
TECHNICAL SUMMARY ~nmnomn

The information in this document Is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described In this document Is furnished under license and may be
used or copied only in accordance with the terms of such license.

Unless otherwise noted, K = 1,024; M = K2.

DEC, DECnet, DECsystem-10, DECSYSTEM-20, DECUS, DECwrlter, DIBOL,
the DIGITAL logo, MASSBUS, PDP, Professional, RSTS, RSX, UNIBUS, VAX,
VMS, and VT are trademarks of Digital Equipment Corporation.

Copyright o 1983 Digital Equipment Corporation. All rights reserved.

ii

1 INTRODUCTION

2 THE SYSTEMS
INTRODUCTION.

SYSTEM COMPONENTS

THE HARDWARE .
Processors .
PDP-11/24 . .
PDP-11/34A .
PDP-11/44
PDP-11/70
LSl-11-Based Processors
Peripherals

THE SOFTWARE
The Operating Systems .
Languages
Data Management Facilities .
Data Communications ...

3 THE OPERATING SYSTEMS
INTRODUCTION.
How the RSX Operating Systems Differ
RSX-11 System Configurations

SYSTEM GENERATION .

PROGRAMS AND TASKS
The Task Builder . . .
Task Installation ...

SYSTEM PROTECTION

USER TASK ENVIRONMENT.
Multiprogramming.
Dynamic Memory Allocation .
Mapped and Unmapped Systems
Scheduling
System Directives
System Traps

MEMORY MANAGEMENT .
Overlaying
Memory Management Directives.
Address Space
Windows
Regions.
RSX-11 M-PLUS Memory Management Directives .
Memory Maps

RSX-11 M-PLUS PERFORMANCE ENHANCEMENTS
User-Mode I- and D-Space . . .
Supervisor-Mode Libraries . . .

PARENT/OFFSPRING TASKING .

INTERTASK COMMUNICATION .
Common and Group-Global Event Flags .
Shared Data Files
Send/Receive Directives .
Shared Regions
1/0 PROCESSING
Programming Interfaces .
Ancillary Control Processors
Device Drivers.
1/0 Request Processing ..
Devices .. •

RSX-11S SYSTEM COMPONENTS .
Device Drivers
Basic MCA
Online Task Loader
Task Termination Notification Program
System Activity Display Programs . . .

. 2-1

. 2-1

. 2-1

. 2-1

. 2-2

. 2-2

. 2-2

. 2-2

. 2-2

. 2-2

. 2-3

. 2-3

. 2-4

. 2-4

. 2-5

. 3-1

. 3-1

. 3-1

. 3-2

. 3-2

. 3-2

. 3-3

. 3-3

. 3-4

. 3-4

. 3-4

. 3-5

. 3-5

. 3-6

. 3-6

. 3-7

. 3-7

. 3-7

. 3-7

. 3-7

. 3-8

. 3-8

. 3-8

. 3-9

. 3-9

. 3-9

3-10

3-10
3-10
3-10
3-10
3-10
3-11
3-11
3-11
3-12
3-12
3-12

3-13
3-13
3-13
3-14
3-14
3-14

iii

Contents
SETTIM
System Image Preservation
File Control Services . .
Virtual MCA

POWER FAILURE AUTOMATIC RESTART

4 PROGRAM DEVELOPMENT TOOLS
INTRODUCTION.

SYSTEM COMMAND LANGUAGES
User-Written CLls . . ·
Indirect Command Files .
Batch Jobs ..
HELP. . .

TEXT EDITORS
EDI Editor ...
EDT Editor ..
Filenames and Filetypes

PROGRAMMING LANGUAGES

RECORD MANAGEMENT SERVICES.

DEBUGGING AIDS . .
Online Debugging Tool
Postmortem Dump
Snapshot Dump

PROGRAM DEVELOPMENT UTILITIES.
File Manipulation Utilities . . .
File Spooling Utilities .
Programming Utilities . .
Program Maintenance Utilities .

RTEM-11 RT-11 EMU LA TOR . .

HARDWARE FOR PROGRAM DEVELOPMENT .
Disks.
Terminals
Lineprinters

OVERVIEW OF PROGRAM DEVELOPMENT PROCESS .

5 SYSTEM MANAGEMENT AND MAINTENANCE
INTRODUCTION.

SYSTEM GENERATION AND SHUTDOWN .
User Environment Test Package .
Virtual Monitor Console Routine.
The SHUTUP Program . .

USER AUTHORIZATION ..
User Identification Codes . . .
Account File Maintenance Program

MONITORING SYSTEM USE . ..
Resource Monitoring Display . .
Software Performance Monitors .
Resource Accounting . . .
Console Logger

MAINTAINING VOLUMES .
Disk Volume Formatter . .
Bad Block Locator. . . .
Bad Block Replacement Control Task
Backup and Restore Utility
Disk Save and Compress Utility .
File Structure Verification Utility ...
Shadow Recording

CONTROLLING SYSTEM RESOURCES.
Printing Files
Batch Processing

TUNING THE SYSTEM ..
Pool Monitoring
110 Queue Optimization .

3-14
3-14
3-14
3-14

3-14

. 4-1

. 4-1

. 4-5

. 4-5

. 4-6

. 4-7

. 4-7

. 4-7

. 4-7

. 4-7

. 4-7

. 4-8

. 4-8

. 4-8

. 4-8

. 4-9

. 4-9

. 4-9

. 4-9
4-10
4-10
4-11

4-11
4-11
4-11
4-12

4-12

. 5-1

. 5-1

. 5-1

. 5-1

. 5-1

. 5-1

. 5-1

. 5-2

. 5-2

. 5-2

. 5-2

. 5-2

. 5-2

. 5-3

. 5-3

. 5-3

. 5-3

. 5-3

. 5-4

. 5-4

. 5-4

. 5-4

. 5-5

. 5-5

. 5-5

. 5-5

. 5-5

MAINTAINING SYSTEM RELIABILITY
1/0 Exerciser .
Error Logging .
Crash Dump Analyzer .
Online Software Maintenance .
Remote Diagnostics.
RSX-11 M·PLUS Reconfiguration Services

6 THELANGUAGES
INTRODUCTION.

MACR0-11 ASSEMBLY LANGUAGE .
Symbols and Symbol Definitions.
Directives.
Assembling

PDP-11 FORTRAN-77
Full-Language FORTRAN-77 Features .
Extensions Beyond ANSI FORTRAN·77
Optimizations . .
Object Time System . . .
Hardware Requirements.

FORTRAN IV
Language Statements
Command String Specification Options
Optimizations
Libraries
Hardware Requirements.

COBOL-81
Language Elements . . .
Data Types
Character String Facilities.
File Organization
Library Facility ..
Resident Library Support
CALL Facility
Symbolic Interactive Debugger
Other Debugging Features. .
Interactive COBOL Execution
Utility Programs.
Installation
Hardware Requirements.

PDP· 11 COBOL
Language Elements . . .
Data Types
Character String Facilities.
File Organization
Library Facility
CALL Facility
Symbolic Interactive Debugger
Other Debugging Tools ...
Interactive COBOL Execution
Source-Program Formats
Utility Programs. .
Hardware Requirements .

PDP-11 BASIC-PLUS-2 ..
The BASIC Environment .
Structured Programming
Compile-Time Directives.
File and Data Handling
Report-Formatting Capabilities
Compiler Efficiency
Compatibility with Other DIGITAL BASIC
Implementations
Hardware Requirements.

CORAL66
Hardware Requirements.

7 DATA MANAGEMENT FACILITIES
INTRODUCTION

FILE MANAGEMENT
File Directories and Directory Structures.
File Specifications

FILE AND VOLUME MANAGEMENT UTILITI~.

5-6
5-6
5-6
5:6
5-6
5-6
5-7

. 6-1

. 6-1

. 6-1

. 6-1

. 6·2

. 6-2

. 6-3

. 6-3

. 6-3

. 6-3

. 6-4

. 6-4

. 6-5

. 6-5

. 6-5

. 6-5

. 6-5

. 6-5

. 6-6

. 6-6

. 6-6

. 6-6

. 6-6

. 6-6

. 6-6

. 6-7

. 6-7

. 6-7

. 6-7

. 6-7

. 6-7

. 6-7

. 6-7

. 6-8

. 6-8

. 6-8

. 6-8

. 6-8

. 6-8

. 6-8

. 6-8

. 6-9 .

. 6-9

. 6-9

. 6·9

. 6-9
6-10
6-10
6-10
6-10
6-11

6-11
6-11

6-11
6-12

. 7-1

. 7-1

. 7-1

. 7-1

. 7-2

Iv

FILE CONTROL SERVICES
Fi le Access Methods
Data Formats for File-Structured Devices
Block 1/0 Operations . .
Record 110 Operations . .
The File Storage Region .
Data Transfer Modes . .
Shared Access to Flies .
Spooling Operations
FCS Macros and Macro Use .

RECORD MANAGEMENT SERVICES .
File Organization
RMS File Organizations
RMS Access Modes
File Attributes.
Program Operations on RMS Files .
RMS Runtime Environment
File Processing Environment ...

DATATRIEVE-11
Data Access and Update Facilities.
Report Generation.
Data Dictionary

FMS-11 FORMS MANAGEMENT SYSTEM
FMS-11 Forms . . .
HELP.
FMS-11 Components

SORT-11
Data Files
Command String and Specification File
Sort Operation
SORT Processing Options

8 THE PROCESSORS
INTRODUCTION. . . .

PROCESSOR COMPONENTS

INSTRUCTION SET ...
Extended Instruction Set
Commercial Instruction Set .

CENTRAL PROCESSOR . .
Operating Modes
General Registers and Addressing Modes .
Processor Status Word
Hardware Interrupts.
CPU Priority Level .

MEMORY
Parity Memory .. .
ECCMemory ..
Battery Backup
Memory Management .
Cache Memory

FLOATING-POINT UNIT .

FRONT CONSOLE. . . .

PERIPHERAL CONTROLLER INTERFACES
LSl-11 Bus
TheUNIBUS
The MASSBUS

PROCESSOR DESCRIPTIONS.
PDP-11/23
MICRO/PDP-11
PDP-11/23-PLUS.
PDP-11/24 ..
PDP-11/34A .
PDP-11/44 ..
PDP·11/70 ..

9 THE PERIPHERALS
INTRODUCTION. . .

MASS STORAGE PERIPHERALS.
Disks.
Tapes

. 7-2

. 7.3

. 7.3

. 7-3

. 7.3

. 7-3

. 7-3

. 7.3

. 7-4

. 7.4

. 7-4

. 7-5

. 7-5

. 7-6

. 7-9
7-11
7-12
7-12

7-14
7-14
7-14
7-14

7-15
7-15
7·15
7-15

7-16
7-16
7-16
7-18
7-19

. 8-1

. 8-1

. 8-1

. 8-1

. 8-1

. 8-2

. 8-2

. 8-2

. 8-3

. 8-3

. 8-3

. 8-3

. 8-3

. 8-4

. 8-4

. 8-4

. 8-4

. 8-4

. 8-5

. 8-5

. 8-5

. 8-6

. 8-6

. 8·6

. 8-6

. 8-7

. 8-7

. 8-8

. 8-8

. 8·8

. 8-8

. 9-1

. 9·1

. 9-1

. 9-3

UNIT RECORD PERIPHERALS. . 9-5
Lineprlnters. 9-6
Cardreaders. 9-7
PC11 Papertape Reader/Punch. . 9-7

TERMINALS. 9-7
User Interface. 9-7
Hardcopy Terminals. . . . 9-8
Vldeodisplay Terminals . . 9-9

TERMINAL AND COMMUNICATIONS INTERFACES 9-10
DH11 Asynchronous Multiplexers 9-10
DL11 and DLV11 Asynchronous Serial-Line Interfaces . 9-10
DMP11 Network Link 9-11
DMR11 Network Link 9-11
DMV11 Network Link 9-11
DPV11 Synchronous Serial-Line Interface 9-11
DUP11 and DUV11 Synchronous Line Interfaces . 9-11
DZ11 and DZV11 Serial-Line Interfaces 9-12
DZS11 Statistical Multiplexer 9-12
KMC11 Auxiliary Communications Processor . 9-12
PCL11·B Parallel Communications Interface . . 9-12

REAL TIME 1/0 DEVICES 9-13
Realtlme 110 Devices for LSl-11-Based PDP-11s 9-13
Realtlme 110 Devices for UNIBUS-Based PDP-11s. 9-13
AR11 Analog Realtime System. 9-15

10 DATA COMMUNICATIONS
INTRODUCTION. 10.1

NETWORK CONCEPTS 10.1

DIGITAL NETWORK ARCHITECTURE 10.1

DECNET 10.4
RSX DECnet Communication Software . 10.4
RSX DECnet Capabilities . . 10.4
RSX DLX-11 10.6

INTERNETS. 10.7
RSX-11 2780/3780 Emulator . 10.7

v

RJE/HASP Protocol Emulators
RSX-11/3271 Protocol Emulator . . .
RSX-11M/SNA Protocol Emulator ..
M.UX200/RSX Multlterminal Emulator.
UN1004/RSX Terminal Emulator .
DECNET/SNA GATE>NAY .
Remote Job Entry
3270 Terminal Emulation
User Application Interface .
Network Management . . .
PACKETNETSYSTEMINTERFACES .
RSX-11 PSls

ETHERNET

NETWORK SUPPORT . .

11 SUPPORT SERVICES
INTRODUCTION

INSTALLATION

SOFTWARE SERVICES .
Software Warranty
Software Product Services.
Professional Services . . .

EDUCATIONAL SERVICES.

HARDWARE SERVICES . .
Onslte Services
Offsite Services

COMPUTER SPECIAL SYSTEMS .

ACCESSORIES AND SUPPLIES GROUP .

COMPUTER SUPPLIES

CUSTOMER SPARES . .

CUSTOMER FINANCING

DECUS

INDEX

1()..7
1()..8
1()..8
1()..8
1()..8

10.9
10.9
10.9
1()..9
1()..9
1()..9
1()..9

. 10-10

. 10-11

11· 1

11-1

11-1
11-1
11-1
11-2

11·2

11-3
11-4
11-4

11-4

11-5

11·6

11-6

11-6

11-6

l
Introduction

I

The RSX-11 systems are sophisticated multiuser, multiprogramming
operating systems that permit realtime activities to execute
concurrently with less-time-critical activities. This Technical Summary
introduces the features and capabilities of the RSX-11 family.
Application programmers, computer analysts, system programmers,
system managers, and operators can use this summary to become
familiar with the components, operations, management, and services
of the RSX-11 systems.

This document is a technical introduction to many aspects
of the three RSX-11 operating systems: RSX-11 M, RSX-
11M-PLUS, and RSX-11S. In addition to descriptions of
the operating systems themselves, this Technical Sum­
mary includes information on DIGITAL's PDP-11 proces­
sors, peripherals, languages, communications, and sup­
'port services available with RSX-11 systems.

RSX-11 M and RSX-11 M-PLUS are multiuser,
multiprogramming realtime operating systems that sup­
port multiple languages, easy-to-use Interactive inter­
faces, and program development tools and utilities. The
operating systems are designed for such time-critical ap­
plications as data collection, reduction, and analysis; com­
putation; monitoring; controlling; and, on RSX-11 M-PLUS,
batch processing.

An extension of RSX-11 M, RSX-11 M-PLUS was specially
developed to maximize performance on larger-memory
PDP-11 systems. It supports more simultaneous tasks and
terminals than RSX-11 M. RSX-11 M and RSX-11 M-PLUS
offer unsurpassed compatibility-RSX-11 M programs can
run with few or no changes on RSX-11 M-PLUS.

RSX-11 S, the smallest member of the RSX-11 family and a
subset of RSX-11 M, provides a dedicated, execute-only
environment for monitoring and controlling many realtime
processes concurrently. RSX-11 S program development
and system generation take place on a host RSX-11 M,
RSX-11M-PLUS, or VAX/VMS system. RSX-11S applica­
tions are developed using the extensive program develop­
ment tools available on these larger operating systems,
and all RSX-11S system resources are devoted to execut­
ing realtime applications.

All three RSX-11 systems are mature, proven operating
systems that meet realtime demands efficiently and effec­
tively. Designed for minimum size and overhead, they run
on various members of DIGITAL's PDP-11 series of micro­
computers and minicomputers. RSX-11 systems can be
found in a wide variety of applications-from small, dedi­
cated laboratory and industrial control systems to large
multiuser information management systems.

This Technical Summary contains useful information for
application programmers, system managers, and com­
puter operators, and is especially appropriate for system
programmers and computer system analysts. Nontechni­
cal personnel familiar with computer industry terminology
may also find the information useful.

The RSX-11 Technical Summary is designed to be read ei­
ther sequentially or selectively. The reader might start with
Section 1 and continue through the book, or first glance
through the table of contents or the abstracts preceding
each section to locate those topics of most interest. Many

1-1

of the systems' concepts and features are repeated
throughout the book in various contexts.

Section 2, The Systems, presents a comprehensive over­
view of the RSX-11 systems' features. This section identi­
fies the characteristics of RSX-11 systems and introduces
the systems' features described in detail throughout the
remainder of this document.

The Operating Systems (Section 3), The Processors (Sec­
tion 8), and The Peripherals (Section 9) provide an indepth
discussion of the systems' characteristics and capabilities.
The concepts developed in the Operating Systems and the
Processors sections are closely related; for example, the
discussions on memory management and 1/0 processing
in each section can be read together to gain full apprecia­
tion for the systems' design.

One of the most important features of RSX-11 systems is
that programmers don't have to know assembly language
to use the system effectively. Both the hardware and soft­
ware contain many features that promote efficient and
productive high-level language programming. In addition
to the operating systems section, high-level language pro­
grammers should be interested in Sections 4, 6, 7, and
10-Program Development, The Languages, Data Man­
agement Facilities, and Data Communications.

The System Management and Maintenance section (Sec­
tion 5) is especially useful for system managers and opera­
tors. It describes the many features of the RSX-11 systems
that support system management and control.

Finally, Section 11, Support Services, presents an
overview of the comprehensive services DIGIT AL provides
to its computer system users.

2
The

Systems

RSX-11 operating systems provide the performance, reliability, and
flexibility needed for a full range of realtime applications. These
operating systems run on various members of the PDP-11 16-bit series
of minicomputers and LSl-11-based microcomputers and can
accommodate the most simple to the most complex application
requirements.

The RSX-11 systems are multiuser, multiprogramming operating
systems that permit realtime activities to execute concurrently with
less-time-critical activities. This concurrent execution is accomplished
through priority-based scheduling in which the assigned priority and
the activities of a task (process) determine the level of service it
receives. Realtime tasks receive service according to their priority and
ability to execute, whereas such tasks as those used in program
development have lower priority and thus receive service after tasks of
higher priority execute.

RSX-11 systems are highly reliable. Built-in protection features ensure
data integrity and increased system availability. Error detecting and
logging and an online 110 exerciser verify system integrity. Many
hardware and software features provide for rapid diagnosis and
automatic recovery, should power, hardware, or software fail.

INTRODUCTION
The RSX-11 M-PLUS, RSX-11 M, and RSX-11 S realtlme
operating systems run on DIGITAL's series of PDP-11
microcomputers and minicomputers. Because of their
multiprogramming capabilities, RSX-11 systems permit
realtime activities to execute concurrently with such less­
time-critical activities as program development and data
management.

In addition to the operating systems themselves, RSX-11
system software includes numerous utilities, a variety of
optional high-level languages, and a choice of communi­
cations software.

RSX-11 M and RSX-11 M-PLUS are multiuser systems for
both program development and application-system exe­
cution. RSX-11 M/M-PLUS have program development
tools and utilities and data management facilities with
which users can easily develop and efficiently run many
types of applications.

RSX-11 S is a dedicated, execute-only system. Using the
sophisticated development tools on an RSX-11 M, RSX-
11 M-PLUS, or VAX/VMS system, programmers can de­
velop, test, and debug applications and then downline
load them to an RSX-11 S system.

All RSX-11 systems are priority-scheduled and event-dri­
ven; the assigned priority and activities of the tasks deter­
mine the level of service they receive.

RSX-11 systems are mature, highly reliable systems. Bullt­
in protection mechanisms in both hardware and software
ensure data integrity and increase system availability. An
online 1/0 exerciser and error-logging utility verify system
integrity. Hardware and software features provide rapid
diagnosis and automatic recovery, should the hardware,
software, or power fail.

RSX-11 programmers can take advantage of RSX-11's
program segmentation and overlaying capabilities to write
programs that need more memory space than is available
to them.

RSX-11 M-PLUS users can effectively triple the memory
directly addressable by, tasks on PDP-11/44 and PDP-
11 /70 systems through the use of Supervisor-mode library
routines and separate User-mode 1- and D-space. Using
this technique, programmers can use fewer (if any) over­
lays within tasks; this results in faster program execution
and decreased program development and taskbulld time.

The family of PDP-11 16-bit minicomputers and LSl-11-
based microcomputers is based on a common architec­
ture. Because compatibility is inherent in the design, the
RSX-11 M and RSX-11 S operating systems will run on all
members of the PDP-11 family. The newer RSX-11 M­
PLUS runs on the PDP-11 processors that support 22-bit
addressing-the MICRO/P.DP-11, PDP-11 /23-PLUS,
PDP-11/24, PDP-11/44, and PDP-11/70.

Such compatibility provides an upward migration path for
growing application needs and a downward migration path
to accommodate distributed processing networks.

For example, It's generally possible to develop application
programs on any PDP-11 and run them on any other PDP-
11 minicomputer or microcomputer.

2-1

PDP-11 and LSl-11 processors offer a comprehensive
instruction set, a Memory Management Unit that provides
hardware memory protection through various operating
modes, and an optional Floating-Point Unit. The PDP-
11I44 and PDP-11170 processors also feature fast cache
memories as standard equipment. A cache memory is
optional on the PDP-11 /34A.

SYSTEM COMPONENTS
The major components of RSX-11 systems are:
• Processors. DIGITAL's PDP-11 series of minicomputers

and LSl-11-based microcomputers offer a comprehen­
sive instruction set, processor protection through vari­
ous operating modes, an integral Memory Management
Unit, and an optional Floating-Point Unit.

• Peripherals. These comprise a range of small- and
large-capacity disk drives, magnetic-tape systems,
hard copy and video terminals, lineprinters, a card­
reader, and several realtime and industrial control
devices.

• Operating systems. The RSX-11 operating systems are
designed specifically to support realtime applications
and concurrent program development.

• Languages. These include the MACR0-11 assembly
language and such optional, high-level languages as
FORTRAN IV, FORTRAN-77, PDP-11 COBOL, COBOL-
81 , PDP-11 BASIC-PLUS-2, and CORAL 66.

• Utilities and program development tools. These include
editors, linkers, librarians, debuggers, and other such
tools to aid in program development.

• Data management facilities. These comprise a file sys­
tem that provides device-independent access to RSX-11
peripherals, volume structuring, and protection; RMS
Record Management Services for record management
with sequential , random, and indexed record access;
FM S-11 , a forms management system; and DAT A­
TRIEVE-11, a data entry and query language designed
specifically for online interactive access and manipula­
tion of files.

• Data communications services. These include DECnet
network software, Internet protocol emulators, and
Packetnet and Ethernet capabilities.

These components combine to provide an easy-to-use,
high-performance, flexible, reliable, realtime system.

THE HARDWARE
Hardware for the RSX-11 systems comprises the PDP-11
and LSl-11 processors and associated peripheral devices.

Processors
The PDP-11 minicomputer and LSl-11 microcomputer
processors provide 16-bit addressing. A Memory Manage­
ment Unit expands the physical addressing capability to
18 bits-and, on the MICRO/PDP-11, PDP-11/23-PLUS,
PDP-11 /24, PDP-11 /44, and PDP-11170 processors, to 22
bits. The Memory Management Unit lets tasks address up
to 64 Kbytes of memory on RSX-11 M and RSX-11 S sys­
tems-and 128 Kbytes of memory on RSX-11 M-PLUS sys­
tems-by mapping (assigning) virtual addresses to physi­
cal memory. RSX-11 M-PLUS requires the 22-bit Memory

Management Unit. Memory management also provides
memory protection in multiuser, multiprogramming sys­
tems that require memory protection and relocation facili­
ties.
These processors feature the PDP-11 instruction set, an
easy-to-learn yet comprehensive instruction set that is
widely known and accepted in the industry; an optional
Commercial Instruction Set (CIS) on the MICRO/PDP-11,
PDP-11/23-PLUS, PDP-11/24, and PDP-11/44; and eight
addressing modes. The processors' general registers can
be used as accumulators, pointers, and index registers.
Full-vectored interrupts eliminate high-overhead software,
and CPU priority levels can be set under software control.

The processors provide the basis for protection and shar­
ing in a multiuser, multiprogramming environment
through access modes. Kernel, User , and Supervisor
access modes constitute the privilege levels at which pro­
grams can run.

High-speed cache memory, which is standard on PDP-
11 /44 and PDP-11170 processors and optional on PDP-
11 /34A processors, buffers data between the processor
and main memory, reducing memory access time.

The optional Floating-Point Unit performs all floating-point
arithmetic operations and converts data between integer
and floating-point formats.

Refer to Section 8, "The Processors," for a more detailed
description of the PDP-11 's architecture and processors.

PDP-11 /24
The smallest UNIBUS processor in the PDP-11 series-the
entire CPU fits on a single board-the PDP-11 /24 uses
large-scale integration to provide performance and mem­
ory management capabilities comparable to larger PDP-
11 systems. Four Mbytes of memory are supported with
the extended 22-bit addressing option. This means the
PDP-11 /24 can handle more memory-resident tasks and
more users, with faster response times. In addition to sup­
porting DIGITAL's higher-capacity disks, the PDP-11/24
supports Winchester disks.

PDP-11 /34A
The PDP-11 /34A is a midrange minicomputer system
offering powerful state-of-the-art features at economical
prices. It is a microprogrammed processor with a compact
CPU logic contained on two circuit boards for cost-effi­
cient expansion with configuration flexibility. The PDP-
11 /34A supports up to 256 Kbytes of memory and an op­
tional two-Kbyte cache memory for higher memory per­
formance.

PDP-11 /44
DIGITAL's PDP-11/44 processor offers capabilities and
performance features previously unavailable on a com­
puter in its price range. It provides such high-perform­
ance, large-machine features as a high-speed central
processor, support for up to four Mbytes of main memory,
optional Commercial Instruction Set, and a large eight­
Kbyte high-speed cache memory. In addition, the PDP-
11 /44 was designed to meet rigorous reliability and main­
tainability standards.

2-2

PDP-11/70
The PDP-11 /70 is the most powerful computer in the PDP-
11 family. It provides both high system throughput in multi­
user, multitasking environments that require large
amounts of memory and fast response and computational
power for high-speed realtime applications. It's the sys­
tem-level processor that combines high throughput with
expandability and reliability. The PDP-11 /70 supports four
Mbytes of memory, a fast two-Kbyte cache memory, and
both UNIBUS and MASSBUS peripheral interfaces. The
MASSBUS is a dedicated 32-bit bus optimized for high­
speed data transfers.

LSl-11-Based Processors
The LSl-11 family of 16-bit microcomputers, which is
based on the PDP-11 architecture, provides the same
capabilities and uses many of the same peripherals as
PDP-11s, yet the microprocessor functions are performed
by N-channel MOS microprocessor chips that are avail­
able in both board and box configurations. The PDP-
11 /23, PDP-11 /23-PLUS, and MICRO/PDP-11 include
LSl-11 microprocessors. Peripherals are connected to
these processors through the LSI bus.

PDP-11 /23 - The PDP-11 /23 microcomputer provides the
power and the performance of the PDP-11 /23-PLUS and
PDP-11 /24 at lower cost. Its features include memory
management with dynamic rel.ocation, segmentation and
protection capabilities, up to 256 Kbytes of addressing,
and an optional floating point unit.

PDP-11/23-PLUS - Extended addressing on the PDP-
11 /23-PLUS supports up to four Mbytes of parity memory.
This means more tasks can be memory-resident, so, in
many applications, more active users can be supported
with better system response. In addition, the PDP-11/23-
PLUS features an optional Commercial Instruction Set
that, in particular, enhances performance of the COBOL-
81 compiler.
MICRO/PDP-11 - The PDP-11/23-PLUS CPU is also
found in DIGITAL's lowest-priced entry-level microcompu­
ter system, the MICRO/PDP-11. The MICRO/PDP-1 1 in­
cludes a CPU, several options, and mass storage-all in a
single enclosure that fits on a tabletop, on a narrow floor­
stand, or in a rack mount. The system combines all the
capabilities of the PDP-11 /23-PLUS with a ten-Mbyte Win­
chester system disk and two 400-Kbyte diskettes.

Peripherals
RSX-11 supports a family of peripheral devices to suit the
requirements of most applications. Disk drives and mag­
netic-tape drives can be used for data storage and
retrieval and for software distribution. Video terminals,
graphic video terminals, and hardcopy terminals are avail­
able for communicating with the system and performing
special 1/0 operations. Unit record peripherals, such as
lineprinters and cardreaders, provide reliable, high-speed
input and output.

The peripherals are connected to the processor through
the UNIBUS on larger PDP-11 sand through the LSI bus on
DIGITAL's microcomputers. In addition to the UNIBUS, the
PDP-11/70 uses a MASSBUS peripheral interface to
accommodate high-speed storage devices.

Many of DIGIT Al's standard realtime interfaces for labora­
tory and industrial control, data acquisition, and communi­
cations can be used with RSX-11. Custom devices can also
be connected to RSX-11 systems through user-written de­
vice handlers or the connect-to-interrupt executive
directive.

THE SOFTWARE
System software comprises the operating system, utilities,
data management facilities, language processors, and
communications software. Through a question-and­
answer system-generation procedure, users can select the
features and capabilities they need for their particular ap­
plication.

The Operating Systems
RSX-11 M-PLUS, RSX-11 M, and RSX-11 S are the indus­
try's leading multiuser realtime operating systems.
Designed for minimum size and overhead, this family of
operating systems covers a wide variety of hardware and
application environments-from small dedicated labora­
tory and industrial control systems to large multiuser infor­
mation management systems.

RSX-11 M and RSX-11 M-PLUS are multiuser, multipro­
gramming realtime operating systems that support
multiple languages, easy-to-use interactive interfaces, and
program development tools and utilities. The operating
systems are designed for such time-critical applications as
data collection, reduction, and analysis; computation;
monitoring; controlling; and, on RSX-11 M-PLUS, batch
processing.

RSX-11S, the smallest member of the RSX-11 family, pro­
vides a dedicated, execute-only environment for monitor­
ing and controlling many realtime processes concurrently.
RSX-11 S program development and system generation
take place on a host RSX-11M, RSX-11M-PLUS, or
VAX/VMS system. RSX-11 S applications are developed
using the extensive program development tools available
on these larger operating systems, and all RSX-11 S sys­
tem resources are devoted to executing realtime applica­
tions.

2-3

The RSX-11 systems are mature, proven operating sys­
tems that meet realtime demands efficiently and
effectively. RSX-11 Mand RSX-11 M-PLUS feature:
• realtime multiprogramming
• multiuser task support

• event-driven priority scheduling
• 250 task priority levels
• dynamic memory allocation

• task checkpointing to disk

• automatic memory compaction

• system-controlled partitions
• Memory Management Unit support
• extensive file-processing, file-sharing, data protection,

and data management facilities

• an indirect command file processor
• intertask communication and task sharing

• the easy-to-use DCL-DIGITAL Command Lan­
guage-interface (compatible with that used on the
VAX/VMS operating system)

• user-written CU (command line interpreter) support
• a comprehensive selection of high-level languages

• system library routines
• clustered libraries support
• online 1/0 exerciser and error-logging utilities

• a comprehensive selection of program development
tools and utilities

• utilities for system management and maintenance

• lineprinter spooling
• DECnet support
• Internet capabilities
• Ethernet support

• Packetnet system interfaces

• DECnet/SNA Gateway interface

In addition to these features, RSX-11 M-PLUS offers users:
• overlapped disk seeks
• disk-seek optimization routines

• rotational disk latency optimization

• multipathed disks
• Shadow Recording support
• complete batch-spooling and transparent-spooling utili-

ties

• virtual terminal support
• increased Dynamic Storage Region (pool)

• User-mode Instruction and Data (I- and D-) space sup-
port

• the ability to map shared libraries in Supervisor mode

• accounting

RSX-11S features:
• a memory-resident executive

• a dedicated multitask environment
• event-driven priority scheduling

• 250 software priority levels
• multiple task partitions
• system-controlled partitions

• support for memory-resident overlaid tasks
• online taskloading

• System Image Preservation (SIP) program

• Task Termination Notification program

• a set of RSX-11 S system activity display programs
• the Basic MCA user interface, a subset of the RSX-11 M

MCA Monitor Console Routine

• DECnet support

Realtime tasks do not have to compete with tasks of lower
priority for scheduling services. RSX-11 systems schedule
CPU time and memory residency on a preemptive priority
basis. Realtime tasks can be placed in the upper ranges of
the 250 scheduling priorities. Although the scheduler does
not alter their priority, it can adjust the priorities of tasks
assigned one of the lower 250 priorities to allocate CPU cy­
cles equitably in a timesharing-like fashion. Task priorities
can be altered by the system manager or by an
appropriately privileged user.

Intertask communication is provided through common
event flags, shared data files, use of the send and receive
directives, and shared regions. This means users can
share data, access resident libraries, and send messages
between tasks.

Both DCL, the easy-to-use standard DIGITAL Command
Language, and the MCA Monitor Console Routine are
available on RSX-11M and RSX-11M-PLUS. The DCLim­
plemented on RSX-11 is subset-compatible with
VAX/VMS DCL. Users with special requirements that nei­
ther DCL nor MCA can meet can easily implement their
own command interpreter.

A subset of MCA called Basic MCA is the user interface to
an RSX-11S system. Strict subset compatibility with MCA
is provided.

Rather than repeatedly typing a commonly used sequence
of DCL or MCA commands on an RSX-11 M/M-PLUS sys­
tem , users need only type the sequence once into an indi­
rect command file. Indirect command files can be used to
execute strings of frequently used sequences of DCL or

2-4

MCA commands or to create new commands from the ex­
isting command set. The indirect command filename is
specified in place of the command line normally typed.
Many tasks also accept strings of commands in a file .

Many system utilities and tools help various levels of sys­
tem users to interact with the system, develop applications
interactively, and manage and control system resources.
Through these utilities, privileged users can monitor and
control system use, tune system performance, and su­
pervise day-to-day operations. Nonprivileged users can
interact easily with the system to maintain files and enter
validate, and extract data. Fast, compact, interactive ed i~
tors, online debuggers, trace facilities, and dump analyz­
ers make program development fast and easy.

Languages
RSX-11 systems support a broad range of programming
languages.

FORTRAN IV and FORTRAN-77 provide powerful tools for
rapid, effective development of engineering and scientific
applications. PDP-11 COBOL and COBOL-81 are full-fea­
tured ANSI-compliant COBOL implementations for
administrative and accounting applications . PDP-11
BASIC-PLUS-2 is a sophisticated, extended BASIC com­
piler that provides a highly productive development envi­
ronment for both technical and commercial applications.
CORAL 66, the standardized general purpose language
prescribed by the British government for realtime and
process control applications, is also supported . Machine­
level programmers can use the MACR0-11 assembler lan­
guage.

Data Management Facllltles
RSX-11 programmers have comprehensive record man­
agement facilities available to support databases created
by high-level language programs. Programmers can
choose the file organization and record access method ap­
propriate to the application. The file organizations (se­
quential, relative, and multikey indexed sequential) and
the record access methods are common to most RSX-11
programming languages.

With the optional DATA TRI EVE inquiry and report system,
users can find, display, print, update, and sort data. FMS-
11 Forms Management System and SORT-11 are also
available.

Data Communications
RSX-11 communications software provides extensive dis­
tributed data processing capabilities. Through DECnet
distributed processing networks, RSX-11 systems can
communicate with other DIGITAL systems. DIGIT A L's pro­
tocol emulator software products, called lnternets, open
communications channels between RSX-11 systems and
other manufacturers' systems. The DECnet/SNA Gateway

2-5

allows users to implement applications involving coopera­
tion between a DECnet network and an IBM SNA network.
Packetnet switching support can significantly reduce the
cost of moving data among computers at different loca­
tions. And Ethernet communications allows reliable high­
speed, high-bandwidth communications among a variety
of information processing equipment within a limited geo­
graphic area.

3
The

Operating
Systems

RSX-11 realtime operating systems provide a reliable, high­
performance environment for rapid response to realtime demands as
well as to such less-time-critical activities as program development.

RSX-11 systems are tailored to the exact requirements of individual
applications. Through the system generation process, SYSGEN, users
can include just the system features and capabilities they need for their
particular application.

RSX-11 systems include such basic facilities as:
• taskbuilding
• priority-based scheduling
• multiprogramming
• dynamic memory allocation
• memory management
• checkpointing
• intertask communication
• power failure automatic restart

RSX-11 schedules processor time based on the priority assigned to a
task . An optional round robin scheduler rotates jobs of equal priority in
the queue.

RSX-11 uses its processor's memory management feature to map
virtual memory addresses into direct physical addresses. If a task
requires an area of memory to run, and if that area is occupied by
another task of lower priority, the task of lower priority can be
sent-checkpointed-to a disk. The memory is allocated dynamically.

RSX-11 systems provide intertask communication facilities for sharing
data, synchronizing execution, and sending messages. The sharing of
areas of memory and the use of shared resident libraries of software
routines result in significant memory savings and increased
performance.

INTRODUCTION
The RSX-11 family comprises three compatible realtlme
multiprogramming operating systems: RSX-11M, a com­
pact, efficient operating system; RSX-11 M-PLUS, a high­
performance superset of RSX-11 M that runs on all PDP-
11 s that have 22-bit addressing; and RSX-11S, a small
execute-only operating system for dedicated application
environments.

How the RSX Operating Systems Differ
RSX-11 M and RSX-11 M-PLUS systems include: an Execu­
tive; two command interfaces-DCL, the DIGITAL Com­
mand Language and MCA Monitor Console Routine
(MCA); data management facilities, including File Control
Services (FCS) and Record Management Services (RMS);
and a complete set of utility programs. Under RSX-
11 M/M-PLUS, programs can be written in MACR0-11,
FORTRAN IV, FORTRAN-77, PDP-11 COBOL, COBOL-81,
PDP-11 BASIC-PLUS-2, and CORAL 66.

RSX-11 M and RSX-11 M-PLUS are disk-based multiuser
systems. More than one user can interface with DCL or
MCA services simultaneously.

The RSX-11 M-PLUS operating system takes advantage of
the expanded addressing capabilities of the MICRO/PDP-
11, PDP-11 /23-PLUS, PDP-11 /24, PDP-11 /44, and PDP-
11 /70 processors while retaining the superior reliability
and the successful architecture of RSX-11 M. RSX-11 M­
PLUS uses hardware features in these PDP-11 processors
that are not available in the other members of the PDP-11
family. With the use of Supervisor-mode library routines
and separate User-mode I- and D-space on PDP-11 /44s
and PDP-11/?0s, an RSX-11M-PLUS task can address up
to 196 Kbytes of memory. By using this additional memory,
programmers can create tasks that use fewer memory and
disk overlays. These programs can be developed, task­
built, and executed faster than programs written using
traditional memory-management techniques.

In addition, RSX-11 M-PLUS supports multlstream batch,
accounting , dynamic dual-ported disks, additional mem­
ory management capabilities, more simultaneous tasks
and terminals than RSX-11 M, and other large-system fea­
tures.

RSX-11 M excels in performance on small- and medium­
sized PDP-11s. It is designed to support factory automa­
tion, laboratory data acquisition and control, graphics,
process monitoring, process control, communications,
and other applications that demand immediate response.
Its multiprogramming capabilities permit realtime activ­
ities to execute concurrently with such less-time-critical
activities as program development, text editing, and data
management. Up to 64 Kbytes can be addressed by one
program.

RSX-11 M and RSX-11 M-PLUS offer unsurpassed soft­
ware compatibility. All nonprivileged tasks that run on
RSX-11M can run on RSX-11M-PLUS, without change or
reassembly. Privileged tasks usually require little or no
change.

RSX-11S, a subset of RSX-11M, is intended for use in an
environment where a disk is not required or cannot exist,
such as the floor of a manufacturing facility. RSX-11S pro-

3-1

vides a dedicated, execute-only environment for monitor­
ing and controlling multiple, concurrent realtime
processes. Response is very fast because all programs are
memory-resident. RSX-11 S runs on any of the PDP-11
processors-from the LSl-11-based PDP-11 /23 to the sys­
tem-1.evel PDP-11 /70. RSX-11S can support such storage
devices as disks or tapes, although it doesn't use them as
system devices.

RSX-11S requires a host RSX-11M, RSX-11M-PLUS, or
VAX/VMS system for program development and system
generation. This means that all RSX-11 S system resources
are devoted to realtime applications. Tasks can be written
in MACR0-11 or another supported, high-level language
and compiled and linked on the host system. They are
then transported to the RSX-11 S system for execution.
The minimum RSX-11S system includes an Executive
(with device drivers) and a special File Control Service
(FCS) that does not support file-structured devices. The
user can also add a subset of RSX-11 M MCA services if
the hardware configuration includes a terminal. If online
task loading is desired, the user can include an Online
Task Loader (OTL) utility. And to save a system image for
subsequent rebooting, the user can include the System
Image Preservation (SIP) utility.

Because RSX-11S is a memory-only system, it does not
support a file system, nonresident tasks, task checkpoint­
ing, or program development. It does, however, support
data storage on all devices supported by RSX-11M . Its
purpose is to provide a runtime environment for the exe­
cution of tasks on a small system. RSX-11 S tasks can ad­
dress up to 64 Kbytes of memory.

RSX-11 System Configurations
RSX-11 M-PLUS runs on the MICRO/PDP-11 , PDP-11 /23-
PLUS, PDP-11/24, PDP-11/44, and PDP-11/70 proces­
sors. The minimum system supported has 256 Kbytes of
memory, a console terminal, and a disk. It supports up to
four Mbytes of memory.

RSX-11 M runs on any of the PDP-11 UNIBUS
minicomputer processors and the LSl-11-based PDP-
11 /23 and PDP-11 /23-PLUS microprocessors. The mini­
mum system requires a console terminal and a disk. With­
out a Memory Management Unit, the system can support
between 32 and 56 Kbytes of memory. With memory man­
agement, memory can range from 48 Kbytes to four
Mbytes, depending on processor capabilities. At least 56
Kbytes of memory is required for system generation
and/or for concurrent application execution and program
development.

The minimum configuration for an RSX-11 S system is a
PDP-11 processor (including the LSl-11) with at least 16
Kbytes of memory-on systems without a Memory Man­
agement Unit-and 56 Kbytes of memory-on systems
with memory management-and one load device. At least
32 Kbytes are required for online taskloading or the exe­
cution of tasks written in FORTRAN-77. Up to 56 Kbytes of
memory are supported on systems that do not include the
hardware Memory Management Unit. Up to four Mbytes of
memory is supported on systems with a Memory Manage­
ment Unit, depending on processor capabilities.

SYSTEM GENERATION
The RSX-11 systems are designed to use system
resources efficiently. To meet the needs of realtime appli­
cations and still obtain maximum performance for a given
operating environment, RSX-11 provides users with a sys­
tem generation procedure to control system features and
capabilities.

The system generation utility, called SYSGEN, lets users
define their specific hardware configuration and select
software options.• Through an online, interactive question­
and-answer session, users can develop a system tailored
to their exact application requirements. The an.swers to
many of SYSGEN's questions are saved in a file. Later, the
saved answer file can be used to modify the system, if its
features need to be changed, or to generate another RSX-
11 system with the same capabilities.

• RSX-11 M-PLUS does not support SYSGEN on PDP-11 /23-
PLUS systems or on systems with RL02 disk drives only. How­
ever, pregenerated RSX-11 M-PLUS systems are available for
these systems.

3-2

Once the SYSGEN process is complete, there are pro­
grams to facilitate the testing and design phase of the sys­
tem. These consist of command files that exercise both the
software and hardware and verify it as a working system
with the configuration that was requested during SYSGEN.
The system generation process is described in more detail
in Section 5.

PROGRAMS AND TASKS
The basic unit of work that RSX-11 facilities service is
called a task (process). A task consists of a program writ­
ten in a source language, such as MACRO or FORTRAN,
that has been assembled or compiled into an object for­
mat and then built into a task image by the link utility called
the Task Builder.

The Task Builder
The Task Builder is a multiple-purpose tool. It allows users
to create a loadable entity (called a task image), define and
structure a shared area of memory (called a resident com­
mon), and arrange sharable routines (called resident
libraries) to reside in memory.

In addition to the normal linkage functions of combining
object modules or creating overlays, the Task Builder sets

up the basic task attributes that determine the task's
resource requirements and relationships to other tasks in
the system. The significant task attributes that affect a
task 's operation in a realtime multiprogramming environ­
ment are:
• partition-the section of memory where the task will

reside when it executes

• priority-the task's relationship to other tasks in com­
peting for system resources

• checkpointability-whether or not a task can be
swapped out of memory when it is not executing in order
to make room for a task of higher priority that is ready to
run

Consistent with RSX-11 's flexibility goals, all these attri b­
ut es can be changed when the task is installed or when it
executes.

To bui ld a task image, the Task Builder accepts, as basic
input, the output of a language processor in the form of an
object module or multiple object modules. The user
directs the Task Builder to generate a file of executable
code (the task image), a file of memory allocation informa­
tion (a map), and/or a special file of symbol definitions
used in constructing the task (the symbol definition file).

The task image, residing on a disk, is in a format suitable
to be loaded into memory and executed . In addition, the
Task Builder can generate a cross-reference listing show­
ing all the global references.

In creating a task image, the Task Builder's primary func­
tions are linking, address binding, and building system
data structures. Linking involves resolving global refer­
ences and program-section references for all object
modules. Address binding is the assign ing of virtual
address space within the task. Burlding system data struc­
tures involves the creation of elements that the system
needs in order to load the task image into memory and to
execute it. To resolve global symbols that are not defined
in any of the input object modules, the Task Builder
searches whatever object libraries are specified and , as a
default condition , searches the system object library.

Task Installation
Once a task is built, it can be installed in the system and
executed. Task installation simply registers a task's attrib­
utes with the system. When a task is installed (using a
command-language or Virtual Monitor Console Routine
command), the system records a number of task parame­
ters in a system-resident list. Called the System Task
Directory (STD), this listing· is a directory of all installed
tasks in the system by priority.

An installed task need not be resident in memory nor in
competition for system resources. The system considers
the installed task to be dormant until it is put in active com­
petition for system resources by an operator, user, or
another active task in the system.

Task installation is the basis for efficient task operation. An
installed task that is dormant uses no memory; yet, when
the task is needed to service a realtime event, for example,
it can be introduced into the system quickly because its
basic parameters are already in the STD.

When an installed task is activated , the system places the
task in priority-based competition with other tasks for the

3-3

resources it needs to execute. Processor time is allocated
to it only when it is resident in memory.

Tasks can share code and data among themselves
through the common partition facility. A common partition
is made accessible to the system and to tasks by installing
the common partition and the tasks that will use it.

Each task is either privileged or nonprivileged. A privi­
leged task has special device and memory access rights
that a nonprivileged task does not have. For example, pri­
vileged tasks can directly access the 1/0 page and can call
parts of the Executive as subroutines. A non privileged task
cannot.

SYSTEM PROTECTION
Under RSX-11 , a number of terminals can operate concur­
rently. Each user terminal operates independently of
others in the system so that each can run a different task
and each can run more than one task. In a system that
supports multiuser protection, a user must log onto the
terminal before issuing commands.

To provide system security and authorize privileges in a
multiuser environment, RSX-11 includes the protection
scheme based on User Identification Codes (UICs). Sys­
tem management assigns each user a UIC that consists of
two numbers: a group number and a member number.
The UIC also determines whether the user is privileged or
nonprivileged. Privileged users have access to every part
of the operating system. Nonprivileged users can use most
of the operating system, but they cannot change it.

When a file, program, or intertask communication facility
is created, the system places the filename in a User File
Directory (UFD) and stores the creator's UIC in the file
header to indicate the owner.

The file's UIC determines which groups of users or pro­
grams have controlled access to the file . Every file also has
a protection code that specifies what the users may do to
the file when they access it. Either the file 's owner or a pri­
vileged user sets and can change the file's protection
code.

To access a f ile, a user must know the UFD in which it is
listed. This knowledge, however, is not sufficient to guar­
antee access. The user must satisfy conditions specified in
a protection code associated with the file to be accessed .
In addition, the volume that contains the file must be
mounted before the file is accessed.

RSX-11 M/M-PLUS allows four types of access:
• Read. The user or the user's task may read, copy, print,

or type the file, and, if it is a task, run it.

• Write. The user or the user's task may add new data to
the file by writing to space already allocated to the file.

• Extend. The user or the user's task may change the
amount of disk space allocated to the file.

• Delete. The user or the user's task may delete the file.

The four user groups are defined by their UICs:
• system-every user or program whose UIC group num­

ber is a system-privileged group number (group number
less than ten)

• owner-the user whose UIC is the same as the UIC as­
signed to the file

• group-every user whose UIC group number is the
same as that assigned the file

• world-all other users

USER TASK ENVIRONMENT
The user program environment is the task-the entity the
operating system schedules for execution. The following
paragraphs describe how RSX-11 handles task execution.

Multlprogrammlng
Multiprogramming, the concurrent execution of two or
more tasks residing in memory, is possible because task
execution almost always involves more than just CPU
(Central Processor Unit) usage. A realtime task that initi­
ates a process and then waits for the process to complete
might not need CPU time while it is waiting. Therefore,
while one task waits for an event to complete, the Execu­
tive gives control of the CPU to another task. This happens
so rapidly that many individual users seem to have control
of the CPU at the same time. This is often referred to as
apparent concurrency.

In the RSX-11 family, tasks are multiprogrammed by logi­
cally dividing available memory into a number of named
partitions. These partitions are set up at system generation
using the Virtual Monitor Console Routine. For maximum
flexibility, privileged users can use DCL or MCA com­
mands to establish and eliminate partitions whenever the
need arises.

A partition is a contiguous area of memory with:
• a name
• a defined size
• a fixed base address
• a defined type

3-4

The relationship between a task and the partition in which
it runs depends on whether the partition Is system- or
user-controlled, and whether the system is mapped or un­
mapped. In general, RSX-11 M and RSX-11 S systems can
have two kinds of partitions: system-controlled and user­
controlled. Because RSX-11 M-PLUS systems are larger,
mapped systems, they support system-controlled parti­
tions only.

User-controlled partitions are used when the programmer
wants to handle the allocation of memory during the exe­
cution of a task. System-controlled partitions are Intended
for the execution of tasks in which the user wishes the sys­
tem to handle the allocation of memory.

Space in a system-controlled partition is dynamically
allocated by the Executive to contain as many tasks as will
fit simultaneously in the partition. This allocation can in­
volve shuffling resident tasks to arrange available space
into a contiguous block large enough to contain a
requested task. Only mapped systems support system­
controlled partitions. Mapped and unmapped systems are
discussed below.

A user-controlled partition is allocated to only one task at a
time. The user has complete control over system activity in
this type of partition. In RSX-11 M systems, a user-con­
trolled partition can be subdivided into as many as seven
nonoverlapping subpartitions. The subpartitions occupy
the identical physical memory occupied by the main parti­
tion . Tasks built to execute in the subpartiti6ns can exe­
cute in parallel. Tasks cannot, however, be resident in a
main partition and its subpartitions simultaneously. If a
main partition is occupied, the subpartitions cannot be. All
subpartitions can have tasks residing in them; therefore,
up to seven tasks can execute in parallel within a
preempted, user-controlled main partition.

The goal of subpartitioning is to reclaim large memory
areas in an unmapped system. When a large task that
requires a main partition is no longer active, or when it can
be preempted (checkpointed), subpartitioning allows the
partition space to be used for a number of smaller tasks.

Dynamic Memory Allocation
Dynamic memory allocation is an extension of the RSX-11
multiprogrammed partition structure. Dynamic memory
allocation enables the system to respond rapidly to chang­
ing requirements for system resources.

RSX-11 lets users load and execute more than one task in
a system-controlled partition. If a loaded task does not fill
the entire partition, another task can be loaded into the
space above or below it, as long as the remaining conti­
guous physical space is large enough to contain it.

The Executive keeps a record of used areas and deter­
mines free space when needed. Tasks are brought in from
disk according to their priority and are loaded into the first
available memory area in the partition. The Executive con­
tinues to load tasks a.s long as sufficient contiguous
physical memory is available in the partition. When a task
terminates and is sent back to disk, the memory it occu­
pied becomes available again.

Normally, a task cannot be loaded into a system-con­
trolled partition unless sufficient contiguous space

between other tasks loaded in the partition is available.
When a task terminates, it can leave a space that alone is
insufficient to hold another task. If combined with other
unused areas, however, this space could be large enough
to contain the task.

In a system-controlled partition, the noncontiguous free
spaces are combined by an automatic memory-compac­
tion feature that shuffles or moves tasks to ensure suffi­
cient space is available to load another task. Dynamic
memory allocation is always present with RSX-11 M-PLUS,
although it can be turned off. It is optional on RSX-11 M
and RSX-11S.

Mapped and Unmapped Systems
The 16-bit architecture of the PDP-11 dictates that a task
can directly address only 64 Kbytes of memory. A special
hardware device, a Memory Management Unit, makes it
possible to use more than 64 Kbytes of memory. The
Memory Management Unit associates addresses used in
tasks (virtual addresses) with actual locations in memory
(physical addresses). The concepts of virtual and physical
addresses are discussed later in this section.

A PDP-11 system that includes a Memory Management
Un it is referred to as a mapped system. Systems without
the unit are called unmapped. RSX-11 Mand RSX-11 S sys­
tems can be mapped or unmapped. Mapped RSX-11M
and RSX-11 S systems can have both system-controlled
and user-controlled partitions. Unmapped systems can
have only user-controlled partitions.

Because all the PDP-11 s supported by RSX-11 M-PLUS in­
clude memory management hardware, RSX-11 M-PLUS
systems are always mapped systems and support only
system-controlled partitions.

Mapped and unmapped systems install tasks into a parti­
tion differently. In unmapped systems, a task is linked to
be installed and run in a partition with a specific base ad­
dress. The task cannot run at a base address different
from that specified in the Task Builder command.

In mapped systems, a task can be installed into any parti­
tion large enough to contain it. That's because the Memory
Management Unit maps the virtual addresses of a task to
the actual physical addresses in which the task resides.

The memory management hardware provides automatic
memory protection on RSX-11 systems. Because each
task has an absolute address range in which to execute,
the memory area assigned to a task is protected from
other tasks executing in the system. A task can reference
and alter memory only within the specific task area it owns.

Scheduling
Because the RSX-11 family is designed specifically for
realtime environments, event-driven scheduling is used to
determine a task's eligibility to execute. The basis of event­
driven task scheduling is the software priority assigned to
each active task. A task's default priority is set when the
task is built; it can either be changed dynamically from
within a task or altered interactively via a command.

Tasks are run at a software priority level ranging from 1
(low) to 250 (high). The Executive grants central processor
resources to the task of highest priority that can be exe­
cuted. That task retains control of the central processor

3-5

until the task gets blocked. Blocking occurs when a task
issues a system directive that implicitly or explicitly sus­
pends its execution . For example, a task can issue a direc­
tive that indicates it wants to wait until an 1/0 operation is
complete before continuing execution.

Blocking is one type of significant event. A significant
event is declared whenever there is a change in system
status. Whenever there is a significant even.t, the Executive
reviews the eligibility of tasks to execute.

Event Flags - A task can recognize that a significant
event has occurred by means of event flags. In requesting
a system operation (such as an 1/0 transfer), a task can
associate an event flag with the completion of the opera­
tion. When the significant event occurs, the Executive sets
the specified flag, then interrupts the executing task and
searches for a task capable of executing. The task of
highest priority that has all the resources it needs to run
and that can make use of those resources will be the task
that gains control of the CPU.

Event flags can be used to coordinate task execution for
intertask communication. There are 96 event flags: 1
through 32 are local to the task, 33 through 64 are com­
mon to all tasks, and 65 through 96 are group-global. Al­
though group-global event flags can be used in any appli­
cation, they must be used by tasks containing the group
code specified when the group-global event flags were
created . A task can set, clear, test, and wait for any event
flag or combination of event flags to achieve efficient syn­
chronization between itself and other tasks in the system.

For example, upon completion of 1/0 requests, the Execu­
tive normally sets a requester-indicated event flag and de­
clares a significant event. If a requesting task instructs the
system that it cannot run until an event flag is set (signaling
task 1/0 completion), other eligible tasks of lower priority
may run.

Roundrobln Scheduling - Although event-driven
scheduling is the primary RSX-11 task-scheduling mecha­
nism, it is not the only mechanism available. As an option
during system generation, RSX-11 systems allow the user
to supplement event-driven task scheduling with round­
robin scheduling for some or all tasks.

Roundrobin, or first-in-first-out (FIFO), scheduling is avail­
able for a priority range specified during system
generation. If there is more than one task active at a given
priority level, and if roundrobin scheduling was included in
SYSGEN, the tasks are rotated in the priority queue. A
form of timesharing, roundrobin scheduling gives tasks of
similar priority an equal share of CPU time.

Task Checkpolntlng - With RSX-11 M/M-PLUS, effective
multiprogramming is achieved when many tasks, residing
in memory simultaneously, spend some of their residency
waiting for 1/0 completion, waiting for synchronization with
other tasks, or being unable in some way to continue exe­
cution-while one other task utilizes the central proces­
sor's resources.

This multiprogramming scheme normally applies only to
tasks resident in memory. Once a task is in memory, the
Executive allows it to run until a significant event occurs,
even if its memory space is required for the execution of a
nonresident task of higher priority. However, if it is desir­
able to free memory for the execution of a task of higher
priority, a task can be declared checkpointable when it is
taskbuilt, installed, or running.

A checkpointable task can be swapped out of memory
when a task of higher priority requests the partition in
which it is active. With checkpointing, more tasks can be
brought into memory to run, thus increasing system
through put.

In RSX-11 M/M-PLUS systems, task priority normally de­
termines which tasks can checkpoint other tasks. A check­
pointable task currently active in a partition, but of a lower
priority than another task requesting the partition, can be
preempted and rolled out to a disk. The task is saved on
the disk exactly as it was when interrupted. When memory
is available, the task of lower priority can be restored to
active execution at the point where it had been interrupted.

In addition, a memory-resident task that is waiting for ter­
minal input is always checkpointable, regardless of its pri­
ority.

Stop-Bit Synchronization - RSX-11 also provides a stop­
bit synchronization feature that allows tasks to be stopped
until an event occurs. When a task is stopped, it is blocked
from further execution, its priority for memory allocation
effectively drops to zero, and it can be checkpointed by
any other task in the system. If checkpointed, the task re­
mains out of memory until its stop-bit is cleared. At this
time the task becomes unstopped, and its normal priority
for memory allocation is restored. This feature is particu­
larly useful when a long waiting period is anticipated.

System Directives
When a task requests the Executive to perform an opera­
tion, it is called a system directive. Programmers use these
directives to control both the execution and interaction of
tasks. The MACR0-11 programmer usually issues direc­
tives in the form of macros defined in the system macro
library. The FORTRAN programmer issues system
directives in the form of calls to subroutines contained in
the system object module library.

System directives affect the way the Executive shares sys­
tem resources among concurrently active tasks, directly or

3-6

indirectly. The following list groups the directives by func­
tion into nine categories.
• Task Execution Control Directives deal principally with

starting and stopping tasks. Installed tasks can be either
dormant or active. The active state has three substates:
ready-to-run, blocked, and stopped. Each of the Execu­
tion Control Directives (except Extend Task) results in a
change of the task's state (unless the task is already in
the state being requested).

• Task Status Control Directives alter the checkpointable
attribute of a task and/or change the running priority of
an active task.

• Informational Directives provide the issuing task with
system information and parameters, such as the time of
day, the task parameters, the console-switch settings,
and partition or region parameters.

• Event-Associated Directives provide a means in the sys­
tem for intertask and intratask synchronizat ion and
signaling.

• Trap-Associated Directives provide the user with trap
facilities that allow transfer of control (software inter­
rupts) to the executing tasks.

• 110- and Intertask Communications-Related Directives
allow tasks to access 1/0 devices at the driver interface
level or interrupt level, to communicate with other tasks
in the system, and to retrieve the command line used to
start the task.

• Memory Management Directives allow a task to manipu­
late its virtual and logical address space and to set up
and dynamically control the window-to-region mapping
assignments. These directives also provide the means
by which tasks can share and pass references to data
and routines. Memory management concepts are dis­
cussed later in this section.

• Parent/Offspring Tasking Directives permit tasks to
start other tasks, connect to tasks in order to receive
status information, stop for term inal 1/0, and unstop
other tasks. A more detailed description of par­
ent/offspring tasking appears later in this section .

• RSX-11 M-PLUS Directives. In addition to the directives
listed above, RSX-11 M-PLUS includes directives that
support virtual terminals, Supervisor-mode library rou­
tines, variable-length send/receive data buffers, and
parity error and exit AST routines.

System Traps
System traps, also called software interrupts, are another
means of governing task execution . Wh ile sign ificant
events can have a systemwide scope, traps are local to a
task. Traps interrupt the sequence of instruction execution
in the task and cause control to be transferred to a pre­
specified point in the program. In this way, traps provide
the ability to service certain conditions without continu­
ously testing for their existence.

To use the system trap facility, a task must contain a trap
service routine. This routine is automatically entered when
the trap occurs, using the task's normal priority and privi­
lege. If a service routine is not supplied , the action taken
by the Executive is dependent upon the type of trap.

There are two types of traps: Synchronous System Traps
(SSTs) and Asynchronous System Traps (ASTs).

SSTs provide a means of servicing fault conditions within a
task, such as memory protection violation and floating­
point-unit exceptions. These conditions, which are internal
to a task, occur synchronously, with respect to task execu­
tion. In these cases, if an SST service routine is not in­
cluded in the task, the task's execution is aborted.

ASTs commonly occur as the result of a significant
event-thus asynchronously with a task's execution. A task
does not have direct or complete control over the timing of
an AST's occurrence. ASTs are for information purposes,
such as for signifying an 1/0 completion that a task needs
to know about immediately.

If an AST service routine is not provided , a trap does not
occur, and task execution is not interrupted.

MEMORY MANAGEMENT
Without using advanced programming techniques along
with the memory management hardware available on
some PDP-11 s, an RSX-11 task cannot explicitly address
more than 64 Kbytes of memory. The 16-bit word size of
the PDP-11 imposes this restriction on a task's addressing
capability. Two programming techniques can overcome
this addressing limitation:
• overlaying segments of a task with either disk-resident

or memory-resident code
• mapping to different regions of memory outside the

physical limits of the current task space

Overlaylng
Users can reduce the memory and/or virtual address
space requirements of a task by using overlay structures
created with the Overlay Description Language. RSX-11
supports two kinds of overlaid segments: those that reside
on disk and those that reside permanently in memory.

To create an overlay, a task must first be divided into seg­
ments: a single root segment-which is always in memory,
and any number of overlay segments-which are loaded
into memory as required.

The overlaid segments either reside on disk and share
virtual address space and physical memory with one
another (disk-resident overlays), or they reside in memory
and share only virtual address space with one another
(memory-resident overlays).

Disk- resident overlays save space, but they introduce
overhead activity because the segments must be loaded
into memory each time they are needed but not present in
memory. Memory-resident overlays save time. They are
loaded from disk only the first time they are referenced.
Thereafter, they remain in memory and are referenced by
remapping . This, of course, takes up memory space.

The Task Builder enables the user to build overlaid tasks
and call these overlays from disk. The use of overlaid tasks
and disk-based data can significantly expand the achiev­
able peak load of an RSX-11 system and still maintain
acceptable response time.

Several large classes of tasks can be handled effectively
by an overlay structure. For example, a task that moves
sequentially through a set of modules is well suited to an
overlay structure. So, too, is a task that selects one of a set
of modules according to the value of an item of input data.

3-7

Memory Management Directives
Data are disk-based, not only because of limited memory
space, but also because transmission of numerous in­
structions or large amounts of data between tasks is only
practical via disk. However, an overlaid task or a task that
needs to access or transfer large amounts of data incurs a
considerable amount of disk activity over and above that
caused by the task's function .

Task execution could obviously be faster if all or a greater
portion of a task were resident in memory at runtime. RSX-
11 M/M-PLUS includes a group of memory management
directives that provide a task with this capability. These
directives overcome the limited addressing restriction by
allowing the task to dynamically change the physical loca­
tions that are referred to by a given range of virtual ad­
dresses. With these directives, a task can increase its exe­
cution speed by reducing its disk 1/0 requirements at the
cost of requiring more physical memory.

The Memory Management Unit is the PDP-11 hardware
that translates (relocates) a task's 16-bit virtual address
into either an 18-bit or 22-bit (depending on processor)
physical address. The hardware consists of an adder, a
number of registers that perform the actual address trans­
lation, and an overall internal system protection scheme.

The basic function of memory management is to perform
memory relocation and provide extended memory
addressing capability for systems with greater than 64
Kbytes of physical memory. In order to perform this basic
function, the memory management system utilizes a series
of Active Page Registers (APRs). The APRs are a set of
hardware relocation registers that permits several users'
programs, each starting at virtual address 0, to reside
simultaneously in physical memory.

Address Space
The concepts of virtual address space, logical address
space, and physical address space provide a basis for
understanding the functions performed by memory man­
agement directives.
• A task's virtual address space corresponds to the 64-

Kbyte address range imposed by the PDP-11 's 16-bit
word length . The task can divide its virtual address
space into segments called virtual address windows.

• A task 's logical address space is the total amount of
physical memory to which the task has access rights.
The task can divide its logical address space into vari­
ous areas called regions. Each region occupies a con­
tiguous block of memory.

• A task's physical address space is the actual physical
memory in which the task resides and executes.

·RSX-11 M/M-PLUS suppl ies memory management direc­
tives to assign or map a range of virtual addresses (a win­
dow) to different logical areas (regions); this enables the
user to extend a task 's log ical address space beyond 64
Kbytes. Without these directives, a task's virtual address
space and logical address space would directly corre­
spond; thus, a single virtual address would always point to
the same logical location.

Windows
To manipulate mapping virtual addresses to logical areas,
the user must first divide the task's 64 Kbytes of virtual

address space into segments. These segments are called
virtual address windows.
When a task uses memory management directives, the Ex­
ecutive views the relationship between the task's virtual
and logical address space in terms of windows and re­
gions. Unless a virtual address is part of an existing
address window, references to that address will cause an
illegal address trap to occur. Similarly, a window can be
mapped only to an area that is either all or part of an
existing region of the task's logical address space.

Once a task has defined the necessary windows and
regions, it can issue memory management directives to
perform such operations as:
• mapping a window to all or part of a region
• unmapping a window from one region in order to map It

to another region
• unmapping a window from one part of a region in order

to map it to another part of the same region

Regions
A region is a portion of physical memory to which a task
has access. The current window-to-region mapping con­
text determines the part of a task's logical address space
that the task can access at one time. A task's logical ad­
dress space can consist of various types of regions:
• task region-a contiguous block of memory in which the

task runs

• static common region-an area defined at SYSGEN time
or at runtime, such as a global common area

• dynamic region-a region created dynamically at run­
time by issuing memory management directives

• sharable regions-on RSX-11M-PLUS only, a read-only
portion of multiuser tasks

Address mapping not only extends a task's logical address
space beyond 64 Kbytes, but also allows the space to
extend to regions that have not been linked at taskbulldlng
time. One result is an increased potential for task interac­
tion by means of shared regions. For example, a task can
accommodate large amounts of data. Any number of tasks
can then access that data by · mapping to the region.

3-8

Another result is the ability of tasks to use a greater num­
ber of common routines. Thus, tasks can map to required
routines at runtime, rather than link to them at taskbuilding
time.
A region becomes part of a task's logical address space by
being attached. A task can map only a region that is part of
the task's logical address space. There are three ways to
attach a task to a region:
• all tasks are automatically attached to regions that are

linked to them at taskbuildlng time
• a task can issue a directive to attach itself to a named

static common region or a named dynamic region
• a task can request the Executive to attach another task

to any region within the logical address space of the re­
questing task

Attaching identifies a task as a user of a region and pre­
vents the system from deleting a region until all user tasks
have been detached from it. A task cannot indiscriminately
attach to any region because each region has a protection
mask to prevent unauthorized use.

Memory management directives are capable of
performing a number of separate actions. The complexity
of the directives requires that there be a special means of
communication between the user task and the Executive.
This is achieved through user data structures that allow
the task to specify which directive options it wants the Exe­
cutive to perform and permit the Executive to provide the
task with details about the outcome of the action it is re­
questing.

RSX-11M-PLUS Memory Management Directives
RSX-11 M-PLUS uses the extra set of memory mapping
registers available on the PDP-11 /44 and PDP-11 /70. The
Supervisor-mode registers can be mapped by RSX-11 M­
PLUS to map read-only libraries of user code, the RSX-11
file control services (FCS), or other application code. This
capability gives an RSX-11 M-PLUS task a full 64 Kbytes of
normal address space plus an extra 64 Kbytes of read­
only routines. Using this technique, with optimal library
sizes, a user task can now directly utilize twice as much
memory as it could have with RSX-11 M. Frequently, in­
creased task performance is gained by putting routines
into an overlaid Supervisor-mode library rather than over­
layl ng the task.

RSX-11 M-PLUS also supports the separate 1- and D­
space hardware that is available on the PDP-11/44 and
PDP-11170. This means a user task can address up to 128
Kbytes of memory-64 Kbytes of instructions and 64
Kbytes of data. Thus, when used with Supervisor-mode
libraries, 1- and D-space tasks can address up to 196
Kbytes of memory-which can both greatly improve sys­
tem performance and simplify program development.

Memory Maps
In a mapped system, the user does not need to know
where a task resides in physical memory, because the
map associates the task addresses with available physical
memory. Memory management directives are used with
the memory management hardware to perform address
mapping at a level that is visible to and controlled by the
user.

The memory allocation Information (map) produced by the
Task Builder shows users how program sections are
arranged in task memory (their starting virtual addresses
and extents on mapped systems and their physical
addresses and extents on unmapped systems), what at­
tributes are in a program section, any undefined symbols,
and the optional cross-reference listing of global symbols.
During debugging, users can use the starting addresses,
combined with the relative location counter values (pro­
vided by the assembler), as offsets to access locations
within the memory-resident task.

RSX-11 M-PLUS PERFORMANCE
ENHANCEMENTS
RSX-11 M-PLUS contains many performance and through­
put enhancements. Memory is better utilized by separating
pure (read-only) and impure (read/write) sections of tasks.
When the first copy of a multiuser task Is executed, one
copy of the pure and impure sections Is loaded. Succes­
sive users receive only a copy of the impure code, and all
users share the pure section, thereby using memory more
efficiently.

On RSX-11 M-PLUS, shared libraries, pure sections of
multiuser tasks, and common data areas can be check­
pointed to disk when not being used. These tasks are
automatically brought back into memory when an execut­
ing task references them. Shared areas can also be shuf­
fled to compact memory and to remove space between
tasks.
RSX-11M-PLUS users can effectively triple the memory
directly addressable by tasks on PDP-11/44 and PDP-
11 /70 systems through the use of Supervisor-mode library
routines and separate User-mode Instructions and Data (l­
and D-) space. Because this increased address space
means programs can be written that require fewer (if any)
overlays, faster program execution and decreased pro­
gram development and taskbuild time result.

User-Mode 1- and D-Space
A conventional RSX-11 M-PLUS task operating In User
mode (as most user tasks do) can contain 64 Kbytes of
virtual address space and can access approximately 64
Kbytes of physical memory. However, a task using both
User-mode 1- and D-space APRs can contain 128 Kbytes
of virtual address space and can access approximately
128 Kbytes of physical memory. RSX-11 M-PLUS supports
the separate 1- and D-space hardware available on PDP-
11 /44s and PDP-11 /70s.

A conventional task running in an 1- and D-space system
uses both sets of APRs. However, the relocation ad­
dresses in both I-space and D-space APRs are Identical.
Also, the task windows refer to I-space APRs In a task that
does not use D-space.
An I- and D-space task can use separately both 1- and D­
space APRs; that is, APRs used in this way are not over­
mapped. Because of this, the task can use eight D-space
APRs to access and use data and eight I-space APRs to
access and execute instructions. Using 16 APRs allows the
1- and D-space task to access a total of 128 Kbytes of
physical memory at one time.

3-9

Supervisor-Mode Libraries
Supervisor-made libraries are sharable resident libraries
of routines that are used only in Supervisor mode. A task
switches to Supervisor mode when it calls a routine within
the Supervisor-mode library. By using this techn ique
alone, a task's virtual address space can be doubled to
128 Kbytes.

Supervisor mode is one of three possible modes of opera­
tion (User and Kernel are the other two) in wh ich PDP-
11 /44 and PDP-11 /70 processors can operate. Each mode
has associated with it 16 Active Page Registers (APRs):
eight I-space and eight D-space APRs.

Normally, a task has an address space of 64 Kbytes, by us­
ing the eight User-mode APRs. When a conventional RSX-
11 M-PLUS task links to a Supervisor-mode library and
calls a routine in the library, the Executive copies the User­
mode I-space APRs into the Supervisor-mode D-space
APRs and maps the Supervisor-mode library with I-space
APRs. Therefore, while in Supervisor mode and within the
library, the task can access 64 Kbytes of its own space with
the D-space APRs and 64 Kbytes of library routines with 1-
space APRs.

In an 1- and D-space task, mapping is done differently.
When an I- and D-space task links to a Supervisor-mode
library, the Executive copies the User-mode D-space
APRs into the Supervisor D-space APRs. Therefore, the
Supervisor-mode routines can access User-mode data
space and access Supervisor-mode instruction space with
Supervisor-mode I-space APRs.

On systems with 1- and D-space hardware, RSX-11 M­
PLUS also uses separate hardware memory mapping for
the Executive code and Executive pool. Pool is the mem­
ory available to applications for dynamic data structures.
The separation of data and the use of extra memory man­
agement registers allow RSX-11 M-PLUS to devote a full 40
Kbytes to system pool (minus the size of the system 1/0
data structures). This, in addition to the amount of system
pool that has been freed by the creation of a secondary
pool area, means that RSX-11 M-PLUS often has double
the amount of pool in contrast to comparable RSX-11 M
systems. So RSX-11 M-PLUS can support about twice as
many terminals and active tasks as RSX-11 M systems.

PARENT/OFFSPRING TASKING
The RSX-11 Mand RSX-11 M-PLUS operating systems
also support parent/offspring tasking. A parent task is one
that starts or connects to another task, called an offspring
task. This type of tasking allows simpler, more straightfor­
ward multitasking synchronization schemes and has many
realtime applications.

Another major use for parent/offspring tasking is batch
processing; task relationships and parameters can be set
up online to control the processing of one or more batch
jobs offline.

Starting (activating) offspring tasks is called spawning.
Spawning also includes the ability to establish task com­
munications. A parent task can be notified when an off­
spring task exits and can receive status information from
the offspring task. Status returned from an offspring task
to a parent task indicates successful completion of the off­
spring task or identifies specific error conditions.

Parent/offspring tasking also supports chaining. An
offspring task can pass its parent connection to another
task-thus making the new task the offspring of the origi­
nal parent.

A parent task can connect to more than one offspring task.
An offspring task can, in turn, be connected to more than
one parent task.

Under RSX-11 M-PLUS, offspring tasks can perform 1/0
operations with virtual terminals, just as they can perform
1/0 with physical terminals. A virtual terminal is not a hard­
ware device; it is implemented in software with data struc­
tures created by the Executive.

Virtual terminals are not interactive. A user does not issue
requests or receive prompts; there is no immediate inter­
action between the user, the terminal , and the running
task. Virtual terminals are used in batch processing and
other offline processing environments to provide terminal
1/0 support for offspring tasks that normally would require
user or operator intervention. For example, if a spawned
task prompts for (requests) terminal in put (for instance, if
the spawned task is PIP), then the user needs a method of
supplying the input, so it will look like it came from a termi­
nal. A virtual terminal can be used to supply the required
input. Thus, the spawned task code is the same whether
the task is spawned or initiated from a terminal.

INTERTASK COMMUNICATION
RSX-11 provides intertask communication facilities for
synchronizing execution, for sending directives, and for
sharing common data.

Tasks are frequently required to pass information among
themselves in order to perform their functions. For in­
stance, in a typical process control situation there may be
tasks performing such functions as measuring variables
(for example, temperature), controlling the process, and
preparing status reports. One task may be measuring the
temperature while a second task uses the temperature
measurement by comparing it with a desired temperature.
And a third task may be compiling a process log for in­
spection by the operator. One task must pass information
to other tasks, in order for them to carry out their functions
as required.

Intertask communications can use:
• common and group-global event flags

• shared data files

• send/receive directives (variable length on RSX-11 M­
PLUS)

• shared regions
• virtual terminals on RSX-11 M-PLUS

Common and Group-Global Event Flags
Common and group-global event flags are fast and sim­
ple. Each one conveys one bit of information suitable for
communication in time-critical situations.

Cooperating tasks can communicate using common event
flags and group-global event flags. Common event flags
are common to all tasks; they can be set or cleared as a
result of a task's operation . There are 32 common event
flags, of which eight are reserved for use by the system. A
task can read, set, clear, or test for common event flags to
be set.

The group-global event flags can be used in any applica­
tion where common event flags can be used; however, a
group of event flags can only be used by tasks running
under UICs containing the group code specified when the
group-global event flags were created. A task can set,
read, clear, or test for group-global event flags.

Shared Data Flies
Very large amounts of data can be shared using shared
data files. Synchronization at the sending and receiving
tasks may be requ ired. The access to the data is at disk file
access speeds.

Send/Receive Directives
The send/receive directives can send and receive mes­
sages of moderate size at moderate speed. Synchroniza­
tion is required at both the sending and receiving tasks.

Using the send/receive directives, a task can transfer a
buffer load of data to another task. The data are trans­
ferred in a 13-word block via the Dynamic Storage Region
(pool) in the Executive. When sent, the message is queued
in the pool with other messages for the receiver task. If the
receiver task is not running, its queue of messages is
maintained until it runs and issues receive directives. In
addition, RSX-11 M-PLUS supports variable-length
send/receive directives that can handle up to 255 bytes.

Shared Regions
A shared region is a block of data or code that resides in
memory and can be used by any number of tasks. A
shared region can contain data for use by several tasks. It
can be an area where one task writes data for use by
another task. Or a shared region can contain routines for
use by several tasks.

Shared regions are a primary resource for conserving
memory. In addition, they can increase productivity by
allowing programmers and tasks to share data and code.
There are two kinds of shared regions.
• Resident commons-which provide a way for two or

more tasks to share their data
• Resident libraries-which provide a way for two or more

tasks to share a single copy of commonly used subrou­
tines

3-10

The term "resident" denotes a shared region that is built
and installed into the system separately from the task that
links to it. That is, programmers use the Task Builder to
build a shared region much as they would build a task.
Switches are used to designate the kind of shared region
(a library or a common) to be built.

RSX-11 M-PLUS handles shared regions dynamically. It
automatically loads them into partitions and checkpoints
them when they are no longer referenced. In addition,
RSX-11 M-PLUS has two other types of commons: shared
segments of multiuser tasks and Supervisor-mode librar­
ies.

Multiuser Tasks - With the Task Builder, RSX-11 M­
PLUS users can build multiuser tasks. In a multiuser task,
one portion of its code is protected as read-only and the
other portion is protected as read/write.

Once the multiuser task is installed in memory, when any
other task requests the multiuser task to run, the system
duplicates only the read/write, or impure, portion of the
task. The read-only, or pure, portion is sharable but hard­
ware protected.

Supervisor-Mode Libraries - Supervisor-mode libraries,
discussed above as a means of increasing a task's virtual
address space-.~re resident libraries of routines that are
used only in Supervisor mode. They are available only on
RSX-11 M-PLUS systems running on PDP-11 /44s and
PDP-11/70s.

1/0 PROCESSING
The 1/0 processing system consists of several highly
modular, interdependent components. The mqdular con­
struction enables programmers to choose the program­
ming interface and processing method appropriate for
their needs without incurring runtime space or perform­
ance overhead for features not used. To maximize data
throughput and minimize interrupt response time, the 1/0-
request-processing software also takes advantage of the
hardware's ability to overlap 1/0 transfers with computa­
tion, to switch contexts rapidly, and to generate interrupts
on multiple priority levels.

To achieve performance and space goals, the RSX-11 1/0
system attempts to centralize common functions, eliminat­
ing the inclusion of repetitive code in every driver in the
system. To do this, RSX-11 data structures are used to
drive the centralized routines. This, in turn, reduces the
size of the 1/0 drivers.

The RSX-11 system is structured to allow entry at any
level. The top level contains the File Control Services
(FCS) or the optional Record Management Services
(RMS) . Both provide device-independent access to
devices in the system.

The lowest level of task 110 is the QIO directive. Any task
can issue a QIO directive. The directive allows direct con­
trol over devices that are connected to a system and that
have an 1/0 driver.

Custom devices can be connected to the RSX-11 system
through special user-written device handlers or through
Connect-to-Interrupt-Vector system drrectives.

3-11

With the Connect-to-Interrupt-Vector system directive, a
task can process hardware interrupts through a specified
vector. Through a subroutine included in the task's space,
the task connects to the interrupt vector and can process
interrupts directly from 1/0 devices.

Programming Interfaces
The 1/0 programming tools are the File Control Services
(FCS) and the Record Management Services (RMS) for
general purpose file and record processing and the Queue
1/0 system services for direct 1/0 processing.

FCS and RMS (discussed in Section 7) provide device-in­
dependent access to file-structured 1/0 devices. The most
general purpose type of access enables programs to proc­
ess logical records. FCS and RMS automatically provide
record blocking and unblocking.

RMS users can also choose to perform their own record
blocking on file-structured volumes, such as disk and
magnetic tape, either to control buffer allocation or to
optimize special record processing. To block their own
records, users address blocks with a virtual block number
(the number of the block relative to the file being proc­
essed) for volume-independent processing.

The 1/0 system services provide both device-independent
and device-dependent programming. Users perform their
own record blocking on file-structured and non-file-struc­
tured devices. Virtual block addressing is used on Files-11
disk or ANSI magnetic-tape volumes. In addition, users
with s'ufficient privilege can perform 1/0 operations using
either logical or physical block addressing for defining
their own file structures and accessing methods on disk
and magnetic-tape volumes.

Ancillary Control Processors
FCS, RMS, and the 1/0 system services use the same 1/0
control processors. Called ancillary control processors
(ACPs), they are used for processing file-structured 1/0
requests. An ACP provides file structuring and volume ac­
cess control for a particular type of device. Typical ACP
functions include creating a directory entry or file, access­
ing or deaccessing a file, modifying file attributes, and de­
leting a directory entry or file header. There are three

kinds of ACPs provided in the system: Files-11 disk, ANSI
magnetic tape, and network communications link.

The FCS, RMS, and 1/0 system services programming in­
terfaces are the same regardless of the ACP involved; but,
since ACPs are particular to a device type, they do not
have to be present in the system if the device is not pre­
sent. There is one network ACP process for all DECnet
network communications links in the system and none if
the system is not in a network.

Device Drivers
Once the ACP sets up the information for file-structured
1/0 requests, a request can be passed on to a device
driver. All non-file-structured 1/0 requests are passed
directly to a device driver.

A driver:
• defines the peripheral device for the rest of the RSX-11

operating systems

• defines the driver for the operating system procedure
that maps and loads the driver and its device database
into system virtual memory

• initializes the device (and/or its controller) at system
startup time and after recovery from a power failure

• translates software requests for 1/0 operations into
device-specific commands

• activates the device

• responds to hardware interrupts generated by the
device

• reports device errors
• returns data and status from the device to software

Device drivers work in conjunction with the RSX-11 oper­
ating systems. The operating system performs all 1/0
processing that is unaffected by the particular specifica­
tions of the target device processing (that is, device-inde­
pendent). When details of an 1/0 operation need to be
translated into terms recognizable by a specific type of
device, the operating system transfers control to a device
driver that performs device-dependent processing.

The RSX-11 operating systems contain device drivers for a
number of standard DIGITAL-supported devices. These
include LSI-bus, UNIBUS, and MASSBUS devices. Also,
the user can write additional drivers for nonstandard
devices. The RSX-11 M and RSX-11 M-PLUS Guide to Writ­
ing an 110 Driver manuals provide detailed information on
writing, loading, and debugging drivers.

1/0 Request Processing
All 1/0 requests are generated by a Queue 1/0 (QIO) Re­
quest system service. If a program requests RMS pro­
cedures, RMS issues the Queue 1/0 Request system ser­
vice on the program 's behalf. Queue 1/0 Request
processing is rapid because the system can:
• use each device as efficiently as possible by minimizing

t.he code that must be executed to initiate requests and
post request completion

• use each disk controller as productively as possible by
overlapping seeks with 1/0 transfers (for RSX-11 M­
PLUS only)

The processor's many interrupt priority levels speed
interrupt response because they enable the software to

3-12

have the minimum amount of code executing at high-pri­
ority levels by using low-priority levels for code-handling
request verification and completion notification. In addi­
tion, device drivers take advantage of the processor's abil­
ity to overlap execution with 1/0 by enabling processes to
execute between the initiation of a request and its
completion. User tasks can queue requests to a driver at
any time, and the driver immediately initiates the next re­
quest in its queue upon receiving an 1/0 completion inter­
rupt.

On RSX-11 M-PLUS, the driver initiates the request and re­
turns to the Executive when it Is called. Disk seeks do not
require the controller, once they are Initiated. If a disk
driver receives a seek request while the controller is busy
with an 1/0 transfer request on another disk unit, the driver
queues the request. When it has finished the current trans­
fer the controller will initiate the seek request before any
pending 1/0 transfers.

RSX-11 M-PLUS employs optimization algorithms when
choosing among 1/0 requests of equal priority. 110 Queue
Optimization increases the throughput of the disk subsys­
tem. For maximum flexibility, RSX-11M-PLUS provides
three methods of 1/0 Queue Optimization. Queue Op­
timization is discussed in detail in Section 5.

In some cases, 1/0 Queue Optimization results in
smoother disk operation by reducing erratic head move­
ment.

Devices
The purpose of devices of any type is to handle 1/0 from
tasks. RSX-11 M/M-PLUS offers users a number of ways to
identify the physical devices that handle 1/0:
• mnemonics

• pseudo device names

• logical unit numbers (LUNs)
• logical device name assignments

Mnemonics - In 1/0 operations, the operating systems
and its users deal with device drivers. Each device driver
has a unique identifier consisting of a two-letter mne­
monic. LP, for example, refers to the lineprlnter driver, and
DB is the driver for an RP04/05/06 disk.

Individual devices are identified by the two-letter mne­
monic of their driver and an octal unit number, terminated
by a colon. On systems with two lineprinters, they are dis­
tinguished as LPO: and LP1 :, for example.

Pseudo Device Names - A pseudo device name is a
device unit name that does not correspond to a real device
until it has been redirected. These pseudo devices are for­
warding addresses used by the operating system to locate
real devices needed by tasks. The main· function of pseudo
devices is to establish relationships between devices that
are tied in to the system by the system generation process.
Since tasks can refer to pseudo devices instead of specific
physical devices, pseudo devices allow tasks a great deal
of freedom in performing 1/0.

An example of how pseudo devices are useful Is the com­
monly used pseudo device, LB:. As part of SYSGEN, LB: is
defined as the device on which the system resides. In a
disk-based system, most system task-image files remain
on a disk until they are needed. System task images must

be Installed from LB: for the system to work, but LB: need
not be the same device each time. For instance, an instal­
lation with two systems, one with system-image files on
DBO: (DB is the mnemonic for an RP04/05/06 disk pack),
and one with system-Image files on DB1 :. can redirect LB:
to DBO: or DB1 :, depending on which system is running.
Users can confidently refer in their tasks to LB: as the de­
vice from which system task images are installed, without
wondering from day to day which system is running .

Logical Unit Numbers - Each task includes Logical Unit
Numbers, or LUNs, which establish a relationship between
the 110 done by the task and physical device units. This re­
lationship can be different for each task.

LUNs can be assigned by the programmer at taskbuild
time, at the time the task is installed, or by the task Itself at
runtime. Because the system provides default LUN assign­
ments, it is not always necessary to assign a LUN to a task.
Furthermore, LUNs can be changed by a DCL or MCR
command for any installed, inactive, nonfixed task.

Logical Device Names - A LUN is simply a name used to
represent the relationship between a physical device and a
logical device name. Logical device names provide a
means by which tasks can maintain device independence.
Logical device names have the same syntax as other de­
vice names. The logical device name can be the same as a
standard RSX-11 device or pseudo device, such as LPO: or
LB1 :, or it can use two letters with an arbitrary meaning,
such as AZ:.

There are three types of logical device assignments.
• Local assignments, which can be made by any user, ap­

ply to tasks initiated from the terminal used to make the
assignment. Local assignments override both other cat­
egories of assignments. Different users can assign the
same local logical name to different devices.

• Login assignments are controlled by privileged users
through ACNT, the Account File Maintenance Program,
or through ASSIGN/LOGIN, a privileged command.
Login assignments are reestablished each time the user
logs in. They override the next category-global assign­
ments-and are only used in systems with multiuser
protection. Login assignments remain in effect until the
user logs off or until a privileged user deassigns them.

• Global assignments, which can be made only by privi­
leged users, apply to all tasks running in the system.

RSX-11S SYSTEM COMPONENTS
RSX-11S requires an RSX-11M, RSX-11M-PLUS, or
VAX/VMS system for system generation and program de­
velopment. An RSX-11S system is generated by a process
very similar to the ASX-11 M system generation process,
which is described in detail in Section 5. The maximum
hardware configuration is the same as that of an RSX-11 M
system.

Since it is based on RSX-11 M, ASX-11 S enjoys most of the
inherent features and generation capability of that system.
For example, ASX-115 automatically supports all of the
peripheral devices that RSX-11 M supports, as well as such
hardware features as Floating-Point Units, parity memory,
and memory management. All are selectable at system

3-13

generation. When included in an RSX-11S system, these
features, of course, take up additional memory.

However, because RSX-11 S is memory-resident, it does
not support a file system, nonresident tasks, checkpoint­
ing, disk-resident overlaid tasks (memory-resident over­
laid tasks are supported), or program development. Its
main purpose is to provide a runtime environment for exe­
cuting tasks.

The basic software building blocks of an RSX-11 S system
are:
• a subset of the features available in the RSX-11 M Execu­

tive

• a special File Control Services (FCS) that contains no
support for directory devices

The minimum software system is one with only an Execu­
tive. The smallest Executive that can be generated re­
quires five Kbytes of memory. However, the Executive
must be augmented with other software for it to do useful
work.

The following services, omitted from the minimum five­
Kbyte Executive, can be generated into an ASX-11 S sys­
tem and take up additional memory:
• address checking
• Asynchronous System Traps (required for FORTRAN)
• 110 rundown
• external MCR functions (user-written functions)
• install, request, and remove-on-exit support
• SEND, RECEIVE , GET TASK PARAMETERS, GET

SENSE SWITCHES, and GET PARTITION PARAME­
TERS directives

• parity memory support
• network support

In addition, the following programs can be included in an
RSX-11S system:
• all RSX-11 M 1/0 device drivers, except the console-log-

ger device driver
• Basic MCR
• Online Task Loader
• Task Termination Notification program
• System activity display programs
• SETTIM subroutine used to set the system's internal

time

• System Image Preservation program

Device Drivers
If the PDP-11 system includes 1/0 devices, the ASX-11S
software system must include the Executive and the ap­
propriate 1/0 device drivers. All RSX-11 M 1/0 device driv­
ers, except the console-logger device driver, are sup­
ported.

Most drivers use an average of three Kbytes; for example,
the lineprinter driver needs less, the terminal driver more.

BaslcMCR
If operator communication is required, Basic MCA can be
included in a system. It takes up an additional six Kbytes of
memory. Basic MCA provides commands to control and
modify the execution of tasks installed in an RSX-11 S sys-

tern. It is a subset of the RSX-11 M MCA Monitor Console
Routine. Basic MCA and MCA are strictly subset compati­
ble.

Online Task Loader
The Online Task Loader (OTL) can be included in an RSX-
11 S system, if online loading of tasks is desired.

Tasks are created on a host RSX-11 M, RSX-11 M-PLUS, or
VAX/VMS system, transferred to the load medium using
the File Exchange Utility (FLX), and then loaded into a run­
ning RSX-11 S system using OTL. OTL expects the load­
device medium to be written in either DOS or RT-11 for­
mat, depending on the load device.

OTL reads a task image from the load-device medium,
verifies the task-image format, and checks for error condi­
tions. It then creates a Task Control Block (TCB) for the
task, places the TCB in the System Task Directory (STD),
and fixes the task in memory, making the task known to
the system. For system-controlled partitions, OTL allo­
cates a subpartition PCB (Partition Control Block) for the
task.

The minimum size for OTL is seven Kbytes. In seven
Kbytes, however, OTL supports only one load device. On­
line taskloading requires a 32-Kbyte system, since ap­
proximately 21 Kbytes will be required for system software
(five Kbytes for the Executive, six Kbytes for Basic MCA,
three Kbytes for one device driver, and seven Kbytes for
the OTL).

Task Termination Notification Program
The Task Termination Notification program (TKTN) out­
puts abnormal task termination and device status
information.

If a task aborts, TKTN prints on the task's initiating termi­
nal the notification and appropriate error message. TKTN
also displays the contents of the task's registers at the time
the task aborted. If a task aborts with 1/0 requests out­
standing, the error message will include the phrase "and
with pending 1/0 requests."

All task-abort messages are printed or displayed at the ini­
tiating terminal. All other TKTN message are printed on
the console terminal. TKTN requires an additional two
Kbytes of memory.

System Activity Display Programs
System activity display programs are a set of privileged
tasks that display information concerning task activity in
an RSX-11S system. Users can invoke and continually run
these tasks on DIGIT Al's VT05-B, VT52, and VT100 video
terminals. The display format is similar to that of the RSX-
11 M/M-PLUS RMDEMO display, which is described in
Section 5. These programs require approximately 12
Kbytes of memory.

The programs display the following information:
• current date and time

• the currently active task
• all tasks, loaded drivers, and common blocks currently

in memory, displayed to show their individual memory
requirements and locations relative to other tasks

• the number of active tasks currently in memory and the
total amount of memory occupied by each task

3-14

• the current amount of available system dynamic mem­
ory (pool), including the largest available block, the
number of fragments, and the worst case of pool space
since bringing up the display programs (not displayed
on a VT05-B)

• a graphic display of partition information

SETTIM
SETTIM, a FORTRAN-callable subroutine, is used to set
the system's internal time. It is supplied to allow a running
program to set the time in a configuration that does not in­
clude a console terminal or Basic MCA. The module is in­
cluded in a user task by linking with the file SETTIM.OBJ.

System Image Preservation
The System Image Preservation (SIP) program is an online
utility task that can save the image of a running system on
a load device medium in bootstrap format. The saved sys­
tem can subsequently be restored by bootstrapping it
from the load device medium. The minimum size for SIP is
three Kbytes. In three Kbytes, it supports only one load de­
vice.

Fiie Control Services
The standard RSX-11 M File Control Services (FCS) record
1/0 package contains a large amount of code to support
file-structured devices. Since RSX-11S contains no file
support, this code is unnecessary. The special version of
FCS provided with RSX-11 S is the standard FCS without
the file support code. This provides a significant size re­
duction.

The RSX-11 S FCS subset does not support:
• file-structured devices (Files-11 disk and ANSI magnetic

tape)

• block 1/0 operations

• random access record 1/0

• sequenced records

In general, the subset FCS handles 1/0 in the same way as
the RSX-11 M FCS handles 1/0 for record 1/0 operations.

Virtual MCR
The Virtual Monitor Console Routine (VMR), an RSX-11 M
system program, allows the complete interactive configu­
ration of an RSX-11 S system on an RSX-11 M, RSX-11 M­
PLUS, or VAX/VMS system. Users can define partitions,
load and unload device drivers, install and fix tasks, and
establish other system parameters. Users can then trans­
fer the entire system to an appropriate load medium for
bootstrapping on the target RSX-11 S system.

Both RSX-11 M-PLUS and VAX/VMS use the RSX-11 M
VMR for generating an RSX-11S system.

POWER FAILURE AUTOMATIC RESTART
Power failure automatic restart is the ability of a system to
smooth out intermittent short-term power fluctuations with
no apparent loss of service and without losing data, while
maintaining logical consistency within the system itself and
the application tasks.

When power begins to fail, the processor traps to the Exe­
cutive, which saves all register contents. When power is
restored, the Executive again receives control and re­
stores the previously preserved state of the system.

The Executive then informs any tasks that have requested
power failure restart notifications through the Asynchro­
nous System Trap mechanism that a power failure has oc­
curred. These tasks can then , if required , make the
restorations of state they deem necessary. The Executive
calls all device drivers that were active at the time the
power failure occurred at their powerfail entry point. Driv­
ers have the option of always being called on power recov-

3-15

ery or of being called only when the driver has outstanding
1/0. These drivers can then, if required , make those resto­
rations of state (for example, repeating 1/0 requests) that
they deem necessary. This approach is quite efficient
because the repeating of 1/0 is placed nearest the source
most likely to contain instructions on how to make the
restoration.

4
Program

Development
Tools

RSX-11 users usually interact with applications via an online terminal.
To aid in the development of interactive and realtime applications,
RSX-11 users can:
• write, compile, task build, and test programs interactively, taking

advantage of the source code, object code, and macro and source
libraries

• design applications that require a high degree of data sharing,
intertask communication, and file manipulation

Users can directly control the operation of RSX-11 through the
operating system's command languages. Text editing facilities provide
for fast and easy data entry and modification.

INTRODUCTION
RSX-11M and RSX-11M-PLUS provide a complete pro­
gram-development environment. In addition to the
MACRO assembly language, they offer the optional high­
level languages commonly needed in applications: FOR­
TRAN IV, FORTAAN-77, PDP-11 COBOL, COBOL-81,
PDP-11 BASIC-PLUS-2, and CORAL 66.

RSX-11 M and RSX-11 M-PLUS provide the software tools
users need to develop programs quickly and efficiently.
These tools include:
• a choice of comprehensive command languages
• a HELP facility
• indirect command files

• a choice of editors
• a choice of language processors
• debugging aids
• system libraries
• a wealth of utilities such as:

a manipulation utility to copy, spool, and transfer
files between volumes
file-spooling utilities to handle the printing of files on
a lineprinter
programming utilities that allow programmers to
work with library files, to examine file contents, and
to print a listing of the contents of a file
program maintenance utilities to modify, patch, and
compare files

RSX-11 systems provide programmers with tools that sup­
port highly modular program and applications develop­
ment. By taking advantage of these tools, programmers
can build applications quickly and can easily modify and
extend them later.

SYSTEM COMMAND LANGUAGES
RSX-11 M and RSX-11 M-PLUS systems can have one or
more command line interpreters (CUs) installed. All RSX-
11 M/M-PLUS systems include MCA, the Monitor Console
Routine-the basic command line interpreter on RSX-11.
Many systems also include DCL-the DIGITAL Command
Language, and some systems support other CUs as well.
Both MCA and DCL are interactive, comprehensive, and
flexible command languages. Both include commands to
invoke most system tasks and utilities and to set and dis­
play certain system characteristics. In general, MCA com­
mands name tasks-PIP, for example, a utility used to
manipulate files (such as copying and typing them), while
DCL commands specify actions directly, as in the COPY
and TYPE commands.

MCA is the fundamental command line interpreter for the
RSX-11 M/M-PLUS operating systems. It provides the
most direct interface with both the ASX-11M and RSX-
11 M-PLUS operating systems.

In general, MCA commands must be entered in exact syn­
tax. MCA commands follow no set syntax rules, however.
Most MCA commands are terse abbreviations or mne­
monics.

DCL is an optional user-oriented CU included in most sys­
tems with many users. Commands in DCL are English

4-1

words that follow well-defined syntax rules. Full com­
mands are self-documenting. DCL is designed for consis­
tency and ease of use.

DCL is based on the command languages used on a num­
ber of DIGITAL's operating systems. In particular, RSX-
11 M/M-PLUS DCL is designed for compatibility with
VAX/VMS DCL.

DCL on RSX-11 M and RSX-11 M-PLUS systems is a CU
task that translates DCL commands into MCA commands
for execution by the system. The DCL SET DEBUG com­
mand displays on a terminal the MCA translation for any
DCL command.

Depending on the way they use the system and on the na­
ture of the system itself, users may find it more convenient
to use DCL or MCA, or both. All nonprivileged system
functions are available directly from DCL, but some privi­
leged functions are not. All program-development facili­
ties and all common utility functions are available from
DCL.

To issue an MCA command, the user types a command
string consisting of a command name and any required
parameter. A parameter can be a task name, the name of a
file, or a device specification. A DCL command line con­
sists of the command name, which is a verb describing the
action the system is to take, with optional qualifiers and
parameters to further define the action of the command.

Some DCL commands require parameters or arguments
as part of the command line. If the user fails to supply a
required command element, DCL supplies a prompt with
one or two words indicating the general nature of the re­
quired element. DCL will also supply help information
when a question mark is typed in response to a prompt.

As a simple illustration of how MCA commands differ from
DCL's, both of the following command lines will print a
copy of a file named TECSUM.TXT on the user's terminal.
The first example is from an MCA terminal; the second is
DCL.

MCR>PIP Tl:=TECSUM.TXT

DCL>TYPE TECSUM.TXT

The system displays MCA or DCL and the angle bracket
on the terminal as an explicit prompt for a command. To
explain the MCA command: PIP, the Peripheral Inter­
change Program, is a file manipulation utility. Tl: is the in­
put pseudo device that stands for the user's own terminal,
and the equals sign is required as part of the syntax. The
DCL command, on the other hand, is self-explanatory.

Tables 4-1 and 4-2 list the basic DCL and MCA com­
mands. To save input time, most commands can be
abbreviated; users need only type those characters
needed to distinguish the command or qualifier from all
others.

Because RSX-11 M and ASX-11 M-PLUS are designed to
be tailored to the needs of each installation, not every fea­
ture of DCL and MCA listed here is available on every sys­
tem. Some commands depend on layered products that
may not be available at a particular installation. Many fea­
tures, particularly those on RSX-11 M systems, are system­
generation options that may not have been selected at the
time the system was generated.

Table 4-1
DCL Command Summary*

General Session Information and Control
ASSIGN Associates a logical name with a physical

device, pseudo device, or other logical de­
vice.

ASSIGN/
REDIRECT

ASSIGN/
TASK

BROADCAST

DEASSIGN

HELLO

HELP

LOGIN

LOGOUT

MCR

REQUEST

SET

SET
[DAY]TIME

SET
DEFAULT

SET
DEVICE

SET LIBRARY I
DIRECTORY

SET
[NO] PARTITION

SET
PRIORITY

SET
PROTECTION

SET
SYSTEM

SET
TERMINAL

SHOW

Redirects output from one physical device
to another. (P)

Reassigns an installed task's Logical Unit
Numbers (LUNs) from one physical device
to another. (P)

Displays a specified message at one or
more terminals.

Disassociates logical names from physical
device names, pseudo device names, or
logical device names assigned by AS­
SIGN.

Grants access to a multiuser protection
system and establishes a user's privileges
on the system. Synonym of LOGIN.

Displays information about the system,
MGR, DCL, and most utilities.

Grants access to a multiuser protection
system and establishes a user's privileges
on the system. Synonym of HELLO.

Logs the user off a multiuser protection
system. It also aborts any active nonprivi­
leged tasks running from the terminal, as
well as dismounts any private devices allo­
cated from the terminal.

Enters an MGR command from a DCL ter­
minal without leaving DCL.

Sends a message to the operator's
console.
Defines or alters systemwide default char­
acteristics. These include:

Sets the system data and time. (P).

Establishes user's default device or UFD,
or both .

Establishes certain device characteristics.
(P)

Establishes RSX-11 M-PLUS directory
where the system utilities and other non­
privileged system tasks are kept. RSX-
11 M-PLUS only. (P)

Creates or eliminates a partition. (P)

Alters the priority of an active task. (P)

Establishes the protection status of files.

Establishes certain characteristics of the
system. (P)

Sets various attributes of a terminal.

Displays systemwide or terminal charac­
teristics and other system information.

•Certain aspects of the commands followed by the letter P In par­
entheses are available only to privileged users.

4-2

Volume and Device Resource Control
ALLOCATE Obtains exclusive ownership of device and

enables the user to assign a logical name
to the device.

BACKUP

DEALLOCATE

DISMOUNT

INITIALIZE

INITIALIZE/
UPDATE

MOUNT

File Manipulation
APPEND

CONVERT

COPY

CREATE

CREATE/
DIRECTORY

DELETE

DIFFERENCES

DIRECTORY

EDIT

EDIT/EDT

EDIT/SLP

PRINT

PURGE

RENAME

SORT

TYPE

Backs up and restores Files-11 volumes.

Frees a private device for use by others.
Counteracts ALLOCATE.

Marks the volume mounted on the speci­
fied device to be logically offline and dis­
connected from the system.

Produces a volume in Files-11 format.

Invokes the HOME utility to alter values in
the Volume Home Block without affecting
the other data in the volume.

Declares a volume to be logically known to
the system, online, and available for use.
Users can mount disk volumes, DECtapes,
or ANSI magtapes.

Appends records from one or more se­
quential files, or all records from within an
indexed or sequential file, to an existing
sequential file .

Invokes the RMSCNV utility, which moves
records from one file to another.

Copies the contents of a file or files. Unless
specified otherwise, COPY preserves the
file organization of the input file.

Creates a new file from data subsequently
entered in the input stream (user at termi­
nal or batch stream).

Creates a User File Directory on a FILES-
11 volume and enters its name into the vol­
ume's Master File Directory (MFD).

Deletes one or more files from a mass sto­
rage disk volume and releases the storage
space the files occupy.

Compares two ASCII (text) files line by line
and produces a listing of the differences
between the two files, in any.

Displays information (size, protection, ow­
nership, etc.) on a given file or set of files.

Invokes an editor. EDI is the default editor.

Invokes EDT, the DIGITAL standard editor.

Invokes the Source Language Input Pro­
gram (SLP), a program maintenance edi­
tor.

Queues files for printing on a lineprinter or
other spooled output device.

Deletes all but the latest version of a given
file or files and releases the storage space
the deleted files occupy.

Changes the name, type, or version of one
or more existing files.

Invokes the SORT-11 utility. Creates a file
by rearranging the records in a given file
based on the contents of key fields within
the records.

Prints selected files on the user's terminal.

UNLOCK Permits access to a file that was improp­
erly closed because a task aborted or
stopped execution while ttre file was open.

Program Development and Execution Control
ABORT Forces an orderly end to a running task or

to the action of a specific command.

BASIC/BP2

CANCEL

COBOL

CONTINUE

DEBUG

FIX

FORTRAN

FORTRAN/ F77

INSTALL

LIBRARY

LIBRARY/
COMPRESS

LIBRARY/
CREATE

LIBRARY/
DELETE

LIBRARY/
EXTRACT

LIBRARY/
INSERT

LIBRARY/
LIST

LIBRARY/
REMOVE

LIBRARY/
REPLACE

LINK

MACRO

REMOVE

RUN

Compiles given BASIC-PLUS-2 language
source modules, producing an object
module.

Eliminates entries from the clock queue.

Compiles given COBOL language source
modules, producing an object module.

Resumes execution of a previously sus­
pended task .

Forces an RSX-11 M-PLUS task to trap to a
debugger. RSX-11 M-PLUS only.

Causes an installed task or region to be
loaded and locked into memory. (P)

Invokes the FORTRAN compiler to compile
one or more source program. FORTRAN
IV is default.

Invokes the FORTRAN-77 compiler to
compile one or more source program.

Includes a task in the System Task Direc­
tory, thus making it known to the system.
(P)

Creates and maintains user-written library
files. Its functions include:

Physically deletes from a library modules
that have been logically deleted with LI­
BRARY /DELETE.

Creates a library and optionally inserts
modules into it.

Deletes object modules from the library.

Reads modules from a library and writes
them to a specified output file.

Inserts modules from one or more files into
a library.

Lists on the term inal or output file names
of modules in a library.

Removes global symbols (entry points)
from a library.

Replaces a module in a library with new
module of same name and deletes old
module.

Invokes the Task Builder, which links ob­
ject modules and routines from user and
system libraries to form an executable
task.

Assembles one or more MACR0-11
source files into a single relocatable object
module suitable for processing by the
Task Builder.

Gou nteracts INST ALL. Takes the task
name out of the System Task Directory. (P)

Initiates the execution of a task by instal­
ling, running, and removing upon execu­
tion a task from a task image file stored in

4-3

a user's UFO, a system UFO, or a library
UFO; and running immediately or on a
schedule a task previously installed by a
privileged user.

SET GROUP FLAGS Creates and deletes group global event
flags.

START Resumes execution of a task stopped by a
STOP$S directive.

START /UNBLOCK Continues execution of a task blocked by
the STOP/BLOCK command.

STOP/BLOCK

UNFIX

Blocks an installed running task. The task
no longer executes or competes for mem­
ory.

Frees a fixed task or region from memory.
(P)

Batch and Queue Operations
ASSIGN/ Assigns queues to print or batch proces-
QUEUE sors. (P)

DEASSIGN/
QUEUE

DELETE/
PROCESSOR

DELETE/
QUEUE

HOLD/ ENTRY

HOLD/ JOB

INITIALIZE/
PROCESSOR

INITIALIZE/
QUEUE

RELEASE/ENTRY

RELEASE/ JOB

SET QUEUE/ENTRY

SET QUEUE/JOB

SHOW PROCESSOR

SHOW QUEUE

START/
PROCESSOR

START/
QUEUE

START/
QUEUE/
MANAGER

Counteracts ASSIGN/QUEUE. (P)

Deletes print processors, output despool­
ers, or batch processors from the QMG
subsystem by processor name or device
name. (P)

Deletes a queue in the Queue Manager
(QMG) subsystem by name. (P)

Holds a QMG job in its queue by entry
number.

Holds a QMG job in its queue by queuen­
ame and jobname.

Creates, names, and starts an output de­
spooler, input spooler, cardreader proces­
sor, or batch processor. (P).

Creates, names, and starts a queue in the
QMG subsystem. (P)

Releases by entry number a print or batch
job that has been held in its queue.

Releases by queuename and jobname a
print or batch job that has been held in its
queue.

Modifies by entry number some attributes
of print or batch jobs once they are in a
queue.

Modifies by job name some attributes of
print or batch jobs once they are in a
queue.

Displays information about the batch proc­
essors, printers, and about other output
devices under control of the Queue Man­
ager.

Displays information about print jobs and
batch jobs.

Starts a batch processor, card reader
processor, printer or other output proces­
sor. (P)

Starts a QUEUE (P).

Starts the Queue Manager. (P)

STOP/ABORT

STOP/
PROCESSOR

STOP/
QUEUE

STOP/
QUEUE/
MANAGER

Stops the current job on a lineprinter im­
mediately.

Stops a batch processor, card reader
processor, printer or other output proces­
sor. (P)

Stops the queue; no jobs are taken off. (P)

Stops at the end of the current active job.
(P)

Table 4-2
MCR Commands*

System lnltlallzatlon and Maintenance Commands
ACS Allocate Checkpoint Space. Allocates or

discontinues the use of a checkpoint file
on disk. (P)

BOOT

BAK

BROADCAST

cu

DCL

OPEN

REDIRECT

SAVE

Bootstraps a new system into memory and
transfers control to it. (P)

Breakpoint to Executive Debugging Tool.
Passes control to the Executive Debugging
Tool (XDT). Valid only for systems with
generated XDT support. (P)

Broadcasts a message to one terminal or a
set of terminals.

Work with a command line interpreter
other than MGR.

Issues a DCL command from a terminal
set to MGR.

Open register. Displays on the terminal the
contents of a memory location for exami­
nation or modification. (P)

Redirects all 1/0 requests from one physi­
cal device to another. (P)

Saves the image of memory in the file from
which the system was booted. (P)

•Certain aspects of the commands followed by the letter Pin par­
entheses are available only to privileged users.

.... 4-4

SSM

SWR

System Service Message. Inserts text into
error log reports. (P)

Switch Register. Displays the current value
of, or sets or clears a bit, in the switch
register. RSX-11 M-PLUS only. (P)

General Session Information and Control
ACTIVE

ALLOCATE

ASN

ATL

BYE

CBD

CLQUEUE

DEALLOCATE

DEVICES

HELLO

HELP

LOGIN

LUNS

PARTITIONS

SET

TAL

TASKLIST

TIME

Displays on the terminal the names of the
active tasks requested .

Allocates a device to a user {establishes
the device as a user's private device).

Assign . Defines or deletes a logical device
assignment. Lists current assignments on
user's terminal.

Active Task List. Displays on the terminal
names and status information for active
tasks.

Logs the user off the system. It also aborts
any active nonprivileged tasks running
from the terminal, as well as dismounts
any private devices allocated from the ter­
minal.

Common Block Directory. Displays on the
terminal names and status information for
entries in the Common Block Directory (on
RSX-11 M-PLUS only).

Clockqueue. Displays information about
tasks in the clock queue.

Deallocates a private device. Complement
of ALLOCATE.

Displays on the entering terminal the list of
peripheral devices recognized by the sys­
tem.

Grants access to a multiuser protection
system and establishes a user's privileges
on the system. Synonym of LOGIN.

Displays the contents of a Help file.

Grants access to a multiuser protection
system and establishes a user's privileges
on the system. Synonym of HELLO.

Logical Unit Numbers. Displays on the en­
tering terminal the list of static LUN assign­
ments for a specific task.

Displays on the terminal a list of the parti­
tion definitions.

Alters or displays system, device, or task
characteristics.

Task List-A TL format. Displays on the
terminal the names and status of all tasks
in the system.

Displays on the entering terminal a de­
scription of each installed task.

Enters the time and/or date into the sys­
tem; display the time and date on the en­
tering terminal.

Volume and Device Resource Control
BRU Invokes utility that backs up and restores

Files-11 volumes.

DMOUNT Dismounts a volume by marking it for
dismount and releasing its control blocks.
Complement of MOUNT.

INITVOLUME

HOME

LOAD

UNLOAD

MOUNT

UFO

File Manipulation
CNV

CMP

SRT

PIP

PRINT

Initializes a disk, DECtape, or magnetic
tape to produce a Files-11 volume.

Invokes the HOME utility to alter values In
the Volume Home Block without affecting
the other data in the volume.

Reads a nonresident device driver into
memory(P).

Removes a loadable device driver from
memory. (P)

Mounts a volume online for access by the
disk or magtape file system.

Creates a User File Directory (UFO) In a
specific volume's Master File Directory
(MFD).

Convert. Invokes the RMSCNV utility,
which moves records from one file to
another.

Compares two text files line by line and
produces a listing of the differences
between the two files.

Invokes the SORT-11 utility. Creates a file
by rearranging the records in a given file
based on the contents of key fields within
the records.

Invokes the Peripheral Interchange Pro­
gram, a file transfer program that provides
ans for copying, concatenating, spooling,
renaming, listing, deleting, and unlocking
files.

Queues files for printing on a lineprinter or
other spooled output device.

Program Development and Execution Control
ABORT Terminates execution of a running task.

ALTER

BASIC

BLOCK

UNBLK

CANCEL

CBL

DEBUG

FIX

FLAGS

FORTRAN

INSTALL

LBR

Alters the priority of a task. (P)

Compiles given BASIC-PLUS-2 language
source modules, producing an object
module.

Blocks execution of a task.

Unblocks a previously blocked task. Con­
tinues execution of a task previously
blocked with the BLOCK command.

Cancels time-based Initiation requests for
a task (no effect on current execution).

Compiles given COBOL language source
modules, producing an object module.

Forces an RSX-11 M-PLUS task to trap to a
debugger. RSX-11 M-PLUS only.

Fixes a task in memory (task becomes
memory-resident). (P)

Creates, displays, or eliminates group-glo­
bal event flags.

Invokes the FORTRAN complier to compile
one or more source program.

Installs a task in the system. (P)

Creates and maintains user-written librar­
ies.

4-5

MACRO

REASSIGN

REMOVE

RESUME

RUN

TKB

UNFIX

UNSTOP

Assembles one or more MACR0-1 1
source files into a single relocatable object
module suitable for processing by the
Task Builder.

Changes LUN assignments. (P)

Removes a task from the system (comple­
ment of INSTALL). (P)

Resumes execution of a suspended task.

Initiates the execution of a task. The task
can run immediately, after a time delay, or
in synchronization with the system clock .
Periodic rescheduling is optional.

Explicitly invokes the Task Builder, which
links object modules and routines from
user and system libraries to form an exe­
cutable task .

Makes a memory-resident task nonre­
sident. Complement of FIX. (P)

Resumes execution of a stopped task.

Batch and Queue Operations
QUEUE/ Deletes a queue in the Queue Manager
DELETE (QMG) subsystem by name. (P)

QUEUE/HOLD

QUEUE/LIST

QUEUE/
LIST:DEVICE

QUEUE/
MODIFY

QUEUE/
RELEASE

User-Written CLls

Holds a QMG job in its queue by entry
number.

Displays information about print jobs and
batch jobs.

Displays information about the batch proc­
essors, printers, and about other output
devices under control of the Queue Man­
ager.

Modifies some attributes of print or batch
jobs once they are in a queue.

Releases by entry number a print or batch
job that has been held in its queue.

An RSX-11 installation may have special command-lan­
guage requirements that neither MCA nor DCL can meet.
So RSX-11 supports the capability of easily implementing
a custom command language interpreter that is specific to
an application. A CLI is an RSX-11 task, and, like any
other, it can be written in any RSX-11-supported program­
ming language. Users can write Clls without knowledge of
operating system internals. Nor is privileged "system"
code required. RSX-11 systems can support multiple Clls,
with the added convenience of each terminal being preset
for the desired CU.

Indirect Command Flies
To eliminate the need for typing frequently repeated se­
quences of commands, users can create an indirect com­
mand file-a text file that contains complete command
lines or a series of commands. When the user enters the
name of the indirect command file, the system processes
the command lines in the file just as if they were being
typed successively at the terminal.

Indirect command files also allow system queries, string
substitutions, multilevel indirect command files of up to

four levels, special symbol definitions, and an extensive
number of directives. Among other things, the directives
allow users to:

• define labels
• define and assign values to three types of sym-

bols-logical, numeric, and string
• create and access data files
• control the logical flow within a command file
• perform logical tests of internal and system states

• invoke subroutines
• determine if an invoked task exited successfully

• do arithmetic
• control time-based and parallel task execution

There are two types of indirect command files: indirect
task command files and indirect DCL/MCR command
files. An indirect task command file is a sequential file con­
taining a list of task-specific commands. Rather than
typing commonly used sequences of commands, the se­
quence can be typed once and stored in a file. The indirect
task command file is specified in place of the command
line normally submitted to the task.

An indirect DCL/MCR command file contains a list of DCL
or MCA commands. RSX-11 has an indirect file processor
for interpreting commands in a file. An indirect DCL/MCR
command file can contain both normal DCL/MCR com­
mands and special commands (known as directives) that
allow the user to program the execution of the indirect
command file.

Batch Jobs
In addition to executing indirect command files at a termi­
nal, an RSX-11 M-PLUS user can submit batch jobs. Batch
jobs are similar to indirect command files, except that the
user does not have to be present or even logged onto the
system when the batch job is run.

Batch jobs execute under the control of the Queue Man­
ager program. Because a batch job doesn't require the
user to be present, jobs that take a long time to run or
otherwise tie up system facilities can be run when there
are fewer demands on the system-at night or on week­
ends, for example. Users can submit a batch job and con­
tinue using their terminals for other work.

To create a batch job, a user enters batch-specific com­
mands, CLI commands, and data into a file. The
information contained in the batch job must duplicate a
complete interactive terminal session, including logging it­
self into the system, controlling operations, and logging it­
self off. Using the SUBMIT command, the batch job is then
submitted to the Queue Manager for batch processing.

Tasks called batch processors pass the commands in
batch jobs to the operating system. Commands to be
passed by the batch processor are the same as normal
system commands, except that they are preceded by .a
dollar sign ($). (The only exceptions are for LOGIN/HELLO
and LOGOUT /BYE-these are replaced by $JOB and
$EOJ, respectively.) Table 4-3 lists the batch-specific com­
mands.

4-6

Table 4-3
Batch-Specific Commands (RSX-11 M-PLUS only)*

SUBMIT

$CONTINUE

$DATA

$EOD

$EOJ

$GOTO

$IF

$JOB

$ON

$SET

$STOP

Queues QMG batch jobs consisting of one or
more user batch jobs for processing by a
batch processor.

A no-operation

Marks the beginning of a data block included
in the batch Job.

Signifies the end of data In the input block fol­
lowing a $DAT A command.

Marks the end of a batch job. EOJ performs
the same functions as the LOGOUT /BYE
command.

Transfers flow of control to a given labeled
line.

Transfers flow of control to a given labeled
line if the result of a logical comparison of
symbolic values is true.

Indicates the beginning of a batch command
file and provides job control Information (such
as time limit). Performs the same function as
LOGIN/HELLO.

Transfers flow of control to a given labeled
line if an error of a given severity or greater is
encountered at any time during command
procedure processing.

With special batch parameters, used to over­
ride $ON or to reinstate in.

Stops the batch job.

•Command names preceded by a $ are meaningful only in a
batch command file or command procedure. All other com­
mands listed in the DCL and MCA command tables above can
be issued as part of batch jobs both interactively and in a batch
command file.

The batch processor uses a software terminal called a
"virtual terminal" to pass commands and data to system
tasks. A batch job can do almost anything from a virtual
terminal that a user can do from an interactive terminal , in­
cluding compiling or assembling, taskbuildlng, and run­
ning tasks.

Users can submit batch jobs at any time the Queue Man­
ager is active. Batch jobs can run at any time as well.
System management controls the availability of batch
processing.

RSX-11 M-PLUS supports multistream batch processing.
Operations personnel can control the number of batch
streams that can run. An interactive user, a program, or
another batch Job can submit batch jobs. When the num­
ber of batch jo bs submitted exceeds the number of
streams, the remainder of the batch jobs are held in a
batch input queue. The operator can control the batch job
queue by changing job priorities, holding a job, or cancel­
ling a job.

Complete information on the progress of batch jobs is al­
ways available. Within specified limits, a user can specify
when a job should be run (during evening hours when de­
mands on the system are less, for example), and if the job
should be held, released, or deleted from its queue.

HELP
Users can get information about various aspects of an
RSX-11 M/M-PLUS system through the HELP command
or, for help on DCL-specific features, by typing a question
mark in response to any DCL prompt.

Typing HELP on the terminal displays a list of the HELP
files available." To get help on the TYPE command, for ex­
ample, the user enters HELP TYPE on the terminal. In such
an instance, the HELP text consists of a brief explanation
of the command followed by an illustration of the syntax.

System managers can create help files that can be made
available to all users, to provide information on special
aspects of their installations. In addition, users can create
local help files for their own use.

TEXT EDITORS
For fast and easy program data entry and modification,
RSX-11 M and RSX-11 M-PLUS provide a choice of text ed­
itors: EDI or EDT. Both feature automatic backup of input
files so that if a user accidentally deletes a large amount of
text, or if the equipment fails, the latest backup file is avail­
able for quick recovery.

The user invokes the EDI and EDT text editors interac­
tively; that is, the user creates and processes files online.

EDI Editor
EDI is a single-pass, line-oriented, interactive editor that is
used to create and maintain text and source files. EDI
accepts over 50 commands that determine its mode of op­
eration and control its actions on input files, output files,
and working text buffers. The commands are grouped into
the following seven categories:
• Setup commands select operating conditions, close and

open files, select data modes.

• Locator commands control the position of the current
line pointer and thus determine which text is acted upon.

• Text modification commands change text lines.
• Macro commands define, store, recall, and use se­

quences of EDI commands.
• File input/output commands transfer text to and from in­

put and output files and save flies.

• Device output <;ommands send output to the terminal or
printer.

• Close and exit commands terminate edit operations.

EDI editing functions are on a line-by-line basis. In block­
mode operation, EDI reads a block of text from the disk
file. A block contains only that amount of text that will fit
into the EDI buffer, and editing operations are performed
on the text that is in the buffer. When work on that block is
completed , a user requests the editor to renew the buffer
with the next block of text.

EDT Editor
EDT has two features that distinguish it from EDI:
• It provides unlimited access to an entire file at one time,

making it unnecessary to work with smaller sections of a
file, as is usually necessary with EDI.

• It provides character-mode editing for users with video
terminals. Character mode allows editing at the charac­
ter and word level , as well as at the line level.

4-7

EDT, the standard DIGITAL editor, is an interactive text ed­
itor that is particularly useful for entering and maintaining
text files. EDT is available on many DIGIT AL operating sys­
tems. It is especially powerful when used on DIGITAL's
VT100 and VT52 video terminals because it can take ad­
vantage of the editing keypad on these terminals. With
keypad mode, a single keystroke performs an entire edit­
ing function-for example, deleting, reinserting, or replac­
ing a word. Users can even redefine the functions of key­
pad keys (through key macros) to produce commonly
used operations.

In change mode on a VT100 or VT52, users can edit one
22-line window (screenful) at a time so that they can ob­
serve immediately the effects of any editing operations
performed. Instead of being restricted to the most recently
altered line, users can see a whole screenful of text and
can see the relationship of new and old lines. If the text is
longer then 22 lines, it can easily be scrolled through to get
to any other point in the file.

Fiienames and Flletypes
In naming files, users can uniquely identify a file by speci­
fying its filename and filetype, illustrated in the following
format:

filename.typ

The filename can be from one to nine alphanumeric char­
acters and can assume any name that is meaningful to the
user.

The filetype, a three-character identifier preceded by a
period, describes the nature of the file's contents. Al­
though the filetype can consist of any three alphanumeric
characters that are meaningful to the user, several file­
types have standard meanings. Some of the standard file­
types are:

Flletypes

.BP2

.CBL

.FTN

.MAC

.CMD

.DAT

.LST

.OBJ

.TSK

Default Use

BASIC-PLUS-2 source program

COBOL source program

FORTRAN source program

MACR0-11 source program

Indirect command file

Data file

Listing file

Object-module output from assembler or
compiler

Task-image file

PROGRAMMING LANGUAGES
All RSX-11 M/M-PLUS systems include the MACR0-11 as­
sem bier for programming the computer using its instruc­
tion set. A wide variety of language processors is option­
ally available to high-level language programmers:
FORTRAN IV, FORTRAN-77, PDP-11 COBOL, COBOL-81 ,
BASIC-PLUS-2, and CORAL 66. These are briefly dis­
cussed below and described further in Section 6.

PDP-11 FORTRAN-77 is a high-performance, optimizing
compiler and object-time system. Upward-compatible
from FORTRAN IV, FORTRAN-77 can interface with the
Record Management Services (RMS). It produces direct

PDP-11 machine code that is highly optimized for execu­
tion-time efficiency on a PDP-11 with a Floating-Point Unit.
FORTRAN-77 also can produce sharable code. FOR­
TRAN-77 conforms to the most recent ANSI FORTRAN
standard, X3.9-1978 (commonly referred to as FORTRAN-
77), at the subset-language level.

FORTRAN IV is based on the former ANSI FORTRAN stan­
dard (X3.9-1966). It is characterized by high compilation
speed and efficiency in small memory environments.

COBOL-81, a high-performance compiler that produces
compact object code, is designed for business systems
where high performance and ease of use are prime con­
siderations. It not only follows Level 1 of the 197 4 Ameri­
can National Standards Institute Standard X3.23-1974 very
closely, but it also implements many items planned for the
next release of the ANSI standard.

COBOL-81 provides features that are aimed at making
both COBOL programmers and COBOL programs highly
productive on both large and small PDP-11 systems. The
compiler's extensive library facilities and Interactive Sym­
bolic Debugger will increase programmers' productivity
and enable them to produce powerful applications pro­
grams. Where available, COBOL-81 takes full advantage
of the Commercial Instruction Set to generate even more
efficient object code.

PDP-11 COBOL is designed specifically for sophisticated
applications requiring rich functionality. Its high computa­
tional capabilities complement the system performance
capabilities of RSX-11 M and RSX-11 M-PLUS. It provides
industry-standard capabilities (as specified in ANSl-74,
X3.23-1974), advanced interactive symbolic debugging fa­
cilities, and packed-decimal data support. On the PDP-
11 /23-PLUS, PDP-11/24, and PDP-11/44, PDP-11 CO­
BOL takes advantage of the CIS to enhance performance
in data movement and packed-decimal arithmetic.
As a true compiler, PDP-11 BASIC-PLUS-2 significantly
improves the performance of compute-bound BASIC
applications. Fast program execution and a variety of ad­
vanced programming features make BASIC-PLUS-2 a
highly productive programming environment and make it
powerful enough for a wide variety of applications. It pro­
duces files that can interface directly to the RMS record
management system, enabling users to create files, do
record mapping, and access records sequentially, ran­
domly, or by key. BASIC-PLUS-2 also has a CALL state­
ment that allows programmers to access external subrou­
tines . A number of BASIC-PLUS-2 statements allow
interactive observation and control of program execution.
PDP-11 BASIC-PLUS-2 is compatible with VAX-11 BASIC.
CORAL 66 is a high-level block-structured programming
language. It is the standard general purpose language
prescribed by the British government for realtime and
process control applications. The language is designed to
replace assembly level programming in industrial and
commercial applications.

RECORD MANAGEMENT SERVICES
The Record Management Services (RMS) are a collection
of services that extend the programming languages by
providing general purpose file- and record-handling capa­
bilities. Programmers use RMS to handle record 1/0 within
programs.

4-8

RMS routines provide an efficient and flexible means of
handling files and their data. RMS enables programmers
to choose the file organization and record access method
appropriate for the data processing application. The file
organization and record access method are independent
of the language in which they are programmed. Every pro­
gramming language, including COBOL, BASIC-PLUS-2,
and FORTRAN-77, uses RMS to process files that are or­
ganized to provide sequential, random, or multikeyed in­
dexed record accessing. For further Information on RMS
and the system's data management capabilities, refer to
Section 7.

DEBUGGING AIDS
Debugging aids include an Online Debugging Tool (ODT),
a Postmortem Dump (PMD), and a Snapshot Dump
($SNAP) facility to assist in identifying faulty code in a pro­
gram.

Online Debugging Tool
ODT allows interactive control of task execution. Program­
mers specify to the Task Builder that they want a debug­
ging aid included in a task.

When a task that includes ODT is run, execution begins at
the ODT transfer address, rather than at the task starting
address. Therefore, ODT gains control and allows users to
type special commands that establish base addresses and
that set breakpoint locations within the task. After users
tell ODT to begin task execution, ODT saves the instruc­
tions at the breakpoint locations specified and replaces
them with PDP-11 breakpoint (BPT) instructions. ODT en­
ables the SST (Synchronous System Trap) entry point in
the task. Upon encountering a BPT instruction in the task,
the Executive passes control to ODT at its breakpoint rou­
tine. ODT saves task registers in special locations,
restores instruct ions to the breakpoint locations, and
transfers control to the user's terminal. By typing ODT
commands, users can examine and alter any instructions
or data within task memory.

If a task generates an SST error, ODT gains control at its
SST entry point, prints a notice at the user terminal, and
passes control to the terminal. The ODT commands can be
used to discover the cause of the error, correct it, and per­
haps continue executing the task.

Postmortem Dump
PMD is directed by the Executive to extract runtime­
related data pertaining to a terminated task, to format it,
and to request a printed listing. PMD requires that the Exe­
cutive option for abnormal task termination and device­
not-ready messages be selected at system generation.
Normally, when a task generates an SST, such as what
would be caused by an improper reference to an odd ad­
dress or a reference to a nonexistent memory location , the
Executive tries to transfer control to an SST entry point de­
fined by the task. If the task does not have an SST routine
defined for the particular type of trap, the Executive begins
task termination.

By enabling Postmortem Dumps for a task that does not
handle SSTs, users tell the Executive to supply more data
at abnormal task termination. In other words, the Execu­
tive follows the abort procedure and, in addition, creates a
request for PMD to create the dump. PMD examines

system and task structures to preserve status and runtime
data, reads the task image from memory, and writes it to
disk in a readable format. PMD then queues a request to
print the file containing the dump data, after which the Ex­
ecutive completes the task abort procedure.

Snapshot Dump
$SNAP generates an edited dump of a running task. The
snapshot dump requires users to insert special code in a
task. Although more complex than PMD, $SNAP allows
users to choose the location at which the dump is created
and to select the extent and format of the dump. In addi­
tion, users can generate the dump from more than one lo­
cation and can, therefore, generate as many as are
needed during task execution.

It is often useful to include such debugging facilities as
$SNAP in a task based on defining a conditional variable.
The facility can be included, while debugging, by defining
the variable. The facility can then be omitted by reassem­
bling the code with the conditional variable undefined.

PROGRAM DEVELOPMENT UTILITIES
Several kinds of utilities are helpful in program develop­
ment. These utilities are programs that allow programmers
to work with different kinds of files and the contents of
those files. Utilities can be invoked from either the
DIGITAL Command Language (DCL) or the Monitor Con­
sole Routine (MGR) environment.

Fiie Manlpulatlon Utllltles
DIGITAL provides many file manipulation utilities, two of
which are the Peripheral Interchange Program (PIP) and
the File Transfer Program (FLX). With these utilities, users
can, among other jobs, copy and spool files and transfer
files between volumes.

Peripheral Interchange Program - PIP transfers data
files from one standard Files-11 device to another. PIP
also performs file control functions. Some of the functions
PIP performs are:
• copying files from one device to another

• deleting files

• renaming files
• listing file directories
• setting the default device and UIC for PIP operations

• unlocking files

• spooling files

• specifying file protection values

Fiie Transfer Program - FLX transfers files with different
formats from one volume to another. In addition, FLX con­
verts the format of the transferred file to conform to the
format of the target volume.

FLX allows users to:
• list directories of cassettes, DIGITAL's RT-11, or DOS-11

volumes
• delete files from DOS-11 and RT-11 file-structured

volumes
• initialize cassettes, RT-11, or DOS-11 volumes

4-9

FLX performs file transfers and format conversions as ap­
propriate from:

• DOS-11 to Files-11 volumes
• Files-11 to DOS-11 volumes

• DOS-11 to DOS-11 volumes
• Files-11 to Files-11 volumes

• Files-11 to RT-11 volumes

• RT-11toRT-11volumes

• RT-11 to Files-11 volumes

Fiie Spooling Utllltles
File spooling (Shared Peripheral Operations Online) for
RSX-11 M can include either the Queue Manager or the
Serial Despooler Task. The choice of either tool is made at
system generation. RSX-11 M-PLUS supports only the
Queue Manager.

Spooling on RSX-11 M and RSX-11 M-PLUS is gathering
output on a mass storage device-usually a disk-to be
sent to an output device-particularly a lineprinter-in an
orderly fashion. Despooling is the orderly transfer of this
output from the mass storage device to the output device.

Users can spool files by using the PRINT command. Files
spooled by tasks will also be queued automatically. With
command qualifiers, attributes can be set for the job, and
the queues can be displayed. Users can alter, hold, or re­
lease a job after it has been placed in a queue.

The Queue Manager is a collection of programs that pro­
vides for the orderly processing of queued files. The
Queue Manager allows users to specify how, when, and
where a file will be despooled and to display information
about the queue. It controls the printing and provides all of
the services of the Serial Despooler, plus much more. On
RSX-11 M-PLUS only, the Queue Manager also supports
batch processing. The Queue Manager is discussed in
greater detail in Section 5.

The PRINT Command - The PRINT command spools
print jobs and places them in a queue controlled by the
Queue Manager for despooling. The most common use of
this command is printing files on the system's lineprinter.
Switches on the PRINT command can specify many attrib­
utes of the print job, including:
• the time when the spooling is to be done
• the device that is to accept spooled output

• the queue priority of the job
• the restartability of the job

• the forms the job is to be printed on
• the number of lines per page
• the number of copies of each file that are to be printed

• whether the job should be deleted after spooling

The Queue Manager maintains, on disk, the queue of jobs
to be printed. If the system is shut down, or 'if it crashes,
none of the files that are yet to be printed are lost.

Print spooling under RSX-11 M-PLUS has the additional
capability of transparent spooling, wherein output to the
lineprinter is transparently written to disk. When the fire is
closed it is automatically queued to the lineprinter.

The following example illustrates the difference between
spooling a file on RSX-11M and the transparent spooling
on RSX-11 M-PLUS. The commands are MCA commands.

On RSX-11M:

>DMP FILE.LST/SP=FILE.TMP
>PIP FILE.LST;*/DE

On RSX-11 M-PLUS:

>DMP LP:=FILE.TMP

The Serial Despooler Task - The Serial Despooler Task
provides a more primitive means of eliminating contention
for the system lineprinter. Rather than waiting for the
lineprinter to become available, a task directs the output
intended for the lineprinter to a disk file. The task issues a
Send Data directive to the serial despooler, placing a data
block that identifies the file to be spooled in the serial de­
spooler queue. A request directive is then issued by the
task to activate the serial despooler, in case it is not
already active. The serial despooler handles FCS-created
files, but RMS files can be read only if they are sequential .
All files identified in the serial despooler queue are printed
in first-in/first-out (FIFO) order.

With the serial despooler, users must use the PIP /SP
switch to send files to the lineprinter.

Programming Utllltles
RSX-11 supports two programming utilities-the Librarian
Utility Program and the File Dump Utility-that allow users
to work with library files and to examine file contents.

Librarian Utility Program - The Librarian Utility Program
enables users to create, update, modify, list, and maintain
object, macro, and universal library files. Library files,
direct access files that usually contain modules of the
same type, are organized for rapid access by the Task
Builder, the MACR0-11 assembler, and the system library
routine.

The Librarian is invoked interactively via DCL or MCA
commands. Once the Librarian is invoked, users csn work
with it directly or by means of indirect command files. This
provides users with fast entry-point search time, easy up­
date with minimal copying of entire files, and the ability to
handle multiple module types.

There are two library types as defined below:
• macro libraries

• object libraries

DIGIT AL makes system directives and system-related fea­
tures available through calls. Definitions for the calls
reside in macro libraries. The libraries are stored in a pre­
defined file area known as the User File Directory (UFO).
The UFD is located on the system library device.

To use these libraries, a user supplies in the source code
the appropriate names of the modules as parameters of a
MACR0-11 directive. This action tells the assembler to
generate an entry for that call in its macro-symbol table
and to search the appropriate library for the definition of
the macro symbol.

These libraries provide the code that enables a task to
issue system directives and to obtain File Control Services
(FCS); allows software to refer to offsets for the Executive

4-10

data structures; and provides the definitions for Record
Management Services (RMS) calls for sequential and rela­
tive file 1/0.

On RSX-11M and RSX-11M-PLUS, system objectlibraries
provide general utility functions and special purpose Exe­
cutive features. These libraries, like the macro libraries,
reside in the UFD on the system library device.

System library routines reduce program development time
and decrease the use of memory by making routines that
perform the following functions available to all users:
• save and restore register contents for control transfer to

subroutines

• perform integer and double-precision multiplication and
division

• convert ASCII input data to binary and Radix-50 format,
and vice versa

• convert and format output data to produce text for a
readable printout or display

• manage memory and disk-file storage, to accommodate
tasks that requ ire large amounts of memory for data that
must be transferred between memory and a disk work
file

• obtain a command line from a terminal, indirect com­
mand file, or an online storage medium

• separate a command line into whatever appropriate
dataset descriptions are required by the file system for
opening a file

• separate a user-defined command line with user-
defined command syntax that includes built-in variables

Fiie Dump Utlllty - The File Dump Utility (DMP) program
produces a printed listing of the contents of a file or vol­
ume. The listing can be directed to any suitable output de­
vice-lineprinter, terminal, magnetic tape, DECtape, or
disk. DMP runs in two modes: file mode and device mode.

In file mode, one input file is specified, and all or a range of
virtual blocks of the named file is dumped. A virtual block
refers to a block of data in a file. Any Files-11-structured
volume serves as the input device for DMP.

In device mode, only the input device is specified , and a
specified range of logical blocks is dumped. A logical
block refers to an actual block on disk and DECtape, and
physical records on magnetic tape and cassette.

Program Maintenance Utllltles
Program maintenance includes modifying, patching , and
comparing files. The four program maintenance utilities
are the File Compare Utility, Source Language Input Pro­
gram, Object Module Patch Program, and the Task/File
Patch Program.

Fiie Compare Utlllty - The File Compare Utility (CMP)
compares two ASCII text files, line by line, to determine
whether parallel records are identical. Using CMP, a user
can:
• generate a listing showing the differences between the

two files. Each difference is listed as a pair; first, the lines
from the first file that are being compared to lines in the
second file, then the lines from the second file.

• generate a listing in the form of one list, with differences
marked by change bars.

• generate output suitable for input to the Source Lan­
guage Input Program (SLP) utility (described below).
This output contains the SLP commands and the input
that is required to make the first input file identical to the
second input file.

Source Language Input Program - The Source Lan­
guage Input Program (SLP) is used for source-file mainte­
nance. SLP maintenance is usually performed on the most
recent version of the source file, ensuring that the file con­
tains the latest updates and corrections. An optional audit
trail in the output file allows a user to keep a record of
changes to the software.

With SLP a user can:
• update (delete, replace, add) lines in the existing file
• create source files

• run indirect command files containing SLP edit
commands

Both an input file to be updated and command input that
consists of text lines and edit command lines specifying
the update operations to be performed are input to SLP.
To locate lines to be changed, SLP uses locators that are
specified as line numbers or character strings. Command
input can come directly from a user's terminal or from an
indirect command file that contains commands and input
lines that are to be inserted into the file. SLP accepts data
from any RSX-11 M/M-PLUS file-structured device.

SLP output is a listing file and an updated input file. SLP
provides an optional audit trail that helps keep track of the
update status of each line in the file. Unless suppressed,
the audit trail is shown in the listing and is permanently
applied to the output file.

Object Module Patch Program - The Object Module
Patch Program (PAT) allows a user to update or patch
code in a relocatable object module. Input to PAT consists
of two files, an input file and a correction file. The input file
consists of one or more concatenated object modules that
are connected individually by PAT. The correction file con­
sists of object code that, when linked by the Task Builder,
either overlays or is appended to the input object module.
Unlike the Task Builder and patching options (described
below), PAT allows users to increase the size of the object
module, because the changes are applied before the mod­
ule is linked to the Task Builder.

PAT uses corrections and/or additional instructions in the
correction file to update the object module. Correction in­
put is prepared in source form and then assembled by the
MACR0-11 assembler. Output from PAT is the updated
input file.

Task/Fiie Patch Program - With the Task/File Patch Pro­
gram (ZAP), users can directly examine and modify files
on a Files-11 volume. Users can patch data files or task
images interactively without having to reassemble and re­
build the task.

ZAP performs many of the functions performed by the
RSX-11 Online Debugging Tool (ODT), including:
• command-line switches that allow access to specific

words and bytes in a file, modify locations in a task im-

4-11

age, list the disk-block and address boundaries for each
overlay segment in a task disk image, and open a file in
read-only mode

• a set of internal registers that include eight Relocation
Registers

• single-character commands that, in combination with
other command-line elements, allow users to display,
open, close, and manipulate the values in task images
and data files

Except in read-only mode, the results of ZAP commands
are permanent. By using ZAP commands on a hardcopy
terminal, users are assured a record of changes made
during the patching process.

Using maps generated by the Task Builder, as well as list­
ings generated by MACR0-11, users have sufficient infor­
mation to make the required patches rapidly.

RTEM-11 RT-11 EMULATOR
RT-11 is DIGITAL's single-user operating system for real­
time applications and program development. It is
supported on most PDP-11 systems. With RTEM-11, RSX-
11 M and RSX-11 M-PLUS systems can be used to develop
applications programs to run on RT-11 systems.

RTEM-11 is an optional RT-11 emulator that provides the
RT-11 program-development environment on RSX-11 M
and RSX-11 M-PLUS systems. Several users can develop
RT-11 applications concurrently on an RSX-11 host sys­
tem. Users can create, edit, assemble, and link programs
using RTEM-11 and then execute these programs on an
appropriately configured RT-11 system. Programs devel­
oped with RTEM- 11 execute on RT-11 systems the same
way they would had they been developed on RT-11.

Most programs developed on RTEM-11 can also be de­
bugged and tested on RTEM-11. The execution environ­
ment supplied with RTEM-11 is Foreground/Background
only.

HARDWARE FOR PROGRAM DEVELOPMENT
There are three types of devices available for program
development: disks, terminals, and lineprinters. This sec­
tion briefly introduces these devices. For further informa­
tion on peripherals, refer to Section 9.

Unless programmers are writing specially tailored code for
these devices, the system software handles them trans­
parently through such mechanisms as the print spooler
and PIP.

Disks
Disks are the main storage medium on RSX-11 M and
RSX-11 M-PLUS. Disk drivers are either public (accessible
to all users) or private (accessible to a restricted set of
users). Almost all utility programs work with disk storage
as a default device. Public disk resources can be shared to
create source-program files and, as needed, to allocate a
user's own private drive to store reserved copies of source
and documentation files .

Terminals
Terminals are the means by which users communicate
with the system. Users input to the system through a
typewriter-Ii ke keyboard. The system returns output to
them either on a screen at a videodisplay terminal or on

paper at a hardcopy terminal. Videodisplay terminals are
more convenient because they typically operate at faster
rates than hardcopy devices. Hardcopy terminals, how­
ever, have the advantage of providing a record of what
transpired during a session on the system.

Terminals are connected to the computer through either
direct lines or modem units over dialup telephones.

Line printers
Lineprinters provide hardcopy output of data. On larger
systems, users communicate with the lineprinter through
intermediate software called spooling programs. On
smaller systems, users can explicitly specify the lineprinter
device to which the output should be spooled .

OVERVIEW OF PROGRAM
DEVELOPMENT PROCESS
The following figure illustrates (using MACR0-11) the
steps in the program development process.

CORRECT
SOURCE

F1LE y

APPLY SOURCE
CORRECTIONS
AS NHOEO

Figure 4-1

}

CREATING ANO
FORMATTING

MACI0-11
MACRO SOU RCE

llUARY FILE FILES
IOfF.4ULTi A.SXMAC.SML

}.

ASSEMILING
ANO

OHECTING
A PROGl'*"M

MOOULE

O IJECT
lt&RARY FILE

IDEFAULT=SVSU l .OLll

ANO
TESTING A

}

OUILl>NG

SYMIOl DEFINITION TASK
FILE I Sl&I

}

IWNNING
ANO

DUUGGING
A TASIC

Overview of the Program Development Pr9cess

4-12

The steps normally taken to prepare a program to run on
the system are:
1. Create a source program in a file on a disk.
2. Submit the source file to a language processor (as­

sembler or compiler) to produce an object module.
3. Submit the file (or files) containing the object module

to the Task Builder to create a file containing a load­
able task image.

4. Request the Executive to execute the task.

A language processor creates the file of relocatable object
code. MACR0-11, as an assembly language, also
accesses the system macro library to include code for sys­
tem directives in the object file. Compilers invoke system
directives through ci;ills to subroutines in the system object
library.

The Task Builder creates the file of loadable code assum­
ing certain defau lt conditions about the runtime environ­
ment and building these characteristics into the task. The
Task Builder also accesses system and user-specified
libraries, to resolve references in the task.

Once a task image is created, a user requests the Execu­
tive to run the program. If any errors are encountered, the
user must edit the source file, reassemble or recompile ,
build a new task image, and try again.

5
System

Management
and

Maintenance

RSX-11 operating systems provide users with a wide variety of system
utilities and tools designed to make system management,
maintenance, and operation easy and efficient.

These tools include programs to monitor and control system use,
authorize users, grant or restrict privileges, tune system performance,
supervise day-to-day operations, and perform system backup and
recovery and file restoration. Extensive tools are provided to test and
maintain system and volume reliability. In addition, on RSX-11 M-PLUS,
system-management personnel controls batch processing and can run
programs that perform shadow recording and resource accounting.

INTRODUCTION
System-management personnel are responsible for over­
all system control, operation, and maintenance. RSX-11
supports a wealth of programs to test, monitor, maintain,
and customize RSX-11 operating systems during and after
system generation.

These programs let system management create and main­
tain a list of valid users and User Identification Codes,
broadcast messages to all terminals, and stop the system
after issuing timed warning messages.

The indirect command-file processor (discussed in Sec­
tion 4) allows all regularly scheduled maintenance activi­
ties to be stored as automated command sequences.
Using the automatic scheduling feature of the RUN com­
mand, these procedures can be initiated automatically at
specified intervals.

The system manager often designates one or more users
to perform operator functions. A system does not require
an operator, but it can have one or several persons per­
forming operation functions that include:
• system startup and shutdown

• task control (changing task priorities and killing tasks,
for example)

• device allocation
• volume mount and dismount request servicing

• online disk and magnetic-tape volume and file backup

• software maintenance update installation

• diagnostic execution

An operator uses a command language to control opera­
tions, check system status, and run utility programs.

SYSTEM GENERATION AND SHUTDOWN
The system generation utility, called SYSGEN, lets an op­
erator define the specific hardware configuration and
select software options. Through an online, interactive,
question-and-answer session, the operator can develop a
system tailored to the application's requirements. The
answers to many of SYSGEN's questions are saved in a
file. Later, the saved answer file can be used to modify the
system, if its features need to be changed, or to generate
another RSX-11 system with the same capabilities.

SYSGEN contains two options that can ease the operator's
involvement in the system-generation procedure and can
minimize the number of questions to be answered. The
Autoconfigure program probes the hardware configura­
tion and, in most cases, provides SYSGEN with a complete
and accurate hardware configuration. This can eliminate
the need to answer most or all of the SYSGEN questions
concerning peripheral devices. On RSX-11 M, the Stan­
dard Function System option and, on RSX-11 M-PLUS, the
Full-Functionality option produce a mapped operating
system with most operating-system capabilities automati­
cally. If these options are used, the number of SYSGEN
questions is reduced dramatically.

User Environment Test Package
Once the SYSGEN process is complete, the User Environ­
ment Test Package (UETP) verifies the integrity and oper­
ation of the newly generated RSX-11 M/M-PLUS system.

5-1

UETP consists of several indirect command files that verify
the presence and operation of devices, test the basic Exe­
cutive features, and verify the presence of system utilities.

UETP consists of five test modules:
• Load Test

• 1/0 Exerciser Test

• Utilities Test

• MCA Command Test

• Interactive Utilities Test

The operator can select which of these tests to run, can in­
dicate how many times to run UETP, can select or omit ex­
tended comments at the start of each test, and can
exclude specific devices from testing.

Virtual Monitor Console Routine
The Virtual Monitor Console Routine (VMR) is a system
program that allows complete interactive configuration of
an RSX-11 system.

Containing a subset of the Monitor Console Routine (MCA)
commands, VMR is used to make the same changes to the
system image file on a disk that can be made to the run­
ning system with MCA. Some of these changes include
setting the size of pool, creating partitions, loading and un­
loading drivers, and installing and fixing tasks. The advan­
tage of using VMR is that a system image file can be
almost completely configured online before it is booted.

The use of VMR on RSX-11 M, RSX-11 M-PLUS, and
VAX/VMS systems to generate an RSX-11 S system is dis­
cussed in Section 3.

The SHUTUP Program
With the SHUTUP program, a privileged user can shut
down an RSX-11 system in an orderly fashion. SHUTUP
prompts for the number of minutes to wait before shut­
down, the number of minutes between shutdown mes­
sages, and the number of minutes to wait before disabling
logins.

Before halting the system, SHUTUP performs such
cleanup functions as logging off all logged-in terminals;
submitting a user-written SHUTUP indirect command file
for execution; stopping, if present, the Queue Manager,
Console Logger, and Error Logger; deallocating check­
point space; and dismounting devices.

USER AUTHORIZATION
Multiuser protection, a system-generation option, allows
RSX-11 M/M-PLUS installations to monitor and control in­
dividual users of the system. This option protects against
destructive interference among users.

Use of an RSX-11 M/M-PLUS system is controlled by set­
ting up accounts. RSX-11 M and RSX-11 M-PLUS provide
an Account File Maintenance Program for the creation and
maintenance of a multiuser account file.

User Identification Codes
System management assigns each RSX-11 M/M-PLUS
user a two-number identification code. Called a User Iden­
tification Code (UIC), it is enclosed in brack,ets and used
(with password) for logging in. The number is in the form
of <g,m>. with "g" giving the user's group number, and

"m" giving the user's member number. Under RSX-11 's
default file protection setup, users with the same group
number can use each other's files without hindrance.

The group number also determines whether the user is
privileged or non privileged: a group number of ten or less
signifies a privileged user. Installations usually have only a
few privileged users. The system manager and the opera­
tors are always privileged. Privileged users have access to
every part of the operating system. Nonprivileged users
can use most of the operating system, but they cannot
change it. Nonprivileged users can issue a DCL SHOW
TIME command, for example, and the system will respond
with the currently set date and time. Privileged users can
issue a SET TIME command to change the system time.
Whenever a user tries to log onto a system, the system
checks the account file and determines whether or not the
user should be allowed access to the system. The account
file describes all the UICs that have been authorized for
use and their privileges. One UIC can have several users,
each having their own password.

Account Fiie Maintenance Program
The Account File Maintenance Program (ACNT) is an in­
teractive program that allows a privileged user-usually
the system manager or an operator-to:
• create the account file
• add new accounts to the file
• examine. individual account entries
• modify individual account entries
• list all the account entries in the file
• delete an account from the file

When activated, ACNT lists the options and requests the
user to select one. According to the option selected, it
responds by requesting further Input or by displaying in­
formation.

Each account entry includes the following information:
• the UIC
• the password
• the user's system device
• the first and last name
• the date and time of user's most recent login
• the number of times the user has logged into the system
• the default command language interface (CLI)

Nonprivileged users can run the ACNT program to change
the account entry descriptions or to change their own
passwords.

RSX-11 M-PLUS account entries also include a session
identifier and a user account number. RSX-11 M-PLUS
maintains a record of CPU time per user, connect time,
and number of pages printed. This information can be
processed through user-supplied routines like a billing
program.

Data privacy and system security are based on the UIC as­
signed by system management, volume protection codes,
and file protection codes. These are discussed in Section 3
and Section 7.

5-2

MONITORING SYSTEM USE
RSX-11 M and RSX-11 M-PLUS include tools that monitor
how a system is being used. Systems management and
users can then use this information to take best advantage
of the system's resources.

Resource Monitoring Dlsplay
The Resource Monitoring Display (RMD) provides infor­
mation about the active tasks in the operating system and
the availability of system resources. This information in­
cludes the active tasks, their location in memory, the
amount of memory they occupy, and available pool space.
AMO generates dynamic displays on video terminals and
"snapshot" displays on hardcopy terminals.

The information is presented in easily comprehensible
graphic form. AMO can also help locate certain system
lockout problems or bugs in an application and/or system­
level software.

Software Performance Monitors
SPM-11 M and SPM-11 M-PLUS are high resolution, low
overhead, event-driven performance monitors. Optionally
av~ilable to run under RSX-11 M and RSX-11 M-PLUS,
these monitors allow users to access the impact of individ­
ual tasks on system resources, to determine which tasks
use the greatest amount of resources and which tasks wait
the longest for resources. Users can also identify re­
sources used heavily by the total system workload, to aid
in locating bottlenecks. A flexible set of controls for data
collection allow the user to measure and generate reports
on usage and waiting times for the CPU, memory, 1/0 de­
vices, the file system, and the task loader.

Resource Accounting
On RSX-11 M-PLUS systems, Resource Accounting, a sys­
tem generation option, provides a transaction file of sys­
tem usage information. Accounting gathers data for both
the user and the system. With this data, system manage­
ment can bill individual users for the used resources and
can measure overall system usage.

Resource Accounting gathers and saves in the transaction
file information about the following topics: users; tasks;
system; logons and invalid logons; device allocation, deal­
location, mount, and dismount; print jobs; card reader
jobs; system time changes; and device usage.

Console Logger
The Console Logger consists of a driver and the Console
Output Task (COT) that handle 1/0 to the console output
device and that record time-stamped system messages on
a terminal or in a log file or both. Support for console log­
ging is a SYSGEN option.

The COT handles messages sent to the console device. It
allows the system manager to forward messages to an
alternative terminal or to a file. The system manager can
also forward messages to the console device or logging
device. The Console Driver sends all messages to COT,
and COT forwards them to the selected terminal or logging
device. The Console Driver and COT are supported on
mapped RSX-11M systems and on all RSX-11M-PLUS
systems.

'\

MAINTAINING VOLUMES
With RSX-11 's many volume maintenance facilities, users
can back up files onto disks and tapes, locate bad blocks
on the volumes, consolidate disk data storage area, and
verify the contents of the volumes. In addition, users on
RSX-11 M-PLUS systems can back up all information as it
is being written to a Files-11 disk by utilizing Shadow Re­
cording.

Disk Volume Formatter
The Disk Volume Formatter (FMT) formats and verifies
disk cartridge, disk pack, fixed-media disk, and flexible­
disk volumes under an RSX-11 M/M-PLUS operating sys­
tem that includes online formatting support, which is a
SYSGEN option.

The disks can be completely formatted in normal operat­
ing mode or formatted on an individual sector basis in
manual operating mode.

In general, FMT performs the following :
• writes a complete header for each section of the disk it is

formatting

• verifies the address contents of each sector header

• sets the density for DIGITAL's RX02 floppy diskettes

• lets the user specify an error limit for the volume being
formatted (FMT terminates processing if the error limit is
reached)

• lets the Bad Block Locator utility to be run (spawned) if
the system permits spawned tasks

Bad Block Locator
The Bad Block Locator (BAD) utility tests disks and DEC­
tapes for the location and number of bad blocks and re­
cords this bad-block information on the volume. The MCA
INI (initialize volume) command is then used to allocate the
bad blocks to a specific file. The bad blocks are marked as
"in use" and thus cannot be allocated to other files.

BAD supports any last-track device, as well as vendor­
supplied cartridges that do not have a prerecorded manu­
facturer's bad-sector file on the last track. Users can use
BAD in its task version, which runs at the same time as
other tasks, or in its stand-alone version, which runs by it­
self on the computer. The stand-alone version must be
used if the system has only one disk drive.

Bad Block Replacement Control Task
The Bad Block Replacement Control Task (ACT) handles
bad-block replacement and recovery on Mass Storage
Control Protocol (MSCP) disks like the RASO or RA81 .
Bad-block handling on MSCP disks consists of four
stages: detection, notification, replacement, and revector­
ing .

The disk controller (UDA50) detects bad blocks and noti­
fies the driver. The driver activates ACT. ACT performs all
the bad-block replacement functions that enable the con­
troller to revector (redirect) 1/0 from the bad block to the
replacement block.

ACT performs the following bad-block replacement
functions :
• stores data from the bad block

• allocates a replacement block

5-3

• updates data structures on the disk
• initializes the replacement block

ACT also performs replacement and recovery on MSCP
disks that went offline during bad-block replacement or
before the contents of a write-back cache were copied to
the disk. If ACT determines that bad-block replacement
was partially completed when the disk went offline, ACT
completes the bad-block replacement process. If ACT de­
termines that the write-back cache was not copied to the
disk before the disk went offline, ACT software write-locks
the disk so that the contents of the write-back cache are
preserved.

Backup and Restore Utlllty
With the Backup and Restore Utility (BAU), users can back
up and restore Files-11 volumes. BAU transfers files from
a volume to a backup volume (or volumes), to ensure that
a copy of the files is available in case the original files are
destroyed. If the original files are destroyed, or if for any
other reason the copy needs to be retrieved, users can re­
store the backup files with BAU commands. Users can run
BAU either at the same time as other tasks or stand-alone.

Backup and restore operations that take place on disk and
tape volumes are:
• disk to tape-for backup operations

• tape to disk-for restore operations

• disk to disk-for either backup or restore operations
In addition to these basic data transfer functions, BAU pro­
vides command qualifiers to:
• initialize disks

• perform selective backup and restore operations
• control such tape processing as density, length , ANSI

tape labeling, rewinding, and appending

• perform volume and data checking
• display such information as backup set names and file

names

BAU reallocates and consolidates the disk data storage
area. It concatenates files and their extensions into con­
tiguous blocks whenever possible, and it can reduce the
number of retrieval pointers and file headers required for
the same files on the new disk volume.

A BRU operation begins with data on one disk and ends
with the same data on another disk, in compressed form.

Disk Save and Compress Utility
The Disk Save and Compress (DSC) utility copies a Flles-
11-structured disk either to disk or to tape and from DSC­
created tape back onto disk. At the same time, DSC reallo­
cates and consolidates the disk data storage area. It con­
catenates files and their extensions into contiguous blocks
whenever possible and, therefore, reduces the number of
retrieval pointers and file headers required for the same
files on the new volume.

DSC copies files that are scattered randomly over a disk
volume to a new volume, without the intervening spaces.
This eliminates unused space between files and also
reduces the time required to access them.

After a DSC copy operation, individual files are written in
available contiguous blocks, and the blocks available for
new files are located in a contiguous area at the end of the
new volume. If the contents of one disk are transferred to a
disk with a larger capacity, the new disk takes on the attri­
butes of the original disk, except that additional storage
space is available.

File Structure Verification Utility
For Files-11 volumes, the File Structure Verification (VFY)
utility can perform the following functions:
• check the readability arid validity of a file-structured vol­

ume (default function)

• print the number of available blocks on a file-structured
volume

• search for files in the index file that are not in any direc­
tory (that is, files that for some reason cannot be
accessed by filename)

• validate directories against the files they list

• list all files in the index file, showing the file ID, filename,
and owner

• mark as "used" any blocks that appear to be available,
but are actually allocated to a file

• rebuild the storage allocation map so that it properly re-
flects the information in the index file

• restore files that are marked for deletion

• delete bad file headers

• perform a read check on every allocated block on a file­
structured volume

Shadow Recording
With Shadow Recording, an RSX-11 M-PLUS system
backs up all new data as it is written to a Files-11 disk. A
SYSGEN option, Shadow Recording creates two identical
sets of disks that are called a "shadowed" "pair. More than
one pair of disks can be shadowed, but shadowed pairs
cannot overlap. The two disks must be of the same
type-both RK07s or RA80s, for example. The first disk of
the pair, the primary disk, is the original disk that exists
whether or not Shadow Recording is active. Any disk on an
RSX-11 M-PLUS system, including the system disk, can be
the primary disk of a shadowed pair. The second disk of
the pair, the secondary disk, becomes an exact copy of the
primary disk.

5-4

Shadow Recording operates transparently-writing to and
reading from the secondary disk Is an Executive function.
The Executive always writes the same data to the secon­
dary disk as it writes to the primary disk. When a disk read
occurs, the Executive reads the primary disk first. If a read
error occurs on the primary disk, the Executive reads the
secondary disk. The Executive displays all 1/0 errors oc­
curring on a Shadow Recording disk pair on the operator's
console.

Shadow Record ing provides a dynamic backup of all
blocks as they are written to the primary disk. That is an
important feature for many processing environments, par­
ticularly environments in which critical information must
be duplicated to safeguard against inadvertent damage or
loss in the event a disk error occurs. Recovery may be
quicker too, and downtime may be reduced, because disk
errors do not necessarily mean an application must be
halted.

Because it does backup online and provides an "instant"
duplicate disk, Shadow Recording can also be used with
systems on which later backup time or resources are
unavailable.

CONTROLLING SYSTEM RESOURCES
On RSX-11 M/M-PLUS systems, the Queue Manager
(QMG) provides for the orderly processing of print jobs
and, on RSX-11 M-PLUS, batch jobs. Most users who use
the Queue Manager are unaware of its presence. Every re­
quest to print a listing, submit a batch job, and create a
spooled listing or map from a system program is passed
automatically to the Queue Manager, which places them in
the appropriate queues.

QMG includes privileged commands that are used by the
system manager to set up the QMG for the installation. De­
pending on the needs of the installation, the manager can
choose the number of queues to be set up and can choose
where the output of these queues will be directed. A sys­
tem can have as many as 16 output devices to which QMG
directs output. The manager can also specify that certain
kinds Qf print jobs will go to one or another lineprinter.

Some installations may have user-written output proces­
sors that pass jobs to devices other than lineprinters. QMG
can pass jobs to most kinds of devices. These include
queues for electrostatic plotters, papertape or card­
punches, or even terminals and magtapes. QMG can
direct output to any record-oriented output device. It can
also direct output to application tasks or networks.

When a lineprinter or other output device is controlled by
the Queue Manager, it is said to be a spooled device.
Spooled devices are initialized by the system manager
with certain characteristics. For example, a lineprinter can
be initialized to print both uppercase and lowercase char­
acters on a previously defined special form. Through
PRINT command qualifiers, users can specify the charac­
teristics they want, such as printing with uppercase char­
acters only.

Complete information on the progress of queued jobs is
always available. Within specified limits, a user can specify
when a job should be run (during evening hours when de­
mands on the system are less, for example) and if the job

should be held, released, or deleted from Its queue. An
operator, and in some instances any user, can control a
job queue by changing job priorities, holding a job, or can­
celling a job.

Printing Flies
The Queue Manager handles the orderly printing of files
for an RSX-11 M/M-PLUS system through software tasks
called despoolers, or print processors. There is a print
processor for every lineprinter on a system. Even if a sys­
tem does not have a hardware device of the lineprinter
type, it will have some device designated as the system
output device that takes the part of the llneprinter. This
output includes all requests to system tasks for maps or
listings, logs from batch jobs, and print jobs entered
through the PRINT command, as well as output from appli­
cations tasks unique to an installation.

A print job can specify the forms required, the number of
copies, the print priority, holding an entry, deleting files
after printing, and printing after a specified time.

The print job can contain one or more files to be printed.
Print jobs can be submitted by an interactive user, a pro­
gram, and, on RSX-11 M-PLUS, by a batch job. Print jobs
are automatically submitted at the end of a batch job.

Each print job has a large, easily read job header and file
header burst pages, to identify print requests and files
within a print request. Both types of headers contain iden­
tification and general accounting information.

Batch Processing
RSX-11 M-PLUS has a multistream batch processing
capability. The operations personnel can control the num­
ber of batch streams that can run.

Batch jobs can be submitted by an interactive user, a pro­
gram, or another batch job. When the number of batch
jobs submitted exceeds the number of streams, the re­
mainder of the batch jobs are held in a batch input queue.
As with the spool queues, the operator can control the
batch job queue by changing job priority, holding a job, or
killing a job.

Volume mount commands issued in a batch job can re­
quest a generic device, such as a disk, or specific device
unit, such as disk-drive unit 2. The batch job waits until the
operator satisfies the mount request, while other batch
jobs proceed.

TUNING THE SYSTEM
On the RSX-11 systems, users have the tools they need to
fine-tune their systems for maximum performance and
flexibility.

Pool Monitoring
Pool monitoring support controls the use of the system's
Dynamic Storage Region (DSR, or pool). Pool is a contig­
uous area in memory allocated by the Executive and used
as a workspace for storing such system data structures as
system lists and control blocks. Pool is included at the top
of the Executive's permanently mapped address space in
memory. The size of pool must be sufficient to handle all of
the dynamic storage requests of the system. By default,
SYSGEN extends the mapped system Executive to its
maximum size, to create the largest possible pool space.

5-5

Pool requirements for a system are dependent on the con­
figuration, application, and degree of system loading .
Enough pool must be available to satisfy peak demands;
otherwise, system performance will be degraded.

Since nearly all Executive functions require pool, a system
can exhaust pool when system activity is very heavy. This
can happen if too large a number of tasks are Installed, if
too many volumes are mounted, or if a number of other
conditions are present. When this happens, the system
does not appear to have crashed, but it is not functioning
normally.

To avoid this condition, pool monitoring can be used. Pool
monitoring oversees pool levels, restricts use, and notifies
the operator if pool is near depletion. Pool monitoring has
two components: the RSX-11 M/M-PLUS Executive pool
monitor code and the privileged Pool Monitor Task (PMT).

The pool monitor code within the Executive monitors the
amount of free pool and detects major pool events. When
a major pool event occurs, the Executive notifies PMT.

PMT's response to the information provided by the Execu­
tive depends on specific pool events and conditions. It ex­
ecutes actions appropriate to the condition detected. For
example, for a low-pool state, it establishes pool-use con­
trols, including preventing nonprivileged users from
logging on and suppressing INSTALL/RUN/REMOVE
sequences on nonprivileged terminals. It also sends warn­
ing messages to all logged-on terminals and displays pool
statistics at the console terminal.

Pool-monitoring support is available on mapped systems
only. It is a SYSGEN option on RSX-11 M systems and it is
included by default on RSX-11 M-PLUS systems.

1/0 Queue Optimization
To increase the throughput of disk subsystems, RSX-11 M­
PLUS supports 1/0 Queue Optimization, a set of optimiza­
tion algorithms that RSX-11 M-PLUS uses when choosing
among 110 requests of equal priority. For maximum flexi­
bility , system management can choose from three
methods of 1/0 Queue Optimization.
• The nearest cylinder method processes the 1/0 request

closest to the current request, regardless of whether it
comes before or after the current request.

• The elevator method processes 1/0 requests as it moves
in one direction along the disk, then changes direction to
process requests in the opposite direction.

• The cylinder scan method processes requests in only
one direction along the disk, the direction being from the
lowest cylinder number to the highest.

System management can choose the method that best
suits the processing environment, the physical location of
data on a disk drive, and how often tasks access data
areas. All three methods attempt to minimize head-seek
time, which decreases the seek-time component of the
total file service t ime.

Without 1/0 Queue Optimization, RSX-11 M-PLUS groups
the 1/0 requests in the queue, by priority, and on a first­
in/first-out basis. The highest-priority requests appear
first in the queue and are processed in sequence. With 1/0
Queue Optimizat ion , the 1/0 requests within priority
groups are examined, and the request having the "best"

disk address is processed first. Highest-priority requests
are still serviced before lower-priority requests. However,
throughput is enhanced by advantageous reordering of
requests within priority levels.

A "fairness count" is also set that limits the number of
times an 1/0 request can be passed over.

By reducing erratic head movement, 1/0 Queue Optimiza­
tion has the potential to speed disk operation.

MAINTAINING SYSTEM RELIABILITY
The RSX-11 operating systems include a variety of aids
that help operators ensure system Integrity. These aids are
both comprehensive and easy to use.

1/0 Exerciser
The 1/0 Exerciser (IOX) detects and diagnoses 110 prob­
lems on the disks and tapes in a system's hardware config­
uration. IOX exercises Files-11 disks, non-file-structured
disks, magnetic tapes, DECtapes, and cassettes. Used by
system management and maintenance personnel, It deter­
mines whether these units are correctly executing 1/0 op­
erations. In addition, IOX measures system activity and
provides a command language for executing test func­
tions. IOX output consists of detailed error reporting and
general information that describes system activity.

IOX performs three kinds of exercises. Operators use the
IOX Command Language to specify and control the ex­
ercise for the units in a system. They choose an exercise
appropriate to a unit and they set exercise parameters that
determine how the unit is exercised.

Error Logging
The RSX-11 M/M-PLUS Error Logging System records in­
formation about errors and events that occur on system
hardware, either for immediate action or for eventual ana­
lysis and reporting. Error Logging handles mass storage
device (disk and tape) errors, as well as memory errors.
Since Error Logging is a part of the RSX-11 M/M-PLUS
system, it is most effective for hardware errors that allow
the system to continue functioning.

Error Logging is not used to detect information about op­
erating-system failures or about device problems that
cause the system to fail. However, it does provide Informa­
tion about what 1/0 activities occurred on a device at the
time of an 1/0 failure. If a system includes the Crash Dump
Analyzer (CDA), CDA can provide reports on operating­
system failures.

Error Logging Reports can be used to determine that a
device is having problems before It actually fails and
causes lost data. For example, a report showing a pattern
of recurring errors from different blocks on a single disk
head may indicate that the head needs to be replaced.

Crash Dump Analyzer
The Crash Dump Analyzer (CDA) is a specialized utility
that helps establish the cause of system crashes. It reads
the contents of a system memory dump, formats the Infor­
mation, and outpl,lts the following type of information to a
lineprinter for evaluation:
• all memory management and hardware, register con­

tents

• the system stack

5-6

• task control blocks for each active task
• contents of the clock queue
• information on all devices in the system
• contents of physical memory
• task headers for each task In memory

• contents of each Partition Control Block
• contents of the system Dynamic Storage Region (pool)

• contents of the System Task Directory for all tasks

The CDA is a valuable tool for helping to eliminate a variety
of causes of system crashes, because system crashes can
occur when users make modifications to the Executive or
when privileged tasks are mapped Into the system data
structures, but are not yet debugged.

Online Software Maintenance
Another way the system manager or operator maintains
system integrity is by using the software maintenance tools
that make patches and install updates to the RSX-11
binary and source code. The Autopatch (Automated
Patch_ing Facility) uses a machine-readable format; the
SYSGEN process updates the system automatically with
the updates supplied.

Remote Diagnostics
On PDP-11 /44 and PDP-11 /70 systems equipped with the
remote diagnosis option, the system manager can set up
the system for remote preventive maintenance or trouble­
shooting. When a hardware problem is detected or sus­
pected, the system manager mounts a diagnostic disk
pack, sets a switch on the processor console, and calls
DIGIT Al's local service office. A system manager need not
be present at the installation, once the call is made. A tech­
nician at DIGITAL's diagnostic center can then connect to
the installation, run automated diagnostics, operate the
diagnostic console manually, and check the error-log file.
If a problem is found, one of DIGIT Al's Field Service engi­
neers can bring the proper equipment and replacement
modules to make repairs.

RSX-11M-PLUS Reconfiguration Services
In a reconfigurable system, resources such as memory
and devices can be added or removed. Reconfiguration is
a means of physically and logically connecting and discon­
necting various resources. Reconfiguration services are
available only on RSX-11 M-PLUS systems.

With the reconfiguration services, an RSX-11 M-PLUS sys­
tem can be reconfigured to bypass faulty hardware ele­
ments and to isolate the system from the effects of these
elements. An operator can reconfigure a system interac­
tively from a terminal or by means of indirect command
files . The reconfiguration services act as an Interface
between the operator's terminal and the RSX-11 M-PLUS
system.

5-7

An operator can define a set of hardware resources that
are accessible from the online system and also remove
devices from the pool of resources allocated to the onl ine
system. For example, after booting the system the opera­
tor can place a failed disk drive offline and then use
another drive-either one already online or one placed on­
line specifically for th is purpose-to take over for the dis­
abled unit.

Reconfiguration services allow faulty hardware to be iso­
lated so that it does not affect the system-and system
users-adversely.

6
The

Languages

RSX-11 Mand RSX-11M-PLUS include a complete program­
development environment for a wide range of languages. In addition to
the MACR0-11 assembly language, they offer programmers a choice
of optional high-level programming languages-FORTRAN-77,
FORTRAN IV, COBOL-81, PDP-11 COBOL, BASIC-PLUS-2, and
CORAL66.

RSX-11 systems also provide the tools necessary to write, assemble,
link, and run programs and to build libraries of macro and object
modules.

Programmers can use the system for development while realtime
applications are in progress. They interact with the system on line; can
execute indirect command files; and, on RSX-11 M-PLUS, can submit
batch jobs.

INTRODUCTION
RSX-11 systems support a wide range of programming
languages to satisfy most types of applications. These
include:
• MACR0-11
• PDP-11 FORTRAN-77
• FORTRAN IV

• COBOL-81

• PDP-11 COBOL
• PDP-11 BASIC-PLUS-2

• CORAL66

MACR0-11ASSEMBLYLANGUAGE
RSX-11 Mand RSX-11 M-PLUS systems support many
programming languages. However, one language is dis­
tributed on all systems: the PDP-11 assembly language,
MACR0-11 .

MACR0-11 processes source programs written in
MACRO. It accepts a disk source input file in ASCII format
and can create a relocatable object module and a listing
file of the source language. The object module contains all
the object records and relocation information needed to
link with other object modules. All symbol definition done
by the assembler has a base of zero. The allocation of
virtual addresses and relocation is left for the taskbuilding
process.

MACR0-11 provides:
• relocatable object modules

• global symbols for linking separately assembled object
programs

• device and filename specifications for input and output
files

• user-defined macros with keyword arguments

• a comprehensive system macro library
• program-sectioning directives

• conditional assembly directives
• assembly and listing control functions

• alphabetized, formatted symbol table listing

• default-error listing on command output device
• a Cross-Reference Table (CREF) symbol listing

The MACRO assembler included with RSX-11 also fea­
tures:
• global arithmetic, global assignment operator, global

label operator, and default global declarations

• multiple macro libraries with fast access structures
• predefined (default) register definitions
• an indirect command file facility for controlling the

assembly process

Source input to MACR0-11 consists of free-format state­
ments; each line of input contains a single statement. Input
statements are either PDP-11 instructions, MACR0-11
assembler directives, macro calls, or direct assignments.
Statements can contain labels, so control can change
locally (within the module) or so control can be passed
between modules (globally).

6-1

Symbols and Symbol Definitions
Three types of symbols can be defined for use within
MACRO source programs: permanent symbols, user­
defined symbols, and macro symbols. Permanent symbols
consisting of the PDP-11 instruction mnemonics and
MACRO directives do not have to be defined by the user.
User-defined symbols are those used as labels or defined
by direct assignment. Macro symbols are those symbols
used as macro names.

MACRO maintains a symbol table for each type of symbol.
The value of a symbol depends on its use in the program.
To determine the value of a symbol in the operator field,
the assembler searches the macro symbol table, user
symbol table, and permanent symbol table, in that order.
To determine the value of the symbol used in the operand
field, the assembler searches the user symbol table and
the permanent symbol table, in that order. The search or­
ders allow redefinition of permanent symbol table entries
as user-defined or macro symbols.

Source input usually contains user-defined symbols. User­
defined symbols are either internal to a source-program
module or global (externally available). An internal symbol
definition is limited to the module in which it appears. In­
ternal symbols are local definitions that are resolved by the
assembler.

A global symbol can be defined in one source-program
module and referenced within another. Global symbols
are preserved in the object module; they are not resolved
until the object modules are linked into an executable pro­
gram. With some exceptions, all user-defined symbols are
internal, unless explicitly defined as being global.

The assembler allows use of both local and global symbols
as labels for statements. When a global statement appears
as a label, the related statement is referred to as an entry
point (that is, a point at which other modules can transfer
control to the current object module). Local symbols can
be used as statement labels to define points to which con­
trol transfers within an object module.

The assembler evaluates all local-symbol definitions in a
source file. Any symbols remaining undefined are classed
as global. Thus, after an assembly, all local symbols are
assigned relative locations, but the module can contain
references for which definitions must be supplied . The
resolution of these references is left for the taskbuilding
process.

Directives
A program statement can contain one of three different
operators: a macro call, a PDP-11 instruction mnemonic,
or an assembler directive. MACRO includes directives for:
• listing control
• function specification
• data storage
• radix and numeric usage declarations
• location-counter control
• program termination
• program-boundary information
• program sectioning
• global-symbol definition

• conditional assembly
• macro definition

• macro attributes
• macro message control
• repeat-block definition

• macro libraries

Listing-Control Directives - MACRO includes several
listing-control directives to control the content, format, and
pagination of all listing output generated during assembly.
Listing-control directives enable such documentation fea­
tures as listing-heading lines, listing-page formatting , and
table-of-contents generation.

Through qualifiers in the command string issued to the
MACRO assembler, the listing-control options can also be
specified at assembly time. The use of these qualifiers pro­
vides initial listing-control options that can be overridden
by the corresponding listing-control directives in the
source program.

Condltlonal Assembly Directives - By using conditional
assembly directives, programmers can include or exclude
blocks of source code during the assembly process,
based on the evaluation of stated condition tests within the
body of the program. This capability allows several varia­
tions of a program to be generated from the same source
module.

The user can define a conditional assembly block of code
and, within that block, issue subconditionai directives.
Subconditional directives can indicate the conditional or
unconditional assembly of an alternate or noncontiguous
body of code within the conditional assembly block. Con­
ditional assembly directives can be nested.

Macro Definitions - With special statements called ma­
cros, programmers can reference a predefined symbol
that causes the assembler to expand a single-line source
statement into multiple lines of code or data and to insert
the assembled result in the object module. Typically, such
macro symbols are typically used for recurring coding se­
quences. The insertion of the code sequence occurs at
each point where the the macro symbol is referenced. Def­
initions for such macro symbols can occur in the source
file itself or can reside in a macro library. The Executive
and file-processing services are made available to the pro­
gram through macro symbols that are defined in a
DIGIT AL-supplied macro library.

Macro Calls and Structured Macro Libraries - A
program can call macros that are not defined in that pro­
gram. A user can create libraries of macro definitions, and
MACRO will look up definitions in one or more given
library files when the calls are encountered in the program.
Each library file contains an index of the macro definitions
it contains, so MACRO can find definitions quickly.

Program Sectioning - The MACRO program-sectioning
directives are used to declare names for program sections
and to establish certain program-section attributes. These
program-section attributes are used when the program is
linked into an image.

The program-sectioning directives allow the user to
exercise complete control over the virtual memory alloca­
tion of a program, since any program attributes esta-

6-2

blished through this directive are passed to the linker. For
example, if a programmer is writing multiuser programs,
the program sections containing only instructions can be
declared separately from those sections containing only
data. Furthermore, these program sections can be
declared as read-only code, thus protecting them.

Assembling
MACR0-11 is a two-pass assembler. During the first pass,
the assembler groups all symbols as either local or global;
performs statement generation; locates all macro
symbols; and, if necessary, reads the macro definitions
from libraries. At the end of the first pass, the assembler
must have processed all local references and determined
all undefined global symbols to be resolved by the Task
Builder.

During the second pass, the assembler generates the ob­
ject-module and listing files, flagging with an error code in
the listing file those source statements containing errors. If
the programmer requested a cross-reference listing of
symbols, the assembler also generates a request for the
Cross-Reference Program (CRF) to create the proper
information.

The MACR0-11 listing file provides both documentation
for the module and a tool for debugging the code. As a
reference aid, the assembler generates and includes line
numbers in the listing for each statement in the source file.
It also maintains a current-location counter for each pro­
gram section defined in the source file. In addition, the list­
ing includes a symbol table showing symbols, their attrib­
utes, and their values (if known at assembly time).

The location-counter value given In the listing file is vital in
debugging because it provides the offsets into the module
for each program section. An offset, combined with the
base load address for a program section {from the Task
Builder map), allows access to locations in the memory­
resident task image during debugging.

PDP-11 FORTRAN-n
PDP-11 FORTRAN-77, a high-performance optimizing
compiler and object-time system, produces machine code
highly optimized for execution on PDP-11 systems with a
Floating-Point Processor. Running under RSX-11 M and
RSX-11 M-PLUS as well as under the RSTS/E timesharing
operating system, its optimization techniques improve
memory efficiency and increase program execution
speed.

PDP-11 FORTRAN-77 is an extended implementation of
the American National Standard Institute (ANSI) subset
FORTRAN-77 standard, X3.9-1978. PDP-11 FORTRAN-77
contains all the features of the ANSI FORTRAN-77 subset,
many of the full-set language features, and extensions that
are not included in the ANSI FORTRAN-77 standard . It
also provides optional switch-selectable support for pro­
grams conforming to the previous ANSI FORTRAN stan­
dard (X3.9-1966).

FORTRAN-77 meets the Federal Information Processing
Standard Publication (FIPS PUB-69) requirement for a
"flagger." The flagger optionally produces diagnostic mes­
sages for syntax and/or source-form elements that do not
conform to the full-level ANSI FORTRAN-77 standard.

PDP-11 FORTRAN-77 supports the CHARACTER data
type and Block IF constructs. Support for the CHARAC­
TER data type means that character constants, variables,
and arrays can be declared and used. Function subpro­
grams or statement functions cannot be of character data
type. The length of a character data element is an integer
constant or expression. In addition, this feature improves
portability of FORTRAN programs between PDP-11 and
VAX systems.

Block IF constructs, including IF .. . THEN, ELSE IF ... THEN,
ELSE, and END IF statements, are used for conditional ex­
ecution of blocks of statements. This is an adaptation of
the popular IF ... THEN .. . ELSE construct found in PL/I,
ALGOL, and PASCAL.

Full-Language FORTRAN-77 Features
PDP-11 FORTRAN-77 includes the following features of
full-language FORTRAN-77 as defined by the ANSI stan­
dard.
• double-precision and complex data types
• intrinsic functions, including LEN, !CHAR, and INDEX
• exponentiation forms, including double-precision and

complex
• format edit descriptors, including S, SP, SS, T, TL, TR,

lw.m, and Gw.dEe

• generalized DO-loop parameters
• generic function selection based on argument data type

for FORTRAN-defined functions
• upper- and lower-bounds specification in array declara­

tion
• substrings of character variables and character-array

elements
• optional syntax for 1/0 statements (UNIT= and FMT=)

Extensions Beyond ANSI FORTRAN-77
PDP-11 FORTRAN-77 also includes the following exten­
sions to the ANSI standard.
• Language elements for keyed and sequential access to

RMS multi key ISAM files.
• DEFINE FILE, FIND, DELETE, REWRITE, and UNLOCK

statements.
• TYPE and ACCEPT input/output statements.

• Comments permitted at the end of each source line.
• INCLUDE statement.
• BYTE data type.
• ENCODE and DECODE statements.
• Explicit specification of storage allocation units for data

types (for example, INTEGER*4).

• Hexadecimal and octal constants.
• Virtual array support for systems with memory manage­

ment directives. Virtual arrays are memory-resident and
require enough main memory to contain all elements of
all arrays. The use of virtual arrays In a program frees
memory for executable code and other data storage.

• 0- and Z-format edit descriptors.

Optimizations
FORTRAN-77 optimizations are designed to produce an
object program that executes in less time and is smaller
than an equivalent nonoptimized program.

6-3

PDP-11 FORTRAN-77 optimizations include:
• Peephole optimizations. The initial machine instructions

generated by a FORTRAN program are examined to find
operations that can be replaced by shorter, faster code
sequences. The final code generated by the compiler
contains these improved code sequences.

• Common-subexpression elimination. Often, the same
subexpression appears in more than one computation.
If the values of the operands of a common sub­
expression are not changed between computations, that
value is computed once and substituted wherever the
subexpression appears.

• Removal of invariant expressions from DO loops. An
algorithm executes faster when computations are
moved from frequently executed program sequences to
less frequently executed program sequences. So com­
putations within a loop involving only constants are
moved outside the loop.

• A/location of processor registers across Block IF con­
structs and DO loops. Wherever possible, frequently
referenced variables are retained in registers to reduce
the number of load and store instructions executed. Fre­
quently used variables and expressions are also
assigned to registers across block IF constructs and DO
loops.

• Sharable code. The compiler can produce shared object
code as a compile-time option. Shared tasks can then
be created by using the multiuser-linker option. This im­
proves memory utilization in multiuser systems because
many users share one memory-resident task.

Object Time System
The PDP-11 FORTRAN-77 Object Time System (OTS) is a
set of object modules that, when selectively linked with
compiler-produced object modules by the Task Builder,
produce a task ready for execution. Selective linking
means that if a program performs only sequential format­
ted 1/0, no direct-access 1/0 routines are included in the
task.

The OTS is composed of the following routines:
• math routines, including the FORTRAN-77 library func­

tions and other arithmetic routines (for example, expo­
nentiation routines)

• miscellaneous utility routines (for example, ASSIGN,
DATE, and ERRSET)

• routines that handle FORTRAN-77 input/output
• error-handling routines that process arithmetic errors,

1/0 errors, and system errors

• miscellaneous routines required by the compiled code

PDP-11 FORTRAN-77 can create two object-time systems.
The OTS based on File Control Services (FCS) handles
many file operations transparently to the user and allows
sequential and direct access to sequentially organized
files. The OTS based on Record Management Services
(RMS) uses RMS to provide access to sequential, relative,
and indexed files. The RMS OTS provides additional capa­
bilities and is normally larger than the FCS OTS. For a
given task, it is not possible to mix FCS OTS modules with
RMS OTS modules.

Hardware Requirements
The FORTRAN-77 compiler is an optional language proc­
essor for the RSX-11 M and RSX-11 M-PLUS operating sys­
tems. For both operating systems, the hardware configu­
ration must include a Floating-Point Processor, at least 48
Kbytes of user memory, up to 370 contiguous disk blocks
for the compiler task, and an additional 150 to 250 disk
blocks for the Object Time System library file and auxiliary
support files, depending on installation options.

FORTRAN IV
FORTRAN IV is an extended implementation of the
FORTRAN langua.ge based on the previous specification
for ANSI FORTRAN, X3.9-1966. To help minimize pro­
gram-development time, it was designed to both reduce
the size and increase the speed of the executable pro­
grams it produces. The FORTRAN IV compiler is a fast
one-pass compiler that produces object code without
using temporary files. No intermediate assembly step is
required.

Program portability is ensured because the same FOR­
TRAN IV processor is available on DIGIT A L's RSX-11 M,
RSX-11 M-PLUS, RT-11, RSTS/E, and CTS-500 operating
systems. The compiler is also available in compatibility
mode under VAX/VMS, allowing host-system program
development.

PDP-11 FORTRAN-77 is upwardly compatible from FOR­
TRAN IV. FORTRAN-77's primary advantages over FOR­
TRAN IV include:
• structured programming features

• a wider variety of data types

• enhanced optimization techniques
• its ability to produce sharable code

FORTRAN IV, however, requires only 16 Kbytes of mem­
ory; FORTRAN-77 requires 48 Kbytes.

Because FORTRAN IV is a superset of 1966 ANSI­
standard FORTRAN, standard conforming programs writ­
ten for other computer systems can run unmodified under
FORTRAN IV.

6-4

Powerful FORTRAN IV extensions to the former ANSI stan­
dard simplify program coding. Some of these are:

• Array subscripts. Any arithmetic expression can be used
as an array subscript. If the value of the expression is not
an integer, it is converted to integer type.

• Array dimensions. Arrays can have up to seven dimen­
sions.

• Alphanumeric literals. Strings of characters bounded by
apostrophes can be used in place of Hollerith constants.

• Mixed-mode expressions. Mixed-mode expressions can
contain any data type, including complex and byte. Data
conversions by assignment are not needed.

• End-of-line comments. Any FORTRAN statement can be
followed in the same line by a comment that begins with
an exclamation point.

• Read/write end-of-file or error condition transfer. The
specifications END=n and ERR=n (where n is a state­
ment number) can be included in any READ or WRITE
statement to transfer control to the specified statement
upon detection of an end-of-file or error condition . The
ERR=n option is also permitted in the ENCODE and
DECODE statements, aflowing program control of data
format errors.

• General expressions in 110 lists. General expressions
are permitted in 1/0 lists of WRITE, TYPE, and PRINT
statements.

• General expression DO and GOTO parameters. General
expressions are permitted for the initial value, incre­
ment, and limit parameters in the DO statement and as
the control parameter in the computed GOTO state­
ment.

• DO increment parameter. The value of the DO statement
increment parameter can be negative.

• Optional statement label list. The statement label list in
an assigned GOTO is optional.

• Override field width specifications. Undersized input
data fields can contain external field separators to over­
ride the FORMAT field width specifications for those
fields (called "short field termination"), permitting free­
format input from terminals.

• Default FORMAT widths. The FORTRAN IV programmer
can specify input or output formatting by type and de­
fault width and precision values will be supplied.

• Additional 110 statements. These include file control and
attribute definitions; list-directed (free format) 1/0; de­
vice-oriented 1/0; memory-to-memory formatting ; and
unformatted direct access 1/0, which allows the FOR­
TRAN programmer to read and write files written in any
format.

• Logical operations on INTEGER data. The logical opera­
tors .AND., .OR., .NOT., .XOR., and .EQV. can be applied
to integer data to perform bit masking and manipulation.

• Additional data type. The BYTE data type is useful for
storing small integer values as well as for storing and
manipulating character information.

• IMPLICIT declaration. The IMPLICIT command defines
the implied data type of symbolic names.

Language Statements
A FORTRAN IV program consists of statements and
optional comments. There are two kinds of statements: ex­
ecutable and nonexecutable. Executable statements de­
scribe the action of the program. Nonexecutable state­
ments describe the data arrangement and characteristics
and provide editing and data conversion information.
There are assignment statements, control statements, 1/0
statements, FORMAT statements, and specification state­
ments. FORMAT and specification statements are nonexe­
cutable.

FORTRAN IV has no statement-ordering requirements;
therefore, declarations can appear anywhere within the
source program. Terminal format input (using the tab
character to delimit fields) makes program preparation
easier.

Command String Specification Options
In the input/output file specification command string
issued to the FORTRAN IV compiler to request program
compilation, programmers can specify a number of switch
parameter options. These include:
• generating inline code that directly supports the float­

ing-point and extended instruction sets for processors
with the additional arithmetic hardware

• suppressing internal sequence numbers, which reduces
program storage requirements for generated code and
slightly increases execution speed

• enabling array vectoring, which decreases the time
necessary to reference elements of a multidimensional
array

Optimizations
Many techniques are used to increase the execution speed
of an object program. Redundant expressions that occur
in the same basic block of a program are located and elim­
inated.

Expressions that are constant, such as multiple constant
subscripts of an array, are calculated at compilation time.
Constant portions of subscripts are absorbed into the
array address so additional operations are not required
during execution.

Branch structure optimizations Improve program speed
and size. And, as an option, inline code generation can be
selected for integer and logical operations.

A unique automatic "array vectoring" feature of FORTRAN
IV eliminates the time-consuming multi ply operations
required in array subscripting. Precompiled FORMAT
statements make formatted input and output conversions
faster and smaller.

To give a final polish to each program, FORTRAN IV does
extensive local ("peephole") optimization, examining each
sequence of operations output and substituting a shorter
and faster sequence of Instructions, If possible.

Libraries
With the operating system's librarian utility, the FORTRAN
IV programmer can create and modify a library of com­
monly used assembly language and FORTRAN functions
and subroutines. Library files can be included In the com­
mand string to the linker utility. The linker recognizes the

6-5

file as a library file and links only those routines in the li­
brary that are required in the executable program. By
default, the Task Builder also automatically searches the
system library for any other required routines.

An RSX-11 library consists of object modules. Two types
of libraries exist: shared and relocatable.

Shared libraries are located in main memory, and a single
copy of each library is used by ail referencing tasks.
Access to a shared library is gained by specifying the
name of the library at taskbuild time. Shared libraries are
built using the Task Builder. They must contain sharable
(reentrant) code.

Relocatable libraries are stored in files on disk. Object
modules from relocatable libraries are built into the task
image of each task referencing the module. The Task
Builder is used to include modules from relocatable librar­
ies in a task image. When a library specification is encoun­
tered in the command string, those modules in the library
that contain definitions of any currently undefined global
symbols are included in the task image. The user can con­
struct relocatable libraries of assembly language and
FORTRAN routines, using the Librarian utility.

Hardware Requirements
FORTRAN IV runs on any valid RSX-11M or RSX-11M­
PLUS system configuration with at least 16 Kbytes of
memory available for the FORTRAN compiler. If run in a
larger partition, the compiler uses the extra space for pro­
gram and symbol-table storage.

COBOL-81
COBOL-81 , a high-performance compiler that produces
compact object code, is designed for business systems
where high performance and ease of use are prime con­
siderations. In addition to following Level 1 of the 1974
American National Standards Institute Standard X3.23-
1974 very closely, it implements many items planned for
the next release of the ANSI standard. It has also been vali­
dated at the low level by the Federal Compiler Testing
Center. This means that COBOL-81 is certified as comply­
ing with the 1974 ANSI standard, with certain exceptions,
for use at government installations.

COBOL-81 provides features that are aimed at making
both COBOL programmers and COBOL programs highly
productive on both large and small PDP-11 systems. The
compiler's extensive library facilities and Interactive Sym­
bolic Debugger will increase programmers' productivity
and enable them to produce powerful applications pro­
grams. COBOL-81 runs on PDP-11 processors with or
without the Commercial Instruction Set (CIS) under RSX-
11 M and RSX-11 M-PLUS, as well as under RSTS/E,
DIGITAL's PDP-11 timesharing operating system.

COBOL-81 code executes at high speeds and is memory­
efficient. Where available, COBOL-81 takes full advantage
of CIS to generate even more efficient object code.

The compiler performance is impressive-it averages up
to 500 lines per minute on a PDP-11 /44. Because the com­
piler is designed for the Commercial Instruction Set, It
generates compact, high-performance object code,
resulting in highly productive applications. This design
also requires less use of time-consuming overlays.

COBOL-81 has many features in common with VAX-11
COBOL. These features are implemented with the same
syntax on both compilers. In this way, code developed
using COBOL-81 can be migrated to VAX-11 COBOL. CO­
BOL users can start out on a small PDP-11 system, and la­
ter, when their computing needs change and grow, they
can easily move their COBOL applications to a VAX sys­
tem. Additionally, a VAX/VMS system can be used to
develop code that will eventually be compiled using CO­
BOL-81.

Language Elements
COBOL-81, defined as an implementation of ANSI
COBOL, supports the following features.

Module

Nucleus

Table Han­
dling

Sequential 1/0

Indexed 1/0

Segmentation

lnterprogram
Comm uni-
cation

Function ANSI Level

Contains all language ele- 1 (excluding
ments necessary for inter- ALTER state-
nal processing ment, external

switches) plus
selected level
2 features

Defines and manipulates
tabular data

Defines and accesses
sequential files

Defines and accesses in-
dexed sequential files

Specifies overlay of the
Procedure Division at ob-
jecttime

Calls separately compiled
subroutines and passing
parameters

1 plus
selected 1/0
level 2 fea-
tu res

2

2 (excluding
independent
segments)

6-6

Library

Data Types

Calls frequently used data
descriptions and program
text sections

The COBOL-81 compiler supports multiple data types.
These data types cover a wide range of applications, pro­
vide flexibility in system design, and allow compatibility
with other vendors' COBOL implementations. The com­
piler supports the following data types:
• numeric DISPLAY data
• numeric COMPUTATIONAL data
• packed-decimal data (COMPUTATIONAL-3)
• alphanumeric DISPLAY data

Character String Facllltles
COBOL-81 provides INSPECT, STRING, and UNSTRING
verbs for character-string handling. Using these verbs,
programmers can count and/or replace embedded char­
acter strings and can join together or break out separate
strings with various delimiters.

Fiie Organization
The COBOL-81 compiler supports both sequential and in­
dexed files. The Indexed 1/0 Module statements enable
COBOL-81 programs to use RMS multikey record man­
agement services to process files. These files can be
accessed sequentially, randomly, and dynamically, using
one or more indexed keys to select records. Additional 1/0
features include variable-length records through exten­
sions to the RECORD VARYING clause; the ability to desig­
nate sequential input files as optional; additional FILE
STATUS values; and an APPLY clause from which users
can specify file characteristics that are not ordinarily avail­
able through COBOL language syntax.

Because COBOL-81 uses RMS for 1/0 handling, it can
handle files created under other PDP-11 languages, given
data type compatibility. A valuable feature, the multikey fa­
cility provides flexibility and power in developing
application systems. In addition, COBOL-81 supports file
sharing, an important feature required for interactive ap­
plications programs.

Library Faclllty
COBOL-81 supports a full Level 1 ANSl-74 library facility.
Frequently used data descriptions and program text sec­
tions can be stored in library files that are available to all
programs. The library files can be copied at compile time
to reduce program preparation time and to eliminate
errors during program development.

Resident Library Support
COBOL-81 also supports resident libraries. The use of
resident libraries decreases disk storage requirements for
task images, increases Task Builder performance, and in­
creases memory availability in a multiuser environment.

CALL Faclllty
With the CALL statement, a COBOL programmer can exe­
cute routines that are external to the source module in
which the CALL statement appears. The COBOL-81 com­
piler produces an object module file from a single source
file. The object module file can be taskbuilt with other ob-

ject files to produce an executable image. Thus, COBOL
programs can call external routines written In COBOL-81
and in the MACR0-11 assembly language.

The CALL statement facility has been extended to allow
the programmer to pass arguments BY REFERENCE (the
default in COBOL) or BY DESCRIPTOR.

Symbolic Interactive Debugger
COBOL-81 provides an easy-to-learn, easy-to-use interac­
tive debugger. The COBOL Symbolic Interactive Debugger
allows for faster, error-free program development. Pro­
grammers can debug COBOL programs by Including the
debugger when taskbuilding the program, rather than hav­
ing to alter the source program during testing.
Programmers can follow the program flow during the exe­
cution of a job.

The debugger offers the programmer the capability to:
• reference data items by their user-defined names
• reference section names and paragraph names
• examine and modify the value of variables during pro­

gram execution

• optionally stop and restart programs at the line num­
bers, section name, or paragraph name specified by the
programmer

• gain control at program commencement and at
abnormal termination

Other Debugging Features
To further help programmers debug, the COBOL-81 com­
piler produces fully descriptive diagnostic mes­
sages-from simple warnings to major error detec­
tion-listed at the point of error. Many error conditions are
checked at compile time. The compiler can also produce a
Data and Procedures Map and a Cross-Reference Listing.

When an error occurs during execution, the type of error,
program name, and line number of the source statements
that caused the error are displayed at the user's terminal.
If the program is executed within an active PERFORM, the
line numbers of the active PERFORM statements will be
produced on the user's terminal. When the error is de­
tected during execution of a subprogram, a backwards
trace of the calling programs that were active at the time of
error is produced on the user's terminal.

Interactive COBOL Execution
Programmers have the flexibility to design their own
screen format. COBOL-81's ACCEPT and DISPLAY state­
ments (in the Procedure Division) allow for easy termlnal­
oriented interaction between a COBOL-81 program and
the programmer.

COBOL-81 also can call FMS, the Forms Management
System.

Utlllty Programs
COBOL-81 provides the REFORMAT and BLDODL utilities
to help programmers develop applications.

The REFORMAT utility converts COBOL source programs
that are coded using DIGITAL's terminal format into the
ANSI-standard format accepted by other COBOL compil­
ers throughout the industry. It also has the inverse option
to convert programs written in ANSI-standard format to
DIGITAL's terminal format. The shorter, easy-to-enter ter-

6-7

minal format, designed for use with interactive text editors,
saves disk space and compile-time processing when a
user is initially migrating from a non-DIGITAL COBOL sys­
tem to COBOL-81 .

The BUILD Overlay Description Language (BLDODL) utility
combines skeleton overlay description files generated by
COBOL compilations into a single ODL file. This utility
gives the user a simplified way of structuring segmented
programs or subprograms Into an efficient task Image.

lnstallatlon
COBOL-81 was designed so that customers can Install the
software without the aid of one of DIGITAL's software spe­
cialists. The installation procedure determines a default
compiler for the user's hardware configuration. If the com­
piler meets the user's requirements (Indicated by a yes
response to questions from the system), the default com­
piler is then built. If, however, the compiler Is not accepta­
ble, the system prompts the user with several more ques­
tions, in order to build a customized compiler.

Hardware Requirements
COBOL-81 runs on any valid RSX-11 M/M-PLUS
configuration with:
• a user area of at last 48 Kbytes of memory if the RMS

resident library will be used (52 Kbytes for all other ap­
plications)

• at least 3,500 free blocks of onllne storage on the public
disk structure and additional space for user programs
and data files

PDP-11 COBOL .
PDP-11 COBOL is an optional high-level language de­
signed to provide fast direct-access data processing for
commercial applications. Its high computational capabili­
ties complement the system performance capabilities of
RSX-11 M and RSX-11 M-PLUS.
Based on the ANSl-74, X3.23-1974, standard, PDP-11 CO­
BOL includes advanced interactive symbolic debugging
facilities and packed-decimal data support. PDP-11 CO­
BOL takes advantage of the Commercial Instruction Set
(CIS) when available to enhance performance in data
movement and packed-decimal arithmetic.

PDP-11 COBOL can be used to create online terminal
applications or to write batch applications. Typical PDP-11
COBOL customers either have a large library of PDP-11
COBOL programs or have applications based on other
vendors' high-level ANSl-74 COBOL.

Language Elements
PDP-11 COBOL is a fully implemented compiler conform­
ing in language element, representation, symbology, and
coding format to ANSl-74 COBOL. It includes:
• a full high-level Nucleus module, providing all language

elements necessary for internal processing
• a full high-level Table Handling module for defining and

manipulating tabular data
• a full high-level Sequential 1/0 module for defining and

accessing sequential files
• a full high-level Relative 1/0 module for defining and

accessing indexed sequential files, including dynamic
access

• a full high-level Indexed 110 module for defining and ac­
cessing indexed sequential files, including dynamic ac­
cess and multiple alternate keys

• a low-level lnterprogram Communication module for
calling separately compiled subroutines and for passing
parameters

• a Segmentation module for specifying overlay of the
PROCEDURE DIVISION at object time

• a full low-level Library function with partial high-level
REPLACING facility for copying predefined COBOL text
into the source program and for changing text while
copying

• conditional variables

• nested conditionals

Data Types
PDP-11 COBOL supports all the standard data types as
well as most of the common COBOL data types. These
data types, which are required in a wide variety of applica­
tions, provide flexibility for application specification and
design.
• Numeric COMP-3, Packed-Decimal Data

• Numeric COMPUTATIONAL (COMP), Binary Data

• Numeric DISPLAY Data (ASCII)

• Alphanumeric DISPLAY Data (ASCII)

Character String Facllltles
PDP-11 COBOL provides INSPECT, STRING, and UN­
STRING verbs for character-string handling. Using these
verbs, programmers can search for embedded character
strings with TALLY and REPLACE and can join together or
break out separate strings with various delimiters.

Fiie Organization
The Sequential 1/0, Relative 1/0, and multikey Indexed 1/0
modules meet the full ANSl-74 high-level standards and
include all the COBOL verbs. The Indexed 1/0 Module
statements enable COBOL programs to use RMS multikey
record management services to process files. These files
can be accessed sequentially, randomly, and dynamically,
using one or more indexed keys to select records. The
multikey facility offers flexibility and power in the develop­
ment of application systems and is a valuable language
feature.

COBOL uses RMS data management services to imple­
ment user file handling . In addition, COBOL programs can
create and/or read ANSI standard-format magnetic-tape
files. Finally, COBOL programs can build files that the
DAT ATRIEVE software package processes, and vice
versa.

Library Faclllty
With PDP-11 COBOL, programmers have a full ANSl-74
low-level library facility that includes high-level extensions
(COPY ... REPLACING). Frequently used data descriptions
and program text sections can be held in library files that
are available to all programs. These files can then be
copied at compile time to reduce program preparation
time and to eliminate a common source of errors.

6-8

CALL Facility
The CALL statement allows COBOL programs to invoke
separately compiled subprograms, passing arguments in
the process. Subprograms can be written in PDP-11
COBOL or MACR0-11. The CALL facility:
• provides flexibility through modular development of

application systems

• permits functional separation of small, well-defined
source modules

• gives the programmer access to operating system-
dependent features via subroutines written in MACRO

Symbolic Interactive Debugger
PDP-11 COBOL provides an easy-to-learn and easy-to­
use interactive debugger. The Symbolic COBOL Interac­
tive Debugger reduces the time required to test programs.
Altering source programs during testing is often unneces­
sary because the programmer can debug COBOL pro­
grams by including the debugger when linking the
program. By using the symbolic debugger, programmers
can follow program flow during the execution of a job and
they can:
• reference data items by their user-defined names,

including qualification and subscripting

• reference section names and paragraph names
• examine and modify the value of variables during pro­

gram execution
• stop and restart programs at locations specified by the

programmer at the beginning or during the execution of
the program

• alter program flow during the debugging session

• gain control before normal or abnormal termination

Other Debugging Tools
To make program debugging even easier, the PDP-11
COBOL compiler produces source-language listings with
embedded diagnostics. Fully descriptive diagnostic mes­
sages are listed at the point of error. Over 400 different
error conditions are checked-varying from simple warn­
ings to major error detections.

Debugging large source programs is further simplified
with the optional Data Division allocation map and with
modular programming techniques that are offered by the
segmentation and interprogram communication facilities.

Another useful debugging aid is the optional cross­
reference listing produced by the compiler. It is a listing of
all data names, procedure names, and the source-line
numbers of those program lines containing the definitions
and references. For each name, a list of ordered source­
line numbers is displayed. Source-line numbers for de­
fined items are distinguished from source-line numbers
for referenced items.

Interactive COBOL Execution
The ACCEPT and DISPLAY statements of the PRO­
CEDURE DIVISION allow easy terminal-oriented interac­
tion between a PDP-11 COBOL program and a program­
mer.

The ACCEPT statement allows the programmer to enter
input lines to the COBOL program. The ACCEPT state­
ment also can retrieve the current date or time from the
system.

The DISPLAY statement transfers data from a specified
literal or data item to a specified device-normally the pro­
grammer's terminal. The statement can be modified by a
special WITH NO ADVANCING phrase (without automatic
appending of carriage return and linefeed) that allows the
COBOL program to control the format of the message
sent. The WITH NO ADVANCING phrase causes the device
to remain positioned on the same line and the same char­
acter position following the last character displayed. This
is especially useful when typing prompting messages on
the terminal.

The ACCEPT and DISPLAY statements are intended pri­
marily for use with keyboard devices. However, PDP-11
COBOL also allows the ACCEPT statement to accept
cards from a card reader and the DISPLAY statement to
display data on a lineprinter.

In addition , more advanced screen facilities can be
invoked by PDP-11 COBOL by calling FMS, the Forms
Management System.

Source-Program Formats
The disk-resident PDP-11 COBOL compiler accepts
source-program input from cards, console terminals, and
disks, including input from source-text library files stored
on disks.

PDP-11 COBOL accepts source programs that are coded
using either the conventional 80-column card reference
format or the shorter, easy-to-enter DIGITAL terminal for­
mat.

Terminal format is designed for use with interactive text
editors. It eliminates the line number and identification
fields and allows horizontal tab characters and short lines.
These capabilities offer potential savings in disk space and
allow easier interactive input of source programs.

Conventional format produces source programs that are
compatible with the reference format of other COBOL
compilers throughout the industry.

Utlllty Programs
PDP-11 COBOL offers the RFRMT and MERGE utilities to
aid programmers with data processing. RFRMT (reformat)
converts DIGITAL terminal-format COBOL programs into
conventional-format ANSI COBOL programs. MERGE
merges skeleton overlay description files generated by
COBOL compilations into a single ODL file.

Programmers can enter source programs in the simpler
terminal format and, should those programs ever require
compatibility with the reference format of other COBOL
compilers, use RFRMT to convert their programs to con­
ventional format.

Hardware Requirements
PDP-11 COBOL is supported on any RSX-11 M/M-PLUS
configuration that includes the Extended Instruction Set, a
user area of at least 62 Kbytes of memory, and at least
4,000 free blocks of online disk storage on the public disk
structure.

PDP-11 BASIC·PLUS·2
DIGITAL's PDP-11 BASIC-PLUS-2 is far more than a basic
language. A powerful structured programming language
for PDP-11 systems running RSX-11M and RSX-11M-PLUS

6-9

as well as RSTS/E, it has the features and runtime
efficiency needed to handle such large applications as
payroll and accounting. At the same time, BASIC-PLUS-2
provides a highly interactive development environment
friendly to both novice and professional programmers.

The BASIC Environment
BASIC-PLUS-2 provides a comprehensive environment
with all the services and utilities programmers need to
write, edit, run , debug, and compile programs. Pro­
grammers can take a program all the way from source­
code entry through debugging and editing to final compi­
lation, without once having to leave the BASIC
environment.

• BAS/C-PLUS-2's line editor lets programmers write and
edit source code quickly and easily.

• The line-by-line syntax checker can be set to check
each line for proper syntax as the line is entered.

• The interactive HELP command displays online docu­
mentation for explanations of various BASIC-PLUS-2
language elements.

• The SEQUENCE command automatically numbers the
lines of a program being entered through a user termi­
nal.

• The RESEQUENCE utility renumbers lines and updates
all references to reflect the new line numbers.

• The RUN command compiles the source program cur­
rently being worked on for immediate execution.

• The LOAD command permits the explicit loading of pre­
compiled modules for execution by the RUN command.

• Extensive error-checking with meaningful error messag­
es makes the compiler's output listing into a vital tool in
the debugging process. In addition to being displayed
on the terminal, error messages appear in the listing
next to the line where the error was detected.

• The BAS/C-PLUS-2 Symbolic Debugger provides a varie­
ty of debugging commands that let a programmer con­
trol and observe program execution interactively.

• The extensive listing-file generation facilities include
optional cross referencing.

Structured Programming
Structured programming is a synonym among pro­
grammers for straightforward, modular programs that are
easy to build, to debug, to update, and to maintain. Struc­
tured programming techniques can help keep the cost of
software maintenance down. The "self-documenting"
code produced can be more quickly understood, and the
program's modularity makes it much easier to add new
modules and to modify old one.

BASIC-PLUS-2 supports structured programming in sever­
al ways.
• Block-structured statements such as IF ... THEN ... -

ELSE. .. END IF and SELECT ... CASE ... END SELECT allow
programmers to directly implement structured code
without resorting to makeshift shortcuts and excessive
commenting.

• 31-character variable and function names and state­
ment labels allow for self-documenting names that indi·
cate their use in the program. And these labels can be
used in place of line numbers in most parts of a pro·
gram.

• User-named program constants let programmers give
meaningful names to often-used values in a program,
such as integers that represent TRUE, FALSE, SUC­
CESS, and FAILURE flags.

• Flexibility in program formatting allows programmers
to arrange their source programs so that the functional
blocks and the flow of the program can be easily identi­
fied. For example, blocks can be indented with tab char­
acters; several statements can be placed on one line;
and one statement can be spread over several lines.

• Program segmentation allows a program to be con­
structed of separately compiled modules headed by the
SUB or FUNCTION statements, to be subsequently ac­
cessed by the main module. Segmentation makes it eas·
ier to modify the program and gives programmers more
flexibility in overlaying. '·

• The CALL statement can pass parameters BY VALUE,
REFerence, or DESCriptor.

• The EXTERNAL statement provides access to global
variables, functions, and constants, and allows data typ­
ing of parameters to aid in minimizing runtime
mismatches.

• The OTHERWISE clause ON GOTO and ON GOSUB
provides a simple solution when the index expression is
out of range.

Compile-Time Directives
With compile-time directives, programmers can put in­
structions for the BASIC-PLUS-2 compiler in their source
code. These directives can be used to promote the devel·
opment of applications that are portable across different
systems. Programmers can use the conditional compila­
tion directives, for example, to selectively compile small
sections of code that have been inserted for debugging
purposes. Compile-time directives also give programmers
more control over the nature and extent of their listing
files. For example, programmers can determine which sec­
tions of code they want included in a listing file.

6-10

Fiie and Data Handling
BASIC-PLUS-2's great flexibility in file 1/0 facilities makes
it a very practical language for developing commercial ap­
plications. The language supports both terminal format
files and block 1/0, In addition to the full range of RMS file­
handling facilities.

BASIC-PLUS-2's support of RMS record 110 operations in­
cludes sequential, relative, and indexed file organizations,
primary and alternate keys, integer keys, segmented string
keys, default name, user open, fixed and variable length
records, record mapping, and the high-speed record file
address (RFA) access method. This host of 1/0 capabilities
lets programmers choose the file access method best suit­
ed to the job, whether it requires fast data access or low
processing overhead.

BASIC-PLUS-2 is equally flexible in the way it handles data
formats.
• DYNAMIC MAP and REMAP statements provide run­

time allocation of fields within maps.
• Data typing can be implicit or explicit. Explicit data

types allow the declaration of variables that are of any
of the supported data types.

• Variables of all types can be used in the same program,
allowing a program to be more compact.

• Dynamic string handling provides for easy manipula­
tion of alphanumeric data. No limit other than the
amount of available memory is imposed on the size of
string values or string elements of arrays manipulated in
memory.

• Virtual arrays are random-access disk-resident files. A
BASIC-PLUS-2 program accesses virtual arrays using el­
ement subscripts, just like a memory-resident array. Be­
cause the arrays are stored on disk, the programmer can
manipulate large amounts of data without affecting pro­
gram size.

• The COMMON statement enables one subprogram to
pass data to another subprogram, much in the manner
of the FORTRAN COMMON statement. Strings passed
in COMMON are of fixed length, thus reducing string.
handling overhead.

BASIC-PLUS-2 supports the following data types:

• REAL data types:
SINGLE precision data type provides a range of
2.9x10· 37 to 1.7x1038 and a precision of six digits.
DOUBLE precision data type provides a range of
2.9x10·31 to1.7x1038 and a precision of 16 digits.

• INTEGER data types:
eight-bit bytes with a range of ·128 to + 127.
16-bit words with a range of -32,768 to + 32,767.
32-bit longwords with a range of -2,147,483,648 to
+ 2, 147,483,647.

• The STRING data type allows both static (in MAP or
COMMON) and dynamically varying lengths.

Report-Fonnattlng Capabllltles
BASIC-PLUS-2's report-formatting facilities include spe­
cialized features for commercial and statistical applica-

tions. The PRINT USING statement and FORMAT$ func­
tion give programmers the control over the appearance
and location of data on an output line that they need for
creating professional-looking lists, tables, reports, and
forms. Available features include:
• suppression of zero fields

• zero or blank-fill fields
• commas in large numeric values
• CR (credit) or DR (debit) indicators

• floating currency symbols for numeric fields
• asterisk-fill on numeric fields

Compiler Efficiency
The BASIC-PLUS-2 compiler produces threaded code that
requires less memory than conventional in-line code and
uses less CPU time at program execution than interpreted
BASIC. The compiler implementation reduces the pro­
gram's CPU time demands because its arithmetic compu­
tation and string handling are very efficient.

The BASIC-PLUS-2 compiler assumes certain compile and
build switches and taskbuilder parameters automatically.
This feature makes BASIC-PLUS-2 programs easier to en­
ter, to compile, and to build. It also can decrease taskbuild
times, and can make the disk size of a resulting program
significantly smaller than with other versions of BASIC.

More than one version of the compiler can be running on a
system at the same time. This can be very handy when pro­
grammers need to compile programs to run on differently
equipped systems-those with the Extended Instruction
Set only versus those that also have the Floating-Point
Unit option, for instance.

Compatlblllty with Other DIGITAL BASIC
Implementations
BASIC-PLUS-2 is a functional subset of VAX-11 BASIC. In
fact, programmers can create programs on VAX systems
that can run both on PDP-11s and VAX systems by using
the BASIC-PLUS-2 subset flagger in VAX-11 BASIC. This
flagger warns the programmer when any VAX-11 BASIC
programming feature that is not available under BASIC­
PLUS-2 is used.

And BASIC-PLUS-2 programmers can use the compile­
time directives for conditional compilation to write VAX­
oriented code blocks that will not be compiled on a PDP-11
and PDP-11-oriented code blocks that will be ignored by
the VAX compiler.

BASIC-PLUS-2 is also a functional superset of DIGITAL's
BASIC-PLUS, the traditional programming language on
RSTS/E. DIGITAL's BASIC Transportability Manual de­
scribes how to prepare programs compatible with BASIC.
PLUS, as well as how to use a variety of translation utili­
ties available from DIGITAL.

Hardware Requirements
BASIC-PLUS-2 runs on any valid RSX-11M or RSX-11M·
PLUS operating system configuration that includes the
Extended Instruction Set, at least 128 Kbytes of user mem­
ory, and the RMS Record Management System. Also, be­
tween 4,800 and 5,800 contiguous disk blocks must be
available for product installation.

6-11

CORAL66
CORAL 66 is the standard, general purpose language pre­
scribed by the British government for realtime and proc­
ess-control applications. A high-level, block-structured
language, it is defined in the Official Definition of CORAL
66 published by Her Majesty's Stationery Office. CORAL
66 is supported on RSX-11 M only.

The CORAL 66 language replaces assembly-level
programming in modern industrial and commercial appli­
cations. It is particularly useful for products that are
expected to be long-lived and that require flexibility and
easy maintenance.

The CORAL 66 compiler used on RSX-11M is imple­
mented in accordance with the Official Definition . In addi­
tion to the functionality prescribed in the Official Definition,
the RSX-11 CORAL 66 compiler provides:
• BYTE, LONG (32-bit integer), and double (64-bit float­

ing-point) numeric types
• generation of reentrant code at the procedure level
• generated code executable on any valid RSX- 11 S

operating system that includes the Extended Instruction
Set (EIS)

• switchable option to select a target PDP-11 computer in­
struction set

• switchable option to optimize generated code
• switchable option to check the bounds of array type vari­

ables
• conditional compilation of defined parts of source code

• English-language error messages at compile and (op­
tionally) at runtime

• switchable option to control listing output
• INCLUDE keyword to incorporate CORAL 66 source

code from user-defined files
• switchable option to read card format

CORAL 66 with Floating-Point-Unit (FPU) support gener­
ates code for floating-point and integer arithmetic.

The CORAL 66 Object Time System (OTS) is a library of
object modules that are selectively linked by the Task
Builder with compiler-produced object modules to pro­
duce a task ready for execution. It enables users to gener­
ate executable tasks to run under RSX-11 Mand RSX-11S.
The OTS is reentrant, so part or all of the OTS can be
made into a shared library for concurrent use by multiple
tasks. It provides stream, record, and block input·/output,
using FCS, terminal input/output, mathematical pro­
cedures, and routines that implement a subset of the RSX-
11 M and RSX-11 S system directives.

6-12

Hardware Requirements
CORAL 66 is supported on any valid RSX-11 M configura­
tion that includes:
• KT11 Memory Management Unit (or equivalent)

• KE11-E Extended Instruction Set (or equivalent)
• a 48 Kbyte main-memory partition
• a 9-track 800-bit-per-inch magnetic tape system or an

RK05, RK06, RK07, or RL01 disk cartridge system

7
Data

Management
Facilities

RSX-11 data management facilities include a file system that provides
volume structuring and directory access, file control services that
enable users to perform record-oriented and block-oriented 1/0
operations, and record management services that provide device­
independent access to all types of peripherals.

File Control Services (FCS) allows for both sequential and random
access to files. The sequential access method is device-independent;
that is, it can be used for record-oriented and random-access file­
structured devices. The direct access method can be used only for file­
structured devices.

Record Management Services (RMS) provides sequential, relative, and
indexed-sequential file organizations. At the application level, RMS
supports sequential, random, and record's file address record access,
as well as block 1/0.

Under both FCS and RMS, logical records are regarded by the user
program as data units that are structured and accessed In accordance
with application requirements.

RSX-11 also supports several other data management facilities:
DAT ATRIEVE-11, an Interactive query, report-writing, and data
maintenance system; FMS-11, the Forms Management System utility
package; and SORT-11, a sort utility.

INTRODUCTION
The RSX-11M/M-PLUS operating system's data manage­
ment facilities are provided by:

• the Files-11 file system
• device drivers
• the command interpreters
• file and volume management utilities

• File Control Services
• Record Management Services
• optional ut il ities for data and file man ipulation and

inquiry

The file system provides volume structuring and directory
access to disk and magnetic tape files. Programmers can
use the file system as a base for building their own record
processing system, or they can use the FCS File Control
Services or RMS Record Management Services.

Both FMS and RMS provide device-independent access to
ail types of 1/0 peripherals. The FCS and RMS procedures
enable a program to access records within files and pro­
vide the same programming interface, regardless of de­
vice characteristics. The system includes utilities for RMS
file creation and maintenance.

FCS enables users to perform record-oriented and block­
oriented 1/0 operations and to perform additional func­
tions for f ile control. It supports both sequential and
random access to data in files on sequential-access de­
vices (such as magnetic tapes) and random-access de­
vices (such as disks).

RMS, developed after FCS, allows more complex file or­
ganizations than is possible with FCS. With it,
programmers have a wider choice of file organizations and
record access modes and retrieval capabilities. They can
use sequential , relative, or multikey indexed-sequential
file organizations, and sequential , random, or record's flie
address access modes.

The device drivers provide the basic 1/0 device handling
for ail of the other data management services. Device driv­
ers and their features are described in Sections 3 and 9.

RSX-11 supports DATATRIEVE-11 for data inquiry and re­
port writing , FMS-11 for screen formatting and forms gen­
eration , and SORT-11 for reordering data.

FILE MANAGEMENT
RSX-11 includes Files-11 for overseeing the storage and
handling of files on volumes. Volumes contain both user
files and system files. Files-11 accepts both DCL and MCR
commands for initializing (or formatting) the three types of
volumes: disks, DECtapes, and magnetic tapes.

Volumes that are not in Files-11 format are described as
foreign. Although Files-11 cannot access foreign volumes
directly, FLX, the File Exchange program (described in
Section 4), translates files from other DIGITAL formats to
Files-1 1 formats.

Volume and file protection are based on User Identifica­
t ion Codes (UICs) assigned to accessors and to the file or
volume. The UICs establish the accessor's relationship to
the data structure as either owner, owner's group, system,

7-1

or world (all others). Depending on the relationship, the
accessor may or may not have read, write, extend, or de­
lete access to any given file.

The file structure on disk volumes appears to a program to
be a virtually contiguous set of blocks. The blocks of the
file, however, can be physically located anywhere on a vol­
ume. Mapping information is maintained to identify ail
blocks that constitute a file.

Magnetic tape and DECtape contain files that consist of
physically contiguous blocks. These files have ANSI-for­
mat labels.

Fiie Directories and Directory Structures
A directory is a file containing a llst of files on a given vol­
ume. A directory entry contains the name, type, version,
and file identifier for a particular file. A directory can list
files having the same owner UIC or files having different
owner UICs.

A disk volume contains at least one directory, called the
Master File Directory (MFD), that contains a list of user
directory files. The utility that Initializes volumes creates a
volume's MFD. When users create a file, the system places
the filename in a User File Directory (UFO) and stores their
current UIC in the file header to indicate the owner of the
file. Ali UFOs are listed in each volume's MFD. UFO and
MFD directories list the names of files and contain pointers
to each file's header. The file header contains information
about the file's owner and the physical location of the file
segments.

A task or user must satisfy the protection mask of both the
file to be accessed and the UFO in which the file is located,
in order to gain access to a file.

Because directories of files are files themselves, they are
assigned owner UICs and can be protected from certain
kinds of access, depending on the relationship establ ished
by a user's UIC. In the special case of directory files, the
file protection fields control an accessor's ability to:
• lookupfiles
• enter new files In the directory, including new versions of

existing files

• remove files from the directory

Fiie Specifications ·
A file specification identifies the file to be used in a file­
processing operation. Programs use file specifications to
Identify the file they want to create, access, delete, or ex­
tend. Users supply the command Interpreter with a file
specification to Identify the file they want to edit, compile,
taskbuild, copy, or delete, for example. A file specificat ion
can be composed of a:
• device name-the physical or logical device unit on

which the volume containing the file is mounted. The de­
vice name is followed by a single colon to delimit it from
the remainder of the file specification.

• User Identification Code (UIC)-a specification for the
User File Directory (UFO) in which the file is listed. The
UIC represents the owner's group and the member
number and serves as a protection for files and directo­
ries. The UIC is always enclosed in square brackets.

• filename-an alphanumeric string from one to nine
characters in length that specifies the name of the file. A
period always separates the filename from the filetype.

• filetype-a three-letter alphanumeric string that often Is
a mnemonic that identifies the nature of the file contents.
A semicolon always separates the filetype from the ver­
sion number.

• version number-an octal number that indicates the ver­
sion or generation of the file.

An example of a complete file specification is:

DK0:[200,200]TECSUM.TXT;2

In this case, DKO is the name of the device; (200,200) ls the
UIC; TECSUM is the filename; TXT is the filetype; and 2 is
the version number.

Normally users don't have to provide a complete file speci­
fication to identify files. The system sets defaults for most
fields in a command-line file specification, depending on
the program. When users omit one or more fields In a file
specification , the system assumes the default . For
example, if the device name is not present, the device is
assumed to be the user's current system device. If the ver­
sion number is not present, it is always assumed to be the
latest.

Sometimes users can specify more than one file In a single
specification by using a wildcard in one or more fields of
the specification. The wildcard causes the system to select
all the files that satisfy the explicitly described fields. This
saves both keystrokes and time.

FILE AND VOLUME MANAGEMENT UTILITIES
RSX-11 provides many services that aid In file and volume
management and maintenance. Programs to locate bad
blocks, to verify file structures, and to backup and restore
files and volumes are among these services. For more in­
formation on these and other services, refer to Sections 4
and 5.

FILE CONTROL SERVICES
RSX-11 File Control Services (FCS) are a set of routines
that a task can use to access the file system. It enables
users to perform record-oriented and block-oriented 110

7-2

operations, and to perform other functions required for file
control, such as creating, deleting, opening, closing, read­
ing, and writing. To use FCS, a task invokes the FCS ma­
cros. The macros call FCS routines, which Issue the actual
1/0 directives (QI Os). Most of the RSX-11 Mand RSX-11 M­
PLUS tasks and utilities use FCS.

Figure 7-1 Illustrates the file access operation .

The FCS routines, which can reside In the task's image, in
a resident system library, or in a system object-module li­
brary, are linked with a task when the task is built. These
routines, consisting of pure position-independent code,
provide a user interface to the file system, enabling the
user to read and write files on file-structured devices and
to process files in terms of logical records.

USER- ISSUED MACRO CALL

FILE CONTROL SERVICES

FILE CONTROL PRIMITIVES

PERIPHERAL DEVICE HARDWARE
(o.g . , DISK , TERMINAL)

Figure 7-1
Fiie Access Operation

FCSRES is a resident library of commonly used FCS rou­
tines. Users can build tasks to link to this single copy of the
FCS routines instead of including the routines In each task
image. Having only one copy of the FCS routines reduces
memory usage. A task accesses a resident library by using
the User-mode mapping registers. These registers are
also used to map the task code and data, so each task that
uses the FCSRES library must reserve some of Its logical
address space to map the library.

The FCSRES library uses no special hardware, and can
thus be used on any of the processors that RSX-11 M and
RSX-11 M-PLUS support.

RSX-11 M-PLUS systems support FCSFSL, a Supervisor­
mode library of commonly used FCS routines. (Supervi­
sor-mode libraries are discussed In Section 3). Tasks built
with FCSFSL have exactly the same functionality as tasks
built with FCSRES or tasks that Include the FCS routines in
their task images.

A task accesses a Supervisor-mode library using the Su­
pervisor-mode mapping registers, a hardware feature
available on the PDP-11/44 and PDP-11170. Mapping·the
library in Supervisor mode allows the library to reside out­
side the task's logical address space. Tasks built with
FCSFSL can therefore be larger than the same tasks built
with FCSRES.

With .FCS, users can write a collection of data (consisting
of distinct logical records) to a flle In a way that enables

them to retrieve the data at will. Data can be retrieved from
the file without having to know the exact form In which it
was written to the file. FCS thus provides a sense of trans­
parency to the user so that records can be read or written
in logical units that are consistent with an application's
requirements.

Fiie Access Methods
Under FCS, RSX-11 supports both sequential and random
access to files. The sequential access method is device-in­
dependent; that is, it can be used for both record-oriented
and random-access devices (for example, magtapes and
disks). The direct access method can be used only for file­
structured random-access devices.

Data Formats for Fiie-Structured Devices
Data are transferred between peripheral devices and
memory in blocks. A data file consists of virtual blocks,
each of which can contain one or more logical records.
Records in a virtual block can be either fixed or variable in
length.

Virtual blocks and logical records within a file are num­
bered sequentially, starting with one. A virtual block num­
ber is a file-relative value, while a physical block number is
a volume-relative value. For example, the first virtual block
in a file is always virtual block number 1, but at the same
time it could also be physical block number 156.

Block 1/0 Operations
The READ and WRITE macro calls allow the user to read
and write virtual blocks of data from and to a file without
regard to logical records in a file. Block 1/0 operations
provide a very efficient means of processing file data,
since such operations do not involve the blocking and de­
blocking of records within the file. Also, in block 1/0 opera­
tions, the user can read or write files in an asynchronous
manner; control can be returned to the user program be­
fore the request 1/0 operation is completed.

When block 1/0 is used, the number of the virtual block to
be processed is specified as a parameter in the
appropriate READ and WRITE macro call. The virtual
block so specified is processed directly in a buffer re­
served by the program in its own memory space.

As implied above, the user is responsible for synchroniz­
ing all block 110 operations. For this purpose, the user in­
vokes a WAIT$ macro when it is necessary to wait for the
1/0 to complete. A user-selectable event flag can be used
to coordinate block 1/0 transfers, allowing simultaneous
asynchronous 1/0 to a number of files.

Record 1/0 Operations
The GET$ and PUT$ macro calls are provided for process­
ing record-oriented files. GET$ and PUT$ operations per­
form the necessary blocking and deblocking of the rec­
ords within the virtual blocks of the file, allowing the user to
read or write individual records.

When writing a new file with PUT$ operations, the user
program must specify the format of the records. For exam­
ple, it must specify whether the records are fixed or vari­
able in length, or whether records that are to be output to a
carriage-control device are to contain carriage-control in­
formation, which can be either at the beginning of the
records or embedded within the records.

7-3

For sequential access files, 1/0 operations can be per­
formed for both fixed- and variable-length records. For
direct access files, 1/0 operations can be performed only
for fixed-length records.

In contrast to block 110 operations, all record 1/0 opera­
tions are synchronous; control is returned to the user pro­
gram only after the requested 1/0 operation is performed.

However, FCS has facilities for simultaneous 1/0 to a ring
of buffers, called multiple buffering, and 1/0 to a buffer of
several disk blocks, called big buffering, to increase pro­
gram efficiency at the cost of using additional virtual mem­
ory.

Because GET$ and PUT$ operations process logical rec­
ords within a virtual block, only a limited number of GET$
or PUT$ operations result in an actual 1/0 transfer-that is,
when the end of a data block is encountered. Therefore, all
GET$ and PUT$ 1/0 requests do not necessarily involve a
physical transfer of data.

The File Storage Region
The file storage region (FSR) is an area allocated in the
user program as the working storage area for record 1/0
operations. The FSR consists of two program sections that
are always contiguous. The. first program section of the
FSR contains the block buffers and the block buffer head­
ers for record 110 processing. The user determines the
size of the area at assembly time. The number of block
buffers and associated headers is based on the number of
files that the user intends to open simultaneously for rec­
ord 1/0 operations.

The second program section of the FSR contains impure
data that are used and maintained by FCS in performing
record 1/0 operations. Portions of this area are initialized
at taskbuild time, and other portions are maintained by
FCS. This program section is intentionally isolated from
the user to preserve its integrity.

Blocking and deblocking of records during input is accom­
plished in the FSR block buffer during output. Note also
that FCS serves as the user interface to the FSR block
buffer pool. All record 1/0 operations initiated through
GET$ and PUT$ calls are totally synchronized by FCS.

Data Transfer Modes
When record 1/0 is used, a program can gain access to a
record in either of two ways after the virtual block has been
transferred into the FSR from a file.
• Move mode. Individual records are moved from the FSR

buffer. Move mode simulates the reading of a record
directly into a user record buffer, thereby making the
blocking and deblocking of records transparent to the
user.

• Locate mode. The user program accesses records
directly in the FSR block buffer. Program overhead is re­
duced in locate mode, since records can be processed
directly within the FSR block buffer.

Shared Acce88 to Flies
FCS permits shared access to files according to esta­
blished conventions. Two macro calls, among several
available in FCS for opening files, invoke these functions.
The OPNS$ macro call is used specifically to open a file for

shared access. On the other hand, the OPEN$ call invokes
generalized open functions that have shared access impli­
cations only in relation to other 1/0 requests then issued.

By default, several tasks can read the same task simulta­
neously. Restricted or shared access to files being read or
written is possible. Shared access during reading does not
necessarily imply the presence of read requests from sev­
eral separate tasks. The same task can open the same file
using different logical unit numbers.

Spooling Operations
FCS provides facilities at both the macro and subroutine
level to queue files for subsequent printing. A task issues
the PRINT$ macro call to queue a file for printing on the
system lineprinter.

FCS Macros and Macro Use
FCS includes four basic kinds of macros that simplify the
user's interface to the system's file control primitives. The
four kinds are:
• initialization macros
• file-processing macros
• command-line-processing macros
• the CALL macro

The initialization and file-processing macros are used to
establish the database description and the necessary tem­
porary storage areas needed to perform 1/0 operations.
The command-line-processing macros are used to dy­
namically process 1/0 commands entered from a terminal.
The CALL macro is used to invoke file-control routines.

The initialization and file-processing macros set up the fol­
lowing structures to define the database:
• A file data block (FDB) that contains execution-time in­

formation necessary for file processing. It defines the
basic characteristics of a file-for example, record type,
record size, and access privileges, among others.

• A data set descriptor that is accessed by FCS to obtain
the file name, type, version number, and location neces­
sary to open a specified file. The data set descriptor is
used when a program accesses a given set of known or
predefined files.

• A default file name block that is accessed by FCS to ob­
tain default file information required to open a file. This
is accessed when complete file information is not speci­
fied in the data set descriptor. It is used by programs
written to access a general set of files.

There are two types of initialization macros: assembly-time
macros and runtime macros. Data supplied during assem­
bly of the source program establish the initial values in the
FDB. Data supplied at runtime can either initialize addi­
tional portions of the FDB or change values established at
assembly time. Furthermore, the data supplied through
the file-processing macros can either initialize portions of
the FDB or change previously initialized values. The user
not only has a broad range of control over defining the
database characteristics, but also has control over when
the definitions are made.

File-processing macros also determine the way in which
files are processed. These macro calls are invoked and ex-

7-4

panded at assembly time. The resulting code Is then exe­
cuted at runtime to perform the following operations:

OPEN$ opens and prepares a file for processing

OPNS$

OPNT$

OFID$

GET$

GET$R

GET$S

PUT$

PUT$R

PUT$S

READ$

WRITE$

DEL ET$

WAIT$

PRINT$

opens and prepares a file for processing;
allows shared access to the file (depend-
ing on the mode of access)

creates and opens a temporary file for
processing

opens an existing file using the file iden­
tification provided In the filename block

reads logical records from a file

reads fixed-length records from a file In
random access mode

reads records from a file In sequential­
only access mode

writes logical records to a file

writes fixed-length records to a file in
random mode

writes records to a file in sequential
mode

reads virtual blocks from a file

writes virtual blocks to a file

removes a named file from the associ­
ated volume directory and deallocates
the space occupied by the file

suspends program execution until a
requested block 1/0 is performed

queues a file for printing on a special ter­
minal or lineprinter

In summary, the file-processing macros allow the user to
specify random access or sequential access to files, and
perform block-oriented or record-oriented file processing.
In addition, the PRINT$ macro allows the user to spool files
to a lineprinter or terminal device.

The command-line-processing macros allow the user to
access special routines available in the system object
library. The Get Command Line (GCML) routine accom­
plishes all the logical functions associated with the entry of
a command line from a terminal, an Indirect command file,
or an online storage medium. The Command String Inter­
preter (CSI) routine takes command lines from the GCML
input buffer and parses them into appropriate data set de­
scriptors required by FCS for opening files.

The CALL macro allows the user to access a special set of
file control routines. Among other operations, these
routines allow a MACRO program to perform the following:
find, insert, or delete a directory entry; rename a file; ex­
tend a file; mark a temporary file for deletion; and delete a
file.

RECORD MANAGEMENT SERVICES
Record Management Services (RMS), a set of general pur­
pose file-handling capabilities, combines with the host
RSX-11 M or RSX-11 M-PLUS operating system to provide

efficient and flexible data storage, retrieval, and modifica­
tion. When writing programs, users can select processing
methods suitable to their application from among several
RMS file structuring and accessing techniques.

Not only does RMS handle such functions as file organiza­
tion and access methods, but it also manages the other file
attributes (for example, storage medlun'l and record for­
mat) and the runtime environment. By accomplishing most
of Its work transparently, RMS relieves programmers of
many of the complexities associated with file and record
manipulation.

Included In both RSX-11 M and RSX-11 M-PLUS, RMS Is
also part of all operating systems available from DIGITAL
for the PDP-11 family.

Fiie Organization
A file is a collection of related information whose require­
ments are established by the nature of application pro­
grams needing the Information. For example, a company
might maintain personnel information (employee names,
addresses, job titles) in one file and product information
(part numbers, prices, specifications) in another file .
Within each of these files, the information is divided into
records. In the personnel file, it would be logical for all the
information on a single employee to constitute a single
record and for the number of records in the file to equal
the number of employees.

Similarly, each record in the product information file would
represent a description of a single product. The number of
records in a file reflects the requirements of a particular
application; in this case, a central registry of products sold
by a company.

Each record in the personnel and product files would be
subdivided into discrete pieces of information known as
data fields whose number, location within the record, and
logical interpretation are defined by the programmer. Pro­
gram applications then interpret a particular data field in
records of the personnel file as the name of an employee.
They would interpret another data field in records of the
product file as a part number. Figure 7-2 illustrates rec­
ords that might occur in a personnel file and in a product
file.

Thus, the relationships among data fields and records are
known and are embedded in the logic of the programs.

DATA FIELDS' NAME AD DRE SS

JON ES MAIN ST , USA

• '" B
' • tt

RMS has no awareness of such logical relationships;
rather, RMS processes records as single units of data.
Programs either build records and pass them to RMS for
storage in a file or issue requests for records while RMS
performs the necessary operations to retrieve the records
from a file.

The purpose of RMS, then, is to ensure that every record
written into a file can subsequently be retrieved and
passed to a requesting program as a single logical unit of
data. The structure, or organization, of a file establishes
the manner in which RMS stores and retrieves records.
The way a program requests the storage or retrieval of
records is known as the access mode . Legal access
modes depend on the organization of a file.

RMS Fiie Organizations
When creating a file, users have a choice of three file or­
ganizations: sequential, relative, and indexed.

Sequential Fiie Organization - In sequential file or­
ganization (see Figure 7-3), records appear in a physical
sequence that is always identical to the order in which the
records were originally written to the file by an application
program.

BADGE NO DEPARTME NT TITLE

I
14 52 I PAY AO LL CLERK

I

PER SONNEL RECORD

DATA FIELDS' PART NO DESC RIP TION PRICE IN STOCK SPf C IFICAT ION

219 WIDG ET $I 8 6 1430 3 " •2" 11. \"

PRODUC T RECORD

Figure 7-2
Personnel and Product Records

7-5

END Of FILE

--~---'· RECORD RECORD RECORD RECORD RECORD RECORD • • • • RECORD RE CORD

Figure 7-3
Sequential Fiie Organization

Relative Fiie Organization - When relative organization
is selected, RMS structures a file as a series of fixed-size
record cells. Cell size is based on the size specified as the
maximum permitted length for a record in the file. RMS
considers these cells as successively numbered from 1
(the first) to n (the last), and the cell's number represents
its location relative to the beginning of the file.

Each cell in a relative file can contain a single record.
There is no requirement, however, that every cell contain a
record. Empty cells can be interspersed among cells con­
taining records.

Since cell numbers in a relative file are unique, they can be
used to identify both a cell and the record (if any) occupy­
ing that cell. Thus, record number 1 occupies the first cell
in the file, record number 17 occupies the seventeenth
cell , and so forth. When a cell number is used to Identify a
record, it is also known as a relative record number. Figure
7-4 depicts the structure of a file with relative organization.

Indexed Fiie Organization - Unlike the physical ordering
of records in a sequential file or the relative positioning of
records in a relative file, the location of records in indexed
files is transparent to the program. RMS completely con­
trols the placement of records in an indexed file. The pres­
ence of keys in the records of the file governs this place­
ment.

The key, chosen by the programmer, is a data type present
in every record of a particular indexed file. The location
and length of this data type are attributes of the file, and
therefore are identical for all records in the given file. legal
key data types are: string, integer, unsigned binary, and
packed decimal. Selecting a data type indicates to RMS
that the content (that is, key value) of that key in any partic­
ular record written to the file can be used by a program to
identify that record for subsequent retrieval. Since the key
is the arbitrary choice of the programmer, it can, of course,
be equal to a field. Therefore, in the inventory file, the part­
number field could be a key; in the personnel file, the last­
name field could be a key.

CELL NO :

litECOtO
I

RE CORD
2

At least one key, the primary key, must be defined for
every indexed file. Optionally, up to 254 alternate keys can
be defined. Each alternate key represents an additional
character string in records of the file. The key value in any
one of these additional strings can also be used as a
means of identifying the record for retrieval.

As programs write records Into an indexed file, RMS lo­
cates the values contained in the primary and alternate
keys. From the values In keys within records, RMS builds a
tree-structured table known as an Index. The index con­
sists of a series of entries, each of which contains a key
value copied from a record that a program wrote into the
file. With each key value is a pointer to the location in the
file of the record from which the value was copied. RMS
builds and maintains separate indexes for the primary and
alternate keys defined for the file. Each index is stored in
the file. Figure 7-5 shows the general structure of an in­
dexed file that has been defined with only a single key. Fig­
ure 7-6 depicts an indexed file defined with two keys: a pri­
mary key and one alternate key.

RMS AcceH Modes
The various methods of retrieving and storing records in a
file are called access modes. A different access mode can
be used to process records within the file each time it is
opened. Additionally, a program can change access mode
during the processing of a file, by a procedure known as
dynamic access.

RMS provides three record access modes: sequential,
random, and record's file address (RFA). For logical rea­
sons, RMS permits only certain combinations of file or­
ganization and access mode. Table 7-1, on page 7-8, lists
these combinations.

Sequential Acce11 Mode - Sequential access mode can
be used with any RMS file. Sequential access means that
records are retrieved or written in a particular sequence.
The organization of the file establishes this sequence.

Sequential Access to Sequential Files In a file organ ized
sequentially, physical arrangement establishes the order
in which records are retrieved when using sequential ac-

••• 1000

• • • Ll_RE-~~-'-D__._.~~E~M~T~
Figure 7-4

Relative Fiie Organization

7-6

ICE Y DEF IN I TION

' ~--PRIMARY INOE.1. JEMP LOYEE NAME)~

AILE JONES • • • • SMITI"\

ABLE
I

ELM AV : 24319
'

.D\IES : MAtNST 19724 SMITH : t-OU RO 35888

~-----------DATA RECOll OS -----------~

Figure 7-5
Single-Key Indexed Fiie Organization

PRIMARY tNOE ll
IEMP\OVEE NMIEJ

SM ITH

ALTERNATE INOE.I.
18AOGE J'l.l.Nt\8ER)

I I
l HOLT RO 1
I I

--

11733

4 5591

Figure 7-6
Multlkey Indexed Fiie Organization

cess mode. To read a particular record In a file-for exam­
ple, the fifteenth record-a program must open the file and
access the first fourteen records before accessing the de­
sired fifteenth. Each record in a sequential file can be
retrieved only by first accessing all records that physically
precede it. Similarly, once a program has retrieved the fif­
teenth record, it can read all the remaining records (from
the sixteenth on) in physical sequence. It cannot, however,
read any preceding record without beginning again with
the first record.

When writing new records to a sequential file In sequential
access mode, a program must first request that RMS posi­
tion the file immediately following the last record. Then,
each time a program issues a sequential write operation, a
record is written following the previous record.

Sequential Access to Relative Files During the sequential
access of records in the relative file organization, the con­
tents of the record cells in the file establish the order In
which a program processes records. RMS recognizes
whether successively numbered record cells are empty or
contain records.

7-7

When a program issues read requests in sequential ac­
cess mode for a relative file, RMS ignores empty record
cells and searches successive cells for the first one con­
taining a record. If, for example, a relative file contains rec­
ords only in cells 3, 13, and 47, successive sequential read
requests cause RMS to return relative record number 3,
then relative record number 13, and finally relative record
number 47 .

When a program adds new records in sequential access
mode to a relative file, the order in which RMS writes the
records depends on ascending relative cell numbers.
Each write request causes RMS to place a record in the
cell whose relative number is one higher than the relative
number of the previous request, as long as that cell does
not already contain a record . If the cell already contains a
record, RMS rejects the write operation . Thus, RMS allows
a program to write new records only into empty cells in the
file.

Sequential Access to Indexed Files In an indexed file, the
presence of one or more indexes permits RMS to deter­
mine the order in which to process records In sequential

Table 7-1
Permlsslble Combinations of Access Modes and Fiie Organizations

RandomAcceH Random Access
by Key Value

Acce1Sby
Record's Fiie

Fiie Organization Sequentlal Access by Record Number Address

sequential yes

relative* yes

indexed* yes

•disk files only

access mode. The entries in an Index are arranged In as­
cending order by key values. Thus, an Index represents a
logical (rather than physical) ordering of the records In the
file. If more than one key is defined for the file, each sepa­
rate index associated with a key represents a different
logical ordering of the records in the file. A program, then,
can use the sequential access mode to retrieve records In
the order represented by any index.

When reading records in sequential access mode from an
indexed file, a program initially specifies a key (for exam­
ple, primary key, first alternate key, second alternate key,
and so on) to RMS. Thereafter, RMS uses the index asso­
ciated with that specified key to retrieve records In the se­
quence represented by the entries In the Index. Each
successive record RMS returns In response to a pro­
grammed read request contains a value In the specified
key field that is equal to or greater than that of the previous
record returned.

In contrast to a sequential read request, sequential write
requests to an indexed file do not require the Initial key
specification. Rather, RMS uses the stored definition of the
primary key field to locate the primary key value In each
record to be written to the file. When a program Issues a
series of sequential write requests, RMS verifies that each
successive record contains a key value In the primary key
field that is equal to or greater than that of the preceding
record.

Random Access Mode - In random access mode, the
program, rather than the organization of the file, estab­
lishes the order in which records are processed. Each pro­
gram request for access to a record operates Indepen­
dently of the previous record accessed. Associated with
each request in random mode is an Identification of the
particular record of Interest. Successive requests In ran­
dom mode can identify and access records anywhere In
the file.

Random access mode cannot be used with sequentially
organized files. Both the relative and Indexed file organiza­
tions, however, permit random access to records. The
subsections that follow describe the use of random access
with these organizations. Each organization provides a
distinct way programs can Identify records for access.
Random Access to Relative Files Programs can read or
write records in a relative file by specifying relative record
numbers. RMS interprets each number as the corre-

no

yes

no

7-8

no yes*

no yes

yes yes

sponding cell In the file. A program can read records at
random by successively requesting, for example, record
number 47, record number 11, and record number 31. If
no record exists in a specified cell, RMS returns a nonexis­
tence indicator to the requesting program.

Similarly, a program can store records in a relative file by
identifying the cell in the file that a record is to occupy. If a
program attempts to write a new record in a cell already
containing a record, RMS returns a record-already-exists
indicator to the program.

Random Access to Indexed Files The indexed file or­
ganization also permits random access of records. How­
ever, for indexed files, a key value rather than a relative
record number identifies the record.

Each program read request in random access mode spec­
ifies a key value and the index (for example, primary index,
first alternate index, or second alternate index) that RMS
must search. When RMS finds the key value in the speci­
fied index, it reads the record that the index entry points to
and passes the record to the user program. Under random
access the programmer could, for example, instruct RMS
to return all records with SMITH in the key-equal-to-last­
name field.

In contrast to read requests, which require a program­
specified key value, program requests to write records
randomly in an indexed file do not require the separate
specification of a key value. All key values (primary and, if
any, alternate key values) are in the record itself. When an
indexed file is opened, RMS retrieves all definitions stored
in the file. Thus, RMS knows the location and length of
each key field in a record. Before writing a record into the
file, RMS examines the values contained in the key fields
and creates new entries in the indexes. In this way RMS
ensures that the record can be retrieved by any of its key
values. Thus, the process by which RMS adds new records
to the file is precisely the process it uses to construct the
original Index or indexes.

Record's Fiie Address Access Mode - Record's file ad­
dress (RFA) access mode can be used with any file or­
ganization as long as the file resides on a disk device. This
access mode is further limited to retrieval operations only.
Like random access mode, however, RFA access allows a
specific record to be identified for retrieval.

As the name suggests, every record within a file has a
unique address. The actual format of this address de­
pends on the organization of the file. In all instances, how­
ever, only RMS can interpret this format.

The most important feature of RFA access is that the ad­
dress (RFA) of any record remains constant while the
record exists in the file. After every successful read or
write operation, RMS returns the RFA of the subject record
to the program. The program can then save this RFA to
use again to retrieve the same record. It is not required
that this RFA be used only during the current execution of
the program. RFAs can be saved and used later at any
time.

Dynamic Access - Dynamic access is not strictly an ac­
cess mode. Rather, it is the capability to switch from one
access mode to another while processing a file. There is
no limitation on the number of times such switching can
occur. The only limitation is that the file organization (or, in
the case of RFA access, the device containing the file)
must support the access mode selected.

As an example, dynamic access can be effectively used
immediately following a random or RFA access mode op­
eration. When a program accesses a record in one of
these modes, RMS establishes a new current position in
the file. Programs can then switch to sequential access
mode. By using the randomly accessed record (rather
than the beginning of the file) as the starting point, pro­
grams can retrieve succeeding records in the sequence
established by the file's organization.

Fiie Attributes
The logical and physical characteristics of an RMS file are
known as its attributes. These characteristics are defined
by the source language statements of an application pro­
gram or by the RMS utility program DEFINE. RMS uses
this information about the attributes to structure a file on
the storage medium.

The most important attribute of any RMS file is its or­
ganization. A file for use in a particular application can be
tailored by making the proper selection of this and other
attributes. In addition to file organization, the user can
specify the following attributes:

• storage medium on which the file resides

• file and protection specification of the file

• format and size of records

• size of the file

• size of a particular storage structure, known as the
bucket, within relative and Indexed files

• definition of keys for indexed files

Storage Media - Selection of a storage medium on which
RMS builds a file is related to the organization of the file.
Permanent sequential files can be created on disk devices
or ANSI magnetic tape volumes. Transient sequential files
can be written on devices such as llneprlnters and termi­
nals. Relative and Indexed files can reside only on disk de­
vices.

Fiie Specifications - The name assigned to a file enables
RMS to find the file on the storage medium. RMS allows for
the assignment of a protection specification to a file at the
time it is created.

When a file is created, the user must provide the format
and maximum size specifications for the records the file
will contain. The specified format establishes how each
record appears physically in the file on a storage medium.
The size specification allows RMS to verify that records
written into the file do not exceed the length specified
when the file was created.

RMS Record Formats - RMS supports four record for­
mats: fixed, variable, variable-with-fixed-control (VFC),
and stream.

Like the selection of a storage medium, the choice of a for­
mat for the records of a file depends on a file's organiza­
tion. Table 7-2 shows the allowed combinations of record
format and file organization.

Fixed Length Record Format The term fixed length rec­
ord format refers to records of a file that must all be one
specified size. Each record occupies an identical amount
of space in the file.

Variable Length Record Format In variable length record
format, records in a file can be either equal or unequal in
length. To allow retrieval of variable length records from a
file, RMS prefixes a count field to each record it writes. The
count field describes the length (in bytes) of the record .
RMS removes this count field before it passes a record to
the program.

Variable-with-Fixed-Control Record Format Variable­
with-fixed-control (VFC) records consist of two distinct
parts: the fixed control area and the user data record. The

Table 7·2
Fiie Organizations and Record Formats

Fixed Record Variable Record Stream Record
Fiie Organization Format Format VFC Record Format Format

sequential yes yes yes yes*

relative* yes yes yes no

indexed* yes yes no no

• disk files only

7-9

size of the fixed control area is identical for all records of
the file. The contents of each fixed control area are com­
pletely under the control of the program and can be used
for any purpose. As an example, fixed control areas can be
used to store the identifier (for example, relative record
number or RFA) of related records.

The second part of a VFC record is similar to a variable
length record. It is a user data record, variable in length
and composed of individual data fields.

Stream Format Records Records in stream format can
vary in size. However, no count field precedes each rec­
ord. Instead, RMS considers the entire file a stream of con­
tiguous ASCII characters. Each record in the tile is delim­
ited by a form feed , vertical tab, linefeed, or carriage
return immediately followed by a linefeed.

Stream format records are supported for file interchange
with non-RMS application programs. Since this format is
not very efficient, it should be used only when such inter­
change is a concern.

Size of Records - The programmer provides RMS with
record size information along with the selected record for­
mat. How RMS uses this Jnformation depends on the rec­
ord format chosen.

When fixed format records are chosen, the actual size of
each record in the file must be indicated. This size
specification becomes part of the information stored and
maintained by RMS for the file. Thereafter, if a program at­
tempts to write a record whose length differs from this
specified size, RMS will reject the operation.

When creating a file with variable length format records,
the user can specify a maximum record size greater than
zero or, for sequential and indexed files, a maximum rec­
ord size equal to zero. If the specified size is greater than
zero, RMS interprets the value as the size of the largest
record that can be written into the file.

VFC format records require two size specifications. The
first size identifies the length of the fixed control area of all
records in the file; the second size specification represents
the maximum length of the data portion of the VFC rec­
ords. RMS handles this second size specification in a man­
ner similar to its handling of the size specification tor vari­
able format records.
For stream format records, RMS permits the user to spec­
ify the same record size information as for variable format
records. That is, a nonzero value represents the maximum
permitted size of any record written in the file, while a zero
value suppresses RMS size checking.

Size of RMS Flies - The size of an RMS file is expressed
as a number of virtual blocks. Virtual blocks are physical
storage structures. That is, each virtual block in a file is a
unit of data whose size depends on the physical medium
on which the file resides. For example, the size of virtual
blocks in files on disk devices is 512 bytes.

The operating system assigns ascending numbers to a
file's virtual blocks. This numbering scheme allows a file to
appear as a series of adjacent virtual blocks. In reality,
though, the successive numbering of virtual blocks and
the physical placement of these blocks on a storage
medium need not correspond.

7-10

The virtual blocks of a tile contain the records that pro­
grams write into the tile. Depending on the size of records,
a virtual block can contain one record , more than one rec­
ord, or a portion of a record.

When creating an RMS file, users can specify an initial al­
location size. If no file size information is given, RMS
allocates the minimum amount of storage needed to con­
tain the defined attributes of the file.

Buckets In Relative and Indexed Flies - RMS uses a
storage structure known as a bucket tor building and
maintaining relative and indexed files. Unlike a virtual
block, a bucket can never contain a portion of a record.
That is, RMS does not permit records to span bucket
boundaries.

The size of buckets in a tile is defined at the time the files
are created. A large bucket size will serve to increase se­
quential-mode processing speed of a file, since fewer
actual 1/0 transfers are required to access records. Min­
imizing bucket size, on the other hand, means that less 1/0
buffer space is required to support file processing.

Key Definitions for Indexed Flies - To define a key tor
an indexed file, the position and length of character data in
the records of the tile must be specified. At least one key,
the primary key, must be defined tor an indexed file. Addi­
tionally, up to 254 alternate keys can be defined. Each pri­
mary and alternate key represents from one to 255
characters in each record of the file.

When identifying the position and the length of keys to
RMS, users can define either simple or segmented keys. A
simple key is a single, contiguous string of characters in
the record; in other words, a single data field. A seg­
mented key, however, can consist of from two to eight data
fields within records. These data fields need not be con­
tiguous, and RMS treats the separate data fields (seg­
ments) as a logically contiguous character string.

At file creation, two characteristics tor each key can be
specified: duplicate key values are allowed and key value
can change.

If duplicate key values are allowed, the programmer indi­
cates that more than one record in the file can have the
same value in a given key.

The personnel file can serve as an example of the use of
duplicate keys. At file ·creation time, the department-name
field could be defined as an alternate key. As programs
write records into the file, the alternate index for the de­
partment-name key field would contain multiple entries tor
each key value (for example, PAYROLL, SALES, ADMIN­
ISTRATION), since departments are composed of more
than one employee. When such duplication occurs, RMS
stores the records so that they can be retrieved in first­
in/first-out order.

An application could be written to list the names of em­
ployees in any particular department. A single execution of
the application could list the names of all employees work­
ing, for example, in the department called SALES. By ran­
domly accessing the file by alternate key and the key value
SALES, the application would obtain the first record
written into the file containing this value. Then, the appl ies-

tion could switch to sequential access and successively
obtain records with the same value, SALES, in the alter­
nate key field. Part of the logic of the application would be
to determine the point at which a sequentially accessed
record no longer contained the value SALES in the alter­
nate key field. The program could then switch back to ran­
dom access mode and access the first record containing a
different value (for example, PAYROLL) in the depart­
ment-name key field.

The second key characteristic, key value can change, indi­
cates that records can be read and then written back into
the file with a modified value in the key. When such modifi­
cat ion occurs , the appropriate index is automatically
updated to reflect the new key value. This characteristic
can be specified only for alternate keys. Further, when
specifying this characteristic, the user must also specify
that dupl icate key values are allowed.

If the sample personnel file were created with the depart­
ment-name field as an alternate key, the creator of the file
would need to specify that key values can change. This al­
lows a program to access a record in the file and change
the contents of a department-name data field to reflect the
transfer of an employee from one department to another.

The user can also declare the converse of either of these
two key characteristics. That Is, the user can specify for a
given key that duplicate key values are not allowed or that
key values cannot change. When duplicate key values are
not allowed, RMS rejects any program request to write a
record containing a value in the key that is already present
in another record. Similarly, when the key value cannot
change, RMS does not allow a program to write a record
back into the file with a modified value in the key.

Program Operations on RMS Flies
After RMS has created a file according to the user's de­
scription of file characteristics, a program can access the
file to store and retrieve data. The organization of the file
determines the types of record operations permitted.

If the record accessing capabilities of RMS are not utilized,
programs can access the file as a physical structure, in
which case RMS considers the file simply as an array of
virtual blocks. To process a file at the physical level, pro­
grams use a type of access known as block 110.

Record Operations on RMS Flies - The organization of a
file, defined when the file is created , determines the types
of operations that the program can perform on records.
Depending on file organization, RMS permits a program to
perform the following record operations:

• Read a record. RMS returns an existing record within
the file to the program.

• Write a record. RMS adds a new record that the pro­
gram constructs to the file. The new record cannot re­
place an already existing record.

• Find a record. RMS locates an existing record in the file.
It does not return the record to the program, but estab­
lishes a new current position in the file.

• Update a record. The program modifies the contents of
a record read from the file. RMS writes the modified
record into the file, replacing the old record.

7-11

Sequential File Organization Record Operations In se­
quential file organization, a program can read existing rec­
ords from the file using sequential or RFA access modes.
New records can be added only to the end of the file and
only through the use of sequential access mode. The find
operation is supported in both sequential and RFA access
mode. In sequential access mode, the program can use a
find operation to skip records. In RFA access mode, the
program can use the find operation to establish a random
starting point in the file for sequential read operations. The
sequential file organization does not support the delete
operation, since the structure of the file requires that rec­
ords be adjacent in and across virtual blocks. A program
can, however, update existing records in disk files as long
as the modification of a record does not alter its size.

Relative File Organization Record Operations Relative
file organization permits programs greater flexibility in
performing record operations than does sequential or­
ganization. A program can read existing records from the
file using sequential, random, or RFA access mode. New
records can be sequentially or randomly written as long as
the intended record cell does not already contain a record.
Similarly, any access mode can be used to perform a find
operation. After a record has been found or read, RMS
permits the delete operation. Once a record has been
deleted, the record cell is available for a new record. A
program can also update records in the file. If the format of
the records is variable, update operations can modify rec­
ord length up to the maximum size specified when the file
was created.

Indexed File Organization Record Operations Indexed
file organization provides the greatest flexibility in per­
forming record operations. A program can read existing
records from the file in sequential, RFA, or random access
mode. When reading records in random access mode, the
program can choose one of four types of matches that
RMS must perform using the program-provided key value.
The four types of matches are:
• exact key match
• approximate key match
• generic key match
• approximate and generic key match

Exact key match requires that the contents of the key in the
record retrieved will precisely match the key value speci­
fied in the program read operation.

The approximate match facility allows the program to se­
lect either of the following relationships between the key of
the record retr ieved and the key value specified by the
program:
• equal to or greater than
• greater than

The advantage of this kind of match is that if the requested
key value does not exist in any record of the file, RMS re­
turns the record that contains the next higher key value.
This allows the program to retrieve records without know­
ing an exact key value.

Generic key match means that the program need specify
only an initial portion of the key value, thereby forming a
logical truncation of the key. RMS returns to the program

the first occurrence of a record whose key contains a value
beginning with those characters. This capability is useful in
applications where a series of records must be retrieved
according to the contents of only a part of the key field . In
an indexed inventory file, for example, a company might
designate its part numbers in such a way that the first three
digits represent the vendor from whom the part is pur­
chased . In order to retrieve the record associated with a
particular part, the program would normally supply the
entire part number. Generic selection permits the retrieval
of the first record representing parts purchased from a
specific vendor.

The final type of key match combines both generic and ap­
proximate facilities. The program specifies only an initial
portion of the key value, as with generic match. Addition­
ally, a program specifies that the key data field of the rec­
ord retrieved must be either equal to or greater than the
program-supplied value, or greater than the program­
supplied value.

In addition to versatile read operations, RMS allows any
number of new records to be written into an indexed file. It
rejects a write operation only if the value contained in a key
of the record violated a user-defined key characteristic (for
example, duplicate key values not permitted).

The find operation, similar to the read operation, can be
performed in sequential, RFA, or random access mode.
When finding records in random access mode, the pro­
gram can specify any one of the four types of key matches
provided for read operations.

'
In addition to read, write, and find operations, the program
can delete any record in an indexed file and update any
record . The only restriction RMS applies during an update
operation is that the contents of the modified record must
not violate any user-defined key characteristic (for exam­
ple, key values cannot change and duplicate key values
are not permitted).

Block 1/0 - Block 1/0 allows a program to bypass the rec­
ord processing capabilities of RMS entirely. Rather than

7-12

performing record operations through the use of sup­
ported access modes, a program can process a file as a
physical structure consisting solely of virtual blocks.

Using block 1/0, a program reads or writes multiple virtual
blocks by identifying a starting virtual block number in the
file. Regardless of the organization of the file, RMS
accesses the identified block or blocks on behalf of the
program.

Since RMS files, particularly relative and indexed files,
contain internal information meaningful only to RMS itself,
DIGITAL does not recommend that a file be modified by
using block 1/0. The presence of the block 1/0 facility,
however, does permit user-created file structures. The re­
sultant structures must be user-maintained using special­
ized programs. The structures cannot be accessed using
RMS record access mode and record operations.

RMS Runtime Environment
The environment within which a program processes RMS
files at runtime consists of two levels: the file processing
level and the record processing level.

At the file processing level, RMS and RSX-11 M/M-PLUS
provide an environment that permits concurrently execut­
ing programs to share access to the same file. RMS
ascertains the amount of sharing permissible from infor­
mation provided by the programs themselves. Addition­
ally, at the file processing level, RMS provides facilities
that allow programs to minimize buffer space requ ire­
ments for file processing.

At the record processing level, RMS allows programs to
access records in a file through one or more record access
streams. Each record access stream represents an inde­
pendent and simultaneously active series of record opera­
tions directed toward the file. Within each stream, pro­
grams can perform record operations synchronously or
asynchronously. That is, RMS allows programs to choose
between receiving control only after a record operation re­
quest has been satisfied (synchronous operation) or re­
ceiving control before the request has been satisfied
(asynchronous operation).

For both synchronous and asynchronous record opera­
tions, RMS provides two record transfer modes: move
mode and locate mode. Move mode causes RMS to copy a
record from an internal RMS 1/0 buffer into a user buffer.
Locate mode allows programs to address records directly
in an internal RMS 1/0 buffer.

Fiie Processing Environment
RMS provides two major facilities at the file processing
level: file sharing and buffer handling.

Fiie Sharing - Timely access to critical files requires that
more than one program executing concurrently be allowed
to process the same file at the same time. Therefore, RMS
allows executing programs to share files rather than proc­
ess files serially. The manner in which a file can be shared
depends on the organization of the file. Program-provided
information further establishes the degree of sharing of a
particular file.

File Organization and Sharing With the exception of
magnetic tape files, which cannot be shared, an RMS file
can be shared by any number of programs that are read-

ing the file. Under certain circumstances, an RMS file can
also be shared by any number of programs that are writing
the file.

Sequential files on disk can be accessed by a single writer
or shared by multiple readers. Relative and indexed files,
however, can be shared by multiple readers and multiple
writers.

Program Sharing A file's organization establishes
whether it can be shared for reading with a single writer or
for multiple readers and writers. A program specifies
whether such sharing actually occurs at runtime. The user
controls the sharing of a file through information the pro­
gram provides RMS when it opens the file. First, a program
must declare what operations it intends to perform on the
file. Second, a program must specify whether other pro­
grams can read the file or both read and write the file con­
currently with that program.

The combination of these two types of information allows
RMS to determine if multiple user programs can access a
file at the same time. Whenever a program's sharing
information is compatible with the corresponding informa­
tion another program provides, concurrent access is al­
lowed.

Bucket Locking RMS uses a bucket-locking facility to
control operations to a relative or indexed file that is being
accessed by one or more writers. The purpose of this fa­
cility is to ensure that a program can add, delete, or modify
a record in a file without another program's simultaneously
accessing the same record.

When a program opens an indexed or relative file with the
declared intention of writing or updating records, RMS
locks any bucket accessed by the program. This locking
prevents another program from accessing any record in
the bucket until the program releases it, and remains in ef­
fect until the program accesses another bucket. RMS then
unlocks the first bucket and locks the second.

Buffer Handling - To a program, record processing un­
der RMS appears as the movement of records directly
between a file and the program itself. Transparently to the
program, however, RMS reads or writes virtual blocks or
buckets of a file into or from internal memory areas known
as 1/0 buffers. Records within these buffers are then made
available to the program.

In addition to buffers that contain virtual blocks or buckets,
RMS requires a set of internal control structures to sup­
port file processing. The combination of these buffers and
control structures is known as the space pool.

Record Processing Environment
After opening a file, a program can access records in the
file through the RMS record processing environment. This
environment provides three facilities : record access
streams, synchronous or asynchronous record opera­
tions, and record transfer modes.

Record Access Streams - In the record processing envi­
ronment, a program accesses records in a file through a
record access stream, a serial sequence of record opera­
tion requests. For example, a program can issue a read
request for a particular record, receive the record from
RMS, modify the contents of the record, and then issue an

7-13

update request that causes RMS to write the record back
into the file. The sequence of read and update record op­
eration requests can then be performed for a different rec­
ord , or other record operations can be performed, again in
a serial fashion . Thus, within a record access stream, there
is at most one record being processed at any time. How­
ever, for relative and indexed files, RMS permits a
program to establish multiple record access streams for
record operations to the same file. The presence of such
multiple record access streams allows programs to proc­
ess in parallel more than one record of a file. Each stream
represents an independent and concurrently active se­
quence of record operations. Further, when such streams
update records in the fi le, RMS employs the same bucket­
locking mechanism among streams that it uses to control
the sharing of a file among separate programs.

Synchronous and Asynchronous Record Operations -
Within each record access stream, a program can perform
any record operation either synchronously or asynchro­
nously. When a record operation is performed
synchronously, RMS returns control to a program only af­
ter the record operation request has been satisfied (for ex­
ample, a record has been read and passed to one pro­
gram). When a record operation is performed
asynchronously, RMS can return control to one program
before the record operation request has been satisfied. A
program, then, can utilize the time required for the physi­
cal transfer between the file and memory of the block or
bucket containing the record to perform other computa­
tions. However, a program cannot issue a second record
operation through the same stream until the first record
operation has completed. To ascertain when a record op­
eration has actually been performed, a program can issue
a wait request and regain control when the record opera­
tion is complete.

Record Transfer Modes _ In addition to specifying syn­
chronous or asynchronous operations for each request in
a record access stream, a program can utilize either of two
record transfer modes to gain access to each record in
memory:
• Move mode record transfers. RMS permits move mode

record operations for all file organizations and record
operations. Move mode requires that an individual rec­
ord be copied between the 110 buffer and a program.
For read operations, RMS reads a block or bucket into
an 1/0 buffer, finds the desired record within the buffer,
and moves the record to a program-specified location.

Before a write or update operation in move mode, the
program builds or modifies a record in its own work
space. Then the program issues a write or update rec­
ord operation request, and RMS moves the record to an
1/0 buffer.

• Locate mode record transfers. RMS supports locate
mode record transfers for read operations to all file or­
ganizations. However, it permits locate mode on write
operations for sequential files only.

Locate mode reduces the amount of data movement,
thereby saving processing time. This mode enables pro­
grams to access records directly in an 1/0 buffer. There­
fore, there is normally no need for RMS to copy records
from the 1/0 buffer to a program. To allow the program

to access a record in the 1/0 buffer, RMS provides the
program with the address and size of the record in the
1/0 buffer.

DATATRIEVE-11
DATATRIEVE-11 is an optional data maintenance inquiry
language and report writing system. It gives users direct,
fast, and easy access to the data in sequential, relative,
and indexed Record fy'lanagement Services (RMS) files.
DATATRIEVE-11 's substantial help facilities ensure that all
users can take advantage of its capabilities.

DATATRIEVE-11 accepts simple words and phrases to ex­
tract, modify, and update RMS data. With fewer than ten
commands, users can find, print, update, and sort rec­
ords. In addition, DATATRIEVE's advanced command
forms can save both time and keystrokes for more sophis­
ticated users.

There are many advantages to using DATATRIEVE-11
over application programs to generate ad hoc queries and
reports.
• Requests can be tailored interactively to meet the user's

specific needs.

• Sessions are shorter with less coding time.

• Time-consuming compilations are not needed.

• Users can respond immediately to errors or unexpected
variations in results at execution time.

Because DAT ATRI EVE-11 is so easy to learn and simple to
use, all users can access data without the services of a
programmer. So, by eliminating the need for many spe­
cialized application programs and their time-consuming
compilations, DATATRIEVE-11 helps to maximize both
programmer and system productivity.

The three major categories of DATATRIEVE-11 capabili­
ties are:
• data access and update facilities

• report generation facilities

• Data Dictionary

Data Access and Update Facilities
With DAT ATRI EV E's inquiry and update commands, users
can perform record and file manipulation. DATATRIEVE
offers both simple and advanced commands. Novices can
use the simple commands to find, update, and sort rec­
ords. More experienced users can use the advanced com­
mands to perform more complex functions, such as com­
bining commands to form procedures.

DATATRIEVE-11 's flexible "value-based" data
access/update capabilities can eliminate much program­
ming overhead in many ad hoc situations. Information is
returned to the user in the form of collections of records
that can be manipulated and/or displayed on the terminal
or printer using the DATATRIEVE-11 report writing facility.

The following features make DATATRIEVE easy to learn
and use.

... • GUIDE MODE is a tutorial aid with automatic prompting.
This permits the novice to retrieve and display data by
stepping through a subset of commands.

7-14

• The documentation set for DATATRIEVE-11 includes a
Beginner's Primer designed to introduce the novice to
DATATRIEVE-11, and a User's Guide that uses exam­
ples to present the various DAT ATRI EVE-11 functions.

• The commands are simple words and phrases instead
of confusing acronyms.

• Simple arrays are supported.

• A data type is provided that recognizes data formats and
facilities, entering and displaying dates in any one of
several formats.

• DATATRIEVE-11 provides a full set of arithmetic opera­
tors (addition, subtraction, multiplication, division, and
negation), statistical operators (total, average, maxi­
mum, minimum, and count), and conversion between
data types used in DIGITAL's FORTRAN, COBOL, and
BASIC-PLUS-2 languages.

Report Generation
DATATRIEVE-11 also provides a report writing facility to
generate reports from RMS files. The data can come
directly from the files or can be preselected and manipu­
lated through a series of DATATRIEVE-11 commands.
Users can specify such parameters as spacing, titles,
headings, and totals on their reports. As in the inquiry and
update facility, errors in commands are discov~red im­
mediately, which avoids printing wrong or incomplete re­
ports.

Data Dictionary
The Data Dictionary maintains definitions of record struc­
tures and domain names. A record structure describes the
format of the records in a file. A domain is a named group
of data contain ing records of a single type. Record
structures and domain names must be defined before DA­
TATRIEVE-11 can be used to access data.

The definitions provide a substantial level of data and pro­
gram independence because the record definitions (or
views) can cross file boundaries. Thus, by providing a sin­
gle value-based DATATRIEVE-11 query, users can access
information from multiple files and records. DATATRIEVE-
11 also provides commands to list the contents of the Data
Dictionary, to delete entries, and to control access to indi­
vidual entries.

Data Protection - Data protection is accomplished
through two independent mechanisms: the protection sys­
tems of the RSX-11 operating system and those within DA­
T ATRIEVE-11. The DATATRIEVE protection system uses
passwords and User Identification Codes (UICs) to allow a
user to regulate access to domains, records, procedures,
and tables through access requirements recorded in the
Data Dictionary. Thus, each resource has its own security
system to ensure that access is not granted to unauthor­
ized users.

Data Input Valldatlon - DATATRIEVE-11 provides the
ability to encode and decode data and validate input
through tables stored in the Data Dictionary. Validation cri­
teria can also be stored in the record definition to verify the
accuracy of input. DATATRIEVE automatically reprompts
during data entry if an input error is detected.

Procedures - Procedures, which are groups of fre­
quently used statements or commands, can be stored in
the Data Dictionary. After storing a procedure in the Data
Dictionary, a user can execute a sequence of commands
by calling the procedure name, rather than entering the
entire sequence manually. Procedures can be defined by a
user for personal use, or can be made available to all
users. Defining system-wide procedures not only saves
typing, but also provides a means to establish and distrib­
ute complicated sequences of commands to all users. Pro­
cedures can be edited online, allowing for application de­
velopment.

View Facility - By using the DATATRIEVE-11 view capa­
bility users can define logical records that cross file
boundaries. These view definitions are stored in the Data
Dictionary and are used by DAT ATRI EVE to provide a rela­
tional data access capability.

FMS-11 FORMS MANAGEMENT SYSTEM
FMS-11 is an optional set of software tools that provides a
screen management front-end for applications using
VT100-series video terminals. Forms serve as the interac­
tive interface between a terminal user and an application
program. With FMS-11, programmers can create applica­
tions that use one or more displayed forms to handle user
inquiry/response operations.

FMS-11 makes it easy to use the distinctive video attri­
butes of the VT100 series: reverse video, bold, blink,
underline, 132-column lines, jump or smooth scrolling,
and split or reverse screen. Character data types within
fields (pictures) are checked on a character-by-character
basis. And special symbols used for formatting can be
embedded within a field without breaking the field into
smaller fields.

Programmers can use FMS-11 to develop application pro­
grams in MACRO and in most high-level languages on
RSX-11 M and RSX-11 M-PLUS as well as on DIGIT Al's
RSTS/E, RT-11 and VAX/VMS operating systems. Pro­
grams can be coded to be completely independent of the
forms layout, since form and field names are not bound to
the program until execution time.

FMS features include:
• Use of VT100-series terminal features, including reverse

video, bold, blink, and underline characteristics; and
split-screen and scrolling capabilities.

• HELP for forms as well as for fields within forms, to pro­
vide immediate assistance to users without complicating
the development process.

• Extensive field protection and validation features to en­
sure the integrity of data returned to the application pro­
gram.

• The ability to design forms directly and interactively on
the video screen, eliminating the need to Jay out the form
on paper, code form-language statements, compile,
debug, and enter corrections.

• The design and storage of forms independent of the ap­
plication program. The individual field descriptions can
be modified without having to reconstruct the form, re­
compile, relink the application, or reprocess collected
data.

7-15

• The Form Driver, which provides a wide range of termi­
nal 1/0 functions including both field and record level
1/0 calls and flexible manipulation of scrolled regions on
the screen.

FMS-11 Forms
FMS-11 forms include a video screen image that com­
prises data fields and constant background text and pro­
tection and validation information for individual data fields.
The data fields and background text can be highlighted by
using the VT100 video attributes. Split-screen and scroll­
ing capabilities mean more data can be viewed than can
be displayed on a screen at one time. A scrolled area
provides a window into an amount of data that is too large
to appear on the screen at one time, thereby allowing ap­
plications to create and use forms of unlimited length.

Individual data fields can be display-only, enter-only (no
echo), or can be restricted to modification by privileged
users. Data fields can be formatted with fill characters, de­
fault values, and formatting characters (such as a dash in a
phone number), all of which assist the user, but are not vis­
ible to the application program . Fields can be right- or left­
justified or can use a special fixed-decimal field type to
align data properly.

Field validation includes checking each keystroke in a field
for the proper data type: alphanumeric, alphabetic, nu­
meric, signed numeric, or any character. Fields can also
be defined as "must enter" or "must complete."

HELP
A line of HELP information can be associated with each
field, and a chain of HELP screens can be associated with
each form. If users need HELP while using a form, they can
press the HELP key to view a line of information pertinent
to the current field . Subsequent key depressions will yield
more HELP information.

FMS-11 Components
The FMS-11 software includes three components used for
developing and executing form applications programs:
• Form Editor-a program used to design, create, and

modify forms directly on the terminal screen

• Form Utility-a program used to create memory-resi­
dent forms and to help debug and maintain form de­
scriptions

• Form Driver-a set of reentrant subroutines called by
application programs to control the user's use of the
form

Form Editor - The Form Editor is an interactive program
that uses many of the special capabilities of the VT100
video terminal as a means of entering and modifying FMS-
11 form descriptions and storing them in forms files. Users
can specify video display characteristics for both constant
text and field characters by using the keypad and key­
board functions.

When the Form Editor is used, the user's screen always
shows the current state of the form that is being edited.
Fields are defined on the screen with COBOL-like picture
characters. As an aid to users, the form description can
contain brief, helpful explanations about individual fields
and about each form as a whole.

Fields and forms are accessed by name. Because the rela­
tionship between fields and programs is determined at ex­
ecution time, users can change the form's design without
having to change the application program that uses It.

When creating a form, the designer can define a number
of attributes that control how the user should ·enter data
into the form. The designer can also define attributes that
specify how the application program Is to use the data. The
designer can assign these attributes at any time during the
editing session by filling in appropriate q uestlonnalre
forms on the video screen. The four categories of attrib­
utes are:
• form-wide attributes-characteristics that affect the

form as a whole, such as its name, where It will be lo­
cated on the screen, and the name of any related help
form .

• field attributes-characteristics that describe a form's
individual data fields and how they will be set up and
used; for example, whether a field will be right-justified
or zero-filled and whether any help text is available.

• named data-constant data that are not displayed for
the user's benefit, but that the application program can
access; for example, the name of another form or a
range of values against which the user's input is
checked. By using named data, the programmer can
write a more general, more maintainable application.

• display attributes-information determining how areas
of the screen (both text and data fields) are to be dis­
played: blank, bold, underline, reverse video, or no dis­
play.

Form Utlllty - The Form Utility is used to create versions
of form descriptions that are suitable for hardcopy listings,
for creating and modifying form libraries, for listing names
of forms contained in the form library, and for producing
object modules of form descriptions. In addition, the Form
Utility generates COBOL data division code that corre­
sponds to a form definition and that is suitable for copying
into a COBOL source program.

Form Driver - The Form Driver, a set of subroutines,
permits an application program to access form descrip­
tions created by the Form Editor. Form-Driver calls
embedded in a task of an application program and written
in the source code of the task invoke the form description
from the form-library file. All Form-Driver calls refer to
specific forms and/or fields within forms by specifying the
form name assigned during the form's creation process.
Under the direction of the calling program, the Form Driver
displays forms, performs all screen management the
forms require, handles all terminal 1/0 for application pro­
grams, and validates each user response by checking it
against the field and form descriptions. In response to a
HELP request, the Form Driver displays the appropriate
help text associated with the form and field being proc­
essed.

SORT-11
The optional SORT-11 utility program allows users to reor­
der data from any input file into a new file in either ascend­
ing or descending sequence based upon control or key

7-16

fields within the input data records themselves. In addition
to running under RSX-11 M/M-PLUS, SORT-11 runs under
all other PDP-11 operating system that include RMS.

If users do not wish to sort the data in a particular file,
SORT can still be used to extract key information, sort that
information, and store the sorted information in another
permanent file. Later that file can be used to access the
data in the order of the key information in the sorted file.
The contents of the sorted file may be entire records, key
fields, or record indexes relative to the position of each
record within the file (the first record on the database is
record 1, the second, 2, and so on). SORT provides four
sorting techniques, which are described later in this sec­
tion.

The SORT utility program can be controlled by a com­
mand string and an optional specification file. There is a
simple format for each. If the SORT application does not
require that records be restructured or that only a subset
of the input file be sorted, then only a command string is
needed to control SORT.

Data Flies
SORT can accept a file from any one of the peripheral de­
vices available in the system configuration : disk units,
magtape units, or terminals.

A record is usually divided into several logical areas called
data fields. The data in each field may or may not be rele­
vant to SORT. SORT uses record identifiers to distinguish
the various types of records in a file, while it uses the key
fields in each record to reorder an input file. The key fields
may be any one of a number of different data types, in­
cluding character, zoned decimal, two's-complement bi­
nary, and two- or four-word floating point. Any other data
field in a record may be retained in the output file or
ignored.

Command String and Specification Fiie
The user can direct the SORT program by entering a com­
mand string, which serves three functions:

• references devices in the system for each file in the cur­
rent sort

• specifies switches that define file parameters used in the
sorting process

• references a specification file or specifies other switches
to control the sort

Several command string switches define the sorting proc­
ess parameters. One switch describes record formats and
the maximum record size. Another delimits the internal
work files. Others provide detailed file information to RMS.

Normally, the sort must be directed with a specification
file, but two additional switches can be used instead. The
first specifies the sorting process option; the second iden­
tifies the key fields. The use of these switches is limited to
sorting an input file of uniform format. The key fields must
reside in the same location in every record of the input file.
And the file must contain only the records to be included in
the sort. Figure 7-7 illustrates a general sort that would re­
quire only a command string and switches.

l A

l e
l 0

The specification file is the supplement to the command
string , which provides the basis for controlling and direct­
ing the sorting process.

The specification file provides a variety of controlling fea­
tures, which are listed and illustrated below.

Record Selection - Users can include or omit any rec­
ords from the sorting process. The output file will contain
only the specified records. Figure 7-8 illustrates this type
of sort.

Alternate Collating Sequence - If necessary, users can
specify an alternate collating sequence. The normal se­
quence is that implied in ASCII code. One alternate choice
is EBCDIC values. The other is an individual alternate
collating sequence (AL TSEQ). An AL TSEQ can be used to
change the ASCII values of the normal sequence. It applies
to all the alphanumeric key data in the records, but only
during the actual sorting process. The output record re­
mains unchanged. See Figure 7-9 for an example of this
type of sort.

l 0

l c

l B

Figure 7-7

l 0

l c
l B

l 0

l c
l B

Sort Using Command String and Switches

Figure 7-8
Record Selection

- e- o.o -e -...

l B

l c

l 0

Figure 7-9
Alternate Collating Sequence

7-17

Forced Keys - An AL TSEQ applies to all positions of the
key. Forced keys allow the user to specify an alternate se­
quence for particular positions within the key. An alternate
can be specified by substituting a lower-valued character,
such as the slash (/) in Figure 7-10 below. Since the slash
comes before 0, the 300-series records in the example are
brought to the front of the file. Notice that the records so
treated are in sequence and in front of the rest of the
sorted file. The net effect is that of two sorted files, one be­
hind the other.

Input Format Variation - If the input file contains records
with several different formats, the user can identify those
records by type so that they may be properly handled.
Note that only one type may be selected and sorted per
run.

In Figure 7-11, A and N are record identifiers.

r 33 3

242

Output Format Variation - Users can change the format
of the data file during the sort, but they cannot change the
contents of any given data item. Figure 7-12 demonstrates
this point.

Sort Operation
The SORT program consists of two basic parts: a control
program and a subroutine package called SORTS. The
control program directs the overall processing , while
SORTS serves as a collection of subroutines available to
the control program during Its processing. The subroutine
package can be invoked from a user-written program. This
is supported in most PDP-11 programming languages.

There are three phases of operation in the SORT control
program. In the first phase, SORT reads the command
string, decodes it, and stores the switch values and the
specification file, if present. Any errors in the command
string or specification file are reported at this point.

l 24 2

l 102

l 351

'" .--.3nn - /nn -

r :. bbby

I :. JQQ I

l B "'" 19

l Ouv 23

l (~I 17

A ' J II

Figure 7-10
Forced Key

Figure 7-11

r ADbby

r Aoooo

j N 2 0 7

Input Format Variation

l stC17

l "' n B 19

Figure 7-12
Output Format Variation

7-18

Phase two begins the presort operation. The control pro­
gram is called to open and read the input file and establish
the keys. The SORTS subroutine begins the initial sorting
process. At this point, the amount of available internal
storage space becomes important to the efficiency of the
sort. If that space is not sufficient to hold all the records,
SORT builds strings of sorted records and transfers them
to scratch files on bulk storage devices. In order to merge
these files and complete the sort, space for at least three
scratch files must be available. The SORT program nor­
mally provides for a maximum of eight scratch files. Either
a switch in the command string or the amount of available
internal workspace can reduce the number of scratch flles
used.

The final merge phase rebuilds the intermediate scratch
files into a merged file. Another subroutine reads the rec­
ords in the proper sequence. The records are then written
into the output file. If there are no scratch files to merge
because main memory was sufficient to hold all the rec­
ords, the sorted records are written directly into the output
file. After the last record is written, the control program
cleans up the scratch files and returns to the first phase;
SORT is then ready to accept another job.

SORT Processing Options
SORT offers four processing options. Table 7-3 highlights
how the sorting processes differ.

Record Sort (SORTR) - SORTA outputs all specified rec­
ord data in a sorted sequence. Each record is kept intact
throughout the entire sorting process. Since it moves the

whole record, SORTA is relatively slow and may require
considerable main memory or external storage workspace
for large files.

Tag Sort (SORTI) - SORTT produces the same kind of
output file as SORTA, but it handles only record pointers
and key fields. Since SORTT moves a smaller amount of
data than SORTA, SORTT usually performs a faster sort
than SORTA. The input file must be randomly reaccessed
to create the entire output file, which can be a lengthy
process for large files.

Address Routing Sort (SORTA) - SORTA produces ad­
dress routing files, which consist of relative record point­
ers, beginning at one, In binary words. These files can be
used as a special Index file to access randomly the data in
the original file. It is possible to maintain only one data file,
but several different index files may be needed. Like
SORTT, SORTA uses the minimum amount of data neces­
sary in the sorting process. Once the input phase is com­
pleted, the input file is not read again. The output data are
in a restricted mode. This means that SORTA is the fastest
sorting method in the sort package.

Index Sort (SORTI) - SORTI produces an index file con­
sisting of relative record pointers, as in SORTA, and index
keys. This makes it slightly slower than SORTA. During
processing, SORTI handles only the relative record point­
ers and two forms of the key fields. One form is used for
sorting and the other is left as it was in the original data.

Table 7-3
Sorting Process Options

Type of SORT

Record Sort
(SORTA)

Tag Sort
(SORTT)

Address Routing Sort
(SORTA)

Index Sort
(SORT!)

Type of Fiie

Input and Output

Input
Output

Input
Output

Input
Output

Record Size and Format

Any

Any
Any

Any
Fixed, 6 bytes

Any
Fixed,

6-byte pointer plus
original key

7-19

Speed Device

Slowest Any

Slow for large file Disk
Any

Fastest Disk
Any

Fast Disk
Any

8
The

Processors

The RSX-11 operating systems run on a wide variety of DIGITAL's
interactive minicomputers and microcomputers. Users can choose the
PDP-11 system that best meets their application needs.

The LSl-11 and PDP-11 processors, on which the PDP-11 systems are
built, are largely compatible, so they provide an upward migration path
for growing application needs. And they can be used together in
distributed processing networks. The basic differences between PDP-
11 minicomputers-which are based on PDP-11 processors-and
PDP-11 microcomputers-which are based on LSl-11 processors-are
in the implementation of the circuit design and in the bus structure.

PDP-11 processors offer a comprehensive instruction set; an integral
Memory Management Unit that provides hardware memory protection
through various operating modes and access to extended memory; an
optional Floating-Point Unit; and, on some processors, a fast cache
memory.

The LSl-11 microprocessors, while built with highly reliable large-scale
integrated (LSI) circuits, are true PDP-11 s. Based on the PDP-11
architecture, they use the same instruction set and operating systems
and they support many of the same peripherals as do the PDP-11
-.rocessors. When an LSl-11 central processor board is packaged with
a backplane, powersupply, memory, memory management, and
interfaces, it provides many of the same capabilities as the larger
PDP-11s.

INTRODUCTION
The RSX-11 family of operating systems can be used with
DIGIT Al's PDP-11 and LSl-11 processors. Instruction-set
compatibility means that users with LSl-11-based micro­
computers can easily upgrade to larger PDP-11 minicom­
puter systems. And, in a network, applications developed
on PDP-11 minicomputers can run on the smaller LSl-11-
based microcomputers. It is in the implementation of the
circuit design and in the bus structure that the PDP-11
minicomputers and PDP-11 microcomputers primarily
differ.

The PDP-11 processors are part of the PDP-11 /24, PDP-
11 /34A, PDP-11 /44, and PDP-11 /70 minicomputer sys­
tems. The LSl-11 processors are the basis for the PDP-
11 /23, PDP-11 /23-PLUS, and MICRO/PDP-11 microcom­
puter systems.

This section discusses the major features of the proces­
sors that run RSX-11. For more detailed information, ask
your sales representative for the PDP-11 Processor Hand­
book and the Microcomputers and Memories Handbook.

PROCESSOR COMPONENTS
The integrated physical components of both the PDP-11
and LSl-11 processors are:
• the instruction set, an Extended Instruction Set, and, for

some processors, an optional Commercial Instruction
Set

• Central Processing Unit
• main memory with Memory Management Unit and, on

some processors, cache memory

• the optional Floating-Point Unit

• the front console

• the peripheral controller interfaces: the LSl-11 bus on
the LSl-11-based microcomputers; the UNIBUS on the
PDP-11 minicomputers; and the MASSBUS on the PDP-
11 /70

INSTRUCTION SET
The PDP-11 instruction set and addressing modes, com­
mon to the PDP-11 and LSl-11 processors, produce over
400 unique instructions. The instruction set offers a wide
choice of operations so that a single instruction frequently
accomplishes a task that would require several on another
computer. These instructions allow byte and word ad­
dressing in both single- and double-operand formats, to
save memory space and to simplify the implementation of
user applications.

Even though there are numerous instructions, the instruc­
tion set is a natural programming language that is easy to
learn. Some of the instructions correspond directly to
high-level-language statements, and the assembler mne­
monics are readily associated with the instruction function.
The instruction set contains a full set of conditional
branches that eliminate excessive use of jump instruc­
tions-again saving memory space.

PDP-11 instructions fall into six functional categories.
• Single-Operand instructions specify the operation to be

performed (the opcode) and provide information for lo­
cating the operand.

8-1

• Double-Operand instructions specify the operation to be
performed and provide information for locating two op­
erands. The format of most double-operand instructions
is similar to that of single-operand instructions, except
that it has two fields for locating operands-the source
field and the destination field . Each field is divided into
addressing mode and selected register. The mode and
register used by one field can be completely different
from the mode and register used by another field.

• Branch instructions control the operation to be per­
formed next: this based on current processor status.

• Jump and Subroutine Call instructions have an opcode
and address part and, in the case of the Jump-to-Sub­
routine (JSR) instruction, a register for linkage. The Re­
turn-from-Subroutine (ATS) instruction uses the link to
return control to the main program, once the subroutine
is finished.

• Trap instructions provide a means of interrupting
normal program execution to perform special process­
ing. Typical uses of trap instructions are calling the mon­
itor or runtime system, performing error processing, or
calling a debugger.

In addition, user code can include trap instructions to be
handled by user routines. Whether the trap instructions
are handled by the system or by the user program, pro­
gram flow can be returned to the point where the trap
occurred or it can be changed altogether, including
terminating the program.

• Miscellaneous instructions such as HALT and RESET
control the central processor and are restricted to use in
Kernel (system) mode. Only system code can use these
instructions, so the integrity of the system is maintained.

Condition code bits indicate a negative condition (N), a
zero condition (Z), an overflow condition (V), or a carry
condition (C). These four bits are part of the processor
status word, described below. The result of any single- or
double-operand instruction can affect the condition code
bits. Condition code bits can be checked explicitly and
with branch instructions to determine the result of an oper­
ation. The condition codes are also used by various soft­
ware modules to check software conditions.

Extended Instruction Set
The Extended Instruction Set (EIS), an integral part of the
processor, adds four extra instructions to the basic in­
struction set. This feature implements the hardware
facilities necessary for executing integer multiply/divide
and multiple arithmetic shifts for both single- and double­
precision computation.

Commercial Instruction Set
The Commercial Instruction Set (CIS), an optional instruc­
tion set for the MICRO/PDP-11, PDP-11 /23-PLUS, PDP-
11 /24, and PDP-11 /44, comprises ten instructions that are
especially useful in commercial data processing and text
processing applications. DIGITAL's COBOL implementa­
tions for the PDP-11 use the Commercial Instruction Set to
increase both compile and execution speeds.

CIS includes instructions that operate on character strings
and decimal numbers and that load operands into the
processor's general registers.

• Character-string instructions move and search charac­
ter , character-string, and character-set data types.
Character-string manipulation is the most commonly
used function in commercial data processing and text
processing applications.

• Decimal-string instructions manipulate strings of deci­
mal data. Several numeric (byte) and packed-decimal
data types are supported. Instructions are included for
basic arithmetic operations and for compare, shift, and
convert functions.

• Commercial load descriptor instructions augment the
character-string and decimal-string instructions. They
load the general registers with two- or three-string de­
scriptors, making the setup of character-string and deci­
mal-string instructions easier.

Each character-string and decimal-string instruction has
two forms: a register instruction form and an inline Instruc­
tion form. The essential difference between the two forms
is delivery of operands to the instruction.

A register instruction obtains operands from the proces­
sor's general registers. Character-string operands include
character, character-string-descriptor, character-set-de­
scri ptor, and translation-table-address. Decimal-string
operands include decimal-string descriptors, long binary
integers, and shift-descriptor words.

An inline instruction finds operands or pointers to oper­
ands in the instruction stream immediately following the
opcode word. Operands that appear directly in the charac­
ter-string instruction stream include characters, transla­
tion-table addresses, and shift-descriptor words. Decimal­
string operands include decimal-string descriptors and
long binary integers.

CENTRAL PROCESSOR
The Central Processing Unit (CPU) contains arithmetic
and control logic for a wide range of operations. These in­
clude high-speed fixed-point arithmetic with hardware
multiply and divide (optional with EIS), extensive test and
branch operations, and other control operations. The CPU
also provides room for the addition of the high-speed
Floating-Point Unit and the Commercial Instruction Set
(CIS) used on the MICRO/PDP-11 , PDP-11/23-PLUS,
PDP-11 /24, and PDP-11 /44.

The LSl-11 central processor unit is implemented using
two LSI chips-control and data. The Memory Manage­
ment Unit, Commercial Instruction Set, and Floating-Point
Unit are implemented on LSI chips as well.

Operating Modes
The CPU provides the basis for a fully protected multipro­
gramming environment through access modes.
Depending on the processor, two or three processor ac­
cess modes are recognized-Kernel, Supervisor, and
User. Access modes provide two levels of privileges under
which programs can run. Kernel mode is used by the RSX-
11 operating system; User mode and, on RSX-11 M-PLUS,
Supervisor mode are used by user programs.
Programs operating in Kernel mode have complete con­
trol of the processor, including the capability to execute
HALT and RESET instructions (which cannot be done
while in User or Supervisor mode). And only in Kernel

8-2

mode can the processor execute instructions that access
the internal processor registers that control memory man­
agement or interrupt processing, unless allowed by the
operating system. This protects user jobs.
In general, code executing in Kernel mode can protect it­
self and any portion of its data structures from read and/or
write access by code executing in User and Supervisor
mode. Routines that run in Kernel mode are generally part
of the runtime operating system software and thus should
not be corrupted by other programs. RSX-11 uses the
processor's Kernel mode for the resident Executive, inter­
rupt service routines, and device handlers.

Supervisor mode can be used for the mapping and execu­
tion of user-sharable programs that still require hardware
protection. This could include command interpreters, logi­
cal 1/0 processors, and parts of the runtime systems. The
PDP-11 /44 and PDP-11170 processors offer Supervisor
mode.

Routines that run in User mode are generally part of appli­
cation programs. RSX-11 uses the processor's User mode
for the system utility programs and applications programs
and their completion routines.

The memory protection afforded by User, Supervisor, and
Kernel operating modes provides the basis for system
data structure integrity.

General Registers and Addressing Modes
Generally, the CPU contains eight general registers. Some
processors contain more than eight, although only eight
are available at a time. The eight general registers can be
used as:
• accumulators that hold data to be manipulated.
• pointers that designate the contents of the register as

the address of the data (operand address), rather than
the operand itself.

• index registers that permit the contents of the register to
be added to a word from an instruction, thus producing
the address of the operand. This capability allows easy
access to variable entries in a list.

Two registers have special significance depending on the
instruction being executed. These special registers are:
• the hardware Stack Pointer (SP) that keeps track of the

last item added to the stack

• the Program Counter (PC) that contains the address of
the next word to be processed in the instruction stream

Special addressing mode combinations permit temporary
data storage for convenient dynamic handling of fre­
quently accessed data. This is known as stack addressing.

Four direct and four indirect (deferred) addressing modes
are provided.
• Register mode provides the fastest instruction execu­

tion. There is no need to reference memory to retrieve
an operand. Any of the general registers can be speci­
fied, although changing the PC must be done with care.
The operand is contained in the selected register (low
order, byte-for-byte operations).

• In register-deferred mode the address of the operand is
stored in a general purpose register. The address con­
tained in the general purpose register directs the CPU to

the operand. The operand is located either in memory or
in an 1/0 register. This mode is used for sequential lists,
indirect pointers in data structures, stack manipulations,
and jump tables.

• In autoincrement mode the register contains the ad­
dress of the operand. The address is automatically in­
cremented after the operand is retrieved. The address
then references the next sequential operand. This mode
allows automatic stepping through a list or series of
operands stored in consecutive locations. The address
stored in the register is incremented by one, if byte in­
structions are used, and by two, if word instructions are
used. SP and PC are always incremented by two.

• In autoincrement-deferred mode the register contains a
pointer to an address. The pointer is incremented by two
(for both word and byte operations) after the address is
located. Autoincrement is used only to access operands
that are stored in consecutive locations. Autoincrement­
deferred is used to access lists of operands stored any­
where in the system; that is, the operands do not have to
reside in adjoining locations. Autoincrement is used to
step through a table of operands. Autoincrement-de­
ferred is used to step through a table of addresses.

• In autodecrement mode the register contains an
address that is automatically decremented. The address
is decremented by two (for both word and byte opera­
tions) and is then used to locate an operand. This mode
is similar to autoincrement mode, but it allows stepping
through a list of words or bytes in reverse order. The ad­
dress is decremented by one for bytes and by two for
words. SP and PC are always decremented by two.

• In autodecrement-deferred mode the register contains a
pointer. The pointer is first decremented by two (for both
word and byte operations); then, the new pointer is used
to retrieve an address operand stored outside the CPU.
This mode is similar to autoincrement-deferred mode,
but it allows stepping through a table of addresses in
reverse order. Each address then redirects the CPU to
an operand. Operands do not have to reside in consecu­
tive locations.

• In index mode a base address is added to an index word
to produce the effective address of an operand. The
base address specifies the starting location of the table
or list. The index word then represents the address of an
entry in the table or list, relative to the starting (base) ad­
dress. The base address can be stored in a register, in
which case the index word follows the current instruc­
tion. Alternatively, the locations of the base address and
index word can be reversed (index word in the register,
base address following the current instruction).

• In index deferred mode a base address is added to an
index word. The result is a pointer to an address, rather
than the actual address. This mode is similar to index
mode, except that it produces a pointer to an address.
The content of that address then redirects the CPU to
the desired operand. Index-deferred mode provides for
the random access of operands using a table of operand
addresses.

Processor Status Word
The Processor Status Word is a special register that
contains information on the current status of the proces-

8-3

sor. The information includes current processor priority;
current and previous operational modes; condition codes
that describe the results of the last CPU instruction; an
indicator for detecting the execution of an instruction to be
trapped during program debugging; and, on the
M ICRO/PDP-11, PDP-11 /23-PLUS, PDP-11 /24, and PDP-
11 /44, an indicator that a commercial instruction is in
process.

Hardware Interrupts
The CPU provides full-vectored interrupts that eliminate
polling. Each interrupt is assigned a priority to allow pro­
grams with higher priority to interrupt programs with lower
priority.

CPU Priority Levels
The CPU, depending on the model, can be set to up to
eight priority levels-four hardware and four software
levels-under software control. Priority levels allow the
CPU not to service devices of lower priority until more criti­
cal functions are completed. A high-priority device can re­
quest an interrupt to gain control of the bus. The device
then can use the instruction set to manipulate data and
status registers. The device-servicing routine interrupts
the task being performed by the processor. After the de­
vice request is satisfied, the processor returns to its former
task.

MEMORY
The MICRO/PDP-11, PDP-11 /23-PLUS, PDP-11 /24, and
PDP-11 /34A have parity MOS (Metallic Oxide Semicon­
ductor) memory; the PDP-11 /44 and PDP-11 /70 have ECC
(Error-Correcting Code) MOS memory.

Parity Memory
Parity memory, used in main memory and cache memory,
ensures both the integrity of data storage and transfer and
the reliability of system operation. Cache memory an'd
main memory have byte parity. Parity is generated and
checked on all transfers between main memory and
cache, between cache and the CPU, and between high­
speed mass storage devices and their controllers. RSX-11
automatically logs parity errors, handles recovery from er­
rors, and provides information on system reliability and
performance.

ECC Memory
Error-Correcting Code (ECC) is a technique for checking
the contents of memory in order to detect errors and cor­
rect them before the data is sent to the processor. Check­
ing is done by combining the bits in a number of unique
ways so that error-correction bits are generated for each
unique combination and stored along with the data bits in
the same word as the data. The memory word length is ex­
tended to store these unique bits.

When memory is read, the data word is checked against
the correction bits stored with the word . If they match, the
word is sent on to the processor. If they do not match, an
error exists, and the mismatch of the correction bits deter­
mines which data bit is in error. The bit in error is then cor­
rected and sent on to the processor.

The ECC code used in MOS memory detects and corrects
single-bit errors and detects double-bit errors in a word . If
a double-bit error is detected, the processor is notified, as
happens with a parity error.

Battery Backup
Because MOS memory is volatile, it cannot retain data
without proper de voltages being applied. In case of tem­
porary power interruption, a battery backup unit helps
retain MOS memory data for a short time. This battery is
charged by the main ac power during normal system oper­
ation . Battery backup is optional on the PDP-11 /24, PDP-
11 /34A, and PDP-11 /44 processors and standard on the
PDP-11/70.

Memory Management
The Memory Management Unit (MMU) provides the hard­
ware facilities necessary for complete memory manage­
ment and process protection. It enables programs to
access extended memory by mapping their virtual ad­
dresses to physical locations in memory. See Section 3 for
more information on memory management.

Virtual memory address space consists of all possible 16-
bit addresses that can be exchanged between a program
and the processor to identify a byte location in physical
memory. The memory management hardware translates a
virtual address into a physical address. The PDP-11 /34A
provides 18-bit physical addressing capabilities; the Ml­
CRO/PDP- 11 , PDP-11/23-PLUS, PDP-11/44, and PDP-
11 /70 provide 22-bit physical addressing . An extended 22-
bit memory addressing option is available for the PDP-
11 / 24, which provides 18-bit physical addressing capabili­
ties as a standard feature.

o~---~
Vl lT U..l .OOlt ESS

(lo l lTSI

PA. It I

PlllGE ADOIE SS REGIST ER S

Figure 8-1

PH 'f'Sl(A.l
AOOIESS SPACE

PAGES

PAGE b

PA.GE 7

PA.GE •

PHYSIC AL ADDRESS
122 BITS)

Virtual Address Mapping Into Physical Address

8-4

A physical address is the address exchanged between the
processor and memory and between the processor and
peripheral adapters. Physical address space is the set of
all possible physical addresses the processor can use to
express unique memory locations and peripheral control
registers.

When the MMU converts a 16-bit virtual address to an 18-
bit or 22-bit physical address, it relocates the virtual ad­
dress. This means that two or more programs can have the
same virtual addresses, but different physical addresses.
The MMU divides the 64 Kbytes of virtual address space
into eight sections called pages. It assigns a page to a sec­
tion of physical memory. Since the MMU relocates each
page of virtual address space separately, a program can
reside in disjointed sections of memory.

In addition to its primary function of managing the address
space, the MMU also handles the User, Supervisor, and
Kernel operating modes described above.

Cache Memory
Cache memory is a high-speed memory that buffers data
between the processor and main memory. Main memory
and cache appear as a single unit of memory to programs.
Cache memory maintains a copy of portions of main mem­
ory, for fast access of instructions and data. For some pro­
grams, information needed by the CPU can be found in the
cache 80 to 95 percent of the time. This can effectively
halve execution time and significantly improve system per­
formance.

Whenever a request is made to fetch data from memory,
cache memory is checked first. If the data is in cache, it is
fetched from there, without reading main memory. If the
data is not in cache memory, data is fetched from main
memory and stored in the cache, and the requested word
or byte is passed directly to the CPU. When data is written ,
it is automatically stored in both cache and main memory,
ensuring that both memories are updated.

Cache memory is standard on the PDP-11 /44 and PDP-
11 /70. It is available as on option for the PDP-11 /34A
processor.

FLOATING-POINT UNIT
The optional Floating-Point Unit (FPU) performs all float­
ing-point arithmetic operations and converts data between
integer and floating-point formats. This can provide signif­
icant performance improvements, if floating-point data is
needed.

The FPU features:
• high-speed operation
• single- and double-precision (32- or 64-bit) floating­

point modes

• 17-digit precision in 64-bit mode; eight-digit precision in
32-bit mode

• flexible addressing modes

• six 64-bit floating-point accumulators
• error-recovery aids

Based on its own set of six 64-bit floating-point accumula­
tors and additional instructions that can reference the
floating-point accumulators, the central processor's gen-

eral registers, or memory locations, the FPU carries out
high-speed calculations in either single-precision (32-bit)
or double-precision (64-bit) mode.

The basic floating-point add , subtract, multiply, and divide
instructions are complemented by a range of additional
hardware instructions. These instructions allow faster,
more compact coding of computation routines.

I - - ~.--;;- - - - - - - - --,
I ACCUMUtAT O R I
I~ I
I • CC UMULATOR I

,--"'---.., I UNIBUS

I ACO I
I ACI I
I 1~~-

I •o FLOATING POI NT I ~~g~oa
I A(J ~~bHMET IC ~~bl;\o\fTI(
I ACC CONVERSION LOGICAL

I AC5 UNtT .__u_N1~r -
I SCRATCH

I
I
I

PROGRAM POI NTEJ
TO LAST
INST RUCTION
CAU SING ERROR

L!'E~~ ~'!:!.' ~~E~S~ ________ _j

Figure 8-2
Floating-Point Unit

FRONT CONSOLE

MEMORY

The console is the operator's interface to the central proc­
essor. Using the console, the operator can start, stop,
reset, and debug the CPU; examine and deposit data in
memory locations or the processor registers; halt the
processor; step through instruction streams; and boot the
operating system.

In addition to the console, a bootstrap and diagnostics
module is provided. The module contains one to three
Kbytes (depending on the model) of read-only memory
(ROM) that can be used for:
• diagnostic routines
• the console emulator routine that lets a user type com­

mands on the console terminal to perform normal con­
sole functions

• bootstrapping programs without the operator keying in
the initial bootstrap program

PERIPHERAL CONTROLLER INTERFACES
The peripheral controller interfaces on the LSl-11 and
PDP-11 processors convey signals to and from such 1/0
devices as lineprinters, disks, cardreaders, terminals, and
interprocessor communication links. On the LSl-11 proc­
essors , peripherals are connected to the processor
through the LSl-11 bus. On the PDP-11 processors, peri­
pherals are connected to the processor through the UNI­
BUS. The PDP-11/70 uses, in addition to the UNIBUS, a
MASSBUS peripheral interface to accommodate high­
speed storage devices.

The LSl-11 bus, like the UNIBUS, is a simple, fast, easy-to­
use master/slave communication interface between sys­
tem components. It provides vectored priority interrupts,
programmed 1/0 transfers, and direct-memory-access
(DMA) 1/0 data transfers. All modules operate asynchro­
nously at their highest possible speed.

8-5

All modules connected to the LSl-11 bus receive the same
interface signals. LSl-11 bus control and data lines are
open-collector lines, which are asserted when low. All data
and most control lines are bidirectional. All transactions on
the bus are asynchronous. The LSl-11 processors use 44
LSl-11 bus signals. Sixteen of these are multiplexed
data/address lines; two are multiplexed address/parity
lines; four are extended address lines (not implemented
on the PDP-11 /23); six are data transfer control lines; six
are system control lines; and ten are interrupt and DMA
control lines.

With bidirectional and asynchronous communications on
the LSl-11 bus, devices can send, receive, and exchange
data at their own rates. The bidirectional nature of the bus
allows use of common bus interfaces for different
devices-which simplifies interface design.

Communication between two devices on the bus happens
through a master-slave relationship. At any time, there is
one device controlling the bus. This controlling device is
termed the bus master. The master device controls the
bus when communicating with another device on the bus,
the slave. A typical example of this relationship is the proc­
essor, as master, fetching an instruction from memory
(which is always a slave). Another example is a DMA de­
vice interface, as master, transferring data to memory, as
slave. Bus master control is dynamic. The bus arbitrator,
the CPU, controls the time allocation of the LSl-11 bus for
peripherals.
Interrupt and direct memory access are implemented with
two daisy-chained grant signals that provide a priority­
structured 1/0 system. The highest-priority device is the
module located electrically closest to the CPU. A device
passes grant signals to lower-priority devices only when it
is not requesting service.

The LSl-11 bus provides a vectored interrupt interface for
any 1/0 device and permits DMA transfers directly
between 1/0 devices and memory, without disturbing the

processor registers. When an interrupting device receives
a grant, the device passes an interrupt vector to the proc­
essor, which points to a new processor status word and
the starting address of an interrupt service routine for the
device.

The Extended LSl-11 bus, implemented on the PDP-
11 /23-PLUS and MICRO/PDP-11, supports the extended
addressing feature of these processors, while retaining a
high level of compatibility with the LSl-11 bus. The Ex­
tended LSl-11 bus redefines four bus lines that are desig­
nated as "spare" on the LSl-11 bus, for use as address
bits. This means that MICRO/PDP-11 and PDP-11 /23-
PLUS systems can include up to four Mbytes of memory,
to support more active users with better system perform­
ance than an equivalent PDP-11 /23 system.

The UNIBUS
The UNIBUS lets devices send, receive, or exchange data,
without processor intervention and, in some cases, without
intermediate buffering in memory. The PDP-11 UNIBUS
consists of signal lines, to which all devices are connected
in parallel.

Devices on the bus communicate as master and slave.
Du ring any bus operation the bus master controls the bus
when communicating with the slave device. Master-slave
relationships are dynamic. For instance, the processor can
pass bus control to a disk; then the disk can become mas­
ter and communicate with memory. Priority arbitration
takes place asynchronously in parallel with data transfer.
Every device on the bus except memory can be bus mas­
ter.

When two or more devices try to obtain control of the bus
at once, priority circuits choose between them. Devices
have unique priority levels fixed at system installation. If
requesting devices have equal priority levels, the one clos­
est to the processor electrically on the bus takes
precedence over those further away.

A device uses the bus if it needs to request the processor
or transfer a word or byte of data to or from another device
without involving the processor. There are two ways of re­
questing bus control-nonprocessor requests (NPRs) and
bus requests (BRs).

An NPR is issued when a device wishes to perform a data
transaction. An NPR device does not use the CPU once the
running program has set up parameters of buffer address
and byte count; therefore, the CPU can relinquish bus con­
trol while an instruction is being executed.

A BR is issued when a device needs to interrupt the CPU
for service. A BR interrupt is serviced only when the proc­
essor finishes executing its current instruction.

The MASSBUS
The PDP-11 /70 provides dedicated, prewired space for up
to four high-speed 1/0 MASSBUSes. Each group of mass
storage peripherals communicates directly to cache
memory through the MASSBUS. The MASSBUS consists
of signal lines for data, control, status, and parity. A high
transfer rate is achieved by using synchronous transfer of
data simultaneously with asynchronous control informa­
tion .

8-6

Data are transferred in direct memory access (DMA)
mode. An internal 32-bit-wide data bus transfers four
Kbytes in parallel between memory and the high-speed
controllers. The priority-arbitration logic within the cache
memory controls the timing of data transfers; the cache it­
self, though, is not used for storage. Data transfers are
between main memory and the mass storage peripheral.

The architecture of the PDP-11 /70 allows overlapping of
some operations, providing faster program execut ion
speed . CPU and UNIBUS read hits with the cache memory
are overlapped with mass storage device reads from main
memory. The read cycles of several mass storage devices
can be overlapped.

The MASSBUS generates and checks parity for data, ad­
dress, and control information, to ensure the integrity of
the information transferred.

PROCESSOR DESCRIPTIONS
The PDP-11 and LSl-11 processors on which members of
the RSX-11 family run are summarized in Table 8-1.

PDP-11/23
In many applications, the PDP-11/23 microcomputer ap­
proximates the power and performance of a PDP-11 /34A
minicomputer. Its features include memory management
with dynamic relocation, segmentation and protection ca­
pabilities, up to 256 Kbytes of addressing, and an optional
Floating-Point Unit.

The diagnostic/bootstrap/terminator module contains
switch-selectable diagnostics for the processor, memory,
and serial line unit. A loop-on-test switch allows repeated
execution of a particular diagnostic for fault isolation. This
module can also be used to terminate bus signals and to
automatically load up to 32 Kbytes of user programs on
powerup.

Most of the peripherals supported on the PDP-11 /23 are
program-compatible with the UNIBUS versions. The PDP-
11 /23 supports RSX-11 Sand RSX-11 M.

MICRO/PDP-11
While the MICRO/PDP-11 includes a PDP-11 /23-PLUS
CPU and features many of the same capabilities, it differs
in many ways from a PDP-11 /23-PLUS microcomputer
system. In a MICRO/PDP-11, the CPU, 256 Kbytes of
parity memory, a ten-Mbyte 5V•-inch mini-Winchester sys­
tem disk, a 800-Kbyte dual-diskette system for backup
and media exchange, and an extended LSl-11 backplane
are all contained in a single enclosure. Because it's avail­
able packaged to stand on the floor, sit on a tabletop, or be
rack-mounted, it is especially suited to offices, factories, or
laboratories. Users can easily install and service the sys­
tem and its options because all major components plug
into the system with quick-disconnect fasteners and edge
connectors.

The MICRO/PDP-11 has less extensive expansion capa­
bilities than the PDP-11 /23-PLUS because it has fewer
backplane slots. It supports less disk space than the PDP-

11123-PLUS, but the same amount of memory-up to four
Mbytes of parity memory. RSX-11 M-PLUS is the only RSX-
11 operating system supported on the MICRO/PDP-11.

PDP-11/23-PLUS
The PDP-11/23-PLUS is a powerful, compact microcom­
puter that extends the performance capability of the PDP-
11 /23. Designed to increase system performance while
providing efficient backplane utilization, the PDP-11 /23-
PLUS addresses up to four Mbytes of parity memory
through the Extended LSl-11 bus. Extended addressing
means that the PDP-11 /23-PLUS, compared to the PDP-
11 /23, can, in many applications, support more memory­
resident tasks, for more active users and better system re­
sponse.

With its support of the optional Commercial Instruction Set
(CIS), the PDP-11 /23-PLUS can be used in multitasking,
multiuser applications traditionally reserved for larger

Table 8-1
Processor Summary

PDP-11/23 MICRO/PDP-11 PDP-11/23- PDP-11/24 PDP-11/34A PDP-11/44 PDP-11no
PLUS

RSX-11S x x x x x x
RSX-11M x x x x x x
RSX-11 M-PLUS x x x x x
Peripheral LSI bus extended extended UNIBUS UNIBUS UNIBUS UNIBUS
Controller LSI bus LSI bus MASS BUS
Interface

Memory standard standard standard standard standard standard standard
Management (18-bit) (22-blt) (22-bit) (18-bit); (18-bit) (22-bit) (22-bit)
(addressing optional
capacity) (22-bit)

Maximum 256 Kbytes 4 Mbytes 4 Mbytes 4 Mbyte 256 Kbytes 4 Mbytes 4 Mbytes
Memory

Memory non parity parity parity parity parity ECC ECC
Type

Cache 2 Kbytes 8 Kbytes 2 Kbytes
Memory optional

Processor kernel kernel kernel kernel kernel kernel kernel
Operating user user user user user user user
Modes supervisor supervisor

Instruction standard standard standard standard standard standard standard
Set* EIS EIS EIS EIS EIS EIS EIS

CIS(opt.) CIS(opt.) CIS (opt.) CIS (opt.)

Battery optional optional optional standard
Backup

Floatl ng-Pol nt optional optional optional optional optional optional optional
Unit

Powerfall standard standard standard standard standard standard standard
Automatic
Restart

•EIS: Extended Instruction Set; CIS: Commercial Instruction Set

8-7

minicomputers. Yet the PDP-11 /23-PLUS also meets the
demands of complex realtime applications that are sensi­
tive to performance, packaging, and reliability considera­
tions . The PDP-11 /23-PLUS supports RSX-115, RSX-
11 M, and RSX-11 M-PLUS.

PDP-11/24
As compact as a microcomputer, the PDP-11 /24 is a UNI­
BUS system that supports a wider variety of large-capacity
mass-storage devices-including Winchester disks-than
do the LSl-11-based systems. The PDP-11 /24 is priced as
an entry-level system, but has midrange capabilities. It
contains a powerful single-hex module processor with an
optional extended 22-bit-memory-addressing facility, so it
supports up to four Mbytes of memory.

Other optional features complement the PDP-11 /24 proc­
essor's standard instruction set. Both the optional Float­
ing-Point Unit and the Commercial Instruction Set option
improve program performance.

PDP-11/34A
The PDP-11 /34A is a midrange member of the PDP-11
family of processors. Its entire CPU logic is contained on
two circuit boards.

The PDP-11/34A supports a number of "large system"
features. Its standard features include a memory manage­
ment facility that provides program protection, memory
relocation, and addressing of up to 256 Kbytes of memory
and a multifunction ROM (Read Only Memory) with virtual
console capability, diagnostics, and bootstraps. A cache
memory that can increase program execution speeds up
to 60 percent; a floating-point processor that enables the
CPU to perform high-speed floating point arithmetic oper­
ations ten times faster and more efficiently than software
routines; and serial communications line interfaces, a real­
time clock, and a battery backup unit are all available as
options. This long list of standard and optional features
provides considerable flexibility in the use, maintenance,
and expandability of PDP-11 /34A-based systems.

PDP-11/44
The PDP-11 /44 offers capabilities and performance fea­
tures previously unavailable from a computer in its price
range. It provides such high-performance, large-machine
features as a high-speed central processor, support for up
to four Mbytes of main memory, a large eight-Kbyte cache
memory, and an optional hardware Commercial Instruc­
tion Set.

8-8

The PDP-11 /44's high-speed, eight-Kbyte bipolar cache
memory provides a 275-nanosecond cycle time that accel­
erates program execution and increases system through­
put. In addition, it helps insulate main memory from CPU
fetches, making more bandwidth available to direct mem­
ory access devices.

The PDP-11 /44 was designed to meet rigorous reliability
and maintainability standards, to ensure enhanced system
uptime. A built-in front-end microprocessor controls the
ASCII console, provides extensive system diagnostics,
and controls a dual TU58 cartridge tape subsystem. The
TU58, described in Section 9, is used to load system diag­
nostic programs and software updates and to provide
additional storage capacity.

PDP-11/70
The PDP-11 /70 was designed to operate in large, sophisti­
cated, high-performance systems. It is a powerful compu­
tational tool for high-speed realtime applications and for
multiuser, multitasking applications that require large
amounts of addressable memory space.

Cache memory, standard in the PDP-11 /70, is a high­
speed bipolar memory with a two-Kbyte capacity. Its cycle
of only 240 nanoseconds significantly accelerates pro­
gram execution. It also reduces the number of fetches
from main memory, because most of the memory refer­
ences can be found in cache.

To facilitate the transfer of data and instructions in and out
of cache memory, the PDP-11170 utilizes high-speed 32-
bit data paths. This, in turn, makes more bandwidth avail­
able for the high-performance peripherals.

The integrated MASS BUS controllers are high-speed
mass storage controllers. 110 devices-such as AMOS re­
movable-disk drives and TE16 and TU77 magnetic
tapes-connect to the 32-bit internal data paths. The con­
trollers provide high throughput because:

• all controllers can transfer data simultaneously since
each controller is connected to the memory system with
its own built-in data path

• while one device on a controller is transferring data,
control operations like seek or rewind can be issued to
another device on the same controller. The operation
can be initiated, and an interrupt is generated when it is
complete

9
The

Peripherals

RSX-11 M and RSX-11 M-PLUS systems support a wide range of
peripheral devices-disks, magnetic tapes, terminals and terminal
interfaces, lineprinters, cardreaders, and communications interfaces.
For realtime applications RSX-11 supports such laboratory and
industrial devices as analog-to-digital converters and laboratory
peripheral systems. Peripherals can be added to a system according to
the needs of the system users and the application. DIGIT AL supplies
drivers for these devices as part of system software.

INTRODUCTION
RSX-11 M and RSX-11 M-PLUS support the following types
of peripherals:
• mass storage peripherals-disks and magnetic tapes

• unit record peripherals-lineprinters and cardreaders

• terminals and terminal line interfaces

• realtime and sensor 1/0 devices such as analog-to-
digital converters

Because it is a memory-only system, RSX-11 S does not
support disks or tapes as file-structured devices. How­
ever, it does support storage on all RSX-11 M peripheral
devices. Floating-Point Units, parity memory, and Memory
Management Units are also supported.

MASS STORAGE PERIPHERALS
The mass storage peripherals include various capacity re­
movable-media and fixed-media disk drives, and various
speed magnetic tape transports.

All RSX-11 M and RSX-11 M-PLUS systems are disk­
based. Disk selection depends on the type of applications,
the database, and the number of users.

RSX-11M and RSX-11M-PLUS support a variety of
magnetic tape devices. In most instances magnetic tapes
provide backup for disk files, archival storage, and/or a
journal function for larger RSX-11 systems. Programming
for magtape and magnetic tape cassettes is similar; how­
ever, magtape can handle variable-length records, and
with it users can select a parity mode.

Disks
In the past, technologies that affect data management and
storage-software, controllers, and disk drives-have
changed at different speeds. To overcome technical in­
congruities that can develop among these elements ,
DIGITAL has developed an architectural approach to sub­
system design. The DIGIT AL Storage Architecture (DSA)
describes disks, intelligent controllers, connections, and
software protocols for attaching DSA disks to DIGITAL's
computer systems. Currently, the DSA components of­
fered for PDP-11 systems are the UDASO microprocessor­
based disk controller, the RASO removable-media disk
drive, and the RASO and RAS1 fixed-media disks.

DIGITAL continues to offer our traditional disk subsys­
tems: the RX02, RL02, RK07, and AMOS. These disk sub­
systems provide high performance and reliability, and they
include accurate servopositioning, error correction, and
offset positioning recovery.

Table 9-1 summarizes the major disk drives supported by
RSX-11 Mand RSX-11 M-PLUS.

RX02 - The RX02 double-density dual floppy disk sub­
system provides industry-compatible, highly reliable mass
storage. Available for both LSl-11- and UNIBUS-based
PDP-11s, it is a low-cost, random-access-memory disk
device specially suited to smaller systems. In single­
density mode each device can store up to 2SS Kbytes of
data; in double-density mode it can store up to S12 Kbytes.
Each RX02 controller is capable of supporting two drives
for a total storage capacity of one Mbyte of formatted data.
Direct memory access (DMA) provides rapid data transfer
and efficient utilization of the host processor.

Table 9-1
Diak Devices

Peak Average Tracks Maximum
Transfer Rate Access Time per Drives per

Disk Type Capacity (KB/s) (ms)* Surface Interface Controller

RX02 flexible diskette S12 KB S1 2S2 77 LSI bus, UNIBUS 2

RL02 removable 10.4 MB 512 S7.5 512 LSI bus, UNIBUS 4
cartridge

RK07 removable 28MB 53S 49 S15 UNIBUS 8
cartridge

RASO fixed disk 121 MB 1,200 33.3 54S UNIBUS 4

RASO removable 205MB 1,980 50 1,SOO UNIBUS 4
disk

AMOS removable 256MB 1,200 3S.3 S23 MASS BUS s
disk

RA81 fixed disk 456MB 2,200 3S.3 1,24S UNIBUS 4

K = 1,024; M = K•; B =byte; s =second; m = 10-3

•Average access time is the sum of the average seek time plus the average latency.

9-1

The RX02 is available in two packages: in a standard
chassis to be mounted in a cabinet or as a tabletop unit.

RL02 - Available on both LSI-bus- and UNIBUS-based
PDP-11 s, the RL02 single-drive buffered cartridge disk
combines reliability and maintainability in a low-cost mass
storage device. An embedded closed-loop servoposition­
ing system improves data integrity by continuously sam­
pling servo information with the same head that reads and
writes the data. To further ensure data integrity, a cyclic re­
dundancy check (CRC) is performed on data transfers
between the drive and controller. Also, a phase-lock-loop
clock system and modified frequency modulation (MFM)
recording provide reliable reading and recording tech­
niques. Direct memory access is used to provide rapid
data transfer and efficient utilization of the host processor.

The RL02's disk cartridge has one platter containing two
recording surfaces. Up to four disk drives, each with a for­
matted capacity of 10.4 Mbytes, can be added to expand
the system. The RL02 features a S12-Kbyte-per-second
transfer rate. Average access time* is 67.S milliseconds.

The subsystem features a universal power supply. Substi­
tuting a different line cord plug and inverting a connector
located at the rear of the unit is all that is required to con­
vert the drive from 11S volts/S0-60 Hz to 230 volts/S0-60
Hz.

RK07 - The AKO? single-drive, buffered disk subsystem
is a reliable storage device and controller for UNIBUS
PDP-11s. Data integrity features include a phase-locked­
loop clock system and modified frequency modulation
(MFM); Error Correction Code (ECC); a hardware write­
check capability and verification of sector, track, and cylin­
der positioning; and a software-controlled diagnostic
mode (DMD) for extensive status/error reporting. Direct
memory access is used to provide rapid data transfer and
efficient utilization of the host processor.

Up to eight drives, each with a capacity of 28 Mbytes of for­
matted data, can run off one controller. Average access
time* is 49 milliseconds.

All disk cartridges are preformatted with 22 sectors per
track in 16-bit format and 20 sectors per track in 18-bit for­
mat. Bad blocks are preintialized during manufacturing to
ensure that all sectors can be read by any drive. This saves
valuable system time and increases data integrity. Car­
tridges can also be reinitialized on site without destroying
the original bad block marking.

The AKO? is well suited for PDP-11 /24s, PDP-11 /34s, and
PDP-11 /44s, because these systems usually require less
storage than the larger PDP-11 /70.

RMOS - The AMOS is a large-capacity, high-performance
disk drive with a 2S6-Mbyte removable disk pack and a
range of field-proven reliability and maintainability fea­
tures. These features, together with its 38.3-millisecond
access time* and a peak transfer rate of 1.2 Mbytes per
second, make the AMOS a wise choice for high-throughput
1/0 intensive applications where abundant storage and
high disk performance are an important factor in total sys­
tem performance.

• Average access time is the sum of the average seek time plus
the average latency.

9-2

i•M - l::l•i •I

-Hfu!!!!ll!illlll!illlllllllli!!lll!lllllllll•illllllllll!ill

The AMOS is housed in two cabinets. One is for the drive
and the other is a utility cabinet containing the drive bus
adapter. Extra space is provided in the utility cabinet for a
second drive bus adapter for an additional drive. The drive
connects to the PDP-11170 MASS BUS disk controller
through the drive bus adapter.

The AMOS has a dual-port option that provides multipath
access to the database and high system availability where
redundant system configurations are needed.

UDASO - An implementation of the DIGIT AL Storage Ar­
chitecture, the UDA50 intelligent controller contains a 16-
bit high-speed processor that executes host interface and
drive interface programs simultaneously. It can handle
data rates up to three Mbytes per second . Four disk drives
can be connected to it in a radial fashion.

The UDASO controller and its associated DSA-series disks
offer significant improvements in 1/0 throughput, data in­
tegrity, and subsystem availability. The UDA50:
• supports high-speed disk technology
• provides powerful error-correcting systems for high­

density record ing

• provides multiple-level performance optimizations for
both single- and multiple-drive subsystems

• supports both Winchester removable-media and fixed­
media disks of varying capacities and transfer rates

• unburdens the host system of the overhead associated
with error handling and 1/0 throughput optimization

The UDASO controller, which is included in RASO, RASO,
and RA81 subsystems, performs a variety of performance
optimizations to improve disk throughput. A seek-ordering

algorithm reorders up to twenty 1/0 requests in the
UDASO's command queue to minimize seek time in both
single- and multiple-drive subsystems. When requests are
present for several disks, the controller performs over­
lapped seek operations. This means throughput on mul­
tidrive subsystems is increased since one disk can be
track-seeking while another disk is transferring data. In
addition, if two drives are both on-cylinder, the UDA50 se­
lects the drive nearest its beginning block to perform data
transfers. This process is known as rotational optimization.

Firmware contained in the UDA50 controller performs data
transfers, performance optimization , and error detec­
tion/correction. The controller also uses device-indepen­
dent software-the Mass Storage Control Protocol
(MSCP). Disk-dependent requirements, such as disk geo­
metry and error recovery strategies, are isolated from the
host operating system code by the MSCP device driver lo­
cated in the CPU. Thus, future disk drives will be sup­
ported by the UDA50 controller without modifications to
operating system software.

With the UDA50, which supports up to four disks, users
can "mix and match" up to a total of three RA60, RASO,
and/or RAS1 disk drives in a 42-inch- (10S.7 cm)-high cab­
inet. Two UDA50 controllers can be configured on a single
CPU. These capabilities give users the flexibility to choose
whatever combination of Winchester removable-media
and fixed-media disks that best suits their application .

RA60 - The RASO removable-media disk drive provides
205 Mbytes of storage for UNIBUS PDP-11 systems. The
RA60's peak transfer rate is 1.9S Mbytes per second, and
its average access time* is 50 milliseconds.

The RA60 disk drive incorporates a variety of innovations.
These include:
• the use of enhanced servo technology, which eliminates

the need for alignment packs

• new recording methods

• microprocessor-controlled diagnostics

• 170-bit error-correcting code

• modular design for easy maintenance

In most removable-media disk drives, a misaligned stack
of heads will cause unreliable pack interchange. The
RASO's embedded servo system (head-positioning infor­
mation on every data track) overcomes this problem and
always allows highly reliable pack interchange. In the
RASO, periodic head-alignment checking and realignment
are not necessary.

RASO - The RASO disk combines the advantages of
Winchester fixed-disk technology with a high-perform­
ance, high-reliability microprocessor-based controller, the
UDA50. As the result of an advanced mechanical design
that incorporates a rotary positioner, computer-designed
positioner arms, and the lightweight Winchester head sus­
pension, the RASO offers exceptional throughput perfocm­
ance-a peak transfer of 1.2 Mbytes per second and an
average access time* of 33.3 milliseconds. The RASO has a
storage capacity of 121 M bytes.

• Average access time is the sum of the average seek time plus
the average latency.

9-3

The RASO features a sealed Head Disk Assembly (HOA)
and a microprocessor that controls major drive functions
and resident fault isolation diagnostics. Each RASO drive
uses a direct disk-to-controller cable, which prevents a
failure on one drive from affecting other drives on the con­
troller.

RA81 - The RAS1 features a high-performance Winches­
ter-technology disk drive and an intelligent UDA50 con­
troller that accelerates 1/0 throughput, performs
expanded error recovery, and contains a 51-sector data
buffer to match the disk's 2.2 Mbyte-per-second burst
data rate to the host system.

The RAS1 's high capacity of 456 Mbytes is achieved
through innovative engineering in the read/write and po­
sitioner control systems. The read/write system employs
an encoding/decoding scheme that yields a third more
storage capacity than drives using conventional modified
frequency modulation (MFM) encoding. Positioning infor­
mation on a dedicated (servo) surface enables high-speed
seeking. Additional positioning information is embedded
between sectors on every track for high-precision posi­
tioning.

The RAS1 features outstanding data reliability, including
an industry-leading error correction code, automatic sec­
tor reallocation , error detecting code, quadruplicated
header addresses , data compare commands , access
commands, and error reporting. All error recovery rou­
tines are initiated and completed in the subsystem, thus
off-loading the host system.

Tapes
Lightweight and small in size, tape cartridges and
magnetic tapes provide a convenient medium for backup
and private file storage. RSX-11 's system utilities allow
users to mount and dismount private files that are stored
offline.

All tape devices, except the TU5S, use Mylar-based, oxide­
coated magnetic tapes with reflecting marker strips to in­
dicate the beginning and the end of the tape. Adjacent files
are separated by formatted interrecord gaps.

Several common features ensure data integrity and relia­
bility, optimize performance, and facilitate maintenance.

All tape devices provide a write-protect capability to pro­
tect the integrity of data that is read and written onto the
tape. The TU5S cartridge has a plastic write-lockout tab.
Users need only flip the tab on the cartridge to write­
protect tapes for short or long term. The other tape de­
vices provide an industry-standard write-protect ring on
the tape reel. The tape drive can sense the write protec­
tion, thus prohibiting data from being written.

Accurate data recording and retrieval is ensured by a
checksum on the TU5S and a read-after-write check on the
other tape devices. A checksum is a character generated
when a block of data is written and checked when the
block is read. If an error is found, the TU5S automatically
rereads the tape up to eight times before a hard error is
indicated. A read-after-write check prevents data from be­
ing written on worn or damaged tape sections. If an error is
detected in the read-after-write check, a message is sent
to the host processor.

Parity, longitudinal, and cyclic redundancy checking fur­
ther ensure the accurate transfer of data in all magnetic
tape systems. Parity is checked character by character
while reading and writing on tape at 1,600 bits per Inch.
Recording density of 800 bits per inch Includes a cyclic re­
dundancy check character and a longitudinal redundancy
check character. These characters are calculated when a
block is written and checked when the block Is read. If an
error is detected, the host processor Is notified.

All magnetic tape systems minimize tape error problems
through a runaway timer that allows the system to recover
from bad tape sections on the reel.

Magnetic tape controller/formatter operations Include:
• moving the tape to new positions In forward and reverse
• monitoring tape operation
• fetching, formatting, and sending data
• handling error conditions and drive-servicing

requirements

The major tape drives supported by RSX-11 M and RSX-
11 M-PLUS are summarized in Table 9-2.

TU58 - A TU58 DECtape II cartridge tape subsystem con­
sists of one or two TU58 cartridge drives, a controller, and
one DL 11-type serial line interface. It is supported on both
LSI-bus- and UNIBUS-based PDP-11s. All command and
data transfers are via programmed 1/0 and Interrupt-dri­
ven routines. TU58 DECtape Is a convenient pocket-sized
cartridge that functions as a random-access mass storage
subsystem capable of storing 512 preformatted blocks of
512 Kbytes each.

DECtape II is a fixed-address system with an average ac­
cess time of ten seconds and a read/write speed of 30
Inches per second. Block formatting compacts the storage
area into related groups of records, eliminating the need to
address individual records. The controller performs
read/write check operations using a 16-bit checksum and
signals the driver that there is an error if more than one
attempt Is made to perform a successful read . Serving as a
transport subsystem for auxiliary data storage, DECtape II
is able to read and write 256 Kbytes of data per drive at a
rate of 800 bits per inch. Each transport has a high-quality
read/write head with a full erase gap for reliable recording.

TSVOS - The TSV05 is a microprocessor-based magnetic
tape subsystem that incorporates reel-to-reel technology.
Designed for data interchange, archiving, journaling, and
disk backup, it is the only magnetic tape DIGITAL offers for
LSl-11-based PDP-11 s. It offers industry-standard 1,600
bits-per-inch Phase Encoded (PE) format, ANSI compati­
bility, and a storage capacity of 28 Mbytes per 2,400-foot
reel. Reading and writing are performed at 25 Inches per
second, and characters are transferred at a maximum rate
of 40 Kbytes per second.

The TSV05 accepts seven-to-10112-lnch reels of half-inch
tape. For easy of operation, tapes are front-loaded and
threaded automatically.

Reel-to-reel technology involves writing data on tape with­
out stopping and starting between each record block.
lnterrecord gaps, as required in the ANSI format, are in­
serted automatically while the tape is in motion.

Table 9-2
Tape Drives

Maximum
Read- Data

Recording Write Transfer Rewind Maximum
Type Capacity Density Speed Rate Speed per

Tape . (Size) (MB) (bits/In) (ln/s) (KB/s) (ln/s) Interface Formatter

TU58 2-track 0.25 800 30 3.7 60 LSI bus.UNIBUS* 2t
(2.4 x 3.2 x 0.5"

cartridge)

TSV05 9-track 28 1600 25 40 180 LSI bus
(10112'' reel)

TE16 9-track 20,40 800,SOO:j: 45 72 150 UNIBUS,MASSBUS 8
(10112'' reel)

TS11 9-track 40 1600 45 72 150 UNIBUS
(10112'' reel)

TU77 9-track 20,40 800, 1600:1: 125 200 440 UNIBUS,MASSBUS 4
(10112'' reel)§

K = 1,024; M = K•; B = byte; in = Inch; s =second

•Via DL 11-E serial-line asynchronous Interface

tOnly one TU58 can operate at a time

:I: Program selectable

§Also loads and threads Easy Load #1 and Easy Load #2 cartridges.
(Easy Load #1 and Easy Load #2 are trademarks of IBM Corporation .)

9-4

The TSV05 is highly reliable. It features:
• dual-microprocessor design
• simplified mechanical design

• built-in self-test and fault isolation diagnostics
• read-after-write parity check
• automatic single-track error correction
• in-line microdiagnostics

The TSV05 is program compatible with DIGITAL's TS11
magnetic tape subsystem at the DIGITAL-supplied device
drive level. While a TSV05 tape reel offers nearly three
times the capacity of an RL02 floppy disk, a TSV05 tape
reel is significantly less expensive.

TE16 - The TE16 magnetic tape is a fully integrated stor­
age system for UNIBUS PDP-11 systems that uses indus­
try-standard recording formats with densities of 1,600
(PE-phase encoded) and 800 (NAZI-non-return to zero
inverted) bits per inch, selectable under program control.
Reading and writing are performed at 45 inches per sec­
ond, and characters are transferred at a maximum rate of
72,000 per second. The TE16 features bidirectional tape
reading; writing occurs only while the tape is moving for­
ward. The TE16 is controlled by the TM03 magnetic tape
formatter.

The TE16 uses an oxide-coated magnetic tape with reflect­
ing marker strips that indicate the beginning and the end
of the tape. The formatter includes a runaway timer that is
used as a failsafe mechanism. Tape motion is stopped if
no record is detected during the timer's Interval, which is
roughly equivalent to 25 feet of tape.

The TE16 provides many features that protect the integrity
of data that is read from and written onto the tape. An
industry-standard write-protect ring located on the tape
reel prevents accidental writing of data to the reel. Parity,
longitudinal, and cyclic redundancy checking further en­
sure accurate data transfer. Parity is checked character by
character when reading from and writing on tape in PE
(1,600-bit-per-inch) operation. The recording of bad data
is checked for and prevented by the use of 12-character
data blocks. If there are fewer than 12 characters in a
block, the data will not be acknowledged by the host com­
puter.

9-5

The TE16 is available as a subsystem or as an add-on
drive. Subsystems include the TE16 transport and the
TM03 formatter and controller. The transport and format­
ter are integrated Into one cabinet. The controller mounts
in the CPU chassis. A TM03 formatter supports up to eight
TE16 transports.

TS11 - The TS11 is a medium-performance nine-track
magnetic tape storage system that features micro­
processor-controlled electronics for high data reliability
and maintainability. Performance features include 45-
inch-per-second read/write speed, up to 72,000-byte-per­
second transfer rate, 150-inch-per-second rewind speed,
and forward and reverse read.

To ensure accurate transfer of data the TS11 has a built-in
microprocessor to monitor and control voltage levels, tape
speed, and timing. Additionally, the TS11 features single­
track error correction, read-after-write ehecks, retry algo­
rithms, and parity checking on both the data path and mi­
croprocessor memory transfers. The TS11 tape subsys­
tem automatically verifies its own operational integrity by
continually running diagnostics to inspect all critical drive
functions.

The TS11 consists of a tape transport with Integrated
formatter and a single hex-sized UNIBUS inter­
face/controller module. This module plugs into any hex­
sized UNIBUS small peripheral controller slot and com­
municates with one tape transport. A universal power sup­
ply is standard . Voltage and frequency are easily con­
verted by changing one small assembly consisting of a
power cord, line filter, and circuit breaker.

TU77 - The TU77 is a high-performance nine-track tape
storage system packaged with its associated interface and
power supply. The TU77 subsystem consists of a TU77
tape drive, a dual-density TM03 tape formatter, and a
MASSBUS controller that mounts in the CPU chassis.
Reading and writing are performed at 125 inches per sec­
ond, and data is recorded at either 1,600 bits per inch (PE)
or 800 bits per inch (NAZI). Data is transferred at up to
200,000 bytes per second using ANSI standard formats.
Automatic tape threading maximizes operator conveni­
ence and minimizes tape handling.

To guarantee security of data, the TU77 has a wide range
of data integrity features. The formatter, the tape drive's
interface to the MASSBUS, oversees the handling of error
conditions and drive servicing. The TU77 features auto­
matic detection and correction of single-track errors in
both PE and NAZI formats plus parity checking on the en­
tire data path. Additional data integrity features include a
read-after-check write protect feature, self-testing of error
correction circuits , and detection of bad tape errors by
way of a runaway timer.

The combined features of the TU77 make it ideally suited
for such demanding applications as transaction process­
ing and disk-to-tape backups. In addition to the first drive,
the TM03 formatter can attach to three additional trans­
ports.

UNIT RECORD PERIPHERALS
To satisfy their output requirements, DIGITAL offers users
a variety of unit record devices-llneprinters, cardreaders,
and a papertape reader/punch.

Llneprlnters
DIGIT AL offers a wide range of lineprinters for a variety of
environments and applications-from low-cost 300-lines­
per-m inute band printers with optional European and Ja­
panese character sets to heavy-duty 1,200-lines-per­
minute Charaband printers designed for data processing
environments. DIGITAL also offers versatile lineprin­
ter /plotters.

LP11-AA/LPV11-AA and LP11-BA/LPV11-BA - As
DIG IT Al's low-cost steel-band printers, the LP11-
AA/LPV11-AA and LP11-BA/LPV11-BA feature user-re­
placeable font bands, horizontal-font printing that pro­
vides clear print appearance, and improved reliability and
maintainability. The LP11-AA and LP11-BA are the UNI­
BUS versions of these printers; the LPV11-AA and LPV11-
BA are the LSI-bus versions.

The LP11-AA/LPV11-AA includes a 64-character font
band and prints at a minimum speed of 285 lines per
minute. The LP11-BA/LPV11-BA includes both 64- and
96-character font bands that are easily interchangeable. It
prints at a minimum rate of 285 lines per minute with the
64-character font band and at 214 lines per minute with
the 96-character band. The British pound sign (£) and the
U.S. dollar sign ($) are contained on the standard 64-char­
acter band, so only a map PROM change is required to
print the pound sign.

Additional bands .for other European and Japanese
character sets are available for both printers. Another op­
tional font band can compress 15 characters into an inch,
permitting many output formats to be printed on 8112-inch­
wide (21.25 cm) paper. A maximum of three map PROMS
can coreside.

LP11-EA/LPV11-EA and LP11-EB/LPV11-EB - The
LP11-EA/LPV11-EA and LP11-EB/LPV11-EB are free­
standing band printers that use a flat steel band with
raised letters and a hammer bank with 132 hammers (one
for each column). (In comparison, the band on the LP11-
AA/LPV11-AA and LP11-BA/LPV11-BA has only 66 co­
lumns.) The LP11-EA/LPV11-EA and LP11-EB/LPV11-EB
accept single or multiple-part forms of pinfeed, continuous
fanfold, edge-perforated paper. They can produce up to
six copies on multipart forms. Featuring a wide choice of
user-selectable and interchangeable character fonts,
these printers are both economical and versatile. Optional
fonts include those for German, Finnish/Swedish, Dan­
ish/Norwegian, and Spanish/Portuguese.

The LP11-EA and LP11-EB are the UNIBUS versions of
these printers. The LSI-bus versions are the LPV11-EA
and LPV11-EB. The LP11-EA and LPV11-EA operate at
speeds up to 600 lines per minute using a 64-character
set; the LP11-EB and LPV11-EB operate at either 600 lines
per minute using a 64-character set or 445 lines per
minute using a 96-character set.

LP11-C and LP11·D - The LP11-C and LP11-D lineprin­
ters are fast, reliable drum printers that reduce operation
noise. They have variable forms control with top-of-form,
but do not have optional character sets. The LP11-D prints
at 900 lines per minute with the 64-character set and 600

9-6

lines per minute with the 96-character set, while the LP11-
C, which has the 64-character set, prints at 900 lines per
minute. These printers are available for UNIBUS systems
only.

LP11-GA and LP11-GB - The LP11-GA and LP11-GB are
freestanding, heavy-duty, high-performance Charaband
printers designed to handle high-volume throughput.
These printers offer excellent print quality during normal
operation. For extra high-quality printing, the print rate
can be changed. The LP11-GA and LP11-GB also feature
optional fonts for foreign languages. In addition, both of
these printers include a tape vertical format unit, which
provides for selectable form length up to 143 print lines.

The LP11-GA and LP11-GB are available for UNIBUS
PDP-11s only. The LP11-GA operates at either 715 or 905
lines per minute (switch-selectable) with a 96-character
set. The LP11-GB operates at either 990 or 1,220 lines per
minute (switch-selectable) with a 64-character set.

LXY11, LXY21, and LXV11 - The LXY11, LXY21, and
LXV11 lineprinter/plotters are versatile printing devices
that combine the benefits of a dot-matrix printer with a
plotter. They can plot standard line drawings (for example,
graphs, histograms, and charts) as well as plots requiring
shaded or solid areas (for example, bargraphs and bar­
codes). Explanatory text or large, solid characters for
labeling can be incorporated where desired.

These printer/plotters print the full 96-character ASCII set
as well as double-height characters and underlines. They
are ideally suited to provide hardcopy output of designs
formulated on a graphics terminal. The LXY11, LXY21, and
LXV11 print on single-part or multiple-part forms of con­
tinuous fanfold edge-perforated paper. Up to six copies of
multi part forms can be produced.

The LXY11 and LXV11 produce high-quality output at
speeds up to 300 lines per minute for printing and up to
16.7 inches per minute for plotting. The LXY21 prints and
plots at higher speeds: up to 600 lines per minute for print­
ing and up to 33.3 inches per minute for plotting.

In addition to a controller, cable, and pedestal with basket
and paper guide, these printer/plotters include the PLXY-
11 Graphics Software Package and, for RSX-11 M systems
only, the BCP Barcode/Block Character Software Pack­
age.

The PLXY-11 software package provides RSX-11 M/M­
PLUS users with access to the plotting capabilities of the
LXY (for UNIBUS systems) and LXV (for LSI-bus systems)
printer/plotters. The package consists of a library of FOR­
TRAN-callable graphics subroutines and a postprocessing
task (to create a plot file).

The PLXY-11 subroutine library includes routines for char­
acter and line drawing. As all operations are program-con­
trolled, either one axis or both axes can be addressed in
positive or negative incremental steps. Output to the
printer/plotters is directed through the standard LP11
lineprinter drivers.

BCP, the Barcode/Block Character Plotter software pack­
age, provides RSX-11 M users with the ability to generate
CODE 39 barcode on the LXY11, LXY21, and LXV11
printer/plotters. The package consists of an interactive

user program that permits online generation of graphic
figures. A library of graphic routines can also be linked to
user application programs written in FORTRAN-77.

Card readers
RSX-11's cardreader driver interprets encoded, punched
information using the American National Standard eight­
bit card code and uses a special punch outside the data
representation to indicate end-of-file.

DIGIT AL'S CR11 and CR11-B card readers are designed to
meet different throughput requirements and to read vari­
ous data formats. Both cardreaders use the industry-stan­
dard EIA card that has 80 columns and 12 zones (rows).
The CR11 reader processes punched cards at 285 cards
per minute; the CR11-B processes cards at up to 600
cards per minute.

These cardreaders have a high tolerance to cards that
have been nicked, warped, bent, or subjected to high
humidity. A short card path-that allows only one card in
the track at a time-and a vacuum pick mechanism-that
keeps cards from sticking together by blowing a stream of
air through the bottom half-inch of cards-decrease the
likelihood of card jams and keep card wear to a minimum.
The input hopper on the CR11 holds 550 cards, while the
CR11-B's input hopper holds 1,000 cards. Cards can be
loaded and unloaded while the readers are operating.

PC11 Papertape Reader/Punch
The PC11 is high-speed papertape reader/punch that fea­
tures automatic fan-fold operation of industry-compatible
papertape. The PC11 reads eight-channel unoiled perfor­
ated papertape at 300 characters per second and punches
at 50 characters per second.

When reading tape, a set of photodiodes in the PC11 unit
indicates the presence or absence of holes. When punch­
ing tape, logic levels representing ones and zeros are
converted into punched holes. Any information read or
punched is parallel-transferred through the PC11 control.
When an address is placed on the UNIBUS the control de­
codes the address and determines if the reader or punch
has been selected.

The controller lets users operate the reader and punch in­
dependently of each other. Either device can operate un­
der direct program control or can operate without direct
supervision, using interrupts to maintain continuous
operation.

TERMINALS
Interactive terminals can be connected to RSX-11 sys­
tems. As SYSGEN options in RSX-11 M systems, both half­
duplex and full-duplex terminal drivers are available to
handle hardcopy and videodisplay terminals. RSX-11 M­
PLUS systems support only full-duplex drivers.

Programs can control the operation of terminals through
the terminal driver. The terminal driver supports many
special operating modes for terminal lines.

The compact half-duplex terminal driver is generally used
in RSX-11 Mand RSX-11S systems where small driver size
is essential and where the additional functional capability
provided by the larger full-duplex terminal driver is not re­
quired.

9-7

On RSX-11 systems that require a larger driver, the full­
duplex driver offers these features:

• full-duplex operation
• type-ahead buffering

• eight-bit characters

• detection of hard receive errors

• increased byte transfer length

• additional terminal characteristics

• additional terminal types

• optional time-out on solicited and/or unsolicited input

• device-independent cursor control
• added hardware suooort

Terminal driver support is provided for the following
DIGITAL terminal devices: LA12, LA34, LA38, LA50,
LA100, and LA120 hardcopy terminals; and VT100, VT101,
VT102, VT125, and VT131 videodisplay terminals.

User Interface
All interaction between a user and RSX-11 takes place on
a terminal , which can be either a hardcopy terminal or a
videodisplay terminal. The type of terminal chosen de­
pends largely on the kind of work the user will be doing.
For example, a hardcopy terminal is useful for keeping a
log of events, whereas a video terminal's special funct ion
keys make it convenient for text editing.

RSX-11 accepts input either a line at a time or a character
at a time. In line mode, characters typed at the terminal are
stored in the input ring buffer until a line terminator such
as a carriage return or linefeed is typed. When the system
receives the line terminator it sends the line of data to the
currently running program. A line of data is limited only by
the column width set for the terminal. Although the default
width is 80 columns, a user can reset the terminal width
from 30 to 255 characters.

In character mode, the running program receives each
character immediately after it is typed. Any number of
characters can be entered without using a line terminator.
Character mode is used, for instance, when running the
EDI text editor.

RSX-11 responds to control characters that are typed at
the terminal. Control characters are available to:

• correct typing errors
• direct all keyboard input to a foreground or background

job
• terminate program execution
• cause terminal output to appear on both a videodisplay

screen and the terminal

• suppress terminal output during program execution

• temporarily suspend output to a terminal

Foreground and background terminal 1/0 are indepen~
dent of one another; a user can type input to one job while
another job prints output. If a user is typing input to the
background job when the foreground job is ready to print
output, the foreground job interrupts the user by printing a
message on the terminal. The system then suppresses the
echo of the input until the job with higher priority com­
pletes. When the background again gains control of the
system, all accumulated input is echoed.

If two jobs are ready to print output at the same time, the
job with higher priority is serviced. For example, output
from the foreground job would be printed before a request
from the background job is serviced. When the foreground
job terminated, control would revert automatically to the
background job.

RSX-11 also has a type-ahead feature that lets a user enter
terminal input while a program Is executing. While the first
command line is executing, the second line can be typed.
Any characters entered while the previous command is ex­
ecuting are echoed immediately on the screen, stored In
the input ring buffer, and executed when the previous op­
eration completes. Type-ahead is particularly useful for
specifying multiple command lines to system utility pro­
grams.

Terminal characteristics are initially established during
SYSGEN. Through a command issued at the terminal,
users can modify the defaults set for the terminal.

Hardcopy Terminals
DIGITAL offers a wide variety of hardcopy terminals. Both
keyboard send/receive (KSR) interactive terminals and re­
ceive only (RO) printing terminals are available.

LA12 Correspondent - The LA12 Correspondent is a
briefcase-sized portable interactive terminal that prints up
to 132 columns at 150 characters per second on plain pa­
per. At about 19 pounds, the lightweight Correspondent is
truly portable, and small enough to fit under an airline
seat. Its nine-by-nine-dot matrix and bidirectional printing
produce clear characters and fast output. The Correspon­
dent also offers full bit-map graphics with resolution of
132-by-72 dots per inch.

The Correspondent's communications capabilities are ex­
tremely flexible. It supports full-duplex modem connec­
tions, hard line connections, half-duplex supervisor control
mode, and more.

A loop-back connector and internal self-tests provide ex­
tensive diagnostic capabilities.

The Correspondent also features:

• auto-answer/auto-answerback (for unattended mes-
sage reception)

• 300 baud acoustic coupler
• 1200/300-baud direct-connect modem
• 9600-baud EIA-RS232 interface

• local echo selection (for attachment to non-DIGITAL
systems)

• shoulder-strap carrying case

There are four models of the Correspondent, each provid­
ing a different combination of communication interfaces.

LA34 and LA38 DECwrlter IVs - The LA34 and LA38
DECwriter IVs are low-cost desktop microprocessor-dri­
ven terminals capable of processing data at a rate of up to
30 characters per second. The LA34 Is a receive-only ver­
sion; the LA38 is a keyboard send/receive (KSR) interac­
tive terminal.

Both DECwriters include a universal power supply, a
standard EIA interface and EIA null modem cable, a pa­
per-out switch, and a customer-assistance documentation

9-8

package. The LA34 accommodates roll-feed paper, and
the LA38 has a paper-feed tractor for multi part forms and
an 18-key numeric keypad.

Both DECwriters have a permanently stored format for a
computer printout. When powered up they automatically
assume a ten-character-per-Inch character pitch, six-llne­
per-lnch vertical spacing, tab stops every eight spaces, left
margin set at column 1, and right margin set at column
132. A user can, however, set and change these character­
istics, choosing among such features as horizontal tabs,
horizontal margins, and a choice of four character sizes
and six line spacings.

DECwriters operate at 300 baud and can print at burst
speeds up to 45 characters per second. An alternate
speed of 110 baud and ten characters per second can be
selected from the keyboard. The desktop size and sculp­
tured keyboards are so similar to standard typewriters that
the transition from typewriter to terminal is natural.

The terminal's basic design contributes to its reliability and
maintainability. A single logic/power amplifier board with
custom LSI microprocessor reduces the component count
and increases circuit reliability.

The highly reliable printhead has been designed and
tested to print over 100 million characters and can be ad­
justed to adapt to various forms thicknesses. Should a
printhead jam occur, the LA34 and LA38 immediately re­
move the power from the printhead drive until the jam is
corrected and the terminal is restarted. This action pre­
vents motor overloads and blown fuses. If the DECwriters
.run out of paper, a paper-out sensor generates a signal.

These terminals were designed to operate reliably without
scheduled preventive maintenance. They disassemble
simply and quickly for easy access to all components if a
problem occurs. Printing self-test diagnostics allow quick
and accurate identification of any faulty components. In
addition, snap-in ribbon cartridges let users change rib­
bons quickly and easily.

Wherever possible, ANSI-standard escape sequences are
used. The same escape sequences are implemented on
DIGITAL's LA120 and VT100, ensuring compatibility
among DIGITAL's terminal products.

LA100 Letterprlnter and LA100 Letterwrlter - The
LA 100 Letterprinter 100 and LA 100 Letterwriter 100 are
desktop printing terminals. The Letterprinter 100 is a re­
ceive-only version, while the Letterwriter 100 is a keyboard
send/receive (KSR) interactive terminal. Both printers of­
fer a variety of printing speeds and print qualities, use
standard or custom-designed paper forms, and can
change type fonts at any time during operation, manually
or under host-program control. Margins, tabs, and forms
length are also software controllable.

The Letterprinter 100 and Letterwriter 100 use the same
graphics software as the LA34 hardcopy terminal. They
can be attached to the optional printer ports of VT100 fam­
ily video terminals or connected directly to a host CPU.

The Letterprinter 100/Letterwriter 100 has four print
modes. Each mode includes underlining and descenders
(letter tails). These modes are:

• 240 characters per second with a seven-by-nine-dot
matrix for high-speed draft-quality output

• 80 characters per second with a 33-by-nlne-dot matrix
that produces a denser character width for more pro­
nounced, darker characters suitable for printing memos

• 30 characters per second with a 33-by-18-dot matrix
that produces printing that is ideal for professional-look­
ing business correspondence

• bit-map graphics at 132-by-72 dots per inch

Options include tractor-driven form feeder, VT100 line­
drawing character set, and up to five resident character
fonts such as Courier and Orator, which are standard on
some models. User-selectable communication speeds
range up to 9600 baud.

LA120 DECwrlter Ill - The LA120, an interactive hard­
copy terminal, offers exceptional throughput and a num­
ber of advanced keyboard-selectable formatting features.
It has a contoured typewriter-style keyboard , an additional
numeric keypad , and a prompting LED (light-emitting
diodes) display for infrequently used features.

The LA 120's high throughput is achieved through its:

• 180-character-per-second print speed

• 14 data-transmission speeds ranging up to 9600 baud
• a 1,000-character buffer to equalize differences between

transmission speeds and print speeds

• smart and bidirectional printing that causes the
printhead to always take the shortest path to the next
print position

• high-speed horizontal and vertical skipping over white
space

The LA120 is also distinguished by its printing features.
The terminal offers eight font sizes ranging from an ex­
panded (five characters per inch) to a compressed (16.5
characters per inch) font. Using the compressed font, a
user can print 132 columns on an 8112-inch-wide sheet.
Other print features include six line spacings ranging from
two to 12 lines per inch; user-selectable form lengths up to
14 inches; left/right and top/bottom margins; and horizon­
tal and vertical tabs.

The LA 120 is designed for easy use. Terminal characteris­
tics are selected via clearly labeled keys·and simple mne­
monic commands. Once terminal characteristics are
selected, a STATUS key can be pressed that causes the
terminal to print a listing of the selected settings.

Vldeodlsplay Terminals
The VT100 series of videodisplay terminals has proven to
be among the most popular, and most imitated, video ter­
minals ever offered. The VT100 series comprises the
VT100, VT101 , VT102, VT125, and VT131 . All these termi­
nals offer the basic VT100 capabilities. The VT100 can be
upgraded with a variety of useful features, while the VT101
and VT102 cannot. The VT101 and VT102 have a local­
echo feature, and the VT102 and VT131 have a printer­
port and advanced video features as standard equipment.
The VT102 and VT131 also offer more versatile communi­
cations capabilities. A graphics terminal , the VT125 pro­
vides full VT100 capabilities, bit-map graphics, and the
ability to produce color output for a detached color moni­
tor.

9-9

VT100 Video Terminal - The VT100, an uppercase and
lowercase ASCII video terminal, offers a variety of user­
controllable character and screen attributes. The VT100
features a typewriter-like detachable keyboard that in­
cludes a standard numeric/function keypad for data entry
applications and seven LEDs, four of which are program­
controlled, that can be used as operator information and
diagnostic aids.

The VT100 offers a number of advanced features. These
features let a terminal user:

• choose between two screen sizes, either 24 lines by 80
columns or 14 lines by 132 columns

• select either double-width/single-height characters or
double-width/double-height characters on a line-by-line
basis

• have smooth-scrolling and split-screen capability
• set baud rates, tabs, and Answer-Back messages from

the keyboard and store these in random access memory

• display simple graphics with 32 special line-drawing and
graphic characters for creating solid vertical and hori­
zontal lines and square corners

• select black-on-white or white-on-black characters on a
full-screen basis

The VT100 can be upgraded with several options that fur­
ther extend its capabilities. An advanced video option
adds selectable blinking, underline, dual-intensity (bold),
and reverse-video attributes on a character-by-character
basis as well as additional memory allowing 24 lines of 132
characters. Another upgrade option transforms the VT100
into a full-featured VT125 graphics terminal.

VT101 Video Terminal - The VT101 is a low-cost mem­
ber of the VT100 video terminal family. It offers the basic
functions of a VT100 terminal and adds the local-echo fea­
ture, for use with non-DIGIT AL computer systems. (Some
non-DIGIT AL systems do not echo typed characters to the
terminal).

VT102 Video Term In al - The VT102 is a powerful and
versatile general purpose terminal. As standard features it
includes all the basic VT100 functions plus the advanced
video and printer-port options. The VT102 also offers:

• advanced, in-terminal editing features for inserting and
deleting text by the character and by the line

• United States and British character sets as standard fea­
tures, with others optional

• United States and European full- and half-duplex com­
munication with five modem control modes

• local echo, allowing the VT102 to be used with non­
DIGITAL computers

• local printer control for printing without host computer
intervention

VT125 Graphics Terminal - The VT125 graphics terminal
adds ReGIS-based graphics capabilities to all the stan­
dard VT100 attributes. The VT125 directly executes
DIGITAL's Remote Graphics Instruction Set (ReGIS) for
creating and storing pictorial data as simple ASCII text. Its
bit-map architecture provides two full -screen picture
planes, each with resolution of 768 by 240 pixels. At any
one time either plane or both planes can be displayed on
the screen.

Using ReGIS commands, pictures and text can be as­
signed such individual attributes as:

• color or intensity

• shading
• variable height, width, spacing, and writing direction

• italics
• overlay, replace, complement, and erase modes for

writing the screen image

The VT125 contains a printer port to connect an optional
LA34 graphics printer for hardcopy output. An RGB moni­
tor can be attached to display color graphics. The VT125
can display 64 colors, four at a time, on the color mon itor.

VT131 Video Terminal - The VT131 incorporates all the
functions of the VT102 plus block-mode operation. Block
mode allows each screenful of data to be edited locally be­
fore transmittal to computers supporting block 1/0 (such
as DIGITAL's VAX/VMS system and some non-DIGITAL
systems). On PDP-11 computers running RSX-11 , a VT131
is identical to a VT102.

DECmate I System - The DECmate I system provides
word processing capabilities and the ability to transfer
documents to and from DIGITAL host computers. It per­
forms word processing in its standalone mode and can
also be used as a data processing terminal in interactive
mode with a host system. In terminal mode, it acts as a
VT100. It has many of the same features as the VT100: un­
derline, bolding, and extended 132 column mode.

In standalone mode, the DECmate I is programmable in
BASIC, FORTRAN, and DIBOL. It also supports such op­
tional application packages as financial modeling , math,
mailing , and office management. With optional software
designed for commercial applications programming, this
system can emulate an IBM 2780/3780.

A communications package, which is part of the word
processing software, turns the DECmate I into an en­
hanced video terminal wherein documents can be sent to
host computers, and output from host computers can be
captured on the DECmate's display, printer, and disk. The
commun ications capability, CX and DX, works with RSX-
11 M and RSX-11 M-PLUS. Because the DECmate I is a
fully functional computer, its use does not reduce the ca­
pabilities of the host computer.

9-10

The configuration consists of a videodisplay, a dual-disk­
ette unit, and an optional matrix printer and commun ica­
tions option. It is user installable. The office automation
software includes word processing, list processing, sort,
and communications.

TERMINAL AND COMMUNICATIONS
INTERFACES
RSX-11 supports a variety of synchronous and asynchro­
nous interfaces for connecting terminals and communica­
tions packages to PDP-11 systems. Some of these inter­
faces handle only a single line, while others can handle
multiple lines. Some interfaces have modem control capa­
bilities ranging from auto-dial and auto-answer to auto­
disconnect. Others are capable of multiplexing-that is,
they combine several signals to be transmitted over the
same line. And, finally, some of these interfaces are intell i­
gent, so they relieve the computer of much of the work load
involved in communications.

With this tremendous range of interfaces to choose from ,
users can select the interface or interfaces that best suit
their particular communications requirements.

DH11 Asynchronous Multiplexers
The DH11 asynchronous multiplexers connect UNIBUS
PDP-11s with 16 serial communications lines operating
with individually programmable parameters.

These multiplexers use 16 double-buffered receivers to
assemble the incoming characters and to support variable
speeds. An automatic scanner takes each received char­
acter plus the line number and deposits that information in
a first-in/first-out buffer memory called the "silo." The bot­
tom of the silo is a register that is addressable from the
UNIBUS.

The transmitter in the DH11 also uses double-buffered
units. They are loaded directly from message tables in the
PDP-11 memory by means of single-cycle direct memory
transfers.

DL11 and DLV11 Asynchronous Serial-Line Interfaces
The DL 11 is an interface between a single asynchronous
serial communication line and the UNIBUS. The DLV11 is a
version of the DL 11 used to connect an asynchronous
serial line to the LSl-11 bus. Both provide full-duplex (si­
multaneous two-way) operation and half-duplex (also two­
way, but one way at a time) operation.

The DL 11 and DLV11 perform serial-to-parallel and paral­
lel-to-serial conversion of serial start/stop data with a dou­
ble-character buffered MOS/LSI circuit called a UART
(Universal Asynchronous Receiver-Transmitter). This 40-
pin dual-inline package includes all of the circuitry neces­
sary to double-buffer characters in and out , ser ial­
ize/deserialize data, provide selection of character length
and stop-code configuration, and present status informa­
tion about the unit and each character.

Using a DL 11 or DL V11 interface, a PDP-11 or LSl-11
computer can communicate with a local terminal such as a
console teleprinter, with a remote terminal via data sets
(modems), or with public switched telephone facilities.

Users can configure the data rate from a selection of 13
standard rates up to 9,600 bits per second or can config­
ure a nonstandard rate device. With most of the standard
rates, the interface can offer split-speed operation for
faster, more efficient handling of computer output. Char­
acter size is strap-selectable or switch-selectable, and
parity checking (even, odd, or none) and stop-code length
(one, 1.5, or two bits) are selectable.
A four-channel asynchronous serial DL V11 Interface is
also available. Instead of connecting four single-channel
DL V11 devices to the bus, one four-channel DL V11 can be
connected , increasing system performance and decreas­
ing system overhead.

DMP11 Network Link
The DMP11 , supported by RSX DECnet, is a synchronous
line communications interface that connects a PDP-11
UNIBUS system to other DIGIT AL computers in distributed
network applications. It operates full- or half-duplex over
common carrier or private lines, or over local shielded ca­
bles. Full-duplex communication speeds up to 500,000
bits per second are possible, versus 1,000,000 bits per
second for half-duplex.

The DMP11 , a direct-memory-access device containing a
microprocessor, implements DDCMP protocol in micro­
code. This reduces demands on the system CPU, which
need not waste valuable time executing instructions to im­
plement the protocol or manage the details of data trans­
fer to memory.

DMR11 Network Link
The DMR11, supported by RSX DECnet, is a UNIBUS syn­
chronous line communications interface designed to
interconnect PDP-11 UNIBUS systems with other local or
remote DIGIT AL computers using synchronous serial
lines. The DMR11 is capable of high-speed operation over
inexpensive twinaxial or triaxial cables in full - and half-du­
plex modes. Reliability is increased using 16-bit cyclic re­
dundancy checking to discover data transmission errors.
Transmission speeds vary from 56,000 bits per second to
1,000,000 bits per second.

The DMR11 is a direct-memory-access device that imple­
ments DIGITAL's DDCMP communications protocol in
microcode. This reduces demands on the system CPU,
which need not waste valuable time executing instructions
to implement the protocol or manage the details of data
transfer to memory.

DMV11 Network Link
Supported by RSX DECnet, the DMV1 1 is a synchronous
line communications interface that connects an LSI-bus
system to other DIGITAL computers in distributed network
applications. The DMV11 has much the same capabilities
as the DMR11 and DMP11 communications interfaces.
Unlike the DMR11 and DMP11, however, DMV11 operates
at speeds of up to 56,000 bit per second (full duplex).

DPV11 Synchronous Serlal-Llne Interface
The DPV11 is a character-buffered synchronous serial­
line interface that provides two-way simultaneous com­
munications. It translates between serial data and parallel
data. Output characters are transferred in parallel from the
LSl-11 bus in the DPV11 where they are serially shifted to

9-11

the communications line. Input characters from the mo­
dem are shifted into the DPV11 and made available to the
LSl-11 bus on an interrupt basis.

This allows a full character time in which to service trans­
mitter and receiver interrupts. The clocking necessary to
serialize the data is provided by the associated
synchronous modem.

Modem control is a standard feature of the DPV11 . The
signals needed to establish communications with the Bell
Series 200 synchronous modems are present in the re­
ceive status register.

The DPV11 transmits data at a maximum speed of 56,000
bits per second when the speed of the LSl-11 and operat­
ing software allow. The modem interface is compatible
with EIA RS423 for use with higher-speed modems. A data
interface with EIA RS422 is implemented for high-speed
links using data leads only.

DUP11 and DUV11 Synchronous Line Interfaces
The DUP11 interface connects a serial line to the PDP-11
UNIBUS for synchronous communications. The DUP11
can operate in full-duplex mode using both byte and bit
communication protocols. It is well-suited both to applica­
tions using medium speed synchronous lines for remote
data collection and concentration and to networking.

Data transmission and reception is double-character-buff­
ered at speeds of up to 9,600 bits per second. Output
characters are transferred in parallel from the PDP-11 UN­
IBUS into the DUP11 where they are serially shifted to the
communication line. Input characters from the resident
modem are shifted into the DUP11 and made available to
the PDP-11 on an interrupt basis. Data transmission errors
are efficiently detected by cyclic redundancy checking.
Modem control for remote communications via Bell Series
200 synchronous modems is a standard feature.

The DUV11 interface is used with the LSl-11 bus. It too is a
single synchronous line, double-buffered communications
device. It also offers full- and half-duplex operation, and
modem control for remote communications at speeds of
up to 9,600 bits per second. The DUV11 detects data
transmission errors by parity checking . It has auto­
answering capability, allowing its use as an unattended
network station.

For communication flexibility, the DUV11 can be used with
character-oriented protocols. It allows program control
over character size (five, six, seven, or eight bits) in addi­
tion to programmable sync characters. Output characters
are transferred in parallel from the LSI bus into the DUV11
where they are serially shifted to the communication line.
Input characters are shifted into the DUV11 and made
available to the bus on an interrupt basis as parallel data.

The DUV11 is also capable of isochronous operation,
which is essentially asynchronous data transmission over
a synchronous modem. For isochronous operation,
start/stop bits are added to each transmitted character.
Isochronous transmission data rates are higher than asyn­
chronous rates.

DZ11 and DZV11 Serlal·Llne Interfaces
The DZ11 is a serial-line multiplexer that connects the UNI­
BUS with up to eight asynchronous serial lines. Character
formats and operating speeds are programmable on a
per-line basis-each line can run at any one of 15 speeds.
The DZV11 is a version of the DZ11 that connects up to
four asynchronous serial data communications lines to the
LSl-11 bus. These interfaces are a low-cost method of
connecting multiple local remote terminals for moderate
throughput.

Local operation with EIA terminals is possible at speeds up
to 9600 baud. The DZ11 and DZV11 can be used with
dialup, full-duplex terminals that operate through most in­
dustry-standard modems that run at 300 bits per second
or at 1,200 bits per second. Incoming characters are
stored in a receiver silo buffer. Outgoing characters are
processed on a programmed interrupt-request basis. An
optional feature of these interfaces is parity checking . A
parity bit is generated on output and checked on input.

DZS11 Statlstlcal Multiplexer
The DZS11 Statistical Multiplexer is a terminal concentra­
tor that connects up to eight asynchronous terminals to a
UNIBUS PDP-11 system using one synchronous, full-du­
plex communication link. It substantially reduces the costs
of cables, modems, and leased lines by combining several
low-speed lines into a single high-speed data path.

Designed for a variety of communications applications, the
DZS11 can be used to connect terminals at local and re­
mote sites . A route-through capability also makes it
possible for a cluster of terminals at one remote location to
pass data on to other terminals at a second remote site.

The DZS11 can replace up to 16 modems and eight sepa­
rate telephone lines with two modems and one synchro­
nous line. For connections less than 1,056 yards (one ki­
lometer) apart, all modems can be eliminated by using one
RS422 "long line" cable.
By allocating one high-speed link dynamically among
users in proportion to the communication traffic each gen­
erates, the statistical multiplexer makes it economically
feasible to have remote terminals communicate as fast as
local terminals. Instead of separate 300-baud dialup lines,
a single multiplexed line operating at up to 19,200 baud
can service each terminal at 4800 or 9600 baud.

More than one DZS11 can be configured on a system. To
the host, all eight terminals linked to a OZS11 appear to be

9-12

attached by one standard DZ11 multiplexer. It makes no
difference whether the terminals are connected by cables
or combinations of cables and modems or if they are clus­
tered In one location or spread across two sites.

The terminal concentrator Is composed of two parts. One
is installed in the host processor as a UNIBUS device, and
the other fits inside a VT100 video terminal. The remote
module inside the VT100 acts as the cluster controller and
accepts up to seven additional user terminals as input de­
vices. A second remote multiplexer can be installed at
another site. In this arrangement, the first remote multi­
plexer services the terminals connected directly to it and
transparently routes all messages to the second terminal
cluster.

KMC11 Auxlllary Communications Processor
The KMC11, an auxiliary processor complete with mem­
ory, interfaces to the PDP-11 UNIBUS. It improves the per­
formance of POP-11 systems by performing time­
consuming system functions in parallel with the POP-11
CPU, thereby offloading the main CPU. It is especially
suited to controlling 1/0 operations that require extensive
intelligence-for example, data communications and ana­
log 1/0.

The KMC11 's architecture is specifically suited to data
movement, character processing, address arithmetic, and
other functions necessary for controlling 1/0 devices, for­
matting data, and processing communications. The func­
tions performed by the KMC11 are determined primarily
by the microprogram in the KMC11 's control memory. This
control memory is volatile and can be changed whenever
desired by the PDP-11 processor. In normal operation , the
operating system loads the microprogram into the KMC11
control memory as part of system initialization; it remains
in the control memory until the system is reinitialized.

Software support of the KMC11 consists of two parts: the
KMC11 microprogram and the operating system driver.
The microprogram must be tailored to the specific proc­
essing to be performed by the KMC11 . The operating sys­
tem driver interfaces the microprogram to the rest of the
POP-11 software. Communication between the micropro­
gram and the operating system uses the KMC11 control
status registers and is entirely defined by the software. Dif­
ferent applications may require different types of micro­
code/software interfaces.

PCL 11 ·B Parallel Communications Interface
PCL 11-B Parallel Communications Link hardware is sup­
ported via two drivers. One driver supports the transmitter
function and the other driver supports the receiver
function. The PCL 11-B is a hardware interface that func­
tions as a time-division-multiplexed (TOM) interface over
which several PDP-11 computers can transfer data to each
other. Each PCL 11-B consists of a transmitter, receiver,
and master section. The transmitter section can transfer
parallel 16-bit words along the TOM bus to a receiver sec­
tion of a separate PCL11-B on a different POP-11 com­
puter's UNIBUS. One of the PCL 11-B units attached to the
TOM bus must have its master section enabled to effect
the data transfer.

The PCL 11 transmitter driver has two basic functions.
First, it receives data sent by the attached task and stores

it in a silo buffer in the PCL 11 hardware. Second, the driver
passes proper receiver address and command Informa­
tion to the PCL 11 transmitter hardware to effect the actual
transfer over the TDM bus.

The PCL 11 receiver driver also performs two basic func­
tions. It must remove data from the receiver silo and send
it to the connected task. In addition, the receiver driver
must acknowledge a transmitter when a data transmission
is requested by that transmitter. Subsequent requests by
other transmitters in the TDM bus are ignored until all
message transactions with the current transmitter are
completed.

REAL TIME 1/0 DEVICES
RSX-11 was designed to satisfy the time-critical require­
ments of realtime applications. Optional software applica­
tion packages are available to support 1/0 devices that
take advantage of RSX-11 's fast, efficient use of system re­
sources and priority-driven operating environment. Soft­
ware can range from simple FORTRAN IV extensions to
nuclear medicine application packages.

DIGIT Al's realtime and sensor 1/0 devices, as well as
users' custom 1/0 devices, can be easily interfaced to any
RSX-11 system through:
• Programmed 110, where a program polls the hardware

to coordinate the data transfer. This method is useful for
a time-critical device to which the program must re­
spond as soon as data are available.

• lnline interrupt service routines, where a program starts
an 1/0 transfer but may continue processing . When the
transfer completes, the device issues an interrupt. An in­
terrupt service routine in the program determines
whether the transfer is incomplete, complete, or has en­
countered an error. It then takes the appropriate action.
Interrupt-driven 1/0 enables two or more processes to
run concurrently. It does not monopolize system re­
sources and is often the best way to service sensor or
control devices such as analog-to-digital (AID) convert­
ers.

• A device driver that exists as a memory image file on a
mass storage device and resides in memory when it is
needed to perform device 1/0. Device drivers provide
device independence, share processor time with other
processes, and are simple to use.

The method used to interface devices depends largely on
how the user wants the device to appear to system and ap­
plication programs. RSX-11 documentation is available to
simplify the decision-making process and to help users
write both interrupt service routines and device drivers.

Realtlme 1/0 Devices for LSl-11-Based PDP-11 s
ADV11-A A/D Converter - An option for LSl-11-based
processors, the ADV11-A is a 12-bit successive approxi­
mation analog-to-digital converter that samples analog
data at specified rates and stores the digital equivalent
value for processing. A multiplexer section can accommo­
date up to 16 single-ended or eight quasidifferential in­
puts. The converter section uses a patented auto-zeroing
design that measures the sample data with respect to its
own circuitry offset and therefore cancels out its own offset
error.

9-13

A/D conversions are initiated by program command, clock
overflow, or external events. The program control is deter­
mined by the control and status register (CSR). The clock
overflow command is supplied by the KWV11-A option .
External event inputs can originate at the user's equipment
or from the Schmitt trigger output on the KWV11-A clock.
The digital data output is routed through a buffer register
to the bus, from which it can be transferred into memory.
This buffer optimizes the throughput rate of the converter.

DRV11 Parallel Line Interface Units - The DRV11s are
general purpose interface units for connecting parallel­
line TTL or DTL devices to the LSl-11 bus. The DRV11-LP
permits program-controlled data transfers at rates up to
40 Kwords per second. The DRV11-B/DRV11-BP provides
direct memory access and permits data transfers at rates
up to 250 Kwords per second in single cycle mode and up
to 500 Kwords per second in burst mode.

The DRV11 s provide LSl-11-bus interface and control
logic for interrupt processing and vector generation. Data
is handled by 16 diode-clamped input lines and 16 latched
output lines. The device address is user-assigned, and
control/status registers (CS Rs) and data registers are
compatible with PDP-11 software routines.

The DRV11-J program-controlled parallel-line interfaces
contain 64 bidirectional input/output lines configured as
four 16-bit ports. They are bit interruptable up to 16 lines.
Interrupt vectors can have fixed or rotating priorities.

KWV11-A Programmable Realtlme Clock - A pro­
grammable clock/counter for LSl-11 processors, the
KWV11-A provides a variety of means for determining
time intervals or counting events. It can be used to gener­
ate interrupts to the processor at predetermined intervals,
or to synchronize the processor ratios between input and
output events. It can also be used to start the ADV11-A an­
alog-to-digital converter either by clock counter overflow
or by the firing of a Schmitt trigger.

The clock counter has a resolution of 16 bits and can be
driven from any of five internal crystal-controlled frequen­
cies (100 Hz to one MHz), from a line frequency input or
from a Schmitt trigger fired by an external input. The
KWV11-A can be operated in any of four programmable
modes: single interval, repeated interval, external event
timing, and external event timing from zero base.

The KWV11-A includes two Schmitt triggers, each with in­
tegral slope and level counters. The Schmitt triggers per­
mit the user to start the clock, to initiate A/D conversions,
or to generate program interrupts in response to external
events.

Realtlme 1/0 Devices for UNIBUS-Based PDP-11 s

LPA11-K - The LPA11-K is an intelligent (dual-micro­
processor) direct-memory-access controller that buffers
realtime data and transfers them to RSX-11 memory. Be­
cause the LPA11-K has automatic buffer-switching capa­
bility, transfers can occur continuously. Via a system call,
the programmer can instruct the LPA 11-K to take samples
from a data source at specified time intervals. Sampling is
handled by the microprocessors without the intervention
of the CPU. Under RSX-11, the LPA 11-K can be accessed
via FORTRAN, BASIC-PLUS-2, and MACRO.

The LPA 11-K operates in two distinct modes: multirequest
mode and dedicated mode.

In multirequest mode, up to eight requests can be active
concurrently. Each user's sampling rate is a user-specified
multiple of the common realtime clock rate; thus, indepen­
dent rates can be maintained for each user. Each request
specifies the device so that analog-to-digital, digital-to-an­
alog, or digital 110 can be synchronously sampled. The
transition of a bit in a digital word can synchronize the
sampling with a user event. In multlrequest mode,
throughput is determined by the number and types of re­
quests. The aggregate throughput rate for all users is typi­
cally 15,000 samples per second.

In dedicated mode, one user can sample from analog-to­
digital converters or can output to a digital-to-analog
converter. Two analog-to-digital converters can be con­
trolled simultaneously. Sampling is initiated by an overflow
of the realtime clock or by an external signal. Two sam­
pling algorithms are implemented. One, at each overflow,
samples both of the analog-to-digital converters in paral­
lel, allowing two channels to be sampled simultaneously.
The other algorithm samples the two converters on an
interleaved basis, beginning with the first whose sampling
begins on alternate clock overflows.

The LPA11-K supports the following K-series laboratory
peripherals on RSX-11 :
• AA11-K four-channel 12-bit DIA converter with scope

control

• AD11-K 16-channel 12-bit AID converter

• ADK11-KT 16-channel 12-bit AID converter with real-
time clock, distribution panel, and cables

• AM11-K multiplexer board

• DR11-K 16-bit parallel general device interface

• KW11-K realtime clock

K-Serles Laboratory Peripherals - K-series laboratory
realtime 110 options are supported through a set of pro­
gram-callable routines that are linked with the user's task
at task build time. These routines are highly modular;
therefore, a particular task contains only the code neces­
sary for the facilities actually used. There is also support
for directives that allow a user's task to bypass normal QIO
processing and perform 110 almost completely indepen­
dent of the Executive, thus increasing 110 throughput.

AA 11-K Digital-to-Analog Converter The AA 11-K is a
four-channel, 12-bit digital-to-analog converter that inter­
faces to the PDP-11 UNIBUS. The AA11-K includes four
DI A converters and a display control. The display control
permits users to display data in the form of a 4,096-by-
4,096 dot array. Under program control a dot can be pro­
duced at any point in the array, and a series of sequential
dots can be programmed to produce graphic output to a
chart recorder, XIY recorder, or video terminal.

Each of the AA11's four DIA converters are driven from a
12-bit buffer register and from circuitry that provides all
controls necessary to output the analog signals to an ex­
ternal oscilloscope or other analog device. DIA output is
nominally ±5 V; however, this can be set to ±0.5 Vor ±10
V. Outputs are capable of driving up to 5,000 pF of load.

9-14

Output operations are accomplished by loading the dis­
play status register and the DI A buffer registers. Through
display status register bits, a user can:
• change the contents of the DI A registers

• provide delays necessary for some oscilloscope
applications

• provide erase, write-through, and non store control func­
tions for storage oscilloscope applications

• enable interrupt on completion of oscilloscope intensifi­
cation , erase, and external delay

The display control offers four program-controlled modes
in which the oscilloscope can intensify a point. Jumpers
provide additional display-control flexibility by allowing a
user to select the desired delay, intensification pulse
polarity, magnitude, and duration.

AD11-K AID Converter The AD11-K AID converter can
be switch-selected to operate as a 16-channel single­
ended, 16-channel pseudodifferential, or eight-channel
true differential AID converter. It can convert an analog
voltage from within the input ranges of ±5 V, ±5.12 V, ±10
V, or ±10.24 V, 0 to 10 V-or from zero to 10.24 V-to a
digital number for processing. These input ranges are
jumper-selectable.

The AD11-K can be started under program control , on
overflow of the KW11-K programmable clock (described
below), or from external input. With this versatil ity, th is
package can be adapted to most applications.

ADK11-KT Analog Rea/time Data Acquisition Pack­
age The ADK11-KT is a low-cost, 12-bit analog-to-digital
converter that accepts analog signals from laboratory sys­
tems and converts them to digital values.

The ADK11-KT package consists of:
• an AD11-K AID converter

• a KW11-K dual programmable realtime clock

• a distribution panel

• cables

The rack-mountable distribution panel provides a com­
plete instrumentation interface package. The distribution
panel is interfaced to the AD11-K and the KW11-K. Signals
from user devices are interfaced to the panel by screw ter­
minals.

AM11-K Expander or Switch Gain Multiplexer The
AM 11-K is a multiplexer expander that supplements the
16-channel single-ended (eight differential) analog input
multiplexer in the AD11-K. The expansion is done in three
independent groups on the AM11-K. Each group can be
set to 16 single-ended or pseudodifferential input chan­
nels or eight differential input channels. Each group can
have a gain of one, four, 16, or 64 assigned to it by a switch
in the amplifier.

The AD11-K and AM11-K together can provide 64 (32)
channels of A/D input or 16 (eight) channels of programm­
able gain inputs. The inputs to the AM11-K can be selected
in groups of 16 (eight) channels. If the three groups of
channels are selected to provide a gain of four on chan­
nels 16-31 (208-37 al. a gain of 16 on channels 32-47
(40a-57 a). and a gain of 64 on channels 48-64 (60a-77 al.
the combination of the AD11-K and AM11-K can provide
programmable gain for 16 (eight) channels.

DR11-K General Device Interface The DR11-K is a gen­
eral purpose interface capable of parallel transfer of up to
16 bits of data between a UNIBUS and an external device.
All interfacing lines to and from the DR11-K are fused and
have over-voltage protection.

KW11-K Dual Programmable Rea/time Clock The KW11-
K is a dual programmable realtime clock used in PDP-11
UNIBUS computers. Its clocks can be used to generate in­
terrupts to the processor at predetermined Intervals, syn­
chronize the processor to external events, or measure
time intervals.

Clock A is a 16-bit clock that can be program-selected to
operate at one of eight clock rates. Clock B is an eight-bit
programmable realtime clock that counts intervals of time
or events. Clock B can generate a program-controlled in­
terval or can provide an input frequency for clocking Clock
A. Both clocks have five crystal-controlled clock rate fre­
quencies (one MHz, 100 KHz, ten KHz, one KHz, and 100
Hz). Other clock rates can be determined by an external
input, line frequency, or, in Clock A, the overflow of Clock
B.

AR11 Analog Realtlme System
The AR11 Laboratory Peripheral System is a modular real­
time subsystem used for the acquisition and/or output of

9-15

laboratory analog data. It is a compact, program­
controlled analog realtime system useful for such applica­
tions as biomedical research, analytical instrumentation,
data collection , mon itoring , data logging, industrial test­
ing, and engineering.

The AR11 consists of three major components:
• a 16-channel single-ended ten-bit analog-to-digital

converter

• a programmable realtime clock

• a display control with dual ten-bit digital-to-analog
converters

Through the AID converter the AR11 can sample analog
data at specified rates and store the equivalent digital
value for subsequent processing. The basic subsystem
consists of a 16-channel multiplexer (16 single-ended in­
puts), sample-and-hold circuitry, and a ten-bit AID
converter. The analog inputs can be programmed for uni­
polar (zero to five V) or bipolar (±2.5 V) operation.

An A/D conversion can be started under program control,
on overflow Of the realtime clock, or by an external input.

The programmable clock offers several methods for accu­
rately measuring and counting time intervals or events.
With it, many operations can be performed concurrently.
These include synchronizing the central processor to ex­
ternal events, counting external events, providing inter­
rupts at programmable intervals, and starting the A/D
converter.

The clock can be programmed to operate in either single­
interval or repeated-interval modes and to run at any of
five crystal-controlled frequencies (one MHz, 100 kHz, ten
kHz, one kHz, or 100 Hz).

The display control is used to display data in a 1,024-by-
1,024 dot array. Under program control, a bright dot can
be produced at any point in the array, and a series of dots
can be programmed to produce graphic output. The
display control can output to either an X/Y recorder or a
video terminal display unit.

The display control consists of two ten-bit DI A converters,
each driven from a ten-bit buffer register, and circuitry that
provides all controls necessary to output the analog sig­
nals to an external oscilloscope. D/A output is nominally
±5 V; however, this can be set to ±0.5 V by means of jum­
pers and to any range between ±0.5 V and ±5.V by means
of resistors .

Through the AR11 's display status register bits, a user can
intensify a point; provide delays necessary for some scope
applications; provide erase, write-through, and nonstore
control functions for storage scope applications; and en­
able an interrupt on completion of scope intensification.

10
Data

Communications

Distributed data processing can improve and organize the flow of
information throughout an organization. In a distributed processing
network, different computers in different locations work together,
exchanging information and sharing resources.

DIGIT AL has developed the DIGIT AL Network Architecture (DNA) to
provide a wide variety of products that increase a user's networking
flexibility. DNA allows a DIGITAL computer to be linked to another
DIGITAL computer; a DIGITAL computer to be linked to another
vendors' computer; and a DIGIT AL network to be linked to non­
DIGIT AL networks.

In addition, DNA permits these systems to be connected in whatever
configuration best suits the user's organization and networking needs.
People at terminals, workstations, or personal computers at any point
in a DIGIT AL network can log on and perform network functions with a
single set of commands, regardless of whether their computers are
linked by public packet-switched networks, by Ethernet cables, or by
DIGITAL Data Communications Message Protocol (DDCMP) multipoint
or point-to-point connections.

INTRODUCTION
DIGITAL's networking architecture offers a broad range of
compatible networking options. This varied set of hard­
ware and software products means that wherever proces­
sors, terminals, and other information processing
equipment are located-within a manufacturing plant or
spread around the world-they can be connected in ways
that allow both the exchange of information, files, pro­
grams, and control and the sharing of peripheral devices.
When combined in networks, small systems can access
the powerful capabilities of mainframes, and large sys­
tems can take advantage of small systems dedicated to
specialized applications.
DIGIT AL-to-DIGIT AL computer networks are established
through DECnet, a family of software products, protocols,
interfaces, and support services designed specifically to
link DIGIT AL computer systems. Such a network can con­
tain computers that run the same or different operating
systems. A DECnet network can include, within certain
constraints, DIGIT Al's Professional 350 personal comput­
ers; PDP-11s running any of the RSX-11 operating sys­
tems, the RSTS/E timesharing operating system, and/or
the RT-11 single-user realtime operating system; any of
the VAX systems running the VAX/VMS multifunction
virtual memory operating system; and DECsystem-10 and
DECSYSTEM-20 mainframe systems running TOPS-10
and TOPS-20. Each DIGIT AL computer and operating sys­
tem in a DECnet network can specialize in solving local
problems.

Using DECnet, various kinds of networks can be con­
structed to facilitate remote communications, resource
sharing, and distributed computation. DECnet is highly
modular and flexible. It is a set of services from which a
user selects those appropriate to build a network that will
satisfy the requirements of a particular application.

The connection of DIGITAL's systems to computers built
by other manufacturers to form a network is supported by
a family of products called lnternets. The Internet products
emulate communications protocols recognized and sup­
ported by IBM, UNIVAC, and Control Data Corporation.

The DECnet/SNA Gateway is a special purpose computer
system used to connect a DECnet network to an IBM SNA
network. Using the SNA Gateway, users on DIGITAL sys­
tems in a DECnet network can access or update their IBM
mainframe database, perform remote-job-entry tasks, and
initiate program-to-program communication, without sac­
rificing the flexibility and ease of use of their DECnet
network.

Packetnet products interconnect computer systems, net­
works, or terminals through public packet-switched net­
works. Public packet-switched networks provide an inex­
pensive means of moving low- to medium-volume data
traffic between different sites. Rather than paying for the
line, users pay only for the data actually sent. The common
carrier provides the communications line and ensures sys­
tem-to-system message delivery. The Packetnet products
implement the X.25 recommendation for Interfacing
equipment to the packet-switched network.

DIGIT AL also has incorporated Ethernet local area net­
work technology into the DIGITAL Network Architecture

10-1

(DNA) and DECnet. Developed jointly b~ DIGITAL, Intel,
and Xerox, Ethernet is a specification for the physical im­
plementation of local area communications. It allows high­
speed, reliable, high-bandwidth communication among a
large volume of information processing equipment in a
limited geographical area. DIGITAL's Ethernet program
will produce a complete set of products for local area net­
works over the next few years.

Before these networking options are discussed in more
detail, it is important to understand some basic networking
concepts.

NETWORK CONCEPTS
In a network, computers and other information processing
equipment communicate among themselves either re­
motely or locally. A network is a configuration of two or
more independent information processing devices, called.
nodes, that are linked together to facilitate remote com­
munication, to share resources, and/or to perform distrib­
uted processing.

A node is a point in a network through which a user can
gain access to the network or where network work may be
done. In network schematics, nodes are the endpoints of
the communications links that join the network. Communi­
cations links may be dedicated, leased, or dialed-up local
or remote lines or satellite or microwave beams.

Adjacent network nodes are linked together via carriers
known as physical links. Physical links can be relatively
permanent bonds, such as telephone lines or cable wires
laid from one node to another, or they can be temporary
connections that change with each use, such as dialed-up
telephone calls.

In a network, several tasks can use the same physical link
to exchange data. This means more than one data path
can be handled simultaneously by a physical link. The data
path is called a logical link.

A variety of computer networks can be implemented using
DECnet, Internet, Packetnet, and Ethernet products. Net­
works typically fall into one of three classes, described be­
low. The variety of networking products available on RSX-
11 provides a choice of ways to implement each type of
network.

Communications networks exist to move data from one,
often distant, physical location to another. The data can be
file-oriented (as is often the case for remote job entry sys­
tems) or record-oriented (as occurs with the concentration
of interactive terminal data). Interfaces to common carri­
ers, using both switched and leased-line facilities, are nor­
mally a part of such networks. These networks are often
characterized by the concentration of all user application
programs and databases on one or two large host systems
in the network. Figure 10-1 illustrates a communications
network.

Resource-sharing networks enable expensive computer
resources to be shared by several computer systems.
Shared resources not only include such peripherals as
mass storage devices, but also include logical entities,
such as a centralized database that is made available to
other systems in the network. These networks are often

Figure 10·1
Communications Network

characterized by the concentration of high-performance
peripherals, extensive databases, and large programs on
one or two host systems in the network; typically, the satel­
lite systems have less expensive peripherals and smaller
programs. Figure 10-2 illustrates a resource-sharing
network.

PDP-11 PDP-11

t----t VAX-111780 LARGE
DISK

PDP-11 PDP-11

Figure 10·2
Resource-Sharing Network

10-2

Distributed computing networks coordinate the activities
of several independent computing systems and the ex­
change of data among them. Networks of this nature can
have specific geometries (star, ring, or hierarchy), but of­
ten have no regular arrangement of links and nodes.
These networks are usually configured so that the re­
sources of a system are close to the users of those re­
sources. Distributed computing networks are usually char­
acterized by multiple computers with applications
programs and databases distributed throughout the net­
work. Figures 10-3 and 10-4 illustrate two such networks.

PLANT INTERFACE

Figure 10·3
Typlcal Manufacturing Network

.----------------
'
I '
I '

COMPUTATIONAL SERVICE BUREAU
OR IN HOUSE DATA CENTER
VAX-11/780

I ' : POP-11 ',
I ,)

I I

: ,..=PL_O_TT-ER~i
I
I GRAPHICS TFRMINALS
I I
L _____ _ _____ -- -------- - - - _ --1

ENGINEERING FIRM

Figure 10·4
Computational Network

DIGITAL NETWORK ARCHITECTURE
The DIGITAL Network Architecture (DNA) is the frame­
work for all of DIGITAL's communications products. It is a
model of structure and function upon which DECnet im­
plementations are based.

Consistent with DIGITAL's approach of implementing
layered products based on international standards,
DIGITAL designed the layers of its network architecture to
correspond to those of the International Standards Or­
ganization's Open System Model.

Each DNA layer is designed to fulfill specific functions
within the network. Collectively, these protocols govern the
format, control, and sequencing of message exchange for
all DNA implementations. DNA controls all data that travels
throughout a network and provides a modular network de­
sign.

DNA consists of eight layers.
• The User layer, the highest layer in the architecture, con­

tains most user-supplied functions. It also contains the
Network Control Program, a Network Management
module that gives system managers Interactive terminal
access to lower layers.

• Modules in the Network Management layer provide user
control of and access to operational parameters and
counters in lower layers. Network Management also per­
forms down line loading, upline dumping, remote system
control, and test functions . This layer Is the only one that
has direct access to each lower layer.

• The Network Application layer provides generic services
to the User layer. Services include remote file access,
remote file transfer, remote interactive terminal access,
gateway access to non-DNA systems, and resource
managing programs. This layer contains both user- and
DIGITAL-supplied modules. Modules execute simulta­
neously and independently in this layer. The Network
Application layer contains functions of both the Applica­
tion and Presentation layers of the ISO Reference Mo­
del.

• The Session Control layer defines the system-depen­
dent aspects of logical link communication . A logical link
is a virtual circuit (as opposed to a physical one) on
which inforn:iation flows in two directions. Session Con­
trol functions include name-to-address translation,
processing addressing, and, in some systems, process
activation and access control. The Session Control layer
corresponds to the Session layer of the ISO Reference
Model.

• The End Communication layer is responsible for the sys­
tem-independent aspects of creating and managing
logical links for network users. End Communication
modules perform data-flow control, end-to-end error
control , and the segmentation and reassembly of user
messages. The End Communication layer corresponds
to the Transport layer of the ISO Reference Model.

• Modules in the Routing layer route user data, called a
datagram and contained in a packet, to its destination.
Routing modules also provide congestion control and
packet lifetime control. The Routing layer corresponds
to the Network layer of the ISO Reference Model.

• Modules in the Data Link layer create a communication
path between adjacent nodes. Data Link modules en­
sure the integrity of data transferred across the path .
Data link modules for Ethernet local area networks, X.25
public packet-switched networks, and synchronous or
asynchronous lines execute simultaneously and inde­
pendently in this layer.

• Modules in the Physical Link layer manage the physical
transmission of data over a channel. The functions of
modules in this layer include monitoring channel sig­
nals, clocking on the channel, handling interrupts from
the hardware, and informing the Data Link layer when a
transmission is completed. Implementations of this layer
encompass parts of device drivers for each communica­
tion device as well as the communication hardware it­
self. The hardware includes devices, modems, and lines.
In this layer, industry standard electrical signal

10-3

specifications such as EIA RS-232C, CCITT V.24, the
Ethernet layer, or CCITT X.25 level 1 operate rather than
peer protocols.

DNA determines how DECnet software modules interact
vertically with one another. The interfaces between mod­
ules in separate layers of the same node are precisely de­
fined. Reflecting the structure of DNA, DECnet modules
are like building blocks. Within each node, a layer contains
only those modules required to support modules in higher
layers.

In addition to defining vertical interfaces, DNA also defines
the relationship between modules in separate nodes. A
module in one node commun icates only with a module in
the same layer that is serving the same function in another
node.

Communication between these modules is governed by
protocols. The protocols define the form and content of
messages to be exchanged by modules. Table 10-1 lists
and briefly describes the function of each DNA protocol.

Protocol

Table 10·1
DNA Protocols

Description

Network Management Layer

Network Used for triggering downline loading, upline
Information dumping, testing, reading parameters and
and Control counters, setting parameters, and zeroing
Exchange counters.
Protocol
(NICE)
Event Logger
Protocol

Maintenance
Operation
Protocol

Used for recording significant events in lower
layers. An event could result from a line
coming up, a counter reaching a threshold,
and a node becoming unreachable, for
example.

Performs data-link-level loopback tests, remote
control of unattended systems, and downline
loading and upline dumping of computer
systems without mass storage.

Network Application Layer

Data Access
Protocol
(OAP)

Network
Virtual
Terminal
Protocol
X.25 Gateway
Access
Protocol

SNAGateway
Access
Protocol

Loop back
Mirror
Protocol

Used for remote file access and transfer.

A family of protocols used for terminal access
through the network.

Allows a node that is not connected directly to
a public data network to access the facilities
of that network through an intermediary
gateway node.

Allows a node that is not connected directly to
an IBM SNA network to access the facilit ies of
the SNA network for terminal access and
remote job entry.
Used for Network Management logical-link
loopback tests.

Session Control Layer

Session
Control
Protocol

Used for such functions as sending and
receiving logical-link data and disconnecting
and aborting logical li'nks.

End Communication Layer

Network Handles all the system-independent aspects of
Services managing logical links.
Protocol
(NSP)

Routing Layer

Routing
Protocol

Data Link Layer

DIGITAL Data
Communica­
tions
Message
Protocol
(DDCMP)
X.25 Protocol

Ethernet
Protocol

Handles routing and congestion control,.

Ensures the integrity and correct sequencing
of messages between adjacent nodes.

Implements the X.25 packet level (level 3) and
X.25 frame level (level 2) of the CCITI X.25
recommendation for public data network
interfaces.
Implements the Ethernet data link protocol for
communication between adjacent nodes
connected by an Ethernet local area network.

DNA does not define protocols for all functional layers. For
example, User Layer programs communicate over the net­
work according to rules defined by the programmer .
Furthermore, more than one protocol can be defined for
the same layer because some layers support more than
one function . For instance, the Network Application layer
can include modules that use the Data Access Protocol
(DAP) as well as modules that use a protocol defined by
users for a specific application.

DECNET
DECnet is a family of communications software and hard­
ware products that enable DIGIT AL operating systems and
computers to function in a DECnet network. A DECnet net­
work is a group of DIGITAL computer systems with associ­
ated operating systems, DECnet software, and
communication hardware that are connected to each other
by physical channels, called lines.

Since 1974, DECnet has been growing as new functions
have been phased in on a regular, planned basis.

DECnet Phase I, which allowed similar DIGITAL computer
systems to work together, included task-to-task transac­
tions, point-to-point communications, downllne system
loading, and downline task loading.

DECnet Phase II extended Phase I functions to hetero­
geneous networks so DIGITAL's computers running differ­
ent operating systems could work together. DECnet Phase

10-4

II also provided the capabilities and security features
needed in many small networks: file transfer, remote re­
source sharing, and remote command submission.

DECnet Phase Ill provided alternatives for configuration
flexibility and communications cost saving. Adaptive rout­
ing and multipoint communications reduce the need for
direct links between every pair of communicating comput­
ers in a network. True network support tools-Network
Management-were also available with DECnet Phase Il l.
With Network Command Terminals, users at terminals
could access remote systems running the same operating
system as if they were local.

Phase IV, the most recent addition to DECnet's capabili­
ties, provides the ability to support up to 1,000 nodes and
extends the Network Command Terminal facility to Include
heterogeneous systems. In addition, DECnet Phase IV
products now support connections to remote DECnet
nodes over a public packet-switched network using the
X.25 protocol and over Ethernet lines.

RSX DECnet Communication Software
The following networking products are available to link
RSX-11 systems to other DIGITAL computers:
• DECnet-11 M, for RSX-11 M systems

• DECnet-11 M-PLUS, for RSX-11 M-PL US systems

• DECnet-11 S, for RSX-11 S systems

These RSX DECnet products offer Phase IV networking
capabilities. RSX DECnet Phase IV Is completely compati­
ble with Phase Ill , and RSX DECnet Phase IV products pro­
vide all Phase Ill capabilities.

RSX DECnet interfaces are standard with the RSX DECnet
products. To program task-to-task communication or re­
mote file access, programmers use identical calls whether
the tasks or data are on the same or on different systems.
The logical link between two programs is like an 1/0
channel over which programs can send and receive data.
Using DECnet for task-to-task communication is like doing
1/0 with an existing driver.

RSX DECnet Capabllltles
The network functions available to the RSX DECnet user
depend, in part, on the configuration of the rest of a DEC­
net network. DIGITAL offers DECnet products for all our
major PDP-11 operating systems, for VAX/VMS, and for
TOPS-1 O and TOPS-20. Each DECnet product offers its
own functions and its own set of features to the user. Net­
works that combine RSX DECnet nodes with other DECnet
products could limit the functions available to the RSX
DECnet user because some RSX DECnet features may not
be supported by all DECnet products. Conversely, the user
of another DECnet implementation will not necessarily
have access to all RSX DECnet functions. Users should re­
fer to DIGITAL's Software Product Descriptions for the
most current information on supported capabilities of all
DECnet implementations.

The goal of RSX DECnet is to provide a network capability
that is extremely easy to use and that eases the Incorpora­
tion of added processing power when user requirements
dictate. One example of making DECnet easier to use is
the use of node name aliases (that is, users can assign
shortened forms to node names), which reduces typing

time when specifying remote node names and access con­
trol information. Task-to-task communication and file ac­
cess between systems is virtually transparent; these Inter­
system facilities appear to be no different from the
intrasystem communication and file access utilities.

Below are descriptions of the user/program-level and
communication-level capabilities provided by RSX DEC­
net Phase IV.

User/Program Level -
Task-to-Task Communication Cooperating programs
can exchange data using RSX DECnet. An RSX-11 user
program written in MACR0-11, COBOL, FORTRAN-77,
FORTRAN IV, or BASIC-PLUS-2 can exchange messages
with other network user programs. These two user pro­
grams can be on the same node, on adjacent Phase
Ill/Phase IV nodes, or on any two nonadjacent Phase
Ill/Phase IV nodes. The messages sent and received by
the two user programs can be in any data format.

Access Control Access control is the method by which
network users are screened before gaining access to net­
work facilities. With the appropriate access-control infor­
mation, a user program can log into a remote system and
access any of the remote system's resources. The access­
ing program must have either an account or access to a
guest account on the remote system, to log in successfully.
The access-control information consists of a user
identification code or name, a password associated with
the user identification, and additional accounting informa­
tion that may be required by the remote system.

Remote File Access All DECnet systems support ex­
change of sequential ASCII and binary files. DECnet nodes
do not have to use compatible file syntaxes. The DECnet
software translates the file syntax of the sending node into
a common network syntax and then retranslates at the re­
ceiving end appropriately for that node.

The Remote File Access capability is Implemented by such
features as file transfer, remote command file
submission/execution, downline taskloading, and interter­
minal communication.

Both DECnet-11 M and DECnet-11 M-PLUS support file
transfers between locally supported File Control Services
(FCS) devices and the file system of other DECnet nodes.
Wildcards can be used for the user identification code,
filename, filetype, and version number for local-to-remote
file transfers. Directory listings are another supported
feature.

RSX DECnet also supports Record Management Services
(RMS). RMS support on RSX DECnet means a remote
DIGIT AL node with RMS can access sequential, relative,
and indexed files on the local RSX node. Indexed files al­
low the user to access multikeyed files by a variety of keys.

In addition, the RSX DECnet Network File Transfer pro­
gram supports block-mode transfers between RSX DEC­
net nodes. These transfers send files in 512-byte blocks
across the network, rather than sending them record by
record . Block mode increases the speed of the transfer,
and allows RMS relative and indexed files to be trans­
ferred between RSX DECnet nodes. With this program,
users can also rename files and change their protection
across the network.

10-5

Additional facilities available on DECnet-11 Mand DECnet-
11 M-PLUS allow system command files to be submitted to
a remote node. The list of commands must be in a format
acceptable to the node responsible for the execution . Sim­
ilarly, command files can be received from other systems
and then executed. On DECnet-11 M-PLUS systems, sup­
port for batch files can also be selected.

RSX DECnet also supports the remote File Transfer
Spooler, which allows a series of file transfers to be
queued for sequential transmission of files to and from re­
mote nodes.

With downline taskloading, programs to be executed on
DECnet-11 S nodes in the network can be stored on host
RSX-11 M, RSX-11 M-PLUS, or VAX/VMS systems and
loaded into the DECnet-11 S system in response to local­
program or operator requests . Programs already
executing on DECnet-11S nodes can be checkpointed to
the host file system and later restored to main memory· of
the DECnet-11 S node. Overlays for DECnet-11 S tasks can
also be stored on RSX-11M/M-PLUS and VAX/VMS file
system devices. These features simplify the operation of
RSX-11S systems in the network that do not have mass
storage devices.

For interterminal communication, users can send and re­
ceive messages to and from terminals at remote or local
nodes with the TLK utility. Because TLK does not access
files, no access control information is required. There are
two modes for TLK: single-message mode and dialogue
mode.

Network Command Terminals Terminal users can log
onto a remote DECnet node and execute commands as if
they were actually typing at a terminal on that node. Once
logged on, they can perform all normal commands on the
remote system. For example, they can use the editor EDT
over the network. RSX Phase Ill supported homogeneous
virtual terminal communications-the local user could log
onto remote systems running the same operating system.
RSX Phase IV supports heterogeneous virtual terminals
communications-the local user can log onto remote sys­
tems running different operating systems. This means that
everyone on a DECnet network can make use of all the
network's computer resources, not just those on the sys­
tem to which they're directly connected.

An operator can use all the standard system and network
utilities supported by the remote system. Interactive ac­
cess is independent of physical connection; accessing can
be across routing and/or multidrop networks.

Network Management Tools for monitoring and control­
Ii ng network operat ion are the substance of Network
Management. To make generating the network easier,
RSX DECnet supports Dry Run Mode and Restore Mode. A
dry run allows the operator to answer all network genera­
tion questions without actually generating a networl<. Re­
store Mode can then be used to generate a network con­
figuration based on the specifications entered during the
dry run. Restore Mode can also be used to recover from a
system crash during network generation or to repeat a
network generation to change the system generation.

For day-to-day operations, RSX DECnet includes facilities
for tuning parameters, logging events, and testing nodes,

lines, modems, and communications Interfaces. Network
Management features of particular interest are loopback
testing, downline system loading, and upline system
dumping.

With loopback testing, a network manager can send and
receive test messages over individual lines-either
between nodes or through other loopback arrange­
ments-and then compare messages. Utilities are in­
cluded for a logical series of tests that aid in isolating soft­
ware and hardware problems. During testing, for example,
a suspected problem line can be set to service state, and
messages can be routed along other paths. With the free
line, the network manager can then perform test
procedures, isolate the problem, and fix the line without
affecting, and being transparent to, users on the network.

Downline system loading enables initial memory images
for DECnet-11 S nodes in the network to be stored on host
RSX-11 M, RSX-11 M-PLUS, or VAX/VMS file system de­
vices and loaded into adjacent nodes across point-to­
point links. The initial memory image can begenerated on
the host first. Should the need arise, the host system can
also analyze crash data dumped upline from the DECnet-
11 Snode.

RSX DECnet also supports network management features
for both Ethernet and X.25 functions. In addition, RSX
DECnet interprets the full set of network management
commands to control activities on remote non-RSX nodes,
even if a given command is not supported in RSX DEC net.

Communications Level -
Point-to-Point A point-to-point node communicates only
with adjacent nodes to which it is directly connected .

0---0
OR

Figure 10-5
Point-to-Point (physlcal)

OR

Multipoint A network party line shares time on one line
with several nodes. This type of multipoint topology can
reduce line costs. Multipoint configurations include a con­
trol station and tributaries. The control station controls
network traffic by polling; it queries the tributary computer
stations to determine if they have messages to send.

Figure 10-6
Multlpolnt (physical)

10-6

Routing Routing is a method for sending messages from
source to destination through intermediate nodes. RSX
DECnet provides adaptive path routing: messages are
routed through the network over the least-cost path, as de­
fined by the user. If either a line or a node in this preferred
path fails, the network automatically routes over the next­
least-cost path.

When a network Is brought up or Is subsequently under
user control , line costs are assigned for each line leaving a
node in the network. Therefore, networks can be tailored
to make each node's interactions with other nodes effi­
cient. The same line can have two different path costs de­
pending on the direction in which the message Is traveling .

Transparently to the user, this feature enables network
managers to reroute traffic easily, to avoid a troublesome
line, and to run diagnostics on such a line. Adaptive rout­
ing also makes it possible to install backup links, which re­
sults in fewer connections than with traditional point-to­
point networks.

RSX DLX-11

Figure 10-7
Routing

Although not a DECnet product per se, RSX DLX-11 , avail ­
able on RSX-11 S and RSX-11 M systems, provides a low­
overhead communications software line interface to a
DECnet-11 M or RSX-11 M-PLUS Phase Ill/Phase IV node
in a network. RSX DLX-11 is especially suited for users of
small systems who want access to the network. Because of
its small size, RSX DLX-11 extends the memory available
to network users of DIGITAL microcomputer systems.

Representative applications include exchange of short in­
quiry/response messages, transfer of summary data, and
transmission of status information to a central host sys­
tem.

RSX DLX-11 supports a single physical line in a point-to­
point or multipoint connection. A user-written MACR0-11
program at each end of the line controls the communica­
tions line directly. RSX DLX-11 provides the following user
task functions.
• open the line (assign the line to a task)
• initialize the line (start the DDCMP protocol)
• close a line (deassign the line from a task)
• receive a message on the line
• transmit a message on the line
• hang up the line

Like DECnet, RSX DLX-11 is an implementation of the
DIGITAL Network Architecture. It maintains the integrity
and the sequence of data sent over the channel, using the
DECnet DIGITAL Data Communication Message Protocol.

Unlike DECnet, it does not direct the data to the appropri­
ate task at the receiving end. The user is responsible for all
task and data synchronization, task invocation, logical link
management, flow control , and session control. If these
capabilities are required, DECnet should be considered.

INTERNET$
A family of products called lnternets supports the connec­
tion of DIGIT Al's computers to systems built by IBM, UNI­
VAC, and Control Data Corporation. lnternets give data
processing managers the freedom to choose mainframes
and minicomputers on the basis of application needs, with
the assurance that reliable links can be established
between systems.

Internet products emulate common communications pro­
tocols. They are data transfer facilitators rather than hard­
ware emulators. While they appear to other vendor's com­
puters to be supported devices, they are, in fact, parts of
powerful DIGITAL systems. They provide transparent
communication with the equipment of other vendors and,
at the same time, offer the flexibility of local file systems,
many different languages, and a wide selection of com put­
ing power.

The Binary Synchronous Communications (BSC) protocol
emulators can coreside with DECnet on a DIGITAL system.
A user application program that communicates with an
IBM system through one of DIGIT Al's protocol emulators
can also communicate across a DECnet network. Distri­
buting network applications to local DIGITAL systems can
result in increased local productivity.

The following lists the Internet products that are available
on RSX-11 systems.

IBM Protocol Emulators
batch to system: RSX-11 2780/3780 Emulator

RSX-11 M RJE/HASP
RSX-11M-PLUS RJE/HASP

interactive to system: RSX-11 /3271 Protocol Emulator
interactive to network: RSX-11 M/SNA Protocol

Emulator

CDC Protocol Emulator
multiterminal batch/interactive to system: MUX200/RSX

UNIVAC Protocol Emulator
batch to system: UN1004/RSX

RSX-11 2780/3780 Emulator
The RSX-11 2780/3780 emulator emulates the features of
an IBM 2780 or 3780 data transmission system. It accepts
data transmitted from card readers and provides the flexi­
bility of data transmission to and from one of DIGIT Al's
file-structured systems. The RSX-11 2780/3780 can print
received character data on a lineprinter or can write it as
files on such mass storage devices as disk. By spooling
output to disk rather than transmitting at slower lineprinter
speeds, connect time on the communications line can be
reduced and, hence, costs can be reduced as well.

10-7

The physical unit transmitted is a block that, in turn, is
divided into logical units called records. Users can trans­
mit data in character or binary (transparent) mode.

If the user selects character format, the RSX-11 2780/3780
Emulator converts the ASCII characters to their EBCDIC
equivalents before transmission. For printing, the emula­
tor can receive a subset of EBCDIC that has an ASCII equi­
valent and automatically convert the EBCDIC to ASCII. The
user can choose to have the EBCDIC data written to a file
in binary format for later processing-for example, for re­
freshing a database.

RJE/HASP Protocol Emulators
The RSX-11M and RSX-11M-PLUS RJE/HASP protocol
emulators are software packages for performing the stan­
dard functions of the IBM HASP Remote Job Entry Work­
station. Supersets of the 2780/3780 emulators, the
RJE/HASP protocols compare to the 2780/3780 protocols
as follows:

RJE/HASP 2780/3780

console support full support none

character all characters none
compression

number of 1/0 streams 7 (input and
output)

The RJE/HASP protocol emulators support video termi­
nal, cardreader, cardpunch, and lineprinter. Through the
DIGITAL RJE/HASP protocol emulator, operators can
communicate directly with the IBM mainframe from a local
terminal. This remote console support capability can be
used to control and check the status of a job on the IBM
host.

The RJE/HASP protocol emulator supports multiple 1/0
streams. Several devices and/or file transfers can be ac­
tive at the same time. With this capability, called multileav­
ing, a short job can be interleaved while a longer job is
running.

RJE/HASP controls file-structured devices through use of
the standard file control system. Non-file-structured de­
vices (for example, cardreader, lineprinter, or terminal)
are attached during use, and input/output requests are is­
sued.

RSX-11/3271 Protocol Emulator
The RSX-11/3271 protocol emulator provides facilities for
both program-to-program interactive communication and
data pass-through 3270 terminal emulation . With it, termi­
nal users and application programs can exchange data
with a program running under IMS or CICS on an IBM 370
or 303X host. Users can benefit from distributing their ap­
plications to RSX-11 M and RSX-11 M-PLUS systems and
still have online interactive access to IBM database facili­
ties for information entry, retrieval , and updating. The
RSX-11 system appears to the host as an IBM 3277 Model
2 terminal and 3271 Model 2 control unit connected to a
multi drop synchronous line.

The terminal-emulation facility transforms VT100 termi­
nals attached to a PDP-11 into virtual 3270 terminals so
that a single terminal can be used to access both DIGITAL
and IBM systems. The RSX-11 3271 Protocol Emulator al­
lows the system manager to predefine all parameters re­
quired to connect to specificed IBM applications. Once the
user invokes the emulator, the terminal appears to be con­
nected to an IBM network. Just one keystroke returns the
terminal to normal VT100 operation.

Most users adapt quickly to the minor differences between
the VT100 terminal used as an emulator and an actual IBM
3270. Existing application programs will operate, in most
cases, without modification .

The application-program interface to the protocol
emulator provides program-to-program communications
for such purposes as online database access. Programs
on the IBM host use the standard interactive data com­
munications mechanisms normally used to support 3270
terminals . On the PDP-11 end, the protocol emulator
maintains the multipoint BSC protocol with the IBM host. It
ensures data integrity and performs such protocol func­
tions as processing polling requests and address selection
sequences . The application program issues standard
RSX-11 1/0 calls to maintain data flow and is responsible
for interpreting and generating meaningful data.

The RSX-11 /3271 Protocol Emulator has facilities for
specifying such parameters as number of units, buffer lev­
els, and line-on and line-off. Maintenance and test features
include data loopback testing, error and event logging,
and a validation exercise.

RSX-11 M/SNA Protocol Emulator
The RSX-11 M/SNA protocol emulator provides the SNA
protocol emulation required for RSX-11 systems to partici­
pate in an IBM SNA (Systems Network Architecture) envi­
ronment. Users who require access to SNA systems can
also take advantage of the flexibility, functionality, and
data processing power of an RSX-11 M general purpose
computing system.
The RSX-11 M/SNA protocol emulator:

• allows interactive access between a program in an IBM
host and a program in an RSX-11 system

10-8

• appears to be a programmable cluster controller (a sup­
ported device) to SNA

• supports up to four lines at speeds up to 9,600 bits per
second per line and up to 32 user sessions distributed
across the four lines

• can coexist on a multipoint line with IBM SNA devices

• provides the flexibility of three levels of user interfaces

MUX200/RSX Multltermlnal Emulator
MUX200/RSX provides communication between an RSX-
11 M system and a CDC 6000, CYBER series, or other host
computer systems capable of using the 200 UT Mode 4A
communications protocol. The product can be used to
communicate to the host computer either interactively or
in remote job entry (RJE) mode.

Up to 16 terminals can be connected to the host through
MUX200/RSX. They can be a combination of CDC 200 UT
terminals and RSX-11 terminals. Note that, in some cases,
the host software restricts this number.

MUX200/RSX provides the following features.
• Output received from the host CDC system can be

spooled to a lineprinter upon detection of a text string
predefined by the user.

• Up to eight RSX-11 datasets can be specified fo r
transmission to the host in a single command .

• RSX-11 terminals can be detached and used for other
purposes while the software package is operating. Data
received from the host that is directed to the terminal is
saved to be printed out when the terminal is reattached.

• User-written tasks can replace the RSX-11 terminal and
control the emulator as if the task were a terminal.

UN1004/RSX Termlnal Emulator
UN1004/RSX provides communication between an RSX-
11 M system and a UNIVAC 1100 series or other host com­
puter system capable of using the UNIVAC 1004 RMS-1
communications protocol.

UNIVAC designed the UN1004 protocol to provide com ­
munication between a host UNIVAC 1100 series main­
frame and a remote batch terminal consisting of a key­
board , a cardreader/punch, and a lineprinter. The input
for the UN1004/RSX can be from any RSX-11 M-supported
peripheral that can store a UNIVAC batch stream .

UN1004/RSX communicates with the host by using the
RMS-1 communications protocol supporting ASCII line
codes. The terminal emulator provides for one synchro­
nous communication circuit to a host computer system .
The line can be a single switched or dedicated leased-line
carrier facility at speeds up to 4,800 bits per second.

The product provides the capability to send data in 80-
column-card format and to receive data in line format or
card format. Data transfers are controlled by console com­
mands entered at the emulator terminal. The emulator
permits the terminal operator to direct received data to
any RSX-11 M-supported device. This product can be
compared functionally to the 2780/3780 protocol emula­
tor.

DECNET/SNA GATEWAY
The DECnet/SNA Gateway, a small packaged PDP-11 sys­
tem, links DIGITAL and IBM network environments, rather
than merely providing single-function communications
emulation between two computers. In effect, the DEC­
net/SNA Gateway extends a DECnet network to include
IBM systems connected by an SNA network, allowing
users to take advantage of the complementary strengths
of both environments. It does so by combining three es­
sential translator functions (remote job entry, 3270 termi­
nal emulation, and applications program interface) into a
small packaged PDP-11 front-end processor that's at­
tached as a DECnet node.

Through the Gateway, users can access an IBM
mainframe database to perform remote job entry tasks
and to initiate program-to-program communication, with­
out sacrificing the flexibility and ease of use of their
DIGITAL network. The Gateway frees users to expand ei­
ther the SNA or the DNA side of their total distributed
processing operation without jeopardizing their present
hardware and software investment.

Like DECnet itself, the Gateway is transparent to end
users. They can perform many tasks from DIGITAL work­
stations and VT100 terminals as if these devices were in­
tegral parts of the SNA network.

The DECnet/SNA Gateway comprises the PDP-11 system
with floppy disks and a terminal; DECnet software; an SNA
communications kernel; and four server software mod­
ules, one for each of the supported DECnet/SNA
functions: remote job entry, 3270 terminal emulation, user
application interface, and network management.

Remote Job Entry
The Remote Job Entry facility effectively turns a DECnet
node into a remote SNA workstation or group of worksta­
tions that can transmit batch jobs to an IBM host and re­
ceive job output. Users on DECnet nodes can prepare
batch jobs in files, submit the jobs through the Gateway,
and obtain the job's output.

3270 Terminal Emulation
The 3270 terminal emulation server and access routine al­
low a VT100 user in a DECnet network to Interact with ap­
plication programs executing under IMS or CICS that have
been designed to interact with 3270 terminals.

The 3270 terminal is a block-mode terminal. A formatted
screen, much like a form, Is transmitted to the terminal. Af­
ter the user fills in any data required by the "form," the
whole block of data or modified fields is sent to the host
computer as a single unit. This mechanism is emulated by
buffering the "form" in memory and displaying It on a
VT100. When the screen is complete, it is sent from the
memory buffer to the IBM system via the DECnet/SNA
Gateway.

User Appllcatlon Interface
The User Application Interface enables a user-written ap­
plication on a DECnet node to exchange messages with a
cooperating application in an IBM host. It supports the IMS
and CICS DataBase/Data Communication systems.

10-9

The User Application Interface appears to an application
running on a DECnet system as a set of subroutines that
the application calls to request the following operations:
• establish an SNA session with an application running in

the IBM host

• listen for a session-initiation request from the IBM appli­
cation

• accept an SNA BIND request from the IBM application
• transmit messages to the IBM system on the SNA nor­

mal or expedited flow

• receive messages from the IBM system on the normal
flow

• reject a BIND request from the IBM application

• abort an active session

Network Management
Network management for the Gateway includes normal
DECnet network management activities, installation of the
Gateway and its access routines, and control, monitoring,
and troubleshooting of the Gateway. All network manage­
ment functions are performed from a node connected to
the Gateway, rather than from the Gateway itself.

PACKETNETSYSTEMINTERFACES
The DIGIT AL Network Architecture incorporates the X.25
communications protocol to help users reduce the cost of
communications over geographically remote systems and
networks. X.25 is the international standard upon which
various public packet-switched networks (PPSNs) are now
based. In the United States, these are privately owned net­
works-Tymnet and GTE's Telenet, for example. In other
countries, they are nationally owned networks.

DIGIT AL has already developed and implemented Packet­
net System Interfaces (PSls) for use in the United States,
France (Transpac), the United Kingdom (PSS), and Ger­
many (Datex-p) . We are committed to support other
PPSNs as they become available to the user community.

Interfacing to packet-switched networks offers customers
vendor Independence. Any equipment that complies with
the X.25 recommendation can be used to communicate via
the packet-switched network. The packet-switched net­
work handles all line-speed differences. In addition, the re­
sponsibility for maintaining transparent, complex configu­
rations belongs to the public utility.

The packet-switched networks were designed to benefit
the medium-volume user. Tariffs are largely distance-in­
dependent.

DIGIT Al's Packetnet program provides customers yet
another choice for distributing their computing in creative,
cost-saving ways.

RSX-11 PSls
RSX-11 PSl/M and RSX-11 PSl/M-PLUS allow suitably
configured RSX-11 M and RSX-11 M-PLUS systems to con­
nect to PPSNs conforming to the CCITT recommendation
X.25 (June 1980). Access to the RSX-11 PSls is supported
for RSX-11 programs written in MACR0-11, FORTRAN-77,
and FORTRAN IV. The RSX-11 PSls support task-to-task
and remote terminal communications via the network.

The RSX-11 PSls can coexist with or operate as a layered
product under DECnet to allow use of DECnet facilities
over X.25 as well as over private leased lines or switched
telephone networks.

Task-to-Task Communications - For intertask commun­
ication, application programs use RSX-11 executive calls
to set up and break connections with the network, to send
and receive data, and to issue control and synchronization
requests.

Remote Terminal Communications - To remote termi­
nal users, RSX-11 M/M-PLUS appears similar to what It
would if they were using it locally. And applications pro­
grams need not be aware that access to the terminal is via
the RSX-11 PSI software, although there may be some re­
strictions imposed by the network itself.

Virtual Circuits - The RSX-11 PSls offer communications
over both Permanent and Switched Virtual Circuits (PVCs
and SVCs). Subject to memory availability, the maximum
total number of virtual circuits supported is 255. The maxi­
mum number of remote terminals supported is 40. Note,
however, that each active remote terminal uses a virtual
circuit. Up to two physical connections can be made to the
PPSN.

Line Dlsclpllne - The communications discipline used is
the CCITT recommendation X.25. Specifically, the RSX-11
PSls support V.24 (EIA-RS232) at the hardware level; the
symmetric LAPB variant of the X.25 frame-level protocol;
and the X.25 packet-level protocol over point-to-point,
four-wire, synchronous, full-duplex lines.

User Program Interface - The user program interface
provided with the RSX-11 PSI software allows application
programs to use the X.25 functions, including setting up
and breaking connections, transmitting and receiving
data, sending and receiving interrupt messages, and
resetting virtual circuits. This interface provides, in addi­
tion to CCITT X.25 level 3 functions, translation of symbolic
DTE addresses, transfer of calls between tasks, and split­
ting and recombination of messages that are longer than
the packet size selected for the circuit. National extensions
that are not part of the international recommendations are
not provided; this interface does not include, for example,
file transfer, file access, or task addressing.

When using this interface, an application program can
communicate with any other system-DIGITAL or non­
DIGIT AL-connected to the network. This interface con­
forms to the DIGITAL Network Architecture specification
for X.25 access.

Interactive Terminal Interface - The RSX-11 PSls sup­
port access to remote terminals according to the CCITT
recommendations X.3, X.28, and X.29 (1978 and 1980).
Terminals are supported in "Remote X.29 Terminal"
mode, in which code conversions between ASCII and the
actual code used by the terminal are performed by the net­
work. Note that terminals are connected via a Packet As­
sembly Disassembly (PAD) facility provided by the net­
work. The PSls offer no facility whereby a terminal
connected to an RSX-11 M/M-PLUS system can act as a
network terminal to other systems connected to the net­
work.

10-10

The interface presented to an application program, using a
remote X.29 terminal, is compatible with that to a local ter­
minal, except for those facilities where adequate support
is not provided by the network. For example, the support
provided by the PAD for data forwarding upon input of an
escape sequence is not compatible with that required by
DIGITAL's standard software. This means that DIGITAL's
Forms Management System (FMS) and some of the
screen editors may not function. Additional facilities are
provided to allow a program to manipulate the terminal
parameters maintained by PAD.

Network Management - A Network Control Program
and Configuration File Editor are provided for the control
of the operation of the X.25 software. This includes loading
and unloading the software, defining the lines, specifica­
tion of addressing information for incoming calls, and ac­
cess to error counters and other maintenance functions.
This interface provides a subset of the DIGITAL Network
Architecture specification for network management.

ETHERNET
Ethernet is a specification for the physical implementation
of local area communications. It was developed jointly by
DIGITAL, Intel, and Xerox and published in September,
1980. Since then, hundreds of companies have requested
license applications, and many have announced their in­
tentions to market Ethernet products.

Ethernet provides a common communications path by
which systems and associated terminals attached by a sin­
gle connection can communicate with all other attached
nodes at speeds comparable to those on the bus that links
devices within a single system. It provides ten-Mbits-per­
second communications and a common bus topology,
with ail nodes communicating as peers. Because there is
no centralized control or switching, the reliability of a net­
work is significantly enhanced. Nodes can be added or re­
moved from a network while It remains in operation .

Ethernet uses baseband technology with coaxial cable and
a standard link-level protocol (CSMA/CD-Carrier Sense
Multiple Access with Collision Detection). The cable and
protocol correspond closely to the first two levels of the In­
ternational Standards Organization (ISO) Open Systems
Architecture.

Ethernet technology allows cable segments up to 1,650
feet (500 meters) long. By using repeaters, multiple seg­
ments can be connected. Local area networks of up to
1,000 nodes can be constructed, provided no two nodes
are separated by more than two repeaters. A node can be
up to 165 feet (50 meters) away from the cable. These par­
ameters allow a building or a complex of buildings to be
wired; users can simply tap into the cable wherever they
want to place computing power. The main advantage of
Ethernet is that a minimum of preplanning is necessary-a
network can grow with no loss in efficiency, no need to re­
configure.

DIGIT Al's Ethernet product provides for the integration of
Ethernet into the overall distributed data processing and

networking capabilities we already offer. The Ethernet
link-level protocol has been incorporated Into the DIGIT AL
Network Architecture.

The full spectrum of high-level DECnet functions is avail­
able to users accessing nodes on an Ethernet. This In­
cludes virtual terminals, user-to-user and task-to-task
communications, and remote file and record access. DEC­
net's extensive network management and network mainte­
nance facilities are also available.

Ethernet support will be offered on DECnet Phase IV host
VAX/VMS systems, Professional 350 personal computers,
and DECSYSTEM-20s, as well as on RSX-11-based PDP-
11 systems.

The first products to be offered as part of the Ethernet pro­
gram include the physical cables, a transceiver, and a
communication controller for attaching VAX systems or
RSX-11-based UNIBUS PDP-11 systems. In the future,
we'll extend Ethernet's capabilities with many more prod­
ucts-products that will cover a broad range from the
physical channel hardware to sophisticated communica­
tion servers for connecting Ethernets to other DECnet net­
works and to foreign networks.

Ethernet physical channel hardware includes the cable it­
self, transceivers, repeaters, terminal servers, and routers.

Ethernet communication controllers connect the
transceiver cable to the network-node system bus.
DIGIT AL will build controllers including those for the UNI­
BUS, the LSl-11 bus, and the Professional 300 series of
personal computers.

Transceivers provide the physical and electrical connec­
tion to the Ethernet coaxial cable. They transmit signals
onto the coaxial cable, receive signals from the cable, and
detect any message collisions that occur. Transceivers
also contain a connector to attach the transceiver cable to
the Ethernet node.

Terminal servers connect clusters of terminals and unit-re­
cord equipment-lineprinters, for example-to an Ether­
net network.

Routers connect DECnet systems with remote DECnet sys­
tems, with another Ethernet, or with other DECnet
networks. Routers are useful for linking Ethernets to
DIGITAL systems that do not directly support Ethernet
connections.

NETWORK SUPPORT
No two networks are quite the same. There's no such thing
as a standard network package. The configuration flexibil­
ity inherent in DIGIT Al's network products makes network
support especially important.

DIGITAL places particular importance on careful preplan­
ning of networks. To this end, two special programs have
been implemented in support of DIGITAL's networking
products-the Network Profile and the Customer Support
Plan.

10-11

The Network Profile is the network configuration docu­
ment. It spells out the problems to be solved and it pro­
vides the necessary technical information about the pro­
posed network-its applications, implementation, and
future growth. Technical details include:
• number and location of nodes
• number and location of terminals
• types of transactions to be processed
• volume of data to be transferred between nodes
• data urgency and importance

• acceptable error rate
• line and system reliability
• network security
• costs
• network management

The Customer Support Plan summarizes DIGIT Al's re­
commended services to meet the customer's various
goals. The Customer Support Plan covers installation,
startup, application development, training, network
maintenance, and troubleshooting. It can include such
things as suggested Software Maintenance Services, Edu­
cational Services courses, and Software Professional Ser­
vices. (These services are described in Section 11.) It iden­
tifies the customer's needs, the purpose and benefits of
the support services, and the details of the recommended
services. The Customer Support Plan is customized for
each customer and reflects the uniqueness of each
network.

11
Support
Services

DIGITAL offers comprehensive customer services to complete our
commitment to meeting users' needs. Our customer service
organizations include:
• Software Services, whose specialists are experienced in analyzing

and designing systems, in modifying DIGIT Al's software to meet
special needs, and in developing customer application software

• Educational Services, whose instructors and self-paced courses
train users of DIGITAL's computers, at training centers and
customer sites around the world

• Field Service, whose representatives provide hardware maintenance
services worldwide, both onsite at customer installations and offsite
at service centers

• Computer Special Systems, whose analysts, engineers,
programmers, and manufacturing specialists provide hardware and
software to customers whose needs are not met by DIGIT Al's
standard offerings

• Accessories and Supplies Group, which maintains Accessories and
Supplies Centers in major metropolitan areas and who provide
direct factory ordering through the Direct Sales Catalog

• Computer Supplies, which offers a complete line of supplies
designed specifically for use with DIGITAL's systems

• Customer Financing, whose representatives provide financial
counseling to help customers decide what type of financial
arrangement best meets their needs

• DECUS, the Digital Equipment Corporations Users' Society, one of
the largest and most active user groups in the computer industry

Customers work with DIGIT Al's sales representatives to determine
how DIGIT Al's people, products, and services can best be used to
meet the customer's computing requirements.

INTRODUCTION
DIGITAL offers comprehensive services to help customers
before, during, and after system installation. DIGITAL's
sales representatives are the primary contact for all prod­
ucts and services.

DIGIT AL provides customers with support right from the
beginning of the sales cycle. Our sales representatives
work closely with customers, studying each application
and determining specific computing needs. Trained soft­
ware and hardware specialists, well-versed in designing
systems using DIGITAL's standard and special products,
are available to supplement the sales representative's
product knowledge.

Once the exact system requirements have been deter­
mined, the sales representative helps the customer select
a system configuration. Together they review such site re­
quirements as floor space, electrical capacity, air condi­
tioning, and humidity control. Customers can choose
among various Field Service and Software Service mainte­
nance plans to suit individual needs and budgets.

For complex applications, the customer and a representa­
tive of DIGIT Al's Software Services organization can pre­
pare a Customer Support Plan. The CSP may consist of
Software Product Services. Educational Services courses,
hardware maintenance requirements, and software con­
sulting services. A CSP identifies the customers' needs. It
spells out the purposes, benefits, and details of the ser­
vices recommended, specifying costs and how the ser­
vices will be delivered.

Even before the system arrives, customers can train their
personnel through DIGITAL's comprehensive educational
programs. When a system is purchased, customers also
gain training credits that can be applied to the cost of
DIGIT Al's courses.

When a system is delivered, members of DIGIT Al's hard­
ware Field Service and Software Services organizations
are on hand to ensure smooth installation. Specialists in­
stall hardware and software and run tests to determine
that the system has been installed correctly and performs
properly.

Following installation, DIGIT Al's support organizations
are available to help with special needs that may arise both
during and after the warranty period.

Purchase of a DIGITAL computer automatically qualifies a
customer for membership in the Digital Equipment Com­
puter Users Society (DECUS). It is an independent, inter­
national organization run entirely by user members.

INSTALLATION
At system delivery, a Field Service account representative
schedules installation of the hardware components. Dur­
ing installation, Field Service engineers supervise
uncrating and placement of equipment, connecting the
cables, and applying power to the components. They test
the hardware by running a system exerciser-a complete
diagnostic package. Once hardware reliability Is con­
firmed, the Field Service engineers coordinate with Soft­
ware Services to install and test the operating system.

11-1

They use the User Environmental Test Package (UETP) to
exercise the system software components. This package
runs compilations and assemblies and serves as both a fi­
nal test of the system and as a demonstration of system
operation.

Finally, Field Service completes DIGITAL forms certifying
successful installation. The customer acknowledges sys­
tem acceptance by signing the Field Service Labor Ac­
counting and Reporting System form.

SOFTWARE SERVICES
The specialists in DIGITAL's Software Services organiza­
tion are committed to providing top-quality support for
RSX-11 software. They are specially trained in RSX-11
software to provide the expert knowledge and experience
necessary to analyze customer's needs and to identify
those DIGITAL services that will help meet those needs.
Local software specialists are backed up by regional and
corporate support personnel as well. This means that
DIGIT Al's total software resources and expertise are
available to support RSX-11 and its various dependent
products.

Software Warranty
As DIGIT AL-supported software products, the RSX-11 op­
erating systems are engineered according to corporate
quality standards. They operate in accordance with their
Software Product Descriptions (SPDs), and carry
DIGIT Al's commitment to provide product support ser­
vices. The RSX-11 operating systems are DIGITAL-in­
stalled products; they must be installed by a qualified
DIGIT AL representative to qualify for software support.

DIG IT AL-supported software products have a 90-day
warranty period following installation. If, during the 90
days of warranty, a problem with the software is encoun­
tered that DIGITAL determines to be caused by a defect in
the current unaltered release of the product, the following
remedial services are provided.

• If the software is inoperable, DIGITAL will apply a tem­
porary correction or make a reasonable attempt to de­
velop an emergency bypass.

• DIGITAL will help the customer prepare a Software
Performance Report (SPA). Via an SPA, users can re­
port problems with, or suggest enhancements to,
DIGIT Al's software and documentation.

After the initial purchase of a DIGIT AL-supported product
license, the customer can purchase additional copies of
the software. The additional licenses can include support
services or can be purchased as "License-to-Copy Only,"
in which case neither media nor support services are in­
cluded.

The RSX-11 operating systems include standard services
as defined in the RSX-11 SPDs.

Software Product Services
After the 90-day warranty period, three levels of Software
Product Services are available to provide continued soft­
ware support to complement DIGITAL's hardware ser­
vices. These Software Product Services offer the most
comprehensive post-warranty support in the industry.

The three contractual services are:
• Self-Maintenance Service for Software. This service in­

cludes software product and documentation updates
and a newsletter that provides up-to-date information on
the software product. Optionally available under this
service are machine-readable Program Change Orders.

• Basic Service. This service builds on Self-Maintenance
Service for Software by providing telephone support
and machine-readable Program Change Orders. A cus­
tomer can talk directly with a DIGIT AL software special­
ist for help with a software problem. Onsite support can
be contracted on a per-call basis. The Autopatch soft­
ware tool is a Basic Service option. Autopatch
automatically installs patches to RSX-11 modules, up­
grading the operating system software to the latest level.
(See Section 5 for a description of Autopatch.)

• DECsupport. The most comprehensive service offered,
DECsupport provides all those services included in the
Basic Service plus scheduled services to install Program
Change Orders and Software Product Updates.

For customers who install their own software, Software
Product Updates include the Software Updates them­
selves-distributed on the customer's choice of available
media-along with the most recent documentation. Sup­
port services are provided upon request.

Professional Services
Whenever expert software assistance is needed,
DIGIT Al's software consultants are available. These soft­
ware specialists are experienced designers and writers of
custom software who can tailor DIGIT AL software to meet
specific needs. Their expertise can be applied to every
phase of an application-from analysis through im­
plementation.

Software specialist services are available on a resident or
per-call basis.
• Resident service is for those customers who need full­

time onsite support. Resident consultants are particu­
larly useful in new, complex installations or in critical,
long-term projects. They are available for a minimum of
six months; however, arrangements can be made to ex­
tend the length of service to suit individual needs.

• Per-call service is for customers with irregular or infre­
quent consulting needs. Per-call (hourly) services are
ordered as needed and generally extend from a few
days to a few weeks.

For detailed information on DIGITAL's software services,
contact a local DIGIT AL office.

EDUCATIONAL SERVICES
To train users before, during, and after system installation,
DIGIT AL provides comprehensive educational programs.
Qualified instructors conduct lecture/lab courses in sys­
tem management, operations, hardware, and software at
DIGIT Al's training centers around the world.

Special onsite training sessions and custom courses can
also be arranged. Another alternative is self-paced in­
struction course packages, which allow students to learn

11-2

individually, at their own pace, wherever and whenever it's
convenient. Self-paced instruction packages are available
as printed manuals, audiovisual cassettes, and computer­
based instruction.

Courses fall into three general categories.
• Computing courses, while not geared to a specific

DIGIT AL system or product, offer a technical foundation
for personnel who have little or no previous computer
experience.

• Software systems courses are designed to train users,
programmers, and operators in the efficient and knowl­
edgeable use of DIGIT Al's operating systems , lan­
guages, and uti lities. Courses are available for both be­
ginning and advanced users. For the most part, these
courses are based on the assumption that the student
has general computer and programming knowledge.

• Hardware courses are for customers who intend to ser­
vice their own equipment or who simply want a general
understanding of the components in their system .
Courses are available in general hardware familiariza­
tion, hardware troubleshooting, and hardware mainte­
nance.

DIGIT Al's Educational Services organization offers a com­
prehensive series of courses that provide specific RSX-11
training to all levels of users. These range from
introductory courses describing the PDP-11 hardware and
RSX-11 operating systems concepts to advanced courses
designed for high-level systems programmers. The follow­
ing are brief descriptions of the courses offered.
Introduction to Minicomputers discusses computer sys­
tem concepts, peripherals, and memory principles. It is
available both as a lecture/lab course and as a self-paced
audiovisual course.
Commercial Programming Concepts, a lecture/lab
course, introduces commercial computer concepts and
data processing principles. This course includes basic
commercial programming techniques, the fundamentals
of programming in BASIC, and table and array handling .

RSX-11 M Operator, available as a lecture/lab course and
as a self-paced instruction course , covers startup,
shutdown, recovery, backup, and restoration procedures
through supervised hands-on training in normal and sys­
tem-crash environments.

PDP-11 Concepts introduces, in a lecture/lab course, the
PDP-11 hardware and software features that are neces­
sary to prepare the high-level language programmer for
further training on the PDP-11 operating systems.

RSX- 11MIM-PLUS Utilities and Commands teaches
users, either in a lecture/lab course or through self-paced
instruction, the skills necessary to interface effectively with
an RSX-11 system.

RSX-11 M System Management and RSX-11 M-PLUS Sys­
tem Management, both lecture/lab courses, cover the
skills required to perform RSX-11 system management
tasks, including starting up and shutting down the system,
performing system resource management and diagnos­
tics, and creating file structures.

BASIC-PLUS-2 teaches BASIC-PLUS-2's language syntax
and capabilities. Practical exercises and examples in this
lecture/lab course teach students to write functional BA­
SIC-PLUS-2 programs.

BASIC-PLUS-2 Programming with RMS-11, a lecture/lab
course, is designed for BASIC-PLUS-2 programmers who
want to use the Record Management Services (RMS) utili­
ties effectively. Emphasis is placed on RMS data
structures.

PDP-11 COBOL teaches how to program in PDP-11 CO­
BOL, including a careful study of the syntax, format, and
structure of the language. Supervised laboratory sessions
in this lecture/lab course include testing and running pro­
grams written by students.

FORTRAN IV teaches, in both a lecture/lab course and a
self-paced instruction course, how to program in
FORTRAN IV, including a careful study of the syntax, for­
mat, and structure of the language. Supervised laboratory
sessions include testing and running programs written by
students.

PDP-11 Assembly Language Programming teaches the
architecture of the PDP-11 computer, showing how hard­
ware and software components work together at the ma­
chine level. Available in both lecture/lab and self-paced
audiovisual formats, it explains addressing modes and the
common instruction set. Sample programs in assembly
language are written to demonstrate the use of the PDP-11
instruction set.
MACR0-11 provides the skills assembly language pro­
grammers need to use assembler directives and to write
macros. Available as both a lecture/lab course and as a
self-paced instruction course, this course introduces the
program development cycle, and it teaches the use of MA­
CRO libraries, how to write programs using macros, and
documentation techniques.

Programming RSX-11 MIM-PLUS in FORTRAN/MACRO is
for FORTRAN and MACRO programmers who want to de­
velop systems or applications programs. Before taking
this course as either a lecture/lab or as a self-paced in­
struction course, students should be able to write working
programs in FORTRAN or MACR0-11 .

11-3

RSX-11MIM-PLUS DECnet User is a lecture/lab course
that teaches system programmers and MACRO program­
mers to design and program networks using RSX DECnet
software. FORTRAN IV, COBOL, and BASIC-PLUS-2 pro­
grammers can also benefit from this course.

Design of Applications under RSX-11 MIM-PLUS is a four­
day seminar that focuses on the system features that max­
imize the capabilities of the RSX-11 hardware and
software. Three case studies are included.

RSX-11M Operating System Internals and RSX-11M­
PLUS Operating System Internals are lecture/lab courses
for programmers who need to modify or enhance RSX-
11 M or RSX-11 M-PLUS by writing privileged tasks or by
adding user-written system services. These courses pro­
vide students with an understanding of the design and phi­
losophy of the RSX-11 operating systems to help them
make design and performance tradeoffs.

RSX-11M Device Driver and RSX-11M-PLUS Device Dri­
ver are lecture/lab courses for system programmers who
need to add or modify device drivers on an RSX-11 config­
uration. Students should be fluent in MACR0-11 and ex­
perienced systems programmers on RSX-11. Students will
learn to write a working device driver to the system, to
debug driver code, and to write privileged tasks using the
Connect-to-Interrupt Directive to service interrupts.

Additional information about course content and availabil­
ity of training credits can be obtained by contacting your
DIGIT AL sales representative.

HARDWARE SERVICES
DIGITAL's Field Service organization offers a range of on­
site and offsite post-warranty hardware maintenance ser­
vices. Over 12,500 Field Service personnel in more than
400 locations worldwide are ready to provide the support
needed for continuous productivity.

Onslte Services
DECservice is DIGIT Al's most comprehensive on site
maintenance plan. It is designed for customers who re­
quire uninterrupted system performance. DECservlce in­
cludes:
• committed response time
• continuous-effort remedial service
• priority problem escalation

• extended preventive maintenance hours
• parts, labor, and material

• installation of the latest engineering change orders
• an assigned service representative
• comprehensive site management guide

For customers who do not require a fixed response time
and continuous remedial efforts, Field Service offers Basic
Service. Basic Service provides:
• priority response (typically one day)
• remedial service during coverage hours
• priority problem escalation
• preventive maintenance during coverage hours
• parts, labor, and materials
• installation of the latest engineering change orders
• an assigned service representative
• comprehensive site management guide

Although standard coverage for both of these onslte ser­
vice plans is eight hours a day, five days a week ,
customers can choose to extend DECservice coverage to
12, 16, or 24 hours a day and to include weekends and hol­
idays.

Offslte Services
DIGIT AL offers offsite services for customers who have
sufficient expertise to maintain their own systems. These
services include module-level repair, terminal repairs, and
major system refurbishment. DIGIT Al's offslte services in­
clude Customer Returns Centers, Product Repair Centers,
and Terminal Service Centers. All these centers have their
own parts inventories, special diagnostic systems, and re­
pair kits designed by DIGITAL engineers.

Customer Returns Center - The Customer Returns Cen­
ter (CRC) performs factory-level repairs on modules for
customers who can trace equipment problems to the mod­
ule or subassembly level. The CRC honors DIGITAL's Re­
turn-to-Factory Warranty for modules, and offers post­
warranty DECmailer repair services.

DECmailer provides qualified customers with fast, de­
pendable return-to-factory repairs for any of over 1,000
modules and subassemblles. Customers with a DECmaller
Agreement receive a supply of preaddressed cartons for
mailing failed modules. A replacement is shipped within
five working days of receipt of the modules. All DECmailer
repairs are warrantied for 60 days from date of return ship­
ping.

When especially fast service is needed, DIGIT AL can ship
an emergency replacement module within 24 hours of re­
ceiving a telephone call from a customer requesting this
service. The customer ships the defective part back to
DIGIT AL within a week.

11-4

When turnaround time is not critical or the repair items are
not eligible for DECmailer service, Loose Piece Module
Repair provides service on an "as needed" basis. Refer to
the Accessories and Supplies Group's Direct Sales Cata­
log (described below) for estimated module repa ir time, or
contact your local DIGITAL sales representative for details.

Product Repair Centers - DIGITAL's Field Product Re­
pair Centers (PRCs) provide fast, low-cost, offsite repairs
on all DIGITAL-supplied systems, options, and peripher­
als. PRC services include:
• A Return-to-PRC Agreement that provides repairs on a

selected group of DIGIT Al's processors and peripherals
for a fixed quarterly charge. The term of the agreement
is one year.

• Individual Product services that let customers choose
between Fixed Quote and Time-and-Materials repair
services . Under the Fixed Quote service , DIGITAL
quotes the repair cost before any repairs are performed.
Customers can then decide if they want DIGIT AL to per­
form the repair.

With the Time-and-Materials service, users can choose,
step by step, the extent of repairs to be done. This can
range anywhere from minimal repairs to total equipment
refurbishment.

Terminal Service Centers - Terminal Service Centers
(TSCs) provide carry-in service for DIGIT Al's terminal
products on a contractual or per-call basis. The TSCs also
offer self-maintenance customers over-the-counter mod­
ule swap service for terminals. Repairs are warrantied for
60 days. Payment can be made by cred it card.

You can obtain more information on DIGIT Al's Field Ser­
vice hardware maintenance offerings by contacting your
local DIGIT AL sales representative.

COMPUTER SPECIAL SYSTEMS
DIGITAL's Computer Special Systems (CSS) group pro­
vides design services and resulting repeat products to
DIGIT Al's customers. Analysts, eng ineers, programmers,
and manufacturing specialists can provide hardware and
software to customers whose needs are not met by
DIGIT Al's standard offerings. CSS is represented by Ap­
plication Engineers in the field.

CSS has nine engineering/manufacturing sites, 12 busi­
ness units operating out of ten plants, over 450 Technical
Special ists, Applications Engineers in 40 cit ies, and 19 of­
fices with over 1,000 people worldwide. The design staff
has over 1,000 man-years of experience, and has been in­
volved in over 8,000 computer installations.
CSS provides systems and products in all of DIGIT Al's
markets. Products and systems are analyzed , designed,
and implemented according to the customer's goals and
requ irements. These can range from simple processor in­
terfaces to complete hardware and software systems. All
products carry DIGITAL's high standard of quality, docu­
mentation, and field support.

CSS design and project management services, available
on a contract basis, include:

• Hardware. CSS interfaces DIGITAL hardware with that
of other manufacturers, modifies standard hardware,
and designs and builds new equipment.

• Software. CSS designs and produces diagnostic sys­
tems and applications software, modifies and expands
standard DIGIT AL software systems, and builds new
software according to individual needs.

• Systems. CSS builds complete hardware and software
systems for special applications. CSS project managers
oversee the analysis, design, and implementation of the
system and work with the customer to ensure proper in­
stallation and startup.

• Support. Customers can receive DIGITAL's broad range
of support services with any CSS system. Hardware is
supported by DIGITAL's extensive Field Service or­
ganization, and training is available on all aspects of
CSS systems.

CSS provides DIGIT Al's customers with cost-effective so­
lutions to their special system and application problems,
and backs the final product with high-quality service. For
detailed information on how to take advantage of the ser­
vices provided by CSS, contact a DIGIT AL sales represen­
tative.

11-5

ACCESSORIES AND SUPPLIES GROUP
DIGITAL's Accessories and Supplies Group (A&SG)
maintains Accessories and Supplies Centers (ASCs), pro­
~ides direct factory ordering through the Direct Sales Ca­
talog, and supports their products worldwide.

AS Cs are full-service centers established to fulfill the
needs of DI GIT Al's customers in major metropolitan
areas . The ASCs hold a local inventory of the most
requested accessories, supplies, documentation , and
add-on products for fast delivery. Full order-processing
capability provides access to A&SG's central inventory In
Nashua, New Hampshire. The ASCs provide first-class
service and convenience to DIGIT Al's customers.

A&SG maintains a tollfree telephone number for custom­
ers to use when ordering accessories and supplies. Most
products are shipped within 48 hours of receipt of order.

A&SG's Direct Sales Catalog offers a broad range of com­
puter accessory and supply items. These include small
computer systems and their complementary options, ac­
cessories, and operating supplies. The Direct Sales Cata­
log also sells such DIGITAL hardware options as DECwri­
ters, microcomputers, and their assoc iated options.
Hardware and software documentation is also offered.

A&SG has a team of worldwide specialists and business
managers to support sales.

COMPUTER SUPPLIES
DIGITAL's Computer Supplies group maintains a com­
plete line of supplies specifically designed for use with
DIGIT Al's computer systems. These items facilitate reli­
able and efficient system operation and include:
• a family of magnetic media such as disk cartridges, disk

packs, and floppy diskettes

• self-contained disk cartridge cleaners designed to ac­
complish fast and efficient cleaning of front- or top-load­
ing magnetic disk cartridges

• word processing supplies such as nylon and mylar
ribbons, a choice of 11 print wheels, and filter screens
for video terminals

• ribbons for DECwriter and DECprinter terminals

The Computer Supplies group also offers cabinets for
maintaining supplies and protecting magnetic media when
not in use. Cabinet interiors can be customized with vari­
ous options to meet individual needs. Options can be con­
veniently rearranged at any time to adapt to changing re­
quirements. In addition, there are paper baskets, work
shelves, terminal tables, tape racks, papertape trays, and
multipurpose binders.

Relying on DIGITAL for computing needs means saving
time, money, and paperwork. Contact a DIGITAL sales re­
presentative for more information.

CUSTOMER SPARES
Customer Spares is dedicated to supporting customers
who maintain their own computers. Customer Spares is
organized into three distinct businesses: self-maintenance
products (hardware and documentation); system accesso­
ries; and low-volume LSl-11 products. System accessories
include products for the hardware builder that facilitate
easy expansion and reconfiguration of DIGIT Al's systems
and options.

Customer Spares sells modules, subassemblies, compo­
nents, tools, and test equipment. Related services include
providing assistance in selecting the proper parts and ex­
pediting delivery during emergencies.

CUSTOMER FINANCING
To simplify the financial considerations involved in acquir­
ing a new computer, DIGITAL provides leasing and
financial counseling. The Customer Finance Department
can help customers acquire a DIGITAL system through a
lease, conditional sale, or similar financing agreement,
rather than through outright cash purchase.

For commercial businesses or private organizations,
DIGIT AL has developed a program, known as DIGIT AL
Leasing, with the U.S. Leasing Corporation of San Fran­
cisco. DIGITAL Leasing, a division of U.S. Leasing, is com­
mitted solely to financing DIGIT Al's computers. Repre­
sentatives are located in or near many of DIGITAL's
District Sales Offices.

Federal, state, and local government agencies have spe­
cial contractual needs and, in some cases, can benefit
from special tax privileges. For example, a state or munici-

11-6

pal agency qualifies for special interest rates on Condi­
tional Sales Agreements that are significantly below those
charged to commercial customers. The interest income is
free from federal, and, in some cases, state income taxes.

The following financing is available.
• Full Payout Leases are used primarily by commercial

customers. They involve a noncancellable, three-to-five­
year term, usually with a ten percent purchase option at
the end. No down payment is required, and title remains
with the lessor. Lease payment schedules are flexible
and can be tailored to specific needs.

• Conditional Sales Agreements are used primarily by
state and local governments. They involve a noncancell­
able, one-to-five-year term. Title passes to the cus­
tomer, but DIGITAL retains a security interest. The cus­
tomer owns the equipment free and clear at the end of
the term. Fiscal funding provisions are available for state
and local governments.

• Federal Government Lease to Ownership Agreements
are available only to approved federal government
agencies. They involve a one-to-five-year term, cancell­
able at the end of each fiscal year for nonappropriation
of funds. Ownership passes to the customer at the end
of the term.

DIGIT Al's Customer Financing group can provide finan­
cial counseling to help customers decide which arrange­
ment best meets their needs. For more information,
contact a local DIGIT AL sales office.

DEC US
DECUS, the Digital Equipment Computer Users Society, is
one of the largest and most active user groups in the com­
puter industry. It is a not-for-profit association, supported
and administered by DIGIT AL, but actively controlled by
individuals who have purchased, leased, ordered, or used
a DIGIT AL computer or who have a bona fide interest in
DEC US. Membership is free and voluntary.

The goals of DECUS are to:
• advance the art of computation through mutual educa­

tion and exchange of ideas and information

• establish standards and provide channels to facilitate
the exchange of computer programs

• provide feedback to DIGITAL on hardware and software
needs

• advance the effective use of DIGITAL computers,
peripherals, and software by promoting the interchange
of information

DECUS headquarters, located in Marlborough, Massachu­
setts, administers all international policies and activities.
DECUS is subdivided into four chapters:

DECUS AUSTRALIAN CHAPTER (Australia, Brunei, New Zealand,
Malaysia, Singapore, Indonesia, PNG)
DECUS Australia
P.O. Box384
Chats wood
NSW 2067
Australia

DECUS CANADIAN CHAPTER
DECUS Canada
P.O. Box 13000
Kanata, Ontario
K2K, 2A6, Canada

DECUS EUROPEAN HEADQUARTERS (Europe, Middle East,
North Africa, Eastern Europe)
DECUS Europe
P.O. Box510
12, Av. Des Morgines
CH-1213Petit-Laney1/GE
Switzerland

DECUS UNITED STA TES CHAPTER (for U.S. and all others)
DECUS International Headquarters
Digital Equipment Corporation
MR02-3/E55
One Iron Way
Marlborough, Massachusetts 01752 U.S.A

To further the goals of the society, DEC US serves Its mem­
bers by holding symposia; maintaining a program library;
publishing an association newsletter, technical newslet­
ters, and books; and supporting a number of subgroups,
called Special User Groups, for special interests and loca­
tions.

The symposia are regularly scheduled meetings held in
each of the four chapters. They provide a forum in which
users of DIGIT Al's products can meet with other users
and with DIGITAL's management, engineering, and sup­
port personnel. Symposia give users an opportunity to
participate in DIGITAL product workshops and product-

11-7

planning feedback sessions. Many of the technical papers
and presentations from each symposium are published as
a book, the DECUS Proceedings. Proceedings copies are
supplied to symposia attendees and can be purchased by
DECUS members.

A major activity of DECUS is the Program Library, which
contains over 1, 700 software packages written and sub­
mitted by users. A wide range of software is offered , in­
cluding languages, editors, numerical functions, utilities,
display routines, games, and other types of application
software. Library catalogs are available for the PDP-8,
PDP-11 IV AX, and DECsystem-10/20. Catalogs are up­
dated yearly and contain program descriptions and order­
ing information. The programs are available for a nominal
service charge that covers the cost of reproduction and
media.

Each DECUS chapter publishes an association newsletter
that covers general DECUS news; it is distributed to all
chapter members.

Special User Groups focus on operating systems, lan­
guages, processors, and applications. Local User Groups,
National User Groups, and Regional User Groups, which
are formed basically by geographical proximity, may also
share common specific interests. Many of these sub­
groups also publish newsletters.

To obtain a membership form for DECUS, contact a
DIGIT AL sales representative or the appropriate chapter
office.

A
AA 11-K digital-to-analog converters, 9-14
ACCEPT statement, 6·8-6-9
access

in DATATRIEVE-11, 7-14
through File Control Services, 7-3-7-4
protection codes for, 3-3-3-4
Record Management Services for,

7-5-7-9

access control (in RSX DECnet), 10-5
access modes, 2-2, 8-2

in Record Management Services,
7-5-7-9

Accessories and Supplies Group (A&SG),
11-5

Account File Maintenance Program (ACNT),
5-1, 5-2

accumulators, 8-2, 8-4
Active Page Registers (APRs), 3-7, 3-9
AD11-K AJD converter, 9-14
AJD converters, 9-13-9-15
address binding, 3-3
addresses, for files, 7-8-7-9
addressing, 8-4
addressing modes, 2-2, 8-2-8-3
address routing sort (SORTA), 7-19
address space, 3-7
ADK11-KT analog realtime data acquisition

package,
9-14-9-15

ADV11-A AID converter, 9-13
AL TSEQ (alternate collating sequence in

SORT-11), 7-17, 7-18
AM11-K expander or switch-gain multiplexer,

9-15
analog realtime data acquisition package,

9-14-9-15
analog realtime system, 9-15
ancillary control processors (ACPs),

3-11-3-12
approximate key match, 7-11, 7-12
AR11 analog realtime system, 9-15
assembling, 6-2
assembly language (MACR0-11), 2-4, 3-1, 3-6,

4-7, 4-12, 6-1-6-2
asynchronous multiplexers, 9-10
asynchronous record operations, 7-13
asynchronous serial-line interfaces,

9-10-9-11
Asynchronous System Traps (ASTs), 3-7, 3-15
attributes, file, 7-9-7-11
Autoconfigure program, 5-1
autodecrement-deferred mode, 8-3
autodecrement mode, 8-3
autoincrement-deferred mode, 8-3
autoincrement mode, 8-3
automatic restarts, 3-14-3-15
Autopatch (Automated Patching Facility), 5-6,

11 -2
auxiliary communications processor, 9-12

B
Backup and Restore Utility (BAU), 5-3-5-4
backups, 5-3-5-4
Bad Block Locator (BAD), 5-3
Bad Block Replacement Control Task (ACT),

5-3
Basic MCA, 2-4, 3-13-3-14
BASIC-PLUS, compatibility with PDP-11

BASIC-PLUS-2, 6-11
BASIC-PLUS-2, PDP-11, 4-7, 4-8, 6-9-6-11
Basic Service, 11-2, 11-4
BASIC Transportability Manual, 6-11
batch operation commands

in DCL, 4-3-4-4
in MCR,4·5

batch processing, 4·6, 5-4, 5·5
parent/offspring tasking for, 3·10

battery backups, 8-4
BCP (Barcode/Block Character Plotter)

software package, 9-6-9-7
Binary Synchronous Communications (BSC)

protocol emulators, 10-7
block buffers, 7-3
blocking of tasks, 3-5
block 1/0, 7-3, 7-11, 7-12
BPT (breakpoint) instructions, 4-8
branch instructions, 8-1
bucket locking, 7-13
buckets, 7-10
buffers

cache memory, 8-4
in File Control Services, 7-3
RMS handling of, 7-13-7-14
silo, 9-10

building system data structures, 3-3
BUILD Overlay Description Language

(BLDODL) utility, 6-7
bus request (BRs), 8-6

c
cache memory, 2-1, 2-2, 8-4
CALL MACRO (FCS), 7-4
calls

for macros, 6·2
for system directives, 4-10

CALL statement
in COBOL-81, 6·6-6-7
in PDP-11BASIC-PLUS-2,6-10
in PDP-11COBOL,6-8

cardreaders, 9-7
cartridge disk drives, 9-2
cartridge tape drives, 9-3
central processing units, see processors
chaining, 3-10
change mode (EDT), 4-7
character mode (on terminals), 9-7
character strings, 6-6, 6-8

instructions for, 8-2
checkpointability, 3-3
checkpointing, 3-6, 3-11

Index
checksums, 9-3
CLls, see command line interpreters
clocks, programmable realtlme, 9-13, 9-15
close and exit commands, 4-7
CMP (File Compare Utility), 4-10-4-11
COBOL, PDP-11, 2-4, 4·7, 4-8, 6-7-6-9
COBOL-81, 2-4, 4-7, 4-8, 6-5-6-7
collating, in SORT-11, 7-17
command files, 2·4

in DECnet communications, 10-5
command line interpreters (CLls), 4-1

user-written, 4-5
command-line switches, 4-11
commands

DCL and MCA, 4-1-4-5
EDl,4-7
indirect command files for, 4·5-4·6
ZAP, 4-11

Command String Interpreter (CSI) routine, 7-4
command strings, 6-5, 7-16-7-17
Commercial Instruction Set (CIS), 2-2, 6-5,

8-1-8-2
with PDP-11 COBOL, 4-8, 6-7

commercial load descriptor instructions, 8-2
common event flags, 3·10
common partitions, 3-3
communications

DECnet for, 10-4-10-6
DECnet/SNA Gateway for, 10-9
Digital Network Architecture for,

10-2-10-4
Ethernet for, 10-10-10-11
interfaces for, 9-10-9-13
lnternets for, 10-7-10·8
intertask, 2·4, 3·10-3-11
master/slave, 8-5
networks for, 10-1-10-2
Packetnet System Interfaces for,

10-9-10-10
RSX DLX-11for,10-6-10-7
services for, 2-1, 2-5

communications networks, 10-1
compilers, 4-8, 4-12

COBOL-81, 6-5, 6-7
CORAL 66, 6-13
FORTRAN IV, 6-5
PDP-11BASIC-PLUS-2,6-11
PDP-11 COBOL, 6-7-6·9
PDP-11FORTRAN-77,6-4

Compile-Time Directives, in PDP-11 BASIC-
PLUS-2, 6· 10

Computer Special Systems (CSS), 11-4-11 ·5
Computer Supplies group, 11-6
conditional assembly directives, 6-2
conditional sales agreements, 11-6
conditional code bits, 8-1
Configuration File Editor (Packetnet), 10-10
configurations, 3-1

SYSGEN for, 5-1
Connect-to-Interrupt Vector system

directives, 3-11
Console Driver, 5-2

Console Logger, 5-2
Console Output Task (COT), 5-2
consoles, front, 8-5
control characters, 9-7
control commands

in DCL,4-2
in MCR,4-4

Control Data Corporation systems, protocol
emulators for communications with,
10-7, 10-8

CORAL 66, 4-7, 4-8, 6-11-6-12

courses, 11-2-11-3
CPU priority levels, 8-3
CPUs, see processors
CR11-B cardreader, 9-7

CR11 card readers, 9-7
Crash Dump Analyzer (CDA), 5-6
Cross-Reference Processor (CRF), 6-2
current location counter, 6-2
customer financing, 11-6
Customer Returns Center (CRC), 11-4
Customer Spares, 11-6
Customer Support Plans (CSPs), 10-11, 11-1

cyclic redundancy checking, 9-4

D

data
protection of, in DATATRIEVE-11, 7-14
in SORT-11 , 7-16
types of, in COBOL-81, 6-6
types of, in PDP-11 BASICPLUS-2, 6-10
types of, in PDP-11COBOL, 6-8

data communications, 10-1-10-11 (see also
communications; networks)

services for, 2-1, 2-5
Data Dictionary, 7-14
data fields, 7-5
Data Link layer, 10-3
data management, 2-1, 2-4

DATATRIEVE-11 for, 7-14-7-15
File Control Services for, 7-2-7-4
file management in, 7-1-7-2
FMS-11for,7-15-7-16
Record Management Services for, 4-8,

7-4-7-14
SORT-11 for, 7-16-7-19

data set descriptors, 7-4
data transfer modes, 7-3
DATATRIEVE-11, 2-4, 7-1 , 7-14-7-15

DCL (DIGITAL Command Language), 2-4,
4-1-4-4

indirect DCUMCR command files for, 4-6
program development utilities invoked

from, 4-9

debugging, 3-9, 4-8-4-9
in COBOL-81 , 6-7
inPDP-11 COBOL,6-8

decimal-string instructions, 8-2
DECmate I system, 9-10
DECnet, 2-5, 10-1, 10-4-10-6

DIGITAL Network Architecture and, 10-2,
10-3

DECnet-11M, 10-4, 10-5
DECnet-11M-PLUS, 10-4, 10-5
DECnet-11 S, 10-4, 10-5
DECnet Phase I, 10-4
DECnet Phase II, 10-4
DECnet Phase 111, 10-4
DECnet Phase IV, 10-4

Ethernet on, 10-11

DECnetlSNA Gateway, 2-5, 10-1, 10-9
DECservice, 11-3-11-4
DECsupport, 11-2
DECUS (Digital Equipment Computer Users

Society), 11-6
DECwriter Ill, 9-9
DECwriter IV, 9-8

default filename blocks, 7-4
DEFINE (RMS) utility, 7-9
delete access, 3-3
despoolers (print processors), 5-5

device drivers, 3-12, 7-1, 9-13
during power failure restarts, 3-15
for RSX-11S, 3-13
terminal drivers, 9-7

device handlers, user-written, 2-3

device names, 7-1
device output commands, 4-7
devices see hardware; peripherals

custom, 2-3
for 1/0 processing, 3-12-3-13

DH11 asynchronous multiplexers, 9-10
diagnostics

in COBOL-81, 6-7
flagger for, in PDP-11 FORTRAN-77, 6-2
front console for, 8-5
in PDP-11 COBOL, 6-8
remote, 5-6

digital-to-analog converter, 9-14
Digital Command Language, see DCL
Digital Equipment Computer Users Society,

seeDECUS
DIGITAL Network Architecture (DNA),

10-1-10-4
X.25 communications protocol in, 10-9

direct access, 7-3
directives, 3-6, 6-1-6-2

in direct command files, 4-6
memory management, 3-7, 3-8

QIO, 3-11
send-receive, 3-10

direct-memory-access controller, 9-13-9-14
directories, 7-1
disk controller (UDA50), 5-3, 9-2-9-3
disks, 2-2, 4-11, 9-1-9-3

device drivers for, 3-12
maintenance of, 5-3-5-4
overlays on, 3-7

Disk Save and Compress (DSC) utility, 5-4
Disk Volume Formatter (FMT), 5-3
DISPLAY statement, 6-8-6-9

distributed computing networks, 10-2
DL 11 asynchronous serial-line interfaces,

9-10-9-11
DLV11 asynchronous serial-line interfaces,

9-10-9-11
DMP (File Dump Utility), 4-10
DMP11 network link, 9-11
DMR11 networklink, 9-11
DMV11 network link, 9-11
double-operand instructions, 8-1
downline system loading, 10-6
DPV11 synchronous serial-line interfaces,

9-11

DR11-K general device interfaces, 9-15
DRV11 parallel line interface units, 9-13
Dry Run Mode (DECnet), 10-5
dumps, 4-8-4-10

DUP11 synchronous line interfaces,
9-11-9-12

DUV11 synchronous line interfaces,
9-11-9-12

dynamic access, 7-9
dynamic memory allocation, 3-4-3-5

dynamic regions, 3-8
Dynamic Storage Region (DSR; pool), 3-10,

5-5
DZ11 serial-line interfaces, 9-12
DZS11 statistical multiplexer, 9-12
DZV11 serial-line interfaces, 9-12

E
EBCDIC collating sequence, 7-17

ECC, see Error-Correcting Code
ECC memory, 8-3, 8-4
EDI editor, 4-7
editors, 4-7

Form Editor, 7-15-7-16
EDT editor, 4-7
Educational Services, 11-2-11-3
EIS, see Extended Instruction Set
emulators

I nternets, 10-7 -10-8
RTEM-11 RT-11,4-11

End Communication layer, 10-3

environments
for Record Management Services,

7-12-7-14
task, 3-4-3-7

Error-Correcting Code (ECC), 8-3, 8-4
Error Logging System, 5-6

Ethernet, 2-5, 10-1 , 10-10-10-11
Event-Associated Directives, 3-6
event flags

for block 1/0 operations, 7-3
common and group-global, 3-10
scheduling and, 3-5

exact key match, 7-11
executable statements, 6-5
execution control commands

in DCL, 4-3
in MCR, 4-5

Executive, 4-12
dynamic memory allocation and, 3-4
memory management and, 3-8
pool allocated by, 5-5
Postmortem Dumps executed by, 4-8-4-9
for power failure restarts, 3-14-3-15
for RSX-11S, 3-13
scheduling and, 3-5, 3-6
Shadow Recording by, 5-4
Supervisor-mode libraries and, 3-9
virtual terminals created by, 3-10

Executive pool, 3-9
expander, 9-15
extend access, 3-3
Extended Instruction Set (EIS), 8-1
Extended LSl-11 bus, 8-6

F

FCSFSL (Supervisor-mode library of FCS
routines), 7-2

FCSRES (resident library of FCS routines),
7-2

Field Product Repair Centers (PRCs), 11-4
file attributes, 7-9-7-11
File Compare Utility (CMP), 4-10-4-11

File Control Services (FCS), 3-11, 3-13, 3-14,
4-10, 7-1-7-4

PDP-11 FORTRAN-77 Object Time System
based on, 6-4

supported in DECnet-11M and
DECnet-11 M-PLUS, 10-5

file data blocks (FDBs), 7-4
file directories, 7-1
File Dump Utility (DMP), 4-10

file input/output commands, 4-7
file management, 7-1-7-2
file manipulation commands

in DCL, 4-2-4-3
in MCR, 4-5

file manipulation utilities, 4-9
filenames, 4-7, 7-2
file organization, 2-4

attributes in, 7-9-7-11
in COBOL-81, 6-6
in PDP-11 BASICPLUS-2,6-10
in PDP-1 1COBOL,6-8
in PDP-11FORTRAN-77, 6-4
Record Management Services for,

7-4-7-6, 7-12-7-14

file-processing level , 7-12
files, 7-5

program maintenance utilities for,
4-10-4-11

protection codes for, 3-3
queueing of printing of, 5-5
RMS, program operations on, 7-11-7-12
RMS handling of , 4-8
in SORT-11 , 7-16
volume maintenance for, 5-3-5-4

Files-11 , 7-1
File Structure Verification on, 5-4

file specifications, 7-1-7-2, 7-9
file spooling utilities, 4-9-4-10
File Storage Region (FSR), 7-3
File Structure Verification (VFY), 5-4
File Transfer Program (FU<), 4-9

File Transfer Spooler (RSX DECnet), 10-5
filetypes, 4-7, 7-2
financing, 11-6
fixed-length record format, 7-9
flagger, 6-2

flags
common and group-global, 3-10
event, 3-5, 7-3

Floating-Point Unit (FPU), 2-1 , 2-2, 8-4-8-5
for CORAL 66, 6-11

floppy disks, 9-1-9-2
FLX (File Exchange) program, 7-1
FMS-11 (Forms Management System), 2-4,

7-15-7-16

FMT (Disk Volume Formatter), 5-3
forced keys, 7-18
foreground/background 110 operations,

9-7-9-8
formats

data, for file-structured devices, 7-3
for RMS records, 7-9-7-10
in SORT-1 1 input and output, 7-18
volume,Fi les-11 for, 7-1

Form Driver, 7-15, 7-16
Form Editor, 7-15, 7-16
Forms Management System, see FMS-11

Form Utility, 7-15, 7-16
FORTRAN, system directives in, 3-6
FORTRAN IV, 3-1 , 4-7-4-8, 6-4-6-5

FORTRAN-77, PDP-11, 2-4, 3-1, 4-7-4-8,
6-2-6-4

front consoles, 8-5
Full-Functionality option, 5-1

functions, privileged and nonprivileged, in
DCL, 4-1

G

general device interface, 9-15
general registers, 2-2, 8-2-8-3

general session information and control
commands

in DCL, 4-2
in MCR,4-4

generic key match, 7-11-7-12
Get Command Line (GCML) routine, 7-4
GET$ macro (FCS), 7-3, 7-4

global assignments, 3-13
global symbols, 6-1
group access, 3-4
group-global event flags, 3-10
GUIDE MODE (DATATRIEVE-11), 7-14

H
hardcopy terminals, 9-8-9-9

hardware, 2-1-2-2 (see also Processors)
Computer Special System services for,

11-5
controller interfaces for, 8-5-8-6
for 110 processing, 3-12-3-13
mass storage, 9-1-9-5
processors, 8-1-8-8
for program development, 4-11-4-12
realtime 110 devices, 9-13-9-15
reconfiguration services and, 5-7
required for COBOL-81 , 6-7
required for CORAL 66, 6-12
required for FORTRAN IV, 6-5
required for PDP-11 BASICPLUS-2, 6-11
required for PDP-11COBOL, 6-9
required for PDP-11FORTRAN-77, 6-4
support services for, 11-3-11-4
SYSGEN for defining configuration of, 5-1
terminal and communications interfaces,

9-10-9-13
terminals, 9-7-9-10
unit record peripherals, 9-5-9-7

hardware interrupts, 8-3
hardware stack pointer (SP), 8-2
HASP protocol emulators, 10-7-10-8
HELP command, 4-7
HELP facilities, in FMS-11, 7-15

IBM systems
DECnet/SNA Gateway for

communications with, 10-1, 10-9
protocol emulators for communications

with , 10-7-10-8
identification, of users, 3-3-3-4, 5-1-5-2
index deferred mode, 8-3
indexed file organization, 7-6-7-8, 7-10-7-11

RMS record operations on, 7-11-7-12
indexes, 7-6-7-8
index mode, 8-3
index registers, 8-2
index sort (SORTI), 7-19
indirect command files, 2-4, 4-5-4-6
indirect DCUMCR command files, 4-6
indirect task command files, 4-6
Informational Directives, 3-6

information commands
in DCL, 4-2
in MCR,4-4

inline instructions, 8-2
inline interrupt service routines, 9-13
installation, 11-1

of COBOL-81, 6-7
of tasks, 3-3

instruction sets, 2-1 , a:1-8-2
interactive terminal interface (in Packetnet),

10-10
interfaces

DECnet/SNA Gateway, 10-9
in DIGITAL Network Architecture, 10-3
DR11-K general device interface, 9-15
for 110 processing, 3-11
Packet net, 10-9-10-10
peripheral controller, 8-5-8-6
terminal and communications, 9-1 0-9-13
between user and terminal, 9-7-9-8

internal registers, 4-11
internal symbols, 6-1
lnternets, 2-5, 10-7-10-8
interrupt priority levels, 3-12
interrupts, 2-2

hardware, 8-3
system traps, 3-6-3-7

intertask communications, 2-4, 3-10-3-11
in DECnet, 10-5
in Packetnet, 10-10

Intertask Communications-Related
Directives, 3-6

110 buffers, in Record Management Services,
7-12-7-14

1/0 devices, realtime, 9-13-9-15
110 Directives, 3-6
110 Exerciser (IOX), 5-6
110 operations, File Control Services and, 7-3
110 processing, 3-11-3-13

110 Queue Optimization, 3-12, 5-5-5-6
110 request processing, 3-1 2
IOX Command Language, 5-6

J

jump and subroutine calls instructions, 8-1

K

Kernel access mode, 8-2
keys

forced, in SORT-11 , 7-18
in indexed files, 7-6, 7-8, 7-10-7-11
in indexed files, record operations using,

7-11-7-12
in SORTI, 7-19

KMC11 auxiliary communications processor,
9-12

K-series laboratory peripherals, 9-1 4-9-15
KWv11-A programmable realtime clock, 9-13
KW11-K dual programmable realtime clocks,

9-15

L

LA12 Correspondent portable terminal , 9-8
LA34 DECwriter IV, 9-8
LA38 DECwriter IV, 9-8
LA100 Letterprinter, 9-8-9-9
LA100 Letterwriter, 9-8-9-9
LA120 Decwriter Ill , 9-9
laboratory peripherals, 9-14-9-15

languages, 2· 1, 2·4
COBOL-81, 6·5-6·7
CORAL 66, 6-11-6-12
FORTRAN IV, 6-4-6-5
MACR0-11 asS1embly language, 6-1-6-2
PDP-11BASIC-PLUS-,6-9-6-11
PDP· 11 COBOL, 6· 7-6-9
PDP-11FORTRAN·??,6-2-6-4
programming, 4-7-4-8
system command, 4-1-4-6

leases, 11 ·6
Librarian Utility Program (LBR), 4·10
libraries

in COBOL-81, 6·6
File Control Services, 7-2
in FORTRAN IV, 6-5
macro, structured, 6·2
macro and object, 4·10
in PDP-11COBOL,6·8
resident, 3-10
Supervisor-mode, 2· 1, 3-1, 3-9, 3· 11

line discipline (in Packetnet), 10-10
line mode (on terminals), 9-7
lineprinter/plotters, 9-6-9-7
lineprinters, 4-12, 9·6-9-7

queueing of, 5-4
spooling of, 4-9, 4·10

linking, 3·3
in FORTRAN IV, 6·5
program sectioning and, 6-2

listing control directives, 6·2
local assignments, 3·13
local symbols, 6· 1
locate mode, 7-3, 7-13-7-14
locator commands, 4-7
logging, of errors, 5-6
logical address space, 3-7, 3-8
logical blocks, 4·10
logical device names, 3-13
logical links, 10·1
logical records, 7-3
Logical Unit Numbers (LUNs), 3·13
login assignments, 3-13
loopback testing, 10-6
LP11·AA lineprinter, 9·6
LP11·BA lineprinter, 9-6
LP11·C lineprinter, 9-6
LP11·D lineprinter, 9·6
LP11·EA lineprinter, 9-6
LP11·EB lineprinter, 9-6
LP11-GA lineprinter, 9-6
LP11-GB lineprinter, 9-6
LPA 11-K direct-memory-access controller,

9-13-9-14
LPV11·AA lineprinter, 9-6
LPV11·BA lineprinter, 9-6
LPV11·EA lineprinter, 9·6
LPV11-EB lineprinter, 9·6
LSI· 11 bus, 2·2, 8-5-8-6
LSI· 11 processors, 2· 1, 2·2, 3· 1, 8· 1, 8·2
LXV11 lineprinter/plotter, 9-6-9-7
LXY11 lineprinter/plotter, 9-6-9·7
LXY21 lineprinter/plotter, 9-6-9·7

M
MACR0-11 assembly language, 2-4, 3-1, 4-7,

4-12,6-1-6-2
system directives in, 3-6

macro calls, 6-2

macro commands, 4· 7
macro definitions, 6-2
macro libraries, 4-10
macros

calls for, 6-2
File Control Services and, 7-4

macro symbols, 6-1, 6-2
maintenance, 11·4

system, 5· 1-5-7
mapped systems, 3-4, 3·5
mapping, 3-7-3-9
maps, 3-3, 3-9
MASSBUS, 2-2, 8·5, 8·6, 8·8
Mass Storage Control Protocol (MSCP) disks,

5-3
mass storage peripherals, 9-1-9·5 (see also

memories)
Master File Directories (MFDs), 7-1
master/slave communications, 8-5, 8·6
MCA, see Monitor Console Routine
memory, 8-3-8-4

checkpointing and, 3-6
dynamic allocation for , 3-4-3·5
mass storage peripherals for, 9·1-9·5
overlaying of, 2-1, 3·7
pool (Dynamic Storage Region) in, 5-5
required for system configurations, 3·1
RSX·11M-PLUS enhancements and, 3·9

memory management, 3-7-3-9, 8·4
Memory Management Directives, 3·6-3-8
Memory Management Unit (MMU), 2-1-2·2,

3-7, 8-4
in system configurations, 3-1
for task allocation, 3·5

memory maps, 3-8-3-9
MERGE utility, 6-9
microcomputers, processors for, 8· 1
MICRO/PDP-11, 2·1, 2-2, 3·1, 8-1 , 8-7

Extended LSl-11 bus on, 8·6
miscellaneous instructions, 8· 1
mnemonics, 3-12
Monitor Console Routine (MCA), 2·4, 4· 1,

4-4-4-5
indirect DCUMCR command files for, 4-6
program development utilities invoked

from, 4-9
Virtual Monitor Console Routine as

subset of, 5-1
monitoring of system use, 5·2
MOS (Metallic Oxide Semiconductor)

memory, 8-3, 8-4
move mode, 7·3, 7-13
multipoint communications, 10-6
multiprogramming, 3·4

access modes for, 8-2
checkpointing in, 3-6

multiuser operations, 2-1, 3·1
memory management in, 2·2
RSX-11M·PLUS enhancements for, 3-9
system protection for, 3-3
tasks built in, 3·11
user identification In, 5·1-5·2

MUX200/RSX multiterminal emulator, 10·8

N

Network Application Layer, 10-3
network command terminals, 10-4, 10-5
Network Control Program (Packetnet), 10-10
Network File Transfer program (RSX DECnet),

10-5

network links, 9·11
Network Management

in DECnet/SNA Gateway, 10·9
in DIGITAL Network Architecture, 10·3
in Packetnet, 10-10
in RSX DECnet, 10-5-10-6

Network Profiles, 10-11
networks, 10-1-10·2

DECnet, 10-4-10·6
DECnet/SNA Gateway for, 10·9
DIGITAL Network Architecture and,

10-2-10-4
Ethernet, 10-10-10-11
interfaces for, 9-10-9-13
lnternets, 10-7-10-8
Packetnet System Interfaces for,

10-9-10-10
support for, 10·11

nodes, 10-1
in Ethernet, 10-10

nonexecutable statements, 6-5
nonprocessor requests (NPRs), 8-6

0

object libraries, 4·10, 6-5
Object Module Patch Program (PAl), 4-11
object modules, 3·3, 6·1
Object Time System (OTS), 6·3-6·4, 6-12
offspring tasks, 3-10
Online Debugging Tool (ODl), 4-8, 4·11
online software maintenance, 5-6
Online Task Loader (OTL) utility, 3-1
OPEN$ macro (FCS), 7-4
operating environments, see environments
operating modes, 8-2
operating systems, 2-1 , 2-3-2·4, 3-1-3-15

(see also RSX-11M operating system;
RSX·11M-PLUS operating system;
RSX·11S operating system)

OPNS$ macro (FCS), 7-3-7-4
optimizations

for FORTRAN IV, 6·5
for PDP-11FORTRAN·??, 6·3

output, queueing of, 5-4
Overlay Description Language (ODL), 3·7
overlaying, 2·1, 3-1 , 3-7
owner access, 3-3

p

Packet Assembly Disassembly (PAD) facility,
10-10

Packetnet System Interfaces (PSls), 2·5, 10-1,
10-9-10-10

pages, 8·4
papertape reader/punch, 9-7
parallel communications interface,

9-12-9-13
parallel line interface units, 9·13
parameters, 4-1
parent/offspring tasking, 3-10

directives for, 3·6
parity checking, 9-4
parity memory, 8-3-8-4
Partition Control Block (PCB), 3-14
partitions, 3·3, 3·4
PAT (Object Module Patch Program), 4-11
PC11 papertape reader/punch, 9-7
PCL 11-B parallel communications interface,

9·12-9-13
PDP-11BASIC-PLUS-2, 2·4, 4·7, 4·8, 6·9-6-11

PDP-11 breakpoint (BPT) instructions, 4-8

PDP-11COBOL,2-4, 4-7, 6-7-6-9
PDP-11family, 2-1 , 2-2,

components of, 8-1
processors for, 8-6-8-8
RSX operating systems on, 3-1

PDP-11FORTRAN-77, 4-7-4-8, 6-2-6-4
PDP-11 Instruction Set, 2-2, 8-1-8-2
PDP-11123, 2-2, 8-1 , 8-6

PDP-11 /23-PLUS, 2-1, 2-2, 3-1 , 8-1, 8-7-8-8
Extended LSl-11 bus on, 8-6

PDP-11/24, 2-1 , 2-2, 3-1 , 8-1, 8-8

PDP-11 /34A, 2-2, 8-1, 8-8
PDP-11/44, 2-1 , 2-2, 3-1 , 8-1 , 8-8

memory mapping registers on, 3-8
remote diagnost ics on, 5-6
RSX-11 M-PLUS performance

enhancement on, 3-9

PDP-11/70, 2-1, 2-2, 3-1, 8-1 , 8-8
MASSBUS on, 8-5, 8-6
memory mapping registers on, 3-8
remote d iagnostics on, 5-6
RSX-11 M-PLUS performance

enhancements on, 3-9
PDP-11 processors, 8-1-8-8
peephole optimizations, 6-3
performance

RSX-11 M-PLUS enhancements for, 3-9
of software, monitoring of, 5-2

Peripheral Interchange Program (PIP), 4-9

peripherals, 2-1-2-3 (see also hardware)
controller interfaces for, 8-5-8-6
for 1/0 processing, 3-12-3-13
mass storage, 9-1-9-5
realt ime 1/0 devices, 9-13-9-15
terminal and communications interfaces,

9-10-9-13
terminals, 9-7 -9-10
unit record , 9-5-9-7

permanent symbols, 6-1
Permanent Virtual Circuits (PVCs), 10-10

physical address space, 3-7, 8-4
Physical Link Layer, 10-3
physical links, 10-1
plotters, 9-6-9-7
PLXY-11 software package, 9-6

pointers, 8-2
point-to-point communications, 10-6

pool (Dynamic Storage Region; DSR), 3-10,
5-5

pool monitoring, 5-5
Pool Monitor Task (PMT), 5-5
pools (memory), 3-9
Postmortem Dump (PMD), 4-8-4-9
power fai lure automatic restarts, 3-14-3-15
primary keys, 7-6, 7-10

PRINT command, for spool ing, 4-9-4-10
printers, 4-12, 9-6-9-9

queueing of, 5-4, 5-5
PRINT$ macro (FCS), 7-4
print processors (despoolers), 5-5
priorities

for interrupts, 3-12
for realt ime tasks, 2-4
scheduling of, 3-5-3-6
of tasks, 3-3

priority levels, CPU, 2-2, 8-3
privacy, User Identificat ion Codes for, 5-2
privileged tasks, 3-3

privileged users, 3-3

privileged levels, 2-2
privileges, User Identification Codes for, 5-2
procedures, in DATATRIEVE-11, 7-15
processors (central processing units; CPUs),

2-1-2-2, 8-2-8-3, 8-6-8-8
Floating-Point Unit in, 8-4-8-5
front consoles for, 8-5
instruction set on, 8-1-8-2
memories in, 8-3-8-4
multiprogramming on, 3-4
peripheral controller interfaces in ,

8-5-8-6
scheduling in, 3-5

Processor Status Word (PSW), 8-3
Product Repair Centers (PRCs), 11-4

professional services, 11-2
Program Counter (PC), 8-2

program development commands
in DCL, 4-3
in MCR, 4-5

program development tools, 2-1 , 4-1-4-12
program development utilities, 4-9-4-11
Program Library (DECUS), 11 -7
programmable realtime clocks, 9-13, 9-15
program maintenance utilities, 4-10-4-11
programmed 1/0, 9-13
programming

1/0 interfaces for, 3-11
languages for, 4-7-4-8, 6-1-6-13
utilities for, 4-10

programs, 3-2-3-3
operations of, on RMS files, 7-11-7-12
in PDP-11COBOL, 6-9
Record Management Services sharing of,

7-13
sectioning of, 6-2
segmentation and overlaying of, 2-1, 3-1

protection, 3-3-3-4
access modes for, 8-2
of data, in DATATRIEVE-11 , 7-14
of data, on tapes, 9-3

protocol emulators, 10-7-10-8
protocols

in DIGITAL Network Architecture,
10-3-10-4

X.25, 10-9, 10-10
pseudo device names, 3-12-3-13

public packet-switched networks (PPSNs),
10-9

PUT$ macro (FCS), 7-3, 7-4

Q

QIO directive, 3-11
queueing, of output, 5-4
Queue 1/0 (QIO) Request system services,

3-12
Queue Manager (QMG), 4-6, 4-9, 5-4-5-5
queue operation commands

in DCL, 4-3-4-4
in MGR, 4-5

Queue Optimization , 5-5-5-6

R
RASO disk drives, 9-3
RASO disk drives, 9-3
RA81 disk drives, 9-3
random access mode, 7-8
RCT (Bad Block Replacement Control Task),

5-3
read access, 3-3

READ macro (FCS), 7-3, 7-4
realtime 1/0 devices, 9-13-9-15
realtime operations, 1-1, 2-4, 3-1

scheduling in, 3-5
reconfiguration services, 5-7
record access modes, 2-4, 7-7-7-9
record access streams, 7-13
record 1/0 operations, 7-3
Record Management Services (RMS), 3-11,

3-12 4-8 4-10 7-1 7-4-7-6
access

0

modes in', 7-S-7-9
COBOL-81 and, 6-6
DATATRIEVE-11 and, 7-14
file attributes in, 7-9-7-11
file and record processing environments

in, 7-12-7-14
PDP-11 COBOL and, 6-8
PDP-11 FORTRAN-77 based on, 6-4
program operations in , 7-11-7-12
runtime environment for, 7-12
SORT-11 supported on, 7-16
supported on RSX DECnet, 10-5

record-processing level, 7-12
records, 7-5

in PDP-11BASIC-PLUS-2, 6-10
RMS formats for, 7-9-7-10
RMS processing of, 7-11-7-12
in SORT-11, 7-16, 7-17

Record's File Address (RFA) record access
mode, 7-8-7-9

record sort (SORTA), 7-19
record transfer modes, 7-13-7-14
REFORMAT utility, 6-7

regions, 3-8
shared, 3-10-3-11

register-deferred mode, 8-2-8-3
register instructions, 8-2

register mode, 8-2

registers
active page, 3-7, 3-9
general, 2-2, 8-2-8-3
internal, in ZAP, 4-11
memory mapping, 3-8
used by File Control Services, 7-2
used in PDP-11 FORTRAN-77, 6-3

relative file organization, 7-6-7-8
RMS record operations on, 7 -11

relocatable libraries, 6-5
relocatable object modules, 6-1
Relocation Registers, 4-11

Remote Diagnosis, 5-6
Remote File Access, 10-5
Remote Job Entry, on DECnet/SNA Gateway,

10-9

report generation (DATATRIEVE-11), 7-14

resident commons, 3-2, 3-10, 3-11
resident libraries, 3-2, 3-10, 3-11
Resource Accounting, 5-2
Resource Monitoring Display (RMD), 5-2
resource-sharing networks, 10-1-10-2
restarts, 3-14-3-15
Restore Mode (DECnet), 10-5
restoring of volumes, 5-3-5-4
RFRMT (reformat) utility, 6-9
RJE/HASP Protocol Emulator, 10-7-10-8
RK07 disk drive, 9-2
RL02 disk drive, 9-2
RMOS disk drives, 9-2

RMS, see Record Management Services
roundrobin shceduling, 3-5-3-6

routing of communication, 10-6
Routing layer, 10-3
RSX-11 M/2780/3780 Emulator, 10-7
RSX-11M operating system, 1-1, 2-1, 2-3-2-4,

3-1
access types on , 3-3-3-4
checkpointing in, 3-6
CORAL 66 on, 6-11-6-12
DECnet-11M for, 10-4
error logging on, 5-6
FCSRES on, 7-2
memory management directives in, 3-7
parent/offspring tasking on, 3-10
peripherals supported by, 9-1
program development on, 4-1
Record Management Services on, 7-5
RSX DLX-11 on, 10-6
RSX-11 PSl/M for, 10-9
SPM-11M on, 5-2
spooling on, 4-10
Standard Function System Option on, 5-1
terminals supported by, 9-7

RSX-11M-PLUS Directives, 3-6

RSX-1 1M-PLUS operating system, 1-1,
2-1-2-4, 3-1

access types on, 3-3-3-4
Account File Maintenance Program on,

5-2
batch processing on, 4-6, 5-5
checkpointing in, 3-6
DECnet-11 M-PLUS for, 3-6
error logging on, 5-6
FCSRES and FCSFSL on, 7-2
Full-Functionality option on, 5-1
1/0 Queue Optimization on, 5-5-5-6
1/0 request processing on, 3-12
mapped systems on, 3-5
memory management directives, 3-7, 3-8
parent/offspring tasking on, 3-10
performance enhancements on, 3-9
peripherals supported by, 9-1
program development on, 4-1
reconfiguration services, 5-7
Record Management Services on, 7-5
RSX-11 PSl/M-PLUS for, 10-9
Shadow Recording on, 5-4
shared regions on, 3-11
SPM-11 M-PLUS on, 5-2
spooling on, 4-9-4-10
terminals supported by, 9-7

RSX-11M/SNA protocol emulator, 10-8
RSX PSl/M, 10-9
RSX-11 PSl/M-PLUS, 10-9
RSX-11PSIS,10-9-10-10
RSX-11S operating system, 1-1, 2-1, 2-3, 2-4,

3-1
components of, 3-13-3-14
DECnet-11S for, 10-4
peripherals supported by, 9-1
RSX DLX-11 on, 10-6

RSX 3271 protocol emulator, 10-8
RSX DECnet communications software,

10-4-10-6
RSX DECnet Network File Transfer program,

10-5
RSX DLX-11 , 10-6-10-7
RT-11 operating system, 4-11
RTEM-1 1 RT-11 emulator,4-11
RX02 floppy disk drives, 9-1-9-2

s
scheduling

priorities in, 2-4
of tasks, 3-5-3-6

security see protection
system protection for , 3-3-3-4
User Identification for, 5-2

segmentation of programs, 2-1
segments

in overlays, 3-7
in virtual address space, 3-8

Self-Maintenance Service, 11-2
send-receive directives, 3-10
sequential access mode, 7-3, 7-5-7-7
sequential file organization, 7-3, 7-6-7-8

RMS record operations on, 7-11
Serial DespoolerTask, 4-9, 4-10
serial-line interfaces, 9-12
services

for data communications, 2-1, 2-5
support, 11-1-11-7

Session Control layer, 10-3
SETTIM, 3-14
setup commands, 4-7
Shadow Recording, 5-3, 5-4
sharable regions, 3-9

shared data files, 3-10
shared libraries, 6-5
shared regions, 3-10-3-11
sharing

between tasks, 3-3
file access, 7-3-7-4
Record Management Services used for,

7-12-7-13
system directives for, 3-6

shutdowns, 5-1
SHUTUP program, 5-1
silos, 9-10

single-character commands, 4-11
single-operand instructions, 8-1
SNA Gateway, 2-5, 10-1, 10-9
SNA protocol emulator, 10-8
Snapshot Dump ($SNAP), 4-8, 4-9

software, 2-1, 2-3-2-5 (see also languages;
RSX-11 M operating system; RSX-11 M­
PLUS operating system; RSX-11S
operating system)

Computer Special Systems services for,
11-5

maintenance of, 5-6
monitoring of performance of, 5-2
PLXY-11 and BCP, 9-6-9-7
priority levels for, 3-5
for program development, 4-1
RSX-11M and RSX-11M-PLUS

compatibility of, 3-1
for RSX-11S, 3-13
RSX DECnet, 10-4-10-5
RSX DLX-11, 10-6-10-7
support services for, 11-1-11-2
SYSGEN for selection of options for, 5-1

software interrupts (system traps), 3-6-3-7
Software Product Services, 11-1-11-2
Software Product Update Service, 11-2
SORT-11, 7-1, 7-18-7-19
SORTA (address routing sort), 7-19
SORTI (index sort), 7-19
SORTA (record sort), 7-19
SORTS program, 7-18-7-19
SORTI (tag sort), 7-19

Source Language Input Program (SLP), 4-11
SP (hardware stack pointer), 8-2
spawning, 3-10
Special User Groups, 11-7
specification files(in SORT-11), 7-16-7-18
SPM-11M (software performance monitor), 5-

2
SPM-11 M-PLUS (software performance

monitor), 5-2

spooling (Shared Peripheral Operations
Online), 4-9-4-10, 5-4

in File Control Services, 7-4
File Transfer Spooler, in RSX DECnet, for,

10-5
stack addressing, 8-2
Standard Function System option, 5-1
statements

in FORTRAN IV, 6-5
in MACR0-11, 6-1

static common regions, 3-8
statistical multiplexer, 9-12

storage, see memory
stream format records, 7-10
structured macro libraries, 6-2
structured programming, in PDP-11 BASIC-

PLUS-2, 6-10

subpartitions, 3-4
,subroutine call instructions, 8-1
Supervisor access mode, 8-2

Supervisor-mode library routines, 2-1, 3-1, 3-9,
3-11

FCSFSL, 7-2
Supervisor-mode registers, 3-8
supplies, 11-5, 11-6
support

for networks, 10-11
services for, 11-1-11-7

Switched Virtual Circuits (SVCs), 10-10

switch gain multiplexer, 9-15
symbol definition file, 3-3
Symbolic Debugger, in PDP-11 BASIC-PLUS-

2, 6-9
Symbolic Interactive Debugger

in COBOL-81 , 6-7
in PDP-11COBOL,6-8

symbols, used in MACR0-11, 6-1

symbol tables, 6-1
synchronous-line interfaces, 9-11-9-12
synchronous record operations, 7-13
synchronous serial-line interfaces, 9-11
Synchronous System Traps (SSTs), 3-6-3-7,

4-8
SYSGEN (system generation utility), 3-1, 3-2,

5-1
pool space created by, 5-5
for RSX-11S, 3-13
terminals and,, 9-7, 9-8

system access, 3-3
system activity display programs, 3-14
system command languages, 4-1-4-6
system-controlled partitions, 3-4-3-5
system directives, 3-6, 4-10
system generation, see SYSGEN
system image files, 5-1
System Image Preservation (SIP) program, 3-

1, 3-14
system initialization and maintenance

commands, in MCA, 4-4

system library routines, 4-10
system management and maintenance, 5·

1-5-7
system managers

QMG privileged commands used by, 5-4
remote preventive maintenance set up by,

5-6
system object libraries, 4-10
system pool, 3-9
system protection, 3-3-3-4
System Task Directory (STD), 3-3, 3-14
system task images, 3-12-3-13
system traps, 3-6-3-7
lopment4-1
RSX-11M and RSX-11M·PLUS compatibility

of, 3-1
for RSX-11S, 3-13
RSX DECnet, 10-4-10-5
RSX DLX-11, 10-6-10-7
support services for, 11-1-11-2
SYSGEN for selection of options for, 5-1

software interrupts (system traps), 3-6-3-7
Software Product Services, 11 -1-11-2
Software Product Update Service, 11-2
SORT-11, 7-1 , 7-18-7-19
SORTA (address routing sort), 7-19
SORTI (index sort), 7-19
SORTA (record sort), 7-19
SORTS program, 7-18-7-19
SORTT (tag sort), 7-19
Source Language Input Program (SLP), 4-11
SP (hardware stack pointer), 8-2
spawning, 3-10
Special User Groups, 11-7
specification files (in SORT-11), 7-16-7-18
SPM-11M (software performance monitor), 5-

2
SPM-11 M-PLUS (software performance

monitor), 5-2
spooling (Shared Peripheral Operations

Online), 4-9-4-10, 5-4
in File Control Services, 7-4
File Transfer Spooler, in RSX DECnet, for,

10-5
stack addressing, 8-2
Standard Function System option, 5-1
statements

in FORTRAN IV, 6-5
in MACR0-11 , 6-1

static common regions, 3-8
statistical multiplexer, 9-12
storage, see memory

stream format records, 7-10
structured macro libraries, 6-2
structured programming, in PDP-11 BASIC-

PLUS-2, 6-10
subpartitions, 3-4
subroutine call instructions, 8-1
Supervisor access mode, 8-2
Supervisor-mode library routines, 2-1, 3-1 , 3-9,

3-11
FCSFSL, 7-2

Supervisor-mode registers, 3-8
supplies, 11-5, 11-6
support

for networks, 10-11
services for, 11-1-11-7

Switched Virtual Circuits (SVCs), 10-10
switch gain multiplexer, 9-15

symbol definition file, 3-3
Symbolic Debugger, in PDP-11 BASIC-PLUS-

2, 6-9
Symbolic Interactive Debugger

in COBOL-81, 6-7
in PDP-11COBOL,6-8

symbols, used in MACA0-11, 6-1
symbol tables, 6-1
synchronous-line interfaces, 9-11-9-12
synchronous record operations, 7-13
synchronous serial-line interfaces, 9-11
Synchronous System Traps (SSTs), 3-6-3-7,

4-8
SYSGEN (system generation utility), 3-1, 3-2,

5-1
pool space created by, 5-5
for RSX-11S, 3-13
terminals and,, 9-7, 9-8

system access, 3-3
system activity display programs, 3-14
system command languages, 4-1-4-6
system-controlled partitions, 3-4-3-5
system directives, 3-6, 4-10
system generation, see SYSGEN
system image files, 5-1
System Image Preservation (SIP) program, 3-

1, 3-14
system initialization and maintenance

commands, in MCR, 4-4
system library routines, 4-10
system management and maintenance, 5-

1-5-7
system managers

QMG privileged commands used by, 5-4
remote preventive maintenance set up by,

5-6
system object libraries, 4-10
system pool, 3-9
system protection, 3-3-3-4
System Task Directory (STD), 3-3, 3-14
system task images, 3-12-3-13
system traps, 3-6-3-7

T
tag sort (SORTT), 7-19
tapes, 9-3-9-5
Task Builder (TKB), 3-2-3-3, 4-12

FORTRAN IV and, 6-5
MACR0-11 and, 6-2
maps produced by, 3-9
memory management and, 3-7

Task Control Block (TCB), 3-14
Task Execution Control Directives, 3-6
Task/File Patch Program (ZAP), 4-11
task images, 3-2, 3-3, 4-12
task regions, 3-8
tasks, 3-2-3-3

attached to regions, 3-8
communications between, 3-10-3-11
debugging of, 4-8
DECnet communications between, 10-5
environment for, 3-4-3-7
indirect task command files for, 4-6
Packetnet communications between,

10-10
parent and offspring, 3-10

Task Status Control Directives, 3-6
Task Termination Notification Program

· (TKTN), 3-14

TE16 tape drives, 9-5
terminal driver, 9-7
terminal emulation (for 3270 terminals), 10-9
terminal format (PDP-11 COBOL), 6-9
terminals, 2-2, 4-11-4-12, 9-7-9-10

DECnet communication between, 10-5
EDT on, 4-7
interfaces for, 9-10-9-13
Packetnet communications between,

10-10
system activity display programs for, 3-14
system protection and, 3-3
3270 emulation, 10-9
virtual, 3-10
VT100, 7-15

Terminal Service Centers (TSCs), 11-4
text editors, 4-7
text modification commands, 4-7
3270 terminal emulation, 10-9
threaded code, 6-11
Trap-Assiacated Directives, 3-6
trap instruction, 8-1
traps, 3-6-3-7
trap service routines, 3-6
TS11 tape drives, 9-5
TSV05 tape drives, 9-4-9-5
TU58 DECtape II cartridge tape drives, 9-3,

9-4
TU77 tape drives, 9-5

u
UART (Universal Asynchronous Receiver-

Transmitter), 9-10
UDA50 (disk controller), 5-3, 9-2-9-3
UN1004/RSX terminal emulator, 10-8
UNIBUS, 2-2, 8-5, 8-6
unit record peripherals, 9-5-9-7
UNIVAC systems, protocol emulators for

communications with, 10-7, 10-8
unmapped systems, 3-4, 3-5
updates

in DATATRIEVE-11, 7-14
Software Product Updates for, 11-2

User access mode, 8-2
User Application Interface (DECnet/SNA

Gateway), 10-9
user-controlled partitions, 3-4
user-defined symbols, 6-1
User Environmental Test Package (UETP), 5-1,

11-1
User File Directory (UFO), 3-3, 4-10, 7-1
user groups, 3-3-3-4
User Identification Codes (UICs), 3-3-3-4,

5-1-5-2, 7-1, 7-14
User layer, 10-3
User mode, 2-1, 3-1
User-mode Instruction and Data (I- and D-)

space, 3-9
User-mode mapping registers, 7-2
user program interface (in Packetnet), 10-10
users

authorization and identification of,
5-1-5-2

interface between terminals and, 9-7-9-8
user task environment, 3-4-3-7
user-written Command Line Interpreters, 4-5
utilities, 2-1 , 2-4

in COBOL-81, 6-7
file and volume management, 7-2

v

In PDP-11 COBOL, 6-9
program development, 4-9-4-11
SORT-11, 7·16-7-19
volume maintenance, 5-3-5-4

validation, of data Inputs, in DATATRIEVE-11 ,
7-14

variable-length record format, 7-9, 7-10
varlable-wlth·flxed-control (VFC) records,

7-9-7-10
VAX-11 BASIC,6-11
VAX· 11 COBOL, 6·6
V AXJVMS DCL, 4-1
version numbers, 7-2
VFY (File Structure Verification), 5·4
video terminals, 4-11, 4-12, 9-9-9-10

EDTon,4-7
FMS-11 on, 7-15

view facility (DATATRIEVE-11), 7-15

virtual address space, 3-7-3-8, 8·4
virtual address windows, 3·8
virtual blocks, 4-10, 7-3

In RMS files, 7-10
virtual circuits, 10-10
Virtual Monitor Console Routine (VMR), 3-3,

3-4, 3·14, 5·1
virtual terminals, 3-10, 4-6
volume and device resource control

commands
in DCL, 4·2
In MCA, 4-4-4·5

volumes
Files-11 formatting of, 7-1
maintenance of, 5·3-5·4

utilities for, 7-2
VT100 video terminals, 4-7, 7-15, 9-9-9-10
VT101 video terminal, 9-9
VT102 video terminal, 9-9-9-10
VT125 graphics terminal, 9-10

VT131 video terminal, 9-10

w
WAIT$ macro (FCS), 7-3, 7-4
warranties, software, 11 ·1
Winchester d isk drives, 9-3
windows, 3-7-3-8
world access, 3-4
write access, 3-3
WRITE macro (FCS), 7-3, 7-4

x
X.25 communications protocol, 10-1, 10·9,

10-10

z
ZAP (Task/File Patch Program), 4-11

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, MA 01754, Tel. (617) 897-5111 - SALES AND SERVICE OFFICES;
UNITED STATES - ALABAMA, Birmingham, Huntsvllle ARIZONA, Phoenix, Tucson ARKANSAS, Llttle Rock CALIFORNIA, Costa Meaa, El
Segundo, Los Angeles, Modesto, Monrovia, Oakland, Pasadena, Sacramento, San Diego, San Francisco, Santa Barbara, Santa Clara, Santa
Monica, Sherman Oaks, Sunnyvale COLORADO, Colorado Springs, Denver CONNECTICUT, Falrfleld, Meriden DELAWARE, Newark, Wllmlng­
ton FLORIDA, Jack1onvllle, Melbourne, Miami, Orlando, Penaacola, Tampa GEORGIA, Atlanta HAWAII, Honolulu IDAHO, Boise ILLINOIS,
Chicago, Peoria INDIANA, lndlanapoll1 IOWA, Bettendorf KENTUCKY, Loulavllle LOUISIANA, Baton Rouge, New Orleans MAINE, Portland
MARYLAND, Baltimore, Odenton MASSACHUSETTS, Boston , Burlington, Sprlngfleld, Waltham MICHIGAN, Detroit, Kalamazoo MINNESOTA,
Mlnneapoll1 MISSOURI, Kan1aa City, St. Louis NEBRASKA, Omaha NEVADA, Laa Vegaa, Reno NEW HAMPSHIRE, Manchester NEW JERSEY,
Cherry Hiii, Par1lppany, Princeton, Someraet NEW MEXICO, Albuquerque, Los Alamos NEW YORK, Albany, Buffalo, Long Island, New York
City, Rochester, Syracuae, Westchester NORTH CAROLINA, Chapel Hiii , Charlotte OHIO, Cincinnati, Cleveland, Columbus, Dayton OKLAHO­
MA, Tulaa OREGON, Eugene, Portland PENNSYLVANIA, Allentown, Harrisburg, Phlladelphla, Pittsburgh RHODE ISLAND, Providence SOUTH
CAROLINA, Columbia, Greenvllle TENNESSEE, Knoxvllle, Memphis, Naahvllle TEXAS, Austin, Dallaa, El Paao, Houston, San Antonio UTAH,
Salt Lake City VERMONT, Burlington VIRGINIA, Arlington, Lynchburg, Norfolk, Richmond WASHINGTON, Seattle, Spokane WASHINGTON D.C.
WEST VIRGINIA, Charleston WISCONSIN , Madison, Miiwaukee INTERNATIONAL - EUROPEAN AREA HEADQUARTERS: Geneva, Tel: [41]
(22)-93-33·11 INTERNATIONAL AREA HEADQUARTERS: Acton, MA 01754, U.S.A., Tel: (617) 263-6000 ARGENTINA, Buenos Aires AUSTRALIA,
Adelaide, Brisbane, Canberra, Darwin, Hobart, Melbourne, Newcaatle, Perth, Sydney, Town1vllle AUSTRIA, Vienna BELGIUM, Bruaaels BRA­
ZIL, Rio de Janeiro, Sao Paulo CANADA, Calgary, Edmonton, Hamilton, Halifax, Kingston, London, Montreal, Ottawa, Quebec City, Regina,
Toronto, Vancouver, Victoria, Winnipeg CHILE, Santiago COLOMBIA, Bogota DENMARK, Copenhagen EGYPT, Cairo ENGLAND, Basingstoke,
Birmingham, Brlstol, Eallng, Epsom, Leeds, Leicester, London, Manchester, Newmarket, Reading, Welwyn FINLAND, Helslnkl FRANCE,
Bordeaux, Liiie, Lyon, Maraellle, Paris, Puteaux, Strasbourg HONG KOf'IG INDIA, Bangalore, Bombay, Calcutta, Hyderabad, New Delhl
IRELAND, Dublln ISRAEL, Tel Aviv ITALY, Miian , Padova, Rome, Turin JAPAN, Fukuoka , Nagoya, Oaaka, Tokyo, Yokohama KOREA, Seoul
KUWAIT, Safat MEXICO, Mexico City, Monterrey NETHERLANDS, Amsterdam, The Hague, Utrecht NEW ZEALAND, Auckland , Christchurch ,
Welllngton NIGERIA, Lagoa NORTHERN IRELAND, Belfaat NORWAY, Oslo, PERU, Lima PUERTO RICO, San Juan SAUDI ARABIA, Jeddah
SCOTLAND, Edinburgh REPUBLIC OF SINGAPORE, SPAIN, Barcelona, Madrid SWEDEN, Gothenburg, Malmoe, Stockholm SWITZERLAND,
Geneva, Zurich TAIWAN, Taipei TRINIDAD, Port of Spain VENEZUELA, Caracaa WEST GERMANY, Berlln, Cologne, Frankfurt, Hamburg,
Hannover, Munich, Nuremberg, Stuttgart YUGOSLAVIA, Belgrade, Llubllana, Zagreb

0

N

~

