
TIME SHARING. DATABUS
DATASHAR 3.1
Users's Guide

October 14, 1974

Model Code No. 50048

DATAPOINT CORPORATION

The Leader in
Dispersed Data Processing

COPYRIGHTC 1975 BY DATAPOINT CORPORATION. PRINT.ED IN U.S.A.

DATASHARE 3 USER'S GUIDE

November 1974

DATAPOINT CORPORATION

TABLE OF CONTENTS

1. INTRODUCTION

2. STATEMENT STRUCTURES
2.1 Comments
2.2 Compiler directives
2.3 File declaration and data definition
2.4 Program execution
2.5 Literals
2.6 The forcing character
2·7 A sample program

3. FILE DECLARATION AND DATA DEFINITION
3.1 File declaration
3.2 Data definition
3.2.1 Numeric string variables
3.2.2 Character string variables
3.2.3 Common Data Areas

4. PROGRAM CONTROL INSTRUCTIONS
4.1 GOTO
4.2 BRANCH
4.3 CALL
4.4 RETURN
4.5 STOP
4.6 CHAIN
4.7 TRAP
4.8 TRAPCLR
4.9 ROLLOUT
4. 10 PI
4.11 TABPAGE

5. CHARACTER STRING HANDLING INSTRUCTIONS
5.1 MOVE
5.2 APPEND
5.3 MATCH
5.4 CMOVE
5.5 CMATCH
5.6 BUMP
5.7 RESET
5.8 ENDSET
5.9 LENSET
5.10 CLEAR
5.11 EXTEND
5. 12 LOAD
5.13 STORE
5.14 CLOCK
5.15 TYPE

PAGE

1

6
6
6
7
8
8
10

11
11
13
13
14

15
15
16
16
16
17
18
20
21
23
24

25
27
28
29
29
29
30
31
31
31
32
32
32
33
34

6. ARITHMETIC
6. 1 ADD
6.2 SUB
6.3 MULT
6.4 DIV
6.5 MOVE
6.6 COMPARE
6.7 LOAD
6.8 STORE

INSTRUCTIONS"'

7. INPUT/OUTPUT INSTRUCTIONS
7.1 KEYIN
7.2 DISPLAY
7.3 CONSOLE
7.4 BEEP
7.5 PRINT
7.6 RELEASE
7.7 Disk I/O
7.7.1 File structures
7.7.2 Positioning and accessing
7.7.3 PREPARE
7.7.4 OPEN
7.7.5 CLOSE
7.7.6 READ
7.7.7 READKS
7.7.8 WRITE
7.7.9 WRITAB
7.7.10 UPDATE
7.7.11 INSERT
7.7.12 DELETE
7.7.13 WEOF

8. PROGRAM GENERATION
8.1 Preparing sourc~ files
8.2 Compiling source files
8.3 Compilation directives
8.4 Compilation diagnostics
8.5 Disk space requirements

9. SYSTEM GENERATION
9.1 Loading from cassette
9.2 SY$tem configuration
9.3 Necessary programs

10. SYSTEM OPERATION
10.1 Bringing up the system
10.2 Takingdowt) the system
10.3 Fatal e~ror conditions

11. ANSWER AND MASTER CONCEPTS
11.1 System security
t1.2 Sistem convenience
11.3 Sample Answer and Master programs

36
36
36

-36
37
37
37
37

39
43
43

'44 '.
44
46
47
47
50
55
57
58
58
~6
p7
10
71
72
72
73

75 _
' .. 75

79
80
81

82
82
83

84
87
87

88
88
89

12. PHYSICAL SYSTEM CHARACTERISTICS
12.1 Virtual Memory
12.2 Major Modules
12.3 Scheduling

13. PHYSICAL INSTALLATION
13.1 Main Peripherals
13.2 Terminal Connections
13.3 Port Speed Selection
13.4 Non-3360-102 Terminal Device

APPENDICES
A. Instruction summary
B. 1/0 list controls
C. ANSWER and MASTER program examples
D. File access lockout program example
E. Compiler error codes
F. Interpreter error codes

92
94
97

99
100
103
104

INTRODUCTION

1. INTRODUCTION

DATASHARE permits the simultaneous execution of up to
eight DATABUS programs, each dealing with its own remote
Datapoint CRT terminal (a system option allows one of the
programs to execute using the system console instead of a
remote terminal which allows DATASHARE to be run without a
mul ti-port adaptor). The DATASHARE interpreter runs under
the Disk Operating System (taking advantage of all of its
file handling characteristics), handles a high-speed line
printer or servo printer, provides indexed-sequential as
well as random and sequential file accessing, and allows
intra-file access, thus providing a powerful data entry and
processing facility. This configuration allows a flexible
mix of remote, batch, and interactive processing all under
the control of a high level language program, enabling the
user to configure the system to best suit his data
processing needs.

In addition, the DOS with its variety of utility and
higher level language systems may be used alternately to
DATASHARE, enabling processing of tasks not appropriate to
the multiple terminal environment.

Using virtual memory techniques, DATASHARE provides
each program with a 16K byte area for executable statements.
This, in combination with the ability of the compiler to
accommodate over 3400 labels, enables the user to create and
use programs of over one hundred pages (a very large high
level language program). To provide rapid program
execution, the data area for each program is maintained in
main memory and not swapped. A combined total of 4096 bytes
of main memory is allocated for the combined data area of
all ports configured into the system. The system can be
configured to run with one through eight ports with the data
area being variably partitioned among them (the data area of
anyone port can be configured to be from 20 bytes to almost
all of the total area available). If the system is
configured to run one of the ports on the console, 3759
bytes of data area are available to the ports configured.
If the system is configured to run the servo printer as the
system printer, 3584 bytes of data area are available to the
ports configured. If the system is configured to run one of
the ports on the console and run the servo printer as the
system printer, 3248 bytes of data area are available to the
ports configured.

Any of the Datapoint 2200 printer systems may be
connected to the DATASHARE configuration with printing being
controlled from any of the ports. If the printer is bu'sy
wi th one port, another port trying to access the printer
will wait until the first port releases the printer.

1

INTRODUCTION

All program execution in DATASHARE occurs in the
DATABUS language. Terminal command interpretation is

. handled in special ANSWER and HASTER programs (unique for
each port) which also handle system security. These
programs are provided with the system but may be compiled
like any other Databus program, enabling the user to
completely define his own terminal command and security
system.

Program generation is performed under the DOS using the
general purpose DOS editor and DATASHARE compiler.

NOTE

DATASHARE 3 has the following new features over DATASHARE 2.
It will be noted where these features can cause minor
incompatibili ties with programs writ ten for DATASHARE 1 or
DATASHARE 2.

1. In addition to physically random and sequential file
access, indexed file access is available (see Section 7.7).
Indexed files can be accessed either directly, based on a
key value, or sequentially by the collating sequence of the
key values, as well as still being accessed physically (key
values within a single index may not be duplicated). Any
number of indicies can be created and maintained for a given
data file. The indicies are separate files of pointers into
the data file. This enables expansioncapabili ty of the
index without overflow problems. It also means that the
data ftle is still fully compatible with all existing
software since it contains no, special data structuring.
Lack of structuring in the data file also implies greater
recoverability of data in the event of file system failure.
The indexed-sequential feature does impose a slight
incompatibility with previous versions of DATASHARE. To
allow for the greater amount of information that must be
stored for an open file, the logical file information has
been moved out of the interpreter working storage into the
user's data area. This means that all logical files must be
declared in the user's data area which will lessen the
amount of data area left for variables used within the
user's program (see Sections 2.3 and· 3. 1) . This lessening
is abated somewhat by the availability of literals in
certain DATASHARE operations. An advantage of the
declaration of logical files in the user's data area is that
the user may now have any number of logical files active at
anyone time, the number being limited only by the amount of
data area that the user's has available in a given program.
The declaration of logical files will require the user to
add the file declaration statements at the beginning of his
program and change all disk 1/0 statements to reference the
declaration names instead of the simple digits supplied in

2

INTRODUCTION

DATASHARE 2. However, this conversion is mechanically
achievable since he need only compile his original program
with the new DATASHARE 3 compiler and it will flag all
statements which need to be changed.

2. Literals may now be supplied in CHAIN ROLLOUT STORE MOVE
APPEND MATCH ADD SUBTRACT MULTIPLY DIVIDE COMPARE OPEN and
PREPARE statements alleviating the need for fixed constant
data in the user's data area (see Section 2.5).

3. The data area can be partitioned in any way among the
ports instead of being forced to be equally shared among all
ports configured to run (see Section 9.2).

4. The system can be configured to execute port one on the
system console instead of on the terminal connected to the
first port of the multi-port adaptor. The system console
has all the capabilities of a 3360-102 except that only the
first 12 lines are available. This can either save one
terminal station or it can be used to allow DATASHARE
programs to be executed on systems without a multi-port
adaptor (see Section 9.2). If port one is being run on the
system console, an additional option allows the rest of the
ports to execute (as long as a KEYIN statement is not
executed) even though a multi-port adaptor is not connected
to the system. This allows such tasks as print file
spooling to be performed while other processing is active on
port one.

5. The servo printer can be configured to be used as the
system printer instead of one of the standard line printers
(see Sections 7.5 and 9.2).

6. Echo during input operations from the terminal can be
defeated, enhancing the message switching capability of the
system (see Section 7.1).

7. A pause operator in KEY IN and DISPLAY statements has been
added which allows a program to pause for any number of
seconds with very little system overhead (see Section 7.1).

8. A new arithmetic package has been incorporated into the
DATASHARE interpreter. This package performs division
without the previous restrictions upon the number of places
after a decimal point (e. g., performs division the way one
would expect it to be performed) but does, however, have
reasonable restrictions upon the length of operands used in
multiplication and division (see Section 6.3 and 6.4).
These restrictions could, however, cause a program to
operate somewhat differently when doing multiplication or
di vision, so these operations should be checked carefully
when converting from one of the previous versions of
DATASHARE.

3

INTRODUCTION

9. The APPEND instruction will append a numeric item into a
character string item. The operation is performed as if the
numeric item was a string with a formpointer pointing to its
first character and a logical length pointing to its last
character (see Section 5.2).

10. The Julian date is incremented when the clock changes
from 23:59:59 to 00:00:00. However, the date is not checked
for the end of the year, so the date must be changed
manually at midnight of the end of the year.

11. The extension of DATASHARE 3 object files has been
changed to DS3. The new DATASHARE 3 interpreter will not
run object code generated by the DATASHARE 1 or DATASHARE 2
compilers.

12. The DATASHARE 3 compiler has been greatly enhanced in
its label capability. Due to the fact that it keeps its
label dictionary on the disk, the compiler can now handle
over 3400 labels. The compiler also has the ability to list
referenced lines at the right margin of 132 ~olumn printers.
Additional compiler features include more illuminating
syntax error messages, the EQU and INCLUDE direc ti ves, and
the ability to generate a listing on the servo printer as
well as the standard line printers.

13. The DATASHARE interpreter may be named any name as long
as the command (/CMD) file and all six of the overlays have
the same name. For example, if DS/CMD was renamed ABC/CMD,
then DS/OV1 would have to be renamed ABC/OV1, DS/OV2 would
have to be renamed ABC/OV2, etc. The command file may no
longer be specified irt the DOS AUTO command. However, anew
program (called AUTOKEY) has been written which allows any
DOS command to be automatically executed (see Section 10.1).

14. The 1/0 error trap has been augmented by an additional
letter which indicates the nature of the problem. This will
be of great help in debugging programs as there are now 19
different types of I/O errors. The different types of 1/0
errors cannot be differentiated if the trap is set, but if
the trap is not set the different letters will aid the
programmer in determining what caused the problem.

15. If port one is configured to run on the system console,
a name may be specified on the DOS command after the name of
the DATASHARE interpreter. This name is the name of the
ANSWER program used by the port one program (it must always
be on drive zero). Therefore, if the DATASHARE system is
being used to simply run batch processing programs, the
CHAIN utility can be used to execute DATASHARE processing
fuctions (~ee Section 10.1).

4

INTRODUCTION

16. Logical files can no longer be keep open through a CHAIN
operation. This implies that all files should be closed
before a CHAIN is performed to the next program. It also
implies that if new spaoe was allocated in a file and then
the interrupt key is struok, none of the space will be
dealloca ted. (It is now useless to have the ANSWER and
MASTER programs oontain CLOSE statements, implying that
these programs must be changed as well as all other file
accessing programs.)

17. An instruction has been added which enables the
programmer to prevent background execution interruptions
(from his time running out, a higher priority prooess
wanting to run, or from the INT key on the port terminal)
for up to 20 Databus instruction executions. This enables
common file access conflicts to be resolved in a very
efficient way and also allows the programmer to prevent the
operator from destroying a file structure by acoidentally
striking the INT key at the wrong time. The limit of 20
instruction executions prevents the program from
accidentally hanging up the system background execution.
Note that even though background interruptions are
prevented, the foreground one millisecond interrupt driven
port handling routines are still executing meaning other
ports can still be entering 01'" displaying data through the
use of the port I/O statements.

18. The DSBACK command has been improved to display the
correct number of ports (the ~creen is blanked if port one
is executing on the console). Also, a new command has been
added (called DSBACKTD) which allows the system operator to
initialize the time and date before execution is resumed.

19. A READ operation whose list is terminated by a semicolon
will now detect an end of file mark. This change could
require a change in the program logic in DATASHARE 2
programs.

5

STATEMENT TYPES

2. STATEMENT STRUCTURES

There are five basic types of statements in DATASHARE:
comment, compiler directi ve, file. declaration, .. d;ata
defini tion, and program execution .•

2.1 Comments

Comment lines have a period, asterisk, or plus sign in
the first column, and may appear anywhere in the program.
Comments are most useful in explaining program logic and
subroutine function and parameterization to enable someone
reading through the program to more easily understand it's
logic. The comment which begins with an asterisk will· be
printed at the top of the next page if fewer than 12 lines
are available at the bottom of the current page. This
allows comments to be presented on the same page as the
program statements without having to know whe're the listing
currently stands on the page. The comment which begins with
a plus sign will always be printed at the top of the next
page. This allows major sections of the program to be
started at the top of a page. Use of the asterisk at the
beginning of each section 'or subroutine description ,is
encouraged since this greatly enhances program readability_
Use of the plus sign should be cautious since it can easily
waste great quantities of paper.

2.2 Compiler directives

Compiler directives enable the programmer to include
other files in the current compilation and to define the
absolute value of a symbolic name for use in tab positioning
in file I/O statements and column positioning in terminal
I/O statements. The inclusion directive allows one to break
a large program into several files for ease in edi ting.
Another useful aspect is that one can have a common set of
subroutines or data definition blocks which are included
into a number of different programs. Therefore, when a
change is made in one of the routines or in the definition
of a data item, one need edit the change only once, reducing
both the amount of manual labor involved and the chance for
error. See Section 8 (Program Generation) for more complete
information on the use of compiler directives.

2.3 File declarations and data definitions

File declaration and data definition statements must
occur before any program execution statements and are used
for setting up all of the logical files and data variables
in the program. All file declaration and data definition
statements must have labels. All compiler directive, file
declaration, and data definition statement labels must be
unique among themselves. Program execution statements must

6

STATEMENT TYPES

appear after any file declaration or data definition
statements and mayor may not have labels. The labels on
program execution statements may be the same as labels on
the compiler directive, file declaration, and data
definition statements. Program execution always begins with
the first executable statement.

2.4 Program execution

Labels for variables and executable statements can
consist of any combination of up to eight letters and digits
beginning with a letter. The following are examples of
valid labels:

A
ABC
A1BC
B1234
ABCDEF
BIGLABEL

The following are examples of invalid labels:

HI,JK
4DOGS

(contains an invalid character)
(does not begin with a letter)

Statements other than comments consist of a label
field, an operation field, an operand field, and a comment
field. The label field is considered empty if a space
appears in the first column of the line. The operation
field denotes the operation to be performed on the following
operands. In many operations, two operands are required in
the operand field. These operands may be connected either
by an appropriate preposition (BY, TO, OF, FROM, or INTO) or
a comma. One or more spaces should follow each element in a
statement except where a comma is used, in which case the
comma must be the terminating character of the previous
element and may be followed by any number (including zero)
of spaces. For example, the following are all examples of
valid statements:

LABEL1
LABEL2
LABEL3
LABEL4

ADD PCS TO TOTAL
ADD PCS OF TOTAL
ADD PCS, TOTAL
ADD PCS,TOTAL

THIS IS A COMMENT

Note that any preposition may be used even if it does
not make sense in English. The following are examples of
invalid statements:

LABEL1 ADD PCS TOTAL
LABEL2 ADD PCS ,TOTAL

7

(missing connective)
(space before comma)

STATEMENT TYPES

Certain DATASHARE statements allow a list of items to
follow the operation field. In many cases, this list can be
longer than a single line, in which case the line must be
continued. This is accomplished by replacing the comma that
would normally appear in the list· with a colon and
continuing the list on the following line. For example, the
two statements: ' .

DISPLAY A,B,C,D:
E,F,G

DISPLAY A,B,C,D,E,F,G

will perform the same function.

2.5 Literals

In an effort to reduce the amount of data area needed
by a program, literals are allowed in certain statements
which would otherwise need constant data in the user's data
area. The instructions which can contain literals are:
STORE, ROLLOUT, CHAIN, MOVE, APPEND, MATCH, ADD, SUB, MULT,
,DIV, COMPARE, OPEN, and PREPARE. In all except the program
control and 110 statements , the literal must be the first
operand. The literal is always enclosed wi thin a pair of
double quotes (see the following section on the forcing
character) and may be from 1 through 40 characters in length
(excluding the quotes). When a literal is used as a string
variable, its formpointer is always equal to one and its
logical length always points to the last character that is
quoted. Examples of the statements which can contain
literals follow:

STORE
ROLLOUT
CHAIN
OPEN
PREPARE
MOVE
MOVE
APPEND
MATCH
ADD
SUB
MULT
DIV
COMPARE

2.6 The forcing character

"APPLES" INTO X OF S1,S2,S3
"CHAIN FIX22"
"NEXTPROG"
FILE1,"DATAFILE"
FILE1,"USERDATA"
"MESSAGE" TO M3442
"100.55" TO VALUE'
"." TO STR1
"YES" TO ANSWER
"23.46" TO TOTAL
"1" FROM COUNT
".1" BY TAX
"33.3333" INTO FACTOR
"10" TO LINENUMB

The pound sign (U) is interpreted by the compiler as a
forcing character in any quoted item which can contain
multiple characters. The character immediately following
the pound sign is used in the quoted item simply as a

8

STATEMENT TYPES

character value regardless of its significance to the
compiler. Thus, the pound sign itself and the quote (") may
be used in DATASHARE statements. For example,

DISPLAY "CUSTOMER## SHOULD BE #"2222'""

would display exactly:

CUSTOMER# SHOULD BE "2222"

on the screen. Note carefully the wording used above to
describe the cases where the pound sign is used to denote a
forcing character. This wording excludes the cases of
RESET, CMATCH, and CMOVE since those operations cannot have
quoted items which contain multiple characters. For
example,

CMOVE """ TO STRING

would be used to move a double quote sign into the variable
STRING. However, the use of a literal in a MOVE instruction
would require the use of the forcing character, even in a
single character move, since the quoted item can be a
mutiple character quote. For example:

MOVE "II"" TO STRING

would be used to move a double quote sign into the variable
STRING. The RESET, CMOVE, and CMATCH instructions are the
only exceptions to the forcing character convention wi thin
quoted items.

Examples:

RESET STRING TO "II"
CMOVE "II" TO STRING
CMATCH """ TO STRING

9

STATEMENT TYPES

2.7 A sample program

START
Lo.OP

. PRo.GRAM TO. DISPLAY A MULTIPLICATIo.N TABLE .
Co.UNT1 . Fo.RM "0"
COUNT2 FORM "0"
PRo.D Fo.RM 2
* .. HERE IS THE START OF THE EXECUTABLE Co.DE

DISPLAY *ES~"MULTIPLICATIo.N TABLE:",~N
Mo.VE COUNT1 TO PRo.D

.MULTCo.UNT2 By PROD
DISPLAY COUNT1,"X",Co.UNT2,"=",PRo.D," ";
ADD "1" TO. Co.UNT2
Go.TO LOo.P IF NOT OVER
DISPLAY*N

. ADD "1" TO. COUNT1
GOTo. . Lo.o.P IF NOT o.VER
STo.P

10

FILE DECLARATION AND DATA DEFINITION

3. FILE DECLARATION AND DATA DEFINITION

There are two types of statements in DATASHARE which
cause space within the user's data area to be assigned. The
first is logical file declaration where the space is used to
store the DOS system information about the file being used
and the second is data definition where the space is used to
keep the variable information within the DATASHARE program.

3.1 File declaration

Two types of files can be declared in DATASHARE. The
first is a type that will be used for random or physically
sequential accessing. This type is declared using the FILE
statement:

INFILE FILE

The label INFILE is the label which will be used in all disk
1/0 statements that are to use this particular logical file.
This statement causes 17 bytes of data area to be consumed.
This area stores the 15 bytes used in the DOS logical file
table, a space compression counter, and a flag indicating
that this is a physically random or sequential access only
file. Note that since logical file information is stored in
the user's data area, the user may have any number of
logical files active at any onetime providing his data area
will contain all of the necessary declaration information.

The second type of file declaration is used for
indexed-sequential file accessing. This type is declared
using the IFILE statement:

·ISAMFILE IFILE

The label ISAMFILE is the label which will be used in all
disk 1/0 statements which are to use this particular logical
file. This statement causes 26 bytes of data area to be
consumed. This area stores the information that a FILE
declaration stores plus three three-byte pointers for use in
the access method. These pointers point to the beginning of
the last record accessed (for updating operations), to the
next sequential key (for sequential by key accessing), and
to the DOS R. 1. B. of the index file (used in all accessing
operations).

3.2 Data definition

There are two types of data used wi thin the DATASHARE
language. They are numeric strings and character strings.
The arithmetic operations are performed on numeric strings
and string operations are performed on character strings.
There are also operations allowing movement of numeric

1 1

FILE DECLARATI6N AND DATA DE~INITION

strings into character strings and· vice ve~sa~
strings have the following memory format:

0200 1 2 3 ···0203·

Numerlc

The leading character (0200) is used as an indicator that
the string is numeric. The trailing character (0203) is
used to indicate. the location of the end of the string
(ETX). Note that the format of a numeric string is set at
definition time and does not change thrdughout the e~ecution
of the program. A numeric string can be defined to contain
at most 22 characters.

when a move into a number occurs from a string or
differently formatted number, reformattipg will occur to
calise the information to assume the format of the
destination number (decimal point position and the number of
digits before and after the decimal point) with truncation
occurring if necessary (rounding occurs if truncation is to
the right of the decimal pOint).

Character strings have the following memory format:

9 5 THE QUICK BROWN 0203

The first byte is called the logical length and points to
the last character currently being used in the string {K in
the above example) . The second byte is called the
formpointer and points to a character currently being used
in the string (Q in the above example). The use of the
logical length and formpointer in character strings will be
explained in more detail in the explanations of each
character string handling instruction. Basically, however,
these pointers are the mechanism via which the .. programmer
deals with individual characters within the string.

The term physical length will be used to mean the
number of possible data characters in a string (15 in the
above example). The logical and physical lengths of string
variables is limited to 127.

Whenever a data variable is to be used in a program, it
must be defined at the beginning by using either the FORM,
INIT, or DIM instructions. These instructions reserve the
memory space described above for the data variable whose
name is given in the label field. Note that all variables
must be defined before the first executable statement is
given in the program and that once an executable statement

12

FILE DECLARATION AND DATA DEFINITION

is given, no more variables may be defined. Numeric strings
are created with the FORM instruction while character
strings are created with the INIT or DIM instruction.

3.2.1 Numeric string variables

Numeric variables are defined in one of two ways with
the FORM instruction as shown in the following illustration:

EMRATE FORM 4.2
XAMT FORM" 382.4 "

In this example, EMRATE has been defined as a string of
decimal digits which can cover the range from 9999.99 to
-999.99. The FORM instruction illustrated· reserves spaces
in memory for a number with four places to the left of a
decimal point and two places to the right of a decimal point
and initializes the value to zero. When the number is
negative, one of the places to the left of the decimal point
is used by the minus sign. XAMT, in the example, is defined
with four places to the left of the decimal point and three
to the right but with an initial decimal value of 382.400.
The physical length of a numeric variable is limited to 22
characters (decimal point and sign included).

3.2.2 Character string variables

Character strings are defined with either a DIM or INIT
instruction. DIM reserves a space in memory for the given
number of characters but sets the logical length and
formpointer to zero and initializes all the characters to
spaces. For example:

STRING DIM 25

A character string can also be defined with some initial
value by using the IN IT instruction. For example:

TITLE INIT "PAYROLL PROGRAM"

ini tializes the string TITLE to the characters shown and
gives it a logical length of 15. The formpointer is set to
one. Note that in the case of strings, the actual amount of
memory space reserved is three bytes greater than the number
specified in the DIM or quoted in the INIT instruction
(TITLE occupies 18 bytes in memory, 15 of which hold
characters).

Octal control characters (000 to 037) may be included
when initializing a string. The control character is
separated by commas, without quotes, and is preceded by a
zero. For example,

13

FILE DECLARATION AND DATA DEFINITION

TITLE INIT "PAYROLL PROGRAM",015,"TEST1"

would initialize a string with a logical and physical length
of 21 characters. The octal control character, 015, would
appear after the M in PROGRAM and before the first T in
TEST 1. This feature is included mainly for message
switching appliGations and for allowing control of ASR
Teletype compatible terminals. It is the responsibility of
the programmer to remember that some of these characters
(000, 003, 011, and 015) are used for control purposes in
disk files.

3.2.3 Common data areas

Since DATASHARE has the prov~s~on to chain programs so
that one program can cauSe another to be loaded and run, it
is desirable to be able to carry common data variables from
one program to the next. The procedure for doing this is as
follows:

a. Identify those variables to be used in successive
programs and in each program define them in exactly
the same order and way and preferably at the
beginning of each program. The point in this is to
cause each common variable to occupy the same
locations in each program. Strange results in
program execution usually occur if a common
variable is misaligned with respect to the variable
in the previous program.

b. For the first program to use the variables, define
them in the normal way. Then, for all succeeding
programs, place an asterisk in each FORM, DIM, or
INIT statement, as illustrated below, to prevent
those variables from being initialized when the
program is loaded into memory.

Examples:

MIKE lo"ORM • 4 . 2
JOE DIM *20
BOB INIT ."THIS STRING WONT BE LOADED"

Note that file declarations may not be made common between
programs. The reasoning behind this restriction is that
mis-alignment in file declarations could easily cause
catastrophic destruction of the file structure under DOS.
Therefore, whenever a program is loaded, all logical files
are initialized to being closed and must be opened before
any file I/O can occur. When chaining between programs, one
should always close all files in which new space could have
been allocated and then re-open the files in the next
program.

14

FILE DECLARATION AND DATA DEFINITION

4. PROGRAM CONTROL INSTRUCTIONS

DATASHARE normally executes statements in a sequential
fashion. The program control instructions allow this flow
to be altered depending on the state of the condition flags.
There are five condition flags in DATASHARE: OVER, LESS,
EQUAL, ZERO, and EOS. EQUAL and ZERO are two names for the
same flag. Only the numeric and character string
manipulating instructions, the READ instruction, and the
READKS instruction alter the states of these flags.
Reference should be made to the individual instruction
explanations for the meanings of the flags.

4.1 GOTO

The GOTO instruction transfers control to the program
statement indicated by the label following the instruction:

GOTO CALC

causes control to be transferred to the instruction labeled
CALC.

The GOTO instruction may be made conditional by
following the label by the preposition IF and one of the
condition flag names. For example:

GOTO CALC IF OVER

will transfer control to the instruction labeled CALC if an
overflow occurred in the last arithmetic operation.
Otherwise, the instruction following the GOTO is executed.

The sense of the condition can be reversed by inserting
tne word NOT before the condition flag name as follows:

GOTO CALC IF NOT OVER

meaning control is transferred only if the overflow did not
occur.

4.2 BRANCH'

The BRANCH instruction transfers control to a statement
specified by an index. For example:

BRANCH N OF START,CALC,POINT

causes control to be transferred to the 'label in the label
list pointed to by the index N (i.e. START if N = 1, CALC if
N = 2, and POINT if N = 3). If N is negative, zero, or
larger than the number of labels in the list, control
continues with the following statement. The index is

15

PROGRAM CONTROL INSTRUCTIONS

truncated to no decimal places before it is used (1.7 = 1).

The BRANCH instruction statement may be continued to
the next line by the use of a colon in place of one of the
variable delimiting commas. For example: .

BRANCH N OF LOOP, START, READ1, WRITE1:
WEOF1,STOP

4.3 CALL

The CALL instruction is very similar to the GOTO
instruction except that when a RETURN instruction is
encountered after a transfer, control is restored to the
next instruction following the CALL instruction. CALL
instructions may be nested up to 8 deep. That is , up to
eight . CALL instructions may be executed before a RETURN
instruction is executed. Being able to call subroutines
eliminates the need to repeat frequently used groups of
statements. Note, however, that in DATASHARE the space
allowed for a program is very large and that, due to the
virtual nature of this space, calling a subroutine is
cortsiderably more time consuming than executing the code in
line if a page swap is invoked by the subroutine call.
Therefore, in many cases it is much better to put some code
in line instead of making it a subroutine, especially if the
amount of code is quite small (say, less than a dozen
lines). This is a trade-off which should be considered when
one is dealing with code that will be executed very often
(for instance, code that is executed every time a data item
is entered). CALL instructions may be made conditional like
the GOTO instruction. For example:

CALL FORMAT
CALL XCOMP IF LESS

4.4 RETURN

The RETURN instruction is used to transfer control to
the location indicated by the top address on the subroutine
call stack. This instruction has no operand field but may
be made conditional~ For example:

RETURN
RETURN IF ZERO

4.5 STOP

The STOP instruction causes the program to terminate
and return to the MASTER program for that port. This
instruction has no operand field but may be made
conditional. For example:

STOP

16

PROGRAM CONTROL INSTRUCTIONS

STOP IF NOT EQUAL

4.6 CtiAIN

The CHAIN instruction oauses the program, whose DOS
name (wi thextension DS3) is 1n the literal or speoified
string, to be loaded and foro control to be passed to its
first executable statement. The charaoters used for the
name start from under the forompointer of the specified
string variable (or with the first Quoted character in the
case of a literal) and continue until either the logical end
of the string has been reached or eight characters have been
obtained. If the end of the string is reached before eight
charaoters are obtained, the rest of the characters are
assumed to be spaces. All DATASHARE 3 program object files
are of extension DS3. The character after the 8th in the
name variable (or the character after the logical length if
the name is less than 8 characters long) is used as the
dri ve number specification for the file. If the characters
is not an ASCII 0, 1, 2, or 3 or no character physically
exists past the name, no drive specification is assumed and
all drives starting with drive zero are searched when
looking for the program name in the DOS directory (or
directories). Otherwise, only the specified drive is
searched for the name. For example, if in the following
example NXTPGM's formpointer was 4 and logical length was 6,
the CHAIN command would try to load the program named
"ROL/DS3" from drive 1.

NXTPGM INIT "PAYROL1" ,

CHAIN NXTPGM

In the following example, however, the CHAII~ command would
try to load the program named "PAYROL1/DS3" off of any drive
starting froom the zeroth.

CHAIN "PAYROL1"

To make the CHAIN oommand try to load the program named
"PAYROL/DS3" from drive one, one would have to execute the
statement:

CHAIN "PAYROL 1"

since the 1 would appear after the eighth character in this
case.

4.7 TRAP

TRAP is a unique instruction because, rather than
taking action at the time it is exeouted, it specifies the

17

PROGRAM CONTROL INSTRUCTIONS

location to which a transfer of control (via the CALL
mechanism) should occur if a specified event occurs during
later execution. For example:

TRAP EMSG IF PARITY

specifies that control should be transferred to'EMSG if a
parity failure is encountered during aHEAD 'Or WRITE
instruction. The control transfer is, performed, ina manner
similar to the CALL~ instruction. Therefore, in the above
example, if the parity er'ror occurred during a disk READ
instruction, the effect would be to insert a . CALL EMSG
instruction between the READ and the instruction immediately
following it. '

If an event occurs and the trap corresponding to that
event has not been set, the message:

* ERROR • LLLLL X * or
* ERROR * LLLLL X * Q

appears on the line currently positioned to on the terminal
whose program caused the event. The ,first form appears for
all traps except 1/0 traps. In the event of an~/O trap~a
qualification. letter is given where a "Q" is shown in the
example (explained below under the "10" trap). The LLLLL is
the current value of the program counter and' the, X is: ah
error let tel". In most cases, LLLLL points to the
instruction following the one that caused the problem.
However, in certain 1/0 errors, LLLLL will point after the
list item where the problem occurred. The following error
letters can appear:

P - parity failure
R - record number out of range
F - record ,format error
C - chain failure
I - 1/0 error
B - illegal operation code
U - call stack underflow
A - interruptions already prevented

Note that the last three items shown above cannot be
trapped. The B error will only show up if somehow an
invalid object file is executed or if the system is failing.
The U error will happen if the programmer forgets to perform
a oall or in some other fashion manages to e~ecute a R~TURN
instruction without a corresponding CALL having been
previously executed. The A error will happen if a PI
instruction is executed while interrupts are currently
prevented.

18

PROGRAM CONTROL INSTRUCTIONS

The events that may be trapped are shown below. The
capitalized name is the one used in the TRAP statement.

PARITY - disk CRC ~rror during READ or disk CRC
error during write verification (the DOS
retries an operation up to 5 times to get
a good CRe.; before giving up and causing
this event).

RANGE - record number out of range (an access was
made that was off the physical end of the
file, a record was read which was never
wri tten, or a WRITAB was used on record
which was never written)

FORMAT - non-numeric data read into number (the
read stops at the list item in error so
the rest of the list items will not be
changed)

CFAIL - the specified program was not in the DOS
directory or a ROLLOUT was attempted with
one of the necessary system files missing

10 - there is only one trap· for all of the
following conditions. Usually, however,
the trap is used only for detecting
whether a file exists or not. It is a
good idea keep this trap clear whenever
it is not being used specifically to
detect the presence ofa file to prevent
confusion if one of the other conditions
occurs. If the trap is not set then one
of the following qualification letters
indicates the nature of the 1/0 problem:

A - an access sequentially by key was
attempted before any indexed sequential
access was made using the logical file.

B - the READ mechanism ran off the end of a
sector without encountering a physical
end of record character (003).

C - an operation on a closed logical file was
attempted.

D - a WRITE or INSERT indexed sequential
operation was attempted where the
specified key already exists in the
index.

E - an EOF mark without at least four zero's
was encountered.

I the index file specified in an OPEN
statement does not exist on the specified
drive(s) .

J - the index file
statement does not
physical location
files may never

19

. found by the OPEN
reside in the correct
on th, disk (index

be mov.d, they must

PROGRAM CONTROL INSTRUCTIONS

always be re-created}.
K - a null key was supplied in an operation

where the key may not be nUll.
M - the data file specified in the OPEN

statement does n6t exist on the specified
dri ve (s) .

N - the data file name specified in the OPEN
or PREPARE statement was null.

o - the index file name specified in'the OPEN
statement was null.

P the file specified in the PREPARE
statement had some type of DOS protection
(either write, delete, or both).

T the tab value in the READ or WRITAB
statement was off the end of the sector.

U - an EOF mark was encountered while a
record was being deleted in the indexed
sequential file.

V - one of the indexed sequential access
overlays (DS/OV 1, DS/OV2, or DS/OV3)
could not be loaded by the DOS loader.

W - an index file pointer sector could not be
read.

X - an index file header sector could not be
read.

Y - the R.I.B. of the data file pointed to by
the index file could not be read. (VWXY
errors can be caused by parity errors,
the drive being switched off line, or the
disk cartridge being swapped with another
while an operation is taking place.)

Note that the trap locations are cleared whenever a CHAIN
occurs. Therefore, each program must initialize all of the
traps it wishes to use. Also, whenever a certain event is
trapped, the trap location for that event is clea~ed, which
implies that, if the event is to be trapped again, its
location must b~ reset by the trap routine.

4.8 TRAPCLR

This instrqction will clear the specified trap. For
example:

TRAPCLR PARITY

~ill clear the parity trap previously set.

4.9 ROLLOUT

The ROLLOUT feature allows execution of all ports
currently on the DATASHARE system to . be temporarily
suspended while certain functions are performed under DOS.

20

PROGRAM CONTROL INSTRUCTIONS

When a ROLLOUT occurs, the program ROLLOUT/SYS will be run
which writes system status and memory in a file called
ROLLFILE/SYS. A beep is sounded at the console to alert the
operator when a ROLLOUT is initiated. Clicks are sounded as
ROLLFILE/SYS is created and another beep occurs when the
file creation is completed. The DOS is then brought up at
the console by the loading of programs SYSTEMO/SYS and
INTRHAND/SYS. The ROLLOUT/SYS program then supplies the
characters in the string specified by the Databus ROLLOUT
instruction as if they were keyed in from the console (this
will usually call the CHAIN program). When the DOS
functions are completed, the DOS file DSBACK/CMD may be
executed to restore the DATASHARE system to its previous
status (this is usually the last program specified in the
CHAIN file). DSBACK/CMD re-initializes the screen and then
loads the ROLLFILE/SYS object file. This returns all ports
to their previous point of execution when the ROLLOUT
occurred.

An alternate to DSBACK/CMD is DSBACKTD/CMD which first
requests the system operator to enter the time and date and
then loads and executes the ROLLFILE/SYS object file. Note
that since the purpose of DSBACKTD is to obtain the current
time and date from the system operator, it is not logical to
execute DSBACKTD from a CHAIN file. For this reason,
DSBACKTD has been implemented such that it cannot be
executed from a CHAIN file and also such that it will pause
indefinitely until a response from the system console is
obtained.

ROLLOUT/SYS, ROLLFILE/SrS, and INTRHAND/SYS are all
provided on the DATASHARE interpreter system generation
tape. A CFAIL trap will occur if ROLLOUT/SYS does not exist
on disk, if ROLLFILE/SYS does not exist or is not big enough
(must be at least 61 sectors), or if INTRHAND/SYS and
SYSTEMO/SYS do not exist.

ROLLOUT is initiated by a DATASHARE program with the
following instruction,

ROLLOUT (string variable) or
ROLLOUT (string literal)

The string variable or literal specifies what function is
ini tially to be executed under DOS and should be a command
line acceptable to the DOS command handler. The string used
is that in the variable from under the formpointer up to
before a character that has a value less than 040 (octal),
is a vertical bar (0174 octal), or has its sign bit set. In
the normal case, this means the string used will be that
from under the formpointer up through the physical length of
the string. If it is desired for less than through the
physical end of the string to be used, one should store a

21

PROGRAM CONTROL INSTRUCTIONS

verti.cal bar in the posit:ion after the ,last character t.obe
used in the·.· DOS command line string ... ·A·'CFAIL·'trap will
occur if the. string variable is n.ull~ For. example, "the
string's contents could. be

CHAIN DSCFILE

When DOS is brought up by the ROLLOUT ,the first· thing' to
occur would be a chain to DSCFILE. The commands foUnd in
DSCFILE wouid then be executed (see user's guide ort thaDOS
CHAIN command). DSCFILE could consist of these commands~

SORTAFILE,BFILE
SORT CFILE,DFILE
DSBACK

By using the CHAIN command, several DOS functions . can be
performed and the system automatically restored wi ththe
DSBACK command. If DSBACK is not included in the chain
file, if the CHAIN aborted for some reason, if DOS was
booted during the CHAIN, or if the string specified in the
ROLLOUT consisted o·f a DOS function other than CHAIN, the
DATASHARE system will have to be restored by the operator
keying in DSBACK or DSBACKTD at the console.

The ROLLOUT feature is particularly useful when a file
needs to be sorted wi th the DOS SORT command or an indexed
file needs to .be re-indexed using the DOS INDEX command.
However, ROLLOUT may be very inconvenient to the Users at
other ports since execution of their programs will be
suspended for at least 40 seconds. Note that the users at
the other ports, unless informed of the fact, will not know
what is happening when a ROLLOUT occurs. Sinbe their
terminals appear inactive, they may think the' system has
gone down for some other reason. Thus, • consideration of
other system users should be kept in mind when a.ROLLOUT is
used. Also, note that the time clock will be p.ut behind
however long the DATASHARE system is not executing unless it
is updated through the use of the DSBACKTD command.

There are a number of precautions which must be
observed during the use of ROLLOUT. The functions performed
while under the DOS must not effect any of the operations
that were taking place under the DATASHARE system. . For
example, any of the ANSWER or MASTER programs must not be
changed and files that are open and in use must not be
modlfied or deleted. The reason behind this is that when
the DATASHARE operatlon is restored, certain items in memory
reflecting the state of the DOS file structure will also be
restored. If these items are no longer accurate in their
reflection due to the fact that the file structure has been
changed~ terrible things can happen to the DATASHAREsystem.
Operations to be watched in particular include the changing

22

PROGRAM CONTROL INSTRUCTIONS

of the object code of any program that is running, the
changing of any files that are open, and the re-arrangement
of any disks with files in use within a multi-drive system.
Note that changing the DATASHARE configuration will not have
effect until the next time the DATASHARE command is executed
(rolling the system back in will not see the configuration
change). Typically, only one program will be active when a
ROLLOUT is invoked, making it easy to observe all of these
precautions.

4.10 PI

This instruction (Prevent Interruptions) enables the
programmer to prevent his background program from being
interrupted for up to 20 Databus instruction executions.
This instruction has no effect upon the foreground one
millisecond interrupt which performs all port and printer
1/0.

Normally, background execution can be interrupted by
the INT key on the port terminal, by a higher priority
execution being requested on another port (due to a
foreground 1/0 process terminating), or by the time limit
for the executing port running out. By executing the PI
instruction, the programmer can postpone any of these
interruptions for a specified number of instructions (up to
a maximum of 20). This is particularly useful if one is
trying to update a record in a file which could be updated
at the same time by another port's program. By preventing
interruptions from the time the record is read through when
it is written, the programmer can be assured that the other
program will not get in and modify the record in the mean
time.

The number of instructions specified in the PI
instruction is always a fixed decimal number (it may not be
a numeric variable). For example:

PI
READ
SUB
GOTO
UPDATE

4
F,KEY;PN,QTYONH,LOD
QTY FROM QTYONH
NOTNUFF IF LESS
F;PN,QTYONH,LOD

Interruptions
through the
supplied to
instructions

will be prevented from the PI
UPDATE instruction. Note that
the PI instruction denotes the

after the PI instruction.

instruction
the number

number of

If a DISPLAY, KEYIN , CONSOLE, or PRINT instruction is
executed while interruptions are prevented, the effect of
the PI instruction is canceled (since execution of these
instructions causes background execution for the given port

23

PROGftAM CONTROL INSTRUCTIONS

to cease) . If a PI instruction is executed while
interruptions ar~ currently prevented, execution of the
program is aborted with an error 'A' message. This prevents
a program from being able to prevent interruptions for more
than 20 instruction executions.

Note t.hat when devising systems with complex d.ata file
structures one mus~ always be prepared for his program being
interrupted at any point in its execution without harming
the file structuring beyond repair. Under DATASHARE 2, the
fact that the operator could interrupt the program at any
point by striking the INT key on the terminal necessatated
procedures in the· program which assured that the file
structure could be recovered from such an interruption. One
can now use the PI instruction to pre~ent the operator from
causing such a disturbance. However, this should not be
used by the programmer. as a panacea for the interruption
problem since interruptions can still be caused by power
failures or the· system operator restarting the processor.
The PI can be very useful in preventing the operator from
causing a situation which could require extensive recovery
effort but the precautions which allow recovery in the event
of an interruption at any point in the program must still be
buil t in to allow recovery in the other less likely but
s~ill possible interruption cases.

4.11 TAB PAGE

This instruction allows the programmer to improve the
execution speed of his program by letting him ·force sections
of his program into certain pages of object code. Execution
speed .can be enhanced in this way because of the way the
virtural storage mechanism for the object code works. The
instruc,tion consists only of the verb TABPAGEand has no
operanc;is (a label may be placed on a TAB PAGE instruction
line, however). See Section 12.1 for a more detailed
discussion of the use of the TAB PAGE instruction. Execution
of the TAB PAGE instruction causes control to be tr~nsferred
to the first byte of the next page.

24

CHARACTER STRING HANDLING INSTRUCTIONS

5. CHArlACTER STRING HANDLING INSTRUCTIONS

Each string instruction, except LOAD and STORE,
requires either one or two character string variable names
following the instruction. (Note that the MOVE instruction
is capable of moving strings to numbers, numbers to strings,
and numbers to numbers, as well as moving strings to
strings. See the following section and Section 6.5 for the
entire description of the MOVE instruction~ Also note that
APPEND can move numbers into strings as well as strings into
strings.) In the following sections, the first variable
will be referred to as the source string and the second
variable will be referred to as the destination string. In
some cases, the source may be a literal. When it is, the
formpointer always points to the first physical character in
the string and the logical length always points to the last
physical character in the string.

5.1 MOVE

MOVE transfers the contents of the source string into
the destination string. Transfer frOID the source string
starts wi th the character under the formpointer and
continues through the logical length of the source string.
Transfer into the destination string starts at the first
physical character and when transfer is complete, the
formpointer is set to one and the logical length points to
the last character moved. The EOS flag is set if the ETX in
the destination string would have been overstored and
transfer stops with the character that would have overstored
the ETX.

The MOVE instruction can also move character strings to
numeric strings and vice versa. (The movement of numeric
strings to numeric strings is covered in section 6.5.) A
character string will be moved to a numeric string only if
the character string from the formpointer through the
logical length is of valid numeric format (only digits,
spaces, a leading minus sign, and one decimal point
allowed) . Otherwise, the numeric string is not changed.
Note that only the part of the character string starting
with the formpointer is considered in the validity check and
transferred if the string is of valid num.eric format. The
number in the character string will be reformatted to
conform to the format of the numeric string. Rounding
occurs if the number in the character string is too large to
fit into the format of the numeric string (see Section 6 for
rounding rules followed). The TYPE instruction (see section
5. 14) is available to allow checking the character string
for valid numeric format before using the MOVE instruction.

when a numeric string is moved to a character string,
all characters of the numeric item (unless the ETX in the

25

CHARACTER STRING HANDLING INSTRUCTIONS

destination string would be overstoreci) . are 'transferred
starting with the physically first character" ·in the
destination string. When the operation is completed, the
logical length is set to point to the l~st character
transferred. The EOS condition is left true if the ETlof
the destination string would have beenoverstored. ',In this
case, transfer stops with the character before the one that
would have overstored the ETX and the logical length is left
pointing to the physical end of the string (which contains
the ~ast character transferred).

{In the fo'llowing examples, the logical length ,
formpointer, and content of each variable is shown before

,the statement is eX,ecuted, the statement is shown and the
contents of the variable that 1s changed by the execution of
that statement is shown. The" de,notes a space'.in the
contents of a variable.

STRING1 4 2

STRING2 6 3

Contents

ABCDXLM

DOGCAT

MOVE STRING1 TO STRING2

STRING2 3 1 BGDCAT

STRING2 6 3 DOGe AT

MOVE "HELLO" TO STRING2

STRING2 5 1

STRING1 9 3

NUMBER 0200

HELLOT

AB100.327

"39.00

MOVE STRING1 TO NUMBER

NUMBER 0200 100.33

ETX

ETX

ETX

ETX

ETX

ETX

ETX

ETX

26

CHARACTER STRING HANDLING INSTRUCTIONS

NUMBER 0200

STRING1 9 3

100.33

AB100.327

MOVE NUMBER TO STRING1

STRING 1 6 1 100.33327

Note that in the statement:

MOVE "ABC" TO NUMBER

ETX

ETX

ETX

the compiler will give an E error flag since it knows that
this cannot be a valid operation (the move will not occur
because the literal is not of valid numeric format). In the
statement:

MOVE "2.3" TO STRING1

the compiler will generate a string to string move rather
than a numeric to string move.

5.2 APPEND

APPEND appends the source string or number to the
destination string. A numeric item is treated exactly as if
it were a string with a formpointer pointing to the first
physical character and a logical length pointing to the last
physical oharacter in the number. The characters appended
are those from under the formpointer through under the
logical length pointer of the source string. The characters
are appended to the destination string starting
after-the-formpoint§d-character in the destination string.
The souroe string pointers remain unchanged, but the
destination string pointers both point to the last character
transferred. The EOS condition will be set if the new
string will not fit physically into the destination string,
but all characters that will fit will be transferred.

The following example shows two strings
operation, the operation, and the result in
string after the operation:

STRING1 8 6 JOHN"'DOE ETX

before· the
the second

STRING2 1 1 1 1 MARy ... JONES ETX

APPEND STRING1 TO STRING2

STRING2 14 14 ETX

27

CHARACTER STRING HANDLING INSTRUCTIONS

The following example shows a destination string before
the operation, an operation appending a literal to the
destination string ~ and the destination string after the
operation:

STRING2 8 9 ETX

APPEND ".XX.YY." TO STRING2

STRING2 15 15 ETX

The following example shows the use of APPEND to move a
numerio item into a string item:

NUMBER

STRING

0200

9 2

100.33 ETX

ABCDEFGHI ETX

APPEND NUMBER TO STRING

STRING

5.3 MATCH

9 8 AB100.331 ETX

MATCH compares two character strings starting at the
formpointer of . each and stopping when the end of either
operand's string is reached~ If either formpointer is zero
before the operation,· the MATCH operation will result in
only clearing the LESS and EQUAL flags and setting the EOS
flag. Otherwise,the "length" of each string is calculated
to be LENGTH-FORMPOINTER+ 1 and the LESS flag is set if the
destination string length is less than that of the source
string. The twb strings are then compared on a
character-for-character basis for the number of characters
equal to the lesser of the two lengths. If all the
characters match,the EQUAL flag is s.et . Otherwise, the
LESS flag's meaning is changed to indicate whether the ASCII
value of the destination character is less than the ASCII
value of the source character (LESS flag set) or vice versa
(LESS flag reset). for the first pair of characters that do
not match. Some examples and their results follow:

SOURCE

ABCDE
ABC
ZZZ
ABC
ABCD

. DESTINATION

ABCD
Z
AAA
ABC
ABCDE

28

RESULT

EQUAL, LESS
NOT EQUAL, NOT LESS
NOT EQUAL, LESS
EQUAL, NOT LESS
EQUAL, NOT LESS

5.4 CMOVE

CHARACTER STRING HANDLING INSTRUCTIONS

Examples:

MATCH A TO B
MATCH STR1,STR2

CMOVE moves a character from the source operand to
under the formpointer in the destination string. The
character from the source operand may be a quoted
alphanumeric (note that the forcing character rule does not
apply here), the character from under the formpointer of a
string variable, or an octal control character (000 to 037).
If either operand has a formpointer of zero, an EOS
condition and no transfer occurs.

Examples:

CMOVE XDATA TO YDATA
CMOVE "A" TO CAT
CMOVE X,Y
CMOVE 015,Y

5.5 CMATCH

CMATCH compares two characters, one taken from each of
the source and destination operands. The characters may be
quoted alphanumeric (note that the forcing character rule
does not apply here), from under the formpointer of a string
variable, or octal control characters (000 to 037). An EOS
condition occurs if either formpointer is zero, and no other
condi tiona are set. Otherwise, the EQUAL and LESS
conditions are set appropriately. The LESS condition is set
if the destination string character is less than the source
string character.

5.6 BUI1P

Examples:

CMATCH XDATA TO YDATA
CMATCH "A",DOG
CMATCH CAT TO "B"
CMATCH 015,DOG

BUMP increments or decrements the formpointer of the
first operand if the result will be wi thin the string
(between 1 and the logical length). If no parameter is
supplied, BUMP increments the formpointer by one. However,
a posi ti ve or negative literal value may· be supplied to
cause the formpointer to be moved in either direction by any
amount. . The EOS flag will be set and no change in the
formpointer occurs if it would be less than one or greater

29

CHARACTEB STRING HANDLING INSTRUCTIONS

than the logical length after the movement had o'ccurred.

5.7 RESET

Examples:

BUMP CAT
BUMP CAT BY 2
BUMP CAT,-1

RESET changes the value of the formpointer of the
source string to the value indicated by the secpnd operand.
If no second· operand is given, the formpointer will be reset
to one. The second operand may be a quoted character, in
which case the ASCII value minus 31 (space gives one, ! two,
" three, etc) will be used for the value of the formpointer
of the source string. The second operand may also be a
character string, in which case the ASCII value minus 31 of
the character under the formpointer of that string will be
used for the val~e of the formpointer of the source string.
The second operand may also be a numeric string, in which
case the value of the number will be used for the
formpointer of the source string.

The use of a string variable as the second operand in a
RESET instruction· may not be obvious at first. One
application could be in doing code conversions where each
character in the string to be converted is used as a
formpointer value in a code conversion string from which is
picked to corresponding converted character to be used as
the character in the converted string. Another use is in
the coding of item positions wi thin a string into a single
character. For example, in a file one might want to place
an item in a variable location within the record. The first
character of the record could be a character which
corresponds to the colUmn position within the record of the
start of the item. One could read the first character of
the record into a one character string variable and then the
rest of the record into a large string variable. The large
string variable could then have its formpointer reset to the
posi tion indicated by the first character in the- record and
the item could then be moved to another variable wi.th the
MOVE instruction.

RESET also has the capability of extending the logical
length of the first operand. If the formpointer value
specified is past the logical length of the first operand,
the logical length will be extended until it will
accommodate the formpointer value. If this would cause the
logical length to be past the physical end of the string,
the logical length and formponter will both be left pointing
to the last phy~ical. character in the string. This feature
is useful in extracting and inserting information within a

30

CHARACTER,STRING HANDLING INSTRUCTIONS

large string. The EOS condition will be set if a change in
the logical length of the first operand occurs.

Examples:

RESET XDATA TO 5
RESET Y
RESET Z TO NUMBER
RESET Z TO STRING

Note that the RESET instruction is very useful in code
conversions and hashing of character string values as well
as large string manipulation.

5.8 ENDSET

ENDSET causes the operand's formpointer to point where
its logical length points.

Example:

ENDSET PNAMI;;

5.9 LENSET

LENSET causes the operand's logical length to point
where its formpointer points.

Example:

LEN SET QNAME

5.10 CLEAR

CLEAR causes the
formpointer to be zero.
changed.

Example:

operand's logical length and
None of the data characters are

CLEAR NBUFF

31

CHARACTER STRING HANDLING INSTRUCTIONS

5.11 EXTEND

EXTEND increments the formpointer, stores a space in
the position under the new formpointer, and sets the logical
length to point where the new formpointer points if the new
logical length would not point to the ETX at the end of the
character string. Otherwise, the EOS flag is set and no
other action is taken.

Example:

EXTEND BUFF

5.12 LOAD

LOAD performs a MOVE from the character string pointed
to by the index numeric string, given as the second operand,
to the first character string specified. The instruction
has no effect if the index is negative, zero, or greater
than the number of items in the list. Note that the index
is truncated to no decimal places before it is used (e.g.
1.7 = 1).

Example:

LOAD AVAR FROM N OF NAME,TITLE,HEDING

5.13 STORE

STORE performs a MOVE from the first character string
specified to a character string in a list specified by an
index numeric variable given as the second operand. The
instruction has no effect if the index is negative, zero, or
greater than the number of items in the list. Note that the
index is truncated to no decimal places before it is used
(e.g. 1.7 = 1).

Examples:

STORE Y INTO NUM OF ITEM,ENTRY,ALINK
STORE "XX" INTO NUM OF A1,A2,A3

The LOAD and STORE instructions may be continued to the
next line by the use of a colon:

Examples:

LOAD SYMBOL FROM N OF VAR,CONST,DEC:
COUNT,FLAG,LIST '

STORE NAME INTO NUM OF A,B,C,D,E,F,G:
H,I,J,K,L,M

32

CHARACTER STRING HANDLING INSTRUCTIONS

5.14 CLOCK

CLOCK enables the programmer to access the DATASHARE
system time clock, day, and year information. This
information is initialized by the operator when DATASHARE is
activated and then kept current by a foreground program
driven by the one millisecond interrupt clock. This
interrupt is accurate to approximately 0.005 percent or four
seconds per day. There are three variables that the CLOCK
instruction can access. These are gi venthe names TIME,
DAY, and YEAR. All are character strings with TIME being in
the format:

12:34:56

and ranging from 00:00:00 to 23:59:59, DAY being in the
format:

123

and ranging from 001 to 365 (except to 366 on leap years),
and YEAR being in the format:

12

and ranging from 00 to 99, being the last two digits of the
year. Note that when the TIME goes from 23:59:59 to
00:00:00, the day is incremented. The new day value is not
checked to be a valid Julian date, however, implying that
the system must be manually reset at midnight at the end of
the year. The CLOCK instruction performs a character string
to character string move with the special variable in the
source and the character string to receive the information
in the destination operand specification. Note that the
user's program may have variables called TIME, DAY, and
YEAR.

For example:

CLOCK
CLOCK
CLOCK

TIME TO TD1E
DAY TO DAY
YEAR TO YEAR

would move the information in the system variables into user
defined variables called TIME, DAY, and YEAR also.

Note that the clock value is not allowed to be updated
by the foreground interrupt during the actual transfer of
characters from the system data into the user's data item.
However, an interrupt could occur between the time one clock
item was moved and the next, thereby necessitating a
precaution if one is to obtain both the time and the day
figure. For example, if the time was 23:59:59 and one moved

33

CHARACTER STRING HANDLING INSTRUCTIONS

the TIME into a variable and then th~ foreground interrupted
and caused the clock to be incremented to the next second,
the TIME would then read 00: 00: 00 and the DAY would have
been incremented. If one then obtained the DAY figure, he
would have the wrong. day for the time he had gotten.
Therefore, whenobtatn1ng both the TIME and DAY, one must
first get the DAY, then get ~he TIME, and then go back and
make sure the DAY had not changed. For example:

CLOCK
CLOCK
CLOCK
COMPARE
GO TO
CLOCK

TIMEOK (etc)

DAY TO DAY
TIME TO TIME
DAY TO DAY2
DAY. TO DAY2
TIMEOK IF EQUAL
DAY TO DAY

The system·· brings itself up automatically one minute
after it is started if an operator does not attend the
system console. In this case, all CLOCK items are
initialized to zero. Therefore, one can determine that the
CLOCK items were not initialized by examining the DAY string
and checking for a value of 000.

5.15 TYPE

TYPE sets the EQUAL condition if the string contained
from the formpointer through the logical length of the
specified string variable is of valid numeric format (only
leading minus, one decimal point, and digits or spaces).

34

ARITHMETIC INSTRUCTIONS

6. ARITHMETIC INSTRUCTIONS

All of the arithmetic instructions have certain
characteristics in common. Except for LOAD and STORE, each
ari thmetic instruction is always followed by two numeric
string variable names. The contents of the first variable
is never modified and, except in the COMPARE instruction,
the contents of the second variable is always the result of
the operation. For example, in:

ADD XAMT TO YAMT

the content of XAMT is not changed, but YAMT contains the
sum of XAMT and YAMT after the instruction is executed.

Following each arithmetic instruction, the condition
flags OVER, LESS, and ZERO (or EQUAL) are set to indicate
the results of the operation. OVER indicates that the
result of an operation is too large to fit in the space
alloca ted for the variable (a result is still given with
truncation at the left and rounding at the right, however).
LESS or ZERO (EQUAL) indicates respectively that the content
of the second variable is negative or zero following the
execution bf the instruction (or would have been in the case
of COMPARE).

Whenever overflow occurs, the higher valued digits that
do not fit the variable are lost. For example, if a
variable is defined:

NBR42 FORM 2.2

and a result of 4234.67 is generated for that variable,
NBR42 will contain only 34.67.

Whenever an operation produces lower order digits than
will fit in the destination variable, the result is rounded
up if the digit to the right of the last one that would fit
is greater than 4 (standard rounding rules). A variable
with the FORM 3.1 would contain:

46.2
812.5

3.7
3.9

632.0

for 46.213
for 812.483
for 3.666
for 3.850
for 4632

with the OVER condition occurring for only the last result.

Note that if an OVER occurs during. an ADD, SUB, or
COMPARE of two strings of different physi9al lengths, the
result will not and the LESS condition flag may not be
correct.

35

ARITHMETIC INSTRUCTIONS

6.1 ADD . .,'

',:

ADD causes the content of varia.ble one to .. be ,a9ded to
the cont.ent of variable, t"fo':

Ex.amples:

ADD X. TO Y
ADD DOG,CAT
ADD "1", LEN

6.2 SUB or SUBTRACT

The SUB instruction (the compiier~illals'o accep:t a
mnemonic of SUBTRAbT) causes the content of .ariable one to
be subtracted from the content. of yariablectwo.·

Examples.:

SUB RX350 FROM TOTAL
SUB 1132.5" FROM RATE
SUBTRACt Z~TOTAL

6.3 MU~T or MULTIPLY

The MULT instruction (the compiler will also accept a
mnemonic of MULTIPLY) causes the content ··of variable . two to
. be mul tipliedby the content . of variable one. ':L{ie
restrictions mentioned in the introduction :about the length
of multiplication operands are that the sum of the number of
characters in the two operands must be less than 32.

Examples: .

6.4 DIV or DIVIDE

MULT B BY A
MULT ".005" BY TOTAL
MULTIPLYW,Z

The DIV instruction (the' compiler' will also accept a
mnemonic of DIVIDE) causes .. the content. of of the second
variable to be divided by the content of the first variable.
The restriction upon division operands is that the number of
characters in the dividend plus the number of characters in
the divisor plus two times the number of characters after
the decimal point in the divisor must be less . than 32.
Division by zero results in the OVER condition being set and
the destiriation variable not being changed. .

If the quotient' cannot be represented fully in the
destination variable format, the quotient will be rounded to
the number of places in the destination variable if the

36

ARITHMETIC INSTRUCTIONS

divisor has at least one digit place after the decimal
point. If there are no digit places after the decimal point
in the divisor, the quotient will be truncated (rounded
down) to the number of places in the destination variable.

6.5 HOVE

Examples:

DIV SFACT INTO XRSLT
DIV "3.0" INTO QUANTITY
DIVIDE X3,HOURS

MOVE causes the content of variable one to replace the
content of variable two.

Examples:

MOVE FIRST TO SECOND
MOVE "0" TO COUNTER
MOVE A,B

6.6 COMPARE

COMPARE does not change the content of either variable
but sets the condition flags exactly as if a SUB instruction
has occurred.

6.7 LOAD

Examples:

COMPARE XFRM TO YFRM
COMPARE "100" TO LINENR
COMPARE TIME1,TIME2

The LOAD instruction selects the numeric string
variable out of a list based on a numeric index variable.
It then performs a MOVE operation from the contents of the
selected variable into the first operand. If the index is
negati ve, zero, or greater than the number of items in the
list, then the instruction has no effect. Note that the
index is rounded to no decimal places before it is used
(e.g. 0.1 = 0).

Example:

LOAD CAT FROM N OF CAT,MULT,SPACE

6.8 STORE

The STORE instruction selects a numeric string variable
from a list based on the value of a numeric index variable.
It then performs a MOVE operation from the contents of the

37

ARITHMETIC INSTRUCTIONS

first operand into the selected variable. If the index is
negati ve, zero, or greater than the number of items in the
list, the instruction has no effect. Note that the index is
rounded to no decimal places before it is used (e.g. 0.1 =
0).

Example:

. STORE X INTO NUM OF VAL, SUB, TOT

The LOAD and STORE instruction statements may be
continued to the n~xt line by the use of a colon.

Examples:

LABEL

ENTRY

LOAD NUMBER FROM N OF N1,N2,N3,N4,N5:
N6,N6,N8,N9

STORE COUNT INTO NUM OF T1,RATE,DIST:
SPD,COST,TOT,SUM

STORE "2.3" INTO X OF N1,N2,N3

38

INPUT/OUTPUT

7. INPUT/OUTPUT INSTRUCTIONS

The DATASHARE statements that move data between the
program variables and the terminal, printer, or disk, allow
a list of variables to follow the operation mnemonic. This
list may be continued on more than one line with the use of
a colon. Continuation is encouraged over repeating the
operation on sequential lines because of the resulting
increase in execution speed. The reason for this is that
DATASHARE performs all terminal and printer I/O with
interrupt driven routines which execute the entire I/O
statement before having to return control to the background
program. The interrupt driven routine executes entirely out
of main memory while the background usually involves some
page swapping due to the virtual nature of its program
storage. If several I/O statements are given sequentially,
the background program will nave to be swapped in for each
statement. However, if the entire operation has been
performed with one I/O statement, background swapping would
not have occurred until the operation was complete. This
greatly increases execution speed.

The I/O list may contain some special control
information besides the names of the variables to be dealt
wi th. It may also include octal control characters (000
through 037). DATASHARE has no formatting information in
its input and output operations other than the list controls
and that implied by the format of the variables. The number
of characters transferred is always equal to the number of
characters physically allocated for the string (except in
some special cases) allowing the programmer to set up his
formatting by the way he dimensions his data variables.

7.1 KEYIN

KEYIN causes data to be entered into either character
or numeric strings from the keyboard. A single KEYIN
instruction can con~ain many variable names and list control
items. When characters are being accepted from the
keyboard, the flashing cursor is on. At all other times the
cursor is off.

When a numeric variable is encountered in a KEYIN
statement, only an item of a format .acceptable to the
variable (not too many digits to the left or right of the
decimal point and no more than one sign or decimal point) is
accepted. If a character is st~kthat is not acceptable
to the format of the numeric variable, the character is
ignored and a bell character is returned (causing a beep on
a Datapoint CRT terminal). Note that if fewer than the
allowable number of digits to the left or right of the
decimal point are entered, the number entered will be
reformatted to· match the. format of the variable being

39

INPUT/OUTPUT

entered. When the ENTER key is struck, the next item in the
instruction list is processed.

When a character string variable is encountered, the
system accepts any set of ASCII characters up to the limit
of the physical length of the string. The formpointer of
the string variable is set to one and characters are stored
consecutively starting at the physical beginning of the
string. When the ENTER key is struck, the logical length is
set to the lastch8racter entered and the next item in the
keyin list is processed. If the ENTER key is struck without
any other characters having been entered (a null string is
entered), both the logical length and form pointer of the
string are set. to zero. The program can check for a
variable with a null entry by checking for an EOS condition
after doing a RESET 01" CMATCH instruction on the variable in
question (see Section 5.501" 5.7).

Other than variable names, the KEYIN instruction may
contain quoted items, list controls, and octal control
characters (000 to 037). Quoted items are simply displayed
as they are shown in the statement. The list controls begin
with an asterisk and allow such functions as cursor
positioning and screen erasure. The *P<n>:<m> control
positions the cursor to horizontal position <n> and vertical
position <m>. Note that these numbers may either be
literals 01" numeric variables and both positions must always
be given in a *p command. The horizontal position is
restricted by the interpreter to be from 1 to 80 and the
vertical position is restricted to be from 1 to 24. Numbers
outside this range have the effective value of 1. (If lines
13 through 24 are positioned to when the console is being
used for the port, the positioning will be to line 12.)

The *ES control positions the cursor to 1:1 and erases
the entire screen, the *EF control erases the screen from
the current cursor position, the *EL control erases the rest
of the line from the current cursor position, the *C control
causes the cursor to be set to the beginning of the current
line, the *L control causes the cursor to be set to the
following line in the current horizontal posi tiori, the *N
control causes the cursor to be set to the first column of
the next line, and the *R control causes the screen to roll
up if port one is using the system console for its terminal.

The control characters in the KEYIN instruction are
output according to their ASCII meaning. They are only
useful for teletype, UNITERM, and message switching
applications and should not be sent to the Datapoint
3360-102.

Normally, the cursor is positioned to the start of the
next line at the termination of a KEYIN statement. However,

40

INPUT/OUTPUT

placement of a semicolon after the last item in the list
will cause this posi tioning to be suppressed, allowing the
line to be continued with the next KEYIN or DISPLAY
statement. This feature is also true of the PRINT command.

Example:

KEYIN *ES,"NAME: ",NAME,*P35:1,"ACNT NR: ":
ACTNR,~ ADDRESS: ",STREET,*P10:3:
CITY,*PX:4,"ZIP: ",ZIP;

KEYIN "ABC",021,NVAR

During a KEYIN, any unrecognizable characters (not in
the printing ASCII set) sent in from the terminal will be
ignored and a beep returned. Also, a mode called keyin
continuous is available (turned on with list control *+ and
turned off with list control *- or the end of the statement)
which causes the system to react as if an ENTER key had been
struck when the operator enters the last character that will
fi t in to a variable. This mode allows the system to react
in much the same way as a keypunch machine with a control
card.

While keying a given variable, the operator can strike
the BACKSPACE key (control H on Teletype) and cause the last
character entered to be deleted. He may also strike the
CANCEL key (control X on Teletype) and cause all of the
characters entered for that variable to be deleted.

A circular input buffer ~llows the operator to send up
to seven characters from the keyboard before they are
requested by the system. Note that there is no feedback at
this level as the characters are fed back only as they are
taken from the buffer. This buffer allows the operator to
continuously enter data without having minor delays in the
response of the system break his stride.

A special case of KEYIN is the interrupt character, the
INT key on a Datapoint 3360-102 (control shift L on a
Teletype machine and CANCEL with both .the KEYBOARD and
DISPLAY keys depressed on the system console). Normally,
when the cursor is not flashing, all characters will be
ignored (not accepted from the seven character circular
input buffer) until input is requested~ The exception,
however, is the interrupt character, which may be keyed at
any time (it will be postponed if a PI instruction is in
effect) and will result in an immediate CHAIN to the MASTER
program. Thus, the currently executing program will stop,
the printer (if being used by the terminal) will be
RELEASED, and the MASTER program will begin execution.

Another special case of KEYIN is the NEW LINE character
which is the NEW LINE key on the Datapoint 3360 (shift 0 on

41

INPUT/OUTPUT

the Teletype and the DEL or underline character on the
system console).. If this key is struck during a KEYIN
~tatement, the current variable is terminated as if the
ENTER key was struck and all subsequent variables in the
statement will be set to zero or their formpointers and
logical lengths set to zero depending on whether ··they are
numeric or string variables. Control will fall through to
the next DATASHARE ~tatement.

The list control, *T, may be included in the KEYIN
statement causing a time out if more than two seconds elapse
between the entry of two characters. The time out has the
same results as if the NEW LINE key had been struck. This
function is useful for message switching applications.

The list control, *W, may be included in the KEYIN
statement causing a one second pause at that point in the
list sequence. This control is especially useful in
programs which wish to simply pause for a number of seconds.
Any number of seconds of pause may be achieved by simply
putting in the required number of *W controls in the list.
A pause using *W imposes very little overhead upon the
system.

The list controls *EOFF and *EON may be included in the
KEYIN statement causing the echo of entered characters to be
inhibited or enabled respectively. When echo is inhibited,
the KEYIN statement causes only the characters specifically
mentioned in the list to be transmitted back to the
terminal. Therefore, the statement:

KEYIN *EOFF,INLINE;

would allow the variable INLINE to be entered from the
terminal with absolutely no characters being transmitted to
the terminal. Since the cursor on and off controls will not
be transmitted to the terminal, there will be no indication
in this case that input is being requested. The echo
inhibit is useful for message switching applications but
could also be used where passwords are to be entered and it
is desired to suppress their display. In this case, the
statement:

KEYIN *EOFF,*P1:10,"ENTER PASSWORD: ":
022, PASSWORD, 024

could be used. Note that even though echo is inhibited, the
cursor positioning and literal characters are still
transmitted to the terminal since they are specifically
mentioned. Notice also that the carriage return and line
feed will be sent at the end of the statement since a
semi-colon is not supplied. The 022 character is a cursor
on for the 3360~102 and the 024 is a cursor off (this also

42

INPUT/OUTPUT

works for the system console since when port one is being
run on the system console a program is being executed which
actually enterprets all of the 3360-102 control codes to
perform the appropriate action on the console screen). The
cursor controls must be specifically mentioned since the
echo inhibit prevents them from being sent automatically.
The echo is always enabled at the conclusion of the KEYIN
statement. Therefore, one must always inhibit the echo at
the start of each statement in which no echo is desired.

7.2 DISPLAY

DISPLAY follows the same procedure as KEYIN except that
when a variable name is encountered in the list following
the instruction, the variable's contents is sent to instead
of being requested from the terminal. Character strings are
displayed starting wi th the first physical character and
continuing through the logical length. Spaces will be
displayed for any character positions that exist between the
logical length and physical end of the string unless the *+
mode (keyin continuous in the KEYIN instruction) is active,
in which case no more characters ar-e put out after- the
logical length. Numer-ic strings ar-e always displayed in
total. Quoted str-ings, list controls, and octal contr-ol
characters may be included in the display instruction and
are handled in the same manner- as descr-ibed for- the KEYIN
instruction. Note that the *T, *EON, and *EOFF controls
will simply be ignored in the DISPLAY statement.

Examples:

7.3 CONSOLE

DISPLAY *P5:1,"RATE: ",RATE:
*P5:2,"AMOUNT: ",AMNT

DISPLAY "ABC",021,S1;

CONSOLE is similar to DISPLAY except the output is on
the system console (2200 display screen) instead of the
ter-minal. (Note that all output to the system console is
inhibited if it is being used as the ter-minal for- por-t one.
In this case, all statements that would cause display on the
console execute as if the display were occurring but no
display actually occurs.) The output always is on the line
assigned for the terminal executing the CONSOLE instr-uction
and therefore any vertical positioning of the cursor is
ignor-ed. The only DISPLAY list control that ar-e effective
are *P(cursor positioning) and *EL (erase to end of line).
All others are simply ignor-ed. A CONSOLE statement which
begins without positioning will start displaying at column
five on the appropriate port line at the console. If
posi tioning is specified, *Px: y, y is ignored and x may be
any number fr-om 1 thr-ough 80. Thus, the por-t number- and

43

INPUT/OUTPUT

asterisk appearing in column 1 through 4 on th~CONSOLE ,may
be overwritten. If the horizontal, position is out" of the
al16wed range, position 1 is assumed. If the ~ispl~y, flows
over the 80 character limit, the extra cba~aciters will.not
be displayed. If the CONSOLE statement is not terminateq.::hy
a semi-colon, the carriage return and line feed is ignored
but two spaces, are put out after the last ohara,cter
displayed. The CONSOLE instruction is useful in alerting
the system operator (if such a person exists) to some
condi tion in the program. The 2200 screen also displays at
the left the state of the carrier detection signal (an
asterisk appears in column 1 if the carrier is, being
detected) from each terminal and the name of the program to
which a CHAIN was last executed. The current wallciock
time is displayed in the upper right corner of the scireen.

Example:

CONSOLE *P20:1,"OPERATOR ALERT"

7.4 BEEP

BEEP causes an ASCII "ring bell" character to be sent
to the terminal.

Example:

BEEP

7.5 PRINT

DATASHARE supports either one local printer or one
servo printer (depending upon how the system is configured).
The printer may be accessed on a sequentially shared basis
by any of the eight terminals. If the printer is, being used
by another terminal when the given terminal executes a PRINT
statement, the given terminal will be suspended until the
printer becomes" available, or until the interrupt character
is keyed.

The PRINT instruction causes the contents of variables
in the list to be printed in a fashion similar to the way
DISPLAY causes the contents of' variables to be' displayed.
The list controls are much the same as DISPLAY ex6ept th~t
cursor positioning cannot be used. colUmn ,tabulation is
provided (*<n> causes tabulation to column <n>unless that
column has been passed) and *F causes an advance to the top
of the next form. Octal control characters may also be
included in the print instruction. The PRINT statement may
be continued on more than one line by the use ota 0010n.

44

INPUT/OUTPUT

Examples:

PRINT DATE,*20,"TRANSACTION SUMMARY",*C,*L:
PNAME,*N,*10,RATE,*20,HOURS,*30:
AMT,*L

PRINT "ABC",021,S1;

If the servo printer is configured into the system, the
available number of bytes in the user data area is 512 less.
In addition, the tabbing in the PRINT statement can move the
carriage in the reverse direction and any sequence of
printer controls will be executed in precisely the sequence
specified. For example, one could print 10 characters, tab
back to column 5 and overprint that column, do one line
feed, and print five characters which would appear in
columns 6 through 10 under the first line. He could then do
a form feed and print 10 more characters which would appear
in columns 11 through 20 at the top of the next page. One
must be careful not to do these things, however, if he plans
to use the same program with non-servo printers.

If the servo printer is being used, the paper out
condition will be checked whenever a top of form control is
given in a PRINT statement. If, after the top of form
function is performed, the paper out condition is present,
the console will make a uniquely characteristic beeping
sound to alert the system operator that more paper must be
placed in the printer. The beeping sound will stop when the
front cover of the printer is swung out but will resume if
the cover is replaced to its original position with the
paper out indicator still on. The recommended procedure is
to open the front cover, remove the last form still in the
printer, place new paper in the printer with the top of the
form aligned wi th the print head, and finally close the
front cover.

Another feature allowed with the servo printer is minor
vertical spacing (there are eight minor vertical spaces for
one standard line space). Control characters either given
directly in the PRINT statement or contained within a string
variable can cause the paper to be fed either up or down up
to seven minor vertical spaces. The characters zero through
seven cause the paper to be fed down the page (the normal
spacing direction) a corresponding number of minor spaces.
The characters eight through fifteen cause the paper to be
fed up the page (opposite to the normal spacing direction)
zero through seven minor spaces respectively. The
characters sixteen through twenty-two cause the carriage to
move to the left seven through onedolumn positions
respectively (horizontal minor positioning cannot be
performed) . The character. twenty-three causes no printer
action. The characters twenty-four through thirty one cause

45

INPUT/OUTPUT

the carriage to move to the right one throllgh,~ight column
positions respectively. This feature on the servo printer
allows different. kinds of underscoring.and super- and/or
sub-scripting in the printed output.

7.6 RELEASE

The RELEASE instruction ends a user's· control of the
printer and causes the printer to advance to the top of the
next form. When ,RELEASE is executedby·a user, another user
that has been waiting for the printer will gain its dont~ol.
When a user disconnects frOm the system or keys the INT
character on his terminal (interrupt key), the printer is
automatically released.

46

DISK 1/0

7.7 Disk 1/0

DATASHARE 3 allows a large variety of file structures
and access methods. The structures can be dependent upon
the physical sectoring of the disk, physically sequential,
or logically indexed. The access methods can be physically
random, physically sequential, logically random, or
logically sequential with any mix of these being allowed on
logically indexed files. This section will describe the
various file structures that can be created, how positioning
is maintained wi thin these structures, and how access to
desired information wi thin the structure can be achieved.
It will then describe the various operations that can be
performed upon the information within the file.

7.7.1 File structures

The most basic structure wi thin a file is a physical
record. A physical record can contain at most 249 data
characters (note that there is no decimal number compression
within any of these file structures so a number always
occupies the number of characters that are contained within
the FORM which defines the number). A physical record
corresponds. to exactly one physical sector on the disk and
is always terminated by a 003 character.

The next level of structuring is a logical record.
Depending upon the way the user structures his file there
mayor may not be an integral number of logical records
within a physical record. A logical record is terminated by
a 015 character after which another logical record begins.
Note that logical records can extend across physical record
boundaries (terminated by 003 characters) so that a file
wi th logical records may appear in the first two physical
records as follows (the items in parenthesis are the logical
and physical record termination characters):

01128558382 AASDFQWERKFKDSKA (015) 1234848 (003)
8483 LAKSJDFLKASDFKKJ (015) 48828388483 KI (003)

Note that the first logical record extends about two thirds
of the way through the first physical record and is then
terminated by the 015 character. The first seven characters
of the second logical record are also contained in the first
physical record at which point the first physical record is
terminated. The rest of the second logical record extends
about half way through the second physical record and is
then terminated by the 015 character. At this point the
third logical record starts and so on.

Also note that there is no restriction upon the length
of a logical record (a single logical record may extend
across many physical records) but that it is a good idea to

47

DISK 1/0

keep logical records reasonably short to preve·nt them
becoming hard to deal with. If one had wanted to keep
one logical record. per, physical record he would have
the file appear as follows:

01128558382 AASDFQWERKFKDSKA (015) (003)
12348488483 LAKSJDFLKASDFKKJ {015) {003)
48828388483 KILKJLKJLKSJDFKD· (015) (003)

from
only
made

-I
/.

Note that it took more disk space to store the same ,amount
of information in this case than in the previous case. It
is sometimes desirable to give up this space in return for
the capability of. using the fastest accessing method of
directly accessing physical records· (access methods· are
discussed in Section 7.7.2). A structure which allows
logical records to cross physical record boundaries is
called a record compressed structure.

In some data files large numbers of contiguous spaces
appear. These files can be compressed even further than
simple use of record compression by the use of space
compression (the general purpose DOS editor, the DOS SORT
program, a number of the terminal emulator programs, the
DATASHARE compiler (listing file output), and DATASHARE
programs can all generate space compressed records). A
space compressed structure appears much like a record
compressed structure except for the addition of the 011
control character. This control indicates that .. the next
byte is a posi ti ve' 8-bi t binary word which· tells how many
spaces were replaced by the compression code character pair.
This number will never be less than 2 (since i~ is wasteful
to expand one or zero spaces into two characters) and may be
as large as 255.' In addition, the 011 will never appear. as
the last character in a physical record since the character
indicating the number of spaces will always appear after the
011 (otherwise the 003 indicating the end of the physical
record and three spaces compressed could not be
differentiated). For example, in the following a· logical
record is shown first wi thout space compression and then
with space compression:

NOW IS THE TIME FOR (015)
NOW IS THE(011)(002)TIME(011)(007)FOR (015)

The second record is physically shorter than the first by
six characters. It may seem silly to compress two spaces
into a two character compression code but most programs do
this because it is logically simpler to program. If more
than 255 contiguous spaces appear in the data record,
mul tiple space compression codes will appear. Space
compressed records are most useful where large numbers of
spaces appear in the file (as in print files) and where the
records are not to be modified in place. If the· record is

48

DISK 1/0

to be modified in place, space compression is discouraged
since the number of spaces could change and the physical
length of the logical record could change.

A file which can be accessed physically sequentially
must not have any physical records without the proper format
between the beginning of the file and an end of file mark.
The end of file mark always starts at the beginning of a
physical record and contains exactly six 000 characters
followed by the physical record termination character (003).
The rest of the characters in the physical record are of no
significance. Note that if there are no physical records
besides the one containing the end of file mark, the file
would be null (which is a valid condition for a file).

A physically sequential data file can be logically
indexed. One cannot tell.that a file is indexed by looking
only at the data file since the indexing information is
maintained in a separate file called the index file (and
usually of DOS extension lSI). The index file contains the
name and extension of the data file which it indexes and a
set of keys and pointers which relate the key value of a
logical record to its physical position within the data
file. DOS utili ties exist for the creation of the index
file which must always be performed outside of the DATASHARE
interpreter.

The index file is a n-ary tree where n is determined by
the length of the key and where there are enough levels to
make the top node in the tree always fit wi thin one disk
sector (contain at most n branches). One can conservatively
estimate the number of sectors that will be used in the
index file by the following method. The actual number used
may be less because trailing spaces in keys are discarded
and more than the minimum number of keys may fit in a
sector.

To compute the index file length, divide 250 by the key
length plus 7 and discard the remainder (do not round up the
result). This number should then be divided into the number
of logical records to be indexed and the answer rounded up
(if the remainder is non-zero then add one to the answer and
discard the remainder). Save this number which is the
number of sectors at the lowest level of the index tree.
Then divide 250 by the key length plus 3 and discard the
remainder. This number should then be divided into the
numbe~ saved before the previous step and the answer rounded
up. Save this number which is the number of sectors at the
next higher level of the index tree. If the answer produced
is greater than one, repeat the previous step (dividing 250
divided by the key length plus 3 into the previous answer).
When the answer has been reduced to one, total all of the
numbers of sectors required for each level and the result

49

DISK 1/0

will be the total number of sectors required in the index
file.

For example, assume that the data file contains 10000
logical records and the key is 10 characters long. The
first computation. is 250/(10+7) = 14.71 or 14 discarding the
remainder. The next computation is 10000/14 = 714.29 or 715
rounding up. Therefore, the lowest level of the index tree
will require 715 sectors. The next computation is
250/(10+3) = 19.23 or 19 discarding the remainder. The next
computation is 715/19 = 37.63 or 38 rounding up. Therefore,
the next higher level of the index tree will require an
additional 38 sectqrs. The next computation is 38/19 = 2.00
or 2 rounding up. Therefore, the next higher level of the
index tree will require an additional 2 sectors. The next
computation is 2/19 = O. 11 or 1 rounding up. Since one
sector has been reached ,the totals are made: 715+38+2+1 =
756 sectors for the entire index tree.

7.7.2 POSitioning and accessing

In DATASHARE, all files are referenced by way of
logical files. These files are declared in the data area of
the program using the FILE and IFILE declarations. The
declarations relate a logical file to a certain physical
file that is specified by the OPEN or PREPARE statement
performed upon the logical file. The data space used by the
declaration holds all of the physical position information
needed for that particular file. During file operations,
DATASHARE establishes a position wi thin the file using a
specified access· method and then increments this position
based upon the operation specified.

For physically accessed \files, a file position is
defined by a physical record number (0 through 9693) and a
character pointer within this record (1 through 249). When
the file is initially opened (with OPEN or PREPARE), the
physical record number is set to 0 and the character pointer
is set to 1. All read and write operations sequentially
increment the character pointer as the individual characters
are read or wri tten. If the physical record terminator
(003) is reached during a read or the 249th character is
written during a write, the character pointer is reset to 1
and the physical ~ecord number is incremented (when writing,
a physical record terminator is automatically written after
the 249th data character before the physical record is
written out to the disk and movement on to the next physical
record is made). If an end of file mark is written, the
current physical record is terminated, the physical record
number is incremented (unless the position was at the start
of a physical record when the operation was entered), the
end of file mark is written in the first seven characters of
the new physical· record, and the character pointer is left

50

DISK IIO

at 1.

The character pOinter may be set directly by what is
called a tab operation in some disk I/O statements. WRITAB,
UPDATE, and all read operations may contain these
posi tioning operators. When physical access is being made
to the file, the tab position given in the statement is
relative to the beginning of the physical record. When
indexed access is being made to the file, the tab position
given in the statement is relative to the beginning of the
logical record. Note that when tabbing relative to the
start of a logical record, it is an illegal operation to tab
past the end of a physical record. Therefore, when using
tabs in indexed files, there should always be an integral
number of logical records per physical record to prevent
tabbing past the end of a physical record. Note that
tabbing may not be used when physical access is being made
to a file declared as indexed. If one needs to do tabbed
physical accesses to the file as well as indexed accesses,
he must declare two logical files to the same data file.
One will be used for physical accesses (having been declared
using the FILE directive) and the other will be used for
indexed accesses (having been declared using the IFILE
directive).

When an indexed file is being used, two additional
pointers are kept for the logical file. The first is a
physical record number and character pointer to the first
character of the last logical record accessed using the
index. The second is a pointer to the next sequential key
after the last key accessed using the index. The first
pointer enables re-reads and updates to be made to the
indexed file and the second pointer enables the indexed file
to be accessed sequentially by key. Note that neither of
these pointers is changed when a physical access is made
using the logical file.

An additional counter maintained for all logical files
is the space compression counter. This counter is used in
the decompression of spaces during read, the compression of
spaces during write, and as a flag as to whether or not
space compression is to be performed during a write
(decompression will always be performed by the read). It is
suggested that the reader come back and read the following
paragraph closely after he feels he understands the disk
read and write access methods and operations since some of
these· ideas are referenced in the following section. One
must understand the following section to be able to
effectively deal with space compressed files.

When the space compression counter has a value of -1
during wri te operations, spaces will not be compressed in
the output. The counter value is set to 0 when the file is

51

DISK 1/0

initially opened (using OPEN or PREPARE) and at the start of
a physically random or indexed access read operation or when
a *+ control in a write operation statement is encountered.
The counter value is set to -1 when a physically random or
indexed access write operation is performed or when a *­
control in a write operation statement is encountered.
Therefore, space compression will be on at the beginning of
a physically sequential write that occurs as· the next
operation after the file has been opened or a read operation
of any kind has been performed, space compression will be
off at the beginning of any physically random ·or indexed
access write operation, and the status of space compression
will not be changed by any other operations. If the desired
space compression·mode for a write operation is not obtained
by the above rules then the *+ and *- controls will have to
be used to get the desired mode. Note that these controls
can erase the memory of previously accumulated spaces if
used after the beginning of the statement list while space
compression has been on.

PHYSICALLY RANDOM ACCESS

The fastest random access ~ethod available under
DATASHARE is physically random access. To perform a
physically random access, a numeric variable containing a
posi ti ve number is supplied as the record specifier to the
statement. Any fractional part of this variable will be
discarded and then the physical record number will be set to
its value. The character pointer will then be set to one
and the read or write operation will proceed. Unfortunately
it is often hard to find a map from a key value in the data
records to a fairly contiguous set of numbers, necessatating
the use of an index. structure. However, if such a map can
be found, physically random acceSSing imposes lower overhead
than the inde~ed accessing.

PHYSICALLY SEQUENTIAL ACCESS

One can cause the read or wri te operation to simply
pick up where the physical record number and character
pointer are currently positioned by specifying a numeric
variable with a negative value in the record specifier.
Usually, when a read or wri te operation is finished, it
leaves these pointers at the beginning of the next logical
record. However, a read or write operation can be
parameterized (by placing a semi-colon at the end of the
variable list) such that it will simply leave the pbinters
after thE! last character dealt with. In this case, the
physically sequential access can be used to continue a
previous operation from where that operation stopped. The
previous operation could have used any access method
(including this one) which implies that one can continue a
logical record to any length. However, it is often a good

52

DISK I/O

idea to keep logical records reasonably short to prevent
them from becomimg hard to deal with. Note that the SORT
and INDEX utilities require the key value to be within the
first 255 characters of a logical record.

INDEXED ACCESS

As described in the previous section, a data file may
have an associated index file which associates key values to
physical record number and character pointer values. There
are five basic indexed operations: read a record of a given
key value, read a record of the next ASCII sequential key
value, update the record that was last accessed through the
index, insert a new record of a given unique key value, and
delete a record of a given key value. Since there can be
any number of indexes into one data file, the insertion and
deletion operations will have to perform key insertions and
deletions upon all indexes. Therefore, these operations
will have to be performed once for each index that points to
the data file.

For the indexed read and write operations, once the
indexed access has been performed (the physical record
number and character pointer values have been set), the
actual operation is performed identically to the operation
as performed for physical accesses. The one exception is
when a record is being inserted. Since records are always
inserted at the physical end of the file, a new end of file
mark must be written after the inserted record has been
written. In this case, a flag is set so that when the write
statement has been finished (and it has not been specified
that the write operation is to be continued), then the end
of file mark will automatically be written. This automatic
end of file mark writing operation will not be performed if
the write operation is to be continued, thereby making it
the responsibility of the DATASHARE program to write the end
of file mark when the record has finally been written in its
entirety.

The indexed access using a given key value will cause
at least one disk sector to be read for each level in the
index in addition to whatever disk functions are required to
perform the actual read or write operation. If records have
been inserted into the index and the INDEX utili ty has not
been run since then, then additional disk sector reads may
take place depending upon the length and path of the linked
list at the lowest level in the index. Therefore, when many
insertions are being performed the INDEX utility should be
run as often as is practical to keep the access time from
becoming overly large. Also, when a data base is being
ini tialized, . it is not a good idea to build it from a null
indexed file doing insertions. It would be much more
efficient to build the data base physically sequentially as

53

DISK I/O

long as indexed accesses need not be made to it and then
create the index file on a reasonably large data file after
which additional insertions can then be made using the
insertion facility.

PHYSICAL ACCESS TO INDEXED FILES

Both physically random and sequential accesses may be
made to indexed files. Therefore, one can index only on
primary records and then obtain the rest of the records
using physically sequential accesses. He may also have a
file. which is already physically randomly accessed and add
an index based on some other key value for fast access to
other aspects of the file. If the file has been declared as
indexed (using the IFILE directive) then all access methods
may be used upon it. However, if the file has been declared
as non-indexed (using the FILE directive) then only physical
access methods may be used upon it.

COMMON FILE CONSIDERATIONS

Since DATASHARE is capable of executing more than one
program concurrently, more than one program at a time can
try to access a single file. There is no problem if these
accesses are not modifying the contents of the file or if
they are dealing with different records in the file. If
this is the case, one program will have no idea that another
is accessing the same file. However, if a certain record in
the file is to be modified by more than one program at a
time, a lockout mechanism is needed to allow one program to
finish its modification before the other can start. The
Prevent Interruptions instruction is provided for this
purpose (see Section 4. 10) . The PI instruction can solve
many common file· update conflicts directly as shown in the
example in Section. 4. 10. However, there are cases where
several files may have to be read and then a decision made
by the operator before the modification can take place. In
this case, the part of the record that is going to be
modified can be read first and saved. Then the other reads
and operator decisions are made and a new value made ready
for the modification write. However, before the
modification is actually made, interruptions are prevented
while the value currently in the record is read again and
compared to the value read the first time. If the value has
not changed, then the modification is made before interrupts
are allowed again. If the value has changed, a new
modification value is computed based upon the new value in
the location to be updated (this may require another
operator decision) and the cycle is repeated. It is assumed
that the conflict rate over a given record in a file will be
low and the number of times an operator will be asked to
repeat a decision will be small. See Appendix D for a
sample program involving modification to a file which could

54

DISK I/O

involve access conflict.

7.7.3 PREP or PREPARE

PREPARE (the compiler will also accept a mnemonic of
PREP) is used to create a new file under the DOS file
structure. The name used for the DOS file name is given in
the string variable or literal specified in the PREPARE
instruction. The characters used for the name start from
under the formpointer of the specified variable and continue
until either the logical end of the string has been reached
or eight characters have been obtained. (If the item is a
literal, the formpointer is one and the logical length
points to the last character.) If the end of the string is
reached before eight characters are obtained, the rest of
the characters are assumed to be spaces. All data files
used in DATASHARE are of extension TXT. The character after
the !)th in the name variable or the character after the
logical length, if the name is less than 8 characters, is
used as the drive number for that file. If the character is
not an ASCII 0, 1, 2, or 3 or no character physically exists
past the name, no drive specification is assumed and all
dri ves starting wi th drive zero are searched when looking
for a name in the directory or directories. Otherwise, only
the drive specified is searched.

If a file by the name given already exists (and is not
delete or write protected), it is deleted and a new file
created. If the file has any protection or the drive
specified is off line, an 10 errol" P or M respectively will
occur. The logical record number limit is always set to
9695 by the PREPARE instruction.

One always deals with "logical files" in DATASHARE once
he has opened them with either the PREPARE or OPEN
instructions. Any number of logical files can be opened at
one time, the limitation being the amount of space the user
has available to devote to the data space needed by each
logical file that is declared. The logical files are
declared using the FILE or IFILE instructions (see Seotion
3.1). NOTE: The PREPARE instruction can only create a file
that has been declared as a FILE type. The compiler will
flag an attempt to PREPARE a file that has been declared as
an IFILE type. IFILE type files must be created by use of
the INDEX utility running under the DOS.

For example, let the following definitions be made:

FDECL FILE
FNAME1 INIT "FILE1"
FNAME2 INIT "FILE2 1"
FNAME3 INIT "ASDF.FILE32"

55

DISK 1/0

Let the formpointer and logical length of FNAMEl be 1 and 5,
that of FNAME2 be 1 and 9, and that of FNAME3 be 5 and 9.
Then if the statement:

PREPARE !o'DECL ,FNAME 1

were executed, the file FILE1/TXT would be prepared as
logical file FDECL on the first drive (beginning with drive
0) on which space was available. If the statement:

PREPARE FDECL,FNAME2

were executed, the file FILE2/TXT would be prepared as
logical file FDECL on drive 1. If the statement:

PREPARE FDECL,FNAME3

were executed, the file FILE3/TXT would be prepared as
logical file FDECL on drive 2. If the statement:

PREPARE FDECL, "ASDl""

were executed, the file ASDF/TXT would
logical file FDECL on the first drive on
available. If the statement:

PREPARE FDECL, "QWER 3"

be prepared as
which space was

were executed, the file QWER/TXT would be prepared as
logical file FDECL on drive 3.

If the logical file specified is already open (having
been specified in a previous PREPARE or OPEN instruction and
not since in a CLOSE instruction), the old file will be
closed before the new one is dealt with.

If the user plans to deal with a vary large file he
should run a program that writes a dummy record into the
largest record number he plans to use. This will cause the
DOS to allocate all records up through the one accessed in
as physically contiguous a manner as possible, thus
increasing the speed with which the file maybe randomly

. accessed. Note that the use of the DOS implies that a file
must be contained on one drive, therefore limiting anyone
file in DATASHARE to approximately 9500 records (the exact
limit depends upon the amount of program information kept on
the particular disk). If the writing of the dummy record
tries to extend the file past the amount of spa6e available
on the disk, an errdr R will occur.

Remember that . space compression mode for writing is
left on by a PREPARE instruction (see Section 7.7.2).

56

DISK 1/0

7.7.4 OPEN

OPEN causes a DOS file already in existence to be
prepared for use by the DATASHARE program. Except for the
fact that it deals only wi th files already in existence
(gi ving an 10 error if the name specified cannot be found
and not killing the file if it already exists), OPEN works
in a fashion similar to PREPARE. In addition, OPEN may
specify a file that has been declared as an IFILE type
(indexed sequential). In the IFILE case, the extension of
the name supplied in the literal or string variable is
assumed to be lSI instead of TXT (the lSI file header
contains the name of the data file it indexes). The opening
of the lSI file automatically causes the data file indexed
by the lSI file to be opened. If the data file is indexed
by more than one index file (lSI file) then each of the
indicies must be opened using a different logical file for
each one. (When dealing wi th indexed files, the data file
itself is never explicitly specified since it is
automatically specified by the header of the lSI file that
is opened.) For example, if the following logical files
were declared:

FDECL1
FDECL2
FDECL3

FILE
IFILE
IFILE

and a data file FILE1/TXT existed and the lSI files
FILE 1 IISI and FILE 1A/ISI had been created using the INDEX
utility as follows:

INDEX FILE 1 ; 1-5
INDEX FILE1,FILE1A;6-10

and the following OPEN statements were executed:

OPEN FDECL1,"FILE1"
OPEN .fDECL2,"FILE1"
OPEN FDECL3,"FILE1A"

then the logical file FDECL 1 would be opened to the normal
(physical access) file FILE 1 ITXT, the logical file FDECL2
would be opened to the indexed file whose index name was
FILE1/ISI and whose data file name (as specified in the
FILE1/ISI header) was FILE1/TXT, and the logical file FDECL3
would be opened to the indexed file whose index name was
FILE1A/ISI and whose data file name was FILE1/TXT. This
would give physical access plus access via two different
indicies into the data file FILE 1 ITXT. Note that an lSI
file does not have to reside on the same disk as the data
file that it indexes.

Remember that space compression mode for writing is

57

DISK 1/0

left on by an OPEN" instruction (see Section 7.7.2).

7.7.5 CLOSE

CLOSE "closes the specified logical file. Thisinsures
that any newly allocated space that wa~ not used in the file
will be returned to the DOS for allocation to another file.

Example:

CLOSE FDECL

If only reads or' updates were performed on the file, the
CLOSE instruction does not need to be used. Also, a CLOSE
is automatically performed when one opens or prepares a
logical file that ·is already open. When a CHAIN is
performed, all files that are currently open are
automatically closed wi thout space dealloca tion being
performed. Note that this means files cannot be held open
across program chains. Also, if the interrupt key is struck
or if the port goes off line a chain is automatically
invoked meaning that all files will be closed without space
deallocation.

CLOSE is also used to delete a file from the DOS file
system. If a PREP is performed on a logical file and the
next operation performed upon the logical file is a CLOSE,
the file described by the logical file declaration will be
deleted from the DOS file system.

7.7.6 READ

READ performs all file data reads (physically random,
physically seque~tial, indexed random, tabbed or not) except
for indexed key sequential reads. The READ statement format
consists of a logical file declaration name, a record
specifier variable (numeric or string), and a list of
variables to be filled by the data from the record. The
list may also contain tab indicators which can specify that
only certain portions of the data record actually. be read
into the variables listed. Tabbing is a unique DATASHARE
.feature which can eliminate unwanted data transfers from and
to the disk controller buffer and can allow the programmer
to save considerable space in his data area. It can only be
used, however, when the logical records do not cross
phYSical disk sector boundaries. This condition can usually
be enforced through the use of the REFORMAT utility and
careful use of the DATASHARE write instructions.

When data is transferred from the record into a numeric
variable that is specified in the READ statement list, the
number of characters corresponding to the length of the
variable are read in. Any non-leading spaces read will be

58

DISK 1/0

converted to zeros (e.g. s3s2s1, where s stands for a space,
would be read as s30201). If a non-numeric character other
than a negative sign as the first non-space character,
decimal point, or space is read, a FORMAT trap will occur.
A FORMAT trap will also occur if the variable is dimensioned
to one and the character is a negative sign. A FORMAT trap
occurs if the data does not match exactly the format of the
numeric variable to be read. For example, if X was
dimensioned to 4.2 and the characters read were 7777877, a
FORMAT trap would occur since the digit 8 appeared where a
decimal point appeared in the variable. If a FORMAT trap
occurs during a read, the logical file pointers are left
pointing at the current file position before the read was
atteinpted.

When a string is read, the number of characters
corresponding to the physical length of the variable are
read into the variable. The formpointer is set to one and
the logical length is set to point to the last physical
character.in the string.

If the end of the logical record is reached before all
variables in the list have been read in full, and the
variable which is being filled with data when the EOR is
detected is. a string, it will have its logical length
pointer set to the last character entered before the EOR was
reached and the rest of the characters physically in the
string padded with spaces. Note that this fact can be used
to advantage when reading sequential space compressed files.
Remember that the trailing spaces in such file records are
not written and that the DISPLAY and PRINT statements can be
forced to output only up through the character being pointed
to by the logical length (using the *+ control). These
features can be combined to make listing sequential files on
the terminal or printer much faster by the deletion of
trailing spaces.

The above discussion deals with the action taken when
the end of the logical record is reached while reading data
into a string variable. If the data is being read into a
numeric variable, the rest of the variable is padded with
either spaces or zeros as appropriate. Note that if one of
these locations within the variable is the decimal point, a
FORMAT trap will occur.

If the list contains more variables after the one being
filled when the end of the logical record is detected, these
variables will either be set to zero (if numeric) or have
their logical lengths and formpointers set to zero.

If the list is exhausted before the logical end of the
record is reached, two actions can take place. If a
semicolon is placed at the end of the list, the file

59

DISK 1/0

pointers are simply left after the last character read so a
subsequent· 1/0 operation will pick up where the pointers
were left. If a semicolon is not placed at the end of the
list, the file pointers are advanced until they are pointing
after the next logical end of record marker so a subsequent
1/0 operation will pick up at the start of the next logical
record. .

A RANGE trap will occur and the logical file pointers
will not be changed if an attempt is made to read a record
which has never before been written. (Note that the DOS
RANGE or FORMAT traps will both cause a DATASHARERANGE trap
and that the DATASHARE FORMAT trap has nothing to do with
the DOS FORMAT trap.)

The following is a list of the different types of READ
statements. In the examples; the variable RN is a positive
numeric item, SEQ is a negative numeric item, KEY is a
non-null string item, NULL is a null string item, FNDECL is
a FILE declaration name, FIDECL is an IFILE declaration
name, and FDECL is either a FILE or IFILE declaration name.

TEST FOR END OF FILE

Before discussing the READ operations, the end of file
indicator should be discussed. The OVER condition flag
being set indicates that a READ operation has run across an
end of file mark on physical accesses and has accessed a
non-existent key on indexed accesses. The test for the OVER
condition should be made after the READ statement. For
example:

READ FDECL,SEQ;A,B,C
GOTO LABEL IF OVER

If an end of file is read on physical accesses, the
variables in the statement will be set to zero or have their
logical lengths and formpointers set to zero depending upon
whether they are numbers or strings respectively. Note that
the OVER condition will also be set if a semicolon appeared
at the end of the READ list. This is a change from
DATASHARE 2 and could require a modification to DATASHARE 2
program logic. The way the READ mechanism works, whenever
an end of file mark is found the file pOinters "stick" at
the beginning of the mark and spaces are supplied for all
characters requested to fill variable,s. Therefore; if one
continues to perform READ operations ignoring the fact that
the OVER condition flag is being set, the READ operations
will simply continue to set the OVER condition flag and
clear or zero all variables. This is also true of READ
operations whose lists are terminated by semicolons.

The OVER cohdi tion being set after an indexed READ

60

DISK 1/0

operation indicates that the KEY specified could not be
found in the index. For a READKS (read key sequential)
operation, the OVER condition being set indicates that the
last record in the sequence has been read and the current
operation tried to read a non-existent record. See the
relevant sections that follow for further information on
indexed operations setting the OVER condition flag.

READ FDECL,RNjA,B,C

This is a physically random access read. The
physical record pointer is set to the value of RN and
the character pointer is set to the beginning of the
physical record (any digits after a decimal point in RN
are ignored). Variables A, B, and C are then read.
Any remaining characters in the logical record are
discarded since the operation leaves the file pointers
pointing to the beginning of the following logical
record.

READ FDECL,RN;A,B,C;

This is similar to the above operation except that
the file pointers are left pOinting to the character
after the last one read into the variable C. This
enables another 1/0 operation (write as well as read)
to continue from the character after the last one
loaded into the variable C.

READ FDECL,SEQjA,B,C

This is a physically sequential access read.
Variables A, B, and C are read from logical file one
beginning at the position indicated by the current file
pointer values. The file pointers are left pointing to
the beginning of the following logical record.

READ FDECL,SEQjA,B,C;

This is similar to the above operation except that
the file pointers are left pointing to ~ the character
after the last one read into variable C. This enables
another 1/0 operation (write as well as read) to
continue from the character after the last one read
into the variable C.

READ FDECL ZERO·· , , ,

Assume that the numeric variable ZERO is defined
to be a zero in value. This operation would then cause
tne file pointers to be positioned to the physical
oeginning of the file exactly as if a PREPARE or OPEN
instruction had just been performed. This implies that

61

DISK IIO

space compression will be on if a WRITE is then
performed, and the user must turn off space compression
if it is not desired. It is suggested that the reader
review the paragraphs in Section 7.7.2, which discuss
when space compression is. turned on off, if this point
is not clear.in the reader's mind.

READ FNDECL,RN;A,*100,B,*NVAR,C,*50,D;

By including the tabbing controls in the read
statement list, selected posi tions may be read from a
record without having to read all of the positions in
the record. The list controls * (numeric literal) or
.(numeric variable) are used to position the character
pointer to the specified character position in the
specified physical record and may appear anywhere in
the list. Reading for the rest of the list (unless
another positioning control is encountered) begins at
the character position specified by the positioning
list control. Note that tabbing in physically random
access reads is allowed only upon logical files that
have been declared using the FILE directive (since the
tab values are biased by the starting point of the last
index accessed record on reads using a: logical file
that has been declared using the IFILE directive).

Tab positioning in physically random access read
operations is calculated from the first data position
of the physical record specified. If the tab position
is greater than 249 characters, an 10 trap will occur.
When reading is completed, the character pointer is
moved to the beginning of the next logical record if
the statement list is not terminated by a semicolon.
If the list is terminated by a semicolon, the character
pOinter is left pointing one character position past
the last character read.

Note that tab posi tioning in a physically random
access read operation will inhibit the ability of that
operation to detect an EOF mark that may be in the
given sector. Either a non-tabbing read can be
performed first (to determine whether an EOF exists in
the sector in question) followed by the tabbing read if
the EOF was not found, or the programmer can invent his
own EOF marking convention (which will not require
double reads).

The above example would set the physical record
pointer to· RN and the character pointer to one and
variable A would be read. The character pOinter would
then be set to one hundred and variable B would be
read. The character pointer would then be set to the
value contained in the numeric variable NVAR and

62

DISK 1/0

variable C would be read. The character pointer would
finally be set to fifty and variable D would be read.
The character pointer would be left pointing after the
last character read into variable D since a semicolon
appears at the end of the list.

Note that for physically random access reads, it
is generally a good idea to place a semicolon at the
end of the list if the next read will involve an access
to a logical record other than the one which appears
next physically. The reason for this .is that there is
no need to require the processor to scan the rest of
the logical record in an attempt to place the file
pointers at the beginning of the next logical record
when that placement will not be used. This is
especially helpful if the read does not leave the
character pointer near the end of the logical record as
would often be the case where tabbing is being used.

Note that using the read tab on physically
sequential access reads (where the record number
specified is a negative value) is possible but not
advisable. Tab positioning on physical accesses is
always calculated from the first character position in
the current physical record. The program could obtain
characters from a previous or following logical record
if tabbing is used in a file where the relationship
between logical and physical record boundaries is not
known.

READ FIDECL,KEY;A,B,C

This is an indexed access read. The index file is
searched for the key given in the string variable KEY
starting wi th the forlnpointed character and going
through the character pointed to by the logical length.
The KEY is considered to match an item in the index
file if both have exactly the same number of characters
and all of them match or if all of the characters up
through the length of the index item match and then the
rest of the characters in the key variable are spaces.
Remember that there are no trailing spaces in the index
file key items. This means that even if the INDEX
utility was told to index on columns 1 through 10, if
that field in a certain record consisted of an "A"
followed by 9 spaces, the index file key item would
consist of an "A" followed by the key terminator
character. .

If a match is found, the next key pointers are
left pointing to the following item .in sequence in the
index file, the physical record and character pointers
are obtained from the index file, and the rest of the

63

DISK 1/0

read proceeds precisely as if a physically sequential
read were being performed. When finished, the file
pointers are left at the start of the physically next
logical record in the file.

If no match is found, the OVER condition flag is
set, all of the variables in the list are left with the
values they had before the READ was attempted, and the
next key pointers are left pointing to the next item in
sequence in the index file. Therefore, a read key
sequential (see the section. on READKS) can be performed
to obtain the first item by collating sequence
following the item that could not be found. This can
be very useful for obtaining lists of class~s of items.

For example, one could have a file of serialized
items with model codes. One could index the file on
the model code followed by the serial number. He could
then access a given model code with a serial number of
all spaces (spaces being lower in collating value than
zeros) . The access would return with the OVER
condition flag set indicating that no such item existed
in the file. The program could then proceed to read
sequential by key obtaining a list of the serial number
of all items of a given model code by the collating
sequence of the serial number. The program would have
to detect when the model code changed to determine when
the list of a given model code should be terminated.

Another feature is that physically sequential
accesses can be made after an indexed access. The
INDEX utility allows a file to be indexed only upon
what are called primary records (this is a SORT utility
option). For example, a file could consist of a
primary record followed by five secondary records
followed by another primary record followed another
five secondary records and so forth. If the index were
buil t only on the primary records, one could do an
indexed access to the primary record and then do five
physically sequential accesses to read the five
,secondary records.

An indexed access read takes approximately half a
second regardless of the size of the data file. This
assumes that relatively few insertions have been made
upon the fil~ and that only one program is executing in
the system. See the section below on index insertions
(WRITE) for a discussion on how insertions can affect
the indexed access timing.

READ FIDECL,KEY;A,B,C;

This is similar to the above operation except that

64

DISK 1/0

the physical file pointers are left after the last
character read rather than at the beginning of the
physically next logical record. This is useful if one
is not going to do a physically sequential access
afterwards since it saves time not scanning to the end
of the logical record. It is also useful if one wants
to read the rest of the record in a later READ
operation or if he wants to update the rest of the
record by following the indexed read by a physically
sequential write.

READ FIDECL,NULL;A,B,C

This is an indexed re-read. If the index key
supplied to the READ operation is null (logical length
and formpointer equal to zero), then instead of
accessing a given item based on the key, the operation
re-reads the last logical record that was accessed
using the index specified by the given logical file.
Remember that physical accesses do not change the
pOinter to the last record accessed using an indexed
access. The reader should review Section 7.7.2 if this
point is not clear in his mind.

This operation enables one to re-read an indexed
record wi thout having to search the index file for a
gi ven key. An 10 error is given if there has not
previously been a successful READ performed using a
non-null key on the specified logical file. Otherwise,
the operation proceeds exactly as in the normal indexed
access READ.

READ FIDECL,NULL;A,B,C;

This is similar to the above operation except that
the physical file pointers are left after the last
character read into the variable C.

READ FIDECL,KEY;*25,B,*NVAR,C,*10,D;

This operation performs an indexed access,
posi tions the character pointer to column 25 relative
to the beginning of the logical record, reads the
required number of characters into the variable B,
positions the character pointer to the column specified
in the numeric variable NVAR relative to the beginning
of the logical record, reads the required number of
characters into the variable C, positions the character
pointer to column 10 relative to the beginning of the
logical record, reads the required number of characters
into the variable D, and leaves 'the physical record
pointers after the last character read. Note the
difference between using tabbing in physical accesses

65

DISK 1/0

and indexed accesses is that in indexed accesses the
tab position specified is made relative to the
beginning of the logical record and not to the
beginning of the physical record. The reason for this
is that one 'may. desire to have several logical records
per physical record in an indexed file and be able to
use tabbing on the accesses to that file. The problem
is that when doing indexed accesses, the program has no
idea of where the logical record is in· the physical
record so the system must make the tab values relative
to the beginning of the logical record to make tabbing
in indexed files useful. Remember that an attempt to
cross a physical record boundary with a tab resul ts in
an 10 error.

Note that once again it is usually advisable to
use a semicolon at the end of statements using tabs
since it just wastes time to cause the processor to
scan to the beginning of the next logical record if the
next access to the file will not be to the physically
next logical record.

READ FIDECL,NULL;*25,B,*NVAR,C,*10,D;

This is similar to the above operation except that
the last key-accessed record in the given logical file
is read instead of a new index access being made.

7.7.7 READKS

This is a read key sequential operation. As mentioned
in Section 7.7.2, whenever an indexed access is made the
access routines update a pointer to point to the following
key entry in the lowest level of the index. When a READKS
operation is performed, instead of searching for a key of a
given value, the key pointed to by the next key pointer is
used (no key is supplied to the READKS operation). READKS
also bumps the pointer to the next key in the index causing
successive READKS operations to obtain records in collating
sequence. If the pointer to the next key in the index is
pointing past the. last key in the index (either a key larger
than any existing was accessed in the last indexed access or
the last key sequential read obtained the last record in the
collating sequence) then execution of the READKS operation
causes the OVER condition flag to be set and all of the
variables in the list will have an indeterminant value. The
READKS instruction can appear as follows:

READKS
READKS

FIDECL;A,B,C
FIDECL;*25,A,*NVAR,B,*10,C;

Except for the access method, the functioning of READKS is
identical to the functioning of an indexed access READ (this

66

DISK I/O

is in reference to the action taken once the desired logical
record is located).

7.7.8 WRITE

The write statement is used for physically random,
physically sequential, or indexed insertion writes. The
write statement consists of a logical file declaraction name
and a record specifier (a numeric variable for physical
accesses and a string variable for indexed insertions)
followed by a list. The list may include variable names,
quoted characters, and octal control characters (000 through
037). Note that tab positioning is not allowed in the WRITE
operations (the WRITAB operation must be used to do tabbing
in writing functions).

Each character string variable in the write list will
be written from its first physical character through the
logical length. Spaces will be written for any character
positions between the logical length pointer and the
physical end of string. Eacn numeric item will be written
in total. Note that only the data in each variable is
written and not any of the control information (logical
length, formpointer, 0200, or ETX). The quoted items and
octal control characters will be written exactly as they
appear in the list. For example, if the following
definitions were made:

TIME
TOTAL
FDECL

and the statement:

INIT
FORM
FILE

"10:23"
"001"

WRITE FDECL,RN;"TIME: ",TIME,015,"TOTAL: ",TOTAL

were executed, the file would be written with the
characters:

TIME: 10:23(015)TOTAL: 001(015)(003)

where the (015) and (003) denote control characters.
Remember that certain control characters (000, 003, 011, and
015) mean special things to the read operations and their
use can cause confusion. In the example above, two logical
records were written with the one write statement because of
the 015 written in the middle.

The following is a list of the different types of write
statements. The variables used are assumed to have the same
definitions as those in Section 7.7.6. Although the
following examples show lists with only three variables, it
should be remembered that all of the WRITE operation lists

67

DISK IIO

can contain the various items shown in the above example.

WRITE FDECL,RN;A,B,C

This is a physically random access write. The
physical record pointer is set to the numeric value
contained in ~N and the character pointer is set to the
beginning of the physical record (any digits after a
decimal point· in RN are ignored). Variables A, B, and
C are then written followed by end of logical record
(015) and end of physical record (003) characters. The
character pointer is left pointing to the 003
character. Note that all WRITE statements are allowed
on either FILE or IFILE declared logical files.

WRITE FDECL,RN;A,B,C;

This is similar to the above operation except that
the 015 and 003 characters are not written after the
last data character. The character pointer is left
pointing after the last character written. This
operation is useful for writing the first part of a
record where more of the record will be written later
or for updating part of a record where the 015 and 003
would, if they were written, destory data characters
that followed.

WRITEFDECL,SEQ;A,B,C

This is a physically sequential access write.
Variables A, B, and Care wri t ten beginning at the
character position currently being pointed to by the
logical file pointers. If the file had just been
opened, the current position would be th~ first
character position in physical record zero of the
specified logical file. Otherwise, the file pointers
would be positioned according to the results of the
last read or write operation executed. End of logical
record (015) and end of physical record (003)
characters are written after the last character in
variable C. The character pointer is left pointing at
the 003 character. Remember that space compression
m6de will be on after the file is opened which means if
the file is to be opened and then written sequentially
but space compression is not to be used, one must
execute a write statement whose first list item is a *­
control. For example:

OPEN FDECL,"FILE"
WRITE FDECL,SEQ;*-,A,B,C

See Section 7.7.2 for a discussion of when space
compression mode is turned on or off.

68

DISK 1/0

WRITE FDECL,SEQ;A,B,C;

This is similar to the above operation except that
the 015 and 003 characters are not written after the
last character in the variable C. The character
pointer is left pointing after the last character
wri tten.

WRITE FIDECL,KEY;A,B,C

This is an indexed access record insertion. The
KEY variable must not be null and the key specified
must not already exist in the index specified by the
gi ven logical file (either condition will cause an 10
error) . The search algorithm used to determing that
the key is not already in the index is identical to
that used in the indexed access READ operation.

The key whose value lies from the formpointer
through the logical length of the KEY variable is
inserted in the index file specified by the given
logical file and the record is written at the physical
end of the data file. The record i~ always started at
the beginning of the physical record which contains the
EOF mark and then a new EOF mark is automatically
written in the physical record which physically follows
the new record. Note that this implies that for each
record inserted into the data file, at least one
physical record will be used (even if the record
inserted is only 30 characters long). The record
inserted may be longer than one physical record, in
which case an integral number of physical records will
be used for the inserted record. The reason the
inserted record is always started at the beginning of a
physical record is that this insures that tabbed
operations can then be performed upon the new record in
case they are desired (assuming the new record will fit
within one physical record).

An insertion takes approximately two seconds to
perform on a file which has had no previous insertions
performed on it. Insertions can take longer if many
records very close together in collating sequence are
inserted together. When inserting items whose keys
fall randomly within the collating sequence one can
usually insert a number of records equal to one tenth
of the total number of records in the file before the
insertions will start to take significantly longer than
two seconds. It is generally a good idea to run the
INDEX . utili ty as often as practical when many
insertions. and deletions are being performed to keep
the speed of insertions and indexed accesses as high as
possible.

69

DISK 1/0

WRITE FIDECL,KEY;A,B,C;

This operation is also an indexed insertion write
except that the new EOF mark is not automatically
written at the end of the file. One could desire to
finish writing the record wi th a later operation and
could do this by following the above statement by
physically sequential write operations and then writing
the EOF mark at the end of the file himself. He must
make certain, however, that if he is going to do this
that no other program can try to do an insertion before
the EOF is written or the other program will get a
RANGE trap since it will not be able to find the EOF
which it will want to overstore.

7.7.9 WRITAB

This operation is the write tab feature which requires
a different instruction mnemonic from the normal write
operations. With this feature, characters may be written
into any character position of a physical record without
disturbing the rest of the record. A RANGE trap will occur
and the logical file pointers will not be changed if a write
tab is used on a record of the file that has never been
wri t ten before. The write tab can be performed only upon
logical files which have been delcared using the FILE
declaration. The UPDATE operation is used to do tabbed
writes into indexed files. The list controls *(numeric
literal) or * (numeric variable) are used to position the
character pointer to the specified character position in the
current physical record. Writing of the variable begins at
the point specified by the position control. If no
positioning is specified, the writing of the first variable
starts at the beginning of the physical record.

Tab positioning in physically random accessed writes is
calculated from the first position in the specified physical
record. If the tab position is greater than 249 characters,
an 10 trap will occur. Only the quoted characters, octal
control characters, and variables appearing in the list are
written. The character pdinter is left pointing one
character past the. last character written (there is an
implied semicolon at the end of the WRITAB operation). For
example,

WRITAB FNDECL,RN;A,*70,B,*10,C,*NVAR,"TIME"

would write variable A beginning with the first position in
the physical record specified by RN. Variable B .would be
written beginning at position ·70 in the physical record and
variable C would be written beginning at position 10 in the
physical record. The characters "TIME" would be written
beginning at the position specified by the numeric variable

70

DISK 1/0

NVAR (any places after a decimal point will be ignored) and
the character pointer would be left pointing one char·acter
past the "E" written for the quoted characters "TIME". An
10 trap would occur and the record would not be written if
NVAR was greater than 249.

A word of caution is appropriate at this point in the
discussion. If in the above example NVAR had had a value of
248, the letter "T" would have been written as the last
character in the physical record specified by RN. That
physical record would then be written and the following
physical record would have been read into the buffer. The
letters "IME" would have then been written into the first
three positions of this new physical record and the record
then written back out. If more tab positions had followed
the writing of the characters "TIME", these would have been
in the new physical record, not in the one specified by the
contents of RN. This action would probably not be that
expected by the programmer and would all take place without
a wimper of an error message from the interpreter. Just be
careful about your tab positions!

Note that using WRITAB wi th a physically sequential
access (where RN contains a negative value) is possible but
not advisable. Tab positioning on physical accesses is
always calculated from the first character position in the
current p~ysical record. The program could obtain
characters from a pervious or following logical record if
tabbing is used in a file where the relationship between
logical and physical record boundaries is not known.

7.7.10 UPDATE

This operation allows modification of the last record
that was accessed with a READ or READKS operation. Only the
logical file declaration name is supplied to this operation
(no key is supplied) but the list may have all of the items
allowed in the WRITAB list. For example,

UPDATE FIDECL;A,*20,B,*40,"ASDF",033

would read the last indexed accessed record j n the logical
file FIDECL and would overstore the first characters in the
logical record with the contents of the variable A, would
overstore the characters starting with the 20th character in
the logical record with the contents of the variable B, and
would overstore the characters starting with the 40th
character in the logical record with the characters "ASDF"
followed by the octal character 033. The character pointer
would be left pointing after the 033 character (the last
character wri t ten from the list). Note that as in indexed
access reads using tab positioning, the tab positions in the
UPDATE operation are relative to the beginning of the

71

DISK 1/0 .

logical record (and not the beginning of the physical record
as in WRITAB). . As in the WRITAB operation, the UPDATE has
an implied semicolon at the end of its list.

7.7.11. INSERT

This operation allows an index insertion into more than
. one index file. The WRITE operation mentioned earlier is
used to physically insert the record into the data file and
insert the key into one index file. If more than one index
is being used, one INSERT operation must be performed for
each additional index into which an insertion is to be made.
When the WRITE operation performs the physical record
insertion, a pointer is kept which contains the physical
location of the newly inserted record in the data file.
When the INSERT operation is performed, the specified key
(with a pointer to the remembered physical location into the
data file) is inserted into the specified index file. Since
only one of these insertion memory pointers is kept for each
program, one must make sure that he performs all insertions
necessary for a given record before performing the next
WRITE to in~ert the next record. For example, the sequence
to insert two records into two indicies would be WRITE
INSERT WRITE INSERT and not WRITE WRITE INSERT INSERT. The
format of the INSERT statement is as follows:

INSERT FIDECL,KEY

where FIDECL is the name of the logical file declared for
the index being used and KEY is the string variable in which
from the formpointer through the logical length is contained
the key to be inserted in the index. An 10 error is given
if KEY is null or if the key specified already exists in the
specified index file. Otherwise, the key is simply inserted
into the index. Note that it is not necessary to prevent
the program from being interrupted between the WRITE and
INSERT operations since the pointer to the record which was
inserted is kept for each program and even if another
program inserted a record in the same file or index between
the WRITE and INSERT of the program in question, all
insertions would be performed correctly.

7.7.12 DELETE

This operation allows a record to be physically deleted
from a data file and for its key to be deleted from the
specified index. The DELETE instruction is also used to
delete keys from other indicies which can index the data
file. For example,

DELETE FIDECL,KEY

will delete the record specified by the key (whose value

72

DISK I/O

lies from the formpointer through the logical length in the
variable KEY) in the data file specified by the index file
specified by the logical file whose declaration name is
FIDECL. The record is physically deleted by having all of
its characters up through the logical end of record mark
(015 character) overstored with 032 control characters. The
032 character does not appear to exist .when the record is
read using the DATASHARE read mechanism or the REFORMAT
utility read mechanism since when these mechanisms see such
a character they simply bump the character pointer (moving
on to the next physical record if running off the end of the
current physical record) and try to fetch the next
character. Therefore, when DATASHARE performs physically
sequential reads across records that have been physically
deleted, the records no not appear to exist. The REFORMAT
utility eliminates these 032 characters to close up the
deleted space in a file and to make the file readable by
other DOS utility programs such as SORT.

The DELETE operation will not try to overs tore the
record being deleted with 032 characters if the first
character already contains a 032 character. This allows the
DELETE operation to be used to delete the key entries from
all index files which index the given data file. For
example,

DELETE FIDECL1,KEY1
DELETE FIDECL2,KEY2
DELETE FIDECL3,KEY3

would be used to delete the record and keys out of the three
indicies which pointed to that record. The first DELETE
would actually overstore the logical record with 032
characters and delete the key from the index file specified
by the logical file whose declarat.ion name was FIDECL 1. The
other two DELETE operations would only remove the keys from
their respective index files since it would be noted that
the logical record already contained a 032 character in its
first position.

7.7.13 WEOF

Standard DOS end of file marks (000 000 000 000 000 000
003) in the first seven character positions of a physical
record) can be written in DATASHARE. WEOF does not change
the physical record or character pointers for the given
logical file. For example,

WEOF FDECL,RN

will write an end of file mark in physical record RN while

WEOF FDECL,SEQ

73

DISK 1/0

will write an end of file mark in the next physical record
after the current physical record pointer. Note that the
WEOF operation may be performed upon logical records which
have been declared either FILE or IFILE but that the record
is always specified using a numeric variable for the record
number. This implies that one cannot write an end of file
mark using an indexed access.

74

PROGRAM GENERATION

8. PROGRAM GENERATION

8.1 Preparing Source Files

fj'iles containing the source language for DATASHARE 3
programs are prepared using the general purpose editor
running under the DOS and whose use is covered in a separate
document. The editor tab stops may be set to be suitable
for keyin of DATASHARE 3 programs by using the : T command
and setting two tabs, one at 10 and the other at 20.

8.2 Compiling Source Files

DATASHARE 3 programs are compiled using the DATASHARE 3
compiler running under the DOS. Note that DATASHARE 3
programs must always be compiled using the DATASHARE 3
compiler running alone under the DOS. This means that
programs cannot be generated while the DATASHARE 3 system
itself is running, and if it is running it must be stopped
ei ther manually or with the use of ROLLOUT before
compilations can be performed. The DATASHARE 3 compiler is
parameterized in the following manner:

DSCMP <source>[,<object>][,<print>][;<L><C><E><R><X><D>]

File Specifications:

The compiler may be parameterized with up to three file
specifications. These file specifications follow the
standard DOS conventions. Refer to the DOS User's Guide for
further information concerning DOS file specifications. A
bad drive specification for any of the files will result in
the error message:

BAD DEVICE SPECIFICATION

If any of the file specifications are identical, the
message:

SOURCE AND OBJECT FILES THE SAME or
SOURCE AND PRINT FILES THE SAME or
OBJECT AND PRINT FILES THE SAME

will be displayed.

The source file contains the DATASHARE 3 program text
created wi th the editor. This file must always be
specified. If no extension is given on the source file
name, the extension TXT is assumed. If the source file name
is not supplied, the message:

NAME REQUIRED.

75

PROGRAM GENERATION

will be displayed. If the source file name does not exist
in the DOS directory, the message:

NO SUCH NAME.
""

will be displayed. If no drive is specified, all drives
beginning with drive 0 will be searched for the source file.

The object file will contain the object code generated
by the compiler from the specified source code. If the name
of the object cod~ file is not given, the name of the source
code file with an extension of DS3 will be used for the name
of the object code file. Note that DATASHARE 3 can run only
those files with extension DS3. If the source code file is
specified wi thouta drive number, the compiler will search
all drives for the name given. If the object code file name
(with the extension specified or the assumed extension DS3)
is not found on any drive, the object code file is placed on
the same drive as the source code file. If the object code
file is found, it is killed and re-opened on the same drive
it was found on to assure a maximally contiguous file space
is available. This will lessen the likelyhood of the
occurance of a segment error (explained later).

The print file specification is also optional. If it
is given, any print output requested will be written in this
file (in the standard GEDIT format) instead of being printed
on the local printer. Top of form will be indicated by the
character'1' in column one of the print line. Otherwise,
column one is always blank and the line starts with column
two (this is the standard COBOL and FORTRAN print file
format). This option is particularly useful for
compilations during ROLLOUTs (see Section 4.9) . For
example, during the ROLLOUT several compilations could be
run which placed the print output into the print files
specified. The compilation results could then be printed by
a DATASHARE 3 program when the DATASHARE 3 system was
restored. This procedure would shorten the total time that
the DATASHARE 3 system would have to be down while at the
same time allowing the programmer to obtain program
listings.

If no name is given for the print file specification,
the source file name will be assumed. If no extension is
given, an extension of PRT will be" assumed. However, if the
print file is to be read under DATASHARE 3 it must have an
extension of TXT since all DATASHARE 3 data files must have
that extension. If no drive number is specified, the print
file will be placed on the same drive as the source file. A
print file may be specified simply by keying in a comma
after the object file specification or, if no object file is
specified, by keying in two commas after the source file
specification. Note, however, that the extension assumed in

76

PROGRAM GENERATION

this case will be PHT.

Output Parameters:

These parameters allow the user to specify what type of
output is wanted in addition to the object file. If a print
file is specified, any print output is written in that file
instead of being sent to the printer. If the semicolon but
no parameters are specified, the only output is the object
file (if in this case a print file was specified it would be
null) .

The DATASHARE 3 compiler can output to either a local
or servo printer. The compiler is self-configuring in this
respect and will output to whichever printer it finds
connected to the system 1/0 bus. Since the compiler looks
first for a servo printer, output will be to the servo
printer if both a local and servo printer are addressable by
the system.

Any source code lines which have errors are displayed
on the screen during pass II, with the appropriate errol"
flag. Additionally, the compiler displays at the lower left
cornel" of the screen the current line number being compiled,
for every 10th line. Every 10th line is indicated because
displaying the line number for every line would slow down
the compiler. No numbers will be displayed if the program
is fewer than 10 lines long. This line number display is
cleared when processing of included files begins or ends, so
the line number display will blink off momentarily du.ring
compilation of source files using included files.

To specify output options, a semicolon plus one or more
of the following should be placed after the last file
specification:

L A listing of the compilation results is printed. Each
line of source code is nwnbered and the object code
location counter value for the first byte of code
generated for the line is listed to the left of each
source code line. A '+' appearing as the first
charac.ter of a line causes a new print page to be
started. The rest of the line following the + may be
used as a comment line. A'.' appearing as the first
character of a line causes a new print page to be
started if the current line is within two inches of the
bottom of the current page. A good way to improve the
readabili ty of a program is to begin" each section or
routine with a comment before which a line is entered
which contains a star in its first· column. This will
make sure the comment appears on the same page as the
first lines of the code to which it is attached.

77

PROGRAM GENERATION

C A listing of the compilation results is printed and the
generated object code is listed to the left of the
source code. Printing the object code usually makes
the listing about twice as long. If this option is
gi ven, the L option is implied and need not also be
given.

E The source code for lines with errors will be printed
in addition to being .displayed on the screen. This
parameter has no meaning if the L or C options are
given since listings produced under those options will
include error flags anyway.

R The line numbers for referenced labels in an operand
string will be printed at the right margin of the
listing. The line number is the line on which the
Referenced label was defined. If the L, C, or E option
is not also given, this option has no effect. This
option may be given instead of or in addi tionto the X
option. The R option is especially convenient with
GOTO or CALL instructions in following the logic path
of a complex set of code. Note that for the R option
to be effective, a printer with at least 130 column
printing capability must be used.

X A cross-reference listing is printed at the end of the
compilation. There will actually be two
cross-references: one for the data labels and one for
the executable labels. Each cross-reference is sorted
alphabetically. The data or executable label is given
preceded by the octal location where the label was
defined and . followed by a list of all line numbers in
which the item was defined or referenced. An asterisk
flags those line numbers which are definitions. The
SORT utility is called by the compiler to do the actual
reference sorting, and the messages displayed on the
screen will be appropriate to the progress of the sort.
A cross-reference may be obtained regardless of whether
a listing was requested.

D A copy of the source code is displayed on the screen
during the compilation.

If a listing has been requested, the compiler will ask:

HEADING:

This may be 70 dharacters long and is printed at the top of
each page. Indicating the time and date of the listing is
helpful in keeping listings in chronological order. The
source file name is automatically listed to the left of the
heading.

78

PROGRAM GENERATION

Examples:

DSCMP PROGRAM

This is the simplest compilation' specification. The
source code found in file PROGRAM/TXT would be compiled with
the object code placed in file PROGRAM/DS3. No other output
would be given except for errors displayed on the screen.

DSCMP ANSWER,ANSWER4;CX

The source code in ANSWER/TXT would be compiled and the
object code placed in ANSWER4/DS3. A listing would be
printed on the printer and consist of the source and object
code with a data and executable label cross-reference at the
end.

DSCMP FILE:DRO"FILELST/TXT:DR1;LX

The source code in FILE/TXT on drive 0 would be
compiled and the object code placed in FILE/DS3 on drive O.
A copy of the source code and a data and label
cross-reference will be written in FILELST/TXT on drive 1.

The compiler may be stopped temporarily by depressing
the DISPLAY key. The DISPLAY light will be turned on and
execution will not be resumed until the DISPLAY key is
depressed again (the DISPLAY light will then be turned off).
Compilation may be aborted at any time before the
cross-reference sort is begun by depressing the KEYBOARD
key. If the compilation is aborted in this manner the
object file and the dictionary file are deleted, as are the
reference file and the print file if a cross-reference list
or print file was specified.

8.3 Compilation directives

Two directives are available in the DATASHARE 3
compiler as mentioned in Section 2.2. One is the EQU
statement which allows a label to be assigned a decimal
numeric value from 1 through 249. For example:

LM EQU 5

A label which is defined in this manner may be used as tab
values in disk I/O statements and as cursor positions in
KEYIN, DISPLAY, and CONSOLE statements. This is
particularly useful when one defines a data base record
format. If all item positions within the record are defined
using the EQU directive, then changes in item positions can
be achieved by simply changing the one directive value. If
the EQU were not used, the user would have to hunt through
all programs to change all disk I/O statements to change the .,.

79

PROGRAM GENERATION

item position in the record.

The second compiler directive is INCLUDE (the compiler
also accepts a mnemonic of INC) which allows another text
file to be included at that point as if the lines actually
existed in the main file. For example:

INC RECDEFS

will cause the file RECDEFS/TXT to be scanned as if all of
its lines existed in the place of the INCLUDE line. The
assumed extension on included files is TXT but may be
specified to be any extension. If no drive is specified,
all drives starting with drive zero will be scanned for the
file. Inclusions may be nested up to four deep. The
INCLUDE directive can be used to include a file containing
the EQU directives and data variable definitions which
define the format of a data base file record. This can
prevent the programmer from having to key in the data area
(and common data area) definitions over and over for each
program to use a certain data file. It also will makei t
much easier to update the data area definition since the
programmer would have simply to update the one text file and
then compile all the programs (which would include the
modified definition file) to update all programs to the new
data area definition.

8.4 Compilation diagnostics

The compiler prints and displays diagnostic messages on
the listing to help the programmer debug syntatical errors
in his code. These messages take the form of an error code
letter at the left of the listing and an asterisk under the
line at the position of the scanning pointer when the error
occurred. The letters are E for an expression error (a
generalized syntatical error), U for an undefined variable
or label, and I for an undefined instruction. In the case
of E errors a number is given on the line with the asterisk
pOinting out the error position in the source line. This
number refers to the list of detailed error explanations in
Appendix E of this document. If any of these flags appear,
the compiler will store a STOP instruction into the first
executable location in the object file. If the faulty
program is then executed, it will only execute the STOP
instruction which will simply return control to the MASTER

.. program.

The DATASHARE aystem uses the DOS logical file zero for
reading and writing all data to and from the disk. This
implies that a segment boundary may not be crossed by the
object code during a READ or ~RITE statement (since fetching
the statement also involves disk 1/0). For this reason,
DATASHARE object files are restricted to one segment in

80

PROGRAM GENERATION

length. If, during code generation, more than one segment
was used to hold the object file, the compiler gives an
errol" message:

SEGMENT ERROR

and flags the file by storing a STOP instruction into the
first executable location in the object code file. In this
case, the object code file for the given program should be
deleted from the DOS (using the KILL command) and the disk
pack onto which the object code was being written should be
purged, or the BACKUP program used (if a dual drive system is
availabe) to make more contiguous free space available. To
minimize the possibili ty of a segment errol" if the object
code file already exists (since the program could become
larger), the compiler kills the old object file and then
re-opens it on the same drive to assure a maximum of
contiguous file space.

8.5 Disk space requirements

The DATASHARE 3 compiler maintains its label dictionary
on disk in the file named DSCDICT/SYS. Moreover, this file
is always placed on the same drive as the output object file
because it is reasonably certain that that drive will not be
wri te protected. For these reasons, there may not be more
than 254 files named (255 if the object file name already
exists) on the disk onto which the object file is to be
written.

Further, if a cross reference is desired, there must be
foul" more file name places available among the drives
on-line. One of the file names that will be in use during
the compilation is DSCREF/SYS (the file onto which the
compiler writes information about each label reference).
Three files will be generated by SORT: *SORTMRG/SYS,
*SORTKEY I SYS, and DSCREFT I SYS. The first of the two files
by SORT are scratch files, and the third is a tag-file
pointing back into the DSCREF ISYS file. At normal
completion of the compilation, all files mentioned above
(except the output object file) will have been deleted and
the file space again made available to the user.

SYSTEM GENERATION

9. SYSTEM GENERATION

9.1 Loading From Cassette

The DATASHARE compiler and interpreter system programs
are contained on one cassette. The cassette is in the DMF
(DOS Multiple File) format which includes a directory of the
files on the tape. All that is necessary to load the
DATASHARE 3 system files to disk is to have the MIN program
catalogued on the system and to keyin:

MIN ;A

The MIN (Multiple IN) program will be activated and
will display the date of creation of the tape, the file
names in the tape directory, and each file name as the file
is being loaded. If the file already exists on the disk,
the MIN program will ask if it is to be overstored. The
operator can decide to overs tore the file or can tell it not
to overstore the file in which case MIN will allow the file
to be stored under a different name. Consul t the MINMOUT
USER'S GUIDE for further information on its operation.

The files contained on the DATASHARE 3 release tape are
the interpreter system (DS/CMD and DS/OV1 through DS/OV7),
the compiler system (DSCMP/CMD and DSCMP/OVO through
DSCMP/OV2), and the other support programs (DSCON/CMD,
DSBACK/CMD, DSBACKTD/CMD, AUTOKEY/CMD, ROLLOUT/SYS,
ROLLFILE/SYS, and INTRHAND/SYS).

The DATASHARE 3 interpreter system files can be
re-named to any name desired as long as the command file and
all the overlays have the same name. For example, if DS/CMD
was re-named DS3/CMD, then DS/OV1 thru DS/OV7 would have to
be named DS3/0V1 thru DS3/0V7.

9.2 Port Configuration

The DATASHARE system may be configured to run with from
one to eight ports. The system is configured by running the
DSCON program. Thi~ program will first display the current
configuration (if one has been made) and then ask if the
conf.iguration is to be changed. If a negative response is
given, control is returned to the DOS. Otherwise, 'the DSCON
program will run through a sequence of questions concering
the number of ports, whether the console is to be the
terminal for port one, whether the servo printer is to be
used for the system printer, if port one is on the console
whether the multi-port is to be bypassed al together, and
whether the available space is to be divided evenly among
the ports. If the space is to be evenly divided, the DSCON
program will display how much space is allocated to each
port. If the space is not to be evenly divided, the DSCON

82

SYSTEM GENERATION

program will request the amOUJt of space to be allocated to
each port. The amount of sp3.ce must be at least 20 bytes
and may never be more than th total amount of space left.

9.3 Necessary Programs \

Before the DATASHARE sys,em can be used, two more sets
of programs must exist. The~e are called the ANSWER and
MASTER programs and perform the tasks of dealing with the
user when he ini tially signs on to the system and dealing
wi th him when he is not running another DATASHARE program.
Note that all execution in the DATASHARE system occurs in
the high level language and since the user wri tes his own
ANSWER and MASTER programs, he can determine how the system
command language appears. The ANSWER and MASTER programming
concepts are dealt with in Section 11.

If an ANSWER and MASTER program do not exist for a
port, it will never become active even if it is configured
into the system. The ANSWER and MASTER program must have
the object names ANSWERn/DS3 and MASTERn/DS3 where n is the
number of the port ·for which these are the ANSWER and MASTER
programs (n = 1 thru 8). All ANSWER and MASTER object files
must reside upon drive 0 in the system. If a multi-drive
system is being used, it is generally a good idea to keep
all necessary system utilities, the DATASHARE system files,
and the DATASHARE object code files, as well as the ANSWER
and MASTER program object files on drive 0 and to not remove
the disk in drive 0 during normal system operation.

Other programs which should be on the system include
the INDEX, REFORMAT, and SORT utilities for the generation
of index files. Also, the MINMOUT utili ties should be on
the system as they would. be the programs used to dump and
reload DATASHARE object code files to and from cassette
tape.

83

SYSTEM OPERATION

10~ SYSTEM OPERATION

10.1 Bringing Up the System

If the DATASHARE 3 interpreter system files are named
DS/CMD and DS/OV1 thru DS/OV7, then the DATASHARE system is
brought up by entering the DOS command:

DS

This begins a series of operations the first of which is the
display of the message:

DOS 1.2 DATASHARE 3.r - SYSTEM BEING INITIALIZED

where r is the revision number of the particular release.
If the DATASHARE system has not been configured, the
message:

• DATASHARE 3.r HAS NOT BEEN CONFIGURED •

is displayed. If the configuration file cannot be found on
the same drive the DS/CMD file is located on, the message:

• DSCON/CMD MISSING ON DRIVE d •

is displayed whered is the drive number 0 through 3. If
one of the constituent overlays of the DATASHARE 3
interpreter system cannot be found on the same drive the
DS/CMD file is located on, the message:

• DS/OVn MISSING ON DRIVE d *
is displayed where n is the overlay number (1 through 7).
Of course, if the DATASHARE 3 interpreter system files have
been re-named, the names in' the above messages would be
changed accordingly. If any of the above messages after the
ini tialization message is displayed, the machine will beep
and halt. If the auto-restart tab is punched on a rear
cassette containing the DOS bootstrap loader, then this
action will cause control to return to the DOS. Otherwise,
the RESTART key must be pressed to cause the machine to run
again. If the initialization is completed successfully, the
system displays the message:

OPERATOR, PLEASE DEPRESS THE KEYBOARD OR DISPLAY KEY.

This action will verify that an operator is ,present. A
deSign objective was that the time and date be initialized
by the operator when the system was brought up but that the
system also be capable of bringing itself up in the case of
power failure and unattended operation. If the keyboard or
display key is not depressed wi thin 30 seconds after the

84

SYSTEM OPERATION

message is displayed, the machine will make a series of one
second beeps in an effort to at tract the attention of any
operational personnel within the vicinity. "If the keyboard
or display key is not depressed after 30 seconds of beeping,
the system assumes that it is being operated in an
unattended mode and should start operation without the time
and date being initialized. In this case, the time and date
entries at the upper right of the 2200 screen will be blank.

If the time and date are to be initialized, the
operator must depress ei ther the keyboard or display key.
Upon doing this, the screen will be initialized with a
message indicating the release of the DATASHARE system being
used, the number of ports configured for that system, and
the digits one through eight running down the left side of
the screen. These digits denote a line which is allocated
for each physical port. The CHAIN statement displays on
this line the name of the program being invoked. The
program running for that port may also display on this line
using the CONSOLE statement. These lines are useful for
informing any operational per"sonnel of the status of the
system.

To initialize the time and date, the system will
display the message TIME: in the upper right part of the
screen. The opera tor should respond to this with a four
digit number indicating the current clock value in hours and
minutes (HHMM). Note that no colons should be entered and
that a valid 24-hour clock value must be entered. If the
value is not valid, the TIME: message will be repeated.
Otherwise, the system will display the message DATE: to the
right of the time value just entered. The operator should
respond to this wi th a three digit number followed by a
slash followed by a two digit number. The first number
should be the current julian date (a number between 1 and
365 or, on leap years, 366) and the second number should be
the last two digits of the current year. Note that the
format mentioned must always be followed, with leading zeros
used if necessary. If the julian date is not valid, the
DATE: message will be repeated. Otherwise, the system will
begin execution as denoted by the wall clock display running
in the upper right part of the screen. A period of
approximately 20 seconds will pass while the system looks up
all of the ANSWER and MASTER program names in the DOS
directory and stores their physical file numbers away in a
table. Ports requesting connection during this time will be
connected but no response will be made until the 20 second
period has passed. Note that an asterisk just to the right
of the port number at the left side of the screen will be
displayed if the Carrier Detect signal for that port is
present.

If the system is configured to run port one on the

85

SYSTEM OPERATION

console, an alternate form of bring up the system< may be
used. Instead of entering the simple DOS command DS to
start the system, the operator can enter:

DS <program)

where <program) ia the name of a DATASHARE object code file
on drive zero. If this action is taken, the file
<program)/DS3 will be used for the answer program . for port
one instead of ANSWER1/DS3. The master program for port one
will still be MASTER 1 IDS3. Also, the operator will not be
requested to depress the KEYBOARD or DISPLAY keys and to
enter the time or date. The time and date will be
ini tialized to 00 :00 and 000100 respectively and execution
will start immediately . Note that the console screen is
blanked just before execution is begun if port one is being
run on the system console. If one wishes to simply bypass
the time and date entry, he can enter the command:

DS ANSWER1

which will allow the normal answer program to be executed
for port one but will eliminate the request for the time and
date. This feature makes it possible to run DATASHARE from
the CHAIN program. To return fr~m DATASHARE to the chaining
process, a ROLLOUT must be performed with the DOS command:

CHAIN II

gi yen which will cause the CHAIN command to pick up after
the last command issued.

The DATASHARE 3 interpreter system can be caused to
automatically execute when the DOS is brought up by the use
of the AUTOKEY/CMD program. DATASHARE 3 has been changed
over DATASHARE 2 to look in the DOS command. line to
determine the name of the command file so the overlay names
can be determined (this is what allows the DATASHARE 3
interpreter system files to be re-named). Because of this,
the standard DOS AUTO program can no longer be used to
directly cause automatic execution of the DATASHARE 3
interpreter syste~. There a~e a number of DOS. programs
which use the same technique of looking into the DOS command
line so a general solution to the problem of not being able
to automatically execute these programs was implemented.

The AUTOKEY program has two modes of execution. Upon
starting execution AUTOKEY sees if the KEYBOARD key is
depressed. If so, AUTOKEY will request a line to be entered
and then store this line into a sector in the AUTOKEY/CMD
file which follows the end of file mark in the object code.
The line entered may be any single line DOS command. If
upon starting execution AUTOKEY does not see the KEYBOARD

86

SYSTEM OPERATION

key dispressed, it will read the line it had previously
stored in its own object code file into the DOS command line
area and then enter the DOS in a place which will cause the
line to be interpreted as if the line had been entered from
the keyboard. To cause the DATASHARE 3 interpreter system
to be automatically executed upon loading of the DOS, one
would run AUTOKEY holding down the KEYBOARD key and when the
line were requested enter "DS". He would then run the DOS
AUTO program by entering "AUTO AUTOKEY". The next time DOS
was brought up, the AUTO function of DOS would load and
execute AUTOKEY which would execute the DOS command "DS" as
if it had been entered from the keyboard.

10.2 Taking Down the System

The DATASHARE system maintains its files totally under
the control of the DOS. The DOS normally may be halted at
any time without detriment to the file structure. However,
hal ting the system after a new file has been created or
after a new segment has been allocated will leave that file
with the maximum amount of space allocated to it. Proper
closing of the file collapses the space allocated to only
that used. Thus, to be sure all files are properly closed,
the system should be hal ted when all ports are in their
MASTER programs. The operator can tell from the console
screen when a port is in its MASTER program if the MASTER
program displays its name as in the examples in Appendix C.

10.3 Fatal Error Conditions

There are error conditions wi thin the DOS which cannot
be trapped. These errors envoke a DOS overlay called the
ABORT overlay which reloads the DOS to insure the presence
of the DSPLY$ routine, displays an error message in the
standard DOS format, and then returns control to the DOS
command interpreter. Note that this sequence does not
provide for restoring the foreground interrupt handler or
insuring that the DOS does not overlay an interrupt process
that happens to be running. The DATASHARE foreground
routines reside in an area Which is overlayed by the DOS
and, therefore, the normal abort message routine would cause
havoc when it tried to load the DOS. For this reason, the
DATASHARE system overlays the DOS in a critical place that
allows it to trap the action of untrappable DOS errors and
store a return instruction in location zero. This
effectively disables any interrupt handler execution and
allows the DOS to be loaded for the abort message display
but does not restore the normal DOS foreground interrupt
handler. The DATASHARE system also overlays the DOS EXIT$
entry point with a jump to a beep and halt. This causes the
machine to halt when the untrappable error message display
is completed.

87

ANSWER AND MASTER CONCEPTS

11. ANSWER AND MASTER CONCEPTS

There are two DATABUS programs which must exist for
each port for that port to be active. The first is called
the ANSWER program and must have a name of ANSWERn where n
is the number of the port. For example, ANSWER 1 for the
first port, ANSWER2 for the second, and so on. The ANSWER
program deals with the user when he initially connects to
the system (calls on the telephone or turns on his CRT).
The second program is called the MASTER program and must
have a name of MASTERn where n is the number of the port.
The MASTER program deals with the user whenever he is not
executing the ANSWER program or an application program and
is generally used t6 allow the user to select the next
application program he wishes to execute. Note that both of
these programs are written in DATABUS, enabling the user to
tailor the command aspects of the DATASHARE system to his
particular needs. Simple and complex examples of ANSWER and
MASTER programs are ehown in the appendices. Remember that
the object code for all ANSWER and MASTER programs must
reside on drive O.

11.1 System Security

The ANSWER program allows the programmer to force the
user to give some type of identification before he is
allowed to use the system. Note that the INTERRUPT key on
the terminal is ignored while execut~on is taking place
between the time when the system first acknowledges the
presence of a user at a given port and the first chain
executed by the program for that port. This means that
while the user is executing in the ANSWER program for a
given port when he first signs onto the system, he may not
escape around the identification request and get directly
into the MASTER program by simply striking the INTERRUPT
key. The ANSWER program may also be structured to enforce
file access limitations depending upon the identification of
the user.

11.2 System Conven~ence

The ANSWER program chains to the MASTER program which
usually requests from the terminal operator the nam~ of the
program he wishes to execute. This name can be generated
from information supplied by the terminal operator· so, for
example, the operator may enter the number of a form and the
MASTER program will decide which program to execute for that
form number. The DOS directory cannot be directly accessed
by the MASTER program, implying that a file must be
generated which contains the names of programs· and files
that are to be accessed if directory service or file access
limitation is to be implemented. It is very much up to the
author of the ANSWER and MASTER programs to provide any

88

ANSWER AND MASTER CONCEPTS

convenience facilities to the terminal user.

11.3 Sample Answer and Master Programs

Appendix C contains examples of both simple and complex
ANSWER and MASTER programs. Each program is edited for
entry of the appropriate port number in the variable PORTN
and then compiled for the given port. This procedure
(editing in the port number and then compiling into an
object file with the port number in its name) must be
followed for each port that is to be used in the system. If
a DATASHARE object file for either the ANSWER or MASTER
program does not exist on drive 0 for a given port, the port
will simply not be activated when the system is brought up.

The simple ANSWER program displays on the terminal the
number of the port and displays its program name on the
console. The latter action is performed because the system
does not display the name of the program invoked when the
chain was caused by action other than the execution of a
CHAIN statement (e.g., the ANSWER program initiated by
terminal connection or the MASTER program initiated by a
STOP or INTERRUPT key). The system does display on the
console line allocated for the executing port the name of
all programs invoked by the CHAIN statement. The simple
ANSWER program then requests an identification and checks it
for validity against a very simple rule (the identification
given must be exactly the word DATAPOINT). If the word
matches (note the use of both the NOT EQUAL and LESS
conditions for checking for an exact match), a STOP
statement is executed which causes a chain to the MASTER
program. Otherwise, an indication is given that the proper
identification was not entered and another request for
identification is made.

The simple MASTER program merely requests the name of a
program to be executed. A CHAIN is executed to the name
given and if a chain failure occurs an indication is given
that the name does not exist in the DOS directory and
another request for a program name is made. Note that both
the ANSWER and MASTER programs are written without the use
of cursor positioning in the KEY IN and DISPLAY statements to
aid in Teletype terminal compatibility.

The MASTER program should not assume any common data
areas since it can be entered due to a program trap or the
INT key being struck. For this reason, if a common data
area value is to be determined (such as the port number)
this should be done in the MASTER program and not in the
ANSWER program.

The complex ANSWER and MASTER programs perform tasks
similar to those performed by the simple programs except

89

ANSWER AND MASTER CONCEPTS

that a number of convenience features are added to give the
system the appearance of a more conventional time sharing
system. Two filE::s are associated with the more complex
programs, the SYSFILE and. the DAYFILE (system and day
files). The system file contains identification code
information and a t·able associating a given identiftcation
code. (user) with a given set of programs (user's directory).
The system file also contains a record for each physical
port (records zero through seven) which allows any executing
program to determine which user identification is associated
wi th the given physical port at any given time. A user
identification number (an index into the rest of the· file
from which the actual symbolic user identification· can be
obtained), the time at sign on, and the d~te at sign on are
recorded in this record. The remainder of the file contains
four records for each user identified in the system. Each
record is broken .into ten ten~character fields. The first
field of the first record is the identification code. The
rest of the fields in the first record and the following
three records contain program names associated with the
gi ven user identification ~ The list of program names is
terminated by a space appearing in the first column of the
name. The list of user identifications is terminated by a
space appearing in the first column of a user
identification.

The second file associated with the complex ANSWER and
MASTER programs is called the day file. This file simply
contains a set of records to be displayed at sign on time.
This information is used to inform users of changes in the
system or any other facts pertinent to the use· of the
system. Note that both of these files must exist before the
complex ANSWER and MASTER programs can be used. The files
can be created with DATASHARE if simple ANSWER and MASTER
programs exist.

The complex ANSWER program determines the month and day
of the month from the julian date. It detects if the date
has not been initialized by noting that the julian date is
zero (an invalid in1 tialization value). After the date is
displayed, a request is made for an identification code.
The identification code list in the system file is then
scanned for a match with the one supplied. If a match
cannot be found, an indication is given to the user and the
request for identification is repeated. Note that only
three tries at identification are allowed in an effort to
prevent unauthorized access to the system via the technique
of trying identification codes until one is struck. After

·the third try, the response to the user does not change but
he is not allowed access to the system even if he does then
enter a valid identification and an alert message is
displayed on the console to alert the operator that someone
who apparently does not know an identification code is

90

ANSWER AND MASTER CONCEPTS

trying to access the system. If a valid identification is
entered wi thin three tries, the identification index into
the system file, the date of sign on, and the time of sign
on are wri tten in the record in the system file
corresponding to the physical port being used and execution
is passed to the MASTER program via the STOP statement.

The complex MASTER program allows a number of commands
as explained in the KEYIN statement under the label HELPI.
This particular program does not limit program or file
access to a given user to his programs only, but such a
scheme could be implemented without much difficulty.

Note that when the ANSWER program is chained to it will
execute until the first KEYIN, DISPLAY, or CONSOLE statement
is executed. The ANSWER program is actually executed when
the terminal disconnects from the system, not when it
connects to it. If the time of connection and disconneotion
and total connection time are being kept in a file, the
ANSWER program can note when a user disconnects from the
system and log the total amount of time the user was
connected as the first operations in the ANSWER program.
Then the KEYIN statement requesting a new user
identification can be issued which will cause execution to
cease for that port. The log out function will be executed
when the terminal disconnects from the system. When the
terminal re-connects to the system the KEYIN statement will
be satisfied when the operator at the terminal enters an
identification code at which time the new user can then be
logged on with the time being noted in the log file. Note
that when the system is initialized, all ports will appear
to be logging off (since all ANSWER programs are executed)
but no corresponding log on time will be set. The program
must handle this special case by allowing for log offs
without corresponding log on times.

91

PHYSICAL SYSTEM CHARACTERISTICS

12. PHYSICAL SYSTEM CHARACTERISTICS

12.1 Virtual Memory

. To achieve a reasonable amount of program space for
eight simultaneous programs, DATASHARE employs a virtual
memory technique. DATASHARE code is very compact,with very
few bytes of instructions being capable of invoking a large
amount. of processor activity. Therefore, the rate at which
DATASHARE program bytes are fetched is very low. Because of
this low rate, the actual program code bytes can be kept in
the randomly accessible disk buffers with very little effect
on program execution speed. Three of the four disk buffers
are used for the storage of pages of program code. This
gives the effect of having a DMA channel from the disk to
the high speed program storage memory. Another
characteristic of DATASHARE code is that it is never
modified. Because of this, . program code need only be read
in and never written back out to the disk.

A different story exists in the case of the program
data, however. This data is accessed at a very high rate
and must be in main memory to be effectively accessible by
the DATASHARE interpreter. For this reason the program data
for all programs is kept resident in main memory. This fact
will be shown later to have further advantages in the case
of port and printerI/O.

To implement an effective virtual memory accessing
algorithm, the program code is kept on the disk as 256 byte
pages with one page filling an entire disk sector. Those
familiar with DOS will note that this is not compatible with
the standard DOS .data record format, which allows 253 bytes
for user data. The DATASHARE interpreter and compiler have
special disk read and write routines to handle this problem.
The problem is not as extensive as might be imagined, since
only the READ$ andWRITE$ routines in the DOS deal with the
information in the first three bytes of each data sector.
Therefore, all of the space allocation routines in the DOS
are still used by DATASHARE. However, none of the standard
DOS utilities may be used with the DATASHAREcode files.
Remember that this concerns only the DATASHARE code files
and not the data files.

Because the code is paged in blocks, the DATASHARE
programmer can make his program run much more effeciently,
in many cases, by forcing his code to cross as few page
boundaries as possible. Each time a page boundary is
crossed, a new page must be read in. The paging scheme used
is purely demand with the least recently used page being
destroyed to make space for the new page. Actually, in a
lightly loaded system, a single program could get two or
three pages all resident in the disk buffer memory at onoe

92

PHYSICAL SYSTEM CHARACTERISTICS

and crossing a given page boundary would not cause a disk
read, but any significant loading will cause this oondi tion
to cease. Therefore, the DATASHARE programmer can assume
that each time he crosses a page boundary, a new read will
occur. This read can cause from 2 to 130 milliseconds delay
in the execution of the program. This time is time that
cannot be used by any other program since the disk is busy.
By causing an excessive number of page boundary crossings,
the programmer can easily cause his program to execute very
slowly.

However, an instruction called TAB PAGE exists in
DATASHARE to aid the programmer in making his execution
speed as high as possible. This instruction causes the
location counter in the compiler to be incremented until it
is at the start of the next page (nothing will be generated
if the location counter is already at the start of a page).
When tnis instruction is executed, it causes a GOTO to the
start of the next page. By using this instruction, the
programmer can cause logical parts of his program to contain
as few page boundaries as possible. Another way to increase
execution speed is to use in-line coding as much as
possible, especially for short operations, instead of the
subroutine calling feature if the subroutine is located in a
page different from the calling location. This is
economically feasible because of the large space available
for each program (16K bytes).

93

PHYSICAL SYSTEM CHARACTERISTICS

12.2 Major Modules

Memory map of the DATASHARE interpreter system:

+ + + + + +++ + + + + + + + + + + -+ + 037777
+ +
+ +
+ +
+ +
+ +
+ USER PROGRAM DATA AREA +
+ +
+ +
+ +
+ +
+ +
+ +
+ 030000
+ +
+ +
+ INTERPRETER +
+ +
+ +
+ 017600
+ +
+ +
+ SCHEDULER +
+ +
+ +
+ 012600
+ +
+ +
+ STATH +
+ +

.+ +
+ + + + + ++ + + + + + + + + + + + + + 010000
+ +
+ IIO BUFFERS +
+ USER INTERPRETER DATA +
+ WORKING STORAGE +
+ +
+ + ++ + + + + + + + + + + + ++ + + + 005400
+ +
+ +
+ +
+ D 0 S +
+ +
+ +
+ +
+ 000000

94

PHYSICAL SYSTEM CHARACTERISTICS

As seen in the map on the previous page, DATASHARE is
broken into several major modules. The area between 0 and
05400 contains all of the Dds that is used by DATASHARE.
This includes the file loader, basic sector read and wri te
routines (used by the interpretrer), and file handling
routines.

The area between 05400 and 010000 is used for the
interpreter working storage for each port, I/O port buffers,
and printer buffer. When a particular user is executed, the
45 bytes corresponding to his interpreter working storage
are swapped into the interpreter working storage area. When
he stops execution (swapped out for another user to
execute), all of this information is swapped back into his
area between 05400 and 010000.

The area between 05400 and 010000 is the main working
storage page for the entire system. The most actively
accessed data is kept within a single page of memory,
increasing coding effeciency.

The STATH package used with the DATASHARE 3 system has
been revised to require much less space than the package for
previous DATASHARE systems. This reduction was effected by
grouping functions into subroutines and by taking out the
multiplication table. Multiplication now takes
approximately the same amount of time as division. The old
STATH package was designed for the Version I 2200 and
therefore involved a large amount of in-line code which was
reduced to subroutines in the new package.

The DATASHARE scheduler is the most complex part of the
system. Its task involves a11 foreground I/O and scheduling
of background execution. Background execution is used to
interpret and execute the DATABUS statements and perform
disk I/O while foreground execution is used to interpret the
printer, console, and terminal I/O statements. This portion
of the system is explained more thoroughly in the next
section.

The DATASHARE interpreter i, similar to a standard
DATABUS interpreter except th*t it has been enhanced to deal
with based user variable data in the area at the end of main
memory and deal with user program data in virtual storage
that actually resides on the disk. A base address table
exists in the working storage area which tells the
interpreter which variable data area to use based on the
user number of the user cUr'rently being executed. A page
address table also exists in the working storage area which
tells the interpreter where on the disk the user's program
resides. A virtual storage technique is used which uses
disk buffers one, two, and three for the storage of the
currently active program data pages. When a program data

95

PHYSICAL SYSTEM CHARACTERISTICS

byte is accessed, the interpreter fetch routine searches
through the page address table looking to see if that byte
exists in one of the three disk buffers. If the byte does
exist, the interpr.eter merely directly accesses it and the
fetch is finished~ Otherwise, the interpreter decides which
disk buffer has been least recently accessed and. reads the
necessary program data page into that buffer. The
interpreter then goes back and executes the normal fetch
routine which will find the byte available in a disk buffer
and fetch it for use by.the rest of the interpreter.

DATASHARE object code files are structured so that the
most significant byte of the DATABUS interpreter program
address counter indicates which sector relative to the
beginning of the object file and the least significant byte
of the address counter indicates which byte within that
sector is being accessed. Actually, the first sector of the
object file contains the number of bytes that are used for
user variable data storage. If this number is greater than
the number of bytes of data area allocated to the particular
user the program will not be loaded if a CHAIN operation to
it is attempted. It turns out that the programmer cannot
distinguish between a program actually absent from the DOS
directory and a program which has too large a data area to
fit into the. space allocated to the port trying to load the
program.

If the data area will fit in the space allocated to the
port, the data area bytes are read into the user's variable
data area. Bytes of value 0376 (octal) are not loaded into
memory but thjeir slots are skipped. This mechanism allows
common variables to be posi tioned non~destructively. The
number of sectors used for variable data storage is kept
within a table in the working .storage area so the
interpreter fetch routine knows by how much tb bias the MSB
of the program address counter when determining the logical
record number of the object code block it needs when
obtaining a given program data byte.

96

PHYSICAL SYSTEM CHARACTERISTICS

12.3 Scheduling

To provide optimum re~ponse time, DATASHARE handles all
port and printer IIO using interrupt driven foreground
routines, which means that data transfer between the
terminal and the system can occur regardless of the
computational task being handled by the background program
at any given time. The foreground routines actually
interpret the KEYIN, DISPLAY, PRINT, and CONSOLE
instructions, with the background interpretive code merely
passing these instructions to the foreground through a
circular buffer allocated for each port. Conventional
systems use such a buffer to hold the actual characters
transferred between the system and the terminal. However,
DATASHARE uses this buffer to hold the interpretive code
bytes, thus enabling many more bytes to be transferred than
can actually be held in the buffer. For example, a DISPLAY
statement may contain some quoted information and then a
variable name. The variable name is represented by two
bytes but the contents of the variable could be fifty bytes

. long, enabling two bytes of buffer space to invoke the
transfer of fifty bytes to the terminal. This is made
possible by the fact that all program data is resident in
main memory which enables the foreground routine to be
executing an IIO statement for a given port even though the
background program for that port may not be swapped in at
the time.

As a matter of fact, the foreground and background
program for a given port always execute exclusively of each
other to prevent conflicts over data values. When the
background program executes a DISPLAY statement, the
statement is stored in the buffer for the given port and
then the background program is deactivated and the
foreground program activated. when the foreground program
has completely executed the IIO statement, it causes a high
priority interrupt to the background, which deactivates the
current program and activates the one which was executing
the DISPLAY statement which caused the interrupt. In
reality, the scheduling algorithm is .ore complex than this,
but this gives an idea of the sequence of events. One
important consideration which must be taken into account by
the DATASHARE programmer concerning port IIO is the fact
that every time an IIO instruction is completed in the
foreground, the background program is swapped in. If the
programmer is not careful, he can. cause the system to thrash
(spend most of its time swapping background programs in
instead of doing useful work) by causing a high rate of IIO
completion interrupts. An example would be using many
separate DISPLAY statements instead of one long continued
statement.

The above discussion concerns only port, printer, and

97

PHYSICAL SYSTEM CHARACTERISTICS

console 110. All disk 110 is performed under the DOS which
is a background-only operation. This means that all DOS
functions are non-interruptable and long directory searches
(which can take .. up . to several seconds with a four drive
system) will cause the response to 110 completion interrupts
to be delayed. Long DOS functions, however ,occur
infrequently and therefore can be ignored from an average
response time calculation standpoint.

When the background program resumes execution due to
the completion of a foreground 110 task, it is guC!,ranteed a
minimum amount of execution time. This prevents the system
from spending all of its time swapping background tasks when
the foreground 110 completion rate is high.

DATASHARE is capable of driving any serial terminal
device which uses an ASCII character set. Use of devices
without cursor positioning features, however, will restrict
the programmer from using the cursor positioning facility in
the KEYIN and DISPLAY statements. If the programmer does
not use the cursor positioning feature, he will be able to
wri te a program which is Teletype machine compatible. The
*ES and *EL list controls send c€>ntrol characters that are
ignored by a 35 ASR Teletype. However, the Cursor On
character which is sent before each KEYIN variable entry
request and the Cursor Off which is sent after the ENTER key
is struck, are Tape On and Tape Off respectively on a 35 ASR
Teletype.

DATASHARE is also capable of dealing wi th 103 type
datasets as well as hard wired connections and full duplex
four wire 202 dataset connections. It handles all of the
103 handshaking involved and needs only the proper cable to
work correctly. In fact , the 3360-102 hard wire cable is
connected in such a way as to make the 3360-102 appear as a
103 data set, with power ori causing ring detect and carrier
detect to be sent to the DATASHARE system. The fact that a
hard wire or dataset connection is employed at a given
terminal cannot be differentiated by theDATASHARE
programmer. See Section 13 for more information concerning
terminal connection~~

98

PHYSICAL INSTALLATION

13. PHYSICAL INSTALLATION

13.1 Main peripherals

The DATASHARE system requires a 2200-350 series disk
peripheral. Since the system maintains its entire file
structure under the DOS, anywhere from one to four disk
drives (2.5 to 10 million bytes) may be employed as long as
each disk cartridge used has a DOS file structure and the
cartridge in drive zero contains the system files. Note
that drive zero must be kept on line at all times during
system operation but the other three drives may be put on or
off line as the maintenance of the data base requires.

Note that, as in any 2200 installation, a 2200-420
parallel interface with an address of 0303 may be connected
to drive a special output device, but that device must be
capable of handling the output that would normally be given
to an ASCII printer.

Besides the 2200-350 series disk, the other required
peripheral for the operation of the DATASHARE system is the
2200-460 Multiple Port Communications Interface. In the
following discussions the mention of a 2200-460 will imply
that a 9900-462 will work as well. As far as DATASHARE is
concerned, the 2200-460 and 9900-462 are equivalent. These
devices are capable of driving up to eight fully independent
full duplex asynchronous lines at speeds ranging from 110 to
9600 baud. The DATASHARE system is not capable of output
above 125 characters per second per port and normally uses
1200 baud for direct connection and four wire 202-type modem
connections and uses 300 or 110 baud for 103-type modem
connections. However, any speed may be strapped in the
2200-460 to achieve compatibility with specific terminals as
the occasion may require. The DATAPOINT 3360-102, the
recommended terminal device for the DATASHARE 3 system, has
switch selectable speeds of 300, 1200, 2400, and 4800 baud.
Note that all ports are operated by the DATASHARE system in
full duplex mode only.

99

PHYSICAL INSTALLATION

13.2 Terminal connections

In general, a terminal may be connected to the
DATASHARE system in one of three ways: direct hardwire,
1 03-type modem, and 202-type modem. The following table
shows the pin assignments on the 25-pin connector for· the
2200-460 individual port, the 3360-102 CRT terminal, and a
103 or 202 type modem:

PIN 2200-460 3360-102

PROT GROUND
DATA OUT
DATA IN

103/202·

PROT GROUND
DATA IN
DATA OUT

1
2
3
4
5
6
7
8

DATA OUT
DATA IN
REQ TO SEND
CLR TO SEND

SIG GROUND
CARRIER DET

SIG GROUND

REQ TO SEND (202)
CLR TO SEND
DATA·SET READY
SIG GROUND
CARRIER DET

20 DATA TERM RDY DATA TERM RDY DATA TERM RDY

RING DETECT 22 RING DETECT

The DATASHARE system goes through the following
handshaking procedure when a connection is established:

1. Clear Data Terminal Ready and Request To Send
2. Wait for Ring Detection
3. Set Data Terminal Heady and Request To Send
4. Wait up to 10 seconds for Carrier Detect
5. Go to step 1 if time out in step 4
6. Wait one second and then start the ANSWER program

This procedure will work with any of the three types of
connections if the proper cable is used.

DIRECT

Basically, the direct connection cable swaps the data
wires (pins 2 and 3) and connects Carrier and Ring Detect on
one end to Data Terminal Ready on the other as shown in the
following table:

6200-460 123360-102 CABLE CONNECTIONS

22QO-460

2
3
7
8 and 22

3360-1Q2

3
2
7
20

100

PHYSICAL INSTALLATION

Note that this arrangement requires only five wires in the
cable (four if the optional wire is not used). If the cable
is to be made more than several hundred feet long, each of
the two signal wires (the ones connecting to pins 2 and 3)
should be twisted separB;tely wi th a ground wire (no other
shielding is necessary). Direct connections up to one
thousand feet may be made if the above precautions are
followed.

The 3360-102 sets Data Terminal Ready whenever it is
running. Wi th the above cable connected, this will cause
ringing and carrier to be presented to the 2200-460. This
has the effect of causing the ANSWER program to be executed
whenever power is applied to the 3360-102.

103-TYPE MODEM

The 2200-460 can be connected to a 103-type modem with
a one to one cable (e.g., a pin at one end is connected to a
pin of the same number at the other end). Only pins 2, 3,
7, 8, 20, and 22 need to be connected but having all pins
connected will also work (this being the simplest to
describe to someone at a distance!). Note that 103 and 113B
modems have similar pin connections.

2200 ... 460 TO 103-TYPE MODiM CONNECTIONS

2200-460 103-TYPE MODEM

2 2
3 3
7 7
8 8
20 20
22 22

If one is calling a 103-type modem over a dial-up
network, he will hear the telephone answered very shortly
after it starts ringing (should take one or two rings at
most). If the telephone is not answered within that amount
of time, the caller either has the wrong number or the
DATASHARE system is not up or is in the initial phase of
being taken down. In any case, the caller may as well hang
up (letting the phone ring for a long time can be very
irritating at the other end). If the telephone is answered,
the caller will hear the carrier from the modem connected to
the 2200-460 which is his signal to either depress the DATA
key on his modem or put the telephone handset in the data
coupler (if he is using one). The DATASHARE system gives
the caller ten (10) seconds to perform the necessary action
to cause a carrier to be returned from his modem. If all is
satisfactorily completed, one more sec6nd will pass and then
the ANSWER program will begin execution. If all is not

101

PHYSICAL INSTALLATION

satisfactorily completed, the DATASHARE system will hang up
the telephone at its end and go back to waiting for ringing
to occur. Note that since the DATASHARE system does wait up
to ten seconds for a satisfactory connection, if one dials
the system and· hahgs up as soon as the telephone is
answered, he will bave to wait ten seconds before be can
dial tbe same telephone again. Also note that the DATASHARE
system will disconnect as soon as it loses the Carrier
Detect signal from the modem. This means that disconnection
will occur even if the carrier is broken only for a very
short time.

The DATASHARE system requires a full duplex connection
toi ts terminals ~ A 202-type modem· can be used in this
fashion only if it is connected via a four-wire circui t .
This means that one signal path must exit for data flow in
one direction and a separate data path must exit for data
flow in the other direction. This implies that a
point-to-point connection is made between the modems (the
switcbed telephone network cannot support four-wire
connections). ·Inthis application, the 202 modem must be
strapped for use in four-wire mode.

The connecting cable between the 2200-460 and 202 modem
is similar to the one for connection to a 103 ... type modem
except that, since 202' s used, in point-to-pointfour-wire
service do not use ringing, the carrier detection signal
from the 202 must be connected to both the carrier detection
and ring detection inputs on the 2200-460.

2200-460 TO ~ MODEM CONNECTIONS

2200-460

2
3
4
7
8 and 22
20

202 MODEM

2
3
4
7
8
20

When Data Terminal Ready is supplied by the terminal
device to the remote 202 modem, that modem will turn on its
carrier. This carrier will cause the modem connected to the
2200-460 to turn on its carrier detect signal which will
present ring detection and carrier detection to the
DATASHARE system. The system will proceed to set its Data
Terminal Ready signal which will cause the 202 modem to turn
on its carrier and complete the connection. One second
later the ANSWER program will begin execution. Thus,
operation over a 202 modem connection will appear similar to

102

PHYSICAL INSTALLATION

direct connection operation.

Remote modems are connected to Datapoint 3000 series
terminals via a standard modem cable supplied with the
terminal. This cable provides the required Data Terminal
Ready signal to cause the operational characteristics
described above.

13.3 Port speed selection

The 2200-460 Multiple Port Communications Adaptor is
software programmable to transmit and receive from five to
eight information bits with either one or two stop bits.
However, the DATASHARE system always uses eight information
bi ts and sends two stop bits (it will receive signals with
only one stop bit). The speed of each port may be set
independently to a variety of speeds, depending on field
programmable hardwire straps.

There are three clock buses within the 2200-460,
limi ting the total number of different speeds used at any
one time to three. Each of these buses can be connected to
one of two crystal controlled time bases. Each time base is
connected to a binary dividing chain , g~ v~ng speeds
selectable in powers of two. The standard crystals supplied
provide multiples of 110 and 300 baud. The baud rate of a
bus is. set by strapping from a baud rate source pin to a
baud rate bus input pin. Each bus has eight baud rate
output points. The baud rate of a channel is set by
strapping from a baud rate bus output point to the channel
baud rate input pin. The following table gives the
respective pin numbers as found on the silk screening on the
printed circuit card in the 2200-460:

BAUD RATE SOURCE BAUD RATE BUS
Baud rate Pin Bus Input Output

300 E29 1 E34 E37
600 E28 2 E35 E38

1200 E27 3 E36 E~
2400 E23
4800 E22 CHANNEL BAUD RATE INPUT
9600 E21 Channel Input

110 E33 1 E13
220 E32 2 E14
440 E31 3 E15
880 E30 4 E16

1760 E26 5 E17
3520 E25 6 E18
7040 E24 7 E19

8 E20

A typical installation may use baud rates of 110 for
teletype machines (remote or' local), 300 for remote 3360-102

103

PHYSICAL INSTALLATION

terminals using 103-type modems, and 1200 for remote
3360-102 terminals using 202-type modems. For this
installation, one may connect bus 1 for 110 baud, bus 2 for
300 baud, and bus 3 for 1200 baud as shown in the following
table. .

E34 to E33
E35 to E29
E36 to E27

make bus 1 11~baud
make bus 2 300 baud
make bus 3 1200 baud

Now, if channels 1 through 3 are to be 300 baud, channels 4
through 7 1200 baud ,and channel 8 11 0 baud, the following
connections would be made:

E38 to E13, E14, E15
E39 to E16i E17, E18, E19
E37 to E20

make ch 1-3 300 baud
make ch 4-7 1200 baud
make ch 8 110 baud

Port speeds other than multiples of 110 or 300 baud can be
accommodated by changing the crystal frequencies. Selection
of the. proper crystal should be aided by the Datapoint
engineering staff.

13.4 Non-3360-102 terminal devices

Terminals other than the Datapoint 3360-102 can be
connected effectively to the DATASHARE system. The major
advantage of the 3360-102 is that its cursor can be
positioned directly by the issuance of a three character
sequence. This allows the usage of the cursor positioning
list controls in the DISPLAY and KEYIN statements and
greatly enhances the speed of form displays.

Terminals such as the Teletype 33 and 35 KSR or ASR may
be connected either hardwire or over modem connections. In
addi tion, conventional CRT terminals such as the Datapoint
3300 (for 300 or 1200 baud) or Datapoint 3000 (for 300 baud
only) may be connected. All Datapoint 3000 series terminals
use identical cable configurations for a given type of
installation. The key to making a cable for a given device
is to insure that both Carrier and Ring Detect on the
2200-460 are connected to a wire that is set when the
connection is to be established and is cleared when the
connection is to be broken.

104

APPENDIX A

INSTRUCTION SUMMARY

SYNTACTIC DEFINITIONS

condition

character string

event

list

name

label

nvar

nval

nlit

svar

sval

sli.t

The result of any arithmetic or
string operation: OVER, LESS,
EQUAL, ZERO, or EOS (EQUAL and ZERO
are two names for the same
condi tion) .

Any string of printing ASCII
characters.

The occurrence ofa program trap:
PARITY, RANGE, FORMAT, CFAIL, or
10.

A list of variables or controls
appearing in an input/output
instruction.

Any combination of letters (A-Z)
and digits (0-9) starting with a
letter (only the first eight
chara~ters are used).

A name assigned to a statement.

A name assigned to a statement
defining a numeric string variable.

A name assigned to an operand
defining a numeric string variable
or an immediate numeric value.

An immediate numeric value.

A name assigned to a statement
defining a character string
variable.

A name assigned to an operand
defining a character string
variable or a quoted alphanumeric
character.

An immediate character string,
enclosed in double quotes "

A-1

RN

SEQ

KEY

NUL

A positive record number (>= 0)
used to randomly READ or WRITE on a
file.

A negative number (< 0) used to
READ or WRITE on a file
sequentially.

A non-null string used as a key to
indexed accesses.

A null string used as a key to an
indexed read.

FOR THE FOLLOWING SUMMARY:

An asterisk * to the left of an instruction means that
the instruction is new to DATASHARE with release 3 or
that the instruction format has been substantially
enhanced with release 3. .

Items enclosed in brackets [] are optional.

Items separated by the I symbol are mutually exclusive
(one or the other but not both must be used).

COMPILER DIRECTIVES

* • •
*

EQU
EQUATE
INC
INCLUDE

10 (a label is required)
100 (a label is required)
filename[/ext]
filename[/ext]

FILE DECLARATIONS

*
*

FILE
IFILE

DATA DEFINITIONS

FORM n.m
FORM n 456.23"
DIM n
INIT "character string"
INIT "character string"
FORM .n.m
FORM *"456.23"
DIM .n
INIT ."CHARACTER STRING"

A-2

CONTROL

GOTO (label)
GOTO (label) IF (condition)
GOTO (label) IF NOT (condition)
BRANCH (nvar) OF (label list)
CALL (label)
CALL (label) IF (condition)
CALL (label) IF NOT (condition)
RETURN
RETURN IF (condition)
RETURN IF NOT (condition)
STOP
STOP IF (condition)
STOP IF NOT (condition)
CHAIN (svar)

* CHAIN (slit)
TRAP (label) IF (event)
TRAPCLR (event)
ROLLOUT (svar)

* ROLLOUT (slit)

CHARACTER STRING HANDLING

MATCH (svar) TO (svar)
* MATCH (slit) TO (svar)

MOVE (svar) TO (svar)
* MOVE (slit) TO (svar)

MOVE (svar) TO (nvar)
* MOVE (nlit) TO (nvar)

MOVE (nvar) TO (svar)
APPEND (svar) TO (svar)

* APPEND (slit) TO (svar)
* APPEND (nvar) TO (svar)

CMOVE (sval) TO (svar)
CI'1ATCH (sval) TO (sval)
BUMP (svar)
BUMP (svar) BY (nlit)
RESET (svar) TO (sval)
RESET (svar) TO (nvar)
RESET (svar)
ENDSET (svar)
LENSET (svar)
CLEAR (svar)
EXTEND (svar)
LOAD (svar) FROM (nvar) OF (svar list)
STORE (svar) INTO (nvar) OF (svar list)

* STORE (slit) INTO (nvar) OF (svar list)
.. CLOCK TIME TO (svar)

CLOCK DAY TO (svar)
CLOCK YEAR TO (svar)
TYPE (svar)

A-3

ARITHMETIC

ADD
* ADD

SUB
* SUB
* SUBTRACT

MULT
* MULT
* MULTIPLY

DIV
* DIV
* DIVIDE

MOVE
* MOVE

COMPARE
* COMPARE

LOAD
STORE

* STORE

INPUT/OUTPUT

KEYIN
DISPLAY
CONSOLE
BEEP
PRINT
RELEASE

* PREPARE
* PREP
* OPEN
* CLOSE
* WRITE
* WRITAB
* WEOF
* UPDATE
* READ
* READKS
* DELETE
* INSERT

(nvar) TO (nvar)
(nlit) TO (nvar)
(nvar) FROM (nvar)
(nlit) FROM (nvar)
(nlitlnvar) FROM (nvar)
(nvar) BY (nvar)
(nlit) BY (nvar)
(nlitlnvar) BY (nvar)
(nvar) INTO (nvar)
(nlit) INTO (nvar)
(nlitlnvar) INTO (nvar)
(nvar) TO (nvar)
(nlit) TO (nvar)
(nvar) TO (nvar)
(nlit) TO (nvar)
(nvar) FROM (nvar) OF (nvar list)
(nvar) INTO (nvar) OF (nvar list)
(nlit) INTO (nvar) OR (nvar list)

(list)
(list)
(list)

(list)

(file),(svarlslit)
(file),(svarlslit)
(filelifile),(svarlslit)
(file!ifile)
(filelifile),RNISEQIKEY[;[(list)][;]]
(file),RNISEQ;(list)[;]
(filelifile),RNISEQ
(ifile)[;[{list)][;]]
(fi leI i fi 1 e) ,RN I SEQ I KEY I NUL; (; I (l i s t [;]))
(ifile);(;l(list[;]»
(ifile) , (svar)
(ifile), (svar)

A-4

APPENDIX·B

INPUT/OUTPUT LIST CONTROLS

CONTROL USED IN FUNCTION

*P<m>:<n> KDC Causes the cursor to be positioned
horizontally and vertically to the
column and line indicated by the
numbers <m> (horizontal 1-80) and
<n> (vertical 1-24). These numbers
may either be literals or numeric
variables. Note that <n> is ignored
in the CONSOLE statement. This list
control is only ~ffective on the
Datapoint 3360-102.

*N KDP Causes the cursor or printer to be
positioned in Column 1 of the next
line.

*EL KDC Causes the line to be erased from
the current cursor position.

*EF KDC Causes the screen to be erased from
the current cursor position to the
end of the line.

*ES KD Causes the cursor to be positioned
at horizontal position 1 of the top
row of the display and the entire
display to be erased.

*EOFF K Causes the echo during input
operations from the terminal to be
defeated.

*EON K Causes the echo during input
operations from the terminal to be

*+ KDCP Turn on Keyin Continuous for KEYIN
or space after logical length
suppression for DISPLAY, PRINT, and
CONSOLE.

*+ W Turn on space compression during
WRITE.

*- KDCP Turn off Keyin Continuous (turned
off at the end of the statement) or
the space after logical length
suppression.

B-1

*-

*<n>

*<n>
*<nvar>

"

*F

*L

*C

*T

*W

w

P

RW

Turn off space compression during
WRITE.

Causes a horizontal tab on the
printer to the column indicated by
the number <n>.No action occurs if
the carriage is past the column
indicated by <n>.

Tab specification for READ or WRITAB
operations; the logical file
pointers are moved to that ch~racter
position relative to the current
physical record.

KDP Suppress a new line function when
occurring at the end or a list.

KDCP

P

KDP

KDP

K

KD

Any characters appearing between
quotes are displayed or printed when
encountered (note that a quote
itself cannot be quoted).

Causes the printer to be positioned
to the top of form.

Causes a line feed to be displayed or
printed.

Causes a carriage return to be
displayed or printed.

Time out after 2 seconds for KEYIN
statement.

Pause for one second.

B-2

APPENDIX C

PROGRAM EXAMPLES

Simple ANSWER Program

. SIMPLE ANSWER PROGRAM

PORTN
IDCODE
ID

FORM "4"
DIM 9
INIT "DATAPOINT"

DISPLAY *ES,"D A T ASH ARE
CONSOLE "ANSWER",PORTN

LOOP KEYIN "ID: ",IDCODE
MATCH ID TO IDCODE
GOTO BADID IF NOT EQUAL
GOTO BADID IF LESS
MATCH IDCODE TO ID
GOTO BADID IF LESS
STOP

BADID DISPLAY "*** INVALID ID ***"
. GOTO LOOP

C ... 01

PORT ",PORTN," ON LINE"

., '; .,

· SIMPLE MASTER PROGRAM

PORTN
FILNAM

LOOP

NONAME

FORM "4"
DIM B<:

RELEASE
CONSOLE "MASTER",PORTN
KEYIN -N,-EL,"PROGRAM NAME: ",FILN~~
TRAP NONAME IF CFAIL
CHAIN FILNAM
DISPLAY ,,--- NO SUCH PROGRAM---"
GOTO LOOP

.. C-02

Complex ANSWER Program

. DATASHARE ANSWER PROGRAH .
SYSft'ILE
DAYFILE
PORTN
DATE
IDCODE
IDCTR
TIMEON
NFEB
RN
TIME
DAY
YEArl
NDAY1
NDAY2
NYEAR1
NYEAR2
LINE

STArlTO

LEAP

FILE
FILE
FORM
DIM
DIM
FOHM
DIM
FORM
FORM
INIT
INIT
INIT
FORM
FOHM
J.<"'ORM
FORM
DIM

DISPLAY
OPEN
CONSOLE
CLOCK
MOVE
CLOCK
CLOCK
MOVE
GOTO
MOVE
MOVE
DIV
MULT
COMPARE
GOTO
MOVE
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO

FILE DECLARATION
FILE DECLARATION

"3"
18
10
"3"

THE NUMBER OF THIS PORT
TODAY'S DATE IN MONTH, DAY, YEAR

8
"29"
"000"
"00:00:00"
"000"
"00"
3
3
2
2
100

*ES,*N,"D A T ASH ARE
SYSFILE,"SYSFILE"
*EL,"ANSWER",PORTN
DAY TO DAY
DAY TO NDAYl
TIME TO TIME
YEAR TO YEAR
NDAYl TO NDAY1
NODATE IF ZERO
YEAR TO NYEAR1
NYEARl TO NYEAR2
"4" INTO NYEAR1
"4" BY NYEARl
NYEARl TO NYEAR2
LEAP IF EQUAL
"28" TO NFEB
"31" FROM NDAY1
JAN IF LESS
JAN IF EQUAL
NFEB FROM NDAYl
FEB IF LESS
FEB H' EQUAL
"31" FROM NDAY1
MAR IF LESS
MAR H' EQUAL
"30" FROM NDAY1
APR IF LESS
APR IF EQUAL
"3111 FRON NDAY1
MAY IF LESS

C-03

PORT ",PORTN;

NOV

OCT

· SEP

AUG

JUL

· JUN

MAY

· APR

GOTO MAY IF EQUAL
SUB "30" FROM NDAY1
GOTO JUN IF LESS
GOTO JUN IF EQUAL
SUB 1131" FROM NDAY1
GO TO JUL IF LESS
GOTO JULIF EQUAL
SUB "31" FROM NDAY1
GOTO AUG IF LESS
GOTO AUG IF EQUAL
SUB "30" FROM NDAYl
GOTO SEP IF LESS
GOTO SEP IF EQUAL
SUB "31" FROM NDAY1
GOTO OCT IF LESS
GOTO OCT IF EQUAL
SUB "30" FROM NDAY1
GOTO NOV IF LESS
GOTO NOV IF EQUAL
MOVE "DECEMBER" TO DATE
GOTO START1

ADD
MOVE
GOTO

ADD
MOVE
GOTO

ADD
MOVE
GOTO

ADD
MOVE
GOTO

ADD
MOVE
GOTO

ADD
MOVE
GOTO

ADD
MOVE
GOTO

ADD
MOVE
GOTO

"30" TO NDAYl
"NOVEMBER" TO DATE
START1

"31" TO NDAY1
"OCTOBER" TO DATE
START1

"30" TO NDAY1
"SEPTEMBER" TO DATE
START1

"31" TO NDAY1
"AUGUST" TO DATE
START1

"31" TO NDAY1
"JULY" TO DATE
START1

"30" TO NDAY1
"JUNE" TO DATE
START1

"31" TO NDAY1
"MAY" TO DATE
START1

"30" TO NDAY1
"APRIL" TO DATE
START1

C-04

MAR

FEB

JAN

START1

STAftT2

NODATE

DATEOK

LOOPO

LOOPOA

LOOPOB

LOOP1

LOOP2

ADD
HOVE
GO TO

ADD
MOVE
GOTO

ADD
MOVE

ENDSET
MOVE
COMPARE
GOTO
BUMP
APPEND
APPEND
APPEND
RESET
DISPLAY
GOTO

DISPLAY
BEEP
DISPLAY
DISPLAY
TRAP
OPEN
MOVE
READ
CMATCH
GOTO
RESET
BUMP
GOTO
CMATCH
GOTO
LEN SET
RESET
DISPLAY
ADD
GOTO

KEYIN

CLOCK
CONSOLE
MOVE
GO TO
MOVE
READ

"31" TO NDAY1
"MARCH" TO DATE
START1

NFEB TO NDAY1
"FEBRUARY" TO DATE
START1

"31" TO NDAY1
"JANUARY" TO DATE

DATE
NDAY1 TO DAY
"10" TO NDAY1
START2 IF NOT LESS
DAY
DAY TO DATE
It, 19" TO DATE
YEAR TO DATE
DATE
*+," ON LINE AT ",TIME," ON ",DATE
DATEOK

" ON LINE " . ,
,,*** DATE NOT INITIALIZED
" " LOOP1 IF 10
DAYFILE, "DAYFILE"
"0" TO RN
DAYFILE,RN;LINE
"9" TO LINE
LOOP1 IF EQUAL
LINE TO 72
LINE BY -1
LOOPOB U' EOS
"" TO LINE
LOOPOA IF EQUAL
LINE
LINE
*+,LINE
"1" TO RN
LOOPO

***"

*EL,"PLEASE LOG IN: ",*N,IDCODE:
*C,"**********",*C,"OOOOOOOOOO"
TIME TO TIMEON
*P15:1,*EL,"ID: ",IDCODE J " TIME ON: ",TIMEON
IDCTR TO IDCTR
KABOOt1 H' ZERO
EIGHT TO RN
SYSFILE,RN;LINE

C-05

CMATCH
GOTO

LOOP3 CMATCH
GOTO
BUMP
BUMP
GOTO
CMATCH
GOTO
SUB
WRITE
CLOSE
STOP

NEXTID ADD
GOTO .

IDFAIL BEEP
DISPLAY
SUB
GOTO .

" II TO LINE .
IDF AIL IF EQUAL ~
IDCODE TO LINE
NEXTID IF NOT EQUAL
LINE
IDCODE
LOOP3 IF NOT EOS
" " TO LINE
NEXTID IF NOT EQUAL
"1" FROM PORTN
SYSFILE,PORTNjRN,DATE,TIME
SYSFILE

"4" TO RN
LOOP2

"*** INVALID ID ***"
"1" FROM IDCTR
LOOPl

KABOOM CONSOLE *P60:1,*EL,"ID OVERRUN"
BEEP
DISPLAY "*** INVALID ID ***"
GOTO LOOP1

C-06

Complex MASTER Program

. DATASHARE MASTER PROGRM1

SYSFILE FILE FILE DECLARATION
PORTN FORM " 3" THE NUMBER OF THIS PORT
ANSWER INIT "ANSWERX "
LINE DIM 100
LINITM DIM 10
RN FORM "000"
RNX FORM "000"
ONE FORM "1"
FOUR FORM "4"
EIGHT FORM "8"
NINE FORM "9"
TEN FORM "10"
COUNT FORM "00"
CMDLIN DIM 20
HELP INIT "HELP"
HELLO INIT "HELLO"
CAT INIT "CAT"
RUN INIT "RUN"
TIME INIT "TIME"
DATE IN IT "DATE"
ONLINE INIT "ONLINE"
PORT INIT "PORT"
BYE INIT "BYE"

RELEASE
CONSOLE "MASTER",POHTN," "
DISPLAY *ES
OPEN SYSFILE, "SYSFILE"
SUB ONE FROM PORTN
READ SYSFILE,PORTNjRN

CMDREQ KEYIN *ES,*N,"READY",*N,CMDLIN
TRYAGi'J MATCH HELP TO CMDLIN

GOTO HELPI IF EQUAL
MATCH HELLO TO CMDLIN
GOTO HELLor IF EQUAL
MATCH CAT TO CMDLIN
GOTO CATI IF EQUAL
MATCH PORT TO CMDLIN
GOTO PORTI IF EQUAL
MATCH TIME TO CMDLIN
GUTO TIMEI IF EQUAL
MATCH DATE TO CMDLIN
GOTO DATEI IF EQUAL
MATCH ONLINE TO CMDLIN
GOTO ONLI IF EQUAL
MATCH BYE TO Cl'1DLIN
GOTO BYEI IF EQUAL
MATCH RUN TO Ci·1DLIN

C-07

GOTO
CALL

TRYNAM TRAP
CLOSE
CHAIN

.
CFAIL OPEN

.
KEYIN
GOTO

GETNAM BUMP
RETURN
CMATCH
GOTO
CMATCH
GOTO
CHATCH
GOTO
CMATCH
GOTO

GETEXX BUMP
RETURN

HELPI KEYIN

.GOTO

HELLO I CALL
MOVE
MOVE

HELL02 READ
CMATCH
GOTO

HELL03 CMATCH
GOTO
BUMp·
BUMP
GO TO
CMATCH
GOTO
READ
WRITE
MOVE
GOTO

TRYNAM IF NOT EQUAL
GETNAM
CFAIL IF CFAIL
SYSli'tILE
CMDLIN

SYSFILE,"SYSFILE"
*N,"WHAT?",*N,CMDLIN
TRYAGN

CMDLIN
IF EOS
"0" TO CMDLIN
GETEXX IF LESS
":" TO CMDLIN
GETNAM IF ~ESS
"A" TO CMDLIN
GETEXX IF LESS
"[" TO CMDLIN
GE'!'NAM IF LESS
CMDLIN

*ES,*N:
"ENTER: HELLO-<ID> TO SIGN ON AS ANOTHER USER",*N:
" HELP TO GET THIS INFORMATION",*N:
" CAT TO GET A LIST OF PROGRAMS",*N:
" TIME TO GET THE CURRENT TIME",*N:
" DATE TO GgT THE DATE AT LOGONff,*N:
" ONLINE TO GET THE TIME AT LOGON",*N:
" PORT TO GET THE PORT BEING USED",*N:
" RUN-<NAME> TO RUN A PROGRAM",*N:
" OR <NAME> TO RUN A PROGRAM",*N,*N:
"RE~DY",*N,CMDLIN,*ES
TRYAGN

GETNAM
CMDLIN TO LINITM
EIGHT TO RNX
SYSFILE,RNX;LINE
" It TO LINE
IDFAIL IF EQUAL
LINITM TO LINE
NEXTID IF NOT EQUAL
LINE
LINITM
HELL03 IF NOT EOS
" " TO LINE
NEXTID IF NOT EQUAL
SYSFILE,PORTN;RN,LINE
SYSFILE,PORTN;RNX,LINE
RNX TO RN
CHDREQ

c-08

NEXTID ADD
GOTO

IDFAIL BEEP
KEYIN
GOTO

CAT I

CATR

CATR1

CATR3

CATRA
CATRB

PORTI

CATR4

TIlvlEI

DATEI

DISPLAY
MOVE
READ
RESET
MOVE
GOTO
READ
MOVE
RESET
LENSET
RESET
CMATCH
GOTO
CMOVE
BUMP
BUMP
GOTO
GOTO
BUMP
CMATCH
GOTO
LEN SET
RESET
DISPLAY
SUB
GOTO
ADD
GOTO

ADD
DISPLAY
SUB
KEYIN
GOTO

CLOCK
DISPLAY
GO TO

READ
RESET
LEN SET
RESET
MOVE
CMATCH

"4" TO RNX
HELL02

"*** INVALID ID ***",*N,"READY",*N,CMDLIN,*ES
TRYAGN

*ES,*N,"CATALOG: ",*N
RN TO RNX
SYSFILE,RNX;LINE
LINE TO 11
"9" TO COUNT
CATR1
SYSFILE,RNX;LINE
TEN TO COUNT
LINITM TO 99
LINITM
LINITH
" " TO LINE
CATR4 IF EQUAL
LINE TO LINITM
LINE
LINITM
CATR3 IF NOT EOS
CATRB
LINITH BY -1
LINITM TO " "
CATRA IF EQUAL
LINITM
LINITM
*+,LINITM
ONE FROM COUNT
CATR1 IF NOT ZERO
ONE TO RNX
CATR

ONE TO PORTN
"YOU ARE ON PORT ",PORTN;
ONE FROM PORTN
*N,"READY",*N,CMDLIN,*ES
TRYAGN

TIME TO LINE
*+,"THE TIME IS ",LINE;
CATR4

SYSFILE,PORTN;LINE
LINE TO 21
LINE
LINE TO 4
LINE TO CMDLIN
CMDLIN TO " "

C ... 09

GOTO DATE IN IF EQUAL
DISPLAY *+,"THE DATE AT LOG IN WAS ",CMDLIN;
GOTO CATR4

DATEIN DISPLAY "***DATE NOT INITIALZIED ***"-,
GOTO CATR4

-ONLI READ SYSFILE,PORTN;LINE
RESET LINE TO 29
LENSET LINE
RESET LINE TO 22
MOVE LINE TO CMDLIN
DISPLAY *+," THE TIME AT LOG IN WAS "jCMDLIN;
GOTO CATR4

BYEI CLOCK TIME TO LINE
DISPLAY *+,'iLOGGED OFF AT ",LINE

BYEE KEYIN CMDLIN
RESET ANSWER TO 6
ADD ONE TO PORTN
MOVE PORTN TO CMDLIN
SUB ONE FROM PORTN
APPEND CMDLIN TO ANSWER
RESET ANSWER
TRAP AFAIL IF CFAIL
CHAIN ANSWER

AFAIL GOTO BYEE

C-10

APPENDIX D

FILE ACCESS LOCKOUT PROGRAM EXAMPLE

. FILE ACCESS LOCKOUT EXAMPLE

DATAFILE
QTYONH
QTYONHS
QTYWD
KEY

TRYAGN

IFILE
FORM
l"ORM
FORM
DIM

"0000"
"0000"
"0000"
10

9PEN DATAFILE, "DATAFILE"

READ
MOVE
DISPLAY
KEYIN
SUB
GOTO
GOTO
PI
READ
COMPARE
GOTO
SUB
UPDATE ,

DATAFILE,KEY;*20,QTYONHj
QTYONH TO QTYONHS
"QUANTITY ON HAND: ",QTYONH
"QUANTITY TO WITHDRAW: ",QTYWD
QTYWD FROM QTHONH
ERROR IF LESS
ERROR IF OVER
5
DATAFILE,NULLj*20,QTYONHj
QTYONH TO QTYONHS
TRYAGN IF NOT EQUAL
QTYWD FROM QTYONH
DATAFILEj*20,QTYONH

D-1

APPENDIX E

COMPILER ERROR CODES

When an E code is given by the compiler at the left of
a line of code containing an error, the very next line will
contain an asterisk followed by an E code number and another
asterisk under the error line at the position of the
scanning pointer when the error was detected. The E code
number refers to the number in the left column of the
following table and the corresponding error explination in
the right column.

00001 The first operand or a CMATCH or CMOVE instruction
was not an octal number, a quoted character, or a
string variable.

00002 The second operand of a CMATCH instruction was not an
octal number, a quoted character, or a string
variable.

00003 The second operand of a MATCH or APPEND instruction
was not a string variable.

00004 The first operand of a MATCH or APPEND instruction
was not a string variable or a literal.

00005 The first operand of a RESET instruction was not a
string variable.

00006 The second operand of a RESET instruction was
followed by a character that was not a space,
implying that there were other operands following the
second operand. RESET may have only one or two
operands.

00007 The first operand of a BUMP instruction was not a
string variable.

00010 The second operand of a BUMP instruction was not
terminated by a space, or had an absolute value of
greater than 127.

00011 The operand of a CHAIN or ROLLOUT instruction was not
a string variable or a literal.

00012 The first operand of a STORE instruction was not a
string variable or numeric variable or literal. The
first operand of a LOAD instruction was not a string

E-1

variable or numeric variable.

00013 The second operand of a STORE or LOAD instruction was
not a numeric variable.

00014 The second ope~and ora STORE or LOAD instruction was
not followed by either a space or a comma.

00015 One of the third thru Nth operands of a STORE or LOAD
instruction was not the same data type as the first
operand. If the first operand is a string or numeric
variable, then all operands after and including the
third operand must be a string or numeric variable,
respeotively.

00016 The second operand of a MOVE instruction was· not a
string variable or a numeric variable.

00017 The second operand of a MOVE instruction was not a
string variable or a numeric variable.

00020 The first operand of a MOVE instruction was not a
string variable or a numeric variable or a literal.

00021 The second operand of a COMPARE, ADD, SUBTRACT,
MULTIPLY, or DIVIDE instruction was not a numeric
variable.

00022 The second operand of a CMATCH, CMOVE, MATCH, APPEND,
CHAIN, ROLLOUT, COMPARE, ADD, SUBTRACT, MULTIPLY, or
DIVIDE instruction was not followed by a space
(indicating no more operands follow).

00023 The first operand of a COMPARE, ADD, SUBTRACT,
MULTIPLY, or DIVIDE instruction was not a numeric
variable or a literal.

00024 The first operand of an instruction which may be
followed by a comma or a preposition was not
immediately followed by a comma or a space. .If a
comma follows the operand a preposition is not looked
for. If a space does follow the operand then a
preposition must be there.

00025 The first operand of a GOTO, CALL, or TRAP
ins.truction was not followed by a space.

00026 The first operand of a TRAP instruction was not
followed by " IF ".

00027 The conditional operand ([NOT] EOS, EQUAL, ZERO,
etc.) of a GOTO, CALL, or TRAP instruction was not
followed by a space.

E-2

00030 The conditional operand of a GOTO or CALL instruction
was not [NOT] EOS, EQUAL, ZERO, LESS, or OVER; or the
condi tional operand of a TRAP instruction was not
PARITY, RANGE, FORMAT, CFAIL, or IO.

00031 The first operand of the TRAPCLR instruction was not
followed by a space.

00032 The first operand of the TRAPCLR instruction was not
PARITY, RANGE, FORMAT, CFAIL, or IO.

00033 An operand in a CONSOLE, KEYIN, or DISPLAY
instruction was not a string variable or a numeric
variable. It was an EQU, FILE,or IFILE variable.

00034 A control code (letter or letters following an
asterisk) in a CONSOLE, KEYIN, or DISPLAY instruction
was not *C, *L, *N, *T, *R, *P, *EL, *EF, *ES, *W,
*EON, or *EOFF.

00035 A variable <N) in the *P<N>: <N> control code of a
CONSOLE, KEYIN, or DISPLAY instruction was not a
number (did not have a first character of 0-9) nor a
numeric variable.

00036 A variable <N> in the *P<N>: <N> control code of a
CONSOLE, KEYIN, or DISPLAY instruction was a numeric
literal with a value for the first (horizontal
position) <N) that was not 1 =< <N) =< 80, or with a
value for the second (vertical position) <N) that was
not 1 =< <N) =< 24.

i

00037 A literal in a CON$OLE, KEYIN, or DISPLAY instruction
was not followed by a comma, space, semicolon, or
full colon.

00040 The last character in the operand string of
CONSOLE, KEYIN, DISPLAY, PRINT, READ, WRITE,
WRITAB instruction was not a space, colon,
semicolon.

a
or
or

00041 The end-of-line was encountered before an operand
string terminator was encountered for a CONSOLE,
KEYIN, DISPLAY, PRINT, READ, WRITE, WRITAB, WEOF,
READKS, UPDATE, OPEN, PREPARE, INSERT, or DELETE
instruction, or

The character following the first
*P<N):<N> control code of a CONSOLE,
DISPLAY instruction was not a colon, or

<N> in
KEYIN,

the
or

A quoted string Of' ootaJ number was specified in the
operand string of a READ instruction.

E-3

00042 An EQUATE, FILE, or IFILE name was specified in the
operand list of a PRINT instruction.

00043 A character following an asterisk indicating a
control code 1n a PRINT instruction was not +, -, L,
F, C, N, or a number 0-9.

00044 The first operand of a READ t WRITE, WRITAB, or WEOF
instruction was not a FILE or IFILE name.

00045 The character following the first operand of a READ,
WRITE, WRITAB,or WEOF instruction was not a comma.

00046 The second operand of a READ, WRITE, WRITAB, or WEOF
instruction having an IFILE name as the first operand
was not a string variable name nor a numeric variable
name.

00047 The second operand of a READ, WRITE, WRITAB, or WEOF
instruction having a FILE name as the first operand
was not a numeric variable ..

00050 The character following the first operand of a READKS
instruction or the second operand of a READ
instruction was not a semicolon.

00051 The character following the first opernad of an
UPDATE instruction or the second operand of a WRITE
instruction was not a space or semicolon.

00052 An operand in the operand string of a READ or READKS
instruction was not a tab (*<number> or *<nvar> or
*<EQUname» nor numeric variable nor string variable,
or

An oprand in the operand string of a WRITE or UPDATE
instruction was not a space. compression control (*+
or *-) or a. quoted string or nUmeric variable or
string variable, or

An operand in the operand string of a WRITAB or
UPDATE instruction was not a tab (*<number) or
<EQUname» or space compression control (+ or *-)
or quoted strlrig or numeric variable or string
varible.

00053 A tab operand (*<number> or *<EQUname> or *<nvar»
was used in a READ instruction that had an IFILE name
as operand one and an NVAR name as operand two.

00054 The character following the * control-indicator
character ina WRITE instruction was not a + or -.
The compiler will recognize only the *+or *- control

E-4

for the WRITE instruction, use the WRITAB instruction
to use tab control (*<number> or*<nvar> or *<EQU' d
label» for output to a disk file. For an
Index-Sequential file, to use tab control to update a
record in the file, use the UPDATE instruction.

00055 The operand following an * control-indicator
character was a quoted item. Numeric literals may be
used but they may not be enclosed in double-quote "
symbols. Numeric Ii terals, numeric variable names,
or equated names may be used to specify tab values in
KEYIN, DISPLAY, CONSOLE, READ, WRITAB, READKS, or
UPDATE instructions.

00056 The operand following an * control-indicator
character was not an unquoted numeric literal, a
numeric variable name, or an equated name.

00057 The first operand of a READKS or UPDATE instruction
was not an IFILE name.

oou60 A tab in a READ, WRITAB, READKS,
instruction was greater than 249.

or UPDATE

00061 A. tab in
instruction
EQU'd tab
generates a
of that tab

a READ, WRITAB, READKS, or UPDATE
was zero. Note that if the value of an
is incorrectly specified the compiler
value of zero for the tab, and each use
will generate this error.

00062 A character following an operand in the operand
string of a READ, WRITE, WRITAB, READKS, or UPDATE
instruction was not a space, comma, semicolon, or
colon. If the instruction is a WRITAB or UPDATE
instruction a semicolon is assumed.

00063 The character following the second operand of a WEOF
instruction was not a space.

00064 The character following the second operand of a
WHITAB instruction was not a semicolon.

00065 The first operand of an OPEN instruction was not a
FILE or IFILE name or the first operand of a PREPARE
instruction was not a FILE name.

00066 The first operand of a PREPARE instruction was an
IFILE name.

There is no provision wi thin the DATASHARE 3
INTERPRETER for the creation of .n indexed-sequential
file. The file must first exist and be indexed by
means of the InDEX program before the file may be

E-5

opened by the OPEN instruction and accessed,
increased, or d~c~eased by means of the READ, WRITE i
WRITAB, WEOF, READKS, UPDATE, and DELETE
instructions.

00067 The character following the first operand of an OPEN
or PREPARE instruction was not a comma.

00070 The character following the second operand of an OPEN
or PREPARE instruction was not a space.

00071 The secortd operand of an OPEN or PREPARE instruction
was not a string variable name or a literal.

00072 The end-of-line was encountered before a first
operand was encountered in a CLOSE instruction.

00073 The first operand of a CLOSE instruction was not a
FILE or IFILE name.

00074 The character following the operand of a ·CLOSE
instruction was not a space.

00075 A character following an operand in a STORE, LOAD, or
BRANCH instruction was not a comma, colon, or space.

00076 The first operand of a CLOCK instruction was not
TIME, DAY, or YEAR.

00077 A comma or the preposition TO was not used between
the first and second operands of the CLOCK
instruction.

00100 The second operand of a CLOCK instruction was not a
string variable.

00101 The character following the second operand of a CLOCK
instruction was not a space.

00102 The first operand of an INSERT or DELETE instruction
was not an IFILE name.

00103 The character following the first operand of an
INSERT or DELETE instruction was not a comma.

00104 The second operand of an INSERT or DELETE instruction
was not a string variable name.

00105 The character following the second operand of an
INSERT or DELETE instruction was not a space.

00106 An alphabetic character string where a preposition
should have been was not recognized as a preposition:

E-6

BY, TO, OF, FROM, or INTO, or

A numeric Ii teral was used but was not enclosed in
double quote " symbols.

00 1 07 An EQUATE directive was given after an executable
instruction was specified.

00110 An EQUATE directive was given but no label was
specified.

00111 The first character of the operand of an EQUATE
di~ecti ve was not 1 thru 9. A first character of a
implies an octal number which is not allowed in the
EQUATE directive.

00113 The value specified for an EQUATE directive was not
from 1 thru 249.

00114 The file specified in an INCLUDE directive was not
found on disk.

00115 The character after the first operand of a DIM
instruction was not a space.

00116 The operand value of a DIM instruction was greater
than 127.

00117 For an INIT instruction or an instruction using a
string literal:

No operand was found, or

A character after a quoted string was not comma or
space, or

The end-of-line was encountered before the ending
quote of a quoted operand was encountered, or

The end-of-line was encountered. immediately after a
forcing character II was given, or .

A character following a comma . following a quoted
string or an octal number was riot a double-qoute
symbol or a zero, or

A quoted string of greater than 127 characters was
specified.

00120 For an INIT instruc tion or an instruction using a
string literal:

The character following the ending double-quote

E-7

00121

00122

00123

00124

symbol of. a quoted string wa~ .. not, C!- comIJ1.a. ,,<?r' ~ space.
; , ." !" ~ . :. ,.: . ,'~'~ . '":. ,. -,.:.' . \ .-',) '.",' ~. ,

For an instruction using a string l'i te'l:"ci:tf:'; the
literal was over 40 characters. 1011K.

The end-of-line was en'couritered:hefore " 'the first
operand (data. item length specification) was
encounteredfort;he DIM instruction.' ,

The end-of-line was encountered before, the first;,
operand '(numeric data formatspe9~ficC;ltioi1) was
encountered, or the numeric data' was'specJ.fl.e,O to be
more than 22 "characters long, for ,·the~, FORM
instruction. .'

A closing' double:;..quote symbol was not fOUhd ,t~r the
operand (numeric data format specifica-tion) o't a FORM
instruction, or

A numeric literal was used but was not enclosed in
double quote " symbols.

00125 For the operand (numeric data format specification)
of a FORM instruction or for a numeric literal
operand:

The following applies for the FORM instruction if a_
integer-decimal length was specified:

The character after the first numeric string
(specifying the integer part length) was not a space
or a decimal point, or

The character after the first numeric string was a
decim,al point but no numeric string specifying the
decimal part length was; -found. '

The following applies if - a quoted string was
specified:

There were more than 127 characters in the number
specificati'on, or

There were no digits speoified, or

There was a deCimal point specified but no' digits
followed it, or

The numeric 1i tel'al was not enclosed in double quote
" symbols.

00126 For the DIM, . INIT, br FORM instructions: - the
end-of~line was encountered before an operand was

E-8

encountered.

00127 An operand was not a quoted item, a number, or a
label.

00130 The second character after the opening double-quote
symbol in the operand of a CMOVE or CMATCH
instruction was not a double-quote symbol. The
forcing character does not apply in these two
instructions because it is not necessary.

00131 For an instruction using a literal: the character
after the ending double-quote symbol was not a space
or comma.

00132 An octal number was specified but the number was not
in the range 0 thru 037 inclusive.

00141 The operand of a PI instruction was not an unquoted
numeric literal with a value of 1 through 20.

00142 The operand of a WEOF instruction was not an NVAR
name.

E-9

APPENDIX F

INTERPRETER I/O TRAP CODES

A - an access sequentially by key was attempted before any
indexed sequential access was made using the logical
file.

B - the READ mechanism ran off the end of a sector without
encountering a physical end of record character (003).

C - an operation on a closed logical file was attempted.
D - a non-READ non-DELETE indexed sequential operation was

attempted where the specified key already exists in the
index.

E - an· EOF mark without
encountered.

at least four zero's was

I the ·index file specified in an OPEN statement does not
exist on the specified arive(s).

J - the index file found by the OPEN statement
reside in the correct physical location on
(index files may never be moved, they must
re-created) .

does not
the disk

always be

K a null key was supplied in an operation where the key
may not be null.

M the data file specified in the OPEN statement does not
exist on the specified drive(s).

N - the data file name specified in the OPEN or PREPARE
statement was nUll.

o - the index file name specified in the OPEN statement was
nUll.

P - the file specified in the PREPARE statement had some
type of DOS protection (either write, delete, or both).

T - the tab value in the READ or WRITABstatement was off
the end of the sector.

U - an EOF mark was encountered while a record was being
deleted in the indexed sequential file.

V - one of' the indexed sequential access overlays (DS/OV 1 ,
DS/OV2, or DS/OV3) could not be loaded by the DOS
loader.

W - an index file pointer sector could not be read.
X - an index file header sector could not be read.
Y - the R.I.B. of the data file pointed to by the index file

could not be read. (VWXY errors can be caused by parity
errors, the drive being switched off line, or the disk
cartridge being swapped with another while an operation
is taking place.)

F-l

