DATABUS COMPILER
DBCMPLUS

Use’r’s Guide
Version 3

October, 1980

Document No. 50321

DATAPOINT

DATABUS COMPILER
DBCMPLUS

User's Guide

Version 3

October, 1980

Document No. 50321

NOTICE

Datapoint strongly recommends that its customers use Datapoint
Customer supplies. These disks, diskettes, cassettes, ribbons
and other products are certified by Datapoint to meet all Datapoint

Bardware specifications for consistent optimum performance.

Copyright < 1980 Datapoint Corporation. All Rights Reserved.

PREFACE

This document describes the DATABUS Language Compiler
DBCMPLUS. This compiler accepts programs written in the DATABUS
language and translates them into a form that can be interpreted

by both DATABUS and DATASHARE Interpreters.

1.

i
.

5.

1.

1.

1.
1.

NN NND

2.
2.
3.

3.

3.
3.

4.
4.
4.
4.
4.
4.
4.

5.

TABLE OF CONTENTS

INTRODUCTION

1 Changes from Version 2
1.1.1 Features Added

2 Changes from Version 1
1.2.1 Features Added
1.2.2 Features Modified

3 TABPAGEs Generated

4 Interpreters

STATEMENT STRUCTURES
1 Comments
2 Compiler Directives
3 Data Area Definition
4 Program Execution
5 Literals
5 The Forcing Character
7 Numeric Definitions
2.7.1 Integer/Fraction
2.7.2 Rounding/Truncation
2.7.3 Rounding Rules
8 Character String Definitions
9 A Sample Program

COMPILER DIRECTIVES
1 EQUATE (EQU)
2 INCLUDE (INC)
3.2.1 Using library files with INCLUDE

3.2.2 Examples of INCLUDE specifications
3.2.3 Possible Uses of DATABUS Libraries

3 LISTOFF and LISTON
4 IFnn

DATA DEFINITION

1 Numeric String Variables
Character String Variables
Common Data Areas

FORM

DIM

6 INIT

COMLST

~NOY b W

FILE DECLARATION
1 FILE

ii

NN

page

{ T
VB NN

1

e e T]
l

i I
= O WO WOJUd b W

|

|[\JN[\JNN[})N(\JN(\J[\)

I
I | = =

WWwwwwwww
|
GU s & WN

o
N WN

LS RN SO S S N

w »
I
-

(o)}
.

5.2 IFILE
5.3 RFILE
5.4
5.5

RIFILE
AFILE

-

PROGRAM CONTROL INSTRUCTIONS
6.1 Condition Flags and Function Key Flags
6.2 GOTO
6.3 BRANCH
6.4 CALL
6.5 RETURN
6.6 ACALL
6.7 STOP
6.8 CHAIN
6.9 TRAP
6.10 TRAPCLR
6.11 ROLLOUT
5.12 PI
6.13 FILEPI
6.14 TABPAGE
6.15 DSCNCT
6.16 NORETURN
6.17 SHUTDOWN
6.18 PAUSE

CHARACTER STRING HANDLING INSTRUCTIONS
7.1 MOVE
7.1.1 MOVE (character string to character string)
7.1.2 MOVE (character string to numeric string)
7.1.3 MOVE (numeric string to character string)
APPEND
MATCH
CMOVE
CMATCH
BUMP
RESET
SETLPTR
ENDSET
LENSET
CLEAR
EXTEND
MOVEFPTR
. MOVELPTR
7.15 LOAD
7.16 STORE
7.17 CLOCK
7.18 TYPE
7.19 SEARCH

(]

L]
== O 00 ~Jontdbd W

—

.

NNN NN NNNNNNNN
.

]
W N

iii

o n
i
W whN

l

f DN N0 N
|

NN D AN
|
NN

N
|

NN D

| I N I A

w N

SO TANANUTWWJ WY JD I W =

|
NS N O DN Do

Il NN NN
A i

|
-
O

NN NN
| |

[\OR

w N

7-24
7-25
7-26
7-27
7-28
7-29
7-31
7-34
7-35

- 9.

7.20
7.21
7.22
7.23
7.24
7.25
7.26

REPLACE
SCAN
EDIT

OR

AND

XOR

NOT

ARITHMETIC INSTRUCTIONS

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

IN
9.1

9

9

9

ADD

SUBTRACT (SUB)
MULTIPLY (MULT)
DIVIDE (DIV)
MOVE

COMPARE

LOAD

STORE

CHECK1l1l (CK11l)
CHECK10 (CK19)

TERACTIVE INPUT/OUTPUT

KEYIN

.1.1 Character String Variables (KEYIN)
.1.2 Numeric String Variables (KEYIN)
.1.3 List Controls

9.1.3.1 *P<h>:<v> (Cursor Positioning)
9.1.3.2 *EL (Erase to the End-of-Line)
9.1.3.3 *EF (Erase from Cursor Position)
9.1.3.4 *ES (Erase the Screen)

9.1.3.5 *C (Carriage Return)

9.1.3.6 *L. (Line Feed)

9.1.3.7 *N (Next Line)

9.1.3.8 *R (Roll the Screen)

9.1.3.9 *+ (KEYIN Continuous On)
9.1.3.10 *~ (KEYIN Continuous Off)
9.1.3.11 *T (KEYIN Timeout)

9.1.3.12 *W (Wait)

9.1.3.13 *EOFF (Echo Off)

9.1.3.14 *EON (Echo On)

9.1.3.15 *IT (Invert Text)

9.1.3.16 *IN (Invert to Normal)
9.1.3.17 *JL (Justify Left)

9.1.3.18 *JR (Justify Right)

9.1.3.19 *ZF (Zero Fill)

9.1.3.20 *DE (Digit Entry)

9.1.3.21 *HON (Turn on Highlighting)
9.1.3.22 *HOFF (Turn off Highlighting)
9.1.3.23 *RV (Retain Variable)

iv

-

| OLCWYWWOWWWOWWOWWLOWWOVWYWWOWYWYWWYWY

[e =2 N T N T T T T D R R R R R Y B |
HOOWW®WOWM®OOJJJOAN B WN

O WO WO\
(I
-
bt

9-12
9-12
9-13
9-15
9-15
9-16
9-16
9-16

9.1.3.24 *DV (Display Variable) 9-17
9.1.3.25 *B (Beep) 9-18
9.1.3.26 *OP (0dd Parity) , 9-18
9.1.3.27 *EP (Even Parity) ‘ 9-18
9.1.3.28 *NP (No Parity) 9-18
9.1.3.29 *3270 (High Speed Keyin for 3270) 9-19
9.1.3.30 *CL (Clear the Key—-Ahead Buffer) 9-19
9.1.3.31 *RD (Roll Down the Screen) 9-19
9.1.3.32 *PON (Send “"Printer On" Character to Terminal9-19
9.1.3.33 *POFF (Send "Printer Off" Character to Termin9-19
9.1.4 Literals (KEYIN) 9-20
9.1.5 Special Considerations 9-20
9.1.5.1 BACKSPACE and CANCEL 9-20
9.1.5.2 NEW LINE 9-21
9.1.5.3 INTerrupt 9-22
9.1.5.4 Function Keys 9-22
9.2 DISPLAY 9-23
9.2.1 Character String Variables (DISPLAY) - 9=-24
9.2.2 Numeric String Variables (DISPLAY) 9-24
9.2.3 List Controls 9-25
9.2.3.1 *p<h>:<v> (Cursor Positioning) 9-25
9.2.3.2 *EL (Erase to End-of-Line) 9-25
9.2.3.3 *EF (Erase to End-of-Frame) 9-25
9.2.3.4 *ES (Erase the Screen) 9-25
9.2.3.5 *C (Carriage Return) 9-26
9.2.3.6 *L (Line Feed) 9-26
9.2.3.7 *N (Next Line) 9-26
9.2.3.8 *R (Roll the Screen) 9-26
9.2.3.9 *+ (DISPLAY Blank Suppression On) 9-256
9.2.3.10 *- (DISPLAY Blank Suppression 0ff) 9-27
9.2.3.11 *W (Wait) 9-27
9.2.3.12 *IT (Invert Text) 9-27
9.2.3.13 *IN (Invert to Normal) 9-28
9.2.3.14 *HON (Turn on Highlighting) 9-28
9.2.3.15 *HOFF (Turn off Highlighting) 9-28
9.2.3.16 *B (Beep) 9-28
9.2.3.17 *0P (0dd Parity) 9-28
9.2.3.18 *EP (Even Parity) 9-28
9.2.3.19 *NP (No Parity) 9-28
9.2.3.20 *¥3270 (High Speed Keyin for 3270) 9-29
9.2.3.21 *RD (Roll Down the Screen) 9-29
9.2.3.22 *PON (Send "Printer On" Character to Terminal9-29
9.2.3.23 *POFF (Send "Printer Off" Character to Termin9-29
9.2.4 Literals (DISPLAY) . 9-29
9.3 CONSOLE 9-30
9.4 BEEP : 9-32
9.5 DEBUG 9-32

10.

PRINTER OUTPUT

10.1 PRINT

10.1.1 Character String Variables
10.1.2 Numeric String Variables
10.1.3 List Controls
10.1.3.1 *F (Form Feed)
10.1.3.2 *C (Carriage Return)
10.1.3.3 *L. (Line Feed)
10.1.3.4 *N (Next Line)
10.1.3.5 *<n> (Tab To Column <n>)
10.1.3.6 ; {(Supress new line function)
10.1.3.7 *ZF (Zero Fill)
10.1.3.8 *+ (Blank Supression 0On)
10.1.3.9 *- (Blank Suppression Off)
10.1.3.10 *<nvar> (Tab to column <nvar>)
10.1.4 Literals

10.2 RPRINT

10.3 RELEASE

10.4 Printer Considerations
10.5 SPLOPEN

10.6 SPLCLOSE

11.

COMMUNICATIONS INPUT/OUTPUT

11.1 SEND
11.2 RECV
11.3 COMCLR
11.4 COMTST
11.5 COMWATIT
11.6 DIAL
11.7 POLL

12.

11.7.1 Process Control steps for POLL

DISK INPUT/OUTPUT

12.1 File Structure

12.1.1 Record Structures
12.1.1.1 Physical Records
12.1.1.2 Logical Records
12.1.1.3 Indexed Sequential Records
12.1.1.4 Associative Indexed Records
12.1.2 Space Compression
12.1.3 End of File Mark

12.2 Accessing Methods

12.2.1 Physical Record Accessing

12.2.2 Logical Record Accessing

12.2.3 Indexed Sequential Record Accessing
12.2.4 Associative Indexed Record Accessing

12.3 General Instructions (Disk I/O)

12.3.1 OPEN (General)

vi

10-1
10-2
10-3
10-3
10-4
10-4
10-4
10-4
10-4
10-5
10-5
10-5
10-5
10-6
10-5
10-5
10-7
10-7
10-8
10-9
10-12

11-1
11-1
11-3
11-6
11-7
11-8
11-10
11-11
11-15

12-1
12-2
12-3
12-3
12-3
12-5
12-8
12-9
12-11
12-11
12-11
12-12
12-13
12-14
12-15
12-15

12.3.2 CLOSE (General) ' 12-19

12.3.3 READ (General) 12-21
12.3.3.1 Character String Variables {(READ) 12-23
12.3.3.2 Numeric String Variables (READ) 12-24

12.3.4 WRITE (General) 12-25
12.3.4.1 Character String Variables (WRITE) 12-27
12.3.4.2 Numeric String Variables (WRITE) 12-28
12.3.4.3 List Controls (WRITE) 12-28

12.3.4.3.1 *+ (Space Compression On) 12-29
12.3.4.3.2 *- (Space Compression Off) 12-29
12.3.4.3.3 *2F (Zero Fill) 12-29
12.3.4.3.4 *MP (Minus Overpunch) 12-29

12.3.4.4 Octal Control Characters , 12-390
12.3.4.5 Literals 12-30

13. PHYSICAL RECORD ACCESSING 13-1
13.1 OPEN (Physical) 13-1
13.2 PREPARE (PREP) (Physical) 13-2
13.3 CLOSE (Physical) 13-4
13.4 READ (Physical) 13-5
13.4.1 Tab Control 13-7
13.5 WRITE (Physical) 13-8
13.5 WRITAB (Physical) 13-10
13.6.1 Tab Control ’ 13-11
13.7 WEOF (Physical) 13-12
13.8 FPOSIT (Physical) 13-13
14. LOGICAL RECORD ACCESSING 14-1
14.1 OPEN (Logical) 14-1
14.2 PREPARE (Logical) 14-1
14.3 CLOSE (Logical) 14-1
14.4 READ (Logical) 14-1
14.5 WRITE (Logical) ’ 14-3
14.5 WRITAB (Logical) 14-4
14.7 WEOF (Logical) : 14-5
14.8 FPOSIT (Logical) 14-5
15. INDEXED SEQUENTIAL RECORD ACCESSING 15-1
15.1 OPEN (Indexed Sequential) ‘ 15-1
15.2 CLOSE (Indexed Sequential) 15-4
15.3 READ (Indexed Sequential) 15-4
15.4 WRITE (Indexed Sequential) 15-7
15.5 WEOF (Indexed Sequential) 15-10
15.6 READKS (Indexed Sequential). ©15-10
15.7 UPDATE (Indexed Sequential) 15-12
15.8 INSERT (Indexed Sequential) 15-13
15.9 DELETE (Indexed Sequential) 15-15
15.10 DELETEK (Indexed Sequential) 15-15

vii

15.11 FPOSIT (Indexed Sequential)

16. ASSOCIATIVE INDEXED RECORD ACCESSING
16.1 OPEN (Associative Indexed)
16.2 CLOSE (Associative Indexed)
16.3 READ (Associative Indexed)
16.4 WRITE (Associative Indexed)
16.5 WEOF (Associative Indexed)
16.6 READKG (Associative Indexed)
16.7 UPDATE (Associative Indexed)
16.8 INSERT (Associative Indexed)
15.9 DELETE (Associative Indexed)
16.10 FPOSIT (Associative Indexed)

17. PROGRAM GENERATION

17.1 Preparing Source Files

17.2 Invoking the compiler
17.2.1 File Specifications
17.2.2 Output Parameters
17.2.3 Temporary File Requirements
17.2.4 Display and Keyboard Keys
17.2.5 ABTIF flag

Appendix A. INSTRUCTION SUMMARY
Appendix B. INPUT/OUTPUT LIST CONTROLS

Appendix C. SAMPLE DATASHARE SYSTEM
C.1 SYSTEM PROGRAMS
C.1.1 Sample ANSWER Program
C.1.2 Sample MASTER Program
C.1.3 Sample DATASHARE MASter MENU
C.l.4 Sample Program Selection MENU
C.1.5 Chain Files for System Generation
C.1.5.1 Compile the System Programs
C.1.5.2 Re-organize System Log File
C.2 SYSTEM INCLUSION FILES
C.2.1 COMMON User's Data Area
C.2.2 Log File Data Area Definition
C.2.3 Log File Input/Output Routines
C.3 SUPPLEMENTAL SYSTEM PROGRAMS
C.3.1 Re-organize the List of Authorized Users
C.3.2 Program to Generate New Menus

Appendix D. COMMON FILE ACCESS CONSIDERATIONS

Appendix E. COMPILER ERROR MESSAGES

viii

15-15

15-1
16-1
16-4
15-5
16-9
16-12
156-12
16-14
16-15
16-17
16-18

17-1
17-1
17-1
17-3
17-3
17-8
17-8
17-S

Appendix
Appendix
Appendix

Appendix

F. INDEX SEQUENTIAL FILE SIZE COMPUTATION
G. SERIAL BELT PRINTER CONSIDERATIONS
H. GLOSSARY

I. DATABUS OBJECT CODE

I.1l FORMAT OF DATABUS OBJECT CODE FILES

I.2 US

ER'S DATA AREA OBJECT CODE

I.2.1 Numeric and Character String Variables

I.2

I.
I.
I.

I.3 0

INDEX

2
2
2
B

.2 FILE and RFILE
.3 IFILE and RIFILE
.4 AFILE

5 COMLST

JECT CODE OF EXECUTABLE STATEMENTS

ix

HHHHH HH H
| 1
WwwWwwwpoNh ==

CHAPTER 1. INTRODUCTION

The DATABUS language is an interpretive high level language
designed for business applications. It has been designed to run
under the Datapoint Disk Operating System and takes advantage of
all of its file handling capabilities (dynamic file allocation,
random, sequential, Indexed Sequential, and the powerful
Associative Index Access Method) .

Verbs are provided to permit simple yet flexible operator
interaction with the program, thus enabling levels of data entry
and checking ranging from simple keypunch to extremely
sophisticated intelligent data entry. A complete set of string
manipulation verbs are available, along with a flexible arithmetic
package. An extensive set of file manipulation verbs complete a
powerful business-oriented language.

1.1 Changes from Version 2

The following additions and enhancements were made to Version
3 of the DBCMPLUS DATABUS compiler. The new language features are
only:supported by the DATASHARE VI Version 1 interpreter DS6 1.1
or above. Any attempt to interpret a DATABUS program using these
new features with any other interpreter results in a CHAIN failure
being given, as the compiler places an indication in the object
code file that the code is not executable.

1.1.1 Features Added

The following features have been added to the DATABUS
language since version 2.

1. AIM, the Associative Index Method has been added. This access
method allows flexible and powerful access to a data base
using generic keys. A new data type, an AFILE, has been added
to declare an AIM file, most of the existing I/0 verbs have
been modified to accept an AFILE as the file parameter, and
one new instruction, READKG (READ Key Generic), has been
added.)

2. KEYIN List Controls.

a. *CL - Clear the key ahead buffer

CHAPTER 1. INTRODUCTION 1-1

b. *PON - Send printer on character to terminal

c. *POFF - Send printer off character to terminal
d. *3270 - Control for 3670 terminal operating in 3270
mode

3. Display List Controls

a. *PON - Send printer on character to terminal

b. *POFF - Send printer off character to terminal

c. *3270 - Control for 3670 terminal operating in 3270
mode

4. Pattern match operations can now be performed with the SCAN
verb.

5. The User Data Area has been extended to a maximum of 15,872
(15.5K) bytes.

6. Text file libraries are supported. The source file and any
INCLUDEd files may be placed in text file libraries.

7. The compiler sets the DOS ABTIF (ABorT IF) flag if an error
occurs during compilation. This condition can be detected and
used to abort a CHAIN or CHAINPLS operation by using the
//ABTIF chain run time directive.

1.2 Changes from Version 1

The following additions and enhancements were made to Version
2 of the DBCMPLUS DATABUS compiler. Some are enhancements to the
compiler itself, while most are enhancements to the DATABUS
language. The new language features are only supported by the
DATASHARE V Version 2 interpreter DS5 2.1 or above. Any attempt
to interpret a DATABUS program using these new features with any
other interpreter results in a CHAIN failure being given, as the
compiler places an indication in the object code file that the
code is not executable.

1.2.1 Features Added

The following features have been added to the DATABUS
language since version 1. :

1. KEYIN List Controls

a. *RV . - Retain Variable

1-2 DATABUS COMPILER

10.

11.

12.

b. *DV — Display Variable

c. *B - Beep

d. *W<n> - Wait <n> seconds

e. *T<n> - Time out after <n> seconds
f. *T<n>:<m> - Time out ack and nack count
g. *EP -~ Generate even parity

h. *0p — Generate odd parity

i. *NP - Generate no parity

Display List Controls

a. *B — Beep

b. *W<n> - Wait <n> seconds

c. *EP - Generate even parity
d. *0pP — Generate odd parity
e. *NP - Generate no parity

PRINT List Controls

a. *<nvar> - Tab to <nvar>

CLOCK extensions allowing access to the interspreter's
version, name, port number, screen size, port type, and

maximum User's Data Area (UDA) available.

A NORETURN instruction has been added to allow one stack level
to be discarded.

A MOVEFPTR instruction has been added to allow readout of the
form pointer.

A MOVELPTR instruction has been added to allow readout of the
logical length pointer.

An EDIT instruction has been added to aid in the creation of
formatted output.

Direct manipulation of the logical length pointer is now
possible with the SETLPTR instruction.

Access to the current file position has been added with the
FPOSIT instruction.

Central station dialing is now possible with the DIAL
instruction.

The SHUTDOWN verb allows the user to end execution and return
to DOS without affecting the rollout file.

CHAPTER 1. INTRODUCTION 1-3

13.

14.

15.

16.

17.

18.

19.

20.

21.

Print spooling is now offered with the SPLOPEN and SPLCLOSE
instructions.

Logical operations have been provided with the OR, AND, XOR,
and NOT verbs.

A PAUSE verb for low-overhead port idling has been added.

A polling facility is now offered which makes use of a POLL
verb, user written routines, and the DATASHARE KEYIN/DISPLAY
facility.

ACALL now allows FILEs, IFILEs, and COMLSTs to be passed as
parameters.

New command line options for printer output are included: P to
generate a print file, S to send the output to a servo
printer, and <nn> to specify the number of lines to be printed

per page.
Dollar signs are now allowed in labels.

LISTOFF and LISTON directives have been added to control
printer output.

The IF directive allowing a section of code to be compiled
conditionally.

1.2.2 Features Modified

The following features of the DATABUS language have been

modified since version 1.

TRAP extensions allowing more flexible, more extensive use of
the trap concept.

TYPE return conditions have been modified.

Function key support has been added to both GOTO and TRAP
instructions.

The ability to BUMP by a numeric variable has been added.
ISAM OPEN's now position to the beginning of the ISI file;

READKS need no longer be preceeded by another file positioning
instruction.

1-4 DATABUS COMPILER

6. Time-outs during KEYIN can now be detected.

7. It is now possible to delete only the key of an ISAM record
with the DELETEK instruction.

8. ISAM INSERT is now allowed after a READ instruction.
9. The program length has been extended to 65,024 (63.5K) bytes.

10. The User Data Area has been extended to a maximum of 7680
bytes.

11. The drive specification on an INCLUDE file name can be
specified by volume name (<volid>).

1.3 TABPAGEs Generated

The compiler generates two TABPAGE instructions if there is
an instruction with a label on it whose address (location counter)
is between 077401 and 077772. This is done to solve a problem
interpreters have relating to using a BRANCH instruction with a
label operand in this page. The compiler also generates a TABPAGE
instruction if there is an instruction with a label on it whose
address is between 0100001 and 0100372. This is done to solve a
problem with the new extensions for the TRAP and TRAPCLR verbs.
After the TABPAGE is done, the label's address is 0100401.

1.4 Interpreters

The complete DATABUS language may not be compatible with all
DATASHARE and DATABUS Interpreters. The following is a brief
description of the current DATASHARE and DATABUS interpreters.
Refer to the appropriate user's guide for more detailed
information about the interpreters.

DS3A3360 DATASHARE 3 Interpreter supporting up to eight 3360
terminals on a 2200 DOS.A system.

DS3A3600 DATASHARE 3 Interpreter supporting up to eight 3600
terminals on a 2200 DOS.A system.

DS3B3360 DATASHARE 3 Interpreter supporting up to eight 3360

terminals on a 2200 DOS.B system or a 2200 DOS.A
system with a 4K disk controller.

CHAPTER 1. INTRODUCTION 1-5

DS3B3600

PSDS4

DS42200

DS42200X

DS45000

DS5

DS6

DB11

DBML11

1-6

DATASHARE 3 Interpreter supporting up to eight 3400
terminals on a 2200 DOS.B system or a 2200 DOS.A
system with a 4K disk controller.

DATASHARE 4 Interpreter supporting up to sixteen
3360 or 3600 terminals. This interpreter executes
on a 5500 using the 5500 Partition Supervisor or on
a 6600 using the 6600 Partition Supervisor.

DATASHARE 4 Interpreter supporting up to four 3350
terminals on a 2200 DOS.A or DOS.B with a 4K disk
controller system.

DATASHARE 4 Interpreter -supporting up to four 35600
terminals on a 2200 DOS.A or DOS.B system with a 4K
disk controller.

DATASHARE 4 Interpreter supporting up to eight 3360
or 3600 terminals. The features of this
interpreter are similar to DS42200.

DATASHARE 5 Interpreter which is similar to DS55500
and DS56600. Only one interpreter is released for

any Datapoint 5500-compatible product. A different
interpreter is manufactured at the user's site for

each configuration of DATASHARE desired.

DATASHARE 6 Interpreter. Only one interpreter is
released for any Datapoint 5500-compatible product.
A different interpreter is manufactured at the
user's site for each configuration of DATASHARE
desired. It supports the new features outlined
above.

DATABUS 11 Interpreter executing DATABUS code
programs from the processor console on a 2200,
Diskette 1100, or 5500, DOS.A, DOS.B, DOS.C, DOS.D,
or DOS.E systems.

DATABUS MULTILINK 11 interpreter executing two
DATABUS code programs. The primary program is the
processor console and the secondary (or utility)
program may be used for utility functions.
Internal (between primary and secondary program)
and external (with a remote or host processor)
communications are supported. The interpreter
executes on a Datapoint 1150 DOS.C system.

DATABUS COMPILER

CHAPTER 2. STATEMENT STRUCTURES

There are four basic types of statements in the DATABUS
language: comment, compiler directive, data area definition and
program execution. All of the statements (except comments) use
the following basic format:

<label> <operation> <operands> <comment>

where: each of the fields above is separated from the others by

<label>

at least one space,

is a letter or dollar 51gn, followed by any
combination of up to seven letters, digits and
dollar signs, (this does not include special
characters), note that if the compiler encounters
a label longer than eight characters long, instead
of giving an error the compiler creates an eight
character label by taking the first seven and the
last characters of the given label. If this
method of creating labels leads to two identical
labels (two labels whose first seven and last
characters are identical such as THISISBIGl and
THISISBIGGER1) then the compiler gives a duplicate
label error,

<operation> denotes the operation to be performed on the

following operands,

<operands> are any operands required by the <operationy,

and

<comment> is any comment the user wants to make about the

instruction or about program execution.

The label field is considered empty if a space appears in the

first column of
labels:

A
ABC
A1BC
B1234

ABCDEF

the line. The following are examples of valid

BIGLABEL

SLOOP

DSEND

CHAPTER 2. STATEMENT STRUCTURES 2-1

The following are examples of invalid labels:

HI,JK (contains an invalid character)
4DOGS (does not begin with a letter)

The compiler keeps track of two distinct sets of labels: data
labels and execution labels. Data labels are those present on
data area definition statements. Execution labels are those
labels used by the program control instructions (see chapter 6.)
to alter the normal flow of program execution.

Data labels must be unique among themselves; that is, no data
label can be the same as any other data label. Execution labels
must also be unique among themselves. However, a label may be
used both as a data label and also as an execution label.

Although there are exceptions (for more details see the
sections that describe the instructions individually), the operand
field for most of the instructions has the following general
format:

<source operand><separator><destination operand>

where: <source operand> is the first operand required by the
operation,
<destination operand> is the second operand required by
the operation, and
{separator> must be a comma or a valid preposition.

If a comma is used as the separator it cannot be preceded by
any spaces, but may be followed by any number of spaces (including
none). The prepositions that may be used as separators are BY,
TO, OF, FROM, USING, WITH, IN, or INTO. If one of these
prepositions is used as the separator, it must be preceded and
followed by at least one blank. Note that any of these
prepositions may be used even if it does not make sense in
English.

The following are all examples of valid statements:

LABEL1 ADD PCS TO TOTAL

LABEL2 ADD PCS OF TOTAL THIS IS A COMMENT
LABEL3 ADD PCS, TOTAL

LABEL4 ADD PCS, TOTAL

LABELS5 ADD PCS TO TOTAL

2-2 DATABUS COMPILER

The following are examples of invalid statements:

LABEL1 ADD PCS TOTAL (missing separator)
LABEL?Z ADD PCS ,TOTAL {space before comma)

Some of the operations require a list of items in the operand
field. Such a list is typically made up of variable names,
literals, and list controls separated by commas. This list can be
longer than a single line, in which case the line must be
continued. This is accomplished by replacing the comma that would
normally appear in the list with a colon and continuing the list
on the following line. Comments may be included after the colon
used for continuation. For example, the two statements:

DISPLAY
DISPLAY

perform the same function.

2.1 Comments

Comment lines have a period, asterisk, or plus sign in the
first column, and may appear anywhere in the program. Comments
are useful in making it easier for someone reading through the
program to understand program logic, subroutine function,
subroutine parameterization, etc.

Comments that begin with a period are simply copied from the
source program to any listing requested by the user.

Comments that begin with an asterisk are treated like
comments that begin with a period, unless there are fewer than 12
lines at the bottom of the current page. If there are fewer than
12 lines, comments that begin with an asterisk are printed at the
top of the next page. This allows comments to appear on the same
page as the program instructions that are being described by the
comments. Use of the asterisk at the beginning of each section or
subroutine description is encouraged since this greatly enhances
program readability.

Comments that begin with a plus sign are always printed at
the top of the next page. This allows major sections of the
program to be started at the top of a page. The plus sign should
be used cautiously, since it can easily waste great quantities of

paper.

CHAPTER 2. STATEMENT STRUCTURES 2-3

2.2 Compiler Directives

Compiler directives are provided to make the compilation
process easier and more flexible.

There is a compilation directive which allows a programmer to
include other files in the current compilation. This directive
allows large programs to be broken into several smaller,
easier-to-edit files. It also allows a single file to be used for
a set of subroutines or data definition blocks which are common to
more than cne program.

There is also a compilation directive which allows the
absolute value of a symbolic name to be defined. A name defined
in this manner may then be used anywhere in place of a decimal or
octal number.

2.3 Data Area Definition

The user's data area must be defined by using file
declaration or data definition statements. File declaration
statements are used to reserve space for the system information
needed for all disk accessing, while data definition statements
are used to describe the format of any variables used in a
program. For information about the size of the user's data area,
see the User's Guide of the appropriate interpreter. All of these
statements must have labels which are used to reference the
variable or logical file defined. All labels used with data
definition and file declaration statements are data labels (see
section 2.).

2.4 Program Execution

The program execution statements are those that actually do
the data manipulation and must conform to the following rules:

-— They must appear after any data area definition statements.
—-— They may or may not have labels.

-- Any label used on one of these statements is an execution
label (see section 2.).

-- Program execution always begins with the first executable
statenment.

2-4 DATABUS COMPILER

-— All execution statements except the first one may have

multiple labels. This is accomplished by entering a label

without an operation field. For example:

LABEL1
LABEL?2
LABEL3 MOVE A TO B

These three labels all refer to the statement. Execution of any
instruction with LABEL1l, LABEL2, or LABEL3 as the label operand,

refers to the same statement.

In similar manner, an execution label may be placed on
blank line to identify the following, unlabeled, executable
statement:

ADD "1 TO C
SUBLINE
SUBTRACT C FROM TOTAL
The label SUBLINE references the SUBTRACT statement. Using
technique can simplify program editting during development.

2.5 Literals

Lirerals are useful when a constant value 1is needed as

this

one of

the operands of an instruction. Using literals saves user's data

area.
A literal has one of the following formats:

"<string>"
<dnum>
"<char>"
<occ>

where: <string> is any sequence of characters with the exceptions
described below in the section on the forcing

character (#). This string may be either a

numeric string (see section 4.1) or a character

string (see section 4.2).
<dnum> is a decimal number.

{char> is any single character. (The forcing character

rules do not apply.)
<occ> is an octal control character.

See the sections describing the individual instructions for the

CHAPTER 2. STATEMENT STRUCTURES

2-5

format that may be

The following
format:

(excluding the quotes).

is always equal to 1.

criteria apply to literals with the

used with those instructions allowing literals.

"<{string>"

The string may be from 1 through 40 characters in length

The string must be enclosed in quotes.

When the literal is used as a character string the formpointer

When the literal is used as a character string the logical

length pointer always points to the last character of the

literal.

Most instructions that make use of these literals require that

the literal be the first operand of the instruction (for more
details see the sections that describe the instructions

individually).

Some examples of instructions that may use literals of the

"<string>" format follow:
STORE
ROLLOUT
CHAIN
OPEN
PREPARE
MOVE
MOVE
APPEND
MATCH
ADD
SUBTRACT
MULTIPLY
DIVIDE
COMPARE

The following criteria

inclusive.

zZero.

2-5

"APPLES" INTO X OF S1,S2,S3
"CHAIN FIX22" -
"NEXTPROG"

FILEl,"DATAFILE"
FILEl,"USERDATA"

"MESSAGE" TO M3442

"100.55" TO VALUE

*." TO STRI1

"YES" TO ANSWER

"23.46" TO TOTAL

"1" FROM COUNT

".1" BY TAX

"33.3333" INTO FACTOR

"10" TO LINENUMB

apply to octal control characters:

The octal control character must be between 000 and 0377,

The first character of an octal control character must be a

DATABUS COMPILER

-— Note that some of these octal control characters are used for
control purposes in disk files (000, 003, 011, 015) and others
are used as control characters in KEYIN, DISPLAY, and CONSOLE
statements. Improper use of these control characters can
result in invalid program execution.

2.6 The Forcing Character

Since the second quote is used to indicate the end of the
string, any literal of the form "<string>" needs a special
technique to include a quote as a character within the <string>.
The technique used by the DATABUS language is to define the pound
sign (#) to be a forcing character.

Putting the pound sign within a string tells the compiler

- that the next character in the string should be included within
the string. The character following the pound sign is not checked
for any special significance; it is simply picked up and put into
the string. The pound sign used as a forcing character is not put
into the string. This means that to put the pound sign itself
into a string you must do so by using a previous pound sign as a
forcing character.

For example,
DISPLAY "CUSTOMER## SHOULD BE #"22224""
would display exactly:
CUSTOMER# SHOULD BE ™"2222"

on the screen.

Note that the forcing character convention does not apply to
literals of the "<char>" format. <char> may be any character,
including the quote character and the pound sign character. For
example,

CMOVE w70 STRING
would be used to move a quote into the variable STRING. However,
the use of a literal in a MOVE instruction would require the use

of the forcing character (even in a single character move) since
the quoted item can be a mutiple character quote.

CHAPTER 2. STATEMENT STRUCTURES 2-7

For example:
MOVE """ TO STRING

would be used to move a quote into the variable STRING.

2.7 Numeric Definitions

The following definitions are established so that the ensuing
discussion in subsequent chapters will be more meaningful.

2.7.1 Integer/Fraction

Numeric String Variables (or literals) are composed of two
parts.

a) Integer - The integer portion of a numeric variable is
the portion of the numeric string that exists to the leit
of the decimal point. TIf the decimal point does not
exist explicitly, the decimal point is implied to be to
the right of the rightmost digit of the numeric string.

b) Fractional - The fractional portion of a numeric variable
is the portion of the numeric string that exists tc che
right of the decimal point. s

For example consider the following:

A FORM "123.45"
B FORM -"678."
C FORM "agQ"

A has a value of 123 for the integer portion and 45 for the
fractional portion. B has a value of 578 for the integer portion.
C has a value of 90 for the integer portion (the decimal point is
implied to the right of the zero).

2.7.2 Rounding/Truncation
When the result of an arithmetic operation consists of more
characters than can be contained in the destination variable, the

result is truncated, rounded, or both truncated and rounded so
that it "fits" in the destination variable.

2-8 DATABUS COMPILER

that do not fit in the destination variable. Truncation may occur
either on the right or on the left. Right truncation means some
of the least significant digits of the result are lost, while left
truncation means that some of the most significant characters are
lost. Usually, the arithmetic instruction that causes left
truncation of the result sets the OVER condition flag to indicate
arithmetic overflow.

Rounding is a modified form of right truncation. For details
on rounding, see section 2.7.3. Unless specificly mentioned
otherwise, rounding is used instead of right truncation.

The following rules are used to determine which characters
are lost if truncation or rounding is necessary:

a) If the destination variable is defined to contain a decimal
point, the result (of the arithmetic operation) is aligned so
that its decimal point overstores the destination variable's
decimal point. Any characters that do not fit after this
alignment are lost.

b) If the destination variable is defined without a decimal
point, alignment occurs as if there were a decimal point just
after the least significant digit of the destination variable.

2.7.3 Rounding Rules

To determine when rounding is necessary, see section 2.7.2.
The following rules should be used to distinguish between right
truncation and rounding. To understand the following rules the
distinction between the rounding digit and the rounded digit must
be clear. The rounding digit is the most significant of the
digits lost when rounding a number, while the rounded digit is the
least significant of the digits that are not lost.

7)Y If the rounding digit is a digit from 0 to 4, then the rounded
digit remains unchanged.

b) If the rounding digit is the digit 5:
1) If the rest of the digits that are lost are zero (0):

a. If the result (of the arithmetic operation) is a
negative number, the rounded digit remains unchanged.

b. If the result (of the arithmetic operation) is a
positive number, the rounded digit is incremented by

CHAPTER 2. STATEMENT STRUCTURES 2-9

one (1).

2) 1If any of the rest of the digits that are lost are
non-zero, the rounded digit is incremented by one (1).

c. If the rounding digit is a digit from § to 9, the rounded
digit is incremented by one (1).

2.8 Character String Definitions

The following terms are used in the description of character
string variables.

character string variable -- made up of four parts; the logical
length pointer, the formpointer, the physical string and
the ETX.

| 11p | fp | physical string | ETX |

physical string -—- made up of three parts; the prefix, the
(logical) string and the suffix.
| prefix | (logical) string | suffix |

logical string -- the string usually modified by the instructions.

It is defined by the formpointer and the logical length
pointer. The first character in the logical string is the
head (the character pointed to by the formpointer). The
last character in the logical string is the tail (the
character pointed to by the logical length pointer).

| head | | tail |

logical length =-- the length of the logical string of a non-null
variable. It can be computed by taking the value of the
logical length pointer, subtracting the value of the

formpointer, and adding 1 (LL-FP+1). The logical length of
a null string is undefined.

null string -- a string with the formpointer set to zero.

2-10 DATABUS COMPILER

2.9 A Sample Program

+

. PROGRAM TO DISPLAY A MULTIPLICATION TABLE

COUNT1
COUNT2

PROD
*

FORM
FORM
FORM

IIO "
IIO 11
2

. HERE IS THE START OF THE EXECUTABLE CODE

START
LOOP

DISPLAY
MOVE
MULT
DISPLAY
ADD
GOTO
DISPLAY
ADD
GOTO
STOP

*ES,"MULTIPLiCATION TABLE:" ,*N

COUNT1 TO PROD
COUNT2 BY PROD

COUNT1,"X",COUNT2,"=",PROD," ";

COUNT?2

LOCP IF NOT OVER

" l " TO
*N
n l " TO

COUNT1

LOOP IF NOT OVER

CHAPTER

2.

STATEMENT STRUCTURES

2-11

CHAPTER 3. COMPILER DIRECTIVES

Two directives are available to give the user more control
over the compilation process. One is the EQU statement and the
other is the INCLUDE statement.

3.1 EQUATE (EQU)

The EQU statement allows a label to be assigned a decimal
numeric value from 0 through 255 or an octal numeric value from 0
to 0377.

This is particularly useful when one defines the format of
disk records to be used in a data base. If all item positions
within the record are defined using the EQU directive, then
changes in item positions can be achieved by simply changing the
one directive value. If the EQU were not used, changing the
record format would mean changing all disk I/O statements that
depend on this format. The user would have to hunt through all
programs using this format to change all disk I/0 statements to
conform to the new record format.

The general format of the EQU statement is as follows:

<label> EQU <dnum>
<label> EQUATE <dnum>
<label> EQU <occ>
<label> EQUATE <occ>

where: <label> is a data label (see section 2.)
<dnum> is the decimal number to be substituted for any
occurrence of the label within the program being
compiled.
<occ> is the octal number to be substituted for any
occurrence of the label within the program being
compiled.

For example:

LM EQU 5
DB EQU 0300

A label which is defined in this manner may be used anywhere a
decimal or octal number is allowed.

CHAPTER 3. COMPILER DIRECTIVES 3-1

3.2 INCLUDE (INC)

This statement allows another text file to be included, at
the point where the INCLUDE statement appears, as if the lines
actually existed in the main file being compiled. Note that the
INCLUDE directive can be used to include a file containing any EQU
directives and data variable definitions which are needed to
define the record format of a data base. This allows the
programmer to enter the information about the data base into only
one file instead of entering it into every program that needs to
know about the data base. Modification of the format also becomes
easier, since the programmer need modify only one file before
compiling all of the programs again.

The user may create and use text file libraries, placing all
the DATABUS source code files in the library. Proper use of
DATABUS library programs results in greater system integrity, more
file names available on system disks, and easier backup. The
compiler is capable of obtaining the original source file, and any
INCLUDEd files from the <system DATABUS library> (see chapter 17
for a discussion of the <system DATABUS library> and how to
specify one). :

The INCLUDE statement can have one of the following formats:

INCLUDE <D0OS file specification>

INC <DOS file specification>
INCLUDE <library file specification>.<member name>
INC <library file specification>.<member name>

where: <KDOS file specification> is a DOS compatible specification
of the file to be included in the program.

<library file specification> is a DOS compatible
specification of the text file library to be
searched. Text file libraries are created and
manipulated by the utility LIBRARY/CMD.

<member name> is the member to be included from the text
file library.

Programming Considerations:

—— Including a file causes all of the lines in that file to be
scanned as if they existed in place of the INCLUDE line.

——- The assumed extension on included files is TXT but may be
specified to be any extension.

3-2 DATABUS COMPILER

-— If no drive is specified, all drives starting with drive =zero
are scanned for the file.

-— Inclusions may be nested up to four deep, with no limit on the
number of included files.

-— Any label on the INCLUDE statement itself is ignored if the
INCLUDE statement is in the data area, or is the first
statement in the executable part of the program. If the
INCLUDE statement is elsewhere in the executable part of the
program, any label on the INCLUDE statement references the
first line in the INCLUDEd file.

For example:
INC RECDEFS

would cause all of the lines from file RECDEFS/TXT to be scanned
as 1f they existed instead of the INC statement.

3.2.1 Using library files with INCLUDE

The compiler has the ability to obtain source code from a
text file library. The compiler searches any on-line drives to
find a free-standing DATABUS program name which matches the
program specification given in the INCLUDE instruction. If this
search is unsuccessful, the compiler then searches the <system
DATABUS library> (see chapter 17 for a description of how to
specify a <system DATABUS library>). Failure to locate the
program in the library results in an error being given. The
syntax for the INCLUDE statement is:

<program name>/<extension>:<drive # or VOLID>.<library member
name>

Note: No intervening blanks are allowed in the string used to
specify the include file.

If a <library member name> is used in a program
specification, the <program name> is assumed to be a DATABUS
program library file. Failure to locate either the library or the
proper member within the library results in an error. If the
{program name> is not a text library file an error also results.
If a <member name> alone is specified, a search of the <system
DATABUS library> is performed; no free-standing program search
occurs. If the extension is not given on the file specification,
/TXT is assumed for a free-standing file, and /LIB is assumed for

CHAPTER 3. COMPILER DIRECTIVES 3-3

a library file.

3.2.2 Examples of INCLUDE specifications
MY PROG

This specification would cause the compiler to attempt to
find the file MYPROG/TXT on any drives on-line. Failure to locate
the file would cause a search of the <system DATABUS library> for
a member with the name MYPROG.

-MYPROG

This specification would cause the compiler to attempt to
locate the member MYPROG in the <system DATABUS library>. No
attempt to find any free-standing file would be made; absence of a
<{system DATABUS library> would cause an error.

SYSLIB/LIB.MYPROG

This specification would cause the compiler to locate the
file SYSLIB/LIB and search the file for the member MYPROG.

SYSLIB/LIB:DAILY.JOBA

This specification would cause the compiler to locate the
file SYSLIB/LIB on any mounted drive with a volume name of DAILY.
The member JOBA would then be found and included if present.

3.2.3 Possible Uses of DATABUS Libraries

The use of a text library by the compiler is similar to the
way some DATASHARE's use libraries of /DBC programs.

In typical business environments, most application programs
belong to a certain class of processing, such as payroll or
accounts receivable. Using DATABUS libraries, the organization,
testing, and everyday use of specific-class programs may be
greatly simplified. For example, a typical office might create
the following libraries:

PAYROLL/LIB containing all payroll programs

ACCTSRCV/LIB containing all accounts receivable programs
ACCTSPAY/LIB containing all accounts payable programs
TEST/LIB containing new programs in the testing phase

3-4 DATABUS COMPILER

The DBCMPLUS compiler always looks for a free-standing program
first unless an explicit member specification is given;
programmers may therefore edit, compile, and test new,
free-standing versions of existing programs without fear of
conflict or accidental use even while an older, already-tested
versicn of the source program is still kept in a DATABUS library
in case it is necessary to recompile the text file, for instance
because the /DBC file was destroyed or damaged. After the new
program has been fully tested, it can be placed in the proper
library replacing the older program.

3.3 LISTOFF and LISTON

The LISTOFF and LISTON directives allow control of the
generation of print output. The LISTOFF directive turns off
printer output while the LISTON directive turns it on. These
directives would be useful if a new section of code is added to an
already tested program. The user could place a LISTOFF directive
at the beginning of the program, a LISTON directive before the new
code, and another LISTOFF directive after the new code. When the
program is recompiled, with a printer output option specified (see
chapter 17 for a description of the printer output options) the
listing would only have the new code and not the entire program,
thus cutting down on the volume of paper used. Another example of
where these directives would be useful would be to prevent the
listing of an INCLUDE file containing common definitions or
equates.

These directives are not nested. After multiple LISTOFF
directives to turn off printer listing, a single LISTON directive
turns the listing back on.

3.4 IFnn

The IFnn directive is the conditional compilation directive.
The condition specified must be met in the single operand, or the
comparison of the two operands, for the following lines of code to
be compiled. The end of an IF directive is marked by an XIF. Any
number of IF directives may occur before an XIF directive, but as
soon as compilation is turned off by one of the IF directives, the
remaining IF directives are ignored and processing 'is turned on
again by the first following XIF directive. That is, IF
directives are not nested. The operands to the IF directive must
be equated variables, decimal numbers, or octal numbers.

This directive would be useful, for instance, to place two

CHAPTER 3. COMPILER DIRECTIVES 3-5

different routines in one text file, where each routine is to be
used under different conditions. Depending on the value of an
equated variable defined in the data section, or in an included
file, one or the other of the two routines is compiled.

Example
IFEQ ALPHA,ONE Compare two equated variables
SUB . Subroutine to use if ALPHA equals ONE
XIF
IFNE ALPHA, ONE Compare two equated variables
SUB . Subroutine to use if ALPHA is not
. equal to ONE
XIF
Example
IFEQ ALPHA,ONE Compare two equated variables
IFLT BETA,S Compare an equated variable with
. an immediate operand
. This section of code is compiled
. only if the value of ALPHA equals
. the value of ONE, and the value of
. BETA is less than 5.
XIF This closes both IF directives

The available IF directives are:

IFEQ Operand
IFGT Operand
IFLT Operand
IFNE Operand
IFNG Operand
IFNL Operand
IFGE Operand
IFLE Operand
IFZ Operand
IFNZ Operand
IFC Operand
IFS Operand

must be equal to operand 2

must be greater than operand 2

must be less than operand 2

must be not equal to operand 2

must be not greater than operand 2

must be not less than operand 2

must be greater than or equal to operand 2
must be less than or equal to operand 2
must be zero

must be non-zero

must be zero (same as IFZ)

must be set (same as IFNZ)

T N s N]

3-6 DATABUS COMPILER

CHAPTER 4. DATA DEFINITION

There are two types of data used within the DATABUS language.
They are numeric strings and character strings. The arithmetic
operations are performed on numeric strings and string operations
are performed on character strings. There are also operations
allowing movement of numeric strings into character strings and
vice versa.

Whenever a data variable is to be used in a program, it must
be defined at the beginning by using one of the data definition
statements. The data definition statements reserve space in the
user's data area for the data variable whose name is given in the
label field. (This space is always reserved using one of the
formats described below.) Note that all variables must be defined
before the first executable statement in the program and that once
an executable statement is given, no more variables may be
defined.

4.1 Numeric String Variables

Numeric strings have the following memory format:

octal ascii ascii ascii ascii octal
0200 1 2 . 3 0203

The leading character (0200) is used as an indicator that the
string is numeric. The trailing character (0203) is used to
indicate the location of the end of the string (ETX).

Programming Considerations:

-— The format of a numeric string is set at definition time and
does not change throughout the execution of the program.

-— Negative numbers are represented by using one of the
characters before the decimal point for a minus sign.

-— The physical length of a numeric string is limited to 21
characters (including the. decimal point and minus sign, but
excluding the 0200 and 0203 characters).

-— Numeric items always keep their proper format internally.

CHAPTER 4. DATA DEFINITION 4-1

—-— To be a valid numeric string, the following must be true.
a. Spaces are acceptable only when they are leading spaces.
b. Only one minus sign is allowed.

c. The minus sign must be next to the most significant
character.

d. Only one decimal point is allowed.

e. Except for the cases mentioned above, only digits are
allowed. '

f. A string made up of any combination of spaces, decimal
points and minus signs without at least one digit is not
allowed.

-- Whenever a new value is assigned to a numeric variable, it is
reformatted to have the format of that variable.

4.2 Character String Variables
Characer strings have the following memory format:

oct oct asc asc asc asC asc asC asC asSC asc asC asc asc asc oct
011 005 T H E B R 0 W N F 0 X 0203

The first byte is called the logical length pointer and points to
the last character currently being used in the string (N in the
above example). The second byte is called the formpointer and
points to the first character currently being used in the string
(B in the above example). The use of the logical length pointer
and the formpointer in character strings is explained in more
detail in the explanations of each character string handling
instruction. Basically, however, these pointers are the mechanism
through which the programmer deals with individual characters
within the string.

Programming Considerations:
-- The term physical length is used to mean the number of
possible data characters .in a string (13 in the above

exanple).

-— The physical length of string variables is limited to 127.

4-2 DATABUS COMPILER

—-—- The logical length pointer is never greater than the physical
length of the string.

—— The formpointer is always between zero and the logical length
pointer.

—-- A zero formpointer indicates a null string.

-- In the case of character string variables, the actual amount
of user's data area reserved is three bytes greater than the
physical length of the variable.

4.3 Common Data Areas

Since the interpreter has the provision to chain programs so
that one program can cause another to be loaded and run, it is
desirable to be able to carry common data variables from one
program to the next. The procedure for doing this is as follows:

a. Identify those variables to be used in successive
programs and in each program define them in exactly the
same order and way, (preferably at the beginning of each
program). The point in this is to cause each common
variable to occupy the same locations in each program.
Extremely serious program or system failures usually
occur if a common variable is misaligned with respect to
the variable in the previous program.

b. For the first program to use the variables, define them
in the normal way. Then, for each succeeding program,
place an asterisk in each FORM, DIM, or INIT statement,
as illustrated below, to prevent those variables from
being initialized when the program is loaded into memory.

Examples:

MIKE FORM *4.,2
JOE DIM *20
BOB INIT *#"THIS STRING WON'T BE LOADED"

File declarations may not be made common between programs.
Mis-alignment in file declarations could easily cause catastrophic
destruction of the file structure under D0OS. Therefore, whenever
a program is loaded, all logical files are initialized to being
closed and must be opened before any file I/0 can occur. When
chaining between programs, one should always close all files in
which new space could have been allocated and then re-open the

CHAPTER 4. DATA DEFINITION 4-3

files in the next program.

4.4 FORM

The FORM instruction is used to define numeric string

variables. They may be defined using one of the formats shown

below:
1) <label> FORM <dnuml>.<dnum2>
2) <label> FORM <dnuml>.
3) <label> FORM .<dnum2>
4) <label> FORM <dnuml>
5) <label> FORM <nlit>

where: <label> is a data label.

<dnuml> is a decimal number indicating the number of
digits that should precede the decimal point.

<dnum2> is a decimal number indicating the number of
digits that saould follow the decimal point.

<nlit> 1is a literal of the form "<string>" (see section
2.5).

Programming Considerations:

<nlit> must be a valid numeric string (see section 4.1).

The initial value of variables defined using formats (1), (2),
{3) and (4) above is zero.

A decimal point is included as part of any value assigned to
variables defined using formats (1), (2) and (3) above.

The initial value of a variable defined using format (5) above
is the value of the numeric string between the quotes. A
decimal point found between the quotes is included as part of
the initial value.

The number of digits preceding the decimal point of a variable
defined using format (5) above, is the same as the number of
characters preceding the decimal point in <nlit>.

The number of digits following the decimal point of a variable

defined using format (5) above, is the same as the number of
digits following the decimal point in <nlit>.

4-4 DATABUS COMPILER

Examples:

FRACPART FORM 0.1
RATE FORM 4.3
AMOUNT FORM " 382.400"

In these examples, the FORM instruction used to define RATE
reserves space for four places before the decimal point, the
decimal point itself, and three places after the decimal point.
RATE can have as its value a numeric string which can cover the
range from 9999.999 to -999.999. The value of RATE is initialized
to zero.

The FORM instruction used to define AMOUNT reserves space for
four places before the decimal point, the decimal point itself,
and three places after the decimal point. AMOUNT can have as its
value a numeric string which can cover the range from 9999.999 to
-999.999. The value of AMOUNT is ‘initialized to 382.400.

4.5 DIM

This instruction is used to define character string
variables. They may be defined using the format shown below:

<label> DIM <dnum>
where: <label> is a data label (see section 2.).
<dnum> 1s a decimal number indicating the number of
characters to be reserved for the variable.

Programming Considerations:

—— All of the characters of a variable defined with a DIM
statement are initialized to spaces (octal 040).

-—- The formpointer and logical length pointer are initialized to
zero to indicate a null string.

Example:
STRING DIM 25

STRING is defined to have a physical length of 25 and consumes 28
bytes of the user's data area.

CHAPTER 4. DATA DEFINITION 4-5

4.6 INIT

The INIT instruction is used to define character string
variables with an initial value. They may be defined using one of
the formats shown below:

1) <label> INIT <slit>
2) <label> INIT <list>

where: <label> is a data label (see section 2.).
<slit> 1is a literal of the form "<string>" (see section
2.5).
<list> 1is any combination of <slit> and <occ> (see
section 2.5) elements separated by commas.

Programming Considerations:
-— <slit> must be a valid character string (see section 4.2).

-— The characters in the variable are initialized to the string
appearing between the quotes.

-— The formpointer points to the first character of the string.

-— The logical length pointer points to the last character of the
string.

Examples:
TITLE INIT "PAYROLL PROGRAM"

TITLE is defined to have a physical length of 15 bytes and
consumes 18 bytes of user's data area. The formpointer is set to
1 (pointing to the P) and the logical length pointer is set to 15
(pointing to the M).

TITLE INIT "PAYROLL . PROGRAM" ,015,"A,B,C"

initializes a string with a logical and physical length of 21
characters. The octal control character, 015, appears after the M
in PROGRAM and before the characters A, comma, B, comma, C.

The octal control character feature is included mainly for
message switching applications and for allowing control of ASR
Teletype compatible terminals. It is the responsibility of the
programmer to remember that some of these characters (000, 003,
011, 015 and 032) are used for control purposes in disk files.

4-6 DATABUS COMPILER

More importantly, these characters are used as control characters
in DISPLAY, KEYIN, and CONSOLE statements; and improper use of
these characters in such statements can result in invalid program
execution.

4.7 COMLST

The COMLST instruction is used to reserve space in the user's
data area to contain information for a RECV or SEND DATABUS
instruction. The general format of the statement is:

<label> COMLST <dnum>

where: <label> is a data label.
<dnum> 1is a decimal number between 1 and 54. This number
specifies the maximum number of variables that may
appear in a SEND or RECV instruction referencing
this COMLST variable.

Programming Considerations:

-— <dnum> mnust be a decimal number between 1 and 54 inclusive. A
<dnum> of 5 specifies that space is reserved in the user data
area variable to contain information for 5 variables.

—-— The space allocated is 8+2*(dnum) bytes. The eight bytes are
used to contain status and control information and the
2* (dnum) bytes are used to contain the addresses of the
variables (2 bytes each) that may appear in SEND or RECV
statements referencing this COMLST.

Example:

A COMLS'T 5 (reserves 8+2*%5=18 bytes of user data
area.)

CHAPTER 4. DATA DEFINITION 4-7

CHAPTER 5. FILE DECLARATION

A file declaration statement defines a logical file by
reserving space in the user's data area for the DOS system
information about the disk file being used. Note that since
logical file information is stored in the user's data area, the
user may have any number of logical files active at any one time
providing his data area will contain all of the necessary
information.

5.1 FILE
The FILE instruction is used to reserve space in the user's
data area for files that are used for physically or randomly
sequential accessing. The general format of the statement is as
follows: '
<label> FILE
where: <label> is a data label (seé section 2.).

Programming Considerations:

~— The <label> must be used in all disk I/0 statements that
reference this particular logical file.

-— Each use of this statement causes 17 bytes of data area to be
consumed. This area is used to store:

a) the 15 bytes used in the DOS logical file table,
b) a space compression counter, and

c) a flag indicating that these are physically-random or
sequential-access-only files.

Example:
INFILE FILE

The label INFILE is used in all disk I/0 statements that are to
use this particular logical file.

CHAPTER 5. FILE DECLARATION 5-1

5.2 IFILE
The IFILE instruction is used to reserve space in the user's
data area for files that are used for indexed sequential file
accessing. The general format of the statement is as follows:
<label> 1IFILE
where: <label> is a data label (see section 2.).

Programming Considerations:

—-— The <label> must be used in all disk I/0O statements that
reference this particular logical file.

—-— Each use of this statement causes 26 bytes of data area to be
consumed. This area is used to store:

a) the information that the FILE declaration stores,

b) three 3-byte pointers for use by the indexed-sequential
access method. These pointers point to:

1. the beginning of the last record accessed (for
updating operations),

2. the next sequential key (for sequential by key
accessing), and

3. information in the DOS R.I.B. of the index file (used
in all accessing operations).

Example:
ISAMFILE TIFILE
The label ISAMFILE is used in all disk I/0 statements which are to
use this particular logical file.
5.3 RFILE
This instruction is identical to the FILE declaration except

that the RFILE instruction defines a logical file that references
a disk file at a remote station instead of at the central station.

5-2 DATABUS COMPILER

5.4 RIFILE

This instruction is identical to the IFILE declaration except

that the RIFILE instruction defines a logical file that references
a disk file at a remote station instead of at the central station.

5.5 AFILE

The AFILE instruction is used to reserve space in the user's

data area for files that are used for associative indexed file
accessing. The statement may have one of the following general
formats:

where: <label> is

<label> AFILE <dconl>

<label> AFILE <dconl>,<dcon2>

<label> AFILE <dconl>, ,<dcon3>
<label> AFILE <dconl> ,<dcon2>,<dcon3>

a data label (see section 2.).
<dconl> is a decimal constant.
<dcon2> is a decimal constant.
<dcon3> is a decimal constant.

Programming Considerations:

<dconl> specifies the aggregate key length. This number may
range from 1 to 255. The aggregate key length is the sum of
the lengths of all the master keys specified when using AIMDEX
(subfields are not included in the computation). If this
<afile> is used in an OPEN statement, this parameter must be
at least as large as the aggregate key length of the master
key fields specified when the file being opened was created
with AIMDEX or an IO trap occurs.

<dcon2> specifies the maximum number of key fields. This
number may range from 1 to 64. If it is not specified, the
compiler supplies a default value of %4. If this <afiled> is
used in an OPEN statement, this parameter must be at least as
large as the number of key fields specified when the file
being opened was created with AIMDEX or an IO trap occurs.

<dcon3> specifies the free-float buffer length. This buffer
is used to hold any information specified for a free-float
search during a READ instruction. This number may range from
0 to 255. 1If it is not specified, the compiler supplies a
default value of 32.

CHAPTER 5. FILE DECLARATION 5-3

The free-float buffer must be large enough to hold all of the
free-float (F type) keys specified for any given associative
indexed READ instruction (see section 16.3). The interpreter
places a representation of each F type key given on a READ
statement into the free-float buffer area. Each key placed in
the buffer has two control bytes associated with it. For
example, a key specification of "O03FABCDE" occupies seven
bytes of the free-float buffer (two control bytes plus the key
ABCDE). The user should allow for this overhead when
selecting the free-float buffer size to specify on the AFILE
declaration.

The AFILE declaration generates a rather large amount of UDA.
This data area consists of approximately 400 bytes of constant
area plus an area whose size depends on the parameters given.
The data area includes a buffer equal in length to the number
given for the aggregate key length. Also included in the data
area is a buffer whose length is three times the number given
for the maximum number of key fields parameter. Finally, the
data area contains a buffer equal in length to the number
given for the free-float buffer length parameter plus a one
byte terminator.

Consult the appropriate interpreter user's guide for more
information about the AIM access method.

Example:

AIMFILE AFILE 100,10,50

5-4 DATABUS COMPILER

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS

The interpreter normally executes statements starting with
the first executable statement and sequentially from there. The
program control instructions allow this flow of control to be
altered. Some of these instructions may be executed conditionally
depending on whether a condition flag is set to true or false (see
section 6.1).

6.1 Condition Flags and Function Key Flags

There are four condition flags set by the interpreter: OVER,
LESS, ZERO (the mnemonic EQUAL is also accepted), and EOS. These
flags are set to true or false, depending on the results of some
of the instructions. For more details on which flags are set and
when they are set, see the sections that describe the instructions
individually.

Associated with each of the five function keys Fl through F5
on those terminal keyboards that have them, there is a function
flag named Fl1 through F5. These flags are set whenever the
corresponding function key is depressed. The flags are cleared at
the beginning of a KEYIN statement and when an individual flag is
tested in a GOTO statement and found to be true.

6.2 GOTO
The GOTO statement causes the flow of program control to jump

to the place in the program indicated in the GOTO statement. The
format of the statement may be one of the following:

1) <labell> GOTO <label2>
2) <labell> GOTO <label2> IF <flag>
3) <labell> GOTO <label2> IF NOT <flag>
4) <labell> GOTO <label2> IF <fflag>
5) <labell> GOTO <label2> IF NOT <fflag>
where: <labell> is an execution label (see section 2.).
<label2> is an execution label. '
<flag> is one of the condition flags (see section 45.1).

<fflag> 1is a condition associated with one of the
function keys.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS

N
I
—

Programming Considerations:
—-— <labell> is optional.

—-- <label2> must be a label on the executable statement where
program control is to be transfered.

-~ The condition flags are unchanged by the execution of this
statement.

-—- A GOTO statement with format (2) transfers control (to the
statement with <label2>) only if the specified condition flag
is set to true; otherwise, program control continues in a
sequential fashion.

-~ A GOTO statement with format (3) transfers control only if the
specified condition flag is set to false.

-~ A GOTO statement with format (4) transfers control only if the
specified function key flag is on. The flag is also cleared.
Note that all function key flags are also cleared by KEYIN
statements.

—-— A GOTO statement with format (5) transfers control only if the
specified function key flag is not on.

Example:

GOTO CALC
causes control to be transferred to the instruction labeled CALC.
Example:

GOTO CALC IF OVER
transfers control to the instruction labeled CALC if the OVER flag
is set to true. Otherwise, the instruction following the GOTO is
executed.
Example:

GOTO CALC IF NOT OVER

meaning control is transferred only if the OVER flag is set to
false.

6-2 DATABUS COMPILER

Example:

This sample program segment shows the use of function keys. A
program is doing some processing that involves use of a counter.
The operator is allowed to observe the progress of the program by
depressing the F1 function key which causes the program to display
the current value of the counter. Depressing the F5 function key
causes the process to terminate.

LOOP ADD
GOTO
CONTINUE GOTO

GOTO
DSPLYNUM DISPLAY

GOTO
END DISPLAY

6.3 BRANCH

The BRANCH instruction

ONE TO COUNTER INCREMENT COUNTER
DSPLYNUM IF F1l DISPLAY IF F1 KEY DOWN
END IF F5 END IF F5 KEY DOWN

NECESSARY PROCESSING
LOOP CONTINUE

*R, "CURRENT COUNTER IS ",COUNTER
CONTINUE RESUME PROCESSING

*R,"PROCESS TERMINATED BY F5 KEY"

transfers control to a statement

specified by an index. The general form of the statement is as

follows:

<label> BRANCH

<index><prep><list>

where: <label> 1is an execution label (see section 2.).
<index> must be a numeric variable.

<{prep> may be any valid preposition (see section 2.).
<list> is a list of execution labels separated by
commas.

Programming Considerations:

—=- The label is optional.

-—- The condition flags are unchanged by the execution of this

instruction.

CHAPTER 6.

PROGRAM CONTROL INSTRUCTIONS 6-3

—— The value of the index is unchanged by the execution of this
instruction.

—— The index points to the label in the list where control is to
be transferred.

—— If the index is n, then control is transfered to the nth label
in the list. For example: if the index is 1, control is ,
transferred to the first label in the 1list; if the index is 2,
control is transferred to the second label in the list; and so
on.

—-— There must not be more than 255 labels in the list.

-— If the index is negative, zero, or larger than the number of
labels in the list; then control continues in a sequential
fashion.

—-— If the index is a non-integer number, then only the digits
preceding the decimal point are used while indexing into the
list. For example: 1.50 is treated as if it were a 1, 1.99
is treated as if it were a 1, 2.00 is treated as if it were a
2, and 2.49 is treated as if it were a 2.

—-- The list may be continued on the next line by using a colon in
place of one of the commas.

Example:
BRANCH N OF START,CALC, POINT

I£f N =1, then this BRANCH would be equivalent to a GOTO START.
N = 2 would mean GOTO CALC while N = 3 would mean GOTO POINT.

6.4 CALL

The CALL instruction causes a subroutine to be executed after
saving a pointer to the instruction immediately following the CALL
instruction. When the subroutine is finished executing, it may
then use the pointer that was saved to continue execution where it
left off (see section 5.5). Using subroutines allows the same
group of statements to be executed at many places in the user's
program, simply by CALLing the subroutine. The format of the
statement may be one of the following:

1) <labell> CALL <label2>
2) <labell> CALL <label2> IF <flag>
5-4 DATABUS COMPILER

3) <labell> CALL <label2> IF NOT <flag>

where: <labell> is an execution label (see section 2.).

<label2> is an execution label.
<flag> is one of the condition flags (see section 6.1).

Programming Considerations:

<labell> is optional.

<label2> must be a label on the first instruction of the
subroutine to be executed.

The condition flags are unchanged by the execution of this
statement.

The return address (the pointer to the instruction immediately
following the CALL statement) is saved by pushing it onto the
subroutine call stack.

The subroutine call stack is eight levels deep. This means
that, unless an entry is cleared from the stack (typically by
a RETURN instruction), a stack overflow error occurs when the
ninth CALL instruction is executed.

Note that if a page swap is invoked by the subroutine CALL,
then CALLing the subroutine is considerably more time
consuming than executing the code in line. The space used for
DATABUS programs is virtual in nature to allow very large
programs. This means that pages of the user's program must be
swapped in and out of memory. If a subroutine happens to be
on a different pvage than a CALL to that subroutine, then a
page swap may become necessary. Therefore, in some cases it
can be better to put code in line instead of making it a
subroutine, especially if the amount of code is quite small
(say, less than a dozen lines). This is a trade-off which
should be considered when one is dealing with code that is
executed very often.

Execution of a CHAIN statement clears the subroutine call
stack.

A CALL statement with format (2) calls the subroutine only if
the specified condition flag is set to true; otherwise,
program control continues in a sequential fashion.

A CALL statement with format (3) calls the subroutine only if
the specified condition flag is set to false.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-5

Example:

CALL FORMAT

eXxecutes the subroutine FORMAT.

Example:

CALL XCOMP IF LESS

executes the subroutine XCOMP if the LESS flag is set to true.

6.5 RETURN

The RETURN instruction is used to return from a subroutine

when execution of that subroutine is completed. This statement
may have one of the following formats:

1) <label> RETURN
2) <label> RETURN IF <flag>
3) <label> RETURN IF NOT <flag>

where: <label> is an execution label (see section 2.).

<flag> 1is a condition flag (see section 6.1).

Programming Considerations:

<label> is optional.

Control is returned to the instruction pointed to by the top
element on the subroutine call stack.

The condition flags are unchanged by the execution of this
Statement.

A RETURN with format (2) returns control only if the specified
condition flag is set to true; otherwise, program control
continues in a sequential fashion.

A RETURN with format (3) returns control only if the specified
condition flag is set to false. :

Example:

RETURN

5-6 DATABUS COMPILER

transfers control
of the subroutine

Example:

transfers control
of the subroutine

6.6 ACALL

The ACALL in
routine. The ind
for the particula
is:

1) <label
2) <label

where: <label>
<svar>
<prep>
<list>

Programming Consi

to the instruction pointed to by the top element
call stack.

RETURN IF ZERO

to the instruction pointed to by the top element
call stack only if the ZERO flag is set to true.

struction is used to invoke an Assembler language
ividual interpreter manual should be consulted
r implementation. The format of the instruction

> ACALL <svar>
> ACALL <svar><prep><list>

is an execution label.

is a string variable.

is a preposition.

is a list of numeric or character string
variables, FILEs, IFILEs, AFILEs, or COMLSTs
separated by a comma (,). The list may be
continued on another line by placing a colon (
after the last variable on the line to be
continued. These variables are available to the
Assembler routine.

.o
~

derations:

-- <label> is optional.

—-- <svar> may be
program. Thi
execution of
interpreter i
specifies the
code to be 1lo

any string variable defined in the user's
s variable is used by the interpreter before

the user's Assembler routine takes place. If the
s configured for dynamic ACALLs, this variable
name of the disk file containing the Assembler
aded and executed. Consult the appropriate

interpreter user's guide for details on static and dynamic

ACALLs.

-—- K<list> is opt

CHAPTE

ional.

R 6. PROGRAM CONTROL INSTRUCTIONS 6-7

—— (K1list> must consist of character string or numeric variables,
FILEs, IFILEs, AFILEs, or COMLSTs.

Example of static ACALL:

A DIM 15
B INIT "12345"
C FORM "6.725"

ACALL A,B,C

Example of dynamic ACALL:

A DIM 15
B INIT "12345"
C FORM "6.725"
MOVE "ASMPROG/DYN" TO A MOVE THE NAME OF THE FILE

THE ACALL CODE TO A
ACALL A,B,C

6.7 STOP

The STOP instruction is the normal manner of terminating the
execution of a DATABUS program. See the user's guide on the
interpreter that you are using for more details on the action
taken when a STOP is executed. Typically, executing a STOP
instruction is equivalent to executing a CHAIN to the MASTER
program for the port executing the STOP. This instruction is the
only way to properly enter the port's MASTER program. This
statement may have one of the following formats:

1) <label> STOP
2) <label> STOP IF <flag>
3) <label> STOP IF NOT <flag>

where: <label> is an execution label (see section 2.).
<flag> 1is a condition flag (see section A.1).

Programming Considerations:
-—- <Klabel> is optional.

-— Typically executing a STOP is equivalent to executing a CHAIN
to the MASTER program for the port. executing the STOP.

-— See the user's guide on the interpreter you are using for
details on the action taken when the STOP is executed.

N
I
(09

DATABUS COMPILER

CONTAINING

-— A STOP with format (2) terminates onlyyif the specified
condition flag is set to true; otherwise, program control
continues in a sequential fashion.

-— A STOP with format (3) terminates only if the specified
condition flag is set to false.

Example:

STOP
causes program execution to terminate normally.
Example:

STOP IF NOT EQUAL

causes program execution to terminate normally only if the ZERO

flag is set to false. Note that EQUAL is just another name for

the ZERO flag. A STOP operation is added to the end of every

DATABUS program as it is compiled.

6.8 CHAIN

The CHAIN instruction is used to cause a DATABUS program

(other than the one currently being executed) to be loaded and

executed. One of the following general formats may be used:

1
1) <label> CHAIN <slit>
2) <label> CHAIN <svar>

where: <label> is an execution label (see section 2.).
<slit> 1is a literal of the form "<string>" (see section
<svar> ?ésg.string variable (see section 4.2).
Programming Cbnsiderations:
-- <label> is optional.

-— <Kslit> must be a valid character string (see section 4.2).

-- The value of <svar> is unchanged by the execution of this
instruction.

-— Control is passed to the first executable statement of the

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 5-9

program that is to be loaded and executed.

This instruction should not be used to CHAIN to the port's
ANSWER or MASTER programs. The DSCNCT instruction (see
section 6.15) should be used to CHAIN to the ANSWER program,
and the STOP instruction (see section 5.7) should be used to
CHAIN to the MASTER program.

The string literal, when using format (1), specifies the DOS
name of the DATABUS program to be executed. ‘

The string variable, -when using format (2), specifies the DOS
name of the DATABUS program to be executed.

If the extension is not given by the string literal or string
variable, /DBC is assumed.

One of the following rules is used to build the DOS name from
the string in the string variable or string literal:

a) The characters used start with the formpointed character
and continue until eight characters have been obtained, or

b) 1If the logical end of string is reached before eight
characters have been obtained, the remainder of the eight
characters are assumed to be blanks.

c) Newer interpreters allow the file to be specified using
the DOS standard <filename>/<extension>:<drive # or volid>
form. Some allow files to be executed from libraries.
Consult the user's guide of the appropriate interpreter to
see if libraries are supported.

The character used to specify the drive number is obtained
from the string variable or string literal using one of the
following rules:

a) If (a) above is used to obtain the name, then the
character after the eighth character is used as the drive
specification, or

b) If (b) above is used to obtain the name, then the
character following the one pointed to by the logical
length pointer is used as the drive specification, or

c) If the last character obtained from the string is
physically the last character in the string, then the

6-10 DATABUS COMPILER

drive number is unspecified.

d) Newer interpreters allow the drive to be specified in DOS
standard form, :Dn, :DRn, or by volume name.

—-- If the character used as the drive specification is not an
ASCII digit (0 through 9), then all drives are searched for
the file (starting with drive 0 and ending with the highest
numbered drive that is on-1line).

—-- If the drive number is unspecified, all drives are searched
for the file (starting with drive 0 and ending with the
highest numbered drive that is on-line).

-- If the character used as the drive specification is an ASCII
digit, then only the drive with that number is searched to
find the file.

-- Shift key inversion is enabled when a CHAIN instruction is
executed (see section 9.1.3.15).

-- The trap locations are cleared after a CHAIN instruction is
executed (see section 6.9).

-- The condition flags are all set to false by the execution of
this statement.

-- All logical files that are open when a CHAIN instruction is
executed, are closed without space deallocation (see section
12.3.2). Closing the files does not automatically write an
end-of-file mark.

-- The subroutine call stack is cleared by the execution of this
statement (see section 6.4). '

Assume that the following statement is used to define NXTPRGM
for all of the following examples:

NXTPRGM INIT “"PAYROLL11"

CHAPTER 6, PROGRAM CONTROL INSTRUCTIONS 65-11

Example:

SETLPTR NXTPRGM TO 9 SET THE LOGICAL LENGTH POINTER

RESET NXTPRGM TO 4 SET THE FORMPOINTER TO 4
CHAIN NXTPRGM

this CHAIN instruction tries to load and execute a program named
ROLL11/DBC from any drive on which it can be found.

Example:
SETLPTR NXTPRGM TO 8 SET THE LOGICAL LENGTH POINTER
RESET NXTPRGM TO 4 SET THE FORMPOINTER TO 4
CHAIN NXTPRGM

this CHAIN instruction tries to load and execute a program named
ROLL1/DBC from drive 1.

Example:
SETLPTR NXTPRGM TO 8 SET THE LOGICAL LENGTH POINTER
RESET NXTPRGM TO 1 SET THE FORMPOINTER TO 1
CHAIN NXTPRGM

this CHAIN instruction tries to load and execute a program named
PAYROLL1/DBC from drive 1.

Example:
SETLPTR NXTPRGM TO 9 SET THE LOGICAL LENGTH POINTER
RESET NXTPRGM TO 1 SET THE FORMPOINTER TO 1
CHAIN NXTPRGM

this CHAIN instruction tries to load and execute a program named
PAYROLL1/DBC from drive 1.

Example:
SETLPTR NXTPRGM TO 7 SET THE LOGICAL LENGTH POINTER
RESET NXTPRGM TO 1 SET THE FORMPOINTER TO 1

CHAIN NXTPRGM

this CHAIN instruction tries to load and execute a program named
PAYROLL/DBC from drive 1.

6-12 DATABUS COMPILER

TO

TO

TO

TO

TO

Example:

SETLPTR NXTPRGM TO 3 SET THE LOGICAL LENGTH POINTER
RESET NXTPRGM TO 1 SET THE FORMPOINTER TO 1
CHAIN NXTPRGM

this CHAIN instruction tries to load and execute a program named
PAY/DBC from any drive on which it can be found.

Examples of the DOS standard file specifications accepted by newer
interpreters are:

CHAIN "PROGRAM/ABC:D4"
CHAIN "PROGRAM:MASTER"

6.9 TRAP

TRAP is a unique instruction; because rather than taking
action at the time it is executed, it specifies a transfer
location for an event which may or may not occur during later
execution. This statement may have one of the following general
formats:

<labell> TRAP <label2> IF <event>
<labell> TRAP <label2> GIVING <svarl> IF <event>
<labell> TRAP <label2> NORESET IF <event>

<labell> TRAP <label2> GIVING <svarl> NORESET IF <event:
where: <labell> is an execution label (see section 2.).
<label2> is an execution label.
<event> is one of the following: PARITY, RANGE, FORMAT,
CFAIL, IO, SPOOL, INTERRUPT, INT, Fl1l, F2, F3, F4,
F5, <svar>, or <char>.
<{svarl> 1is a character string variable.
Programming Considerations:

-- <Klabell> is optional.

-— <Klabel2> must be the label on the statement where control is
transfered if the specified event occurs.

—-—- The condition flags are unchanged by the execution of this
instruction.

-— The following trapable events may occur:

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 5-13

a)

b)

c)

d)

e)

£)

g)

h)

6-14

PARITY - this event is caused by a disk CRC error during a
READ (see section 12.3.3) or the verification phase of a
WRITE (see section 12.3.4). DOS retries several times to
get a good CRC before causing this event.

RANGE - this event occurs when a record number is out of
range. Typically this occurs when an attempt is made to
read a record that has never been written. The DOS RANGE
and FORMAT traps cause a DATABUS RANGE trap.

FORMAT - this event occurs when an attempt is made to read
non-numeric data into a numeric variable. The read stops
at the list item in error so that the rest of the list
items are not changed. Note that this FORMAT trap is not
the same as the DOS FORMAT trap.

CFAIL - this event occurs when an attempt to CHAIN to
another program cannot be completed or when an attempt to
execute a ROLLOUT cannot be completed. Typically this
occurs when attempting to CHAIN to a program that does not
exist.

I0 - this event occurs when a disk I/O error occurs.
Associative index (AIM) errors are also TRAPped using the
I0 event. For more details about these I/0 and AIM
errors, see the user's guide of the appropriate
interpreter. Typically this trap is used for detecting
whether a file exists or not. Note that the GIVING clause
can be used to allow the program to inspect the error
message given to determine the nature of the TRAP taken.

SPOOL - this event occurs when an error occurs while
printer output is being SPOOLed to a disk file (see
sections 10.5 and 10.6). This error can mean one of a
number of possible conditions has occured, such as: disk
space full when opening the spool file, disk space full
while writing, parity error, drive off-line, or several
other things.

INTERRUPT or INT - this event occurs when the INTerrupt
sequence is entered from the keyboard (see section
9.1.5.3). It can be used to detect accidental entry of
the INTerrupt character, or to bypass the normal
interpreter response of executing a STOP instruction.

Fl1 - this event occurs when the F1 function key is pressed

on the keyboard. Note that only those systems that have
function keys on the keyboard can make use of this TRAP,

DATABUS COMPILER

i)

3)

1)

m)

n)

for example the 1800 has function keys.

F2 - this event occurs when the F2 function key is pressed
on the keyboard. Note that only those systems that have
function keys on the keyboard can make use of this TRAP,
for example the 1800 has function keys.

F3 - this event occurs when the F3 function key is pressed
on the keyboard. Note that only those systems that have
function keys on the keyboard can make use of this TRAP,
for example the 1800 has function keys.

F4 - this event occurs when the F4 function key is pressed
on the keyboard. Note that only those systems that have
function keys on the keyboard can make use of this TRAP,
for example the 1800 has function keys.

F5 - this event occurs when the F5 function key is pressed
on the keyboard. Note that only those systems that have
function keys on the keyboard can make use of this TRAP,
for example the 1800 has function keys.

<svar> - this event occurs when one specific character is
entered from the keyboard. The character specified is the
one under the formpointer of the string variable. The
interpreter saves the character to be trapped within
itself. Therefore, assigning a different value to the
<svar> after the TRAP is executed, does not affect the
character to be trapped.

<char> - this event also occurs when one specific
character is entered from the keyboard. The character
specified is the character to be trapped.

Example:
TRAP PREP IF IO
OPEN FILE,"DATA"
GOTO NS1I

PREP PREPARE FILE,"DATA"
RETURN

NSI TRAPCLR I0

-— The only action taken at the time that the TRAP instruction is
executed is to save a pointer to the statement with <label2>.
<event> specifies which trap.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-15

Any traps that have been set, remain set until they are
cleared. '

If an INTERRUPT key, function key, or character trap occurs
while a PI or FILEPI instruction is in effect, the effect of
the key and of the TRAP is postponed until the PI or FILEPI
expires. '

If an event occurs and the trap is not set, the action taken
depends upon the interpreter (see the user's guide for the
interpreter being used). Typically an error message is
displayed and a CHAIN to that port's MASTER program occurs.

If an event occurs and the trap is set, then the action taken
is as follows:

a) The control transfer is equivalent to executing a
CALL <label2>
instruction.

b) This pseudo-CALL statement is executed as if it had bheen
inserted immediately after the statement which caused the
event to occur.

Whenever a certain event is trapped, the trap for that event
is cleared unless the NORESET clause is specified. This means
that, if the event is to be trapped again, another TRAP
instruction has to be executed to reset the trap.

Note that all of the traps are cleared whenever a CHAIN
occurs. Therefore, each program must initialize all of the
traps it wishes to use. '

The GIVING clause causes the message that the interpreter
normally displays to be placed in the specified character
string variable allowing the user program to inspect it and
determine the nature of the TRAP taken. The GIVING clause may
be used in conjunction with the following events: PARITY,
RANGE, FORMAT, CFAIL, IO, and SPOOL. See the appropriate
interpreter user's guide for details on the nature of the
error message.

If the NORESET clause is specified, the trap is not cleared
when it occurs. The trap is only cleared on program
termination, execution of a TRAPCLR instruction with the
particular event, or execution of a CHAIN or STOP instruction.

If the event specified is a string variable, <svar>, and the

6-16 DATABUS COMPILER

variable is null, then the TRAP

Only one character event may be
Multiple use of TRAP statements
event result in the trapping of

has no effect.

trapped at any one time.
with the <svar> or <char>
only the character specified

in the last executed TRAP.

If the user has a string variable in his program whose name is
the same as one of the events specified above (for example a
character string variable called I0); the statement

TRAP NOFILE IF IO

sets the trap for the I0 event, not the trap for the character
under the formpointer of the string variable IO.

Example:

TRAP .EMSG IF PARITY

specifies that control should be transferred to EMSG if a parity
failure is encountered during a READ or WRITE instruction.

Example:

TRAP SPOOLERR GIVING SPERR NORESET IF SPOOL
specifies that control should be transferred to SPOOLERR if an
error occurs involving printer SPOOLing. 1If a trap occurs, the
interpreter places an error message in the character string
variable SPERR, and the TRAP is not cleared, that is, the program
does not have to execute another TRAP instruction for the SPOOL
event,

6.10 TRAPCLR

The TRAPCLR instruction clears the specified trap. This
statement has the following general format:
<label> TRAPCLR <event>
where: <label> is an execution label (see section 2.).
<event> 1is one of the -following: PARITY, RANGE, FORMAT,
craiL,. IO, SPOOL, INTERRUPT, INT, F1l, F2, F3, F4,
F5, <svar>, or <char>. For an explanation of each
of the events, see section $.9.
CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-17

Programming Considerations:
- —— <label> is optional.

-- The condition flags are unchanged by the execution of this
instruction.

--— 1If an <svar> or <char> is specified, then the character trap
is cleared even if the character specified in the <svar> or
<char> is not the same as the character that was specified in
the TRAP statement.

Example:
TRAPCLR PARITY

clears the parity trap previously set.

6.11 ROLLOUT

The ROLLOUT feature allows the execution of all programs to
be temporarily suspended while a DOS command line is executed.
This instruction is particularly useful when 1) a file needs to
be sorted using the DOS SORT utility, 2) an index file needs to
be created using the DOS INDEX utility, 3) a file needs to be
re—indexed using the DOS INDEX utility, or 4) a file needs to be
re-indexed using the DOS AIMDEX utility. This statement may have
one of the following formats:

1) <label> ROLLOUT <{svar>
2) <label> ROLLOUT <slit>

where: <label> is an execution label (see section 2.).
<{svar> 1is a string variable (see section 4.2).
<slit> is a literal of the form "<string>" (see section
2.5).
Programming Considerations:
-—- <label> is optional.

-~ <slit> must be a valid character string (see section 4.2).

-- The value of <svar> is unchanged by the execution of this
instruction. :

-- The string variable, when using format (1), specifies the DOS

6-18 DATABUS COMPILER

command line to be executed.

The string literal, when using format (2), specifies the DOS
command line to be executed.

Since there are some minor differences in the way the ROLLOUT
instruction is executed, the user should consult the user's
guide of the interpreter being used.

The characters used to build the DOS command line are taken
one at a time from the string; from the first character to the
last character, as defined below.

a) The first character of the DOS command line is the
formpointed character.

b) The last character of the DOS command line precedes the
first occurrence of one of the following characters:

1. a character with a value less than 040 (octal), or
2. the vertical bar character (0174 octal), or
3. a character with its sign bit set. The physical
end-of-string character, 0203 (octal), fits into this
category.
In the normal case, this means the string used is that from
under the formpointer up through the physical end of the
string. To use a string that is shorter than the physical
length of the variable, a vertical bar should be stored in the
appropriate position.

A CFAIL trap occurs if the string variable is null.

See the user's guide of the appropriate interpreter for other
causes of CFAIL traps when attempting a ROLLOUT.

When the ROLLOUT instruction is executed the following actions
are taken:

a) Everything necessary to restore the interpreter to its
previous state is saved on disk.

b) DOS is then brought up at the console.

c) The operator at the console loses the information that was
on the screen at the time of the ROLLOUT except for

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 5-19

1800/3800 interpreters, which save the screen image.

d) The DOS command line (obtained from the string variable or
literal) is then supplied to the DOS command interpreter
exactly as if it had been keyed in from the console.

e) If the ROLLOUT is executed, the printer stops printing
immediately and the contents of the printer buffers is
saved.

To return the interpreter to the state it was in previous to
the ROLLOUT, the interpreter's rollout return program should
be executed. For more details about the rollout return
program, see the user's guide of the appropriate interpreter.
In the remainder of this manual the rollout return program is
refered to as DSBACK/CMD, or more simply as DSBACK.

To execute the rollout return program, the name of the DSBACK
command should be entered as a DOS command line. Generally
this causes the following actions:

a) DSBACK re-initializes the console screen. This does not
return the screen to the display condition it was in
before the ROLLOUT except for 1800/3800 interpreters,
which save the screen image. That screen image is lost.

b) The information that was saved on disk by the ROLLOUT is
then used to restore the interpreter to its previous
state.

c) All ports are returned to their previous point of
execution when the ROLLOUT occurred.

d) Execution of the program that caused the ROLLOUT is
continued with the instruction following the ROLLOUT
instruction.

e) Printing resumes at the point where printing was
interrupted during the ROLLOUT. If during ROLLOUT,
printing was done under DOS, printer output is intermixed.

The condition flags are restored by DSBACK.

The execution of a ROLLOUT may be very inconvenient to the
users at other ports since execution of their programs is
suspended for an indefinite period of time. Unless told that
a ROLLOUT has occurred, users at the other ports do not know
what is happening. Since their terminals appear inactive,

6-20 DATABUS COMPILER

they may think the system has gone down for some other reason.
Thus, consideration of other system users should be kept in
mind when a ROLLOUT is used.

The system clock is restored to the value it had before the
ROLLOUT occured, except in those interpreters designed to run
under ARC. These interpreters are capable of obtaining the
time from an ARC file processor. If ARC cannot supply the
time or if ARC is not active, every time a ROLLOUT occurs, the
clock loses time. In those environments where it is necessary
for the system clock to be accurate, the rollout return
program which includes time and date initialization should be
used instead of DSBACK. 1In the remainder of this manual the
rollout return program which includes time and date
initialization is refered to as DSBACKTD/CMD or more simply
DSBACKTD (for more details see the user's guide of the
appropriate interpreter). Note that DSBACKTD functions the
same as DSBACK with the exception that the new time and date
are requested before restoring the interpreter. This rollout
return program requires the operator to be at the consnle to
enter the time and date.

** WARNING ** The operations that were taking place under the
interpreter must not be modified in any way. One of the items
saved on disk when a ROLLOUT occurs is an image of the DOS
file structure as it was under the interpreter. If the DOS
file structure is changed by a program executing under DOS,
then the image saved on disk may not be accurate any longer.
If this image is no longer accurate when the interpreter is
restored, terrible things may happen to the DOS file structure
as well as the interpreter system. Some precautions that
should be considered while executing under DOS are listed
below.

a) Any file that is open at the time when a ROLLOUT occurred
must not be modified or deleted.

b) The object code of any program that was executing when the
ROLLOUT occurred must not be changed.

c) The disks that contain any files in use by the interpreter
must not be moved to another disk drive.

d) The disks that contain any files in use by the interpreter
must not be removed from the disk drive.

e) The MASTER and ANSWER programs must not be re-—compiled.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS h-21

Other operators using a Datashare system should he notified
when a ROLLOUT is about to occur. This courtesy prevents
frustration when the other operators begin getting no
response.

—— Rolling out to the configuration program (for details see the
~appropriate interpreter manual) has no effect on the system
configuration when DSBACK is used to restart the interpreter.

Example:

Assume that a DATABUS program has built two files, AFILE/TXT and
CFILE/TXT. Also, assume that these files need to be sorted.

This can be accomplished by building the following file named
ROLCHAIN/TXT.

SORT AFILE,BFILE
SORT CFILE,DFILE
DSBACK

then executing the following instruction.
ROLLOUT "CHAIN ROLCHAIN"

This would cause execution of the interpreter to be suspended, and
the following DOS command to be executed (for more details on the
DOS CHAIN command, see the DOS user's guide).

CHAIN ROLCHAIN

Executing this command would then cause the commands in the file
ROLCHAIN/TXT to be executed one after another. First, the file
AFILE/TXT would be sorted and and then written into file
BFILE/TXT. Second, the file CFILE/TXT would be sorted and then
written into file DFILE/TXT. And last, the DSBACK command would
be executed to cause execution of the interpreter to be continued.

Note that if DSBACK had not been included in the chain file the
operator would have had to restore the system. Also note that if,
for any reason, the chain file did not go to completion; then the
operator would have had to execute the DSBACK command from the
console.

6-22 DATABUS COMPILER

6.12 PI

The PI instruction (Prevent Interruptions) enables the
programmer to prevent his background program from being
interrupted for up to 20 Databus instruction executions. It is
particularly useful in preventing any other port from modifying a
disk record while that record is in the process of being updated
(see appendix D). This instruction has the following general
format: -

<label> PI <dnum>

where: <label> is an execution label (see section 2.).
<dnum> 1is a decimal number.

Programming Considerations:

—- <label> is optional.

-— <dnum> must be between 0 and 20, inclusive.

-~ <dnum> specifies the number of Databus instructions to be
executed before allowing an interruption. The PI instruction
is not included as one of these instructions,

-— If <dnum> is zero, all previously encountered PI or FILEPI
(see section 6.13) instriuctions are cancelled. This allows a
program to guarantee that no PI or FILEPI instrucions are
outstanding. It also allows for "quick release" of any files

or packs locked out while running under ARC.

-- The PI instruction may be used to postpone any of the
following background interruptions:

a) the keyboard interruption procedure (see section 9.1.5.3),
b) a higher priority execution being requested on another
port (caused by the termination of a foreground process),
or
c) the port using up its share of the background time.
-- This instruction has no effect upon the hardware one
millisecond interrupt used to perform all port and printer

I/0.

—-— The number of instructions specified in the PI instruction is
always a fixed decimal number (it may not be a numeric

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-23

variable).

—-— If interrupts are prevented, the execution of any instruction
that causes background to wait for I/0 to finish cancels the
effect of the PI instruction. DISPLAY, KEYIN, CONSOLE and
PRINT are examples of instructions that cause background to
wait for I/O to finish.

-— If a PI instruction is executed while interruptions are
already prevented, execution of that program is aborted. This
prevents a program from being able to prevent interruptions
for more than 20 instruction executions.

—— Note that the PI instruction can only prevent those interrupts
that are under control of the interpreter. The PI instruction
cannot be used to prevent interruptions such as power failures
or the system operator restarting the processor. Also, PI
cannot prevent updates to a file from another non-DATASHARE
partition, for example when running under UPS. This means
that when designing complex data file structures, the
programmer should take care that any interruptions do as
little harm as possible. The PI instruction is primarily
useful in preventing interruptions of one port's activity by
another port, particularly if both ports are wmodifying the
data file. The PI instruction prevents different ports from
modifying the same record at the same time, therefore
maintaining file integrity.

Example:
PI 4
READ F,KEY;PN,QTYONH, LOD
SuB QTY FROM QTYONH
GOTO NOTNUFF IF LESS
UPDATE F; PN, QTYONH, LOD

Interruptions are prevented from the PI instruction through the
UPDATE instruction. Note that no other Datashare port can modify
the record being updated until this port has completed its
modification of the record. Using this technique, more than one
port can reference the "QuanTityY ON Hand" and receive an
up—-to—-date answer.

6-24 DATABUS COMPILER

Example:

PI 10
READ FILE,KEY;ITEM1,ITEM2,ITEM3
GOTO NORECORD IF OVER

NORECORD PI 0

In this example, the first PI of 10 instructions was
necessary to gqguarantee exclusive updating of a shared file. The
absence of the desired record aborted the update and caused the
program to go to an error-recovery routine. The "PI 0" would
cause two basic actions: first, the files to which the program has
exclusive access would be released for other use; second, the
programmer is assured that all PI's have expired. Without the use
of the "PI 0" eight more instructions would have been protected
and an attempt to prevent interrupts again within 8 instructions
would cause the program to be aborted.

6.13 FILEPI

The FILEPI instruction is similar to the Prevent Interrupt
instruction in that it prevents.a user's background execution from
being interrupted for up to 20 DATABUS instructions. This
instruction is useful when running under ARC to prevent damage to
files due to multiple users trying to update the file. See the
Attached Resource Computer user's quide for more information about
file handling under ARC and the enqueue/dequeue facility. This
instruction has the following general format:

<label> FILEPI <dnum>;<file list>
where: <label> is an execution label (see section 2.).
<dnum> is a decimal number.

<file list> is a list of FILE, RFILE, IFILE, RIFILE, and
AFILE names.

Programming Considerations:
-—- <label> is optional.
-— <dnum> must be between 1 and 20, inclusive.

—-— If a FILEPI or PI instruction is executed while interrupts are
already prevented, the executing program is aborted.

-~ (Kfile list> is a list of from 1 to 16 files (inclusive) whose

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-25

use is to be restricted during the duration of the FILEPI. 1If
more than 16 files are specified, the program executing is
aborted. The <file list> may be continued onto a second line
with a colon (:).

—-— All files listed in the <file list> must have been previously
OPENed before the FILEPI statement is executed.

—-— A FILEPI statement executed on systems not running in an ARC
network behaves exactly the same as a normal PI for the same
number of instructions.

All other pertinent information about this instruction is
identical to the normal PI instruction.

Example:
FILEA FILE
FILEB FILE
UPDATE \FILEPI ’ 6; FILEA,FILEB
READ FILEA,KEY;FIELDA,FIELDB,FIELDC
WRITE FILEB,KEYB;FIELDA,FIELDB

In this example, only the files FILEA and FILEB need to be
protected during the update.
6.14 TABPAGE

The TABPAGE instruction is used to force sections of a
program to begin at the first of an object code page. Execution
speed can be enhanced in this way by reducing object code page
accesses. This instruction has the following general format:

<1abel> TABPAGE

where: <label> is an execution label (see section 2.).
Programming Considerations:

~=- <label> is optional.

-- A page of object code is 250 bytes long. Page boundaries can
be detected in the listing of a program by looking at the

6-26 DATABUS COMPILER

three least significant digits of the location counter and
noting one of the following:

a) a location counter change from 772 (octal) to 001 (octal),
or

b) a location counter change from 372 (octal) to 401 (octal).

-— Compilation of a TABPAGE instruction forces the instruction
following the TABPAGE to be put at the first of the next page
of object code.

—— Execution of a TABPAGE instruction causes control to be
transferred to the first byte of the next page.

-- Note that liberally scattering TABPAGE instructions throughout
a user program, in general, does not result in an increase in
execution speed. Instead, the usual effect is to increase the
rate of thrashing of the program.

- TABPAGE is best used to force tight loops to reside entirely
within one or two pages.

6.15 DSCNCT

The DSCNCT instruction is equivalent to executing a CHAIN to
the ANSWER program for the port executing the DSCNCT. This
instruction is the only way to properly enter the port's ANSWER
program. It is also the normal method for a program to terminate
when executing as a remote slave port. This instruction has the
following general format:

<label> DSCNCT

where: <label> is an. execution label (see section 2.).
Programming Considerations:

-- <label> is optional.

—-- For a remote slave port, the DSCNCT instruction causes the
following actions:

a) All telephone communication activities are terminated.

b) The telephone is hung up.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-27

c) The remote station is returned to DOS.

—-—- For a remote port, the DSCNCT instruction causes the following
actions:

a) All telephone communication activities are terminated.
b) The telephone is hung up.

-— The equivalent of a CHAIN to the port's ANSWER program is
performed.

6.16 NORETURN

The NORETURN instruction is used to remove the top entry (the
last CALL) from the subroutine CALL stack and is used if it is
desired that a CALL or TRAP not return to its point of invocation.
This maintains the integrity of the subroutine CALL stack and
reduces the possiblity of a stack overflow. The statement has the
following generel format:

<label> NORETURN
where: <label> is an execution label (see section 2.).
Programming considerations:
-—- <label> is optional.

—— The NORETURN instruction, like the RETURN instruction, removes
the top element from the subroutine CALL stack. However, it
does not return control to the address specified on top of the
stack. 1Instead, control continues with the next instruction.

—-—- If the stack is empty (there are no active CALLs or TRAPs),
the OVER flag is set.

—— This instruction can be especially useful in routines that
handle TRAP events. Since a TRAP is implemented by a CALL
(see section 5.9) the return address is placed on top of the
stack. The trap routine can execute a NORETURN instruction,
and after whatever processing needs to be done can then GOTO
another place in the program instead of doing a RETURN. This
can help prevent stack overflows.

—- This instruction should be used with caution. If it is
accidently executed in a CALLed subroutine, then the return

N
|

28 DATABUS COMPILER

address is removed from the stack. When the RETURN
instruction is finally executed, control may return to an
incorrect place in the program, or, if the stack is then
empty, a stack underflow error occurs.

6.17 SHUTDOWN

The SHUTDOWN instruction provides a means for bringing down a
DATASHARE system. It allows the interpreter to return control to
DOS much like ROLLOUT, except that SHUTDOWN does not affect the
ROLLOUT file, and the executing program cannot be restarted at the
instruction after the SHUTDOWN as in ROLLOUT. The instruction may
have one of the following general formats:

1) <label> SHUTDOWN <svar>
2) <label> SHUTDOWN <slit>

where: <label> is an execution label (see section 2.).
<svar> 1s a character string variable.
<slit> 1is a character string literal.

Programming considerations:
—-— <label> is optional.

—-- The string variable, when using format (1), specifies the DOS
command line to be executed.

—- The string literal, when using format (2), specifies the DOS
command line to be executed. '

—— The characters used to build the DOS command line are exactly
the same as in the ROLLOUT instruction (see section 6.11).

-~ 1If the string variable given is null, then no command is
executed upon return to DOS. This is useful when it is
desired to simply shut down the systen.

-— DOS 1is brought up at the console and the command line supplied
from the string variable or literal is then supplied to the
DOS command interpreter exactly as if it had been keyed in
from the console.

—— The file used by ROLLOUT to save the interpreter state is not
affected in any way by this instruction. This implies that
the interpreter can be made to restart execution of an older
rolled out program saved in the ROLLOUT file by executing the

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-29

proper ROLLOUT return instruction.

-— It is not possible to resume execution of the DATASHARE
program executing the SHUTDOWN, or any other program then
being executed by the interpreter by another port.

~— The instruction does not take effect if any Slave terminal is
connected or if the MULTILINK communications handler does not
acknowledge the SHUTDOWN within ten seconds. In this case,
the OVER flag is set and execution continues with the next
DATABUS instruction.

-— The instruction only takes effect if all other ports in the
system are executing in either their ANSWER or MASTER program,
or are deactivated. If this condition is not true, the
SHUTDOWN is not done, and the OVER flag is set.

—-— SHUTDOWN does not wait for the printer buffers to be emptied

before returning to DOS. There is no method to determine if
the printer buffers are empty.

6.18 PAUSE

The PAUSE instruction is an effective way of allowing a
program to pause without imposing significant overhead on the
system. This instruction may have one of the following general

formats:

1) <label> PAUSE <nvar>
2) <label> PAUSE <nlit>

where: <label> is an execution label.
<nvar> 1is a numeric string variable.
<nlit> 1is a numeric string literal.
Programming considerations:
-— <label> is optional.
~— The numeric string variable or literal contains the number of
seconds to PAUSE. The number of seconds specified must be

between 0 and 32,767.

—-— The program executing the PAUSE instruction is suspended for
the specified number of seconds.

-— This instruction is useful if a port wants to suspend its

5-30 DATABUS COMPILER

execution; for example, because of the inavailability of the
printer, or nonexistence of a disk file, or wait for an event
to occur, such as communication from another port.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 5-31

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

The character string handling instructions are used to change
the contents of character strings, or the string attributes
(logical length pointer, formpointer). Generally all string
handling instructions have the following form:

<label> <oper> <soper><prep><doper>

where: <label> is an execution label.
<oper> 1is the string operation.
<soper> is the source operand.
<prep> 1s a preposition.
<doper> is the destination operand.

The reader should be familiar with the various DATABUS data
types. This information is contained in chapter 4 and should be
read before continuing.

7.1 MOVE

The MOVE instruction transfers the contents of the source
string into the destination string. Four (4) different types of
move operations are defined:

) MOVE character string to character string.
) MOVE character string to numeric string.

) MOVE numeric string to character string.

) MOVE numeric string to numeric string.

The first three (3) MOVE operations are discussed in this
chapter, the fourth type is discussed in Chapter 8 on Arithmetic
Instructions.

7.1.1 MOVE (character string to character string)

This MOVE instruction transfers the contents of the source
~operand into the destination operand. This instruction has the
following formats:

1) <label> MOVE <ssvar><prep><dsvar>
2) <label> MOVE <slit><prep><dsvar>

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-1

where: <label> is an execution label.

<ssvar> is the source string variable.
<prep> 1is a preposition.

<dsvar> is the destination string variable.
<slit> 1is the source string literal.

Programming Considerations:

<label> is optional.

Transfer from the source string starts with the character
under the formpointer and continues through the logical length
of the source string.

The source operand is not modified by this operation.

Transfer into the destination string starts at the first
physical character. When transfer is complete, the
formpointer of the destination string is set to one and the
logical length pointer points to the last character moved.

The EOS flag is set if the ETX in the destination string would
have been overstored. Transfer stops with the character that
would have overstored the ETX.

A null source string (formpointer=0) causes:

a. the destination variable formpointer to be set to zero.

b. no characters are moved.

c. the logical length pointer of the destination variable is
not changed.

Example:
VAR LL FP Contents
STRING1 6 1 ABCDEF ETX
STRING2 5 1 DOGCAT ETX

MOVE STRING1 TO STRINGZ2
The following variable(s) will be changed:

STRING2 5 1 - ABCDEF ETX
The following flag(s) will be set: None

7-2 DATABUS COMPILER

Example:

STRING1 4 2 ABCDXLM ETX
STRING2 6 3 DOGCAT ETX

MOVE STRING1 TO STRING2
The following variable(s) will be changed:
STRING2 3 1 8CDCAT ETX
The following flag(s) will be set: None

Example:

STRING1 4 2 ABCDXLM ETX
STRING2 6 3 DOGCAT ETX

MOVE "HELLO" TO STRING2
The following variable(s) will be changed:
STRING2 5 1 HELLOT ETX
The following flag(s) will be set: None

“Example:

STRING1 7 2 ABCDEFG ETX
STRING2 4 3 HIJKL . ETX

MOVE STRING1 TO STRING2
The following variable(s) will be changed:

STRING2 5 1 BCDEF ETX
The following flag(s) will be set: EOS

Zxample:
STRINGL 7 0 ABCDEFG ETX
STRING2 4 3 HIJKL ' ETX

MOVE STRING1 TO STRING2
Thé following variable(s) will be changed:

STRINGZ2 4 0 HIJKL ’ ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

7-3

7.1.2 MOVE (character string to numeric string)

This MOVE transfers the contents of the source character
string to the destination numeric string. The instruction has the
following formats:

1) <label> MOVE <ssvar><prep><dnvar>
2) <label> MOVE <slit><prep><dnvar>

where: <label> is an execution label.
<ssvar> is the source string variable.
{prep> 1is a preposition.
<dnvar> is the destination numeric variable.
<slit> 1is the source string literal.

Programming Considerations:
—-— <label> is optional.

-—- A character string is moved to a numeric string only if the
portion of the character string from the formpointer through
the logical length pointer is of valid numeric format (at most
one decimal point, sign, and digits only).

—-— The transfer from the source string starts at the formpointer
and proceeds through the logical length of the source string.

—-— The source character string is reformatted and rounded to fit
the destination numeric string.

-— If any of the most significant digits or sign is lost in the
process of truncation, the EOS flag is set and the destination
numeric variable is not changed as long as the length of the
source string is less than the 21 character limit of numeric
string variables (see section 4.1). If the source character
string is longer than 21 characters, the results are
indeterminate.

- —— A null source string (formpointer=0) results in the
destination variable not being changed.

7-4 DATABUS COMPILER

Example:

VAR LL FP Contents
STRING 9 3 AB100.327 ETX
NUMBER 0200 _39.00 ETX

MOVE STRING TO NUMBER

The following variable(s) will be changed:
NUMBER 0200 100.33 ETX
The following flag(s) will be set: None

Example:
STRINGI 9 3 AB10X.327 ETX
NUMBER 0200 ~39.00 ETX

MOVE STRING1 TO NUMBER

The following variable(s) will be changed: None
The following flags will be set: None

Example:
NUMBER 0200 12345.3 - ETX
MOVE "935" INTO NUMBER
The following variable(s) will be changed:

NUMBER 0200 __935.0 ETX
The following flag{(s) will be set: None

Example:
STRING 5 0 ABCDE ETX
NUMBER 0200 __935.0 ETX

MOVE STRING TO NUMBER

The following variables will be changed: None
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

7.1.3 MOVE (numeric string to character string)

This MOVE transfers the contents of the source numeric string

to the destination character string. The instruction has the
following formats:

1) <label> MOQVE <snvar><prep><dsvar>
2) <label> MOVE <nlit><prep><dsvar>

where: <snvar> 1s the source numeric variable.

<prep> 1is a preposition.
<dsvar> 1is the destination character string variable.
<nlit> 1is a numeric literal.

Programming Considerations:

<label> is optional.

Transfer from the source numeric string starts with the first
character of the string and continues until the source numeric
ETX is reached or until the ETX of the destination string is
about to be overstored.

Transfer into the destination character string begins with the
first physical character and continues until either the source
string ETX is encountered or the destination character string
ETX is about to be overstored.

The formpointer is set to one (1) and the logical length
pointer is set to point to the last character transferred into
the destination string.

The EOS flag is set if the ETX would have been overstored in
the destination character string. The transfer stops with the
character before the one that would have overstored the ETX.

Example:
VAR LL FP Contents
NUMBER 0200 100.33 ETX
STRING2 9 3 AB100.327 ETX

MOVE NUMBER TO STRING2
The following variable(s) will be changed:

STRING2 6 1 100.33327 ETX
The following flag(s) will be set: None

7-6 DATABUS COMPILER

Example:

NUMBER 0200 10.35789 ETX
STRING2 5 3 ABCDE ETX

MOVE NUMBER TO STRING2
The following variable(s) will be changed:
STRING?2 5 1 10.35 ETX
The following flag(s) will be set: EOS
7.2 APPEND
APPEND appends the source string (character or numeric) to

the destination string. The instruction has the following
formats:

1) <label> APPEND <ssvar><prep><dsvar>
2) <label> APPEND <snvar><prep><dsvar>
3) <lahel> APPEND <slit><prep><dsvar>

where: <label> is an execution label.
<ssvar> 1s the source string variable.
{prep> 1is a preposition.
<dsvar> is the destination string variable.
<snvar> is the source numeric variable.
<slit> 1is the source string literal.

Programming Considerations:
-- <label> is optional.
-- The portion of the source defined by one of the following:
1) For source character strings, the formpointed
character through the logical length of the source

character string.

2) For numeric strings, the first character through the
physical end of string (ETX)

is appended to the destination character string.

-- The source stringy is appended starting after the formpointed
character in the destination string.

-— The source string pointers are not changed.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIQONS 7-7

-— The destination string formpointer and logical length pointer
point to the last character transferred.

-— The EOS flag is set if the portion of the source string that
is to be moved cannot be contained in the destination string.
All of the characters that fit are appended.

Example:
VAR LL FP Contents
STRING1 8 6 JOHN DOE ETX
STRING2 11 11 MARY JONES ETX

APPEND STRING1 TO STRING2

The following variable(s) will be changed:
STRING?2 14 14 MARY JONES DOE ETX

Example:

STRING2 10 9 MARY JONES ETX

APPEND ".XX.YY." TO STRING2

The following variable(s) will be changed:
STRING?2 16 16 MARY JONE.XX.YY. ETX

Example:
NUMBER 0200 100.33 ETX
STRING2 9 2 ABCDEFGHI ETX

APPEND NUMBER TO STRING2
The following variable(s) will be changed:

STRING?Z2 8 8 AB100.331 ETX i
The following flag(s) will be set: None

7-8 DATABUS COMPILER

7.3 MATCH

MATCH compares two character strings. The instruction has

the following formats:

1) <label> MATCH <ssvar><prep><dsvar>
2) <label> MATCH <slit><prep><dsvar>

where: <label> is an execution label.

<ssvar> 1is the source string variable.
{dsvar> is the destination string variable.
<prep> 1is a preposition.

<slit> 1is a string literal.

Programming Considerations:

<label> is optional.

MATCH compares two character strings starting at the
formpointer of each string, and stopping when the end of
either operand's logical string is reached.

The formpointers and logical length pointers of both strings
are unchanged.

The length of each string is defined to be:
length = logical length pointer - formpointer + 1

If all of the characters that are compared match, then the
EQUAL flag is set and the following computation is made:

L = (length of destination string) -
(length of source string)

The LESS flag is set to indicate that L is negative.

If all of the characters that are compared do not match, then
the following corjiitation is made:

D = (octal value of first non matching destination
character) -
(octal value of first non matching source character)

The LESS flag is set if D is less than zero.

If either the source or destination string formpointer is zero
before the operation, then the LESS and EQUAL flags are

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-9

cleared and the EOS flag is set.

Example:
VAR LL FP Contents
STRING1 5 1 ABCDE
STRING2 4 1 ABCD

MATCH STRING1l TO
The following flag(s) will
Example:

STRING1 3 1 ABC
"STRING2 1 1 Z

MATCH STRING1 TO

The following flag(s) will

Example:
STRING1 3 1 222
STRING2 3 1

AAA
MATCH STRING1 TO

The following flag(s) will

Example:
STRING1 5 4 XXXABC
STRING2 5 3 YYABC

MATCH STRING1 TO

The following flag(s) will

7-10 DATABUS COMPILER

ETX
ETX

STRING2

be set:

ETX
ETX

STRING?2

be set:

ETX
ETX

STRING2

be set:

ETX
ETX

STRING?2

be set:

LESS

EQUAL,

None

LESS

EQUAL..

Example:
STRING2 5 1 ABCDE ETX
MATCH "ABCD" TO STRING2
The following flag(s) will be set: EQUAL
Example:
STRING2 5 0 ABCDE ETX
MATCH "ABCDE"™ TO STRING2

The following flag(s) will be set: EOS

7.4 CMOVE

The CMOVE instruction moves a character from the source
operand into the destination character string. The instruction
has the following formats:

1) <label> CMOVE <ssvar><prep><dsvar>
2) <label> CMOVE <char><prep><dsvar>
3) <label> CMOVE <occ><prep><dsvar>

where: <label> is an execution label.
<ssvar> 1is the source string variable.
{prep> 1is a preposition.
<dsvar> is the destination string variable.
<char> 1is the one character source literal string.
<occ> is an octal control character.

Programming Considerations:
-~ <label> is optional.

-~ Transfer from the source string starts with the character
under the formpointer.

-~ Transfer into the destination string starts with the character

under the formpointer.
-- Only one character is moved.

-~ Neither string's logical length pointer and formpointer are
modified.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-11

-— If either variable has a formpointer of zero (0),

flag is set and no transfer occurs.

Example:
VAR LL FP Contents
STRING! 5 3 ABCDE ETX
STRINGZ 3 2 XXX ETX

CMOVE STRING1 TO STRING2
The following variable(s) will be changed:
STRING?Z2 3 2 XCX ETX
The following flag(s) will be set: None
Example:
STRING?2 3 2 1234 ETX
CMOVE "X" TO STRING2
The following variable(s) will be changed:

STRING?2 3 2 1X34 ETX
The following flag(s) are set: None

7.5 CMATCH

then the EOQOS

CMATCH compares a single character from the source string to
a character in the destination string. The instruction has the

following formats:

1) <label> CMATCH <ssvar><prep><dsvar>
2) <label> CMATCH <char><prep><dsvar>
3) <label> CMATCH <ssvar><prep><char>
4) <label> CMATCH <occ><prep><dsvar>
5) <label> CMATCH <ssvar><prep><occ>

where: <label> is an execution label.
<ssvar> is the source string variable.
<prep> 1is a preposition.
<dsvar> is the destination string varlaalv.
<char> 1is a one character string literal.
<occ> is an octal control character.

Programming Considerations:

7-12 DATABUS COMPILER

<label> is optional.

The character compared from the source string is the character
from under the formpointer.

The character compared from the destination string is the
character from under the formpointer.

If the two characters match, then the EQUAL flag is set.

If the two characters do not match then the LESS flag is set
if the following difference (D) 1is negative:

D = (octal value of destination character) - (octal
value of source character).

If a literal or octal control character is used in the source
string then that character is the one used for the CMATCH
operation. -

If either operand has a formpointer of zero (0), then the EOS
flag is set.

Exanple:

VAR LL FP Contents
STRING1 5 3 ABCDE ETX
STRING2 3 1 CX ETX

CMATCH STRING1 TO STRING2

The following flag(s) are set: EQUAL

Example:

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7

STRING?2 4 2 XACD ETX
CMATCH "B" TO STRING2

The following flag(s) are set: LESS

13

Example:

ST 8 0 ABCDEFGH ETX
CMATCH "Y" TO ST

The following flag(s) are set: EOS

7.6 BUMP

The BUMP instruction increments or decrements the formpointer

of a variable. The instruction has the following formats:

1) <label> BUMP <{svar>
2) <label> BUMP <svar><prep><dcon>
3) <label> BUMP <svar><prep><nvar>

where: <label> is an execution label.

<svar> is & string variable,

{prep> 1is a preposition.

<dcon> 1is a signed decimal constant.
<nvar> 1is a numeric variable.

Programming Considerations:

<label> is optional.

when using format (1) above, the string variable's formpointer
is incremented by one (1).

when using format (2) above <dcon> is added to the formpointer
and the result becomes the new string variable formpointer if
the new formpointer is valid. Note that a valid formpointer
must be in the range (1 to n) where n is the value of the
logical length pointer for the string.

when using format (3) above the value specified by <nvar> is
added to the formpointer and the result becomes the new string
variable formpointer if the new formpointer is valid. Note
that a valid formpointer must be in the range (1 to n) where n
is the value of the logical length pointer for the string.

The EOS flag is set if the BUMP instruction would have caused

an invalid formpointer. The formpointer is not changed in
this case. ‘

7-14 DATABUS COMPILER

Example:

VAR LL FP Contents
CAT 5 2 ABCDE ETX
BUMP CAT

The following variable(s) will be changed:
CAT 5 3 ABCDE ETX
The following flag(s) will be set: None
Example:
CAT 5 4 ABCDE ETX
BUMP CAT BY -2
The following variable(s) will be changed:

CAT 5 2 ABCDE ETX
The following flag(s) will be set: None

Example:
CAT 5 3 ABCDE ETX
BUMP CAT BY 3
The following variable(s) will be changed: None

The following flag(s) will be set: EOS

Example:
CAT 5 2 ABCDE ETX
DOG 0200 2 ETX

BUMP CAT BY DOG
The following variable(s) will be changed:

CAT 5 4 ABCDE ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

Examnple:

CAT 5 3 ABCDE ETX
DOG 0200 3 ETX

BUMP CAT BY DOG

The following variable(s) will be changed: None
The following flag(s) will be set: EOS

Exanmple:

VAR1 5 3 ABCDE ETX
VAR2 0200 -1 ETX

BUMP VAR]1 BY VAR2
The following variable(s) will be chenged:
VAR1 5 2 ABCDE ETX
~ The following flag(s) will be set: None
7.7 RESET
RESET changes the value of the formpointer of the destination

string to the value indicated by the second operand. The
instruction has the following formats:

1) <label> RESET <dsvar><prep><dcon>

2) <label> RESET <dsvar>

3) <label> RESET <dsvar><prep><char>

4) <label> RESET <dsvar><prep><ssvar>
5) <label> RESET <dsvar><prep><snvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.
<prep> 1s a preposition.
<dcon> 1s a decimal constant.
<char> is a one character string literal.
{ssvar> 1s the source string variable.
<snvar> 1s the source numeric variable.

Programming Considerations:
-~ <Klabel> is optional.

-— RESET changes the value of the formpointer of the destination
string to the value indicated by the second operand. If the

7-15 DATABUS COMPILER

second operand is not specified, the formpointer is reset to
one (1).

If the second operand is a quoted character, the formpointer
of the destination string is changed to the following:

FP = (OCTAL value of ASCII character) - 037

If the second operand is a character string, the character
under the formpointer is accessed. The formpointer of the-
destination string is changed to the following:

FP = (OCTAL value of ASCII character) - 037

If the second operand is a numeric string, the number is used
as the value for the new formpointer. If the variable is not
an integer, then the fractional quantity is truncated and the
integer portion is used for the value.

If the new formpointer would be past the logical length
pointer of the first operand, the logical length pointer is
set to the value of the new formpointer. Note that under no
circumstances is the logical length pointer or formpointer set
outside the physical structure of the string. If an attempt
is made to set the formpointer beyond the physical length of
the string, the formpointer is set to the physical length of
the string, and the EOS flag is set.

The EOS flag is set when any change in the logical length
pointer of the destination string occurs.

The RESET instruction is very useful in code conversions and
hashing of character string values as well as large string
manipulation.

Example:
VAR LL FP Contents
XDATA 5 3 ABCDEFGHIJ ETX

RESET XDATA

The following variable(s) ‘will be changed:
XDATA 5 1 ABCDEFGHIJ ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-17

Example:
XDATA 5 2 ABCDEFGHIJ ETX
RESET XDATA TO 4
The following variable(s) will be changed:

XDATA 5 4 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Example:
XDATA 10 2 ABCDEFGHIJ ETX
NUMBER 0200 8 ETX

RESET XDATA TO NUMBER

The following variable(s) will be changed:
XDATA 10 8 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Example:
XDATA 6 2 ABCDEFGHIJ ETX
NUMBER 0200 8 ETX

RESET XDATA TO NUMBER

The following variable(s) will be changed:
XDATA 8 8 ABCDEFGHIJ ETX
The following flag(s) will be set: EOS

Example:
XDATA 10 8 1234567890 ETX
STRING 5 4 ABC!E ETX

RESET XDATA TO STRING

The following variable(s) will be changed:
ADATA 10 2 1234567890 ETX

Note: The ASCII value of ! is octal 041.
The following flag(s) are set: None

7-18 DATABUS COMPILER

7.8 SETLPTR

The SETLPTR instruction changes the value of the logical

length pointer of the destination string to the value indicated by
the second operand. The instruction has the following formats:

1) <label> SETLPTR <dsvar><prep><dcon>

2) <label> SETLPTR <dsvar>

3) <label> SETLPTR <dsvar><prep><char>

4) <label> SETLPTR <dsvar><prep><ssvar>
5) <label> SETLPTR <dsvar><prep><snvar>

where: <label> is an execution label.

<dsvar> is the destination string variable.
<prep> 1is a preposition.

<dcon> is a decimal constant.

<char> 1is a one character string literal.

<{ssvar> is the source string variable.

<snvar> is the source numeric variable.

Programming Considerations:

<label> is optional.

SETLPTR changes the value of the logical length pointer of the
destination string to the value indicated by the second
operand. If the second operand is not specified (format (2)),
the logical length pointer is set to the physical length of
the string.

If the second operand is a quoted character, the logical
length pointer of the destination string is changed to the
following:

LP = (OCTAL value of ASCII character) - 037
If the second operand is a character string, the character
under the formpointer is accessed. The logical length pointer
of the destination string is changed to the following:

LP = (DCTAL value of ASCII character) - 037
If the second operand is a numeric string, the number is used
as the value for the new logical length pointer. TIf the
variable is not an integer, then the fractional guantity is

truncated and the integer portion is used for the value.

If the new logical length pointer would be before the

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-19

formpointer of the first operand, the formpointer is set to
the value of the new logical length pointer. Note that under
no circumstances is the logical length pointer or formpointer
set outside the physical structure of the string.

—— The EOS flag is set when any change in the formpointer of the
destination string occurs. '

-— The OVER flag is set if the value specified for the new
logical length pointer is out of range of the length of the
string. The logical length pointer is not changed in this
case.

-— The SETLPTR instruction is very useful in code conversions and
hashinag of character string values as well as large string
manipulation. :

Example:
VAR LL P Contents
XDATA 5 3 ABCDEFGHIJ ETX

SETLPTR XDATA
The following variable(s) will be changed:
XDATA 10 3 ABCDEFGHIJ ETX
The following flag(s) will be set: None
Example:
XDATA 5 2 ABCDEFGHIJ BETX
SETLPTR XDATA TO 4
The following variable(s) will be changed:

XDATA 4 2 ABCDEFGHIJ ETX
The following flag(s) will be set: None

7-20 DATABUS COMPILER

Example:

XDATA 10 2 ABCDEFGHIJ ETX
NUMBER 0200 8 ETX

SETLPTR XDATA TO NUMBER
The following variable(s) will be chénged:

XDATA 8 2 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Example:
XDATA 6 4 ABCDEFGHIJ ETX
NUMBER 0200 2 ETX

SETLPTR XDATA TO NUMBER

‘The following variable(s) will be changed:
XDATA 2 2 ABCDEFGHIJ ETX
The following flag(s) will be set: EOS

Example:
XDATA 10 1 1234567890 ETX
STRING 5 4 ABCSE ETX

SETLPTR XDATA TO STRING
The following variable(s) will be changed:
XDATA 5 1 1234567890 ETX
Note: The ASCII value of $ is octal 044.
The following flag(s) are set: None
Example:
XDATA 10 1 1234567890 ETX
SETLPTR XDATA TO 12

The following variable(s) will be changed: None
The following flag(s) are set: OVER

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

21

Example:

XDATA 10 1 1234567890 ETX
NUMBER 0200 -4 ETX

SETLPTR XDATA TO NUMBER
The following variable(s) will be changed: None
The following flag(s) are set: OVER
7.9 ENDSET
ENDSET causes the operand's formpointer to bhe changed to the
value of the logical length pointer. This instruction has the
following format: :

<label> ENDSET <dsvar>

where: <Klabel> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:
~—- <label> is optional.

-— <dsvar> must be a string variable.

Examnple:
VAR LL FP Contents
CAT 10 4 12345678990 ETX

ENDSET CAT
The following variable(s) will be changed:

CAT 10 10 1234557890 ETX
The following flag(s) will be set: None

7-22 DATABUS COMPILER

Example:
DOG 5 4 1234567890 ETX
ENDSET DQG
The following variable(s) will be changed:

DOG 5 6 1234557890 ETX
The following flag(s) will be set: None

7.10 LENSET

LENSET changes the operand's logical length pointer to the
value of the formpointer. The instruction has the following

format:
<label> LENSET <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:
-— <Klabel> is optional.
-— <dsvar> must be a string variable.
Example:

VAR LL FP Contents

STRING 8 4 1234567890 ETX

LENSET STRING
The following variable(s) will be chénged:

STRING 4 4 1234567890 ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

|

23

Example:
XDATA 6 2 1234567890 ETX
LENSET XDATA
The following variable(s) will be changedﬁ
XDATA 2 2 1234567890 ETX
The following flag(s) will be set: None

7.11 CLEAR

CLEAR sets the logical length pointer and formpointer of the
operand to zero. This instruction has the following format:

<label> CLEAR <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable,.

Programming Considerations:
-- <label> 1is optional.

—-— <Kdsvar> must be a string variable.

Example:
VAR LL FP Contents
STRING 8 3 ABCDEFGHIJ ETX
CLEAR STRING
The following variable(s) will be changed:

STRING 0 0 ABCDEFGHIJ ETX
The following flag(s) will be set: None

7-24 DATABUS COMPILER

7.12 EXTEND
EXTEND increments the string variable's formpointer by one
and stores a space into the new formpointed character. The
logical length pointer is set to the value of the new formpointer.
This instruction has the following format:
<label> EXTEND <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:

-- <label> is optional.

-— <dsvar> must be a string variable.

-- The formpointer of the string variable is incremented by one.
The logical length pointer is set to the value of the new
formpointer.

-— If the new formpointed character is the ETX, then the E0S flag

is set and the formpointer and logical length pointer are left
as they were before the EXTEND instruction was executed.

Example:
VAR LL FP Contents
STRING 10 3 ABCDEFGHIJ ETX

EXTEND STRING
The following variable(s) will be changed:
STRING 4 4 ABC EFGHIJ ETX
The following flag(s) will be set: None
Exanple:
STRING 10 10 ABCDEFGHIJ ETX
EXTEND STRING

The following variable(s) will be changed: None
The following flag(s) will be set: EOS

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-25

7.13 MOVEFPTR
The MOVEFPTR instruction provides the user the ability to
access and observe a string variable's formpointer. This
instruction has the following general format:
<label> MOVEFPTR <ssvar><{prep><dnvar>

where: <label> is an execution label.

<ssvar> is the source string variable.

{prep> 1is a preposition.

<dnvar> is the destination numeric variable.
Programming considerations:

-- <label> is optional.

—-— The value of the source string variable's formpointer is
placed in the destination numeric variable.

—-- The source string variable is not modified by this
instruction.

—— If the value of the formpointer is zero, the EQUAL flag is
set. '

—-— If the formpointer value does not fit into the destination
numeric variable, it 1s truncated and the OVER flag is set.

Example:
VAR LL FP Contents
XDATA 10 2 ABCDEFGHIJ ETX
NUMBER 0200 8 ETX

MOVEFPTR XDATA TO NUMBER
The following variable(s) will be changed:

NUMBER 0200 2 ETX
The following flag(s) will be set: None

7-26 DATABUS COMPILER

7.14 MOVELPTR

The MOVELPTR instruction provides the user the ability to
access and observe a string variable's logical length pointer.
This instruction has the following general format:

<label> MOVELPTR <ssvar><prep><dnvar>
where: <label> is an execution label.
<ssvar> is the source string variable.
<prep> 1is a preposition.
<dnvar> is the destination numeric variable.
Programming considerations:

-- <label> is optional.

-- The value of the source string variable's logical length
pointer is placed in the destination numeric variable.

-— The source string variable is not modified by this
instruction.

-~ If the value of the logical length pointer is zero, the EQUAL
flag is5 set.

—-— If the logical length pointer value does not fit into the
destination numeric variable, it is truncated and the OVER
flag is set.

Example:
VAR LL FP Contents
XDATA 10 2 ABCDEFGHIJ ETX
NUMBER 0200 14 ETX

MOVELPTR XDATA TO NUMBER
The following variable(s) will be changed:

NUMBER 0200 10 ETX
The following flag(s) will bhe set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-27

7.15 LOAD

LOAD performs a MOVE from the selected character string
(using an index for selection) to the destination character
string. The instruction has the following formats:

<label> LOAD <dsvar><prep><index><prep><list>

where: <label> is an execution label.
<dsvar> is the destination string variable.
<prep> 1is a preposition.
<index> is a numeric string used for selecting a string
variable from the <list>. ,
<list> 1is a list of string variables.

This discussion deals only with the case when <list> is a set
of string variables. The LOAD instruction to use when <list> is a
set of numeric variables is covered in Chapter 8 on Arithmetic
Instructions.

Programming Considerations:
—— <Klabel> is optional.
-— <dsvar> must be a string variable.

-— <Kindex> is a numeric variable. If this variable is not an
integer, then the fractional quantity is truncated and the
integer portion used as the index for list selection.

-— If the <index> does not correspond to a varlable in the
<list>, then the LOAD instruction is simply ignored.

-~ <Klist> must contain string variables only. The <list> may bhe
continued if necessary by using the colon (:) instead of the
comma (,) after the last variable used on the line to be
continued.

~-— There must not be more than 255 character string variables in
the list.

—-— This instruction works exactly like the MOVE instruction
(character string to character string) after the variable has
been selected from the list.

-— An <index> quantity of one (1) corresponds to the first

variable in the <list> and an <index> quantity of n
corresponds to the nth variable in the <list>.

7-28 DATABUS COMPILER

Example:

VAR LL FP Contents

DESTIN 10 5 ABCDEFGHIJ ETX
INDEX 0200 2.9 ETX
sl 5 1 11111 ETX
s2 5 2 22222 ETX
S3 5 3 33333 ETX

LOAD DESTIN FROM INDEX OF S1,S2:
S3

The following variable(s) will be changed:
DESTIN 4 1 2222EFGHIJ ETX
The following flag(s) will be set: None

Example:
DESTIN 5 1 ABCDE ETX
INDEX 0200 3.7 ETX
S1 5 1 111111 ETX
s2 7 1 2222222 ETX
S3 8 1 33333333 ETX
sS4 9 1 444444444 ETX

LOAD DESTIN FROM INDEX OF S1,S52,S3,54

The following variable(s) will be changed:
DESTIN 5 1 33333 ETX
The following flag(s) will be set: EOS

7.16 STORE

STORE selects a variable from a list (using an index for
selection) and performs a MOVE operation from the source string
operand to the selected destination string variable. The
instruction has the following formats:

1) <label> STORE <ssvar><prep><index><prep><list>

2) <label> STORE <slit><prep><index><prep><list>
where: <label> is an execution label.

<ssvar> 1s the source string variable.

<prep> 1s a preposition.

<index> is the numeric variable which specifies which
variable from <list> is to be selected as the

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-29

destination variable for the MOVE operation.
<list> is a list of string variables. \
<slit> 1is a string literal.

Programming Considerations:
-— <label> is optional.

-- K<list> is a list of string variables, separated by commas (,).
The list may be continued on the following line by using a
colon (:) instead of a comma (,) after the last variable on
the line to be continued.

——- <index> must be a nhumeric variable. If the <index> is not an
integer, it is truncated and the integer portion is used as
the index for list selection.

-— If the <index> does not correspond to a variable in the
<list>, then the STORE instruction is simply ignored.

-— An <index> quantity of one (1) corresponds to the first
variable in the <1list> and an <index> quantity of n
corresponds to the nth variable in the <list>.

—-- There must not be more than 255 character string variables in
the list.

-— All of the rules of the MOVE instruction apply after the list
selection has been performed.

Example:

VAR LL FP Contents

SOURCE 8 5 12345578 ETX
I 0200 2.3 ETX
D1 5 2 11111 ETX
D2 5 3 222222 ETX
D3 7 4 3333333 ETX

STORE SOURCE INTO I OF D1,D2:
D3

Tne following variable(s) will. be changed:

D2 4 1 567822 ETX
The following flag(s) will be set: None

7-30 DATABUS COMPILER

Example:

IND 0200 3 ETX
D1 5 1 12345 ETX
D2 4 2 ABCD ETX

STORE "890" INTO IND OF D1,D2

The instruction would have no effect because the index 1is out
of range.

7.17 CLOCK

CLOCK allows a DATABUS program access to the interpreter's

time clock, day, year, version, and port characteristics. This
instruction has the following general format:

<label> CLOCK <item><prep><svar>

where: <label> is an execution label.

<item> may be one of the following:

1) TIME to access the time of day clock.

2) DAY to access the day of the year.

3) YEAR to access the year.

4) VERSION to access the interpreter version and
revision numbers and interpreter name.

5) PORT to access the port number and various
port characteristics.

{prep> 1is a preposition.
{svar> 1is a string variable that is to receive the
requested information.

Programming Considerations:

<label> is optional.

<svar> must be a string variable.

The time clock (TIME) has the following format:
hh:mm:ss |
where:

hh = hours tens and units digits with range (00 to

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-31

mm

SS

-- The day of the

ddd

23) .
minutes tens and units digits with range (00
59).
seconds tens and units digits with range (00
59).

year (DAY) has the following format:

representing the hundreds, tens, and units
digits of the day of year with range (001 to
366). The day expressed in this form is
commonly termed the "Julian" day.

—-— The year (YEAR) has the following format:

YY

representing the tens and units of the year
with range (00 to 929).

—-- The interpreter version number and name (VERSION) has the
following format:

V. nnnnnnn

where:

v -

.

r

the interpreter version number.
is a period. :
the interpreter revision number.

nnnnnnn = an up to seven byte interpreter name.

The version and revision numbers and the interpreter name

are separated by a blank.
A typical answer would be "1.1 DS6".

—— The port number and charactersitics

format:

(PORT) has the following

nn ss tt uuuuu

where:

nn

SS

tt

Il

the port number upon which the DATASHARE V
program is currently running.

the screen size of the port and is either 12

or 24 lines.
the port type, for example:

01 = CONSOLE

7-32 DATABUS COMPILER

02 = 3350 port
03 = 3600 port
04 = SLAVE
05 = PHANTOM
uuuuu = the maximum size of the User's Data Area

(UDA) in bytes.

The parts of the string are separated by blanks. This
particular type of the CLOCK instruction is subject to
change and expansion. Consult the appropriate user's

guide for more information and the exact nature of the
answer.

- The CLOCK instruction simply performs a MOVE operation on
information requested into the destination string variable.

- The DATABUS programmer must be careful when using the CLOCK
instruction to avoid getting erroneous results. When
obtaining both the TIME and DAY, the program should first
access the DAY and then the TIME. The program should then
access the DAY again and insure that the DAY has not changed.
If the DAY has changed, then the process should be repeated.
When this procedure is followed, then the TIME and DAY
correspond to each other.

- The TIME, DAY, and YEAR are placed into the interpreter when
the system is brought up. The CLOCK items are kept updated
while the interpreter is running and are available to DATABUS
programs.

- The TIME is accurate to approximately 0.005 percent or five
(5) seconds per day.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-33

year
DS6,
port
with

7.18

variable for valid numeric string

VAR

TIME
DAY
TEMP
YEAR
VERSION
PORT

TIMEOK

The following variable(s)

TIME
DAY
YEAR
TEMP
VERSION
PORT

The above
minutes,

15 seconds,
number was 80.

the version is 1.1.
2, it has a 24 1line

LL FP Contents

8 2 XXXXXXXX ETX
3 3 YYY ETX
3 2 7227 ETX
2 2 7z , ETX
5 3 SSSSSSSSSSS ETX
12 3 TTTTTTTTTTTTTT ETX
CLOCK VERSION TO VERSION
CLOCK PORT TO PORT

CLOCK DAY TO DAY

CLOCK TIME TO TIME

CLOCK YEAR TO YEAR

CLOCK DAY TO TEMP

MATCH DAY TO TEMP
GOTO TIMEOK IF EQUAL
CLOCK DAY TO DAY
CLOCK TIME TO TIME

will be changed:

8 1 13:10:15 ETX
3 1 134 ETX
2 1 80 ETX
3 1 134 ETX
11 1 1.1 DS6 ETX
14 1 02 24 03 04095 ETX

would be correct if the time was 13 hours, 10

the day of the year was the 134th, and the
The name of the interpreter configured is
The port executing this instruction 1is
screen, it is a 3600, and was configured

4095 bytes of UDA.

TYPE

The TYPE instruction checks the format of a character string

format. This instruction has

the following format:

wher

<label>

e: <label>
<dsvar>

7-34

TYPE <dsvar>

is an execution label.
is the destination string variable.

DATABUS COMPILER

Programming Considerations:

<label> is optional.
<dsvar> must be a string variable.

Only the logical string of <dsvar> is checked for valid
numeric format (see section 4.1).

The EQUAL flag is set to true only when the logical string is
a valid numeric string.

A null logical string is not a valld numeric string and causes
the EOS flag to be set.

7.19 SEARCH

SEARCH compares a variable <key> to a list of variables

<list> and yields an index <index> which indicates which variable
in the <list> matched. This instruction has the following format:

<label> SEARCH <key><prep><blist><prep><nlist><prep><inde

where: <label> is an execution label.

<key> is the key variable.

<prep> 1is a preposition.

<blist> is the first variable in a list of contiguous
variables.

<nlist> is a numeric variable which specifies the number
of variables in the list to be searched.

<index> is a numeric variable produced by the interpreter
which specifies which variable in the list (the
first of which was <blist>) matched the <key>.

Programming Considerations:

<label> is optional.

<key> and the variables in the 1list (the first of which is
<blist>) should be of the same data type, either both string
variables or both numeric variables.

<blist> is the name of the first variable in the list of
contiguous variables to be used.

<nlist> is a numeric variable which specifies the number of

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-35

variables in the list (the first of which is <blist>).

The logical string of <key> is compared to the logical string
of a variable from the list (of which <blist> is the first).
If the logical string length of <key> 1s less than the logical
string length of the variable being compared (from the list),
the match stops when the <key> logical string is exhausted.

It is not possible to get a match on a <key> variable whose
logical string is longer than the logical string of the list
variable.

The logical string lengths of the variables in the list may be
different.

"Logical string" as used here for numeric string variables
means the entire string of digits used to represent the
numeric value. The match is done character by character. So,
for example, if the key variable was numeric and had a value
of "123" and one of the variables in the search list had a
value of " 123" a match would nct occur.

If the variable <nlist> is larger than the number of variables
in the list, the search proceeds until the count <nlist> is
exhausted.

<index> contains a one (1) if the first variable in the list
matched <key>. A value of n for <index> indicates the nth
variable in the list matched <key>. The EQUAL flag is also
set if a match is found.

If none of the list variables matched <key> then a value of .
zero (0) is returned for <index> and the OVER flag is set.

7-36 DATABUS COMPILER

Example:
VAR

KEY

VAR1
VAR2
VAR3
NVAR

INDEX

The following variable(s)
INDEX

LL FP Contents
5 3 ABCDE

8 1 12345678
6 2 XCDh&l2

4 3 FGHI
0200 03

0200 00

ETX
ETX
ETX
ETX
ETX
ETX

SEARCH KEY IN VARl TO NVAR WITH INDEX

0200

2

will be changed:
ETX

The following flag(s) will be set: EQUAL

Example:

KEY
V1
V2
V3
N

I

The
I
The

S WU u
b

0200
0200

ABCDE

XXXXX

YYY

2222
3

99

ETX
ETX
ETX
ETX
ETX
gTX

SEARCH KEY IN V1 TO N USING I

0200

7.20 REPLACE

REPLACE (the
replacement of an
ASCII character.
general formats:

W
~— o —

where:

CHAPTER

<label>
<label>
<label>
<label>

<label> is
<ssvar> 1is
<{prep>

0

following variables will be changed:

ETX

following flag(s) will be set: OVER

compiler also accepts a mnemonlc of REP) allows

ASCII character

in a string variable by another

This instruction may have one of the following

REPLACE
REP
REPLACE
REP

<{ssvar><prep><dsvar>
<ssvar><prep><dsvar>
<slit><prep><dsvar>
<slit><prep><dsvar>

an execution label.
the source string variable.

is a preposition.

7. CHARACTER STRING HANDLING INSTRUCTIONS

<dsvar> is the destination string variable.
<slit> 1is a source string literal.

Programming Considerations:
-— <label> is optional.

-— The logical string of the source variable <ssvar> or literal
<{sslit> must contain pairs of characters defined as follows:

1) The first character of the pair is the character
to be replaced in the destination string.

2) The second character of the pair is the character
that is to replace the first of the pair wherever
it appears in the destination string.

-— The source string is not modified.

-— The destination variable leogical string is modified.

-— The EOS flag is set if the logical string length of the source
operand is not even.

Example:

VAR LL FP Contents
DVAR 10 1 ABCDABCDAB ETX
ABVAR 4 1 AXDY ETX

REPLACE ABVAR IN DVAR

The following variable(s) will be changed:
DVAR 10 1 XBCYXBCYXB ETX
The following flag(s) will be set: None

Example:
DVAR 10 5 ABCDABCDAB ETX
ABVAR 4 3 AXDY ETX

REPLACE ABVAR IN DVAR
The following variable(s) will be changed:

DVAR 10 5 ABCDABCYAB ETX
The following flag(s) will be set: None

7-38 DATABUS COMPILER

Example:

DESTIN 6 1 Al1B2C3 ETX
REPLACE "A1B2C3" IN DESTIN

The following variable(s) will be changed:
DESTIN 6 1 112233 ETX
The following flag(s) will be set: None
Example:
DESTIN 7 1 AEAFZAZ ETX
REPLACE "AZZA"™ IN DESTIN
The following variable(s) will be changed:

DESTIN 7 1 ZEZFAZA ETX
The following flag(s) will be set: None

Example:
DESTIN 6 1 123456 ETX
REPVAL 4 2 ABCD ETX

REPLACE REPVAL IN DESTIN
The following variable(s) will be changed: None
The following flag(s) will be set: EOS
7.21 SCAN
The SCAN verb can be used to search for a specified search

string in a destination string. The instruction may have one of
the following general formats:

1) <label> SCAN <{ssvar><prep><dsvar>
2) <label> SCAN <sslit><prep><dsvar>
3) <label> SCAN <occ><prep><dsvar>

where: <label> is an execution label (see section 2.).
<ssvar> is the source string variable.
{prep> 1s a preposition.
{dsvar> is the destination string variable.
<sslit> is a source string literal.
<occ> is an octal control character.

Programming Considerations:

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-39

If format (1) is used, the logical string of <ssvar> specifies
the search string.

The source operand is not modified by this instruction.

The search starts with the formpointed character of the
destination string and continues through the logical length of
the string.

If either string is null (has a 0 formpointer) the operation
is discontinued and the EOS flag is set.

If the logical string of the source operand is longer than the
logical string of the destination operand, then no match can
occur.

If the specified search string is found in the destination
string, the following actions take place:

a) The formpointer of the destination string is set to point
to the first matching character.

b) The EQUAL flag is set.

If the search string is not found in the destination string,
the EQUAL flag is cleared.

Multiple occurences of the search string in the destination
string can be found by modifying the formpointer of the
destination string (typically using the BUMP instruction)
beyond the first matching occurrence, and executing the SCAN
instruction again.

Example:
VAR LL FP Contents
FILE 11 1 PAYROLL/TXT ETX
SEARCH 3 3 AB/D ETX

SCAN SEARCH IN FILE
The following variable(s) will be changed:

FILE 11 8 PAYROLL/TXT - ETX
The following flag(s) will be set: EQUAL

7-40 DATABUS COMPILER

Example:

TARGET 10 5 12ABCDEFG345 ETX
SEARCH 4 2 ABCD ETX

SCAN SEARCH IN TARGET

The following variable(s) will be changed: None
The following flag(s) will be set: None

7.22 EDIT

The EDIT instruction provides a powerful tool for formatting
of variables. The instruction may have one of the following
general formats:

1) <label> EDIT <ssvar><prep><dsvar>
2) <label> = EDIT <{snvar><prep><dsvar>

where: <label> is an execution label (see section 2.).
<ssvar> is the source string variable.
<prep> 1is a preposition.
<dsvar> is the destination string variable.
<{snvar> 1is the source numeric variable.
Programming considerations:
-- <label> is optional.

-~ The source variable is not modified by the operation.

—-- The source variable is edited into the destination string
variable.

—-— The editing criteria (which constitute the edit mask) are
specified by the initial value of the destination variable.

-— The results are placed in the destination variable, destroying
the edit mask.

-- If format (1) is used, the logical string of the source string
variable is used as the source operand in the EDIT operation.

-- If format (2) is used, the physical string of the numeric
variable is used as the source operand in the EDIT operation.

-- The logical string of the destination variable is used to

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-41

specify the mask and to hold the result for the operation.

If either operand is null, the instruction is not finished and
the EOS flag is set.

The formpointer and logical length pointer of the destination
string are not changed by the operation.

The EDITing process is a left-to-right translation of the
source characters into the mask. Alignment of decimal points
is not done.

The logical length of the mask string determines the length of
the EDIT operation. The instruction terminates when the last
mask character is processed.

If, after the EDIT process terminates, characters from the
source operand remain unused, the EO0OS flag is set.

If the source operana string is exhausted before the EDIT
operation is finished (there are still more mask characters to
process), the source is treated as if it were padded on the
right with blanks if it is a character string, and treated as
if it were padded on the right with zeros if it is a numeric
string.

If any EDIT errors are detected, such as an alphabetic source
character when the mask character requires a numeric source
character (a source character of 'A' with a mask character of
'9', for example), the OVER flag is set. However, the source
character is moved into the destination variable.

The LESS flag is set if a dollar sign overstores a non-zero
character in the result.

The result of the EDIT is dependent on the size and nature of
the source string; leading blanks and zeros do affect the
result.

Decimal points in a source numeric variable are ignored.

A minus sign in a numeric source variable is always treated as
both a negative sign indicator and as a leading zero (in the
same sense as a negative—-overpunched zero). In other words, a
minus sign in the source variable takes up 2 positions in the
destination variable.

Leading blanks in a numeric source variable are treated as

7-42 DATABUS COMPILER

Zeros.

- If the source variable is a character string variable, the
following mask characters are applicable:

A - Only a letter of the alphabet or a space may occupy this
character position, both upper and lower case are
accepted. :

B - A space is inserted into this character position; no
character position of the source string is used.

X - Any ASCII character may occupy this position.
9 - The character in this position must be a digit (0-9).

0 - A zero (0) is inserted into this character position; no
character position of the source is used.

- If the source variable is a character string variable, any
character found in the mask which is not one of the above
applicable mask characters (a hyphen or a slash, for example)
is simply inserted into the output string.

- If the source variable is a numeric variable, the following
mask characters are applicable:

B

A space is inserted into this character position; no
character position of the source string is used.

9 - The character in this position must be a digit (0-9).

0 - A zero (0) is inserted into this character position; no
character position of the source is used.

Z - Each letter "Z" in the destination variable represents a
position in which leading zero suppress editing may be
used to cause only leftmost leading zeros to be replaced
by blanks. Zero suppression terminates upon receiving
from the source variable a non-zero numeric or non-blank .
alphanumeric character other than the currency symbol or
sign request ("+" or "-").

, — A comma is inserted into this position unless zero
suppression or zero replacement occurs; no character
position of the source is used.

. — A decimal point (or period) is inserted into this

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-43

position; no character position of the source is used.
This cancels zero suppression and forces the generation of
the sign or currency symbol (or both) before the decimal
point if they were requested.

+ - This indicates that a sign (either "+" or "-") should be
generated. This character must appear only in the
rightmost or leftmost character position of the mask.

- - A minus sign should be generated if appropriate, otherwise
the position is filled with a blank. This character must
appear only in the rightmost or leftmost character
position of the mask.

$ - This is similar to zero suppress editing. All affected
zeros are replaced by blanks except the last affected
zero, which is replaced by a '$'. A dollar sign is always
placed into the result field if this mask character 1is
specified, as long as there is at least one character
after the first dollar sign in the mask. If there are no
leading zeros in the result, then a dollar sign overstores
the first character, and the LESS flag is set.

* — Each "*" (check protect symbol) represents zero
replacement editing. Each affected "0" 1s replaced with
an "*"_, The "*" may only be used to cause the leftmost
leading zeros to be replaced. Zero replacement terminates
upon receiving from the source variable the first non-zero
numer ic character or the first non-blank alphanumeric
character other than the currency symbol or sign request
("+n or ll_ll) .

If the source variable is a numeric string variable, any
character found in the mask which is not one of the above
applicable mask characters (a hyphen or a slash, for example)
is simply inserted into the output string.

7-44 DATABUS COMPILER

Example:

VAR LL FP Contents
MASK 9 1 00XXBBXXX ETX
A 5 1 ABCDE ETX

EDIT A TO MASK

The following variable(s) will be changed:
MASK 9 1 OOAB__CDE ETX
The following flag(s) will be set: None

Example:
MASK 8 1 000AAAAA ETX
PIG 5 1 ABCD4 ETX

EDIT PIG TO MASK

The following variable(s) will be changed:
MASK 8 1 000ABCD4 ETX
The following flag(s) will be set: OVER

Example:
OUTDATE 11 3 ZZ99BAAAB99Z7Z ETX
DATE 7 1 27FEB79 ETX

EDIT DATE TO OUTDATE

The following variable(s) will be changed:
OUTDATE 11 3 ZZ27_FEB_79ZZ ETX
The following flag(s) will be set: None

Example:
MASK 11 1 999-99-9999 ETX
SSN 11 3 AA456204520BB ETX

EDIT SSN TO MASK
The following variable(s) will be changed:

MASK 11 1 456-20-4520 ETX
The following flag(s) will he set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

45

Example:

MASK 8 1 29/99/99 ETX
DATER 0200 022079 ETX

EDIT DATER TO MASK
The following variable(s) will be changed:

MASK 8 1 2/20/79 ETX
The following flag(s) will be set: None

Example:
RESULT 6 1 99,999 ETX
SRCVAR 0200 12345 ETX

EDIT SRCVAR TO RESULT

The following variable(s) will be changed:
RESULT 5 1 12,345 ETX
The following flag(s) will be set: None

Example:
RESULT 5 1 99,999 ETX
RESVAR 0200 12345 ETX

EDIT RESVAR TO RESULT

The following variable(s) will be changed:
RESULT 5 1 00,012 ETX
The following flag(s) will be set: EOS

Example:
MASK 8 1 +9999.99 ETX
COW 0200 -5555.55 ETX

EDIT COW TO MASK
The following variable(s) will be changed:

MASK 8 1 -0555.55 ETX
The following flag(s) will be set: EOS

7-46 DATABUS COMPILER

Example:

MASK 10 1 999999.99- ETX
CHICKEN 0200 1234.56 ETX

EDIT CHICKEN TO MASK
The following variable(s) will be changed:

MASK 10 1 123456.00 ETX
The following flag(s) will be set: None

gxample:
MASK 10 1 999999.99- ETX
VAR1 0200 ~-1234.56 ETX

EDIT VAR1 TO MASK

The following variable(s) will be changed:
MASK 10 1 012345.60- ETX
The following flag(s) will be set: None

Example:
MASK 7 1 $999.99 ETX
CAT 0200 -123.45 ETX

EDIT CAT TO MASK

The following variable(s) will be changed:
MASK 7 1 $123.45 ETX
The following flag(s) will be set: None

Example:
MASK 8 1 -$999.99 ETX
NUMBER1 0200 -123.45 ETX

EDIT NUMBER1 TO MASK
The following variable(s) will be changed:

MASK 8 1 -$123.45 ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

47

Example:

MASK 9 1 $99999.99 ETX
COUNTER 0200 .12 ETX

EDIT COUNTER TO MASK
The following variable(s) will be changed:

MASK 9 1 $20000.00 ETX
The following flag(s) will be set: LESS

Example:
MASK 8 1 $999.99 ETX
FILLIT 0200 123.45 ETX

EDIT FILLIT TO MASK

The following variable(s) will be changed:
MASK 8 1 $234.50 ETX
The following flag(s) will be set: LESS

Example:
MASK 7 1 227272.722 ETX
ZERQS 0200 0000.00 ETX

EDIT ZEROS TO MASK

The following variable(s) will be changed:
MASK 7 1 .00 ETX
The following flag(s) will be set: None

Example:
MASK 7 1 *%%% 09 ETX
RIGHT 0200 0000.00 ETX

EDIT RIGHT TO MASK
The following variable(s) will be changed:

MASK 7 1 **%* 00 ETX
The following flag(s) will be set: None

7-48 DATABUS COMPILER

Example:

MASK 7 1 27299.99 ETX
THING 0200 ©~ 0000.00 ETX

EDIT THING TO MASK
The following variable(s) will be changed:

MASK 7 1 00.00 ETX
The following flag(s) will be set: None

Example:
MASK 9 1 Z,222.72Z+ ETX
STRING 0200 1234.556 ETX

EDIT STRING TO MASK

The following variable(s) will be changed:
MASK 9 1 1,234.56+ ETX
The following flag(s) will be set: None

Example:
MASK 9 1 * , k%% 90+ ETX
MAPPER 0200 -123.45 ETX

EDIT MAPPER TO MASK

The following variable(s) will be changed:
MASK 9 1 *%123.45- ETX
The following flag(s) will be set: None

Example:
MASK 9 1 * kkk Kok ETX
DOG 0200 -1234.56] ETX

EDIT DOG TO MASK
The following variable(s) will be changed:

MASK 9 1 *%]123.45- ETX
The following flag(s) will be set: EOS

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

Example:

ANSWER 11 1 $$$,5$%$.99- ETX
SALARY 0200 25000 ETX

EDIT SALARY TO ANSWER
The following variable(s) will be changed:

ANSWER 11 1 $25,000.00 ETX
The following flag(s) will be set: None

Example:
ANSWER 11 1 $55,5$5.99- ETX
SALARY!1 0200 25000 ' ETX

EDIT SALARY1l TO ANSWER

The following variable(s) will be changed:
ANSWER 11 1 $50,000.00* ETX
The following flag(s) will be set: LESS

Example:
FINI 11 1 $$$,5$5$.99- ETX
TAX 0200 -2562 ETX

EDIT TAX TO FINI

The following variable(s) will be changed:
FINI 11 1 $25,620.00- ETX
The following flag(s) will be set: None

Example:
MASK 14 1 $2,222,222.272- ETX
XDATA 0200 -0012345.87 ETX

EDIT XDATA TO MASK

The following variable(s) will Dbe chahged:
MASK 14 1 $12,345.57- ETX

The following flag(s) will be set: None

7-50 DATABUS COMPILER

Example:

MASK 17 1 $B* ,k*%k *xk **BB- ETX
YDATA 0200 -12345.57 ETX

EDIT ¥YDATA TO MASK
The following wvariable(s) will be changed:

MASK 17 1 _$1,234,567.00 - ETX
The following flag(s) will be set: None

Example:
MASK 17 1 $B* k%% *xx* *x*BR- ETX
REST 0200 -0012345.67 ETX

EDIT REST TO MASK
The following variable(s) will be changed:

MASK 17 1 _$***12,345.67 - ETX
The following flag(s) will be set: None

7.23 OR

OR is a bit manipulation instruction. It takes two

characters, one from the source operand and one from the
destination operand, performs a logical OR between then,

and

stores the result over the destination character. The instruction

has the following format:

1) <label> OR <ssvar><prep><dsvar>
2) <label> OR <char><prep><dsvar>
3) <label> OR <occ><prep><dsvar>

where: <label> is an execution 1ébel.
<ssvar> 1is a string variable.

{prep> is a preposition.
<dsvar> 1is the destination string variable.
<char> is a one character string literal.

<occ> is an octal control character.
Programming Considerations:
—-— <label> is optional.

—-— The source string is not modified.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

The character used from the destination variable is the
character under the formpointer.

The result of the operation is ﬁlaced over the formpointed
character of the destination variable.

When using format (1) above, the character under the
formpointer of the source variable takes part in the
operation.

If either string is null, the EOS flag is set.

If the result of the operation is zero, the EQUAL flag is set.
The result of the operation on each character is determined by
the truth table below applied to the low order seven bits of

the two operands. Note that the left-most (high order) bit of
each operand does not take part in the operation:

0 OR 0 => 0
0 OR 1 > 1
1 OR 0 -> 1
1 OR 1 -> 1

The results of this operation can be any character below octal
0200 (decimal 128). Some of the results could be
non-alphabetic characters and may happen to be control
characters used in DISPLAY, PRINT, or WRITE statements. The
programmer should be wary of this possibility, should the
destination variables be used in DISPLAY, PRINT, or WRITE
statements.

Example:
VAR LL FP Contents
CHAR 1 1 A ETX

OR 002 TO CHAR

The result of the operation is "C" (the bit value of "A" is
01000001, the bit value of 002 is 00000010, the result is 01000011
which 1is "C").

7-52 DATABUS COMPILER

Example:
CAT 5 2 BCDEF ETX
OR "D" TO CAT

The result of the operation is "G" (the bhit value of "C" is
01000011, the bit value of "D" is 01000100, the result is 01000111
which is "G"). CAT will contain "BGDEF" upon completion of this
instruction.

7.24 AND

AND is a bit manipulation instruction that works similar to
OR except that it performs a logical AND operation between the
source and destination operands. The instruction has the
following format:

1) <label> AND <{ssvar><prep><dsvar>
2) <label> AND {char><prep><dsvar>
3) <label> AND - Locc>LKprep><dsvar>

where: <label> 1is an execution label.
<{ssvar> 1is a string variable.

<prep> is a preposition.

<dsvar> 1is the destination string variable.
<char> is a one character string literal.
<occ> is an octal control character.

Programming Considerations:
—-— <label> is optional.
~-— The source string is not modified.

-— The character used from the destination variable is the
character under the formpointer.

-- The result of the operation is placed over the formpointed
character of the destination variable.

—-— When using format (1) above, the character under the
formpointer of the source wvariable takes part in the
operation.

-- If either string is null, the EO0S flag is set.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-53

If the result of the operation is zero, the EQUAL flag is set.

The result of the operation on each character is determined by
the truth table below applied to the low order seven bits of
the two operands. Note that the left-most (high order) bit of
each operand does not take part in the operation:

0O AND O -> 0
0 AND 1 -> O
1 AND 0O -> O
1 AND 1 -> 1

The results of this operation can be any character below octal
0200 (decimal 128). Some of the results could be
non—-alphabetic characters and may happen to be control
characters used in DISPLAY, PRINT, or WRITE statements. The
programmer should be wary of this possibility, should the
destination variables be used in DISPLAY, PRINT, or WRITE
statements.

Example:
VAR LL FP Contents
CHAR 1 1 C ETX

AND "A" .TO CHAR

The result in CHAR would be "A" (the bit value of "A"™ is 01000001,
the bit value of "C" is 01000011, the result is 01000001 which is

"A") .
Example:
VAR LP FP Contents
CHAR 4 2 AZDG ETX

AND 0157 TO CHAR

The result in CHAR would be "J" (the bit value of "Z" 1is 01011010,

the bit value of 0157 is 01101111, the result is 01001010 which is
"J"). CHAR contains AJDG upon completion of the operation.

7-54 DATABUS COMPILER

7.25 XOR

XOR is a bit manipulation instruction that works similar to
OR except that it performs a logical exclusive OR between the
source and destination operands. The instruction has the
following format:

1) <label> XOR <ssvar><prep><dsvar>
2) <label> XOR <char><prep><dsvar>
3) <label> XOR <occ><prep><dsvar>

where: <label> 1is an execution label.
<{ssvar> 1is a string variable.

<{prep> is a preposition.

<dsvar> 1is the destination string variable.
<char> is a one character string literal.
<occ> is an octal control character.

Programming Considerations:
-—- <label> is optional.
-— The source string is not modified.

-— The character of the destination variable used is the
character under the formpointer.

—— The result of the operation is placed over the formpointed
character of the destination variable.

-— When using format (1) above, the character under the
formpointer of the source variable takes part in the
operation.

—— If either string is null, the EO0S flag is set.

—— If the result of the operation is zero, the EQUAL flag is set.

-- The result of the operation on each character is determined by
the truth table below applied to the low order seven bits of

the two operands. Note that the left-most (high order) bit of
each operand does not take part in the operation:

0 XOR- 0 -> 0
0 XOR 1 -> 1
1 XOR 0 -> 1
1 XOR 1 -> O

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-55

—— The results of this operation can be any character below octal
0200 (decimal 128). Some of the results could be
non-alphabetic characters and may happen to be control
characters used in DISPLAY, PRINT, or WRITE statements. The
programmer should be wary of this possibility, should the
destination variables be used in DISPLAY, PRINT, or WRITE
statements.

Example:
VAR LL FP Contents
CHAR1 1 1 A ETX
CHAR2 1 1 B ETX

XOR CHAR1 TO CHAR2

After this operation, the value in CHAR2 will be 003 (the bit
value of "A"™ is 01000001, the bit value of "B" is 01000010, the
result is 00000011).

Example:
FIRST 4 1 MAPS ETX
SECOND 6 3 XYZXYZ ETX

XOR SECOND TO FIRST

After this operation, the Z in SECOND will become a 027 (the bit
value of "M" is 01001101, the bit value of "Z" is 01011010, the
result is 00010111).

7.26 NOT
NOT is a bit manipulation instruction that performs a logical

NOT operation on the source operand and puts the result in the
destination operand. The instruction has the following format:

1) <label> NOT <ssvar><prep><dsvar>
2) <label> NOT <char><prep><dsvar>

3) <label> NOT <occ><prep><dsvar>

where: <label> 1is an execution label.
{ssvar> 1s a string variable.
<prep> is a preposition.
<dsvar> 1is the destination string variable.

7-56 DATABUS COMPILER

<char> is a one character string literal.
<occ> is an octal control character.

Programming Considerations:
—-— <Klabel> is optional.
—-— The source string is not modified.

-— The character replaced in the destination variable is the
character under the formpointer.

-— When using format (1) above, the character under the
formpointer of the source variable takes part in the
operation.

-—- If either string is null, the EOS flag is set.
-— If the result of the operation is zero, the EQUAL flag is set.

-—- The result of the operation is determined by the truth table
below applied to the low order seven bits of the source
operand. Note that the left-most (high order) bit of the
operand does not take part in the operation:

NOT O -> 1
NOT 1 -> O

~~ The results of this operation can be any character below octal
0200 (decimal 128). Some of the results could be
non-alphabetic characters and may happen to be control
characters used in DISPLAY, PRINT, or WRITE statements. The
programmer should be wary of this possibility, should the
destination variables be used in DISPLAY, PRINT, or WRITE
statements.

Example:
VAR LL FP Contents
CHAR 1 1 A ETX
NOT 0142 TO CHAR
The value of CHAR after this operation will be 035 (the bit value

of 0142 is 01100010, the NOT of this is 00011101, which is 035).
Note that the high order bit did not take part in the operation.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-57

Example:
CHAR 1 1 B ' ETX

NOT "%" TO CHAR

s

The value of CHAR after this operation will be "z" (0132) (the bit
value of "g" is 00100101, the NOT of this is 01011010, which is

"ZII) .

7-58 DATABUS COMPILER

CHAPTER 8. ARITHMETIC INSTRUCTIONS

The arithmetic instructions are used to perform the various
arithmetic operations upon DATABUS operands. Generally all
arithmetic instructions have the following form:

<label> <oper> <soper><prep><doper>

where: <label> is an execution label.
<oper> 1is the DATABUS arithmetic operation.
<soper> is the source operand.
<prep> 1is a valid preposition.
{doper> is the destination operand.

The DATABUS operation is performed using the source and
destination operands. The result of the operation is generally
transferred to the destination operand. The content of the source
operand is never modified. There are three condition flags set by
the arithmetic instructions: OVER, LESS, and ZERO (the mnemonic
EQUAL is also acceptable). These flags are set to true or false
depending on the results of the instructions. Generally the
following meanings apply:

OVER the result does not fit into the destination field.
LESS the result is less than zero.

ZERO the result is equal to zero.

EQUAL the result is equal to zero.

When the result causes the OVER flag to be set, the LESS and
ZERO flags should not be relied on.

8.1 ADD

The ADD instruction causes the content of the source operand
to be added to the content of the destination operand. The result
(sum) is placed in the destination operand. This instruction may
have one of the following general formats:

1) <label> ADD <snvar><prep><dnvar>
2) <label> ADD <nlit><prep><dnvar>

where: <label> 1is an execution label (see section 2.).

<snvar> is the source numeric variable.
<prep> 1is a preposition.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-1

<dnvar> is the destination numeric variable.

<nlit>

is a numeric literal.

Programming Considerations:

-- <label> is optional.

—-— <Knlit> must be a valid numeric literal.

-— The source numeric operand is never modified.

-— <dnvar> contains the result (sum) of the ADD.

-- The flags OVER, LESS, ZERO (or EQUAL) are set appropriately.

—-— The rounding and truncation rules are applicable (see section

2.7).

—-— The contents of the source field are rounded to the same
number of places to the right of the decimal point (if any) as
the destination field before the operation takes place.

Example:

X
Y

Example:

CAT

FORM "123.45"
FORM "267.22"
ADD X TO Y

Y will contain 390.67
The following flag(s) will be set:

FORM "100.50"
ADD ".005" TO CAT

CAT will contain 100.51
The following flag(s) will be set:

DATABUS COMPILER

None

None

Example:

NUM FORM "-245.0000"
NUM2 FORM "800.0"
ADD NUM TO NUM2

NUM2 will contain 555.0
The following flag will be set: None

Example:
N FORM "00.0"
ADD "100.00" TO N

N will contain 00.0
The following flag(s) will be set: OVER
The LESS, ZERO flags should not be relied on.

8.2 SUBTRACT (SUB)

The SUB instruction (the compiler also accepts a mnemonic of
SUBTRACT) is used to perform a subtract operation. The contents
of the source numeric operand (minuend) is subtracted from the
destination numeric operand (subtrahend) and the result
(difference) is placed in the destination numeric operand. This
instruction way have one of the following general formats:

1) <label> SUB . <snvar><prep><dnvar>
2) <label> SUBTRACT <snvar><prep><dnvar>
3) <label> SUB <nlit><prep><dnvar>

4) <label> SUBTRACT <nlitd><prep><dnvar>
where: <label> is an execution label.
<snvar> is the source numeric variable.
<prep> 1is a preposition.
<dnvar> is the destination numeric variable.
<nlit> 1is a numeric literal.
Programming Considerations:
~-- <Klabel> is optional.

—-— <Knlit> must be a valid numeric literal.

-- The flags OVER, LESS, ZERO (or EQUAL) are applicable,

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-3

—-— The contents of the source operand 1is never modified.

—-— The destination operand contains the result (difference).
-—- The truncation and rounding rules apply.

-— The contents of the source field are rounded to the same

number of places to the right of the decimal point (if any) as
the destination field before the operation takes place.

Example:
A FORM "123.45"
B FORM "-20.45"
SUB B FROM A
A will contain 143.90
The following flags will be set: None
Example:
Cl FORM "5.60"
C2 FORM "1.665"
SUB C2 FROM Cl1
Cl will contain 3.93
The following flags will be set: None
Example:
NUMBR FORM . "—-345"
SUB "700.5" FROM NUMBR

NUMBR will contain 1045
The following flag will be set: OVER
The LESS, ZERO flags should not be relied on.

8-4 DATABUS COMPILER

Example:

Y1 FORM " 10.00"
Y2 FORM " 20.005"
SUB Y2 FROM Y1

Y1l will contain -10.01
The following flags will be set: LESS

8.3 MULTIPLY (MULT)

The MULT instruction (the compiler also accepts a mnemonic of
MULTIPLY) causes the content of the source numeric operand
(multiplicand) to be multiplied by the contents of the destination
numeric operand (multiplier). The result (product) is placed in
the destination numeric operand. This instruction may have one of
the following general formats:

1) <label> MULT <snvar><prep><dnvar>
2) <label> MULTIPLY <snvar><prep><dnvar>
3) <label> MULT <nlit><prep><dnvar>

4) <label> MULTIPLY <nlit><prep><dnvar>
where: <label> is an execution label.
<snvar> is the source numeric variable.
{prep> 1is a preposition.
<dnvar> is the destination numeric variable.
<nlit> 1is a numeric literal.
Programming Considerations:
-— The execution label <label> is optional.
-- <nlit> must be a valid numeric literal.
-- The flags OVER, LESS, ZERO (or EQUAL) are applicable.
~—— The source numeric operand is not modified.
—-— The destination numeric operand contains the result (product).
-— The sum of the number of -characters in the source operand and
the destination operand must not exceed 31. The compiler does

not check this limit. If it is exceeded the interpreter
produces erroneous results.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-5

—— The truncation and rounding rules are applicable.

Example:

M1 FORM "010"
M2 FORM "012"
MULT M1 BY M2

M2 will contain 120
The following flag(s) will be set: None

Example:
X123 FORM "12000.00"
MULT "1.1" BY X123
X123 will contain 13200.00
The following flag.s) will be set: None
Example:
NEG FORM "-10.5"

MULT "10" BY NEG
NEG will contain 105.0

The following flag will be set: OVER
The LESS, ZERO flags should not be relied on.

8.4 DIVIDE (DIV)

The DIV instruction (the compiler also accepts a mnemonic of
DIVIDE) causes the content of the destination operand (dividend)
to be divided by the content of the source operand (divisor). The
result (quotient) is placed in the destination variable. This
instruction may have one of the following general formats:

1) <label> DIV <snvar><prep><dnvar>
2) <label> DIVIDE <snvar><prep><dnvar>
3) <label> DIV <nlit><prep><dnvar>
4) <label> DIVIDE <nlit><prep><dnvar>

where: <label> is an execution label.
<snvar> is the source numeric variable.
<prep> 1is a preposition.

8-6 DATABUS COMPILER

<dnvar> is the destination numeric variable.
<nlit> 1is a numeric literal.

Programming Considerations:

<label> is optional.
<nlit> must be a valid numeric literal.

The contents of the source numeric operand (divisor) is not
changed.

The éontents of the destination numeric variable <dnvar>
contains the result (quotient).

If the content of the source numeric operand is zero, then the
OVER flag is set and the content of the destination numeric
variable is determined by one of the following:

1) 1If the source numeric operand (divisor) 1s an integer
zero (contains no digits to the right of the decimal
point) then the destination numeric variable
(quotient) is set to the largest possible number that
can be represented in the destination numeric
variable.

2) If the source numeric operand (divisor) is non-integer
zero, then the destination numeric variable (quotient)
is set to zero.

If the destination numeric variable (quotient) is not large
enough to contain the quotient, the OVER flag is set and the
value of the destination numeric variable is indeterminate.
There is a restriction on the length of division operands.
The following formula is used to determine acceptable lengths

(Decimal points are not counted as characters when using the
following formula).

N=2*NR+NJ+NL

where: NR is the number of digits after the decimal point
in the divisor.

NU is the number of characters in the dividend.

NL is the number of characters in the divisor.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-7

"#" represents multiplication.

N computed by the above formula must not exceed 31. The
compiler does not check this limit. If it is exceeded the
interpreter produces erroneous results.

-— The flags OVER, LESS, ZERO (or EQUAL) are applicable.

—-— The truncation and rounding rules apply.

Example:

ONEH
TEN

Example:

ZERO

Example:

ZERO
N

FORM "100.00"
FORM "10"
DIV TEN INTO ONEH

ONEH contains 10.00
The following flag(s) are set: None

~ FORM "000 "
FORM "155.00"
DIV = ZERO INTO N

N will contain 999.99
The following flag will be set: OVER
The LESS, ZERO flags should not be relied on.

FORM "00.00"

FORM "155.00"

DIV ZERO INTO N
N will contain .00

the following flag will be set: OVER
The LESS, ZERO flags should not be relied on.

DATABUS COMPILER

Example:

N1 FORM "100"
D1V "0.1" INTO N1
Nl will contain 0

The following flag will be set: OVER
The LESS, ZERO flags should not be relied on.
8.5 MOVE
The MOVE instruction causes the content of the source numeric
operand to replace the content of the destination numeric operand.

This instruction may have one of the following general formats:

1) <label> MOVE <snvar><prep><dnvar>
2) <label> MOVE <nlit><prep><dnvar>

where: <label> is an execution label.
<{snvar> is the source numeric variable.
<prep> 1is a preposition. ‘
<dnvar> 1s the destination numeric variable.
<nlit> 1is a numeric literal.

Programming Considerations:

-— <label> is optional.

-— <nlit> must be a valid numeric literal.

-—- The contents of the source numeric operand is never modified.

-— The destination numeric variable contains the result of the
MOVE operation.

-—- The OVER, LESS, ZERO (or EQUAL) flags are applicable.

—-— The truncation and rounding rules are applicable.

|

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-9

Example:

SOURCE FORM "12345"
DESTIN FORM 6.2
MOVE SOURCE TO DESTIN

DESTIN will contain 12345.00
The following flag(s) will be set: None

Example:

D1 FORM 4.2
MOVE "12345" TO D1

D1 will contain 2345.00

The following flag will be set: OVER

The LESS, ZERO flags should not be relied on.
Example:

S FORM "12345.51"
D FORM 99999

MOVE S TO D

D will contain 12345
The following flag(s) will be set: None

Example:
N FORM "996,99"

MOVE “0.0" TO N

N will contain .00

The following flag(s) will be set: ZERO
8.6 COMPARE

The COMPARE instruction is used to compare two numeric

quantities. This instruction may have one of the following

general formats:

1) <label> COMPARE <snvar><prep><dnvar>
2) <labhel> COMPARE <nlit><prep><dnvar>

where: <label> is an execution label.

8-10 DATABUS COMPILER

<snvar> is the source numeric variable.
<prep> 1is a preposition.

<dnvar> is the destination numeric variable.
<nlit> 1is a numeric literal.

Programming Considerations:

<label> is optional.
<nlit> is a valid numeric literal.
The contents of the source numeric operand are never modified.

The contents of the destination numeric variable are never
modified.

The LESS, OVER and ZERO (or EQUAL) condition flags are set
exactly as if a SUBTRACT instruction had been executed instead
of a COMPARE.

Rounding takes place when the COMPARE instruction 1is executed.
The contents of the source field are rounded to the same

number of places to the right of the decimal point (if any) as
the destination field before the operation takes place.

Example:
ONEH FORM "100.00"
COMPARE "100" TO ONEH
The following flag(s) will be set: ZERO (ZQUAL)
Example:
op1 FORM "0100.0"
op2 FORM "090"

COMPARE OP1 TO OP2

The following flag(s) will be set: LESS

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-11

Example:
CAT FORM "ggo"
COMPARE "-1" TO CAT

The following flag(s) will be set: OVER
The LESS, ZERO flags should not be relied on.

Example:
F FORM "-99"
COMPARE "1" TO F
Thebfollowing flag(s) will be set: OVER
The LESS, ZERO flags should not be relied on.
Example:
A FORM "456"
B FORM it
COMPARE A TO B
The following flag(s) will be set: OVER
The LESS, ZERO flags should not be relied on.
8.7 LOAD

The LOAD instruction selects (using an index for selection) a
numeric variable from a list and performs a MOVE operation on the
selected numeric variable to the destination numeric variable.
This instruction may have one of the following general formats:

<label> LOAD <dnvar><prep><index><prep><list>

where: <label> is execution label.
<dnvar> is the destination numeric variable.
<prep> 1is a preposition.
<index> 1is a numeric variable which specifies which item
of the available list is to be selected.
<list> 1is a list of numeric variables.

Programming Considerations: -

8-12 DATABUS COMPILER

<label> is optional.

<dnvar> contains the result of the .LOAD instruction after
execution.

<index> is a numeric variable which specifies which item from
the available list should be selected. If the index is not an
integer, the index is truncated, and the integer portion is
used for list selection. An index numeric variable of one (1)
specifies the first item in the list and an index value of n
specifies the nth item in the list.

If the index contains a number which does not correspond to
one of the list items, then the LOAD instruction 1s.ignored
and execution continues with the next DATABUS instruction.

There must not be more than 255 numeric variables in the 1list.

The variables contained in <list> are separated by a comnma

(s) -

<list> may be continued on the following line by use of the
colon (:) in place of the comma after the last variable on the
line to be continued.

The <index> is not modified.

None of the <list> items are modified.

The OVER, LESS, ZERO (or EQUAL) flags are applicable.

The truncation and rounding rules are used.

Example:
DESTIN FORM "9999™
INDEX FORM n2n
X1 FORM "1111"
X2 FORM 22220
X3 FORM ~ "3333"

LOAD DESTIN FROM INDEX OF X1,X2,X3

DESTIN will contain 2222
The following flag(s) will be set: None

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-13

Example:

4 FORM 3.1
I FORM "1.6"
s1 FORM "-11.36"
S2 FORM "222"
S3 FORM "333"
LOAD Y FROM I OF S1,S2:
S3

Y will contain -11.4
The following flag(s) will be set: LESS

8.8 STORE

The STORE instruction selects (using an index for selection)
a numeric variable from a list and performs a MOVE operation from
the source numeric operand to the selected destination numeric
variable. This instruction may have one.of the following general
formats: :

1) <label> STORE <snvar><prep><index><prep><list>
2) <label> STORE <nlit><prep><index><prep><list>

where: <label> is an execution label.

<{snvar> is the source numeric variable.

<index> is the index numeric variable which specifies
which item from the available list is to be
selected.

<prep> 1is a preposition.

<list> 1is a list of numeric variables.

<nlit> 1is numeric literal.

Programming Considerations:

-—- <Klabel> is optional.

--— <Knlit> must be a valid numeric literal.

-- <dnvar> contains the result of the STORE operation.

~- Kindex> is a numeric variable-which specifies which item from
the availabkle list should be selected. If the index is not an
integer, the index is truncated, and the integer portion is

used for list selection. An index numeric variable of one (1)
specifies the first item in the list and an index value of n

8-14 DATABUS COMPILER

specifies the nth item in the list.

-~ If the index contains a number which does not correspond to
one of the list items, then the STORE instruction is ignored
and execution continues with the next DATABUS instruction.

—— There must not be more than 255 numeric variables in the list.

-- The variables contained in <list> are separated by a comma

(r) .

—-- <list> may be continued on the following line by use of the
colon (:) in place of the comma after the last variable on the
line to be continued.

—— The <index> is never modified.

—-— Only the selected numeric variable from the <list> is
modified.

—-— The OVER, LESS, ZERO (or EQUAL) flags are applicable.

—— The truncation and rounding rules apply.

Example:
SOURCE FORM "999"
INDEX FORM "1.9"
D1 FORM "111t
D2 FORM "222"
D3 FORM "333"

STORE SOURCE INTO INDEX OF D1,D2:
D3

D1 will contain 999. The other variables D2 and

D3 will be unchanged.
The following flag(s) will be set: None

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-15

Example:

SOURCE FORM "1234"
I FORM "4

D1 FORM 4

D2 FORM 4

STORE SOURCE INTO I OF Di,D2

The contents of neither D1 nor D2 is changed
because the index is out of range.
The following flag(s) will be set: None

8.9 CHECK1ll (CKl1l)

The CHECK1ll (the compiler also accepts a mnemonic of CK1l1l)
instruction performs a modulo 11 check digit calculation on two
string variables. This instruction may have one of the following

general formats:

1) <label> CHECK1ll <svarl><prep><svar2>

2) <label> CK1l1 <svarl><prep><svar2>
3) <label> CHECK11 <svarl><prep><slit>
4) <label> CK11 <svarl><prep><slit>

where: <label> is an execution label.
<svarl> is a string variable called the base string which
contains the base number and the check digit.
<prep> 1is a preposition.
{svar2> is a string variable which contains the weighting
factor.
<slit> is a string literal.

The following algorithm is used to perform the CHECKI11
instruction.

Let the length N of the base string be defined as
N=LL-FP+1 where:

LL=logical length pointer of base string.
FP=formpointer of base string.
The base string is composed of two parts:

1) The base number which is the first n digits
(n=N-1) of the base string.

8-16 DATABUS COMPILER

2). The check digit which is the digit following the
base number.

Let the individual digits of the base number be b(l),
b(2),...,b{(n) where b(l) is the formpointed left most
digit, and b(n) is the right most digit of the base
number.

Let the individual digits of the weighting factor be w(l),
w(2)...,w(n) with w(l) the formpointed left most digit and
w(n) is the nth digit of the weighting factor.

The following sum S is formed.
S=b(1l)*w(l)+b(2)*w(2)+...+b(n) *w(n)
Then the computed check digit C is:

C=11-R(S/11) where R(S/11]) is the remainder from the
division S/11.

The computed check digit C is compared to the check digit
supplied in the base string. If they are equal, the EQUAL
flag is set, otherwise the OVER flag is set and the EQUAL
flag cleared. ‘

Programming Considerations:

<label> is optional.
Neither of the variables <svarl)> or <svar2> is modified.

<svarl>, <svar2>, and <slit> when used must contain digits
only. :

If the length (LL-FP+1l) of the weighting factor is not equal
to the length n of the base number, then the OVER flag is set
and the DATABUS instruction is not finished.

A computed check digit with a value of 10 or greater cannot be
used and causes the OVER flag to be set.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-17

Example:

BASSTR
WEIGHT

Example:

BASSTR
WEIGHT

Example:

Example:

INIT "12343"
INIT "5432"

CHECK11l BASSTR BY WEIGHT

The following flag(s) are set: ZERO (EQUAL)

INIT "12342"
INIT "654"

RESET BASSTR TO 3
RESET WEIGHT TO 2
CHECK11l BASSTR BY WEIGHT

The following flag(s) are set: ZERO (EQUAL)

INIT "141599"
INIT "41"

SETLPTR B TO 4
RESET B TO 2
CHECK1l B BY W

The following flag(s) are set: ZERO (EQUAL)

INIT "141699"
INIT "41"

SETLPTR B TO 4

- RESET B TO 2

CHECK1l B BY W

The following flag(s) are set: OVER

8-18 DATABUS COMPILER

8.10 CHECK10 (CK1l0)

The CHECK10 (the compiler also accepts a mnemonic of CK10)
instruction performs a modulo 10 check digit calculation on two
string variables. This instruction may have one of the following
general formats:

1)
2)
3)
4)

where:

<label> CHECKI10 <svarl><prep><svar2>

<label> CX10 <svarl><prep><svar2>
<label> CHECKI1O0 <svarl><prep><slit>
<label> CX10 <svarl><prep><slit>

<label> is an execution label. .

<svarl> is a string variable called the base string which
contains the base number and the check digit.

<prep> 1s a preposition.

<svar2> is a string variable which contains the weighting
factor.

<slit> 1is a string literal which contains the weighting
factor.

The following algorithm is used to perform the CHECK1O0
instruction. :

Let the length N of the base string be defined as
N=LL-FP+1 where:

LL=Logical length pointer of hase string.
FP=formpointer of base string.
The base string is composed of two parts:

1) The base number which is the first n digits
(n=N-1) of the base string.

2) The check digit which is the digit following the
base number.

Let the individual digits of the bhase number be b(1l),
b(2),...b(n) where b(l) is the formpointed left most
digit, and b(n) is the right most digit of the base
number .

Let the individual digits of the weighting factor be w(l),

w(2)...,w(n) with w(l) the formpointed left most digit and
w(n) is the nth digit of the weighting factor.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-19

Let the following products be formed:

P(1l) = b(l)*w(1l)
P(2) = b(2)*w(2)
: etc.

E(n) = b(n)*w(n)

Take each P(i) and perform a "lateral" addition on the
individual digits, i.e. P(3)=32 would yield a "lateral
addition" of 5 (3+2=5). Let the "lateral” addition of the
digits of each P(i) be S(i). Then form the following sum:

SD=S(1)+S(2)+...+5 (1)
Then the computed check digit C is:

C=10-R(5D/10) where R(S5D/10) is the remainder from
the division SD/10.

The computed check digit C is compared to the check digit
supplied in the base string. If they are equal, the EQUAL
flag is set, otherwise the OVER flag is set and the EQUAL
flag is cleared.

Programming Considerations:

<label> is optional.

Neither of the variables <svarl> or <svar2> is modified.
<svarl>, <svar2>, and <slit> when used must contain digits.
If the length (LL-FP+1) of the welighting factor is not equal
to the length n of the base number, then the OVER flag is set

and the DATABUS instruction is not finished.

ff a computed check digit of 10 is used, it is treated modulo
10.

8-20 DATABUS COMPILER

Example:

Example:

Example:

Example:

BASE

BASE
WEIGHT

BASE
WEIGHT

INIT
INIT

CHECK10

"12340"
"5432"

X BY Y

The following flag(s) are set: EQUAL

INIT

SETLPTR
RESET
CHECK10

"1515999"

BASE TO 4
BASE
BASE BY "515*"

The following flag(s) are set: EQUAL

INIT
INIT

CHECK10

"9653 1]
Il52l 1"

BASE BY WEIGHT

The following flag(s) are set: EQUAL

INIT
INIT

CHECK10

Ill650 "
"121"

BASE BY WEIGHT

The following flag(s) are set: OVER

CHAPTER

8. ARITHMETIC INSTRUCTIONS

CHAPTER 9. INTERACTIVE INPUT/OUTPUT

These instructions are used to input from a keyboard and
output to the CRT screen (or output to any device used in place of
the CRT screen). :

General Programming Considerations:
-—- Typically, formatting is handled in one of the following ways.

a) By the way a variable is defined. It should be defined
with the format which is to be used for input/output.

b) Using list controls.

—— Normally, when execution of one of these I/0 statements
terminates, the cursor position is reset to the beginning of
the next line.

-~ If a semicolon is used after the last item in the list, the
cursor position remains where it was on statement termination.
This feature allows a second I/0 statement to continue where
the first statement left off.

Example:

DISPLAY "FLAGS: ";
CALL NOTFLG IF NOT ZERO
DISPLAY "ZERO, ";
CALL - NOTFLG IF NOT LESS
DISPLAY "LESS™

NOTFLG DISPLAY "NOT ";
RETURN

displays one of the following lines, depending on the

condition flags.

FLAGS: ZERO, LESS

FLAGS: ZERO, NOT LESS
FLAGS: NOT ZERO, LESS
FLAGS: NOT ZERO, NOT LESS

—— Those instructions that use a list should make use of
continuation when it is possible to do so. (For details about

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-1

using continuation, see section 2.) This not only increases
the execution speed of the program, but also decreases the
system overhead. The programmer should check his program for
any occurrence of two consecutive I/0 instructions that are
the same. These two instructions can be replaced with a
single instruction by using continuation.

Example:

DISPLAY "LINE ONE"
DISPLAY "LINE TWO"

should be combined to form the statement below.

DISPLAY "LINE ONE":
*N,"LINE TWO"

—— The condition flags are unchanged by the execution of these
Statements.
9.1 KEYIN
KEYIN is used primarily to input from the keyboard, though in
some cases it can be used to output to the screen. This statement
has the following general format:
<label> KEYIN <list>
where: <label> is an execution label (see section 2.).
<list> is a list of items describing the input from the
keyboard.
Programming Considerations:
~-- <Klabel> is optional.

—-- The 1items in the list must be separated by commas.

--— All function key conditions are cleared upon the start of a
KEYIN statement. '

-- K1list> may be made up of any combination of the following
items:

a) <{svar>, a character string variable (see section 4.2).

b) <nvar>, a numeric string variable (see_section 4.1).

9-2 DATABUS COMPILER

c) <occ>, an octal control character (see section 2.5).

d} <1list control>, used to control the manner in which the
list is processed.

e) <slit>, a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

f) <nlit>, a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

9.1.1 Character String Variables (KEYIN)

When a character string variable (<svar>) appears in the list

of a KEYIN instruction, characters are accepted from the keyboard:
and put into the variable. Unless modified by a list control, the
manner in which the characters are accepted is described bhelow.

Programming Considerations:

When characters are being accepted from the keyboard, the
flashing cursor is on. At all other times the cursor is off.
(The *EOFF list control, see section 9.1.3.13, cancels this.)
Only ASCII characters are accepted.

Each character, as it is accepted, is displayed on the screen.

The horizontal cursor position is bumped by 1 for each
character accepted.

Characters are stored consecutively starting at the physical
beginning of the string.

Characters are accepted up to the physical length of the
character string variable.

A beep is sounded at the terminal for each character that does
not fit within the variable. '

If a null string is entered (if the ENTER key is struck
without any other characters having been entered),

a) the formpointer of the variable is set to zero.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-3

b) the logical length pointer of the variable is set to zero.
c) the value of the variable is indeterminate.
To check for a null string entry; the program can first
execute a RESET or CMATCH using the variable in question, then
check the EO0OS condition flag.
The *RV 1list control (see section 9.1.3.23), cancels this.

-— If the string entered is not null,

a) the formpointer of the variable is set to one.

b) the logical length pointer of the variable is set to the
last character entered.

c) the suffix of the string variable is unchanged.

~— Processing is continued with the next item in the list when
the ENTER key 1is struck. (See section 9.1.5.2 on the NEW LINE
key and section 9.1.5.4 on the function keys.)

9.1.2 Numeric String Variables (KEYIN)

When a numeric string variable (<nvar>) appears in the list
of a KEYIN instruction, characters are accepted from the keyboard
and put into the variable. Unless modified by a list control, the
manner in which the characters are accepted is described below.

Programming Considerations:

~-~ When characters are being accepted from the keyboard, the
flashing cursor is on. At all other times the cursor is off.

—-—- Fach character, as it is accepted, is displayed on the screen.

-— The horizontal cursor position is buaped by one (1) for each
character accepted.

-— The following depend on the format of the numeric variable:

a) A minus sign 1s accepted only if it is the first character
entered.

b) A minus sign is accepted only if there is room for at
least one character to the left of the decimal point.

9-4 DATABUS COMPILER.

c) A period is accepted only if the format calls for a
decimal point.

d) Only one period is accepted.

e) The number of characters that is accepted before a period
is required, is equal to the number of places preceding
the decimal point in the format of the variable.

f) The number of characters that is accepted after the period
is equal to the number of places following the decimal
point in the format of the variable.

(o]

If the ENTER key is the first key struck, a value of zero
is entered. Note that the *RV list control (see section
9.1.3.23), cancels this.

-— If a character is entered that is not acceptable to the format
of the numeric variable, a beep is sounded at the terminal.

——- The number entered is reformatted to match the format of the
variable when the ENTER key is struck (see section 4.1).

-— Processing is continued with the next item in the list when
the ENTER key 1is struck.

Example: If the following statement is used to define NVAR;
NVAR FORM 2.1

then when NVAR is used in a KEYIN statement, the following
characters result in NVAR having the values shown.

ascii ascii ascii ascii ascili value of NVAR

ENTER .0
. ENTER .0
. 2 ENTER .2
- . ENTER -.0
- . 2 ENTER -.2
- 2 ENTER -2.0
- 2 . ENTER -2.0
- 2 . 3 ENTER -2.3
2 ENTER 2.0
2 . ENTER 2.0
2 . 3 ENTER 2.3
2 3 ENTER 23.0
2 3 . ENTER 23.0
2 3 . 4 ENTZR 23.4

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-5

9.1.3 List Controls

The list controls are provided to allow more flexibility for
data entry. They may be used to control the manner in which data
is requested and input into variables. All 1list controls begin

with an asterisk followed by the specification of the control
function. :

9.1.3.1 *P<h>:<v> (Cursor Positioning)

The *pP<h>:<v> list control is used to position the cursor on
the screen. The following is the general format of this control.

*P<h>:<v>

where: <h> is the horizontal cursor position.
<v> 1is the vertical cursor position.

Programming Considerations:
-— <h> and <v> may he any combination of the following:
a. <dnum>, where <dnum> is a decimal number.

b, <nvar>, where <nvar> 1is a numeric variable (see section
4.1) . -

-— Both <h> and <v> must be specified.

—— The value of <h> should be between 1 and 80. See the user's
guide of the appropriate interpreter for any exceptions or
differences. Positions outside this range are reset to the
largest value of the range.

—-— The value of <v> should be between 1 and 24. See the user's
guide of the appropriate interpreter for any exceptions or
differences. Positions outside this range are reset to the
largest value of the range.

9-6 DATABUS COMPILER

9.1.3.2 *EL (Erase to the End-of-Line)

The *EL control causes the line to be erased starting with
the current cursor position and continuing to the right. The
cursor position is unchanged by the execution of this control.
Example:

KEYIN *p50:10,*EL, "OK? (Y/N) ",REPLY

This statement erases line 10, starting with column 50.

9.1.3.3 *EF (Erase from Cursor Position)

The *EF control performs the function of *EL and additionally
erases all screen lines below the current cursor position. The
cursor position is unchanged by the execution of this control.

Example:
KEYIN *p50:20,*EF

This statement produces the same results as the following
statement.

KEYIN *p50:20,*EL
*pl:21,*EL:
*pl:22,*EL:
*P1l:23,*EL:
*pl:24,*EL:
*P50:20

9.1.3.4 *ES (Erase the Screen)

The *ES control positions the cursor to 1l:1 and erases the
entire screen. The cursor is left positioned to 1l:1.

Exanmple:
KEYIN *ES

Executing the above statement is equivalent to executing the
following statement.

KEYIN *pl:1,*EF

|
~J

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9

9.1.3.5 *C (Carriage Return)

The *C control causes the cursor to be set to the beginning
of the current line. For example: if the cursor is positioned to
40:5, executing the *C control changes the cursor position to 1:5.

9.1.3.6 *L (Line Feed)

The *L control causes the cursor to be set to the following
line in the current horizontal position. For example: 1if the
cursor is positioned to 20:5, executing the *L control changes the
cursor position to 20:6. If the current line is the last line on
the screen, this list control has no effect.

9.1.3.7 *N (Next Line)

The *N control causes the cursor to be set to the first
column of the next line. Executing the *N control is equivalent
to executing a *C control followed by a *L control. If the
current line is the last line on the screen, this list control has
no effect.

9.1.3.8 *R (Roll the Screen)
The *R control causes the screen to roll up by one line.
This control has no effect when sent to a 3360 terminal. It is

included for use with 3600 terminals and the system console. The
cursor position is unchanged by the execution of this control.

9.1.3.9 *+ (KEYIN Continuous On)

The *+ list control is used to turn on a mode of entry called
keyin continuous. This mode allows the system to react Iin much
the same way as a keypunch machine that is using a control card.

Programming Considerations:

-— This control affects data entry of all variables which follow
the *+ control in the KEYIN list.

-— If keyin continuous is turned on, entering the last character

acceptable to the format of a variable causes the system to
react as if the ENTEZR key had been struck.

9-8 DATABUS COMPILER

-— [Keyin continuous may be turned off by the use of the *- list
control (see section 9.1.3.10).

—-— Keyin continuous is automatically turned off when the end of
the KEYIN list is reached.

9.1.3.10 *- (KEYIN Continuous Off)

The *- 1list control turns the keyin continuous mode off. For
more details about the keyin continuous mode, see section 9.1.3.9.

9.1.3.11 *T (KEYIN Timeout)

The *T control causes a time out 1f the time between entering
two characters is too long. The *T<n> form of the list control
can be used to specify a variable length time out. The *T<n>:<m>
form of this control can be used in conjunction with POLLing (see
section 11.7) to specify the time out and NAK count definition.

Programming Considerations:

-- The *T control causes a time out if more than two seconds
elapse between entering any two characters.

-— If a time out occurs, the remainder of the KEYIN list is
treated as though the NEW LINE key had been struck. (For more
details about NEW LINE, see section 9.1.5.2.)

-— In the *T<n> form of the list control, a time out occurs if
more than <n> seconds elapse between entering any two
characters. <n> can range from 1 to 65.

—— For the *T<n>:<m> 1list contol, <n> indicates the time out
value and is expressed in tens of milliseconds. It can range
from 0 to 255. This is the maximum time to wait for the first
character of the KEYIN to be received before signalling a time
out. <m> may range from 0 to 255 although it is ignored in
the KEYIN verb. This list control is intended for use with
pollable terminals, where the ten millisecond gradient on <n>
is more useful than the second gradient provided by the *T<n>
list control. This list control is ignored on non-pollable
terminals. :

-— For the *T and *T<n> list controls, if a time out occurs, the

LESS flag is set if the *RV list control is also in effect for
the variable (see section 9.1.3.23).

CHAPTER 9. INTERACTIVE INPUT/OQOUTPUT 9-9

—-— For the *T<n>:<m> list control, if a time out occurs, the LESS
flag is set. This does not require the *RV list control to
also be in effect.

9.1.3.12 *W (Wait)

The *W or *W<n> list control is an effective way of allowing
a program to pause without imposing significant overhead on the
systemn.

Programming Considerations:

-— Each occurrence of *W in the KEYIN list causes a pause of one
second before continuing to the next item in the list.

-- Any number of seconds of pause may be achieved by simply
putting in the required number of *W controls in the list.

-— Several seconds of pause may be achieved in one list control
by specifying the *W<n> form of this list control. For
exanple, *W5 is equivalent to *W,*W,*W,*W,*W.

—-— The wait time specified using the *W<n> form of the list
control must be between 1 and 255 seconds.

9.1.3.13 *EOFF (Echo Off)

The *EOFF list control is used to suppress the character
display (echo) of all characters accepted from the keyboard. This
is useful in message switching applications or for entry of
passwords or other security information.

Programming Considerations:

~— This control causes echo suppression for all variables which
follow the *EOFF in the KEYIN list.

—— The beep returned when an invalid character is entered is also
suppressed by this control.

-— The echo may be re-enabled by using the *EON list control (see
section 9.1.3.14). '

—-— The echo is re-enabled when the end of the KEYIN list is
reached.

9-19 DATABUS COMPILER

Example: The following KEYIN statement could be used to enter a

password.

KEYIN *P1:10,*EOFF,"ENTER PASSWORD: ":
PASSWORD

9.1.3.14 *EON (Echo On)

The *EON list control is used to re-enable the echoing of
characters to the screen while entering data. For more details on
echo suppression see section 9.1.3.13.

9.1.3.15 *IT (Invert Text)

The *IT list control is used to disable shift key inversion.

The normal state of the keyboard is
enabled. This means that all lower
entered and displayed as upper case
Shift key inversion disabled is the
that is, the shift key must be used
characters.

Programming Considerations:

with shift key inversion

case alphabetic characters are
characters and vice versa.
normal state of a typewriter;
to get upper case alphabetic

-— Shift key inversion is only useful on those terminals that
have both an upper and lower case character set. For
instance, the Datapoint 3360 cannot make use of shift key
inversion while the Datapoint 3600 can.

-— Shift key inversion affects only the alphabetic characters and

not the numerals or punctuation.

-— The *IT control causes any letter entered with the SHIFT key
depressed to be entered and displayed as an upper case letter.

-- Shift key inversion remains disabled until a *IN control ‘is

used (see section 9.1.3.16).

-- Shift key inversion is enabled when a CHAIN instruction is

executed (see section 6.8).

CHAPTER 9. INTERACTIVE INPUT/OQOUTPUT 9-11

9.1.3.16 *IN (Invert to Normal)

The *IN list control is used to enable shift key inversion,
For more details on shift key inversion, see section 9.1.3.15.

Programming Considerations:

—-— Shift key inversion is only useful on those terminals that
have both an upper and lower case character set. For
instance, the Datapoint 3360 cannot make use of shift key
inversion while the Datapoint 3600 can.

—-— Shift key inversion affects only the alphabetic characters and
not the numerals or punctuation.

—-— The *IN control causes any letter entered with the SHIFT key
depressed to be entered and displayed as a lower case letter.

-- Shift key inversion remains enabled until a *IT control is
used (see section 9.1.3.15).

~-— Shift key inversion is enabled when a CHAIN instruction is
executed (see section 6.8).

9.1.3.17 *JL (Justify Left)

The *JL control is used to cause the characters entered into
a variable to be left justified within that variable.

Programming Considerations:

-- This control affects only the first variable following the *JL
in the KEYIN list.

-— When the variabhle affected hy the *JL is a numeric string
variable, the following are true.

a) If a decimal point is not entered,

1) all digits entered are put into the leftmost positions
of the numeric variable.

N

all remaining character positions of the variable are
filled with zeros.

D) If a decimal point is entered, the.*JL control has no
effect on the numeric variable.

9-12 DATABUS COMPILER

-— When the variable affected by the *JL is a character string
variable, the following are true.

a) The variable is first filled with blanks.

b) The characters entered from the keyboard are put into the
variable normally (see section 9.1.1).

c) The logical length pointer points to the last physical
character in the variable.

—-— This control may be used in conjunction with the *DE control
(see section 9.1.3.20).

Example: TIf the following statements are used to define SVAR and

NVAR,
NVAR FORM 3.3
SVAR DIM 5

then when NVAR and SVAR are used in a KEYIN statement with *JL,
the following characters result in the variables having the values

shown below. The underline character () is used to indicate a
blank. -

ascii ascii ascii ascii ascii value of NVAR value of SVAR

1 2 ENTER 120.000 12
12 . ENTER 12.000 12.

1 ENTER 100.000 1
- 1 ENTER -10.000 -1

- 1 . ENTER -1.000 -1,

9.1.3.18 *JR (Justify Right)

The *JR list control is used to cause the characters entered
into a character string variable to be right justified within that
variable.

Programming Considerations:

-- This control affects only the first variable following the *JR
in the KEYIN list.

-- If a null string is entered (ENTER is the first character
entered) :

a) The variable is filled with blanks.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-13

b) The formpointer is set to =zero.
c) The logical length pointer is set to zero.
—-—- If the string entered is not null:

a) The characters entered are right justified within the
variable. This means that, when the characters are put
into the variable, they are all shifted to the right until
the rightmost character entered is put into the rightmost
character position in the variable.

b) All character positions that are vacated when the string
is right justified are filled with blanks.

c) The formpointer points to the first physical character of
the variable.

d) The logical length pointer points to the last physical
character of the variable.

-- This control may be used in conjunction with:

a) the *ZF control (see section 9.1.3.19). When *ZF and *JR
are used together:

1) Any characters entered are right justified with zero
fill.

2) A null entry first fills the variable with zeros, then
sets the formpointer and logical length pointer to
zero.

b) the *DE control (see section 9.1.3.20).
Example: If the following statement is used to define SVAR,
SVAR DIM 5
then when SVAR is used in a KEYIN statement with *JR, the

following characters result in SVAR having the values shown below.
The underline character () is used to indicate a blank.

9-14 DATABUS COMPILER

ascii ascii ascii ascii ascii ascii ' value of SVAR

1 2 3 ENTER 123
1 2 3 4 ENTER 1234
1 2 3 4 . ENTER 1234.
1 2 3 . ENTER 123.
1 2 . 3 ENTER ‘ ~12.3
1 . 2 3 ENTER ~1.23
A B C ENTER __ABC

9.1.3.19 *ZF (Zero Fill)

The *ZF list control is used to cause a character string
variable to be zero filled.

Programming Considerations:

-— This control is the same as the *JL control (see section
9.1.3.17) with the following exceptions:

a) *ZF applies only tec character string variables.
b) The variable is filled with zeros instead of blanks.
-— This control may be used in conjunction with:

a) the *JR control (see section 9.1.3.18). When *ZF and *JR
are used together:

1) Any characters entered are right justified with zero
fill.

2) A null entry first fills the variable with zeros, then
sets the formpointer and logical length pointer to
zZero.

b) the *DE control (see section 9.1.3.20).

9.1.3.20 *DE (Digit Entry)

The *DE list control may be used to restrict input into a
character string variable to digits only (0-9).

Programming Considerations:

-- This control affects only the first variable following the *DE

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-15

in the KEYIN list.

-— An attempt to enter a non-digit results in the character being
ignored and a beep being returned.

—— This control may be used in conjunction with:
a) the *JL control (see section 9.1.3.17).
b} the *JR control (see section 9.1.3.18).

c) the *ZF control (see section 9.1.3.19).

9.1.3.21 *HON (Turn on Highlighting)

The *HON control is used to invert the video image of the
characters on the screen. 1Instead of the normal dark background
with light characters, the characters are dark on a light
background. At the beginning of each KEYIN and DISPLAY statement,
the mode is reset to normal. Note that this list control is
effective only on those terminals which support highlighting. The
effect of this list control is cancelled by the *HOFF list
control.

9.1.3.22 *HOFF (Turn off Highlighting)
The *HOFF control is used after a *HON control to return the
screen to the normal mode of video display.

9.1.3.23 *RV (Retain Variable)

The *RV list control may be used to retain the contents of
the variable after receipt of a null input.

Programming considerations:

—-- This control affects data entry of only the first variable
which follows the *RV in the KEYIN list.

-~ A null string may be entered by the ENTER key alone being
struck without any other characters having been keyed in, or
by a NEW LINE or function key being struck earlier in the
keyin list.

-— If one or more characters are entered, and the BACKSPACE or

9-16 DATABUS COMPILER

CANCEL key used to erase them, and then the ENTER key struck,
this is not considered a null entry and the variable is not
retained.

If a null value is entered, the variable affected by the list
control is left unchanged. For character string variables,
the formpointer and logical length pointer are not set to
zero. For numeric string variables, the value is not set to
zero (see sections 9.1.1 and 9.1.2).

The EOS flag is set if a null value is entered.

If the *T list control (see section 9.1.3.11) is also in
effect for a variable with the *RV list control, and a time
out occurs, the LESS flag is set.

If data entry into the variable affected by the *RV list
control is aborted by the NEW LINE key (see section 9.1.5.2)
or by one of the function keys (see section 9.1.5.4) then the
OVER flag is set. Note that this does not apply if the NEW
LINE or function key was struck while keying in data to a
variable earlier in the keyin list. 1In this case, the
variable is retained and the EOS flag is set indicating a null
entry.

9.1.3.24 *DV (Display Variable)

The *DV list control causes the contents of the variable to

be displayed on the terminal screen.

Programming considerations:

This control affects only the first variable following the *DV
in the KEYIN list.

The statement behaves like a DISPLAY statement for the €first
variable following the *DV list control in the keyin list.

The variable is displayed on the terminal screen instead of
being entered from the keyboard. This can be used to save the
use of an extra DISPLAY statement.

The following two program segments are equivalent:

CHAPTER 9. INTERACTIVE INPJT/OUTPUT 9-17

DISPLAY "THERE ARE “,QTONHAND:
" AVAILABLE, HOW MANY DO YOU WANT? "
KEYIN QUANTITY

~e

KEYIN "THERE ARE " ,*DV,QTONHAND:
" AVAILABLE, HOW MANY DO YOU WANT? ",QUANTITY

9.1.3.25 *B (Beep)

The *B list control causes an audible BEEP (ASCII "ring bell”
character) to be sounded at the terminal. This list control can
be used to save using a BEEP instruction (see section 9.4).

9.1.3.26 *OP (0dd Parity)

The *QP list control causes odd parity to be generated. It
is useful only for non Datapoint, non standard devices. It is not
needed for 3340 and 3600 terminals. This list control remains in
effect until another parity selection list control is given (*OP,
*EP, or *NpP).

9.1.3.27 *EP (Even Parity)

The *EP list control causes even parity to be generated. It
is useful only for non Datapoint, non standard devices. It is not
needed for 3360 and 3600 terminals. This list control remains in
effect until another parity selection list control is given (*0OP,
*EP, or *NP).

9.1.3.28 *NP (No Parity)

The *AnNP list control causes no parity to be generated. It 1is
useful only for non Datapoint, non standard devices. It is not
needed for 3350 and 3500 terminals. This list control remains in
effect until another parlty selection list control is given (*O0P,

EP, or *NP).

9-18 DATABUS COMPILER

9.1.3.29 *3270 (High Speed Keyin for 3270)

The *3270 list control causes high speed foreground keyin
service to be enabled for a 3570 terminal operating in 3270 mode.
The effect of this list control is turned off at the end of the
statement. See the EM3270 user's guide for more information on
3270 operations.

9.1.3.30 *CL (Clear the Key—-Ahead Buffer)

The *CL list control causes the key-ahead buffer for the port
executing this instruction to be cleared of any characters that
may have been entered into it.

9.1.3.31 *RD (Roll Down the Screen)

The *RD control causes the screen to roll down by one line.
. {This control has no effect when sent to a 33560 terminal. It is
included for use with 35600 terminals.) The cursor position is
unchanged by the execution of this control.

9.1.3.32 *PON (Send "Printer On" Character to Terminal)

The *PON control causes a "printer on" character to be sent
to the terminal. It should only be used on a terminal with a
serial printer attached. This list control should be used instead
of inserting an octal control character in the KEYIN list. This
list control remains in effect until a *POFF list control is
given.

9.1.3.33 *POFF (Send "Printer Off" Character to Terminal)

The *POFF control causes a "printer off" character to be sent
to the terminal. It should only be used on a terminal with a
serial printer attached. This list control should be used instead
of inserting an octal control character in the KEYIN list. This
list control remains in effect until a *PON list control is given.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-19

9.1.4 Literals (KEYIN)

When a literal (<occ>, <slit> or <nlit>) appears in the 1list
of a KEYIN statement, that literal is displayed on the screen.

Programming Considerations:

-— 1If the literal is an octal control character (see section
2.5), it is sent to the terminal.

—-— If the literal is of the form "<string>", the following rules
apply.

a) All of the characters between the double quotes are
displayed as they appear in the literal.

b) The first character of the string is displayed at the
current cursor position.

c) The cursor is bumped one position to the right for every
character displayed.

d) The cursor is left positioned one position to the right of
the last character of the literal.

9.1.5 Special Considerations

The following sections describe some speclial cases of
operator input from the keyboard.

9.1.5.1 BACKSPACE and CANCEL

The following special keys are useful in correcting typing
errors while entering data into variables that appear in a KEYIN
list.

—-— The BACKSPACE key (control H on Teletype) may be used to
delete the last character entered. Using BACKSPACE causes the
following actions:

a) The cursor is moved one position to the left.

b) The character under the cursor is erased from the screen.

c) The character that was under the cursor is not deleted
from the variable in the KEYIN list. The KEYIN pointers

9-20 DATABUS COMPILER

are decremented by one without restoring the original
contents of the variable.

——- The CANCEL key (control X on a Teletype) may be used to reset
KEYIN pointers to the beginning of the variable.

The CANCEL key performs repeated BACKSPACEs until the variable
has been cleared.

—- Neither BACKSPACE nor CANCEL overstore the contents of the
variable with blanks.

—- Once BACKSPACE or CANCEL has been used the contents of the

variable becomes indeterminate.
9.1.5.2 NEW LINE

Using the NEW LINE character is treated as a special case of

using the ENTER character. Using the NEW LINE character
effectively causes an automatic ENTER for all subsequent variables
in the KEYIN list. The NEW LINE character is entered by striking:

a) the NEW LINE key on Datapoint 3360 and 35600 terminals,

b) control O on a Teletype, or

c) the DEL key (shift underline) on the system console.

Programming Considerations:

—- Using NEW LINE causes data entry into the current variable to
be terminated as if the ENTER key had been struck instead.

-- All subsequent character string variables in the KEYIN list
have their formpointer and logical length pointer set to zero.

—— All subsequent numeric string variables in the XKEYIN list are
set to zero.

——- The KEYIN list is processed normally, except for the
variables, which are handled as stated above.

-- Control falls through to the next DATABUS statement.

—— The effects of the NEW LINE can be modified by the *RV list
control (see section 9.1.3.23).

CHAPTER 9. INTZRACTIVE INPJT/OUTPUT 9-21

9.1.5.3 INTerrupt

Entering the INTerrupt character may be used to cause an
immediate CHAIN to the port's MASTER program (see section 6.8).
This allows a program to be interrupted before it runs to
completion. The INTerrupt character is entered by striking:

a) the INT key on Datapoint 3360 and 3600 terminals,
b) control shift L on a Teletype, or

c) the CANCEL key with both the KEYBOARD and DISPLAY keys
depressed on the system console.

Programming Considerations:

-— The program that is being interrupted executes the equivalent
of a STOP instruction (see section 6.7).

—— If the PI (see section 56.12) or FILEPI (see section 5.13)
instruction is in effect at the time that an INTerrupt occurs,
the interrupt procedure is postponed.

-— If the printer is being used by the port receiving the
INTerrupt, it is RELEASEd (see section 10.3).
9.1.5.4 Function Keys
Whenever any of the function keys are depressed, they are
treated as special cases of the ENTER key. Using a function key
causes an automatic ENTER for all subsequent variables in the
KEYIN list. In addition, each function key has associated with it
a condition that can be checked by the GOTO statement.
Programming Considerations:
—-— The use of a function key causes data entry into the current
variable to be terminated as if the ENTER key had been struck

instead.

—-— All subsequent character string variables in the KEYIN 1list
have their formpointer and logical length pointer set to =zero.

—-- All subsequent numeric string variables in the KEYIN list are
set to zero.

-— Any list controls in the list that require processing of a

9-22 DATABUS COMPILER

variable after data entry is completed (such as *JL, *JR, and
*72F) do not take effect.

~— The effects of the function keys can be modified by the *RV
list control (see section 9.1.3.23).
9.2 DISPLAY

The DISPLAY instruction is used to put information on the
terminal screen. This statement has the following general format:

<labhel> DISPLAY <list>
where: <label> is an execution label (see section 2.).
<list> is a list of items describing the information to
be put on the screen.
Programming Considerations:
-- <label> is optional.

—-— The items in the list must be separated by commas.

-— <1list> may be made up of any combination of the following
items:

a) <svar> is a character string variable (see section 4.2).
b) <nvar> is a numeric string variable (see section 4.1).
c) <occ> is an octal control character (see section 2.5).

d) <list control> is used to control the manner in which the
list is processed.

e) <Kslit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

f) <nlit> is a literal of the form "<string>" (see section

2.5). <string> must be a valid numeric string (see
section 4.1).

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-23

9.2.1 Character String Variables (DISPLAY)

When a character string variable (<svar>) appears in the list

of a DISPLAY instruction, the characters saved in the variable are
displayed on the screen. Unless modified by a list control the
manner in which the characters are put on the screen is described
below.

Programming Considerations:

The characters in the variable are displayed starting with the
first physical character and continuing through the logical
length.

Blanks are displayed for any character positions that exist
between the logical length pointer and the physical end of the
variable.

The first character displayed is displayed at the current
cursor position.

The horizontal cursor position is bumped hy one (1) for each
character displayed.

The cursor is left positioned one character to the right of
the last character displayed.

9.2.2 Numeric String vVariables (DISPLAY)

When a numeric string variable (<nvar>) appears in the list

of a DISPLAY instruction, the characters that are saved in the
variable are displayed on the screen. Unless modified by a list
control, the manner in which the characters are displayed 1is
described below.

Programming Considerations:

The characters displayed start with the first physical
character and continue through the physical end of the
variable.

The first character dlsplayed is displayed at the current
cursor position.

The horizontal cursor position is bumped by 1 for each
character displayed.

9-24 DATABUS COMPILER

-- The cursor is left positioned one character to the right of
the last character displavyed.

9.2.3 List Controls

The list controls are provided to allow more flexibility in
the way the screen is formatted. They may be used to control the
manner in which variables are displayed on the screen. All list
controls begin with an asterisk followed by the specification of
the control function.

9.2.3.1 *P<h>:<v> (Cursor Positioning)

The *P<h>:<v> list control is used to position the cursor on
the screen. For details on using this control, see section
9.1.3.1.
9.2.3.2 *EL (Erase to End-of-Line)

The *EL control causes the line to be erased to the right of
the cursor position. For details on using this control, see
section 9.1.3.2.
9.2.3.3 *EF (Erase to End-of-Frame)

The *EF control erases the screen from the cursor position to
the bottom of the screen. For details on using this control, see
section 9.1.3.3.
9.2.3.4 *ES (Erase the Screen)

The *ES control positions the cursor to 1l:1 and erases the

entire screen. For details on using this control, see section
9.1.3.4.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-25

9.2.3.5 *C (Carriage Return)

The *C control causes the cursor to be set to the beginning
of the current line. For example: 1if the cursor is positioned to
40:5, executing the *C control changes the cursor position to 1:5.

9.2.3.6 *L. (Line Feed)

The *L control causes the cursor to be set to the following
line in the current horizontal position. For example: 1if the
cursor is positioned to 20:5, executing the *L control changes the
cursor position to 20:6.
9.2.3.7 *N (Next Line)

The *N control causes the cursor to be set to the first
column of the next line. Executing the *N control is equivalent
to executing a *C control followed by a *L control.
9.2.3.8 *R (Roll the Screen)

The *R control causes the screen to roll up by one line. This
control has no effect when sent to a 3360 terminal. It is
included for use with 3600 terminals and the system console. The
cursor position is unchanged by the execution of this control.

9.2.3.9 *+ (DISPLAY Blank Suppression 0On)

The *+ control is used to “urn on a display mode called blank
suppression.

Programming Considerations:

-— This control affects the display of all character string
variables which follow the *+ control in the DISPLAY list.

-— If blank suppression is turned on, character string variables
are displayed on the screen as described below.

a) The characters in the variable are displayed starting with
the first physical character and continuing through the
logical length.

b) The first character is displayed at the current cursor

O
|

26 DATABUS COMPILER

position.

c) The horizontal cursor position is bumped by 1 for each
character displayed.

d) The cursor is left positioned one character to the right
of the last character displayed.

—-— Blank suppression is automatically turned off when the end of
the DISPLAY list is reached.
9.2.3.10 *- (DISPLAY Blank Suppression Off)

The *- control turns blank suppression mode off. For more
details about blank suppression mode, see section 9.2.3.9.
9.2.3.11 *W (Wait)

The *W or *W<n> list control is an effective way of allowing
a program to pause without imposing significant overhead on the
system. .

Programming Considerations:

—-— Each occurrence of a *W in the DISPLAY list causes a pause of
one second before continuing to the next item in the list.

—-— Any number of seconds of pause may be achieved by simply
putting in the required number of *W controls in the list.

—-— Several seconds of pause may be achieved in one list control
by specifying the *W<n> forms of this list control. For
examale, *WS5 is equivalent to *W,*W,*W,*W,*W.

—-— The wait time specified using the *W<n> form of the list
control must be between 1 and 255 seconds.

9.2.3.12 *IT (Invert Text)

The *IT control is used to disable shift key inversion. For
details on using this control, see section 9.1.3.15.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-27

9.2.3.13 *IN (Invert to Normal)

The *IN control is used to enable shift key inversion. For
details on using this control, see section 9.1.3.15.
9.2.3.14 *HON (Turn on Highlighting)

For details on using the *HON control, see section 9.1.3.21.

9.2.3.15 *HOFF (Turn off Highlighting)

For details on using the *HOFF control, see section 9.1.3.22.

9.2.3.16 *B (Beep)

The *B list control causes an audible BEEP (ASCII "ring bell"
character) to be sounded at the terminal. This list control can
be used to save using a BEEP instruction (see section 9.4).
9.2.3.17 *QOP (0dd Parity)

The *0P list control causes odd parity to be generated. For
details on using this control, see section 9.1.3.25.
9.2.3.18 *EP (Even Parity)

The *5P list control causes even parity to be generated. For
details on using this control, see section 9.1.3.27.
9.2.3.19 *NP (No Parity) ‘

The *NP list control causes no parity to be generated. For
details on using this control, see section 9.1.3.28.

9-28 DATABUS COMPILER

9.2.3.20 *3270 (High Speed Keyin for 3270)

The *3270 list control causes high speed foreground keyin
service to be enabled for a 35670 terminal operating in 3270 mode.
For details on using this control, see section 9.1.3.29.
9.2.3.21 *RD (Roll Down the Screen)

The *RD control causes the screen to roll down by one line,
(This control has no effect when sent to a 3360 terminal. It is

included for use with 3600 terminals.) The cursor position is
unchanged by the execution of this control.

9.2.3.22 *PON (Send "Printer On" Character to Terminal)

The *PON control causes a “printer on" character to be sent
to the terminal. For details on using this control, see section
9.1.3.32.
9.2.3.23 *POFF (Send "Printer Off" Character to Terminal)

The *POFF control causes a "printer off" character to be sent
to the terminal. For details on using this control, see section
9.1.3.33.

9.2.4 Literals (DISPLAY)

When a literal (<occ>, <slit> or <nlit>) appears in the 1list
of a DISPLAY statement, that literal is displayed on the screen.

Programming Considerations:

-— If the literal is an octal control character (see section
2.5), it 1s sent to the terminal.

-- If the literal is of the form "<string>", the following rules
apply.

a) All of the characters between the double quotes are
displayed as they appear in the literal.

b) The first character of the string is displayed at the
current cursor position.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-29

c) The cursor is bumped one position to the right for every
character displayed.

d) The cursor is left positioned one position to the right of
the last character of the literal.
9.3 CONSOLE

The CONSOLE instruction is used to put information on the
console screen. This statement has the following general format:

<label> CONSOLE <list>
where: <label> is an execution label (see section 2.).
<list> 1is a list of items describing the information to
be put on the console.
Programming Considerations:
-— <label> is optional.

—-— The items in the list must be separated by commas.

-— Klist> may be made up of any combination of the following
items:

a) <{svar> is a character string variable (see section 4.2).
b) <nvar> is a numeric string variable (see section 4.1).
C) <occ> is an octal control character (see section 2.5).

~d) <1list control> is used to control the manner in which the
list is processed.

e) «Kslit> is a literal of the form “<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

f) <nlit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

-— All output to the system console is inhibited if it is being

used as the terminal for port one. In this case, gll CONSOLE
instructions execute, but do not actually do anything.

9-30 DATABUS COMPILER

-- The output is always on the line assigned for the terminal
executing the CONSOLE instruction. This means that any
vertical positioning of the cursor is ignored.

-— A CONSOLE statement which begins without positioning starts
displaying at column 5.

—— The port number and asterisk appearing in column 1 through 4
on the CONSOLE may be overwritten by positioning to column 1.

—— Character string variables are handled exactly alike in

CONSOLE and DISPLAY statements (for more details, see section
9.2.1).

—-- Numeric string variables are handled exactly alike in CONSOLE
and DISPLAY statements (for more details, see section 9.2.2).

—-- The only DISPLAY list controls that are effective are
*P<h>:<v> (cursor positioning), *EL, *EF, and *ES.

—-- The cursor positioning used for CONSOLE statements works like
it does for KEYIN statements except that the vertical position
(<v>) is ignored (for more details, see section 9.1.3.1).

-- The *EL, *EF, and *ES list controls only erase the part of the
line on the system console assigned for the terminal executing
the CONSOLE instruction.

-- TIf the display flows over the line length limit, the extra
characters are not displayed.

-— If the CONSOLE statement is not terminated by a semi-colon,
the carriage return and line feed are ignored.

Example: The CONSOLE instruction could he used to alert the
system operator (if such a person exists) by using the following
statement.

CONSOLE *p20:1,"OPERATOR ALERT"

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-31

9.4 BEEP

BEEP causes an audible BEEP (ASCII "ring bell" character) to
be sounded at the termnal. This instruction has the following
- general format:

<label> BEEP

where: <label> is an execution label (see section 2.). This
label is optional.

9.5 DEBUG

The DEBUG instruction is used to activate the interpreter's
debugging tool, if such a tool exists. The user's guide of the
appropriate interpreter should he consulted for details on the
operation of this tool. This instruction has the following
general format:

<label> DEBUG

where: <label> is an execution label (see section 2.).
Programming Considerations:
-- <lahel> is optional.
-—- If the debugging tool is not available, DEBUG is treated like

a "No OPeration" (NOP). Program execution continues as if the
DEBUG instruction had not been included in the program.

9-32 DATABUS COMPILER

CHAPTER 10. PRINTER OUTPUT

These instructions are used to output data to a printer and
to control the usage of the printer by a port.

General Programming Considerations:
-~ Typically, formatting is handled in one of the following ways.

a) By the way the variable is defined. It should be defined
with the format which is to be used for output.

b) Using list controls.

——- Normally, when execution of PRINT (or RPRINT) statement
terminates, the print position is reset to the beginning of
the next line.

-— If a semicolon (;) is used after the last item In the list,
the print position remains where it was on statement
termination. This feature allows a second PRINT (or RPRINT)
statement to continue where the first statement left off.

Exanmnple:

PRINT "FLAGS: ";

CALL NOTFLG IF NOT ZERO
PRINT "ZERO, ";
CALL NOTFLG IF NOT LESS
PRINT "LESS"

NOTFLG PRINT "NOT ";
RETURN

prints one of the following lines, depending on the condition
flags.

FLAGS: ZERO, LESS

FLAGS: ZEROD, NOT LESS
FLAGS: NOT ZERO, LESS
FLAGS: NOT ZERO, NOT- LESS

—-— Those instructions that use a list should make use of

continuation when it is possible to do so. (For details about
using continuation, see section 2.) This not only increases

CHAPTER 10. PRINTER QUTPUT 10-1

the execution speed of the program, but also decreases the
system overhead. The programmer should check his program for
any occurrence of two consecutive PRINT statements to see if
they can be combined into a single statement.

PRINT "LINE ONE"
PRINT "LINE TWO"

should be combined to form the statement below.
PRINT "LINE ONE":
*N,"LINE TWO"
10.1 PRINT
The PRINT instruction causes items in the list to be printed
in a fashion similar to the way DISPLAY causes items to be
displayed. The format of the print instruction is:
1) <label> PRINT <list>
where: <label> is an execution label.
<list> 1is a list of items describing the output to the
printer.
Programming Considerations:
-—- <label> is optional.

-= The items in the list must be separated by comnas.

-— <1list> may be made up of any combination of the following
items:

a) <svar> is a character string variable (see section 4.2).
b) <nvar> 1is a numeric string variable (see section 4.1).

c) <occ> 1is a octal control character (see section 2.5).

d) <list control> is used to control the manner in which the
printing is performed.

e) <slit> is a literal of the form "<string>" (see section

2.5). <string> must be a valid character string (see
section 4.2).

10-2 DATABUS COMPILER

£) <nlit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

10.1.1 Character String Variables

When a character string variable (<svar>) appears in the list
of a PRINT (or RPRINT) instruction, the characters stored in the
variable are printed on the printer. Unless modified by a list
control, the manner in which the characters are printed on the
printer is described below.

Programming Considerations:

—— The characters in the variable are printed starting with the
first physical character and continuing through the logical
length.

-— Blanks are printed for any character positions that exist
between the logical length pointer and the physical end of the
variable.

-— The first character printed is printed at the current print
position.

—— The print position is incremented by one (1) for each
character printed.

-—- The print position is left positioned one character to the
right of the last character printed.
10.1.2 Numeric String Variables
When a numeric string variable (<nvar>) appears in the list
of a PRINT instruction, the characters that are stored in the
variable are printed on the printer. Unless modified by a list
control, the manner in which the characters are printed is
described below.

Programming Considerations:

-- The characters printed start with the first physical character
and continue through the physical end of the variable.

—-- The first character printed is printed at the current print
position.

CHAPTER 10. PRINTER OUTPUT 10

|
w

-— The print position is incremented by one (1) for each
character printed.

—-—- The print position is left positioned one character to the
right of the last character printed.

10.1.3 List Controls

The list controls are provided to allow more flexibility in
the way the printer is formatted. They may be used to control the
manner in which variables are printed on the printer. All list
controls begin with an asterisk followed by the specification of
the contreol function.

10.1.3.1 *F (Form Feed)

The *F control causes the printer to advance to the top of
the next form and the print position to be set to the first
column.
10.1.3.2 *C (Carriage Return)

The *C control causes the print position to be set to the
beqginning of the current line.
10.1.3.3 *L. (Line Feed)

The *L control causes the print position to be set to the
follewing line in the current print position. For example, if the
print position is column 20, the *L control causes the horizontal
print position to be unchanged on the following print line.
10.1.3.4 *N (Next Line)

The *N control causes the print position to be set to one (1)

on the following line. Executing the *N control is equivalent to
executing a *C control followed by a *L control.

10-4 DATABUS COMPILER

10.1.3.5 *<n> (Tab To Column <n>)

The *<n> control causes the print position to bhe set to
column (n). <n> must be an integer constant. If the value
specified by <n> is larger than the width of the printer, the
control is ignored.

10.1.3.6 ; (Supress new line function)

The semicolon (;) control causes the new line function to be
supressesed. This control inhibits the *N control function which
normally occurs at the end of a PRINT instruction without the (;)
control.
10.1.3.7 *ZF (Zero Fill)

The *ZF control may be used before a numeric variable to
cause zero fill on the left, moving the sign to the left if
necessary.

10.1.3.8 *+ (Blank Supression 0On)

The *+ control is used to turn on a print mode called blank
suppression.

Programming Considerations:

-— This control affects printing of all character string
variables which follow the *+ control in the PRINT list.

-- If blank suppression is turned on, character string variables
are printed on the printer as described below.

a) The characters in the variable are printed starting with
the first physical character and continuing through the
logical length.

b) The first character printed is printed at the current
print position.

c) The current print position is incremented by one (1) for
each character printed.

d) The print position is left positioned one character to
the right of the last character printed.

CHAPTER 10. PRINTER OUTPUT 10

1
w

-- Blank suppre551on is automatically turned off when the end of
the PRINT list is reached.

10.1.3.9 *-~ (Blank Suppression Off)

The *- control turns blank suppression mode off. For more
details about blank suppression mode, see section 10.1.3.8.
10.1.3.10 *<nvar> (Tab to column <nvar>)

The *<{nvar> control causes the print position to be set to
the column specified by the numeric variable <nvar>. The value of
{nvar> 1s truncated to an integer if there is any fractional part.
If the value specified by <nvar> is larger than the width of the
printer, the control is ignored.

10.1.4 Literals

When a literal (<occ>, <slit> or <nlit>) appears in the list
of a PRINT (or RPRINT) statement, that literal is printed on the
printer.

Programming Considerations:

-— If the literal is an octal control character (see section
2.5), it is sent to the printer.

-~ If the literal is of the form "<string>", the following rules
apply.

a) All of the characters between the double quotes are
- printed as they appear in the literal.

b) The first character of the string is printed at the
current print position.

c) The print position is incremented one position to the
right for every character printed.

d) The print position is left positioned one position to the
right of the last character in the literal.

10-5 DATABUS COMPILER

10.2 RPRINT
The RPRINT instruction functions exactly as the PRINT except
that the printout physically occurs at a Remote Slave Station
instead of the Central Station where the PRINT instruction
functions. The format of the RPRINT instruction is:
<label> RPRINT <list>
where: <label> is an execution label.
<list> 1is a list of items describing the output to the
printer.
Programming considerations:

-- <label> is optional.

-— If the port is not a remote slave port type, the instruction
is interpreted as a PRINT instruction.

The user should refer to section 10.1 for a discussion of the
PRINT statement.
10.3 RELEASE

The RELEASE instruction ends a user's (port's) exclusive
control of the printer and causes the printer to advance to the
top of the next form. The instruction has the following format:

<label> RELEASE

where: <label> is an execution label.
Programming Considerations:

-— <label> is optional.

-— This instruction causes the printer to become available to
another user.

-— The printer is procured by a user when the user attempts to
perform a PRINT instruction and the printer is not in use by
another port. ’

-— The printer advances to the top of the next form.

-— When the user disconnects from the system or keys the

CHAPTER 10. PRINTER OUTPUT 10-7

interrupt procedure on the keyboard, a RELEASE is
automatically performed for that user.

-- This instruction has no effect upon printing being performed
at the remote slave station.

-— This instruction is ignored on non-DATASHARE Systems.

10.4 Printer Considerations

The tabbing (*<n> or *<nvar>) in the PRINT (or RPRINT)
statement can move the carriage in the reverse direction and any
sequence of printer controls are executed in precisely the
sequence specified.

If the servo printer is being used, the paper out condition
is checked whenever a top of form control is given in a PRINT (or
RPRINT) statement. If after the top of form function is
performed, the paper out condition is present the console makes a
beeping sound to alert the system operator that more paper must be
placed in the printer. The beeping sound resumes if the cover is
replaced to its original position with the paper out indicator
still on. The recommended procedure is to open the front cover,
renove the last form still in the printer, place new paper in the
printer with the top of the form aligned with the print head, and
finally close the front cover.

Another feature allowed with the system servo printer (not a
Remote printer) is minor vertical spacing. The following list
depicts the octal control characters (occ) which are used for the
vertical minor spacing and the horizontal column spacing. There
are eight (8) minor vertical spaces for one standard line space.

ocCcC FUNCTION

000 Vertical minor spacing 0 spaces (down the page)
001 Vertical minor spacing 1 space (down the page)
002 Vertical minor spacing 2 spaces (down the page)
003 Vertical minor spacing 3 spaces (down the page)
004 Vertical minor spacing 4 spaces (down the page)
005 Vertical minor spacing 5 spaces (down the page)
005 Vertical minor spacing 5 spaces (down the page)
007 Vertical minor "'spacing 7 spaces (down the page)
010 Vertical minor spacing 0 spaces (up the page)

011 Vertical minor spacing 1 space (up the page)

012 Vertical minor spacing 2 spaces (up the page)

10-8 DATABUS COMPILER

013 Vertical minor spacing 3 spaces (up the page)
014 Vertical minor spacing 4 spaces (up the page)
015 Vertical minor spacing 5 spaces (up the page)
016 Vertical minor spacing 6 spaces (up the page)
017 Vertical minor spacing 7 spaces (up the page)
020 Left carriage movement 7 columns

021 Left carriage movement § columns

022 Left carriage movement 5 columns

023 Left carriage movement 4 columns

024 Left carriage movement 3 columns

025 Left carriage movement 2 columns

026 Left carriage movement 1 column

027 No action

030 Right carriage movement 1 column

031 Right carriage movement 2 columns

032 Right carriage movement 3 columns

033 Right carriage movement 4 columns

034 Right carriage movement 5 columns

035 Right carriage movement 6 columns

036 Right carriage movement 7 columns

037 Right carriage movement 8 columns

These features on the servo printer allows different kinds of
underscoring and super- and/or sub-scripting in the printed
output. Note that it is the user's responsibility to keep track
of the carriage micro-position.

10.5 SPLOPEN
The SPLOPEN instruction allows the DATABUS program to direct

printer outoput to a disk file instead of directly to the printer.
This instruction may have one of the following general formats:

1) ‘<label> SPLOPEN <svarl>
2) <label> SPLOPEN <slit>
3) <label> SPLOPEN <svarl>,<{svar2>
4) <label> SPLOPEN <slit>,<svar2>
5) <label> SPLOPEN <svarl>,<char>
5) <label> SPLOPEN <slit>,<char>
where: <label> is an execution label (see section 2.).
<svarl> is a character string variable.
{svar2> is a character string variable.
<slit> 1is a character string literal.

CHAPTER 10. PRINTER OUTPUT 10-9

<char> 1is a one character string literal.

Programming considerations:

<label> is optional.

When using formats (1), (3) or (5) above, the logical string
of <svarl> specifies the name of the spool file to be opened.

When using formats (2), (4) or (6) above, <slit> specifies the
name of the spool file to be opened.

When using formats (3) or (4) above, the logical string of
<svar2> specifies the options to be used.

When using formats (5) or (5) above, <char> specifies the
option to be used.

The "Q" option specifies that spool output is to bhe appended
onto the end of an existing spool file. TIf the spool file
specified does not exist, it is simply created. If the spool
file specified has an invalid confiquration sector, a SPOOL
trap occurs.

See the interpreter user's guide for a description of any
additional options available.

Invalid options are ignored by the interpreter.

Execution of a SPLOPEN instruction causes the spool file to be
opened on disk exactly as in the PREP instruction. If the
file does not exist, it is created.

If the spool file name is null, the name defaults to
DSPORTnn/PRT where nn is the port number of the port executing
the SPLOPEN instruction.

If the extension is not specified on the spool file name, the
extension is assumed to be /PRT.

A top-of-form is inserted into the spool file.

All printing output generated by the port that executes the
SPLOPEN instruction is sent to the spool file instead of to
the printer until a SPLCLOSE instruction (see section 10.6) is
executed.

The spool file is not closed by execution of a CHAIN

10-10 DATABUS COMPILER

instruction. This implies that if a DATABUS program opens a
spool file and then CHAINs another program, printer output
generated by the second program is sent to the spool file.

Execution of a CHAIN, ROLLOUT, or SHUTDOWN instruction causes
an end of file mark to be written to the spool file. If this
file is specified for spooling with the "Q" option in the
CHAINed program, the first print statement overwrites the end
of file mark.

If another SPLOPEN instruction is executed while spooling is
already active, an automatic SPLCLOSE instruction is executed
for the first spool file, and the new spool file is opened.

No other I/0 should be performed on the spool file until a
valid end-of-file mark is written to the file. The SPLCLOSE
instruction writes an end-of-file mark.

The first character of each record written to the print file
is a printer carriage control character. DATABUS uses the
ANSI standard control characters which are:

1 top of form (new page)
+ no vertical spacing
{space> single space

0 double space

- triple space

The first sector written in the print file is a special header
configuration sector which contains pertinent information
about the print file. The format of this sector is as
follows:

(03) * <EOF LRN> (015) <ID> (015) <# TOFs> (D15) (03)

where: (03) is the physical end of sector marker.
(015) is the logical end of record marker.
* is an asterisk.

<EOF LRN> 1is the record number of the print file's
end of file marker; it consists of eight
ASCII digits.

<ID> is the identification of the port that

created the print file. It is of the form
DSPORTnn/PRT where nn is the port number.

CHAPTER 10. PRINTER OUTPUT 10-11

< TOFs> is the number of top of forms inserted in
the print file. This is equal to the
number of pages in the file, and consists
of eight ASCII digits.
10.6 SPLCLOSE

The SPLCLOSE instruction is used to turn off print spooling.
This instruction has the following general format:

<label> SPLCLOSE

where: <label> is an execution label (see section 2.).

Programming considerations:

-—- <Klabel> is optional.

-— This instruction cancels the effect of an earlier SPLOPEN
instruction. All output generated by PRINT instructions is
now sent to the printer again instead of to the print file.

—-—- If spooling is not active (printer output is not being sent to
a print file as a result of a SPLOPEN instruction), the

instruction is ignored, no action is taken.

-—= An end-of-file mark is written to the spool file.

10-12 DATABUS COMPILER

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT

The following instructions are used for communications
between ports (internal communications) and for communications to
a remote site (external communications (MULTILINK)).

11.1 SEND

The SEND instruction is used to transmit a list of data
variables to a specified destination. The statement has the
following format:

<label> SEND <cmlst>,<route>;<nslst>

where: <label> is an execution label.
<cmlst> is a variable with the COMLST data declaration.
<route> is a string variable that contains the routing
information for the list of variables.
<nslst> is a list of variables either numeric or character
string that are to be transmitted to the specified
destination.

‘Programming Considerations:
-- <label> 1is optional.
-- <cmlst> must be a variable with the COMLST data declaration.

-- <route> must be a string variable. The formpointed character
in the string must be either an "I" specifying internal
communications (between ports) or an "E" specifying external
communications (MULTILINK).

~-- For internal communications (between ports), the two
characters following tne "I" must be valid numeric digits and
are used as the destination port for the data contained in the
list <nslst>.

a) A port number of "Ol" is port 01 or the first port in the
system. . '

b) If there are not two valid numeric digits after the

formpointed character in the <route> variable, the <cmlst>
variable is set to 'clear'. An IO trap is given and the

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT 11-1

c)

£)

9)

h)

For

rest of the instruction is ignored. The SEND operation is
not performed. '

If the destination port is not configured into the system,
the 'channel unavailable' status is set into the <cmlist>.
The SEND operation is not performed.

If a RECV operation is 'pending' on the destination port
the data from the variable(s) in the <nslst> are —
transferred to the variable(s) specified in the RECV
instruction at the destination port. The data is
transferred on a variable to variable basis. That is, the
first variable in the SEND statement is transferred to the
first variable in the RECV statement, and the second
variable (SEND) into the second variable (RECV) until
either the SEND or RECV list is exhausted. If a SEND
variable is longer than the RECV variable, the excess data
is discarded.

If no RECV operations are 'pending' at the destination
port, the <cmlst> status is set to 'channel unavailable',
and the instruction is ignored. The SEND opsration is not
per forined.

For character string variables, the data is transmitted
starting with the first physical character through the
logical length.

For numeric variables, the data is transmitted starting
with the first through the last physical character.

The internal SEND operations are performed in the
backyground.

external commnunications (MULTILINK) the following

considerations are pertinent:

a)

11-2

The information after the "E" in the <route> variable is a
function of the communications process being used. The
compatible line handler user's guide should be consulted
for this information.

If the external communications has not been configured
into the system, or is not-available, the instruction is
ignored and the <cmlst> status is set to 'channel
unavailable'.,

If the external communications is available, the SEND

DATABUS COMPILER

d)

-— If t
neit

instruction is processed, the status of the <cmlist> is
set to 'pending', and the next DATABUS instruction is

executed.
site immedi
not modify

The data may not be transferred to the remote
ately, therefore the DATABUS programmer must
any of the variables mentioned in the SEND

statement until the status of the <cmlst> indicates that
the SEND is complete.

The data tr

ansmitted for external communications is from

the first physical character through the logical length.

Consult the
details.

he routing
her an "E"

trap is given.

Example:
CMLST COMLST
ROUTE INIT
VAR1 INIT
VAR2 FORM
VAR3 INIT
WATIT COMCLR
SEND
CoMTST
GOoro
DISPLAY
11.2 RECV

communication line handler user's guide for

variable <route> formpointed character contains
or "I", the instruction is ignored and an IO

5

R Il{i "

"MESSAGE NUMBER™

4

"THIS IS YOUR MESSAGE™

CMLST

CYMLST,ROUTE;VAR2,VAR2: (SEND MESSAGE)

VAR3 :

CMLST (GET CMLST STATUS)
WAIT IF OVER (DESTINATION PORT NOT

READY)
"MESSAGE NUMBER",VAR2,"TRANSFERRED OK"

The RECV instruction is used to specify a list of variables
which serve as a destination for data from a source. The
statement has the following format:

where:

<label>

RECV <cmlst>,<route>;<slist>

<label> is an execution label.

CHAPTER

11. COMMUNICATIONS INPUT/OUTPUT 11-3

<cmlst> is a variable with the COMLST data declaration.

{route> is a string variable which contains routing
information.

<slist> is a 1list of string variables which are to receive
the data.

Programming Considerations:

<label> is'optional.

<cmlst> is a variable with the COMLST data declaration.

{route> 1is a string variable which contains the routing
information. An "I" specifies internal communication (between
ports) and an "E" specifies external communication
(MULTILINK).

For internal communications, the following facts are
pertinent:

a) There must exist two valid numeric characters after the
formpointed ("I") character in the <route> variable.
These two numeric characters specify the port that is
expected to SEND the data. If the expected SENDing port
number 1is invalid, an IO trap is given and the rest of the
instruction is ignored.

b) When data 1is received from another port, the two
characters following the formpointed character (the "I")
in the <route> variable are overstored with the port
number that originated the data (SENDing port number) .

The actual SENDing port and the expected SENDing port
numbers may be different. A port number of "0l1" specifies
that port 1 was the SENDing port.

c) The <cmlst> status is set to 'communications pending' or
'in process' until a SEND instruction is executed with the
destination specified for the RECVing port.

d) The data is transferred from the SENDing to the RECVing
port on a variable to variable basis. That is the first
SENDing variable is stored into the first RECVing variable
and the second SENDing variable to the second RECVing
variable until either the SENDing or RECVing list is
exhausted.

e) If a RECVing variable will not contain all of the data for
the SENDing variable, the excess data is discarded.

11-4 DATABUS COMPILER

f) 1If the SENDing variable list contains more variables than
the RECVing variable list, the excess variables are
discarded. '

g) If the SENDing variable list contains fewer variables than
the RECVing variable list, the excess variables that did
not receive data have their formpointers and logical
length pointers set to zero.

h) The logical length pointer of the RECVing variables
reflect the amount of data transferred. The formpointer
is reset to 1. v

—-—- For external communications (MULTILINK), the following facts
are pertinent:

a) If the external communications has not been configured
into the system, or is not available, the instruction is
ignored and the <cmlst> status is set to 'channel
unavailable'. The next DATABUS instruction is executed.

b) The logical length pointer is set on all RECVing variables
to reflect the quantity of data received for the variable.
The formpointer is reset to 1.

c) The communication line handler user's guide should be
consulted for additional details on external RECV
operation.

-— If the formpointed character in the <route> variable contains
neither an "E" nor "I", the rest of the instruction is ignored
and an I0 trap is given.

Example:
CMLIST COMLST 1
CMLIST1 COMLST 3
ROUTE INIT "108"
ROUTE1 INIT "108"
VAR1 INIT "PLEASE SEND ME YOUR TIME REPORTS™
EMPLN DIM 5
DATE DIM 10
HOURS DIM 3
SEND CMLIST,ROUTE;VAR] (SEND 'THE MESSAGE)
TEST COMTST CMLIST (TEST THE CMLIST)

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT 11

|
w

GOTO TEST IF LESS (SEND NOT COMPLETE)

GOTO NOTAVAL IF OVER (CHANNEL NOT AVAILBLE)
CYCLE COMCLR CMLIST1 (CLEAR THE COMLIST)

RECV CMLIST1,ROUTELl; EMPLN,DATE, HOURS
TEST1 cCoMTST CMLISTI1 (RECV COMPLETE)

GOTO NOTAVAL IF OVER (CHANNEL UNAVAILABLE)

GOTO TEST1 IF LESS (RECV NOT COMPLETE)

. (STORE DATA)

GOTO CYCLE (GET MORE DATA)
NOTAVAL DISPLAY "CHANNEL UNAVAILABLE"

11.3 COMCLR

The COMCLR instruction is used to clear the status of the
specified communications list <cmlst>. The instruction has the
following format:

<labhel> COMCLR <cmlst>

where: <label> is an execution label. .
<cmlst> is a variable with the COMLST data declaration.

Programming Considerations:
-—- <label> is optional.
- cnlst> must be a variable with the COMLST data delaration.

-- If the actual status of the <cmlist> is 'pending' or 'in
process', and a messaqde is being transferred, the message
being transferred is truncated.

-- If a <cmlst> appears in a SEND or RECV statement, it may not

appear in another such statement without first appearing in an

intervening COMCLR statement.

~— The <cnlst> status is set to ‘clear' when this instruction is
executed.

Exaaple:

11-56 DATABUS COMPILER

CLIST COMLST 5

ROUTE1 INIT "I03"

ROUTEZ INIT "I1s”

MSG INIT "PLEASE NOTIFY EMPLOYEES OF MEETING TODAY"

TEST COMCLR CLIST (CLEAR COMLIST)
SEND CLIST,ROUTE]1;MSG (SEND MESSAGE)
COMTST CLIST (SEND COMPLETE?
GOTO TEST IF LESS (RETRY SEND)
GOTO TEST IF OVER (RECV PORT NOT

. READY.)

. (SEND COMPLETE)

NEXT COMCLR CLIST (CLEAR THE COMLIST

. FOR REUSE)
SEND CLIST,ROUTE2;MSG (NEXT SEND

. OPERATION)

11.4 COMTST

The COMTST instruction is used to access the status

information stored in the communications list <cmlst>. The COMTST

instruction has the following format:
<label> COMTST <cmlst>

where: <label> is an execution label.
<cmlst> is a label with the COMLST data declaration.

Programming Considerations:
-—- <label> is optional.

~-— <Kcrlst> must be a label with the COMLST data declaration.

-—- After the COMTST instruction is executed, the flags are set as

follows:
EQUAL - Communication comnpleted successfully.
OVER - '"Channel unavailable'. For internal communications

(communications between ports) this means that the
port specified to receive the data is not configured

|
~

CHAPTER 11. COMMUNICATIONS INPJT/OUTPUT 11

LESS

into the system. For external ccmmunications
(MULTILINK) this means that either the external
communications was not configqured or was not
available.

‘Communications pending' or 'in process'. This means
that none of the variables specified in the SEND or
RECV instructions should be modified before a
subsequent COMTST instruction yields an EQUAL
condition signifying that the process is complete.

-- If all three of the above conditions (LESS, OVER, EQUAL) are

false,

the <cmlst> variable is said to be 'clear' which means

that it is free to be used in a SEND or RECV statement.

Example:

CMLIST
ROUTE
V1

V2

WAIT

NXTMSG

COMLST 5

INIT "I05" _

INIT "THIS IS YOUR MESSAGE"
DIM 50

-

COMCLR CMLIST

SEND CMLIST,ROUTE;V1,V2

COMTST CMLIST (GET STATUS OF CMLIST)

GOTO WAIT IF OVER (DESTINATION PORT NOT
READY TO RECV)

. (PROCEED WITH NEXT

' MESSAGE)

11.5 COMWAIT

The COMWAIT instruction is used to suspend program execution
at a DATASHARE port. Execution is suspended until either a SEND
or a RECV instruction (see sections 11.1 and 11.2) indicates I/0

completion.

This instruction has the following format:

<label> COMWAIT

where: <label> is an execution label (see section 2.).

Programming Considerations:

11-8

DATABUS COMPILER

<label> is optional.

If no SEND or RECV instructions have initiated communication,
the COMWAIT instruction is treated like a "No OPeration" (NOP)
instruction. Execution continues with the next instruction,
as if the COMWAIT instruction had not been included in the
program.

If any communications ('pending' or 'in process'}) are active
when the COMWAIT instruction is executed, execution of the
program is suspended. That is, program execution does not
continue with the next instruction until a signal to continue
is received. This suspension of program execution imposes
very little overhead on a DATASHARE system.

If any active communications has a completed status, COMWAIT
acts as a "No OPeration" (NOP). If no communications process
has a comleted status and one or more communications process
has a pending or in-process status, COMWAIT suspends execution
until one of the pending or in-process communications
processes changes to complete status. This suspension of
program execution imposes very little overhead on a DATASHARE
system. To prevent the COMWAIT from acting as a NOP, all
communications processes that have completed and are no longer
useful should be cleared using the COMCLR instruction before
the COMWAIT is executed.

Terwmination of any one of the communication processes
indicates to the COMWAIT instruction that it should resume
execution. This allows the programmer to avoid putting the
COMTST (see section 11.4) within a tight loop to check for
termination of a communication task. Such tight loops impose
considerable overhead on a DATASHARE system.

Since any communication process may cause execution to resume,
a series of COMTST instructions must be used to determine
which process terminated. This series of tests imposes much
less overhead on the system than the tight loop method
described above.

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT 11-9

Example:

A COMLST 3
3 COMLST 5
AROUTE INIT "EOO™
BROUTE INIT "ECO™
AVAR INIT "STRING1"
BVAR INIT | "STRING2"Y
SEND A,AROQUTE;AVAR
SEND B,BROUTE ; BVAR
WATIT COMWAIT
COMTST A
“GOTO ACOMP IF EQUAL
COMTST B
GOTO BCOMP IF EQUAL
ACOMP COMCLR A

(Modify AVAR)

SEND A,AROUTE; AVAR
Goro WAIT
3COoMP COMCLR B

(Modify BVAR)

SEND B,BROUTE;BVAR
GOoTo WAIT

11.6 DIAL

The DIAL instruction is used to cause the Central Station
dial a Remote Slave. This instruction may have one of the
following general formats:

1) <label> DIAL {svar>

2) <label> DIAL <slit>
where: <label> 1s an execution labhel.

<svar> 1s a character string variable.
<slit> 1is a character string literal.

Programming consideratons:
-—- <label> is optional.

—-— The string variable or literal contains the number to be

11-10 DATABUS COMPILER

to

dialed. This string may consist only of the following
components.

a) The digits 0-9.

b) An "*" which causes a five (5) second pause in the dial
sequence.

c) A "-" which causes no action to be taken by the
interpreter but may be used to improve readability.

DIALing is performed by a DATASHARE foreground task.
Background operations for the dialing user are suspended until
communication is established or a time-out occurs.

The wait before a time-out is signaled varies. If DATASHARE
is configured to run asynchronous communications, time-out is
approximately 180 seconds (3 minutes). If configured to run
synchronous communications, the time is dependent upon the
Automatic Calling Unit's time-out adjustment. 1In either case,
a call is attempted eight times before a time-out is reported
to the user progran.

If communications are established, the EQUAL flag is set.

If a time-out occurs (no answer) the OVER flag is set.

It is invalid to execute a DIAL instruction if communications
are already established. The LESS flag is set if this is
attempted.

If the string variable or string literal used to specify the
phone number is null, the EO0S flag is set.

11.7 POLL

The POLL instruction is used to improve throughput when

handling pollable terminals.

Under interpreters without POLL, pollable terminals, (if ever

supported), would have to be handled in the following manner:

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT 11-11

ANSWER DIM 1

ACK INIT <== Positive acknowledgement
POLL KEYIN *EOFF,*+,*T,<polseg>,ANSWER;
CMATCH ACK TO ANSWER ,
GOTO TIMEOUT IF EOS
GOTO POLL IF NOT EQUAL

Where <polseqg> is a terminal-dependent polling sequence.

The above code works with a light system load, say only one
port active. However, as the system load grows heavier (i.e.
several ports begin running), the interpreter begins to thrash,
spending a great deal of its time swapping and changing background
users because most of the time a negative acknowledgement is sent
back by the polled terminal (i.e. a "nothing happening response").
A positive acknowledgement means the terminal is ready for
communication with the central processor; for instance, the
operator has hit some type of transaction key. To avoid this
overhead, the POLL instruction basically moves the above logic out
of the user's DATABUS code, and moves it to the interpreter's
code. This instruction has the following general format.

<label> POLL <list controls>,<adr>,<var>;<list controls>,<varlist>

where <label> is an execution label.
<adr> is a string variable containing the
terminal address or addresses.
<{var> is a string variable for temporary use by

the interpreter during POLL verb
execution.

<list controls> is a list of polling options. The list
controls allowed are: *OP, *EP, *NP,
*T<n>:<m>, and *+.

<varlist> is a-list of character and numeric string
variables.

Programming considerations

~-- *+ is the POLL~continuous option which indicates that the
interpreter should ignore the time out condition on a terminal
and proceed polling the next terminal. This is useful for a
port with multi-dropped terminals if one of the terminals is
inactive (powered down, for example).

-- *0P requests ODD parity generation on each outgoing byte.

~-- *EP requests EVEN parity generation on each outgoing byte.

11-12 DATABUS COMPILER

*NP requests NO parity generation on outgoing bytes.

*0P, *EP, and *NP are mutually exclusive. O0Only one of the
three may be specified.

*T<n>:<m> is the time out and NAK count definition. Here <n>
is expressed in tens of milliseconds and can range from 0 to
255. This is the maximum time to wait for the first character
of the response, after the transmission of the last character
of the polling sequence variable, before signalling a time
out. <m> is the number of retries with a "NAK" response that
are accepted before the poll command is terminated. <m> may
range from 0 to 255. 0 indicates that polling should continue
indefinitely until a non-NAK response is received.

If *T<n>:<m> 1is not specified, a default time out value
equivalent to a 10 second wait is used along with an infinite
NAK count.

The following conditions most often cause a time out.

Incorrect terminal address is used.
Incorrect polling sequence is used.
Terminal is inactive.

Wrong I/0 cable is used.
Malfunction of the terminal itself.

Uds W oo =
N e St S e

<varlist> is a list of character string or numeric string
variables to accomodate the response to the POLL.

Upon normal exit from the POLL, the EQUAL flag is set. If the
NAK count expired, the EQUAL flag is false.

The EQUAL flag is cleared if the USRRX or USRTX routines
indicate an error.

The EO0S flag is set if the poll sequence returned by USRPOL is
too long to fit into the temporary storage variable, or is of
zero length.

If a time out occurs, the LESS flag is set.

It is possible for both an error to occur (EQUAL flag
cleared), and a time out -to occur (LESS flag set) on the same

POLL instruction.

Consult the appropriate interpreter user's guide for a
description of the routines used to handle POLLing.

CHAPTER 11. COMMUNICATIONS INPJT/OQUTPUT 11-13

Examples of addresses (<adr>'s):

TT151 INIT 002
MINICI INIT "A"
TT151M INIT 002,003,004,005

Examples of <var>'s:

POLLSEQ DIM 2
MCISEQ DIM 3

Examples of complete instructions:

POLL *T7100:0,TT151, POLLSEQ;ANS
POLL MINICI,MCISEQ;A,B,C,D

Example of timing controls:
POLL *T10:0,MINICI,MCISEQ;<1list>
In this example, if no response from a polled terminal is

received for 100 milliseconds, the time out condition is set true
(LESs flag). :

11-114 DATABUS COMPILER

11.7.1 Process Control steps for POLL
The process control steps for the POLL instruction are:
(1) Get the address variable and storage variable.
(2) Pass the address of the address list to USRPOL.
(3) Transmit the polling sequence to the terminal.

(3) If the polling sequence is of legal length

Then transmit the polling sequence to USRPOL
Else i) set the £E0S flag
ii) Go to step (9)

(4) wait for a response from the terminal.

(5) If an amount of time (specified by *T<n>:<m>) has elapsed
without any response.

Then time out occured,

If the POLL continuous option (*+) was specified
Then Go to step (2)
Slse 1) Set LESS flag true (time out)

ii) Go to step (9)

Else

(h) Pass the received byte(s) to USRPOLRX until COMPLETE or ERROR
is reported.

(7) If a negative acknowledgement is reported by USRPOLRX

Then ,
If the NAX count (as specified by *T<n>:<m>) has not been
exhausted

Then Go to step (2)

Else 1) Clear the EQUAL flag

1i) Go to step (9)

Else

(3) Pass the byte returned from URSPOLRX to USKRRX. Put the byte
or bytes returned from USRRX into the first byte or bytes of
the first variable in the list.

Subsequent bytes, if any, are passed to USRRX, one at a time.

The byte or bytes returned from USRRX are stored into items in
the list in a way similar to KEYIN.

CHAPTER 11. COMMUNICATINONS INPUT/QOUTPJT 11-15

(9) Return to the background user program.

Note: It is the user's responsibility to check the response,
to make sure it is what was expected. It is also the user's
responsibiliy to manage the address list. (The formpointer and
length pointer may be used for this purpose).

Example:
ACK EQU 006 Positive acknowledgement
NAK EQU 025 Negative acknowledgement
ADR EQU 002 Address of teller terminal

«ec....Polling variables.......

TTADR INIT ADR Address list
POLSEQ DIM 2 Polling sequence storage area
ANS DIM 1 Poll response

cese...P0lling program...ccoe...

POLL TTADR,POLSEQ;*T10:0, ANS

GOTO USERROR IF EOS

GOTO TIMEQUT IF LESS

CMATCH ACK TO ANS

GOTO GARBAGE IF NOT EQUAL
..... Request acknowledged.....

GARBAGEe0v...

USERROR

TIMEOUTcc...

11-16 DATABUS COMPILER

Example of Multi~-dropped terminals:

TTADRS INIT 002,003,004 3 terminals
POLSEQ DIM 2

ANS DIM -1

TERMINAL INIT 000

-««.. Polling Program

® o o0 o0 0

POLL TTADRS, POLSEQ; *+,ANS

«+«... Request acknowledged ...

CMOVE TTADRS TO TERMINAL
- OR "0" TO TERMINAL
CONSOLE "REQUEST FROM " ,TERMINAL

e+ee.. Process for this terminal

On this example the POLL-continuous option (*+) is used to

continue polling even if a time out occurs on one of the
terminals.

"OR" is used to convert the binary teller terminal address,

pointed to by the formpointer in TTADRS, to an ASCII character in
order to display it on the console.

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT 11-17

CHAPTER 12. DISK INPUT/OUTPUT

These instructions make use of the Datapoint DOS file
structure while reading from and writing to the disk. For more
details about this structure, see the DOS User's Guide and the
Systems Guide of the appropriate DOS. Basically, the DOS file
structure is as follows.

The smallest unit of storage on the disk is the sector. All
disk I/0 hardware operations affect entire sectors, never a
partial sector. Each sector is capable of saving up to 251 bytes
of information (there are actually 255 bytes per sector, but 5
bytes are reserved for use by DOS).

In most cases, the information to be saved does not fit
within one sector. To handle such information, sectors are
arranged into groups called files.

The DOS file structure is made up of files arranged so that

they can be easily referenced by names associated with them. The
name associated with a file is usually selected by the user.

A good analcgy 1is to think of the DOS file structure as
follows:

file cabinet
folder in the cabinet
sheet of paper in the folder

file structure
file
sector

This analogy is used later in the discussion of disk 1/0.

Note: the disk structures on the remote station disks
(diskettes) and the central station disks are identical from the
prograitier's point of view. The only difference depends on
whether the file was declared using RFILE or RIFILE, rather than
FILE, IFILE, or AFILE. If it was declared using RFILE or RIFILE,
the file accessed is on a remote station disk (diskette). If it
was declared using FILE, IFILE, or AFILE, the file accessed is on
a central station disk.

|
[-—

CHAPTER 12. DISK INPUT/OUTPUT 12

12.1 File Structure

When a group of sectors is organized into a file, some
information about the location of those sectors must be kept by
DOS and the DATABUS interpreter.

DATABUS keeps its information about each file in the user's
data area. The file declaration statements (see Chapter 5) are
used to reserve space in the user's data area for this
information.

The information kept by DATABUS is described below.
~— The drive number of the disk drive on which the file is found.
-— A pointer to the physical location of the file.

-— The following pointers which describe the current position
within the file.

a. The record number, which points to the sector currently

being referenced. A record number of 0 indicates the
first sector within the file.

b. The character pointer, which points to the user data byte
currently being referenced within the sector. The first
user data byte of the sector is indicated by the character

pointer being equal to 1.
-— A counter used to keep track of the number of spaces when
using space compression (for more details on space
compression, see section 12.1.2).

-— Two additional pointers are included for use with index
sequential files only. These are:

a. A pointer to the logical record last referenced by using
the index file.

b. A pointer to the next key in sequence. (All of the Kkeys
in the index file are sorted using their ASCII values.)

12-2 DATABUS COMPILER

12.1

.1 Record Structures

There are several ways of organizing records on the disk

sectors. All of them provide different methods of accessing the

info
used

rmation saved on the disk. The types of records that can be
are physical records, logical records, indexed sequential

records and associative indexed records.

12.1

Prog

Anal

file structure

.1.1 Physical Records
ramming Considerations:

A physical record corresponds to exactly one sector on the
disk.

A physical record starts with the first user data character of
the sector.

An 003 (octal) character terminates a physical record.
There are at most 250 data characters in a physical record.

(Note: when considering physical records, the logical
end-of-record character, 015, is treated as a data character.)

ogy:

file cabinet

file folder in the cabinet
sector = sheet of paper in the folder
physical record = page of text on the sheet of paper

12.1

Prog

.1.2 Logical Records
ramming Considerations:
A logical record is terminated with an 015 (octal) character.

A logical record starts with the character immediately
following the 015 of a previous logical record.

More than one logical record may be saved on a physical
record. '

Logical records may extend across physical record boundaries.

There is no restriction upon the length of a logical record.

CHAPTER 12. DISK INPUT/OUTPUT 12

|
w

A single logical record may extend across many physical
records. (It is a good idea to keep logical records
reasonably short to make them easy to deal with.)

Analogy:

file structure file cabinet

file folder in the cabinet

sector = sheet of paper in the folder

physical record page of text on the sheet of paper
logical record paragraph of text on the sheet of paper

Il

Example: Four logical records could appear on the disk as
follows:

ASC asc asc asc asc asc oct asc asc asc asc asc asc oct asc oct

L I N B 1 015 L I N B 2 015 L 003
asSC asc asc asc asc oct asc asc asc asc asc asc oct oct
I N g 3 015 L I N E 4 015 003

Note that the first physical record contains two logical records
as well as the first letter of a third. The third logical record
starts in the first physical record and continues into the second
physical record. At this point the fourth logical record starts
and continues to the end of the physical record.

Example: If the same four logical records are written to the disk
one per physical record, they appear as follows:

asc asc asc asc asc asc oct oct

L I N E 1 015 003
asc asc asc asc asc asc oct oct
L I N E 2 015 003
asc asC asc asc asc asc oct oct
L I N E 3 015 0903
asc asc asc asc asc asc oct oct
L I N E 4 015 003

Note that it took twice as wmuch disk space to save the same amount
of information in this example than in the previous example. It
is sometimes desirable to give up this disk space to provide
faster and easier access to a logical record.

12-4 DATABUS COMPILER

12.1.1.3 Indexed Sequential Records

An indexed sequential record is a logical record that is

named. This makes it possible to reference a record by simply
specifying the name of the record.

Programming Considerations:

The name that is associated with the logical record is called
a key.

There is no distinction between a data file that is indexed
and one that is not.

All of the keys, associated with the records in a data file,
are saved in a separate file. This file, that contains the
keys for another data file, is called an index file.

There may be more than one index sequential or associative
index file associated with a single data file.

Index sequential and associative index files can reference the
same data file.

Older DATABUS interpreters require that all index files have
the DOS file extension of /ISI, newer ones accept any
DOS-1legal extension.

The index file contains:

a. The name and extension of the data file which it indexes.

b. The keys.

¢. The pointers necessary to associate the keys with the
logical records.

The DOS INDEX command is the only way that index files can be
created. For more details on INDEX, see the DOS User's Guide.

All keys put into the index file by the DOS INDEX utility do
not have any trailing spaces. (Unnecessary spaces cause
larger index files and lonjer access times.)

The index structure is an n-ary tree, where:

a. n is determined by the number of keys that fit within a
sector.

CHAPTER 12. DISK INPUT/OUTPUT 12-5

b. Each node of the tree is contained within one disk sector.

c. The tree has enough levels so that the uppermost node fits
within one disk sector.

d. The lowest level of the tree is a linked list. The keys
in the linked list are arranged sequentially according to
their ASCII values.

e. Depending on the length and path of this linked list, the
time spent in traversing this list can lead to
considerable overhead. The INDEX utility may be used to
reorganize this list to minimize the time spent in
traversing it. USE THE INDEX UTILITY FREQUENTLY!

Analogy:

file structure = file cabinet

file = folder in the cabinet

index file = folder that contains the table of contents of
another folder

sector = sheet of paper in the folder

physical record = page of text on the sheet of paper

logical record = paragraph of text on the sheet of paper

12-6 DATABUS COMPILER

The following diagram demonstrates the way in which the keys are
associated with the logical records.
only 3 keys fit per sector and that the data file was indexed on

column 5. The *'s
indicated by ---.
Index file
A
*
D
-——— *
A G
* *
J —_———
* J
* *
* *
——— *
*
*

1
1
I

indicate pointers.

* % H * ¥ T % % @ * %M ok ¥ % » U * k() * ¥ O* XD

* Ok * % F ¥ ¥ U

| Data file

asc

asc

asc

asc

asc

asc

asc

asc

asc
L

CHAPTER 12.

asc

asc

asc

asc

asc

asc

asc

asc

asc
I

The diagram assumes that

asc
N

DISK INPUT/OUTPUT

asc
B

asc

asc

asc
E

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

asc

Sector boundaries are

oct
015

oct
015
oct

015

oct
015

oct
015
oct

015

oct
015

oct
015

oct oct
015 003

12-7

12.1.1.4 Associative Indexed Records

An associative indexed record is a logical record that can be
accessed by specifying a generic key. The user specifies pieces
of certain parts of the record to be used as a mask when
retrieving a record. It is possible to access these records by
specifying multiple keys, partial keys, or a ccmbination thereof.

Programming Considerations:

—-— There is no distinction between a data file that is
associatively indexed and one that 1is not.

—— All of the key information, associated with the records in a
data file, are saved in a separate file. This file, that
contains the key information for another data file, is called
an associative index file.

—-— There may be more than one index sequential or associlative
: index file associated with a single data file.

-- Index sequential and associative index files can reference the
same data file.

—-— The associative index file contains:
a. The name and extension of the data file which it indexes.
b. The key information.

c. The pointers necessary to associate the keys with the
logical records.

-— The AIMDEX command 1s the only way that associative index
files can bhe created. For mnore details on AIMDEX, see the
addendum to the DOS. 2.5 user's guide.

-- If many additions have been done to the associativs index
file, access time may increase. The AIMDEX utility may he
used to reorganize the associative index file to minimize the
time spent in accessing it.

12-8 DATABUJS COMPILER

Analogy:

file structure
file
associative index file

file cabinet

folder in the cabinet

folder that contains several
cross-references of another folder
sector sheet of paper in the folder

physical record page of text on the sheet of paper
logical record = paragraph of text on the sheet of paper

[T}

12.1.2 Space Compression

In some data files large numbers of contiguous spaces appear.
The disk space used by such files may be compressed by replacing
the contiguous spaces with a count of the spaces. The following
programs all produce space compressed disk files: EDIT, SORT,
REFORMAT, DATABUS complilers (print files), several terminal
emulators and all of the DATABUS interpreters.

Space compression is done by counting the contiguous spaces,
then replacing them with the following: the 011 (octal) control
character followed by a byte which contains the count of the
spaces. This number is never less than 2 (since it is wasteful to
expand one or zero spaces into two characters) and may be as large
as 255. Any program that encounters the 011 on the disk then
looks at the next byte to get the number of spaces that should
appear at that point in the record. The 011 never appears as the
last character in a physical record. This prevents the 003 (end
of physical record) from being used as a count of 3 spaces.

Trailing spaces are never written to space compressed records
unless the number of spaces exceeds the limits of the counter used
by the interpreter (see section 12.1) to count spaces during space
compression. In this case, a trailing space compression indicator
is written to the record. Typically, this only occurs when there
are more than 255 trailing spaces in the record. Normally, the
015 (end of logical record) character is written immediately after
the last non-blank character in the record.

If the record is to be modified in place, using space
compression 1is discouraged. If the number of spaces is changed by
the modification, the position of any non-blank characters may be
shifted within the physical record. This could easily cause a
FORMAT trap on subsequent reads from that record.

Example: In the following, a logical record is shown first
without space compression, and then with space

CHAPTER 12. DISK INPUT/OUTPUT 12

|
O

compression.

asc asc asc asSc asc asc asc asc asc asc asc asc asc asc oct oct

1 2 5 X 015 003
asSCcC asc asc oct oct asc oct oct asc oct oct
1 2 011 002 5 011 005 X 015 003

Programming Considerations:

—-- The DATABUS interpreters make certain assumptions about the
use of space compression. These assumptions are based on the
file operations requested and the access technique used. The
default conditions are as follows:

1) Space compression is set on when:

a) the file is initially opened (using OPEN (see section
12.3.1) or PREPARE (see section 13.2)).

b) a physically random, indexed sequential or associative
indexed access read operation is requested.

c) the *+ list control is encountered in a write operation.
2) Space compression is set off when:

a) a physically random, indexed sequential or associative
indexed access write operation is requested.

b) the *- list control is encounted in a write operation.

Therefore, space compression is on at the beginning of a
physically sequential WRITE that occurs as the next operation
after the file has been OPENed, or a read operation of any kind
nhas been performed. Space compression is off at the beginning of
any physically random, indexed sequential or associative indexed
access write operation, and the status of space compression is not
changed by any other operations. 1If the desired space compression
mode for a write operation is not obtained by the above rules, the
*+ and *- controls have to be used to get the desired mode. Note
that these controls can erase the memory of previously accunulated
spaces, if used after the beginning of the statement list while
space compression has been on.

12-190 DATABUS COMPILER

12.1.3 End of File Mark

The END-OF-FILF mark (EOF) is a special type of physical
record which is written to the disk as the last physical record of
a file.

The end of file mark always starts at the beginning of a
physical record and looks like the following physical record:

oct oct oct bct oct oct oct
000 000 000 00O 000 000 003

The rest of the characters in the sector are of no significance.

. All records between the beginning of the file and the EOF
must be in acceptable physical record format. Any record that is
not in this format causes an IO or FORMAT trap when accessed. An
empty file is acceptable; that is, any file which has an EOF as
its first physical record is acceptable.

12.2 Accessing Methods

All disk I/0 in DATABUS is based upon establishing a position
within a file. Once this position is established, all accesses
are performed by moving this position within the file. This
position within the file is completely described by the record
number and character pointer described in section 12.1.

Bumping the position in a file refers to bumping the
character pointer, with one exception. If the character pointer
is bumped to the physical end-of-record character (003), the
following actions are taken:

a. the record number is bumped by one, and

b. the character pointer is set to one.

12.2.1 Physical Record Accessing

Physical record accessing .is the fastest and simplest method
of accessing information within a file. Physical record accessing
may be used to randomly access information on the disk.

Programming Considerations:

-- Each physical record in a file is assigned a positive integer

CHAPTER 12. DISK INPUT/OUTPUT 12-11

number. 0 1is assigned to the first physical record in the
file, 1 to the second, 2 to the third, and so on to the last
record in the file.

——- To access a record, the programmer must specify the record
number of the physical record he wishes to use.

——- The position in the file is modified to be:

a. The record number of the file is set to the number
supplied by the programmer.

b. The character pointer 1is set to one.

—— Once the position has been established, the access continues
as if it had been a logical record access (see section
12.2.2).

12.2.2 Logical Record Accessing

This is the access method used to read and write logical
records. This access method allows only seqguential processing of
disk records. If random access to logical records is desired, the
slower indexed sequential or associative indexed accessing must be
used.

Prograunming Considerations:

—— The position within the file is not reset initially.

—-— The position within the file is bumped by one for every
character accessed on the disk.

-- Bumping the position to the physical end-of-record character
is described in section 12.2.

-— When the logical end-of-record character (015) is
read/written, the following actions are taken:

a. record processing is terminated.

b. the position within the file is bumped past the 015.

12-12 DATABUS COMPILER

12.2.3 Indexed Sequential Record Accessing

This method is used to reference logical records randomly or
sequentially by key value. While this method provides greater
flexibility in random accessing, it is also slower. If the time
spent in accessing the disk is critical, a means of using physical
record accessing should be used.

Programming Considerations:
-- There are five basic indexed operations:
a. Read the named logical record.

b. Read the next record in sequence. (The keys are sorted in
ascending ASCII collating sequence.)

c. Add the named logical record.
d. Delete the named logical record.
e. Modify the named logical record.

-- Since there can be any number of indexes into one data file,
adding (or deleting) a record involves adding (or deleting)
the key into (or from) all of the indexes.

-- In addition to the position within the data file, DATABUS
maintains another position within the index file. Once this
position has been established, it is used to access the record
whose key is next in the ASCII collating sequence.

—-— To use the indexed facilites of the DATABUS ianguage, the file
must be indexed in ascending ASCII collating sequence.

—- The position within the data file is established by finding
the key in the index file and using the pointers saved there
as the position. This does not apply to additions, since the
key is not in the index file vyet.

—— The position within the data file for additions is always at
the end of the data file. For more details, see section 12.2.

—-— Once the position within the data file has been established,
the access continues as if it had been a logical record access
(see section 12.2.2).

—-- An indexed sequential access causes the following number of

CHAPTER 12. DISK INPUT/OUTPUT 12-13

disk sectors to be read.

a. One sector for each level of the index except the lowest
level.

b. At least one sector for the lowest level of the index.
The number of disk reads at this level can become very
large, if the index file has not been re-built recently.
This is particularly true if a large number of keys have
been inserted into the index. USE THE INDEX UTILITY
FREQUENTLY!

C. Whatever disk functions are required to perform the actual
read or write operation.

-—- The linked list at the lowest level of the index has a very
long and disorganized path when a data base is initialized
using additions. This leads to considerable overhead. If a
data base must be initialized using additions, using the INDEX
utility to clean up the index is particularly important.

—-— Both physical record and logical record accesses can e made
to indexed sequential files.

12.2.4 Associative Indexed Record Accessing

This method is used to reference logical records randomly or
to obtain all records meeting a certain set of criteria. While
this method provides much greater flexibility in random accessing,
it is also slower. 1If the time spent in accessing the disk is
critical, a means of using physical record accessing should be
used.

Programming Considerations:

-— There are five basic associative indexed operations:

a. Read a logical record meeting generic key criteria.

b. Read another logical record meeting the same generic key
criteria as given on a previous read.

c. Add a logical record.
d. Delete a logical record.

e. Modify a logical record.

12-14 DATABUS COMPILER

-- Since there can be any number of associative indexes into one
data file, adding a record involves adding the key information
into all of the associative indexes.

-- The position within the data file for additions is always at
the end of the data file. For more details, see section 12.2.

-— Once the position within the data file has been established,
the access continues as if it had been a logical record access
(see section 12.2.2).

-- Additions to the associative index file generally cause
accesses to slow down. This can lead to considerable
overhead. If a data base must be initialized using additions,
using the AIMDEX utility to clean up the associative index is
particularly important.

-— Both physical record and logical record accesses can be made
to associative indexed files.

12.3 General Instructions (Disk I/0)

There are many aspects of some of the Disk I/0 instructions
which are common to all of the acessing methods. The following
sections discuss these common aspects of several of the
instructions.

12.3.1 OPEN (General)

The OPEN instruction is used to initialize a logical file for
use by a DATABUS program. The use of logical files allows a
DATABUS label to be associated with a file on the disk. One of
the following general formats may be used:

1) <label> OPEN <file>,<slit>

2) <label> OPEN <file>,<svar>

3) <label> OPEN <ifile>,<slit>

4) <label> OPEN <ifile>,<svar>

5) <label> OPEN <rfile>,<slit>

5) <label> OPEN <rfile>,<{svar>

7) <label> 'OPEN <rifile>,<slit>

8) <label> OPEN <Krifile>,<svar>

9) <label> OPEN <afile>,<slit>
10) <label> OPEN <afile>,<svar>
11) <label> OPEN <afile>,<slit>,<char>
12) <label> OPEN <afile>,<svar>,<char>

CHAPTER 12. DISK INPUT/OUTPUT 12-15

13) <label> OPEN afile>,<slit>,<svarl>

14) <label> OPEN <afile>,<svar>,<svarl>
where: <label> 1is an execution label (see section 2.).
<slit> is a literal of the form "<string>" (see section
2.5). _
<svar> is a string variable (see section 4.2).
<char> is a one character string (see section 2.5).
<svarl> 1is a string variable (see section 4.2).
<file> is a file declared using the FILE declaration

(see section 5.1).

<ifile> is a file declared using the IFILE declaration
(see section 5.2).

<rfile> 1is a file declared using the RFILE declaration
(see section 5.3).

<rifile> 1is a file declared using the RIFILE declaration
(see section 5.4). '

<afile> 1is a file declared using the AFILE declaration
(see section 5.5).

Programming Considerations:

<label> is optional.
<slit> must be a valid character string (see section 4.2).

The value of <svar> is unchanged by the execution of this
instruction.

The string literal, when using format (1), (3), (5), (7)), (9),
(11) or (13); specifies the DOS name of the disk file to be
associated with the label.

The string variable, when using format (2), (4), (5), (8),
(10), (12) or (l4); specifies the DOS name of the disk file to
be associated with the label.

If the extension is not furnished by the string literal or
string variable, the following extensions are assumed:

a) /TXT for those files opened using formats (1), (2), (5)
and (5).

b) /ISI for those files opened using formats (3), (4), (7)
and (8).

c) /AID for those files opened using formats (9), (10), (11),
(12), (13) and (14).

12-15 DATABUS COMPILER

One of the following rules is used to build the DOS name from
the striny in the string variable or string literal:

a) The characters used start with the formpointed character
and continue until eight characters have been obtained, or

b) If the logical end of string is reached before eight
characters have been obtained, the remainder of the eight
characters are assumed to be blanks.

c) HNewer interpreters allow the file to be specified using
the DOS standard <filename>/<extension>:<drive # or volid>
form.

The character used to specify the drive number is obtained
from the string variable or string literal using one of the
following rules:

a) If (a) above is used to obtain the name, the character
after the eighth character is used as the drive
specification, or

b) If (b) above is used to obtain the name, the character
following the one pointed to by the logical length pointer
is used as the drive specification, or

c) If the last character obtained from the stringy is
physically the last character in the string, the drive
number is unspecified.

d) Newer interpreters allow the drive to be specified in DOS
standard form, :Dn, :DRn, or by volume name.

If the character used as the drive specification is not an
ASCII digit (0 through 9), the drive number is unspecified.

If the drive number is unspecified, all drives are searched
for the file (starting with drive 0 and ending with the
highest numbered drive that is on-1line).

If the character used as the drive specification is an ASCII
diqgit, only the drive with that number is searched to find the
file.

If the specified drive is off-line, an I/0 error occurs.

when using formats (11), (12), (13) or (l4); the <char>, or
the formpointed character of <(svarl>, specifies the "don't

CHAPTER 12. DISK INPUT/OUTPUT 12-17

care character" to use when specifying keys forvthe AIM file.
—-— Any number of logical files may be open at one time.

-— If the specified logical file is already open, the equivalent
of a CLOSE instruction is executed before proceeding with the
OPEN.)

-— An attempt to OPEN a file that does not exist results in an
I1/0 error.

-— Executing the OPEN instruction initializes the logical file
without changing the disk file in any way.

—— Space compression is turned on by the execution of an OPEN
instruction.

Assume that the following statements were included in the
program previous to the statements in all of the following
examples:

FILE FILE
FILENAME INIT "PAYROLLIL"
Example:
SETLPTR FILENAME TO 9 SET THE LOGICAL LENGTH POINTER TO ©
RESET FILENAME TO 4 SET THE FORMPOINTER TO 4
OPEN FILE,FILENAME

this OPEN instruction tries to find and initialize a file namned
ROLL11/TXT on any drive on which it can be found.

Example:

SETLPTR FILENAME TO 8 SET THE LOGICAL LENGTH PJOINTER TO 8
- RESET FILENAME TO 4 ScT THE FORMPOINTER TO 4
OPEN FILE, PFILENAME

this OPEN instruction tries to find and initialize a file named
ROLLL/TXT from drive 1.

12-18 DATABUS COMPILER

Example:

SETLPTR FILENAME TO 8 SET THE LOGICAL LENGTH POINTER
RESET FILENAME TO 1 SET THE FORMPOINTER TO 1
OPEN FILE, FILENAME

this OPEN instruction tries to find and initialize a file named
PAYROLL1/TXT from drive 1.

Example:
SETLPTR FILENAME TO 9 SET THE LOGICAL LENGTH POINTER
RESET FILENAME TO 1 ' SET THE FORMPOINTER TO 1
OPEN FILE, FILENAME

this OPEN instruction tries to find and initialize a file named
PAYROLL1/TXT from drive 1.

Example:
SETLPTR FILENAME TO 7 SET THE LOGICAL LENGTH POINTER
RESET FILENAME TO 1 SET THE FORMPOINTER TO 1
OPEN FILE,FILENAME

this OPEN instruction tries to find and initialize a file named
PAYROLL/TXT from drive 1.

Example:
SETLPTR FILENAME TO 3 SET THE LOGICAL LENGTH POINTER
RESET FILENAME TO 1 SET THE FORMPOINTER TO 1
OPEN FILE,FILENAME

this OPEN instruction tries to find and initialize a file named
PAY/TXT from any drive on which it can be found.

12.3.2 CLOSE (General)

The CLOSE instruction is used to return any unused, newly
allocated disk space to DOS for use by another file. CLOSE may
have one of the following general formats:

1) <label> CLOSE <file>

2) <label> CLOSE Kifile>
3) <label> CLOSE <rfile>
4) <label> CLOSE Krifile>
5) <label> CLOSE <afile>

CHAPTER 12. DISK INPUT/OUTPUT 12-19

TO

TO

TO

TO

where: <label> 1is an execution label (see section 2.).

<file> is a file declared using the FILE declaration
(see section 5.1).

<ifile> is a file declared using the IFILE declaration
(see section 5.2).

<rfile> is a file declared using the RFILE declaration
({see section 5.3).

<rifile> is a file declared using the RIFILE declaration
(see section 5.4).

<afile> 1is a file declared using the AFILE declaration
(see section 5.5).

Programming Considerations:

<label> is optional.

The equivalent of a CLOSE instruction is automatically
performed when one opens a logical file that is already open.

Executioh of the CLOSE instruction does not write an
end-of-file mark to the file.

Closing a file from another port could affect the file being
used at your port.

Execution of the CHAIN instruction (see section 6.8), causes
all logical files that are open to be automatically closed
without space deallocation being performed. Note that this
means files cannot be held open across program chains.

A potential problem exists when the CLOSE instruction is
perforimed on files that are in use by more than one port.
There is a discussion of this problem in Appendix D.

Note that newer interpreters allow CLOSEing of shared files
under certain circumstances, without the possibility of loss
of data.

Consult the user's guide of the interpreter you are using for
further information on aspects relating to CLOSE.

12-20 DATABUS COMPILER

12.3.3 READ (General)

The READ instruction is used to get information saved on the

disk
have

1)
2)
3)
4)
5)
6)
7)
8)

where:

<label>
<label>
<label>
<label>
<label>
<lahel>
<label>
<label>

<label>
<nvar>
<svar>
<slist>
<file>
<ifile>
<rfile>
<rifile>
<afile>

<list>

‘is

into variables in a DATABUS program.
one of the following general formats:

READ
READ
READ
READ
READ
READ
READ
READ

an execution label

This instruction may

<file>,<nvar>;<list>
<ifile>,<nvar>;<list>
<ifile>,<svar>;<list>
<rfile>,<nvar>;<list>
Krifile>,<nvar>;<list>
<rifile>,<svar>;<list>
<afile>,<nvar>;<list>
<afile>,<slist>;<1list>

(see section 2.).

is a numeric variable (see section 4.1).

is a string variable

(see section 4.2).

is a list of string variables.

is a file defined
section 5.1).

is a file defined using the

section 5.2).
file defined using
section 5.3).
file defined using
section 5.4).
file defined using
section 5.5).

(see
is a
(see
is a
(see
is a
(see

is a list of items descrinhing the

be read fron the disk.

Programming Considerations:

disk using one of the

a)

<label>

If the va
read.

If the value of <nvar>
results are

is optional.

Formats (1), (2), (4), (5) and (7) are used to read fron
following access methods:

lue of <nvar> is

indeterminate.

If the value of <nvar> > 0 or =

read.

CHAPTER 12.

using the

the

-1 or -2,

is any other negative number,

DISK INPYT/QUTPUT

FILE declaration (see
IFILE declaration

RFILE declaration
he RIFILE declaration

he AFILE declaration

inforrmation to

the
a logical record is
the
is

a physical record

12-21

Formats (3) and (5) are used to read indexed sequential
records from the disk.

Format (8) is used to read associative indexed records from
the disk.

The items in the list must be separated by commas.

Space decompression is always in effect when doing READs.

If all of the items of the list have been used before the

logical end of the record is reached, one of the following

actions take place:

a) If a semicolon is placed at the end of the list, the
position within the file is left unchanged after the last
item in the list is processed. This allows subsequent I/0
operations to pick up at the position where the READ
finished. Typically, a logical (sequential) READ
instruction is used for this purpose.

b) If a semicolon 1s not placed at the end of the list, the
position within the file is bumped past the next logical
end-of-record character (015). This allows subsequent I/0
operations to pick up at the start of the next logical
record.

<list> may be made up of any combination of the following
items:

a) <{svar>, a character string variable (see section 4.2).
b) <nvar>, a numeric strihg variable (see section 4.1).
c) *(nvar>, a list control (see section 13.4.1).

d) *{dnum>, a list control (see section 13.4.1).

If an attempt is made to read a record which has never before
been written, the following actions occur:

a) The position within the file is unchanged.
b) A RANGE trap occurs.

An attempt to read an end-of-file mark (see section 12.1.3)
causes the following actions:

12-22 DATABUS COMPILER

a) The OVER flag is set.
b) All numeric string variables in the list are set to zero.
c) All character string variables in the list have:

1. the formpointer set to zero.

2. the logical length pointer set to zero.

3. all of the characters in the variable replaced with
blanks.

d) A semicolon at the end of the READ list has no effect.
e) The position within the file is reset to point to the
end-of-file mark after processing of the READ is complete.
This means that if the OVER condition flag is ignored,
subsequent reads read the same end-of-file mark.
12.3.3.1 Character String Variables (READ)
When a character string variable appears in the list of a
READ instruction, characters are read from the disk and put into
the variable as described below.

‘Programning Considerations:

-— Characters are read from the disk starting at the current
position within the file. '

—— Characters are stored consecutively starting at the physical
beginning of the string variable.

-— Characters are read and stored until the vhysical end of the
character string variable is reached.

—-— The formpointer is set to one.

-— The logical length pointer is set to point to the last
physical character in the string.

-— If the end of the logical record is encountered while filling
a character string variable, the following takes place:

a) The logical end—of—recbrd character (015) is not stored in
the variable.

CHAPTER 12. DISK INPUT/QOUTPUT 12-23

b) The logical length pointer of the variable is set to point
to the last character stored in the variable.

c) The suffix of the variable is filled with blanks.

These actions are particularly useful when dealing with space
compressed files. The trailing blanks deleted by using space
compression are restored in this way. (b) above makes it
possible to take advantage of the *+ control with DISPLAY and
PRINTing of logical records.

-— If the logical end of record is encountered before all of the
character string variables in the list are filled, the
following actions are taken:

a) The formpointers of all of the remaining character string
variables are set to zero.

b) The logical length pointers of all of the remaining
character string variables are set to zero.

c) All of the remaining character string variables are filled
with blanks.
12.3.3.2 Numeric String Variables (READ)
When a numeric string variable appears in the list of a READ
instruction, characters are read from the disk and put into the
variable as described below.

Programming Considerations:

—-— Characters are read from the disk starting at the current
position within the file.

-—- Characters are stored consecutively starting at the physical
beginning of the numeric variable.

—-— Characters are read and stored until the physical end of the
numeric string variable is reached.

—-— Any non-leading spaces read are converted to zeros (e.q.
s3s2sl, where s stands for a space, is read as s30201).

—-— ASCII digits are the only characters accepted with the

following exceptions. A FORMAT trap occurs if the following
rules are not satisfied.

12-24 DATABUS COMPILER

a) Blanks are always accepted.

b) A minus sign is accepted only when it is the first
non-blank character to be read.

c) A minus sign is accepted only when there is room for at
least one character to the left of the decimal point.

d) A period is accepted only if the format of the variable
calls for a decimal point.

e) Only one period is accepted.

f} The number of characters that is accepted before a period
is required equals the number of places preceding the
decimal point in the format of the variable.

g) The number of characters that is accepted after the period
equals the number of places following the decimal point in
the format of the variable.

h} The last character to be accepted may be a
"minus—overpunch" character (see section 12.3.4.3.4). If
it is, the character to the left of the most significant
digit contains the sign. If there is already a sign, or
if there is no room for the sign, a FORMAT trap occurs.

A FORMAT trap also occurs if the variable is dimensioned to
one and the character is a negative sign.

If a FORMAT trap occurs during a read, the position within the
file is reset to what it was before the READ was attempted.

If the end of the logical record is encountered while filling
a numeric string variable, the rest of the variable is padded
with zeros. Note that if one of these locations within the
variable is the decimal point, a FORMAT trap occurs.

If the logical end of record is encountered before all of the

~ numeric string variables in the list are filled, all of the

remaining variables are set to zero.

CHAPTER 12. DISK INPUT/OUTPUT 12-25

12.3.4 WRITE (General)

The WRITE instruction is used to put the information to be
saved onto the disk. This instruction may have one of the
following general formats:

1) <label> WRITE <file>,<nvar>;<list>

2) <label> WRITE <ifile>,<nvar>;<list>

3) <label> WRITE <ifile>,<svar>;<list>

4) <label> WRITE <rfile>,<nvar>;<list>

5) <label> WRITE <rifile>,<nvar>;<list>

5) <label> WRITE <rifile>,<svar>;<1list>

7) <label> WRITE <afile>,<nvar>;<list>

3) <label>» WRITE <afile>;<1list>

where: <label> 1is an execution label (see section 2.).

<nvar> is a numeric variable (see section 4.1).
{svar> is a character string variable (see section 4.2).
<file> is a file defined using the FILE declaration (see

section 5.1).

<ifile> 1is a file defined using the IFILE declaration
(see section 5.2). :

<rfile> 1is a file defined using the RFILE declaration
(see section 5.3).

<rifile> is a file defined using the RIFILE declaration
(see section 5.4).

<afile> 1is a file defined using the AFILE declaration
(see section 5.5).

<list> is a list of items describing the information to
be written to the disk.

Programming Considerations:
—-— <Klabel> is optional.

-- Formats (1), (2), (4), (5) and (7) are used to write to the
disk using one of the following access methods:

a) If the value of <nvar> is -1 or -2, a logical record is
written.

b) TIf the value of <nvar> is any other negative number, the
results are indeterminate.

c) IF the value of <nvar> > 0 or = 0, a physical record is
written.

-—- Formats (3) and (5) are used to write indexed sequential

12-26 DATABUS COMPILER

records to the disk.

~-- Format (8) is used to write associative indexed records to the

disk.

-— The items in the list must be separated by commas.

-- <1list> may be made up of any combination of the following

items:

a) <{svar>, a character string variable (see section 4.2).

b) <nvar>, a numeric string variable (see section 4.1).

c) <occ>, an octal control character (see section 2.5).

d) <list control>, used to control the manner in which the

list is processed.

e) <slit>, a literal of the form "<string>" (see section

2.5). <string> must be a valid character string (see
section 4.2).
=T £) <nlit>, a literal of the form "<string>" (see section

2.5). <string> must be a valid numeric string (see

section 4.1).

12.3.4.1 Character String Variables (WRITE)

When a character string variable appears in the list of a

WRITE instruction, the characters saved in the variable

written on the disk. Unless modified by a list control,

are
the

manner in which the characters are put on the disk is described

below.

>

Programming Considerations:

—— The characters in the variable are written starting
first physical character and continuing through the
length.

—— Blanks are written for any character positions that
between the logical length pointer and the physical
variable.

with the
logical

exist
end of the

-- The first character written is written at the current position

within the file.

CHAPTER 12. DISK INPUT/QUTPUT

12-27

—— The position within the file is bumped by 1 for each character
written. For more details on bumping the position within a
file, see section 12.2.

—-— The character pointer is left positioned after the last
character written.

—-— The control characters (formpointer, logical length pointer
and 0203) are not written to the disk.

12.3.4.2 Numeric String Variables (WRITE)

When a numeric string variable appears in the list of a WRITE
instruction, the characters saved in the variable are written on
the disk. Unless modified by a list control, the manner in which
the characters are put on the disk is described below.

Programming Considerations:

-- The characters in the variable are written starting with the
first physical character and continuing through the physical
end of the variable.

-- The first character written is written at the current posin*gn
within the file.

~-- The position within the file is bumped by 1 for each character
written. For more details on bumping the position within a
file, see section 12.2. :

-— The character pointer is left positioned after the last
character written.

~- The control characters (0200 and 0203) are not written to the
disk.

12.3.4.3 List Controls (WRITE)

The list controls are provided to allow more flexibility in
the way records are formatted. They may be used to control the
manner in which variables are written to the disk. All list
controls begin with an asterisk, followed by the specification of
the control function.

12-28 DATABUS COMPILER

12.3.4.3.1 *+ (Space Compression On)

The *+ control may be used to enable space compression. For
more details about space compression, see section 12.1.2.
12.3.4.3.2 *- (Space Compression Off)

The *- control may be used to disable space compression. For
more details about space compression, see section 12.1.2.
12.3.4.3.3 *ZF (Zero Fill)

This control is used to cause numeric variables to be written
with zero fill on the left.

Programming Considerations:

-—- This control affects only the first variable following the *ZF
in the WRITE list.

—— Zeros are written in place of any leading blanks in the
variable.

-~ If the variable contains a leading minus sign, the minus sign
is written in the leftmost position.

-- The *ZF control, when used in conjunction with the *MP control
(see section 12.3.4.3.4), causes the minus sign to be replaced
with a zero.

12.3.4.3.4 *MP (Minus Overpunch)

The control *MP converts a numeric variable to a
"minus-overpurich" format.

Programming Considerations:

-- This control affects only the first variable following the
*MP.

-- This control affects only numeric variables that have a
negative value.

—-- The minus sign is over punched over the rightmost digit.

CHAPTER 12. DISK INPUT/OUTPUT 12-29

-- The rightmost digit written to the disk is as follows:

a) If the rightmost digit‘is a zero, it is converted to a
right bracket "}". '

b) One through nine convert to "J" through "R". "1" becomes
"g", "2" becomes "K", "3" becomes "L", and so on.
12.3.4.4 Octal Control Characters

Octal control characters are written to the disk exactly as
they appear in the WRITE list.

Programming Considerations:

—-— The control character is written at the current position
within the file. '

—-- The position within the file is bumped by 1. For more details
on bumping the position within a file, see section 12.2.

-— Cautlion should be exercised when using octal control
characters. Some of the control characters (000, 003, 011,

015 and 032) have special meaning to the READ instruction and
their use can cause confusion.

12.3.4.5 Literals

When a literal (<slit> or <nlit>) appears in the list of a
WRITE instruction, that literal is written to the disk.

Programming Considerations:

-- All of the characters between the double quotes are written as
they appear in the literal.

—-— The first character written is written at the current position
within the file.

—-— The position within the file is bunped by 1 for each character
written. For more details on bumping the position within a

file, see section 12.2.

-- The character pointer is left positioned after the last
character written.

12-30 DATABUS COMPILER

CHAPTER 13. PHYSICAL RECORD ACCESSING

The following sections discuss the aspects of the Disk I/O
instructions that apply to accessing physical records only.

13.1 OPEN (Physical)

The following sections discuss the aspects of the OPEN
instruction that apply to accessing physical records only. For a
general discussion of the OPEN instruction, see section 12.3.1.
One of the following general formats may be used:

1) <label> - OPEN <file>,<slit>
2) <label> OPEN <file>,<svar>
3) <label> OPEN <rfile>,<slit>
4) <label> OPEN <rfile>,<svar>

where: <label> is an execution label (see section 2.).
<slit> 1is a literal of the form "<string>" (see section
2.5).
<svar> 1is a string variable (see section 4.2).
<file> 1is a file declared using the FILE declaration (see
section 5.1).
<rfile> is a file declared using the RFILE declaration
(see section 5.3).
Programming Considerations:
—— <label> is optional.
—-- <Kslit> must be a valid character string (see section 4.2).
-- See section 12.3.1.
~-—- The position within the file is initialized to:

a. Record number = 0.

b. Character pointer = 1.

|
—

CHAPTER 13. PHYSICAL RECORD ACCESSING 13

13.2 PREPARE (PREP) (Physical)

The PREPARE instruction is used to create and initialize a
logical file for use by a DATABUS program. One of the following
general formats may be used:

1) <label> PREPARE <file>,<slit>
2) <label> PREPARE <file>,<svar>
3) <label> PREPARE <rfile>,<slit>
4) <label> PREPARE <rfile>,<svar>

where: <label> is an execution label (see section 2.).

<slit> 1is a literal of the form "<string>" (see section
2.5).

<svar> is a string variable (see section 4.2).

<file> 1is a file declared using the FILE declaration (see
section 5.1).

<rfile> is a file declared using the RFILE declaration
(see section 5.3).

Programming Considerations:
-— <label> is optional.
-— <slit> must be a valid character string (see section 4.2).

—— .The value of <svar> is unchanged by the execution of this
instruction.

-~ The string literal, when using format (1) or (3); specifies
the DOS name of the disk file to be associated with the label.

-— The string variable, when using format (2) or (4); specifies
the DOS name of the disk file to be associated with the label.

-— PREPARE is identical to the OPEN instruction (see section
13.1) with the following exceptions:

a. PREPARE cannot be used with indexed or associative indexed
files.

b. If the file cannot be found, instead of giving an I/O
error, a new file is created.

c. If a new file is to be created, it is put on the disk
drive decribed below.

1. If the drive number is specified in the string

13-2 DATABUS COMPILER

variable or literal, it is put-on that drive.

2. If the drive number is unspecified, it is put on the
lowest available drive (typically drive 0).

d. If the file to be prepared already exists and is write
protected, an I/0 error occurs.

-- If the user plans to deal with a very large file, he should
write a dummy record into the largest record number he plans
to use. This allows DOS to allocate all of the sectors for
that file in the most optimal manner possible. Physical
record accessing becomes that much faster.

Assume that the following statements were included in the
program previous to the statements in all of the following
examples:

FILE FILE
FILENAME INIT "PAYROLLIL"

Also, assume that the specified files need to be created and do
not already exist. ’

Example:
SETLPTR FILENAME TO 9 SET THE LOGICAL LENGTH POINTER TO ¢
RESET FILENAME TO 4 SET THE FORMPOINTER TO 4
PREP FILE,FILENAME

this PREP instruction creates a file named ROLL11/TXT on the
lowest available drive (typically drive 0).

Example:
SETLPTR FILENAME TO 8 SET THE LOGICAL LENGTH POINTER TO ¢
RESET FILENAME TO 4 SET THE FORMPOINTER TO 4 '
PREP FILE, FILENAME

tnis PREP instruction creates a file named ROLL1/TXT on drive 1.

CHAPTER 13. PYYSICAL RECORD ACCESSING 13-3

mmple:

SETLPTR FILENAME TO 8
RESET FILENAME TO 1
PREP FILE, FILENAME

.S PREP instruction creates a file

mple:

FILENAME TO 9
FILENAME TO 1
FILE, FILENAME

SETLPTR
RESET
PREP

.S PREP instruction creates a file

mple:
SETLPTR FILENAME TO 7
RESET FILENAME TO 1
PREP FILS, FILENAME

s PREP instruction creates a file

imple:
SETLPTR FILENAME TO 3
RESET FILENAME TO 1
PREP FILE, FILENAME

S PREP instruction creates a file
tilable drive (typically drive 9).
3 CLOSE (Physical)

This instruction
.ocated disk space

named
SET
SET
named
SET
SET

named

5
SET

named

is used to return any unused,
to DOS for use by another file.

THE LOGICAL LENGTH POINTER TO

THE FORMPOINTER TO 1

PAYROLL1/TXT on drive

THE LOGICAL LENGTH POINTER TO

THE FORMPOINTER TO 1

PAYROLL1/TXT on drive

LOGICAL LENGTH POINTER TO
FORMPOINTER TO 1

THE
THE

PAYROLL/TXT on drive 1.

T THE LOGICAL LENGTH POINTER TO

THE FORMPOINTER TO 1

PAY/TXT on the lowest

newly
CLOSE 1is

50 used along with PREPARE to delete a file from the disk file

‘ucture.

The following sections discuss the aspects of the

JSE instruction that apply to accessing physical records only.

a general discussion of the CLOSE instruction,
CLOSE may have one of the following general formats:

3.2.
1) <label> CLOSE <file>
2) <label> CLOSE <rfile>
13-4 DATABUS COMPILER

see section

where: <label> is an execution label (see section 2.).
<file> 1is a file declared using the FILE declaration (see
section 5.1).
<rfile> is a file declared using the RFILE declaration
(see section 5.3).

Programming Considerations:
—— <label> is optional.
—— See section 12.3.2.

—- CLOSE when used in conjunction with the PREPARE instruction
(see section 13.2) is used to delete a file from the DOS file
system. If the PREPARE instruction is immediately followed by
a CLOSE instruction, the file described in the PREPARE
instruction is deleted from the DOS file system.

13.4 READ (Physical)

The READ instruction is used to get information saved on the
disk into variables in a DATABUS program. The following sections
discuss the aspects of the READ instruction that apply to
accessing physical records only. For a general discussion of the
READ instruction, see section 12.3.3. This instruction may have
one of the following general formats:

1) <label> READ <file>,<nvar>;<list>
2) <label> READ <rfile>,<nvar>;<list>

where: <label> is an execution label (see section 2.).

<nvar> 1is a numeric variable (see section 4.1).

<file> 1is a file defined using the FILE declaration (see
section 5.1).

<rfile> is a file defined using the RFILE declaration (see
section 5.3).

<list> is a list of items describing the information to
be read from the disk (see section 12.3.3).

Programming Considerations:
—-—- <label> is optional.
—-— See section 12.3.3.

-- The first action taken by the READ instruction, is to reset

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-5

the position within the file as follows:

a) The record number is set to the value given in <nvar>.
(A1l digits after the decimal point are ignored.)

b) The character pointer is set to 1.

—- Since reading a physical record always resets the position
within the file before the READ continues, it is unnecessary
to continue scanning until the next logical record is reached.
This extra scanning for the 015 (end-of-record) is not only
unnecessary but uses extra processor time. Putting a
semi-colon at the end of the read list eliminates this wasted
processing.

Example:

FDECL FILE

RN FORM VA
OPEN FDECL,"DATA™"
READ FDECL,RN;A,B,C

This READ instruction could be used to read from file
DATA/TXT the values of variables A, B and C. The position within
file DATA/TXT is first established at record number 2 with a
character pointer of 1. Variables A, B and C are then read. Any
remaining characters in the logical record are ignored and the
position within the file is left at the beginning of the next
logical record.

Example:
FDECL FILE
RN FORM "2.6"
OPEN FDECL,"DATA"
READ FDECL,RN;A,B,C;

This READ instruction is similar to the one in the above
example except that the position within the file is left at the
character after the last one read into the variable C.

Example:
FDECL FILE
REWIND FORM "o
OPEN FDECL, "DATA"
READ FDECL,REWIND; ;

13-6 DATABUS COMPILER

This READ instruction establishes the position within the
file exactly as if an OPEN or PREP instruction had just been
executed. The first action is to set the position within the file
to record 0 with the character pointer equal to 1. Because of the
second semi-colon as the list terminator, the position is not
bumped to the next logical record on termination of the READ.

-- Klist> may be made up of any combination of the following
items:

a) <{svar>, a character string variable (see section
12.3.3.1).

b) <nvar>, a numeric string variable (see section 12.3.3.2).

c) <tab control>, a list control which is used to tab to the
position within the record where the data is to be
obtained.

13.4.1 Tab Control

Tabbing is a feature which can eliminate unwanted data
transfers to and from the disk controller buffer. It also allows
the programmer to save considerable space in his data area. The
tab control may have one of the following general formats:

1) *{nvar>
2) *<dnum>

where: <nvar> is a numeric variable (see section 4.1).
<dnum> is a decimal number.

—--— When format (1) is used, the value of the numeric variable
specifies the tab position.

-- When format (2) is used, the decimal number specifies the tab
position.

-- The character pointer is set to the specified tab position.

—-—- Tabbing can be used only when the logical records do not cross
physical record boundaries. This condition can usually be
enforced through the use of the DOS REFORMAT utility and
careful use of DATABUS WRITE instructions.

-— An attempt to tab paSt the physical end-of-record results in
an I/0 error.

I
~J

CHAPTER 13. PHYSICAL RECORD ACCESSING 13

-— Using tabbing way cause the READ instruction to fail to
recognize an EOF mark. The EOF mark can be recognized only
when READ is positioned to character position 1, followed by
an attempt to read a variable.

—-— Tab positioning on physical accesses is always calculated from
the first character position in the current physical record.

—-—- Tabbing should not be used with space compressed records.

Example:
FDECL FILE
RN FORM n 3"
TAB FORM "25"
OPEN FDECL,"DATA"Y
READ FDECL,RN;A,*100,B,*TAB,C,*50,D;

This READ instruction sets the record number to 3 and the
character pointer to 1. Variable A is then read. UNext, the
character pointer is set to 100 and variable B is read. The
character pointer is then set to 25 and variable C is read.
Finally, the character pointer is set to 50 and variable D is
read. The character pointer is left pointing after the last
character read into variable D, since the semicolon appears at the
end of the list.

13.5 WRITE (Physical)

The WRITE instruction is used to put the information to be
saved onto the disk. The following sections discuss the aspects
of the WRITE instruction that apply to accessing physical records
only. For a general discussion of the WRITE instruction, sce
section 12.3.4. This instruction may have one of the following
general formats:

1) <label> WRITE <file>,<nvar>;<list>

2) <label> WRITE <file>,<nvar>;<list>;

3) <label> WRITE <rfile>,<nvar>;<list>

4) <label> WRITE <rfile>,<nvar>;<list>;
where: <label> is an execution labhel (see section 2.).

<nvar> 1is a numeric variable (see section 4.1).

<file> 1is a file defined using the FILE declaration (see
section 5.1).

<rfile> is a file defined using the RFILE declaration (see

section 5.3).

13-8 DATABUS COMPILER

<list> 1is a list of items describing the information to
be written to the disk.

Programming Considerations:

<label> is optional.

See

The
the

a)

b)

section 12.3.4.

first action taken by the WRITE instruction, is to reset
position within the file as follows:

The record number is set to the value given in <nvar>.
(All digits after the decimal point are 1ignored.)

The character pointer is set to 1.

Processing for the WRITE instruction is terminated as follows:

AY

a)

Tab

Formats (1) and (3) cause:

1) an 015 (logical end of record character) to be
written,

2) the position within the file to be bumped by 1, and

3) an 003 (physical end of record character) to be
written.

4) The character pointer is left pointing to the 003
character.

Formats (2) and (4) cause the position within the file to
be unchanged after processing the last item in the 1list.
This operation is useful for writing the first part of a
record where more of the record is written later.
Typically, a logical (sequential) WRITE instruction is
used for this purpose.

positioning is not allowed when using WRITE instructions.

If tabbing is required while writing to the disk, the WRITAB
instruction should be used.

CHAPTER 13. PHYSICAL RECORD ACCESSING 13

]
O

13.6 WRITAB (Physical)

The WRITAB instruction allows tabbing while modifying a
physical record. WRITAB allows characters to be written into any
character position of a physical record without disturbing the
rest of the record. This instruction may have one of the
following general formats:

1) <label> WRITAB <file>,<nvar>;<list>
2) <label> WRITAB <rfile>,<nvar>;<list>

where: <label> is an execution label (see section 2.).

<nvar> is a numeric variable (see section 4.1). .

<file> 1is a file defined using the FILE declaration (see
section 5.1).

<rfile> is a file defined using the RFILE declaration (see
section 5.3).

<list> 1is a list of items describing the information to
be written to the disk.

Programming Considerations:

-- <label> is optional.

-- Executing a WRITAB instruction is equivalent to executing one
of the following WRITE instructions, except that tabbing is

allowed.

<label> WRITE <file>,<nvar>;<list>;
<label> WRITE <rfile>,<nvar>;<list>;

A separate mnemonic is required for tabbed writes because it
is necessary to do an additional disk read when tabbing is to
be used.

-—- If an attempt is made to read a record which has never been
written, the following actions occur.

a) The position within the file is unchanged.
b) A RANGE trap occurs.

-~ WRITAB allows tab controls to be used as items in the list.

13-10 DATABUS COMPILER

13.6.1 Tab Control -

Tabbing is a feature which can eliminate unwanted data
transfers to and from the disk controller buffer. It also allows
the orogrammer to save considerable space in his data area. The
tab control may have one of the following general formats:

1) *{nvar>
2) *<dnum>

where: <nvar> is a numeric variable (see section 4.1).
<dnum> is a decimal number.

-—- When format (1) is used, the value of the numeric variable
specifies the tab position.

-— When format (2) is used, the decimal number specifies the tab
oosition.

—-— The character pointer is set to the sgspecified tab position.

-— Tabbing can be used only when the logical records do not cross
physical record boundaries. This condition can usually be
enforced through the use of the DOS REFORMAT utility and
careful use of DATABUS WRITE instructions.

-— An attempt to tab past the physical end-of-record results in
an I/0 error.
Caution: While tabbing beyond the end of record is not
allowed, any other list item could cause the logical record to
extend across a physical record boundary.

-— Tab positioning on physical accesses is always calculated from
the first character position in the current physical record.

-— If the record number is bumped while processing a list item
other than a tab control, subsequent tabs position into the
new physical record, not the original one.

-— Tabbing should not be used with space compressed records.

CHAPTER 13. PHYSICAL RECORD ACCESSINSG 13-11

Example:

FDECL FILE
RN FORM "3n
TAB FORM "25"
OPEN FDECL, "DATA" :
WRITAB FDECL,RN;A,*100,B,*TAaB,C,*50,D;

The WRITAB instruction in this example sets the record number
to 3 and the character pointer to 1. Variable A is then written
over those characters already in the record. Next, the character
pointer is set to 100 and variable B is written. The character
pointer is then set to 25 and variable C is written. Finally, the
character pointer is set to 50 and variable D is written. The
character pointer is left pointing after the last character
written from variable D, since there is always an implied
semicolon at the end of the list. The characters already in the
disk record at those positions that were not overwritten, remain
unchanged.

13.7 WEOF (Physical)

The WEOF instruction causes a DOS end of file mark (sce
section 12.1.3) to be written to a file. This instruction may
have one of the following general formats: ~

1) <label> WEOF <file>,<nvar>
2) <label> WEOF K<rfile>,<nvar>

where: <label> is an execution label (see section 2.).
{nvar> 1is a numeric variable (see section 4.1).
<file> 1is a file defined using the FILE declaration (see
section 5.1).
<rfile> is a file defined using the RFILE declaration (see
section 5.3).

Programming Considerations:
~-— <label> is optional.

-- An EOF mark 1is written to the record specified in the numeric
variable. (All digits after the decimal point are ignored.)

-— The position within the file is left at the beginning of the
EOF that was written.

13-12 DATABUS COMPILER

12.8 FPOSIT (Physical)

The FPOSIT instruction allows a DATABUS program access to the
current position of a file. It can be used to observe the current
position, or to save it and restore it later. The instruction may
have one of the following general formats:

1) <label> FPOSIT <file>,<nvarl>,<nvar2>
2) <label> FPOSIT K<rfile>,<nvarl>,<nvar2>

where: <label> is an execution label (see section 2.).
<file> 1is a file defined using the FILE declaration (see
section 5.1).
<rfile> is a file defined using the RFILE declaration (see
section 5.3).
<nvarl> is a numeric string variable.
<nvar2> is a numeric string variable.

Programming considerations:
—-— <label> is optional.

-- The current record number of the file (see section 12.1) is
placed into <nvarl>.

-—- The current chararacter pointer of the file (see section 12.1)
is placed into <nvar2>.

-— The current position within the file is defined to be the
record pointer and character pointer of the next record to be
sequentially accessed.

-— The current position within the file is not changed by this
instruction.

-- The file may be repositioned to the current position later in
the DATABUS program by executing one of the following
instructions.

READ <file>,<nvarl>;*<nvar2>; or
READ <rfile>,<nvarl>;*<{nvar2>;

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-13

CHAPTER 14. LOGICAL RECORD ACCESSING

The following sections discuss the aspects of the Disk I/0
instructions that apply to accessing logical records only.

14.1 OPEN (Logical)

All of the aspects of the OPEN instruction for use with
logical record accessing are identical to those used with physical
record accessing (see section 13.1).

14.2 PREPARE (Logical)

All of the aspects of the PREPARE instruction for use with
logical record accessing are identical to those used with physical
record ‘accessing (see section 13.2).

14.3 CLOSE (Logical)

All of the aspects of the CLOSE instruction for use with
logical record accessing are identical to those used with physical
record accessing (see section 13.3).

14.4 READ (Logical)

The READ instruction is used to get information saved on the
disk into variables in a DATABUS program. The following sections
discuss the aspects of the READ instruction that apply to
accessing logical records only. For a general discussion of the
READ instruction, see section 13.3.3. This instruction may have
one of the following general formats:

1) <label> READ <file>,<nvar>;<list>
2) <label> READ Krfile>,<nvar>;<list>
where: <label> is an execution label (see section 2.).

<nvar> 1is a numeric variable (see section 4.1).

<file> 1is a file defined using the FILE declaration (see
section 5.1).

<rfile> is a file defined using the RFILE declaration (see
section 5.3).

CHAPTER 14. LOGICAL RECORD ACCESSING 14-1

<list> 1is a list of items describing the information to
be read from the disk (see section 12.3.3).
Programming Considerations:
—-— <label> is optional.
-- <nvar> must have a negative value.
-— See section 12.3.3.
-— Reading starts at the current position within the file. That
is, the READ starts where any previous disk I/0 operation on

the file left the position.

-— K1list> may be made up of any combination of the following
items: ‘

a) <{svar>, a character string variable (see section
12.3.3.1).

b) <nvar>, a numeric string variable (see section 12.3.3.2).

c) <tab control>, a list control which is used to tab to the
position within the record where the data is to be
obtained.

-~ Using the tab controls when reading logical records is
possible but not advisable. Since the tab position is
calculated relative to the start of the physical record and
not the start of the logical record, using a tab control could
tab into a different logical record.

Example:

FDECL FILE

SEQ FORM "-1"
OPEN FDECL, "DATA™
READ FDECL,SEQ;A,B,C

variables A, B, and C are read starting at the current
position within the file. Any remaining characters in the logical
record are ignored and the position within the file is left at the
beginning of the next logical record.

14-2 DATABUS COMPILER

Example: This program lists DATA/TXT on the screen.

FDECL FILE

SEQ FORM "-1"

LINE DIM 80
OPEN FDECL,"DATA"

LOOP READ FDECL,SEQ;LINE
STOP If OVER
DISPLAY *R,*P1:24,*+,LINE
GOTO LOOP

14.5 WRITE (Logical)

The WRITE instruction is used to put the information to be
saved onto the disk. The following sections discuss the aspects
of the WRITE instruction that apply to accessing logical records
only. For a general discussion of the WRITE instruction, see
section 12.3.4. This instruction may have one of the following
general formats:

1) <label> WRITE <file>,<nvar>;<list>

2) <label> WRITE <file>,<nvar>;<1list>;
3) <label> WRITE <rfile>,<nvar>;<list>
4) <label> WRITE Krfile>,<nvar>;<list>;

where: <label> is an execution label (see section 2.).

<nvar> 1is a numeric variable (see section 4.1).

<file> 1is a file defined using the FILE declaration (see
section 5.1).

<rfile> is a file defined using the RFILE declaration (see
section 5.3).

<list> 1is a list of items describing the information to
be written to the disk.

Programming Considerations:

-- <label> is optional.

-- <nvar> must have a negative value.

-- See section 12.3.4.

—-- Characters are put on the disk starting at the current

position within the file being referenced. The WRITE starts
where any previous disk I/0 operation on the file left the

CHAPTER 14. LOGICAL RECORD ACCESSING 14-3

position.
-- Processing for the WRITE instruction is terminated as follows:
a) Formats (1) and (3) cause:

1) 'an 015 (logical end of record character) to be
written,

2) the position within the file to be bumped by 1, and

3) an 003 (physical end of record character) to be
written.

4) The character pointer is left pointing at the 003
character.

b) Formats (2) and (4) cause the position within the file to

' be unchanged after processing the last item in the 1list.
This operation is used only for writing the first part of
a record where more of the record is written later.
Typically, a logical (sequential) WRITE instruction is
used for this purpose.

-- Tab positioning is not allowed when using WRITE instructions.
If tabbing is required while writing to the disk, the WRITAB
instruction should be used.

14.6 WRITAB (Logical)

Using tab positioning when writing logical records is
possible but not advisable. Since the tab position is calculated
relative to the start of the physical record and not the start of
the logical record, using. a tab control could tab into a different
logical record.

The only difference between using WRITAB on logical records

rather than physical records is that the current record number is
used to determine which physical record is modified.

14-4 DATABUS COMPILER

14.7 WEOF (Logical)

The WEOF instruction allows a DOS end of file mark (see
section 12.1.3) to be written to a file. This instruction may
have one of the following general formats:

1) <label> WEOF <file>,<nvar>
2) <label> WEOF <rfile>,<nvar>

where: <Klabel> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<file> 1is a file defined using the FILE declaration (see
section 5.1).
<rfile> is a file defined using the RFILE declaration (see
section 5.3).

Programming Considerations:
—- <label> is optional.
-- <nvar> must have a negative value.

-— If the current position within the file is at the beginning of
a physical record, the EOF is written into that record.

~-—- If the current position within the file is not at the
beginning of a physical record, the following actions are
taken:

a) A physical end of record character (003) is written at the
current position, and

b) The EOF is written into the next physical record.
——- The position within the file is left at the beginning of the
EOF that was written.
14.8 FPOSIT (Logical)
The FPOSIT instruction allows a DATABUS program access to the
current position of a file. All of the aspects of the FPOSIT
instruction for a file for use with logical record accessing are

identical to those used with physical record accessing (see
section 13.8). ~

CHAPTER 14. LOGICAL RECORD ACCESSING 14-5

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING

The following sections discuss the aspects of the Disk I/O
instructions that apply to accessing indexed sequential records
only.

15.1 OPEN (Indexed Sequential)
The following sections discuss the aspects of the OPEN

instruction that apply to accessing indexed sequential records
only. For a general discussion of the OPEN instruction, see

section 12.3.1. One of the following general formats may be used:

1) <label> OPEN <ifile>,<slit> -
2) <label> OPEN <ifile> ,<svar>
3) <lahel> OPEN <rifile>,<slit>
4) <label> OPEN <rifile>,<svar>
where: <label> 1is an execution label (see section 2.).
<slit> is a literal of the form "<string>" (see section
2.5).
{svar> is a string variable (sees section 4.2).

<ifile> 1is a file declared using the IFILE declaration
(see section 5.2).

<rifile> is a file declared using the RIFILE declaration
(see section 5.4).

Progranming Considerations:

-- <label> is optional.

-— <slit> must be a valid character string (see section 4.2).
-- See section 12.3.1.

-— OPEN 1nitializes both the index file and the data file that
has been indexed.

—— If the drive number is specifed (see section 12.3.1), both the

index file and the data file must be on the specified drive.

-- Note that newer interpreters allow drive direction to be used

even if the index file and the data file are on different

drives. The index file must be on the drive specified, if one

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-1

is given. The interpreter first looks for the data file on
the same drive as the index file. If it is not found on this
drive, all drives are searched for the file (starting with
drive 0 and ending with the highest numbered drive that is
on—-line). Consult the appropriate interpreter user's guide
for more information.

—-- If the drive number is not specified (see section 12.3.1), the
index file and the data file may be on different drives.

—-— The name of the data file to be opened is contained in the
index file.

—-— Opening the index file automatically causes the data file to
be opened.

-—- If the data file is indexed by more than one index file, each
index file must be opened using a different logical file.

-—- The position within the data file is initialized to:
a. Record number = 0.
b. Character pointer = 1.

-~ The position within the index file is initialized to the first
key in the index.

Assume that the following statements were included in the
program previous to the statements in all of the following
exanples:

DECL IFILE
Also, assume that index files, DATA/ISI and DATA2/ISI, have bheen
created by indexing the data flle, DATA/TXT, using the DOS INDEX

utility as shown below:

INDEX DATA/TXT:DRO,DATA/ISI:DRO;1-5
INDEX DATA/TXT:DRO,DATA2/ISI:DR1;5-10

Note that DATA/TXT is on drive 0, DATA/ISI is on drive 0 and
DATA2/ISI is on drive 1.

15-2 DATABUS COMPILER

Exanple:
OPEN DECL, "DATA o"

This OPEN instruction initializes DATA/ISI and DATA/TXT on drive
0.

Example:
OPEN " DECL,"DATA 1"

This OPEN instruction causes an I1/0 error, since neither DATA/ISI
nor DATA/TXT are on drive 1.

Example:
OPEN DECL,"DATA"

This OPEN instruction initializes DATA/ISI and DATA/TXT on drive
0.

Example:
OPEN DECL, "DATA2 o"

This OPEN instruction causes an I/0 error, since DATA2/ISI is not
on drive 0.

Example:

OPEN DECL,"DATAZ2 i
This OPEN instruction causes an I/0 error on older interpreters,
since DATA/TXT is not on drive 1. Note that newer interpreters
open DATA2/ISI on drive 1 and DATA/TXT on drive 0.
Example:

OPEN DECL,"DATA2"

This OPEN instruction initializes DATA2/ISI on drive 1 and
DATA/TXT on drive 0.

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-3

15.2 CLOSE (Indexed Sequential)

This instruction is used to return any unused, newly
allocated disk space to DOS for use by another file. The
following sections discuss the aspects of the CLOSE instruction
that apply to accessing indexed sequential records only. For a
general discussion of the CLOSE instruction, see section 12.3.2.
CLOSE may have one of the following general formats:

1) <label> CLOSE <ifile>
2) <label> CLOSE K<rifile>

where: <label> 1is an execution label (see section 2.).
<ifile> 1is a file declared using the IFILE declaration
(see section 5.2).
<rifiie> is a file declared using the RIFILE declaration
(see section 5.4).

Programming Considerations:
-—- <label> is optional.
-- See section 12.3.2.

-- Only the data file is affected by executing the CLOSE
instruction.

-— The index file is unchanged by the execution of the CLOSE
instruction.

15.3 READ (Indexed Sequential)

The READ instruction is used to get information saved on the
disk into variables in a DATABUS program. The following sections
discuss the aspects of the READ instruction that apply to
accessing indexed sequential records only. For a general
discussion of the READ instruction, see section 12.3.3. This
instruction may have one of the following general formats:

1) <label> READ <ifile>,<nvar>;<list>

2) <label> READ <ifile>,<svar>;<list>

3) <label> READ <rifile>,<nvar>;<list>

4) <label> READ Krifile>,<svar>;<list>
where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<svar> is a string variable (see secticn 4.2).

15-4 DATABUS COMPILER

<ifile> 1is a file defined using the IFILE declaration
(see section 5.2).

<rifile> is a file defined using the RIFILE declaration
(see section 5.4).

<list> is a list of items describing the information to
be read from the disk.

Programming Considerations:

<label> is optional.
The following apply when formats (1) and (3) are used:
a) The READ instruction accesses only the data file.

b) The READ is either a physical access (see section 13.4) or
a logical access (see section 14.4).

¢) The index file is not used or modified in any way by the
READ.

d) The *<nvar> list control is not allowed in the <list>.
e) The *<dnum> list control is not allowed in the <list>.

The rest of the programming considerations in this section
apply when formats (2) and (4) are used.

The logical string of <svar> specifies the key to be used when
searching the index file.

The key is considered to match an item in the index file (an
index item is a key in the index file) if one of the following
rules hold true:

a) If both the key and the index item have the same number of
characters, all of the characters must match.

b) If the key has more characters than the index item, then:

1) All of the characters up through the length of the
index item must match, and

2) The remaining characters of the key must be blanks.

c) If the key has less characters than the index item, there
is no match. ’

i
w

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15

If a match is found,

a) The position of the logical record to he accessed is
obtained from the index file. The position within the
data file is then initialized to this wvalue.

b) Once the position within the data file is established, the
READ proceeds precisely as if it were a logical record
access (see section 14.4). (Exception: see the
Programming Consideration below concerning tab
positioning.)

¢) The position within the index file is initialized to the
next item in sequence in the index file.

If no match is found,
a) The OVER condition flag is set,
b) All of the variables in the list are unchanged, and

c) The position within the index file is left pointing to the
first mismatch in the index file.

If the OVER flag is set after an indexed sequential READ
operation, it indicates that the key specified could not be
found in the index.

The test for the OVER condition should be made after the READ
statement.

Tab positions when using indexed sequential access are
calculated relative to the beginning of the logical record
instead of relative to the beginning of the physical record.
However, tabbing can be used only when logical records do not
cross physical record bhoundaries. This condition can usually
be enforced through the use of the DOS REFORMAT utility and
careful use of DATABUS WRITE instructions.

If the key is null, the last indexed sequential record that
was read (by a READ or READKS instruction) is re-read without
using the index file to access the record. This saves the
time needed to search the index file for the key. When the
same indexed record needs to be read more than once, this
feature may save considerable time.

Using a null key causes an I/0 error if there was not a
previous successful read performed using a non-null key.

15-6 DATABUS COMPILER

15.4 WRITE (Indexed Sequential)

The WRITE instruction is used to put the information to be

saved onto the disk. The following sections discuss the aspects
of the WRITE instruction that apply to accessing indexed
sequential records only. For a general discussion of the WRITE
instruction, see section 12.3.4. This instruction may have one of
the following general formats:

1) <label> WRITE <ifile>,<nvar>;<list>

2) <label> WRITE <ifile>,<nvar>;<list>;

3) <label> WRITE <ifile>,<svar>;<list>

4) <label> WRITE <ifile>,<svar>;<list>;

5) <label> WRITE <rifile>,<nvar>;<list>

6) <label> WRITE <rifile>,<nvar>;<list>;

7) <label> WRITE <rifile>,<svar>;<list>

8) <label> WRITE . K<rifile>,<svar>;<list>;

where: <label> 1is an execution label (see section 2.).

<nvar> is a numeric variable (see section 4.1).
<{svar> is a character string variable (see section 4.2).

<ifile> 1is a file defined using the IFILE declaration
(see section 5.2).

<rifile> is a file defined using the RIFILE declaration
(see section 5.4).

<list> is a list of items describing the information to
be written to the disk.

Programming Considerations:

<label> is optional.
See section 12.3.4.

The following apply when formats (1), (2), (5) and (5) are
used:

a) The WRITE instruction accesses only the data file.

b) The WRITE is either a physical access (see section 13.5)
or a logical access (see section 14.5).

c) The index file is not used or modified in any way by the
WRITE.)

The following apply when formats (3), (4), (7) and (8) are
used:

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15

|
~

a)

b)

c)

d)

-— Proc

a)

b)

15-8

The logical string of <svar> specifies the key to be
inserted into the index file.

If the key is null, an I/0 error results.

If the key already exists in the index file, an I/0 error
results.

The search algorithm, used to determine whether the key is

already in the index, is identical to that used in the
indexed sequential access READ operation (see section

15.3).
WRITE uses. the following procedure:

1) The key is inserted into the index such that the keys
in the index file remain in ASCII collating sequence.

2) The data file is searched for its end-of-file mark.
3) The recoxd is written over the end-of-file mark and
proceeds exactly as 1f it were a physical record write

(see section 13.5).

4) If format (3) or (7) is used, a new end-of-file mark
- 1is written to the next physical record.

5) This implies that for each record inserted into the
data file, at least one physical record is used, no
matter how large or small the record.

essing for the WRITE instruction is terminated as follows:

Formats (1) and (5) cause:

1) all of the actions taken when terminating a physical
record WRITE (see section 13.5), or a logical record
WRITE (see section 14.5).

Formats (3) and (7) cause:

1) all of the actions taken when terminating a logical

record WRITE (see section 14.5), plus

2) the position within the data file to be bumped to the
next physical record, and

DATABUS COMPILER

3) an end-of-file mark to be written.
c) Formats (2), (4), (6) and (8) cause:

1) the position within the file to be unchanged after
processing the last item in the list. This operation
is useful for writing the first part of a record where
more of the record is written later. Typically, a
logical (sequential) WRITE insruction is used for this
purpose. '

2) The end-of-file mark is not written. This makes it
the programmer's responsibility to write the
end-of-file mark himself.

3) If the programmer fails to write an end-of-file mark,
the next attempt to insert a record causes a RANGE
trap. This insertion fails because the search for the
end-~of-file mark fails.

-—- Timing considerations:

a) Inserting many records causes indexed accesses to become
less random and more sequential. (Random accessing takes
much less time than sequential accessing.)

b) Inserting many records whose keys are close together in
the collating sequence causes indexed accesses to become
less random. (For example: AAAB is much closer to AAAA
than BBBB.)

c) Indexed accesses start taking significantly longer when
one tenth of the records in an indexed file have been
inserted with indexed sequential WRITE or INSERT
instructions.

d) Generally, use the DOS INDEX utility as often as possible
to insure that indexed accesses are as random as possible.
15.5 WEOF (Indexed Sequential)
The WEOF instruction allows a DOS end of file mark (see
section 12.1.3) to be written'to a file. This instruction may

have one of the following general formats:

1) <label> WEOF <ifile>,<nvar>
2) {label> WEOF <rifile>,<nvar>

CHdAPTER 15. INDEXED .SEQUENTIAL RECORD ACCESSING 15-9

where: <label> 1s an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<ifile> 1is a file defined using the IFILE declaration
(see section 5.2).
<rifile> is a file defined using the RIFILE declaration
(see section 5.4). '

Programming Considerations:
-— <label> is optional.
-— The WEOF instruction accesses only the data file.

-— The write is either a physical access (see section 13.7) or a
logical access (see section 14.7).

-— The index file is not used or modified in any way by the WEOF.

15.6 READKS (Indexed Sequential)

The READKS (READ Key Sequential) instruction is provided to
allow indexed sequential records to be read in collating sequence
order. This instruction may have one of the following general
formats:

1) <label> READKS <ifile>;<1list>
2) <label> READKS <rifile>;<1list>

where: <label> 1is an execution label (see section 2.).
<ifile> 1is a file defined using the IFILE declaration
(see section 5.2).
<rifile> is a file defined using the RIFILE declaration
(see section 5.4).
<list> is a list of items describing the information to
be read from the disk.

Programming Considerations:
-- <label> is optional.

~-— The current position within the index file is used to get a
position in the data file.

—-—- After the position within the data file has been determined

from the index file, the position within the index file is
bumped to the next key in the collating sequence. The ASCII

15-10 DATABUS COMPILER

collating sequence is used.

-— If the position within the index file is past the last key in
the index:

a) The OVER condition flag is set, and

b) All of the variables in the list have an indeterminate
value.

-— Except that the initial position within the data file is
determined as described above, READKS proceeds identically to
an indexed sequential access READ (see section 15.3).

Example:
DECL IFILE INDEX FILE DECLARATION
LINE DIM 80 LINE BUFFER
TRAP NOFILE IF IO CATCH FILES NOT ON DISK
OPEN DECL, "DATA" LOOK FOR DATA/TXT AND
. DATA/ISI
TRAPCLR I0 OPEN SUCCEEDED SO DON'T
. : CATCH ANY WMORE ERRORS
*
LOOP READKS DECL;LINE READ IN THE LINE POINTED
. TO BY THE NEXT KEY
STOP IF OVER OVER MEANS NO MORE KEYS
DISPLAY *R,*P1l:12,*+,LINE DISPLAY THE LINE
GOTO LOOP GO GET THE NEXT LINE

. TELL THE OPERATOR SOMETHING IS WRONG

NOFILE DISPLAY *R,*P1:12,"NO SUCH FILE"
STOP

15.7 UPDATE (Indexed Sequential)

The UPDATE instruction allows tabbing while modifying an
indexed sequential record. UPDATE allows characters to be written
into any character position of an indexed sequential record
without disturbing the rest of the record. This instruction may
have one of the following general formats:

1) <label> UPDATE <ifile>;<1list>
2) <label> UPDATE <rifile>;<1list>

where: <label> 1is an execution label (see section 2.).

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-11

<ifile> is a file defined using the IFILE declaration
(see section 5.2).

<rifile> is a file defined using the RIFILE declaration
(see section 5.4).

<list> is a list of items describing the information to
be written to the disk. :

Programming Considerations:

<label> is optional.

UPDATE is used to modify the last indexed sequential record
accessed by any indexed sequential record read instruction (a
READ or READKS).

With the following exceptions, UPDATE functions the same as
WRITAB. :

a) All tab positions are calculated relative to the beginning
of the logical record, rather than relative to the
beginning of the physical record. However, tabbing can be
used only when the logical records do not cross physical
record boundaries. This condition can usually be enforced
through the use of the DOS REFORMAT utility and careful
use of DATABUS WRITE instructions. Tabbing should not be
used with space compressed records.

The initial position within the data file is determined as
described above, rather than being furnished by a
variable.

oz

c) It is an illegal operation to execute a DELETE and then an
UPDATE to the same record. This operation can destroy
your file.

Attempting an UPDATE when no other indexed sequential read
operation has been performed prior to the execution of the
UPDATE, causes an I1/0 error.

It is possible to overstore the 015 (logical end of record)
and the 003 (physical end of record) characters when using
UPDATE. 1If extreme care is not exercised, this can result in
more than one . record being turned into a single very large
record. In some cases it can result in an I/0 error.

15-12 DATABUS COMPILER

15.8 INSERT (Indexed Sequential)

INSERT provides the capability for inserting a key for an
existing indexed record into an additional index file. This
instruction must be used in conjunction with indexed sequential or
associative indexed reads or writes. The indexed record is
written to the data file by the WRITE instruction, or is read with
a READ, READKS, or READKG (see section 16.5) instruction. The
WRITE instruction also inserts the key information into the
appropriate index file. Since the record does not need to be
re-written to the data file, the INSERT instruction is used to
insert a key for the record into any additional index files.

Thus, after -using the INSERT instruction, the record is accessible
through more than one index file. This instruction may have one
of the following general formats:

1) <label> INSERT <ifile>,<svar>
2) <label> INSERT <rifile>,<svar>

where: <label> 1is an execution label (see section 2.).
<{svar> is a string variable (see section 4.2).
<ifile> 1is a file declared using the IFILE declaration
(see section 5.2).
<rifile> is a file declared using the RIFILE declaration
(see section 5.4).
Programming Considerations:
-— <label> is optional.

-- The logical string of <svar> specifies the key to be inserted.

—— One INSERT must be executed for each additional index file
which is to contain a key for the record.

—-- If the key is null, an I/0O error results.

-— If the key already exists in the index file, an I/0 error
results. :

-—- The search algorithm, used to determine whether the key is
already in the index, is identical to that used in the indexed
sequential access READ operation (see section 15.3).

-— The key is inserted into the index such that the keys in the
index file remain in ASCII collating sequence.

-—- The logical record read from, or written to, the data file by

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-13

the most recently executed indexed sequential or associative
indexed access READ, READKS, READKG, or WRITE, is the record
which is indexed by the execution of the INSERT instruction.
Executing another indexed sequential or associative indexed .
access read or write destroys the pointer to the indexed
record of the previous read or write.

**% WARNING ** executing an INSERT before any indexed
sequential or associative indexed reads or writes are executed
may result in damage to the data file.

Newer interpreters check the validity of the INSERT operation.
If no indexed sequential or associative indexed read or write
operation has been performed prior to the INSERT, or if the
last such read or write was to a different text file, an I/O
error is given.

It is not necessary to prevent the program from being
interrupted between the read or write and INSERT instructions.

Timing considerations:

a) Inserting many records causes indexed accesses to becomne
less random and more sequential. (Random accessing takes
much less time than sequential accessing.)

b) Inserting many records whose keys are close together in
the collating sequence causes indexed accesses to become
less random. (For example: AAAB is much closer to AAAA
than BBBB.)

c) Indexed accesses start taking significantly longer when
one tenth of the records in an indexed file have been
inserted with the indexed sequential WRITE or INSERT
instruction.

d) Generally, use the DOS INDEX utility as often as possible
to insure that indexed accesses are as random as possible.

15.9 DELETE (Indexed Sequential)

The DELETE operation allows a record to be physically deleted

from a data file and for its key to be deleted from the specified
index. This instruction may have one of the following general
formats:

1) <label> DELETE <ifile>,<svar>

15-14 DATABUS COMPILER

2) <label> DELETE Krifile>,<svar>

where: <label> 1is an execution label (see section 2.).
<svar> is a string variable (see section 4.2).
<ifile> 1is a file declared using the IFILE declaration
(see section 5.2).
<rifile> is a file declared using the RIFILE declaration
(see section 5.4).

Programming Considerations:

—-- <Klabel> is optional.

—-— It is an illegal operation to execute a DELETE and then an
UPDATE to the same record. This operation can destroy your
file.

-— The logical string of <svar> specifies the key to be deleted.

—-— One DELETE or DELETEK must be executed for each index file
which needs a key deleted.

-- If the key is null, an I/0 error results.

-- If the key cannot be found in the index, the OVER flag is set.

—-— The indexed record is deleted by overstoring every character
in the record with an 032 (octal). This includes the logical
end of record character (015).

-— Both the DOS REFORMAT utility and the DATABUS interpreters
ignore all 032 characters while reading, therefore, these

characters do not appear to exist.

-— The DOS REFORMAT utility may be used to eliminate the 032
control characters from the data file.

-- If the indexed record to be deleted has already been deleted,

the only action taken is to delete the key from the index
file.

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-15

15.10 DELETEK (Indexed Sequential)

The DELETEK instruction allows the deletion of a key from an
index file without affecting the data file. This instruction is
useful in situations where more than one index file is used to
access one data file. This instruction may have one of the
following general formats: ‘

1) <label> DELETEK <ifile>,<svar>
2) <label> DELETEK <rifile>,<svar>

where: <label> 1is an execution label (see section 2.).
<ifile> 1is a file defined using the IFILE declaration
(see section 5.2).
<rifile> is a file defined using the RIFILE declaration
(see section 5.4).
<svar> is a character string variable.

Programming considerations:

—-— <label> is optional.

-— The logical string of <svar> specifies the key to be deleted.

-— If the key is null, an I/0 error results.

-— If the key cannot be found in the index, the OVER flag is set.

-— Only the key in the index file is deleted, the data file is
not used or modified by this instruction.

15.11 FPOSIT (Indexed Sequential)

The FPOSIT instruction allows a DATABUS program access to the
current position of a file. It can be used to observe the current
position, or to save it and restore it later. For a general '
discussion of the FPOSIT instruction see section 13.8. This

instruction may have one of the following general formats:

1) <label> FPOSIT <ifile>,<nvarl>,<nvar2>
2) <label> FPOSIT <rifile>,<nvarl>,<nvar2>

where: <label> 1s an execution label (see section 2.).
<ifile> 1is a file defined using the IFILE declaration
{see section 5.2).
<rifile> is a file defined using the RIFILE declaration
(see section 5.4).

15-16 DATABUS COMPILER

<nvarl> 1is a numeric string variable.
<nvar2> 1is a numeric string variable.

Programming considerations:
—-- <Klabel> is optional.
—-—- See section 13.8.

—-— The record pointer and character pointer returned are those of
the data file.

—- The index file is not used by this instruction.

CHAPTER 15. INDEXED SEQUENTIAL RECORD ACCESSING 15-17

CHAPTER 16. ASSOCIATIVE INDEXED RECORD ACCESSING

The following sections discuss the aspects of the Disk I/0
instructions that apply to accessing associative indexed records
only. For further information on the associative index access
method, consult the appropriate interpreter user's guide.

16.1 OPEN (Associative Indexed)

The following sections discuss the aspects of the OPEN
instruction that apply to accessing associative indexed records
only. For a general discussion of the OPEN instruction, see
section 12.3.1. One of the following general formats may be used:

1) <label> OPEN <afile>,<slit>

2) <label> OPEN <afiled> ,<svar>

3) <label> OPEN <afile>,<slit>,<char>

4) <label> OPEN <afile>,<svar>,<char>

5) <label> OPEN <afile>,<slit>,<svarl>

5) <label> OPEN <afile> ,<svar>,<svarl>

where: <label> is an execution label (see section 2.).
<slit> is a literal of the form "<string>" (see section
2.5).

<svar> is a string variable (see section 4.2).
<svarl> 1is a string variable (see section 4.2).
<char> is a one character string (see section 2.5).

<afile> is a file declared using the AFILE declaration
(see section 5.5).

Progrémming Considerations:

-—- <Klabel> 1is optional.

-— <Kslit> must be a valid character string (see section 4.2).
-— See section 12.3.1.

~— OPEN initializes both the associative index file and the data
file that has been indexed.

—-— If the drive number is specifed (see section 12.3.1), the
associative index file must be on the specified drive.

CHAPTER 16. ASSOCIATIVE INDEXED RECORD ACCESSING 15-1

The name of the data file to be opened is contained in the
assoc1at1ve index file.

Opening the associative index file automatically causes the
data file to be opened.

The interpreter first looks for the data file on the same
drive as the associative index file. If it is not found on
this drive, all drives are searched for the file (starting
with drive 0 and ending with the highest numbered drive that
is on-line). Consult the appropriate interpreter user's guide
for more information.

If the data file is indexed by more than one associative index
file, each associative index file must be opened using a

~different logical file.

The position within the data file is initialized to:
a. Record number = 0.
b. Character pointer = 1.

The position within the associative index file is
uninitialized.

If format (3) or (4) is used, the <char> specifies the "don't
care character" to be used.

If format (5) or (5) is used, the formpointed character of
<{svarl> specifies the "don't care character" to be used.

The "don't care character" must be between 041 (!) and 0176
(7).

If the "don't care character" is specified in the OPEN
statement, this character is used instead of the one specified
on the AIMDEX command line when the file was AIMed.

If the user does not specify a "don't care character"” on the
OPEN statement, or if <svarl> when using formats (5) or (5) is
null, or if the specified character is not in the required
range, the "don't care character" used is the one specified
when the file was AIMed using the AIMDEX utility.

See the addendum to the D0OS. 2.6 user's guide for more details
on the "don't care character" as used by AIMDEX.

16-2 DATABUS COMPILER

—-— The "don't care character" is used when building key
specifications for a READ statement (see section 16.3). 1If a
READ statement has keys using this character, the positions in
the record correspending to the "don't care characters" in the
keys can contain any character.

Assume that the following statements were included in the
program previous to the statements in all of the following
examples:

DECL AFILE 100
Also, assume that index files, DATA/AID and DATA2/AID, have been
created by indexing the data file, DATA/TXT, using the AIMDEX
utility as shown below:

AIMDEX DATA/TXT:DRO,DATA/AID:DRO; 1-5
AIMDEX DATA/TXT:DRO,DATA2/AID:DR1;6-10

Note that DATA/TXT is on drive 0, DATA/AID is on drive 0 and
DATA2/AID is on drive 1.

Example:
OPEN DECL,"DATA o"

This OPEN instruction initializes DATA/AID and DATA/TXT on drive
0.

Example:
OPEN DECL,"DATA v

This OPEN instruction causes an 1/0 efror, since DATA/AID is not
on drive 1.

Example:
OPEN DECL,"DATA"

This OPEN instruction initializes DATA/AID and DATA/TXT on drive
0.

CHAPTER 15. ASSOCIATIVE INDEXED RECORD ACCESSING 15-3

Example:
OPEN DECL,"DATA?2 o"

This OPEN instruction causes an I/0 error, since DATA2/AID is not
on drive 0.

Example:
OPEN DECL,"DATA2 I

This OPEN instruction initializes DATA2/AID on drive 1 and
DATA/TXT on drive 0.

Example:
OPEN DECL,"DATA2"
This OPEN instruction initializes DATA2/AID on drive 1 and
DATA/TXT on drive 0.
16.2 CLOSE (Associative Indexed)

This instruction is used to return any unused, newly
allocated disk space to DOS for use by another file. The
following sections discuss the aspects of the CLOSE instruction
that apply to accessing associative indexed records only. For a
general discussion of the CLOSE instruction, see section 12.3.2.
CLOSE has the following general format:

1) <label> CLOSE <afile>
where: <Klabel> is an execution label (see section 2.).

<afile> is a file declared using the AFILE declaration
(see section 5.5).
Programming Considerations:
~-— <label> is optional.

—-— See section 12.3.2.

-- Only the data file is affected. by executing the CLOSE
instruction.

-— The associative index file is unchanged by the execution of
the CLOSE instruction.

15-4 DATABUS COMPILER

16.3 READ (Associative Indexed)

The READ instruction is used to get information saved on the
disk into variables in a DATABUS program. The following sections
discuss the aspects of the READ instruction that apply to
accessing associative indexed records only.. For & general
discussion of the READ instruction, see section 12.3.3. This
instruction may have one of the following general formats:

1) <label> READ <afile>,<nvar>;<list>
2) <label> READ <afile>,<slist>;<1list>

where: <label> 1is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<slist> is a list of string variables (see section 4.2).
<afile> 1is a file defined using the AFILE declaration
(see section 5.5).
<list> is a list of items describing the information to
be read from the disk.
Programming Considerations:
-- <label> is optional.
~- The following apply when format (1) is used:

a) The READ instruction accesses only the data file.

b) The READ is either a physical access (see section 13.4) or
a logical access (see section 14.4).

c) The associative index file is not used or modified in any
way by the READ.

a) The *<nvar> list control is not allowed in the <list>.
e) The *<dnum> list control is not allowed in the <list>.

-~ The rest of the programming considerations in this section
apply when format (2) 1s used.

—- The logical string of each string variable in the <slist>
specifies a key specification to bhe used when searching for
the record. ’

-- The format of each key specification is: NNS<key>, where:

a) NN is the field number. The field number is specified as

CHAPTER 16. ASSOCIATIVE INDEXED RECORD ACCESSING 15-5

b)

c)

The

two decimal digits, or as a blank followed by a decimal
digit. The record fields are numbered according to the
order the keys were given to AIMDEX when the file was
AIMed.

S specifies the search type, and must be one of the
letters X, L, R, or F.

<key> specifies the actual key information.
search types are as follows:

X specifies that the key given in the variable must match
the specified field in the record exactly. If the key
given is longer than the record field, the key is
truncated on the right to the field length. If the key is
shorter than the record field, it is treated as if it is
padded on the right with blanks to the length of the
record field.

L specifies that the key given in the variable must match
the left part of the specified field. 1If the key given is
longer than or equal to the record field, the key 1is
treated as an X type key specification. 1If the key given
is longer than the record field, it is truncated on the
right to the field length. TIf the key given is shorter
than the record field, it is treated as if it is padded .on
the right with "don't care characters"”.

R specifies that the key given in the variable must match
the right part of the specified field. If the key given
is longer than or equal to the record field, the key is
treated as an X type key specification. If the key given
is longer than the record field, it is truncated on the
left to the field length. If the key given is shorter
than the record field, it is treated as if it is padded on
the left with "don't care characters".

F specifies that the key given in the variable can occur
anywhere in the specified field. If the key given is
longer than or equal to the record field, the key is
treated as an X type key specification. 1If the key given
is longer than the record field, it is truncated on the
right to the field length:

record must meet all of the criteria specified in the key

list.

16—

DATABUS COMPILER

Multiple key specifications may be given for the same record
field as long as they do not conflict with each other. For
example, the two specifications "01lLABC" and "01lRDEF" are
acceptable if field one is at least six characters long. They
conflict if the field is less than six characters long.

If a string variable in the list is null (has a 0 formpointer)
the key is ignored.

If all of the string variables are null, the last associative
indexed record that was read (by a READ or READKG instruction)
is re-read without using the associative index file to access
the record. This saves the time needed to search the
associative index file. When the same associative indexed
record needs to be read more than once, this feature may save
considerable time.

Using null keys causes an I/O error if there was not a
previous successful read performed using non-null keys.

A READ/ using this null key feature does not set up or use the
internal information used to control the READKG operation (see
section 15.6). Thus, the re-read feature can be intermixed
with READ and READKG operations. Thus, the sequence: READ,
re-READ, READKG, re-READ, READKG, and so on, is valid.

The key specification given may have "don't care characters"
embedded anywhere within it. When searching for a matching
record, the positions in the record corresponding to the
positions of the "don't care characters" in the keys can
contain any character.

A certain minimum amount of information must be given in the
key specifications. The following rules itemize acceptable
minimum information requirements:

a) One non-blank, non-"don't care" character occuring at the
left of the field.

b) One non-blank, non-"don't care" character occurihg at the
right of the field.

¢) Three consecutive non-blank, non-"don't care" characters
occuring elsewhere in the field.

For an X type search specification, the following apply:

a) Rules a, b, or c apply.

CHAPTER 15. ASSOCIATIVE INDEXED RECORD ACCESSING 16

I
~

b) If rule b is used, the character must correspond to the
end of the record field. For example, a key specification
of "01X?A", where "?" is the “don't care character" is
sufficient information, according to rule b above, if
field 1 is two characters long. If field 1 is longer than
two characters, then because an X type key that is too
short is padded on the right with blanks, this key does
not give sufficient information. '

For an L type search specification, the following apply:

a) If the key given is longer than or equal to the field
length, the key is treated as an X type specification,
otherwise

b) Rules a or ¢ apply.

For an R type search specification, the following apply:

a) If the key given is longer than or equal to the field
length, the key is treated as an X type specification,
otherwise

b) Rules b or ¢ apply.

For an F type search specification, the following apply:)

a) If the key given is longer than or equal to the field
length, the key is treated as an X type specification,
otherwise

b) Rule c applies.

Each key given on the READ statement does not need to meet the

minimun information requirements. It is sufficient if there

is at least one key specification for a non-excluded field (an
exluded field is one defined with the X option on the AIMDEX
command line) given that meets the minimum information
requirements. If the minimum information requirements are not

met, an I/0 error is given.

Each F type key specification must contain at least three
characters or an I/0 error is given.

If the keys given on the READ statement do not meet the
minumun information requirements, an I/0 error is given.

As nuch information as possible should be included in the keys

15-8 DATABUS COMPILER

given for the READ statement. The associative index access
nethod is such that, in general, if more information is given
to identify the record or set of records desired, they can be
found faster, and with less system overhead.

—— Once a matching record is found, the READ proceeds precisely
as if it were a logical record access (see section 14.4).
(Exception: see the Programming Consideration below
concerning tab positioning.)

~- If no record matching the key specifications is found,
a) The OVER condition flag is set, and
b) All of the variables in the list are unchanged.

—--— If the OVER flag is set after an associative indexed READ
operation, it indicates that no record could be found matching
the key specifications given.

-— The test for the OVER condition should be made after the READ
statement.

-— Tab positions when using associative indexed access are
calculated relative to the beginning of the logical record
instead of relative to the beginning of the physical record.
However, tabbing can be used only when logical records do not
cross physical record boundaries. This condition can usually
be enforced through the use of the DOS REFORMAT utility and
careful use of DATABUS WRITE instructions.

16,4 WRITE (Associative Indexed)

The WRITE instruction is used to put the information to be
saved onto the disk. The following sections discuss the aspects
of the WRITE instruction that apply to accessing associative
indexed records only. For a general discussion of the WRITE
instruction, see section 12.3.4. This instruction may have one of
the following general formats:

1) <label> WRITE <afile>,<nvar>;<list>
2) <label> WRITE afile>,<nvar>;<list>;
3) <label> WRITE <afile>;<list>
4) <label> WRITE <afile>;<list>;

where: <label> 1is an execution label (see section 2.).
{nvar> is a numeric variable (see section 4.1).

CHAPTER 15. ASSOCIATIVE INDEXED RECORD ACCESSING 15-9

<afile> 1is a file defined using the AFILE declaration
" (see section 5.5).
<list> is a list of items describing the information to
be written to the disk.

Programming Considerations:

—-—- <label> is optional.

-— See
~— The
a)

b)

9)

16-10

section 12.3.4.
following apply when formats (1) and (2) are used:
The WRITE instruction accesses only the data file.

The WRITE is either a physical access (see section 13.5)
or a logical access (see section 14.5).

The associative index file is not used or modified in any
way by the WRITE.

following apply when formats (3) and (4) are used:
The data file is searched for its end-of-file mark.

The record is written over the end-of-file mark and
proceeds exactly as if it were a physical record write
(see section 13.5).

If format (3) is used, a new end-of-file mark is written
to the next physical record.

This implies that for each record inserted into the data
file, at least one physical record is used, no matter how
large or small the record.

The key information is extracted from the record written
and the associative index file is updated.

The interpreter knows which parts of the record are key
fields, thus the keys do not need to be specified on the
WRITE statement.

If the primary record select option was used when the file
was created with AIMDEX, the key information is extracted
and used to update the associative index file only if the
record meets the primary record selection criterion. See
the addendum to the DOS. 2.6 user's guide for more details

DATABUS COMPILER

on the primary record select option of the AIMDEX utility.

h) The WRITE statement destroys the internal information used
to control the READKG statement (see section 156.4). If a
READKG is attempted after a WRITE statement, an I/0 error
is given.

Processing for the WRITE instruction is terminated as follows:
a) Format (1) causes:

1) all of the actions taken when terminating a physical
record WRITE (see section 13.5), or a logical record
WRITE (see section 14.5).

b) Format (3) causes:

1) all of the actions taken when terminating a logical
record WRITE (see section 14.5), plus

2) the position within the data file to be bumped to the
next physical record, and

3) an end-of-file mark to be written.
c) Formats (2) and (4) cause:

1) the position within the file to be unchanged after
processing the last item 1in the list. This operation
is useful for writing the first part of a record where
more of the record is written later. Typically, a
logical (sequential) WRITE instruction is used for
this purpose.

2) The end-of-file mark is not written. This makes it
the programmer's responsibility to write the
end-of-file mark himself.

3) If the programmer fails to write an end-of-file mark,
the next attempt to insert a record causes a RANGE
trap. This insertion fails because the search for the
end-of-file mark fails.

** WARNING ** If format (4) is used, all parts of the record
containing key data must be written with this WRITE
instruction. The part of the record to be written later must
not contain any key field data.

CHAPTER 16. ASSOCIATIVE INDEXED RECORD ACCESSING 16-11

—— Timing considerations:

a) Inserting many records causes associative indexed accesses
to become slower.

b) The AIMDEX utility can be used to insure that associative
indexed accesses are as fast as possible.

16.5 WEOF (Associative Indexed)

The WEOF instruction allows a DOS end of file mark (see
section 12.1.3) to be written to a file. This instruction has the
following general format:

1) <label> WEOF <afile>,<nvar>
where: <label> 1is an execution label (see section 2.).
<nvar> is a4 numeric variable (see section 4.1).
<afile> 1is a file defined using the AFILE declaration
(see section 5.5).
Programming Considerations:
-- <Klabel> is optional.

—- The WEOF instruction accesses only the data file.

—-- The write is either a physical access (see section 13.7) or a
logical access (see section 14.7).

—-— The associative index file is not used or modified in any way
by the WEOF.

16.6 READKG (Associative Indexed)

The READKG (READ Key Generic) instruction is provided to
allow reading any other associative indexed records that meet the
same key specifications as given on an earlier associative indexed
READ instruction. This instruction has the following general
format:

1) <label> READKG afile>;<list>
where: <label> 1is an execution label (see section 2.).

<afile> 1is a file defined using the AFILE declaration
: (see section 5.5). ‘

15-12 DATABUS COMPILER

<list> is a list of items describing the information to
be read from the disk.

Programming Considerations:

<label> is optional.

This instruction reads another record in the data file that
meets the key specifications given in the last valid
associative indexed READ statement.

Since the interpreter saves the key information given in the
READ statement, the keys do not need to be respecified on the
READKG statement. The string variables used to hold the keys
given for a READ statement may be modified between the READ
and any READKG statements without harming the saved
information.

If no valid associative indexed READ has been performed prior
to execution of this instruction, an I/0 error is given.

Note that an associative indexed WRITE or INSERT statement
destroys the internal information set up by the READ statement
which is used to control the READKG operation. A READ using
the re-read feature (all keys are null) does not set up this
information.

If there are no more records in the data file meeting the key
specifications:

a) The OVER condition flag is set, and

b) All of the variables in the list have an indeterminate
value.

Except that the initial position within the data file is
determined as described above, READKG proceeds identically to
an associative indexed access READ (see section 15.3).

CHAPTER 15. ASSOCIATIVE INDEXED RECORD ACCESSING 15-13

Example:

DECL AFILE 100,3,32 AIM FILE DECLARATION
KEY1 DIM 30 KEY SPECIFICATION VARIABLES
KEY2 DIM 30
KEY3 DIM 30
LINE DIM 80 ’ LINE BUFFER
TRAP NOFILE IF IO CATCH FILES NOT ON DISK
OPEN DECL,"DATA" LOOK FOR DATA/TXT AND
. DATA/AID
TRAPCLR IO OPEN SUCCEEDED SO DON'T
. CATCH ANY MORE ERRORS

. OBTAIN KEY INFORMATION FROM USER AND FORMAT
. KEY1l, KEY2, AND KEY3 AS NEEDED.

.

READ DECL,KEY1,KEY2,KEY3; LINE GET THE FIRST RECORD
LOOP STOP IF OVER OVER MEANS NO MORE RECORDS

DISPLAY *R,*P1:12,*+,LINE DISPLAY THE LINE ,

READKG DECL; LINE TRY FOR ANOTHER RECORD

GOTO LOOP CHECK FOR NO MORE

*
. TELL THE OPERATOR SOMETHING IS WRONG

NOFILE DISPLAY *R,*P1:12,"NO SUCH FILE"
STOP '

16.7 UPDATE (Associative Indexed)

The UPDATE instruction allows tabbing while modifying an
associative indexed record. UPDATE allows characters to be
written into any character position of an associative indexed
record without disturbing the rest of the record. This
instruction has the following general format:

1) <label> UPDATE <afile>;<1ist>

where: <label> 1is an execution label (see section 2.).
<afile> 1is a file defined.using the AFILE declaration
(see section 5.5).
<list> is a 1list of items describing the information to
be written to the disk.

16-14 DATABUS COMPILER

Programming Considerations:

<label> is optional.

UPDATE is used to modify the last associative indexed record
accessed by any associative indexed record read instruction (a
READ or READKG).

With the following exceptions, UPDATE functions the same as
WRITAB.

a) All tab positions are calculated relative to the beginning
of the logical record, rather than relative to the
beginning of the physical record. However, tabbing can be
used only when the logical records do not cross physical
record boundaries. This condition can usually be enforced
through the use of the DOS REFORMAT utility and careful
use of DATABUS WRITE instructions. Tabbing should not be
used with space compressed records.

b) The initial position within the data file is determined as
described above, rather than bheing furnished by a
variable.

c) It is an illegal operation to execute a DELETE and then an
UPDATE to the same record. This operation can destroy
your file.

Attempting an UPDATE when no other associative indexed read
operation has been performed prior to the execution of the
UPDATE, causes an I1/0 error.

It is possible to overstore the 015 (logical end of record)
and the 003 (physical end of record) characters when using
UPDATE. If extreme care is not exercised, this can result in
nmore than one record bheing turned into a single very large
record. In some cases it can result in an I/0 error.

The associative index file is not used or modified by this
instruction. TIf the UPDATE changes part of the record used as
a key field, then future READ or READKG statements may not
find the record. If key field is to be changed, the record
should be DELETEd and then rewritten with a WRITE statement,
or tne field should be declared as an excluded field. See the
addendum to the DOS. 2.5 user's guide for a description of the
X option used by the AIMDEX utility to specify an excluded
field.

CHAPTER 15. ASSOCIATIVE INDEXED RECORD ACCESSING 15-15

16.8 INSERT (Associative Indexed)

INSERT provides the capability for inserting the key
information for an exisiting indexed record into an additional
associative index file. This instruction must be used in
conjunction with indexed sequential or associative indexed reads
or writes. The indexed record is written to the data file by the
WRITE instruction, or is read with a READ, READKG, or READKS
instruction. The WRITE instruction also inserts the key
information into the appropriate index file. Since the record
does not need to be re-written to the data file, the INSERT
instruction is used to insert the key information for the record
into any additional associative index files. Thus, after using
the INSERT instruction, the record is accessible through more than
one index file. This instruction has the following general
format:

1) <label> INSERT <afile>

where: <label> 1is an execution label (see section 2.).
<afile> is a file declared using the AFILE declaration
(see section 5.5).

Programming Considerations:
—-— <label> is optional.

—— .One INSERT must be executed for each additional associative
index file which is to reference the data record.

-—- The logical record read from, or written to, the data file by
the most recently executed indexed sequentizl or assoc¢iative
indexed access READ, READKG, READKS, or WRITE, is the record
which is indexed by the execution of the INSERT instruction.
Executing another indexed sequential or associative indexed
access read or write destroys the pointer to the indexed
record of the previous read or write.

—— If no indexed sequential or associative indexed read or write
operation has been performed prior to the INSERT, or if the
last such read or write was to a different text file, an I/O
error is given.

—-— ** WARNING ** Although INSERT references the last record
accessed by either a read or write statement, the nature of
the associative index file is such that the INSERT may not
always work. The only valid way to perform an INSERT is after
executing the WRITE instruction that caused the record to be

16-16 DATABUS COMPILER

written to the data file. Any other manner of performing the
INSERT may not work. Also, interrupts should be prevented
between the WRITE and the INSERT instruction.

—— The INSERT statement destroys the internal information used to
control the READKG statement. If a READKG is attempted after
an INSERT statement, an I/0 error is given.

-- Timing considerations:

a) Inserting many records causes associative indexed accesses
to become slower.

b) The AIMDEX utility can be used to insure that associative
indexed accesses are as fast as possible.

16.9 DELETE (Associative Indexed)

The DELETE operation allows a record to be physically deleted
from a data file. This instruction has the following general
format:

1) <label> DELETE afile>

where: <label> 1is an execution label (see section 2.).
<afile> is a file declared using the AFILE declaration
v (see section 5.5).

Programming Considerations:
-~ <label> is optional.

~-— It is an 1llegal operation to execute a DELETE and then an
UPDATE to the same record. This operation can destroy your
file.

—-—- DELETE is used to delete the last associative indexed record
accessed by any associative indexed record read instruction (a
READ or READKG).

-— This operation does not use or modify the associative index
file in any way.

—-— If wmultiple associative index files are usad to index the sane
data file, the DELETE need only be done through one of the
associative index files. There is no DELETEK operation to be
used on the other associative index files.

CHAPTER 15. ASSOCIATIVE INDEXED RECORD ACCESSING 15-17

-~ The indexed record is deleted by overstoring every character
in the record with an 032 (octal). This includes the logical
end of record character (015).

——- Both the DOS REFORMAT utility and the DATABUS interpreters
ignore all 032 characters while reading, therefore, these
characters do not appear to exist. '

—— The DOS REFORMAT utility may be used to eliminate the 032
control characters from the data file.

—— If the indexed record to be deleted has already been deleted,
no action is taken.
16.10 FPOSIT (Associative Indexed)

The FPOSIT instruction allows a DATABUS program access to the
current position of a file. It can be used to observe the current
position, or to save it and restore it later. For a general
discussion of the FPOSIT instruction see section 13.8. This
instruction has the following general format:

1) <label> FPOSIT afile>,<nvarl>,<nvar2>

where: <label> 1s an execution label (see section 2.).

<afile> 1is a file defined using the AFILE declaration

(see section 5.5).

<nvarl> 1s a numeric string variable.

<nvar2> 1s a numeric string variable.
Programming considerations:
-- <label> is optional.

-— See section 13.8.

-— The record pointer and character pointer returned are those of
the data file.

-—- The associative index file is not used by this instruction.

16-18 DATABUS COMPILER

CHAPTER 17. PROGRAM GENERATION

17.1 Preparing Source Files

Files containing the source language for DATABUS programs are
prepared using the general purpose editor running under the DOS
(the editor's use is covered in the DOS User's Guide). The editor
tab stops may be set to be suitable for keyin of DATABUS programs
by using the :TD command, or by using the :T command and setting
two tabs, one at 10 and the other at 20.

17.2 Invoking the compiler

DATABUS programs are compiled using the DBCMPLUS compiler
running under the DOS. The compiler is parameterized in the
following manner: ‘

DBCMPLUS <source>[,<object>][,<print>][,<library>]
[; KCO>LKD>KE>LKL>KNN><KP><KROLS>KK>]

Where:

<source> 1is the DOS file specification for the source file
containing the DATABUS source code.

- If no file extension is specified, "/TXT" is
assumed.

-— If no drive is specified, all drives starting with
drive zero (0) are searched for the source file.

-- If the file is not found, the compiler searches the
{system DATABUS library> for a member with the given
name (see the following description of the library).

<object> is the DOS file specification for the object file.

-- If no file specification is given, the DATABUS
object file name is the same as the source file with

extension "/DBC".

-- If no drive is specified and the object file does

CHAPTER 17. PROGRAM GENERATION 17-1

<print>

<library>

17-2

not exist, the object file is placed on the same
drive as the source file. If the object file

already exists, the object code is placed in the
existing object file, overwriting what is there.

is the DOS file specification for the print file.

If no name is given for the print file
specification, the source file name is assumed. A
file extension of "/PRT" is used if none is
specified.

If no drive is specified and the print file does not
exist, the print file is placed on the same drive as
the source file. 1If the print file already exists,
the print output is placed in the existing print
file, overwriting what is there.

A print file is only written to if the P option is
specified.

The print file specification causes any printout
requested to be written into this file instead of
being printed on the line printer. Column one of
the print file record is used for the carriage
control character. The output line to be printed
starts with column two (this is the standard COBOL
and FORTRAN print file format).

is the DOS file specification for the system DATABUS
library.

If no name is given for the library name, the nane
assumed is DBCMPLUS/LIB.

If a file name is given but no file extension is
specified, "/LIB" is assumed.

If the source file specified on the command line is
not found as a free-standing file, it is looked for
in the <system DATABUS library>. The compiler uses
the library in much the same way that some DATASHARE
interpreters use the DBC orogram library,
DATASHAR/DBL.

The library is also used in conjunction with the
INCLUDE statement (see section 3.2).

DATABUS COMPILER

- Text file libraries are created and manipulated by
the utility LIBRARY/CMD. :

17.2.1 File Specifications

The compiler may be parameterized with up to four file
specifications. These file specifications follow the standard DOS
conventions. Refer to the DOS user's guide for further
information concerning DOS file specifications.

The source file contains the DATABUS program text created
with the editor. This file must always be specified. If no
extension is given on the source file name, the extension "/TXT"
is assumed. If the source file name is not supplied, the message:

NAME REQUIRED

is displayed. If the source file name does not exist in the DOS
directory, the compiler looks for the program name as a member in
the <system DATABUS library>. If there is no such library, or if
the member does not exist in the library, the message:

FILE NOT FOUND

is displayed. If no drive is specified, all drives beginning with
drive zero (0) are searched for the source file.

If any of the file specifications are identical, the compiler
displays one of the following messages:

SOURCE AND OBJECT FILES CANNOT BE THE SAME
SOURCE AND PRINT FILES CANNOT BE THE SAME
OBJECT AND PRINT FILES CANNOT BE THE SAME
OBJECT AND LIBRARY FILES CANNOT BE THE SAME
PRINT AND LIBRARY FILES CANNOT BE THE SAME

17.2.2 Output Parameters

These parameters allow the user to specify what type of
output is wanted in addition to the object file. The compiler can
output to a local or servo printer, or to a print file. Normally,
the printer output is sent to ‘a local printer. 1If the S option is
specified on the command line, any printer output generated 1is
sent to the servo printer. If the P option is specified, any
printer output is sent to a print file on disk. If no parameters
are specified, the only output is the object file (if, in this

CHAPTER 17. PROGRAM GENERATION 17-3

case,

a print file is specified, it is ignored).

Any source code lines which have errors are displayed on the

screen with the appropriate error message.

To specify output options, a semicolon (;) plus one or more

of the following should be placed after the last file
ospecification:

L

17-4

The L option causes a listing of the compilation results
to be printed. Each line of source code is numbered, and
the object code location counter value for the first byte
of code generated for the line is listed to the left of
each source code line. A "+" appearing as the first
character of a line causes a new print page to be started.
The rest of the line following the "+" may be used as a
comment line. A "*" appearing as the first character of a
line causes a new print page to be started if the current
line is within two inches of the bottom of the current
page. A good way to improve the readability of a program
is to begin each section or routine with a comment before
which a line is entered which contains a "*" in its first
column. This makes sure the comment appears on the same
page as the first lines of the code to which it is
attached. The output is to a local printer unless the S
or P option is also specified.

The S option causes any listing resulting from any other
option to be printed on the servo printer. Note that this
option, by itself, does not cause printer output to be
generated. It simply directs any output caused by any
other option to the servo printer.

The P option causes any listing resulting from any other
option to be written to a print file. If the S option is
also given, the output is directed to a print file and the
S option is ignored. Note that this option, by itself,
does not cause printer output to be generated. It simply
directs any output caused by any other option to a print
file.

The C option causes a listing of the compilation results
to be printed and the generated object code to be listed
to the left of the source-code. Printing the object code
usually makes the listing about twice as long. If this
option is given, the L option is implied and need not also
be given.

DATABUS COMPILER

E The E option causes the source code for lines with errors
to be printed in addition to being displayed on the
screen. This parameter has no meaning if the L or C
options are given since a listing produced under those
options includes error messages anyway.

R The R option causes the line numbers for referenced labels
in an operand string to be printed at the right margin of
the listing. The line number is the line on which the
referenced label is defined. 1If the L or C option is not
also given, this option has no effect. This option may be
given instead of, or in addition to, the X option. The R
option is especially convenient with GOTO or CALL
instructions in following the logic path of a complex set
of code. Note that for the R option to be effective, a
printer with at least 130 column printing capability must
be used.

X The X option causes a cross-reference listing to be
printed at the end of the compilation. The listing
consists of the label, preceded by the octal location
where the label was defined, and followed by a list of all
line numbers in which the item was defined or referenced.
An asterisk flags those line numbers which are
definitions. If the line number is in an inclusion file,
it is followed by a colon (:) and the inclusion file
letter. A cross-reference may bhe obtained regardless of
whether a listing was requested.

D The D option causes a copy of the source code to be
displayed on the screen during the compilation.

nn The nn option is a decimal number in the option string
that can be used to change the number of lines per page on
a program listing. The default value is 54 lines per
page. If this option is given, the L option is implied
and need not also be given.

If a listing has been requested, the compiler asks:

ENTER HEADING:
This may be 79 characters long and is printed at the top of each
page. Indicating the time and date of the listing is helpful in
keeping listings in chronological order. The source file name is

automatically listed to the left of the heading.

Example:

CHAPTER 17. PROGRAM GENERATION 17-5

DBCMPLUS PROGRAM

This is

the simplest compilation specification. The following

items are pertinent:

Example:

The source code found in file PROGRAM/TXT is compiled.
All drives are searched for PROGRAM/TXT starting with
drive zero (9).

If the text file is not found, the compiler searches the
{system DATABUS library>, DBCMPLUS/LIB, for a member named
PROGRAM.

The object code is placed in PROGRAM/DBC. The object code
is placed on the same drive as the source unless the
object already exists on another drive.

No other output is given except for errors displayed on
the screen.

DBCMPLUS ANSWER,ANSWER4;CX

The following items are pertinent:

Example:

The source code file ANSWER/TXT 1s compiled.

All drives starting with drive zero (0) are searched for
ANSWER/TXT.

If the source file is not found, the compiler searches the
<{system DATABUS library>, DBCMPLUS/LIB, for a member named
ANSWER.

The object code is placed in ANSWER4/DBC on the same drive
as ANSWER/TXT unless ANSWER4/DBC already exists on another
drive.

A listing 1s printed on the printer and consists of the
source and object code with a label cross-reference at the
end.

DBCMPLUS FILE:DRO,,FILELST/TXT:DR1;LX

The following items are pertinent:

17-6

DATABUS COMPILER

-~ The source code in FILE/TXT on drive zero (0) is compiled.

-- If FILE/TXT is not found, the compiler seares the <system
DATABUS library>, DBCMPLUS/LIB, for a member named FILE.

-— The object code is placed in FILE/DBC on drive zero (0)
unless FILE/DBC already exists on another drive.

-- A copy of the source code and a label cross-reference is
printed on the local printer.

Example:

The

DBCMPLUS FILE;LPC
following items are pertinent.
—-— The source code in FILE/TXT 1is compiled.

-— All drives starting with drive zero (0) are searched for
FILE/TXT.

—-— 1If the file is not found, the compiler searches the
{system DATABUS library>, DBCMPLUS/LIB, for a member named
FILE.

-- The object code is placed in FILE/DBC on the same drive as
the input file unless FILE/DBC already exists on another
drive.

-— A listing consisting of the source and object code is
written to FILE/PRT on the same drive as the input file
unless FILE/PRT already exists on another drive.

Example:

The

DBCMPLUS ALPHA:MASTER,,,PROGRAM/LIB;PLX40
following items are pertinent.

—-— The source code in file ALPHA/TXT on drive MASTER is
compiled.

-- If the source file is not found, the compiler searches the
<system DATABUS 1ibrary>,‘PROGRAM/LIB, for a member named
ALPHA.

-— The object code is placed in file ALPHA/DBC on the same

CHAPTER 17. PROGRAM GENERATION 17-7

drive as the input file unless ALPHA/DBC already exists on
another drive.

-— A copy of the source code and a label cross-reference is
written to the file ALPHA/PRT on the same drive as the
input file unless ALPHA/PRT already exists on another
drive. '

-— The listing is written to the print file with 40 lines per
page instead of the standard 54 lines.

17.2.3 Temporary File Requirements

The compiler uses a maximum of one temporary file if no cross
reference is specified. Otherwise a maximum of four temporary
files are used.

If the number of labels used by the program is too large to
fit in the symbol table the compiler keeps in memory, it creates a
file called DBPLVIRNn/SYS to hold the extra labels, where n is the
partition ID or 0 if not running under PS. 1If a cross-reference
is requested, three more files must be available. The compiler
writes a file called DBPLXRFn/SYS, where n is again the partition
ID or 0. This file contains information about each label
reference. The compiler tries to use the FASTSORT program, 1if
this program is on line. If FASTSORT cannot be found, SORT is
used. FASTSORT uses a temporary file called SORTMRG/SYS, while
SORT uses a temporary file called *SORTKEY/SYS. The sorted
cross—reference file is placed in a file called DBPLSXRn/SYS where
n is the partition ID or 0. At normal completion, all of these
temporary files are deleted.

17.2.4 Display and Keyboard Keys

The compiler may bhe stopped temporarily if it is displaying
information on the screen by depressing the DISPLAY key. The
compiler continues when the key is released. Compilation may be
aborted at any time before the cross-reference sort is begun by
depressing the KEYBOARD key.

17-8 DATABUS COMPILER

17.2.5 ABTIF flag

If any errors occur during the compilation, the compiler sets
the DOS ABTIF (ABorT IF) flag. This condition can be detected and

used to abort a CHAIN or CHAINPLS operation by using the //ABTIF
chain run time directive.

CHAPTER 17. PROGRAM GENERATION 17-9

APPENDIX A. INSTRUCTION SUMMARY

SYNTACTIC DEFINITIONS

<aclist> ' Any combination of numeric or character
string variables, FILEs, IFILEs, AFILEs,
or COMLSTs separated by commas. The list
may be continued on more than one line by
placing a colon (:) after the last
operand on the line to be continued.

<afile> A name assigned to an AFILE declaration.

<blist> The name assigned to the first of a set
of physically contiquous numeric string
or character string variables.

<brlist> A list of execution labels separated by
commas. The list may be continued on
more than one line by placing a colon (:)
after the last label on the line to be
continued.

<char> Any single character of the form
"<string>" where string is of length one

(1) .

<cmlist> ' A name assigned to a statement defining a
COMLST data declaration.

{dlist> Any combination of <slit> and <occ>
separated by commas. The list may be
continued on more than one line by
placing a colon (:) after the last
variable on the line to be continued.

<dnum> A decimal number between 0 and 255.

<dnuml> A decimal number indicating the number of
digits that should precede the decimal
point.

APPENDIX A. INSTRUCTION SUMMARY A-1

<dnum2>

<dnum3>

<dnum4 >

<dnumb5>

<dnumb5>

<dnum7>

<dnvar>

<D0OS file spec>

<dsvar>

<equ>

<event>

<eventl>

<file>

A-2

DATABUS

A decimal number indicating the number of
digits that should follow the decimal
point.

A decimal number between 1 and 20
inclusive.

A decimal number between 1 and 64
inclusive.

A decimal number between 0 and 20
inclusive.

A decimal number between -128 and 127
inclusive.

A decimal number between 1 and 255
inclusive.

A name assigned to a statement defining a
destination numeric string variable.

This variable is generally changed as a
result of the instruction.

A DOS compatible file specification (see
DOS user's guide).

A name assigned to a statement defining a
destination character string variable.
This variable is generally changed as a
result of the instruction.

A name assigned to an EQUATE statement.

The occurrence of a program trap: PARITY,
RANGE, FORMAT, CFAIL, IO, SPOOL,
INTERRUPT, INT, F1l, F2, F3, F4, FS5,
<svar>, or <char>.

The occurrence of one of the following
program traps: PARITY, RANGE, FORMAT,
CFAIL, IO, or SPOOL. :

A name assigned to a FILE declaration.

COMPILER

<file list> A list of one or more FILE, RFILE, IFILE,
RIFILE, and AFILE names separated by
commas. The list may be continued on
more than one line by placing a colon (:)
after the last operand on the line to be
continued.

<flag> One of the following flags: OVER, LESS,
ZERO, or EOS (EQUAL and ZERO are two
names for the same flag). These flags
are used to indicate the result of
certain DATABUS operations.

<fflag> One of the following flags: F1l, F2, F3,
F4, or F5. These flags are used to
indicate the status of the console's
function keys, (if the function key
feature is available on the processor),
and are used with the GOTO instruction.

<ifile> A name assigned to an IFILE declaration.

<index> A numeric variable used in connection
with list accessing.

<key> A non-null string variable used as a key
to indexed I/0 accesses.

<label> A letter, followed by any combination of
up to seven (7) additional letters and
digits.

<list> Any combination of <slit>, <occ>, <Klist

controls> (see section 9.1.3), <nvar> and
{svar> separated by commas. The list may
be continued on more than one line by
placing a colon (:) after the last
variable on the line to be continued.

<nlist> A list of numeric variables each pair of
which is separated by a comma (,). The
list may be continued on more than one
line by placing a colon (:) after the
last -variable on the line to be
continued.

APPENDIX A. INSTRUCTION SUMMARY A-3

<nlit>

<nslist>

<null>

<nvar>

<occ>

<occl>

<pdnum>

<pdnuml>

<plist>

<prep>

K<rfile>

A-4

A literal of the form "<string>" where
string is a valid numeric string (see
section 2.5).

Any combination of numeric and character
string variables separated by commas.

The list may be continued on more than
one line by placing a colon (:) after the
last variable on the line to be
continued.

A null string variable used as a key to
an indexed read.

A name assigned to a statement defining a
numer ic string variable.

An octal control character (000 to 0377
inclusive).

An octal control chafacter between 0 and
0177 inclusive.

A positive decimal number between 0 and
127 inclusive.

A positive decimal number between 1 and
127 inclusive.

List controls used in a POLL statement.
The list controls are separated by
commas. The list may be continued on
more than one line by placing a colon (:)
after the last control on the line to be
continued.

A comma (,) or a valid preposition BY,
FROM, IN, INTO, OF, TO, USING, and WITH.
(Note: A preposition is allowed for
source code readability only, but any
preposition may be used even if it does
not make sense in English in the context
of the particular verb.)

A name assigned to an RFILE declaration.

DATABUS COMPILER

<rifile>

<rn>

{route>

<seqg>

<{skey>

<slist>

<slit>

<snvar>

{ssvar>

<string>

<svar>

A name assigned to an RIFILE declaration.

A numeric variable which contains a
positive record number (greater than or
equal to zero) used to randomly READ or
WRITE a file.

A character string variable used for
routing.

A numeric variable which contains a
negative number (less than zero) used to
READ or WRITE a file sequentially.

A numeric or character string variable
used with SEARCH.

A list of character string variables,
each pair of which is separated by a
comma (,). The list may be continued on
more than one line by nlacing a colon (:)
after the last variable on the line to be
continued.

A literal of the form "<string>" (see
section 2.5).

A name assigned to a statement defining a
source numeric string variable. This
variable is unchanged as a result of the
instruction.

A name assigned to a statement defining a
source character string variable. This
variable is unchanged as a result of the
instruction.

Any sequence of characters with the
exceptions noted in section 2.5 (forcing
character) .

A name assigned to a statement defining a
character string variable.

APPENDIX A. INSTRUCTION SUMMARY A-5

FOR THE FOLLOWING SUMMARY:
Items enclosed in brackets [] are optional.

Items separated by the | symbol are mutually exclusive (one
or the other but not both must be used).

COMPILER DIRECTIVES

<label> EOQU <dnum]occ>

<label> EQUATE <dnum| occ>

<label> IFC <equldnum]|occ>

<label> 1IFEQ <equ|dnum]occ>,<equldnum]|occ>
<label> IFGE <equldnum|occ>,<equl|dnum|occ>
<label> IFGT <equ| dnum]occ>,<equ|dnun]occ>
<label> IFLE <equldnum|occ>,<equldnum|occ>
<label> IFLT <equl|dnum|occ>,<equldnumiocc>
<label> 1IFNE <eqgu|dnum]occ> ,<equldnum|occ>
<label> IFNG <equ| dnum| occ>,<equ| dnum| occ>
<label> IFNL <equldnum|occ>,<equldnuml|occ>
<label> 1IFNZ <equ{dnum]|occ>

<label> 1IFS <equldnum]occ>

<label> 1IFZ <equldnum|occ>

<label> INC <DOS file spec>

<label> INCLUDE <DOS file spec>
<label> LISTOFF
<label> LISTON

FILE DECLARATIONS

<label> FILE
<label> IFILE
<label> RFILE
<label> RIFILE

<label> AFILE <dnum7>

<label> AFILE <dnum7>,<dnun4>
<label> AFILE <dnum7>, ,<dnum>
<label> AFILE <dnum7>,<dnum4>,<dnum>

A-6 DATABUS COMPILER

DATA DEFINITIONS

<label> FORM
<label> FORM
<label> FORM
<label> FORM
<label> FORM
<label> DIM
<label> INIT
<label> INIT
<label> FORM
<label> FORM
<label> FORM
<label> FORM
<label> FORM
<label> DIM
<label> INIT
<label> INIT
<label> COMLST

<dnuml>.<dnum2>
<dnuml>.
.<dnum2>
<dnuml >

<nlit>

<pdnuml>

<slit>

<dlist>
*<{dnuml>.<dnum2>
*{dnuml>.

* ,<dnum2>
*<{dnuml >
*<nlit>
*<{pdnuml>
*<slit>
*<dlist>
<dnum4 >

APPENDIX A. INSTRUCTION SUMMARY

CONTROL

A-8

ACALL
ACALL
BRANCH
CALL
CALL
CALL
CHAIN
DSCNC'T
FILEPI
GOTO
GOTO
GOTO
GOTO
GOTO
NORETURN
PAUSE
PI
RETURN
RETURN
RETURN
ROLLOUT
SHUTDOWN
STOP
STOP
STOP
TABPAGE
TRAP
TRAP
TRAP
TRAP
TRAPCLR

<svar>
<svar><prep><aclist>
<index><prep><brlist>
<label>

<label> IF <flag>
<label> IF NOT <flag>
<svar|slit>

<dnum3>;<file list>
<label>

<label> IF
<label> IF
<label> IF
<label> IF

<flag> _
NOT <flag>

<fflag>

NOT <fflag>

<nvar|nlit>
<dnum5>

IF <flag>

IF NOT <flag>
<svar|slit>
<svar|slit>

IF <flag>
IF NOT <flag>

<label> IF <event>

<label> GIVING <svar> IF <eventl>

<label> NORESET IF <event>

<label> GIVING <svar> NORESET IF <eventl>
<event>

DATABUS COMPILER

ARITHMETIC

LOGICAL

ADD
CHECX10
CHECK11
CK10
CK1l1
COMPARE
DIV
DIVIDE
LOAD
MOVE
MULT
MULTIPL
STORE
SUB
SUBTRAC

AND
OR

NOT
XOR

<snvar|nlit><prep><dnvar>
{svar><prep><svar|slit>
<gsvar><prep><svar|slit>
{svar><prep><svar|slit>
<svar><prep><svarlslit>
<nvar|nlit><prep><nvar>
<snvar|nlit><prep><dnvar>
<snvar|nlit><prep><dnvar>
<dnvar><prep><index><prep><nlist>
<snvar|nlit><prep><dnvar>
<snvar|nlit><prep><dnvar>

Y <snvar|nlit><prep><dnvar>
<snvar|nlit><prep><index><prep><nlist>
<snvar|nlit><prep><dnvar>

T <snvarlnlit><prep><dnvar>

<ssvar|char|occl><prep><dsvar>
<ssvarlchar|occl><{prep><dsvar>
<ssvar|char|occl><prep><dsvar>
<ssvar|char]occl><prep><dsvar>

APPENDIX A. INSTRUCTION SUMMARY A-9

CHARACTER STRING HANDLING

A-10

APPEND
BUMP
BUMP
CLEAR
CLOCK
CLOCK
CLOCK
CLOCK
CLOCK
CMATCH
CMATCH
CMOVE
EDIT
ENDSET
EXTEND
LENSET
LOAD
MATCH
MOVE
MOVE
MOVEFPTR
MOVELPTR
REP
REPLACE
RESET
RESET
SCAN
SEARCH
SETLPTR
SETLPTR
STORE
TYPE

<ssvar|slit|snvar><prep><dsvar>
<dsvar>

<dsvar><prep><dnumb | snvar>

<dsvar> :
TIME<prep><dsvar>

DAY<prep><dsvar>

YEAR<prep><dsvar>
VERSION<prep><dsvar>
PORT<prep><dsvar>
<ssvarlchar|occl><prep><dsvar>
<ssvar><prep><char|occl>
<ssvarlchar|loccl><prep><dsvar>
<ssvar|snvar><prep><dsvar>

<dsvar>

<dsvar>

<dsvar>
<dsvar><prep><index><prep><slist>
<svar|slit><prep><svar>
<ssvar|snvar|slit|nlit><prep><dsvar>
<ssvarl|snvar|nlit><prep><dnvar>
<ssvar><prep><dnvar>
<ssvar><prep><dnvar>
<ssvar|slit><prep><dsvar>
<ssvar|slit><prep><dsvar>

<dsvar>
<dsvar><prep><char| pdnum| snvar| ssvar>
<ssvar|slitloccl><prep><dsvar>
<skey><prep><blist><prep><nvar><prep><dnvar>
<dsvar>
<dsvar><prep><char | pdnuml |snvar| ssvar>
<ssvar|slit><prep><index><prep><slist>
<svar>

DATABUS COMPILER

INPUT/OUTPUT

BEEP

CLOSE Kfilelrfilelifilelrifilelafile>

COMCLR <cmlist>

COMTST <cmlist>

COMWAIT

CONSOLE <list>[;]

DEBUG

DELETE <ifilelrifile>,<key>

DELETE <afile>

DELETEK <ifilelrifile>,<key>

DIAL <svar|slit>

DISPLAY <list>[;]

FPOSIT <file|lrfilelifilelrifilelafile>,<dnvar>,<dnvar>
INSERT <ifilelrifile> ,<key>

INSERT <afile>

KEYIN <list>[;]

OPEN Kfilelrfilelifilelrifilelafile>,<svar|slit>
OPEN <afile> ,<svarislit>,<svar|char>

POLL <plist>,<ssvar>,<ssvar>;<plist>,<nslist>
PREP <filelrfile>,<svarislit>

PREPARE <filelrfile>,<svar|slit>

PRINT <list>[;]

READ <file|rfilelafile>,<rnlseq>;<; |<1list>[;]1>
READ <ifilelrifile>,<rnl|seqglkeylnull>;<; |<list>[;]>
READ <afile>,<slist>;<;|<1list>[;1>

READKG <afile>;<; I<1list>[;1>

READKS <ifile|rifile>;<;|<list>[;]>

RECV <cmlist>,<route>;<slist>

RELEASE

RPRINT <list>[;]

SEND <cmlist>,<route>;<nslist>

SPLCLOSE

SPLOPEN <svar|slit>[,<svar>|<slit>]

UPDATE Cifilelrifilelafile>;<; |<1list>[;]1>

WEOF <filelrfilelifilelrifilelafile>,<rnl|seq>
WRITAB <filelrfile>,<rnl|seg>;<; I<1list>[;1>

WRITE <Kfilelrfilelafile>,<rnlseqg>;<; |<list>[;1>
WRITE <ifilelrifile>,<rnl|seqlkey>;<; [<list>[;]1>
WRITE <afile>;<; |<1list>[; 1>

APPENDIX A. INSTRUCTION SUMMARY A-11

In the table below,

APPENDIX B. INPUT/OUTPUT LIST CONTROLS

the following abbreviations are used in

the USED IN column to indicate which DATARUS instructions the list

controls can be used in:

P1=POLL,

C=CONSOLE, D=DISPLAY, K=KEYIN, P=PRINT,

R=READ, W=WRITE.

CONTROL USED IN

-

-

*4

*4

*t

*<n>

KDP

KDP

Pl

KDP

APPENDIX

FUNCTION

Suppress a new line function when
occurring at the end of a list (see 9.,
10.1.3.6, and 10.2).

Suppress scanning for logical end of
record (see 13.4).

Suppress writing logical end of record
(see 13.5).

Turn on Keyin Continuous for KEYIN or
suppression of space insertion after the
logical length of a variable for DISPLAY,
PRINT, and RPRINT (see 9.1.3.9, 9.2.3.9,
10.1.3.8, and 10.2).

Turn on space compression during WRITE"-
(see 12.3.4.3.1).

Turn on poll-continuous option in POLL
(see section 11.7).

Turn off Keyin Continuous or allow
insertion of spaces into a variable after
its logical length for DISPLAY, PRINT, and
RPRINT (see 9.1.3.10, 9.2.3.10, 10.3.1.9,
and 10.2). '

Turn off space compression during WRITE
(see 12.3.4.3.2).

Causes a horizontal tab on the printer to

the column indicated by the number <n>
(see 10.1.3.5 and 10.2).

B. INPUT/OUTPUT LIST CONTROLS B-1

*<n>

*{nvar>

*<nvar>

*3270
*B

*C

*EF

*EL

*EOFF

B-2

RW

RW

KD

KD

KDP

K

KDC

KDC

K

Tab specification for READ or WRITAB
operations (see 13.4.1 and 13.6.1).

Causes a horizontal tab on the printer to
the column indicted by the value of <nvar>
(see 10.1.3.10 and 10.2).

The logical file pointers are moved to
that character position relative to the
current physical record (see 13.4.1 and
13.6.1) .

Enable 3270 mode in KEYIN and DISPLAY (see
9.1.3.29 and 9.2.3.20).

Emit an audible BEEP at the terminal (see
9.1.3.25 and 9.2.3.15).

Causes a carriage return to be generated
(see 9.1.3.5, 9.2.3.5, 10.1.3.2, and
10.2).

Clear the port's key—-ahead buffer (see
9.1.3.30).

Restrict string input to digits (0-2) only
(see 9.1.3.20).

Display a variable's value during REYIN
without performing a KEYIN operation on it
(see 9.1.3.24).

Causes the screen to be erased from the
current cursor position to the bottom of
the display (see 9.1.3.3, 9.2.3.3 and
9.3).

Causes the line to be erased from the
current cursor position (see 9.1.3.2,
9.2.3.2 and 9.3).

Prevents character echo to the display
during keyboard input operations (see
9.1.3.13),

DATABUS COMPILER

*EON

*EP

*ES

*p

*HOFF

*HON

*IN

*IT

*JL

*JIR

*L

*mMPp

KDP1

KDC

KD

KD

KD

KD

KDP

APPENDIX

Causes character echo to the display
during keyboard input operations (see
9.1.3.14).

Generate even parity on outgoing bytes
during KEYIN, DISPLAY, and PCLL (see
9.1.3.27, 9.2.3.18, and 11.7).

Causes the cursor to be positioned at
horizontal position 1 of the top row of
the display and the entire display to be
erased (see 9.1.3.4, 9.2.3.4 and 9.3).

Causes the printer to be positioned to the
top of form (see 10.1.3.1 and 10.2).

Turn off highlighting mode (display
characters normally, see 9.1.3.22 and
9.2.3.15).

Turn on highlighting mode (display
inverted image of all characters
displayed, see 9.1.3.21 and 9.2.3.14).

Clear Text—inversion mode (see 9.1.3.14
and 9.2.3.13).

Set Text—inversion mode (invert alphabetic
input, see 9.1.3.15 and 9.2.3.12).

Left justify numeric variable and zero
fill at right if there is no decimal
point. Left justify string variable and
blank-fill (or zero—-fill if *ZF option is
given) to end of string (see 9.1.3.17).

Right justify string variable and blank
(or zero if *ZF option is given) fill at
left (see 9.1.3.18).

Causes a linefeed to be generated (see
9.1.3.6, 9.2.3.5, 10.1.3.3, and 10.2).

Convert data in a numeric variable to

minus overpunch format on disk (see
12.3.4.3.4).

B. INPUT/OUTPUT LIST CONTROLS B-3

*N KDP
*NP KDP1
*0p KDP1
*P<h>:<v> KD
*P<h>:i<v> C
*POFF KD
*PON KD
*R KD
*RD KD
B-4

Causes the cursor or printer to be
positioned in Column 1 of the next line
(see 9.1.3.7, 9.2.3.7, 10.1.3.4, and
10.2).

Generate no parity on outgoing bytes
during KEYIN, DISPLAY, or POLL (see
9.1.3.28, 9.2.3.19, and 11.7).

Generate odd parity on outgoing bytes
during KEYIN, DISPLAY, or POLL (see
9.1.3.26, 9.2.3.17, and 11.7).

Causes the cursor to be positioned
horizontally and vertically to the column
and line indicated by the numbers <h>
(horizontal 1-80) and <v> (vertical 1-24).
These numbers may either be positive
decimal numbers or numeric variables (see
9.1.3.1 and 9.2.3.1).

Causes the cursor to be positioned
horizontally to the column indicated by
<h> inside the area on the console
reserved for terminal to operator
communications (the <v> vertical position
of the list control is ignored, see 9.3).

Send a "printer off" character to a
terminal (see 9.1.3.33 and 9.2.3.23).

Send a "printer on" character to a
terminal (see 9.1.3.32 and 9.2.3.22).

Roll up the screen one line (see 9.1.3.8
and 9.2.3.8).

Roll down the screen one line (see
9.1.3.31 and 9.2.3.21).

DATABUS COMPILER

*RV

*T

P<n>

*T<n>: <m>

*W

*Wn>

*ZF

*ZF

KP1l

KD

XD

PW

APPENDIX

Retain the variable value if a keyin of
ENTER only is received. Also enable the
LESS flag to be set if the KEYIN is
terminated by a (*T) timeout, the OVER
flag if it is terminated by the NEW LINE
key or function keys, and the EOS flag if
it is terminated by a null entry (see
9.1.3.23).

Time out after 2 seconds have elapsed
between successively entered characters
for KEYIN statement (see 9.1.3.11).

Time out after <n> seconds (see section
9.1.3.11)

Specifies the time out value (n) and NAK
count (m) during KEYIN and POLL (see
9.1.3.11, and 11.7).

Pause for one second (see 9.1.3.12 and
9.2.3.11).

pause for <n> seconds (see 9.1.3.12 and
9.2.3.11) .

Zero fill instead of blank fill string
variable (see 9.1.3.19).

Left zero fill numeric variable (see
10.1.3.7, 10.2, and 12.3.4.3.3).

B. INPUT/OUTPUT LIST CONTROLS B-5

APPENDIX C. SAMPLE DATASHARE SYSTEM

The programs described in the following sections are a
complete set of the programs necessary to bring up a DATASHARE
system. This system includes a method of logging activity on the
system and a great deal of system security.

The following is a list of the events that are logged by the
system: wuser sign ons, user sign offs, invalid attempts to sign
on, all program errors not controlled by the user's program, all
attempts to execute a program, all attempts to rollout and all
rollout returns.

System security is provided by requiring that a user have
valid identification before allowing him to sign on. Additional
security is provided by assigning security clearances to all
users, then requiring the appropriate security clearance before
allowing a user to execute a program.

** SPECIAL NOTE **

The source files for the programs described in this Appendix
are included on the released object tape. These source files are
provided solely for the customer's convenience. They are not a
part of the supported software. Any errors or suggested
modifications to these programs should be submitted as a USER'S
COMMENT on this user's guide.

To generate this system:

-— use the DOS MIN command to transfer the following programs to
your disk,

-- use the chain file provided (see section C.1.5.1) and the DOS
CHAIN command to compile the system programs (a description of
the chain file tags to be used is included in the chain file).
A suggested DOS command line to compile the system programs
is:

CHAIN MAKEANMA/CHN;1,2,3,4,SAMPLE, NEW

-— compile the supplemental system program "NEWUSER" (see section
c.3.1),

-- execute the DATASHARE interpreter (see the user's guide of the

APPENDIX C. SAMPLE DATASHARE SYSTEM Cc-1

appropriate interpreter),

when the ANSWER program asks:

What 1s your identification number?

you should type: 999999999

This will sign you onto the system as "Anyuser™" with the
highest possible security clearance. (Note: <£for added
security, identification numbers are not displayed on the

screen.)

When the MASter MENU program asks for a program number by
displaying:

Selection by number

you should type: 3

to get "Program Selection by Name".
In response to:

ENTER PROGRAM NAME:
you should type: NEWUSER

to execute the NEWUSER program.

When the NEWUSER program asks for a program number as follows:

Selection by number
you should type: 1
to "Authorize a new user".

In response to:

Enter the user's identification number.

you should type your social security number or any other

9~-digit number you want to use as your identification number.

In response to the successive requests:

Enter the user's name.

c-2 DATABUS COMPILER

Enter the user's security clearance.

you should type your name followed by a 9. Note: this
assumes you are the system engineer and will be one of the few
people who will have the highest possible security clearance.
When the NEWUSER program asks for another user's
identification number, you should indicate no more additions
by tapping the ENTER key.

In response to:

Are you done? (Y/N)

you should type: Y

to indicate that you are done.

At this point you are returned to the NEWUSER menu. You
should now either delete "Anyuser" from the list of authorized
users or modify his security clearance to one of the lowest
possible levels. (Remember: "Anyuser's" identification
number is 999999999.)

Now you should type: 99

to allow the NEWUSER program to continue.

To add any more users to the list of authorized user's you may
use the NEWUSER program.

APPENDIX C. SAMPLE DATASHARE SYSTEM c-3

Cc

.1l SYSTEM PROGRAMS

The following programs must be compiled to initiate the

execution of this DATASHARE system.

C

.
.
.
-

.1.1 Sample ANSWER Program

DATASHARE ANSWER PROGRAM

NOTE: THE PORT NUMBER INCLUSION FILE IS NAMED "PORTN/TXX" TC
DEMONSTRATE THAT EXTENSIONS OTHER THAN "/TXT" MAY BE
USED FOR INCLUSION FILES.

PORTN INCLUDE PORTN/TXX (PORTN FORM "™ 1", ETC.)
TODAY INIT "mm/dd/yy" : DATE PASSED IN COMMON
SECURITY FORM 1 SEE DESCRIPTION BELOW

THIS VARIABLE IS USED TO INDICATE THE SECURITY RATING FOR WHICH
THE USER IS AUTHORIZED. IT IS INITIALIZED FROM THE FILE OF
AUTHORIZED USERS. A PROGRAM CAN REQUIRE THAT THE USER HAVE THE
SECURITY CLEARANCE NECESSARY TO USE THAT PROGRAM. ZERO IS THE
LOWEST RATING AND NINE IS THE HIGHEST RATING.

EXAMPLE:

SAY THAT THE USE QF PROGRAM “ROLLOUT" IS TO BE RESTRICTED TO
ONLY A FEW USERS. THOSE USERS WHO WILL BE ALLOWED TO USE
"ROLLOUT" WILL BE GIVEN A SECURITY RATING OF 7. ALL OTHER
USERS WILL BE GIVEN LOWER SECURITY RATINGS. PROGRAM "ROLLOUT"
IS THEN WRITTEN SO THAT IT WILL "ROLLOUT" ONLY WHEN THE USERS
RATING IS 7. IF THE USER ATTEMPTING TO USE "ROLLOUT" HAS ANY
RATING LESS THAN 7, THEN A STOP INSTRUCTION IS EXECUTED.

SOME SUGGESTED SECURITY LEVELS ARE AS FOLLOWS:

SECURITY USED BY:
0 DISCONTINUED SERVICE
1-3 ... DATA ENTRY OPERATORS
4-5 ... DATA ENTRY SUPERVISORS
7 «.... PROGRAMMER
8 PROJECT MANAGER
9 SYSTEMS PROGRAMMER

C-4 DATABUS COMPILER

® ® 8 2 2 06 0 06 06 0 0 0 60006 0¢ 08 000 000 0 0 & @ 6 & ¢ 5 0 2 2 060 2 0 0 0 s s 8 = s e s n 0 s 0 s s e 0 s e s

. SCRATCH VARIABLES

CWK?2 DIM 2

CWK3 DIM 3

NWK2 FORM 2

NWK9 FORM 9

USERS IFILE FILE OF AUTHORIZED USERS
USERID DIM 9 KEY USED WITH FILE "USERS"
ROLCHAIN FILE ' ROLLOUT CHAIN FILR

SEQ FORM "-1"

*

. OUTPUT PARAMETERS OF SUBROUTINE "GETDATE"
TIME IN 24-HR. FORMAT

TIME INIT "hh:mm:ss" hours:minutes:seconds
DAY FORM 2

MONTH FORM 2 mn/dd/yy

YEAR FORM 2

*

JDAY FORM 3 JJLIAN DATE

CDAY DIM 3 DAY (CHARACTER STRING)
CYEAR DIM 2 ‘ YEAR (CHARACTER STRING) .
* :
NFEB FORM 28" # OF DAYS IN FEBRUARY
N30 FORM "30" USED FOR 30-DAY MONTHS
N31 FORM "31" USED FOR 31-DAY MONTHS

*

I I A I I I O I R I O I T T S S I I R R N A A B R A A B R A AN S R I 2 B L B L I

NAME DIM 20 USER'S NAME FROM LOG FILE
INCLUDE LOGDATA/TXT

APPENDIX C. SAMPLE DATASHARE SYSTEM C-5

MR

.

*

MAINLINE

© ® @ 2 % e ° e 0 0 0 2 ° 0 0 8 s 0 e e 0 e s 0 e e s e e e s e s o .

SET THE

INCL

UnE LOGIO/TXT

---------------- ® e o 0 0 0 0 0 o

TRAPS SO THAT IF ANYTHING GOES WRONG THE USER STILL

CANNOT LOG ON WITHOUT AUTHORIZATION

® 6 8 0 8 0 e 5 0 0 s 0 e 0 0 e s PO P L S G s e S S e O L e 6 e o s B e B e e e e 0 s s e s

LOG THE

TRAP BADANS

TRAP BADANS

TRAP BADANS

TRAP BADANS

TRAP BADANS
USER OFF

IF
IF
IF
IF
Ir

10
CFAIL
FORMAT
RANGE
PARITY

THE SYSTEM.

THIS FUNCTION IS PUT AT THIS POINT IN THE ANSWER PROGRAM SO
THAT ANYONE WHO TURNS OFF THE PORT (INSTEAD OF USING A NORMAL

LOG-OFF)
IS TURNED OFF,
THE FIRST CONSOLE,

WILL STILL GET LOGGED-OFF. NOTE THAT; WHEN THE PORT
THE ANSWER PROGRAM WILL CONTINUE EXECUTING UNTIL
KEYIN OR DISPLAY STATEMENT IS REACHED.

® ® 2 5 ® 9 e s 6 e s 0 0 s A e 0 e S L L s L E S S P L L L L SO L 0 0 0 0 G e e 0 00 0 6 S 0 P e s 0 e s s s 00 s e

GET THE DATE AND TIME.

® ® s 0% 00 0 006 ¢ 92 2 0 00 0 00

TO LOGTYPE
WRITES BLANK "OTHER INFO."

TRAP BADANS IF IO
CALL GETDATE

MOVE "LOG-OFF"
CLEAR LOGINFO

CALL LOGWRITE

® ®© ¢ o 0 5 2 0 5 2 0 @ 0 ° 5 0 0 0 0 0 e 0 s e 0 0 0 0 0 0 0 0 s 08 0 e e

OPEN THE FILE OF AUTHORIZED USERS

NOTE:

C-5

THE

"USERS/ISI"
"USERS/DSP" .)
E "USERS/DSP"

SINC

TRAP
OPEN
TRAP
GOTO

NAME OF THE INDEX FILE NEED NOT BE THE SAME AS THE
NAME OF THE TEXT FILE WHICH IS INDEXED. (FOR INSTANCE;

COULD BE
THIS PROVIDES ADDITIONAL SYSTEM SECURITY,

CREATED FROM A TEXT FILE NAMED

CANNOT BE ACCESSED BY DATABUS PROGRAMS

NOUSER IF IO
USERS,"USERS™"
S3ADANS IF IO

LOGON

DATABUS COMPILER

*

® @ 8 6 5 2 5 0 2 0 % 9 0 0 S P S OB PO T S GG S S S S L O GG S S S G S e 6 e 0 e e e s e 0 s e s 0 s e s » o @

. FILE CONTAINING AUTHORIZATIONS IS MISSING

NOUSER DISPLAY - *ES:
*p20:4,"You cannot log-on, the file contain-"
*pP20:5,"ing the list of authorized users is"
*p20:6,"missing! To use the system, you":
*pP20:7,"must use the DOS INDEX utility to":
*p20:8,"create the file, #"USERS/ISI#"."
GOTO HANG

LR B I R R R I B A R O R I I R R R R I R e R I I I I R I A N 2 R B R S I Y) e o & =

. LOG- THE USER ONTO THE SYSTEM

LOGON DISPLAY *ES,*P15:4,"D A TA S HAR
" ON-LINE
*pP30:6,"You are on port ##",PORTN

*

® 8 8 0 9 2 000 20 2 0 s 0 s s 000 et e s 00 e e P et e e 0 00 0 9 e s e e e ® o 86 0 9 0 60 0 0 0 0 008 s 00

. DISPLAY THE DATE AND TIME

CALL GETDATE
DISPLAY *p31:8,"Today is ",TODAY

LR A R R N A L L I R R I I e L R I I I I I R R S I S I R A R I I I I I N L)

. CHECK TO SEE IF THE USER IS AUTHORIZED

. NOTE: FOR ADDITIONAL SECURITY, ECHO OFF IS USED WHILE ENTERING
. ‘THE IDENTIFICATION NUMBER. THIS PREVENTS THE ID FROM
. BEING DISPLAYED AT THE PORT.

. THE IDENTIFICATION NUMBER BEING REQUESTED IS THE USERS
. SOCIAL SECURITY NUMBER. OTHER IDENTIFICATION TECHNIQUES
. MAY BE USED.

KEYIN *P1:12,"What is your identification number? ":
*EL,*EOFF, NWK9

COMPARE "100000000" TO NWK9 MAKE SURE HE ENTERS

GOTO BADID IF LESS ALL 9 DIGITS

MOVE NWK9 TO USERID

GOTO READID

APPENDIX C. SAMPLE DATASHARE SYSTEM c-7

. UN—AUTHORIZED USER

. NOTE:

BADID

READID

THE PROGRAMMER CAN SET THE PENALTY FOR ENTERING A BAD
ID BY ADJUSTING THE NUMBER OF *W'S USED

BEEP

DISPLAY *p50:12,*EL,"You are not an authorized user!":
WKW, KW, KW, W

BEEP

MOVE "BAD ID" TO LOGTYPE

MOVE NWK9 TO LOGINFO

CALL LOGWRITE

TRAP BADANS IF IO

GOTO LOGON

THE USER IS AUTHORIZED

READ USERS,USERID;USERID,NAME,SECURITY

GOTO BADID IF OVER CAN'T FIND HIS NUMBER
DISPLAY *p50:12,*EL, "Thank you",*W,*W,*P1:12,*EL

MOVE "LOG-ON" TO LOGTYPE

MOVE NAME TO LOGINFO

CALL LOGWRITE

TRAP BADANS IF IO

DISPLAY *p20:10,"Hello, ",NAME:
*p20:11,"You are logged on at ",TIME,".":
*W, AW, *W

. IF USER HAS HIGH ENOUGH SECURITY CLEARANCE, CHECK TO SEE IF
. LOG FILE NEEDS CLEANING

........

COMPARE "4" TO SECURITY
STOP ’ IF LESS "CHAIN to MASTER"

. LOOK AT THE NUMBER OF LOG ENTRIES
. IF MORE THAN 500, TELL THE USER HE NEEDS TO REORGANIZE

c-8

COMPARE "500" TO LOGRN
STOP IF LESS "CHAIN to MASTER"

DATABUS COMPILER

. FIND OUT IF THE USER WANTS TO RE- ORuANIZE THE LOG FILE
KEYIN *ES:
*pP20:4,"The log file is now using more than":
*P20:5,"five hundred disk sectors. It needs":
*p20: "to be re- organized to free this":
*p20: 7 "space.":
*¥Pl:12,"Do you want to re-organize the log ":

"file? (Y/N) " ,CWK3
CMATCH "Y' TO CWK3
sSTOoP IF NOT EQUAL YCHAIN to MASTER"

® @ 6 ©o o 6 0 0002 s 08 06 0008000 s e 00O e e e e e ® o6 6 5 0 0065 0 000 000 0 0 0 e e e 0 0o 0 0 0 0 0 0 0 s

. RE-ORGANIZE THE LOG FILE
. CHAIN FILE NEEDS TO BE WRITTEN SO OPEN CHAIN FILE

DISPLAY *ES,"Writing CHAIN file."

MOVE "ROLLOUT" TO LOGTYPE

MOVE "RE-ORGANIZE LOG FILE" TO LOGINFO
CALL LOGWRITE

TRAP NOCHAIN IF IO

PREPARE ROLCHAIN,"ROLCHAIN"

TRAP BADANS IF IO

GOTO WRITECHN

® ® 6 2 0 € 0 0 5 9 0 0 8 6 S 0 2 0 ° P L LG S S E L P L T B L S GGG 0 s e LN G000 e e s s e e e s s e 0o 0 o

. CHAIN FILE COULD NOT BE CREATED

NOCHAIN DISPLAY *ES:
*p20:4,"CHAIN file could not be written!":
*P20:5,"Re-organization discontinued.":
W, *W
WRITAB LOGFILE,LOGRN;*12,"NO ROLLOUT"
STOP “"CHAIN to MASTER"

. WRITE THE CHAIN FILF

WRITECHN WRITE ROLCHAIN,SEQ; *+,". RE-ORGANIZE SYSTEM LOG FILE

WRITE ROLCHAIN,SED;"."

WRITE ROLCHAIN,SEQ;"//.

WRITE ROLCHAIN,SEQ; "//* TAP THE DISPLAY KEY TO ":
"START RE-ORGANIZATION"

WRITE ROLCHAIN,SEQ;"//."

WRITE ROLCHAIN,SEQ;"//. SAVE THE LOG FILE"

WRITE ROLCHAIN,SED;"//.

APPENDIX C. SAMPLE DATASHARE SYSTEM C-9

WRITE ROLCHAIN,SEQ;". Either of the following ":
"techniques may by used:"

WRITE ROLCHAIN,SEQ;"."
WRITE ROLCHAIN,SEQ;". SAPP MASTERLG,LOGFILE,":
"MASTERLG"
WRITE ROLCHAIN,SEQ;". or"
WRITE ROLCHAIN,SEQ;". LIST LOGFILE;L"
WRITE ROLCHAIN,SEQ;". LISTING OF MASTER LOG FILE"
*
WRITE ROLCHAIN,SEQ; "LIST LOGFILE;L"
WRITE ROLCHAIN,SED; "LISTING OF MASTER LOG FILE"
WRITE ROLCHAIN,SEQ;"//."
WRITE ROLCHAIN,SEQ; "//. RE-CREATE THE LOG FILE"
WRITE ROLCHAIN,SEQ;"//."
WRITE ROLCHAIN,SEQ; "BUILD LOGFILE;!"
WRITE ROLCHAIN,SEQ; "*000":
" PORT":
" LOG TYPE":
" DATE™ :
11 II\IMEII:
" OTHER INFORMATION"
WRITE ROLCHAIN,SEQ; "*rec":
" () ll:
" ()II:
" ()Il:
" ()‘l:
L G
WRITE ROLCHAIN,SEQ; "1 "
*
WRITE ROLCHAIN,SEQ;"//."
WRITE ROLCHAIN,SEQ; "//. RETURN TO DATASHARE"
WRITE ROLCHAIN,SEQ;"//."
WRITE ROLCHAIN,SEQ; "DSBACKTD"
WEOF ROLCHAIN,SEQ

*

L A A R I I I I I I I I I I I I A I I Y A I A I B R B I B B A S AR I B R B

. ROLLOUT TO THE CHAIN FILE
. CHAIN TO THE MASTER MENU

N

DISPLAY *ES,"Re-organization in progress."

TRAP NOCHAIN IF CFAIL

ROLLOUT "CHAIN ROLCHAIN"

TRAP BADANS IF CFAIL

MOVE “ROLL RET" TO LOGTYPE

CLEAR LOGINFO

CALL LOGWRITE

STOP "CHAIN to MASTER"

C-10 DATABUS COMPILER

® 8 8 0 6 0 0 0 2 9 00 0 E P SO L O GO O O e S S S LGS S S AL P G 0 00 G O e e 0 00 00 0 s 0 s 0 e s s 0 e s

SUBROUTINE TO GET THE TIME, DAY AND YEAR

ON EXIT VARIABLE: TIME = "hr:mn:sc"

DAY = "dd"

MONTH = "mm"

YEAR = "yy"

TODAY = “mm/dd/yy"

GETDATE CLOCK YEAR TO CYEAR GET

CLOCK DAY TO CDAY GET
CLOCK TIME TO TIME GET

*

THE YEAR
THE DAY
THE TIME

® 8 5 5 4 % 6 % 0 06 00 0 T L S L e O L OGS I P G GO S G G LS L S E S s S 0 e e s s s 0 0 P e e e 0 e s

PERFORM BOUNDARY CONDITION CHECKS IF DESIRED

CLOCK
MATCH
GOTO

CLOCK
MATCH
GOTO

DAY TO CWK3
CDAY TO CWK3
GETDATE IF NOT EQUAL

YEAR TO CWK2
CYEAR TO CWK?2
GETDATE IF NOT EQUAL

IF TIME TAKEN BEFORE
MIDNIGHT AND DAY TAKEN
AFTER MIDNIGHT, REPEAT

IF DAY TAKEN BEFORE
NEW YEARS & YEAR TAKEN
AFTER NEW YEARS, REPEAT

® ® 2 % 0 0 8 0 5 PP S O P L S LG P LS LSNP OGS S AL s LS TS e TS L BN GG e s e 0 s 0 s s s

MOVE
MOVE
MOVE

COMPARE
GOTO

CDAY TO JDAY
"0" TO MONTH INT
CYEAR TO YEAR

“1" TO JDAY SYS
NODATE IF LESS WIT

® 6 ¢ ® @ o 0 e 0 0 0 0 0 00 000 00 0 LI)

PERFORM YEAR-CHECK IF DESIRED

COMPARE
GOTO
COMPARE
GOTO

"70" TO YEAR
NODATE IF LESS
"80" TO YEAR
NODATE IF NOT LESS

TIALIZE

TEM INITIALIZED
HOUT DATE!

L I I I I I I I R I O R R I I I I I I A B R A R R I A B R A N T I B R A I L

MAKE SURE FEBRUARY IS HANDLED PROPERLY ON LEAP YEARS

MOVE
DIVIDE
MULTIPLY
COMPARE
GOTO
MOVE

YEAR TO NWK2

"4" INTO NWK2

"4" INTO NWK2

YEAR TO NWK2

MDLOOP IF NOT EQUAL
"29" TO NFEB

APPENDIX C. SAMPLE DATAS

IS IT A LEAP YEAR?
NO, LEAVE NFEB = 28.
YES, SET NFEB = 29.

HARE SYSTEM C-11

. COMPUTE THE MONTH
MDLOOP ADD "1" TO MONTH
LOAD NWK2 FROM MONTH OF
SUBTRACT NWK2 FROM JDAY
GOTO MDL1 IF EQUAL
GOTO MDLOOP IF NOT LESS
*
MDL 1 ADD NWK2 TO JDAY
MOVE JDAY TO DAY
*
. PUT THE DATE INTO mm/dd/yy FORMAT
MDL 2 CLEAR TODAY
APPEND MONTH TO TODAY
APPEND "/" TO TODAY
MOVE DAY TO CWK?2
CMATCH "4 70 CWK2
GOTO MDL3 IF NOT EQUAL
CMOVE "0 TO CWK?2
MDL3 APPEND CWK2 TO TODAY
APPEND "/" TO TODAY
MOVE YEAR TO CWK2
CMATCH "4 TO CWK2
GOTO MDL4 IF NOT EQUAL
CMOVE "0" TO CWK2
MDL 4 APPEND CWK2 'TO TODAY
RESET TODAY
RETURN

® ° s 000 0 0 0

. DATE IMPROPER OR

NODATE BEEP

KEYIN

. CHECK FOR INVALID DAY

COMPARE
GOTO
COMPARE
GOoTO

C-12

© @ % o o s @ 9 5 0 00 e 00 00 s e

NOT INITIALIZED

*P1:8,*EF,"What
N,"What is the
,"What is the

ENTERED

"1" TO DAY

NODATE IF LESS
"32" TO DAY

NODATE IF NOT LESS

DATABUS COMPILER

@ @ % 0 5 0 0 0 2 2 0 8 0 o s s P e 0 0 0 0 e O s P S L 0" S e e e e e s 0

N31,NFEB,N31: JAN/FEB/MAR
N30,N31,N30: APR/MAY/JUN
N31,N31,N30: JUL/AUG/SEP
N31,N30,N31 OCT/NOV/DEC

SUBTRACT DAYS OF THE WMONTH

UNTIL MONTH FOUND

UNBIAS FROM LAST SUBTRACT
TO GET DAY OF THE MONTH

IS THERE A LEADING BLANK?
NO, CONTINUE
YES, REPLACE

IT WITH O

IS THERE A LEADING BLANK?
NO, CONTINUE
YES, REPLACE IT WITH O

is the current month? ",MONTH:
current day? ",DAY:
current year? ",YEAR

*

® ® © 6 0 06 06 5 0 0 s 0 e ° e e G B S S 0 E S0 0 S 00 S 6L LSS L L S0 e e ® o o685 060 o 00 00 0 .

. CHECK FOR INVALID MONTH ENTERED

COMPARE "1™ TO MONTH
GOTO NODATE IF LESS
COMPARE "13" TO MONTH

GOTO NODATE IF NOT LESS

. CHECK FOR INVALID YEAR IF DESIRED

. COMPARE "70" TO YEAR

. GOTO NODATE IF LESS

. COMPARE "80" TO YEAR

. GOTO NODATE IF NCT LESS
DISPLAY *¥pl:12,"Thank you",*W,*W,*P1:8,*EF
GOTO MDL 2

LI A L R I I I T O I R I I S I R A L R R I I R e e R R I S I S I A I I I] LY

. A TRAP HAS OCCURED WHILE IN THE ANSWER PROGRAM. DO NOT ALLOW
. A CHAIN TO THE MASTER PROGRAM

BADANS DISPLAY *p58:1,*EL," Unrecoverable system"

oe oo

*p58:2,*EL," error! Consult your"
*p58:3,*EL," programmer."
GOTO HANG

APPENDIX C. SAMPLE DATASHARE SYSTEM Cc-13

C.l1.2 Sample MASTER Program

. DATASHARE MASTER PROGRAM FOR LOGGING ERRORS

® o ¢ 0 0 00 0000008 000 ® ® 6 » a5 06 % 0 e 0 5 5 0 08 50 008 0 e e o ®» 0o 0 0 0 0 0 o e o 8 0 0 v 0 0 0 00 00 8 0

. COMMON AREA
. THIS AREA GETS OVERWRITTEN WITH AN 11-BYTE CHARACTER STRING
. VARIABLE WHEN AN ERROR OCCURS

. NOTE: "ERROR" USES THE SAME NUMBER OF BYTES OF USERS DATA AREA
. AS THE VARIABLES "PORTN" AND "TODAY" DEFINED IN COMMON

ERROR DIM *12 ERROR MESSAGE
SECURITY FORM *1 USER'S SECURITY CLEARANCE

L R I I L R R I S I S I I I I A I B R A N I B Y A A R I I I) ® o 0 o s o ® e 5 2 8 o

. NOTE: THE PORT NUMBER INCLUSION FILE IS NAMED "PORTN/TXX" TO
. DEMONSTRATE THAT EXTENSIONS OTHER THAN "/TXT" MAY SE
. USED FOR INCLUSION FILES.

INCLUDE PORTN/TXX

TODAY INIT ey /00"

*

ANSWER DIM 8

TIME INIT "hh:mm:ss" hours:minutes:seconds

CWK1 DIM 1 WORK AREA: CHAR.TYPE,LEN=1
CWK?2 DIM 2 WORK AREA: CHAR.TYPE,LEN=2
CWK11 INIT " B CHARACTER, LENGTH 11

INCLUDE LOGDATA/TXT
*
. SEE IF THERE ARE ANY DATASHARE ERRORS.
. IF NO ERROR OCCURED, THE 2-BYTE PORT NUMBER WILL BE MOVED INTO
. THE WORK AREA. IN THIS CASE, THE 9TH CHARACTER OF CWK1l WILL
. STILL BE A BLANK. ‘ '
. IF AN ERROR OCCURED, THE 11-BYTE ERROR MESSAGE WILL BF MOVED
. INTO CWKI11. IN THIS CASE, THE 9TH CHARACTER OF CWK1ll WILL BE
. AN ASTERISK.
. BY CHECKING THE 9TH CHARACTER, IT CAN BE DETERMINED WHETHER AN
. ERROR OCCURED OR NOT.

MOVE ERROR TO CWK11

RESET CWK1ll TO 9

CMATCH "k OTO CWKI11

GOTO MASMENU IF NOT EQUAL

INCLUDE LOGIO/TXT

C-14 DATABUS COMPILER

@ ® e 00000 00 @ © 5 4 0 0 0 ¢ 5 6 8 0 6 9 5 0 2 0 6 0 6 0 60 LG G 6L P SO O S S G L e e e 0 e e e 00 e e e -

. SINCE THE DATE PASSED IN COMMON HAS BEEN OVERWRITTEN, GET THE

. JULIAN DATE AND USE THAT FOR LOGGING

CLOCK DAY TO TODAY
ENDSET TODAY

APPEND "/" TO TODAY
CLOCK YEAR TO CWKZ2
APPEND CWK2 TO TODAY
RESET TODAY

® ® o 0 0 0 0 0 0 0 0 000 e e e e e s e e e« e a s s s e » # » ® 2 s 2 8 6 5 0 0 0 0 0 0 0 s 0 0 0 00 0 2 0 e 0 s s e o e

. WRITE THE LOG- OEF

CLOCK TIME TO TIME

MOVE "ERROR" TO LOGTYPE
MOVE ERROR TO LOGINFO
CALL LOGWRITE

® ® @ e 2 2 e s 2 8 s e 0 0 e e e 0 00 s 0 ee ® © 0 0 0 0 2 0 0 ¢ ¢ 00 06 06 00 0 00 06 006 02 8 000 0600600000200

. GIVE THE USER A CHANCE TO LOOK AT THE SCREEN BEFORE ABORTING

BEEP
DISPLAY *Pl:1,*EL,"Untrapped DATASHARE error at ",TIME
KEYIN *p67:1,“(P)ause? ",*T,*+,CWK1
CMATCH "pP" TO CWKL1 CHECK FOR NULL STRING
GOTO LOGOFF IF NOT EQUAL
PAUSE KEYIN *¥P67:1," (C)ontinue? ",*+,*EL,CWK1
CMATCH "C" TO CWK1
GOTO . PAUSE IF NOT EQUAL

*

® ® 6 06 0 0 00 0 00 0 0 0 00 0600 0 a 0 e s e 0o ® 6 @2 0 5 0 s 6 s 8 8 0 s 08 S S e P8 s 0 00 0 s s e e s e e e e

. CHAIN TO THE APPROPRIATE ANSWER PROGRAM

LOGOFF MOVE PORTN TO CWK2
COMPARE "10" TO PORTN
GOTO BUILDANS IF NOT LESS
RESET CWK2 TO 2 :
*
BUILDANS CLEAR ANSWER
APPEND "ANSWER" TO ANSWER
APPEND CWK2 TO ANSWER
RESET ANSWER
TRAP BADANS IF CFAIL
CHAIN ANSWER

GET THE PORT NUMBER
REMOVE LEADING SPACES

BUILD THE NAME

FORM: ANSWERnN

WHERE: n IS THE PORT
NUMBER (0 < n < 17)

APPENDIX C. SAMPLE DATASHARE SYSTEM C-15

*

® © 0 2 0 0 ° 0 0 e P e 0 L S e 0 LG e e s S 0 6 P W S L G T S S S L G0 S B e s e L e e e s e e e s e e

. ANSWER PROGRAM COULD NOT BE FOUND

BADANS DISPLAY *P58:l;*EL," The system program":
*pP58:2,*EL," #"",*+,ANSWER,"#" could not":
*p58:3,*EL," be found! Consult":
*p58:4,*EL," your programmer."
GOTO HANG
. CHAIN TO THE MASTER MENU
TRAP BADMASM IF CFAIL

MASMENU CHAIN "MASMENU"
*

LR AR R R I R I I N R A I R I S B L L I I T S I O S I R A N R I I I A A I B I R R A

. THE MASTER MENU COULD NOT BE FOUND

BADMASM DISPLAY *p58:1," The system program":
*P58:2," #"MASMENU#" could not":

*p58:3," found! Consult":
*p58:4," vyour programmer."
GOTO HANG

C-15 DATABUS COMPILER

C.1.3 Sample DATASHARE MASter MENU
. MASMENU - DATASHARE MASTER MENU

. THIS PROGRAM WAS GENERATED USING THE "MAKEMENU" PROGRAM
. THEN MODIFIED WITH THE DOS "EDIT" COMMAND

. COMPILING THIS PROGRAM REQUIRES THAT THE FILES: "COMMON/TXT",
. "LOGDATA/TXT" AND "LOGIO/TXT" EXIST ON ANY DRIVE WHICH IS ON-
. LINE. THESE INCLUSION FILES CONTAIN THE INFORMATION COMMON TO
. ALL OF THE SYSTEM PROGRAMS. :

INCLUDE COMMON/TXT

INDEX FORM 2 USER SELECTION VARIABLE
TIME INIT *hh:mm:ss" hours:minutes:seconds
PROGRAM DIM 9 PROGRAM SELECTION VARIABLE
CWK?2 DIM 2 ‘ WORK VARIABLE

INCLUDE LOGDATA/TX

APPENDIX C. SAMPLE DATASHARE SYSTEM c-17

+..........l...’..‘.Q...........0..D.....D...Q.....I....l.I.....-
. MAINLINE

INCLUDE LOGIO/TXT

® ® © 2 0 0 0 0 0 0 0 0 S 0L S 0 0 P G 0 S O P O O O T 0 S S S SO S L S T S S O s LS LGS e L e 00 o

. DISPLAY THE MENU

SHOWMENU DISPLAY *ES:
"DATASHARE MASTER MENU":
*p51:1,"Today is ",TODAY:
*P01:03,"(1) “:
"Payroll Menu":
*p01:04,"(2) ":
"Exit to DOS":
*p01:05,"(3)y ":
"Program Selection by Name":
*EL

..... ® ¢ 6 6 2 06 0 0 0 6 0 20 0 0 0 0 0 0 00 0 85 0 0 0 0 0 0 0 0 060 0 00 s 00

. GET THE PROGRAM'S INDEX

GETINDEX XEYIN *p1:12,*EL,"Selection by number":
*P41:12,"Enter (99) when you are done.":
*p25:12," ",*P25:12,INDEX
COMPARE “1" TO INDEX

GOTO GETINDEX IF LESS

COMPARE "99" TO INDEX

GOTO LOGOFF IF EQUAL

COMPARE "04" TO INDEX

GOTO GETINDEX IF NOT LESS
*

. BRANCH TO THE ROUTINE INDICATED RY THE INDEX

TRAP SADCHAIN IF CFAIL
CLOCK TIME TO TIME
BRANCH INDEX OF MENUl: Payroll M™Menu

DOS: Exit to DOS
OTHER Program Selection by Name

GOTO GETINDEX
. PROGRAM DOES NOT EXIST.

BADCHAIN RETURN
*

® ®© ¢ 2 0 0o s 06 0 0 0 0 0 0 0 0 00 00 e o o o 0 0 0 2 s o 0 ® e 2 o 8 0 0 ¢ 00 0 000 a0 0 s * e o o o 0 e o 0 0 0 s

. CHAIN INSTRUCTIONS

Cc-18 DATABUS COMPILER

® 5 06 00 00 0000 08000 e 0 s o ® 6 2 2 0 06 6 5 © 0 0 60 0 0 8 0 6 e 6 s 0G0 LS e e s e a0 e

. Payroll Menu

MENU1 MOVE "PROGRAM" TO LOGTYPE
MOVE "MENU1 " TO LOGINFO
CALL LOGWRITE
CHAIN "MENUL1"
WRITAB LOGFILE,LOGRN;*12,"NO PROGRAM"
GOTO GETINDEX

® ® 0 0 2 8 0 0 0 0 0 0 60 0 e e e e e 0 s s 0 e 0 s s 0 e e e 8 6 6 s &2 s 06 0 00 0 60 006 0060000006 00000600

. EXIT TO DOS REQUIRES SECURITY CLEARANCE

DOS COMPARE "6" TO SECURITY
GOTO GETINDEX IF LESS
*
TRAP NOROLL IF CFAIL
MOVE "ROLLOUT" TO LOGTYPE
CLEAR LOGINFO
CALL LOGWRITE EXIT TO DOS BY EXECUTING
ROLLOUT "FREE" THE DOS "FREE" COMMAND
*
MOVE "ROLL RET" TO LOGTYPE
" CLEAR LOGINFO
CALL LOGWRITE
GOTO GETINDEX
*
NOROLL WRITAB LOGFILE,LOGRN;*12,"NO ROLLOUT"
RETURN

*

® © 5 ® 8 0 6 5 0 P 0 0 e 0 e L s 05 e S e s L 0 0 0 0 T s S O 0 e 0P e G0 e e 8 8 L6 e s 0 000 08 0 0 0 060 e 0.

. PROGRAM SELECTION BY NAME REQUIRES SECURITY CLEARANCE

OTHER COMPARE "7" TO SECURITY
GOTO GETINDEX IF LESS
*
GETPROG KEYIN *ES,"ENTER PROGRAM NAME: " ,PROGRAM;
MOVE "PROGRAM" TO LOGTYPE
MOVE PROGRAM TO LOGINFO
CALL LOGWRITE

. DO NOT ALLOW HIM TO CHAIN TO OTHER MASTER OR ANSWER PROGRAMS

MATCH "MASTER" TO PROGRAM
GQOTO BADPROG IF EQUAL
MATCH "ANSWER" TO PROGRAM
GOTO BADPROG IF EQUAL
TRAP BADPROG IF CFAIL
CHAIN PROGRAM

APPENDIX C. SAMPLE DATASHARE SYSTEM C-19

.

® ® ® ® 0 0 0 00600080 0006000090000 ® o o s 0 0 00 0 000 000 0 ® e a8 0 06 6 00 0 00 0 00 00 00000

PROGRAM DOESN'T EXIST

BADPROG DISPLAY " <=- THAT PROGRAM DOES NOT EXIST!":

*

*w’*w
WRITAB LOGFILE,LOGRN;*12,"NO PROGRAM"
GOTO SHOWMENU

L A R I I A A R R I I I R I A A B R R I I I I B A R A A A N R A R I I I I I I O I R I A

LOG OFF BY CHAINING TO THE APPROPRIATE ANSWER PROGRAM

LOGOFF MOVE PORTN TO CWK2 GET THE PORT NUMBER
COMPARE "10" TO PORTN REMOVE LEADING SPACES
GOTO BUILDANS IF NOT LESS
RESET CWK2 TO 2

*

BUILDANS CLEAR PROGRAM BUILD THE NAME
APPEND "ANSWER" TO PROGRAM FORM: ANSWERN
APPEND CWK2 TO PROGRAM WHERE: n IS THE PORT
RESET PROGRAM NUMBER (0 < n < 17)
TRAP BADANS IF CFAIL :
CHAIN PROGRAM

*

® e 0 e s 0 0 00 0 . ® e e o 0 s 0 0 00 0 e e D A R) ® 8o 6 6 ¢ o5 0 0 0 000 0 0 0 o e e o 6 00 0 0 00 0 0 0

ANSWER PROGRAM COULD NOT BE FOUND

BADANS DISPLAY *p58:1,*EL," The system program":

*pP58:2,*EL," #"",*+,PROGRAM,"#" could not":
*p58:3,*EL," be found! Consult":
*p58:4,*EL," vyour programmer."

GOTO HANG

Cc-20 DATABUS COMPILER

C.1.4 Sample Program Selection MENU
. MENUl - MENU FOR WEEKLY PAYROLL SYSTEM
. THIS PROGRAM WAS GENERATED USING THE "MAKEMENU" PROGRAM

. COMPILING THIS PROGRAM REQUIRES THAT THE FILES: "COMMON/TXT",
. "LOGDATA/TXT" AND "LOGIQO/TXT" EXIST ON ANY DRIVE WHICH IS OW-
. LINE. THESE INCLUSION FILES CONTAIN THE INFORMATION COMMON TO
. ALL OF THE SYSTEM PROGRAMS.

INCLUDE COMMON/TXT
INDEX FORM 2 USER SELECTION VARIABLE
TIME INIT "hh:mm:ss" hours:minutes:seconds
INCLUDE LOGDATA/TXT

APPENDIX C. SAMPLE DATASHARE SYSTEM c-21

L ccecvstenenan c e cee s ceeseneen

MAINLINE

® ® o o 5 8 0 @ e 0 0 e P e 00 e s s e 0 e e L P S S L e e e e R L s e e e e ®© e s o 0 0 0 0 00 00 06 2 0008 0 o

THIS MENU REQUIRES A SECURITY CLEARANCE OF AT LEAST 2

e o 2 s 0 0 0 o

COMPARE
STOP
INCLUDE

® o o 0000 00 0

DISPLAY THE MENU

C-22

DISPLAY

"2" TO SECURITY
IF LESS
LOGIO/TXT

*BS:

"MENU FOR WEEKLY PAYROLL SYSTEM":

*p5]:1,"Today is ",TODAY:
*p01:03,"(1) ":

"Enter timecard data":
*p01:04,"(2) ":

"Print payroll checks":
*pP01:05,"(3) ":

"Print check register®:
*pP0l:06,"(4) “:

"Enter void checks":
*P01:07,"(5) ":

"Print timecard labels":
*P01:08,"(5) ":

"Print FICA register":
*P01:09,"(7) ":

"Print U/C report":
*P01:10,"(8) ":

"Print quarterly FICA report"
*P41:03,"(9) ":

"Print wW-2's":

*P41:04,"(10) ":

"Re—-organize employee file":
*P41:05,"(11) ":

"Add new employees":
*p41:06,"(12) ":

"Change employee master file"
*P41:07,"(13) "

"List employee master file":
*P41:08,"(14) "=

"Print vayroll general ledger™
*EL

DATABUS COMPILER

-
-

*

® @ 2 6 © 0 6 0 ° 2 0 s T S S G S S S B L O S B GG GG S 0L 85 8 S e L0 e e 0 00 s 0 s e s 0 0 s e o o 2 o 0

. GET THE PROGRAM'S INDEX

GETINDEX KEYIN

COMPARE
GOTO
COMPARE
STOP
COMPARE

GOTO
*

*pPl:12,*EL,"Selection by number":

*p41:12,"Enter

(99)

to leave this menu.":

p25:12," ",¥p25:12, INDEX

"1" TO INDEX

GETINDEX IF LESS

"99" TO INDEX
IF EQUAL
"15" TO INDEX

GETINDEX IF NOT LESS

® ® ® @ © 0 0 5 0 P e 0 0 C 0 0 2 0 S T G 0 L S 2 S SO G s G 8 S G S S S S B O eSS s O S I S e O e s 0 e e e s

. BRANCH TO THE ROUTINE INDICATED BY THE INDEX

TRAP
CLOCK
BRANCH

GOTO
*

® 6 0 5 & 0 5 06 4 0 0 % 0 % 0 00 0 0 0 s 0 0 s e s 0 e 00 0 0 s e e e

BADCHAIN IF CFAIL

TIME TO TIME

INDEX OF PAY1l:
PAY2:
PAY3:
PAY4:
PAY5:
PAY5:
PAY7:
PAYS8:
PAYO:
PAY10:
PAY11:
PAY12:
PAY13:
PAY14

GETINDEX

. PROGRAM DOES NOT EXIST.

BADCHAIN RETURN
*

. CHAIN INSTRUCTIONS

L A N T R I) ® o s o 0 08 v 00 0 0 s ® 6 o e 0 0 00 00 0 0

. Enter timecard

PAY1 MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

data

Enter
Print
Print
Enter
Print
Print
Print
Print
Print

timecard data

payroll checks

check register

void checks

timecard labels

FICA register

U/C report

quarterly FICA report
W-2's

Re—organize employee file
Add new employees
Change employee master file

List

employee master file

Print payroll general ledger

"PROGRAM" TO LOGTYPE
"PAY1 " TO LOGINFO

LOGWRITE
"PAY1™

LOGFILE,LOGRN;*12,"NO PROGRA%"

GETINDEX

APPENDIX C. SAMPLE DATASHARE SYSTEM C-23

® ® 0o 6 06 ¢ 00 00 0 0600 0 0 0 ® o e 0o o o0 0 0 0 = © 8 o o 8 8 & 8 0 06 ¢ 0 2 86 0 0 0 0 0 0 0 0 8 6% 000 0 00 00

. Print payroll checks

PAY?2 MOVE "PROGRAM" TO LOGTYPE
MOVE "PAY2 " TO LOGINFO
CALL LOGWRITE
CHAIN "pay2"
WRITAB LOGFILE,LOGRN;*12,"NO PROGRAM"
GOTO GETINDEX

® ® » ¢ ® s 0 ¢ e 0 00 0 0 00 000 9 s 00 02 00 00 @ 8 o 0 6 0 0 6 0 00 00 0060 0 0 0 0 00 0000 e e s e e s

. Print check register

PAY3 MOVE "PROGRAM" TO LOGTYPE
MOVE "PAY3 " TO LOGINFO
CALL LOGWRITE
CHAIN "PAY3"
WRITAB LOGFILE,LOGRN;*12,"NO PROGRAM"
GOTO GETINDEX

® ® o o o 0o 0 05 2 0 0 ® 6 o 0 0 0 0 0 0 0 00 0 0 ® o e o 0 0 o o

. Enter void checks

PAY4 MOVE "PROGRAM" TO LOGTYPE
MOVE "pPaAY4 " TO LOGINFO
CALL LOGWRITE
CHAIN "PAY4™
WRITAB LOGFILE,LOGRN;*12,"NO PROGRAM"
GOTO GETINDEX

----- ® 0 © 0 0 6 4 s 2 s e 0 0 0 e e P O P 0 S PGS S s e 0 0 s s e e e e e e e o

. Print timecard labels

PAYS MOVE "PROGRAM" TO LOGTYPE
MOVE "PAYS " TO LOGINFO
CALL LOGWRITE
CHAIN "payS5*t
WRITAB LOGFILE,LOGRN;*12,"NO PROGRAM"
GOTO GETINDEX
*

e o e o 0 s o ® ® o a0 0o 0 08 0 00 o @ 6 o e 0 0 0 0 00 0 00 0 0

. Print FICA register

PAY5 MOVE "PROGRAM" TO LOGTYPE
MOVE "PAYH " TO LOGINFO
CALL LOGWRITE
CHAIN "PAYS ™
WRITAB LOGFILE,LOGRN;*12,"NO PROGRAM"
GOTO GETINDEX

C-24 DATABUS COMPILER

® ® 8 5 © 5 5 5 0 0 0 S G L O L L 08 B S 0P LB e O SO S L OSSO E S eSS s LS NN S s 000

. Change employee master file

PAY12 MOVE "PROGRAM" TO LOGTYPE
MOVE "PAY12 “ TO LOGINFO
CALL LOGWRITE
CHAIN "pPAY12" :
WRITAB LOGFILE, LOGRN; *12,"NO PROGRAM"
GOTO GETINDEX
*

@ ® 2 @ 8 00 0 4 e e 0 s e s e BB E S S L s s e s e e e ®© o o 06 0 o 02 00 @ 0 00 "0 s 0 0 e s 0 e s e e s

. List employee master file

PAY13 MOVE "PROGRAM" TO LOGTYPE
MOVE "PAY13 " T0 LOGINFO
CALL LOGWRITE
CHAIN “PAY13™ ;
WRITAB LOGFILE,LOGRN; *12,"NO PROGRAM"
GOTO GETINDEX

LR K R R R I R T N I I R I I I S L I I R I A R R I B B I B A R R Y B I B I A

. Print payroll general ledger

PAY14 MOVE "PROGRAM" TO LOGTYPE
MOVE "PAY14 " TO LOGINFO
CALL LOGWRITE
CHAIN "pPaY14"
WRITAB LOGFILE,LOGRN; *12,"NO PROGRAM"
GOoTO GETINDEX

C-25 DATABUS COMPILER

C.1.5 Chain Files for System Generation

The following chain files may be used for system generation
and maintenance.

C.1.5.1 Compile the System Programs
. MAKEANMA - COMPILE ANSWER AND MASTER PROGRAMS

.

. CHAIN TAGS: DATEf#value$4 ==> FORCES LISTING, (#value# USED IN

. HEADINGS

. <number> ==> FORCES COMPILATION OF MASTER AND
. ANSWER PROGRAMS FOR THE PORT

. NUMBER SPECIFIED ,

.) HALF ==> FORCES COMPILATION OF MASTER AND

. ANSWER PROGRAMS FOR PORTS 1-8
. ALL FORCES COMPILATION OF MASTER AND
. ANSWER PROGRAMS FOR PORTS 1-15%

Il
]
\Y4

. SAMPLE ==> FORCES COMPILATION OF THE SAMPLE
. MENUS

. NEW ==> FORCES CREATION OF NEW SYSTEM LOG
. FILE AND A NEW LIST OF AUTHORIZED
. USERS

. EXAMPLE: TO COMPILE THE MASTER AND ANSWER PROGRAMS FOR

. PORTS 1 THROUGH 4, TO PRODUCE LISTINGS OF ALL

. PROGRAMS COMPILED, AND TO GENERATE NEW SYSTEMS

. FILES: USE THE FOLLOWING DOS COMMAND LINE

. CHAIN MAKEANMA/CHN;1,2,3,4,DATE¢#ddmmmyy#, NEW

// IFS DATE
. I WILL PRODUCE LISTINGS OF THE PROGRAMS

// XIF

// IFS SAMPLE

. I WILL COMPILE THE SAMPLE PROGRAMS
// BEGIN

/7.

//. COMPILE THE MASTER MENU

// .

// IFS DATE

DBCMPLUS MASMENU;L

APPENDIX C. SAMPLE DATASHARE SYSTEM C-27

DATASHARE MASTER MENU (MENU SELECTION PROGRAM) #DATE 4
// ELSE

DBCMPLUS MASMENU

// XIF

// -

//. COMPILE A SAMPLE MENU

/7

// IFS DATE ;

DBCMPLUS MENU1;L

SAMPLE MENU PROGRAM ¥DATE#
// ELSE

DBCMPLUS MENU1L

// XIF

// END

// XIF

// IFS 1,HALF,ALL

// BEGIN

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 1
/7.

//. CREATZ THE INCLUSION FILE FOR PORT NUMBER 1

/7

BUILD PORTN/TXX; !

PORTN FORM R

1

// -

//. COMPILE ANSWERI]

/7

// IFS DATE ,
DBCMPLUS ANSWER,ANSWER1;L

DATASHARE ANSWER PROGRAM #DATE#
// ELSE
DBCMPLUS ANSWER,ANSWER]

F

;/. COMPILE MASTERL

// . :

// IFS DATE

DBCMPLUS MASTER,MASTERI1;L

DATASHARE MASTER PROGRAM (FOR LOGGING DATASHARE ERRORS) #DATE#
// ELSE

DBCMPLUS MASTER,MASTER1

// XIF

// END

// XIF

// IFS 2,HALF,ALL

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 2
/7.

//. CREATE THE INCLUSION FILE FOR PORT NUMBER 2

C-28 DATABUS COMPILER

/7.
BUILD PORTN/TXX; !
PORTN FORM "2

1

/7

//. COMPILE ANSWER2

// -

DBCMPLUS ANSWER,ANSWER?2

. I WILL COMPILE THE MASTSR AND ANSWER PROGRAMS FOR PORT

//. CREATE THE INCLUSION FILE FOR PORT NUMBER 3

// .

//. COMPILE MASTER?2

// . :
DBCMPLUS MASTER,MASTER?2
// XIF

// IFS 3,HALF,ALL

// .

// .

BUILD PORTN/TXX; !

PORTN FORM mo3
1

/7.

//. COMPILE ANSWER3
// -
DBCMPLUS ANSWER,ANSWER3

// .
//. COMPILE MASTER3

/7
DBCMPLUS MASTER,MASTER3
// XIF

// IFS 4,HALF,ALL

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT

//. CREATE THE INCLUSION FILE FOR PORT NUMBER 4

/7

/7.

BUILD PORTN/TXX;!

PORTN FORM "og
1

/7.

//. COMPILE ANSWER4

// -

DBCMPLUS ANSWER,ANSWER4
// -

//. COMPILE MASTERA4

/7

DBCMPLUS MASTER,MASTER4
// XIF

// IFS 5,HALF,ALL

APPENDIX

C.

SAMPLE DATASHARE SYSTEM

3

4

C-29

. I WILL COMPILE THE “ASTER AND ANSWER PROGRAMS FOR PORT

// .

//. CREATR TiE INCLUSION FILE FOR PORT NUMBER 5
// .

BUILD PORTN/TXX;!

PORTN FOR 'o5"
1

// .

//. COMPILE ANSWERS

// .

DBCMPLUS ANSWER, ANSWERS
/7.

//. COMPILE MASTARS

// .

DBCMPLUS MASTER, MASTERS
// XIF

// IFS 6,HALF,ALL

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT
/7

//. CREATE THE INCLUSION FILE FOR PORT NUMBER A

/7
BUILD PORTN/TXX; !

PORTN FORM , noa
]

// .

//. COMPILE ANSWERS5S

// .

DBCMPLUS ANSWER,ANSWERA
// .

//. COMPILE MASTER®6

/7.

DBCYMPLUS MASTER, MASTERS
// XIF

// IFS 7,HALF,ALL o
. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT

/7 -
//. CREATE THE INCLUSION FILE FOR PORT NUMBER 7

/7
BUILD PORTN/TXX; !

PORTN FORM "7
!

/7.

//. COMPILE ANSWER7Y

/7

DBCMPLUS ANSWER,ANSWER7
/7

//. COMPILE MASTER7

/7

C-30 DATABUS COMPILER

DBCMPLUS MASTER,MASTER7

// XIF

// IFS 8,HALF,ALL

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 8
// .

//. CREATE THE INCLUSION FILE FOR PORT NUMBER 8

// . ‘

BUILD PORTN/TXX: !

PORTN FORM "ogn
1

/7

//. COMPILE ANSWERS

/7

DBCMPLUS ANSWER,ANSWERS
/7

//. COMPILE MASTERS

/7

DBCMPLUS MASTER, MASTERS
// XIF

// IFS 9,ALL

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 9
// .

//. CREATE THE INCLUSION FILE FOR PORT NUMBER 9

/7.

BUILD PORTN/TXX: !

PORTN FORM mogn
1

/7.

//. COMPILE ANSWER9

// -

DBCMPLUS ANSWER,ANSWER9
// .

//. COMPILE MASTER9

// -

DBCMPLUS MASTER, MASTERO
// XIF

// IFS 10,ALL

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 10
// -

//. CREATE THE INCLUSION FILE FOR PORT NUMBER 10

// -

BUILD PORTN/TXX;!

PORTN FORM RV
1

// .

//. COMPILE ANSWERI1O0
/7 -

DBCMPLUS ANSWER,ANSWERI1O

APPENDIX C. SAMPLE DATASHARE SYSTEM C-31

/7.

//. COMPILE MASTER1O0

//

DBCMPLUS MASTER,MASTER1O

// XIF

// IFS 11,ALL

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 11
// . : '
//. CREATE THE INCLUSION FILE FOR PORT NUMBER 11

// .

BUILD PORTN/TXX; !

PORTN FORM "1
I

/7 -

//. COMPILE ANSWER11

/7

DBCMPLUS ANSWER, ANSWER11
/7

//. COMPILE MASTZR11

/7

DBCMPLUS MASTER, MASTER11
// XIF

// IFS 12,ALL

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 12
// -

//. CREATE THE INCLUSION FILE FOR PORT NUMBER 12

/7
BUILD PORTN/TXX; !

PORTN FORM "2

]

// .

//. COMPILE ANSWER12

// .

DBCMPLUS ANSWER,ANSWER1?2
/7.

//. COMPILE MASTERIL?

// -

DBCMPLUS MASTER, MASTEZR1?2
// XIF

// IFS 13,ALL

. I WILL COMPILE THE MASTZR AND ANSWER PROGRAMS FOR PORT 13
/7

//. CREATE THE INCLUSION FILE FOR PORT NUMBER 13

// -

BUILD PORTN/TXX;!

PORTN FORM "13"

!

/).

C-32 DATABUS COMPILER

//. COMPILE ANSWERI13

// -

DBCMPLUS ANSWER,ANSWER13

// .

//. COMPILE MASTERI13

/7.

DBCMPLUS MASTER,MASTER13

// XIF

// IFS 14,ALL

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 14
/ / . .

//. CREATE THE INCLUSION FILE FCR PORT NUMBER 14
// . :

BUILD PORTN/TXX; !

PORTN FORM "14
!

/7

//. COMPILE ANSWER14

/7

DBCMPLUS ANSWER, ANSWER14
/7.

//. COMPILE MASTERL4

/7

DBCMPLUS MASTER, MASTER1l4
// XIF

// IFS 15,ALL

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 15
/7 :

//. CREATE THE INCLUSION FILE FOR PORT NUMBER 15

/7.

BUILD PORTN/TXX; !

PORTN FORM w15
1

// -

//. COMPILE ANSWERI1S

/7.

DBCMPLUS ANSWER,ANSWER15
// .

//. COMPILE MASTER15

// .

DBCMPLUS MASTER,MASTERL5
// XIF

// 1IFS 15,ALL :

. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 1%
// -

//. CREATE THE INCLUSION FILE FOR PORT NUMBER 16

/7.

BUILD PORTN/TXX; !

APPENDIX C. SAMPLE DATASHARE SYSTEM C-33

PORTN FORM "15
!
/7.
//. COMPILE ANSWER15
/7.
DBCMPLUS ANSWER,ANSWER16
/7.
//. COMPILE MASTERIS
/7.
DBCMPLUS MASTER,MASTER16
// XIF

® & ®# 9 2 2 0 @ 8 0 0 0 s 00 e 0 s 0L e 0 e B e PSS S G e s e s

/7.
//. DELETE THE PORT NUMBER INCLUSION FILE
// -
KILL PORTN/TXX
Y
// IFS NEW
. I WILL CREATE NEW SYSTEMS FILES
/7.
//. CREATE NEW FILE OF AUTHORIZED USERS
/7 -
BUILD USERS/DSP;!

S5SN USER'S NAME SECURITY ;
() () I G
999999999Anyuser 9)

/).

//. INDEX THE FILE OF AUTHORIZED USERS ON COLUMNS 1-9

//
INDEX USERS/DSP,USERS/ISI;1-9

/7
//. CREATE A NEW LOG FILE

// .
CHAIN LOGMAKE/CHN;NEW
// XIF

C-34 DATABUS COMPILER

C.1.5.2 Re-organize System Log File
. LOGMAKE - RE-ORGANIZE DATASHARE SYSTEM 'LOGFILE'

. CHAIN TAGS: NEW CAUSES A NEW LOG FILE TO BE CREATED

==>
. REFORMAT ==> CAUSES THE LOG FILE TO BE REFORMATED
. LIST#date# ==> CAUSES THE LOG FILE TO BE LISTED
. #date# WILL BE INCLUDED IN THE HEADING
. SAVE ==> CAUSES THE LOG FILE TO BE SAVED

oo

// IFS REFORMAT
. I WILL REFORMAT THE LOG FILE
/7.
//. REFORMATING THE LOG FILE
// .
REFORMAT LOGFILE;DC
// XIF '
// IFS LIST A
. I WILL LIST THE LOG FILE
// .
//. LISTING THE LOG FILE
// .
LIST LOGFILE;L
SYSTEM LOG FILE YLISTH
// XIF
// IFS SAVE
. I WILL SAVE THE LOG FILE BY ADDING IT TO 'MASTERLG/TXT'
//Q
//. ADDING THE LOG FILE TO THE MASTER LOG FILE
// .
SAPP MASTERLG,LOGFILE,MASTERLG
// XIF
// IFS NEW
. I WILL CREATE A NEW LOG FILE
// .)
//. CREATING A NEW LOG FILE
// .
BUILD LOGFILE;! .
*000 PORT LOG TYPE DATE TIME OTHER INFORMATION

APPENDIX C. SAMPLE DATASHARE SYSTEM - C-35

C-36 DATABUS COMPILER

C.2 SYSTEM INCLUSION FILES
The following files are included in the source of all of the

system programs to make certain commonly used program segments
easier to use.

‘C.2.1 COMMON User's Data Area

*

PORTN FORM *2 PORT NUMBER
TODAY DIM *8 DATE IN nm/dd/yy FORMAT
SECURITY FORM *1 SECURITY CLEARANCE LEVEL

APPENDIX C. SAMPLE DATASHARE SYSTEM Cc-37

C.2.2 Log File Data Area Definition

® o o o 0 0 a8 0 e s e ® ¢ ® 8 s 20 e s e e e ® 3 ¢ » 5 » = 5 0 s s 0 02 0 00 e o0 0 0 ® o o o 0 0 0 0 0 00 0 0 0

. LOGDATA - UPDATE THE SYST&M LOG PILE -- INCLUSION FILE #1

. THIS FILE CONTAINS THE DATA AREA DEFINITION STATEMENTS THAT ARE
. REQUIRED BY THE LOG FILE I/O ROUTINES

* RESTRICTIONS: -- THIS FILE MAY BE INCLUDED IN A PROGRAM ONLY
. ONCE

. -— THIS FILE MUST BE INCLUDED WITHIN THE

. STATEMENTS USED TO DEFINE THE USER'S DATA

. AREA

® & 6 4 ¢ % 0 e 0 s 0 00 0 P e e s 08 s 0 s e e 0 0 0 o o6 ® o 6 ® a4 o 2 s 8 o e @ e e a8 e s s e 2 e e e o e s o

. A LOG ENTRY HAS THE FOLLOWING FORMAT:
. POSITIONS USED FOR:

. 1- 7 RESERVED

. 8- 9 NUMBER OF THE PORT WRITING THE LOG ENTRY

. 10-11 RESERVED

* 12-21 THE LOG ENTRY'S TYPE:

. LOG-ON USER SIGN ON

. LOG-OFF USER SIGN OFF

. BAD ID INVALID ATTEMPT TO SIGN ON
. ERROR DATASHARE ERROR

. PROGRAM SUCCESSFUL CHAIN TO A PROGRAM

. NO PROGRAM ... UNSUCCESSFUL CHAIN TO A PROGRAM
. ROLLOUT SUCCESSFUL ROLLOUT

. ROLL RET ROLLOUT RETURN

. NO ROLLOUT ... UNSUCCESSFUL ROLLOUT
* 22-23 RESERVED

. 24-31 DATE OF LOG ENTRY

. 32-33 RESERVED

. 34-41 TIME OF LOG ENTRY

. 42-43 RESERVED

. 44-54 OTHER INFORMATION:

. . LOG-ON USER'S NAME

. BAD ID INVALID NUMBER ENTERED
. ERROR ERROR MESSAGE

. PROGRAM NAME OF PROGRAM

. NO PROGRAM ... NAME OF PROGRAM

- . e o

Cc-38 DATABUS COMPILER

*

® S & ® 5 " ® 5 0 6 0 s 2 S e e 0 L 0 L P T L L G O L G O O S 6O S L e s L L S 6 s s 0 0 s 0 0 s s s 0 e e e e s 0

. THE FOLLOWING VARIABLES MUST BE SET TO THEIR APPROPRIATE VALUES
. BEFORE WRITING A LOG ENTRY

LOGFILE FILE SYSTEM LOG FILE
LOGTYPE DIM 10 TYPE OF LOG TO BE WRITTEN
LOGINFO DIM 20 OTHER INFORMATION

*

® ® ® 6 0 0 6 0 2 0 2 0 2 8 0 0 0 6 00 0 P OB e S S S S S G e e S S e S E S e S e e AT e e S e S e e s N

. THE FOLLOWING VARIABLES MUST BE DEFINED ELSEWHERE AND BE SET TO
. THEIR APPROPRIATE VALUES BEFORE WRITING A LOG ENTRY

.

.PORTN FORM 2 PORT NUMBER
.TODAY INIT "mm/dd/yy" month/day/year
.TIME INIT "hh:mm:ss" hours:minutes:seconds .

*

@ @ 0 0 0 ¢ & 2 8 s ° 0 0 s 0 e s s e 0 v P e e G e e e s 0 e s e s e s ® ® o & 5 s 8 2 8 0 s 0 0 0 ® ® & ¢ ® 8 o o 0 s o &

. SINCE THE SYSTEM LOG FILE IS COMMON TO ALL PORTS, THE FOLLOWING
. VARIABLES ARE NEEDED TO HANDLE THE COMMON FILE CONSIDERATIONS ’

LOGRN FORM 3 RECORD NUMBER OF LOG ENTRY
ZERO FORM "o" RECORD NUMBER AT RECORD O

APPENDIX C. SAMPLE DATASHARE SYSTEM C-39

C.2.3 Log File Input/Output Routines

*

® ® 2 5 5 5 % 2 0 T P G L C 0L L L L L e L L S L e S S S e P O S S T LS S S80S G P S 0L e e e S e e e

. LOGIO - UPDATE THE SYSTEM LOG FILE -- INCLUSION FILE #2

: THIS FILE CONTAINS: I. A ROUTINE THAT OPENS THE SYSTEM LOG
: II. iIéSBROUTINE THAT WRITES A LOG

. ENTRY TO THE SYSTEM LOG FILE

* RESTRICTIONS: =-- THIS FILE MAY BE INCLUDED IN A PROGRAM ONLY
. ONCE

. -- THIS FILE SHOULD BE INCLUDED IN A PROGRAM AT
- THE POINT WHERE THE USER WISHES THE LOG FILE
. TO BE OP&NED

® 5 006 00 0000000080 0000 08 0000 e e e o 60 00 000 00 "6 ® & 2 e e 0 00 00 00 00 000 000 a0

. I. OPEN THE SYSTEM LOG FILE

TRAP NOLOG IF IO

OPEN LOGFILE,"LOGFILE"
TRAPCLR IO

GOTO LOGOPEN

® ® 0 8 ° 0 0 0e 0 0 0 0 0 00 s e e e e e s s e s e e e s o s 0 0 0 s e e s o o o ® e e 2 6 0 00 0000 00 008 000

. LOG FILE IS MISSING

NOLOG DISPLAY *p54:1,*EL," #"LOGFILE/ISI#" is missing!":
*p54:2,*EL," The port number is ",PORTN
HANG GOTO HANG

C-40 DATABUS COMPILER

® o o 0 0 s 0 0

. II. WRITE

®© © 5 2 o 0 0 & 5 0 0 e s 2 8 0 2 e 0 0 e s e e a0 e 0 e e s e s e s e s e ® e o s e 0 5 s 0 0 0 o s e o o

. PROCEDURE: 1.

A LOG ENTRY TO THE SYSTEM LOG FILE

LOCK OUT ALL OTHER PORTS

. 2. GET THE NUMBER OF LAST USED RECORD (RN)
. 3. PUT AN EOF MARK IN RECORD RN+2 (THIS INSURES
. THAT THE EOF OF THE LOG FILE IS ALWAYS MARKED)
. 4, PUT RN+1 IN THE LOG FILE AS THE LAST USED RECORD
. 5. ALLOW OTHER PORTS TO EXECUTE
. 5. WRITE THE LOG ENTRY TO RECORD RN+l (NOTE THAT
. T4IS OVERWRITES THE OLD END-OF-FILE MARK)
LOGWRITE PI 5 1. LOCK OUT
READ LOGFILE,ZERD; *2, LOGRN 2. READ RN
ADD “2" TO LOGRN :
WEOF LOGFILE, LOGRN 3. EOF AT RN+2
SUBTRACT "1" FROM LOGRN
WRITAB LOGFILE,ZERO; *2, LOGRN 4. PUT RN+1
. PI GOES TO 0 AT THIS POINT 5. ALLOW OTHER PORTS
*
SEE DESCRIPTIONS IN DATA AREA A. WRITE LOG ENTRY
WRITE LOGFILE, LOGRN; " ", PORTN:
" v LOGTYPE:
"M TODAY:
" ", TIME:
" " LOGINFO
RETURN
*. ooooooooooooooooooooooooo ® & 5 8 & & % & & & & @ 4 s e 8 S s B & & " m s e S e " 8 e s * s s s e .
. NOTE: THE "TRAPCLR PARITY" INSTRUCTION IS USED AS A "NOP"
INSTRUCTION
LOGOPEN TRAPCLR PARITY

APPENDIX C. SAMPLE DATASHARE SYSTEM C-41

C.3 SUPPLEMENTAL SYSTEM PROGRAMS

Although the following programs are not necessary for using
the DATASHARE system defined in this appendix, they should make
using and modifying the system much simpler.

C.3.1 Re-organize the List of Authorized Users

. NEWUSER -

PROGRAM TO UPDATE

INCLUDE COMMON

*
CFILE FILE

SEQ FORM -1t
*

USERS IFILE

USERID DIM 9
NAME DIM 20
CLRANCE FORM 1

*

NWK9 FORM 9
CWK1 DIV 1
REPLY DIM 1
INDEX FORM 2

C-42

DATABUS COMPILER

THE LIST OF AUTHORIZED USERS

USER SELECTION VARIABLE

ettt e et e e e s et ees s s ana e c et et et ecte et e ae e e e

. MAINLINE

® ® 0 o o s 0 0 s 00 s a0 © @ ® 6 0 6 0 0 6 @ * a2 0 c P 65 6 s s 0 % e 0 e T LS L S e e s e . e o o o a o

. THIS MENU REQUIRES A SECURITY CLEARANCE OF AT LEAST 8

COMPARE "8" TO SECURITY
STOP IF LESS

® & @ 8 ® 0 8 8 0 0 8 a0 ¢ O s 8 s ¢ 0 5 0 e 0 e 0 0 0 s e e e s e s 0 s o ® & » o 8 6 0 0 0 0 0 e s s s s e e e o

. PREPARE THE CHAIN FILE

TRAP NOCHAIN IF IO

PREPARE CFILE,"ROLCHAIN"

TRAPCLR I0

WRITE CFILE,SEQ;*+,"//* TAP THE DISPLAY KEY TO "
"RE~ORGANIZE THE LIST OF ":
"AUTHORIZED USERS"

WRITE CFILE,SEQ;"//."

GOTO OPENUSER

*

e o o 0 0 ¢ s 0 ® 6 6 2 & 5 % 2 8 P L 0 e 0 S S S e L e 0 O S e B B e e e 0 s G e e s e e e s e e s e 00 0 e e o o 0o 0 0 0 0 0

. CHAIN FILE COULD NOT BE CREATED

NOCHAIN DISPLAY *ES:
*p20:4,"CHAIN FILE COULD NOT BE WRITTEN!":
W, kW

*

............. ® & 8 4 s & a4 0 5 8 o 0 2 0 e 0 0 0 0 0 s e 0 e s L e 8 G P e s e e e S LS S e e e e e s e s

OPENUSER TRAP NOUSER IF IO
OPEN USERS, "USERS™"
TRAPCLR IO
GOTO MENU

LA A A L R e N I I I I I I I R R I O A I e A)

. FILE OF AUTHORIZED USERS NOT THERE

NOUSER KEYIN *ES:
*p20:4,"The list of authorized users is":
*¥P20:5,"missing.":
*Pl:12,"Do you want to create a new list? *":

*EL,REPLY
CMATCH "Y" TO REPLY

STOP IF NOT EQUAL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-43

® @ 6 @ ® o 0 00 00 0 0 0 08 s 0 66 0 8 0 e O S 00 0 0 e s e e e e 00 e e e 0 00 © o 8 e 6 0 0 00 8 0 00 0 008 0 s

. CREATE A NEW LIST OF AUTHORIZED USERS

DISPLAY *ES:
*pP20:4,"Writing the chain file."

WRITE CFILE,SEQ;"//." ,
WRITE CFILE,SEQ;"//. BUILD THE FILE CONTAINING ":
"THE LIST OF AUTHORIZED USERS"

WRITE CFILE,SEQ;"//."

WRITE CFILE,SEQ; "BUILD USERS/DSP;!"

WRITE CFILE,SEQ;" SSN USER'S NAME "
“SECURITY" '

WRITE CFILE,SEQ; " () ("
1) (. . . "

WRITE CFILE,SEQ;"!"

CALL CHAINROL

GOTO OPENUSER

® © ¢ 0 0 0 0 20 020 e 0 0 0 0 e s e e 0 e s 0 ° s e 0 e @ 6 8 6 o o 0 e 0 0 0 0 0 e o0 0 0 0 0 s e 0

. DISPLAY THE MENU

MENU

DISPLAY *ES:

.

e o o 0 0 e o

"PROGRAM TO UPDATE THE LIST OF AUTHORIZED USER

*PS1:1,"Today is " ,TODAY:
*P01:03,"(1) ":

"Authorize a new user'":
*P01l:04,"(2) ":

"Modify a user's authorization":
*P01:05,"(3) "=

"Remove a user from the list":
*EL

® & 8 o 6 00 00 000 0008000 ® 8 2 2 @ 0 0 © 2 0 0 0 s s e S 0 8 O s s e 8 0 e 8 e e s e 0 s 0 s 0 0

. GET THE PROGRAM'S INDEX

GETINDEX KEYIN *pl:12,*EL,"Selection by number":

*P41:12,"Enter (99) to continue.':
*p25:12," ",*P25:12,INDEX

COMPARE "1" TO INDEX

GOTO "GETINDEX IF LESS

COMPARE "99" TO INDEX

GOTO WRTCHAIN IF EQUAL

COMPARE "04" TO INDEX

GOTO GETINDEX IF NOT LESS

C-44

DATABUS COMPILER

® ® ® o 0 040 000000 o0 0000000 @ e o s o 0 0 0 0 00 e

. BRANCH TO THE

INDEX OF ADD:
CHANGE::
DELETE

GETINDEX

.............. ® o o ¢ o 8 0 0 0 00 000 .o

. Authorize a new user

BRANCIH

® © 0 ® 5 0 2 ¢ e 0 00 0 00 e 0 0 0 0 0

. DISPLAY THE FORM

*£S
*P25:6,"

ADD DISPLAY

Authorize
Modify
Remove

a new

user

a user's authorizatio
a user from the list

..... ® 8 8 o @ 0 e 2 0 e 4 0 0 0 0 0 0 s L s S s 0 e S s e s e e s s s e s e S S eV T e S TS OO e s

. GET THE USER'S

GETIDN

*

L L I I I I . I R I I L I I I I I R N A L L R I I I I S I I I I A R

. ASK IF HE IS DONE

CALL
CMATCH
GOTO

ID #

GETID
" " PO USERID

GETNME IF NOT EOS
THIS

WITH ENTRY

KEYIN *pP25:4,*EL:
*P1:12,"Are you done? (Y/N) ",*EL,REPLY

CMATCH "Y' TO REPLY

GOTO MENU IF EQUAL

GOTO ADD
*..OOOIQCOOOCIOO...O e & & o & & @ ® & & & & & o o S s e B S s 2 P " s 8 e s e " s s s s 0 s o
. GET THE USER'S NAME
GE TNME, CALL GETNAME

GOTO GETCLR IF NOT EOS

. ASK IF DONE WITH

ASKDONEN

KEYIN

CMATCH
GOTO
CMATCH
GOTO
GOTO

APPENDIX C.

THIS ENTRY

*P1:12,"Do you want to re-enter the
"ification number or the (N)ame?
"N" TO REPLY

GETNME IF EQUAL

"I" TO REPLY

GETIDN IF EQUAL

ASKDONEN

SAMPLE DATASHARE SYSTEM

(I)dent"
",*EL,REPLY

C-45

*

® o 6 0 0 6 8 00 0 00 0000 0 e

. GET THE USER'S
GETCLR CALL
COMPARE
GOTO
*Oll..QQOOQQOCQQOC'
. ASK IF DONE WITH

ASKDONEC KEYIN

CMATCH
GOTO
CMATCH
GOTO
CMATCH
GOTO
CMATCH
GOTO

. ADD THE

WRTNEWU CALL
GOTO

-« o e

*

® ® 0 o e 50 a0 62 e e 0.

USER TO THE LIST OoF

@ © o e 6 s 0 0 0 0 5 s 0 00 0 90 0 0 0

SECURITY CLEARANCE

GETCLEAR
"0" O CLRANCE
WNRINEWU TF NOT EQUAL

ENTRY

e o o o

THIS

*pPl:12,"Re-enter (
*BEL,REPLY

"I" TO REPLY
GETIDN IF EQUAL
"N" TO REPLY
GETNME IF EQUAL
"C" TO REPLY
GETCLR IF EQUAL
"Z" TO REPLY
ASKDONEC IF NOT EQUAL

INSERT
ADD

. Remove a user from the llSt

.

. GET THE USER TO BE DELETED

DELETE CALL
CMATCH
GOTO

*

@ 8 © 6 4 P 4 A 0 s 0 0 0 a0 8 B G 0 0 0 0 0 6 P S e 60 e 0 e P e 0 G e 080 0O e s e e 0 s e 00 0

. ASK IF DONE WITH
KEYIN
CMATCH
GOTO
GOTO

C-46

GETUSER
" " T0 USERID
VERIFY IF NOT EOS
THIS ENTRY

*p1:12,"Are you done?
"¥" TO REPLY

MENU IF EQUAL

DELETE

DATABUS COMPILER

.................

(Y/N)

I)d number,
"(C)learance or enter (Z)ero clearance? :

(N) ame, :

AUTHORIZED USERS

@ o & 2 6 6 0 0 5 0 0 0 0 0 0 ¢ o 0 0 s s 0 0 0 0 000 0 00 0 0 0 0 0 5 0

,*EL,REPLY

*

® 2 06 6 0 00 0 0 0085 0 0000 00 e 8 ¢ e 8 o a8 s s e s B s B e e e e oo @ @ o 0 06 0 0 e 0 0 6 00 0 00 0 0 0

. MAKE SURE HE WANTS TO DELETE BEFORE REMOVING

VERIFY KEYIN *¥pl1:12,"Is this the entry to be removed? ":
*EL,REPLY
CMATCH "y" TO REPLY .
GQOTO DELETE IF NOT EQUAL
*
DELETE USERS, USERID
GOTO DELETE

----- ® & &6 © 2 2 0 ° 2 0 0 0 0 0 2 0 P 8 8 0P S 8 0 0 G0 GO 00 s S e S e S O S 6 e 0 e .0 S e s e e 0 e 0 s e s e e

. Modify a user's authorization

® e ¢ o 0 0 0 e 0 5 s 0 e e “ ® 5 e 5 2 0 s 608 80 00 s s o ® e o 0 0 0o o o ® o ¢ o 2 0 6 00 60 0 00 000 0 00 s

. GET THE ENTRY FROM THE LIST TO BE MODIFIED

CHANGE CALL GETUSER
CMATCH " " TO USERID
GOTO ASKMOD IF NOT EOS
*

. ASK IF DONE WITH ENTRY

KEYIN *pl:12,"Are you done? (Y/N) ",*EL,REPLY
CMATCH "Y" TO REPLY

GOTD MENU IF EQUAL

GOTO CHANGE

I T O e . T I S R R S O O A A I N I TN S ¢ o s o o 0 s a0 0 8 0 8 0 a0 s e 0 e e

. FIND OUT WHAT HE WANTS TO DO WITH IT

ASKMOD KEYIN *pl:12,"(D)one, modify (I)d number, ":
"modify (N)ame, or ":
"modify security (C)learance? " ,*EL,REPLY

CMATCH "D" TO REPLY
GOTO WRTMOD IF EQUAL
CMATCH "I" TO REPLY
GOTO IDMOD IF EQUAL
CMATCH "N" TO REPLY
GOTO NAMEMOD IF EQUAL
CMATCH "C" T0 REPLY
GOTO CLRMOD IF EQUAL
GOTO ASKMOD

® 0