ABSTRACT

Data General's Single User BASIC is an implementation of the BASIC language as developed at
Dartmouth College. Keyboard mode of operation has been implemented as an extension to the
language.

Keyboard mode of operation gives the user immediate access to the central processor allowing
him to perform two important programming functions with great efficiency. First, the user at
the keyboard can request evaluation of simple desk calculator expressions and of complex for-
mulas without writing a BASIC program.

User’'s Manual

PROGRAM

SINGLE USER
BASIC

093-000042-02

TAPE

Absolute Binary: 091-000018

In addition, keyboard mode provides dynamic debugging facilities for BASIC programs. The
user can interrupt a running program without destroying current values, examine and, if
necessary, change current values, alter portions of the program if he wishes, and restart
execution at the point of interruption or at another point in the program.

Ordering No. 093-000042-02
© Data General Corporation 1970, 1973
All Rights Reserved,

rinted in the United States of America
Rev. 02, June 1973

NOTICE

Data General Corporation (DGC) has prepared this manual for use by DGC personnel,
licensees and customers. The information contained herein is the property of DGC
and shall neither be reproduced in whole or in part without DGC prior written approval.

DGC reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages {including consequential)
caused by reliance on the materials presented, including but not limited to typographical
or arithmetic errors.

Original Release - September, 1970
First Revision - September, 1970
Second Revision - June, 1973

This revision of the Single-User BASIC Manual, 093-
000042-02, supersedes revision 093-000042-01. The
revision provides additional explanatory text and ex-
amples for use of BASIC and constitutes a major re-
vision to the manual. The Single-User BASIC program
is unchanged.

INTRODUCTION

Data General's Single-User BASIC allows programming in the standard BASIC
language using a Nova or Supernova central processor with 4K or more of memory
words and a teletypewriter. It includes use of all the elementary and advanced
BASIC statements as defined in BASIC Programming by John G. Kemeny and Thomas
E. Kurtz (c. 1967 by John Wiley & Sons, Inc.), but does not include matrix mani-
pulation and string manipulation functions,

The BASIC language developed at Dartmouth College allows conversational program
entry, editing, executing, and input/output operations, The Data General Cor-
poration implementation also permits execution of certain statements in a "desk
calculator” or "keyboard" mode of operation.

In keyboard mode of operation, the user has immediate access to the central
processor; simple statements can be written and executed without writing a BASIC
program. The statements follow the general format of certain BASIC program
Statements. Keyboard mode is useful for performing simple desk-calculator
computations and for evaluating complex formulas, Immediate results are ob-
tained, eliminating time usually spent on the writing and debugging of a BASIC
program to obtain output of such computations,

An especially valuable feature of keyboard mode is that it is possible to interrupt

an executing program without destroying the current values, The user can test
current values of variables and change them if desired, He can examine the pro-
gram or a portion of it and delete, insert, or change statements. He can add

simple variables to the program, When he has concluded his changes, he can

then resume execution at the point of interrupt or at some other point. Values
altered by the user and the values unchanged during the interrupt will be the initial
values at resumption of execution. In this way, keyboard mode of operation provides
for interactive debugging of BASIC programs.

Data General's Single-user BASIC includes a comprehensive error detection system.
As information is entered at the teletypewriter, it is examined for format and
logical errors, and the appropriate error message is printed out if an error is
detected. Additional errors discovered at run-time are printed out when detected.

TABLE OF CONTENTS

oooooooooooooooo

Preparing a BASIC Program
Providing Data
Repetitive Computat
Performing Calculat
Printing Output

Example of a BASIC Program

Editing a Program

Running a BASIC Program

Interrupting a Running Program

CHAPTER 2 - ARITHMETIC OPERA TIONS

Arithmetic Operations
Numbers
Arithmetic Variable

Arithmetic Expressions

Arrays ., .,
Declaring Arrays
Array Elements
Redimensioning Arr
Functions

CHAPTER 3 - STATEMENTS

......

Elementary and Advanced BA
DEF Statement
DIM Statement
END Statement

. e .

FOR/NEXT Statements
GOSUB/RETURN Statements

GOTO Statement
IF Statement ..
INPUT Statement
LET Statement . ,
PRINT Statemnt (;)

Number Representation
Zone Spacing of Output
Compact Spacing of Output

Tabulation |

iii

. .

.

LI

.......... .
00000 .
e e e e et e e e e e e
.......................
oas L, ., ... s 0 e s s s e e s
ens L L,
............... .. .
......
.....
......................
e e e e .
...............
............. . .
. o L 3 ® 9 o & s e @ . - . LR
S PRI .
. et e e e e ae e
......
ot e e e e e e e
e e e e e ee e e e e e e .
ays e e e e s s e e e e e e,
e e s e e e e .
e e e e e e e e e e e e as e
SIC Statements , , , , . e
.....
e e e e et e e e e e e e,
.............
.....
.........
...............
....... . e e e e e e e
............. LA J *
e e e e et e h e e e e e
e e e e e e e e e e e
e e e e e e
e e e e e e,

oooooooooooo

ot
¥
[

(ST S S
[I

[-
Lo
O NO ST O b D DD e

ok
t

NS NI
tor

W w ww w NN N NN
e 1 L L L |
Pt O U i W WD et ot

w w
[
O O U e W N

CHAPTER 3 - STATEMENTS (Continued)

READ/DATA Statements . . v v oo o nn s oo caosn 3-18
REM Statement s e e 3-21
RESTORE Statement e s e e 3-22
STOP Statement . ..o s s v v v nassonrooaenss 3-23
CHAPTER 4 - KEYBOARD COMMANDS . . it it s oot e s oo oacsaecnss 4-1
Program Control « s v v v v oot m v s v s vt o n i c s 4-1
Program Control Keys .. v oo vv o 4-1
Program Control Commands C e s e e e e e e e e s 4-2
Input/Output Commands e veve s, ve . A-2
Editing Commands c e e e e f o a e e e s e e 4-3
Execution CommandS « ¢ o s s v o s oo oo s oonnnoss 4-3
Desk Calculator and Debugging Commands e, 4-3
PRINT Command () = v s v s s o v s e o naessoaass 4-4
LET Command . v v v o v v v s o nonnonsasaneses 4-5
RESTORE Command « c oo e s s n oo oeonon .. 4-5
DIM Command .+ o2 0o e s e 4-5
APPENDIX A - ERROR MESSAGES creseavensans et e e e A-1
APPENDIX B - OPERATING PROCEDURES &+ 4 v ot e v 00 v oo o s oo osonss B-1
Loading Single-User BASICttt i ens B-1
Restarting Single-User BASIC e h et s e e B-1
APPENDIX C - USE OF THE TELETYPE PUNCH/READER C-1

INDEX

iv

k)

CHAPTER 1
WRITING AND RUNNING A BASIC PROGRAM

PREPARING A BASIC PROGRAM

BASIC programs are made up of statements. Each statement is preceded by an integer
that can be between 1 and 9999 inclusive. The number given a statement determines the
order in which it is executed and listed. For example, two statements to be executed
sequentially should be given sequential (but not necessarily consecutive) numbers,

Fach statement is on a separate line. The programmer terminates each line at the
teletypewriter with a carriage return (RETURN).

Typing errors on the teletype can be corrected by using special control keys:

1. Pressing CTRL and A at the same time erases the last character
typed. A back arrow (=) is printed, representing the erasure.

2. Pressing CTRL and X at the same time deletes the entire line. A
back slash (\) is printed, representing the line deletion. The
programmer can continue typing a new statement without pressing
carriage return.

An example of a BASIC program is given below. The example will be described in
detail later in this chapter.

100 READ A, B,D, E
110 LET G = A*E-B*D

120 IF G = 0 THEN 180

130 READ C, F

140 LET X = (C*E-B*F)/G

150 LET Y = (A*F-C*D)/G

160 PRINT X, Y

170 GOTO 130

180 PRINT "NO UNIQUE SOLUTION"
190 DATA 1,2,4

200 DATA 2, -7, 5

210 DATA 1, 3,4, -7

In the program, single letters represent program variables. A variable can be a single
letter (e.g., Z) or a single letter followed by a single digit (e.g., Z4).

1-1

PREPARING A BASIC PROGRAM (Continued)

A BASIC program terminates when there are no morce program statements or when an
END or STOP statement is executed,

Most programs can be reduced to three steps:

1. Provide data,
2. Perform calculations.
3. Print answers,

Providing Data

One method to provide data is simply to write equations that contain the necessary
values, The BASIC statement used for equations is the LET statement; for cxample:

20 LET x=3.141 *10.2 ; ¥ means multiply

The statement will cause 3,141 and 10.2 to be multiplied and the resulting value
will be stored in a variable named X.

However, writing values into equations is not very efficient, Programs are generally
used for repetitive computations with a large number of diiterent values. Instead

of writing values into the equation, BASIC uses variables that can be assigned
different values: ‘

20 LET X =3.141 Y

To provide values, BASIC uses two statements, READ and DATA., The READ state-
ment indicates the variables that are to have values and the DATA statement gives
the values:

I0 READ Y
20 LET X=3.141 *Y
30 DATA 10.2, 7.3, -56.11, -.003, 3.4

There are now five possible values that Y will assume, which are listed in the DATA

1-2

Providing Data (Continued)

statement, Upon execution, the order of the values in the DATA statement is the
order in which values are assigned to a variable or to several variables given in READ

statements in the program,

Repetitive Computations

In general, statements in BASIC programs execute in the sequential order indicated
by their statement numbers. However, if a program is completely sequential, it
is not possible to perform repetitive calculations on a number of input values. For
eéxample, in the program given under the "Providing Data' section:

10 READ Y
20LET X =3.141 *Y
30 DATA 10.2, 7.3, -56.11, -.003, 3.4

Five data values are given for Y, but only the first one, 10.2, will be used because
the program is completely sequential. It is necessary to insert a statement that will
allow the READ and LET statements to be executed more than once:

25 GOTO 10

The GOTO statement causes a transfer back to statement number 10. The program
"reads in" the second value for Y, 7.3, and executes the LET statement again.
The program will continue to loop in this way until it runs out of data values for Y.

Note that the GOTO statement was given statement number 25. The reason why most
BASIC programs are not numbered consecutively is to allow the programmer to insert
any statements he may need without rewriting the entire program,

The GOTO statement is a means of transferring control to a part of a program in a
non-sequential manner, There are several ways to do this in BASIC. Another
useful statement in transferring control is the IF statement,

10 READ Y

15IF Y <=0 THEN 10 ; 10 means statement number 10
20LET X =3.141 *Y

25 GOTO 10

30 DATA 10.2, 7.3, -56.11, -,003, 3.4

1-3

Repetitive Computations (Continued)

Transfer in an IF statement depends upon whether the expression following the word
IF is true or false, The expression is relational and uses the following symbols.

Relational Symbol Meaning

]

Equal to

Less than or equal to
Less than

Greater than or equal to
Greaterthan

Not equal to

AVVOAA
H 1

v

The IF statement in the example would prevent the LET statement from being exec-
uted when the value of Y is zero or negative, The LET statement would only be exec-
uted for positive values of Y; otherwise, control would transfer back to the READ
statement to read in another value.

Performing Calculations

The data provided as input must be computed into answers. A simple arithmetic
statement of the calculations to be performed must be written in such a way that
the BASIC system can recognize the operations required, The statement used is
the LET statement,

The LET statement is used to assign the result of a calculation to some variable,

The calculation to be evaluated, called an expression, appears on the righthand side
of the equals sign in the LET statement, The variable to which the expression is
assigned appears on the lefthand side of the equals sign. In the previous example,
the expression provides for multiplying 3. 1416 by some value assigned to the variable
Y and then assigning the resultant value to the variable X,

The BASIC arithmetic symbols used in performing calculations are:

Symbol Operator Example Meaning
+ Addition A-+B Add Bto A,
Plus +A Positive A.
- Subtraction A-B Subtract B from A,
-A Negative A,
* Multiplication A*B Multiply A by B.

Performing Calculations (Continued)

Symbol Operator Example Meaning
/ Division A/B Divide A by B.
4 Exponentiation AtB Raise A to the power B (AB)

An expression is made up of elements described in Chapter 2 -- simple variables
numbers, arrays, array elements, and functions which are linked together by the
arithmetic symbols and by parentheses.

Parentheses may be used in arithmetic expressions to enclose subexpressions that
are to be treated as entities. A subexpression in parentheses is evaluated first.
Within each subexpression, arithmetic operations are performed in the sequence --

exponentation first, multiplication and division next, addition and subtraction last.

When two operations are of equal precedence, such as addition and subtraction, and
there are no parentheses, evaluation proceeds from left to right in an expression.

In addition to arithmetic operations involving the arithmetic symbols, BASIC has
a number of standard mathematical functions. These are described in Chapter 2; a
few examples are:

SIN(X) Sine of X, where X must be in radians.

EXP(X) Natural exponential of X, eX.

ABS(X) Absolute value of X,

An example of an expression to be evaluated and assigned to a variable is:

100 LET S = S - (174+SIN(Z))/3

* Single User BASIC computes AtB by means of the identity AtB= EXP(B*LOG(A)).
This may result in some slight arithmetic errors in the sixth decimal position of
the result, In addition, an arithmetic error (ERROR 16) will result if A is
negative, To raise variables and constants to integer exponents, multiplication
should be used rather than exponentation if this slight arithmetic error is
objectionable.

1-5

Performing Calculations (Continued)

In the example,

1. SIN(Z) is calculated. (Functions evaluated first.)

2, Result of step 1. is added to 17. (Parenthesized expression)

3. Result of step 2. is divided by 3. (Division has higher precedence than
subtraction)

4, Result of step 3. is subtracted from the value of the variable S.

5. Result of step 4. is stored (=) into variable S as its new value.

Printing Output

The program is still not complete. It has data and performs calculations but the
user has no way of knowing the results of those calculations. To complete the
program, there must be a printout of results.

The PRINT statement is used to print out results of calculations. For example, if
the program were written:

10 READ Y

20 LET X =3.141 *Y

22 PRINT X

25 GOTO 10

30 DATA 10.2, 7.3, -56.11, -.003, 3.4

The PRINT statement is made part of the loop, so that a value for X is printed out
each time the LET statement is executed, FEach value of X will be printed out on a
new line. The fact that the item X in the PRINT statement terminates with a
carriage return means 'print the next value on a new line."' The output would look as

follows:

32.0382
22.9293

10.6794

Printing Output (Continued)

It is also possible to print out verbatim text using the PRINT statement. The user
might want an explanation of each value printed. For example, the program
could be written:

10 READ Y

20 LET X =3.141 *Y

22 PRINT "FOR Y = ";Y;" X = ;X

25 GOTO 10

30 DATA 10.2, 7.3, -56.11, -,003, 3.4

The verbatim text is enclosed in quotation marks. It will be printed out exactly

as shown with the same number of blank spaces. The semicolons between the items
in the PRINT statement list mean 'print on the same line without spacing'. The output
would now be printed as:

FOR Y =10.2 X = 32,0382
FORY=7.3 X = 22,9293

FOR Y =34.6 X = 10,6794

EXAMPLE OF A BASIC PROGRAM

A BASIC program for solving simultaneous linear equations would be:

100 READ A,B,D,E ;obtain values for variables

110 LET G = A*E-B*D ; evaluate denominator

120 IF G = 0 THEN 180 ; if G is 0, there is no unique solution
130 READ C, F ;obtain remaining variable values

140 LET X = (C*E-B*F)/G ; solve for X

150 LET Y = (A*F-C*D)/G ; solve for Y

160 PRINT X, Y ; print solutions for X and Y

170 GOTO 130 ; loop to new values for C and F

180 PRINT "NO UNIQUE SOLUTION" ; message printed if G =0

190 DATA 1,2,4 ; data for A, B, and D

200 DATA 2, -7, 5 ; data for E and first values for C and F
210 DATA 1, 3, 4, -7 ; other values for C and F

1-7

EXAMPLE OF A BASIC PROGRAM (Continued)

The program solves the following equations:

1l
N

xH2y = -7 x+2y =1 x+2y
4xt2y =5 dxt2y =3 4x+2y = -7

[l

The program prints the paired X-Y values for each set of equations and issues an
error message after printing the third pair.

Note that READ and DATA must both be included to provide input data for the BASIC
program. The division of values among the data statements is arbitrary as long

as the values are in the correct order. The programmer could have written the
DATA statement as:

190 DATA 1,2,4,2
200 DATA -7, 5
210 DATA 1,3,4, -7

oY as:

190 DATA 1,2,4,2,-7,5,1,3,4, -7

The blank spaces used in the BASIC program are only for readability. They could
have been omitted. For example, the following statements are equivalent:

120LETG=A*E-B*D

120 LETG=A*E-B*D

Within quotation marks, however, blanks in text are significant. If the programmer
had written statement 180 as:

180 PRINT "NOUNIQUESOLUTION"

the resultant message (if G had been 0) would have been:

1-8

EXAMPLE OF A BASIC PROGRAM (Continued)

'NOUNIQUESOLUTION

EDITING A PROGRAM

Besides the erase-character and delete-line features that make it possible to cor-
rect typing errors on input, the BASIC system has a number of keyboard commands
that can be used to edit a BASIC source program not only during initial preparation but
after input is complete or at an interrupt in execution,

All program control commands are described in Chapter 4. However, some of the
A

simple commands used for editing are described here; the . symbol represents

carriage return,

LIST / - causes a printout of the statements in the program
in numeric order,

nLIST J - causes a printout of the statements in the program
starting at the statement numbered n.

NEW J - clears the program, deleting all statements.

n new-statement J - replaces the statement on line n with
new-statement, or if n is not in the program,
inserts the new line at the proper point,

n J - deletes the statement with the line number n.

RUNNING A BASIC PROGRAM

When the programmer has written and edited his program, he can cause execution
by giving the command:

RUN J

The program will be run from the lowest numbered statement. If no fatal program
errors occur (Appendix A), the BASIC system will print out any output from the
program and give the prompt "*READY" when execution is complete,

1-9

RUNNING A BASIC PROGRAM (Continued)

The programmer can cause a part of a program to be executed. [If he types the

commands:

l GOTO n J
i RUN J

the program will transfer control to statement n where it will begin execution.

INTERRUPTING A RUNNING PROGRAM

If a program is executing without error indications but the output appears to be
incorrect, the programmer can stop execution by pressing the ESC key on the
teletypewriter, Execution will cease and the programmer can now change his program
using keyboard editing commands.

The ESC key is the "change mode' key. In interrupting execution, the programmer
is changing from program mode to keyboard mode. The ESC key can be used for

other types of mode change; for example, it can be used to stop an excessively long
listing after a LIST command has been given.

s

1-10

LY
%

CHAPTER 2

ARITHMETIC OPERATIONS

ARITHMETIC OPERATIONS

Numbers

Numbers handled by Single~-user BASIC have the following limits:

Input - 7 significant digits, e.g. 45678,91

Qutput - 0 significant digits, e.g., -1.33333 or 1.61333

Internal - 23 significant bits

Range - Positive powers: + (1-2723)%2127) = 4+1,70141 x 103%

Negative powers: + (1/2)*{2"}‘27} T +2.0x 10739

Any real or integer number that consists of six or less digits is printed out without
using exponential form. A real or integer number that requires more than six
digits will be printed out in 6-digit format, followed by the letter E, followed by an
exponent,

Number Represented Output Format
2,000, 000 2.00000E+6
20, 000, 000, 000 2.00000E+10
108.999 108.999

. 0000256789 2.56789E-5

25 25

.16 .16

1/16 . 0625

Arithmetic Variables

The names of arithmetic variables are either a single letter or a single letter
followed by a single digit: A A3 X 75

2-1

Arithmetic Expressions

Arithmetic expressions can be composed of simple variables, arrays, array elements,
and functions linked together by parentheses and by the arithmetic operators. The
arithmetic operators are:

SYMBOL EXAMPLE MEANING

+ K+Y Addition {add X to Y)

+ +X Plus (positive X)

- X-Y Subtraction (subtract Y from X)
- -X Minus {negative X)

* X*Y Multiplication (multiply X by Y)
/ X/Y Division (divide X by Y)

4 XY Raise to the power (find XY) *

The order in which operations are evaluated affects the result, In BASIC, unary
minus or plus is evaluated first, then exponentiation, then multiplication and division,
and last addition and subtraction. When two operations are of equal precedence

(* and /), evaluation proceeds from left to right. For example:

Z-A+B*C1tD

. CtD is evaluated first,

B is multiplied by the value from 1.

A is subtracted from Z.

The value from 2. is added to the value from 3.

NS CR e

The programmer can change the order of evaluation by enclosing subexpressions in

* In Single User BASIC an error results from an attempt to raise a negative
number to a power, If the exponent is an integer less than 215 in absolute
value, exponentation is performed by multiplications; otherwise, the LOG and EXP
functions are used, i.e., EXP(Y*LOG(X)) = XtY.

2-2

Arithmetic Expressions (Continued)

parentheses, A parenthesized expression is evaluated first, Parentheses can be
nested, and the inmost parenthesized operation is always evaluated first. For
example:

Z-{({A+B)Y*C) +t+D

A + B is evaluated first.

The value from 1. is multiplied by C,

The value from 2, is raised to the power of D,
The value from 3. is subtracted from Z.

[EEN LI S
e W s e

Some examples of expressions are:

L1+1
INT(C/D)/10
gzg. D*Z(, 1)/A * (ABS(I))

SQR(ABS(X))

ATrays

An array represents an ordered set of values. FEach member of the set is an array
element. Names of arrays are written as a single letter (A-7Z). The letter must be
unique; it cannot also be used as the name of a variable in the program or an error
message will result. An attempt to dimension a variable name, such as Z3, will
also cause an error,

Declaring an Array

Most arrays are declared in a DIM statement, which gives the name of the array
and its dimensions, An array can have either one or two dimensions. The lower
bound of a dimension is always 0; the upper bound is given in the DIM statement.
Dimensioning information is enclosed in either parentheses or square brackets,
following the name of the array:

5 DIM A(15), §2,3] ;A is a one-dimensional array of 16 elements (0-15).
;B is a two-dimensional array of 12 elements,

2-3

Declaring an Array (Continued)

If the programmer uses an array but does not declare it in a DIM statement, BASIC
sets aside 11 elements (0-10) for each dimension. An undeclared one-dimensional

array cannot have more than 11 elements. If the programmer does not need 11

or 121 elements for a given array and wishes to conserve space, he should declare
the array with the required number of elements, Each dimension of an array must
be less than or equal to 256 elements. An array must be less than or equal to 1024
elements, An error message will result if the limit of array size or of dimension

size is exceeded,

Array Elements

Fach of the elements of an array is identified by the name of the array followed by
a parenthesized subscript. (The subscript could, alternatively, be enclosed in
square brackets). The elements of array B 9] would be:

B(0), B(1), B(2), B(3), B(4), B(5), B(6), B(7), B(8), B(9)

For a two-dimensional array, the first number gives the number of the row and the
second gives the number of the column for each element., The elements of array
C(2,3) would be:

C(0,0) C(0,1) C(0,2) C(0, 3)
c(1,0) C(1,1) C(,2) c(1, 3)
C(22,0) C2,1) C(2,2) C(2,3)

Values are stored into elements of a two-dimensional array be filling each row
before beginning the next, The order in which elements of array C would be
filled is:

C(0,0), C(0,1), C(0,2), C(0,3), C(1,0),...,C(2,2),C(2,3)

An array element can be referenced with integer or expression subscripts, Any
expression or variable that can be evaluated by the BASIC system producing a
value greater than or equal to 0 can be wsed as a subscript. If the variable or
expression does not evaluate to an integer, the BASIC system will convert it to

2-4

Array Elements (Continued)

fixed form using the INT function, described in the section on functions starting
on page 2-6. For example, some elements of array E(24,5) might be:

E(-3, J*K)
E(0, 5)

E(ABS(R}, 5) ;ABS is a function described later in this chapter.

If a subscript evaluates to an integer larger than the limit of the dimension for
the array, an error message will be printed.

Redimensioning Arrays

It is possible to redimension a previously defined array during execution of a program,
Redimensioning does not affect the amount of storage previously defined for the

array nor the current contents of the array.

‘Redimensioning is used primarily to change the subscripting of two-dimensional
arrays, Suppose the user originally defines a 3x4 array A.

100 DIM A(2, 3) Statement defining A.
0 1 2 3 Row/column assignment of values to ele-
| ’ ments of array A, A(0,0) contains 1,
0 1 12 3] 4 A(0,1) contains 2, ..., A(2,2) ¢ontains 11,

and A(2, 3) contains 12,

-1 {

2-5

Redimensioning Arrays (Continued)

Later the user might redimension A using the keyboard command DIM. (See Chapter 4).

DIM A{3,2) Command transposing the dimensions of A,
0 1 2 Row/column assignments of values to
elements of A, The values remain the same
0 112 13 but the subscripts required to retrieve those

values have changed:

: Value New Subscript Old Subscript
2 718 19
4 A(l1,0) A(0, 3)
3 10] 1112 6 A(l,2) A(l, 1)
8 A(Z,1) A1, 3)
11 A, 1) A2,2)

An array can only be redimensioned so that it has the same or fewer elements,
For example, redimensioning a 3 x 5 array as a 4 X 4 array will cause an error.

Subscript references outside the defined range of subscripts will cause errors.
For example, once array A above is redefined as A(3,2), use of 3 as a column
subscript (e.g., A(2,3)) will cause an error,

Redimensioning an array to have fewer elements (e.g., redimensioning B(3,5) as
B(4, 3) or redimensioning C(20) as C(15)) merely makes referencing the unused
locations impossible. It does not free the locations for other storage.

FUNCTIONS

Some of the examples shown before contained functions. Certain standard mathematical
functions are supplied as part of the BASIC system. They are:

SIN(X) Find the sine of X, where X is in radians.
COS(X) Find the cosine of X, where X is in radians.
TAN(X) Find the tangent of X, where X is in radians,
ATN(X) Find the arctangent of X, where X is in radians.
LOG(X) Find the natural logarithm of X.

EXP(X) Find eX,

SQR(X) Find the square root of X,

ABS(X) Find the absolute value of X,

The arguments of SIN, COS, TAN, ATN and ABS are confined to the range of acceptable
real numbers (2 x 10 37 < |x] < 1.7 x1038),

FUNCTIONS (Continued)

The LOG and SQR functions require positive arguments. A negative or zero argument
in the LOG function will cause the system to respond with the largest possible neg-
ative number (-1,70141E+38) plus an error message. A negative argument in the

SQR function will cause the system to respond with the square root of the same
positive number plus an error message.

The argument of the EXP function is confined to those values which will generate
the largest and smallest acceptable real numbers, e.g., €58 =1,7 x 1058, so that
arguments greater than 88 will cause the system to return 1, 70141E+38 as the
answer with an error message,

In addition to the standard mathematical functions, the following functions are
supplied as part of the BASIC system.

INT(X) Find the greatest integer not larger than X.
RND(X) Find a random number between 0 and 1,
SGN(X) Find the algebraic sign of X.

The INT function yields the largest integer less than or equal to its argument, If
the argument has an absolute value greater than 231 (2,147, 483,64810), it will be
reduced to the value +2.14748E+9,

INT(7.25) = 7

INT(12) = 12

INT(-.1) = -1

INT(X+2) = 16 ;if X evaluates to 14,9
INT(1.,5) = 1

INT may be used to round a number to the nearest integer. To round the value,
add 0.5 to the argument:

INT(X+0. 5)

The RND function vields a random number having a value between 0 and 1,

The function requires an argument, although the argument does not affect the
resulting random number, The argument can be any constant or previously defined
variable.

FUNCTIONS {Continued)

RND(1} might produce . 654318

RND(0O) might produce . 004561

The SGN function generates its result as +1 if the argument is positive, 0 if the
argument is 0, and -1 if the argument is negative.

SGN(.452) = 1
SGN(0.00) = 0
SGN(-24.8) = -1

2-8

CHAPTER 3

STATEMENTS

ELEMENTARY AND ADVANCED BASIC STATEMENTS

As shown in the first chapter, only a few BASIC statements are needed in order to
write a simple BASIC program. Those statements needed for elementary BASIC
Programming and those available for advanced BASIC programming are usually
divided into the groups shown below.

Flementary BASIC Statements Advanced BASIC Statements
LET All elementary statements,
READ and DATA INPUT

GOTO GOSUB and RETURN
IF-THEN DEF

FOR and NEXT REM

DIM PRINT (advanced formatting)
END RESTORE

PRINT (simple formatting) STOP

In this chapter all statements, whether elementary or advanced, are given in
alphabetical order.

3-1

DEF

Format:

Purpose:

Examples:

DEF FNa {éi_) = expression

where: aisa single letter, A-7Z.
d is a dummy variable that may appear in expression,

To permit a user to define a function that can be referenced
several times during a program. The function returns a value
to the point of reference,

When a function is referenced, the constant, variable, or expressions
appearing in the reference argument replaces the dummy argument
d in the expression.

In the function definition, expression can be any legal expression
including one containing other user-defined functions. However,
if functions are nested too deeply, an error will result,

Function definition is limited to those formulas that can be expressed
on a single line of text. For longer formulas, subroutines should
be used,

100 DEF FNE (X) = EXP (X*2} ;definition of the function
200 LETY = Y*FNE(L 1) ;function reference; argument = . 1

300 IF FNE(A+3) <Y THEN 150 ;function reference, argument = A+3

30 LET P = 3, 14159
40 DEF FNR(X) = X *P/180

50 DEF FNS(X) = SIN(FNR(X}) ;Function FNR is nested in FNS,

70 FOR X = 0 TO 45 STEP 5

80 PRINT X, FNS(X) ;FNS is referenced with X having values
90 NEXT X ;0,5,10,...,45

DIM

Format:

DIM arrayj(dims),...array,(dims)

Purpose: To give the dimensions of one and two dimensional arrays. The
information in this non-executable statement is used to allocate
storage.

Arrays are dimensioned as follows:

1. The lower bound is always 0 and does not appear in the
DIM statement,

2. The upper bound is given in parentheses or square brackets
following the array name.

3. If there are two upper bounds, the bounds are separated by
a comma.

Arrays may appear in any order in a DIM statement.

Example:

2 DIM A(5, 6), C(20), X(17), Y(14,10)

A is a 6x7-element two dimensional array.
C is a 21-element one dimensional array.

X is a 18-element one dimensional array.

Y is a 15x11-element two dimensional array.

3-3

END

Format:

Purpose:

END

Many BASIC systems require an END statement as the last
program statement or as the terminating statement of a main
program that calls one or more subroutines., In data General's
BASIC, main programs and subroutines terminate at the last
logically executed statement in the program (if an END statement
or STOP statement is not encountered), However, the imple-
mentation allows END statements for compatibility with BASIC
programs written for other systems.

3-4

FOR and NEXT

FOR
Format:
IFOR control variable = expression; TO expressiony
FOR control variable = expression; TO expression, STEP
expressiong
Purpose: To establish beginning, terminating and incremental values for

control variable, a variable that determines the number of times
statements contained in a loop are to be executed.

The loop consists of statements following the FOR statement
up to a NEXT statement that contains the name of control variable.
The variable in a FOR statement cannot be subscripted.

expression; is the first value of the variable.

expressiony is the terminating value of the variable.
expressiong is the increment added to the variable each
time the loop is executed. If not given, the increment is +1,

When the NEXT statement containing the variable name is en-
countered. the loop is executed again, The looping ends and the
statem ent after NEXT is executed when control variable exceeds
the terminating value, exgressionz.

FOR loops may be nested to a depth of four. The FOR statement
and its terminating NEXT statement must be completely nested,
For example;:

——FOR X =, ,.

——FOR Y =..,. FORX =...
FOR Z =... FORY =...
Legal E Illegal
Nesting NEXT Z Nesting NEXT X
——NEXTY NEXT Y
NEXT X

NEXT

Format:
NEXT control variable

Purpose: To terminate the loop beginning with a FOR statement. The
control variable contained in the NEXT statement must precisely
match the control variable contained in the last uncompleted FOR

statement preceding NEXT.

When the FOR statement conditions have been fulfilled, execution

continues at the statement following NEX'T.

FOR AND NEXT EXAMPLES

5 FOR X = .1 TO .005 STEP -0.01
10 LET X = X*LOG(X)
20 NEXT X

10 FOR1=1TO 45
20 PRINT 235%1
30 NEXT 1

100 FOR1=1TO 3
" 120 FOR J = 1 TO 20 STEP I
130 READ B(I, J)] Loop
140 NEXT J

150 NEXT1I

90 FORI=1TO9
100 NEXT 1

110 PRINT I
RUN/

120 FOR] =1 TO 9 STEP 3
130 NEXT J
140 PRINT]

7 sterminating value is exceeded.

3-6

I Loop

9 ;final value of I loop is the terminating value, 9.

RUN / ;final value of the] loop is the last value before the

GOSUB and RETURN

GOSUB

Format:

Purpose:

RETURN

Format:

Purpose:

GOSUB statement number

To transfer control to statement number, the first statement in
a subroutine,

A portion of a program is written as a subroutine when it is
executed repetitively, possibly at several different places in
the program, and when it is of greater complexity than a simple
loop. GOSUB statements may be nested to a depth of four,

i.e., one subroutine may call another subroutine or may call

itself,

RETURN

To exit a subroutine, returning to the first statement after the
GOSUB that had caused the subroutine to be entered.

EXAMPLES OF GOSUB AND RETURN

In the example following, RETURN causes return to statement number 120 when
the subroutine is entered from statement 110; return is made to statement 140
when the subroutine is entered from statement 130, etc.

100 LETX =5
110 GOSUB 500
120 LET X =7

130 GOSUB 500
140 LET X =11
150 GOSUB 500
160 sTOP

560 RETURN

S00 LETY = 3*X

SIO LET Z = 1.2 *EXP(Y)
520 LET Y = SQR(Z+2)
550 PRINT X, Y

3-7

GOTO

Format:

GOTO statement number

Purpose: To transfer control to a statement that is not in normal sequential
order. If control is transferred to an executable statement,
that statement and those following will be executed. If control is
transferred to a non-executable statement (e.g., DATA), the
first executable statement following the one to which transfer
was made will be executed,

Examples:

200 READ X, Y, Z
220 LET A =SQR(X#2 +Y 12 -2 *X * Y * FNC(Z))
230 PRINT X, Y, Z, A
240 GOTO 200 :control will continue to transfer back to
: ;statement 200 until all values for X, Y,
;and Z have been read.

190 DATA 19, -5, -2, 5, -6, 10, 10, 60, 20, 5, 50, 10

200 READ X, Y, Z

220 LET A=SQR (X $2+ Y12 -2 *X *Y * FNC(Z))

230 PRINT X, Y, Z, A

240 GOTO 190 ;same as the previous example.

3-8

Format:

Purpose:

Relational

Expression:

Example:

IF relational-expression THEN statement-number

IF relational-expression GOTO statement-number

To transfer control to the statement having statement-number if
the relational-expression is true, If relational-expression is not
true, control is passed sequentially to the next statement
following the IF statement.

IF-THEN and IF-GOTO are equivalent forms.

A relational expression consists of two arithmetic expressions and
a relational operator and has the form:

B

expressiony relational operator expressiony

The relational operators are:

Symbol Meaning Example

Il

Equal to A=RBR
Less than A <B
Less than or equal to A <=8
GCreater than A > B
Greater than or equal to A>=R8
> Not equal to A <>B

VoA A
1l

NNV
H

A simple expression may be used in place of relational expression
following IF. A simple expression is an arithmetic variable

or an arithmetic literal. A simple expression is assumed to be
true if it does not evaluate to 0. Any non-zero arithmetic
expression that contains one or more characters will be evaluated
to true,

100 IF X + Y = 0 THEN 100 Relational expressions, where values
150 IF .01 < = SQR(X) GOTO 410 are compared to determine the truth

value.

INPUT

Format:

Purpose:

INPUT wvariable list

where: variable list can contain arithmetic variables or
array elements.

To input values for variables at run time. When an INPUT statement
in the program is executed, the BASIC system types 7 at the
teletypewriter, requesting data for the variables.

The programmer types the list of data values for input immed-
iately following the symbol ? . Each datum is delimited from the
next by either a comma or a carriage return, The last data value
for the INPUT list must terminate with a carriage return.

Arithmetic variables and array elements may be interspersed
in the variable list of the INPUT statement. The data list typed
by the programmer must match the variable list in number of

data items.

Pressing the carriage return during typing of the data list

does not cause an actual carriage return; it merely signals
BASIC that a value has been terminated, If the return is pressed
and BASIC does not have enough values to fill the input list, the
BASIC system types:

and sounds the Teletypewriter bell. The programmer can then
add one or more values to the list.

If the data list contains an error detected by the system, the BASIC
system will type:

/?

The programmer can then retype the corrected value. If the error
was detected in a data value in a list where items are delimited

by commas, the list must be retyped in its entirety. If the

error was detected in a list where a previous value or values were
delimited by carriage returns, only the value in error need be

retyped.

3-10

INPUT (Continued)

During the typing of the data list, the programmer may use the
line erase (CTRL X) or character erase (CTRL A) to correct
errors in the list,

It is useful to precede the INPUT statement with a PRINT statement
that will clarify which variables the values are requested for.

If an INPUT statement is incorporated into a continuous loop, the
programmer can terminate program execution and the printing

of 7 by pressing the ESC key.

Examples:

20 PRINT "VALUES OF X, Y, 2"
30 INPUTX, Y, Z

RUN)

VALUESOF X, Y, Z
?7 2.5, -44.1, .5 ;values separated by commas

RUN J

VALUESOF X, Y, Z
7 2.57-44,17.5 ;values separ:ted by carriage returns (invisible).

10 PRINT "VALUES OF X, Y, Z "
20 INPUT X
30 INPUT Y
40 INPUT Z

RUN /

VALUES OF X, Y, Z
72,5, -44.1, .5 ;error message will result since only one value is expected.

3-11

LET

Format:
' LET variable = expression
Purpose: To evaluate expression and assign the value to variable,
The variable may be subscripted,
Examples:

10 LETA=4.17+G
40 LETX =X+Y
80 LET W7 = ((W-X) *234) * SQR(Z-A)/B

90 LET J(I, K) = COS(FNA(K+I))

3-12

PRINT or ;

Format:

Purpose:

Format:

PRINT expression list

; expression list

where: expression list is a list of numeric variables,
subscripted variables, expressions, or string
literals.

PRINT and ; are equivalent statement forms.

To output current values for any expressions and variables
appearing in the expression list of the PRINT statement, and to
output verbatim text for any string literals in the expression list,

The PRINT statement allows the user to either control output
formatting or to accept default formatting.

Number Representation

Any real or integer number less than or equal to 6 digits is
printed out without using exponential form., A minus sign is
printed if the number is negative; a space is left before a
positive number.

All other numbers are printed in the format:
[-]Jn.nnnnnE+efe]

where: n is a digit.
E indicates exponentation,
e is a digit of the exponent
[] square brackets indicate optional parts of the number.
If the number is positive, a space is left in the sign

position.
Number Printed Output
. 00000002 2.00000E -8
-. 0002 -. 0002
200 200
-200. 002 -200. 002
2,000, 000 2. 00000E+6
-20, 000, 000, 000 -2. 00000E+10

3-13

PRINT and ; (Continued)

Format: Zone Spacing of Output
{Continued)

The teletypewriter line is divided into five zones, which are set
at either of the following character positions:

0 15 30 45 60 (15-space zone)
0 14 28 42 56 (14-space zone)

Zoning is set at load time by replying to the system query:

DO YOU WISH COMMA'S TO BE 14 SPACES (TYPE Y) OR 15
SPACES (TYPE N) 7

A comma between items in the expression list of the PRINT state-
ment indicates "'space to the next zone', If the fifth print zone
has been filled, the next value is printed in the first print zone

of the next line.

10 LET X =5 (Assume a l4-space zone.
20 PRINT X, (X*2)1t6, X*2, Note terminating comma
60 PRINT X4 4, X-25, (X*2)18, X-100 on first PRINT statement
’ controls the output of the
first value of the next
PRINT statement.)

0 14 28 42

1 + ' '
5 1. O0000E+6 10 625
1. 00000E+8 -95

When an output value is longer than a single zone, for example,
a long string literal, the teletype is spaced to the next free zone
to print the next value.

10 LET X = 25
20 PRINT "THE SQUARE ROOT OF X IS:", SQR(X)

0 14 28
¥ ‘
THE SQUARE ROOT OF X IS: S

3-14

PRINT or ; (Continued)

Format: Compact Spacing of Output
(Continued)

The user can obtain more compact output by use of the semicolon
between list items. It inhibits spacing to a print zone, leaving
only a single space between the values output for list items. Note
that like the comma, a semicolon at the end of a PRINT statement
will determine the position of the first value of the next PRINT
statement,

10 LETX =5
20 PRINT X; (X*2)4+6; X*2; (X*2)14;
30 PRINT X-25; (X*2) 18; X~-100

0 4 16 20 26 31 42
[¥ \ ¥ ¥ t
5 1.00000E+6 10 10000 =-20 1.00000E+8 -95

Spacing to the Next Line

If there is no comma or semicolon terminating the last item of
the list of a PRINT statement, the next value will be printed on the
next line.

10 LETX =5
20 PRINT X, (X*2) 16

30 PRINT X * 2

40 PRINT X-25; (X*2) 48
50 PRINT X-100

0 5 15
V ' b
S 1. 00000E+6
10
-20 1.00000E+8
-95

3-15

PRINT or ; (Continued)

Format: Tabulation

(Continued)
It is possible to tabulate to a particular character position to

cutput a value using the TAB function:

TAB (expression)

where: expression evaluates to an integer representing the
character position of the next list item following the
TAB function., The TAB function only affects the next
list item and only tabulates to the given position if:

1. The carriage is not set beyond the desired char-
acter position,

2. The function is not overridden by another formatting
delimiter such as a comma.

10 DATA 5, -7, 9, -11
20 READ A, B,C,D
30 PRINT TAB(5);A;TAB(10);B; TAB(15);C; TAB(20);D

0 S 10 15 20

v v ¥ ¥ i
-7 9 -11

10 DIM B(4)
20 DATA 5, -7, 9, -11
30 FORI1=0TO 3

40 READ BI)
50 ;TAB(5); B(I)
70 NEXT I
0 5 7 10 13
§ ¥ i {
5 -7 9 -11 ;Note that the TAB function only

affects the first array value.

3-16

PRINT or ; (Continued)

Format:
(Continued)

Tabulation (Continued)

The TAB function must be preceded by a semicolon. Otherwise,
a syntax error will result:

70 PRINT B(I) TAB(S)

In the example above, the values of the array are each output on
a separate line, and each is followed by a syntax error message.

If the expression in the TAB function evaluates to a number
greater than the carriage length, the value will be printed on the

line but the character position will vary mod(carriage length).

Following are a few additional examples of output printing:

10 FORI=1TO 10
20 PRINT I ;Carriage return delimiter.

30 NEXT1I

W N

10 FORI=1TO 10

20 1, ;If zone = 15 spaces.

30 NEXT I

1 2 3 4 5

6 7 8 9 10

3-17

READ and DATA

READ

Format:

Purpose:

READ variable list

where: variable list can contain arithmetic variables and
array elements,

To read values from the data block into variables listed in the
READ statement.

The order in which variables appear in READ statements is the
order in which values for the variables are retrieved from the
data block.

Values appearing in all DATA statements in a program are
stored, before a program is executed, into a single data block for
use as values of variables in the READ statement,

Normally, READ statements are placed in the program at those
points at which data is to be mani pulated, while DATA statements
may be placed anywhere.

A pointer is moved to each consecutive value in the data block
as values are retrieved for variables in the READ statements.,
If the number of variables in the READ statement exceeds the
number of values in the data block, an "out of data” error mes-
sage is printed. The RESTORE statement can be used to reset
the pointer to the beginning of the data block.

3-18

READ and DATA (Continued)

DATA
Format:
DATA number list
Purpose: To provide values to be read into variables appearing in the READ

statements,

Only numbers may appear in DATA statements. Formulas and
string constants will not be interpreted. Each number is
separated from the next datum by a comma.,

DATA is a non-executable statement., The values appearing in

the DATA statement or statements are read into a single data
block before the program is run.

EXAMPLES OF READ AND DATA

150 READ X, Y, Z

.

200 READ A

250 FOR I = 0 TO 10
255 READ B(I)
260 NEXT I

. 400 DATA4,2,7.5, 25,1, -1, .1, .01, ,001, .0001
450 DATA .2, .02, .002, .0002, .015, .025, .3, .03, .003

The first three data values are read for X, Y, and Z respectively. The value -1 is
read into A. The next eleven values, .1 through . 3, are read into the eleven elements

of array B.

3-19

EXAMPLES OF READ AND DATA (Continued)

100 READ A,B,C
300 GOTO 100

500 DATA 1, 10, .333
510 DATA -1, 1, .555
520 DATA O, -1, .1

Each series of data values, contained in the three DATA statements will, in turn,
be read into variables A, B, and C.

3-20

REM

Format:
REM text comment

Purpose: To insert expanatory comments within a program. The text
following REM is stored before the program is run and is re-
produced exactly as it appears in the statement when a listing
of the program is printed. Although the REM statement is non-
executable, note that storage space is required for the text,

Example:

lQO REM THIS IS A PROGRAM TO FIND COMPOUND INTEREST

3-21

RESTORE

Format:
RESTORE
Purpose: To permit reuse of the data block., RESTORE sets the data
block pointer to the first value in the data block. The next READ
statement following execution of a RESTORE statement will begin
reading values from the start of the data block into variables.
Example:

20 FOR K =0 TO 10

30 READ B(K) ;Data values 1,2,...11 read into ele-
40 NEXT K ;ments of array B

50 RESTORE

60 READ X,VY,Z ;Data values 1,2, 3 read into X, Y, Z

70 RESTORE ;respectively.

200 READ -=-- ;At next READ, values start at 1 again,

500 DATA 1,2,3,4,5,6,7,8,9,10,11,12,13

STOP

Format:

Purpose:

Example:

STOP

To halt execution of a program at some point, When STOP
is encountered, the BASIC system will cease execution and type
the message:

STOP AT xxxx

where: xxxx is the line number of the STQOP statement,

The system will wait for a keyboard command.

80 FOR K = 0 TO M-1
90 LET X =B+K * P

100 IF X-M*INT(X/M) = A THEN 130
105 NEXT K

110 PRINT "ERROR"

120 STOP

130 LETP=P * M

;Stop program if error occurs,

3-23

CHAPTER 4

KEYBOARD COMMANDS

Keyboard commands, typed by the user without statement numbers, are recognized

by the BASIC system as commands to be immediately executed. FEach command is
A

terminated by a carriage return (/).

The commands allow the user to edit, execute, perform dynamic debugging, and
to perform simple desk calculator operations.

PROGRAM CONTROL

Program control is achieved through use of the special program control keys
and the program control commands.

Program Control Keys

ESC Pressing the ESC key essentially means "'change the

current mode of operation.

T

The effect depends upon

the current state of the system:

1.

If a program is executing, execution ceases, and
the message:

STOP AT xxxx

is printed, where xxxx is the statement number
before which execution ceased,

If output is being listed, the listing halts at the
end of the current line.

If input is being read from the paper tape reader,
input processing ceases, (Paper tape input can
only be restarted from the beginning of the tape.)

In keyboard mode, the user can press ESC instead
of CTRL X to effect a line kill.

If the user wishes to issue a keyboard command and
the system is operating in one of the modes indicated
above, pressing the ESC key will change the mode

to allow the system to accept a keyboard command.

4-1

Program Control Keys (Continued)

CTRL X When the user is writing and editing BASIC programs at
the keyboard and when he is responding to an INPUT
request, pressing both the CTRL and X keys
simultaneously results in deletion of the line he is currently
typing. He may then retype the line without giving a carriage
return.

The symbol \ s printed at the teletypewriter to in-
dicate CTRL X. The following example shows line
deletion and replacement.

20 PROMPT "OMTERES’I}’\ \90 PRINT "INTEREST-";I

hd 4 Ny
Typing Errors Text Replacement
Deleted Statement
CTRL A When the user is writing and editing BASIC programs at

the keyboard and when he is responding to an INPUT
request, pressing both the CTRL and A keys simultan-
eously results in the deletion of the last character in the
current line. He may then retype the character,

The symbol = is printed at the teletype to indicate

CTRL A. The following example shows character dele-
tion and replacement:

90 PRO < INT "OM < = INTEREST @ 6% —=5% IS: ;I
The statement within the program will appear as:
90 PRINT "INTEREST @5% IS: ;I

rogram Control Commands

Program control commands can be roughly divided into those dealing with input/output
program editing, and program execution,

Input/Cutput Commands

The keyboard commands used for I/0 are:

NEW J - All currently loaded statements and variables are
cleared. It is usual to give this command before
beginning input processing of an entirely new program,

4-2

Program Control Commands (Continued)

Input/Output Commands (Continued)

If the NEW command is not given, incoming statements
will replace currently loaded statements that have the
same statement numbers, but already loaded statements
with unique statement numbers will not be affected,

This makes it possible to add statements and subroutines
to a program without destroying that part of the program
that is already loaded.

LIST / - Output a listing of the currently loaded program to
the teletypewriter,

nLIST J - Output a listing of the currently loaded program to
the teletypewriter beginning at statement numbered n

and continuing through the end of the program.

When the BASIC system has completed any of the above commands, the system
stops; no message is typed at the teletypewriter,

Editing Commands

The commands that may be used to edit programs (in addition to CTRL X and CTRL
A control keys) are:

n J The statement number nis deleted. If there is no
statement n, an error message is typed.

n statement) Replace the statement numbered n with the given
statement,

Execution Command

When the user has written and corrected his BASIC program, he initiates execution
by the command:

RUN / Clear all variables; un-dimension all arrays; do a RESTORE;
then execute the program from its lowest numbered statement.

DESK CALCULATOR AND DEBUGGING COMMANDS

Several BASIC statements have been adapted for use as keyboard commands. They
are DIM, GOTO, PRINT, LET, and RESTORE.

4-3

DESK CALCULATOR AND DEBUGGING COMMANDS (Continued)

The commands can be used to perform calculations. Using the PRINT command, the
user can simply request the vale of a formula, given by literals, The command

can also be used to perform calculations using current program values of a loaded
program, As an example, the user might interrupt a running program that

contains an array to which values have been assigned and use those values to obtain
a series of random numbers by multiplying the array elements by the RND function,

Finally, the commands provide an easy-to-use method of dynamic program debugging.
A running program can be interrupted at different program points; the current values
of the variables can be checked at those points and changed as nec..sary. To resume
execution of a program following a programmed STOP or keyboard interruption,

the user must type "GOTO xxxx'' where xxxx is the line number of the statement at
which the program should be reentered. If the user types "RUN" all variables and
arrays in the program will be re-initialized to zero, a RESTORE will be executed

on the data block, and the program will be started again from the lowest numbered
statement, By typing the GOTO command it is then possible to restart the interrupted
program at any point without losing either the values of the variables at the point

of interruption or those values that were inserted or changed during the interrupt.

PRINT Command

The keyboard PRINT command, typed either as ; or PRINT, can be followed by an
expression. The expression is evaluated, and the result is printed on the teletypewriter
printer.

;EXP(SING3. 4/8)) 2.68631 ;system responds on the same line.

When the user interrupts a program in execution, he can obtain current values
of variables in the program or make calculations using the current values.

(ESC)
STOP AT 0500
;A1 -.51125

;ABS(-.511125.54.5) 714,927

4-4

LET Command

The programmer can change the value of an arithmetic variable in the program by
issuing the LET command.

(ESC)

STOP AT 1100

PRINTA /0 ;user checks value of variable A,

LETA=-1/ ;user changes the value of arithmetic variable A and resumes

running at statement 505,
GOTO 505 /

RESTORE Command

The user may wish to restore the data block pointer to the top of the data block .
The RESTORE command gives the user this option.

(ESC)
STOP AT 2500
RESTORE .
GOTO 2500 ./

DIM Command

As described in Chapter 2, an array can be redimensioned as long as the number
of elements after redimensioning is the same or smaller than the original number
declared. The DIM command can be used for this purpose also.

20 DIM A4, 4)

(ESC)
STOP AT 500

DIM A(3,5) +

APPENDIX A

Single-User BASIC Error Messages

Error messages are printed as two-digit codes, which are defined below.

Error Code

00
01
02
04
05
06
07
08
09
10
11
12
13
14
15
16
18
19
20
21
22
23
24
25
26
28

29
30
31
32
33
34
35

Format error

Illegal character

Syntax error

System error

Illegal statement number

Too many variable names

Spelling error

Spelling error

No such word

Incorrect subscript closure

Incorrect parenthesis closure

Not a keyboard command

No such line number

Storage overflow (while inputting program)
Read statement is out of data
Arithmetic overflow (number too large)
Too many nested GOSUBs

Too many RETURNSs

Too many nested FORs

FOR without NEXT

NEXT without FOR

Out of storage (while assigning variable storage)
Array too large

Attempt to dimension simple variable
Variable name is not dimensionable
Redimensioned array is larger than previously
defined

Expression is too complex

Illegal format in defined function
Subscript exceeds dimension

Undefined user function

Too many nested functions

Negative subscript

Function not yet implemented

APPENDIX B

OPERATING PROCEDURES

Loading Single-user BASIC

Single User BASIC (tape number 091-000018) is loaded by use of the binary loader,
Once loaded, BASIC will type:

DO YOU WISH COMMAS TO BE 14 SPACES (TYPE Y),
OR 15 (TYPE Ny ?

The user can adjust print columns to either 14 spaces (70 for full page) or 15
spaces (75 for full page). Once the query has been answered, BASIC will initialize
itself and in that process destroy the binary loader, leaving intact the bootstrap
loader.

If memory is larger than 4K it will preserve both the binary and the bootstrap
loaders and will use the additional core to store the user's data and program. Larger
memory configurations, therefore, provide the user with the capability of handling
larger programs with larger bodies of data. After initializing itself, BASIC

performs a carriage return/line feed and waits for the user to respond.

In system with 4K of memory, the query:

DO YOU WISH TO OVERWRITE THE FUNCTIONS SIN, COS,
ATN, AND TAN (TYPE Y OR N)?

is printed on the teletypewriter. If the user responds with Y, the core required for
these functions is made available for storage of the user's program and data,

thereby expanding the total storage available to the user by sixty percent.

Restarting Single-user BASIC

If at some point in working with the system the user wishes to restart the program,
due to a power failure for example, he may do so by setting the Nova/Supernova
panel data switches to the restart address (000002), and pressing RESET and START
operating switches.

This action will place the system in idle mode until the user strikes the ESC key
on the teletypewriter. All other teletypewriter keys will give no response until
the ESC key is struck. When hit, it will cause the system to do a carriage-return
on the teletypewriter and type the message "*READY".

Restarting BASIC does not destroy the program or data that the user has entered
previously. To accomplish this the user must issue the keyboard command
“NEW", which causes the user’'s program area to be cleared in preparation for a
new program.

B-1

APPENDIX C

USE OF THE TELETYPE READER/PUNCH

To punch a BASIC program tape with blank leader and trailer, follow this procedure;

1.

Turn the power switch on the front of the teletypewriter to the
LOCAL position. Press the ON button on top of the teletype
punch unit. Then press the HERE IS* key to punch blank tape.
When enough blank tape has been produced press the OFF button
on top of the punch unit and turn the power switch back to the
LINE position,

Type the Keyboard command LIST, but do not press the RETURN
key yet. Press the ON button on top of the teletype punch unit
and then press the RETURN key. After waiting until the punching
and listing is complete, press the OFF button on the teletype
punch,

Repeat step 1 to punch a length of blank trailer on the tape,

Remove the tape by pulling straight up. This produces arrows on
the ends of the tape to indicate the direction in which the tape should
be read through the reader. It is usually wise to write the name

of the program on the tape for easy identification,

To load a BASIC program tape, follow this procedure:

li

Set the switch on the teletypewriter's paper tape reader to the

- STOP position. Release the plastic tape guide on the tape reader

and mount the beginning end of the tape in the reader with the
arrow at the end of the tape pointing forward and the punched
portion hanging down behind. Be sure the sprocket holes in the
tape leader are fitted on the sprocket wheel.

Close the plastic tape guide and move the switch on the reader to
the START position. Wait until the entire tape has been read and
listed, and then move the reader switch to the FREE position, and
pull out the remaining tape.

¥ On some teletypewriters the HERE IS key may not punch blank tape. In this
case, the user should hold down CTRL, SHIFT, REPT, and P keys simultane-
ously to punch blank tape. The REPT and P keys should be released first,

C-1

INDEX

ABS function 2-6 comma
advanced BASIC 3-1 delimiter in PRINT 3-13
arithmetic delimiter in DATA 3-18
expression 2-2 in input of data 3-18
operator 2-2 comment 3-21
operator precedence 2-2 constant, arithmetic 2-1
variable 2-1 COS function 2-6
array control variable 3-5
declaration 2-3
definition 2-3 data
dimensioning 2-3, 3-3 block 3-18
element 2-4 INPUT /keyboard for input of 3-10
redimensioning 2-3, 4-5 READ/DATA for input of 3-18
storage 2-4 DATA statement 3-18
ATN function 2-6 debugging commands
n (statement number) 4-3
BASIC program 5 4-4
caluclations 1-3, 1-4 DIM 4-5
contents 1-2 LET 4-5
data for 1-2 PRINT 4-4
debugging of 4-6 RESTORE 4-5
editing of 1-8, 4-4 DEF statement 3-2
error codes Appendix A delete
example of 1-7 line of loaded program 4-2, 4-3
interrupt 1-10, 4-1 loaded program 4-2
listing of 4-3, 4-4 typed character 1-1,4-2
loading Appendix B typed line 1-1, 4-2, 4-1
loops 1-3 diagnostics Appendix A
output from 1-6 DIM
preparation 1-1 command 4-5
running of 1-9, 4-5 statement 3-3, 2-3, 2-5
statements Chapter 3 dimensioning an array 2-3, 3-3
termination 1-1
E writing of Chapter 1 E in numbers 2-1, 3-18
- blank space editing a program 4-4, 1-9
in PRINT 3-13 elementary BASIC 3-1
in program 1-8 END statement 3-4
in verbatim text 1-8 error
correction of typing 1-1, 4-2
calculations messages Appendix A
in program 1-4 ESC key 4-1, 1-10
keyboard PRINT used for 4-4 evaluation of expressions 2-2

carriage return 1-1, 4-4, 3-11

INDEX-1

execution
programmed halt of 3-23
resumption of 4-3, 1-9
start of 4-3, 1-9
teletype interrupt to 4-4, 1-10
EXP function 2-6, 3-2
exponentation 2-2
€xpression
arithmetic 2-2
order of evaluation 2-2
relational 3-9

FOR statement 3-5
function, programmed defined

ABS 2-6
ATN 2-6
COS 2-6
EXP 2-6
INT 2-7
LOG 2-6
RND 2-7
SGN 2-7
SIN 2-6
SQR 2-6
TAB 3-16
TAN 2-6
function, user-defined
define a 3-2

reference 3-2

GOSUB statement 3-7
GOTO statement 3-8

IF statement 3-9
input
from teletype 1-1
INPUT statement 3-10
READ/DATA statements 3-18
INPUT statement 3-10
INT function 2-7
interrupt
from teletype 1-10,4-1
programmed 3-23

keyboard commands

n 4-3

T 4-4

DIM 4-5
LET 4-5
LIST 4-3
NEW 4-2
PRINT 4-4
RESTORE 4-5
RUN 4-3

keyboard control keys
CTRL A 4-2, 1-1
CTRL X 4-2, 1-1
ESC 4-1

LET command 4-5
LET statement 3-12
LIST command 4-3
listing program
on keyboard 4-3
on teletype punch Appendix C
loading BASIC Appendix B
LOG function 2-6

mathematical
constants 2-1
expressions 2-2
functions 2-6
operators 2-2
variables 2-1

NEXT statement 3-5
NEW command 4-2

number
input 2-1
output 2-1

representation 2-1,3-13

operator
arithmetic 2-2
relational 3-9

INDEX-2

output
PRINT command 4-4
PRINT statement 3-13
to teletypewriter 4-3
to punch Appendix C
zone spacing 3-14, Appendix B

parentheses
for square brackets 2-3
use in expressions 2-2
use in functions 2-6
PRINT
command 4-4
statement 3-13
program control
commands
n 4-3
LIST 4-3
NEW 4-2
RUN 4-3
keys
CTRL A 4-2, 1-1
CTRL X 4-2, 1-1
ESC 4-2
providing data 1-2
punch, teletype Appendix C

READ statement 3-18
READY message 1-9
redimensioning, arrays
relational expressions
REM statement 3-21
repetitive computations 1-3
RESTORE
command 4-35
statement 3-22
RETURN statement 3-7
RND function 2-6
RUN command 4-2
running program
from beginning 4-3, 1-9
from given statement 4-4
interrupting a 1-10, 4-1
programmed halt in 3-23

2-5, 4-5
3-9. 1-3

semicolon in PRINT 3-13
SGN function 2-7
SIN function 2-6
SQR function 2-6
statement
DATA 3-18
DEF 3-2
DIM 3-3
END 3-4
FOR 3-5
GOSUB 3-7
GOTO 3-8
IF 3-9
INPUT 3-10
LET 3-12
NEXT 3-5
PRINT 3-13
REM 3-21
READ 3-18
RESTORE 3-22
RETURN 3-7
STOP 3-23
statement number
deleting line by 4-3
interpolating lines by
use of 1-1, 1-3
STEP clause 3-5
STOP statement 3-23
storage, array 2-3
subscript
changing 2-3 ff
definition 2-3
order of 2-3 ff
variable 2-3 ff

tabulation (TAB function) 3-16
TAN function 2-6
tape

input Appendix C

output Appendix C
teletype reader/punch Appendix C
termination of a program 1-1, 3-4
THEN clause 3-9

INDEX-3

4-3, 1-3

transfer of control
conditional
IF 3-9
from subroutine (RETURN) 3-7
to BASIC subroutine 3-7
to function 2-6, 3-2
unconditional
GOTO 3-8
Gcosus 3-7
use in programming 1-3 ff

variable, arithmetic 2-1
zone spacing

output using 3-14
setting of Appendix B

INDEX-4

DataGeneral

PROGRAMMING DOCUMENTATION

REMARKS FORM

Document Title

Document No.

Tape No.

SPECIFIC COMMENTS: List specific comments. Reference page numbers when applicable.

Label each comment as an addition, deletion, change or error if applicable.

GENERAL COMMENTS: Also, suggestions for improvement of the Publication.

FROM:

Name Title Date
Company Name

Address (No. & Street) City State Zip Code

Form No. 10-24-004

FOLD DOWN

o e S S e e B WD W B B e e N B M Dw e NS WR MR W R W e O W GE NG B MR OB e G MR N e M B AR T AR WS R WR AR R S W B S e e e e

FOLD DOWN

B R L R

FIRST
CLASS
PERMIT 4
No. 28
Southboro
Mass. 01772

BUSINESS REPLY MAIL

No Postage Necessary 1f Mailed In The Unded States
Postage will be paid by:

Data General Corporation

Southboro, Massachusetts 01772

ATTENTION: Programming Documentation

WA o e e W e M G e e N W MR R AR M W SR R R N R ee S WS R MR e S B LN R e B R AR S GE BB NR BE NR MR W AR MR R G e W W e e e e B M e e e

FOLD UP SECOND

STAPLE

L L Y R R

FOLD UP

	Cover
	i
	iii
	iv
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	4-1
	4-2
	4-3
	4-4
	4-5
	A-1
	B-1
	C-1
	Index-1
	Index-2
	Index-3
	Index-4

