
DATABUS COMPILER
OBCMPLUS

User's Guide

Version 3

October, 1980

Document No. 50321

DATAPOINT

NOTICE

DATABUS COMPILER
DBCMPLUS

User's Guide

Version 3

October, 1980

Document No. 50321

Datapoint strongly reconunends that its customers use Datapoint

Customer supplies. These disks, diskettes, cassettes, ribbons

and other products are certified by Datapoint to meet all Datapoint

Harcware specifications for consistent optimum performance.

Copyrightc 1960 Datapoint Corporahon. All Rights Reserved.

PREFACE

This document describes the DATABUS Language Compiler

DBCMPLUS. This compiler accepts programs written in the DATABUS

language and translates them into a form that can be interpreted

by both DATABUS and DATASHARE Interpreters.

i

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Changes from Version 2

1.1.1 Features Added
1.2 Changes from Version 1

1.2.1 Features Added
1.2.2 Features Modified

1.3 TABPAGEs Generated
1.4 Interpreters

2. STATEMENT STRUCTURES
2.1 Comments
2.2 Compiler Directives
2.3 Data Area Definition
2.4 Program Execution
2.5 Literals
2.5 The Forcing Character
2.7 Numeric Definitions

2.7.1 Integer/Fraction
2.7.2 Rounding/Truncation
2.7.3 Rounding Rules

2.8 Character String Definitions
2.9 A Sample Program

3. COMPILER DIRECTIVES
3.1 EQUATE (EQU)
3.2 INCLUDE (INC)

3.2.1 Using library files with INCLUDE
3.2.2 Examples of INCLUDE specifications
3.2.3 Possible Uses of DATABUS Libraries

3.3 LISTOFF and LISTON
3.4 IFnn

4. Dl\ T.z\ DEF IN IT ION
4.1 Numeric String Variables
4.2 Character String Variables
4.3 Common Data Areas
4. 4 FORlVi
4.5 DIM
4.6 INIT
4.7 COIVlLST

5. FILE DECLARATION
5.1 FILE

ii

page

1-1
1-1
1-1
1-2
1-2
1-4
1-5
1-5

2-1
2-3
2-4
2-4
2-4
2-5
2-7
2-8
2-8
2-8
2-9

2-10
2-11

3-1
3-1
3-2
3-3
3-4
3-4
3-5
3-5

4-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7

5-1
5-1

5.2 IFILE
5.3 RFILE
5.4 RIFILE
5.5 AFILE

6. PROGRAM CONTROL INSTRUCTIONS
6.1 Condition Flags and Function Key Flags
6.2 GOTO
6.3 BRANCH
6.4 CALL
6.5 RETURN
6.6 ACALL
6.7 STOP
6.8 CHAIN
6.9 rfRAP
6.10 TRAPCLR
6.11 HOLLOUT
6.12 PI
6.13 FILEPI
6.14 TABPAGE
6.15 DSCNCT
6.16 NORETURN
6.17 SHUTDOWN
6.18 PAUSE

7. CHARACTER STRING HANDLING INSTRUCTIONS
7.1 MOVE

7.1.1 MOVE (character string to character string)
7.1.2 MOVE (character string to numeric string)
7.1.3 MOVE (numeric string to character string)

7.2 APPEND
7.3 MATCH
7.4 CMOVE
7.5 CMATCH
7 • 6 B UIVlP
7.7 RESET
7.8 SETLPTR
7.9 ENDSET
7.10 LENSET
7.11 CLEAR
7.12 EXTEND
7.13 MOVEFPTR
7.14 lVJ.OVELPTR
7.15 LOAD
7.16 STORE
7 • 1 7 C LaC 1\
7.18 TYPE
7.19 SEARCH

iii

5-2
5-2
5-3
.5-3

~-1

S-l
e)-I
6-3
()-4
r-)-G
6-7
r,-8
S-9

Ci-13
1:)-17
')-18
S-23
t,:)-25
0-2t1
''=,-27
G-28
(:)-29
S-30

7-1
7-1
7-1
7-4
7-S
7-7
7-9

7-11
7-12
7-14
7-15
7-19
7-22
7-23
7-24
7-25
7-2G
7-27
7-28
7-29
7-31
7-34
7-35

7.20 REPLACE
7.21 SCAN
7.22 EDIT
7.23 OR
7.24 AND
7.25 XOR
7.26 NOT

8. ARITHMETIC INSTRUCTIONS
8.1 ADD
8.2 SUBTRACT (SUB)
8.3 MULTIPLY (MULT)
8.4 DIVIDE (DIV)
8.5 MOVE
8.6 COMPARE
8. 7 LOAD
8.8 STORE
8.9 CHECKll (CKll)
8.10 CHECKI0 (CKI0)

9. INTERACTIVE INPUT/OUTPUT
9.1 KEYIN

9.1.1 Character String Variables (KEYIN)
9.1.2 Numeric String Variables (KEYIN)
9.1.3 List Controls

9.1.3.1 *P<h>:<v> (Cursor Positioning)
9.1.3.2 *EL (Erase to the End-of-Line)
9.1.3.3 *EF (Erase from Cursor Position)
9.1.3.4 *ES (Erase the Screen)
9.1.3.5 *C (Carriage Return)
9.1.3.6 *L (Line Feed)
9.1.3.7 *N (Next Line)
9.1.3.8 *R (Roll the Screen)
9.1.3.9 *+ (KEYIN Continuous On)
9.1.3.10 *- (KEYIN Continuous Off)
9.1.3.11 *T (KEYIN Timeout)
9.1.3.12 *W (Wait)
9.1.3.13 *EOFF (Echo Off)
9.1.3.14 *EON (Echo On)
9.1.3.15 *IT (Invert Text)
9.1.3.16 *IN (Invert to Normal)
9.1.3.17 *JL (Justify Left)
9.1.3.18 *JR (Justi fy Right)
9.1.3.19 *ZF (Zero Fill)
9.1.3.20 *DE (Digit Entry)
9.1.3.21 *HON (Turn on Highlighting)
9.1.3.22 *HOFF (Turn off Highlighting)
9.1.3.23 *RV (Retain Variable)

iv

7-37
7-39
7-41
7-51
7-53
7-55
7-Sh

8-1
8-1
8-3
8-5
8-6
8-9

8-10
8-12
8-14
8-16
8-19

9-1
9-2
9-3
9-4
9-6
9-5
9-7
9-7
9-7
9-8
9-8
9-8
9-8
9-8
9-9
9-9

9-10
9-10
9-11
9-11
9-12
9-12
9-13
9-15
9-15
9-16
9-16
9-16

9.1.3.24 *DV (Display Variable) 9-17
9.1.3.25 *B (Beep) 9-18
9.1.3.26 *OP (Odd Parity) 9-18
9.1.3.27 *EP (Even Parity) 9-18
9.1.3.28 *NP (No Parity) 9~18

9.1.3.29 *3270 (High Speed Keyin for 3270) 9-19
9.1.3.30 *CL (Clear the Key-Ahead Buffer) 9-19
9.1.3.31 *RD (Roll Down the Screen) 9-19
9.1.3.32 *PON (Send "Printer On" Character to Termina19-19
9.1.3.33 *POFF (Send "Printer Off" Character to Termin9-19

9.1.4 Literals (KEYIN) 9-20
9.1.5 Special Considerations 9-20

9.1.5.1 BACKSPACE and CANCEL 9-20
9 • 1 • 5 . 2 NEW LINE 9 - 21
9.1.5.3 INTerrupt 9-22
9.1.5.4 Function Keys 9-22

9.2 DISPLAY 9-23
9.2.1 Character String Variables (DISPLAY) 9-24
9.2.2 Numeric String Variables (DISPLAY) 9-24
9.2.3 List Controls 9-25

9.2.3.1 *P<h>:<v> (Cursor Positioning) 9-25
9.2.3.2 *EL (Erase to End-of-Line) 9-25
9.2.3.3 *EF (Erase to End-of-Frame) 9-25
9.2.3.4 *ES (Erase the Screen) . 9-25
9.2.3.5 *C (Carriage Return) 9-26
9.2.3.6 *L (Line Feed) 9-26
9.2.3.7 *N (Next Line) 9-26
9.2.3.8 *R (Roll the Screen) 9-26
9.2.3.9 *+ (DISPLAY Blank Suppression On) 9-26
9.2.3.10 *- (DISPLAY Blank Suppression Off) 9-27
9.2.3.11 *W (Wait) 9-27
9.2.3.12 *IT (Invert Text) 9-27
9.2.3.13 *IN (Invert to Normal) 9-28
9.2.3.14 *HON (Turn on Highlighting) 9-28
9.2.3.15 *HOFF (Turn off Highlighting) 9-28
9.2.3.16 *B (Beep) 9-28
9.2.3.17 *OP (Odd Parity) 9-28
9.2.3.18 *EP (Even Parity) 9-28
9.2.3.19 *NP (No Parity) 9-28
9.2.3.20 *3270 (High Speed Keyin for 3270) 9-29
9.2.3.21 *RD (Roll Down the Screen) 9-29
9.2.3.22 *PON (Send "Printer On" Character to Termina19-29
9.2.3.23 *POFF (Send "Printer Off" Character to Termin9-29

9.2.4 Literals (DISPLAY) 9-29
9.3 CONSOLE 9-30
9.4 BEEP 9-32
9.5 DEBUG 9-32

v

10. PRINTER OUTPUT
10.1 PRlr-.JT

10.1.1 Character String Variables
10.1.2 Numeric String Variables
10.1.3 List Controls

10.1.3.1 *F (Form Feed)
10.1.3.2 *C (Carriage Return)
10.1.3.3 *L (Line Feed)
10.1.3.4 *N (Next Line)
10.1.3.5 *<n> (Tab To Column <n»
10.1.3.6 ; (Supress new line function)
10.1.3.7 *ZF (Zero Fill)
10.1.3.8 *+ (Blank Supression On)
10.1.3.9 *- (Blank Suppression Off)
10.1.3.10 *<nvar> (Tab to column <nvar»

10.1.4 Literals
10.2 RPRINT
10.3 RELEASE
10.4 Printer Considerations
10.5 SPLOPEN
10.6 SPLCLOSE

11. COMMUNICATIONS INPUT/OUTPUT
11.1 SEND
11.2 RECV
11.3 COMCLR
11.4 COMTsrr
11.5 COMWAI'r
11.6 DLz\L
11. 7 POLL

11.7.1 Process Control steps for POLL

12. DISK INPUT/OUTPUT
12.1 File Structure

12.1.1 Record Structures
12.1.1.1 Physical Records
12.1.1.2 Logical Records
12.1.1.3 Indexed Sequential Records
12.1.1.4 Associative Indexed Records

12.1.2 Space Compression
12.1.3 End of File Mark

12.2 Accessing Methods
12.2.1 Physical Record Accessing
12.2.2 Logical Record Accessing
12.2.3 Indexed Sequentt"al Record Accessing
12.2.4 Associative Indexed Record Accessing

12.3 General Instructions (Disk I/O)
12.3.1 OPEN (General)

vi

10-1
10-2
10-3
10-3
10-4
10-4
10-4
10-4
10-4
10-5
10-5
10-5
10-5
10-6
10-6
10-5
10-7
10-7
10-8
10-9

10-12

11-1
11-1
11-3
11-6
11-7
11-8

11-10
11-11
11-15

12-1
12-2
12-3
12-3
12-3
12-5
12...;.8
12-9

12-11
12-11
12-11
12-12
12-13
12-14
12-15
12-15

12.3.2 CLOSE (General)
12.3.3 READ (General)

12.3.3.1 Character String Variables (READ)
12.3.3.2 Numeric String Variables (READ)

12.3.4 WRITE (General)
12.3.4.1 Character String Variables (WRITE)
12.3.4.2 Numeric String Variables (WRI'fE)
12.3.4.3 List Controls (WRITE)

12.3.4.3.1 *+ (Space Compression On)
12.3.4.3.2 *- (Space Compression Off)
12.3.4.3.3 *ZF (Zero Fill)
12.3.4.3.4 *MP (Minus Overpunch)

12.3.4.4 Octal Control Characters
12.3.4.5 Literals

13. PHYSICAL RECORD ACCESSING
13.1 OPEN (Physical)
13.2 PREPARE (PREP) (Physical)
13.3 CLOSE (Physical)
13.4 READ (Physical)

13.4.1 Tab Control
13.5 WRITE (Physical)
13.6 WRITAB (Physical)

13.6.1 Tab Control
13.7 WEOF (Physical)
13.8 FPOSIT (Physical)

14. LOGICAL RECORD ACCESSING
14.1 OPEN (Logical)
14.2 PREPARE (Logical)
14.3 CLOSE (Logical)
14.4 READ (Logical)
14.5 WRITE (Logical)
14.6 WRITAB (Logical)
14.7 WEOF (Logical)
14.8 FPOSIT (Logical)

15. INDEXED SEQUENTIAL RECORD ACCESSING
15.1 OPEN (Indexed Sequential)
15.2 CLOSE (Indexed Sequential)
15.3 READ (Indexed Sequential)
15.4 WRITE (Indexed Sequential)
15.5 WEOF (Indexed Sequential)
lS.6 READKS (Indexed Sequential).
15.7 UPDATE (Indexed Sequential)
lS.8 INSERT (Indexed Sequential)
lS.9 DELETE (Indexed Sequential)
lS.10 DELETEK (Indexed Sequential)

vii

12-19
12-21
12-23
12-24
12-26
12-27
12-28
12-28
12-29
12-29
12-29
12-29
12-30
12-30

13-1
13-1
13-2
13-4
1.1-5
13-7
13-8

13-10
13-11
13-12
13-13

14-1
14-1
14-1
14-1
14-1
14-3
14-4
14-5
14-5

15-1
15-1
lS-4
lS-4
lS-7

lS-10
15-10
15-12
15-13
IS-IS
IS-IS

IS.11 FPOSIT (Indexed Sequential)

16. ASSOCIATIVE INDEXED RECORD ACCESSING
16.1 OPEN (Associative Indexed)
16.2 CLOSE (Associative Indexed)
16.3 READ (Associative Indexed)
16.4 WRITE (Associative Indexed)
16.S WEOF (Associative Indexed)
16.6 READKG (Associative Indexed)
16.7 UPDATE (Associative Indexed)
16.8 INSERT (Associative Indexed)
16.9 DELETE (Associative Indexed)
16.10 FPOSIT (Associative Indexed)

17. PROGRAM GENERATION
17.1 Preparing Source Files
17.2 Invoking the compiler

17.2.1 File Specifications
17.2.2 Output Parameters
17.2.3 Temporary File Requirements
17.2.4 Display and Keyboard Keys
17.2.S ABTIF flag

Appendix A. INSTRUCTION SUMMARY

Appendix B. INPUT/OUTPUT LIST CONTROLS

Appendix C. SAMPLE DATASHARE SYSTEM
C.l SYSTEM PROGRAMS

C.l.l Sample ANSWER Program
C.l.2 Sample MASTER Program
C.l.3 Sample DATASHARE MASter MENU
C.l.4 Sample Program Selection MENU
C.l.S Chain Files for System Generation

C.l.S.1 Compile the System Programs
C.l.S.2 Re-organize System Log File

C.2 SYSTEM INCLUSION FILES
C.2.1 COMMON User's Data Area
C.2.2 Log File Data Area Definition
C.2.3 Log File Input/Output Routines

C.3 SUPPLEMENTAL SYSTEM PROGRAMS
C.3.1 Re-organize the List of Authorized
C.3.2 Program to Generate New Menus

Appendix D. COMMON FILE ACCESS CONSIDERATIONS

Appendix E. COMPILER ERROR MESSAGES

viii

lS-l~

16-1
16-1
16-4
15-S
16-9

lry-12
1~-12

In-14
16-15
In-17
16-18

17-1
17-1
17-1
17-3
17-3
17-8
17-8
17-9

A-I

B-1

C-l
C-4
C-4

C-14
C-17
C-21
C-27
C-27
C-35
C-37
C-37
C-38
C-40
C-42

Users C-42
C-S3

D-1

E-1

Appendix F. INDEX SEQUENTIAL FILE SIZE COMPUTATION

Appendix G. SERIAL BELT PRINTER CONSIDERATIONS

Appendix H. GLOSSARY

Appendix I. DATABUS OBJECT CODE
1.1 FORMAT OF DATABUS OBJECT CODE FILES
1.2 USER'S DATA AREA OBJECT CODE

1.2.1 Numeric and Character String Variables
1.2.2 FILE and RFILE
1.2.3 IFILE and RIFILE
1.2.4 AFILE
1.2.5 COMLST

1.3 OBJECT CODE OF EXECUTABLE STATEMENTS

INDEX

ix

F-l

G-l

H-l

I-I
I-I
1-2
1-2
1-3
1-3
1-3
1-3
1-3

CHAPTER 1. INTRODUCTION

The DATABUS language is an interpretive high level language
designed for business applications. It has been designed to run
under the Datapoint Disk Operating System and takes advantage of
all of its file handling capabilities (dynamic file allocation,
random, sequential, Indexed Sequential, and the powerful
Associative Index Access Method).

Verbs are provided to permit simple yet flexible operator
interaction with the program, thus enabling levels of data entry
and checking ranging from simple keypunch to extremely
sophisticated intelligent data entry. A complete set of string
manipulation verbs are available, along with a flexible arithmetic
package. An extensive set of file manipulation verbs complete a
powerful business-oriented language.

1.1 Changes from Version 2

The following additions and enhancements were made to Version
3 of the DBCMPLUS DATABUS compiler. The new language features are
only,supported by the DATASHARE VI Version 1 interpreter DS6 1.1
or above. Any attempt to interpret a DATABUS program using these
new features with any other interpreter results in a CHAIN failure
being given, as the compiler places an indication in the object
code file that the code is not executable.

1.1.1 Features Added

The following features have been added to the DATABUS
language since version 2.

1. AIM, the Associative Index Method has been added. This access
method allows flexible and powerful access to a data base
using generic keys. A new data type, an AFILE, has been added
to declare an AIM file, most of the existing I/O verbs have
been modified to accept an AFILE as the file parameter, and
one new instruction, READKG (READ Key Generic), has been
added.

2. KEYIN List Controls

a • *CL - Clear the key ahead buffer

CHAPTER 1. INTRODUCTION 1-1

b. *PON - Send printer on character to terminal
c. *POFF - Send printer off character to terminal
d. *3270 - Control for 3670 terminal operating in 3270

mode

3. Display List Controls

a. *PON - Send printer on character to terminal
b. *POFF - Send printer off character to terminal
c. *3270 - Control for 3670 terminal operating in 3270

mode

4. Pattern match operations can now be performed with the SCAN
verb.

5. The User Data Area has been extended to a maximun of 15,872
(15.5K) bytes.

G. Text file libraries are supported. The source file and any
INCLUDEd files may be placed in text file libraries.

7. The compiler sets the DOS ABTIF (ABorT IF) flag if an error
occurs during compilation. This condition can be detected nnd
used to abort a CHAIN or CHAINPLS operation by using the
//ABTIF chain run time directive.

1.2 Changes from Version 1

The following additions and enhancements were ll1ade to Version
2 of the DBCMPLUS DATABUS compiler. Some are enhancements to the
compiler itself, while most are enhancements to the OATABUS
language. The new language features are only supported by the
DATASHARE V Version 2 interpreter DS5 2.1 or above. Any atte~pt
to interpret a DATABUS program using these new features with any
other interpreter results in a CHAIN failure being given, as the
compiler places an indication in the object code file that the
code is not executable.

1.2.1 Features Added

The following features have been added to the DATABUS
language since version 1.

1. KEYIN List Controls

a. *RV - Retain Variable

1-2 DATABUS COMPILER

b. *DV - Display Variable
c. *8 - Beep
d • *W<n> - Wait <n> seconds
e. *T<n> - Time out after <n> seconds
f • *T<n>:<m> Time out ack and nack count
9 • *EP Generate even par i ty
h. *OP - Genera te odd parity
i • *NP Generate no pa r i ty

2. Display Li st Controls

a . *8 Beep
b. *W<n> - Wait <n> seconds
c. *EP Generate even parity
d • *OP - Genera te odd parity
e. *NP Generate no par i ty

3. PRINT List Controls

a. *<nvar> - Tab to <nvar>

4. CLOCK extensions allowing access to the interspreter's
version, name, port number, screen size, port type, and
maximum User's Data Area (UDA) available.

5. A NORETURN instruction has been added to allow one stack level
to be discarded.

6. A MOVEFPTR instruction has been added to allow readout of the
form pointer.

7. A MOVELPTR instruction has been added to allow readout of the
logical length pointer.

8. An EDIT instruction has been added to aid in the creation of
formatted output.

9. Direct manipulation of the logical length pointer is now
possible with the SETLPTR instruction.

10. Access to the current file position has been added with the
FPOSIT instruction.

11. Central station dialing is now possible with the DIAL
instruction.

12. The SHUTDOWN verb al16ws the user to end execution and return
to DOS without affecting the rollout file.

CHAPTER 1. INTRODUCTION 1-3

13. Print spooling is now offered with the SPLOPEN and SPLCLOSE
instructions.

14. Logical operations have been provided with the OR, AND, XOR,
and NOT verbs.

15. A PAUSE verb for low-overhead port idling has been added.

16. A polling facility is now offered which makes use of a POLL
verb, user written routines, and the DATASHARE KEYIN/DISPLAY
facility.

17. ACALL now allows FILEs, IFILEs, and COMLSTs to be passed as
parameters.

18. New command line options for printer output are included: P to
generate a print file, S to send the output to a servo
printer, and <nn> to specify the number of lines to be printed
per page.

19. Dollar signs are now allowed in labels.

20. LISTOFF and LISTON directives have been added to control
printer output.

21. The IF directive allowing a section of code to be compiled
conditionally.

1.2.2 Features Modified

The following features of the DATABUS language have been
modified since version 1.

1. TRAP extensions allowing more flexible, more extensive use of
the trap concept.

2. TYPE return conditions have been modified.

3. Function key support has been added to both GOTO and TRAP
instructions.

4. The ability to BUMP by a numeric variable has been added.

5. ISAM OPEN's now position to the beginning of the lSI file;
READKS need no longer be preceeded by another file positioning
instruction.

1-4 DATABUS COMPILER

6. Time-outs during KEYIN can now be detected.

7. It is now possible to delete only the key of an ISAM record
with the DELETEK instruction.

8. ISAM INSERT is now allowed after a READ instruction.

9. The program length has been extended to 65,024 (63.5K) bytes.

10. The User Data Area has been extended to a maximum of 7680
bytes.

11. The drive specification on an INCLUDE file name can be
specified by volume name «volid».

1.3 TABPAGEs Generated

The compiler generates two TABPAGE instructions if there is
an instruction with a label on it whose address (location counter)
is between 077401 and 077772. This is done to solve a problem
interpreters have relating to using a BRANCH instruction with a
label operand in this page. The compiler also generates a TABPAGE
instruction if there is an instruction with a label on it whose
address is between 0100001 and 0100372. This is done to solve a
problem with the new extensions for the TRAP and TRAPCLR verbs.
After the TABPAGE is done, the label's address is 0100401.

1.4 Interpreters

The complete DATABUS language may not be compatible with all
OATASHARE and DATABUS Interpreters. The following is a brief
description of the current DATASHARE and DATABUS interpreters.
Refer to the appropriate user's guide for more detailed
information about the interpreters.

OS3A3360

OS3A3600

OS3B3360

OATASHARE 3 Interpreter supporting up to eight 3360
terminals on a 2200 DOS.A system.

OATASHARE 3 Interpreter supporting up to eight 3600
terminals on a 2200 DOS.A system.

DATASHARE 3 Interpreter supporting up to eight 3360
terminals on a 2200 DOS.S system or a 2200 DOS.A
system with a 4K disk controller.

CHAPTER 1. INTRODUCTION 1-5

DS383600

PSDS4

DS42200

DS42200X

DS45000

DS5

DS6

D811

DBMLll

1-6

DATASHARE 3 Interpreter supporting up to eight 3nOO
terminals on a 2200 DOS.B system or a 2200 DOS.A
system with a 4K disk controller.

DATASHARE 4 Interpreter supporting up to sixteen
3360 or 3600 terminals. This interpreter executes
on a 5500 using the 5500 Partition Supervisor or on
a 6600 using the 6600 Partition Supervisor.

OATASHARE 4 Interpreter supporting up to four 3360
terminals on a 2200 DOS.A or DOS.B with a 4K disk
controller system.

OATASHARE 4 Interpreter supporting up to four 3600
terminals on a 2200 DOS.A or DOS.B system with a 4K
disk controller.

DATASHAHE 4 Interpreter supporting up to eight 3360
or 3600 terminals. The features of this
interpreter are similar to DS42200.

DATASHARE 5 Interpreter which is similar to DS55500
and DS56600. Only one interpreter is released for
any Datapoint 5500-compatible product. A different
interpreter is manufactured at the user's site for
each configuration of DATASHARE desired.

DATASHARE h Interpreter. Only one interpreter is
released for any Datapoint 5500-compatible product.
A different interpreter is manufactured at the
user's site for each configuration of DATASHARE
desired. It supports the new features outlined
above.

DATABUS 11 Interpreter executing DATABUS code
programs from the processor console on a 2200,
Diskette 1100, or 5500, DOS.A, DOS.B, DOS.C, OOS.D,
or DOS.E systems.

DATABUS MULTILINK 11 interpreter executing two
DATABUS code programs. The primary program is the
processor console and the secondary (or utility)
program may be used for utility functions.
Internal (between primary and secondary prograD)
and external (with a remote or host processor)
communications are supported. The interpreter
executes on a Datapoint 1150 OOS.C system.

DATABUS COMPILER

CHAPTER 2. STATEMENT STRUCTURES

There are four basic types of statements in the DATABUS
language: comment, compiler directive, data area definition and
program execution. All of the statements (except comments) use
the following basic format:

<label> <operation> <operands> <comment>

where: each of the fields above is separated from the others by
at least one space,

<label> is a letter or dollar sign, followed by any
combination of up to seven letters, digits and
dollar signs, (this does not include special
characters), note that if the compiler encounters
a label longer than eight characters long, instead
of giving an error the compiler creates an eight
character label by taking the first seven and the
last characters of the given label. If this
method of creating labels leads to two identical
labels (two labels whose first seven and last
characters are identical such as THISISBIGI and
THISISBIGGER1) then the compiler gives a duplicate
label error,

<operation> denotes the operation to be performed on the
following operands,

<operands> are any operands required by the <operation>,
and

<comment> is any comment the user wants to make about the
instruction or about program execution.

The label field is considered empty if a space appears in the
first column of the line. The following are examples of valid
labels:

A
ABC
AlBC
81234
ABCDEF
8IGLABEL
$LOOP
D$END

CHAPTER 2. STATEMENT STRUCTURES 2-1

The following are examples of invalid labels:

HI,JK
4DOGS

(contains an invalid character)
(does not begin with a letter)

The compiler keeps track of two distinct sets of labels: data
labels and execution labels. Data labels are ~hose present on
data area definition statements. Execution labels are those
labels used by the program control instructions (see chapter 6.)
to alter the normal flow of program execution.

Data labels must be unique among themselves; that is, no data
label can be the same as any other data label. Execution labels
must also be unique among themselves. However, a label may be
used both as a data label and also as an execution label.

Although there are exceptions (for more details see the
sections that describe the instructions individually), the operand
field for most of the instructions has the following general
format:

<source operand><separator><destination operand>

where: <source operand> is the first operand required by the
operation,

<destination operand> is the second operand required by
the operation, and

<separator> must be a comma or a valid preposition.

If a comma is used as the separator it cannot be preceded by
any spaces, but may be followed by any number of spaces (including
none). The prepositions that may be used as separators are BY,
TO, OF, FROM, USING, WITH, IN, or INTO. If one of these
prepositions is used as the separator, it must be preceded and
followed by at least one blank. Note that any of these
prepositions may be used even if it does not make sense in
English.

The following are all examples of valid statements:

LABELl ADD PCS TO TOTAL
LABEL2 ADD PCS OF TOTAL THIS IS A COMMENT
LABEL3 ADD PCS, TOTAL
LABEL4 ADD PCS,TOTAL
LABELS ADD ~S TO TOTAL

2-2 DATABUS COMPILER

The following are examples of invalid statements:

LABELl
LABEL2

ADD
ADD

PCS TOTAL
PCS ,TOTAL

(missing separator)
(space before comma)

Some of the operations require a list of items in the operand
field. Such a list is typically made up of variable names,
literals, and list controls separated by commas. This list can be
longer than a single line, in which case the line must be
continued. This is accomplished by replacing the comma that would
normally appear in the list with a colon and continuing the list
on the following line. Comments may be included after the colon
used for continuation. For example, the two statements:

DISPLAY

DISPLAY

perform the same function.

2.1 Comments

A,B,C,O:
E,F,G
A,B,C,D,E,F,G

Comment lines have a period, asterisk, or plus sign in the
first column, and may appear anywhere in the program. Comments
are useful in making it easier for someone reading through the
program to understand program logic, subroutine function,
subroutine parameterization, etc.

Comments that begin with a period are simply copied from the
source program to any listing requested by the user.

Comments that begin with an asterisk are treated like
comments that begin with a period, unless there are fewer than 12
lines at the bottom of the current page. If there Are fewer than
12 lines, comments that begin with an asterisk are printed at the
top of the next page. This allows comments to appear on the same
page as the program instructions that are being described by the
comments. Use of the asterisk at the beginning of each section or
subroutine description is encouraged since this greatly enhances
program readability.

Comments that begin with a plus sign are always printed at
the top of the next page. This allows major sections of the
program to be started at the top of a page. The plus sign should
be used cautiously, since it can easily waste great quantities of
paper.

CHAPTER 2. STATEMENT STRUCTURES 2-3

2.2 Compiler Directives

Compiler directives are provided to make the compilation
process easier and more flexible.

There is a compilation directive which allows a programmer to
include other files in the current compilation~ This directive
allows large programs to be broken into several smaller,
easier-to-edit files. It also allows a single file to be used for
a set of subroutines or data definition blocks which are comoon to
more than one program.

There is also a compilation directive which allows the
absolute value of a symbolic name to be defined. A name defined
in this manner may then be used anywhere in place of a decimal or
oct a 1 n urn be r •

2.3 Data Area Definition

The user's data area must be defined by using file
declaration or data definition statements. File declaration
statements are used to reserve space for the system information
needed for all disk accessing, while data definition statements
are used to describe the format of any variables used in a
program. For information about the size of the user's data area,
see the User's Guide of the appropriate interpreter. All of these
statements must have labels which are used to reference the
variable or logical file defined. All labels used with data
definition and file declaration statements are data labels (see
section 2.) •

2.4 Program Execution

The program execution statements are those that actually do
the data manipulation and must conform to the following rules:

They must appear after any data area definition statements.

They mayor may not have labels.

Any label used on one of these statements is an execution
label (see section 2.).

Program execution always begins with the first executable
sta terl1ent.

2-4 DATABUS COMPILER

All execution statements except the first one may have
multiple labels. This is accomplished by entering a label
without an operation field. For example:

LABELl
LABEL2
LABEL3 MOVE A TO B

These three labels all refer to the statement. Execution of any
instruction with LABELl, LABEL2, or LABEL3 as the label operand,
refers to the same statement.

In similar manner, an execution label may be placed on a
blank line to identify the following, unlabeled, executable
sta temen t:

ADD "I" TO C
SUB LINE

SUBTRACT C FROM TOTAL

The label SUBLINE references the SUBTRACT statement. Using this
technique can simplify program editting during development.

2.5 Literals

Li:-.!..erals are useful when a constant value is needed as one of
the operands of an instruction. Using literals saves user's data
area.

A literal has one of the following formats:

"<string>"
<dnum>
"<char>"
<occ>

where: <string> is any sequence of characters with the exceptions
described below in the section on the forcing
character (#). This string may be either a
numer ic str ing (see section 4.1) or a character
str ing (see section 4.2).

<dnum> is a decimal number.
<char> is any single character. (The forcing character

rules do not apply.)
<occ> is an octal control character.

See the sections describing the individual instructions for the

CHAPTER 2. STATEMENT STRUCTURES 2-5

format that may be used with those instructions allowing literals.

The following criteria apply to literals with the "(string)"
format:

~he string may be from 1 through 40 characters in length
(excluding the quotes).

The string must be enclosed in quotes.

When the literal is used as a character string the formpointer
is always equal to 1.

When the literal is used as a character string the logical
length pointer always points to the last character of the
literal.

Most instructions that make use of these literals require that
the literal be the first operand of the instruction (for more
details see the sections that describe the instructions
i nd i v id ua 11 y) •

Some examples of instructions that may use literals of the
"(string)" format follow:

STORE
ROLLOUT
CHAIN
OPEN
PREPARE
MOVE
MOVE
APPEND
MATCH
ADD
SUBTRACT
MULTIPLY
DIVIDE
COMPARE

"APPLES" INTO X OF Sl,S2,S3
"CHAIN FIX22"
"NEXTPROG"
FILEl,"DATAFILE"
FILEl,"USERDATA"
"MESSAGE" TO M3442
"100.55" TO VALUE
".11 TO 8TRI
"YES" TO ANSWER
"23.46" TO TOTAL
"1" FROM COUNT
".111 BY TAX
"33.3333" INTO FACTOR
"10" TO LINENUMB

The following criteria apply to octal control characters:

The octal control character must be between 000 and 0377,
inclusive.

The first character of an octal control character must be a
zero.

2-6 DATABUS COMPILER

Note that some of these octal control characters are used for
control purposes in disk files (000, 003, 011, 015) and others
are used as control characters in KEYIN, DISPLAY, and CONSOLE
statements. Improper use of these control characters can
result in invalid program execution.

2.6 The Forcing Character

Since the second quote is used to indicate the end of the
string, any literal of the form "<string>" needs a special
technique to include a quote as a character within the <string>.
The technique used by the DATABUS language is to define the pound
sign (#) to be a forcing character.

Putting the pound sign within a string tells the compiler
that the next character in the string should be included within
the string. The character following the pound sign is not checked
for any special significance; it is simply picked up and put into
the string. The pound sign used as a forcing character is not put
into the string. This means that to put the pound sign itself
into a string you must do so by using a previous pound sign as a
forcing character.

For example,

DISPLAY "CUSTOMER## SHOULD BE #"2222#""

would display exactly:

CUSTOMER# SHOULD BE 11222211

on the screen.

Note that the forcing character convention does not apply to
1 i t era 1 s 0 f the II < c h a r> II form at. < c h a r> may b e any c ha r act e r ,
inc 1 ud i n g the quo t e c h a r act era n d t 11 e po un d s i 9 n 'ch a r act e r. For
example,

CMOVE 1111" TO STRING

would be used to move a quote into the variable STRING. However,
the use of a literal in a MOVE instruction would require the use
of the forcing character (even in a single character move) since
the quoted item can be a mutiple character quote.

CHAPTER 2. STATEMENT STRUCTURES 2-7

For example:

MOVE "*"11 TO STRING

would be used to move a quote into the variable STRING.

2.7 Numeric Definitions

The following definitions are established so that the ensuing
discussion in subsequent chapters will be more meaningful.

2.7.1 Integer/Fraction

Numeric String Variables (or literals) are composed of two
parts.

a) Integer - The integer portion of a numeric variable is
the portion of the numeric string that exists to the left
of the decimal point. If the decimal point does not
exist explicitly, the decimal point is implied to be to
the right of the rightmost digit of the numeric string.

b) Fractional - The fractional portion of a numeric variable
is the portion of the numeric string that exists tc c~~

right of the decimal point.

For example consider the following:

A
B
C

FORM
FORM
FORM

"123.45"
"678."
"90 "

A has a val u e a f 1 23 for the in t e g e r po r t ion and 4 5 ,f 0 r the
fractional portion. B has a value of 678 for the integer portion.
C has a value of 90 for the integer portion (the decimal point is
impl ied to the right of the zero).

2.7.2 Rounding/Truncation

When the result of an arithmetic operation consists of more
characters than can be contained in the destination variable, the
result is truncated, rounded, or both truncated and rounded so
that it "fits" in the destination variable •

.!~unc~!:i~~ is the process of eliminating those characters

2-8 DATABUS COMPILER

that do not fit in the destination variable. Truncation may occur
either on the right or on the left. Right truncation means some
of the least significant digits of the resu~are lost, while left
truncation means that some of the most significant characters are­
lost. Usually, the arithmetic instruction that causes left
truncation of the result sets the OVER condition flag to indicate
arithmetic overflow.

Rounding is a modified form of right truncation. For details
on rounding, see section 2.7.3. Unless specificly mentioned
otherwise, rounding is used instead of right truncation.

The following rules are used to determine which characters
are lost if truncation or rounding is necessary:

a) If the destination variable is defined to contain a decimal
point, the result (of the arithmetic operation) is aligned so
that its decimal point overstores the destination variable's
decimal point. Any characters that do not fit after this
alignment are lost.

b) If the destination variable is defined without a decimal
point, alignment occurs as if there were a decimal point just
after the least significant digit of the destination variable.

2.7.3 Rounding Rules

To determine when rounding is necessary, see section 2.7.2.
The following rules should be used to distinguish between right
truncation and rounding. To understand the following rules the
distinction between the rounding digit and the rounded digit must
be clear. The rounding digit is the most significant of the
digits lost when rounding a number, while the rounded digit is the
least significant of the digits that are not lost.

r) If the rounding digit is a digit from a to 4, then the rounded
digit remains unchanged.

b) If the rounding digit is the digit 5:

1) If the rest of the digits that are lost are zero (0):

a. If the result (of "the arithmetic operation) is a
negative number, the rounded digit remains unchanged.

b. If the result (of the arithmetic operation) is a
positive number, the rounded digit is incremented by

STATEMENT STRUCTURES 2-9

one (1).

2) If any of the rest of the digits that are lost are
non-zero, the rounded digit is incremented by one (1).

c. If the rounding digit is a digit from fi to -9, the rounded
dig i tis inc r em en ted by 0 n e (1) •

2.8 Character String Definitions

The following terms are used in the description of character
string variables.

character string variable -- made up of four parts; the logical
length pointer, the formpointer, the physical string and
the ETX.

I IIp I fp I physical string I ETX I

physical string -- made up of three parts; the prefix, the
(log ical) str ing and the suffix.

I prefix (logical) string I suffix

logical string -- the string usually modified by the instructions.
It is defined by the formpointer and the logical length
pointer. The first character in the logical string is the
head (the character pointed to by the formpointer). The
last character in the logical string is the tail (the
character pointed to by the logical length pointer).

I head I I tail I

logical length -- the length of the logical string of a non-null
variable. It can be computed by taking the value of the
logical length pointer, subtracting the value of the
formpointer, and adding 1 (LL-FP+l). The logical length of
a null string is undefined.

null string -- a string with the formpointer set to zero.

2-10 DATABUS COMPILER

2.9 A Sample Program

+
. PROGRAM TO DISPLAY A MULTIPLICATION TABLE

COUNTI
COUNT2
PROD

*

FORM
FORM
FORM

"0 If
"0 If
2

. HERE IS THE START OF THE EXECUTABLE CODE

START
LOOP

DISPLAY
lViOVE
MULT
DISPLAY
ADD
GOTO
DISPLAY
ADD
GOTO
STOP

*ES,"MULTIPLICATION TABLE:",*N
COUNTI TO PROD
COUNT2 BY PROD
COUNTl,"X",COUNT2,"=II,PROD," H;
"1" TO COUNT2
LOOP IF NOT OVER
*N
"I" TO COUNTI
LOOP IF NOT OVER

CHAPTER 2. STATEMENT STRUCTURES 2-11

CHAPTER 3. COMPILER DIRECTIVES

Two directives are available to give the user more control
over the compilation process. One is the EQU statement and the
other is the INCLUDE statement.

3.1 EQUATE (EQU)

The EQU statement allows a label to be assigned a decimal
numeric value from 0 through 255 or an octal numeric value from 0
to 0377.

This is particularly useful when one defines the format of
disk records to be used in a data base. If all item positions
within the record are defined using the EQU directive, then
changes in item positions can be achieved by simply changing the
one directive value. If the EQU were not used, changing the
record format would mean changing all disk I/O statements that
depend on this format. The user would have to hunt through all
programs using this format to change all disk I/O statements to
conform to the new record format.

The general fo rma t of the EQU statement is as follows:

<label> EQU <dnum>
<label> EQUATE <dnum>
<label> EQU <occ>
<label> EQUATE <occ>

where: <label> is a data label (see section 2.)
<dnum> is the decimal number to be substituted for any

occurrence of the label within the program being
compi led.

<occ> is the octal number to be substituted for any
occurrence of the label within the program being
compi led.

For example:

LM
DB

EQU
EQU

5
0300

A label which is defined in this manner may be used anywhere a
decimal or octal number is allowed.

CHAPTER 3. COMPILER DIRECTIVES 3-1

3.2 INCLUDE (INC)

This statement allows another text file to be included, at
the point where the INCLUDE statement appears, as if the lines
actually existed in the main file being compiled. Note that the
INCLUDE directive can be used to include a file containing any EQU
directives and data variable definitions which are needed to
define the record format of a data base. This allows the
programmer to enter the information about the data base into only
one file instead of entering it into every program that needs to
know about the data base. Modification of the format also becomes
easier, since the programmer need modify only one file before
compiling all of the programs again.

The user may create and use text file libraries, placing all
the DATABUS source code files in the library. Proper use of
DATABUS library programs results in greater system integrity, more
file names available on system disks, and easier backup. The
compiler is capable of obtaining the original source file, and any
INCLUDEd files from the <system DATABUS library> (see chapter 17
for a discussion of the <system DATABUS library> and how to
specify one) .

The INCLUDE statement can have one of the following formats:

INCLUDE
INC
INCLUDE
INC

<DOS file specification>
<DOS file specification>
<library file specification>.<member name>
<library file specification>.<member name>

where: <DOS file specification> is a DOS compatible specification
of the file to be included in the program.

<library file specification> is a DOS compatible
specification of the text file library to be
searched. Text file libraries are created and
manipulated by the utility LIBRARY/CMD.

<member name> is the member to be included from the text
file library.

Programming Considerations:

Including a file causes all of the lines in that file to be
scanned as if they existed in place of the INCLUDE line.

The assumed extension on included files is TXT but may be
specified to be any extension.

3-2 DATABUS COMPILER

If no drive is specified, all drives starting with drive zero
are s can ned for the f i Ie.

Inclusions may be nested up to four deep, with no limit on the
number of included files.

Any label on the INCLUDE statement itself is ignored if the
INCLUDE statement is in the data area, or is the first
statement in the executable part of the program. If the
INCLUDE statement is elsewhere in the executable part of the
program, any label on the INCLUDE statement references the
first line in the INCLUDEd file.

Fo r ex am pI e :

INC RECDEFS

would cause all of the lines from file RECDEFS/TXT to be scanned
as if they existed instead of the INC statement.

3.2.1 Using library files with INCLUDE

The compiler has the ability to obtain source code from a
text file library. The compiler searches anyon-line drives to
find a free-standing DATABUS program name which matches the
program specification given in the INCLUDE instruction. If this
search is unsuccessful, the compiler then searches the <system
DA TA BUS lib r a r y> (see c hap t e r I 7 for a des c rip t ion 0 f how to
specify a <system DATABUS library». Failure to locate the
program in the library results in an error being given. The
syntax for the INCLUDE statement is:

<program name>l<extension>:<drive # or VOLID>.<library member
name>

Note: No intervening blanks are allowed in the string used to
specify the include file.

If a <library member name> is used in a program
specification, the <program name> is assumed to be a DATABUS
program library file. Failure to locate either the library or the
proper member within the library results in an error. If the
<program name> is not a text library file an error also results.
If a <member name> alone is specified, a search of the <system
DATABUS library> is performed; no free-standing program search
occurs. If the extension is not given on the file specification,
ITXT is assumed for a free-standing file, and ILIB is assumed for

CHAPTER 3. COMPILER DIRECTIVES 3-3

a library file.

3.2.2 Examples of INCLUDE specifications

MYPROG

This specification would cause the compiler to attempt to
find the file MYPROG/TXT on any drives on-line. Failure to locate
the file would cause a search of the <system DATABUS library> for
a member with the name MYPROG •

• MYPROG

This specification would cause the compiler to attempt to
locate the member MYPROG in the <system DATABUS library>. No
attempt to find any free-standing file would be made; absence of a
<system DATABUS library> would cause an error.

SYSLIB/LIB.MYPROG

This specification would cause the compiler to locate the
file SYSLIB/LIB and search the file for the member ~YPROG.

SYSLIB/LIB:DAILY.JOBA

This specification would cause the compiler to locate the
file SYSLIB/LIB on any mounted drive with a volume name of DAILY.
The member JOBA would then be found and included if present.

3.2.3 Possible Uses of DATABUS Libraries

The use of a text library by the compiler is similar to the
way some DATASHARE's use libraries of /DBe programs.

In typical business environments, most application programs
belong to a certain class of processing, such as payroll or
accounts receivable. Using DATABUS libraries, the organization,
testing, and everyday use of specific-class programs may be
greatly simplified. For example, a typical office might create
the following libraries:

PAYROLL/LIB containing all payroll programs
ACCTSRCV/LIB containing all accounts receivable programs
ACCTSPAY/LIB containing all accounts payable programs
TEST/LIB containing new programs in the testing phase

3-4 DATABUS COMPILER

The DBCMPLUS compiler always looks for a free-standing program
first unless an explicit member specification is given;
programmers may therefore edit, compile, and test new,
free-standing versions of existing programs without fear of
conflict or accidental use even while an older, already-tested
version of the source program is still kept in a DATABUS library
in case it is necessary to recompile the text file, for instance
because the JOBC file was destroyed or damaged. After the new
program has been fully tested, it can be placed in the proper
library replacing the older program.

3.3 LISTOFF and LISTON

The LISTOFF and LISTON directives allow control of the
generation of print output. The LISTOFF directive turns off
printer output while the LISTON directive turns it on. These
directives would be useful if a new section of code is added to an
already tested program. The user could place a LISTOFF directive
at the beginning of the program, a LISTON directive before the new
code, and another LISTOFF directive after the new code. When the
program is recompiled, with a printer output option specified (see
chapter 17 for a description of the printer output options) the
listing would only have the new code and not the entire program,
thus cutting down on the volume of paper used. Another example of
where these directives would be useful would be to prevent the
listing of an INCLUDE Eile containing common definitions or
equates.

These directives are not nested. After multiple LISTOFF
directives to turn off printer listing, a single LISTON directive
turns the listing back on.

3.4 IFnn

The IFnn directive is the conditional compilation directive.
The condition specified must be met in the single operand, or the
comparison of the two operands, for the following lines of code to
be compiled. The end of an IF directive is marked by an XIF. Any
number of IF directives may occur before an XIF directive, but as
soon as compilation is turned off by one of the IF directives, the
remaining IF directives are ignored and processing is turned on
again by the first following ~IF directive. That is, IF
directives are not nested. The operands to the IF directive must
be equated variables, decimal numbers, or octal numbers.

This directive would be useful, for instance, to place two

CHAPTER 1. COMPILER DIRECTIVES 3-5

different routines in one text file, where each routine is to be
used under different conditions. Depending on the value of an
equated variable defined in the data section, or in an included
file, one or the other of the two routines is compiled.

Exampl e

IFEQ
SUB

XIF
IFNE

SUB

XIF

Example

IFEQ
IFLT

XIF

ALPHA,ONE

ALPHA,ONE

ALPHA,ONE
BETA,S

Compare two equated variables
Subroutine to use if ALPHA equals ONE

Compare two equated variables
Subroutine to use if ALPHA is not

equal to ONE

Compare two equated variables
Compare an equated variable with

an immediate operand
This section of code is compiled
only if the value of ALPHA equals
the value of ONE, and the value of
BETA is less than S.

This closes both IF directives

The available IF directives are:

IFEQ Operand 1 must be equal to operand 2
IFGT Operand 1 must be greater than operand 2
IFLT Operand 1 must be less than operand 2
IFNE Operand 1 must be not equal to operand 2
IFNG Operand 1 must be not greater than operand 2
IFNL Operand 1 must be not less than operand 2
IFGE Operand 1 must be grea ter than or equal to operand 2
IFLE Operand 1 must be less than or equal to operand 2
IFZ Operand 1 must be zero
IFNZ Operand 1 must be non-zero
IFC Operand 1 must be zero (same as IFZ)
IFS Operand 1 must be set (same as IFNZ)

3-6 DATABUS COMPILER

CHAPTER 4. DATA DEFINITION

There are two types of data used within the DATABUS language.
They are numeric strings and character strings. The arithmetic
operations are performed on numeric strings and string operations
are performed on character strings. There are also operations
allowing movement of numeric strings into character strings and
vice versa.

Whenever a data variable is to be used in a program, it must
be defined at the beginning by using one of the data definition
statements. The data definition statements reserve space in the
user's data area for the data variable whose name is given in the
label field. (This space is always reserved using one of the
formats described below.) Note that all variables must be defined
before the first executable statement in the program and that once
an executable statement is given, no more variables may be
defined.

4.1 Numeric String Variables

Numeric strings have the following memory format:

octal
0200

ascii ascii ascii ascii
1 2 3

octal
0203

The leading character (0200) is used as an indicator that the
string is numeric. The trailing character (0203) is used to
indicate the location of the end of the string (ETX).

Programming Considerations:

The format of a numeric string is set at definition time and
does not change throughout the execution of the program.

Negative numbers are represented by using one of the
characters before the decimal point for a minus sign.

The physical length of a numeric string is limited to 21
characters (including the. decimal point and minus sign, but
excluding the 0200 and 0203 characters).

Numeric items always keep their proper format internally.

CHAPTER 4. DATA DEFINITION 4-1

To be a valid numeric string, the following must be true.

a. Spaces are acceptable only when they are leading spaces.

b. Only one minus sign is allowed.

c. The minus sign must be next to the most significant
character.

d. Only one decimal point is allowed.

e. Except for the cases mentioned above, only digits are
allowed.

f. A string made up of any combination of spaces, decimal
points and minus signs without at least one digit is not
allowed.

Whenever a new value is assigned to a numeric variable, it is
reformatted to have the format of that variable.

4.2 Character String Variables

Characer strings have the following me~ory format:

oct oct asc asc asc asc asc asc asc asc asc asc asc asc asc oct
all 005 THE BRa W N FOX 0203

The first byte is called the logical length pointer and points to
the last character currently being used in the string (N in the
above example). The second byte is called the formpointer and
points to the first character currently being used in the string
(8 in the above example). The use of the logical length pointer
and the formpointer in character strings is explained in more
detail in the explanations of each character string handling
instruction. Basically, however, these pointers are the mechanism
through which the programmer deals with individual characters
within the string.

Programming Considerations:

The term physical length is used to mean the number of
possible data characters .in a string (13 in the above
exar:1pl e) .

The physical length of string variables is limited to 127.

4-2 DATABUS COMPILER

The logical length pointer is never greater than the physical
length of the string.

The formpointer is always between zero and the logical length
pointer.

A zero formpointer indicates a null string.

In the case of character string variables, the actual amount
of user's data area reserved is three bytes greater than the
physical length of the variable.

4.3 Common Data Areas

Since the interpreter has the provision to chain programs so
that one program can cause another to be loaded and run, it is
desirable to be able to carry common data variables from one
program to the next. The procedure for doing this is as follows:

a. Identify those variables to be used in successive
programs and in each program define them in exactly the
same order and way, (preferably at the beginning of each
program).- The point in this is to cause each common
variable to occupy the same locations in each program.
Extremely serious program or system failures usually
occur if a common variable is misaligned with respect to
the variable in the previous program.

b. For the first program to use the variables, define them
in the normal way. Then, for each succeeding program,
place an asterisk in each FORM, DIM, or INIT statement,
as illustrated below, to prevent those variables from
being initialized when the program is loaded into memory.

Examples:

MIKE
JOE
BOB

FORiVl
DIM
INIT

*4.2
*20
*"THIS STRING WON'T BE LOADED"

File declarations may not be made common between programs.
Mis-alignment in file declarations could easily cause catastrophic
destruction of the file structure under DOS. Therefore, whenever
a program is loaded, all logical files are initialized to being
closed and must be opened before any file I/O can occur. When
chaining between programs, one should always close all files in
which new space could have been allocated and then re-open the

CHAPTER 4. DATA DEF IN IT ION 4-3

files in the next program.

4.4 FORM

The FORM instruction is used to define numeric string
variables. They may be defined using one of the formats shown
below:

1)
2)
3)
4)
5)

<label>
<label>
<label>
<label>
<label>

FORM <dnuml>.<dnum2>
FORM <dnuml>.
FORM . < dnum2 >
FORM <dnuml>
FORIVI < nl it>

where: <label> is a data label.
<dnuml> is a decimal number indicating the number of

digits that should precede the decimal point.
<dnum2> is a decimal number indicating the number of

digits that snould follow the decimal point.
<nlit> is a literal of the form "<string>" (see section

2.5) .

programming Considerations:

<nlit> must be a valid numeric string (see section 4.1).

The initial value of variables defined using formats (1), (2),
(3) and (4) above is zero.

A decimal point is included as part of any value assigned to
v a ria b 1 e s d e fin ed us i n:j for mat s (1), (2) and (3) abo v e •

The initial value of a variable defined using format (5) above
is the value of the numeric string between the quotes. A
decimal point found between the quotes is included as part of
the initial value.

The number of digits preceding the decimal point of a variable
defined using format (5) above, is the same as the number of
characters preceding the decimal point in <nlit>.

The number of digits following the decimal point of a variable
defined using format (5) above, is the same as the number of
digits following the decimal point in <nlit>.

4-4 DATABUS COMPILER

Examples:

FRACPART FORM
RATE FORlVl
AMOUNT FORM

0.1
4.3
II 382.400"

In these examples, the FORM instruction used to define RATE
reserves space for four places before the decimal point, the
decimal point itself, and three places after the decimal point.
RATE can have as its value a numeric string which can cover the
range fro@ 9999.999 to -999.999. The value of RATE is initialized
to ze ro •

The FORM instruction used to define AMOUNT reserves space for
four places before the decimal point, the decimal point itself,
and three places after the decimal point. AMOUNT can have as its
value a numeric string ~hich can cover the range from 9999.999 to
-999.999. The value of AMOUNT is initialized to 382.400.

4.5 DIM

This instruction is used to define character string
variables. They may be defined using the format shown below:

<label> DIM <dnum>

where: <label> is a data label (see section 2.).
<dnum> is a decimal number indicating the number of

characters to be reserved for the variable.

Programming Considerations:

All of the characters of a variable defined with a DIM
statement are initialized to spaces (octal 040).

The formpointer and logical length pointer are initialized to
zero to indicate a null string.

Exampl e:

STRING DIM 25

STRING is defined to have a physical length of 25 and consumes 28
bytes of the user's data area.

CHAPTER 4. DATA DEFINITION 4-5

4.6 INIT

The INIT instruction is used to define character string
variables with an initial value. They may be defined using one of
the formats shown below:

1)
2)

< 1 abel> IN IT
<label> INIT

<slit>
<list>

where: <label> is a data label (see section 2.).
<slit> is a literal of the form "<string>" (see section

2.5) •
<list> is any combination of <slit> and <occ> (see

section 2.5) elements separated by commas.

programming Considerations:

<slit> must be a valid character string (see section 4.2).

The characters in the variable are initialized to the string
appearing between the quotes.

The formpointer points to the first character of the string.

The logical length pointer points to the last character of the
string.

Examples:

TITLE INIT "PAYROLL PROGRAM"

TITLE is defined to have a physical length of 15 bytes and
consumes 18 bytes of user's data area. The formpointer is set to
1 (pointing to the P) and the logical length pointer is set to 15
(po inting to the M).

TITLE INIT "PAYROLL PROGRAfv1",015,"A,S,C"

initializes a string with a logical and physical length of 21
characters. The octal control character, 015, appears after the M
in PROGRAM and before the characters A, comma, S, comma, C.

The octal control character feature is included mainly for
message switching applications and for allowing control of ASR
Teletype compatible terminals. It is the responsibility of the
programmer to remember that some of these characters (000, 003,
OIl, 015 and 032) are used for control purposes in disk files.

4-6 DATABUS COMPILER

More importantly, these characters are used as control characters
in DISPLAY, KEYIN, and CONSOLE statements; and improper use of
these characters in such statements can result in invalid program
execution.

4.7 COMLST

The COMLST instruction is used to reserve space in the user's
data area to contain information for a RECV or SEND DATABUS
instruction. The general format of the statement is:

<label> COMLST <dnum>

where: <label> is a data label.
<dnum> is a decimal number between 1 and ~4. This number

specifies the maximum number of variables that may
appear in a SEND or RECV instruction referencing
this COMLST variable.

Programming Considerations:

<dnum> must be a decimal number between 1 and 54 inclusive. A
<dnum> of 5 specifies that space is reserved in the user data
area variable to contain information for 5 variables.

The space allocated is 8+2*(dnum) bytes. The eight bytes are
used to contain status and control information and the
2*(dnum) bytes are used to contain the addresses of the
variables (2 bytes each) that may appear in SEND or RECV
statements referencing this COMLST.

Example:

A COMLST 5 (reserves 8+2*5=18 bytes of user data
area.)

CHAPTER 4. DATA DEFINITION 4-7

CHAPTER 5. FILE DECLARATION

A file declaration statement defines a logical file by
reserving space in the user's data area for the DOS system
information about the disk file being used. Note that since
logical file information is stored in the user's data area, the
user may have any number of logical files active at anyone time
providing his data area will contain all of the necessary
information.

5.1 FILE

The FILE instruction is used to reserve space in the user's
data area for files that are used for physically or randomly
sequential accessing. The general format of the statement is as
follows:

<label> FILE

where: <label> is a data label (see section 2.).

Programming Considerations:

The <label> must be used in all disk I/O statements that
reference this particular logical file.

Each use of this statement causes 17 bytes of data area to be
consumed. This area is used to store:

a) the 15 bytes used in the DOS logical file table,

b) a space compression counter, and

c) a flag indicating that these are physically-randoQ or
sequential-access-only files.

Example:

INFILE FILE

The label INFILE is used in all disk I/O statements that are to
use this particular logical file.

CHAPTER 5. FILE DECLARATION 5-1

5.2 IFILE

The IFILE instruction is used to reserve space in the user's
data area for files that are used for indexed sequential file
accessing. The general format of the statement is as follows:

<label> IFILE

where: <label> is a data label (see section 2.) •

programming Considerations:

The <label> must be used in all disk I/O statements that
reference this particular logical file.

Each use of this statement causes 26 bytes of data area to be
consumed. This area is used to store:

a} the information that the FILE declaration stores,

b} three 3-byte pointers for use by the indexed-sequential
access method. These pointers point to:

Example:

1. the beginning of the last record accessed (for
updating operations),

2. the next sequential key (for sequential by key
accessing), and

3. information in the DOS R.I.B. of the index file (used
ina 11 a c c e s sing 0 per a t ion s) •

ISAMFILE IFILE

The label ISAMFILE is used in all disk I/O statements which are to
use this particular logical file.

5.3 RFILE

This instruction is identical to the FILE declaration except
that the RFILE instruction defines a logical file that references
a disk file at a remote station instead of at the central station.

5-2 DATABUS COMPILER

5.4 RIFILE

This instruction is identical to the IFILE declaration except
that the RIFILE instruction defines a logical file that references
a disk file at a remote station instead of at the central station.

5.5 AFILE

The AFILE instruction is used to reserve space in the user's
data area for files that are used for associative indexed file
accessing. The statement may have one of the following general
formats:

<label>
<label>
<label>
<label>

AFILE
AFILE
AFILE
AFILE

<dconl>
<dconl>,<dcon2>
<dconl>,,<dcon3>
<dconl>,<dcon2>,<dcon3>

where: <label> is a data label (see section 2.).
<dconl> is a decimal constant.
<dcon2> is a decimal constant.
<dcon3> is a decimal constant.

Programming Considerations:

<dconl> specifies the aggregate key length. This number may
range from I to 255. The aggregate key length is the sum of
the lengths of all the master keys specified when using AIMDEX
(subfields are not included in the computation). If this
<afile> is used in an OPEN statement, this parameter must be
at least as large as the aggregate key length of the master
key fields specified when the file being opened was created
with AIMDEX or an 10 trap occurs.

<dcon2> specifies the maximum number of key fields. This
number may range from 1 to 64. If it is not specified, the
compiler supplies a default value of ~4. If this <afile> is
used in an OPEN statement, this parameter must be at least as
large as the number of key fields specified when the file
being opened was created with AIMDEX or an 10 trap occurs.

<dcon3> specifies the free-float buffer length. This buffer
is used to hold any information specified for a free-float
search during a READ instruction. This number may range from
o to 255. If it is not specified, the compiler supplies a
default value of 32.

CHAPTER 5. FILE DECLARATION 5-3

The free-float buffer must be large enough to hold all of the
free-float (F type) keys specified for any given associative
indexed READ instruction (see section 16.3). The interpreter
places a representation of each F type key given on a READ
statement into the free-float buffer area. Each key placed in
the buffer has two control bytes associated with it. For
example, a key speci fica tion of "03FABCDE"· occupies seven
bytes of the free-float buffer (two control bytes plus the key
ABCDE). The user should allow for this overhead when
selecting the free-float buffer size to specify on the AFILE
declaration.

The AFILE declaration generates a rather large amount of UDA.
This data area consists of approximately 400 bytes of constant
area plus an area whose size depends on the parameters given.
The data area includes a buffer equal in length to the number
given for the aggregate key length. Also included in the data
area is a buffer whose length is three ti~es the number given
for the maximum number of key fields parameter. Finally, the
data area contains a buffer equal in length to the number
given for the free-float buffer length parameter plus a one
byte te rm ina tor.

Consult the appropriate interpreter user's guide for more
information about the AIM access method.

Example:

AI1'I1FILE AFILE 100,10,50

5-4 DATASUS COMPILER

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS

The interpreter normally executes statements starting with
the first executable statement and sequentially from there. The
program control instructions allow this flow of control to be
altered. Some of these instructions may be executed conditionally
depending on whether a condition flag is set to true or false (see
section S .1) •

6.1 Condition Flags and Function Key Flags

There are four condition flags set by the interpreter: OVER,
LESS, ZERO (the mnemonic EQUAL is also accepted), and EOS. These
flags are set to true or false, depending on the results of some
of the instructions. For more details on which flags are set and
when they are set, see the sections that describe the instructions
individually.

Associated with each of the five function keys Fl through F5
on those terminal keyboards that have them, there is a function
flag named Fl through F5. These flags are set whenever the
corresponding function key is depressed. The flags are cleared at
the beginning of a KEYIN statement and when an individual flag is
tested in a GOTO statement and found to be true.

6.2 GOTO

The GOT a statement causes the flow of program control to jump
to the place in the program indicated in the GOTO statement. The
format of the statement may be one of the following:

1)
2)
3)
4)
5)

<labell> GOTO
<labell> GOTO
<labell> GOTO
<labell> GOTO
<labell> GOTO

<labe12>
<labe12> IF <flag>
<labe12> IF NOT <flag>
<labe12> IF <fflag>
<labe12> IF NOT <fflag>

where: <labell> is an execution label (see section 2.).
<labe12> is an execution label.
<flag> is one of the condition flags (see section t).l).
<fflag> is a condition associated with one of the

function keys.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS (-)-1

Programming Considerations:

<labell> is optional.

<labe12> must be a label on the executable statement where
program control is to be transfered.

The condition flags are unchanged by the execution of this
statement.

A GOTO statement with format (2) transfers control (to the
statement with <label2» only if the specified condition flag
is set to true; otherwise, program control continues in a
sequential fashion.

A GOTO statement with format (3) transfers control only if the
specified condition flag is set to false.

A GOTO statement with format (4) transfers control only if the
specified function key flag is on. The flag is also cleared.
Note that all function key flags are also cleared by KEYIN
statements.

A GOTO statement with format (5) transfers control only if the
specified function key flag is not on.

Example:

GOTO CALC

causes control to be transferred to the instruction labeled CALC.

Example:

GOTO CALC IF OVER

transfers control to the instruction labeled CALC if the OVER flag
is set to true. Otherwise, the instruction following the GOTO is
executed.

Example:

GOTO CALC IF NOT OVER

meaning control is transferred only if the OVER flag is set to
false.

6-2 DATABUS COMPILER

Example:

This sample program segment shows the use of function keys. A
program is doing some processing that involves use of a counter.
The operator is allowed to observe the progress of the program by
depressing the Fl function key which causes the program to display
the current value of the counter. Depressing the F5 function key
causes the process to terminate.

LOOP ADD
GOTO

CONTINUE GOTO

GOrrO

DSPLYNUM DISPLAY
GOTO

END DISPLAY

ONE TO COUNTER
DSPLYNUM IF Fl
END IF F5

LOOP

INCREMENT COUNTER
DISPLAY IF Fl KEY DOWN
END IF F5 KEY DOWN

NECESSARY PROCESSING

CONTINUE

*R,"CURRENT COUNTER IS ",COUNTER
CONTINUE RESUME PROCESSING

*R, "PROCESS TER1VlINATED BY F5 KEY"

6.3 BRANCH

The BRANCH instruction transfers control to a statement
specified by an index. The general form of the statement is as
follows:

where:

<label> BRANCH <index><prep><list>

<label>
< index>
< prep>
<list>

is an execution label (see section 2.).
must be a numeric variable.
may be any val id preposi tion (see section 2.).
is a list of execution labels separated by
commas.

programming Considerations:

The label is optional.

The condition flags are unchanged by the execution of this
instruction.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS n-3

The value of the index is unchanged by the execution of this
instruction.

The index points to the label in the list where control is to
be transferred.

If the index is n, then control is transfered to the nth label
in the list. For example: if the index is 1, control is
transferred to the first label in the list; if the index is 2,
control is transferred to the second label in the list; and so
on.

There must not be more than 255 labels in the list.

If the index is negative, zero, or larger than the number of
labels in the list; then control continues in a sequential
fashion.

If the index is a non-integer number, then only the digits
preceding the decimal point are used while indexing into the
list. For example: 1.50 is treated as if it were a 1, 1.99
is treated as if it were a 1, 2.00 is treated as if it were a
2, and 2.49 is treated as if it were a 2.

The list may be continued on the next line by using a colon in
place of one of the commas.

Example:

BRANCH N OF START,CALC,POINT

If N = 1, then this BRANCH would be equivalent to a GOTO START.
N = 2 would mean GOTO CALC while N = 3 would mean GOTO POINT.

6.4 CALL

The CALL instruction causes a subroutine to be executed after
saving a pointer to the instruction immediately following the CALL
instruction. When the subroutine is finished executing, it may
then use the pointer that was saved to continue execution where it
left off (see section 6.5). Using subroutines allows the same
group of statements to be executed at many places in the user's
program, simply by CALLing the subroutine. The format of the
statement may be one of the following:

1)
2)

<labell> CALL
<labell> CALL

6-4 DATABUS COMPILER

<labe12>
<labe12> IF <flag>

3) <labell> CALL <labe12> IF NOT <flag>

where: <labell> is an execution label (see section 2.).
<labe12> is an execution label.
<flag> is one of the condition flags (see section 6.1).

Programming Considerations:

<labell> is optional.

<labe12> must be a label on the first instruction of the
subroutine to be executed.

The condition flags are unchanged by the execution of this
statement.

The return address (the pointer to the instruction immediately
following the CALL statement) is saved by pushing it onto the
subroutine call stack.

The subroutine call stack is eight levels deep. This means
that, unless an entry is cleared from the stack (typically by
a RETURN instruction), a stack overflow error occurs when the
ninth CALL instruction is executed.

Note that if a page swap is invoked by the subroutine CALL,
then CALLing the subroutine is considerably more time
consuming than executing the code in line. The space used for
DATABUS programs is virtual in nature to allow very large
programs. This means that pages of the user's program must be
swapped in and out of memory. If a subroutine happens to be
on a different page than a CALL to that subroutine, then a
page swap may become necessary. Therefore, in some cases it
can be better to put code in line instead of making it a
subroutine, especially if the amount of code is quite small
(say, less than a dozen lines). This is a trade-off which
should be considered when one is dealing with code that is
executed very often.

Execution of a CHAIN statement clears the subroutine call
stack.

A CALL statement with format (2) calls the subroutine only if
the specified condition flag is set to true; otherwise,
program control continues in a sequential fashion.

A CALL statement with format (3) calls the subroutine only if
the specified condition flag is set to false.

CHAPTER 6. PROGRA~ CONTROL INSTRUCTIONS 6-5

Example:

CALL FORMAT

executes the subroutine FORMAT.

Exampl e:

CALL XCOMP IF LESS

executes the subroutine XCOMP if the LESS flag is set to true.

6.5 RETURN

The RETURN instruction is used to return from a subroutine
when execution of that subroutine is completed. This statement
may have one of the following formats:

1)
2)
3)

<label>
<label>
<label>

RETURN
RETURN IF <flag>
RETURN IF NOT <flag>

where: <label> is an execution label (see section 2.) .
<flag> is a condition flag (see section 6.1).

Programming Considerations:

<label> is optional.

Control is returned to the instruction pointed to by the top
element on the subroutine call stack.

The condition flags are unchanged by the execution of this
statement.

A RETURN with format (2) returns control only if the specified
condition flag is set to true; otherwise, program control
continues in a sequential fashion.

A RETURN with format (3) returns control only if the specified
condition flag is set to false.

Example:

RETURN

6-6 DATABUS COMPILER

transfers control to the instruction pointed to by the top element
of the subroutine call stack.

Example:

RETURN IF ZERO

transfers control to the instruction pointed to by the top element
of the subroutine call stack only if the ZERO flag is set to true.

6.6 ACALL

The ACALL instruction is used to invoke an Assembler language
routine. The individual interpreter manual should be consulted
for the particular implementation. The format of the instruction
is:

where:

1)
2)

<label>
<label>

ACALL
ACALL

<svar>
<svar><prep><list>

<label>
<svar>
<prep>
<list>

is an execution label.
is a string variable.
is a preposition.
is a list of numeric or character string
variables, FILEs, IFILEs, AFILEs, or COMLSTs
separated by a comma (,). The list may be
continued on another line by placing a colon (:)
after the last variable on the line to be
continued. These variables are available to the
Assembler routine.

Programming Considerations:

<label> is optional.

<svar> may be any string variable defined in the user's
program. This variable is used by the interpreter before
execution of the user's Assembler routine takes place. If the
interpreter is configured for dynamic ACALLs, this variable
specifies the name of the disk file containing the Assembler
code to be loaded and executed. Consult the appropriate
interpreter user's guide for details on static and dynamic
ACALLs.

<list> is optional.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-7

<list> must consist of character string or numeric variables,
FILEs, IFILEs, AFILEs, or COMLSTs.

Example of static ACALL:

A
B
C

DIM
INIT
FORM
ACALL

15
"12345 11

"6.725"
A,B,C

Example of dynamic ACALL:

A
B
C

6.7 STOP

DIM
INIT
FORi'1
MOVE

ACALL

15
1112345 11

"6.725"
nASMPROG/DYN" TO A

A,B,C

MOVE THE NAME OF THE FILE CONTAINING
THE ACALL CODE TO A

The STOP instruction is the normal manner of terminating the
execution of a DATABUS program. See the user's guide on the
interpreter that you are using for more details on the action
taken when a STOP is executed. Typically, executing a STOP
instruction is equivalent to executing a CHAIN to the MASTER
program for the port executing the STOP. This instruction is the
only way to properly enter the port's MASTER program. This
statement may have one of the following formats:

1)
2)
3)

<label>
<label>
<label>

STOP
STOP IF <flag>
STOP IF NOT <flag>

where: <label> is an execution label (see section 2.).
<flag> is a condition flag (see section C).l).

Programming Considerations:

<label> is optional.

Typically executing a STOP is equivalent to executing a CHAIN
to the MASTER program for the port. executing the STOP.

See the user's guide on the interpreter you are using for
details on the action taken when the STOP is executed.

6-8 DATABUS COMPILER

A STOP with format (2) terminates only if the specified
condition flag is set to true; otherwise, program control
continues in a sequential fashion.

A STOP with format (3) terminates only if the specified
condition flag is set to false.

Example:

STOP

causes program execution to terminate normally.

Example:

STOP IF NOT EQUAL

causes program execution to terminate normally only if the ZERO
flag is set to false. Note that EQUAL is just another name for
the ZERO flag. A STOP operation is added to the end of every
DATABUS program as it is compiled.

6.8 CHAIN

The CHAIN instruction is used to cause a DATABUS program
(other than the one currently being executed) to be loaded and
executed. One of the following general formats may be used:

1)
2)

<label> CHAIN
<label> CHAIN

<slit>
<svar>

where: <label> is an execution label (see section 2.).
<slit> is a literal of the form "<string>" (see section

2 • 5) •
<svar> is a string variable (see section 4.2).

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

The value of <svar> is unchanged by the execution of this
instruction.

Control is passed to the first executable statement of the

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS C) -9

program that is to be loaded and executed.

This instruction should not be used to CHAIN to the port's
ANSWER or MASTER programs. The DSCNCT instruction (see
section 6.15) should be used to CHAIN to the ANSWER program,
and the STOP instruction (see section 5.7) .should be used to
CHAIN to the MASTER program.

The string literal, when using format (1), specifies the DOS
name of the DATABUS program to be executed.

The string variable, -when using format (2), specifies the DOS
name of the DATABUS program to be executed.

If the extension is not given by the string literal or string
variable, /DBC is assumed.

One of the following rules is used to build the DOS name from
the string in the string variable or string literal:

a) The characters used start with the formpointed character
and continue until eight characters have been obtained, or

b) If the logical end of string is reached before eight
characters have been obtained, the remainder of the eight
characters are assumed to be blanks.

c) Newer interpreters allow the file to be specified using
the DOS standard <filename>/<extension>:<drive * or volid>
form. Some allow files to be executed from libraries.
Consult the user's guide of the appropriate interpreter to
see if libraries are supported.

The character used to specify the drive number is obtained
from the string variable or string literal using one of the
following rules:

a) If (a) above is used to obta in the name, then the
character after the eighth character is used as the drive
specification, or

b) If (b) above is used to obtain the name, then the
character following the one pointed to by the logical
length pointer is used as the drive specification, or

c) If the last character obta ined from the str i ng is
physically the last character in the string, then the

6-10 DATABUS COMPILER

drive number is unspecified.

d) Newer interpreters allow the drive to be specified in DOS
standard fo rm, :Dn, :DRn, or by vol ume name.

If the character used as the drive specification is not an
ASCII digit (0 through 9), then all drives are searched for
the file (starting with drive 0 and ending with the highest
numbered drive that is on-line) .

If the drive number is unspecified, all drives are searched
for the file (starting with drive 0 and ending with the
highest numbered dr ive that is on-1 ine) •

If the character used as the drive specification is an ASCII
digit, then only the drive with that number is searched to
find the f i Ie.

Shift key inversion is enabled when a CHAIN instruction is
executed (see section 9.1.3.15).

The trap locations are cleared after a CHAIN instruction is
executed (see section 6.9).

The condition flags are all set to false by the execution of
this statement.

All logical files that are open when a CHAIN instruction is
executed, are closed without space deal10cation (see section
12.3.2). Closing the files does not automatically write an
end-of-file mark.

The subroutine call stack is cleared by the execution of this
statement (see section 6.4).

Assume that the following statement is used to define NXTPRGM
for all of the following examples:

NXTPRGM INIT "PAYROLLll"

CHAPTER 6. PROGRA~ CONTROL INSTRUCTIONS 5-11

Example:

SETLPTR
RESET
CHAIN

NXTPRGM TO 9
NXTPRGM TO 4
NXTPRGM

SET THE LOGICAL LENGTH POINTER TO 9
SET THE FORM POINTER TO 4

this CHAIN instruction tries to load and execute a -program named
ROLLll/DBC from any drive on which it can be found.

Example:

SETLPTR
RESET
CHAIN

NXTPRGM TO 8
NXTPRGM TO 4
NXTPRGM

SET THE LOGICAL LENGTH POINTER TO 8
SET THE FORM POINTER TO 4

this CHAIN instruction tries to load and execute a program named
ROLLl/DBC from drive 1.

Example:

SETLPTR
RESET
CHAIN

NXTPRGM TO 8
NXTPRGM TO 1
NXTPRGM

SET THE LOGICAL LENGTH POINTER TO 8
SET THE FORMPOINTER TO 1

this CHAIN instruction tries to load and execute a program named
PAYROLL1/DBC from drive 1.

Example:

SETLPTR
RESE'r
CHAIN

NXTPRGM TO 9
NXTPRG1'v} TO 1
NXTPRGM

SET THE LOGICAL LENGTH POINTER TO 9
SET THE FORMPOINTER TO 1

this CHAIN instruction tries to load and execute a program named
PAYROLL1/DBC from drive 1.

Example:

SETLPTR
RESET
CHAIN

NXTPRGM TO 7
NXTPRGM TO 1
NXTPRG!Vl

SET THE LOGICAL LENGTH POINTER TO 7
SET THE FORMPOINTER TO 1

this CHAIN instruction tries to load and execute a program named
PAYROLL/DBC from drive 1.

6-12 DATABUS COMPILER

Example:

SETLPTR
RESET
CHAIN

NXTPRGM TO 3
NXTPRGM TO 1
NXTPRGM

SET THE LOGICAL LENGTH POINTER I

SET THE FORMPOINTER TO 1

this CHAIN instruction tries to load and execute a program named
PAY/DBC from any drive on which it can be found.

Examples of the DOS standard file specifications accepted by newer
interpreters are:

6.9 TRAP

CHAIN
CHAIN

IIPROGRAM/ABC:D4 11

IIPROGRAM:MASTER"

TRAP is a unique instruction; because rather than taking
action at the time it is executed, it specifies a transfer
location for an event which mayor may not occur during later
execution. This statement may have one of the following general
fo rrna ts:

<labe12> IF <event> <labell> TRAP
<labell> TRAP
<labell> TRAP
<labell> TRAP

<labe12> GIVING <svarl> IF <event>
<labe12> NORESET IF <event>
<label2> GIVING <svarl> NORESET IF <event:

where: <labell> is an execution label (see section 2.).
<labe12> is an execution label.
<event> is one of the following: PARITY, RANGE, FORMAT,

CFAIL, 10, SPOOL, INTERRUPT, INT, FI, F2, F3, F4,
FS, <svar>, or <char>.

<svarl> is a character string variable.

Programming Considerations:

<labell> is optional.

<labeI2> must be the label on the statement where control is
transfered if the specified event occurs.

The condition flags are unchanged by the execution of this
instruction.

The following trapable events may occur:

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 5-13

a) PARITY - this event is caused by a disk CRC error during a
READ (see section 12.3.3) or the verification phase of a
WRITE (see section 12.3.4). DOS retries several times to
get a good CRC before causing this event.

b) RANGE - this event occurs when a record number is out of
range. Typically this occurs when an attempt is made to
read a record that has never been written. The DOS RANGE
and FORMAT traps cause a DATABUS RANGE trap.

c) FORMAT - this event occurs when an attempt is made to read
non-numeric data into a numeric variable. The read stops
at the list item in error so that the rest of the list
items are not changed. Note that this FORMAT trap is not
the same as the DOS FORMAT trap.

d) CFAIL - this event occurs when an attempt to CHAIN to
another program cannot be completed or when an attempt to
execute a ROLLOUT cannot be completed. Typically this
occurs when attempting to CHAIN to a program that does not
exist.

e) IO - this event occurs when a disk I/O error occurs.
Associative index (AIM) errors are also TRAPped using the
10 event. For more details about these I/O and AIM
errors, see the user's guide of the appropriate
interpreter. Typically this trap is used for detecting
whether a file exists or not. Note that the GIVING clause
can be used to allow the program to inspect the error
message given to determine the nature of the TRAP taken.

f) SPOOL ~ this event occurs when an error occurs while
printer output is being SPOOLed to a disk file (see
sections 10.5 and 10.6). This error can mean one of a
number of possible conditions has occured, such as: disk
space full when opening the spool file, disk space full
while writing, parity error, drive off-line, or several
other things.

g) INTERRUPT or INT - this event occurs when the INTerrupt
sequence is entered from the keyboard (see section
9.1.5.3). It can be used to detect accidental entry of
the INTerrupt character, or to bypass the normal
interpreter response of e~ecuting a STOP instruction.

h) Fl - this event occurs when the Fl function key is pressed
on the keyboard. Note that only those systems that have
function keys on the keyboard can make use of this TRAP,

6-14 DATABUS COMPILER

for example the 1800 has function keys.

i) F2 - this event occurs when the F2 function key is pressed
on the keyboard. Note that only those systems that have
function keys on the keyboard can make use of this TRAP,
for example the 1800 has function keys.

j) F3 - this event occurs when the F3 function key is pressed
on the keyboard. Note that only those systems that have
function keys on the keyboard can make use of this TRAP,
for example the 1800 has function keys.

k) F4 - this event occurs when the F4 function key is pressed
on the keyboard. Note that only those systems that have
function keys on the keyboard can make use of this TRAP,
for example the 1800 has function keys.

1) F5 - this event occurs when the F5 function key is pressed
on the keyboard. Note that only those systems that have
function keys on the keyboard can make use of this TRAP,
for example the 1800 has function keys.

rn) <svar> - this event occurs when one specific character is
entered from the keyboard. The character specified is the
one under the formpointer of the string variable. The
interpreter saves the character to be trapped within
itself. Therefore, assigning a different value to the
<svar> after the TRAP is executed, does not affect the
character to be trapped.

n) <char> - this event also occurs when one specific
character is entered from the keyboard. The character
specified is the character to be trapped.

Example:

TRAP PREP IF IO
OPEN FI LE, "DATA"
GOTO NSI

PREP PREPARE FILE, "DATA"
RE1'URN

NSI 'I'RAPC LR IO

The only action taken at the time that the TRAP instruction is
executed is to save a pointer to the statement with <labe12>.
<event> specifies which trap.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-15

Any traps that have been set, remain set until they are
cleared.

If an INTERRUPT key, function key, or character trap occurs
while a PI or FILEPI instruction is in effect, the effect of
the key and of the TRAP is postponed until the PI or FILEPI
expires.

If an event occurs and the trap is not set, the action taken
depends upon the interpreter (see the user's guide for the
interpreter being used). Typically an error message is
displayed and a CHAIN to that port's MASTER program occurs.

If an event occurs and the trap is set, then the action taken
is as follows:

a) The control transfer is equivalent to executing a
CALL <labe12>

instruction.

b) This pseudo-CALL statement is executed as if it had been
inserted immediately after the statement which caused the
event to occur.

Whenever a certain event is trapped, the trap for that event
is cleared unless the NORESET clause is specified. This means
that, if the event is to be trapped again, another TRAP
instruction has to be executed to reset the trap.

Note that all of the traps are cleared whenever a CHAIN
occurs. Therefore, each program must initialize all of the
traps it wishes to use.

The GIVING clause causes the message that the interpreter
normally displays to be placed in the specified character
string variable allowing the user program to inspect it and
determine the nature of the TRAP taken. The GIVING clause may
be used in conjunction with the following events: PARITY,
RANGE, FORMAT, CFAIL, IO, and SPOOL. See the appropriate
interpreter user's guide for details on the nature of the
error message.

If the NORESET clause is specified, the trap is not cleared
when it occurs. The trap is Qnly cleared on program
termination, execution of a TRAPCLR instruction with the
particular event, or execution of a CHAIN or STOP instruction.

If the event specified is a string variable, <svar>, and the

6-16 DATABUS COMPILER

variable is null, then the TRAP has no effect.

Only one character event may be trapped at anyone time.
Multiple use of TRAP statements with the <svar> or <char>
event result in the trapping of only the character specified
in the last executed TRAP.

If the user has a string variable in his program whose name is
the same as one of the events specified above (for example a
character string variable called 10); the statement

TRAP NOFI LE IF 10

sets the trap for the 10 event, not the trap for the character
under the formpointer of the string variable 10.

Example:

TRAP EMSG IF PARITY

specifies that control should be transferred to EMSG if a parity
failure is encountered during a READ or WRITE instruction.

Example:

TRAP SPOOLERR GIVING SPERR NORESET IF SPOOL

specifies that control should be transferred to SPOOLERR if an
error occurs involving printer SPOOLing. If a trap occurs, the
interpreter places an error message in the character string
variable SPERR, and the TRAP is not cleared, that is, the program
does not have to execute another TRAP instruction for the SPOOL
even t.

6.10 TRAPCLR

The TRAPCLR instruction clears the specified trap. This
statement has the following general format:

<label> TRAPCLR <event>

where: <label> is an execution label (see section 2.).
<event> is one of the ·following: PARITY, RANGE, FORMAT,

CFAIL,. 10, SPOOL, INTERRUPT, INT, FI, F2, F3, F4,
F5, <svar>, or <char>. For an explanation of each
of the events, see section 6.9.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-17

Programming Considerations:

<label> is optional.

The condition flags are unchanged by the execution of this
instruction.

If an <svar> or <char> is specified, then the character trap
is cleared even if the character specified in the <svar> or
<char> is not the same as the character that was specified in
the TRAP statement.

Exampl e:

TRAPCLR PARITY

clears the parity trap previously set.

6.11 ROLLOUT

The ROLLOUT feature allows the execution of all programs to
be temporarily suspended while a DOS command line is executed.
This instruction is particularly useful when 1) a file needs to
be sorted using the DOS SORT utili ty, 2) an index file needs to
be created using the DOS INDEX utility, 3) a file needs to be
re-indexed using the DOS INDEX utility, or 4) a file needs to be
re-indexed using the DOS AIMDEX utility. This statement may have
one of the followi ng fo rma ts :

1)
2)

<label> ROLLOUT
<label> ROLLOUT

<svar>
<slit>

where: <label> is an execution label (see section 2.).
<svar> is a string variable (see section 4.2).
<slit> is a literal of the form "<string>" (see section

2.5) •

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

The value of <svar> is unchanged by the execution of this
instruction.

The string variable, when using format (1), specifies the DOS

6-18 DATABUS COMPILER

command line to be executed.

The string literal, when using format (2), specifies the DOS
command line to be executed.

Since there are some minor differences in the way the ROLLOUT
instruction is executed, the user should consult the user's
guide of the interpreter being used.

The characters used to build the DOS command line are taken
one at a time from the string; from the first character to the
last character, as defined below.

a) The first character of the DOS command line is the
formpointed character.

b) The last character of the DOS command line precedes the
first occurrence of one of the following characters:

1. a character with a value less than 040 (octal), or

2. the vertical bar character (0174 octal), or

3. a character with its sign bit set. The physical
end-of-string character, 0203 (octal), fits into this
category.

In the normal case, this means the string used is that from
under the formpointer up through the physical end of the
string. To use a string that is shorter than the physical
length of the variable, a vertical bar should be stored in the
appropriate position.

A CFAIL trap occurs if the string variable is null.

See the user's guide of the appropriate interpreter for other
causes of CFAIL traps when attempting a ROLLOUT.

When the ROLLOUT instruction is executed the following actions
are taken:

a) Everything necessary to restore the interpreter to its
previous state is saved on disk.

b) DOS is then brought up at the console.

c) The operator at the console loses the information that was
on the screen at the time of the ROLLOUT except for

CHAPTER (). PROGRAM CONTROL INSTRUCTIONS 5-19

1800/3800 interpreters, which save the screen image.

d) The DOS command line (obtained from the string variable or
literal) is then supplied to the DOS command interpreter
exactly as if it had been keyed in from the console.

e) If the ROLLOUT is executed, the printer stops printing
immediately and the contents of the printer buffers is
saved.

To return the interpreter to the state it was in previous to
the ROLLOUT, the interpreter's rollout return program should
be executed. For more details about the rollout return
program, see the user's guide of the appropriate interpreter.
In the remainder of this manual the rollout return program is
refered to as DSBACK/CMD, or more simply as DSBACK.

To execute the rollout return program, the name of the DSBACK
command should be entered as a DOS command line. Generally
this causes the following actions:

a) DSBACK re-initializes the console screen. This does not
return the screen to the display condition it was in
before the ROLLOUT except for 1800/3800 interpreters,
which save the screen image. - That screen image is lost.

b) The information that was saved on disk by the ROLLOUT is
then used to restore the interpreter to its previous
state.

c) All ports are returned to their previous point of
execution when the ROLLOUT occurred.

d) Execution of the program that caused the ROLLOUT is
continued with the instruction following the ROLLOUT
instruction.

e) Printing resumes at the point where printing was
interrupted during the ROLLOUT. If during ROLLOUT,
printing was done under DOS, printer output is intermixed.

The condition flags are restored by DSBACK.

The execution of a ROLLOUT may be very inconvenient to the
users at'other ports since execution of their programs is
suspended for an indefinite period of time. Unless told that
a ROLLOUT has occurred, users at the other ports do not know
what is happening. Since their terminals appear inactive,

6-20 DATABUS COMPILER

they may think the system has gone down for some other reason.
Thus, consideration of other system users should be kept in
mind when a ROLLOUT is used.

The system clock is restored to the value it had before the
ROLLOUT occured, except in those interpreters designed to run
under ARC. These interpreters are capable of obtaining the
time from an ARC file processor. If ARC cannot supply the
time or if ARC is not active, every time a ROLLOUT occurs, the
clock loses time. In those environments where it is necessary
for the system clock to be accurate, the rollout return
program which includes time and date initialization should be
used instead of DSBACK. In the remainder of this manual the
rollout return program which includes time and date
initialization is refered to as DSBACKTD/CMD or more simply
DSBACKTD (for more details see the user's guide of the
appropriate interpreter). Note that DSBACKTD functions the
same as DSBACK with the exception that the new time and date
are requested before restoring the interpreter. This rollout
return program requires the operator to be at the console to
enter the time and date.

** WARNING ** The operations that were taking place under the
interpreter must not be modified in any way. One of the items
saved on disk when a ROLLOUT occurs is an image of the DOS
file structure as it was under the interpreter. If the DOS
file structure is changed by a program executing under DOS,
then the image saved on disk may not be accurate any longer.
If this image is no longer accurate when the interpreter is
restored, terrible things may happen to the DOS file structure
as well as the interpreter system. SOlae precautions that
should be considered while executing under DOS are listed
below.

a) Any file that is open at the time when a ROLLOUT occurred
must not be modified or deleted.

b) The object code of any program that was executing when the
ROLLOUT occurred must not be changed.

c) The disks that contain any files in use by the interpreter
must not be moved to another disk drive.

d) The disks that contain any files in use by the interpreter
must not be removed from the disk drive.

e) The MA S T S Ran dAN S ~'! E R pro 9 r a 1TI s m us t not be r e - co Ifl pi 1 e d .

CHAPTER 6. PROGRAIVl CONTROL INSTRUCTIONS 0-21

Other operators using a Datashare system should be notified
when a ROLLOUT is about to occur. This courtesy prevents
frustration when the other operators begin getting no
response.

Rolling out to the configuration program Lfor details see the
appropriate interpreter manual) has no effect on the system
configuration when DSBACK is used to restart the interpreter.

Example:

Assume that a DATABUS program has built two files, AFILE/TXT and
CFILE/TXT. Also, assume that these files need to be sorted.

This can be accomplished by building the following file named
ROLCHAIN/TXT.

SORT AFILE,BFILE
SOR'l' CFILE, DFILE
DSBACK

then executing the following instruction.

ROLLOUT "CHAIN ROLCHAIN"

This would cause execution of the interpreter to be suspended, and
the following DOS command to be executed (for more details on the
DOS CHAIN command, see the DOS user I s guide) •

CHAIN ROLCHAIN

Executing this command would then cause the commands in the file
ROLCHAIN/TXT to be executed one after another. First, the file
AFILE/TXT would be sorted and and then written into file
BFILE/TXT. Second, the file CFILE/TXT would be sorted and then
written into file.DFILE/TXT. And last, the DSBACK command would
be executed to cause execution of the interpreter to be continued.

Note that if DSBACK had not been included in the chain file the
operator would have had to restore the system. Also note that if,
for any reason, the chain file did not go to completion; then the
operator would have had to execute the DSBACK command from the
console.

6-22 DATABUS COMPILER

6.12 PI

The PI instruction (Prevent Interruptions) enables the
programmer to prevent his background program from being
interrupted for up to 20 Databus instruction executions. It is
particularly useful in preventing any other port from modifying a
disk record while that record is in the process of being updated
(see appendix D). This instruction has the following general
fo rrna t:

<label> PI <dnum>

where: <label> is an execution label (see section 2.).
<dnum> is a decimal number.

Programming Considerations:

<label> is optional.

<dnum> must be between 0 and 20, inclusive.

<dnum> specifies the number of Databus instructions to be
executed before allowing an interruption. The PI instruction
is not included as one of these instructions.

If <dnum> is zero, all previously encountered PI or FILEPI
(see section 6.13) instr-'uctions are cancelled. This allows a
program to guarantee that no PI or FILEPI instrucions are
outstanding. It also allows for "quick release" of any files
or packs locked out while running under ARC.

The PI instruction may be used to postpone any of the
following background interruptions:

a} the keyboard interruption procedure (see section 9.1.5.3),

b) a higher priority execution being requested on another
port (caused by the termination of a foreground process),
or

c) the po r t us i n g up its s h are 0 f the b a c kg r 0 un d t i rn e •

This instruction has no effect upon the hardware one
millisecond interrupt used to perform all port and printer
I/O.

The number of instructions specified in the PI instruction is
always a fixed decimal number (it may not be a numeric

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-23

var iable) •

If interrupts are prevented, the execution of any instruction
that causes background to wait for I/O to finish cancels the
effect of the PI instruction. DISPLAY, KEYIM, CONSOLE and
PRINT are examples of instructions that cause background to
wait for I/O to finish. .

If a PI instruction is executed while interruptions are
already prevented, execution of that program is aborted. This
prevents a program from being able to pre~ent interruptions
for more than 20 instruction executions.

Note that the PI instruction can only prevent those interrupts
that are under control of the interpreter. The PI instruction
cannot be used to prevent interruptions such as power failures
or the system operator restarting the processor. Also, PI
cannot prevent updates to a file from another non-DATASHARE
partition, for example when running under ups. This means
t hat wh end e s i g n i n 9 com pIe x d a t a f i I est r u c t u res, the
programmer should take care that any interruptions do as
little harm 3S possible. The PI instruction is primarily
useful in preventing interruptions of one port's activity by
another port, particularly if both ports are modifying the
data file. The PI instruction prevents different ports frofJ
modifying the same record at the same time, therefore
maintaining file integrity.

Exampl e:

PI
READ
SUB
GOTO
UPDATE

4
F,KEYiPN,QTYONH,LOO
QTY FROM QTYONH
NOTNUFF IF L8SS
FiPN,QTYONH,LOD

Interruptions are prevented from the PI instruction through the
UPDATE instruction. Note that no other Datashare port can modify
the record being updated until this port has completed its
modification of the record. Using this technique, more than one
po rt can reference the "QuanTi tY ON Hand II and receive an
up-to-date answer.

6-24 DATABUS COMPILER

Example:
PI
READ
GOrrO

NORECORD PI

10
FILE,KEY;ITEMl,ITEM2,ITEM3
NORECORD IF OVER

o

In this example, the first PI of 10 instructions was
necessary to guarantee exclusive updating of a shared file. The
absence of the desired record aborted the update and caused the
program to go to an error-recovery routine. The "PIa" would
cause two basic actions: first, the files to which the program has
exclusive access would be released for other use; second, the
programmer is assured that all PI's have expired. Without the use
of the "PI 0" eight more instructions would have been protected
and an attempt to prevent interrupts again within 8 instructions
would cause the program to be aborted.

6.13 FILEPI

The FILEPI instruction is similar to the Prevent Interrupt
instruction in that it prevents a user's background execution from
being interrupted for up to 20 DATABUS instructions. This
instruction is useful when running under ARC to prevent damage to
files due to multiple users trying to update the file. See the
Attached Resource Computer user's guide for more information about
file handling under ARC and the enqueue/dequeue facility. This
instruction has the following general format:

<label> FILEPI <dnum>;<file list>

where: <label> is an execution label (see section 2.).
<dnum> is a decimal number.
<file list> is a list of FILE, RFILE, IFILE, RIFILE, and

AFILE names.

Programming Considerations:

<label> is optional.

<dnum> must be between 1 and 20, inclusive.

If a FILEPI or PI instruction is executed while interrupts are
already prevented, the executing program is aborted.

<file list> is a list of from 1 to 16 files (inclusive) whose

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-25

use is to be restricted during the duration of the FILEPI. If
more than 16 files are specified, the program executing is
aborted. The <file list> may be continued onto a second line
with a colon (:).

All files listed in the <file list> must have been previously
OPENed before the FILEPI statement is executed.

A FILEPI statement executed on systems not running in an ARC
network behaves exactly the same as a normal PI for the same
number of instructions.

All other pertinent information about this instruction is
identical to the normal PI instruction.

Example:
FILEA
FILES

UPDATE

FILE
FILE

! •

FILEPI
READ

WRITE

6i F ILEA,FILEB
FILEA,KEYiFIELDA,FIELDB,FIELDC

FILEB,KEYBiFIELDA,FIELDS

In this example, only the files FILEA and FILES need to be
protected during the update.

6.14 TABPAGE

The TASPAGE instruction is used to force sections of a
program to begin at the first of an object code page. Execution
speed can be enhanced in this way by reducing object code page
accesses. This instruction has the following general format:

<label> TABPAGE

where: <label> is an execution label (see section 2.).

Programming Considerations:

<label> is optional.

A page of object code is 250 bytes long. Page boundaries can
be detected in the listing of a program by looking at the

6-26 DATASUS COMPILER

three least significant digits of the location counter and
noting one of the following:

a) a location counter change from 772 (octal) to 001 (octal),
or

b) a location counter change from 372 (octal) to 401 (octal).

Compilation of a TABPAGE instruction forces the instruction
following the TABPAGE to be put at the first of the next page
Gf object code.

Execution of a TABPAGE instruction causes control to be
transferred to the first byte of the next page.

Note that liberally scattering TABPAGE instructions throughout
a user program, in general, does not result in an increase in
execution speed. Instead, the usual effect is to increase the
rate of thrashing of the program.

TABPAGE is best used to force tight loops to reside entirely
within one or two pages.

6.15 DSCNCT

The DSCNCT instruction is equivalent to executing a CHAIN to
the ANSWER program for the port executing the DSCNCT. This
instruction is the only way to properly enter the port's ANSWER
program. It is also the normal method for a program to terminate
when executing as a remote slave port. This instruction has the
following general format:

<label> DSCNCT

where: <label> is an execution label (see section 2.) .

programming Considerations:

<label> is optional.

For a remote slave port, the DSCNCT instruction causes the
following actions:

a) All telephone communication activities are terminated.

b) The telephone ish ung up.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS F,-27

c) The r em 0 te s tat ion i s ret urn ed to DOS.

For a remote port, the DSCNCT instruction causes the following
actions:

a) All telephone communication activities are terminated.

b) The telephone is hung up.

The equivalent of a CHAIN to the port's ANSWER program is
per fo rmed.

6.16 NORETURN

The NORETURN instruction is used to remove the top entry (the
last CALL) from the subroutine CALL stack and is used if it is
desired that a CALL or TRAP not return to its point of invocation.
This maintains the integrity of the subroutine CALL stack and
reduces the possiblity of a stack overf10w. The statement has the
following generel format:

<label> NORETURN

where: <label> is an execution label (see section 2.).

Programming considerations:

<label> is optional.

The NORETURN instruction, like the RETURN instruction, removes
the top element from the subroutine CALL stack. However, it
does not return control to the address specified on top of the
stack. Instead, control continues with the next instruction.

If the stack is empty (there are no active CALLs or TRAPs) ,
the OVER flag is set.

This instruction can be especially useful in routines that
handle TRAP events. Since a TRAP is implemented by a CALL
(see section 6.9) the return address is placed on top of the
stack. The trap routine can execute a NORETURN instruction,
and after whatever processing needs to be done can then GOTO
another place in the program instead of doing a RETURN. This
can help prevent stack overflows.

This instruction should be used with caution. If it is
accidently executed in a CALLed subroutine, then the return

6-28 DATABUS COMPILER

address is removed from the stack. When the RETURN
instruction is finally executed, control may return to an
incorrect place in the program, or, if the stack is then
empty, a stack underflow error occurs.

6.17 SHUTDOWN

The SHUTDOWN instruction provides a means for bringing down a
DATASHARE system. It allows the interpreter to return control to
DOS much like ROLLOUT, except that SHUTDOWN does not affect the
ROLLOUT file, and the executing program cannot be restarted at the
instruction after the SHUTDOWN as in ROLLOUT. The instruction may
have one of the following general formats:

1)
2)

<label>
<label>

SHUTDOWN <svar>
SHUTDOWN <slit>

where: <label> is an execution label (see section 2.).
<svar> is a character string variable.
<slit> is a character string literal.

Programming considerations:

<label> is optional.

The string variable, when using format (1), specifies the DOS
command line to be executed.

The string literal, when using format (2), specifies the DOS
command line to be executed.

The characters used to build the DOS command line are exactly
the same as in the ROLLOUT instruction (see section 6.11).

If the string variable given is null, then no command is
ex e cut ed u po n ret urn to DOS. T his i sus e f u 1 w hen i tis
desi red to simpl y sh ut down the systelrl.

DOS is brought up at the console and the command line supplied
from the string variable or literal is then supplied to the
DOS command interpreter exactly as if it had been keyed in
from the console.

The file used by ROLLOUT to save the interpreter state is not
affected in any way by this instruction. This implies that
the interpreter can be made to restart execution of an older
rolled out program saved in the ROLLOUT file by executing the

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-29

proper ROLLOUT return instruction.

It is not possible to resume execution of the DATASHARE
program executing the SHUTDOWN, or any other program then
being executed by the interpreter by another port.

The instruction does not take effect if any Slave terminal is
connected or if the MULTILINK communications handler does not
acknowledge the SHUTDOWN within ten seconds. In this case,
the OVER flag is set and execution continues with the next
DATABUS instruction.

The instruction only takes effect if all other ports in the
system are executing in either their ANSWER or MASTER program,
or are deactivated. If this condition is not true, the
SHUTDOWN is not done, and the OVER flag is set.

SHUTDOWN does not wait for the printer buffers to be emptied
before returning to DOS. There is no method to determine if
the printer buffers are empty.

6.18 PAUSE

The PAUSE instruction is an effective way of allowing a
program to pause without imposing significant overhead on the
system. This instruction may have one of the following general
formats:

1)
2)

<label>
<label>

PAUSE
PAUSE

<nvar>
<nlit>

where: <label> is an execution label.
<nvar> is a numeric string variable.
<nlit> is a numeric string literal.

Programming considerations:

<label> is optional.

The numeric string variable or literal contains the number of
seconds to PAUSE. The number of seconds specified must be
between 0 and 32,767.

The program executing the PAUSE instruction is suspended for
the specified number of seconds.

This instruction is useful if a port wants to suspend its

6-30 DATABUS COMPILER

execution; for example, because of the inavailability of the
printer, or nonexistence of a disk file, or wait for an event
to occur, such as communication from another port.

CHAPTER 6. PROGRA~ CONTROL INSTRUCTIONS 6-31

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

The character string handling instructions are used to change
the contents of character strings, or the string attributes
(logical length pointer, formpointer). Generally all string
handling instructions have the following form:

<label> <oper> <soper><prep><doper>

where: <label> is an execution label.
<oper> is the str i ng operation.
<soper> is the so urce operand.
<prep> is a preposition.
<doper> is the destination operand.

The reader should be familiar with the various DATABUS data
types. This information is contained in chapter 4 and should be
read before continuing.

7.1 MOVE

The MOVE instruction transfers the contents of the source
string into the destination string. Four (4) different types of
move operations are defined:

1) MOVE character string to character string.
2) iVlOVE character string to numeric string.
3) MOVE numeric string to character string.
4) Iv} 0 V E n u mer i cst ring to n u mer i cst r i n g .

The fir st. t h r e e (3) fv] 0 V E 0 per a t ion s are dis c us sed i nth i s
chapter, the fourth type is discussed in Chapter 8 on Arithmetic
Instructions.

7.1.1 MOVE (character string to character string)

This MOVE instruction transfers the contents of the source
operand into the destination operand. This instruction has the
following formats:

1)
2)

<label>
<label>

MOVE
IVlOVE

<ssvar><prep><dsvar>
<slit><prep><dsvar>

CHAPT2R 7. CHARACTER STRING HANDLI~G INSTRUCTIONS 7-1

where: <label>
<ssvar>
<prep>
<dsvar>
<slit>

is an execution label.
is the source string variable.
is a preposition.
is the destination string variable.
is the source string literal.

Programming Considerations:

<label> is optional.

Transfer from the source string starts with the character
under the formpointer and continues through the logical length
of the source string.

The source operand is not modified by this operation.

Transfer into the destination string starts at the first
physical character. When transfer is complete, the
formpointer of the destination string is set to one and the
logical length pointer points to the last character moved.

The EOS flag is set if the ETX in the destination string would
have been overstored. Transfer stops with the character that
would have overstored the ETX.

A null source string (formpointer=O) causes:

a. the destination variable formpointer to be set to zero.

b. no characters are moved.

c. the logical length pointer of the destination variable is
not changed.

Example:

VAR

STRINGl
STRING2

LL FP Contents

6 1
6 1

ABCDEF
DOGCAT

ETX
ETX

MOVE STRINGl TO STRING2

The following variable(s) will be changed:
STRING2 5 1 ABCDEF ETX
The following flag(s) will be set: None

7-2 DATABUS COMPILER

Example:

STRINGI
STRING2

4 2
6 3

ABCDXLM
DOGCAT

ETX
ETX

MOVE STRINGI TO STRING2

The following variable(s) will be changed:
STRING2 3 1 BCDCAT ETX
The following flag(s) will be set: None

Example:

STRINGI
STRING2

4 2
6 3

ABCDXLM
DOGCAT

ETX
ETX

MOVE "HELLO" TO STRING2

The following variable(s) will be changed:
STRING2 5 1 HELLOT ETX
The following flag(s) will be set: None

Exampl e:

STRINGI
STRING2

7 2
4 3

ABCDEFG
HIJKL

ETX
ETX

MOVE STRINGI TO STRING2

The following variable(s) will be changed:
STRING2 5 1 BCDEF ETX
The following flag(s) will be set: EOS

2xample:

ST1~INGl

STRING2
7 0
4 3

ABCDEFG
HIJKL

ETX
ETX

MOVE STRINGI TO STRING2

The following variable(s) will be changed:
STRING2 4 0 HIJKL ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-3

7.1.2 MOVE (character string to numeric string)

This MOVE transfers the contents of the source character
string to the destination numeric string. The instruction has the
following Eormats:

1)
2)

<label>
<label>

MOVE
MOVE

<ssvar><prep><dnvar>
<slit><prep><dnvar>

where: <label> is an execution label.
<ssvar> is the source string variable.
<prep> is a preposition.
<dnvar> is the destination numeric variable.
<slit> is the source string literal.

Programming Considerations:

<label> is optional.

A character string is moved to a numeric string only if the
portion of the character string from the formpointer through
the logical length pointer is of valid numeric format (at most
one decimal point, sign, and digits only).

The transfer from the source string starts at the formpointer
and proceeds through the logical length of the source string.

The source character string is reformatted and rounded to fit
the destination numeric string.

If any of the most significant digits or sign is lost in the
process of truncation, the EOS flag is set and the destination
numeric variable is not ch~nged as long as the length of the
source string is less than the 21 character limit of numeric
string variables (see section 4.1). If the source character
string is longer than 21 characters, the results are
indeterminate.

A null source string (formpointer=O) res·ults in the
destination variable not being changed.

7-4 DATABUS COMPILER

Example:

VAR LL FP Contents

STRING
NUMBER

9 3
0200

ABlOO.327
39.00

MOVE STRING TO NUMBER

ETX
ETX

The following variable(s) will be changed:
NUMBER 0200 100.33 ETX
The following flag(s) will be set: None

Example:

STRINGI
NUMBER

9 3
0200

.1\81 OX. 327
39.00

ETX
ETX

MOVE STRINGI TO NUMBER

The following variable(s) will be changed: None
The following flags will be set: None

Example:

NUMBER 0200 12345.3 ETX

MOVE "935 11 INTO NUMBER

The following variable(s) will be changed:
NUMBER 0200 935.0 ETX
The following flag(s) will be set: None

Example:

STRING
NUlvIBER

5 0
0200

ABCDE
935.0

MOVE STAING TO NUMBER

ETX
ETX

The following variables will be changed: None
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-5

7.1.3 MOVE (numeric string to character string)

This MOVE transfers the contents of the source numeric string
to the destination character string. The instruction has the
following formats:

I}
2)

<label> MOVE
<label> MOVE

<snvar><prep><dsvar>
<nlit><prep><dsvar>

where: <snvar> is the source numeric variable.
<prep> is a preposition.
<dsvar> is the destination character string variable.
<nlit> is a numeric literal.

Programming Considerations:

<label> is optional.

Transfer from the source numeric string starts with the first
character of the string and continues until the source numeric
ETX is reached or until- the ETX of the destination string is
about to be overstored.

Transfer into the destination character string begins with the
first physical character and continues until either the source
string ETX is encountered or the destination character string
ETX is about to be overstored.

The formpointer is set to one (1) and the logical length
pointer is set to point to the last character transferred into
the destination string.

The EOS flag is set if the ETX would have been overstored in
the destination character string. The transfer stops with the
character before the one that would have overstored the ETX.

Example:

VAR

NUMBER
STRING2

LL FP Contents

0200
9 3

100.33
ABlOO.327

ETX
ETX

MOVE NUMBER TO STRING2

The following variable(s) will be changed:
STRING2 6 1 100.33327 ETX
The following flag(s) will be set: None

7-6 DATABUS COMPILER

Example:

NUiVlBER
STRING2

0200
5 3

10.35789
ABCDE

MOVE NUMBER TO STRING2

The following variable(s) will be changed:
STRING2 5 I 10.35 ETX
The following flag(s) will be set: EOS

7.2 APPEND

APPEND appends the source string (character or numeric) to
the destination string. The instruction has the following
formats:

1)
2)
3)

where:

<label>
<label>
<label>

<label> is
<ssva,r> is
< prep> is
<dsvar> is
<snvar> is
< sl it> is

APPEND
APPEND
APPEND

<ssvar><prep><dsvar>
<snvar><prep><dsvar>
<slit><prep><dsvar>

an execution label.
the so urce string variable.
a preposition.
the destination string variable.
the source numeric variable.
the so urce string literal.

Programming Considerations:

<label> is optional.

The portion of the source defined by one of the following:

1) For source character strings, the formpointed
character through the logical length of the source
character string .

.....

2) For numeric strings, the first character through the
physical end of str ing (ETX)

is appended to the destination character string.

The source string is appended starting after the ~~~~E~~~!ed
characte~ in the dest.ination s'trlng-:--- ----

The source string pointers are not changed.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-7

The destination string formpointer and logical length pointer
point to the last character transferred.

The EOS flag is set if the portion of the source string that
is to be moved cannot be contained in the destination string.
All of the characters that fit are appended.

Exampl e:

VAR

STRINGI
STRING2

LL FP Contents

8 6 JOHN DOE
11 11 MARY JONES

ETX

APPEND STRINGI TO STRING2

ETX

The following variable(s) will be changed:
STRING2 14 14 MARY JONES DOE ETX
Th e foIl 0 wi n 9 f 1 a g (s) -wi 11 be s e-t:-N 0 n e

Example:

STRING2 10 9 :'1ARY JONES ETX

APPEND ".XX.YY." TO STRING2

The following variable(s) will be changed:
STRING2 16 16 MARY JONE.XX.YY. ETX
The following flag(s)-will be set:--None

Example:

NUrv1BER
STRING2

0200
9 2

100.33
ABCDEFGHI

ETX
ETX

APPEND NUMBER TO STRING2

The following variable(s) will be changed:
STRING2 8 8 ABIOO.33I ETX
T he f 0110 wing f 1 a g (s) w i 11 be set : No n e

7-8 DATABUS COMPILER

7.3 MATCH

MATCH compares two character strings. The instruction has
the following formats:

1)
2)

<label>
<label>

MATCH
MATCH

<ssvar><prep><dsvar>
<slit><prep><dsvar>

where: <label> is an execution label.
<ssvar> is the source string variable.
<dsvar> is the destination string variable.
<prep> is a preposition.
<slit> is a string literal.

Programming Considerations:

<label> is optional.

MATCH compares two character strings starting at the
formpointer of each string, and stopping when the end of
either operand1s logical string is reached.

The formpointers and logical length pointers of both strings
are unchanged.

The length of each string is defined to be:

length = logical length pointer - formpointer + I

If all of the characters that are compared match, then the
EQUAL flag is set and the following computation is made:

L = (length of destination string) -
(length of source string)

The LESS flag is set to indicate that L is negative.

If all of the characters that are compared do not match, then
the following COIT"~.J<.Atation is made: . \

D = (octal value of first non matching destination
character) -
(octal value of first non matching source character)

The LESS flag is set if D is less than zero.

If either the source or destination string formpointer is zero
before the operation, then the LESS and EQUAL flags are

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-9

clear ed and the EOS flag is set.

Example:

VAR LL FP Contents

STRINGI 5 1 ABCDE ETX
STRING2 4 1 ABCD ETX

MATCH STRINGI TO STRING2

The following fl ag (s) will be set: EQUAL, LESS

Example:

STRINGI 3 1 ABC ETX
STRING2 1 1 Z ETX

MATCH STRINGI TO STRING2

The followi ng flag(s) will be set: None

Example:

STRINGI 3 1 ZZZ ETX
STRING2 3 1 AM ETX

MATCH STRINGl TO STRING2

The followi ng flag(s) will be set: LESS

Example:

STRINGl '5 4 XXXABC ETX
STHING2 5 3 Y'lABC ETX

MATCH S'rRINGl TO STRING2

The followi ng flag(s) will be set: EQUA~ ..

7-10 DATABUS COMPILER

Example:

STRING2 5 1 ABCDE ETX

MATCH "ABCD" TO STRING2

The following flag(s) will be set: EQUAL

Example:

STRING2 5 0 ABCDE ETX

J"1ATCH II ABCDE" TO STRING2

The following flag(s) will be set: EOS

7.4 CMOVE

The CMOVE instruction moves a character from the source
operand into the destination character string. The instruction
has the following formats:

1)
2)
3)

where:

<label>
<label>
<label>

<label> is
<ssvar> is
<prep> is
<dsvar> is
<char> is
<occ> is

CMOVE
CI'10VE
C.MOVE

<ssvar><prep><dsvar>
<char><prep><dsvar>
<occ><prep><dsvar>

an execution label.
the so urce st ring variable.
a preposition.
the destination string variable.
the one character source literal
an octal control character.

Programming Considerations:

<label> is optional.

s tr i ng .

Transfer from the source string starts with the character
under the formpointer.

Transfer into the destination string starts with the character
under the formpointer.

Only one character is moved.

Neither string's logical length pointer and formpointer are
modified.

CHAPTER 7. CHARACTER STRI~G HANDLING INSTRUCTIONS 7-11

If either variable has a formpointer of zero (0), then the EOS
flag is set and no transfer occurs.

Example:

VAR LL F'P Co n ten ts

STRINGl
STHING2

5 3
3 2

ABCDE
XXX

ETX
ETX

CMOVE STRINGl TO STRING2

The following variable(s) ~"ill be changed:
STRING2 3 2 XCX 8TX
The following flag(s) will be set: None

Example:

STRING2 3 2 1234 ETX

ClY! 0 V E II X II TO S T R IN G 2

The following variable(s) will be changed:
STRING2 3 2 IX34 ETX
The following flag(s) are set: None

7.5 CMATCH

CMATCH compares a single character froli) the source string to
a character in the destination string. The instruction has the
following formats:

1)
2)
3)
4)
5)

where:

<label>
<label>
<label>
<label>
<label>

CMATCH
C!v1<~TCH

CMATCH
CMATCH
CMATCH

<ssvar><prep><dsvar>
<char><prep><dsvar>
<ssvar><prep><char>
<occ><prep><dsvar>
<ssvar><prep><occ>

<label>
<ssvar>
<prep>
<dsvar>
<char>
<occ>

is an execution label.
is the source string variable.
is a preposition.
is the destination string variable.
is a one character string literal.
is an octal control character.

Pro,)ramming Considerations:

7-12 DA T.Z\ 8 USC 01\1 P I L E H

<label> is optional.

The character compared from the source string is the character
from under the formpointer.

The character compared from the destination string is the
character from under the formpointer.

If the two characters match, then the EQUAL flag is set.

If the two characters do not match then the LESS flag is set
if the follo\ving difference (D) is negative:

D = (octal value of destination character) - (octal
value of source character) •

If a literal or octal control character is used in the source
string then that character is the one used for the CMATCH
operation.

If either operand has a formpointer of zero (0), then the EOS
flag is set.

Exampl e:

VAR

STRINGI
STRING2

LL FP Contents

5 3
3 1

ABCDE
CX

ETX
ETX

CMATCH STRINGI TO STRING2

The following flag(s) are set: EQUAL

Example:

STRING2 4 2 XACD ETX

CMATCH "B" TO STRING2

The following flag(s) are set: LESS

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-13

Exampl e:

ST 8 0 ABCDEFGH ETX

CMATCH "yn 'fO ST

The following flag(s) are set: EOS

7.6 BUMP

The BUMP instruction increments or decrements the formpointer
of a variable. The instruction has the following formats:

1)
2)
3)

where:

<label> BUMP
<label> BUl'1P
<label> BUMP

<svar>
<svar><prep><dcon>
<svar><prep><nvar>

<label> is an execution label.
<svar> is ;;. string variable.
<prep> is a pre po sit ion.
<dcon> is a sig ned decimal constant.
<nvar> is a numer ic variable.

Programming Considerations:

<label> is optional.

when using format (1) above, the string variable's formpointer
is incremented by one (1).

when using format (2) above <dcon> is added to the formpointer
and the result becomes the new string variable formpointer if
the new formpointer is valid. Note that a valid formpointer
must be in the range (1 to n) where n is the value of the
logical length pointer for the string.

when using format (3) above the value specified by <nvar> is
added to the formpointer and the result becomes the new string
variable formpointer if the new formpointer is valid. Note
that a valid formpointer must be in the range (1 to n) where n
is the value of the logical length pointer for the string.

The EOS flag is set if the BUMP instruction would have caused
an invalid formpointer. The formpointer is not changed in
this case.

7-14 DATABUS COMPILER

Example:

VAR LL FP Contents

CAT 5 2 ABCDE ETX

BUMP CAT

The following variable(s) will be changed:
CAT 5 3 ABCDE ETX
The following flag(s) will be set: None

Example:

CAT 5 4 ABCDE ETX

BUMP CAT BY -2

The following variable(s) will be changed:
CAT 5 2 ABCDE ETX
The following flag(s) will be set: None

Example:

CAT 5 3 ABCDE ETX

BUMP CAT BY 3

The following variable{s) will be changed: None
The following flag{s) will be set: EOS

Exampl e:

CAT
DOG

5 2
0200

ABCDE
2

BUMP CAT BY DOG

ETX
ETX

The following variable(s) will be changed:
CAT 5 4 ABCDE ETX
The following flag(s) will be set: None

CHAP'rER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-15

Example:

CAT 5 3 ABCDE ETX
DOG 0200 3 ETX

B UIYlP CAT BY DOG

The fo llowi ng variable(s) will be changed: None
The followi ng flag(s) wi 11 be set: EOS

Exar.lple:

VARI 5 3 ABCDE ETX
VAR2 02'00 -1 ETX

BUi"1P VARI BY VAR2

The following variable(s) will be changed:
VARI 5 2 ABCDE ETX
The follow i ng f 1 a 9 (s) will be set : No n e

7.7 RESET

RESET changes the value of the formpointer of the destination
string to the value indicated by the second operand. The
instruction has the following formats:

1)
2)
3)
4)
5)

v"here:

<label>
<label>
<label>
<label>
<label>

RESET
RESET
RESET
RESET
RESET

<dsvar><prep><dcon>
<dsvar>
<dsvar><prep><char>
<dsvar><prep><ssvar>
<dsvar><prep><snvar>

<label>
<dsvar>
<pr ep>
<dcon>
<char>
<ssvar>
<snvar>

is an execution label.
is the destination string variable.
is a preposition.
is a decimal constant.
is a one character string literal.
is the source string variable.
is the source numeric variable.

Programming Considerations:

<label> is optional.

RESET changes the value of the formpointer of the destination
string to the value indicated by the second operand. If the

7-16 DATABUS COMPI LER

second operand is not specified, the fO[Inpointer 'is reset to
one (1).

If the second operand is a quoted character, the formpointer
of the destination string is changed to the following:

FP = (OCTAL value of ASCII character) - 037

If the second operand is a character string, the character
under the formpointer is accessed. The formpointer of the
destination string is changed to the following:

FP = (OCTAL value of ASCII character) - 037

If the second operand is a numeric string, the number is used
as the value for the new formpointer. If the variable is not
an integer, then the fractional quantity is truncated and the
integer portion is used for the value.

If the new formpointer would be past the logical length
pointer of the first operand, the logical length pointer is
set to the value of the new formpointer. Note that under no
circumstances is the logical length pointer or formpointer set
outside the physical structure of the string. If an attempt
is made to set the formpointer beyond the physical length of
the string, the formpointer is set to the physical length of
the string, and the EOS flag is set.

The EOS flag is set when any change in the logical length
pointer of the destination string occurs.

The RESET instruction is very useful in code conversions and
hashing of character string values as well as large string
manipulation.

Example:

VAR LL FP Contents

XDATA 5 3 ABCDEFGHIJ ETX

RESET XDATA

The following variable(s) ·will be changed:
XDATA 5 1 ABCDEFGHIJ ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-17

Example:

XDATA 5 2 ABCDEFGHIJ ETX

RESET XDATA TO 4

The following variable(s) will be changed:
XDATA 5 4 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Example:

XDATA
NUMBER

10 2
0200

ABCDEFGHIJ
8

RESET XDATA TO NUMBER

ETX
ETX

The following variable(s) will be changed:
XDATA 10 8 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Exampl e:

XDATA
NUIVlBER

6 2
0200

ABCDEFGH I.]
8

RESET XDATA TO NUMBER

ETX
ETX

The following variable(s) will be changed:
XDATA 8 8 ABCDEFGHIJ ETX
The following flag(s) will be set: EOS

Exampl e:

XDATA
STRING

10 8
5 4

1234567890
ABC!E

RESET XDATA TO STRING

ETX
ETX

The following variable(s) will be changed:
XDATA 10 2 1234567890 ETX
Note: The ASCII value of ! is octal 041.
The following flag(s) are set: None

7-18 DATABUS COMPILER

7.8 SETLPTR

The SETLPTR instruction changes the value of the logical
length pointer of the destination string to the value indicated by
the second operand. The instruction has the following formats:

1)
2)
3)
4)
5)

<label>
<label>
<label>
<label>
<label>

SETLPTR
SETLPTR
SETLPTR
SETLPTR
SE'rLPTR

<dsvar><prep><dcon>
<dsvar>
<dsvar><prep><char>
<dsvar><prep><ssvar>
<dsvar><prep><snvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.
<prep> is a preposition.
<dcon> is a decimal constant.
<char> is a one character string literal.
<ssvar> is the source string variable.
<snvar> is the source numeric variable.

programming Considerations:

<label> is optional.

SETLPTR changes the value of the logical length pointer of the
destination string to the value indicated by the second
operand. If the second operand is not specified (format (2)),
the logical length pointer is set to the physical length of
the string.

If the second operand is a quoted character, the logical
length pointer of the destination string is changed to the
following:

LP = (JCTAL value of ASCII character) - 037

If the second operand is a character string, the character
under the for~pointer is accessed. The logical length pointer
of the destination string is changed to the following:

LP = (OCTAL value of ASCII character) - 037

If the second operand is a numeric string, the number is used
as the value for the new logical length pointer. If the
variable is not an integer, then the fractional quantity is
truncated and the integer portion is used for the value.

If the new logical length pointer would be before the

CHAPTER 7. CHARAC'fEH STHING dANDLI!\JG INSTRUCTIONS 7-19

formpointer of the first operand, the formpointer is set to
the value of the new logical length pointer. Note that under
no.circumstances is the logical length pointer or formpointer
set outside the physical structure of the string.

The EOS flag is set when any change in the formpointer of the
de~tination string occurs.

The OVER flag ii set if the value specified for the new
logical length pointer is out of range of the length of the
string. The logical length pointer is not changed in this
case.

The SETLPTR instruction is very useful in code conversions and
hashing of character string values as well as large string
manipulation.

Example:

VAH LL ~p Contents

XDATA 5 3 A8CDEFGHIJ ETX

S ETLPTR XDA.TA

The following variable(s) will be change0:
XDATA 10 3 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Sxampl e:

XDATA 5 2 ABCDEFGHIJ 8TX

SETLPTR XDATA TO 4

The following variable(s) will he changed:
XDATA 4 2 A8CDEFGHIJ ~TX

The following flag(s) will be set: ~Jone

7-20 DATA8US COMPILEH

Example:

XDATA
NU1V1BER

10 2
0200

ABCDEFGHIJ
8

ETX
ETX

SETLPTR XDATA TO NUMBER

The following variable(s) will be changed:
XDATA 8 2 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Exampl e:

XDATA
NUMBER

6 4
0200

<~BCDEFGH 1.J
2

ETX
ETX

SETLPTR XDATA TO NUMBER

The following variable(s) will be changed:
XDATA 2 2 ABCDEFGHIJ ETX
The following flag(s) will be set: EOS

Exampl e:

XDATA
STRING

10 1
5 4

1234567890
ABC$E

ETX
ETX

SETLPTR XDATA TO STRING

The following variable(s) will be changed:
XDATA 5 1 1234567890 ETX
Note: The ASCII value of $ is octal 044.
The following flag(s) are set: None

Example:

XDATA 10 1 l2345G7890 ETX

SETLPTR XDATA TO 12

The following variable(s) will be changed: None
The following flag(s) are set: OVER

CHAPTER 7. CHARACTER STRING HANDLI~G INSTRUCTIONS 7-21

Example:

XDATA
NUMBER

10 1
0200

1234S()7890
-4

ETX
ETX

SETLPTR XDATA TO NUMBER

The following variable(s) will be changed~ None
The following flag(s) are set: OVER

7.9 ENDSET

ENDSST causes the operand's formpointer to be changed to the
value of the logical length pointer. This instruction has the
following format:

<label> ENDSET <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:

<label> is optional.

<dsvar> must be a string variable.

Example:

VAR LL FP Contents

CAT 10 4 1234567890 ETX

ENDSET CAT

The following variable(s) will be changed:
CAT 10 10 12345~7890 ETX
The following flag(s) will be set: None

7-22 DATABUS COI'v1PILEH

Example:

DOG f) 4 1234567890 ETX

ENDSET DOG

The following variable(s) will be changed:
DOG 6 6 1234567890 ETX
The following flag(s) will be set: None

7.10 LENSET

LENSET changes the operand's logical length pointer to the
value of the formpointer. The instruction has the following
fo rma t:

<label> LENSET <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

PrograQming Considerations:

<label> is optional.

<dsvar> must be a string variable.

Example:

VAR LL FP Contents

STHING 8 4 1234567890 ETX

LENSET STRING

The following variable(s) will be changed:
STRING 4 4 1234567890 ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-23

Example:

XDAT,2\ 6 2 1234567890 ETX

LE NS ET XDA TA

The following variable(s) will be changed:
XDATA 2 2 1234567890 ETX
The following flag(s) will be set: None

7.11 CLEAR

CLEAR sets the logical length pointer and formpointer of the
operand to zero. This instruction has the following format:

<label> CLEAR <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:

<label> is optional.

<dsvar> must be a string variable.

Ex am pI e:

VAR LL FP Contents

STRING 8 3 ABCDEFGHIJ ETX

CLEAR STRI!\JG

The following variable(s) will be changed:

STRIN~ 0 0 ABCDEFGHIJ ETX
Th e follow i n g f 1 a g (s) wi 11 be 52 t : No n e

7-24 DATABUS COMPILER

7.12 EXTEND

EXTEND increments the string variable's formpointer by one
and stores a space into the new formpointed character. The
logical length pointer is set to the value of the new formpointer.
This instruction has the following format:

<label> EXTEND <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:

<label> is optional.

<dsvar> must be a string variable.

The formpointer of the string variable is incremented by one.
The logical length pointer is set to the value of the new
form po in t e r •

If the new formpointed character is the ETX, then the EOS flag
is set and the formpointer and logical length pointer are left
as they were before the EXTEND instruction was executed.

Example:

VAR LL FP Contents

STRING 10 3 ABCDEFGHIJ ETX

EXTEND STRING

The following variable(s) will be changed:
STRING 4 4 ABC EFGHIJ ETX
The following flag(s) will be set: None

Exar.l pI e:

STRING 10 10 A8CDEFGHIJ ETX

EXTEND STRING

The following variable(s) will be changed: None
The following flag(s) will be set: EOS

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-25

7.13 MOVEFPTR

The MOVEFPTR instruction provides the user the ability to
access and observe a string variable's formpointer. This
instruction has the following general format:

<label> MOVEFPTR <ssvar><prep><dnvar>

where: <label> is an execution label.
<ssvar> is the source string variable.
<prep> is a preposition.
<dnvar> is the destination numeric variable.

Programming considerations:

<label> is optional.

The value of the source string variable's formpointer is
placed in the destination numeric variable.

The source string variable is not modified by this
instruction.

If the value of the formpointer is zero, the EQUAL flag is
set.

If the formpointer value does not fit into the destination
numeric variable, it is truncated and the OVER flag is set.

Example:

VAR

XDATA
NUMBER

LL FP Contents

10 2
0200

ABCDEFGHIJ
8

ETX
ETX

MOVEFPTR XDATA TO NUMBER

The following variable(s) will be changed:
NUMBER 0200 2 ETX
The following flag(s) will be set: None

7-26 DATABUS COMPILER

7.14 MOVELPTR

The MOVELPTR instruction provides the user the ability to
access and observe a string variable's logical length pointer.
This instruction has the following general format:

<label> MOVELPTR <ssvar><prep><dnvar>

where: <label> is an execution label.
<ssvar> is the source string variable.
<prep> is a preposition.
<dnvar> is the destination numeric variable.

Programming considerations:

<label> is optional.

The value of the source string variable's logical length
pointer is placed in the destination numeric variable.

The source string variable is not modified by this
instruction.

If the value of the logical length pointer is zero, the EQUAL
flag is set.

If the logical length pointer value does not fit into the
destination numeric variable, it is truncated and the OVER
flag is set.

Example:

VAR

XDATA
NUMBER

LL FP Contents

10 2
0200

ABCDEFGHIJ
14

ETX
ETX

MOVELPTR XDATA TO NUt'1BER

The following variable(s) will be changed:
NUMBER 0200 10 ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-27

7.15 LOAD

LOAD performs a MOVE from the selected character string
(using an index for selection) to the destination character
string. The instruction has the following formats:

<label> LOAD <dsvar><prep><index><prep><list>

where: <label>
<dsvar>
<prep>
<index>

<list>

is an execution label.
is the destination string variable.
is a preposition.
is a numeric string used for selecting
variable from the <list>.
is a list of string variables.

a string

This discussion deals only with the case when <list> is a set
of string variables. The LOAD instruction to use when <list~ is a
set of numeric variables is covered in Chapter 8 on Arithmetic
Instructions.

Programming Considerations:

<label> is optional.

<dsvar> must be a string variable.

<index) is a numeric variable. If this variable is not an
integer, then the fractional quantity is truncated and the
integer portion used as the index for list selection.

If the <index> does not correspond to a variable in the
<list>, then the LOAD instruction is simply ignored.

<list> must contain string variables only. The <list> Day ~e
continued if necessary by using the colon (:) instead of the
comma (,) after the last variable used on the line to be
continued.

There must not be more than 255 character string variables in
the list.

This instruction works exactly like the MOVE instruction
(character string to character string) after the variable has
been selected froQ the list.

An <index> quantity of one (1) corresponds to the first
variable in the <list> and an <index> quantity of n
corresponds to the nth variable in the <list>.

7-28 DATABUS COMPILER

Example:

VAR LL FP Contents

DESTIN 10 5 ABCDEFGHIJ ETX
INDEX 0200 2.9 ETX
Sl 5 1 ITl11 ETX
S2 5 2 22222 ETX
S3 5 3 33333 ETX

LOAD DESTIN FROM INDEX OF Sl,S2:
S3

The following variable(s) will be changed:
DESTIN 4 1 2222EFGHIJ ETX
The following flag(s) will be set: None

Example:

DESTIN 5 1 ABCDE ETX
INDEX 0200 3.7 ETX
Sl 5 1 ITllll ETX
S2 7 1 2222222 ETX
S3 8 1 33333333 ETX
S4 9 1 444444444 ETX

LOAD DESTIN FROM INDEX OF Sl,S2,S3,S4

The following variable(s) will be changed:
DESTIN 5 1 33333 ETX
The following flag(s) will be set: EOS

7.16 STORE

STORE selects a variable from a list (using an index for
selection) and performs a MOVE operation from the source string
operand to the selected destination string variable. The
i"nstruction has the following formats:

1)
2)

<label> STORE
<label> STORE

<ssvar><prep><index><prep><list>
<slit><prep><index><prep><list>

where: <label> is an execution label.
<ssvar> is the source string variable.
<prep> is a preposition.
<index> is the numeric variable which specifies which

variable from <list> is to be selected as the

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-29

<list>
< sl it>

destination variable for the MOVE operation.
is a list of string variables.
is a string literal.

Programming Considerations:

<label> is optional.

<list> is a list of string variables, separated by commas (,)
The list may be continued on the following line by using a
colon (:) instead of a comma (,) after the last variable on
the line to be continued.

<index> must be a numeric variable. If the <index> is not an
integer, it is truncated and the integer portion is used as
the index for list selection.

If the <index> does not correspond to a variable in the
<list>, then the STORE instruction is simply ignored.

An <index> quantity of one (1) corresponds to the first
variable in the <list> and an <index> quantity of n
corresponds to the nth variable in the <list>.

There must not be more than 255 character string variables in
the list.

All of the rules of the MOVE instruction apply after the list
selection has been performed.

Example:

VAR LL FP Contents

SOURCE 8 5 12345678 ETX
I 0200 2.3 ETX
Dl 5 2 11111 ETX
D2 n 3 222222 ETX
D3 7 4 3333333 ETX

STORE SOURCE INTO I OF DI,D2:
D3

The following variable(s) will. be changed:
D2 4 1 567822 ETX
The following flag(s) will be set: None

7-30 DATABUS COMPI LER

Exampl e:

IND
Dl
D2

0200
5 1
4 2

3
12345
ABCD

ETX
ETX
ETX

STORE "890" INTO IND OF Dl,D2

The instruction would have no effect because the index is out
of range.

7.17 CLOCK

CLOCK allows a DATABUS program access to the interpreter's
time clock, day, year, version, and port characteristics. This
instruction has the following general format:

<label> CLOCK <itern><prep><svar>

where: <label> is an execution label.
<item> may be one of the following:

1) T 11"1 E to ace e sst he tim e 0 fda y c 1 0 c k .
2) DAY to access the day of the year.
3) YEAR to access the year.
4) VERSION to access the interpreter version and

revision numbers and interpreter name.
5) PORT to access the port number and various

port characteristics.

is a preposition. < prep>
<svar> is a string variable that is to receive the

requested infor~ation.

Programming Considerations:

<label> is optional.

<svar> must be a string variable.

The time clock (TIME) has the following format:

hh:mm:ss

where:

hh = hours tens and units digits with range (00 to

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-31

23) •
mm = minutes tens and units digits with range (00

59) •
ss = seconds tens and uni ts digits with range (00

59) •

The day of the year (DAY) has the following format:

ddd representing the hundreds, tens, and units
digits of the day of year with range (001 to
366). The day expressed in this fa rm is
commonly termed the "Julian".day.

The year (YEAR) has the following format:

yy representing the tens and units of the year
with range (00 to 99) •

The interpreter version number and name (VERSION) has the
following format:

v.r nnnnnnn

where:

v = the interpreter version number.
is a period.

r = the interpreter revision number.
nnnnnnn = an up to seven byte interpreter name.

to

to

The version and revision numbers and the interpreter name
are separated by a blank.
A typical answer would be "1.1 OS6".

The port number and charactersitics (PORT) has the following
fa rma t:

7-32

nn ss tt uuuuu

\vhere:

nn =

ss =

tt =

the port number upon which the DATASHARE V
program is currently running.
the screen ~ize of the port and is either 12
or 24 lines.
the port type, for example:

01 = CONSOLE

DATABUS COMPILER

02 = 3360 port
03 = 3600 port
04 = SLAVE
05 = PHANTOM

uuuuu = the maximum size of the User's Data Area
(UDA) in bytes.

The parts of the string are separated by blanks. This
particular type of the CLOCK instruction is subject to
change and expansion. Consult the appropriate user's
guide for more information and the exact nature of the
answer.

The CLOCK instruction simply performs a MOVE operation on
information requested into the destination string variable.

The DATABUS programmer must be careful when using the CLOCK
instruction to avoid getting erroneous results. When
obtaining both the TIME and DAY, the program should first
access the DAY and then the TIME. The program should then
access the DAY again and insure that the DAY has not changed.
If the D~Y has changed, then the process should be repeated.
When this procedure is followed, then the TIME and DAY
correspond to each other.

The T IIV1E, DAY, and YEAR are pI ac ed in to the in te rprete r when
the system is brought up. The CLOCK items are kept updated
\vhile the interpreter is running and are available to DATABUS
programs.

The TIME is accurate to approximately 0.005 percent or five
(5) seconds per day.

CHAPTER 7. CHARACTER STRI~G HANDLING INSTRUCTIONS 7-33

VAR

TIME
DAY
TEMP
YEAR
VERSION
PORT

TIMEOK

LL FP Contents

8 2 XXX XXX XX ETX
3 3 YYY ETX
3 2 ZZZ ETX
2 2 ZZ ETX
5 3 SSSSSSSSSSS ETX
12 3 TTTTTTTTTTTTTT ETX

CLOCK VERSION TO VERSION
CLOCK PORT TO PORT
CLOCK DAY TO DAY
CLOCK TIME TO TIME
CLOCK YEAR TO YEAR
CLOCK DAY TO TEMP
MATCH DAY TO TEMP
GOTO TIMEOK IF EQUAL
CLOCK DAY TO DAY
CLOCK T IlvJE TO TIME
........

The following variable(s) will be changed:
TIME 8 1 13:10:15 ETX
DAY 3 1 134 ETX
YEAR 2 1 80 ETX
TEMP 3 1 134 ETX
VERSION 11 1 1.1 DS6 ETX
PonT 14 1 02 24 03-6409S ETX

The above \vo u1d be correct if the time was 13 hours, 10
minutes, 15 seconds, the day of the year was the 134th, ~nd the
year number was 80. The name of the interpreter configure~ is
DS6, the version is 1.1. The port executing this instruction is
port 2, it has a 24 line screen, it is a 3600, and was configured
with 4096 bytes of UDA.

7.18 TYPE

The TYPE instruction checks the format of a character string
va ria b 1 e for val i d n urn e ric s t r i nq for In at. T his ins t r u c t ion has
the following for~at:

<label> TYPE <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

7-34 DATABUS COMPILER

programming Considerations:

<label> is optional.

<dsvar> must be a string variable.

Only the logical string of <dsvar> is checked for valid
numeric format (see section 4.1).

The EQUAL flag is set to true only when the logical string is
a valid numeric string.

A null logical string is not a valid numeric string and causes
the EOS flag to be set.

7.19 SEARCH

SEARCH compares a variable <key> to a list of variables
<list> and yields an index <index> which indicates which variable
in the <list> matched. This instruction has the following format:

<label> SEARCH <key><prep><blist><prep><nlist><prep><inde

where: <label> is an execution label.
<key> is the key variable.
<prep> is a preposition.
<blist> is the first variable in a list of contiguous

variables.
<nlist> is a numeric variable which specifies the number

of variables in the list to be searched.
<index> is a numeric variable produced by the interpreter

which specifies which variable in the list (the
first of which was <blist» matched the <key>.

programming Considerations:

<label> is optional.

<key> and the variables in the list (the first of which is
<blist» should be of the same data type, either both string
variables or both numeric variables.

<blist> is the name of the first variable in the list of
contiguous variables to be used.

<nlist> is a numeric variable which specifies the number of

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-35

variables in the list (the first of which is <blist».

The logical string of <key> is compared to the logical string
of a va ria b 1 e from the 1 i s t (0 f w h i c h < b 1 i s t> i s the fir s t) .
If the logical string length of <key> is less than the logical
string length of the variable being compared (from the list) ,
the match stops when the <key> logical string is· exhausted.
It is not possible to get a match on a <key> variable whose
logical string is longer than the logical string of the list
variable.

The logical string lengths of the variables in the list may be
different.

"Logical string" as used here for numeric string variables
means the entire string of digits used to represent the
numeric value. The match is done character by character. So,
for example, if the key variable was numeric and had a value
of "123" and one of the variables in the search list had a
val ue of " 123" a rna tch would net occur.

If the variable <nlist> is larger than the number of variables
in the list, the search proceeds until the count <nlist> is
exhausted.

<index> contains a one (1) if the first· variable in the list
matched <key>. A value of n for <index> indicates the nth
variable in the list matched <key>. The EQUAL flag is also
set if a match is found.

If none of the list variables matched <key> then a value of
z era (0) i s ret urn ed for < i nd ex> and the 0 V E R flag iss e t .

7-36 DATABUS COMPI LER

Example:

VAR LL FP Contents

KEY 5 3 ABCDE Errx
VARI 8 1 12345678 ETX
VAR2 6 2 XCDE12 ETX
VAR3 4 3 FGHI ETX
NVAR 0200 03 ETX
INDEX 0200 00 ETX

SEARCH KEY IN VARI TO NVAR WITH INDEX

The following variable(s) will be changed:
INDEX 0200 2 ETX
The following flag(s) will be set: EQUAL

Example:

KEY 5 3 ABCDE ETX
VI 5 I XXXXX ETX
V2 3 I YYY ETX
V3 4 I ZZZZ ETX
N 0200 3 ETX
I 0200 99 ETX

SEARCH KEY IN VI TO N USING I

The following variables will be changed:
I 0200 0 ETX
The following flag(s) will be set: OVER

7.20 REPLACE

REPLACE (the compiler also accepts a mnemonic of REP) allows
replacement of an ASCII character in a string variable by another
ASCII character. This instruction may have one of the following
general formats:

1)
2)
3)
4)

<label> REPLACE
<label> REP
<label> REPLACE
<label> REP

<ssvar><prep><dsvar>
<ssvar><prep><dsvar>
<slit><prep><dsvar>
~slit><prep><dsvar>

where: <label> is an execution label.
<ssvar> is the source string variable.
<prep> is a preposition.

CHAPTER 7. CHARACTER STRING HANDLI~G INSTRUCTIONS 7-37

<dsvar> is the destination string variable.
<slit> is a source string literal.

Programming Considerations:

<label> is optional.

The logical string of the source variable <ssvar> or literal
<sslit> must contain pairs of characters defined as follows:

1) The first character of the pair is the character
to be replaced in the destination string.

2) The second character of the pair is the character
that is to replace the first of the pair wherever
it appears in the destination string.

The source string is not modified.

The destination variable logical string is modified.

The EOS flag is set if the logical string length of the source
operand is not even.

Example:

VAR

DVAR
ABV.l\R

LL FP Contents

10 1
4 1

ABCDABCDAt3
J\XDY

REPLACE ABVAR IN DVAR

ETX
ETX

The following variable(s) will be changed:
DVAR 10 1 XBCYX8CYXB ETX
rfhe following flag(s) will be set: None

Example:

DV?\R
ABVAR

10 5
4 3

l\BCDA8CDAB
/\XDY

REPLACE ABVAR IN DVAR

ETX
8TX

The following variable(s) will be changed:
DVAR 10 5 ABCDABCYAB ETX
The following flag(s) will be set: None

7-38 DATABUS COIVlPI LER

Example:

DESTIN 6 1 AlB2C3 ETX
REPLACE IIAlB2C3 11 IN DESTIN

The following variable(s) will be changed:
DESTIN 6 1 112233 ETX
The following flag(s) will be set: None

Example:

7 1 AEAFZAZ ETX

REPLACE "AZZA" IN DESTIN

The following variable(s) will be changed:
DESTIN 7 1 ZEZFAZA ETX
The following flag(s) will be set: None

Example:

DESTIN
REPVAL

6 1
4 2

123456
ABCD

ETX
ETX

REPLACE REPVAL IN DESTIN

The following variable(s) will be changed: None
The fo 11 owi ng fl ag (s) wi 11 be se t: EOS

7.21 SCAN

The SCAN verb can be used to search for a specified search
string in a destination string. The instruction may have one of
the following general formats:

1)
2)
3)

where:

<label>
<label>
<label>

<label> is
<ssvar> is
<prep> is
<dsvar> is
< ssl it> is
<occ> is

SCAN
SCAN
SCAN

<ssvar><prep><dsvar>
<sslit><prep><dsvar>
<occ><prep><dsvar>

an execution label (see section
the source str ing variable.
a preposi tion.
the des t i noa t ion string variable.
a source string literal.
an octal control character.

Programming Considerations:

2.) .

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-39

If format (1) is used, the logical string of <ssvar> specifies
the search string.

The source operand is not modified by this instruction.

The search starts with the formpointed character of the
destination string and continues through the logical length of
the str ing.

If either string is null (has a 0 formpointer) the operation
is discontinued and the EOS flag is set.

If the logical string of the source operand is longer than the
logical string of the destination operand, then no match can
occur.

If the specified search string is found in the destination
string, the following actions take p~ace:

a) The form po in t e r 0 f the des tin a t ion s t r i n g iss e t to po in t
to the first matching character.

b) The EQUAL flag is set.

If the search string is not found in the destination string,
the EQUAL flag is cleared.

Multiple occurences of the search string in the destination
string can be found by modifying the formpointer of the
destination string (typically using the BUMP instruction)
beyond the first matching occurrence, and executing the SCAN
instruction again.

Example:

VAR

FILS
SEARCH

LL FP Contents

11 1
3 "3

PAYROLL/TXT
.l\B/D

SCAN SEARCH IN FILE

ETX
ETX

The following variable(s) will be changed:
FILE 11 8 PAYROLL/TXT· ETX
The following flag(s) will be set: EQUAL

7-40 DATABUS COMPILER

Example:

TARGET
SEARCH

10 5
4 2

12ABCDEFG345 ETX
ABCD ETX

SCAN SEARCH IN TARGET

The following variable(s) will be changed: None
The following flag(s) will be set: None

7.22 EDIT

The EDIT instruction provides a powerful tool for formatting
of variables. The instruction may have one of the following
general formats:

1)
2)

where:

<label>
<label>

<label> is
<ssvar> is
< pr ep> is
<dsvar> is
<snvar> is

EDIT
EDIT

<ssvar><prep><dsvar>
<snvar><prep><dsvar>

an execution label (see section
the source string variable.
a preposition.
the destination string variable.
the ·source numeric variable.

Programming considerations:

<label> is optional.

2.) .

The source variable is not modified by the operation.

The source variable is edited into the destination strin0
variable.

The editing criteria (which constitute the edit mask) are
specified by the initial value of the destination variable.

The results are placed in the destination variable, destroying
the edit mask.

If format (1) is used, the logical string of the source string
variable is used as the source operand in the EDIT operation.

If format (2) is used, the physical string of the numeric
variable is used as the source operand in the EDIT operation.

The logical string of the destination variable is used to

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-4l

specify the mask and to hold the result for the operation.

If either operand is null, the instruction is not finished and
the EOS flag is set.

The formpointer and logical length pointe~ of the destination
string are not changed by the operation.

The EDITing process is a left-to-right translation of the
source characters into the mask. Alignment of decimal points
is not done.

The logical length of the mask string determines the length of
the EDIT operation. The instruction terminates when the last
mask character is processed.

If, after the EDIT process terminates, characters from the
source operand remain unused, the EOS flag is set.

If the source operan~ string is exhausted befoie the EDIT
operation is finished (there are still more mask characters to
process), the source is treated as if it were padded on the
right with blanks if it is a character string, and treated as
if it were padded on the right with zeros if it is a numeric
str i ng •

If any EDIT errors are detected, such as an alphabetic source
character when the mask character requires a numeric source
character (a source character of 'A' with a mask character of
'9', for example), the OVER flag is set. However, the source
character is moved into the destination variable.

The LESS flag is set if a dollar sign overstores a non-zero
character in the result.

The result of the EDIT is dependent on the size and nature of
the source string; leading blanks and zeros do affect the
result.

Decimal points in a source numeric variable are ignored.

A minus sign in a numeric source variable is always treated as
both a negative sign indicator and as a leading zero (in the
same sense as a ne<Jative-overpunched zero). In other words, a
minus sign in the source variable takes up 2 positions in the
destination variable.

Leading blanks in a numeric source variable are treated as

7-42 DATABUS COMPILER

zeros.

If the source variable is a character string variable, the
following mask characters are applicable:

A - Only a letter of the alphabet or a space may occupy this
character position, both upper and lower case are
accepted.

B - A space is inserted into this character position; no
character position of the source string is used.

x - Any ASCII character may occupy this position.

9 - The character in this position must be a digit (0-9).

o - A zero (0) is inserted into this character position; no
character position of the source is used.

If the source variable is a character string variable, any
character found in the mask which is not one of the above
applicable mask characters (a hyphen or a slash, for example)
is simply inserted into the output string.

If the source variable is a numeric variable, the following
mask characters are applicable:

B - A space is inserted into this character position; no
character position of the source string is used.

9 - The character in this position must be a digit (0-9)

0- A zero (0) is inserted into this character position; no
character position of the source is used.

Z - Each letter II Z" in the destination variable represents a
position in which leading zero suppress editing may be
used to cause only leftmost leading zeros to be replaced
by blanks. Zero suppression terminates upon receiving
from the source variable a non-zero numeric or non-blank
alphanumeric character other than the currency symbol or
sign request (n+" or "_").

- A comma is inserted into this position unless zero
suppression or zero replacement occurs; no character
position of the source is used.

- A decimal point (or period) is inserted into this

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-43

position; no character position of the source is used.
This cancels zero suppression and forces the generation of
the sign or currency symbol (or both) before the decimal
point if they were requested.

+ - This indicates that a sign (either "+" or II_") should be
generated. This character must appear only in the
rightmost or leftmost character position of the mask.

$ -

* -

A minus sign should be generated if appropriate, otherwise
the position is filled with a blank. This character must
appear only in the rightmost or leftmost character
position of the mask.

This is similar to zero suppress editing. All affected
zeros are replaced by blanks except the last affected
zero, which is replaced by a '$'. A dollar sign is always
placed into the result field if this mask character is
specified, as long as there is at least one character
after the first dollar sign in the mask. If there are no
leading zeros in the result, then a dollar sign overstores
the first character, and the LESS flag is set.

E a c h "*" (c he c k pro t e c t s ym b 01) rep res en t s z e r 0

replacement editing. Each affected "Oil is replaced with
an "* II • The "* II may onl y be used to cause the leftmost
leading zeros to be replaced. Zero replacement terminates
upon receiving from the source variable the first non-zero
numeric character or the first non-blank alphanumeric
character other than the currency symbol or sign request
(u+" or "_").

If the source variable is a numeric string variable, any
character found in the mask which is not one of the above
applicable mask characters (a hyphen or a slash, for example)
is simply inserted into the output string.

7-44 DATABUS COMPILER

Example:

VAR LL FP Contents

MASK
A

9 1
5 1

OOXXBBXXX
ABCDE

EDIT A TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 9 1 OOAB CDE ETX
The following flag(s)-Will be set: None

Example:

MASK
PIG

8 1
5 1

OOOl AAAA
ABCD4

EDIT PIG TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 8 1 OOOABCD4 ETX
The following flag(s) will be set: OVER

Exampl e:

OUTDATE
DATE

11 3
7 1

ZZ99BAAAB99ZZ
27FEB79

EDIT DATE TO OUTDATE

ETX
ETX

The following variable(s) will be changed:
OUTDATE 11 3 ZZ27 FEB 79ZZ ETX
The following flag(s) will be set: None

Exampl e:

,\1ASK
SSN

11 1
11 3

999-99-9999
AA456204520BB

EDIT SSN TO l"lASK

ETX
ETX

The following variable(s) will be changed:
MASK 11 1 456-20-4520 ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-45

Example:

MASK
DATER

8 1
0200

29/99/99
022079

EDIT DATER TO ~ASK

ETX
ETX

The following variable(s) will be changed:
MASK 8 1 2/20/79 ETX
The following fla~(s) will be set: None

Example:

RESULT
SRCVAR

6 1
0200

99,999
12345

EDIT SRCVAR TO RESULT

ETX
ETX

The following variable(s) will be changed:
RESULT S 1 12,345 ETX
The follow i ng f 1 a g (s) will be set : No n e

Example:

RESULT
RESVAR

6 1
0200

99,999
12345

EDIT RESVAR TO RESULT

ETX
ETX

The following variable(s) will be changed:
RESULT 6 1 00,012 ETX
The following flag(s) will be set: EOS

Exampl e:

:v'lASK
COW

8 1
0200

+9999.99
-5555.55

EDI T cov-r TO rVlASK

ETX
ETX

The following variable(s) will be changed:
MASK 8 1 -0555.55 ETX
The following flag(s) will be set: EOS

7-46 DATABUS COMPILER

Example:

MASK
CHICKEN

10 1
0200

999999.99-
1234.56

EDIT CHICKEN TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 10 1 12345fi.00 ETX
The following flag(s) will be set: None

Example:

MASK
VARl

10 1
0200

999999.99-
-1234.56

EDIT VARl TO MASK

E'rx
ETX

The following variable(s) will be changed:
MASK 10 1 012345.60- ETX
The following flag(s) will be set: None

Example:

MASK
CAT

7 1
0200

$999.99
-123.45

EDIT CAT TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 7 1 $123.45 ETX
The following flag(s) will be set: None

Example:

MASK
NUMBERl

8 1
0200

-$999.99
-123.45

EDIT NUMBERl TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 8 1 -$123.45 ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-47

Example:

MASK
COUNTER

9 1
0200

$99999.99
.12

EDIT COUNTER TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 9 1 $20000.00 ETX
The following f1ag(s) will be set: LESS

Exampl e:

MASK
FILLIT

8 1
0200

$999.99
123.45

EDIT FILLIT TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 8 1 $234.50 ETX
The following flag(s) will be set: LESS

Exampl e:

l'1ASK
ZEROS

7 1
0200

zzzz.zz
0000.00

EDI'r ZEROS TO MASK

ETX
ETX

The following variab1e(s) will be changed:
MASK 7 1 .00 ETX
The folIo wi ng fl ag(s) wi 11 be set: None

Exampl e:

MASK
RIGHT

7 I
0200

****.99
0000.00

EDIT RIGHT TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 7 I ****.00 ETX
The following flag(s) will be set: None

7-48 DATABUS COMPILER

Example:

r1ASK
T:-1ING

7 1
0200

2299.99
0000.00

EDIT THING TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 7 1 00.00 ETX
The following flag(s) will be set: None

Exampl e:

MASK
STrtING

9 1
0200

z,zzz.zz+
1234.56

EDIT STRING TO MASK

E'fX
ETX

The following variable(s) will be changed:
MASK 9 1 1,234.56+ ETX
The following flag(s) will be set: None

Exampl e:

MASK
MAPPER

9 1
0200

*,***.99+
-123.45

EDIT MAPPER TO IV1ASK

ETX
ETX

The following variab1e(s) will be changed:
MASK 9 1 **123.45- ETX
The following flag(s) will be set: None

Exampl e:

;"1ASK
DOG

9 1
0200

*,***.**+
-1234.56

EDIT DOG TO IVlASK

ETX
ETX

The following variable(s) will be changed:
MASK 9 1 **123.45- ETX
The foIl 0 wing f 1 a g (s) wi 11 be se t : E OS

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-49

Example:

ANSWER
SALARY

11 1
0200

$$$,$$$.99-
25000

EDIT SALARY TO ANSWER

ETX
ETX

The following variable(s) will be changed:
ANSWER 11 1 $25,000.00 ETX
The following flag(s) will be set: None

Example:

ANSWER
SALARYI

11 1
0200

$$$,$$$.99-
25000

EDIT SALARYI TO ANSWER

ETX
ETX

The following variable(s) will be changed:
ANSWER 11 1 $50,000.00 ETX
The following flag(s) will be set: LESS

Example:

FINI
TAX

11 1
0200

$$$,$$$.99-
-2562

EDI'f TAX TO FINI

ETX
ETX

The following variable(s) will be changed:
FINI 11 1 $25,620.00- ETX
The following flag(s) will be set: None

Exampl e:

MASK
XDATA

14 1
0200

$Z,zzz,zzz.zz­
-0012345.67

EDIT XDATA TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 14 1 $12,345.S7- ETX
The following flag(s) will be set: None

7-50 DATABUS COMPILER

Example:

MASK
YDATA

17 1
0200

$8*,***,***.**88-
-12345.67

EDIT YDATA TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 17 1 $1,234,567.00 ETX
The following flag(s) will be set: None

Example:

r-1ASK
REST

17 1
0200

$8*,***,***.**88-
-0012345.67

EDIT REST TO MASK

ETX
ETX

The following variable(s) will be changed:
MASK 17 1 $***12,345.67 ETX
The following flag(s) will be set: None

7.23 OR

OR is a bit manipulation instruction. It takes two
characters, one from the source operand and one from the
destination operand, performs a logical OR between then, and
stores the result over the destination character. The instruction
has the following format:

where:

1)
2)
3)

<label> OR
<label> OR
<label> OR

<ssvar><prep><dsvar>
<char><prep><dsvar>
<occ><prep><dsvar>

<label> is an execution label.
<ssvar> is a string variable.
< prep> is a preposition.
<dsvar> is the destination string variable.
<char> is a one character s tr i ng literal.
<occ> is an octal control character.

Programming Considerations:

<label> is optional.

The source string is not modified.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-51

The character used from the destination variable is the
character under the formpointer.

The result of the operation is placed over the formpointed
character of the destination variable.

When using format (1) above, the character" under the
formpointer of the source variable takes pa~t in the
operation.

If either string is null, the EOS flag is set.

If the result of the operation is zero, the EQUAL flag is set.

The result of the operation on each character is determined by
the truth table below applied to the low order seven bits of
the two operands. Note that the left-most (high order) bit of
each operand does not take part in the operation:

o OR 0 -) 0
o OR 1 -) 1
1 OR 0 -) 1
1 OR 1 -) 1

The results of this operation can be any character below octal
0200 (decimal 128). Some of the results could be
non-alphabetic characters and may happen to be control
characters used in DISPLAY, PRINT, or WRITE statements. The
programmer should be wary of this possibility, should the
destination variables be used in DISPLAY, PRINT, or WRITE
statements.

Example:

VAR LL FP Contents

CHAR 1 1 A ETX

on 002 TO CHAR

The result of the operation is "c" (the bit value of tlA" is
01000001, the bit value of 002 is 00000010, the result is 01000011
which is "C lI

).

7-52 DATABUS COMPILER

Example:

CAT 5 2 BCDEF ETX

OR "0" TO CAT

The result of the operation is "Gil (the bit value of "C" is
01000011, the bit value of "D" is 01000100, the result is 01000111
which is "Gil). CA'r will contain "BGDEF" upon completion of this
instruction.

7.24 AND

AND is a bit manipulation instruction that works similar to
OR except that it performs a logical AND operation between the
source and destination operands. The instruction has the
following format:

where:

1)
2)
3)

<label>
<label>
<label>

<label> is
<ssvar> is
<prep> is
<dsvar> is
<char> is
<occ> is

an
a
a

AND
AND
AND

<ssvar><prep><dsvar>
<char><prep><dsvar>
<occ><prep><dsvar>

execution label.
string variable.
preposition.

the destination string variable.
a one character str ing literal.
an octal control character.

Programming Considerations:

<label> is optional.

The source string is not modified.

The character used from the destination variable is the
character under the formpointer.

The result of the operation is placed over the formpointed
character of the destination variable.

When using format (1) above, the character under the
formpointer of the source variable takes part in the
operation.

If either string is null, the EOS flag is set.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-53

If the result of the operation is zero, the EQUAL flag is set.

The result of the operation on each character is determined by
the truth table below applied to the low order seven bits of
the two operands. Note that the left-most (high order) bit of
each operand does not take part in the operation:

o AND 0 -) 0
o AND 1 -) 0
1 AND 0 -) 0
1 AND 1 -) 1

The results of this operation can be any character below octal
0200 (decimal 128). Some of the results could be
non-alphabetic characters and may happen to be control
characters used in DISPLAY, PRINT, or WRITE statements. The
programmer should be wary of this possibility, should the
destination variables be used in DISPLAY, PRINT, or WRITE
statements.

Exampl e:

VAR LL FP Contents

CHAR 1 1 C ETX

AND :tAli .TO CHAR

The result in CHAR would be "A" (the bit value of IlAlI is 01000001,
the bit value of "c" is 01000011, the result is 01000001 which is
" A") •

Exampl e:

VAR LP FP Contents

CHAR 4 2 AZDG ETX

AND 0157 TO CHAR

The result in CHAR would be "J" (the bit value of "z" is 01011010,
the bit value of 0157 is alIOl111, the result is 01001010 which is
"J"). CHAH contains AJDG upon completion of the operation.

7-54 DATABUS COMPILER

7.25 XOR

XOR is a bit manipulation instruction that works similar to
OR except that it performs a logical exclusive OR between the
source and destination operands. The instruction has the
following format:

where:

1)
2)
3)

<label> XOR
<label> XOR
<label> XOR

<ssvar><prep><dsvar>
<char><prep><dsvar>
<occ><prep><dsvar>

<label> is an execution label.
<ssvar> is a string variable.
<prep> is a preposition.
<dsvar> is the destination string variable.
<char> is a one character str ing literal.
<occ> is an octal control character.

Programming Considerations:

<label> is optional.

The source string is not modified.

The character of the destination variable used is the
character under the formpointer.

The result of the operation is placed over the formpointed
character of the destination variable.

When using format (1) above, the character under the
formpointer of the source variable takes part in the
operation.

If either string is null, the EOS flag is set.

If the result of the operation is zero, the EQUAL flag is set.

The result of the operation on each character is determined by
the truth table below applied to the low order seven bits of
the two operands. Note that the left-most (high order) bit of
each operand does not take part in the operation:

CHAPTER 7.

o XOR· 0 -> 0
o XOR 1 -> 1
1 XOR 0 -> 1
1 XOR 1 -> 0

CHARACTER STRING HANDLING INSTRUCTIONS 7-55

Th~ results of this operation can be any character below octal
0200 (decimal 128). Some of the results could be
non-alphabetic characters and may happen to be control
characters used in DISPLAY, PRINT, or WRITE statements. The
programmer should be wary of this possibility, should the
destination variables be used in DISPLAY, .PRINT, or WRITE
statements.

Example:

VAR

CHARl
CHAR2

LL FP Contents

1 1
1 1

A
B

XOR CHARI TO CHAR2

ETX
ETX

After this operation, the value in CHAR2 will be 003 (the bit
val ue of "A" is 01000001, the bi t val ue of "8" is 01000010, the
result is 00000011).

Example:

FIRST
SECOND

4 1
6 3

MAPS
XYZXYZ

ETX
ETX

XOR SECOND TO FIRST

After this operation, the Z in SECOND will become a 027 (the bit
value of II Mil is 01001101, the bit value of "z" is 01011010, the
result is 00010111).

7.26 NOT

NOT is a bit manipulation instruction that performs a logical
NOT operation on the source operand and puts the result in the
destination operand. The instruction has the following format:

where:

7-56

1)
2)
3)

<label> NOT
<label> NOT
<label> NOT

<ssvar><prep><dsvar>
<char><prep><dsvar>
<occ><prep><dsvar>

<label> is an execution label.
<ssvar> is a str ing variable.
<prep> is a pr e po sit ion.
<dsvar> is the destination string variable.

DATA8US COMPILER

<char>
<occ>

is a one character string literal.
is an octal control character.

Programming Considerations:

<label> is optional.

The source string is not modified.

The character replaced in the destination variable is the
character under the formpointer.

When using format (1) above, the character under the
formpointer of the source variable takes part in the
operation.

If either string is null, the EOS flag is set.

If the result of the operation is zero, the EQUAL flag is set.

The result of the operation is determined by the truth table
below applied to the low order seven bits of the source
operand. Note that the left-most (high order) bit of the
operand does not take part in the operation:

NOT 0 -> 1
NOT 1 -) 0

The results of this operation can be any character below octal
0200 (decimal 128). Some of the results could be
non-alphabetic characters and may happen to be control
characters used in DISPLAY, PRINT, or WRITE statements. The
programmer should be wary of this possibility, should the
destination variables be used in DISPLAY, PRINT, or WRITE
statements.

Example:

VAR LL FP Contents

CHAR 1 1 A ETX

No'r 0142 'fa CHAR

The value of CHAR after this operation will be 035 (the bit value
of 0142 is 01100010, the NOT of this is 00011101, which is 035).
Note that the high order bit did not take part in the operation.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-57

Example:

CHAR 1 1 B ETX

NOT "%11 TO CHAR

.'
The value of CHAR after this operation will be "z" (0132) (the bit
value of "%" is 00100101, the NOT of this is 01011010, which is
" Z") •

7-58 DATABUS COMPILER

CHAPTER 8. ARITHMETIC INSTRUCTIONS

The arithmetic instructions are used to perform the various
arithmetic operations upon DATABUS operands. Generally all
arithmetic instructions have the following form:

<label> <oper> <soper><prep><doper>

where: <label> is an execution label.
<oper> is the DATABUS arithmetic operation.
< soper> is the source operand.
<prep> is a valid preposition.
<doper> is the destination operand.

The DATABUS operation is performed using the source and
destination operands. The result of the operation is generally
transferred to the destination operand. The content of the source
operand is never modified. There are three condition flags set by
the arithmetic instructions: OVER, LESS, and ZERO (the mnemonic
EQUAL is also acceptable). These flags are set to true or false
depending on the results of the instructions. Generally the
following meanings apply:

OVER
LESS
ZERO
EQUAL

the result does not fit into the destination field.
the result is less than zero.
the result is equal to zero.
the result is equal to zero.

When the result causes the OVER flag to be set, the LESS and
ZERO flags should not be relied on.

8.1 ADD

The ADD instruction causes the content of the source operand
to be added to the content of the destination operand. The result
(sum) is placed in the destination operand. This instruction may
have one of the following general formats:

1)
2)

<label>
<label>

ADD
ADD

<snvar><prep><dnvar>
. <nlit><prep><dnvar>

where: <label> is an execution label (see section 2.).
<snvar> is the source numeric variable.
<prep> is a preposition.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-1

<dnvar> is the destination numeric variable.
<nlit> is a numeric literal.

Programming Considerations:

<label> is.optional.

<nlit> must be a valid numeric literal.

The source numeric operand is never modified.

<dnvar> contains the result (sum) of the ADD.

The flags OVER, LESS, ZERO (or EQUAL) are set appropriately.

The rounding and truncation rules are applicable (see section
2.7) .

The contents of the source field are rounded to the same
number of places to the right of the decimal point (if any) as
the destination field before the operation takes place.

Example:

Example:

x
y

CAT

FORM
FORM

"123.45"
"267.22"

ADD X TO Y

Y will contain 390.67
The following flag(s) will be set: None

FORM "100.50"

ADD ".005 11 TO CAT

CAT will contain 100.51
The following flag(s) will be set: None

8-2 DATABUS COMPILER

Example:

Example:

NUM
NUM2

N

FORM
FORM

"-245.0000"
"800.0"

ADD NUM TO NUM2

NUM2 will contain 555.0
The following flag will be set: None

FORM "a O. 0"

ADD "100.00" TO N

N will contain 00.0
The following flag(s) will be set: OVER
The LESS, ZERO fl ags should not be reI i ed on.'

8.2 SUBTRACT (SUB)

The SUB instruction (the compiler also accepts a mnemonic of
SUBTRACT) is used to perform a subtract operation. The contents
of the source numeric operand (minuend) is subtracted froQ the
destination numeric operand (subtrahend) and the result
(difference) is placed in the destination numeric operand. This
instruction may have one of the following general formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

SUB
SUBTRACT
SUB
SUBTRACT

<snvar><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<nlit><prep><dnvar>

where: <label> is an execution label.
<snvar> is the source numeric variable.
<prep> is a preposition.
<dnvar> is the destination numeric variable.
<nlit> is a numeric literal.

Programming Considerations:

<label> is optional.

<nlit> must be a valid numeric literal.

The flags OVER, LESS, ZERO (or 8QUAL) are applicable.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-3

The contents of the source operand is never modified.

The destination operand contains the result (difference)

The truncation and rounding rules apply_

The contents of the source field are rounded to the same
number of places to the right of the decimal point (if any) as
the destination field before the operation takes place.

Example:

Example:

Example:

A
B

Cl
C2

NUMBR

FORM
FORM

"123.45"
"-20.45. 1

SUB B FROM A

A will contain 143.90
The following flags will be set: None

FORM
FORM

15.nO"
"1.665"

SUB C2 FROM Cl

Cl will contain 3.93
The following flags will be set: None

FORM 11-345 11

SUB 11700.5" FRONl NUIVlBR

NUMBR will contain 1045
The following flag will be set: OVER
The LESS, ZERO flags should not be relied on.

8-4 DATA8US CO~PILER

Example:

Yl
Y2

FORM
FORM

.. 10.00"
" 20.005"

SUB Y2 FROM Yl

Yl will contain -10.01
The following flags will be set: LESS

8.3 MULTIPLY (MULT)

The MULT instruction (the compiler also accepts a mnemonic of
MULTIPLY) causes the content of the source numeric operand
(multiplicand) to be multiplied by the contents of the destination
numeric operand (multiplier). The result (product) is placed in
the destination numeric operand. This instruction may have one of
the following general formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

MULT
MULTIPLY
MUL'r
MULTIPLY

<snvar><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<nlit><prep><dnvar>

where: <label> is an execution label.
<snvar> is the source numeric variable.
<prep> is a preposition.
<dnvar> is the destination numeric variable.
<nlit> is a numeric literal.

Programming Considerations:

The execution label <label> is optional.

<nlit> must be a valid numeric literal.

The flags OVER, LESS, ZERO (or EQUAL) are applicable.

The source numeric operand is not modified.

The destination numeric operand contains the result (product).

The sum of the number of -characters in the source operand and
the destination operand must not exceed 31. The compiler does
not check this limit. If it is exceeded the interpreter
produces erroneous results.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-5

The truncation and rounding rules are applicable.

Example:

Example:

Exampl e:

Ml
M2

X123

NEG

FORM
FORM

MULT

"010 II
"01211

Ml BY M2

M2 will contain 120
The following flag(s) will be set: None

FOR!'1 "12000.00"

MULT "1.1" BY X123

X123 will contain 13200.00
The following flag:s) will be set: None

FORI'1 "-10.5"

MULT "10" BY NEG

NEG will contain 105.0

The following flag will be set: OVER
The LESS, ZERO flags should not be relied on •

. 8.4 DIVIDE (DIV)

The DIV instruction (the compiler also accepts a mnemonic of
DIVIDE) causes the content of the destination operand (dividend)
to be divided by the content of the source operand (divisor). The
result (quotient) is placed in the destination variable. This
instruction may have one of the following general formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

DIV
DIVIDE
DIV
DIVIDE

<snvar><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<nlit>'<prep><dnvar>

where: <label> is an execution label.
<snvar> is the source numeric variable.
<prep> is a preposition.

8-6 DATABUS COMPILER

<dnvar> is the destination numeric variable.
<nlit> is a numeric literal.

programming Considerations:

<label> is optional.

<nlit> must be a valid numeric literal.

The contents of the source numeric operand (divisor) is not
changed.

The contents of the destination numeric variable <dnvar>
contains the result (quotient).

If the content of the source numeric operand is zero, then the
OVER flag is set and the content of the destination numeric
variable is determined by one of the following:

1) If the source numeric operand (divisor) is an integer
zero (contains no digits to the right of the decimal
point) then the destination numeric variable
(quotient) is set to the largest possible number that
can be represented in the destination numeric
variable.

2) If the source numeric operand (divisor) is non-integer
zero, then the destination numeric variable (quotient)
is se t to ze ro •

If the destination numeric variable (quotient) is not large
enough to contain the quotient, the OVER flag is set and the
value of the destination numeric variable is indeterminate.

There is a restriction on the length of division operands.
The following formula is used to determine acceptable lengths
(Decioal points are not counted as characters when using the
following formula).

N=2*NR+NU+NL

where: NR is the number of digits after the decimal point
in the divisor.

NU is the number of characters in the dividend.

NL is the number of characters in the divisor.

CHAP'fER 8. ARITHMETIC INSTRUCTIONS 8-7

"*" represents multiplication.

N computed by the above formula must not exceed 31. The
compiler does not check this limit. If it is exceeded the
interpreter produces erroneous results.

The flags OVER, LESS, ZERO (or EQUAL) are "applicable.

The truncation and rounding rules apply.

Example:

Example:

Example:

ONEH
TEN

ZERO
N

ZERO
N

FORM
FORM

"100.00"
"10"

DIV TEN I~TO ONEH

ONEH contains 10.00
The following flag(s) are set: None

FORM
FORM

"000 II
"155.00"

DIV ZERO INTO N

N will contain 999.99
The following flag will be set: OVER
The LESS, ZERO flags should not be relied on.

FORi'1
FORM

"00.00"
"155.00"

DIV ZERO INTO N

N will contain .00
the following flag will be set: OVER
The LESS, ZERO flags should not be relied on.

8-8 DATABUS COMPILER

Example:

Nl FORM "100"

DIV "0.111 INTO Nl

Nl will contain a
The following flag will be set: OVER
The LESS, ZERO flags should not be relied on.

8.5 MOVE

The MOVE instruction causes the content of the source numeric
operand to replace the content of the destination numeric operand.
This instruction may have one of the following general formats:

1)
2)

where:

<label>
<label>

MOVE
MOVE

<snvar><prep~<dnvar>
<nlit><prep><dnvar>

<label>
<snvar>
<prep>
<dnvar>
< nl it>

is an execution label.
is the source numeric variable.
is a preposition.
is the destination numeric variable.
is a numeric literal.

Programming Considerations:

<label> is optional.

<nlit> must be a valid numeric literal.

The contents of the source numeric operand is never modified.

The destination numeric variable contains the result of the
MOVE opera tion.

The OVER, LESS, ZERO (or EQUAL) flags are applicable.

The truncation and rounding rules are applicable.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-9

Example:

Example:

Example:

Example:

SOURCE FORI"1
DES'r IN FORM

"12345"
6.2

MOVE SOURCE TO DESTIN

DESTIN will contain 12345.00
The following flag(s) will be set: None

01 FORM 4.2

S
o

N

MOVE "12345" TO 01

01 will contain 2345.00
The following flag will be set: OVER
The LESS, ZERO flags should not be relied on.

FORM
FORM

MOVE

"12345.51"
"99999"

S TO D

o will contain 1234r,
The following flag(s) will be set: None

FORJ"1 "999.99 11

i'10VE "0.0 11 TO N

~ will contain .00
The following fI-ag(s) will be set: ZERO

8.6 COMPARE

The COMPA~E instruction is used to compare two numeric
quantities. This instruction may have one of the following
general fa rrna ts:

1)
2)

< 1 abe 1 > C 0 '''1 PAR E
< 1 abel> CO!'-1PARE

<snvar><prep><dnvar>
<nlit><prep><dnvar>

where: <label> is an execution label.

8-10 DATABUS COMPILER

<snvar> is the source numeric variable.
<prep> is a preposition.
<dnvar> is the destination numeric variable.
<nlit> is a numeric literal.

programming Considerations:

<label> is optional.

<nlit> is a valid numeric literal.

The contents of the source numeric operand are never modified.

The contents of the destination numeric variable are never
modified.

The LESS, OVER and ZERO (or EQUAL) condition flags are set
exactly as if a SUBTRACT instruction had been executed instead
of a COMPARE.

Rounding takes place when the COMPARE instruction is executed.

The contents of the source field are rounded to the same
number of places to the right of the decimal point (if any) as
the destination field before the operation takes place.

Example:

Example:

ONEH

OPI
OP2

FORM "100.00"

COMPARE "100" TO ONEH

The following flag(s) will be set: ZERO (2QUA.L)

FORI'1
FORIv1

"0100.0"
"090 "

COM PARE OP 1 'ro OP 2

The following flag(s) will be set: LESS

CHAPTER 8. ARITH/VlETIC INSTRUCTIONS 8-11

Ex ample:

CAT FORM "999"

COMPARE "-I" TO CAT

The following fl ag (s) will be se t: OVER
The LESS, ZERO flags should not be reI i ed on.

Example:

F FORM "-99"

COMPARE "1" TO F

The following flag(s) will be se t: OVER
The LESS, ZERO flags shoulq not be reI i ed on.

Example:

A FORM Dl4 56"
B FORM "I"

COMPARE A TO 8

ffhe following flag(s) will be set: OVER
The LESS, ZERO flags should not be r el i ed on.

8.7 LOAD

The LOAD instruction selects (using an index for selection) a
numeric variable from a list and performs a MOVE operation on the
selected numeric variable to the destination numeric variable.
This instruction may have one of the following general formats:

<label>

where: <label> is
<dnvar> is
< prep> is
< index> is

of
<list> is

LOAD <dnvar><prep><index><prep><list>

execution label.
the destination numeric variable.
a preposi tion.
a numeric variable which specifies which item
the available list is to be selected.
a list of numeric variables.

Programming Considerations:

8-12 DATABUS CO~PILER

<label> is optional.

<dnvar> contains the result of the LOAD instruction after
execution.

<index> is a numeric variable which specifies which item from
the available list should be selected. If the index is not an
integer, the index is truncated, and the integer portion is
used for list selection. An index numeric variable of one (1)
specifies the first item in the list and an index value of n
specifies the nth item in the list.

If the index contains a number which does not correspond to
one of the list items, then the LOAD instruction is ignored
and execution continues with the next DATABUS instruction.

There must not be more than 255 numeric variables in the list.

The variables contained in <list> are separated by a comma
(,) .
<list> may be continued on the followi~g line by use of the
colon (:) in place of the comma a fter the last variable on the
line to be continued.

The <index> is not modified.

None of the <list> items are modified.

The OVER, LESS, ZERO (or EQUAL) flags are applicable.

The truncation and rounding rules are userl.

Example:

DEs'rIN
INDEX
Xl
X2
X3

FORf"1
FORM

E'OHlVI

FORM

FORlVI

LOAD

"9999"
112"
"1111"
"2222 II
"3333"

DESTIN FROM INDEX OF Xl,X2,X3

DESTIN will contain 2222
The ,follo\ving flag(s) will be set: None

CHAPTER 8. ARITH~ETIC INSTRUCTIONS 8-11

Example:

y

I
Sl
S2
S3

FOR!V}
FORM
FORM
FORM
FORf1

LOAD

3.1
"1.6"
"-11.36"
"22211
"333"

Y FROM I OF Sl,S2:
S3

Y will contain -11.4
The following flag(s) will be set: LESS

8.8 STORE

The STORE instruction selects (using an index for selection)
a numeric variable from a list and performs a MOVE operation from
the source numeric operand to the selected destination numeric
variable. This instruction may have one. of the following general
formats:

1)
2)

<label>
<label>

STO~{E

STORE
<snvar><prep><index><prep><list>
<nlit><prep><index><prep><list>

0here: <label> is an execution label.
<snvar> is the source numeric variable.
<index> is the index numeric variable \vhich specifies

which item from the available list is to be
selected.

<prep> is a preposition.
<list> is a list of numeric variables.
<nlit> is numeric literal.

Programming Considerations:

<label> is optional.

<nlit> must be a valid numeric literal.

<dnvar> contains the result of the STORE operation.

<index> is a numeric variable·0hich specifies which item from
the available list should be selected. If the index is not an
integer, the index is truncated, and the integer portion is
used Eor list selectiol1. An index numeric variable of one (1)
specifies the first item in the list and an index value of n

8-14 DATABUS COl\1PILER

specifies the nth item in the list.

If the index contains a number which does not correspond to
one of the list items, then the STORE instruction is ignored
and execution continues with the next DATABUS instruction.

There must not be more than 255 numeric variables in the list.

The variables contained in <list> are separated by a comma
(,) .
<list> may be continued on the following line by use of the
colon (:) in place of the comma after the last variable on the
line to be continued.

The <index> is never modified.

Only the selected numeric variable from the <list> is
modified.

The OVER, LESS, ZERO (or EQUAL) flags are applicable.

The tr unca t ion and round i ng rules a ppl y.

Example:

SOURCE
INDEX
Dl
02
03

FORlvl
FORM
FORlvl
FORM
FORM

STORE

"999"
"1.9"
"Ill"
"22211
"333 "

SOURCE INTO INDEX OF Dl,02:
03

Dl will contain 999. The other variables D2 and
D3 will be unchanged.
The following flag(s) will be set: None

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-15

Example:

SOURCE FORf1
I FORM
Dl FORM
D2 FORf1

STORE

"1234"
"4"
4
4

SOURCE INTO I OF Dl,D2

The contents of neither Dl nor 02 is changed
because the index is out of range.
The following flag(s) will be set: None

8.9 CHECKll (CKll)

The CHECKll (the compiler also accepts a mnemonic of CKll)
instruction performs a modulo 11 check digit calculation on two
string variables. This instruction may have one of the following
g ener al fo rma ts :

1)
2)
3)
4)

where:

<label>
<label>
<label>
<label>

CHECKll
CKll
CHECKll
CKll

<svarl><prep><svar2>
<svarl><prep><svar2>
<svarl><prep><slit>
<svarl><prep><slit>

<label>
<svarl>

< pr ep>
<svar2>

is an execution label.
is a string variable called the base string which
contains the base number and the check digit.
is a preposition.
is a string variable which contains the weighting
factor.

<slit> is a string literal.

The following algorithm is used to perform the CHECKll
ins t r uc t ion.

8-16

Let the length N of the base string be defined as
N=LL-FP+l where:

LL=logical length pointer of base string.

FP=formpointer of base string.

The base string is composed of two parts:

1) The base number which is the f~rst n digits
(n=N-l) of the base string.

DATABUS COMPILER

2) The check digit which is the digit following the
base number.

Let the individual digits of the base number be b(l),
b(2), ••• ,b(n) where b(l) is the formpointed left most
digit, and b(n) is the right most digit of the base
number.

Let the individual digits of the weighting factor be w(l),
w(2) ••• ,w(n) with w(l) the formpointed left most digit and
w(n) is the nth digit of the weighting factor.

The following sum S is formed.

S=b(l) *w(l)+b{2) *w(2)+ •.• +b(n) *w{n)

Then the computed check digit Cis:

C=ll-R(S/ll) where R(S/ll) is the remainder from the
division Sill.

The computed check digit C is compared to the check digit
supplied in the base string. If they are equal, the EQUAL
flag is set, otherwise the OVER flag is set and the EQUAL
fl ag clear ed.

Programming Considerations:

<label> is optional.

Neither of the variables <svarl> or <svar2> is modified.

<svar1>, <svar2>, and <slit> when used must contain digits
only.

If the length (LL-FP+l) of the weighting factor is not equal
to the length n of the base number, then the OVER flag is set
and the DATABUS instruction is not finished.

A computed check digit with a value of 10 or greater cannot be
used and causes the OVER flag to be set.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-17

Example:

Example:

Example:

Example:

BASSTR INI'r
WEIGHT INIT

"12343"
"5432"

CHECKll BASSTR BY WEIGHT

The following flag(s) are set: ZERO (EQUAL)

BASSTR IN rr
WEIGHT INIT

"12342"
1/654"

B
W

B
W

RESET BASSTR TO 3
RESET WEIGHT TO 2
CHECKII BASSTR BY WEIGHT

The foJlowing flag(s} are set: ZERO (EQUAL)

INIT
INIT

"141599"
1/41"

SETLPTR B TO 4
RESET B TO 2
CHECKll B BY W

The following flag{s) are set: ZERO (EQUAL)

INIT
INIT

"141599"
"411/

SETLPTR B TO 4
RESET B TO 2
CHECKII B BY \r.J

The following flag(s) are set: OVER

8-18 DATABUS COMPILER

8.10 CHECKIO (CRIO)

The CHECf\IO (the compiler also accepts a mnemonic of CKlO)
instruction performs a modulo 10 check digit calculation on two
string variables. This instruction may have one of the following
general formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

CHECKIO
CKIO
CHECKIO
CKIO

<svarl><prep><svar2>
<svar1><prep><svar2>
<svar1><prep><slit>
<svarl><prep><slit>

where: <label> is an execution label.
<svarl> is a string variable called the base string which

contains the base number and the check digi.t.
<prep> is a preposition.
<svar2> is a string variable which contains the weighting

factor.
<slit> is a string literal which contains the weighting

factor.

The following algorithm is used to perform the CHECK10
instruction.

Let the length N of the base string be defined as
N=LL-FP+1 where:

LL=Logical length pointer of base string.

FP=formpointer of base string.

The base string is cOMposed of two parts:

1) The base number which is the first n digits
(n=\]-l) of the base string.

2) The check digit which is the digit following the
base number.

Let the i~dividual di0its of the base number be b(l) ,
b(2), •.. b(n) where b(l) is the formpointed left I:tOst
digit, and b(n) is the right most digit of the base
number.

Let the individual digits of the weighting factor be w(l),
w(2) ... ,w(n) with \v(l) the formpointed left most disit and
w (n) i s the nth dig ito f the we i ,] h tin g fa c tor .

CHAPTER 8. Art IT HI.., ET Ie INS TR uC'r IO NS

Let the following products be formed:

P (1) = b (1) *w(l)
P(2) = b(2)*w(2)

• etc.

P(n) = b(n) *w(n)

Take each P(i) and perform a "lateral ll addition on the
individual digits, i.e. P(3)=32 would yield a IIlateral
addi tion" of 5 (3+2=5). Let the "lateral" add i tion of the
digits of each P(i) be S(i). Then form the following sum:

SD=S (1) + S (2) + ••• +S (i)

Then the computed check digit Cis:

C=lO-R(SD/IO) where R(SD/IO) is the remainder from
the division SD/IO.

The computed check digit C is compared to the check digit
supplied in the base string. If they are equal, the EQUAL
flag is set, otherwise the OVER flag is set and the EQUAL
flag is c 1 ear ed .

Programming Considerations:

<label> is optional.

Neither of the variables <svarl> or <svar2> is modified.

<svarl>, <svar2>, and <slit> when used must contain digits.

I f the 1 eng t h (L L - F P + 1) 0 f the we i 9 h tin 9 fa c tor i s not e qua 1
to the length n of the base number, then the OVER flag is set
and the DAT\8US instruction is not finished.

If a computed check digit of 10 is used, it is treated modulo
10.

8-20 DATA8 US COlvlP I LE R

Example:

Example:

Example:

Example:

x
y

BASE

BASE
WEIGHT

BASE
WEIGHT

INIT
INIT

1112340"
"5432"

CHECKIO X BY Y

The following flag(s) are set: EQUAL

INI'f "1515999"

SETLPTR BASE TO 4
RESET BASE
CHECKIO BASE BY "515 11

The followi ng flag(s) are set: EQUAL

INIT "9S53 II
INIT 11521"

CHECKIO BASE BY t~E IGHT

The fo11owi ng f1ag(s) are set: EQUAL

INIT 111650"
INIT "121"

CHECKIO BASE BY WEIGHT

The following flag(s) are set: OVER

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-21

CHAPTER 9. INTERACTIVE INPUT/OUTPUT

These instructions are used to input from a keyboard and
output to the CRT screen (or output to any device used in place of
the CRT sc r een) .

General Programming Considerations:

Typically, formatting is handled in one of the following ways.

a) By the way a variable is defined. It should be defined
with the format which is to be used for input/output.

b) Using list controls.

Normally, when execution of one of these I/O statements
terminates, the cursor position is reset to the beginning of
the next line.

If a semicolon is used after the last item in the list, the
cursor position remains where it was on statement termination.
This feature allows a second I/O statement to continue where
the first statement left off.

Exampl e:

DISPLAY "FLAGS: II • ,
CALL NOTFLG IF NOT ZERO
DISPLAY "ZERO, II • ,
CALL NOTFLG IF NOT LESS
DISPLAY IILESS II

NOTFLG DISPLAY "NOT " . ,
RETURN

displays one of the following lines, depending on the
co nd i t ion - II a 9 s •

FLAGS: ZERO, LESS
FLAGS: ZERO, NOT LESS
FLAGS: NOT ZERO, LESS
FLAGS: NOT ZERO, NOT LESS

Those instructions that use a list shoulrl make use of
continuation when it is possible to do so. (For details about

CHAPTER 9. INTERACTIVE I~PUT/OUTPUT 9-1

us i ng con tin ua t ion, see sec t ion 2.) T his not 0 n 1 yin c rea s e s
the execution speed of the program, but also decreases the
system overhead. The programmer should check his program for
any occurrence of two consecutive I/O instructions that are
the same. These two instructions can be replaced with a
single instruction by using continuation.

Example:

DISPLAY
DIS PLAY

"LINE ONEil
"LINE TWO"

should be combined to form the statement below.

DISPLAY "LINE ONEil:
*N, "LINE 'rNO Il

The condition flags are unchanged by the execution of these
statements.

9.1 KEYIN

KEYIN is used primarily to input from the keyboard, though in
some cases it can be used to output to the screen. This statement
has the following general format:

<label> KEYIN <list>

where: <label> is an execution label (see section 2.) •
<list> is a list of items describing the input from the

keyboard.

Programming Considerations:

<label> is optional.

The items in the list must be separated by commas.

All function key conditions are cleared upon the start of a
KEYIN statement.

<list> may be made up of any combination of the following
i t er.1 S :

a) <svar>, a character string variable (see section 4.2).

b) <nvar>, a numeric string variable (see section 4.1).

9-2 DATABUS COMPILER

c) <occ>, an octal control character (see section 2.5).

d) <list control>, used to control the manner in which the
list is processed.

e) <slit>, a literal of the form "(string>" (see section
2.5). <string> must be a valid character string (see
section 4.2) •

f) <nlit>, a literal of the form "(string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

9.1.1 Character String Variables (KEYIN)

When a character string variable «svar» appears in the list
of a KEYIN instruction, characters are accepted from the keyboard
and put into the variable. Unless modified by a list control, the
manner in which the characters are accepted is described below.

Programming Considerations:

When characters are being accepted from the keyboard, the
flashing cursor is on. At all other times the cursor is off.
(The *EOFF list control, see section 9.1.3.13, cancels this.)

Only ASCII characters are accepted.

Each character, as it is accepted, is displayed on the screen.

The horizontal cursor position is bumped by 1 for each
character accepted.

Characters are stored consecutively starting at the physical
beginning of the string.

Characters are accepted up to the physical length of the
character string variable.

A beep is sounded at the terminal for each character that does
. not fit within the variable.

If a null string is enter~d (if the ENTER key is struck
without any other characters having been entered),

a) the form po i n t e r 0 f the va ria b 1 e iss e t to z e r 0 •

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-3

b) the logical length pointer of the variable is set to zero.

c) the value of the variable is indeterminate.

To check for a null string entry; the program can first
execute a RESET or CMATCH using the variable in question, then
check the EOS condition flag.

The *RV list control (see section 9.1.3.23), cancels this.

If the string entered is not null,

a) the for ill po in t e r 0 f the va ria b 1 e iss e t to 0 n e .

b) the logical length pointer of the variable is set to the
last character entered.

c) the suffix of the string variable is unchanged.

Processing is continued with the next item in the list when
the ENTER key is struck. (See section 9.1.5.2 on the NEW LINE
key and section 9.1.5.4 on the function keys.)

9.1.2 Numeric String Variables (KEYIN)

When a numeric string variable «nvar» appears in the list
of a KEYIN instruction, characters are accepted from the keyboard
and put into the variable. Unless modified by a list control, the
manner in which the characters are accepted is described below.

Programming Considerations:

When characters are being accepted from the keyboard, the
f 1 ash i ng cur so r i son. A tall 0 the r t i In est he cur so r i s 0 f f .

Each character, as it is accepted, is displayed on the screen.

The horizontal cursor position is bUlaped by one (1) for each
character accepted.

T~e following depend on the format of the numeric variable:

a) A minus sign is accepted only if it is the first character
entered.

b) A minus sign is accepted only if there is room for at
least one character to the left of the decimal point.

9-4 DAT~BUS CO~PILER.

c) A per iod is accepted onl y if the fo rmat calls fo r a
decimal point.

d) 0 n 1 yon e pe rio dis ace e pte d •

e) The number of characters that is accepted before a period
is required, is equal to the number of places preceding
the decimal point in the format of the variable.

f) The number of characters that is accepted after the period
is equal to the number of places following the decimal
point in the format of the variable.

g) If the ENTER key is the first key struck, a value of zero
i sen t e r ed • No t e t hat the * RV 1 i s teo n t r 0 1 (s e e se c t ion
9.1.3.23), cancels this.

If a character is entered that is not acceptable to the format
of the numeric variable, a beep is sounded at the terminal.

The number entered is reformatted to match the format of the
variable when the ENTER key is struck (see section 4.1).

Processing is continued with the next item in the list when
the ENTER key is struck.

Example: If the following statement is used to define NVAR;

NVAR FORM 2.1

then when NVAR is used in a KEYIN statement, the following
characters result in NVAR having the values shown.

asc i i asc i i ascii asc i i asc i i value of NVAR
ENTER . 0

ENTER .0
2 ENTER . 2

ENTER -.0
2 ENTER -.2

2 ENTER -2.0
2 ENTER -2.0
2 3 ENTER -2. 3

2 ENTER 2.0
2 ENTER 2.0
2 3 ENTER 2.3
2 3 ENTER 23.0
2 3 ENTER 23.0
2 3 4 ENT2R 23.4

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-5

9.1.3 List Controls

The list controls are provided to allow more flexibility for
data entry. They may be used to control the manner in which data
is requested and input into variables. All list controls begin
with an asterisk followed by the specification of the control
function.

9.1.3.1 *P<h>:<v> (Cursor positioning)

The *P<h>:<v> list control is used to position the cursor on
the screen. The following is the general format of this control.

*P<h>:<v>

where: <h> is the horizontal cursor position.
<v> is the vertical cursor posit jon.

programming Considerations:

<h> and <v> may be any combination of the following:

a. <dnum>, where <dnum> is a decimal number.

b. <nvar>, where <nvar> is a numeric variable (see section
4 . l) •

Both <h> and <v> must be specified.

The value of <h> should be between 1 and 80. See the user's
guide of the appropriate interpreter for any exceptions or
differences. positions outside this range are reset to the
largest value of the range.

The value of <v> shoulci be between 1 and 24. See the user's
guide of the appropriate interpreter for any exceptions or
differences. positions outside this range are reset to the
largest value of the range.

9-G DATABUS COMPIL~R

9.1.3.2 *EL (Erase to the End-of-Line)

The *EL control causes the line to be erased starting with
the current cursor position and continuing to the right. The
cursor position is unchanged by the execution of this control.

Example:

KEYIN *PSO:10,*EL,"OK? (YIN) ",REPLY

This statement erases line 10, starting with ~olumn 50.

9.1.3.3 *EF (Erase from Cursor Position)

The *EF control performs the function of *EL and additionally
erases all screen lines below the current cursor position. The
~ursor position is unchanged by the execution of this control.

Exam pI e:

KEYIN *PSO:20,*EF

This statement produces the same results as the following
statement.

KEYIN *PSO: 20, *EL:
*PI:21,*EL:
*PI:22,*EL:
*Pl:23,*EL:
*Pl:24,*EL:
*PSO:20

9.1.3.4 *ES (Erase the Screen)

The *ES control positions the cursor to 1:1 and erases the
en t ire s c r e en. The cur so r i s 1 eft po sit ion ed to l: 1 .

Example:

KEYIN *ES

Executing the above statement" is equivalent to executing the
following statement.

T<EYIN *Pl:l,*EF

CHAPTER 9. I~TERACTIVE INPUT/OUTPUT 9-7

9.1.3.5 *C (Carriage Return)

The *C control causes the cursor to be set to the beginning
of the current line. For example: if the cursor is positioned to
40:5, executing the *C control changes the cursor position to 1:5.

9.1.3.6 *L (Line Feed)

The *L control causes the cursor to be set to the following
line in the current horizontal position. For example: if the
cursor is positioned to 20:5, executing the *L control changes the
cursor position to 20:6. If the current line is the last line on
the screen, this list control has no effect.

9.1.3.7 *N (Next Line)

The *N control causes the cursor to be set to the first
column of the next line. Executing the *N control is equivalent
to executing a *C control followed by a *L control. If the
current line is the last line on the screen, this list control has
no effect.

9.1.3.8 *R (Roll the Screen)

The *R control causes the screen to roll up by one line.
This control has no effect when sent to a 3360 terminal. It is
included for use with 3600 terminals and the system console. The
cursor position is unchanged by the execution of this control.

9.1.3.9 *+ (KEYIN Continuous On)

The *+ list control is used to turn on a mode of entry called
key inc 0 n tin uo us. T his mod e a 11 0 \vS the s y stem to rea c tin m u c h
the same way as a keypunch machine that is using a control card.

programming Considerations:

This control affects data entry of all variables which follow
the *+ control in the K~YIN list.

If keyin continuous is turned on, entering the last character
acceptable to the format of a variable causes the system to
react as if the ENTER key had been struck.

9-8 0ATABUS COMPILER

Keyin continuous may be turned off by the use of the *- list
control (see section 9.1.3.10).

Keyin continuous is automatically turned off when the end of
the KEYIN list is reached.

9.1.3.10 *- (KEYIN Continuous Off)

The *- list control turns the keyin continuous mode off. For
more details about the keyin continuous mode, see section 9.1.3.9.

9.1.3.11 *T (KEYIN Timeout)

The *T control causes a time out if the time between entering
two characters is too long. The *T<n> form of the list control
can be used to specify a variable length time out. The *T<n>:<m>
form of this control can be used in conjunction with POLLing (see
section 11.7) to specify the time out and NAK count definition.

Programming Considerations:

The *T control causes a time out if more than two seconds
elapse between entering any two characters.

If a time out occurs, the remainder of the KEYIN list is
treated as though the NEW LINE key had been struck. (For more
details about NEW LINE, see section 9.1.5.2.)

In the *T<n> form of the list control, a time out occurs if
more than <n> seconds elapse between entering any two
characters. <n> can range from 1 to 65.

For the *T<n>:<m> list contol, <n> indicates the time out
value and is expressed in tens of milliseconds. It can range
from 0 to 255. This is the maximum time to wait for the first
character of the KEYIN to be received before signalling a time
out. <m> may range from 0 to 255 although it is ignored in
the KEYIN verb. This list control is intended for use with
pollable terminals, where the ten millisecond gradient on <n>
is more useful than the second gradient provided by the *T<n>
list control. This list control is ignored on non-pollable
terminals.

For the *T and *T<n> list controls, if a time out occurs, the
LESS flag is set if the *RV list control is also in effect for
the variable (see section 9.1.3.23).

CHAPTER 9. INTERACTIVE I~PUT/OUTPUT 9-9

For the *T<n>:<m> list control, if a time out occurs, the LESS
flag is set. This does not require the *RV list control to
also be in effect.

9.1.3.12 *W (Wait)

The *W or *W<n> list control is an effective way of allowing
a program to pause \-li thout imposing signi ficant overhead on the
system.

Programming Considerations:

Each occurrence of *W in the KEYIN list causes a pause of one
second before continuing to the next item in the list.

Any number of seconds of pause may be achieved by simply
putting in the required number of *W controls in the list.

Several seconds of pause may be achieved in one list control
by specifying the *W<n> form of this list control. For
example, *W5 is equivalent to *W,*W,*W,*W,*W.

The wait time specified using the *W<n> form of the list
control must be between I and 255 seconds.

9.1.3.13 *EOFF (Echo Off)

The *EOFF list control is uSed to suppress the character
display (echo) of all characters accepted from the keyboard. This
is useful in message switching applications or for entry of
passwords or other security information.

Programming Considerations:

This control causes echo suppression for all variables which
follow the *EOFF in the KEYIN list.

The beep returned when an invalid character is entered is also
suppressed by this control.

The echo Day be re-enabled by using the *EON list control (see
section 9.1.3.14).

The echo is re-enabled when the end of the KEYIN list is
reached.

9-10 DATABUS COI'1PI LER

Example: The following KEYI~ statement could be used to enter a
password.

KEYIN

9.1.3.14 *EON (Echo On)

*Pl:lO,*EOFF,"ENTER PASSWORD: ".
PASSWORD

The *EON list control is used to re-enable the echoing of
characters to the screen while entering data. For more details on
echo suppression see section 9.1.3.13.

9.1.3.15 *IT (Invert Text)

The *IT list control is used to disable shift key inversion.
The normal state of the keyboard is with shift key inversion
enabled. This means that all lower case alphabetic characters are
entered and displayed as upper case characters and vice versa.
Shift key inversion disabled is the normal state of a typewriter;
that is, the shift key must be used to get upper case alphabetic
characters.

Programming Considerations:

Shift key inversion is only useful on those terminals that
have both an upper and lower case character set. For
instance, the Datapoint 3360 cannot make use of shift key
inversion while the Datapoint 3600 can.

Shift key inversion affects only the alphabetic characters and
not the numerals or punctuation.

The *IT control causes any letter entered with the SHIFT key
depressed to be entered and di~_splayed as an upper case letter.

Shift key inversion remains disabled until a *IN control "is
used (see section 9.1.3.16).

Shift key inversion is enabled when a CHAIN instruction is
executed (see section 6.8).

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-11

9.1.3.16 *IN (Invert to Normal)

The *IN list control is used to enable shift key inversion.
For more details on shift key inversion, see section 9.1.3.15.

Programming Considerations:

Shift key inversion is only useful on those terminals that
have both an upper and lower case character set. For
instance, the Datapoint 3360 cannot make use of shift key
inversion while the Datapoint 3600 can.

Shift key inversion affects only the alphabetic characters and
not the numerals or punctuation.

The *IN control causes any letter entered with the SHIFT key
depressed to be entered and displayed as a lower case letter.

Shift key inversion remains enabled until a *IT control is
used (s ee sec t ion 9. 1. 3 • 15) •

Shift key inversion is enabled when a CHAIN instruction is
executed (see section 6.8) .

9.1.3.17 *JL (Justify Left)

The *JL control is used to cause the characters entered into
a variable to be left justified within that variable.

Programming Considerations:

This control affects only the first variable following the *JL
in the KEYIN list.

When the variable affected by the *JL is a numeric string
va ria b 1 e I t he f 0110 wing are t rue .

a) I fad e c i mal po in tis not en t ere d ,

1) all digits entered are put into the leftmost positions
of the numeric variable.

2) all remaining characte~ positions of the variable are
filled with zeros.

b) If a decimal point is entered, the--*JL control has no
effect on the numeric variable.

9-12 DATABUS COMPILER

When the variable affected by the *JL is a character string
variable, the following are true.

a) The variable is first filled with blanks.

b) The characters entered from the keyboard are put into the
variable normally (see section 9.1.1).

c) The logical length pointer points to the last physical
character in the variable.

This control may be used in conjunction with the *DE control
(see section 9.1.3.20).

Example: If the following statements are used to define SVAR and
NVAR,

NVAR
SVAR

FORM
DIM

3.3
5

then when NVAR and SVAR are used in a KEYIN statement with *JL,
the following characters result in the variables having the values
shown below. The underline character () is used to indicate a
blank.

asc i i ascii ascii ascii ascii value of NVAR val ue of SVAR
1 2 ENTER 120.000 12
1 2 ENTER 12.000 12.
1 ENTER 100.000 1

1 ENTER -10.000 -1---
1 ENTER -1.000 -1-. --

9.1.3.18 *JR (Justi fy Right)

The *JR list control is used to cause the characters entered
into a character string variable to be right justified within that
variable.

programming Considerations:

This control affects only the first variable following the *JR
in the KEYIN list.

If a null string is entered (ENTER is the first character
entered) :

a) The variable is filled with blanks.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-13

b) The formpointer is set to zero.

c) The logical length pointer is set to zero.

If the string entered is not null:

a) The characters entered are right justified within the
variable. This means that, when the characters are put
into the variable, they are all shifted to the right until
the rightmost character entered is put into the rightmost
character position in the variable.

b) All character positions that are vacated when the string
is right justified are filled with blanks.

c) The formpointer points to the first physical character of
the variable.

d) The logical length pointer points to the last physical
character of the variable.

This control may be used in conjunction with:

a) the *ZF control (see section 9.1.3.19). When *ZF and *JR
are used together:

1) Any characters entered are right justified with zero
fill.

2) A null entry first fills the variable with zeros, then
sets the formpointer and logical length pointer to
ze ro.

b) the *DE control (see section 9.1.3.20).

Example: 1ft he f 0 110 wing s tat em e n tis used to de fin e S VA R ,

SV.l\R 5

then when SVAR is used in a KEYIN statement with *JR, the
following characters result in SVAR having the values shown l.;elo\\1.
The under 1 ine char ac ter () is used to i nd ica te a bl ank.

9-14 DATABUS COMPILER

asc i i asc i i ascii ascii ascii ascii value of SVAR
1 2 3 ENTER 123
1 2 3 4 ENTER 1234
1 2 3 4 ENTER 1234.
1 2 3 ENTER 123.

-1 2 3 ENTER 12.3
1 2 3 ENTER 1.23
A B C ENrrER ABC

9.1.3.19 *ZF (Zero Fill)

The *ZF list control is used to cause a character string
var iable to be zero filled.

programming Considerations:

This control is the same as the *JL control (see section
9.1.3.17) with the following exceptions:

a) *ZF applies only to character string variables.

b) The variable is filled with zeros instead of blanks.

This control may be used in conjunction with:

a) the *JR control (see section 9.1.3.18). When *ZF and *JR
are used together:

1) Any characters entered are right justified with zero
fill.

2) A null entry first fills the variable with zeros, then
sets the formpointer and logical length pointer to
ze ro.

b) the *DE control (see section 9.1.3.20) .

9.1.3.20 *DE (Digit Entry)

The *DE list control may be used to restrict input into a
character string variable to .digits only (0-9).

PrograMming Considerations:

This control affects only the first variable following the *DE

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-15

in the KEYIN list.

An attempt to enter a non-digit results in the character being
ignored and a beep being returned.

This control may be used in conjunction with:

a) the *JL control (see section 9.1.3.17).

b) the *JR control (see section 9.1.3.18) .

c) the *ZF control (see section 9.1.3.19).

9.1.3.21 *HON (Turn on Highlighting)

The *HON control is used to invert the video image of the
characters on the screen. Instead of the normal dark background
with light characters, the characters are dark on a light
background. At the beginning of each KEYIN and DISPLAY statement,
the mode is reset to normal. Note that this list control is
effective only on those terminals which support highlighting. The
effect of this list control is cancelled by the *HOFF list
control.

9.1.3.22 *HOFF (Turn off Highlighting)

The *HOFF control is used after a *HON control to return the
screen to the normal mode of video display.

9.1.3.23 *RV (Retain Variable)

The *RV list control may be used to retain the contents of
the variable after receipt of a null input.

Programming considerations:

This control affects data entry of only the first variable
which follows the *RV in the KEYIN list.

A null string may be entered by the ENTER key alone being
struck without any other characters having been keyed in, or
by a NEW LINE or function key being struck earlier in the
keyin list.

If one or more characters are entered, and the BACKSPACE or

9-16 DATABUS COMPILER

CANCEL key used to erase them, and then the ENTER key struck,
this is not considered a null entry and the variable is not
retained.

If a null value is entered, the variable affected by the list
control is left unchanged. For character string variables,
the formpointer and logical length pointer are not set to
zero. For numeric string variables, the value is not set to
zero (see sections 9.1.1 and 9.1.2).

The EOS flag is set if a null value is entered.

If the *T list control (see section 9.1.3.11) is also in
effect for a variable with the *RV list control, and a time
out occurs, the LESS flag is set.

If data entry into the variable affected by the *RV list
control is aborted by the NEW LINE key (see section 9.1.5.2)
or by one of the function keys (see section 9.1.5.4) then the
OVER flag is set. Note that this does not apply if the NEW
LINE or function key was struck while keyin] in data to a
variable earlier in the keyin list. In this case, the
variable is retained and the EOS flag is set indicating a null
entry_

9.1.3.24 *DV (Display Variable)

The *DV list control causes the contents of the variable to
be displayed on the terminal screen.

programming considerations:

This control affects only the first variable following the *DV
in the KEYIN list.

The statenent behaves like a DISPLAY statenent for the first
variable followin1 the *DV list control in the keyin list.
The variable is displayed on the terminal screen instead of
being entered from the keyboard. This can be used to save the
use of an extra DISPLAY statement.

The following two program segments are equivalent:

CHAPTt:R 9. I~TERACTIVE I~PJT/OUTPUT 9-17

DISPLAY

KEY IN

KEYIN

9.1.3.25 *8 (Beep)

II THERE ARE .. , Q'rONHAND:
II AVAILABLE, HOW MANY DO YOU T."lANT? ";
QUAN'rITY

"THERE ARE ",*DV,QTONHAND:
" AVAI LABLE, HOW .IVlANY DO YOU WANT? ", QUANTITY

The *B list control causes an audible BEEP (ASCII "ring bell:1

character) to be sounded at the terminal. This list control can
be used to save using a BEEP instruction (see section 9.4).

9.1.3.26 *QP (Odd Parity)

The *op list control causes odd parity to be generated. It
is useful only for non Datapoint, non standard devices. It is not
needed for 33nO and 3600 terminals. This list control remains in
effect until another parity selection list control is given (*OP,
*EP, or *j\jP).

9.1.3.27 *EP (Even Parity)

The *EP list control causes even parity to be generated. It
is useful only for non Datapoint, non standard devices. It is not
needed for 3360 and 3600 terminals. This list control remains in
effect until another parity selection list control is given (*OP,
*EP, or *NP).

9.1.3.28 *NP (No Parity)

The *~p list control causes no parity to be generated. It is
useful only for non Datapoint, non standard devices. It is not
needed for 33GO and 3S00 terminals.. This list control remains in
effect until another parity selection list control is given (*OP,
*EP, or *NP).

9-18 DATABUS COIVlPI LER

9.1.3.29 *3270 (High Speed Keyin for 3270)

The *3270 list control causes high speed foreground keyin
service to be enabled for a 3670 terminal operating in 3270 ~ode.
The effect of this list control is turned off at the end of the
statenent. See the EM3270 user's guide for more information on
3270 operations.

9.1.3.30 *CL (Clear the Key-Ahead Buffer)

The *CL list control causes the key-ahead buffer for the port
executing this instruction to be cleared of any characters that
may have been entered into it.

9.1.3.31 *RD (Roll Down the Screen)

The *RD control causes the screen to roll down by one line.
(This control has no effect when sent to a 3360 terninal. It is
inc 1 ud ed fa r us e wit h 3 6 a 0 t e r min a 1 s .) The cur so r po sit ion i s
unchanged by the execution of this control.

9.1.3.32 *PON (Send "Printer On" Character to Terminal)

The *PON control causes a "printer on" character to be sent
to the terminal. It should only be used on a terminal with a
serial printer attached. This list control should be used instead
of inserting an octal control character in the KEYIN list. This
list control remains in effect until a *POFF list control is
given.

9.1.3.33 *POFF (Send "Printer Off" Character to Terminal)

The *POFF control causes a "printer off" character to be sent
to the terminal. It should only be used on a terminal with a
serial printer attached. This list control should be used instead
of inserting an octal control character in the KEYIN list. This
list control remains in effect until a *PON list control is given.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-19

9.1.4 Literals (KEYIN)

Wh en ali t era 1 (< 0 c c>, < s 1 it> 0 r < n 1 it» a p pe a r sin the 1 i s t
of a KEYIN statement, that literal is displayed on the screen.

Programming Consider'ations:

If the literal is an octal control character (see section
2. 5), i tis sen t to the term ina 1 •

If the literal is of the form "<string>", the following rules
a ppl y.

a) All of the characters between the double quotes are
displayed as they appear in the literal.

b) The first character of the string is displayed at the
current cursor position.

c) The cursor is bumped one position to the right for every
character displayed.

d) The cur so r i s 1 eft po sit ion ed 0 n e po sit ion tot her i g h t 0 f
the last character of the literal.

9.1.5 Special Considerations

The following sections describe some special cases of
opera tor input from the keyboard.

9.1.5.1 BACKSPACE and CANCEL

The following special keys are useful in correcting typing
errors while entering data into variables that appear in a KEYIN
list.

The BACKSPACE key (control H on Teletype) may be used to
delete the last character entered. Using BACKSPACE causes the
following actions:

a) The cur so r ism 0 v e don e po sit ion tot h e 1 eft .

b) The character under the cursor is erased from the screen.

c) The character that was unrler the cursor is not deleterl
from the variable in the KEYIN list. The KEY IN pointers

9-20 DATABUS CO~PILER

are decremented by one without restoring the original
contents of the variable.

The CANCEL key (control X on a Teletype)rnay be used to reset
KEYIN pointers to the beginning of the variable.

The CANCEL key performs repeated BACKSPACEs until the variable
has been cleared.

Neither BACKSPACE nor CANCEL overstore the contents of the
variable with blanks.

Once BACKSPACE or CANCEL has been used the contents of the
variable becomes indeterminate.

9.1.5.2 NEW LINE

Using the NEW LINE character is treated as ~ special case of
using the ENTER character. Using the NEW LINE character
effectively causes an automatic ENTER for all subsequent variables
in the KEYIN list. The NEW LINE character is entered by striking:

a) the NEW LINE key on Datapoint 3360 and 3600 terminals,

b) control 0 on a Teletype, or

c) the DEL key (shift underline) on the system console.

Programming Considerations:

Using NEW LINE causes data entry into the current variable to
be terminated as if the ENTER key had been struck instead.

All subsequent character string variables in the KEYIN list
have their formpointer and logical length pointer set to zero.

All subsequent numeric string variables in the KEYIN list are
set to zero.

The KEYIN list is processed normally, except for the
variables, which are handled as stated above.

Control falls through to the next DATABUS statement.

The effects of the NEW LINE can he modified by the *RV list
control (see section 9.1.3.23).

CHAPTER 9. INT~RAC~IVE INPJT/OUTPUT 9-21

9.1.5.3 INTerrupt

Entering the INTerrupt character may be used to cause an
immediate CHAIN to the port's MASTER program (see section 6.8) .
This allows a program to be interrupted before it runs to
completion. The INTerrupt character is entered by striking:

a) the INT key on Datapoint 3360 and 3600 terminals,

b) C'o n t r 0 Ish i f t Lon aTe let ype, 0 r

c) the CANCEL key with both the KEYBOARD and DISPLAY keys
depressed on the system console.

Programming Considerations:

The program that is being interrupted executes the equivalent
of a STOP instruction (see section 6.7) •

If the PI (see section 6.12) or FILEPI (see section 'l.13)
instruction is in effect at the time that an INTerrupt occurs,
the interrupt procedure is postponed.

1ft he p r in t e r i s be i ng used by the po r t r e c e i v i ng the
INTerrupt, it is RELEASEd .(see section 10.3).

9.1.5.4 Function Keys

Whenever any of the function keys are depressed, they are
treated as special cases of the ENTER key. Using a function key
causes an automatic ENTER for all subsequent variables in the
KEYIN list. In addition, each function key has associated with it
a condition that can be checked by the GOTO statement.

programming Considerations:

The use of a function key causes data entry into the current
variable to be terminated as if the ENTER key had been struck
instead.

All subsequent character string variables in the KEYIN list
have their formpointer and logical length pointer set to zero.

All subsequent numeric string variables in the KEYIN list are
set to zero.

Any list controls in the list that require processing of a

9-22 DATABUS COMPILER

variable after data entry is completed (such as *JL, *JR, and
*ZF) do not take effect.

The effects of the function keys can be modified by the *RV
list control (see section 9.1.3.23).

9.2 DISPLAY

The DISPLAY instruction is used to put information on the
terminal screen. This statement has the following general format:

<label> DISPLAY <list>

where: <label> is an execution label (see section 2.).
<list> is a list of items describing the information to

be put on the screen.

programming Considerations:

<label> is optional.

The items in the list must be separated by commas.

<list> may be made up of any combination of the following
items:

a) <svar> is a character string variable (see section 4.2).

b) <nvar> is a numeric string variable (see section 4.1).

c) <occ> is an octal control character (see section 2.5).

d) <list control> is used to control the manner in which the
list is processed.

e) <slit> is a literal of the form u<string>1I (see section
2.5). <string> must be a valid character string (see
section 4.2) .

f) <nlit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-23

9.2.1 Character String Variables (DISPLAY)

When a character string variable «svar» appears in the list
of a DISPLAY instruction, the characters saved in the variable are
displayed on the screen. Unless modified by a list control the
manner in which the characters are put on the. screen is described
below.

Programming Considerations:

The characters in the variable are displayed starting with the
first physical character and continuing through the logical
length.

Blanks are displayed for any character positions that exist
between the logical length pointer and the physical end of the
variable.

The first character displayed is displayed at the current
cur so r po sit ion.

The h 0 r i z 0 n tal cur so r po sit ion ish u m pe d by 0 n e (1) for e a c h
character displayed.

The cursor is left positioned one character to the right of
the last character displayed.

9.2.2 Numeric String Variables (DISPLAY)

When a numeric string variable «nvar» appears in the list
of a DISPLAY instruction, the characters that are saved in the
variable are displayed on the screen. Unless modified by a list
control, the manner in which the characters are displayed is
des c rib ed below.

program8ing Considerations:

The characters displayed start with the first physical
character and continue through the physical end of the
variable.

The first character displayed is displayed at the current
cur so r po sit ion .

The horizontal cursor position is bumped by 1 for each
character displayed.

~-24 uATAt3US COMPILER

The cursor is left positioned one character to the right of
the last character displayed.

9.2.3 List Controls

The list controls are provided to allow more flexibility in
the way the screen is formatted. They may be used to control the
manner in which variables are displayed on the screen. All list
controls begin with an asterisk followed by the specification o-f
the control function.

9.2.3.1 *P<h>:<v> (Cursor Positioning)

The *P<h>:<v> list control is used to position the cursor on
the screen. For details on using this control, see section
9.1.3.1.

9.2.3.2 *EL (Erase to End-of-Line)

The *EL control causes the line to be erased to the right of
the cursor position. For details on using this control, see
section 9.1.3.2.

9.2.3.3 *EF (Erase to End-of-Frame)

The *EF control erases the screen fro~ the cursor position to
the bottom of the screen. For details on using this control, see
section 9.1.3.3.

9.2.3.4 *ES (Erase the Screen)

The *ES control positions the cursor to 1:1 and erases the
entire screen. For details on using this control, see section
9.1.3.4.

CHAPTER 9. INTERACTIVE I~PUT/OUTPUT 9-25

9.2.3.5 *C (Carriage Return)

The *C control causes the cursor to be set to the beginning
of the current line. For example: if the cursor is positioned to
40:5, executing the *C control changes the cursor position to 1:5.

9.2.3.6 *L (Line Feed)

The *L control causes the cursor to be set to the following
line in the current horizontal position. For example: if the
cursor is positioned to 20:5, executing the *L control changes the
cursor position to 20:6.

9.2.3.7 *N (Next Line)

The *N control causes the cursor to be set to the first
column of the next line. Executing the *N control is equivalent
to executing a *C control followed by a *L control.

9.2.3.8 *R (Roll the Screen)

The *R control causes the screen to roll up by one line. This
control has no effect when sent to a 3360 terminal. It is
included for use with 3600 terminals and the system console. The
cursor position is unchanged by the execution of this control.

9.2.3.9 *+ (DISPLAY Blank Suppression On)

The *+ control is used to 'urn on a display mode called blank
suppression.

Programming Considerations:

This control affects the display of all character string
variables which follow the *+ control in the DISPLAY list.

If blank suppression is turned on, character string variables
are displayed on the screen as described below.

a) The characters in the vari~ble are displayed starting with
the first physical character and continuing through the
logical length.

b) The first character is displayed at the current cursor

9-26 DATABUS COMPILER

position.

c) The horizontal cursor position is bumped by 1 for each
character displayed.

d) The cursor is left positioned one character to the right
of the last character displayed.

Blank suppression is automatically turned off when the end of
the DISPLAY list is reached.

9.2.3.10 *- (DISPLAY Blank Suppression Off)

The *- control turns blank suppression mode off. For more
details about blank suppression mode, see section 9.2.3.9.

9.2.3.11 *W (Wait)

The *W or *W<n> list control is an effective way of allowing
a program to pause without imposing significant overhead on the
system.

programming Considerations:

Each occurrence of a *W in the DISPLAY list causes a pause of
one second before continuing to the next item in the list.

Any number of seconds of pause may be achieved by simply
putting in the required number of *W controls in the list.

Several seconds of pause may be achieved in one list control
by specifying the *W<n> forms of this list control. For
examale, *W5 is equivalent to *W,*W,*W,*W,*W.

The wait time specified using the *W<n> form of the list
control must be between 1 and 255 seconds.

9.2.3.12 *IT (Invert Text)

The *IT control is used to disable shift key inversion. For
details on using this control~ see section 9.1.3.15.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-27

9.2.3.13 *IN (Invert to Normal)

The *IN control is used to enable shift key inversion. For
details on using this control, see section 9.1.3.16.

9.2.3.14 *HON (Turn on Highlighting)

For details on using the *HON control, see section 9.1.3.21.

9.2.3.15 *HOFF (Turn off Highlighting)

For details on using the *HOFF control, see section 9.1.3.22.

9.2.3.16 *B (Beep)

The * B 1 i $ t can t r 0 1 c a use san a ud i b 1 e BEE P (A SC I I II r in 9 be 11 .•
character) to be sounded at the terminal. This list control can
be used to save using a BEEP instruction (see section 9.4).

9.2.3.17 *OP (Odd Parity)

The *op list control causes odd parity to be 1enerated. For
details on using this control, see section 9.1.3.26.

9.2.3.18 *EP (Even Parity)

The * S P 1 i s t can t r a 1 c a use s eve n pa r i t Y to beg en era ted . For
details on using this control, see section 9.1.3.27.

9.2.3.19 *NP (No Parity)

The *NP list control causes no parity to be generated. For
details on using this control, see section 9.1.3.28.

9-28 I.) A T.z\ BUS CO;V1 P I L E R

9.2.3.20 *3270 (High Speed Keyin for 3270)

The *3270 list control causes high speed foreground keyin
service to be enabled for a 3570 terminal operating in 3270 mode.
For details on using this control, see section 9.1.3.29.

9.2.3.21 *RD (Roll Down the Screen)

The *RD control causes the screen to roll down by one line.
(This control has no effect when sent to a 3360 terminal. It is
inc 1 ud ed fo r us e wi t h 3 60 0 t e r min a 1 s .) The cur so r po sit ion i s
unchanged by the execution of this control.

9.2.3.22 *PON (Send "Printer On" Character to Terminal)

The *PON control causes a "printer on" character to be sent
to the terminal. For details on using this control, see section
9.1.3.32.

9.2.3.23 *POFF (Send "Printer Off" Character to Terminal)

The *POFF control causes a "printer off" character to be sent
to the terminal. For details on using this co~trol, see section
9.1.3.33.

9.2.4 Literals (DISPLAY)

Wh e n ali t era 1 (< 0 c c>, < s 1 it> 0 r < n 1 it» a p pe a r sin the 1 i s t
of a DISPLAY statement, that literal is displayed on the screen.

Programming Considerations:

If the literal is an octal control character (see section
2.5), it is sent to the terminal.

If the literal is of the form "<string)", the following rules
apply.

a) All of the characters between the double quotes are
displayed as they appear in the literal.

b) The first character of the string is displayed at the
current cursor position.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-29

c} The cursor is bumped one position to the right for every
character displayed'.

d } The cur so r i s 1 eft po sit ion ed 0 n e po sit ion to the rig h t 0 f
the last character of the literal.

9.3 CONSOLE

The CONSOLE instruction is used to put information on the
console screen. This statement has the following general format:

<label> CONSOLE <list>

where: <label> is an execution label (see section 2.).
<list> is a list of items describing the information to

be put on the console.

Programming Considerations:

<label> is optional.

The itens in the list must he separated hy COlTIr1as.

<list> ~ay he made up of any combination of the following
items:

f3.) <s v a r > i sac h a r act e r s t r i n g va ria b 1 e (see section 4. 2) •

b) <nvar> is a numeric string variable (see section 4.1).

c) <occ> is an octal control character (see section ?. 5) •

d) <list control> is used to control the manner in which the
list is processed.

e) <slit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

f) <nlit> is a literal of the form lI<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

All output to the system console is inhibited if it is being
used as the terminal for port one. In this case, all CONSOLE
instructions execute, but do not actually do anything.

9-30 DATABUS COI\1PILER

The output is always on the line assigned for the terminal
executing the CONSOLE instruction. This means that any
vertical positioning of the cursor is ignored.

A CONSOLE statement which begins without positioning starts
displaying at column 5.

The port number and asterisk appearing in column 1 through 4
on the CONSOLE may be overwritten by positioning to column 1.

Character string variables are handled exactly alike in
CONSOLE and DISPLAY statements (for more details, see section
9.2.1).

Numeric string variables are handled exactly alike in CONSOLE
and DI~PLAY statements (for more details, see section 9.2.2).

The only DISPLAY list controls that are effective are
*P<h>:<v> (cursor positioning), *EL, *EF, and *ES.

The cursor positioning used for CONSOLE statements works like
it does for KEYIN statements except that the vertical position
«v» is ignored (for more details, see section 9.1.3.1).

The *EL, *EF, and *ES list controls only erase the part of the
line on the system console assigned for the terminal executing
the CONSOLE instruction.

If the display flows over the line length limit, the extra
characters are not displayed.

If the CONSOLE statement is not terminated by a se~i-colon,

the carriage return and line feed are ignored.

Example: The CONSOLE instruction could be used to alert the
s y stern 0 per a tor (i f s u c hap e r son ex i s t s) by us i ng the follow i n g
statement.

CONSOLE * P 20: 1, "OPERATOt{ ALERT"

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-31

9.4 BEEP

BEEP causes an audible BEEP (ASCII "ring bell" character) to
be sounded at the termnal. This instruction has the following
general format:

<label> BEEP

where: <label> is an execution label (see section 2.). This
label is optional.

9.5 DEBUG

The DEBUG instruction is used to activate the interpreter's
debugging tool, if such a tool exists. The user's guide of the
appropriate interpreter should be consulted for details on the
operation of this tool. This instruction has the follo~ing

general for;nat:

<label> DEBUG

\-Jh ere: <label> is an execution label (see section 2.).

Pro<jramming Considerations:

<label> is optional.

If the debugging tool is not available, DEBUG is treated like
a "No OPeration" (NOP). Program execution continues as if the
DEBUG instruction had not been included in the program.

9-32 DATABUS CO'''1PILER

CHAPTER 10. PRINTER OUTPUT

These instructions are used to output data to a printer and
to control the usage of the printer by a port.

General programming Considerations:

Typically, formatting is handled in one of the following ways.

a) By the way the variable is defined. It should be defined
with the format which is to be used for output.

b) Using list controls.

Normally, when execution of PRINT (or RPRI~T) statement
terminates, the print position is reset to the beginning of
th,= next line.

If a semicolon (i) is used after the last itel:l in the list,
the print position ref:1ains where it was on statement
termination. This feature allows a second PRINT (or RPRI~T)
statement to continue where the first statement left off.

Exar:1ple:

PHI\JT JlFLAGS: II • ,
CALL NOTFLG IF NOT 2E1-10
PRINT "2E1-10, \I • ,
CALL NOTFLG IF NO'r LESS
PRINT "LESS II

NOTFLG PRI~T "NO'r II. ,
RETURf\]

prints one of the following lines, depending on the condition
fl ags.

FLAGS: ZERO, LESS
F LA G S : 2 E R 0 , NOT L E S S
FLAGS: NOT 2ERO, LESS
FLAGS: NOT 2 ERO, NOT· LESS

Those instructions that use a list should make use of
continuation \Jhen it is possible to do so. (For details about
using continuation, see section 2.) This not only increases

CHAPTER 10. PRINTEH OUTPUT 10-1

the execution speed of the program, but also decreases the
system overhead. The programmer should check his program for
any occurrence of two consecutive PRINT statements to see if
they can be combined into a single statement.

PRINT
PRINT

"LINE ONE"
"LINE TWO"

should be combined to form the statement below.

PRINT

10.1 PRINT

"LINE ONE":
*N, "LINE TlJJO Il

The PRINT instruction causes items in the list to be printed
in a fashion similar to the way DISPLAY causes items to be
displayed. The format of the print instruction is:

1) <label> PRINT <list>

where: <label> is an execution label.
<list> is a list of items describing the output to the

printer.

Programming Considerations:

<label> is optional.

The items in the list must be separated by commas.

<list> may be made up of any combination of the following
items:

a) <svar> is a character string variable (see section 4.2).

b) < nvar> is a numer ic str i ng var iable (see section 4.1).

c) <occ> is a octal control character (see section 2.5).

d) <list control> is used to control the manner in which the
printing is performed.

e) <slit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

10-2 DATABUS COMPILER

f) <nlit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

10.1.1 Character String Variables

When a character string variable «svar» appears in the list
of a PRINT (or RPRINT) instruction, the characters stored in the
variable are printed on the printer. Unless modified by a list
control, the manner in which the characters are printed on the
printer is described below.

Programming Considerations:

The characters in the variable are printed starting with the
first physical character and continuing through the logical
length.

Blanks are printed for any character positions that exist
between the logical length pointer and the physical end of the
variable.

The first character printed is printed at the current print
posi t ion.

The pr in t pos i tion is inc remen ted by one (1) fo reach
character printed.

The print position is left positioned one character to the
right of the last character printed.

10.1.2 Numeric String Variables

When a numeric string variable «nvar» appears in the list
of a PRINT instruction, the characters that are stored in the
variable are printed on the printer. Unless modified by a list
control, the manner in which the characters are printed is
described below.

Programming Considerations:

The characters printed start with the first physical character
and continue through the physical end of the variable.

The first character printed is printed at the current print
position.

CHAPTER 10. PRINTER OUTPUT 10-3

The print position is incremented by one (1) for each
character printed.

The print position is left positioned one character to the
right of the last character printed.

10.1.3 List Controls

The list controls are provided to allow more flexibility in
the way the printer is formatted. They may be used to control the
manner in which variables are printed on the printer. All list
controls begin with an asterisk followed by the specification of
the control function.

10.1.3.1 *F (Form Feed)

The *F control causes the printer to advance to the top of
the next form and the print position to be set to the first
column.

10.1.3.2 *C (Carriage Return)

The *C control causes the print position to be set to the
be1inning of the current line.

10.1.3.3 *L (Line Feed)

The *L control causes the print position to be set to the
following line in the current print position. For example, if the
print position is column 20, the *L control causes the horizontal
print position to be unchanged on the following print line.

10.1.3.4 *N (Next Line)

The *N control causes the print position to be set to one (1)
on the following line. Executing the *N control is equivalent to
executing a *C control followed by a *L control.

10-4 DATAB US COI'1 PI LER

10.1.3.5 *<n> (Tab To Column <n»

The *<n> control causes the print position to be set to
column (n). <n> must be an integer constant. If the value
specified by <n> is larger than the width of the printer, the
control is ignored.

10.1.3.6 ; (Supress new line function)

The semicolon (;) control causes the new line function to be
supressesed. This control inhibits the *N control function which
normally occurs at the end of a PRINT instruction without the (;)
control.

10.1.3.7 *ZF (Zero Fill)

The *ZF control may be used before a numeric variable to
cause zero filIon the left, moving the sign to the left if
necessary.

10.1.3.8 *+ (Blank Supression On)

The *+ control is used to turn on a print mode called blank
suppression.

programming Considerations:

This control affects printing of all character string
variables which follow the *+ control in the PRINT list.

If blank suppression is turned on, character string variables
are printed on the printer as described below.

a) The characters in the variable are printed starting with
the first physical character and continuing through the
logical length.

b) The first character printed is printed at the current
print position.

c) The current print position is incremented by one (1) for
each character printed.

d) The print position is left positioned one character to
the right of the last character printed.

CHAPTER 10. PRINTER OUTPUT 10-5

Blank suppression is automatically turned off when the end of
the PRINT list is reached.

10.1.3.9 *- (Blank Suppression Off)

The *- control turns blank suppression m6de off. For more
details about blank suppression mode, see section 10.1.3.8.

10.1.3.10 *<nvar> (Tab to column <nvar»

The *<nvar> control causes the print position to be set to
the column specified by the numeric variable <nvar>. The value of
<nvar> is truncated to an integer if there is any fractional part.
If the value specified by <nvar> is larger than the width of the
printer, the control is ignored.

10.1.4 Literals

Wh e n ali t era 1 (< a c c>, < s 1 it> 0 r < n 1 it» a p pea r sin the lis t
of a PHINT (or RPRINT) statement, that literal is printed on the
printer.

Programming Considerations:

If the literal is an octal control character (see section
2.5), it is sent to the printer.

If the literal is of the form "<string>", the following rules
apply.

a) All of the characters between the double quotes are
printed as they appear in the literal.

b) The first character of the string is printen at the
current print position.

c) The print position is incremented one position to the
right for every character printed.

d) The print position is left positioned one position to the
right of the last character in the literal.

10-5 DATABUS CO~PILER

10.2 RPRINT

The RPRINT instruction functions exactly as the PRINT except
that the printout physically occurs at a Remote Slave Station
instead of the Central Station where the PRINT instruction
functions. The format of the RPRINT instruction is:

<label> RPRINT <list>

where: <label> is an execution label.
<list> is a list of items describing the output to the

printer.

Programming considerations:

<label> is optional.

If the port is not a remote slave port type, the instruction
is interpreted as a PRINT instruction.

The user should refer to section 10.1 for a discussion of the
PRINT statement.

10.3 RELEASE

The RELEASE instruction ends a user's (port's) exclusive
control of the printer and causes the printer to advance to the
top of the next form. The instruction has the following format:

<label> RELEASE

where: <label> is an execution label.

Programming Considerations:

<label> is optional.

This instruction causes the printer to become available to
another user.

The printer is procured by a user when the user attempts to
per form aPR I NT ins t rue t ion a nd t he p r i n t e r i s not in use by
an 0 the r po r t •

The printer advances to the top of the next form.

When the user disconnects from the system or keys the

CHAPTER 10. PRINTER OUTPUT 10-7

interrupt procedure on the keyboard, a RELEASE is
automatically performed for that user.

This instruction has no effect upon printing being performed
at the remote slave station.

.
This instruction is ignored on non-DATASHARE Systems.

10.4 Printer Considerations

The tabbing (*<n> or *<nvar» in the PRINT (or RPRINT)
statement can move the carriage in the reverse direction and any
sequence of printer controls are executed in precisely the
sequence specified.

If the servo printer is being used, the paper out condition
is checked whenever a top of form control is given in a PRINT (or
RPRINT) statement. If after the top of form function is
performed, the paper out condition is present the console makes a
beeping sound to alert the system operator that ~ore paper must be
placed in the printer. The beeping sound resumes if the cover is
replaced to its original position with the paper out indicator
still on. The recommended procedure is to open the front cover,
remove the last form still in the printer, place new paper in the
printer with the top of the form aligned with the print head, and
finally close the front cover.

Another feature allowed with the system servo printer (not a
Remote printer) is minor vertical spacing. The following list
depicts the octal control characters (occ) which are used for the
vertical minor spacing and the horizontal column spacing. There
are eight (8) minor vertical spaces for one standard line space.

oce FUNCTION

000 vertical minor spacing a spaces (dow:1 the page)
001 Vertical minor spac ing 1 space (d 0 \vn the page)
002 Vertical minor spacing 2 spaces (do\r,-'n the paC) e)
003 Vertical minor spac ing 3 spaces (d 0 ~vn the page)
004 Vertical r:1 i no r spacing 4 spaces (down the page)
005 Vertical Minor spac ing 5 space s (down the page)
OOC) Vertical Illinor spac il1g r spaces (down the page))

007 Vertical Illinor spacing 7 spaces (down the page)

010 Vertical ninor spacing a spaces (up the page)
all Vertical minor spacing 1 space (up the pag e)
012 Vertical minor spacing 2 spaces (up the page)

10-8 DATAB US COrvlPI LER

013 Vertical minor spacing 3 spaces (up the page)
014 Vertical minor spacing 4 spaces (up the page)
015 Vertical minor spacing 5 spaces (up the page)
016 Vertical minor spacing 6 space s (up the page)
017 Vertical minor spacing 7 spaces (up the page)

020 Left carriage movement 7 columns
021 Left carriage movement 5 columns
022 Left carriage movement 5 col umns
023 Left carriage movement 4 columns
024 Left carriage movement 3 coluP1ns
025 Left carriage movement 2 columns
020 Left carriage movement 1 column

027 No ac ti on

030 Right carriage movement 1 column
031 Right carriage movement 2 columns
032 Hight carriage movement 3 columns
033 Right carriage movement 4 columns
034 Right carriage movement 5 columns
035 Right carriage movement f) columns
036 Right carriage movement 7 columns
037 Right carriage movement 8 columns

These fea tur es on the servo printer allows different kinds of
Ll n d e r s cor i ng and super- and/or s u b- s c rip t i ng in the printed
output. Note that it is the user's responsibility to keep track
of the carriage micro-posi tion.

10.5 SPLOPEN

The SPLOPEN instruction allows the DATABUS program to direct
printer output to a disk file instead of directly to the printer.
This instruction may have one 6f the following general formats:

1) <label> SPLOPE~ <svarl>
2) <label> SPLOPEN <slit>
3) <label> SPLOPEN <svarl> ,<svar2>
4) <label> SPLOPEN <slit>,<svar2>
5) <label> SPLOPEN <svarl>,<char>
6) <label> SPLOPEN <slit>,<char>

where: <label> is an execution label (see section 2 .) •
< sv a r 1> . is a character st ring variable.
<svar2) is a character string variable.
< sl it> is a character string literal.

CHAPTER 10. 10-9

<char> is a one character string literal.

Programming considerations:

<label> is optional.

When using formats (1), (3) or (5) above, the logical string
of <svarl> specifies the name of the spool file to be opened.

When using formats (2), (4) or (6) above, <slit> specifies the
name of the spool file to be opened.

When using formats (3) or (4) above, the logical string of
<svar2> specifies the options to be used.

When using formats (5) or (6) above, <char> specifies the
option to be used.

The "Q" option specifies that spool output is to be appended
onto the end of an existing spool file. If the spool file
specified does not exist, it is simply created. If the spool
file specified has an invalid configuration sector, a SPOOL
trap occurs.

See the interpreter user's guide for a description of any
additional options available.

Invalid options are ignored by the interpreter.

Execution of a SPLOPEN instruction causes the spool file to be
opened on disk exactly as in the PREP instruction. If the
file does not exist, it is created.

If the spool file name is null, the name defaults to
DSPORTnn/PRT where nn is the port number of the port executing
the SPLOPEN instruction.

If the extension is not 'specified on the spool file name, the
extension is assumed to be /PRT.

A top-of-form is inserted into the spool file.

All printing output generated by the port that executes the
SPLOPEN instruction is sent to· the spool file instead of to
the printer until a SPLCLOSE instruction (see section 10.6) is
executed.

The spool file is not closed by execution of a CHAIN

10-10 DATABUS COMPILER

instruction. This implies that if a DATABUS program opens a
spool file and then CHAINs another program, printer output
generated by the second program is sent to the spool file.

Execution of a CHAIN, ROLLOUT, or SHUTDOWN instruction causes
an end of file mark to be written to the spool file. If this
file is specified for spooling with the "Q" option in the
CHAINed program, the first print statement overwrites the end
of file mark.

If another SPLOPEN instruction is executed while spooling is
already active, an automatic SPLCLOSE instruction is executed
for the first spool file, and the new spool file is opened.

No other I/O should be performed on the spool file until a
valid end-of-file mark is written to the file. The SPLCLOSE
instruction writes an end-of-file mark.

The first character of each record written to the print file
is a printer carriage ~ontrol character. DATABUS uses the
ANSI standard control characters which are:

1 top of f 0 rr.1 (new page)
+ no vertical spacing
<space> single space
0 double space

triple space

The first sector written in the print file is a special header
configuration sector which contains pertinent information
about the print file. The format of this sector is as
follows:

(0 3) * < E OF LR N > (015) < I D> (015) < # T OF s > (015) (03)

where: (03) is the physical end of sector marker.

(015) is the logical end of record marker.

* is an asterisk.

<EOF LRN> is the record number of the print file's
end of file marker; it consists of eight
ASCII digits.

<10> is the identification of the port that
ere a ted the p r in t f i 1 e . I tis 0 f t he for m
DSPORTnn/PRT where nn is the port number.

CHAPTER 10. PRINTER OUTPUT 10-11

< ~ 'fOFs>

10.6 SPLCLOSE

is the number of top of forms inserted in
the print file. This is equal to the
number of pages in the file, and consists
of eight ASCII digits.

The SPLCLOSE instruction is used to turn off print spooling.
This instruction has the following general format:

<label> SPLCLOSE

where: <label> is an execution label (see section 2.).

Programming considerations:

<label> is optional.

This instruction cancels the effect of an earlier SPLOPEN
instruction. All output generated by PRINT instructions is
now sent to the printer again instead of to the print file.

If spooling is not active (printer output is not being sent to
a print file as a result of a SPLOPEN instruction), the
instruction is ignored, no action is taken.

An end-of-file mark is written to the spool file.

10-12 DATABUS COMPILER

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT

The following instructions are used for communications
between ports (internal communications) and for communications to
a remote site (external communications (MULTILINK)).

11.1 SEND

The SEND instruction is used to transmit a list of data
variables to a specified destination. The statement has the
following format:

<label> SEND <cmlst>,<route>i<nslst>

where: <label> is an execution label.
<cmlst> is a variable with the COMLST data declaration.
<route> is a string variable that contains the routing

information for the list of variables.
<nslst> is a list of variables either numeric or character

string that are to be transmitted to the specified
destination.

-Programming Considerations:

<label> is optional.

<cmlst> must be a variable with the COMLST data declaration.

<route> must be a string variable. The formpointed character
in the string must be either an "I" specifying internal
communications (between ports) or an "E" specifying external
communications (MULTILINK).

For internal communications (between ports), the two
characters following ti1e 1'1" must be valid numeric digits and
are used as the destination port for the data contained in the
list <nslst>.

a) A port number of "01" is port 01 or the first port in the
system.

b) If there are not two valid numeric digits after the
formpointed character in the <route> variable, the <cmlst>
variable is set to I clear'. An 10 trap is given and the

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT 11-1

rest of the instruction is ignored. The SEND operation is
not per fo rmed.

c) If the destination port is not configured into the system,
the' channel unavailable' status is set into the <cmlist>.
The SEND operation is not performed.

d) If a RECV operation is 'pending' on the destination port
the data from the variable(s) in the <nslst> are
transferred to the variable(s) specified in the RECV
instruction at the destination port. The data is
transferred on a variable to variable basis. That is, the
first variable in the SEND statement is transferred to the
first variable in the RECV statement, and the second
variable (SEND) into the second variable (RECV) until
either the SEND or RECV list is exhausted. If a SEND
variable is longer than the RECV variable, the exc.ess nata
is discarded.

e) If no RECV operations are 'pending' at the destination
port, the <cmlst> status is set to 'channel unavailable',
and the instruction is ignored. The SEND operation is not
per fa r;ned .

f) For character string variables, the data is transmitted
starting with the first physical character through the
logical length.

g) For numeric variables, the data is trinsmitted starting
with the first through the last physical character.

h) The internal SEND operations are performed in the
background.

For external comMunications (:v\ULTILINK) the following
considerations are pertinent:

a) The inf~rmation after the "Ell in the <route> variable is a
functiort of the co~munications process being used. The
compatible line handler user's quide should be consulted
for this information.

~) If the external cOILlr~unications has not been configured
into the system, or is not· available, the instruction is
ignored and the <cmlst> status is set to 'channel
unavailable' .

c) If the external communications is available, the SEND

11-2 DATABUS COMPILER

instruction is processed, the status of the <cmlist> is
set to 'pending'J and the next DATABUS instruction is
executed. The data may not be transferred to the remote
site immediately, therefore the OATABUS programmer must
not modify any of the variables mentioned in the SEND
statement until the status of the <cmlst> indicates that
the SEND is complete.

d) The data transmitted for external cor:lI1.1unications is fror~
the first physical character through the logical length.
Consult the communication line handler user's guide for
de ta i Is.

If the routing variable <route> formpointedcharacter contains
neither an "E" or "I", the instruction is ignored and an 10
trap is given.

Example:

C!V1LST
ROUTS
Vl\Rl
VAR2
VAR3

~\jAIT

11.2 RECV

COi\,1LST
INIT
INIT
FORvJ
INI'f

COI\1CLR
S2ND

COl'v1TST
GOTO

DISPLAY

5
"lIS"
11 tVi E S SAG E N U :VI 8 E R 11

4
\I TH I~:3 IS YIJ Ur< !'-lESS Z\G E 11

C'YlLST
CI"iLST, ROUTE; VAR2, VAH2:
\JAR3
C!vJLS T
WAIT IF OVER

(SEN 0 1'111 E S SAG r:)

(GET CMLST STATUS)
(DESTIN.l\'T ION PORT NOT
HEADY)

"rvlESSAGE NUIVIBER", VAR2, "TRANSFERRED OK I'

The RECV instruction is used to specify a list of variables
\1/ h i c h s e r ve a sad est ina t ion for data from a sou r c e . T h 2

state~ent has the following format:

<label> RECV <cmlst>,<route>;<slist>

where: <label> is an execution label.

CHA P'l' ER 11. CO:Vl[lt1 UN Ie A'l' IONS I~\J PuT / OUT pu'r 11-3

<cmlst> is a variable with the COMLST data declaration.
<route> is a string variable which contains routing

information.
<slist> is a list of string variables which are to receive

the data.

Programming Considerations:

<label> is optional.

<cmlst> is a variable with the COMLST data declaration.

<route> is a string variable wh'ich contains the routing
information. An "Ill specifies internal comrr.unication (between
ports) and an "E" specifies external communication
(,MULTILINK) •

For internal communications, the following facts are
pertinent:

a) There must exist two valid numeric characters after the
formpointed (I'I") character in the <route> variable.
These two numeric characters specify the port that is
expected to SEND the data. If the expected SENDing port
number is invalid, an IO trap is given and the rest of the
instruction is ignored.

b) When data is received from another port, the two
characters following the formpointed character (the "I")
in the <route> variable are 6verstored with the port
n urn be r t hat a rig ina ted the d a t a (SEN Ding po r t n urn be r) .
The actual SENDing port and the expected SENDing port
numbers may be di fferent. A port number of "01" speci fies
that port I was the SENDing port.

c) The <cmlst> status is set to 'communications pending' or
'in process' until a SEND instruction is executed with the
destination specified for the RECVing port.

d) The data is transferred from the SENDing to the RECVing
port on a variable to variable basis. That is the first
SENDing variable is stored into the first RECVing variable
and the second SENDing variable to the second RECVing
variable until either the BENDing or RECVing list is
exha usted .

e) If a REeVing variable will not contain all of the data for
the SENDing variable, the excess data is discarded.

11-4 DATA8US COMPILER

f) If the SENDing variable list contains more variables than
the RECVing variable list, the excess variables are
discarded.

g) If the SENDing variable list contains fewer variables than
the RECVing variable list, the excess variables that did
not receive data have their formpointers and logical
length pointers set to zero.

h) The logical length pointer of the RECVing variables
reflect the amount of data transferred. The formpointer
is reset to 1.

For external communications (MULTILINK), the following facts
are pertinent:

a) If the external communications has not been configured
into the system, or is not available, the instruction is
ignored and the <cmlst> status is set to 'channel
unavailable'. The next DATABUS instruction is executed.

b) The logical length pointer is set on all RECVing variables
to reflect the quantity of data received for the variable.
The formpointer is reset to 1.

c) The communication line handler user's guide should be
consulted for additional details on external RECV
operation.

If the formpointed character in the <route> variable contains
neither an "E" nor "I", the rest of the instruction is ignored
and an 10 trap is given.

Example:

CtVlLIST
C.MLIST 1
HOUTE
ROUTEI
VARI
EMPLN
DATE
HOURS

'l'EST

COMLST
CO),1LST
INIT
INIT
INIT
DIM
DIM
DIM.

SEND
CO'VlTST

CHAPTER 11.

1
3
11108"
II 108"
II PLEASE SEND ME YOUR TIlvtE HEPORTS II

5
10
3

CMLIST,ROUTE;VARI
CMLIST

(SEN D I r H E IV! E S SAG E)
(,fEST THE CIVlLIST)

COMMUNICATIONS I~PUT/OUTPUT 11-5

CYCLE

rrEST 1

GOTO
GOTO
COMCLR
RECV
COIV1TST
GOTO
GaTO

GOTO
NOTAVAL DISPLAY

11.3 COMCLR

TEST IF LESS (SEND NOT COMPLETE)
NOTAVAL IF OVER (CHANNEL NOT AV~ILBLE)
CMLISTl (CLEAR THE COMLIST)
CMLISTl,ROUTEl;EMPLN,DATE,HOURS
CMLISTI (RECV COMPLETE)
NOTAVAL IF OVER (CHANNEL UNAVAILABLE)
TESTl IF LESS (RECV NOT COMPLETE)

(STORE DATA)

CYCLE (GET MORE DATA)
"CHANNEL UNAVAILABLE"

The COMCLR instruction is used to clear the status of the
specified cODmunications list <cmlst>. The instruction has the
follovving format:

< label> COlViCLH <cmlst>

where: <label> is an execution label.
<cmlst> is a variable with the CO~LST data declaration.

Progra~ming Considerations:

<label> is optional.

<cmlst> must be a variable with the CO~LST data delaration.

If the actual status of the <cmlist> is 'pending' or 'in
pro c e s s', and a me s sa 0 e i s be i n 9 t ran s fer r ed, the In e s sag e
being transferred is truncated.

If a <cmlst> appears in a SEND or RECV statement, it may not
appear in another such statement without first appearing in an
intervening COMCLR statement.

The <cmlst> status is set to I clear' when this instruction is
executed.

Example:

ll-f) DAT.~8US CO~'1PI LER

5
"I03"
"lIS"

CLIST
ROUTEI
ROUTE2
t'1SG

COi'1LST
INIT
INIT
It..J IT "PLEASE NOTIFY S;'1PLOYEES OF l'1EETING 'rODAY"

TEST

NEXT

11.4 COMTST

COMCLR
SEND
COMTST
GOTO
GOTO

COMCLH

SEND

CLIST
CLIST, HOUTE 1 i !'1SG
CLIST
TEST IF LESS
TEST IF OVEH

CLIST

C LIS T , R 0 UTE 2 ; i'1 SG

(CLEAR COI'1LIST)
(SEI\]D IVlESSAGE)
(SEN 0 C 0 :~1 P LET E ?)
(HETRY SSND)
(RECV PORT NOT
READY.)
(SEN 0 CO 1'1 ? LET S)
(CLEAR THE CO~LIST
FOR HEUSE)
(NEXT SEND
OPEHATION)

The CO~TST instruction is used to access the status
information stored in the cOJnmunications list <c;~lst>. The CO'VlTST
instruction has the following format:

< 1 abel> COIVlTST <cr-:11st>

where: <label> is an execution lahel.
<cmlst> is a label with the COMLST data declaration.

Prog ram!ning Considerations:

<label> is optional.

<cmlst> must be a label with the COMLST data declaration.

After the COMTST instruction is executed, the flags are set as
fo 11 ows :

EQUAL - Communication conpleted successfully.

OVER - 'Channel unavailable'. For internal COL1:11unicAtions
(com m un i cat ion s bet \-le e n po r t s) t his r.1 e a n s t hat the
port specified to receiv2 the data is not confiqured

CHAP'f ER 11. COIVl:VlUN Ie AT IONS T;\} P0T/ OUT PUT 11-7

into the system. For external communications
(MULTILINK) this means that either the external
communications was not configured or was not
available.

LESS - 'Communications pending' or 'in process'. This means
that none of the variables specified in the SEND or
RECV instructions should be modified before a
subsequent COMTST instruction yields an EQUAL
condition signifying that the process is complete.

If all three of the above conditions (LESS, OVER, EQUAL) are
false, the <cmlst> variable is said to be 'clear' which means
that it is free to be used in a SEND or RECV statement.

Exampl e:

Ci"lLIST
ROUTE
VI
V2

WAIT

NXTJ'1SG

11.5 COMWAIT

COMLST
INIT
INIT
DIM

COMCLR
SEND
COiVlTST
GOTO

5
"lOS"
"THIS IS YOUR !VlESSAGE"
50

CiVlLIST
CMLIST,ROUTEiVl,V2
CMLIST
WA rr IF OVER

(GET STATUS OF CMLIST)
(DESTINATION PORT NOT
READY TO RECV)
(PROCEED WITH NEXT
MESSAGE)

The COMWAIT instruction is used to suspend program execution
at a DATASHARE port. Execution is suspended until either a SEND
or a RECV instruction (see sections 11.1 and 11.2) indicates I/O
completion. This instruction has the follovling format:

<label> COMWAIT

where: <label> is an execution label (see section 2.) .

Programming Considerations:

11-8 DATABUS COMPILER

<label> is optional.

If no SEND or RECV instructions have initiated communication,
the-COJYiWAIT instruction is treated like a "No OPeration" (NOP)
instruction. Execution continues with the next instruction,
as if the COMWAIT instruction had not been included in the
prog ram.

If any communications (' pending' or 'in process') are active
when the COMWAIT instruction is executed, execution of the
program is suspended. That is, program execution does not
continue with the next instruction until a signal to continue
is received. This suspension of progran execution imposes
very little overhead on a DATASHARE system.

If any active communications has a completed status, COMWAIT
acts as a "No OPeration ll (NaP). If no communications process
has a comleted status and one or ~ore communications process
has a pending or in-process status, COMWAIT suspends execution
until one of the pending or in-process communications
processes changes to complete status. This suspension of
progra~ execution imposes very little overhead on a DATASHARE
system. To prevent the COMWAIT from acting as a Nap, all
communications processes that have completed and are no longer
useful should be cleared using the COMCLR instruction before
the CO~WAIT is executed.

T e n~ ina t ion 0 fan yon e 0 f the c 0 1~1 m un i cat ion pro c e sse s
indicates to the COMWAIT instruction that it should resume
execution. This allows the programmer to avoid putting the
CO!~lTST (see section 11.4) within a tight loop to check for
termination of a communication task. Such tight loops impose
considerable overhead on a DATASHARE system.

Since any com~unication process nay cause execution to resume,
a series of CO~TST instructions ~ust he used to rletermine
which process terminated. This series of tests i:nposes much
less overhead on the system than the tight loop 171ethod
descrihed above.

CHAPTER 11. COIv1!VlUN ICATIONS I~P~'T/OUTPUT 11-9

Example:

A
t3
AROU'l"'E
BROUTE
AVAR
BVAR

V.JAIT

ACOIY1P

BCO!\1P

COl\1LST
COiVILST
INIT
INIT
INIT
INIT
SEND
SEND
C o JVHv A IT
COiVlTST

·GOTO
COIV}TST
GOTO

COI'1CLR

(Modify

SEND
GO'fO
COMCLR

(Modify

SEND
GO'fO

3
5
I1EOO"
II EOO"
IISTRING1"
IISTRING2 11

A,AROUTEiAVAR
B,BROUTEi BVAR

A
ACOMP IF EQUAL
B
8COlV1P IF EQUAL

A

AVAR)

1\, ,l\ROUTE i.l\ Vl\R
~vAIT

B

BVAR)

B,BHOUTEiBVAR
WAIT

11.6 DIAL

The DIAL instruction is used to cause the Central Station to
d i a 1 aRe mot e S 1 a v e . T his ins t r u c t ion 1:1 a y h a v eon e 0 f t 11 e
following general formats:

where:

1)
2)

<label>
<label>

DIA.L
DIAL

<svar>
<slit>

<label>
< sv a r>
< sl i t>

is an execution label.
is a character string variable.
is a character string literal.

Programming consideratons:

<label> is optional.

The string variable or literal contains the nu~~er to be

11-10 Di\'I'ABUS COl'vlPI LER

dialed. This string may consist only of the following
components.

a) The digits 0-9.

b) An "*" which causes a five (5) second pause in the dial
sequence.

c) A tI_tI whic:h causes no action to be taken by the
interpreter but may be used to improve readability.

DIALing is performed by a DATASHARE foreground task.
Background operations for the dialing user are suspended until
communication is established or a time-out occurs.

The wait before a time-out is signaled varies. If DATASHARE
is configured to run asynchronous communications, time-out is
approximately 180 seconds (3 minutes). If configured to run
synchronous communications, the time is dependent upon the
Automatic Calling Unit's time-out adjustment. In either case,
a call is attempted eight times before a time-out is reported
to the user prograr~l.

If communications are established, the EQUAL flag is set.

If a time-out occurs (no answer) the OVER flag is set.

It is invalid to execute a DIAL instruction if communications
are already established. The LESS flag is set if this is
a t tempted.

If the string variable or string literal used to specify the
phone number is null, the EOS flag is set.

11.7 POLL

The POLL instruction is used to improve throughput when
handling pollable terminals.

Under interpreters without POLL, pollable terminals, (if ever
supported), would have to be handled in the following manner:

CHAPTER 11. COMMUNICATIONS I~PUT/OUTPUT 11-11

ANSWER
ACK
POLL

DH"l
INIT
KEYIN
CMATCH
GOTO
GOTO

1
<== Positive acknowledgement
EOFF,+,*T,<polseq>,ANSWER;
ACK TO ANSWER
TIMEOUT IF EOS
POLL IF NOT EQUAL

Where <polseq> is a terminal-dependent polling sequence.

The above code works with a light system load, say only one
port active. However, as the system load grows heavier (i.e.
several ports begin running), the interpreter begins to thrash,
spending a great deal of its time swapping and changing back~round
users because most of the time a negative acknowledgement is sent
back by the polled terminal (i.e. a "nothing happening response").
A positive acknowledgement ~eans the terminal is ready for
communication with the central processor; for instance, the
operator has hit some type of transaction key. To avoid this
overhead, the POLL instruction basically moves the above logic out
of the user's DATABUS code, and moves it to the interpreter's
code. This instruction has the following general format.

<label> POLL <list controls>,<adr>,<var>;<list controls>,<varlist>

where <label> is an execution label.
<adr> is a string variable containing the

terminal address or addresses.
<var> is a string variable for temporary use by

the interpreter during POLL verb
execution.

<list controls> is a list of polling options. The list
controls allowed are: *OP, *EP, *NP,

<varlist>
*T<n>:<m>, and *+.
is a· list of character and numeric string
variables.

Programming considerations

*+ is the POLL-continuous option which indicates that the
interpreter should ignore the time out condition on a terminal
and proceed polling the next terminal. This is useful for a
port with multi-dropped terminals if one of the terminals is
inactive (powered dOvln, for exaniple).

*OP requests ODD parity generation on each outgoing byte.

*EP requests EVEN parity generation on each outgoing byte.

11-12 DATABUS COMPILER

*NP requests NO parity generation on outgoing bytes.

*OP, *8P, and *NP are ~utually exclusive.
three may be specified.

Only one of the

*T<n>:<m> is the time out and NAK count definition. Here <n>
is exprsssed in tens of milliseconds and can range from 0 to
255. This is the maximum time to wait for the first character
of the response, after the transmission of the last character
of the polling sequence variable, before signalling a time
out. <m> is the number of retries with a "NAK" response that
are accepted before the poll com8and is terminated. <m> may
range from 0 to 255. 0 indicates that polling should continue
indefinitely until a non-NAK response is received.

If *T<n>:<m> is not specified, a default time out value
equivalent to a 10 second wait is used along with an infinite
NAK count.

The following conditions most often cause a time out.

1) Incorrect terminal address is used.
2) Incorrect polling sequence is used.
3) Terminal is inactive.
4) Wrong I/O cable is used.
5) Malfunction of the terminal itself.

<varlist> is a list of character string or numeric string
variables to accomodate the response to the POLL.

Upon norillal exit from the POLL, the EQUAL flag is set.
NAK count expired, the 8QUAL flag is false.

The EQUAL flag is cleared if the USRRX or USRTX routines
indicate an error.

If the

The 80S flag is set if the poll sequence returned by USRPOL is
too long to fit into the temporary storage variable, or is of
zero length.

If a ti~e out occurs, the LESS flag is set.

It is possible for both an error to occur (EQUAL flaC)
cleared), and a time out -to occur (LESS flag set) on the same
POLL instruction.

Consult the appropriate interpreter user's guide for a
description of the routines used to handle P0LLin0.

CHAP'rER 11. COMMUNICA~IONS INP0T/OUTPUT 11-13

Examples of addresses «adr)'s):

TT151 INI'r 002
Iv'lIN ICI INIT "A"
TT151M INIT 002,003,004,005

Examples of <var)'s:

POLLSEQ DI~'V1 2
MCISEQ DIIV1 3

Examples of complete instructions:

POLL
POLL

*TIOO:0,TT151,POLLSEQ;ANS
MINICI,MCISEQ;A,B,C,D

Example of timing controls:

POLL *TIO:O,MINICI,MCISEQ;<list)

In this example, if no response from a polled terminal is
received for 100 milliseconds, the time out condition is set true
(LESS flag).

11-14 DATABUS COMPILER

11.7.1 Process Control steps for POLL

The process control steps for the POLL instruction are:

(1) Get the address variable and storage variable.

(2) Pass the address of the address list to USRPOL.

(3) Transmit the polling sequence to the terminal.

(3) If the polling sequence is of legal length
Then trans!uit the polling sequence to USRPOL
Else i) set the 80S flag

ii) Go to step (9)

(4) t~ait for a response from the terminal.

(5) If an amount of time (specified by *T(n):<m») has elapsed
without any response.

Then time out occured,
If the POLL continuous option (*+) was specified

Then Go to step (2)
Slse i) Set LESS flag true (time out)

ii) Go to step (9)
Else

(G) Pass the received byte(s) to USRPOLRX until COMPLETE or ERROR
is reported.

(7) If a negative acknowledgement is reported by USRPOLRX
Then
I f the N,~ ~< co un t (a ssp e c i fie d by * T < n> : < m » has not bee n
exha usted

Else

Then
Else i)

i i)

Go to step (2)
Clear the EQUAL flag
Go to step (9)

(8) Pas s the by t ere t urn e d fro 1:\ U R S 2:) L 1\ X to US rU\ X • l? u t the by t e
or bytes returned from USRRX into the first byte or byt2S of
the first variable in the list.

Sub seq u e n t b Y t e s, i £ any, are pa sse d to US: { ~~ X , 0 n eat a tim e .
The byte or bytes returned from USRHX are stored into items in
the list in a \.Jay similar to KEYIN.

CHAPTE:H 11. COMMUNICATIONS I~PUT/OUTP0T II-1S

(9) Return to the background user program.

Note: It is the user's responsibility to check the response,
to make sure it is what was expected. It is also the user's
responsibiliy to manage the address list. (The formpointer and
length pointer may be used for this purpose) •

Exampl e:

ACK
NAK
ADR

EQU
EQU
EQU

006
025
002

•.•.••• Polling variables •••..••

TTADR
POLSEQ
ANS

INIT
DIM
DIM

,~DR

2
1

....•.• Polling program .•.••••••

positive acknowledgement
Negative acknowledgement
Address of teller terminal

Address list
Polling sequence storage area
Poll response

POLL
GOTO
GOTO
Cl'1ATCH
GOTO

TTADR,POLSEQ;*TIO:O,ANS
USERROR IF EOS
T IJV1EOUT IF LESS
ACK rro ANS
GARBAGE IF NOT EQUAL

..•.. Request acknowledged •..•.

GARBAGE

USERROR

TII'1EOUT

11-16 DATABUS COMPILER

Example of Multi-dropped terminals:

TTADRS
POLSEQ
ANS

002,003,004
2
I

'rE Rfv1 I NA L

INIT
DIM
DIrYl
INIT 000

Polling Program ..•.•..•

POLL TTADRS,POLSEQ;*+,ANS

Request acknowledged

TTADRS TO TERMINAL
II a II 'ro TERI"l INA L

3 terminals

CMOVE
OR
CONSOLE "REQUEST FROM ",TERMINAL

Process for this terminal

On this example the POLL-continuous option (*+) is used to
continue polling even if a time out occurs on one of the
terminals.

"OR" is used to convert the binary teller terminal address,
pointed to by the formpointer in TTADRS, to an ASCII character in
order to display it on the console.

CHAP'rER 11. COMMUNICATIONS INPUT/OUTPUT 11-17

CHAPTER 12. DISK INPUT/OUTPUT

These instructions make use of the Datapoint DOS file
structure while reading fror.1 and writing to the disk. For more
details about this structure, see the DOS User's Guide and the
Systems Guide of the appropriate DOS. Basically, the DOS file
structure is as follows.

The smallest unit of storage on the disk is the sector. All
disk I/O hard\.Jare operations affect entire sectors, never--a­
partial sector. Each sector is capable of saving up to 251 bytes
o fin for 11 a t ion (t her ear e act u a 11 y 2 5 f) by t e s per sec to r, but 5
bytes are reserved for use by DOS).

In most cases, the information to be saved does not fit
within one sector. To handle such information, sectors are
arranged into groups called files.

The DOS file structure is made up of files arranged so that
they can be easTr y -reTeEenced by names assoc ia ted wi th them. The
name associated with a file is usually selected by the user.

A good analogy is to think of the DOS file structure as
fa 11 0 ws :

file structure
file
sec to r

file cabi~et
= folder in the cabinet

sheet of paper in the folder

This analogy is used later in the discussion of disk I/O.

~ote: the disk structures on the remote station disks
(diskettes) and the central station disks are identical from the
prograil1i,ler f s poi:1t of view. The only difference depends on
whether the file was declared using RFILE or RIFILE, rather than
FILE, IFILE, or AFIL8. If it was declared using RFILE or RIFILE,
the file accessed is on a remote station disk (diskette). If it
was declared using FILE, IFILE, or AFIL8, the file accessed is on
a central station disk.

CHAPTSR 12. 0151< INPUT/OUTPUT 12-1

12.1 File Structure

When a group of sectors is organized into a file, some
infor~ation about the location of those sectors must be kept ~y
DOS and the DATABUS interpreter.

DATABUS keeps its information about each ·file in the user's
data area. The file declaration statements (see Chapter 5) are
used to reserve space in the user's data area for this
information.

The information kept by DATABUS is described below.

The drive number of the disk drive on which the file is found.

A pointer to the physical location of the file.

The followin~ pointers which describe the current position
'wit.hin the file.

a. The ~_~£~.~~l2.~r~~~E' whi.::h points to the sector currently
being referenced. A record nunber of 0 indicates the
first sector within the file.

b. The character pointer, which points to the user data byte
curreI1tlybelng-referenced within the sector. The first
user data byte of the sector is indicated by the character
pointer ~eing equal to 1.

A counter used to keep track of the number of spaces when
using space compression (for more details on space
compression, see section 12.1.2).

Two additional pointers are included for use with index
sequential files only. Th2se are:

a . A po i n t e r tot h e log i cal r e cor d 1 a s t ref ere n c e d by us i n 9
the i nd ex f i 1 e .

b. A pointer to the next key in sequence. (All of the keys
in the index file are sorted using their ASCII values.)

1 2 - 2 D A T,~ 8 USC 01'v1 PI L E H

12.1.1 Record Structures

There are several ways of organizing records on the disk
sectors. All of them provide different methods of accessing the
information saved on the disk. The types of records that can be
used are physical records, logical records, indexed sequential
records and associative indexed records.

12.1.1.1 Physical Records

Programming Considerations:

A physical record corresponds to exactly one sector on the
disk.

A physical record starts with the first user data character of
the sector.

An 003 (octal) character terminates a physical record.

There are at most 250 data characters in a physical record.
(Note: when considering physical records, the logical
end-of-record character, 015, is treated as a data character.)

Analogy:

file structure
file
sec to r
physical record

= file cabinet
= folder in the cabinet
= sheet of paper in the folder
= page of text on the sheet of paper

12.1.1.2 Logical Records

Programming Considerations:

A logical record is terminated with an 015 (octal) character.

A logical record starts with the character immediately
following the 015 of a previous logical record.

More than one logical record may be saved on a physical
record.

Logical records may extend across physical record boundaries.

There is no restriction upon the length of a logical record.

CHAPTER 12. DISK INPUT/OUTPUT 12-3

A single logical record may extend across many physical
records. (It is a good idea to keep logical recor~s
reasonably short to make them easy to deal with.)

Analogy:

file structure
file
sec to r
physical record
logical record

Example: Four

= file cabinet
= folder in the cabinet
= sheet of paper in the folder
= page of text on the sheet of paper

paragraph of text on the sheet of paper

logical records could appear on the disk as
follows:

asc asc asc asc asc asc oct asc asc asc ase asc ase oct asc
L I N E 1 015 L I N E 2 015 L

asc ase asc asc asc oct asc asc asc asc asc asc oct oct
I N E 3 015 L I N E 4 015 003

oct
003

Note that the first physical record contains two logical records
as well as the first letter of a third. The third logical record
starts in the first physical record and continues into the second
physical record. At this point the fourth logical record starts
and continues to the end of the physical record.

Example: If the same four logical r eco rds are written to the disk
one per physical record, they appear as follows:

asc asc asc asc asc asc oct oct
L I N E 1 015 003

asc a sc asc asc asc asc oct oct
L I N E 2 015 003

asc asc asc asc asc asc oct oct
L I t\J E 3 015 003

asc asc asc asc a sc asc oct oct
L I N E 4 015 003

Nate that it took twice as much disk space to save the same amount
of inforination in this example thao in the previous example. It
is sometil~es desirable to -)ive up this disk space to provide
faster and easier access to a logical record.

12-4 DATA8US CO'\lPILER

12.1.1.3 Indexed Sequential Records

An indexed sequential record is a logical record that is
named. This makes it possible to reference a record by simply
specifying the name of the record.

Programming Considerations:

The name that is associated with the logical record is called
a ~ey.

There is no distinction between a data file that is indexed
and one that is not.

All of the keys, associated with the records in a data file,
are saved in a separate file~ This file, that contains the
keys for another data file, is called an inde~ file.

There may be more than one index sequential or associative
index file associated with a single data file.

Index sequential and associative index files can reference the
same data file.

Older DATABUS interpreters require that all index files have
the DOS file extension of /ISI, newer ones accept any
DOS-legal extension.

The index file contains:

a. The name and extension of the data file which it indexes.

b. The keys.

c. The pointers necessary to associate the keys with the
logical records.

The DOS INDEX command is the only way that index files can be
created. For more details on INDEX, see the DOS User's Guide.

All keys put into the index file by the DOS I~DEX utility do
not have any trailing spaces. (Unnecessary spaces cause
larger index files and longer access times.)

The index structure is an n-ary tree, where:

a. n is determined by the number of keys that fit within a
sector.

CHAPTER 12. DISK INPUT/OUTPUT 12-5

b. Each node of the tree is contained within one disk sector.

c. The tree has enough levels so that the uppermost node fits
within one disk sector.

d. The lowest level of the tree is a linked list. The keys
in the linked list are arranged sequentially according to
their ASCII values.

e. Depending on the length and path of this linked list, the
time spent in traversing this list can lead to
considerable overhead. The INDEX utility may be used to
reorganize this list to minimize the time spent in
traversing it. USE THE I~DEX UTILITY FREQUENTLY!

Analogy:

file structure
file
i nd ex fi Ie

sec to r
physical record
logical record

file cabinet
folder in the cabinet
folder that contains the table of contents of
another folder
sheet of paper in the folder
page of text on the sheet of paper
paragraph of text on the sheet of paper

12-6 DATAB US COIV} PI LER

The following diagram demonstrates the wa y in which the keys are
assoc ia ted with the logical records. The diagram assumes that
only 3 keys f°t-1 __ per sec to r and that the data fi 1 e was indexed on
column S. The *'s indicate pointers. Sector boundaries are
indicated by

Index fi 1 e Data fi 1 e
======~================= ==============~========================

A
* asc asc asc asc asc asc asc oct
* L I N E A 015
B
* asc asc asc asc asc asc asc oct
* L I N E B 015
C
* asc asc asc asc asc asc asc oct
* L I N E C 015

D
* asc asc asc asc asc asc asc oct
* L I N E D 015

A E
* * asc asc asc asc asc asc asc oct
D * L I N E E 015
* F

A G * asc asc asc asc asc asc asc oct
* * * L I N E F 015
J
* J G

* * * asc asc asc asc asc asc asc oct

* * * L I N E G 015

* H

* * asc asc asc asc asc asc asc oct

* * L I N E H 015
I

* asc asc asc asc asc asc asc oct

* L I N E I 015

J

* asc asc asc asc asc asc asc oct oct

* L I N E J 015 003
*

*
*
*
*

CHAPTER 12. DISK INPUT/OUTPUT 12-7

12.1.1.4 Associative Indexed Records

An associative indexed record is a logical record that can be
accessed by specifying a generic key. The user specifies pieces
of certain parts of the record to be used as ~ mask when
retrieving a record. It is possible to access these records by
specifying multiple keys, partial keys, or a combination thereof.

programming Considerations:

There is no distinction between a data file that is
associatively indexed and one that is not.

All of the key information, associated with the records in a
data f i 1 e, are s a v ed ina s epa rat e f i 1 e . T his f i 1 e, t h ~ t
contains the key information for another data file, is called
an associative index file.

There may be more than one index sequential or associative
index file associated with a sin,]le data file.

Index sequential anrl associative index files can reference the
same data file.

The associative index file contains:

a. The name and extension of the data file which it indexes.

b. The key information.

c. The pointers necessary to associate the keys with the
logical records.

The AIMDEX command is the only way that ~ssociative index
files can be created. For L10re details on AI"'lDEX, see the
addendum to the DOS. 2.6 user's guide.

if many additions have been done to the associativ2 inde'<
file, access time may increase. Th~ AIMOEX utility ~ay ~e
used to reorgani ze the assoc ia tiv'2 index fi 1(= to mi:1hrri ze the
time spent in accessing it.

12-8 DATABL1S COl\lPI LER

Analogy:

file structure
file
associative index file

sector
physical record
logical record

12.1.2 Space Compression

= file cabinet
= folder in the cabinet
= folder that contains several

cross-references of another folder
= sheet of paper in the folder
= page of text on the sheet of paper

paragraph of text on the sheet of paper

In some data files large numbers of contiguous spaces appear.
The disk space used by such files may be compressed by replacing
the contiguous spaces with a count of the spaces. The following
programs all produce space compressed disk files: EDIT, SORT,
REFORMAT, DATABUS compilers (print files), several terminal
emulators and all of the DATABUS interpreters.

Space compression is done by counting the contiguous spaces,
then replacing them with the following: the all (octal) control
character followed by a byte which contains the count of the
spaces. This number is never less than 2 (since it is wastef~l to
expand one or zero spaces into two characters) and may be as large
as 255. Any program that encounters the all on the disk then
looks at the next byte to get the number of spaces that should
appear at that point in the record. The all never appears as the
last character in a physical record. This prevents the 003 (end
of physical record) from being used as a count of 3 spaces.

Trailing spaces are never written to space compressed records
unless the number of spaces exceeds the limits of the counter used
by the interpreter (see section 12.1) to count spaces during space
compr.ession. In this case, a trailing space compression indicator
is written to the record. Typically, this only occurs when there
are more than 255 trailing spaces in the record. Normally, the
015 (end of logical record) character is written immediately after
the last non-blank character in the record.

If the record is to be modified in place, using space
compression is discouraged. If the number of spaces is changed by
the modification, the position of any non-blank characters may be
shifted within the physical r~cord. This could easily cause a
FORMAT trap on subsequent reads from that record.

Example: In the following, a logical record is shown first
without space compression, and then with space

CHAPTER 12. DISK INPUT/OUTPUT 12-9

compression.

asc asc asc asc asc asc asc asc asc asc asc asc asc asc oct oct
1 2 5 X 015 003

asc asc asc oct oct asc oct oct asc oct oct
1 2 011 002 5 all 005 X 015 003

Programr.1ing Considerations:

The DATA8US interpreters make certain assumptions about the
use of space compression. These assumptions are based on the
file operations requested and the access technique used. The
default conditions are as follows:

1) Space compression is set on when:

a) the file is initially opened (using OPEN (see sectioD
12.3.1) or PHEPARE (see section 13.2))"

b) a physically random, indexed sequential or associative
indexed access read operation is requested.

c) the *+ list control is encountered in a write operation.

2) St?ace compression is set off when:

a) a physically random, indexed sequential or associative
indexed access write operation is requested.

b) the *- list control is encounted in a write operation.

Therefore, space co~pression is on at the beginning of a
physically sequential WRITE that occurs as the next operation
after the file has been OPENed, or a read operation of any kind
has been performed. Space compression is off at the beginning of
any physically random, indexed sequential or associative indexed
access write operation, and the status of space compression is not
changed by any other operations. If the desired space compression
node for a write operation is not obtained by the above rules, the
*+ and *- controls have to be used to get the desired ~ode. Note
that these controls can erase the memory of previously accumulated
spaces, if used after the beginning of the statement list while
space compression has been on.

12-10 DATABUS COiV1PI L8R

12.1.3 End of File Mark

The END-OF-FILF mark (EOF) is a special type of physical
record which is written to the disk as the last physical record of
a file.

The end of file mark always starts at the beginning of a
physical record and looks like the following physical record:

oct oct oct oct oct oct oct
000 000 000 000 000 000 003

The rest of the characters in the sector are of no significance.

All records between the beginning of the file and the EOF
must be in acceptable physical record format. Any record that is
not in this format causes an 10 or FORMAT trap when accessed. An
empty file is acceptable; that is, any file which has an EOF as
its first physical record is acceptable.

12.2 Accessing Methods

All disk I/O in DATABUS is based upon establishing a position
within a file. Once this position is established, all accesses
are performed by moving this position within the file. This
position within the file is completely described by the record
number and character pointer described in section 12.1.

Bumping the position in a file refers to bumping the
character-pointer-~-wit-~ne exception. If the character pointer
is bumped to the physical end-of-record character (003), the
following actions are taken:

a. the record number is bumped by one, and

b. the character pointer is set to one.

12.2.1 Physical Record Accessing

Physical record accessing .is the fastest and simplest method
of accessing information within a file. Physical record accessing
may be used to randomly access information on the disk.

Programming Considerations:

Each physical record in a file is assigned a positive integer

CHAPTER 12. DISK INPUT/OUTPUT 12-11

number. 0 is assigned to the first physical record in the
file, 1 to the second, 2 to the thi rd, and so on to the last
record in the file.

To access a record, the programmer must specify the record
number of the physical record he wishes to use.

The position in the file is modified to be:

a. The record number of the file is set to the number
supplied by the programmer.

b. The character pointer is set to one.

Once the position has been established, the access continues
as if it had been a logical record access (see section
12.2.2) •

12.2.2 Logical Record Accessing

Thi sis the access laethod used to read and wr i te log ical
records. This access method allows only sequential processing of
disk records. If rando8 access to logical records is desired, the
slower indexed sequential or associative indexed accessing must be
used.

Pro,) rauming Considerations:

The position within the file is not reset initially.

The position within the file is bumped by one for every
character accessed on the disk.

Bumping the position to the physical end-of-record character
is described in section 12.2.

tAfhen the lo']ical end-af-record character (015) is
read/written, the following actions are taken:

a. record processing is terminated.

b. the position within the file is bumped past the 015.

12-12 DATABUS COMPILER

12.2.3 Indexed Sequential Record Accessing

This method is used to reference logical records randomly or
sequentially by key value. While this method provides greater
flexibility in random accessing, it is also slower. If the time
spent in accessing the disk is critical, a means of using physical
record accessing should be used.

Programming Considerations:

There are five basic indexed operations:

a. Read the named logical record.

b. Read the next record in sequence. (The keys are sorted in
ascending ASCII collating sequence.)

c. Add the named logical record.

d. Delete the named logical record.

e. Modify the named logical record.

Since there can be any number of indexes into one data file,
adding (or deleting) a record involves adding (or deleting)
the key into (or from) all of the indexes.

In addition to the position within the data file, DATABUS
maintains another position within the index file. Once this
position has been established, it is used to access the record
whose key is next in the ASCII collating sequence.

To use the indexed facilites of the DATABUS language, the file
must be indexed in ascending ASCII collating sequence.

The position within the data file is established by findin~
the key in the index file and using the pointers saved there
as the position. This does not apply to additions, since the
key is not in the index file yet.

The position within the data file for additions is always at
the end of the data file. For more details, see section 12.2.

Once the position within the data file has been established,
the access continues as if it had been a logical record access
(see section 12.2.2).

An indexed sequential access causes the following number of

CHAPTER 12. DISK INPUT/OUTPUT 12-13

disk sectors to be read.

a. One sector for each level of the index except the lowest
level.

b. At least one sector for the lowest level of the index.
The number of disk reads at this levei can become very
large, if the index file has not been re-built recently.
This is particularly true if a large number of keys have
been inserted into the index. USE THE INDEX UTILITY
FREQUENTLY!

c. Whatever disk functions are required to perform the actual
read or write operation.

The linked list at the lowest level of the index has a very
long and disorganized path when a data base is initialized
using additions. This leads to considerable overhead. If a
data base must be initialized using additions, using the INDEX
utility to clean up the index is particularly important.

Both physical record and logical record accesses can be made
to indexed sequential files.

12.2.4 Associative Indexed Record Accessing

This method is used to reference logical records randomly or
to obtain all records meeting a certain set of criteria. While
this method provides much greater flexibility in random accessing,
it is also slower. If the time spent in accessing the disk is
critical, a means of using physical record accessing should be
used.

ProgranMing Considerations:

There are five basic associative indexed operations:

a. Read a l00ical record meeting generic key criteria.

b. Read another logical record meeting the same generic key
criteria as given on a previous rearl.

c. Add a logical record.

d. Delete a logical record.

e. Modify a logical record.

12-14 DATABUS COMPILER

•

Since there can be any number of associative indexes into one
data file, adding a record involves adding the key information
into all of the associative indexes.

The position within the data file for additions is always at
the end of the data file. For more details, see section 12.2.

Once the position within the data file has been established,
the access continues as if it had been a logical record access
(see section 12.2.2).

Additions to the associative index file generally cause
accesses to slow down. This can lead to considerable
overhead. If a data base must be initialized using additions,
using the AIMDEX utility to clean up the associative index is
particularly important.

Both physical record and logical record accesses can be made
to associative indexed files.

12.3 General Instructions (Disk I/O)

There are many aspects of some of the Disk I/O instructions
which are common to all of the acessing methods. The following
sections discuss these common aspects of several of the
instructions.

12.3.1 OPEN (General)

The OPEN instruction is used to initialize a logical file for
use by a DATABUS program. The use of logical files allows a
DATABUS label to be associated with a file on the disk. One of
the following general formats may be used:

1) <label> OPEN <file>,<slit>
2) <label> OPEN <file>,<svar>
3) <label> OPEN <ifile>,<slit>
4) <label> OPEN <ifile>,<svar>
5) <label> OPEN <rfile>,<slit>
6) <label> OPEN <rfile> ,<svar>
7) <label> OPEN <rifile> ,<slit>
8) <label> OPEN -<ri file> ,<svar>
9) <label> OPEN <afile> ,<slit>

10) <label> OPEN <afile>,<svar>
11) <label> OPEN <afile>,<slit>,<char>
12) <label> OPEN <afile>,<svar>,<char>

DISK INPUT/OUTPUT 12-15

13) <label> OPEN <afile>,<slit>,<svarl>
14) <label> OPEN <afile>,<svar>,<svarl>

where: <label> is an execution label (see section 2 .) •
< sl it> is a literal of the form "<string>" (see section

2.5) .
<svar> is a string variable (see section 4 . 2) •
<char> is a one character str ing (see section 2.5) .
<svarl> is a string variable (see section 4 . 2) •
< f i 1 e> is a file declared using the FILE declaration

(see section 5 • 1) .
<ifile> is a fi 1 e declared using the IFILF.: declaration

(see section 5.2) .
<rfile> is a fi 1 e declared using the RFILE declaration

(see section 5.3) .
<rifile> is a fi 1 e declared using the RIFILE declaration

(see section 5.4) .
<afile> is a fi 1 e declared using the AFILE declaration

(see section 5.5) .

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

The value of <svar> is unchanged by the execution of this
instruction.

The string literal, when using format (1), (3), (5), (7), (9),
(11) or (13) i specifies the DOS name of the disk file to be
associated with the label.

The string variable, when using format (2), (4), ('1), (8),
(10), (12) or (14) i specifies the DOS name of the disk file to
be associated with the label.

If the extension is not furnished by the string literal or
string variable, the following extensions are assumed:

a) ITXT for those files opened using formats (1), (2), (5)
and (6).

b) IISI for those files opened using formats (3), (4), (7)
and (8).

c) lAID for those files opened using formats (9), (10), (11),
(12), (13) and (14).

12-15 DATABUS COMPILER

One of the following rules is used to build the DOS name from
the strin3 in the string variable or string literal:

a) The c h a r act e r sus e d s tar t wit h the for m po in ted c h a r act e r
and continue until eight characters have been obtained, or

b) If the logical end of string is reached before eight
characters have been obtained, the remainder of the eight
characters are assumed to be blanks.

c) N e \.v e r i n t e r pre t e r sallow t he f i 1 e to be spec i f i ed us i n1
the DOS standard <filename>/<extension>:<drive ~ or volid>
form.

The character used to specify the drive number is obtained
from the string variable or string literal using one of the
following rules:

a) If (a) above is used to obtain the name, the character
after the eighth character is used as the drive
specification, or

b) If (b) above is used to obtain the name, the character
following the one pointed to by the logical length pointer
is used as the drive specification, or

c) If the last ~haracter obtained from the strin1 is
physically the last character in the string, the drive
numbe~ is unspecified.

d) Newer interpreters allow the drive to be specified in DOS
standard form, :Dn, :DRn, or by volume name.

If the character used as the drive specification is not an
ASCII digit (0 through 9), the drive number is unspecified.

If the drive number is unspecified, all drives are searched
for the file (starting with drive 0 and en<iing with the
~i')hest numbered drive that is on-line).

If the character used as the drive specification is an A,SCII
di1it, only the drive with that number is searched to find the
file.

If the specified drive is off-line, an I/O error occurs.

~vhen usinJ fo[[~ats (11), (12), (13) or (14); the <char>, or
the for rn po i:1 ted c h a r act e r 0 f < s va r 1 >, s p e c i fie s the II don't

CH1\PTER 12. DISK I~PUT/OUTPUT 12-17

care character" to use when specifying keys for the l\IM file.

Any number of logical files may be open at one time.

If the specified logical file is already open, the equivalent
of a CLOSE instruction is executed before proceeding with the
OPEN. .

An attempt to OPEN a file that does not exist results in an
I/O error.

Executing the OPEN instruction initializes the logical file
without changing the disk file in any way.

Space co~pression is turned on by the execution of an OPEN
instruction.

Assume that the following statements were included in the
program previous to the statements in all of the following
examples:

Example:

FILE FILE
FILENA!'1E INIT apAYROLLll"

SETLPTH
RESET
OPEN

F I LEN A:'1 E TO 9
F I LENAr1E TO 4
F I L E , F I L E J\1 A 1'1 E

SET THE LOGICAL LE!\JGTH POINTER TO 9
SET THE FORMPOINTER TO 4

this OPEN instruction tries to find and initialize a file naf~ed
ROLLll/TXT on any drive on which it can be found.

Exarnpl e:

SETLPTH
RESET
OPEN

F' I L E: N A IV} ETa 8
fILE NA!'1E TO 4
F I L E , F I LEN A 1'1 E

SST THE LO G I c: ALL ENG T HPJ IN 'r 8 H TO 8
SC:T THE FORI'1POI'\ITER TO 4

this OPEN instruction tries to find and initialize a file nallled
ROLLI/TXT from drive 1.

12-18 DATABUS COI'"1PI LER

Example:

SETLPTR
RESET
OPEN

FILENAME TO 8
FILE NA!'1E TO 1
FILE, FILE NAj'<'[E

SET THE LOGICAL LENGTH POINTER TO
SET THE FORMPOINTER TO 1

this OPEN instruction tries to find and initialize a file named
PAYROLLl/TXT from drive 1.

Example:

SETLPTR
RESET
OPEN

FILENAME TO 9
FILE NAIV1E TO 1
FILE,FILENAME

SET THE LOGICAL L8NGTH POINTER TO
SET THE FORMPOINTER TO I

this OPEN instruction tries to find and initialize a file named
PAYROLLl/TXT from drive 1.

Example:

SETLPTR
RESET
OPEN

FILENAME TO 7
FILENAME TO 1
FILE,FILENAME

SET THE LOGICAL LENGTH POINTER TO
SET THE FORMPOINTER TO 1

this OPEN instruction tries to find and initialize a file named
PAYROLL/TXT from drive 1.

Example:

SETLPTR
RESET
OPEN

F I LEN A 1'<'[E TO 3
FI LENAi'<'[E TO 1
FILE,FILENAIVlE

SET THE LOGICAL LENGTH POINTER TO
SET THE FORMPOINTER TO 1

this OPEN instruction tries to find and initialize a file named
PAY/TXT from any drive on which it can be found.

12.3.2 CLOSE (General)

The CLOSE instruction is used to return any unused, newly
allocated disk space to DOS for use by another file. CLOSE may
have one of the following general formats:

I) <label> CLOSE <f·ile>
2) <label> CLOSE <ifile>
3) <label> CLOSE <rfile>
4) <label> CLOSE <rifile>
5) <label> CLOSE <afile>

CHAPTER 12. DISK INPUT/OUTPUT 12-19

where: <label> is an execution label (see section 2 .) •
<file> is a fi Ie declared using the FILE declaration

(see section 5.1) .
<ifile> is a fi 1 e declared using the IFILE declaration

(see section 5.2) •
<rfile> is a fi Ie declared using the RFILE declaration

(see section 5.3) •
<rifile> is a fi 1 e declared using the RIFILE declaration

(see section 5.4) .
<afile> is a fi 1 e declared using the AFILE declaration

(see section 5.5) •

Programming Considerations:

<label> is optional.

The equivalent of a CLOSE instruction is automatically
performed when one opens a logical file that is already open.

Execution of the CLOSE instruction does not write an
end-of-file mark to the file.

Closing a file from another port could affect the file being
used at your port.

Execution of the CHAIN instruction (see section 6.8), causes
all logical files that are open to be automatically closed
without space deallocation being performed. Note that this
means files cannot be held open across program chains.

A potential problem exists when the CLOSE instruction is
performed on files that are in use by more than one port.
Th~re is a discussion of this problem in Appendix D.

Note that newer interpreters allow CLOSEing of shared files
under certain circumstances, without the possibility of loss
of da ta .

Consult the user's guide of the interpreter you are using for
further information on aspects relating to CLOSE.

12-20 DATABUS COIVlPILER

12.3.3 READ (General)

The READ instruction is used to get information saved on the
disk into variables in a DATABUS program. This instruction may
have one of the following general formats:

1)
2)
3)
4)
5)
I))

7)
8)

\vhere:

<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>

<label>
< nvar>
< sva r>
<slist>
< f i 1 e>

<ifile>

<rfile>

<rifile>

<afile>

<list>

READ
READ
READ
READ
READ
REz\D
READ
REl\D

<file>,<nvar>i<list>
<ifile>,<nvar>i<list>
<ifi1e>,<svar>;<list>
<rfile>,<nvar>;<list>
<rifile>,<nvar>i<list>
<rifile>,<svar>i<list>
<afile>,<nvar>;<list>
<afile>,<slist>;<list>

is an execution label (see section 2.).
i san u [11 e ric v a ria b 1 e (s e e sec t ion 4. I) •
is a strinCl variable (see section 4.2).
is a list of string varinbles.
is a file defined using the FILE declaration (see
section 5.1).
is a file defined using the IFILE declaration
(see section 5.2).
is a file defined usinq the Rf1LP. declaration
(see section 5.3).
is a file defined usi!1CJ the Rlr.'ILF. nec1aration
(see section 5.4).
i s a f i 1 e d e fin e d us i n 0 the r\I-' I Lt~ r1 eel a rat ion
(see section 5.5).
is a list of items rieserihing the inf~rmatian to
be read from the dis k •

Programming Considerations:

<label> is optional.

Forl:1ats (1) " (2), (4), (5) and (7) are usen to read froJ:1 the
disk using one of the follo~inq access methods:

a) If the value of <nvar> is -lor -2, a logical record is
read.

b) If the value of <nvar> is any 0ther ne0ative number, the
results are indeterminate.

c) If the value of <nvar> > 0 or
rean.

0, a physic:a1 record is

CH1\PT2R 12. 01 SKI 1\J PUT / OUT PUT 12-21

Formats (3) and (5) are used to read indexed sequential
records from the disk.

Format (8) is used to read associative indexed records frol:l
the disk.

The items in the list must be separated by' commas.

Space decompression is always in effect when doing READs.

If all of the items of the list have been used before the
logical end of the record is reached, one of the following
actions take place:

a) If a semicolon is placed at the end of the list, the
position within the file is left unchanged after the last
item in the list is processed. This allows subsequent I/O
operations to pick up at the position where the READ
finished. Typically, a logical (sequential) READ
instruction is used for this purpose.

b) If a semicolon is not placed at the end of the list, the
position within the file is bumped past the next logical
end-of-record character (015). This allows subsequent I/O
operations to pick up at the start of the next logical
record.

<list> may be made up of any combination of the following
i terns:

a) <svar>, a character string variable (see section 4.2).

b) <nvar>, a numeric string variable (see section 4.1).

c) *<nvar>, a list control (see section 13.4.1).

d) *<dnum>, a list control (see section 13.4.1).

If an attempt is made to read a record which has never before
been written, the following actions occur:

a) The po sit ion wit h i nth e f i 1 e i sun c han 9 e d .

b) A RANGE trap occurs.

An attempt to read an end-of-file mark (see section 12.1.3)
causes the following actions:

12-22 !)l\TABUS COiVlPILER

a) The OVER flag is set.

b) All numeric string variables in the list are set to zero.

c) All character string variables in the list have:

1. the formpointer set to zero.

2. the logical length pointer set to zero.

3. all of the characters in the variable replaced with
blanks.

d) A semicolon at the end of the READ list has no effect.

e) The position within the file is reset to point to the
end-of-file mark after processing of the READ is complete.
This ~eans that if the OVER condition flag is ignored,
subsequent reads read the same end-of-file mark.

12.3.3.1 Character String Variables (READ)

\t.Jhen a character string variable appears in the list of a
REA Din s t r u c t ion, c 11 a r act e r s are rea d fro 1:1 the dis k and put i n t ~
the variable as described below.

'prog raml:1i:1g Considerations:

Characters are read fron the disk starting at the current
position within the file.

Characters are stored consecutively starting at the physical
beginning of the string variable.

Characters are read and stored unti 1 the physical end of the
character string variable is reached.

The fornpointer is set to one.

The logical length pointer is set to point to the last
physical character in the string.

If the end of the lo(]ical. record is encountered vv'hile fillin]
a character string variable, the followi~g takes place:

a) The logical end-of-record character (015) is not stored il1
the variable.

CHAPT2R 12. 12-23

b) The logical length pointer of the variable is set to point
to the last character stored in the variable.

c) The suffix of the variable is filled with blanks.

These actions are particularly useful when dealing with space
compressed files. The trailing blanks deleted by using space
compressioh are restored in this way. (b) above makes it
possible to take advantage of the *+ control with DISPLAY and
PRINTing of logical records.

If the logical end of record is encountered before all of the
character string variables in the list are filled, the
following actions are taken:

a) The forrnpointers of all of the re~aining character string
variables are set to zero.

b) The logical length pointers of all of the remaining
character string variables are set to zero.

c) All of the remaining character string variables are filled
with blanks.

12.3.3.2 Numeric String Variables (READ)

When a numeric string variable appears in the list of a READ
instruction, characters are read from the disk and put into the
variable as described below.

Programming Considerations:

Characters are read from the disk starting at the current
position within the file.

Characters are stored consecutively starting at the physical
beginning of the numeric variable.

Characters are read and stored ·until the physical end of the
numeric string variable is reached.

Any non-leading spaces read are converted to zeros (e.~.

s3s2sl, where s stands for a space, is read as s30201).

ASCII digits are the only characters accepted with the
following exceptions. A FORMAT trap occurs if the following
rules are not satisfied.

12-24 DATABUS COMPILER

a) Blanks are always accepted.

b) A minus sign is accepted only when it is the first
non-blank character to be read.

c) A minus sign is accepted only when there is room for at
least one character to the left of the decimal point.

d) A period is accepted only if the format of the variable
calls for a decimal point.

e) Only one period is accepted.

f) The number of characters that is accepted before a period
is required equals the number of places preceding the
dec i mal po i :I tin the form a t 0 f the va ria b Ie.

g) The number of characters that is accepted after the period
equals the number of places following the decimal point in
the for IJ a t 0 f the v a ria b 1 e .

h) The last character to be accepted may be a
"minus-overpunch" character (see section 12.3.4.3.4). If
it is, the character to the left of the most significant
digit contains the sign. If there is already a sign, or
if there is no room for the sign, a FORMAT trap occurs.

A FORMAT trap also occurs if the variable is dimensioned to
one and the character is a negative sign.

If a FORMAT trap occurs during a read, the position within the
file is reset to what it was before the READ was attempted.

If the end of the logical record is encountered while filling
a numeric string variable, the rest of the variable is padded
with zeros. 'Note that if one of these locations within the
variable is'the decimal point, a FORMAT trap occurs.

If the logical end of record is encountered before all of the
numeric string variables in the list are filled, all of the
remaining variables are set to zero.

CHAPTER 12. DISK INPUT/OUTPUT 12-25

12.3.4 WRITE (General)

The WRITE instruction is used to put the information to be
saved onto the disk. This instruction may have one of the
following general formats:

1)
2)
3)
4)
5)
6)
7)
8)

""here:

<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>

<label>
< nva r>

is
is

\'iHI'rE
WRITE
WRITE
WRITE
tvRITE
WRITE
WRI'rE
WRITE

<file>,<nvar>i<list)
<ifile>,<nvar>i<list>
<ifile>,<svar>i<list>
<rfile>,<nvar>i<list>
<rifile),<nvar>i<list>
<rifile>,<svar>;<list>
<afile>,<nvar>;<list>
<afile>;<list>

an execution label (see section
a numeric variable (see section

2 .) •
4 . 1) .

<svar) is a character string variable (see section 4 • 2) •
< f i 1 e) is a file de fined using the FILE declaration (see

section 5 . 1) .
<ifile> is a fi 1 e defined using the IFILE declaration

(see section 5 • 2) •
<rfile> is a fi 1 e defined using the RFILE declaration

(see section 5.3) •
<rifile) is a fi 1 e defined using the RIFILE declaration

(see section 5.4) •
<afile> is a fi Ie defined using the AFILF: declaration

(see section 5.5) •
<list> is a list of items describing the in form at ion

be written to the disk.

Programming Considerations:

<label> is optional.

Formats (1), (2), (4), (5) and (7) are used to write to the
disk using one of the following access methods:

a) If the value of <nvar> is -lor -2, a logical record is
written.

to

b) If the value of <nvar) is any other negative number, the
results are indeterminate.

c) IF the value of <nvar> > 0 or
written.

0, a physical record is

For in a t s ('3) and (') are use d tow r i t e i n d ex e d seq u e n t i a 1

12-26 OP~TABUS COMPILER

records to the disk.

Format (8) is used to write associative indexed records to the
disk.

The items in the list must be separated by commas.

<list> may be made up of any combination of the following
items:

a) <svar>, a character string variable (see section 4.2).

b) <nvar>, a numeric string variable (see section 4.1).

c) <occ>, an octal control character (see section 2.5).

d) <list control>, used to control the manner in which the
list is processed.

e) <slit>, a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

f) <nlit>, a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1) •

12.3.4.1 Character String Variables (WRITE)

When a character string variable appears in the list of a
WRITE instruction, the characters saved in the variable are
written on the disk. Unless modified by a list control, the
manner in which the characters are put on the disk is described
below.

Programming Con~iderations:

The characters in the variable are written starting with the
first physical character and continuing through the logical
length.

Blanks are written for any character positions that exist
between the logical length pointer and the physical end of the
variable.

The first character written is written at the current position
within the file.

CHAPTER 12. DISK INPUT/OUTPUT 12-27

The position within the file is bumped by 1 for each character
written. For more details on bumping the position within a
file, see section 12.2.

The character pointer is left positioned after the last
character written.

The control characters (formpointer, logical length pointer
and 0203) are not written to the disk.

12.3.4.2 Numeric String Variables (WRITE)

When a numeric string variable appears in the list of a WRITE
instruction, the characters saved in the variable are written on
the disk. Unless modified by a list control, the manner in which
the characters are put on the disk is described below.

Programming Considerations:

The characters in the variable are written starting with the
first physical character and continuing through the physical
end of the variable.

, \
The first character written is written at the current poslL~0n
w.i thin the file.

The position within the file is bumped by I for each character
w r itt en. For In 0 red eta i Iso n bum ping the po sit ion wit h ina
file, see section 12.2.

The character pointer is left positioned after the last
character written.

The control characters (0200 and 0203) are not written to the
disk.

12.3.4.3 List Controls (WRITE)

The list controls are provided to allow more flexibility in
the way records are formatted. They may be used to control the
manner in which variables are written to the disk. All list
controls begin with an asterisk, followed by the specification of
the control function.

12-28 DATABUS COMPILER

12.3.4.3.1 *+ (Space Compression On)

The *+ control may be used to enable space compression. For
more details about space compression, see section 12.1.2.

12.3.4.3.2 *- (Space Compression Off)

The *- control may be used to disable space compression. For
more details about space compression, see section 12.1.2.

12.3.4.3.3 *ZF (Zero Fill)

This control is used to cause numeric variables to be written
with zero filIon the left.

prograQming Considerations:

This control affects only the first variable following the *ZF
in the WRITE list.

Zeros are written in place of any leading blanks in the
var iable.

If the variable contains a leading minus sign, the minus sign
is written in the leftmost position.

The *ZF control, when used in conju~ction with the *MP control
(see section 12.3.4.3.4), causes the minus sign to be replaced
with a zero.

12.3.4.3.4 *MP (Minus Overpunch)

The control *MP converts a numeric variable to a
II 1:1 i 11 us - 0 v e r pun c h II for:1 at.

Programming Considerations:

This control affects only the first variable following the
*1"1P.

T his con t r 0 1 a f f e c t son 1 y. n um e ric va r i n b 1 est hat ha v e a
negative value.

The minus sign is over punched over the rightmost digit.

CHAPTER 12. DISK INPUT/OU'rpUT 12-29

The rightmost digit written to the disk is as follaws:

a) If the rightmost digit is a zero, it is converted to a
right bracket "}".

b) One through nine convert to "J" through "RII. "1" becomes
"J", 1/21/ becomes 11K", 1/3" becomes IILI/, and so on.

12.3.4.4 Octal Control Characters

Octal control characters are written to the disk exactly as
they appear in the WRITE list.

Programming Considerations:

The control character is written at the current position
within the file.

The position withi~ the file is bumped hy 1. For ~ore details
on bumping the position within a file, see section 12.2.

C aut ion s h 0 u 1 rl bee x e r cis e d \vh e nus 5. n 9 0 c tal con t r 0 1
characters. So:.1e of the control characters (000, 003, all,
015 and 032) have special meaning to the READ i~struction and
their use can cause confusion.

12.3.4.5 Literals

When a literal «slit> or <nlit» appears in the list of a
WRITE instruction, that literal is written to the disk.

programDing Considerations:

,\11 of the characters between the dou!Jle quotes are written as
they appear in the literal.

The first character written is written at the current position
within the file.

The po sit ion \0/ i t h i ~ the f i 1 e i s b u r.1 p e d h Y 1 for e a c h c h a rae t e r
written. Far Dare details on bumping the position within a
file, see section 12.2.

The c h a r act e r po i n t e r i s 1 eft po sit ion e d aft e r the 1 as t
character written.

12-30 DAT.l\8US COi>1PI LER

CHAPTER 13. PHYSICAL RECORD ACCESSING

The following sections discuss the aspects of the Disk I/O
instructions that apply to accessing physical records only.

13.1 OPEN (Physical)

The following sections discuss the aspects of the OPEN
instruction that apply to accessing physical records only. For a
general discussion of the OPEN instruction, see section 12.3.1.
One of the following general formats may be used:

l}
2)
3)
4)

where:

<label>
<label>
<label>
<label>

OPEN
OPEN
OPEN
OPEN

<file>,<slit>
< file> ,<svar>
<rfile>,<slit>
<rfile> ,<svar>

<label>
< sl i t>

<svar>
< f i Ie>

<rfile>

is an execution label (see section 2.).
is a literal of the form "<string>" (see section
2 • 5) •
is a string variable (see section 4.2).
is a file declared using the FILE declaration (see
section 5.1).
is a file declared using the RFILE declaration
(see section 5.3).

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

See section 12.3.1.

The position within the file is initialized to:

a. Record number = O.

b. Character pointer = 1.

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-1

13.2 PREPARE (PREP) (Physical)

The PREPARE instruction is used to create and initialize a
logical file for use by a DATABUS program. One of the following
general formats may be used:

1)
2)
3)
4)

where:

<label>
<label>
<label>
<label>

PREPARE
PREPARE
PREPARE
PREPARE

<file>,<slit>
<file>,<svar>
<rfile>,<slit>
<rfile>,<svar>

<label>
< sl it>

<svar>
< fil e>

<rfile>

is an execution label (see section 2.).
is a literal of the form "<string>" (see section
2.5) •
is a str ing var iable (see section 4.2).
is a file declared using the FILE declaration (see
section 5.1).
is a file declared using the RFILE declaration
(see section 5.3) •

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

The value of <svar> is unchanged by the execution of this
instruction.

The string literal, when using format (1) or (3); specifies
the DOS name of the disk file to be associated with the label.

The string variable, vlhen using format (2) or (4); specifies
the DOS name of the disk file to be associated with the label.

PREPARE is identical to the OPEN instruction (see section
13.1) with the following exceptions:

a. PREPARE cannot be used with indexed or associative indexed
files.

b. If the file cannot be found, instead of giving an I/O
error, a new file is created.

c. If a new file is to be created, it is put on the disk
drive decribed below.

1. If the drive number is specified in the string

13-2 DATABUS COMPILER

variable or literal, it is put on that drive.

2. If the drive number is unspecified, it is put on the
lowest available drive (typically drive 0).

d. If the file to be prepared already exists and is write
protected, an I/O error occurs.

If the user plans to deal with a very large file, he should
write a dummy record into the largest record number he plans
to use. This allows DOS to allocate all of the sectors for
that file in the most optimal ~anner possible. Physical
record accessing becomes that much faster.

Assume that the following statements were included in the
program previous to the statements in all of the following
examples:

FILE FILE
FILENAME I;\JIT "PAYHOLL11"

Also, assume that the specified files need to be created and do
not already exist.

Example:

SETLPTH
HESET
PREP

FILE NA.t1t1E TO 9
FILENAME TO 4
FILE, FI LENA!'1E

SET THE LOGICAL L8NGTH POINTER TO (
SET THE FORMPOINTER TO 4

this PREP instruction creates a file named ROLLll/TXT on the
lowest available drive (typically drive 0).

Example:

SETLPTR
RESET
PREP

F I LEN A IV! E TO 8
FILE NAIV!E TO 4
F I L E , F'I L E NA1V! E

SET THE LOGICAL LENG'rH PCJINTER TO ~

SET THE FORMPOINTER TO 4

this PREP instruction creates a file named ROLLI/TXT on drive 1.

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-3

:lmple:

SE'rLPTR
RESET
PREP

FILE NAJ"lE 'fO 8
FILENAME TO 1
FILE,FILENAJY1E

SET THE LOGICAL LENGTH POINTER TO 8
SET THE FORMPOINTER ~O 1

.s PREP instruction creates a file named PAYROLLI!TXT on drive

lm pl e :

SETLPTR
RESET
PREP

FILENAME TO 9
FI LENAi'vtE TO 1
F I L E , F I LENA .IVj E

SET THE LOGICAL LENGTH POI~TER TO 9
SET THE FORM POINTER TQ 1

.s PREP instruction creates a file named PAYROLLl/TXT on drive

lI~pl e:

SETLPTR
RESET
PREP

FILE NAJ'''lE TO 7
1"1 LENA1VlE TO 1
F I L F.: , F I L t: N A !V} E

SET THE LOGICAL LENGTH POI~TER TO 7
SET THE FORMPOINTER TO 1

s PREP instruction creates a file named PAYROLL/TXT an drive 1.

Imple:

SETLPTH
RESET
PREP

F I LEN A!"l E TO 3
FILENA!VlE TO 1
fILE, FILENl\IVlE

SET THE LOGI C AL LF.:NG'f' H PO I i\JT ER TO 3
SET THE FOHMPOINTER TO 1

s PREP instruction creates a file named PAY/TXT on the lowest
tilable drive (typically drive 0).

3 CLOSE (Physical)

This instruction is used ta return any unused, newly
.ocated disk space to DOS for use by another file. CLOSE is
;0 used along with PREPARE to delete a file froD the disk file
·ucture. The following sections discuss the aspects of the
)SE instruction that apply to accessing physical records only.

a general discussion of the CLOSE instruction, see section
3 . 2 . C LOS E may h a v eon e 0 f the folIo \v i n g g e n era I f 0 (T:1 a t s :

l)
2)

13-4

<label>
<label>

CLOSE
CLOSE

DATABUS COMPILER

<file>
<rfile>

where: is an execution label (see section 2.). <label>
< f i 1 e> is a file declared using the FILE declaration (see

section 5.1).
<rfile> is a file declared using the RFILE declaration

(see section 5.3).

Programming Considerations:

<label> is optional.

See section 12.3.2.

CLOSE when used in conjunction with the PREPARE instruction
(see section 13.2) is used to delete a file from the DOS file
system. If the PREPARE instruction is im~erliately followed by
a CLOSE instruction, the file described in the PREPARE
instruction is deleted from the DOS file system.

13.4 READ (Physical)

The READ instruction is used to get information saved on the
disk into variables in a DATABUS program. The following sections
discuss the aspects of the READ instruction that apply to
accessing physical records only. For a general discussion of the
READ instruction, see section 12.3.3. This instruction may have
one of the following general formats:

1)
2)

where:

<label>
<label>

<label> is
<nvar> is

READ
READ

<file>,<nvar>;<list>
<rfile>,<nvar>;<list>

an execution label (see section
a numeric variable (see section

2.) •
4 .1) •

< fi 1 e> is a file defined using the FILE declaration
section 5. I) •

<rfile> is a fi Ie defined using the RFILE declaration
sec t ion 5.3) .

<list> is a list of items describing the information
be read from the disk (see section 12.3.3) •

Programming Considerations:

<label> is optional.

See section 12.3.3.

(see

(see

to

The first action taken by the READ instruction, is to reset

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-5

the position within the file as follows:

a) The record number is set to the value given in <nvar>.
(All digits after the decimal point are ignored.)

b) The character pointer is set to 1.

Since reading a physical record always resets the position
within the file before the READ continues, it is unnecessary
to continue scanning until the next logical record is reached.
This extra scanning for the 015 (end-of-record) is not only
unnecessary but uses extra processor time. Putting a
semi-colon at the end of the read list eliminates this wasted
processing.

Example:

FDECL
RN

FILE
FORM
OPEN
READ

II 2"
FDECL, II DATA"
FDECL,RNjA,8,C

This READ instruction could be used to read from file
DATA/TXT the values of variables A, 8 and C. The position within
file DATA/TXT is first established at record number 2 with a
character pointer of 1. Variables A, 8 and C are then read. Any
remaining characters in the logical record are ignored and the
position within the file is left at the beginning of the next
logical record.

Example:

FDECL
RN

FILE
FOR!V1
OPEN
READ

II 2.6"
FDECL , "DATA"
FDECL,RN;A,8,C;

This READ instruction is similar to the one in the above
example except that the position within the file is left at the
character after the last one read into the variable C.

Exampl e:

13-6

FDECL
REWIND

FILE
FORI'Vl
OPEN
READ

DATABUS COMPILER

" 0 II

FDECL,IIDAT.Z\"
FDECL, REWIND;;

This READ instruction establishes the position within the
file exactly as if an OPEN or PREP instruction had just been
executed. The first action is to set the position within the file
to record 0 with the character pointer equal to 1. Because of the
second semi-colon as the list terminator, the position is not
bumped to the next logical record on termination of the READ.

<list> may be made up of any combination of the following
items:

a) <svar>, a character string variable (see section
12.3.3.1) •

b) <nvar>, a numeric string variable (see section 12.3.3.2).

c) <tab control>, a list control \.;hich is used to tab to the
position within the record where the data is to b~
obta ined.

13.4.1 Tab Control

Tabbing is a feature which can eliminate unwanted data
transfers to and from the disk controller buffer. It also allows
the programmer to save considerable space in his data area. The
tab control may have one of the following general formats:

1) *<nvar>
2) *<dnum>

where: <nvar> is a numeric variable (see section 4.1).
<dnum> is a decimal number.

When fo rrna t (1) is used, the val ue of the numer ic var iabl e
specifies the tab position.

~vhen format (2) is used, the decimal number specifies the tab
po sit ion.

The character poi~ter is set to the specified tab position.

Tabbing can be used only when the logical records do not cross
physical record boundaries. This condition can usually be
enforced through the use of the DOS REFORMAT utility and
careful use of DATl\!3US 'vRITt: instructions.

An attempt to tab past the physical end-af-record results in
an I/O error.

CHAPTER 13. PHYSICAL RECOI-lD ACCESSI!\JG 13-7

Using tabbing may cause the READ instruction to fail to
recognize an EOF mark. The EOF mark can be recognized only
when READ is positioned to character position 1, followed by
an attempt to read a variable.

Tab positioning on physical accesses is al~ays calculated from
the first character position in the current physical record.

Tabbing should not be used with space compressed records.

Example:

FDECL
RN
'fAB

FILE
FORM
FOH1"l
OPEN
READ

II 311
"25"
FDECL, tlDATA"
FDECL,RN;A,*100,B,*TAB,C,*50,D;

This READ instruction sets the record number to 3 and the
character pointer to 1. Variable A is then read. Next, the
character pointer is set to 100 and variable B is read. The
c 11 a r act e r po in t e r i s the n s 2 t to 2 5 and va ria b 1 e Cis rea d •
Finally, the character pointer is set to 50 and variable D is
read. The character poi~ter is left poi~ting after the last
character read into variable 0, since the semicolon appears at the
end of the list.

13.5 WRITE (Physical)

The WRI'rS instruction is used to put the information to be
saved onto the disk. The following sections discuss the aspects
of the WRITE instruction that apply to accessing physical records
only. For a general discussion of the WRITE instruction, see
s 2 c t ion 1 2. 3 • 4 • Th i sin s t r u c t ion In a y h a v eon e 0 f the folIo 'it¥ i n g
general forraats:

1)
2)
3)
4)

where:

13-8

<label>
<label>
<label>
<label>

l:'JHITS
~'l/R ITt:
~'JRI'r8

WRITE

<file>,<nvar>i<list>
<file>,<nvar>i<list>;
<rfile>,<nvar>i<list>
<rfile>,<nvar>i<list>i

<label>
< nvar>
< f i 1 e>

<rfile>

is an execution label (see section 2.).
i san um e ric v a ria b 1 e (s e e sec t ion 4. l) .
is a file defined using the FILE declaration (see
section 5.1).
is a file defined using the RFILE declaration (see
section 5.3) •

DATABUS COMPILER

<list> is a list of ite~s describing the information to
be written to the disk.

Programming Considerations:

<label> is optional.

See section 12.3.4.

The first action taken by the WRITE instruction, is to reset
the position within the file as follows:

a) The record number is set to the value given in <nvar>.
(All digits after the decimal point are ignored.)

b) The c h a r act e r po in t e r iss e t to 1.

processing for the WRITE instruction is terminated as follows:

a) Formats (1) and (3) cause:

1) an 015 (logical end of record character) to be
written,

2) the position within the file to be bumped by 1, and

3) an 0 03 (ph y sic ale nd 0 f r e cord c h a r act e r) to be
written.

4) The c h a r act e r po in t e r i s 1 eft po in tin 9 to the 0 03
character.

b) For mat s (2) and (4) c a use the po sit ion wit h i nth e f i 1 e to
be unchanged after processing the last item in the list.
This operation is useful for writing the first part of a
record where more of the record is written later.
Typically, a logical (sequential) WRITE instruction is
used for this purpose.

Tab positioning is not allowed when using WRITE instructions.
If tabbing is required while writing to the disk, the \",1RITAB
instruction should be used.

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-9

13.6 WRITAB (Physical)

The WRITAB instruction allows tabbing while modifying a
physical record. WRITAB allows characters to be written into any
character position of a physical record without disturbing the
rest of the record. This instruction may have one of the
following general formats:

1)
2)

where:

<label>
<label>

<label> is
<nvar> is

WRITAB
WRITAB

<file>,<nvar>;<list>
<rfile>,<nvar>;<list>

an execution label (see section
a numeric variable (see section

2.) •
4.1) •

<file> is a fi 1 e defined using the FILE declaration
section 5.1) •

<rfile> is a fi Ie defined using the RFILE declaration
section 5.3) .

<list> is a list of items describing the info rmation
be wr i tten to the disk.

Progra~ming Considerations:

<label> is optional.

(see

(see

to

Ex ecut i ng a WRITAB inst r uc ti 0 n is equ i val en t to ex ecut i ng one
of the following WRITE instructions, except that tabbing is
allowed.

< label>
<label>

WRITE
WRITE

<file),<nvar>;<list>;
<rfile>,<nvar);<list>;

A separate mnemonic is required for tabbed writes because it
is necessary to do an additional disk read when tabbing is to
be used.

If an attempt is made to read a record which has never been
written, the following actions occur.

a) The posi tion wi thin the fi Ie is unchanged.

b) A RANGE trap occurs.

WRI'rA8 allows tab controls to be used as i terns in the list.

13-10 DATABUS COMPILER

13.6.1 Tab Control

Tabbing is a feature which can eliminate unwanted data
transfers to and from the disk controller buffer. It also allows
the programmer to save considerable space in his data area. The
tab control may have one of the following general formats:

1) *<nvar>
2) *<dnum>

where: <nvar> is a numeric variable (see section 4.1).
<dnurn> is a decimal number.

~ .. .jhen format (1) is used, the value of the numeric variable
specifies the tab position.

When format (2) is used, the decimal number specifies the tab
position.

The c h a r act e r po i n t e r iss e t to the s pe c i fie d ta b po sit ion.

Tabbing can be used only when the logical records do not cross
physical record boundaries. This condition can usually be
enforced through the use of the DOS REFORMAT utility and
careful use of DATABUS WRITE instructions.

An attempt to tab past the physical end-of-record results in
an I/O error.
Caution: While tabbing beyond the end of record is not
allowed, any other list item could cause the logical record to
extend across a physical record boundary.

Tab positioning on physical accesses is always calculated from
the first character position i~ the current physical record.

If the record number is bumped while processing a list item
o the r t han a tab con t r 0 1, sub seq u en t ta b s po sit ion in tot h e
new physical record, not the original one.

Tabbing should not be used \-.7i th space compressed records.

CHAPTER 13. PHYSICAL RECORD ACCESS INS 13-11

Example:

FDECL
RN
TAB

FILE
FORM
FORM
OPEN
WRI'fAB

II 3"
"25"
FDECL, "DATA II
FDECL, RN i A,*100,B,*TAB,C,*50,Di

The WRITAB instruction in this example sets the record number
to 3 and the character pointer to 1. Variable A is then written
over those characters already in the record. Next, the character
pointer is set to 100 and variable Bis written. The character
pointer is then set to 25 and variable C is written. Finally, the
character pointer is set to 50 and variable 0 is written. The
character pointer is left pointing after the last character
written from variable 0, since there is always an i~plied
semicolon at the end of the list. The characters already in the
disk record at those positions that were not overwritten, remain
unchang ed .

13.7 WEOF (Physical)

The WEOF instruction causes a DOS end of file mark (see
section 12.1.3) to be written to a file. This instruction may
have one of the following general formats:

1)
2)

where:

<label>
<label>

\tVE OF
WEOF

< f i 1 e> , < nv a r >
<rfile>,<nvar>

<label>
< nvar>
< f i 1 e>

<rfile>

is an execution label (see section 2.).
is a numer ic var iabl e (see section 4.1) .
is a file defined using the FILE declaration (see
section 5.1) •
is a file defined using the RFIL~ declaration (see
section 5.3).

Programming Considerations:

<label> is optional.

An EOF mark is written to the record specified in the numeric
variable. (All digits after the decill1al point are ignored.)

The position within the file is left at the beginning of the
EOF that was written.

13-12 DATA8 US COlVI PI LER

13.8 FPOSIT (Physical)

The FPOSIT instruction allows a DATABUS program access to the
cur r en t po sit i 0 ri 0 f a f i 1 e • It can be used too b s e r vet he cur r en t
position, or to save it and restore it later. The instruction may
have one of the following general formats:

where:

1)
2)

<label>
< f i 1 e>

<rfile>

<nvarl>
<nvar2>

<label>
<label>

FPOSIT
FPOSIT

<file>,<nvarl>,<nvar2>
<rfile>,<nvarl>,<nvar2>

is an execution label (see section 2.) •
is a file defined using the FILE declaration (see
section 5.l).
is a file defined using the RFILE declaration (see
sec t ion 5. 3) •
is a numeric string variable.
is a numeric string variable.

Programming considerations:

<label> is optional.

rrhe current record number of the file (see section 12.1) is
placed into <nvarl>.

The current chararacter pointer of the file (see section 12.1)
is placed into <nvar2>.

The current position within the file is defined to be the
record pointer and character pointer of the next record to be
sequentially accessed.

The current position within the file is not changed by this
instruction.

The file may be repositioned to the current position later in
the DATABUS program by executing one of the following
instructions.

READ <file>,<nvarl>;*<nvar2>; or
READ <rfile>,<nvarl>; *<nvar2>;

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-13

CHAPTER 14. LOGICAL RECORD ACCESSING

The following sections discuss the aspects of the Disk I/O
instructions that apply to accessing logical records only.

14.1 OPEN (Logical)

All of the aspects of the OPEN instruction for use with
logical record accessing are identical to those used with physical
record accessing (see section 13.1).

14.2 PREPARE (Logical)

All of the aspects of the PREPARE instruction for use with
logical record accessing are identical to those used with physical
record accessing (see section 13.2).

14.3 CLOSE (Logical)

All of the aspects of the CLOSE instruction for use with
logical record accessing are identical to those used with physical
record accessing (see section 13.3).

14.4 READ (Logical)

The READ instruction is used to get information saved on the
disk into variables in a DATA8US program. The following sections
discuss the aspects of the READ instruction that 3pply to
accessing logical records only. For a general discussion of the
READ instruction, see section 13.3.3. This instruction may have
one of the following general formats:

1)
2)

<label> READ
<label> READ

<file>,<nvar>;<list>
<rfile>,<nvar>;<list>

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<file> is a file defined using the FILS declaration (see

section 5.1).
<rfile> is a file defined using the RFILE declaration (see

sec t ion 5. 3) •

CHAP'rER 14. LOGICAL RECORD ACCESSI~G 14-1

<list> is a list of items describing the information to
be read from the disk (see section 12.3.3).

Programming Considerations:

<label> is optional.

<nvar> must have a negative value.

See section 12.3.3.

Reading starts at the current position within the file. That
is, the READ starts where any previous disk I/O operation on
the file left the position.

<list> may be made up of any combination of the following
i terns:

a) <svar>, a character string variable (see section
12.3.3.1) •

b) <nvar>, a numer ic str ing var iable (see section 12.3.3.2).

c) <tab control>, a list control which is used to tab to the
position within the record where the data is to be
obta ined.

Using the tab controls when reading logical records is
possible but not advisable. Since the tab position is
calculated relative to the start of the physical record and
not the start of the logical record, using a tab control could
tab into a different logical record.

Example:

FDECL
SEQ

FILE
FORM
OPEN
READ

"-I"
FDECL, lI DATA"
FDECL,SEQ;A,B,C

Variables A, S, and Care read"starting at the current
position within the file. Any remaining characters in the logical
record are ignored and the position within the file is left at the
beginning of the next logical record.

14-2 DArr.z\BUS COMPI LER

Example: This program lists DATA/TXT on the screen.

FDECL
SEQ
LINE

LOOP

FILE
FORM
DIM

OPEN

READ
STOP
DISPLAY
GOTO

14.5 WRITE (Logical)

11-1"
80

FDECL, II DATA"

FDECL,SEQiLINE
IF OVER
*R,*Pl:24,*+,LINE
LOOP

The WRITE instruction is used to put the information to be
saved onto the disk. The following sections discuss the aspects
of the WRITE instruction that apply to accessing logical records
only. For a general discussion of the WRITE instruction, see
section 12.3.4. This instruction may have one of the following
general formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

~"RIT8
WRITE
WRITE
WRITE

<file>,<nvar>;<list>
<file>,<nvar>;<list>;
<rfile>,<nvar>i<list>
<rfile>,<nvar>i<list>i

where: <label> is an execution label (see section ~.)

<nvar> is a numeric variable (see section 4.1).
<file> is a file defined using the FILE declaration (see

section 5.1).
<rfile> is a file defined using the RFILE declaration (see

section 5.3).
<list> is a list of items describing the information to

be wr itt en to the dis k •

Programming Considerations:

<label> is optional.

<nvar> must have a negative value.

See section 12.3.4.

Characters are put on the disk starting at the current
position within the file being referenced. The ~.vRITE starts
where any previous disk I/O operation on the file left the

CHAPTER 14. LOGICAL RECORD ACCESSING 14-3

position.

Processing for the WRITE instruction is terminated as follows:

a) Formats (1) and (3) cause:

1) an 015 (logical end of record character) to be
written,

2) th e po sit ion wit hi nth e f i 1 e to be burn pe d by 1, and

3) an 003 (physical end of record character) to be
written.

4) The character pointer is left pointing at the 003'
character.

b) Formats (2) and (4) cause the position within the file to
be unchanged after processing the last item in the list.
This operation is used only for writing the first part of
a record where more of the record is written later.
Typically, a logical (sequential) WRITE instruction is
used for this purpose.

Tab positioning is not allowed when using WRITE instructions.
If tabbing is required while ,wri!ing .~~ .~Q~ di.sk, !~~ ~RI!~~
instruction·should be use~-

14.6 WRITAB (Logical)

Using tab positioning when writing logical records is
possible but not advisable. Since the tab position is calculated
relative to the start of the physical record and not the start of
the logical record, using a tab control could ta~ into a different
log ical record.

The only difference between using WRITAB on logical records
rather than physical records is that the current record number is
used to determine which physical record is modified.

14-4 DATABUS COMPILER

14.7 WEOF (Logical)

The WEOF instruction allows a DOS end of file mark (see
section 12.1.3) to be written to a file. This instruction may
have one of the following general formats:

1)
2)

where:

<label> \1EOF
<label> WEOF

< f i 1 e> , < nva r >
< r f i 1 e> , < nva r >

is an execution label (see section 2.).
is a numer ic var iable (see section 4.1).

<label>
< nvar>
< f i 1 e> is a file defined using the FILE declaration (see

se c t ion 5. l) •
<rfile> is a file defined using the RFILE declaration (see

section 5.3).

programming Considerations:

<label> is optional.

<nvar> must have a negative value.

If the current position within the file is at the beginning of
a physical record, the EOF is written into that record.

If the current position within the file is not at the
beginning of a physical record, the following actions are
taken:

a) A physical end of record character (003) is written at the
current position, and

b) The EOF is written inta the next physical record.

The position within the file is left at the beginning of the
EOF that was written.

14.8 FPOSIT (Logical)

The FPOSIT instruction allows a DATABUS program access to the
current position of a file. All of the aspects of the FPOSIT
instruction for a file for use with logical record accessing are
identical to those used with physical record accessing (see
section 13.8).

CHAPTER 14. LOGICAL RECORD ACCESSING 14-5

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING

The following sections discuss the aspects of the Disk I/O
instructions that apply to accessing indexed sequential records
only.

15.1 OPEN (Indexed Sequential)

The following sections discuss the aspects of the OPEN
inst~uction that apply to accessing indexed sequential records
only. For a general discussion of the OPEN instruction, see
section 12.3.1. One of the following general formats may be used:

1)
2)
3)
4)

where:

<label>
<label>
<label>
<label>

<label>
< sl it>

< sva r>
<ifile>

<rifile>

OPEN
OPEN
OPEN
OPEN

<ifile>,<slit>
<ifile> ,<svar>
<rifile>,<slit>
<rifile>,<svar>

is an execution label (see section 2.) •
is a literal of the form "<string>" (see section
2 • 5) •
is a string variable (see section 4.2).
is a file declared using the IFILE declaration
(see section 5.2).
is a file declared using the RIFILE declaration
(see section 5.4).

Prograoming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

See section 12.3.1.

OPEN initializes both the index file and the data file that
has been indexed.

If the drive number is specifed (see section 12.3.1), both the
index file and the data file must be on the specified drive.

Note that newer interpreters allow drive direction to be used
even if the index file and the data file are on different
drives. The index file must be on the drive specified, if one

CHAPTER 15. INDEXED SEQ:.JEN'rIAL REeOHO ACCESSIT\JG 15-1

is given~ The interpreter first looks for the data file on
the same drive as the index file. If it is not found on this
drive, all drives are searched for the file (starting with
drive 0 and ending with the highest numbered drive that is
on-line). Consult the appropriate interpreter user's guide
for more information.

If the drive number is not specified (see section 12.3.1), the
index file and the data file may be on different drives.

The name of the data file to be opened is contained in the
i nd ex file.

Opening the index file automatically causes the data file to
be opened.

If the data file is indexed by more than one index file, each
index file must .be opened using a different logical fil~.

The position within the data file is initialized to:

a. Record number = O.

b. Character pointer = 1.

The position within the index file is initialized to the first
key in the index.

Assume that the following statements were included in the
program previous to the statements in all of the following
examples:

DECL IFILE

Also, aSSUDe that index files, DATA/lSI and DATA2/ISI, have been
created by indexing the data file, DATA/TXT, using the DOS INDEX
utility as shown below:

INDEX DATA/TXT:DRO,DATA/ISI:DRO;l-S
INDEX DATA/TXT:DRO,DATA2/ISI:DRl;S-lO

Note that DATA/TXT is on drive 0, DAT,l\/ISI is on drive 0 and
DATA2/IS1 is on drive 1.

15-2 DATl\BUS COMPILER

Example:

OPEN DECL, II DATA 0"

This OPEN instruction initializes DATA/lSI and DATA/TXT on drive
o.

Exampl e:

OPEN DECL, II DATA 1"

This OPEN instruction causes an I/O error, since neither DATA/lSI
nor DATA/TXT are on drive 1.

Example:

OPEN DECL, "DATA"

This OPEN instruction initializes DATA/lSI and DATA/TXT on drive
o.

Example:

OPEN DECL, "DATA2 0"

This OPEN instruction causes an I/O error, since DATA2/IS1 is not
on drive o.

Example:

OPEN DECL," DATA2 1"

This OPEN instruction causes an I/O error on older interpreters,
since DATA/TXT is not on drive 1. Note that newer interpreters
open DATA2/IS1 on drive 1 and DATA/TXT on drive o.

Exampl e:

OPEN DECL, II DATA2"

This OPEN instruction initializes DATA2/IS1 on drive 1 and
DATA/TXT on drive O.

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-3

15.2 CLOSE (Indexed Sequential)

This instruction is used to return any unused, newly
allocated disk space to DOS for use by another file. The
following sections discuss the aspects of the CLOSE instruction
that apply to accessing indexed sequential records only. For a
general discussion of the CLOSE instruction, see section 12.3.2.
CLOSE may have one of the following general formats:

1)
2)

<label>
<label>

CLOSE
CLOSE

<ifile>
<rifile>

vvhere: <label> is an execution label (see section
<ifile> is a file decl ar ed using the IFILE

(see section 5.2) .
<rifile> is a fi 1 e declared using the RIFILE

(see sec t ion 5.4) .

Programming Considerations:

<label> is optional.

See section 12.3.2.

2.) .
declaration

declaration

Only the data file is affected by executing the CLOSE
instruction.

The index file is unchanged by the execution of the CLOSE
instruction.

15.3 READ (Indexed Sequential)

The READ instruction is used to get information saved on the
disk into variables in a DATABUS program. The following sections
discuss the aspects of the READ instruction that apply to
accessing indexed sequential records only. For a general
discussion of the READ instruction, see section 12.3.3. This
instruction ~ay have one of the following general formats:

1)
2)
3)
4)

where:

15-4

<label>
<label>
<label>
<label>

<label>
< nva r)
<svar>

is
is
is

READ
RSAD
READ
READ

<ifile>,<nvar>i<list>
<ifile>,<svar>i<list>
<rifile>,<nvar>i<list)
<rifile>,<svar>i<list>

an execution label (see section 2.) .
a numeric variable (see section 4.1).
a stri~g variable (see section 4.2).

DATAB US COiV1 PI LER

<ifile> is a file defined using the IFILE declaration
(see section 5.2).

<rifile> is a file defined using the RIFILE declaration
(see section 5.4).

<list> is a list of items describing the information to
be read from the disk.

Programming Considerations:

<label> is optional.

The following apply when formats (1) and (3) are used:

a) The READ instruction accesses only the data file.

b) The READ is either a physical access (see section 13.4) or
a logical access (see section 14.4).

c) The index file is not used or modified in any way by the
READ.

d) The *<nvar> list control is not allowed in the <list>.

e) The *<dnum> list control is not allowed in the <list>.

The rest of the programming considerations in this section
apply when formats (2) and (4) are used.

The logical string of <svar> specifies the key to be used when
sea r chi ng the i nd ex f i 1 e .

The key is considered to match an item in the index file (an
index i tern is a key in the index file) if one of the following
rules hold true:

a) If both the key and the index item have the same number of
characters, all of the characters must match.

b) If the key has more characters than the index item, then:

1) All of the characters up thr6ugh the length of the
index item must match, and

2) The remaining characters of the key must be blanks.

c) If the key has less characters than the index item, there
is no rna tch.

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-5

If a match is found,

a) The position of the logical record to be accessed is
obtained from the index file. The position within the
data file is then initialized to this value.

b) Once the position within the data file is established, the
READ proceeds precisely as if it were a logical record
access (see section 14.4). (Exception: see the
Programming Consideration below concerning tab
po sit ion i ng .)

c) The position within the index file is initialized to the
next item in sequence in the index file.

If no match is found,

a) The OVER condition flag is set,

b) All of the variables in the list are unchanged, and

c) The position within the index file is left pointing to the
first mismatch in the index file.

If the OVER flag is set after an indexed sequential READ
operation, it indicates that the key specified could not be
found in the index.

The test for the OVER condition shoul~ be made after the READ
statement.

Tab positions when using indexed sequential access are
calculated relative to the beginning of the logical record
instead of relative to the beginning of the physical record.
However, tabbin0 can be used only when logical records do not
cross physical record boundaries. This condition can usually
be enforced through the use of the DOS REFORMAT utility and
careful use of OATABUS \,\!RITE-~ instructions.

If the key is null, the last indexed sequential record that
'v.J a s rea d (b Y aRE ADo r REA 0 K Sin s t r u c t ion) i s r e- rea d \'1 i tho u t
using the index file to access the record. This saves the
time needed to search the ind ex fi 1 e fo r the key. When the
same indexed record needs to be read more than once, this
feature may save considerable tiI'1e.

Using a null key causes an I/O error if there was not a
previous successful read performed using a non-null key.

15-~ DATA8 US COf\lP I LER

15.4 WRITE (Indexed Sequential)

The WRITE instruction is used to put the information to be
saved onto the disk. The following sections discuss the aspects
of the WRITE instruction that apply to accessing indexed
sequential records only. For a general discussion of the WRITE
instruction, see section 12.3.4. This instruction may have one of
the following general formats:

1)
2)
3)
4)
5)
6)
7)
8)

<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>

WRITE
WRITE
WRITE
WRITE
WRI'rE
WRITE
\"lRITE
WRITE

<ifile>,<nvar>i<list>
<ifile>,<nvar>i<list>i
<ifile>,<svar>i<list>
<ifite>,<svar>i<list>i
<rifile>,<nvar>~<list>
<rifile>,<nvar>i<list>i
<rifile>,<svar>i<list>
<rifile>,<svar>i<list>i

where: <label> is an execution label (see section 2.).
< nv a r> is a n umer i c va ria bl e (see sec t ion 4. 1) •
<svar> is a character str ing var iable (see section 4.2) .
<ifile> is a file defined using the IFILE declaration

(see section 5.2) ..
<rifile> is a file defined using the RIFILE declaration

(see section 5.4).
<list> is a list of items describing the information to

be written to the disk.

Programming Considerations:

<label> is optional.

See section 12.3.4.

The following apply when formats (1), (2), (5) and (5) are
used:

a) The WRITE instruction accesses only the data file.

b) The WRITE is either a physical access (see section 13.5)
or a logical access (see section 14.5).

c) The index file is not used or modified in any way by the
VoiR IT E •

The foIl ow i n gap ply wh en for mat s (3), (4), (7) and (8) are
used:

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-7

a) The logical string of <svar> specifies the key to be
inserted into the index file.

b) If the key is null, an I/O error results.

c) If the key already exists in the index- file, an I/O error
results.

d) The search algorithm, used to determine whether the key is
aIr e ad yin t he i nd ex, i sid en tic a 1 to t hat used in the
indexed sequential access READ operation (see section
15.3) .

e) WRITE uses the following procedure:

1) The key is inserted into the index such that the keys
in the index file remain in ASCII collating sequence.

2) The data file is searched for its end-of-file mark.

3) The reco~d is written over the end-of-file mark and
proceeds ~xactly as if it were a physical record write
(see section 13.5) .

4) If format (:,3) or (7) is used, a nevJ end-of-file mark
is written to the next physical record.

5) This implies that for each record inserted into the
data file, at least one physical record is used, no
matter how large or small the record.

Processing for the WRITE instruction is terminated as follows:

a) Formats (1) and ·(5) cause:

1) all of the actions taken when terminating a physical
record WRITE (see section 13.5), or a logical record
\vR IT E (5 e e sec t ion 14. 5) •

b) Formats (3) and (7) cause:

1)

2)

15-8

all of the actions taken when terminating a logical
record WRITE (see sectIon 14.5), plus

the position within the data file to be bumped to the
next physical record, and

DATABUS COMPILER

3) an end-of-file mark to be written.

c) Formats (2), (4), (6) and (8) cause:

1) the position within the file to be unchanged after
processing the last item in the list. This operation
is useful for writing the first part of a record where
more of the record is written later. Typically, a
logical (sequential) WRITE insruction is used for this
purpose.

2) The end-of-file mark is not written. This makes it
the programmer's responsibility to write the
end-of-file mark himself.

3) If the programmer fails to write an end-of-file mark,
the next attempt to insert a record causes a RANGE
trap. This insertion fails because the search for the
end-of-file mark fails.

Timing considerations:

a) Inserting many records causes indexed accesses to become
less random and raore sequential. (Random accessing takes
much less time than sequential accessing.)

b) Inserting many records whose keys are close together in
the collating sequence causes indexed accesses to become
less random. (For example: AAAB is much closer to AAAA
than BBBB.)

c) Indexed accesses start taking significantly longer when
one tenth of the records in an indexed file have been
inserted with indexed sequential WRITE or INSERT
instructions.

d) Generally, use the DOS INDEX utility as often as possible
to insure that indexed accesses are as random as possible.

15.5 WEOF (Indexed Sequential)

The ~EOF instruction allows a DOS end of file mark (see
section 12.1.3) to be written· to a file. This instruction may
have one of the following general formats:

1)
2)

<label> WEOF
<label> WE OF

<ifile>,<nvar>
<rifile>,<nvar>

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-9

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<ifile> is a file defined using the IFILE declaration

(see section 5.2).
<rifile> is a file defined using the RIFILE declaration

(see section 5.4).

programming Considerations:

<label> is optional.

The WEOF instruction accesses only the data file.

The write is either a physical access (see section 13.7) or a
log ical access (see section 14. 7) •

The i nd ex f i 1 e i s not used 0 r mod i f i ed ina n y way by t he ~"" E 0 F •

15.6 READKS (Indexed Sequential)

The READKS (READ Key Sequential) instruction is provided to
allow indexed sequential records to be read in collating sequence
order. This instruction may have one of the following general
fo rrna ts :

1)
2)

where:

<label>
<label>

<label>
<ifile>

<rifile>

<list>

READKS
READKS

<ifile>i<list>
<rifile>i<list>

is an execution label (see section 2.).
is a file defined using the IFILE declaration
(see section 5.2).
is a file defined using the RIFILE declaration
(see section 5.4).
is a list of items describing the inforMation to
be read from the disk.

Programming Considerations:

<label> is optional.

The current position within the index file is used to get a
position in the data file.

After the position within the data file has been determined
from the index file, the position within the index file is
bumped to the next key in the collating sequence. The ASCII

15-10 DATABUS COMPILER

collating sequence is used.

If the position within the index file is past the last key in
the index:

a) The OVER condition flag is set, and

b) All of the variables in the list have an indeterminate
val ue .

Except.that the initial position within the data file is
determined as described above, READKS proceeds identically to
an indexed sequential access READ (see section 15.3).

Example:

DECL
LINE

*
LOOP

*

IFItE
DIM
TRAP
OPEN

TRAPCLR

READKS

STOP
DISPLAY
GOTO

80
NOFILE IF 10
DECL, "DATA"

10

DECLiLINE

IF OVER
*R,*Pl:12,*+,LINE
LOOP

INDEX FILE DECLARATION
LINE BUFFER
CATCH FILES NOT ON DISK
LOOK FOR DATA/TXT AND
DATA/lSI
OPEN SUCCEEDED SO DON'T
CATCH ANY MORE ERRORS

READ IN THE LINE POINTED
TO.BY THE NEXT KEY
OVER MEANS NO MORE KEYS
DISPLAY THE LINE
GO GET THE NEXT LINE

TELL THE OPERATOR SOMETHING IS WRONG

NOFILE DISPLAY
STOP

*R,*Pl:12,"NO SUCH FILE"

15.7 UPDATE (Indexed Sequential)

The UPDATE instruction allows tabbing while modifying an
indexed sequential record. UPDATE allows characters to be written
into any character position of an indexed sequential record
without disturbing the rest of the record. This instruction may
have one of the following general formats:

1)
2)

<label>
<label>

UPDATE
UPDATE

<ifile>i<list>
<rifile>i<list>

where: <label> is an execution label (see section 2.).

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-11

<ifile> is a file defined using the IFILE declaration
(see section 5.2).

<rifile> is a file defined using the RIFILE declaration
(see section 5.4).

<list> is a list of items describing the information to
be written to the disk.

Programming Considerations:

<label> is optional.

UPDATE is used to modify the last indexed sequential record
accessed by any indexed sequential record read instruction (a
READ or READKS).

With the following exceptions, UPDATE functions the same as
lAiR ITAB.

a) All ta b po sit ion s are cal cuI ate d reI a t i veto the beg inn in 9
of the logical record, rather than relative to the
beg inning of the physical record. However, tabbing can be
used only when the logical records do not cross physical
record boundaries. This condition can usually be enforced
through the use of the DOS REFORMAT utility and careful
use of DATABUS I\1HITE instructions. Tabbing should not be
used with space compressed records.

b) The initial position within the data file is determined as
described above, rather than being furnished by a
variable.

c) It is an illegal operation to execute a DELETE and then an
UPDATE to the same record. This operation can destroy
your file.

Attempting an UPDATE when no other indexed sequential read
operation has been performed prior to the execution of the
UPDATS, causes an I/O error.

It is possible to overstore the 015 (logical end of record)
and the 003 (physical end of record) characters when using
UPDATE. If extreme care is not exercised, this can result in
more than one record being tu~ned into a single very large
record. In some cases it can result in an I/O error.

15-12 DATABLJS COMPILEH

15.8 INSERT (Indexed Sequential)

INSERT provides the capability for inserting a key for an
existing indexed rece>rd into an additional index file. This
instruction must be used in conjunction with indexed sequential or
associative indexed reads or writes. The indexed record is
written to the data file by the WRITE instruction, or is read with
a READ, READKS, or READKG (see section 16.5) instruction. The
WRITE instruction also inserts the key information into the
appropriate index file. Since the record does not need to be
re-written to the data file, the INSERT instruction is used to
insert a key for the record into any additional index files.
Thus, after using the INSERT instruction, the record is accessible
through more than one index file. This instruction may have one
of the following general formats:

1)
2)

where:

<label> INSERT
<label> INSERT

<ifile>,<svar>
<rifile>,<svar>

is an execution label (see section 2.).
is a string variable (see section 4.2).

<label>
<svar>
<ifile> is a file declared using the IFILE declaration

(see section 5.2).
<rifile> is a file declared using the RIFILE declaration

(see section 5.4).

Progranming Considerations:

<label> is optional.

The logical string of <svar> specifies the key to be inserted.

One INSERT must be executed for each additional index file
which is to contain a key for the record.

If the key is null, an I/O error results.

If the key already exists in the index file, an I/O error
results.

The search algorithm, used to determine whether the key is
aIr e ad yin the i nd ex, i sid en tic a 1 to t hat used i nth e i n d ex ed
sequential access READ operation (see section 15.3).

The key is inserted into the index such that the keys in the
index file remain in ASCII collating sequence.

The logical record read from, or written to, the data file by

CHAPTER 15. IND8XED SEQUENTIAL RECORD ACC8SSING 15-13

the most recently executed indexed sequential or associative
indexed access READ, READKS, READKG, or WRITE, is the record
which is indexed by the execution of the INSERT instruction.
Executing another indexed sequential or associative indexed
access read or write destroys the pointer to the indexed
record of the previous read or write.

** WARNING ** executing an INSERT before any indexed
sequential or associative indexed reads or writes are executed
may resul t in damage to the da ta file.

Newer interpreters check the validity of the INSERT operation.
If no indexed sequential or associative indexed read or write
operation has been performed prior to the INSERT, or if the
last such read or write was to a different text file, an I/O
error is given.

It is not necessary to prevent the program from being
interrupted between the read or write and INSERT instructions.

Timing considerations:

a) Inserting many records causes indexed accesses to become
less random and more sequential. (Random accessing takes
much less time than sequential accessing.)

b) Inserting many records whose keys are close together in
the collating sequence causes indexed accesses to become
less random. (For example: AAAB is much closer to AAAA
than BBBB.)

c) I n d ex ed a c c e sse sst art ta kin g s i g n i f i can t 1 Y long e r wh e n
one tenth of the records in an indexed file have been
inserted with the indexed sequential WRITE or INSERT
instruction.

d) Generally, use the DOS INDEX utility as often as possible
to insure that indexed accesses are as random as possible.

15.9 DELETE (Indexed Sequential)

The DELETE operation allows a record to be physically deleted
from a data file and for its key t·o be deleted from the specified
index. This instruction may have one of the following general
fo rrna ts :

1) <label> DELETE <ifile>,<svar>

15-14 DATABUS COMPILER

2) <label> DELETE <rifile>,<svar>

where: <label> is an execution label (see section 2.).
<svar> is a string variable (see section 4.2).
<ifile> is a file declared using the IFILE declaration

(see section 5.2) •
<rifile> is a file declared using the RIFILE declaration

(see section 5.4).

programming Considerations:

<label> is optional.

It is an illegal operation to execute a DELETE and then an
UPDATE to the same record. This operation can destroy your
file.

The logical string of <svar> specifies the key to be deleted.

One DELETE or DELETEK must be executed for each index file
which needs a key deleted.

If the key is null, an I/O error results.

If the key cannot be found in the index, the OVER flag is set.

The indexed record is deleted by overstoring every character
in the record with an 032 (octal). This includes the logical
end 0 f r e cord c h a r act e r (015) .

Both the DOS REFORMAT utility and the DATABUS interpreters
ignore all 032 characters while reading, therefore, these
characters do not appear to exist.

The DOS REFORMAT utility may be used to eliminate the 032
control characters from the data file.

If the indexed record to be deleted has already been deleted,
the only action taken is to delete the key from the index
file.

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-15

15.10 DELETEK (Indexed Sequential)

The DELETEK instruction allows the deletion of a key from an
index file without affecting the data file. This instruction is
useful in situations where more than one index file is used to
access one data file. This instruction may have one of the
following general formats:

where:

1)
2)

<label>
<label>

DELETEK
DELETEK

<ifile>,<svar>
<rifile>,<svar>

<label>
<ifile>

<rifile>

<svar>

is an execution label (see section 2.) •
is a file defined using the IFILE declaration
(see section 5.2).
is a file defined using the RIFILE declaration
(see section 5.4) .
is a character string variable.

Programming considerations:

<label> is optional.

The logical string of <svar> specifies the key to be deleted.

If the key is null, an I/O error results.

If the key cannot be found in the index, the OVER flag is set.

Only the key in the index file is deleted, the data file is
not used or modified by this instruction.

15.11 FPOSIT (Indexed Sequential)

The FPOSIT instruction allows a DATABUS program access to the
current position of a file. It can be used to observe the current
position, or to save it and restore it later. For a general
discussion of the FPOSIT instruction see section 13.8. This
instruction may have one of the following general formats:

1)
2)

<label>
<label>

FPOSIT
FPOSIT

<ifile>,<nvarl>,<nvar2>
<rifile>,<nvarl>,<nvar2>

where: <label> is an execution label (see section 2.).
<ifile> is a file defined using the IFILE declaration

(see section 5.2).

15-16

<rifile> is a file defined using the RIFILE declaration
(see section 5.4).

DATABUS COMPILER

<nvarl> is a numeric string variable.
<nvar2> is a numeric string variable.

Programming considerations:

<label> is optional.

See section 13.8.

The record pointer and character pointer returned are those of
the data file.

The index file is not used by this instruction.

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING .15-17

CHAPTER 16. ASSOCIATIVE INDEXED RECORD ACCESSING

The following sections discuss the aspects of the Disk I/O
instructions that apply to accessing associative indexed records
only. For further information on the associative index access
method, consult the appropriate interpreter user's guide.

16.1 OPEN (Associative Indexed)

The following sections discuss the aspects of the OPEN
instruction that apply to accessing associative indexed records
only. For a general discussion of the OPEN instruction, see
section 12.3.1. One of the following general formats may be used:

1)
2}
3)
4)
5)
6)

<label>
<label>
<label>
<label>
<label>
<label>

where: < label.>
< sl it>

< svar>
<svarl>
<char>
<afile>

OPEN
OPEN
OPEN
OPEN
OPEN
OPEN

<afile> ,<slit>
<afile> ,<svar>
<afile>,<slit>,<char>
<afile>,<svar>,<char>
<afile>,<slit>,<svarl>
<afile>,<svar>,<svarl>

is an execution label (see section 2.).
is a literal of the form "<string>" (see section
2 • 5) •
is a string variable (see section 4.2).
is a string variable (see section 4.2).
is a one character string (see section 2.5).
is a file declared using the AFILE declaration
(see section 5.5).

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

See section 12.3.1.

OPEN initializes both the associative index file and the data
file that has been indexed".

If the drive nur.1ber is specifed (see section 12.3.1), the
associative index file must be on the specified drive.

CHAPTER 16. ~SSOCIATIVE I~DEXED RECORD ~CCESSING 1::;-1

The name of the data file to be opened is contained in the
associative index file.

Opening the associative index file automatically causes the
data file to be opened.

The interpreter first looks for the data file on the same
drive as the associative index file. If it is not found on
this drive, all drives are searched for the file (starting
with drive 0 and ending with the highest numbered drive that
is on-line). Consult the appropriate interpreter user's guide
for more information.

If the data file is indexed by more than one associative index
file, each associative index file must be opened using a
different logical file.

The position within the data file is initialized to:

a. Record number = o.

b. Character pointer = 1.

The position within the associative index file is
uninitialized.

If format (3) or (4) is used, the <char> specifies the "don't
care character" to be used.

If format (5) or (~) is used, the formpointed character of
<svarl> specifies the "don't care character" to be used.

The "don't care character" must be between 041 (!) and 017G
(-) .
If the "don't care character" is specified in the OPEN
statement, this character is used instead of the one specified
on the AIMDEX command line when the file was AIMed.

If the user does not specify a "don't care character" on the
OPE N s tat e men t, 0 r i f < s v a r 1 > vV'h e nus i n g for mat s (5) 0 r (-S) i s
null, or if the specified character is not in the required
range, the "don't care character" used is the one specified
when the file was AIMed using the AIMDEX utility.

See the addendum to the DOS. 2.0 user's guide for more details
on the " don ftc are c h a r act e r" as used by A I IVl 0 EX.

16-2 DATABUS COMPILER

The "don't care character" is used when building key
specifications for a READ statement (see section 16.3). If a
READ statement has keys using this character, the positions in
the r eco rd co rres pond i ng to the IIdon I t care char ac ter s" in the
keys can contain any character.

Assume that the following statements were included in the
program previous to the statements in all of the following
examples:

DECL AFILE 100

Also, assume that index files, DATA/AID and DATA2/AID, have been
created by indexing the data file, DATA/TXT, using the AIMDEX
utility as shown below:

AIMDEX DATA/TXT:DRO,DAT~/AID:DRO;1-5
AIMDEX DATA/TXT:DRO,DATA2/AID:DRl;6-10

Note that DATA/TXT is on drive 0, DATA/AID is on drive 0 and
DATA2/AID is on drive 1.

Example:

OPEN DECL, "DATA

This OPEN instruction initializes DATA/AID and DATA/TXT on drive
o.

Examp1 e:

OPEN DECL, "DATA 111

This OPEN instruction causes an I/O error, since DATA/AID is not
on drive 1.

Example:

OPEN DECL, "DATA"

This OPEN instruction initializes DATA/AID and DATA/TXT on drive
o.

CHAFr ER 16. ASSOCIATIVE INDEXED RECORD ACCESSING 1')-3

Example:

OPEN DECL, "DATA2 0"

This OPEN instruction causes an I/O error, since DATA2/AID is not
on drive o.

Example:

OPEN DECL, "DATA2 1"

This OPEN instruction initializes DATA2/AID on drive 1 and
DATA/TXT on drive O.

Example:

OPEN DEC L, " DA TA 2 II

This OPEN instruction initializes DATA2/AID on drive 1 and
DATA/TXT on drive o.

16.2 CLOSE (Associative Indexed)

This instruction is used to return any unused, newly
allocated disk space to DOS for use by another file. The
follovJing sections discuss the aspects of the CLOSE instruction
th::lt apply to accessing associative indexed records only. For a
general discussion of the CLOSE instruction, see section 12.3.2.
CLOSE has the following general format:

1) < label> CLOSE <afile>

vJ her e : < 1 abe 1 > i san ex e cut ion 1 abe 1 (s e e sec t ion 2.).
<afile> is a file declared using the AFILE declaration

(see section 5.5).

Programming Considerations:

<label> is optional.

See section 12.3.2.

Only the data file is affected· by executinCj the CLOSE
instruction.

The associative index file is unchanged by the execution of
the CLOSE instruction.

16-4 DATABUS COIVIPILP.R

16.3 READ (Associative Indexed)

The READ instruction is used to get information saved on the
disk into variables in a DATABUS program. The following sections
discuss the aspects of the READ instruction that apply to
accessing associative indexed records only .. For a general
discussion of the READ instruction, see section 12.3.3. This
instruction may have one of the following general formats:

1)
2)

where:

<label>
<label>

<label>
< nva r>
<slist>
<afile>

<list>

READ
READ

<afile>,<nvar>;<list>
<afile>,<slist>;<list>

is an execution label (see section 2.).
is a numeric variable (see section 4.1) .
is a list of string variables (see section 4.2)
is a file defined using the AFILE declaration
(see section 5.5) •
is a list of items describing the information to
be read from the disk.

Programming Considerations:

<label> is optional.

'The following apply when format (1) is used:

a) The READ instruction accesses only the data file.

b) The HEAD is either a physical access (see section 13.4) or
a log i cal a c ce s s (see sec t ion 1 4 . 4) .

c) The associative index file is not used or modified in any
way by the READ.

d) The *<nvar> list control is not allowed in the <list>.

e) The *<dnum> list control is not allowed in the <list>.

The rest of the programming considerations in this section
apply when fon:1at (2) is used.

The logical string of each string variable in the <slist>
specifies a key specification to he used when searchin~ for
the record.

The format of each key specification is: NNS<key>, where:

a) NN is the field number. The field number is speci fied as

CHAPTEH 16. ASSOCIATIVE I~DEXED RECORD ACCESSI~G 1'-;-5

two decimal digits, or as a blank followed by a decimal
digit. The record fields are numbered according to the
order the keys were given to AIMDEX when the file was
AIMed.

b) S specifies the search type, and must.be one of the
letters X, L, R, or F.

c) <key> specifies the actual key information.

The search types are as follows:

a) X specifies that the key given in the variable must match
the s p e c i f i ed fie ld in the r e cord e x act I y • I f t he key
given is longer than the record field, the key is
truncated on the right to the field length. If the key is
shorter than the record field, it is treated as if it is
padded on the right with blanks to the length of the
record field.

b) L specifies that the key given in the variable must match
the I eft par t 0 f the s p e c i f i ed fie I d • I f the key 9 i v en i s
longer than or equal to the record field, the key is
treated as an X type key specification. If the key given
is longer than the record field, it is truncated on the
right to the field length. If the key given is shorter I

t han the r e cor d fie I d, i tis t rea ted as i fit i s pa d d ed ,J n
the right with "don't care characters".

c) R specifies that the key given in the variable must match
the right part of the specified field. If the key given
is longer than or equal to the record field, the key is
t rea ted a s an X type key s p e c i f i cat ion. I f the key g i v en
is longer than the record field, it is truncated on the
left to the field length. If the key given is shorter
than the record field, it is treated as if it is padded on
the left with IIdon't care characters".

d) F specifies that the key given in the variable can occur
anyv-lhere in the specified field. If the key given is
longer than or equal to the record field, the key is
t rea ted a san X type key s p e c i f i cat ion. I f the key 9 i v en
is longer than the record field, it is truncated on the
right to the field length.

The record must meet all of the criteria specified in the key
list.

16-6 DATABUS COMPI LER

Multiple key specifications may be given for the same record
fie 1 d as long as the y don 0 t con f 1 i c t wit h e a c hot her. For
example, the two specifications "01LABC" and "OIRDEF II are
acceptable if field one is at least six characters long. They
conflict if the field is less than six characters long.

If a string variable in the list is null (has a 0 formpointer)
the key is ignored.

If all of the string variables are null, the last associative
indexed record that was read (by a READ or READKG instruction)
is re-read without using the associative index file to access
the record. This saves the time needed to search the
associative index file. When the same associative indexed
record needs to be read more than once, this feature may save
considerable time.

Using null keys causes an I/O error if there was not a
previous successful read performed using non-null keys.

A READi using this null key feature does not set up or use the
internal information used to control the READKG operation (see
section 16.6). Thus, the re-read feature can be intermixed
with READ and READKG operations. Thus, the sequence: READ,
re-READ, READKG, re-READ, READKG, and so on, is valid.

The key specification given may have 'Idon't care characters·1

embedded anywhere within it. When searching for a matching
record, the positions in the record corresponding to the
positions of the "don't care characters" in the keys can
contain any character.

A certain minimum amount of information must be given in the
key s p e c i f i cat ion s • T he follow i ng r u 1 e sit em i z e a c c e pta b 1 e
minimum information requirements:

a) One non-blank, non-·ldon't care" character occuring at the
left of the field.

b) One non-blank, non-"don't care" character occuring at the
right of the field.

c) T h r e e con sec uti ve non - b 1 an k, non - " don't car e II c h a r act e r s
occuring elsewhere in the field.

For an X type search specification, the following apply:

a) Rules a, b, or c apply.

CHAPTER 16. ASSOCIATIVE INDEXED RECORD ACCESSING 16-7

b) If rule b is used, the character must correspond to the
end of the record field. For example, a key specification
of "OlX?A", where n?" is the "don't care character" is
sufficient information, according to rule b above, if
field 1 is two characters long. If field 1 is longer than
two characters, then because an X type key that is too
short is padded on the right with blanks, this key does
not give sufficient information.

For an L type search specification, the following apply:

a) If the key given is longer than or equal to the field
length, the key is treated as an X type specification,
otherwise

b) Rules a or c apply_

For an R type search specification, the following apply:

a) If the key given is longer than or equal to the field
length, the key is treated as an X type specification,
otherwise

b) RuJLes b or c apply_

For an F type search specification, the following apply:

a) If the key given is longer than or equal to the field
length, the key is treated as an X type specification,
otherwi se

b) Rule c applies.

',.

Each key given on the READ statement does not need to meet the
minimum information requirements. It is sufficient if there
is at :Least one key specification for a non-excluded field (an
exluded field is one defined with the X option on the AIMDEX
command line) given that meets the minimum information
requirements. If the minimum information requirements are not
met, an I/O error is given.

Each F type key specification must contain at least three
characters or an I/O error is given.

If the keys given on the READ statement do not meet the
minumum information requirements, an I/O error is given.

As much information as possible should be included in the keys

15-8 DATABUS COIVlPILER

given for the READ statement. The associative index access
method is such that, in general, if more information is given
to identify the record or set of records desired, they can be
found faster, and with less system overhead.

Once a matching record is found, the READ proceeds precisely
as if it were a logical record access (see section 14.4) •
(Exception: see the Programming Consideration below
concerning tab positioning.)

If no record matching the key specifications is found,

a) The OVER condition flag is set, and

b) All of the variables in the list are unchanged.

If the OVER flag is set after an associative indexed READ
operation, it indicates that no record could be found matching
the key specifications given.

The test for the OVER condition should be made after the READ
statement.

Tab positions when using associative indexed access are
calculated relative to the beginning of the logical record
instead of relative to the beginning of the physical record.
However, tabbing can be used only when 100ical records do not
cross physical record boundaries. This condition can usually
be enforced through the use of the DOS HEFOH:vIAT utility and
careful use of DATABUS t'l/RITE: instructions.

16.4 WRITE (Associative Indexed)

The WRITE instruction is used to put the inf~rmation to be
saved onto the disk. The fol10'..;ing sections discuss the aspects
of the WRITE instruction that apply to accessi~g associative
indexed records only. For a general discussion of the WRITE
instruction, see section 12.3.4. This instruction may hove one of
the following general formats:

1) <label> ~'VR IT r: <afile>,<nvar>i<list>
2) <label> WRITE <afile>,<nvar>i<list>;
3) <label> ~\fRITE .< a f i 1 e> i < 1 i s t >
4) <label> WRITE <afile>i<list>i

where: <label> is an execution label (see sec ti on 2.) •
< nvar> is a numeric variable (see section 4 . 1) .

CHAPTER 16. ASSOCIATIVE INDEXED RECORD ACCESSI~G 1&)-9

<afile> is a file defined using the AFILE declaration
(see se c t ion 5. 5) •

<list> is a list of items describing the information to
be written to the disk.

Programming Considerations:

<label> is optional.

See section 12.3.4.

The following apply when formats (1) and (2) are used:

a) The WRITE instruction accesses only the data file.

b) The WRITE is either a physical access (see section 13.5)
or a logical access (see section 14.5) •

c) The associative index file is not used or modified in any
way by the WRITE.

The following apply when formats (3) and (4) are used:

a) The data f i 1 e iss ear c h ed for its end - 0 f - f i 1 e mar k •

b) The record is written over the end-of-file mark and
proceeds exactly as if it were a physical record write
(see section 13.5).

c) If format (3) is used, a new end-of-file mark is written
to the next physical record.

d) T his i m pI i est hat for e a c h r e cor din s e r ted in tot he data
file, at least one physical record is used, no matter how
large or small the record.

e) The key information is extracted from the record written
and the associative index file is updated.

f) The interpreter knows which parts of the record are key
fields, thus the keys do not need to be specified on the
\"JRITE sta temen t.

g) If the primary record select option was used when the file
was created with AIMOEX, the key information is extracted
and used to update the associative index file only if the
record meets the primary record selection criterion. See
the addendum to the DOS. 2.~ user's guide Eor more details

16-10 OATABUS COMPILER

on the primary record select option of the AIMDEX utility.

h) The WRITE statement destroys the internal information used
to control the READKG sta tement (see section 16. S). If a
READKG is attempted after a WRITE statement, an I/O error
is given.

Processing for the WRITE instruction is terminated as follows:

a) Format (1) causes:

1) all of the actions taken when terminating a physical
record WRITE (see section 13.5), or a logical record
WRITE (see section 14.5).

b) Format (3) causes:

1) all of the actions taken when terminating a logical
record WRITE (see section 14.5), plus

2) the posi tion wi thin the data fi Ie to be bumped to the
next physical record, and

3) an end-of-file mark to be written.

c) Formats (2) and (4) cause:

1) the po sit ion wit hi nth e f i 1 eta be un c han g ed aft e r
processing the last item in the list. This operation
is useful for writing the first part of a record where
more of the record is written later. Typically, a
logical (sequential) WRITE instruction is used for
this purpose.

2) The end - 0 f - f i 1 e mar k i s not w r itt en. Th ism a k e sit
the programmer's responsibility to write the
end-of-file mark himself.

3) If the programmer fails to write an end-of-file mark,
the next attempt to insert a record causes a RANGE
trap. This insertion fails because the search for the
end-of-file mark fails.

* * WA R N It\] G * * Iff 0 r mat (4) i sus ed, all pa r t s 0 f the r e~ cor d
containing key data must be written with this WRITE
instruction. The part of the record to be written later must
not contain any key field data.

CHAPTER 16. ASSOCIATIVE INDEXED RECORD ACCESSING 16-11

Timing considerations:

a) Inserting many records causes associative indexed accesses
to become slower.

b) The AIMDEX utility can be used to insure that associative
indexed accesses are as fast as possible.

16.5 WEOF (Associative Indexed)

The WEOF instruction allows a DOS end of file mark (see
section 12.1.3) to be written to a file. This instruction has the
following general format:

1) < label> \-JEOF <afile>,<nvar>

where: <label> is an execution label (see section 2.).
is a n urn e ric va ria b 1 e (se e se c t ion 4. l) . < nvar>

<afile> is a file defined using the AFILE declaration
(se e se c t ion 5. 5) .

programming Considerations:

<label> is optional.

The WEOF instruction accesses only the data file.

The write is either a physical access (see section 13.7) or a
log ical access (see section 14. 7) •

The associative index file is not used or modified in any way
by the WEOF.

16.6 READKG (Associative Indexed)

The READKG (READ Key Generic) instruction is provided to
allow reading any other associative indexed records that meet the
same key specifications as given on an earlier associative indexed
READ instruction. This instruction has the following general
fa ri'lla t :

1) <label> READKG <afile>i<list>

where: <label> is an execution label (see section 2.).

15-12

<afile> is a file defined using the AFILE declaration
(see section 5.5) .

DATABUS COfl1PILER

<list> is a list of items describing the information to
be read from the disk.

Programming Considerations:

<label> is optional.

This instruction reads another record in the data file that
meets the key specifications given in the last valid
associative indexed READ statement.

Since the interpreter saves the key information given in the
READ statement, the keys do not need to be respecified on the
READKG statement. The string variables used to hold the keys
given for a READ statement may be modified between the READ
and any READKG statements without harming the saved
information.

If no valid associative indexed READ has been performed prior
to execution of this instruction, an I/O error is given.

Note that an associative indexed WRITE or INSERT statement
destroys the internal information set up by the READ statement
which is used to control the READKG operation. A READ using
the re-read feature (all keys are null) does not set up this
information.

If there are no more records in the data file meeting the key
specifications:

a) The OVER condition flag is set, and

b) All of the variables in the list have an indeterminate
value.

Exce~t that the initial position withi~ the data file is
determined as described above, READKG proceeds identically to
an associative indexed access READ (see section lS.3).

CHAPTER 11,. ASSOCIATIVE INDEXED RECORD ACCESSING 1~-13

Exampl e:

DECL AFILE
KEYl DIM
KEY2 DIM
KEY3 DIM

LINE DI:VI
TRAP
OPEN

TRAPCLR

100,3,32
30
30
30

80
NOFI LE IF 10
DECL, "DATl\1I

10

AIM FILE DECLARATION
KEY SPECIFICATION VARIABLES

LINE BUFFER
CATCH FILES NOT ON DISK
LOOK FOR D~TA/TXT AND
DATA/AID
OPEN SUCCEEDED SO DON'T
CATCH ANY MORE ERRORS

OBTAIN KEY INFORMATION FROM USER AND FORMAT
KEY1, KEY2, AND KEY3 AS NEEDED.

LOOP

*

READ

STOP
DISPLAY
READKG
GOTO

DECL,KEYl,KEY2,KEY3iLINE GET THE FIRST RECORD

IF OVER
*R,*Pl:12,*+,LINE
DECLiLINE
LOOP

OVER MEANS NO MORE RECORDS
DISPLAY THE LINE
TRY FOR ANOTHER RECORD
CHECK FOR NO MORE

TELL THE OPERATOR SOMETHING IS WRONG

NOFILE DISPLAY
STOP

*R,*Pl:12,"NO SUCH FILEII

16.7 UPDATE (Associative Indexed)

The UPDATE instruction allows tabbing while modifying an
associative indexed record. UPDATE allows characters to be
written into any character position of an associative indexed
record without disturbing the rest of the record. This
instruction has the following general format:

1) <label> UPDATE <afile>i<list>

where: <label> is an execution label (see section 2.) .
<afile> is a file defined. using the AFILE declaration

(see section 5.5).

16-14

<list> is a list of items describing the information to
be written to the disk.

DATABUS COMPILER

Programming Considerations:

<label> is optional.

UPDATE is used to modify the last associative indexed record
accessed by any associative indexed record read instruction (a
READ 0 r READKG) •

With ~he following exceptions, UPDATE functions the same as
WRITAB.

a) All tab positions are calculated relative to the beginning
of the logical record, rather than relative to the
beginning of the physical record. However, tabbing can be
used only when the logical records do not cross physical
record boundaries. This condition can usually be enforced
through the use of the DOS REFORMAT utility and careful
use of DATABUS WRITE instructions. Tabbing should not be
used with space compressed records.

b) The initial position within the data file is determined as
described above, rather than being furnished by a
variable.

c) It is an illegal operation to execute a DELETE and then an
UPDATE to the same record. This operation can destroy
yo ur fi 1 e.

Attempting an UPDATE when no other associative indexed read
operation has been performed prior to the execution of the
UPDATE, causes an I/O error.

It is possible to overstore the 015 (logical end of record)
and the 003 (physical end of record) characters when using
UPDATE. If extreme care is not exercised, this can result in
oore than one record being turned into a single v~ry large
record. In some cases it can result in an I/O error.

The associative index file is not used or modified by this
instruction. If the UPDATE changes part of the record used as
a .key field, then future READ or READKG statements may not
find the record. If key field is to be changed, the record
should be DELETEd and then rewritten with a WRITE statement,
or the field should be declared as an excluded field. See the
addendum to the DOS. 2.~ user's guide for a description of the
X option used by the AIMDEX utility to specify an excluded
field.

CHAPT2H IS. ASSOCIATIVE I~DEXED RECORD ACCESSING 1&)-15

16.8 INSERT (Associative Indexed)

INSERT provides the capability for inserting the key
information for an exisiting indexed record into an additional
associative index file. This instruction must be used in
conjunction with indexed sequential or associative indexed reads
or writes. The indexed record is written to the data file by the
WRITE instruction, or is read with a READ, READKG, or READKS
instruction. The WRITE instruction also inserts the key
information into the appropriate index file. Since the record
does not need to be re-written to the data file, the INSERT
instruction is used to insert the key infor~ation for the record
into any additional associative index files. Thus, after using
the INSERT instruction, the record {s accessible through more than
one index file. This instruction has the following general
fo rmat:

1) < label> INS ER'r <afile>

where: < 1 abel>
<afile>

is an execution label (see section 2.).
is a file declared using the AFILE declaration
(see section 5.5).

programming Considerations:

<label> is optional.

One INSERT must be executed for each additional associative
index file which is to reference the data record.

The logical record read from, or written to, the data file by
the most recently executed indexed sequential or associative
indexed access READ, READKG, READKS, or WRITE, is the record
which is indexed by the execution of the INSERT instruction.
Executing another indexed sequential or associative indexed
access read or write destroys the pointer to the indexed
record of the previous read or write.

If no indexed sequential or associative indexed read or write
operation has been performed prior to the INSERT, or if the
last such read or write was to a different text file, an I/O
error is given.

** WARNING ** Although INSERT .references the last record
accessed by either a read or write statement, the nature of
the associative index file is such that the INSERT may not
always work. The only valid way to perform an INSERT is after
executing the WRITE instruction that caused the record to be

16-16 DATABUS COMPILER

written to the data file. Any other manner of performing the
INSERT may not work. Also, interrupts should be prevented
between the WRITE and the INSERT instruction.

The INSERT statement destroys the internal information used to
control the READKG statement. If a READKG is attempted after
an INSERT statement, an I/O error is given.

Timing considerations:

a) Inserting many records causes associative indexed accesses
to become slower.

b) The AIMDEX utility can be used to insure that associative
indexed accesses are as fast as possible.

16.9 DELETE (Associative Indexed)

The DELETE operation allows a record to be physically deleted
from a data file. This instruction has the following general
fo rrna t:

1) <label> DELETS <afile>

where: <label> is an execution label (see section 2.).
<afile> is a file declared using the AFILE declaration

\ (see section 5.5).

Programming Considerations:

<label> is optional.

It is an illegal operation to execute a DELETE and then an
UPDATE to the same record. This operation can destroy your
file.

DELETS is used to delete the last associative indexed record
accessed by any associative indexed record read instruction (a
READ 0 r READKG).

This operatiort does not use or modify the associative index
file in any way.

If multiple associative index files are uS2d to index the same
data file, the DELETE need only be done through one of the
associative index files. There is no DELSTSK operation to be
used on the other associative index files.

CHAPTER 16. ASSOCIATIVE I~DEXED RECORD ACCESSING l'i-17

The indexed record is deleted by overstoring every character
in the record with an 032 (octal). This includes the logical
end of record character (015).

Both the DOS REFORMAT utility and the DATABUS interpreters
ignore all 032 characters while reading, therefore, these
characters do not appear to exist.

The DOS REFORMAT utility may be used to eliminate the 032
control characters from the data file.

If the indexed record to be deleted has already been deleted,
no action is taken.

16.10 FPOSIT (Associative Indexed)

The FPOSIT instruction allows a DATABUS program access to the
current position of a file. It can be used to observe the current
p8sition, or to save it and restore it later. For a general
discussion of the FPOSIT instruction see section 13.8. This
instruction has the following general format:

1)

where': <label>
<a f i 1 e>

<nvarl>
<nvar2>

<label> FPOSIT <afile>,<nvarl>,<nvar2>

is an execution label (see section 2.) •
is a file defined using the AFILE declaration
(see section 5.5).
is a numeric string variable.
is a numeric string variable.

Programming considerations:

<label> is optional.

See section 13.8.

The record pointer and character pointer returned are those of
the data file.

The associative index file is not used by this instruction.

16-18 DATABUS COMPILER

CHAPTER 17. PROGRAM GENERATION

17.1 Preparing Source Files

Files containing the source language for DATABUS programs are
prepared using the general purpose editor running under the DOS
(the editor's use is covered in the DOS User's Guide). The editor
tab stops may be set to be suitable for keyin of DATABUS programs
by using the :TD command, or by using the :T command and setting
two tabs, one at 10 and the other at 20.

17.2 Invoking the compiler

DATABUS programs are compiled using the DBCMPLUS compiler
running under the DOS. The compiler is parameterized in the
following manner:

DBCMPLUS <source> [,<object>] [,<print>] [,<library>]
[i<C><D><E><L><nn><P><R><S><X>]

Where:

<source> is the DOS file specification for the source file
containing the DATABUS source code.

If no file extension is specified, "/TXT Il is
assumed.

If no drive is specified, all drives starting with
d r i ve z era (0) are sea r c h ed for the sou r c e f i 1 e .

If the file is not found, the compiler searches the
<system DATABUS library> for a member with the given
name (see the following description of the library).

<object> is the DOS file specification for the object file.

If no file specification is given, the DATABUS
object file name is the same as the source file with
extension "/DBC".

If no drive is specified and the object file does

CHAPTER I 7. PROGRAM GENERATION 17-1

<print>

not exist, the object file is placed on the same
drive as the source file. If the object file
already exists, the object code is placed in the
ex i s t i ng 0 b j e c t f i 1 e, 0 v e r w r i t i ng w hat i s the r e .

is the DOS file specification for the print file.

If no name is given for the print file
specification, the source file name is assumed. A
f i 1 e ext ens ion 0 f "/ P R T" i sus ed i f non e i s
specified.

If no drive is specified and the print file does not
exist, the print file is placed on the same drive as
the source file. If the print file already exists,
the print output is placed in the existing print
file, overwriting what is there.

A print file is only written to if the P option is
specified.

The print file specification causes any printout
requested to be written into this file instead of
being printed on the line printer. Column one of
the print file record is used for the carriage
control character. The output line to be printed
starts with column two (this is the standard COBOL
and FORTRAN print file format).

<library> is the DOS file specification for the system DATABUS
library.

17-2

If no name is given for the library name, the na~e

assu~ed is D8CMPLUS/LIB.

If a file name is given but no file extension is
speci fied, II/LIBII is assumed.

I f the so u r c e f i 1 e s p e c i fie don the co flll:l and 1 i n e i 5

not found as a free-standing file, it is looked for
in the <systen DATA8US library>. The compiler uses
the library in r.1uch the saJae way that SOf:1e OAT.l\SHI\RE
interpreters llse the D8C prC)()rai:1 library,
DATASHAR/DBL.

The library is also used in conjunction with the
INCLUDE state.rlent (see section 3.2).

DATAt3US COI\1PILER

Text file libraries are created and manipulated by
the utility LIBRARY!CMD.

17.2.1 File Specifications

The compiler may be parameterized with up to four file
speci fications. These file speci fications follow the standard DOS
conventions. Refer to the DOS user's guide for further
information concerning DOS file specifications.

The source file contains the DATABUS program text created
with the editor. This file must always be specified. If no
extension is given on the source file name, the extension "/TXT"
is assumed. If the source file name is not supplied, the message:

NAJVlE HEQUIRED

is displayed. If the source file name does not exist in the DOS
directory, the compiler looks for the program name as a member in
the < s ys t em DA TA BUS 1 i bra r y> • 1ft her e i s nos u c 11 1 i bra r y, 0 r i f
the member does not exist in the library, the message:

FI LE NO'r FOUND

is displayed.
d rive ze ro (0)

If no drive is specified, all drives beginning with
are searched for the soutce file.

If any of the file specifications are identical, the compiler
displays one of the following messages:

SOURCE AND OBJECT FILES CANNOT 8E THE SA~E

SOURCE AND PRINT FILES CANNOT BE THE SAME
OBJECT AND PRINT FILES CANNOT BE ~HE SAME
OBJECT AND LIBRARY FILES CANNOT BE THE SAME
PRINT AND LIBRARY FILES CANNOT BE THE SAME

17.2.2 Output Parameters

These parameters allo\l the user to specify what type of
output is wanted in addition to the object file. The compiler can
output to a local or servo printer, or to a print file. Normally,
the printer output is sent to ·a local printer. If the S option is
specified on the command line, any printer output generated is
sent to the servo printer. If the P option is specified, any
printer output is sent to a print file on disk. If no parameters
are specified, the only output is the object file (if, in this

CHAP'f2tt 17. PROGH1\~\1 GE NEHATION 17-3

case, a print file is specified, it is ignored).

Any source code lines which have errors are displayed on the
screen with the appropriate error message.

To specify output options, a semicolon (~) plus one or more
of the following should be placed after the last file
.::>pecification:

L The L option causes a listing of the compilation results
to be printed. Each line of source code is numbered, and
the object code location counter value for the first byte
of code generated for the line is listed to the left of
each source code line. A 11+" appearing as the first
character of a line causes a new print page to be started.
The rest of the line following the n+" may be used as a
comment line. A "*" appearing as the first character of a
line causes a new print page to be started if the current
line is within two inches of the bottom of the current
page. A good way to improve the readability of a program
is to begin each section or routine with- a comment before
which aline is en tered wh ich conta ins a ,,* .. in its fi r st
column. This makes sure the comment appears on the same
page as the first lines of the code to which it is
attached. The output is to a local printer unless the S
or P option is also specified.

S The S option causes any listing resulting from any other
option to be printed on the servo printer. Note that this
option, by itself, does not cause printer output to be
generated. It simply directs any output caused by any
other option to the servo printer.

P The P option causes any listing resulting from any other
option to be written to a print file. If the S option is
also given, the output is directed to a print file and the
S option is ignored. Note that this option, by itself,
does not cause printer output to be generated. It simply
directs any output caused by any other option to a print
file.

C The C option causes a listing of the compilation results
to be printed and the generated object code to be listed
to the left of the source"code. Printing the object code
usually makes the listing about twice as long. If this
option is given, the L option is implied and need not also
be given.

17-4 DATABUS COMPILER

E The E option causes the source code for lines with errors
to be printed in addition to being displayed on the
screen. This parameter has no meaning if the L or C
options are given since a listing produced under those
options includes error messages anyway.

R The R option causes the line numbers for referenced labels
in an operand string to be printed at the right margin of
the listing. The line number is the line on which the
referenced label is defined. If the L or C option is not
also given, this option has no effect. This option may be
given instead of, or in addition to, the X option. The R
option is especially convenient with GOTO or CALL
instructions in following the logic path of a complex set
of code. Note that for the R option to be effective, a
printer with at least 130 column printing capability must
be used.

X The X option causes a cross-reference listing to be
printed at the end of the compilation. The listing
consists of the label, preceded by the octal location
where the label was defined, and followed by a list of all
line numbers in which the item was defined or referenced.
An asterisk flags those line numbers which are
definitions. If the line number is in an inclusion file,
it is followed by a colon (:) and the inclusion file
letter. A cross-reference may be obtained regardless of
whether a listing was requested.

D The D option causes a copy of the source code to be
displayed on the screen during the compilation.

nn The nn option is a decimal number in the option string
that can be used to change the number of lines per page on
a program listing. The default value is 54 lines per
page. If this option is given, the L option is implied
and need not also be given.

If a listing has been requested, the compiler asks:

ENTER HEADING:

This may be 79 characters long and is printed at the top of each
page. Indicating the time and date of the listing is helpful in
keeping listings in chronological order. The source file name is
automatically listed to the left of the heading.

Example:

CHAPTER 17. PROGRAM GENERATION 17-5

DBCMPLUS PROGRAM

This is the simplest compilation specification. The following
items are pertinent:

Example:

The source code found in file PROGRAM/~XT is compiled.
All drives are searched for PROGRAM/TXT starting with
d rive ze ro (0).

If the text file is not found, the compiler searches the
<system DATABUS library>, DBCMPLUS/LIB, for a member named
PROGRAM.

The object code is placed in PROGRAM/DBC. The object code
is placed on the same drive as the source unless the
object already exists on another drive.

No other output is given except for errors displayed on
the sc reen.

DBCMPLUS ANSWER,ANSWER4;CX

The following items are pertinent:

Example:

The source code file ANSWER/TXT is compiled.

All drives starting with drive zero (0) are searched for
ANSWER/TXT.

If the source file is not found, the compiler searches the
<system DATABUS library>, DBCMPLUS/LIB, for a member named
ANSWER.

The object code is placed in ANSWER4/DBC on the same drive
as ANSWER/TXT unless ANSWER4/DBC already exists on another
d rive.

A listing is printed on the printer and consists of the
source and object code with a label cross-reference at the
end.

DBCMPLUS FILE:DRO"FILELST/TXT:DRl;LX

The following items are pertinent:

17-6 DATABUS COMPILER

Ex am pI e :

The source code in FILE/TXT on drive zero (0) is compiled.

IfF I L E/ TXT i s not f 0 u nd, the com p i I e r sea res the < s y stem
DATABUS library>, DBCMPLUS/LIB, for a member named FILE.

The object code is placed in FILE/DBC on drive zero (0)
unless FILE/DBC already exists on another drive.

A copy of the source code and a label cross-reference is
printed on the local printer.

DBCMPLUS FILE;LPC

The following items are pertinent.

Example:

The source code in FILE/TXT is compiled.

All drives starting with drive zero (0) are searched for
FILE/TXT.

If the file is not found, the compiler searches the
<system DATABUS library>, DBCMPLUS/LIB, for a member named
FILE.

The object code is placed in FILE/DBC on the same drive as
the input file unless FILE/DBC already exists on another
d rive.

A listing consisting of the source and object code is
written to FILE/PRT on the same drive as the input file
unless FILE/PRT already exists on another drive.

OBCMPLUS ALPHA:MASTER, "PROGRAM/LIB;PLX40

The following items are pertinent.

The source code in file ALPHA/TXT on drive MASTER is
compiled.

If the source file is· not found, the compiler searches the
<system DATABUS library>, PROGRAM/LIB, for a member named
ALPHA.

The object code is placed in file ALPHA/QBC on the same

CHAPTER I 7. PROGRAM GENERATION 17-7

drive as the input file unless ALPHA/DBC already exists on
another drive.

A copy of the source code and a label cross-reference is
written to the file ALPHA/PRT on the same drive as the
input file unless ALPHA/PRT already exists on another
drive.

The listing is written to the print file with 40 lines per
page instead of the standard 54 lines.

17.2.3 Temporary File Requirements

The compiler uses a maximum of one temporary file if no cross
reference is specified. Otherwise a maximum of four teMporary
files are used.

If the number of labels used by the program is too large to
fit in the symbol table the compiler keeps in memory, it creates a
file called DBPLVIRn/SYS to hold the extra labels, where n is the
partition ID or 0 if not running under PS. If a cross-reference
is requested, three more files must be available. The compiler
writes a file called DBPLXRFn/SYS, where n is again the partition
ID or O. This file contains information about each label
reference. The compiler tries to use the FASTSORT program, if
this program is on line. If FASTSORT cannot be found, SORT is
used. FASTSORT uses a temporary file called SORT~RG/SYS, while
SORT uses a temporary file called *SORTKEY/SYS. The sorted
cross-reference file is placed in a file called DBPLSXRn/SYS where
n is the partition ID or O. At normal completion, all of these
temporary files are deleted.

17.2.4 Display and Keyboard Keys

The compiler may he stopped temporarily if it is displaying
information on the screen by depressing the DISPLAY key. The
compiler continues when the key is released. Compilation may be
aborted at any time before the cross-reference sort is begun by
depressing the KEYBOARD key.

17-8 DATABUS COMPILER

17.2.5 ABTIF flag

If any errors occur during the compilation, the compiler sets
the DOS ABTIF (ABorT IF) flag. This condition can be detected and
used to abort a CHAIN or CHAINPLS operation by using the //l\BTIF
chain run time directive.

CHAPTER 17. PROG!V\lVl GENE:RA'TION 17-9

APPENDIX A. INSTRUCTION SUMMARY

SYNTACTIC DEFINITIONS

<aclist>

<afile>

< bl i st>

<brlist>

<char>

< cml i st>

<dlist>

<dnum>

<dnuml>

Any combination of numeric or character
string variables, FILEs, IFILEs, AFILEs,
or COMLSTs separated by commas. The list
may be continued on more than one line by
placing a colon (:) after the last
operand on the line to be continued.

A name assigned to an AFILE declaration.

The name assigned to the first of a set
of physically contiguous numeric string
or character string variables.

A list of execution labels separated by
commas. The list may be continued on
more than one line by placing a colon (:)
after the last label on the line to be
continued.

Any single character of the form
"<string>" where string is of length one
(1) •

A name assigned to a statement defining a
COMLST data declaration.

Any combination of <slit> and <occ>
separated by commas. The list may be
continued on more than one line by
placing a colon (:) after the last
variable on the line to be continued.

A decimal number between 0 and 255.

A decimal number indicating the number of
digits that should precede the decimal
po int.

APPENDIX A. INSTRUCTION SUMMARY A-I

<dnum2>

<dnum3>

<dnum4>

<dnum5>

<dnum6>

<dnum7>

<dnvar>

<DOS file spec>

<dsvar>

<equ>

< even t>

<eventl>

< f i I e>

A decimal number indicating the number of
digits that should follow the decimal
point.

A decimal number between 1 and 20
inclusive.

A decimal number between 1 and ~4

inclusive.

A decimal number between 0 and 20
inclusive.

A decimal number between -128 and 127
inclusive.

A decimal number between 1 and 255
inclusive.

A n am e as s i 9 ned to a stat e m en t de fin i n g a
destina tion nUJrler ic str i ng var iable.
This variable is generally changed as a
result of the instruction.

A DOS compatible file specification (see
DOS user's guide).

A name assigned to a statement defining a
destination character string variable.
This variable is generally changed as a
result of the instruction.

A name assigned to an EQUATE statement.

The occurrence of a program trap: PARITY,
RANGE, FORMAT, CFAIL, IO, SPOOL,
INTERRUPT, INT, FI, F2, F3, f4, F5,
<svar>, or <char>.

The occurrence of one of the following
pr og ram tr a ps : PARITY, RANGE, FOR~I{AT,

CPAIL, IO, or SPOOL.

A name assigned to a FILE declaration.

A-2 DATABUS COMPILER

<file list>

<flag>

<fflag>

< if i 1 e>

<index>

<key>

<label>

<list>

<nlist>

A list of ohe or more FILE, RFILE, IFILE,
RIFILE, and AFILE names separated by
commas. The list may be continued on
more than one line by placing a colon (:)
after the last operand on the line to be
continued.

One of the following flags: OVER, LESS,
ZERO, or EOS (EQUAL and ZERO are two
names fo r the same fl ag). The se fl ag s
are used to indicate the result of
certain DATABUS op~rations.

One of the following flags: FI, F2, F3,
F4, or F5. These flags are used to
indicate the status of the console's
function keys, (if the function key
feature is available on the processor) ,
and are used with the GOTO instruction.

A name assigned to an IFILE declaration.

A numeric variable used in connection
with list accessing.

Anon-null string variable used asa key
to indexed I/O accesses.

A letter, followed by any combination of
up to seven (7) additional letters and
digits.

Any combination of <slit>, <occ>, <list
controls> (see section 9.1.3), <nvar> and
<svar> separated by commas. The list may
be continued on more than one line by
placing a colon (:) after the last
variable on the line to be continued.

A list of numeric variables each pair of
which is separated by a comma (,). The
list may be continued on more than one
line by placing a colon (:) after the
last-variable on the line to be
continued.

APPENDIX A. INSTRUCTION SUMMARY A-3

< nl i t>

<nslist>

<null>

< nvar>

<occ>

<occl>

<pdnum>

<pdnuml>

<plist>

A literal of the form "<string>" where
str ing is a val id numer ic str ing (see
section 2.5).

Any combination of numeric and character
string variables separated by commas.
The list may be continued on more than
one line by placing a colon (:) after the
last variable on the line to be
continued.

A null string variable used as a key to
an indexed read.

A name assigned to ~ statement defining a
numeric string variable.

An octal control character (000 to 0377
inclusive) •

An octal control character between a and
0177 inclusive.

A positive decimal number between 0 and
127 inclusive.

A positive decimal number between 1 and
127 inclusive.

List controls used in a POLL statement.
The list controls are separated by
commas. The list may be continued on
more than one line by placing a colon (:)
after the last control on the line to be
continued.

<prep> A comma (,) or a valid preposition BY,
FROM, IN, INTO, OF, TO, USING, and WITH.
(Note: A preposition is allowed for
source code readability only, but any
preposition may be used even if it does
not make sense in English in the context
of the particular verb.)

<rfile> A name assigned to an RFILE declaration.

A-4 DATABUS COMPILER

<rifile>

<rn>

< route>

<seq>

<skey>

<slist>

< sl it>

< snva r>

<ssvar>

<string>

<svar>

A name assigned to an RIFILE declaration.

A numeric variable which contains a
positive record number (greater than or
equal to zero) used to randomly READ or
WRITE a fi 1 e.

A c h a r act e r s t ring va ria b 1 e used for
routing.

A numeric variable which contains a
negative number (less than zero) used to
READ or WRITE a file sequentially.

A numeric or character string variable
used with SEARCH.

A list of character string variables,
each pair of which is separated by a
comma (,). The list may be continued on
more than one line by placing a colon (:)
after the last variable on the line to be
continued.

A literal of the form "<string>" (see
section 2.5).

A name assigned to a statement defining a
source numeric string variable. This
variable is unchanged as a result of the
instruction.

A name assigned to a statement defining a
source character string variable. This
variable is unchanged as a result of the
instruction.

Any sequence of characters with the
exceptions noted in section 2.t; (forcing
character) .

A name assigned to a statement defining a
character string variable.

APPENDIX A. INSTRUCTION SUMMARY A-5

FOR THE FOLLOWING SUMMARY:

Items enclosed in brackets [] are optional.

Items separated by the I symbol are mutually exclusive (one
or the other but not both must be used) •.

COMPILER DIRECTIVES

<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>

EQU
EQUATE
IFC
IFEQ
IFGE
IFGT
IFLE
IFL'r
IFNE
IFNG
IFI\~L

IFNZ
IFS
IFZ
INC
INCLUDE
LISTOFF
LISTON

FILE DECLARATIONS

<label> FILE
<label>
<label>
<label>
<label>
<label>
<label>
<label>

IFILE
RFILE
RIFILE
AFT LE
AFILE
AFI LE
l\FILE

<dnumlocc>
<dnumlocc>
<eguldnumlocc>
<eguldnumlocc>,<eguldnumlocc>
<equldnumlocc>,<equldnumlocc>
<eguldnumlocc>,<equldnumlocc>
<eguldnumlocc>,<equldnumlocc>
<equldnumlocc>,<equldnumlocc>
<equldnumlocc>,<equldnumlocc>
<eguldnumlocc>,<equldnumlacc>
<equldnumlocc>,<equldnumlocc>
<equldnumlocc>
<equlonumlocc>
<equldnumlocc>
<DOS file spec>
<DOS file spec>

<dnum7>
< d n u m 7 > , < d n u 1:14 >
<d.nu~7>, ,<dnUln>
<dnum7>,<dnum4>,<dnum>

A-6 DATABUS COMPILER

DATA DEFINITIONS

<label> FORM <dnuml>.<dnum2>
<label> FORM <dnuml>.
<label> FORIV1 • <dnum2>
<label> FORM <dnuml>
<label> FORM < nl it>
<label> DIM <pdnuml>
< label> IN IT <slit>
<label> INIT <dlist>
< label> FOR1V1 *<dnuml>.<dnum2>
<label> FORM *<dnuml>.
<label> FOR!V1 * .<dnum2>
<label> FORM *<dnuml>
<label> FORM *<nlit>
<label> DIM *<pdnuml>
<label> INIT *<slit>
<label> INIT *<dlist>
<label> COMLST <dnum4>

APPENDIX A. INSTKUCTION SUMMARY A-7

CONTROL

ACALL
ACALL
BRANCH
CALL
CALL
CALL
CHAIN
DSCNCT
FILEPI
GOTO
GO(rO
GOTO
GOTO
GOTO
NORETURN
PAUSE
PI
RETURN
RETURN
RETURN
ROLLOUT
SHUTDO\I\]N
STOP
STOP
STOP
TAB PAGE
TRAP
TRAP
TRAP
TRAP
TRAPCLR

<svar>
<svar><prep><aclist>
<index><prep><brlist>
<label>
<label> IF <flag>
<label> IF NOT <£lag>
<svarlslit>

<dnum3>;<file list>
<label>
<label> IF <flag>
<label> IF NOT <flag>
<label> IF <fflag>
<label> IF NOT <fflag>

<nvarlnlit>
<dnumS>

IF <flag>
IF NOT < f1 ag>
<svarlslit>
<svarls1it>

IF <flag>
IF NOT < f1 ag>

<label> IF <event>
<label> GIVING <svar> IF <eventl>
<label> NORESET IF <event>
<label> GIVING <svar> NORESET IF <eventl>
<event>

A-8 DATABUS COMPILER

ARITHMETIC

LOGICAL

ADD
CHECKIO
CHECKII
CKIO
CKII
COMPARE
DIV
DIVIDE
LOAD
MOVE
MULT
MUL'rI PLY
STORE
SUB
SUBTRACT

AND
OR
NOT
XOR

<snvarlnIit><prep><dnvar>
<svar><prep><svarlsIit>
<svar><prep><svarlslit>
<svar><prep><svarlslit>
<svar><prep><svarlslit>
<nvarlnIit><prep><nvar>
<snvarlnlit><prep><dnvar>
<snvarlnIit><prep><dnvar>
<dnvar><prep><index><prep><nlist>
<snvarlnIit><prep><dnvar>
<snvarlnlit><prep><dnvar>
<snvarlnlit><prep><dnvar>
<snvarlnlit><prep><index><prep><nlist>
<snvarlnIit><prep><dnvar>
<snvarlnIit><prep><dnvar>

<ssvarlcharloccl><prep><dsvar>
<ssvarlcharloccl><prep><dsvar>
<ssvarlcharloccl><prep><dsvar>
<ssvarlcharloccl><prep><dsvar>

A P P E i\l D I X A • INS 'r R U C 'f ION S U 1Vl1"1 A R Y l\ - 9

CHARACTER STRING HANDLING

A-IO

APPEND
B UIVlP
BUMP
CLEAR
CLOCK
CLOCK
CLOCK
CLOCK
CLOCK
ClVlATCH
CIVlATCH
CMOVE
EDIT
ENDSET
EXTEND
LENSET
LOAD
{"1ATCH
:V10VE
MOVE
~YlOVEF PTR
!VlOVELPTR
REP
REPLACE
RESET
RESET
SCAN
SEARCH
SETLPTR
SETLPTR
srrORE
TYPe:;

<ssvarlslitlsnvar><prep><dsvar>
<dsvar>
<dsvar><prep><dnum;,lsnvar>
<dsvar>
TIME<prep><dsvar>
DAY<prep><dsvar>
YEAR<prep><dsvar>
VERSION<prep><dsvar>
PORT<prep><dsvar>
<ssvarlcharloccl><prep><dsvar>
<ssvar><prep><char/occl>
<ssvarlcharloccl><prep><dsvar>
<ssvarlsnvar><prep><dsvar>
<dsvar>
<dsvar>
<dsvar>
<dsvar><prep><index><prep><slist>
<svarlsIit><prep><svar>
<ssvarlsnvarlslitlnlit><prep><dsvar>
<ssvarlsnvarlnlit><prep><dnvar>
<ssvar><prep><dnvar>
<ssvar><prep><dnvar>
<ssvarlslit><prep><dsvar>
<ssvarlslit><prep><dsvar>
<dsvar>
<dsvar><prep><charlpdnumlsnvarlssvar>
<ssvarlslitloccl><prep><dsvar>
<skey><prep><blist><prep><nvar><prep><dnvar>
<dsvar>
<dsvar><prep><charlpdnumllsnvarlssvar>
<ssvarlslit><prep><index><prep><slist>
<svar>

Dl\TA8US COMPILEH

INPUT/OUTPUT

BEEP
CLOSE
COMeLR
COI'1TST
COMWAIT
CONSOLE
DEBUG
DELETE
DELETE
DELE'TEK
DIAL
DISPLAY
FPOSIT
INS ERr
INSERT
KEYIN
OPEN
OPEN
POLL
PREP
PREPARE
PRINT
READ
READ
READ
READKG
READKS
RECV
RELEASE
RPRINT
SEND
SPLCLOSE
SPLOPEN
UPDATE
WEOF
WRITAB
WRI'rE
WRITE
WRITE

<filel rfilel ifilel rifilel afile>
<cmlist>
<cmlist>

<list>[;]

<ifilelrifile>,<key>
<afile>
<ifilel rifile> ,<key>
<svarlslit>
<list>[;]
<filelrfilel ifilelrifilelafile>,<dnvar>,<dnvar>
<ifilelrifile>,<key>
<afile>
< 1 is t> [;]
<filel rfilel ifilel rifilelafile>,<svarlslit>
<afile>,<svarlslit>,<svarlchar>
<plist>,<ssvar>,<ssvar>;<plist>,<nslist>
<filelrfile>,<svarlslit>
<filel rfile>,<svarlslit>
<list>[;]
<filel rfilelafile>,<rnlseq>;<; I<list>[;]>
< i f i 1 e I r i f i 1 e> , < r n I se q I ke yin u 11> ; <; 1<1 i s t> [;] >
<afile>,<slist>;<; I<list>[;]>
< a f i 1 e> ; <; 1<1 is t> [i] >
<ifilel rifile>i<i I<list> [i]>
<cmlist>,<route>i<slist>

<list>[;]
<cmlist>,<route>i<nslist>

<svarlslit>[,<svar>l<slit>]
<ifilel rifilelafile>i<i I<list> [;]>
<filel rfilel ifilel rifilel afile> ,<rnl seq>
<filel rfile> ,<rnl seq>; <; I<list> [;] >
< f i 1 e I r f i 1 e I a file> , < rn I se q> ; <; 1< 1 i s t > (; 1 >
<ifilel rifile> ,<rnl seql key>; <; I<list> [;] >
<afile>;<; I<list> [;]>

APPENDIX A. INSTRUCTION SUMMARY A-II

APPENDIX B. INPUT/OUTPUT LIST CONTROLS

In the table below, the following abbreviations are used in
the USED IN column to indicate which DATABUS instructions the list
controls· can be used in: C=CONSOLE, D=DISPLAY, K=KEYIN, P=PRINT,
Pl=POLL, R=READ, W=WRITE.

CONTROL

;

*+

*+

*+

*-

*-

*<n>

USED IN FUNc'rION

KDP Suppress a new line function when
occurring at the end of a list (see 9.,
10 . 1 • 3 • G, and 10. 2) .

R Suppress scanning for logical end of
r eco rd (see 13.4).

W Suppress writing logical end of record
(see 13.5).

KDP

W

PI

KDP

W

p

Turn on Keyin Continuous for KEYIN or
suppression of space insertion after the
logical length of a variable for DISPLAY,
PRINT, and RPRINT (see 9.1.3.9, 9.2.3.9,
10.1.3.8, and 10.2).

Turn on space compression during WRITE
(see 12.3.4.3.1).

Turn on poll-continuous option in POLL
(se e se c t ion 11. 7) •

Turn off Keyin Continuous or allow
insertion of spaces into a variable after
its logical length for DISPLAY, PRINT, and
RPRINT (see 9.1.3.10, 9.2.3.10, 10.3.1.9,
and 10. 2) .

Turn off space compression during WRITE
(see l2.3.4.3.2).

Causes a horizontal tab on the printer to
the column indicated by the number <n>
(se e 10. 1. 3 • 5 and 10. 2) .

APPENDIX B. INPUT/OUTPUT LIST CONTROLS 8-1

*<n> RW

*<nvar> P

*<nvar> RW

*3270 KD

*8 KO

*C KDP

*CL K

*1)E K

*DV

*EF KDC

*EL KDC

*EOFF K

Tab s pe c i f i cat ion fo r REA 0 0 r WR I TAB
operations (see 13.4.1 and 13.6.1).

Causes a horizontal tab on the printer to
the column indicted by the value of <nvar>
(se e 10. 1. 3 • 10 and lO. 2) •

The logical file pointers are moved to
that character position relative to the
current physical record (see 13.4.1 and
13.5.1) .

Enable 3270 mode in KEYIN and DISPLAY (see
9.1.3.29 and 9.2.3.20).

Emit an audible BEEP at the terminal (see
9.1.3.25 and 9.2.3.1'1).

Causes a carriage return to be generateri
(see 9.1.3.5, 9.2.3.5, 10.1.3.2, and
10 • 2) •

Clear the port's key-ahead buffer (see
9.1.3.30) .

Restrict string input to digits (0-9) only
(see 9.1.3.20).

Display a variable's value during KEYIN
without performing a KEYIN operation on it
(see 9.1.3.24).

Causes the screen to be erased from the
current cursor position to the bottom of
the display (see 9.1.3.3, 9.2.3.3 and
9 • 3) •

Causes the line to be erased from the
current cursor position (see 9.1.3.2,
9.2.3.2 and 9.3).

Prevents character echo to the display
during keyboard input operations (see
9.1.3.13) •

B-2 DATA8US COMPILER

*EON

*EP

*ES

*F

*HOFF'

*HON

*IN

*I'f

*JL

*JH

*L

*r"1P

K

KDPl

RDC

p

KD

KD

KD

KD

K

KDP

w

Causes character echo to the display
during keyboard input operations (see
9.1.3.14) •

Generate even parity on outgoing bytes
during KEYIN, DISPLAY, and POLL (see
9.1.3.27, 9.2.3.18, and 11.7).

Causes the cursor to be positioned at
horizontal position 1 of the top row of
the display and the entire display to be
era sed (se e 9. 1 • 3 • 4, 9. 2. 3 • 4 and 9. 3) •

Causes the printer to be positioned to the
top of form (see 10.1.3.1 and 10.2).

Turn off highlighting mode (display
characters normally, see 9.1.3.22 and
9.2.3.15) .

Turn on highlighting mode (display
inverted image of all characters
displayed, see 9.1.3.21 and 9.2.3.14).

Clear Text-inversion mode (see 9.1.3.1~
and 9.2.3.13).

Set Text-inversion mode (invert alphabetic
input, see 9.1.3.15 and 9.2.3.12).

Left justify numeric variable and zero
fill at right if there is no decimal
point. Left justify string variable and
blank-fill (or zero-fill if *ZF option is
9 i v en) to end 0 f s t ring (s e e 9. 1 . 3 • 1 7) .

Right justify string variable and blank
(0 r zero i f * Z Fop t ion is g i v en) fill at
left (see 9.1.3.18).

Causes a linefeed to be generated (see
9.1.3.6, 9.2.3.6, 10.1.3.3, and 10.2).

Convert data in a numeric variable to
minus overpunch format on disk (see
1 2 • 3 • 4 • 3 • 4.) •

APPENDIX B. INPUT/OUTPUT LIST CONTROLS 8-3

*N KDP

*NP KDPI

*OP KDPI

*P<h>:<v> KD

*P<h>:<v> C

*POFF KD

*PON KD

*R KD

*HD KD

Causes the cursor or printer to be
positioned in Column 1 of the next line
(see 9.1.3.7, 9.2.3.7, 10.1.3.4, and
10.2) .

Generate no parity on outgoing bytes
during KEYIN, DISPLAY, or POLL (see
9.1.3.28, 9.2.3.19, and 11.7).

Generate odd parity on outgoing bytes
during KEYIN, DISPLAY, or POLL (see
9.1.3.26, 9.2.3.17, and 11.7).

Causes the cursor to be positioned
horizontally and vertically to the column
and line indicated by the numbers <h>
(horizontal 1-80) and <v> (vertical 1-24).
These numbers may either be positive
decimal numbers or numeric variables (see
9.1.3.1 and 9.2.3.1).

Causes the cursor to be positioned
horizontally to the column indicated by
<h> inside the area on the console
reserved for terminal to operator
communications (the <v> vertical position
of the list control is ignored, see 9.3).

Send a II pr in ter 0 ff" char ac ter to a
terminal (see 9.1.3.33 and 9.2.3.23).

Send a "p r in t e ron II c h a rae t e r to a
terminal (see 9.1.3.32 and 9.2.3.22).

Roll up the screen one line (see 9.1.3.8
and 9. 2. 3 .8) •

Roll down the screen one line (see
9.1.3.31 and 9.2.3.21).

8-4 DATA8US COMPILER

*RV

*T

*T<n>

*T<n>:<m>

*W

*W<n>

*ZF

*ZF

K

K

K

KPI

KD

1<0

K

Retain the variable value if a keyin of
ENTER only is received. Also enable the
LESS flag to be set if the KEYIN is
terminated by a (*T) timeout, the OVER
flag if it is terminated by the NEW LINE
key or function keys, and the EOS flag if
it is terminated by a null entry (see
9.1.3.23) .

Time out after 2 seconds have elapsed
between successively entered characters
for KEYIN statement (see 9.1.3.11).

Time out after <n> seconds (see section
9.1.3.11)

Specifies the time out value (n) and NAK
count (m) during KEYIN and POLL (see
9.1.3.11, and 11.7).

Pause for one second (see 9.1.3.12 and
9.2.3.11) .

Pause for <n> seconds (see 9.1.3.12 and
9.2.3.11) .

Zero fill instead of blank fill string
variable (see 9.1.3.19).

Left zero fill numeric variable (see
10.1.3.7, 10.2, and 12.3.4.3.3).

APPENDIX B. INPUT/OUTPUT LIST CONTROLS 8-5

APPENDIX C. SAMPLE DATASHARE SYSTEM

The programs described in the following sections are a
complete set of the programs necessary to bring up a DATASHARE
system. This system includes a method of logging activity on the
system and a great deal of system security.

The following is a list of the events that are logged by the
systell1: user siqn ons I user sign offs, inval id attempts to sign
an, all program errors not controlled by the userls program, all
attempts to execute a program, all attempts to rollout and all
rollout returns.

System security is provided by requiring that a user have
valid identification before allowing him to sign on. Additional
security is provided by assigning security clearances to all
users, then requiring the appropriate security clearance before
allowing a user to execute a program.

** SPECIAL NOTE **

The so urce fi 1 es fo r the prog rams desc r ibed in thi s Append ix
are included on the released object tape. These source files are
provided solely for the customer's convenience. They are not a
part of the supported software. Any errors or suggested --­
modifications to these programs should be submitted as a USER'S
COMMENT on this user's guide.

To generate this system:

use the DOS MIN command to transfer the following programs to
yo ur disk,

use the chain file provided (see section C.I.S.I) and the DOS
CHAIN command to compile the system programs (a description of
the chain file tags to be used is included in the chain file).
A suggested DOS command line to compile the system programs
is:

CHAIN MAKEANMA/CHN;I,2,3,4,SAMPLE,NEW

compile the supplemental system program "NEl"lUSER" (see section
C.3.l) ,

execute the DATASHARE interpreter {see the user's guide of the

APPENDIX C. SAMPLE DATASHARE SYSTEM C-l

appropriate interpreter),

when the ANSWER program asks:

What is your identification number?

you should type: 999999999

This will sign you onto the system as "Anyuser" with the
highest possible security clearance. (Note: for added
security, identification numbers are not displayed on the
screen.)

When the MASter MENU program asks for a program number by
dis pI a y i ng :

Selection by number

you should type: 3

to get "Program Selection by Name".

In res po n se to:

ENTER PROGRA~ NAME:
you should type: NEWUSER

to execute the NEWUSER program.

When the NEWUSER program asks for a program number as follows:

Selection by number

you should type: I

to "Authorize a new user".

In res po n se to:

you should type your social security number or any other
9-digit number you want to use as your identification number.

In response to the successive requests:

Enter the user's name.

C-2 DATABUS COMPILER

Enter the user's security clearance.

you should type your name followed by a 9. Note: this
assumes you are the system engineer and will be one of the few
people who will have the highest possible security clearance.

When the NEWUSER program asks for another user's
identification number, you should indicate no more additions
by tapping the ENTER key.

In response to:

Are you done? (YIN)

you should type: Y

to indicate that you are done.

At this point you are returned to the NEWUSER menu. You
should now either delete "Anyuser" from the list of authorized
users or modify his security clearance to one of the lowest
possible levels. (Remember: "Anyuser's" identification
number is 999999999.)

Now you should type: 99

to allow the NEWUSER program to continue.

To add any more users to the list of authorized user's you may
use the NEWUSER program.

APPENDIX C. SAMPLE DAT,1\SHARE SYSTEM C-3

e.l SYSTEM PROGRAMS

The following programs must be compiled to initiate the
execution of this DATASHARE system.

C.l.l Sample ANSWER Program

· DATASHARE ANSWER PROGRAM

• NOTE: THE PORT NUMBER INCLUSION FILE IS NAMED "PORTN/TXX" TO
DEMONSTRATE THAT EXTENSIONS OTHER THAN "/'T'XT" IV1AY BF.:
USED FOR INCLUSION FILES.

POHTN
TODAY

*

INCLUDE
INIT

S ECUR ITY FOR!V1

PORTN/TXX
IImm/dd/yy"

1

(PORTN FORr1 " 1", ETC.)
DATE PASSED IN COMMON

SEE DESCRIPTION BELOW

· THIS VARIABLE IS USED TO I~DICATE THE SECURITY RATING FOR WHICH
• THE USER IS AUTHORIZED. IT IS INITIALIZED FROM THE FILE OF
· AUTHORIZED USERS. A PROGRAM CAN REQUIRE THAT THE USER HAVE THE
· SECURITY CLEARANCE NECESSARY TO USE THAT PROGRAM. ZERO IS THE
· LOWEST RATING AND NINE IS THE HIGHEST RATING.
* EXAMPLE:
• SAY THAT THE USE OF PROGRAM "ROLLOUT" IS TO BE RESTRICTED TO
• ONLY A FEW USERS. THOSE USERS WHO WILL BE ALLOWED TO USE
• "ROLLOUT" WI LL BE GI VEN A SECUR ITY RATING OF 7. ALL OTHER
· USERS t'l[ILL BE GIVEN LOWER SECURITY RA'fINGS. PROGRAM "ROLLOUT"
· IS THEN WRIT'rEN SO THAT IT WI LL II ROLLOUT" ONLY \'I[HEN THE US ERS
· RA'rING IS 7. IF THE USER ATTEIV1PTING TO USE "ROLLOUT" HAS ANY
· RATI~lG LESS THAN 7, THEN A STOP INSTRUCTION IS EXECUTED.

* SOME SUGGESTED SECURITY LEVELS ARE AS FOLLOWS:

SECURITY USED BY:
a •.... DISCONTINUED SERVICE
1-3 ... DATA EN'rRY OPERATORS
4-c) ••• DATA ENTRY SUPERVISORS
7 ..•.. PROGRA1V1MER
8 ...•. PROJECT ~ANAGER
9 SYSTEMS PROGRAMMER

C-4 DATABUS COMPILER

* · .. .
• SCRATCH VARIABLES

C\~K2

CWI<3
N\tJK2
NWK9

DIM
DIM
FORI'1
FORM

2
3
2
9

*
USERS
US ERID
*

IFILE
DIM 9

FILE OF AUTHORIZED USEHS
KEY USED h7ITf-I FILE "USERS"

· .. .
ROLCHAIN FILE
SEQ FORM
*

ROLLOUT CHAI~ FIL8
"-I"

·
. OU'rpUT PARAIV1ETERS

'r I/'1E INIT
DAY ~OHl'1

MONTH FORl'1
YEAR FORM
*
JDAY FORf'1
CDAY DIl'-l
CYEAR 011'1
*
NFEB FORM
N30 FORM
N31 F Of-H·'1

OF SUBHOUTINE

"hh:mm:ss"
2
2
2

3
3
2

1128"
"30 II
"31 "

"GETDATE"
TIME IN 24-HH. FORMAT
hours:minutes:seconds

mL1/ dd/yy

,1ULIAN DATS
DAY (CHARACTER STRING)
YEAR (CHARACTER STRI~G)

OF DAYS IN FEBRUARY
USED FOR 3D-DAY MONTHS
USED FOR 31-DAY MONTHS

*
NAME DIM

INCLUDE
20
LOGDATA/'rXT

USER'S NAME FROM LOG FILE

APPENDIX C. SAMPLE DATASHARE SYSTEM C-5

+ ..•.••••..•....•....•••..•...••••..•.•.•••••••••.••.••.•••..•..•
· /VjAI~LI~E

INCLUDE LOGIO/TXT
* ..
· SET THE TRAPS SO THAT IF ANYTHING GOES WRONG THE USER STILL
· CANNOT LOG ON WITHOUT AUTHORIZATION

THAP BAD.A.NS IF 10
TRAP BADANS IF CFAIL
THAP BADANS IF FORI'1AT
TRAP Bl\DANS IF RANGE
THAP BADAr\lS IF PARITY

*
· LOG THE USER OFF THE SYSTEM.

· THI~-) FUNCTION IS PUT AT THIS PO Ii\]T IN THE ANSWEH PROGRA!'1 SO
· THAT ANYONE WHO TURNS OFF THE PORT (INSTEAD OF USING A NORMAL
· LOG-OFF) WILL STILL GET LOGGED-OFF. NOTE THAT; WHEN THE PORT
· IS TURNED OFF, THE ANS\"iER PROGRAM" '!'JILL CONTINUE EXECUTING UNTIL
· THE FIRST CONSOLE, KEYIN OR DISPLAY STATEMENT IS REACHED.

*
· GET THE DATE AND TI~E.

*

THAP
CALL
f'10V8
CLEAR
CALL

BADANS IF 10
GETDATE
"LOG-OFF II TO LOGTYPE
LOG INFO tNR I'rES BLANK "OTHEK INFO. II
LOG\tJRITE

..
· OPEN THE FILE OF AUTHORIZED USERS

· NOTE: 1'HE NAf"lE OF THE INDEX FILE NEED NOT BE THE SA!'1E AS THE
NAME OF THE TEXT FILE WHICH IS INDEXED. (FOR INSTANCE;
"USERS/ISI" COULD BE CREATED FROM A TEXT FILE N,l\MED
"USERS/DSP".) THIS PROVIDES ADDITIONAL SYSTEM SECURITY,
SINCE "USERS/DSP" CANNOT BE ACCl::SSED BY DATABUS PROGHAMS

C-5

TRAP
OPEN
THAP
GOTO

NOUSER IF 10
USERS, "USERS II

8ADANS IF 10
LOGON

DATABUS COMPILER

*
· FILE CONTAINING AUTHORIZATIONS IS MISSING

NOUSER DISPLAY *ES:

*
GOTO

*P20: 4, "You cannot log-on, the fi 1 e conta in-" :
* P 2 0 : 5 , II i ng the lis t 0 f aut h 0 r i z ed use r sis II :

*P20:6,"missing! To use the system, you":
*P20:7,"must use the DOS INDEX utility to":
*P20:8," crea te the file, #IIUSERS/ISI#II.11
HANG

· .. .
• LOG-THE USER ONTO THE SYSTEM

LOGON DISPLAY *ES,*Pl5:4,"D A T ASH ARE S Y S T EMil.

*

II 0 N - L IN Ell:
*P30:6,IIYou are on port ~~",PORTN

· .. .
• DISPLAY THE DATE AND TIME

*

CALL
DISPLAY

GETDArrE
*P31:8,"Today is ",TODAY

· .. .
• CHECK TO SEE IF THE USER IS AUTHORIZED

· NOTE: FOR ADDITIONAL SECURITY, ECHO OFF IS USED WHILE ENTERING
THE IDENTIFICATION NUMBER. THIS PREVENTS THE ID FROM
BEING DISPLAYED AT THE PORT.

THE IDENTIFICATION NUMBER BEING REQUESTED IS THE USERS
SOCIAL SECURITY NUMBER. OTHER IDENTIFICATION TECHNIQUES
MAY BE USED.

KEYIN

COI'1 PARE
GOTO
MOVE
GOTO

*p 1 : 1 2 , "Wh a tis yo u r
*EL,*EOFF,NWK9
"100000000" TO Nl-JK9

BADID IF LESS
NWK9 TO USERID
READID

identi fication number? ":

MAKE SURE HE ENTERS
ALL 9 DIGITS

APPENDIX C. SAMPLE DATASHARE SYSTE~ C-7

* ..
• UN-AUTHORIZED USER

• NOTE: THE PROGRAMMER CAN SET THE PENALTY FOR ENTERING A BAD
ID BY ADJUS'rING THE NUMBER OF *W'S USED

BADID BEEP
DISPLz\ Y

BEEP
MOVE
MOVE
CALL
TRAP
Go'ro

*P50:12,*EL,"You are not an authorized user!":
*W,*W,*W,*W,*W

IIBAD 10" TO LOGTYPE
NWK9 'ro LOGINFO
LOGWRITE
BADANS IF 10
LOGON

* ... It ••••••••••••••••••••••
• SEE IF THE USER IS AUTHORIZED

READID READ
GOTO
DISPLAY
1V10VE
MOVE
CALL
TRAP
DISPLAY

USERS,USERID;USERID,NAME,SECURITY

*

BADID IF OVER CAN'T FIND HIS NUMBER
* P 50 : 1 2 , * E L , II Th a n k yo u" , * W , * W , * PI: 12 , * E L
II LOG-ON" TO LOGTYPE
NAME TO LOGINFO
LOGWRITE
BADANS IF 10
* P 2 0 : 1 0 , " He 11 0, ", N AM E :
*P20:11,"You are logged on at ",TIME,".":
*~I,*W,*W

..
• IF USER HAS HIGH ENOUGH SECURITY CLEARANCE, CHECK TO SEE IF
· LOG FILE NEEDS CLEANING

*

"4" TO SECURITY
IF LESS

• LOOK AT THE NUMBER OF LOG ENTRIES

IICHAIN to MASTER"

• IF MOHE THAN 500, TELL THE USER HE NEEDS TO REORGANIZE

COMPARE
STOP

"500" TO LOGRN
IF LESS

C-8 DATABUS CO~PILER

"CHAIN to MASTER"

* ... ,..
• FIND OUT IF THE USER WAt\JTS TO RE-OHGANIZE THE LOG FILE

KEYIN

CMATCH
STOP

*8S:
*P20:4,"The log file is now using more than":
*P20: 5," five hundred disk sectors. It needs":
* P 2 0 : S , " to be r e - 0 r 'j ani zed to f r e e t his" :
*P20:7,"space.":
*Pl:12,"Do you want to re-organize the log it.

" f i 1 e? (Y / N) 1', CWK 3
lIy" TO ChlK3

IF NOT EQUAL lICHAIl\J to ~~ASTER"

*
• RE-ORGANIZE THE LOG FILE
• CHAIN FILE NEEDS TO BE WRITTEN SO OPEN CHAIN FILE

DISPLAY
MOVE
tVlOVE
CALL
TRAP
PREPARE
TRAP
GOTO

*ES,"VV'riting CHAIN file."
"ROLLOUT" TO LOGTYPE
liRE-ORGANIZE LOG FILE" TO LOGINFO
LOGWRITE
NOCHAIN IF 10
ROLCHAIN," ROLCHAIN"
BAD.~NS IF 10
w~'{ ITECHN

* .. .
• CHAIN FILE COULD NOT BE CREATED

NOCHAIN DISPLAY

WRITAB
S'fOP

*ES:
*P20:4,"CHAIN file could not be written!":
*P20:5,"Re-organization discontinued.":
*W, *v.f
LOGFILE,LOGRNi*12,"NO ROLLOUT Il

ilCHAIN to IYlASTER"
*
· WRITE THE CHAIN FILE

WR I'r EC HN l.~iR IT E
WRITE
WRITE
VJR ITE

WRITE
WRITE
WRITE

HOLCHAIN,SEQi*+,II. RE-ORGANI'ZE SYSTEM LOG FILE:
ROLCHAIN,SEQi ll

."

HOLCHAIN, SEQ; III I .11

ROLCHAIN,SEQi "11* TAP THE DISPL..l\Y KEY TO ".
"START RE-ORGANIZATION"

R 0 LC HA IN, SEQ i "I I . 11

ROLCHAIN,SEQi"ll. SAVE THE LOG FILE"
ROLCHAIN,SEQi"II."

APPENDIX C. SAMPLE DATASHARE SYSTEM C~9

*

*

*

*

WRITE

WRITE
WHI'fE

WHITE
'v'JR IT E
WRITE

h!RI'fE
~"'R ITE
WRITE
WRITE
WRITE
WRITE
WRITE

l~RITE

WRITE

WRI'rE
h1RITE
WRI'rE
WRITE
WEOF

ROLCHAIN,SEQi'. Either of the following"·
techniques may by used:"

R 0 L C HA IN, SEQ i • \I

ROLCHAI"J,SEQi • SAPP fv'lASTERLG,LOGFILE,"·
!V1ASTERLG II

ROLCHAIN,SEQi. or"
ROLCHAIN,SEQi • LIST LOGFILEiLII
ROLCHAIN,SEQi • LISTING OF MASTER LOG FILEII

ROLCHAIN,SEQi"LIST LOGFILEiL"
ROLCHAIN, SE:)i "LISTING OF MASTER LOG FI LEI!
ROLCHAIN,SEQi"II."
HOLCHAIN,SE()i"ll. RE-CREATE THE LOG FILE"
ROLCHAIN,SEQi"II.1I
ROLCHAIN,SEQi "BUILD LOGf'ILEi!"
ROLCHAIN,SEQi"*OOO":

II
II

"
II

PORT":
LOG TYPE II :

DATE II :

'r IMEII :
OTHER I:-.JFORIVlATION"

R 0 L C HA IN, S E I:) i "* r e c" :
" () " :
"() " :
II () " :

"() " :
n (... '.

ROLCHAIN,SEQi"!"

R 0 LC HA IN, SEQ i "I I . "
ROLCHAIN,SEQi"ll. RETURN TO DATASHARE"
ROLCHAIN, SEQi "I I."
ROLCHAIN,SEQi"DSBACKTD"
ROLCHAIN,SEQ

..
• ROLLOUT TO THE CHAIN FILE
• CHAIN TO THE MASTER MENU

C-IO

DISPLAY
TRAP
ROLLOUT
TRAP
IvJOVE
CLEAR
CALL
STOP

*ES,"Re-organization in progress."
NOC HA IN IF CFAI L
"CHAIN ROLCHAIN II

BADANS IF CFAI L
"ROLL RET" TO COG'TYPE
LOGINFO
LOG\t\]R l'fE

"CHAIN to MASTER"

DATABUS COMPILER

*
• SUBROUTINE TO GET THE TIME, DAY AND YEAR

• ON EXIT VARIABLE: TI1VlE = "hr:mn:sc"
DAY = "dd"

GETDATE CLOCK

*

CLOCK
CLOCK

MONTH = IImmil
YEAR = "yy"
TODAY = "mm/dd/yy"

YEAR TO CYEAR
DAY TO CDAY
TIME TO TIME

GET THE YEAR
GET THE DAY
GET THE TI1'1E

· PERFORM BOUNDARY CONDITION CHECKS IF DESIRED

CLOCK DAY TO CtfllK3 IF 1'1 1'1 E TAKEN BEFORE
MA'TCH CDAY TO CWK3 I'll DNIGHT AND DAY TAKEN
GOTO GETDATE IF' NOT EQUAL AFTER ''1IDNIGHT, REPEAT

*
CLOCK YEAR TO CWK2 IF DAY TAKEN BEFORE
MATCH CYEAR ;ro CWK2 NE',,oJ YEARS & YEAR TAKEN
GOTO GE;TDATE IF NOT EQUAL AFTER NEW YEARS, REPEAT

*
MOVE CDAY TO JOAY
MOVE 110 II TO MONTH INITIALIZE
MOVE CYEAR TO YEAR

*
COIVlPARE "l" TO JOAY SYSTENI I N I'r I A LIZ ED
GOTO NODATE IF LESS WITHOUT DATE!

*
• PERFOru'1 YEAR-CHECK IF DESIRED

*

COMPARE
GOTO
COMPARE
GOTO

"70" TO YEAR
NODATE IF LESS
"80" TO YEAR
NODATE IF NOT LESS

..
· MAKE SURE FEBRUARY IS HANDLED PROPERLY ON LEAP YEARS

MOVE
DIVIDE
MULTIPLY
COMPARE
GOTO
f\10VE

YEAR TO N\'I!K2
"4 " INTO NWK2
"4 " INTO N\'-']K2
YEAR TO Nt'-']K2
l'1DLOOP IF NOT
"29" TO NFEB

EQUAL
IS IT A LEAP YEAR?
NO, LEAVE NFEB = 28.
YES, SET NFEB = 29.

APPENDIX C. SAMPLE DATASHARE SYSTEM C-ll

*
· COMPUTE THE MONTH

I'v1DLOOP

*
lVIDLl

*

ADD
LOAD

SUBTRACT
GOTO
GOrrO

ADD
!~OVE

"1" TO fV10NTH
NWK2 FROM ~ONTH OF N31,NFEB , N31: .JAN/F8B/rvIAR

APR/MAY/JUN
JUL/AUG/SEP
OCT/NOV/DEC

NWK2 FROM .JDAY
MOL 1 IF EQUAL
MOLOOP IF NOT LESS

N\II/K2 Iro .JDAY
JDAY TO DAY

N30,N31,N30:
N31,N31,N30:
N31,N30,N31

SUBTRACT DAYS OF THE MONTH
UNTIL MONTH FOUND

UNBIAS FROM LAST SUBTRACT
TO GET DAY OF THE MONTH · .. .

• PUT THE DATE INTO mm/dd/yy FORMAT

!V1DL2 CLEAR
APPEND
APPEND
lvlOVE
Ci'I\ATCH
GOTO
C;vIOVE:

'''lDL3 APPEND
APPEND
;'10VE
C!VlATC H
GO'TO
CMOVE

MDL4 APPEND
RESET
RETUHN

*

TODAY
r'lO,"lTH TO TODAY
11/" TO TODA.Y
DAY TO C'.\fl< 2
" :I TO Ct 'JK2
i"iDL3 IF NOT r:QUAL
;fa" TO ChlK2
CWK2 TO TODAY
"/" TO TODAY
YEAR TO CV.JK2
"

;,
TO C\~K2

MOL4 IF NOT EQUAL
"0 II TO C',"lK2
CWK2 TO 'rODA'!.
TODAY

IS THERE A LE~DING 8LANK?
NO, CONTINUE~

yES, REP LAC E ITt'" IT H 0

IS THERE A LEADI~G BLANK?
NO, CONrr IN US
YES, REPLACE rr WITH 0

· .. .
• DATE IMPROPER OR NOT INITIALIZED

NODATE

*

BEEP
KEYIN *Pl:8,*EF,"What is the current month? ",MONTH:

*N," vvhat is the current day? II ,DAY:
* r-J , "Wh a tis the cur r en t ye a r? ", YEA R

· .. .
• CHECK FOR INVALID DAY ENTERED

C-12

COivJPARE
GOTO
COlvJPARE
GOTO

"1" TO DAY
NODATE IF LESS
"32" TO DAY
NODATE IF NOT LESS

OATAB US COIVl PI LEH

* ..
• CHECK FOR INVALID MONTH ENTERED

*

COMPARE
GOTO
COMPARE
GOTO

"I" TO rV}ONTH
NODATE IF LESS
1113" TO MONTH
NODATE IF NOT LESS

..
• CHECK FOR INVALID YEAR IF DESIRED

COMPARE
GOTO
COMPARE
GO'fO
DISPLAY
GOTO

"70" TO YEAR
NODATE IF LESS
"80" TO YEAR
NODATE IF NOT LESS
* PI: 1 2 , \I Th a n k yo u" , * W , * hi , * PI: 8 , * E F
MDL2

*
· A TfRAP HAS OCCURED WHI LE IN THE ANSWER PROGRAM. DO NOT ALLOW
· A CHAIN TO THE MASTER PROGRAM

BADANS DISPLAY

GOTO

*P58:1,*EL,"
*P58:2,*EL,"
*P58:3,*EL,"
HANG

Unrecoverable system":
error! Consult your":
programmer."

APPENDIX C. SAMPLE DATASHARE SYST8M C-13

C.I.2 Sample MASTER Program

· DATASHARE l'1ASTEH PROGRAM FOR LOGGING ERRORS

*
• COMMON AREA
• THIS AREA GETS OVERWRITTEN WITH AN II-BYTE CHARACTER STRI~G

• VARIABLE WHEN AN ERROR OCCURS

• NO'rE: "ERROR II USES THE SAME NU/VIBER OF 8YTES OF USERS DATA AREA
AS THE VARIABLES "PORTN II AND "TODAY" DEFINED IN COMMON

ERROR DIM
SECURITY FORM

*12
*1

ERROR l'1ESSAGE
USER'S SECURITY CLEARANCE

*
• NOTE: THE PORT NUMBER INCLUSION FILE IS NAMED "POi<TN/TXX" TO

DEIv10NSTr{ATE THl\T 8XTENS IONS OTHEH THAN "/TXT" !V1AY 8E
USED FOR INCLUSION FILES.

TODAY
INCLUDE
INIT

PORTN/TXX
II / /

\I

*
ANSWEH DII'1
T IIv1E INIT
CWr<1 DIlv1
CWK2 OINl
CWKII INIT

INCLUDE
*

8
"hh:mm:ss"
1
2
"

LOGDATA/TXT

II

ho ur s:m in ute s: second s
WORK AREA: CHAR.TYPE,LEN=1
WORK AREA: CHAR.TYPE,LEN=2
CHARACTER, LENGTH 11

..
• SEE IF THERE ARE ANY DATASHARE ERRORS.
· IF NO ERROR OCCURED, THE 2-8YT8 PORT NUMBER WILL 8E ~OV8D INTO
• THE WORK AREA. IN THIS CASE, 'fHE 9TH CHARACTER OF CWKII t'\TILL
· STILL BE A BLANK.
· IF AN ERROR OCCURSD, THE II-BYTE ERROR Iv1ESSAGE ~\lILL BF. 1\10VED
· INTO CWKll. IN THIS CASE, THE 9TH CHARACTER OF Ctl\]f<11 1."iILL 8E
· AN ASTERISK.
• Bye H E C KIN G THE 9 T H C H A RAe T t: H , IT CAN BED E T 8 H!'1 I i\Ir: D I.~l Ii E THE: F< AN
· ERROR OCCURED OR NOT.

C-14

MOVE
RESET
C'VlATC H
GOTO
Ir-JCLUDE

ERROR TO Ct\JKll
C\-\rK 11 TO 9
"*,, TO CWKl1
MASMENU IF NOT EQUAL
LOGIO/TXT

DATAB US COMPI LE!-{

* ...
• SINCE THE DATE PASSED IN COMMON HAS BEEN OVERWRITTEN, GET THE
• JULIAN DATE AND USE THAT FOR LOGGING

*

CLOCK
ENDSET
APPEND
CLOCK
APPEND
RESET

DAY TO 'rODAY
TODAY
"/" TO 'fODAY
YEAR TO CWK2
CWK2 TO TODAY
TODAY

• WRITE THE LOG-OFF

*
· GIVE

PAUSE

*

CLOCK
MOVE
MOVE
CALL

'rHE USF;R

BEEP
DISPLAY
KEYIN
CMATCH
GOTO
KEYIN
CMATCH
GOTO

T I Ivt E TOT I Ivt E
" ERR OR" TO LOGTY P E
ERROR TO LOGINFO
LOGWRITE

A CHANCE TO LOOK AT THE SCREEN BEFORE ABORTING

*P1: 1,*EL, "Untrapped DATASHARE error at ",TII'v1E
* P 6 7 : 1 , II (P) a use? ", * T , * + , CWK 1
"P" TO CWK1 CHECK FOR NULL STRING
LOGOFF IF NOT EQUAL
P67:1,"(C)ontinue? n,+,*EL,CWK1
nC n 'ro CWKl
PAUSE IF NOT EQUAL

· CHAIN TO THE APPROPRIATE ANSWER PROGRA~

LOGOFF MOVE
COIVlPARE
GOTO
RESET

*
BUILDANS CLEAR

APPEND
APPEND
RESET
TRAP
CHAIN

PORTN TO C\"iK2
"10" 'ro PORTN
BUILDANS IF NOT LESS
CWK2 TO 2

ANSWER
"ANSWER" TO ANSt"lER
CWK2 TO ANSWER
ANSWER
BADANS IF CFAIL
ANSWER

GET THE PORT NUMBER
REMOVE LEADING SPACES

BUI LD THE NAI'v1E
FORM: ANSWERn
WHERE: n IS THE PORT
NUMBER (8 < n < 17)

A P PEN D I XC. SA 1'v1 P L E DA T AS HA RES Y s'r EM C-l 5

* · .. .
• ANSWER PROGRAM COULD NOT BE FOUND

BADANS DISPLAY

GOTO

*

*P58:1,*EL,"
*P58:2,*EL,1I
*P58:3,*EL,"
*P58:4,*EL,"
HANG

The system prog ram" :
#JI",*+,ANSWER,"#" could not":
be fo und! Consul t" :
yo ur prog rammer."

· .. .
• CHAIN TO THE MASTER MENU

TRAP
IVIAS.MENU CHAIN

*

BADMASM IF CFAIL
IIMASMENU II

· .. .
. THE MASTER MENU COULD NOT BE FOUND

BADMASM DISPLAY *P58:1,"
*P58:2,"
*P58:3,"
*P58:4,"
HANG GOTO

C-16 DATABUS COMPILER

The system program":
~"MASMENU#" could not":
found! Consult":
your programmer."

e.l.3 Sample DATASHARE MASter MENU

• MASMENU - DATASHARE MASTER MENU

• THIS PROGRAf'1 WAS GENERATED USING rrHE "MAKEMENU" PROGRAM
• THEN MODIFIED WI'rH THE DOS "EDIT" COMMAND

• COlvIPI LI NG TH IS PROGRAM REQU I RES IrHA'T THE FI LES: "COlv[fvlON/Tx'r II ,

• It LOGDATA/TXT" AND "LOGIO/TXT" EXIS'r ON ANY DRIVE WHICH IS ON-
• LINE. THESE INCLUSION FILES CONTAIN THE INFORMATION COMMON TO
• ALL OF THE SYSTEM PROGRAMS.

INC LUDE
INDEX FORIv}
TIME INIT
PROGRAM DI:V1
Ct"J'K 2 Q I IV[

INCLUDE

COMMON/TXT
2
"hh:mm:ss"
9
2
LOGDATA/TXT

USER SELECTION VARIABLE
hours:ninutes:seconds
PROGRAM SELECTION VARIABLE
WORK VARIABLE

APPENDIX C. SAMPLE DATASHARE SYSTSM C-17

+ •••.•••••.•••.•••••.••
· MAINLINE

INCLUDE LOGIO/TXT
* ..
• DISPLAY THE MENU

SHOWMENU DISPLAY *ES:

*

"DATASHARE MASTEH MENU":
*P51:1,"Today is ",TODAY:
*POl:03,"(1) ".
IIPayroll Menu":
*POl:04,II(2) II.

"Exit to DOS":
*POl:05,"(3) ":
"Program Selection by Name":
*EL

••• tI ••••••••••••••

· GET THE PROGRAM'S INDEX

GET I N D 8 X KEY 11\1

*

CO;'VlPARE
GOTO
COMPARE
GOTO
COI\1PARE
GO'rO

*Pl:12,*EL,IISe l ec tion by nUl.lberl/:
*P41:12,"Enter (99) when you are done.":
*P25:12," ",*P25:12,INOEX
"I" TO INDEX
G E: T I r'J DE X I F L E S S
"991/ TO INDEX
LOGOFF' IF EQUAL
"04" TO INDEX
GETINDEX IF NOT LESS

• BRANCH TO THE ROUTINE I~DICATED BY THE INDEX

TRAP
CLOCK
BRANCH

GOTO

BADCHAI~ IF CFAIL
'r I lJ! E TOT I rvt E
I"'JDEX OF iVJENU1: Payroll Menu

DOS: Ex it to DOS
OTHER Program Selection hy Nane

GETINDEX
*
• PROGRAM DOES NOT EXIST.

BADCHAIN RETURN
*
· CHAIN INSTRUCTIONS

C-18 OA TAB US COIVl i? I LE R

* · .. .
• Payroll Menu

MENUI

*

1V10VE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"MENU1 "TO LOGINFO
LOG\t.JRITE
"MENU1 1l

LOGF I LE, LOGRN i * 12, "NO PROGRA1V1"
GETINDEX

· .. .
• EXIT TO DOS REQUIRES SECURITY CLEARANCE

DOS

*

*

*
NOROLL

COIV1PARE
GOTO

TRAP
1V10VE
CLEAR
CALL
ROLLOUT

MOVE
CLEAR
CALL
GOTO

WRI'rAB
RETURN

116" TO SECURITY
GETINDEX IF LESS

NOROLL IF CFAIL
"ROLLOUT" TO LOGTYPE
LOGINFO
LOGWRITE EXIT TO DOS BY EXECUTING
"FREE" THE DOS "FREEl! COMIV1AND

"ROLL RET" TO LOGTYPE
LOGINFO
LOGWRITE
GETINDEX

LOGFILE,LOGRNi*12,"NO ROLLOUT lI

*
• PROGRru~ SELECTION BY NAME REQUIRES SECURITY CLEARANCE

OTHER

*

COMPARE
GOTO

GETPROG KEYIN

*

MOVE
MOVE
CALL

"7" TO SECURITY
GE'f INDEX IF LESS

* ES, II ENTER PROGRAJ'v'l Nl\/VlE: ", PROGRAlv1 i
"PROGRAM" TO LOGTYPE
PROGRAM TO LOGINFO
LOGWRITE

· .. .
• DO NOT ALLOW HIM TO CHAIN TO OTHER MASTER OR ANSWER PROGRAMS

MATCH
GOTO
Iv}ATCH
GOTO
TRAP
CHAIN

"MASTER" TO PROGRAM
BADPROG IF EQUAL
"ANS\vER" TO PROGRA1'1
BADPROG IF EQUAL
BAOPROG IF CFAIL
PROGRAM

APPENDIX C. SAMPLE DATASHARE SYSTEM C-19

* ..
• PROGRAM DOESN'T EXIST

BADPROG DISPLAY

*

WRITAB
GOTO

" <-- THAT PROGRAM DOES NOT EXIST!":
*W, *w
LOGFILE,LOGRNi*12,"NO PROGRAM II

SHOWMENU

• LOG OFF BY CHAINING TO THE APPROPRIATE ANSWER PROGRAM

LOGOFF lVlOVE
COMPARE
GOTO
RESET

*
BUILDANS CLEAR

APPEND
APPEND
RESET
'fHAP
CHAIN

*

PORTN TO ChTK2
"10" 'ro PORTN
BUILDANS IF NOT LESS
CWK2 TO 2

PROGRAM
"ANSWER" TO PROGRAM
CWK2 TO PROGRAI"1
PROGRA-1V1
BADANS IF CFAIL
PROGRAM

GET THE PORT NUMBER
REMOVE LEADING SPACES

BUI LD THE NAiVlE
FORM: ANSWERn
WHERE: n IS THE PORT
NUIVlBER (0 < n < 17)

· ANSWER PROGRAiVl COULD NOT BE FOUND

BAD.~NS

C-20

DISPLAY

GOTO

*P58:1,*EL,"
*P58:2,*EL,1I
*P58:3,*EL,1I
*P58:4,*EL,1I
HANG

OA1'ABUS COMPI LER

The sys tem prog ram" :
#: \I \I , *+, PROGRAl'v1, "-If \I co u Id no til:
be found! Consult":
your programmer."

C.l.4 Sample Program Selection MENU

• MENUl - MENU FOR WEEKLY PAYROLL SYSTEM

• THIS PROGRAM Wl\S GE NERATED US Ii\lG THE "iVlAKEMENU II PROGRA!V1

• COIVlPILING THIS PROGRl\M REQUIRES THAT THE FILES: "COI\1MON/TXT",
• II LOGDATA/TXT" AND II LOGIO/TXT" EXIST ON AtljY DRIVE WHICH IS ON-
• LINE. THESE INCLUSION FILES CONTAIN THE INFORMATION COMMON TO
• ALL OF THE SYSTE~ PROGRAMS.

INDEX
TIME

INCLUDE
FORM
INIT
Il'1C LUDE

COMlv'!ON/TXT
2
If hh: mm: ss"
LOGDATA/TXT

US ER SEL8CTION VARIA8 LE
hours:minutes:seconds

A.PP£NDIX C. SA~VlPLE DA'l'l\SHARE SYSTS'v'! C-21

+ •••.••.•..••.••.••..•..••••.•.•••••.•.•...••.••••.••••••••••••••
• MAINLINE

*
· THIS MENU REQUIRES A SECURITY CLEARANCE OF AT LEAST 2

*

COIVlPl\RE
STOP
INCLUDE

"211 TO SECURITY
IF LESS
LOGIO/TXT

..
• DISPLAY THE MENU

C-22

DISPLAY *8S:
1I1VJENU FOR WEEKL Y PAYROLL SYSTErvt":
*P51:1,"Today is ",TODAY:
*POl:03,"(1) II.

"Enter timecard data":
*POl:04,"(2) II.

"Print payroll checks":
*POl:05,"(3) II.

II Pr int check reg i ster" :
*POl:Ofi,lI(4) II.

IIEnter void checks":
*POl:07,"(5) II.

"Print timecard labels":
*POl:08,1I(S) II.

II P r in t F I CAr eg i s t e r" :
*POl:09,"(7) II.

"Print U/C report":
*POl:lO,"(8) II.

IIPrint quarterly FICA report":
*P4l:03,"(9) II.

" P r i n t tt<J - 2 ' s" :
*P41:04,1'(lO) II.

"Re-or·ganize employee file":
*P41:05, II (11) ".
"Add new employees":
* P 4 1 : 0 ~ , ., (1 2) ".
"Change employee !:laster file":
*P41:07,1I(13) ".
"List employee l:1aster file":
*P41:08,"(14) II.'

II P r i n t pa y roll 9 e n era lIe d CJ e r II :

*EL

DATABUS COMPILER

•

*
• GET THE PROGRAM'S INDEX

GETINDEX KEYIN

COMPARE
GOTO
C01V1PARE
STOP
COj\1PARE
GOTO

*Pl:12,*EL,"Selection by number":
*P41:12,"Enter (99) to leave this menu.":
*P2S:12," ",*P2S:l2,INDEX
"III TO INDEX
GETINDEX IF LESS
"99" TO INDEX
IF EQUAL
" 15" TO I N DE X
GETINDEX IF NOT LESS

*
· BRANCH TO THE ROUTINE INDICATED BY THE INDEX

TRAP
CLOCK
BRANCH

GOTO

BADCHAIN IF CFAIL
TIME TO TIME
INDEX OF PAYl:

PAY2:
PAY3:
PAY4:
PAYS:
PAY6:
PAY7:
PAY8:
PAY9:
PAYIO:
PAYll:
PAY 12:
PAY13:
PAY14

GETINDEX

Enter timecard data
Print payroll checks
Print check register
Enter void checks
Print timecard labels
Print FICA register
Print U!C report
Print quarterly FICA report
Print W-2's

Re-organize employee file
Add new employees
Change employee master file
List employee master file
Print payroll general ledger

*
• PROGRNVl DOES NOT EXIST.

BADCHAIN RETURN
*
· CHAIN INSTRUCTIONS
*
· Enter timecard data

PAYl IvlOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

II PROGRAM" TO LOGTYPE
\I PAYI "TO LOGINFO
LOG\t.JRITE
"PAYl"
LOGF I LE, LOGRN; * 12, "NO PROGRA'''l''
GE'rINDEX

APPENDIX C. SAMPLE DATASHARE SYSTEM C-23

* .. . Print payroll chec ks

PAY2 MOVE II PROGRAfVJ." TO LOGTYPE
IVIOVE "PAY2 11 TO LOGINFO
CALL LOGWRI'fE
CHAIN "PAY2;'
IJ\jRI'rAB LOGF I LE, LOGRN; * 12, l. NO PROGRAM"
GOTO GE'rINDEX

* ..
• Print check register

PAY3 IVIOVE
MOVE
CALL
CHAIN
WRI'rAR
GOTO

H PROGRAM" rro LOGTYPE
"PAY3 "TO LOGINFO
LOGWRI'fE
"Pl\Y3 I'
LOGF I LE, LOGRN; * 12, I, NO PROGRAI\1 II

GE'r INDEX
*
• Enter void checks

PAY4

*

:vJOVS
i"IOVE
CALL
CHAIN
WHITAB
GaTO

11 PROGRA1Vl" TO LOG'fYPE
"P~ Y4 "TO LOG INFO
LOG\vR IT E
IIPAY4 11

LOGF I LE, LOGRN; * 12, 11 NO PHOGRA!Vl"
GE'rINDEX

• Print tilnecard labels

PAY5

*

MOVE
MOVE
CALL
CHAI1'J
',NRITAB
GaTO

;'PROGRA:Vl" TO LOGTYPE
;1 P.~Y5 "TO LOGINFO
LOGWRITE
" P.~Y511
LOGF I LE:, LOGRN; * 12, \I NO Pi~OGRAIVJ. il

GETINDEX

• Print FICA register

PAYS

C-24

iVlOV8
i¥lOVE
CALL
CHAIN
I,,'iRITAB
GaTO

apROGHA,¥l" TO LOGTYPE
"P,~Y6 11 TO LOGINFO
LOG\vRIT8
"PAY,) ;1

LOGF I LE, LOGRN; * 12, II NO PROGRA:Vl"
GE'fINDEX

IJATABUS CO/VlPILER

* ..
• Change employee master file

PAY12

*

MOVE
MOVE
CALL
CHAIN
\>JRITAB
GOTO

II PROGRAM" TO LOG'rYPE
"PAY12 "TO LOGINFO
LOGWRITE
"PAY12"
LOGF I LE, LOGRN; * 12, "NO PROGRAM"
GETINDEX

..
• List employee master file

PAY13

*

MOVE
MOVE
CALL
CHAIN
WRITA8
GOTO

II PROGRAI"l" TO LOGTYPE
"PAY13 "'ro LOGINFO
LOGWRITE
IIPAY13"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GETINDEX

• Print payroll general ledger

PAY14

C-2~

MOVE
1"10VE
CALL
CHAIN
tJ\fRITAB
GOTO

II PROGRA:'1" TO LOG'rYPE
IIPAY14 11 TO LOGINFO
LOGt>JR I 'f E
"PAY14"
LOGFI LE, LOGRN; * 12,." NO PROGRA1"l"
GE'1'II'JDEX

DATABUS COMPILER

C.l.S Chain Files for System Generation

The following chain files may be used for system generation
and maintenance.

C.l.S.l Compile the System Programs

· MAKEANMA - COMPILE ANSWER AND MA~TER PROGRAMS

• CHAIN TAGS: DATE#value~ ==) FORCES LISTING, (*value* USED IN

· EXAMPLE:

I I IFS DATE

HEADINGS
<number> ==) FORCES COMPILATION OF MASTER AND.

HALF ==)

ALL ==)

SAMPLE ==)

N EJ/Il ==)

ANSWER
NU"'1BER
FORC ES
ANSWER
FORCES
ANSWER
FORC ES
MENUS

PROGRAMS FOR THE PORT
SPECIFIED
COMPILATION OF MASTER AND
PROGRAMS FOR PORTS 1-8
COMPILATION OF MASTER AND
PROGRAMS FOR PORTS 1-16
COMPILATION OF THE SAMPLE

.FORCES CREATION OF NEW SYSTEM LOG
FILE AND A NEW LIST OF AUTHORIZED
USERS

TO COMPILE THE MASTER AND ANSWER PROGRAMS FOR
PORTS 1 THROUGH 4, TO PRODUCE LISTINGS OF ALL
PROGRAMS COMPILED, AND TO GENERATE NEW SYSTEMS
FI LES: USE THE FOLLO'NING DOS COM.IV1AND LINE

CHAIN MAKEANMA/CHN;1,2,3,4,DATE#ddmmmyy#,NEW

· I WILL PRODUCE LISTINGS OF THE PROGRAMS

II XIF
I I IF S SAI\1PLE
· I WILL COMPILE THE SAMPLE PROGRAMS
II BEGIN
II.
II. COMPILE THE MASTER MENU
II.
I I IFS DATE
DBCMPLUS MASMENU;L

APPENDIX C. SAMPLE DATASHARE SYSTEM C-27

DATASHARE MASTER MENU (MENU SELECTION PROGRAM)
II ELSE
DBCMPLUS l'1ASJ'1ENU
II XIF
II.
II. COMPILE A SAMPLE MENU
II.
I I IFS DATE
DBCMPLUS MENUliL

#DATE#

SAMPLE MENU PROGRAM tDATE#
II ELSE
DBCMPLUS MENUl
II XIF
II END
II XIF
II IFS 1,HALF,ALL
II BEGIN
. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 1
II.
II. CREATS THE INCLUSION FILE FOR PORT NUMBER 1
II.
BUILD PORTN/TXX;!
PORTN FORM " 1"

II.
II. COMPILE ANSWERI
II.
I I IFS DATE
DBCMPLUS ANSWER,ANSWERliL
DATASHARE ANSWER PROGRAM
I I ELSE
DBCMPLUS ANSWER,ANSWERl

F

,I. COMPILE MASTERl
II.
I I IFS DATE
DBCMPLUS MASTER,MASTERliL

#DATE#

DATASHARE MASTER PROGRAM (FOR LOGGING DATASHARE ERRORS) ~DATE#

I I ELSE
DBCMPLUS MASTER,MASTERI
II XIF
II END
II XIF
II IFS 2,HALF,ALL
• I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 2
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 2

C-28 DATABUS COMPILER

1/.
BUILD PORTN/TXX;!
PORTN FORfvl " 2"

1/.
1/. COMPILE ANSWER2
1/.
DBCMPLUS ANSWER,ANSWER2
1/.
1/. COMPILE MASTER2
1/.
OSCMPLUS MASTSR,MASTSR2
I I XJP
1/ IFS 3,HALF,ALL
. I I~ILL CO'VlPILE TBE r1ASTSR AND ANS1."JER PROGRA'VJS FOR PORT 3
1/.
II. CREATE THE INCLUSION FILE FOR PORT NU~BER 3
1/.
BUILD PORTN/TXX;!
PORTN FORM /I 3"

1/.
II. COMPILE ANSWER3
1/.
OBCMPLUS ANSWER,ANSWER3
1/.
II. COMPILE MASTER3
II.
DBCMPLUS MASTER,MASTER3
II XIF
// IFS 4,HALF,ALL
~ I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 4
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 4
II.
BUILD PORTN/TXX;!
PORTN FORM " 4 II

II.
II. COMPILE ANSWER4
1/.
DBCMPLUS ANSWER,ANSWER4
II.
1/. COMPILE MASTER4
1/.
DSCMPLUS MASTER,MASTER4
II XIF
// IFS 5,HALF,ALL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-29

· I WILL COMPILE THE ~ASTER AND ANSWER PROGRAMS FOR PORT 5
//.
//. CHEATS THE I~CLUSION FILE FOR PORT NU~BER 5
//.
BUILD PORT~/TXX;!
POHTN FOR/vi II S!I

1/.
1/. CO~PILE ANSWERS
1/.
OBCMPLUS ANSWER,ANSWEU5
II.
1/. COMPILE MAST~RS
1/.
Dt:3C;''!PLUS ;VlASTSR, !"IASTSR5
II XIF
II IPS n,HALF,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PJRT ~

1/.
II. CREATE THE I~CLUSION FILE FOR PORT NUMBER ~

1/.
BUILD PORTN/TXX;!
POHTN FORM jJ G"

II.
//. COMPILE ANSWER~
1/.
DBCMPLUS ANSWER,ANSWER~
II.
1/. CO~PIL~ MASTER6
//.
DBC~PLUS MASTER,MASTER0
// XIF
II IFS 7,HALF,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 7
1/.
1/. CREATE THE I~CLUSION FILE FOR PORT NUMBER 7
II.
BUILD PORTN/TXX;!
POHTN FORN " 7"

//.
II. COMPILE ANSWER7
//.
DBCMPLUS ANSWER,ANSWER7
II.
II. COMPILE MASTER7
1/.

C-30 DATABUS COMPILER

DBCMPLUS MASTER,MASTER7
II XIF
II IFS 8,HALF,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 8
1/.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 8
II.
BUILD PORTN/TXX;!
PORTN FORM " 8"

II.
II. COMPILE ANSWER8
II.
DBCMPLUS ANSWER,ANSWER8
II.
II. COMPILE MASTER8
II.
OBCMPLUS MASTER,MASTER8
II XIF
II IFS 9,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 9
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 9
II.
BUILD PORTN/TXX;!
PORTN FORM " 9 II

II.
II. COMPILE ANSWER9
II.
DBCMPLUS ANSWER,ANSWER9
II.
II. COMPILE MASTER9
II.
DBCMPLUS MASTER,MASTER9
II XIF
II IFS 10,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 10
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 10
II.
BUILD PORTN/TXX;!
PORTN FORM "10 If

II.
II. COMPILE ANSWERI0
II.
OBCMPLUS ANSWER,ANSWERI0

APPENDIX C. SAMPLE DATASHARE SYSTEM C-31

II.
II. COMPILE MASTERIO
II.
DBCMPLUS ~ASTER,MASTERIO

II XIF
/1 IFS 11,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 11
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 11
II.
BUILD PORTN/TXX;!
PORTN FORM "11"

. !
II.
II. COMPILE ANSWERII
II.
DBCMPLUS ANSWER,ANSWERII
1/.
1/. COMPILS MASTSRII
II.
DBCMPLUS MASTER,MASTSR11
II XIF
// IFS 12,ALL
• I WILL CO~PILE THE MASTSR AND ANSWER PROGRAMS fOR PORT 12
II.
II. CREATE THE INCLUSION FILE FOR PORT NU~BER 12
II"
BUILD PORTN/TXX;!
PORTN FORivl n 12 II

II.
1/. COMPILE ANSWER12
II.
DBCMPLUS ANSWER,ANSWER12
II.
II. COMPILE MASTER12
II.
DBCMPLUS MASTSR,MASTSR12
/1 XIF
/1 IFS 13,ALL
• I WILL CO'YlPILE: THE :\1ASTSR AND ANS':JER PHOGRA'VlS FOR POHT 13
II.
I I. CHBATE THE INCLUSION FILS FOH POHT NUIVlBP.R 13
II.
BUILD PORTN/TXX;!
POHTN FORM "13 "

II.

C-32 DATABUS CO~PILER

II. COMPILE ANSWER13
II.
DBCMPLUS ANSWER,ANSWERI3
II.
II. COMPILE MASTER13
II.
DBCMPLUS MASTER,MASTER13
II XIF
II IFS 14,ALL
• I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 14
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 14
II.
BUILD PORTN/TXXi!
PORTN FORl'1 "14 II

II.
II. COMPILE ANSWER14
II.
DBC~PLUS ANSWER,ANSWERI4
II.
II. COMPILE MASTER14
II.
DBCMPLUS MASTER,MASTERI4
II XIF
II IFS IS,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 15
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 15
II.
BUILD PORTN/TXXi!
PORTN FORM "15 If

II.
II. COMPILE ANSWER15
II.
DBCMPLUS ANSWER,ANSWERIS
II.
II. COMPILE MASTERIS
II.
DBC~PLUS MASTER,MASTERIS
II XIF
1/ IFS le:J,ALL
• I WILL CO~PILE THE ~ASTER AND ANSWEH PROGRAMS FOR PORT lfi
II.
1/. CREATE THE INCLUSION FILE FOR PORT NUMBER 16
II.
BUILD PORTN/TXXi!

APPENDIX C. SAMPLE DATASHARE SYSTEM C-33

POR'rN FORM "15 ..

II.
II. COMPILE ANSWER16
II.
DBCMPLUS ANSWER,ANSWERlh
II.
II. COMPILE MAS'rERl~

II.
DBCMPLUS MASTER,MASTER16
II XIP

...
II.
II. DELETE THE PORT NUMBER INCLUSION FILE
II.
KILL PORTN/TXX
Y
II IFS NEW
. I WILL CREATE NEW SYSTEMS FILES
II.
II. CREATE NEW FILE OF AUTHORIZED USERS
II.
BUILD USERS/DSP;!

SSN US ER I S NlH'1E SECURITY
() () (.
999999999Anyuser 9

II.
II. INDEX THE FILE OF AUTHORIZED USERS ON COLUMNS 1-9
II.
INDEX USERS/DSP,USERS/ISI;1-9
II.
II. CREATE A NEW LOG FILE
II.
CHAIN LOGMAKE/CHN;NEW
II XIF

C-34 DATABUS COMPILER

C.l.S.2 Re-organize System Log File

• LOGMAKE - RE-ORGANIZE DATASHARE SYSTEM 'LOGFILE'

· CHAIN TAGS: NEW ==> CAUSES A NEW LOG FILE TO BE CREA'rED
REFORIY1AT ==> CAUSES THE LOG FILE TO BE REFORMATED
LIST#date# ==> CAUSES THE LOG FILE TO BE LISTED

SAVE ==>

/ / IFS REFORIVlAT
• I WILL REFOR~AT THE LOG FILE
//.
//. REFORMATING THE LOG FILE
//.
REFORMAT LOGFILE;DC
/1 XIF
// IFS LIST
• I WILL LIST THE LOG FILE
//.
II. LISTING THE LOG FILE
1/.
LIST LOGFILE;L

#date#
CAUSES

WILL BE INCLUDED IN THE HEADING
THE LOG FILE TO BE SAVED

SYSTEIY1 LOG FI LE #LIST#
II XIF
1/ IFS SAVE
• I WILL SAVE THE LOG FILE BY ADDING IT TO 'MASTERLG/TXT'
1/.
1/. ADDING THE LOG FILE TO THE MASTER LOG FILE
1/.
SAPP MASTERLG,LOGFILE,MASTERLG
1/ XIF
1/ IFS NEW
• I WILL CREATE A NEW LOG FILE
1/.
1/. CREATING A NEW LOG FILE
II.
BUILD LOGFILE;!
*000 PORT LOG TYPE DATE TIME OTHER INFORMATION

APPENDIX C. SAMPLE DATASHARE SYSTEM C-35

* rn ()

II XIF

...

C-36 DATABUS COMPILER

C.2 SYSTEM INCLUSION FILES

The following files are included in the source of all of the
system programs to make certain commonly used program segments
easier to use.

C.2.1 COMMON User's Data Area

*
• COMMON - DEFINE COMMON DATA AREAS

PORTN FORM
'rODAY DIM
SECURI'ry FORM

*2
*8
*1

POH T NU:V18 ER
DATE I~ mm/dd/yy FORMAT
SECURITY CLEARANCE LEVEL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-37

C.2.2 Log File Data Area Definition

*
• LOGDATA - UPDATS THE SYSTEM LOG FIL8 -- I~CLUSION FILE #1

· THIS FI LE CONTAINS THE DATA AREA DEF 11\1 IT IIJN STATEMENTS THAT ARE
· REQUIRED 8Y THE LOG FILE I/O HOUTINES

* RESTRICTIONS: THIS FILS MAY BE INCLUDED IN A PROGRA~ ONLY
ONCE

*

T HIS F I L E 1"1 US T 8 E INC L U 0 E D l~l I T H I NTH E
STATEMENTS USED TO DEFINE THE USER'S DATA
AREA

••••••••••••••••••.••••••••••••••••••• ,. •••••••••••••••• ! •••••••••

· .~ LOG ENTRY HAS THE FOLLOWING FaR!"I~T:

· POS IT IOMS
1- 7
8- 9

10-11
* 12-21

* 22-23
24-31
32-33
34-41
42-43
44-S4

C-38

US8D FOR:
RESERVED
NU:v\BEH OF THE PORT ("'RI'fIl--JG THE LOG Er\JT~~Y

RESERVED
THE LOG ENTRY'S TYPE:

LOG-ON•.. USER SIGN ON
LOG-O~F ..•... USER SIGN OFF
BAD 10 ..•.... I~VALID ATTEMPT TO SIGN ON
ERROR •....... DATASHARE ERROR
PROGRAM ..•••. SUCCESSFUL CHAIN TO A PROGRAM
NO PHOGRAI"1 •.. UNSUCCESSFUL CHAIN 'ro A PROGRAM
ROLLOUT ••.••• SUCCESSFUL ROLLOUT
ROLL RET ..•.. ROLLOUT RETURN
NO ROLLOUT UNSUCCESSFUL ROLLOUT

RESERVED
OATS OF LOG ENTRY
RESERVED
TIME OF LOG ENTRY
RESERVED
OTHER INFORMATION:

LOG-ON ..•..•• USER'S NAME
BAD ID INVALID NUMBER ENTERED
ERROR ...•.••. ERROR MESSAGE
PROGRAM NAME OF PROGRAM
NO PROGRAM NAME OF PROGRAM

DATABUS COMPILER

*
• THE FOLLOWING VARIABLES MUST BE SET TO THEIR APPROPRIATE VALUES
· BEFORE WRITING A LOG ENTRY

LOGFILE FILE
LOGTYPE DIM
LOGINFO DIM

*

10
20

SYS TEM LOG FILE
TYPE OF LOG TO BE WRITTEN
OTHER INFORMATION

..
· THE FOLLO\1ING VARIABLES l'1UST 8E DEFII-.JED ELSEWHERE AND BE SET TO
• THEIR APPROPRIATE VALUES BEFORE WRITING A LOG ENTRY

.PORTN

.TODAY

.TII'1E

FORM
INIT
INIT

2
"mm/dd/yy"
"hh:mm:ss"

PORT NUMBER
month/day/year
hours:minutes:seconds

*
· SINCE THE SYSTEM LOG FILE IS COMMON TO ALL PORTS, THE FOLLOWI~G

· VARIABLES ARE NEEDED TO HANDLE THE COMMON FILE CONSIDERATIONS

LOGRN
ZERO

FORM
FORM

3
"a"

RECORD NUMBER OF LOG ENTRY
RECORD NUMBER AT RECORD 0

APPENDIX C. SAMPLE DATASHARE SYSTEM C-39

C.2.3 Log File Input/Output Routines

* · .. .
· LOGIO - UPDATE THE SYSTEM LOG FILE -- INCLUSION FILE #2

· THIS FILE CONTAINS: I. A ROUTINE THAT OPENS THE SYSTEM LOG
FILE

* RESTRICTIONS:

*

II. A SUBROUTINE THAT WRITES A LOG
ENTRY TO THE SYSTEM LOG FILE

THIS FILE MAY BE INCLUDED IN A PROGRAM ONLY
ONCE
THIS FILE SHOULD BE INCLUDED IN A PROGRAM AT
THE POINT WHERE THE USER WISHES THE LOG FILE
("1'0 BE OPENED

• •••••••••••••• III

· I. OPEN THE SYSTEM LOG FILE

*

TRAP
OPEN
TRAPCLR
GOTO

NOLOG IF 10
LOGFILE,"LOGFILE"
10
LOGOPEN

·
· LOG FILE IS MISSING

NOLOG

HANG

C-40

DISPLAY

GOTO

*P54:1,*EL,"
*P54:2,*EL,"
HANG

DATABUS COMPILER

.jj:"LOGFILE/ISI#" is missing!":
The port number is ",PORTN

* ..
· II. WRITE A LOG ENTRY TO THE SYSTEM LOG FILE

· PROCEDURE: 1. LOCK OUT ALL OTHER PORTS

LOGVvRITE

· PI GOES
*

PI
READ
ADD
WEOF

2. GET THE NUMBER OF LAST USED RECORD (RN)
3. PUT AN EOF MARK IN RECORD RN+2 (THIS INSURES

THAT THE EOF OF THE LOG FILE IS ALWAYS ~ARKED)

4. PUT RN+l IN THE LOG FILE AS THE LAST USED RECORD
5. ALLOW OTHER PORTS TO EXECUTE
~. WRITE THE LOG ENTRY TO RECORD RN+l (NOTE THAT

THIS OVERWRITES THE OLD END-OF-FILE MARK)

5 1. LOCK OUT
LOGFILE,ZEROj*2,LOGRN 2. READ H[\J
112" TO LOGRN
LOGFILE,LOGRN 3. EOF AT RN+2

SUBTRACT "111 FROM LOGRN
vvRITAB LOGFILE,ZEROj*2,LOGRN 4. PUT RN+l

TO 0 AT THIS PO IN'r 5. ALLOl-v OTHER PORTS
••• eo

· SEE DESCRIPTIONS IN DATA AREA

WRITE LOGFILE,LOGR~;tI
\I

"
II

\I

RETURN

~. WRITE LOG ENTRY

",POHTN:
II,LOGTYPE:
",TODAY:
II,TIME:
11 , LOG I f\lFO

*
· NOTE: THE "TRAPCLR PARITY lI INSTRUCTIO~ IS USED AS A "NOP"

INSTRUCTION

LOGOPEN TRAPCLR PA.RITY

APPENDIX C. SAf-1PLE DATASHARE SYS'fEI"l C-41

C.3 SUPPLEMENTAL SYSTEM PROGRAMS

Although the following programs are not necessary for using
the DATASHARE system defined in this appendix, they should make
using and modifying the system much simpler.

C.3.l Re-organize the List of Authorized Users

. NEWUSER - PROGRAM TO UPDATE THE LIST OF AUTHORIZED USERS

*
CFILE
SEQ
*
USERS

INCLUDE

FILE
FOHJ'1

IFILE

COIVlMON

"-I"

USERID DIM 9
NAME DIM 20
CLRANCE FORM 1

*
N~~K9 FORiY} 9
CVvKl DIY} 1
REPLY DP"1 1
INDEX FOH:''1 2

C-42 D.l\ TAB US COI'1PI LEH

USER SELSCTION VARIABLE

+ ••.••••••••.••..•....••...•...•.••••....••....••.•••..•.•..•...•
· IVlAINLINE

* · .. .
• THIS MENU REQUIRES A SECURITY CLEARANCE OF AT LEAST 8

*

COlvtPARE
STOP

118" TO SECURITY
IF LESS

• ••••••••••••••••••• ttl •••

· PREPARE THE CHAIN FILE

*

TRAP
PREPARE
TRAPCLR
WRITE

WRITE
GOTO

NOCHAIN IF IO
CFILE, "ROLCHAIN"
IO
CFILE,SEQ;*+,"//* TAP THE DISPLAY KEY TO II.

"RE-ORGANIZE THE LIST OF II.

"AUTHORIZED USERS II

CFILE,SEQ;"//."
OPENUSER

· CHAIN FILE COULD NOT BE CREATED

NOCHAIN DISPLAY

STOP

*

*ES:
*P20:4, "CHAIN FILE COULD NOT BE :J'lRITTEN! 1/:
*W,*W

· .. .
• OPEN THE FILE OF AUTHORIZED USERS

OPENUSER TRAP
OPEN
TRAPCLR
GOTO

*

NOUSER IF 10
USERS, "USERS;!
10
MENU

· .. .
• FILE OF AUTHORIZED USERS NOT THERE

NOUSER I<EYIN

CMATCH
STOP

*ES:
*P20:4,"The list of authorized users is":
*P20:5," missing.":
*Pl: 12, "Do you want to create a new list? iI.

*EL,REPLY
ny" TO REPLY
IF NOT EQUAL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-43

*
· CREATE A NEW LIST OF AUTHORIZED USERS

DISPLAY

WRITE
WRITE

WRITE
WRITE
WHITE

WRITE

WRITE
CALL
GOTO

*
· DISPLAY THE MENU

MENU DISPLAY

*

*ES:
*P20:4,"Writing the chain file."
CFILE,SEQi"//."
CFILE,SEQi"//. BUILD THE FILE CONTAINING ":

"rrHE LIST OF AUTHORIZED USERS"
CFILE,SEQ;"//."
CFILE,SEQi"BUILD USERS/DSPi!"
CFILE,SEQi" SSN USER 1 S NAME

II SECURITY"
CFILE,SEQi" () (

II

CFILE,SEQi"!"
CHAINROL
OPENUSER

*£S:

II

" .
" .

"PHOGRA1Yi TO UPDATE THE LI S T OF AUT HOR I Z ED US ER
*P51:1,"Today is ",TODAY:
*POl:03,"(1) II.

"Authorize a new user":
*POl:04,"(2) II.

"JVJodify a user's -authorization":
*POl:05,"(3) II.

IIRemove a user from the list":
*EL

...
• GET THE PROGRAM'S INDEX

GETINDEX KEYIN

COrv1PARE
GOTO
COMPARE
GO'rO
COlYiPARE
GOTO

*Pl:12,*EL,"Selection by number":
*P41:12,"Enter (99) to continue. lI

:

*P25:12," ",*P25:12,INDEX
"1" TO IN-i5E"x
GETINDEX IF LESS
"99 11 'ro INDEX
WRTCHAIN IF EQUAL
1104" TO INDEX
GETINDEX IF NOT LESS

C-44 DATABUS COMPILER

* ... "
• BRANCH TO THE RO U'f I NE IN D ICA'fED BY T HE I ~J OEX

BRANCH I~DEX OF ADD: Authorize a new user
CHANGE: Modify a user's authorizatio
DELETS Remove a user fro~ the list

GOTO
* ...
· Authorize a new user

*
· DISPLAY THE FORM

ADD DISPLAY *8S:
* P 2 5 : ~ , "

*
• GET THE USER'S 10 #

GETIDN

*

CALL
ClVlATCH
GOTO

GETID
" " TO USERID
GETNME IF NOT EOS

• ASK IF HE IS DONE \>\]I'rH 'rHI~':; EN'r~~Y

*

KEYIN

CIVlATCH
GO'ra
GOTO

*P25:4,*EL:
" * PI: 12, " Are yo u don e? (Y / N) ", * E L, REP L Y
"Y" TO REPLY
MENU IF EQUAL
ADD

· GET THE USER'S NAME

GETNI"1E

*

CALL
GOTO

GE T\JA!V!E
GETCLR IF NOT EOS

..
• ASK IF DONE WITH T~IS ENTRY

ASKDONEN KEYIN

CIVIATCH
GOTO
C!V1ATCH
GOTO
GOTO

*P1: 12, "Do you want to re-enter the (I) dent":
"ification number or the (N)ame? ",*EL,REPLY
"N" TO REPLY
GETNME IF EQUAL
"III TO REPLY
GETIDN IF EQUAL
ASKDONEN

APPENDIX C. SAMPLE DATASHARE SYSTEM C-45

*
• GET THE USER'S SECURITY CL£ARANC~

GETCLR

*

CALL
CO\1PARE
Gor.co

GETCL8AR
"0" TO CLRANCE
W R '1' \I L ~tV U I F NO 'f 8 QUA L

..
· ASK IF DONE WITH THIS ~NTRY

AS.KDONSC r<EYI\J *Pl:12,"Re-enter (I) d number,
11 (C) learance or enter (Z) e ro
*EL,REPLY

CIVlATCH " III TO REPLY
GOTO GETIDN IF EQUAL
CIVlATCH "Nil TO REPLY
GOTO GE'TNr'1E IF EQUAL
Cr'1ATCH "C" TO REPLY
GO'ra GETCLR IF EQUAL
C!>1ATCH II ZII TO REPLY
GOTO A:3KDONEC IF NOT F~OUi\L

*
· ADD THE USER TO THE LIST OF AUTHORIZED USERS

~:'JHT!\JEWU CALL
GOTO

*

I\JSERT
ADD

• HeIl10ve a user from the list

*

(hJ) arne, II •

clearance? " .

..
• GET THE USER TO BE DELETED

DELETE CALL
CI"lA'rCH
GOTO

GETUSER
II II 'ro USE RID
VERIFY IF NOT COS

*
• ASK IF DONE WITH THIS ENTRY

C-46

KEYIN
CfVlA'rCH
GO'fO
GOTO

* PI: 1 2 , II Are yo u don e? (Y / N) II, * E L , REP L Y
"yu TO REPLY
MENU IF EQUAL
D8LETE

DATABUS COi"lPI LER

* · .. .
· MAKE SURE HE WANTS TO DELETE BEFORE REMOVING

VERIFY KE YI N *Pl:12,"Is this the entry to be removed? II.

*EL,REPLY

*

CJVlATCH
GOTO

DELETE
GOTO

"Y" TO REPLY.
DELETE IF NOT EQUAL

USERS, USERID
DELETE

*
· Modify a user's authorization

* • •••••••••••••••••••••••••••••••• a .••••••••••••••••••••••••••••••

· GET THE ENTRY FROM THE LIST TO BE MODIFIED

CHANGE CALL
CIVlATCH
GOTO

GETUSER
II It TO USERID
ASKMOD IF NOT EOS

*
· ASK IF DONE WITH ENTRY

KEYIN
CMATCH
GOTO
GOTO

* PI: 1 2 , " Are yo u don e? (Y IN) ", * E L , REP L Y
"Y" TO REPLY
MENU IF EQUAL
CHANGE

*
· FIND OUT WHAT HE WANTS TO DO WITH IT

ASK:VlOD

*

KEYIN

ClVIATCH
GOTO
CMATCH
GOTO
CIVlATCH
GO'rO
CMATCH
GOTO
GOTO

*Pl:12,"(D)one, modify (I)d number, ":
"modify (N)ame, or ":
"modify security (C)learance? ",*EL,REPLY
liD" TO REPLY
WRTI\10D IF EQUAL
111" TO REPLY
IOMOD IF EQUAL
II Nil 'ro REPLY
NAlVlEMOD IF EQUAL
"C" TO REPLY
CLRMOD IF EQUAL
ASKMOD

· .. .
· MODIFY THE SECURITY CLEARANCE

CLRMOD CALL
COMPARE
GOTO

GETCLEAR
"01\ 'ro CLRANCE
ASKMOD IF NOT EQUAL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-47

* · .. .
• ASK IF DONE WITH ENTRY

ASKDONEZ KEYIN

*

CMATCH
GOTO
CMATCH
GOTO
GOTO

· MODIFY THE NAME

NAJ"lEMOD CALL
GOTO

*

*Pl:12,"(D)one or enter (Z)ero security"·
"clearance? ",*EL,REPLY
"011 TO REPLY
WRTMOD IF EQUAL
"z" TO REPLY
ASKDONEZ IF NOT EQUAL
ASKMOD

GE'rNAJ"lE
ASKMOD IF NOT EOS

· .. .
• ASK IF DONE WITH ENTRY

*

KEYIN
CI"1ATCH
GOTO
GOTO

*Pl:12,"Are you done? (YiN) ",*EL,REPLY
"Y" TO REPLY
WRT1"lOD IF EQUAL
ASKI"lOD

· MODIFY THE IDENTIFICATION NUMBER

* · " .. .
· DELETE THE OLD USER ID

IDMOD DELETE USERS,USERID
* · .. .
· GET THE NEW ID NUMBER

NEWID

*

CALL
CMATCH
GOTO

GETID
" " TO USERID
NEWID IF EOS

· .. .
· INSERT THE NEW USER INTO THE LIST OF AUTHORIZED USERS

*

CALL
GOTO

INSERT
CHANGE

· .. .
· UPDATE THE ENTRY

WRTMOD

C-48

UPDATE
GOTO

USERS;USERID,NAME,CLRANCE
CHANGE

DATABUS COMPILER

* ..
• WRITE THE CHAIN FILE

lAJHTCHAIi\J DISPLAY
CALL
STOP

*ES,*P25:4,;'Writing the CHAIN file."
CHAINROL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-49

+ ••.•••....•••••••••••.••.•••.••••••••••••••••••••••••••••...•.•.
• GET THE USER'S 10 NUMBER

GETIO

*

CLEAR
KEYIN

COMPARE
RETURN
COMPARE
GOTO
MOVE
RETURN

USERID
* P 25 : 4 , "'ro ex it, tap the E NT E R key":
*P2S:n," ",*P1:12:
" En t e r t l1e-usei's ide n t i f i cat ion n u m b e r • " , * E L :
* P 2 5 : 6 , NhlK 9 :
*P2S:4,*EL
"Oil TO NWK9
IF EQUAL
11100000000" TO NWK9
GETID IF LESS
NWK9 TO USERID

• GET THE USER'S SECURITY CLEARANCE

G£ TC LEAH KE YIN

*

DIS PLAY
fvl0VE
OVlA.TCH
GOTO
RETUHN

* P 25 : 4 , "To ex it, tap the E NT I:: R key":
*PS6:6," ",*P1:l2:
"Enter t}1"e user's security clearance." ,*EL:
*PSt1:'1,CLRANCE:
*P2S:4,*EL
*PSh:o,CLRANCE
CLRANC E TO CV-IKl
"_" TO Ct'l[K 1

GETCLEAR IF EQUAL

..
• GET THE USER'S NAME

GET NA IVI EKE YIN

*

DISPLAY
CMATCH
GOTO
RETURN

*P2S:4,"To exit, tap the ENTER key":
*P3S:6," ",*Pl:12:
II En te r th-e:-ilse-i' s---narJe~-"-;*-EI:
*P3S:6,*IT,NAME,*IN:
*P2S:4,*EL
*P35:G,NAME
II /I TO NA!vJE
GETNAME IF EQUAL

• GET AND DISPLAY AN ENTRY FROVI 'fHE LIST OF AUTf-fORIZED USEHS

C-so DATARUS CO!VIP I LER

*
· GET THE USER I S ID #=

GETUSER DISPLAY *ES
CALL GETID
CtV1ATCH II II TO USERID
RETURN IF EOS

*
· SEE IF THE USER IS ACTUALLY ON THE LIST

*

READ
GOTO

USERS,USERID;USERID,NAME,CLRANCE
SHOWUSER IF NOT OVER

· .. .
• USER NOT FOUND

*

BEEP
DISPLAY

GOTO

*P25: 4,"That user could not be found" ,*EL:
*W, *W
GETUSER

· .. .
• PUT THE ENTRY ONTO THE SCREEN

SHOWUSER DISPLAY *ES,*P25:4,"That user is:":
*P25: 6, USERID ,II ", NAI"1E," l',CLRANCE

RETURN

* · .. .
· INSERT A NEW USER INTO THE LIST OF AUTHORIZED USERS

INSERT

*

TRAP
WRITE
TRAPCLR
RETURN

NOWRITE IF 10
USERS,USERID;NWK9,NAME,CLRANCE
10

· .. .
· USER ID IS ALREADY IN USE

NOWRI'rE BEEP
DISPLAY

RETURN

*

*Pl: 12,*EL:
*P25:4,"That user ide is already in use!",*EL:
*W,*W,*W

· .. .
· WRITE THE CHAIN FILE

APPENDIX C. SAMPLE DATASHARE SYSTEM C-Sl

* ..
• WRITE REFORMAT LINES

CHAINROL WRITE
WHITE

*

tl\jR I TE
WRITE

CFILE,SEQi"//.1I
CFILE~SEQi"//. REFORMAT THE LIST OF II.

lIAUTHORIZED USERS II

CFILE,SEQi"//."
CFI LE, SEQ i II REFORI"lAT US EHS/DS P i R"

• WRITE THE I"lDEX LINES

tAJRITE
WRITE

WRITE
\AJRITE

CFILE,SEQi"//."
CFILE,SEQi"//. INDEX THE LIST OF II.

"AUTHORIZED lJSERS 1I

CFILE,SEQi"//."
CFILE,SEQi"INDEX USERS/DSPi l '-9"

*
• WRITE ROLLOUT RETURN LINES

*

WRITE
~'I]R ITE
\'I]RITE
WRITE

C F I L E , SEQ; II / / •• 1

CFILE,SEQi"//. RETURN TO DATASHARE II

CFILE,SEQ;"//.If
CFILE,SEQ;"DSBACKTD"

• ~'I] R IT E E 0 F 1ST 0 THE F I L E S

vv'EOF CFILE,SEQ
*
• ROLLOUT TO THE CHAIN FILE

*

DISPLAY

TRAP
ROLLOUT
TRAPCLR
RETURN

*ES,*P2.5:4,"Rolling out to reorganize the ll
:

* P 2 5 : 5 , .. f i 1 e 0 f aut h 0 r i z ed use r s • "
NOROLL IF CFAIL
"CHAIN ROLCHAIN II

CFAIL

..
• ROLLOUT NOT POSSIBLE

NOROLL

C-52

KEYIN

STOP

*8S:
*P20:4,"The chain file has been written, but":
*P20:5,"the rollout to it failed. Use the~I:
*P20:~,"following DOS command line to update":
* P 2 0 : 7 , " the 1 i st. 0 f . aut h 0 r i zed use r s : " :
* P 2 0 : 8 , II # "C HA I N R 0 LC HA IN # 1I II ,R E PLY

DATABUS CO!"lPI LER

C.3.2 Program to Generate New Menus

• MAKEMENU - ~ENU GENERATION PROGRAM

*
NAME

'rITLE
REPLY
*

INCLUDE

DIM
DIM

COI\1MON

8

50
1

NAME OF MENU / NAME OF
PROGRAM FOR CHAIN INST.
TITLE TO BE DISPLAYED
REPLY TO QUESTIONS

..
BRANCH INI'r "BRANCH I!\JDEX OF " SEE 8ELD''''

• WHEN WRITING THE BRANCH INSTRUCTION, THE STRING ABOVE MUST BE
• WRITTEN PRECEDING THE FIRST PROGRAM NAME ONLY. A STRING OF
• BLANKS MUST BE WRITTEN PRECEDING ALL OTHER PROGRAM NAMES. THIS
• IS HANDLED USING THE VARIABLE "BR.A.NCHII. THE VARIABLE "BRANCH Il

• IS WRITTEN PRECEDING THE PROGRAM NAME FOR ALL LINES OF THE
· BRANC] INSTRUCTION. '1'HE FIRST rrIME "BRANCH" IS t..,lRITTEN IT
• CONTAINS THE STRING GIVEN ABOVE. AFTER WRITING THE VARIABLE
• "BRANCH" A STRING OF ALL BLANKS IS iVlOVED INTO IT CAUSING ALL
• SUBSEQUENT \rVRITES USI!.'JG "BHANCH" TO WRITE BLANKS PRECEDIr'JG THE
• PHOG RA:"1 NAM E .

* ..
• THESE VARIABLE ARE USED BY THIS PROGRN"1 TO POSITION TO THE
• PROPER PO~3I'rION ON THE SCREEN AS WELL ~S BEING USED TO trVRI'rE
• 'rHE *P<h>:<v> CONTROLS FOR DISPLAYING THE iVlENU.

INDEX

apos
VPOS
*

FORM

FORIVI
FORi\1

2

2
2

• u'r I LITY If.lOHK AREAS
· C => CHARACTER STRING VARIABLE
• N => NUMERIC STKING VAqIABLE

NUMBER I~DICATING WHICH
PROGRAiVl
90RIZONTAL POSITION
VERTICAL POS'fION

• NU·VlBER 1;,1 L.l\f3EL rf\lDICATES THE LENCTH OF THE It\]ORK ,Z\REA

CWK9 D 1·'1 9
CVO/K34 :JVVl 34
CWKn5 DUvl (,5
N\rVK 1 FOR'Ii 1

APPENDIX C. SA!\1PLE DATASHARE SYSTSM C-53

*
OUTFILE FI LE ON COMPLETION CONTAINS THE

MENU THAT \vAS B UI L'f
WKF'ILEI FILE loVOR1\: FILE USED TO STORE

BRANCH INSTRUCTION
WKFILE2 FILE WORK FILE USED TO STORE

THE CHAI:"J INSTRUCTION
SEC'fION OF THE IVlENU

SEQ FORM II -1" USED FOR SEQUENTIAL I/O
HEWIND FORM "0 II USED TO REWIND fILES

C-S4 DATA8US COMPILER

+ •••••••••••.•••••••••••••.•......•.•.......•.....••.•.•••••.•...
• MAINLINE

*

COMPARE
STOP

"8" TO SECURITY
IF LESS

REQUIRE A SECURITY CLEAR­
ANCE OF AT LEAST 8

................................... ., ~ .,
• GET THE NAME OF THE MENU

BADI\1ENU KEYIN

*

CJ'1ATCH
GOTO
GOTO

*ES,"What is the name of the menu? ",NAME
" " TO NAIVIE
BADIVIENU IF EOS
BADMENU IF EQUAL

· PREPARE THE OUTPUT FILE

TRAP
OPEN
TRAPCLR

PREPOUT IF 10
OUTFILE,NAME
10

* C: ••

• FILE ALREADY EXISTS

*

KEYIN

CMATCH
GOTO
STOP

"That menu already exists!":
*N,"Do you want to overwrite it? (YIN) ",REPLY
"y",REPLY
DATAREA IF EQUAL

• PREPARE THE OUTPUT FILE

PREPOUT PREPARE OUTF I LE , NAI'1E
* ..
• DATA AREA GENERATION

DATAREA KEYIN
*

CLEAR
APPEND
APPEND
APPEND
RESET

" Wh a tis the men u 's tit 1 e? ", T 1'r L E

CWK65 BUILD THE FIRST COMMENT
NAME TO CWKn5
" "TO CWKf)5
TIT LE TO CtIK ~ 5
C~"iK65

APPENDIX C. SAMPLE DATASHARE SYSTEM C-55

* ..
• WRITE THE OPENING COMMENTS

WRITE
WRITE
WRI'fE

\"'RITE
WRI'rE

WRITE

WRI'rE

WRITE
WRITE

OUTFILE,SEQ;*+,". ",CWKt)S
OUTFILE,SEQ;".II
OUTFILE, SEQ;". THIS PROGRA!'1 WAS GENERATED ":

"USING (fHE #"MAKEMENU#" PROGRAI"l1l
OUTFILE,SEQ;"."
OUTFILE,SEQ;". COMPILING THIS PROGRAM ":
"REQUIRES THAT THE FILES: #"COMMON/TXT#","
OU'fF I LE, SEQ; ". # II LOGDATA/TXT# II AND ":
"# II LO G 10/ 'r X T #" E X I s'r 0 NAN Y DR I V Ell:
"WHICH IS ON-"
OUTFILE,SEQ;II. LINE. THESE INCLUSION FILES II.

IICONTAIN THE INFORMA(fION COMMON TO"
OUTFILE,SEQ;". ALL OF THE SYSrrEM PROGRAMS."
OUTFILE,SEQ;II."

*
· WRITE THE USER'S DATA AREA

*

WRI'rE
WRITE

WRITE

WRITE

OUTFILE,SEQ;
OUTFILE,SEQ; INDEX

INCLUDE
FORM

COI'1MON/TXT it
2" :
., .

USER SELECTION VARIABLE"
OUTFILE,SEQ; TIME INIT":

#"hh:mm:ss#"":
II •

hours:minutes :seconds"
OUTFILE,SEQ; INCLUDE LOGDATA/rrXT"

..
• START WRITING THE MAINLINE

C-56

WRITE

WRITE
WRI(fE

OUT F I L E , SEQ; "+ •.•...•.•.•....•..•.•... " :
II " • .
"

OUTFILE,SEQ;". MAINLINE"
OUTFILE,SEQ;"."

"

DATABUS COMPILER

* ..
• SET UP SECURITY CHECK

KEYIN

WR I'rE

l"lR I rfE

WRITE
WRI'rE

WRITE
WRITE

*

1\ Wh a t sec uri t y c 1 ear an c e s h 0 U 1 d be r e qui r ed" :
" to ex e cute t his men u? (1-9) ", NWK 1
OUT F I L E , SEQ i !I * " \I :

II ...
" II

OUTFILE,SEQi". THIS ~VlENU REQUIRES A ":
II SECUR I'rY CLEARANC E OF AT ".
"LEAST ",NWK1

OUTFILE,SEQi"."
OUTFILE,SEQi"

II

QUTFILE,SEQi U

OUT F I L E , SEQ i I'

COMPARE" :
.\ 1\ , 1\1VJK 1 , "~" TO SEC UR ITY II

STOP IF LESS i
'

INCLUDE LOGIO/TXT II

• WRITE THE INITIAL PART OF THE MENU DISPLAY INSTRUCTION

WRI'rE

~'\lR ITE
WRITE
t'\lR I TE

*
eLSAR
APPE1'lO
APPEND
HESET
WRITE
l'\lR I TE

*

OUTFILE,SEQi "* •••••••••••••••••••••••• ":
tl t' • .
;, II

OUT F I L E , SEQ i". DIS P LA Y THE iVi EN U II
OUTFILE,SEQi"."
OUTFILF.,SEQill DISPLAY *ES:"

CWKoS
TIT L£ TO C~"lK t) 5
"J":" TO C\","K(;S
C:'JK G 5
OUTFILE,SEQill
OUT F I L E , SEQ i .,

.. * P 51 : 1 , # "To day is

"" , Cit! K () 5
II •

if",TODlI.Y: 1I

• PREPARE THE WORK FILES

TRAP
PREPAHE
PREPARE
GOTO

NO!t{OR KIF 10
~-\fKFILEl, "l;JKFILf.:l"
\,." K F I L E 2 , II 'tJ K F I L E 2 "
GE TIVlE NU

US E fOR "SRANe H '. If\ISTRUCT.
USE FOR HCHAIN" SECTION

*
• WORK FILES COULD NOT 8E CREATED

NOv/ORK DISPLAY
STOP

" ~"-f 0 r k f i 1 e . c () U 1 d not bee rea t 2 d 1 II

A P PEN 0 I XC. SA !Vl P LED 1\ T.\ S H l\ H E ~") Y S T f>1 C-57

* ..
• INITIALIZE FOR GETTING THE MENU

GET!'1ENU DISPLAY
[VlOVE
MOVE
MOVE
GOrr·:)

ES,+,TI'rLE,*P51:1,"Today is ",TODAY
11111 'ro BPOS
113 11 TO VPOS
Ill" 'ro INDEX
GETI'rEM

* ..
• THE LOOP FOR GETTING THE MENU BEGINS HERE.
• THE FOLLOWING ORGANIZATION IS USED FOR THE LOOP SO THAT THE
• LAs'r LINE OF THE IIBRANCH II INSTRUCTION WILL NOT BE WRITTEN UNrrIL
• AFTER LEAVING THIS LOOP:

· 1. WRITE LINE OF "BHANCH ll INST.
· 2. GE'r NEXT ITEM FROI'1 KEYBOARD (-- THE LOOP IS ENT8RED HERE
· 3. WRITE HLINE" OF CHAIN SEc'rION
• 4. IF NOT LA S T I'f E i"l, GOT 0 1.
• 5. lV~tITE LAST LINE OF "BRANCH"

*
• 1. V-IHI'f'E A LINE OF THE BRANC:.t INSTHUCTION

• WRITE THE BRANCH I\JSTRUC'fION TO A \\lOtt[\ FILE TO 8E COPIED TO THE
• OUTPUT PILE AT A LATER TIME

'v'! HIT E 8 R C L P..Z\ R
/\P PE I\ID
APPEND

*

APPEND
APPEND
APPEND

C' .. JKS5
1I " 'ro CVvKf) 5
BRANCH TO CWK65

NAJVlE TO CWK65
II. "TO C\~K55
CtAJK34 iro CWK h5

NULL L~8EL FIELD.
EXCEprr FOR 1ST 'rIME

NULL OPERATION FIELD.
PROGRAM NAI'1E NEXT
ATT,i\CH CONTINUATION II:"
USE PROGRAM DESCRIPTION
~s COMMENT FIELD

• v.IRITE THE LINE OF THE BRANCH I\JS'fRLJCTION

• MAKE SURE THAT THE ;\IEXT LI"f\JE OF THE HRANCH I\fSTF{UCTION r~JILL

• HAVE A NULL OPERATION FIELD

*

RESET
WHITE
IViOVE

Ctll!K 05
WKFILEl,SEQ;*+,CWK65
.1

· 2. GET AN ITEM FRO'1 THE KEYBOARD

C-58 D l\ T 1\ l-3 USC o !'vI P I L E R

II TO BRAr~CH

* · .. .
• GET THE PROGRAM NAME

GETITE/Vl KEYIN *Pl:12,*EL,"Enter the name of a program to If.

"vJhich this menu will CHAIN: ",NAlvlE
CMATCH
GOTO
GOTO

II " TO NA1VlE
GET ITEM IF EOS
GET ITEM IF EQUAL

*
· GET THE PROGRAM DESCRIPTION

• NOTE THAT; THE VERTICAL AND HORIZONTAL POSITIONS USED TO GET
• THE DESCRIPTION ARE THE SAME AS THE POSITIONS PUT INTO THE
· MENU PROGRAM WHILE DISPLAYING THE MENU

DISPLAY

DISPLAY
KEYIN

*I?HPOS: VPOS," (" , INDEX, II) ". PROMPT
" Describe this program. II

*i?ifpos:vpos, II (II-~INDEX, ") "i -----RE-POSITION
*IT,CWK34,*IN,*EL DATA ENTRY

* & ••••••••••••••••••••••••••

• WRITE THE DISPLAY POSITIONING FOR THIS ITEM

WRITE

*

OUTFILE, SEQ; " II.

II*P",*ZF,HPOS,II:",*ZF,VPOS:
",tf"(",INDEX,lI) ff":"

· ... '
· CAUSE DISPLAY OF THE PROGRAM DESCRIPTION

*

CLEAR
APPEND
APPEND
RESET
WRI'rE

CWKf)S
CWK34 Iro C\I\]Kf)5
"#II:1f TO CWK65
CWK65
OUTFILE,SEQi" #"" ,CWK65 .

· .. .
• 3. ~"'RITE A "LINE" OF THE CHAIN INSrrRUClrIONS

• WHERE: IILINE" INCLUDES ALL OF 'fHE INSTRUCTIONS NEEDED BEFORE
AND AFTER THE ACTUAL CHAIN INSTRUCTION

· THESE INSTRUCTIONS ARE WRITTEN TO A WORK FILE TO BE COPIED TO
· THE OUTPUT FILE AT A LATER TIME

APPENDIX C. SAMPLE DATASHARE SYSTEM C-59

* · .. .
• PUT A DOUBLE QUOTE AFTER THE PROGRA~ NAME AND LEAVE I~ CWK9

*

CLEAR
APPEND
APPEND
RESET

CWK9
NAME 'ro CWK 9
"#"" TO CWK9
CWK9

· .. .
• WRITE COMMENTS TO PRECEDE INSTRUCTIONS THAT CAUSE CHAIN TO THE
• PROGRAIV1

*

WRITE

~A/R I'rE
WRITE

WKFILE2,SEQ;*+, "* •.•...•.•..••...•..•.•.. ":
" it • .
"

W K F I L E 2 , SEQ; ". ", CWK 3 4
WKFILE2,SEQi"."

II

· .. .
• WRITE THE INSTRUCTIONS

*

v.fHITE

WRITE

WRITE
\A/R ITE
lA/RITE

WRITE

W K F I L E 2 , SEQ iNA 1"1 E , II M 0 V E #: II P R OG [t A J'1 it" ":
liTO LOGTYPE lf

\"IKF I LE 2, SEQ i II r,10VS {F"" , NAI'>1E:
11#11 TO LOGINFO"

WKFILE2,SEQ;" CALL LOGI."JRITE"
W K F I L E 2 , SEQ i II C HA IN # " " , C'I'l K 9
VI K F I L E 2 , SEQ; .. WR I TAB LOG F I L E , II :

" LOGRN i * 12, # II NO PROGRAfVl# 1111

WKFILE2,SEQi" GOTO GETINDEX"
· .. .

• 4. IF THE LAST ITEM, GO TO 5.
IF NOT THE LAST ITEM, GOT TO 1.

*
BADANS

C-fJO

COMPARE
GOTO

KEYIN

CMArrCH
GOTO
CIVlATCH
GOTO

1116" TO INDEX NO MORE THAN In ITE!"1S
ENDLOOP IF NOT LESS

*Pl:12,*EL,;'Are there any more programs to ".
"be included? If ,*+,REPLY
liN" TO REPLY
ENDLOOP IF EQUAL REQUIRE YES OR NO ANSWER
fly" TO REPLY
BADANS IF NOT EQUAL

DATABUS COI"1PILER

* ..
• BUMP THE INDEX, VERTICAL POSITION AND THE HORIZONTAL POSITION
• BEFORE GOING TO 1.

ADD "III TO INDEX
ADD 11111 TO· VPOS
COI'v1Pl\RE 119" TO INDEX
GOTO tAJR I TEBR IF NOT EQUAL
1'10VE 113 " TO VPOS
!'10VE "41" 'ro HPOS
GOTO WRITEBR

*
· 5. WRITE THE LAST LINE OF THE BRANCH INSTRUCTION
· (LAST LINE OF BRANCH INSTRUCTION CANNOT HAVE A COLON FOLLOWING)

ENDLOOP CLEAR Ctll/K65
APPEND " " TO CVvK:) 5
APPEND BRANCH TO CWK65
APPEND NAME TO CWKn5
APPEND " " TO CWK65
APPEND CWK34 TO CWKf)5
RESET CWK·'-) 5
\II/RITE WKFIL~1,SEQ;CWK55

*
· WRITE END OF FILES TO THE WORK FIL8S

WEOF
~II/EOF

I'v'KFILE1,SEQ
\11/ K F I L E 2 , seQ

*
· WRITE THE LAST LINE OF THE MENU DISPLAY INSTRUCTION

QUTFILE,SEQ;" *EL"
*
· WRITE THE ROUTINE TO PROMPT AND KEYIN THE I~DEX

DISPLAY
WRITE

WRITE
WRITE

*ES,"Writing KEYIN routine."
QUTFILE,SEQ; "* .•••••..•.....••..•..... 11:

"
II "

QUTFILE,SEQ;". GET THE PROGRA!V1'S INDP'X"
QUTFILE,SEQ;II."

APPENDIX C.· SAMPLE DATASHARE SYSTEM C-Sl

* · .. .
. WRITE THE INSTRUCTIONS THAT DISPLAY THE PROMPTING MESSAGE

WRITE OUTFILE,SEQi"GETINDEX I<EYIN *Pl:12,":
"*F.:L,#"Selection by number#II:"

WRITE OUT F I L E , SEQ i II * P 4 1 : 1 2 , " :
"~II Enter (99) to leave this 11:

"menu.~":"

\.vR I TE OUTFILE,SEQi" *P25:12,":
"#" #",*P25:12,INDEX"

* · .. .
• WRITE THE Ii\JSTRUCTIONS THAT DO THE HANGE CHECK ON THE II\lDEX

*

\"iR IT E

~~JHITE

WRI'rE

WRITE
ADD
~"iRITE

WRITE

OUTFILE,SEQi"
" T,]

OUTFILE,SEQill

COMPARE
INDEX II

GOTO
" IF LESS II

OUTFILE,SEQi" COMPARE
"TO INDEX"

OUTFILE,SEQi " STOP
"1" 'ra INDEX

#:" 1 #:"" :

GETIl\lDEX ".

~1I99#" II.

IF SQUi\L"

OlJTFILE,SEQi ll CO"'1PARE #"":
*ZF, INDEX, !Iff" 'ro INDEX"

OUTFILE,SEQi" GOTO GETINDEX II.

"IF NOT LESS"
· .. .

• COpy THE BRANCH INSTRUCTION FROY! THE {!\laRK FILE

*

DISPLAY
WRITE

WRITE

WRI'fE
WRITE

WR I'rE

HEAD
GOTO

*8S, "\ATriting the SHANCH instruction. 1I

OUTFILE,SEQi "* :
\ " :
" II

OUTFILE,SEOi". BRANCH TO THE ROUTINE II.

II IN D I C,Z\ TED 8 Y rf HE I r'-.J 0 EX 1/

OUTFILE,SEQi"."
OUTFILE,SEQi ll TRAP

;1 IF CFAI L"
OUT2ILE,SE(!i"

liTO TIrllE II

W K FILE 1 , R E\-'J I NO i ;
BEGINBRL

CLOCK

8ADCHAIN II.

TVItE II.

. GET THE ACTUAL BRA NC H S TATE1Vl£ NT FRO;"! ~NORK FILE 1

B R L 00 P tt.J R IT E OUTFILE,SEQiCWK~5

WKFILEl,SEQiCWK~5

8RLOOP IF NOT OVER
BEGINBRL HEAD

GOTO

C-62 DATAB US COl\1P I LER

*
WRITE

*
WRITE

\.vR I TE
T~RITE

WRITE
*

OUTFILE,SEQill GOTO GETINDEX"

OUTF I LE, SEQ i .. *•.............•. II :

11 :

" II

OUTFILE,SEQi". PROGRAIV1 DOES NOT EXIST.II
OUTFILE,SEQi"."
OUTFI LE, SEQ i ~I BADCHAIN RETURN!'

· COpy THE CHAIN INSTRUCTION SECTION FROM THE WORK FILE

*

DISPLAY
WRITE

~vRITE

READ
GOTO

*ES,"Writing the CHAIN instructions."
o U rr r' I L E , SEQ i "* • • • " :

" \I • .
II "

OUTFILE,SEQi". CHAIN INSTRUCTIONS lI

WKFILE2,REWINDii
BEGINCHL

• GET THE ACTUAL CHAIN INSTRUCTIONS FROM WORK FILE 2

CHLOOP \\fR I'rE
BEGINCHL READ

GOrrO

*

OUTFILE,SEQiCWK65
WKFILE2,SEQi CWK6 5
CALOOP IF NOT OVER

..
. WRI'rE AN END OF FILS MARK TO THE OUTPUT FILE
• KILL OFF THE WORK FILES

*

*

WEOF

PREPARE
CLOSE

PREPARE
CLOSE

OUTFILE,SEQ

WKFILEl,"WKFILElll
\\fKF I LE 1

WKFILE2, "WJ<FILE2"
WKFILE2

APPENDIX C. SAMPLE DATASHARE SYSTEM C-~3

APPENDIX D. COMMON FILE ACCESS CONSIDERATIONS

Since DATASHARE is capable of executing more than one program
concurrently, more than one program at a time can try to access a
single file. There is no problem if these accesses are not
modifying the contents of the file, or if they are dealing with
different records in the file. If this is the case, one program
has no idea that another is accessing the same file. However, if
a certain record in the file is to be modified by more than one
program at a time, a lockout mechanism is needed to allow one
program to finish its modification before the other can start.
The Prevent Interruptions and FILE Prevent Interruptions
instructions are provided for this purpose. The PI and FILEPI
instru~tions can solve many common file update conflicts directly
as shown in the example in Section 6.12. However, there are cases
where several files may have to be read and then a decision made
by the operator before the modification can take place. In this
case, the part of the record that is going to be modified can be
read first and saved. Then the other reads and operator decisions
are made, and a new value !lade ready for the modification write.
However, before the modification is actually made, interruptions
are prevented while the value currently in the record is read
aqain, and compared to the value read the first time. If the
value has not 2hanged, the modification is made before
interruptions are allowed again. If the value has changed, a new
modification value is computed based upon the new value in the
location to be updated (this may require another operator
.Jecision) and the cycle is repeated. It is assumeo that the
conflict rate over a given record in a file is low and the number
of times an operator is asked to repeat a decision is small. See
the example below for an illustration.

Another potential problem regarding common files that are
being accessed by more than one port simultaneously exists. This
problem is encountered when more than one port is updating a
COr:1I:\on file. For example, suppose that port A was adding records
to the same file as port 8 and that hoth ports had new file space
allocated. If port A perfomed a CLOSE instruction on the common
file, space deallocation occurs on the file and so~e of the
information that port B had written may be lost. A solution to
this space deallocation problem is.to avoid the use of the CLOSE
instruction on the com~on files .

. FILE ACCESS LOCKOUT SXAMPLE

~PPENDIX D. COMMON FILE ACCESS CONSIDERATIONS 0-1

DATAFILE
QTYONH
QTYONHS
QTYWD
KEY

TRYAGN

IFILE
FORI'1
FORM
FORIVI
DIM

OPEN

READ
IvJOVE
DISPLAY
KEYIN
SUB
GOTO
GOTO
FILE PI
l~EAD

CO('lPAHE
GaTO
SUB
UPDATE

"0000"
110000"
"0000"
10

DATAF I LE, \I DA 'l'AF I LE"

DATAFILE,KEY;*20,QTYONH;
QTYONH 'ro QTYONHS
"QUANTITY ON FlAND: II,QTYONH
"QUANTITY '1'0 WITHDRAW: ", QTYWD
QTYWD FROM QTHONH
ERROR IF LESS
EHROR IF OVER
5; D.z\TAF I LE
DATAFILE,NULL;*20,QTYONll;
QTYONH TO QTYONHS
'fRYAGf\J IF NOT 8QUAL
QTYWD FROM QTY'JNH
01\ Tl\F I L E ; * 20 , QT YO NH

0-2 DATA8US COMPILER

APPENDIX E. COMPILER ERROR MESSAGES

The following message is only a warning given to alert the
user.

*** A TAB PAGE HAS BEEN GENERATBD ***

There are two cases where the compiler generates a TABPAGE
instruction. One is if a label occurs whose address is between
077401 and 077772. This is because of a problem in the BRANCH
instruction execution which references a label in the 32K page.
The second case is if a label occurs whose address is between
0100001 and 0100372. This is due to a problem with the TRAP and
TRAPCLR instructions. Because these two pages are consecutive, a
TABPAGE caused by the first case above appears as two TABPAGEs.:
In either case, the location counter, and the label's address, end
up at 0100401.

The following fatal errors cause the compilation to be
immediately aborted and any active CHAIN to be terminated.

BAD FILE DRIVE SPECIFICATION
BAD RECORD FORMAT IN TEXT FILE - MISSING END OF SECTOR CHARACTER

(3) IN LRN NNN
COMMAND FILE LIBRARY INCOMPLETE
COMMAND FILE OVERLAY UNLOADABLE
DICTIONARY OVERFLOW - TOO MANY LABELS OR ERRORS
DISK DRIVE OFF LINE
DISK READ PARITY ERROR
DISK WRITE PARITY ERROR
ERROR WHILE LOADING PRINTER DRIVER
FILE NOT FOUND
ILLEGAL OPTION, VALID OPTIONS ARE: C,D,E,L,NN,P,R,S,X
INSUFFICIENT MEMORY
INTERNAL ERROR
INTERNAL ERROR IN DOS FUNCTION
NAME REQUIRED
OBJECT AND LIBRARY FILES CANNOT BE THE SAME
OBJECT AND PRINT FILES CANNOT BE THE SAME
OBSOLETE VERSION OF PRINTER DRIVER I~ UTILITY/REL
PRINT AND LIBRARY FILES CANNOT. BE THE SAME
PRINTER DRIVER NOT FOUND IN UTILITY/REL
SORT MISSING
SORT UNLOADABLE
SOURCE AND OBJECT FILES CANNOT BE THE SAME

APPENDIX E. COMPILER ERROR MESSAGES E-l

SOURCE ANO PRINT FILES CANNOT 8E THE SAME
THIS PROGRAM REQUIRES DOS VERSION 2.4 OR LATER
THIS PROGRAM WILL NOT RUN ON A 2200
UTILITY/REL FILE NOT FOUND ON BOOTED DRIVE
UTILITY/REL NOT FOUND, UNLOADABLE, OR OBSOLETE VERSION

The following program errors cause the object code to be
rClarked non-executable. For each error except "UNDEFINED EXECUTION
LABEL: LLLLLLLL" a star appears under the character of the source
code at which the error was detected. Any undefined execution
label messages appear at the end of the source listing, together
with the line number of the first reference to the undefined
label. If the "LII or "e ll option \1aS specified, all the other
program errors are summarized at this point, along with the line
number of each error.

AFILE VARIABLE EXPECTED
B 1\0 C L:JC K PAH1\1"l ETP~ R
CHARACTER OR NUMERIC STRING VARIABLE EXPECTED
CHARACTER OR NUMERIC ST~ING VARIABLE

OR CHARACTER ST~ING LITERAL REQUIRED
CHARACTER OR NUMERIC ST~ING VARIA8LE OR LITERAL EXPECTED
CHARACTER OR NUMERIC STRING VARIA8LE,

FILE, IFILE, AFILE, OR COMLST EXPECTED
CHARACTER STRING LITERAL JR OCTAL ~U~BER EXPECTED
CHARACTER STRING VARIABLE EXPECTED
CHARACTER STRING VARIABLE OR LITERAL RXPECTED
CHARACTER STRING VARIABLE OR ONE CHARACTER STRING EXPECTED
CHARACTER STRING VARIABLE, ONE CHARACTER STRING,

OR OCTAL NUMBER REQUIRED
CHARACTER STRING VARIABLE OR LITERAL,

OR OCTAL NUMBER EXPECTED
COLON EXPECTED
COMLST VARIABLE EXPECTED
COMMA OR COLON EXPECTED
COMMA, COLON, OR SPACE EXPEC~ED

DATA AREA TOO LARGE
DATA DEFINITIONS MUST PRECEDE EXECUTABLE STATEMENTS
DECIMAL NUMBER EXPECTED
DECIMAL NUMBER OR NUMERIC STRI~G LITERAL REQUIRED
DECIMAL NUMBER OR NUMERIC STRING VARIABLE REQUIRED
DECIMAL NU~BER, CHARACTER OR NUMERIC VARIABL~,

OR ONE CHARACTER STRING REQUIRED
DECIMAL OR OCTAL NU~BER REQUIRED
DUPLICATE DEFINITION OF LABEL ON THIS STATEi"lEN'f
EXECUTION LABEL EXPECTED
FILE OR RFILE VARIABLE EXPECTED
FILE, IFILE, RFILE, RIFILE, OR AFILE VARIABLE EXPECTED

E-2 DATABUS COMPILER

GIVING CLAUSE NOT ALLOWED WITH THIS EVENT
IFILE OR RIFILE VARIABLE EXPECT£D
IFILE, RIFILE, OR AFILE VARIABLE EXPECT8D
ILLEGAL CHARACTER IN STRING LITERAL
INCLUDE FILE NOT FOUND
INCLUDES NESTED TOO DEEPLY
INVALID CHARACTER STRING LITERAL FORMAT
INVALID DIGIT IN OCTAL NUMBER
I NVAL 10 EVE Nrf
INVALID FILE SPECIFICATION
INVALID FLAG
INVALID I/O LIST CONTROL ITEM
INVALID LABEL SYNTAX
INVALID NUMERIC STRING LITERAL FOHI'1AT
INVALID NU~ERIC STRING VARIABLE FORMAT
INVALID ONE CHARACTER STRING
INVALID OPERAND IN I/O LIST
INVALID OPERATION SYNTAX
INVALID PREPOSITION
LABEL REQU IRED ON DAT,~ DEF IN ITION S'rATE!'lENT
LINE CONTINUATION CHARACTER MUST BE FOLLOWED BX SPACE
MISSING " AT END OF STRING LITERAL
IVlISS ING WORD II IF"
NUIVlBEH TOO LARGE
NUMBER 'roo SIVlALL
NUMERIC ST~ING VARIABLE EXPECTED
NUMERIC STRIN3 VARIABLE OR LITERAL EXPECTED
OPERAND TYPE MISMATCH
PREPOSITION OR COMMA EXPECTED
PROGRAM TOO LARGE
SEMICOLON EXPECTED
SPACE EXPECTED
SPACE REQUIRED AS STATEMENT TERMINATOR
TOO MANY CHARACTERS IN CHARACTER STRING LITERAL
TOO MANY CHARACTERS IN CHARACTER STRING VARIABLE
TOO MANY CHARACTERS IN NUMERIC STRING LITERAL
'roo MANY CHARACTERS IN NUMEHIC STRING VARLz\BLE
UNDEFINED EXECUTION LABEL: LLLLLLLL
UNDEFINED OPERATION
UNDEFINED VARIABLE NAME
XIF CANNOT BE USED AS A LABEL

APPENDIX E. COMPILER ERROR MESSAGES E-3

APPENDIX F. INDEX SEQUENTIAL FILE SIZE COMPUTATION

The index file is an n-ary tree where· n is determined by the
1 eng th 0 f the key and whe r e the re ar e enough 1 evel s to make the
top node in the tree always fit within one disk sector (contain at
most n branches). One can conservatively estimate the numher of
sectors that are used in the index file by the following method.
The actual number used may be less because trailing spaces in keys
are discarded and more than the minimum number of keys may fit in
a sector.

For the following discussion the following definitions are used:

NR = Number of logical records to be indexed.

KL = Key length (number of characters per key)

- NS(i)= Number of disk sectors for the i 1 th level of the
tree.

NKSL = Number of keys per disk sector for the lowest
level of the tree.

NKS = Number of keys per disk sector for other than the
lowest level of the tree.

The number of sectors, NS (1) required for the 10vvest level of the
tree is:

NKSL = 250/(KL+7) (discard remainder)

NS(l)= NR/NKSL (ro und up)

If NS(l»l, th~n perform the following iterative calculation
(i = 2 ,. 3, etc), 0 t he r wi s ego to (2) .

NKS = 250/(KL+3) (discard remainder)

(1) NS(i)= NS(i-l)/NKS (round up)

If NS(i»l, then i=i+1 and go to (1) and repeat the process.

APPENDIX F. INDEX SEQUENTIAL FILE SIZE COMPUTATION F-1

If NS(i)=l, then the iterative computation is complete and the
total number of sectors (TNS) required for the complete index
structure is:

(2) TNS = NS(1)+NS(2)+ ..• +NS(i)

Note that this computation yields a maximum number of disk sectors
required for the complete index structure and that the actual
number. used may be less.

Example:

NR = 10000 (10000 logical records to be indexed)

KL = 10 (key length is 10 characters)

Now the following computations are performed:

NKSL = 250/(KL+7) = 250/(10+7) = 14.71 = 14

NS(l)= NR/NKSL = 10000/14 = 714.29 = 715

The lowest level of the index tree requires 715 sectors.
Since NS(l»l, i=i+l = 2. proceeding with the computation:

NKS = 250/(KL+3) = 250/(10+3) = 250/13 = 19.23 = 19

NS(2)= NS(i-l)/NKS = NS(l)/NKS = 715/19 = 37.~3 = 38

The next highest level of the index tree requires 38 sectors.
Since NS(2»1, i=i+l = 3. Proceeding with the computation:

NS(3)= NS(i-l)/NKS = NS(2)/NKS = 38/19 = 2.00 = 2

The next highest level of the index tree requires 2 sectors.
Since NS(3»1, i=i+l=4. Proceeding with the computation:

NS(4)= NS(i-l)/NKS = NS(3)/NKS = 2/19 = 0.11 = 1

The next highest level of the index tree requires 1 sector.
Since NS(i)=l has been reached, the computation is complete and we
can now sum the total number of sectors (TNS) required.

TNS = NS(1)+NS(2)+NS(3)+NS(4)

TNS = 715+38+2+1 = 756

F-2 DATABUS COMPILER

Therefore 756 sectors are required for the entire index tree.

APPENDIX F. INDEX SEQUENTIAL ~ILE SIZE COMPUTATION F-3

APPENDIX G. SERIAL BELT PRINTER CONSIDERATIONS

Since the serial belt printer is connected to a 3600
terminal, there is no way that printer status information can be
returned to the interpreter. This means that all timing
considerations required by the printer must be handled by sending
enough "pad" characters to satisfy the worst case print time. A
pad character is any character that is not printed by the printer.
¥or example, an octal 032 works quite well as a pad character.

Calculating the number of pad characters can sometimes be
confusing. The following discussion will hopefully eliminate some
of the confusion.

SIMPLE BUT SLOWER SOLUTION

The simplest way to handle the timing considerations is to
use a *W list control in every DISPLAY statement that causes
printing on the belt printer. The one second pause provides more
than enough time for the printer to print a line.

i"10 H. E 0 IFF Ie U L T SOL UTI 0 N

The belt printer requires that a certain minimum of
characters be sent per line. If less than this minimum is sent,
the printer can become very confused and erratic. This minimum
number of characters that must be sent is dependent on both the
baud rata of the 3600 to which it is attached and also, the length
of the line being sent.

APPENDIX G. SEHIAL BELT PRINTER CONSIDERATIONS G-l

The following table shows the smallest line that can be sent to
the pr inter.

Li ne Leng th
I greater than

Baud Rate less than 40 I or equal to 40

110 (11 bi ts/char) 3 N/A
110 (10 bi ts/char) 3 N/A
150 4 N/A
220 (11 bits/char) S N/A
220 (10 bi ts/char) 6 N/A
300 7 N/A
600 14 N/A
1200 28 Sf)
2400 56 III
4800 III 221
9600 221 442

N/A indicates that timing does not need to be considered when
using the indicated baud rate and line length.

Example: Let n represent the number of characters in the line to
be printed. If the terminal to which the printer is
connected is set to 1200 baud, then:

a) If n < 28, enough pads must be added to make n = 28.

b) If 28 < n < 40, no pads need to be added. The 1 ine
may be printed "as is".

c) If 40 < n < 56, enough pads must he added to make n
= 56.

d) I f 56 < n, no pa d s need to be add ed .

To turn the printer on, so that anything displayed at the
terminal gets printed, the *PON list control should be placed in
the list. To turn the printer off, so that the terminal can be
used without the printer, the *POFF list control should be placed
in the list.

TURNING THE PRINTER OFF

Lines are not printed by the serial belt printer until an 012

G-2 DATABUS COMPILER

or 015 control is received by the printer. If the printer were
never to receive an 012 or 015, no lines would get printed. The
Databus DISPLAY statement normally furnishes these controls at the
end oft he 1 i n e •

Consider the following DISPLAY statement:

DISPLAY *PON,*W,"LINE TO BE PRINTED",*POFF

This line is not printed. The following sequence is sent to the
terminal by thIs display statement. First, the printer is turned
on. Second, the wait control is used to handle the timing
considerations. Third, the line is displayed on the terminal and
sent to the printer. Fourth, the printer is disconnected from the
terminal. Fifth, a carriage return (015) and line feed (012)
character are sent to the terminal. Note that neither the 015 nor
the 012 got sent to the printer because it was turned off before
the controls were sent.

The simplest way to solve this problem is to turn the printer
on and off in different DISPLAY statements from the one used to
display data at the terminal. Each DISPLAY statement to be sent
to the printer does not need to turn the printer on and then turn
it off.

Example:

FILE
SEQ
LINE

LOOP
BEGIN

FI LE
FORt.,
OI1'w1

OPEN
DISPLAY
GOTO

DISPLAY
READ
GOTO

DISPLAY
STOP

"-1"
80

F I L E , II DA TA "
*PON
BEGIN

*W,*R,*Pl:12,*+,LINE
FILE,SEQiLINE
LOOP IF' NOT OVER

*POFF

APPENDIX G. SERIAL BELT PRINTER CONSIDERATIONS G-3

APPENDIX H. GLOSSARY

l\IO

AIM

ASCII

BAUD

DATABUS

DATASHARE

EOS

£TX

I/O

I SAlVI

lSI

TRAP

associative indexed access

DOS file extension for Associative
Index files.

A c ron ym for Ass 0 cia t i v e I nd ex rJl e t h od
(see associative indexed access).

Acronym for American Standard Code
for Information Interchange.

A measurement of the number of
bits-per-second that are transmitted
or received.

Acronym for Datapoint Business
Lang uage .

Multi-user version of DATABUS.

A condition flag which is used to
indicate that the end or the
beginning of a string has been
encountered prenaturely.

End 0 f T ext con t r 01 c h a r act e r (0 2 a 3) •
This character indicates the end of a
s t ring.

Abreviation of Input/Output.

Acronym for Indexed Sequential Access
Method (see indexed sequential
access) .

DOS file extension for Index Files.

A program instruction that, once set,
waits for a condition to happen, then
calls a subroutine.

A method of storing and retrieving
data from a disk based on non-unique,
generic keys for records of a file.

APPENDIX H. GLOSSARY H-l

backg round

compiler

condition flags

cursor

direct access

echo

file

foreg round

fa rmpo inter

indexed suquential access

interpreter

H-2 DATABUS COMPILER

Activities that require a
low-priority "slice" of the
processor's time. Usually, used for
arithmetic, string manipulation and
disk accessing.

An assembler program that translates
DATABUS instructions to code that can
be used by the DATABUS language
interpreters.

Indicators of specific conditions
affected by the execution of certain
instruc tions.

An imaginary position on a screen
defined by a horizontal and vertical
co-ordinate. Usually indicated by a
blinking character on the screen.

A nethod of storing and retrievin~

data froD a rlisk.

Characters typed at the keyboard are
not displayed on the screen until the
computer "bounces" the character back
to the sc reen.

A named collection of data on a disk
pack.

Activities that require a
h i 'J h - P rio r i t Y "s I ice" 0 f the
processor's time. Usually, servicing
the keyboard, screen or printer.

A pointer to the first character of a
s t ring.

A method of storing and retrieving
data from a rlisk based on unique keys
for each record of a file.

An assembler progran responsible for
fetching and executing
pseudo- instructions C)ATl\BUS
instructions) .

key

left truncation

literal

octal

page

page fault

right truncation

rounded digit

rounding

rounding digit

A unique piece of data from a disk
record. This data is used as a name
for accessing that record.

Truncation of some of the most
significant characters of a numeric
value. See Rounding/Truncation,
section 2.7.2; see truncation, right
truncation.

Pre-defined data that cannot be
changed at execution time.

Number system using base 8.

A 256-byte area where program
instructions are kept.

To be executed, program instructions
must be in memory. A page fault
occurs when the page that contains
the instruction to be executed is not
in memory and must be read from disk.

Truncation of some of the least
significant digits of a numeric
value. See Rounding/Truncation,
section 2.7.2; see truncation, left
truncation.

The least significant digit that is
not lost when rounding a numeric
value. See Rounding/Truncation,
section 2.7.2; see Rounding Rules,
section 2.7.3; see rounding,
truncation, right truncation.

A special case of right truncation.
See Rounding Rules, section 2.7.3;
see truncation, right truncation.

The most significant digit that is
lost when rounding a numeric value.
See Rounding/Truncation, section
2.7.2; see Rounding Rules, section
2.7.3; see rounding, truncation,
right truncation.

APPENDIX H. GLOSSARY H-3

sector

sequential

servo printer

string

subroutine

thra shi ng

truncation

user's data area

variable

H-4 DATABUS COMPILER

Area of disk-pack that contains 2Sh
bytes of data.

A sub-set of direct access where the
next data in line is accessed.

A particular model of printer that is
capable of doing finite incremental
horizontal and vertical positioning.

Several consecutive bytes of data
grouped together.

A routine that performs a specific
function. When subroutines are
executed by other routines, execution
can be returned to the original
routine.

Caused by excessive page faulting.

The process of eliminating those
characters that do not fit within a
destination variable. See
Rounding/Truncation, section 2.7.2.

That portion of a user's program
containing all data elements.

Storage area for data that can he
changed at execution time.

•

APPENDIX I. DATABUS OBJECT CODE

The followin'j is a description of the object code produced by
the compiler and executed by the DATABUS iriterpreters.

1.1 FORMAT OF DATABUS OBJECT CODE FILES

DATABUS object code files (extension JOBC) have the structure
desc r ibed bel ':)w.

The first byte of each record is an ASCII space (040) to
prevent the occurrence of an erroneous end-of-file mark.
(Since any characters are acceptable in jDBC files, an
end-af-file mark could in-advertantly be written to the file.)

The first sector (DOS LRN = 0) of the file contains the
information required by an interpreter to set up the user's
data area. This information is in the following format:

Bytes 0-2 ------ Reserved for use by DOS
Byte 3 --------- ASCII space (040)
Bytes 4-5 ------ Count of bytes used in the user's data area
Byte ~ --------- l's complement of byte 4

. Byte 7 --------- l's complement of byte 5
Byte 8 --------- MSB of the initial P-Count
Byte 9 --------- l's complement of byte 8
Byte IG -------- Indicates whether the program is executable

or not (0 ==) executable, 0177 ==) not executable
Byte 11 -------- MSH of the final P-Count
Byte 12 -------- l's complement of byte 11
Bytes l3-n ----- Configuration information used to inform the

interpreter of the use of various language verbs and
constructs

Bytes n+1-253 Padded with 0377's
Bytes 254-255 Reserved for use by DOS

If any of the new verbs and features of version 2 or later are
used, the compiler sets byte 10 above to "not executable"
preventing any interpreter except DS5 2.1 or later from
ex e cut i ng the p r og ram. I f ex e cut ion 0 f sue hap r 0 gram i s
attempted by an interpreter not supporting these new features,
a CHAIN failure results. (See chapter 1 for a description and
summary of the new verbs and features).

APPENDIX I. DATABUS OBJECT CODE I-I

The disk sectors immediately following the interpreter
information sector contain the data to be used to initialize
the user's data area.

The format of the user's data area sectors is as follows:

Bytes 0-2 ------ Reserved for use by DOS
Byte 3 --------- ASCII space (040)
Bytes 4-n ------ Initial user's data area
Bytes n-253 ---- Padded with 0377'5
Bytes 254-255 -- Reserved for use by DOS

Bytes 4-5 of the interpreter information sector are used to
count the number of bytes initialized in the user's data area.

Since zero-data programs are valid, bytes 4-5 may be zero.

No special information needs to be kept to reserve bytes for
user's data area defined as "COf':1fnOn" bytes. These hytes Are
reserved by putting the 037G character into every byte defined
as "common".

All sectors following those used to store the user's data
area, are used for the program's executable code. They have
the folIo vJ i n 9 for mat :

Byte 0-2 -------- Reserved for use by DOS
Byte 3 --------- ASCII space (040)
Bytes 4-253 ---- Executable code
Bytes 254-255 -- Reserved for use by DOS

I.2 USER'S DATA AREA OBJECT CODE

The following is a description of the object code produced
when compiling data area definition statements.

I.2.1 Numeric and Character String Variables

Numeric and character string variables are formatted exactly
as described in sections 4.1 and 4.2 respectively.

1-2 DATABUS COMPILER

1.2.2 FILE and RFILE

The object code produced for FILE and RFILE instructions is
exactly 16 0377's followed by a single 000.

1.2.3 IFILE and RIFILE

The object code produced for IFILE and RIFILE instructions is
exactly 26 0377's.

1.2.4 AFILE

The object code produced for AFILE instructions is described
in section 5.5.

1.2.5 COMLST

The object code pruduced for COMLST instructions is described
in section 4.7.

1.3 OBJECT CODE OF EXECUTABLE STATEMENTS

DATABUS instructions are composed of a one or two byte
instruction code followed by zero or more operands. The
instruction code has the form:

NNOOOOOO

where NN denotes the number of operands + 1 and 000000 denotes one
of n4 operations. For instructions with non-standard or undefined
length operand lists, NN is the number of standard or required
operands.

Two byte opcodes begin with an 0177.

The standard operands in DATABUS instructions are represented
by 16-bit quantities of the form

X AAAAAAAAAAAAAAA

where A •.• A is the address of the operand. A special case is a
literal, for which A ••• A = all Ills.

If the operand represents a label address, its high order bit,

APPENDIX I. DATABUS OBJECT CODE 1-3

represented by X above, is flipped. If the address of the label
is between ° and 077772 (32K), X is a '1'. If the address of the
label is equal to or greater than 0100001, X is a '0'.

For some operations with lists of operands, the operands
appear as standard operands, one after another; the last one is
followed by a single byte containing 0377. In these instructions,
literals are not allowed in the list.

Some operations take in-line representations of strings
rather than operands referring to a literal; these operations
include KEYIN, DISPLAY, and CONSOLE. Literal operands are
distinguished from variables by the leading '1' bit in the
operands.

Whenever a literal is used as an operand in a statement, the
operation to perform the statement is preceed by the sequence:

0257,0377,0377,<literal>

which causes the <literal> to be moved to a special area (denoted
by the 0377,0377). References to operand 0377,0377 address this
literal. The operations for each statement are specified below.

ACALL OP1,aclist 0275,A(OPl) ,aclist* ,0377
ADD OPl,OP2 0322,A(OP1) ,A(OP2)
AND OPl,OP2 0177 ,0315,A(OP1) ,A(OP2)
APPEND OPl,OP2 0304,A(OPl) ,A(OP2)
BEEP 0152
BRANCH OPl,brlist 0226 ,A(OPl) ,brlist*, 0377
BUMP OP1,n 0206,A(OPl) ,n-l
BUMP OPI 0206,A(OPl) ,0
BU[VlP OPl,OP2 0177 ,0324,A(OPl) ,A(OP2)
CALL OPI 0232,A(OPl)
CALL OPI IF cond 0333 , A (OP 1) , cond*
CHAIN OPI 02l0,A(OPl)
CHECKIO OPl,OP2 0370,A(OPl) ,A(OP2)
CHECKll OPl,OP2 037l,A(OPl) ,A(OP2)
CLEAR OPI 02l3,A(OPl)
CLOCK TIME,OPI 0353,0,A(OPl)
CLOCK DAY, OP 1 0353,1,A(OPl)
CLOCK YEAR,OPl 0353,2,A(OPl)
CLOCK VEHSION,OPI 0353,3,A(OP1)
CLOCK PORT,OPI 0353,4.,A(OPl)
CLOSE OPI 0245,A(OPl)
CMATCH OPl,OP2 0303,A(OPl) ,A(OP2)
CI'1ATCH OPl,C 0303,A(OPl) ,C
CI'1ATCH C,OP2 0303,C,A(OP2)

1-4 DATABUS COMPILER

CI"10VE
CHOVE
COMCLR
COfvtPARE
COrvtTSrr
COl\1WAIT
CONSOLE
DEBUG
DELt::TE
DELETE
DELETEK
DIAL
DISPLAY
DIVIDE
DSCNCT
EDIT
ENDSET
EXTE:ND
FILEPI
FPOSIT
GOTO
GO'rO
GOTO
INSEHT
INSERT
KEYIN
LENSET
LOAD
MATCH
,NJOVE
IVlOVE
MOVE
l"lOVE
MOVEFPTR
IVlOVELPTR
t"lULT I PLY
NORETURN
NOT
OPEN
OPEN
OPEN
OPEN
OR
PAUSE
PI
POLL

OP1,OP2
C,OP2
OP1
OP1,OP2
OP1

dl i s.t

OPl,OP2
AOPI
OPl,OP2
OPI
dl i st
OP1,OP2

OP1,OP2
OPI
OPI
n,file list
OP1,OP2,OP3
OPI
OP 1 IF cond
OP1 IF ff1ag
OPl,OP2
AOPI
dlist
OP1
OP1,OP2,list
OP1,OP2
SOP 1, SOP 2
NOPl,NOP2
SOP1,NOP2
NOP1,SOP2
OP1,OP2
OPl,OP2
OPl,OP2

0302,A(OP1) ,A(OP2)
0302,C,A(OP2)
0274,000,A(OPl)
0321,A(OPl) ,A(OP2)
0274,002,A(OPl)
0274,010
0151,dlist*,0377
0166
0360,A(OP1) ,A(OP2)
0177,022~,A(AOPl)

0177 ,0312,A(OPl) ,A(OP2)
0177,0202,A(OPl)
0141,dlist*,0377
0325,A(JPl) ,A(OP2)
0163
0177 ,030r),A(:)P1) ,A(OP2)
0207"z\(OP1)
0212,l\(OP1)
0177,201,file 1ist*,0377
0177,0311,A(JP1) ,A(OP2) ,A(OP3)
0230,A(OPl)
0331,A('JPl) ,cond*
0177,0300,A(OPl) ,fflag*
0361,A(')Pl) ,A(OP2)
0177,0227,A(AOPl)
0140,d1ist*,0377
0255,A(OP1)
0315,A(:)P1) ,A(.JP2) ,list* ,0377
0301,A(OP1) ,A(OP2)
0300,A(SOP1) ,A(SOP2) (strin!)s)
0320,A(NOPl) ,A(NOP2) (numbers)
o 3 1 5 , A (SOP 1) , A (\10 P 2) (s t -) n m)
0314,A(NOP1) ,A(SOP2) (nm -) st)
o 1 7 7 , ° 3 04 , A (0 PI) , A (J P 2)
0177,0305,A(OP1) ,A(OP2)
0324,A(OPl) ,A(JP2)
0177,0103

OPl,OP2 0177,0320,A('JP1) ,A(JP2)
OPl,OP2 0344,A(OP1) ,A(OP2)
AOP1,OP2 0344,A(AOP1) ,A(JP2),0
AOPl,OP2,OP3 0344,A(AOPl) ,A(OP2) ,A(OP3)
AOPl,OP2,C 0344,A(AOP1) ,A(jP2) ,C
OP1,OP2 0177,0315,A(OP1) ,A(OP2)
OPI 0177",0223,l\(:)Pl)
n 02GS,n
p11ist*,OP1,OP2;pllist*,pvlist*

0177 ,0121,pllist* ,A(JP1) ,A(JP2),
pl1ist* ,pvlist*,0377

APPENDIX I. DATABUS OBJECT CODE I-5

PREPARE
PH INrr
PRINT
READ
READ
READ
HEAD
READ

READ

READKG
READKG
READKS

HEADKS

RECV
RELEASE
HEPLACE
RESST
HESET
RES2T
RETURN
RETURN
HOLLOUT
HP.RINT
RPRINT
SCAN
SCAN
SEARCH
SEND
SETLPTR
SETLP'rR
SE'rLPTR
SHUTDOv{N
SPLCLOSE
SPLOPSN
SPLOPEN
STOP
STOP
STORE
SUBTRACT
'I\~B PAGE
TRAP
TRAP

1-6

OP1,OP2 0350,.~(OP1) ,A(OP2)
plist 0142,plist*,0377
plist; 0142,plist*,037G
OP1,OP2; rlist 0346,A(OPl) ,A(OP2) ,rlist* ,0377
OPl,OP2;rlist; 0346,A(OPl) ,A(OP2) ,rlist*,037~
AOPl,NOP2; rlist 034G,A(AOPl) ,A('\JOP2) ,rlist* ,0377
AOPl,NOP2;rlist; 034~,A(AOP1) ,A(NOP2) ,rlist*,037~
AOPl,rklist*;rlist

0346,A(AOPl) ,rklist* ,0375,
0177,0225,A(AOPl) ,rlist*,0377

AOPl,rklist*;rlist;

AOP1;rlist
AOP1;rlist;
OP1;rlist

OPl;rlist;

01?1,OP2;clist

OP1,OP2
OPl,OP2
OP1,n
OPl

IF' cond
OPl
plist
plist;
OP1,OP2
n,OP2
OP1,OP2,OP3,OP4
OP1,OP2;clist
OP1,OP2
OP1,n
OPl
OPI

OPl
OP1,OP2

IF cond
OP1,OP2,list
OP1,OP2

0346,A(AOP1) ,rklist* ,0375,
0177,0225,A(AOPl) ,rlist*,0376
0177 ,0225,A(AOP1) ,rlist* ,0377
0177,0225,A(AOPl) ,rlist*,037()
0257,377,377,000,000,377,203
0346,A(OPl) ,377,377,rlist*,0377
0257,377,377,000,000,377,203
034~,.~(OPl) ,377,377, rlist* ,037'5
0274,004,A(JPl) ,A(81?2) ,clist* ,0377
0143
0372, A(GPl) ,A('JP2)
0305,A(OP1) ,A(OP2)
0305,A(OPl) ,n
0305,A(OPl) ,1
0134
0235,cond*
0256,A(OPl)
0164,0142,plist*,0377
0164,0142,plist*,0376
0177 ,0330,A(OPl) ,A(OP2)
0177,0330,n,A(JP2)
0373,A(OPl) ,A(OP2) ,.z\(OP3) "z\(OP4)
0274,005,A(OP1) ,A(~P2) ,clist* ,0377
0177,0307,A(OP1) ,A(OP2)
0177,0307 ,A(OPl),n
0177,0307,A(OPl) ,0
0177,0210,A(')Pl)
0177,0114
0177,0313,A(OP1) ,0177
0177,0313,.A(OP1) ,A(OP2)
0136
0237,cond*
0317 ,A('JP1) ,A(JP2),list* ,0377
0323,.A(OP1) ,A(OP2)
0154 (repeated to fill page)

OP 1, event 0327 , A (OP1) , event*
OP1,GIVING,OP2,event

DA'l'ABUS COMPILER

TRAP

TRAP

TRAPCLR
TYPE
UPDATE

UPDATE
WEOF
WRITAB
WRITE
WRITE
WRITE
WRITE
XOR

0177 ,0322,A(OPl) ,event* ,0002 ,A(JP2)
OPl,NORESET,event

0177 ,0322,A(OPl) ,event* ,0001
OPl,GIVING,OP2,NORESET,event

event
OPI
OPl;wlist

AOPliwlist
OPl,OP2
OPl,OP2iwlist
OPl,OP2;wlist
OPl,OP2;wlist;
AOPiwlist
AOPiwlisti
OPl,OP2

0177 ,0322,A(OPl) ,event* ,0003 ,A(OP2)
0327,0,event*
0211,A(OPl)
0257,377,377,000,000,377,203
0347 ,A(OPl) ,377,377 ,wlist* ,0376
0347,A(AOPl) ,1,wlist*,0376
0347,A(OPl) ,A(OP2) ,002
0347,A (OPl) ,A (OP2) ,004 ,wI i st*, 0375
0347 ,A(OPl) ,A(OP2) ,wlist* ,0377
0347,A(OPl) ,.~(OP2) ,wlist*,0376
0347 ,A(AOPl) ,O,wlist* ,0377
0347,A(AOPl) ,0,wlist*,037G
0177,0317 ,A(OPl) ,A(OP2)

Ope rand lis t s (' lis t' abo v e) are t ran s 1 a ted to a seq u e n ceo f
operand addres~es, one after another. Literals are not allowed in
these lists, so all addresses correspond to either string or
numeric variables.

Operand lists ('aclist') above are translated to a sequence
of operand addresses one after another. The operands are either
character string variables, numeric variables, FILEs, IFILEs,
AFILEs, or COMLSTs.

Operand lists ('brlist') above are translated to a sequence
of operand addresses one after another. The operands are all
execution labels.

Operand lists ('file list') above are translated to a
sequence of operand addresses one after another. The operands are
either FILEs, RFILEs, IFILEs, RIFILEs, or AFILEs.

Operand lists ('rklist' above) are translated to a sequence
of operand addresses, one after another. All operands are string
variables.

I/O statements for ReQote files (RFILE and RIFILE) are
preceded by a remote opcode (0164).

Conditions ('cond' above)- are translated to a single byte
with the following correspondence:

EOS
ZERO

0000
0001

APPENDIX I. DATABUS OBJECT CODE 1-7

EQUAL 0001
LESS 0002
OVER 0003
NOT EOS 0100
NOT ZERO 0101
NOT EQUAL 0101
NOT LESS 0102
No'r OVER 0103

Function key flags ('fflag' above) are translated to a single
byte with the followi ng correspondence:

Fl 0001
F2 0002
F3 0004
F4 0010
F5 0020
NOT Fl 0176
NOT F2 0175
NOT F3 01 73
NOT F4 0167
NOT F5 0157

Events ('event' above) are translated into a single byte code
as follows:

PARITY 0000
RANGE 0002
FORMAT 0004
CFAIL 0006
IO 0010
SPOOL 0012
Fl 0014
F2 0016
F3 0020
F4 0022
F5 0024
INTERRUPT 0026
INT 002S
< sva r> .1\<svar>
<char> <char>

Operand lists appearing in CONSOLE statements ('dlist' above)
are composed of various components, each of which translates to a
different byte string. These translations are:

variables
literals

A(variable)
(The string itself is in the command)

I-8 DATABUS COMPILER

o
*Pn:m
*Popl:op2

033,0
o 0 ~ , (n -1) , (ITt-I)
OOf),A(opl) ,A(op2)

Operand lists appearing in DISPLAY statements ('dlist' above)
include those in CONSOLE plus the following control items:

*N 016
*EL 036
*EF 037
*ES 035
*R 013
*IT 005,002
*IN 005,0375
*+ 001
*- 002
*L 012
*C 015
*W 004
*HON 005,0100
*HOFF 005,0277
*B 007
*Wn 025,n
*OP 020
*EP 017
*NP 02S
*3270 021
*RD 031
*PON 014
*POFF 034

Operand lists appearing in KEYI\] statenents ('dlist' above)
include those for CONSOLE and DISPLAY plus the following control
itef!1s:

*EOFF 005,001
*EON 005,37S
*JL 005,004
*JR 005,010
*ZF 005,020
*DE 005,040
*T 003
*Tn 027,n
*Tn:m 024,n,m
*RV 022
*DV 023
*CL 030

APPENDIX I. DA'l',\l1US OBJECrr CODE I-9

Operand lists appearing in PRINT and RPRINT statements
('plist' above) are composed of variables, literals, and special
control items. The variables and literals are treated exactly as
in display lists. The control items that are allowed are
translated as follows:

*+
*-
*n
*F
*L
*C
*l\l
*ZF
*variable

001
002
011,n-l
014
012
015
016
006
OOO,.A.(variable)

Operand lists appearing in READ, READKS, and READKG
statements ('rlist' above) are composed of variahles and special
control items. The variables are treated exactly as in display
lists. The control items that are allowed are translated as
fo llows :

*n
*variable

OOl,n
OOO,A(variable)

Operand lists appearing in WRITE statements ('wlist' above)
are composed of variables, literals, and special control items.
The variables, octal characters and literals are treated exactly
as in display lists. The control items that are allowed are
translated as follows:

*ZF
*MP
*+
*-

00(-)
007
003
005

Operand lists appearing in UPDATE and WRITAB statements
('wlist') include the control items used by lvRITE and READ above.

Operand lists appearing in RECV and SEND statements ('clist'
above) are composed of variables only. SSND statements can either
contain string or numeric variables. RECV statements may only
contain string variables.

Operand lists appearing in POLL statements (' pllist' and
'pvlist' above) are composed of variables and special control
items. The pllist is a list of control items, and the pvlist is a
list of variables. They are translated as follows:

1-10 DATABUS COMPILER

variables

*+
*EP
*OP
*NP
*'rn :m

A(variable)

001
017
020
026
024,n,m

APPENDIX I. DATABUS OBJECT CODE I-II

INDEX

*+ list control 9-8, 9-26, 10-5, 11-12, 12-29
*- list control 9-9, 9-27, 10-6, 12-29
*3270 list control 9-19, 9-29
*B list control 9-18, 9-28
*C list control 9-8, 9-26, 10-4
*CL list control 9-19
*DE list control 9-15
*<dnum> list control 13-7, 13-11, 15-5, 16-5
*DV list control 9-17
*EF list control 9-7, 9-25, 9-31
*EL list control 9-7, 9-25, 9-31
*EOFF list control 9-10
*EON list control 9-11
*EP list control 9-18, 9-28, 11-12
*ES list control 9-7, 9-25, 9-31
*F list control 10-4
*HOFF list control 9-1~, 9-28
*HON list control 9-1~, 9-28
*IN list control 9-12, 9-28
*IT list control 9-11, 9-27
*JL list control 9-12
*JR list control 9-13
*L list control 9-8, 9-26, 10-4
*MP list control 12-29
*N list control 9-8, 9-26, 10-4
*NP list control 9-18, 9-28, 11-13
*<nvar> list control 10-6, 13-7, 13-11, 15-5, 1~-5
*OP list control 9-18, 9-28, 11-12
*p list control 9-6, 9-25, 9-31
*POFF list control 9-19, 9-29
*PON list control 9-19, 9-29
*R list control 9-8, 9-26
*RD list control 9-19, 9-29
*RV list control 9-15
*T list control 9-9
*T<n> list control 9-9
*T<n>:<m> list control 9-9, 11-13
*W list control 9-10, 9-27
*W<n> list control 9-10, 9-27
* Z F 1 is t con t r 01 9 -1 5, 10 - 5·, 1 2 - 29
ACALL instruction 6-7
ADD instruction 8-1
AFILE instruction 5-3, 12-1

AND instruction 7-53
APPEND instructi9n 7-7
ASCII 7-17, 7-19
Associative Indexed I/O 12-8, 16-1
Asterisk 2-3, 4-3, 9-6, 9-25, 10-4, 12-28
Background ~-23, 6-24, 6-25, 11-2
BACKSPACE key 9-20
BEEP instruction 9-32
BRANCH instruction 5-3
BUMP instruction 7-14
C option 17-4
CALL instruction 6-4
CANCEL key 9-21
CFAIL trap 6-14, 6-19
CHAIN instruction 5-9
<char> trap 6-15
Character string 2-10, 4-1, 4-5, 4-0, 12-23, 12-27
CHECKI0 instruction 8-19
CHECKll instruction 8-15
CLEAR instruction 7-24
CLOCK instruction 7-31
CLOSE instruction 12-19, 13-4, 14-1, 15-4, IG-4
CMATCH instruction 7-12
CMOVE instruction 7-11
Colon 2-3
COMCLR instruction 11-6
COMLST instruction 4-7, 11-1
Comma 2-2, 2-3
Comments 2-3
Common data 2-4, 4-3
Communications 11-1
COMPARE instruction
COMTST instruction
COMWAIT instruction
CONSOLE instruction
Cursor 9-1

8-10
11-7

11-8
9-30

D option 17-5
DAY 7-31
DEBUG instruction 9-32
Decimal 2-5, 4-1
DELETE instruction 15-15, IG-17
DELETEK instruction 15-16
Destination operand 2-2, 2-8, 7-1, 8-1
DIAL instruction 11-10
DIM instruction 4-5
DISPLAY instruction 9-23
DISPLAY key 17-8

DIVIDE instruction 8-5
DOS 3-2, 12-1, 17-2
DSBACK 6-20
DSCNCT instruction 6-27
E option 17-5
Echo 9-10
EDIT instruction
End-of-fi1e mark
ENDSET instruction
EOS flag 5-1
EQU statement 3-1

7-41
12-20, 12-22

7-22

EQUAL flag 6-J, 8-1
Error 19-69
ETX 2-10, 4-1
Event 6-13
EXTEND instruction
F1 trap 6-14
F2 trap &)-15
F3 trap 5-15
F4 trap 6-15
r'5 trap 6-15
FILE instruction
FILEPI instruction
Flag 6-1, 8-1
Forcing character
Foreground 6-23
FORM! instruction

7-25

5-1, 12-1
0-25

2-5, 2-7

4-4
FORMAT trap 6-14, 12-9, 12-11, 12-24
Formpointer 2-10, 4-2, 4-5, 4-5
FPOSIT instruction 13-13, 14-5, 15-16, 1~-18

Fraction 2-8
Function keys 5-1, 9-22
GIVING clause 6-16
GOTO instruction 6-1
Horizontal positioning 10-8
I/O 4-3, 9-1, 12-1, 12-15, 13-1, 14-1, 15-1, 16-1
IF directive 3-5
IFILE instruction
INCLUDE statement
Indexed Sequential
INIT instruction
INSERT instruction

5-2, 12-1
3-2

I/O
4-6

5-2, 12-5, 12-13, 15-1

15-13, 16-16
Integer 2-8
Interpreter 1-5, 2-4, 6-7, f)-8, t)-14, 6-15, ()-19, 9-5, 9-32,

12-10
INTerrupt key
INTERRUPT trap

6-14, 9-22
6-14

Inversion, shift key 9-11
10 trap 6-14, 11-1, 11-3, 11-4, 11-5, 12-11
Key, search 5-2, 12-13, 12-15, 15-5, 15-8, 15-11, 15-13, 15-15,

15-16, 16-5, 16-16
KEYBOARD key 17-8
KEYIN instruction 9-2
L option 17-4
Label 2-1
LENSET instruction 7-23
LESS flag 6-1, 8-1
Library, text file 3-2, 17-2
List controls 9-6, 9-25, 10-4, 11-12, 12-28
LISTOFF directive 3-5
LISTON directive 3-5
Literal 2-5
LOAD instruction 7-28, 8-12
Logical length 2-10, 4-6, 7-2, 7-4, 7-7, 7-42, 9-24, 9-26,

10-3, 10-5, 11-2, 11-3, 12-27
Logical string 2-10, 7-9, 7-35, 7-36, 7-38, 7-40, 7-41, 10-10,

15-5, 15-8, 15-13, 15~15, 15-16, lS-5
MASTER program ~-8, 9-22
MATCH instruction 7-9
Micro-positioning 10-9
Millisecond interrupt, one 6-23
Minus 4-1
MOVE instruction 7-1, 7-4, 7-6, 8-9
MOVEFPTR instruction 7-2G
MOVELPTR instruction 7-27
MULTIPLY instruction 8-5
Negative 2-9, 4-1, 14-2, 14-3, 14-5
NEW LINE key 9-21
nn option 17-5
NORESET clause 5-16
NORETURN instruction 0-28
NOT instruction 7-56
Null key 15-6
Null string 2-10, 4-3
Numeric string 2-8, 4-1, 4-4, 12-24, 12-28
Object file 17-1
Octal 2-5, 12-30
OPEN instruction 12-15, 13-1, 14-1, 15-1, In-l
Operand 2-2, 7-1, 8-1
Operation 2-1, 7-1, 8-1
OR instruction 7-51
OVER flag 6-1, 8-1
P option 17-4
PARITY trap 6-14

PAUSE instruction
Period 2-3
PI instruction
Plus sign 2-3
POLL instruction
PORT 7-31

6-30

6-23

11-11

PREPARE instruction 13-2,
preposition 2-2, 7-1, 8-1
Print file 17-2
PRINT instruction
Quotes 2-5

10-2

12-11

14-1

R option 17-5
Random I/O 5-1,
RANGE trap S-14,
READ instruction
READKG instruction
READKS instruction
RECV instruction
RELEASE instruction
REPLACE instruction
RESET instruction
RETURN instruction
RFILE instruction
RIFILE instruction
ROLLOUT instruction
Rounding 2-8
Route 11-1

12-22, 13-10,15-9, 16-11
12-21, 13-5, 14-1, lS-4, 1~-5

le)-12

RPRINT instruction
S option 17-4
SCAN instruction
SEARCH instruction
Sector 12-1

IS-10
11-3

10-7
7-37

7 -1 '3
6-6

S-2, 12-1
5-3, 12-1

5-18

10-7

7-39
7-35

Semicolon 9-1, 10-1, 10-5, 12-22
SEND instruction 11-1
Sequential I/O S-l, 12-12
Servo printer 10~8, 17-4
SETLPTR instruction 7-19
SHUTDOWN instruction 6-29
Source file 17-1
Source operand 2-2, 7-1, 8-1
Space compression 12-9, 12-10, 12-29
SPLCLOSE instrucion 10-12
SPLOPEN instrucion 10-9
SPOOL trap 6-14
STOP instruction
STORE instruction
String 2-S, 4-1

6-8
7-29, 8-14

8-3
Subroutine 5-4
SUBTRACT instruction
<svar> trap 6-15
Tab control 13-7,
TAB PAGE instruction

13-11, 14-2, 14-4
1-5, 5-26

TIIV1E 7 -31
TRAP instruction 6-13, 6-19, 11-1, 11-3, 11-4, 11-5, 12-9,

12-11, 12-22, 12-24, 13-10, 15-9, 1~-11
TRAPCLR instruction ~-17
Truncation 2-8
TYPE instruction 7-34
UPDATE instruction 15-12, 1~-14
Variable 2-10, 4-1
VERSION 7-31
WEOF instruction 13-12, 14-5, 15-10, IG-12
WRITAB instruction 13-10, 14-4
WRITE instruction 12-26, 13-8, 14-3, 15-7, lS-9
X option 17-5
XOR instruction 7-55
YEAR 7-31
ZERO flag ~-1, 8-1

Manual Name __ __

Manu al N u m ber ____________________________________ _

READER'S COMMENTS

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Name __ Date ________________________________ __

Organization __ _

Street __ _

City _______________ State. _______ Zip Code ______________ _

All comments and suggestions become the property of Datapoint.

Fold Here

________________________________ .-:~19~e~~n~~t~~ ______________________________ _

BUSINESS REPLY MAl L
No Postage Necessary if mailed in the United States

Postage will be paid by:

DATAPOINT CORPORATION
DIRECTOR OF SOFTWARE SUPPORT
8550 Datapoint Drive, Mail Station# N60
San Antonio, Texas 78284

111111 FIRST CLASS
Permit
5774

San Antonio
Texas

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	07-56
	07-57
	07-58
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	14-01
	14-02
	14-03
	14-04
	14-05
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	C-55
	C-56
	C-57
	C-58
	C-59
	C-60
	C-61
	C-62
	C-63
	D-01
	D-02
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	G-01
	G-02
	G-03
	H-01
	H-02
	H-03
	H-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	replyA
	replyB

