o o
B
Figure v4-3. Identities. 1 through 4

V A V— A A
S L3 nad N T 3%

B ¢

AL nB Mo
C
A B -

Figure 4-4. Identities Seven and Eighf

4-11, Figure 4-4 (A) illustrates the seventh identity, C = A + AB = A. The
parallel circuit with switches A and B is unnecessary because the operation of the
relay C is the same without it. This can be shown mathematically as follows:
C=A+AB=A+A(1+B)=A+A(1) =A. The eight identity C = A (A + B)

- illustrated in (B) shows that the parallel combination of A and B does not change

the operation of relay C. This can also be shown by mathematical proof. C+A
A+B)=A [A(1+B)] =4 [A()] =4)=A

4-12, Identity 13, A + AB = A + B is derived from the equation A + AB + AB =
A+ AB = A + B. This equation is illustrated in figure 4-5. .

" 4-13, Switches A and B in the middle path of the circuit (figure 4-5 (A)) do not

change the operation of relay C. If either switch A or B is closed there will be a
transmission. The mathematical proof follows:

‘A+AB=A+AB+ AB = A+B(A+A)—A+B(1)-A+

4.3 ..




" MARK 1

- = C
A B
MNA N
Figure 4-5, Identity 13

4-14, CONDITIONAL SKIPPING
4-15, General The "conditional skip' instruction allows the programmer to
branch to two different groups of instructions by "sklppmg over" one of the two
groups (i.e., if a certain condition is true, then ; if not, then ). The two

groups in a branch are listed one after the other in th the program. Depending on the

results of a test, the Mark I either reads the first group of instructions and skips
~ the second, or it skips the first group and reads the second. .

© 4-16, The state of the Boolean accumulator is the test which determines the

~ branch.read. “The Mark I will skip only when there is a one in the Boolean accu-
mulator. The programmer is not restricted within the framework of allowed in- -

~ structions, to devise a test which will result in the Boolean accumulator being set :
one way or the other so as to reflect the state of the condition being examined.,

4-17. Since the two groups of instructions which follow a conditional skip are
listed consecutively, then, in the event the first group is not skipped, but is read
and performed, the second group must be skipped. In order for the Mark I to skip

- the second group of instructions, the first group must have a conditional skip as its
last instruction, Assuming that the first group of instructions is being read and
performed, then the contents of the Boolean accumulator must be zero. It is then

. necessary to include an "INVERT BOOLEAN" accumulator instruction (this in-
struction will set the Boolean accumulator to one), prior to the "conditional skip'

- at the end of the first group. The conditional sk1p instruction w111 then cause the
second group to be skipped.

4-18. The maximum number of instructions that may be skipped with one "condi-

tional skip' instruction is 127. If there is a necessity for a larger skip, the Mark
I can skip from one "conditional skip" 1nstruction to another "conditional skip" in-
- struction.

- 4-4




oate ___MAYS, 1963

eromen__X:=AsB+C 0 MARK | COMPTER
rocammes JOENDOE ‘ :
e T pace_1__oF_ 1.
Fa22148-A .- .
INSTRUCT 10N wewonic AE wdf wew, - TETIC . B oot T
- NUVBER * COPE. S8yl a0 MR ACCLMRATOR 3 ACCIRRAATOR =12{z13
el a -3 . HEBH REMARKS
- 1 12. 332 a4
LD . z' g 277 | A Load A into the Arithmetic Accumulator
SCL 1: 1001i27% { A | Scale Right One Place to FormAZS.
ER o N s o Ad C.2°t0 the Contante of the Accumlalsl .}
M I ¥ 1§ R 1791- : 1 ln Load B into the Accumulator PreviousContents Trapafer toSalvage
{28 a5 v T it % BN + 041,00 -8-'—_-_”% :  Sc: . Three Plices to Form: 28 . : .
N & ADD. 01110 0 00 8 | AsBsC _Add Salvage to Accumuylater
e sel 1 0li0 0 031425 L AsBL.CoX | Scale Lelt Thiree Places to Form X.2°5
3 ~q2afh 2zt tx : Store in X Locatjon
lfl"l' VT ¥ L) T } L
L L ¥ '.‘ L BN |
LEELL T 1 1 1 1
T T T 7 T LSRR
T ] T T 177
T T T T
T T T
T T T "
T v ——
LR ¥ 1 T LS
T T Y T
| SRS SR T 17
T T T T T T F
T T Y ] 1.1 1
B LA T - - T T T
Ty - ¥ T 1 1
T-r—! T T T
T T r T 1 T 1T
IR L ¥ 7 v R L
LR 1 LA B 3
T T r—r—t

g-¥

Fi’guf,e_ 4-6. Program Involving Scaling Operation

(g i i

I29VIN-




. MARKT.
4- 19 SCALING AND SCALING PROBLEMS

4-20. General. All constants and variables, as handled by the Mark I must be
scaled to fall in the range from -1.0 to +1.0. The scaling factor in the Mark I is
limited to integral powers of two to minimize time consuming multlplxcation or

~ division operations. (Scaling or shifting operations are the equlvalent of multiply-

- ing by powers of two.) The choice of scale factor is limited to the smallest integral
power of two which, when divided into Xmax, results in a number less than or equal
to 1.0 (i.e., Xmax/Zn =1, 0). For example, some variable that ranged decimally
from -80 to +510 would requnre a scaling factor of at least 2 -9 or 1/ 512 to ensure
against overflow

4-21, The Mark I is capable of shifting as many as five places in one basic ma-
chine cycle. Thus, a left scale of three places is equivalent to multlplymg by 2+3,
and right scale of three places is the same as multiplying by 2-3, The scaling or
shifting operation requires only one instruction word as opposed to a multiplication
which requires five words.

NOTE

Care must be exercised when scaling left to make certain
that overflows are not caused by scaling too many places.

4-22. When performing additions and subtractions, the scale factors of all the
quantities involved must be identical. If the quantities being added have different
scale factors, scaling operations must be performed to make these factors the
same. Generally, all of the scales involved must be right scales, eliminating any
overflow due to the scaling operation itself. Figure 4-6 illustrates an addition of
three variables with different scaling factors.

4-23. Figure 4-6 forms the equation X = A + B + C, with X scaled at 2-9 a5 the
desired quantity. A is scaled at 2'7, B at 2-4 and C at 2-8. A and B must both be
- scaled right; one place for A, and four places for B. The terms are then summed
to form X . 2"3, and this quantity is scaled left three places to form X « 2-5,

4-24. When performing an addition and/or subtraction, the risk of overflow is still
to be encountered in the actual performance of the operation itself, and serious
consideration should be given to the order in which the steps of the equation are
listed.

4-25. In the case where A, B, and C are variables ranging from -1.0 to +1.0, re-
arranging the order of steps is no longer a sufficient guarantee that overflow will
not occur. In this case all of the variables must be scaled right a sufficient num-
ber of places so that no partial sum can cause an overflow.




R P TRy S~ P R A
I s - p . .

-~ - BRI e A ]

- . 4-26, Multiplication. When multiplying two quantities both of which are less than or
' equal to one, there is no possibility of an overflow. It is possible that the product
~(AB) might be so small that the number of significant digits remaining in the accu-

’ 'mulator are insufficient to describe AB with any accuragy (loss of resolution)

- '_'4-27 To overcome loss of resolution it is possible to shift the first fifteen digits
- of the MQ register into the accumulator using left shift instructions, after a multi-
‘ vplication, thus restoring the resolution of a product. Caution must be taken to en-

sure that the product AB is small enough to allow the shifting operation without

causing overflow.

4.28, Division. When dividmg in the Mark I the problem of overflow is greatly in-

-~ creased, Since the quotient must always be less than or equal to one in magnitude,
- the dividend must be less or equal to the divisor in magnitude. That is, if X=A
- and -1,0=X=+1.0 then /A/‘/B/ B

' 4-29 If A and B are variables, careful consideration must be given to both the
- scale factors and the behaviors of these variables in order to decide on the final

scale factor which will prevent an overflow under any conditions when performing

_the division,

o 4-30. A sample problem involving scaling techniques with muitiplication and
_division is illustrated in figure 4. 7

481, It is desired to write a program for Mach number. The following equation is
- to be used: M 0152.Vy.

oo o oomann

TK = Toa+ 273.16
where
" Toq = temperature of outside air in €O scaled 2-7
TK = temperature of outside air in KO scaled 2-9
Vp = velocity of the A/C along, the flight path in ft/sec scaled 2-11
._M = Mach number (result) -1 ‘ '

- Assume that the maximum Vyp of the aircraft is 800 mph (1178 ft/sec) and the
. temperature of the outside alr ranges from -709 to +700,  The first step in pro-
- gramming a problem of this nature is to determine the range of numbsrs, scalsd
o properly by 2. |

3967 x 29« TK - 6702 x 29
- o-‘v = 5722 x 211
152 Vp= 5572 x 25
45 x25¢\| K .58 x 25

4?7.




87

» Dol
, T o IS
/00 nrg tool — 1 7C
090./.00
] oAt MAYT 196y © . CODING ARD CORSTANT SEET .
1 . smomow__COMPUTE MACH NO.____ WARK | CONPUTER '
3 onosmmemn G.GREEN . : .
H race 1 _or 1
! vzm10-a . .
§ INSTRUCT 1O re—— < % B ARITHETIC T, BOOLEAN 11
: K - s ADD. ACCUMULATOR ACCUMULATOR . >i>l>i>»}-
3 e ss 2 3 HEHE rouns
L’ 2.3 a 0'1 ) '
; 29| 27| Toa
: Jrolh 0032|299 1o, : o
\ T T T T 3 X R
i 2 2/} 21 429} 21316 : - ) Conversion Factor CO—® KO
2 L LONLDA B - - .
? 01l oo0di2%] To,+21316-Tk : :
} -1 1x
¢ 11 1—10‘ Tx \
12
’ 2r;' I'll"l" 7 z
{ 12/ 00 o
H Lj
7 25l 777)25] i =3
i T T VT
g 1 4l st 3 251 ix . Ty for Next Iteration =
1 : B

3 12l lj22ih 612 2*6 | o152 = lost —
5 1 MLT 03/t oo4f|206]| 0152 : ' '
3 ¥ 7 77 ¢ ¥ T 7
1 gI NPA 12
y 15l neB - f2slB 7790}
'l LN Buih SN BN SE § r T LRI
! NPA 12 ¥ .
- M 1T I: Sl radias] osave :

LR § L] i | ;‘ - L4
a8 SCL rolp oouis 9152 Vp
9l | piv s 281 o1s2vp
: 2 0] | nPA 12lp oo
i T
21l NPB F's 711
/ Y7y T7Trrr T ¥ 7
i 2 21] NPA 12
h T 1T v v¢v T T . "
! 2 3|1 NPB sib 777]2-'] o152 v =M i .

LB AR S § lz r‘ \ B B - - - - T

- . Store Mach No,

¥y iryYyvovy ﬁ'l‘ 73 2 I

7y rrrvv T LRI |

LIRS T ¥ L LELEE S

T Y L2Nn N § _l N LA

Y. v vy v - T LA

y_'b T Tr T LI 2 §

T T A S i i

Figur’e 4-17. Compute Mach Number




#

MARK 1

The numerator .0152 Vy, x 2-5 muSt be shifted right one place before it is divided |
" by VTK since the largest value of the numerator is .5572 and the smallest value of

the denominator is .45 x 2-5. Since the numerator is scaled at 2~6 after the shift
and the denominator 2-5, the resulting M will be scaled at 2- -1,

4-32. TIMERS.

4- 33 General A des1red elapsed time can be determined in the Mark I by succes-
sively subtracting the total time elapsed, each time the storage location passes
under the drum read heads, from the total time required for the unit to operate

4-34. The drum band (fast, medium, or slow) on which the program is to be stored
plays a major factor in a timing program. Storage locations on any band pass
under the drum read heads at a constant interval (fast band locations every 50
milliseconds, medium band locations every 200 milliseconds, and slow band loca-
tions every 800 milliseconds). A numerical constant dependent upon the total time
required for the unit to operate as well as the drum band on which the program is
to be stored is required in "time delay" programs.

4-35. Figure 4-8 (Part A) is a sample time delay circuit in which the relay will

energize 100 seconds after the bus bar has energized and the circuit breaker is

"made'". In Boolean language, the relay will energize when ABC equals 1. A

sample program (when ABC = 1 compute Z = \/Xﬁ + h2) for this time delay circuit,

programmed on one of the medium bands is shown in figure 4.8 (Part C). Figure
4-8 (Part B) is a flow chart for figure 4-8 (Part A).

A

= 100 SECONDS
. 4

1 | c
BUS A » [ /oi\
CIRCUIT bé

BREAKER
| TIMER

Figure 4-8. Time Delay (Part A - Circuit)

4-9




“MARK I

 START ‘TIMER PROGRAM .
NO I Ami YES | o .
 BUS ENERGIZED ? | |
, - S CIRCUIT BREAKER "MADE" ?
RESET - No | YES .
TIMER [T | B:l | | |
* | o | | | TIME = 100 SECONDS ?
TIMER |- —_ N1 1 TYES .. |
LOAD | - | | —]
- EERO COMPUTE Z

—= STORE |«

i

END OF PROGRAM

Figure 4-8, Time Delay (Part B - Flow Chart)

»4-10'- '




vare ____ 5/9/63 COBING AND CORSTANT SHEET
R = \FTER A TIME DELAY | JARK | CONMTER
rosmenn PDAVES
R —— PM—L”—L—.
HTRUCTIon aENONIC I | g “ ARITWETIC . S00LEAN it Bt B A
i - cooe MECBM aoo Fd ACCUMLATOR 3 ACCLMRATOR B E
: 3 H . s 2lz]l3)= N REURKS
! njleje
IAIAD .T".‘, L. 2
T :l B1D. ”" f‘ﬁz:’ A
_ARD' 3'1 AB
LB R f’l 224 ML AB = 0 Steps 04 and 05 are used to reset the timertol
0 Al ] LDK 2 000 H AB - 1 Steps 04 and 05 are ignored.
T ¥ ¥ 57 1 LR N )
osjisr |lasilioos
o sl! BN 2lloo00 = : E+B ’ gens 04 dp
0 )} SEP S{0 03T _vert and skip to store 0 for
. v - k)
e | LDE {2 2 9 19 &[ - Part of total time that elapses every time storage location . = {
o8| abn_ 1111 004 Cn + 500 . passes under the drum read heads. Add to previeusly .
¥ L) B
)} ST 3 004 Cn+1 N\ accumalated time and gtore for next iteration o advance
Y T T t
I e 2 E— 12'&{’118 . 1 g
2} lo 0 0-of 1-Cn+1 N .
N . W &
16 000 c
R LN
3 O 000 . [+ w
\ | ]
i »
‘ 1)
g 000 X
L PR L
S 0 00
TT 7 -
1 2 000
] Tt
5}i8 7117
1 1
ea__Hillo oo -
~ 3711 x3 N %
- T 71 ‘h—
2l{wo l2olhoon h lost
3| 50 sloooo
PA IIZ P'OIO
| KPR
26l NPA 1112 000
L LA S ] i 1 L L L) .
I KR n?
L - 2 ) R | L LR
28l ADD I_Fo 00 X2 . n?
L3 ¥ + T ¥ N
2 9i! SRS I'I 1 0'0'3 . . : .
L 4 LA Ll -
2 NPA 12 ]9 00 4djy : ]

Figure 4-8. Time Delay (Part C - Program) (Sheet 1 of 2)

|8 8 4




(4 i 4

vaTE : CIDINE AND CORSTANY SIEET
PROSLEM = TER A TIME DELAY ) MARK 1 CONPSTER

. : ) o eagE—2 or 2
Fo2204.8 - . y .
l INSTRUCTIOM MEMONIC whl v - ARITHMETIC . BODLEAN =1
phiomid coos S8\ avo. ACCBRRATOR 3 ACCURILATOR HHEE
s : 33|32 A

L LN L ) i N
l;g;_ 3779 ¥x2 » 12 ,
A 20 : [

L g )
2 6 001
T T 1
2 000
T Ty T
2 31j1 003
T LI
T T 17t
M T =
T T T T 7T ] g
L B | T Ty i
T T ™77 W
L }
TV T T ; B AL .
L S 2 S e A T ™77
™ T T T T 1T
T T T T
T T T L
T T TTY T T
L e e o T ™Y
T T T T T T 1T
7 1T 17 L 13
T T rrT T LI |
T T Ty T TTY
T Trrrr T T 71
T T : L5 ™17
T T T
LI i | T T 77
T LENN 2an aEw o T 5
Y T L

'Figure 4-8. Time Delay (Part C - Program) (Sheet 2 of 2)

o e N .




MARK I

4-36. "ILL BEHAVED'" FUNCTIONS FOR THE LINEAR INTERPOLATOR.

4-37. General. Many times programmers are faced with the problem of pro-
gramming function data for the digital interpolator which is not suited to being
straight-lined between fixed breakpoints. (The curve has points of inflection whose
ordinates do not coincide with any of the fixed breakpoints.) There are various
methods of handling this problem, and the most suitable method chosen is
determined by the nature of the function curve.

4-38, Warping. An efficient method for use on the Mark I is that of warping the -
curve into a more reasonable shape by replotting the function data vs. a new varia-
ble which is a function of the original independent variable. Instead of plotting f(X)
versus X, plot f(X) versus Kj X® + K9 or any other deliberately chosen function of

X which will warp the function data in the desired manner. Figure 4-9 illustrates
~ four curves. Curve 1 is the original curve of f(X) vs. X. Curve 2 represents a

i

1.0
9
8
v
7 » R
AN o
N w4 A
6 J¥$> cix.
& /o
= o
& N )
S &/ &
4 & ~/ S
3 'é?‘
2|
N

A A 3 4 S 6 J .8 9 1O
Figure 4-9. Curve Warping

4-13




| MARK I |
linear "stretching" of the independent variable £(X) vs. 1.0 (X-.7). In.curve 3 the
functional data is plotted versus | 1.0 (X-.7) 2 and curve 4 I:I.O (X-.’ﬂ 4 Any

degree of"'warping" ‘may be obtained by choosing the proper function of X as an in-
dependent variable. Whatever function is chosen as the independent variable must
be generated in the general program and stored for use by the digital interpolator.

4-39, The "warping" method is not necessarily a "cure-all" for all of the "ill-be-
haved' functions which will be encountered by the programmer. It is possible that
a function of the independent variable which produces the desired degree of warping
is non-existent; or if it does exist, it is too difficult and time-consuming to devise.
Further, it is possible that after the proper function has been derived, an excessive
number of program steps are required to generate the new independent variable.
Splitting a function into more than one curve is an answer to this problem in many

cases.
4ov, ‘ I
il
I\ VY, ,
R7A140 | A\ F(X2)/
'/ I | '
/ ' T /
Y ‘ I
20T ] LT
| L
N
N T | N |
|
R TR | N R I S
[ R U R (RN B B
pragl Bl sl peal il T B H=4
X1 =Z 2= %) =X =
* | « | o | “ % <1 ¥, &
T N || b
1 | ] ] - 1 | |
o] 250 50  .750 1O
40
X ————i
" Figure 4-10. "Il Behaved" Function
4-14




MARK I

'4-40. Splitting. Since the nine 'breakpoints' are fixed by the logic of the interpo-
lator at intervals of 1/8 of the independent variable, X (i.e., 0, 1,8X, 1/4X, ....X),
then the function as constructed by the interpolator will be the dotted line overlay-
ing figure 4-10. £(X) is badly distorted by the removal of the peak in the vicinity of
X = 0.40. In order to construct f(X) with accuracy, split £(X) into two functions;
f(X1) for 0 = X = 0.40 and £(X2) for 0.40 < X 21.0. (See figures 4-11 and 4-12.)

4-41, By rescaling X in the region between X = 0 and X = 0,40, the new quantity
- X is defined as X3 =.b_)% for 0 X £ .40.

40

Y=£(X )~ §(Xy)

<

20

|
N
ot -lv'ﬂ!‘"-"‘ Mlﬂvlmnlg
215Z51%121518
A T T O |
O 0% . .8 2 .2% .3 35 .40 -
x)""""'" .
0 250 .500 750 0

Figure 4-11, Function X1

4-15




MARK I

40
Y Y=£(X,)-#(X2)
2.0
o - 40 .4T5 550 .625 .700 .775 .850 925 1.0
X, >
0 .250 .500 .750 1.0

X ' -

Figure 4-12. Function fXg

4-42. Rescaling X in the region between X = .40 and X = 1.0 constructs the new
quantity X3 which is defined as: fX2/= X - 0.4/0.6 for .40<X< 1.0.

4-43, In figure 4-10 Y = £(X). The new value of Y after "splitting" the function is:
Y=Yy = {(Xy) - £(Xa).

4-44, The three independent variable (X, Xi, and X5), must be assigned storage

locations in core memory. Core memory locations must also be assigned for the
independent variables (Y and Y3).

4-45, An alternate method of programming X1 and X2 is setting a Boolean Flag
(Flag negative instruction). Using this method, each time the Mark I calculated X,

it would be necessary to test the numerical value of X to see if it was in the region
~of X1 or Xg.

4-16

|
|
|
!




i

MARK I

4-48, ‘Using' a Boolean Flag to program figure 4-10, the data curve for Xy would

remain the same as in figure 4-11 while the data curve for X2 would be the

these functions would be:
*

Y=AﬂxQ+Afmm

‘inverse of figure 4-12 as illustrated in figure 4- 13 The Boolean equation for

Where + mgmfles or, and * boolean invert.

the 727 simulators.

‘It is not necessary to use a Boolean Flag type program for any curve used with

40
|
|
|
|
} |
!

P !
i 1 1N
v A
. | '

2.0 N T T I .
T
RN
R
R AR T N B

|l }

y |

b I | |

N Pl 1 gl

o '—m |-|< |nlo|-m |m¢|mv'v~m| - |

XXX =X, XX Xix

TITITITITITITIZIG

[ IR WUUN N R R N T |

o . A0 475 550 525 .J00 .775 .850 925 1.0
- Xy —

0 . - .250 ‘ Qmo -750 |¢o
X P

Figure 4-13. Inversion of Figure 4-12|

4-117




~ and the dependent variable f(X) which equals Y. Let the new values of X and Y be |
- X1 and Y] therefore X1 = X +2and Y1 =Y + 2 = £(X1) or Y = £(X1) -2. i :

 MARK I

4= 47 Coordinate Transfer. In many instances the given data curve for an inter-
polator function does not lie completely in the first quadrant (i.e., part of the data .
is numerically negative). Since all negative numbers are treated as zero by the

interpolator, the coordinate axis must be "transferred" so that the complete curve
ltes within the first quadrant. . |

4.48. Figure 4- 14 illustrates a given data curve to be placed on the tnterpolator

section of the drum. To ensure positive values for each of the nine breakpoints,
add two (the largest negative number) numerically to the independent variable X,

4-49. Plotting X1 and Y1, the curve is in the first quadrant (see figure 4 15) , and
now may be programmed onto the interpolator sectlon of the magnetic drum.

8.0

80

Figure 4-14, Given Data Curve

4-18

= SN =D o

£ = =



=<

20 40 . 60 80
X, —

\, Figufe 4-15. Cooifdina,te Transfer of Figure 4-14
4-50, CALCULATION OF ENGINE TRANSIENTS.

4.51, General.. E’nginé transiehts_ may occur during start-up, turn-bﬂ, change in

‘throttle etc., The example used to explain a transient program will be fuel flow,

4-52. The transient produced in fuel flow (Wf) is caused by a change in throttle
position (3th). When the Mark I receives notification that a transient has started
because (Sth) 1 + 1 -(5th); is greater than some constant €, a Boolean flag is set
to zero (in the example, flag ""A") and a real time clock, t, is set to zero. In later
iterations, the clock, t, will be incremented by some constant amount depending on
the band this program is written on (refer to paragraph 4-34), until the program

~ determines that the elapsed time from the start of the transient to the present time- |

is greater than a specified amount. The flag will then be set to the non-transient
case and the transient will be considered finished. However, the program will
continue checking for changes in throttle position (Sth)j + 1 -(8th){ to determine if
new transients are starting. The program will also consider a difference of sign
bettween the quantities [(8th)i + 1 -(8th)1 | or [(Sth)j -(Sth)1 + 1] as the start of
a transient. L : ‘ ,

4-19 .




MARK I

4-53. The program will compute a Wy that will reflect the transient conditions by |

means of a multiplying constant ¢ - X t2, This function will be written on the
interpolator section of the drum.. The value of Wy when the clock was setto zero
will be used as the value of Wf for t = 0. Wfc will be computed using the regular
equation for this quantity. The equation used for the transient case will be Wg =
- Wie + (Wft 0" ch) For the non-transient case, Wf = Wic.

'4-54. The flow chart (figure 4-18 Part (A)), and the ""Coding and Constant Sheet"
(figure 4-16 Part (B)) describe the techniques used. This problem is only intended
as an example of programming engine transients, but drawing a flow chart before
coding commences is almost absolutely necessary in problems of this type.

4-55. DOUBLE NUMBERS (1 WORD = 2 NUMBERS). -

4-56. General. Double numbers will be encountered in problems pertaining to the

- radio aids portion of the program. Since one word in the radio aids section con-
sists of 20 bits, and these 20 bits may sometimes describe two pieces of data; e.g.,
' the most significant ten bits describe the X coordinate of a radio aid, while the
least significant ten bits describe the Y coordinate. When this 20 bit word is
loaded into the accumulator, the last four bits of the accumulator are zeros.

4-57. If operations are to be performed with the X coordinate, a right shift of one
place clears the number out of the sign location and makes the number positive.
The presence of the ten Y bits can only cause an error in the LSB of X. When op-
-erations are to be performed on Y, it is necessary to shift the accumulator left
nine places, and make the result positive. This may be accomplished by two
successive left shift commands, followed by an absolute value command to make
the sign of the number positive.

~ 4-58, ‘To form a 20 digit number from two separate ten digit numbers in two
different Core Memory locations, load the accumulator with the number that is to.
form the least significant part of the result, and make the sign positive with an
absolute value command. Scale the number right ten places by two successive
scale right commands, then scale right three places and left three places to elimi-
nate the three least significant bits. The contents of the accumulator should be as
' Ashown in figure 4- 17 '

420

!
'




18-¥

FLAG
NEGATIVE
_w

RESTART

CLOCK,STORE | -

'

STORE A=O |

EXIT

|COMPLEMENT|

A

COMPUTE. W¥=

| Wec 4 (Whgzo f@———

-Wic)e-Att}

Y

K

- Figure 4-16. Wi - Trangient Part A - (Flow Chart) -

| Wf—eWfc |

STORE

COEIT

1AV




p—

o = (b =0 o0 o2 ©» U0 GO G0 65 WS GB NS ES &5 &8 8 =D

@1 eus) umadouq - g e oL - I 9T oD

{

o g gy e [

.....

......

 MARKI

..........

—g—s0—T—20v

422




€c-¥

DATE __ 3, 1963 N

CODING AND CONSTANT SHEET

I MUV

rrosuew_ WI TRANSIENTS MARK | COMPUTER
" . PAGE__2 _oF. &
Fa22t4-A . )
strucrion | weuonic || u) § . wen. “ ARITHMETIC . BOOLEAN BN
cooE d ADD. ACCUMULATOR ACCUMULATOR >i=
NUMBER s8 3 ( _ 2 UMUL ATOS gsgg REMARKS
123 a3 83 21 )
T ¥ - T
N L&
32 SKP 26
L TR B | T
[llll’ls m‘D Ia :’l’l’ _A_
34 BIN 2 1 A
T 1 ¢ ¢ VT
35 SKp (] :
LI B AR LI
36 34 7 \ﬁn
LU L T T 1 =
37} LD 210 ﬂ| .'0'1 Wit=0 lost
T s8] sr 23lhooz2 5! Store Wi att =0
T 1T 7T 17 ] L L
3911 LD 2 0 1 -€ lost
T 1 T 1T.7r T T L L)
40 FLN [ 0
T ¢ 1T 1 7
1|||l4|l Z8L L1§ ‘0
421] ST 2 3 000 [ Zero Clock
T ¢ &+ 1T 1T L 1T N
I!lll‘l3 ]o 'li m
44]} BLD 33lp 71 e A
L B N N B ] LN
45} sxp [ — \ - Exit
LA i MRS SN SENN £ ¥ LA " lost
e - L a1 ep2 120
41 SUB 001 t=0- Wic)
v T 177 T LA 'Atz
T T lll‘ls MLT 3 ’1'7'0 =0- Wicle
.....:’ NPA -
- B L g1l
i laea Hizlboog
52 NPR 5 711
A 11EYY e
I'll’sl m E1 Pll = -m‘.e
L BB ‘ sr —? LI M
T ¢ ¢ 7.1 ¥ L LI
T 1T ¢ V1T L] T}
LA B LB 1 LB
T 17T T 1T 1T 7 L) LA .
T T ¥ Ty T ™77

Figure 4-16. Wi - Transient Part B - Program (Sheet 2 of 2)

L1 L1 0 I S

T Ty

==




 MARKT
0]0000000000| YYYYYYYYYY| 000

Figure 4-17. Ten Least Significant Bits
4-59, Load the accumulator with the number that is to form the most significant
part, scale right 13 places and then left 13 places, make the sign positive with an
absolute value command, and add the contents of the salvage register. The conténts .
of the accumulator will now be as shown in figure 4-18.

0] XXXXXXXXXX |YYYYYYYYYY |000

Figure 4-18. 20 Bit Number

4-60. The absolute value instructions may be eliminated if it is known that the
values of X and Y are posmve

4-61, HANDLING A NUMBER AS A "COARSE" AND "FINE" SUM (1 NUMBER = 2
WORDS).

4-62. General, The situation in flight simulators in which some variable with an
extremely large magnitude (e.g., distance, altitude) is calculated by integrating its

derivative will be very often encountered by the programmer. With 23-bit resolu-. ..

tion in the Mark I, the resolution of the variable may be adequate despite its great
magnitude. It must be noted however, that the smallest bit (i.e., the 24th bit) of the
word representing that variable may in itself represent a number which is fairly

' large in magnitude. The magnitude of this least significant bit, defmes the smallest

increment that may be added to the variable concerned.

4- 63 Integration. Integration in the Mark I is accomplished by calculating an in-
cremental change in the quantity concerned and adding that increment to the old
value of the quantity. Inthe equation X =/'x dt, if X is extremely large in
magnitude, then the LSB of X is correspondingly large, and the magnitude of this
LSB is the smallest rate of change of X which can be integrated with accuracy. (A
smaller X would need a smaller increment to add to X)

4-64. If it is necessary to "find a smaller increment" to add to X, so that very
small rates can be integrated accurately, then it is necessary to magmfy the ISB
of X, thus improving the resolution.

4-65. This situation is handled by treating X as the sum of two numbers: X=X
course Q(c) + X fine (Xf). Xc will have the same scale factor as X ordinarily
would. X will be integrated to generate Xf, where X{f is 210 Xc, This represents

a ten-bit increase in resolution. Each t1me that Xf is calculated by integrating X
it is tested to see if it is large enough to add a significant digit to Xc. If it is large
enough, Xf is scaled right ten places and added to Xc. Whatever amount is added
to Xc must be subtracted from Xf A sample problem of this nature is illustrated
in flgure 4-19 where; :

4-24

Al



O R (TR | e

[Orex301J WG U1, PUE ;,984€0D,, “61-§ SInB4

426

- P 'y . b ‘A A.a 3 L. 4
_ 2.1 1 1 -.h- Seedond.
F I h’ Y BT B |
-._.l.—. Lo ks 4 A1
L3 PEIE O U ST A
-.- 1 1 ket b el
1.1 4 i PURE LI SN S I |
11 n‘ i LobcoAt $ 3
1.1 1 '} FES N T IR B )
£ 1.3 A C BN W B N )
i | Ad A 2 A 2
1.t A oAt A 4.4
A b1 (S IS NN A |
I | i b N I S I
) . 1 I T U S I |
] . .
K F A | 1. deednd. -
FE . | . [
mnn I Z[[go i ot Wik
M : - : : - . x- ’unﬂ n.a».. N. : s m. n. 1
.. - . : . T . LI EINE) 18 {lo 1
. eradantcdeid B x| 1z-2| 5,0 0 d |6 e lfe o
: i IXigz-% [ IR ¥ 0 K 1 Q.QP.
. - . 4 o 4 i a8 {1 ©
- i i 1 A 111 2t
SING PUE I AT | ; =
) =X+ IXigp.TlT 01 1 aav 190 .,
X I30F HERRY } i A | oz T ) € is I o
. N N 1.2 & a2 i
= SXToz-L]i6 00 0 T iy O
o Hd N6 T S S N |
- . IR Ty~ . 18 0 -
- . 3 F S S . 1 b 1
"EX SN ANTERIEIY : : T XTI ¥ 0 ]  S[iEe
g . . X PR NS B |
: = - . 152 U AWy P 4 K L)
- , ra - 3 o i1 . L it s A 1.3
198-% 1 4.3 1 4.1
N T ) (3 20 35 N B
winjw]ewl T . . . R - . R
- ] »i»i»]> . - . - . E X . . . P
<l<l<]|= T el z) T e .m ‘oo BT 200 st
R % O DO 8 X008 - - Judwiiwy 1= oo JY= 7 E - dtmouaen NOSAINULSH
Y " 8.- ! 3 o . - n,. '

7 13 1NVSHSD G 168D




MARKI
Xc is scaled at 2-26 and stored in.location 0101

-Xf is scaled at 9-16 and stored in location 0102
locations 0103 and 0104 are used for temporary storage
AXf is scaled at 2-16

Assume A Xfhasbeencalculatedandis now storedinthe accumulator.

4-66. LATITUDE-LONGITUDE INFORMA TION.

4-67. All radio calculations will use aircraft location stored in units of degrees
of Latitude (A) and Longitude (L) scaled for the continental United States. (See

table 4-1.) Figure 4-20 shows the sign convention to be used for the United

States.

Bit
1
2
3

10
11
12
13

4-26

Table 4-1. Latitude-Longitude Scale

Degrees Nautical Miles Feet

£64 - 3,840 23,348,239.3
32 1,920 11,679,119.65
16 | 960 5,839,559.825
8- 480 2,919,779.913
4, 240 1,459,889.956
2. 120 729,944.978
1 | 60 364,972,489
| 30 30 182,486 245
15' 15 - 91,243,122
7'30" 7.5 45,621.561
3'45" | 3.75 22,810.781
1'52,5" 1875 ©11,405.390
56.25" 0.9375 5,702.695

y
u

[



H

s

L

S £ R . L S . . . - .

R

MARK I
Bit : Degrees | Nautical Miles Feet
14 28,125" | © 0.46875 2,851.3475
15 14.0625" ' 0.234375 1,425,674
16 ,?/03125’-' . , 0.1171875 712.837
17 | 356,418
18 178.209
19 89.104
20 44,552
21 22.276
22 11,138
23 5.569 .
24 2,784
A N
W E
S
Figure 4-20. Lafitude-Longitude Sign Convention
4-21




_mmemimEl Rl T =l =

MARK I

i 4-68. The values of X and L are derived from the following equations° '

v

Latitude =\ = (2.7411X10-6) f [ULg + vy + WN1 +vwy
Lon_gltude =L-= (207411x10=6) -(eec?\) ; I:ULz + V_Mz + WN3 + vwzj
Where: Lj La, M1 M2, are direction cosines

‘U, V, and W are translational velocities along the X Y, and z
areas respectlvely :

vw1 and vyg are wlnd velocity componentso

The constant 2. 7411X10"~ -6 is the conversion factor for converting feet to degrees

~of arc.

| 4-89. The equ'al:lone used for converting degrees to nautical miles follow:

Nz60\
L' = 60L cos A
‘where: \ = latitude in degrees of arc
| _>_s' = distance along any- x_neridian in nautical miles (NM)
iL = longitude in degreee of aro
. L' = distance along the parallel in nautical miles

4-70., COORDINATE SYSTEMS

4-71 General Many different coordinate systems are needed for navigation calcu-
lations. The basic system will be LATITUDE-LONGITUDE (paragraph 4-66).

Other coordinate systems used are the X - Y and a-c rectangular systems and the
R - W polar system.

4-72 X-Y Rectangular System The X - Y rectangular system will be uged for . . ..

" reconder applications and in small areas where meridian convergence can be

- ‘neglected. The system is a rectangular system and the X axis always points to
- . TRUE NORTH (see figure 4- 21).

_'4-73 a-b Rectangular System. The a-b rectangular system is used in marker
o beacon and A-N range calculations for the rotation of the X - Y coordinate system-

through an angle ¥ where 900>\" > +90°, Figure 4-22 illustrates the sign con~

'?entlon to be used.

|




'MARKI

.
— <

| s
Figure 4-21. X - Y Coordinate System Sign Convention

N

A

b

Figure 4-22. a-b Coordinate System Sign Convention

4-74. R - V¥ Polar System. The R -~y polar System is used for bearing and range

systems such as in VOR and DME. The sign convention is illustrated in figure 4-23.
S N ' :

R

c Figure 4-23. R -y Polar System Sign Convention

4-29

R




MARK I

' .4-75,- anVerting From L- X to a-b Coordinates.

4-76. For small distances we can assume the L- A coordinate system to be truly |

rectangular, thus when converting from a L-'X system to the a-b system (refer to

_ figure 4-24), the following equations can be used:

aGAS 364,816 [(Ls - La) coshasin¥ + (Aa-\s) cos‘l’]
" bGAS = 364,816 [(Ls - La) cosk a-»cos‘l’ -(Aa-Xs) sin\l’]

2 i

Ls,As
o
N Qe
A' _a
2) 9
~ ¢ 3 3
=
| | ,/ YeAs
La,Aa % '
b

«--Figure 4-24. Converting From L- X To a-b Coordinates

4-30

& L

CE ) GE G U O O GO G UE G Gy B BN oE & -

e




T

B <A,'V_- . e . - .

e MR

-r T

MARK I

',where L and X are degrees

cos x a is a function from the LFI -

sin v and cosine V’ are station data words

a(.‘vAS and bGAs are' in feet

Subscripts - a is for aircraft
s is for station

Derivation

‘agAs = Rgag sin (V’ +)

= RGAS [sin\P cos & + cos Y sinc) .

bGAS = RGAS cos (V¥ + €)

= RGAS [cos Y cos - sin ¥ s.in'l:.)‘}

cos & = YGAS/RGAS
sin @ = XGAS/RGAS

Substituting equations (3) and (4) in equation (1)
agAS = RGAs | sin¥ YGAS/RGAS + cos ¥ XGAS/RGAS |

AGAS = YGAs sin ¥ + XGAg cos V

- In like manner equation (2) becomes

bGAS = YGAS cos ¥ - XGAS sin 4
XGAS = 364,816 (\'a - X 8)
YGAS 364 816 (Ls - La) cos A a

(1)

@

(3)
(4)

()

®
1) "
- (8)

where 364 816 is the conversion factor for convefting degrees to feet.

aGAS 364, 816 [(Ls - La) cos Xa sin ¥ + (Xa - Xs)cos V'l

. Substituting equations (7) and (8) in equations (5) and (6)

‘bGAS = 364,816 [(Ls, - La) cos Xacos¥ - (XNa - As) sin 'P] (10)

4-31




 4-77. LAMBERT CONFORMAL CONIC PROJECTION CALCULATIONS.

4-78. The recorder plots in an X - Y coordinate lsystem on a Lambert Corif'orxhal.
‘ Because it plots in an X - Y system it is necessary to -
convert the aircraft location in the L- X coordinate system into an X - Y system _-

Conic Projection Chart.

MARK I

for the recorder.

479, The'following equations are to be used for the computation of the X - Y
coprdinate for the recorder. (Refer to figures 4-25 and 4-26.)

4-32

Y = (La - Lo) sin ¢ (1)
pa=p1+60(Aa-XA1)+£(A) (2)
PO =p1=60(N0-X\1)+f(N) (3)
X0 = 72913.2/#P0 (4)
Xc = 72913,2/M (-pa) cos ¥ + X0  (5)
Yc = 72913.2/p p a sin
where: .

L = longitude (degrees)‘

A = latitude (degreés)

P = radius of cone (NMI)

Y = degrees
X = X coordinate (inches)

Y=Y coordinate (inches)
. # B

72913.2 = number of inches per nautical mile

Subscripts: |

0 pertains"“"tbl chart reference points of (0, 0)

1.and 2 pe.rtains to standard parallél of ’projéction where subscrijat 1

is for the greater value

scale factor (e.g., with a 1:2,000,000 scale p = 2,000,000)

,
L]



R Ea i P .

MARK 1
\

N ¢

— PLANE OF CONIC
PROJECTION

L QL7
Z "
Z %
5
Y
5
7)) ®
2 P g!
«

N,
/ EQuATOR

Figure 4-25, La;n'vibéi't‘Conic Pr'ojection,Plane Perpendicular Tb Projection -

4-33




4-34.

AIRCRAFT LOCATION
( LG. ’ >\O.)

| RECORDER CHART 7
r— ——e e — o -_—

CHART CENTER

. . v
— v — —— ~——— —~—

: Figu—ré 4-26. Lambert Conic Projection,Chart Plane




R ) — — Bl P —— — ——

MARK 1

a pertaws to aireraft location
¢ pertans to chart location of pen

sn g, P, and i{A) are emperical functions unique to the standard parallels for
ta@ projection uscd. These terms are explained in paragraph'4-77.

140, EMPERICAL FUNCTIONS.
4-81. Tre cone of projection makes an angle ¢ with the axis of rotation of the
euarii. Tl st @ the sine of the angle also considers the eccentricity of the earth.

1he eguation for the sme of ¢ follows: : :

sing =log cos A1 -log cosX 2 + log Ni - log sz
log tan (7 + A 2) - log tan (7 + X 1)
. T 1

2

Ny = V1. E2 sind X 1
e S
Ng - V1 - E2ginX\

P where E - eccentricity = 0,0822751
a - radius of earth = 3437.75 NM

@ 1 1s the radius of the concentric circle in NMI, representing X §
o the chart projection.

pL Nicus Ay
- P s

The values of sin ¢‘ and g 1 for the standard Lambert Projections
used with the TWA727 is as follows:

'S{zzr;dard Parallels ' Pl ¢ sin
3345 4591.524 NMI 0'.627926

4-82. f{ \a) 1s a correction factor added to equations (2) and (3) (garagraph 4-117),
to increase the accuracy of the radii since the 60 (NM/Degrees) i8 an approxi-
mation. The exact value of P can be calculated by the following equation. Having
the exact value of P, the correction factor [f(ka)] can be calculated and plotted
as a function of A a. :

i r - -sin ¢ In [tan m - )\] + Cy

4-35




MARK I

where Ci=In P 1 + sin$ In [tan () + (A)]
4 7T

t = the exacf radius of p at )\
A= latitude of point in question
Therefore
f(A)=r=P1-60(A-X1q)
4-83. MARKER BEACONS.

4-84. All types of 75 MC marker beacons are simulated by using the following _»

+ . equations: -

a. FM E = 695h/8a2 + b2 + 8h2

b o
b. BONE E = 600h/8a? + b2 + 4h? [(005 + / Eﬂ where/ a/ <,
c. ILS E = 64h/8a2 + b2 + h2

d. LFM E - 20h/222 + b2 + h2/4 - 80h
8aé + 4bs + hé

7 E = 72h/82a2 + 8b2 + h2

In the above equations:

a = distance from station to aircraft along the minor axis in feet.
= distance from station to aircraft along the major axis in feet.
h =

altitude of the aircraft above the station in feet.
'E = gsignal level at the aircraft in volts.

4-85, LFRR CALCULATIONS.

' "4-86, General, The four "Coarse Legs' making up the LFRR patterns will be

simulated through the use of four circular radiation patterns (see figure 4-27).

4-87. Opposite pairs of circles represent the A" and "N'' signal, the centers of
these circles form an '"a-=b'" rectangular coordinate system. The "Course Legs"
are the areas where the circles overlap. In order to provide the necessary com-
bination of ""Course Legs" it is necessary to provide rotation of the rectangular
coordinate system (see figure 4-28). This angle of rotation is always measured
from "TRUE NORTH" and the a axis. .

4-36

"



MARK 1
" COURSE ¢
LEG*4
| COURSE
LEG *)
b
COURS¥ . couRsE
. | E
. LEG®*3 LEG
- Figure 4-27. A-N Course Legs
COURSE a
LEG*4 -
COURSE
LEG®]
COURSE

Lec*2

Figure 4-28. A-N Range Rotation

4-37




|

MARK I

4 83 A-N Audlo To mmulafce the A-N audio, a servo with ""A'" audio on one end at

 a potentiometer and "N" audio on the other end of the potentiometer (figure 4-29)

-+ is required.

"N" SIGNAL —»

d-0

d AN SIGNAL

“A" SIGNAL —B>

de-1

" ‘Figure 4-29. A-N Range Audio Servo

" 4-89. The "A-N Range Audio'" servo will have an input which represents the "A"

... to "N" signal ratio. I d is the servo displacement from center, then dmax = +1

and dmin = -1. Solving for d as a function of n and a, the following equations are

T derlved

n=1+d
——
a=1-d
—
a=1-d
n 1+d

a+da=n-dn

d=n-a ) (1)
n+a

where a and n are the signal levels of the A-N signals of the aircraft.

" 4-90. ’Assuming that the "a - b'" coordinates to the aircraft have been solved (para-

~ graph 4-73), refer to figures 4-30 and 4-31.

- 4-38



< N A WM aAaE e e

AIRCRAFT
LOCATION

STATION | a " R
LOCATION 6 6 GAS

Figure 4-30. A-N Range-Vertical Plane

Since "a" and "n" are the audio signal levels at the aircraft

a = Kas , (2)
Rs

n=Kng - @®
Rg

where K is a constant of proportionality which is dépendent on the power and
range of the facility

Rg is slant range

ag and ng are relative slant range vectors illustrated in figure 4-30.

4-39




© . _MARKI

.

ReAs

AIRCRAFT

LOCATION

'{/ STATION - ‘beas
| LOCATION |

.Figure 4-31. A-N Range - Horizontal Plane

- b



MARK I

From figure 4-30
- ag = ag Cos @ - (4)
‘ng = ng Cos & (5)
Cos & = Rgas (6)
| ~ "Rs |
From figure 4‘-3.1
ag = A sinlll' o LR
nGg = N Cos ¥ (8)
sin ¥ = bGAS (9)
| RGgas »
cos ¥ = agag (10)
| RGAS
- Combining equations (2), (4), (6), (7), and (9)
a = KA bGAS R ¢ §)
Rg2

Slmvilarly, equations (3), (5), (6), (8), and (10) become

n = KN aGAS o (12)
TRz

Substituting equations (11) and (12) into equation (1), the servo input becomes

KN aGAS - KA bGAS
Rg? is

d = KN aGAS + KA bGAS
Rsz ’ Rsz B
 4=NagAS - AbgAs  (19)
- NaGas + A bGAS

4-91. The diameters of the four circular patterns required on the "Radio Facility
Data" sheet are obtained by using the following equatlons o

0= 73 -74+180° -

4-41




MARK I
¢ = y1 -y2+ 180°
€=73-72
B = 71 - ¥4 +3600

where 71 through 7 4 are given .

k=tan(B-8)+ [t ¢1t 3] [tan ¢ + tan 6 + tan (B8 - 8]
an o tan

tanb = -k + \ k2 + 4

2

€0 = Y30 _ po . 1800

where € O is the angle of rotation of the pattern

a=8 -b

c=pB-a

d=% -b

D = 1V<tin£>2+'tan2a+tan2b+1
tan d

A = /Dtan a/

C = /D tan b/

B = /Ctand/

where A, B, C and D are the diameters of the four circular patterns.

4-92. A sample "A-N Range Data Sheet" is shown in figure 4-32.

4-93. Th® A-N Range pattern for the information contained in row 1 of figure 4-32

is shown in figure 4-33.

4-42

- L
P



MARK 1
. ANGLE OF
GIVEN ANGLES ROTATION CIRCLE DIAMETERS
y1+108 | yp4108 | 5 44108 | 5, 4108 € £10,000 A +100° B +100 C +100 D +100
1 1000 |090.0 | 1000 {175.0 { 1000]229.0 | 1000 | 346.0 10} 029.225 10/0.6251 |10}0.34814 | 10| 0.23709 | 10} 0.66056
2 1000 }049.0 | 1000 {156.0 | 1000 | 229.0 1000} 336.0 10 012.499' 10{0.42010 | 10]0.56841 | 10} 0.42060 | 10| 0.56841
5 1000 {057.0 | 1000 | 107.0 | 1000 {237.0 | 1000} 302.0 ~101 004.566 1010.51847 | 10/0.28073 | 10| 0.71026. | 10| 0.38457
13 1000 00"2.0 1000 {092.0 | 1000 | 182.0 { 1000 272.0 -10| 043.000 10{0.50000 | 10 0.50000 10 0.50060 10 0.50000
‘125 1000 049.0 | 1000} 148.0 ; 1000} 229.0 1000 310.0 10| 004.000 100.57206 |{ 10{0.57206 | 10| 0.41562 | 10| 0.41562
31 1000 {041.0 | 1000 { 123.0 | 1000 221.0 | 1000 303.0 -101008.000 | 10}0.53366 | 10}0.46390 | 10| 0,53366 | 10{ 0.46390
Figure 4-32. A-N Range Data Sheet
TRUE
NORTH
32)
N
v
Figure 4-33. A-N Pattern for Row 1 Figure 4-32
4-43

{gs




MARK I

4-94. SAWTOOTH GENERATION FOR CONTINUOUS ROTATION SERVO DRIVE.

4-95; General. In order to drive the continuous-rotation servos associated with the .

simulator peripheral equipment, it is necessary to generate two voltages linear with

- respect to the shaft angle as shown in figure 4-34.

4-96. If the angle exists explicitly in core memory, there will be a linear function
of the angle. This function may have to be modified in some way to get it in a form
similar to the '""Red" sawtooth of figure 4-34 and, then have unity added to or sub-
tracted from it to get the "Black' sawtooth. - This is a matter of routine program-
ming.

4-97. If, however, the sine and cosine of the angle is in core memory the problem
is more complex. The starting point is a truncated series for the arcsine:

+1.0.

e

Figure 4-34. Sawtooth Functions

4-44

-



) Fxrst quadrant 2

~ Second qu.adx“ant y A

MARK 1
9 =”sin"'1 z =2 a' +b' s sz o (1)
where a. = 0.986706 |
b = 0.24803 -

4 98 Equation (1), with the given value of the constanta, is valid for -4505 0 = +

450, It is exact at zero and at the end points and has a maximum error of 7.32
minutes in this range.

4-99. Relationship Between 6 and ¥ . Because of the restricted range of validity

. of equation (1), the quadrant in which Y lies must be determined to operate on it

appropriately. If the angle lies in the first quadrant, subtraction of 45° guarantees
a value for 8 within the valid range. Likewise, for a second quadrant angle sub-
tract 1359; third quadrant 2259, and fourth quadrant 315°. Following this scheme

- the followi.ng equations were derived

sin 6 - sin W = 459)

sin ¥ cos 45° = cos ¥ sin 45°

=1 [sian - costl/] o N (2)
Y o

= sin (¢ - 135°)

sin y.cos 1359 - cos Y sin 1359 B
=1 sin_ U+ COB Y | B )]
4 b cns] e

Third quadrant: 2 = sin 6 = sin (zp 2250)

‘siny cos 225 - . cos tP sin 225°

1 smtp-cosw - | = (4)

Fourth quadrant: Z =6 = sin W/ - 315°)

= gin Y cos 315° - cosw sin 315°

=1 (siny + cosW)

(8)

4-45




MARK I
. 4 100, Equations (2) through (5) all have the same form, differing only in their

- prefix signs which are systematic, alternating from quadrant to quadrant. To
simplify the equations the following identities are assumed

Xx=sinyy -cosw,l«;andH /X/ /Y/

Equation (1) becomes:

9=+H|[a +b' B2 ' | (1a)
- or, normaliiing with respect to 7
0'=sH [a' + bHZ | | - - (8
~ Where: a.= a' = 0,22208686
Vew
b=p =0,02791814
2V2n

The plus sign appnes in quadrants I and III, and the minus sign in quadrants II and
IV, :

4.101, The relationship requiredbetween 6 and ¥, as defined in paragraph 4-99 and
as given by equation (6), in normalized coordinates, is shown in figure 4-38,

: - £
/ 90/ lBO/ 27 960’ 4
-.25 '
Figure 4-35. Relationship Between ¢ and ¥In Normalized Ordinates

4-46

3 - e j-:;' - N G S SN NS S0 WS W WS S e - e e



MARK 1

7

,f‘-\l) w . ") .

A

10 TauaD. Tand o

QUAD.II and I

I
|
I
|
l
[
l

- -#———-— —

N
o

'IO
Figure 4-36. Results of Addition to Flgure 4-35 |
4-102. Comparison of figures 4.34 and 4-35 illustrates what must be done in pro-

gramming to compute the sawtooth. .If one-fourth is added to the curves. in figure
4-35 corresponding to quadrants I and III, and three-fourths to the curves for o

quadrants I and IV the result will be as shown in figure 4- 36

4-103, If the angle lies in quadrant I or quadrant II equation (6) has effectively glven
the ""Black" sawtooth. If the angle is in quadrant III or IV solve for the '"Red" saw- .
tooth. In either case it is only necessary to subtract unity to obtain the other func-
tion. .

4- 104 Quadrant detection is achieved by defining three Boolean functlons'

1. K1 = 1 when sin ¥<0

2. Kz = 1 when cos ¥<0'

3. Kg = K1 @ K2 = K1Kg + KiKg = 1 when K1 = Kz

or K3 = K1 ® E lez + K]_Kz = 1 when Ky= Kz

4-105. K1=1means that rrwzvr and Kg = 1, In the second sense it means that
the angle is either in quadrant I or quadrant III., The second form for K3 is more
convenient in implementing the program, These two functions are luﬂicient to -
eetablioh all necessary conditions,

4-106. Figure 4-371sa sample problem of this nature. The "Black" sawtooth is
assumed to be stored in core memory location 0646, and the ""Red" sawtooth in

. 0647, . Other locations, while given, were chosen at random,

4-47




8h-¥

oae ___ 26MAYI®8S , CODING AND CONSTANT SHEET

promew__ 360° SERVODRIVE .~ \ o © MARK | COMPUTER :
woicn R EMACK -~ . : - :

ProcR ' i eage—1 oF 2

£.2214-A .
INSTRUCT 10N MNEMONIC “ ARITHMETIC . BOOLEAN Rt ‘
. . - ‘
~user - (Il - cooe § ACCUMULATOR 2 ACCIMULATOR a(3212]3 REMARKS ‘
. nianiwian
1.2 3 45 67 - -
IR o eon & _ :
T 7T 1271 41D ’;m i o
02| FLN _ k2 i 2 =} In Quadrants II and NI
™7 T T T - A i - .
. _o4}lLD x= L) N
T 54 | FLN S k1 ~ ki = 1 In Quadrants Il and IV
LINE B I ) - N - - :
061 ABS ~ | x=/sing/ ;
T™T7 To!" SUB Vi TN Qﬂ
T Fnla ST L
0.9 : . I .
T F T 1 71 7 i L4 N y N .
1 0 BLD 3 311000 . : _ k2
T T RS0 T ! 1 i . ] 1
T ITU‘IAI; j H rnTa. . - k‘vko
12 s 3lioo0g v kg =2
7 T7T 71T - T L g
13 OR N 3 0/j0 0 0.2 -3 : k1 +Kk2 >
T | T T 11 N - . w
T TTH MLT ﬂ13 214181- T w
1 5!1BIN 3210009 [ KK - .
TV 1 177 LN I DR LD O 2 E I . - —a y . -
16]|]/oR sofloopof| : 3 - QR = ki k2 + K& K3 = 1 In Quadranta I and Il
=TT T T T T 14 - - i i .
iifues el T ‘
T 1 |>|11|8 - HEBL— Ts :|7;,_lq
AL A 2+ B2
2 0] | MLT 0 3 7 § i
T T T — T TTT
A i
AL AL i .- L .
2 2] INPB 2 5 77
T 17 - T L P 3
AT 1alooeel 1
ot Lhoaall™ 1S eia : -
2 2- p3 = ) : Skip  In
_ 1T T 3 e — - = - -
2 6|lms 1 3[boool]l | HD-pa+npd) ' '
Tt T - T TT - - - - .
2 llADD 192 L2 s DS T, B :
L i " ] 1 . . 2/ . Dependent on Conditional Skip -
T T 72.9]|ew 3lpooy] : i , | ki =1 ¥ RedSawinoth Has Been:Computed
— ,;? — TT T - R IR —l Either Red or Black

i Fxgure 4-_37. 360° Sérvd.Drivg (Sheet 1 of 2) -




¢ - . - .

oate 26 MAY 1063 : CODING AND CONSTANT SHEET

) .
PROBLEM 360" SERVO DRIVE : MWARK 1 COMPUTER
procRawmer R-E. MACK =~~~ =~~~ :
: . PAGE_2 _oF 2
F.2214.4 . .
i INSTRUCT 10N MNEMONIC ok NEM., ™ ARITHMETIC . BOOLEAN - 0: n‘ Q-
NUMBER CODE ;81\l apo. 2 ACCUMULATOR % ACCUMULATOR <t Bt K3 B
a - 2l 2|<|=< REMARKS
CERALAE]
P2 3 4.3 8 7 8 1 12 13 143
v 1 1T 1 ) ]
3 11} SUB 0212 46
LN S SN N N T )
3 2| BIN. 3 . X
LS § T L § T N *
i 3 31| IST 2 410 6 ATﬂL
LU AN YR M NN L |
v 7 F F § 7 H LK
L R AR 1 ) ri1i
LALLM T T 77T -
.3 sliD 20llo647 "Red" Sawtooth
LR B '5 L 1 TrTT 4 g " T
- 3 ks " -
SIS -3 5 ¥ & T . - 1/4 {‘Red" Sawtooth) ‘ ake the "Red” Sawtooth Which Varies From -1to +1Over |
- ;3? ADD 01246 1/4 ("Rac” Sawtooth) + 1/4 ° - "Red"
3 alist 2, 0.0 ) Sewtooth Wil Now Vary From -1/2 to +1/2
L SO L A | T .
| 200 S0 L LD} T i T
17 §F 1T 77T BB TV E
L S R I L A | - T T 11 w
T 9 1T 17 1 I t LA 3 N
LI SR L A | T Tt
The Above Program Assumes That Steps 34 Through 37 Have =t
T 17 11 T T T Oy
Been Compieted Previously
T 1 U1 7 T LI B
T . 7T 117 ] 1 L L
T 1 17 17 T T U0
I 2 TR B ] T T1 73
L T T T
T T 7 T N S | _— T T e )
T ¢ + T r T 1 L
- T T v r T -1 T 1%
¥y r i 177 71 N L] 1 r[
T T T 7 L L
T LN B B 1 1 T T 1
Ll T T T B j 1 1 L.
LR T 1 T H LI T

6v-¥

Figure 4-37. 360° Servo Drive (Sheet 2 of 2)




o | - MARKI
4107, RATE DRIVE FOR.CONTINUOUS ROTATION SERVGS. -

. 4-108, General. Functions such as ADF manual loop drive or gyro preceseton

- terms requﬁe a method of driving position-servos in such a way as to give the

- effect of velocity servo performance. The sample program discussed in the follow-
lng paragraphs gives this effect.

: 4 109, Two aslumpttone are to be made m this sample program. The flrlt is that
" a modified form of the "Red" sawtooth (refer to paragraphs 4-94 through 4-108),
* associated with the angular function involved (see figure 4-38), has been generated
. and sto‘rec‘l) 61;1 the machtne as part of the basic eawtooth-generatlon program (para-

k4

N-<
of

Figure 4-38. Modified "Red" Sawtooth

' 4-110. The second assumption is that an incremental angle, AY , as a function of

. the required rate and the band on which the program has been written has also
- been stored ln the MarkI. |

- sons. First, it makes the program overflow-proof, and, second, it simplifies the
' generaxion of Boolean control functlone. Let the following functtonl hold true.
Arithmetic | | |
- A\[l = I_nc,r'emental Angle o
YR = Last compoted value of modified sawtooth |
VR=¥R+AY¥ = New value of modified sawtooth

Boolean: , ‘ |
A = 1 when AV is negative

B = 1 when (V'R - 1/2) is negative
C=1 .v-vhen.!ll ‘R is negative

4-50

e _4-111 The modiﬂed "Red" sawtooth as shown in figure 4-38 is used for two rea-




MARK 1

-4-112, Examination of figure 4-38 shows that there are two critical pomts for -

\" R to be checked. Obviously, if ¥/ R has a value near zero and AV is negative,
'R must be checked to see if it is negative. If ¥‘R is negative add one-half to
obtain the correct value. If ¥R has a value near one-half and A ¢ is positive,

¥R must be checked to see if it is greater than one-half, If this condition exists,
subtract one-half to obtain the correct value. Under any other circumstances, the

- ¢omputed value of ¥'R is the correct value.

- 4-113. ¥/ R must be "operated' on to retrieve the correct form for the "Red" San"

tooth, and either add or subtract one, as required, to obtain the '"Black' sawtooth.

“Figure 4-39 is a sample program for a problem of this type.

4-114. DIAGNOSTIC PROGRAM.

4-115, Diagnostic programs serve as a check to ensure that the Mark I is per-

" - forming functions within its capabilities (addifig, subtracting, multiplying etc.).

4-116. Diagnostic programs utilize the '"Conditional Stop' instruction in conjunc-
tion with the ""Conditional Skip" instruction in all phases of the program (i.e., if a
certain condition is met, skip to the next part of the program; if not, stop). As
readily seen this type of program is a valuable aid to maintenance personnel.

- 4-117, ‘A sample dié.gnostic program to check the multiplication process within the

Mark I is illustrated in figure 4-40.

4-118. PUNCHED t:ARDs,,

4-119. General. IBM type 5081 punched paper cards are used to contain the
permanent program for the Mark I. Each card has 80 vertical columns and ten
horizontal rows numbered zero through nine. Above row zero there is space for
two punches. The "eleven" punch is parallel with and directly above row zero,.
with the "twelve' punch in parallel and above the '"eleven' punch.

"4.120. The allowable characters to be punched on the cards for use in conjunction
- with the Mark I and Tape Preparation Unit (including Card Reader), are the ten
numerics (zero through nme), all upper case alphabetics and the following special

characters
a. Left Parenthesis (Punch in rows 0, 4, and 8)
b. Right Parenthesis (Punch in rows 12, 4, and 8)
c. Left Bracket (Punch in rows 11, 3, and 8)
d. Right Bracket (Punch in rows 0, 3, and 8)

e. Equal Sign (Punch in rows 3 and 8)

4-51




DATE 26 MAY 1963 CODING AND CONSTANT SHEET
prosLEM ____VELOCITY SERVO DRIVE. MARK | COMPUTER - .
PRoGRAWER WL HOQOP . ==
page—1 or. .1 _
Fe22140A B
B i -—fvimiw
- | instRUcTION MNEMON!IC <8 MEM, u ARITHMETIC S BOOLEAN 1.1.1.
. . . >1>
. NUMBER CODE o0 ADD, ' é ACCUMULATOR 3 ACCUMULATOR g 3 3 g R xS .
12‘3 “l"] l‘ .
o1/l 1o 201276 DY Load Incremental Angle
LI M .
! 0 2{] FLN 1 A A=15>0\¥<0
T ¥ v 7 ¥
APD ogli00 Dyt -’ Form #'R
L} | LEELL
! 0 4| FLN 1 c C=1-FR 0
LS L R i
T 7 flAl 15 01 2%# B =1/ -
. 06!| FLN 1 - B B=1>YR-1/2<0
T T T T -1
0 7]| oR sollooo A+B
PR vy -
- T T Bl Bn 32|00 00 AiB=AB
) L L I T R
09| skp 2 6l |0 s
T 7T L Ll T
1 0! ADD o1llz 11 ¥R Add 1/2 19 Recover ¥'R_
T 1 L L T L 1 LI |
11!]BLD 33loooy A
LR AL 1 LA
21| AND 31110004 AC
BIN 32/looo AC=A+C
™ T TT T T Y
T 'LTA SKP_ 2 8 orn'na
1501 ADD 0 1ll2 1 11 YR 1/2
L 2L . 2 MR M I T T
16|]|8sT 2 200 YR :
LA L M T -
1 7i!suB 0 2|1 005 Y R-1/4 .
T T T T- 7
1 8!!SsCL 101002 [¥R-1/3) .
S DL T L Tr .
19i{|ST 23112001 Store "Red” Sawtonth
TV 1T T 17T L L
20|} FLN- 161000 D D=1=>YR-1/4<0
L U i L L .
g L sKp 2611000
2 2 02{|2500 s [FR-1/4] 1 Sul . -
L ORL I T T - T —
——1 3R . 3211000 : o]
24| | sKP 26110001
2 5] ADD 011i2 5 o ofe re-1ala
TrrrrrT T T N R
26|lsT 2. l:ﬁlr - - “Black"
L L L L T R ] 1 T
T -1 ™17
L R R B T 1 ¥ 1 1t
L 1] L 3R ] T 1 LA T

Figure 4-39. Velocity Servo Drive Program

I UV




A

DATE 6-27-68 - " CODING AND CONSTANT SHEET
prosLen_DIAGNOSTIC TEST (MULTIPLY) . MARK | COMPUTER
prochamer _S. JONES ' :
. PAGE_LOF_I__
Fo221444
INSTRUCTION MNEMONIC - uw MeM. w ARITHMETIC . BOOLEAN ol Bt i
NUMBER CODE °-§ ADD. F ACCUMULATOR 3 ACCUMULATOR - A=
. H & 3 Tizls REMARKS
3 4 3 & ,l ll,l{,l‘;l .
TT T T T |uok 22{/5 2572 10101010101 : _ . Load Constant
T 1T v 7T T LIRS -
0 2}{scL 10/l1005s : Scale Right Five Places
T T T 7 T T T K
03}]|scL 10lji10905 : Scale Righ
T T 1 7177 H LI B |
—04tlscL 10l 002 i Scale Right Two Places
o o5lliok  ljaalisas2 10101010101 Load Contant
T LA k]
e —0.81lapp 01{loooo 10101010101010101010101 = N =2 AddSalvage Register to Accumulator to Form Constant N = 2/3
T N -
MR 1553, 2212000 2% - (1/8) Joat : Load Censtant ‘
o8llmMLT 03floooo /3 3% Multiply By Salvage
T T T T T 17 :
0 9! I NPA 12!loooo
L A A A L L
T T |Txlo m 215 3'?'7;[ g
11|NPA 12/loooo
LIRS AN I R B 1 T 1T *
12/ INPB 25ll8 7177 2/12 =1/8 %
T T 71 T T T -
i 31 SET 11llo ooz 1/8 @) =2/3=A : Shift Two Placas To Form Constant A =2/3 ~
A SUB. 02{l0000 1 Subtract Salvage (A - N = Errar) -t
15)|scn 10/j0005 . '
LI N BN B SN § T 7T
16}}sCL 10li000s
T 1 | B B N T LRI
17]|scL 10//0005
LI s e a T T
181 lscL 10 !‘Lo 0
T 1 1 1T 1 7 1
18]}scL 10lloooz2
L L L S T 1 1
— Tﬂ £ SFT 11 ‘70 » {+) Place The Last Digit Of Answer In The Sign Location
2 1! IV 13/lo0900 )
T rrrt L -1 1
2 2| ] FLN 16/loooo 11
T T T T T )
2 3} {SKP 261000177 _Skip To Next Phase Of Prograw If Answer Correct (Fquals0) |
T 1 v1 17 ¢ T 1 -
2411STP 7 an 00 Stop If Answer Incorrect
LN B B B ¥ LR S
ru
L L I 1 R L T 1
L LR L T 1 1
LN ] T 1 1 71 T 1 1T 7
T T 1t T T 171
T T TT T LA B

£4-%

Figure 4-40. Diagnostic Program




e e R e ——— Sn— s _____

- MARKT
f. Plus Sign (Punch in rows 4 and 8)
- g. Minus Sign (Punch in row 11) |
h. Decimal Point (peridd)r(Punc_h, in rows 12, 3, and 8). .
i. Asterisk (Punch in rows 11, 4, and 8) |
je ‘;Divisiori Svign (Punch in rows 0 and 1)
| k Ampersand or Pvlu;s Sign (Punch in row 12)* |
~ *Used to arm the TPU
NOTE
- An "11" punch blus one of the allowable numerics ptinched in the
.same column is used for the flag bit. A "12" punch and "11" punch

in the same column constitutes the Block End Code.

4-121, Figure 4-41.shows all allowable characters that may be punched on a card
‘when used with the Mark I and Tape Preparation Unit.

4-122, The first card for the first quadrant of each General Purpose or Interpolator
band must contain a '"12'" punch followed by seven NPA instructions. For all other
General Purpose or Interpolator band quadrants, and the four Data Preselector .
band quadrants, the first card must contam a "12" punch followed by one NPA in-

- struction,

4. 123 General Interpolat,or Preselector and Core Memory progra.ms have indi-
vidual card formats

 4-124. General Program Card Formats. General Programs may have either of
two card formats:

a. One instruction per card (same as the '"Coding and Constant" shéets)

b, Eight instructions per card plus a sort number, and an equation ""header"

card for each individual program within the overall General Program.
- 4 125 The card format using one instruction per card is as follows:
a. Column 1 through column 4 are reserved for the eqaatmn number, The

- equation number is dependent upon the type of program being prepared. Table
'4-2 lists the equation numbers for the various types of General Programs.

4-54

. AN



CABCDEFGHI JKUMNOPQRSTINMUMYE  D123455 09 == == (( )) $F 9y o0 /7 == W 1T
N | | AASEEEEES [ N Sbs i | B n

- 29222222220222222282222222222202222222222222222222222222222222222222222222222222

' 5555'55555555'5555555'55555555555'5555555555555555555555555555555555555555555555

MARK I

. Wt
SRRRRNREE : _ . T1 - g gy 12" PUNCH
ooocoopooocoPpBEREARROoRoos00000000000000EHE0000000 0000 Ho00000000000000600
L
1

123

| BB

PAUNNRNBIVBHUNNLA2NNBBTAXDINDIUBRINIBRVLLOUSENEEDHNUNNARNUANNRVUBBIBENIRIUTSININBNN

0000
4
ARl AR R R RN R RN R RRR ERRER R AR AR R R AR R RRERRRRRRRRR)Y [ ARRRARRRRRRRRRERE

00
[ ]
11
33§33233333302333333033333233332338333333333338833333330030N30033233333333333333333

SeaBodaaaaaaBanasansBasaasanasssBasssnaaBiaasaliBelBoasasnnassnaaascileatasasinng

66666B66666666B6666666M66666666666H666666665666666666666666666666E6E6CE66666666¢
R RRE| RRRRA RN RRRRRRRT RR AR R AR KRR R AR R R RN R AR R R R AR R AR R AR R RARRRRRNRRRARE]

sssssssBesssasssesssesshosssesosnsclossBBolBelRsNeRRsRNsRNsssassshlssssoasssss
23s:;;gg;;333&33!&33;:33!332;3:zaazs&;zzzzazzazzaa3:3:3::::33;:233::3:3:3::3:::
Figure 4-41. IBM Type 5081 Paper Card
Table 4-2. Generai Program Equation Numbering System.
@atibﬁ Numbers Simulator Section
| 000 - 0999 - Flight Equations
| 1000 - 1999 Expansion
2000 - 2999 Flight Accessories
3006 - 3999 Expansion
4000 - 4999 - Engines
5600 - 5250 vAir Coriditioning, Pressurization etc.
5251 - 5500 Electrical
5501 - 5750 Hydrauliés
5751 - 5999 Expansion
6060 - 6999 Engine Accessories
7000 - 7999 Expansion |
8000 - 8999 Nav. Comm.
9000 - 9499 Expansion
9500 - 9'999 Misc.A Simulator

4-55




MARK I

b. Columns 5 through 7 are used for the mstructmn numbers within the :
specific program. :

c. Column 8 always has a 12" bunch to inform the TPU that an instruction
is about to be received. :

d. Columns 9 and 10 are used for the O.P. Code.

e. Column 11 is left blank.

f. Column 12 through colq.mn 15 are reserved for fhe memory address.
g. Column 16 always has an "A" punch which di‘sabies the TPU.

h. Column 17 contains either a plus or minus 51gn for the scale factor.
i. Columns 18 and 19 are reserved for the scahng factor |

j. Column 20 is left blank. |

k. Columns 21 through 80 are reserved for remarks.

4-126. The card formats using an equation "header" card and eight instructions
per card are as follows:

a. Equation "header" card.

(1) Columns 1 through 4 contain the equation number (Refer to para-
graph 4-125.) _ :

" (2) Columns 5 through 20 are left blank,

(3) Column 21 is either F, M, or § to indicate the type of band to be used.

(4) Column 22 would contain a number one through eight to indicate
which one of the particular bands is to be used. ‘

(5) Column 23 is used to indicate which drum quadrent the equation is

on. If the equation is for slow band four quadrant three, column 21 would contain S,

column 22 would be four and column 23 would be three.
6) Column 24 is left blank.

(7) Columns 25 through 26 contam the three digits . g1v1ng the total num-

- ber of 1nstruct10ns for the equation. (The header card is considered an instruction. )

Thus, a 29 step program appears as 030.

(8) Column 27 is left blank.

4-56

g R P ¢ st .




MARK I
9) The trainer desigﬁati.on is printed using columns as required.
(10) The ed,ua‘;ion name is printed after the trainer designation.
" (11) The name or initials of the programmer follows the equation name.

(12) The initials of person making the current revision (where appl'icable)
follow the original programmer's name or initials. :

(13) Next the date is printed (this is the original date of the program
unless revisions have been made, in which case, the current revision date is used).

(14) Last, the current revision letter is printed (when applicable).
b. Eight instructions per card format.

(1) Column 1 of the first card in the program contains a ''12'" punch
followed by the NPA instruction. All cther cards required in the program would
have a ""12" punch in column 1 followed by the O.P. Code and Memory Address.

(2) Columns 11, 21, 31, 41, 51, 61 and 71 all contain a ''12" punch
followed by the O.P. Code and Memory Address.

(3) Columns 78 through 80 contain the octal number of the card in the
General Program.

4-127. Linear Function Interpolator Card Formats. The card format for all
Interpolator programs is consistent except for the number of cards required to
complete the program and the sort number. The sort number is a combinatjon of
two alphabetics and three numerics starting with AA0OO1. Card formats Tor one,
two and three variable functions follows.

4-128. Single Variable Function. A single variable function will require five cards

to complete the program. All cards will have a "12" punch in column 1 followed by
an '""11'" punch plus the start of the first word in column 2. (The ''11" punch is used
for the flag bit.) There will be an "A" punched in column 73 of all cards in the
program, and the sort number punched in columns 76 through 80.

Card 1. The control word wiil be punched starting with 100 in column 2.

Card 2. The address of the independent variable X punched five times
starting in columns 2, 10, 18, 26 and 34, and preceded by a "12" punch,

Card 3. Contains the dependent variables starting in column 2. Each

additional dependent variable will be punched starting eight columns from the start
of its predecessor. All dependent variables will be preceded by a ''12" punch,

4-57

T




MARK I

Card 4. Contains the computer time starting in columns 2 and 10 and pre-
ceded by a ''12" punch.

Card 5. Contains the answer address repeated flve times. Thls card W111
also have an "11" punch in column 34.

4-129. Two Variabl_e Function, A two variable function will require a maximum of
14 cards to complete the program depending upon the size of the data field.

Card 1. Same as Card 1 paragraph 4-128 except the control word will start
with 200 in column 2.

Card 2, Same as Card 2 paragraph 4-128.

Card 3. Address of independent variable Y. Card format is the same as
Card 2 paragraph 4-128.

Card 4. Same as Card 3 paragraph 4-128,

Card 5- Card 12 (where required). Same as Card 3 paragraph 4-128 except
there will not be an 11 punch in column 2 in any of these cards.

Card 13. Computer" Time Same as Card 4 paragraph 4-128 except repea.ted
in columns 18 and 26.

Card 14. Ansv_ver Address. Same as Card 5 paragraph 4-128,

4-130, Three Variable Function. A three variable function could require up to 87
cards to complete the program.

Card 1. Same as Card 1 paragraph 4-128 except the control word will start
with 300 in column 2.

Card 2 and Card 3. Same as Card 2 and 3 paragraph 4-129,

Card 4 Address of the independent variable Z. Card format IS the same as
Card 2 paragraph 4-128;

Card 5. Same as Card 4 paragraph 4-129,

Card 6 - Card 85 (where required). Sa.me as Card 5 - Card 12 paragraph

4.129, .

Card 86. Same as Card 13 paragraph 4-129 except repeated in columns 34
and 42.

Card 87. Same as Card 5 paragraph 4-128.
4.58




MARK I

4-131. Data Preselector Card Format. The card format for Data Preselector
programs is consistent except for the number of cards required to program the
various groups of facilities. (See Appendix A.)

4-132. Each Data Preselector Card will contain the following information:
a. Type of facility.
b. Call letters

¢. Memory address . (Refer to paragraph 3-64.)
d. Simulator designation

e. Facility information (one word per card i.e., latitude, longitude, fre-
quency etc.). _

The binary equivalent of the facility information may also be punched on the card,
but this is optional.

4-133. A '"12" punch used to inform the TPU that information is about to be
received must be in the column directly preceding the facility information.

4-134. Data Preselector cards will have the first letter of the facility type punched
in column 1, and the last numeric of the facility information (binary equivalent
only) in column 80. All other information is approximately evenly spaced across
the card.

4-135. Core Memory Cards. The punched paper cards used in conjunction with
the Core Memory have no specific card format. The only requirement is that a
""12'" punch appear in the column directly preceding the Core Memory word. The
Core Memory card usually contains from one to four Core Memory words.

4-136. TAPE FORMATS.

4-137. Work Tapes. A paper work tape shall be prepared on the Tape Preparation
Unit (TPU) through keyboard entry or by using the tape reader to copy another
work tape. Work tapes shall have a maximum content of one 1,024-word block of
data, and shall not be used to operate the drum loader. Work tapes can be repro-
duced with blank spaces but shall ignore deletes.

4-138. Work Tape Special Codes. The following special codes shall be included
in a work tape:

a. Block End, or Stop Code: 11111-001 shall indicate the end point of a
quadrant (block of 1,024 words).

4-59




1
|

| MARK I

b. Delete Code ' 11111' 111 shall be used by the eperator to delete any

_ desired tape data word, Thie code must be punched over all lines of the work to be
S ~‘de1eted '

: c. Gap Code: 00000:000 shall be used as desired between data words to
5 vprovide tape gaps for later insertion of modified words or for tape splicing. A
work tape may be spliced between any two data words.

d. Dummy Code: 0111 shall be placed at the most signification end of the
first line of each data word except for general purpose instruction words. This
.dummy code will be punched automatically in each first line when used.

'4-139‘, Master Tapes. A master tape (paper backed Mylar) shall be prepared on
the TPU by using: (1) the tape reader to copy a work tape or a previous master
tape; (2) keyboard entry, or (3) readout of the accumulator or core memory
.contents.

. 4-'140° The form of the data words on a master tape‘ shall be identical with their

' form on a work tape, but delete codes shall not be permitted on the master, and

there will be no gap codes, except between data blocks. The transformation of a
work tape to a master tape shall consist of removal of all deleted data words and
of all gaps within the data block.

~ 4-141, If the master tape contains more than one data block, the succeeding blocks
~ must be arranged in block address order. The setting of the first block address

. into the drum loader is performed manually, but succeeding blocks shall be trans-
ferred automatically to addresses in ascending order. Table 4-3 lists the address
for the first word in each block (quadrant), and the band on which the quadrant is.
located. ,

4-142. The final block of a multiple-block master tape will have a block end code.

{paragraph 4-138) modified to a reel end code: 11111,101, through the operation of

-2 'manual keyboard control. In a single-block master tape, the block end code will
stop the drum loader, but in a multiple-block master, a control change will cause
the block end code only to load the block data and then continue, while the reel end
code stops the drum loader.

,4-143 Each tape used for loading the first quadrant of every General Purpose or
Interpolator band must be started with seven NPA instructions while every other
quadrant associated with either the General Purpose or Interpolator bands must be
started with one NPA instruction. Data Preselector tape need only have one NPA

Jo inatruction for the start of each quadrant.

. 4-60



i Bl

¥

BAND

FAST

MEDIUM 1

- MEDIUM 2

MEDIUM 3

SLOW 1

SLOW 2

SLOW 3

SLOW 4

MARK 1

Table 4-3. Drum Loader Quadrant Addresses |

QUADRANT

DGO DI s B COIDI I RGN DGR RN RGN N e

0O N -

ADDRESS

000
001
002
003

010
011
012
013

020
021
022
023

030
031
032
033

040
041
042
- 043

050
051
053

060
061
062
063

070
071
072
073

4-61



462

= T

MARK I

Table 4-3. Drum Loader Quadrant Addresses (Cont)

BAND

INTERPOLATOR 1
INTERPOLATOR 2
INTERPOLATOR 3

INTERPOLATOR 4

DATA PRESELECTOR

QUADRANT

o O BN L DS LD s W O DI

W O DD s

ADDRESS

130
131
132
133

140
141
142
143

150
151
152
153

160
161
162
163

170
171
172
173




. MARKI

4144, PREPARATION OF DUPLICATE TAPE (CHANGE IN ONE OR MORE
COMPUTER WORDS) :

~ 4-145. To prepare a new tape with corrections or changes in certain address
~locations (tape to tape), proceed as follows:

a. Set the four location digiswitch (located on the tape reader panel) to the
first address where a correction is to occur.

mv ey ———— et ¢ o o a1 mr

. b. Actwate the proper mode button for the type of tape to be changed (i.e.,
General Purpose, Interpolator, Data Preselector ete.).

_ c. Place the Tape Preparation Unit in the tape reader mode by activating
- either the "Master Tape' or "Work Tape'" buttons.

-d. Press the ''select' button, then the ”start" button both located below the
diglswitch

. e. When the tape reader stops, activate the keyboard select switch and
- enter the new computer word or words via the keyboard.

& Activate the "tape reader' button, |

g Activate the "continue" button
h. Activate the "start" button.
| ~ NOTE

The master clear button must be activated when changing modes.

4-63




o



MARK I

APPENDIX A

Qgeration
Add

Subtract

Multiply

Negative Multiply
Square |
Divide

Square Root Step ‘
Scale .
Shift

No-Operation

Invert Sign
Absolute Value
Zero Slice

Flag Negative

" Load Accumulator

Index Load Accumulator
Load Constant
Store‘xééﬁmulator
Index Store Accumulator
ﬁq—Operation' '
Conditional Skip
Conditionﬁl Stop
Booiean Sum

Boolean froduct

Invert Boolean Accumulator

Load Boolean Accumulator

Store Boolean Accumulator

_Tape Stop Code

Mnemonic Code

MARK I COMPUTER MNEMONIC AND NUMERIC CODES

Numeric Code

ADD
SUB
MLT

NMT
5Q
DIV
SRS

SFT
NPA
INS
ABS
ZSL
FLN
LD

" ILD .
LDK
ST
IST
NPB

STP
OR

BIN
BLD
BST
TRS

01
02
03
04
05
06
o7
10

11
12
13
14
15
16
20
21
22
23
24

25
26
27
30
31
32
33
34

37




33
87

134

268
536
0173

147
204

589
179

- - 359
719

438
871
755

00 > b

2n n
1 o
2 1
4 2
8 3
16 4
32 5
64 6
128 7 .
256 8
512 9
024 10
048 11
098 12
192° 13
384 . 14
768 15
536 . 16
072 17
144 18
288 19
576 20
152 = 21
304 22
608 23
216 24
432 25
ge4 . 26
728 27
456 28
912 29
824 30
648 31
206

o
©
»

W ed LD

b OO 89

-

-3

N,
6O & W
DRI

MARK I

TABLES OF POWERS OF 2

25
625
812

© 908
953

976
488

244

123

030

015
007
003
001

000
000
000
000

000
000
000

000 .

000
000
000
000

000
000

. 000

000

000
000
000
000

25
125
562

281

140

070

038
517

258
629
814
907

953

478
238
119

059

029
034
007

003
001
000
000

000
000
000

1000

000
000
000
000

312
186
578

789

394
697
348

674
837
418
209

604

802
201
450
725
862

931
465

232

116

058
029

014
007
003
001

28
125

062
531
2685
632

318
158
879
289

844

322
161
580

280
845

322

861

830

415
207
103

551
s
637

818

' 812

406
203
101
550

8.

3817
103
596

298
149
574
287

043
321

830
915

9817

978
989

25

125
562
781

390
605
847
923

461
230

815
307

6583
826
913

456"

14
. 807

403

628
32
656
828

914
957
478
739

869
467
733
366
183

091
548

]
128
063

. 081

815
257

628 -
814

703 .
881

428

s

635
812

463

613 .

93
4

3

638
N

ors

i

R SR A AR ES S U S T



j

MARK 1
. 'RADIO AIDS TYPE CODES

Type Code 1 - MM Type Code 6 - H

T

Type Code 2 - OM MH
-. BC
Type Code 3 - FM LMM
. LFM LOM
- BONE ‘
z Type Code 7 - MA
' MAZ
Type Code 4 - ILS ML
: : ILSDME MLZ
MRA
Type Code 5 - LYR MRAZ
MVR MRL
HVR MRLZ
LVTDME RA
MVRDME RAZ
HVRDME RL
LVRLTC RLZ
LVRMTC
LVRHTC
MVRLTC
- MVRMTC
MVRHTC
HVRLTC
HVRMTC
HVRHTC
LTC
MTC
HTC
UHF DF

A-3°




Card 1
Card 2
Card 3

- Card 4

Card 5
Card 6
Card 7
- Card 8

Card 1
Card 2
Card 3

Card 4

Card 5
Card 6 .
Card 7
Card 8

- Card 11
Card 12

Card 1
. Card 2
Card 3

Card 4

Card 5
Card 6
Card 7
Card 8

" Card 9
- Card 10
. Card 11

Card 12

Card 1
Card 2

Card 9 .
Card 10

MARK 1

RADIO PRESELECTOR TYPE CODE WORDS

' Type Code 1 or 2 MM or OM

_Word 8

Word 1
Word 2
Word 3

00000000000000000000
*000000000*11111311311
Latitude lower (10) Latitude
upper (10)
Longitude lower (10) Longimde
upper (10)
Sign (1) Latitude (19)
Sign (1) Longitude (19)

sine of axis (10) cosine of axis (10)
MISC (6) 0 0 0 0 elevation +1000 (10)

Word 4

Word 5
Word 6
Word 7

Type Code 3 FM, Z, BONE, LFM

Word 1
Word 2
Word 3

00000000000000000 00
*000000000*111111111
Latitude lower (10) Latitude
upper (10) .
Longitude lower (10) Longitude
upper (10)
Sign (1) Latitude (19)
Sign (1) Longitude (19)
sine of axis (10) cosine of axis (10)
type (4) 000 0 0 O elevation
+1000 (10)
call letters (16) MISC (4) (16 one's
for Z) '
Word 10 call letters (16) MISC (2) 00
(18 one's for Z)
Word 11 call letters (16) 0 000 {16 one's
for Z)
Word 12 call letters (18) 000 0 (18 one's
for Z)

Word 4

Word 5
Word 6
Word 7
Word 8

Word 9

Type Code 4 ILS, ILSDME

- Word 2
- Word 3

- Word 2 frequency lower (10) frequency upper

-Word 8

Wordl 00000000000000000000
frequency (10) frequency (10)
Latitude lower (10) Latitude
upper (10)

Longitude lower (10) Longitude
upper (10) .
Sign (1) Latitude (19)
Sign (1) Longitude (19)
" Sine of axis (10) cosine of axis (10)

Word 4

Word 5
Word 6
Word 7

(10 for ILS, 11 for ILSDME)
Word 9 Call letter (16) g.p.a. (4) (MSB) -
Word 10 Call letters (18) g.p.a. (4) (L.SB)
Word 11 Call letters (16) Ry, - Rig (4) (MSB)
Word 12 Call ietters (18) R, - Rig (4) (LSB)
Type Code 6 RBN, LOM, LMM, BC
Wordl 00000000000000000000

(10)

* Octal Input
1. 03 (0 to 1/2)

2. 27 (1/2 to.full)
3. 07 (0 to full)

1 DME MISC (8) Elevation +1000 (12),

Latitude lowér (10) Latitude

Card3 - Word3
upper (10)
Card4 - Word4 Longitude lower (10) Longitude
upper (10)
Card5. - Word 5 Sign (1) Latitude 19
Card 6 - Word 6 -Sign (1) Longitude 19
Card7 - Word7 Ofrequency 120000000
Card8 - Word 8 (()p;awer (9) elevation +1000
(10
Card9 - Word 9 Call letters {18) MISC (4)
. Card 10 - Word 10 Call letters (16) MISC (2) 0 0
Card 11 - Word 11 Call letters (16) 000 0
Card 12 - Word 12 Call letters (16) 0000
Type Code 7 LFRR
Cardl - Wordl 00000000000000000000
Card2 - Word 2 frequency lower (10) frequency
upper (10)
Card3 - Word 3 Latitude lower (10) Latitude
. upper (10)
Card 4 - Word 4 Longitude lower (10) Longitude
_ upper (10)
Card5 - Word5 Sign (1) Latitude (19)
Card6 - Word 6 Sign (1) Longitude (19)
Card7 - Word7 O frequency (12)0000000
Card8 - Word 8 1 power 9 elevation +1000 (10)
Card9 - Word9 00000000000000000000
Card 10 - Word 10 Call letters (16) MISC (4)
Card 11 - Word 11 Call letters (16) MISC (2) 0 0
Card 12 - Word 12 Call letters (16) 0000
Card 13 - Word 13 diameter circle 1 (10) diameter
circle 2 (10) . .
Card 14 - Word 14 diameter circle 3 (10) diameter
circle 4 (10)
Card 15 - Word 15 sine axis (10) cosine axis (10)
Card 16 - Word 16 Sine mag. var. (10) 0 cosine mag.
var. (9)
Type Code 5 VOR, TACAN, UHF/DF
Cardl - Wordl 00000000000000000000
Card2 - Word 2 frequency (10) frequency (10)
Card3 - Word3 Latitude lower (10) Latitude
" upper (10)
Card4 - Word 4 Longitude lower (10) Lungitude
A upper (10)
Card5 - Word5 Sign (1) Latitude (19)
Card 6 - Word 6 Sign (1) Longitude (19)
Card7 - Word7 sine mag. var. (1) 0 cosine mag.
var. (9)
Card8 - Word$8 (() type 6) 000 elevation +1000
10)
Card9 - Word 9 Call letters (16) MISC (4)
Card 10 - Word 10 Call letters (16) MISC (2) 0 0
Card 11 - Word 11 Call letters (16) 0000
Card 12 - Word 12 Call letters (186) 0000
Binary Output
00000000000111111111
 10000000001111111111
00000000001111111111

E
|




0000 0000

- o to
. eryy osn
«(Octal) | (Decimal)

"Octal Decimal

60000 - 24576
70000 - 28672

1000
1
1727]

0512
o
1023

" (Octel) | (Decimol)

MARK I

'OCTAL-DECIMAL INTEGER CONVERSION TABLE

102)

o 1 2 3 4 5 6. 1 o 1 2 3 4 3 6 1
0000 jO000 0001 0002 0003 0004 0005 0006 0007 0400|0256 0257 0258 0259 0260 0261 0262 0363
0010 |0008 0009 0010 0011 0012 0013 0014 0015 0410 {0264 0265 0268 0267 0268 0269 0270 0271
0020 {0016 - 0017 0018 0019 0020 0021 0022 0023 0420 (0272 0273 0274 0275 0276 0277 0278 0279
0030 [002¢ 0025 0026 0027 0028 0029 0030 0031 0430 (0280 0281 0282 0283 0284 0285 0286 0287
0040 [0032 0033 0034 0035 0036 0037 0038 0039 0440 [0268 0289 0290 0201 0292 0203 0294 02985
0050 {0040 0041 0042 0043 0044 0045 0046 0047 0450|0296 0297 0298 0299 0300 0301 0302 0303
0060 {0048 Q049 0050 0051 0052 0053' 0054 0055 04600304 0305 0308 0307 0308 0309 0310 0311
0070 [0056 0057 0058 0059 0060 0061 0062 0063 0470{0312 0313 0314 0315 0316 0317 0318 0319
0100 |0084 0085 0066 0067 0068 0069 0070 0071 0500 |0320. 0321 0322 0323 032¢ 0325 0326 0327
0110 {0072 0073 0074 0075 0076 0077 0078 0079 0510 0328 0329 0330 0331 0332 0333 0334 033%
0120|0080 0081 0082 0083 0084 0085 Q086 0087 0520 10336 0337 0338 0339 0340 0341 0342 0343
01300088 0089 0050 0091 0092 0093 0094 0095 053010344 0345 0346 0347 0348 0349 0350 0381
0140|0096 0097 0098 0099 0100 0101 0102 0103 0540 {0352 0353 0354 0355 0356 0357 0358 0359
01500104 0105 0106 0107 0108 0109 0110 0111 0550|0360 0361 0362 0363 0364 0365 0366 0367
016010112 0113 0114 0115 0116 0117 Qli8 0119 0560 {0368 0369 0370.0371 0372 0373 0374 0375
01700120 0121 0122 0123 0124 0125 0126 0127 057010376 0377 0378 0379 0380 0381 0382 0383
0200|0128 03129 0130 0131 0132 0133 0134 0135 06800 |0384 0385 0386 0387 0388 0389 0390 0391
02100136 0137 0138 0139 0140 0141 0142 0143 0610|0392 0393 0394 0395 0396 0397 0398 0399
0220 | 0144 0145 '0146 0147 0148 0149 0150 0151 0620 [0400 0401 0402 0403 0404 0405 0406 0407
0230|0152 0153. 0254 0155 0156 0157 0158 0i%9 0630|0408 0409 0410 0411 0412 0413 0414 0415
0240|0160 0161 0162 0163 0164 0165 0166 0187 0640|0416 0417 0416 0419 0420 0421 0422 0423
0250 [0168 0169 0170 0171 0172 0173 0174 0175 0650 | 0424 0425 0426 0427 0428 0429 0430 0431
0260 {0176 0177 0178 0179 0180 0181 0182 0183 0660 {0432 0433 0434 0435 0436 0437 0438 0439
0270|0184 0185 0186 0187 0188 0189 01950 0191 06700440 0441 0442 0443 0444 0445 0446 0447
03000192 0193 0194 0195 0196 0197 0198 0199 07000448 0449 0450 0451 0452 0453 0454 0455
0310{0200 0201 0202 0203 0204 0205 0206 0207 0710/0456 0457 0458 0459 0460 0461 0462 0463
03200208 0209 0210 0211 0212 0213 0214 0215 0720|0464 0465 0466 0467 0468 0469 0470 0471
0330{0216 0217 0218 0219 0220 0221 0222 0223 07300472 0473 0474 0475 0478 0477 0478 0479
0340 {0224 0225 0226 0227 0228 0229 0230 0231 074010480 0481 0482 0483 0484 0485 0486 0487
035010232 0233 0234 0235 0236 0237 0238 0239 0750| 0488 0489 0480 0491 0492 0493 0494 0495
03600240 0241 0242 0243 0244 0245 0246 0247 0760] 0496 0497 0498 0499 0500 0501 0502 0503
0370|0248 0249 0250 0251 0252 0253 0254 0255 0770{ 0504 0505 0508 0507 0508 0509 0510 0511

6 1t 2 3 4 5 6 1 o+ 2 3 4 5 6 1
11000]0512 0513 0514 0515 0516 0517 0518 0519 1400{0768 0769 0770 0771 0772 0773 0774 077%
101010520 0521 0522 0523 0524 0525 0526 0527 141010776 0717 0778 0779 0780 0781 0782 0783
102010528 0529 0530 0531 0532 0533 0534 0535 1420|0784 0785 0786 0787 0788 0789 0790 0791
1030] 0536 0537 0538 05390540 0541 0542 0543 14300792 0793 0794 0795 0796 0797 0798 0799
10401 0544 0545 0546 0547 0548 0549 0350 0551 1440|0800 0801 0802 0803 0804 0805 0806 0807
1050} 0552 0553 0554 0555 0556 0557 0588 0550 1450|0808 0809 0810 OB11 0812 0813 0814 0815
106010560 U561 0562 0563 0564 0565 0566 0567 1460|0816 0817 0818 0819 0820 0821 0822 0823
1070} 0568 0569 0570 0571 0572 0573 0574 0575 147010824 0825 0826 0827 0828 0829 0830 0831
110010576 0577 0578 0579 0580 0381 0382 0583 150010832 0833 0834 0835 0836 0837° 0838 0839
1110} 0584 0585 0586 0587 0588 0889 05980 0591 15100840 0841 0842 0843 0844 0845 0846 0847
132010592 0593 0594 0595 0596 0397 0598 0599 1520 0848 0849 0850 0851 0852 0853 0854 085S
11300600 0601 0602 0603 0604 0605 0606 0607 15300856 0857 0858 0859 0860 0861 0862. 0863
1140} 0608 0609 0610 0611 0612 0613 0614 0615 15400864 0865 0866 0867 0868 0869 0870 0871
1150|0616 0617 0618 0819 0620 0621 0622 0623 1550|0872 0873 0874 0875 0878 0877 0878 0879
19600624 0825 0626 0827 0628 0629 0830 0631 15600880 0881 0882 0883 0884 0885 0886 (0887
11700632 0633 0634 0835 0836 0637 0838 0839 157010888 0889 0890 0891 0892 0893 0894 089S
1200|0640 0641 0042 0643 0844 0643 0648 0847 1600 |0896 0897 0898 0899 0900 0901 0902 0903
12100648 0649 0650 0851 0652 0653 0654 0455 1610 (0904 0905 0006 0907 0908 0909 0910 0911
1220|0656 0657 0858 0659 0660 0661 0662 0883 1620 {0912 0913 0914 0915 0916 0917 0918 0919
1230] 0664. 0665 0666 0667 0668 0869 0670 0871 183010920 0921 0922 0923 0924 0925 0926 0927
12400672 0673 0674 0675 0676 0677 0678 0679 1640 {0928 0929 0930 0931 0932 0933 0934 0933
1250/ 0680 0681 0882 0683 0684 0885 0688 0687 1650 (0936 0937 0938 0930 0040 0941 0942 0943
12600688 . 0889 0660 0891 0692 0693 .0694 0695 1600 {0944 0945 0946 0947 0948 0949 0950 0951
1270|0896 0897 0898 0699 0700 0701 0702 0703 167010952 0953 0954 0955 0938 0957 0958 0959
13000704 0708 0706 0707. 0708 0708 0710 0711 1700 |0960 0961 0962 0963 0944 0965 0966 0967
1310/0712 0718 0714 0715 0716 0717 0718 0719 1710|0968 0969 0070 0971 0972 0973 0974 0978
1320|0720 0721 0722 0723 0724 0725 0726 0727 17200976 0977 0978 0979 0980 0981 0982 0983
1830|0728 0729 0730 0731 0732 0733 0734 0735 1730|0984 0985 0086 (0087 0988 0089 0990 0991 |
1340{0738 0737 0738 0739 0740 0741 0742 0743 1740 (0992 0993 0094 0995 0396 0997 0098 0999
1350|0744 0745- 9748 0747 0748 0749 0750 0751 175011000 1001 1002 1003 1004 1005 1008 1007

© 1136010752 0753 0754 0755 0756 0757 0758 0759 176011008 1009 1010 1011 1012 1013 1014 1015
13700760 0761 0762 0763 0764 0765 0768 0767 177011016 1017 1018 1019 1020 1022 1023

A5

LLLL0 SN N e

LA A e 10 102 0 L OO




OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont)

MARKI

6.1 2 3 4 5 6 1 0 t 2 3 4 5 & 1
2000 {1024 1025 1026 1027 1028 1029 1030 103t 2400{ 1280 1281 1282 1283 1264 1285 )286 1287
2010[1032 1033 1034 1035 1036 1037 1038 1039 2410} 1268 1289 1290 1201 1292 1293 1204 1295
12020 {1040 1041 1042 1043 1044 1045 1046 1047 2420} 1296 1297 1298 1299 1300 1301 1302 1303
203011048 1049 1050 1051 1052 1053 1054 1055 243011304 1305 1306 1307 1308 1309 1310 1311
204011056 1057 1058 1059 1060 1061 1062 1063 244011312 1313 1314 1315 1316 1317 1318 1319
2050/1064 1065 1066 1067 1068 1069 1070 1071 2450|1320 1321 1322 1323 1324 1325 1326 1327
2060|1072 1073 1074 1075 1076 1077 1078 1079 2460|1328 1329 1330 1331 1332 1333 1334 1335
207011080 3081 1082 1083 1084 1085 1086 1087 2470{ 1336 1337 1338 1339 1340 1341 1342 1343
21001088 1089 1090 1091 1092 1093 1094 1095! {2500 1344 1345 1346 1347 1348 1349 1350 $351
21101096 1097 1098 1099 1100 1101 1102 1103 2510] 1352 1353 1354 1355 1356 1357 1358 1359
2120|1304 1105 1106 1107 1108 13109 1110 1111 2520] 1360 1361 1362 1363 1364 1365 1366 1367
2130{3112 1113 1814 Y115 31161217 1118 1119 2530{ 1368 1369 1370 §371 1372 1373 1374 1375
21401120 21121 1122 1123 1124 1125 1126 1127 2540] 1376 31377 1378 1379 1380 1381 1382 1383
21501128 1129 1130 1131 1132 1133 1134 1135 255011384 1385 1386 1387 1388 1389 1390 1391
2160|1136 1137 1138 1139 1140 1141 3142 1143 2560] 1392 1393 1394 1395 1396 1397 1398 1399
2170|1144 1145 1146 1147 1148 1149 1150 115! 2570 1400 1401 1402 1403 1404 1405 1406 1407
2200{1152 2§53 1154 1155 1156 1157 1158 1150 2600] 1408 1409 1410 1411 1412 1413 1414 1415
2210{1160 1161 1162 1163 1164 1165 1166 1167{ 12610{1416 1417 1418 1419 1420 1421 1422 1423
222011168 1169 1170 1171 1172 1173 1174 1175 2620 1424 1425 1426 1427 1428 1429 1430 1431
2230{1176 1177 1178 1179 1180 1181 1182 1183 26301432 1433 1434 1435 1436 1437 1438 1439
2240[1184 1185 1186 1187 1188 1189 1190 1191] |2640) 1440 1441 1442 1443 1444 1445 1446 1447
2250{1192 1193 1194 1195 1196 1197 1198 1199 2650] 1448 1449 1450 145! 1452 1453 1454 1455
22601200 1201 1202 1203 1204 1205 1206 1207 2660] 1456 1457 1458 1459 1460 1461 1462 1463
22701208 1209 1210 1211 1212 1213 1214 1215 2670|1464 1465 1466 1467 1468 1469 1470 1471
23001216 1217 1218 1219 1220 1221 1222 1223 2700] 1472 1473 1474 1475 1476 1477 1478 1479
23101224 1225 1226 1227 1228 1229 1230 1231 2710) 1480 1481 1482 1483 1484 1485 1486 1487
232011232 1233 1234 1235 1236 1237 1238 1239 2720{ 1488 1489 1490 1491 1492 1493 1494 1495
23301240 1241 1242 1243 1244 1245 1246 1247 2730|1496 1497 1498. 1495 1500 1501 1502 1503
23401248 1249 1250 1251 1252 1253 1254 1255 2740] 1504 1505 1506 1507 1508 1509 1510 1511
2350|1256 1257 1258 1259 1260 1261 1262 1263 2750]1512 1513 1514 1515 1516 1517 1518 1519
2360{1264 1265 1266 1267 1268 1269 1270 1271 276011520 1521 1522 1523 1524 1525 1526 1527
23701272 31273 1274 1275 1276 1277 1278 1279 277011528 1529 1530 1531 1532 1533 1534 1535
0 1 2 3 4 5 6 7 0 1 2 3 4 S 6 7
3000{1536 1537 1538 1539 1540 1541 1542 1543 340011792 1793 1794 1795 1796 1797 1798 1799
30101544 1545 1516.1547 1548 1549 1550 1551 3410} 1800 1801 1802 1803 1804 1805 1806 1807
302011552 1553 1554. 1555 1556. 1557 1558 1559 3420{1808 1809 1810 1811 1812 1813 1814 1815
3030|1560 1561 1562 1563 1564 1565 1566 1567 }430 1818 1817 1818 1819 1820 1821 1822 1823
3040{1568 1569 1570 1571 1572 1573 1574 1575 3440|1824 1825 1826 1827 1828 1829 1830 1831
30501576 1577 1578 1579 1580 1581 1582 1583 3450[1832 1833 1834 1835 1836 1837 1838 1839
30601584 1585 1586 1587 1588 1589 1590 1591 -134601 1840 1841 1842 1843 1844 1845 1846 1847
30701592 1593 1594 1595 1596 1597 1598 1599 34701848 1849 1850 1851 1852 1853 1854 1855
3100} 1600 1601 1602 1603 1604 1605.-1606 1607 3500|1856 1857 1858 1859 1860 1861 1862 1863
3110{1608 1609 1610 1611 1612 1613 1614 1615 3510} 1864 1865 1866 1867 1868 1869 1870 1871
312011616 1617 1618 1619 1620 162t 1622 1623 3520[ 1872 1873 1874 1875 1876 1877 1878 1879
3130{1624 1625 1626 1627 1628 1629 1630 1631 3530{ 1880 1881 1882 §883 1884 1885 1886 1887
31401632 1633 1634 1635 1636 1637 1638 iGSQ 3540|1888 1889 1890 1891 1892 1893 1894 1895
3150|1640 1641 1642 1643 1644 1645 1646 1647 3550{1896 1897 1898 1899 1900 1901 1902 1903
. 3{60 1648 1649 1650 1651 1652 1653 1654 1655 356011904 1905 1906 1907 1908 1909 1910 1911
3170{1656 1657 1658 1659 1660 1661 1662 1653 3570{ 1912 1913 1914 1915 1916 1917 1918 §919
3200 {1664 1665 1666 1667 1668 1669 1670 167} 3600]1920 1921 1922 1923 1924 1925 1926 1927
32101672 1673 1674 1675 1676 1677 1678 1679 361011928 1929 1930 1931 1932 1933 1934 1935
3220 (1680 1681 1682 1683 1684 1685 1686 1687 3620|1936 1937 1938 1939 1940 1941 1942 1943
. 323011688 1689 1690 1691 1692 1693 1694 1695 3630|1944 1945 1046 1947 1348 1949 1950 1951
32401696 1697 1698 1699 1700 1701 1702 1703 364071952 1953 1954 1955 1956 1957 1958 1359
3250 l70{ 1705 1706 1707 1708 1709 1710 1711 36501960 1961. 1962 1963 1964 1965 1966 1967
326011712 1713 1714 1715 1716 1717 1718 1749 3660|1968 1969 1970 1971 1972 1973 1974 1975
3270{1720 1721 1722 1723 1724 1725 1726 1727 3670|1976 1977 1978 1979 1980 1981 1982 1983
3300 {1728 1729 1730 1731 1732 1733 1734 1735 37001984 1985 1986 1987 1938 1989 1990 1991
33101736 1737 1738 1739 1740 1741 1742 1743 3710[1992 1993 1994 1995 1996 1997 1998 1999
332011744 1745 1746 1747 1748 1749 1750 1751 3720{2000 2001 2002 2003 2004 2005 2006 2007
3330[1752 1753 1754 1755 1756 1757 1758 1759 373012008 2009 2010 2011 2012 2013 201¢ 2015
33401760 1761 1762 1763 1764 1765 1766 1767 3740[ 2018 2017 2018 2019 2020 2021 2022 2023
3350[1768 1769 1770 1771 1772 1773 1774 177§ 375012024 2025 2026 2027 2028 2029 2030 2031
©.13380{1776 1777 3778 1779 1780 1781 1782 1783 3760]2032 2033 2034 2035 2036 2037 2038 2039
3370{1784 1785 1786 1787 1788 1789 1790 1791 3770) 2040 2041 2042 2043 2045 2046 2047

_ 10000 - 4096

2044

1024

2000
o to
777 1538

(Octal) | (Decimel)

Octol Decimel . ‘

20000 - 8192 -
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576 -
70000 - 284672

3000 1536
to to
kY244 04
{Octal) | {Decimel)

ﬁ
|

. B - . . “«



. 4000

‘o
777

2048
Yo
2559

{Octal) | (Decimal)

" Octal Decimal
“10000-. 4096

20000. 8192
30000 - 12288
40000 16384
30000 - 20480
60000 - 24576
70000 - 28672

© 5000

to
. 5222

 (Ocrol) | (Decimol)

2560
to

307

MARK 1

| OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont)

0 1 2 3 4 85 6 1 01 2 3 4 s 6 "1
4000] 2048 2049 2050 2051 2052 2053 2054 2055 4400) 2304 2305 2306 2307 2308 2309 2310 2311
4010} 2056 2057 2058 2059 2060 2063 2062 2063 441012312 2313 2314 2315 2316 2317 2318 2319
4020| 2064 2065 2066 2067 2068 20869 2070 2071 442012320 2321 2322 2323 2324 2325 2326 2327
4030} 2072 2073 2074 2075 2076 2077 2078 2079 4430|2328 2320 2330 2331 2332 2333 233 2335
'4040] 2080 2081 2082 2083 2084 2085 2086 2087] -|4440( 2336 2337 2338 2339 2340 2341 2342 2343]
4050] 2088 2089 2090 2091 2092 2093 2094 2095 44501 2344 2345 2346 2347 2348 2349 2350 2351
4060| 2006 2097 2098 2099 2106 2101 2102 2103 4460|2352 2353 2354 2355 2356 2357 2358 2359
4070{ 2104 2105 2106 2107 2108 2109 2110 211} 4470] 2360 2361 2362 2363 2364 2365 2366 2367
4100f 2112 2113 2114 2115 2116 2117 21182519 45002368 2369 2370 2371 2372 2373 2374 2375
4110} 2120 2121 2122 2123 2124 2125 2126 2127 4510|2376 2377 2378 2379 2380 2381 2382 2363
4120] 2128 2120 2130 2131 2132 2133 2134 2135 45202384 2385 2386 2387 2388 2389 2390 2391
4130] 2136 2137 2138 2135 2140 2141 2142 2143 4530|2392 2303 2384 2395 2396 2397 2398 2399
4140] 2144 2145 2146 2147 2148 2149 2150 2151 454012400 2401 2402 2403 2404 2405 2406 2407
14150] 2152 2153 2154 2155 2156 2157 2158 2159 45502408 - 2409 2410 2411 2412 2413 2414 2415
4160] 2160 2161 2162 2163 2164 2165 21656 2167 456012416 2417 2418 2419 2420 2421 2422 2423
4170] 2168 2169 2170 2171 2172 2173 2174 2175 4570|2424 2425 2426 2427 2428 2429 2430 2431
4200] 2176 2177 2178 2119 2180 2181 2182 2183 4600 {2432 2433 2434 2435 2436 2437 2438 2439
4210{ 2184 2185 2186 2187 2188 2189 2190 219% 4810[2440 2441 2442 2443 2444 2445 2446. 2447
4220] 2192 2193 2194 2195 2196 2197 2198 2199 4620|2448 2449 2450 2451 2452 2453 2454 2455
4230] 2200 2201 2202 2203 2204 2205 2206 2207 4630{2456 2457 2458 2459 2460 2461 2462 2463
4240] 2208 2209 2210 2211 2212 2213 2214 2215 4640|2464 2465 2468 2467 2468 2469 2470 2471
4250| 2216 2217 2218 2219 220 2221 2222 2223 4550|2472 2473 2474 2475 2416 2477 2478 2479
4260] 2224 2225 2226 2227.22328 2220 2230 2331 46602430 2481 2482 2483 2484 2485 2486 2487
4270] 2232 2233 2234. 2235 2236 2237 2238 2239 467012488 2489 2450 2491 2492 2493 2494 2495
430012240 2241 2242 2243 2244 2245 2246 2247 4700|2496 2497 2498 2499 2500 2501 2502 2503|
4310|2248 2248 2250 2251 2252 2253 2254 22585 4710{2504 2505 2506 2507 2508 2509 2510 2511
432012256 2257 2258 2259 2260 226} 2262 2263 472012512 2513 2514 2515 2518 2517 2518 2519
4380] 2264 2265 2266 2267 2288 2269 2270 2271 473012520 252) 2522 2523 2524 2525 2526 2527
434012272 2273 2274 2215 2276 2277 2278 2279 4740} 2528 2520 2530 2531 2432 2533 2534 2535
4350] 2260 2261 2292 2283 2284 2285 2286 2287 4750{ 2536 2537 2538 2535 2540 2541 2542 2543
4360} 2208 2209 2290 2201 2292 2293 2254 2295 4760 2544 2545 2546 2547 9mqg 2549 2550 2551
4370] 2296 2297 2298 2299 2300 2301 2302 2303 477012562 2553 2654 2855 ag5s 2557 2558 2559
o t 2 3 4 & @& 7 o 1t 2 3 4 5 6 1
5000{ 2560 2561 2562 2563 2564 2565 2566 2587 5400{2616 2817 2818 2619 2820 2821 2822 2823
5010] 2568 2569 2570 2571 2572 2573 2574 257% 5410|2824 2825 2826 2827 2828 2829 2830 2631
5020(2976 2577 2578 2579 2580 2581 2582 2583 542012832 2833 2834 2835 2836 2837 2838 2639
5030) 2584 2585 2586.2587 2588 2589 2590 2591 5420]2840 2841 2842 2843 2844 2845 2846 2847
5040] 2592 2593 2594 2595 2506 2597 2598 2599 54402048 2849 2850 2051 2852 2853 2854 285
5050|2600 2601 2602 2603 2604 2605 2606 2607 5450|2856 2857 2858 2859 2860 2861 2663 2863
5060|2608 2609 2610 2611 2612 2613 2614 2615 5460 ) 2864 2865 2866 2867 2868 2869 2870 2071
5070|2616 2617 2518 2619 2620 2621 2622 2623 5470[2872 2673 2874 2875 2876 2877 2878 2679
5100 | 2624 2625 2626 2627 2628 2629 2630 2631 5500 | 2880 2881 2882 2883 2884 2685 2386 2887
5110 (2632 2633 2634 2635 2636 2637 2638 2639 $510 2588 2889 2890 2891 2892 2893 2894 2895
5120|2640 2641 2642 2643 2644 2645 2646 2647 5520 12896 2897 2898 2899 2900 2901 2902 2903
5130|2648 2649 2650 2651 2652 2653 2854 2655 5530 (2904 2905 2906 2907 2908 2909 2910 2911
51402656 2657 2658 2659 2660 2661 2662 2663 5540|2912 2913 2914 2915 2916 2917 2918 2019
5150|2664 2665 2666 2667 2668 2669 2670 2671 555012020 2921 2922 2923 2924 2925 2926 2927
5160|2672 2673 2674 2675 2676 2677 2678 2679 55602928 2929 2930 2931 2932 2933 2934 2935
5170|2680 2681 2682 2683 2684 2685 2686 2087 557012036 2937 2938 2939 2940 2941 2042 2943
5200 | 2688 2689 2690 2691 2692 2693 2694 2695 5600 [2044 2245 2946 2947 2948 2049 2050 2951
5210|2696 2697 2698 2699 2700 2701 2702 2703 5610|2952 2953 2954 2955 2956 2957 2958 2959
5220 {2704 2705 2706 2707 2708 2709 2710 2711 5620 {2060 2961 2962 2963 2964 2965 2966 2967
5230|2712 2713 2714 2715 2716 2717 2718 2719 5630|2968 2969 2970 2971 2972 2973 2974 2975
$240[2720 2721 2722 2723 2724 2725 2126 2727 56402976 2977 2978 2979 2980 2981 2982 2083
525012728 2729 2730 2731 2732 2733 2734 2735 1565012984 2985 2986 2587 2988 2989 2990 2991
52602736 2737 2738 2739 2740 2741 2742 2743 5660{2992 2993 2994 2995 2996 2997 2998 2999
527012744 2745 2746 2747 2748 2749 2750 2751 56703000 3001 3002. 3003 3004 3005 3006 3007
5300|2752 2753 2754 2755 2756 2757 2758 ‘2759 5700{3008 3009 3010 3011 3012 3013 3014 3015
5310]2760 2761 2762 2763 2764 2765 2768 2761 5710{3016 3017 3018 3019 3020 3021 3022 3023
532012768 2769 2770 2771 2772 2713 2774 2115 5720|3024 3025 3026 3027 3028 3029 3030 3031
5330|2776 2777 2178 2779 2780 2781 2782 2183 5730]3032 3033 3034 3035 3036 3037 3038 3039
5340|2784 2785 2786 2787 2788 2789 2790 2791 57403040 3041 3042 3043 3044 3045 3046 3047
5350 {2792 2793 2794 2785 2796 2797 2798 2799 5750|3048 3049 3050 3051 3052 3053 3054 3055
5360 | 2600 2801 2802 2803 2804 2805 2806 2807 5760|3056 3057 3058 3059 3060 3061 3062 3063
$370[2808 2800 2810 2811 2812 2813 2814 2815 57703064 3065 3066 3067 3068 3069 3070 3071




A-8

MARK I

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont)

o 1 2 -3 4 5 & 1 o 1 2 3 4 5 6 -1
€000 13072 3073 3074 3075 3078 3077 3078 3079| - |6400| 3328 3320 3330 3331 3332 3333 3334 3338
$010 | 3060 3081 3082 3083 3084 3J08S 3086 3087| [6410 3338 3337 3338 3330 3340 3MI 3M2 33
603013088 3089 3090 3091 3092 3093 3094 3095]  |0420] 3344 3345 3346 3347 3348 3349 3350 3351}
6030 | 3096 3097 3098 3099 3100 3101 3102 3103] |6430{ 3352 3353 3354 3355 3356 3357 3358 3359
6040|3104 3105 3106 3107 3108 3109 3110 311! 8440] 3360 3361 3362 3363 3364 3365 3366 1367
5050|3112 3113 3114 3115 3116 3117 3138 3i19]  |6450{ 3368 3369 3370 3371 3372 3373 3374 3378
S080 3120 3121 3122 3123 3124 3125 3126 3127]  |6460] 3378 3377 3378 3379 3380 3381 3382 Jus_J
60703128 2129 3130 3131 3132 3133 3134 2135] . 16470] 3384 3385 3386 3367 3388 3389 3390 3394
6100|3136 3137 3138 3139 3140 3141 3142 3143]  [6500{.3392 3393 3394 3395 3396 3397 3398 3399
8110|3144 3145 3148 3147 3148 3149 3150 3i51 §510] 3400 3401 3402 3403 3404 3405 3406 3407
6120 13152 3153 3154 3155 3156 3157 3158 2159]  [6520] 3408 3409 3410 3411 3412 3413 3414 3415
6130 {3160 3161 3162 3163 3164 3165 3166 3167)  |6530] 3416 3417 3418 3419 3420 3421 3422 3423
814013168 3160 3170 3171 3172 3173 3174 3175|  |6540] 3424 3425 3426 3427 3428 3429 3430 431
6150|3176 3177 3178 3179 3180 3183 3182 3183]  |6550] 3432 3433 3434 3435 3426 3437 3438 2439
6160|3184 3185 3186 3187 3188 3189 3190 3191 6560] 3440 3441 3442 3443 3444 3445 46 2447
6170|3192 3193 3104. 3195 3196 3197 3198 3199  {6570] 3448 3449 3450 3451 3452 3453 3454 3455
8200 |3200 3201 3202 3203 3204 3205 3206 3207]  [6600] 3456 3457 3458 3459 3460 3461 3462 3463
fe210 {3208 3209 3210 3211 3212 3213 3214 8215] {6610} 3464 3465 3466 3467 2468 3469 3470 3471
8220 |3216 3217 3218 3219 23220 3221 3222 3223)  [6620{ 3472 3473 3474 3475 3476 3477 3478 M79
€230 {3224 3225 3226 3227 1228 3229 3230 3231 5630] 3480 34B1 3482 3483 3484 3485 3486 487
6240 (3232 3233 3234 3235 3236 3237 3238 3239  |6640| 3488 3489 3490 3491 3492 3493 3494 3493
6250|3240 3241 3242 3243 3244 3245 3246 3247]  |6650] 3496 3497 3498 3499 3500 3501 3502 3503
6260|3248 3249 3250 3251 3252 3253 3254 3255  [6660] 3504 3505 3506 3507 3508 3509 3510 3511
6270 (3256 3257 3258 3259 3260 3261 1262 3263]  |6670] 3512 3513 3514 3515 3516 3517 3518 3519
6300 {3264 3265 3266 3267 3268 3269 3270 3271 67001 3520 3521 3522 3523 3524 3525 3526 3527
6310 9272 3273 3274 3275 3276 3277 3278 3279)  [6710] 3528 3529 3530 3531 3532 3533 3534 3535]
6320 (3280 3281 3282 3283 3284 3285 3286 3287] 6720|3536 3537 3538 3539 3540 3541 3542 3543
6330|3288 3280 3290 3291 3292 3293 3294 3295 167303544 3545 3546 3547 3548 3549 3550 3551
6340|3206 3207 3208 3299 3300 3301 3302 3303]  |6740] 3552 3553 3554 13555 3556 3557 3558 3559
6350|3304 3305 3306 3307 3308 3309 3310 3311 6750] 3560 3561 3562 3563 3564 3565 3568 3567
63603312 3313 3314 3315 33r6 3317 3318 3319  [6760] 3568 3569 3570 3571 3572 3573 3574 35T
6370]3320 3321 3322 3323 3324 3325 3326 3327]  |6770] 3576 3877 3578 3579 3580 3581 3562 3583)

6 .1 2 3 4 5 & 1 o 1 2 3 4 S 6 1
7000| 3584 3585 3586 3587 3588 3589 3590 3593 7400] 3840 3841 3842 3843 3844 3845 3846 3847
2010] 3592 3593 3594 3595 3596 3597 3598 3599 7410] 3848 3849 3850 3851 3852 3853 3854 3855
7020] 3600 3601 3602 3503 3604 3605 3606 3607 7420| 3856 3857 3858 3859 3860 3861 3862 3863
w030} 3608 3609 3610 3611 3612 3613 3614 3615 7430] 3864 3865 3866 3867 3868 3869 3870 3871
7040] 3616 3617 3618 3619 3620 3621 3622 3623 74401 3872 3873 3874 3875 3876 3877 3878 3879
7050] 3624 3625 3626 3627 3628 3629 3630 3631 7450] 3880 3881 3862 3883 3884 3685 3886 3887
7060| 3632 3633 3634 3635 3636 3637 3638 3639 7460] 3888 2889 3890 3891 3892 3893 3894 3895
7070] 3640 3641 3642 3643 3644 3645 646 3647 7470] 3896 3897 3898 3899 3900 3901 3902 3903
7100| 3648 3649 3650 3651 3652 3653 3654 3655 7500 | 3904 3905 3906 3907 3908 3909 3910 391}
7110} 3656 3657 3658 3659 3660 3661 3662 3663 7510 3912 3913 3914 3915 3916 3917 3918 3919
7120{ 3664 3665 3666 3667 3668 3669 3670 3671 752013920 3921 3922 3923 3924 3925 3926 3927
7130} 3672 3673 3674 3675 3676 3677 3678 3679 7530 3928 3929 3930 3931 3932 3933 3934 3938
7140} 3680 3681 3682 3683 3884 3685 3686 3687 75403938 3937 3938 3939 3940 3941 3942 3943
7150] 3688 3689 3690 3691 3692 3693 3694 3695 7550|3044 3945 3946 3947 3948 3949 3950 3951
7160} 3696 3697 3698 3699 3700 3701 3702 3703| . |7360]3952 3953 3954 3955 3956 3957 3958 3959
7170{ 3704 3705 37068 3707 3708 3709 3710 3TH1 757012960 3961 3962 3963 3964 3965 3966 3967
7200{ 3712 3713 3714 3715 3716 3717 IMB 3N 7600|3968 3969 3970 3971 3972 3973 T4 WS
7210{ 3720 3721 3722 3723 3724 3725 3726 3727 7610|3976 3977 3978 3979 3980 398r 3902 3983
7220} 3728 3429 3730 3731 3732 3733 3734 3735 7620|3984 3985 3986 3987 3988 13989 3990 3991
7230] 3736 3737 3738 3739 3740 3741 3742 3743 176303992 3993 3994 3995 3996 3997 3998 399
7240] 3744 3745 3746 3747 3748 23249 3750 3751 7640 {4000 4001 4002 4003 4004 4005 4008 4007
7250 3752 3753 3754 3755 3756 3757 3758 3759  |7650|4008 4009 4010 4011 4012 4013 4014 4015
7260] 3760 3761 3762 3763 3764 3765 3766 3787 7660 {4016 4017 4018 4019 4020 4021 4022 4023
7270] 3768 3769 3770 3771 3772 3773 3774 3775  |7670]4024 4025 4026 4027 4028 4029 4030 4031
7300} 3176 3777 3778 3119 3780 3781 3762 3783|  [7700 4032 4033 4034 4035 €036 4037 4038 €039
7310 2784 3785 3786 3787 args 3189 3790 3791 7710 {4040 4041 4042 4043 4044 4045 4046 €047
7320) 3792 3793 3794 3795 3796 3797 3198 3789 7120 [4048 4049 €050 4051 4052 4053 4054 4053
733013800 3801 3802 3803 3g04 3805 3806 3807 7730 4056 4057 4058 4059 4060 4061 €063 406
7340/ 3808 3809 3810 3811 3812 3813 3814 3815| 177404064 4085 4066 4067 4068 4069 €070 4071
7350 3816 3817 3818 3819 3320 2821 3822 3823] |7750/4072 4073 407¢ 4075 4078 4077 4078 079
7300} 3834 3825 3826 3827 3328 3629 3830 38N 7760 (4080 4081 4082 4083 403¢ 4085 4086 4087
7370] 3632 3833 3634 3835 336 1837 9838 3839 |7770[4088 4089 4090 4091 4092 4093 4094

4000 3072
3. J ‘o
7y | %83

(Octel) | (Decimel)

Octal Decimol
10000 - 4096
20000 8192
- 16384
-24576
-20672

saga

7000 3584
te to
”rn 4093

(Octel) | (Decimal}



N\

. 3 \
\
\

]

MARK I ‘ | o

OCTAL-DECIMAL FRACTION CONVERSION TABLE

3
b

OCTAL  DEC. OCTAL PEC. ~ OCTAL | DEC.. - OCTAL DEC.
.000 , 000000 . 100 . 125000 ' .200 . 250000 . 300 .315000
.001 . 001953 ) .101 . 126953 .201 ., .351953 .301 .376953
-.002 . 003906 .102 | .128906 .202 . 253906 ,302 © 378906
.003 . 005859 . .103 . 130859 ' ,203 . 255859 o .303 . 380859
.004 .007812 - L1040 132812 .204 257812 .304 . 382812
.005 0809765 108 . 134765 - .20 . 259768 .305 . 384765
. 006 011718 . 106 . 136718 . 206 .261718 .306 - 386718
.007 .013671 .107 . 138671 o .207 . 263671 .307 . 388671
.010 .015625 110 140625 .210 .266625. .310 . 390625
.o11 ,017578 oMY, 142878 S .267578 .30 .392578
012 .019531 S .12 . 144531 .212 . 269531 .312. 394531
.013 . 021484 .13 ', 146484 - .213 .271484 , .313 . 396464
.014 .023437 14 148437 214273437 314 .398437
.01 .025390 L5 150390 .215 .275390 - .318 . 400390
.016 .027343 .16 . 152343 .216 . 217343 .316 . 402343
.017 . ,029296 17 . 154296 .21 . 279296 C 17 L404296
1,020 .031250 . 120 156250 . .220 ,281250 . .320 . 406250
621 .033203 V121 . 158203 .221 .283203 L . 408203
.023 .035156 o122 . 160156 Y ¥ .285186- - L322 . 410156
.023 .037109 123 .162109 .223 .287109 .323 .412109
.024 .032062 - 124 . 164062 224 . 289062 .32 . 414062
025, .041018 128 . 166015 .228 . 291018 L3258 416015
.026 . 042968 . 126 . 167968 .226 .292968 .320 ,417968
.021 + 044921 121 . 169921 .227 .294921 .321 419921
,030 . 046875 L1300 L1878 .230 . 206875 - .330 . 421878
.031 .048828 131 +173828 .231 .298828 .33 . 423828
.032 .050782 ' 132 175781 , .232 . 300781 .332 . 426781
.033 052734 133 197734 .293 ,302734 .333 . 427134
.034 . 054687 34 . 113687 .234 . 304687 L334 . 429687
.038 056640 - 138 . 181640 .25 , 306640 .338 .431640
.036 .058593 . 136 . 183593 .236 . ,308503 ,338 .432593
.037 . 060548 137 . 185846 : .2 . 310546 .337 . 435546
.040 082500 . 140 . 187500 .240 . 312500 L340 . 437500
041 . 064453 L4t . 189453 241 . 314483 .34 . 439453
.042 . 066408 142 . 191406 .242 . 316406 (342 441406
.043 . ,068359 143 . 193359 24) + 318359 . 343 442359
044 ,010312° . 144 195312 R T . 320212 344 , 448312
. 048 ,072268. < 148 , 197265 . 245 . 322268 .48 447268
.046 074218 L e .190218 ,246 .32¢218 L6 449218
047 ,076171 : 147 .201171 241 . 326171 BN 71 | 45171 :
.050 078125 . 150 ,203125 .250 .328128 ,380 .483125 ﬁ
.08 . 080018 181 . 205078 .251 . 330078 ,381 . 455078 : 5
L0832~ ,082031 L1852 ,207031 ,252 . 332031 .4382 .457031
- 083 083984 L153 208984 .253 333984 ".383 . 458984 3
L0854  ,085937 184 . 210937 .254 . 335937 .384 . 460937
088 . 087830 .188 . 212890 .258 ., 337890 .358 .462890 | ;
. 086 . 089843 . 156 . 214843 .256 339843 L356. .464843 : :
.087 .091796 187 .216796 .287 . 341796 .387 .466796
.060 ,093750 160 . 218750 .. .260 . 343750 . 360 . 468750
© .061 . 085703 .161 .220703 .261 345703 .361 . 470703
.062 . 097656 .162 . 222656 .262 . 347656 .362 . 472656
.083 . 099609 . 163 . 224609 .263 ,349609 .363 474609
084 . 101862 . 164 .226562 ,264 . 351562 . 364 . 476562
L0868 . 103518 165 .228518 . .265 . 353515 .365 .478515
. 066 . 105468 166 .230468 . 266 . 355468 L2366 460468
.087 .107421 .167 . 232421 .267 . 357421 .367 . 482421
L0710 . 109378 . 170 .234375 .270° 350375 .310 . 484375
.on .111328 an .236328 .2n . 361328 .an . 486328
L0712 113281 : T2 . 238281 L2712 . 363281 312 . 488281
013 JA1823¢ 173 .240234 - . .21 . 365234 .313 . 490234
0N .11n8? M 242187 B 1 7] .367187 37 492187
.075 J11840 . L7850 L244140 .275 369140 .315 494140
018 a0 | J176 . L246093 ‘ .216 .371093 316 . 496093
017 123048 A1 . 248046 .M . 373046 a1 . 498046
¥

A-9




—_ . - - T = T T T e N == e - = e — =

MARK 1
- OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont)

- OCTAL  DEC, . ‘OCTAL  DEC, OCTAL PEC, . OCTAL - {-N
+000000 000000 ,000100  ,00034¢ 1000200, 000488 +000300  , 000738
.000001 000003 ' 000101, 000247 .000208 000492 +000301  , 000736
+000008 000007 - ,000102 000361 000302, 000498 +000302 . 000740
000003  ,000011 ,000100 ., 000288 «000203 . 000499 «000303 000743

. +000004 000018 000104 - ,000289 000204 009503 ,000304 -, 000747
+000008.  .000019 +,000105 . 000263 000208 ~ , 000807 +000308 . 000751
,000008  ,000022 .000106 000287 . . ,000208  ,000811 4000306  .000788 |-
+000007  , 000026 ,000107  ,000270 ' ,000207 000814 - +000307 000759
.000010 000030 ,000510 . 000274 000210, 000818 .000310 000768
000011 ., 000034 ,000111  ,000278 (000211 ° ,000822 4000311~ .000766 -
,000013  ,000038 000112 ,000282 .000232 000826 ,000312 ' ,000770°
,000033  ,000041 ,000133  ,000288 000213 ,000530 .000313  ,000774
,00003¢ ~ ,000045 000114 000289 000214  , 000834 .000314  ,000778
000018 ., 000049 000118 ,000203 ~000218 000837 000315 . ,000703
000016 - 000053 ,000116 000297 000216 000541 .000316 - ,000785
.000017 000057 L 000117 ,000301 (000217  , 000545 ,000317  .000789
»000020 000061 000120 - 000305 ,000220 * 000549 : ,000320  .000793
4000021, 000064 .000121 000308 000221 000853 .000321  ,000797
,000022  ,000068 000122  ,000312 000222 ;000556 .000322  , 000801
.000023  ,000072 000123 000316 . T ,000223 000560 .000323.  ,000805
.000024 000076 .000124". 000320 000224 000564 .00032¢ -, 000808
",000025 000080 *,000125  ,000324 ,000225 000568 .000325  .000812
.000026 000083 ,000126 000328 .000226 000572 .000326 ~ ,000816
.000027 -, 000087 .000127 000331 .000227 . 000576 .000327 000820
.000030 000091 ' ,000130  ,000335 ,000230 000579 .000330  ,000823 -
.000031 000095 - ,000181 000339 " ,000231 000583 ,000331 ..000827
.000032 000099 .000132 000343 .000232 . 000587 .000332 000831
.000033 000102 .000133 000347 .000233 . 000591 .000333  .000835
.000034 000106 .000134  ,000350 ., 000234 000595 .000334 .000839
.000035 . 000110 .000135  .000354 000235 000598 .000335 - 000843
.000036 000114 .000136 000358 000236 000602 .000336 - , 000846
.000037 000118 .000137 000362 .000237  .000606 .000337 000850
.000040 000122 .000140  .000366 .000240  ,000610 . .000340  .000854
-000041 ° 000125 .000141 000370 .000241 . 000614 000341 -,000858
.000042 000129 .000142 000373 .000242 000617 ©.000342  ,000862
.000043  .000133 |- ,000143 000377 .000243 000621 .000343 - 000865
000044 000137 .000144 000381 .000244 000625 ©.000344 000869
.000045 . 000141 .000145 000385 000245 000629 . 2000345 000873
.000046 000144 - .000146 000389 .000246 . 000633 - 000346  .000877
.000047 . 000148 ,000147  ,000392 ;000247 000637 . .000347 000882 .
.000050 . 000152 .000150 000396 .000250 000640 -, 000350 . ,000885 .
.000051 000156 .000151 000400 .000251 000644 000351 ,000888 -
.000052 . 000160 . 000152 000404 000252 000648 000352 . ,000892 - |
.000053 000164 .000153 000408 .000253  ,000652 - - .000353 - ,000898 |
.00005¢ 000167 . .000154 000411 .000254 000656 " ,000354 . .000800 i |
»000055 000171 . .000155 000415 .000255 . ,000659 .000355 000904 |
.000056 000175 .000156 -, 000419 . .000256 000663 . .000356  .000907 | ..
.000057 000179 .000157 000423 .000257 000667 .000387 000911 |
.000060 ,000183 ) .000160 000427 .000260  , 000671 ,000360  .000918 ] -
.000061 000186 .000161 000431 .000261 . , 000675 | | .000361 = .000919
.000062 000190 000162 000434 .000262  .000679 - |~ ,000362 . .,000923 -
.000063 - ,000194 .000163 000438 . .000263  .000682 - | - .000363 . 000926
.000064  .000198 000164 .. 000442 -,000264  ,000686 - | - ,000364 -, 000930 .
.000065  ,000202 .000165  ,000446 ' .000265  .000690 1" . 000365 : .000934
»000066 000205 .000166. - 000450 000266 000694 1000366 000938
.000067 000209 .000167 000453 . 000267 - ,000698 . . |- ,000367 " ,000942 |-
.000070  , 000213 - .000170 000457 .000270  .000701 ° - /000370 - ..000946
.000071 000217 .000171 000461 - ,000271 000705 2.000370 - [000949 .
.000072  .000220 | ,000172  ,000465 .000272 . ,000709 | - ,000372 000983
.000073 000228 . .000173  , 000469 .000273 . ;000713 - - .000373 . ,000987
.000074 000228 000174 ,000473 .000274  ,000T17 . 1 .000374 - ,000961
.000078 000232 .000175 000476 ©,000275 - ,000720 . | . ,000373 ' ,000983
.000076 000236 . .000176 000480 : .000276 000724 . - | . ;000376 000968
.000077  .0002¢40 . | ,000177 000484 .000277 -, 000728 T ..000317 000972
A-10.

»;
e

el



MARK I

OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont)

OCTAL DEC. " OCTAL DEC. OCTAL DEC, OCTAL DEC,
.000400 000976 .000500 001220 000600 001464 000700 001708
.000401 000980 000501 001224 000601 001468 .000701 001712
.000402 000984 .000502 .,001228 .000602° 001472 .000702  .001716
.000403 000988 ,000503  -,001232 000603 © . 001476 ,000703 001720
., 000404 000991 000504 , 001235 .000604 001480 .000704 001724
.000405 000995 ,000505 001239 .000605 001483 .000705 001728
000406 000999 .000506 001243 000606 001487 .000706  ,001731
.000407 001003 .000507 - ,001247 .000607 001491 .000707 001735
.000410 001007 .000510 001251 .000610 001495 000710 ,001739
.000411 001010 000511 001255 000611 001499 ,000711 L 001743
,000412 001014 .000512 001258 000612  .001502 000712 001747
.000413° 001018 .000513  ,001262 000613 .001506 000713 001750
.000414 001022 ,000514 001266 000614 001510 000714, 001754
000415 001026 .000515 001270 ,000615  .001514 .000715 001758
.000416 001029 000516 001274 .000616  ,001518 .000716 . 001762
000437 . 001033 .000517 001277 000617 001522 .000717  , 001766
.000420 001037 ,000520  .003281 .000620 001525 .000720 001770
000421 001041 .000521 001285 ,000621 001529 .000721 L 001773
.000422 . 001045 .000522 001269 .000622 001533 .000722 001777
000423 - 001049 000523 001293 .000623 001537 .000723 001784
.000424 001052 .000524  ,001296 .000624 001541 000724 001785
.000425 001056 ,000525 - ,001300 .000625  ,001544 .000725 001789
000426 . 001060 .000526 001304 .000626  ,001548 000726 001792
000427 001084 000527 001308 ,000627 001552 000727 001796
.000430 001068 ,000530 001312 .000630 001556 ,000730 001800
000431 001071 ,000531 001316 .000631 001560 .000731 001804
000432 001075 000532 001319 ,000632 001564 ,000732 001808
©,000433 001079 ,000533 001323 000633  ,001567 .000733 001811
000434 001083 ,000534  ,001327 000634 00157 ,000734 001815,
000435 001087 .000535 001331 ,000635 001575 ,000735  .001819
.000436 00109} 000536  .001338 . 000636 . .001579 ,000736 001823
000437  ,001094 000537 . 001338 000637 001583 000737 001827
000440 . 001098 000540  ,001342 .000640 001586 .000740 003831
000441 001102 ,000541 001346 .000641 001590 000741 001834
. 000443 ,001106 1000942 1001350 , 000642 , 001594 . 000742 001838
(000843 001110 ,000543 001354 000643 001598 000743 ,001842
000444 - 001113 ,000344 001358 .00064¢ 001602 ,000744 001846
000443 001127 ,000545  ,001361 000645 001605 000745 001850
000448 001121 " 000546  ,001365 000646 001609 000746 001853
. 000447 001128 ,000547 001309 ,000647 001613 ,000747 001857
000430 0011329 000850 001373 ,000650 001617 ,000750 001861
L0004 001132 000851 001377 L 000651 001621 ,000751 001865
/000482  ,001136 000852 001380 000652 001625 000752, 001869
,000483 001140 ,000353  ,001384 Q00653 001628 .000753 . 001873
000454 001144 .000534 001388 ,000654 001632 000754 001876
.000488  , 001148 000558 001392 ,000658  ,001636 000755 001880
000456 . 001152 000856 ,001396 ,000656 001640 000756  .001884
000457 . 001188 .000857 001399 000657 001044 .000757  ,001888
000460  ,001189 000560 001403 000660  ,001647 .000760  ,001892
000461 001163 ,000561 . 001407 .000661 001651 .000761 001895
000463 001167 000562  ,00141% ,000662 001655 000762 ,001899
.000463 001172 .000563  ,001415 ,000663 . 001659 000763  ,001903
000464 003174 000564 001419 .000664  ,001663 .000764 001907
000468 001178 _,000865  ,001422 .000665 001667 .000765 001911
. 000488 .001182 .000866 . 001428 . 000666 .001670 . .000766 .00191¢
.000487 001188 000567  .001430 000867 001674 ,000767 001918
.000470 001190 ,000870 001434 .000670 001678 .000770 001922
.000471 001194 (000571 001438 .000671 001682 L000771 001926
.000472 001197 <000872 001441 .000872  , 001686 000772 ,001930
.000473  , 001201 000373  ,001445 .000673 001689 000773 ,001934
. 000474 ,001208 000874  ,001449 . 000674 . 001693 . 000774 .001937
000478  ,001209 ,000878 . 0014583 . 000675 . 001697 ,000778 .001941
.00047¢ 001213 000878 001487 000876 001701 (000776  ,001945
.000477  , 001216 .000877 - ,001461 000677 .001708 000777 . 001949

A-11




_||||||||||||||||u=|
)







