
DISK OPERATING SYSTEM SOHT 

SORT 1.1 

~PTEMBER 5,1973 

rog(om 
• 

S0(S UI~0 

COPYRIGHT (C) 1973 BY DATAPOINT CORPORATION 



S 0 R T 

DATAPOINT OISK OPERATING SYSTEM SORT 

Datapoint corporation 

September 5, 1973 



INTRODUCTION 

The Disk Operatinq Systel SORT enables any Datapoint 
Disk user to initiate rapid and sophisticated file sorts 
directly frol a keyboard command silply by incorporating the 
SORT program within his co •• and library~ 

Using a multi-train radix sort technique, the Datapoint 
2200 achieves speeds comparable with much larger systems. 
The list of optionl also co.pares favorably with much more 
extensive systems. Nevertheless, since it uses the full 
dynamic nature of the 2200 Disk Operating System, it is 
extremely easy to operate. 

For more sophisticated uses, SORT lDay be c'alled from 
other prograMS through DOS CHAIN. USing CHAIN also enables 
complicated sQrt options to be reduced to a single macro 
name then callable either frol the keyboard or another 
program by that name. CHAIN also extends the SORT package to 
operate as a merge, as well. 

SORT is available on a single cassette consisting of 
two programs: SORT/CMD and SORT/OVI. Once cataloged, the 
SORT is immediately available to run. 

1 



TABLE OF CONTENTS 

1.0 GENERAL INFORMATION 
1.1 Physical requirements 
1.2 Bringing up the system 

2.0 SIMPLE SORT CONCEPTS 
2.1 What the files look like 
2.2 The KEf option 
2.3 How to sort a file 

3.0 THE OTHER OPTIONS 
3.1 Generali2ed command statement format 
3.2 Keys-overlapping and in backwards order 
3.3 Ascending/descending sequences 
3.4 Input/output file format options 
3.5 Limited output format option 
3.6 Key file drive number 

4.0 THE USE OF CHAIN WITH SORT 
4.1 How to set up a chain file for sort 
4.2 Naming a repetitive sort procedure 
4.3 Initiating a sort from another program 
4.4 Using chain to cause a merge 

2 



1.0 GENERAL INFORMATION 

1.1 Physical requirements 

SORT is desiqned to operate with a Datapoint 2200 model 
126, 16k version 2, and a 2200 series 350 disk with one to 
four drives. It is necessary to have Datapoint DOS resident 
and SORT cataloged within it. 

SORT will optimize its speed through allocation of its 
working files on the available drives. During this process 
it attempts to ascertain the availablility of sufficient 
disk space to achieve the desired sort. The program will 
abort at this point should the disk space be inadequate. 

1.2 Bringing up the system 

The two programs comprising sort are distributed on a 
cassette in the 'CMF' format meaning that they are cataloged 
on a CTOS tape. This is only a means of distribution and the 
Cassette Tape operating System has no other connection with 
the SORT programs. 

To incorporate the two programs from the eTOS tape into 
the Disk operating System directory, the following procedure 
proves least time consuming: By hand', advance the cassette 
beyond the loader (about 6 inches of actual tape). Bring up 
the DOS. Place the cassette in the front deck. Type to the 
DOS lR iQ!~L'Ka~RZ. This will bring in the main SORT 
program. If no error messages are issued, proceed with the 
next step. Type 11 iQiILQIILI1. SORT is now ready to 
operate. (Of course, the above procedure could be replaced 
with the usual 'OUT' the eTOS file and 'IN' the disk file, 
but it takes much longer). 

3 



2.0 SIMPLE SORT CONCEPTS 

2.1 What the files look like 

All Datapoint systems use a universal text file 
structure Databus, Datashare RPG II, Basic, Scribe, 
Editor, Assembler, Terminal eaulators, etc. Therefore, any 
file generated by or for any of the above may be sorted. It 
must be on disk, however. 

There are two sub-formats the Datapoint file can take: 
Indexed or sequential. Sequential files are very free form 
and have little restriction on their relation to the 
physical records on the DISK. Indexed files, however, are 
required to have a fixed relationshiP of a single 'string' 
or 'record' of data per disk record. Nevertheless, indexed 
files can be read sequentially in the identical way that 
sequential files are read. In fact, both types, when read 
sequentially, are indistinguishable. Indexed files are used 
tor achieving random access to records. They generally 
require a great deal more disk space than sequential files 
for the same amount of data. 

I 

When sorting, consider that the result of the sort is 
not restructuring of the original file. It is a 
restructured COpy of the original file. The original file is 
never changed. 

Therefore, SORT produces a file which is a sorted 
version of the original. This gives the user the added 
opportunity of specifying the type of file to be the output 
regardless of the input file fori at (with one restriction 
see section 3.4). 

2.2 The key options 

The KEY of a sort is the FIELD or that part of the 
record Which is to ORDER the sequence of records. For 
instance, it can be a person's name, state, employee number, 
amount in debt or any aspect of the data base identifiable 
by a fixed position in the record based upon the colUmn 
count from the beginning of the record. 

Consider the following record (colUmn count scale below 
for reference only): 

Mule, FranciS A. 242219 123 BARN SAN ANTONIO TX 
123456789012345678901234567890123456789012345678901234567890 

The name begins in column 1 and goes to 22. The employee 
number spans columns 24-29. The street address is 31-42. The 

4 



city is 43-59. The State is 59-60. 

If each person had a record in the file exactly in the 
above format, SORT could order the sequence of records in 
the file by any of the above fields. For instance, to get 
an alphabetical list of the records by nale, the KEY would 
be 1 to 22 (hereafter referred to as 1-22). The KEY for 
sequencing the file in order of elployee number· would be 
24-29. The key for ordering the records by state then city 
and then e.ployee number would be 59-60.43-59,24-29. 

It should be obvious that any part of the record can be 
used as a key. It aay not be obvious, however, that the 
larger the key, the slower the sort - it is the case and is 
approximately proportional. 

2.3 How to sort a file 

Sorting a file is done from the keyboard of the DOS. 
All the operator must know is the NAME of the file to be 
sorted, the nalle desired for the sorted output file, and the 
definition of the KEY. 

For instance, the keyboard issued command for the above 
example to sort on the name field (1-22), would be: 

This is assuming that the name of that file 
EMPLFILE. It is also the operators decision as to what 
resultant sorted file is called. The command could 
been: £.Qll .l!lR..kl~L..l.t.lll£.al.l.l.::Z.2, nailing the resultant 
EMPSRT. The second file named is where the r~sultant 
will be placed. 

was 
the 

have 
file 
sort 

More complicated keys may be stated as well, and the 
command to list by state and then name would be: 
i~Rl !Klrl~l.t.i2Alll~L2i=2Q~1=~~ • 

This is simplified sorting. Most systems have source 
code for a Oata~us or Assembly language program on file on 
the disk. Such programs can be sor~ed, for instance, by 
label field and produce an interesting look at the 
dictionary: £.QAl lRllLl.t..QYl!~L.lil=6. 

Sorting an assembly or Oatabus source file by 
can provide an interesting analysis of the usage 
instruction type: 
i2B..T.. 1l!llll..l.2Y.I.l.lltl.ii::..l.2. 

op-code 
of each 

Sort can pr~vide an interesting, informative analytical 
tool to aany other systems than simply the typical bUSiness 

5 



requirements. These other aspects of SORT's utility 
increasingly significant when a sort function is as 
invokable and speedy as the Datapoint SORT system. 

6 

become 
easily 



3.0 THE OTHER OPTIONS 

3.1 Generalized command statement format 

The following is a generalized statement format for the 
Datapoint DOS SORT: 

SORT INFILE,OUTFILE<:DRk><; «*><I><O><L>l<SSS<-EEE»> 

Information contained within a pair of corner brackets 
<> are optional. Default conditions are listed below. The 
items within square brackets [J are not order dependent. 
Typical statements obeying this forlat are: 

(1) SORT INFILE,OUTFILE 
(2") SORT INFILE,OUTFILE;1-3,7-20 
(3) SORT INFILE,OOTFILEIIOl-3 
(4) SORT INFILE,OUTFILE;*IDL7-20 

All the above statements will invoke a sort. Each will 
provide different results. However, notice that in (1) 
there are no other paraaeters than the file specifiers. 
That is because all the specifiable parameters have a given 
value in case there is no specifification for it. 

The following list defines the paraaeters which can be 
specified: 

<:DRk> •••••••••• This specifies the drive for the sort key 
file. This is only a working scratch file 
needed during the sort. It will go, in 
default, on drive 0 in a one-drive system, 
and drive 1 in a multi-drive system. 
Reloving it "from the same drive as the input 
file will speed up the sort. 

<*> ••••••••••••• This will cause a debug display of various 
internal parameters to occur during the sort 
and is only useful in helping systems 
programmers understand a difficult­
to-~xplain behavior on the part of SORT. If 
~ is not present, no debug display will 
occur. 

<I> ••••••••••••• Without typing the I, the output file 
be SEQUENTIAL no matter what the input 
only if the input file is an INDEXED 
can the I paraaeter be included and 
the output file to be indexed. 

will 
file. 
f i Ie, 
cause 

<O> ••••••••••••• Without typing the 0, the collating sequence 

7 



order is considered ASCENDING. Including 
the 0 parameter will cause the collating 
sequence to operate in DESCENDING order. 

<L> ••••••••••••• Norlally the sort transfers the entire 
records of the input file to the output 
file. It is possible, not only to transfer 
part of each record, but to include constant 
literals in each record as well. Including 
the L parameter in the list of parameters 
will cause another question to be asked 
wherein you may specify the limitations and 
constants. 

<SSS<-EEE» ••••• This is the sort key specification. It aay 
be repeated with comla separators. If no 
key is specified, the system will assume the 
identical sort to that which would occur if 
the operator typed 1-10, i.e. the first ten 
characters. The maximum number of keys is 
that which can be typed without exceeding 
the input line. 

3. 2 Key s - 0 v e rIa p pin q and in b a c k 'war d s 0 r d e r 

The key specification does not need to be forward only. 
A specification of 17-12 will cause the 6 delimited 
characters to be a key but in the order of 
17,16,15,14,13,12. This is extremely valuable, clearly, in 
data which has the lost significant digit or character last. 

Key specifications may also be overlapping: 1-20,30-15 
overlaps 15 to 20. When this occurs, the system will 
optimize the sort and save time over re-sorting on those 
columns again. 

3.3 Ascending and Descending sequences 

Changing the collating sequence frol ascending to 
descending is the sase as 'reversing' the file, or placing 
the last first etc. Sorting a telephone directory in 
ascending sequence on name produces the familiar order. 
Should it be sorted in descending sequence, then Mr. zyt 
would be first and Mr. Aardvark would be last. The order of 
collation follows the ASCII order when alphabetiC, numeric, 
and punctuation characters can all occur in a column 
together. 

3.4 Input/output file format options 

8 



SORT accesses each file sequentially. Due to the 
techniques used in the Oatapoint standard file structure, 
the sequential reading technique Will provide SORT with all 
of the records in the file whether the file was originally 
indexed or sequential. Therefore, the file forlat options 
only allow specification of the OUTPUT file's format. 

If the input file is INDEXED, that is one logical 
record or string per phYSical disk record, then you have a 
choice of output formats. If 'I' is chosen, that is INDEXED, 
then each output disk record will contain an exact copy of 
the appropriate input file record. If '5' is chosen, that is 
SEQUENTIAL, then the input file, reordered, will be 
reblocked, space co.pression iaposed, and appear, generally 
luch aore compactly, in the output file in sequential 
forlat. 

If the input file is SEQUENTIAL in its original format, 
then there is only one choice for the output format. The 
output file format for a sort on an input file which is 
sequential MUST be SEQUENTIAL. 

3.5 Lilited output forlat option. 

In many cases, especially when making reports, 
directories etc. from the data base, it is not necessary to 
have the entire record transferred from the input file to 
the output file during a sort. For instance, an entire 
personnel data base can be sorted by name to produce an 
internal cOlpany telephone directory. However, it is 
obvious that all that is needed is the name and telephone 
number, NOT all the other payroll information. Therefore, 
SORT permits transferring only that part of the data base 
desired. 

In the sale manner that the key of the records is 
speCified by fixed column nUlber, i.e. 1-10 for the first 
ten characters, the limited output feature specifies the 
part of the record to be transferred. Should the response 
1-10 be given to the li.ited output format request, only the 
first ten characters of each record will be tranSferred to 
the output file. Also, in the same manner that the key 
permits lultiple disconti9uoUS fields to be specified, the 
limited output for.at specifier operates. For instance, 
1-10,50-70 would transfer thirty characters froa each record 
of the input file to the output file. The ~leventh character 
in the output record would be the fiftieth character of the 
input record, etc. 

To invoke the limited output format option, 
operator includes the 'L' parameter in the specifier 
(see section 3.1)~ If and only if the L is specified 

9 

the 
list. 

during 



the SORT call, Will there be a second question asked of the 
operator on the next line: 

LIMITED OUTPUT FILE FORMAT: 

This question requires at least one non-trivial field 
specification or constant (see next paragraph). The number 
of field and constant specifications is only limited by that 
which can fit on the keyed in line. 

To permit even more utility in report generation, SORT 
allows inclusion of constants in the output record that did 
not occur in the input record. For instance, assume that the 
personnel data base was a full record of approximately 240 
characters and that the employees name appears in columns 80 
to 110 and his telephone nuaber was in columns 171 to 180. 
To make a telephone directory in alphabetical order, one 
could answer the following to the liaited file output format 
request: 

80-110,' ~ ',171-180 

Note that this would put out the name followed by 
spaces, a hyphen, four aore spaces and the number. 
number of input file fields and constants can be placed 
the output file up to the limit of the line on which 
specification is typed. 

four 
Any 

in 
the 

Also note that the output file requires proportionally 
less rool than the input file when limited. Often this fact 
can be applied when the disk file space is nearly exhausted 
and a sort 1s reqUired. 

3.6 Key file drive number. 

There are three file systems associated with a sort. 
The first is, of course, the input file. The second is the 
output file. The third is the keyfile system. (The user only 
uses the output file - the keyfile systel is a scratch file 
used by the systea during sorting). There are actually two 
files which are opened during the sort for the keyfile 
systea. They are *SOR'IEY/SYS and *SORTMRG/SYS. These two 
files can grow to considerable sizes during the sorting 
procedure since they are proportional to the number of 
records and the site of the key field. 

There are two considerations for the location of the 
keyf11e syste •• The first is the problem of room. The 
keyf1le aust be on a drive with sufficient room to hold it. 
The second is speed. The greatest increase in ~peed occurs 
in reloving the keyfile systea from the same drive as the 
input file. Greater speeds can occur if it is, as well, not 

10 



on the same drive as the output file. Normally the SORT 
does a qood job of deter.ining the best location of the two 
keyfile files, and it should not be necessary to specify 
anything for this. However, under complex circuastances, it 
may be desirable for the operator to specify the drive 
nuaber tor the keyfile. Should this be the case. the user 
should type in the (:DRk> specification as indicated in the 
general co •• and for.at in section 3.1. 

11 



4.0 THE USE OF CHAIN WITH SORT. 

The reader should first faailiarize hi.s~lf with CHAIN by 
thoroughly reading the CHAIN User's Guide. 

Chain is a system whereby the operator of a Datapoint 
Disk operating System aay pre-define a procedure sequence of 
his own programs, systel co •• ands and utilities (including 
keyboard answers to questions requested by these programs) 
and have them called and sequentially executed by a single 
naae. This is especially powerful when using SORT since 
there lay be a repetitive sequence of routines with coaplex 
parameterizations which would make good use of a 
simplification. 

4.1 How to set up a chain file for sort 

The author of a chain file needs to remember that ALL 
questions that the system requests INCLUDING those initiated 
by the executing prograls MUST BE ANSWERED f~om the chain 
file just as though they would be typed in frol the 
keyboard. ' 

For instance, the initiation of a sort 'SORT 
INFILE,OUTFILE;I3-4Z' could be done through chain. To do 
this, use the Editor to type in that exact sequence of 
characters into a file. Note that the file will, in this 
case, consist of a single line as typed above. ~he file can 
be any name, but for purposes of simplifying the 
explanation, it shall be referred to as CHAINFIL. If 
CHAINFIL consists of that single line, and if the operator 
types the co.mand 'CHAIN CHAINFIL' to the DOS, the SORT 
specified above would be initiated. If the IL' specification 
were included in the statement above, then SORT would ask 
for another line of information. In this case, the file 
CHAINFIL would have to have two lines in it with the first 
beinq the SORT co •• and and the second being the limited 
output file format specification. 

4.2 Naming a repetitive sort procedure 

Frequently there are sorts and printouts and other 
proceedures which occur together and for which a name 
invoking the procedure would be a great simplification •. 

For instance, in the telephone directory exa_ple above, 
the process of sortinq the file into a limited output file 
and then listing it on a local printer could be procedurized 
as follows: 

12 



SORT EKPFILE,TELFIL!;L80-110 
80-110,' - ',171-180 
LIST TELFILE,XL 
TELEPHONE DIRECTORY POR XXXXXXXXXX CORPORATION 

Note tnat there are four statements. The first is the 
SORT co •• and. The second is th~ answer to the limited format 
initiated by the IL' in the SORT co.mand. The third is the 
DOS LIST com.and with the specifiers of 'X' which says 
'without line numbers' and the 'L' which, here, means local 
printer. Then there is a fourth line which th~ LIST co •• and 
requests - the heading. ThiS questio~ aust also be answered 
in the chain file. If the above four state.ents were placed 
in a file by the editor (or by any other leans, for that 
matter) and then chain were invoked with that file 
specified, the result would be a sorted telephone directory 
from the personnel files appearing on the printer. 

4.3 Initiating a sort from another prograa 

The chain file (CHAINFIL above) could have been created 
by any Datapoint system whiCh can" write a file. This makes 
the concept even more powerful Since programs can create or 
modify subsequent procedures of itself, other programs, 
system commands and utilities. RPG II and Databus 7 can make 
good use of this. 

4.4 Using chain to cause a merge 

Consider a situation wherein a system has a master file 
called 'MASTER' and a file of records to be added, in 
sequence, to the master file called 'ADDFILE'. To merge 
these two files in sorted sequence at the end of each day 
would normally require a sequence of keyed in operations 
which are somewhat complicated and error prone. CHAIN can 
cause an effectiv~ MERGE and assiqD it a single name as 
follows: 

SAPP MASTER,ADDFILE,MASTER 
SORT MASTER,SCRATCH;1-20 
KILL MASTER/TXl 
NAME SCRATCH/TXT,MASTER/TXT 

Note that the procedure: 
1) appends the ADDFILE to the MASTER file. 
2) Sorts the extended MASTER file into a SCRATCH file. 
3&4) Renames the SCRATCH file as the new MASTER file. Thus, 
it is apparent that a merge can be effectively achieved 
using SORT by USing chain to pre-define the procedure. 

13 


