
EK- MS730-TD-001 

VAX-11/730 
Memory System 

Technical Description 

Prepared by Educational Services 
of 

Digital Equipment Corporation 



1st Edition, May 19 82 

Copyright © i 982 by Digital Equipment Corporation 

All Rights Reserved 

The reproduction of this material, in part or whole, is strictly prohibited For 
copy information, contact the Educational Services Department, Digital 
Equipment Corporation, Maynard, Massachusetts 017 54. 

The information in this document is subject to change without notice. Digital 
Equipment Corporation assumes no responsibility for any errors that may 
appear in this document 

Printed in U.S.A. 

The following are trademarks of Digital Equipment Corporation, Maynard, 
Massachusetts. 

DEC 
DEC US 
DIGITAL 
Digital Logo 
PDP 
UNIBUS 
VAX 

DECnet 
DECsystem- I 0 
DECSYSTEM-20 
DECwriter 
DIBOL 
Edu System 
IAS 
MASSBUS 

OMNIBUS 
OS/8 
PDT 
RSTS 
RSX 
VMS 
VT 



CONTENTS 

CHAPTER 1 INTRODUCTION AND OVERVIEW 

1.1 
1.2 
1.3 
1.4 
1.4.1 
1.4.2 
1.4.3 
1.4.3.1 
1.4.3.2 
1.4.3.3 
1.4.4 
1.4.5 
1.4.5.1 
1.4.5.2 
1.4.6 
1.5 

Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 
Memory Controller Simplified Block Diagram Description . . . . . . . . . . . . . . . . 1-1 
Memory Controller Functional Block Diagram Description . . . . . . . . . . . . . . . 1-4 

Arbitrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
Microsequencer and Control Store PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 

CPU Virtual Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
CPU Physical Address Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 
UNIBUS Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 

Refresh Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 
Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 

Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 
Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 

CSR Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9 
Maintenance Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 

CHAPTER 2 FUNCTIONAL DESCRIPTION 

2.1 
2.2 
2.2.1 
2.2.2 
2.2.3 
2.2.4 
2.2.5 
2.2.6 
2.2.7 
2.2.8 
2 .. 2.9 
2.2.10 
2.2.11 
2.2.12 
2.2.13 
2.2.14 
2.2.15 
2.3 
2.3.1 
2.3.2 
2.3.3 
2.3.4 
2.3.5 
2.3.6 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 
Arbitrator and UNIBUS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 
CPU/Memory Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 
UNIBUS/Memory Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 
UNIBUS Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 
CPU Grant Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 
NPG Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 
UNIBUS Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 
BB SY I..ogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 
MSYN I..ogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 
SSYN Logic ...................................................... 2-12 
UNIBUS Activity ................................................. 2-12 
Data Interface ..................................................... 2-14 
Address Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 
Bus Grant Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 
DCLO ........................................................... 2-14 

Microsequencer and Control Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 
PROM ........................................................... 2-16 
Branch I..ogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 
Dispatch Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 
Power F aiVParity Error Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 
Power Fail Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 

1ll 



2.4 
2.4.1 
2.4.2 
2.4.2.1 
2.4.2.2 
2.4.2.3 
2.4.2.4 
2.4.2.5 
2.4.2.6 
2.4.3 
2.4.3.1 
2.4.3.2 
2.4.3.3 
2.4.4 
2.4.4.1 
2.4.4.2 
2.5 
2.5.1 
2.5.2 
2.5.3 
2.5.4 
2.6 
2.6.1 
2.6.2 
2.6.3 
2.6.4 
2.6.5 
2.6.6 
2.6.7 
2.7 
2.7.1 
2.7.2 
2.7.3 
2.7.3.1 
2.7.3.2 
2.8 
2.8.1 
2.8.2 
2.8.2.1 
2.8.2.2 
2.8.3 
2.8.3.1 
2.8.3.2 
2.8.4 
2.8.4.1 
2.8.4.2 
2.8.4.3 
2.8.4.4 
2.8.4.5 
2.8.4.6 
2.8.4.7 
2.9 
2.9.1 
2.9.2 

Address Translation .................................................. 2-24 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24 
CPU Virtual Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 

Virtual Address ................................................. 2-25 
Virtual Address Register/VAR Counter ............................ 2-25 
VAR Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30 
Translation Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31 
Physical Address ................................................ 2-35 
Prefetch Counter ................................................ 2-36 

UNIBUS Address Translation ...................................... 2-37 
UNIBUS Address ............................................... 2-37 
Virtual Address Register/VAR Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 7 
Translation Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40 

Writing/Reading the Translation Buffer ............................... 2-41 
Writing the Translation Buffer .................................... 2-41 
Reading the Translation Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 

Physical Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 
Memory Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46 
UNIBUS Adapter Space ........................................... 2-46 
UNIBUS Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49 

Memory Array Read/Write ........................................... 2-49 
General .......................................................... 2-49 
Memory Select .................................................... 2-50 
Array Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50 
Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-54 
Data In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-54 
Data Out ......................................................... 2-54 
Array Terminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 4 

ECC (Error Checking/Correction) ..................................... 2-56 
Read Array/ECC Check ........................................... 2-56 
ECC Check Bit Generation/Write Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-60 
ECC Chip Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61 

ECC Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61 
ECC Check Bit Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61 

Data Rotator ........................................................ 2-63 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63 
Data Rotation - Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-65 

One-Cycle Read ................................................ 2-65 
Two-Cycle Read ................................................ 2-65 

Data Rotation- Write Operation .................................... 2-68 
One-Cycle Write ................................................ 2-68 
Two-Cycle Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-68 

Data Rotation Control and Byte Selection Logic . . . . . . . . . . . . . . . . . . . . . . . 2-70 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 
Data Rotator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 
Data Type Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 
Data Out Latch Byte Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 
Second Cycle Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-72 
Two-Cycle Detector ............................................. 2-72 
ALIGN LW .................................................... 2-72 

Error Logic and CSR Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 3 
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 3 
CSRO Check Bit/Syndrome Register ................................. 2-74 

lV 



2.9.3 
2.9.4 
2.9.4.1 
2.9.4.2 
2.9.4.3 
2.9.4.4 
2.9.4.5 
2.9.5 
2.9.5.1 
2.9.5.2 
2.9.6 
2.9.6.1 
2.9.6.2 
2.9.6.3 
2.9.6.4 
2.9.6.5 
2.9.6.6 
2.9.6.7 
2.9.6.8 
2.9.6.9 
2.9.6.10 
2.9.7 
2.9.8 
2.9.8.1 
2.9.8.2 
2.9.8.3 
2.9.8.4 
2.9.9 

CSRl ECC Diagnostic Check Bits <06:00> ......................... 2-74 
CSRl CPU/Memory Control Bits <29:25> .......................... 2-74 

ECC DIS <25> ................................................ 2-74 
DIAG CHK <26> ............................................. 2-76 
MME <27> ................................................... 2-76 
INH REP CRD <28> .......................................... 2-76 
TBPARDIAG<29> .......................................... 2-76 

CSRl CPU/Memory Data Error Bits <31:30> ....................... 2-76 
CRD <30> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-77 
RDS <31> .................................................... 2-77 

CSRl CPU/Memory Transaction Error Bits <23:14> ................. 2-77 
VALID<14> .................................................. 2-77 
TB PAR ERR <15> ............................................ 2-80 
NXM <16> ................................................... 2-80 
UBBSY < 17> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80 
ADAPT REG SEL <18> ....................................... 2-80 
WR ACROSS PG ERR <19> ................................... 2-80 
ILL UB OPER <20> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80 
TB MISS <21 > . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80 
ACCESS REF <22> ........................................... 2-80 
MODIFY REF <23> ........................................... 2-80 

CPU/Memory Error Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81 
CSR2 UB/Memory Error Bits <31>, <16:14> ...................... 2-81 

WR NOT VALID <14> ........................................ 2-83 
UB TB PAR ERR <15> ........................................ 2-83 
UB NXM <16> ................................................ 2-83 
UB RDS <31> ................................................. 2-83 

UNIBUS/Memory Error Summary .................................. 2-83 

CHAPTER 3 USING THE PROM MICROCODE LISTING 

3.1 
3.2 
3.3 
3.4 

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 
Microcode Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 
Microword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 
Reading the Microcode Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 

APPENDIX A PROGRAMMED ARRAY LOCK DEVICES (PAL) 

APPENDIX B FLOW DIAGRAM SYMBOLS 

APPENDIX C MAINTENANCE FEATURES 

FIGURES 

1-1 
1-2 
1-3 
2-1 
2-2 
2-3 
2-4 
2-5 
2-6 
2-7 

VAX-11/730 Memory System Simplified Block Diagram................. 1-3 
VAX-11/730 Memory System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
Longword Alignment in Memory Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
Arbitrator and UNIBUS Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 2-2 
CPU/Memory Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 
UNIBUS/Memory Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 
UNIBUS Lockout Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 
CPU Grant Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 
NPG Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 
NPG Timeout Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 

v 



2-8 
2-9 
2-10 
2-11 
2-12 
2-13 
2-14 
2-15 
2-16 
2-17 
2-18 
2-19 
2-20 
2-21 
2-22 
2-23 
2-24 
2-25 
2-26 
2-27 
2-28 
2-29 
2-30 
2-31 
2-32 
2-33 
2-34 
2-35 
2-36 
2-36 
2-37 
2-38 
2-39 
2-40 
2-41 
2-42 
2-43 
2-44 
2-45 
2-46 
2-47 
2-48 
2-49 
2-50 
2-51 
2-52 
2-53 
2-54 
2-55 
3-1 
3-2a 
3-2b 
3-2c 
3-2d 

UNIBUS Control Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 
BB SY wgic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 
SSYN wgic ........................................................ 2-13 
UNIBUS Activity Logic .............................................. 2-13 
Bus Grant Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 
Microsequencer/ Control Store Simplified Block Diagram . . . . . . . . . . . . . . . . . 2-15 
Memory Controller Microword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 
Microsequencer/ Control Store Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 
Dispatch Function Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 
Power F aiVParity Error Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 
Power Fail Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 
Simplified Block Diagram of Address Translation ........................ 2-24 
CPU Virtual Address Translation Flow Diagram ........................ 2-27 
CPU Virtual Address Translation Block Diagram ........................ 2-29 
CPU/UNIBUS Address Segments ..................................... 2-30 
Translation Buffer Space Allocation .................................... 2-32 
Physical Address Select Logic ......................................... 2-32 
UB TB Select Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 3 
Prefetch Select Logic ................................................. 2-36 
UNIBUS Address Translation Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38 
UNIBUS Address Translation Block Diagram .......................... 3-39 
Translation Buffer Write/Read Block Diagram .......................... 2-42 
Translation Buffer Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43 
Physical Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45 
Memory Adapter Registers ............................................ 2-47 
UNIBUS Adapter Registers ........................................... 2-47 
RB-7 30 Software Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48 
RAM Chip Configuration on M87 50 Array Board . . . . . . . . . . . . . . . . . . . . . . . 2-49 
Memory Array Read/Write Block Diagram (Sheet 1 of 2) . . . . . . . . . . . . . . . . 2-51 
Memory Array Read/Write Block Diagram (Sheet 2 of 2) ................ 2-52 
Array Bus Signals ................................................... 2-53 
Array Address Timing Diagram ....................................... 2-53 
Rate of Refresh Cycles ............................................... 2-55 
Refresh Cycle Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55 
ECC Block Diagram ................................................. 2-57 
Read Array/ECC Check Flow Diagram ................................ 2-58 
ECC Check Bit Generation/Write Array Flow Diagram .................. 2-60 
ECC Chip (DC631) Configuration ..................................... 2-62 
Data Rotation for Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-64 
Data Rotator Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66 
Data Rotator Read Flow Diagram ..................................... 2-67 
Data Rotator Write Flow Diagram ..................................... 2-69 
Data Rotation Control and Byte Selection Logic . . . . . . . . . . . . . . . . . . . . . . . . . 2-71 
Summary of CSR Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 3 
Error Logic and CSR Block Diagram .................................. 2-75 
CSRl CPU/Memory Control Bits ..................................... 2-76 
CSRl CPU/Memory Data Error Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-77 
CSRl CPU/Memory Transaction Error Bits and Error Summary Logic . . . . 2-79 
CSR2 UB/Memory Error Bits and Error Summary Logic ................. 2-82 
Microword Fields ..................................................... 3-2 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 

vi 



3-2e 
3-2f 
3-2g 
3-2h 
3-2i 
3-2j 
3-2k 
3-21 
3-2m 
3-2n 
3-20 
3-3 
A-1 
A-2 
A-3 
A-4 
A-5 
A-6 
A-7 
A-8 
A-9 
A-10 
B-1 

TABLES 

1-1 
2-1 
2-2 
2-3 
2-4 
2-5 
2-6 
2-7 
2-8 
2-9 
2-10 
2-11 
2-12 
2-13 
A-1 
C-1 

Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 
Microcode Exercise Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 
Power-Up/Write Array Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 
Basic PAL Logic Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 
XOR Logic Function Using PAL Logic................................ A-2 
PAL Symbology (Typical) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4 
PAL Plot Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 
PAL Circuit for Output Pin 12 of Sample Listing . . . . . . . . . . . . . . . . . . . . . . . A-8 
PAL Circuit and Equivalent Circuit for Output Pin 17 of Sample Listing . . . A-8 
PAL 16L8 Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-9 
PAL 16R4 Logic Diagram ........................................... A-10 
PAL 16R6 Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-11 
PAL 16R8 Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-12 
Flow Diagram Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 

Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 
UNIBUS Lockout Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 
UNIBUS Control Line Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 
Special Function Codes for UNIBUS Operations . . . . . . . . . . . . . . . . . . . . . . . . 2-11 
PROM Address Bits ................................................. 2-17 
CPU Dispatch Routines .............................................. 2-20 
TB Entry Bits (CPU Space) .......................................... 2-33 
Memory Function Bit Code ........................................... 2-35 
Current Mode Bit Code ............................................... 2-35 
TB Entry Bits (UNIBUS Space) ...................................... 2-40 
Syndrome Codes .................................................... 2-59 
Data Rotator Control Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 
Data Type Bits vs RS Code for CPU Transfers . . . . . . . . . . . . . . . . . . . . . . . . . 2-72 
UNIBUS Control Bits vs RS Code for UNIBUS Transfers . . . . . . . . . . . . . . . 2-72 
PAL Device Types Used in VAX-11/730.............................. A-3 
Diagnostic Dispatch Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-1 

vii 



1.1 SCOPE 

CHAPTER 1 
INTRODUCTION AND OVERVIEW 

This document is a technical description of the VAX-11 /730 memory system. This system consists of 
the M8391 memory controller module and the M8750 memory array module(s). The memory system is 
briefly described, on a system level, in Chapter 1 of the CPU Technical Description Manual (EK-KA-
730-TD) (Table 1-1). In this description, the M8391 and M8750 modules are treated as single blocks 
with a brief description of their basic function within the VAX-11 /730 system. The interface of the 
memory system with other portions of the VAX 11 /730 is also described. 

This document treats the memory system in two levels of detail. Chapter 1 contains an overall block 
diagram of the memory system divided into functional areas. The system is described in terms of these 
areas and the functions they perform. 

Chapter 2 further develops the descriptions by providing a detailed discussion of the functional areas 
defined in Chapter 1. Block diagrams and flow diagrams are used in Chapter 2 to show the logic com­
position of each area and how it performs its function with respect to the system. 

Chapter 3 treats the memory system firmware. Program control of the memory system is implemented 
by a 512 X 72 bit control store PROM. A listing of the PROM's contents is contained in the engineer­
ing documentation. Chapter 3 illustrates how to use the listings to generate flow diagrams for the mem­
ory system routines. 

1.2 RELATED DOCUMENTS 
The documents listed in Table 1-1 provide additional information related to the VAX-11/730 system. 

1.3 MEMORY CONTROLLER SIMPLIFIED BLOCK DIAGRAM DESCRIPTION (Figure 1-1) 
The memory controller manages operation of the V AX-11 /730 memory system. Upon request, the con­
troller assigns the memory system to the CPU or to a UNIBUS device. Using a translation buffer, the 
controller translates virtual addresses from the CPU or addresses from UNIBUS devices, into physical 
addresses that are applied to the M8750 memory array module(s). Up to five array modules may be 
used. 

If the memory reference is a read operation, the data, along with associated ECC (error checking and 
correction) check bits, are retrieved from the array module and applied to the ECC logic. The ECC 
logic checks for data errors. If a single bit error is detected, the logic is used to correct the error. The 
logic can detect, but not correct, multibit errors. 

The data passes from the ECC logic to the data rotator. Data retrieved from the arrays is always a 32-
bit longword (4 bytes) but is not always in the desired position for the CPU or UNIBUS device (i.e., 
byte 0 in bit position 0 on the bus). If the data is not in the desired position, the data rotator functions to 
rearrange the data before it is sent to the CPU or the UNIBUS device. 
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Table 1-1 Related Documents 

Document 
Item Title Number Contents 

1 V AX-l l /730 Hardware EK-11730-UG This document contains hardware 
User's Guide operating information and user care 

information. Included is a description 
of the system controls and indicators, 
user maintenance instructions, and an 
overview of the system hardware 
including the peripheral equipment. 

2 VAX-11/730 EK-KA 730-TD This document provides an overview of 
Central Processor Unit VAX-11/730 system including summary of 
Technical Description system busses. It describes the 

following CPU functions: control store 
and microsequencing, instruction 
processing, process interrupt 
control, data flow,and the generation 
of system clocks. It also describes 
the CPU console. 

3 FP730 Floating-Point EK-FP730-TD This document describes the 
Accelerator Technical floating-point accelerator option. It 
Description also describes the option interface, 

instructions, and algorithms as well 
as the FPA microcode. 

4 VAX-11/730 Integrated EK-RB730-TD This document describes IDC as an 
Disk Controller Technical interface to the RL02 and/or R80 disk 
Description units. 

5 H7202B Power Supply EK-PS730-TD This document provides a functional 
Technical Description description of the H7202B power 

supply. It also describes the power 
supply controls and indicators, 
operating information, power and power 
signal distribution, and power supply 
specification data. 

6 VAX Hardware Handbook EB-17281 This document introduces the VAX 
hardware elements, including central 
processor units, intelligent console 
subsystems, 1/0 subsystems, MASSBUS 
and UNIBUS systems, main memory and 
memory management. 

7 VAX Handbook 
Architecture EB-19580 This document introduces VAX 

architecture, addressing modes, and 
the native mode instruction set. 
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Table 1-1 Related Documents (Cont) 

Item Title 

8 VAX Software Handbook 

9 PDPl 1 Bus Handbook 

10 Micro 2 User's Guide 
Reference Manual 

ADDRESS 
UNIBUS ...... 
DEVICE r+ 

t DATA 

VIRTUAL 
ADDRESS 

t--- ~ 
CPU DATA 

~ .... - ~ 

Document 
Number Contents 

EB-08126 This document introduces the VAX/VMS 
virtual memory operating system, its 
operation, hardware interaction, data 
structures, features, and 
capabilities. 

EB-17525 This document contains the UNIBUS 
specification that defines the 
terminology and specifies the 
requirements of the UNIBUS. It also 
contains portions of the LSl-11 
specification. 

AA-H531A-TE This document introduces the MICRO 2 
language. It defines fields and macros 
and describes assembly and output 
listings. 

VIRTUAL ADDRESS/ 
ADDRESS FROM PHYSICAL 

UNIBUS DEVICE ADDRESS MEMORY 
VIRTUAL TRANSLATION .. .... ARRAY 
ADDRESS BUFFER 

MODULE(S) 
REGISTER (M8750) 

~ 

DATA AND 
CHECK BITS 

• 
DATA DATA DATA ECC .... MUX ROTATOR - ~ 

LOGIC 

TK-6097 

Figure 1-1 V AX-11 /730 Memory System Simplified Block Diagram 

If the memory reference is a write operation, the write data from the CPU, or the UNIBUS device, is 
applied to the data rotator. If the array location that is to be written is not longword aligned (the ad­
dress is not a multiple of 4*), the data rotator formats the data according to the addressed location in 
the array. 

The data is input into the ECC logic where ECC check bits are generated for the new data. The new 
data, along with the generated check bits, is then written into the memory arrays. 

*See Paragraph 1.4.3.1 and Figure 1-3. 
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1.4 MEMORY CONTROLLER FUNCTIONAL BLOCK DIAGRAM DESCRIPTION (Figure 1-2) 
Figure 1-2 is an overall functional block diagram of the M839 l memory controller. The functional sub­
sections shown in the diagram are discussed in Paragraphs 1.4.1 through 1.4.6. The same subsections 
are developed in more detail in the logic descriptions of Chapter 2. 

1.4.1 Arbitrator 
The arbitrator regulates activity on the UNIBUS and assigns the memory controller to the CPU if the 
controller is free (not being used by a UNIBUS device). 

The arbitrator receives an NPR (Non Processor Request for the UNIBUS) from a UNIBUS device. If 
no other UNIBUS device is waiting for the UNIBUS (SACK* false) the arbitrator issues an NPG (non 
processor grant) to the requesting device which then becomes bus master. t 

When the CPU requests the memory, it asserts MEMORY REQ. When the arbitrator receives MEM­
ORY REQ, it returns CPU GRANT to the CPU so long as a UNIBUS device doesn't have control of 
memory (MSYN false). CPU GRANT indicates to the CPU that it has control of memory. 

Note that although the arbitrator does not assign the memory controller to UNIBUS devices, it does 
monitor requests for memory (MSYN) from the devices. 

Both CPU GRANT and MSYN are sent to the microsequencer. 

1.4.2 Microsequencer and Control Store PROM 
The control store PROM outputs 72-bit microwords that control all operations within the memory con­
troller. The microsequencer formulates the PROM address and thereby selects the next 72-bit micro­
word. 

When power is applied, the microsequencer steps through a power-up/initialize routine that checks op­
erating voltages, resets the memory controller circuits, and places the memory controller into an idle 
state. The microsequencer remains in the idle state until CPU GRANT or MSYN asserts. 

When CPU GRANT asserts, the memory controller is assigned to the CPU. The microsequencer looks 
at CSR dispatch bits from the CPU to determine the type of operation requested (read, write, etc.). 
The microsequencer uses these bits to dispatch the PROM to the correct starting address. 

When MSYN asserts, the memory controller is assigned to a UNIBUS device. The microsequencer 
looks at the control bits (C <01 :00>) from the UNIBUS device to determine the type of operation 
requested. The microsequencer uses these bits to dispatch the PROM to the correct starting address. 

After the microsequencer has dispatched the PROM to the requested operation, it steps the PROM 
through the selected routine. Twenty-one of the 72 microword control bits are used by the micro­
sequencer for branch testing and to formulate the PROM's next address. 

*Selection acknowledged. 
tThe device becomes bus master only if the UNIBUS is free. If some other device is bus master, the requesting device must 

wait until the UNIBUS is free. 
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1.4.3 Address Translation 
The translation performed to obtain the array's physical address may be of the virtual address obtained 
from the CPU or of the address obtained from the UNIBUS device. The following discusses each trans­
lation separately. 

1.4.3.1 CPU Virtual Address Translation - When the CPU has control of the memory controller, an 
address mux selects the 32-bit virtual address (MC<31 :00>) from the memory controller (MC) bus. 
The mux places the virtual address into the VAR (virtual address register) which outputs the virtual 
address (LVA <31 :00>) onto the virtual address bus. 

With four bytes to a longword, L VA <02> becomes the least significant bit addressing longword loca­
tions. LVA <01:00> select only the byte location within the longword (Figure 1-3). Thus LVA 
<01 :00> are not used to address the array but are used by the data rotator to rearrange data (shift 
bytes) as required. 

LONGWORD 

J I 
LOCATION 
(HEX) 

10 
0000 

oc 

1111 1110 1101 1100 

08 

1011 1010 1001 1000 

I I I 04 

0111 0110 0101 0100 

00 

0011 0010 0001 
0000 L 
~ LVA~3,00> 

LVAOO 

LVAOl 

LVA02 

LVA03 

TK-6098 

Figure 1-3 Longword Alignment in Memory Arrays 
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Virtual address bits LY A <08:02> are the page frame offset or index into the page frame. Therefore, 
these bits are not translated but contribute directly to the physical address formulated on the array bus. 

The address translation process uses a translation buffer consisting of 1 K of storage. The 1 K area is 
divided into three parts. 

1. CPU space - 128 locations used during a CPU /memory operation 

2. UNIBUS space - 512 locations used during a UNIBUS/memory operation 

3. Space not used - 384 unused locations 

Each CPU and UNIBUS location contains an entry consisting of a 15-bit physical address (page frame 
number or PFN) and page access bit(s). (UNIBUS TB entries have only one access bit. CPU entries 
have several.) 

Each TB entry in CPU space has a 16-bit tag stored in a tag store area of the TB. The tag is stored at 
the same address as its associated TB entry. The tag is LVA <30:15> of the virtual address used to 
address the TB when the associated TB entry was written into the TB. Thus the tag is part of the virtual 
address of the TB entry. 

The TB is enabled by the negated state of ADDR PH. LVA <14:09> and LVA <31> form a 7-bit 
address into the CPU space of the TB. Address bit L VA < 31 > is selected by a CPU /UB mux. The 
addressed TB entry and its associated tag are retrieved from the TB. 

The tag is sent to a comparator which compares the tag with bits LVA <30:15> from the virtual 
address bus. If a match is obtained, the TB entry is the one being addressed from the virtual address 
bus. If they don't match, the entry is not the one being addressed. In this case, the comparator asserts 
TB MISS to error logic which asserts ERR SUM to the CPU and the microsequencer. 

The TB entry's page access bits are coupled to the error logic, which determines if the type of operation 
requested is allowed on this particular page. If the error logic detects an access violation, it asserts ERR 
SUM to the CPU and the microsequencer. 

The TB entry's PFN (PA<23:09>) is placed on the physical address bus as the physical address of the 
desired page. The area of physical memory referenced by the CPU may be a memory array module or 
it may be a UNIBUS address. Physical address bits PA<23:18> specify which area is referenced. The 
bits are applied to memory select logic which asserts MEM SEL if an array module is the target, or UB 
PHY ADDR SEL if the UNIBUS is the target. 

If an array module is the CPU target, PA< 17:09> contribute the page address to the array bus and 
LY A <08:02> contribute the offset address. Together they select the referenced longword within the 
memory array. 

If the UNIBUS is the CPU target, PA<17:09> combines with LVA <08:02> and LVA <01:00> 
from the virtual address bus to form an 18-bit UNIBUS address (A <17:00> ). The UNIBUS address 
thus becomes the physical address referencing the CPU target location on the UNIBUS. 

1-7 



1.4.3.2 CPU Physical Address Reference - In certain cases (e.g., during system boot-up) the CPU 
accesses pages that reside at specific locations in physical memory. In this case, the CPU can make a 
direct reference to physical memory without the need for address translation. To make a direct physical 
access, the CPU places the physical address on the MC bus. The physical address is loaded into the 
VAR and output onto the virtual address bus. LVA <01:00> is used by the data rotator and LVA 
<08:02> specify the page offset to the array bus just as in CPU virtual address translations. ADDR 
PH asserts during a physical address reference disabling the TB and enabling the physical address buf­
fer. The physical address buffer transfers LV A <23:09> from the virtual address bus directly to the 
physical address bus as PA <23:09>. Physical address bits PA <23:09> function to select the loca­
tion of the page just as they would during a CPU virtual address translation. 

1.4.3.3 UNIBUS Address Translation - When the UNIBUS has control of the memory controller, the 
address mux selects the 18-bit address (A< 17:00>) from the UNIBUS. The mux places the address 
into the VAR which outputs L VA < 17:00> onto the virtual address bus. 

LVA <01 :00> is used by the data rotator and LVA <08:02> specify the page offset to the array bus 
just as in CPU virtual address translations. 

UNIBUS space in the translation buffer is used for a UNIBUS address translation just as CPU space is 
used for a CPU address translation. With ADDR PH negated, the translation buffer is enabled and 
LVA <14:09> and LVA <17:15> form a 9-bit address into UNIBUS space. Address bits LVA 
< 17: 15 > are selected by the CPU /UB mux. The addressed TB entry is retrieved from the translation 
buffer. 

In a UNIBUS translation, LY A < 17> is the most significant bit on the virtual address bus. Thus the 
nine address bits cannot address more than the 512 entries in UNIBUS space. Therefore, no tags are 
used with the UNIBUS entries. 

The entry's page access bit is applied to the error logic to check the validity of the access. If an access 
violation is found, UB ERR SUM is asserted to the microsequencer. 

The physical address bits (PA<23:09>) from the TB entry are placed onto the physical address bus. 
The bits select the physical location of the page as in a CPU virtual address translation except that in 
the latter only the memory arrays are referenced. 

1.4.4 Refresh Logic 
The memory arrays must be periodically refreshed (at least every four ms) in order to retain their 
stored data. The refresh logic performs this function by refreshing all locations in the arrays every 3.4 
ms. Refresh cycles are performed between read array and write array operations. 

The refresh logic is located on the WCS module in the CPU. The WCS module and the array mod­
ule(s) are powered by the battery backup option. Thus if the option is used, the refresh logic will contin­
ue to function during power interruptions, thereby saving the data stored in the arrays. 

1.4.5 Data Flow 
The remaining functional blocks in Figure 1-2 pertain to data flow in and out of memory. They can best 
be described in terms of a read and a write operation where their function can be discussed for each 
type of operation. The data read/writes can be bytes (8 bits) or words (16 bits) for CPU/memory or 
UNIBUS/memory transfers. A CPU /memory transfer could also be a 32-bit longword. 

1.4.5.1 Read Operation - The physical address on the array bus selects the desired module and ad­
dresses the desired location on the module. The addressed longword and its seven associated check bits 
are retrieved and placed onto the array bus. 
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The ECC logic takes the longword and check bits from the array bus and checks the longword for data 
errors. If a data error is found, ERROR is asserted to the error logic which then asserts ERR SUM or 
UB ERR SUM depending on whether this is a CPU or a UNIBUS operation. The ECC error logic is 
used to correct single bit data errors but cannot correct multibit errors. The ECC error logic returns the 
longword to the array bus for the data rotator. 

The data rotator accepts the longword from the array bus and performs any data rearrangement that 
may be necessary before placing the longword onto the MC bus. The CPU (or UNIBUS device) ex­
pects to receive data with the low order bits in the low order positions on the bus. The data will be in 
this format only if the longword read from the memory array was in the proper position. Referring to 
Figure 1-3, consider a word read at location 1001. The entire longword at 1000 is read out but the data 
must be rearranged to place the desired word at the low order position on the bus. The data rotator uses 
the two least significant bits off the virtual address bus (LVA <01 :00> to determine if any data align­
ment (rotation) is necessary and functions accordingly. The data rotator outputs the aligned data onto 
the MC bus (MC <31:00>). 

The longword is sent to the CPU if the operation is a CPU read of the memory arrays. If the operation 
is a UNIBUS device read of the arrays, the byte or word is tranferred to the data lines of the UNIBUS 
(D< 15:00>) via transceivers on the WCS module in the CPU, and then to the UNIBUS device. In 
this case the two higher order bytes on the MC bus (MC<3l:16>) are ignored. 

If the operation is a CPU read of a UNIBUS device, the read data is taken off the UNIBUS data lines 
(D< 15:00> ), transferred to the MC bus via the WCS transceivers, then to the data rotator for pos­
sible data alignment, and then to the CPU. 

1.4.5.2 Write Operation - In a CPU write operation, write data is placed on the MC bus from the 
CPU and then applied to the data rotator. The data rotator receives the write data from the MC bus 
and the two least significant bits of the virtual address (LVA <01 :00>) from the virtual address bus. 
The rotator uses the two bits to determine if the data needs realignment for the addressed location. If 
realignment is necessary, the rotator formats the data as required. 

If the CPU write is to a UNIBUS device, the rotator outputs the data back to the MC bus. From the 
MC bus the data is placed onto the data lines of the UNIBUS (D< 15:00>) via transceivers on the 
WCS module, for transfer to the device. If the CPU write is to the memory arrays, the rotator outputs 
the data onto the data lines of the array bus (DB<3 l :00> ). 

For a UNIBUS to memory write operation, write data is placed on the MC bus via the UNIBUS data 
lines and the WCS transceivers, and then applied to the data rotator. From the rotator the data is 
placed onto the data lines of the array bus. 

The ECC logic takes the write data off the array bus and uses it to generate seven ECC check bits. The 
data is returned to the array bus along with the check bits. 

The write data and the associated check bits are taken from the array bus and written into the selected 
array module in the location addressed from the array bus. 

1.4.6 CSR Registers 
Three CSRs (control/status registers) are used to input control signals into the memory controller and 
to report status to the CPU. The CSRs interface with the MC bus. 

CSRO is a read only register containing the ECC check bits. The CPU reads the check bits to analyze 
data errors. 
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CSRl is a read/write register. The CPU writes control bits into CSRl for maintenance purposes and to 
regulate operation of the memory controller. Errors relating to a CPU /memory transfer are sensed by 
the error logic and set error bits in CSRl. When the logic asserts ERR SUM, the CPU reads the CSRl 
error bits for error analysis. 

CSR2 is a read only register. Errors relating to a UNIBUS/memory transfer are sensed by the error 
logic and set error bits in CSR2. When the logic asserts UB ERR SUM, the microsequence causes a 
timeout on the UNIBUS resulting in the CPU reading the CSR2 error bits for error analysis. 

1.5 MAINTENANCE FEATURES 
Maintenance aids have been designed into the hardware to facilitate checkout and trouble analysis of 
the memory subsystem. The maintenance logic is described in the functional descriptions of the area 
with which these features are associated. In addition, these features have been summarized in Appen­
dix C. 
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2.1 INTRODUCTION 

CHAPTER 2 
FUNCTIONAL DESCRIPTION 

The functional block diagrams in Chapter 2 use logical AND and OR symbols. It does not necessarily 
follow that a corresponding gate exists on the M8391 logic prints. The assertion of inputs A and B 
causing the assertion of output C may be represented on a block diagram by a single AND gate, yet the 
engineering drawing may show that several circuit stages are involved in the ANDing operation. 

The signal names used on the functional block diagrams are the names used on the engineering circuit 
schematics (CS prints). Where other signal names or notes are used, they are enclosed in parentheses. 

2.2 ARBITRATOR AND UNIBUS INTERFACE 

2.2.1 General 
This section describes the arbitrator and the memory controller interface to the UNIBUS. 

The arbitrator consists of the CPU GRANT logic, NPG logic, UNIBUS lockout logic, and UNIBUS 
activity logic. The purpose of the arbitrator is to regulate UNIBUS activity and to arbitrate transfer 
requests from the CPU and from UNIBUS devices. The arbitrator issues CPU GRANT to the CPU 
when allowing a CPU access. It also issues NPG to the UNIBUS when selecting a UNIBUS device to 
be bus master. The device becomes bus master only if the UNIBUS is not busy. The arbitrator allows 
overlapping of UNIBUS requests in that it can issue an NPG and select a UNIBUS device to become 
the next bus master while the controller is busy processing a memory transaction with the present bus 
master. When the transaction is finished, the waiting UNIBUS device becomes bus master and can 
then request access to memory. 

The UNIBUS interface paragraphs describe the signals, data, and address information relating to UN­
IBUS-to-controller transactions. Interfacing to the UNIBUS involves the use of standard UNIBUS sig­
nals. If the reader is unfamiliar with UNIBUS operation, it may be helpful to refer to Part 1 (UNIBUS 
Specification) of the PDP-11 Bus Handbook (Table 1-1 ). 

Figure 2-1 is a block diagram of the arbitrator and UNIBUS Interface, and should be referred to 
throughout this section. 

The following are the six UNIBUS signals. 

UBS INTR (interrupt) 
UBS NPR (non processor grant) 
UBS SACK (selection acknowledged) 
UBS BBSY (bus busy) 
UBS SSYN (slave sync) 
UBS MSYN (master sync) 
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The UNIBUS signals are synchronized to memory controller time by TO CLOCK in a two-stage syn­
chronizer register before being applied to the memory controller circuits. Besides being synchronized 
by TO CLOCK, the register outputs are latched for the clock period. The output mnemonics are pre­
fixed with L (latched) while three of the register inputs (B BBSY, B SSYN, B MSYN) are prefixed 
with B (buffered). UNIBUS signals generated by the microsequencer are prefixed with I (issue). 

Figures 2-2 and 2-3 are flow diagrams of a CPU-to-memory transaction and a UNIBUS-to-memory 
transaction, respectively. The CPU-to-memory flow diagram (Figure 2-2) is oriented toward a CPU 
transaction in which the UNIBUS is the target address. 
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2.2.2 CPU/Memory Transaction (Figure 2-2) 
The CPU makes a request for memory by asserting MEMORY REQ to the memory controller. A 
check is then made for the presence of UBS MSYN. The true state of UBS MSYN indicates a UN­
IBUS-to-memory transaction is in progress and the CPU must wait for the transaction to complete. If 
UBS MSYN is false, a check is made of CONT FUNC LAT to see if the controller is busy with other 
operations (e.g., a refresh cycle). CONT FUNC LAT is true if any controller operation is in progress. 

If UBS MSYN and CONT FUNC LAT are false, the arbitrator asserts CPU GRANT to the CPU 
which now assumes control of the memory controller. 

The CPU presents the virtual address to the controller where the memory select decoder decodes the 
memory area to be accessed. If the array boards are the CPU target, MEM SEL is asserted by the 
controller and the memory access will proceed. 

When the memory access has been completed, arbitrator control bits (ARB Cl, ARB CO) from the 
controller microword may specify a CPU GRANT release to negate CPU GRANT. CPU GRANT 
may also be negated by the receipt of DATA RCVD from the CPU. The negation of CPU GRANT 
releases the arbitrator for the next memory access. 

If the memory select decoder specified the UNIBUS as the CPU target, UB PH ADDR SEL is as­
serted and the controller checks for any UNIBUS activity. The signal UB ACTIVITY is true if NPR, 
NPG, SACK, or BBSY are present on the UNIBUS. If there is no UNIBUS activity (UB ACTIVITY 
false) the controller proceeds to access the UNIBUS address. It issues UBS BBSY indicating the UN­
IBUS is busy and the CPU is now bus master (via the controller). 

The memory controller places the two control bits (UBS C 1, UBS CO), specifying the type of operation 
(read or write), on the UNIBUS along with the address of the UNIBUS device. If the operation is a 
write to the device (a data out or a data out byte) the controller places the data on the data lines of the 
UNIBUS and asserts UBS MSYN to the device. When the device receives the data it responds with 
UBS SSYN whereupon the controller negates UBS MSYN. This is followed by the negation of UBS 
SSYN by the device and the negation of UBS BBSY by the controller, to complete the UNIBUS ac­
cess. CPU GRANT is then negated as previously discussed. 

If the UBS Cl, UBS CO control bits specified a read operation (data in or data in pause), the memory 
controller asserts UBS MSYN to the device which responds by placing the data on the UNIBUS and 
raising UBS SSYN. Otherwise, the read transaction is identical to a write. 

In the case where the UNIBUS is the CPU target and the UNIBUS is active (UB ACTIVITY true), 
the CPU access cannot complete. The memory controller asserts a UNIBUS lockout signal (LOCK) 
which negates UB ACTIVITY and places the controller into a "UNIBUS lockout pending" state. In 
this state the arbitrator responds to NPRs in the usual manner only so long as the CPU is not trying to 
access memory. If the CPU attempts to access memory (MEMORY REQ or CPU GRANT asserts), 
the arbitrator enters the "UNIBUS lockout" state wherein new NPRs are inhibited. 

After the negation of UB ACTIVITY, the memory controller aborts the operation* and looks for the 
CPU to retry the memory access. The CPU reasserts MEMORY REQ (placing the arbitrator into the 
"UNIBUS lockout" state) and checks for UNIBUS activity. If there is no UNIBUS activity, CPU 
GRANT asserts and the CPU access of the UNIBUS will complete. If there is UNIBUS activity, the 
arbitrator waits for the activity to finish. With the arbitrator being in the UNIBUS lockout state, the 
UNIBUS is guaranteed to be quiet after the present activity is finished. 

*UB ACTIVITY sets a BBSY error bit in CSRl causing ERR SUM to assert. The memory controller aborts the operation by 
terminating the transfer and sending ERR SUM to the CPU to indicate that the data transfer was not completed. 
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2.2.3 UNIBUS/Memory Transaction (Figure 2-3) 
A UNIBUS device initiates a request for memory by asserting UBS NPR on the UNIBUS. If the UN­
IBUS lockout signal (LOCK) is false, the arbitrator asserts UBS NPG to the requesting device. If 
LOCK is true and the CPU is accessing memory (MEMORY REQ or CPU GRANT true), the UN­
IBUS is locked out. In this case the UNIBUS device must wait until the lock is released to proceed 
with the memory access. 

When UBS NPG is asserted on the UNIBUS, the requesting device normally responds by asserting 
UBS SACK to the controller. If UBS SACK is not received from the device within a specified timeout 
period (12.8 to 25.6 µs), the arbitrator negates UBS NPG thereby terminating the device's attempt to 
access memory. 

If UBS SACK is received within the timeout period, the arbitrator negates UBS NPG causing the 
device to assert UBS BBSY and to negate UBS SACK.* The assertion of UBS BBSY signifies that the 
UNIBUS is busy and that the device is now bus master. 

The device presents the two control bits (UBS Cl, UBS CO) specifying the type of operation and the 
target address to the memory controller. If the device is to write to memory (a data out or a data out 
byte operation), it places the write data onto the data lines of the UNIBUS and raises UBS MSYN to 
the controller. When the controller receives MSYN, it checks for the presence of CPU GRANT. The 
true state of CPU GRANT indicates a CPU /memory transaction is in progress, in which case the 
transaction must complete and CPU GRANT negated before the UNIBUS access to memory can con­
tinue. With CPU GRANT false, the memory controller replies to the device with UBS SSYN where­
upon the device negates UBS MSYN. This is followed by the negation of UBS SSYN by the controller 
and the negation of UBS BBSY by the device to complete the UNIBUS/memory transaction. 

If the UBS Cl, UBS CO control bits specified a read operation (data in or data in pause), the device 
asserts UBS MSYN to the memory controller which responds by placing the data onto the UNIBUS 
and raising UBS SSYN. Otherwise, the read transaction is identical to a write. 

2.2.4 UNIBUS Lockout (Figure 2-4) 
The UNIBUS lockout signal (LOCK) is generated by two arbitrator control bits (ARB C 1, ARB CO) 
obtained from the controller microword. When the lockout decoder senses a "set UNIBUS lockout" 
command, it asserts an output to the UB lockout flip-flop that is then set by TO CLOCK. When the flip­
flop sets, LOCK is asserted to the arbitrator. LOCK is also fed back to the decoder to latch the flip-flop 
set until the decoder senses a "release UNIBUS lockout" command. When this occurs the decoder 
output negates and causes LOCK to go false. 

The arbitrator bit code relating to UNIBUS lockout is shown in Table 2-1. 

*If UBS BBSY is already asserted by another UNIBUS device, the requesting device keeps UBS SACK asserted and waits 
for the current bus master to negate UBS BBSY. 
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Table 2-1 UNIBUS Lockout Code 

Function 

No change 
Set UNIBUS lockout 
Clear UNIBUS lockout 
Clear UNIBUS lockout and CPU GRANT 

2.2.5 CPU Grant Logic (Figure 2-5) 

Code 
ARB Ct ARB CO 

0 0 
0 1 
1 0 
1 1 

When the CPU requests access to memory, it asserts MEMORY REQ to the controller. If the con­
troller is not executing a function (CONT FUNC LAT false) and the controller is not busy executing a 
UNIBUS request (L MSYN false), CPU GRANT is asserted to the CPU. 

Under certain conditions (Paragraph 2.2.2) the microsequencer locks out new UNIBUS requests by 
asserting LOCK. With LOCK true, the CPU GRANT logic is not effected by L MSYN but is check­
ing for UNIBUS activity by looking at NPG, L SACK, and L BBSY. When these are all false (in­
dicating that the UNIBUS is quiet) CPU GRANT will assert. 

If a DATIP operation is being executed, IBBSY is asserted by the microsequencer to interlock the read 
and write sequences of the operation. That is, IBBSY remains asserted after the read sequence to 
"hold" the UNIBUS for the write sequence. If the UNIBUS lockout signal (LOCK) is asserted during 
the read sequence, the CPU GRANT logic will not find the UNIBUS quiet. However, the logic senses 
that IBBSY is causing the UNIBUS activity and allows a CPU GRANT. 

Note in Figure 2-1 that CPU GRANT asserts CPH/UBL (central processor high/UNIBUS low) to the 
memory controller logic indicating that a CPU /memory operation is in progress. CPH/UBL is latched 
up, via a feedback gate, by CONT FUNC LAT. 

CPU GRANT is latched up via a feedback path such that DATA RCVD from the CPU or an arbi­
trator "release CPU GRANT" command from the controller microword is required too negate CPU 
GRANT. The arbitrator code to negate CPU GRANT is shown in Table 2-1. 
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Figure 2-5 CPU Grant Block Diagram 

2.2.6 NPG Logic (Figure 2-6) 
When a UNIBUS device requests the memory, UBS NPR is asserted to the memory controller from 
the UNIBUS. UBS NPR is synchronized by TO CLOCK in the synchronizer register and applied to the 
NPG logic as L NPR. If the UNIBUS is not locked out (LOCK false) and is not in the process of being 
locked out by the ARB code (ARB CO false), the L NPR request asserts NPG which is placed on the 
UNIBUS as UBS NPG. * If the UNIBUS is locked out (LOCK true), NPG can still be asserted if the 
CPU does not have control of the memory controller (CPU GRANT false) and is not requesting use of 
the controller (MEMORY REQ false). 

NPG latches itself via feedback gate A and remains true until the UNIBUS device issues UBS SACK. 
UBS SACK becomes L SACK via the synchronizer and negates NPG. 

Timeout circuitry in the NPG logic releases NPG if UBS SACK is not received within a given timeout 
period. Refresh cycles are used to set the timeout period which can range from approximately 13 to 26 
µs. Figure 2-7 is a timing diagram for the timeout logic. Refer to it during the following discussion. 

START REF CYC from the WCS board asserts for the duration of each refresh cycle. It is synchro­
nized by TO CLOCK and becomes REF IN PROG which is used to trigger a timeout pulse generator. 
The generator output (TIMEOUT) is pulses spaced 12.8 µs apart and occurring just after each refresh 
cycle. The first TIMEOUT pulse after the assertion of NPG enables the Rl flip-flop to be set by the 
next TO CLOCK pulse. When Rl asserts, it latches itself up via a feedback AND gate. The assertion of 
Rl inhibits NPG feedback gate A but enables timeout gate B which now functions to keep NPG as­
serted. The next TIMEOUT pulse inhibits timeout gate B thereby breaking the feedback latch causing 
NPG to negate. 

The minimum timeout period is the 12.8 µs between refresh cycles. The maximum timeout period could 
be up to 25.6 µs depending on where NPG is asserted in the refresh cycle. 

*Note that when LOCK is false, NPG can be asserted to a UNIBUS device even though memory is busy with a CPU request 
(CPU GRANT true). 

2-8 



START REF CYC 
-------i~D 

SYNC 
FF 

REF 
IN 
PROG TO CLOCK 

NOTES: 

TIMEOUT 
PULSE 
GENERATOR 

TIMEOUT 

CPU GRANT 

MEMORY REO 

LOCK 

ARB CO 

(SET LOCK} 

1 THE LOGIC IN THIS FIGURE IS CONTAINED 
ON SHEET E OF THE ENGINEERING 
DRAWINGS. 

Figure 2-6 NPG Block Diagram 

Rl 
FF 

R1 

L NPR 

LSACK 

j+REFRESH CYCLE~..r--12.8 µS •I 

REF IN PROG 

TIMEOUT 

NPG 

R1 

TK-6038 

Figure 2-7 NPG Timeout Timing Diagram 

D 
NPG 
FF 

TO CLOCK CLK 

NPG 



2.2. 7 UNIBUS Control Logic 
UNIBUS control lines Cl, CO specify the type of operation to occur on the UNIBUS. The Cl, CO code 
is given in Table 2-2. 

When a UNIBUS device is bus master, it specifies the type of operation on the UNIBUS control lines. 
The control signals (UBS C 1, UBS CO) are received by the controller and coupled to the controller 
branch logic as UB C 1 and UB CO. 

When the CPU is bus master it specifies the type of operation, and the memory controller places the 
UBS Cl, UBS CO code on the UNIBUS for the UNIBUS slave device. The UNIBUS control logic 
generates the code from a three-bit special function code (SPF <02:00> µO) from the controller micro­
word and from DATA TYPE 0 from the CPU (Figure 2-8). 

The special function codes pertaining to the types of UNIBUS operations are shown in Table 2-3. 

Note that a DATO and DATOB operation have the same special function code. When a data out oper­
ation is specified, DATA TYPE 0 from the CPU is checked to determine if the operation is to be a 
DATO or a DATOB. DATA TYPE 0 is latched up as L DTO by CONT FUNC LAT for the duration 
of the opera ti on. 

The code generated by the UNIBUS control logic {ICl, ICO) is gated to the UNIBUS by UB ADR EN 
from the controller microword. 

Table 2-2 UNIBUS Control Line Code 

Code 

Name Cl co Function 

DATI 0 0 One word of data transferred 
(data in) from slave to master 

DA TIP 0 1 Same as DA TI but inhibits 
(data in, pause) restore cycle in destructive 

read-out devices; must be 
followed by DA TO or DA TO B 
to the same location 

DATO 1 0 One word of data from master 
(data out) to slave 

DATOB 1 1 One byte of data from master 
(data out, byte) to slave 
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Figure 2-8 UNIBUS Control Block Diagram 

Table 2-3 Special Function Codes for UNIBUS Operations 

Microword Operation 
DTO Special Function 

Code 

SPF2 SPF 1 SPFO 

x 1 0 0 DATI (data in) 
x 1 0 1 DATIP (data in, pause) 
1 1 1 0 DATO (data out) 
0 1 1 0 DATOB (data out, byte) 

X = don't care 
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2.2.8 BBSY Logic 
When a UNIBUS device becomes bus master, it asserts UBS BBSY to the controller which then as­
serts B BBSY and a synchronized L BBSY. 

When the CPU becomes bus master, I BBSY A from the controller microword is raised which asserts I 
BBSY (Figure 2-9), and then UBS BBSY to the UNIBUS. 

When I BBSY is asserted, it is fed back to an AND gate which also receives the ICl, ICO code from 
the UNIBUS control logic. When the ICl, ICO code specifies a DATIP operation the AND gate is 
enabled latching up I BBSY. The latch is necessary because the CPU master must hold the UNIBUS 
busy after a DATIP until the following DATO/B routine asserts I BBSY A for the DATO/B oper­
ation.* 

2.2.9 MSYN Logic (Figure 2-1) 
When UBS MSYN is received from a UNIBUS device that is bus master, a synchronized L MSYN is 
asserted to the controller branch logic. When the CPU is bus master, I MSYN is raised by the micro­
word and placed on the UNIBUS as UBS MSYN. 

2.2.10 SSYN Logic 
When a UNIBUS device functions as a slave, it asserts UBS SSYN to the controller in response to 
UBS MSYN. UBS SSYN then asserts B SSYN to the synchronizer which outputs a synchronized L 
SSYN to the controller branch logic. 

If the controller is functioning as the slave, the SSYN logic generates L ISSYN and outputs it to the 
UNIBUS as UBS SSYN. To generate L ISSYN, the SSYN logic (Figure 2-10) requires the following 
three inputs. 

1. I SSYN from the controller microword 

2. Either B MSYN (memory controller is the slave) or L INTR (UNIBUS device interrupt) 

3. A negated ERROR input from the ECC logic 

When L ISSYN asserts, it latches itself up, so long as B MSYN or L INTR remains true. 

2.2.11 UNIBUS Activity (Figure 2-11) 
UNIBUS activity is monitored by ORing the UNIBUS signals (L NPR, NPG, L SACK, L BBSY) and 
asserting UB ACTIVITY if any of the signals are true. 

As discussed in Paragraph 2.2.2, the CPU cannot access the UNIBUS as a target if UNIBUS signals 
are active. UB ACTIVITY flags the CPU (via CSRl) that there is activity on the UNIBUS. LOCK is 
asserted by the CPU to lock out the UNIBUS so the CPU access may complete. 

When LOCK comes true the UB ACTIVITY flag is negated. Also UB ACTIVITY is inhibited if the 
UNIBUS activity is due to a CPU access operation (I BBSY true). 

*A DATO or DATOB must follow a DA TIP to the same location to maintain UNIBUS protocol. 
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2.2.12 Data Interface (Figure 2-1) 
The 16 UNIBUS data bits (UBS D< 15:00>) interface to the MC bus via drivers and a flow-thru latch 
located on the WCS module in the CPU. 

UB DAT A EN from the controller microword enables the drivers that couple data from the MC bus to 
the UNIBUS. Data flowing from the UNIBUS to the MC bus is applied to a flow-thru latch. The latch 
holding signal is UB DIR LATCH and the signal enabling the latch output is UB DIR EN. Both sig­
nals are from the controller microword. 

The data interfaces to the CPU or the memory controller from the MC bus. 

2.2.13 Address Interface (Figure 2-1) 
The 18 UNIBUS address bits (UBS A< 17:00>) are used by UNIBUS devices to reference locations 
on the memory array cards and by the CPU to reference UNIBUS locations. 

When a UNIBUS device is referencing a memory array module, the 18-bit address is taken off the 
UNIBUS and passed through a transceiver amplifier to the virtual address register. 

When the CPU is referencing a UNIBUS location, the 18-bit address is placed onto the UNIBUS from 
the memory controller. The 18 address bits are obtained from two sources. The first nine bits (L VA 
<08:00>) are obtained from the virtual address bus. These bits contain the byte address within the 
addressed page. The last nine bits (PA < 17:09>) are obtained from the translation buffer via the 
physical address bus. These bits contain the page address. 

The address bits are gated to the UNIBUS by UB ADR EN from the controller microword. 

2.2.14 Bus Grant Logic 
Bus requests (BRs) are placed on the UNIBUS by UNIBUS devices wanting to interrupt the CPU. 
The BRs go directly to the CPU which initiates a bus grant response (BG) via the memory controller. 
The priority level of the BG corresponds to the priority level of the BR. 

The bus grant logic (Figure 2-12) receives the three-bit special function code (SPF <02:00>) from the 
controller microword. When all three bits are high, ISSUE BG asserts and enables the bus grant deco­
der output. The decoder asserts one of four bus grant outputs according to the priority level specified by 
LVA bits <03:02> from the virtual address bus. 

UBS BG7 

UBS BG6 

UBS BG5 

UBS BG4 

NOTES: 

BUS 
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Figure 2-12 Bus Grant Block Diagram 
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2.2.15 DCLO 
UBS DCLO is asserted on the UNIBUS as an indication that de power has failed. It is applied to power 
fail logic in the microsequencer which functions to place the memory controller into the power fail 
microstate (Paragraph 2.3.6). 

2.3 MICROSEQUENCER AND CONTROL STORE 

2.3.1 General (Figure 2-13) 
The memory controller control store consists of nine 512 X 8 PROMs. The microsequencer consists of 
the addressing logic associated with the PROMs. Each PROM has a nine-bit address input and an 
eight-bit output. The PROMs are addressed in parallel to effect a 512 X 72 PROM with 512 address­
able locations each outputting a unique 72-bit microword. 

The 72-bit microword consists of 51 memory control bits, nine "next address" bits and twelve branch 
control bits (Figure 2-14 ). The memory control bits regulate all operations within the memory con­
troller. The "next address" bits are used as the base address in formulating the PROM's next nine-bit 
address. The branch control bits specify which (if any) branch condition(s) are examined to modify the 
four least significant bits of the base address. Parity generation and checking is not performed on the 
72-bit microword. 
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Figure 2-14 Memory Controller Microword 

The microsequencer formulates the address presented to the PROM via one of the three functions list­
ed below. 

1. Dispatch Parity Error /Power Fail Function - This function monitors memory controller pow­
er and CPU control store parity. It also forces the memory controller control store PROM to 
a power fail routine if power is low or the CPU has a control store parity error during a dis­
patch function. The dispatch parity error /power fail function overrides the two functions list­
ed below. 

2. Dispatch Function - This function obtains memory control store PROM address from CPU 
control store. Address from CPU dispatches PROM to desired routine. 

3. Branch Logic - This function monitors various branch condition signals. It sends control 
store PROM to specific locations according to state of selected branch condition signal. 

Table 2-4 illustrates the composition of the PROM address for the three functions listed above. 

2.3.2 PROM (Figure 2-15) 
Every 90 ns the PROM is clocked by TO CLOCK and outputs the 72-bit microword currently being 
addressed by ADRS<8:0>. The microword bits are identified as C<71:00>. In addition, the 51 
memory control bits (C<71:55>, <51:18>) have mnemonics indicating their function within the con­
troller. (The mnemonics are listed on sheet M of the engineering logic prints.) The 12 branch control 
bits (C<54:52>, C< 17:09>) and the nine "next address" bits (C<08:00>) are identified only by 
their "C" designations. 

The nine address lines (ADRS<8:0>) are applied to an LED display where the PROM address can be 
read for maintenance purposes. 

The PROM outputs are always enabled by + 3 V from the memory controller power source. 

2.3.3 Branch Logic (Figure 2-15) 
The four least significant address bits (ADRS<3:0>) are obtained from four branch enable multi­
plexers. Each multiplexer receives a three-bit select input of branch control bits from the microword. 
The three bits select one of eight data inputs for the output address bit. One of the data inputs is a next 
address bit corresponding to the output address bit. Thus, if the current microword does not call for any 
branching tests, next address bits C<03:00> become address bits ADRS<3:0> respectively. In this 
case the microword is specifying the next address, not subject to any branch conditions. 

One of the data inputs to branch enable multiplexer 3 is CSR <07> from the WCS board in the CPU. 
This bit is used during the dispatch function and is discussed in Paragraph 2.3.4. The remaining data 
inputs are various branch condition signals selected by the multiplexer to determine the next PROM 
address. 
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Table 2-4 PROM Address Bits 
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2.3.4 Dispatch Function (Figure 2-15) 
The dispatch logic consists of a dispatch multiplexer and associated logic. The dispatch multiplexer 
supplies address bits ADRS<7:4> to the PROM. If the dispatch function is enabled, control store 
register (CSR) bits from the CPU WCS module are placed on the four address lines (ADRS<7:4> ). 
If the dispatch function is disabled, next address bits from the PROM are placed on the address lines. 

Figure 2-16 is a flow diagram of the dispatch function. The following discussion of the dispatch func­
tions relates to Figure 2-16. 

With the dispatch function enabled (DISP EN true) the CPU CSR (control store register) bits specify 
the PROM address. Bit CSR< 19> controls the state of the dispatch multiplexer. If it is false, MUX 
SEL is false and the multiplexer is disabled. With the multiplexer disabled ADRS<7:4> are forced to 
all zeros causing the PROM to jump to the CPU.ISTREAM.REQ routine. If CSR<19> is true, the 
dispatch multiplexer is enabled and selects control store bits CSR<18:16>, <08> for address bits 
ADRS <7:4>. The CSR bits send the PROM to one of 31 dispatch routines as listed in Table 2-5. 

If DISP EN is false, the dispatch function is disabled and the dispatch multiplexer selects next address 
bits C<07:04>. In this case the microword selects its own next address. 

Dispatch mux 
selects next address 
bits C<07:04>. 

t MUX SEL 
Enable dispatch rnux 
Route bits C<07:04> 
to ADRS<7:4>. 

Control store PROM goes 
to address selected 
by next address bits. 

NO 

Start 

t MUX SEL 
Disable dispatch mux. 
Address lines ADRS 
<7:4> all go to 0. 

Dispatch microsequencer 
to CPU.ISTREAM.REQ 
function. 

Done 

YES 

NO 

Dispatch mux 
selects CPU 
control store bits. 

t MUX SEL 
Enable dispatch mux. 
Route bits CS R<18: 16>, 
<OB> to ADRS<7:4> 
via dispatch mux. BEN3 
mux selects CSR<07> 
for address line 
ADRS<3> 

Dispatch control store 
PROM to function 
selected by CPU 
control store bits. 
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Figure 2-16 Dispatch Function Flow Diagram 
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Table 2-5 CPU Dispatch Routines 

CSR/ ADRS Bits Dispatch Routine 

CSR<18> CSR<17> CSR<16> CSR<08> CSR<07> 
ADRS<7> ADRS<6> ADRS<5> ADRS<4> ADRS<3> 

0 0 0 0 0 CPU.ISTREAM.REQ 
0 0 0 0 1 WRITE.TB 
0 0 0 1 0 TEST.V.RCHK 
0 0 0 1 1 CPU.READ.PH 
0 0 1 0 0 WRITE.PH 

0 0 1 0 1 TEST.V.WCHK 
0 0 1 1 0 ROTATE.9BITS.RIGHT 
0 0 1 1 1 ROT ATE.15BITS.LEFT 
0 1 0 0 0 CPU.READ.V.NOCHK 
0 1 0 0 1 CPU.READ.V.WCHK 

0 1 0 1 0 CPU.READ.V.RCHK 
0 1 0 1 1 RD.MAINT. VAR.INC 
0 1 1 0 0 WRITE.V.NOCHK 
0 1 1 0 1 WRITE.V.WCHK 
0 1 1 1 0 READ. V.RCHK.IFILL 

0 1 1 1 1 WRITE.UBS.MAP 
1 0 0 0 0 WRITE.PH.OCTA 
1 0 0 0 1 WRITE.TB.STEP 
1 0 0 1 0 READ. UBS.MAP 
1 0 0 1 1 READ.TB 

1 0 1 0 0 READ.MAINT.ADDR 
1 0 1 0 1 MAINT.ECC.DA T 
1 0 1 1 0 READ.CSR 
1 0 1 1 1 WRITE.CSR 
1 1 0 0 0 CPU.RD.PH.OCTA 

1 1 0 0 1 READ.V.WCHK.LOCK 
1 I 0 1 0 OCTA.READ.V.RCHK 
1 I 0 1 I RD.MAINT.BRANCH.CK 
1 1 1 0 0 ISSUE.BG 
I 1 1 0 1 OCTA.WR.V.WCHK 

1 1 1 1 0 QUAD.READ.V.RCHK 
1 1 1 1 1 RD.MAINT.UBS 
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The dispatch function described above is implemented in the logic of Figure 2-15. With DISP EN true, 
the next address bits are blocked from the multiplexer input and the CSR bits are selected. However, 
for the multiplexer to be enabled, MUX SEL must be asserted by CSR< 19> true. If CSR< 19> is 
false, MUX SEL is false and the multiplexer is disabled. When this occurs, ADDRS<7:4> go to 0 
and the CPU.ISTREAM.REQ instruction is executed. If CSR< 19> is true, the multiplexer is en­
abled and the CSR bits from the CPU are selected for ADRS<7:4>. 

A fifth control store bit (CSR<07>) is routed to the PROM during the dispatch function as 
ADRS<3> and contributes toward the selection of a routine from Table 2-5. CSR<07> is routed to 
the PROM via branch enable multiplexer 3 which selects the CSR<07> data input when in the dis­
patch microstate. 

When DISP EN is false, MUX SEL is true enabling the multiplexer which now selects next address 
bits C<07:04> for the PROM address. 

2.3.5 Power Fail/Parity Error Function (Figures 2-15 and 2-17) 
Address bit ADRS<8> is the most significant bit addressing the control store PROM. ADRS<8> is 
normally a function of next address bit C<08>; however, two types of improper system operation will 
assert STOP MEM forcing ADRS<8> to a 1. One is a system power failure and the other is a control 
store parity error in the CPU during a dispatch operation. 

Power fail logic monitors system power and asserts PWRFL if power is lost (Paragraph 2.3.6). The 
assertion of PWRFL asserts STOP MEM. 

Start 

Done 

YES 

,). MUXSEL 
J. ADRS<7:4> 
t STOP MEM 

t ADRS<S> 
J. ADRS<3:0> 

PROM jumps to 
address 100 (hex) 
{PWR.FAIL routine) 
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Figure 2-17 Power Fail/Parity Error Flow Diagram 
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If a control store parity error occurs in the CPU, the CPU asserts CS PAR ERR to the memory con­
troller. CS PAR ERR becomes CS PERR which asserts STOP MEM if a dispatch function is in prog­
ress (DISP EN True). During a dispatch operation, the CPU control store register bits are used to 
address the PROM, hence a CPU CS parity error at this time aborts the dispatch operation. 

STOP MEM, in addition to asserting ADRS<8>, inhibits the output of the branch logic causing 
ADRS<3:0> to go to all zeros. 

Although STOP MEM is not applied to the dispatch logic, CS PERR, DISP EN, and PWRFL are 
inputs to the dispatch logic and cause it to respond in the same manner. If PWRFL is true, or if both 
DISP EN and CS PERR are true, then MUX SEL is false disabling the dispatch multiplexer. With the 
dispatch multiplexer disabled, the multiplexer outputs (ADRS<7:4>) all go to 0. 

Thus, when a power failure occurs, or a CS parity error occurs during a dispatch operation, 
ADRS<8:0> goes to 100 (hex) sending the PROM to the power fail routine (PWR.FAIL). The power 
fail routine resets the memory controller arbitrator and, if system power is normal, returns the memory 
controller to the idle state. 

2.3.6 Power Fail Logic (Figure 2-18) 
The power fail logic functions to assert PWRFL whenever memory controller power is below its min­
imum specification tolerance. 

When a system ac power failure occurs, a power-down sequence is initiated wherein CINIT is asserted 
from the WCS module a few milliseconds before de power falls below its minimum tolerance level. 
CINIT asserts INIT u which is synchronized by TO CLOCK and delayed by one clock pulse to become 
L INIT DL Y. L INIT DLY asserts PWRFL if an operation is not in progress (CONT FUNC LAT 
false). If an operation is in progress the assertion of PWRFL is delayed until the operation completes. If 
the operation is a refresh cycle (ALLOW REF true) PWRFL asserts as soon as L INIT DLY comes 
true. 

PWRFL is sent to the memory array logic to disable generation of the timing gates for the array mod­
ules (Figure 2-36; Part 1 ). (A battery backup option powers the WCS module, where the array timing 
gates are generated during refresh cycles, thereby allowing refresh cycles to continue during a power 
failure.) PWRFL is latched up via an AND gate so long as L INIT DLY is true. UBS DCLO asserts on 
the UNIBUS when power drops below its minimum tolerance level thereby maintaining L INIT DLY 
true during the power interruption. 

Thus, when ac power fails, the logic functions to allow the current operation to complete and then sends 
the control store PROM (in the memory controller) to the power fail routine (PWR.FAIL). 

During power-up (when power is applied or returns after an interruption) the memory controller power­
up flip-flop receives its de operating voltage and initially resets due to the exponential delay in the as­
sertion of + 5 V POWER UP. With the power-up flip-flop reset, PWRUP FLP and PWRFL are both 
true. When + 5 V POWER UP rises to the level required to condition the power-up flip-flop to set, TO 
CLOCK sets the flip-flop negating PWRUP FLP and PWRFL. 

Thus, during power-up, UBS DCLO negates; however the power fail logic functions to delay the nega­
tion of PWRFL assuring that memory controller power is normal before sending the control store 
PROM to the idle state. 
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2.4 ADDRESS TRANSLATION 

2.4.1 General 
The translation of virtual addresses from the CPU and addresses from the UNIBUS into physical ad­
dresses is accomplished by use of the virtual address register (VAR) and the translation buffer (TB). 
Figure 2-19 is a simplified block diagram of the translation function. 

VIRTUAL 
ADDRESS 

VIRTUAL 
ADDRESS/ 
ADDRESS 
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Figure 2-19 Simplified Block Diagram of Address Translation 
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The virtual address register selects either a virtual address from the MC bus or an address from a UN­
IBUS device. The address selected by the VAR is divided into two parts. The lower nine bits are the 
byte offset (index into the page frame) and are sent directly to the array logic (or the UNIBUS*). The 
higher order bits are used to address the translation buffer and select a TB entry. 

The translation buffer is divided into two sections. One portion of the buffer is allocated to CPU en­
tries. This area is addressed when a CPU translation is being executed. The other portion of the buffer 
is allocated to UNIBUS entries. This area is addressed when a UNIBUS translation is being executed. 

A TB entry is made up of the page frame number (PFN) and protection/access bits. The PFN is sent to 
the array logic (or the UNIBUS*) along with the byte offset as the physical address. The pro­
tection/ access bits are checked for illegal operational errors and, if any are found, the CPU is flagged 
and the appropriate error bit is set in the control/status registers. 

During a CPU virtual address translation, the TB entry addressed by the VAR output may not be pre­
sent in the translation buffer. When this occurs, a TB MISS error bit is set in one of the control/status 
registers (CS Rs) and the CPU is flagged that the TB entry associated with the referenced page is not in 
the translation buffer. The CPU uses the virtual address to get the referenced page and its associated 
page table entry (PTE), to place the page into the memory arrays, to enter the corresponding TB entry 
into the translation buffer, and to retry the address translation. A TB miss can only occur during a CPU 
virtual address translation as all 512 possible UNIBUS addresses map to one of the 512 UNIBUS en­
tries in the translation buffer. 

The CPU can place a physical address on the MC bus which would not need address translation. When 
this is done the address from the VAR is the physical address. A physical address buffer is used to 
bypass the translation buffer and transfer the physical address directly to the memory array logic or the 
UNIBUS. The byte offset is still obtained from the VAR. 

*When the UNIBUS is the CPU target. 

2-24 



2.4.2 CPU Virtual Address Translation 
Figure 2-20 is a flow diagram of a CPU virtual address translation. Figure 2-21 is a block diagram of 
the logic involved in the translation. Paragraphs 2.4.2.1 through 2.4.2.6 relate to the block diagram to 
provide a functional explanation of the logic. The flow diagram is used mainly as a supplement to show 
the steps of an address translation and the sequence in which they occur. 

2.4.2.1 Virtual Address (Figure 2-22) - The virtual address applied to the VAR from the MC bus is 
shown in Figure 2-22A. The address is shown in segments with each segment performing a specific 
function within the translation logic. 

Bits <01 :00> select the byte being addressed within the selected longword. This is accomplished in 
the data rotator and the data rotator control logic.* 

Bits <08:02> select the longword being addressed within the selected page. This is accomplished in 
the memory address mux. * 

Bits < 31 >, < 14:09 > select the page by addressing the translation buffer and retrieving the associ­
ated PFN. The memory logic uses the PFN to select the page. 

Bits <30:15> is the tag associated with the TB entry. When the TB entry is loaded into the translation 
buffer, the tag is stored at the same address in the tag store area. When the entry is addressed, the tag 
is retrieved and compared with bits <30:15> of the current virtual address. They must match to affect 
a valid translation. 

When the CPU presents a physical address to the memory controller, bits <23:09> are used as the 
page address. 

2.4.2.2 Virtual Address Register/VAR Counter - The true state of CPU GRANT negates UB IDLE 
causing VAR MUX SEL to negate. When VAR MUX SEL negates, the virtual address register selects 
the 32-bit virtual address from the MC bus. TO CLOCK loads the virtual address into the VAR. 

VAR output bits LVA <01 :00> select the byte location within the addressed longword. They are sent 
to the data rotator control logic to specify the amount of byte rotation required and to the UNIBUS 
interface as part of the UNIBUS address when the UNIBUS is the CPU target. 

VAR output bits <30:02> are loaded into a VAR counter by VAR LOAD from the controller micro­
word. The counter is used to increment the address to the next longword location when a two-cycle 
access is being executed. As the least significant bit in the counter is LVA <02>, incrementing the 
counter increases the virtual address by four to the next longword location. Negating VAR LOAD and 
asserting VAR MUX SEL increments the counter. 

Counter bits L VA <08:02> are monitored by logic within the VAR counter. All seven bits true in­
dicates an address of 128 (decimal) which is the last location on the page. When this occurs the counter 
asserts PAGE BOUNDARY indicating that the last longword in the page is being addressed. 

If the operation is a two-cycle access, the second cycle would be addressing the first longword in a new 
page. If the two-cycle operation is a write, the WR ACROSS PG ERR bit is set in CSRl, ERR SUM 
is asserted to the CPU, and the memory controller aborts the operation. Thus the first longword is not 
written because access to the new page has not been checked and writing the second longword may not 
be allowed. 

*When storage area is an array board. If the UNIBUS is the CPU target the bits are transferred to the UNIBUS. 
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Figure 2-22 CPU /UNIBUS Address Segments 

If the two-cycle operation is a read, the operation continues and the new virtual address is checked for 
access. If access to the new page is not allowed, ERR SUM is asserted and the operation is aborted. A 
read operation is allowed to continue across a page boundary, while a write operation is not, because a 
read operation does not destroy old data. Refer to the address translation flow diagram (Figure 2-20) 
where the sequence for a two-cycle operation is illustrated. 

Other logic within the VAR counter monitors bits LVA <29:02>. All 28 bits true asserts SYS ADDR 
VIOL indicating that the last longword in the system region is being addressed. If a two-cycle operation 
is being executed, the second cycle would cross a system boundary which is not allowed for any type of 
operation. Thus, if SYS ADDR VIOL asserts when a two-cycle operation is initiated (either read or 
write), the WR ACROSS PG ERR bit is set in CSRl, ERR SUM is asserted to the CPU, and the 
memory controller aborts the operation (Figure 2-20). 

Bits L VA <08:02> (byte offset) from the VAR counter are coupled to the array logic and to the 
UNIBUS interface. Bits LVA < 14:09> from the VAR counter and bit LVA <31 > from the VAR 
are coupled to the translation buffer as the index address into the buffer. (Bit LVA <31 > is routed to 
the translation buffer via the UB/CPU mux.) Bits LVA <30:15> from the VAR counter are coupled 
to the tag store area of the TB (Paragraph 2.4.2.4.1 ). 

2.4.2.3 VAR Bypass - Bit LVA <31> from the VAR and bits LVA <14:09> from the VAR 
counter address the translation buffer and select the desired TB entry. A VAR bypass register routes 
the address bits around the VAR and VAR counter and applies them directly to the translation buffer. 
By applying them directly to the buffer, the TB entry can be retrieved and the parity, access, and pro­
tection checks started without waiting for the address bits to work through the VAR and the VAR 
counter. 
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VAR BYP EN enables the VAR bypass. VAR BYP is asserted by the memory control store PROM 
causing VAR BYP EN to come true. VAR BYP EN inhibits L VA < 31 > coming from the VAR and 
LVA <14:09> coming from the VAR counter, and substitutes LVA <31>, <14:09> from the VAR 
bypass register. The VAR bypass register is a flow-thru register, thus the TB index address bits on the 
MC bus are immediately applied to the translation buffer. The bits are not subject to the delay of being 
clocked into bit registers. CONT FUNC LAT holds the flow-thru register open. 

The address bits are also clocked into the virtual address register by TO CLOCK and then loaded into 
the VAR counter by VAR LOAD. Thus when VAR BYP negates and the VAR bypass is inhibited, bit 
LVA <31 > is in the virtual address register and bits LVA < 14:09> are in the VAR counter. If the 
operation requires a second cycle, the counter is incremented to address the next longword location. 

2.4.2.4 Translation Buff er 

2.4.2.4.l TB Space - Figure 2-23 illustrates the space allocation within the translation buffer. The TB 
entries are 23 bits long and are stored in a 1 K area. The upper 512 locations are for UNIBUS entries. 
The lowest 128 locations are for CPU entries. The remaining 384 locations are not used. 

The TB entry store area is enabled by the negated state of ADDR PH obtained from the physical ad­
dress select logic (Figure 2-24). When memory management is enabled by the CPU (L MME true), 
ADDR PH goes false and enables the TB entry store area. The TB will have either its data in path or its 
data out path enabled depending on the state of TB WE from the memory control store PROM. 

The translation buffer is addressed by bits LVA < 14:09> and TBA <9:6>. TBA <9:6> are obtain­
ed from a UB /CPU mux. The mux select signal (UB TB SEL) is a function of the three special func­
tion bits (SPF <2:0>) from the memory control store PROM (Figure 2-25). UB TB SEL is false for 
CPU translations thereby causing the mux to couple L VA <31 > to the TBA6 address line. TBA 
<9:7> are grounded for CPU translations (Figure 2-23). Thus for a CPU translation, seven address 
bits (LVA <14:09, TBA <6>) index into the 128 locations of CPU space for the desired TB entry. 

A tag store area consisting of 256 16-bit locations is used to store the tag associated with each TB entry 
in CPU space (Figure 2-23). The tag is bits L VA < 30: 15 > of the virtual address used to load the entry 
into the translation buffer. Only 128 of the 256 tag locations are used, corresponding to the 128 TB 
entry locations. Thus each index address into CPU space locates a TB entry and also its associated tag. 

The tag store area is enabled by a negated TBA 9 (ground) from the UB/CPU mux during CPU ad­
dress translations. TB WE from the control store PROM enables either the LVA <30:15> input path 
or the TAG < 15:00> output path. 

When a TB entry is addressed during a translation, its associated tag is coupled into a tag comparator. 
Bits L VA < 30: 15 > of the virtual address are also applied to the comparator. If L VA < 30: 15 > match 
the 16 tag bits a TB hit is scored meaning that the TB entry for the virtual address has been loaded into 
the translation buffer. If the TB entry for the virtual address is not in the translation buffer, a match is 
not obtained and the comparator asserts TB MISS. TB MISS sets an error bit in CSRl and asserts 
ERR SUM to the CPU. The CPU then functions to swap the desired TB entry into the translation 
buffer and try the translation again. 

The TB entry selected by the index address is composed of 23 bits as shown in Table 2-6. The bit func­
tions are described in Paragraphs 2.4.2.4.2 and 2.4.2.4.3. 
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Figure 2-24 Physical Address Select Logic 
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Table 2-6 

Number 
of Bits 

15 

4 

(C58) __ c_o_NT_F_U_N_C_LA_T ___ --1 

(C22) _s_P_Fo ____ __, 

(C30) _S_P_F2_--1 

NOTES: 

1. "C" DESIGNATIONS REFER TO MICROWORD BITS. 
2. THE LOGIC IN THIS FIGURE IS CONTAINED ON 

SHEET B OF THE ENGINEERING DRAWINGS. 

Figure 2-25 UB TB Select Logic 

TB Entry Bits (CPU Space) 

Item Mnemonic 

Page frame number PA<23:09> 
(PFN) 

Protection bits PROT A,B,C,D 

Modify bit MODIFY 

Valid bit VALID 

Byte offset bit BYTE OFFSET 

Parity bit TBPO 

*This bit is set before the data in the frame is modified. 
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2.4.2.4.2 Protection - The protection PROM has a nine-bit address input as listed below . 

. PROT A, B, C, D 

.MODIFY 

.MF <1:0> 

.CM <1:0> 

The four protection bits are part of the TB entry and specify the type of access allowed (no access, read 
only, read/write) for the four operating modes (user, supervisor, executive, kernel). 

The MODIFY bit is part of the TB entry and indicates that the data in the referenced frame has been 
modified or is to be modified during the current translation. 

MF < 1 :0> are memory function bits derived from CSR <08:07> respectively received from the 
CPU. CSR <08:07> specify the type of check to be made by the PROM. The CSR bit code is shown 
in Table 2-7. 

CM < 1 :0> are current mode bits derived from CURR MODE < 1 :0> respectively received from the 
CPU. CURR MODE < 1 :0> specify the current operation mode of the system. The CURR MODE 
bit code is shown in Table 2-8. 

The protection PROM has three outputs as listed below . 

. ACCESS REFUSED 

.MODIFY REFUSED 

.PROT PAR 

ACCESS REFUSED is asserted if the referenced page cannot be accessed in the current operating 
mode (Table 2-8) and for the type of check specified (Table 2-7). MODIFY REFUSED is asserted if 
the referenced page is to be written (write operation) and the MODIFY bit is not set. In this case, the 
CPU sets the MODIFY bit and the write operation is retried. Both ACCESS REFUSED and MODI­
FY REFUSED set error bits in CSRl and assert ERR SUM to the CPU. 

PROT PAR is a parity bit formed from the four protection bits and the MODIFY bit as a component 
of parity for the entire TB entry (Paragraph 2.4.2.4.3). 

2.4.2.4.3 Parity Checking/Generation - Each TB entry has a parity bit (TB PO) that is checked for 
parity error when the entry is retrieved. As a TB entry is retrieved, the fifteen PFN bits (PA <23:09>) 
and the BYTE OFFSET bit are applied to a parity generator which develops a parity component signal 
(GEN PO) which is applied to the TB parity generator/ checker.* Also applied to the parity gener­
ator/ checker is the VALID bit from the TB entry and PROT PAR from the protection PROM. PROT 
PAR is a parity component derived from the four protection bits and the MODIFY bit (Paragraph 
2.4.2.4.2). 

Thus the TB parity generator/checker develops a composite parity signal from all bits in the TB entry. 
This signal is compared to the parity bit in the entry (TB PO). If they don't match, TB PAR ERR is 
asserted to CSRl and ERR SUM is asserted to the CPU. 

Each TB entry written into the translation buffer generates a composite parity signal in the same man­
ner. This signal becomes TB PO and is written into the buffer along with the TB entry. 

*Another input bit (TB PAR DIAG) can be asserted for maintenance purposes. 
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Table 2-7 Memory Function Bit Code 

Bits Type of Check 

CSR<08> 
MFl 

CSR<07> 
MFO 

0 0 No check 

0 Write check 

0 Read check 

Not used 

Table 2-8 Current Mode Bit Code 

Bits 

CURR MODE 1 
CMl 

0 

0 

CURRMODEO 
CMO 

0 

0 

Mode 

Kernel 

Executive 

Supervisor 

User 

2.4.2.5 Physical Address - During system boot-up, the CPU accesses page frames that reside in spe­
cific locations in physical memory. The address the CPU places on the MC bus is the physical address 
of the page frames, therefore no translation is required and the translation buffer is not used. 

The physical address on the MC bus is clocked into the VAR by TO CLOCK and then loaded into the 
VAR counter by VAR LOAD. Bits L VA <08:02> from the counter are applied to the array logic (or 
the UNIBUS) just as during a translation operation. Bits L VA <23:09> from the counter are applied 
through a physical address buffer and then to the physical address bus as PA <23:09> where they 
perform the same function as the PFN during an address translation operation. 

The physical address buffer is enabled by the assertion of ADDR PH from the physical address select 
logic (Figure 2-24). ADDR PH asserts during a CPU operation (CPH/UBL true) when memory man­
agement is disabled (L MME false). Once asserted ADDR PH latches itself up so long as CONT 
FUNC LAT is asserted. 

The assertion of ADDR PH disables the translation buffer which is not used during a direct physical 
access to memory. It follows that there are no protection/access checks. 
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2.4.2.6 Prefetch Counter - CPU.ISTREAM.REQ operations use a prefetch counter to provide the 
byte offset (L VA <08:02>) to the memory array logic in place of the byte offset from the VAR 
counter. 

A READ.V.RCHK.IFILL instruction must be executed before a CPU.ISTREAM.REQ can be per­
formed. (It is not necessary that READ.V.RCHK.IFILL be the preceding instruction.) During the 
READ.V.RCHK.IFILL instruction, the controller asserts LOAD IB to the CPU which loads the CPU 
instruction buffer with the longword read from memory. LOAD IB also loads the byte offset into the 
prefetch counter and increments the counter to the next longword location in preparation for a 
CPU.ISTREAM.REQ (prefetch) operation. The CPU.ISTREAM.REQ instruction is issued before 
the instruction buffer in the CPU is emptied. Thus the virtual address presented to the controller on the 
MC bus is to the last byte of the original longword location in memory. The byte offset from the pre­
fetch counter, having been incremented by the LOAD IB signal, is addressing the next longword loca­
tion. The CPU.ISTREAM.REQ transfer executes using the byte offset from the prefetch counter. 
Thus the next longword access is already in progress when the instruction buffer is emptied. 

After the longword has been retrieved, the memory controller issues LOAD IB to the CPU to load the 
instruction buffer with the longword from the MC bus. The prefetch counter output wraps around and 
is loaded into itself by the LOAD IB signal. LOAD IB also increments the counter so that the prefetch 
byte off set now points to the next longword location in preparation for the next CPU .ISTREAM.REQ 
operation. 

When an ISTREAM operation is reading out the last longword in a page, the prefetch counter is at a 
full count (L VA <08:02> all true). When the counter is loaded and incremented by LOAD IB, it 
asserts PG BND PREF indicating that the counter has reset to 0 and is prepared to address the first 
longword in the next page. With PG BND PREF true, the next ISTREAM instruction loads the new 
page address into the VAR, translates the address through the translation buffer, and performs the 
protection/access checks for the new page (Figure 2-20). 

The prefetch function is enabled by OP PREF ADR from the prefetch select logic. OP PREF ADR 
gates the output from the prefetch counter onto the byte offset lines (LVA <08:02>) and inhibits the 
L VA <08:02> lines coming from the VAR counter. 

The prefetch select logic (Figure 2-26) monitors CSR < 19> from the WCS board in the CPU. When 
the CPU hardware initiates a CPU.ISTREAM.REQ. operation, bit CSR <19> is negated, causing 
OP PREF ADR to assert. OP PREF ADR is latched up by CPU GRANT and held true by CONT 
FUNC LAT. 

(

FROM ) CPU GRANT 
ARBITRATOR ---r-------t---1 
FIG. 2-1 

CPU Gl'lANT 

(

FROM WCS) CSR 19 
MODULE IN 
CPU 

NOTES: 
1. "C" DESIGNATIONS REFER TO MICROWORD BITS. 
2. THE LOGIC IN THIS FIGURE IS CONTAINED ON 

SHEET A OF THE ENGINEERING DRAWINGS, 

Figure 2-26 Prefetch Select Logic 

2-36 

OP PREF ADR 

TK-6069 



2.4.3 UNIBUS Address Translation 
UNIBUS address translation is similar to CPU virtual address translation but less complex. UNIBUS 
translations do not involve the VAR bypass, TAG store, physical address buffer, prefetch counter, or 
protection checks. 

Figure 2-27 is a flow diagram of a UNIBUS address translation. Figure 2-28 is a block diagram of the 
logic involved in the translation. Paragraphs 2.4.3. l through 2.4.3.3.2 relate to the block diagram in 
providing a functional explanation of the logic. The flow diagram may be used as a supplement to show 
the steps of an address translation and the sequence in which they occur. 

2.4.3.1 UNIBUS Address - The address applied to the VAR from the UNIBUS is shown in Figure 2-
22B. The address is shown in segments with each segment performing a specific function within the 
translation logic. 

Bits <01 :00> select the byte being addressed within the selected longword. This is accomplished in 
the data rotator and the data rotator control logic.* 

Bits <08:02> select the longword being addressed within the selected page frame. This is accom­
plished in the memory address mux. 

Bits < 17:09> select the page frame by addressing the translation buffer and retrieving the associated 
PFN. The memory logic uses the PFN to select the page. 

2.4.3.2 Virtual Address Register/VAR Counter - The negated state of CPU GRANT asserts UB 
IDLE causing VAR MUX SEL to assert. When VAR MUX SEL asserts, the virtual address register 
selects the 18-bit address input from the UNIBUS. TO CLOCK loads the address into the VAR. Note 
that UNIBUS activity is not required to assert VAR MUX SEL. Thus, in the idle state, the virtual 
address register receives the UNIBUS address lines. 

The UNIBUS address translation is initiated by the assertion of MSYN (Figure 2-27) which branches 
the microsequencer out of the idle state into the UNIBUS address translation routine. 

VAR output bits L VA <01 :00> select the byte location within the addressed longword. They go to the 
data rotator control logic to specify the amount of byte rotation required.* 

VAR output bits < 17:02> are loaded into a VAR counter by VAR LOAD from the controller micro­
word. The counter is used to increment the address to the next longword location when a two-cycle 
access is being executed. As the least significant bit in the counter is LVA <02>, incrementing the 
counter increases the address by four to the next longword location. Negating VAR LOAD and assert­
ing VAR MUX SEL increments the counter. 

Note in Figure 2-27 that if a two-cycle write operation involves writing the last longword of a page and 
the first longword of the next page, writing the first longword is allowed before the next page is checked 
for errors (UB ERR SUM). This is in contrast to a CPU write operation where under the same condi­
tions, the write operation is aborted. 

Bits L VA <08:02> (byte offset) from the VAR counter are coupled to the array logic. Bits L VA 
< 14:09> from the VAR counter are coupled to the translation buffer as part of the index address into 
the buffer (Paragraph 2.4.3.3.1). Bits LVA < 17:15> from the VAR counter are coupled to the 
UB/CPU mux where they form the rest of the TB index address. 

*The data rotator control logic also uses the BYTE OFFSET bit in determining the amount of data rotation. 
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2.4.3.3 Translation Buff er 

2.4.3.3.1 TB Space - Figure 2-23 illustrates the space allocation within the translation buffer. The TB 
entries are 23 bits long and are stored in a 1 K area. The upper 512 locations are for UNIBUS entries. 
The lowest 128 locations are for CPU entries. The remaining 384 locations are not used. 

The TB entry store area is enabled by the negated state of ADDR PH obtained from the physical ad­
dress select logic (Figure 2-24). When the memory controller is being used by a UNIBUS device 
(CPH/UBL false), ADDR PH is false to enable the TB. The TB has its data-out path enabled by the 
negated state of TB WE from the memory control store PROM. 

The translation buffer is addressed by bits LVA < 14:09> and TBA <9:6>. TBA <9:6> are obtain­
ed from the UB/CPU mux. The mux select signal (UB TB SEL) is a function of the three special 
function bits (SPF <2:0>) from the memory control store PROM (Figure 2-25). UB TB SEL is true 
for UNIBUS translations thereby causing the mux to couple LVA <17:15> to the TBA <8:6> ad­
dress lines respectively (Figure 2-23). Address line TBA9 is always true ( + 3 V) for UNIBUS trans­
lations. Thus for UNIBUS translations, ten address bits (LVA <14:09>, TBA <9:6>) index into the 
512 locations of UNIBUS space for the desired TB entry. 

The TB entry selected by the index address is composed of 23 bits as shown in Table 2-9. The bit func­
tions are described in Paragraph 2.4.3.3.2. 

Table 2-9 TB Entry Bits (UNIBUS Space) 

Number 
of Bits Item 

15 Page frame number 
(PFN) 

4 Protection bits 

Modify bit 

Valid bit 

Byte offset bit 

Parity bit 

Mnemonic 

PA<23:09> 
storage location 

PROT A,B,C,D 

MODIFY 

VALID 

BYTE OFFSET 

TBPO 

Function 

Selects physical 

Not used 

Not used 

Indicates TB data is 
a genuine entry 

Indicates UNIBUS 
reference is to an 
odd byte location 
(i.e., 1001, 1003)* 

Parity bit for TB 
entry 

*UNIBUS protocol allows UNIBUS address bits to present only even addresses to the memory controller during a word trans­
fer. 
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2.4.3.3.2 Parity Checking/Generation - Each TB entry has a parity bit (TB PO) that is checked for 
parity error when the entry is retrieved. As a TB entry is retrieved, the fifteen PFN bits (PA <23:09>) 
and the BYTE OFFSET bit are applied to a parity generator which develops a parity component signal 
(GEN PO) for the TB parity generator/checker.* Also applied to the parity generator/checker is the 
VALID bit from the TB entry and PROT PAR from the protection PROM. PROT PAR is a parity 
component derived from the four protection bits and the MODIFY bit. The MODIFY and protection 
bits serve no function during a UNIBUS address translation except for the generation of the TB entry 
parity bit. 

Thus the TB parity generator/checker develops a composite parity signal from all bits in the TB entry. 
This signal is compared to the parity bit in the entry (TB PO). If they don't match, TB PAR ERR is 
asserted to CSR2 and UB ERR SUM is asserted to the memory controller branch logic. 

Each TB entry written into the translation buffer generates a composite parity signal in the same man­
ner. This signal becomes TB PO and is written into the buffer along with the TB entry. 

The BYTE OFFSET bit in the TB entry must be set if a UNIBUS reference is made to an odd byte 
location during a word transfer. In accordance with UNIBUS protocol, byte transfers can be made to 
odd or even addresses but word transfers can be made only to even addresses. Thus, when a UNIBUS 
word transfer is to be made to an odd address (odd byte location), the BYTE OFFSET bit is set which 
effectively adds one to the even address taken from the UNIBUS address lines. BYTE OFFSET is sent 
to the data rotator control logic as a factor in determining the amount of byte rotation during a UN­
IBUS transfer. 

2.4.4 Writing/Reading the Translation Buffer (Figure 2-29) 

2.4.4.1 Writing the Translation Buffer - TB entries to be written into the translation buffer are placed 
on the MC bus by the CPU. The format of the entry as it appears on the MC bus is shown in Figure 2-
30A. Note that the 15-bit PFN is located in bits < 14:00>. The PFN as it is used on the physical 
address bus is located in bits PA <23:09>. In order to write the PFN into the TB so that it can be read 
out in the correct format, the entry must be shifted nine bits left from its position on the MC bus. 

The entry is first fed into the data rotators where it is shifted one byte left and returned to the MC bus. 
The entry on the MC bus is now as shown in Figure 2-30B. 

The TB entry is then divided into two parts and sent through one-bit, bidirectional shifters where it is 
shifted left one more bit. The shifter outputs are shown in Figure 2-30C where it is seen that the PFN is 
now in the desired bit location ( <23:09> ). 

One shifter receives the PFN (BUS MC D <22:08>) and outputs onto bits <23:09> of the physical 
address bus. The other shifter receives the protection/access bits (BUS MC D <07:01 >)and outputs 
onto the respective protection/ access signal lines. The output of the two shifters is written into the 
translation buffer. 

The PFN one-bit shifter is enabled by TB DAT A EN + MAINT while the direction of data flow is 
determined by TB DATA DIR RD. Both signals are obtained from the memory control store PROM. 

The protection/access one-bit shifter is identical to the PFN shifter except that TB DATA EN is the 
enabling signal. The shifters have different enabling signals for maintenance purposes. 

*Another input bit (TB PAR DIAG) can be asserted for maintenance purposes. 
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The output of the two shifters is written into the translation buffer. To write the entry into the trans­
lation buffer, the control store PROM asserts TB WE. TB WE true enables the data path into the TB 
and inhibits the data path out of the TB. 

The index address of the entry is the virtual address placed into the virtual address register from the 
MC bus. The address lines are LVA <14:09> from the VAR counter and TBA <9:6> from the 
UB/CPU mux. 

If the TB entry is being written into CPU space, an associated tag is written into the same index address 
in the tag store area. The tag is virtual address bits L VA < 30: 15 > from the VAR counter. 

The TB entry generates a parity bit which is written into the TB along with the entry. The generation of 
the parity bit (TB PO) is described in Paragraphs 2.4.2.4.3 and 2.4.3.3.2. 

2.4.4.2 Reading the Translation Buffer - At times the CPU will want to read a TB entry (e.g., for 
maintenance purposes). Reading the translation buffer is accomplished by retrieving the TB entry and 
asserting TB DATA DIR RD. The true state of TB DATA DIR RD establishes the shifter direction as 
toward the MC bus. The shifters are enabled by TB DATA EN and TB DATA EN + MAINT from 
the control store PROM. 

The TB entry is shifted one bit right as it passes back through the shifters. This is followed by a one 
byte shift to the right in the data rotator. Thus the entry appears on the MC bus in the proper format 
for the CPU (Figure 2-30A). 

2.5 PHYSICAL ADDRESS SPACE 

2.5.1 General 
Figure 2-31 shows the physical space that can be addressed from the memory controller. The physical 
address is 24 bits long, allowing a total address space of 16 megabytes. The 24 address bits are the PFN 
from the TB entry (PA<23:09>) and the byte offset from the virtual address bus (LVA<08:00> ). 

Most of the address space (15 megabytes) is memory space. The memory array cards are located in 
memory space. The sixteenth megabyte is 1/0 space and is divided into two parts. The first 3/4 of 1/0 
space is UNIBUS adapter space. This space contains simulated UNIBUS registers that actually do not 
exist. The registers are simulated by the CPU to the VAX operating system in order to achieve software 
compatibility between the VAX-11/730 and other VAX-11 systems. When a reference is made to this 
area of memory, the memory controller asserts the ADAPT REG SEL error bit in CSRl and then 
asserts ERR SUM to the CPU. The CPU reads CSRl, finds that UNIBUS adapter space has been 
referenced, and simulates the proper response to the system software. 

The last quarter of I/O space is for UNIBUS addresses. 

A memory select decoder on the MCT module receives the six most significant bits of the physical 
address (PA<23:18>) and outputs UB PH ADDR SEL, UB ADAPTER REG SEL, NXM, or MEM 
SEL "X", depending on the area of address space referenced (Figure 2-36; Part 1 ). 
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2.5.2 Memory Space 
The 15 megabytes of memory space consists of the memory array modules plus nonexistent memory 
space. Up to five M8750 array modules may be used. Each module contains one megabyte of memory 
and must be placed in consecutive positions starting with the lowest address {position A). For example, 
if three memory cards are used, modules A, B, and C must be the three cards. This is necessary to 
prevent holes in real memory (i.e., all memory array space must be contiguous). 

When a reference is made to memory space where an array card is located, MEM SEL "X" is asserted 
by the memory decoder ("X" is the particular module referenced). If no memory card is located at the 
referenced address, NXM is asserted to CSRl as an error condition. Note that the area of nonexistent 
memory is ten megabytes plus whatever area of memory array space is not used. 

2.5.3 UNIBUS Adapter Space 
A memory reference from FO 0000 to FB FFFF causes the memory select decoder to assert UB 
ADAPTER REG SEL. The memory controller notifies the CPU that a reference has been made to the 
UNIBUS adapter area and the CPU responds to the reference. The CPU may read the memory con­
troller translation buffer or the CSR hardware registers in order to formulate the response to the refer­
ence. 

Only aligned longword references are allowed to UNIBUS adapter space. 

Three memory adapter registers are simulated at addresses F2 0000, F2 0004, and F2 0008. The com­
position of the registers is shown in Figure 2-32. 

NOTE 
The memory adapter registers are designated as 
CSRO, CSRl, and CSR2. They are simulated by the 
CPU and are not to be confused with hardware reg­
isters CSRO, CSR 1, and CSR2 that physically exist 
in the memory controller (Paragraph 2.9). 

A UNIBUS configuration register is simulated at F2 6000. The register reads out 28 (hex) and ignores 
writes. Figure 2-33A illustrates the composition of the register. 

Three UNIBUS data path registers are simulated at F2 6004, F2 6008, and F2 600C. The registers 
read out zeros and ignore writes (Figure 2-33B). 

A UNIBUS control status register is simulated at F2 6010. Figure 2-33C illustrates the composition of 
the register. 

NOTE 
Seven software registers are simulated for the RB-
730 Disk Subsystem. The seven registers are located 
in the address range from F2 6200 to F2 6218 in­
clusive. The registers are shown in Figure 2-31 as 
IDC (integrated disk controller) registers. Figure 2-
31 also shows the specific address of each register. 
The composition of the registers is shown in Figure 
2-34. 

There are 512 UNIBUS map registers simulated from F2 6800 to F2 6FFC in 4-step increments. 
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2.5.4 UNIBUS Space 
Address references from FC 0000 to FF FFFF are to real devices on the UNIBUS. When UNIBUS 
space is referenced, the memory select decoder asserts UB PH ADDR SEL which couples the trans­
lated physical address (PA< 17:09>, LVA<08:00>) to the eighteen UNIBUS address lines. 

2.6 MEMORY ARRAY READ/WRITE 

2.6.1 General 
Figure 2-35 illustrates the configuration of the 4164 RAM chips on the M8750 MOS memory array 
card. There are 156 RAM chips arranged in four banks of 39 chips each. Each RAM chip has a 256 X 
256 matrix providing 64K (65,536) one-bit locations and, therefore, 64K 39-bit data locations per bank. 
The four banks provide the array card with a total of 256K 39-bit data locations. A 39-bit data location 
is made up of a 32-bit longword and seven check bits. 

During a write to memory, input data longwords and check bits are applied to all four banks. Thus each 
of the 39 input bits is applied to four RAM chips, however, only one of the four banks is enabled at a 
time. 

Eight address bits (A <07:00>) are applied to each of the 156 RAM chips. The address lines are mul­
tiplexed to first carry the row address and then the column address. A row address strobe (RAS) and a 
column address strobe (CAS) load the row and column addresses respectively into the RAMs. CAS is 
applied to all the RAMs and produces column addressing on all 156 chip arrays. A separate RAS 
strobe is generated for each bank and only one of these asserts during a memory read/write. The bank 
that has the row address strobed in thereby becomes the enabled one. A two-bit code (MA<l5:14>) 
from the array bus specifies which bank is to be enabled. RAS TIM from the array bus times the RAS 
strobes. 

39 BITS 

WRTIM BANKA (FROM 

(

FROM ) 
ARRAY 
BUS 

- ARRAY BUS) 
DR EN 

DI (32 BITS), CBI (7 BITS) ..... 
A<07:00> -e 4164 4164 4164 4164 DO (39 BITS) • • • • RAM CAS RAM RAM RAM 

MA<15:14>_,, DIOO DI 01 DI 02 CBIT 
RASA ...... 
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...... 
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Figure 2-35 RAM Chip Configuration on M8750 Array Board 
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Data is written into and read out of the array as a full 32-bit longword (plus seven check bits). WR TIM 
clocks data into the bank selected by RAS during a write. DR EN allows data out to the array bus 
during a read. 

Figure 2-36 is a block diagram of the memory array read/write function. The figure is divided into two 
parts: part 1 is the array read/write logic on the M8391 memory controller module; part 2 is the M8750 
array module itself. Some signal mnemonics on the array module do not match the mnemonics on the 
memory controller module. Figure 2-37 illustrates the array bus signals and gives the signal mnemonic 
on the controller side of the bus and on the array side. 

2.6.2 Memory Select (Figure 2-36) 
The memory select decoder on the MCT module receives six address bits (PA<23:18>) from the 
physical address bus that specify which storage area is to be addressed. Possible areas are UNIBUS 
physical addresses (UB PH ADDR SEL), UNIBUS adapter space (UB ADAPTER REG SEL), * or an 
M8750 array card (MEM SEL A,B,C,D,E). If the memory select decoder senses a hole in memory, or 
a reference is made to a nonexistent location, NXM is asserted to indicate an error condition. 

A fingerprint bit [ARRAY FP 4] from each array card is used by the memory select decoder to in­
dicate if the card is present. Up to five array cards may be used. To prevent holes in memory, the last 
card used must be in the last slot of contiguous memory. 

Each array card connects to a select line on the array bus. If one of the cards is selected by the memory 
select decoder, the decoder outputs MEM SEL on the corresponding select line. From the array bus, 
the memory select signal is input to the array card as INT BUS ADD MEM SEL which then becomes 
MEM SEL. MEM SEL enables all the 1/0 paths to and from the memory arrays. 

2.6.3 Array Addressing (Figure 2-36) 
Two bits from the physical address bus (PA<l9:18>) select which of the four banks is to be addressed 
on the selected card. The two bits are placed on the array bus as BUS ARRAY B SEL <01 :00> and 
appear on the array card as INT BUS MA <15:14>. The bits are decoded in the RAS decoder which 
asserts one of four RASSEL outputs. The selected output is strobed by INT BUS RAS TIM to gener­
ate RAS A, B, C, or D. RAS is applied to the row address latch/decoders of the 39 RAM arrays of the 
selected bank. 

The address of the location within the memory array to be read or written into, is obtained from the 
memory address mux. The address is in two segments: the memory page address from the physical 
address bus (PA<l 7:09>) and the longword address within the page from the virtual address register 
(LVA<08:02>). The two sets of mux inputs are PA<l7>, <15:09> and PA<l6>, 
LVA<08:02>. The mux defaults to the PA<l6>, LVA<08:02> input, outputting the eight bits to 
the array bus as BUS ARRAY A <07:00>. The 8-bit address is input to the selected array card as 
INT BUS A <07:00> which then becomes A <07:00>. 

When a location on the array card is to be accessed, bit 32 of the microcode (RAS EN) is asserted. This 
causes ARRAY RAS TIM to assert which is passed over to the array card as INT BUS RAS TIM and 
strobes A<07:00> into the row address latch/decoder of the selected bank. Thus PA < 17>, 
< 15:09> is used as the array row address. Forty-five nanoseconds later COLAD (column address) 
switches the address mux to the PA<l6>, LVA <08:02> input. Thirty nanoseconds later CAS TIM 
asserts and is passed over to the array card as INT BUS CAS TIM. This input asserts CAS (A,B,C,D) 
which strobes A <07:00> into the column address latch/decoder of all four banks. Thus PA <16>, 
L VA <08:02> is used as the array column address. Figure 2-38 illustrates the address timing. 

*Reference is to pseudo adapters. The VAX-11 /730 has no UNIBUS adapters. 
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2.6.4 Refresh (Figure 2-36) 
The 4164 RAM memory arrays must be refreshed at least every 4 ms in order to retain stored data. All 
four banks on all the array cards are refreshed at the same time. All of the 256 rows in a bank must be 
addressed and refreshed in no more than 4 ms. There is no column addressing as all the columns are 
enabled during refresh. 

To perform a refresh, the normal array address and timing signals are removed and a new row address 
and a RAS strobe are obtained from refresh logic on the WCS board. No CAS strobe is generated 
during a refresh cycle hence the RAM output buffers are not enabled and no output occurs from the 
RAMs. 

The refresh logic is on the WCS module in the CPU. A refresh cycle (to refresh one row) is triggered 
by MAIN MEM REFR. MAIN MEM REFR is a 90 ns pulse occurring at a 78 kc rate (Figure 2-39). 
Thus all 256 rows get refreshed in less than 3.4 ms. A refresh cycle takes 720 ns to complete. Refresh 
cycles are done in between reads and writes to the arrays. 

If ALLOW REFR CYC (bit 37 of the memory controller microword) is true, MAIN MEM REFR 
triggers refresh logic on the WCS board that generates START REF CYC, ARRAY REF CYC, and 
ARRAY RAS TIM. (Figure 2-40 illustrates the timing of these signals.) START REF CYC asserts 
REF IN PROG and PWRF OR REF which inhibit read/write timing signals CAS TIM, ARRAY 
RAS TIM, WRT TIM, and DR EN. ARRAY REF CYC disables the memory address mux, inhibits 
the bank select gate, and enables the output of the refresh binary counter on the WCS board. The 8-bit 
binary output is placed on the array bus as BUS ARRAY A<07:00> and is applied to the array cards 
as the address of the next row to be refreshed. ARRAY REF CYC is also placed on the array bus and 
thence to all array cards as INT BUS REF CYC. On the array card it becomes REF CYC SEL which 
asserts MEM SEL thereby selecting each array card for a refresh. REF CYC SEL also enables all four 
RASSEL outputs from the RAS decoder thereby selecting all four array banks. INT BUS RAS TIM 
is asserted by ARRAY RAS TIM from the WCS refresh logic and strobes RAS to the four array 
banks. 

2.6.5 Data In (Figure 2-36; Part 2) 
Thirty-two bits of data (INT BUS DB <31:00> RD) and 7 check bits (INT BUS CB 
<T,32, 16,8,4,2, 1 > RD) are obtained from the array bus for writing into the memory arrays. They are 
applied to input buffers as DI <31:00> and CBI <T,32,16,8,4,2,l>. ARY WRT TIM (bit 34 of the 
microword) is placed on the array bus from the MCT board as WRT TIM, and then to the array card 
as INT BUS WR TIM. It then asserts WRT BYT (3:0)* and WR BYT CK to strobe the array input 
buffers and input the data into the arrays. 

2.6.6 Data Out (Figure 2-36; Part 2) 
The assertion of CAS (A,B,C,D) enables the RAM output buffers which couples DO <31:00> and 
CBO <T,32,16,8,4,2,1> from the addressed location in the memory arrays to output drivers. ARY 
DR EN (bit 35 of the microword) is placed on the array bus from the MTC board as DR EN and then 
to the array cards as INT BUS DR EN. It then asserts DR EN which enables the output drivers and 
places the 32 data bits and 7 check bits on the array bus. 

2.6. 7 Array Terminator 
The address lines to the 4164 RAM array chips are connected through diodes to a terminating network 
(TERM A). TERM A is at +0.75 Vandis obtained from a transistor voltage divider which functions 
as a +0.75 V voltage source. The voltage source and the diodes prevent any negative excursions on the 
address lines. 

*Input data is always written as a 32-bit longword. INT BUS WR BYT (3:0) are all tied to + 5 V on the array bus. 
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2.7 ECC (ERROR CHECKING/CORRECTION) 

2.7.1 Read Array /ECC Check (Figures 2-41 and 2-42) 
A read array /ECC check operation is performed in two different instances with the operations being 
almost identical in both cases. The first case is the reading of data from the memory array out to the 
UNIBUS or the CPU. When data is to be read out to the UNIBUS or the CPU, the data is read out of 
memory, an ECC check is performed, and the data is placed on the array bus for transfer to the data 
rotator. The second case is the writing of data from the CPU or the UNIBUS into the memory array. In 
this case the memory location is read out and an ECC check is performed*; however this time the data 
is left in the ECC data out latch (not placed on the array bus) where the write data will modify or 
replace it. The following discussion applies to both types of reads except where noted. 

All data read out of the memory array undergoes an ECC check. If the ECC check shows a single bit 
error, the data is corrected and the error is reported to the CSR register as a CRD error. If the check 
indicates that more than one bit is in error, the data error is uncorrectable. The data is still read out to 
the array bus and the uncorrected error is reported to the CSR register as an RDS error. If a write from 
the CPU or UNIBUS is being performed, the writing of the new data is aborted and the old data is 
written back into the memory array. 

A 39-bit word (32 data bits and 7 check bits) is read from the M8750 array card and placed onto the 
array bus. The data bits are latched into the data in latch by LAT DAT IN and the check bits are 
latched into the check bit latch by LAT CB REG. The output of the data in latch is then applied to the 
check bit generator where new check bits are generated. In the error checking mode (GENERATE 
false), the output of the check bit latch is applied to XOR gates where it is compared with the gener­
ated check bits. If the generated check bits match the check bits read out of memory, there are no 
XOR outputs (syndromes) asserted indicating a no error condition. If the check bits do not match, one 
or more syndromes are asserted. The output from the XOR gates is applied to a syndrome decoder. The 
decoder asserts ERROR to the CSR register and decodes the syndromes to determine if the error is a 
single bit error (correctable) and if so, which bit is in error. The decoding of the syndromes is shown in 
Table 2-10 followed by a discussion of each case. 

If no syndromes are generated, the data from the data in latch passes through the correction logic and is 
latched into the data out latch by LAT OUTPUT BYT (3:0). It is possible to latch up only selected 
bytes into the data out latch. However, during a read array /ECC check operation, all four LAT 
OUTPUT BYT signals assert to latch up the full 32 bit longword. If the read array /ECC check oper­
ation is performed as part of a CPU or UNIBUS read of the memory, the data in the data out latch is 
placed onto the array bus by the assertion of OUTPUT BYT (0-3). The four OUTPUT BYT pins on 
the ECC chips are tied to C31 of the microword. Therefore the assertion of OUTPUT BYT (0-3) al­
ways places the full longword in the data out latch onto the array bus. If the read array/ ECC check 
operation is performed as part of a write to memory, the data in the data out latch is not placed onto the 
array bus at this time. t 

*Not necessarily true for an Octa-write. 

t In a write to memory, the data in the data out latch will be modified or replaced by new data in an ECC check bit gener­
ation/write array operation {Paragraph 2.7.2 and Figure 2-43). 
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Table 2-10 Syndrome Codes 

Syndromes 
Asserted 

None 

One syndrome 

Odd number of 
syndromes (more 
than one) 

Even number of 
syndromes 

Meaning 

No data error 

Check bit error 
Data bits OK 

Single bit data 
error 

Multi-bit data 
error 
(uncorrectable) 

Action 

Read data normally. 

Read data normally. 
Report error to CSR. Place 
syndrome in CSR. 

Correct data bit. Read 
data normally. Report 
error to CSR. Place 
syndromes in CSR. 

Read data normally. If 
doing a read/modify /write 
operation, write data and 
check bits back into 
memory array and abort 
the modify /write portion 
of the operation. Report 
error to CSR. Place check 
bits in CSR. 

If an odd number of syndromes are generated, a single-bit data error exists. The syndrome(s) are placed 
on the array bus via the check bit/syndrome drivers, which are enabled by OUTPUT CB/SYN, and 
then applied to the CSR register for error analysis. The syndrome decoder asserts ERROR to indicate 
an error condition and SINGLE ERR to indicate it is a single-bit error and is correctable. The decoder 
determines which data bit is in error and provides a corrective input to the correction logic. CORR DIS 
negates to enable the correction logic. The data from the data in latch is coupled to the correction logic 
where the erroneous bit is corrected. The corrected data is then latched into the data out latch by the 
assertion of LAT OUTPUT BYT (3:0). The data remains in the data out latch when a write operation is 
being performed. If a read operation is being performed the data in the data out latch is placed onto the 
array bus by the assertion of OUTPUT BYT (0-3). 

If an even number of syndromes are generated, more than one data bit is in error and the error is uncor­
rectable. The syndrome decoder asserts ERROR but does not assert SINGLE ERR thus indicating 
that a multibit uncorrectable error exists. The normally true state of CORR DIS keeps the correction 
logic disabled. The data from the data in latch passes through the data correction logic to the data out 
latch and then to the array bus in the normal manner. The check bits in the check bit latch are also 
returned to the array bus via the check bit drivers. The drivers are enabled by OUTPUT CB BUS from 
the microword. Now on the array bus are the data bits and check bits originally read out of the memory 
array. The CSR register is loaded with the check bits on the array bus (instead of the syndromes) for 
later analysis of the uncorrectable error by the CPU. In addition, if a read/modify /write operation is 
being performed, the modify /write portion of the operation is aborted and a write to the array is per­
formed. Writing to the array stores the data that gave the uncorrectable error.* 

*The uncorrectable error may have been caused by a soft read error, therefore the need to write back into the memory array. 
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2.7.2 ECC Check Bit Generation/Write Array (Figures 2-41 and 2-43) 
An ECC check bit generation/write array operation is performed as part of a CPU or UNIBUS write 
to memory. As such, a read array /ECC check operation would have just been performed* and the data 
presently in the addressed memory array location is latched up in the ECC data out latch (Paragraph 
2.7.1). 

The write data on the array bus from the data rotator is latched into the data in latch by LAT DAT IN. 
The data then passes from the data in latch to the data out latch via the correction logic. CORR DIS is 
true disabling the corrective function of the correction logic. The write data is latched into the data out 
latch by LAT OUTPUT BYT (3:0). From one to four bytes of write data are latched up replacing the 
corresponding bytes presently in the latch. The new longword thus assembled is the data word for the 
memory array. 

Check bits are now generated for the new longword before it is written into memory. OUTPUT BYT 
(0-3) asserts placing the longword on the array bus. LAT DATA IN asserts placing the longword into 
the data in latch. From the data in latch the data wraps around to the data out latch via the disabled 
correction logic. The four LAT OUTPUT BYT signals assert and latch up the data in the data out 
latch. The data in latch output is also applied to the check bit generator where seven check bits are 
generated. In the check bit generating mode (GENERATE true), the check bit generator outputs are 
coupled to the check bit/syndrome driver. 

OUTPUT CB/SYN and OUTPUT BYT (0-3) assert and place the generated check bits and their asso­
ciated data bits respectively onto the array bus. The 39 bits are then written into the memory array. 

( ) 

Start 

~~;;;~F~8fw ------~ 
DIAGRAM 
FIGURE 2-42 Data on array bus 

from data rotator. 

t LAT DAT IN 
Data bits latched 
in data in latch. 

Wrap data around to 
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out latch. 

Generate/check logic 
in generate mode 
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t OUTPUT BYT (0-3) 
Place data bits on array 
bus. 
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Place check bits on 
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Write 39 bit word 
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TK-6014 

Figure 2-43 ECC Check Bit Generation/Write Array Flow Diagram 

*Not necessarily true for an Octa-write. 
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2. 7 .3 ECC Chip Configuration (Figure 2-44) 
Two DC63 l ICs make up the ECC logic. One chip processes the low order word of the data longword 
and the other the high order word. The two chips are identical. A voltage potential of + 3 V or 0 V on 
pin 23 (HI WORD) sets up the internal logic to configure the chip as either high word or low word. The 
two chips work in tandem to function as shown in Figure 2-41 and as described in Paragraphs 2. 7 .1 and 
2. 7 .2. This paragraph does not repeat the descriptions given there, but rather discusses how the two 
chips function together. 

2.7.3.1 ECC Check - The low word (bytes 0,1) is applied to the low word data in latch and then 
wrapped around through the correction logic to the data out latch. The low word is also applied to the 
low word check bit generator. The seven check bits from the array bus are applied to the check bit latch 
and then to XOR gates for comparison with the generated check bits. Partial syndromes are obtained 
from XORing the check bits with the check bits generated from the low word. The partial syndromes 
are coupled to the high word chip, via the seven PART SYND lines, where they are used against the 
upper word. The partial syndromes leave the low word chip via the check bit/syndrome driver, which is 
always enabled by + 3 V, and are applied to the high word check bit latch. The latch is held open by 
+ 3 V and is transparent to the partial syndromes which flow through to the high word XOR gates. 
Here the partial syndromes are applied against the check bits generated by the high word check bit 
generator. The output of the high word XOR gates are the actual syndromes reflecting the error status 
of the longword. The syndromes are passed to the syndrome decoder via the high-word/low-word mux. 
The decoder outputs error status signals and supplies correction data to the correction logic if a single 
error is detected and the error is in the high word. The syndromes are also placed onto the array bus 
when OUTPUT CB/SYN asserts. From the array bus the syndromes are applied to the low word syn­
drome decoder via the high-word/low-word mux in the low word chip. If a single error is detected and 
the error is in the low word, the decoder supplies correction data to the low word correction logic. The 
high-word/low-word mux in the low word chip always selects the bus array CB signal input while the 
mux in the high word chip always selects the syndromes from the high word XOR gates. 

2.7.3.2 ECC Check Bit Generation - The low word (bytes 0,1) is applied to the low word check bit 
generator via the low word data in latch. Check bits generated from the low word (partial check bits) 
are output to the seven PART SYND lines via the always enabled check bit/syndrome driver. The 
partial check bits pass through the check bit latch (held in the transparent state by + 3 V) to the high 
word XOR gates. The high word (bytes 2,3) is applied to the high word check bit generator via the high 
word data in latch. Check bits generated from the high word are mixed with the low word partial check 
bits in the high word XOR gates. The XOR outputs are the seven check bits for the 32 bit longword. 
When OUTPUT CB/SYN asserts, the seven check bits are placed onto the array bus. 
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2.8 DATA ROTATOR 

2.8.1 General 
Data read from memory is sent to the CPU or the UNIBUS via the MC bus. The reading device ex­
pects the data to be oriented on the low order lines of the MC bus; however data read out of the memo­
ry array may be located in any of the four byte positions of the longword. If the data is not longword 
aligned (byte 0 in bit position 0), data rotation or shifting is required so the output is properly oriented 
on the MC bus. Furthermore, if the desired data crosses a longword boundary and is located in two 
memory locations, two read cycles are required to extract all the data. In this case, after the data is 
retrieved from memory, both byte selection and rotation is required to select the desired data and for­
mat it. The data rotator performs the function of byte selection and rotation. 

Figure 2-45 illustrates several examples of data selection and rotation performed by the data rotator 
during read operations. Part A represents the byte orientation of data on the MC bus. The CPU and 
UNIBUS devices require data being presented to them to be in this format. Part B represents a long­
word location on the array card and how the data will appear on the array bus. In part B, two bytes (BO, 
B 1) are read out and transferred to the MC bus. As they are already properly orientated, no rotation is 
required. The two bytes (X) in locations 1002 and 1003 are also transferred but are ignored by the 
reading device. Part C represents a longword location where the desired bytes (BO, Bi) are not lined up 
with the longword boundary. Bytes BO and Bi must be rotated (shifted) and placed on the MC bus in 
the byte 0 and byte 1 positions respectively, as shown in part A. This is done by rotating the data one 
byte right. In part D, four bytes are read which are not located in the same longword location in memo­
ry. Consequently, two read cycles are needed with byte rotation and selection required for both cycles. 
The first memory cycle reads location 1000, the data is rotated two bytes right (thereby placing bytes 
BO and Bl in the byte 0 and byte 1 positions of the MC bus), and bytes BO and Bl are selected (the 
bytes in locations 1000 and 1001 are discarded). A second memory cycle reads location 1004 and also 
rotates the data two bytes right placing bytes B2 and B3 into their proper positions, and selects bytes B2 
and B3 while discarding the bytes in locations 1006 and 1007. The selected bytes from both cycles are 
placed on the MC bus supplying the reading device with the requested data in the proper format. 

Figure 2-45 can be used in a reverse manner to illustrate the need for byte rotation during a CPU or 
UNIBUS write to memory. Part A represents how data to be written into memory is presented to the 
data rotator from the MC bus. In part B, byte 0 and byte 1 on the MC bus are to be written into byte 
positions BO and Bl at locations 1000 and 1001. The data is directly passed through the data rotator as 
no rota ti on is required. In part C, byte 0 and byte 1 are to be written into BO and B 1 at locations 1001 
and 1002. The data rotator rotates (shifts) the data one byte left (opposite to the right rotation for a 
read)* thereby placing byte 0 and byte 1 into the proper position. In part D, four bytes of data are to be 
written into two memory locations. Two write cycles are performed. In the first cycle the MC bus data 
is rotated two bytes left and bytes 0 and 1 are selected and written into the last two byte positions of 
longword location 1000 (locations 1002 and 1003). Bytes 2 and 3 are inhibited (not discarded). (The 
byte selection for a write cycle is accomplished in the ECC logic, not in the data rotator. (Refer to 
Paragraph 2.7.2.) The two X bytes at locations 1000 and 1001 are retained and rewritten into their 
same locations. In the second cycle, bytes 2 and 3, now in the proper position from the cycle 1 rotation, 
are selected and written into the first two byte positions of longword location 1004 (locations 1004 and 
1005). The two X bytes at locations 1006 and 1007 are retained and rewritten into their same locations. 

*Note that the number of bytes rotated is the same for both a read and a write. 
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Figure 2-45 Data Rotation for Read Operations 
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2.8.2 Data Rotation - Read Operation (Figures 2-46 and 2-47) 

2.8.2.1 One-Cycle Read - The data rotator contains three rotator circuits designated as A, B, and C 
(Figure 2-46). Data rotators A and B are used for read operations. Data rotator C is used for write 
operations. 

If the data to be read is entirely contained in one memory array location, a one-cycle read is performed 
using only data rotator A. MOR DAT OUT EN asserts and enables the data rotator A output to the 
MC bus. A "read array /ECC check" operation is performed to place the data on the array bus. The 
data on the array bus is input to data rotator A. AO and A 1 from the data rotator control (Figure 2-49) 
specify if the data needs rotating and if so, by how much. Data rotator A is a mux with each input byte 
capable of being switched to any of four output byte positions with AO and Ai selecting which position. 
The mux allows any byte to be moved to the position of any other byte. The data is rotated, if necessary, 
and output to the MC bus via the MC bus driver. 

2.8.2.2 Two-Cycle Read - If the data to be read is contained in two memory array locations, a two­
cycle read is performed using data rotators A and B. In a two-cycle read, the first location is read out of 
the array, the data is rotated, and the desired byte(s) are selected. Then the second location is read, the 
data is rotated, and the bytes desired from the second read are selected. The desired bytes from the first 
and second read are placed onto the MC bus for the reading device. 

MOR DAT OUT EN asserts to perform three functions: it enables the data rotator A output to the MC 
bus, it enables data rotator B, and it disables data rotator C. A "read array /ECC check" operation is 
performed to place the first cycle data on the array bus. The data on the array bus is input to data 
rotator B. AO and A I from the addressing logic specify if the data needs rotating and if so, by how 
much. Data rotator Bis similar to rotator A. Each input byte is muxed to one of four output byte posi­
tions as determined by the AO, A1 code. The output of rotator Bis applied to the memory data register 
(MOR) via an OR gate. Other OR gate inputs are from data rotator C and the MDR feedback AND 
gate. These two sources are disabled by MDR DAT OUT EN true and 2ND MEM CYC false respec­
tively thereby leaving data rotator B as the only MDR input source. The first cycle data is latched into 
the MDR by TO CLOCK. The data output from the MDR is applied to byte selector B which selects 
the desired bytes as determined by the AO, A I code. 

The second cycle starts with the assertion of 2ND MEM CYC which disables data rotator B and en­
ables the MDR feedback path so the MDR output wraps around and becomes the MDR input. TO 
CLOCK latches up the same data thereby holding the first cycle data in the MDR for the second cycle. 
With 2ND MEM CYC true, the selected first cycle bytes are coupled from byte selector B to the MC 
bus via the MC bus driver. A second "read array /ECC check" operation is performed on the memory 
array placing the second longword on the array bus. The data longword is input to data rotator A where 
the required byte rotation is performed. The true state of 2ND MEM CYC routes the rotator output 
through byte selector A where the desired bytes are selected from the second cycle data and placed 
onto the MC bus via the MC bus driver. 
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2.8.3 Data Rotation - Write Operation (Figures 2-46 and 2-48) 

2.8.3.1 One-Cycle Write - To perform a write operation, MDR DAT OUT EN is negated enabling 
data rotator C and disabling data rotator B. Data from the CPU or the UNIBUS is placed on the MC 
bus and input to data rotator C. AO and Ai from the addressing logic specify if the data needs rotating 
and if so, by how much. Data rotator C is a mux and functions identically to data rotators A and B. The 
input data is rotated (shifted left), if necessary, and then output to the MDR via an OR gate. Data 
rotator Band the MDR feedback AND gate are disabled by MDR DAT EN false and 2ND MEM 
CYC false, respectively, thereby leaving data rotator C as the only MDR input source. The data is 
latched into the MDR by TO CLOCK. A "read array /ECC check" operation is performed wherein the 
data in the addressed longword array location is read out, an ECC check performed, and the data 
latched up in the ECC data out latch (Figure 2-42). DIR WR BYT EN is then asserted to output the 
MDR data onto the array bus. An "ECC check bit generation/write array" operation is performed 
during which the new data bytes to be written into the longword array location are latched into the 
ECC data out latch. Check bits are generated for the new longword now in the data out latch and the 
longword and the generated check bits are placed onto the array bus and written into the memory array. 

2.8.3.2 Two-Cycle Write - If data is to be written into two memory array locations, a two-cycle write 
is performed. The first cycle is identical to a one-cycle write, and the second cycle is almost identical to 
the first. During the second cycle, the write data is held in the MDR (no data is rotated) and a second 
read and write of the memory is performed. 

The first cycle of a two-cycle write is as described in Paragraph 2.8.3.1 (One-Cycle Write). Upon com­
pletion of the first cycle, 2ND MEM CYC asserts disabling data rotator C and enabling the MDR 
feedback path so that the MDR output wraps around to the MDR input. TO CLOCK latches up the 
input thereby holding the first cycle data in the MDR for the second cycle. A second "read array /ECC 
check" operation is performed wherein the data in the second longword array location is read out, 
checked by the ECC logic, and latched up in the ECC data out latch. DIR WR BYT EN asserts plac­
ing the MDR output on the array bus once again. Another "ECC check bit generation/write array" 
operation is performed where the data bytes to be written into the second longword location are latched 
into the ECC data out latch. New check bits are generated and the longword, together with its associ­
ated check bits, are placed onto the array bus and written into the second longword location in the· 
memory array. 
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2.8.4 Data Rotation Control and Byte Selection Logic (Figure 2-49) 

2.8.4.1 General - The data rotation control and byte selection logic determines how much data rota­
tion is necessary (if any) and generates the Al, AO control signals for the data rotator. The logic also 
determines if two memory cycles are required and which bytes are to be replaced in the ECC data out 
latch during a write operation. To accomplish this, the logic looks at the two least significant bits from 
the virtual address bus, the type of data transfer (byte, word, or longword), and the source of the refer­
ence request (CPU or UNIBUS device). The logic also responds to rotational commands (ROT 
C< 1 :0>) and special function commands (SPF <2:0> from the memory controller microword. 

2.8.4.2 Data Rotator Control - The data rotator control generates the Al and AO control signals for 
the data rotator. To determine if data rotation is required, the rotator senses the byte location of the 
reference address within the array via bits L VA <01 :00> from the virtual address bus. If a UNIBUS 
reference is being made (CPH/UBL false) the BYTE OFFSET bit from the translation buffer is also 
examined. The data rotator control code generated by the logic is shown in Table 2-11. 

The direction of shift is right for a read operation and left for a write operation. The direction of shift is 
implemented within the data rotator logic where different rotators are used for read and write oper­
ations (Paragraph 2.8.2.1 ). 

2.8.4.3 Data Type Logic - The data type logic generates an RS< 1 :0> code specifying the type of 
data being transferred (byte, word, or longword). The CPU indicates the type of data being transferred 
in a CPU operation by DATA TYPE <1:0> from the DAP module. A UNIBUS device indicates the 
type of data being transferred in a UNIBUS operation by the UNIBUS control bits UB C< 1:0>. The 
signals are coupled through a flow-thru latch and are applied to the data type logic as L DT < 1 :0> 
and L UB C<l:O> respectively. CPH/UBL sets the logic for a CPU or a UNIBUS operation. The 
RS< 1 :0> codes generated for a CPU transfer and a UNIBUS transfer are shown in Tables 2-12 and 
2-13 respectively. 

2.8.4.4 Data Out Latch Byte Select - The data type RS code is applied to the data out latch byte 
select logic. The select logic generates four LAT OUTPUT BYT signals for the data out latch in the 
ECC logic. During a write operation (except for an aligned longword write) only selected bytes are 
latched into the ECC data out latch (Paragraph 2.7.2). The select logic determines which bytes are to 
be latched, and outputs the proper LAT OUTPUT BYT signal(s) accordingly. (For an aligned long­
word write operation or a read operation, all four LAT OUTPUT BYT signals are asserted.) To per­
form its function, the select logic looks at the amount of data rotation (Al, AO) and the data type (RS 1, 
RSO), and determines if this is a CPU or a UNIBUS device transfer (CPH/UBL) and if this is the 
second cycle of a two-cycle access (2ND MEM CYC). 

Table 2-11 Data Rotator Control Code 

At 

0 
0 
1 
1 

AO 

0 
1 
0 
1 

Byte Shift 

No rotation 
Shift 1 byte 
Shift 2 bytes 
Shift 3 bytes 
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Table 2-12 Data Type Bits vs RS Code for CPU Transfers 

Data Type Bits RS Bits Data Type 

LDT 1 LDTO RS 1 RSO 

0 0 0 0 Byte 
0 1 0 1 Word 
1 0 1 0 
1 1 1 1 Longword 

Table 2-13 UNIBUS Control Bits vs RS Code for UNIBUS Transfers 

UNIBUS Control Bits RS Bits Data Type 

L UBCt LUBCO RSI RSO 

1 1 0 0 Byte 
1 0 0 1 Word 
0 1 0 1 Word 
0 0 0 1 Word 

2.8.4.5 Second Cycle Decoder - A second cycle decoder responds to the microword special function 
code (SPF <2:0> and asserts 2ND MEM CYC to the microsequencer and the data rotator during the 
second cycle of a two-cycle access. 

2.8.4.6 Two-Cycle Detector - A two-cycle detector senses that an operation is going to require two 
memory array cycles. The detector looks at the byte position of the reference address (L VA <01 :00>) 
and the type of data being referenced. The data type is indicated by LDT< 1 :0> for a CPU operation 
and L UB C<l:O> for a UNIBUS operation. CPH/UBL specifies which operation is being executed. 
Knowing the referenced byte position within the array and the type (length) of data to be transferred, 
the detector senses if two memory cycles are required and if so, asserts 2 MEM CYCLES to the micro­
sequencer branch logic. 

2.8.4.7 ALIGN LW - Another microsequencer branch signal generated in the data rotation control 
and byte selection logic is ALIGN L W. If the byte position referenced is byte 0 (L VA 01 and L VA 00 
both false) and the data type is a longword (D DTl and L DTO both true), then the reference is to an 
aligned longword and the microsequencer branches accordingly. 
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2.9 ERROR LOGIC AND CSR REGISTERS 

2.9.1 General 
There are three CSR registers that receive control and test signals from, and report error status to, the 
CPU. These are CSRO, CSR 1, and CSR2. * Figure 2-50 illustrates the three registers and their con­
tents. CSRO is a read only register that contains the seven syndrome bits, if a CPU to memory transac­
tion encountered a correctable read data error, or the seven check bits if a CPU to memory transaction 
encountered an uncorrectable error. CSRl contains control bits and error information on CPU to mem­
ory transactions. It also contains some diagnostic check bits. The error bits are read only while the 
control bits are read/write. CSR2 is a read only register containing error information on UNIBUS to 
memory transactions. 

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0 

1-f f Ff-FEfff fffff±±±++++FF f~~~~~~f13 
T 3216 8 4 2 1 
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*CSRO, CSR I, and CSR2 referred to here are real hardware registers as opposed to memory adapter registers CSRO, CSR I, 
and CSR2. The memory adapter registers are simulated by the CPU to the VAX operating system (Paragraph 2.5.3). 
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Figure 2-51 is a block diagram of the error logic and CSR registers. Refer to it throughout the rest of 
this section. 

A RD CSR decoder and a CSR write decoder generate the read/write control signals for the registers. 
The decoders receive a two bit code (LVA <03:02>) from the virtual address bus that selects which 
register is to be addressed. The decoder outputs are enabled at the proper time by RD CSR and WR 
CSR from the microword. 

2.9.2 CSRO Check Bit/Syndrome Register 
CSRO is a read only register. BUS ARRAY CB<T,32,16,8,4,2,1 > are clocked into CSRO from the 
array bus by CSR CB/SYN CLK from the microword. BUS ARRAY CB <T,32,16,8,4,2,l> are syn­
dromes if a correctable error occurred during a CPU to memory transaction, or check bits if a non­
correctable error occurred. The assertion of RD CSRO places the syndromes (or check bits) onto bits 
<06:00> of the MC bus for transfer to the CPU for analysis. 

2.9.3 CSRl ECC Diagnostic Check Bits <06:00> 
Bits <06:00> of CSRl are write only bits that are clocked in from the MC bus by WR CSRl from 
the CSR write decoder. The seven bits are diagnostic check bits used to check the ECC logic. They are 
placed onto the check bit lines of the array bus by CSR CB EN from the microword. 

2.9.4 CSRl CPU/Memory Control Bits <29:25> 
Bits <29:25> of CSRl are read/write bits that are clocked in from the MC bus by WR CSRl from 
the CSR write decoder. The five bits are control bits from the CPU used to control operations within 
the memory controller. The bits are shown in Figure 2-52 and described in Paragraphs 2.9.4.1 through 
2.9.4.5. 

The bits are read out to the MC bus by RD CSRl from the RD CSR decoder, and cleared by a power 
up (UBS DCLO) or system initialization (CINIT). 

2.9.4.1 ECC DIS <25> - Bit 25 is the error correction bit. When this bit is set it disables the ECC 
correction logic. When the correction logic is disabled, the following actions occur. 

On a CPU to memory read, the check bits from the array are logged into bits <06:00> of CSRO. This 
gives a means of directly reading the check bits stored in the memory array. 

On a CPU aligned longword write to memory, the check bits generated on the longword will be stored 
in bits <06:00> of CSRO as well as in the memory array. This gives a means of diagnosing the ECC 
logic. 

If on a CPU to memory read, a CRD occurs it will be logged in bit <30> of CSRl and the check bits 
will be placed in CSRO. 

RDS errors will be handled as in normal operating mode. 

Unaligned CPU writes to memory and UNIBUS reads or writes to memory will not be allowed. 

If both DIAG CHK bit and ECC DIS bit are set, the memory will operate as with just ECC DIS true, 
except that bits <06:00> of CSRl will be clocked into CSRO on every CPU to memory read cycle. 
This checks the signal path from the output of CSRl to the input of CSRO via the array bus. 
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2.9.4.2 DIAG CHK <26> - Bit 26 is the diagnostic check bit. When this bit is set, the memory 
controller is in the diagnostic mode. This allows bits <06:00> of CSRl to be substituted for the check 
bits read from the array in order to test the ECC logic. This mode is only recognized for CPU to memo­
ry one cycle reads (i.e., not recognized for any write cycles or UNIBUS initiated reads). CRD and RDS 
error information is logged per normal running mode. This bit together with the DIS ECC bit is also 
used to control microdiagnostic tests of the memory controller. 

2.9.4.3 MME <27> - Bit 27 is the memory management enable bit. This bit enables translations via 
the translation buffer. If this bit is not set the CPU address will map directly into physical memory. 
Note that the UNIBUS map is always enabled. 

2.9.4.4 INH REP CRD <28> - Bit 28 is the bit that inhibits reporting the occurrence of correctable 
read data errors (CRDs). When this bit is set, all CRDs will still be corrected by the ECC logic and 
syndromes will be logged in bits <06:00> of CSRO, however, the CRD bit (CSRl <30>) will not be 
set. When the ECC DIS bit is set, INH REP CRD is overridden as all single errors are uncorrectable. 

2.9.4.5 TB PAR DIAG <29> - Bit 29 is the translation buffer parity diagnostic bit. When this bit is 
set it will cause TB PAR ERR on any access to a TB entry in the translation buffer. 

2.9.5 CSRl CPU /Memory Data Error Bits <31:30> 
Bits <31 :30> of CSRl are read only, data error bits indicating that a CRD (correctable) or an RDS 
(uncorrectable) error has been obtained on a CPU to memory transaction. The bits are clocked by CSR 
ERR ADDR CLK A from the controller microword. The logic asserting the bits is shown in Figure 2-
53 and described in Paragraphs 2.9.5.1 and 2.9.5.2. The bits are read out to the MC bus by RD CSRl 
from the RD CSR decoder and cleared by either WR CSR or CSR ERR SUM CLK. The assertion of 
either will clear the CRD/RDS bits except that CSR ERR SUM CLK will not clear the bits during the 
second cycle of a two-cycle memory access (2ND MEM CYC true). Thus a data error bit set during 
the first cycle is retained until the end of the second cycle when the CPU will read the CSRs. The CPU 
then checks to determine which memory cycle contained the error. 
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2.9.5.1 CRD <30> - This bit is set if on any CPU read to memory a single bit data error is detected 
and corrected. If the CPU has control of memory (CPH/UBL true), errors are being reported (LINH 
REP CRD false), and there is a correctable error (both ERROR and SINGLE ERR true), the next 
assertion of CSR ERR ADDR CLK A will clock L CRD set. Once set, L CRD latches itself up via an 
OR gate feedback path. The assertion of WR CSR releases the latch. The assertion of CSR ERR SUM 
CLK also releases the latch except during the second cycle of a two-cycle operation. 

2.9.5.2 RDS <31 > - This bit is set if on any CPU read to memory an uncorrectable data error is 
encountered. If the CPU has control of memory (CPH/UBL true), and ERROR is true but SINGLE 
ERR is false, the next assertion of CSR ERR ADDR CLK A will clock L RDS set. Once set, L RDS 
latches itself up via an OR gate feedback path. The assertion of WR CSR releases the latch. The asser­
tion of CSR ERR SUM CLK also releases the latch except during the second cycle of a two-cycle 
operation. 

2.9.6 CSRl CPU/Memory Transaction Error Bits <23:14> 
Bits <23:14> of CSRl are read only bits indicating various errors associated with a CPU to memory 
transaction. The bits are clocked set by CPU ERR SUM CLK from the controller microword. The 
logic asserting the ten error bits is shown in Figure 2-54 and described in Paragraphs 2.9.6.1 through 
2.9.6.10. The bits are read out to the MC bus by RD CSRl from the RD CSR decoder. Bits <16:15>, 
<23:20> are cleared by CLR ERR from the microword. Bits <14>, <19:17> are cleared by CLR 
ERR except during a CPU WR CHK operation (RD CSR asserted). 

2.9.6.1 VALID <14> - This bit is set if a CPU access to the translation buffer finds the TB entry 
VALID bit not set.* This bit ( < 14>) can be asserted only if memory management is enabled (ADDR 
PH false). 

*The TB entry VALID bit is set when the page referenced by the TB entry is in the working set. 
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PART 1 

NOTES: 

UB PH 
ADDR SEL 

CLR ERR 
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(C4J) RD CSR 

1. "C" DESIGNATIONS REFER TO 
MICROWORD BITS. 

2. LETTER DESIGNATIONS IN PARENTHESES 
REFER TO ENGINEERING DRAWINGS 
CONTAINING CORRESPONDING LOGIC. 
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(VALID) 

(TB PAR ERR) 

(TB MISS) 
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(MODIFY REF) 
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(UBBSY) 
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( FROM UB INTERFACE) -------t 
FIG. 2-1 

2 MEM CYCLES 

OP ERR 

(C47 ) RD CSR 

(~fh~~;JCONDCYCLEDECODER)--------t-t 

SINGLE ERR 

(
FROM ECG LOGIC 
FIG. 2-41 

1
_E_R_R_O_R ______ .----... 

(FROM UB INTERFACE FIG. 2-1) _C_P_H_l_U_B_L ___ __. 
(C45) CSR ERR ADDR CLK A 

FROM ) PHYSICAL 
ADDRESS 
SELECT 
LOGIC 
FIG. 2-24 

(

FROM TWO CYCLE) 
DETECTOR 
FIG. 2-49 

DATA 

ERR 

TO CPU ) 
AND 
BRANCH 
LOGIC 
FIG. 2-15 

COMPAT MODE 
.-------(FROM DAP MODULE IN CPU) 

(

FROM DATA ) 
ROTATOR CONTROL 
FIG. 2-49 

(UNALIGNED WORD) 

RSO } (FROM DATA) 
RS1 (LONGWORD) TYPE LOGIC 

FIG_ 2-49 

(

FROM MEMORY ) 
~------ SELECT DECODER 

FIG. 2-36; PART 1 

TK-6695 

Figure 2-54 CSR I CPU /Memory Transaction Error Bits and 
Error Summary Logic 
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2.9.6.2 TB PAR ERR < 15> - This bit is set if a CPU access to the translation buff er results in a 
parity error. This bit can be asserted only if memory management is enabled (ADDR PH false). 

2.9.6.3 NXM < 16> - This bit indicates that the memory select decoder referenced a memory ad­
dress where there is no memory array board (nonexistent memory). The bit is also asserted by ROT CO 
from the microword when: 

1. A CPU to UNIBUS request resulted in a SSYN timeout on the UNIBUS, or 

2. A passive BR release results from the CPU issuing an ISSUE BG command. 

2.9.6.4 UBBSY <17> - This bit indicates that a CPU transaction has the UNIBUS as a target but 
the UNIBUS is busy. The controller aborts the CPU transaction (Paragraph 2.2.2). 

The UBBSY bit is also set during the interlocked READ.V.WCHK.LOCK operation (RD CSR true) 
even if the UNIBUS is not the CPU target. This keeps the UNIBUS locked out during the read/write 
cycles of the operation. CLR ERR from the microword is used for this purpose. 

2.9.6.5 ADAPT REG SEL <18> -This bit indicates that the physical address (target) of a memory 
reference lies in the 3/4 megabyte UNIBUS adapter space between FO 0000 and FB FFFF (Figure 2-
31) . .The CPU (not the memory controller) handles this reference to memory. 

2.9.6.6 WR ACROSS PG ERR <19> -This bit is set if a CPU write (with a WCHK) attempts to 
write across a page boundary. The memory controller aborts the write cycle. The CPU then tests that 
the write access would be accepted in both pages, then repeats the write with a NOCHK. 

Refer to Figure 2-54. When the data control logic senses that two memory cycles are needed for a 
transaction (2 MEM CYCLES true), the error logic checks for either of two error conditions. One of 
the error conditions is a system address violation (SYS ADDR VIOL) which asserts if the second mem­
ory reference will cross system boundary space. The other error condition is crossing a page boundary 
during a CPU WR CHK operation (indicated by RD CSR true) when memory management is enabled 
(ADDR PH false). Either condition sets the WR ACROSS PG ERR bit. 

2.9.6.7 ILL UB OPER <20> - This bit is set by an operation error (OP ERR). OP ERR indicates 
that the CPU tried to perform a memory operation that is illegal in compatibility mode or tried to 
perform an illegal UNIBUS reference. 

In compatibility mode only bytes and words are transferred (not longwords). However, word transfers 
must be word aligned in the memory arrays (i.e., reference must be made to byte 0 or byte 2 locations). 
If a word (RSO true) is referenced to byte location 1 or 3 (AO True), OP ERR asserts. An unaligned 
word reference to the UNIBUS or any longword (RSl true) reference to the UNIBUS is always illegal 
and will assert OP ERR. 

2.9.6.8 TB MISS <21> - This bit indicates that the translation buffer tag didn't match bits 
<30:15> of the virtual address in the VAR, or the BYTE OFFSET bit was not set. The BYTE OFF­
SET bit is used in CPU address translations to indicate that the entry in the TB is a legitimate entry 
written in by the CPU. In either case, the CPU translates the address, loads the TB, and tries again. If 
TB PAR ERR is set, this bit is meaningless. This bit will assert only if memory management is enabled 
(ADDR PH false). 

2.9.6.9 ACCESS REF <22> - This bit signifies that the protection PROM has decided that the 
access requested by the CPU is not allowed. If the PAR ERR bit is set, this bit is meaningless. This bit 
will assert only if memory management is enabled (ADDR PH false). 
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2.9.6.10 MODIFY REF <23> - This bit means that the modify bit was not set in a TB entry refer­
enced with a "WCHK" protection request. When an unmodified page is to be written into, it is required 
that the MODIFY bit be set before the write operation executes. This bit asserts ERR SUM to the 
CPU which sets the MODIFY bit and retries the "WCHK" operation. This bit will assert only if mem­
ory management is enabled (ADDR PH false). 

2.9.7 CPU /Memory Error Summary (Figure 2-54) 
The ten CPU/memory translation error bits are ORed to assert ERR SUM to the CPU. Upon receiving 
ERR SUM, the CPU reads CSRl to determine the type of error. 

ERR SUM is also asserted by DAT A ERR obtained from data error logic that is similar to the 
CRD /RDS error logic of Paragraph 2.9.5. Referto Figure 2-54. If this is a CPU /memory transaction 
(CPH/UBL true), an error is detected in the ECC logic (ERROR true), and the data error logic is 
clocked by CSR ERR ADDR CLK A, then DATA ERR asserts if one of the following is true. 

1. The ECC logic is disabled. 

2. The error is not a single bit error (SINGLE ERR false). 

3. The error is a single bit error and reporting of single errors is allowed (L INH REP CRD 
false). 

When DATA ERR asserts, it is latched up by one of the following. 

1. The memory controller is referencing the UNIBUS (CPH/UBL false). 

2. A second memory cycle is in progress. 

3. CSR ERR SUM CLK is false and has not cleared the CRD/RDS bits of CSRI. 

The DATA ERR latch is released by a write to CSRl (WR CSR true). 

2.9.8 CSR2 UB/Memory Error Bits <31 >, < 16:14> 
CSR2 is a read only register containing four error bits relating to UNIBUS to memory transactions. 
The remaining 28 bits of the register are not used. The error bits are clocked by CSR2 CLK from the 
CSR write decoder. The logic asserting the bits is shown in Figure 2-55 and described in Paragraphs 
2.9.8.1 through 2.9.8.4. The bits are read out to the MC bus by RD CSR2 from the RD CSR decoder, 
and cleared by CLR ERR from the controller microword. 

The UNIBUS error logic allows only one of the four error bits (the first to occur) to be set. The input 
logic for each bit contains feedback from the other bits such that, if any of the three bits is already set, 
the feedback will inhibit the setting of the fourth bit. 
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2.9.8.1 WR NOT VALID <14> - This bit is set if, during a two-cycle operation, an attempt is made 
to write into a page that does not have a valid entry in the translation buffer.* 

Refer to Figure 2-55. If memory management is enabled (ADDR PH false) and two memory cycles are 
needed for the transaction (2 MEM CYCLES true), the UNIBUS error logic checks the VALID bit 
from the TB entry. If the bit is not set, there is no TB entry for the referenced page and the WR NOT 
VALID bit in CSR2 is set. 

When WR NOT VALID sets, the write operation is aborted and SSYN is inhibited to the UNIBUS 
device. 

2.9.8.2 UB TB PAR ERR <15> - This bit is set if a UNIBUS/memory transaction results in a TB 
parity error (TB PAR ERR). The transaction is aborted and SSYN inhibited resulting in a UNIBUS 
timeout. 

2.9.8.3 UB NXM < 16> - This bit is set if a UNIBUS request referenced a nonexistent array card. 

2.9.8.4 UB RDS <31> - This bit is set if on any UNIBUS read to memory an uncorrectable data 
error is encountered. 

The bit is asserted by UBL RDS obtained from RDS logic shown in Figure 2-55. If the UNIBUS has 
access to memory (CPH/UBL false) and an uncorrectable error exists (ERROR true and SINGLE 
ERR false), the next assertion of CSR ERR ADDR CLK A will clock UBL RDS into the UB RDS 
flip-flop of CSR2. 

UBL RDS latches itself up via an OR gate. The latch is released by CLR UB RDS whenever CSRl is 
written (WR CSR true) and the correct LVA <03:02> code is obtained from the virtual address bus. 

When this bit is set, the memory controller inhibits a SSYN response to the UNIBUS device and the 
UNIBUS times out. The UNIBUS device sets its own NXM bit. 

2.9.9 UNIBUS/Memory Error Summary (Figure 2-55) 
A summation of UNIBUS errors (UB ERR SUM) is generated and sent to the microsequencer branch 
logic. The components making up this signal are: 

1. NXM true, 
2. TB PAR ERR true, 
3. WR NOT VALID true, and 
4. VALID false. 

When UB ERR SUM asserts, the memory controller does not assert SSYN thereby causing the UN­
IBUS device to timeout. This in turn causes the device to interrupt the CPU which enters the ISR 
(interrupt service routine) to find out what the error was (by reading CSR2). 

*In a one-cycle operation, if an attempt is made to write into a page that does not have a valid entry in the translation buffer 
(VALID bit not set), the operation is aborted before CSR2 is clocked and UB ERR SUM is checked (refer to Figure 2-27). 
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3.1 GENERAL 

CHAPTER3 
USING THE PROM MICROCODE LISTING 

A 512 X 72 bit PROM on the MCT module outputs a 72-bit microword on each transition of TO 
CLOCK. The microword contains MCT control signals and thereby causes specific operations to be 
performed on the MCT module. The microword also contains next address bits and branching bits to 
formulate the PROM's next address and thus select the next microword output. Refer to Section 2.3 for 
a logic description of how the microsequencer functions to select the PROM's next address. This chap­
ter illustrates how to use the PROM listing in the engineering documentation to determine the next 
address and thereby follow through the MCT routines. 

3.2 MICROCODE LISTING 
The microcode listing is divided into four parts. 

1 . Definitions File 
Starting with microword bit (field) 71, the name of each field is given, its state when asserted 
and negated (1 or 0), and its default state. 

2. MACRO Definition File 
MACROs used within the body of the microcode are defined. The pertinent microword fields 
and their states are listed for each MACRO. 

3. Microcode Body 
This section of the listing specifies the PROM address, the microword, the state of the per­
tinent fields, MACROs used (if any), branch conditions (if any), and notes. 

4. Cross Reference Listings 
The following three cross reference lists are given. 

a. Field Names vs Line Numbers 
Field names are listed alphabetically and the line number given where that field is de­
fined. 

b. MACRO Names vs Line Numbers 
MACRO names are listed alphabetically and the line number given where the MACRO 
is defined. 

c. Memory Location vs Line Number 
Memory locations are listed numerically and the line number where they can be found. 
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3.3 MICROWORD 
The hexadecimal characters of the microwords m the listings are segmented into groups of four as 
shown in the following example. 

C3E6, 8EE9, B041, BCOl, 01 

Figure 3-1 identifies each field in the microword and groups the bits in rows of 16 corresponding to the 
four hex bits of the microword notation. The nine NAD (next address) bits are the two least significant 
hex characters plus the least significant bit of the third hex character. The BEN (branch enable) bits 
for BEN 0, BEN 1, BEN 2, and BEN 3 are also identified. 

71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 

ARB UB UB UB UB LAT TB TB TB ARB CONT TB ROT 
co DIR DIR BBSY MSYN SSYN DAT ADA OUT- DATA DATA DATA C1 FUNC WE C1 
H EN LATCH A H H EN EN PUT EN+ EN DIR H LAT L H 

L L H L L L MAINT L RD L 
L L 

BEN 3 

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 

GATE C54 C53 C52 DIR SPF MOR CPU RD WR CSR CSR CSR CSR ROT CLR 
DIR H H H WR 1 DAT ERR CSR CSR ERR CB/ CB ERR co ERR 
H BYT H OUT SUM L L ADDR SYN EN SUM H L 

EN EN CLK CLKA CLK L CLK 
L L H L H H 

39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 

STALL MEM ALLOW I LD ARY ARY ROT RAS OUT- SPF CORR OUT- GEN- OUT- LAT LAT 
MBSY BSY REF IB DR WAT CLOCK EN PUT 2 DIS PUT ERATE PUT CB DAT 
L H H L EN TIM H H BYT H L CB/ H CB REG IN 

H H (0-3) SYN BUS L H 
H H H 

BEN 2 BEN 1 BEN 0 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 

MAINT SPF VAR VAR VAR DISP C17 C16 C15 C14 C13 C12 C11 C10 C9 CB 
RD 0 LOAD CNTR L BYP EN H H H H H H H H H H 
ADDR H H H H L 
L 

) 
( 

NAD 

I 7 I 6 5 I 
4 3 I 

2 

I 1 I 0 

C7 C6 C5 C4 C3 C2 C1 co 
H H H H H H H H 

TK-6572 

Figure 3-1 Microword Fields 
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3.4 READING THE MICROCODE LISTING 
An exercise follows which involves reading the microcode listing. The exercise steps through the power­
up sequence into the idle microstate, then into the dispatch microstate, and finally through a "write to 
the array" operation. The memory location of each step of the sequence is computed from the micro­
word at the preceding location. Work forms (Figure 3-2) are used to present a suggested approach to 
reading the microword and interpreting the microword fields. 

The MACROs used and the branch conditions (if any) for each microword is provided on the exercise 
forms. This data would be found in the body of the microcode listing. The listing itself is not used for 
the exercise due to changes that occur in the PROM routines and the resulting relocation of PROM 
microwords. The primary purpose of the exercise is not to show the power-up and WRITE.V.WCHK 
routines, but to illustrate reading of the listing and following an operation through to its conclusion. 
Using the method shown, the most recent revision of the listing can be read and current routines can be 
examined. 

Figure 3-2 is the form used for the exercise. The nine PROM ADRS bits are given and the sources 
from which the ADRS bits are obtained. Microword bits C <8:4> are the source for address bits 
ADRS <8:4> respectively.* The source for address bits ADRS <3:0> is the branch condition se­
lected by branch enable mux 3 through 0 respectively. When the three BEN select bits of any mux are 
all O's, the respective "C" bit is selected. The actual NAO is formed from the microword "C" bits and 
the BEN branches (if any). The actual NAD in hex is then noted. 

The procedure used in the exercise is as follows: 

I. Record the memory location (hex) and the microword. 

2. Record the N AD from the microword. 

3. Record the three BEN bits for each of the four branch muxes. 

4. Record any branch conditions selected by the BEN bits. (Branch conditions are found in the 
"definitions file" of the microcode listings). t 

5. Record the actual NAD bits selected by branch conditions (if any). 

6. Record the remaining NAD bits from the microword NAD. 

7. Record the actual NAD in hex and find the next location. (When using the listing, refer to 
the "memory location vs line number" cross reference listing). 

Figure 3-2a through 3-20 trace the PROM microwords through a power-up/write array routine. When 
power is applied to the V AX-11/730 the PROM is forced to location 100, the starting point of the power­
up routine (refer to Paragraphs 2.3.5 and 2.3.6). 

Figure 3-3 is a flow diagram of the exercise showing all the locations and branch conditions contained in 
the exercise sheets. The sheets specify the state of the branch conditions. The flow diagram also shows 
the location that would be reached if the branch condition were of the opposite state. A brief descrip­
tion is given of what would occur if the alternate branch were taken. 

Flow diagrams can be made from the microcode listing for any of the routines contained in the PROM. 

*Except during the dispatch microstate. Refer to Figure 3-2d. 

tNote that branch conditions that are asserted low are followed by L. Otherwise the condition is asserted high. 
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ADDRESS; U 100 
(HEX) 

MICROWORD; C3E6, 8££9, 8041, BCOT, 01 

MACROS; PWR.FAIL: 

NAO (FROM 
MICROWORD); 
(HEX) 

BENO; 

BEN1; 

BEN2; 

BEN3; 

ADRS; 

IDLE, 
ARB.CLEAR.CPUG, 
SET.DATO 

101 

000--. co 
000--+ CT 

000 --. C2 

000 --+ CJ 

7 6 5 4 

SOURCE; CB 

ACTUAL 
NAO; 

Cl C6 C5 C4 

0 0 0 0 

ACTUAL NAO (HEX); U 101 

Figure 3-2a Microcode Exercise Form 
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ADDRESS; U 101 
(HEX) 
MICROWORD; 43E6, BAE9, 8001, BCOO, 06 

MACROS; IDLE, 

NAO/IDLE 

NAO (FROM 
MICROWORD); 006 
(HEX) 

BENO; ____ a_a_o __ ----. ______ c_v ____ _ 

BEN1; ____ a_a_D __ ---+ ______ c_1 ____ _ 

BEN2; ____ a_a_o __ ---. ______ c._i ____ _ 

BEN3; ____ a_a_o __ ___. ______ c._'3 ____ _ 

ADRS; 8 7 6 5 4 

SOURCE; CB 

ACTUAL 
"NAO; 

Cl C6 C5 C4 

0 0 0 0 0 

ACTUAL NAO (HEX); U 006 

Figure 3-2b Microcode Exercise Form 
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ADDRESS; U 006 
(HEX) 
MICROWORD; 43E6, 8AE9, 8001, BClE, 04 

MACROS; IDLE: 

NAD (FROM 
MICROWORD); 
(HEX) 

BENO; 

BEN1; 

BEN2; 

BEN3; 

IDLE, 
BENT!CPUG.L, 
BENO/LMSYN, 
NAO/CT 

004 

111 ___.... 
111 ---+ 

000 ___.... 
000 ---+ 

MSYN is not asserted. 
CPUG. L has been asserted by the arbitrator. 

ADRS; 8 7 6 5 

SOURCE; CB Cl C6 cs 

ACTUAL 
0 NAD; 0 0 0 

ACTUAL NAD (HEX); u 004 

LMSYN 

CPUG.L 

Cl 

CJ 

4 

C4 

0 

Figure 3-2c Microcode Exercise Form 
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ADDA ESS; U 004 
(HEX) 
MICROWORD; 43E2, 9AE9, 900T, 8800, 02 

MACROS; CT: START.ADDR.PROM, 
NAD!CPU.ISTREAM.REO 

NAO (FROM 
MICROWORD); 002 

(HEX) 
BENO; 000 ___. co 

BEN1; 000 ---+ CT 

BEN2; 000 ___. C2 

BEN3; DOT ---+ CSROl 

CTB (DJSP EN L) is asserted indicating that this 
is the CPU dispatch microstate. The CSR bits 
from the CPU are used to formulate the NAD. 

ADRS; 8 7 6 5 4 3 2 1 0 

SOURCE; CB 

ACTUAL 
NAO; 

CSRTB CSRTl CSRT6 CSROB BEN3 BEN2 BENT BENO ---------
0 0 T 0 T 0 0 

ACTUAL NAO (HEX); U 06A 
TK-6608C 

Figure 3-2d Microcode Exercise Form 
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ADDRESS; U 06A 
(HEX) 
MICROWORD; 43E2, OA69, D30T, 9CT4, 84 

MACROS; WRITE V.WCHK: 

NAO (FROM 

RAS.EN/ON, 
BYPBSY, 
ROT.CLOCK/CLOCK 
RD.CSR/READ, 
BENT !REF.IN.PROG, 
BENO!UB.PH.ADDR.SEL.L, 
NADNVR.UBS.CYC.WCHK 

MICROWORD); __ 0_84 __ 
(HEX) 

BENO; OTO --+ UB.PH.ADDR.SEL.L 

BEN1; OOT ---+ REF.IN.PROG 

BEN2; 000 --+ C2 

BEN3; 000 ---+ C3 

A refresh cycle is not in progress. 
The translated physical address is not a UNIBUS address. 

ADRS; 8 7 6 5 4 3 2 0 

SOURCE; CB 

ACTUAL 
NAO; 0 

Cl C6 

0 

ACTUAL NAO (HEX); U 085 

C5 C4 

0 0 

Figure 3-2e Microcode Exercise Form 
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ADDRESS; U 085 
(HEX) 

MICROWORD; 43E2, OA69, D90T, 9COT, CT 

MACROS; ;WRITE TO ARRAYS 

;=OT 
WR.ARRY.C4.WCHK: 

BYPBSY, 
READ.ARRA Y, 
RD.CSR/READ, 
NAO ;WR.ARR Y. C5. WCH K 

NAD (FROM 
MICROWORD); TCT 
(HEX) 

BENO; 000 ---.... co 
BEN1; 000 ~ CT 

BEN2; 000 ~ C2 

BEN3; 000 ~ C3 

ADRS; 8 7 6 5 

SOURCE; CB Cl C6 C5 

ACTUAL 
0 NAD; 

ACTUAL NAD (HEX); u TCT 

4 

C4 

0 

Figure 3-2f Microcode Exercise Form 
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ADDRESS; U 1C1 
(HEX) 

MICROWORD; 4362, 086D, D902, 9£81, 02 

MACROS; WR.ARRY.C5.WCHK: BYPBSY, 
READ.ARRAY, 
OPEN.ECG, 
RD.CSR/READ, 
CSR.ERR.SUM.CLK/CLOCK, 
CPU.ERR.SUM.CLK/CLOCK, 
BEN2/ALIGN.LW.L, 
NAD M'R.A RR Y.A LIGN. LW. C6 

NAD(FROM 
MICROWORD); 102 
(HEX) 

BENO; __ oa_o __ ---. ____ co __ _ 
BEN1; __ 00_0 __ ---. ______ C_1 ____ 

BEN2; ____ 10_1 ___ ---. ____ A_L_IG_N._. L_W._._L 

BEN3; ____ oo_o ___ ---. _____ C3 ___ _ 

The data to be written is not an aligned longword. 

ADRS; 8 7 6 5 4 3 2 1 0 

SOURCE; CB Cl C6 C5 C4 BEN3 BEN2 BEN1 BENO ---------
ACTUAL 

0 0 0 0 NAO; 0 1 0 

ACTUAL NAO (HEX); u 106 

TK-6608F 

Figure 3-2g Microcode Exercise Form 
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ADDRESS; U 106 
(HEX) 
MICROWORD; 4362, BAE9, 5902, 9D01, 15 

MACROS; WR.ARRY.C6: 
BYPBSY, 
GA TE.DIR/READ.CPU, 
READ.ARRAY, 
OPEN.ECC, 
STALL.MEM.BUSY!STALL, 
BEN2/ERR.SUM.L, 

NAD (FROM 
NAD!WR.ARRY.Cl 

MICROWORD); 115 
(HEX) 

BENO; 000 __,.. co 
BEN1; 000 __..,. CT 

BEN2; 010 __,.. ERR.SUM.l 

BEN3; 000 __..,. CJ 

There are no translation errors. 

ADRS; 8 7 6 5 4 

SOURCE; CB 

ACTUAL 
NAD; 

Cl C6 C5 C4 

0 0 0 

ACTUAL NAD (HEX); U 115 

Figure 3-2h Microcode Exercise Form 
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ADDRESS; U 115 
(HEX) 
MICROWORD; 43E2, BAEB, 1001, 9C66, lC 

MACROS; WR.ARRY.Cl: 

NAO (FROM 

WRITE.SUBSTITUTE, 
STALL.MEM.BUSY!STALL I 

VAR.BYPASS. EN/ON, 
GATE.DIR/READ.CPU, 
BEN1/LCPU.DR, 
BENO!ERROR.L, 
NAD!WR.ARRY.WDE.CB 

MICROWORD); __ Ol_C __ 
(HEX) 

BENO; 011 ~ ERROR.L 

BEN1; 110 __... LCPU.DR 

BEN2; 000 ---+ C2 

BEN3; 000 __... CJ 

There is no data error 
CPU has placed write data on MC bus (L CPU.DR asserted). 

ADRS; 8 7 6 5 4 3 

SOURCE; CB 

ACTUAL 
NAO; 0 

Cl C6 C5 C4 

0 

ACTUAL NAO (HEX); U OlF 

Figure 3-2i Microcode Exercise Form 
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ADDRESS; U OlF 
(HEX) 
MICROWORD; 4362, 86EB, 9000, 940T, TE 

MACROS; WR.ARRY.CB: GATE.DIR/READ.CPU, 

NAD(FROM 
MICROWORD); 
(HEX) 

BENO; 

BEN1; 

BEN2; 

BEN3; 

ADRS; 8 

SOURCE; CB 

ACTUAL 
NAO; 

11E 

000 

000 

000 

000 

7 

WRITE.SUBSTITUTE, 
SECOND.MEMORY. CYCLE, 
ECC.DATA.IN.LATCH!OPEN, 
ECC. 0 UTPUT. LA TCH!OPEN, 
MDR. TO.ARRAY.EN/ON, 
NAD$R.ARRY.C9 

--+ co 
---+ CT 

---+ C2 

---+ CJ 

6 5 4 3 

Cl C6 C5 C4 

0 0 0 

ACTUAL NAO (HEX); U 11E 

Figure 3-2j Microcode Exercise Form 
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ADDRESS; U 11E 
(HEX) 
MICROWORD; 43£2, OAEB, 9001, 94TT, TC 

MACROS; WR.ARRY.C9: 

NAO (FROM 
MICROWORD); 
(HEX) 

BENO; 

WRIT£SUBSTITUTE, 
BENT /REF.IN.PROG, 
NAD/WR.ARRY.CTO 

TTC 

000 ---+ co 
BEN1; OOT ---+ REF.IN.PROG 

BEN2; 000 ---+ C2 

BEN3; 000 ---+ C3 

A refresh cycle is not in progress. 

ADRS; 8 7 6 5 4 

SOURCE; CB Cl C6 C5 C4 

ACTUAL 
0 0 0 NAO; 

ACTUAL NAO (HEX); U 11C 

Figure 3-2k Microcode Exercise Form 
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ADDRESS; U 11C 
(HEX) 
MICROWORD; 43£2, OAEB, 9498, 9431, ID 

MACROS; WR.ARRY.CTO: 

NAO (FROM 
MICROWORD); 
(HEX) 

BENO; 

BEN1; 

BEN2; 

BEN3; 

ECC is not disabled. 

ADRS; 8 

SOURCE; CB 

ACTUAL 
NAO; 1 

WR /TE.SUBSTITUTE, 
ECC.DATA.IN.LATCH!OPEN, 
£CC.WRITE, 
WR.TIM/ON, 
BENT /LECC.D/S, 
NAD/111/R.ARRY.CTT 

11D 

000 ___,.. 
011 ---+ 

000 ___,.. 

000 ---+ 

7 6 5 

co 
LECC.D/S 

C2 

CJ 

4 

Cl CS C5 C4 

0 0 0 1 

ACTUAL NAO (HEX); U 11D 

Figure 3-21 Microcode Exercise Form 
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ADDRESS; U TTD 
(HEX) 
MICROWORD; 43£2, OAE9, 9598, 9401, 85 

MACROS; WR.ARRY.CTT: 

NAO (FROM 
MICROWORD); 
(HEX) 

BENO; 

BEN1; 

BEN2; 

BEN3; 

ADRS; 8 

SOURCE; CB 

ACTUAL 
NAO; 

WRITE.ARRAY, 
£CC.DATA.IN.LATCH/OPEN, 
£CC.WRITE, 
NADtWR.ARRY.C12 

185 

000 __,.. co 
000 ---+ CT 

000 __,.. C2 

000 ---+ CJ 

7 6 5 4 

Cl C6 C5 C4 

0 1 

ACTUAL NAO (HEX); u 185 

Figure 3-2m Microcode Exercise Form 
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ADDRESS; 
(HEX) 

u 185 

MICROWORD; C3E2, OAE9, 9599, 9421, 20 

MACROS; WR.ARRY.C12: 

NAO (FROM 
MICROWORD); 
(HEX) 

BENO; 

WRITE.ARRAY, 
£CC.WRITE, 
ARB.CLEAR.CPUG, 
BEN1/TWO.MEM.CYCLES.L, 
NAD!WR.ARRY.C13 

120 

000 ----+ co 
BEN1; 010 --+ TWO.MEM.CYCLES.L 

BEN2; 

BEN3; 

One memory cycle. 

ADRS; 8 

SOURCE; CB 

ACTUAL 
NAO; 

000 --+ 

000 --+ 

7 6 

Cl C6 

0 0 

ACTUAL NAO (HEX); U 122 

C2 

CJ 

5 4 

CS C4 

0 

Figure 3-2n Microcode Exercise Form 
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ADDRESS; U 122 
(HEX) 
MICROWORD; 43£2, OAE9, 9501, A400, 06 

MACROS; WR/TEAR RAY, 
VAR.CONTROL!LOAD.UB, 
NAD/IDLE 

NAO (FROM 
MICROWORD); 006 
(HEX) 

BENO; __ a_vo ___ --... ____ _;_co ____ __ 

BEN1; ____ 0_V_O __ ---+ ______ C_1 ____ _ 

BEN2; ____ a_v_o __ ---.. ______ c2 ____ __ 

BEN3; ___ a_vo __ ---+ ______ C3 ____ __ 

ADAS; 8 7 6 5 4 

SOURCE; CB 

ACTUAL 
NAO; 

Cl C6 CS C4 

0 0 0 0 0 

ACTUAL NAO (HEX); U 006 

Figure 3-20 Microcode Exercise Form 
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c 

YES 

007: 
A UNIBUS device is 
requesting the memory. 
A UNIBUS to memory 
operation will follow. 

Apply power to system. 

100: 
Reset arbitrator. 

101: 
Go to idle. 

Dispatch microstate. 
Dispatch PROM to 
starting address. 

06A: Start WRITE. 
V.WCHK operation. 

085: 
Write to array. 

A 

YES 

YES 

086/087:* 

Refresh is in progress. 

084: 

Write to UNIBUS. A CPU 
write-to-UN I BUS 
operation will follow. 

111: 
There is a translation 
error. Subsequent 
steps wi 11 abort the 
operation. 

070: 

YES 

* WILL GO TO ONE OF TWO LOCATIONS DEPENDING ON 
STATE OF OTHER BRANCH CONDITION. EITHER LOCATION 
WILL ACCOMPLISH FUNCTION DESCRIBED IN BLOCK. 

Figure 3-3 Power-Up/Write Array Flow Diagram 

1C1: 

115 

Clear CS Rs of old 
data errors. 

Place read data into ECC 
output register to form 
new longword. 

07F: 
Write data passes 
through data rotator. 

YES 

102: 

YES 

No old data to be saved. 
Therefore it is not 
necessary to read the 
array, perform an ECC 
check, or assemble a 
new longword. Sub· 
sequent steps will 
generate new check 
bits, write the new 
longword and check bits 
into array, terminate the 
operation and return to 
idle. 

07C/07E:* 

If single bit error, 
subsequent steps will 
correct error, write 
corrected data into array, 
and terminate normally. 
If multibit error, bad 
data is written back into 
array and operation is 
aborted. 

11E: 

Write data into ECC 
logic. Generate 
check bits. Place 
arrays in write mode. 

Output longword from 
ECC logic to array bus. 

1B5: 

Write array. End of 
array write cycle. 

122: 
Set VAR for UNIBUS 
input. Return to idle. 

YES 

11 F: 

YES 

This is a maintenance 
operation. Load 
generated check bits 
into CSRO. Sub· 
sequent steps will 
carry out diagnostic 
analysis. 

120: 

Increment VAR to 
next longword location. 
Subsequent steps will 
perform another write 
cycle to the array. 



A.I INTRODUCTION 

APPENDIX A 
PROGRAMMED ARRAY LOGIC DEVICES (PAL) 

Programmed array logic devices (PALs) are logic arrays incorporating fusable link technology. PALs 
are manufactured on a chip using the TTL shottky bipolar process used to make fusable link PROMs. 
Like PROMs, the PALs may be programmed to give a custom-designed chip unique to a specific re­
quirement. 

The basic logic configuration used in PALs is shown in Figure A-1. The circuitry consists of a program­
mable AND array connecting to a fixed OR array. Note that the AND array shown in the basic logic 
configuration has only four programmable (fusable-link) inputs and two fixed OR outputs. In the actual 
PAL circuits used in the VAX-11/730, up to 32 programmable AND inputs and up to 8 fixed OR 
inputs are used per output. 

An unprogrammed PAL has all fuses intact as indicated in Figure A-1 for the basic PAL circuit. A 
PAL is programmed by first determining the AND inputs to be used and then "blowing" the links for 
the unused AND inputs to give the desired AND before OR logic configuration. (A standard PROM 
programming device is used for this operation.) For example, the upper half of Figure A-2 shows the 
links blown to implement the XOR function AB V AB in the basic PAL logic configuration. This same 
logic function may also be represented as shown in the lower half of Figure A-2 where an "X" repre­
sents the links that are left intact to perform the logical AND. This last method of showing an AND 
array configuration is the convention used in the PAL plot listings provided in the VAX-11/730 micro­
fiche set. 

INPUT 1 

Fl 

OUTPUT 

F8 

INPUT2 

TK-6630 

Figure A-1 Basic PAL Logic Configuration 

A-1 



A 

F1 

ABV AB 

F4 

B 

A 

ABVAB 

B 

TK-6627 

Figure A-2 XOR Logic Function Using PAL Logic 

A.2 PAL DEVICE TYPES 
The four types of PALs used in the V AX-11/730 are listed in Table A-1. Logic diagrams for each PAL 
are given at the end of this appendix. 

With reference to the logical diagrams, it can be seen that the four PAL devices all use the basic AND 
before OR logic configuration discussed in Paragraph A. I. However, outputs from the 16L8 gate array 
chip are inverted and six of the eight outputs feed back to the AND arrays for added capability. In 
addition, the output inverters for these six outputs may be turned on and off by the AND arrays (pro­
grammable 1/0). This provides still more logic capability (when the inverter is turned off) in that it 
allows the corresponding output pin to be used as an input to the AND array just like a designated input 
pin. 

Also note from the logic diagrams that the 16R8 chip has register outputs (D-type flip-flops) and no 
gate outputs. Again, outputs are fed back to the AND array but not directly by way of the chip's output 
pins. Instead, the 0 outputs of the flip-flop drive the array. As a result, the output pins cannot be used as 
inputpins as for a 16L8. The other two PAL types, the 16R6 and the 16R4, have varying combinations 
of both gate and register outputs on the same chip. 
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Table A-1 PAL Device Types Used in VAX-11/730 

PAL 
Device Prog. Register 
Type Inputs Outputs IO Outputs Description 

16L8 16 8 6 0 AND-OR gate array 
16L8 16 8 0 8 AND-OR gate array with 

registers 
16R6 8 8 2 6 AND-OR array with 

registers 
16R4 8 8 4 4 AND-OR array with 

registers 

A.3 PAL SYMBOLOGY 
A typical PAL as represented in the VAX-11/730 Engineering Print Set is shown in Figure A-3. Infor­
mation within the symbol includes the device type, part number, and chip location. For example, the 
PAL in Figure A-3 is a 16R4 located at E50 with a part number equal to OIOK3. The PAL part number 
distinguishes one programmed PAL from another. Because PALs are programmed for specific appli­
cations, it is seldom that more than one PAL will have the same part number. 

Inputs to the designated PAL input pins are shown at the left of the PAL symbol. Outputs appear at the 
right. When an output pin is used as an input pin as discussed in Paragraph A.2, the input signal is 
entered at the left of the symbol and a dotted line (drawn across the PAL symbol) is used to show the 
connection to the output pin on the right. Pins having both input and output capability are labeled as 
1/0 on the PAL symbol. Gate outputs not having both input/out capability are labeled with an 0. 
Register outputs are identified by an R. Finally, designated input pins are specified by a D. 

A.4. READING THE PAL PLOT LISTING 
An example of the PAL plot listing is shown in Figure A-4. The part number and PAL device type (a 
l 6R6 in this case) are at the top of the listing. The input or output associated with each PAL pin is 
given next. (An NC indicates no connection; VCC indicates the + 5 V power source.) A low assertion 
level for input/output signals on the listing is indicated by a slash (/) immediately preceding the signal 
name. If there is no slash, the signal is asserted high. It should be remembered that input/output signal 
names on the listing are sometimes abbreviated and are not exactly the same as in the Engineering Print 
Set. 

The rest of the listing consists of the AND array plots for each output pin. An X represents the fusable 
links left intact; a dash(-) represents a blown link. More importantly (in order to read the listing), to the 
right of each line in a.plot is the list of signals selected by the intact links that make up the AND inputs. 
Because these individual AND terms are ORed by the PAL logic, the list of AND terms in the listing 
(ORed together) result in an easily read Boolean expression that represents the logic function per­
formed. For example, output pin 12 which is a gate output (refer to the 16R6 logic diagram) and the 
last plot in the listing, has the following input. 

vcc 
START_8085_CYC*lO*Al4* /RAS 
/RAS*STATE 
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BUSIBD06H 2 DO 

BUSIBD04H 
3 

Dl 

BUS I B D02 H 
4 

D2 

BUS I B 000 H 5 D3 

BUSY D06 H 
6 

D4 

BUS Y D04 H 
7 

D5 

BUS Y D02 H S D6 

BUS Y DOD H g D7 

PAL 16R4 
010K3 
E50 

R 
17 

DAPH OS 6 H 

R 
16 

DAPH OS4 H 

R 
15 

DAPH OS 2 H 

R 
14 

DAPH OS 0 H 

DAPH LOAD Y TO OS L ----- 1/0 

1/0 DAPH RMODE B L 
DAPB OS CTL 1 H ---- 1/0 
DAPB OS CTL 0 H ---- 1/0 

DAPB CLOCK REGS H l CLOCK 
11 

ENABLE 

TK-6629 

Figure A-3 PAL Symbology (Typical) 

The enable level for the gate output inverter (the top line) is connected to VCC, a logical 1. The dashes 
in the expressions above only represent a space (a blank character) in the signal name. An asterisk(*) 
between signal names specifies the logical AND operation. Discounting the enable level for the output 
inverter which in this case is always asserted, this input expression for output pin 12 
(/UART_CHIP_SEL) may be read as follows. 

UART CHIP SELL = START 8085 CYC HA IO H A A14 HA RASH 
v 

NOTE: 

RAS H A v ST A TE H 

v 
=AND 
=OR 

The PAL circuitry for this output may be represented as shown in the upper half of Figure A-5. The 
same input using Engineering Print Set conventions is shown in the lower half of Figure A-5. 

For a register output, the Boolean expression read from the listing specifies the output signal just as for 
a gate output. Of course, the output pin is not asserted or negated until the register flip-flop is clocked. 
Flip-flops are clocked by the positive-going transition of the clock. 

When the input statements given in the plot listing are read as AND terms ORed together as just de­
scribed, it defines the actual PAL circuit and the conditions to make the PAL output go low. (In the 
example that was given, the PAL output signal was also asserted when it was low.) When a PAL output 
signal is asserted when at a high level, it is sometimes more convenient to think of the PAL's AND 
before OR circuit in terms of its equivalent OR before AND configuration. For example, the Boolean 
equation for register output pin 17 (REFRESH DONE) on the sample listing is as follows when read as 
AND before OR logic as done previously. 

REFRESH DONEL = REQUEST REFER H 
v 

REFRESH DONE H 

A-4 
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However, the listing may also be read as OR before AND logic as follows. 

REFRESH DONE H = REQUES! REFER L 

REFRESH DONE L V REFRESH CYC H 

As can be seen, the second expression more clearly indicates that REFRESH DONE is set by the asser­
tion of REQUEST REFR and REFRESH CYC and that it remains set until REQUEST REFR is 
negated. The AND before OR circuit and the equivalent OR before AND circuit are diagramed in 
Figure A-6. 

To summarize: 

1. When the plot listing is read as AND-OR, it specifies the input to give a low PAL output. 
The output may or may not be asserted low. 

2. If the PAL output signal is asserted low, the AND-OR input expression is usually the best 
way to specify the output. 

3. If the PAL output is asserted high, the equivalent OR-AND input expression is usually the 
best way to specify the output. 

A.5 PAL LOGIC DIAGRAMS 
The logic diagrams for the 16L8, 16R4, 16R6, and 16R8 PAL devices are shown in Figures A-7 
through A-10. 
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PART NUMBER: 23-004K4-0-0 

DEVICE TYPE: PAL16R6 

PIN NUMBER= SYMBOL TABLE: 

1 =CLOCK 
2= ALE 

8 = SEL_9600 BAUD 
9= RESET 

15 =STATE 
16 =/RAS 

3 = REQUEST _REFR 
4= IO 

10= GROUND 
11 = OULEN 

17 = REFRESH __ DONE 
18 =/START_8085 CYC 
19 =/LONG _CYCLE 
20= vcc 

5 = A14 
6= 9600 __ BAUD 
7 = 300 .. BAUD 

12 =/UART_CHIP __ SEL 
13 =/9600 __ 300 _BAUD 
14 = REFRESH _CYC 

FUSE PLOT: (X =FUSE INTACT, - =FUSE BLOWN) 

OUTPIN 19 VCC 
---- ___ x ____ x ___ ---- ---- ---- ---- STARL_8085 __ CYC*A14 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 18 X ___ ---- - --- -- -- ---- ---- --------ALE 
---- ___ x - --- x ___ ---- __ x _____ ---- REFRESH __ CYC*START_8085_CYC*A14 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 17 _____ X __ -------- -------- ---- ____ /REQUEST_REFR 
- --- -- - - - __ x - -- - ---- ___ x ---- ---- /REFRESH_DONE*/REFRESH ___ CYC 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 



OUTPIN 16 ---- ---- ---- __ x_ ---- __ x_ ---- ____ /RAS*REFRESH CYC 
---- ---- ---- ___ x __ x_ ---- ---- ---- RAS*STATE 
---- ___ x_x __ x_x _____ ---- --------START 8085 CYC*/RAS*/IO*Al4 
---- ---- ------------ ---- ---- X ___ RESET xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 15 ---- __ x _________ ---- ------------/START _8085 _CYC 
---- -------- ___ X ----------------RAS 
---- -------- _X ______ ---- ---- ____ /Al4 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 14 ---- ___ X ________ ---- ------------START 8085 CYC 
---- ·---- ---- ___ x -- -- __ x_ ---- ---- RAS*REFRESH _CYC 
---- ---- - --- ___ x __ x_ ---- ---- ---- RAS*STATE 
______ x __ - --- ---- ---- ___ x ____ ----/REFRESH CYC*/REQUESL_REFR 
-------- - - _x_ ---- ---- ___ x ____ ----/REFRESH CYC*REFRESH DONE 
x ___ ---- - -_____ x ____ x ___ x --------/REFRESH CYC*/RAS*ALE*/STATE 
---- ---- ---- ---- ---- ---- ---- X ___ RESET xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 13 ---- -·- - - -- -- -- -- x _______ x ___ ---- SEL 9600 BAUD*9600_BAUD 
---- --·------ -------- x ____ x ______ /SEL _9600 __ BAUD*300 ___ BAUD 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 12 VCC 
---- ___ xx ___ x_x_ ---- ---- - --- ---- STARL_8085 CYC*IO*A14*/RAS 
---- ---- ---- __ x ___ x_ ---- ---- ____ /RAS*STATE 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

Figure A-4 PAL Plot Listing 



PAL CIRCUIT FOR OUTPUT PIN 12 

START 8085 CYC 

THE SAME Cl RCUIT USING PRINT SET CONVENTIONS 

START 8085 CYC H 

TK-6631 

Figure A-5 PAL Circuit for Output Pin 12 of Sample Listing 

AND-OR PAL CONFIGURATION FOR OUTPUT PIN 17 

REFRESH CYC H 

CLOCK 

EQUIVALENT OR-AND CONFIGURATION 

17 
REFRESH DONE H 

REFRESH CYC L 

0 

CLOCK 

Figure A-6 PAL Circuit and Equivalent Circuit for 
Output Pin 17 of Sample Listing 
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Figure A-7 PAL 16L8 Logic Diagram 
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B.1 GENERAL 

APPENDIX B 
FLOW DIAGRAM SYMBOLS 

The flow diagram symbols used in this manual are defined in Figure B-1. 

ct=J X =DESCRIPTION OF AN EVENT OR ACTION (LOWER CASE). 

~ THE SIGNAL PWRFL IS ASSERTED. 

~ THE SIGNAL PWRFL IS NEGATED. 

6 
CJ 

( __ ) 

IF CONDITION OR SIGNAL IS TRUE FLOW 
FOLLO\Afi YES BRANCH, OTHERWISE FLOW 
FOLLOWS NO BRANCH. 

ON PAGE CONNECTOR. 

OFF PAGE CONNECTOR. 

BEGINNING OR ENDING POINT OF A FLOW 
DIAGRAM. 

Figure B-1 Flow Diagram Symbols 

B-1 

TK-6071 



C.1 GENERAL 

APPENDIX C 
MAINTENANCE FEATURES 

There are five maintenance dispatches provided in the memory controller microcode to aid in diagnos­
ing memory failures. The dispatches start with a simple diagnostic and increase in complexity building 
upon the successful completion of the previous diagnostic. The UNIBUS maintenance diagnostic 
(RD.MAINT.UBS) has four operations selected by the value of the DIAG CHK bit and the ECC DIS 
bit in CSRl. The ECC maintenance diagnostic (MAINT.ECC.DAT) has five operations selected by 
the value of DIAG CHK, ECC DIS, and LVAOO. The maintenance dispatches are summarized in 
Table C-1. For a description of the diagnostics, how to use them, and how to interpret the results, refer 
to "Microdiagnostics for VAX-11/730 MCT module" (document number ENKCC). 

In addition to the five maintenance dispatches, the memory controller parity logic can be checked via 
the TB PAR DIAG bit in CSRl. When set, this bit will cause a parity error and assert TB PAR ERR 
in CSR 1 on any CPU access to the translation buff er. 

Table C-1 Diagnostic Dispatch Functions 

Diagnostic 

Dispatch 

Dispatch 

Operation 

READ.MAINT. -

RD.MAI NT. 
VAR.INC 

RD.MAI NT. 
BRANCH.CK 

RD.MAI NT. 
UBS 

Address 
check 

Operation Control Bits 

DIAGECC LVAOO 
CHK DIS Function 

0 0 

C-1 

This diagnostic dispatch reads the 
virtual address register as data. 

This diagnostic dispatch reads the 
incremented virtual address register as 
data. 

This diagnostic dispatch checks the 
branch conditions DIAG CHK, ECC DIS, 
and LVAOO. The virtual address register 
is incremented after each successful test 
and the final value is returned as data. 

The VAR contents are gated onto the 
UNIBUS address lines. The VAR is loaded 
from the UNIBUS address lines. The VAR 
contents are returned as data. 



Table C-1 Diagnostic Dispatch Functions (Cont) 

Diagnostic 

Dispatch 

Dispatch 

Operation 

Data check 

Sync check 

Operation Control Bits 

DIAG ECC L V AOO 
CHK DIS 

0 

0 

Control check 1 

MAINT.ECC. Data rotator 0 
DAT 

X = Don't care 

ECC check 
generator 

ECC 
correction 

ECC check 
bit path 

Write data 
error check 

0 

x 

0 0 

0 

0 0 

0 

x 

C-2 

Function 

The VAR contents are gated onto the MC 
BUS. The MC BUS is enabled through the 
data drivers to the UNIBUS data lines. 
The UNIBUS data lines are enabled to the 
ECC data in latch. The data in latch is 
enabled to the MC BUS and returned as 
data. 

This operation checks that BUS MSYN and 
BUS SSYN can be asserted and negated on 
the UNIBUS. The VAR is incremented after 
each successful check and the contents of 
the VAR is returned as data. 

This operation checks that ICO, BUS Cl, 
and UNIBUS ACTIVITY can be asserted 
and negated. The VAR is incremented at each 
successful pass and is returned as data. 

Data from the CPU is loaded into 
the MOR and then returned to the CPU. 
The data rotators are disabled. 

The CPU sends data to the ECC data in 
latch. ECC generates check bits on the 
data. The check bits go into CSRO. The 
data is returned to the CPU. 

This operation takes data from the CPU 
into the ECC data in latch. The check 
bits come from CSRl. The data from the 
ECC data out latch is returned to the 
CPU. Data error information is logged 
into CSRl. 

Check bits from CSR 1 go into the ECC 
check bit latch. Check bits are then 
clocked into CSRO. Data sent by the CPU 
is stored in ECC latches and returned to 
the CPU as read data. 

Data from the CPU and check bits from 
CSRl go into a memory location physically 
addressed by the contents of the VAR. 
(Can load single or double error as 
desired.) 
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VAX-11/730 MEMORY SYSTEM TECHNICAL DESCRIPTION Reader's Comments 

Your comments and suggestions will help us in our continuous effort to improve the quality and 
usefulness of our publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 
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What faults or errors have you found in the manual?--------------------
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on the remainder of DIGITAL's technical documentation. 
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