
Voll
GEMTM AES

GEM™

APPLICATION ENVIRONMENT SERVICES

REFERENCE GUIDE

GEM Version 2.0

8039- 2024

COPYRIGHT

Copyright © 1986 Digital Research Inc. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written
permission of Digital Research Inc., 60 Garden Court, P.O. Box DRI, Monterey, California
93942.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Digital Research Inc. reserves the right to revise this publication and to make
changes from time to time in the content hereof without obligation of Digital Research
Inc. to notify any person of such revision or changes.

NOTICE TO USER

This manual should not be construed as any representation or warranty with respect to
the software named herein. Occasionally changes or variations exist in the software
that are not reflected in the manual. Generally, if such changes or variations are known
to exist and to affect the product significantly, a release note or READ.ME file
accompanies the manual and distribution disk(s). In that event, be sure to read the
release note or READ.ME file before using the product.

TRADEMARKS

Digital Research and its logo are registered trademarks of Digital Research Inc. GEM,
GEM Desktop, GEM Paint, and the GEM logo are trademarks of Digital Research Inc. IBM
is a registered trademark of International Business Machines. Intel is a registered
trademark of Intel Corporation. Motorola is a registered trademark of Motorola
Incorporated.

Second Edition: June 1986

FOREWORD

The GEM™ Application Environment Services is a set of related
functions for programming in the Digital Research® GEM graphics
environment. An application program uses the Application
Environment Services (AES) to perform a variety of tasks, such as
managing windows, displaying messages, monitoring mouse
movements, and drawing objects on the screen.

Associated Manuals

The following manuals are part of the GEM Developer Kit software and
documentation package. Because these manuals are interrelated, you
should become familiar with them and the software they document.

• GEM Desktop: Description of the GEM Desktop ™ user interface.

• Introduction to GEM Programming: An introduction to
programming in the GEM graphics environment. This book
contains an overview of the GEM Application Environment
Services and GEM Virtual Device Interface, with coding examples
written in the C programming language.

• GEM Virtual Device Interface Reference Guide: Reference manual
for GEM Virtual Device Interface.

• GEM Programmer's Utilities Guide: Description of the GEM
Resource Construction Set, Kermit™, and GEM SID™ programs
provided in the GEM Developer Kit.

iii

Organization of This Manual

Section 1 is an introduction to the GEM Application Environment
Services.

Section 2 is a general overview of many common tasKS an application
must perform.

Sections 3 through 14 contain the GEM Application Environment
Services, with detailed descriptions of each function.

Changes From GEM Version l.x

GEM version l.x provided four functions for animating windows:
GRAF _GROWBOX and GRAF _SHRINKBOX in the Graphics library, and
the FMD_GROW and FMD_SHRINK options in the Form library.

In GEM version 2.x this functionality is supported through the Extended
Graphics Library. Digital Research will not use the associated l.x
opcodes for any other functions, and future versions of GEM will treat
these functions as no-ops.

iv

Contents

1 INTRODUCTION TO GEM APPLICATION ENVIRONMENT
SERVICES
1.1 Conventions................................... 1-1
1.2 GEM AES Libraries . 1-2
1.3 Function Names. 1-2
1.4 x- and V-Coordinates. 1-3
1.5 GEM AES Data Structures. 1-3

1.5.1 Parameter Block. 1-3
1.5.2 Control Array . 1-4
1.5.3 Global Array. 1-4

2 TYPICAL GEM AES CALLING SEQUENCES
2.1 Initializing an Application . 2-1
2.2 Finding Screen Resolution. 2-2
2.3 Loading the Resource File. 2-3
2.4 Getting Resource Addresses. 2-3
2.5 Displaying the Menu Bar. 2-4
2.6 Displaying Icons in the Desktop Window. 2-4
2.7 Waiting for a User Event. 2-5
2.8 Menu Selection. 2-6
2.9 Displaying a Dialog. 2-7
2.10 Keystroke Menu Selection. 2-9
2.11 Selecting an Icon . 2-9
2.12 Creating a Window ~ , 2-11
2.13 Calculating Window Dimensions. 2-12
2.14 "Opening a Window : 2-13
2.15 Slider Size and Location. .. 2-13
2.16 Sizing a Window. .. 2-13
2.17 Rectangle List. .. 2-14
2.18 Before Updating a Window. .. 2-15
2.19 Redrawing the Work Area. .. 2-15
2.20 Making a Window Active. .. 2-15

v

Contents

2.21 Closing and Deleting a Window 2-16

3 APPLICATION LIBRARY
3.1 Application Messages. 3-1
3.2 Application library Routines. 3-2

APPLJNIT. 3-3
APPL_READ. 3-4
APPL_WRITE . 3-5
APPL_FIND . 3-6
APPL_ TPLA Y . 3-7
APPL_ TRECORD. 3-8
APPL_BVSET. .. 3-10
APPL_YIELD 3-11
APPL_EXIT .. 3-12

4 EVENT LIBRARY
4.1 Waiting for Multiple Events. 4-2
4.2 Keyboard Event. 4-2
4.3 Mouse Button Event. 4-3
4.4 Mouse Event. 4-3
4.5 Message Event. 4-4
4.6 Predefined GEM AES Messages. 4-5

4.6.1 MN_SELECTED............................. 4-6
4.6.2 WM_REDRAW . 4-6
4.6.3 WM_ TOPPED '. 4-6
4.6.4 WM_CLOSED.............................. 4-6
4.6.5 WM_FULLED . 4-7
4.6.6 WM_ARROWED............................ 4-7
4.6.7 WM_HSLlD................................ 4-8
4.6.8 WM_VSLlD................................ 4-8
4.6.9 WM_SIZED:............................... 4-8
4.6.10 WM_MOVED.............................. 4-9
4.6.11 WM_UNTOPPED........................... 4-9
4.6.12 AC_OPEN................................ 4-9
4.6.13 AC_CLOSE............................... 4-10

4.7 Application Dependent Messages 4-10
4.8 Timer Event .. 4-11

vi

Contents

4.9 Event Library Routines .. 4-11
EVNT _KEYBD. .. 4-12
EVNT_BUTTON .. 4-13
EVNT _MOUSE. .. 4-16
EVNT _MESAG , 4-18
EVNT_TIMER. .. 4-19
EVNT _MULTI. .. 4-20
EVNT_DCLICK " 4-24

5 MENU LIBRARY
5.1 Using the Menu Library. 5-3
5.2 Menu Library Routines. 5-5

MENU_BAR. 5-6
MENUJCHECK . 5-7
MENUJENABLE. 5-8
MENU_ TNORMAL. 5-9
MENU_TEXT. .. 5-10
MENU_REGISTER " 5-12
MENU_UNREGISTER " 5-13

6 OBJECT LIBRARY
6.1 Object Library Data Structures . 6-4
6.2 OBJECT Structure. 6-5
6.3 Predefined Values. 6-7

6.3.1 Object Types. 6-7
6.3.2 Object Colors " 6-10
6.3.3 Object Flags .. 6-12
6.3.4 Object States .. 6-14

6.4 TEDINFO Structure " 6-16
6.5 ICONBLK Structure .. 6-20
6.6 BITBLK Structure. .. 6-22
6.7 APPLBLK Structure. .. 6-24
6.8 PARMBLK Structure " 6-25
6.9 Object Library Routines. .. 6-27

OBJC-ADD .. 6-28
OBJC_DELETE " 6-29
OBJC_DRAW " 6-30

vii

Contents

OBJC_FIND. .. 6-32
OBJC_OFFSET. .. 6-34
OBJC_ORDER .. 6-35
OBJC_EDIT. .. 6-36
OBJC_CHANGE .. 6-38

7 FORM LIBRARY
7.1 A Model Form. 7-1
7.2 Responding to a Form . 7-2
7.3 Dialog Boxes. 7-4
7.4 Editable Text Fields. 7-4
7.5 Alerts.. 7-6

7.5.1 Error Boxes. 7-8
7.6 Displaying a Form. 7-8
7.7 Displaying a Dialog. 7-8
7.8 Displaying an Alert. 7-9
7.9 Form library Routines. .. 7-10

FORM_DO. .. 7-11
FORM_DIAL. .. 7-12
FORM-ALERT .. 7-14
FORM_ERROR. .. 7-15
FORM_CENTER. .. 7-16
FORM_KEYBD .. 7-17
FORM_BUTTON. .. 7-19

8 GRAPHICS LIBRARY
8.1 Graphics Library Routines. 8-2

GRAF _RUBBOX . 8-3
GRAF _DRAG BOX . 8-4
GRAF _MBOX. 8-6
G RAF_VVATCH BOX. 8-7
GRAF _SlIDEBOX . 8-9
GRAF _HANDLE 8-11
GRAF_MOUSE " 8-12
GRAF _MKSTATE .. 8-14

viii

Contents

9 SCRAP LIBRARY
9.1 Scrap Library Routines . 9-3

SCRP _READ . 9-4
SCRP _WRITE. 9-6
SCRP _CLEAR. 9-7

10 FILE SELECTOR LIBRARY
10.1 Using the File Selector
10.2 File Selector Library Routine

FSELJNPUT

11 WINDOW LIBRARY
11.1 Desktop Window
11.2 Application Windows
11.3 Components of the Border Area
11.4 Division of Labor
11.5 Window Management Calls
11.6 Support of Overlapping Windows
11.7 Redrawing and Updating
11.8 Window Library Routines

WIND_CREATE '
WIND_OPEN
WIND_CLOSE
WIND_DELETE
WIND_GET
WIND_SET
WIND_FIND
WIND_UPDATE
WIND_CALC "

12 RESOURCE LIBRARY

10-3
10-4
10-5

11-1
11-2
11-4
11-7
11-8

11-10
11-11
11-13
11-14
11-16
11-17
11-18
11-19
11-23
11-26
11-27
11-29

12.1 Using the Resource Library " 12-1
12.2 Resource Library Routines " 12-2

RSRC_LOAD .. 12-3
RSRC_FREE. .. 12-4
RSRC_GADDR. .. 12-5
RSRC_SADDR " 12-7
RSRC_OBFIX. .. 12-8

ix

Contents

13 SHELL LIBRARY
13.1 Using the Shell Library
13.2 Shell Library Routines

SHEL_READ
SHEL_WRITE
SHEL_FIND
SHEL_ENVRN
SHEL_RDEF
SHEL_WDEF

14 EXTENDED GRAPHICS LIBRARY

13-2
13-4
13-5
13-6
13-8

13-10
13-11
13-12

14.1 Extended Graphics Library Routines 14-1
XGRF _STEPCALC. .. 14-2
XGRF _2BOX .. 14-4

A AES FUNCTIONS IN OPCODE ORDER. A-1

Tables

1-1 Application Environment Services
1-2 Global Array
6-1 OBJECT Structure Elements
6-2 Object Types and ob-spec Values
6-3 Object Color WORD
6-4 Object Flags
6-5 Object States
6-6 TEDINFO Structure Elements
6-7 ICONBLK Structure Elements
6-8 BITBLK Structure Elements
6-9 APPLBLK Structure Elements
6-10 PARMBLK Structure Elements
7-1 Editing Keys
11-1 Border Components
11-2 Values and Returned Parameters of w_field
11-3 Values and Input Parameters of w_field
A-1 AES Functions in Opcode Order

x

1-2
1-5
6-6
6-9

6-11
6-13
6-15
6-17
6-21
6-23
6-24
6-26
7-5

11-5
11-20
11-24

A-1

Contents

Figures

6-1 Object Tree .
6-2 On-screen Display
6-3 OBJECT Structure
6-4 ob_spec for G_BOX, GJBOX, and G_BOXCHAR
6-5 Object Color WORD
6-6 TEDINFO Structure
6-7 ICONBLK Structure
6-8 BITBLK Structure .
6-9 APPBLK Structure
6-10 PARMBLK Structure
7-1 Product Survey Form
7-2 Sample GEM AES Alert
10-1 File Selector Dialog
11-1 Parts of Application Window
11-2 Window Rectangles

xi

6-1
6-2
6-5
6-8

6-11
6-16
6-20
6-22
6-24
6-25
7-2
7-7

10-2
11-3

11-11

SECTION 1

INTRODUCTION TO GEM APPLICATION ENVIRONMENT SERVICES

The GEM Application Environment Services, called the AES, is a set of
functions an application program uses to control the interaction
between the user and the application. The AES manages icon selection,
drop-down menus, dialog boxes, alert messages, and windows.

The AES is grouped into twelve sets of related functions, referred to
as libraries.

The code for GEM AES is resident in memory, and it remains in
memory until the user exits the AES.

1.1 Conventions

In this manual, you are the application programmer using the GEM
Application Environment Services to write your application program.
The user is the person running the application.

Mouse form is a general term for the cursor which is controlled by the
mouse. The mouse form can be a pointer, cross hair, or some other
form, depending on the context of the application.

In the error codes for the functions, !! means any positive number, -n
means any negative number.

The following abbreviations appear throughout this manual:

GEM Graphics Environment Manager

AES Application Environment Services

VDI Virtual Device Interface, documented in the GEM
Virtual Device Interface Reference Guide

RCS Resource Construction Set, documented in the GEM
Programmer's Utilities Guide

1-1

1.3 Function Names GEM AES Reference Guide

1.2 GEM AES Libraries

The Application Environment Services consist of the twelve libraries
described in Table 1-1.

Table 1-1. Application Environment Services

Library Description

Application Application initialization and communication

Event Input and event management

Menu Menu bar display and management

Object Object tree display and management

Form Form display and management

Graphics Rectangle display and management

Scrap Data interchange between applications

File Selector Directory display and file selection

Window Window management

Resource Resource file and object address management

Shell Shell information retrieval and management

Extended Graphics Supplemental rectangle functions

1.3 Function Names

The name of a function identifies the library to which it belongs and
gives a general idea of its purpose.

The part of the function name preceding the underbar is a code for
the AES library. For example,

1-2

GEM AES Reference Guide 1.S GEM AES Data Structures

appl_ ...
evnt_ ...
objc_ ...
graf_ ...
wind_ ...

Application Library
Event libra ry
Object library
Graphics Library
Window Library

1.4 X- and V-Coordinates

Many AES functions define objects by their X- and V-coordinates and
their width and height. These X- and V-coordinates always refer to
the upper left corner of the object.

Note: The AES interprets and returns all coordinates as raster
coordinates. Raster coordinates are described in the Introduction to
GEM Programming.

1.5 GEM AES Data Structures

All AES functions use the following three data structures:

• Parameter Block
• Control Array
• Global Array

1.5.1 Parameter Block

The application must pass a LONG POINTER to the Parameter Block for
every AES call.

params(O) = long address (32 bits) of control array
params(l) = long address (32 bits) of global array
params(2) = long address (32 bits) of intjn array
params(3) = long address (32 bits) of int_out array
params(4) = long address (32 bits) of addr _in array
params(S) = long address (32 bits) of addr _out array

1-3

1.5 GEM AES Data Structures GEM AES Reference Guide

1.5.2 Control Array

The application must set up the Control Array. for each AES call it
makes.

The Control Array contains the following elements:

control{O) =
control{l) =
control(2)
control(3) =
control(4) =

op_code (function number)
size in WORDS of intjn array (integer input)
size in WORDS of int_out array (integer output)
size in LONGS of addr jn array (address input)
size in LONGS of addr_out array (address output)

Each function contains some or all of the following arrays:

int_in
int_out
addr_in
addr_out

Each parameter in this array is a WORD.
Each parameter in this array is a WORD.
Each parameter in this array is a POINTER.
Each parameter in this array is a POINTER.

The 32 bit values in the addr_in and addr_out arrays are in a format
that is native to the host CPU. In Intel™ architecture, the first WORD
in memory is the offset or LOW WORD. The second WORD is the
segment or HIGH WORD. In Motorola ™ architecture, the first WORD in
memory is the most significant part of the address or HIGH WORD.
The second WORD is the LOW WORD.

This book presents 32 bit addresses in the Intel format. For Motorola
format, you must reverse the order of the LOW WORD and the HIGH
WORD.

1.5.3 Global Array

The Global Array is 30 bytes long, and is initialized when you make the
APPL_INIT call. On return from APPLJNIT, the array values are set as
shown in Table 1-2.

1-4

GEM AES Reference Guide 1.5 GEM AES Data Structures

Element

global(O)
global(l)

global(2)

global(3)
global(4)
global(5)

global(6)

global(7)

global(8)

global(9)
global(10)
global(11)
global(12)
global(13)

global(14)

Table 1-2. Global Array

Description

WORD identifying the GEM version number
WORD specifying the number of applications this
version of GEM supports concurrently
WORD containing a unique application identifier that is
in effect as long as the application remains in the AES
environment.
LOW WORD of window 0 (zero) ob_spec
HIGH WORD of window 0 (zero) ob_spec
LOW WORD of tree base in memory allocated to
resource file
HIGH WORD of tree base in memory allocated to
resource file
LOW WORD of base of memory allocated to resource
file
HIGH WORD of base of memory allocated to resource
file
Length in bytes of memory allocated to resource, file
Number of planes of color (1-4)
WORD reserved
WORD reserved
Bit vector of disk drives installed on GEM Desktop
application

bit 15
bit 14
bit 13
bit set

represents drive A
represents drive B
represents drive C, and so forth
means the drive is installed

Bit vector indicating whether installed drive is a floppy
or hard disk. Bits are assigned to drives as in
global(13).

Bit set means the drive is a hard disk

End of Section 1

1-5

GEM AES Reference Guide 2.1 Initializing an Application

TYPICAL GEM AES CALLING SEQUENCES

This section describes sequences of AES and VOl calls that a GEM
application might make. Where needed, the GEM Desktop application
serves as an example of a typical GEM application.

These calling sequences do the following:

• Initialize the application
• Determine the system's screen resolution
• Load the application's resource file
• Get the addresses of the application's resources
• Display the application's menu bar
• Display icons on the desktop
• Let the application await user action
• Let the user select from a menu
• Display a dialog as the result of selecting from a menu
• Let the user make a menu selection by pressing keys
• Let the user select an icon
• Let the user interact with windows

2.1 Initializing an Application

There are three steps to this process:

1. Free unneeded memory.

When an application is first loaded into memory, it should make a
call to the operating system to modify the application's memory
allocation. By freeing memory from the end of the application to
the top of memory, this call makes space available for the
application's resource file and any additional fonts that the
application might need. Resource files are described in the GEM
Programmer's Utilities Guide.

If the application does not make this call, the operating system
returns an error message when the RSRC_LOAD call (described in

2-1

2.2 Finding Screen Resolution GEM AES Reference Guide

Section 2.3) makes its operating system memory allocation
request.

2. Initialize data structures and set up the following arrays:

• GEM AES Parameter Block
• Control Array
• Global Array
• Integer Input (intjn) Array
• Integer Output (int_out) Array
• Address Input (addr In) Array
• Address Output (addr _out) Array

The application allocates space for these arrays and establishes
bindings in its code so that parameters go to the right arrays.
For examples, see the C language bindings in this guide and in
the GEM Developer's Kit.

3. Make the APPl_INIT call.

APPlJNIT, the application's first AES call, sets up application­
specific data structures and returns a system-wide application
identifier (ap_id). The AES places apjd in the Global Array so it
can identify the application throughout its calling sequence.

2.2 Finding Screen Resolution

All of an application's text or graphic data that is either specific to a
device or to a spoken language is contained in the application's
resource file. These materials include the following:

• Text
• Icons
• Menus
• Dialogs
• Forms

All resource files have a .RSC filetype.

Applications usually have at least two resource files, one for a low­
resolution screen (640x200 pixels) and another for a high-resolution

2-2

GEM AES Reference Guide 2.4 Getting Resource Addresses

screen (640x400, 640x350, or 720x350 pixels). See the discussion of
aspect ratio and screen resolution under GEM Resource Construction
Set in the GEM Programmer's Utilities Guide.

Before it can load the correct resource file, the application must know
the system's screen resolution. To get this information:

1. The application calls the GRAF _HANDLE routine. This call returns
the GEM VOl handle for the screen.

2. The application makes a GEM VOl Open Virtual Workstation call,
which provides the same information as an Open Workstation call.
This call returns the system's screen resolution.

For a description of the GEM VOl Open Virtual Workstation call, see the
GEM VOl Reference Guide.

2.3 Loading the Resource File

When the application makes its RSRC_LOAO call, the Resource Library
checks the size of the resource file and allocates memory to load it. It
then reads in the resource file, adjusting internal pointers to reflect the
load address.

The RSRC_LOAO call also converts special X, V, width, and height
screen position information that allows the application to address any
pixel on the screen. This coordinate system assumes a standard
screen of 80 columns and 25 lines and uses a bit offset method of
locating screen positions. For example, on a given line, the AES can
address two points that are three pixels apart. by identifying their
positions as (column 46 + 2 pixels) and (column 46 + 5 pixels).

2.4 Getting Resource Addresses

To get the address of any tree contained in its resource file, the
application makes a RSRC_GADDR call. The application can make
RSRC_GAOOR calls any time after the RSRC_LOAD and before the
RSRC_FREE call.

The application makes a series of anticipatory RSRC_GADDR calls,

2-3

2.6 Displaying Icons in the Desktop Window GEM AES Reference Guide

getting and storing the address of each resource it expects to need in
the course of the current session.

2.5 -Displaying the Menu Bar

The application's menu bar is a typical resource. To display the menu
bar, the application makes two calls:

1. The application calls RSRC_GADDR (if it has not already done so),
passing in the menu bar's data structure type and its name, as
assigned in the Resource Construction Set.

RSRC_GADDR returns the LONG ADDRESS to the root of the
object tree that represents the menu bar.

2. The application calls MENU_BAR, passing in the menu bar's
address and a value of 1 in the showit argument, to display the
menu bar.

The Menu library then displays the menu bar across the top of the
screen.

2.6 Displaying Icons in the Desktop Window

The desktop window is the menu bar and the area below it. The AES
always assigns a window handle of 0 (zero) to the desktop window.

To display icons in the desktop window, the application must first
know the size and location of the desktop window's available work
area. The work area of the desktop window includes everything below
the menu bar.

To get this information the application makes a WIND_GET call, passing
in values that:

• Identify the window as the desktop window (w_handle = 0)
• Ask for the window's X, Y, width, and height values (w_field = 4)

WIND_GET returns the X, Y, width, and height values for the work area
of the desktop window.

2-4

GEM AES Reference Guide 2.7 Waiting for a User Event

The application calls the vr _trnfm function, documented in the GEM VOl
Reference Guide, to transform the ICONBLK data structure to reflect
your hardware device.

The application then makes an OBJC_ORAW call to draw the icons in
the work area. The values contained in ib_xicon, ib_yicon, ib_wicon,
and ib_hicon in each icon's ICONBLK structure determine where the
icon appears.

Note: Most applications use the desktop window only as a backdrop
to their own application windows.

2.7 Waiting for a User Event

At this point the application has displayed its menu bar and desktop
icons, and it is now ready for user interaction.

The Event Library defines five user interaction events:

• Keystroke
• Pressing a mouse button
• Mouse movement
• Message from a GEM AES process
• Passage of a specified period of time

Although an application can wait for one event at a time, most
commonly it makes an EVNT _MULTI call to wait for some combination
of events.

When one of the awaited events occurs, GEM AES's dispatcher moves
the application from the Not-Ready List to the Ready List. When th~
application reaches the head of the Ready List, it responds to the user
event and then returns to the Not-Ready List to await the next ev'ent
in the EVNT _MULTI sequence.

Note: It is suggested that GEM applications only accept input from a
single mouse button. If a mouse has more than one button, a GEM
application should look for input from the button on the left. This
allows your application to work with the widest variety of input
devices, including touch screens and tablets.

2-5

2.8 Menu Selection GEM AES Reference Guide

2.8 Menu Selection

An application's menu bar is controlled by the GEM AES Screen
Manager; the application is not responsible for user interaction with
the menu bar.

The following sequence describes what happens when a user selects
Desktop Info ... , one of the Desk Menu commands in the GEM Desktop
application. (Menu selection for any GEM application should follow the
same basic sequence.)

1. The GEM Desktop application makes an EVNT _MULTI call that
includes a message as one of the awaited events.

2. The user moves the mouse form into the menu bar, touching the
Desktop Menu's title.

3. Receiving notification that the mouse has entered the menu bar,
the Screen Manager is dispatched to the Ready List. It determines
which menu title the mouse form is touching, saves the part of
the screen under the menu, and displays the menu. The Screen
Manager highlights menu items as the user moves the mouse
form through the menu.

The GEM Desktop application is still on the Not-Ready List at this
time.

4. The user clicks the mouse button on the Desktop Info
command.

5. The Screen Manager notifies the GEM Desktop application of the
user's selection by writing a message to the GEM Desktop's
message buffer. The mepbuff parameter of the EVNT _MULTI call
contains the buffer's address.

The predefined AES message MN_SELECTED, described in Section
4.6 contains object tree indexes for the selected menu title and
item.

6. When the Screen Manager writes the message, the Dispatcher
checks the Not-Ready List for the process that was waiting for
the message. It finds the GEM Desktop application and moves it
over to the Ready List.

2-6

GEM AES Reference Guide 2.9 Displaying a Dialog

7. The EVNT _MULTI call returns a value to the GEM Desktop
application. The bit setting indicates that a message has been
received.

8. The GEM Desktop application reads and interprets the message
from its buffer and displays the Desktop Information dialog.
Displaying a dialog is described in Section 2.9.

9. The menu title remains highlighted until the requested action is
complete. In the case of the Desktop Information dialog, the
menu title is highlighted until after the final FORM_DIAL call.

When the action is complete, the application makes a
MENU_TNORMAL call with a value of 1 in the normalit argument.
This call changes the menu title from its highlighted state to its
normal state.

2.9 Displaying a Dialog

To display a dialog, the GEM Desktop application makes the following
sequence of calls:

,. The application calls RSRC_GADDR to get the address of the
dialog's object tree. The application can make this call at any time
between its RSRC_LOAD call and the beginning of the dialog
display sequence.

2. The application calls FORM_CENTER to establish the location of
the dialog on the screen, because dialog trees generated by the
Resource Construction Set have an undefined origin (upper left
corner).

3. The application calls the FORM_DIAL routine, passing in a dtype
value of 0 (zero), an FMD_START call. This call reserves screen
space for the dialog.

4. The application calls the OBJC_DRAW routine to draw the dialog,
paSSing the address of the tree, the first object to draw, the
drawing depth, and the rectangle allotted for the dialog.

5. The application calls FORM_DO to monitor the user's interaction
with the dialog.

2-7

2.9 Displaying a Dialog GEM AES Reference Guide

6. When one of the dialog's exit conditions is met, the application
compares the dialog's initial values, which were set up in the
RSRC_LOAD call when the dialog was created, with the values the
dialog now contains. The application notes any changes and acts
accordingly.

In many cases the application makes a series of OBJC_CHANGE
calls to reset the dialog objects to their initial values.

For example, after the user exits the Desktop Information dialog,
the GEM Desktop application changes the OK exit button's
ob_state from SELECTED to NORMAL so that the next time the
user selects the Desktop Info ... option, the dialog does not appear
with its OK button already highlighted.

In some cases, the user can overwrite text strings that have been
set to initial values. The user backspaces over the string and
types a new string. After comparing values and acting
accordingly, the application might reset the string to its initial
value.

Note, however, that the user might want to save some changes
made to dialogs. For example, in the ITEM INFORMATION/RENAME
dialog, the user will want to save both the document's name and
its Read-Write or Read-Only status.

7. The application calls FORM_DIAL again, this time passing in a
dtype value of 3, a FMD_FINISH call.

2-8

This call removes the dialog from the screen and frees the screen
space that had been reserved by the dialog. The call also causes
the Screen Manager to send a message to the application to
redraw the screen.

The application can redraw the screen with an OBJC_DRAW call or
with several GEM VDI calls.

To be able to respond to such a redraw message at any time, the
application should be in an EVNT _MULTI wait.

GEM AES Reference Guide 2.11 Selecting an Icon

2.10 Keystroke Menu Selection

The AES allows the user to select some menu items by pressing a
specially designated key or combination of keys instead of using a
menu. To enable this feature, the application should specify a
keyboard event as one of the awaited events in the EVNT _MULTI call.

With the exception of cursor pOSitioning, it is the responsibllitv of the
application to define the keystrokes and what they mean. The AES
does not define or reserve any keys for special purposes.

When the user presses one of the menu item selection keys, the
application makes a MENU_ TNORMAL call with a value of (I (zero) in
the normalit argument, to highlight the menu title. The user does not
see the menu, but the highlighted menu title serves as notice that the
application is acting on the user's request.

When the requested action has taken place, the application makes a
MENU_TNORMAL call with a normalit value of 1, to return the menu
title to its normal state.

2.11 Selecting an Icon

To select an icon, the user places the mouse form on an icon and
clicks once.

The following sequence describes icon selection:

1. The application sets the bit for a button event (MU_BUTTON) in
the EVNT _MULTI call. Input parameters for this call include the
awaited mouse button state (up or down) and the number of
times the application wants the button to enter that state within
the preset time interval.

2. When the user clicks on an icon, the EVNT _MULTI call returns a
value with the bit set for a mouse button event. It also returns
the mouse form's X and Y coordinates.

3. The application makes an OBJC_FIND call, passing in the mouse
form's X- and V-coordinates from the previous call. The
application also passes in the address of the object tree that
draws the icons in the application's window.

2-9

2.11 Selecting an Icon GEM AES Reference Guide

4. If the OBJC_FIND call reports that the mouse form is over an icon,
the application makes an OBJC_CHANGE call to change the icon's
ob_state value from NORMAL to SELECTED.

If the user clicks the mouse button and the mouse form is over
nothing, the user is trying to deselect the selected icon.

If the user depresses the mouse button and the mouse. form is not
over an icon, the application assumes that the user intends to select a
group of icons by dragging an expanding (or IIrubberll) rectangle
arouno them. In that event, the application makes the following
sequt.nce of calls:

1. 1 Ie application makes a GRAF _MKSTATE call to see if the button
is still down.

2. If so, the application makes a GRAF _RUBBOX call to draw the
rubber rectangle that surrounds the icons the user wishes to
select.

The call's input X and Y values are the X and Y values from the
EVNT _MULTI call.

The GRAF _RUBBOX call's output width and height values (pwend
and ph end) define the size of the rubber rectangle at the time the
user released the mouse button.

3. The application looks for icons inside the rectangle.

4. The application makes an OBJC_CHANGE call for each icon,
changing its ob_state from NORMAL to SELECTED.

Selecting an icon can change the appearance of menu items. For
example, when a folder, document, application, or disk icon is selected,
the File Menu item Open should change state from disabled to
enabled. The same icon selection can change other menu items from
enabled to disabled.

A disabled menu item appears in dimmed characters, which indicates
to the user that the item cannot be selected. An enabled item appears
in characters of normal brightness.

When the user selects an icon, the application's code determines
which menu items need to change state. The application then makes

2-10

GEM AES Reference Guide 2.12 Creating a Window

a MENU_IENABLE (item enable) call for each of these items, passing in
a value of 0 (zero) to disable an item or 1 to enable it in the enableit
argument. The application should do this for every context change
whether or not icons are selected.

2.12 Creating a Window

When a GEM application is running, the AES and the application share
responsibility for drawing and managing windows. The AES is
responsible for all user interactions with any components present in
the application window's border area. These components include the
following:

• Title bar
• Move bar
• Information Line
• Size box
• Full box
• Close box
• Arrows, scroll bars, and sliders

The application is responsible for drawing and managing everything
that appears inside the application window's work area, which is
everything inside the borders.

For more information on windows see Section 11.

To make a window appear on the screen:

1. Create the window to define what components will be present in
the window.

2. Open the window to make it appear.

When the application makes a WIND_CREATE call, it passes in a bit
vector with a bit set for each border area component the window will
have. To request multiple components, the bits are OR-ed together.
The application also passes in the size and location of the window's
greatest possible size.

The GEM Desktop application and the calculator desk accessory
illustrate how the WIND_CREATE call works. (The calculator actually

2-11

2.13 Calculating Window Dimensions GEM AES Reference Guide

appears in a window, although from the user's viewpoint, the
calculator and its window are the same.)

When the GEM Desktop makes a WIND_CREATE call, the bit is on for
(among others) the full box. This means the full box appears in the
GEM Desktop window's border area, and the user can make the
window appear in its largest possible size. In addition, the
WIND_CREATE call defines the window's largest size as the size of the
desktop window's work area (all of the screen below the menu bar).

When the calculator desk accessory makes a WIND_CREATE call, the
bit is off for the full box. No full box appears in the window's border
area, and the user cannot change the size of the window. The
WIND_CREATE call defines the window's greatest possible size (its only
size, because there is no full box or size box) as nineteen characters
wide by thirteen characters high.

If an application does not support a particular window function (like
sizing), it should not request the window control point (the size box)
that supports this function.

When an application makes a WIND_CREATE call, the AES returns a
window handle, a numeric identifier the application uses for all future
AES calls relative to this window. Recall that the identifier for the
desktop window is always 0 (zero).

2.13 Calculating Window Dimensions

Before issuing the WIND_OPEN call to open the window, the application
might need to make a WIND_CALC call to perform the following
calculation .

• Using the size and location of the window's outer dimensions
(including the border area) as input parameters, WIND_CALC
returns the size and location of the application window's work
area .

• Using the size and location of the window's work area as input
parameters, WIND_CALC returns the size and location of the
window's outer dimensions (including the border area).

2-12

GEM AES Reference Guide 2.16 Sizing a Window

In either case, WIND_CALC uses the same bit vector that WIND_CREATE
used to identify the components of the window's border.

Note: Every application must handle the case when there are no more
windows as indicated by an error returned from the WIND_CREATE call.

2.14 Opening a Window

The WIND_OPEN call causes the window to appear on the screen.

In making the call, the application passes in the window handle from
WIND_CREATE and the window's initial size and location.

The application determines the initial size and location. The
application can be written to remember a window's previous size and
location, or the application can specify that a window always open in
the same size and location.

When the application makes the WIND_OPEN call, the GEM AES Screen
Manager draws the window's border area and then sends a message
to the application to draw the window's work area.

2.15 Slider Size and Location

If the work area of the window contains only part of the directory or
document (if only a portion of the amount of data is visible in the
physical window), the application makes a WIND_SET call to set the
size and location of the vertical and/or horizontal sliders. A separate
call is required for the size and location of each slider.

The application makes similar WIND_SET calls each time the size and
location of the sliders change.

2.16 Sizing a Window

When the user drags the window's size· box, the AES is responsible for
displaying the rubber box that shows the user a preview of the
window's new size.

2-13

2.17 Rectangle List GEM AES Reference Guide

When the user releases the mouse button, the AES sends the
application a message containing the dimensions of the window the
user is requesting. The application must decide if the requested size
is valid.

If the requested size is valid, the application issues a WIND_SET call to
change the size of the window. If the new window is smaller than the
current window, the application does not have to redraw the window's
work area. If the new window is larger than the current window, the
AES sends the application a WM_REDRAW message requesting that it
redraw the contents of the window's work area.

If the requested size is not valid, the application must decide how to
respond to such a request. It can do any of the following:

• Ignore the request.
• Automatically size the window to the nearest valid size.
• Display a dialog that informs the user the request is not valid.

2.17 Rectangle List

An application is only responsible for redrawing and updating the
visible portion of its windows. To keep track of this area, the AES
divides the visible portion of each window's work area into the fewest
possible number of non-overlapping rectangles. For example, if the
entire window is visible, there is only one rectangle, the work area
itself.

The AES keeps a list of these rectangles. The application gets the
rectangle by making a series of WIND_GET calls, the first with an input
value of WF _FIRSTXYWH, and the subsequent calis with values of
WF _NEXTXYWH. The application continues making these calls until the
returned width and height values for the rectangle are 0 (zero).

Figure 11-2 shows window rectangles.

2-14

GEM AES Reference Guide 2.20 Making a Window Active

2.18 Before Updating a Window

Before it updates a window, or under any circumstances draws to the
screen, an application must notify the AES that an update is about to
take place. It notifies the AES with the WIND_UPDATE function.

The application makes a WIND_UPDATE call with a beg_update value of
1, which indicates the beginning of a window update. This 'call
prevents menus and alerts from appearing during a window update,
and also prevents other applications from drawing to the screen.

When the update is complete, the application makes a WIND_UPDATE
call with a beg_update value of 0 (zero), which indicates the end of a
window update, and allows other applications to draw to the screen.

2.19 Redrawing the Work Area

When it redraws its window's work area, an application makes a
WIND_GET call to get the first rectangle in the rectangle list.

The application then looks to see if the first rectangle has any area in
common with the "update rectangle," the part of the work area that is
to be redrawn. If so, the application redraws that common area. If
not, the application makes another WIND_GET call to get the next
rectangle in the list. The application compares the next rectangle with
the update rectangle and again redraws any area common to both
rectangles.

The application continues this sequence of WIND_GET calls,
comparisons, and redraws until it has gone through all the rectangles
in the rectangle list.

2.20 Making a Window Active

When the user clicks the mouse button, the application needs to find
out where the mouse button was pressed. It makes a WIND_FIND call,
passing in the mouse's X- and V-coordinates, which were returned by
the EVNT _MULTI call. The WIND_FIND call returns the window handle
of the window under the mouse form.

2-15

2.21 Closing and Deleting a Window GEM AES Reference Guide

If the window handle identifies an inactive window (including a desk
accessory window), the Screen Manager sends a message to the
application that owns the window. The Screen Manager uses the
predefined message WM_TOPPED, which tells the application that the
user has requested that its window be brought to the top.

To bring the window to the top (make it lIactivell), the application
makes a WIND_SET call with input values including the window's
handle and the a code indicating that the window is to be brought to
the top.

The window will not be topped until the WIND_SET call is made with
WF _TOP in the w_field argument.

2.21 Closing and Deleting a Window

When the user closes a window, either by interaction with the
window's border area or by choosing a command from a menu, the
Screen Manager sends a message to the application to close the
window. The application makes a WIND_CLOSE call, passing in the
handle of the window to be closed.

When the window is closed, its handle is still allocated to the
application. The handle is not available again until the application
makes a WIND_DELETE call.

The user cannot detect WIND_CREATE or WIND_DELETE; the user can
only detect WIND_OPEN and WIND_CLOSE. In most cases, an
application will make the create and open calls one immediately after
the other, and it will do the same with the close and delete calls.
However, this is optional.

Section 11, Window Library, contains more details on specific
windowing techniques as well as descriptions of the individual Window
Library calls.

End of Section 2

2-16

SECTION 3

APPLICATION LIBRARY

An application must first register with the Application Library before it
can use the other libraries.

The Application Library controls access to the other GEM AES libraries.
Because many applications use these libraries at the same time, each
function must know which application is requesting a service.

The following sequence illustrates the Application Library's role:

1. An application is loaded into memory and starts executing.

2. The application reserves the required space for the Global Array,
described in Section 1.5.3, and makes a call to tell the AES to
initialize the space.

3. The application enters its main body of code and runs until the
user requests that it terminate.

4. The application exits the Application Library.

5. The application terminates.

Note: The application should never tamper with the space allocated
to it by the AES. This space contains global data structures that are
vital to the successful use of all AES subroutines.

3.1 Application Messages

An application can send a message to another application. The
APPL_READ and APPL_WRITE functions are responsible for these
message pipes. This message format is similar to but not the same as
the predefined messages the AES can send to an application.
Predefined messages are described in Section 4.6.

3-1

3.2 Application Library Routines GEM AES Reference Guide

The standard format for application-defined messages is as follows:
Use message types in the range 1024 to 32,000.

WORD 0
WORD 1
WORD 2
WORD 3
WORD 4
WORD 5
WORD 6
WORD 7

Message type
Sender's ap_id
OxFFFF
Length of message buffer at pointer
Offset of message buffer
Segment of message buffer
Application specific
Application specific

3.2 Application Library Routines

The Application Library provides the following routines:

3-2

APPL-,NIT

APPL_READ

Initializes a session with the Application Library.

Lets an application read a specified number of
bytes from a message pipe.

Lets an application write a specified number of
bytes to a message pipe.

Finds the application identifier of another
application in the system.

APPL_TPLAY Plays a piece of an AES recording of the user's
actions.

APPL_TRECORD Records a set of the user's interactions with the
AES.

APPL_EXIT Exits a session with the Application Library.

GEM AES Reference Guide

APPLJNIT

Initializes the application and establishes a number of internal AES
data structures. You must use APPL_INIT before calling any other AES
function.

The APPLJNIT call resets an internal counter, giving the calling
program 10 AES calls before a dispatch occurs. Use this feature to
acquire contiguous memory either with a memory allocate or
RSRC_LOAD call.

Output Arguments

apjd A code indicating whether or not the APPLJNIT call
was successful.

o or n APPL_INIT was successful. TheAES places
this number in the Global Array, and the
application uses it with future calls to
Application Library functions.

-1 APPL_INIT was not successful. The
application should make no further
Application Library calls.

Sample Call to C Language Binding

WORD appLinitO;
WORD apjd;

ap_id = appLinitO;

Parameter Block Binding

Control

control(O) = 10
control(1) = 0
control(2) = 1
control(3) = 0
control(4) = 0

Input Output

inLout(O) = ap_id

3-3

GEM AES Reference Guide

APPL_READ

Reads a specified number of bytes from a message pipe.

~u~ Arguments

rwid

length

pbuff

The ap_id of the process whose message pipe the
application is reading, usually its own.

The number of bytes to read from the message pipe.

The address of the buffer that holds the bytes the
application is reading.

Output Arguments

retval A coded return message:

o error
n no error

Sample call to C language binding

WORD
WORD
LONG

appl_readO;
retval,rwid,length;
pbuff;

retval = appl_read(rwid, length, pbuff);

Parameter Block Binding

Control

control(O) = 11
control(1) = 2
control(2) = 1
control(3) = 1
control(4) = 0

3-4

Input

inLin(O) = rwid
inLin(l) = length

addr_in(O) = pbuff

Output

inLout(O) = retval

GEM AES Reference Guide

APPL_WRITE

Writes a specified number of bytes to a message pipe.

Input Arguments

rwid The ap_id of the process to which the application is
writing, usually not itself.

length

pbuff

The number of bytes to write to the message pipe.

The address of the buffer holding the bytes to be
written.

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD
LONG

appl_write();
retval, rwid, length;
pbuff;

retval = appCwrite(rwid, length, pbuff);

Parameter Block Binding

Control

control(O) = 12
control(1) = 2
control(2) = 1
control(3) = 1
control(4) = 0

Input

int_in(O) = rvvid
inLin(1) = length

addr_in(O) = pbuff

Output

inLout(O) = retval

3-5

GEM_ AES Reference Guide

APPL_FIND

Finds the apjd of another application in the system. The calling
application must know the other application's apjd before it can
establish communications.

Input Arguments

pname Address of a null-terminated string containing the
filename of the application for which the current
application is searching.

The string must be 8 characters long. If the filename
has fewer than 8 characters, the rest of the string
must be filled out with blank spaces.

Output Arguments

tid The apjd of the application tor which the current
application is searching.

-1 The AES could not find the application.

Sample Call to C Language Binding

WORD appl_findO;
WORD fid;
LONG pname;

fid = appl_tind(pname);

Parameter Block Binding

Control

control(O) = 13
control(1) = 0
control(2) = 1
control(3) = 1
control(4) = 0

3-6

Input

addr_in(O) = pname

Output

inLout(O) = fid

GEM AES Reference Guide

APPL_TPLAV

Plays a piece of an AES recording of the user's actions.

Input Arguments

The number of user actions to play back. tlength

tscale A sliding scale from 1 to 10,000 determining the
speed at wh ich the AES plays back the user's actions.
For example:

50 half speed
100 full speed
200 twice speed

tbuffer The address of the area in memory holding the
recording of user events that the AES will play back.

Output Arguments

retval Always equals 1 (one).

Sample Call to C Language Binding

WORD appl_tplavO;
WORD retval, tlength, tscale;
LONG tbuffer;

retval = appl_tplay(tbuffer, tlength, tscale);

Parameter Block Binding

Control

control(O) = 14
control(l) = 2
control(2) = 1
control(3) = 1
control(4) = 0

Input

inLin(O) = tlength
inLin(l) = tscale

addr_in(O) = tbuffer

Output

inLout(O) = retval

3-7

GEM AES Reference Guide

APPL_TRECORD

Records a set of the user's interactions with the AES.

Entry of a Ctrl-Backslash (\) terminates a recording sequence.
Otherwise, the event recording continues until the tlength is reached.

Each user event uses six bytes in memory, divided into a WORD and a
LONG value. In Motorola architecture, each user event is eight bytes,
divided into two LONG values.

The WORD contains a code for the event that occurred, as defined by
the Event library. In Motorola architecture, this value is a LONG. The
codes are:

o timer event
1 button event
2 mouse event
3 keyboard event

The LONG value's meaning depends on the type of event that was
recorded.

3-8

Timer event

Button event

Mouse event

The number of elapsed milliseconds.

The LOW WORD is the button state.

o button up
1 button down

The HIGH WORD is the number of clicks.

The LOW and HIGH WORD are the mouse's X- and
V-coordinates in pixels, respectively.

Keyboard event The LOW WORD contains the character the user
typed. The HIGH WORD contains the keyboard
state, which is the state of the keyboard's right­
shift, left-shift, Ctrl, and Alt keys, when the user
event occurred.

GEM AES Reference Guide

Input Arguments

tlength The number of user events that the application can
store. This number equals the available storage
space (in bytes) divided by the 6 bytes used by each
event.

tbuffer The address of an area in memory where the
recorded user events will be stored.

Output Arguments

retval The number of user events the application recorded.

Sample Call to C Language Binding

WORD
WORD
LONG

appl_trecord();
retval, tlength;
tbuffer;

retval = appl_trecord(tbuffer, tlength);

Parameter Block Binding

Control

control(O) = 15
control(l) = 1
control(2) = 1
control(3) = 1
control(4) = 0

Input

inLin(O) = tlength

addr_in(O) = tbuffer

Output

inLout(O) = retval

3-9

GEM AES Reference Guide

APPL_BVSET

Sets the disk and hard disk configuration information. See Section
1.5.3, Global Array, for more information.

Input Arguments

bvdisk Bit vector of all disk drives on the system. The most
significant bit represents drive A.

bvhard Bit vector of hard disk drives on the system. The
most significant bit represents drive A.

Output Arguments

retval Undefined

Sample Call to C Language Binding

WORD appl_bvsetO;
WORD retval;
UWORD bvdisk, bvhard;

retval = appl_bvset(bvdisk, bvhard};

Parameter Block Binding

Control

control(O) = 16
control(l) = 2
control(2) = 1
control(3) = 0
control(4) = 0

3-10

Input

int_in(O) = bvdisk
int_in(l) = bvhard

Output

int_out(O) = retval

GEM AES Reference Guide

APPL_VIELD

Forces a dispatch. This allows all events to be processed, and
possibly one other process to be brought into context.

Output Arguments

retval Undefined

Sample Call to C Language Binding

WORD appl_yield();
WORD retval;

retval = appl_yield();

Parameter Block Binding

Control

control(O) = 17
control(1) = 0
control(2) = 1
control(3) = 0
control(4) = 0

Input Output

int_out(O) = retval

3-11

GEMAES Reference Guide

APPL_EXIT

Lets the Application Library clean up its environment when an
application is done making Application Library calls.

An application cannot make calls to the AES after an APPL_EXIT call.

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD appl_exit();
WORD retvaJ;

retval = appl_exit();

Parameter Block Binding

Control

control(O) = 19
control(1) = 0
control(2) = 1
control(3) = 0
control(4) = 0

3-12

Input

End of Section 3

Output

inLout(O) = retval

SECTION 4

EVENT LIBRARY

An interactive application must be able to respond quickly to several
types of user input, including:

• Typing on a keyboard
• Clicking a mouse button
• Moving a mouse
• Choosing a menu command
• Manipulating a control point on the border of a window
• DOing nothing when something is expected; the lack of input

GEM AES refers to these types of user input as "events" and provides
application writers with an Event Library of routines that monitor
events. These routines can significantly increase the speed and
efficiency of the application.

Note: Do not use GEM VOl input functions in programs that make GEM
AES calls. Restrict VOl use to graphic output functions if your
application uses the AES.

The Event Library lets an application get input from the keyboard and
mouse, from other programs in the system, and from the system itself.
In most programming interfaces available for developing desktop-style
applications, the programmer must write an application that spins in a
tight loop polling the keyboard, mouse, message pipe (described in
Section 4.5), and clock. This type of polling can exhaust the syste.m
resources.

The Event Library avoids this problem by letting the application tell the
operating system what types of events to wait for. The operating
system can let other programs run, and it need only activate the
application when one or more of the desired events has occurred.

4-1

4.2 Keyboard Event GEM AES Reference Guide

The Event Library lets an applic'ation wait for any of the following
events:

Keyboard event
Button event
Mouse event

Message event

Timer event
Multiple event

The user presses a key.
The user presses or releases a mouse button.
The user moves the mouse into or out of a
specified rectangle.
An application receives a message from
another process.
The preset timer amount expires.
Any combination of the other events.

4.1 Waiting for Multiple Events

If an application were to wait only for a single type of event, it would
not respond to events of any other type. An application needs to be
able to wait for one or more of a specified set of events. The Event
Library makes this possible.

When any or all of the events in the set occur, the Event Library
notifies the application and returns a value that identifies the events
that have occurred. The application uses this value to determine how
it should process the events.

After processing the event or events, the application typically specifies
another set of events, calls the Event Library, and then awaits
notification that one of the new set of events has taken place. While
the application is awaiting notification, the system ·can share CPU time
with other processes that are ready to run. .

4.2 Keyboard Event

GEM AES recognizes a standard keyboard. The definition of this
keyboard is documented in the GEM VOl Reference Guide.

These keyboard events are encoded in a 16-bit form of console input.
The state of the Ctrl, Shift, and Alt keys is also available by making the
GRAF _MKSTATE function call.

4-2

GEM AES Reference Guide 4.4 Mouse Event

4.3 Mouse Button Event

The AES lets an application wait for a specified mouse button or set of
buttons to enter or leave a specified state (down or up).

A mask word performs a logical AND operation on the bits
representing the mouse buttons the application wants to ignore. For
example, on a three-button mouse, a mask word value of 001 indicates
that the application only cares about input from the button on the left.
(The left button is represented by the least significant bit.)

State words indicate the state of the mouse buttons, both current and
desired. For example, a current state word value of 00 1 indicates that
the user has pressed the left button.

A mouse button event takes place when the following equation is true:

(current_state AND mask) = desired_state

For example, if the user presses the left button and that is what the
application is waiting for, a mouse button event takes place. In that
case the equation reads:

(001 AND 001) = 001

The application can also wait for the mouse button to enter or leave
the desired state a specified number of times in a set interval. The
Event Library returns to the application the number of times the
mouse button entered or left the desired state in the interval. The
number returned is always at least 1 (one) and never more than the
number desired by the application.

4.4 Mouse Event

Several kinds of mouse movement can cause an application to change
the appearance of the screen, including the following:

• Dragging an icon over the desktop window
• Drawing a rubberband line or rectangle
• Moving the mouse form into a sensitive region

4-3

4.5 Message Event GEM AES Reference Guide

A Mouse Event occurs when the mouse is either inside or outside a
pixel-aligned rectangle. For example, using a Mouse Event, an
application can change the mouse form from an arrow to a cross hair
whenever the mouse is inside a certain area of the screen. The
application waits for the Mouse Event that indicates that the mouse is
inside a certain rectangle on the screen. When the mouse enters the
rectangle, the AES notifies the application. The application can then
make a GRAF _MOUSE call to change the mouse form to a cross hair.
The application then waits for a mouse event indicating that the
mouse is outside the rectangle. As soon as the mouse exits, the AES
notifies the application so it can change the mouse form back to an
arrow.

The size of this critical rectangle depends on the resolution that is
required for the mouse response. For example, dragging objects that
can be placed on arbitrary pixel boundaries requires a rectangle that is
one pixel high and one pixel wide. However, most applications,
including graphics applications that use a grid for aligning elements,
do not always require such fine resolution. For example, inverting the
items in a menu requires a resolution equal to the size of the menu
item in which the mouse form is located.

Systems can achieve significant improvements in overall throughput if
the amount of mouse motion significant for each action determines
the size of each of the application's mouse event rectangles.

4.5 Message Event

The AES programming environment provides a user interface in which
applications can use separate overlapping windows. The windows
reside on the physical screen, which is one color with a menu bar
running across the top. The window that is on top and has control of
the keyboard is called the "active window."

The application that owns the active window provides the AES with
the following:

4-4

GEM AES Reference Guide 4.6 Predefined GEM AES Messages

• The set of menus that appears in the menu bar

• The title that the AES places in the title bar of the application's
window

• The window control areas, including the close box, full box, and
size box, to which the application will respond. Window control
areas are described in Section 11.3.

To ensure a consistent user interface and increase programmer
productivity, the AES manages all interactions with the user during
menu selection and window border manipulation. However,
applications need to know the results of these external user
interactions. To provide this information, the AES uses Message
Events.

To receive notification of external events, applications use a standard
message pipe. A Message Event occurs when an application receives
a message in its message pipe.

Messages come in a standard format defined by the AES Message
Protocol and are placed in an application's message pipe in First-In­
First-Out (FIFO) order. Each time an application reads a message in its
message pipe, the AES removes the message from the pipe.

4.6 Predefined GEM AES Messages

The AES uses predefined messages to tell an application that a certain
event has occurred. Each message type has a maximum length of 16
bytes. All the predefined message types define the first three words
in the same way:

WORD 0
WORD 1
WORD 2

WORD 3-7

A number identifying the message type
The ap_id of the application that sent the message
The length of the message, not counting the
predefined 16 bytes. If the value of WORD 2 is not 0
(the message is longer than 16 bytes), the application
should call APPL_READ to read the remainder of the
message.
Varies according to the message

4-5

4.6 Predefined GEM AES Messages GEM AES Reference Guide

4.6.1 MN_SELECTED

This message tells an application that a the user has selected a menu
item.

WORD 0
WORD 3
WORD 4

10
Object index of the menu title selected
Object index of the menu item selected

4.6.2 WM_REDRAW

This message tells an application that the user has taken an action
that requires redrawing part of the work area of its window. Values are
in raster coordinates.

WORD 0
WORD 3
WORD 4
WORD 5
WORD 6
WORD 7

20
Handle of the window to redraw
X-coordinate of the area to redraw
V-coordinate of the area to redraw
Width of the area to redraw
Height of the area to redraw

4.6.3 WM_TOPPED

This message tells an application that the user has requested its
window or another application's window to be moved to the top (made
active).

WORD 0
WORD 3

21
Handle of the window

4.6.4 WM_CLOSED

This message tells an application that the user has requested that its
window be closed.

4-6

WORD 0
WORD 3

22
Handle of the window.

GEM AES Reference Guide 4.6 Predefined GEM AES Messages

4.6.5 WM_FULLED

This message tells an application that the user has clicked the mouse
button in the window's full box, either to enlarge the window to its
fullest possible size or, if the window is already full, to return it to its
previous size.

WORD 0
WORD 3

23
Handle of the window

4.6.6 WM_ARROWED

This message tells an application that the user has clicked in the
arrows or scroll bars in the window's border area. Holding down the
mouse button causes continuous WM.ARROWED messages until the
button is released.

WORD 0
WORD 3
WORD 4

24
The handle of the window
The action requested by the user, as follows:

o page up
1 page down
2 row up
3 row down
4 page left
5 page right
6 column left
7 column right

The user invokes the page actions by clicking on the scroll bars. The
user invokes the row and column actions by clicking on the arrows.
Section 11.3, Components of the Border Area, describes scrolling.

4-7

4.6 Predefined GEM AES Messages GEM AES Reference Guide

4.6.7 WM_HSLlD

This message tells an application the new position the user has
requested for the horizontal slider.

WORD a
WORD 3
WORD 4

4.6.8 WM_VSLlD

25
The handle of the application's window
A number from 1 to 1000, indicating the requested
slider position:

1 leftmost position
1000 rightmost position

This message tells an application the new position that the user has
requested for the vertical slider.

WORD a
WORD 3
WORD 4

4.6.9 WM_SIZED

26
The handle of the application's window.
A number from 1 to 1000, indicating the requested
slider position:

1 top position
1000 bottom position

This message gives an application its window's new coordinates when
the user requests a change in the window's size. The coordinates
include the window's title bar, information line (if any), and borders.

4-8

WORD a
WORD 3
WORD 4

WORD 5

WORD 6
WORD 7

27
Handle of the window
Requested X-coordinate (should remain the same as
the window's current X-coordinate)
Requested V-coordinate (should remain the same as
the window's current V-coordinate)
Requested width
Requested height

GEM AES Reference Guide 4.6 Predefined GEM AES Messages

4.6.10 WM_MOVED

This message gives an application its window's new coordinates when
the user requests a change in the window's position. The coordinates
include the window's title bar, information line (if any), and borders.

WORD 0 28
WORD 3 Handle of the window
WORD 4 Requested X-coordinate
WORD 5 Requested V-coordinate
WORD 6 Requested width (should remain the same as the

window's current width)
WORD 7 Requested height (should remain the same as the

window's current height)

4.6.11 WM_UNTOPPED

This message tells an application that its window is about to be
untopped (made inactive). This allows the application to save any
state or screen data before any portion of its window is occluded.

WORD 0
WORD 3

4.6.12 AC_OPEN

30
Handle of the window

The AES sends this message to a desk accessory when the user
selects it from the Desktop Menu.

WORD 0
WORD 3

40
The desk accessory menu item identifier returned by
the MENU_REGISTER call.

4-9

4.6 Predefined GEM AES Messages GEM AES Reference Guide

4.6.13 AC_CLOSE

The AES sends this message to a desk accessory when the following
set of conditions exists:

• The current application has just terminated.
• The screen is about to be cleared.
• Window Library data structures are about to be reinitialized.

The desk accessory should zero any window handle it currently owns.

WORD 0
WORD 3

41
The desk accessory menu item identifier returned by
the MENU_REGISTER call.

4.7 Application Dependent Messages

The print spooler prints files in the background and is available to the
user through the CALCLOCK accessory. To print a file, an application
sends a print message to the accessory specifying the file name. Use
the APPL_FIND call (specify CALCLOCK in the pname parameter) to get
the spooler ap_id for the APPL_WRITE call.

Use the message with type 100 to specify the file to spool. The
'spooler returns the message with type 101 to acknowledge receipt of
the request.

WORD 0
WORD 1
WORD 2
WORD 3
WORD 4
WORD 5
WORD 6
WORD 7

4-10

100
Sender's ap_id
OxFFFF
Length in bytes of file speCification
Offset of file specification
Segment of file specification
Number of copies to print
1 = Delete file when done
o = Do not delete file when done

GEM AES Reference Guide 4.9 Event Library Routines

The spooler returns the message with type 101 to acknowledge receipt
of the spool request from message type 100.

WORD 0
WORD 1
WORDS 2-7

4.8 Timer Event

101
Print spooler ap_id
o

An application sometimes needs to wait a certain amount of time
before proceeding. For example, the application might be displaying a
message that must remain on the screen for a maximum of three
seconds. To gauge the time, the application can poll the system clock
or do a large number of difficult, hardware-specific calculations.
However, both of these methods are inefficient in a multitasking
system in which processes can make good use of each other's delay
time.

By using Timer Events, the AES provides a more efficient method. A
Timer Event occurs when a programmer-specified number of
milliseconds has passed since the Timer Event was started.

4.9 Event Library Routines

The Event Library contains the following routines:

EVNT _KEYBD Waits for a keyboard event.

EVNT _BUTTON Waits for a mouse button event.

EVNT _MOUSE Waits for a mouse event.

EVNT _MESAG Waits for a message event.

EVNT _TIMER Waits for a timer event.

EVNT _MULTI Waits for multiple events.

EVNT _DCLICK ·Sets and gets the speed required for double­
clicking.

4-11

GEM AES Reference Guide

EVNT_KEYBD

Notifies the AES that the application is waiting for any kind of
keyboard input.

Output Arguments

retval The standard keyboard scan code as defined in the
GEM VOl Reference Guide.

Sample Call to C Language Binding

UWORD evnt_keybdO;
WORD retval;

retval = evnt_keybdO;

Parameter Block Binding

Control

control(O) = 20
control(1) = 0
control(2) = 1
control(3) = 0
control(4) = 0

4-12

Input Output

inLout(O) = retval

GEM AES Reference Guide EVNT _BUTTON

EVNT _BUTTON

Notifies the AES that the application is waiting for a particular mouse
button state.

Input Arguments

clicks

mask

The number of times the application is waiting for
the mouse button to enter or leave a particular state
(the state argument) within a preset time.

Use the high order bit to designate whether you are
entering or leaving a state. The AES interprets the
remaining 7 bits as the number of times. Bit values
for the high bit are assigned as follows:

o waiting to enter the specified state
1 waiting to leave the specified state

Mouse buttons for which the application is waiting.
The AES can theoretically support 16 mouse buttons.
In mask, state, and pmb, the following bits represent
the buttons:

Ox0001
Ox0002
Ox0004

button on left
second button from left
third button from left, etc.

The button specification can specify multiple buttons.
For example, enter Ox003 to specify the leftmost and
second from left buttons. The event returns when
the button state occurs on either button. Note that
you cannot specify multibutton states.

state Button state for which the application is waiting.
These parameters use the following bit settings:

o button up
1 button down

4-13

GEM AES Reference Guide

Output Arguments

retval

pmx

pmy

pmb

pks

4-14

Number of times the button actually entered the
desired state within the preset time. This number is
never less than 1 or greater than the number
contained in clicks.

X-coordinate of the mouse pointer when
event occurred.

V-coordinate of the mouse pointer when
event occurred.

Mouse button state when the user event
The following bits represent the buttons:

Ox0001
Ox0002
Ox0004

button on left
second button from left
third button from left, etc.

the user

the user

occurred.

State of the keyboard's right-Shift, left-Shift, Ctrl, and
Alt keys when the user event occurred.

The following bits represent the keys:

Ox0001
Ox0002
Ox0004
Ox0008

right-Shift
left-Shift
Ctrl
Alt

This parameter uses the following bit settings:

o key up
1 key down

GEM AES Reference Guide

Sample Call to C Language Binding

WORD evnt_button{);
WORD retval, clicks, pmx, pmy, pmb, pks;
UWORD mask, state;

retval = evnt_button(clicks, mask, state, &pmx, &pmy, &pmb, &pks);

Parameter Block Binding

Control

control(O) = 21
control(l) = 3
control(2) = 5
control(3) = 0
control(4) = 0

Input

i"nLin(O) = clicks
inLin(l) = mask
int_in(2) = state

Output

inLout(O) = retval
inLout(l) = pmx
inLout(2) = pmy
inLout(3) = pmb
inLout(4) = pks

4-15

GEM AES Reference Guide

EVNT_MOUSE

Notifies the AES that the application is waiting for the mouse to enter
or leave a specified rectangle.

Input Arguments

flags Flags for the call.

x

y

width

height

OxOOOO return on entry
OxOOO 1 retu rn 0 n exit

X-coordinate of the mouse
screen coordinates.

V-coordinate of the mouse
screen coordinates.

rectangle in pixel-based

rectangle in pixel-based

Width of the mouse rectangle in pixel-based screen,
coordinates.

Height of the mouse rectangle in pixel-based screen
coordinates.

Output Arguments

retval

pmx

pmy

pmb

4-16

Reserved; value always equals 1 (one).

X-coordinate of the mouse pointer when the user
event occurred.

V-coordinate of the mouse pOinter when the user
event occurred.

Mouse button state when the user event occurred.
The following bits represent the buttons:

OxOOOl
Ox0002
Ox0004

button on left
second button from left
third button from left, etc.

GEM AES Reference Guide EVNT_MOUSE

This parameter uses the following bit settings:

o button up
1 button down

pks State of the keyboard's right-Shift, left-Shift, Ctrl, and
Alt keys when the user event occurred.

The following bits represent the keys:

Ox0001
Ox0002
Ox0004
Ox0008

right-Shift
left-Shift
Ctrl
Alt

This parameter uses the following bit settings:

o key up
1 key down

Sample Call to C Language Binding

WORD evnt_mouse();
WORD retval, flags, x, y, width, height, pmx, pmy, pmb, pks;

retval=evnt_mouse(flags,x,y,width,height,&pmx,&pmy,&pmb,&pks);

Parameter Block Binding

Control

control(O) = 22
controJ{l) = 5
control(2) = 5
controJ(3) = 0
controJ(4) = 0

Input

inLin(O) = flags
inLin(l) = x
inLin(2) = y
int_in(3) = vvidth
inLin(4) = height

Output

inLout(O) = retval
inLout(l) = pmx
inLout(2) = pmy
inLout(3) = pmb
inLout(4) = pks

4-17

EVNT_MESAG GEM AES Reference Guide

EVNT_MESAG

Notifies the AES that the application is waiting for a standard 16-byte
message in the message pipe.

Using message pipes to communicate between processes in the
system is very flexible and makes possible many different types of
messages in the 16-byte message buffer. For these messages to be
meaningful to the receiving application, a well-defined set of message
protocols must exist. The AES provides several predefined messages,
described in Section 4.6.

Input Arguments

pbuff Address of the buffer where the message will be
placed. Its size must be 16 bytes.

Output Arguments

retval Reserved; value always equals 1 (one).

Sample Call to C Language Binding

WORD
WORD
LONG

evnt_mesag();
retval;
pbuff;

retval = evnt_mesag(pbuff);

Parameter Block Binding

Control

control(O) = 23
control(1) = 0
control(2) = 1
control(3) = 1
control(4) = 0

4-18

Input

addr_in(O) = pbuff

Output

inLout(O) = retval

GEM AES Reference Guide

EVNT_TIMER

Notifies the AES that the application is waiting for a specified amount
of time to pass. The WORD order in intjn(O) and intjn(l) is correct
for both Intel and Motorola architecture.

Input Arguments

locnt LOW WORD of a LONG value.

hicnt HIGH WORD of a LONG value.

Combined, locnt and hicnt are the length of the time
interval in milliseconds.

Output Arguments

retval Reserved; value always equals 1 (one).

Sample Call to C Language Binding

WORD evnt_timerO;
WORD retval;
UWORD locnt, hicnt;

retval = evnt_timer(locnt, hicnt);

Parameter Block Binding

Control

control(O) = 24
control(l) = 2
control(2) = 1
control(3) = 0
control(4) = 0

Input

inLin(O) = locnt
inLin(l) = hicnt

Output

inLout(O) = retval

4-19

GEM AES Reference Guide

EVNT_MULTI

Notifies the AES that the application is waiting for one or more events
at the same time.

Input Arguments

flags Type of event for which the application is waiting.

bclk

bmsk

4-20

This call uses the following bit settings:

Ox0001
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020

MU_KEYBD
MU_BUTTON
MU_M1
MU_M2
MU_MESAG
MU_TIMER

The number of times the application is waiting for
the mouse button to enter or leave a particular state
within a preset time.

Use the high order bit to designate whether you are
entering or leaving a state. The AES interprets the
remaining 7 bits as the number of times. Bit values
for the high bit are assigned as follows:

o waiting to enter the specified state
1 waiting to leave the specified state

Mouse buttons for which the application is waiting.
The AES can theoretically support 16 mouse buttons.
In bmsk, bst, and pmb, the following bits represent
the buttons:

Ox0001
Ox0002
Ox0004

button on left
second button from left
third button from left, etc.

The button specification can specify multiple buttons.
For example, enter Ox0003 to specify the leftmost and
second from left buttons. The event returns when

GEM AES Reference Guide EVNT_MULTI

bst

m1flags

m1x

m1y

m1w

m1h

m2flags

m2x

m2y

m2w

m2h

tic

thc

mepbuff

the button state occurs on either button. Note that
you cannot specify multi button states.

Button state for which the application is waiting.
These parameters use the following bit settings:

o button up
1 button down

Flags for the call:

OxOOOO return on entry
OxOOO 1 return on exit

X-coordinate of the mouse rectangle

V-coordinate of the mouse rectangle

Width of the mouse rectangle in pixels

Height of the mouse rectangle in pixels

Flags for the call:

OxOOOO return on entry
OxOOO 1 return on exit

X-coordinate of the mouse rectangle

V-coordinate of the mouse rectangle

Width of the mouse rectangle in pixels

Height of the mouse rectangle in pixels

LOW WORD of a LONG value that, combined with thc,
equals the length of the time interval in milliseconds

HIGH WORD of a LONG value that, combined with tic,
equals the length of the time interval in milliseconds

Address of the buffer where the message will be
placed. Its size must be 16 bytes.

4-21

GEM AES Reference Guide

Output Arguments

retval

pmx

pmy

pmb

pks

4-22

Event(s) in the flags argument that actually occurred

This call uses the following bit settings:

OxOOOl
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020

MU_KEYBD
MU_BUTTON
MU_Ml
MU_M2
MU_MESAG
MU_TIMER

X-coordinate of the
event occurred

V-coordinate of the
event occurred

mouse pointer when the user

mouse pointer when the user

Mouse button state when the user event occurred
The following bits represent the buttons:

OxOOOl
Ox0002
Ox0004

button on left
second button from left
third button from left, etc.

This parameter uses the following bit settings:

o button up
1 button down

State of the keyboard's right-Shift, left-Shift, Ctrl, and
Alt keys when the user event occurred

The following bits represent the keys:

OxOOOl
Ox0002
Ox0004
Ox0008

right-Shift
left-Shift
Ctrl
Alt

This parameter uses the following bit settings:

GEM AES Reference Guide EVNT_MULTI

o key up
1 key down

pkr Keyboard code as defined by the GEM VOl Reference
Guide

pbr Number of mouse clicks that occurred

Sample Call to C Language Binding

WORD evnt_multiO;
WORD retva I;
UWORD flags, bclk, bmsk, bst, mlflags, mlx, mly, mlw, mlh,

m2flags, m2x, m2y, m2w, m2h, tic, thc, pmx, pmy, pmb, pks,
pkr, pbr;

LONG mepbuff;

retval = evnt_multi(flags, bclk, bmsk, bst, m1flags, mlx, mly, mlw,
m 1 h, m2flags, m2x, m2y, m2w, m2h, mepbuff, tic, thc,
&pmx, &pmy, &pmb, &pks, &pkr, &pbr);

Parameter Block Binding

Control

control(O) = 25
control(1) = 16
control(2) = 7
control(3) = 1
control(4) = 0

Input

inLin(O) = flags
inLin(l) = bclk
inLin(2) = bmsk
inLin(3) = bst
inLin(4) = mlflags
inLin(5) = mlx
inLin(6) = mly
inLin(7) = mlw
inLin(8) = mlh
inLin(9) = m2flags
inLin(10) = m2x
inLin(11) = m2y
inLin(12) = m2w
inLin(13) = m2h
inLin(14) = tic
inLin(15) = thc

addr _in(O) = mepbuff

Output

inLout(O) = retval
inLout(l) = pmx
inLout(2) = pmy
inLout(3) = pmb
inLout(4) = pks
inLout(5) = pkr
inLout(6) = pbr

4-23

GEM AES Reference Guide

EVNT _DCLICK

Gets the current setting of the mouse button's double-click speed or
sets a new double-click speed for the mouse button.

Input Arguments

rate

setit

New double-click speed the user has selected. This
parameter has integer values from 0 (zero) to 4 that
correspond to the SLOW-2-3-4-FAST settings of the
selection buttons in the GEM Desktop's SET
PREFERENCES dialog.

Purpose of the call. If the value of setit is 0,
EVNT _DCLICK disregards the rate value in the call.

1 set a new double-click speed
o get the current double-click speed

Output Arguments

retval Double-click speed, either newly set (set it = 1) or
already existing (setit = 0). This parameter uses the
same integer values as rate.

Sample Call to C Language Binding

WORD ev_dclickO;
WORD retval, rate, setit;
retval = evnt_dclick(rate, setit);

Parameter Block Binding

Control

control(O) = 26
control(1) = 2
control(2) = 1
control(3) = 0
control(4) = 0

4-24

Input

inLin(O) = rate
inLin(1) = setit

End of Section 4

Output

inLout(O) = retval

SECTION 5

MENU LIBRARY

Menus represent groups of options a user can choose within an
application. Menus commonly appear as some form of text list.

Each GEM application defines its own menus. Menus are created
using the GEM Resource Construction Set, documented in the GEM
Programmer's Utilities Guide. When an application is active (controls
the keyboard and mouse), the AES displays the titles of its menus in
the menu bar at the top of the screen.

To select a menu, the user places the mouse form over the menu title
in the menu bar. This causes the menu to drop down. The menu
appears in a- rectangle below the menu bar and remains visible until
the user clicks the mouse button.

The standard menu item is a text string that names the menu
command. The text string can also contain a key combination that
produces the same result as clicking on the menu item. The user can
press the keys instead of displaying the menu and choosing an item.
The character appears on the menu to identify this shortcut.

A menu item can contain a non-text object such as a fill pattern or
icon, and space for a any type of check mark to the left of the menu
item. A check mark indicates that a certain condition is in effect. For
example, in a menu of text fonts, a check mark next to the name of a
font indicates that user-entered text will appear in that font.

Depending on the current state of the application, menu items can
appear in either of two states: enabled (can be chosen) or disabled
(cannot be chosen). Menu items are enabled only when choosing them
is meaningful to the application. For example, the Desktop File Menu
command Open is enabled if the user has selected an icon, but is
disabled if the user has not selected an icon.

The Menu Library displays enabled items in standard character
brightness; it displays disabled items as dimmed characters.

Responsibility for the user's interaction with menus is shared by the
Screen Manager and the Menu Library.

5-1

5 MENU LIBRARY GEM AES Reference Guide

The application uses a Menu Library call to display its menu bar, and it
uses Menu Library calls to enable or disable menu items and to display
check marks in a menu. Check marks can also exist as defaults from
the Resource Construction Set.

The application makes a RSRC_LOAD call to bring menu data into
memory, a MENU_BAR call to display the menu, and then waits for a
message from its message pipe. If the user touches a menu title with
the mouse form, the Screen Manager does the following:

• Highlights the menu title by changing it to reverse video .

• Displays the menu items in a rectangle below the title.

As the user moves the mouse form up and down the menu, the
Screen Manager uses reverse video to highlight each enabled item as
the mouse form touches it. The item remains highlighted as long as
the mouse form is in contact with it.

To choose a menu item, the user clicks the mouse button while the
mouse form is over an enabled item. The Screen Manager remcves
the drop-down portion of the menu from the screen and writ- a
message to the pipe. The application reads the message and acts
accordingly.

A menu remains visible until the user clicks the mouse button.

When the chosen action has been performed, the calling application
makes a Menu Library call to change the menu title back to its normal
state.

If the user chooses a menu item by using the keyboard shortcut
described previously, the application makes a Menu Library call both to
highlight the menu title and to return it to its normal state. Section
2.10 describes keyboard menu selection in greater detail.

If the user moves the mouse form outside the menu rectangle, the
Screen Manager returns the currently highlighted item (if any) to
normal video. If the user moves the mouse form back into the
rectangle, the Screen Manager again highlights enabled items as the
mouse form touches them.

If the user clicks the mouse button outside the rectangle, the Screen
Manager removes the drop-down portion of the menu from the

5-2

GEM AES Reference Guide 5 MENU LIBRARY

screen. No item is chosen, and no message is written to the pipe. To
redisplay the menu, the user must move the mouse form back to the
menu bar and select the menu title.

The Menu library has two additional special functions:

1. It supports context-sensitive text in menus. An application can
change the wording of its menu items depending on the
application's current state.

2. Desk accessories use a Menu library call to make their names
appear on the Desk Menu, which is where the user starts them.

The Menu library offers distinct advantages to both programmer and
user:

• The programmer can create menus that meet the unique
requirements of individual applications.

• The programmer does not have to be concerned with
manipulating the interaction between menu and mouse.

• The programmer can modify menus and/or menu items in an
efficient and timely manner.

• The user can expect all AES application menus to be familiar, both
in appearance and function.

5.1 Using the Menu Library

The Menu library is intended to relieve an application of the overhead
of handling the interaction between mouse and menu. The Menu
library does the following:

• Displays the appropriate menu bar for each active application
• Enables and disables menu items
• Displays check marks in menus
• Returns a highlighted menu title to its normal state
• Displays context-sensitive menu text
• Displays a desk accessory's name on the Desk Menu

5-3

5.1 Using the Menu Library GEM AES Reference Guide

An application need only do the following:

1. Create a menu object tree. (The data for each menu is contained
in an object structure, described in Section 6.2. The current state
of the application determines whether a check mark appears in
the menu and whether an item is enabled.)

2. Add the menu object tree to a resource file.

3. Load the menu object tree into memory, using the Resource
Library's RSRC_LOAD call.

4. Call the MENU_BAR routine to have the Menu Library display the
menu titles across the top of the screen.

After the application has completed the above steps, the menu titles
are visible in the menu bar, and the individual menus are ready for
user interaction.

The application's major task is to load the menu resource file. The
information in the resource file determines the menu title's location on
the menu bar and the location of the menu rectangle below the menu
title.

When the user chooses an item, the Screen Manager writes a message
to the pipe. Control then returns to the application, which must read
the pipe.

The pipe message contains the following:

• A code indicating that it is a menu message
• The object index of the menu title selected
• The object index of the menu item chosen

(If the user does not choose an item, the Screen Manager does not
write a message to the pipe.)

After processing the chosen item, the application makes a Menu
Library call to return the menu title to normal video and wait for the
next message to come through the message pipe.

5-4

GEM AES Reference Guide 5.2 Menu Library Routines

5.2 Menu Library Routines

The Menu Library contains the following routines:

MENU_BAR Displays or erases the menu bar.

MENU_ICHECK Displays or erases a check mark next to a
menu item.

MENU_IENABLE Displays an enabled item in normal brightness
and a disabled item in dimmed characters.

MENU_TNORMAL Displays menu title in normal or reverse video.

MENU_TEXT Changes the text of a menu item.

MENU_REGISTER Lets a desk accessory set a text string on the
Desk Menu and obtain a desk accessory
identifier.

MENU_UNREGISTER Lets a desk accessory remove its title from the
Desk Menu.

5-5

MENU_BAR· GEM AES Reference Guide

MENU_BAR

Displays or erases the application's menu bar.

The application should always call MENU_BAR to erase the menu bar
prior to its APPL_EXIT call.

Input Arguments

showit A code for whether the application displays the menu
bar.

o erase the menu bar
1 display the menu bar

tree Address of the object tree that forms this menu.

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD
LONG

menu_barO;
retval, showit;
tree;

retval = menu_bar(tree, showit);

Parameter Block Binding

Control

control(O) = 30
control(1) = 1
control(2) = 1
control(3) = 1
control(4) = 0

5-6

Input

inLin(O) = showit
addr _in(O) = tree

Output

inLout(O) = retval

GEM AES Reference Guide

MENU_ICHECK

Displays or erases a check mark next to a menu item.

Input Arguments

itemnum An object index that uniquely identifies this menu
item.

checkit

tree

A code for whether the application displays a check
mark next to the menu item identified by itemnum.

o do not display a check mark, or if a check mark
is visible, erase it

, display a check mark

The address of the object tree that forms this menu.

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD
LONG

menu_icheckO;
retval, itemnum, checkit;
tree;

retval = menu_icheck(tree, itemnum, checkit);

Parameter Block Binding

Control

controllO) = 31
control(1) = 2
control(2) = 1
control(3) = 1
control(4) = 0

Input

inLin(O) = itemnum
inLin(l) = checkit

addr_in(O) = tree

Output

inLout(O) = retval

5-7

MENUJENABLE GEM AES Reference Guide

MENUJENABLE

Enables or disables a menu item.

Input Arguments

itemnum

enableit

tree

An object index that uniquely identifies this menu
item. Index can point to a menu title as well as a
menu item.

A code for how the application displays a menu item.
The high order bit indicates whether the object
designated in itemnum is a menu title (set to 1) or a
menu item (set to 0).

o disabled (dimmed characters)
1 enabled (normal brightness)

The address of the object tree that forms this menu.

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD
LONG

men ujenableO;
retval, itemnum, enableit;
tree;

retval = menujenable(tree, itemnum, enableit);

Parameter Block Binding
Control Input

control(O) = 32
control(1) = 2
control(2) = 1
control(3) = 1
control(4) = 0

5-8

inLin(O) = itemnum
inLin(l) = enableit

addr_in(O) = tree

Output

inLout(O) = retval

GEM AES Reference Guide

MENU_TNORMAL

Displays a menu title in normal or reverse video.

Input Arguments

titlenum An object index unique to this application that
identifies this menu.

normalit A code for whether the application displays the menu
title in normal or reverse video.

o reverse video
1 normal video

tree The address of the object tree that forms this menu.

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD
LONG

menu_tnormal{);
retval, titlenum, normalit;
tree;

retval = menu_tnormal(tree, titlenum, normal it);

Parameter Block Binding

Control

control(O) = 33
control(1) =
control(2) =
control(3) =
control(4) =

Input

inLin(O) = titlenum
inLin(1) = normalit

addr _in(O) = tree

Output

inLout(O) = retval

5-9

GEM AES Reference Guide

MENU_TEXT

Changes the text of a menu item.

This routine lets GEM AES support context-sensitive menus. For
example, a word processing application that lets the user turn the
character insert on and off can have a menu item reading "Insert On"
or "Insert Off", depending on the current state of the insert.

You must call MENU_BAR after MENU_TEXT to display the new text.

Input Arguments

inum An object index that uniquely identifies this menu
item.

ptext The address of the new text string for this menu
item. This text string should be no longer than the
one it is replacing in the menu object tree structure.

tree The address of the object tree that forms this menu.

To designate a desk accessory, set the high order
word to 0 and put the pid value in the low order
word. pid is the desk accessory's apJd, returned by
the MENU_REGISTER function.

Output Arguments

retval A coded return message:

o error
n no error

5-10

GEM AES Reference Guide

Sample Call to C Language Binding

WORD
WORD
LONG

rnenu_text();
retval, inurn;
tree, ptext;

retval = rnenu_text(tree, inurn, ptext);

Parameter Block Binding

Control

control(O) = 34
control(1) = 1
control(2) = 1
control(3) = 2
control(4) = 0

Input

inLin(O) = inum

addr_in(O) = tree
addr_in(1) = ptext

Output

inLout(O) = retval

5-11

MENU_REGISTER GEM AES Reference Guide

MENU_REGISTER

Places a desk accessory's menu item string on the Desk Menu and
returns the accessory's menu item identifier.

Input Arguments

pid

pstr

The desk accessory's process identifier. This value is
the apJd returned by the desk accessory's APPL_'N'T
call.

The address of the desk accessory's Desk Menu text
string.

Output Arguments

retval The desk accessory's menu item identifier, a value
ranging from 0 (zero) to 5.

-1 no room on the Desk Menu for this item

Sample Call to C Language Binding

WORD
WORD
LONG

menu_registerO;
retval, pid;
pstr;

retval = menu_register(pid, pstr);

Parameter Block Binding

Control

control(O) = 35
control(1) = 1
control(2) = 1
control(3) = 1
controJ(4) = 0

5-12

Input

inLin(O)=pid

addr _in(O)=pstr

Output

inLout(O)=retval

GEM AES Reference Guide MENU_UNREGISTER

MENU_UNREGISTER

Deletes the desk accessory's title from the Desk Menu. This function
is only available to desk accessories.

Input Arguments

mid The desk accessory's menu item identifier. Normally,
this is the same as the MENU_REGISTER int_out{O)
argument. Enter -1 to delete the menu item of the
currently running process.

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD menu_unregister();
WORD retval, mid;

retval = menu_unregister(mid);

Parameter Block Binding

Control

control(O) = 36
control(1) = 1
control(2) = 1
control(3) = 0
control(4) = 0

Input

inLin(O)=mid

End of Section 5

Output

inLout(O)=retval

5-13

SECTION 6

OBJECT LIBRARY

An object is a collection of data describing something that appears on
the screen. For example, GEM AES objects include boxes, characters,
and icons. The AES defines several standard objects, and the Object
Library provides routines to handle them.

The GEM Resource Construction Set, (GEM RCS), is a GEM application
you use to create the objects you manipulate with the Object Library.
The Resource Construction Set is described in the GEM Programmer's
Utilities Guide.

An application uses the Object Library to set up and manipulate a tree
structure of objects. Figure 6-1 shows a typical object tree.

/

root ~--------:
'. I

". :
'. I

'. I

.~ :
child ------------------.. child

/
. ·-------1 l·~·~.-----I

I '. I
I '. I

" : .~ :
child ----~ child ----~ child child ----. child

----" ... head

...........• tail

--------~ next

Figure 6-1. Object Tree

6-1

6 OBJECT LIBRARY GEM AES Reference Guide

An object tree is an array of objects that are contiguous in memory.
Starting with a root object, the tree consists of linked lists in which
each child points to its next sibling and to its children, if either exists.
The last child at each level points back to its parent. The links are
actually indices of the objects, relative to the root of the Object Tree.

Figure 6-2 illustrates how the Object Library works. It shows a simple
on-screen display: a box containing two boxes, one with text inside.

Root •

First Child-...

Second TEXT
Child

Figure 6-2. On-screen Display

The X-coordinate, V-coordinate, width, and height values are always
interpreted by the object funtions as raster coordinates. Do not use
Normalized Device Coordinates (NDC) to specify these values.

6-2

GEM AES Reference Guide 6 OBJECT LlBRARV

The object tree that defines the display in Figure 6-2 contains three
objects:

1. Root: The outer box. Its object type is G_BOX. Data for this
object includes:

• X- and V-coordinates of the upper left corner, relative to the
screen

• Width and height
• Thickness of the border
• Foreground and background colors

2. First child: The empty inner box. Its object type is also G_BOX.
Data for this object includes:

• X- and V-coordinates of the upper left corner, relative to the
parent

• Width and height
• Thickness of the border
• Foreground and background colors

3. Second child: The box with TEXT. Its object ty pe is G_BOXTEXT.
Data for this object includes:

• X- and V-coordinates of the upper left corner, relative to the
parent

• Width and height
• Thickness of the border
• Foreground and background colors

• Text

To create an object tree an application can either build it in the
Resource Constuction Set, or create it in the application's code. If you
create the object tree in the code, you must make a separate call to
the OBJC_ADD routine for each of the root's children.

Using the tree structure created by the OBJC_ADD calls and the data
contained in the objects themselves, the Object Library draws the on­
screen image with the OBJC_DRAW call.

An application can also load one or more complete object trees with
the RSRC_LOAD call. In that case, al~ parent-child relationships have
already been established.

6-3

6 OBJECT LIBRARY GEM AES Reference Guide

Note: The parent object (in Figure 6-1 the root is the parent) always
occupies screen space greater than or equal to that occupied by its
children. In other words, the parent must visually contain its children.
This is known as the "Visual Hierarchy Rule".

6.1 Object Library Data Structures

The Object library contains the following data structures:

• OBJECT structure
• TEDINFO structure
• ICONBLK structure
• BITBLK structure
• APPLBLK structure
• PARMBLK structure

If an element of one of these data structures has a value of -1, it is
either a nil index or a nil pointer.

The following sections describe these data structures.

6-4

GEM AES Reference Guide 6.2 OBJECT Structure

6.2 OBJECT Structure

The OBJECT structure contains values that describe:

• The object
• Its relationship to the other objects in the tree
• Its location relative to its parent or, (in the case of the root

object) the screen

There is an OBJECT structure for each object in a tree. Figure 6-3
shows the elements in the OBJECT structure. Table 6-1 describes
each element.

, , , .' ob_next ob head
, I

ob~tail
,

ob_type
, ,
1. ,

ob_flags ob state
, ,

ob_spec
, I

ob_x ob-y
I I

ob_~idth ob_h'eight
I I
I ,

Figure 6-3. OBJECT Structure

6-5

6.2 OBJECT Structure GEM AES Reference Guide

Element

ob_width

ob_height

6-6

Table 6-1. OBJECT Structure Elements

Description

WORD containing the index of the object's next sibling
in the object tree array

WORD containing the index of the first child: the head
of the list of the object's children in the object tree
array

WORD containing the index of the last child: the tail of
the list of the object's children in the object tree array

WORD containing the object type (defined in Section
6-2). The AES ignores the high byte of this WORD.

WORD containing the object flags (defined in Section
6.3.3)

WORD containing the object state (defined in Section
6.3.4)

LONG value that depends on the value of ob_type.
ob_spec can be a POINTER or any combination of
WORD and/or BVTE values that add up to 32 bits.

WORD containing the X-coordinate of the object
relative to its parent or (for the root object) the screen

WORD containing the V-coordinate of the object
relative to its parent or (for the root object) the screen

WORD containing the width of the object in pixels

WORD containing the height of the object in pixels

GEM AES Reference Guide 6.3 Predefined Values

6.3 Predefined Values

The Object Library routines use predefined values for four elements in
the OBJECT structure. The predefined values and their associated
elements in the OBJECT structure are as follows:

• Object Types:
• Object Flags:
• Object States:
• Object Colors:

ob_type
ob_flags
ob_state
ob_spec

The following sections show the values and definitions associated with
these categories.

6.3.1 Object Types

Object types are stored in the ob_type section of the OBJECT
structure. All object types are graphic or bitmap object types. The
value of ob_type directly affects the value of ob_spec. Table 6-2 shows
the relationship between ob_type and ob_spec. The following define
statements show the object type and its associated value:

#define G_BOX 20
#define G_ TEXT 21
#define G"_BOXTEXT 22
#define G_IMAGE 23
#define G_PROGDEF 24
#define G_IBOX 25
#define G_BUTTON 26
#define G_BOXCHAR 27
#define G_STRING 28
#define G_FTEXT 29
#define G_FBOXTEXT 30
#define G_ICON 31
#define G_TITLE 32

6-7

6.3 Predefined Values GEM AES Reference Guide

For object types G_BOX, GJBOX, and G_BOXCHAR, the LONG value of
ob_spec is broken into a LOW WORD and a HIGH WORD, as shown in
Figure 6-4.

HIGH WORD

Character
or 0 Thickness

LOW WORD

Object Color

HIGH BYTE LOW BYTE

Figure 6-4. ob_spec for G_BOX, GJBOX, and G_BOXCHAR

• The LOW WORD is the object color, as defined in Section 6.3.2.

• The HIGH WORD is broken into two bytes.

• For object types G_BOX and GJBOX, the HIGH BYTE of the HIGH
WORD equals 0 (zero).

• For G_BOXCHAR, the HIGH BYTE of the HIGH WORD is a character.

• For all three object types, the LOW BYTE of the HIGH WORD is the
thickness of the object's border. This byte can have the following
values:

6-8

00
1 to 128
-1 to -127

No thickness
Inside thickness: inward from the object's edge
Outside thickness: outward from the object's
edge

GEM AES Reference Guide 6.3 Predefined Values

Table 6-2. Object Types and ob-spec Values

ob_tvpe Description and ob_spec Value

G_BOX A graphic box; its ob-spec value contains the object's
color WORD and thickness of the border.

G_ TEXT Graphic text; POINTER to TEDINFO structure

G_BOXTEXT Graphic box with graphic text; POINTER to TEDINFO
structure

G_IMAGE Graphic bit-image; POINTER to BITBLK structure

G_PROGDEF Programmer-defined object; POINTER to APPLBLK
structure.

G_IBOX "Invisible" graphic box; ob_spec contains the object's
color WORD and thickness. It has no fill pattern and no
internal color. If its border has no thickness, it is
invisible. If its border has thickness, it is an outline.

G_BUTTON Graphic text object centered in a box; POINTER to a
null-terminated text string

G_BOXCHAR Graphic box containing a single text character; ob_spec
contains the character, color WORD and thickness

G_STRING Graphic text object; POINTER to a null-terminated text
string

G_FTEXT Formatted graphic text; POINTER to TEDINFO structure

G_FBOXTEXT Graphic box containing formatted graphic text; POINTER
to TEDINFO structure

G_ICON Object that describes an icon; POINTER to ICONBLK
structure

G_ TITLE Graphic text string used in menu titles; POINTER to a
null-terminated text string.

6-9

6.3 Predefined Values GEM AES Reference Guide

6.3.2 Object Colors

Object colors are stored in the LOW WORD of the ob_spec element in
the OBJECT structure and in the te_color element of the TEDINFO
structure. A 0 preceding the name of the color (for example, DGREEN)
indicates a dark shade of the color. The following define statements
show the value associated with each object color:

#define WHITE 0
#defineBLACK 1
#define RED 2
#define GREEN 3
#define BLUE 4
#define CYAN 5
#define YELLOW 6
#define MAGENTA 7
#define LGREY 8
#define DGREY 9
#define DRED 10
#define DGREEN 11
#define DBLUE 12
#define DCYAN 13
#define DYELLOW 14
#define DMAGENTA 15

Table 6-3 describes the components of the object color WORD.

Figure 6-5 shows the components of the object color WORD.

6-10

GEM AES Reference Guide 6.3 Predefined Values

Bits

15 thru 12
11 thru 8
7

6 thru 4

3 thru 0

Table 6-3. Object Color WORD

Description

Border color, with values from 0 to 15
Text color, with values from 0 to 15
Writing mode. (Transparent and replace mode are
defined in the GEM VOl Reference Guide).

o transparent mode
1 replace mode

Fill pattern, with values from 0 to 7

o hollow fill
7 solid fill
1 - 6 dither patterns of increasing darkness

Inside color, with values from 0 to 15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Border
color

Text
color

Writing
mode

Fill
pattern

Figure 6-5. Object Color WORD

Inside
color

6-11

6.3 Predefined Values GEM AES Reference Guide

6.3.3 Object Flags

Object flags are stored as a bit vector in the ob_flags element of the
OBJECT structure. Each bit in the ob_flags WORD is significant.
Undefined bits should be set to zero.

The following define statements show the object flags and their
associated values:

#define NONE
#define SELECTABLE
#define DEFAULT
#define EXIT
#define EDITABLE
#define RBUTTON
#define LASTOB
#define TOUCHEXIT
#define HIDETREE
#define INDIRECT

6-12

OxOOOO
Ox0001
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020
Ox0040
Ox0080
Ox0100

GEM AES Reference Guide 6.3 Predefined Values

Table 6-4. Object Flags

Flag Indication

SELECTABLE The user can select the object.

DEFAULT The Form library examines the object if the user enters
a Return/Enter. No more than one object in a form can
be flagged DEFAULT. This object is usually an exit
button, which lets the user enter a Return/Enter to exit
the form without using the mouse.

EXIT The Form library returns control to the caller after the
exit condition is satisfied (when the user selects the
object by clicking on it).

EDITABLE An object is editable by the user in some way.

RBUTTON An object called a radio button. Radio buttons appear
in groups of two or more, only one of which may be
selected at a given time. When the user selects a
button, the currently selected button is automatically
de-selected. All radio buttons in a group must have the
same parent.

LASTOB An object is the last object in the object tree.

TOUCHEXIT The Form library returns control to the caller after the
exit condition is satisfied (when the user presses the
mouse button while the pointer is over the object).

HIDETREE Makes a subtree invisible. When the application makes
an OBJC_DRAW or OBJC_FIND call, the Object library
does not draw or find the object or any of its children.

INDIRECT The value in ob_spec is a pointer to the actual value of
ob_spec.

6-13

6.3 Predefined Values GEM AES Reference Guide

6.3.4 Object States

Object states determine how the OBJC_DRAW routine draws objects.
Object states are stored as a bit vector in the ob_state element of the
OBJECT structure.

The following define statements show the object states and their
associated values:

#define NORMAL
#define SELECTED
#define CROSSED
#define CHECKED
#define DISABLED
#define OUTLINED
#define SHADOWED
#define DRAW3D
#define WHITEBAK

6-14

OxOOOO
OxOOOl
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020
Ox0040
Ox0080

GEM AES Reference Guide 6.3 Predefined Values

Table 6-5. Object States

State Indication

NORMAL The object is drawn in normal foreground-background
colors.

SELECTED The object is highlighted by being drawn with its
foreground and background colors reversed.

CROSSED An "X" is drawn in the object. The object must be a
box.

CHECKED The object (typically one containing text) is drawn with
a check mark.

DISABLED The object (typically one containing text) is drawn
faintly.

OUTLINED An outline is drawn around a box object. This state is
used for dialog boxes.

SHADOWED The object (usually a box) is drawn with a drop shadow.

DRAW3D Applies to ICONBLK structure only. When the DRAW3D
and SELECTED bits are set, the icon mask is drawn
three times: once one pixel up and to the left of the
location specified, once at the location specified, and
once one pixel down and to the right of the location
specified.

WHITEBAK Applies to ICONBLK structure only. When the
WHITEBAK bit is set and the background color is white,
the icon mask and rectangle outlining the icon text are
not drawn.

6-15

6.4 TEDINFO Structure GEM AES Reference Guide

6.4 TEDINFO Structure

The TEDINFO structure lets a user edit formatted text. The object
types G_TEXT, G_BOXTEXT, G_FTEXT, and G_FBOXTEXT use their
ob_spec pointers to pOint to TEDINFO structures. Figure 6-6 shows
the TEDINFO data structure. Table 6-6 describes the elements in the
TEDINFO structure.

I I I
I I I

te-ptext
I I I
I I I

te-ptmplt
I I I
I

te-p~alid
I

I I
L I

te font te resvd1
I I
l I

te-.Just te color
I I
I

te th iCkness te resvd2
I I
I I

te txtlen te_tmplen
I I
I I

Figure 6-6. TEDINFO Structure

6-16

GEM AES Reference Guide 6.4 TEDINFO Structure

Element

Table 6-6. TEDINFO Structure Elements

Description

POINTER to the actual text string.

If the first text character is "@", the field is blank, and
the application can use any characters for the
remaining character positions in the field. For example,
a te_ptext string "@xyzpdq" is seven blank spaces. To
set the cursor to the left of the field the application
needs to set the first byte of te_ptext to null before
displaying the object. For example, LBSET(te_ptext,'\O');

The text string is merged with the template pointed to
by te_ptmplt before it is displayed.

POINTER to a text string template for any further data
entry. The editable portion of the field is represented
by underscores.

POINTER to a text string containing characters that
validate any entered text.

9 allow only digits 0 - 9
A allow only uppercase A - Z, plus space
a allow upper- and lowercase A - Z, plus space
N allow 0 - 9 and uppercase A - Z, plus space
n allow 0 - 9 and upper- and lowercase A - Z, plus

space
F allow all valid filename characters, plus? *:
P allow all valid path name characters, plus \: ? *
p allow all valid path name characters, plus \ :
X allow anything

6-17

6.4 TEDINFO Structure GEM AES Reference Guide

Element

te_resvd1

tejust

Table 6-6. Cont'd

Description

WORD identifying the font used to draw the text.

3 system font: used in menus, dialogs, etc.
5 small font: used in icons

Reserved for future use.

WORD identifying the type of text justification desired.

o left-justified
1 right-justified
2 centered

te_color WORD identifying the color and pattern of box-type
objects. See Section 6.3.2, Object Colors.

te_resvd2 Reserved for future use.

te_thickness WORD containing the thickness in pixels of the border
of the text box. This WORD can have the following
values:

6-18

00
1 to 128

-1 to -127

no thickness
inside thickness: inward from the object's
edge
outside thickness: outward from the
object's edge

WORD containing the length of the string pointed to by
te_ptext.

WORD containing the length of the string pointed to by
te_ptmplt.

GEM AES Reference Guide 6,4 TEDINFO Structure

The following example illustrates how the TEDINFO structure works:

• te_ptext is a string of raw data for a date, Its value is 1/061386",

• te_ptmplt, also a string, is a template that shows how to display
the data in te_ptext. Its value is "Enter Date: J J _",

• te_pvalid is a string of input validation characters, Its value is
1/9999991/,

• The editable text facility merges all the above data into one string,
"Enter Date: 06/13/861/,

• If the user types 1/10041/, the string becomes I/Enter Date:
10/04/861/,

• If the user presses the Backspace key after typing 1/10041/, the
string becomes "Enter Date: 10/0J861/,

• If te_ptext has no data or not enough data to fill out the template,
the unfilled parts of the template show underscores, For example,
if the user types 1/011/ into an empty date field, it then reads I/Enter
Date: 01/--1_1/.

6-19

6.5 ICONBLK Structure GEM AES Reference Guide

6.5 ICONBLK Structure

The Object Library uses the ICONBLK structure to hold the data that
defines icons. The object type GJCON points with its ob_spec pointer
to the ICONBLK structure.

All X, V, width, and height values for this structure are in pixels.
Figure 6-7 shows the ICONBLK structure.

I I I
I

ibJ)~ask
I

I I I
I

ibJ)'data
I

I I I
I

ib~text
I

I I

ib char ib xChar
I I

ib-ychar ib x'icon
I I

i b-Y'i con ib vJicon
I I

ib_h'icon ib ~text
I I

ib-Ytext ib JJtext
1

ib htext 0 0
I
I

Figure 6-7. ICONBLK Structure

6-20

GEM AES Reference Guide 6.5 ICONBLK Structure

Element

ib_ptext

ib_char

Table 6-7. ICONBLK Structure Elements

Description

POINTER to an array of WORDS representing the mask
bit-image of the icon.

POINTER to an array of WORDS representing the data
bit-image of the icon.

POINTER to the icon's text.

WORD containing a character to be drawn in the icon
(for example, the letter "A" on a floppy disk icon). The
AES interprets the WORD as follows:

bits 15 - 12 foreground color
bits 11 - 8 background color
bits 7 - 0 ASCII character code

The character is displayed in the small system font.

WORD containing the X-coordinate of ib_char, relative
to the ib_xicon value.

WORD containing the V-coordinate of ib_char, relative
to the ib_yicon value.

WORD containing the X-coordinate of the icon, relative
to the ob_x value in the Object Structure.

WORD containing the V-coordinate of the icon, relative
to the ob_y value in the Object Structure.

WORD containing the width of the icon in pixels. This
value must be divisible by 16.

WORD containing the height of the icon in pixels.

6-21

6.6 BITBLK Structure GEM AES Reference Guide

Element

Table 6-7. Cont'd

Description

WORD containing the X-coordinate of the icon's text,
relative to the ob_x value in the OBJECT Structure.

WORD containing the V-coordinate of the icon's text,
relative to the ob_y value in the OBJECT Structure.

WORD containing the width of a rectangle in which the
icon's text will be centered.

WORD containing the height of the icon's text in pixels.

6.6 BITBlK Structure

The object type G_IMAGE uses the BITBLK structure to draw bit images
such as cursor forms or icons. Figure 6-8 shows the BITBLK structure.

I I I ,
bi-pdata

I

I I

bi 'wb bi 'hl
I I

b" IX biJ
I I

bi_color
I

I
I

Figure 6-8. BITBlK Structure

6-22

GEM AES Reference Guide 6.6 BITBLK Structure

Element

bi.J)data

bLwb

Table 6-8. BITBlK Structure Elements

Description

POINTER to an array of WORDS containing the bit
image.

WORD containing the width of the bi_pdata array in
bytes. Because the bi_pdata array is made of WORDS,
this value must be an even number.

WORD containing the height of the bit block in scan
lines (pixels).

WORD containing the source X in bit form, relative to
the bi_pdata array.

WORD containing the source Y in bit form, relative to
the bi_pdata array.

WORD containing the color the AES uses when
displaying the bit-image. See Section 6.3.2 for the
color values. The AES uses the color specified in bits 0
thru 3 as the foreground color of the bit image. Set
the rest of the bits to zero. Set this word to -1 to blit
the image in opaque mode rather than transparent
mode.

6-23

6.7 APPLBLK Structure GEM AES Reference Guide

6.7 APPLBLK Structure

The Object Library uses the APPLBLK Structure to locate and call an
application-defined routine that will draw and/or change an object.
The object type G_PROGDEF points with its ob_spec pointer to the
APPLBLK structure.

You cannot make calls to the AES from application-defined routines.
All display graphics must be executed using the VOL

Note that the call must return the PARMBLK structure's pb_currstate
value in a register.

Element

6-24

I I I
I I I

ab_code
I I I
I I I

ab-parm
I I I
I I I

Figure 6-9. APPBLK Structure

Table 6-9. APPLBLK Structure Elements

Description

POINTER to the routine for drawing and/or changing the
object

LONG value (optionally provided by the application)
passed when the Object Library calls the application's
object drawing/changing routine

GEM AES Reference Guide 6.8 PARMBLK Structure

6.8 PARMBLK Structure

The Object Library uses the PARMBLK structure to store information
relevant to the application's drawing or changing an object.

When it calls the application's object drawing/changing routine
(pointed to by ab_code), the Object Library provides a pointer to a
PARMBLK.

The pointer to this structure is passed to the application-defined
routine on the stack.

I I I
I I- I

pb_tree
I I

pb~obj
I

pb-prevstate
I I
I I

pb_currstate pb_x
I I
I I

pb-y pb_w
I I

b' h
I

p-
I I
I I

pb-yc pb_wc
I I
I I

pb_hc pb_parm LOW WORD
I 1
I I

pb_parm HI WORD
I
I

Figure 6-10. PARMBLK Structure

6-25

6.8 PARMBlK Structure GEM AES Reference Guide

Element

Table 6-10. PARMBLK Structure Elements

Description

POINTER to the object tree that contains the
application-defined object.

pb_obj WORD containing the object index of the application­
defined object.

pb_prevstate WORD containing the old state of an object to be
changed.

pb_currstate WORD containing the changed (new) state of an object.
If pb_prevstate and pb_currstate are the same, the
application is drawing the object, not changing it.

pb_x WORD containing the X-coordinate of a rectangle
defining the location of the object on the physical
screen.

6-26

WORD containing the V-coordinate of a rectangle
defining the location of the object on the physical
screen.

WORD containing the width (in pixels) of a rectangle
defining the size of the object on the physical screen.

WORD containing the height (in pixels) of a rectangle
defining the size of the object on the physical screen.

WORD containing the X-coordinate of the current clip
rectangle on the physical screen.

WORD containing the V-coordinate of the current clip
rectangle on the physical screen.

WORD containing the width (in pixels) of the current
clip rectangle on the physical screen.

GEM AES Reference Guide 6.9 Object Library Routines

Element

Table 6-10. Cont'd

Description

WORD containing the height (in pixels) of the current
clip rectangle on the physical screen.

LONG value; identical to ab_parm in the APPLBLK
structure. The Object Library passes this value to the
application when it is time for the application to draw
or change the object.

6.9 Object Library Routines .

The Object Library uses the following routines:

OBJC_ADD

OBJC_DELETE

OBJC_DRAW

OBJC_FIND

OBJC_OFFSET

Adds an object to an object tree.

Deletes an object from an object tree.

Draws an object or object tree.

Determines if the mouse is over an object.

Computes an object's location relative to the
screen.

OBJC_ORDER Changes the order of an object within its tree.

OBJC_EDIT Lets a user edit text in an object.

OBJC_CHANGE Changes an object's state.

Note: A tree is an array of objects. In the Object Library routine
descriptions, references to an object refer to the array index of the
object in the tree.

6-27

OBJC-ADD GEM AES Reference Guide

OBJC_ADD

Adds an object to an object tree. The object to be added must be in
the same array as the other objects in the tree. In creating an object
tree, the application makes separate OBJC_ADD calls to establish the
relationship of each child to its parent. For example, if the tree
contains one parent with three children and another parent with two
children, the tree requires a total of five OBJC_ADD calls. (This
assumes that space for the five children has been set aside first in the
Resource Construction Set.)

Input Arguments

parent Object to whose list of children the child will be
added

child Object to add to parent's list of children

tree Address of the object tree containing parent and
child

Output Arguments

retval A coded return message:

o error
n the object was successfully added

Sample Call to C Language Binding

WORD objc_addO;
WORD retval, parent, child;
LONG tree;
retval = objc_add(tree, parent, ch ild);

Parameter Block Binding
Control Input

control(O) = 40
control(1) = 2
control(2) = 1
control(3) = 1
control(4) = 0

6-28

inLin(O) = parent
inLin(1) = child

addcin(O) = tree

Output

inLout(O) = retval

GEM AES Reference Guide OBJC_DELETE

OBJC_DELETE

Deletes an object from an object tree by unlinking it from its parent
object. The object to be deleted must be in the same array as the
other objects in the tree.

Input Arguments

delob Object to be deleted

tree Address of the object tree that contains the object

Output Arguments

retval A coded return message:

o error
n the object was successfully deleted

Sample Call to C Language Binding

WORD objc_delete();
WORD retval, delob;
LONG tree

retval = objc_delete(tree, delob};

Parameter Block Binding

Control

control(O) = 41
control(l) = 1
control(2) = 1
control(3) = 1
control(4) = 0

Input

inLin(O) = delob

addr _in(O) = tree

Output

inLout(O) = retval

6-29

GEM AES Reference Guide

OBJC_DRAW

Draws any object or objects in an object tree.

Each OBJC_ORAW call defines a new clip rectangle, and the Object
Library draws only the parts of the object contained within the clip
rectangle for that call. The clip rectangle coordinates must be
described in raster coordinates. The clip rectangle is defined in the
GEM VOl Reference Guide.

Input Arguments

drawob

depth

xc

yc

wc

hc

tree

Starting object on the tree indexed by tree

Number of levels in the object tree to draw, starting
from drawob

o starting object only
1 first level children of starting object
2 second level children of starting object (etc.)

X-coordinate of the clip rectangle

V-coordinate of the clip rectangle

Width (in pixels) of the clip rectangle

Height (in pixels) of the clip rectangle

Address of the object tree that contains the object

Output Arguments

retval A coded return message:

o error
n no error

6-30

GEM AES Reference Guide

Sample Call to C Language Binding

WORD
WORD
LONG

objc_drawO;
retval, drawob, depth, xc, yc, wc, hc;
tree;

retval = objc_draw{tree, drawob, depth, xc, ye, wc, hc);

Parameter Block Binding

Control

control(O) = 42
control(1) = 6
control(2) = 1
control(3) = 1
control(4) = 0

Input

inLin(O) = drawob
inLin(1) = depth
inLin(2) = xc
inLin(3) = ye
inLin(4) = wc
inLin(S) = he

addr_in(O) = tree

Output

inLout(O) = retval

6-31

GEM AES Reference Guide

OBJC_FIND

Finds an object under the mouse form.

The application supplies the X- and V-coordinates of the mouse's
position and a parameter that tells OBJC_FIND how far down the tree
to search.

Input Arguments

startob

mx

my

tree

The object at which to start the search

Number of levels in the object tree to search, starting
from startob

o starting object only
1 first-level children of starting object
2 second-level children of starting object (etc.)

X-coordinate of the mouse's location

V-coordinate of the mouse's location

Address of the object tree containing the object
identified by startob

Output Arguments

retval

6-32

The found object's number in the tree, ranging from
o (zero) to n

-1 = no object found

GEM AES Reference Guide

Sample Call to C Language Binding

WORD objc_find{);
WORD retval, startob, depth, mx, my;
LONG tree;

retval = objc_find(tree, startob, depth, mx, my);

Parameter Block Binding

Control

control(O) = 43
control(1) = 4
control(2) = 1
control(3) = 1
control(4) = 0

Input

inLin(O) = startob
inLin(1) = depth
inLin(2) = mx
inLin(3) = my

addcin(O) = tree

Output

inLout(O) = retval

6-33

GEM AES Reference Guide

OBJC_OFFSET

Computes an object's X- and V-coordinates relative to the screen.

Input Arguments

obj

tree

The object whose location is being computed

Address of the object tree containing the object
identified by the obj argument

Output Arguments

retval A coded return message:

o error
n no error

poffx

poffy

X-coordinate of obj relative to the screen

V-coordinate of obj relative to the screen

Sample Call to C Language Binding

WORD
WORD
LONG

objc_offsetO;
retval, obj, poffx, poffy;
tree;

retval = objc_offset(tree, obj, &poffx, &poffy);

Parameter Block Binding

Control

control(O) = 44
control(1) = 1
control(2) = 3
control(3) = 1
control(4) = 0

6-34

Input

inLin(O) = obj

addr_in(O) = tree

Output

inLout(O) = retval
inLout(1) = pottx
inLout(2) = potty

GEM AES Reference Guide

OBJC_ORDER

Moves an object to a new position in its parent's list of children. (For
example, third child moves to second chi.ld's place).

Input Arguments

newpos

The object to be moved to a new position

The new position in which to put the object

o on the bottom
1 one from the bottom
2 two from the bottom [etc.]
-1 on top

Output Arguments

retval A coded return message:

o error
n no error

tree The address of the object tree that contains the
object identified by mov_obj

Sample Call to C Language Binding

objc_order(); WORD
WORD
LONG

retval, mov_obj, newpos;
tree;

retval = objc_order(tree, mov_obj, newpos);

Parameter Block Binding

Control

control(O) = 45
control(1) = 2
control(2) = 1
control(3) = 1
control(4) = 0

Input

inLin(O) = mov_obj
inLin(1) = newpos

addr_in(O) = tree

Output

inLout(O) = retval

6-35

GEM AES Reference Guide

08JC_EDIT

Lets the user edit text in an object.

The object must be of the type G_TEXT or G_BOXTEXT.

Input Arguments

obj

inchar

idx

kind

tree

The object containing the text to be edited

The character input by the user

The index of the next character position in the raw
text string

The 08JC_EDIT function to perform:

o ED_START: reserved for future use

EDJNIT: combine values in te-ptext and
te_ptmplt into a formatted string; turn on text
cursor

2 ED_CHAR: validate typed characters against
te_pvalid, update te_ptext, and display string

3 ED_END: turn off text cursor

See Section 6.4, TEDINFO Structure.

The address of the object tree containing the object
with the text to be edited

Output Arguments

retval

idx

6-36

A coded return message:

o error
n no error

The updated index of the next character position in
the raw text string

GEM AES Reference Guide

Sample Call to C Language Binding

WORD
WORD
LONG

objc_edit();
retval, obj, inchar, idx, kind;
tree

retval = objc_edit{tree, obj, inchar, &idx, kind);

Parameter Block Binding

Control

control(O) = 46
control(1) = 4
control(2) = 2
control(3) = 1
control(4) = 0

Input

inLin(O) = obj
inLin(l) = inchar
inLin(2) = idx
inLin(3) = kind

addr _in(O) = tree

Output

inLout(O) = retval
int_out(l) = idx

6-37

GEM AES Reference Guide

OBJC_CHANGE

Changes an object's ob_state value. Refer to Section 6.3.4, Object
States.

Each OBJC_CHANGE call defines a new clip rectangle, and the Object
Library changes only the parts of the object contained within the clip
rectangle for that call.

Input Arguments

drawob

depth

xc

yc

wc

hc

newstate

redraw

tree

The object to be changed

Reserved; the value must be zero

X-coordinate of the clip rectangle

V-coordinate of the clip rectangle

Width (in pixels) of the clip rectangle

Height (in pixels) of the clip rectangle

The ob_state value of the object

A code for whether to redraw the object

o do not redraw the object
1 redraw the object

Address of the object tree containing the object

Output Arguments

retval A coded return message:

o error
n no error

6-38

GEM AES Reference Guide

Sample Call to C Language Binding

WORD
WORD
LONG

objc_change();
retval, drawob, depth, xc, ye, WC, hc, newstate, redraw;
tree;

retval=objc_change(tree,drawob,depth,xc,yc,wc,hc,newstate,redraw);

Parameter Block Binding

Control

control(O) = 47
control(1) = 8
control(2) = 1
control(3) = 1
control(4) = 0

Input

inLin(O) = drawob
inLin(l) = ob_cresve
inLin(2) = xc
inLin(3) = yc
inLin(4) = wc
inLin(5) = hc
i nLin(S) = newstate
inLin(7) = redraw

addr _in(O) = tree

End of Section 6

Output

inLout(O) = retval

6-39

GEM AES Reference Guide 7.1 A Model Form

FORM LIBRARY

A form is a means of glvmg or gathering information. A form can
appear on a piece of paper or on a computer screen. It can be a set
of questions, often a list, to which a user responds by checking off
boxes or writing text.

The Form Library displays forms almost exactly as they would appear
on paper. For example, an application can display a form and then use
the responses it receives to update an information database.

There are two ways to process forms:

• Use the FORM_DO function to process a form automatically. The
AES collects the user's responses and stores them in the form's
object tree.

• Use the FORM KEYBD and FORM BUTTON functions to maintain
local control of-form processing, using the Object Library to move
from object to object.

The Form Library offers several advantages, including the following:

• The Form Library, and not the application, is responsible for the
user's interaction with the form.

• The application is idle until the user has completed the form.
When the user satisfies the form's exit condition, the application
regains control and acts on the user's responses.

• The Form Library greatly simplifies the programmer's task by
providing a consistent framework for interaction between the
application and the user.

7.1 A Model Form

A typical form is the product survey illustrated in Figure 7-1. This kind
of form contains several questions, to which the user responds by
putting an "X" in the appropriate boxes or by writing a response.

7-1

7.2 Responding to a Form GEM AES Reference Guide

1 • Age (check one only):
10-29 []

30-49 []

50-69 []

over 70 []

2. Yearly Income (check one only):
less than $10,000 []

$10,000 - $29,999 []

$30,000 - $49,999 []

$50,000 - $69,999 []

over $70,000 []

3. Activities You Enjoy (check all that apply):
Water Skiing []

Hang Gl iding []

Backpacking []

Bicycling []

SCUBA Diving []

Horseback Riding []

4. Sporting Goods Store:

Address:

Figure 7-1. Product Survey Form

The questions in this form require three different kinds of answers:

1. A check in a single box (questions 1 and 2)

2. A check in one or more boxes, or no check at all (question 3)

3. A written answer (question 4)

7.2 Responding to a Form

Forms in the AES are essentially the same as printed forms. For
example, the AES uses the same three types of response that appear
on the product survey. However, the AES uses the following
terminology:

7-2

GEM AES Reference Guide 7.2 Responding to a Form

1. Radio buttons: the "check-one-only" type of response. If a user
selects one button, all other buttons are automatically de­
selected. Radio buttons are a "one of many" structure.

2. Check boxes: the "check-all-that-apply" type of response. The
user can select one or more of the options, or none at all.
Despite the name, a check mark does not necessarily appear in
the box when the user selects it. Check boxes are an "any of
many" structure.

3. Editable text: for all responses requiring text entry.

The AES needs one piece of information that does not appear explicitly
on the product survey: notification that the user has completed the
form. To provide this information, you designate at least one box as
an exit button and set the object flag to EXIT. When the user selects
that box, the Form Library completes its tasks and then passes control
back to the application.

Many AES forms have two exit buttons, one labeled "OK" and the other
labeled "Cancel". These buttons have the following functions:

OK

Cancel

Tells the Form Library that the form is complete. The
application can then act on the user's responses.

Tells the Form Library to ignore any responses and to
return control to the application. The environment
remains the same as it was before the AES displayed
the form.

A form's exit buttons do not have to be labeled "OK" and "Cancel". For
example, a form can have an "OK" button alone, or it can have buttons
labeled "Excellent", "Very Good", "Good", "Fair", "Poor". The labels on
the exit button or buttons depend entirely on the application.

7-3

7.4 Editable Text Fields GEM AES Reference Guide

7.3 Dialog Boxes

A dialog, which is a special kind of form, provides a consistent
framework for interaction between an application and a user when
either of the following conditions exists:

• The application needs more information before it can carry out a
command .

• An error or some other condition occurs that requires that the
user be notified immediately.

Dialog boxes appear in the center of the screen. Each box contains
text and one or more exit buttons.

Dialogs are stored on disk as resources, which lets an application
programmer alter their content (for example, rewrite a message from
English to German) without having to make changes to the application
using them or to the Form Library itself.

7.4 Editable Text Fields

Many dialogs have editable text fields. The user can edit these.-itelds
with the following keys described in Table 7-1. The effect is
continuous if the key is held down.

For up- and down-arrow, Tab, and Backtab, the cursor goes to -the
beginning of the field only if the field is empty. Otherwise, the cursor
goes to the first open character position following the field's data
string.

7-4

GEM AES Reference Guide 7.4 Editable Text Fields

Key

Backspace

Delete

Escape

Table 7-1. Editing Keys

Description

Deletes the character to the left of the cursor. The
cursor and any following text move one character
space to the left.

Deletes the character following the cursor. The cursor
does not move.

Clears all characters from the field.

Left and right-arrow
Moves the text cursor left and right within the field.

Down-arrow and Tab
Moves the cursor to the next field.

Up-arrow and Backtab
Moves the cursor to the previous field. To Backtab, the
user presses the Shift and Tab keys together.

Return/Enter Ends editing and terminates the dialog.

The Return/Enter key works this way only if one object in the form has
been flagged as a DEFAULT object (see Section 6.3.3, Object Flags). If
no object has been flagged as a DEFAULT object, the Form Library
ignores Return/Enter keystrokes.

For example, in the Alert in Figure 7-2, the GEM Desktop application
has flagged the "Cancel" button as the DEFAULT object. (The DEFAULT
object is identified by its heavy border.) If the user presses the
Return/Enter key intending to format a disk, the keystroke instead
cancels the format request. The DEFAULT flag acts as an extra safety
device, forcing the user to click the mouse pointer on "OK" in order to
format the disk.

7-5

7.5 Alerts GEM AES Reference Guide

The user can also move through a field by typing a delimiter character
that appears to the right of the cursor. (This delimiter character must
be a character that is not allowed by the validation string te_pvalid,
described in Section 6.4, TEDINFO Structure).

For example, the user might be entering a filename in the following
field:

The validation string for this field is FFFFFFFFFFF (all valid operating
system filename characters, plus 7, *, and :). The period is not a valid
character. If the user types:

f i Ie.

the Form Library looks for a period in the field to the right of the
cursor's position. Finding one, it moves the cursor one position past
the period, filling all spaces between the text and the period with
blanks. The user now sees the following field:

f i I e ·L __
Similarly, the user can type:

9/30/86

into the following date field:

/ /

and get the following field as a result:

9 /30/86

7.S Alerts

An alert is a special kind of dialog box that notifies the user a
condition has arisen that requires immediate attention and, usually,
action by the user. Alerts are the AES's and AES-based applications'
means of handling error conditions.

Figure 7-2 shows a sample alert.

7-6

GEM AES Reference Guide 7.5 Alerts

I
ForMatting will ERASE all I OK I
inforMation on the disk in drive
A:. Click on OK only if ~ou don'tlCancell
Mind losing this inforMatlon.

Figure 7-2. Sample GEM AES Alert

The text of the alert is shown below. The string uses square brackets
to separate the components.

[3][Formatting will ERASE alilinformation on
the disk in driveIA:. Click on OK only if you
don'tlmind losing this information.[CanceIIOK]

The components of the string are:

[Icon Number] [Message Text] [Exit Buttons]

Icon Number A single character that identifies an icon (if any)
that appears at the left side of the alert.

o no icon
1 NOTE icon
2 WAIT icon
3 STOP icon

Message Text A maximum of 200 ASCII characters for text. The
alert can have five text lines, with no more than
40 characters on each line. In the string, the
lines are separated by the logical OR symbol (I).

Exit Buttons One, two, or three exit buttons, each containing
no more than 20 text characters. In the string,
the exit button text is separated by the logical OR
symbol (I).

7-7

7.7 Displaying a Dialog GEM AES Reference Guide

7.5.1 Error Boxes

An error box is a special kind o.f alert that reports operating system
errors like "File Not Found." Operating system error codes are defined
in your operating system technical manual.

Unlike the text string for other alerts, the text string for an error box is
generated by the Form library instead of the application.

7.6 Displaying a Form

To display a form, the application takes the following steps:

1. The application calls OBJC_DRAW, passing an index to the object
tree for the form.

2. The Object Library displays the form in the application's window.

3. The application makes a call to the FORM_DO function, and the
Form Library monitors the user's interaction with the form.

4. When the user selects an exit button, the Form Library returns
control to the application. In general, the application identifies the
object(s) that cause the Form library to relinquish control.

5. After regaining control, the application must look at the form,
determine if any changes took place, and decide on appropriate
action.

7.7 Displaying a Dialog

In contrast to an application-defined form, which appears inside a
window, a dialog sits on top of windows and desk accessories and
does not have to be within a window's boundaries.

To display a dialog, the application takes the following steps:

1. It calls the RSRC_GADDR routine to get the address of the object
tree that draws the dialog. This call is described in Section 12.

2. It calls the FORM_CENTER routine to center the dialog on the
screen. (This call is optional.)

7-8

GEM AES Reference Guide 7.8 Displaying an Alert

3. It calls the FORM_DIAL routine to reserve the part of the physical
screen in which the dialog will appear. Nothing else can occupy
the reserved part' of the screen.

4. It calls the OBJC_DRAW routine to display the dialog. This call is
described in Section 6.

5. It calls the FORM_DO routine to let the user interact with the
dialog.

6. When the user satisfies the dialog's exit condition, by clicking on
an exit button or pressing the Enter key, the application calls the
FORM_DIAL routine to free the reserved screen space and to
redraw the screen.

7.S Displaying an Alert

To display an alert, the application calls the FORM_ALERT routine. The
FORM_ALERT routine contains the following internal steps:

1. It constructs the object tree of the alert, based on the input string
whose address is contained in FORM_ALERT.

2. It saves to the menu/alert buffer the screen space that will be
taken over by the alert.

3. It calls the OBJC_DRAW routine to display the alert.

4. It calls the FORM_DO routine to let the user respond to the alert,
and reports the user's exit button selection to the application.

5. After the user selects an exit button, it redraws the screen from
the menu/alert buffer.

To display an error box, the application calls the FORM_ERROR routine.
The input parameter for FORM_ERROR is an operating system error
code, and its output parameter is a code that tells the application to
retry or abandon the requested action. Otherwise, FORM_ERROR uses
the same internal sequence as FORM_ALERT.

7-9

7.9 Form Library Routines GEM AES Reference Guide

7.9 Form Library Routines

The Form Library contains the following routines:

FORM.-ALERT

FORM_ERROR

FORM_CENTER

FORM_BUnON

FORM_KEYBD

7-10

Causes the Form Library to monitor the user's
interaction with a form.

Reserves or frees the portion of the screen
used for dialog boxes.

Displays an alert box.

Displays an error box.

Centers a dialog box on the screen.

Processes mouse button input.

Processes keyboard input.

GEM AES Reference Guide

FORM_DO

Causes the Form library to monitor the user's interaction with a form.

Input Arguments

start The number of an object (which must be an editable
text field) that the application wants active when the
form is displayed. The application can pass in a
value of 0 (zero) if the form does not contain editable
text fields.

form The address of the object tree that draws this form

Output Arguments

retval The number of the object that caused the exit from
the user's interaction with the form

Sample Call to C Language Binding

WORD form_doO;
WORD retval, start;
LONG form;

retval= form_do(form, start);

Parameter Block Binding

Control

control(O) = 50
control(1) = 1
control(2) = 1
control(3) = 1
control(4) = 0

Input

int_in(O) = start

addr_in(O) = form

Output

inLout(O) = retval

7-11

GEM AES Reference Guide

FORM_DIAL

Depending on the value in dtype, FORM_DIAL does one of the
following:

• Reserves a portion of the physical screen for a dialog box
• Frees the reserved portion of the screen and redraws the screen

Input Arguments

dtype

ix

iy

iw

ih

x

y

w

h

FORM_DIAL action invoked by the current call:

o FMD_START: Reserves screen space for the
dialog box

3 FMD_FINISH: Frees screen space reserved by
FMD_START; causes application to redraw screen

Reserved. The application should set the following
parameters to zero: ix, iy, iw, ih

Reserved

Reserved

Reserved

X-coordinate of the box

V-coordinate of the box

Width (in pixels) of the box

Height (in pixels) of the box

Output Arguments

retval A coded return message:

o error
n no error

7-12

GEM AES Reference Guide

Sample Call to C Language Binding

WORD fbrm_diaIO;
WORD dtvpe, ix, iV, iw, ih, x, V, w, h;

retval = form_dial(dtvpe, ix, iV, iw, ih, x, V, w, h);

Parameter Block Binding

Control

control(O) = 51
control(l) = 9
control(2) = 1
control(3) = 0
control(4) = 0

Input

inLin(O) = dtype
inLin(l) = ix
inLin(2) = iy
inLin(3) = iw
inLin(4) = ih
inLin(5) = x
inLin(6) = y
inLin(7) = w
inLin(8) = h

Output

inLout(O) = retval

7-13

FORM..ALERT GEM AES Reference Guide

FORM_ALERT

Displays an alert. Section 7.6 describes the complete sequence of
calls internal to FORM_ALERT.

Input Arguments

defbut The form's DEFAULT exit button (see Section 7.4).

o no DEFAULT exit button
1 first exit button
2 second exit button
3 third exit button

string The address of the string containing the alert

Output Arguments

retval Number identifying the exit button selected by the
user

1 first exit button in string
2 second exit button in string
3 third exit button in string

Sample Call to C Language Binding

WORD form_alertO;
WORD retval, defbut;
LONG astring;

retval = form_alert(defbut, astring);

Parameter Block Binding

Control

control(O) = 52
control(1) = 1
control(2) = 1
control(3) = 1
control(4) = 0

7-14

Input

inLin(O) = defbut

addcin(O) = astring

Output

inLout(O) = retval

GEM AES Reference Guide

FORM_ERROR

Displays an error box.

Input Arguments

errnum The operating system error code

Output Arguments

retval A code that identifies the user's exit button selection:

1 first exit button in string
2 second exit button in string
3 third exit button in string

Sample Call to C Language Binding

WORD form_errorO;
WORD retval, errnum;

retval = form_error(errnum);

Parameter Block Binding

Control

control(O) = 53
control(l) = 1
control(2) = 1
control(3) = 0
control(4) = 0

Input

inLin(O) = errnum

Output

inLout(O) = retval

7-15

GEM AES Reference Guide

FORM_CENTER

Computes the location of the center of the screen for a given dialog,
and writes these values into pcx, pcy, pcw, and pch.

Input Arguments

tree Address of the object tree that describes the dialog

Output Arguments

retval Reserved; value equals 1 (one)

pcx X-coordinate of the centered
the dialog box

pcy V-coordinate of the centered
the dialog box

pcw Width (in pixels) of the
containing the dialog box

pch Height (in pixels) of
containing the dialog box

Sample Call to C Language Binding

WORD form_centerO;
WORD retval, pcx, pcy, pcw, pch;
LONG tree;

the

object tree containing

object tree containing

centered object tree

centered object tree

retval = form_center(tree, &pcx, &pcy, &pcw, &pch);

Parameter Block Binding

Control

control(O) = 54
control(1) = 0
control(2) = 5
control(3) = 1
control(4) = 0

7-16

Input

addr_in(O) = tree

Output

inLout(O) = retval
inLout(1) = pcx
inLout(2) = pcy
inLout(3) = pew
inLout(4) = pch

GEM AES Reference Guide

FORM_KEYBD

Filters keyboard input for Tab, Backtab, Up, Down and Return/Enter
characters while in a form, and selects the next object accordingly.
The selected object is returned, with a code indicating whether or not
the input was the Return/Enter character.

Input Arguments

obj

thechar

nxt_obj

form

Current object receiving the keystroke (does not need
to be first object in form tree)

Input character from keyboard

Reserved; set to 0

Address of the object tree that draws this form

Output Arguments

retval

pchar

A coded return message:

o The input character (thechar) was the
Return/Enter key and the tree contains an object
with its default bit set. On screen, the default box
is shown selected.

The input character (thechar) was any key but a
Retu rn/E nte r.

Index of the next object selected by the input
character

A coded return message:

o The input character (thechar) was a Tab, Backtab,
Up, Down, or Return/Enter.

c (Any other character). The character is returned
here.

7-17

GEM AES Reference Guide

Sample Call to C Language Binding

WORD form_keybdO;
WORD retval, obj, nxt_obj, thechar, pnxt_obj, pchar;
LONG form;

retval = form_keybd(form, obj, nxt_obj, thechar, &pnxt_obj, &pchar);

Parameter Block Binding

Control

control(O) = 55
control(l) = 3
control(2) = 3
control(3) = 1
control(4) = 0

7-18

Input

inLin(O) = obj
inLin(l) = thechar
inLin(2) = nxLobj

addr_in(O) = form

Output

inLout(O) = retval
inLout(l) = pnxLobj
inLout(2) = pchar

GEM AES Reference Guide

FORM_BUTTON

Processes input from a mouse button on a form, starting at the object
specified. The routine returns when the user enters the specified
number of clicks. The screen shows the next object selected. The
selected object is returned with a value indicating whether the user
selected an exit object.

Input Arguments

obj Current object recelvmg the button click (does not
need to be the first object in the form tree)

elks Number of mouse button clicks

form Address of the object tree that draws this form

Output Arguments

Index of next object in tree. This value is set to 0
(zero) if this object is hidden, disabled, or not
editable. The high ·order bit of this value is set if
clks is set to 2 and this object is a touch exit.

retval A coded return message:

1 indicates object selected is not an exit object
o indicates the next object selected has the exit

flag bit or the touchexit flag bit set

Sample Call to C Language Binding

WORD form_buttonO;
WORD retval, obj, clks, pnxt_obj;
LONG form;

retval = form_button{form, obj, clks, &pnxt_obj);

7-19

Parameter Block Binding

Control

control(O) = 56
control(1) = 2
control(2) = 2
control(3) = 1
control(4) = 0

7-20

Input

inLin(O) = obj
inLin(l) = clks

addr_in(O) = form

End of Section 7

GEM AES Reference Guide

Output

inLout(O) = retval
inLout(l) = pnxLobj

SECTION 8

GRAPHICS LIBRARY

In certain circumstances, a graphics application might need to
manipulate a rectangular outline (a box drawn with· lines) on the
screen. The Graphics Library provides a set of routines for these
manipulations. As a result, each application can make calls to a single
library within GEM AES, without having to carry the routines in its own
code.

Graphics library functions are based on GEM VOl functions that are
fully described in the GEM Virtual Device Interface Reference Guide.
The AES runs on top of GEM VOl, and a graphics application should
use GEM VOl for its graphics output. However, all graphics input is
made directly through the AES.

Graphics Library routines also return the GEM VOl handle of the
currently open screen workstation, change the mouse form to one of a
predefined set or to a form defined by the application, and get
information on the mouse and keyboard ..

The boxes manipulated by the Graphics Library can be used for a
variety of purposes. In the GEM Desktop application, for example, the
GRAF _RUBBOX routine draws the box that appears when a user drags
the mouse to select a group of icons.

All functions that take mouse input require use of the leftmost mouse
button.

8-1

8.1 Graphics Library Routines GEM AES Reference Guide

8.1 Graphics Library Routines

The Graphics Library contains the following routines:

8-2

GRAF _RUBBOX

GRAF _DRAG BOX

GRAF_MBOX

Draws a "rubber" box that expands and
contracts from a fixed point as the mouse
moves.

Moves a box, keeping the mouse pOinter in the
same position in the box.

Draws a moving box.

GRAF _WATCH BOX Watches a box to see if the mouse pOinter
(with button down) is inside.

GRAF _SlIDEBOX

GRAF _HANDLE

GRAF_MOUSE

GRAF _MKSTATE

Keeps a sliding box inside its parent box.

Returns a GEM VOl handle for the opened
screen workstation that the AES libraries use.

Lets an application change the mouse form to
one of a predefined set or to an application­
defined form.

Returns the current mouse location, mouse
button state, and keyboard state.

GEM AES Reference Guide GRAF _RUBBOX

GRAF _RUBBOX

Draws a "rubber box." The position of the box's upper left corner is
fixed, but by dragging the lower right corner with the mouse pointer,
the user can make the box larger or smaller. The call returns the
rubber box's new size when the user releases the mouse button.

Input Arguments

xorigin

yorigin

wmin

hmin

X-coordinate of the box

V-coordinate of the box

Box's smallest possible width in pixels

Box's smallest possible height in pixels

Output Arguments

retval

pwend

phend

A coded return message:

o error
n no error

Width of the box when the user released the mouse
button

Height of the box when the user released the mouse
button

Sample Call to C Language Binding

WORD
WORD

graf_rubboxO;
retval, xorigin, yorigin, wmin, hmin, pwend, phend;

retval = graf_rubbox{xorigin, yorigin, wmin, hmin, &pwend, &phend);

Parameter Block Binding
Control

control(O) = 70
control(1) = 4
control(2) = 3
control(3) = 0
control(4) = 0

Input

inLin(O) = xorigin
inLin(1) = yorigin
inLin(2) = wmin
inLin(3) = hmin

Output

inLout(O) = retval
inLout(1) = pwend
inLout(2) = phend

GEM AES Reference Guide

GRAF _DRAGBOX

Lets a user drag a box within an application-defined boundary
rectangle.

When the user presses the mouse button to begin dragging, the AES
starts tracking the mouse's position. As the user drags, this call keeps
the mouse pointer in a fixed position relative to the box's upper left
corner.

Input Arguments

w

h

sx

sy

xc

yc

wc

hc

Width in pixels of the box being dragged

Height in pixels of the box being dragged

Box's starting X-coordinate

Box's starting V-coordinate

X-coordinate of the boundary rectangle

V-coordinate of the boundary rectangle

Width in pixels of the boundary rectangle

Height in pixels of the boundary rectangle

Output Arguments

retval

pdx

pdy

8-4

A coded return message:

o error
n no error

Box's X-coordinate when the user released the
mouse button

Box's V-coordinate when the user released the
mouse button

GEM AES Reference Guide GRAF _DRAGBOX

Sample Call to C Language Binding

graf_dragboxO; WORD
WORD retval, w, h, sx, sy, xc, ye, we, he, pdx, pdy;

retval = graf_dragbox(w, h, sx, sy, xc, we, he, &pdx, &pdy);

Parameter Block Binding

Control

control(O) = 71
control(1) = 8
control(2) = 3
control(3) = 0
control(4) = 0

Input

inLin(O) = w
inLin(l) = h
inLin(2) = sx
inLin(3) = sy
inLin(4) = xc
inLin(S) = yc
inLin(6) = we
inLin(7) = he

Output

inLout(O) = retval
inLout(l) = pdx
inLout(2) = pdy

8-5

GRAF_MBOX GEM AES Reference Guide

GRAF_MBOX

Draws a box moving from one position to another. The box's size
does not change.

Input Arguments

w

h

srcx

srcy

dstx

dsty

Box's width in pixels

Box's height in pixels

Box's X-coordinate, in its initial position

Box's V-coordinate, in its initial position

Box's X-coordinate, in its final position

Box's V-coordinate, in its final position

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD

graf_mbox();
retval, w, h, srcx, srcy, dstx, dsty;

retval = graf_mbox(w, h, srcx, srcy, dstx, dsty);

Parameter Block Binding

Control

control(O) = 72
control(1) = 6
control(2) = 1
control(3) = 0
control(4) = 0

8-6

Input

inLin(O) = w
inLin(1) = h
inLin(2) = srcx
inLin(3) = srcy
inLin(4) = dstx
inLin(5) = dsty

Output

inLout(O) = retval

GEM AES Reference Guide GRAF _WATCH BOX

GRAF _WATCH BOX

Tracks the mouse pointer in and out of a predefined box.

The box's object state changes as the mouse pointer enters and leaves
the box. The application makes this call only when the mouse button
is being held down, and the routine returns a value only when the user
releases the mouse button.

The box is contained in an object tree. The input variables for instate
and outstate are defined in Section 6.3.4.

Input Arguments

obj

instate

outstate

tree

Index of the object in the tree

Box's state when the mouse pointer (with button
down) is inside it

OxOOOO
Ox0001
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020

NORMAL
SELECTED
CROSSED
CHECKED
DISABLED
OUTLINED
SHADOWED

Box's state when the mouse pOinter" (with button
down) is outside it

OxOOOO
Ox0001
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020

NORMAL
SELECTED
CROSSED
CHECKED
DISABLED
OUTLINED
SHADOWED

Address of the object tree containing the box

8-7

GEM AES Reference Guide

Output Arguments

retval Mouse pointer's position when the button was
released

o outside the box
1 inside the box

Sample Call to C Language Binding

WORD graf_watchbox();
WORD retval, obj;
UWORD inState, outstate;
LONG tree;

retval = graf_watchbox(tree, obj, instate, outstate);

Parameter Block Binding

Control

control(O) = 75
control(1) = 4
control(2) = 1
control(3) = 1
control(4) = 0

8-8

Input

inLin(O) = [reserved]
inLin(1) = obj
int_in(2) = instate
inLin(3) = outstate

addr_in(O) = tree

Output

inLout(O) = retval

GEM AES Reference Guide GRAF _SLlDEBOX

GRAF _SLlDEBOX

Tracks a sliding box inside a parent box.

Mouse movement causes the sliding box to move, and the parent box
defines the sliding box's range of motion.

An application makes this call only when the mouse button is being
held down, and the routine returns a value only when the user
releases the mouse button.

Both boxes (slider and parent) are contained in an object tree. The
return value is a number that indicates the slider's relative position
inside the parent box.

Input Arguments

parent

obj

isvert

tree

Index of the parent in the tree.

Index of the object (the slider) in the tree.

A code for the direction of the slider's movement.

o horizontal
1 vertical

Address of the object tree containing slider and
parent.

Output Arguments

retval Position of the center of the slider relative to its
parent. The value can range from 0 to 1000.

if isvert = 0 0 = left
1000 = right

if isvert = 1 0 = top
1000 = bottom

8-9

GRAF _SLlDEBOX

Sample Call to C Language Binding

WORD
WORD
LONG

graf_slideboxO;
retval, parent, obj, isvert;
tree;

GEM AES Reference Guide

retval = graf_slidebox(tree, parent, obj, isvert);

Parameter Block Binding

Control

control(O) = 76
control(l) = 3
control(2) = 1
control(3) = 1
control(4) = 0

8-10

Input

inLin(O) = parent
inLin(l) = obj
inLin(2) = isvert

Output

inLout(O) = retval

GEM AES Reference Guide GRAF _HANDLE

GRAF _HANDLE

Gets the GEM VDI handle for the currently open screen workstation.

GEM AES and GEM applications share this handle whenever they make
GEM VOl calls.

Output Arguments

retval GEM VOl handle

pwchar Width (in pixels) of a character cell in the system
font used in menus and dialogs

phchar Height (in pixels) of a character cell in the system
font used in menus and dialogs

pwbox Width (in pixels) of a square box large enough to
hold a system font character

phbox Height (in pixels) of a square box large enough to
hold a system font character

Sample Call to C Language Binding

WORD graf_handle();
WORD retval, pwchar, phchar, pwbox, phbox;

retval = graf_handle(&pwchar, &phchar, &pwbox, &phbox);

Parameter Block Binding

Control

control(O) = 77
control(1) = 0
control(2) = 5
control(3) = 0
control(4) = 0

Input Output

inLout(O) = retval
inLout(l) = pwchar
inLout(2) = phchar
inLout(3) = pwbox
inLout(4) = phbox

8-11

GRAF_MOUSE GEM AES Reference Guide

GRAF_MOUSE

Changes the mouse form to one of a predefined set or to an
application-defined form.

Note: The application selects or defines the mouse form that appears
in the work area of its topmost (active) window. Outside the work
area of the active window, the mouse form must always be an arrow
or an hourglass.

If it uses a mouse form other than an arrow, an application must make
a GRAF _MOUSE call each time the mouse form exits or enters the
active window's work area.

The GRAF _MOUSE call upon exit converts the mouse form to an arrow.
The GRAF _MOUSE call upon entry converts the mouse form back to
the application's mouse form.

The application uses an EVNT _MULTI call, specifying a mouse rectangle
equal to the active window's work area, to detect mouse form exit and
entry.

Input Arguments

8-12

A code identifying a predefined mouse form

o arrow
1 text cursor (vertical bar)
2 hourglass
3 hand with pointing finger
4 flat hand, extended fingers
5 thin cross hair
6 thick cross hair
7 outline cross hair
255 mouse form stored in m_addr
256 hide mouse form
257 show mouse form

Address of a 37-word buffer that fits the input
arguments specified in the vsc_form function defined
in Section 7, Input Functions, in the GEM VOl
Reference Guide.

GEM AES Reference Guide

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD
LONG

graf_mouseO;
retval, m_number;
m_addr;

Parameter Block Binding

Control

control(O) = 78
control(1) = 1
control(2) = 1
control(3) = 1
control(4) = 0

Input

inLin(O) = m_number

addcin(O) = m_addr

GRAF_MOUSE

Output

inLout(O) = retval

8-13

GRAF _MKSTATE GEM AES Reference Guide

GRAF _MKST ATE

Returns the current mouse location, mouse button state, and keyboard
state.

Output Arguments

retval

pmx

pmy

pmstate

Undefined

X-coordinate of the mouse's current location

V-coordinate of the mouse's current location

Current mouse button state

The following bits represent the buttons:

pkstate

8-14

Ox0001
Ox0002
Ox0004

button on left
second button from left
third button from left, etc.

This parameter uses the following bit settings:

o button up
1 button down

The current state of the keyboard's right-Shift, left­
Shift, Ctrl, and Alt keys. The following bits represent
the keys:

Ox0001
Ox0002
Ox0004
Ox0008

right-Shift
left-Shift
Ctrl
Alt

This parameter uses the following bit settings:

o key up
1 key down

GEM AES Reference Guide

Sample Call to C Language Binding

WORD
WORD

graf_mkstate();
retval, pmx, pmy, pmstate, pkstate;

G RAF _MKST ATE

retval = graf_mkstate(&pmx, &pmy, &pmstate, &pkstate);

Parameter Block Binding

Control

control(O) = 79
control(1) = 0
control(2) = 5
control(3) = 0
control(4) = 0

Input

End of Section 8

Output

inLout(O) = retval
inLout(1) = pmx
inLout(2) = pmy
inLout(3) = pmstate
inLout(4) = pkstate

8-15

SECTION 9

SCRAP LIBRARY

GEM AES's Scrap Library provides a set of routines that increase the
usefulness of different applications by managing data interchange
between the applications.

A standard data interchange format offers several advantages,
including the following:

• Users can assemble an integrated set of independently developed
applications.

• An application can take advantage of functions and output
provided by other applications.

The Scrap Library's user interface lets the user cut or copy from one
application's data space and paste into another's. The temporary
holding place for these scraps of data is a clipboard, which is the
implied destination for all cuts and the implied source for all pastes.

The user can place data on the clipboard in two ways:

• By cutting, the user deletes the data from the source application's
data space.

• By copying, the user leaves the original piece of data in the
source application's data space.

The clipboard is only one level deep; each new cut or copy over­
writes the current contents of the clipboard.

A paste is, in effect, a copy from the clipboard to the target
application. The data remains on the clipboard, allowing the user to
paste the same piece of data repeatedly.

The AES's Scrap Library supports the following interactions:

• Writing the name of a scrap directory to the clipboard
• Reading the name of a scrap directory from the clipboard
• Managing the use of the disk as an extended scrap area

9-1

9 SCRAP LIBRARY GEM AES Reference Guide

The AES stores scrap on the disk. The filename far scrap data is
always SCRAP. The data's filetype identifies what kind of data it is.
For different applications to be integrated, the AES must define
standard data types in which scrap may be stored.

The AES SUPPO.rts the following standard data types, listed with their
associated filename extensiO.ns:

CSV CO.mma-separated values
TXT ASCII text strings
OIF Spreadsheet data
GEM Metafile; GEM VOl graphic images
IMG File created with GEM Paint TM; GEM VOl bit images
DCA IBMTM dO.cument content architecture
USR OEM-defined

To. be accessible to a variety O.f applicatiO.ns, a piece O.f scrap might
appear O.n the clipboard in several data types.

All AES programs shO.uld at least be able to' read and write ASCII data.
Image files and Metafiles are described in the GEM VOl Reference
Guide.

In addition to' these standard data types, prO.grammers can add their
O.wn applicatiO.n-specific data types.

An application can find O.r establish the full path (for example,
A:\SCRAPOIR\SCRAP.*) by using the SCRAP_READ and SCRAP_WRITE
routines.

Use the resident O.perating system's file system calls to' create, read,
and write files in the scrap directO.ry.

9-2

GEM AES Reference Guide 9.1 Scrap Library Routines

9.1 Scrap Library Routines

The Scrap Library contains the following routines:

SCRP _READ Reads the scrap directory path and reports the types
of files.

SCRP _WRITE Sets the current scrap directory path and validates its
existence.

SCRP _CLEAR Deletes all files with the SCRAP filename in the
current scrap directory.

9-3

SCRP_READ GEM AES Reference Guide

SCRP_READ

Returns the scrap directory path and reports the types of files.

Input Arguments

pscrap The address of the butter into which the current
scrap directory's path specification will be written.

Output Arguments

retval A bit vector indicating the types of files present in
the directory as follows:

Bit 0 SCRAP.CSV
Bit 1 SCRAP.TXT
Bit 2 SCRAP.GEM
Bit 3 SCRAP.lMG
Bit 4 SCRAP.DCA
Bit 5 SCRAP.USR

Bits 6 through 15 are reserved for future use and set
to zero.

A coded return value:

-1 There is no scrap directory.
o There are no files in the scrap directory.

Sample Call to C Language Binding

WORD scrp_read();
WORD retval;
LONG pscrap;

retval = scrp_read(pscrap);

9-4

GEM AES Reference Guide

Parameter Block Binding

Control

control(O) = 80
control(1) = 0
control(2) = 1
control(3) = 1
control(4) = 0

Input

addr_in(O) = pscrap

SCRP_READ

Output

inLout(O) = retval

9-5

SCRP_WRITE GEM AES Reference Guide

SCRP_WRITE

Sets the current scrap directory path and validates the existence of
the scrap directory.

Note that this routine does not create the scrap directory. You create
the scrap directory and write the various SCRAP files using the
resident operating system's file system calls.

Input Arguments

pscrap The address of the buffer from which the new scrap
directory will be copied to the clipboard

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD
LONG

scrp_writeO;
retval;
pscrap;

retval = scrp_write(pscrap);

Parameter Block Binding

Control

control(O) = 81
control(1) = 0
control(2) = 1
control(3) = 1
control(4) = 0

9-6

Input

addr_in(O) = pscrap

Output

inLout(O) = ret\lal

GEM AES Reference Guide SCRP_CLEAR

SCRP_CLEAR

Deletes all files with the SCRAP file name in the current scrap
directory. This routine requires you to have previously set the current
scrap directory with scrp_write.

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD

scrp_clearO;
retval;

retval = scrp_clearO;

Parameter Block Binding

Control

control(O) = 82
control(l) = 0
control(2) = 1
control(3) = 0
control(4) = 0

Input

End of Section 9

Output

inLout(O) = retval

9-7

SECTION 10

FILE SELECTOR LIBRARY

Many applications require that the user provide a filename to create a
new file, recall an existing file, or use a file as input for a function like
PRINT. Programmers can design applications that elicit the filename
from the user in a variety of ways, three of which are described below:

• The application does not display a directory of existing filenames.
To act on an existing file, the user must remember its filename.
To create a file, the user must provide a filename that does not
already exist in the directory.

• The application displays a directory, and the user types a new or
existing filename.

• The application displays a directory. To act on an existing file,
the user selects the filename directly from the directory. To
create a file, the user types a filename.

The last method, the easiest for the user, is the method used by GEM
AES's File Selector Library, which provides a consistent user interface
for filename entry and selection.

When an application requests the File Selector Library to prompt the
user for a filename, a special File Selector dialog appears on the
screen. (The GEM application manuals refer to this dialog as the Item
Selector.) See Figure 10-1.

10-1

10 FILE SELECTOR LIBRARY GEM AES Reference Guide

ITEt1 SELECTOR

Directory: C: \GEt,iAPPS*. GEM'-______ _

~I *. GEt'i Selection: I~ __
GENERBAL. CE~i

j,

HAt,niER • CEt1 ~
HOUSE .CHi
HOUSE2 .CHi
LINKER .GEM 0 LI NKFI C • CEt1
tljQU E .CHi
Not'1OUE .CHi ~ PI CTURE • CEt1 ,

OK

I Cancel I

Figure 10-1. File Selector Dialog

The File Selector dialog displays the name of the current directory
(including drive identifier), a selection field, and a list of filenames
contained in the directory. The scrolling area to the right of the
directory list contains up- and down-arrows, a scroll bar, and a slider.

The next section describes how the user interacts with the File
Selector.

10-2

GEM AES Reference Guide 10.1 Using the File Selector

10.1 Using the File Selector

The File Selector Library provides the programmer with a consistent
method of prompting the user for a filename. After the user selects a
menu command that requires a filename as input, the following events
typically occur:

1. The application calls the File Selector Library to display the File
Selector dialog box.

2. Before selecting or entering a filename, the user can do the
following:

• Scroll through the list of files in the directory

The File Selector dialog box's scrolling area is functionally the
same as the vertical scrolling area of a window. For details
of the user's interaction with the scrolling area, see the
descriptions of the up-arrow, down-arrow, and the vertical
scroll bar and slider in your GEM Desktop guide .

• Change the directory being displayed

To do so, the user clicks on "Directory:" and then types in a
new drive identifier, directory path name, and file
specification containing a wildcard in the filename or filetype,
as in the following example:

C :\REC EI PTS\ * .BAS

After changing the directory specification, the user clicks the
mouse pointer anywhere inside the window containing the
list of filenames. The AES updates the window, displaying a
list of filenames that fit the new specification.

3. The user selects a filename from the directory in the File Selector
dialog or enters a new filename.

To select an existing file, the user places the mouse pointer over
the filename and clicks. If the filename is not currently visible in
the list, the user can place the mouse pOinter over "Selection:",
click, and then type the filename.

10-3

10.2 File Selector library Routine GEM AES Reference Guide

To create a new file, the user places the pointer over "Selection:",
clicks, and then types the filename.

4. The user selects OK or Cancel.

5. The File Selector library returns the following information to the
application:

• The filename that was selected or entered

• The current directory and wildcard specification

• The way in which the user exited the File Selector dialog (OK
or Cancel)

6. If the user selected OK, the application continues on with the
filename that was selected or entered.

10.2 File Selector Library Routine

The File Selector Library uses the following routine:

10-4

Displays the File Selector dialog box and lets
the user select a filename.

GEM AES Reference Guide

FSEL_INPUT

Displays the File Selector dialog and monitors the user's interaction
with it.

The File Selector library returns the results of this interaction between
the user and the dialog to the application.

The FSEL_INPUT function takes 2K bytes of memory for temporary
storage of the directory contents. This buffer is released when the
user exits the routine.

Input Arguments

pipath Address of the buffer that holds the initial directory
specification displayed in the File Selector dialog.
This buffer will also hold the directory specification
that was in the File Selector dialog when the user
selected OK or Cancel.

The pOinter must point to a buffer with a path
specification; you cannot have a nul pointer or nul
path specification. The pipath buffer can contain
comma separated, wildcard specifications. For
example, the following command selects for displ~y
in the File Selector dialog all files in the PICTURES
directory on drive C: with the GEM and IMG
extensions.

C:\PICTURES*.IMG, *.GEM

pisel Address of the buffer that holds the initial Selection
displayed in the File Selector dialog. This buffer also
holds the selection that was in the File Selector
dialog when the user selected OK or Cancel.

10-5

FSELJNPUT

Output Arguments

retval A coded return message:

o no memory is available
n no error

GEM AES Reference Guide

pbutton A code identifying the exit button selected by the
user.

o Cancel
1 OK

Sample Call to C Language Binding

WORD fseljnputO;
WORD retval, pbutton;
LONG pi path, pisel;

retval = fseljnput(pipath, pisel, &pbutton);

Parameter Block Binding

Control

control(O) = 90
control(l) = 0
control(2) = 2
control(3) = 2
control(4) = 0

10-6

Input

addcin(O) = pipath
addcin(l) = pisel

End of Section 10

Output

inLout(O) = retval
inLout(l) = pbutton

GEM AES Reference Guide 11.1 Desktop Window

WINDOW LIBRARY

A window is an area with clearly defined boundaries. GEM AES
provides two kinds of windows:

• Desktop window (window 0, w_handle = 0)

• Application windows

11.1 Desktop Window

The AES opens the workstation and creates window 0, the desktop
window. The desktop window consists of the entire screen area,
including the menu bar. The area below the menu bar is the total area
available to an application. This is called the "desktop window's work
area."

While the user is in the AES environment, the desktop window is
always present on the screen. It is the backdrop for the application's
windows. You cannot delete the desktop window.

The AES supports a maximum of eight (8) windows at a time. Each
window is identified by a unique window handle, assigned by the AES
when the window is created. The desktop window is always identified
by a window handle of zero.

A GEM application can use all eight available windows, although this
could result in no windows being available for desk accessories. An
application can avoid this problem in the manner adopted by the GEM
Desktop application, which sets a limit of two windows for itself,
leaving the remaining six windows available for desk accessories.

Note: The GEM Desktop program is a typical application and it uses
application windows. Do not confuse the GEM Desktop application
program with window 0, the desktop window.

11-1

11.2 Application Windows GEM AES Reference Guide

11.2 Application Windows

Although GEM applications can output to the desktop window, they
usually create and maintain one or more application windows
whenever they need to display data. The AES supports overlapping
windows to allow an application to display two pieces of data at the
same time. For example, a word processor that lets a user work
simultaneously on two files can show each file in a separate window.

Application windows do the following:

• Let the user view help information and application data at the
same time.

• Let the user cut and paste data between applications.

• Make it possible to display status information from several
different background activities, for example, compiling, sorting,
and transferring data.

An application window contains two parts:

• Border area: Title bar, information line, and window control areas

• Work area: Space inside border area

Figure 11-1 shows the application window's work area and the
components of the border area. The GEM Desktop manual describes
how the end user interacts with the window control areas in an
application program.

11-2

GEM AES Reference Guide 11.2 Application Windows

close box up-arrow

! title bar and move bar

information line vertical scroll bar --.... "'.

WORK AREA

OF

APPLICATION WINDOW

horizontal scroll bar horizontal slider

+ left-arrow right-arrow

Figure 11-1. Parts of Application Window

The application can use and must manage the work area, which has
the following characteristics:

• It is the area available for the application to use .

• All user actions inside the work area are managed by the
application. What appears in the work area as a result of user
interaction is defined, displayed, and controlled by the application.

11-3

11.3 Components of the Border Area GEM AES Reference Guide

The border area has the following characteristics:

• The border area can have several different components. An
application determines which components will appear in the
border area but does not control them .

• The AES's Screen Manager displays the contents of each
window's border and manages all user interactions with the
border area.

11.3 Components of the Border Area

Table 11-1 lists the border components and, where applicable, their
corresponding predefined messages.

The maximum character length for the title bar and information line is
80 characters; however, the actual number of characters displayed
depends on the size of the window, the screen resolution, and the
font.

Except for the title bar and information line, the border elements are
called "window control areas," because user interaction with any of
them causes some change to take place, either in the work area or to
the window as a whole. The application determines which window
control areas appear in the window.

When a user clicks in a window control area, the AES sends the
corresponding predefined message to the application. Predefined
messages are described in Section 4.6.

11-4

GEM AES Reference Guide 11.3 Components of the Border Area

Component

Title bar

Table 11-1. Border Components

Description and Predefined Message

One character high bar across the top of the window
containing a maximum of 80 text characters that name
the window. The application provides this text in the
wf_name field of the WIND_SET function.

Information line

Close box

Full box

Move bar

One character high area below the title bar, containing
a maximum of 80 text characters of programmer­
defined information. The application provides this text
in the wf_info field of the WIND_SET function.

Box at the left end of the title bar. When the user
clicks the mouse on the close box, the AES sends a
WM_CLOSED message to tell the application that the
user wants the window closed.

Diamond at the right end of the title bar that toggles
between the greatest possible size and current size of
window. When the user clicks on the full box, the AES
sends a WM_FULLED message to the application.

Occupies the same space as the title bar, when present.
When the user presses the mouse button while the
mouse form is on the move bar, the AES displays an
XORed outline of the window. The user can drag this
outline around the desktop as long as the button is
held down. When the user releases the button, the
outline disappears, and the AES sends a WM_MOVED
message to tell the application the user wants the
window moved to the location indicated by the outline's
last position.

11-5

11.3 Components of the Border Area GEM AES Reference Guide

Component

Size box

Table 11-1. Cont'd

Description and Predefined Message

Box at lower right corner of window. When the user
holds down the mouse button on the size box, the AES
displays an XORed outline of the window. The upper
left corner of the outline remains in a fixed position.

The lower right corner can be dragged around as long
as the user continues to press the mouse button. When
the user releases the button, the AES sends a
WM_SIZED message to tell the application the user
wants the window's size changed to match the size of
the outline when the button was released.

Vertical scroll bar and slider

11-6

The vertical scroll bar is located between the up- and
down-arrow. The vertical slider moves up and down in
the scroll bar. To move quickly to the top or bottom of
the window's data or to any pOint between, the user
can drag the slider inside the scroll bar.

The size of the slider indicates how much of the data is
visible in the window. For example, if the slider is half
the size of the scroll bar, half the window's data is
visible.

When the user clicks above or below the slider, the AES
sends a WM_ARROWED message indicating the user
wants to move up or down one "page", as defined by
the application.

When the user drags the slider, the AES sends a
WM_VSLlD message indicating the new relative position
of the slider so that the application can adjust the view
area accordingly.

GEM AES Reference Guide 11.4 Division of Labor

Table 11-1. Cont'd

Component Description and Predefined Message

Horizontal scroll bar and slider

The horizontal scroll bar is located between the left­
and right-arrow, and works like the vertical scroll bar
and slider. The AES sends the WM_ARROWED and
WM_HSLlD messages to the application.

Up-arrow Arrow above vertical scroll bar. When the user clicks on
the up-, down-, left-, or right-arrow, the AES sends the
application a WM_ARROWED message indicating that
the user wants to move the file or directory in the
appropriate direction by one row or column, as defined
by the application.

Down-arrow Arrow below the vertical scroll bar. The AES sends the
application a WM_ARROWED message.

Left-arrow Arrow to left of horizontal scroll bar. The AES sends
the application a WM_ARROWED message.

Right-arrow Arrow to right of horizontal scroll bar. The AES sends
the application a WM_ARROWED message.

11.4 Division of Labor

The AES and the application divide responsibility for window
management. The AES handles all user-mouse interactions that occur
in the border areas, including the following:

• Clicking on the close box or full box
• Pressing the mouse button in the move bar to drag the window's

outline
• Pressing the mouse button in the size box to produce a larger or

smaller window outline
• Manipulating the scroll bars, sliders, and arrows

11-7

11.5 Window Management Calls GEMAES Reference Guide

The AES sends a message to the application that created the window
telling it the outcome of these interactions. When it receives one of
these messages from the AES, the application has two choices:

• Make a Window Library call that causes the requested change to
occur.

• Ignore the message.

This division of labor between the AES and the application has the
following advantages:

• The application is not responsible for user interactions outside its
window's work area.

• The application determines when and if user-requested window
changes take place.

• Because it chooses which window control areas appear in its
window's border area, the application also controls the kinds of
window changes a user can request.

11.5 Window Management Calls

An application usually follows some variation of the following steps to
fulfill its window management responsibilities:

1. It calls WIND_GET with a value of WF _XYWH for window a (the
desktop window). This call returns the desktop window's X- and
V-coordinates, plus its width and he.ight in pixels. These values
identify the part of the screen below the menu bar that is
available to the application.

2. It calls WIND_CALC with the width and height 'values from the
previous call, plus a code identifying the border components it is
requesting. WIND_CALC returns the size of the work area for this
window in its greatest possible size.

3. It determines the size of the work area it wants. This size must
be less than or equal to the size returned by the previous call.

11-8

GEM AES Reference Guide 11.5 Window Management Calls

4. It calls WIND_CALC with the desired work area size and the
parameters describing the window's border. WIND_CALC returns
the size of the window including the border area. This size is
used in the WIND_CREATE, WIND_OPEN, and WIND_SET calls.

5. It calls WIND_CREATE with the size returned by WIND_CALC and
the parameters describing the window's border. The size given to
WIND_CREATE determines the window's maximum possible size~

The AES returns a window handle (numeric identifier) for use with
the other window calls.

6. It calls WIND_OPEN with the window's initial size and location on
the desktop. The window appears after this call has been made.

7. It uses the window to display information to the user.

The application uses an EVNT _MUL TI call to wait for messages
from the AES regarding user requests to close, full, size, scroll, or
top (activate) the window. To support the overlapping window
environment, the AES can also send a message requesting that
part of the window be redrawn. The redraw procedure is
described in Section 11.7.

8. It makes a WIND_CLOSE call when the application no longer wants
the window visible on the screen. The window disappears, but it
is still allocated to the application and can be reopened.

9. It makes a WIND_DELETE call when the application no longer
needs the window at all. This call frees the window handle for use
by another application. The application should always close a
window before deleting it.

Managing multiple windows is an extension to the procedure described
above. When an application gets a message requesting a window
change, it uses the handle of the affected window in its Window
Library calls.

11-9

11.6 Support Of Overlapping Windows GEM AES Reference Guide

11.6 Support of Overlapping Windows

Application windows can overlap like sheets of paper. The topmost
window is called the active window.

When the user clicks the mouse button outside the active window's
border area, the AES looks at what was under the tip of the pointer
and acts as follows:

• If the pointer was over the desktop window, the AES does
nothing.

• If the pointer was over another window, the AES sends a
WM_TOPPED message to the application owning the window that
the user wants active. The message informs the application that
the user wants that window brought to the top (activated). The
application should respond to this message with an AES call to
bring the window to the top.

There are two instances when part of a window might not be visible:

• When one window overlaps another

• When the active window has been positioned so that part of it is
off the physical screen

When an application sends output to the work area of its window, it
draws that output only to that part of the work area that is visible to
the user. This selective drawing is called "clipping."

The AES uses a list of rectangular regions to keep track of the portion
of the physical screen belonging to each window. Each window has
its own list. This list contains the least number of non-overlapping
rectangles that define the visible area of the window. For example, if
the window is fully visible, the list contains one rectangle, which is
equal to the size of the visible window.

If the window is not totally visible, that is, if it has another window on
top of it, the AES breaks up the window into two, three, four, or more
rectangles, depending on the location of the top or active window.

Figure 11-2 has two windows: the shaded one and the white one. It
shows how the number of rectangles is affected by the location of the
top window.

11-10

GEM AES Reference Guide 11.7 Redrawing and Updating

2

AES breaks down underlying window (white rectangles)
into two, three, or four rectangles depending on the

location of the overlying window (shaded area).

::::: ~:::::: I~~l:~~iil~[::~:i::·iii:[:~:i:i.::[·[::::: ~:::::
4

Figure 11-2. Window Rectangles

The application obtains each rectangle on the list by making a series
of WIND_GET calls. The application must (estrict its output to the
rectangle returned by WIND_GET. WIND_GET returns a height and width
of 0 when there are no more rectangles in the list.

11.7 Redrawing and Updating

To use the windowing system most efficiently, an application should
be able to respond quickly to redraw requests from the AES.

There are three reasons why an application might need to update a
window's work area:

• To display new application-generated information to the user

• To respond to a message reporting a user request to scroll the
contents of the window

• To respond to a request from the AES to redraw a portion of the
window

In each case, some portion of the work area has to be updated. This
"update rectangle" can range in size from a one-pixel square to the

11-11

11.7 Redrawing and Updating GEM AES Reference Guide

entire work area. In the first two cases above, the application defines
the update rectangle. In the third case, the AES's WM_REDRAW
message contains the X- and V-coordinates of the update rectangle,
as well as its width and height.

Knowing the size and location of the update rectangle, the application
follows these steps:

1. It calls WIND_UPDATE with a value of 1, which indicates the
beginning of an update. This call freezes the rectangle lists of all
the windows on the screen.

2. It calls WIND_GET with a value of WF _FIRSTXYWH, which asks for
the location and size of the first rectangle in the window's
rectangle list. If the width and height values of this rectangle are
not zero, it performs steps 3 through 6. If the values are zero, it
goes to step 6.

3. It calculates a "result rectangle," which is the intersection (if any)
of the rectangle obtained from the window's rectangle list in the
WIND_GET call and the update rectangle defined in the
WM_REDRAW message.

If the result rectangle has width and height, that is, there is an
intersection, the application draws the portion of the window
defined by the result rectangle. To simplify the process of
clipping the window contents to fit the rectangle (which will
probably be required), GEM VOl provides a "set clip rectangle" call.

If the result rectangle has zero width and/or height, the
application doesn't draw anything. It continues to the next step.

4. It calls WIND_GET with a value of WF _NEXTXYWH, which asks for
the next rectangle from the window's rectangle list.

5. If the width and height values of this rectangle are not zero, it
performs steps 3 through 6. If the values are zero, it goes to
step 8.

6. It calls WIND_UPDATE with a value of 0, which indicates the end
of an update. This call allows the resumption of changes to the
rectangle lists of all the windows on the screen.

11-12

GEM AES Reference Guide 11.8 Window library Routines

11.8 Window Library Routines

The Window library provides the following routines:

WIND_OPEN

WIND_CLOSE

WIND_DELETE

WIND_GET

WIND_SET

Allocates the application's full-size window and
returns a handle.

Opens the created window to a specified size.

Closes an open window.

De-allocates the application's window and
handle.

Gets information on a particular window.

Sets new values for the fields that determine
how a window is displayed.

Determines which window is under the mouse's
X,V position.

Notifies the AES that the application is about to
update or has finished updating a window, or
that the application is about to take or
relinquish control of all mouse functions.

Calculates the X- and V-coordinates and the
width and height of a window's work area or
border area.

11-13

GEM AES Reference Guide

WIND_CREATE

Allocates the application's full-size window and returns the window's
handle (numeric identifier). This routine establishes the window's
greatest possible size; the WIND_OPEN routine determines the
window's actual size when opened.

The window border is taken from the space specified. The border is 2
pixels high.

Input Arguments

kind

wx

wy

ww

wh

11-14

The individual components present in the window.
The following bits represent the components:

Ox0001
Ox0002
Ox0004
OxOOOB
Ox0010
Ox0020
Ox0040
OxOOBO
Ox0100
Ox0200
Ox0400
OxOBOO
Ox1000

NAME
CLOSE
FULL
MOVE
INFO
SIZE
UPARROW
DNARROW
VSLlDE
LFARROW
RTARROW
HSLlDE
HOTCLOSEBOX

(title bar with name)
(close box)
(full box)
(move bar)
(information line)
(size box)
(up-arrow)
(down-arrow)
(vertical slider)
(left-arrow)
(right-arrow)
(horizontal slider)
(hot close box)

This call uses the following bit settings for each
component:

o does not have the component
1 has the component

X-coordinate of the full-size window

V-coordinate of the full-size window

Width (in pixels) of the full-size window

Height (in pixels) of the full-size window

GEM AES Reference Guide

Output Arguments

retval The handle (numeric identifier) that will identify this
window in future calls.

a or n window handle
-n the AES has no more windows available.

Sample Call to C Language Binding

WORD wind_createO;
WORD retval, WX, wy, ww, wh;
UWORD kind;

retval = wind_create(kind, wx, wy, ww, wh);

Parameter Block Binding

Control

control(O) = 100
control(1) = 5
control(2) = 1
control(3) = 0
control(4) = 0

Input

inLin(O) = kind
inLin(1) = wx
inLin(2) = wy

inLin(3) = ww
inLin(4) = wh

Output

inLout(O) = retval

11-15

GEM AES Reference Guide

WIND_OPEN

Opens (displays) a window in its initial size (not necessarily its full
size) and location.

Input Arguments

handle

wx

Handle of the window to be opened

X-coordinate of the window in its initial size

wy

ww

wh

V-coordinate of the window in its initial size

Width (in pixels) of the window in its initial size

Height (in pixels) of the window in its initial size

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD

wind_open();
retval, wx, wy, WW, wh;

retval = wind_open(handle, WX, wy, WW, wh);

Parameter Block Binding

Control

control(O) = 101
control(1) = 5
control(2) = 1
control(3) = 0
control(4) = 0

11-16

Input

.inLin(O) = handle
inLin(l) = wx
inLin(2) = wy
int_in(3) = ww
inLin(4) = wh

Output

inLout(O) = retval

GEM AES Reference Guide

WIND_CLOSE

Closes an opened window.

Although closed, the window and its handle remain allocated. The
application can reopen the window by again calling the WIND_OPEN
routine.

Input Arguments

handle Handle of the window to be closed

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD

wind_close(};
retval, handle;

retval = wind_close(handle);

Parameter Block Binding

Control

control(O) = 102
control(1) = 1
control(2) = 1
control(3) = 0
control(4) = 0

Input

inLin(O) = handle

Output

inLout(O) = retval

11-17

GEM AES Reference Guide

WIND_DELETE

Frees the space occupied by the window and its handle.

To open the window again, the application must first recreate it by
calling the WIND_CREATE routine and then the WIND_OPEN routine.

Input Arguments

handle Handle of the window to be deleted

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD wind_deleteO;
WORD retval, handle;

retval = wind_delete(handle);

Parameter Block Binding

Control

control(O) = 103
control(l) = 1
control(2) = 1
control(3) = 0
control(4) = 0

11-18

Input

inLin{O) = handle

Output

inLout(O) = retval

GEM AES Reference Guide

WIND_GET

Depending on the information requested by the call, returns one of the
following:

• X- and V-coordinates and width and height values for various
aspects of the current and previous windows

• Slider location and size

• Handle of the active window

• X- and V-coordinates, width, and height of the rectangles in the
window's rectangle list

Input Arguments

Handle of the window about which the application
wants information

A numerical value identifying the field about which
the application wants information. The value of
w_field determines which of pw 1, pw2, pw3, and pw4
are returned. See Table 11-2.

Output Arguments

retval A coded return message:

0 error
n no error

pw1 The value returned depends on the field named in
w_field (see above).

pw2 The value returned depends on the field named in
w_field (see above).

pw3 The value returned depends on the field named in
w_field (see above).

pw4 The value returned depends on the field named in
w_field (see above).

11-19

WIND_GET GEM AES Reference Guide

Table 11-2. Values and Returned Parameters of w_field

No. Field and Returned Parameters

1 WF _RESVD 1 - Reserved

4 WF _WXYWH - Coordinates of the window's work area:
pw1 (X-coordinate)
pw2 (Y-coordinate)
pw3 (width)
pw4 (height)

5 WF _CXYWH - Coordinates of the entire current window,
including borders, title bar, information line and the area for
the drop shadow.
pw1 (X-coordinate)
pw2 (Y-coordinate)
pw3 (width)
pw4 (height)

6 WF _PXYWH - Coordinates of the previous window, including
borders, title bar, and information line:
pw1 (X-coordinate)
pw2 (Y-coordinate)
pw3 (width)
pw4 (height)

7 WF _FXVWH - Coordinates of the window at its fullest
possible size, including borders, title bar, and information line:

11-20

pw1 (X-coordinate)
pw2 (V-coordinate)
pw3 (width)
pw4 (height)

GEM AES Reference Guide

Table 11-2. Cont'd

No. Field and Returned Parameters

8 WF _HSLlDE - A number between 1 and 1000, giVing the
relative position of the horizontal slider returned in pw1:
1 = leftmost position
1000 = rightmost position

9 WF _VSLlDE - A number between 1 and 1000, giVing the
relative position of the vertical slider, returned in pw1:
1 = top position
1000 = bottom position

10 Vv'F _TOP - Window handle of the window that is on top
(active), returned in pw1:

11 WF _FIRSTXYWH - Coordinates of the first rectangle in the
window's rectangle list:
pw1 (X-coordinate)
pw2 (Y-coordinate)
pw3 (width)
pw4 (height)

12 WF _NEXTXYWH - Coordinates of the next rectangle in the
window's rectangle list:
pw1 (X-coordinate)
pw2 (Y-coordinate)
pw3 (width)
pw4 (height)

13 WF _RESVD2 - Reserved

15 WF _HSLSIZE - Size of the horizontal slider returned in pw1:
-1 = default minimum size (a square box)
1-1000 = the slider's relative size compared to the horizontal
scroll bar

11-21

GEM AES Reference Guide

Table 11-2. Cont'd

No. Field and Returned Parameters

16 WF _VSLSIZE - Size of the vertical slider returned in pw 1:
-1 = default minimum size (a square box)
1 - 1000 = the slider's relative size compared to the vertical
scroll bar

17 WF _SCREEN - Address and length of the internal menu/alert
buffers:
pw1 (low WORD of address)
pw2 (high WORD of address)
pw3 (low WORD of length)
pw4 (high WORD of length)

Sample Call to C Language Binding

WORD wind_getO;
WORD retval, w_handle, w_field, pw1, pw2, pw3, pw4;

retval = wind_get(w_handle, w_field, &pw1, &pw2, &pw3, &pw4);

Parameter Block Binding

Control

control(O) = 104
control(1) = 2
control(2) = 5
control(3) = 0
control(4) = 0

11-22

Input

inLin(O) = w_handle
inLin(1) = w_field

Output

inLout(O) = retval
addr_in(1) = pw1
addr_in(2) = pw2
addr_in(3) = pw3
addr_in(4) = pw4

GEM AES Reference Guide

WIND_SET

Changes the value in one of several fields that determine how a
window is displayed.

Input Arguments

w_handle Handle of ,the window whose fields the application
wishes to change.

w_field Numerical value identifying the field the application
wishes to change.

w1 Value depends on the field named in w_field (see
below).

w2 Value depends on the field named in w_field (see
below).

w3 Value depends on the field named in w_field (see
below).

w4 Value depends on the field named in w_field (see
below).

Output Arguments

retval A coded return message:

o error
n no error

11-23

WIND-.SET GEM AES Reference Guide

Table 11-3. Values and Input Parameters of w_field

No. Field and Input Parameters

2 WF _NAME - Address of the title bar string; input:
w1 (low word of address)
w2 (high word of address)

3 WF _INFO - Address of the information line string; input:
w1 (low word of address)
w2 (high word of address)

5 WF _CXYWH - Coordinates of the entire current window,
including borders, title bar, information line and the area for
the drop shadow. Input:
w1 (X-coordinate)
w2 (V-coordinate)
w3 (width)
w4 (height)

8 WF _HSLlDE - A number between 1 and 1000, giVing· the
relative position of the horizontal slider input in w 1:
1 = leftmost position
1000 = rightmost position

9 WF _VSLlDE - A number between 1 and 1000, giving the
relative position of the vertical slider, input in w1:
1 = top position
1000 = bottom position

10 WF _TOP - Window handle of the window that is on top
(active), input in w1:

14 WF _NEWDESK - Address of a new default desktop window
object tree for the AES to draw; input:
w1 (high word of object tree)
w2 (low word of object tree)
w3 (starting object to draw in tree)

11-24

GEM AES Reference Guide

Table 11-3. Cont'd

No. Field and Input Parameters

15 WF _HSLSIZE - Size of the horizontal slider input in w1:
-1 = default minimum size (a square box)
1-1000 = the slider's relative size compared to the horizontal
scroll bar

16 WF _VSLSIZE - Size of the vertical slider input in w1:
-1 = default minimum size (a square box)
1 - 1000 = the slider's relative size compared to the vertical
scroll bar

18 WF _TATTRB - Window attribute bit vector, input in w1;
bit 0 = 0 - handle designates top window
bit 0 = 1 - handle designates an underlying window
bits 1 thru 15 - set to 0 (zero)

19 WF _SIZTOP - Moves the window specified in w_handle to the
top; the order of the underlying windows is not changed.
wl (X-coordinate of window's upper lefthand corner)
w2 (V-coordinate of window's upper lefthand corner)
w3 (width)
w4 (height)

Sample Call to C Language Binding

WORD wind_set();
WORD retval, w_handle, w_field, w1, w2, w3, w4;

retval = wind_set(w_handle, w_field, w1, w2, w3, w4);

Parameter Block Binding
Control

control(O) = 105
control(1) = 6
control(2) = 1
control(3) = 0
control(4) = 0

Input

inLin(O) = w_handle
inLin(1) = w_field
inLin(2) = w1
inLin(3) = w2
inLin(4) = w3
inLin(5) = w4

Output

inLout(O) = retval

11-25

GEM AES Reference Guide

WIND_FIND

Finds which window is under the mouse's X,V position.

Input Arguments

mx

my

X-coordinate of the mouse's position

V-coordinate of the mouse's position

Output Arguments

retval Handle of the window under the mouse's X,V position

Sample Call to C Language Binding

WORD wind_findO;
WORD retval, mx, my;

retval = wind_find(mx, my);

Parameter Block Binding

Control

control(O) ;:::: 106
control(1) ;:::: 2
control(2) ;:::: 1
control(3) ;:::: 0
control(4) = 0

11-26

Input

inLin(O) = mx
inLin(1) = my

Output

inLout(O) = retval

GEM AES Reference Guide

WIND_UPDATE

Does one of the following:

• Notifies the AES that the application is about to begin updating a
window or has finished updating a window. During the update,
the AES does not allow changes to take place in the portion of
the screen belonging to the window .

• Notifies the AES that the application is taking control of all mouse
functions, regardless of the mouse's location on the screen, or is
returning to normal mouse function. When the application has
control of all mouse functions, the Screen Manager no longer
responds to mouse input, and menus and window control points
are not active.

Input Arguments

beg_update A code for the call's function:

o END_UPDATE
1 BEG_UPDATE
2 END_MCTRl
3 BEG_MCTRl

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD wind_updateO;
WORD retval, beg_update;

retval = wind_update{beg_update);

11-27

Parameter Block Binding

Control

control(O) = 107
control(l) = 1
control(2) = 1
control(3) = 0
control(4) = 0

11-28

Input

GEM AES Reference Guide

Output

inLout(O) = retval

GEM AES Reference Guide

WIND_CALC

Calculates the X- and V-coordinates and the width and height of a
window's border area or work area.

In calculating the border area's parameters, this routine uses the
corresponding parameters of the work area as input values. In
calculating the work area's parameters, this routine uses the
corresponding parameters of the border area as input values.

Input Arguments

wctype

kind

The type of calculation to perform. The value of
wctype affects all of the input and output arguments
in WIND_CALC, except kind.

o return border area X, Y, width, and height
, return work. area X, Y, width, and height

The individual components present in the window
The following bits represent the components:

Ox0001
Ox0002
Ox0004
Ox0008
Ox0010
Ox0020
Ox0040
Ox0080
Ox0100
Ox0200
Ox0400
Ox0800

NAME
CLOSE
FULL
MOVE
INFO
SIZE
UPARROW
DNARROW
VSlIDE
LFARROW
RTARROW
HSlIDE

(title bar with name)
(close box)
(full box)
(move box)
(information line)
(size box)
(up-arrow)
(down-arrow)
(vertical slider)
(left-arrow)
(right-arrow)
(horizontal slider)

This call uses the following bit settings for each
component:

o does not have the component
, has the component

, 1-29

WIND_CALC

x

y

w

h

GEM AES Reference Guide

Input X-coordinate of the work area or border area

Input V-coordinate of the work area or border area

Input width value of the work area or border area

Input height value of the work area or border area

Output Arguments

retval

px

py

pw

ph

A coded return message:

o error
n no error

Output X-coordinate of the work area or border area

Output V-coordinate of the work area or border area

Output width value of the work area or border area

Output height value of the work area or border area

Sample Call to C Language Binding

WORD wind_calc();
WORD retval, wctype, x, y, w, h, px, py, pw, ph;
UWORD kind;

retval = wind_calc(wctype, kind, x, y, w, h, &px, &py, &pw, &ph);

Parameter Block Binding
Control

control(O) = 108
control(1) = 6
control(2) = 5
control(3) = 0
control(4) = 0

11-30

Input

inLin(O) = wctype
inLin(l) = kind
inLin(2) = x
inLin(3) = y
inLin(4) = w
inLin(5) = h

End of Section 11

Output

inLout(O) = retval
inLout(l) = px
inLout(2) = py
inLout(3) = pw
inLout(4) = ph

GEM AES Reference Guide 12.1 Using the Resource Library

RESOURCE LIBRARY

The Resource Library is the interface between an application and its
resources in the resource file. Resources, the collection of data used
by the application, include trees, objects, strings, icons, and images.

A resource file isolates hardware-specific and language-specific data
from an application's code, providing the following advantages:

• Machine-code portability: To port the application across different
environments, you need only change the resource file data.

• Customization of appearance: A non-programmer can change the
application's menu structure, dialog layout, and error message
text. In most cases, a programmer need not be involved.

• Internationalization of text messages: To change text messages
from one language to another, you need only change the text in
the resource file.

• Device-independent raster graphics: Because they are stored as
resources, the AES's icons and other bit-mapped images can be
tailored to the resolution characteristics of various displays.

In all these instances the application's code is unchanged.

Most applications have a single resource file that contains all their
resources. The AES follows the convention that all resource files have
the filetype .RSC.

You create a resource file using the GEM Resource Construction Set
(GEM RCS) described in the GEM Programmer's Utilities Guide.

12.1 Using the Resource Library

When an application calls RSRC_LOAD with the name of a resource file,
the Resource library does the following:

·1. It reads the header of the file and finds its total size in bytes.

12-1

12.2 Resource Library Routines GEM AES Reference Guide

2. Using the operating system's call to allocate memory, it allocates
enough memory space to hold the resource file.

3. It opens the resource file, reads it into the allocated memory
space, and closes the file.

4. It makes the following updates to the file:

• Makes the file device-specific to the screen's resolution.
• Links all the OBJECT, TEDINFO, ICONBLK, and BITBLK pointers.
• Builds the array of tree pointers.
• Stores the address of the tree in the application's Global

Array.

The application can now make calls to any routines that require a tree
index, including Object Library routines, FORM_DO, and MENU_BAR.

To get or set any pointer in the OBJECT, TEDINFO, ICONBLK, or BITBLK
structures, the application calls RSRC_GADDR and RSRC_SADDR.

When the application is finished with the data from the resource file, it
calls RSRC_FREE to release the allocated memory and zero the address
of the tree array in the Global Array.

12.2 Resource Library Routines

The Resource Library contains the following routines:

RSRC_LOAD

RSRC_FREE

RSRC_GADDR

RSRC_SADDR

RSRC_OBFIX

12-2

Loads an entire resource file into memory.

Frees the memory allocated during RSRC_LOAD.

Gets the address of a data structure in
memory.

Stores an index to a data structure.

Converts an object's X- and V-coordinates,
width, and height from character coordinates to
pixel coordinates.

GEM AES Reference Guide

RSRC_LOAD

Allocates memory and loads a resource file into memory.

Input Arguments

rsname Address of the ASCII string of the resource filename

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD
LONG

rsrc_load();
retval;
rsname;

retval = rsrc-'oad(rsname);

Parameter Block Binding

Control

control(O) = 11 0
control(l) = 0
control(2) = 1
control(3) = 1
control(4) = 0

Input

addr _intO) = rsname

Output

inLout(O) = retval

12-3

GEM AES Reference Guide

RSRC_FREE

Frees the memory space allocated in RSRC_lOAD.

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD

rsrc_free();
retval

retval = rsrc_free();

Parameter Block Binding

Control

control(O) = 111
control(1) = 0
control(2) = 1
control(3) = 0
control(4) = 0

12-4

Input Output

inLout(O) = retval

GEM AES Reference Guide

RSRC_GADDR

Gets the address of a data structure in memory.

Input Arguments

rstype

rsid

Type of data structure

o
1
2
3
4

tree
OBJECT
TEDINFO
ICONBLK
BITBLK

5 string
6 imagedata
7 obspec
8 te_ptext
9 te_ptmplt
10 te_pvalid
11 ib_pmask
12 ib_pdata
13 ib_ptext
14 bi_pdata
15 ad_frstr - Address of a POINTER to a free string
16 ad_frimg - Address of a POINTER to a free image

Index of the data structure

Output Arguments

retval

paddr

A coded return message:

o error
n no error

Address of the data structure specified by rstype and
rsid

12-5

Sample Call to C Language Binding

WORD
WORD
LONG

rsrc--9addrO;
retval, rstype, rsid;
paddr;

retval = rsrc--9addr(rstype, rsid, &paddr);

Parameter Block Binding

Control

control(O) = 112
control(l) = 2
control(2) = 1
control(3) = 0
control(4) = 1

12-6

Input

inLin(O) = rstype
inLin(l) = rsid

GEM AES Reference Guide

Output

inLout(O) = retval

addcout(O) = paddr

GEM AES Reference Guide

RSRC_SADDR

Stores the address of a data structure in memory.

Input Arguments

rstype Type of data structure

15 ad_frstr - Address of a POINTER to a free string
16 ad_frimg - Address of a POINTER to a free image

rsid Location in the data structure where the Ingval value
will be stored

Ingval Address of the data structure

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD
LONG

rsrc_saddrO;
retval, rstype, rsid;
Ingval;

retval = rsrc_saddr(rstype, rsid, Ingval);

Parameter Block Binding

Control

control(O) = 113
control(1) = 2
control(2) = 1
control(3) = 1
control(4) = 0

Input

inLin(O) = rstype
inLin(l) = rsid

addcin(O) = Ingval

Output

inLout(O) = retval

12-7

GEM AES Reference Guide

RSRC_OBFIX

Converts an object's location and size from character coordinates to
pixel coordinates.

Character coordinates are defined as the object's X, V, width, and
height values, where each WORD has the integral character position in
the Least Significant Byte and the positive or negative pixel offset in
the Most Significant Byte.

Input Arguments

obj Index of the object to be converted.

tree Address of the tree that contains the object.

Output Arguments

retval Reserved; value always equals 1 (one).

Sample Call to C Language Binding

WORD
WORD
LONG

rsrc_obfix();
retval, obj;
tree;

retval = rsrc_obfix(tree, obj);

Parameter Block Binding

Control

control{O) = 114
control(1) = 1
control(2) = 1
control(3) = 1
control(4) = 0

12-8

Input

inLin(O) = obj

addr _in(O) = tree

End of Section 12

Output

inLout(O) = retval

SECTION 13

SHELL LIBRARY

The Shell library runs on top of the limited multitasking kernel. The
Shell invokes GEM and non-GEM applications.

The following examples illustrate how the Shell starts GEM
applications.

• When the user enters the command "GEM", the AES is loaded into
memory, and the primary application is the GEM Desktop. The
user can start other applications, GEM or non-GEM, from the GEM
Desktop. After quitting the GEM Desktop, the user returns to the
operating system environment.

• When the user enters the command "GEM DRAW", the AES is
loaded into memory, and the primary application is GEM Draw TM.

After quitting GEM Draw, the user returns to the operating system
environment.

• When the user enters the command "GEM DRAW 10", the AES is
loaded into memory, and the primary application is again GEM
Draw. However, the "/0" part of the command tail causes the
user to return to the GEM Desktop after quitting GEM Draw.

When the user invokes an application from the GEM Desktop, the GEM
Desktop passes to the Shell the following information about the
application:

• Whether it is graphic or character-based
• Whether it is a GEM or non-GEM application
• The name of the directory containing the application

(Most GEM applications are graphic, and most non-GEM applications
are character-based, but the GEM Desktop needs to pass the
information as separate parameters of the SHEL_WRITE call for those
cases where this correlation does not hold.)

The GEM Desktop then terminates.

When any application terminates, control returns to the process that
invoked it, in this case, the Shell.

13-1

13.1 Using the Shell Library GEM AES Reference Guide

The Shell determines if it was instructed to start a new application. If
it was not, it starts the GEM Desktop again.

If the Shell was instructed to start a character-based application, it
converts the screen to character mode and makes a GEM VOl Close
Workstation call.

If the Shell was instructed to start a GEM application, no GEM VOl call
or conversion is required.

To go from a character-based application to a GEM application or to
the GEM Desktop, the Shell must make a GEM VDI Open Workstation
call and convert the screen to graphics mode.

13.1 Using the Shell Library

The Shell Library performs the following three functions:

• Lets an application keep track of the command and command tail
that invoked it

• Lets applications invoke other applications directly, without first
returning to the GEM Desktop application

It allows a user to request an application (for example, an output
application) from within a running application. The user can, if the
application supports this practice, string together several
applications in this manner.

The GEM Desktop is an example of an application that uses the
SHEL_WRITE function to invoke other applications.

• Lets an application change the default application. The default
application is the program the user returns to when he or she
quits the current application. For all applications invoked from the
GEM Desktop, the GEM Desktop is the default application.

The GEM Desktop is normally the default application referred to in the
SHEL_RDEF and SHEL_WDEF functions. It remains the default
application until changed by SHEL_WDEF. When the user quits an
application invoked from the GEM Desktop, he or she returns to the
GEM Desktop, not the native operating system. The user also returns

13-2

GEM AES Reference Guide 13.1 Using the Shell Library

to the GEM Desktop when he or she quits an application invoked from
another application. (See the SHEL_WRITE function.)

The SHEL_READ and SHEL_WRITE functions use two separate buffers
that contain the following:

• The command with which the Shell Library invoked the current
application or will invoke the next application

• The command tail with which the Shell Library invoked the current
application or will invoke the next application

To learn the name of the command and command tail that invoked it,
an application calls the SHEL_READ routine, passing in the following:

• Pointers to the addresses of the application's buffers that will hold
the command information. The Shell Library copies the data from
its own buffer to the application's buffers.

• A pointer to the application's home directory. The home directory
is where the system looks if it does not find the application in the
current directory.

To invoke an application, the current application (or the GEM Desktop)
follows these steps:

1. It calls the SHEL_WRITE routine and passes in the address of the
command, command tail, and home directory for the next
application to run. It also indicates whether the application to run
is graphic or character-based, and whether it is a GEM or non­
GEM application.

2. When the current application terminates, the Shell Library starts
the application that was requested next.

To exit the AES, an application makes a SHEL_WRITE call, passing a
value of 0 (zero) in the doex argument.

13-3 .

13.2 Shell Library Routines GEM AES Reference Guide

13.2 Shell Library Routines

The Shell Library contains the following routines:

SHEl_WRITE

SHEl_FIND

SHEl_RDEF

SHEl_WDEF

13-4

lets an application determine how it was
invoked.

Exits AES or tells which application to run next.

locates a filename by following the operating
system search path.

Searches the operating system environment for
a parameter and returns the address of its
value.

Returns the default application.

Writes the default application.

GEM AES Reference Guide

SHEL_READ

Lets an application identify the command that invoked it.

The command and tail buffers must each be 128 bytes. Be sure to
initialize the buffers to this length.

Input Arguments

pcmd Address of a buffer that will hold the command that
invoked the application

ptail Address of a buffer that will hold the command tail
invoked with the command

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD shel_readO;
WORD retval;
LONG pcmd, ptail;

retval = she'-read(pcmd, ptail);

Parameter Block Binding

Control

control(O) = 120
control(1) = 0
control(2) = 1
control(3) = 2
control(4) = 0

Input

addr_in(O) = pcmd
addcin(1) = ptail

Output

inLout(O) = retval

13-5

GEM AES Reference Guide

SHEL_WRITE

Tells the AES whether to run another application and, if so, which
application to run. Note that the default application is normally
DESKTOP.APP.

The command and tail buffers must each be 128 bytes.

Input Arguments

doex A coded instruction to exit the system or run another
application when the user exits the current
application:

isgr

isover

o exit AES and return to the operating system
prompt
run another application

A code for whether the next application is a graphic
application

o not graphic application
1 graphic application

A code indicating whether the next program runs
above, in the same memory space as, or instead of
the default application. The codes are assigned as
follows:

o Run the next program above the default
application. GEM loads and runs the program
specified in the pcmd parameter immediately.
Control returns to the program making the
SHEL_WRITE call after the program specified in
pcmd exits. When isover is 0 (zero), GEM ignores
the values for doex and isgr.

1 Run the next program in the same place in
memory as the program making the SHEL_WRITE
call. GEM loads and runs the program specified
in pcmd when the program making the

GEM AES Reference Guide

pcmd

ptail

SHEL_WRITE call exits to the operating system.
GEM uses the values for isgr and isover.

2 Run the next program in place of the current
application and VOL (Use this option if the
program needs full memory.) GEM loads and
runs the program specified in pcmd when the
program making the SHEL_WRITE call exits. GEM
uses the values for isgr and isover.

Address of the new command file to execute

Address of the command tail for the next program

Output Arguments

retval A coded return message:

o error
n no error

Sample Call to C Language Binding

WORD
WORD
LONG

shel_writeO;
retval, does, isgr, isover;
pcmd, ptail; ,

retval = sheCwrite(doex, isgr, isover, pcmd, ptail);

Parameter Block Binding

Control

control(O) = 121
control(l) = 3
control(2) = 1
control(3) = 2
control(4) = 0

Input

inLin(O) = doex
inLin(1) = isgr
inLin(2) = isover

addr_in(O) = pcmd
addr_in(l) = ptail

Output

inLout(O) = retval

13-7

GEM AES Reference Guide

SHEL_FIND

Searches for a filename in the current directory and in each directory
in the search path; when it finds the filename, it returns its full
operating system file specification.

The AES adds the following directories to the user's search path for
SHEL_FIND calls:

ROOT DIRECTORY
GEMDESK
GEMSYS
GEMAPPS

Input Arguments

ppath Address of a buffer with distinct input and output
functions:

input Holds the filename the application is
searching for

output Holds the full file specification of the
filename's location in the search path. The
buffer must be long enough to hold the full
operating system file specification (80
character minimum).

Output Arguments

retval A coded return message:

o error
n no error

13-8

GEM AES Reference Guide

Sample Call to C Language Binding

WORD
WORD
LONG

sheLfind();
retval;
ppath;

retval = shel_find(ppath);

Parameter Block Binding

Control

control(O) = 124
control(l) = 0
control(2) = 1
control(3) == 1
control(4) = 0

Input

addr_in(O) = ppath

Output

inLout(O) = retval

13-9

GEM AES Reference Guide

SHEL_ENVRN

Lets an application search the operating system environment for a
predefined paramter string, and returns the address of the byte
immediately following the string in a LONG value.

This byte contains the value of the parameter, and its address is
stored in a LONG value pointed at by the ppath argument.

Input Arguments

ppath Address of a LONG value in which this routine will
store the address of the byte immediately following
the parameter string

psrch Parameter string for which the application is
searching

Output Arguments

retval Reserved; value equals one (1)

Sample Call to C Language Binding

WORD sheLenvrnO;
WORD retval;
LONG ppath, psrch;

retval = sheLenvrn(ppath, psrch);

Parameter Block Binding

Control

control(O) = 125
control(l) = 0
control(2) = 1
control(3) = 2
control(4) = 0

13-10

Input

addr_in(O) = ppath
addr_in(l) = psrch

Output

inLout(O) = retval

GEM AES Reference Guide

SHEL_RDEF

Returns the path and command of the default application (the program
that runs when the application terminates).

Input Arguments

Ipcmd Address of a buffer into which shel_rdef puts the
command name. The command buffer must be 32
bytes.

Ipdir Address of a buffer into which shel_rdef puts the
path. The path buffer must be 82 bytes.

Output Arguments

retval Undefined

Sample Call to C Language Binding

WORD shel_rdefO;
WORD retval;
LONG Ipcmd, Ipdir;

retval = shel_rdef(lpcmd, Ipdir};

Parameter Block Binding

Control

control(O) = 126
control(l) = 0
control(2) = 1
control(3) = 2
control(4) = 0

Input

addr_in(O) = Ipcmd
addr_in(l) = Ipdir

Output

int_ out(1) = retval

13-11

GEM AES Reference Guide

SHEL_WDEF

Change the default application to be run when the current application
terminates.

Input Arguments

Ipcmd Address of a buffer with the command name to
invoke. The command buffer must be 32 bytes.

Ipdir Address of a buffer with the command's path
specification. The path buffer must be 82 bytes.

Output Arguments

retval Undefined

Sample Call to C Language Binding

WORD shel_wdefO;
WORD retval;
LONG Ipcmd, Ipdir;

retval = shel_wdef(lpcmd,lpdir);

Parameter Block Binding

Control

control(O) = 127
control(1) = 0
control(2) = 0
control(3) = 2
control(4) = 0

13-12

Input

addcin(O) = Ipcmd
addr_in(l) = Ipdir

End of Section 13

Output

int_ out(O) = retval

GEM AES Reference Guide 14.1 Extended Graphics Library Routines

EXTENDED GRAPHICS LIBRARY

The routines in the Extended Graphics Library allow you to create the
visual effect of a growing or shrinking box.

14.1 Extended Graphics Library Routines

The Extended Graphics Library contains the following routines:

XGRF _STEPCALC Calculates increments for expanding or
contracting box outline.

XGRF_2BOX Draws a series of boxes.

14-1

XGRF _STEPCAlC GEM AES Reference Guide

XGRF _STEPCALC

Calculates the x and V increments necessary to expand or contract a
box on the screen.

Input Arguments

orgw

orgh

xc

yc

w

h

Initial width of the box in pixels

Initial height of the box in pixels

Final x coordinate of box

Final V coordinate of box

Final width of box in pixels

Final height of box in pixels

Output Arguments

retval

pcx

pcy

pcnt

pxstep

pystep

14-2

A coded return message:

o error
n no error

Centered x coordinate at the end of the action

Centered y coordinate at the end of the action

Number of steps

Amount of each x step

Amount of each y step

GEM AES Reference Guide XGRF _STEPCALC

Sample Call to C Language Binding

xgrf_stepcalc(); WORD
WORD retval, orgw, orgh, xc, yc, w, h, pcx, pcy, pcnt, pxstep, pystep;

retval = xgrf_stepcalc(orgw,orgh,xc,yc,w,h,&pcx,&pcy,&pcnt,&pxtep,&pystep);

Parameter Block Binding

Control

eontrol(O) = 130
eontrol(l) = 6
eontrol(2) = 6
eontrol(3) = 0
eontrol(4) = 0

Input

inLin(O) = orgw
inLin(l) = orgh
inLin(2) = xc
inL.in(3) = ye
inLin(4) = w
inLin(5) = h

Output

inLout(O) = retval
inLout(l) = pex
inLout(2) = pey
inLout(3) = pent
inLout(4) = pxstep
inLout(5) = pystep

14-3

XGRF_2BOX GEM AES Reference Guide

XGRF_2BOX

Draws a series of xor'd boxes.

Input Arguments

cnt

xstep

ystep

doubled

corners

xc

yc

w

h

Number of boxes to draw

Size of each x step

Size of each y step

Value indicating whether increments are doubled,
defined as follows:

1 double number of steps
o use number of steps specified

Value indicating whether just corners or whole box is
drawn, defined as follows:

1 draw corners only
o draw whole box

Initial x coordinate of box

Initial y coordinate of box

Initial width of box in pixels

Initial height of box in pixels

Output Arguments

retval A coded return message:

o error
n no error

14-4

GEM AES Reference Guide XGRF_2BOX

Sample Call to C Language Binding

xgrf_2box(); WORD
WORD retval, xc, yc, W, h, corners, cnt, xstep, ystep, doubled;

retval = xgrf_2box(xc,yc,w,h,corners,cnt,xstep,ystep,doubled);

Parameter Block Binding

Control

control(O) = 131
control(1) = 9
control(2) = 1
control(3) = 0
control(4) = 0

Input

inLin(O) = cnt
inLin(1) = xstep
inLin(2) = ystep
inLin(3) = doubled
inLin(4) = corners
inLin(5) = xc
inLin(6) = yc
inLin(7) = w
inLin(8) = h

End of Section 14

Output

inLout(O) = retval

14-5

Appendix A

AES FUNCTIONS IN OPCODE ORDER

Table A-1. AES Functions in Opcode Order

Opcode
Dec Hex Function and Binding

10 A appl_initO
11 B appl_read(rwid, length, pbuff)
12 C appl_write(rwid, length, pbuff)
13 D appl_find(pname)
14 E appl_tplav(tbuffer, tlength, tscale)
15 F appl_trecord(tbuffer, tlength)
16 10 appl_bvset(bvdisk, bvhard)
17 11 appl_vieldO
19 13 appl_exitO

20 14 evnt kevbdO
21 15 evnt - button(clicks, mask, state, &pmx, &pmv, &pmb, &pks)
22 16 evnt= mouse(flags, x, v, width, height, &pmx, &pmy, &pmb, &pks)
23 17 evnt_ mesag (pbuff)
24 18 evnt timer(locnt, hicnt)
25 19 evnt=multi(flags, bclk, bmsk, bst, mlflags, m1x, m1y, mlw, m1h,

m2flags, m2x, m2v, m2w, m2h, mepbuff, tic, thc
&pmx, &pmy, &pmb, &pks, &pkr, &pbr)

26 lA evnt_ dclick(rate, set it)

30 1E menu_bar(tree, showit)
31 1F menu ieheck(tree, itemnum, eheckit)
32 20 menu -ienable(tree, itemnum, enableit)
33 21 menu=tnormal(tree, titlenum, normalit)
34 22 menu_text(tree, inum, ptext)
35 23 menuJegister(pid, pstr)
36 24 menu _ unregister(mid)

40 28 objc _ add (tree, parent, child)
41 29 objc delete(tree, delob)
42 2A objc =draw(tree, drawob, depth, xc, ye, wc, he)
43 2B objc_find(tree, startob, depth, mx, my)

A-l

Appendix A GEM AES -Reference Guide

Table A-1 (continued)

Opcode
Dec Hex Function and Binding

44 2C
45 20
46 2E
47 2F

50 32
51 33
52 34
53 35
54 36
55 37
56 38

70 46
71 47
72 48
75 4B
76 4C
77 40
78 4E
79 4F

80 50
81 51
82 52

90 5A

100 64
101 65
102 66
103 67
104 68
105 69
106 6A
107 6B
108 6C

A-2

objc_offset(tree, obj, &poffx, &poffv)
objc _ order(tree, mov _ obj, newpos)
objc edit(tree, obj, inchar, &idx, kind)
objc=change(tree, drawob, depth, xc, vc, wc, hc, newstate, redraw)

form _do(form, start)
form_dial(dtvpe, ix, iV, iw, ih, x, V, w, h)
form _alert(defbut, astring)
form _error(errnum)
form center(tree, &pcx, &pCV, &pcw, &pch)
form - kevbd(form, obj, nxt obj, thechar, &pnxt obj, &pchar)
form=button(form, obj, clk~, &pnxt_obj) -

graf_rubbox(xorigin, vorigin, wmin, hmin, &pwend, &phend)
graf_dragbox(w, h, sx, sv, xc, vc, wc, hc, &pdx, &pdV)
graf _ mbox(w, h, srcx, srcv, dstx, dstV)
graf watchbox(tree, obj, instate, outstate)
gra(slidebox(tree, parent, obj, isvert)
graf_handle(&pwchar, &phchar, &pwbox, &phbox)
graf mouse(m number, m addr)
gra(mkstate(&pmx, &pmv~ &pmstate, &pkstate)

scrp _read(pscrap)
scrp _ write(pscrap)
scrp_clearO

fseUnput(pipath, pisel, &pbutton)

wind create(kind, wx, wv, ww, wh)
wind=open(handle, wx, wv, ww, wh)
wind_close(handle)
wind delete(handle)
wind-get(w handle, w field, &pw1, &pw2, &pw3, &pw4)
wind=set(w=handle, w=field, wl, w2, w3, w4)
wind_find(mx, my)
wind _ update(beg_ update)
wind_calc(wctvpe, kind, x, V, w, h, &px, &pv, &pw, &ph)

GEM AES Reference Guide Appendix A

Table A-1 (continued)

Opcode
Dec Hex Function and Binding

110 6E
111 6F
112 70
113 71
114 72

120 78
121 79
124 7C
125 70
126 7E
127 7F

130 82
131 83

rsrc_load(rsname)
rsrc_freeO
rsrc_gaddr(rstype, rsid, &paddr)
rsrc_saddr(rstype, rsid, Ingval)
rsrc _ obfix(tree, obj)

shel read(pcmd, ptail)
shel=write(doex, isgr, isover, pcmd, ptail)
shel_find(ppath)
shel_envrn(ppath, psrch)
shel_rdef(lpcmd, Ipdir)
shel_wdefOpcmd, Ipdir)

xgrf stepcalc(orgw,orgh,xc,yc,w,h,&pcx,&pcy,&pcnt,&pxstep,&pystep)
xgr(2box(xc,yc,w,h,corners,cnt,xstep,ystep,doubled)

A-3

Index

A

Ab_code
in Applblk Structure 6-24

Ab-parm
in Applblk Structure 6-24

Ac_close
predefined message 4-10

Ac_open
predefined message 4-9

Accessory
in menu 5-12

Active window 11-10
making 2-16

Addr_in array 1-4
Addr_out array 1-4
AES 1-1

libraries 1-1
Alert

and dialog 7-6
and error box 7-8
buffer 7-9
display 7-9, 7-14
for error 7-6
text of 7-7

Ap_id
from appl_init 2-2
in appljnit 3-3
in Global Array 1-4
with appl_find 3-6

AppLbvset 3-10
Appl_exit 3-12

with menu bar 5-6
AppLfind 3-6
AppLinit 3-3

to initialize 2-2
with Global Array 1-4

Appl_read 3-4
and message pipe 3-4

Appl_tplay 3-7
Appl_trecord 3-8
Appl_write 3-5

and message pipe 3-5
AppLyield 3-11
Applblk Structure 6-24
Application

default 13-2
exit 3-12
initialization 2-1
initialize 3-3
invoked by shell 13-1
window 11-1

Application Environment
Services 1-1

Application id
in Global Array 1-4

Application identifier
appl_find 3-6

Application Library 3-1
routines 3-2

Application messages 3-1
Application window

border 11-2
border area 2-11

Index-1

work area 2-11
Arch itectu re

Intel 1-4
Motorola 1-4

Arrays
addr_in 1-4
addr _out 1-4
control 1-3
Global 1-4, 2-2
int_in 1-4
int_out 1-4

Arrows
in border 11-7

ASCII
with Scrap Library 9-2

B

Backspace
in dialogs 7-4

Backtab
in dialogs 7-4

Beg_mctrl
in wind_find 11-27

Beg_update
in wind_find 11-27

Bi_color
in Bitblk Structure 6-22

Bi_hl
in Bitblk Structure 6-22

Bi-pdata
in Bitblk Structure 6-22

Bi_wb
in Bitblk Structure 6-22

Bi-o><
in Bitblk Structure 6-22

Index-2

BLy
in Bitblk Structure 6-22

Bit pattern
of keys 8-14
of mouse button 8-14

Bit settings
for evnt_multi 4-20

Bitblk Structure 6-22
and Resource Library 12-1

Border
application window 11-2
components 2-11, 11-2
control areas 11-2, 11-4

Border area
application window 2-11
calculate 11-29

Box
and Graphics Library 8-1
dialog 7-4
drag 8-4
error 7-8
growing 14-1
moving 8-6
rubber 8-3
shrinking 14-1
sliding 8-9
track 8-7

Buffer
alert 7-9
and shell 13-3
command tail 13-3
File Selector 10-5
menu/alert 7-9
message 2-6

Button
Cancel 7-3
exit 7-3

OK 7-3
radio 7-2

Button event
app,-trecord 3-8

c

Calculate window 11-29
Cancel

button 7-3
Center

dialog 7-16
Change

mouse form 8-12
Character-based

and shell 13-1
Check box

in a form 7-3
Check mark

with menus 5-7
Check marks

in menus 5-1
Checked

in graf_watchbox 8-7
in ob_state 6-14

Child
in object tree 6-1

Clip rectangle
in objc_draw 6-30
raster coordinates 6-30

Clipboard
in Scrap Library 9-1

Clipping
in window 11-10

Close
in wind_calc 11-29

in wind_create 11-14
Close box 11-4

in border 2-11
Close window 11-17
Closing

window 2-16
Color planes

in Global Array 1-4
Colors

in Object Structure 6-10
Command

and shell 13-2
Command tail

and shell 13-2
Components

of border 2-11
Control areas

border 11-2, 11-4
window 11-2

Control array 1-4
Coordinates 1-3

convert 12-8
NDC 6-2
raster 1-3, 6-30

Create
window 11-14

Crossed
in graf_watchbox 8-7
in ob_state 6-14

CSV
filetype 9-2

Cut
in Scrap Library 9-1

Index-3

o

Data interchange
advantages 9-1

Data structure
store address 12-7

Data structures 1-3
Applblk 6-24
Bitblk 6-22
control array 1-4
get address 12-5
Iconblk 6-20
in Object Library 6-4
initialize 2-2
Object Structure 6-5
parameter block 1-3
Parmblk 6-25
Tedinfo 6-16

DCA
filetype 9-2

Default
in dialog 7-5
in ob_flags 6-12

Default application
and shell 13-2

Delete
desk accessory 5-13
in dialogs 7-4
window 11-18

Delimiter
in dialog 7-6

Desk accessory
delete 5-13
in menu 5-12

Desktop
and shell 13-1
application 11-1

Index-4

window 11-1
Desktop window 2-4
Dialog

and alert 7-6
box 7-4
center 7-16
default object 7-5
delimiter in 7-6
display 7-8
displaying 2-7
File Selector 10-1

Dialogs
editing keys 7-4

DIF
filetype 9-2

Dimensions
of window 2-12, 2-13

Directory
and File Selector 10-1
and shell 13-3
scrap 9-1

Directory path
and File Selector 10-1
and she" 13-8

Disable menu item 5-8
Disabled

in graf_watchbox 8-7
in ob_state 6-14

Disk drives
in Global Array 1-4

Display
alert 7-9, 7-14
dialog 2-7, 7-8
error box 7-9, 7-15
File Selector 10-5
form 7-8

Dnarrow

in wind_calc 11-29
in wind_create 11-14

Dot
in dialog 7-6

Down-arrow 11-7
in dialogs 7-4

Drag
box 8-4

Draw object
in tree 6-30

Draw3d
in ob_state 6-14

Drive
and File Selector 10-1

E

Edit text
in object 6-36

Editable
in ob_flags 6-12
text 7-3
text field 7-4

Editing
keys 7-4

Enable menu item 5-8
End_mctrl

in wind_find 11-27
End_update

in wind_find 11-27
Enter/Return

in dialogs 7-4
Error

and alert 7-6
Error box

and alert 7-8

display 7-9, 7-15
Escape

in dialogs 7-4
Event

keyboard 4-2
message 4-4
mouse 4-3
mouse button 4-3
multiple 4-2
timer 4-11
user 2-5, 3-8

Event Library 4-1
routines 4-11

Evnt_button 4-13
Evnt_dclick 4-24
Evnt_keybd 4-12
Evnt_mesag 4-18
Evnt_mouse 4-16
Evnt_multi 2-5, 4-20

bit settings 4-20
with menu selection 2-6

Evnt_timer 4-19
Exit

in ob_flags 6-12
Exit application

appl_exit 3-12
Exit buttons 7-3

in alert 7-7
Exit contdition

in forms 7-3
Extended Graphic Library

and animated box 14-1
Extended Graphics Library 14-1

Index-5

F

File Selector
display 10-5

File Selector Library 10-1
Filename

and File Selector 10-1
SCRAP 9-1

Filetype
RSC 12-1
with Scrap Library 9-2

Fill pattersn
in menus 5-1

Find
window 11-26

Flags
in Object Structure 6-12

Form
definition 7-1
dialog 7-4
displaying 7-8
model 7-1

Form Library 7-1
advantages 7-1
routines 7-10

Form_alert 7-14
Form_button 7-19
Form_center 7-16

with dialog 2-7
Form_dial 7-12

with dialog 2-7
Form_do 7-11

with dialog 2-7
Form_error 7-15
Form_keybd 7-17
Format

application message 3-2

Index-6

for print spooler message
4-10

of object color 6-10
of user event 3-8
predefined message 4-5

Forms 7-1
and keyboard input 7-17
and mouse input 7-19
exit condition 7-3
processing 7-1

Free memory 2-1, 11-18
Fsel_input 10-5
Full

in wind_calc 11-29
in wind_create 11-14

Full box 11-4
in border 2-11

Function names 1-2

G

G_box
in ob_type 6-7

G_boxchar
in ob_type 6-7

G_boxtext
in ob_type 6-7

G_button
in ob_type 6-7

G_fboxtext
in ob_type 6-7

G_ftext
in ob_type 6-7

G_ibox
in ob_type 6-7

G_icon

in ob_type 6-7
Gjmage

in ob_type 6-7
GJ)rogdef

in ob_type 6-7
G_string

in ob_type 6-7
G_text

in ob_type 6-7
G_title

in ob_type 6-7
GEM 1-1

filetype 9-2
GEM AES 1-1
GEM AES Libraries 1-2
GEM application

and shell 13-1
GEM Application Environment

Services 1-1
GEM Desktop

and shell 13-1
GEM Draw

and shell 13-1
GEM Programmer's Utilities

Guide 1-1
GEM PUG

and Resource Library 12-1
GEM RCS 1-1
GEM Resource Construction Set

1-1
GEM VOl 1-1
GEM version number

in Global Array 1-4
GEM Virtual Device Interface

1-1
Get window 11-19
Global array 1-4

and Resource library 12-1
disk drive bit map 1-4
in appljnit 3-3
with ap_id 2-2

Graf_dragbox 8-4
Graf_handle 8-11
Graf_mbox 8-6
Graf_mkstate 8-14
Graf_mouse 8-12

with mouse event 4-4
Graf_rubbox 8-3
Graf_slidebox 8-9
Graf_watchbox 8-7
Graphics

and mouse input 8-1
Graphics Library 8-1

routines 8-2
Graphics output

and VOl 8-1
Graphics-based

and shell 13-1

H

Handle
from VOl 8-11
of window 2-13, 11-1

Hidetree
in ob_flags 6-12

High word
in arrays 1-4

Highlight
menu title 5-9

Horizontal scroll bar 11-6
Horizontal slider 11-6
Hotclosebox

Index-7

in wind_create 11-14
Hslide

in wind_calc 11-29
in wind_create 11-14

Ib_char
in Iconblk Structure 6-20

Ib_hicon
in Iconblk Structure 6-20

Ib_htext
in Iconblk Structure 6-22

Ib_pdata
in Iconblk Structure 6-20

Ib_pmask
in Iconblk Structure 6-20

Ib_ptext
in Iconblk Structure 6-20

Ib_wicon
in Iconblk Structure 6-20

Ib_wtext
in Iconblk Structure 6-22

Ib_xchar
in Iconblk Structure 6-20

Ib,J<icon
in Iconblk Structure 6-20

Ib_xtext
in Iconblk Structure 6-22

Ib_ychar
in Iconblk Structure 6-20

Ib_yicon
in Iconblk Structure 6-20

Ib_ytext
in Iconblk Structure 6-22

Icon

Index-8

in alert 7-7
selecting 2-9

Icon number
in alert 7-7

Iconblk Structure 6-20
and Resource Library 12-1

Icons
and Resource Library 12-1
displaying 2-4
in menus 5-1

Identifier
of application 3-6

Image file 9-2
IMG

filetype 9-2
Indirect

in ob_flags 6-12
Info

in wind_calc 11-29
in wind_create 11-14

Information line 11-4
in border 2-11
max length 11-4

Initialize
appljnit 2-2
application 2-1
data structures 2-2
of application 3-3

Input
in Event Library 4-1
mouse button 2-5
with VOl functions 4-1

Int_in array 1-4
Int_out array 1-4
Intel architecture 1-4
Item Selector

File Selector 10-1

K

Keyboard event 4-2
appl_trecord 3-8

Keyboard input
with forms 7-17

Keyboard state 8-14
Keys

editing 7-4
with menus 5-1

Keystroke
with menus 2-9

L

Lastob
in ob_flags 6-12

Left-arrow 11-7
Left_arrow

in dialogs 7-4
Lfarrow

in wind_calc 11-29
in wind_create 11-14

libraries
AES 1-1

Library
Application 3-1
Extended Graphics 14-1
File Selector 10-1
Form 7-1
Graphics 8-1
Resource 12-1
Scrap 9-1
Shell 13-1

List
rectangle 2-14, 11-10

Load
resource file 2-3

Low word
in arrays 1-4

M

Max length
information line 11-4
title bar 11-4

Memory
free 11-18,12-4
free unneeded 2-1

Menu
buffer 7-9

Menu bar
and appl_exit 5-6
display 2-4, 5-6

Menu item
disabled 5-1
enabled 5-1
with check mark 5-7

Menu library 5-1
routines 5-5

Menu selection
keystroke 2-9

Menu text
changing 5-10

Menu title
highlight 5-9

Menu_bar 5-6
Menu_icheck 5-7
Menujenable 5-8
Menu_register 5-12
Menu_text 5-10
Menu_tnormal 5-9

Index-9

to dehighlight 2-7
Menu_unregister 5-13
Menus

and accessories 5-12
and keys 5-1
and Screen Manager 2-6,

5-1
creating 5-1
enable,disable 5-8
selecting 2-6
with check marks 5-1
with ReS 5-1

Mepbuff
in evnt_multi 2-6

Message
AES 11-8
application dependent 4-10
predefined 4-5, 11-4
print spooler 4-10
with menus 5-2

Message buffer
GEM Desktop 2-6

Message event 4-4
Message pipe 4-5

appl_write 3-5
with appl_read 3-4
with menus 5-4

Message text
in alert 7-7

Message type
for print spooler 4-10

Messages
application 3-1

Metafile 9-2
Mn_selected

predefined message 4-6
Model

Index-10

of a form 7-1
Motorola architecture 1-4
Mouse

change form 8-12
state 8-14

Mouse button
event 4-3
input 2-5

Mouse event 4-3
appl_trecord 3-8

Mouse form
code for 8-12

Mouse input
and graphics 8-1
with forms 7-19

Move
box 8-6
in wind_calc 11-29
in wind_create 11-14

Move bar 11-4
in border 2-11

Mu_button
bit setting 4-20

Mu_keybd
bit setting 4-20

Mu_m1
bit setting 4-20

Mu_m2
bit setting 4-20

Mu_mesag
bit setting 4-20

Mu_timer
bit setting 4-20

Multiple events 4-2

N

Name
in wind_calc 11-29
in wind_create 11-14

Non-GEM application
and shell 13-1

Normal
in graf_watchbox 8-7
in ob_state 6-14

Normalized device coordinates
with Object Library 6-2

Note icon
in alert 7-7

o

Ob_flags
in Object Structure 6-5

Ob_head
in Object Structrue 6-5

Ob_height
in Object Structure 6-5

Ob_next
in Object Structure 6-5

Ob_spec
in Global Array 1-4
in Object Structure 6-5, 6-7

Ob_state
in Object Structure 6-5

Ob_tail
in Object Structure 6-5

Ob_type
in Object Structure 6-5, 6-7

Ob width
in Object Structure 6-5

Ob-><
in Object Structure 6-5

Ob_y
in Object Structure 6-5

Objc_add 6-28
Objc_change 6-38
Objc_delete 6-29
Objc_draw 2-5, 6-30

with dialog 2-7
Objc_edit 6-36
Objc_find 6-32
Objc_offset 6-34
Objc_order 6-35
Object

change 6-38
edit 6-36
move 6-35

Object colors
in ob_spec 6-10

Object flags
in Object Structure 6-12

Object Library 6-1
data structures 6-4
Object Structure 6-5
routines 6-27

Object states
in Object Structure 6-14

Object Structure
and Resource Library 12-1
colors in 6-10
in Object Library 6-5

Object tree 6-1
add to 6-28
creating 6-28
delete 6-29
draw 6-30
with menus 5-4

Index-l1

Object types
in Object Structure 6-7

Objects 6-1.
and GEM ReS 6-1
and Resource Library 12-1

Offset
in arrays 1-4
of object 6-34

OK
button 7-3

Open window 11-16
Outlined

in graf_watchbox 8-7
in ob_state 6-14

Output
and VOl 8-1

Overlapping windows 11-10

p

Parameter block 1-3
Parent

in object tree 6-1
Parmblk Structure 6-25
Paste

in Scrap Library 9-1
Path

and File Selector 10-1
and shell 13-3
in Scrap Library 9-2

Pb_currstate
in Parmblk Structure 6-25

Pb_h
in Parmblk Structure 6-25

Pb_he
in Parmblk Structure 6-27

Index-12

Pb_obj
in Parmblk Structure 6-25

Pb_parm
in Parmblk Structure 6-27

Pb_prevstate
in Parmblk Structure 6-25

Pb_tree
in Parmblk Structure 6-25

Pb_w
in Parmblk Structure 6-25

Pb_wc
in Parmblk Structure 6-25

Pb-><
in Parmblk Structure 6-25

Pb_y
in Parmblk Structure 6-25

Pb_yc
in Parmblk Structure 6-25

Period
in dialog 7-6

Pictures
and Resource Library 12-1

Playback user actions
appl_tplay 3-7

Portability
and Resource Library 12-1

Predefined message 4-5
AES 11-8
with border 11-4

Predefined values
in Object Library 6-7

Print spooler messages 4-10
Programmer's Utilities Guide

1-1

R

Radio button
in a Form 7-2

Raster coordinates 1-3
in clip rectangle 6-30
with Object Library 6-2

Rbutton
in ob_flags 6-12

RCS 1-1
and Resource Library 12-1
with menus 5-1
with objects 6-1

Ready list
with evnt_multi 2-5

Record user actions
appl_trecord 3-8

Rectangle
and Graphics Library 8-1
clip 6-30
rubber, with icons 2-10
update 2-15,11-11
with mouse event 4-4

Rectangle list 2-14, 11-10
Redraw

window 11-11
Resolution

finding 2-2
Resource address

finding 2-3
Resource Construction Set 1-1

and Resource Library 12-1
Resource file

and Resource Library 12-1
contents 2-2
in Global Array 1-4
load 12-3

loading 2-3
with menus 5-4

Resource Library 12~1
advantages 12-1
routines 12-2

Return/Enter
in dialogs 7-4

Right-arrow 11-7
in dialogs 7-4

Root
of object tree 6-1

RSC
and Resource Library 12-1
filetype 2-2

Rs rc_free 12-4
Rsrc-9addr 2-3, 12-5

with dialog 2-7
RsrcJoad 2-3, 12-3
Rsrc_obfix 12-8
Rsrc_saddr 12-7
Rtarrow

in wind_calc 11-29
in wind_create 11-14

Rubber box
drawing 8-3
graf_rubbox 8-3

Rubber rectangle
with icons 2-10

s

Scrap
directory 9-1

Scrap Library 9-1
Screen Manager

with menus 2-6, 5-1

Index-13

Screen resolution
finding 2-2

Scroll bar 11-6
in border 2-11

Scrp_clear 9-7
Scrp_read 9-4
Scrp_write 9-6
Search path

and shell 13-8
Segment

in arrays 1-4
Selectable

in ob_flags 6-12
Selected

in graf_watchbox 8-7
in ob_state 6-14

Set window 11-23
Shadowed

in graf_watchbox 8-7
in ob_state 6-14

Shel_envrn 13-10
Shel_find 13-8
Shel_rdef 13-11
Shel_read 13-5
Shel_wdef 13-12
Shel_write 13-6
Shell

and buffers 13-3
and character mode 13-1
and command tail 13-2
and default application 13-2
and GEM Desktop 13-1
and GEM Draw 13-1
and graphics 13-1
and path 13-3
and predefined string 13-10
to invoke application 13-1

Index-14

Shell Library 13-1
routines 13-4

Shift-tab
in dialogs 7-4

Sibling
in object tree 6-1

Size
in wind_calc 11-29
in wind_create 11-14
of window 2-13

Size box 11-6
in border 2-11

Slider 11-6
in border 2-11
size and location 2-13

State
in Object Structure 6-14
of mouse and keyboard 8-14

Stop icon
in alert 7-7

String

T

and Resource Library 12-1
in alert 7-7

Tab
in dialogs 7-4

Te_color
in Tedinfo Structure 6-18

Te_font
in Tedinfo Structure 6-18

Tejust
in Tedinfo Structure 6-18

Te_ptext
in Tedinfo Structure 6-16

Te_ptmplt
in Tedinfo Structure 6-16

Te_pvalid
in Tedinfo Structure 6-16

Te_resvd1
in Tedinfo Structure 6-18

Te_resvd2
in Tedinfo Structure 6-18

Te_thickness
in Tedinfo Structure 6-18

Te_tmplen
in Tedinfo Structure 6-18

Te_txtlen
in Tedinfo Structure 6-18

Tedinfo Structure 6-16
and Resource Library 12-1

Text
editable 7-3, 7-4
of alert 7-7
of menu item 5-10

Timer event 4-11
app'-trecord 3-8

Title bar 11-4
in border 2-11
max length 11-4

Touchexit
in ob_flags 6-12

Tree structure
with Object Library 6-1

Trees
and Resource Library 12-1

TXT
filetype 9-2

Type
predefined message 4-5
print spooler message 4-10

u

Up-arrow 11-7
in dialogs 7-4

Uparrow
in wind_calc 11-29
in wind_create 11-14

Update
rectangle 2-15, 11-11
window 2-15, 11-11, 11-27

User event 2-5
appl_trecord 3-8
format 3-8

USR
filetype 9-2

v

Valid string
in dialog 7-6

VOl 1-1
and graf_handle 8-11
and graphics output 8-1

Version number
in Global Array 1-4

Vertical scroll bar 11-6
Vertical slider 11-6
Virtual Device Interface 1-1
Vr_trnfm

to display icons 2-4
Vslide

in wind_calc 11-29
in wind_create 11-14

Index-15

w

W_field
in wind-get 2-4, 11-20
in wind_set 11-23

Wait icon
in alert 7-7

Wf_cxywh
in wind-get 11-20
in wind_set 11-23

Wf_firstxywh
in wind-get 11-21

Wf_fxywh
in wind-get 11-20

Wf_hslide
in wind-get 11-21
in wind_set 11-23

Wf_hslsize
in wind-get 11-21
in wind_set 11-25

Wf_info
in wind_set 11-23

Wf_name
in wind_set 11-23

Wf_newdesk
in wind_set 11-23

Wf_nextxywh
in wind-get 11-21

Wf_pxywh
in wind-get 11-20

Wf_resvd1
in wind-get 11-20

Wf_resvd2
in wind-get 11-21

Wf_screen
in wind-get 11-22

Wf_siztop

Index-16

in wind_set 11-25
Wf_tattrb

in wind_set 11-25
Wf_top

in wind-get 11-21
in wind_set 11-23

Wf_vslide
in wind-get 11-21
in wind_set 11-23

Wf_vslsize
in wind-get 11-22
in wind_set 11-25

Wf_wxywh
in wind-get 11-20

Whitebak
in ob_state 6-14

Wind_calc 11-29
Wind_close 11-17
Wind_create 11-14
Wind_delete 11-18
Wind_find 11-26
Wind-get 2-4, 1.1-19
Wind_open 11-16
Wind_set 11-23
Wind_update 11-27
Window 0 2-4, 11-1

in Global Array 1-4
Window

activating 2-15
active 11-10
application 11-1
border 11-2
calculate 11-29
clipping 11-10
close 11-17
closing 2-16
control areas 11-2, 11-4

create 11-14
creating 2-11
delete 11-18
desktop 1 1-1
dimensions 2-12
displaying 2-11
find 11-26
get 11-19
handle 2-13,11-1
open 11-16
opening 2-11, 2-13
overlapping 11-10
rectangle 11-10
redraw 11-11
routines 11-13
set 11-23
sizing 2-13
update 11-11, 11-27
updating 2-15

Window control areas
with message events 4-5

Window library 11-1
Wm_arrowed

predefined message 4-7
Wm_closed

predefined message 4-6
Wm_fulled

predefined message 4-7
Wm_hslid '

predefined mes~age 4-8
Wm_moved

predefined message 4-9
Wm_redraw

predefined message 4-6
Wm_sized

predefined message 4-8
Wm_topped

predefined message 4-6
Wm_untopped

predefined message 4-9
Wm_vslid

predefined message 4-8
Work area

calculate 11-29
of application window 2-1 1
of desktop window 2-4, 11-1
redrawing 2-15
update 11-11

x

X- and V-coordinates 1-3
Xgrf_2box 14-4
Xgrf_stepcalc 14-2

v

V-coordinate
as raster 1-3

Index-17

