EXTENDED BASIC

User’s Manual

093-000065—-06

Ordering No. 093-000065

© Data General Corporation 1971, 1972, 1973, 1974, 1975
All Rights Reserved.

Printed in the United States of America

Rev. 06, February 1975

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented, including but not limited to typographical,
arithmetic, or listing errors. ‘

Original Release-November, 1971
First Revision =May, 1972
Second Revision -September, 1972
Third Revision -March, 1973
Fourth Revision -September, 1973
Fifth Revision =January, 1975
Sixth Revision ~February, 1975

This revision of the Extended BASIC User's
Manual, 093-000065-06, constitutes a maior
revision and supersedes all previous revi-
sions and addenda.

CHAPTER 1

CHAPTER 2

TABLE OF CONTENTS

GENERAL INFORMATION. vt ir v vncnnsnnenaens c e e s e e s 1-1
DOCUMENTATION CONVENTION S s i it ittt am e me s s ensseneaneeens 1-2
Under lining . .o e ittt ittt e e e iaeeesnaeneseeenneans 1-2
Symbols. ..o e e tsee et 1-2
Terminal DeviCeS.. .. ittt enneennnnnnnn e 1-3
Statement and Command DescCriptionS....eee.eeee.... 1-3
A revViation .t e ie ittt ennaenennaenns e 1-4
Terminology e e i ee it einnnannnn Cieeereatara e 1-4
USING EXTENDED BASIC .ttt tnereennnaenann C e e s e 1-5
Logging One v e veeneeennnannn et eea. 1-5
Creating A New Program........... et 1-6
RUNNIng A PrOUXaM. « e vevoeenannnann ettt 1-7
Correcting The PrOgral......c.eeeean e 1-8
Interrupting Program EXeCUbioNn...eeeeeeienennnan. . 1-8
Logging Off...iiiiniiiinnn. e caiaeaenn ... 1-8
Example Of An Extended BASIC PrOGraM...e.eoeeeoas... 1i-9

EXTENDED BASIC ARITHMETIC

Double Precision CalculationS..seee..

Internal Number Representation.......
VARIABLES . it ittt it e s e eaannnnn ceeneaaean
ARRAY S .ttt ittt st ettt [

Array Elements. ..ot iinnnenennnnann .

Declaring an Array....o.eeceeoeeens N
ARITHMETIC OPERATIONS it it it i ninnnnn s aesae

Priority of Arithmetic Operations....

Use of Parentheses.........cceun... .o

Relational Operators and Expressions.

i

....... feeee. 2-1
............. 2-1
et 2-2
et e e 2-2
......... cee. 2-3
et 2-3
e 2-4
chceresensann 2-4
............. 2-5
............. 2-5
26
R I R I A4
............. 2-6

i”

TABLE OF CONTENTS (Continued)

CHAPTER 3 COMMONLY USED BASIC STATEMENTS
COMMENTING A PROGRAM. ¢ttt v eneemeenn s eeaeaneasnscnneanns 3-1
REM . v vt e et e e e eneeme s eeeseeaeeeaneeaaeaaanaan 3-1
STOPPING EXECUTION OF A PROGRAM. « esso st ene s ceennnnnns 3-2
12315 JAU 3-2
=307 = 3 3-3
ASSTIGNMENT STATEMENT . ¢ v v e et teeneaseseneeneenaaenannans, 3-4
5o DU S 3-4
INPUT STATEMENTS .t v v eeeneenneennenns e e 3-5
INPUT - e et e e e eeeeeeeeaeans e e 3-5
DATA . e eeeeeeeeeans e e 3-8
READ. .o euvennnnn. N e 3-9
RESTORE. «vuu... B e 3-11 “4}
OUTPUT STATEMENTS . vvvun.... e e e 3-12 o
PRINT « e et e eeeeeennn e e, 3-12
A (X) t et eeneeeesaneeceoeneneennsasnosnsseonaennannan 3-17
DIMENSTONING ARRAYS . v v ueeneennn. e e ... 3-19
DIMu v vt teseeseeeneseseneaneennens e 3-19
PROGRAM LOOPS et vt et e et e et e eeeaaeeeeeee e eaeaannn 3-21
FOR and NEXT .. vt eeeneonenennn e e fee e as e 3-21
SUBROUTINES + 4 e st e e eeaeennseaeensenenenaeasennans e 3-27
GOSUB and RETURN. ¢ e veseenennennn e 3-27
BRANCH STATEMENTS . - « et ve s emeeeeeaeeeeee e eaaeeaenaan. 3-30
GOTO e e et e e ee et eeeaneannn e 3-30
IF == THEN. ottt teeseeemmeessenaensaseneanoneaaaenns 3-32
ON=GOTO and ON-=GOSUB .+« v v v v e eee e et eaeemeeeeeeeann 3-35

ii

CHAPTER 4

CHAPTER 5

TABLE OF CONTENTS (Continued)

EXTENDED BASIC FUNCTIOCNS

INTRODUCTION TO EXTENDED BASIC FUNCTIONS . .. essunosnn... 4-1
ARITHMETIC FUNCTIONS . s vt v vveeememsnnnn B ee. 4-3
RND (X) et et e e et e e e e e e e e e 4-3
RANDOMIZE + v vt vt se e e eeemeeeeenenns e 4-5
SGN(X) e e eeeeeeeeaeeannn e e 4-6
INT(X) v ene e eeeeeee e eeeeeanns e 4-7
ABS(X) te et ee e S e . 4-8
10):16:4 I e .. 4-9
12021 & [N e 4-10
1701e] .0 I S . 4-11
TRIGONOMETRIC FUNCTIONS........... R 4-12
SIN(X) onn... e o, e e, 4-12
COS(X) eeenee e R R e ceeee.. 4-13
TAN(X) v v ot ee e ee e eeee e meaeeaanns e 4-14
ATN(X) cvunnn. e e e ... 4-15
SYSTEM FUNCTIONS. o v v e ermsnnsnnnnn e e 4-16
e -4 T 4-16
USER DEFINED FUNCTIONS . et o e s eesenmannnnnn. e 4-17
DEF and FNa{d) e uueuun... e eearaeeseanae e 4-17

STRING INFORMATION

STRING CONVENTIONS..... s e e rae s s e s e s 5-1
SEring LiteralS. e eeeereeneennnnocnnnn s es e e 5-1
String VariableS...eee e oeenennenennnnnns tenaens ... 5=2
Dimensioning String Variables...... e s eas e . 5=-2
SUDSErINgS . s i a st it s et s e ne e c e s «... 5=3
Assigning Values To String Variables....... s e 5~5
Strings in IF - THEN StatementS.........o..u.... ... 5-6
String Concatenation..... thesaeseaeaa e tesresaeas 5=7

STRING FUNCTIONS. it h e e eernennnn “Cemeaa s ec e enensans sess. 5-8
LEN(XS) oo e e, e erssaesasaere e es e 5-8
POS{ES S, 2) e e e e e e e e e e e s e 5-9
2 R O e ee e 5-10
VAL{ZS) e it i st it s eeana e s e e 5-11

STRING ARITHMETIC ettt it i e et e ne e omnnsnnsoenennanos e 5-12

CHAPTER 7 FILE

FILE

FILE

TABLE OF CONTENTS {Continued}

CHAPTER 6 MATRIX MANIPULATION

DIMENSIONING MATRICES...... e ereaacsececsaesaesennenanne

MATRIX MANIPULATION STATEMENTS. .. cvveernononsacaonnnsas

Matrix Assignment......... ottt een e e
Zero Matrix (ZER) ..eveean. C et se s e et
Unit Matrix (CON) .iiwwiieeenneannnn s eeercesaasasaeas
Identity Matrix (IDN)........ ettt i

MATRIX I/0 STATEMENTS ..t uteueernnnenas ce st et e

MAT READ........ sesacsasses cee s s eenasasas e cesenen
MAT INPUT.......... sessercasenee csenesensasensanes
MAT PRINT........... et eeeeene e Ceeeteceresnae e

MATRIX CALCULATION STATEMENTS. . .iieeereeneansonnensanea

Addition and Subtraction....... feea e e
Multiplication....eeuaee.a. Cieeaccesescesen e
Inverse Matrix (INV)..... e tieecs et ettt
Matrix Determinant (DET) v vveeeeean checes et en s
Matrix Transposition (TRN) c.ii.eeeieeeessansnceanns

INPUT AND OUTPUT

CONCE P T S st s e e s ssesensnssasosassaneascosssasascssnns e
Definition of @ File..ieiiiirieenneeannaonnns P
File Name and Extension............ fecccearanas .
Reserved Fi1le NamMeS..uveeceororaseeencasaanssseansa
File Attributes.......... st e ccaecaasesansaeneraane

STATEMENTS. a D teceenen
OPEN FILE...... . ceseeees
CLOSE FILE........ feaeaen Cemesatcee e ceee e
WRITE FILE...... ve s aaaan ceseeranans ceecrtesssaaana
READ FILE. ... ovununn Meeesecssasecasuncnoeaa crsceean
PRINT FILE. . s .eueeeeanenann s eecesencecncssanannsan
INPUT FILE... e eennn. ceereaecns ceceeacscs s PPN
MAT WRITE FILE......... sscnseecccsesnrssaceans e
MAT READ FILE ... nrenenronanans teeeco s et ane .
MAT PRINT FILE......... S eme e ees s e s ae e
MAT INPUT PILE ... ecetitnenonaccecnnnnocnans cerene e
BOF(X)eeveeennnn. N G eeses et ra e

iv

Tl\;l\l\l\l
| I T |
NI L

oror
O W ww

[
'...J *.J
L)

|
ok
[¥;]

i

!
[R
w O

TYFTYIRIIIYIYY
o s
© IS

i
\S]
o

e

TABLE OF CONTENTS (Continued)

CHAPTER 8 INTERACTIVE SYSTEM COMMANDS

I “ee e s ac e ae e et s e

SAVE . .ineennns s e s anesans et e s e s e e e ..

MSGeeerineeiiaanns cee st aaa e et e s reaae e

ESC. i, e e aaee e ce e fe e
NOECHO . sttt ittt et ntneenaennnns s e s e tec e
ECHO. vt nnennnans ettt eeas e e ae e

DISK DIRECTORY MAINTENANCE COMMANDS s 4ttt e e necenenannnan.
FILES ettt i i eanns e s et e s an o
LIBRARY ettt ittt ieeannnnanennas e e s et ase e v
WHATS ..ttt iinonenns L T T T T S

-
REN AN E . st ittt it iee it tesanonnnnnnnonneaeeanen,
CHATR

LI e % 2 02 s 8 8 8 * e e 8 05 8 e 8 w0 * 2 8 % %0 0 203 L e 20 e om0 00 6 b s

COMMANDS DERIVED FROM BASIC STATEMENTS........ ce e saaa
Perfoxrm File I/0...... f e r e e e e et ae e e e
Desk Calculator....... S e e s e e aease s s e ne e

CHAPTER 9

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX
APPENDIX

TARLE OF CONTENTS {Continued)

ADVANCED BASIC STATEMENTS AND COMMANDS

INTRODUCTION . s v et s s e ssnnavacncanes sscacesecasnsenrenen s 9-1
ON-ERR....... Cseescaseecvrescasessssesacnnanenst o nanannn 9-2
RETRY it st cinccnncancnann fresessesncasacsasaeansanens ees 9-3
DELAY i i ettt ennccnoncnasasosss cees s B .. 9-4
ON-ESC. it s v ssnnesseescasoconsssanas D g 9-5
PRINT USING...seveeoeenncanns Geerernaans crses s s e 9-7
PRINT FILE USING.....ctceocnnnn checsesasen crecaneas ees. 9-17
CHAIN. it i ineeencosconnscnnsnassssnssannes creraecanscan 9-18
CALL e veveecncasocnnsansanan ecrevscrscsscesencsssanonaana . 9-20
TIME. . coueonaoononocnoss cessssssaaenanes P 9-21
TINPUT . et it is s cnseanosons ceesacanaas s e ac e s ac e ne e 9-23

ERROR MESSAGES

BASIC Exrror MeSSageS..ceocssanas s emssecssansessnananss A=-3

File 1/0 ExYOY MESSAUES:csaossaanccossocasss saees e A-10
CALLING AN ASSEMBLY LANGUAGE SUBROUTINE FROM EXTENDED BASIC

Character String Storage and Definitions........ cesss.. B-1

Linking the Assembly Language Subroutine............... B-2

PROGRAMMING ON MARK-SENSE CARDS

HOLLERITH CHARACTER SET

ASCII CHARACTER SET
STATEMENT, COMMAND AND FUNCTION SUMMARY

F.1l COMMONLY USED BASIC STATEMENTS..... s ee e e seee.. F-1
F.2 ARITHMETIC AND SYSTEM FUNCTIONS. .iv'ewerrevnsonnnn P-4
F.3 STRING FUNCTIONS. ivcvrvrensnnns S e s ae e e e -7
F.4 MATRIX MANIPULATION.......0wwneueen. e eeennes e F-8
F.5 FILE INPUT AND QUTPUT........ e ce s e e e e s e F-10
F.6 INTERACTIVE SYSTEM COMMANDS.......... e as e F-12
F.7 ADVANCED BASIC STATEMENTS AND COMMANDS. . .v.er.n... F-15

vi

g

gy

GENERAL INFORMATION

CHAPTER 1

[NTRODUCTION

Extended BASIC provides programmers with an
interactive programming language that operates
under Data General's Real Time Disk Operating
System (RDOS) or Data General's Real Time
Operating System (RTOS). Extended BASIC may be
configured to include:

& Disks

® Floating Point Hardware

¢ Swapping

® Fixed Point Multiply/Diwvide
® Mapping

e Single or Double Precision

Data General's Extended BASIC is an implementation
of the BASIC language as developed at Dartmouth
College. Extended BASIC includes such features
as:

e String Manipulation

® Format Control

® Assembly Language Subroutines

® Matrix Operations

® Fixed and Variable Length File Manipulation
® Program and Kevboard Modes

The following Data General documents may be
referred to for further information:

093~000075 RDOS Real Time Disk Operating
System User's Manual

093-000083 Introduction to the Real Time
Disk Operating System

093-000119 Extended BASIC System Manager's
Guide

DOCUMENTATION

CONVENTIONS

Underlining

Symbols

{Continued)

093~000087

093-000056

BATCH User's Guide

o

Real Time Operating System

Reference Manual

Where clarification is required in the examples
used in this manual, underlined copy denotes
entries input by the user. Copy not underlined
indicates entries output by BASIC.

The symbols listed below are used throughout
this manual to simplifv descriptions.

Symbol (Character Explanation
Represented
\x . 5
J Carriage Pressing the RETURN key

Return generates an automatic line
feed in addition to the
carriage return.

ESC ESCape or When using BASIC, pressing

ALTmode key |the ESCape key echoes an
asterisk (*) on the user's
terminal.

A Space Sometimes used in this man-
ual to emphasize a space
character.

] Brackets Enclose optional arguments
to a statement or command.

{ } IBraces Indicate a choice of items
enclosed.
e Elipsis Indicate that the preceding

item may be repeated.

Mo

Terminal Devices

Statement
and Command
Descriptions

The use of the word "terminal” throughou
manual implies a teletypewriter, CRT display

terminal, or an equivalent interactive device.

The statements . hapters
3 through 9 of this manual are present s fol-
lows:

BASIC General Format
WORD

N

Purpose:
Remarks:

Examples:

5.

General Format: The BASIC word is shown in its
generalized format with capital letters used
to indicate literal entries, lowercase ital-
ics used for variable entries, and brackets
used to indicate opticnal arguments. Paren-
theses are to be inserted as indicated.

S : The appropriate box or boxes are checked
C to indicate whether the BASIC word is
F used as a statement (8), a command (C),

or a function (F). Some BASIC words may
be used both as statements and commands.

Purpose: A brief statement which describes the
operation performed by the statement, com-
mand or function.

Remarks: Pertinent comments related to the use
of the statement, command, or function. Any
rules or cautions are included under this
heading.

1-3

Statement
and Command
Descriptions

Abbreviations

Terminology

{(Continued)

Examples: Typical uses are provided to help
describe the BASIC word and its format.

The following abbreviations are used in the gen-
eral formats provided in the descriptions of
BASIC statements and commands. The abbreviations
are italicized in the formats and represent com—
monly used texms which are defined in the appro-
priate chapters of the manual.

Abbreviation Term

vay numeric variable

expry numeric expression

rel ~expr relational expression

string lit ‘string literal

val numeric values

line no. line number

col column 3
control var control variable .
svar string variable

moar matrix variable

Filename a disk file name or a device

The BASIC language includes words, sometimes
referred to as keywords or instructions which,
when written in an apprcopriate format, can be
used as statements and functions in a program oOr
as console commands to the BASIC system.

Scome BASIC words can be used alone to perform an
operation. Others require one or more grguments
in order to be properly executed.

INPUT A,B < A and B are arguments to
the INPUT instruction.

A BASIC program is made up of BASIC statements.
Each statement includes a properly formatted
BASIC word preceded by a line number in the range
1 to 9999. The line number given to a BASIC
statement determines the order in which it is
executed. Generally, program execution begins

e

1-4

Terminology

USING
EXTENDED BASIC

Logging On

{Continued)

with the lowest numbered line and is followed
seguentially by the next higher numbered line
unless otherwise directed by statements such as
GOTO or GOSUB.

Each program statement is written on a separate
line. The programmer terminates each line with
a carriage return ()}.

* 5 PRINT "SAMPLE PROGRAM"
*¥10 LET A=5

*15 LET B=2

*20 PRINT A*B

*25 END

BASIC console commands do not include line num-
bers and are executed by the system immediately
after the user terminates the command with a car-
riage return.

RmN) BASIC executes the user's current
program starting from the lowest
numbered line.

The user can log onto the system as soon as the
BASIC prompt message DGC READY is output to the
terminal. The log on procedure is begun when the
user presses the ESCape key. During this proce-
dure the system will request the user's identifi-
cation. The user responds by typing his or her
four character identification code, assigned by
the System Manager, followed by a carriage return
()). The identification is not echoed at the
terminal to protect the confidentiality of the
user's identification.

If the identification entered is wvalid, the system

will output the date, time and terminal number
assigned, followed by an asterisk (*) prompt.

1-5

Logging On

£

Creating A New

Program

(Continued)
The asterisk (*) prompt is used by BASIC to sig-
nal that the user may enter a command oY & pro-

gram statement.

The format of the log on procedure is as follows:

DGC READY
ESC + user presses ESC.
ACCOUNT ID: XXXX) < 4 character ID,

not echoed.

AAA&AMM/DD/YYAAA&AHH:MMASIGN—ON,QE%

-~ _L

date time terminal no.

* “ asterisk prompt.

Having successfully logged onto the system, the
user may enter a new program, make corrections to,
or run an old program. It is generally good
practice to type the NEW command before proceding
with entering a new program. This command (NEW)
clears the user's work area in memory and thereby
prevents the interspersion of lines from previous
programs into the user's new program. This com-
mand, as well as other system and interactive
commands used for such purposes as retrieving and
storing programs, is described in Chapter 8.

When typing a new program, the user must be cer-
tain to begin each line with a line number of not
more than four digits and end each line with a
carriage return. If a typing error is detected
before the carriage return is pressed, the userxr
can correct it by pressing the RUBOUT key once
for each character to be erased until the incor-
rect character is reached and then continue by
typing the correct characters. Each time the
RUBOUT key is pressed, a backarrow (+) is echoed
at the terminal. For example:

* 1¢ PRINT "CONR«+RRECTION BY RUBOUTS"

Creating A New

Program

Running A Program

(Continued)

In line number 10, the user rubbed out two char-
acters (R and N) and then completed the line. A
LIST command would output the corrected line.

* LIST 10)

0010 PRINT "CORRECTION BY RUBCUTS"

*

In addition, the user may delete the entire cur-
rent line by typing SHIFT-L which is echoed as a
backslash (\) and a carriage return.

*10 PRINT "CONRM (SHIFT-L to delete line)
10 PRINT "CORRECTICN BY RUBOCUT" (line typed over)

The SHIFT-L character may also be used to delete
the current console command line.

*RUN (SHIFT-L to delete line)

When the user has completed typing a program, it
can be executed by giving the command:

RUN)

The program will be run starting from the lowest
numbered statement, assuming there are noc runtime
system errors (see Appendix A) and will output
results requested via PRINT statements.

Programs which were previously written and SAVEd
may be run by fyping:

*TOAD filename) {filename is the name of a
*RUN / user's program)

Correcting The Program

Interrupting
Program
Execution

Logging Off

After running a program, the user may find it
necessary to change the program because of error
messages or incorrect results. Corrections can
be made to the program by any of the following
procedures:

a. A new statement may be substituted for a
statement containing errors by retyping the
entire line {including line number).

b. A statement may be eliminated from the pro-
gram by typing its line number followed by
a carriage return.

* 125} {(line 125 is deleted)

c. Additional statements may be inserted into
the program between existing statements
simply by typing the new statements with
intermediate line numbers. If the number
of statements to be inserted exceeds the
number of line numbers available between the
statements, it may be necessary to use the
RENUMBER command (described in Chapter 8)
to change the increment between line numbers.
It is generally good practice when writing
a program, to allow an increment cf 10
between line numbers for program correction
and expansion.

To stop the execution of a running program, the
listing of a program, or any other task which is
being performed by BASIC, the user may press the
ESCape key to interrupt the process. BASIC will
then output an asterisk prompt to signal the user
that a new command may be entered.

Having completed working with BASIC at the term-
inal, the user logs off by typing the command BYE.
The BASIC system will then output a summary of
usage information and put the terminal in an idle
state.

Logging Off

Example Of An
Extended BASIC

Program

(Continued)

*BYE)

AMAAAMM/DD/YY HH:MM SIGN-OFF, 272
MM/DD/YY HH:MM CPU USED, Q0
MM/DD/YY HH:MM 1/0 USED, RR

DGC READY

where: MM/DD/YY is today's date.

HH:MM is the current time of day.
ZZ is the terminal port number.
00 is the number of CPU seconds

consumed during the terminal
session calculated to the
nearest tenth of a second.

RR is the number of input and
output statements executed
(OPEN, CLOSE, READ, WRITE,
etc.)

The following example is shown in a manner which
includes the logging in, communicating with the
system operator, running the program, and logging
off by the user.

DGC READY

ESC . (Press ESC key)

ACCOUNT-ID: KAST) (KAST not echoed)
10/23/74 10:32 SIGN-ON, 2

*MSG OPER PLS MOUNT TAPE #1255 (NO RING))
*FROM OPER: DONE-TAPE ON MT12

*MSG OPER THANX)

*LOAD "PRODUCTION")

*LIST)

0010 DIM AS$(10)

0020 INPUT "TAPE MOUNTED ON",AS
0030 AS$=AS,":0"

0040 OPEN FILE (0,3),A$

0050 READ FILE (0),A,B,CS

0060 IF EOF(0)=1 GOTO 200

0070 PRINT A,B,CS

{Continued on
next page)

Example Of An
Extended BASIC

Program

{Continued)

0100 GOTO 50
0200 CLOSE FILE({O)

0210 PRINT "END OF JOB"

0220 sTOP

*RUN)

TAPE MOUNTED ON MT12)

END OF JOB

STOP AT 0220

*MSG OPER PLS RELEASE MTlZ)

*FRCM OPER: TAPE REMOVED FROM MT12

*BYE)
10/23/74
10/23/74
10/23/74

DGC READY

1-10

10:40 SIGN-OFF, 2
10:40 CPU-USED, .3

10:40

I/0-USED, O

e

CHAPTER 2

EXTENDED BASIC ARITHMETIC

NUMBERS An extended BASIC number may be in the range of
5.4 % 10779 < N < 7.2 * 107°. Numbers may be
expressed as integers, floating point or in
exponential form (E-type notation).

|

i

|

|

[

? BASIC provides either all single precision or

! all double precision calculations. The format
of converted numeric data (for example, as con-
verted by a PRINT statement) is dependent upon
the BASIC system generated.

Single On conversion, any floating point or integer
Precision number that consists of six digits, or less, is
Calculations formatted without using exponential form. &2

floating point or integer number that requires
more than six digits is printed in the follow-
ing E-type notation.

(sign)n.nnnnnE(sign) XX

13
Where n.nnnnn is an unsigned number carried
to five decimal places with trailing zeros
suppressed, E means "times 10 to the power
of", XX represents an unsigned exponential
value.

Number Single Precision Output Format

2,000,000 2E+06

108.999 108.999
.0000256789 2.56789E-05
24E10 2.4E+11

Double
Precision
Calculations

Internal
Number
Representation

On conversion, any floating point or integer
number that consists of eight digits, or less,
is formatted without using exponential form.

A floating point or integer number that reguires
more than eight digits is printed in the follow-
ing E-type notation.

(sign)n.nnnnnnnk (sign) XX

where n.nnnnnnn is an unsigned number
carried to 7 decimal places with trailing
zeros suppressed, E means "times 10 to
the power of", and XX represents an
unsigned exponential value.

Number Double Precision Output Format

.666666666 . 6666667
108.999868 108.99987

111111111.99 1.1111111E+408

Internally, BASIC stores numbers in a format
compatible with other Data General Corporation
software such as FORTRAN IV and the relocatable
assemblers. Single precision floating point
numbers are stored in two consecutive 16-bit
words of the form:

0 1 7 8 15
s c
Y Ll
WA
16 31

.where: S is the sign of the mantissa.
0 = positive, 1 = negative.
The mantissa is a normalized six
digit hexadecimal fraction.
C is the characteristic and is an
integer expressed in excess 64
code.

e

Internal
Number
Representation

{Continued)

VARIABLES

ARRAYS

Double precision floating point numbers add 2
words of precision to the mantissa, which can
be represented as :

0 1 7 8 15
S C
S
5‘5
<\
a B

—

i
48 63

The names of numeric variables (shown in program
statements as var) are expressed as either a
single letter or a single letter followed by a
digit. For example :

Acceptable Variable Unacceptable Variable

Names Names
A oA
A3 AZ
7
Z6

In addition to numeric variables, string vari-
ables (svar) are also permitted in BASIC and are
discussed in Chapter 5.

An array represents an ordered set of values.
Each member of the set is called an array element.
An array can have either one or two dimensions.
An array name may be a single letter, or a

single letter followed by a digit.

Array
Elements

Declaring

an Array

Each of the elements of an array is identified
by the name of the array followed by a parenthe-
sized subscript.

B3(1) , B3(2) , ..., B3(8) , B3(9)

For a two-dimensional array, the first number
gives the number of the row and the second gives
the number of the column for each element. The
elements of array C{(2,3) would be:

c(1,1) C(1,2) C(1,3)
c(2,1) c(z2,2) c(z2,3)

A reference to element zero (@) will be inter-
preted as a reference to element 1. A negative
reference is an error.

If a variable is referenced both with and with-
out subscripts, then two distinct variables will
be defined by BASIC. For example:

*10 DIM Al [11]
*20 LET Al = 17
*30 LET Al(1l) = 27

In all subscripting contexts, brackets ([])
may be used in place of parentheses [()].

Most arrays are declared in a DIM statement,
which gives the name of the array and its
dimensions.

The lower bound of a dimension is always 1;
the upper bound is given in the DIM statement.
Dimensional information is enclosed in either
parentheses or square brackets immediately
following the name of the array in the DIM
statement.

*5 DIM A(15), B1[2,3]
There is no limitation on the number of elements

in a given array dimension other than restric-
tions due to available memory.

2-4

'LK.

Declaring
an Array
{(Continued)

ARITHMETIC
OPERATIONS

Priority of

Arithmetic
Operations

If an array is not declared in a DIM statement
then a default value of 10 is assigned to each
dimension of the array.

*10 c[3,4] = 11 -

If C has not appeared in a DIM statement which
was executed prior to the execution of line 14,
then when line 1@ is executed C will be given
dimensions [10,10].

A numeric expression (shown in program statement
formats as expr) can be composed of numbers,
numeric variables, array variables and functions,
linked together by arithmetic operators. The
operators used iq writing numeric expressions
are:

Operator Meaning Example

+ Unary plus A+ (+B)

- Unary minus A+{~B)

4 Exponentiation A+B (A to the B power)
* Multiplication A*B

/ Division A/B

+ Addition A+B

- Subtraction A-B

See Chapter 5 for string arithmetic operators.

BASIC evaluates numeric expression (expr) in the
following order proceeding from left to right:

1. Any expr within parentheses are evaluated
before any unparenthesized expr. When par-
enthesized exprs are nested, the innermost
expr is always evaluated first.

2. Unary plus and minus

3. Exponentiatign

4. Multiplication and division {equal priority)
5. Addition and subtraction (equal priority)

Priority of
Arithmetic
Operations
(Continued)

Use of
Parentheses

Relational
Operators and

Expressions

5. When two operators are of equal precedence
{(* and /), evaluation proceeds from left
to right.

For example :
Z ~-A+B*C+4+D

Step 1. A is subtracted from Z

Step 2. C 4+ D is evaluated

Step 3. B is multiplied by the result
of Step 2.

Step 4. result of step 3 is added to the
result of Step 1.

Since parenthesized exprs are evaluated first,
the programmer can use parentheses to change
the order of evaluation for an expr. Using
the same variables as in the previous example;

Z-({A+B) *C) +D

Step 1. A + B is evaluated.

Step 2. The value from step 1 is
multipled by C.

Step 3. The value from step 2 is raised
to the D power.

Step 4. The value from step 3 is sub-

tracted from Z.

Parentheses may also be used to clarify the
order of evaluation and legibility of an expr.
For example, the following exprs are equivalent:

A *B 4 3/4+B/C+D+ 3

({A*B43)/4) + ((B/C) + D *+ 3)
Relational operators are used to compare two
exprs in a relational-expression (rel-expr).

A relational expression is of the form:

exprl relational operator expr2

Relational The relational operators used in BASIC are:
Operators and

Expressions Symbol Meaning Example
{Continued)
= Equal A =3B
< Less than A < B
<= Less than or equal A <= B
> Greatexr than A > B
>= Greater than or
equal A >= B
<> Not equal A <> B

Strings may also be used in the place of the
expry in relational expressions. Their usage
is described in Chapter 5.

COMMENTING A PROGRAM

N

U (O N 1O

Purpose:

Remarks:

Examples:

CHAPTER 3

COMMONLY USED BASIC STATEMENTS

REM [message]

message: text comment.

To insert explanatory comments within a program.

REM statements are ignored when the program is
executing. However, the REM statement is stored
with the program and is output exactly as
entered when LISTed.

If control is transferred to a REM statement
from a GOTO or GOSUB statement, then execution
continues with the next executable statement
following the REM statement. If no executable
statement follows the REM statements then the
program will act as though an END statement were
encountered and control will return to inter-
active mode.

*10 REM —- REMARKS THROUGHOUT A PROGRAM CAN
*20 REM -- HELP EXPLAIN THE PURPOSE OF STATEMENTS.
*30 REM -- LINES 10, 20, 30 ARE NOT EXECUTED.

STOPPING EXECUTION OF
2 PROGRAM

END

Remarks:

Examples:

To terminate execution of the program and to
return contrcl to interactive mode.

Data General's implementation of Extended BASIC
does not reguire the inclusion of an END state-
ment to declare the physical end of a program.
If control passes through the last executable
statement of the program and if that statement
does not change the flow of control (that is,
the statement is not a GOTO, etc.) then the
program will transfer control to interactive
mode. The END statement is included in this
implementation for compatibility with BASIC
programs written for other systems. Multiple
END statements may appear in the same program,
and when encountered will terminate execution
of the program followed by a prompt (*) printed
at the user's terminal.

*20 PRINT "PROGRAM DONE"
*¥30 GOTO 60

*50

*60 END

* RUN

PROGRAM DONE

END AT 0060
*

S’

iz

STOP

1O

Purpose:

Remarks:

Examples:

STOP

To terminate execution of the program and to
return control to interactive mode.

STOP statements may be placed anywhere in the
program to terminate execution. When STOP is
encountered in the program the system will print
the following message on the user's terminal:

STOP AT XXXX
*

where XXXX is the line number of the
STOP statement.

After resumption of interactive mode, the pro-
gram may be restarted in its initial state (see
RUN) or continued in its current state (see CON
or RUN line number).

*L1ST. ,

P019 REM=-=-TERMINATE PROGRAM BY STOP
@g22@ INPUT A

2030 1F A<@ THEN GOTO 2858

ggag GOTO ©e28

ggseé STOP

*RUN
7 1
? 3
?7 =5

STOP AT @050
*

ASSIGNMENT STATEMENT

LET

Purpose:

Remarks:

Examples:

[LET] var = expr

var: numeric variable name.
expr: an arithmetic expression.

To evaluate expr and assign the resultant value

to var. .

Use of the mnemonic LET is optional.
The variable var may be subscripted.

String expressions may be assigned to string
variables (see Chapter 5).

* 10 LET A=A+l Variable A is assigned a
value one greater than it
was before.

* 20 A(2,1) = B42+10 The element in row 2/column
1 of array A is assigned
the value of expression
B42+10.

3-4

g

e—

e

INPUT STATEMENTS Input statements are used to define and read data
that is to be used during program execution.

INPUT INPUT ["siring 1it",] var [,var]...[:i]

var: a list of variables

S separated by commas.

c |V string literal: a message or prompt.

F (see Chapter 5 for
detailed string inform-
ation.)

Purpose: To assign the values supplied by input from the

user's terminal to a list of variables.

Remarks: 1. The INPUT statement may be used to enter
numeric data, string data (see Chapter 5)
or both to a program.

2. When an INPUT statement is executed, a
question mark (?) is output as an initial
prompt unless the INPUT statement contains
the "string literal” option. Then the
"string literal” is output as an initial
prompt.

3. The user responds by typing a list of data,
where each datum is separated from the next
by a comma or a carriage return. The list
is terminated with a carriage return.

4. If the data list is terminated with a
carriage return before a value has been
supplied for each of the elements of the
variable list, then a guestion mark (?) will
be output as a prompt, indicating there are
further data list elements which must be
supplied.

INPUT

Remarks:
{(Continued)

Examples:

The data input in response to the prompt
must be of the same mode (numeric or string)
as the variable in the INPUT statement list
for which the data is being supplied. Vari-
ables in the INPUT statement list may be
subscripted or unsubscripted.

If data input from the terminal does not
match the mode of a variable in the INPUT
statement list, then a \? is output to the
terminal for the data in error.

If the variable list is terminated with a
semi-colon, then the cursor is left follow-
ing the last input data item. Otherwise, a
carriage return-line feed is output.

*LIST -
2805 INPUT A,B,C,D.E
8013 PRINT A+B,C+D,D+E

*RUN
?7 1025304,5
3 7 9

END AT 9010
¥

*LIST .
2812 INPUT "A,B,C,D,E= *,A,B,C,D>E
2228 PRINT A+B,sC+D,D+E

*RUN
AeBsCoDsE= 1,2 7 3,4,5
3 7 9
END AT 5828
E 4

INPUT

Examples:
{Continued)

*L1IST
@018 INPUT A,B,CS -
Pg2@ PRINT * NO RETURN®

*RUN

?2 A\ ? 1,2,3 NO RETURN
END AT 0828

®x

DATA

@}

Purpose:

Remarks:

Examples:

val and string lit: a list of numeric values
and string literals.

To provide values for variables appearing in
READ statements.

The DATA statement is a non-executable statement.
The values appearing in a DATA statement or
statements form a single list.

The first element of this list is the first item
in the lowest numbered DATA statement. The last
item in this list is the last item in the highest
numbered DATA statement.

Both numbers and string literals (see Chapter 5)
may appear in a DATA statement and each value in
the DATA statement list must be separated from
the next value by a comma.

100 paTA 1, 17, "AB,CD", -1.3E-13

(See the READ and MAT READ statements for usage
and additional examples.)

—

Purpose:

Remarks:

READ ;

var g }, var]
sva;ﬁ§ f,svarf
var and svar: a list of numeric and

string variables
separated by commas.

To read values from the data list (DATA state-
ments) and assign them to the variables listed
in the READ statement.

READ statements are always used in conjunc-
tion with DATA statements.

The variables listed in the READ statement
may be subscripted or non-subscripted and
may be numeric or string ({see Chapter 5).

The order in which variables appear in the
READ statement is the order in which values
for the variables are retrieved from the
data list.

A data element pointer is moved to the next
available value in the data list as values
are retrieved for variables in READ state-
ments. If the number of variables in the
READ statement exceeds the number of values
in the data list, an END OF DATA error
message is printed.

The mode {numeric or string) of the READ
statement variable must match the mode of
the corresponding DATA element value or a
READ/DATA TYPES error message is printed.

The RESTORE statement can be used to reset
the data element pointer to the first item
of the lowest numbered DATA statement or to
the first item of a particular DATA state-
ment.

READ
{Continued)

Examples:
*LIST
@212 READ A,B,C
2028 READ DL11,DL231,DL3]
9039 PRINT Ct2,DL2]¢2
2849 READ E
285@ PRINT E
228692 READ F$
2978 PRINT F$
0282 DATA 1,2,3,4,5,6,7,"ABCY
8899 END

#RUN

o 25
?

ABC

END AT 00982
)

In this example the variables are assigned
values as follows:

Variable Value
A 1

B 2

C 3
D(1) 4
D{2} 5
D{3) 6

B 7

F$ ABC

3-10

e

RESTORE

Purpose:

Remarks:

Examples:

RESTORE [line no.]

line no.: a DATA statement line
number.

To reset the position of the data element pointer.

If the RESTORE statement is used without a line
number argument, then the data element pointer is
reset to the beginning of the data list.

If the RESTORE statement is used with a DATA
statement line number argument, then the data
element pointer is positioned to the first
value in the DATA statement line.

wl

10
15
20
25
30
40
50

E I B T

READ A,B,C
READ D,E,F
RESTORE 50
READ G,H,I
RESTORE
READ J,K,L
DATA 2,4,6
DATA 8,10,12

In the above example the variables are assigned
values as follows:

Variable Values
A 2
B 4
C)
D 8
E 10
F 12
G 8
H 10
I 12
J 2
K 4
L ()

3-11

OQUTPUT STATEMENTS Cutput statements are used to print the results
of vour program at the terminal.

PRINT &zﬁexpf 5,
i(V'string 1it"{]... 3;
S 1 a substitute for keyword
clv PRINT.
F crpr: a numeric expression.
string lit: a message or prompt. (See
Chapter 5 for detailed
string information.)
Purpose: To perform one of the following print operations
on the user's terminal:
1. Print the result of a computation.
2. Print wverbatum the characters in a string
literal.
3. Print a combination of uses 1 and 2.
4. Print a blank line {skip a line).
Remarks: Printing Numbers

Numbers (integer, decimal, or E-type) are printed
in the following form:

sign number space

The sign is either minus (-) or blank for plus
and the number is always followed by a blank
space. (See Chapter 2 for further details on
numeric formats).

Zone Spacing of Output

The print line on a terminal is divided in print
zones. The width of a print zone is determined
by the TAB command described in Chapter 8. The

3-12

S

PRINT

Remarks:

(Continued)
Zone Spacing of Output (Continued)

default value for TAB is 14 and is used in the
following examples. The first column number on
a line is column O.

0 13114 27128 41142 55156 69
<~ 14 i< 14 i<« 14 = 14 i< 14 -~
columns |columns| columns |columns | columns

A comma [(,) between items in the PRINT statement
list causes the next item to be printed in the
leftmost position of the next printing zone. If
there are no more printing zones on the current
line, printing continues in the first printing
zone on the next line. If a list element
requires more than one print zone, the next item
in the list is printed in the next free print
zone (see example 1).

Before each list item is printed its length is
compared with the space remaining on the line.

If insufficient space is left on the current line
the item is moved to the next line. If the
length of the item is greater than the width of
the page (see PAGE command in Chapter 8) then

an error message 1s issued.

Compact Spacing of Output

A semicolon (;) between items in the PRINT state-
ment list causes the next item to be printed at
the next character position. Note that a space
is always printed after a number and that a

space is reserved for the plus (+) sign even
though it is not printed. (See example 2.)

PRINT

Remarks:
(Continued)

Examples:

1.

Spacing To The Next Line

When the last item in a print list has been
printed, a carriage return and line feed is out-
put unless the last item in the list is followed
by a comma (,) or semicolon (;). In this case
the carriage return and line feed are not output
and the next item is printed on the same line
according to the comma or semicolon punctuation.
(See example 3.)

Printing Blank Lines

A PRINT statement with no list of print items or
punctuation will cause a carriage return and line
feed to be output. (See example 4.)

Additional printing versatility can be accom-
plished by use of the TAB(X) function, the TAB=
command, The PAGE= command the PRINT USING
statements described in Chapters 8 and 9.

*LIST A
921@ LET X=2§ .
2222 PRINT “THE SQUARE ROOT OF X IS:™,SQR(X)

*RUN A

THE SQUARE ROOT OF X IS: 5
END AT 9028

3

4 4 4
o 14 28

{column positions)

PRINT

Examples:
{Continued)

*LIST

8218 LET X=5
B020 PRINT X3 (X%2)163X%235(X*x2) 145
2832 PRINT X-255 (X%2)t85X-1068

*RUN

END AT 8836

E

S 1E+86 1@ 18688 -2¢ IE+@8 =95

R
et
po o>
F...l
o>

21

4 4
26 32

{(column positions)

Lines 20 and 30 use the semicolon (;) form
for keyword PRINT and then use the semicolon

as the spacing character.

#NEY

#5 PAGE=T78

#i@ LET X=5

#28 PRINT X, (X%2)76,
#3¢ PRINT X4

*48 PRINT ®FIN®

#RUN

S 1E+ 86
FIN

END AT B8040
%

625

A
3

14

o >

4
28
(column positions)

Notice that the trailing comma in line 20
causes the value of X%4 in line 30 to be
printed in zone 3 rather than zone 1.

PRINT

Examples:

{Continued)

4.%L15T
819 LET X=5
2029 PRINT X3(X#2)v6,X%2
BZ38 PRINT X=-253(X%2)18
@049 PRINT £-108
2956 PRINT
20678 PRINT "DONE®"

*RUN

5 1E+06 i8
=28 1E+@8

=95

DONE

END AT 00668
%

P 4

14 (column positions)

At line 20, the comma and semicolon spacing
characters are both used. Line 50 cutputs
a blank line before "DONE".

3-16

N
it

TAB (X)

Purpose:

Remarks:

TAB (expr)

expr: an expression which is
evaluated to an integer.

The TAB(X) function, which may only be used in
PRINT statements, tabulates the print position
to the column number evaluated from expr.

1.

Columns are numbered 0 through 71 for con-
ventional terminals. More than one TAB(X)
function may appear in a PRINT statement
and the column number indicated by the
function is always relative to column O.
The position at which the next item in the
print list is printed will depend on the
value of expr and on the punctuation (; or,)
following the TaAB{X) function.

If expr evaluates to a column number greater
than or equal to the current column and less
than the width of the page, then the new
current column position becomes the value of
the expression. If the TAB function is
followed by a semi-colon (;) then no change
is made in the wvalue of the current column
following evaluation of the TAB function.

If a comma (,} follows the TAB function and
if the current column position is at the
beginning of a zone then no further changing
occurs. Otherwise the current column posi-
tion is set to the start of the next zone.
After the determination of the current col-
umn the next PRINT list item is output.

(See PRINT statement remarks.)

If expr evaluates to a column number lower
than the present column number, the TAB(X)
function is ignored, and positioning pro-

ceeds as in 2.

TAB (X)

Remarks:
(Continued)

Example:

If expr evaluates to a column number greater
than the carriage length, the expression is
reduced modulo the carriage length and posi-
tioning proceeds as in 2.

If expr evaluates to 0, then TAB(0) causes
a carriage return and line feed and posi-
tioning proceeds as in 2.

$LIST

2885
P216
eais
282¢

*RUN

LET A=-6

LET B=S5 .
PRINT TAB(B)3A3 TAB(2xB);2%A
END

-6 -12

END AT @020

%

0 (Column positions)

Notice the use of the semicolon (;) in line
15 after "A" to prevent spacing to the next
print zone and passing position 2*B (Column

10).

i

DIMENSIONING
ARRAYS

DIM

g 1Y o

Purpose:

Remarks:

array : a BASIC numeric
identifier.
m < the number of elements

in a one dimensional array.

row: the number of rows in the
array.

col: the number of columns in
the array.

To explicitly define the size of one or more
numeric variable arrays. Dimensioning of string
arrays 1is discussed in Chapter 5.

Array Elements

The concept of arrays is described in Chapter 2.
The DIM statement is used to declare the size of
an array to be a number of elements other than
the default number (10) for each dimension.

* 10 DIM A(13),B(7,7),C(20,5)

The initial value of all elements in an array is
zero until assigned a value by the user's pro-
gram.

Any variable or expression that is used for a
subscript must evaluate to a value in the range:

l<value<upper bound declared in DIM statement

* 5 X=2
* 10 PRINT A(1,X*2)

If the variable or expression subscript does not

evaluate to an integer, BASIC will convert it
using the INT function {(See Chapter 4).

3-19

DIM

Remarks: Array Elements (Continued)
(Continued)

If a subscript evaluates to an integer largexr
than the upper bound of the dimension for the
array or smaller than 0, the subscript error

message is printed.

Redimensioning Arrays

It is possible to redimension a previously
defined array during execution of a program

by declaring the array in another DIM statement.
The total number of elements of the newly
dimensioned array must not exceed the previous
total number of elements.

* 100 DIM A(3,2)

* 200 DIM A(2,3)

* 300 DIM A(2,2)

The values assigned to elements in array A(3,3)
are reassigned to elements in array A(2,3) and
then to elements in array A(2,2).

1 2 3 1 2 3 1 2

4 5 © 4 5 6 3 4

7 8 9
A(1,1) =1 A(1,1) = 1 A(L, 1) = 1
A(1,3) = 3 A{1,3) = 3 A(2,1) = 3
A(2,1) = 4 A{2,1) = 4 a{(2,2) = 4
A(2,2) = 5 A{2,2) = 5
A(2,3) = 6 A{2,3) = 6
A(3,1) =7
A(3,2) = 8
A(3,3) =9

3-20

- 7
i

PROGRAM LOOPS

FOR and NEXT

g (Y [0

Purpose:

Programs which require the repetitive operation
of a block of statements until a termination
condition is met can be simplified by use of a
FOR - NEXT program loop.

A program loop begins with a FOR statement which
provides the specifications for repetition, a
block of statements which is executed during each
repetition of the program loop, and a NEXT state-
ment which denotes the end of the loop.

FOR statement
{(block of statements)
NEXT statement

FOR control var = exprl TO expr? [STEP expri]
(Block of statements)
NEXT control var

control var: a non-subscripted numeric

variable.

exprl: a numeric expression which
defines the first or ini-
tial value of the control
variable.

exprl: a numeric expression which
defines the terminating
value of the control vari-
able.

exprd: a numeric expression which
defines the increment added
to the control variable
each time the loop is
executed.

(Block of statements): any statements which may

also contain FOR - NEXT
loops.

To establish the initial, terminal and incremen-
tal values for a control variable which is used

to determine the number of times a block of
statements contained in a FOR - NEXT loop are to
be executed. The loop is repeated until the value
of the control variable meets the termination
condition.

3-21

Remarks:

control variaple must not be subscripted.
Every FOR or NEXT statement must have a
matching NEXT or FOR statement or an error
message is printed.

Expressions exprl, exprZ and exprsd may have
prds / f

positive or negative values and exprd must

not be zero. '

If STEP exprs is omitted from the FOR - NEXT
statement, then exprd is assumed to be +1.

The termination condition for a FOR - NEXT
loop is dependent upon the values of exprl
and expr3. The loop terminates if: ewxprsd
is positive and the next value of control
var is greater than exprZ; exprd is negative
and the next value of control var is less
than expri.

If the value of exprl (the initial value)
meets the termination condition, then the
loop is not performed even once.

If the body of a FOR - NEXT loop is entered
at any point other than the FOR statement,
then, upon encountering the NEXT statement
corresponding to the skipped FOR statement
an error message will be issued.

When the termination condition is met, the
loop will be exited and the valué of the
control var will be final value of control
var,

g

FCR and NEXT

Remarks:

{Continued)

8. A loop may be exited using a GOTO or GOSUR
arial

met the termination condition.

Program Loop Operation

1. The expressions exprl, expri and exprd
are evaluated. If exprd is not specified
it is assumed to be +1.

2. The control var is set equal to exprl.

3. If exprd is positive and control var>expr?
then the termination condition is satisfied
and control is passed to the statement fol-
lowing the corresponding NEXT statement.

If exprd is negative and control var<expre
then the termination condition is satisfied
and control is passed to the statement fol-
lowing the corresponding NEXT statement.

Otherwise, the following steps are performed.

4, The statements in the FOR - NEXT block are
executed.

5. When the corresponding NEXT statement is
executed, control var is set equal to

control var + exprs.

6. Repeat step 3.

Nesting Loops

FOR - NEXT loops may be nested to a depth speci-
fied by the system manager. The FOR statement
and its terminating NEXT statement must be com-
pletely contained within the loop in which it is
nested. For example:

3-23

FOR and NEXT {(Continued)

(Continued)

Remarks:
Nesting Loops (Continued)
Legal Nesting Illegal Nesting
FOR X = e FOR X = ...,
FOR ¥ = FOR Y = ...
FOR 2 = ... NEXT X
NEXT Z NEXT Y
L NEXT Y
NEXT X
Examples: 1. *¥LIST ;
812 FOR I=1 TO 9 < I equal last value
2028 NEXT I - assigned during
8638 PRINT I execution of loop.
*RUN
9
END AT 8039 .
*
2 *LIST .
P24% FOR J=1 TO 9 STEP 3 < Final value
@858 NEXT J of J before
2068¢ PRINT J terminating
R value was
*RUN exceeded.
7
END AT 0060
*

L

FOR and NEXT 3, *LIST o

9018 LET P=3,14159

2228 FOR 1=8%P/188 TO 360%xP/188 STEP 45%P/18¢9
0030 PRINT TAB(30+18%SINCI)33 K"

e 9847 FOR J=1 TO 3 ,
3050 PRINT TAB(30)3 "%*
2060 NEXT J
2070 NEXT 1
*RUN
X
*
*
*
X
x
*
*
X
*
E 3
*
x
*
*
%*
%
*x
*
) *
X
*
E 3
) *
X
*
x
*
X
*
*
%
X
*
*
™
END AT 0070
*

FOR and NEXT

Examples:
(Continued)

{Continued)

*L1IST .

g21@ FOR I=1 TO 3 STEP =1

po2e PRINT "SHOULD NOT ENTER HERE"
P03¢ NEXT 1

8049 PRINT I

*RUN
1

END AT 0048
*

3-26

S

GOSUB and RETURN

o fn

Purpose:

Remarks:

A subroutine is a group of program statements
which is entered via the GOSUB statement and
exited via the RETURN statement. Rather than
repeat the statements at each point they are
required, the statements are written into the
program only conce and are accessed by a GOSUB
statement. The RETURN statement allows control
to return to the statement following the last
GOSUB statement. In this manner, the program
continues at the‘appropriate place after the
subroutine has been executed.

GOSUB Line no.
RETURN

line »no.: a line number.

GOSUB directs program control to the first state-
ment of a subroutine. RETURN exits the sub-
routine and returns program control to the next
statement following the GOSUB statement that
caused the subroutine to be entered.

1. A subroutine may only be entered by using a
GOSUB statement. Otherwise, the RETURN-NO
GOSUB error message 1s printed when the
RETURN statement is executed.

2. A subroutine may have more than one RETURN
statement should program logic require the
subroutine to terminate at one of a number
of different places.

3. Although a subroutine may appear anywhere
in a program, it is good practice to place
the subroutine distinctly separate from
the main program. In oxrder to prevent
inadvertant entry to the subroutine by other
than a GOSUB statement, the subroutine

3-27

GOSUB and RETURN

Remarks:
Continued)

Examples:

should be preceded by a STCOP statement or
GOTO statement which directs control to a
line number following the subroutine.

Subroutines may be nested to a depth speci-
fied by the system manager. Nesting occurs
when a subroutine is called during the exe-
cution of a subroutine. On execution of a
RETURN statement, control is passed to the
statement immediately following the most
recently executed GOSUB statement.

. *LIST

@618 LET A=6

3928 GOSUB 01086

893@ LET A=10

2849 GOSUB @100

2859 sSTOP

@120 FOR 1I=1 TO A STEP 2
2118 PRINT 13

2128 NEXT 1

@132 PRINT

2148 RETURN

*EUN
i 3 s
i 3 5 7 9

STOF AT @858
*

GOSUB and RETURN

Examples: 2. #L1ST .

{Continued) Boig GOSUB 2040 .
@620 PRINT » EXAMPLE"
283¢ STOP

2042 PRINT "NEST":
P85¢ GOSUB @880
0268 PRINT "INE™;
207¢ RETURN

208¢ PRINT "ED"3
999¢ €0OSUB @128
2198 PRINT “ROUT"™:
2119 RETURN
212¢ PRINT "™ SUB™;
2138 RETURN

*RUN o ,
NESTED SUBROUTINE EXAMPLE

STOP AT 0030
*

3-29

BRANCH STATEMENTS

GOTO

Purpose:

Remarks:

Examples:

The following statements permit branching from
one portion of a program to another. The GOTO
statement is unconditional and provides branching
to the line number specified in the statement.
The ON-GOTQO/GOSUB and IF-THEN statements are con-
ditional and branching occurs on the basis of
evaluated conditions.

GOTO line no.

line vno.: a program statement line

number.

To unconditionally transfer control to a state-
ment that is not in normal sequential order.

1. If control is transferred to an executable
statement, that statement and those follow-
ing will be executed.

2. If control is transferred to a non-execut-
able statement (e.g., DATA) program execu-
tion will continue at the first executable
statement which follows the non-executable
statement.

(Continued on next page)

g’

GOT0

Examples: ’;;Ilg'raw «

2828 PRINT X

G839 GOTO 201¢

2048 DATA 1,2,304,5
2358 DATA 20,21,23
2868 END

(Continued)

29
21
23

ERROR 15 AT @81¢ - END OF DATA
x

Purpose:

Remarks:

rel-expy: a relational expression as
defined in Chapter 2.
r: a numeric expression.
statement: any BASIC statement except
FOR, NEXT, DEF¥, END, DATA
and REM.

To execute a statement on the basis of whether
an expression or a relational expression is true
or false.

1. If, after evaluation, the relational expres-

sion, rel-expr, is true, then the program
statement following the THEN is executed.

If the relation is false, program execution

continues at the next sequential statement
after the IF--THEN statement.

2. A numeric expression (expr) may be used in
place of a relational expression. The

numeric expression is considered false if it

has a value of 0 and is true if it has a
non-zero value.

Note: Since the internal representation of non-
integer numbers may not be exact ({(for example

.2 can not be exactly represented), it is advis-
able to test for a range of values when testing
for a non-integer. For example, if the result
of a computation, A, was to be 1.0 a reliable
test for 1 is

IF ABS (A-1.0)<1.0E-6 THEN...
If this test succeeds, then A is equal to 1 to
within 1 part in 1046. This is approximately
the accuracy of single precision fleoating point
calculations.

3-32

IF -- THEN

Examples:
(Continued)

EE T
L
-

IF A=B THEN GOTC 100

IF A=B GOTO 100

IF A-B <= THEN C=0

IF B < 50 THEN GOSUB 300

Ak
IF AtB > 100 GOSUB 400

Lines 10 and 20 are equivalent variations

of the IF -- THEN statement.

#LIST

2095 REM=-=-«START

9818 LET N=10 :

2028 INPUT "X=",X

0339 !F X THEN GOTO €058

6249 GOTO @iog

8050 1IF X>=N THEN GOTO 0084

8060 PRINT X,"X 15 LESS THAN 18"

2079 GOTO ©@28 . -

208% PRINT X,"X GREATER OR EQUAL TO 18"
2299 GOTO 0826

3168 PRINT X,*X=g"

#1128 END

E=RUN

KX=5 .

5 X IS LESS THAN 19

KX=7 . .

7. X 15 LESS THAN 10

K= (2 : .
Ji2 X GREATER QR EQUAL TO 18
X= 18 , .

.19 X GREATER OR EQUAL TO 182
X=8

174 X=g

END AT 9ii@

E

(e8]

-33

IF -- THEN

Examples:
Continued)
3.%LIST
820192 LET X=5
3222 LET A3="12ABC34" . .
2230 1F X=5 THEN IF AS$(3,X)="ABC" THEN PRINT "SUPER"
2948 END

*RUN
SUPER

END AT 0040
&

This example compares strings in the
relational expression. See Chapter 5
for detailed string information.

ON-GOTO
ON-GOSUB

LSl (OF 1%

Purpose:

Remarks:

Example:

% line no. [,1line no.l...

expr: a numeric expression which
is evaluated to an integer.
line no.: a list of line numbers in
the current program whose
positions in the argument
list are numbered from 1
through n.

To transfer control to one of several lines in a
program depending on the computed value of an
expression at the time the statement is executed.

1. The expression expr is evaluated and if it
is not an integer, the fractional portion
is ignored.

2. The program transfers control to the line
number whose position in the argument list
corresponds to the computed value of expr.

3. If expr evaluates to an integer that is
greater than the number of lines given in
the argument list or that is less than or
equal- to zero, the ON statement is ignored
and control passes to the next statement.

4. ®he ON-GOSUB statement must contain an argu-
ment list whose lines are the first line of
subroutine within the current program.’

*10 ON M-5 GOTO 500,75,1000

If M-5 evaluates to 1, 2 or 3 then control will
transfer to statement 500, 75 or 1000, respec-
tively. If M~5 evaluates to any other value,
control will transfer to the next sequential
BASIC statement in the program.

INTRODUCTION
TO EXTENDED
BASIC
FUNCTIONS

CHAPTER 4

EXTENDED BASIC FUHCTIONS

Extended BASIC provides functions to perform cal-
culations which eliminate the need to write pro-
grams to perform these calculations. The func-
tions generally have a three character mnemonic
name and are followed by a parenthesized expres-
sion (expr) which is the function argument. Gen-
erally, a function may be used as an expression,
or may be included as part of an expression.

The following extended BASIC functions are de-
scribed in this chapter.

Function Value Produced

RDN (X) Random number between 0 and 1

SGN (X) The algebraic sign of X

INT (X) The integer value of X

ABS (X) Absolute value of X

SOR(X) Square root of X (X > 0)

BXP (X) eX (-178 < X < 175)

LOG{X) Natural logarithm of X (X > 0)

SIN(X) Sine of X (X expressed in radians)

COs {X) Cosine of X (X expressed in radians)

TAN (X) Tangent of X (X expressed in radians)

ATN (X) Arctangent of X (result expressed
in radians)

SYS (X) System functions

FNa (d) User defined function

In addition, there are a number of functions
which are described in other chapters of this
manual which relate to strings, matrices and
files.

INTRODUCTION
TO EXTENDED
BASIC FUNCTIONS
(Continued)

Function
TAB (X) Printing Function

LEN(XS$)
POS (X$,YS$,2)
STRS (X)
VAL(SS)

String Functions

EOF (X) File Function

Refer to Chapter

3

ARITHMETIC
FUNCTIONS

RND {X)

IO [n

Purpose:

Remarks:

RND (expr)

expr: a numeric expression
(required, but not used).

Tc produce a pseudo-random number N, such that
0 <N < 1.

The RND function requires an argument {(gxpr),
although the argument does not affect the result-
ing random number nor does the RND function
affect the argument.

The RND function, each time it is called, pro-
vides a pseudo-random number in the range 0 to 1.
The sequence in which these numbers is provided
is fixed. The length of the sequence is 2416 for
single and double precision arithmetic.

Since the sequence of pseudo numbers is fixed,
and the start point in the sequence is reset to
the same point each time a NEW or RUN is issued,
the sequence of numbers provided by RND is repro-
ducible (see RANDOMIZE for exceptions). The
sequence generated on systems using double pre-
cision is different from that generated on sys-
tems using single precision.

Each occurance of the RND function yields the
value of the next random number in the list.

RND(X)
{Continued)

Examples:

ot

*LIST .

2295 TAB =10

9818 FOR I=1 TO 4
2820 PRINT RND(1).,
9938 NEXT I

*RﬁN

«21132 « 14464 +8526285 «927854
END AT @930
*RUN

«21132 s 14464 «852625S e927054
END AT 0930
*

Running the above program a second time will
produce the same five random numbers.

*«LIST

ge8S5 TAB =10

2616 FOR J=1 TO 4

ge2a PRINT INTC(1@%RND(1)),
2839 NEXT J

*RON

2 1 8 9
END AT @838

*

This program will produce five random
integers in the range 0 to 9.

——

RANDCMIZE

Purpose:

Remarks:

Example:

RANDOMIZE

To cause the random number generator to start at
a different point in the sequence of random num-~
bers generated by RND.

Normally the same sequence of random numbers is
generated by successive use of the RND function.
This feature is useful for debugging programs.
When the program has been found to run success-
fully, the RANDOMIZE statement should be included
in the program before the first occurrence of a
RND function if different start points in the
sequence are desired.

The RANDOMIZE statement resets the random number
generator based on the time of day thereby pro-
ducing different random numbers each time a pro-
gram using the RND function is run.

*10 RANDOMIZE
*20 PRINT RND(O)

This program will print a different value each
time it is run.

145}
@
g
s
o

SGN (expr)

expr: a numeric expression.

)
C
Y
Purpose: To return a +1 if expr is greater than 0, a
0 if expr equals 0, and a -1 if expr is less
than O.
Example: *LIST

608106 LET A=-3
2229 PRINT SGNCA)

*RUN
~1

END AT 0020
*

INT(X) INT(expr)

expr: a numeric expression.

To return the value of the nearest integer not

Purpose:
- greater than expr.

Examples: 1. *=L1ST
2010 PRINT INT(15.8)

*RUN
15

END AT 9010
*
2. =LIST
8212 PRINT INT(=15.8)

*RUN
-16

END AT 02010
*

3. xLIST
P18 PRINT INT(15.8+.5)

*RUN
16

END AT 2010

ABS (X)

63}

Purpose:

Example:

crpr: a numeric expression.

To return the absolute (positive) value of expr.

*LIST
2318 PRINT ABS(-38)

*RUN
30

END AT 8018
o

o

SOR (X)

193]

Purpose:

Examples:

D

SOR (expr)

expr: a positive numeric
expression.

To compute the square root of expr.

*LIST
@010 LET A=S ,
2029 PRINT SQRC(At2+75)

*RUN
10

END AT 0628
™

EXP(X) EXP (2xp7r)

expr: a numeric expression

S (-178 < expr < 175).
C
F |V
Purpose: To calculate the value of e (2.71828) to the
power of expr.
Example: *LIST

2010 REM-CALCULATE VALUE OF Et1.5
2228 PRINT EXP(1.5)

*RUN
4.48169

END AT 2029
*

LOG(X) LOG (expr)

expr: a numeric expression.

Purpose: To calculate the natural logarithm of zgxpr.

Example:

*LIST .
20106 REM-CALCULATE THE LOG OF 959
2022 PRINT LOG(959)

*RUN
6.86589

END AT 2828
*

TRIGONOMETRIC
FUNCTIONS

SIN(X)

Purpose:

Example:

SIN{expr)

expr: a numeric expression
specified in radians.

To calculate the sine of an angle which is
expressed in radians.

*LLIST

0016 REM~-PRINT SINE OF 3¢ DEGREES
2022 PRINT SIN(3@%SYS(15)/188)

*RUN
5

END AT 09290

Cos (X} Cos(expr)

expr: a numeric expression

S specified in radians.
C
ElV
Purpose: To calculate the cosine of an angle which is
expressed in radians.
Example: *LIST

2210 REM-PRINT COSINE OF 3¢ DEGREES
2820 LET P=SYS(15)/188
8338 PRINT COS(38%P)

*RUN
8660825

END AT €030
*

TAN (X) TAN (expr)

a numeric expression
specified in radians.

KY%
g
3

[63]

C
rlV
Purpose: To calculate the tangent of an angle which is
expressed in radians.
Example: *LIST

0010 REM=PRINT TANGENT OF X DEGREES
020 INPUT "X DEGREES ", X

2830 LET P=3.14159/180

@040 PRINT TAN(X*P)

*RUN
X DEGREES 45
«999999

END AT 02049
*

i

ATH (%)

[N @) 26

Purpose:

Example:

ATN (expr)

expr: a numeric expression.

To calculate the angle (in radians) whose
tangent is expr. (-7m/2 < ATN (expr) < 7/2).

*L]1ST

0610 REM-CALCULATE ANGLE WHOSE TANs2
2028 PRINT ATNC2)

 *RUN

1.18715

END AT 0628
*

4-15

SYSTEM
FUNCTIONS

SYS({X)

w2

LN (N (7]

Purpose:

0
<
i
©

R

expr: a numeric value or
expression.

To retyrn system information based on the value
of expr which is evaluated to an integer

(0 to 16).

SYS(0)
778YS (1)
> 8YS(2)

SYS(3)

SYS (4)

SYS (5)

SYS (6)

SYS(7)

5 5YS(8)

SYS(9)
SYS (10)

ﬂ,? SYS (11)

SYS (12)
SYS(13)
SYS(14)

SYS(15)
SYS(16)

the time of day (seconds past midnight)
the day of the month (1 to 31)

the month of the year (1 to 12)(current
the year in four digits date
{e.g., 1975)

the terminal port number (-1 if opera-
tor's console)

CPU time used in seconds to the nearest
tenth

I/0 usage (numbers of file I/0 state-
ments executed)

the error code of the last run-time
erroxr

the file number of the file most recent-
ly referenced in a file I/0O statement
page size

tab size

hours

minutes } current time of day

seconds
seconds remaining before expiration

of timed input
PI (3.14159)
e (2.71828)

- 4-16

USER DEFINED

FUNCTIONS
DEF DEF FNa(d) = expr
a a single letter A to Z.
s v d: dummy arithmetic variable
C that may appear in expr.
E expr: an arithmetic expression
which may contain variable d.
FNa (d)
S
C
F|/

Purpose: To permit the user to define as many as 26
different functions which can be repeatedly
referenced throughout a program. Each function
returns a numeric value.

Remarks: 1. The dummy variable named in the DEF state-

ment are not related to any variables in

the program having the same name; the DEF
statement simply defines the function and
does not cause any calculation to be carried
out.

2. In the function definition, the expr can be
any legal arithmetic expression and may
include other user-defined functions. Func-
tions may be nested to a depth specified by
your system manager.

3. Function definition is limited to a single
line DEF statement. Complex functions
which require more than one program state-
ment should be constructed as subroutines.

DEF
FNa(d)
(Continued)

Examples: *L1IS5T
@216 DEF FNE(JI=(J12)+2%J+1]
p228 LET Y=FNE(S)
8638 PRINT Y

#*RUN
36

END AT 2868382
*

In line 10 the FNE function is defined.
In line 20 the FNE function is referenced
and evaluated with numeric argument 5.

#*LIST

P8BS TAB =14

2019 LET P=3,14159

0828 DEF FNR(X)=X%P/188
@238 DEF FNS(X)=SIN(FNR(X))
2840 DEF FNC(X)=COS(FNR(X))
3958 FOR X=0 TO 45 STEP 5
11y PRINT X,FNS(X),FNC(X)

878 NEXT X
*RUN
2 -] i
5 8.71557E-82 e 996195
ig » 173648 2984808
13 »258819 e 265526
29 « 34282 2939693
25 s 422618 +9263€3
38 '] «83660626
35 « 573576 «8191582
40 « 642787 e 766645
4% « 787186 2787187
END AT 8878
&

This example illustrates the nesting of
user defined functions.

4-18

R

STRING
CONVENTIONS

String
Literals

CHAPTER 5

STRING TNFORMATION

A string is a sequence of characters which may
include letters, digits, spaces and special char-
acters. A string literal (constant) is a string
enclosed within gquotation marks. String literals
are often used in PRINT and INPUT statements as
described in Chapter 3.

*100 PRINT "THIS IS A STRING LITERAL"
*¥200 INPUT "X=",6X

The enclosing guotation marks are not printed
when the string is output to a terminal. non-
printing and special characters may be included
in string literals by enclosing the numeric
equivalent of the character within angle brackets
(< >). See Appendix E for the decimal equiva-
lents of ASCII character codes.

*10 PRINT "USE DECIMAL 34 TO PRINT <34> IN STRINGS"

* RUN)
USE DECIMAL 34 TO PRINT " IN STRINGS

btr%na
Variables

Dimensioning

String
Variables

2377
vart -

xtended BASIC permits the use of string v
les as well as string literals. A string var-
ble name consists of a letter, or a letter and

digit, followed by a dollar sign ($).

T T =<

Legal String Variables | Illegal String Variables

a3 ARS
A2S 23
D6S 3CS

String values are assigned to string variables
by the use of LET, INPUT and READ statements.

Unless a string variable is declared in a DIM
statement, extended BASIC assumes a maximum
string length of 10 characters or less. There-
fore, undimensioned string variables longer than
10 characters which are used in LET, READ and
INPUT statements are truncated to 10 characters.
Good programming practice would suggest that all
string variables be dimensioned, regardless of
size.

*10 DIM A$ (25), B3$ (200)

There is no limitation on string variable size
other than available memory limitations. In the
DIM statement above, A$ has a maximum string

length of 25 and B3$ has a maximum string length
of 200.

*LIST

1@ DIM A230151]

P@20 LET A2%="PRINT A2% IS THIRTY CHARACTERSY
2232 PRINT A2S%

*RUN
PRINT A28 IS TH

END AT @030
*

M

Substrings

Program statements which use string variables may
also use portions of strings {(substrings) by sub-
scripting the string variables. Subscripted
string variables are of the general form:

svar B;;H

svagr: string variable name.
x: xth through last character
of svar.
vrs2: vyth through zth characters
inclusive of svar.

For example:

AS References the entire string.

AS(2) References the second character
through the last character in the
string inclusive.

AS(I) References position I through the
last character in the string
inclusive.

AS(3,7) References characters occupying
positions 3 through 7 inclusive.

AS(I,T) References characters occupying

positions I through J inclusive,
where I and J are evaluated to
character positions in the string
and I < J.

AS(1,1) References only the first character
in the string.

*LIST

2235 DIM AISL28)]

B6812 LET AlsC1,3)="SUB"

2822 LET A1804,181="STRING "
0832 LET Al1$[11,171="EXAMPLE"
@240 PRINT Als

*RUN
SUBSTRING EXAMPLE

END AT 0040
*

Substrings
{Continued)

String variable assignments may be changed during
a program. For example:

*LIST

281¢ LET A$="ABCDEF"™
2628 PRINT AS

283¢ LET BS="1"

2248 LET AS[3,3)=BS
#2952 PRINT AS

2260 LET A${4)=BS
2972 PRINT AS

*RUN
ABCDEF

AB]DEF
AB11

END AT 00278
*

5-4

S

Assigning Values To

String Variables

A string variable can be assigned a string value
by the use of READ and DATA statements. When
string data is included in a DATA list, the
string elements must always be enclosed in quot-
ation marks.

*L1ST

2685 DIM Als[{28),B$L181,D8(5]

9212 READ A,Al$,B$,C,D3%

@215 PRINT A,C,DS%

93228 DATA S, ABCDY,"EFGH", 18,"1JKL"”

*RUN
5 10 LJKL

END AT @228
*

As indicated by this example, string data and
numeric data may be intermixed in a DATA list.
However, the variables in the READ statement must
match (numeric or string) the elements of the
DATA list or an error message will be output.

String data may also be input to a program by the
use of INPUT statements. When responding to the
INPUT statement question mark (?), the use of
quotation marks to enclose the string is optional.
If data for more than one string variable is re-
quested by the INPUT statement, the string data
elements entered must be separated by a comma or
a carriage return. Commas may be included in a
string by enclosing the entire string in quota-
tion marks. Quotation marks may be included by
enclosing the value 34 in angle brackets. Cau-
tion must be exercised when NUL or CR characters
are included since they are record delimiters.

*10 INPUT AS, BS, C, D, ES

RUN}
?ABCD, EF,GH, 2, 4, “SIX”)

Strings in

IF - THEN

Statements

As mentioned in Chapter 3 (IF - THEN statement)
strings may also be used in the relational expres-
sion of an IF - THEN statement. In this case,
the strings are compared character by character
on the basis of the ASCII character value (see
Appendix E) until a difference is found. If a
character in a given position in one string has

a higher ASCII code than the character in that
position in the othexr string, the first string

is greater. If the characters in the same posi-
tions are identical but one string has more char-
acters than the other, the longer string is the
greater of the two.

[

*200 LET AS
*300 LET BS$

"ABCDEF"
""25 ABCDEFG"

i

-

.

*310 IF AS$>BS GOTO 500 <True. Transfer occurs.
*320 IF AS$>BS$(4) GOTO 500 <«False. No transfer.
*330 IF AS$(1,4)=BS$(4,7) GOTO 500 <«True.

Transfer occurs.

g

s

String

Concatenation

String variables and string literals may be concat-
enated on the right hand side of LET statements,
using a comma {(,) as the concatenation operator.
For example:

*100 DIM A$ (50), BS (50)

*110 LET A$="@$2.50 EACH, THE PROFIT MARGIN IS 15.8%"
*120 LET B$=A$ (1,4), "25", A$ (7,35), "1.2%"

*130 PRINT B$

* RUN)

@$2.25 EACH, THE PROFIT MARGIN IS 11.2%.

STRING
FUNCTIONS

LEN (X3)

F:1 () [0

Purpose:

Remarks:

Example:

A number of string functions are implemented in
extended BASIC which increase string handling
capabilities. The string functions are:

LEN (X$)
POS (X$,Y5,2Z)
STRS (X)
VAL (X$)

LEN (svar)

gvar: string variable

To return a value equal to the number of charac-
ters currently assigned to string variable svar.

The LEN (X$) function may be used with any pro-
gram statement which has an expression (expr)
argument.

208S
261
2e2a
20A0
0250
P60
2070
2882
0690
2100
g1i10

*RUN

DIM AS$[8@1,B1s(82]

INPUT AS,BlS

LET B=LENC(CAS)

IF B>LEN(BI1S$) THEN GOTO 206¢
GOTO 8109

PRINT "LENGTH OF A$="3LEN(AS)
PRINT "LENGTH OF Bls=*;LEN(BIlS)
PRINT ""AS>Bls"

GOTO 2112

PRINT *Bl$>As"”

END

? CHEESE ? CAKE
LENGTH OF As= 6
LENGTH OF Bls= 4
A$5>B1S%

END AT 0110

5-8

POS (X$,Y$,2)

N (OF (0]

Purpose:

Remarks:

Example:

ay string variable,.
1t: string literal.
o5 numeric expression.

To determine the location in a string (svarl or
string litl) of the first character of the first
occurrence of a substring (svarl or string Li1t2)
beginning at or after position expr.

The POS function returns a value egqual to the
first position of the substring in the string.
If the substring cannot be found in the string,
the POS function returns a value of zero. If
the value of the starting position from expr is
less than zero, an error message is output.

*L1ST

2¢95 DIM As(301

9912 LET A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"™
2829 LET A=POS(AS$.,"MNOP",6)

2238 PRINT A

*RUN
13

END AT Q0030
*

In this example, a search is made for "MNOP"
starting from the sixth character (N) in string
A$. A match is found which begins at the 13th
character in string AS. Therefore, the POS func-
tion returns a value of 13 which is assigned to
variable A.

STRS$ (X)

ER @312

Purpose:

Remarks:

Example:

STRS (gxpr)

Ly

expr: a numeric expression.

To convert a numeric expression to a string
which is its decimal representation.

Converting numerics to strings permits string
manipulation by other string handling functions
and statements.

*LIST

@819 READ A

go1s 1F A=¢ THEN STOP

2220 LET A$=STRS(A)

2030 1F A$L4,61=%222% THEN GOTO £0508
ge4e GOTO 6870

@858 PRINT A3;"™ =-THIS 1S MODEL 222 FRAMISHAM"

80623 GOTO 0010
287@¢ PRINT A3*" ~-THIS ISN'T OUR FRAMI SHAM"
2089 DATA 111222,212222,123456,0
BP90 GOTO 00219

*RUN
111222 -THIS 1S MODEL 222 FRAMISHAM
212222 ~THIS 1S MODEL 228 FRAMI SHAM
123456 =THIS ISN'T OUR FRAMISHAM

STOP AT €@15
x

VAL (X$)

@]

Purpose:

Remarks:

Example:

svar: a string variable
comprised of numbers.

string lit: a string literal
comprised of numbers.

To return the decimal representation of a string
variable or string literal.

The string variable or string literal argument
+o the VAL function must consist entirely of
numbers or an error message will be output. The
value returned by the VAL function may be used
in numeric arithmetic expressions.

*LIST

2219 LET A$="12345"
9020 LET B=54321
#2308 LET C=aVAL(AS)
@040 LET D=B+C

985¢ PRINT D

*RUN
66666

END AT 2058
*

5-11

Arithmetic operations may be performed on string
variables and string literals. The arithmetic
operation will be executed provided the strings,
or substrings which begin at the first character
of the strings, have legal numeric values. Any
alphanumerics which follow the numeric substring
are ignored. If the substring is not a legal
number, an error message 1s output.

STRING
ARITHMETIC

Valid String Invalid String
"123" "FRED"

"123." "123.E+FRED"
"-123." "o+123"
"-123.E5"

"-123.E-5FRED"

Notice that decimal points, signs, and exponen-
tial format are permitted in the substring so
long as they conform to the numeric representa-
tion described in Chapter 2.

The operators +, -, *, and / may be used to link
strings and create an expression to be evaluated
numerically. The concatenation character (,)

may not be used in a string arithmetic expression.

*LIST

221¢ LET A$="1234 GEARSY
9820 LET B$=""5678 GEARS"™
8830 PRINT AS+BS+¥ig*

*RUN
6922,

END AT 2038
*

Eighteen digits of precision are returned when
string arithmetic calculations are made. If any
precision is lost, an error message 1s output.
For example:

PRINT "123E27" + "5.793E-4"

This statement would cause an error message since
the decimal point location for the two strings
causes the number of significant digits to be
greater than 18.

5-12

e’

DIMENSIONING

CHAPTER v

NATRIX FANIPULATION

Matrices can be dimensioned by an of three
methods:

1. Using a DIM statement to declare the
number of rows and columns in the matrix.
2. Including the matrix dimensions in a
matrix statement.

3. Allowing a default size of 10 rows and
10 ceolumns by not specifying dimensions in
a DIM or matrix statement.

It should be noted that matrices do not have row
0 or column O, and as in all BASIC arravs, matrix
elements are stored by row in ascending locations
in memory.

A number of matrix statements allow dimensioning
and redimensioning so long as the new dimensions
do not exceed the size of the matrix declared in
a DIM or initialization statement. For example:

*20 DIM A(15,14) <210 elements in matrix A
*40 MAT A=CON(20,7) <140 elements
*60 MAT A=ZER(10,10) <100 elements

Statements 40 and 60, above, redimension matrix
A as well as perform matrix operations described
later in this chapter. The user's attention is
also directed to matrix file statements in
Chapter 7, File Input and Output.

MATRIX
MANIPULATION
STATEMENTS

Matrix Assignment

(@]
=4

Purpose:

Remarks:

Example:

The following statements are used to copy or
initialize a matrix.

MAT rmwarl = muar

mvar: matrix variable name.

To copy the elements of matrix mwar2 into
matrix mvarl.

This is the matrix assignment statement. Matrix S
mvarl will assume the identical dimensions and ”3
values of matrix mvar2.

*LIST

2212 DIM ArL2,2]
g02@ LET All1,13=5
283¢ LET Al1,21=10
92335 MAT PRINT A
PG48 MAT B=A

9650 MAT PRINT B

*RUN
5 10 .
2 o <Matrix A
S 19 .
2 e “~Matrix B

END AT 08250
*

Line 40 will assign matrix B the same dimensions

as matrix A and will also assign any element val- ;
ues in matrix A to the corresponding elements in)
matrix B. Therefore, B(1l,1) = 5 and B(1,2) = 10. g

6-2

Zero Matrix
(ZER)

=

Purpose:

Remarks:

Example:

MAT

mar = ZER [(row,col)

matrix variable name.
number of rows in matrix.
number of columns in
matrix.

To set the value of each element in a matrix

to zero.

L4

The form MAT mvar = ZER is used for previous-
ly dimensioned matrices.

2. The form MAT rwar = ZER (row,col) is used if
the matrix was not previously dimensioned or
if the matrix is to be redimensioned.

3. The matrix elements are set to zero regard-
less of any previously assigned values.

*L,IST

2805 TAB =5

6018 DIM AL3,4]
0920 LET Al 1,21=6
232 LET AL3:,41=108
2243 MAT PRINT A
9058 MAT A=ZER[J, 3]
2868 MAT PRINT A
*RUN

1] 6 @ 2

] 2 2]

@ 2 8 19

e 9 2

{3} @ g <Matrix A after

] 2 8 line 50.

END AT 0860
*

Zero Matrix

{ZER)
Example: In line 50, matrix A is redimensicned and all
{Continued) elements are assigned a value of zero.

(con)

W
Py

@]

nit Matrix

Purpose:

Remarks:

Example:

jr—

MAT mugr = CON [(Paa;ccli

muar: matrix variable name.
row: number of rows in matrix.
coil: number of columns in
matrix.

To set the value of each element in a matrix

to one.

1. The form MAT mvar = CON is used for previ-
ously dimensioned matrices.

2. The form MAT mwar = CON (row,col) is used if

the matrix was not previocusly dimensioned or
if the matrix is to be redimensioned.

3. The matrix elements are set to ones regard-
less of any previously assigned values.

*LIST

8o@s
k010
2020
2830
0040
2058
2260

*RUN

8
@

1
i

TAB =§

DIM Af2,5]3

READ AC1,13,Al1,2),A01,5)
DATA 8,9,10,11,12

MAT PRINT A

MAT A=CON[2,4]

MAT PRINT A

o o
[~
o ®
L)

“~Matrix A after
line 50.

L3
P
-

END AT 00682

*

In line 50, matrix A is redimensioned and all el-
ements of the matrix are assigned a value of one.

6-5

Identity Matrix MAT mvar = IDN [(row, col)]

{IDN)
myar: matrix variable name,
row: number of rows in matrix,
s iV col: number of columns in
cl/ matrix,
Purpose: To set the elements of the major diagonal of
the matrix to ones and the remaining elements
of the matrix to zeros.
Remarks: 1. The major diagonal is defined as the diago-
nal that starts at the last element of the
array and runs diagonally upward until the
first row or first column is encountered. |
2. The form MAT myar = IDN is used for previ- J
ously dimensioned matrices.
3. The form MAT rmwar = IDN (row,col) is used if
the matrix was not previously dimensioned or
if the matrix is to be redimensioned.
Examples: 1. %LIST

2025 TAB =5

9858 DIM Al4,4)
21286 MAT A=1DN
215¢ MAT PRINT A

*RUN
1] e e
8 1) 8
e] 1 "]
2] e i

END AT 0158

*

%
J

Identity Matrix
{IDN)

Examples:
(Continued)

*LIST

28@S TAB
2216 DIM
2015 MAT
80208 MAT
822% MAT

*RUN

[~ I

L 3-]

Bl 4, 3]
PRINT B
B=1DN(2,3]
PRINT B

- 80 asSaee

END AT 02e2S
*

«Matrix B after
line 20.

MAT READ

Purpose:

Remarks:

Example:

In addition to the matrix READ, INPUT and PRINT
statements described in this section, there are
everal matrix file input/output statements which
are described in Chapter 7.

MAT READ mvar[(row,col)] [,mwar[(row,col)]l...

mar matrix variable name,
row: number of rows in matrix,
col: number of columns in

matrix,

To read values from the data list and assign them
to the elements of the matrix or matrices listed
in the MAT READ statement.

If a matrix was not previously dimensioned, it
may be dimensioned in the MAT READ statement.

#L1ST

@885 TAB =§

B810 MAT READ MI[S,6)

G020 DATA 8,258,658, 10,=9,=85=Ts=6,=5
G830 DATA ~d4s=3s°Bs=008515305:759,11

0040 DATA 1,8505:7+~8,15,-15,35,41,13,18
6058 MAT PRINT M

#RUN
2 2 & [8 16
-9 =8 -7 =& -5 =4
=3 =2 s |] 1 3
g 7 $ i1 ol 8
5 7 -8 is =35 35
END AT 6858
&

Values from the data list are read into the
30-element matrix dimensioned as 5 x 6 in the
MAT READ statement.

6-8

MAT INPUT MAT INPUT mvar[(row,col)] ,mar[{row,col)1]...[;]

mgr: matrix variable name.

sV row: number of rows in matrix.
clv col: number of columns in
F matrix.

Purpose: To read values from the keyboard and assign the

values to elements of a matrix or list of mat-
rices when the program is run.

Remarks: A matrix not previously dimensioned may be
dimensioned in the MAT INPUT statement.

Data values, separated by either a comma or a
carriage return, are entered for each element
of the matrix. The list is terminated by a
carriage return.

If the user does not supply enough data to fill
the matrix before typing the carriage return, the
program will continue to request data until each
element of the matrix has been filled.

The data list may be terminated by a semi-colon,
which leaves the cursor following the last input
data item.

Example: *L1ST
2005 TAB =19
0218 MAT INPUT X[2,31
@218 PRINT
20028 MAT PRINT X

tRﬁN
? 2,4,67 775,7,9
2 4 6
77 7 9
END AT 00280
*

MAT PRINT

L3l (@R [65]

Purpose:

Remarks:

Example:

) -
’ |

MAT PRINT mvar[{;}m@agj...[;]

mvar: matrix variable name.

To output the values of the elements of a matrix
or list of matrices to the user's terminal.

A matrix must be dimensiocned by a DIM or other
matrix statement before its use in the MAT PRINT
statement.

If a semi-colon is used after a matrix variable
in a MAT PRINT statement rather than a comma or
carriage return it indicates that the matrix
which immediately precedes the semi-colon is

printed in compact format rather than zone format.

*LIST

28685 TAB =190

2612 DIM AL 108,18]
@820 READ N

2839 MAT A=CONIN,N]
B89 FOR I=1 TO N
2268 FOR J=! TO N

28749 LET Al1.,J)=1/¢1+J=-1)
gesa NEXT J
20990 NEXT I

21386 MAT PRINT A
2192 DATA 4

#RUN
i «5 2333333 .25
3 + 333333 «25 .2
«333333 + 25 -2 166667
+ 28 -2 166667 - 142857

END AT £219¢
0

s

St

MATRIX CALCULATION
STATEMENTS

Addition and
Subtraction

Purpose:

Remarks:

Example:

MAT marl = mar2 {f} mar3

myar: matrix variable name.

To perform the scalar addition or subtraction
of two matrices.

1. Matrices mvar2 and mvar3 must have the same
dimensions.

2. Matrix mvarl may appear on both sides of the
equal sign.

3. Arithmetic is performed on an element-by-
element basis of mwar2 and mwar3 with the
result assigned to the element of mvarl.

(Continued on next page)

Addition and
Subtraction

Example:
(Continued)

*L1IST

P208% TAB =10

2018 DIM AU3,21,B03,2),CC3,2)

2848 MAT READ B»C

2059 MAT A=B+C

PB60 DATA =2,-5,3,455,01,6,42,-2,01%,1e%04
2872 MAT PRINT B

2¢8¢ MAT PRINT C

e98 MAT PRINT A

*RUN

-2 S
3 a4
5 Pe |
) 4

-2 15
1.5 4

-1
19
4.1

a4

i

2
END AT 082982
Y

Multiplication MAT mvarl = {?’gﬁfi}} * mar3

expr: any numeric expression

sy enclosed in parentheses.
c myar: matrix variable names.
E

Purpose: To perform multiplication of a matrix by a

numeric expression or another matrix.

Remarks: 1. Matrix rmvarl and mwar3 may represent the
same matrix.

2. If two matrices (mvar2 and rwar3) are multi-
plied, the number of columns of mar2 must
equal the number of rows of mvar3. The
resultant matrix (mwarl) will have the same
number of columns as rwar3.

3. If a matrix is multiplied by a numeric
expression, a scalar multiplication is per-
formed on each element of the matrix.

4. To obtain the product of two matrices (mvar?2
* mvar3), each row of mvar2 is multiplied by
each column of nwar3. Each row/column set
is added together to provide the resultant
value of the matrix element in mwarl.

Examples: (Continued on next page)

Multiplication

Examples:

{(Continued)

ot

#LIST

281 REM - SCALAR MATRIX MULTIPLICATION
2088 TAB =10

221@ DiM Aal2,23,BL2,2]

@228 MAT READ B

P83 MAT A=(S5)%B

BO4D DATA ~=:55085168,<1

28058 MAT PRINT B

262 MAT PRINT A

#RUN

=65 ;8
1-5 "!

=2+5 4
Te5 -5

END AT 6068
*

2LIST

¢g®! REM -~ PRODUCT OF TWO MATRICES
2085 TAB =190

2216 DIM AL3,231,B03,21,002,23

@220 MAT READ B,C

@38 MAT PRINT B

@849 MAT PRINT C

2058 MAT A=B=%(

@68 MAT PRINT A

0078 DATA 2,351:5,0:45~15~25758

*RUN
2 3
1 S
e 4
-1 -2
7 8
19 28
34 38
28 32

END AT 0870
*

6-14

Multiplication

Examples: Matrix A is calculated as follows:

(Continued)
[B(1,1)*C(1,1)+B(1,2)*C(2,1)] [B(1,1)*C(1,2)+B(1,2)*C(2,2)]
[B(2,1)*C(1,1)+B(2,2)*C(2,1)] [B(2,1)*C(1,2)+B(2,2)*C(2,2)]

[B(3,1)*C(1,1)+B(3,2)*C(2,1)] [B(3,1)*C(1,2)+B(3,2)*C(2,2)]

[2%(-1)+3%*7] [2% (-2)+3*8] 19 20
= [1*(-1)+5%7] [1* (-2)+5%*8] = 34 38
[o* (-1)+4*7] [0* (-2)+4*8] 28 32

e

Inverse Matrix
(INV)

Purpose:

Remarks:

MAT mwarl = INV (mvar2)

mvar: matrix variable name.

To provide a matrix inversion of mvar2 and assign
the resultant matrix element value to mwarl.

An inverse matrix is defined such that the
product of a matrix and the inverse of the
matrix is the identity matrix.

Matrix rwar2 must be a square matrix (at
least 2 x 2).

Matrices may be inverted into themselves
(i.e., marl = mvar2 in the matrix INV
statement).

The arithmetic of matrix inversion requires
a knowledge of matrix determinants and of
matrix cofactors. Determinants and cofac-
tors for 2 x 2 matrices will be described
here. For larger matrices, consult a math-
ematics text.

Matrix Determinants

Typically, the determinant of a 2 x 2 matrix can
be obtained by multiplying along the diagonals
and subtracting the second diagonal from the
major diagonal.

3 4

1 5
3 20

2
(1*4) - (2*3) = =2

It

I

(1*20) - (5*%3) = 5

st

Inverse Matrix
{(INV)

Remarks :
{Continued)

Example:

Matrix Cofactors

Cofactors of matrix elements for a 2 x 2 matrix
are obtained by:

1. Reversing the elements along the major
diagonal.
2. Changing the signs of the elements along
the other diagonal.
1 2 _ fri
3 4] T matrix A
4 -2)
-3 1| = cofactors of matrix A

Calculation of an Inverse Matrix

To obtain an inverse matrix, scalar multiply the
cofactors of the matrix by the fraction (l/matrix
determinant) .

*LIST

2025 TAB =18

2018 DIM AC2,2)
@815 MAT READ A
2020 DATA 1,2,3,4
8030 MAT A=INV(CA)
2042 MAT PRINT A

*RUN

-2 1
1‘5 "5

END AT @g4ap

*

6-17

Inverse Matrix

(INV)
Example:
{(Continued)
' This example may be analyzed as follows:
12 .
3 4| T matrix A
then:
4 -2 .
3 1 = cofactors of matrix A
1 21 (1*4) - (2*%3) = -2 = determinant
3 4§ = of matrix A
4 -2\ = -2 1
INV (A) = (1/-2) \-3 1 1.5 -.5

[e)]
i

18

R &
S

Matrix Determinant
{DET}

<_J<

Purpose:

Remarks:

Example:

var =

var: numeric variable.
X: dummy argument.

To obtain the determinant of the last matrix
inverted by an INV statement.

The value of the determinant calculated for
the matrix is assigned to numeric variable var.

*LIST

o219
2e20
0039
0040
0050
8280
8290
0100
e12¢
2139

*RﬁN

1
3

-2
1e5

TAB =1g
DIM AL2,2)

MAT READ A

DATA 1,2,3,4

MAT PRINT A

MAT A=INV(A)

MAT PRINT A

LET B=DET(X)

PRINT '

PRINT "DETERMINANT=";B

2
4

1

DETERMINANT==-2

END AT 2130
*

Matrix Transposition
{TRN)

Purpose:

Remarks:

Example:

MAT mvarl = TRN (mvar2)

myar: matrix variable name.

To transpose matrix mvar2 and assign the result-
ant element values to nvarl.

1. A matrix is transposed by reversing the row
and column assignments of the matrix ele-

ments.
2. A matrix cannot be transposed into itself.
3. The resultant matrix, mvarl, is redimensioned

to the reversed row and column dimensions.

(Continued on next page)

Matrix Transposition

(TRN)
Example: *L1ST
(Continued) 812 TaB =10

2828 DIM BL 3,41

2638 MAT READ B

0240 DATA 4,5,7+9,2,050,0,1,3.,5,7
2050 MAT PRINT B

2666 PRINT

2878 PRINT

2882 MAT A=TRN(B)

28092 MAT PRINT A

*RUN

4] 7 9
2 a2 e %)
1 3 5 7
4 e 1

S -] 3

7 "] 5

9] 7
END AT 009¢
*

Notice that B(1,2) is equal to A(2,1).

6-21

CHAPTER 7

FILE INPUT AND OUTPUT

FILE CONCEPTS

Definition of a File The user files referred to in this manual are
those which have been created on an RDOS system.
A user "filename" is specifically defined as
follows:

[primary part.:] [secondary part.:] [sub-dir.:]file name [.ex]

For example:
DP1: DIR: FILE1l.LS

extension
file name
secondary partition
primary partition

Briefly, a file is a collection of information
that is known by, and accessible by, a "filename"
which may be a reserved device (e.g., $CDR) or a
file stored on disk.

In BASIC, a random access file is one in which
individual records in the file can be accessed
for reading or writing. A BASIC random access
file should not be confused with a randomly
organized RDOS file. BASIC random access files
may be RDOS random, sequential or contiguous

files.
File Name and "Filenames" may be written as string literals or
Extension as string variables in BASIC.

File Name and
Extension
(Continued)

Reserved File
Names

File Attributes

The name of the file in the "filename" must con-
form to RDOS reguirements for extended file

names. Therefore, a file name may consist of as
many as ten characters (26 alphabetic, 10 numeric,
and the dollar sign ($) character) plus an option-
al two character alphanumeric extension, separated
from this file name by a periocd (.).

For example:

TEST.SR is a meaningful way to signify a
source file.

TEST.CI could signify the core image file
obtained by SAVEing TEST.SR.

TEST.LS could be a listing file output
from the program.

Unlike RDOS utility programs such as MAC and

RLDR, BASIC does not recognize any special
extensions such .SR, .SV, .LS, etc. Extensions
may be constructed to suit the programmer's needs.

Unit record devices and magnetic tape devices are
given special names and do not have extensions.
Devices with reserved names are listed below:

SCDR and S$CDR1 Punched card readers

CTn Cassette units (O§p§;78)

SLPT and SLPT1 Line printers

MTn Magnetic tape units (0<n<17_)

SPLT and $PLT1 Incremental plotters (access
via assembly language subrou-—

\ tines)
SPTP and $PTP1 Paper tape punches
SPTR and $PTR1 Paper tape readers

A number of file attributes may be specified which
permit such features as file sharing, read and
write protection, etc. The file attributes are
changed, added or removed by use of the CHATR com-
mand described in Chapter 8.

FILE STATEMENTS

OPEN FILE OPEN FILE(file,mode), filename R,
sl
clv file:
F
mode

éﬁ
Ny
OIS
~§

©

record size:

file gize:

L, record Size}
[

a numeric expression which
evaluates to a file number
in the range 0 to 7. The
file number is associated
with fZlename and is used
for further references in
other file I/0 statements.
a numeric expression which
evaluates to a number in
the range 0 to 6 and is
used to specify the manner
in which a file is to be
accessed. The modes are
described under Remarks.

a string literal or string
variable constructed in a
manner previously described
in this chapter which eval-
uates to the name of a file.
an optional numeric expres-
sion which evaluates to the
fixed length (in bytes) of
each record in a random or
contiguously organized file
and is applicable to modes
g and 4 through 6 only.
Record size may be any val-
ue from 1 to 32768 and if
not specified, a default
value of 128 bytes per re-
cord is assigned.

an optional numeric expres-
sion which evaluates to the
number of records when cre-
ating a contiguously organ-
ized file and thereby es-
tablishes a limit for its
size.

OPEN FILE

{Continued)

Purpose: Te link a filename or system device with a file
number for further referencing in file I/0 state-
ments.

Remarks: 1. FPor maximum efficiency it is recommended

that fixed length record modes of operation
be used whenever possible (modes @ and 4

through 6). Record lengths should be speci-
fied as closely as possible to the length of
data actually written or read from the file.

Record length may be calculated as follows:

sNumeric Data
Single Precision - 4 bytes per data item
Double Precision - 8 bytes per data item

eString Data
one byte per character in string +1
(for null character)

%Arrays
(No. of rows) * (No. of columns) *
(precision (4 or 8))

2. Modes 0 to 6 are described as follows:

Mode 0 - Random access file (for input and/
or output). Only disk files may be opened
in random mode for reading and writing.
Record length is fixed by record size or by
the default value. If no disk file having
the filename specified in the OPEN FILE
statement is found in the user's directory,
a new disk file is created and an entry is
made for filename in the directory.

Mode 1 - Output (write to a new file).
Either a disk file or an appropriate output
device can be opened in this mode. Records
may be variable in length. Only writes are
permitted to the file. If a file of this
name already exists in the user's directory:

—

OPEN FILE

Remarks:
{Continued)

the previous copy is first deleted from the
disk. 1In either case, a new file is created
(initialized with O length).

Mode 2 - Output (append to an existing file)
Any appropriate file may be opened in append
mode. When opened, the file pointer is po-
sitioned to the end of the file so that sub-
sequent data written to the file will extend
it. If the file does not exist in the user's
directory, an entry for the file name will
be made in the directory and a new file is
created. Records may be variable in length.

Mode 3 - Input (for reading only)

Either a disk file or appropriate input
device can be opened in this mode. If a

disk file is opened in this mode, the file
must already exist. Only reads are permitted
for a file opened in Mode 3. If the file is
not found in the user's directory, a search
for the file is made in the public directory.
Records may be variable in length.

Modes 4,5,6 - Correspond to Modes 1, 2 and 3,
respectively, in function but contain fixed
length records rather than variable length
records. Modes 4, 5 and 6 always read/write
a fixed number of bytes eguivalent to the
record size specified in the most recent
OPEN statement for the file. When the
read/write is complete, the file pointer
will automatically be moved ahead to the
beginning of the next record if the number
of bytes read/written is less than the
record size.

Files that are created using Modes O, 4, 5
and © may later be read/written. For exam-
ple a file created in Mode 4 may be later
opened in Mode 0O, 5 or 6,

OPEN FILE

Remarks:
{Continued)

3. The following table summarizes the various
combinations of arguments to the OPEN FILE
statement and shows the resultant files
created. Existing RDOS files may be OPENed
in any BASIC mode.

IF THEN
BASIC BASIC| FILE FILE- DELETE| CREATE| CREATE| CREATE
FPILE MODE EXIST?| SIZE OLD SEQ. RAND. CONT.
TYPE SPECI-|] FILE FILE FILE FILE
FPIED?

BASIC 0 YES YES NO NO NO NO
RANDOMLY
ACCESSED| O YES NO NO NO NO NO
FILE
(npUT/ 0 NO YES NO NO NO YES
QUTPUT)

0 NO NO NO NO YES NO
BASIC 1, 4 YES YES YES NO NO YES
SEQUEN-
TIALLY 1, 4 YES NO YES YES NO NO
ACCESSED
FILE 1, 4 NO YES NO NO NO YES
{QUTPUT)

1, 4 NO NO NO YES NO NO
BASIC 2, 5 YES YES NO NO NO NO
SEQUEN-
TIALLY 2, 5 YES NO NO NO NO NO
ACCESSED
FILE 2, 5 NO YES NO NO NO YES
(APPEND)

2, 5 NO NO NO YES NO NO
BASIC 3, 6 YES YES NO NO NO NO
SEQUEN-
TIALLY 3, & YES NO NO NO NO NO
ACCESSED
FILE 3, © NO YES ERROR ERROR ERROR ERROR
{(INPUT)

3, 6 NO NO ERROR ERROR ERROR ERROR

NOTE: CREATE'S above refer to

7-6

RDOS organization types.

p

j

OPEN FILE

Examples:
(Continued)

*100 OPEN FILE (1,4),"NETSAK.JR", 256,128

This statement opens file 1, named NETSAK.JR, as
a contiguously organized output file with a
record size of 256 bytes per record and a file
size of 128 records.

*100 OPEN FILE (2,0),"RESSEHC.TO", 20

This statement opens the file named RESSEHC.TO as
file number 2 for random access of its records
which are 20 bytes long.

)
<

(@]

Purpose:

Remarks:

Examples:

CLOSE [FILE (file)]

file: a numeric expression which
evaluates to a file number
previously associated with
a filename in an OPEN FILE
statement.

To disassociate a filename and a file number so
that the file can no longer be referenced.

1. The CLOSE FILE statement may be used to
close a file so that it may be reopened by
an OPEN FILE with a new mode argument.

2. The CLOSE form of the statement closes all
open files.

*100 CLOSE FILE (1)
*200 CLOSE FILE (X+3)
*300 CLOSE

S

&

file expr expr
WRITE FILE WRITE FILE {file,reccrd} , Yvar S jvar
svar svar
"string lit" "string 1it"
Siy .
Civ
F
file: a numeric expression which
evaluates to the number of
a file opened in Mode 0 for
random access, or Mode 1,
2, 4 or 5 for sequential
access.
record: a numeric expression which
evaluates to the number of
a record in a file opened
for random access (Mode 0).
expr, var, svar, and string lit:
a list of one or more nu-
meric expressions, numeric
variables, string variables,
and literals whose values
are written into a sequen-
tial access file or a record
in a random access file.
Purpose: To write data in binary format into a sequential
access file or a record in a random access file.
Remarks: he number of the first record in a random
access file is zero (0).
Example: (Continued on next page)

WRITE FILE

Example:
{Continued)

LET Al1,J)=((l=1)%4¢J)%*3

OPEN FILEL 1,83,%TESTFILE",20

LET R=(3~-1)%4+(5-J)
WVRITE FILE(1,R1,A(1,J]

21
33

38
18

*LIST
¢¢¢! REM-FILE WRITE
98¢5 TAB =180
881@ DIM AlL3,4]
9220 FOR I=! TO 3
8039 FOR J=1 TO 4
poae

0952 NEXT J
20608 NEXT 1
2678 MAT PRINT A
968@ PRINT
0298
2182 FOR I1=1 TO 3
2110 LET I=4-11
g12e FOR JiI=1 TO 4
2130 LET J=5<J1
g14¢
P150
o160 PRINT AllI,J1,
g170 NEXT J!
o180 PRINT
0190 NEXT 11
2200 CLOSE
*RUN

3 6

15 18

27 36

36 33

24 21

i2 9

END AT 02600

%x

12
24
36

27
15

S’

s

READ FILE

@}

»

Purpose:

Remarks:

Example:

(file Uaﬁf}{“{var }?
READ FILE {félé,reccré 5 lsvars L, svarf|...

file: a numeric expression which
evaluates to the number of
a file opened in Mode 0 for
random access, or Mode 3 or
6 for sequential access.
record: a numeric expression which
evaluates to the number of
a record in a file opened
for random access (Mode 0).
var and svar: a list of one or more numer-—
ic variables and string var-
iables which are assigned
values read sequentially
from a randomly accessed
record (Mode 0) or sequen-
tially from a file (Mode
3 or 6).

To read data in binary format from a seguentially
accessed file or from the records of a randomly
accessed file.

Each numeric variable or string variable in
the READ FILE variable list must correspond
in data type to the corresponding data item
being read from the file or record within
the file.

The number of the first record in a random
access file is zero (0).

In random access files, records which have
not been written into will contain all zeros
when read.

The EOF function may be used to detect an
end~of-file on the file which is being read.

{(Continued on next page)

Example:
{Continued)

#LIST

#9021 REM=-READ FILE

#0985 TAB =10

2@16 DIM BI(3,4)

202¢ OPEN FILEL1,8),"TESTFILE",20
2032 FOR I=]1 TO 12

poag LET I1=INT(({I-1)74)+]

2050 LET Ji=I=-C4x(11-1))

geen READ FILEC1,13,B(11,J1]

8678 NEXT 1
#0808 MAT PRINT B

289@ CLOSE
*RUN

36 33 30 27
24 21 18 15
12 9 6 3

END AT 099¢
%

Note: This program uses the file TESTFILE which
is created in the program example provided with
the WRITE FILE statement.

PRINT FILE

expr [(expr s
PRINT FILE (file)lvar));f var ...[{'}1

Purpose:

Remarks:

Example:

svar 7 jsvar -
"string 1it" "string itV

file: a numeric expression which
evaluates to the number of
a file opened in Mode 1 or
2 for sequential output.

expr, var, svar and string lit:

a list of one or more numer-
ic expressions, numeric var-
iables, string variables,
and string literals whose
values are written into a
sequential access file.

To write data in ASCII into a sequential access
file.

1. This statement is intended for outputting to
an ASCII device such as a line printer, or
to a disk file for later off-line printing.
2. Each item in the expression list must be
separated from the next by a comma, semi~-
colon, or carriage return. Output formatting
is identical to that discussed in Remarks
for the PRINT statement.

*10 OPEN FILE(3,1),"$LPT"
*¥100 PRINT FILE(3),"OoUT6"
*200 PRINT FILE(3),"X=";X,"XSQR=";X42,"XCUBE";X43

(var var
INPUT FILE INPUT FILE (file) {svar’ s \svarf|...

file: a numeric expression which
evaluates to the number of
a file opened in Mode 3 for
F sequential access.
var and svar: a list of one or more nu-
meric variables and string
variables whose values are
read from a sequential
access file.

bl
<

Purpose To read data in ASCII from a sequential access
file.
Remarks: 1. Each numeric variable or string variable in

the INPUT FILE variable list must correspond
in data type to the corresponding data item
being read from the file.

2. The data file must be formatted such that
commas or carriage returns are used to sep-—
arate data items.

Example: *40 OPEN FILE (1,3), "SPTR"
*70 INPUT FILE (1), Z,Y X,A$,BS

7-14

MAT WRITE F

Purpose:

Remarks:

Example:

I

L

E

file })
MAT WRITE FILE {fiZe,?eeard; 5 mvar{; mvar}...

Zle : a numeric expression which
evaluates to the number of
a file opened in Mode 0 for
random access, or Mode 1,
2, 4 or 5 for sequential
access.
record: a numeric expression which
evaluates to the number of
a record in a file opened
for random access (Mode 0),
moar: a list of one or more mat-
rices whose values are
written into a record (Mode
0) or a file (Mode 1, 2, 4
or 5).

To write matrix data in binary format into a
sequential access file or a record in a random
access file,

1. Matrix arrays listed in the MAT WRITE FILE
statement must be previously dimensioned.

2. The number of the first record in a random
access file is zero (0).

3. Matrices written in Modes 4 and 5 must fit
into a reccrd whose length is specified in
the OPEN statement for the corresponding
file.

*50 OPEN FILE (0,1),"AAA"
*80 MAT WRITE FILE (0),B,C,X%

)

file
MAT READ FILE MAT READ FILE (‘{ file, f*@co%ﬁ}) jmar[,mvw] -

..

file: a numeric expression which
StV evaluates to the number of
a file cpened in Mode 0 for
F random access, or Mode 3 or
6 for seguential access.
record: a numeric expression which
evaluates to the number of
a record in a file opened
for random access (Mode 0).
muar: a list of one or more mat-
rices which are assigned
values read sequentially
from a randomly accessed
record (Mode 0) or sequen-
tially from a file (Mode 3
or 6).

(@]

Purpose: To read data in binary format, for the elements
of matrix arrays, from a sequentially accessed
file or from the records of a randomly accessed
file created by MAT WRITE FILE statements.

Remarks: 1. Previously dimensioned matrix arrays may be
listed in the statement by name only. Mat-
rix arrays which have not been dimensioned
must be dimensioned in the MAT READ FILE
statement.

2. In random access files, records which have
not been written into will contain all zexos
when read.

3. Data items are read from the file, or record,
sequentially and are assigned to the array
elements by row.

4. The number of the first record in a random
access file is zero (0).

5. The EOF function may be used to detect an
end-of-file on the file which is being read.

5. The amount of data to be read must not ex-

ceed the record size specification for files
OPENed in Modes @ or 6.

S’

MAT READ FIL
{Continued)

Example

w

*10 DIM A{7,3), B(12,7
*30 OPEN FILE (1,3),"MATRIXA"
*40 MAT READ FILE (1), A,B,C(3,4),D(5)

MAT PRINT

FILE

Purpose:

Remarks:

Example:

(5} f}}
MAT PRINT FILE(file),mar %; }fm;az . &,f}

e

file: a numeric expression which
evaluates to the number of
a file opened in Mode 1 or
2 for seguential cutput.

muar: a list of one or more mat-
rices whose values are
written to a sequential
access file.

To write matrix data in ASCII into a sequential
access file.

1. This statement is intended for outputting to
an ASCII device such as a line printer, or
to a disk file for off-line printing.

2. The MAT INPUT FILE statement cannot be used
to input data which was output by MAT PRINT
FILE because the MAT PRINT FILE statement
does not output delimiters between matrix
elements.

3. If a semi-colon is used after a matrix vari-
able in the MAT PRINT FILE gtatement rather
than a comma or carriage return it indicates
that the matrix which immediately precedes
the gemi-colon is printed in compact format
rather than zone format.

*5 DIM B(20,20)
%10 OPEN FILE (0,1),"z.227
*20 MAT PRINT FILE (0),B

Ko

S

MAT INPUT FI

Purpose:

Remarks:

Example:

T

Ls

MAT INPUT FILE (file),mvar [,mar]...

file: a numeric expression which
evaluates to the number of
a file opened in Mode 3 for
sequential access.

myar: a list of one or matrix

arrays whose values are

read from a sequential ac-

cess file.

To read matrix data in ASCII from a sequential
access file.

1. Previously dimensioned matrix arrays may
be listed in the statement by name only.
Matrix arrays which have not been dimensioned
must be dimensioned in the MAT INPUT FILE

statement.

2. Data items are read from the file sequential-
ly and are assigned to the array elements by
row.

3. The EOF function may be used to detect an

end-of-file on the file which is being read.

* 5 DIM Y(7,6),2(13,2)
*10 OPEN FILE (2,3), "XX.AA"
*50 MAT INPUT FILE (2),X(5,5),Y,2

EQF (X)

Purpose:

Remarks:

Example:

EOF

file: a numeric expression which
evaluates to the number of
a file opened for reading
in Mode 0, 3 or 6.

To detect the end of data when transferring data
from a file.

*100
*¥110
*120
*130
*140
*200

The EOF function returns an integer indicat-
ing whether or not the last READ from file
included an end-of-file delimiter.

If an end-of-file was detected, the function
returns a value of +1; otherwise the function
returns a 0.

When the EOF function is used in conjunction
with the IF-THEN statement, a conditional
transfer can be made if an end-of-file is
detected.

Random files (Mode 0) return an EOF if the
user attempts to read a record number

larger than the last written in the file.
The file must be closed and reopened to
continue.

OPEN FILE (1,3), "S$PTR"
READ FILE (1), A,B,C,D,E
PRINT A,B,C,D,E

IF EOF (1) GOTO 200
GOTO 110

CLOSE FILE (1)

7-20

L
i

INTRODUCTION

CHAPTER 8

INTERACTIVE SYSTEM COMMANDS

The preceding chapters have described the state-
ments and functions used for writing programs in
the BASIC language. However, Extended BASIC may
also be used interactively to perform the follow-
ing functions:

* Maintain BASIC source programs

- Maintain disk directories

* Dynamically debug programs

* Perform desk calculator functions

© Communicate with the system operator and
other users.

The commands necessary to perform these functions
are described in this chapter.

PROGRAM
DEVELOPMENT
AND EXECUTION
COMMANDS

Purpose:

Remarks:

Example:

To delete the currently stored program statements
and variables, and to close any open files.

1. The programmer's storage area must be cleaxr-
ed with a NEW command {or statement) before
entering a new program to avoid lines from
previous programs being executed along with
the new program.

2. The NEW statement can be the last executable
statement within a program thereby clearing
the program from memory after program exec-—
ution is completed.

3. When used with the ON ESC or ON ERR state-—
ments, the NEW statement can be used to pre-
vent unauthorized access to a program.

#LIST

2168 READ A,B,C,D

@118 LET E=A%23

2115 LET F=C%A

#8126 PRINT ESF

@130 NEW

2135 DATA 1,253,4

#RUN

23 3

#LIST

FRROR 13 - LINE NUMBER

E

8-2

Purpose:

Remarks:

Example:

ERASE 1ine nl, line n2

-

line nl and line n2: line numbers in a program.

To remove statements from a program.

1.

ERASE 1500, 1900)

This command may be used to remove Line nl
through line n2, inclusively, in the user's
program. This command simplifies the edito-
rial process of deleting only one line at a

time.

Typically, this command might be used to
clear an area in a program to permit a sub-
sequent ENTER of a program whose lines are

in the same range as
If no lines exist in
the range Line nl to
message 1is output to

those deleted.

the user's program in
line m2, then an error
the user's terminal.

“Delete lines 1500 through

1900 inclusive.

IS (@R 105]
]

Purpose:

Remarks:

line nl: first statement to be listed.

line n: last statement to be listed.

L lename: a device or disk file
expressed as a string
literal.

To output part or all of the current program in
ASCII to the device specified by filename or to
the terminal if filename is not specified.

The variations of the LIST command are
described as follows:

LIST) - List the entire program
starting at the lowest
numbered statement.

LIST nl) - List only the single
statement at line number
nl.

LIST TO n2)v - List from the lowest num-

bered line through line
number #n2, inclusive.

TO
LIST nl{, }n2) -~ List from line numbers 71l
through line number 72,
inclusive.

When the Ffilengme argument is included, the
LIST command causes the specified lines to

be written to a file called filename, or to
the device called filename.

The file created by the LIST command can be
read back into the program storage area by
the ENTER command. If statements are listed
to a disk file, filename is entered in the
programmer's directory, replacing any pre-—
vious file of the same name.

8-4

St

Hs”

LigsT
(Continued)

Examples:

*LIST

700,9999)

1 sLPT!l)

20)

"TEST.SR")

Line numbers 700 through
9999 are listed at the
terminal.

The entire program is out-
put to the line printer.
List line number 20 at the
terminal.

The current program is out-
put to the programmer’'s
directory in ASCII with the
filename TEST.SR and re-
places any previous file
with that name.

PUNCH

(SR (OF 16

Purpose:

Remarks:

Z
PUNCH | JTO Tine n2
TO
line nly, | 1line n2

1 first statement to be punched.
line n2: last statement to be punched.

To output part or all of the current program in
ASCII to the terminal punch.

1. A leader of null characters precedes the
punched listing and a trailer of null char-
acters follows the listing.

2. The number of null characters punched as
leader and trailer is egqguivalent to the
number of characters defined as the page

width (see PAGE command). This represents
13.2 inches of leader for a 132 character
line.

3. The PUNCH command does not turn on the ter-
minal punch. The following procedure is
required:

a. Type the desired PUNCH command followed
by a carriage return and immediately
press the ON button on the terminal
punch.

b. A null leader will be punched, followed
by a listing of the desired lines of the
current program, followed by a null
trailer.

c. When punching is completed, press the
OFF button on the punch.

4. The variations of the PUNCH command are

described as follows:
5
PUNCH) - Punch the entire program

starting at the lowest
numbered statement.

8-6

St

PUNCH

Remarks:
(Continued)

Example:

PUNCH nl)

PUNCH TO 72)

TO

- Punch only the single
statement at line number
nl.

- Punch from the lowest
numbered line to line
number 72, inclusive.

PUNCH nl{, }nZ) - Punch from line number

*PUNCH 200 TO 500)

7l through line number
n2, inclusive.

Punch line numbers 200
through 500 of the current
program.

N

SAVE

i) j0

Purpose:

Remarks:

Example:

SAVE f1lename
filename: The name of a disk file or
a device.

To write the current program in binary format to
the device or disk file named by filenarme.

1. If filename is a disk file, then filename is

entered into the programmer's directory,
replacing any file of the same name.

2. A SAVEd program can be LOADed, CHAINed, or
RUN.
3. A SAVEd program which is LOADed can then be B
LISTed in ASCII format. .
4. SAVEing a program in binary format is more

efficient than LISTing in ASCII when storing
a program.

5. A SAVEd program may not run under all
configurations of BASIC. In particular,
if the precision of the floating point
representation in the RUN environment is
different from that of the SAVE environ-
ment, the program will not even be load-
able.

*SAVE "FA.BC“)
*SAVE "$PTP") Commands
*SAVE SS$S (1,7)

*10 SAVE"QURSHIP"
*20 SAVE BS Statements

|

S (SN 16
.

Purpose:

Remarks:

Example:

LOAD

£

Filename

filename: the name of a binary file
created by a previous SAVE
cormmand .

To load a previously SAVEd program in binary for+
mat into the program storage area.

1.

The LOAD command executes an implicit NEW
command {clearing the storage area) and then
reads filename into core.

Filename may be on disk or may be on a
binary input device such as the paper tape
reader.

£ filename is a disk file, a search is made
for filename in the programmer's directory
first. If not found, a search is made in
the library directory for filename.

When a filename is LOADed, it can be LISTed,
modified, or RUN.

*LOAD "SPTR")

*LOAD "MATH3")

*LOAD "MT@:1")

ENTER

Purpose:

Remarks:

Example:

ENTER filename

filename: a device or disk file.

To merge the BASIC statement lines from the
device or disk file named by filename into the
programmer's current program storage area.

When statement lines from an ENTERed f7lename
have the same statement numbers as lines in the
current program, the current program statement
lines are replaced.

*NEW)

*ENTER "TEST1.SR")
*ENTER "TEST2.SR")
*IIST "FINAL.SR")

The programmer's storage area is cleared and
source programs TEST1.SR and TEST2.SR are merged
with the resultant program stored in the program-
mer's directory as FINAL.SR.

i

g

g

Purpose :

Remarks:

line no.: the line in the current
program from which execu-
tion is to begin.

filename: the name of a disk file
or device.

To execute a program either from the first line
number in the program or from a specified line
number in the program.

The variations of the RUN command are described
as follows:

RUN) Clear all variables, undi-
mension all arrays and
strings, do a RESTORE, ini~-
tialize the random number
generator, and then run the
current program from the
first line number.

RUN n) All existing information
(variable values, dimension-
ing, etc.) resulting from
a previous execution of the
current program are retain-
ed and the current program
is run starting at the line
numbered n. This form of
the RUN command allows re-
sumption of program execu-
tion retaining current val-
ues of all wvariables and
parameters. It may be used
after a STOP or after an
error and will incorporate
any alterations to the pro-
gram that may have been
made after the STOP or er-
ror occurred.

RUN

Remarks:

(Continued) N
RUN "filename"/

Examples: *RUN)
*RUN "SPTR")
*RUN 250,/

*RUN "MATH3")
*RUN "MT1:0")

If the file is on disk, the
system follows the search
procedure outlined in the
LOAD command. When f7Zle-
name is found, the command
executes a NEW, clearing
the current program area,
executes a LOAD, and then
executes the new current
programn.

9 7
N

RENUMBER

Purpose:

Remarks:

the initial line number for
the current program.

the increment between line
numbers for the current
pProgram.

To renumber the statements in the current program.

1.

The variations of the RENUMBER command are
described as follows:

RENUMBER)

RENUMBER ﬂl)

N
RENUMBER STEP »24

RENUMBER #1 STEP 72/

Renumber the current pro-
gram starting with default
line number 0010 with a de~
fault increment of 10 be-
tween line numbers.

Renumber the current program
starting with line number

nl and incrementing by »nl
between line numbers.
Renumber the current pro-
gram starting with default
line number 0010 and incre-
menting by 72 between line
numbers.

Renumber the current program
starting with line number

nl and incrementing by 72
between line numbers.

Line numbers are limited to a four-digit
number. If a RENUMBER command causes a
line number to be greater than 9999, the
command is re-executed as:

RENUMBER 1 STEP 1

RENUMBER

Remarks:
(Continued)

3. The RENUMBER command also modifies the line
numbers in IF-THEN, GOT0O, and GOSUR state-
ments to agree with the new line numbers
assigned to the current program.

4, Line numbers which cannot be resolved are
changed to 000C and an error message is
issued.

Example: #LIST
2285 TAB =5
8212 DIM AL3,41
0220 LET ArL1,21=6
6839 LET AL3,41=10
PB4@ MAT PRINT A
8059 MAT A=ZERL3,3)
#6686 MAT PRINT A

#RENUMBER 18 STEP 5
*LIST

@210 TAB =5

215 DIM AL 3,4)
8220 LET AL1,21=6
#82% LET AL3,41=10
#2832 MAT PRINT A
@35 MAT A=ZER([3,31
3848 MAT PRINT A

8-14

CON

R ON &
-,

Purpose:

Remarks:

Example:

CON

To continue the execution of a program after a
STOP statement in the program has been executed,
the ESCape key has been pressed, or an error has
occurred.

1. The CON command is equivalent to a RUN
no. command where linme no. is equal to the
statement directly following the statement
at which the program stopped.

2. If a run-time error is encountered within
the program, the user may correct the error
and issue the CON command to begin execution
from the statement where the error occurred.

(Continued on next page)

15

[e3]
i

CON
{Continued)

Example:

#L.15T

#2214 PRINT *"PRINCIPAL INTC(ZD ”3
8826 PRINT "TERM(YRS) TOTAL™

B30 READ P,1,T

@035 IF T=0 THEN GOTO 09088

2840 LET A=Px(1+1/108)T

2059 PRINT P3 TABC12)313 TAB(21)3T3 TAB(32)3A
g@68 GOTO @830

$879%9 DATA 1800,5,10,0,98,0

9@8% PRINT

PE93 PRINT "CHANGE DATA AT LINE 70"
@108 STOP

ptiz GOTO 88189

*RUN ,
PRINCIPAL INTC%) TERMCYRS) TOTAL
1000 5 19 1628.9

CHANGE DATA AT LINE 7€

STOP AT 0100
#78 DATA 2508,3,18,14508,6,12,0,0,0

*CON

PRINCIPAL INTC(R) TERM(YRS) TOTAL
2588 3 18 3359.79
1456 6 12 29177

CHANGE DATA AT LINE 708

STOP AT 0180
*

St

SIZE SIZE

Civ
Purpose: To print the number of bytes used by the program
and the total number of bytes that are still
available.
Example: SIZE)

USED: 9329 BYTES
LEFT: 8077 BYTES

Out of a total of 17,406 bytes of memory avail-
able for program and data storage, 9329 are oc-
cupied and 8077 remain.

BYE ' BYE

Sy
C

Purpose: To sign-off the system and make the terminal

available to others.

Remarks : 1. BYE may be used as a keyboard command or as
a program statement to automatically log the
user off the system.

2. A display of accounting information precedes
the sign-off.
3. Telephone connections are severed.
4. The ESC key will not be recognized once the
BYE command is begun.
Example: *BYE

@1/02/74 1@2:@6 SIGN OFF, @4 (tgrminal no.)
@1,082/74 10186 CPU USED, 2@6 (time in seconds)
01/82/74 10326 170 USED, 11 (number of I/0's made)

DGC READY

PAGE PAGE=e¢xpr

expy: an arithmetic expression

/ T B in the range:
cly : 1 <7 < 132.
Purpose: To set the right margin of the terxrminal.
Remarks : A default value of 72 is used as the maximum
line width.
Example:
anp *LIST

2219 PAGE =3¢

2220 FOR I=]1 TO 25
ee3g PRINT 13
8248 NEXT 1

*RUN
1 2 3 4 5 6 7 8 9 180
11 12 13 14 1s 16 17
i8 19 g8 21 22 23 24
25
END AT @840
*

TAB

n
~,

Purpose:

Remarks:

Example :

TAB=2xpr

expr: an arithmetic expression
in the range:
1 <7 < page width given
by PAGE command.

To set the zone spacing between the data output
by PRINT statements.

The default zone spacing is 14 columns.

This spacing allows five zones of output
data per 72 character teletypewriter line.
Since the maximum range of zone spacing
depends upon the PAGE command setting, it is
good practice to set the page width first
and then the zone spacing.

*LIST

@018 PAGE =S50

2020 TAB =10

€030¢ FOR I=1 TO 2%
6o4ae PRINT I,

@956 NEXT 1

*RUN
1 2 3 4
6 7 8 9
11 12 13 14
16 17 18 19
21 22 23 24

END AT 0¢58

*

8-20

10
15
2¢
25

SYSTEM
COMMUNICATION
COMMANDS

Purpose:

Remarks:

userlID: identification of receiving
user.
message: text of message.

To transmit a message from the programmer's ter-
minal to any other programmer or to the operator.

1.

fine
PR

o

d

The operators ID is:
OPER

If a receiving programmer has set the message
lockout command (NOMSG) or is not on line,
then the transmission will not be successful
and an error message will be printed at the
sender's terminal.

If the transmission is successful, then the
following is printed at the receiving program-
mer's terminal:

FROM sendersID: message

where sendersIlD is the identification
of the programmer that sent the message.

Message length is limited to one line.
Quotation marks are not necessary for message.
A blank is necessary between MSG, userlD

and message.

When used without operands, the MSG command
resets the action of a NOMSG command to
enable the reception of messages.

MSG
{(Continued) {Continued)

MSGAOPERAMOUNT MY CASSETTE—THANKS}

Example:
At master console:

FROM JACK: MOUNT MY CASSETTE~THANKS

8-22

NOMSG

Purpose :

Remarks:

Example:

NOMSG

To prevent reception of messages from other
programmers.

1. The system operator may override the NOMSG
command for important messages.

2. The user can cancel the NOMSG command by
using the MSG command with no operands.

3. NOMSG does not affect the programmer's
ability to transmit messages.

*NOMSG)
*RUN"PROG. 3")

END AT 300
*MSG)

el [OF [
.

Purpose:

Remarks:

Examples:

NOESC

To disable ESC key operation.

The NOESC statement, or command, can be used
to prevent the interruption of a program
which occurs when the ESC key is pressed.

If a programmer's log-on identification
includes a log-on program which is executed,

then a NOESC condition is invoked by default.

The programmer can circumvent the NOESC con-
dition by either including an ESC statement
as the last statement in the log-on program
or by typing an ESC command after log-on.

No action is taken if subsequent NOESC com-
mands or statements are encountered without
intervening ESC commands.

*NOESC) <command

*10 NOESC <gstatement

8~-24

S

So—

Sy
cl/
=

Purpose: To re-enable ESC key operation.

Remarks: 1. The ESC key can be disabled by a NOESC or By
default at log-on if a log-on file is
executed.

2. No action is taken if subsequent ESC com-
mands or statements are encountered with-
out intervening NOESC commands.

3. See NOESC for additional remarks.

Example: *ESC) “command

*10 ESC <statement

@]
Y

Purpose:

Remarks:

Example:

NOECHO

To inhibit the echoing of input at the programmer's
terminal.

1. NOECHO does not affect program execution or
printed output.

2. NOECHO can be useful when entering sensitive
data such as passwords.

3. NOECHO can be cancelled by ECHO.

4. No action is taken if subsequent NOECHO com-
mands or statements are encountered without
intervening ECHO commands.

*NOECHO) <~command

*10 NOECHO <+gtatement

8-26

ECHO ECHO

v
clv
P
Purpose: To re-enable echoing of input at the programmer's
terminal.
Remarks: 1. ECHO cancels a NOECHO command or statement.
2. BASIC takes no action if subsequent ECHO
commands or statements are encountered with-
out intervening NOECHO commands.
3. See NOECHO for additional remarks.
Example: *ECHO) “~command
*10 ECHO <statement

8-27

DISK DIRECTORY
MAINTENANCE
COMMANDS

FILES

O [
<\

Purpose:

Remarks:

Example:

FILES

To print all file names in the programmer's

directory.

One file name is printed per print zone.

*FILES
157,
STOP.SR
ON.ES
TIME.
MORSE.
113.
COMeCM
TAB.,

115,
PAGE.
PRINT2.SR
FPRINT4.5SR
137

*

8-28

134.
121,
READ.SR
FOR1.SR
118.SR
TAB.SR
CON.
SUBSTRINGS.
GOTO.
HELLOWSV
1298,
92.

117.

GOSUBl.5SR
NEW.

116.
FOR2.SR
FOR4.SR
132A.
118.
CONCATe.
111A.
PRINT1.SR
PRINT3.5R
INPUT2.SR
IF3.

LIBRARY

2RieR s
<

Purpose:

Remarks:

Example:

LIBRARY

To print all file names in the library directory.

One file name is printed per print zone.

*L I BRARY

Al. SHOT.SR SQRT.SR
BACKGAMMON.SR SUPERGUESS.SR STOCKS.SR
CASINOQO. SR SWAP. SV SNOOP,
COMPILER. SR FCOM.CM BLACKJACK. SR
BANK. SR FOOTBALL . SR BILLBOARD.SR
KILLER.MS K2 MAT. SR
SNOOPY.SR GUESS. SR QUEEN. SR
TEST!. HORSERACE.SR LUNAR.SR
BATNUM. SR HEMAN.SR SHOT!1.SR
FISCAL.SR HELLO.SR HELLO.SV
FISCAL.BT

=

WHATS WHATS fZlename

filename: the name of a file in the

S programmer's directory or
cly in the library directory.

Purpose: To print information pertaining to filename at
the terminal.

Remarks: First filename is searched for in the programmer's
directory and, if not found, is then searched for
in the library directory.

Example: *WHATS "ABC")

ABC D 2039 06/14/73 09:15 (07/21/73) 00

filename in use count

attributes date last used
byte length time created
date created

S

—

Purpose:

Example:

DISK

To obtain a count of the number of 256-word
blocks still available in the programmer's
directory.

DISK)
USED: 332
LEFT: 193

This message indicates that 193 out of 525
blocks are still available for use.

-
= [

Purpose :

o

Remarks

Example :

filename: a f£ile in the programmer's
directory which is not
protected (see CHATR).

To remove a file from the programmer's directory.

1. This command searches the programmer's
directory for the file named filename.
If found, all references to filename are
deleted.

2. An error message is returned if the file
cannot be found, is delete-protected, or
if any attempt is made to delete files
in other directories.

DELETE "TEST.SR")

The file TEST.SR is removed from the directory
and the disk blocks which it formerly occupied
are free for use.

RENAME RENRME oldfilename, newfi

oldfilename: a disk file in the program-

si/ mer's directory.
clv newfilename: a new filename.
F
Purpose: To search the programmer's directory for oldfile~
nome and, if found, rename it to neuwf7lenare.
Remarks: An error message will be printed at the pPro-
grammer's terminal if:
a. oldfilenane does not exist.
b. newfilename already exists.
c. oldfilename is attribute protected.
Example: *RENAME "TEST.SR", "A.SR")

File TEST.SR is renamed as A.SR for future
referencing.

CHATR

Y

Purpose:

Remarks:

CHATR filename, attributes

filename: a disk file in the pro-
grammer’'s directory, ex-
pressed as a string literal
or string variable.
attributes: file attributes described
under remarks.

To change, add or remove the resolution file
attributes assigned to a file which already
exists in the programmer's directory.

1. The CHATR command will not affect RDOS
attributes which are not implemented under
the BASIC CHATR command.

2. File attributes may be strung together in
the attrihutes argument without the use of
delimiting spaces or punctuation and may be
expressed as a string literal or string
variable.

3. The attributes listed in the BASIC CHATR
command replace existing attributes, unless
otherwise specified.

4. The attributes which may be used in the
BASIC CHATR command are:

P - Permanent file. The file filename
cannot be deleted or renamed once
this attribute has been assigned.

R - Read protected. The file filename
cannot be accessed for reading.

W - Write protected. The file filename
cannot be altered.

H - Sharable. The file filename may be

accessed by other users so long as
they know the directory and file
name. The file is permanent (P)
and write protected (W).

o - Sharable. The file filename may be
accessed by other users so long as
they know the directory and file
name. The file is not permanent (P)

8-34

—

CHATR

Remarks:
{Continued)

Example :

or write protected (W) and, there-
fore, may be deleted, written into,
or renamed by other users.

Execute only. Other users may
execute the BASIC program contained
in filename, but are prevented from
examining the program source state-
ments. Commands such as LIST or
SAVE result in an error message.
Zero. Removes current file attri-
butes except those which are set by
an RDOS CHATR command and are not
included as attributes under the
BASIC CHATR command. When ¢ is
listed with other attributes in a
CHATR command, only the attributes
listed are removed.

Asterisk. Preserve current file
attributes and add those specified.
The asterisk (*) may only be used
in conjunction with other attributes
in the argument.

*WHATS “TESTFILE"

TESTFILE.

D 269

*CHATR *TESTFILE®,*Wp*
*WHATS “TESTFILE"

TESTFILE.
*

8-35

VPD 269

COMMANDS
DERIVED FROM
BASIC
STATEMENTS

Perform File I/0

Desk Calculator

Desk Calculator -

Using Program
Values

Any BASIC statement that can meaningfully be
written as a keyboard command can be used in
that mode. Certain statements have meaning only
within the context of a program and cannot be
used as keyboard commands. These commands are
CHAIN, DATA, DEF, END, FOR, GOSUB, GOTO, HNEXT,
ON, REM, RETURN, and STOP. All other BASIC
statements are implemented as keyboard commands
which may be used to:

- Perform file I1I/0
+ Perform desk calculation functions
* Dynamically debug programs

The opening and closing of files and the input/
output of programs and data from files and
devices can be handled by keyboard commands
derived from the file I/0 statements described
in Chapter 7.

OPEN FILE (1,3), "spTR")
READ FILE (1) , A, B, C, D, E, F, G (5))

The PRINT command can be used to obtain immediate
results of arithmetic computations.
é
JEXP (SIN (3.4/8))) 1.51032
LET A = EXP (SIN(3.4/8))
;USING "+##8# ##4444", A) +1510.32E-03

Notice that the resultant value is printed
on the same line.

The programmer can interrupt a running program and
use the assigned values of program variables for

making calculations.

0010 DIM AS$ = (10), BS (10}
0020 LET AS$ = "IOU $10.50"
0030 BS = "XRAY"

RUN

(ESC) « Press ESC key
;BS(4);2%(2,3)) YoU

g’

Dynamic
Program

Debugging

A running program can be interrupted {(using ESC
or by programmed STOP statements) at a number of

different program points.

The current values of

the variables can then be checked at those points
and corrections made in the program, either to

statements or variables,
grammer can then use the RUN

as necessary. The pro-
line no., command to

restart the interrupted program without losing
either the values of the variables at the point
of interruption or the newly inserted values and

statements.

.

(BSC)

STOP AT 1100

IF A< >B THEN PRINT B,A)

.025 .5

-

2.33333
5.41234
8.99999

(ESC)
STOP AT 0570

READ X1, X2, X3)

RUN 570

(ESC)
STQ? AT 1100
;A4 O

A=-1)

C§& = "% OF LOSS"

RUN 505)

Press ESC key.

Command condition-
ally provides for
examination of A
and B.

results of a ser-
ies of program
calculations be-
ing printed.
Press ESC key.

Space over the
next 3 values in
the data block.
Resume program
execution at the
point it was
interrupted.
Press ESC key.

Check value of
variable A.

Change the wvalue
of arithmetic var-
iable A and string
variable C$. Re-
sume running at
statement 505.

Dynamic
Program
Debugging .

{(Continued)

20 DIM A [4,4]

-

.

(ESC) + Press ESC key.

STOP AT 500

DIM A {3,5]) + Redimension
array A.

8-38

INTRODUCTION

CHAPTER 9

ADVANCED BASIC STATEMENTS AND COMMANDS

The items described in this chapter provide the
experienced programmer with the facility for:

® Error handling

® Formatted output

® Chaining

® Subroutine calls, and

® Timed input.

ON-ERR

@}

Purpose:

Remarks:

Example:

I ERR THEN statement

statement: any BASIC statement except
FOR, NEXT, DEF, END, DATA
and REM.

To direct the program to an error handling routine
other than normal BASIC system error handling.

10
20
30

This statement is placed in the program
prior to any statements with which the pro-
grammer's error handling routine deals. If
placed at the beginning of a program, sState-
ment is executed for all program errors.

If placed anywhere else in the program,
statement is only executed for errors which
occur after the ON ERR statement is encoun-
tered.

The ON ERR THEN STOP statement is used to
restore system error handling and can be
effectively used with ON ERR THEN statement
to provide special error handling for select-
ed portions of a program.

If statement is a GOSUB, then when the
subroutine RETURNs, contrel is passed to

the statement following the statement on
which the error occurred. A RETRY state-
ment should not be used in the body of

the subroutine.

ON ERR THEN GOTO 1000
OPEN FILE (0,0), "X"
ON ERR THEN STOP

1000 OPEN FILE (0,0), "Y"
1010 GOTO 30

RETRY RETRY

sy
[
F
Purpose: To repeat the statement which caused an error.
Remarks: This statement can be used in conjunction with
the ON ERR statement to cause program execution
to return to the statement which caused the error
and attempt to re-execute that statement.
Examples: * 5 ON ERR THEN 100

*10 OPEN FILE (0,2), "TESTING" <« If state-
. ment 10 causes an
. error then RETRY
. directs the program
*100 RETRY to repeat the state-
. ment.

Note: 1In this example, if statement 10
causes an error then statements 3
and 100 would cause the program to
loop indefinately. The program
should, therefore, include some pro-
vision for exiting from RETRY such
as exiting after a certain number of

failures.

DELAY

Purpose:

Remarks:

Example:

gxpy: a numeric expression which
evaluates to an integer and

represents time in seconds.

To delay program execution for a specified amount

of time.

1. The DELAY statement resets the SYS5(14)
function to a value of zero.

2. When used in conjunction with RETRY, pro-
gram execution can be postponed on an error
condition before a RETRY is attempted.

5 ON ERR THEN 100

10 OPEN FILE (¢,2), "THISFILE"

100 IF SYS (7)<>1g THEN 200 < Is another user

using this file?

105 I =1+ 1

110 IF I>1¢g THEN GOTO 200 <+ 10 RETRY attempts

allowed.

120 DELAY=1 “ One second delay

before RETRY.

125 RETRY <Returns to state-

ment which caused
error.

200 S8TOP

S

ON-ESC

Ll (@ 6]

Purpose:

Remarks:

Examples:

statement: any BASIC statement except
FOR, NEXT, DEF, END, DATA
and REM.

To direct the program to a user handling routine
when the ESC key is pressed.

1. Normally, when the ESC key is pressed any
operation in progress is interrupted and the
terminal is ready for input. When ON ESC
THEN statement is executed pressing the ESC
key will cause the statement argument Ffrom
ON ESC THEN statement to be executed.

2. The normal handling of ESCape can be restored
by the ON ESC THEN STOP statement.
3. If statement is a GOSUB, then when the sub-

routine RETURNs, control is rassed to the
statement following the statement on which
the error occurred. A RETRY should not be
used in the body of the subroutine.

(Continued on next page)

ON-ESC

Examples:
{Continued)

100

.

.

140
141

ON ESC THEN PRINT X,Y,2

PRINT X
Y=2

In this example, when the user presses the
key during program execution, control passes
to the statement on line 100 and the values
of X, Y and 2 are printed. After line 100

is executed, the program continues as if line
100 were not included in the program and exe-
cutes the next line after the last completed
before the ESC key was pressed. Therefore,
if line 140 had been completed when ESC was
pressed, line 100 would be executed followed

by line 141.
10 ON ESC THEN GOSUB 500
20 DIM X(2500)
21 A =20
22 B =20
23 CcC =20
30 FOR I = 1 TO 2500
40 X(I} = A*I42+B*I+C
50 NEXT I
60 STOP
500 PRINT I, X(I)
510 INPUT "CONTINUE (0) OR NEW INPUTS (Ly",Db
520 IF D = 0 THEN RETURN
530 INPUT "NEW VALUES FOR A,B,C", A,B,C
540 RETURN

In this example, a RETURN from line number

520

or 540 is not to line 20 but to the line

after the last executed when the ESC key was
pressed.

S

PRINT USING PRINT USING format, expr [,expr] ...

format: a string literal or string
sV variable which specifies
v the format (see Remarks) for

printing the items in the
expr list.

expr: a list of one or more expres-
sions which may include nu-
meric variables, subscripted
variables, string literals
and string variables.

Purpose: To output the values of expressions in the PRINT
USING statement list using the format specified.

1; Remarks: 1. All normal PRINT formatting conventions
’ (e.g., TAB, comma, semicolon) are ignored
in a PRINT USING statement.

2. The format expression may have more than one
format field and may include string literals
as well as the following special characters
which are used for formatting numeric output.

#
+
$
; {comma)
4
a. Digit Representation (#)

For each # in the format field, a digit
(@ to 9) is substituted from the expr

argument.
Repre-
format expr sentation Remarks
. FHEFH 25 AAA25 Right justify digits
J in field with leading
blanks.

PRINT USING

Remarks:

(Continued)

=

Digit Representation (#) {(Continued)

2
format expr sentation Remarks

#HEHE -30 AAA3D Signs and other non-

digits are ignored.

#af#E 1.95 ALLL2 only integers are rep-

regented; the number
ig rounded to an inte-
ger.

#H##E 598745 kEkFx% If the number in expr

has more digits than
specified by format,
then all asterisks are
output.

Decimal Point {(.)

The decimal character {(.) places a decimal
point within the string of digits in the
fixed position in which it appears in
format. Digit (#) positions which follow
the decimal point are filled; no blank
spaces are left in these digit positions.
When expr contains more fractional digits
than format allows, the fraction will be
rounded to the limits of format. When gxpr
contains less fractional digits than
fied by formaf, zeroes are output to
the positions,

peci-

ac
i1l

- Ul

Repre-

format expy sentation Remarks
J

FEEEE.#F 20 AAA20.00 Fractional posi-

#HEHS . EE 29,0347 AAA29.35 Rounding occur

tions are filled
with zeroes.

n

on fractions.

w
i
w

g

PRINT USING

Remarks:
{Continued)
b. Decimal Point (.) {(Continued)
Repre-
format expr sentation Remarks

BE#HE.HE 789012.34 ****kx*k%% When expr has too

many significant
digits to the left
of a decimal point,
a field of all
asterisks, includ-
ing the decimal
point, is output.

Fixed Sign (+ or -)

A fixed sign character appears as a single
plus (+) sign or minus (-) sign in either
the first character position in the format
field or in the last character position in
the format field.

A fixed plus (+) sign prints the sign (+ or
=) of expr in the position in which the fixed
plus (+) sign is placed in format.

A fixed minus (-) sign prints a minus (-)
sign for negative values of expr or a blank
space for positive values of expr in the
position in which the fixed minus (-) sign
is placed in format.

When a fixed sign is used, any leading zeroes
appearing in expr will be replaced by blanks,
except for a single leading zero preceding a
decimal point.

Repre-

Jormat expr sentation Remarks

+HEL #E 20.5 +20.50

PRINT USING

Remarks:
{Continued)
C. Fixed Sign (+ or -} (Continued)
Repre-
format expr sentation Remarks
+HELHH 1.01 +41.01 Blanks precede the
numbey.
+##. 84 ~-1.236 =A1.24
+EE. ## —234.0 KkEExkk
#HH#.#¥~ 20.5 A20.50A
#4#.##- 000.01 AAC.O01A One leading zero be-

fore the decimal point
is printed.

#H#E.H#- -1.236 AL1.24-

#H#.#%- -234.0 234.00-

Floating Sign (++ or --)

A floating sign appears as two or more plus
(++) or minus (--) signs at the beginning of
the format field. Use of the floating plus
{++) sign outputs a plus or minus sign imme-~
diately before the value of expr with no
separating blank spaces as would occur with
Fixed signs. A floating minus (--) outputs
either a minus or blank {for plus) immediate-
ly preceding the value.

Positions occupied in format by the second
sign and any additional signs can be used
for numeric positions in the wvalue of expr.

e}

-10

S

%

o

d. Floating S8ign (++ or --) {(Continued)

Repre-
Tormat expr sentation Remarks

-—-.## =20 -20.00 Second and third minus
signs are treated as #
on output.

———.## =200 AxkkExk Too many digits to left
of decimal point.

-——.## 2 AA2 .00
Note: A format may include a floating sign (plus

or minus) or a floating $ sign (described
in paragraph f£.), but not both.

e. Fixed Dollar Sign ($)

A fixed $ sign appears as either the first
or second character in the format field,
causing a dollar sign ($) to appear in that
position. If the dollar sign (3$) is in the
second position, it must be preceded by a
Fixed Sign (+ or =). A fixed dollar (%)
sign causes leading zeroes in the value of
expr to be replaced by blanks.

Repre-
ormat expr sentation Remarks

-SEFE.EE 30.512 £$430.51

SHEE.##+ -30.512 $A30.51-

PRINT USING

Remarks:
(Continued)

Floating Dollar Sign ($3)

A floating dollar sign appears as two or
more dollar ($$) signs beginning at either
the first or second character in the format
field. If the dollar signs (3) start in
the second position, they must be preceded
by a fixed sign {(+ or -).

A floating dollar sign ($3) causes a dollar
sign to be placed immediately before the
first digit of the expr value.

Note: A format may include a floating dollar
($$) sign or a floating sign (plus or
minus), as described in preceding par-
agraph d, but may not include both.

Repre-

format expr sentation Remarks

+$SS#.## 13.20 +AAS$13.20 Extra $ signs may be

replaced by digits as
with floating + and -

signs.

SSHE.HH -1.0 A$01.00- Leading zerces are not
surpressed in the #
part of the field.

g. Separator (,)

A comma (,) separator places a comma in the
fixed position in which it appears in a
string of digits (#) in the format field.

If a comma would be output in a field of sur-

pressed leading zeroes (blanks), then a blank
space is output in the position for the comma.

9-12

S

PRINT USING

Remarks:
(Continued)
g. Separator (,) (Continued)
Repre-
format expr sentation Remarks

1 +5#, ###. 4% 30.6 +3ALA30.60 Space printed for
4 comma.

% +$#, $4# 84 2000 +$2,000.00

+HEE, HEH 00033 A+00,033 Comma is printed
when leading
zeroes are not
surpressed.

h. Exponent Indicator (4)

Four consecutive up~arrows (4) are used to
indicate an exponent field in format. The
four up-arrows will be output as E+nn, where
each n is a digit.

If the exponent field in format does not
have exactly four up-arrows, then a run-time
error will result.

Repre-
format expr sentation Remarks

]
|
!

+HELFHEPAA 170.35 +17.03E+01

FEE R A -.2 -20.00E-02

+HE# #EAM4Y 0 6002035 +600.24E+01

PRINT USING

Remarks:

{Continued)

ﬂ./\ o F

As previously indicated, a format expression
may include more than one format field and
may include string literals in addition to
the special formatting characters. Values

. of the expr argument list are sequentially

assigned to format fields.

. BASIC differentiates format fields from

string literals by the characters that appear
in format fields.

For example:

"TWO FOR $1.25" $1.25 is part of the
string literal.

"TWO FOR $S$$.##" $$$.#% is a format field
in the format expression.

"ANSWER IS -85" -85 are characters of the
string literal.

"ANSWER IS -###" -### is a format field in
: the format expression.

A formatl expression maybe specified by ref-
erencing a previously defined string vari-
able; for example:

5 DIM S$(10)
10 LET S$="##.##"
20 PRINT USING S$, 1.5, 2

Format fields in a format expression are
delimited by the use of a non-special for-
matting character before or after the format
field.

g

field delimiter field delimiter

UHARHHAFORASSHEH . 4"

format string format
field literal field

String literals may appear in the expr
argument list of the PRINT USING statement
and will be superimposed on a format field
in the following manner :

a. Each character of the string literal
replaces a single format field char-
acter, which may be any of the special
format characters ($,%,+, and comma).

b. Strings are left justified in the format
field, and filled with spaces, if neces-
sary.

¢. If the number of characters in the string
is greater than the number of characters
in the format field, then the string will
be truncated to fit the field.

5 PRINT USING "H#4#, ###.#4", "TEST, "CHARACTER", "SEVENTY-FIVE"

RUN)

TESTAAAAAACHARACTERASEVENTY-FI

When there are more items in the expr argu-
ment list than format fields in the format
expression then the formagt fields will be
used repetitively.

"HHEHLQSHEH . HEAPERASHEY
The first, fourth, seventh, etc., items in
the expr argument list will be formatted us-
ing the format field ####.
The second, f£ifth, eighth, etc., items in

the expr argument list will be formatted us-
ing the format field SH##.##.

9-15

PRINT USING

Remarks:
(Continued)

The third, sixth, ninth, etc., items in the z2xpr
argument list will be formatted using the format
field ###.

The embedded blank spaces, @ sign, and PER are
string literals and delimit the format fields.

100 PRINT USING "A(#)A=A##.#",I,A(I)

-

RUN)

A(l)A=A17.9 <+~ Possible output
includes two for-
mat fields and
two string liter-

als.
100 PRINT USING "###.##A",I,A,B
RUN)
AAL.O0AAL7.900A25.774 < Possible output

with format ex-
pression repeated
for each item in
argument list.

PRINT FILE
USING

(@]
-

Purpose :

Remarks:

PRINT FILE (file), USING format, expr

file: a numeric expression which
evaluates to the number of
a file opened in Mode 1, 2,
4 or 5 for sequential out-
put.
format: a string literal or string
variable which specifies
the format (see Remarks)
for outputting the items in
the expr list.
expr: a list of one or more numer-
ic expressions, numeric var-
iables, string variables,
and string literals whose
values are written into a
sequential access file.

To output the values of the expressions in the
PRINT FILE USING statement to a previously opened
file using the format specified.

The remarks for the PRINT FILE statement described
in Chapter 7 and the PRINT USING statement de-
scribed in this chapter are all applicable to the
PRINT FILE USING statement.

CHAIN CHAIN filenagme [THEN GOTO line no.]

i filename: a string variable or string
s iv literal evaluating to a
c device or a disk file.
r line no. : a line number in program

Purpose : To run the program named in the CHAIN statement
when encountered in the user's program.

Remarks: 1. When a CHAIN statement is encountered in a
program, it stops execution of that program,
retrieves the program named in the CHAIN
statement from the specified device and file,
and begins execution of the CHAINed program.

2. 1f the program is on disk, the system searches
the programmer's directory for filename; if
not found, the system will search the library
disk directory.

3. 1f filename is found, the programmer's cur—
rently running program is cleared from mem-—
ory and filename is loaded into memory. If
filename is not found, the current program
remains in memory.

4. The newly loaded program is run, by default,
from the lowest number statement in the pro-
gram unless the THEN GOTO line no. argument
is given in the CHAIN statement to specify
another line number from which execution is

to begin.

5. A program must be in SAVE file format before
it can be CHAINed.

6. Typically, the CHAIN statement can be used

for dividing a large program into smaller
programs or for running independant programs
from a main program based on conditional
transfer statements.

CHAIN

Example:

{Continued)

10
20
30
40
50
60
70

READ A
IF A > 5 THEN 60

IF A 5 THEN 70

DATA 4,1,6,3,5

GOTO 10

CHAIN "SERVICE"

CHAIN "SUBR" THEN GOTO 50

i

sulr: a positive integer repre-

slv senting an assembly lan-

ciy/ guage subroutine number.

r xpr: as many as eight optional
arguments to be passed to
the subroutine. Arguments
may be arithmetic or string
variables or expressions.

Purpose : To call a subroutine written in assembly language

from an Extended BASIC program.

Remarks: 1. Dimensioned numeric variables which are used
as arguments to the CALL statement must
include subscripts.

2. Details for creating assembly language sub-—
routines which may be CALLed from Extended
BASIC programs are provided in Appendix B.
Example: 5 LET A = 12
10 LET B =4 * 2
15 CALL 33,A,B < CALL subroutine

. 33 and use the
values of A and

. B as arguments
for the subroutine.

TIME TIME = expr

expr: a numeric expression which
sly evaluates to an integer and
represents time in seconds.

@]
.

Purpose: To establish the time limit for timed input
(TINPUT) operation.

Remarks: 1. Assigning a value to TIME sets the SYS(14)
function to the value of expr.

2. The value of SYS(14) is decremented at the
RDOS clock tick rate (1/10 of a second per
tick) from the time a TINPUT statement is
executed.

3. Decrementing of SYS(14) stops when the pro-
grammer responds to the TINPUT prompt.
Decrementing of SYS(14) is resumed when the
next TINPUT is executed.

4, If the programmer does not respond to the
TINPUT prompt before the SYS(14) function
has decremented to zero, then an error mes-
sage is printed at the terminal and the pro-
gram stops, unless an ON ERR THEN statement
is used.

5. TIME may be reset to another value and may
appear as often as reguired by the program
logic. '

Example: (Continued on next page)

TIME

Example:
{Continued)

#*LIST

310 DIM ASL583 ‘

892¢ PRINT "LET®S TEST YOUR RECALL SPEED"

pE3s PRINT

042 TIME =18

gos5® TINPUT “WHAT COLOR IS YOUR MOTHER'S EYES? ",AS
860 GOSUB 28148 ’

7072 TINPUT "WHAT'S YOUR SOCIAL SECURITY NO.? “,AS$
#g88 GOSUB 2140 ,

2097 TINPUT "HOW OLD IS YOUR FATHER? *",AS$

gi88 GOSUB 9144

#13% GOTO 8198

g14ag¢ LET Isl+l

g156 LET ALI1=(1B8-5YS5¢14))

@162 PRINT “TIME USED- “3AL1313™ SECONDS"™

179 TIME =18

@188 RETURN

#1908 FOR J=1 TO I

@200 LET B=B+AlJ]

9218 NEXT J

9220 L.ET C=B/I] '
9233 PRINT “AVERAGE RESPONSE TIME= *3C3" SECONDS”

#RUN ;
LET'S TEST YOUR RECALL SPEED

WHAT COLOR IS YOUR MOTHER'S EYES? BROWN
TIME USED- 6 SECONDS ’

WHAT'S YOUR SOCIAL SECURITY NO.? 118234567
TIME USED- 16 SECONDS

HOW OLD 1S YOUR FATHER? 63

TIME USED- 4 SECONDS

AVERAGE RESPONSE TIME= 6.66667 SECONDS

END AT 0238
*

9-22

TINPUT

Purpose:

Remarks:

Example:

var ,var |
TiNpUuT["string Lit", J\svarf [\,svarf|...[;]

var and svar: a list of variables sepa-
rated by commas or carriage
returns.

"string 1it": a message or prompt.

To assign the values supplied by input from the
terminal to a list of variables, within a pre-
scribed time.

INPUT statement remarks (Chapter 3) are
applicable to TINPUT.

The TINPUT statement is used in conjunction
with the TIME= statement and the SYS(14)
function.

The TIME= statement sets SYS(14) to the
value, in seconds, allowed for the program-
mers respond to the TINPUT prompt.

The value of SYS(14) is decremented at the
RDOS clock tick rate (1/10 of second per
tick) from the time a TINPUT statement is
executed.

If the programmer does not respond to the
TINPUT prompt, before the SYS(14) function
has decremented to zero, then an error
message 1is printed at the programmer's
terminal and the program stops, unless an
ON ERR THEN statement was previously
executed.)

Decrementing of SYS(14) stops when the pro-
grammer responds to the TINPUT prompt.

A DELAY statement upon completion clears
the value of the SYS(14) function to zero.

See TIME for an example of TINPUT usage.

s

APPENDIX A

FRROR MESSAGES

Extended BASIC error messages are printed as two digit codes, followed by a
brief explanatory message. There are three categories of errors which may

occur when operating Extended BASIC under RDOS.

1. Errors recognized by BASIC during program input,

If an error is detected in a statement input from a
terminal, the error message refers to the last state-

ment typed.

If the statement in error was input from a file or
other input device, BASIC prints the incorrect state-
ment followed by the error message.

All syntax errors are recognized during program input.
The form of the error message is:
ERROR & text
xx: a two-digit decimal error code.

text: a brief description of the error.

2. Run-time errors (except file I/0).

BASIC system run-time errors cause printout of an
error message in the following form:

ERROR xx AT yyyy text

rx: a two-digit decimal error code.
yyyy: the line number at which the error
was detected.
text: a brief description of the error.

The following table i
explanations.

-
[

File 1/0 errors

Error mes
follows:

I/0 ERROR xx (AT 42

s

emizes the

ages related to file I/0 are formatted as

I d
’wu»fw') LexT
oV

Lo
Tk

a two-digit decimal error code.

the line number at which the file I/O
error was detected.

a brief description of the error.

i

xtended BASIC error codes and their

g

BASIC Error Messages

Code Text Meaning Example
GO FORMAT unrecognizable statement A==
format
01 CHARACTER illegal ASCII character or RUN $100
unexpected character ENTER #SLPT"
02 SYNTAX invalid argument type 20 IF SIN{(AS)=0..
03 READ/DATA READ specifies different 10 DIM AS(10)
TYPES data type than DATA state- 20 READ AS
ment 30 DATA 12
RUN
04 SYSTEM hardware or software
malfunction
05 STATEMENT statement number not in the 0010 GOTO 81373
NUMBER range: 1 < n < 9999
06 EXCESSIVE attempt to declare more than
VARIABLES 286 wvariables
o7 COMMAND 1/C attempt to execute a command [ENTER "ABC"” and file
from a file {(and not in ABC contains a LIST
BATCH mode) command
08 SINGULAR attempt to access via MAT 10 DIM A(10)
MATRIX a one dimension list. 20 MAT INPUT A
09 (NOT USED)

BASIC Error Messages (Continued)

Code Text Meaning Examples
10 RESERVED another user has control of User A:
FILE IN USE the specified I/0 device ENTER "S$PTR"
User B:
ENTER "SPTR"
11 PARENTHESES parentheses in an expression |A = ((B-C)
are not paired
12 CCMMAND keyword unrecognizable 10 LETT A = 10
13 LINE NUMBER attempt to delete or list an lOO)
unknown line; attempt to 10 GOTC 100
transfer to an unknown line RUN
14 PGM not enough storage to ENTER ENTER "ABC"
OVEREFLOW source program
15 END OF DATA not enough DATA arguments to |10 READ A,B,C
satisfy READ 20 DATA 91,21
RUN
16 ARITHMETIC value too large or too A = 1234E + 66
small to evaluate or a ;A 4+ 20
divide by 0 ;1/0
17 (NOT USED)
18 GOSUB more nested GOSUB's than
NESTING specified at SYSGEN
19 RETURN - NO RETURN statement encountered |10 RETURN

GOsUB

without a corresponding
GOSUB

RUN

e

]
|

BASIC Error Messages (Continued)

Code Text Meaning Examples
20 FOR NESTING more nested FOR's than
specified at SYSGEN
21 FOR - NO unexecutable FOR-NEXT loop; FOR I = 1 TC O STEP 1
NEXT FOR without a NEXT
22 NEXT - NO NEXT statement encountered 10 NEXT I
FOR without a corresponding FOR RUN
23 DATA not enough storage left to 10 DIM A({300000)
OVERFLOW assign space for variables RUN
24 NO channel limit specified at 10 OPENFILE(0,3),"T"
AVAILABLE SYSGEN time has been
CHANNELS reached
25 OPTION feature specified not MAT PRINT A
available (SYSGEN)
26 PGM/DATA attempt to LOAD or RUN a LOAD "ABC"
OVERFLOW SAVEd file which is too
large for available storage
27 FILE NUMBER invalid file designation in OPEN FILE (9,0),"TEST"
an 1/0 statement
28 DIM an array or string exceeds 10 DIM A{(2,2)
OVERFLOW its initial dimensions 20 MAT A = ZER(5,5)
29 EXPRESSION an expression is too complex (A = ({((A+1) + ((A-7+3)

for evaluation

* 3) + RND (0}))

i
(2]

BASIC Error Messages (Continued)

Code Text Meaning Examples
30 MCODE invalid mode designation in OPEN FILE (0,12),"TEST"
an I/0 statement
31 SUBSCRIPT subscript exceeds array's 10 DIM A(2)
dimension ;A (1,30)
RUN
32 UNDEFINED 10 A = FNA(B)
FUNCTION
33 FUNCTION the nesting of too many
NESTING defined functions
34 FUNCTION argument range exceeded A = 1234
ARGUMENT ;AM34652
PAGE = 200
DELAY = -1
TIME = -1000
35 ILLEGAL PRINT USING statement is ;USING "A",A
MASK illegal
36 STRING SIZE the size of the string PAGE = 10
exceeds PAGE specification ; "AAAAAAAARAAY
37 USER ROUTINE |[CALL statement specifies a 10 CALL 2
user routine not in storage RUN
38 (NOT USED)

A-6

BASIC Error Messages

(Continued)

Cod Text Meaning Examples
39 DUP same matrix appears on both 10 DIM A{10,10)
MATRIX sides of a MAT multiply or 20 MAT A = * A
transpose statement.
40 MATRICES matrices have different 10 DIM A(10,10)
SIZES sizes 20 DIM B{(20,20)
30 MAT A = B
RUN
41 UNDIMEN- attempt to use an A =0
SIONED undimensioned matrix MAT PRINT 2
VARIABLE
42 FILE ALREADY | two OPEN statements without OPEN FILE (0,2),"sLpT"
OPEN an intervening CLOSE OPEN FILE (0,2),"sLpT"
43 MATRIX NOT attempt to invert a non- 10 DIM A(20,30)
SQUARE square matrix 20 MAT B = INV{Aj)
RUN
44 FILE NOT an attempt to read/write a DIM AS(10)
OPEN file which has never been WRITE FILE (0} ,AS
opened INPUT FILE(O),A
45 DATA > LRECL |logical record length limit DIM A$(300)
exceeded OPEN PILE(O,1)"ABCY
WRITE FILE(O},AS
46 INPUT too many responses to [MAT] INPUT A 2 1,2,3
INPUT
47 MODE input file opened for OPEN FILE(O,1l),"TEST"

writing or output file
opened for reading

READ FILE(0),A

Code Text Meaning Examples
48 NOT A CORE filename specified in LOAD LOAD "TEST.SR"
IMAGE FILE CHAIN, or RUN filewname
command not created by SAVE.
49 INO ROOM FILES or LIBRARY commands 10 DIM A(8000)
FOR cannot find 256 words in RUN
DIRECTORY user program storage to FILES
read disk directory
50 INVALID Attempt to execute a (see System
OPERATOR privileged command Manager's Guide)
COMMAND
51 JUSER NOT ON |attempt to send message to MSGA#SSHAHELLO
SYSTEM an inactive or non-existant
user.
52 USER IN attempt to send message to
NOMSG STATE user whose terminal is in
NOMSG state
53 RENUMBER an incorrect line number is 10 GOTO 100
encountered during execution [RENUMBER
of a RENUMBER command
54 STATEMENT more than 132 characters in 10 ON A GOTC 1,1,1,..
LENGTH either internal or ASCII LIST
format dus to expansion 20 5"..L.W"
55 EXECUTE-ONLY |attempt to examine a program ENTER "FRED:TEST"

originating from a file with
the execute-only attribute

LIST

BASIC Error Messages

(Continued)

Code Text Meanin Examples
56 RANGE attempt to reference a 5 N = 300000
random record beyond 10 OPEN FILE(Q,0),"T"
262144 20 READ FILE{O,N),A
57 {(NOT USED)
58 INCOMPATIBLE |attempt to LOAD a core image |LOAD "TEST.CI"
CORE IMAGE file SAVEd under a different
FILE floating point precision
59 ZERO STEP FOR-NEXT with STEP O 10 FOR *=0T050 STEP I
20 NEXT I
RUN
60 TIME-OUT timed input decremented to 10 TIME = 30
zZero 20 INPUT A
61 INVALID attempt to perform string 10 DIM AS(80),Bs(80),
DECIMAL arithmetic with non-numeric Cs$(80)
STRING characters 20 INPUT AS,BS
30 C$ = AS * BS
RUN
?ABC?5430
62 PRECISION the result of string
OVERFLOW arithmetic requires more than
18 digits for precision
representation
63 MAX number of sharable directo- ENTER "FRED:A"
SHARED ries in use exceeds the
DIRECTORIES number specified at SYSGEN
64 (see System Manager's Guide)

File I/0 Error Messages

Code Text Meaning

01 JILLEGAL FILE NAME A to Z, 0 to 9 and §

03 ILLEGAL COMMAND FOR DEVICE | INIT "S$PTR", WRITE to SCDR

06 END OF FILE Attempt to read beyond EOF marker.

07 READ PROTECTED FILE Attempt to read from a read protected
file.

08 WRITE PROTECTED FILE Attempt to write to a write protected
file.

09 FILE ALREADY EXISTS Attempt to create an existent file.

10 FILE NOT FOUND Attempt to reference a non-exXistent
file.

11 PERMANENT FILE Attempt to alter a permanent file.

12 ATTRIBUTE PROTECTED Illegal attempt to change file attri-
butes.

13 FILE NOT OPENED Attempt to reference an unopened file.

17 UFT IN USE System error.

18 LINE LIMIT Line limit exceeded on read or write
line.

20 PARITY Parity error on read line.

23 NO FILE SPACE Out of disk space. Delete files to
make more room.

24 READ ERROR File read error.

25 SELECT STATUS Unit not ready or is write protected.

29 DIFFERENT DIRECTORIES Files specified on different directo-
ories.

30 ILLEGAL DEVICE CODE Device not in system or illegal

device code.

A-10

s

File I/0 Error Messages {(Continued)

Code Text Meaning
38 INSUFFICIENT CONTIGUOUS Insufficient number of free contiguous
BLOCKS disk blocks. Reorganize partition.

41 NO MORE DCB'S Attempt to open more devices or directo-
ries than are configured in the operat-
ing system.

42 ILLEGAL DIR SPECIFIER Illegal directory specifier.

43 UNKNOWN DIR SPECIFIER Directory specifier unknown.

44 DIR TOO SMALL Directory is too small (Operator only).

45 DIR DEPTH Directory depth exceeded (Operator only).

46 DIR IN USE Released directory in use by other
program.

47 LINK DEPTH Link depth exceeded.

48 FILE IN USE Contact System Operator if file is in
your directory.

52 FILE POSITION

54 DIR NOT INITIALIZED Directory/device not initialized.

APPENDIX B

CALLING AN ASSEMBLY LANGUAGE SUBROUTINE FROM EXTENDED BASIC

It is possible to call a subroutine written in assembly language from an
Extended BASIC program. The format of the BASIC call is:

CALL sub#][, A aens Anj

where: sub# is a numeric expression evaluating to a positive

integer (in the range 0 to 32767) representing the
subroutine number.

Al,...,An are optional arguments to be passed to the
subroutine (n must be in the range 1 to 8) and may be
arithmetic variables or expressions, or string vari-
ables or expressions. Dimensioned numeric variable
names should not appear alone, i.e., without subscripts.
(Statement numbers are not permitted as arguments.)

Character String Storage and Definitions

The assembly language programmer should be aware of the following inform-
ation if he wishes to handle character strings in a CALLed subroutine.
BASIC keeps a count of the number of characters currently defined in each
string variable (referred to as the current length of the string variable).
A current length is stored as part of a header immediately preceding the
contents of each string variable. (See illustration on next page) The
current length must be updated each time characters are added to or taken
away from the string variable.

Character String Storage and Definitions {Continued)

Current length CL

C1 Co Increasing memory
Characters C=z Caq addresses

C5 Ce

k4

String Variable Storage

In the following examples, assume that A$ is dimensioned to 10, and A$ =
"ABCDE". The current length of A$ is 5.

A substring is defined as any contiguous part of a string variable. For
example:

A$(2,4) and AS are substrings of AS
The current length of a substring is defined as the number of defined

characters within the substring. For example, the current length of AS(4,7)
is 2, if only A${4,4) and AS(5,5) are defined.

The maximum length of a substring is defined as the number of character
positions within the substring. For example, the maximum length of
substring AS${4,7) is 4.

Linking the Assembly Language Subroutine

Assembly language subroutines must be submitted to the System Manager at
system load time. The subroutines are input to the relocatable loader when
the BASIC system save file is created. The user must include a subroutine
fable with his subroutines. The table must have the entry point SBRTB.
Improper use of assembly language subroutines, system calls, or task calls
can crash the system.

The subroutine table is a list of all assembly language subroutines avail-
able to a BASIC program. For each assembly language subroutine a four-word
list is reguired in the table containing the following:

Linking the Assembly Language Subroutine (Continued)

subroutine number
subroutine entry point
number of arguments
argument control word

The table is terminated by using a subroutine number of -1.

The argument control word is used by BASIC to give run-time error checking

on the types of arguments. The argument control word is divided into eight
two-bit fields for the eight possible arguments Ay...Ag. The value of the

two bit field determines the allowable argument.

00, < argument may be any string expression
01, “ argument must be a string variable
105 < argument may be any numeric expression
11, < argument must be a numeric variable

The argument control word is written in an assembly language program such
that the arguments are connected by a plus (+) sign and are described as
shown in the following example.

argument A argument A argument A
\l I 2 ’

N\ ay N\

3B1 + 3B3 + 2B5

Vw g <

octal value/bit field DbIT field bit field
1

of bit field 0, 2,3 4,5
{3=numeric
variable)

BASIC calls the assembly language subroutines by the seguence:

LDA 2,.+2 ; AC2 POINTS TO TOP OF ADDRESS LIST
JMP <SUB> ; JMP TO ASSEMBLY LANGUAGE SUBROUTINE
ADLST
ADLST: <arg Al>
<arg A2>
<arg An>
JIMP BASIC ; RETURN TO BASIC INTERPRETER
-

Linking the Assembly Language Subroutine (Continued)

If A_ is a substring of a string variable, the address list contains the
address of the string descriptor words, which contain the following inform-
ation:

word 1: byte address of the first character of the substring
word 2: current length of the substring

word 3: maximum length of the substring

word 4: word address of the current length of the string

variable

If A, is a string expression, the address list contains the address of the
string descriptor words, which contain the following information:

word 1: byte address of the first character of the string
word 2: length of the string

If A is a numeric variable, the address list contains the storage address
of the variable. (All numeric variables are represented in standard float-
ing point format.)

If Ap is a numeric expression, the address list contains the storage address
of the value of the expression.

The following is an example of a subroutine, and its subroutine table. The
argument list in a BASIC call to this subroutine must match the argument
control word specified in the subroutine table.

caLL 1,B,C < legal

CALL 1,A,B <~ legal

CALL 1,B*2,C < not legal {(arg Al must be a numeric
variable)

CALL 2,A,B < not legal (there is no subroutine
no.2)

Linking the Assembly Language Subroutine {(Continued)

LTITLE SBRTB ;
LENT SBRTB ;
.NREL i

; SUBROUTINE TABLE

SBRTB: 1 ;
SUB1 ;
2 H
3B1 + 3B3 ;
..1 ;

SUB1:

; CALLING SEQUENCE: CALL 1,A,B

; THIS ROUTINE IS THE EQUIVALENT OF LET
; THIS ROUTINE IS NOT REENTRANT

STA 2,RET ;
LDA 3,0,2 ;
LDA 3,0,3 i
LDA 2,1,2 ;
STA 3,0,2 ;
LDA 2,RET H
LDA 3,0,2 ;
LDA 3,1,3 ;
LDA 2,1,2 H
STA 3,1,2 ;
LDA 3,RET ;
JMP 2,3 ;
RET: BLK 1
.END

An illegal CALL, causing error 17, will
variable in the CALL that does not have

BASIC ASSEMBLY LANGUAGE SUBROUTINES
ENTRY POINT : SBRTB
NORMAIL RELOCATAEBLE CODE

SUBROUTINE #

SUBROUTINE ENTRY POINT

NUMBER OF ARGUMENTS

ARGUMENT CONTROL WORD, BOTH ARGS ARE
NUMERIC VARIABLES

END OF TABLE

B = A.

SAVE ADDRESS LIST

ADDRESS OF ARG 1

WORD 1 OF ARG 1

ADDRESS OF ARG 2

WORD 1 OF ARG 1 TO WORD 1 OF ARG 2
ADDRESS LIST

ADDRESS OF ARG 1

WORD 2 OF ARG 1

ADDRESS OF ARG 2

WORD 2 OF ARG 1 TO WORD 2 OF ARG 2
ADDRESS LIST = RETURN ADDRESS -2
RETURN TO BASIC (2 = NO. OF ARGS)

result from an attempt to pass a
a previously assigned value. All

variables passed in the CALL must have been previously assigned values even
if their current value is not to be used in the CALLed subroutine.

Several subroutines are available in BASIC to help the user in manipulating
numbers and character strings. The pointers to the routines are in page
zero and should be declared as displacement externals.

Linking the Assembly Language Subroutine {(Continued)

Routines RESULT*

LFIX Converts floating point number in ACO-ACl to an
integer in ACO-ACLl. If there is overflow, the
largest possible integer is returned in ACO-ACL.
Bit 0 of ACO is the sign of the number. Bit O
of AC1l is a significant bit. There are two re-
turns from .FIX

return 1l: overflow
return 2: OK

FLOT Converts an integer in ACO-ACl to floating
point format in ACO-ACI.

.ADDF FO+F1 Arithmetic routines to perform floating point

.SUBF FO-F1 add, subtract, multiply, divide. In each rou-

.MPYF FO*F1 tine, ACO-ACl initially contains the floating

.DIVF FO/F1 point value of Fl1 and ACZ contains the address
of the value of FO. The result is returned in
ACO-AC1.

Underflow returns a zero result; overflow
results in error number 16.

.MPY A1*A2->A0,A1 In the integer multiply routines, ACl contains

.MPYA AO+Al*A2-A0,AL the unsigned integer multiplicand and AC2 con-—
tains the unsigned integer multiplier. The
result is a double length product with high-
order bits in ACO and low-order bits in ACl.
Contents of AC2 are unchanged. The difference
between the routines is that .MPYA adds the
result of the multiplication to the contents

of ACO.
.DVD (AO,Al) /A2~A1,A0 In the integer divide routines the dividend is
.DVDI Aal/Aa2-Al,A0 in AC1 {(single-length) or in ACO and ACl (dou-

ble-length with high order bits in ACO). The
divisor is in AC2 and the result is left with
the guotient in ACl and the remainder in ACO.
Contents of AC2 are unchanged.

*In systems having floating point hardware, the floating point number is
stored and returned in the Floating Point Accumulator (FPAC) rather than in
ACO-ACL.

Linking the Assembly Language Subroutines {(Continued)

Routine Result

.MOST Moves the character string described by the
string descriptor words in ACO, ACL to the
substring described by the string descriptor
words in the page zero memory locations labeled

TR3, TR4, TR5, TR6.

Before a JSR to MOST, these accumulators and
memory locations should be loaded as follows:

ACO - byte address of the first character of
the source string

ACl - length of the source string

TR3 = byte address of the first character of
‘the destination string

TR4 - current length of the destination
substring

TR - maximum length of the destination

} substring
TRG6 - word address of the current length of

the destination string variable.

TR3, TR4, TR5 and TR6 should be declared as displacement externals in the
assembly language subroutine. MOST automatically updates the current length
of the destination string variable. Subroutine MOST has two returns.

Return at CALL + 1 means the character string move was terminated by the
source string becoming empty.

Return at CALL + 2 means the move was terminated by the destination substring
becoming full.

APPENDIX C

PROGRAMMING ON MARK-SENSE CARDS

- Source programs may be written on Data General's Extended BASIC mark-sense

Lo 0 s |

programming cards for input to the mark sense card reader. The Data General
Extended BASIC mark-sense programming card 'is a 37-column card as shown
below. :

3
Z
c
co
»

&S

o

c:::h:::a

il
1]

& 5
e
=
&5 o

5

TR T . D o e
L i wavae S s

e 30 v 20 s B soun: S s

e

-

e

L e =

e BRY

L b S
g B L]
o ey
S 2 oy
=y NN
Evitomc JE s B oo 1
T I s B s |
Ty B Anome: B v |

Lo I o 2 wosves |

mEﬁcEﬁcEﬁ

ot 5 Y
snd

e e W

[oo wnsoer 12 s 3% womioe 8 et |

0 I 0

copyRIGHT @ bec, 1972
DATA GENERAL

[oo 28 wivumer J woore 2 witsoes

IEILIL! LILIRIRIRIL] 0101

IRINIRILI UDILIRINE! IRl
IDE Jzﬂfa@”mﬂ m{g IEINI ﬂx%%gvﬂlgxﬂrg 000000000010 000
‘Uiﬂll]r%%aglﬁ’*"'*ﬁm?} pipeponooananonnooouononnnno
Qoo QD fm (020 DORO OO0 OO000000Q00000D000DDDI:
3} o) o) e [feose oo} (0] DO DEQ QDO OD0OO00M)OORO0AQDD0D0DT:
Qo D)ol D) D00 ADD00000DDD0DD0DD0DDDDD0
s fon Down [0 DO 00000000000 0MMQOD00D0DDDD0Ds
o ef} o oo e NP T00 DO OOODROOUOOOOD0DNDDDDD0-D0DDe
N fpe DSl 00000000000 00000000 0000000000
o o) of) oo (T Bbe Djr DU0o0 D000 DD Nad 00 Dule)u)u)a]u]a]e)a(a]es) [[
o) o) o) pou (o Do) 0] DO OO0 D00 O 0OD00D0000D0DDDDDe
O 0 O T T 0 O I T U UMMM R R R R R O R R BN BN R

A stack of mark-sense cards may be read as a file and regquires an EOF card
at the end, which is a card with a single column in which all rows are mark-
ed. When in Batch mode, entire jobs may be entered from the card reader.
Such card decks must conform to the Batch job control formats. Keyboard
commands are suitable card input in Batch mode only. Consult with the Sys-
tem Manager for detailed Batch processing information.

The mark-sense reader has an option that permits either markings or punches
to be read. Users having the option may punch mark-sense cards. Marked
and punched cards may be intermixed in a deck and a single card may contain
both markings and punches.

4504740 48047810

RHOBBL WesRRS

-G

The BASIC statement field of the mark-sense card, as shown above, is three
columns which allows all possible combinations of statement keywords. For
example, MAT appears in the first column of the field, WRITE in the second,
and FILE in the third, permitting the user to indicate a MAT WRITE FILE
statement.

A single Extended BASIC statement or part of a statement may be written on a

single card. Cards are marked with No. 2 pencil in the appropriate column:
for example, the statement 450 DATA 4.2, 3.5, 1, -1, +5 would appear as:

Tl sTATEETRTY | FORMULA T
0 swrover v [o] pl] | 140 Qo)] o]])00 0 0§ JQ Q00000000000
IRl LELNSNSRERRBLEDLEE BREEEREERENREREEE
ol o o) o el ool o) 1] 0 A QG0 0 000000 0000000 e
INDEAEY ESNUROEERREE RRE EER R R R R R RN R R EEL
2 o) 2] fon (e) | 020 0 ROO OO D DD DO ODMOODODD-D0D DD Dl
s o) ol o) e Dot pono 1040 R 0 QU QO AO Q00RO DO0OOAQD 000D DD
Dol Do) DR 00O DN DOO00D0 000N DD0D0QD0D]0
Q0 ofsjm Jjml oo D00 DO OO ONAO Q0000000000000 D00DDs]
ol of) o e Jons Poee D0l DO OO DM ODOOOD RO DRI ODDD D000 el
ol oD per Dl st D100 QOO NOO UM ODO000D00R)00D00DD 0
o of) o) oo 1364 0w 0100 80 R 0000 0wk 0 0 §wqupaQu]a)upu)u])e]uge] [o]
s e ol o) bow Do Dol 0] DO QDO DD DD DD OODDDDDDDDNDD D]
R R R Y

Part of a statement may be written on one card and continued on the next by
marking the CONT box in the upper righthand corner of the first card and
continuing the statement on the card following beginning with the FORMULA
section.

When writing an IF or an ON statement, the programmer writes one card con-
taining the IF or ON expression and marks the THEN box in the upper right~
hand corner of card. The programmer continues the THEN clause on the next
card beginning in the FORMULA section.

The FORMULA section of each card must be filled out in Hollerith code (see
Appendix D), and programmers familiar with punched cards will have no
difficulty with the format. To assist any programmers who are not familiar
with punched cards, each card contains a key indicating the lines that must
be marked for each character. For each character, a box on the horizontal

COPYRIGHT ©) DGC, l972

DATA GENERAL

L woves Y et |

THER

L
ABOAT4-0 4BOATE-TY

e s HOGRIO HBE8ED

“QW

i

i1y
e

Iin addition, in

horizontal lines immediately below the character, a line must be marked if

a sguare appears on the lefthand side.

If we use punched card notation, the
To indicate 4, put a mark on

FOR X = .1 TO .005 STEP -0.01
X = X * LOG(X)
25 NEXT X

15

To further illustrate the use of mark-sense cards, the following scurce code
5

line 4; to indicate %, put marks on lines 11-4-8; to indicate #, put marks
is shown on cards:

top line is designated 12, the second from the top is designated 11, and the
on lines 3-8, etc.

line on which the character appears must be marked.

other lines are numbered from O through 9.

CL-BLPOM OmbLYORY szovEN ORUIEN

e om wuaNio viva M B
o= vy
Fe 3 e B 2161 '000 @ LHOINAIOD

i

§§§§§§§§§§§
e I o 5 s s B oo J s i oscss JS wovowns B tnt. J s J oo J o

R s Y somevnc YR .- 3 s 3R s Y o Q. swioin Qi Y o [woves. B o . ot

gﬁgxgggmﬁﬁggﬂwﬂ@g '
Eﬁgnnggggﬁu%gﬁﬂg |
ggga@igggﬂﬂuﬁgﬂ!ﬂug
gggv}%uggﬁ@uggﬁﬁug
ﬁﬁﬁjﬁia?&ﬁﬁﬂ%ﬁﬁaﬁgﬁg
?ﬂ”ﬂw&iﬂuxﬁ%mﬂﬁgﬁgﬁwﬁ
| oo s 3 o avsens Y oot i o Yt swiover B e o 8 s J s i v
= W
sggmﬁﬁaﬂw!ggﬁg‘ﬁ
hd aft Lo L
éﬁggﬂﬂugggggg
- W i
fowoa B © Rk w0} o i vt B8 v it oo J vessner R s By o . oo, JY soviwn
e s [
[i - B sk o} wwonnss . sose Y st Y v Y wenne I s O e B s

[oo B sy o B st b i B wonec B Q5 swsv I snvss B4 wovsee I s |

(A

FORMULA

q
I
4
I
[
!
[
[
I
I
I
[

3 =3
. St
%ﬂuﬁ%iﬁm‘l—a.ﬁﬁﬁg
e s

l
I
!
I
[
[
[
!
I
I
[
0

Gl
i
ﬂegiaﬁgﬁﬂﬂuggg
o i
ﬁuggﬂﬁﬁnﬁﬂgggﬁ
R e [
W O CoTROTT T R D O O3 O e O
w = B

I
4
I
[
[
[
[
[
!
[
[
[

o [e

nutwhu.sm!.gﬁllluﬁhhw‘ﬁuununu.ﬂﬂwnuuﬁ

L B T3 ETUOeCTUD ST SRS Y ST L0 L0 MR 0

ﬁmﬁﬁgrlivﬁmﬂéﬁﬂdﬁg t
wig | B _m 21|y 5 m
f v J B vsnc] & s % it 3 Ko 3 e § X s J £ s J § voioi] § woonon) § st § § souions. J
B 52| = v m m - | 1 L)
ETTI L ETTTM T e T | R | ST | T DSRS0
Bl @l @ | || o m ﬁlsﬁm mg

i TR TR ST EITT SR TR STTR LT R
m& T RS W w T wm we e ed @b we
mnu!u [R R - - S O R
Aw TR ST ST ST TR SN LT £ TR
B IR W e ST e TR e e e

[masn I et 3 - sumuns 258 o N o S saumonx S8 oo L oo S ot B oo B dowon N S
55555555555

SFORX=.1T0.0058TEP~-0.01

Qi Bae0RP O-blbOub

BRUBEN ORTBREN

E o= TvHaNgo viva M

@ P bl

o B s » 2461 000 (3 LHONAGOD

ﬂuﬁuﬂﬂ%éﬁ%ggggggg
8y R ol g iird L= [L3 o ER

[Y s B e ¥ S e e v S oot s I i s S e

| e i B e - S SO s Y e g —w") S g s/ g — g ../, -

£ £ ETTROTT ETT € £ ST O 620 £ D
]

e e e R e R R
L

o B s 8 oo L v J e 3 e B semes R s I s J s Y S
L]

iggmgﬁgﬁhﬁﬁuﬁgggg
|

T IR LT ﬁ%m ETTR O OETTH AT £ £

W

I RO £0 £ £ €00 €0 £ £
L]

s O s 3K st S o 38 s S s 3 o 3 o 38 s 3 o B o
S b g

f ot O v B Sowaan s S o S s S s 0 s i i
e L 5 [

o i T oot % s I s B s o S e 3 s I v
s i

(3 inououe e B e S s 3R e B e B s R i R oo
[[

s Covtme S o S o B e Y oo S s 38 s 38 s 3 v J
B] -,
£ om0 s s S s S s S o S8 s S . J o
it o | b
o s J st iiass S R e s s soe R wei B s § e J

mmiwiﬂﬁfxﬁnﬁggigggggg
%@ﬁﬁw%ﬂﬁwﬁﬁgggggg
ﬁ,@:w f e wnus.ﬁa!s.wﬁuiiw vt B woevin . sesiont A8 wioui 8 wctouns 39 snsss B v
ﬂsa%gaﬁti e B e i vt B IR s R wa | e |
ﬁi?ﬁ@%mﬁ;ﬁﬁﬂmgﬁg%gggg
% izamuivr Lk B v S Mo B O we B v B e]

gqe‘sﬁ& s v N s B snint Q% o S sosow L o QY s T o
TR e s

I
[

0
[

(N I N T O I OO I B A

I
[

“ | A B

* el

Pl v Mo W
e

7
- G

i1
H

{] penrel] jsve [] | [] 4[]

STATEMENT

1
al
!

N
ooro || pweu]] ALE |

" K N A En
T S T S e

%% 3§a§ﬁu&mi§§ﬁﬁiﬂﬁ;ﬂ
e g fard g e E» faad A (-)
(S T s S o o O o, S s J s IR o S . S s
L2 g g Ll ek fied g el Lo [ad WD wrp wE
T LI IO £ 0T T £ £ BT S £

Wy wes @ B

15 X=X{*LOG{X)

Qh-Bip0Re O-biv0SE BIRREH ORO9EN
£ TVHINGD VIVa hv _
£ £ B 2461000 @) IHOMALOD

B R R PR T P-

 mia I s S o1 s J s B soan R e se i e J snenet L S) St SN
i 2 s B o7 v B sesoves R st [i o 3 sueois Y. . et G s S

ﬁunﬁﬁnnﬁggnﬁgﬁu%ﬁgi
gggaﬂmgﬁﬁgﬂwﬁgﬂﬁnﬂu?
Eﬁugxﬁunﬂuggmﬂuggﬁ%nﬁi
ﬂﬁgﬁmﬁmﬁﬁﬁwﬂ%&ggﬁﬁﬂ%ﬁi,
gggaﬁﬂﬁwﬁgzgggﬁg
ﬁﬁﬁﬁgagﬁ%mﬁuﬁagﬁﬁugﬁg
S s B S st B e B st S s B v J s s 3 s 3 et BN
T e e e
L3 £ ETMOTD O 0D OO 65 £0F £ £3 £
e [[] -
m@ﬁumﬂgggﬁﬁgﬁﬁﬁggﬂwﬁui
ﬁﬁxﬁLm@ﬁxégéﬁﬁnﬂuﬁﬁgwﬂ%g
e
”‘.Mw,sesw ‘mu:nw ﬂ;u,xénlz.«wmﬂnﬂw %ggggﬁﬂ% g
uwuuwuuwé?dg i S v s Y v 3 s I e 3 o S
w L i e
Pl s B s W e s W B s Y i Y s I i Y s W s W s

mﬁﬁﬁigxgggmﬂﬁﬁﬁaﬁggg

mauu‘u Lnﬂdwgggggggggg
%gﬁgaggégggﬁﬁgg
L e [
%%%33&.@%23%%@%2
[s B e B s> 2 oo JE soiose B uiints B o S sieiove 3 Qﬂuﬂugg
e B s
%ﬂuguﬁbgggﬂ%nﬂ&ﬁﬂﬁg
| s B s 3 0 ngﬂﬂuﬁiﬁgﬂuﬁ?ﬁwggg
O e o
ﬂﬁ%ﬁ;n%gﬁgggigg
T
ggﬂingﬂgggﬂﬁgﬁﬁgg
[ke D f
%g.%rﬁkﬁggggggg
S
g ,iﬂuﬂﬁumﬁgﬂssﬁggsﬁggg

ﬁégggwiiﬁiwﬁiﬁjigniﬁg
(e e T N N
fémﬁggggﬂgggggmﬁ

|] e e]

2lulzg| Bl w K

1R BN = @

F e e e s Loy
oy

Al

1 par]

{

J

i £ oot J § S

R Son 4
orl
3
L oo
& 1
S o
Fiotons 3 £ o ﬁs%“»ag
g Elglzlg .
g i.wﬁ# @y o L []
oy oy oy ey gy
= [WE o em G @ Ge 99
R ey gy, g
m e o0) D T £ O 0 B
T T R £ o o (o £ B 6 O

e o] b |
%? [] pome]] fswve]
AR

WW?M

Lol o o

I
0

5{J3
i,% ’%F‘%

CoTedTh R
s g

i sTaTeMewT [V

e, o

25 HNEXTX

Following is a card showing the statement:

“FNm“

10 opEN FILE [1,3],

b=
o

[e i s J &

s}
=

v]

QeBir0Ry O-BL0SE szepeN ORBUEN

V¥IN2D viva 4 ' -
261 '090 @ LHOIWAIOD -

[N R R N

s o v ¥ i Y s s B e, s s Q. e J oo G oo

e S v S s S s e S i I i . e J . I v e
LI T ETTRCTT £T €T £ OO £ 6 23 £
£ T TR £ £ £ O C O e 6
e B s B T e B e 3 e e s v e i Y oo
ﬂﬁ.ﬂﬁﬂﬁ»nuugﬁﬂun@unuuﬁﬁunﬁnu
aﬁnﬁﬁﬁuﬁuanﬂ_nﬁnﬂnﬁﬂugﬂﬁ
Rﬁgﬁaﬁﬁmﬁnﬂﬁugﬂuﬁﬁﬁu
o £ ETHETE 03 603 0 O 0 6 £ £
%ﬁﬂ%»gﬂggﬁnﬂﬁgﬂuﬁu
ﬁuﬁ.&ﬂuuﬂﬁﬁﬁﬂﬁgnﬂﬁbgﬂug
n(ﬂunﬁun%uuﬁﬁﬂuﬂﬂgﬁuﬁﬂuﬁu
epgpomor oo oo el e o3 6
m@ﬁu@nﬂﬁugﬁuﬂﬁgﬁﬂnﬁua
o s B e e L 3 e I s B s R s e e R e
m%gﬁuﬁﬁﬁﬁﬁﬂuﬁugi;ﬁu ,
. WEE £ ESDRCTTH €003 £ ET MR O O CT £
ﬂugﬁxﬁﬁugiﬁ.nﬁﬁﬁﬁﬁu

i

G R T O3 O B S O 0 £ £
ﬁu@ﬁ:ﬂﬁﬁﬁusglgﬂunﬁ
£ 03 e 0 O3 £23 O 0 S R £
£ o7 ST £ w0 OO £ 000 G

nﬁgﬁug“ﬂﬁﬂﬂﬂﬂglﬁﬁ

i

[v B e B s Y e B e B i B it Y "

et

T
[

Wy eee € B3 S WD D Bw @O op WS

 STETEWEWT

ﬂsmam'ﬁ?ﬂ*mﬁgmﬂ
[e mgmg e
3
0

By e € P WF U3 & Pe Oh op B
[N L R S A A -
Ty e 6N MR WP WD e Pe &3 O O

W e O Wy W M2 B P R G

Following is an end-of-file card with all rows of column 1 marked.

=
a

R = Y e &

CL-0iP08e O~bLYOSE szgoen OB

&
=

TV¥3INIO Viva 4
2461 000 (D) LHBIUASO0

1
' -
L

£ T EmTeTT £ TR O O OO £ £ 69
£ £ £SO £ £ DT T €0 T £ 6D
£ £ CoeD O £ O O O3 £ £33 £
£ O ETREDD £ 60 £ 6 £ 60 £ £
£ e RO £ O B T O £ £ £

T e TR £ O DD 6 £ £ £3 £

R e e e e e e

By e o e e W ey el

NN EES

| o S oo 3 o £ o J s o J s . s . oo J sovonns S s Y oot

oy o ERETD 3 E00 D €0 €0 20 2 00D

i

e e s

ﬁﬁuﬁ»ﬂﬁggggﬂgﬁg
£27% €T ETOTT £ ISR O OO Lo O £ £
EI 5 CREITY £ BT N L0 DR I L 603
PSR e T oo I v 38 s B s 3 e I o 3 e o 3 s B v

i
) o
i
s

&M e o

e R e e e e e e)
mgggngﬁﬂﬁgnﬁnﬁﬁuﬁﬁﬂu
7 £ EomET £ £ £ CED 60 £ £
D S e £ £ £ £ £ 3 £ 6
@ﬁﬁuﬁgﬁgﬁgggﬁ
e e
£ e £ £ £ 60 60 63 £ £

b

L]
L
L)
Wi
wen
T g

e v 3 et o s R oo I s B s J o 8 s s i vorwrn Y oo S

| o
wif

T

sssssss

P @ox qip W

[e e e R S et et S e ot I

ESI Tl

| El.Ez|5]ele
oo

2.

¥ sooen 11 () }vm[} &smi}

Fl
£
3
-

Lo 2 T o] -
52 8o
f "

HEHEIHEE
BBz |B|.|=]E

3Ty £ €03 £00 €00 €00
5555555

UF [] e e]
s

5555555
8888888

5555555

[g b v

3 mmmw,m,n

B
BIEI8 -
-

e @ SeB

APPENDIX D

HOLLERITH CHARACTER SET

Character Lines Character Lines
0 0 - - J 11 1 -
1 1 - - K 11 2 -
2 12 - |- L 11 31| -
3 3 - - M 11 4 -
4 4 - - N 11 5 -
5 5 - - 0 11 6 -
15) 6 - - P 11 7 -
7 7 - - 0 11 8 -
8 8 - - R 11 9 -
9 9 -1- S 0 21 -
A 12 1 - T 0 3 -
B 12 2 - U 0 4 -
C 12 3 - v 0 5 -
D 12 4 - W 0 6 -
E 12 5 - X 6] 7 -
F 12 6 - Y 0] 8 -
G 12 7 - 4 0 9 -
H 12 8 - [12 2 8
I 12 9 = 12 3 3

HOLLERITH CHARACTER SET (Continued)

Character Lines Character Lines
< 12 4 8 ! 5 8 -
(121 5 |8 = 6 g | -
+ 12 6 8 " 7 8 -
: 12 7 8 & 12 - -
] 11] 2 | 8 - (minus) 11} - | -
$ 11 3 8
* 11 4 8
) 11| 5| 8
i 11| 6 | 8
4 11 7 8
\ 0 218
; (comma) 0 318
% 0 4 8
< 0 5 8
> 0 6 8
? 0 7 8
: 2 8 -
3 8 -
@ 4 8 | -

APPENDIX E

ASCIT CHARACTER SET

CHARACTER OCTAL | DECIMAL CHARACTER OCTAL | DECIMAL
NULL 000 0 AR 022 18
An 001 1 48 023 19
4B 002 2 A 024 20
Ac 003 3 U 025 21
4D 004 4 Ay 026 22
AE 005 5 A 027 23
AR 006 6 AX 030 24
G 007 7 Ay 031 25
+H 010 8 47, 032 26
TAB (A1) 011 9 ESC or ALT MODE
» oxr
LINE FEED(AJ) | 012 10 CTRL-SHIFT-K 033 27
VERT. TAB(4K) | 013 11 CTRL-SHIFT-L 034 28
FORM FEED(4L) | 014 12 CTRL-SHIFT-M 035 29
CARRIAGE CTRL-SHIFT-N 036 30
RETURN (+M) 015 13
~ CTRL-SHIFT-0 037 31
AN 016 14
SPACE 040 32
+0 017 15
' 041 33
4P 020 16
" 042 34
0 021 17
043 35

ASCI1 CHARACTER SET

(Continued)

CHARACTER OCTAL | DECIMAL CHARACTER OCTAL | DECIMAL
3 044 36 ‘ < 074 60
% 045 37 = 075 61
& 046 38 > 076 62
' (apostrophe) 047 39 ? 077 63
(050 40 @ 100 64
) 051 41 A 101 65
* 052 42 B 102 66
+ 053 43 C 103 57
, {comma) 054 44 D 104 68
- {(minus) 055 45 E 105 69
056 46 r 106 70
/ 057 47 G 107 71
0 060 48 H 110 72
1 061 49 I 111 73
2 062 50 J 112 74
3 063 51 K 113 75
4 064 52 L 114 76
5 065 53 M 115 77
6 ces 54 N 116 78
7 067 55 O 117 79
8 070 56 P 120 80
9 071 57 0 121 81
072 58 R 122 82
: 073 59 S 123 83

ASCII CHARACTER SET

{(Continued)

CHARACTER OCTAL | DECIMAL CHARACTER OCTAL | DECIMAL
T 124 84 k 153 107
U 125 85 1 154 108
Y 126 86 m 155 109
W 127 87 n 156 110
X 130 88 o 157 111
¥ 131 89 o 160 112
Z 132 90 q 161 113
[133 91 r 162 114
\ (SHIFT-L) 134 92 s 163 115
] 135 93 t 164 116
A 136 94 u 165 117
< or _ 137 95 v 166 118
' 140 96 w 167 119
a 141 97 x 170 120
b 142 98 v 171 121
c 143 99 z 172 122
d 144 100 { 173 123
e 145 101 | 174 124
£ 146 102 175 125
g 147 103 ~ (tilde) 176 126
h 150 104 RUBOUT
or
i 151 105 DELETE 177 127
3 152 106

APPENDIX F

STATEMENT, COMMAND AND FUNCTION SUMMARY

F.1 COMMONLY USED BASIC STATEMENTS

Page
Formats and Descriptions Ref.
val ,val
DATA}"string 1it" ,"string 1it"(| .
Defines data to be used
by READ and MAT READ. 3-8
DEF Used with FNa(d) function to
define a userxr function. 4-17
svar {m) ,svar (m)
DIM%array(m) g 3,array{m) R
array (row,col) ,array (row,col)
Specifies the size of string
variables and numeric arrays. 3-19
END Stops program execution. 3-2
FOR control var = exprl TO expr2 [STEP expr3]
Begins a FOR-NEXT loop and
defines the number of times
the loop is executed. 3-21
GOSUB line no. Transfers program control to the
first statement of a subroutine. 3-27

F.1l COMMONLY USED BASIC STATEMENTS {Continued)

Formats and Descriptions

U

(9!

Page
Ref,

Ty

r am execution to
speci

bt
1
O
[¥e]

)

rel-expy
IF jexpr THEN statement

INPUT ["string 1it",] {

var
[LET] lmvarf = expr

NEXT control var

GOTO
ON expr|GOSUBJ line no.

Executes a statement based on
whether an expression is true
or false.

e

User inputs data for variables
rom terminal.

Assigns values or solutions to
formulas to a variable.

Last statement in a FOR-NEXT
loop and changes the value of
the control variable.

[,linel...

Transfers program control to

a line number whose position in
the argument list is computed
from an expression.

a

3-5

F.l COMMONLY USED BASIC STATEMENTS {(Continued)

Pag\;
Formats and Descriptions S iC Ref
{ ; } expr) J ol (expr ,
PRINTJ {{ "string lit"j Uid{"string 1it"™ ... ;
svar svar)
Prints specified data. ar 3-12
RANDOMIZE Reseeds the random number
generator. v/ 4-5
var ,var
READ|svar| {;svar} . Reads data from DATA
statements. v 3-9
REM [message] Inserts explanatory comments

within a program.

RESTORE [line no.] Moves the data element pointer
to the beginning of a data list
or DATA statement line.

RETURN Last statement of a subroutine
and returns program control to
statement following last GOSUB
statement executed.

STOP Stops program execution.

F.2 ARITHMETIC AND SYSTEM FUNCTIONS

Page
FPormats and Descriptions Ref.
ABS(expr) The absoclute value of an
expression. 4-8
ATN (expr) The arctangent of an angle.
Result expressed in radians. 4-15
CCS (expr) The cosine of an angle. Angle
expressed in radians. 4-13
EXP (expr) The value of e to the power
of an expression. 4-10
FNa(d) A user function which is defined
in a DEF statement and returns a
numeric value. 4-17
INT (expx) The integer value of an expression. 47
LOG (expr) The natural logarithm of an
expression. 4-11
RND {expr) Random number between O and 1. 4-3
SGN (expr) The algebraic sign of an
expression. 4-6
SIN(expr) The sine of an angle. Angle
expressed in radians. 4-12
SOR{expr) The square root of an expression. 4-9

F.Z2 ARITHMETIC AND SYSTEM FUNCTIONS (Continued)

Page
Formats and Descriptions S F | Ref.
5YS(0) The time of day (seconds past
midnight). V1 1-16
SYs (1) The day of the month. Y 4-16
SYS (2) The month of the year. V1 a-16
SYS(3) The year. v 4-16
SYS(4) The terminal port number (-1 if
operator's console). Y 4-16
SYS(5) CPU time used in seconds. v/ 4-16
SYS(6) The number of file I/0 state-
ments executed. Y 4-16
SYS(7) The error code of the last
run-time error. y 4-16
SYs(8) The number of the file
most recently opened. V1 4-16
SYS(9) Page size. V1 a-16
SYS(10) Tab size. V1 4a-16
SYS(11) Hour of the day. Y/ 4-16
SYS{(12) Minutes past last hour. v/ 4-16

e
|
w1

F.2 ARITHMETIC AND SYSTEM FUNCTIONS {(Continued)

Page
Formats and Descriptions S Ref.
SYS(13) Seconds past last minute. 4-16
5YS(14) Seconds remaining on timed input. 4-16
SYS(15) The constant PI (3.14159). 4-16
SYS (16) The constant e (2.71828). 4-16
TAB (expr) Function used with PRINT for

tabulating to a column. 3-17

TAN (expr) The tangent of an angle. Angle
expressed in radians. 4-14

F.3 STRING FUNCTIONS

Formats and Descriptions S{CiF | Ref
LEN(svar) Returns the number of characters
currently assigned to a string
variable, Vi 5-8
svarl svarz
POS \|"string 1lit 1"f,|"string 1lit 2" ,expr
Locates the position of a
substring in a string. Vi 5-9
STRS (expr) Converts a numeric expression
to its string representation. /] 5-10
svar
VAL \{"string 1it" Returns decimal representation
of a string. vi 5-11

MATRIX MANIPULATION

Page
Formats and Descriptions Ref,
MAT mvarl = mvar2 Assigns the dimensions and values
of mvar2 to mvarl. 6=-2
MAT mvarl = mvarz{i}mvarB Performs matrix addition or
subtraction. 6-11
mvar?
MAT mvarl =) {expr)f *mvar3 Multiplies a matrix by a numeric
expression or another matrix. 6-13
MAT mvar = CON [(row,col)] Sets the value of each matrix
element to one. 6~5
MAT mvar = IDN [(row,col)] Sets the elements of the major
diagonal of a matrix to ones and
all other elements to zeros. 6~-6
MAT mvarl = INV {(mvar2) Performs matrix inversion. 6-16
MAT mvarl = TRN (mvar2) Transposes matrix mvar2. 6-20
MAT mvar = ZER (row,col) Sets the value of each matrix
element to zero. 6-3
MAT INPUT mvar [(row,col)] [,mvar[{(row,col)]]...[;]
Specifies matrices for which the
programmer enters data from the
terminal when the statement is
executed. 6-9

MATRIX MANIPULATION (Continued)

Page
Formats and Descriptions Ref.
! 7
MAT PRINT mvar {nmvar| ... [;]
Prints the contents of the
specified matrices. 6-10
MAT READ mvar [(row,col)] [,mvar[(row,col)]]...
Reads data into the specified
matrices from the data list
defined by a DATA statement(s). 6-8
var = DET(X) Produces the determinant of
the last matrix inverted by
the INV statement. 6-19

F.5 FILE INPUT AND OUTPUT

Page
Formats and Descriptions S Ref.
CLOSE [FILE (file)] Closes an open file or files. Y 7-8
EQF (file) Returns a +1 if an end of file
‘ is detected. 7-20
var var
INPUT FILE (file)}svarf |, |svarf| ...
Reads data in ASCII from a
sequential access file. v 7-14
MAT INPUT FILE (file),mvar[,mvar]...
Reads matrix data in ASCII from
a sequential access file. ! vV 7-19
MAT PRINT FILE (file),mvar [{;}mvar] P
Outputs matrix file data to an
ASCII device. vV 7-18
file
MAT READ FILE \}file,recordf/),mvar[,mvar]...
Reads matrix data in binary for-
mat from a file. v 7-16
file }
MAT WRITE FILE \|file,recordf/,mvar[,mvar]...
Writes matrix data in binary
format to a file. vV 7-15

F.5 FILE INPUT AND OUTPUT (Continued)

Page
Formats and Descriptions S F| Ref,
OPEN FILE (file,mode), filename [,record sizel,filesize]]
Opens a file which can then be
referenced by other file I/0
statements. J/ 7-3
expr /) {eXpr ’
PRINT FILE (file) \var {;} var ...[;
svar svar
"string 1lit" "string 1it"
Outputs data to an ASCII device. vV 7-13
file var var
READ FILE file,record)/ ,{svarf |, |svarf|...
Reads data in binary format
from a file. v 7-11
file expr expr
WRITE FILE \Ifile,recordf/, \var , \var e
svar svar
"string 1it" "string 1it"
Writes data in binary format
to a file. v/ 7-9

F.6 INTERACTIVE SYSTEM COMMANDS

Page
Formats and Descriptions SIC |F| Ref.
BYE Sign-off command. v 8-18
CHATR filename,attributes Changes file attributes. v 8-34
CON Continues execution of a STOPped
program. Vi | 8-15
DELETE filename Deletes a file from the
programmer's directory. AT 8-32
DISK Prints the number of blocks used
and available in the programmer's
directory. v 8-31
ECHO Enables echoing of characters
at the terminal. /1Y 8-27
ENTER filename Merges the program named into
the current program. V1Y 8-10
ERASE line nl, line n2 Deletes statements from a
program. s 8-3
ESC Enables use of ESC key at the
terminal. V1V 8-25
FILES Prints the filenames in the
programmer's directory. Y 8-28
LIBRARY Prints the filenames in the
library directory. % 8-29

F.©6 INTERACTIVE SYSTEM COMMANDS (Continued)

Page
Formats and Descriptions C|F | Ref,
line nl
LIST{}To line n2 [filename]
(TO
line nl), fline n2
Outputs part or all of the cur-
rent program to the terminal or
other ASCII device. Y 8-4
LOAD filename Loads a previously SAVEQ program
into the program storage area. y 8-9
MSG[AuserIDimessage] Transmits messages to other users
or the operator or cancels NOMSG. Y 8-21
NEW Clears the programmer's storage ,
area. 8~2
NOECHO Inhibits echoing at the program-
mer's terminal. v 8-26
NOESC Disables ESCape key operation. v 8-24
NOMSG Prevents the reception of mes-
sages from other programmers. Y 8-23
PAGE=expr Sets the right margin of the
terminal. /I | s-19

F.6 INTERACTIVE SYSTEM COMMANDS ({(Continued)

mation relating to a file.

Page
Formats and Descriptions Ref.
line nl
PUNCH {{To line nZ2
TO}
[{line nll, Jline n2
Outputs part or all of the current
program to the terminal punch. 8-6
RENAME oldfilename, newfilename
Renames files. 8-33
line nl)
RENUMBER[STEP line n2 f
line nl STEP line n2
Renumbers statements in the
current program. 8-13
line no.
RUN | |filename Executes the current program
or another program named by
filename. 8-11
'SAVE filename Writes the current program into
the programmer's directory or to
a device in binary format. 8-8
SIZE A Provides program and data storage
usage information. 8-17
TAB=eXpr Sets the zone spacing for PRINT
statements. 8-20
WHATS filename Prints attributes and other infor-
8-30

F.7 ADVANCED BASIC STATEMENTS AND COMMANDS

Page
Formats and Descriptions CiF: Ref.
CALL subr [,expr]... Calls an assembly language
subroutine. 9-20
CHAIN filename [THEN GOTO line no.]
Transfers control to the program
named in the statement. 9-18
DELAY=eXxpr Delays program execution for a
specified amount of time. 9-4
ON ERR THEN statement Directs the program to an error
handling routine when an error
occurs, 9-2
ON ESC THEN statement Directs the program to a user
handling routine when ESCape
is pressed. 9-5
PRINT FILE (file), USING format, expr [,expr]...
Formats output to files. v 9-17
PRINT USING format, expr [,expr]...
Formats printed output. v 9-7
RETRY Repeats the statement which caused
caused an error. 9-3
TIME=expr Establishes the time limit for
timed input operation. v 9-21

F.7 ADVANCED BASIC STATEMENTS AND COMMANDS (Continued)

Page
Formats and Descriptions Ref.
var ,var
TINPUT [s tring 1it", Nsvarf |\,svarf|...[;]
Used in conjunction with TIME to
set a limit for programmey
response. g-23

g

DataGeneral PROGRAMMING DOCUMENTATION

REMARKS FORM

Document Title Document No. Tape No.

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable.
Label each comment as an addition, deletion, change or error if applicable.

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM:

Name Title Date

Company Name

Address (No. & Street) City State Zip Code

Form No.10-24-004

FOLD DOWN FIRST FOLD DOWN

-—.—--.-—-—.——.--...._._--..._----—-——-----—-—----—-—----——--_------—--———-----u-----p-_.—--—_....._..—.-————----

FIRST
CLASS
PERMIT

No. 26

Southboro
Mass 01772

BUSINESS REPLY MAH_

No Postage Necessary Hf Maried

Postage will be paid by:)

Data General Corporation

Southboro, Massachusetts 01772

ATTENTION: Programming Documentation

- o om o = . we S o T e e B e WSS R e A M e B e e GRS N e SN e e W R e B S G M WD e MR e T e W A e GBS S G SR O TS N0 T 5SS BN ae e e e G0 S G S D G MR RS IS S5 SRR M e

FOLD UP SECOND FOLD UP

T

STAPLE

	Untitled
	Cover
	i
	ii
	iii
	iv
	v
	vi
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	1-14
	4-15
	4-16
	4-17
	4-18
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	C-1
	C-2
	C-3
	C-4
	C-5
	D-1
	D-2
	E-1
	E-2
	E-3
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	F-7
	F-8
	F-9
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16

