
EK- MS730-TD-001

VAX-11/730
Memory System

Technical Description

Prepared by Educational Services
of

Digital Equipment Corporation

1st Edition, May 19 82

Copyright © i 982 by Digital Equipment Corporation

All Rights Reserved

The reproduction of this material, in part or whole, is strictly prohibited For
copy information, contact the Educational Services Department, Digital
Equipment Corporation, Maynard, Massachusetts 017 54.

The information in this document is subject to change without notice. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation, Maynard,
Massachusetts.

DEC
DEC US
DIGITAL
Digital Logo
PDP
UNIBUS
VAX

DECnet
DECsystem- I 0
DECSYSTEM-20
DECwriter
DIBOL
Edu System
IAS
MASSBUS

OMNIBUS
OS/8
PDT
RSTS
RSX
VMS
VT

CONTENTS

CHAPTER 1 INTRODUCTION AND OVERVIEW

1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.3.1
1.4.3.2
1.4.3.3
1.4.4
1.4.5
1.4.5.1
1.4.5.2
1.4.6
1.5

Scope . 1-1
Related Documents . 1-1
Memory Controller Simplified Block Diagram Description 1-1
Memory Controller Functional Block Diagram Description 1-4

Arbitrator . 1-4
Microsequencer and Control Store PROM . 1-4
Address Translation . 1-6

CPU Virtual Address Translation . 1-6
CPU Physical Address Reference . 1-8
UNIBUS Address Translation . 1-8

Refresh Logic . 1-8
Data Flow . 1-8

Read Operation . 1-8
Write Operation . 1-9

CSR Registers . 1-9
Maintenance Features . 1-10

CHAPTER 2 FUNCTIONAL DESCRIPTION

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2 .. 2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14
2.2.15
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6

Introduction . 2-1
Arbitrator and UNIBUS Interface . 2-1

General . 2-1
CPU/Memory Transaction . 2-5
UNIBUS/Memory Transaction . 2-6
UNIBUS Lockout . 2-6
CPU Grant Logic . 2-7
NPG Logic . 2-8
UNIBUS Control Logic . 2-10
BB SY I..ogic . 2-12
MSYN I..ogic . 2-12
SSYN Logic .. 2-12
UNIBUS Activity ... 2-12
Data Interface ... 2-14
Address Interface . 2-14
Bus Grant Logic . 2-14
DCLO ... 2-14

Microsequencer and Control Store . 2-15
General . 2-15
PROM ... 2-16
Branch I..ogic . 2-16
Dispatch Function . 2-19
Power F aiVParity Error Function . 2-21
Power Fail Logic . 2-22

1ll

2.4
2.4.1
2.4.2
2.4.2.1
2.4.2.2
2.4.2.3
2.4.2.4
2.4.2.5
2.4.2.6
2.4.3
2.4.3.1
2.4.3.2
2.4.3.3
2.4.4
2.4.4.1
2.4.4.2
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.7
2.7.1
2.7.2
2.7.3
2.7.3.1
2.7.3.2
2.8
2.8.1
2.8.2
2.8.2.1
2.8.2.2
2.8.3
2.8.3.1
2.8.3.2
2.8.4
2.8.4.1
2.8.4.2
2.8.4.3
2.8.4.4
2.8.4.5
2.8.4.6
2.8.4.7
2.9
2.9.1
2.9.2

Address Translation .. 2-24
General . 2-24
CPU Virtual Address Translation . 2-25

Virtual Address ... 2-25
Virtual Address Register/VAR Counter 2-25
VAR Bypass . 2-30
Translation Buffer . 2-31
Physical Address .. 2-35
Prefetch Counter .. 2-36

UNIBUS Address Translation 2-37
UNIBUS Address ... 2-37
Virtual Address Register/VAR Counter . 2-3 7
Translation Buffer . 2-40

Writing/Reading the Translation Buffer 2-41
Writing the Translation Buffer 2-41
Reading the Translation Buffer . 2-44

Physical Address Space . 2-44
General . 2-44
Memory Space . 2-46
UNIBUS Adapter Space ... 2-46
UNIBUS Space . 2-49

Memory Array Read/Write ... 2-49
General .. 2-49
Memory Select .. 2-50
Array Addressing . 2-50
Refresh . 2-54
Data In . 2-54
Data Out ... 2-54
Array Terminator . 2-5 4

ECC (Error Checking/Correction) 2-56
Read Array/ECC Check ... 2-56
ECC Check Bit Generation/Write Array . 2-60
ECC Chip Configuration . 2-61

ECC Check . 2-61
ECC Check Bit Generation . 2-61

Data Rotator .. 2-63
General . 2-63
Data Rotation - Read Operation . 2-65

One-Cycle Read .. 2-65
Two-Cycle Read .. 2-65

Data Rotation- Write Operation 2-68
One-Cycle Write .. 2-68
Two-Cycle Write . 2-68

Data Rotation Control and Byte Selection Logic . 2-70
General . 2-70
Data Rotator Control . 2-70
Data Type Logic . 2-70
Data Out Latch Byte Select . 2-70
Second Cycle Decoder . 2-72
Two-Cycle Detector ... 2-72
ALIGN LW .. 2-72

Error Logic and CSR Registers . 2-7 3
General . 2-7 3
CSRO Check Bit/Syndrome Register 2-74

lV

2.9.3
2.9.4
2.9.4.1
2.9.4.2
2.9.4.3
2.9.4.4
2.9.4.5
2.9.5
2.9.5.1
2.9.5.2
2.9.6
2.9.6.1
2.9.6.2
2.9.6.3
2.9.6.4
2.9.6.5
2.9.6.6
2.9.6.7
2.9.6.8
2.9.6.9
2.9.6.10
2.9.7
2.9.8
2.9.8.1
2.9.8.2
2.9.8.3
2.9.8.4
2.9.9

CSRl ECC Diagnostic Check Bits <06:00> 2-74
CSRl CPU/Memory Control Bits <29:25> 2-74

ECC DIS <25> .. 2-74
DIAG CHK <26> ... 2-76
MME <27> ... 2-76
INH REP CRD <28> .. 2-76
TBPARDIAG<29> .. 2-76

CSRl CPU/Memory Data Error Bits <31:30> 2-76
CRD <30> . 2-77
RDS <31> .. 2-77

CSRl CPU/Memory Transaction Error Bits <23:14> 2-77
VALID<14> .. 2-77
TB PAR ERR <15> .. 2-80
NXM <16> ... 2-80
UBBSY < 17> . 2-80
ADAPT REG SEL <18> 2-80
WR ACROSS PG ERR <19> 2-80
ILL UB OPER <20> . 2-80
TB MISS <21 > . 2-80
ACCESS REF <22> ... 2-80
MODIFY REF <23> ... 2-80

CPU/Memory Error Summary . 2-81
CSR2 UB/Memory Error Bits <31>, <16:14> 2-81

WR NOT VALID <14> .. 2-83
UB TB PAR ERR <15> .. 2-83
UB NXM <16> .. 2-83
UB RDS <31> ... 2-83

UNIBUS/Memory Error Summary 2-83

CHAPTER 3 USING THE PROM MICROCODE LISTING

3.1
3.2
3.3
3.4

General . 3-1
Microcode Listing . 3-1
Microword . 3-2
Reading the Microcode Listing . 3-3

APPENDIX A PROGRAMMED ARRAY LOCK DEVICES (PAL)

APPENDIX B FLOW DIAGRAM SYMBOLS

APPENDIX C MAINTENANCE FEATURES

FIGURES

1-1
1-2
1-3
2-1
2-2
2-3
2-4
2-5
2-6
2-7

VAX-11/730 Memory System Simplified Block Diagram................. 1-3
VAX-11/730 Memory System Block Diagram . 1-5
Longword Alignment in Memory Arrays . 1-6
Arbitrator and UNIBUS Interface Block Diagram . 2-2
CPU/Memory Flow Diagram . 2-3
UNIBUS/Memory Flow Diagram . 2-4
UNIBUS Lockout Block Diagram . 2-7
CPU Grant Block Diagram . 2-8
NPG Block Diagram . 2-9
NPG Timeout Timing Diagram . 2-9

v

2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
2-32
2-33
2-34
2-35
2-36
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-43
2-44
2-45
2-46
2-47
2-48
2-49
2-50
2-51
2-52
2-53
2-54
2-55
3-1
3-2a
3-2b
3-2c
3-2d

UNIBUS Control Block Diagram . 2-11
BB SY wgic . 2-13
SSYN wgic .. 2-13
UNIBUS Activity Logic .. 2-13
Bus Grant Block Diagram . 2-14
Microsequencer/ Control Store Simplified Block Diagram 2-15
Memory Controller Microword . 2-16
Microsequencer/ Control Store Block Diagram . 2-18
Dispatch Function Flow Diagram . 2-19
Power F aiVParity Error Flow Diagram . 2-21
Power Fail Logic . 2-23
Simplified Block Diagram of Address Translation 2-24
CPU Virtual Address Translation Flow Diagram 2-27
CPU Virtual Address Translation Block Diagram 2-29
CPU/UNIBUS Address Segments 2-30
Translation Buffer Space Allocation 2-32
Physical Address Select Logic ... 2-32
UB TB Select Logic . 2-3 3
Prefetch Select Logic ... 2-36
UNIBUS Address Translation Flow Diagram . 2-38
UNIBUS Address Translation Block Diagram 3-39
Translation Buffer Write/Read Block Diagram 2-42
Translation Buffer Entry . 2-43
Physical Address Space . 2-45
Memory Adapter Registers .. 2-47
UNIBUS Adapter Registers ... 2-47
RB-7 30 Software Registers . 2-48
RAM Chip Configuration on M87 50 Array Board . 2-49
Memory Array Read/Write Block Diagram (Sheet 1 of 2) 2-51
Memory Array Read/Write Block Diagram (Sheet 2 of 2) 2-52
Array Bus Signals ... 2-53
Array Address Timing Diagram 2-53
Rate of Refresh Cycles ... 2-55
Refresh Cycle Timing Diagram . 2-55
ECC Block Diagram ... 2-57
Read Array/ECC Check Flow Diagram 2-58
ECC Check Bit Generation/Write Array Flow Diagram 2-60
ECC Chip (DC631) Configuration 2-62
Data Rotation for Read Operations . 2-64
Data Rotator Block Diagram . 2-66
Data Rotator Read Flow Diagram 2-67
Data Rotator Write Flow Diagram 2-69
Data Rotation Control and Byte Selection Logic . 2-71
Summary of CSR Register Bits . 2-7 3
Error Logic and CSR Block Diagram 2-75
CSRl CPU/Memory Control Bits 2-76
CSRl CPU/Memory Data Error Bits . 2-77
CSRl CPU/Memory Transaction Error Bits and Error Summary Logic 2-79
CSR2 UB/Memory Error Bits and Error Summary Logic 2-82
Microword Fields ... 3-2
Microcode Exercise Form . 3-4
Microcode Exercise Form . 3-5
Microcode Exercise Form . 3-6
Microcode Exercise Form . 3-7

vi

3-2e
3-2f
3-2g
3-2h
3-2i
3-2j
3-2k
3-21
3-2m
3-2n
3-20
3-3
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
B-1

TABLES

1-1
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
A-1
C-1

Microcode Exercise Form . 3-8
Microcode Exercise Form . 3-9
Microcode Exercise Form . 3-10
Microcode Exercise Form . 3-11
Microcode Exercise Form . 3-12
Microcode Exercise Form . 3-13
Microcode Exercise Form . 3-14
Microcode Exercise Form . 3-15
Microcode Exercise Form . 3-16
Microcode Exercise Form . 3-17
Microcode Exercise Form . 3-18
Power-Up/Write Array Flow Diagram . 3-19
Basic PAL Logic Configuration . A-1
XOR Logic Function Using PAL Logic................................ A-2
PAL Symbology (Typical) . A-4
PAL Plot Listing . A-7
PAL Circuit for Output Pin 12 of Sample Listing . A-8
PAL Circuit and Equivalent Circuit for Output Pin 17 of Sample Listing . . . A-8
PAL 16L8 Logic Diagram . A-9
PAL 16R4 Logic Diagram ... A-10
PAL 16R6 Logic Diagram . A-11
PAL 16R8 Logic Diagram . A-12
Flow Diagram Symbols . B-1

Related Documents . 1-2
UNIBUS Lockout Code . 2-7
UNIBUS Control Line Code . 2-10
Special Function Codes for UNIBUS Operations . 2-11
PROM Address Bits ... 2-17
CPU Dispatch Routines .. 2-20
TB Entry Bits (CPU Space) .. 2-33
Memory Function Bit Code ... 2-35
Current Mode Bit Code ... 2-35
TB Entry Bits (UNIBUS Space) 2-40
Syndrome Codes .. 2-59
Data Rotator Control Code . 2-70
Data Type Bits vs RS Code for CPU Transfers . 2-72
UNIBUS Control Bits vs RS Code for UNIBUS Transfers 2-72
PAL Device Types Used in VAX-11/730.............................. A-3
Diagnostic Dispatch Functions . C-1

vii

1.1 SCOPE

CHAPTER 1
INTRODUCTION AND OVERVIEW

This document is a technical description of the VAX-11 /730 memory system. This system consists of
the M8391 memory controller module and the M8750 memory array module(s). The memory system is
briefly described, on a system level, in Chapter 1 of the CPU Technical Description Manual (EK-KA-
730-TD) (Table 1-1). In this description, the M8391 and M8750 modules are treated as single blocks
with a brief description of their basic function within the VAX-11 /730 system. The interface of the
memory system with other portions of the VAX 11 /730 is also described.

This document treats the memory system in two levels of detail. Chapter 1 contains an overall block
diagram of the memory system divided into functional areas. The system is described in terms of these
areas and the functions they perform.

Chapter 2 further develops the descriptions by providing a detailed discussion of the functional areas
defined in Chapter 1. Block diagrams and flow diagrams are used in Chapter 2 to show the logic com­
position of each area and how it performs its function with respect to the system.

Chapter 3 treats the memory system firmware. Program control of the memory system is implemented
by a 512 X 72 bit control store PROM. A listing of the PROM's contents is contained in the engineer­
ing documentation. Chapter 3 illustrates how to use the listings to generate flow diagrams for the mem­
ory system routines.

1.2 RELATED DOCUMENTS
The documents listed in Table 1-1 provide additional information related to the VAX-11/730 system.

1.3 MEMORY CONTROLLER SIMPLIFIED BLOCK DIAGRAM DESCRIPTION (Figure 1-1)
The memory controller manages operation of the V AX-11 /730 memory system. Upon request, the con­
troller assigns the memory system to the CPU or to a UNIBUS device. Using a translation buffer, the
controller translates virtual addresses from the CPU or addresses from UNIBUS devices, into physical
addresses that are applied to the M8750 memory array module(s). Up to five array modules may be
used.

If the memory reference is a read operation, the data, along with associated ECC (error checking and
correction) check bits, are retrieved from the array module and applied to the ECC logic. The ECC
logic checks for data errors. If a single bit error is detected, the logic is used to correct the error. The
logic can detect, but not correct, multibit errors.

The data passes from the ECC logic to the data rotator. Data retrieved from the arrays is always a 32-
bit longword (4 bytes) but is not always in the desired position for the CPU or UNIBUS device (i.e.,
byte 0 in bit position 0 on the bus). If the data is not in the desired position, the data rotator functions to
rearrange the data before it is sent to the CPU or the UNIBUS device.

1-1

Table 1-1 Related Documents

Document
Item Title Number Contents

1 V AX-l l /730 Hardware EK-11730-UG This document contains hardware
User's Guide operating information and user care

information. Included is a description
of the system controls and indicators,
user maintenance instructions, and an
overview of the system hardware
including the peripheral equipment.

2 VAX-11/730 EK-KA 730-TD This document provides an overview of
Central Processor Unit VAX-11/730 system including summary of
Technical Description system busses. It describes the

following CPU functions: control store
and microsequencing, instruction
processing, process interrupt
control, data flow,and the generation
of system clocks. It also describes
the CPU console.

3 FP730 Floating-Point EK-FP730-TD This document describes the
Accelerator Technical floating-point accelerator option. It
Description also describes the option interface,

instructions, and algorithms as well
as the FPA microcode.

4 VAX-11/730 Integrated EK-RB730-TD This document describes IDC as an
Disk Controller Technical interface to the RL02 and/or R80 disk
Description units.

5 H7202B Power Supply EK-PS730-TD This document provides a functional
Technical Description description of the H7202B power

supply. It also describes the power
supply controls and indicators,
operating information, power and power
signal distribution, and power supply
specification data.

6 VAX Hardware Handbook EB-17281 This document introduces the VAX
hardware elements, including central
processor units, intelligent console
subsystems, 1/0 subsystems, MASSBUS
and UNIBUS systems, main memory and
memory management.

7 VAX Handbook
Architecture EB-19580 This document introduces VAX

architecture, addressing modes, and
the native mode instruction set.

1-2

Table 1-1 Related Documents (Cont)

Item Title

8 VAX Software Handbook

9 PDPl 1 Bus Handbook

10 Micro 2 User's Guide
Reference Manual

ADDRESS
UNIBUS
DEVICE r+

t DATA

VIRTUAL
ADDRESS

t--- ~
CPU DATA

~ - ~

Document
Number Contents

EB-08126 This document introduces the VAX/VMS
virtual memory operating system, its
operation, hardware interaction, data
structures, features, and
capabilities.

EB-17525 This document contains the UNIBUS
specification that defines the
terminology and specifies the
requirements of the UNIBUS. It also
contains portions of the LSl-11
specification.

AA-H531A-TE This document introduces the MICRO 2
language. It defines fields and macros
and describes assembly and output
listings.

VIRTUAL ADDRESS/
ADDRESS FROM PHYSICAL

UNIBUS DEVICE ADDRESS MEMORY
VIRTUAL TRANSLATION ARRAY
ADDRESS BUFFER

MODULE(S)
REGISTER (M8750)

~

DATA AND
CHECK BITS

•
DATA DATA DATA ECC MUX ROTATOR - ~

LOGIC

TK-6097

Figure 1-1 V AX-11 /730 Memory System Simplified Block Diagram

If the memory reference is a write operation, the write data from the CPU, or the UNIBUS device, is
applied to the data rotator. If the array location that is to be written is not longword aligned (the ad­
dress is not a multiple of 4*), the data rotator formats the data according to the addressed location in
the array.

The data is input into the ECC logic where ECC check bits are generated for the new data. The new
data, along with the generated check bits, is then written into the memory arrays.

*See Paragraph 1.4.3.1 and Figure 1-3.

1-3

1.4 MEMORY CONTROLLER FUNCTIONAL BLOCK DIAGRAM DESCRIPTION (Figure 1-2)
Figure 1-2 is an overall functional block diagram of the M839 l memory controller. The functional sub­
sections shown in the diagram are discussed in Paragraphs 1.4.1 through 1.4.6. The same subsections
are developed in more detail in the logic descriptions of Chapter 2.

1.4.1 Arbitrator
The arbitrator regulates activity on the UNIBUS and assigns the memory controller to the CPU if the
controller is free (not being used by a UNIBUS device).

The arbitrator receives an NPR (Non Processor Request for the UNIBUS) from a UNIBUS device. If
no other UNIBUS device is waiting for the UNIBUS (SACK* false) the arbitrator issues an NPG (non
processor grant) to the requesting device which then becomes bus master. t

When the CPU requests the memory, it asserts MEMORY REQ. When the arbitrator receives MEM­
ORY REQ, it returns CPU GRANT to the CPU so long as a UNIBUS device doesn't have control of
memory (MSYN false). CPU GRANT indicates to the CPU that it has control of memory.

Note that although the arbitrator does not assign the memory controller to UNIBUS devices, it does
monitor requests for memory (MSYN) from the devices.

Both CPU GRANT and MSYN are sent to the microsequencer.

1.4.2 Microsequencer and Control Store PROM
The control store PROM outputs 72-bit microwords that control all operations within the memory con­
troller. The microsequencer formulates the PROM address and thereby selects the next 72-bit micro­
word.

When power is applied, the microsequencer steps through a power-up/initialize routine that checks op­
erating voltages, resets the memory controller circuits, and places the memory controller into an idle
state. The microsequencer remains in the idle state until CPU GRANT or MSYN asserts.

When CPU GRANT asserts, the memory controller is assigned to the CPU. The microsequencer looks
at CSR dispatch bits from the CPU to determine the type of operation requested (read, write, etc.).
The microsequencer uses these bits to dispatch the PROM to the correct starting address.

When MSYN asserts, the memory controller is assigned to a UNIBUS device. The microsequencer
looks at the control bits (C <01 :00>) from the UNIBUS device to determine the type of operation
requested. The microsequencer uses these bits to dispatch the PROM to the correct starting address.

After the microsequencer has dispatched the PROM to the requested operation, it steps the PROM
through the selected routine. Twenty-one of the 72 microword control bits are used by the micro­
sequencer for branch testing and to formulate the PROM's next address.

*Selection acknowledged.
tThe device becomes bus master only if the UNIBUS is free. If some other device is bus master, the requesting device must

wait until the UNIBUS is free.

1-4

..........
I

Vl

CJ)

::::i
co
z
::::i

SACK

NPR

NPG

MSYN

C<Ol:OO>

D<15:00>

r('wcs-
1 MODULE

INCPU)

I
I
L_

CSR DISPATCH BITS

{

CPU GRANT
(TO/FROM CPU)

MEMORY REG

,------
ARBITRATOR

CJ)

::::i
co
u
~

CSR 0

CSR 1

CSR 2

<01:00>

A<17:00>

(
TO/FROM)--M_C_<_31_:_oo_>-.....i
CPUl

MC<31:00>

, POWER-UP/
INITIALIZE

\...a.....:.C.:....PU::........:...G_RA_N_T---L---+1 MICRO- ADRS<08:00> CONTROL
STORE
PROM

LVA
<08:02>

ADDRPH

SEQUENCER

LVA
<23:09>

PHYSICAL
ADDRESS
BUFFER

PA
<23:09>

VIRTUAL ADDRESS BUS

LVA
<14:09>

ii-RANSLATION BUFFER

21

CPU SPACE (128)

"''--~-----ADDRESS NOT USED (384)

UNIBUS SPACE (512) r
L---llllJ!!IPA'!9

<23:09>

i----...... J

PHYSICAL ADDRESS BUS

PA PA<23:18>
<17:09>

MEMORY
SELECT

UB PHY ADDR SEL

ARRAY BUS

DB<31:00>
CB (7)

ERROR

DB<31:00>
CB (7)

jMEMORYl
ARRAY I I MODULE(S) I

L..(~~02-...J

'REFRESH-.,

!LOGIC I
(WCS MODULE I
Ll~P~ __,

Figure 1-2 V AX-11 /730 Memory System Block Diagram

MEMORY CONTROL

~
TAG

LVA<30:15>

<15:00>

NOTE:

ALL LOGIC ON THIS DIAGRAM IS ON
THE M8391 MEMORY CONTROLLER
MODULE EXCEPT THE REFRESH
LOGIC, THE MC BUS/UNIBUS DATA
TRANSCEIVERS, AND THE MEMORY
ARRAY(S).

TK-6096

1.4.3 Address Translation
The translation performed to obtain the array's physical address may be of the virtual address obtained
from the CPU or of the address obtained from the UNIBUS device. The following discusses each trans­
lation separately.

1.4.3.1 CPU Virtual Address Translation - When the CPU has control of the memory controller, an
address mux selects the 32-bit virtual address (MC<31 :00>) from the memory controller (MC) bus.
The mux places the virtual address into the VAR (virtual address register) which outputs the virtual
address (LVA <31 :00>) onto the virtual address bus.

With four bytes to a longword, L VA <02> becomes the least significant bit addressing longword loca­
tions. LVA <01:00> select only the byte location within the longword (Figure 1-3). Thus LVA
<01 :00> are not used to address the array but are used by the data rotator to rearrange data (shift
bytes) as required.

LONGWORD

J I
LOCATION
(HEX)

10
0000

oc

1111 1110 1101 1100

08

1011 1010 1001 1000

I I I 04

0111 0110 0101 0100

00

0011 0010 0001
0000 L
~ LVA~3,00>

LVAOO

LVAOl

LVA02

LVA03

TK-6098

Figure 1-3 Longword Alignment in Memory Arrays

1-6

Virtual address bits LY A <08:02> are the page frame offset or index into the page frame. Therefore,
these bits are not translated but contribute directly to the physical address formulated on the array bus.

The address translation process uses a translation buffer consisting of 1 K of storage. The 1 K area is
divided into three parts.

1. CPU space - 128 locations used during a CPU /memory operation

2. UNIBUS space - 512 locations used during a UNIBUS/memory operation

3. Space not used - 384 unused locations

Each CPU and UNIBUS location contains an entry consisting of a 15-bit physical address (page frame
number or PFN) and page access bit(s). (UNIBUS TB entries have only one access bit. CPU entries
have several.)

Each TB entry in CPU space has a 16-bit tag stored in a tag store area of the TB. The tag is stored at
the same address as its associated TB entry. The tag is LVA <30:15> of the virtual address used to
address the TB when the associated TB entry was written into the TB. Thus the tag is part of the virtual
address of the TB entry.

The TB is enabled by the negated state of ADDR PH. LVA <14:09> and LVA <31> form a 7-bit
address into the CPU space of the TB. Address bit L VA < 31 > is selected by a CPU /UB mux. The
addressed TB entry and its associated tag are retrieved from the TB.

The tag is sent to a comparator which compares the tag with bits LVA <30:15> from the virtual
address bus. If a match is obtained, the TB entry is the one being addressed from the virtual address
bus. If they don't match, the entry is not the one being addressed. In this case, the comparator asserts
TB MISS to error logic which asserts ERR SUM to the CPU and the microsequencer.

The TB entry's page access bits are coupled to the error logic, which determines if the type of operation
requested is allowed on this particular page. If the error logic detects an access violation, it asserts ERR
SUM to the CPU and the microsequencer.

The TB entry's PFN (PA<23:09>) is placed on the physical address bus as the physical address of the
desired page. The area of physical memory referenced by the CPU may be a memory array module or
it may be a UNIBUS address. Physical address bits PA<23:18> specify which area is referenced. The
bits are applied to memory select logic which asserts MEM SEL if an array module is the target, or UB
PHY ADDR SEL if the UNIBUS is the target.

If an array module is the CPU target, PA< 17:09> contribute the page address to the array bus and
LY A <08:02> contribute the offset address. Together they select the referenced longword within the
memory array.

If the UNIBUS is the CPU target, PA<17:09> combines with LVA <08:02> and LVA <01:00>
from the virtual address bus to form an 18-bit UNIBUS address (A <17:00>). The UNIBUS address
thus becomes the physical address referencing the CPU target location on the UNIBUS.

1-7

1.4.3.2 CPU Physical Address Reference - In certain cases (e.g., during system boot-up) the CPU
accesses pages that reside at specific locations in physical memory. In this case, the CPU can make a
direct reference to physical memory without the need for address translation. To make a direct physical
access, the CPU places the physical address on the MC bus. The physical address is loaded into the
VAR and output onto the virtual address bus. LVA <01:00> is used by the data rotator and LVA
<08:02> specify the page offset to the array bus just as in CPU virtual address translations. ADDR
PH asserts during a physical address reference disabling the TB and enabling the physical address buf­
fer. The physical address buffer transfers LV A <23:09> from the virtual address bus directly to the
physical address bus as PA <23:09>. Physical address bits PA <23:09> function to select the loca­
tion of the page just as they would during a CPU virtual address translation.

1.4.3.3 UNIBUS Address Translation - When the UNIBUS has control of the memory controller, the
address mux selects the 18-bit address (A< 17:00>) from the UNIBUS. The mux places the address
into the VAR which outputs L VA < 17:00> onto the virtual address bus.

LVA <01 :00> is used by the data rotator and LVA <08:02> specify the page offset to the array bus
just as in CPU virtual address translations.

UNIBUS space in the translation buffer is used for a UNIBUS address translation just as CPU space is
used for a CPU address translation. With ADDR PH negated, the translation buffer is enabled and
LVA <14:09> and LVA <17:15> form a 9-bit address into UNIBUS space. Address bits LVA
< 17: 15 > are selected by the CPU /UB mux. The addressed TB entry is retrieved from the translation
buffer.

In a UNIBUS translation, LY A < 17> is the most significant bit on the virtual address bus. Thus the
nine address bits cannot address more than the 512 entries in UNIBUS space. Therefore, no tags are
used with the UNIBUS entries.

The entry's page access bit is applied to the error logic to check the validity of the access. If an access
violation is found, UB ERR SUM is asserted to the microsequencer.

The physical address bits (PA<23:09>) from the TB entry are placed onto the physical address bus.
The bits select the physical location of the page as in a CPU virtual address translation except that in
the latter only the memory arrays are referenced.

1.4.4 Refresh Logic
The memory arrays must be periodically refreshed (at least every four ms) in order to retain their
stored data. The refresh logic performs this function by refreshing all locations in the arrays every 3.4
ms. Refresh cycles are performed between read array and write array operations.

The refresh logic is located on the WCS module in the CPU. The WCS module and the array mod­
ule(s) are powered by the battery backup option. Thus if the option is used, the refresh logic will contin­
ue to function during power interruptions, thereby saving the data stored in the arrays.

1.4.5 Data Flow
The remaining functional blocks in Figure 1-2 pertain to data flow in and out of memory. They can best
be described in terms of a read and a write operation where their function can be discussed for each
type of operation. The data read/writes can be bytes (8 bits) or words (16 bits) for CPU/memory or
UNIBUS/memory transfers. A CPU /memory transfer could also be a 32-bit longword.

1.4.5.1 Read Operation - The physical address on the array bus selects the desired module and ad­
dresses the desired location on the module. The addressed longword and its seven associated check bits
are retrieved and placed onto the array bus.

1-8

The ECC logic takes the longword and check bits from the array bus and checks the longword for data
errors. If a data error is found, ERROR is asserted to the error logic which then asserts ERR SUM or
UB ERR SUM depending on whether this is a CPU or a UNIBUS operation. The ECC error logic is
used to correct single bit data errors but cannot correct multibit errors. The ECC error logic returns the
longword to the array bus for the data rotator.

The data rotator accepts the longword from the array bus and performs any data rearrangement that
may be necessary before placing the longword onto the MC bus. The CPU (or UNIBUS device) ex­
pects to receive data with the low order bits in the low order positions on the bus. The data will be in
this format only if the longword read from the memory array was in the proper position. Referring to
Figure 1-3, consider a word read at location 1001. The entire longword at 1000 is read out but the data
must be rearranged to place the desired word at the low order position on the bus. The data rotator uses
the two least significant bits off the virtual address bus (LVA <01 :00> to determine if any data align­
ment (rotation) is necessary and functions accordingly. The data rotator outputs the aligned data onto
the MC bus (MC <31:00>).

The longword is sent to the CPU if the operation is a CPU read of the memory arrays. If the operation
is a UNIBUS device read of the arrays, the byte or word is tranferred to the data lines of the UNIBUS
(D< 15:00>) via transceivers on the WCS module in the CPU, and then to the UNIBUS device. In
this case the two higher order bytes on the MC bus (MC<3l:16>) are ignored.

If the operation is a CPU read of a UNIBUS device, the read data is taken off the UNIBUS data lines
(D< 15:00>), transferred to the MC bus via the WCS transceivers, then to the data rotator for pos­
sible data alignment, and then to the CPU.

1.4.5.2 Write Operation - In a CPU write operation, write data is placed on the MC bus from the
CPU and then applied to the data rotator. The data rotator receives the write data from the MC bus
and the two least significant bits of the virtual address (LVA <01 :00>) from the virtual address bus.
The rotator uses the two bits to determine if the data needs realignment for the addressed location. If
realignment is necessary, the rotator formats the data as required.

If the CPU write is to a UNIBUS device, the rotator outputs the data back to the MC bus. From the
MC bus the data is placed onto the data lines of the UNIBUS (D< 15:00>) via transceivers on the
WCS module, for transfer to the device. If the CPU write is to the memory arrays, the rotator outputs
the data onto the data lines of the array bus (DB<3 l :00>).

For a UNIBUS to memory write operation, write data is placed on the MC bus via the UNIBUS data
lines and the WCS transceivers, and then applied to the data rotator. From the rotator the data is
placed onto the data lines of the array bus.

The ECC logic takes the write data off the array bus and uses it to generate seven ECC check bits. The
data is returned to the array bus along with the check bits.

The write data and the associated check bits are taken from the array bus and written into the selected
array module in the location addressed from the array bus.

1.4.6 CSR Registers
Three CSRs (control/status registers) are used to input control signals into the memory controller and
to report status to the CPU. The CSRs interface with the MC bus.

CSRO is a read only register containing the ECC check bits. The CPU reads the check bits to analyze
data errors.

1-9

CSRl is a read/write register. The CPU writes control bits into CSRl for maintenance purposes and to
regulate operation of the memory controller. Errors relating to a CPU /memory transfer are sensed by
the error logic and set error bits in CSRl. When the logic asserts ERR SUM, the CPU reads the CSRl
error bits for error analysis.

CSR2 is a read only register. Errors relating to a UNIBUS/memory transfer are sensed by the error
logic and set error bits in CSR2. When the logic asserts UB ERR SUM, the microsequence causes a
timeout on the UNIBUS resulting in the CPU reading the CSR2 error bits for error analysis.

1.5 MAINTENANCE FEATURES
Maintenance aids have been designed into the hardware to facilitate checkout and trouble analysis of
the memory subsystem. The maintenance logic is described in the functional descriptions of the area
with which these features are associated. In addition, these features have been summarized in Appen­
dix C.

1-10

2.1 INTRODUCTION

CHAPTER 2
FUNCTIONAL DESCRIPTION

The functional block diagrams in Chapter 2 use logical AND and OR symbols. It does not necessarily
follow that a corresponding gate exists on the M8391 logic prints. The assertion of inputs A and B
causing the assertion of output C may be represented on a block diagram by a single AND gate, yet the
engineering drawing may show that several circuit stages are involved in the ANDing operation.

The signal names used on the functional block diagrams are the names used on the engineering circuit
schematics (CS prints). Where other signal names or notes are used, they are enclosed in parentheses.

2.2 ARBITRATOR AND UNIBUS INTERFACE

2.2.1 General
This section describes the arbitrator and the memory controller interface to the UNIBUS.

The arbitrator consists of the CPU GRANT logic, NPG logic, UNIBUS lockout logic, and UNIBUS
activity logic. The purpose of the arbitrator is to regulate UNIBUS activity and to arbitrate transfer
requests from the CPU and from UNIBUS devices. The arbitrator issues CPU GRANT to the CPU
when allowing a CPU access. It also issues NPG to the UNIBUS when selecting a UNIBUS device to
be bus master. The device becomes bus master only if the UNIBUS is not busy. The arbitrator allows
overlapping of UNIBUS requests in that it can issue an NPG and select a UNIBUS device to become
the next bus master while the controller is busy processing a memory transaction with the present bus
master. When the transaction is finished, the waiting UNIBUS device becomes bus master and can
then request access to memory.

The UNIBUS interface paragraphs describe the signals, data, and address information relating to UN­
IBUS-to-controller transactions. Interfacing to the UNIBUS involves the use of standard UNIBUS sig­
nals. If the reader is unfamiliar with UNIBUS operation, it may be helpful to refer to Part 1 (UNIBUS
Specification) of the PDP-11 Bus Handbook (Table 1-1).

Figure 2-1 is a block diagram of the arbitrator and UNIBUS Interface, and should be referred to
throughout this section.

The following are the six UNIBUS signals.

UBS INTR (interrupt)
UBS NPR (non processor grant)
UBS SACK (selection acknowledged)
UBS BBSY (bus busy)
UBS SSYN (slave sync)
UBS MSYN (master sync)

2-1

N
N

t----------------"---t UNIBUS
IC1, ICO CONTROL

LOGIC
(FIG. 2-8)

1+-----U_B~S_B_G_<~7~:4~>-------------1BUS
GRANT

DATA TYPE 0 (FROM OAP)
MODULE
IN CPU

SPF 2' 1' O (C30, C50, C22

UBS A <17:00>
(TO VAR FIG. 2-28) ~F~~~ ~- 12),..__L V_A_<_03_:0_2_>_-1

VIRTUAL
ADDRESS

c

(UNIBUS ACTIVITY)

G ____ L_M_S_Y_N __ ...,.

UNIBUS

CPH/UBL

(

TO MEMORY)
CONTROLLER
LOGIC

UBS A
<17:00>

BUS
(C59, C71) ARB C1, CO LOCKOUT .__L_o_c_K-.-_ ..

LOGIC

(

/TO OAP MODULE)
IN CPU AND BRANCH
LOGIC FIG. 2-15

UBS DCLO

UBSINTR

(TO POWER FAIL LOGIC)
FIG. 2-18

PHYSICAL
ADDRESS
BUS

UBS NPR
t-----------------------------------.iUNIBUS

(FIG. 2-4)
L BBSY

...--+---L_S_A_C_K ____ UNIBUS D UB

..---+---L_NP_R ___ _.. ACTIVITY ACTIVITY
I BBSY LOGIC

l----------<W(FIG. 2-11)
Ul

iil

(~~ANCH) ~
.._ __ -.JI LOGIC

FIG. 2-15

UBS NPG
rU_B_S_S_A_C_K ______________________________ -+ISYNCHRONIZER1--__:;.;..;._1--.-----~

REGISTER
UBS BBSY

UBS SSYN

UBS MSYN

fwc~o~-- - -1
(C70) UB DIR EN

I I
UBS ' 0<15:00>

UB DIR

(C6S) LATCH
I BUS MC D<15:00>

I
I UB DATA EN I
L (C65) ______ ..J

>---___:.__:.__~...,

I BBSY

L ISSYN

I MSYN
(C67)

MC
BUS

Figure 2-1 Arbitrator and UNIBUS Interface Block Diagram

(El

D

L MSYN

START REF CYCLE

FROM WCS MODULE)
IN CPU ~

CPU GRANT

,__ ____________, } (
TO BRANCH LOGIC)
FIG.2-15

BBSY
LOGIC
(FIG. 2-9)

SSYN
LOGIC
(FIG. 2-10)

(C66)

NOTES:
1. LETTER DESIGNATIONS IN PARENTHESES

REFER TO ENGINEERING DRAWINGS
CONTAINING CORRESPONDING LOGIC.

2. "C" DESIGNATIONS REFER TO
MICROWORD BITS.

The UNIBUS signals are synchronized to memory controller time by TO CLOCK in a two-stage syn­
chronizer register before being applied to the memory controller circuits. Besides being synchronized
by TO CLOCK, the register outputs are latched for the clock period. The output mnemonics are pre­
fixed with L (latched) while three of the register inputs (B BBSY, B SSYN, B MSYN) are prefixed
with B (buffered). UNIBUS signals generated by the microsequencer are prefixed with I (issue).

Figures 2-2 and 2-3 are flow diagrams of a CPU-to-memory transaction and a UNIBUS-to-memory
transaction, respectively. The CPU-to-memory flow diagram (Figure 2-2) is oriented toward a CPU
transaction in which the UNIBUS is the target address.

Start

t MEMORY REO

t CPU GRANT

t Address to memory
select decoder.

t MEM SEL

Access array board.

t DATA RCVD

.j, CPU GRANT

Done

t UB PH ADDA SEL

t UBS BBSY

t UBS C1, UBS CO
t Address

t UBS SSYN

.j, UBS MSYN

.j, UBS SSYN
.j, UBS BBSY

Figure 2-2 CPU /Memory Flow Diagram

2-3

YES

t LOCK

.j, UB ACTIVITY

Abort operation.

Retry memory
access.

TK-6015

N
I

+:>.

START

t UBS C1, UBS CO
t UBS NPR t Address

t UBS NPG

t UBS NPG

t UBS NPG

t UBS BBSY

t UBS SACK

UNIBUS
locked out.

Figure 2-3 UNIBUS /Memory Flow Diagram

t UBS MSYN t Data

t Data

t UBS SSYN

t UBS MSYN

t UBS SSYN

t UBS BBSY

Done

t UBS MSYN

YES

CPU/memory access in
progress. Complete
access operation.

TK-6035

2.2.2 CPU/Memory Transaction (Figure 2-2)
The CPU makes a request for memory by asserting MEMORY REQ to the memory controller. A
check is then made for the presence of UBS MSYN. The true state of UBS MSYN indicates a UN­
IBUS-to-memory transaction is in progress and the CPU must wait for the transaction to complete. If
UBS MSYN is false, a check is made of CONT FUNC LAT to see if the controller is busy with other
operations (e.g., a refresh cycle). CONT FUNC LAT is true if any controller operation is in progress.

If UBS MSYN and CONT FUNC LAT are false, the arbitrator asserts CPU GRANT to the CPU
which now assumes control of the memory controller.

The CPU presents the virtual address to the controller where the memory select decoder decodes the
memory area to be accessed. If the array boards are the CPU target, MEM SEL is asserted by the
controller and the memory access will proceed.

When the memory access has been completed, arbitrator control bits (ARB Cl, ARB CO) from the
controller microword may specify a CPU GRANT release to negate CPU GRANT. CPU GRANT
may also be negated by the receipt of DATA RCVD from the CPU. The negation of CPU GRANT
releases the arbitrator for the next memory access.

If the memory select decoder specified the UNIBUS as the CPU target, UB PH ADDR SEL is as­
serted and the controller checks for any UNIBUS activity. The signal UB ACTIVITY is true if NPR,
NPG, SACK, or BBSY are present on the UNIBUS. If there is no UNIBUS activity (UB ACTIVITY
false) the controller proceeds to access the UNIBUS address. It issues UBS BBSY indicating the UN­
IBUS is busy and the CPU is now bus master (via the controller).

The memory controller places the two control bits (UBS C 1, UBS CO), specifying the type of operation
(read or write), on the UNIBUS along with the address of the UNIBUS device. If the operation is a
write to the device (a data out or a data out byte) the controller places the data on the data lines of the
UNIBUS and asserts UBS MSYN to the device. When the device receives the data it responds with
UBS SSYN whereupon the controller negates UBS MSYN. This is followed by the negation of UBS
SSYN by the device and the negation of UBS BBSY by the controller, to complete the UNIBUS ac­
cess. CPU GRANT is then negated as previously discussed.

If the UBS Cl, UBS CO control bits specified a read operation (data in or data in pause), the memory
controller asserts UBS MSYN to the device which responds by placing the data on the UNIBUS and
raising UBS SSYN. Otherwise, the read transaction is identical to a write.

In the case where the UNIBUS is the CPU target and the UNIBUS is active (UB ACTIVITY true),
the CPU access cannot complete. The memory controller asserts a UNIBUS lockout signal (LOCK)
which negates UB ACTIVITY and places the controller into a "UNIBUS lockout pending" state. In
this state the arbitrator responds to NPRs in the usual manner only so long as the CPU is not trying to
access memory. If the CPU attempts to access memory (MEMORY REQ or CPU GRANT asserts),
the arbitrator enters the "UNIBUS lockout" state wherein new NPRs are inhibited.

After the negation of UB ACTIVITY, the memory controller aborts the operation* and looks for the
CPU to retry the memory access. The CPU reasserts MEMORY REQ (placing the arbitrator into the
"UNIBUS lockout" state) and checks for UNIBUS activity. If there is no UNIBUS activity, CPU
GRANT asserts and the CPU access of the UNIBUS will complete. If there is UNIBUS activity, the
arbitrator waits for the activity to finish. With the arbitrator being in the UNIBUS lockout state, the
UNIBUS is guaranteed to be quiet after the present activity is finished.

*UB ACTIVITY sets a BBSY error bit in CSRl causing ERR SUM to assert. The memory controller aborts the operation by
terminating the transfer and sending ERR SUM to the CPU to indicate that the data transfer was not completed.

2-5

2.2.3 UNIBUS/Memory Transaction (Figure 2-3)
A UNIBUS device initiates a request for memory by asserting UBS NPR on the UNIBUS. If the UN­
IBUS lockout signal (LOCK) is false, the arbitrator asserts UBS NPG to the requesting device. If
LOCK is true and the CPU is accessing memory (MEMORY REQ or CPU GRANT true), the UN­
IBUS is locked out. In this case the UNIBUS device must wait until the lock is released to proceed
with the memory access.

When UBS NPG is asserted on the UNIBUS, the requesting device normally responds by asserting
UBS SACK to the controller. If UBS SACK is not received from the device within a specified timeout
period (12.8 to 25.6 µs), the arbitrator negates UBS NPG thereby terminating the device's attempt to
access memory.

If UBS SACK is received within the timeout period, the arbitrator negates UBS NPG causing the
device to assert UBS BBSY and to negate UBS SACK.* The assertion of UBS BBSY signifies that the
UNIBUS is busy and that the device is now bus master.

The device presents the two control bits (UBS Cl, UBS CO) specifying the type of operation and the
target address to the memory controller. If the device is to write to memory (a data out or a data out
byte operation), it places the write data onto the data lines of the UNIBUS and raises UBS MSYN to
the controller. When the controller receives MSYN, it checks for the presence of CPU GRANT. The
true state of CPU GRANT indicates a CPU /memory transaction is in progress, in which case the
transaction must complete and CPU GRANT negated before the UNIBUS access to memory can con­
tinue. With CPU GRANT false, the memory controller replies to the device with UBS SSYN where­
upon the device negates UBS MSYN. This is followed by the negation of UBS SSYN by the controller
and the negation of UBS BBSY by the device to complete the UNIBUS/memory transaction.

If the UBS Cl, UBS CO control bits specified a read operation (data in or data in pause), the device
asserts UBS MSYN to the memory controller which responds by placing the data onto the UNIBUS
and raising UBS SSYN. Otherwise, the read transaction is identical to a write.

2.2.4 UNIBUS Lockout (Figure 2-4)
The UNIBUS lockout signal (LOCK) is generated by two arbitrator control bits (ARB C 1, ARB CO)
obtained from the controller microword. When the lockout decoder senses a "set UNIBUS lockout"
command, it asserts an output to the UB lockout flip-flop that is then set by TO CLOCK. When the flip­
flop sets, LOCK is asserted to the arbitrator. LOCK is also fed back to the decoder to latch the flip-flop
set until the decoder senses a "release UNIBUS lockout" command. When this occurs the decoder
output negates and causes LOCK to go false.

The arbitrator bit code relating to UNIBUS lockout is shown in Table 2-1.

*If UBS BBSY is already asserted by another UNIBUS device, the requesting device keeps UBS SACK asserted and waits
for the current bus master to negate UBS BBSY.

2-6

(C59)

(C71)

ARB C1

ARB CO

NOTES:

(LATCH FEEDBACK)

LOCKOUT
DECODER

D

UB
LOCKOUT

FF

LOCK

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.

2. THE LOGIC IN THIS FIGURE IS CONTAINED ON
SHEET E OF THE ENGINEERING DRAWINGS.

TK-6019

Figure 2-4 UNIBUS Lockout Block Diagram

Table 2-1 UNIBUS Lockout Code

Function

No change
Set UNIBUS lockout
Clear UNIBUS lockout
Clear UNIBUS lockout and CPU GRANT

2.2.5 CPU Grant Logic (Figure 2-5)

Code
ARB Ct ARB CO

0 0
0 1
1 0
1 1

When the CPU requests access to memory, it asserts MEMORY REQ to the controller. If the con­
troller is not executing a function (CONT FUNC LAT false) and the controller is not busy executing a
UNIBUS request (L MSYN false), CPU GRANT is asserted to the CPU.

Under certain conditions (Paragraph 2.2.2) the microsequencer locks out new UNIBUS requests by
asserting LOCK. With LOCK true, the CPU GRANT logic is not effected by L MSYN but is check­
ing for UNIBUS activity by looking at NPG, L SACK, and L BBSY. When these are all false (in­
dicating that the UNIBUS is quiet) CPU GRANT will assert.

If a DATIP operation is being executed, IBBSY is asserted by the microsequencer to interlock the read
and write sequences of the operation. That is, IBBSY remains asserted after the read sequence to
"hold" the UNIBUS for the write sequence. If the UNIBUS lockout signal (LOCK) is asserted during
the read sequence, the CPU GRANT logic will not find the UNIBUS quiet. However, the logic senses
that IBBSY is causing the UNIBUS activity and allows a CPU GRANT.

Note in Figure 2-1 that CPU GRANT asserts CPH/UBL (central processor high/UNIBUS low) to the
memory controller logic indicating that a CPU /memory operation is in progress. CPH/UBL is latched
up, via a feedback gate, by CONT FUNC LAT.

CPU GRANT is latched up via a feedback path such that DATA RCVD from the CPU or an arbi­
trator "release CPU GRANT" command from the controller microword is required too negate CPU
GRANT. The arbitrator code to negate CPU GRANT is shown in Table 2-1.

2-7

LMSYN

LOCK

I BBSY

L BBSY

LSACK

NPG

(Cll) ARB CO

(CSg) ARB Cl

NOTES:

CPU

GRANT

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.

2. THE LOGIC IN THIS FIGURE IS CONTAINED ON
SHEET E OF THE ENGINEERING DRAWINGS.

TK-6020

Figure 2-5 CPU Grant Block Diagram

2.2.6 NPG Logic (Figure 2-6)
When a UNIBUS device requests the memory, UBS NPR is asserted to the memory controller from
the UNIBUS. UBS NPR is synchronized by TO CLOCK in the synchronizer register and applied to the
NPG logic as L NPR. If the UNIBUS is not locked out (LOCK false) and is not in the process of being
locked out by the ARB code (ARB CO false), the L NPR request asserts NPG which is placed on the
UNIBUS as UBS NPG. * If the UNIBUS is locked out (LOCK true), NPG can still be asserted if the
CPU does not have control of the memory controller (CPU GRANT false) and is not requesting use of
the controller (MEMORY REQ false).

NPG latches itself via feedback gate A and remains true until the UNIBUS device issues UBS SACK.
UBS SACK becomes L SACK via the synchronizer and negates NPG.

Timeout circuitry in the NPG logic releases NPG if UBS SACK is not received within a given timeout
period. Refresh cycles are used to set the timeout period which can range from approximately 13 to 26
µs. Figure 2-7 is a timing diagram for the timeout logic. Refer to it during the following discussion.

START REF CYC from the WCS board asserts for the duration of each refresh cycle. It is synchro­
nized by TO CLOCK and becomes REF IN PROG which is used to trigger a timeout pulse generator.
The generator output (TIMEOUT) is pulses spaced 12.8 µs apart and occurring just after each refresh
cycle. The first TIMEOUT pulse after the assertion of NPG enables the Rl flip-flop to be set by the
next TO CLOCK pulse. When Rl asserts, it latches itself up via a feedback AND gate. The assertion of
Rl inhibits NPG feedback gate A but enables timeout gate B which now functions to keep NPG as­
serted. The next TIMEOUT pulse inhibits timeout gate B thereby breaking the feedback latch causing
NPG to negate.

The minimum timeout period is the 12.8 µs between refresh cycles. The maximum timeout period could
be up to 25.6 µs depending on where NPG is asserted in the refresh cycle.

*Note that when LOCK is false, NPG can be asserted to a UNIBUS device even though memory is busy with a CPU request
(CPU GRANT true).

2-8

START REF CYC
-------i~D

SYNC
FF

REF
IN
PROG TO CLOCK

NOTES:

TIMEOUT
PULSE
GENERATOR

TIMEOUT

CPU GRANT

MEMORY REO

LOCK

ARB CO

(SET LOCK}

1 THE LOGIC IN THIS FIGURE IS CONTAINED
ON SHEET E OF THE ENGINEERING
DRAWINGS.

Figure 2-6 NPG Block Diagram

Rl
FF

R1

L NPR

LSACK

j+REFRESH CYCLE~..r--12.8 µS •I

REF IN PROG

TIMEOUT

NPG

R1

TK-6038

Figure 2-7 NPG Timeout Timing Diagram

D
NPG
FF

TO CLOCK CLK

NPG

2.2. 7 UNIBUS Control Logic
UNIBUS control lines Cl, CO specify the type of operation to occur on the UNIBUS. The Cl, CO code
is given in Table 2-2.

When a UNIBUS device is bus master, it specifies the type of operation on the UNIBUS control lines.
The control signals (UBS C 1, UBS CO) are received by the controller and coupled to the controller
branch logic as UB C 1 and UB CO.

When the CPU is bus master it specifies the type of operation, and the memory controller places the
UBS Cl, UBS CO code on the UNIBUS for the UNIBUS slave device. The UNIBUS control logic
generates the code from a three-bit special function code (SPF <02:00> µO) from the controller micro­
word and from DATA TYPE 0 from the CPU (Figure 2-8).

The special function codes pertaining to the types of UNIBUS operations are shown in Table 2-3.

Note that a DATO and DATOB operation have the same special function code. When a data out oper­
ation is specified, DATA TYPE 0 from the CPU is checked to determine if the operation is to be a
DATO or a DATOB. DATA TYPE 0 is latched up as L DTO by CONT FUNC LAT for the duration
of the opera ti on.

The code generated by the UNIBUS control logic {ICl, ICO) is gated to the UNIBUS by UB ADR EN
from the controller microword.

Table 2-2 UNIBUS Control Line Code

Code

Name Cl co Function

DATI 0 0 One word of data transferred
(data in) from slave to master

DA TIP 0 1 Same as DA TI but inhibits
(data in, pause) restore cycle in destructive

read-out devices; must be
followed by DA TO or DA TO B
to the same location

DATO 1 0 One word of data from master
(data out) to slave

DATOB 1 1 One byte of data from master
(data out, byte) to slave

2-10

ICO

IC 1

NOTES:

CONTROL
DECODER
(B)

SPF 0 (C22)

SPF 1 (CSO)

SPF 2 (C30)

L DTO DATA TYPE 0

CONT FUNC LAT

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.

2. LETTER DESIGNATIONS IN PARENTHESES REFER TO
ENGINEERING DRAWINGS CONTAINING CORRESPONDING

LOGIC.

(C58)

Figure 2-8 UNIBUS Control Block Diagram

Table 2-3 Special Function Codes for UNIBUS Operations

Microword Operation
DTO Special Function

Code

SPF2 SPF 1 SPFO

x 1 0 0 DATI (data in)
x 1 0 1 DATIP (data in, pause)
1 1 1 0 DATO (data out)
0 1 1 0 DATOB (data out, byte)

X = don't care

2-11

UNIBUS
Control Bit
Code

Ct co

0 0
0 1
1 0
1 1

2.2.8 BBSY Logic
When a UNIBUS device becomes bus master, it asserts UBS BBSY to the controller which then as­
serts B BBSY and a synchronized L BBSY.

When the CPU becomes bus master, I BBSY A from the controller microword is raised which asserts I
BBSY (Figure 2-9), and then UBS BBSY to the UNIBUS.

When I BBSY is asserted, it is fed back to an AND gate which also receives the ICl, ICO code from
the UNIBUS control logic. When the ICl, ICO code specifies a DATIP operation the AND gate is
enabled latching up I BBSY. The latch is necessary because the CPU master must hold the UNIBUS
busy after a DATIP until the following DATO/B routine asserts I BBSY A for the DATO/B oper­
ation.*

2.2.9 MSYN Logic (Figure 2-1)
When UBS MSYN is received from a UNIBUS device that is bus master, a synchronized L MSYN is
asserted to the controller branch logic. When the CPU is bus master, I MSYN is raised by the micro­
word and placed on the UNIBUS as UBS MSYN.

2.2.10 SSYN Logic
When a UNIBUS device functions as a slave, it asserts UBS SSYN to the controller in response to
UBS MSYN. UBS SSYN then asserts B SSYN to the synchronizer which outputs a synchronized L
SSYN to the controller branch logic.

If the controller is functioning as the slave, the SSYN logic generates L ISSYN and outputs it to the
UNIBUS as UBS SSYN. To generate L ISSYN, the SSYN logic (Figure 2-10) requires the following
three inputs.

1. I SSYN from the controller microword

2. Either B MSYN (memory controller is the slave) or L INTR (UNIBUS device interrupt)

3. A negated ERROR input from the ECC logic

When L ISSYN asserts, it latches itself up, so long as B MSYN or L INTR remains true.

2.2.11 UNIBUS Activity (Figure 2-11)
UNIBUS activity is monitored by ORing the UNIBUS signals (L NPR, NPG, L SACK, L BBSY) and
asserting UB ACTIVITY if any of the signals are true.

As discussed in Paragraph 2.2.2, the CPU cannot access the UNIBUS as a target if UNIBUS signals
are active. UB ACTIVITY flags the CPU (via CSRl) that there is activity on the UNIBUS. LOCK is
asserted by the CPU to lock out the UNIBUS so the CPU access may complete.

When LOCK comes true the UB ACTIVITY flag is negated. Also UB ACTIVITY is inhibited if the
UNIBUS activity is due to a CPU access operation (I BBSY true).

*A DATO or DATOB must follow a DA TIP to the same location to maintain UNIBUS protocol.

2-12

L ISSYN

~~(C68(

·''''YI~
NOTES:

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.

2. THE LOGIC IN THIS FIGURE IS CONTAINED ON
SHEET B OF THE ENGINEERING DRAWINGS.

Figure 2-9 BBSY Logic

I SSYN (C66)

STALL MBSY (C391
(K) ERROR (FROM ECC)

LOGIC FIG. 2-41
NOTES:

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.
2. LETTER DESIGNATIONS IN PARENTHESES REFER TO

ENGINEERING DRAWINGS CONTAINING CORRESPONDING
LOGIC.

Figure 2-10 SSYN Logic

LOCK

L NPR
(

TO CSR 1)
FIG. 2-54

LSACK

L BBSY

NPG

UB
ACTIVITY D UB ACTIVITY

I BBSY
NOTES:

1. THE LOGIC IN THIS FIGURE IS CONTAINED
ON SHEET E OF THE ENGINEERING DRAWINGS.

TK-6022

Figure 2-11 UNIBUS Activity Logic

2-13

2.2.12 Data Interface (Figure 2-1)
The 16 UNIBUS data bits (UBS D< 15:00>) interface to the MC bus via drivers and a flow-thru latch
located on the WCS module in the CPU.

UB DAT A EN from the controller microword enables the drivers that couple data from the MC bus to
the UNIBUS. Data flowing from the UNIBUS to the MC bus is applied to a flow-thru latch. The latch
holding signal is UB DIR LATCH and the signal enabling the latch output is UB DIR EN. Both sig­
nals are from the controller microword.

The data interfaces to the CPU or the memory controller from the MC bus.

2.2.13 Address Interface (Figure 2-1)
The 18 UNIBUS address bits (UBS A< 17:00>) are used by UNIBUS devices to reference locations
on the memory array cards and by the CPU to reference UNIBUS locations.

When a UNIBUS device is referencing a memory array module, the 18-bit address is taken off the
UNIBUS and passed through a transceiver amplifier to the virtual address register.

When the CPU is referencing a UNIBUS location, the 18-bit address is placed onto the UNIBUS from
the memory controller. The 18 address bits are obtained from two sources. The first nine bits (L VA
<08:00>) are obtained from the virtual address bus. These bits contain the byte address within the
addressed page. The last nine bits (PA < 17:09>) are obtained from the translation buffer via the
physical address bus. These bits contain the page address.

The address bits are gated to the UNIBUS by UB ADR EN from the controller microword.

2.2.14 Bus Grant Logic
Bus requests (BRs) are placed on the UNIBUS by UNIBUS devices wanting to interrupt the CPU.
The BRs go directly to the CPU which initiates a bus grant response (BG) via the memory controller.
The priority level of the BG corresponds to the priority level of the BR.

The bus grant logic (Figure 2-12) receives the three-bit special function code (SPF <02:00>) from the
controller microword. When all three bits are high, ISSUE BG asserts and enables the bus grant deco­
der output. The decoder asserts one of four bus grant outputs according to the priority level specified by
LVA bits <03:02> from the virtual address bus.

UBS BG7

UBS BG6

UBS BG5

UBS BG4

NOTES:

BUS
GRANT
DECODER
(E)

D

(B)

LVA<03:02>

TO CLOCK

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.
2. LETTER DESIGNATIONS IN PARENTHESES REFER TO

ENGINEERING DRAWINGS CONTAINING CORRESPONDING
LOGIC.

TK-6021

Figure 2-12 Bus Grant Block Diagram

2-14

2.2.15 DCLO
UBS DCLO is asserted on the UNIBUS as an indication that de power has failed. It is applied to power
fail logic in the microsequencer which functions to place the memory controller into the power fail
microstate (Paragraph 2.3.6).

2.3 MICROSEQUENCER AND CONTROL STORE

2.3.1 General (Figure 2-13)
The memory controller control store consists of nine 512 X 8 PROMs. The microsequencer consists of
the addressing logic associated with the PROMs. Each PROM has a nine-bit address input and an
eight-bit output. The PROMs are addressed in parallel to effect a 512 X 72 PROM with 512 address­
able locations each outputting a unique 72-bit microword.

The 72-bit microword consists of 51 memory control bits, nine "next address" bits and twelve branch
control bits (Figure 2-14). The memory control bits regulate all operations within the memory con­
troller. The "next address" bits are used as the base address in formulating the PROM's next nine-bit
address. The branch control bits specify which (if any) branch condition(s) are examined to modify the
four least significant bits of the base address. Parity generation and checking is not performed on the
72-bit microword.

l POWER FAIL
LOGIC

FRO
wcs
INC

~ODULE {
PU

-

C<OB>
~

CS PAR ERR -
PWRFL_.,

(C18)
DISP EN

~
CS PAR ERR

~

CSR <19>

CSR <18:16>,<0B> ~
c <07:04>

~

(C18)
DISP EN

CSR <07> •

c <03:00> _....

c <54:52>,<17:09>.

PROM
DISPATCH ADRS _.... (512
PARITY

STOP x 72)
ERROR
LOGIC

MEM
t--

j

DISPATCH ADRS <7:4>
LOGIC

J

l

BRANCH ADRS<3:0>
LOGIC

SEL

c <54:52><17:00>

Figure 2-13 Microsequencer /Control Store
Simplified Block Diagram

2-15

..)

c <71:55>,<51:18>
~

NOTES: "C" DES

(

CONTROLS)
SIGNALS
TO MEMORY
CONTROLLER
LOGIC

IGNATIONS
REFER TO MICROWORD BITS

TK-6080

C71 C55 C51 C18 COB coo
I I I I I I , .. •I , .. •I
I I I I
MEMORY CONTROL MEMORY CONTROL BRANCH NEXT

CONTROL ADDRESS

BRANCH I I I I
CONTROL f+-.j I• •I

I I I I
C54 C52 C17 C09

TK-6075

Figure 2-14 Memory Controller Microword

The microsequencer formulates the address presented to the PROM via one of the three functions list­
ed below.

1. Dispatch Parity Error /Power Fail Function - This function monitors memory controller pow­
er and CPU control store parity. It also forces the memory controller control store PROM to
a power fail routine if power is low or the CPU has a control store parity error during a dis­
patch function. The dispatch parity error /power fail function overrides the two functions list­
ed below.

2. Dispatch Function - This function obtains memory control store PROM address from CPU
control store. Address from CPU dispatches PROM to desired routine.

3. Branch Logic - This function monitors various branch condition signals. It sends control
store PROM to specific locations according to state of selected branch condition signal.

Table 2-4 illustrates the composition of the PROM address for the three functions listed above.

2.3.2 PROM (Figure 2-15)
Every 90 ns the PROM is clocked by TO CLOCK and outputs the 72-bit microword currently being
addressed by ADRS<8:0>. The microword bits are identified as C<71:00>. In addition, the 51
memory control bits (C<71:55>, <51:18>) have mnemonics indicating their function within the con­
troller. (The mnemonics are listed on sheet M of the engineering logic prints.) The 12 branch control
bits (C<54:52>, C< 17:09>) and the nine "next address" bits (C<08:00>) are identified only by
their "C" designations.

The nine address lines (ADRS<8:0>) are applied to an LED display where the PROM address can be
read for maintenance purposes.

The PROM outputs are always enabled by + 3 V from the memory controller power source.

2.3.3 Branch Logic (Figure 2-15)
The four least significant address bits (ADRS<3:0>) are obtained from four branch enable multi­
plexers. Each multiplexer receives a three-bit select input of branch control bits from the microword.
The three bits select one of eight data inputs for the output address bit. One of the data inputs is a next
address bit corresponding to the output address bit. Thus, if the current microword does not call for any
branching tests, next address bits C<03:00> become address bits ADRS<3:0> respectively. In this
case the microword is specifying the next address, not subject to any branch conditions.

One of the data inputs to branch enable multiplexer 3 is CSR <07> from the WCS board in the CPU.
This bit is used during the dispatch function and is discussed in Paragraph 2.3.4. The remaining data
inputs are various branch condition signals selected by the multiplexer to determine the next PROM
address.

2-16

Table 2-4 PROM Address Bits

Dispatch
Parity
Error and

Microsequencer Power Fail
Function Function Dispatch Function Branch Function

Address Bits for
Control Store
PROM ADRS8 ADRS7 ADRS6 ADRS5 ADRS4 ADRS3 ADRS2 ADRSI ADRSO

ADRS bits during 1 0 0 0 0 0 0 0 0
dispatch parity
error or power fail
microstate

AD RS bits during C08 CSR 18 CSR 17 CSR 16 CSR08 CSR07 C02 COl coo
dispatch
microstate

AD RS bits during C08 C07 C06 cos C04 C03 or C02 or COl or COO or
branch microstate one of one of one of one of

seven seven seven seven
branch branch branch branch
condition condition condition condition
signals signals signals signals

N
I

00

(

FROM DAP CS PAR ERR
MODULE IN 1------i

CPU (FROM wcs)
MODULE
IN CPU

POWER PWRFL FAIL .__ __ __.__ ___ __.

LOGIC
(FIG 2-18)

(

FROM WCS x CSR<18:16> <OB>
MODULE IN CSR<07>
CPU -----------------.

NOTES:

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.

2. LETTER DESIGNATIONS IN PARENTHESES REFER
TO ENGINEERING DRAWINGS CONTAINING

CORRESPONDING LOGIC.

ADAS <8>

BEN 3 BRANCH CONDITIONS (6)

C<54:52>

C<02>

C<01>

C<OO>

BEN 0 BRANCH CONDITIONS (7)

C<11:09>

Figure 2-15 Microsequencer /Control Store Block Diagram

ENA PROM

(~~MORY)
_,.......--------• CONTROLLER

LOGIC

C<71 :55>, <51: 18>

C<54:52>, <17:00>

2.3.4 Dispatch Function (Figure 2-15)
The dispatch logic consists of a dispatch multiplexer and associated logic. The dispatch multiplexer
supplies address bits ADRS<7:4> to the PROM. If the dispatch function is enabled, control store
register (CSR) bits from the CPU WCS module are placed on the four address lines (ADRS<7:4>).
If the dispatch function is disabled, next address bits from the PROM are placed on the address lines.

Figure 2-16 is a flow diagram of the dispatch function. The following discussion of the dispatch func­
tions relates to Figure 2-16.

With the dispatch function enabled (DISP EN true) the CPU CSR (control store register) bits specify
the PROM address. Bit CSR< 19> controls the state of the dispatch multiplexer. If it is false, MUX
SEL is false and the multiplexer is disabled. With the multiplexer disabled ADRS<7:4> are forced to
all zeros causing the PROM to jump to the CPU.ISTREAM.REQ routine. If CSR<19> is true, the
dispatch multiplexer is enabled and selects control store bits CSR<18:16>, <08> for address bits
ADRS <7:4>. The CSR bits send the PROM to one of 31 dispatch routines as listed in Table 2-5.

If DISP EN is false, the dispatch function is disabled and the dispatch multiplexer selects next address
bits C<07:04>. In this case the microword selects its own next address.

Dispatch mux
selects next address
bits C<07:04>.

t MUX SEL
Enable dispatch rnux
Route bits C<07:04>
to ADRS<7:4>.

Control store PROM goes
to address selected
by next address bits.

NO

Start

t MUX SEL
Disable dispatch mux.
Address lines ADRS
<7:4> all go to 0.

Dispatch microsequencer
to CPU.ISTREAM.REQ
function.

Done

YES

NO

Dispatch mux
selects CPU
control store bits.

t MUX SEL
Enable dispatch mux.
Route bits CS R<18: 16>,
<OB> to ADRS<7:4>
via dispatch mux. BEN3
mux selects CSR<07>
for address line
ADRS<3>

Dispatch control store
PROM to function
selected by CPU
control store bits.

TK-6082

Figure 2-16 Dispatch Function Flow Diagram

2-19

Table 2-5 CPU Dispatch Routines

CSR/ ADRS Bits Dispatch Routine

CSR<18> CSR<17> CSR<16> CSR<08> CSR<07>
ADRS<7> ADRS<6> ADRS<5> ADRS<4> ADRS<3>

0 0 0 0 0 CPU.ISTREAM.REQ
0 0 0 0 1 WRITE.TB
0 0 0 1 0 TEST.V.RCHK
0 0 0 1 1 CPU.READ.PH
0 0 1 0 0 WRITE.PH

0 0 1 0 1 TEST.V.WCHK
0 0 1 1 0 ROTATE.9BITS.RIGHT
0 0 1 1 1 ROT ATE.15BITS.LEFT
0 1 0 0 0 CPU.READ.V.NOCHK
0 1 0 0 1 CPU.READ.V.WCHK

0 1 0 1 0 CPU.READ.V.RCHK
0 1 0 1 1 RD.MAINT. VAR.INC
0 1 1 0 0 WRITE.V.NOCHK
0 1 1 0 1 WRITE.V.WCHK
0 1 1 1 0 READ. V.RCHK.IFILL

0 1 1 1 1 WRITE.UBS.MAP
1 0 0 0 0 WRITE.PH.OCTA
1 0 0 0 1 WRITE.TB.STEP
1 0 0 1 0 READ. UBS.MAP
1 0 0 1 1 READ.TB

1 0 1 0 0 READ.MAINT.ADDR
1 0 1 0 1 MAINT.ECC.DA T
1 0 1 1 0 READ.CSR
1 0 1 1 1 WRITE.CSR
1 1 0 0 0 CPU.RD.PH.OCTA

1 1 0 0 1 READ.V.WCHK.LOCK
1 I 0 1 0 OCTA.READ.V.RCHK
1 I 0 1 I RD.MAINT.BRANCH.CK
1 1 1 0 0 ISSUE.BG
I 1 1 0 1 OCTA.WR.V.WCHK

1 1 1 1 0 QUAD.READ.V.RCHK
1 1 1 1 1 RD.MAINT.UBS

2-20

The dispatch function described above is implemented in the logic of Figure 2-15. With DISP EN true,
the next address bits are blocked from the multiplexer input and the CSR bits are selected. However,
for the multiplexer to be enabled, MUX SEL must be asserted by CSR< 19> true. If CSR< 19> is
false, MUX SEL is false and the multiplexer is disabled. When this occurs, ADDRS<7:4> go to 0
and the CPU.ISTREAM.REQ instruction is executed. If CSR< 19> is true, the multiplexer is en­
abled and the CSR bits from the CPU are selected for ADRS<7:4>.

A fifth control store bit (CSR<07>) is routed to the PROM during the dispatch function as
ADRS<3> and contributes toward the selection of a routine from Table 2-5. CSR<07> is routed to
the PROM via branch enable multiplexer 3 which selects the CSR<07> data input when in the dis­
patch microstate.

When DISP EN is false, MUX SEL is true enabling the multiplexer which now selects next address
bits C<07:04> for the PROM address.

2.3.5 Power Fail/Parity Error Function (Figures 2-15 and 2-17)
Address bit ADRS<8> is the most significant bit addressing the control store PROM. ADRS<8> is
normally a function of next address bit C<08>; however, two types of improper system operation will
assert STOP MEM forcing ADRS<8> to a 1. One is a system power failure and the other is a control
store parity error in the CPU during a dispatch operation.

Power fail logic monitors system power and asserts PWRFL if power is lost (Paragraph 2.3.6). The
assertion of PWRFL asserts STOP MEM.

Start

Done

YES

,). MUXSEL
J. ADRS<7:4>
t STOP MEM

t ADRS<S>
J. ADRS<3:0>

PROM jumps to
address 100 (hex)
{PWR.FAIL routine)

TK-6081

Figure 2-17 Power Fail/Parity Error Flow Diagram

2-21

If a control store parity error occurs in the CPU, the CPU asserts CS PAR ERR to the memory con­
troller. CS PAR ERR becomes CS PERR which asserts STOP MEM if a dispatch function is in prog­
ress (DISP EN True). During a dispatch operation, the CPU control store register bits are used to
address the PROM, hence a CPU CS parity error at this time aborts the dispatch operation.

STOP MEM, in addition to asserting ADRS<8>, inhibits the output of the branch logic causing
ADRS<3:0> to go to all zeros.

Although STOP MEM is not applied to the dispatch logic, CS PERR, DISP EN, and PWRFL are
inputs to the dispatch logic and cause it to respond in the same manner. If PWRFL is true, or if both
DISP EN and CS PERR are true, then MUX SEL is false disabling the dispatch multiplexer. With the
dispatch multiplexer disabled, the multiplexer outputs (ADRS<7:4>) all go to 0.

Thus, when a power failure occurs, or a CS parity error occurs during a dispatch operation,
ADRS<8:0> goes to 100 (hex) sending the PROM to the power fail routine (PWR.FAIL). The power
fail routine resets the memory controller arbitrator and, if system power is normal, returns the memory
controller to the idle state.

2.3.6 Power Fail Logic (Figure 2-18)
The power fail logic functions to assert PWRFL whenever memory controller power is below its min­
imum specification tolerance.

When a system ac power failure occurs, a power-down sequence is initiated wherein CINIT is asserted
from the WCS module a few milliseconds before de power falls below its minimum tolerance level.
CINIT asserts INIT u which is synchronized by TO CLOCK and delayed by one clock pulse to become
L INIT DL Y. L INIT DLY asserts PWRFL if an operation is not in progress (CONT FUNC LAT
false). If an operation is in progress the assertion of PWRFL is delayed until the operation completes. If
the operation is a refresh cycle (ALLOW REF true) PWRFL asserts as soon as L INIT DLY comes
true.

PWRFL is sent to the memory array logic to disable generation of the timing gates for the array mod­
ules (Figure 2-36; Part 1). (A battery backup option powers the WCS module, where the array timing
gates are generated during refresh cycles, thereby allowing refresh cycles to continue during a power
failure.) PWRFL is latched up via an AND gate so long as L INIT DLY is true. UBS DCLO asserts on
the UNIBUS when power drops below its minimum tolerance level thereby maintaining L INIT DLY
true during the power interruption.

Thus, when ac power fails, the logic functions to allow the current operation to complete and then sends
the control store PROM (in the memory controller) to the power fail routine (PWR.FAIL).

During power-up (when power is applied or returns after an interruption) the memory controller power­
up flip-flop receives its de operating voltage and initially resets due to the exponential delay in the as­
sertion of + 5 V POWER UP. With the power-up flip-flop reset, PWRUP FLP and PWRFL are both
true. When + 5 V POWER UP rises to the level required to condition the power-up flip-flop to set, TO
CLOCK sets the flip-flop negating PWRUP FLP and PWRFL.

Thus, during power-up, UBS DCLO negates; however the power fail logic functions to delay the nega­
tion of PWRFL assuring that memory controller power is normal before sending the control store
PROM to the idle state.

2-22

N
I

N
VJ

(~~~~~c~)--cl_N_IT~ CPU

(

FROM UNIBUS)
INTERFACE
FIG. 2-1 TO CLOCK

L INIT
DLY

+5V (C5S)-CONT FUNC LAT

+5V POWER UP

I
TO CLOCK

Figure 2-18 Power Fail Logic

>-C_L_R _C_S_R __ .,.(TO CSR 1, PART 2;)
FIG. 2-51

POWER PWRFL
>------tD FAIL...._..__ ___ .,. (FIGURE 2-15)

FF (TO REFRESH LOGIC)
FIGURE 2-36;PART 1

PWRUP FLP

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.

2. THE LOGIC IN THIS FIGURE IS CONTAINED ON SHEET E OF THE ENGINEERING
DRAWINGS.

TK-6079

2.4 ADDRESS TRANSLATION

2.4.1 General
The translation of virtual addresses from the CPU and addresses from the UNIBUS into physical ad­
dresses is accomplished by use of the virtual address register (VAR) and the translation buffer (TB).
Figure 2-19 is a simplified block diagram of the translation function.

VIRTUAL
ADDRESS

VIRTUAL
ADDRESS/
ADDRESS

.-V-IR-T-UA_L_ FROM UB

TRANSLATION
BUFFER

UNIBUS
SPACE -a>rr--
SPACE

r PROTECTION/ACCESS

l=: PFN (PA<23:09>)

ADDRESS ..,_D_EV_l_CE_--1

REGISTER

TB MISS (TO CSR)

PHYSICAL
~--ADDRESS t----~

BUFFER

BYTE OFFSET (LVA<OB:OO>)

Figure 2-19 Simplified Block Diagram of Address Translation

PROTECTION/ ERRORS
ACCESS (TO CSR)
CHECK

](

TO MEMORY)
ARRAY LOGIC
OR UNIBUS

TK-6076

The virtual address register selects either a virtual address from the MC bus or an address from a UN­
IBUS device. The address selected by the VAR is divided into two parts. The lower nine bits are the
byte offset (index into the page frame) and are sent directly to the array logic (or the UNIBUS*). The
higher order bits are used to address the translation buffer and select a TB entry.

The translation buffer is divided into two sections. One portion of the buffer is allocated to CPU en­
tries. This area is addressed when a CPU translation is being executed. The other portion of the buffer
is allocated to UNIBUS entries. This area is addressed when a UNIBUS translation is being executed.

A TB entry is made up of the page frame number (PFN) and protection/access bits. The PFN is sent to
the array logic (or the UNIBUS*) along with the byte offset as the physical address. The pro­
tection/ access bits are checked for illegal operational errors and, if any are found, the CPU is flagged
and the appropriate error bit is set in the control/status registers.

During a CPU virtual address translation, the TB entry addressed by the VAR output may not be pre­
sent in the translation buffer. When this occurs, a TB MISS error bit is set in one of the control/status
registers (CS Rs) and the CPU is flagged that the TB entry associated with the referenced page is not in
the translation buffer. The CPU uses the virtual address to get the referenced page and its associated
page table entry (PTE), to place the page into the memory arrays, to enter the corresponding TB entry
into the translation buffer, and to retry the address translation. A TB miss can only occur during a CPU
virtual address translation as all 512 possible UNIBUS addresses map to one of the 512 UNIBUS en­
tries in the translation buffer.

The CPU can place a physical address on the MC bus which would not need address translation. When
this is done the address from the VAR is the physical address. A physical address buffer is used to
bypass the translation buffer and transfer the physical address directly to the memory array logic or the
UNIBUS. The byte offset is still obtained from the VAR.

*When the UNIBUS is the CPU target.

2-24

2.4.2 CPU Virtual Address Translation
Figure 2-20 is a flow diagram of a CPU virtual address translation. Figure 2-21 is a block diagram of
the logic involved in the translation. Paragraphs 2.4.2.1 through 2.4.2.6 relate to the block diagram to
provide a functional explanation of the logic. The flow diagram is used mainly as a supplement to show
the steps of an address translation and the sequence in which they occur.

2.4.2.1 Virtual Address (Figure 2-22) - The virtual address applied to the VAR from the MC bus is
shown in Figure 2-22A. The address is shown in segments with each segment performing a specific
function within the translation logic.

Bits <01 :00> select the byte being addressed within the selected longword. This is accomplished in
the data rotator and the data rotator control logic.*

Bits <08:02> select the longword being addressed within the selected page. This is accomplished in
the memory address mux. *

Bits < 31 >, < 14:09 > select the page by addressing the translation buffer and retrieving the associ­
ated PFN. The memory logic uses the PFN to select the page.

Bits <30:15> is the tag associated with the TB entry. When the TB entry is loaded into the translation
buffer, the tag is stored at the same address in the tag store area. When the entry is addressed, the tag
is retrieved and compared with bits <30:15> of the current virtual address. They must match to affect
a valid translation.

When the CPU presents a physical address to the memory controller, bits <23:09> are used as the
page address.

2.4.2.2 Virtual Address Register/VAR Counter - The true state of CPU GRANT negates UB IDLE
causing VAR MUX SEL to negate. When VAR MUX SEL negates, the virtual address register selects
the 32-bit virtual address from the MC bus. TO CLOCK loads the virtual address into the VAR.

VAR output bits LVA <01 :00> select the byte location within the addressed longword. They are sent
to the data rotator control logic to specify the amount of byte rotation required and to the UNIBUS
interface as part of the UNIBUS address when the UNIBUS is the CPU target.

VAR output bits <30:02> are loaded into a VAR counter by VAR LOAD from the controller micro­
word. The counter is used to increment the address to the next longword location when a two-cycle
access is being executed. As the least significant bit in the counter is LVA <02>, incrementing the
counter increases the virtual address by four to the next longword location. Negating VAR LOAD and
asserting VAR MUX SEL increments the counter.

Counter bits L VA <08:02> are monitored by logic within the VAR counter. All seven bits true in­
dicates an address of 128 (decimal) which is the last location on the page. When this occurs the counter
asserts PAGE BOUNDARY indicating that the last longword in the page is being addressed.

If the operation is a two-cycle access, the second cycle would be addressing the first longword in a new
page. If the two-cycle operation is a write, the WR ACROSS PG ERR bit is set in CSRl, ERR SUM
is asserted to the CPU, and the memory controller aborts the operation. Thus the first longword is not
written because access to the new page has not been checked and writing the second longword may not
be allowed.

*When storage area is an array board. If the UNIBUS is the CPU target the bits are transferred to the UNIBUS.

2-25

"Tl
ciQ'
c ..,
(D

N
I

N
0

()
'"O c
-< ::;·
c
e:..
> c..
c.. ..,
(D
Vl

N Vl
I >-1 N

--J
..,
~
::i
Vl

;-..... a·
:::
"Tl
0
~

v
~·

(Jq ..,
~

3

YES

YES

NO

NO

t ADDR PH
Disable translation
buffer. Enable physical
address register.

t VAR LOAD

Assert PA <23:09> to
array logic to access data.

t OP PREF ADR
Inhibit LVA <08:02>
output from VAR
counter. Enable prefetch
counter output L VA
<08:02> to array logic
to access data.

Retrieve longword from
memory array. Perform
ECC check. Move long­
word to MC bus.

t LOAD IB
Load instruction
buffer in CPU. Load
and increment pre~
fetch counter.

YES

Start

NO

I VAR MUX SEL
VAR register selects
32 bit virtual address
from MC IJus.

t VAR BYP EN
TB index address IJits
(<14:09>,<31>)
bypassed around VAR
register and VAR counter

Assert PA<23 :09> to
array logic to access data

Check or:
• TB MISS
• TB PAR ERR
• ACCESS REFUSED
• MODIFY REFUSED
• VALID

NO

Retrieve longword from
memory array. Perform
ECC check. Rotate read/
write data as required. If
write operation, assemble
new longword.

If write operation,
write longword into
memory array. If
read operation, move
longword to MC bus.

YES

YES

Write first longword
into memory array.

Done

I VAR LOAD
t VAR MUX SEL
Increment VAR
counter to next long­
word location in
memory array.

Retrieve second longword
from array Perform E CC
check. Assemble new
longword.

Wite second longword
into array.

YES

Retrieve first longword
from memory array.
Perform ECC check.
Rotate read/write data
as required. If write
operation, assemble new
longword.

I VAR LOAD
t VAR MUX SEL
Increment VAR
counter to next long­
word location in memory

Check for:
• TB MISS
• TB PAR ERR
• ACCESS REFUSED
•MODIFY REFUSED

• VALID

Retrieve second longword
from array. Perform ECG
check. Rotate data as re­
quired. Move longword to
MC bus

YES

t WR ACROSS PG ERR

YES

Abort operation.
Assert ERR SUM
to CPU.

"' ::::> BUS MC co
(.) D<31:00>
:;;

BUS MC

D<31>

BUS MC

0<30:24>

BUS MC

D<14:09>

BUS MC

0<08:02>

BUS MC

D<Ol:OO>

TO CLOCK

VAR MUX
SEL

(NOTE 1)

BUS MC D<31> VAR

BUS MC D<14:09> ~~6~i;ER
(B)

HOLD

VIRTUAL
ADDRESS
REGISTER

(Bl

CLK

SEL

FIG. 2-49

INC

<Ol:OO> (~~~:;;R CONTRO)

.___ ____ ___J AND UNIBUS
INTERFACE
FIG.2-1

LVA (C36)
I LO IB

<01:00>

(FROM ECC ENABLE
LOGIC ERROR
FIG. 2-41

G H

LVA<31:25>, LVA<08:00>

IC2J) MAINT RD ADDR

LVA<31>

UB TB UB
SELECT TB SEL
LOGIC

UB/CPU
MUX

(C)

SEL

TBA6

TBA9

(FIG. 2-25)
~---+--------~L~V~A~<_3_0:_2_4>_~TAG TB MISS

(
TO CSR1)
FIG. 2-54

BUS MC D<31:24>. <07:00> u> (FROM
>------------+! iii CSR1

u FIG. 2-52
::?

(C)

TB ENTRY
STORE

(CPU SPACE)

ADR

LVA<23:15> COMPARATOR

(Cl

}

(Cl

(FROM ONE-BIT)
,SHIFTERS FIG. 2-29

(

TO) PG BRANCH

BOUNDARY LOGIC
FIG. 2-15

___ .___..(TO CSR 1, FIG. 2-54 I

PHYSICAL
ADDRESS
BUFFER

PHYSICAL ADDA Pt-' (B)
ADDRESS i----~---&----'-

SELECT
LOGIC
(FIG. 2-24)

PA<23:09>

PA<23:09>

Figure 2-21

BYTE OFFSET (BIT PA

PARITY
PA<23:09> GENERATOR

IC)

(

FROM) TB PAR
CSR! DIAG
FIG. 2-52

(Fl TB PO

PA<
23

'
18

> ITO MEMORY SELECT DECODER)}

PA<19:18> (TO FIG) ,..__ ____ .,. (TO BANK SELECT LOGIC) 2-36.

PART 1
PA<17:09>

-----.----.. (TO ARRAY ADDRESS MUX)

NOTES:

TO UNIBUS INTERFACE)
FIG. 2-1

1. SELECTS MC BUS WHEN NEGATED

2. LETTER DESIGNATIONS IN PARENTHESES REFER TO
ENGINEERING DRAWINGS CONTAINING CORRESPONDING LOGIC

3. "C" DESIGNATIONS REFER TO MICROWORD BITS.

CPU Virtual Address Translation Block Diagram

2-29

3130

111

I PAGE FRAME ADDRESS I
!+---FOR DIRECT PHYSICAL----!
I ACCESS OPERATIONS I

02 0100 24123 1514 09"8

I I 111 111 1111
GOES ----TAG ____ ___. ADDRESS OF I LONGWORD I BYTE
WITH I I ENTRY IN I ADDRESS IN I ADDRESS
BITS I I CPU SPACE I PAGE FRAME (4 BYTES PER
<14:09> I OF TB (ALSO (128 I LONGWORD) I BIT <31>) I LONGWORDS

I I (128 ENTRIES PER PAGE) I
IN CPU I I I I SPACE) I

A. VIRTUAL ADDRESS FROM MC BUS

17 0908 020100

11 111 1111
I ADDRESS OF ENTRY I LONGWORD I BYTE
I IN UB SPACE OF TB I ADDRESS IN I ADDRESS
I (512 ENTRIES IN UB I PAGE FRAME (4 BYTES

I
SPACE) (128 I PER LONG-

1 I
LONGWORDS I WORD)
PER PAGE)

B. ADDRESS FROM UNIBUS
TK-6074

Figure 2-22 CPU /UNIBUS Address Segments

If the two-cycle operation is a read, the operation continues and the new virtual address is checked for
access. If access to the new page is not allowed, ERR SUM is asserted and the operation is aborted. A
read operation is allowed to continue across a page boundary, while a write operation is not, because a
read operation does not destroy old data. Refer to the address translation flow diagram (Figure 2-20)
where the sequence for a two-cycle operation is illustrated.

Other logic within the VAR counter monitors bits LVA <29:02>. All 28 bits true asserts SYS ADDR
VIOL indicating that the last longword in the system region is being addressed. If a two-cycle operation
is being executed, the second cycle would cross a system boundary which is not allowed for any type of
operation. Thus, if SYS ADDR VIOL asserts when a two-cycle operation is initiated (either read or
write), the WR ACROSS PG ERR bit is set in CSRl, ERR SUM is asserted to the CPU, and the
memory controller aborts the operation (Figure 2-20).

Bits L VA <08:02> (byte offset) from the VAR counter are coupled to the array logic and to the
UNIBUS interface. Bits LVA < 14:09> from the VAR counter and bit LVA <31 > from the VAR
are coupled to the translation buffer as the index address into the buffer. (Bit LVA <31 > is routed to
the translation buffer via the UB/CPU mux.) Bits LVA <30:15> from the VAR counter are coupled
to the tag store area of the TB (Paragraph 2.4.2.4.1).

2.4.2.3 VAR Bypass - Bit LVA <31> from the VAR and bits LVA <14:09> from the VAR
counter address the translation buffer and select the desired TB entry. A VAR bypass register routes
the address bits around the VAR and VAR counter and applies them directly to the translation buffer.
By applying them directly to the buffer, the TB entry can be retrieved and the parity, access, and pro­
tection checks started without waiting for the address bits to work through the VAR and the VAR
counter.

2-30

VAR BYP EN enables the VAR bypass. VAR BYP is asserted by the memory control store PROM
causing VAR BYP EN to come true. VAR BYP EN inhibits L VA < 31 > coming from the VAR and
LVA <14:09> coming from the VAR counter, and substitutes LVA <31>, <14:09> from the VAR
bypass register. The VAR bypass register is a flow-thru register, thus the TB index address bits on the
MC bus are immediately applied to the translation buffer. The bits are not subject to the delay of being
clocked into bit registers. CONT FUNC LAT holds the flow-thru register open.

The address bits are also clocked into the virtual address register by TO CLOCK and then loaded into
the VAR counter by VAR LOAD. Thus when VAR BYP negates and the VAR bypass is inhibited, bit
LVA <31 > is in the virtual address register and bits LVA < 14:09> are in the VAR counter. If the
operation requires a second cycle, the counter is incremented to address the next longword location.

2.4.2.4 Translation Buff er

2.4.2.4.l TB Space - Figure 2-23 illustrates the space allocation within the translation buffer. The TB
entries are 23 bits long and are stored in a 1 K area. The upper 512 locations are for UNIBUS entries.
The lowest 128 locations are for CPU entries. The remaining 384 locations are not used.

The TB entry store area is enabled by the negated state of ADDR PH obtained from the physical ad­
dress select logic (Figure 2-24). When memory management is enabled by the CPU (L MME true),
ADDR PH goes false and enables the TB entry store area. The TB will have either its data in path or its
data out path enabled depending on the state of TB WE from the memory control store PROM.

The translation buffer is addressed by bits LVA < 14:09> and TBA <9:6>. TBA <9:6> are obtain­
ed from a UB /CPU mux. The mux select signal (UB TB SEL) is a function of the three special func­
tion bits (SPF <2:0>) from the memory control store PROM (Figure 2-25). UB TB SEL is false for
CPU translations thereby causing the mux to couple L VA <31 > to the TBA6 address line. TBA
<9:7> are grounded for CPU translations (Figure 2-23). Thus for a CPU translation, seven address
bits (LVA <14:09, TBA <6>) index into the 128 locations of CPU space for the desired TB entry.

A tag store area consisting of 256 16-bit locations is used to store the tag associated with each TB entry
in CPU space (Figure 2-23). The tag is bits L VA < 30: 15 > of the virtual address used to load the entry
into the translation buffer. Only 128 of the 256 tag locations are used, corresponding to the 128 TB
entry locations. Thus each index address into CPU space locates a TB entry and also its associated tag.

The tag store area is enabled by a negated TBA 9 (ground) from the UB/CPU mux during CPU ad­
dress translations. TB WE from the control store PROM enables either the LVA <30:15> input path
or the TAG < 15:00> output path.

When a TB entry is addressed during a translation, its associated tag is coupled into a tag comparator.
Bits L VA < 30: 15 > of the virtual address are also applied to the comparator. If L VA < 30: 15 > match
the 16 tag bits a TB hit is scored meaning that the TB entry for the virtual address has been loaded into
the translation buffer. If the TB entry for the virtual address is not in the translation buffer, a match is
not obtained and the comparator asserts TB MISS. TB MISS sets an error bit in CSRl and asserts
ERR SUM to the CPU. The CPU then functions to swap the desired TB entry into the translation
buffer and try the translation again.

The TB entry selected by the index address is composed of 23 bits as shown in Table 2-6. The bit func­
tions are described in Paragraphs 2.4.2.4.2 and 2.4.2.4.3.

2-31

TB ENTRY STORE (lK X 23)
(HEX)
i3FFl ll- 11111111-------.--------.1024

UNIBUS SPACE (512)

512 goo_L .2 o_ ...£ <l2 2..._ ...2 <2.2 ~
(lFF) 01 1111 1111

~Ol_ _Q !.__ ...£ ~ !?___ _Q ~ Q_
TAG STORE (256 X 16)

(OFF) 00 1111 1111
256

(080) 00 1 000 0 000 ----------
(07F) 0 0 0 1 1 1 1 1 1 1

128

CPU SPACE (128) CPU TAGS (128)

(OOQL 0 0 0000 0000 0

ji.e•----23 BITS-----•-1 J.--16 BITS------.j

LVA09
LVA 10
LVA 11
LVA12
LVA 13

-----LVA14
.__-----TBA 6 (LVA 15 IN UB SELECT; LVA 31 IN CPU SELECT)

'------TBA 7 (LVA 16 IN UB SELECT; GND IN CPU SELECT)
'---------TBA 8 (LVA 17 IN UB SELECT; GND IN CPU SELECT)

.__-------TBA 9 (+3V IN UB SELECT; GND IN CPU SELECT)

Figure 2-23 Translation Buffer Space Allocation

CONT FUNC LAT
(C58) -------------t

TB DATA EN
(C61)-------f

(
FROM CSRl) L MME
FIG. 2-52 --------t

(

FROM UNIBUS) CPH/UBL
INTERFACE SPFO
FIG.2-1 (C22)------------1

(C50) SPFl

(C30) __ SP_F_2 __ -t

NOTES:

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.
2. THE LOGIC IN THIS FIGURE IS CONTAINED ON

SHEET B OF THE ENGINEERING DRAWINGS.

Figure 2-24 Physical Address Select Logic

2-32

TK-6072

ADDA PH

TK-6068

Table 2-6

Number
of Bits

15

4

(C58) __ c_o_NT_F_U_N_C_LA_T ___ --1

(C22) _s_P_Fo ____ __,

(C30) _S_P_F2_--1

NOTES:

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.
2. THE LOGIC IN THIS FIGURE IS CONTAINED ON

SHEET B OF THE ENGINEERING DRAWINGS.

Figure 2-25 UB TB Select Logic

TB Entry Bits (CPU Space)

Item Mnemonic

Page frame number PA<23:09>
(PFN)

Protection bits PROT A,B,C,D

Modify bit MODIFY

Valid bit VALID

Byte offset bit BYTE OFFSET

Parity bit TBPO

*This bit is set before the data in the frame is modified.

2-33

UB TB SEL

TK-6070

Function

Selects physical
storage location

Allows no access, read
only, or read/write
according to operating
mode

Indicates data in
frame has been
modified*

Indicates page frame
is in the working set

Indicates TB data is a
genuine entry written
by the CPU

Parity bit for TB
entry

2.4.2.4.2 Protection - The protection PROM has a nine-bit address input as listed below .

. PROT A, B, C, D

.MODIFY

.MF <1:0>

.CM <1:0>

The four protection bits are part of the TB entry and specify the type of access allowed (no access, read
only, read/write) for the four operating modes (user, supervisor, executive, kernel).

The MODIFY bit is part of the TB entry and indicates that the data in the referenced frame has been
modified or is to be modified during the current translation.

MF < 1 :0> are memory function bits derived from CSR <08:07> respectively received from the
CPU. CSR <08:07> specify the type of check to be made by the PROM. The CSR bit code is shown
in Table 2-7.

CM < 1 :0> are current mode bits derived from CURR MODE < 1 :0> respectively received from the
CPU. CURR MODE < 1 :0> specify the current operation mode of the system. The CURR MODE
bit code is shown in Table 2-8.

The protection PROM has three outputs as listed below .

. ACCESS REFUSED

.MODIFY REFUSED

.PROT PAR

ACCESS REFUSED is asserted if the referenced page cannot be accessed in the current operating
mode (Table 2-8) and for the type of check specified (Table 2-7). MODIFY REFUSED is asserted if
the referenced page is to be written (write operation) and the MODIFY bit is not set. In this case, the
CPU sets the MODIFY bit and the write operation is retried. Both ACCESS REFUSED and MODI­
FY REFUSED set error bits in CSRl and assert ERR SUM to the CPU.

PROT PAR is a parity bit formed from the four protection bits and the MODIFY bit as a component
of parity for the entire TB entry (Paragraph 2.4.2.4.3).

2.4.2.4.3 Parity Checking/Generation - Each TB entry has a parity bit (TB PO) that is checked for
parity error when the entry is retrieved. As a TB entry is retrieved, the fifteen PFN bits (PA <23:09>)
and the BYTE OFFSET bit are applied to a parity generator which develops a parity component signal
(GEN PO) which is applied to the TB parity generator/ checker.* Also applied to the parity gener­
ator/ checker is the VALID bit from the TB entry and PROT PAR from the protection PROM. PROT
PAR is a parity component derived from the four protection bits and the MODIFY bit (Paragraph
2.4.2.4.2).

Thus the TB parity generator/checker develops a composite parity signal from all bits in the TB entry.
This signal is compared to the parity bit in the entry (TB PO). If they don't match, TB PAR ERR is
asserted to CSRl and ERR SUM is asserted to the CPU.

Each TB entry written into the translation buffer generates a composite parity signal in the same man­
ner. This signal becomes TB PO and is written into the buffer along with the TB entry.

*Another input bit (TB PAR DIAG) can be asserted for maintenance purposes.

2-34

Table 2-7 Memory Function Bit Code

Bits Type of Check

CSR<08>
MFl

CSR<07>
MFO

0 0 No check

0 Write check

0 Read check

Not used

Table 2-8 Current Mode Bit Code

Bits

CURR MODE 1
CMl

0

0

CURRMODEO
CMO

0

0

Mode

Kernel

Executive

Supervisor

User

2.4.2.5 Physical Address - During system boot-up, the CPU accesses page frames that reside in spe­
cific locations in physical memory. The address the CPU places on the MC bus is the physical address
of the page frames, therefore no translation is required and the translation buffer is not used.

The physical address on the MC bus is clocked into the VAR by TO CLOCK and then loaded into the
VAR counter by VAR LOAD. Bits L VA <08:02> from the counter are applied to the array logic (or
the UNIBUS) just as during a translation operation. Bits L VA <23:09> from the counter are applied
through a physical address buffer and then to the physical address bus as PA <23:09> where they
perform the same function as the PFN during an address translation operation.

The physical address buffer is enabled by the assertion of ADDR PH from the physical address select
logic (Figure 2-24). ADDR PH asserts during a CPU operation (CPH/UBL true) when memory man­
agement is disabled (L MME false). Once asserted ADDR PH latches itself up so long as CONT
FUNC LAT is asserted.

The assertion of ADDR PH disables the translation buffer which is not used during a direct physical
access to memory. It follows that there are no protection/access checks.

2-35

2.4.2.6 Prefetch Counter - CPU.ISTREAM.REQ operations use a prefetch counter to provide the
byte offset (L VA <08:02>) to the memory array logic in place of the byte offset from the VAR
counter.

A READ.V.RCHK.IFILL instruction must be executed before a CPU.ISTREAM.REQ can be per­
formed. (It is not necessary that READ.V.RCHK.IFILL be the preceding instruction.) During the
READ.V.RCHK.IFILL instruction, the controller asserts LOAD IB to the CPU which loads the CPU
instruction buffer with the longword read from memory. LOAD IB also loads the byte offset into the
prefetch counter and increments the counter to the next longword location in preparation for a
CPU.ISTREAM.REQ (prefetch) operation. The CPU.ISTREAM.REQ instruction is issued before
the instruction buffer in the CPU is emptied. Thus the virtual address presented to the controller on the
MC bus is to the last byte of the original longword location in memory. The byte offset from the pre­
fetch counter, having been incremented by the LOAD IB signal, is addressing the next longword loca­
tion. The CPU.ISTREAM.REQ transfer executes using the byte offset from the prefetch counter.
Thus the next longword access is already in progress when the instruction buffer is emptied.

After the longword has been retrieved, the memory controller issues LOAD IB to the CPU to load the
instruction buffer with the longword from the MC bus. The prefetch counter output wraps around and
is loaded into itself by the LOAD IB signal. LOAD IB also increments the counter so that the prefetch
byte off set now points to the next longword location in preparation for the next CPU .ISTREAM.REQ
operation.

When an ISTREAM operation is reading out the last longword in a page, the prefetch counter is at a
full count (L VA <08:02> all true). When the counter is loaded and incremented by LOAD IB, it
asserts PG BND PREF indicating that the counter has reset to 0 and is prepared to address the first
longword in the next page. With PG BND PREF true, the next ISTREAM instruction loads the new
page address into the VAR, translates the address through the translation buffer, and performs the
protection/access checks for the new page (Figure 2-20).

The prefetch function is enabled by OP PREF ADR from the prefetch select logic. OP PREF ADR
gates the output from the prefetch counter onto the byte offset lines (LVA <08:02>) and inhibits the
L VA <08:02> lines coming from the VAR counter.

The prefetch select logic (Figure 2-26) monitors CSR < 19> from the WCS board in the CPU. When
the CPU hardware initiates a CPU.ISTREAM.REQ. operation, bit CSR <19> is negated, causing
OP PREF ADR to assert. OP PREF ADR is latched up by CPU GRANT and held true by CONT
FUNC LAT.

(

FROM) CPU GRANT
ARBITRATOR ---r-------t---1
FIG. 2-1

CPU Gl'lANT

(

FROM WCS) CSR 19
MODULE IN
CPU

NOTES:
1. "C" DESIGNATIONS REFER TO MICROWORD BITS.
2. THE LOGIC IN THIS FIGURE IS CONTAINED ON

SHEET A OF THE ENGINEERING DRAWINGS,

Figure 2-26 Prefetch Select Logic

2-36

OP PREF ADR

TK-6069

2.4.3 UNIBUS Address Translation
UNIBUS address translation is similar to CPU virtual address translation but less complex. UNIBUS
translations do not involve the VAR bypass, TAG store, physical address buffer, prefetch counter, or
protection checks.

Figure 2-27 is a flow diagram of a UNIBUS address translation. Figure 2-28 is a block diagram of the
logic involved in the translation. Paragraphs 2.4.3. l through 2.4.3.3.2 relate to the block diagram in
providing a functional explanation of the logic. The flow diagram may be used as a supplement to show
the steps of an address translation and the sequence in which they occur.

2.4.3.1 UNIBUS Address - The address applied to the VAR from the UNIBUS is shown in Figure 2-
22B. The address is shown in segments with each segment performing a specific function within the
translation logic.

Bits <01 :00> select the byte being addressed within the selected longword. This is accomplished in
the data rotator and the data rotator control logic.*

Bits <08:02> select the longword being addressed within the selected page frame. This is accom­
plished in the memory address mux.

Bits < 17:09> select the page frame by addressing the translation buffer and retrieving the associated
PFN. The memory logic uses the PFN to select the page.

2.4.3.2 Virtual Address Register/VAR Counter - The negated state of CPU GRANT asserts UB
IDLE causing VAR MUX SEL to assert. When VAR MUX SEL asserts, the virtual address register
selects the 18-bit address input from the UNIBUS. TO CLOCK loads the address into the VAR. Note
that UNIBUS activity is not required to assert VAR MUX SEL. Thus, in the idle state, the virtual
address register receives the UNIBUS address lines.

The UNIBUS address translation is initiated by the assertion of MSYN (Figure 2-27) which branches
the microsequencer out of the idle state into the UNIBUS address translation routine.

VAR output bits L VA <01 :00> select the byte location within the addressed longword. They go to the
data rotator control logic to specify the amount of byte rotation required.*

VAR output bits < 17:02> are loaded into a VAR counter by VAR LOAD from the controller micro­
word. The counter is used to increment the address to the next longword location when a two-cycle
access is being executed. As the least significant bit in the counter is LVA <02>, incrementing the
counter increases the address by four to the next longword location. Negating VAR LOAD and assert­
ing VAR MUX SEL increments the counter.

Note in Figure 2-27 that if a two-cycle write operation involves writing the last longword of a page and
the first longword of the next page, writing the first longword is allowed before the next page is checked
for errors (UB ERR SUM). This is in contrast to a CPU write operation where under the same condi­
tions, the write operation is aborted.

Bits L VA <08:02> (byte offset) from the VAR counter are coupled to the array logic. Bits L VA
< 14:09> from the VAR counter are coupled to the translation buffer as part of the index address into
the buffer (Paragraph 2.4.3.3.1). Bits LVA < 17:15> from the VAR counter are coupled to the
UB/CPU mux where they form the rest of the TB index address.

*The data rotator control logic also uses the BYTE OFFSET bit in determining the amount of data rotation.

2-37

N
I

w
00

Start

l CPU GRANT

t VAR MUX SEL
VAR register selects
18 bit address
from UNIBUS.

t VAR LOAD
Load VAR counter
with address from
VAR register.

t OP ARY ADR
Gate LVA<08:02>
to array logic to
access data.

l ADDR PH
Enable translation
buffer.

Index into UNIBUS
space of translation
buffer for TB entry

Assert PA <23:09>
to array logic to
address longword
location.

Figure 2-27

Retrieve longword from
memory array. Perform
ECC check. Rotate
longword as required.

NO

Move longword
to MC bus.

I VAR LOAD
Increment
VAR counter.

Move data to
UNIBUS via WCS
module in CPU.

Index into UNIBUS
space of translation
buffer for TB entry.

Issue SSYN to
UNIBUS device.

Assert PA<23:09>
to array logic to
address longword location.

Done

UNIBUS Address Translation Flow Diagram

NO

YES

YES

NO

YES

Operation is aborted by
not asserting SSYN to
UNIBUS.

Retrieve longword from
memory array. Perform
ECC check. Rotate
write data as required.
Assemble new longword.

Write longword into
array.

Increment
VAR counter.

Index into UNIBUS
space of translation
buffer for TB entry.

Assert PA<23:09>
to array logic to
address longword
location.

NO

TK-6083

N
I
w
\D

(CS
8

) CONT FUNC LAT

(

FROM) ARBITRATOR CPU GRANT
FIG. 2-1

UBS A<17:09> VIRTUAL
UBS A<OB:02> ADDRESS

REGISTER
UBS A<Ol :OO>

(B)
TO CLOCK

CLK
VAR MUX SEL

SEL (NOTE 1)

LVA<17:15>

UB TB
SELECT UB TB SEL
LOGIC
(FIG. 2-25)

<17:09>

<08:02>

(C21)

UB/CPU
MUX
(C)

SEL

LVA<17:15>

VAR
COUNTER

(B)

LOAD

INC

TBA<9:6>

LVA<14:09>

LVA<08:02> (TO ARRAY)
ADDRESS
MUX FIG. 2-36; PART 1

(

TO DATA)
LVA<Ol:OO> ROTATOR CONTROL

PRE FETCH

(
FROM WCS) CSR<19> SELECT
IN CPU LOGIC

(FIG. 2-26)

FIG. 2-49

OP PREF
ADR

MODIFY

PROT A,B,C,D

(
TO CSR2)
FIG. 2-55

OP ARY ADR

TB PARITY

VALID GENER-

(~~~:;~R) B._Y_T_E-------'-'-=-'--1-.i ~~~~~ER
CONTROL OFFSET (F)
FIG. 2-49 (BIT) PA

------'-P-'-A'"-'<2=3:~09;;;.;>-- PARITY GEN PO

TB PAR ERR (TO CSR2)
FIG. 2-55

TB PO

TB ENTRY TB PO
STORE I+'~~-------. (

FROM CSRi TB PAR DIAG GENERATOR
FIG. 2-52 (C) TBA <9:6>

(UNIBUS

}

SPACE)

ADR
1-----------------~ (C)

LVA <14:09>

(
FROM CSR 1) L MME
FIG. 2-52

PHYSICAL
ADDRESS
SELECT
LOGIC
(FIG. 2-24)

(TB
ENTRY) PA<23:09> PA<23: 18>

(TB ENTRY) PA<19:18>

PA<17:09>

Figure 2-28 UNIBUS Address Translation Block Diagram

~~L~~~~:~ODER)]
~~L~~~~OGIC l (TO FIG. 2-36; PART 1)

TO ARRAY NOTES: 1. SELECTSUNIBUSWHENASSERTED.
ADDRESS MUX 2. LETTER DESIGNATIONS IN PARENTHESES REFER TO

ENGINEERING DRAWINGS CONTAINING CORRES­
PONDING LOGIC.

3. "C" DESIGNATIONS REFER TO MICROWORD BITS.

2.4.3.3 Translation Buff er

2.4.3.3.1 TB Space - Figure 2-23 illustrates the space allocation within the translation buffer. The TB
entries are 23 bits long and are stored in a 1 K area. The upper 512 locations are for UNIBUS entries.
The lowest 128 locations are for CPU entries. The remaining 384 locations are not used.

The TB entry store area is enabled by the negated state of ADDR PH obtained from the physical ad­
dress select logic (Figure 2-24). When the memory controller is being used by a UNIBUS device
(CPH/UBL false), ADDR PH is false to enable the TB. The TB has its data-out path enabled by the
negated state of TB WE from the memory control store PROM.

The translation buffer is addressed by bits LVA < 14:09> and TBA <9:6>. TBA <9:6> are obtain­
ed from the UB/CPU mux. The mux select signal (UB TB SEL) is a function of the three special
function bits (SPF <2:0>) from the memory control store PROM (Figure 2-25). UB TB SEL is true
for UNIBUS translations thereby causing the mux to couple LVA <17:15> to the TBA <8:6> ad­
dress lines respectively (Figure 2-23). Address line TBA9 is always true (+ 3 V) for UNIBUS trans­
lations. Thus for UNIBUS translations, ten address bits (LVA <14:09>, TBA <9:6>) index into the
512 locations of UNIBUS space for the desired TB entry.

The TB entry selected by the index address is composed of 23 bits as shown in Table 2-9. The bit func­
tions are described in Paragraph 2.4.3.3.2.

Table 2-9 TB Entry Bits (UNIBUS Space)

Number
of Bits Item

15 Page frame number
(PFN)

4 Protection bits

Modify bit

Valid bit

Byte offset bit

Parity bit

Mnemonic

PA<23:09>
storage location

PROT A,B,C,D

MODIFY

VALID

BYTE OFFSET

TBPO

Function

Selects physical

Not used

Not used

Indicates TB data is
a genuine entry

Indicates UNIBUS
reference is to an
odd byte location
(i.e., 1001, 1003)*

Parity bit for TB
entry

*UNIBUS protocol allows UNIBUS address bits to present only even addresses to the memory controller during a word trans­
fer.

2-40

2.4.3.3.2 Parity Checking/Generation - Each TB entry has a parity bit (TB PO) that is checked for
parity error when the entry is retrieved. As a TB entry is retrieved, the fifteen PFN bits (PA <23:09>)
and the BYTE OFFSET bit are applied to a parity generator which develops a parity component signal
(GEN PO) for the TB parity generator/checker.* Also applied to the parity generator/checker is the
VALID bit from the TB entry and PROT PAR from the protection PROM. PROT PAR is a parity
component derived from the four protection bits and the MODIFY bit. The MODIFY and protection
bits serve no function during a UNIBUS address translation except for the generation of the TB entry
parity bit.

Thus the TB parity generator/checker develops a composite parity signal from all bits in the TB entry.
This signal is compared to the parity bit in the entry (TB PO). If they don't match, TB PAR ERR is
asserted to CSR2 and UB ERR SUM is asserted to the memory controller branch logic.

Each TB entry written into the translation buffer generates a composite parity signal in the same man­
ner. This signal becomes TB PO and is written into the buffer along with the TB entry.

The BYTE OFFSET bit in the TB entry must be set if a UNIBUS reference is made to an odd byte
location during a word transfer. In accordance with UNIBUS protocol, byte transfers can be made to
odd or even addresses but word transfers can be made only to even addresses. Thus, when a UNIBUS
word transfer is to be made to an odd address (odd byte location), the BYTE OFFSET bit is set which
effectively adds one to the even address taken from the UNIBUS address lines. BYTE OFFSET is sent
to the data rotator control logic as a factor in determining the amount of byte rotation during a UN­
IBUS transfer.

2.4.4 Writing/Reading the Translation Buffer (Figure 2-29)

2.4.4.1 Writing the Translation Buffer - TB entries to be written into the translation buffer are placed
on the MC bus by the CPU. The format of the entry as it appears on the MC bus is shown in Figure 2-
30A. Note that the 15-bit PFN is located in bits < 14:00>. The PFN as it is used on the physical
address bus is located in bits PA <23:09>. In order to write the PFN into the TB so that it can be read
out in the correct format, the entry must be shifted nine bits left from its position on the MC bus.

The entry is first fed into the data rotators where it is shifted one byte left and returned to the MC bus.
The entry on the MC bus is now as shown in Figure 2-30B.

The TB entry is then divided into two parts and sent through one-bit, bidirectional shifters where it is
shifted left one more bit. The shifter outputs are shown in Figure 2-30C where it is seen that the PFN is
now in the desired bit location (<23:09>).

One shifter receives the PFN (BUS MC D <22:08>) and outputs onto bits <23:09> of the physical
address bus. The other shifter receives the protection/access bits (BUS MC D <07:01 >)and outputs
onto the respective protection/ access signal lines. The output of the two shifters is written into the
translation buffer.

The PFN one-bit shifter is enabled by TB DAT A EN + MAINT while the direction of data flow is
determined by TB DATA DIR RD. Both signals are obtained from the memory control store PROM.

The protection/access one-bit shifter is identical to the PFN shifter except that TB DATA EN is the
enabling signal. The shifters have different enabling signals for maintenance purposes.

*Another input bit (TB PAR DIAG) can be asserted for maintenance purposes.

2-41

(~:~~U MU]{ TBA<8:6>
FIGS. 2-21 TBA9
AND 2-28 -~---~

TBA<9:6>

LVA<30:15>

}(
TO TAG)
COMPARATOR

TAG<15:00>

TB PO
------------ PARITY GENERATOR/

(

TO/FROM TB)

Cf)
;:)
co
u
~

BUS MC

D<31:00>

NOTES:

DATA
ROTATOR
(FIG. 2-46)

(CSO) TB DATA DIR RD

BUS MC D<22:08>

BUS MC D<07:01>
PROTECTION
/ACCESS BI­
DIRECTIONAL ONE
BIT SHIFTER (D)

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.
2. LETTER DESIGNATIONS IN PARENTHESES REFER TO

ENGINEERING DRAWINGS CONTAINING CORRESPONDING LOGIC.

(TB ENTRY)

PA<23:09>

BYTE OFFSET
VALID
PROT A,B,C,D
MODIFY

Figure 2-29 Translation Buffer Write/Read Block Diagram

2-42

CHECKER

(TB ENTRY)

(
TO FIGURES)
2-21 AND 2-28

3130 27 262524 1514 00

NOT USED PAGE FRAME NUMBER

MODI FY------'

BYTE OFFSET-----'

A. TB ENTRY ON MC BUS

31 23 22 08 07 06 03 020100

[1 TT I II J
J

~

NOT USED PAGE FRAME NUMBER

VALID

PROTE CTION BITS

MODIF y

BYTE 0 FFSET

NOT US ED

B. TB ENTRY AFTER DATA ROTATORS

31 2423 090807 0403020100

[1 11 111 J

::~~:C-T ,_IO_N_N_B~-:-S-U-S--E--D------~--------~--P-A~G~E~-F--R-_A_-..._M--E~-N~U~M~B~E~R~~~~~:_J~ ~
MODIFY------------------------_.

BYTE OFFSET------------------------'

NOT USED---------------------------'
C. TB ENTRY AFTER ONE-BIT SHIFTER

TK-6073

Figure 2-30 Translation Buffer Entry

2-43

The output of the two shifters is written into the translation buffer. To write the entry into the trans­
lation buffer, the control store PROM asserts TB WE. TB WE true enables the data path into the TB
and inhibits the data path out of the TB.

The index address of the entry is the virtual address placed into the virtual address register from the
MC bus. The address lines are LVA <14:09> from the VAR counter and TBA <9:6> from the
UB/CPU mux.

If the TB entry is being written into CPU space, an associated tag is written into the same index address
in the tag store area. The tag is virtual address bits L VA < 30: 15 > from the VAR counter.

The TB entry generates a parity bit which is written into the TB along with the entry. The generation of
the parity bit (TB PO) is described in Paragraphs 2.4.2.4.3 and 2.4.3.3.2.

2.4.4.2 Reading the Translation Buffer - At times the CPU will want to read a TB entry (e.g., for
maintenance purposes). Reading the translation buffer is accomplished by retrieving the TB entry and
asserting TB DATA DIR RD. The true state of TB DATA DIR RD establishes the shifter direction as
toward the MC bus. The shifters are enabled by TB DATA EN and TB DATA EN + MAINT from
the control store PROM.

The TB entry is shifted one bit right as it passes back through the shifters. This is followed by a one
byte shift to the right in the data rotator. Thus the entry appears on the MC bus in the proper format
for the CPU (Figure 2-30A).

2.5 PHYSICAL ADDRESS SPACE

2.5.1 General
Figure 2-31 shows the physical space that can be addressed from the memory controller. The physical
address is 24 bits long, allowing a total address space of 16 megabytes. The 24 address bits are the PFN
from the TB entry (PA<23:09>) and the byte offset from the virtual address bus (LVA<08:00>).

Most of the address space (15 megabytes) is memory space. The memory array cards are located in
memory space. The sixteenth megabyte is 1/0 space and is divided into two parts. The first 3/4 of 1/0
space is UNIBUS adapter space. This space contains simulated UNIBUS registers that actually do not
exist. The registers are simulated by the CPU to the VAX operating system in order to achieve software
compatibility between the VAX-11/730 and other VAX-11 systems. When a reference is made to this
area of memory, the memory controller asserts the ADAPT REG SEL error bit in CSRl and then
asserts ERR SUM to the CPU. The CPU reads CSRl, finds that UNIBUS adapter space has been
referenced, and simulates the proper response to the system software.

The last quarter of I/O space is for UNIBUS addresses.

A memory select decoder on the MCT module receives the six most significant bits of the physical
address (PA<23:18>) and outputs UB PH ADDR SEL, UB ADAPTER REG SEL, NXM, or MEM
SEL "X", depending on the area of address space referenced (Figure 2-36; Part 1).

2-44

j 1
256K UNIBUS

~

UNIBUS
MAP REG I STE RS
(512)

~

IDC ECC PAT

!DC ECC POS

IDC MPR

IDC DAR

IDC CNT

IDC BAR

IM IDC CSR

I
768K

~

1/0 UB CSR
SPACE

UB DP REG

UB DP REG

UB DP REG

UB CONFIG. REG

!,::

MEM ADAPT CSRO

MEM ADAPT CSR1

MEM ADAPT CSR2

~h

t
-r

1M E

15M
MEMORY 1M D
SPACE

1M c

1M B

1M A

1

Figure 2-31 Physical Address Space

2-45

ADDRESS (HEX)

FF FFFF

FC 0000

J--FB FFFF
...r

F2 6FFC

F2 6800

~
F2 6218

F2 6214

F2 6210

F2 620C

F2 6208

F2 6204

F2 6200

:~

F2 6010

F2 600C

F2 6008

F2 6004

F2 6000

~

F2 0008

F2 0004

F2 0000

-.>--
0000

FFFF

-r-

50 0000

4F FFFF

40 0000

3F FFFF

30 0000

2F FFFF

20 0000
1 F FFFF

10 0000

OF FFFF

00 0000

}

UB PH
ADDR SEL

UB ADAPTER
REG SEL

MEM SEL "X"

*"X" =LETTER OF SELECTED
ARRAY CARD.

TK-6697

2.5.2 Memory Space
The 15 megabytes of memory space consists of the memory array modules plus nonexistent memory
space. Up to five M8750 array modules may be used. Each module contains one megabyte of memory
and must be placed in consecutive positions starting with the lowest address {position A). For example,
if three memory cards are used, modules A, B, and C must be the three cards. This is necessary to
prevent holes in real memory (i.e., all memory array space must be contiguous).

When a reference is made to memory space where an array card is located, MEM SEL "X" is asserted
by the memory decoder ("X" is the particular module referenced). If no memory card is located at the
referenced address, NXM is asserted to CSRl as an error condition. Note that the area of nonexistent
memory is ten megabytes plus whatever area of memory array space is not used.

2.5.3 UNIBUS Adapter Space
A memory reference from FO 0000 to FB FFFF causes the memory select decoder to assert UB
ADAPTER REG SEL. The memory controller notifies the CPU that a reference has been made to the
UNIBUS adapter area and the CPU responds to the reference. The CPU may read the memory con­
troller translation buffer or the CSR hardware registers in order to formulate the response to the refer­
ence.

Only aligned longword references are allowed to UNIBUS adapter space.

Three memory adapter registers are simulated at addresses F2 0000, F2 0004, and F2 0008. The com­
position of the registers is shown in Figure 2-32.

NOTE
The memory adapter registers are designated as
CSRO, CSRl, and CSR2. They are simulated by the
CPU and are not to be confused with hardware reg­
isters CSRO, CSR 1, and CSR2 that physically exist
in the memory controller (Paragraph 2.9).

A UNIBUS configuration register is simulated at F2 6000. The register reads out 28 (hex) and ignores
writes. Figure 2-33A illustrates the composition of the register.

Three UNIBUS data path registers are simulated at F2 6004, F2 6008, and F2 600C. The registers
read out zeros and ignore writes (Figure 2-33B).

A UNIBUS control status register is simulated at F2 6010. Figure 2-33C illustrates the composition of
the register.

NOTE
Seven software registers are simulated for the RB-
730 Disk Subsystem. The seven registers are located
in the address range from F2 6200 to F2 6218 in­
clusive. The registers are shown in Figure 2-31 as
IDC (integrated disk controller) registers. Figure 2-
31 also shows the specific address of each register.
The composition of the registers is shown in Figure
2-34.

There are 512 UNIBUS map registers simulated from F2 6800 to F2 6FFC in 4-step increments.

2-46

31 24 23 09 0807 06 00

I I
FAILING PFN (PA)

A. CSR 0

~

ERROR SYNDROMES

31302928 27 26 25 24 1716151413 0706 00

DISABLE ECC

DIAG MODE

UN I BUS '------v---'
WRITE ERROR CHECK BITS

MME

~---CRD INT ENA

-----FORCE TB PARITY

'------CAD

------UNIBUS RDS

31 2524 23

I
CHIP SIZE 0 = 16K

1=64K

B. CSR 1

16 15

C. CSR 2

UNIBUS MAP PARITY

UNIBUS NXM

MEMORY SIZE

Figure 2-32 Memory Adapter Registers

00

TK-6569

31 06 05 04 0302 0100

MBZ l1 l+H 0 1ol
A. UNIBUS CONFIGURATION REGISTER

31 00

MBZ I
B. UNIBUS DATA PATH REGISTERS

00

MBZ MBZ

UB RDS
WR NOT VALID

UB TB PAR ERR

UB NXM

c. UNIBUS CONTROL AND STATUS REGISTER
TK-6570

Figure 2-33 UNIBUS Adapter Registers

2-47

A. CONTROL STATUS REGISTER (CSR)

27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FMT

TIMEOUT
INHIBIT

ECC

1 0

ATN

2 1

CHANGE OF

CE

F2 F 1 FO

DROY

DSI '----------INTERRUPT ENABLE

'-----------CROY

'--------------OPERATION INCOMPLETE

'--------------~ECCERR

'---------------~DLTERR

'------------------NXM
R80
SELECTED '-------------------DRIVE ERR

'-------------------~COMPOSITE ERR

Fd Fil FO FUNCTION SELECTED

0 0 0 RL02 - NOP
R80 NOP/FORMAT

0 0 1 WRT CHECK DATA
0 1 0 GET STATUS
0 1 1 SEEK
1 0 0 READ HEADER
1 0 1 WRITE DATA
1 1 0 READ DATA
1 1 1 READ DATA W/O HOR CHECK

B. BUS ADDRESS REGISTER (BAR)

31 18 17

I I UNIBUS ADDRESS

ADDRESS OF FIRST BYTE

c. BYTE COUNT REGISTER (CNT)
TO BE TRANSFERRED

31

I BYTE COUNT

2's COMPLEMENT OF NUMBER OF BYTES
TO BE TRANSFERRED

D. DISK ADDRESS REGISTER (DAR)

31 16 15

CYLINDER

E. MULTIPURPOSE REGISTER (MPR)

15

TRACK

08 07

SECTOR

08 07

MBZ

RESET

MBZ

GET STATUS

00

I

00

I

00

MARKER BIT----~
(MUST BE 1)

F. ERROR POSITION REGISTER (ECC POS)

13

G. ERROR PATTERN REGISTER (ECC PAT)

11

ERROR POSITION

ERROR CORRECTION PATTERN

Figure 2-34 RB-730 Software Registers

2-48

00

00

2.5.4 UNIBUS Space
Address references from FC 0000 to FF FFFF are to real devices on the UNIBUS. When UNIBUS
space is referenced, the memory select decoder asserts UB PH ADDR SEL which couples the trans­
lated physical address (PA< 17:09>, LVA<08:00>) to the eighteen UNIBUS address lines.

2.6 MEMORY ARRAY READ/WRITE

2.6.1 General
Figure 2-35 illustrates the configuration of the 4164 RAM chips on the M8750 MOS memory array
card. There are 156 RAM chips arranged in four banks of 39 chips each. Each RAM chip has a 256 X
256 matrix providing 64K (65,536) one-bit locations and, therefore, 64K 39-bit data locations per bank.
The four banks provide the array card with a total of 256K 39-bit data locations. A 39-bit data location
is made up of a 32-bit longword and seven check bits.

During a write to memory, input data longwords and check bits are applied to all four banks. Thus each
of the 39 input bits is applied to four RAM chips, however, only one of the four banks is enabled at a
time.

Eight address bits (A <07:00>) are applied to each of the 156 RAM chips. The address lines are mul­
tiplexed to first carry the row address and then the column address. A row address strobe (RAS) and a
column address strobe (CAS) load the row and column addresses respectively into the RAMs. CAS is
applied to all the RAMs and produces column addressing on all 156 chip arrays. A separate RAS
strobe is generated for each bank and only one of these asserts during a memory read/write. The bank
that has the row address strobed in thereby becomes the enabled one. A two-bit code (MA<l5:14>)
from the array bus specifies which bank is to be enabled. RAS TIM from the array bus times the RAS
strobes.

39 BITS

WRTIM BANKA (FROM

(

FROM)
ARRAY
BUS

- ARRAY BUS)
DR EN

DI (32 BITS), CBI (7 BITS)
A<07:00> -e 4164 4164 4164 4164 DO (39 BITS) • • • • RAM CAS RAM RAM RAM

MA<15:14>_,, DIOO DI 01 DI 02 CBIT
RASA

(~~RAY) BUS

RAS
RAS B

DECODE BANK B
RAS TIM ~

...... ...,..__, I-+ 1--i 4164 4164 4164 4164
RAM RAM RAM • • • • RAM ~
DIOO DI 01 DI 02 CBIT

......

BANKC

t--f-+
..... 4164 4164 4164 4164

RAM RAM RAM •••• RAM 1--1

-- DI 00 DI 01 DI 02 CBIT
RASC

~

BANK D --L---- 4164 4164 4164 4164
RAM RAM RAM •••• RAM t--

RAS D
-- DI 00 DI 01 Dl02 CBIT

-
TK-6016

Figure 2-35 RAM Chip Configuration on M8750 Array Board

2-49

Data is written into and read out of the array as a full 32-bit longword (plus seven check bits). WR TIM
clocks data into the bank selected by RAS during a write. DR EN allows data out to the array bus
during a read.

Figure 2-36 is a block diagram of the memory array read/write function. The figure is divided into two
parts: part 1 is the array read/write logic on the M8391 memory controller module; part 2 is the M8750
array module itself. Some signal mnemonics on the array module do not match the mnemonics on the
memory controller module. Figure 2-37 illustrates the array bus signals and gives the signal mnemonic
on the controller side of the bus and on the array side.

2.6.2 Memory Select (Figure 2-36)
The memory select decoder on the MCT module receives six address bits (PA<23:18>) from the
physical address bus that specify which storage area is to be addressed. Possible areas are UNIBUS
physical addresses (UB PH ADDR SEL), UNIBUS adapter space (UB ADAPTER REG SEL), * or an
M8750 array card (MEM SEL A,B,C,D,E). If the memory select decoder senses a hole in memory, or
a reference is made to a nonexistent location, NXM is asserted to indicate an error condition.

A fingerprint bit [ARRAY FP 4] from each array card is used by the memory select decoder to in­
dicate if the card is present. Up to five array cards may be used. To prevent holes in memory, the last
card used must be in the last slot of contiguous memory.

Each array card connects to a select line on the array bus. If one of the cards is selected by the memory
select decoder, the decoder outputs MEM SEL on the corresponding select line. From the array bus,
the memory select signal is input to the array card as INT BUS ADD MEM SEL which then becomes
MEM SEL. MEM SEL enables all the 1/0 paths to and from the memory arrays.

2.6.3 Array Addressing (Figure 2-36)
Two bits from the physical address bus (PA<l9:18>) select which of the four banks is to be addressed
on the selected card. The two bits are placed on the array bus as BUS ARRAY B SEL <01 :00> and
appear on the array card as INT BUS MA <15:14>. The bits are decoded in the RAS decoder which
asserts one of four RASSEL outputs. The selected output is strobed by INT BUS RAS TIM to gener­
ate RAS A, B, C, or D. RAS is applied to the row address latch/decoders of the 39 RAM arrays of the
selected bank.

The address of the location within the memory array to be read or written into, is obtained from the
memory address mux. The address is in two segments: the memory page address from the physical
address bus (PA<l 7:09>) and the longword address within the page from the virtual address register
(LVA<08:02>). The two sets of mux inputs are PA<l7>, <15:09> and PA<l6>,
LVA<08:02>. The mux defaults to the PA<l6>, LVA<08:02> input, outputting the eight bits to
the array bus as BUS ARRAY A <07:00>. The 8-bit address is input to the selected array card as
INT BUS A <07:00> which then becomes A <07:00>.

When a location on the array card is to be accessed, bit 32 of the microcode (RAS EN) is asserted. This
causes ARRAY RAS TIM to assert which is passed over to the array card as INT BUS RAS TIM and
strobes A<07:00> into the row address latch/decoder of the selected bank. Thus PA < 17>,
< 15:09> is used as the array row address. Forty-five nanoseconds later COLAD (column address)
switches the address mux to the PA<l6>, LVA <08:02> input. Thirty nanoseconds later CAS TIM
asserts and is passed over to the array card as INT BUS CAS TIM. This input asserts CAS (A,B,C,D)
which strobes A <07:00> into the column address latch/decoder of all four banks. Thus PA <16>,
L VA <08:02> is used as the array column address. Figure 2-38 illustrates the address timing.

*Reference is to pseudo adapters. The VAX-11 /730 has no UNIBUS adapters.

2-50

(NOTE 1)
INH REF CYC

(C37)
ALLOW REFR CYC

90 NS CP

FF
(J)

ARRAY REF CYC

WCS MODULE

REFRESH
BINARY
COUNTER

CLK (J)

ARRAY RAS TIM

BUS ARRAY A<07:00>

ARRAY REF CYC

~-----

NOTES:

MCT MODULE

START
REF
CYC

CLK

(C32) RAS EN

(

FROM POWER FAIL) PWRFL
LOGIC
FIG. 2-18

1. USED FOR MODULE TEST.

2. "C" DESIGNATIONS REFER TO MICROWORD BITS.

3. LETTER DESIGNATIONS IN PARENTHESES REFER
TO ENGINEERING DRAWINGS CONTAINING
CORRESPONDING LOGIC.

en en
lJ.J
a:
0

BUS AR RAY B SE L <01 :OO>
en
:J
CD

en PA <19:18>
en
w
a:
g PA <17>, <15:09>

<! PA <16>

(
FROM VAR) LVA<08·02>
COUNTER .
FIG. 2-21 COLAO

ENABLE

MEMORY
ADDRESS

MUX
(B)

SEL
45 NS DELAY

(K)

PWRF OR REF

75 NS DELAY
(K)

(C34) ARY WRT TIM

'(C35) ARY DR EN

FP4 (A,B,C,D,E)

BUS
ARRAY A<07:00>

(K)
CAS TIM

ARRAY
RAS TIM

WRTTIM

DR EN

MEM SEL (A,B,C,D,E)

en
::J
CD

>­
<(
a:
a:
<(

~ t----P_A_<_23_:_1_ 8> __ __ MEMORY UB ADAPTER
SELECT

REG SEL}(~~Rl) _J

<(
u
Ui
>­
I
a..

DECODER NXM
(A)

UB PH ADDR SEL FIG_ 2-54

(~~CROSEOUENCER) FIG. 2-15

TK-6575

Figure 2-36 Memory Array Read/Write Block Diagram (Sheet 1 of 2)

N
I
Vl
N

f.n
:;)
ca
>­
~

M8750 MEMORY ARRAY MODULE
INT BUS CB <T, 32, 16, 8, 4, 2, 1> RD

INT BUS A <07:00>
A <07:00>

A 1---M_E_M_S_E_L _ _.

CAS (A, B, C, D)

----71) ----::;i I
j 4164'RAM ~K- - -=--= =. - ~Ill I ~;."R".~s1

I COLUMN ADDRESS I 1

ROW
ADDRESS
LATCH/
DECODER

LATCH/DECODER

ENABLE I DO <31 :OO>

OUTPUT 1--1-------~
- BUFFER CBO

~ INT BUS MA <15:14> RAS
DECODER

I <T. 32. 16. 8. 4. 2. 1>

~

REF
eve
SEL

ENABLE
(2)

B i.---__._ ________ __,

INT BUS RAS TIM

MEM SEL
A-----~

INPUT
BUFFER

ENABLE

INPUT
BUFFER

256 x 256
MEMORY
ARRAY I

I
I

INT BUS DB <31:00> RD DI <31:00> J
WR BYT <03:00>

INT BUS WR TIM
-----71] . - =--=---=,.,,1 I BANKO r4164Ri:M - ... '1 I (39 RAMS)

A 1---M_E_M_SE_L _ ___, CAS (A, B, C, D) --------

11
-A-<-07-:0_0_>--+1_..,:.,.

CBO <T, 32, 16, 8, 4, 2, 1>

~-'-~~~D0~<3_1_·0_0>~
C 1--R_A_S_D_(_l"-, 2_)_-+-_ CBI <T, 32, 16, 8, 4, 2, 1> INT BUS CB <T, 32, 16, B, 4, 2, 1> RD

NOTES:
1. TIED TO GND ON ARRAY BUS.

2. NUMERICAL DESIGNATIONS IN PARENTHESES
REFER TO ENGINEERING DRAWINGS CON­
TAINING CORRESPONDING LOGIC.

DI <31:00>

WR BYT <03:00> I WR BYT CK I : L" <T. ,,, "· ... ,,. 1> t:

MEMORY ARRAY

I
_J

Figure 2-36 Memory Array Read/Write Block Diagram (Sheet 2 of 2)

--,
I
I

_J

r--
ARRAY

I
I
I
I

L~ I
L4 I
L~ I

L-1

ARRAY

L __

NOTE:

ADD MEM SEL

MEM PRES

ADD MEM SEL

MEM PRES

ADD MEM SEL
MEM PRES

ADD MEM SEL
MEM PRES

ADD MEM SEL

MEM PRES

A<07:00>

MA<15:14>

RAS TIM

CAS TIM

WR TIM

DR EN

REF CYC

BUS ARRAY A<7:0>

BUS ARRAY B SEL <1 :O>

ARRAY RAS TIM

CASTIM

WRTTIM

DR EN

ARRAY REF CYC

ALL SIGNALS ON THE ARRAY SIDE OF THE ARRAY BUS ARE PREFIXED
WITH INT BUS EXCEPT MEM PRES/FNGP3.

Figure 2-37 Array Bus Signals

ROW ADDRESS (PA)

RAS EN

RAS TIM

RAS (A, B, C, D)

CO LAD

COLUMN ADDRESS
(LVA)

I

I
!4""-45 NS '4--45 NS

I

MCT

__ _J

----,
I wcs I
L __ _J

TK-6634.

CAS TIM 75NS-•~...+----~-----
CAS (A, B, C, D)

TK-6039

Figure 2-38 Array Address Timing Diagram

2-53

2.6.4 Refresh (Figure 2-36)
The 4164 RAM memory arrays must be refreshed at least every 4 ms in order to retain stored data. All
four banks on all the array cards are refreshed at the same time. All of the 256 rows in a bank must be
addressed and refreshed in no more than 4 ms. There is no column addressing as all the columns are
enabled during refresh.

To perform a refresh, the normal array address and timing signals are removed and a new row address
and a RAS strobe are obtained from refresh logic on the WCS board. No CAS strobe is generated
during a refresh cycle hence the RAM output buffers are not enabled and no output occurs from the
RAMs.

The refresh logic is on the WCS module in the CPU. A refresh cycle (to refresh one row) is triggered
by MAIN MEM REFR. MAIN MEM REFR is a 90 ns pulse occurring at a 78 kc rate (Figure 2-39).
Thus all 256 rows get refreshed in less than 3.4 ms. A refresh cycle takes 720 ns to complete. Refresh
cycles are done in between reads and writes to the arrays.

If ALLOW REFR CYC (bit 37 of the memory controller microword) is true, MAIN MEM REFR
triggers refresh logic on the WCS board that generates START REF CYC, ARRAY REF CYC, and
ARRAY RAS TIM. (Figure 2-40 illustrates the timing of these signals.) START REF CYC asserts
REF IN PROG and PWRF OR REF which inhibit read/write timing signals CAS TIM, ARRAY
RAS TIM, WRT TIM, and DR EN. ARRAY REF CYC disables the memory address mux, inhibits
the bank select gate, and enables the output of the refresh binary counter on the WCS board. The 8-bit
binary output is placed on the array bus as BUS ARRAY A<07:00> and is applied to the array cards
as the address of the next row to be refreshed. ARRAY REF CYC is also placed on the array bus and
thence to all array cards as INT BUS REF CYC. On the array card it becomes REF CYC SEL which
asserts MEM SEL thereby selecting each array card for a refresh. REF CYC SEL also enables all four
RASSEL outputs from the RAS decoder thereby selecting all four array banks. INT BUS RAS TIM
is asserted by ARRAY RAS TIM from the WCS refresh logic and strobes RAS to the four array
banks.

2.6.5 Data In (Figure 2-36; Part 2)
Thirty-two bits of data (INT BUS DB <31:00> RD) and 7 check bits (INT BUS CB
<T,32, 16,8,4,2, 1 > RD) are obtained from the array bus for writing into the memory arrays. They are
applied to input buffers as DI <31:00> and CBI <T,32,16,8,4,2,l>. ARY WRT TIM (bit 34 of the
microword) is placed on the array bus from the MCT board as WRT TIM, and then to the array card
as INT BUS WR TIM. It then asserts WRT BYT (3:0)* and WR BYT CK to strobe the array input
buffers and input the data into the arrays.

2.6.6 Data Out (Figure 2-36; Part 2)
The assertion of CAS (A,B,C,D) enables the RAM output buffers which couples DO <31:00> and
CBO <T,32,16,8,4,2,1> from the addressed location in the memory arrays to output drivers. ARY
DR EN (bit 35 of the microword) is placed on the array bus from the MTC board as DR EN and then
to the array cards as INT BUS DR EN. It then asserts DR EN which enables the output drivers and
places the 32 data bits and 7 check bits on the array bus.

2.6. 7 Array Terminator
The address lines to the 4164 RAM array chips are connected through diodes to a terminating network
(TERM A). TERM A is at +0.75 Vandis obtained from a transistor voltage divider which functions
as a +0.75 V voltage source. The voltage source and the diodes prevent any negative excursions on the
address lines.

*Input data is always written as a 32-bit longword. INT BUS WR BYT (3:0) are all tied to + 5 V on the array bus.

2-54

~2,8~0 NS (12.8 µS)

MAIN MEM REFR
(78 KC)

....__ ____ I __.____....___._____._____.___._I -------__ I ___..____.___.____.____._____.

REFR CYCLE

REFRESH CYCLE NO. 3 4 5 6 7 8

--j 1--720 NS

I
9 -------- 253 254 255 256

I

I
I

----------------------3.2768 MS--.j

Figure 2-39 Rate of Refresh Cycles

90 NS CP

MAIN MEM REFR 11~~~~~~~~-w START REF CYC

I
ARRAY REF CYC

ARRAY RAS TIM

---------720 NS--------

TK-6031

Figure 2-40 Refresh Cycle Timing Diagram

2-55

2 3

TK-6033

2.7 ECC (ERROR CHECKING/CORRECTION)

2.7.1 Read Array /ECC Check (Figures 2-41 and 2-42)
A read array /ECC check operation is performed in two different instances with the operations being
almost identical in both cases. The first case is the reading of data from the memory array out to the
UNIBUS or the CPU. When data is to be read out to the UNIBUS or the CPU, the data is read out of
memory, an ECC check is performed, and the data is placed on the array bus for transfer to the data
rotator. The second case is the writing of data from the CPU or the UNIBUS into the memory array. In
this case the memory location is read out and an ECC check is performed*; however this time the data
is left in the ECC data out latch (not placed on the array bus) where the write data will modify or
replace it. The following discussion applies to both types of reads except where noted.

All data read out of the memory array undergoes an ECC check. If the ECC check shows a single bit
error, the data is corrected and the error is reported to the CSR register as a CRD error. If the check
indicates that more than one bit is in error, the data error is uncorrectable. The data is still read out to
the array bus and the uncorrected error is reported to the CSR register as an RDS error. If a write from
the CPU or UNIBUS is being performed, the writing of the new data is aborted and the old data is
written back into the memory array.

A 39-bit word (32 data bits and 7 check bits) is read from the M8750 array card and placed onto the
array bus. The data bits are latched into the data in latch by LAT DAT IN and the check bits are
latched into the check bit latch by LAT CB REG. The output of the data in latch is then applied to the
check bit generator where new check bits are generated. In the error checking mode (GENERATE
false), the output of the check bit latch is applied to XOR gates where it is compared with the gener­
ated check bits. If the generated check bits match the check bits read out of memory, there are no
XOR outputs (syndromes) asserted indicating a no error condition. If the check bits do not match, one
or more syndromes are asserted. The output from the XOR gates is applied to a syndrome decoder. The
decoder asserts ERROR to the CSR register and decodes the syndromes to determine if the error is a
single bit error (correctable) and if so, which bit is in error. The decoding of the syndromes is shown in
Table 2-10 followed by a discussion of each case.

If no syndromes are generated, the data from the data in latch passes through the correction logic and is
latched into the data out latch by LAT OUTPUT BYT (3:0). It is possible to latch up only selected
bytes into the data out latch. However, during a read array /ECC check operation, all four LAT
OUTPUT BYT signals assert to latch up the full 32 bit longword. If the read array /ECC check oper­
ation is performed as part of a CPU or UNIBUS read of the memory, the data in the data out latch is
placed onto the array bus by the assertion of OUTPUT BYT (0-3). The four OUTPUT BYT pins on
the ECC chips are tied to C31 of the microword. Therefore the assertion of OUTPUT BYT (0-3) al­
ways places the full longword in the data out latch onto the array bus. If the read array/ ECC check
operation is performed as part of a write to memory, the data in the data out latch is not placed onto the
array bus at this time. t

*Not necessarily true for an Octa-write.

t In a write to memory, the data in the data out latch will be modified or replaced by new data in an ECC check bit gener­
ation/write array operation {Paragraph 2.7.2 and Figure 2-43).

2-56

ARRAY BUS

BUS ARRAY
....----------...-----------1 CB <T, 32, 16, 8, 4, 2, 1>

OUTPUT
CB/SYN

NOTES:

GENERATE
(C27)-------t

CHECK BIT
LATCH

(J)

LAT CB REG

(C25)

(CHECK BITS)

(CHECK BITS/SYNDROMES)

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.

2. LETTER DESIGNATIONS IN PARENTHESES REFER TO
ENGINEERING DRAWINGS CONTAINING CORRESPONDING LOGIC.

Figure 2-41 ECC Block Diagram

BUS ARRAY
D <31:00>

DATA IN
LATCH

(J)

CHECK BIT
GENERATOR

(J)

LAT DAT IN
(C24)

(CHECK BITS)

OUTPUT BYT (0-3)
--------- (C31)

LAT OUTPUT BYT <03:00> (FROM DATA)
ROTATOR CONTROL
FIG. 2-49

CORRECTION
LOGIC

(J)

CORR DIS (C2g)

MEM BSY

MEMORY
BUSY

>-----(TO CPU)

(
TO PREFETCH)
LOGIC FIG. 2-21

--.......... --... ERROR
i----....._~--(TOSSYN LOGIC FIG.2-10) SYNDROME

DECODER =\(TO DATA ERROR LOGIC FIG. 2-53,)
L,__......:.,:(J:..:_l __ J-S_l_N_G_L_E_E_R_R __ _.~ CSR1 FIG. 2-52, AND CSR2 FIG. 2-55

TK·6034

Start

Read data from array
card onto array bus.

t LAT DAT IN
32 data bits latched in
data in latch. ·
t LAT CB REG
7 check bits latched in
check bit latch.

Generate/check logic
in check mode
(GENERATE false).

Compare generated check
bits with check bits
in check bit latch.

t ERROR

Uncorrectable data error.

Data bits pass through
correction logic to data
out latch. Corrective
function of logic is
disabled.

t LAT OUTPUT BYT
<3:0>
Latch uncorrected
data bits in data out latch.

t OUTPUT BYT <3:0>
Place data bits on array
bus.
t OUTPUT CB BUS
Place 7 check bits on
array bus via check
bit driver. Check bits
stored in
CSR register.

Write uncorrected 39
bit word back into
memory array.

Abort read/modify/write
operation

NO

t OUTPUT CB/SYN
Place syndrome(s) on
array bus for CSR
register.

t SINGLE ERR

.j, CORR DIS
Enable correction
logic. Correct
data bits.

t LAT OUTPUT BYT
<3:0>
Latch data bits in data
out latch.

toUTPUT BYT (0-3)
Place data bits on array
bus.

Done

Figure 2-42 Read Array /ECC Check Flow Diagram

2-58

YES

Check bit error. Data bits
pass through correction
logic unchanged to data
out latch.

No data errors. Data bits
pass through correction
logic to data out latch.

YES

(

TO ECC CHECK BIT GENERATION/)
WRITE ARRAY FLOW DIAGRAM
FIGURE 2-43

TK-6028

Table 2-10 Syndrome Codes

Syndromes
Asserted

None

One syndrome

Odd number of
syndromes (more
than one)

Even number of
syndromes

Meaning

No data error

Check bit error
Data bits OK

Single bit data
error

Multi-bit data
error
(uncorrectable)

Action

Read data normally.

Read data normally.
Report error to CSR. Place
syndrome in CSR.

Correct data bit. Read
data normally. Report
error to CSR. Place
syndromes in CSR.

Read data normally. If
doing a read/modify /write
operation, write data and
check bits back into
memory array and abort
the modify /write portion
of the operation. Report
error to CSR. Place check
bits in CSR.

If an odd number of syndromes are generated, a single-bit data error exists. The syndrome(s) are placed
on the array bus via the check bit/syndrome drivers, which are enabled by OUTPUT CB/SYN, and
then applied to the CSR register for error analysis. The syndrome decoder asserts ERROR to indicate
an error condition and SINGLE ERR to indicate it is a single-bit error and is correctable. The decoder
determines which data bit is in error and provides a corrective input to the correction logic. CORR DIS
negates to enable the correction logic. The data from the data in latch is coupled to the correction logic
where the erroneous bit is corrected. The corrected data is then latched into the data out latch by the
assertion of LAT OUTPUT BYT (3:0). The data remains in the data out latch when a write operation is
being performed. If a read operation is being performed the data in the data out latch is placed onto the
array bus by the assertion of OUTPUT BYT (0-3).

If an even number of syndromes are generated, more than one data bit is in error and the error is uncor­
rectable. The syndrome decoder asserts ERROR but does not assert SINGLE ERR thus indicating
that a multibit uncorrectable error exists. The normally true state of CORR DIS keeps the correction
logic disabled. The data from the data in latch passes through the data correction logic to the data out
latch and then to the array bus in the normal manner. The check bits in the check bit latch are also
returned to the array bus via the check bit drivers. The drivers are enabled by OUTPUT CB BUS from
the microword. Now on the array bus are the data bits and check bits originally read out of the memory
array. The CSR register is loaded with the check bits on the array bus (instead of the syndromes) for
later analysis of the uncorrectable error by the CPU. In addition, if a read/modify /write operation is
being performed, the modify /write portion of the operation is aborted and a write to the array is per­
formed. Writing to the array stores the data that gave the uncorrectable error.*

*The uncorrectable error may have been caused by a soft read error, therefore the need to write back into the memory array.

2-59

2.7.2 ECC Check Bit Generation/Write Array (Figures 2-41 and 2-43)
An ECC check bit generation/write array operation is performed as part of a CPU or UNIBUS write
to memory. As such, a read array /ECC check operation would have just been performed* and the data
presently in the addressed memory array location is latched up in the ECC data out latch (Paragraph
2.7.1).

The write data on the array bus from the data rotator is latched into the data in latch by LAT DAT IN.
The data then passes from the data in latch to the data out latch via the correction logic. CORR DIS is
true disabling the corrective function of the correction logic. The write data is latched into the data out
latch by LAT OUTPUT BYT (3:0). From one to four bytes of write data are latched up replacing the
corresponding bytes presently in the latch. The new longword thus assembled is the data word for the
memory array.

Check bits are now generated for the new longword before it is written into memory. OUTPUT BYT
(0-3) asserts placing the longword on the array bus. LAT DATA IN asserts placing the longword into
the data in latch. From the data in latch the data wraps around to the data out latch via the disabled
correction logic. The four LAT OUTPUT BYT signals assert and latch up the data in the data out
latch. The data in latch output is also applied to the check bit generator where seven check bits are
generated. In the check bit generating mode (GENERATE true), the check bit generator outputs are
coupled to the check bit/syndrome driver.

OUTPUT CB/SYN and OUTPUT BYT (0-3) assert and place the generated check bits and their asso­
ciated data bits respectively onto the array bus. The 39 bits are then written into the memory array.

()

Start

~~;;;~F~8fw ------~
DIAGRAM
FIGURE 2-42 Data on array bus

from data rotator.

t LAT DAT IN
Data bits latched
in data in latch.

Wrap data around to
data out latch via
disabled correction
logic.

t LAT OUTPUT
BYT<3:0>
Latch selected data
bytes into data out latch.

t OUTPUT BYT (0-3)
Place data bits on array
bus.

t LAT DAT IN
Data bits latched in
data in latch.

Wrap data around to
data out latch via
disabled correction
logic.

t LAT OUTPUT
BYT<3:0>
Latch data bits in data
out latch.

Generate/check logic
in generate mode
(GENERATE true).
Generate 7 check bits
from data bits.

t OUTPUT BYT (0-3)
Place data bits on array
bus.
t OUTPUT CB/SYN
Place check bits on
array bus via check
bit/syndrome driver.

Write 39 bit word
into array card.

Done

TK-6014

Figure 2-43 ECC Check Bit Generation/Write Array Flow Diagram

*Not necessarily true for an Octa-write.

2-60

2. 7 .3 ECC Chip Configuration (Figure 2-44)
Two DC63 l ICs make up the ECC logic. One chip processes the low order word of the data longword
and the other the high order word. The two chips are identical. A voltage potential of + 3 V or 0 V on
pin 23 (HI WORD) sets up the internal logic to configure the chip as either high word or low word. The
two chips work in tandem to function as shown in Figure 2-41 and as described in Paragraphs 2. 7 .1 and
2. 7 .2. This paragraph does not repeat the descriptions given there, but rather discusses how the two
chips function together.

2.7.3.1 ECC Check - The low word (bytes 0,1) is applied to the low word data in latch and then
wrapped around through the correction logic to the data out latch. The low word is also applied to the
low word check bit generator. The seven check bits from the array bus are applied to the check bit latch
and then to XOR gates for comparison with the generated check bits. Partial syndromes are obtained
from XORing the check bits with the check bits generated from the low word. The partial syndromes
are coupled to the high word chip, via the seven PART SYND lines, where they are used against the
upper word. The partial syndromes leave the low word chip via the check bit/syndrome driver, which is
always enabled by + 3 V, and are applied to the high word check bit latch. The latch is held open by
+ 3 V and is transparent to the partial syndromes which flow through to the high word XOR gates.
Here the partial syndromes are applied against the check bits generated by the high word check bit
generator. The output of the high word XOR gates are the actual syndromes reflecting the error status
of the longword. The syndromes are passed to the syndrome decoder via the high-word/low-word mux.
The decoder outputs error status signals and supplies correction data to the correction logic if a single
error is detected and the error is in the high word. The syndromes are also placed onto the array bus
when OUTPUT CB/SYN asserts. From the array bus the syndromes are applied to the low word syn­
drome decoder via the high-word/low-word mux in the low word chip. If a single error is detected and
the error is in the low word, the decoder supplies correction data to the low word correction logic. The
high-word/low-word mux in the low word chip always selects the bus array CB signal input while the
mux in the high word chip always selects the syndromes from the high word XOR gates.

2.7.3.2 ECC Check Bit Generation - The low word (bytes 0,1) is applied to the low word check bit
generator via the low word data in latch. Check bits generated from the low word (partial check bits)
are output to the seven PART SYND lines via the always enabled check bit/syndrome driver. The
partial check bits pass through the check bit latch (held in the transparent state by + 3 V) to the high
word XOR gates. The high word (bytes 2,3) is applied to the high word check bit generator via the high
word data in latch. Check bits generated from the high word are mixed with the low word partial check
bits in the high word XOR gates. The XOR outputs are the seven check bits for the 32 bit longword.
When OUTPUT CB/SYN asserts, the seven check bits are placed onto the array bus.

2-61

CORR DIS

rLoW-woRoraP- - - - - - - - - - - ,
LAT OUTPUT BYT <1 :O> I

OUTPUT BYTE (0-3) DATA OUT CORRECTION SYNDROME

BUS ARRAY D<15:00>

LAT DAT IN

GENERATE

LATCH LOGIC DECODER I
DATA IN
LATCH

CHECK BIT
GENERATOR

(PARTIAL
CHECK BITS/

I
LAT CB REG PARTIAL __ __l_:~:~_v

SYNDROMES) ---.--

BUS ARRAY CB

<T, 32, 16, 8, 4, 2, 1>

OUTPUT CB BUS

CHECK BIT
LATCH

HIGH WORD/-------'
LOW WORD

1--~~~~~--1-~~~~---i~MUX ...__.....-_
HI WORD(+ V)

PART SYND <T, 32, 16, 8, 4, 2, 1>

CORR DIS

I
I

__ J

r--- - -- - - ---- - -,
LAT OUTPUT BYTE <3:~GH WORD CHIP

ERROR
OUTPUT BYTE (0-3)

CORRECTION
LOGIC

SYNDROME
DECODER

BUS ARRAY D<31:16>

LAT DAT IN

+3 v

DATA OUT
LATCH

DATA IN
LATCH

CHECK BIT
LATCH

CHECK BIT
GENERATOR

HIGH WORD/.--___ _.
LOW WORD

i--------i--~~~--~.-iMUX

HI WORD (OV)

(CHECK BITS/
SYNDROMES)

· I
1
• OUTPUT

CB/SYN

I
I

---+ __________ J
.£" HI WORD

Figure 2-44 ECC Chip (DC631) Configuration

2-62

TK-6027

2.8 DATA ROTATOR

2.8.1 General
Data read from memory is sent to the CPU or the UNIBUS via the MC bus. The reading device ex­
pects the data to be oriented on the low order lines of the MC bus; however data read out of the memo­
ry array may be located in any of the four byte positions of the longword. If the data is not longword
aligned (byte 0 in bit position 0), data rotation or shifting is required so the output is properly oriented
on the MC bus. Furthermore, if the desired data crosses a longword boundary and is located in two
memory locations, two read cycles are required to extract all the data. In this case, after the data is
retrieved from memory, both byte selection and rotation is required to select the desired data and for­
mat it. The data rotator performs the function of byte selection and rotation.

Figure 2-45 illustrates several examples of data selection and rotation performed by the data rotator
during read operations. Part A represents the byte orientation of data on the MC bus. The CPU and
UNIBUS devices require data being presented to them to be in this format. Part B represents a long­
word location on the array card and how the data will appear on the array bus. In part B, two bytes (BO,
B 1) are read out and transferred to the MC bus. As they are already properly orientated, no rotation is
required. The two bytes (X) in locations 1002 and 1003 are also transferred but are ignored by the
reading device. Part C represents a longword location where the desired bytes (BO, Bi) are not lined up
with the longword boundary. Bytes BO and Bi must be rotated (shifted) and placed on the MC bus in
the byte 0 and byte 1 positions respectively, as shown in part A. This is done by rotating the data one
byte right. In part D, four bytes are read which are not located in the same longword location in memo­
ry. Consequently, two read cycles are needed with byte rotation and selection required for both cycles.
The first memory cycle reads location 1000, the data is rotated two bytes right (thereby placing bytes
BO and Bl in the byte 0 and byte 1 positions of the MC bus), and bytes BO and Bl are selected (the
bytes in locations 1000 and 1001 are discarded). A second memory cycle reads location 1004 and also
rotates the data two bytes right placing bytes B2 and B3 into their proper positions, and selects bytes B2
and B3 while discarding the bytes in locations 1006 and 1007. The selected bytes from both cycles are
placed on the MC bus supplying the reading device with the requested data in the proper format.

Figure 2-45 can be used in a reverse manner to illustrate the need for byte rotation during a CPU or
UNIBUS write to memory. Part A represents how data to be written into memory is presented to the
data rotator from the MC bus. In part B, byte 0 and byte 1 on the MC bus are to be written into byte
positions BO and Bl at locations 1000 and 1001. The data is directly passed through the data rotator as
no rota ti on is required. In part C, byte 0 and byte 1 are to be written into BO and B 1 at locations 1001
and 1002. The data rotator rotates (shifts) the data one byte left (opposite to the right rotation for a
read)* thereby placing byte 0 and byte 1 into the proper position. In part D, four bytes of data are to be
written into two memory locations. Two write cycles are performed. In the first cycle the MC bus data
is rotated two bytes left and bytes 0 and 1 are selected and written into the last two byte positions of
longword location 1000 (locations 1002 and 1003). Bytes 2 and 3 are inhibited (not discarded). (The
byte selection for a write cycle is accomplished in the ECC logic, not in the data rotator. (Refer to
Paragraph 2.7.2.) The two X bytes at locations 1000 and 1001 are retained and rewritten into their
same locations. In the second cycle, bytes 2 and 3, now in the proper position from the cycle 1 rotation,
are selected and written into the first two byte positions of longword location 1004 (locations 1004 and
1005). The two X bytes at locations 1006 and 1007 are retained and rewritten into their same locations.

*Note that the number of bytes rotated is the same for both a read and a write.

2-63

31 00

I BYTE 3 BYTE 2 BYTE 1 BYTE 0

A. MC BUS

31 00

_______ x _______ _______ x ____ __. ______ B_1 ______ ,__ _____ B_o ____ __,j:1000

31

• CPU WORD-READ OF LOCATION 1000
• MEMORY CONTROLLER READS LOCATION 1000
• DATA PASSES THROUGH DATA ROTATOR - NO

ROTATION NECESSARY

B. MEMORY ARRAY BUS - READ BYTES Bo, B1

00

,__ _____ x ______ _._ ______ B_1 ____ __. ______ B_o ______ .._ _____ x ______ _,I :1000

• CPU WORD-READ OF LOCATION 1001
• MEMORY CONTROLLER READS LOCATION 1000
• ROTATE (SHIFT) DATA ONE BYTE RIGHT

C. MEMORY ARRAY BUS - READ BYTES Bo, B1

31 00

.__ _____ x ______ _._ ______ x _______ _____ B_3 ______ ,__ _____ s_2 ____ __,j :1004

B1 Bo x x :1000

• CPU LONGWORD-READ OF LOCATION 1002
• MEMORY CONTROLLER READS LOCATION 1000
• ROTATE (SHIFT) DATA TWO BYTES RIGHT
• SELECT BYTES Bo, B1
• MEMORY CONTROLLER READS LOCATION 1004
• ROTATE (SHIFT) DATA TWO BYTES RIGHT
• SELECT BYTES B2, B3

D. MEMORY ARRAY BUS- READ BYTES Bo. B1, B2, B3

TK-6032

Figure 2-45 Data Rotation for Read Operations

2-64

2.8.2 Data Rotation - Read Operation (Figures 2-46 and 2-47)

2.8.2.1 One-Cycle Read - The data rotator contains three rotator circuits designated as A, B, and C
(Figure 2-46). Data rotators A and B are used for read operations. Data rotator C is used for write
operations.

If the data to be read is entirely contained in one memory array location, a one-cycle read is performed
using only data rotator A. MOR DAT OUT EN asserts and enables the data rotator A output to the
MC bus. A "read array /ECC check" operation is performed to place the data on the array bus. The
data on the array bus is input to data rotator A. AO and A 1 from the data rotator control (Figure 2-49)
specify if the data needs rotating and if so, by how much. Data rotator A is a mux with each input byte
capable of being switched to any of four output byte positions with AO and Ai selecting which position.
The mux allows any byte to be moved to the position of any other byte. The data is rotated, if necessary,
and output to the MC bus via the MC bus driver.

2.8.2.2 Two-Cycle Read - If the data to be read is contained in two memory array locations, a two­
cycle read is performed using data rotators A and B. In a two-cycle read, the first location is read out of
the array, the data is rotated, and the desired byte(s) are selected. Then the second location is read, the
data is rotated, and the bytes desired from the second read are selected. The desired bytes from the first
and second read are placed onto the MC bus for the reading device.

MOR DAT OUT EN asserts to perform three functions: it enables the data rotator A output to the MC
bus, it enables data rotator B, and it disables data rotator C. A "read array /ECC check" operation is
performed to place the first cycle data on the array bus. The data on the array bus is input to data
rotator B. AO and A I from the addressing logic specify if the data needs rotating and if so, by how
much. Data rotator Bis similar to rotator A. Each input byte is muxed to one of four output byte posi­
tions as determined by the AO, A1 code. The output of rotator Bis applied to the memory data register
(MOR) via an OR gate. Other OR gate inputs are from data rotator C and the MDR feedback AND
gate. These two sources are disabled by MDR DAT OUT EN true and 2ND MEM CYC false respec­
tively thereby leaving data rotator B as the only MDR input source. The first cycle data is latched into
the MDR by TO CLOCK. The data output from the MDR is applied to byte selector B which selects
the desired bytes as determined by the AO, A I code.

The second cycle starts with the assertion of 2ND MEM CYC which disables data rotator B and en­
ables the MDR feedback path so the MDR output wraps around and becomes the MDR input. TO
CLOCK latches up the same data thereby holding the first cycle data in the MDR for the second cycle.
With 2ND MEM CYC true, the selected first cycle bytes are coupled from byte selector B to the MC
bus via the MC bus driver. A second "read array /ECC check" operation is performed on the memory
array placing the second longword on the array bus. The data longword is input to data rotator A where
the required byte rotation is performed. The true state of 2ND MEM CYC routes the rotator output
through byte selector A where the desired bytes are selected from the second cycle data and placed
onto the MC bus via the MC bus driver.

2-65

N
I

°' °'

(/)

~
co

BUS MC D<31 :OO>

MOR DAT OUT EN
(C49)

1--------- CYCLE DECODER
FIGURE 2-49

2ND MEM CYC (FROM SECOND)

<Ai:AO> (FROM DATA)
BYTE

I------+~ SELECTOR

i+-----r-----=-.,;__-=-~-- ROTATORCONTROL
FIGURE 2-49

A

(DATA BYTES) BUS ARRAY D<31:00>

A __ <_A_1_:A_O_> ___ ~---

(/)

~
co

DIR WR BYT EN (C51) ~
0:: BUS MC D<31 :OO>

(C
49

) MOR DAT OUT EN

NOTES:

DATA
ROTATOR

c
ENABLE

1. "C" DESIGNATIONS REFER TO MICROWORD BITS.
2. THE LOGIC IN THIS FIGURE IS CONTAINED ON

SHEET L OF THE ENGINEERING DRAWINGS.

TO CLOCK

(DATA
BYTES)

MEMORY
DATA
REGISTER

CLK

>--B_U_S_A,;_R_R,;_A_Y_D'-<-'3:.._1_: 0.:,.;0;..;..>___.___.. ~

2ND MEM CYC B

BUS ARRAY D<31 :OO> DATA
ROTATOR

B ____ <_A_1_:A_O_> _ __,A

ENABLE

TK-6568

Figure 2-46 Data Rotator Block Diagram

Figure 2-47

Start

t MOR DAT OUT EN
Enable MC bus driver
and data rotator B.

Perform "read array/
ECC check" operation
(Figure 2-42)

Data rotator A receives
32 bit longword from
array bus.

Place longword on MC
bus via MC driver.

Perform "read array/ECG

check" operation (Figure
2-42)

Data rotator B receives
32 bit longword from
array bus.

Place first cycle
longword into MOR.

Byte selector B selects
bytes from first cycle
longword.

Data Rotator Read Flow Diagram

2-67

t 2ND MEM CYC
• Disable data rotator B.
• Enable MOR feedback

to keep first cycle
data in MOR.

• Enable selected byte(s)
to output from byte
selector B to MC bus
via MC bus driver.

• Enables data rotator A
output path via byte
selector A.

Perform "read array/ECG
check" operation (Figure
2-42)

Data rotator A receives
32 bit longword from
array bus.

Byte selector A selects
bytes from second cycle
longword.

Place selected byte(s)
on MC bus via MC
driver.

Done

TK-6018

2.8.3 Data Rotation - Write Operation (Figures 2-46 and 2-48)

2.8.3.1 One-Cycle Write - To perform a write operation, MDR DAT OUT EN is negated enabling
data rotator C and disabling data rotator B. Data from the CPU or the UNIBUS is placed on the MC
bus and input to data rotator C. AO and Ai from the addressing logic specify if the data needs rotating
and if so, by how much. Data rotator C is a mux and functions identically to data rotators A and B. The
input data is rotated (shifted left), if necessary, and then output to the MDR via an OR gate. Data
rotator Band the MDR feedback AND gate are disabled by MDR DAT EN false and 2ND MEM
CYC false, respectively, thereby leaving data rotator C as the only MDR input source. The data is
latched into the MDR by TO CLOCK. A "read array /ECC check" operation is performed wherein the
data in the addressed longword array location is read out, an ECC check performed, and the data
latched up in the ECC data out latch (Figure 2-42). DIR WR BYT EN is then asserted to output the
MDR data onto the array bus. An "ECC check bit generation/write array" operation is performed
during which the new data bytes to be written into the longword array location are latched into the
ECC data out latch. Check bits are generated for the new longword now in the data out latch and the
longword and the generated check bits are placed onto the array bus and written into the memory array.

2.8.3.2 Two-Cycle Write - If data is to be written into two memory array locations, a two-cycle write
is performed. The first cycle is identical to a one-cycle write, and the second cycle is almost identical to
the first. During the second cycle, the write data is held in the MDR (no data is rotated) and a second
read and write of the memory is performed.

The first cycle of a two-cycle write is as described in Paragraph 2.8.3.1 (One-Cycle Write). Upon com­
pletion of the first cycle, 2ND MEM CYC asserts disabling data rotator C and enabling the MDR
feedback path so that the MDR output wraps around to the MDR input. TO CLOCK latches up the
input thereby holding the first cycle data in the MDR for the second cycle. A second "read array /ECC
check" operation is performed wherein the data in the second longword array location is read out,
checked by the ECC logic, and latched up in the ECC data out latch. DIR WR BYT EN asserts plac­
ing the MDR output on the array bus once again. Another "ECC check bit generation/write array"
operation is performed where the data bytes to be written into the second longword location are latched
into the ECC data out latch. New check bits are generated and the longword, together with its associ­
ated check bits, are placed onto the array bus and written into the second longword location in the·
memory array.

2-68

NO

YES

Done

Figure 2-48

Start

.J, MDR DAT OUT EN
Enable data rotator e.

Perform "read array/Eee
check" operation
(Figure 2-42)

t DIR WR BYT EN
Place MDR data onto
array bus.

Perform "Eee check bit
generation/write array"
operation (Figure 2-43)

t 2ND MEM eve
• Disable data rotator e.
• Enable MOR feedback

to hold data in MOR.

TK-6017

Data Rotator Write Flow Diagram

2-69

2.8.4 Data Rotation Control and Byte Selection Logic (Figure 2-49)

2.8.4.1 General - The data rotation control and byte selection logic determines how much data rota­
tion is necessary (if any) and generates the Al, AO control signals for the data rotator. The logic also
determines if two memory cycles are required and which bytes are to be replaced in the ECC data out
latch during a write operation. To accomplish this, the logic looks at the two least significant bits from
the virtual address bus, the type of data transfer (byte, word, or longword), and the source of the refer­
ence request (CPU or UNIBUS device). The logic also responds to rotational commands (ROT
C< 1 :0>) and special function commands (SPF <2:0> from the memory controller microword.

2.8.4.2 Data Rotator Control - The data rotator control generates the Al and AO control signals for
the data rotator. To determine if data rotation is required, the rotator senses the byte location of the
reference address within the array via bits L VA <01 :00> from the virtual address bus. If a UNIBUS
reference is being made (CPH/UBL false) the BYTE OFFSET bit from the translation buffer is also
examined. The data rotator control code generated by the logic is shown in Table 2-11.

The direction of shift is right for a read operation and left for a write operation. The direction of shift is
implemented within the data rotator logic where different rotators are used for read and write oper­
ations (Paragraph 2.8.2.1).

2.8.4.3 Data Type Logic - The data type logic generates an RS< 1 :0> code specifying the type of
data being transferred (byte, word, or longword). The CPU indicates the type of data being transferred
in a CPU operation by DATA TYPE <1:0> from the DAP module. A UNIBUS device indicates the
type of data being transferred in a UNIBUS operation by the UNIBUS control bits UB C< 1:0>. The
signals are coupled through a flow-thru latch and are applied to the data type logic as L DT < 1 :0>
and L UB C<l:O> respectively. CPH/UBL sets the logic for a CPU or a UNIBUS operation. The
RS< 1 :0> codes generated for a CPU transfer and a UNIBUS transfer are shown in Tables 2-12 and
2-13 respectively.

2.8.4.4 Data Out Latch Byte Select - The data type RS code is applied to the data out latch byte
select logic. The select logic generates four LAT OUTPUT BYT signals for the data out latch in the
ECC logic. During a write operation (except for an aligned longword write) only selected bytes are
latched into the ECC data out latch (Paragraph 2.7.2). The select logic determines which bytes are to
be latched, and outputs the proper LAT OUTPUT BYT signal(s) accordingly. (For an aligned long­
word write operation or a read operation, all four LAT OUTPUT BYT signals are asserted.) To per­
form its function, the select logic looks at the amount of data rotation (Al, AO) and the data type (RS 1,
RSO), and determines if this is a CPU or a UNIBUS device transfer (CPH/UBL) and if this is the
second cycle of a two-cycle access (2ND MEM CYC).

Table 2-11 Data Rotator Control Code

At

0
0
1
1

AO

0
1
0
1

Byte Shift

No rotation
Shift 1 byte
Shift 2 bytes
Shift 3 bytes

2-70

N
I

-.......]

(

FROM UNIBUS
INTERFACE r--~--c_P_H_IU_B_L __ ..l.,_~w
FIG.'2-1 ROTC<1:0> DATA

(

FROM TRANSLATION) (C
56

• C
41

l ROTATOR
BUFFER -r----:--------~-~--=B~Y~T~E:.O~F~F~SE~T:....J CONTROL

t---A_<_1_:0~>-------.-----•(~g~:;;R)
FIG. 2-46

ADDRESS REGISTER , ___ L_V_A_<..:..0_1 :..:..00:..:..>...-.1
FIG. 2-21 (FROM VIRTUAL) (K)

FIG. 2-21 '------'

(

FROM OAP
MODULE DATA TYPE<l :O>
IN CPU

(

FROM UNIBUS UB C<1 :O>
INTERFACE
FIG. 2-1

(C58) CONT FUNC LAT

NOTES:

FLOW
THRU
LATCH
(C)

HOLD

1. LETTER DESIGNATIONS IN PARENTHESES
REFER TO ENGINEERING DRAWINGS CON­
TAINING CORRESPONDING LOGIC.

2. "C" DESIGNATIONS REFER TO MICROWORD
BITS.

L DT<1:0>

BYTE OFFSET

A
CPH/UBL

L DT<1:0>

L UB C<1:0>

CPH/UBL
A

(C56, C41)
ROT C<1:0>

(C22, C30, C50)
SPF<2:0>

(C
5

S) CONT FUNC LAT

Figure 2-49 Data Rotation Control and Byte Selection Logic

ALIGN LW

COBEN)
TWO 2 MEM CYCLES MUX

CYCLE FIG. 2-15

DETECTOR

(K) AO (TO OP)
RS<1:0> ERR LOGIC

FIG. 2-54

A<1:0>

DATA RS<l:O> LAT OUTPUT BYT (3:0)

TYPE CPH/UBL
LOGIC

A

(K)
(C41)

ROT CO
(K)

SECOND 2ND MEM CYC (TO BEN MUX FIG. 2-15)
CYCLE - DATA ROTATOR FIG. 2-46

DECODER AND DATA ERROR LOGIC

(B) FIG. 2-53

(TO ECC)
LOGIC
FIG. 2-41

TK-6571

Table 2-12 Data Type Bits vs RS Code for CPU Transfers

Data Type Bits RS Bits Data Type

LDT 1 LDTO RS 1 RSO

0 0 0 0 Byte
0 1 0 1 Word
1 0 1 0
1 1 1 1 Longword

Table 2-13 UNIBUS Control Bits vs RS Code for UNIBUS Transfers

UNIBUS Control Bits RS Bits Data Type

L UBCt LUBCO RSI RSO

1 1 0 0 Byte
1 0 0 1 Word
0 1 0 1 Word
0 0 0 1 Word

2.8.4.5 Second Cycle Decoder - A second cycle decoder responds to the microword special function
code (SPF <2:0> and asserts 2ND MEM CYC to the microsequencer and the data rotator during the
second cycle of a two-cycle access.

2.8.4.6 Two-Cycle Detector - A two-cycle detector senses that an operation is going to require two
memory array cycles. The detector looks at the byte position of the reference address (L VA <01 :00>)
and the type of data being referenced. The data type is indicated by LDT< 1 :0> for a CPU operation
and L UB C<l:O> for a UNIBUS operation. CPH/UBL specifies which operation is being executed.
Knowing the referenced byte position within the array and the type (length) of data to be transferred,
the detector senses if two memory cycles are required and if so, asserts 2 MEM CYCLES to the micro­
sequencer branch logic.

2.8.4.7 ALIGN LW - Another microsequencer branch signal generated in the data rotation control
and byte selection logic is ALIGN L W. If the byte position referenced is byte 0 (L VA 01 and L VA 00
both false) and the data type is a longword (D DTl and L DTO both true), then the reference is to an
aligned longword and the microsequencer branches accordingly.

2-72

2.9 ERROR LOGIC AND CSR REGISTERS

2.9.1 General
There are three CSR registers that receive control and test signals from, and report error status to, the
CPU. These are CSRO, CSR 1, and CSR2. * Figure 2-50 illustrates the three registers and their con­
tents. CSRO is a read only register that contains the seven syndrome bits, if a CPU to memory transac­
tion encountered a correctable read data error, or the seven check bits if a CPU to memory transaction
encountered an uncorrectable error. CSRl contains control bits and error information on CPU to mem­
ory transactions. It also contains some diagnostic check bits. The error bits are read only while the
control bits are read/write. CSR2 is a read only register containing error information on UNIBUS to
memory transactions.

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

1-f f Ff-FEfff fffff±±±++++FF f~~~~~~f13
T 3216 8 4 2 1

---~~~~~~-.---~~~~~~~~

RDS
CRD

TB PAR DIAG
INH REP CRD-----'

DIAG CHK------'
ECC DIS-------'

NOT USED-----~
MODIFY REF-------

NOT USED

A. CSR 0

TRANSACTIONAL
ERROR BITS

ACCESS REF--------
TB MISS---------'
OP ERR-----------'

WR ACROSS PG ERR-----------'
ADAPT REG SEL-----------'

UBBSY-------------'

VALID--------------

B. CSR 1 CPU/MEMORY

UB RDS
~-------------NOT USED

UBNXM--------------'
UBTBPARERR-------------

WR NOT VALID---------------'

C. CSR 2 UB/MEMORY

Figure 2-50 Summary of CSR Register Bits

CHECK BITS OR SYNDROMES

'--"""
NOT USED

TK-6036

*CSRO, CSR I, and CSR2 referred to here are real hardware registers as opposed to memory adapter registers CSRO, CSR I,
and CSR2. The memory adapter registers are simulated by the CPU to the VAX operating system (Paragraph 2.5.3).

2-73

Figure 2-51 is a block diagram of the error logic and CSR registers. Refer to it throughout the rest of
this section.

A RD CSR decoder and a CSR write decoder generate the read/write control signals for the registers.
The decoders receive a two bit code (LVA <03:02>) from the virtual address bus that selects which
register is to be addressed. The decoder outputs are enabled at the proper time by RD CSR and WR
CSR from the microword.

2.9.2 CSRO Check Bit/Syndrome Register
CSRO is a read only register. BUS ARRAY CB<T,32,16,8,4,2,1 > are clocked into CSRO from the
array bus by CSR CB/SYN CLK from the microword. BUS ARRAY CB <T,32,16,8,4,2,l> are syn­
dromes if a correctable error occurred during a CPU to memory transaction, or check bits if a non­
correctable error occurred. The assertion of RD CSRO places the syndromes (or check bits) onto bits
<06:00> of the MC bus for transfer to the CPU for analysis.

2.9.3 CSRl ECC Diagnostic Check Bits <06:00>
Bits <06:00> of CSRl are write only bits that are clocked in from the MC bus by WR CSRl from
the CSR write decoder. The seven bits are diagnostic check bits used to check the ECC logic. They are
placed onto the check bit lines of the array bus by CSR CB EN from the microword.

2.9.4 CSRl CPU/Memory Control Bits <29:25>
Bits <29:25> of CSRl are read/write bits that are clocked in from the MC bus by WR CSRl from
the CSR write decoder. The five bits are control bits from the CPU used to control operations within
the memory controller. The bits are shown in Figure 2-52 and described in Paragraphs 2.9.4.1 through
2.9.4.5.

The bits are read out to the MC bus by RD CSRl from the RD CSR decoder, and cleared by a power
up (UBS DCLO) or system initialization (CINIT).

2.9.4.1 ECC DIS <25> - Bit 25 is the error correction bit. When this bit is set it disables the ECC
correction logic. When the correction logic is disabled, the following actions occur.

On a CPU to memory read, the check bits from the array are logged into bits <06:00> of CSRO. This
gives a means of directly reading the check bits stored in the memory array.

On a CPU aligned longword write to memory, the check bits generated on the longword will be stored
in bits <06:00> of CSRO as well as in the memory array. This gives a means of diagnosing the ECC
logic.

If on a CPU to memory read, a CRD occurs it will be logged in bit <30> of CSRl and the check bits
will be placed in CSRO.

RDS errors will be handled as in normal operating mode.

Unaligned CPU writes to memory and UNIBUS reads or writes to memory will not be allowed.

If both DIAG CHK bit and ECC DIS bit are set, the memory will operate as with just ECC DIS true,
except that bits <06:00> of CSRl will be clocked into CSRO on every CPU to memory read cycle.
This checks the signal path from the output of CSRl to the input of CSRO via the array bus.

2-74

_J

<(
::i

~ LVA <03:02>

>
(C46) WR CSR

RD
CSR
DECODER

(F)

CSR
WRITE
DECODER

(A)

(

FROM UB
INTERFACE
FIG. 2-1

CPH/UBL

NOTES:
1. "C" DESIGNATIONS REFER TO MICROWORD BITS.

2. LETTER DESIGNATIONS IN PARENTHESES REFER TO
ENGINEERING DRAWINGS CONTAINING CORRESPONDING
LOGIC.

BUS ARRAY CB
<T, 32, 16, 8, 4, 2, 1>

l----B~US-'--M~C~D_<~29~:~25~> ___ -.iCSR1
(PART 2)

WR CSR 1
(FIG. 2-52)

A CLK
CLR

(

FROM POWER) CLR CSR
FAIL LOGIC
FIG. 2-18------.

CAD/RDS

VJ

~ BUSARRAYCB CSRO

~ <T, 32, 16, 8, 4, 2, 1> (F)

er:
~ (C44) CSR CB/SYN CLK CLK ..._ __ ___,

BUS MC D<29:25>

BUS MC
D<06:00>

VJ

ERROR
LOGIC

>---B_U_S_M_C_D_<_3_1_:3_0_> ___ _.,.~

(C45)
CSR ERR ADDA CLK A (FIG. 2-53)

CLK CLR

(C46)-----\

'C42) CSR ERR SUM CLK

DATA ERROR
LOGIC
(FIG. 2·54)

CPU ERROR (ERRORS) CSR 1
LOGIC A/B
(FIG. 2·54) (FIG. 2-54)

(C4S)--C_P~U~E~R~R~S~U~M~C~L=K-'-+i CLK CLR

ERR SUM

(

TO CPU) AND
BRANCH
LOGIC
FIG. 2·15

UBERRSUM (TOBRANCHLOGIC)
FIG. 2-15

ERROR
LOGIC
(FIG 2-55)

CSR 2 CLK

(C
40

______ C_LR_E--'R-'R..J

BUS MC D<23:14>

BUS MC D<31>, <16: 14>

u
2

Figure 2-51 Error Logic and CSR Block Diagram

BUS MC <29:25>

WR CSR 1

----LECCDIS
1---------~--...

L DIAG CHK

(

TO PHYSICAL)
ADDRESS SELECT
LOGIC FIGURE 2-21

LMME

CSR 1 (TO DATA ERROR)
(PART 2) LOGIC FIGURE 2-53

AND CSR 1 FIGURE
2-54

LINH REP CRD

-----CLK
TB PAR DIAG

(;~R~~y)\ CLR CSR
-----CLR

NOTES:

LOGIC
FIG. 2-21

RD CSR 1

1. THE LOGIC IN THIS FIGURE IS CONTAINED
ON SHEET F OF THE ENGINEERING DRAWINGS.

BUS MC D25

BUS MC D26

BUS MC D27

BUS MC D28

BUS MC D29

Figure 2-52 CSRl CPU/Memory Control Bits

MC
BUS

TK-6023

2.9.4.2 DIAG CHK <26> - Bit 26 is the diagnostic check bit. When this bit is set, the memory
controller is in the diagnostic mode. This allows bits <06:00> of CSRl to be substituted for the check
bits read from the array in order to test the ECC logic. This mode is only recognized for CPU to memo­
ry one cycle reads (i.e., not recognized for any write cycles or UNIBUS initiated reads). CRD and RDS
error information is logged per normal running mode. This bit together with the DIS ECC bit is also
used to control microdiagnostic tests of the memory controller.

2.9.4.3 MME <27> - Bit 27 is the memory management enable bit. This bit enables translations via
the translation buffer. If this bit is not set the CPU address will map directly into physical memory.
Note that the UNIBUS map is always enabled.

2.9.4.4 INH REP CRD <28> - Bit 28 is the bit that inhibits reporting the occurrence of correctable
read data errors (CRDs). When this bit is set, all CRDs will still be corrected by the ECC logic and
syndromes will be logged in bits <06:00> of CSRO, however, the CRD bit (CSRl <30>) will not be
set. When the ECC DIS bit is set, INH REP CRD is overridden as all single errors are uncorrectable.

2.9.4.5 TB PAR DIAG <29> - Bit 29 is the translation buffer parity diagnostic bit. When this bit is
set it will cause TB PAR ERR on any access to a TB entry in the translation buffer.

2.9.5 CSRl CPU /Memory Data Error Bits <31:30>
Bits <31 :30> of CSRl are read only, data error bits indicating that a CRD (correctable) or an RDS
(uncorrectable) error has been obtained on a CPU to memory transaction. The bits are clocked by CSR
ERR ADDR CLK A from the controller microword. The logic asserting the bits is shown in Figure 2-
53 and described in Paragraphs 2.9.5.1 and 2.9.5.2. The bits are read out to the MC bus by RD CSRl
from the RD CSR decoder and cleared by either WR CSR or CSR ERR SUM CLK. The assertion of
either will clear the CRD/RDS bits except that CSR ERR SUM CLK will not clear the bits during the
second cycle of a two-cycle memory access (2ND MEM CYC true). Thus a data error bit set during
the first cycle is retained until the end of the second cycle when the CPU will read the CSRs. The CPU
then checks to determine which memory cycle contained the error.

2-76

(FROM CSR 1 FIG. 2-52) LINH REP CRD

(C4S) CSR ERR ADDR CLK A

{

ERROR
(FROM ECC LOGIC FIG. 2-41) SINGLE ERR

(

FROM SECOND) 2ND MEM CYC
CYCLE DECODER -1---~=--'-".;::..:..;..:_~'-----'

FIG. 2-49) (C421 CSR ERR SUM CLK

CPH/UBL

(C46) WR CSR

(FROM UB INTERFACE FIG. 2-1) CPH/UBL

(C4S) CSR ERR ADDR CLK A

{

ERROR
(FROM ECC LOGIC FIG. 2-41) SINGLE ERR

NOTES:
1. THE LOGIC IN THIS FIGURE IS CONTAINED

ON SHEET F OF THE ENGINEERING DRAWINGS.

Figure 2-53 CSRl CPU/Memory Data Error Bits

L RDS

RD CSR 1

BUS MC D30
en
::J
co

BUS MC D31 ~

TK-6037

2.9.5.1 CRD <30> - This bit is set if on any CPU read to memory a single bit data error is detected
and corrected. If the CPU has control of memory (CPH/UBL true), errors are being reported (LINH
REP CRD false), and there is a correctable error (both ERROR and SINGLE ERR true), the next
assertion of CSR ERR ADDR CLK A will clock L CRD set. Once set, L CRD latches itself up via an
OR gate feedback path. The assertion of WR CSR releases the latch. The assertion of CSR ERR SUM
CLK also releases the latch except during the second cycle of a two-cycle operation.

2.9.5.2 RDS <31 > - This bit is set if on any CPU read to memory an uncorrectable data error is
encountered. If the CPU has control of memory (CPH/UBL true), and ERROR is true but SINGLE
ERR is false, the next assertion of CSR ERR ADDR CLK A will clock L RDS set. Once set, L RDS
latches itself up via an OR gate feedback path. The assertion of WR CSR releases the latch. The asser­
tion of CSR ERR SUM CLK also releases the latch except during the second cycle of a two-cycle
operation.

2.9.6 CSRl CPU/Memory Transaction Error Bits <23:14>
Bits <23:14> of CSRl are read only bits indicating various errors associated with a CPU to memory
transaction. The bits are clocked set by CPU ERR SUM CLK from the controller microword. The
logic asserting the ten error bits is shown in Figure 2-54 and described in Paragraphs 2.9.6.1 through
2.9.6.10. The bits are read out to the MC bus by RD CSRl from the RD CSR decoder. Bits <16:15>,
<23:20> are cleared by CLR ERR from the microword. Bits <14>, <19:17> are cleared by CLR
ERR except during a CPU WR CHK operation (RD CSR asserted).

2.9.6.1 VALID <14> - This bit is set if a CPU access to the translation buffer finds the TB entry
VALID bit not set.* This bit (< 14>) can be asserted only if memory management is enabled (ADDR
PH false).

*The TB entry VALID bit is set when the page referenced by the TB entry is in the working set.

2-77

(

FROM PHYSICAL)
ADDRESS SELECT ADDR PH

LOGIC FIG. 2-24

(

FROM TB PARITY)
GENERATOR/CHECKER -----t--t
FIG. 2-21

(

FROM TAG
COMPARATOR
FIG. 2-21 ,_ __ ____,

(;~~~S-) ~~;~ET
LA Tl ON
BUFFER
FIG. 2-21

(

FROM
PROTECTION
PROM
FIG. 2-21

ACCESS REFUSED

MODIFY REFUSED

(

FROM MEMORY) NXM
SELECT DECODER ------~-...,

FIGURE2-36; PART 1 (C4l)----t

UB

(
FROM UB ACTIVITY) ACTIVITY
LOGIC FIG. 2-11

(

FROM
MEMORY
SELECT
DECODER
FIG. 2-36;
PART 1

NOTES:

UB PH
ADDR SEL

CLR ERR
(C40)-----I
(C4J) RD CSR

1. "C" DESIGNATIONS REFER TO
MICROWORD BITS.

2. LETTER DESIGNATIONS IN PARENTHESES
REFER TO ENGINEERING DRAWINGS
CONTAINING CORRESPONDING LOGIC.

(VALID)

BUS MC D14

(TB MISS)
BUS MC D21

l---'1--...-----lf-f'"--..... (ACCESS REF)

BUS MC D22

(MODI FY REF)

BUS MC D23

(NXM)

BUS MC D16

(UBBSY)

BUS MC D17

(ADAP
REG SEL)

BUS MC D18

(WR ACROSS PG ERRlr-----i~--..----+-f

BUS MC D19

(ILL UB OPER)

BUS MC D20

(FIG. 2-51) RD CSR 1

(C40) CLR ERR

CPU ERR SUM CLK
(C48)-------------~

(VALID)

(TB PAR ERR)

(TB MISS)

(ACCESS REF)

(MODIFY REF)

(NXM)

(UBBSY)

(ADAPT REG SEL)

(WR ACROSS PG ERR)

(ILL UB OPER)

WR CSR
(C46l------1

(FROM UB INTERFACE) -------t
FIG. 2-1

2 MEM CYCLES

OP ERR

(C47) RD CSR

(~fh~~;JCONDCYCLEDECODER)--------t-t

SINGLE ERR

(
FROM ECG LOGIC
FIG. 2-41

1
_E_R_R_O_R ______ .----...

(FROM UB INTERFACE FIG. 2-1) _C_P_H_l_U_B_L ___ __.
(C45) CSR ERR ADDR CLK A

FROM) PHYSICAL
ADDRESS
SELECT
LOGIC
FIG. 2-24

(

FROM TWO CYCLE)
DETECTOR
FIG. 2-49

DATA

ERR

TO CPU)
AND
BRANCH
LOGIC
FIG. 2-15

COMPAT MODE
.-------(FROM DAP MODULE IN CPU)

(

FROM DATA)
ROTATOR CONTROL
FIG. 2-49

(UNALIGNED WORD)

RSO } (FROM DATA)
RS1 (LONGWORD) TYPE LOGIC

FIG_ 2-49

(

FROM MEMORY)
~------ SELECT DECODER

FIG. 2-36; PART 1

TK-6695

Figure 2-54 CSR I CPU /Memory Transaction Error Bits and
Error Summary Logic

2-79

2.9.6.2 TB PAR ERR < 15> - This bit is set if a CPU access to the translation buff er results in a
parity error. This bit can be asserted only if memory management is enabled (ADDR PH false).

2.9.6.3 NXM < 16> - This bit indicates that the memory select decoder referenced a memory ad­
dress where there is no memory array board (nonexistent memory). The bit is also asserted by ROT CO
from the microword when:

1. A CPU to UNIBUS request resulted in a SSYN timeout on the UNIBUS, or

2. A passive BR release results from the CPU issuing an ISSUE BG command.

2.9.6.4 UBBSY <17> - This bit indicates that a CPU transaction has the UNIBUS as a target but
the UNIBUS is busy. The controller aborts the CPU transaction (Paragraph 2.2.2).

The UBBSY bit is also set during the interlocked READ.V.WCHK.LOCK operation (RD CSR true)
even if the UNIBUS is not the CPU target. This keeps the UNIBUS locked out during the read/write
cycles of the operation. CLR ERR from the microword is used for this purpose.

2.9.6.5 ADAPT REG SEL <18> -This bit indicates that the physical address (target) of a memory
reference lies in the 3/4 megabyte UNIBUS adapter space between FO 0000 and FB FFFF (Figure 2-
31) . .The CPU (not the memory controller) handles this reference to memory.

2.9.6.6 WR ACROSS PG ERR <19> -This bit is set if a CPU write (with a WCHK) attempts to
write across a page boundary. The memory controller aborts the write cycle. The CPU then tests that
the write access would be accepted in both pages, then repeats the write with a NOCHK.

Refer to Figure 2-54. When the data control logic senses that two memory cycles are needed for a
transaction (2 MEM CYCLES true), the error logic checks for either of two error conditions. One of
the error conditions is a system address violation (SYS ADDR VIOL) which asserts if the second mem­
ory reference will cross system boundary space. The other error condition is crossing a page boundary
during a CPU WR CHK operation (indicated by RD CSR true) when memory management is enabled
(ADDR PH false). Either condition sets the WR ACROSS PG ERR bit.

2.9.6.7 ILL UB OPER <20> - This bit is set by an operation error (OP ERR). OP ERR indicates
that the CPU tried to perform a memory operation that is illegal in compatibility mode or tried to
perform an illegal UNIBUS reference.

In compatibility mode only bytes and words are transferred (not longwords). However, word transfers
must be word aligned in the memory arrays (i.e., reference must be made to byte 0 or byte 2 locations).
If a word (RSO true) is referenced to byte location 1 or 3 (AO True), OP ERR asserts. An unaligned
word reference to the UNIBUS or any longword (RSl true) reference to the UNIBUS is always illegal
and will assert OP ERR.

2.9.6.8 TB MISS <21> - This bit indicates that the translation buffer tag didn't match bits
<30:15> of the virtual address in the VAR, or the BYTE OFFSET bit was not set. The BYTE OFF­
SET bit is used in CPU address translations to indicate that the entry in the TB is a legitimate entry
written in by the CPU. In either case, the CPU translates the address, loads the TB, and tries again. If
TB PAR ERR is set, this bit is meaningless. This bit will assert only if memory management is enabled
(ADDR PH false).

2.9.6.9 ACCESS REF <22> - This bit signifies that the protection PROM has decided that the
access requested by the CPU is not allowed. If the PAR ERR bit is set, this bit is meaningless. This bit
will assert only if memory management is enabled (ADDR PH false).

2-80

2.9.6.10 MODIFY REF <23> - This bit means that the modify bit was not set in a TB entry refer­
enced with a "WCHK" protection request. When an unmodified page is to be written into, it is required
that the MODIFY bit be set before the write operation executes. This bit asserts ERR SUM to the
CPU which sets the MODIFY bit and retries the "WCHK" operation. This bit will assert only if mem­
ory management is enabled (ADDR PH false).

2.9.7 CPU /Memory Error Summary (Figure 2-54)
The ten CPU/memory translation error bits are ORed to assert ERR SUM to the CPU. Upon receiving
ERR SUM, the CPU reads CSRl to determine the type of error.

ERR SUM is also asserted by DAT A ERR obtained from data error logic that is similar to the
CRD /RDS error logic of Paragraph 2.9.5. Referto Figure 2-54. If this is a CPU /memory transaction
(CPH/UBL true), an error is detected in the ECC logic (ERROR true), and the data error logic is
clocked by CSR ERR ADDR CLK A, then DATA ERR asserts if one of the following is true.

1. The ECC logic is disabled.

2. The error is not a single bit error (SINGLE ERR false).

3. The error is a single bit error and reporting of single errors is allowed (L INH REP CRD
false).

When DATA ERR asserts, it is latched up by one of the following.

1. The memory controller is referencing the UNIBUS (CPH/UBL false).

2. A second memory cycle is in progress.

3. CSR ERR SUM CLK is false and has not cleared the CRD/RDS bits of CSRI.

The DATA ERR latch is released by a write to CSRl (WR CSR true).

2.9.8 CSR2 UB/Memory Error Bits <31 >, < 16:14>
CSR2 is a read only register containing four error bits relating to UNIBUS to memory transactions.
The remaining 28 bits of the register are not used. The error bits are clocked by CSR2 CLK from the
CSR write decoder. The logic asserting the bits is shown in Figure 2-55 and described in Paragraphs
2.9.8.1 through 2.9.8.4. The bits are read out to the MC bus by RD CSR2 from the RD CSR decoder,
and cleared by CLR ERR from the controller microword.

The UNIBUS error logic allows only one of the four error bits (the first to occur) to be set. The input
logic for each bit contains feedback from the other bits such that, if any of the three bits is already set,
the feedback will inhibit the setting of the fourth bit.

2-81

N
I

00
N

NOTES:
1. "C" DESIGNATIONS REFER TO MICROWORD BITS.

2. LETTER DESIGNATIONS IN PARENTHESES REFER
TO ENGINEERING DRAWINGS CONTAINING
CORRESPONDING LOGIC.

(/')
::J
ll'.l

~
w
c:: LVA<03:02> CLR § ,___ ________ ._ UB

~ R~
~ DECODE

~ ._..(A~)~--c:: > (C46) __ W_R_CS_R _ ___.

CLR UB RDS

(
FROM UB INTERFACE)
FIG. 2·1 -----i

()

ERROR

~~~~OGIC { SINGLE ERR 
FIG. 2-41 

(C45) 

(
FROM TWO CYCLE DETECTOR) 
FIG. 2-49 ---------r-""""' 

(
FROM PHYSICAL ADDRESS) 
SELECT LOGIC FIG. 2-24 -----t 

ADDR PH 

WR NOT VALID 

WR NOT VALID 

UBL RDS 

WR NOT VALID 

(
FROM TRANSLATION) 
BUFFER FIG. 2-21 ------t (

FROM MEMORY SELECT ) NXM 
DECODER FIG. 2-36; PART 1 

VALID 

(
FROM TB PARITY GENERATOR CHECKER) TB PAR ERR 
FIG. 2-21 , 

(
FROM TRANSLATION BUFFER) VALID 
FIG. 2-21 

(L UB NXM) 

(L UB RDS) 

TB PAR ERR 

(L UB NXM) 

CSR 2 CLK 
(FIG. 2-51 )-----------' 

CLR ERR 
(C40)-----------------' 

(FIG. 2-51 , ____ R_D_c_sR_2 ______________ _, 

>--U_B_E_R_R_S_U_M_,.(;~ANCH) 
LOGIC 
FIG. 2-15 

Figure 2-55 CSR2 UB/Memory Error Bits and Error Summary Logic 

(L WR NOT VALID) 

BUS MC D14 

TK..6024 



2.9.8.1 WR NOT VALID <14> - This bit is set if, during a two-cycle operation, an attempt is made 
to write into a page that does not have a valid entry in the translation buffer.* 

Refer to Figure 2-55. If memory management is enabled (ADDR PH false) and two memory cycles are 
needed for the transaction (2 MEM CYCLES true), the UNIBUS error logic checks the VALID bit 
from the TB entry. If the bit is not set, there is no TB entry for the referenced page and the WR NOT 
VALID bit in CSR2 is set. 

When WR NOT VALID sets, the write operation is aborted and SSYN is inhibited to the UNIBUS 
device. 

2.9.8.2 UB TB PAR ERR <15> - This bit is set if a UNIBUS/memory transaction results in a TB 
parity error (TB PAR ERR). The transaction is aborted and SSYN inhibited resulting in a UNIBUS 
timeout. 

2.9.8.3 UB NXM < 16> - This bit is set if a UNIBUS request referenced a nonexistent array card. 

2.9.8.4 UB RDS <31> - This bit is set if on any UNIBUS read to memory an uncorrectable data 
error is encountered. 

The bit is asserted by UBL RDS obtained from RDS logic shown in Figure 2-55. If the UNIBUS has 
access to memory (CPH/UBL false) and an uncorrectable error exists (ERROR true and SINGLE 
ERR false), the next assertion of CSR ERR ADDR CLK A will clock UBL RDS into the UB RDS 
flip-flop of CSR2. 

UBL RDS latches itself up via an OR gate. The latch is released by CLR UB RDS whenever CSRl is 
written (WR CSR true) and the correct LVA <03:02> code is obtained from the virtual address bus. 

When this bit is set, the memory controller inhibits a SSYN response to the UNIBUS device and the 
UNIBUS times out. The UNIBUS device sets its own NXM bit. 

2.9.9 UNIBUS/Memory Error Summary (Figure 2-55) 
A summation of UNIBUS errors (UB ERR SUM) is generated and sent to the microsequencer branch 
logic. The components making up this signal are: 

1. NXM true, 
2. TB PAR ERR true, 
3. WR NOT VALID true, and 
4. VALID false. 

When UB ERR SUM asserts, the memory controller does not assert SSYN thereby causing the UN­
IBUS device to timeout. This in turn causes the device to interrupt the CPU which enters the ISR 
(interrupt service routine) to find out what the error was (by reading CSR2). 

*In a one-cycle operation, if an attempt is made to write into a page that does not have a valid entry in the translation buffer 
(VALID bit not set), the operation is aborted before CSR2 is clocked and UB ERR SUM is checked (refer to Figure 2-27). 

2-83 



3.1 GENERAL 

CHAPTER3 
USING THE PROM MICROCODE LISTING 

A 512 X 72 bit PROM on the MCT module outputs a 72-bit microword on each transition of TO 
CLOCK. The microword contains MCT control signals and thereby causes specific operations to be 
performed on the MCT module. The microword also contains next address bits and branching bits to 
formulate the PROM's next address and thus select the next microword output. Refer to Section 2.3 for 
a logic description of how the microsequencer functions to select the PROM's next address. This chap­
ter illustrates how to use the PROM listing in the engineering documentation to determine the next 
address and thereby follow through the MCT routines. 

3.2 MICROCODE LISTING 
The microcode listing is divided into four parts. 

1 . Definitions File 
Starting with microword bit (field) 71, the name of each field is given, its state when asserted 
and negated (1 or 0), and its default state. 

2. MACRO Definition File 
MACROs used within the body of the microcode are defined. The pertinent microword fields 
and their states are listed for each MACRO. 

3. Microcode Body 
This section of the listing specifies the PROM address, the microword, the state of the per­
tinent fields, MACROs used (if any), branch conditions (if any), and notes. 

4. Cross Reference Listings 
The following three cross reference lists are given. 

a. Field Names vs Line Numbers 
Field names are listed alphabetically and the line number given where that field is de­
fined. 

b. MACRO Names vs Line Numbers 
MACRO names are listed alphabetically and the line number given where the MACRO 
is defined. 

c. Memory Location vs Line Number 
Memory locations are listed numerically and the line number where they can be found. 

3-1 



3.3 MICROWORD 
The hexadecimal characters of the microwords m the listings are segmented into groups of four as 
shown in the following example. 

C3E6, 8EE9, B041, BCOl, 01 

Figure 3-1 identifies each field in the microword and groups the bits in rows of 16 corresponding to the 
four hex bits of the microword notation. The nine NAD (next address) bits are the two least significant 
hex characters plus the least significant bit of the third hex character. The BEN (branch enable) bits 
for BEN 0, BEN 1, BEN 2, and BEN 3 are also identified. 

71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 

ARB UB UB UB UB LAT TB TB TB ARB CONT TB ROT 
co DIR DIR BBSY MSYN SSYN DAT ADA OUT- DATA DATA DATA C1 FUNC WE C1 
H EN LATCH A H H EN EN PUT EN+ EN DIR H LAT L H 

L L H L L L MAINT L RD L 
L L 

BEN 3 

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 

GATE C54 C53 C52 DIR SPF MOR CPU RD WR CSR CSR CSR CSR ROT CLR 
DIR H H H WR 1 DAT ERR CSR CSR ERR CB/ CB ERR co ERR 
H BYT H OUT SUM L L ADDR SYN EN SUM H L 

EN EN CLK CLKA CLK L CLK 
L L H L H H 

39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 

STALL MEM ALLOW I LD ARY ARY ROT RAS OUT- SPF CORR OUT- GEN- OUT- LAT LAT 
MBSY BSY REF IB DR WAT CLOCK EN PUT 2 DIS PUT ERATE PUT CB DAT 
L H H L EN TIM H H BYT H L CB/ H CB REG IN 

H H (0-3) SYN BUS L H 
H H H 

BEN 2 BEN 1 BEN 0 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 

MAINT SPF VAR VAR VAR DISP C17 C16 C15 C14 C13 C12 C11 C10 C9 CB 
RD 0 LOAD CNTR L BYP EN H H H H H H H H H H 
ADDR H H H H L 
L 

) 
( 

NAD 

I 7 I 6 5 I 
4 3 I 

2 

I 1 I 0 

C7 C6 C5 C4 C3 C2 C1 co 
H H H H H H H H 

TK-6572 

Figure 3-1 Microword Fields 

3-2 



3.4 READING THE MICROCODE LISTING 
An exercise follows which involves reading the microcode listing. The exercise steps through the power­
up sequence into the idle microstate, then into the dispatch microstate, and finally through a "write to 
the array" operation. The memory location of each step of the sequence is computed from the micro­
word at the preceding location. Work forms (Figure 3-2) are used to present a suggested approach to 
reading the microword and interpreting the microword fields. 

The MACROs used and the branch conditions (if any) for each microword is provided on the exercise 
forms. This data would be found in the body of the microcode listing. The listing itself is not used for 
the exercise due to changes that occur in the PROM routines and the resulting relocation of PROM 
microwords. The primary purpose of the exercise is not to show the power-up and WRITE.V.WCHK 
routines, but to illustrate reading of the listing and following an operation through to its conclusion. 
Using the method shown, the most recent revision of the listing can be read and current routines can be 
examined. 

Figure 3-2 is the form used for the exercise. The nine PROM ADRS bits are given and the sources 
from which the ADRS bits are obtained. Microword bits C <8:4> are the source for address bits 
ADRS <8:4> respectively.* The source for address bits ADRS <3:0> is the branch condition se­
lected by branch enable mux 3 through 0 respectively. When the three BEN select bits of any mux are 
all O's, the respective "C" bit is selected. The actual NAO is formed from the microword "C" bits and 
the BEN branches (if any). The actual NAD in hex is then noted. 

The procedure used in the exercise is as follows: 

I. Record the memory location (hex) and the microword. 

2. Record the N AD from the microword. 

3. Record the three BEN bits for each of the four branch muxes. 

4. Record any branch conditions selected by the BEN bits. (Branch conditions are found in the 
"definitions file" of the microcode listings). t 

5. Record the actual NAD bits selected by branch conditions (if any). 

6. Record the remaining NAD bits from the microword NAD. 

7. Record the actual NAD in hex and find the next location. (When using the listing, refer to 
the "memory location vs line number" cross reference listing). 

Figure 3-2a through 3-20 trace the PROM microwords through a power-up/write array routine. When 
power is applied to the V AX-11/730 the PROM is forced to location 100, the starting point of the power­
up routine (refer to Paragraphs 2.3.5 and 2.3.6). 

Figure 3-3 is a flow diagram of the exercise showing all the locations and branch conditions contained in 
the exercise sheets. The sheets specify the state of the branch conditions. The flow diagram also shows 
the location that would be reached if the branch condition were of the opposite state. A brief descrip­
tion is given of what would occur if the alternate branch were taken. 

Flow diagrams can be made from the microcode listing for any of the routines contained in the PROM. 

*Except during the dispatch microstate. Refer to Figure 3-2d. 

tNote that branch conditions that are asserted low are followed by L. Otherwise the condition is asserted high. 

3-3 



ADDRESS; U 100 
(HEX) 

MICROWORD; C3E6, 8££9, 8041, BCOT, 01 

MACROS; PWR.FAIL: 

NAO (FROM 
MICROWORD); 
(HEX) 

BENO; 

BEN1; 

BEN2; 

BEN3; 

ADRS; 

IDLE, 
ARB.CLEAR.CPUG, 
SET.DATO 

101 

000--. co 
000--+ CT 

000 --. C2 

000 --+ CJ 

7 6 5 4 

SOURCE; CB 

ACTUAL 
NAO; 

Cl C6 C5 C4 

0 0 0 0 

ACTUAL NAO (HEX); U 101 

Figure 3-2a Microcode Exercise Form 

3-4 

3 2 1 0 

0 0 0 

TK-6608 



ADDRESS; U 101 
(HEX) 
MICROWORD; 43E6, BAE9, 8001, BCOO, 06 

MACROS; IDLE, 

NAO/IDLE 

NAO (FROM 
MICROWORD); 006 
(HEX) 

BENO; ____ a_a_o __ ----. ______ c_v ____ _ 

BEN1; ____ a_a_D __ ---+ ______ c_1 ____ _ 

BEN2; ____ a_a_o __ ---. ______ c._i ____ _ 

BEN3; ____ a_a_o __ ___. ______ c._'3 ____ _ 

ADRS; 8 7 6 5 4 

SOURCE; CB 

ACTUAL 
"NAO; 

Cl C6 C5 C4 

0 0 0 0 0 

ACTUAL NAO (HEX); U 006 

Figure 3-2b Microcode Exercise Form 

3-5 

3 2 1 0 

0 1 0 

TK-6608A 



ADDRESS; U 006 
(HEX) 
MICROWORD; 43E6, 8AE9, 8001, BClE, 04 

MACROS; IDLE: 

NAD (FROM 
MICROWORD); 
(HEX) 

BENO; 

BEN1; 

BEN2; 

BEN3; 

IDLE, 
BENT!CPUG.L, 
BENO/LMSYN, 
NAO/CT 

004 

111 ___.... 
111 ---+ 

000 ___.... 
000 ---+ 

MSYN is not asserted. 
CPUG. L has been asserted by the arbitrator. 

ADRS; 8 7 6 5 

SOURCE; CB Cl C6 cs 

ACTUAL 
0 NAD; 0 0 0 

ACTUAL NAD (HEX); u 004 

LMSYN 

CPUG.L 

Cl 

CJ 

4 

C4 

0 

Figure 3-2c Microcode Exercise Form 

3-6 

3 2 0 

BENJ BEN2 BEN1 BENO ---------

0 0 0 

TK-66088 



ADDA ESS; U 004 
(HEX) 
MICROWORD; 43E2, 9AE9, 900T, 8800, 02 

MACROS; CT: START.ADDR.PROM, 
NAD!CPU.ISTREAM.REO 

NAO (FROM 
MICROWORD); 002 

(HEX) 
BENO; 000 ___. co 

BEN1; 000 ---+ CT 

BEN2; 000 ___. C2 

BEN3; DOT ---+ CSROl 

CTB (DJSP EN L) is asserted indicating that this 
is the CPU dispatch microstate. The CSR bits 
from the CPU are used to formulate the NAD. 

ADRS; 8 7 6 5 4 3 2 1 0 

SOURCE; CB 

ACTUAL 
NAO; 

CSRTB CSRTl CSRT6 CSROB BEN3 BEN2 BENT BENO ---------
0 0 T 0 T 0 0 

ACTUAL NAO (HEX); U 06A 
TK-6608C 

Figure 3-2d Microcode Exercise Form 

3-7 



ADDRESS; U 06A 
(HEX) 
MICROWORD; 43E2, OA69, D30T, 9CT4, 84 

MACROS; WRITE V.WCHK: 

NAO (FROM 

RAS.EN/ON, 
BYPBSY, 
ROT.CLOCK/CLOCK 
RD.CSR/READ, 
BENT !REF.IN.PROG, 
BENO!UB.PH.ADDR.SEL.L, 
NADNVR.UBS.CYC.WCHK 

MICROWORD); __ 0_84 __ 
(HEX) 

BENO; OTO --+ UB.PH.ADDR.SEL.L 

BEN1; OOT ---+ REF.IN.PROG 

BEN2; 000 --+ C2 

BEN3; 000 ---+ C3 

A refresh cycle is not in progress. 
The translated physical address is not a UNIBUS address. 

ADRS; 8 7 6 5 4 3 2 0 

SOURCE; CB 

ACTUAL 
NAO; 0 

Cl C6 

0 

ACTUAL NAO (HEX); U 085 

C5 C4 

0 0 

Figure 3-2e Microcode Exercise Form 

3-8 

BEN3 BEN2 BENT BENO ---------

0 T 0 

TK-66080 



ADDRESS; U 085 
(HEX) 

MICROWORD; 43E2, OA69, D90T, 9COT, CT 

MACROS; ;WRITE TO ARRAYS 

;=OT 
WR.ARRY.C4.WCHK: 

BYPBSY, 
READ.ARRA Y, 
RD.CSR/READ, 
NAO ;WR.ARR Y. C5. WCH K 

NAD (FROM 
MICROWORD); TCT 
(HEX) 

BENO; 000 ---.... co 
BEN1; 000 ~ CT 

BEN2; 000 ~ C2 

BEN3; 000 ~ C3 

ADRS; 8 7 6 5 

SOURCE; CB Cl C6 C5 

ACTUAL 
0 NAD; 

ACTUAL NAD (HEX); u TCT 

4 

C4 

0 

Figure 3-2f Microcode Exercise Form 

3-9 

3 2 1 0 

BEN3 BEIV2 BENT BENO ---------
0 0 0 

TK-6608E 



ADDRESS; U 1C1 
(HEX) 

MICROWORD; 4362, 086D, D902, 9£81, 02 

MACROS; WR.ARRY.C5.WCHK: BYPBSY, 
READ.ARRAY, 
OPEN.ECG, 
RD.CSR/READ, 
CSR.ERR.SUM.CLK/CLOCK, 
CPU.ERR.SUM.CLK/CLOCK, 
BEN2/ALIGN.LW.L, 
NAD M'R.A RR Y.A LIGN. LW. C6 

NAD(FROM 
MICROWORD); 102 
(HEX) 

BENO; __ oa_o __ ---. ____ co __ _ 
BEN1; __ 00_0 __ ---. ______ C_1 ____ 

BEN2; ____ 10_1 ___ ---. ____ A_L_IG_N._. L_W._._L 

BEN3; ____ oo_o ___ ---. _____ C3 ___ _ 

The data to be written is not an aligned longword. 

ADRS; 8 7 6 5 4 3 2 1 0 

SOURCE; CB Cl C6 C5 C4 BEN3 BEN2 BEN1 BENO ---------
ACTUAL 

0 0 0 0 NAO; 0 1 0 

ACTUAL NAO (HEX); u 106 

TK-6608F 

Figure 3-2g Microcode Exercise Form 

3-10 



ADDRESS; U 106 
(HEX) 
MICROWORD; 4362, BAE9, 5902, 9D01, 15 

MACROS; WR.ARRY.C6: 
BYPBSY, 
GA TE.DIR/READ.CPU, 
READ.ARRAY, 
OPEN.ECC, 
STALL.MEM.BUSY!STALL, 
BEN2/ERR.SUM.L, 

NAD (FROM 
NAD!WR.ARRY.Cl 

MICROWORD); 115 
(HEX) 

BENO; 000 __,.. co 
BEN1; 000 __..,. CT 

BEN2; 010 __,.. ERR.SUM.l 

BEN3; 000 __..,. CJ 

There are no translation errors. 

ADRS; 8 7 6 5 4 

SOURCE; CB 

ACTUAL 
NAD; 

Cl C6 C5 C4 

0 0 0 

ACTUAL NAD (HEX); U 115 

Figure 3-2h Microcode Exercise Form 

3-11 

3 2 1 0 

0 0 

TK-6608G 



ADDRESS; U 115 
(HEX) 
MICROWORD; 43E2, BAEB, 1001, 9C66, lC 

MACROS; WR.ARRY.Cl: 

NAO (FROM 

WRITE.SUBSTITUTE, 
STALL.MEM.BUSY!STALL I 

VAR.BYPASS. EN/ON, 
GATE.DIR/READ.CPU, 
BEN1/LCPU.DR, 
BENO!ERROR.L, 
NAD!WR.ARRY.WDE.CB 

MICROWORD); __ Ol_C __ 
(HEX) 

BENO; 011 ~ ERROR.L 

BEN1; 110 __... LCPU.DR 

BEN2; 000 ---+ C2 

BEN3; 000 __... CJ 

There is no data error 
CPU has placed write data on MC bus (L CPU.DR asserted). 

ADRS; 8 7 6 5 4 3 

SOURCE; CB 

ACTUAL 
NAO; 0 

Cl C6 C5 C4 

0 

ACTUAL NAO (HEX); U OlF 

Figure 3-2i Microcode Exercise Form 

3-12 

1 

2 1 0 

TK-6608H 



ADDRESS; U OlF 
(HEX) 
MICROWORD; 4362, 86EB, 9000, 940T, TE 

MACROS; WR.ARRY.CB: GATE.DIR/READ.CPU, 

NAD(FROM 
MICROWORD); 
(HEX) 

BENO; 

BEN1; 

BEN2; 

BEN3; 

ADRS; 8 

SOURCE; CB 

ACTUAL 
NAO; 

11E 

000 

000 

000 

000 

7 

WRITE.SUBSTITUTE, 
SECOND.MEMORY. CYCLE, 
ECC.DATA.IN.LATCH!OPEN, 
ECC. 0 UTPUT. LA TCH!OPEN, 
MDR. TO.ARRAY.EN/ON, 
NAD$R.ARRY.C9 

--+ co 
---+ CT 

---+ C2 

---+ CJ 

6 5 4 3 

Cl C6 C5 C4 

0 0 0 

ACTUAL NAO (HEX); U 11E 

Figure 3-2j Microcode Exercise Form 

3-13 

2 1 0 

T 0 

TK-66081 



ADDRESS; U 11E 
(HEX) 
MICROWORD; 43£2, OAEB, 9001, 94TT, TC 

MACROS; WR.ARRY.C9: 

NAO (FROM 
MICROWORD); 
(HEX) 

BENO; 

WRIT£SUBSTITUTE, 
BENT /REF.IN.PROG, 
NAD/WR.ARRY.CTO 

TTC 

000 ---+ co 
BEN1; OOT ---+ REF.IN.PROG 

BEN2; 000 ---+ C2 

BEN3; 000 ---+ C3 

A refresh cycle is not in progress. 

ADRS; 8 7 6 5 4 

SOURCE; CB Cl C6 C5 C4 

ACTUAL 
0 0 0 NAO; 

ACTUAL NAO (HEX); U 11C 

Figure 3-2k Microcode Exercise Form 

3-14 

3 2 1 0 

T T 0 0 

TK-6608J 



ADDRESS; U 11C 
(HEX) 
MICROWORD; 43£2, OAEB, 9498, 9431, ID 

MACROS; WR.ARRY.CTO: 

NAO (FROM 
MICROWORD); 
(HEX) 

BENO; 

BEN1; 

BEN2; 

BEN3; 

ECC is not disabled. 

ADRS; 8 

SOURCE; CB 

ACTUAL 
NAO; 1 

WR /TE.SUBSTITUTE, 
ECC.DATA.IN.LATCH!OPEN, 
£CC.WRITE, 
WR.TIM/ON, 
BENT /LECC.D/S, 
NAD/111/R.ARRY.CTT 

11D 

000 ___,.. 
011 ---+ 

000 ___,.. 

000 ---+ 

7 6 5 

co 
LECC.D/S 

C2 

CJ 

4 

Cl CS C5 C4 

0 0 0 1 

ACTUAL NAO (HEX); U 11D 

Figure 3-21 Microcode Exercise Form 

3-15 

3 2 1 0 

0 1 

TK-6608K 



ADDRESS; U TTD 
(HEX) 
MICROWORD; 43£2, OAE9, 9598, 9401, 85 

MACROS; WR.ARRY.CTT: 

NAO (FROM 
MICROWORD); 
(HEX) 

BENO; 

BEN1; 

BEN2; 

BEN3; 

ADRS; 8 

SOURCE; CB 

ACTUAL 
NAO; 

WRITE.ARRAY, 
£CC.DATA.IN.LATCH/OPEN, 
£CC.WRITE, 
NADtWR.ARRY.C12 

185 

000 __,.. co 
000 ---+ CT 

000 __,.. C2 

000 ---+ CJ 

7 6 5 4 

Cl C6 C5 C4 

0 1 

ACTUAL NAO (HEX); u 185 

Figure 3-2m Microcode Exercise Form 

3-16 

3 2 0 

0 0 1 

TK-6608L 



ADDRESS; 
(HEX) 

u 185 

MICROWORD; C3E2, OAE9, 9599, 9421, 20 

MACROS; WR.ARRY.C12: 

NAO (FROM 
MICROWORD); 
(HEX) 

BENO; 

WRITE.ARRAY, 
£CC.WRITE, 
ARB.CLEAR.CPUG, 
BEN1/TWO.MEM.CYCLES.L, 
NAD!WR.ARRY.C13 

120 

000 ----+ co 
BEN1; 010 --+ TWO.MEM.CYCLES.L 

BEN2; 

BEN3; 

One memory cycle. 

ADRS; 8 

SOURCE; CB 

ACTUAL 
NAO; 

000 --+ 

000 --+ 

7 6 

Cl C6 

0 0 

ACTUAL NAO (HEX); U 122 

C2 

CJ 

5 4 

CS C4 

0 

Figure 3-2n Microcode Exercise Form 

3-17 

3 

0 

2 0 

0 0 

TK-6608M 



ADDRESS; U 122 
(HEX) 
MICROWORD; 43£2, OAE9, 9501, A400, 06 

MACROS; WR/TEAR RAY, 
VAR.CONTROL!LOAD.UB, 
NAD/IDLE 

NAO (FROM 
MICROWORD); 006 
(HEX) 

BENO; __ a_vo ___ --... ____ _;_co ____ __ 

BEN1; ____ 0_V_O __ ---+ ______ C_1 ____ _ 

BEN2; ____ a_v_o __ ---.. ______ c2 ____ __ 

BEN3; ___ a_vo __ ---+ ______ C3 ____ __ 

ADAS; 8 7 6 5 4 

SOURCE; CB 

ACTUAL 
NAO; 

Cl C6 CS C4 

0 0 0 0 0 

ACTUAL NAO (HEX); U 006 

Figure 3-20 Microcode Exercise Form 

3-18 

3 2 1 0 

0 1 0 

TK-6608N 



c 

YES 

007: 
A UNIBUS device is 
requesting the memory. 
A UNIBUS to memory 
operation will follow. 

Apply power to system. 

100: 
Reset arbitrator. 

101: 
Go to idle. 

Dispatch microstate. 
Dispatch PROM to 
starting address. 

06A: Start WRITE. 
V.WCHK operation. 

085: 
Write to array. 

A 

YES 

YES 

086/087:* 

Refresh is in progress. 

084: 

Write to UNIBUS. A CPU 
write-to-UN I BUS 
operation will follow. 

111: 
There is a translation 
error. Subsequent 
steps wi 11 abort the 
operation. 

070: 

YES 

* WILL GO TO ONE OF TWO LOCATIONS DEPENDING ON 
STATE OF OTHER BRANCH CONDITION. EITHER LOCATION 
WILL ACCOMPLISH FUNCTION DESCRIBED IN BLOCK. 

Figure 3-3 Power-Up/Write Array Flow Diagram 

1C1: 

115 

Clear CS Rs of old 
data errors. 

Place read data into ECC 
output register to form 
new longword. 

07F: 
Write data passes 
through data rotator. 

YES 

102: 

YES 

No old data to be saved. 
Therefore it is not 
necessary to read the 
array, perform an ECC 
check, or assemble a 
new longword. Sub· 
sequent steps will 
generate new check 
bits, write the new 
longword and check bits 
into array, terminate the 
operation and return to 
idle. 

07C/07E:* 

If single bit error, 
subsequent steps will 
correct error, write 
corrected data into array, 
and terminate normally. 
If multibit error, bad 
data is written back into 
array and operation is 
aborted. 

11E: 

Write data into ECC 
logic. Generate 
check bits. Place 
arrays in write mode. 

Output longword from 
ECC logic to array bus. 

1B5: 

Write array. End of 
array write cycle. 

122: 
Set VAR for UNIBUS 
input. Return to idle. 

YES 

11 F: 

YES 

This is a maintenance 
operation. Load 
generated check bits 
into CSRO. Sub· 
sequent steps will 
carry out diagnostic 
analysis. 

120: 

Increment VAR to 
next longword location. 
Subsequent steps will 
perform another write 
cycle to the array. 



A.I INTRODUCTION 

APPENDIX A 
PROGRAMMED ARRAY LOGIC DEVICES (PAL) 

Programmed array logic devices (PALs) are logic arrays incorporating fusable link technology. PALs 
are manufactured on a chip using the TTL shottky bipolar process used to make fusable link PROMs. 
Like PROMs, the PALs may be programmed to give a custom-designed chip unique to a specific re­
quirement. 

The basic logic configuration used in PALs is shown in Figure A-1. The circuitry consists of a program­
mable AND array connecting to a fixed OR array. Note that the AND array shown in the basic logic 
configuration has only four programmable (fusable-link) inputs and two fixed OR outputs. In the actual 
PAL circuits used in the VAX-11/730, up to 32 programmable AND inputs and up to 8 fixed OR 
inputs are used per output. 

An unprogrammed PAL has all fuses intact as indicated in Figure A-1 for the basic PAL circuit. A 
PAL is programmed by first determining the AND inputs to be used and then "blowing" the links for 
the unused AND inputs to give the desired AND before OR logic configuration. (A standard PROM 
programming device is used for this operation.) For example, the upper half of Figure A-2 shows the 
links blown to implement the XOR function AB V AB in the basic PAL logic configuration. This same 
logic function may also be represented as shown in the lower half of Figure A-2 where an "X" repre­
sents the links that are left intact to perform the logical AND. This last method of showing an AND 
array configuration is the convention used in the PAL plot listings provided in the VAX-11/730 micro­
fiche set. 

INPUT 1 

Fl 

OUTPUT 

F8 

INPUT2 

TK-6630 

Figure A-1 Basic PAL Logic Configuration 

A-1 



A 

F1 

ABV AB 

F4 

B 

A 

ABVAB 

B 

TK-6627 

Figure A-2 XOR Logic Function Using PAL Logic 

A.2 PAL DEVICE TYPES 
The four types of PALs used in the V AX-11/730 are listed in Table A-1. Logic diagrams for each PAL 
are given at the end of this appendix. 

With reference to the logical diagrams, it can be seen that the four PAL devices all use the basic AND 
before OR logic configuration discussed in Paragraph A. I. However, outputs from the 16L8 gate array 
chip are inverted and six of the eight outputs feed back to the AND arrays for added capability. In 
addition, the output inverters for these six outputs may be turned on and off by the AND arrays (pro­
grammable 1/0). This provides still more logic capability (when the inverter is turned off) in that it 
allows the corresponding output pin to be used as an input to the AND array just like a designated input 
pin. 

Also note from the logic diagrams that the 16R8 chip has register outputs (D-type flip-flops) and no 
gate outputs. Again, outputs are fed back to the AND array but not directly by way of the chip's output 
pins. Instead, the 0 outputs of the flip-flop drive the array. As a result, the output pins cannot be used as 
inputpins as for a 16L8. The other two PAL types, the 16R6 and the 16R4, have varying combinations 
of both gate and register outputs on the same chip. 

A-2 



Table A-1 PAL Device Types Used in VAX-11/730 

PAL 
Device Prog. Register 
Type Inputs Outputs IO Outputs Description 

16L8 16 8 6 0 AND-OR gate array 
16L8 16 8 0 8 AND-OR gate array with 

registers 
16R6 8 8 2 6 AND-OR array with 

registers 
16R4 8 8 4 4 AND-OR array with 

registers 

A.3 PAL SYMBOLOGY 
A typical PAL as represented in the VAX-11/730 Engineering Print Set is shown in Figure A-3. Infor­
mation within the symbol includes the device type, part number, and chip location. For example, the 
PAL in Figure A-3 is a 16R4 located at E50 with a part number equal to OIOK3. The PAL part number 
distinguishes one programmed PAL from another. Because PALs are programmed for specific appli­
cations, it is seldom that more than one PAL will have the same part number. 

Inputs to the designated PAL input pins are shown at the left of the PAL symbol. Outputs appear at the 
right. When an output pin is used as an input pin as discussed in Paragraph A.2, the input signal is 
entered at the left of the symbol and a dotted line (drawn across the PAL symbol) is used to show the 
connection to the output pin on the right. Pins having both input and output capability are labeled as 
1/0 on the PAL symbol. Gate outputs not having both input/out capability are labeled with an 0. 
Register outputs are identified by an R. Finally, designated input pins are specified by a D. 

A.4. READING THE PAL PLOT LISTING 
An example of the PAL plot listing is shown in Figure A-4. The part number and PAL device type (a 
l 6R6 in this case) are at the top of the listing. The input or output associated with each PAL pin is 
given next. (An NC indicates no connection; VCC indicates the + 5 V power source.) A low assertion 
level for input/output signals on the listing is indicated by a slash (/) immediately preceding the signal 
name. If there is no slash, the signal is asserted high. It should be remembered that input/output signal 
names on the listing are sometimes abbreviated and are not exactly the same as in the Engineering Print 
Set. 

The rest of the listing consists of the AND array plots for each output pin. An X represents the fusable 
links left intact; a dash(-) represents a blown link. More importantly (in order to read the listing), to the 
right of each line in a.plot is the list of signals selected by the intact links that make up the AND inputs. 
Because these individual AND terms are ORed by the PAL logic, the list of AND terms in the listing 
(ORed together) result in an easily read Boolean expression that represents the logic function per­
formed. For example, output pin 12 which is a gate output (refer to the 16R6 logic diagram) and the 
last plot in the listing, has the following input. 

vcc 
START_8085_CYC*lO*Al4* /RAS 
/RAS*STATE 

A-3 



BUSIBD06H 2 DO 

BUSIBD04H 
3 

Dl 

BUS I B D02 H 
4 

D2 

BUS I B 000 H 5 D3 

BUSY D06 H 
6 

D4 

BUS Y D04 H 
7 

D5 

BUS Y D02 H S D6 

BUS Y DOD H g D7 

PAL 16R4 
010K3 
E50 

R 
17 

DAPH OS 6 H 

R 
16 

DAPH OS4 H 

R 
15 

DAPH OS 2 H 

R 
14 

DAPH OS 0 H 

DAPH LOAD Y TO OS L ----- 1/0 

1/0 DAPH RMODE B L 
DAPB OS CTL 1 H ---- 1/0 
DAPB OS CTL 0 H ---- 1/0 

DAPB CLOCK REGS H l CLOCK 
11 

ENABLE 

TK-6629 

Figure A-3 PAL Symbology (Typical) 

The enable level for the gate output inverter (the top line) is connected to VCC, a logical 1. The dashes 
in the expressions above only represent a space (a blank character) in the signal name. An asterisk(*) 
between signal names specifies the logical AND operation. Discounting the enable level for the output 
inverter which in this case is always asserted, this input expression for output pin 12 
(/UART_CHIP_SEL) may be read as follows. 

UART CHIP SELL = START 8085 CYC HA IO H A A14 HA RASH 
v 

NOTE: 

RAS H A v ST A TE H 

v 
=AND 
=OR 

The PAL circuitry for this output may be represented as shown in the upper half of Figure A-5. The 
same input using Engineering Print Set conventions is shown in the lower half of Figure A-5. 

For a register output, the Boolean expression read from the listing specifies the output signal just as for 
a gate output. Of course, the output pin is not asserted or negated until the register flip-flop is clocked. 
Flip-flops are clocked by the positive-going transition of the clock. 

When the input statements given in the plot listing are read as AND terms ORed together as just de­
scribed, it defines the actual PAL circuit and the conditions to make the PAL output go low. (In the 
example that was given, the PAL output signal was also asserted when it was low.) When a PAL output 
signal is asserted when at a high level, it is sometimes more convenient to think of the PAL's AND 
before OR circuit in terms of its equivalent OR before AND configuration. For example, the Boolean 
equation for register output pin 17 (REFRESH DONE) on the sample listing is as follows when read as 
AND before OR logic as done previously. 

REFRESH DONEL = REQUEST REFER H 
v 

REFRESH DONE H 

A-4 

REFRESH CYC H 



However, the listing may also be read as OR before AND logic as follows. 

REFRESH DONE H = REQUES! REFER L 

REFRESH DONE L V REFRESH CYC H 

As can be seen, the second expression more clearly indicates that REFRESH DONE is set by the asser­
tion of REQUEST REFR and REFRESH CYC and that it remains set until REQUEST REFR is 
negated. The AND before OR circuit and the equivalent OR before AND circuit are diagramed in 
Figure A-6. 

To summarize: 

1. When the plot listing is read as AND-OR, it specifies the input to give a low PAL output. 
The output may or may not be asserted low. 

2. If the PAL output signal is asserted low, the AND-OR input expression is usually the best 
way to specify the output. 

3. If the PAL output is asserted high, the equivalent OR-AND input expression is usually the 
best way to specify the output. 

A.5 PAL LOGIC DIAGRAMS 
The logic diagrams for the 16L8, 16R4, 16R6, and 16R8 PAL devices are shown in Figures A-7 
through A-10. 

A-5 



PART NUMBER: 23-004K4-0-0 

DEVICE TYPE: PAL16R6 

PIN NUMBER= SYMBOL TABLE: 

1 =CLOCK 
2= ALE 

8 = SEL_9600 BAUD 
9= RESET 

15 =STATE 
16 =/RAS 

3 = REQUEST _REFR 
4= IO 

10= GROUND 
11 = OULEN 

17 = REFRESH __ DONE 
18 =/START_8085 CYC 
19 =/LONG _CYCLE 
20= vcc 

5 = A14 
6= 9600 __ BAUD 
7 = 300 .. BAUD 

12 =/UART_CHIP __ SEL 
13 =/9600 __ 300 _BAUD 
14 = REFRESH _CYC 

FUSE PLOT: (X =FUSE INTACT, - =FUSE BLOWN) 

OUTPIN 19 VCC 
---- ___ x ____ x ___ ---- ---- ---- ---- STARL_8085 __ CYC*A14 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 18 X ___ ---- - --- -- -- ---- ---- --------ALE 
---- ___ x - --- x ___ ---- __ x _____ ---- REFRESH __ CYC*START_8085_CYC*A14 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 17 _____ X __ -------- -------- ---- ____ /REQUEST_REFR 
- --- -- - - - __ x - -- - ---- ___ x ---- ---- /REFRESH_DONE*/REFRESH ___ CYC 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 



OUTPIN 16 ---- ---- ---- __ x_ ---- __ x_ ---- ____ /RAS*REFRESH CYC 
---- ---- ---- ___ x __ x_ ---- ---- ---- RAS*STATE 
---- ___ x_x __ x_x _____ ---- --------START 8085 CYC*/RAS*/IO*Al4 
---- ---- ------------ ---- ---- X ___ RESET xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 15 ---- __ x _________ ---- ------------/START _8085 _CYC 
---- -------- ___ X ----------------RAS 
---- -------- _X ______ ---- ---- ____ /Al4 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 14 ---- ___ X ________ ---- ------------START 8085 CYC 
---- ·---- ---- ___ x -- -- __ x_ ---- ---- RAS*REFRESH _CYC 
---- ---- - --- ___ x __ x_ ---- ---- ---- RAS*STATE 
______ x __ - --- ---- ---- ___ x ____ ----/REFRESH CYC*/REQUESL_REFR 
-------- - - _x_ ---- ---- ___ x ____ ----/REFRESH CYC*REFRESH DONE 
x ___ ---- - -_____ x ____ x ___ x --------/REFRESH CYC*/RAS*ALE*/STATE 
---- ---- ---- ---- ---- ---- ---- X ___ RESET xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 13 ---- -·- - - -- -- -- -- x _______ x ___ ---- SEL 9600 BAUD*9600_BAUD 
---- --·------ -------- x ____ x ______ /SEL _9600 __ BAUD*300 ___ BAUD 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

OUTPIN 12 VCC 
---- ___ xx ___ x_x_ ---- ---- - --- ---- STARL_8085 CYC*IO*A14*/RAS 
---- ---- ---- __ x ___ x_ ---- ---- ____ /RAS*STATE 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

Figure A-4 PAL Plot Listing 



PAL CIRCUIT FOR OUTPUT PIN 12 

START 8085 CYC 

THE SAME Cl RCUIT USING PRINT SET CONVENTIONS 

START 8085 CYC H 

TK-6631 

Figure A-5 PAL Circuit for Output Pin 12 of Sample Listing 

AND-OR PAL CONFIGURATION FOR OUTPUT PIN 17 

REFRESH CYC H 

CLOCK 

EQUIVALENT OR-AND CONFIGURATION 

17 
REFRESH DONE H 

REFRESH CYC L 

0 

CLOCK 

Figure A-6 PAL Circuit and Equivalent Circuit for 
Output Pin 17 of Sample Listing 

A-8 

TK-6632 



....... 

~ !-\..-; 
~ 19 
~ 
~ 
t:>-
.....>--\ 

~ r ....,. ..... ....... 

~ ~ 
~ 18 ~ 
~ 
~ 
~ 

3 '2-
L...J A 

~ "' ,...... 

N ~ 17 i-J--' 
I-{:] 
~ 

~ 
4 L..,. .A 

I~ ~ 
....... 

~ .....r----i 16 ........ \.------] 
...... ---i 
........ }-------' 

....... )------, 
\-.~ 

5 
~ 

A 

- ~ -
~ ~ 15 ~ """ 
~ 
~ 
~ 
b-t 

6 2 -< 
"' 

~ b=l ~ 
~ 14 
~ 
f-(--' 
~ 
~ 
~ 

7 .. A 

.6- ~ -
~ J--\____, 

13 1-i--: 
'">----.. I-\-
'">----.. 
b-

8 ~ ~ 
"' ""' ........ 

~ l).._., 12 ~ ~ 
~ 
'>---

9 .... L...J A 11 
- ~ ~ 

""' 

TK-6624 

Figure A-7 PAL 16L8 Logic Diagram 

A-9 



1 

,...... 

~ I-\-
~ 19 t-\-_ 
~ 
~ ....... 

~ -c ...,. .... ....... w ~ 
~ 18 H,_ 
~ 

J 
.....__, 
t-\-

3 ~ 
...... ....... 

~ ... 
p--, 
~ 

1 ~ ~ 
~ 
~ E5 ..... 
~ 

4 .. L... _A 

~ ~ ....... ..., 

I:}-
~ 16 

~ 
...p 
)....... 

~ \..... 

5 
~ ~ 

,...... ""' ..... ~ 

~ 
"""'}--
~~ 
.,_)---~ 

~ 
~ 
~ ~ 
b-------1 

6 .... <C -6- R=l-... 
~ ~ ~ 

~ 
~ 
i--.1-------< 
~ L..)---" 

7 ~ 
A 

~ ... -w tb - 13 
~ ,.., 
~ 
~ 
~ 

8 .. ...... A 

[6: ~ 

~ ~ 12 I-\____; 

P---
~ 
I)__ 

9 ... ...... .A 

L__<J>!l .4- ~ 

TK-6623 

Figure A-8 PAL 16R4 Logic Diagram 

A-10 



......... 

~ ~ 
~ ... 19 
~ 
""""'------l ..... }--
..J----1 

~ -< 
"" ....... .... 

i-r-...... )-... 

1 ~ 
...... )----

}---< 

~ ~ P1l "->---~ 
3 ~ 

L..,.. .A 

~r ..... 
""}----., 
~ 

~ ~ ~ 

E5 ~ ...... 
1-{=J 

4 .. '-- ~ 
~ ~ 

"""\--

~ ~ J-~ 

~ 
~ 
P-i 
'--}------' 

5 ~ ~ 
~ -

~ 

~ ~ ...... }------' 

~ 
~ 
i--<-
~ J--

6 ... .A 

;i" ~ - ,......,. 

~ 
~ ~ ~ 

E5 ~ i-J-
~ 
J-

7 ... .... 
2 ~ . .., 

........ _I 

~ 
~ ~ ~ 

~ 
f--o~ 
~}---

tj=:j 
8 ~ 

.... 
~ ·- ....... w ~ 
~ 12 
~ 
'1.-... 
~)------, 

b-
9 .. --< L(pl! ~ .,, 

TK-6621 

Figure A-9 PAL 16R6 Logic Diagram 

A-11 



3 

4 

5 

6 

7 

8 

9 

~+-1-+-+--+-+-+-+~1-+--+-+--+-+-1-+--+--+--+-+--+-+-+--+---+-+-+-+--+-1-+-+---t~ 

--+-+-lf-+--++-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---+-+-+-+-+-+-+-+--l~~lt--~~-17 

~+-11-+-+--+-+-l-+---ll-+-+--+--+-+---11-+-+-+--+-+--+-1-+-+---+-+--+-t--+---1--+--+---t~ 
... ....... .... 
~ ~t---r~~~ 

~ 

-+-+-lf-+--++-+-+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---+-+-+-+-+-+-+-+--1~~11--+-~~ 16 
i-r------1 ~+-11-+-+---+--+-t-+---ll-+-+-+--+-+--11-+--t--+--+-+-+-t-+-+--+-+-+-t--+--1-+-+---t..._)----' 

~ ~I---+-~~---' 
~+---1-+--l---+--+-~--l-+-+-+--+-~-+--l---+--+-+-+-~--+--+-+-+-l--+-+-+--l---l'l---, 

I-\-
-+-+-t-+--+-t-+--t-t-+--+-+-+--+-+-+--+-+-+-t---i-+-+-+---+-+-+--+-+-+---+-1--t~t--~~-15 

~+--t-+-+--+--+-11-+--+--+-+-+--+-+-+-+-+-+--+-t--+-11-+--+--+-+-+---1f--l-+-l--+---lt:)--

'2_ 3'10----~~ 
~+---1-+--l---l--4-~--l-+-+-+--+-~-+--l---+--+-+-+-~--+--+-+-+-l--+-+-+--l---l~I 1~ -
---l-l-4-+--+--!-1--+---4-4-+-+---~-+-+---l--+-1-4--+-~4-+-l--+-l-+-+-~--l~I-----+-~~ 14 

==~~~!~==~==~==~~~=~~=~=!~~!===~~=~=~=~~=~=!=~~=~=~~=!~~==!~ 
~ ~~1-+-+--+--+-+-1-+~-....... ~~_.... .... 
-6 ---+-1--+-+---+-+--+-f---........ ~~~<~:r-i---lf--~~~ 

~+-11-+-+---+--+-t-+---ll-+-+-+--+-+--11-+--t--+--+-+-+-t-+-+--+-+-+-t--+-t-+-+----t~ 

--+-+-+-+-+-++-+-+-+-+-t---i-+-+-+--+-+-+-+--+-1-+-+-t-++-+-+-+-f--+---1~~1t---~t---i 13 
~+-+-+--+---+-+--1-+--+-+-+-+--+-+-t-+--+-+-+-+--+-1-+-+--+--+-+--1f--t-+--l---+---I~ 
~+--t-+-+--+--+-11-+--+--+-+-+--+-+-+-+-+-+--+-+--+-11-+-+--+-+-+---1f--l-+-l--+---I~ ...... .... 

~t--t-+-+--+--+-11-+--+--+--+-+--+-+-+-+-+-+--+-t--+-11-+-+--+-+-+---1f--+-+-l--+---I~ 
... 1-1 ..... ~ 11 
~ ~i--~~~~ ----......y--

TK-6622 

Figure A-10 PAL l 6R8 Logic Diagram 

A-12 



B.1 GENERAL 

APPENDIX B 
FLOW DIAGRAM SYMBOLS 

The flow diagram symbols used in this manual are defined in Figure B-1. 

ct=J X =DESCRIPTION OF AN EVENT OR ACTION (LOWER CASE). 

~ THE SIGNAL PWRFL IS ASSERTED. 

~ THE SIGNAL PWRFL IS NEGATED. 

6 
CJ 

( __ ) 

IF CONDITION OR SIGNAL IS TRUE FLOW 
FOLLO\Afi YES BRANCH, OTHERWISE FLOW 
FOLLOWS NO BRANCH. 

ON PAGE CONNECTOR. 

OFF PAGE CONNECTOR. 

BEGINNING OR ENDING POINT OF A FLOW 
DIAGRAM. 

Figure B-1 Flow Diagram Symbols 

B-1 

TK-6071 



C.1 GENERAL 

APPENDIX C 
MAINTENANCE FEATURES 

There are five maintenance dispatches provided in the memory controller microcode to aid in diagnos­
ing memory failures. The dispatches start with a simple diagnostic and increase in complexity building 
upon the successful completion of the previous diagnostic. The UNIBUS maintenance diagnostic 
(RD.MAINT.UBS) has four operations selected by the value of the DIAG CHK bit and the ECC DIS 
bit in CSRl. The ECC maintenance diagnostic (MAINT.ECC.DAT) has five operations selected by 
the value of DIAG CHK, ECC DIS, and LVAOO. The maintenance dispatches are summarized in 
Table C-1. For a description of the diagnostics, how to use them, and how to interpret the results, refer 
to "Microdiagnostics for VAX-11/730 MCT module" (document number ENKCC). 

In addition to the five maintenance dispatches, the memory controller parity logic can be checked via 
the TB PAR DIAG bit in CSRl. When set, this bit will cause a parity error and assert TB PAR ERR 
in CSR 1 on any CPU access to the translation buff er. 

Table C-1 Diagnostic Dispatch Functions 

Diagnostic 

Dispatch 

Dispatch 

Operation 

READ.MAINT. -

RD.MAI NT. 
VAR.INC 

RD.MAI NT. 
BRANCH.CK 

RD.MAI NT. 
UBS 

Address 
check 

Operation Control Bits 

DIAGECC LVAOO 
CHK DIS Function 

0 0 

C-1 

This diagnostic dispatch reads the 
virtual address register as data. 

This diagnostic dispatch reads the 
incremented virtual address register as 
data. 

This diagnostic dispatch checks the 
branch conditions DIAG CHK, ECC DIS, 
and LVAOO. The virtual address register 
is incremented after each successful test 
and the final value is returned as data. 

The VAR contents are gated onto the 
UNIBUS address lines. The VAR is loaded 
from the UNIBUS address lines. The VAR 
contents are returned as data. 



Table C-1 Diagnostic Dispatch Functions (Cont) 

Diagnostic 

Dispatch 

Dispatch 

Operation 

Data check 

Sync check 

Operation Control Bits 

DIAG ECC L V AOO 
CHK DIS 

0 

0 

Control check 1 

MAINT.ECC. Data rotator 0 
DAT 

X = Don't care 

ECC check 
generator 

ECC 
correction 

ECC check 
bit path 

Write data 
error check 

0 

x 

0 0 

0 

0 0 

0 

x 

C-2 

Function 

The VAR contents are gated onto the MC 
BUS. The MC BUS is enabled through the 
data drivers to the UNIBUS data lines. 
The UNIBUS data lines are enabled to the 
ECC data in latch. The data in latch is 
enabled to the MC BUS and returned as 
data. 

This operation checks that BUS MSYN and 
BUS SSYN can be asserted and negated on 
the UNIBUS. The VAR is incremented after 
each successful check and the contents of 
the VAR is returned as data. 

This operation checks that ICO, BUS Cl, 
and UNIBUS ACTIVITY can be asserted 
and negated. The VAR is incremented at each 
successful pass and is returned as data. 

Data from the CPU is loaded into 
the MOR and then returned to the CPU. 
The data rotators are disabled. 

The CPU sends data to the ECC data in 
latch. ECC generates check bits on the 
data. The check bits go into CSRO. The 
data is returned to the CPU. 

This operation takes data from the CPU 
into the ECC data in latch. The check 
bits come from CSRl. The data from the 
ECC data out latch is returned to the 
CPU. Data error information is logged 
into CSRl. 

Check bits from CSR 1 go into the ECC 
check bit latch. Check bits are then 
clocked into CSRO. Data sent by the CPU 
is stored in ECC latches and returned to 
the CPU as read data. 

Data from the CPU and check bits from 
CSRl go into a memory location physically 
addressed by the contents of the VAR. 
(Can load single or double error as 
desired.) 



---------------------- Fold Here---------------------

DO NOT TEAR - FOLD HERE AND TAPE 

~amaamo 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO 33 MAYNARD. MA 

POSTAGE WILL BE PAID BY ADDRESSEE 

Digital Equipment Corporation 
Educational Services/Quality Assurance 
12 Crosby Drive, BU/EOS 
Bedford, MA 01730 

I II II I No Postage 
Necessary 

if Mailed in the 
United States 



VAX-11/730 MEMORY SYSTEM TECHNICAL DESCRIPTION Reader's Comments 

Your comments and suggestions will help us in our continuous effort to improve the quality and 
usefulness of our publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 
writte~ etc? Is It easy to use? ____________________________ _ 

What faults or errors have you found in the manual?--------------------

Does this manual satisfy the need you think it was intended to satisfy? ____________ _ 

Does it satisfy your needs?----------Why?------------------

Please send me the current copy of the Documentation Products Directory, which contains information 
on the remainder of DIGITAL's technical documentation. 

Name------------------Street------------------
Title CitY------------------
Company State/Country ______________ _ 

Department ZiP-------------------

Additional copies of this document are available from: 

Digital Equipment Corporation 
Accessories and Supplies Group 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Attention: Documentation Products 
Telephone: 1-800-258-1710 

Order No. ___ E_K_-M_S_73_0_-_T_D_-0_0_1 ____ _ 

MY 


	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-27
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-79
	2-80
	2-81
	2-82
	2-83
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	C-01
	C-02
	replyA
	replyB

