' DATAFORM 2
CASSETTE DATAFORM 2

User’s Guide
January 22, 1975

Model Code No. 50104

DATAPOINT CORPORATION

The Leader in
Dispersed Data Processing

DATAFORM USER’S GUIDE
SECTION I

OPERATION

INTRODUCTION

DATAFORM provides a personalized data entry system for
use on a Datapoint 2200. ‘Forms’, which are kept on tape,
project images on the 2200 screen. The data entry operator
then simply fills in the form, the data will be recorded on
cassette and may at any time be retrieved and revised using
the same form to view and edit the recorded data.

Each ‘form” 1is designed by the wuser, and editing
criteria are assigned to the data fields on the form at the
time the form 1is generated. Field programs may also be
assigned at this time. The user’s forms, and programs, are
then combined on a single cassette and become a unique
Dataform System configured for the users special purpose.

Four stages of development are involved in generating
the system: the Editor/Compiler enables the user to create
field programs; the Form Generator enables the user to create
forms; the Configurator combines the forms into a “system’;
and the Data Entry Interpreter uses the form to control data
entry.

Since DATAFORM uses standardized data tape formats,
further processing of the data can proceed under any DATABUS,
BASIC or RPG program, or any one of a number of available
communications programs or terminal emulators.

TABLE OF CONTENTS
SECTION I

1.0 System Overview
1.1 What is a FORM?
1.2 What is a FIELD PROGRAM?
1.3 User space and how it s allocated
1.4 Some DATA ENTRY features

2.0 Form Generation
2.1 Data Field

[ASIAC N S AV IOV
[e 00, B —J Ul \N)

2.

2.7 A

w -
oooocomcokhsquﬂslﬂqp-oxoxmmmoxox

2'8 A

2.
2.
2.
2.
2.
2.
2.
Ss
2.
2.
2.
2
2
2.
2
S
2.
2
2.
2.
2.
o

.9 C
1
1

6 1

e 0Q o

m::wm—-sxloxmr.—wm-‘:s CI)\'IO\U'I-BLA)N

8

Keyin Field

Data Record

User Space

Form Worksheet
Generating a Form Image

Repeat Key

Cursor Movement Keys
Character Insert Key
Character Remove Key

Erase Function Keys

Line Insert Key

Character Duplication Key
Returning Control to the Monitor
ing Edit TYPES

Alpha

Numeric Digits

Numeric Fields

Mixed

Left Justified and Zero Fill
Right Justified and Zero Fill
Right Justified and Blank Fill
ing Keyin Restrictions
Required Field

Fill Control Field

Required and Fill Controlled
Program Reserved - no keyin
Required and Program Reserved

nstants and Semi-Constants
0 Field Program Assignment
1 Form Linking

2.11.1 Setting Manual Linkage
2.11.2 Clearing Linkage
2.11.3 Loading Linked Forms
2.11.4 Setting Auto-Linking
2.12 Writing the form to tape
2.13 Changing the screen image
2.14 Modifying an OLD form

3.0 Form Library Configuration and Utilities
3.1 Displaying the Form Catalog
3.2 Adding New Forms to the Catalog

(o200, ¥ —g U)

- s -
OC OWO DO

-—
o

S N QT S S S
EEZWLWWWWWWN = = a

- b o b d o o amd b b D
OO OV U &= &=

NN
oo

[AVEAN]
—_

Deleting Forms from the Catalog
Deleting Multiple Forms from the Catalog
Replacing Forms already in the Catalog
Running the Interpreter
Tape Utility Features
3.7.1 Duplicating DF2SYS : :
3.7.2 Duplicating DF2SYS with Forms
3.7.3 Recovering a Cataloged Form .
3.7.4 Generating a Faster Loadingklnterpreter
3.7.5 Copying a Data Tape
3.8 Printing Forms and Data A S
3.9 Replacing Dataform2 Systems Programs

e« o o

wwwww
~NouU W

4.0 Data Entry Interpreter
4,1 Data Tape Initiation
4,1.1 START new data tape '
4,1.2 ADD to an eéexisting data tape
4,1.3 CONTINUE an existing data tape
4,2 Loading a Form
4,2.1 Testing NEW Forms
4.2.2 LOADPing Cataloged torms
4.3 Entering DATA Entry Mode
4.4 Revising Exisiting Data Tape
4.4.1 MODIFY
4.4,.2 Rewriting- Existing Records
4.4.3 FINDing a Specified Record
4.4.4 Aborting Tape Searches
4,5 Positioning the Data Tape .
4.5.1 BACKUP tape when entering data
4.5.2 REWINDing during modification
.6 ENDing the Data Tape
.7 Data Entry Action -
.8 Data Erase Function Key
.9 Field Duplication Function Key
.10 Operator Errors During Data Entry
.11 Write Function Key -
4,12 Loading Linked Forms
4.13 Returning Control to the Monitor
5.0 Recovery- Proceedures :
5.1 System Tapes -
5.2 Data Tapes . .-
5.3 Form Tapes

APPENDIX A
TYPE and REQUIRE‘codes‘z

APPENDIX B S
Form Generation Function Keys

APPENDIX C
Command List -

APPENDIX D

Data Entry Function Keys

APPENDIX E
Error Messages

APPENDIX F
Examples of Form Generation

DATAFORM 2 SYSTEM OVERVIEW

The DATAFORM 2 System is composed of three separate system
tapes:

1. DF2SYS, Data Entry System tape,
contains the Configurator, the Form
Catalog and the Data Entry Interpreter.
The Configurator enables the user to add

forms to this system tape for use during
data entry.

2. DF2FGS, Form Generation System tape,
includes the Form Generator, the Field
Program Relocator and 15 versions of the
Extended Interpreter.

3. DF2PGS, Program Generation System
tape, consists of a source code editor
and the DATAFORM Compiler.

DF2PGS , DF2SYS
/
/

FIELD
PROGRAM

DF2SYS

DF2SYS
WITH
FORM

DATA

SYSTEM FLOW

1.1 What is a FORM?

A ‘form® in this document refers to a screen image
designed using the DATAFORM Form Generator. This screen
image contains labelling information, defines the length and
positions of ‘data fields’, and reserves space for ‘keyin
fields”.

The amount of data, the number of fields and the amount
of constant information in the form image determine exactly
how much memory the form requires.

The Form Generator also enables the user to assign edit
criteria to the data fields. The c¢riteria are applied
field-by-field in separate passes over the form image.

These criteria include the field type:

alpha,

numeric digits,

alpha/numeric,

numeric left justified/blank filled,
numeric left justified/zero filled,
numeric right justified/zero filled,
numeri¢ right justified/blank filled;

entry restrictions:

required,

fill-controlled,

required and fill-controlled,
no keyin,

required and no keyin;

constant data, semi-constant data, and automatic form control
(linking to other forms).

In addition, ‘field programs’ may be assigned during
form generation. Up to twenty-six unique field programs may
be referenced in a single form.

If a field program is specified, the wuser must have
prepared the program previously (edited and compiled using
DF2PGS). At form generation time all referenced field
programs are sought and combined with the form into an object
format called the “form tape’.

The screen image, basic, edit criteria and field
programs, if any, comprise the °‘form’ which is subsequently
executed by the DATAFORM Interpreter.

1.2 What is a FIELD PROGRAM?

If editing is reqhired beyond that available in a _basic .
form, the user may write a program in the DATAFORM language
This language provides the user access to the entire data .
record (on a character ‘or field basis) and the ability to
define working storage variables, tables, messages, etc. One
hundred bytes of common ~storage is available to pass
information between forms. The DATAFORM language . provides
the user with the following editing capabilities

Arithmetic
‘Add B
Subtract
#Multiply
¥Divide

Data Manipulation
Move
Align
Set
) ¥Lookup
*Convert

Table Checking
In-table
Not-in-table
In-range
Not-in-range

Check Digits
¥Mod 10
#¥Mod 11

Compares
Less than
Greater than
Equal
Not equal
Less-than-or-equal
Greater-than-or- equal
Not-equal

Branching
Go to
Call
Return
Again
Next
Store
Change
Reset

Input/Output
Write
Close
Message
Show
Beep
End
Load

The subroutines to execute these commands are divided into
two groups: the Interpreter and the Extended Interpreter.
The starred (*) commands in the preceeding list require the

Extended Interpreter. (See the discussion of user space
below.)

Field programs are entered using the Editor on DFZ2PGS.
This creates a “source’ tape. When editing is completed, the
Compiler automatically compiles the DATAFORM statements and
adds a ‘relocatable object’ file to the end of the source
file.

The field programs will be assigned, in a pass of the
Form Generator, to particular fields. When the form 1is
written out, the relocatable program will be converted to
‘absolute” code and written to the form tape. If, 1in
addition, an extended interpreter is required by a particular
field program, the required file is copied from the DFZ2FGS
tape to the form tape.

During data entry (using DF2SYS) the field program is
executed after the operator enters data intor the field where
the program assignment was made. The program 1is executed
even if the operator bypasses the field.

1.3 User space and how it‘s allocated

When a new form is being created, there is 1550 bytes of
memory available to the user. This “space’ must eventually
contain:

keyin data buffer

writing data buffer

form image

user programs (if required)
extended interpreter (if required)
common storage

The Form Generator indicates the amount of free space as
soon as the form image has been defined. The user must then
determine if his program and, if necessary, the Extended
Interpreter will fit in the remaining space.

1.4 Some DATA ENTRY features

Special keys are available which provide the operator
with the following functions:

field duplication
form data erase
data write

forward field tab
backward field tab
field cancel -
form load
record read -
record backspace

Semi-constant data may be defined in the form and 51mply
accepted by the data entry operator. /

Forms may be loaded in non-sequential order under either
program or operator control.

Operator correction of previously generated data may be
accomplished at any ‘time ' by either a manual,
record-by-record, or an automatic search with re-writting
in-place permitted. ‘ ' -

Data may be added . to the end of an existing data tape ‘
(positioning is automatic).

2. FORM GENERATION

A Dataform ‘form’ is an image projected on the 2200
screen which contains form text (explanatory information for
the operator, not to be written to the data tape), field
definitions (special characters which define an area to be
filled in by the operator and to be written on the data tape)
and keyin space (special characters which define an area to
be typed into [but not stored in the data record]). The 2200
screen is 80 characters wide and 12 lines high and any of the
960 positions on the screen may be used in the form.

2.1 Data Field

A data field is part of the form image which starts at a
vertical bar (|) and 1is continued by carets () or
underscores (_). A field stops at the first non-caret,
non-underscore or the right hand edge of the screen.

Each data field causes a corresponding number of
positions to be reserved in the two data areas (one for
keying in and one used for writing) and each field generates
a six byte edit table entry. Each field defined has a ‘field
number corresponding to its relative position in the form
(and pointing to 1it’s entry in the edit table). The
uppermost, leftmost field is number one. Fields are numbered
from left to right, line by line, from the top of the form
down.

This construction, “|°""°, defines a four position data
field; “| defines a single position field and ‘||| ° defines
three adjacent single position fields. The differences
between one 3-position field and three 1-position fields are:

1) only one edit criteria applies to the
3-position field whereas each 1-position
field may be assigned a different edit
criteria;

2) since each additional field definition
takes 6 bytes, the three 1-position
fields use more user space than the
single 3-position field.

Fields defined by carets will be “space compressed’ in the
form image. This means that the carets will be replaced by
spaces which will, in turn, be replaced by a space
compression character (011) and a count of the number of
spaces compressed. (The count will include any spaces
trailing the field.) When the form is displayed, space
compressed fields will initially appear blank. As the cursor

enters the field, the appropriate number of underscores will
be displayed. RN

Fields defined by underscores are not compressed. The
underscore characters are saved as part of the form 1mage

Constants and seml-constants are stored in the field:
description area of the form image and therefore, can be
defined only for fields inltially deflned by underscores.

The maximum number of characters in a single data fieldi
is 80 since the pright hand edge of the screen alwazg
terminates the field definitign.*”' ‘

2.2 Keyin Fields

A keyin field, with the exception of the 1initial
character, is defined exactly as is the data field. Keyin
fields begin with a less than character (<) and are continued
by carets or underscores. They may appear anywhere in the
form. Keyin fields create a six byte entry in the tield edit
table and thus have a corresponding ‘field number’. However,
no space is reserved for these - fields in the data record.

2.3 Data Record

The 1length of the data record generated during data
entry is determined by the combined lengths of 'all data -
fields in the form (maximum 245 characters). The data record
will also automatically contain a form number (1 binary
character) 'and a rewrite counter telling the system how many
times it was corrected (1 character) The format of the
record is: S A

data fields (written to their defined
lengths) in the order they appear on the
form (from left to right and from top to
bottom) '

logical and physical record terminators
(015,003) ‘

form number (1 ‘binary character) which
corresponds to physical file number of
the form

rewrite counter (1 ASCII character)

2.4 User Space

There is a fixed amount of space available in which to
contain the form image, the data input/output areas, the
field edit tables and field programs. This variable area is
called user space. There is no limit (other than the size of
the screen) to the amount of text one may include in a form.
There is, however, a limit to the number of field definitions
(126) and to the number of data characters (245) which can be
defined. The total ‘user space’ available is 1550 bytes.

The number of data characters, defined in the form
image, reserve two areas: the keyin data area and the writing
data area. In addition, each field (whether an actual data
field or a keyin only field) defined in the form image
requires a six byte edit table entry. The characters
displayed in the form image, both labelling information and
field defining characters (excluding carets) reserve user
space. Spaces (and carets) in the form 1mage are
‘compressed’, i.e., they are represented by a space
compression character followed by the number of spaces
compressed at that point. One terminator character is added
to each line of the form image; however, lines which are
completely blank require no space at all.

The amount of user space reserved for the data record,
edit table and form image is subtracted from the total user
space and the amount remaining is indicated at the end of the
form image generation pass.

In addition to the data record, edit table and form
image, the user may allocate user space to field programs
(which in turn may require an extended interpreter). The
length of a field program is indicated on the listing and on
the CRT at the end of program compilation. If an extended
interpreter is required, the user should refer to the size
table in Section II, Appendix C.

When the form tape is generated (by the OUT command),
the amount of user space remaining (or the excess allocated,
if any) is indicated.

2.5 Form Worksheet

To aid the user in designing his forms, a ‘Dataform
Worksheet®~ is available. This worksheet provides space for
designing the screen image and for recording the various
criteria, constants, etc. which will have to be assigned at
form generation time. The worksheet also serves as a record
of the form and as a quick reference for Generator commands
and function keys.

A printout of completed forms, similar in format to the
worksheet, may be obtained using the print utility of the
Configurator. (See Appendix F.)

2.6 Generating a Form Image

To generate a new form, load DF2FGS and type NEW to
clear the screen and switch to the image generation mode.

When the DISPLAY key is pressed, the number pad, to the
right of the keyboard, or the regular number keys become a
set of special function keys enabling the user to move the
cursor up, down, left and right, to insert and delete
characters, to delete words, to insert lines and to erase
lines and portions of the screen.

A key becomes a function key 4if it is pressed
simultaneously with the DISPLAY key, i.e., first press the
DISPLAY key and, while holding it, press the key required to
achieve the desired function.

2.6.1 Repeat Key

Holding the KEYBOARD key will cause the character (and
many functions) to be repeated. Press the KEYBOARD key
first, then, if a function key is needed, the DISPLAY key,
then the desired character.

2.6.2 Cursor Movement Keys

There are 'ive cursor movement keys which are
non-destructive, i.e. they pass over characters on the screen
without erasing them. The number two function key moves the
cursor DOWN, the number eight function key moves the cursor
UP, the number six tunction key moves the cursor to the RIGHT
and the number tour function key moves it to the LLEFT.

The BACKSPACE key also moves the cursor to the LEFT in a
non-destructive manner. Backspacing will wrap around from
column 1 of a line to column 80 of the preceeding line.

The SPACE bar 1is destructive, i.e., it erases the
characters it passes over, and moves the cursor to the RIGHT.

All cursor movement keys may be repeated.
2.6.3 Character Insert Key

The number seven function key, at the upper right otf the
number pad, causes a space to be inserted in the line on the

screen. This key may be repeated. Characters at the end of
the line are truncated, not wrapped around.

2.6.4 Character Remove Key

The number zero function key, at the lower right of the
number pad, causes the character under the cursor to be
removed and the remaining characters to be concatenated to
the left. Spaces are set in the trailing positions.

2.6.5 Erase Function Keys

There are several keys available to erase all or part of
the screen image. The word remove key, number one function
key, causes a word, a group of characters edged by spaces, to
be removed and the line to be concatenated.

The period function key, erase end of line, causes the
line to be erased from the cursor to the right hand edge of
the screen.

The number nine function key, erase end of frame, causes
all characters to be erased from the cursor to the end of the
screen, i.e., through line 12 character 80. This key can
easily clear the entire screen.

The CANCEL key causes the entire line that the cursor is
resting on to be erased.

2.6.6 Form Expand Key

The number three function key causes a blank line to be
inserted at the line where the cursor is resting. The line
under the cursor and all subsequent lines are moved down the
screen. If there is anything on the twelfth line, it will
disappear.

2.6.7 Character Duplication Key

The number five function key causes the character
immediately above the cursor to be duplicated in the current
cursor position. This function key may be repeated. (It has
no effect on the top line of the screen.)

2.6.8 Return to Monitor

When the screen has the desired appearance, press the
escape function (DISPLAY/CANCEL) to get back to the
Generator s monitor. At this point a message will appear:

nnn DATA

mmm BYTES LEFT

informing the user of the number of characters in the data
record and of the number of bytes remaining in the user

space. If the number of characters is greater than 245, the .
message: , SRR S G

MORE THAN 245 DATA

will appear. The form must immedlately be revised to reduce“
the number of characters. If more than 126 fields are
defined, an error message:

MORE THAN 126 FIELDS

appears. Again, the form should be 1mmediate1y revised to
reduce the number of fields. -

It the combined space required by the form image, data
areas and edit tables exceeds the available user space, the
me ssage:

nnn BYTES OVER

will appeér. -The form should be revised to rit the user
space available. (See Appendix D in ' Section II for
suggestions on saving space.) :

The form is still only in memory and no edlt criteria
have been assigned.

A ‘pass’ is a pass over the form to assign edit criteria
to it. It is up to the user to request each type of
edit-defining pass (TYPE, ~ REQUIRED, PROGRAM, CONSTANT,
SEMI-CONSTANT, LINK) and, finally, to record the form by use
of the OUT command. The edit-defining passes may be
requested in any order. Any or all edit-defining passes may
be omitted, and passes may be repeated to review or to change
the criteria.

2.7 Assigning Edit TYPES ~ .

Generally, once the form image has be created, the user
will first assign edit types by keying the 'TYPE® command.
This command will initiate the TYPE pass over the form
causing the form to be redisplayed with the cursor at the
first field definition (i.e., the first vertical bar [|] or
less than sign [<]). The user may then type one of the legal
edit types (A,D,N,M,L,R,B), or press the ENTER key to pass
the field without changing the criteria, or press the CANCEL
key to clear the previously set criteria (no editing will be
performed on a cleared field; however, other passes may still
be executed to set restrictions such as requlred or tield
program execution).

It this pass is re-executed, the current edit‘types will

I-12

be displayed as each field is reached. If no change is
needed, just press the ENTER key to proceed.

The ‘B’ function key may be pressed to position back to
the previous field. When the desired edit types have been
assigned, the escape function key (DISPLAY/CANCEL) will
return control to the monitor.

2.7.1 Alpha

The ‘A’ edit type indicates the characters keyed in must
be uppercase alphabetics (A through Z) or space. The field
will be space filled to the right if not completely keyed in.

2.7.2 Numeric Digit

The ‘D’ edit type indicates the characters keyed in must
be strictly numeric (0-9). The field is left Jjustified with
trailing blank filler.

2.7.3 Numeric Field

The "N’ edit type indicates the characters keyed in must
be numeric (0-9), a decimal point or a minus sign (plus signs
are not allowed). Numeric fields are left Jjustified and
blank filled on the right.

When the field is entered, it is checked to contain one
decimal point at most. If a minus sign is present, it must
be the 1left most character. And, no more than twelve
positions are permitted to the left and four to the right of
the decimal point.

2.7.4 Mixed

The ‘M° edit type signifies alphanumeric, 1i.e.
characters A through Z, space, 0 through 9, decimal and minus
are permitted. The field is space filled to the right if not
completely keyed in.

2.7.5 Left Justify and Zero Fill

The ‘L’ edit type has the same restrictions as type 'N°;
however, the input is left justified and zero filled on the
right.
2.7.6 Right Justified and Zero Fill

The 'R’ edit type has the same restrictions as type ‘N°;
however, upon completion of data entry, the input is right
justified in the field and zero filled to the left.

2.7.7 Right Justified and Blank Fill

. The 'B” edit type has the same restrictions as type
N ; however, upon completion of data entry, the input 1is
right justified in the field and blank filled to the lett.

2.8 Assigning Keyin Restrictions

To establish that a field may not be bypassed (tabbing
past without entering data) during data entry, or that all
characters must be entered, or that the field is not to be
keyed-in but is reserved for a field program, use the REQUIRE
command .

This command will cause the form to be displayed with
the cursor at the first field. The user may then type one of
the options (R,F,B,P,S) to set the appropriate restriction,
or press ENTER to go on to the next field, or press CANCEL to
clear a previously set required condition.

The currently set condition will be displayed as the
field is entered. The ENTER key will tab forward and leave
the condition unchanged; the B’ function key will tab back
to the previous field.

2.8.1 Required Field

An ‘R’ keyed in during this pass indicates a tield is
required, that is, at least one character must be typed.

2.8.2 Fill Control Field

An 'F° means fill-controlled, that is, all characters
must be keyed in. During data entry, fields defined as
r'ill-controlled will be automatically entered when the last
character is keyed in; however, the ENTER key may not be
pressed in such a field. If fill-control is not set, the
ENTER key is required, even if the entire field is keyed in.

Fill-control should not be set in t'ields with edit types
R, B or L where action is taken when the ENTER key is struck.

Fill-control fields may be bypassed if the ENTER key is
struck in the first column of the field.

2.8.3 Required and Fill Controlled

The °‘B° option sets both required (R) and fill-control
(F).

2.8.4 Program Reserved - No Keyin

. »

The "'P° option indicates a tield will be filled in by a
field program. No operator keyin is permitted in this field.

This option may also be set on a ‘keyin® field to
reserve it as an alternate message display area.

2.8.5 Required and Program Reserved

The °S° option sets both program reserved (P) and
required (R). This will prevent writing of the data record
if the program reserved field has not been set by the field
program.

2.9 CONSTANTS and SEMI-CONSTANTS

The user must consider carefully the implications of
‘constant’ and ‘semi-constant’ data. These are characters
set 1into a data field in the form image and, if not
overridden, they will become part of the data record during
data entry. During actual data entry the operator has the
option to accept or type over data set by the SEMI-CONSTANT

ommand; whereas, data set by the CONSTANT command will
automatically become part of the data record and cannot be
rejected by the operator.

Constants and semi-constants may only be set in fields
initially defined, 1i.e. at 1image generation time, by
underscores.

To initiate the constant pass, type ‘CON°. To initiate
the semi-constant pass, type °‘SEM’. Both commands cause the
form to be displayed with the cursor in the first field
capable of accepting constant type information.

In the constant setup mode, the SPACE bar does not set
constant spaces into the field but permits the user to move
to a desired position within the data field. If constant
spaces are required, the caret key (") must be used. In
addition, neither constant nor semi-constant underscores (_),
veritical bars (|) or carets (") can be set. The CANCEL key
will clear any constant field erroneously set, the ENTER tabs
forward, and the DISPLAY/B keys tabs backward. The BACKSPACE
key positions back one character and erases the last
character typed.

No editing is performed on constants entered at this
time. Illegal constants will cause the Interpreter to hang
beeping during data entry. Illegal semi-constants, although
rejected, will be displayed. This feature may be useful for
presenting additional information to the operator, e.g., a
date field may have the illegal semi-constant "YYMMDD® set to
guide the operator.

Also, if an entire form of constant data is prepared, at
least one position must be left for the operator - so that

the form may be viewed and/or written to tape. All-constant
forms (or forms with no fields) ‘will" cause the Interpreter toy

hang clicking at data entry time. '

Partial semi-constants at the beginning or in ‘the middle-
of a field are meaningless since the operator will have to
type over them to enter the remainder of the field. _

Once constants (of either type) have been set, they will'
always appear when the form is displayed (e.g., during the
TYPE pass). Typing over the constants during subsequent edit
definition passes will not disturb them.xlw

.H‘,\ B %,(\’

Constants should be cleared before executing the REVISE

command since L_s.in presence. _iii - change _elzg __:;L.,

definjtions.

2.10 Field Program Assignment ‘

Field Programs are written 1n the DATAFORM 2 Language'
(See Section II). Each program is identified by a sinple:
alphabetic character (A - Z). :

When the form is being generated’ the user must type
"PRO” to enter the program assignment pass. ~The form will be
displayed with the cursor in the first field. Type' ‘the
appropriate program letter in any field where special
processing is requ1red. R I

The same field program May be assigned to several
fields, e.g., a year and month range check could be used for
any date field. Up to twenty-six unique field programs may
be a331gned in one form. BRI : ,

2.11 Form Linking

Dataform provides the ‘user with the ability to"iink”
forms so that the operator need ‘never see a form number.
Each form on a Dataform System may have a pointer, called a

‘link’, to the next form to be used. - This pointer mist be
efined at form generation time. When designing the tforms
for a particular application, the wuser should plan the
numbers that will be assigned 'to each formi‘and: plan to
arrange the forms for the most conVenient acCessing.r~ :

2.11.1 Setting the Manual’ Linkage , ’
When the LINK" command is typed, ‘the’ meseage./ffl

"NEXT FORM nnn:~

will appear. (where nnn is the number of the current linked
form, initially 000). Type the number of the form to be used
by the data entry operator after the form currently being
generated has been filled in.

2.11.2 Clearing the Linkage

Typing °‘LINK®, and entering a zero when the ‘next-form’
message appears, clears the link so that a form load command
issued by the operator will have no effect.

The current linkage information may be viewed by typing
the LINK command and then simply pressing the ENTER key to
leave the values unchanged.

2.11.3 Loading Linked Forms

During data entry, the 1linked form (set at form
generation time by the LINK command) 1is accessed by the
operator, when needed, by a special form-load function key.

2.11.4 Setting Auto Linking

One user form may require several Dataform “forms’, e.g.
forms 1, 2 and 3 make up one payroll transaction. In order
to fill in form 1 once, then form 2 once, then form 3, the
operator would have to use the write function (to write out
the data) and then the form-load function (to load the next
form). (See also Section II - CHAIN and WRITE.)

To facilitate use of mulitiple page forms (i.e. sets of
forms to be completed in sequence and then reused), the next
form links can be set at form generation time to auto-load
new form whenever data is written.

To set the auto-linking feature use the LINK command.
When ‘NEXT FORM’® is requested, preceed the form number with a
minus sign. Thus, when generating form one in the multi-page
example above, enter ‘-2° as the next form; enter ‘=3° for
form two and ‘=1" for form three’s auto-link.

DF2FGS
(load DF2 Generator)

FORM
Scratch

USER L
Keyin FORM —
and commands

'ouT'

“WF2FGS
(load DF2 Relocator)

FORM

no field program)
If Field (prog

Program needed

&) FORM

(field program)
If Extended

Interpreter needed

FORM

(field program and
Extended Interpreter)

FORM GENERATION FLOW

I-18

2.12 Writing the Form to Tape

During the entire form generation time the form is only
in memory. To record the form and its associated edit
criteria, place a scratch tape in the front deck and type the
command OUT. If no errors have been detected (e.g. too many
fields, too long a data record), the Field Program Relocator
will be loaded. If no field programs have been specified,
the Relocator will automatically write the “form tape’ on the
front deck. If programs have been specified, the question:

DO YOU HAVE A PROGRAM TAPE?

will appear. If the field program is not yet prepared, type
‘NO°. This will cause all references to the program to be
ignored during data entry.

If, however, a new program is to be used and the
operator types “YES’, the message:

PLACE TAPE IN REAR DECK AND PRESS ENTER

will appear. Remove the DF2FGS tape and place the field
program tape (source/object created by DF2PGS) in the rear
deck and press ENTER. The program tape will be rewound and
searched for the required programs, which will be copied to
the front deck. If there are still unresolved progran
references, the program-tape message will be repeated. When
all programs have been supplied or the user has answered °NO°’
to the program-tape message, the form is written on the front
deck. Then the ‘extended interpreter flag’, set by the
compiler for each of the field programs, 1is examined to
determine which, 1if any, of the extended interpreter
functions are required. If no extended interpreter 1is
needed, the form tape 1is ended. However, if the field
programs require an extended interpreter, the message:

REPLACE DF2FGS AND PRESS ENTER
will appear. The user should put the Form Generation System
tape back in the rear deck and press ENTER. The appropriate
Extended Interpreter (containing only the commands executed
by the field programs) will then be copied onto the end of
the form tape thus far generated.

At the completion of the form writing process, the
message:

nnn BYTES LEFT
DONE - LOAD NEXT SYSTEM

will be displayed and the machine is stopped. If, instead,

I-19

the message:

nnn BYTES OVER ‘

appears, the user must revise his form or fieldbprograms tofta“

fit within the available user space,vi- y e
The form recorded on the front deck may mow be tested o

by loading the Interpreter and typ:,ng NEW, or it ,may be,

cataloged on the Interpreter System tape. S R

Py

2.13 Changing the Screen Image of éﬁé*curréﬁé“rorm“”’” o

If, during one of ‘the passes subsequent to image
generation, an error in the 1mage of the form is diseovered,\
the user may type the:

REVISE

command to return to the image generation mode with the
current form intact. All edit criteria are cleared which

means that all passes executed will ha g to be done. gg n
after the form has been’ revised.f_H‘ :

If constants had already been ‘set into the torm,,it ie

best to go into CONSTANT mode and g;gg~ (ugigg CANCEL
key) all constant ie;g (sinoe constants deetroy the field

definition characters) ggiggg gxgggﬁlgg the BE_;_.,,gmmenQ

2.14 Recovering an OLD Form "_H,,

Once a form has been recorded it may be retrieved and
modified. Typing the.> R _

2 .

OLD

command will bring the form from the front deck“intatmémoryi'
Any pass of the Generator may be executed; however, noteithat
the REVISE command w111 olear all edit criteria“ ‘

REN!

When the desired changes “have been made,
memory is written to the front''deck (using the OUT command)””
as if it were a new form, i.e. all field" programe will' have
to be re-attached.

If the field program associated with a form have
changed, simply type OLD, to reload the form,iand OuUT, to
attach the new version of the program. Any time a form is
read via the OLD command, all field programs required must be
reloaded. ‘

I-20

fthe fo'rm in”["'

3. Form Library Configuration and Utilities

Once the forms have been generated and tested (see
Section I, part 4, Data Entry), the user will wish to catalog
them on a Dataform System tape. The system of forms should
be designed carefully to provide both the simplest and
fastest operation for data entry. The Configurator enables

the user to record and manipulate the forms on a Dataform
System.

To load the Configurator, place the Datatform System tape
in the rear deck and press RESTART. The Configurator is the
first program on the tape. However, the system will go
automatically to the Interpreter. To override automatic
loading of the Interpreter, the operator must press the

DISPLAY key during the entire loading process.

3.1 Displaying the Form Catalog

A ‘catalog’ 1is maintained on the system tape which
identifies the forms available on that particular tape. Each
form 1is identified by a number (1 to 123 are valid form
numbers). To see which form numbers have been assigned, type
“CAT’. This command will display the form numbers in use.

3.2 Adding New Forms to the System Catalog

To input a form created by the form generator and assign
it a form number, type ‘IN nnn’, where nnn is the form number
being assigned. The command causes the form in the front

‘ deck to be input, in form number sequence, to the system
tape, and then adds the new form number to the catalog,
rewriting the catalog record also. If errors are encountered

while the form 1is being copied, the catalog will not be
rewritten.

3.3 Deleting Forms from the System Catalog

Forms may be removed from the system tape, and from the
catalog, by use of the delete command (DEL nnn). If the form
being deleted is not the last one (i.e., highest number) in
the catalog, a scratch tape will be requested for the front
deck.

3.4 Deleting Multiple Forms from the System Catalog

There 1s also a command which allows the removal of
multiple forms. The °‘CHQOP nnn’ command deletes the specified

tform and 3ll subseguent (higher numbered) forms from the

I-21

system tape and from the catalog. =

3.5 Replacing Forms on the’SySEem Catalbg

If changes have been made to a form already -cataloged,
it may be replaced (REP nnn). If the form being replaced is
not the last one on the system tape, the REPLACE command
copies all subsequent forms onto the end of the form tape in
the front deck, and then copies the front tape back to the
system tape, writing over the specified fonm ‘ B

3.6 Running the Interpreter

In order to proceed from the Configurator to the
Interpreter, one may, as mentioned above, simply press
RESTART which will cause automatic loading of the
Interpreter. There is also a command available (INT) to

cause loading of the Interpreter.

3.7 Tape Utility Features
3.7.1 Duplicating DF2SYS

In addition to building and maintaining the forms
catalog, the Configurator has -several utility ”commaﬂdS‘ to
assist the user in protecting his system tape. The duplicate
(DUP) command generates a Dataform System on the front deck.
The new system has no forms in its catalog.

3.7.2 Duplicating DF2SYS with Forms

Another command SDUP ALL) g_g;gg n egtire sxsteg gg

onto the tape in the front deck. :
3.7.3 Recovering a Cataloged Form

A single form may be transferred from the system tape to
a scratch tape by using the ‘OUT nnn” command. The OUT ed
tape then 1looks exactly like a tape written by the Form
Generator and may be IN'ed to another Datafor-m System or .
changed using the Generator (the. OLD command) N

3.7.4 Generating a Faster Loading interpreter

The LGO command will make a faster loading version of
the Interpreter System and 6 its forms . by omitting the
Configurator. No form manipulation (IN, OUT, REP, etc.) can
be performed on the LGO version.of the system. .

3.7.5 Copying a Data Tape

I-22

Data tapes may incur tape parity errors or particular
data records may reach the rewrite limit by being modified
the maximum number of times. A COPY command in the
Configurator enables the wuser to g¢opy the data tape,
resetting the rewrite counter in each record back to =zero,
and, if tape errors are encountered, provides the option of
omitting the record, terminating the copy, or attempting to
copy the bad data.

When the COPY command is executed, the message:

PLACE DATA TAPE IN FRONT DECK, BLANK TAPE IN REAR DECK
WHEN TAPE IN PLACE, PRESS ENTER

will appear. Once the ENTER key is pressed, the tape in the
front deck will be copied to the rear deck. If errors are
encountered on the master data tape, the following message
will appear:

PARITY ERROR ON DECK 2
COPY, OMIT OR END?

If ‘0" is typed, the bad record is bypassed and the copy
proceeds. If 'E’ is typed, the copy is terminated with end
of file markers written on the copy tape. If ‘C° is typed,
the bad record will be written on the copy tape (the copied
record will have no tape error; however, it will probably be
missing data or contain erroneous data) and the copy will
continue.

If end of tape is reached and no end of file detected,
the COPY command will automatically backspace twice and write
end of file markers on the copy tape. The master tape is not
disturbed. Note that if this occurs, the final record count
is unreliable.

When the copy is completed, the following message is
displayed:

nnn RECORDS COPIED - REPLACE SYSTEM TAPE IN REAR DECK
WHEN TAPE IN PLACE, PRESS ENTER

The DF2SYS tape must then be replaced and the ENTER key
pressed. The forms catalog will be reloaded.

3.8 Printing Forms and Data

Two utility commands are available to print, either data
or forms, on a local or servo printer. To print a data tape,
type °‘DPRINT . This rewinds the data tape in the front deck
and prints each record, 80 characters per line, on whichever
printer is available.

I-23

Forms will be printed twice; once as the total image
would appear to the operator and again, one line at a time,
followed by the size of the field, the edit TYPE, REQUIRED,
and PROGRAM codes entered.

To print a non-cataloged form, place the tape in the
front deck, type 'FPRINT and press ENTER.

To print cataloged forms type:
FPRINT nnn

where nnn is the number of the form to be printed. To print
all cataloged forms, type:

FPRINT ALL

This will cause all cataloged forms to be printed in the
order they occur on the system tape. When printing 1is
completed, the Configurator is reloaded.

3.9 Replacing Dataform2 Systems Programs

One final command is available to replace the entire
catalog and forms of one Dataform System with the catalog and
forms of another Dataform System. The RIN command is
intended mainly for use in upgrading the users system as new
versions of Dataform are released.

Place the pew DFZ2SYS in the rear deck and the system
tape containing forms in the front deck.

I-24

4, DATA ENTRY

Data entry involves 1loading the Interpreter, then
loading a form, and finally filling in the data fields
defined by the form. When the data has been entered on the
screen to the operator’s satisfaction, the data record 1is
written to tape (by an operator function key or a field
program instruction) then the same form is cleared and
redisplayed with only ‘constant’ type data appearing.

To start data entry, place the DF2SYS tape in the rear
deck and press RESTART. The Interpreter is loaded
automatically.

The Interpreter will respond to the commands discussed
below. The form number 1is optional 1in most of these
commands; it it is omitted, the current form will be used.
An error may occur if no form 1is specified and none 1is .
currently in use.

Only the first letter of the command word is needed,
thus, “START 2° may also be entered as 'S 2°.

4.1 Data Tape Initiation

4.1.1 START New Data Tape

If the operator is preparing a pew data tape, the:
START [n]

command must be excuted to initialize the tape. If a form is
already loaded or is specified in the command, the form will
be entered (i.e., the form is displayed with the cursor at
the first non-constant data entry position available).
Otherwise, control is returned to the monitor.

4,1.2 ADD to an Existing Data Tape

Similarly, data may be added to the end of an old data
tape by entering the:

ADD [n]

command rewinds the data tape and. This command positions to
the end of any data already on the tape. The form will be
entered (if one is loaded or specified in the command) at the
same time the data tape is being positioned. If there is no
form present, control is returned to the monitor.

I-25

DATA
. Scratch

'START'

///, ORM tape

Initialized
DATA tape

'"TEST'

FORM loaded

FORM
Display

DF2SYS

(load INTERPRETER)

]
START n' DF2SYS
\\\\\ (FORM 'n' loaded)
FORM
Display
Operator Initialized
Input DATA tape

YEND'

Operator
Input

'END'

DATA ENTRY FLOW

I-26

@ DATA tape
ended

N\

A third way to open a data tape is to specify that it is
an old tape to which changes must be made. This is indicated
by executing either the MOD or the FIND command which are
described later.

4.1.3 CONTINUE adding to an Existing Data Tape

If the data tape is very long and is already positioned
at the end or in the midst of the data, the:

CONTINUE

command may be used. This command backspaces the tape once,
to insure that it is in front of the end of file marker and
then reads forward to the end of the data.

It is primarily intended to enable resumption of data
entry mode after error corrections have been performed. 4.2
Loading a Form

4.2.1 Testing NEW Forms

A single form, not yet cataloged on the Dataform System
tape, may be loaded using the:

NEW

command. The DF2SYS tape should be removed and replaced with
the form tape before typing ‘NEW'.

4,2.2 LOADing Catalogued Forms

To initially load a form, from the system form library,
or to replace the form currently in memory, the:

LOAD n
command may be used. Form ‘n° will be brought into memory
and, if the data tape has been initiated, the form \is
entered; otherwise, the message ‘TAPE CLOSED " is displayed
and control is returned to the monitor.

New forms may be loaded without disturbing the position
of the data tape. Each data record contains the form number
on which it was created so that subsequent modification or
other processing can identify data generated on a particular
form.

Note that the form 1is not reloaded if the number
specified is the same as the current form.

Any time a form is loaded, a search for the
specified by the link is initiated (even if the linked

I-27

is not yet cataloged!). If the 1link is set to zero, no
search is performed. Other tape operations, such as writing
data, reading data, or positioning the data tape, cannot be
performed until the linked file is found or all files on the
system tape have been searched completely. That is, data may
be entered on the form but may not be written to tape until
the next form is found. If the form is not on the tape, the
message BAD FORM® will appear the next time a tape operation
(e.g. writing data) is performed.

Linked forms (and LOAD statements in field programs) are
ignored if the form in memory was loaded using the ’TEST’
command.

4.3 Entering DATA ENTRY Mode

To switch to data entry mode initially or to return to

data entry mode from the monitor, the operator may type:
DATA

If no form is in memory or if the data tape is not open, an
error message will be displayed and control will return to
the monitor. Data currently in memory will not be disturbed
and will be displayed whenever the form is re-entered.

4.4 Revising Existing Data Tape
4.4.1 MODIFY

Any data record on a finished data tape can be accessed
for review or to be changed. The MODIFY command:

MOD [n]

(where n is an optional form number) enables the operator to
manually access any data record created by a specified form
and to then either bypass or change that record on the data
tape. When the °'MODIFY® command is typed, the operator is
asked to place a data tape in the tront deck. The tape is
‘searched for the first data record created by the current
form. Once a record has been found, the data tape is in an
‘open’ mode and may be searched in a forward direction by
pressing the read next record function key, or, from the
monitor mode, by typing another "MODIFY® command. To access
records already passed over, use the rewind function key to
rewind the data tape (like the initial MOD command).

During modification, a new form may be loaded (without

disturbing the position of the data tape) and that form will
subsequently be used for finding data records. Once a record

I-28

has been found by the MOD command, the contents of all fields
will be displayed in the form. Recorded data supercedes
constants, thus, the actual data from the tape will be
displayed; however, constants will be set into the data
record)when the field 1is entered (as they are for new
records).

Data may be changed at this time by retyping the field.
Press ENTER in the first column of a field to leave the data
unchanged. The edit criteria and field programs associated
with the form are still in effect.

4.4,2 Rewriting Existing Records

Data records are rewritten by the use of the write
function key. If the record was fetched using the MODIFY
comamnd, the next data record will automatically be read and
displayed. If, however, the record was fetched by the FIND
command, control is returned to the monitor.

Each data record contains a rewrite number. When the
rewrite number reaches 4, no further modification of that
record is permitted. The COPY command of the Configurator
will reset rewrite counts so that data may be further
modified. (The number of rewrites is limited to prevent loss
of data due to tape deck positioning errors.)

If no field needs to be changed, the next record can be
fetched by pressing the read next record function key; note
that any modifications made will be destroyed by the read
function. The write function must be used to cause updating
of the record (unless the write is executed by the field

program, in which case the field assigned the program must be
entered).

4,4.3 FINDing a Specified Record

If unique data in the record to be corrected is known,
the:

FIND [n]

command, where ‘n° 1is an optional form number, may be used.
This command loads the specified form (if different from the
current form) and displays the form so the operator may type
characters into any fields to use as a key in searching the
tape. No edit criteria or field programs are applied when
setting up the match data. Thus, right Jjustification and
zero fill will not be performed.

When the data to be matched has been entered, the

operator presses the read record function key to start the
search. The interpreter will search the data tape forward

I-29

looking for the record generated by the specified form and
containing the specified data.

Once the matching data has been found, operation
proceeds as in the MOD command. Note that this search may
also be aborted by pressing the KEYBOARD and DISPLAY keys
which returns control to the monitor.

If a mateh is not found, the message:
END OF DATA
appears and control is returned to the monitor.

4.U4,4 Aborting Tape Searches

The tape search may be aborted by depressing both the
KEYBOARD and DISPLAY keys. The operator may want to stop a
search if, for example, the wrong data tape is in place, the
wrong form is specified, or the wrong match data is given for
a FIND. Control will be returned to the monitor.

4.5 Positioning the Data Tape

The data tape may not be positioned as long as it is in
the ADD/START mode of data entry. The Read and Rewind
function keys will be rejected.

4.5.1 Backspace Record Function

Ir, in the ADD/START mode, the Backspace Record function
key is pressed, an end of file marker is written on the tape
and the user 1is automatically switched to MODIFY mode before
the tape is backspaced.

In the MODIFY mode, the Backspace Record function key
causes the tape to backspace twice and read forward once
under form number control, that is, if the record being read
was not created by the current form, subsequent records will
be read until a form number match is found.

The backspace record function may also be performed by
typing the command:

BACKSPACE
This command executes exactly as does the function key.
4,5,2 Rewinding the Data Tape

There are two ways to rewind a tape during data
moditication. From the monitor, the operator may type the

I-30

command ‘REWIND . This causes the data tape in the front deck
to be rewound and positioned to the first data record created
by the form currently loaded.

If, while viewing records during modification, the
operator wants to rewind the tape in order to view records
already passed, the rewind function key may be used.

4.6 ENDing the Data Tape

The operator cannot switch from the START or ADD mode to
the MOD or FIND mode without writing end of file markers on
the data tape. Return to the monitor via the System Control
function key and use the:

END

command to ‘close’ the tape. If the operator is in the
modification mode, the command will be rejected. The END
command does not rewind the tape, nor does it clear any
totals being accumulated by the current field program.

4.7 Data Entry Action

In the START, ADD, CONTINUE, DATA, MODIFY and FIND
modes, the cursor will be positioned at the tirst free
position of the first field. If, as in the modify mode, data
is present, the current contents of the data record will be
displayed.

Data set by a CONSTANT command at form generation 1is
displayed and the cursor is placed at the first non-constant
position on the form. However, data set by the SEMI-CONSTANT
command when the form was generated will be displayed and the
cursor will be placed in the the first position of the field
(over the semi-constant).

If partial constants are set at the right hand end of
the field, data must be typed up to the constants; otherwise,
the constant data may be omitted in the output record.

During data entry, a CLICK sound is made for each
accepted character. If a character fails to pass the edit
criteria for the field (alpha, numeric or mixed) a BEEP is
sounded and the cursor does not advance.

When typing data, pressing the ENTER key (or in
fill-controlled fields, typing the last character) will cause
the field to be further edited (right justified, zero filled,
etec.) and, if no errors are found, the cursor will move to
the next field. After the last field of a form is entered,

the cursor will be placed back at the beginning of the first
field awaiting a write function or. other commands from. the
operator. C e o

The ENTER key 1s used as a ;:Qrwgr key and the
Backspace Field function key permits. backward tabbing.
Forward tabbing past required fields is not permitted. Note
that alpha/numeric editing occurs as the field is being keyed
in., When the field is complete, further editing is performed
on numeric and right Jjustified fields to insure compliance
with format restrictions (e.g., minus - sign must ‘be to the
left of the field). User field programs are not executed
until all other editing has been performed’successfully

4.8 Data Erase Function Key

The erase function clears the data area (without‘Writing
it to tape) and redisplays the cleared form. No 1ggiggglgg
is given to field programs &Qﬁ& &ﬂ& grase __QQLLQE S been
executed o

4.9 Field Duplication Function Key

Once a form has been completed, the data is transferred
to a second buffer from which it is written to tape. This
secondary buffer is available to the operator for field
duplication by means of the field duplication function key.
If no previous record has been written, or if the preceding
record was created by a different form, the results of
pressing the duplication function key are not determined.

4,10 Operator Errors During Data\Entﬁy

when errors are detected in a field, instead of moving
to the next field the cursor will be placed at the beginning
of the field just entered and a beep will be sounded. The
illegal data is not set in the data area in memory , but will
still appear on the screen. If the operator de01des to tab
past the field, the last accepted data (blank if none has
been entered) w111 be displayed o o

4,11 Write Function Key

A data record will be written to tape whenever the Write
Function key is pressed. The data record is Wwritten even if
no data or only incomplete data has been ’ entered. If,
however, required fields have not been completed, ‘the machine
BEEPS and the cursor is placed at the first unfilled required
field. The data is not written to tape, If an incomplete

I-32

data record is written, it will contain zeros in all fields
defined as zero filled (right justified, zero filled and left
justified, zero filled) and spaces (or constants, if any) in
all other unfilled fields.

After the current data has been written to tape, all
data fields will be cleared to null values (or to the form
constants or semi-constants if any) and the form will be
reentered at the beginning. If, however, the auto-link flag
is set (see AUTO LINKING in Section 2), when the write
function is executed, the data is written out and the linked
form is automatically loaded and displayed.

4.12 Loading Linked Forms

The next form (specified by the linkage information in
the current form) will be brought into memory when the Load
Form function key 1is pressed. The operator must record the
current data record (using the Write function key) prior to
loading the next form, since pressing the Load Form function
key does not write and clears any data in memory.

Control can be returned to the monitor from the data
entry mode by use of the System Control function key.

4,13 Returning Control to the Monitor

. Whenever, while entering data into a form, it becomes
necessary to type one of the Interpreter ’‘commands’ 1listed
in Appendix C, the operator must press the System Control
function key to return control to the monitor. Only then may
the needed command be typed.

I-33

5.0 RECOVERY PROCEDURES

5.1 DATAFORM SYSTEM TAPE RECOVERY"

The prlmary ‘rule of system,h security is.keep :-BACKUP

apes; copy DFZFGS DFESYS and DF2PGS using. the COPY

utillty program. Oncé fbrms have been cataioged,, Qopy the

Dataform system tapes uS1ng the DUP-ALL cqmmandw Master. form
and program tapes should be éarefull' Labeled and stored.

If parity errors develop in Lhe systemlﬁfoéram sectlon
of the tape, the RIN command can be used to copy the forms
onto another Dataform system.

Y TSNS L
If errors develop in the forms themselves it may be
possible to REPLACE or DELETE or CHOP the erroneous areas.

Parity errors in the “forms catalog will cause the
me ssage: o

FORMS CATALOG UNLOADAELE, DUMMY CATALOG, GENERATED

to appear. If CAT is typed, the ggmml gatalog that assumes
all forms, 1- 123, will be disp%a ed, If tne forms .on . the
tape are consecutive one” may CHOP the 1ast ‘actual form + 1.
This will cause the catalog to be rewritten, hopefully
eliminating the previous error. One, may .also .attempt to
salvage the forms by OUT ing them one at a time .

5.2 DATA TAPES

During data entry, ‘each’ recard is writtgn, ‘re-read and
compared to the original data. "If "a 'failure occurs, the
operator is informed that the tape has been ended prior to
the record containing the error. A new data tape must be
initiated (using START) and the last record (which may be
retrieved using the field duplication function key) and the
one in progress when the failure occured must be re-keyed and
re-written.

Three types of problems can arise with data tapes:

parity errors
missing end of file markers
or rewrite limit reached.

Since read-after-write technique is used to write data
records initially, undetected parity errors should be rare.
These will most 1likely occur during error correction
modification.

I-34

The COPY command can be used in any of the above cases
to correct the tape. The rewrite count 1is automatically
reset by the COPY command. Parity errors may be omitted or
copied (in the hopes of later correcting the record by
modification). If a file marker is missing, a parity error
will usually be encountered, in which case the END option of
the copy command may be used.

Another technique for adding a lost or omitted end of
file marker is to use the Interpreter:

Find the last record using the MOD command (or FIND if
the actual data is known).

Remove the data tape.

Place a scratch tape in the front deck, and type START.
Once the starting file marker has been written, the
scratch tape is replaced by the actual data tape.

Type END; this will write an end of file after the last
record.

5.3 FORM TAPES

Irf, during the intial generation process, an
unrecoverable error occurs at the point of writing the form,
the Generator, DF2FGS, may be reloaded immediately and the
RECOVER command executed. This command causes the form still
in memory to be accessed. One of the form generation passes,
e.g., TYPE, may be executed to insure that the form is still
intact. Then try OUT 'ing the form again, using a new
cassette in the front deck.

If one of the system files could not be loaded, use
another copy of DF2FGS to recover the form.

I-35

TYPED
CODE

DX 2Z0>

Appendix A
Type codes

MEANING

Alpha (A - Z and space)

Digit (0 - 9)

Numeric (0 - 9, period and minus)
Mixed alpha and numeric

Numeric,Left Justified/Zero filled
Numeric,Right Justified/Zero filled
Numeric,Right Justified/Blank filled

CANCEL Clears edit criteria

Right justified fields are filled with leading zeros (R)

or blanks (B).

During data entry, the field is justified and

re-displayed after the ENTER key 1s pressed. Numeric fields
are limited to 12 places of significance to the left and 4
places to the right of the decimal point.

TYPED
CODE

'~ 1] o

Require Codes

MEANING

Required (at least 1 character must be keyed)
Fill Controlled (all characters must be keyed)
(ENTER key allowed only to bypass field)

Both Fill Control and Require

Program Reserve (no keyin)

Required and Program Reserve

(field is checked prior to write)

Appendix B
Image Generation Function Keys

There is a set of function keys available in the image
generation mode only. When the DISPLAY key 1is pressed,
certain characters become function keys. These function keys
can all be found on the number pad. The following functions
are available:

character insert

up cursor

erase to end of frame
left cursor

character duplicate
right cursor

word remove

down cursor

form expand (downward)
character remove
erase to end of line

C OWN = OV EO O~

The BACKSPACE key and DISPLAY/4 have the same function
of non-destructive left cursor movement. Backspacing from
column 1 back to column 80 is permitted.

The CANCEL key erases the entire line the cursor is on
and places the cursor at the beginning of the line.

The KEYBOARD key acts as a REPEAT key for all characters
and for most function keys.

The DISPLAY/CANCEL function causes an edit table to be

generated with the field position and length set and all edit
conditions set to default values.

NUMBER PAD OVERLAY

| Char { UP ! Erasel
| Insert | | Frame|
] { Dup | |
! LEFT { Char | RIGHT |
! Word | | Form |
| Remove | DOWN | Expand|
! Character | Erase |
} Remove ! Line |

Cut this overlay out and use for reference during form
generation.

Appendix C
Data Entry Interpreter Function Keys

Mode Key Typed Function

All Data Entry DISPLAY/4 return to monitor
DISPLAY/. write data record

or rewrite it

ENTER forward tab
DISPLAY/3 backward tab
DISPLAY/6 erase data area
DISPLAY/1 load next form

Modify and Find DISPLAY/T rewind data tape
DISPLAY/8 backspace record
DISPLAY/9 read record

Appendix D
Error Messages

SYSTEM ERRORS

FILE MISSING
Some form, present in the catalog, is missing on
the system tape, or the file marker necessary for
positioning the input tape is missing, or a form is
short (i.e. it doesn’t contain the necessary 6
blocks).

BAD NUMBER
The form number may have been omitted, out of range
(1-123) or non-numeric. Or, the form specified is
not in the catalog. Note that if the form number
is omitted in a command which optionally accepts
form numbers (e.g. START [n]) the command 1line
cannot end with a space.

In the Interpreter, this message may mean that the
next form specified (in the current form’s link) is
not in the catalog, or that your command assumes
that there is a form in memory (e.g. ENTER) and
none is loaded.

PARITY ERROR ON DECK X
Indicates a parity error was detected - where X is
the deck number (1 = system tape, 2 = front deck).
Before this message is displayed, four attempts are
made to read the record.

INTERNAL ERROR n ON DECK m
This message indicates a tape or tape deck failure.
The n is replaced by a letter indicating the error
condition:

D - parity error

E - end of tape

F - end of file

G - unfindable file
Z - write failure

Generally these errors occur only if something is
severly wrong with the cassette. Error Z may occur
if the write protect tab has been punched on the
cassette or if the tape is improperly inserted in
the deck. If error Z occurs often a hardware
failure should be suspected.

The letter ‘'m° in the message 1is replaced by the
number of the tape deck on which the error occured

(deck 1 is the rear deck, deck 2 is the front).

CONFIGURATOR ERRORS

END OF FILE MISSING Py iy
End of tape reached during COPY - an end of file
marker is automatically written. L e

AUTO NOT SET

Is given in response to a MANUAL command if the
~auto-load entry is not set. e

FORM CATALOG UNLOADABLE, DUMMY CATALOG GENERATED
File 1, the forms catalog is in error, a dummy
(full) catalog has been substituted. . Steps should
be taken to recover the system (see seetion 5).

NUMBER IN USE

The form number specified for an IN command was
already assigned.

GENERATOR ERRORS

BAD FORM

- The form just wrltten is unloadable due to parity
errors or missing blocks. , .

MORE THAN 126 FIELDS e
During image generation more than 126 data fields
were defined. The form must be revised before it
may be written out : .

MORE THAN 245 DATA
During 1image gneeration more 'than - 245 data
characters were defined. The form must be revised
before it may be written out.,q' :

XXX DATA

YYY BYTES LEFT
The messages appear immediately after the image
generation phase of form generation. Thev is. for
information only.

YYY BYTES OVER ’
If this message appears after image generation, the
form image, data area and edit table have combined
to overflow the user space. Sqmethlng must be
reduced. '

INTERPRETER ERRORS

Continuous Beeping durlng data entry ‘ L .
An illegal constant ‘has been deﬂinedy‘at form

D=2

generation time. The constant must be reset to
conform with the edit criteria before proceding.

Continuous Clicking during data entry

An all constant form with no keyin field has been
loaded. The form must be corrected before data
entry may proceed.

TAPE CLOSED

No START, ADD, MOD or FIND command has been
executed.

END OF TAPE

End of tape was encountered during data entry or an
unrecoverable tape error occurred during writing.
If the error occurs due to end of tape, the data
tape is automatically backspaced twice and an end
of' file marker is written. If it is a write-parity
error, the end of file is written where the record
would have been. This means the last two records
(since the operator is keying one in) are lost.
Totals being accumulated by field programs may no
longer be valid.

REWRITE LIMIT REACHED TO VIEW PRESS ENTER

BAD DATA

BAD FORM

During modification, the record in memory has been
rewritten 4 times and cannot be written again;
however, it can be interrogated. To reset the
rewrite counter to zero, use the COPY command of
the Configurator.

There is a parity error in the data.

There is a parity error in the form or a block is
missing.

END OF DATA

TAPE OPEN

End of file has been reached on the data tape.

An ‘open’ type operation was attempted before
ENDing the current data tape.

D=3

CONFIGURATOR:

CATALOG
CHOP
COoPY

DELETE
DPRINT
DUP
DUP ALL
FPRINT
IN

INTERPRETER
LGO

OuT

REPLACE

RIN

GENERATOR:
CONSTANT
LINK

NEW

OLD

OuT
PROGRAM
REQUIRE
REVISE

SEMI-CONSTANT

TYPE

INTERPRETER:
ADD

BACKSPACE
CONTINUE
DATA

END

FIND

LOAD
MODIFY
NEW
REWIND
START

Appendix E
COMMANDS

display the forms in the catalog

delete specified form and all subsequent forms
copy a data tape and reset rewrite counters to
zero.

delete the specified form

print data tape

duplicate the main system with a blank catalog
duplicate the entire system including t'orms
print form

input a form assigning the specified florm
number

run the Dataform Interpreter

write faster loading Interpreter

output the specified form

replace the specified form

replace the catalog and forms with the catalog
and forms of another Dataform system.

set constants into the form

define next form linkage

clear the work area for a new form
load old form from front deck

write the current form record to tape
assign program letters to fields

set required fields

revise the current form

set semi-constant data into the form
set edit keys for the current form

add to the end of a data tape
backspace a record on data tape
resume data entry after modification
switch to data entry mode

write an end of file on the data tape
search for matching data record

load the specified form

modify data records

load un-cataloged form

rewind data tape

initialize a data tape

Appendix F
Sample Form Generation

EMPLOYEE PAYROLL RECORD

Name |~ "~ """ °Tonnonnossnnnnanannanss Title Code |°~ Dept |~
Dependents |~ State Code |_ Social Security |°7|°°°°°
Exempt/Nonexempt (0/1) i Workman’'s Compensation (0 to 9) |
Married/Single (0/1) H Male/Female (0/1) |}
Hourly Rate ${°"""° Amount Last Increase ${°"~"°°° Date Last Increase |°°°°"7
Date Hired A Date Terminated |~~°°° Date of Birth |~°°°°°
State Tax R Disability Tax |{°°°°° City Tax {i°°°
Insurance 10ttt . Auto Insurance |~ ~~°° Life Insurance |~~°°°
Advance |°°°°° FICA Status (exempt=0, nonexempt=1) | Page 2? <

Sample Form - During Form Generation
NEW or REVISE command

Form text, data and keyin field definitions are set. If no constants or
semi-constants are added, this is the way the form text will look during data
entry except that the carets will be replaced by spaces.

EMPLOYEE PAYROLL RECORD

Name A Title Code D Dept D
Dependents D State Code D_ Social Security D D
Exempt/Nonexempt (0/1) D Workman s Compensation (0 to 9) D
Married/Single (G/1) D Male/Female (0/1) D
Hourly Rate $R Amount Last Increase $R - Date Last Increase
Date Hired - D '~ *“ - . Date Terminated D0 - ~ -°' Date of Birth D
State Tax 7-’Rﬂf”f,fﬂ*9* \ Dlsablllty Tax R - o "City Tax S
-Insurarnce R o - Auto Insurance R - " Life Insurance"
Advance R FICA Status (exempt=0, nonexempt=1) D Page

Sample Form - During TYPE pass

_Edip;&yﬁéégéﬁe-set. Theseiﬁi}l dbﬁ;ﬁ?;diSplaYed‘duﬁihk“déthééntqy; jf*}

EMPLOYEE PAYROLL RECORD

Name | Title Code | Dept |
Dependents | State Code 42 Social Security | |
Exempt/Nonexempt (0/1) 1 Workman’s Compensation (0 to 9) |
Married/Single (0/1) 0 Male/Female (0/1) 1
Hourly Rate $| Amount Last Increase $| Date Last Increase |
Date Hired ! Date Terminated | Date of Birth |
State Tax ! Disability Tax | City Tax !
Insurance | Auto Insurance | Life Insurance |
Advance | FICA Status (exempt=0, nonexempt=1) 1

Sample Form - During SEMI-CONSTANT pass

Several fields are preset to commonly entered values. These may be typed over by
the operator. The CONSTANT pass looks the same, however, constants may not be
typed over during data entry.

EMPLOYEE PAYROLL RECORD

Name R Title Code B Dept B
Dependents B State Code F Social Security R R
Exempt/Nonexempt (0/1) F Workman s Compensation (0 to 9) F
Married/Single (0/1) B Male/Female (0/1) B
Hourly Rate $R Amount Last Increase $| Date Last Increase F
Date Hired B Date Terminated F Date of Birth F
State Tax R Disability Tax | City Tax R
Insurance H Auto Insurance | Life Insurance |
Advance | FICA Status (exempt=0, nonexempt=1) B Page 27 <

Sample Form - During REQUIRED pass

This pass indicates if fields are required, fill-controlled, program reserved,
ete.

EMPLOYEE PAYROLL RECORD

Name | Title Code | Dept |
Dependents State Code |{_ Social Security | |
Exempt/Nonexempt (0/1) A Workman’s Compensation (0 to 9) B
Married/Single (0/1) A Male/Female (0/1) A
Hourly Rate $| Amount Last Increase $| Date Last Increase D
Date Hired D Date Terminated D Date of Birth D
State Tax] Disability Tax | City Tax H
Insurance H Auto Insurance | Life Insurance |
Advance | FICA Status (exempt=0, nonexempt=1) A Page 27 X

Sample Form - During PROGRAM pass

Program ‘A° checks range 0-1, ‘B’ checks 0-9, "D’ checks for valid dates and

checks for a

‘N to determine if another form should be loaded.

ﬁxv

SECTION II
DATAFORM LANGUAGE

1.0

3.0

TABLE OF CONTENTS
SECTION II

Elements of the Language
1.1 Labels

1.2 Pre-defined labels
1.3 Field program names
1.4 Blanks

1.5 Comments

Specification Statements

2.1 DATA -~ Accessing the output bufter
2.2 WORK =~ Intra-rorm work areas

2.3 COMMON =~ Inter-form work areas

2.4 EQU -- External definitions
2.5 REDEFINE -- Redefinition of work areas
2.6 FIELD -- References to specific field numbers

Executable statements
3.1 Transfers of information
3.1.1 ALIGN
3.1.2 CONVERT
3.1.3 LOOKUP
3.1.4 MOVE
3.1.5 SET
3.2 Arithmetic operations
3.3 Comparisons
3.4 Output control
3.4.17 WRITE
MESSAGE
SHOW
BEEP
CHAIN
FORMSHOW

L] .
F i — i — g g <
L] L] . L] L]
()20, IN —S UV \V)

ansfers of control

5.1 GOTO

5.2 CALL and RETURN
3.5.3 CHANGE and RESET
3.5.4 Pre-defined Labels

r

W
L]
w
ww 3 wwwww

4,0 Pre-defined labels

4.1 AGAIN
4,2 END
4,3 INPUT
4,4 NEXT
4.5 NULL
4,6 OUTPUT
4,7 RETRY
4,8 STORE

NN —

axIonoww

5.0 Program Generation.

5.1 Editing a source programjf“”“ 21
5.2 The compilation process 21
5.3 The compilation listing 22
5.4 The program tape 23
5.5 Form generation P SR |
5.6 Testing o ' S .24
6.0 Program Execution
6.1 Post process execution . . 25
6.2 Operator tabbing .25
6.3 Pre-process execution oo 25
6.4 Program reserved fieldsiﬂ_A ... 25
6.5 Form constants 25

Ty

APPENDIX A: Sample prqgrdm;‘;“”

APPENDIX B: Error megsa5§5 f;:% . ‘
APPENDIX C: Commands ‘requiring the extended interpreter
APPENDIX D: Code reduction techniques

APPENDIX E: Instruction list

1.0 Elements of the language

The DATAFORM 2 language consists of two kinds of statements:
executable statements (i.e., those that do actual data
manipulation), and specification statements (i.e., those
that describe the different kinds of data available).

1.1 Labels

Any statement which is referenced elsewhere in the program
will have a label. A label:

1) begins in column 1.

2) consists solely of alphanumeric characters.

3) may be any number of characters in length,
although all characters after the first eight
are ignored.

1.2 Pre~-defined labels

Seven labels are pre-defined to the compiler. These labels
are listed here, and discussed more fully below in section
u'o.

1. AGAIN 5. NULL

2. END 6. OUTPUT
3. INPUT 7. STORE
4, NEXT 8. RETRY

If any of these labels is re-defined in the program, the
re-def'inition will be flagged as a duplicate label error and
the re-definition will be ignored. The maximum number of
labels allowed by the compiler, 1including pre-defined
labels, is 100. Any labels defined atter this maximum 1is
reached are ignored. Examples of labels:

A

2765

FIELD17

LABELSTATEMENT (truncated to LABELSTA)

1.3 Field program names

A field program name is the address at which the interpreter
begins execution of a progran. A field program name is
defined as a label immediately succeeded (no intervening
blanks) by an asterisk (%). Only the first character of a

II-01

field program name is passed to the interpreter; therefore,
program names should be only one character in length. In
addition, the interpreter deals only with alphzbetic program
names; therefore, the one character should be alphabetic.
The compiler does not check for duplicate program names for
the same character; if there are duplicates, it passes both
to the interpreter. Since program names must be alphabetic
and only one character in length, the maximum number of
program names that the interpreter deals with is 26.
Examples of program names:

E#*
7%

1.4 Blanks

One or more blanks are treated as a field separator. A
label must be separated from an operand (with the exception
of the program name asterisk described above) by at least
one blank. Blanks are ignored except as field separators.

1.5 Comments

Comments are of ¢two types -- entire 1line comments, or
partial line comments. Entire line comments begin with a
period in column 1. Any line which has a period in column 1
is ignored entirely by the compiler. Partial line comments
may begin on a line whenever the syntax for that line is
complete. Partial line comments should also begin with a
period, and are allowed on all statements except where noted
in the discussion of the individual statements below.

A line that begins with a plus sign (+) is a comment with

the special property of forcing that line to begin at the
top of a new page.

II-02

2.0 Types of specification statements

The six types of specification statements are: DATA
statements; WORK statements; COMMON statements; EQU
statements; REDEFINE statements; and FIELD statements,

2.1 DATA -~ Accessing the output buffer

DATA statements refer to specific ¢olumns of the output data
record (the form). The general format of the DATA statement
is:

<{label> DATA n,m

where ‘n° and ‘m° are decimal numbers in the range 1-245.
The number ‘n° refers to an initial column of the output
data record, and the number ‘m° refers to a terminal column
of the output data record. The columns defined by the DATA
statement need not correspond to specific fields of the
form. Areas may be redefined. Therefore, columns defined
by the DATA statement may be:

1) identical to fields on the form;

2) a sub-grouping of a large field into smaller
fields;

3) a combination of smaller fields into a larger
field;

4) an overlapping of tields on the form.

Syntax restrictions:

1) ‘'n” and ‘'m” must be greater than zero but less
than 2U46.

2) ‘m” must be greater than or equal to ‘'n”.

3) the DATA statement must have a label.

Examples:
NAME DATA 1,29 multiple column field
IDCODE DATA 30,30 single column tield
AMOUNT DATA 31,39
DOLLARS DATA 31,37 Sub-group of larger
CENTS DATA 38,39 field

2.2 WORK =~ Intra-form work areas

The WORK statement is used to reserve space within a field

II-03

program for both non pre-defined:-and. preqdetined working
storage (the latter consisting of ASCII or octal constants,
or tables). To reserve non pre-defined working storage, the
following format is used:

oA M it

bl orkn

where ‘n° is a decimal number in the range 1-245 inclusive.

The area called <label> would have an item length of 'n’°,

Working storage is. pre-defined. with- ASCII: characters by
inclosing the desired characters in double quotation marks.
Examples: : o C o I T2

IO ER ‘

Clabel> WORK "PRE-DEFINED CHARACTERS"

A special forcing character, “#°, 1is used to ‘torce’ the
character immediately following it to be included in the
string; by using this character, the double .quotation-mark
and the forecing character mayu,appearawin the eharacter
string: ' ‘ . ’ :

‘<label> WORK "FORCED. DOUBLE 'QUOTE: - #7 AND".-
<label> . WORK "FORCED FORCING:: #4"\.= .

Each WORK statement that is pre-deflned generates a code
segment. Every .pre-defined ,working .storage segment is by
default terminated with _an addlbional, .8pecial end-of-table
character, an octal zero. This character: is included in
computing the over-all .length of :the :working storage
segment, but is not included in computing ;he item length.
It 1is possible. - suppress. . the. .speeial. end-of'-table
character in a pre-defined working storage statement by
following the terminal double quotation. -mark with- a
semicolon. Examples:

WORK1 WORK WDATA"
WORK2 WORK "DATA" ;

The first example will generate the following five bytes:
0104,0101,0124,0101,000. The second will generate . the
following four bytes: 0104,0101,0124,0101. The individual
item lengths are not affeo;ed by the semloolon, only the
amount of code generated is affecbed. IR

Tables are pre-defined by inclusxon between double qoutation
marks as well. The item length ;0f the table:'is determined
by the length of each item in double quotation marks. In
these four examples:

LABEL1 WORK n1n n2u n3n n4n n5n n6u
LABEL2 WORK ~ "12" "34" "56"
N LABEL3 A WO RK " ‘12,3". 456'f goeaeerada ShOn o o

- II-04

LABELUY WORK "123456"

all of the working storage tables have the same table length
(six characters plus one special end-of-table character for
a total table length of seven), but the individual item
lengths are respectively 1, 2, 3, and 6. The overall length
is not used for table lookups or range checks; table length,
however, is meaningful for the CONVERT and the table and
range IF comparisons.

Pre-defined working storage areas may have an overall length
greater than can be contained on one input code 1line;
therefore working storage items may be continued on more
than one line by using a colon, as in this example:

LABEL1 WORK "123456","789012":
"3U5678M:
"901234"

working storage may be predefined with octal values. This
is done by presenting one or more octal constants, the first
ot which (and only the tirst) is pretixed by the alphabetic
letter "O"., Each octal constant generates only one byte of
working storage. An octal constant may consist of a string
of any number of octal digits; however, only the least
significant eight bits of the string are placed in the
generated byte. Octal constants may be grouped together
using a comma to separate each constant, and may be
continued from one line to another by terminating the first
line with a colon. Each octal work area is succeded (by
default) by a single binary zero, inserted automatically by
the compiler, which 1is used as a table terminator. A
semicolon following the last octal constant will suppress
the default zero generation. The item length o!' an octal
constant area is one. Octal constants and ASCII character
strings may not be mixed in the same WORK statement; WOKRK
statements are either octal or ASCII. Examples of octal
WORK statements:

<label1l> WORK 015

<label2> WORK 015,16,17,20

<label3> WORK 015,16,17,20:
25,26,27,30:
35

Syntax restrictions:

1) the WORK statement must have a label.

2) in a table, all items must be of the same
length.

3) line comments may appear on WORK statements ir
the comment is preceeded by a period.

4) the length of non pre-detined areas may not

II-05

exceed 245. - The total length of a pre-defined
table can be greater than 245, although the
maximum item length is. what can .'be packed on
one line.},,-%:? N S AV E S SRR g

2.3 COMMON -~ Inter-form work areas . ..

COMMON statements are identical syntactically to WORK
statements, Their main difference is-one .of :function. The
COMMON area is used for. transferal of: information- between
forms, or for the saving of -information -used: ~in-" one fbrm
only, although multiple forms -are loaded« =" =00 0

It is important for every program using information saved
through COMMON to have the same relative locations of areas
inside the COMMON block. The statement:

<label> COMMONun

should be used to skip over fﬁ' hnused S&tes lhside the
COMMON block, if those 'bytes are not .referenced by the
current form, and are referenced by another fprm.»

Syntax‘restrictionsﬂﬂr T o }ﬁijggzt

1) COMMON statements need not have labels, unless
the block of information: 1& to be referenced
in the. program. .

2) the maximum total length ot the COMMON block

’ is 100 bytes..v)

3) line comments .may appear on COMMON statements
ir they are preceeded by a- period,;»s‘ »

1
il

2.4 EQU -- External definitions

The EQU statement is used to define;-.absolute octal
addresses. Following the EQU is a string of octal digits,
denoting an absolute octal address.‘ The.initial character
of the string need not bé a zero, although a zero will serve
as a reminder that the strlng is octal rather than decimal.

If the system has more than minimal (minimal = 8K) memory,
this extra memory may contain previously assembled assembly
(as distinet from Dataform) language, programs, which may be
referenced by using the EQU statement to define a label, and
then transferring control to that label (see section 3.5 of
this manual for -transfer of control. statements and Section
I1I tor assembly language 1ntertaclng) &xamplcs.

II-06

8K EQU 020000
12K EQU 30000

2.5 REDEFINE -~ Redefinition of but'fer and work areas

The REDEFINE statement is used to associate a new label with
an elsewhere defined label.

The general format of the REDEFINE is:

<label2> REDEFINE labeltl,n,m
The number ‘n-1° is added to the previously defined address
'or labell and becomes the initial address of 1label2. The
item length of labell is ignored, and the number 'm° becomes
the item length for label?2.
For example, suppose a table is defined as follows:

TABLE1 WORK "123456789012"

The item length of TABLE1 is 12. Then consider:

TABLE?2 REDEFINE TABLE1,1,6
TABLE3 REDEFINE TABLE1,1,4
TABLEY REDEFINE TABLE1,1,3
TABLES REDEFINE TABLE1,3,2
TABLEb6 REDEFINE TABLE1,7,1

The same memory locations are "re-grouped" under different
labels, so that the effect is the same as:

TABLEZ2 WORK "™123456","789012"

TABLE3 WORK "1234n,n5678",ng012"
TABLEY WORK "™123n,mhy56m n78gn wpi2n
TABLES WORK ||3L;n ’|156u ’n78u ,vvgon ’u‘]zn
TABLE6 WORK nn ’ngn ’ugn , non ,u1n , non

The REDEFINE is not restricted to WORK statements; COMMON
and DATA statements may also be REDEFINE’d.

Syntax restrictions:

1) 'n” and ‘m° must be greater than zero but less
than 245,

2) the REDEFINE must have a label.

3) partial 1line comments may appear after the
m°.

4) The REDEFINE statement should immediately
follow the 1label that 1is being redetfined

II1-07

(i.e., labell in the general format of the
REDEFINE above). The REDEFINE statement is
not flagged in error if it appears elsewhere,
but erroneous values may be generated if the
REDEFINE succeeds the statements that
reference the REDEFINE'd label.

2.6 FIELD -- References to specific field numbers

The FIELD statement assigns names to areas of the output
record corresponding to on the displayed form. Two types of
field references are provided -- absolute and relative. The
absolute format is used to reference specific fields of the
form. Its format is:

<labe;> FIELD n
where the 'n’ is a decimal number from 1-2U45.

The relative format is used to reference an offset (either
positive or negative) of the current field. The relative
format is:

<label> FIELD [signln

.

where [sign] is either a “+ " or a "="; and 'n” is a decimal
number from 1-245,., For example:

FLDT FIELD 7

NXTFLD FIELD +1
LSTFLD FIELD -1

Labels assigned via FIELD statements may be referenced in
any type of arithmetic or conditional statement. For
example:

ADD LSTFLD TO INPUT GIVING NXTFLD

II1-08

3.0 EXECUTABLE STATEMENTS

Executable statements are all statements other than
specification statements. They have to do with: 1)
transfers of data; 2) arithmetic; 3) comparisons; 4) output;
and 5) transfers of control.

In the subsequent discussion of generated code formats, all
addresses are two bytes in length, and are stored as MSB,
LSB. Relocatable addresses have the sign bit of the MSB set
to a one. Absolute addresses are all addresses other than
relocatable addresses, and are as they were defined.

3.1 Transters of intormation

Data is moved from one location to another using one of six
possible verbs: ALIGN, CONVERT, LOOKuUP, EDIT, MOVE, or SET.

3.1.1 ALIGN
The ALIGN verb format is:
<LABEL> ALIGN rield1 TO field2

The ALIGN first checks both field1l and field2 for the
presence of a decimal point. It none exists, it is assumed
to pe at the rightmost edge of the field. After determining
the decimal point, fieldl is moved to field2, with decimal
points aligned. In rield2, either truncation or zero-till
or both may occur. Examples:

FIELD1 FIELD?2 FIELD2
(betore) (after)
10,1 0000. 0010.
10.1 00.00 10.10
10.1 0.000 0.100
1.234 0000. 0001.
1.234 00.00 01.23

NOTE: If field2 is in the data area, the decimal format may
be initialized by setting (during form generation)
semi-constant zeros with a decimal point in the appropriate
position.

CODE: The ALIGN generates 7 bytes of code: op, field2
length, field2 address, field1 length, t'ieldl1 address.

II-09

3.1.2 CONVERT

Extended

The CONVERT verb format is:

;ﬁ<1é§éiéu

CONVERT f4e1d1 BY table1 AND ‘table2
GIVING field2 '

R S

The CONVERT verb will try to find fieldf in table1 The
length of fieldl is used for the search,..The. connesponding
entry in table2 1s moved to fieldz.é Examples. e

TABLE1 ' TABLE2 T

N 01 JAN o :‘..54’::,'::)'1«.”‘..,:’M'n R <L
03 MAR
o4 APR

ete ete .. ., i

After a convert, D e -

FIELD1 =~ FIELD2 o
o4 APR
07 JUL
01 JAN TR

The item length of table2 is used to determine the position
of the corresponding element and the length of the move from
table2 to field2 (the item length .of. field2 1is also
checked); therefore,\eaoh Separate item in table2 should be
enclosed in double gquotation marks.‘ LRI .

It the item is not tound in table1,, no move‘ment ot data
takes place. ' N :',‘;" . 3"'\:1“"‘;' DO e T
CODE: The CONVERT generates 12 bvteq ot che. 6§;ttable1
address, field1 1length, field1 address, field2 length,
field2 address, table2 length, table2 address.

3.1.3 LOOKUP '/ Extended

The LOOKUP verb’ format is: Sy

<label> LOOKUP’ field1 IN tab1e1 GIVING field2
The LOOKUP verb will use f1eld1 as an index into TABLE1.
The item thus selected, will be. mbved to. field2., If the
index value 'is greater than the" length of the table, the
value moved into field2 is indeterminate. The example of
section 3.1.2 above could be coded as: . : o

S 3

cd

S II-10

<label> LOOKUP field1 IN tablez2 GIVING field2

The LOOKUP verb should be used when there are no “gaps’ in
the table from which the data movement takes place. The
CONVERT verb should be used when the table has gaps, or is
randomly ordered. The LOOKUP uses field1 as an item by iten
index into the table, and hence will always find a match;
the CONVERT verb searches through the first table until it
finds a match.

CODE: The LOOKUP generates 10 bytes of code: op, tablel
length, tablel1 address, field1 1length, field1 address,
field2 length, field2 address.

3.1.4 MOVE
The move verb format is:
<label> MOVE field1 TO field?

Field1l is moved, 1left justified, to field2. If the length
or field1 is less than the length of field2, field1’s length
is used in the move. Subsequent characters in field2 are
not changed; their values are as they were before the MOVE.
It the length ot field2 is less than the length of (ieldl,
rield2’s length is used.

CODE: The MOVE generates 7 bytes of code: op, field?
length, field2 address, tieldl1 length, t'ield1 address.

3.1.5 SET
The SET verb format is:
<label> SET fieldl1 to field2

The first character of field2 is spread throughout fieldl1 --
as ror zeroing out a total, or blank filling a message. The
example:

ASTERISK WORK "#n
TOTAL WORK "00000000"
<label> SET TOTAL TO ASTERISK

would set the entire 8 character total t'ield to asterisks.
This should not be used to zero a field containing a decimal
point which is to be used as a destination for ALIGN or any
arithmetic statements since that decimal will be overstored.

e

II-11

CODE: The SET generates 6 bytes of code: op, field?
address, fieldl length, fieldl-addresss J v ..l o0

3.2 Arithmetic operations - "~ - - . MULTIPLY,; Extended
a SRR TR R PO 4 DIVIDE«- Extended

The standard arithmetic functions of add, subtract, multlply
and divide are provided.. These: statements must be in the
following formats (specifically, mhe connectives between
labell and label2 must not vary): : sl U LT

<label> ADD labell TO label?2
<label> SUBTRACT labell FROM label?2
(SUBTRACT may be abbreviated SUB)
<label> MULTIPLY labell1 BY label?2
(MULTIPLY may ?enabbreviated MUL or
MPY
<label> DIVIDE label?1 INTO label?

(DIVIDE may be abbreviated DIV)

Alternatively, any of the above tour may be mddified by
appending the phrase <GIVING label3> to’ them.: The result of
this is that the contents -oft the first:two ‘labels are not
affected, but their -sum (difference, ' product, qbutient)
appears at the third 1label ‘rather ‘than the second.
Examples:

<label> - ADD labell TO label2 GIVING label3
<label> MPY labell BY label2 GIVING label3

This format causes an ‘ALIGN 1label2 TO label3 to be
generated prior to the arithmetic statement. ' R

NOTE: Signitricance may be 1lost. at this.' point. (before
computation) it label3 has Iewer places of significance than
label?2, , S : . S

The result of any arithmeticﬁwhhl:bewaligned to.the decimal
point in the result field. . Truncation is performed at :both
ends of the field and 1leading zeros are supplied 1if
necessary; thus, in a field defined as right Jjustified and
blank filled, performing an ADD NULL TO tield will replace
the leading blanks by. zeros. R ‘

CODE. If the arlthmetic statements have a GIVING appended,

they will generate a 7 byte ALIGNi of label2:to label3 before
generating the normal 7 bytes:'of -code for :the arithmetic

operation: op, labelz2. length, labela address, labellalength,

labell1 address. (, e Co

II-12

3.3 Comparisons CK10 - kExtended

CK11 - Extended

The general format of the comparison is:

<label> IF field1 [RELATION field2 THEN label1l

If the relation is true, control is transfered to labell.
Three types of relations may be defined:

Examples:

1)

2)

3)

ASCII comparisons (EQ, EQU, EQUAL, GE, GEQ,
GREATER, GT, GTR, LE, LEQ, LESS, LESSTHAN, LT,
NE, NEQ, NOTEQUAL are all acceptable). The
character values in field1 are compared, from
left to right, to the characters in rfield?2
(using the length of tieldl to terminate the
compare). Ditf'tering 1lengths do not cause
unequal compares; however, if field1l is longer
than t'ield2, the results are indeterminate.

table lookup (INR, INRANGE, INT, INTABLE, NIR,
NOTINRANGE, NIT, NOTINTABLE). Field1 is
"looked-up" in the table defined at field2.
The length of field1 is used.

check digit verification. Field1l is tested
for correctness of check digit with either a
mod 10 (CK10) or a mod 11 (CK11) check
performed, using the contents of field2 as a
weighting factor. Fieldl1 should contain the
check digit in the least significant position.
Field2 is assumed to be one character shorter
than field1.

FIELD1 FIELD 1
ACCOUNTNO DATA 21,27
MONTH DATA 1,2

DAY DATA 3,4
DAYTABLE WORK "Q1m,n3qm
MONTHTABLE WORK "0Q1","02"
ZERO WORK "000000"
WEIGHT1 WORK "212121"

.

. Check field1 for strictly positive

A

L]

IF FIELD1 GREATER ZERO THEN STORE
AGAIN

« Check for null input

B#

IF NULL EQ INPUT THEN AGAIN

II-13

+ Check for negative.

C# IF FIELD1 LT ZERO THEN STORE
AGAIN

« Check range using table

D#* IF DAY NOTINRANGE DAYTABLE THEN AGAIN
IF MONTH NIR MONTHTABLE THEN AGAIN
STORE

o o

Perform Mod10 check digit validation

E® IF ACCOUNTNO CK10 WEIGHT?1 THEN STORE
AGAIN

CODE: The IF generates 8 bytes of code: op, field2 address,
field1 length, fieldl address, labell address.

3.4 Qutput control

Three output statements are provided: WRITE, MESSAGE and
SHOW. (See also END and CLOSE in Seection U4.) The BEEP
statement provides an audible tone, and the LOAD statement
is used to load another form (in addition to the auto-load
and linking-load features of the interpreter).

3.4.1 WRITE

The WRITE statement will write the data area to the front
cassette deck., Control is returned to the next statement in
the user’s program. (See also END in section 4,) The data
area in memory is not cleared, and may be passed to another
form for further computation or may be used for auto-duping
selected data. Its format is:

<label> WRITE
CODE: The WRITE generates only a 1 byte op code.
3.4.2 MESSAGE

The MESSAGE statement will write the specified field on the
bottom line of the screen. Example:

<label> MESSAGE field?

The bottom line of the form will be erased. However, the
message i3 only temporary and the bottom line of the form

II-14

will be restored when the operator writes the data record or
erases the current record.

NOTE: The INPUT field 1is destroyed by the MESSAGE
statement.

CODE: The MESSAGE generates 4 bytes of code: op, field1l
length, field1 address.

3.4.,3 SHOW

The SHOW statement will display a message in the current
field area of the screen. If no message label is indicated,
the SHOW statement defaults to the contents of the data
record corresponding to the current field. Example:

<label> SHOW
or <label1> SHOW <label?2>

The SHOW may be wused it computations or table lookup
conversions were made to change the value of the field. For
example:

CRDRTAB WORK "CREDIT","DEBIT "

LSTFLD FIELD -1

CD WORK "Cli’ﬂD"

MSG WORK "

S#* CONVERT LSTFLD BY CD AND CRDRTAB
GIVING MSG
NEXT

Program ‘S’ is assigned to a keyin field (i.e. a field which
reserves no data space) which is set to ’program reserve’
(to automatically execute the program with no operator
intervention). The program tests the preceeding field and
displays a message corresponding to that value, for operator
intformation.

NOTE: The INPUT rield is destroyed by the SHOW statement.

CODE: The SHOW generates 3 bytes of code: op code, label?
address.

3.4.4 BEEP

When executed, the BEEP command causes the machine to issue
a single beep sound. The format is simply:

<label> BEEP

CODE: The BEEP command generates only the 1 byte op code.

II-15

N

TS DT VANl LSS EE e

e R T RS R

3.4.5 CHAIN

S
L

The CHAIN command enables the user to load a specific .form
when he exits his program. The format is: e

~<label>. . CHAIN n.. ...

where ‘n” is the number of the form to be loaded (from 1 to
126 decimal, inclusive). The current data record is. not
written; however, the flag indicating data present is reset.
The specified form is loaded. and control .is, passed to the
Interpreter at the first field of ‘the new. form. 4

CODE: The CHAIN generates 2 bytes of code. op, torm number.
3.4,6 FORMSHOW

The FORMSHOW statement will cause the current form to be
redisplayed. All data fields the screen will be cleared.
The output record is not a fected and the current Iield
index is not changed. Example: .

<label> erORMSHOW
NOTE: INPUT is destroyed: when FORMSHOW 13 executed.

CODE: The FORMSHOW command generates only,‘the 1 byte op
code. ooy

3.5 Transfers of control a7if,j‘Jifw;:,”‘,

The three transfer of prqgram contrel sta&emeqts%are the
GOTO statement,\ the .CALL . statement, .and the RETURN
statement. The two field changing statements are the CHANGE
and RESET statements.

3.5.1 GOTO

Control is immediately transferred to the 1abe1 following
the GOTO:

S R B B
AP PUSCTI I

<{label> GOTO 1abel1

For the pre-defined . labels, the word GOTO,is optional.ngor
programer defined labels, it is mandatory. Examples.

GOTO label1
. GOTO NEXT .
NEXT

CODE: The GOTO generates 3 bytes of code: op, label

11416

address.
3.5.2 CALL and RETURN

A single level of subroutine nesting is provided with the
CALL and RETURN statements. A program may contain more than
one set of CALL and RETURN statements -- but a CALLed
subprogram may not CALL another subprogram. The statement
formats are:

<label> CALL <subprogramname>
<label> RETURN

If a RETURN is executed with no preceeding CALL (in the
current field program) a GOTO NEXT is executed.

CODE: The CALL generates 3 bytes of code: op, subprogram
address. The RETURN generates only a 1 byte op code.,

3+5.3 CHANGE and RESET

The transfer of data input control is the CHANGE statement,
To change the input pointer from the current field (i.e.,
the sequence number of the field as it appears in the tform)
to another field, the new field number or displacement is
specified immediately after the CHANGE verb:

<label> CHANGE [sign]n
For example:
CHANGE +1

Af'ter this instruction is executed, INPUT still contains the
keyed-in data; however, the current field number has been
incremented by one and OUTPUT now ret'lects the positions in
the data record corresponding to the new field.

CHANGE 1

After this instruction, however, the current field number
has been changed to the first field in the form - field 1.

When the field program is entered the number of the current
rield is saved and may be restored at any time by executing
a RESET command. This statement will reset the [ield
pointers to the field current when the program was entered.

CODE: The CHANGE generates 3 bytes of code: op, flag, t'ield

number or displacement. The RESET generates only a 1 byte
op code,

II-17

3.5.4 Pre-defined Labels

There are seven pre-defined labels which cause a transfer of
control from the field program back to the DATAFORM
Interpreter. These labels may be used as the destination
address of comparison or GOTO instructions, as in the

example:

B* IF NULL EQ INPUT THEN AGAIN
GOTO STORE

or may be referenced by name alone, as in:

C# ADD INPUT TO TOTAL
STORE

See the next section for detailed description of all
pre-defined labels.

II-18

4,0 PRE-DEFINED LABELS

The seven pre-defined labels were first listed in section
1.1. They are discussed below.

4.1 AGAIN

This label passes control back to the DATAFORM Interpreter
at a point which indicates an error to the operator and
re-requests the current field.

4,2 CLOSE

This label passes control back to the DATAFORM Interpreter
at the point corresponding to the operator typing the “END’
command . That is, an end of f'ile marker is written on the
data tape and the °‘READY’ message is displayed, leaving the
operator in monitor mode.

4,3 END

This label passes control back to the DATAFORM Interpreter
at the point corresponding to the operator depressing the
write tunction key.

4,4 INPUT

This label designates the data keyed-in immediately prior to
entering the tield program. The data in INPUT has not yet
been stored in the data record. It°s length is detined at
execution time by the length of the current field, and, it
has been validated according to the edit criteria in the
form itseltf prior to executing the field program.

4,5 NEXT

This label returns control to the Interpreter at the point
at which the current field number 1is incremented. The
cursor is moved to the next sequential field. (No data is
stored.)

4,6 NULL

This label is a location which contains a binary zero. It
may be used to determine, by testing the output record, if
this is the first time data is entered. Example:

<{labell1> IF NULL EQUAL OUTPUT THEN label2

II-19

‘Note that NULL should be referenced first since the length
of the first operator is used for the comparison.

4.7 OUTPUT

This label designates the contents of the data record for
the current field. If no data has been stored, OUTPUT has
the value of binary zero (NULL). The length of OUTPUT is
defined at execution time by the 1length of the current
field, OUTPUT is undefined for ‘keyin’ fields.

4,8 RETRY

This label is a location in the interpreter which contains a
binary flag indicating whether the system is in modify or
normal data entry mode. It can be checked by the user
program by comparing it to NULL. If RETRY equals NULL the
system is in normal data entry mode.

4,9 STORE

INPUT is not moved to the data record before control 1is
transferred to a field program. The field program must do
one of three things:

1) MOVE INPUT TO OUTPUT

2) MOVE somethingelse TO OUTPUT (where
‘somethingelse’ may or may not be based upon
INPUT)

3) exit the field program through the interpreter
label STORE, which will automatically MOVE
INPUT TO OUTPUT and position to the next field
in the form.

II-20

5.0 PROGRAM GENERATION

Compilation of a program consists of two processes: using
the editor to create a new source program, or edit an
existing program; and compiling a new, newly edited, or old
program.

5.1 Editing a source program

The Dataform 2 editor and compiler are resident on an LGO
tape. The first file 1loaded is the editor, to permit
editing or creating a tape to be input to the compiler. The
Dataf'orm editor is a special version of the General purpose
editor; its command structure is that ot the General purpose
editor. The tirst display ot the editor is:

cCvP,OLD,NEW,DUP; PARAMETERS

?

A response of "C’ will begin the compilation of the cassette
in the front deck with no editing of it. A response of °0O°
will edit the information on the front cassette onto the
rear cassette, and at the end of the editing process will
copy the rear cassette onto the ftront. A response of 'N°
will enter the new information onto the front cassette only.
A response of 'D° will copy the front cassette onto the rear
cassette and wait for a new cassette to be inserted in the
front, and will then copy the rear cassette to the tront.
The °“PARAMETERS field is discussed in the General Purpose
Editor Manual. The “Databus’® option, which sets a tabstop
at column 9, 1is 1initially set, and should be used for
Datatorm.

5.2 The compilation process

At the termination of the editing process, the compiler 1is
loaded. The compiler displays:

DATAFORM 2 COMPILER 1.1

on the screen. If a printer is part of the compiling
system, it asks 1if a listing is to be produced. It then
reads through the front cassette preparing a symbol table,
until it comes across a filemark. The front cassette 1is
then rewound. The actual code generation and 1listing
production takes place on the second pass over the input
tape. The code produced is intermediately stored on the

II-21

rear cassette, in the system scratch file (number 40). When
the second pass over the front cassette is completed, the
intermediately stored information on the rear cassette is
transferred to the front cassette., At the completion of the
transfer, some or all of of these messages w111 be drsplayed
on the screen: o y : o) S

STORAGE USED IN DECIMAL: 00000 RELOCATABLE, OOOOO COMMON
EXTENDED INTERPRETER REQUIRED
FIELD PROGRAMS:
A 00000
Z 00000 ‘
END OF COMPILATION: NO ERRORS.
or END OF COMPILATION: .n ERRORS'

These are descriptions of the program, telling the length of
the entire program, whether or not the extended interpreter
is required, and listing, in octal, the relocatable starting
address of each of the programs defined. The End message
lists the number of errors in decimal, if any occurred,
After this message, the machine ‘beeps’, the keyboard and
display lights are turned on, and the machine is set in an
infinite loop. The compilation is then complete.

Any error messages are automatically displayed on the
screen, with an asterisk indicating the part of the source
line in error. The display may be stopped momentarily by
depression of either the keyboard or display keys. *

5+3 The compilation 1isting

The first act of the compiler s to test whether a servo or
local printer is a part of the ccmpiling system. If ‘either
of them are, the message: o :

LIST ON SERVO PRINTER?
or LIST ON LOCAL PRINTER?

is displayed. A response of 'Y to this message will result
in a printed listing of the program, as it is compiled. The
listing consists of four parts:

1) the line number.

2) the initial address (either absolute or
relocatable) associated with the
statement line.

3) the code (in octal) generated for that

- line, eight bytes per printed:1line, using
as many printed lines: as: necessary for
the amount of code generated.

4) the line as it was input,

II=-22

5.4 The Program Tape

When compilation is complete, the tape on the front deck
contains two files: the source statements (file 0) and the
compiled code (file 1). The compiled code file consists of
a header record and both relocatable and absolute object
code records.

The header record (which is in a fake object format)
contains the number of the extended interpreter required (if
any), the length of the relocatable object code, and the
names and starting addresses of all field programs in the
t'ile.,

5.5 Form Generation

The compiled program must be combined with a “form” which
contains the screen image, field definitions and program
references (see Section II, 2). To combine the form and
program files, load DF2FGS. If the form image has already
been generated, place the form tape in the front deck and
type ‘OLD"; otherwise, generate a new form.

When the form is in memory, place a tape in the front deck
and type °OUT”. This will cause the program relocator
overlay to be loaded. If programs have been specified for
the rorm (during the PROG pass of the generator), the
question:

DO YOU WANT TO USE A NEW PROGRAM TAPE
will appear. Type ‘Y’ and the message:
PLACE THE PROGRAM TAPE IN THE REAR DECK AND PRESS ENTER

will be displayed. Place a compiled program tape in the
rear deck and press ENTER.

The header record is read to determine if this tile contains
any oif the required programs, If it does, the entire file
is copied to the front deck. The relocatable addresses at
the beginning of each record are changed to absolute
addresses by adding the address of the next ftree byte of
user space (this will be different for each form).

If there are still unresolved program references, the
new-program question will be repeated. If the user answers
‘N” or all external references have been resolved, the form
(pointers, image, edit table) is written on the front tape.

If an extended interpreter is required, the message:

II-23

REPLACE DF2FGS AND PRESS ENTER

is displayed. Remove the program tape and put the system
tape back in the rear deck and press ENTER., The required
version of the extended interpreter will be copied to the
end of the form.

When the form tape is completed, an end of file is written
and the message:

nnn BYTES LEFT
DONE-LOAD NEXT SYSTEM

appears. Remove the form tape from the front deck.

All tapes should then be checked to see that they have
appropriate labels on them, to avoid confusion later,

5.6 Testing

Place the DF2SYS tape in the rear deck and press RESTART.
Place a blank tape (for data) in the front deck. When the
Interpreter is running, type START to initialize the data
tape., Then remove the DF2SYS tape and place the form tape
in the rear deck. Type 'NEW to cause the form to be loaded
into memory. The form will be displayed with the cursor in
the first data entry position. The user may then proceed to
test the form. Undefined programs will not be executed,
commands to automatically load other forms will be ignored
in the test mode.,

II-24

6.0 PROGRAM EXECUTION

6.1 Post process execution

Field programs are always executed as a ‘post-process’ to
data entry, that is, the program is not executed until the
data has Dbeen keyed in and accepted by the Dbasic
interpreter. Thus, alpha/numeric checks, right
justification, ete. will already have been performed on the
input,

6.2 Operator tabbing

Iff the operator chooses to bypass a field whiech 1is not
required, INPUT contains a null field (binary zeros).

I the cursor enters a field during backward or forward
tabbing and no new data 1is entered, the data currently in
the output record (which may or may not be a null tield) is
passed to the rield program. If, however, new data is keyed
in, the new data is presented to the field program in the
INPUT area while previously entered data is still available
in the OUTPUT area. It' the previously entered data is
cancelled by the operator, a null INPUT field is passed to
the program.

6.3 Pre-process execution

To execute a ‘pre-process’, the user must assign that
pre-process program to the preceeding field (making certain
to store or provide for storing the input data).

6.4 Program reserved fields

Data entry in a field may be prevented by designating that
field as a “program-reserved” (P) field during the REQUIRED
pass of form generation., In that case, the field program is
executed immediately upon reaching the field and the area
designated by INPUT is meaningless.

6.5 Form constants

Constants and semi-constants are set into the output area
prior to data entry. However, fields containing constants
will be passed through the basic interpreter as 1if the
constant characters had been keyed in. They will be edited
and passed to the field program in the INPUT area,

II-25

APPENDIX A: Sample programs

PARITIAL FORM

NUMBER <~°°°°7 A |
SIZE 7 6 1
TYPE R
REQUIRED P P
PROGRAM S

MOVE SIGN TO RIGHT END OF FIELD

INSIGN REDEFINE INPUT, 1,1
INREST REDEFINE INPUT,2,6
NXTFLD FIELD+1

SIGN FIELD+2

SPACE WORK " ",

MINUS WORK "-";

. Input to ‘keyin® field, move sign and store
. in next data field on form
S#* IF NULL NE INPUT THEN MOVE
IF NULL EQ NXTFLD THEN AGAIN
NEXT
MOVE MOVE INREST TO NXTFLD

MOVE INSIGN TO SIGN

IF MINUS EQ INSIGN THEN NEXT
MOVE SPACE TO SIGN

NEXT

. Routine to do arithmetic with sign inverted field
TOTAL WORK "00000.00"

HOLDS WORK "O";
HOLDR WORK "000.00"

HOLD REDEFINE HOLDS,1,7
. Save keyed in total and zero computed total
A¥* MOVE INPUT TO OUTPUT
SUB TOTAL FROM TOTAL
CHANGE 3
CALL ADD
CHANGE 6
CALL ADD
RESET
IF TOTAL NE OUTPUT THEN AGAIN
END
. Routine to add sign inverted data

ADD

MOVE NXTFLD TO HOLDS
MOVE OUTPUT TO HOLDR
ADD HOLD TO TOTAL
RETURN

MOD 10 CHECK DIGITS

WEIGHTO
CKO

WEIGHT1
CK1

WEIGHT3
CK3

WORK "765432"

IF INPUT CK10 WEIGHTO THEN
AGAIN

WORK "21212"

IF INPUT CK10 WEIGHT1 TBEN
AGAIN

WORK "T7137137"

IF INPUT CK10 WEIGHT3 THEN
AGAIN

MOD 11 CHECK DIGITS

WEIGHT2
CK2

WEIGHTAY
CK4

WORK "432765432"

IF INPUT CK11 WEIGHT2 THEN
AGAIN

WORK "782345678"

IF INPUT CK11 WEIGHTY4 THEN
AGAIN

COMPUTE REQUIRED CHECK DIGIT

CKWORK

CKDIG

CKIN

1

WEIGHT
%

C1

ce

WORK "000000";

WORK "O";
REDEFINE CKWORK,1,7
WORK ™1";

WORK ™121212";
MOVE INPUT TO CKWORK
SUB CKDIG FROM CKDIG

IF CKIN CK10 WEIGHT THEN C2

ADD 1 TO CKDIG

GOTO C1

MOVE CKIN TO OUTPUT
NEXT

STORE

STORE

STORE

STORE

STORE

PARITAL FORM

DATE {_{_{_ JULIAN |°"""
SIZE 222 5
TYPE DDD S
REQUIRED FFF P
PROGRAM J
JULIAN DATE CONVERSION
JDAY WORK "0000310590901201511812122u327330u33u"
DAYS REDEFINE JDAY,1,3
LEAPYR WORK "7680848892"
INMO REDEFINE INPUT,1,2
INDAY REDEFINE INPUT,3,2
INYR - REDEFINE INPUT,5,2
JULIAN FIELD +1
JYR FIELD +2
K1 - REDEFINE, JDAY, 6 1
K02 WORK "0 2"-

Program starts here
use input month‘as‘indéx”ﬁo”daYé/mdﬁth table
LOOKUP INMO IN DAYS GIVING JULIAN '

add input days

o o o C e o o o
*

ADD INDAY TO JULIAN
+ check for leap year
MOVE INYR TO JYR '~ |
IF INYR NIT LEAPYR THEN NEXT
IF INMO LE KO2 THEN NEXT
ADD K1 TO JULIAN
. Julian date is in next tield - it should be ’program reserve’

NEXT

CHECK FOR DECIMAL FORMAT 000.00

DEC32 REDEFINE INPUT,4,1
DEC WORK " ,n
FLD32 WORK "000,00"

. Use this if null field is permitted
0P32 IF DEC32 EQ NULL THEN FMATRET
. Enter here if field is required

FMAT32 IF DEC32 NE DEC THEN AGAIN

FMATRET RETURN

. If field in form is not initialized
. align input, store and redisplay

FMAT32 ALIGN INPUT TO FLD32
MOVE FLD32 TO OUTPUT

SHOW + Note that input must be saved
RETURN . before SHOW executed
. If form contains semi-constant 000.00

FMAT32 ALIGN INPUT TO OUTPUT
RETURN

SHIFT LEFT and RIGHT

FLD WORK 10
FLD1 REDEFINE FLD, 1,1
LFLD REDEFINE FLD,2,9
HOLD WORK 9
FILL WORK "Q"
. Shift left thru same field
SHFTLFT MOVE LFLD TO FLD
RETURN
. Shift right thru hold field filling on left

SHFTRGT MOVE FLD TO HOLD
MOVE HOLD TO LFLD
MOVE FILL TO FLD1
RETURN

PARTIAL FORM *

Ky

CREDIT/DEBIT <~~"""" (oo

SIZE
TYPE
REQUIRED
PROGRAM

MINUS OVERPUNCH

FLD1
SIGN1
FLD2
SIGN2

MOPCH1
MOPCHZ2
MINUS
KO

.

XTFLD

*

e ¢ ¢ Te o ¢ e o e o o o

*

7 6
R

S
M

REDEFINE INPUT,2,6
REDEFINE INPUT, 1,1
REDEFINE INPUT, 1,6
REDEFINE INPUT,7,1

WORK "0123456789"

WORK L] {" ’ "J" ,"K" ,"Lll ,"M" ’ "N" , "O" ’"P" ’ "Q“ ’"R"
WORK "

REDEFINE MOPCH1,1,1

Convert units position to minus overpunch using sign
at left

input field should be ‘keyin’ (i.e. no output space reserved)
store conversion in next field (should be program reserved)

FIELD +1

check for null field

CALL NULLCK

check for sign

IF SIGN1 NE MINUS THEN PLUS

. convert units position to minus overpunch character

.

PLUS

CONVERT SIGN2 BY MOPCH1 AND MOPCH2 GIVING SIGN2
MOVE FLD1 TO NXTFLD
NEXT

CHECK FOr NULL FIELD ON INPUT

NULLCK
SAMECK

Check for null or repeated input on optional fields

IF NULL EQ INPUT THEN STORE
IF INPUT EQ OUTPUT THEN NEXT

DLUTIIDR

CHARACTER CONVERSION FOR A FIELD

*
*
®

IN1
INMOV
ASCII

EBCDIC

CVTWK
WK1
WKSAV
K29
COUNT
KOO

Cc1

*

®

CVTNAME

Character conversion for a field is accomplished

by shifting thru the field

REDEFINE INPUT, 1,1
REDEFINE INPUT,2,29
WORK ™ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ! #"##$%&°()="

T E®2/,,K{>_~-@;:"

WORK 0100, 360,361,362,363,364,365,366,367,370,371,301,302;
303, 304, 305, 306,307,310,311,321,322,323,324,325,326;
327,330,331,342,343,344,345,346,347,350,351,132,177;
173,133,154, 120,175,115, 135,176, 116, 134,157,000, 113;
153,114,156, 155, 140, 174,136, 172

DATA

1,30

REDEFINE CVTWK,2,29
REDEFINE CVTWK, 30,1

WORK
WORK
WORK

MOVE
CALL

MOVE
MOVE

l!29"
ROOH
llOO'l

K29 TO COUNT
CVTNAME

INMOV TO INPUT
W1 TC CVTWK

SUB K1 FROM COUNT
IF KOO NE COUNT THEN C1

e o o o o ¢ @

Initialize counter

Convert 1 input char & store in
units psn of output

Shift input left

Shift output left

Decrement counter

at end convert last character

A RETURN will default to NEXT if the routine was not Called

CONVERT IN1 BY ASCII AND EBCDIC GIVING WKSAV
RETURRN

BLANK FILL DISPLAY - ZERO FILL OUTPUT

Data field on form should have type "B’ - right justified,

blank filled on the left

ADD NULL TO INPUT
STORE

REFORMAT DATA RECORD

5

EOL
EOR
DEC

B#®

Irxe o o o o o

e o o

HEADER
REST

A%

FIELD 5

WORK 015 « END OF LINE ITEM

WORK 03 +« END OF RECORD - STORE THIS AFTER LAST 015
WORK "."

After last field of line item, reserve a single position
field and store an 015

MOVE EOL TO OUTPUT
NEXT

At first field of line item, check for a special character
e.g. a minus, a decimal point, a leading space, etc.

If the special character is present, set an end of record
into the field and force writing of the field

IF DEC NE INPUT THEN STORE
MOVE EOR TO OUTPUT
END

OR write the record yourself and erase the line item data
preserving the header information

DATA 1,30
DATA 31,201

IF DEC NE INPUT THEN STORE
MOVE EOR TO OUTPUT

WRITE

SET REST TO NULL

FORMSHOW

CHANGE 5

AGAIN

To elirmanate unused positions in the data record
snift the data left prior to writing

DATA 29,199
DATA 30,200
DATA 57,198
DATA 58,199

NOTE that the data is no longer in the assigned positions
and therefore may not be edited (MOD and FIND) oy the original form

MOVE EOL TO OUTPUT . THE LAST FIELD IS A FAKE

MOVE DATA2 TO DATA1 . SHIFT END OF RECORD OVER 1ST UNUSED BYTE
MOVE DATA4 TO DATA3 . SHIFT AGAIX OVER 2ND UNUSED BYTE

END

Enter data out of order by using CHANGE instructions

PARTIAL FORM

SHIPPED TO |~~"""""" ~onnnn SHIPPED FROM |~ """""""~nonoe
PROGRAM A A

ADDRESS jrnnnnnnannnn ~~ ADDRESS jrnmmnnn AP
PROGRAM , A B :

DATE T DATE boen
PROGRAM 4 C

ENTERING FIELDS OUT OF ORDER
NXTFLD FIELD+1

FLD2 FIELD 1
FLD8 FIELD 7
A% CALL SAVE
CHANGE +1
NEXT
B# CALL SAVE
| CHANGE. 8
NEXT
C* CALL SAVE
: CHANGE 2
NEXT
SAVE MOVE INPUT TO OUTPUT
RETURN

TOTAL ACCUMULATION

TOTAL
A#

Cl— o e o
*

e o e

FLD1
FLD2
FLD3
FLD4
FLD5

COMMON "00000.00"

SUB OUTPUT FROM TOTAL
ADD INPUT TO TOTAL
STORE

or

SUB OUTPUT FROM TOTAL
ADD INPUT TO TOTAL
MOVE INPUT TO OUTPUT
MESSAGE TOTAL

NEXT

For Intra-form totals

FIELD 1

ADD FLD1 TO FLD2 GIVING TOTAL
ADD FLD3 TO TOTAL

ADD FLD4 TO TOTAL

IF TOTAL EQ FLD5 THEN END
CHANGE 1

AGAIN

For line-item totals
use definitions like these

FIELD =5
FIELD -4
FIELD =3
FIELD -2
FIELD -1

.

L d

Display current value of
the accumulator

PARTIAL FORM

NAME |~""""7"7 "7°7°7 DATE |{7{7{" ACCOUNT {°°"""" <
REQUIRED P PP P
PROGRAM v v L
MODIFY MODE VERIFY PROGRAM

0 WORK "O";

1 WORK ™1v;

RETRY WORK "3";

HOLD WORK " "

N WORK "Q";

. VERIFY PROGRAM

'Ad IF INPUT EQ OUTPUT THEN OK

ADD 1 TO N
IF N EQ RETRY THEN CKHOLD
MOVE INPUT TO HOLD
AGAIN

CKHOLD IF INPUT NE HOLD THEN VAGAIN
MOVE INPUT TO OUTPUT

OK SUB N FROM N
NEXT

VAGAIN SUB N FROM N
AGAIN

LAST FIELD PROGRAM REWRITES RECORD
(IN MODIFY MODE NEXT RECORD AUTOMATICALLY READ)

[T e ¢ o o
*®

END

A-12

APPENDIX B: COMPILER ERROR MESSAGES
PARITY ERROR: A/C?

A parity error persisted on a cassette read operation after
five retries. ﬁ response of ‘A° will abort the compilation;
a response of “C” will use the bad block as if nothing were
wrong with it.

BAD LABEL INITIATIOR

A character that was neither a decimal point nor a space nor
alphanumeric appeared in column 1 of the input line.

INVALID OCTAL

The character string pointed to by the asterisk contains a
character which is not in the set 0-7.

ILLEGAL OPERATOR

Something other than those operators appearing in APPENDIX G
was the first nonblank symbol after column 1 (or after the
label, if one exists).

NUMBER FROM 1-245 EXPECTED

The indicated symbol is nun-numeric, or if numeric, not in
the specified range.

COMMA EXPECTED

The symbol after the first number in a DATA statement was
not a comma.

FIELD2 IS LESS THAN FIELD1

In a DATA statement, the second field is less than the
first.

LABEL REQUIRED

The DATA, REDEFINE and WORK statements all require a label.
DOUBLE QUOTE ASSUMED

A pre-defined constant (either in WORK or COMMON statements)
should be terminated by a double quotation mark. If it is

not there, it is assumed.

ILLEGAL LITERAL

In a table, every item enclosed in double quotation marks

must be of equal length. Those that are of different length
than the first item are flagged in error.

IMPROPER CONTINUATION

If a COMMON or WORK table is continued from a line, the
following line must have a blank in column one, and the
first symbol on the line must be a double quotation mark.
Ir either of these is not the case, the continuation is an
improper one.

UNDEFINED LABEL

A label is referenced which is neither one of the eight
pre~defined labels, nor defined elsewhere in the program.

MISSPELLED WORD

A specific reserved word -- for example, the TO in an ADD
statement -- has been misspelled. The misspelled word is
assumed to be the one expected, and the next symbol is
expected to be a legal label.

ILLEGAL CONDITION

The connective in an IF statement is not one of those listed
in section 3.3, Nothing about the connective is assumed.

DUPLICATE LABEL

The label beginning the line listed is duplicated previously
in the program (or it 1is one of the eight pre-detfined
labels). The second (and any subsequent) def'initions of the
label are ignored.

MAXIMUM LABELS REACHED

The maximum number of labels allowed by the compiler is
fixed at 125, including the pre-defined labels. All labels
after this maximum is reached are ignored.

COMMON LIMIT EXCEEDED

The COMMON block may not exceed 100 bytes. Anything defined
as COMMON after this length will not be accepted.

PROGRAM COUNTER ERROR
The program counter, at the end of pass two does not equal

the program counter at the end of pass one. This is an
internal compiler error message.

APPENDIX C: COMMANDS REQUIRING THE EXTENDED INTERPRETER

ROUTINE

MULTIPLY
DIVIDE
CONVERT
CK10 & CK11

¥MUL/DIV OVERHEAD

EXTENDED INTERPRETER OVERHEAD

COMMON

DECIMAL
SIZE

83#*
183%
83

161

56
18
100

(REQUIRED WITH EXTENDED INTERPRETER)

10,

11,

12,

14,

APPENDIX D: Code Reduction Techniques

Use carets (7) in field definitions (remember they are
compressed while dashes are not).

Use ‘common’ instead of ‘work® if any extended
interpreter is used (100 bytes of common is reserved
whether you use it or not).

Place semi-colons at the end of all non-table, non-range
variables to suppress the end-of-table character,

Use ‘redefine’ to create constants or tables which are
subsets of other constants or tables. This technique
may also be used for computation or hold areas if the
redetfined variables are not needed at the same time.

Use subroutines to perform repeated operations.

Use field displacement referencing to generalize
programs used with line-items (i.e., where the same set
of fields is entered several times within one form).

Use “input”, “output’ and ‘reset” to generalize programs
and thus avoid duplication of code.

Keep constants in the form itself (by defining them at
form generation time) instead of using a field program
to set them. :

Combine several fields into one wherever possible (each
t'ield requires 6 additional bytes of edit table).

Avoid extended interpreter tunctions when possible (by
coding multiplies using add’s, ete.).

Use ’“Lookup’ instead of ‘Convert’ to save one of the
tables.

Use data areas as work areas whenever possible, thus
saving intermediate hold areas,

Execute all programs on last field if possible, on the
assumption that the operator is usually right, to save
‘NEXT " and °‘STORE® instructions.

Don‘t use CHANGE/SHOW/CHANGE instructions if NEXT will
automatically show and bypass if field is defined as
‘program reserved .

APPENDIX E: ALPHABETICAL LISTING OF STATEMENT TYPES

NAME OPCODE SECTION
ADD 0117 12
AGAIN 19
ALIGN 0113 9
BEEP 0137 15
CALL 0124 17
CHAIN 0130 16
CHANGE 0126 17
CLOSE 19
COMMON 6
CONVERT 0116 10
DATA 3
DIVIDE 0122 12
END 19
EQU 6
FORMSHOW 0134 16
FIELD 8
GOTO 0123 16
IF CK10 0135 13
IF CK1 0136 13
IF INT 0100 13
IF NIT 0101 13
IF INR 0102 13
IF NIR 0103 13
IF EQ 0101 13
IF NE 0105 13
IF GE 0106 13
IF LE 0107 13
IF GREATER 0110 13
IF LESS 0111 13
INPUT 19
LOOKUP 0115 10
MESSAGE 0131 14
MOVE 0112 11
MULTIPLY 0121 12
NEXT 19
NULL 19
OUTPUT 20
REDEFINE 7
RESET 0127 17
RETRY 20
RETURN 0125 17
SET 0114 11
SHOW 0133 15
STORE 20
SUBTRACT 0120 12
WORK 3
WRITE 0132 14

SECTION III
Programmers Manual

3.0

4.0

Table of Contents
Section III

System Structure of the Interpreter

Edit Table Format

2.1 Format

2.2 Work Area

2.3 Routines to Access Edit Table

Structure of a Form in Memory
3.1 Pointers

3.2 Data Buffers

3.3 Form Image

3.4 Edit Table

3.5 Field Programs 5

3.6 Extended Interpreter

ubroutines Available in the Interpreter
1 Interrupt Handler

2 Cassette Drivers

3 Keyboard Input

4 CRT Display

5 Form and Data Access

6

S
Y
y
y
y
y
y String Arithmetic

.
.
L]
.
.
.
Program

Form
Data

|mu Ul =3
o o o
wnN =

External References

Interpreter Processing Addresses
Interpreter Data Areas

Loading Assembly Language Programs

OO
e o o o O

sTwWN 2L

—

NN o OO OYO© 192 (02 BN —git =g S = wwhhn

O oo

10
10
10
1M

1.0 System Structure of the Interpreter

The Interpreter resides within an 8K Datapoint 2200,
Of the 8K the first 6.5K is reserved for the Interpreter.
The remainder is shared by the user’s data area, edit
tables, form image, and, if necessary, field programs
(which, in turn, may required the extended interpreter). In
the Interpreter, memory is allocated as follows:

| subroutines# E 00000-00777 i
; variable data % 01000-01643 E
E interrupt handler i 01644-01751 i
E cassette drivers i 01752-04717 i
| keyboard 1/0 | 0u720-06272 ;
g command handler i 06373-12142 ;
E t'ield program i E
| interpreter | 12144-130421 |
E string arithmetic § 13422-14523 E
§ form pointers g 14524-14T740 %
§ user space® % T4T7U1=1TTTT %
! [}

¥ Some Interpreter subroutines are initially set in the user
space area and are moved into low memory when the
Interpreter is first executed.

2.0 Edit Table Format
2.1 Format

For each field defined by a.: form, a 'six byte ‘edit’ tdble
entry is generated. .The entry contains: o

horizontal position
vertical positon:
length of field
position in output record
‘edit key

field program letter

The horizontal position (0-79) indicates the starting column
of the field in the screen image. The 'vertical position
(0=11) indicates the line of the screen image containing the
field. The information 1s used to display the field as well
as to access data stored in the form image for the ftield
(i.e., constants).

The length of the field is the number of -:¢haracters the
operator may key in (1-80). This number is associated at
execution time with the labels INPUT,. OUTPUT and with field
references in user field programs.

The position: of the field in the data record 'is actually an
index (0-244) into the output buffer. If the field is a
‘keyin’ field, i.e., no data space isireserved, the position
value is 0377.

The edit key is a combination of bits indicating the edits
set in the Generator passes TYPE and REQUIRED. .The bits in
the edit key have the following meanings:

drbeisi sl 3lalrioln

N N N N N N __Alpha-
NN \ \ \ \ \ Numeric Field
NN \ \ \ \ No Keyin

N\ \ \ \ Right Justified
N\ \ \ Zero Fill
AN \ Numeric Digits
N\ Fill Controlled
\ Required

The alpha and numeric digit bits are both set for the
‘mixed’ field type.

The field program letter is set to binary 2zero if no field
program is assigned; otherwise, the actual ASCII letter is
stored in this byte.

The number of the last ftield in the edit table (the first
field is zero) is used to determine the length of the table.
In addition, there is an 0377 stored after the last entry.

2.2 Work Area

During data entry, the edit table entry for the current
field is moved to a work area in the data page for ease of
referencing. The variables:

COLUMN
LINE
LENGTH
PSN
EDTKEY
USER

contain the six byte entry. °SAVFLD contains the current
field number,

2.3 Routines to Access Edit Table

There are several routines available to access the edit
table entries. EDTPNT is the most basic routine. This
routine uses the value in the C-register to set the HL
registers to the address of the corresponding field.,

MOVEDT saves the field number in the C-register in SAVFLD,
and moves the corresponding edit table entry to the work
area and into the registers. It also positions the cursor
to the field.

NEXT and LAST use the saved field number to access the next
or the preceeding field. Both routines call MOVEDT,

3.0 Structure of Form in Memory
3.1 Pointers
The form is defined by a fixed set of pointers:

linked form number

field program pointers
maximum field number

edit table pointer
data-write buffer pointer
length of data record
form line pointers

The variable NEXTF contains the number of the linked form
(000 if no link, otherwise it is the physical file number of
the form), and the variable PAGE3 is the auto-link flag (O
or 0377).

For each possible field program four bytes are reserved
starting at the label USERA. The four bytes are zero if the
corresponding program letter is not present. If a program
is present, whether referenced or not, the first pair of
bytes contains the ‘base address’ to be used for all
relative addresses within the field program. The second
pair of bytes contains the starting address of the program.
(Note: All addresses are stored MSB,LSB.) JUnresolved
program references contain an octal 377 in the first byte.

The edit table is always referenced via the address
pointer, SEDIT, and the maximum field number, EEDIT, which
is checked against the requested field.

3.2 Data Buffers

The input data buffer is always in a fixed position, DATA,
at the end of all form pointers. It's length is define by
the variable LDATA.

The output buffer, to which the data is moved prior to
writing, is in a variable position. It is set at the end of
the data buffer, at a point defined by the length of the
data record + 8. The address of the output buffer is in
SMATCH., The output buffer is also used when performing FIND
operations. The data contained in the output buffer is
available to the operator by means of the field dup function
key (DISPLAY/D).

3.3 Form Image
The compressed form is stored beyond the two data buffers

and it 1is referenced indirectly through the pointers
starting at LINES., If the address in the table of pointers

starting at LINES, corresponding to one of the twelve screen
lines, is zero, the corresponding line is to be blank on the
screen,

3.4 Edit Table

The edit table is. generated beyond the compressed form. The
byte immediately after the edit table terminator (0377) is
available for user programs.

3.5 Field Programs

When programs are attached to the form, using the Field
Program Relocator, blocks starting at relocatable addresses
are giving absolute addresses based on at the first
available space after the form edit table. Non-relocatable
records from the field program (e.g. COMMON), are simply
passed through to the form tape.

3.6 Extended Interpreter

There are fifteen extended interpreters which contain all
possible combinations of four extended commands (convert and
lookup, and CK10 and CK11 are combined for purposes of the
extended interpreter). Thus, extended interpreter 1
contains only check digits, 2 contains the multiply
subroutine, 3 both check digits and multiply, 4 divide, 5
divide and check digit, 6 multiply and divide, 7 multiply,
divide and check digits, 8 conversions, 9 conversions and
cneck digits, 10 conversions and multiply, 11 conversions,
multiply and check digits, 12 conversions and divide, 13
conversions, divide and <check digits, 14 conversions,
multiply and divide, and 15 contains all extended functions.

The extended interpreters are all assembled so that
they end 100 bytes plus 3 to 18 bytes (for Jump
instructions) from the end of memory (in an 8K machine);
thus 1leaving a maximum amount of user space. Three to
eighteen of the bytes are reserved for a jump table into the
extended interpreter itself, since the starting addresses of
the subroutines change for each of the fifteen levels of
interpreter.

4,0 Subroutines Available in the Interpreter

4,1 Interrupt Handler

The Dataform interrupt handler, INTRPT, is labelled and
works like the D.0.S. interrupt handler. There is, however,
room for only two interrupt processes. Process 1 is reserved
for the cassette driver.

4,2 Cassette Drivers

The names and parameterization of the cassette routines
in Dataform are the same as for the D.0.S. cassette
routines. There are two additional routines available:
TRAW$ and LOADS.

TRAW$ 1is a tape write routine which automatically
pertorms a read-after-write function. It is used to write
the data records and is parameterized as is TWRIT$.

LOAD$ will load object code (forms are in object code
format) at the addresses specified by each record. The tape
must be positioned past the file marker before calling
LOAD$. The only parameter is the deck in the B register.
The routine 1loads continuously until a file marker is
encountered. The tape is left positioned beyond the file
marker record and the variable NXTFIL contains the number in
that file marker record. LOAD$ returns as soon as the load
operation has been initiated. Thus, the user must call
TWAIT$ to determine when the load has been completed.

4,3 Keyboard Input Routine

There are two entry points to the keyboard input
routine, KEYIN and KEYIN$. When the routine 1s entered at
KEYIN, the edit type and length for the current lield are
applied to the input., In addition, it 1is assumed that the
corresponding area of the form image is in the HL registers.
This area is checked for constants. If entered at KEYINS,
fake parameters are provided to permit twenty characters
with no edit restrictions. The input is always stored in
TEMP.

4,4 CRT Display Routine

The display routine also has two entry points, DSPLY$
and DSPLY. 1If entered at DSPLY, the cursor position will be
set to the bottom 1line and the screen will be rolled up
after the message 1is displayed (all messages must be
terminated by an 015). If entered at DSPLY$, the contents
of DE will be used to position the cursor and no rollup will
take place at the end of the display.

6

There are two special characters permitted in the
display input message: 023, which may only appear at the
beginning of the message, cause the screen to rollup one
line, and 011, which may appear anywhere in the message,
followed by a count indicates space compression. In
addition, binary 2zeros are converted to underscores and
spaces are pnot displayed at all (i.e., the cursor is simply
positioned to the right).

The routine called REWRT redisplays the form (with no
data).

4,5 Form and Data Access Routines

The routine GETADR uses the contents of the variables
HP and VP to 1locate to positions in the form image
corresponding to the current field (this is where constants
and semi-constants are stored).

GETDAT sets HL to the address 1in the data butfer
corresponding to the current field. The B-register contains
the length of the field.

MOVEDT uses the value in the C-register to access the
edit table entry corresponding to that field and moves the
six byte entry to a work area tfor easy referencing. It also
saves the field number in the variable SAVFLD.

4,6 String Arithmetic Package

The string arithmetic package used in Datatorm requires
the following parameters:

HL destination and field operated on
DE operator (i.e., divisor)

the length of HL is in BLEN

the length of DE is in ALEN

Only the add and subtract functions are available in the
basic interpreter. The addresses of multiply and divide
change depending on the particular 1level of extended
interpreter being used.

The entry point for add is ADD$ and for subtract is
SUB$.

5.0 TAPE FORMATS

All Dataform tapes are written according to Datapoint
standard formats. File marker records, record types and
lengths conform to the Serial Numeric tape format and
internal structure of the records is based on GEDIT (for
text) and ASM (for program and form) formats.

Tapes may be IN°d to disk and processed; however, data
records OUT'd from disk will no longer have the necessary
form number at the end.

5.1 PROGRAM

{FM{Source Statements in |FM| Header | Relocatable and Absolute |FM |
10 |GEDIT compressed fmt |1 | (obJ) | object code format 11271

]

[}

|] Standard object
! format: H/L/-H/=L/
' Relocatable addresses
! in MSB. Absolute and
! relocatable not mixed
i withing blocks.

]

1000 | 000.377.377:C-MSB'C LSB|flag|Prog |MSB|LSB|. . Prog{MSB'LSB 0]

——
-

[}
J }
Fake starting Length of | Program names and Terminator
address of relocatable | addresses
block code !

Extended interpreter
number

5.2 FORM

l OPTIONAL | ' OPTIONA AL |
{ User programs i Form pointers, image | Extended |
i and common ! and edit tables { Interpreter H

5.3 DATA

{Record type |Data {(Data . . . {Data |015 {003 {Form | Rewrite|
tand Parity | H H ' ! {Number |{Counter|
Serial Numeric | Physical | Number of
format { end ! Rewrite
! | changes
i | (1-ASCII)

Logical Number of

end controlling

form (1-binary)

6.0 Assembly language interfacing and overlays

6.1 External Reterences

Facilities are provided in the Dataform language to
reference points outside the program, locations which may be
either in the Interpreter itself or in an assembly language
program separately assembled by the user.

The EQU instruction assigns an address to a label which may
then be referenced by any of the branching statements in
Datatorm (GOTO, CALL, etc.). If this facility is used, it
is up to the user to return control to the proper point in
the Intepreter or the field program.

6.2 Interpreter Processing Addresses

A jump table of Interpreter entry points is provided so that
these address will not change in future versions:

NEXT$ EQU 01147
AGAINS$ EQU 01152
STORE$ EQU 01155
END$ EQU 01160
ERASE EQU 01166
WEOF$ EQU 01163
RETURN$ EQU 013014

To return to a field program after being called, the
assembly language program should jump to RETURNS.
Otherwise, a jump to the appropriate exit routine will
return control to the Interpreter,

6.3 Interpreter Data Areas

Various Interpreter data areas may be needed by the user
programs. The variable TEMP is the keyin buffer and it is
this area which is accessed when “INPUT is reterenced in a
tield program. INPUT is compiled as an address of 01000 and
a length of =zero. At execution time, the 1length of the
current tield is substituted. OUTPUT, compiled as address
zero and length zero, is resolved at execution time. It is
converted to the length and address in the data burter of
the current field.

Labels defined in FIELD statements are compiled with lengths
ol one and a special code in the MSB portion of the address.
If the MSB is 0370, the LSB represents an index to the field
table (i.e. the field number supplied by the programmer,
minus one). It the MSB is 0375, the LSB represents a
displacement which, at execution time, 1is added to the
current field number in order to resolve the length and
address intormation.

10

Note that referencing a field other than the current field
does not change the number of the current field.

6.4 Loading the Assembly Language Program

Since the tormat ot a form tape and that of assembly code is
the same, an assembly language overlay may be 1loaded by
using the 'NEW® command of the Interpreter. The user should
first load the form using ‘NEW® and then the overlay.

Once the form and program have been tested, there are
several ways to put the system together:

1) The assembly program may be cataloged as a
separate form and be loaded by either the operator
or by a ftield program.

2) The form and the assembly language program may
be appended together using the facilities of either
the Cassette Tape or Disk Operating System.

3) The assembly language program may be appended to
the Intepreter (again using the tape or disk

operating system) so that it is always available.
This should be done only if the program is never
overlayed by anything else. The user must be
careful to insure that the appended program
contains the proper transfer address for the
Interpreter.

1M

