
DOS ASSEMBLER 5
DOSASM5

User's Guide
Version 3

January, 1976

Model Code No. 50019

~TAPOINT -

The Leader In
DI.per.ed Data· Proc ••• ing

COPffIIIoITe "" iY OATN'OINT ~.TION MNTID IN USA

PREFACE

This manual explains the operating instructions for the

ASSEMBLER 5 and defines the directives and macros which are

available to the, user. The programmer will find the Datapoint DOS

User's Guide helpful if more detailed systems information is

required, and the Datapoint 2200 Reference Manual should be

consulted for fUrther instruction definition.

i

TABLE OF CONTENTS

pa:ge
1. INTRODUCTION 1-1

2. STATEMENTS 2-1
2.1 LABEL FIELD 2-1
2.2 INSTRUCTION FIELD 2-2
2.3 EXPRESSION FIELD 2-3
2.4 EXAf<1PLES OF EXPRESSIONS 2-6
2.5 COMMENT FIELD 2-7

3. ASSEMBLER DIRECTIVES 3-1
3.1 INCLUDE 3-1
3.2 EQUIVALENCE 3-1
3.3 SET 3-1
3.4 SKIP 3-2
3.5 TABULATE PAGE 3-2
3.6 TABULATE MAYBE 3-2
3.7 DEFINE CONSTANT 3-2
3.8 DEFINE ADDRESS 3-3
3.9 LOCATION 3-3
3.10 ORIGINATE 3-4
3.11 USAGE 3-4
3.12 REPEAT 3-4
3.13 END 3-5
3.14 PERIOD 3-5
3.15 PLUS SIGN 3-5
3.16 ASTERISK 3-5
3.17 LIST 3-6
3.18 ERROR 3-6
3.19 IF 3-7
3.20 XIF 3-7

4. .A.SSEMBJ..JER MACROS 4-1
4.1 HL 4-1
4.2 DE 4-1
4.3 BC 4-1
4.4 MEMORY STORE 4-2
4.5 MEMORY LOAD 4-2
4.6 SHIFT RIGHT NUMBERIC 4-2
4.7 SHIFT LEFT NUMERIC 4-3

5. OPERATING PROCEDURES 5-1
5.1PARAMETERIZATION 5-1
5.2 EXECUTION-TIME COMMANDS 5-2

ii

5.3 ASSEMBLER PASS ONE
5.4 ASSEMBLER PASS.TWO
5.5 CROSS-REFERENCE GENERATION
5.6 ASSEMBLY ERRORS

Appendix A. INSTRUCTION REPERTOIRE

Appendix B. MNEMONIC OPCODE REPERTOIRE

Appendix C. EXTERNAL COMMAND REPERTOIRE

Appendix D. OBJECT FILE FORMAT

Appendix E. SAMPLE PROGRAM

iii

5-2
5-2
5-3
5-4

CHAPTER 1. INTRODUCTION

Generating machine language programs for the Datapoint 2200
with ASSEMBLER 5 consists of using the DOS EDITOR to create one or
more symbolic source file(s) comprised of mnemonic instructions,
symbolic variables, and symbolic routine names which can then be
processed' by the ASSEMBLER to create an absolute, executable
object file which can be loaded and executed by the OPERATING
SYSTEM.

,
Since ASSEMBLER 5 and this manual assume many details which

are inherent to the DOS and 2200, a working knowledge of both the
DOS and the 2200 VI and VII processors is recommended before
proceeding.

Basically, the ASSEMBLER is a program that assigns nUmerical
values to symbols and puts out these values upon input of the
associated symbols. Symbols in certain fields have preassigned
values (such as instruction mnemonics) while other symbols are
defined by the user (such as labels).

The value assigned to an instruction mnemonic is the binary
bit configuration recognized by the 2200 processor for that
instruction. For example, the following instruction mnemonics
have the following octal values:

ADB
RET
SU

0201
0007
0024

Symbols in fields other than the instruction field (except
for the expression field in EXternal commands) may be defined by
the user. Pre-defined symbols are kept separately by the
ASSEMBLER so that the user may define symbols that are the same as
the pre-defined symbols without encountering any difficulties.
For example:

CHAPTER 1. INTRODUCTION 1-1

LABEL INSTRUCTION EXPRESSl.QN

L1 AD 1
JMP CALL

L2 AD 2
CALL CALL SUBRl
INPUT INPUT

will not present a problem in differentiating the two CALL and
INPUT symbols since the ones in the instruction field are
pre-defined and the ones in the label and expressio~ fields are
user-defined.

Along with relating symbols to numbers, another major
function of the ASSEMBLER is to enable the programmer to reference
a symbol that is defined later in the program. This is called
FORWARD REFERENCING, and may be handled in a variety of ways. One
of the simplest is to look at the source code twice. The first
look determines the definitions of all the symbols and the second
look uses the symbols to produce the object code. Each "look" at
the source code is ca lIed a "PASS". Therefore, we end up wi th a
two pass assembly process.

An optional function of the ASSEMBLER is that of producing a
tabularized listing of all user-defined symbols, their octal
value, and all references to them. This cross:"'reference table
generation consists of recording all references to user-defined
symbols during pass two, sorting the references, and merging them
with their values.

The ASSEMBLER maintains two internal counters called the
ADDRESS COUNTER and the LOCATION COUNTER. The ADDRESS COUNTER
indicates the memory address of the object code currently being
generated and the LOCATION COUNTER indicates the memory address at
which the object code currently being generated will be executed.
These counters are usually the same except in the case of Located
Code (see Section 3.9). Each time a byte of code is generated,
both counters are incremented. The values of these counters are
initially set to 010000 but directives are available for changing
their values either initially or dynamically (see Sections 3 and
5). The cont~nt of the ADDRESS COUNTER when processing of the
current line is initiated is usually displayed at the left side of
the listing. When the Location flag is set by a LOC directive, the
LOCATION COUNTER (identified by a trailing L) is displayed instead
of the ADDRESS COUNTER. The symbol $ has special meaning in that
it has the value of the'LOCATION COUNTER when processing of the
current line began. For example:

1-2 DOS ASSEMBLER 5

ADRCTR OBJECT CODE SOURCE CODE

01000 SET 01000
01000 104 000 002 XXX JMP XXX
01003 104 003 002 DOG JMP $
01006 A EQU $
00001 B EQU 1
01006 123 123 DC 0123,83
05400L LOC 05400
05400L 104 000 013 C JMP $
05403 D EQU $
01013 LOC *

The ASSEMBLER maintains a stack of 16 dynamic Program Address
Blocks (PAB'S) which may be used to locate data and code at
Assembly time. A PAB is actually an ADDRESS COUNTER which has
been given a symbolic name. This name is not used as a dictionary
entry but is used solely for the purpose of requesting an ADDRESS
COUNTER swap with the current PAB (see Sections 3.10 and 3.11).

An ABSOLUTE PAB is defined by the ASSEMBLER and is implicitly
used anytime the programmer neglects to Originate (ORG) and Use
(USE) additional PAB's (see Section 3.10 and 3.11). When a new
PAB is requested, the current PAB's ADDRESS COUNTER is stored and
the next available address associated with the requested PAB is
placed in the ADDRESS and LOCATION COUNTERS.

The first word address and the length of each PAB is printed
at the end of pass 1.

Example of PAB usage:

ADRCTR OBJECT ~ODE SOURCE CODE

01000 BUFFER ORG 01000
07000 CODE ORG 07000
00120 LTH EQU 80
07000 USE CODE
07000 002 000 120 DC *BUF1,LTH
07003 002 120 120 DC *BUF2,LTH
01000 USE BUFFER
01000 BUFI SK LTH
01120 BUF2 SK LTH
07006 USE *
07006 377 HALT

CHAPTER 1. INTRODUCTION 1-3

CHAPTER 2. STATEMENTS

A 2200 assembly code statement consists of a label field, an
instruction field, an expression field and a comment field. For
example:

1 4
LABEL

2
JTC

__3_
START THIS IS A COMMENT FIELD

Field 1 is the LABEL FIELD
Field 2 is the INSTRUCTION FIELD
Field 3 is the EXPRESSION FIELD
Field 4 is the COMMENT FIELD

The 2200 editor provides tabulation so that the fields may be
justified to begin in a certain column for ease of reading. Tab
stops at columns 9, 15 and 30 create a good appearance. However,
the ASSEMBLER only requires the following:

A non-space in the first column means that the first field is
a label except for a leading period, plus, or asterisk, which
deSignates the entire line as a comment line.

A space in the first column means no label and the first
symbol on the l.ine is an in struction.

Scanning proceeds from left to right. One or more spaces
serve as delimiters for the LABEL and INSTRUCTION fields.
Spaces may appear in the expression field without terminating
the expression (see, however. Section 2.3).

2.1 LABEL FIELD

The Label Field mayconsi st of any number of characters.
However, only the first six will be used as a label name in the
dictionary and, therefore, the first six must be unique. The
first character may be any alphabetic character or a $ sign. The
other characters may be any alphanumeric character or a $ sign. An
asterisk or colon immediately following the label (with no
intervening spaces) will declare the label as a program entry
point and the label will be written to the entry point file by the
ASSEMBLER (see Section 5). If the label field is terminated by an
equal sign followed by a space, this occurrence of the label may

CHAPTER 2. STATEMENTS 2-1

not be the first; in which ca se, a redefinition of the label's
value will occur and the normal 'D' error flag will not be
generated. Extreme care must be exercised when using this
redefinition capability as directives must not use multiply
defined symbols in their expression field and the ASSEMBLER will
not error flag such usage. Some examples of labels follow.

VALID LABELS

LBL123

LABEL$

LABELA*

LABELB=

INVALID LABELS REASON FOR ILLEGALITY

lLABEL Starts with numeric

LABEL# Non-alphanumeric or $ character (#)

LABELA. Non-alphanumeric or $ character (.)
Ll-2L3 Non-alphanumeric or $ character (-)

in a statement which has empty instruction A label may appear
expression fields.
5.5.3).

Invalid labels are flagged as 'E' errors

2.2 INSTRUCTION FIELD

and
(see

The Instruction Field may be any of the instruction
mnemonics, assembler directives, or assembler macros. It has the
same syntactical restrictions as the Label Field (any number of
characters starting with a letter and containing only
alphanumerics or $'s) except only the first two or three
characters are used and consequently the user may abbreviate some
instructions. For example:

2-2 DOS ASSEMBLER 5

CALL
CALBCDEFG

INP
INPUT

INC

RET
RETURN

These are both CALL instructions

These are both INPUT instructions

This is an INCLUDE directive

These are both RETURN instructiqns

Any illegal or undefined instruction mnemonics will cause 'I'
error flags to be generated.

2.3 EXPRESSION FIELD

The Expression Field consists of one or more expressions,
delimited by commas, comprised of any number of strings, numbers,
or symbols with operators between them. However, only the first
expression will have significance except in the case of certain
assembler directives (DC, DA, and IFnn) as' noted in Sections 3.7,
3.8, and 3.19. DOSASM5 will allow spaces within an expression
field in most caseSi however, the use of spaces within expressions
is not encouraged since other assemblers (i. e. SNAPl and SNAP2)
will not accept expressions with imbedded spaces. Numbers are
assumed to be decimal (base 10) unless they have one or more
leading zeros, in which case they are taken to be octal. That is,
123 is 123 decimal, whereas 0123 or 00123 (the octal number 123)
is really 83 decimal.

String quantities are denoted (preceded and followed) by
apostrophes. In expressions, only one character is allowed with
the exception of the DC directive. The character's value is the
ASCII binary number with the parity bit always a zero· A null
string is illegal. A forcing character (#) is used in strings to
indicate that the next character should be taken as ASCII no
matter what it is. Thisis useful for entering the characters (')
and (#l themselves string. For example:

'#'##' is the character string 'I

Expressions are evaluated strictly from left to right and all
operators have the same precedence (with no parentheses allowed).
The expression scanner generates a 16-bit two's complement value
giving a decimal range of -32768-to +32767. Instructions which
use only eight bits will discard the most significant byte (MSB)
of the value generated by the expression scanner and use only the
least significant byte (LSB) of the value. Syntax errors in

CHAPTER 2. STATEMENTS 2-3

expressions will be flaggedwith'E' error flags. A 'u' flag is
issued in pass one when an assembler directive other than DA or DC
is operating on an expression containing a label not yet in the
dictionary. A 'u' flag is issued in pass two whenever an
expresssion contains an undefined label. The expression field is
omitted for instructions which require no expression.

There are eleven operators allowed in expressions:

+

*

*

/

>

<

This means addition.

This means subtraction. Note that the minus
sign may be placed at the beginning of an
expression if the value of the first item is
to be negated.

When used as the first character in the
expression, this operator will set the
ASSEMBLER'S star flag (see Sections 3;7, 3.8,
4.4, and 4.5). It may be followed by a minus
operator (e.g. *-DOG+l).

When used as other than the first character in
the expression, signifies 16-bit integer
multiplication.

A slash indicates least whole integer
division. This means that any remainder
produced by the division will not be used.

This means shift right. The value accumulated
up to this point is logically shifted right
the number of places indicated in the
following label value or number (all bits
shifted off the end are discarded and zeros
are filled in on the left). Because the
operation is a logical shift, sign is not
maintained. Thus, negative numbers will be
treated as positive 16-bit values instead of
two's complement 16-bit values.

This is the same as > except shifting is to
the left with zero filIon the right.

2-4 DOS ASSEMBLER 5

2.3.8

2.3.9

.AND.

.OR.
• IOR.

This means to perform a logical 'AND' of the
two positive 16-bit numbers.

These mean to perform a logical inclusive
'OR' of the two positive 16-bit numbers .

2.3.10 .XOR. This means to perform a logical exclusive 'OR'
of the two positive 16-bit numbers.

Note that only the first character of a
logical operation is used to determine the
operation type and that additional characters
prior to the second period are ignored.

CHAPTER 2. STATEMENTS 2-5

2.4 EXAMPLES OF EXPRESSIONS

The following examples assume that the value of DOG is 1 and
that the value of CAT is 2.

VALID EXPRESSIONS VALUE

DOG 1

DOG+1 2

l+DOG 2

DOG+CAT 3

, A' +1 0102

*-CAT+1 -1

-DOG<3 -8

-DOG>3 8191

8>3+1 2

CAT*CAT 4

CAT.AND.DOG 0

DOG.OR.CAT 3

0377.XOR.DOG 0376

2-6 DOS ASSEMBLER 5

Note that star flag will be set.

Note that sign is not extended on right
shifts.

Note that shift occurs before addition.

ILLEGAL EXPRESSIONS

DOG+

DOG#l

'AB'

'A'+l

CAT+DOG=

CAT.NOT.l

**12

• XOR.1

2.5 COMMENT FIELD

Terminating character not a space or comma.

Illegal binary operator.

Illegal if not a DC statement. Only 1 character
allowed in all other expression strings.

\

\Illegal only in a DC statement because a
separator is expected after a string and + is
not a valid separator (see Section 3.7).

Illegal terminator character.

Illegal binary operator.

Star flag set but no multiplier exists for
second asterisk •

No value prior to operator.

The Comment Field begins anywhere after the Expression Field,
Instruction Field (if the Expression Field is not used), or Column
2 (if Column 1 contains a period, plus, or asterisk as noted in
Sections 3.14, 3.15, and 3.16). The Comment Field may contain any
character and is terminated by the end of the line. The ASSEMBLER
puts out its listing of the source line exactly as it is provided
in the source code so formatting of comments will be maintained.

CHAPTER 2. STATEMENTS 2-7

CHAPTER 3. ASSEMBLER DIRECTIVES

Assembler Directives are used for setting the LOCATION
COUNTER, ADDRESS COUNTER, and LABEL values to other than the
normal sequential assignments and for defining constants. Oth~r
Directives are used to control certain ASSEMBLER functions such as
input file linking, source file assembly, and program listing.
Note, that the normal forward ref~rencing in the expression field
is only permitted in the DC and DA directives.

3.1 INCLUDE

INC Includes the source from the file specification
given in DOS format in the expression field. Up
to 25 files may be included at nesting levels of
up to 4 deep. Exceeding these limits will result
in 'F' errors and the inclusion(s) will not be
made. Lines of source code originating from an
included file are noted by a trailing alphabetic
character in the line number. Note that the label
field of an INCLUDE directive is ignored and no
dictionary entry made.

3.2 EQUIVALENCE

3.3 SET

EQU Sets the value of the label on the statement to
the value of the expression field. Object code is
not generated by EQU's, but dictionary labels are.
External references can be handled by equating
labels to external locations and then referencing
the labels. Will produce an 'E' error if no label
is found.

SET Sets the first word and current word address of
the ABSOLUTE PAB (initially 010000) to the value
of the expression field, clears the Location flag,
and initiates usage (USE) of the ABSOLUTE PAB (see
Section 3.11).

CHAPTER 3. ASSEMBLER DIRECTIVES 3-1

3.4 SKIP

SK Increments the values of the LOCATION and ADDRESS
COUNTERS by the value of the expression field.

3.5 TABULATE PAGE

TP Increments the value of the ADDRESS COUNTER uritil
it is a multiple of 256 (LSB = 000). This is
useful for setting up page-dependent data areas
which are addressable by single precision (leaving
H fixed and manipulating only the L-register). If
the Location flag is set, the ADDRESS COUNTER is
not incremented and an 'I' error is produced.

3.6. TABULATE MAYBE

TM Performs a .Tabulate Page if the value of the
expression field would cause a page overflow if
added to the current ADDRESS COUNTER. Will
produce an 'I' error if the Location flag is set.

3.7 DEFINE CONSTANT

DC Generat.es eight b1tobject bytes from one or more
expressions or strings delimited by commas found
in the expression field. A leading asterisk on
any expression will produce two object bytes (LSB,
MSB) and therefore addresses may be imbedded
with~n DC directives. A special exception is made
for string items found in the DC directive. All
the characters of a string item are significant
and as many words as necessary are generated to
accommodate all the characters of the given
string. This special string item is in effect
only if the expression is opened with an
apostrophe.

3-2 DOS ASSEMBLER 5

String items in expressions still have only one
character of significance. For example:

DC 1,2+3,2+'A','ABC'

generates the following octal values:

001,005,0103,0101,0102,0103

Note that 'A'+2 is illegal as the DC directive
will consider it as a special multiple-character
string and the + is not a legal terminator (only
space or comma) but that 2+'A' is legal since the
normal expression scanner will be used to
determine its value.

3.8 DEFINE ADDRESS

DA Generates a two byte constant which is the
address, LSB first, of the "expression. Placing an
* in front of an expression will cause the two
bytes to be generated in the reverse order (MSB
first, LSB second). For example:

3.9 LOCATION

DOG EOO
DA

01234
DOG,*DOG,l

gives the following octal values:

234,002,002,234,001,000

LOC Sets LOCATION COUNTER to the value of the
expression field and sets the Location flag. If
the expression field consists of an asterisk, the
Location flag is cleared and the LOCATION COUNTER
is set to the ADDRESS COUNTER. Note that the
listing will have the LOCATION COUNTER (noted by a
trailing L) printed instead of the ADDRESS
COUNTER.

CHAPTER 3. ASSEMBLER DIRECTIVES 3-3

3.10 ORIGINATE

ORG Initializes a new PAB and sets its first and
current word addresses to the value of the
expression field. The label field only defines
the PAB's name and not a label for the dictionary.
An 'E' error flag will be issued if the PAB has
been previously defined or if there is no label.
This error is fatal and causes pass two to abort.

3.11 USAGE

USE Declares the usage of the PAB whose name is given
in the expression field. An asterisk in the field
will revert back to the last PAB used. An 'E'
error will be issued if the PAB named has not been
originated. This error is fatal and will abort
pass two.

3.12 REPEAT

kPT Will cause the following line of source code to be
processed the number of times indicated by the LSB
of the expression field's value. For example:

RPT 5
CALL INCHL

wi 11 produce the same code as:

CALL INCHL
CALL INCHL
CALL INCHL
CALL INCHL
CALL INCHL

Repeating statements with labels which do not ha ve
a trailing = to signify a multiple definition will
result in 'D' error flags.

3-4 DOS ASSEMBLER 5

3.13 END

END Indicates that there is no more source code to be
processed and that the ASSEMBLER should proceed to
pass 2 if in pass 1 or complete generating the
output if in pass 2. Note that an 'F' error will
be issued if an END is found in an Included file.
The expression field has special significance in
the END statement in that its value is taken as
the Primary Transfer Address at which program
execution will begin. This is optional and a
Secondary Transfer Address is set by the ASSEMBLER
to the location of the first byte of object code.

3.14 PERIOD

3.15 PLUS SIGN

A period' in the first column will cause the
ASSEMBLER to treat the entire line as a comment
line.

+ A plus sign in the first column will cause a page
eject during the listing of the program. The line
will be treated as a comment line as well and
printing will occur after the ejection.

3.16 ASTERISK

* An asterisk in the first column will cause a page
eject if the listing is within two inches of the
bottom of a page. The line is treated as a comment
line and printing occurs after any possible
ejection.

CHAPTER 3. ASSEMBLER DIRECTIVES 3-5

3.17 LIST

LIS This is a directive which is used to alter the
settings of the ASSEMB.LER' S listing control flags.
Each flag is specified by one character which
turns the flag on when mentioned in a LIST
statement unless it is preceded by a minus sign
which wi 11 turn the flag off. Commas may be used
to delimit more than one flag character. The flag
characters, their default settings, and their
usage are as follows:

L ON

G OFF

I OFF

F OFF

Master list control. If turned off,
no pass two output will be listed
until this flag is turned on again
regardless of other control flags.

Generated lines. If turned off,
this flag will suppress the listing
of code lines generated by DC, DA,
and RPT statements.

Included lines. Lines of source
code included from additional
source files will not be listed
unless this flag is on.

If-skipped lines. This flag must be
'on to produce a listing of all
lines of code skipped by an IF<nn>
statement.

3.18 ERROR

ERR Produces a 'P' error in both pass 1 and pass 2.
Usually follows a conditional assembly statement
to trap a page, table, overflow etc. For example:

3-6 DOS ASSEMBLER 5

3.19 IF

3.20 XIF

IFnn

TABLE SK
IFNE
ERR
XIF

LEN
$>8,TABLE>8
TABLE OVERFLOWS A PAGE!

This is the conditional assembly directive.
Condition 'nn' (assumed to be 'EQ' if not given)
must be met when comparing the two expressions
found separated by a comma in the expression field
in order to assemble following lines of code. The
second expression will be assumed zero if not
given. Only an XIF directive will turn the
conditional assembly back on. However, IF
statement nesting may occur to any depth. An
undefined expression operand in pass 1 is fatal
and this occurrence will cause pass 2 to be
aborted. The available condition codes are:

EO Field 1 must be equal to field 2
GT Field 1 must be greater than field 2
LT Field 1 must be less than field 2
NE Field 1 must not be equal to field 2
GE Field 1 must be either grea ter than

or equal to field 2
LE Field 1 must be either .less than

or equal to field 2
Z Field 1 must be zero
NZ Field 1 must be non-zero
C Field 1 must be clear

(flag-testing, same as Z)
S Field 1 must be set

(flag-testing, same as NZ)

XIF Forces the assembly on if it has been
conditionally turned off.

CHAPTER 3. ASSEMBLER DIRECTIVES 3-7

CHAPTER 4. ASSEMBLER MACROS

Assembler MACROS are opcode mnemonics which directly result
in the generation of a sequence of machine instructions.

4.1 HL

HL (exp)

4.2 DE

DE (exp)

4.3 BC

BC (exp)

The HL macro generates the load H
register and load L register
instructions necessary to place the
value of the expression field in the H
and the L registers properly so that a
load to or from memory will use that
address i.e. H contains the MSB and L
contains the LSB. The HL macro
generates four bytes of object code.
For example:

OOPS EQU 02005
HL OOPS

generates the following code:

066 005 056 004

The DE macro works the same as the HL
macro except it loads the D and E
registers instead of Hand L.

The BC macro works the same as the HL
macro except it loads the Band C
registers instead of Hand L.

CHAPTER 4. ASSEMBLER MACROS 4-1

4.4 MEMORY STORE

MS (r) (*){ exp) The Memory Store macro allows the user
to store a given register into a given
memory location. Placing an * in front
of the expression causes the H-register
to be loaded as well as the L. The
expansion is as follows:

4.5 MEMORY LOAD

LL
LH
LM{r)

(exp)
(exp»8 if * is present

ML{r) (*)(exp) The Memory Load macro works the same as
the Memory Store (MSr) macro with the
exception that the register is loaded
from memory rather than being stored
into memory.

4.6 SHIFT RIGHT NUMBERIC

SRN (exp)

4-2 DOS ASSEMBLER 5

The Shift Right Numeric macro allows the
user to generate SRC instructions the
number of times specified in the
expression field. The expression must
be defined in pass one and must have a
value between zero and seven. For
example:

SRN 3

will generate the following code:

012 012 012

4.7 SHIFT LEFT NUMERIC

SLN (exp) The Shift Left Numeric macro works the
same as the SRN macro with the exception
that SLC instructions (002) are
generated.

CHAPTER 4. ASSEMBLER ~1ACROS 4-3

CHAPTER 5. OPERATING PROCEDURES

The DOS command requesting execution of the Version 5
ASSEMBLER should be as follows:

ASM source (,object(,entryp)) (i (D) (L) (X) (F) (I) (G))

where each pair of parentheses and their content is optional.

5.1 PARAMETERIZATION

.The first file spec (which ~ required) is the source file,
the second file specification is for the object file, and the
third file specification is for the entry point file. Each of
these three files must be physically different. The source file
has a default extension of TXT. The object file, if not given, is
assumed to have the same name as the source file and has a default
extension of ABS. The entry point file, if required and not
gi ven, is a ssumed to ha ve the same name as the source fi Ie with a
default extension of EPT. The entry point file is written after
pass one only if entry points have been declared in the program.
The EPT file is written in a compressed symbolic format which can
be INCLUDED by a later assembly to provide a program linking
capability.

The characters on the command line following the semicolon
specify output options. The character L will cause the output to
be listed on a Servo printer, if one is on-line. Otherwise, L
produces a listing on the local printer. If the character X
appears, a cross-reference map will be listed on the Servo or
local printer (as above). X may appear in the command line
without L if a cross-reference table but no program listing is
desired. The character D signifies that the output should be
displayed on the 2200 CRT, and the remaining valid characters
instruct the ASSEMBLER to turn on their respecti ve Ii sting control
flags (see Section 3.17). If neither L nor X appear as parameters,
no printed output is produced. Assembly error messages are
displayed on the CRT regardless of which options are specified.

5.2 EXECUTION-TIME COMMANDS

During the ASSEMBLER pass one and pass two, two
execution-time commands may be invoked. Depressing the DISPLAY
key will prevent the 2200 CRT screen from rolling up until the key
is released. The KEYBOARD key may be used to terminate the

CHAPTER 5. OPERATING PROCEDURES 5-1

assembly and return to DOS.

5.3 ASSEMBLER PASS ONE

Initially the ASSEMBLER will validate the three file
specifications and the parameter string and will then request an
80-character heading if either the L or X parameter was specified.
Next it wi 11 print it s Version number and the maximum number of
labels it can handle in its dictionary. The ASSEMBLER will then
read the source file and any INCLUDED files in order to build a
dictionary containing all symbolic names used by the programmer
and their equivalent octal value or address. A notation is
printed as each INCLUDE is processed along with any lines which
contain errors. At the end of pass one, one or more of the
f9l1owing items will be printed:

1) Any pass one error flags
2) Dictionary overflow message if overflow occurred
3) Fatal error message if error occurred
4) Program Entry Points--name, value
5) List of undefined symbols
6) List of unused symbols
7) List of multiply defined symbols
8) PAB starting locations and lengths

5.4 ASSEMBLER PASS TWO

If no fatal pass one errors occurred, the ASSEMBLER will now
write the entry point file, if required, and proceed into pass
two. Pass two is responsible for the actual generation of object
code and.a program listing. However, if a cross-reference listing
is to be generated, pass two will also write a reference file
(ASMXREF/SYS) which will contain all symbolic references made in
the program. .

5.5 CROSS-REFERENCE GENERATION

At the completion of pass two, the ASSEMBLER will call in
overlay 1 if a cross-reference listing is desired. Overlay 1 uses
DOS SORT to sort ASMXREF/SYS into the ordered file ASMSREF/SYS and
produces from it a cross-reference table. The actual listing of
references will contain the symbolic name preceded by its actual
octal value, unless the name is undefined in which case it is
preceded by asterisks. Following the symbolic name is a list of
all line numbers at which that symbolic name was defined or
referenced. All definit~on lines are flagged with a leading
asterisk while all Inclusions are noted by a trailing colon
followed by the Inclusion file character (see Section 3.1). For

5-2 DOS ASSEMBLER 5

example:

11304 'DECHL *32:A *32:B

0034i DISPL *24

00024 IDLE *197212 212 212

10176 INCHL 71 * 102 151 156

00007 MANY 21 :A *25:A 21:B *25:B

***** ILDE 213

CHAPTER 5. OPERATING PROCEDURES 5-3

5.6 ASSEMBLY ERRORS

The ERROR FLAGS produced by the 2200 ASSEMBLER during both
passes are as follows:

5.5.1 D

5.5.2 I

5.5.3 E

5.5.4 U

5.5.5 F

5.5.6 P

The D flag means DIFFERENT DEFINITION. It is
generated if an attempt has been made to define
the label more than once without a trailing;
mark. Generated in pass one only.

The I flag means INSTRUCTION MNEMONIC UNDEFINED.
The instruction was not an acceptable instruction
and a zero or 0377 is inserted for the
instruction.

The E flag means that an error has occurred in an
EXPRESSION or some unrecognizable character
appeared in the wrong place. In this case, a zero
is substituted for the expression or in whatever
was unrecognizable if code generation was
expected.

The U flag means UNDEFINED LABEL. It is issued in
pass two whenever a label is referenced and is not
defined and it is issued in pass one when an
assembly directive (except DA or DC) is operating
on an expression containing a label not yet in the
dictionary {forward referencing}.

The F flag means FILE error. It can be issued in
either pass when the ASSEMBLER'S limits for an
inclusion are exceeded or when an INCLUDED file
contains an END directive.

The P flag means PROGRAMMER PRODUCED. It is
issued in both pa sses when an ERR directi ve is
encountered.

5-4 DOS ASSEMBLER 5

APPENDIX A. INSTRUCTION REPERTOIRE

Notes: Opcodes shown without mnemonics are undefined.
See Datapoint 2200 reference manual for further
instruction definition.

OP OP
CODE MNEMONIC CODE MNEMONIC

000 040 DI
001 041
002 SLC 042
003 RFC 043 RTC
004 XXX AD <exp> 044 xxx ND <exp>
005 045
006 XXX LA <exp> 046 XXX LE <exp>
007 RET 047

010 SYNC 050 EI
011 051
012 SRC 052
013 RFZ 053 RTZ
014 XXX AC <exp> 054 xxx XR <exp>
015 055
016 XXX LB <exp> 056 xxx LH <exp>
017 057

020 BETA 060 POP
021 061
022 062
023 RFS 063 RTS
024 XXX SU <exp> 064 XXX OR <exp>
025 065
026 XXX LC <exp> 066 XXX LL <exp>
027 067

030 ALPHA 070 PUSH
031 071
032 072
033 RFP 073 RTP
034 XXX SB <exp> 074 XXX CP <exp>
035 075
036 XXX LD <exp> 076
037 077

APPENDIX A. INSTRUCTION REPERTOIRE A-l

OP OP
CODE MNEMONIC CODE MNEMONIC

100 LSB MSB JFC <exp> 140 LSB MSB JTC <exp>
101 INPUT 141
102 LSB MSB CFC <exp> 142 LSB MSB CTC <exp>
103 143
104 LSB MSB JMP <exp> 144
105 145
106 LSB MSB CALL <exp> 146
107 147

110 LSB MSB JFZ <exp> 150 LSB MSB JTZ <exp>
111 151 EX BEEP
112 LSB £-1SB CFZ <exp> 152 LSB MSB CTZ <exp>
113 153 EX CLICK
114 154
115 155 EX DECK1
116 156
117 157 EX DECK2

120 LSB MSB JFS <exp> 160 LSB MSB JTS <exp>
121 EX ADR 161 EX RBK
122 LSB MSB CFS <exp> 162 LSB MSB CTS <exp>
123 EX STATUS 163 EX WBK
124 164
125 EX DATA 165
126 166
127 EX WRITE 167 EX BSP

130 LSB MSB, JFP <exp> 170 LSB MSB JTP <exp>
131 EX COMl 171 EX SF
132 LSB MSB CFP <exp> 172 LSB MSB CTP <exp>
133 EX COM2 173 EX SB
134 174
135 EX COM3 175 EX REWND
136 176
137 EX COM4 177 EX TSTOP

A-2 DOS ASSEMBLER 5

OP OP
CODE MNEMONIC CODE MNEMONIC

200 ADA 240 NDA
201 ADB 241 NDB
202 ADC 242 NDC
203 ADD 243 NDD
204 ADE 244 NDE
205 ADH 245 NDH
206 ADL 246 NDL
207 ADM 247 NDM

210 ACA 250 XRA
211 ACB 251 XRB
212 ACC 252 XRC
213 ACD 253 XRD
214 ACE 254 XRE
215 ACH 255 XRH
216 ACL 256 XRL
217 ACM 257 XRM

220 SUA 260 ORA
221 SUB 261 ORB
222 SUC 262 ORC
223 SUD 263 ORD
224 SUE 264 ORE
225 SUH 265 ORH
226 SUL 266 ORL
227 SUM 267 ORM

230 SBA 270 CPA
231 SBB 271 CPB
232 SBC 272 CPC
233 SBD 273 CPD
234 SBE 274 CPE
235 SBH 275 CPH
236 SBL 276 CPL
237 SBM 277 CPM

APPENDIX A. INSTRUCTION REPERTOIRE A-3

OP OP
CODE MNEMONIC CODE MNEMONIC

300 NOP 340 LEA
301 LAB 341 LEB
302 LAC 342 LEC
303 LAD 343 LED
304 LAE 344
305 LAH 345 LEH
306 LAL 346 LEL
307 LAM 347 LEM

310 LBA 350 LHA
311 351 LHB
312 LBC 352 LHC
313 LBO 353 LHD
314 LBE 354 LHE
315 LBH 355
316 LBL 356 LHL
317 LBM 357 LHM

320 LCA 360 LLA
321 LCB 361 LLB
322 362 LLC
323 LCD 363 LLD
324 LCE 364 LLE
325 LCH 365 LLH
326 LCL 366
327 LCM 367 LLM

330 LOA 370 LMA
331 LOB 371 U1B
332 LDC 372 LMC
333 373 LMO
334 LDE 374 LME
335 LDH 375 LMH
336 LDL 376 LML
337 LDM 377 HALT

A-4 DOS ASSEMBLER 5

APPENDIX B. MNEMONIC OPCODE REPERTOIRE

This appendix contains a list of all valid mnemonics which
can be used in the opcode field of the ASSEMBLER. Each mnemonic
is followed with a brief definition of its usage. Note that the
condition flip-flops which are specified as <c> may be specified
as follows:

Carry --- C or B
Zero ---- Z or E
Sign ---- S or L or N
Parity -- P

The processor registers which are specified as <r> may be
specified by the register name, i.e. A, B, C, D, E, H, L or M (if
Memory Ref).

AC
AC<r>
AD
AD<r>
ALPHA

BC
BETA
CALL
CF<c>
CT<c>

CP
CP<r>
DA
DC
DE

DI
EI
END
EQU
ERR

DESCRIPTION

Add with Carry Immediate Instruction
Add with Carry Register Instruction
Add Immediate Instruction
Add Register Instruction
Select Alpha Mode Instruction

Load Band C Macro
Select Beta Mode Instruction
Subroutine Call Instruction
Conditional Subroutine Call Instruction
Conditional Subroutine Call Instruction

Compare Immediate Instruction
Compare With Register Instruction
Define Address Directive
Define Constant Directive
Load 0 and E Macro

Disable Interrupt Instruction
Enable Interrupt Instruction
End Source Code Directive
Equivalence Directive
Produce Error Directive

3.8
3.7
4.2

3.13
3.2
3.18

APPENDIX B. MNEMONIC OPCODE REPERTOIRE B-1

OPCODE

EX
HALT
HL
IF<nn>
INCLUDE

INPUT
JF<c>
JMP
JT<c>
L<r>

L<r><r>
LIST
LOC
ML<r>
MS<r>

ND
ND<r>
NOP
OR
OR<r>

ORG
POP
PUSH
RET
RF<c>

RT<c>
RPT
SB
SB<r>
SET

SKIP
SLC
SLN
SRC
SRN

DESCRIPTION

External I/O Instruction
Processor Halt Instruction
Load Hand L Macro
Conditional Assembly Directive
Source File Inclusion Directive

I/O Input Instruction
Jump on False Condition Instruction
Jump Instruction
Jump on True Condition Instruction
Load Immediate " Instruction

Load from Register Instruction
Listing Control Directive
Location Counter Manipulative Directive
Memory Load Macro
Memory Store f<1acro

And Immediate Instruction
And with Register Instruction
No Operation Instruction
Or Immediate Instruction
Or with Register Instruction

SECTION

4.1
3.19
3.1

3.17
3.9
4.5
4.4

PAB Origination Directive 3.10
Pushdown Stack Manipulation Instruction
Pushdown Stack Manipulation Instruction
Subroutine Return Instruction
Conditional Subroutine Return Instruction

Conditional Subroutine Return Instruction
Repeat Source Line Directive 3.12
Subtract with Borrow Immediate Instruction
Subtract with Borrow Register Instruction
Address Counter Manipulation Directive 3.3

Address/Location Counter Directive
Shift Left Circular Instruction
Shift Left Numeric Macro
Shift Right Circular Instruction
Shift Right Numeric Macro

3.4

4.7

4.6

B-2 DOS ASSEMBLER 5

OPCODE

SU
SU<r>
SYNC
TM
TP

USE
XIF
XR
XR<r>

DESCRIPTION

Subtract Immediate Instruction
Subtract Register Instruction
Processor Sync Instruction
Tab Page Maybe Directive
Tab Page Directive

PAB Manipulation Directive
End Conditional Assembly Directive
Exclusive Or Immediate Instruction
Exclusive Or Register Instruction

SECTION

3.6
3.5

3.11

APPENDIX B. MNEMONIC OPCODE REPERTOIRE B-3

APPENDIX C. EXTERNAL COMMAND REPERTOIRE

MNEMONIC SIGNAL ADDRESS DESCRIPTION

ADR Address All Select New Device

BEEP

BSP

CLICK

COMl

COM2

COM3

COM4

DATA

DECKl

DECK2

RBK

REWIND

SB

SF

STATUS

TSTOP

Command 1

Command 2

Command 3

Command 4

Sense Data

All

0360

All

All

All

All

All

All

0360

0360

0360

0360

0360

0360

Sense Status All

0360

Activate Tone Producing Mechanism

Back Up One Record

Activate Click Producing
Mechanism

Output a Control Function

Output a Control Function

Output a Control FUnction

Output a Control FUnction

Connects Device Data to Input
Lines

Select Cassette Deck 1

Select Cassette Deck 2

Enable Read Circuitry and Forward
Motion

Rewind The Selected Deck

Slew Backward Motion

Slew Forward Motion

Connects Device Status to Input
Lines

Stop Any Deck Motion

APPENDIX C. EXTERNAL COMMAND REPERTOIRE C-l

MNEMONIC SIGNAL ADDRESS DESCRIPTION

WBK -- \ 0360 Enable Write Circuitry and
Forward Motion

WRITE Write Strobe All Indicates Output Data
\

Avai labi Ii ty

C-2 DOS ASSEMBLER 5

APPENDIX D. OBJECT FILE FORMAT

The object file created by the ASSEMBLER has a system loader
object format (see DOS User's Guide, Part IV, Sections 3.1 and
3.2) :

Logical Record Number

LRN 0 (RIB)

LRN 1 (RIB COPY)

LRN 2

Byte # Description

0 Physica 1 File Number
1 Logical Record Number (LSB)
2 Logical Record Number (~-1SB)
3 0377
4 Segment Descriptor 1
5
6 Segment Descriptor 2

2N+2 Segment Descriptor N
2N+3
2N+4 0377
2N+5 0377

o
1
2
3
4
5
6

7

8
9

n+9
n+10
n+ll
n+12

Physical File Number
Logical Record Number (LSB)
Logical Record Number (MSB)
o - indicating data block
Starting address of block (LSB)
Starting address of block (MSB)
One's complement of LSB of

starting address
One's complement of MSB of

starting address
Block length (n)
Beginning of data

o - Next data block
Starting address of block (LSB)
Starting address of block (MSB)
One's complement of LSB of

APPENDIX D. OBJECT FILE FORMAT D-l

LRN 3

LRN N

D-2 DOS ASSEMBLER 5

starting address
n+13 One's complement of MSB of

starting address
n+14 Block length (m)
n+15 Beginning of block data

n+m+15 0 - Next da ta block

o
1
2
3

o

0377 - End of Record

Physical File Number
Logical Record Number (LSB)
Logical Record Number (MSB)
o - Next data block

o - Last data block
Transfer address (LSB)
Transfer address (MSB)
One's complement of the LSB of the

transfer address
One's complement of the MSB of the

transfer address
o - block length equal to zero

signifies end-of-file

APPENDIX E. SAMPLE PROGRAM

The following pages contain a sample assembly language
program to 'give the reader a better understanding of the output he
will see from the ASSEMBLER. Due to its tutorial nature, the
program itself does not do anything useful. However, an example
of every instruction, expression, directive, and Assembler Macro
is given along with examples of how various errors are flagged and
treated.

APPENDIX E. SAMPLE PROGRAM E-l

,
. ,

E-2 DOS ASSEMBLERS

(
\

PAGE ASM5SMPLlTXT APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGRAM

DOSAStvJ5 3. 1 568 LABELS

INCLUSION A: ASM5TST2/TXT
E 17 .A 4DOGS BQU $ THIS IS AN ERROR DURING INCLUSION
U 19.A HICUPS EQU MANY THIS WILL PRODUCE A 'D' ERROR
F 43.A END ERROR! THIS IS AN INCLUDED LINE
INCLUSION B: ASM5TST2ITXT
E 17 .B 4DOGS EQU $ THIS IS AN ERROR DURING INCLUSION
D 19.B HICUPS EQU MANY THIS WILL PRODUCE A 'D' ERROR
F 43.B END ERROR! THIS IS AN INCLUDED LINE
D 287. TABLE DC o 1 0 , 020 ,030 THREE CODE BYTES ARE GENERATED
t: 306. DC 'PROGRAM XXXXX VERSION " 'O'+VER
E 313. DC 'PROGRAM XXXXX VERSION ','O'+VER
E 320. lDOG LA 5
E 321, 2DOG LA DOGGIE ONLY ONE ERROR FLAG WILL BE SEEN

322. QUICK% DC 'INVALID DUE TO TRAILIN~ ~ MARK'
,

E
E 332. SLN 25
E 341- DA **3+TABLE

ERRORS: DEUF

PROGRAM ADDRESS BLOCKS: 007314 IABSOLUTEI LTH=000673
010000 /DATAI LTH=000364
012000 /CODEI LTH=OOOOOO
014000 IBUFFER/ LTH=000360
014000 IINIT! LTH=000137

PRIMARY TRANSFER ADDRESS: 014000

ENTRY POINTS: 014000 BUFFER
010006 PNTR
010176 INCHL

MULTIPLE DEFINITIONS: SEC
MANY
PNTR
DECHL

UNDSFINED LABELS: DOGGIE

UNUSED LABELS: QUICK
DISPL

PAGE 2

1.
2.
3.
4.
5.
6.
7.
6.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

ASM5SMPLlTXT

26. 000341
27. 000341
28.
29.
30.
3"
32.
33.
34.
35.
36.
37.
38.
39.
40.
41-
42.
43.
44.
45.

000252
000125
00037'7

010000
012000
014000
014000

APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGRAM

ASSEMBLER 5 SAMPLE PROGRAM

THESE LINES ARE COMMENT LINES
IT IS USUALLY A GOOD IDEA TO IDENTIFY YOUR PROGRAM AT THE
BEGINNING WITH SEVERAL COMMENT LINES WHICH CONTAIN THE
NAME OF THE PROGRAM AND ITS PURPOSE. ANOTHER IMPORTANT
USE OF COMMENT LINES IS TO DESCRIBE THE LOGIC FLOW OF THE
PROGRAM IN A BLOCK FORM WHICH CAN BE DESCRIBED IN DETAIL
IN THE COMMENT FIELD OF SOURCE CODE.

THE USE OF ·EQU'S AND ORG'S AT THE BEGINNING OF THE PROGRAM FOR
SETTING UP CONSTANTS WHICH ARE SUBJECT TO CHANGE (SUCH AS
DEVICE ADDRESS, BUFFER LENGTHS, PROGRAM BLOCK ADDRESSES,
TABLE ENTRY LENGTHS, COUNTER STEP SIZES, ETC) MAKES THE
PROGRAM EASIER TO 'READ' AND CAN SAVE A LOT OF TIME WHEN
THE NEED ARISES TO CHANGE ONE OF THESE CONSTANTS.

KEYBD EQU 0341
DISPL EQU KEYBD

DEVICE ADDRESS OF 2200 KEYBOARD
NOTICE THAT SIMPLY CHANGING THE
ADDRESS OF THE KEYBD WILL CHANGE
THE VALUE OF BOTH CONSTANTS

THE LABEL 'DISPL' WILL BE LISTED ON PAGE 1 UNDER 'UNUSED'
LABELS SINCE IT IS NOT REFERENCED ANYWHERE IN THE PROGRAM.
'UNUSED' LABELS ARE DEFINED AS LABELS WHICH ARE UNREFERENCED
IN THE PROGRAM, ,NOT DECLARED AS ENTRY POINTS FOR USE BY
OTHER PROGRAMS, AND wHICH ARE NOT DEFINED IN AN INCLUDED
FILE. ALL THREE CONDITIONS MUST BE MET!

M252 EQU 025--2 THESE ARE MASKS WHICH WILL
M125 EQU 0125 BE USED LATER WITH THE LOGICAL
M377 EQU 0377 EXPRESSION FIELD OPERANDS

DATA ORG 010000 DATA BLOCK
CODE ORG 012000 CODE BLOCK
BUFFER ORG 014000 BUFFERS
INIT ORG 014000 INITIALIZATION (OVERLAYS BUFFER AREA)

PAGE 3 ASM5SHPL/TXT APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGRAM

46. + THIS WILL FORCE A NEW LISTING PAGE
47.
48.
49. 007314 SET 007314 NOTICE THAT THE ABSOLUTE PAB
50. WILL IMPLICITLY BE USED HERE
51-
52. 007400 TP THIS WILL FORCE A NEW MEMORY PAGE
53.
54. 007400 SK 200 IF WE HAVE A TABLE 60 BYTES IN LENGTH
55. WHICH WE ARE COUNTING ON AS BEING
56. ON ONE PAGE (PAGE-DEPENDENT), WE
57. CAN USE A TM DIRECTIVE LIKE THIS
58. 010000 TM 60 TO MAKE SURE THAT THE ENTIRE TABLE
59. WILL EITHER FIT ON THE CURRENT MEMORY
60. PAGE OR A NEW PAGE WILL BE STARTED

-_ .. ~.~ ._- " ... -. - _.- .. _------ ---- -~-;--.... ---- .. ---""-..,.... -.

PAGE 4 ASM5SMPLITXT APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGRAM

61. +
62. THE FOLLOWING PORTION OF CODE IS A SAMPLE 2200 1/0 ROUTINE
63.
64. 010000 006 341 LA KEYBD PICK UP AN OCTAL 341 IN THE A-REGISTER
65. 010002 121 EX ADR AND ADDRESS THE KEYBOARD
66. 010003 101 WAITI INPUT GET THE DEVICE STATUS IN A
67. 010004 044 002 ND 2 CHECK FOR TriE READ READY BIT
68. 010006 150 003 020 JTZ WAITI AND WAIT UNTIL IT IS SET TO A 1
69. 010011 125 EX DATA SWITCH FROM STATUS TO DATA ON THE
70. 2200 INPUT LINES
71- 010012 101 IN AND INPUT THE ACTUAL DATA CHARACTER
72. 010013 066 056 056 020 HL CHAR POINT HAND L TO MEMORY LOCATION 'CHAR'
73. 010017 370 LMA AND STORE THE CHARACTER WHICH IS IN A
74. 010020 106 176 020 CALL INCHL POINT HAND L TO THE NEXT MEMORY LOCATION
75. 010023 377 HALT STOP THE 2200
76. 010024 151 EX BEEP AND BEEP WHEN 'RUN' IS PRESSED
77. NOTtCE THE FOLLOWING TWO LINES AND THE SEPARATE USES OF 'STATUS'
78. 010025 123 EX STATUS SWITCH BACK TO THE DEVICE STATUS
79. 010026 101 STATUS IN AND GET THE NEW ~TATUS
80. 010027 012 SRC CHECK FOR DISPLAY READY BY POSITIONING
8l. THE READY BIT SUCH AS TO SET THE CARRY FLAG
82. 010030 100 026 020 JFC STATUS AND WAIT FOR THE BIT TO BECOME NON-ZERO
83. BELOW ARE THREE MANNERS IN WHICH TO GENERATE THE 5 BYTES OF
84. CODE WHICH ARE REQUIRES TO STORE THE A-REGISTER IN 'CHAR'
85. 010033 066 056 056 020 370 MSA' ·CHAR YOU CAN USE A SINGLE MACRO
8b.
87. 010040 066 056 056 020 HL CHAR YOU CAN USE A MACRO
88. 010044 370 LMA AND A 2200 MNEMONIC
89.
90. 010045 056 020 LH CHAR>8 YOU CAN ALSO USE THREE
91. 010047 066 056 LL CHAR INDEPENDENT 2200
92. 010051 370 LMA INSTRUCTION MNEMONICS
93.
94. 010052 127 EX WRITE OUTPUT THE CHARACTER IN' A
95. 010053 104 053 020 JMP $ THIS WILL HANG IN AN ENDLESS LOOP!
96. NOTICE THAT THE STORAGE ARRAY CALLED 'CHAR' MAY BE INTERSPERSED
97. • WITH THE CODE PROVIDING THAT NO ATTEMPT IS MADE TO EXECUTE IT
98. 010056 CHAR SK 80 THIS WILL ALLOW 80 MEMORY LOCATIONS
99. TO BE USED FOR THE ARRAY BUT NO

100. DATA WILL BE LOADED INTO THE ARRAY
101.
102. * FORCE THE FOLLOWING ROUTINE TO BE PRINTED ON ONE PAGE
103. INCHL -- INCREMENT HAND L BY 1
104.
105. 010176 306 INCHL· LAL LOAD THE L-REG INTO THE A-REG
lOb. 010177 004 001 AD ADD ONE TO THE A-REG
107. 0102{)1 360 LLA LOAD THE L-REG BACK FROM THE A-REG
108. 010202 305 LAH . LOAD THE H':"REG INTO THE A-REG
109. 010203 014 000 AC 0 ADD 1 ONLY IF L OVERFLOWED
110. 010205 350 LHA RELOAD H-REG FROM THE A-REG

\

PAGE 5

112.
113.
114.
115.
116.
117 •
11 &.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
136.
136.
137.
138.

014000
014000
010000
010000
014120
014120
010002
010002
014240
014240
010004
010004

010006

010006
010010
010012

ASM5SMPL/TXT

000 030

120 030

240 030

000 030
120 030
240 030

APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGRAM

+
NOTICE THAT THE ASSEMBLER KEEPS TRACK OF THE ADDRESS COUNTER
WHEN SWITCHING BETWEEN PABS TO GENERATE TABLES .

BUFFER* USE
BUFl SK

USE
PNTR* DA

USE
BUF2 SK

U&E
DA
USE

BUF3 SK
USE
DA

BUFFER
SO
DATA
BUFl
BUFFER
80
DATA
BUF2
it

SO
it

BUF3

SET UP 3 BUFFERS IN ONE BLOCK

POINT TO THE 3 BUFFERS

RETURN TO THE BUFFER BLOCK

IMPLIED USAGE OF 'BUFFER' PAB

IMPLIED USAGE OF 'DATA' PAB

• NOTICE THAT A SIMPLIER MANNER IN WHICH TO GENERATE THE POINTER
TABLE FOLLOWS AND THAT THIS PROCEDURE WILL NOT GENERATE
DICTIONARY ENTRIES WHICH MAY NOT OTHERWISE BE NEEDED.

PNTR:: EQU $

RP.'J: 3

NOTICE THAT ALL REFERENCES TO 'PNTR'
WILL USE THE CURRENT ADDRESS

DA $-PNTR/2 it SO+BUFFER
DA $-PNTR/2*SO+BUFFER
DA $-PNTR/2 it80+BUFFER

ALSO NOTICE THAT THE EXPRESSION FIELD IS TOTALLY ORDER-DEPENDENT!

PAGE 6 ASM5SMPLITXT

139.
140.
141.
142.
143.
144.
145.
146.
147. 014000
148.
149. 014000 066 000 056
150. 014004 070
151. 014005 066 040 056
152. 014011 026 077
153. '014013 307
154. 014014 106 176 020
155. ' 014017 335
156. 014020 346
157. 014021 ' 060
158. 014022 370
159. 014023 106 176 020
160. 014026 070
161. 014027 302
162. 014030 024 001
163. 014032 320

, 164. 014033 353
165. 014034 364
166. 014Q35 100 013 030

'167.
1'68.
169.
170.
171. '
172.
173.
174.

000

030

APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGRAM

+
ANOTHER FEATURE OF USING PAB'S IS THAT THE ASSEMBLER CAN KEEP
TRACK OF THE USAGE OF THE SAME BLOCK OF CODE WITH TWO DIFFERENT
PAB'S FOR USE IN SETTING UP BUFFERS, ETC. WHICH DO NOT ACTUALLY
LOAD MEMORY (THEY GENERALLY ARE SKIPS) AND THEN OVERLAY THESE
BUFFERS WITH ONE-SHOT INITIALIZATION PROCESSES.

USE OVERLAY THE BUFFERS
• THIS
START

CODE
HL
PUSH
HL
LC
LAM
CALL
LDH
LEL
POP
LMA
CALL
PUSH
LAC
SU
LCA'
LHD
LLE
JFC

IN IT
MOVES THE

0000
ROUTINE 'INT' INTO LOW CORE (LOC'N 0000)

POINT TO DESTINATION ADDRESS

MOVE

INT
INTEND-INT

INCHL

INCHL

MOVE

AND PUSH IT ON THE STACK
POINT TO SOURCE ADDRESS '
C = ROUTINE LENGTH
PICK UP A BYTE
BUMP THE SOURCE ADDRESS

AND STORE IT IN D AND E

GET THE DESTINATION ADDRESS
AND STORE THE BYTE '

BUMP THE DESTINATION ADDRESS
AND STORE IT ON THE STACK

MOVE THE COUNTER FROM C TO A
DECREMENT THE COUNT BY ONE
RELOAD C WITH THE COUNTER
RESTORE SOURCE A~DRESS

LOOP UNTIL ENTIRE ROUTINE IS MOVED

NOTICE THAT THE STACK IS LEFT WITH THE LAST DESTINATION ADDRESS+1
AT THIS POINT • THIS WILL DO NO HARM IF THE PROGRAMMER DOES NOT
EXECUTE A RETURN INSTRUCTION FROM THIS STACK LEVEL. HOWEVER,
IT IS A GOOD PRACTICE FOR SUBROUTINES TO ALWAYS RETURN THE STACK
TO THE SAME LEVEL AS WHEN ENTERED UPON EXIT. ' ,

PAGE

1'75.
176.
177.
17tL
179.
100.
1 b 1.
Hl2.
103.
H$4.
H15.
106.
107.
1I:HL
Hly.
190.
19"
192 .
193.
194.
195.
196.
197.
19b.
199.
200.
201 .
202.
203.
204.
205.
206.
207.
20b.
209.
210.
211.
212.
213.
214.
215.
216.
217.
210.
219.
220.
22,.
222.
223.
224.
225.
22b.
227.

7 ASM5SMPL/TXT

014040
OOOOOOL
OOOOOOL 040
000001L 020
000003
000002L 006 000
000004L 004 001
000006L 074 372
000010L 100 037 000
000013L 066 003 056 000
000017L 300
000020L 300
000021L 300
000022L 026 004
000024L 370
000025L 302
000026L 024 001
000030L 300
000031L 110 026 000
000034L 030
000035L 050
000036L 007
00003"{L 250
000040L 066 003 056 000 370

000045L 066 075 307
000050L 004 001
000052L 044 003
000054L 026 002
000056L 110 024 000
000061L 006 000
000063L 370
000064L 066 076 307
000067L 004 001
000071L 370
000072L 104 034 000
000075L 000
000076L 000
014137
000076

APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGRAM

+

THE FOLLOWING ROUTIN£ 'INT' IS DESIGNED TO BE MOV~D:INTO LOw
CORE PRIOR TO ACTUAL EXECUTION BY SOME TYPE OF A RELOCATING
PROGRAM AS SEEN ABOVE. THE ROUTINE 'INT' IS AN INTERRUPT DRIVEN
CLOCK PROGRAM WHICH KEEPS TIME IN LOCATION 'SEC' IN ONE SECOND
STEPS DERIVED FROM THE 2200'S 1 MILLISECOND INTERRUPT CLOCK.
PLEASE NOTICE THAT THE ROUTINE MAKES USE OF A TIMING LOOP AND
NOP'S IN ORDER TO CONSUME A PRECISE AMOUNT OF TIME (THAT BEING
116.8 MICROSECONDS) REGARDLESS OF WHETHER UPDATING ONE BYTE OR
THREE. THIS IS NECESSARY IF MULTIPLE TIME-CRITICAL 1/0 TASKS
ARE TO BE HANDLED AT EACH INTERRUPT TIME.

INT

MSEC

EQU
LOC .
DI
BETA
EQU
LA
AD
CP
JFC
HL
NOP
NOP
NOP
LC

IDLE LMA
LAC

TIMEIT SU
NOP
JFZ

GOBACK ALPHA
EI
RET

INT2 XRA
MSA

NOTICE THE
I"ILA
AD
ND
LC
JFZ
LA
LHA
MLA
AD
LMA
JMP

QSEC DC
SEC DC
INTEND LOC
SEC= EQU

:$
0000

$+1
0000
1
250
INT2
MSEC

4

TIMEIT

-MSEC
USE OF THE * IN

QSEC
1
3
2
IDLE
o
SEC
1

GOBACK
o
o
" .'ji-1-INT

THIS IS THE LOADING ADDRESS
WHEREAS THIS IS THE EXECUTION ADDRESS
DISABLE INTERRUPTS
SWITCH TO BETA MODE REGISTERS
MILLISECOND TIMER
LOAD THE MILLISECOND TIMER

AND BUMP IT BY ONE
CHECK FOR 1/4 SECOND VALUE

AND JUMP IF ATTAINED
POINT HL TO 'MSEC'

THESE NOP'S ARE FOR TIMING!

SET TIMING LOOP COUNT
STORE THE NEW TIMER VALUE
GET THE LOOP COUNT
DECREMENT THE COUNT
USED FOR TIMING
CYCLE IN TIMING LOOP
RETURN TO THE ALPHA MODE REGISTERS
ENABLE THE INTERRUPT SYSTEM
RETURN TO INTERRUPTED PROGRAM
LOAD THE A-REGISTER WITH ZEROES
CLEAR THE MILLISECOND TIMER
THE l'1SA AND MLA MACROS
PICK UP THE QUARTER SECOND TIMER

BUMP IT
AND FORCE MODULO 4 (SAME AS CP 4 HERE)

SET UP TIMING LOOP COUNTER
GO BACK IF NOT A FULL SECOND

CLEAR THE QUARTER SECOND TJMER
PICK UP THE ACCUMULATED SECONDS

BUMP IT
AND STORE IT

THEN RETURN

THIS IS THE ACTUAL 1 SECOND TIMER
THIS IS THE END OF THE ROUTINE
THIS WILL ALSO SET THE TIMER'S ADDRESS

PAGE t3

22B.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
24!L
249.
250.
251.
252.
253.
254.
255.
250.
257.
25~.
259.
260.
201.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.

ASM5SMPL/TXT

010014

010014 000 002 000 004 000

010030 300

010031 001 002 003 004 005

010036 005 004

APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGkAM

+
HERE ARE A FEW E'AMPLES OF CONDITIONAL ASSEMBLY IF STATEMENTS

DATA

TABLE
. NOW

USE
LIST
DA

TEST TO
IFNE
ERR
XIF

-G
01000,02000,03000,04000,05000,06000
MAKE SURE THAT THE ABOVE 'TABLE' IS
$>d,TABLE>8

ALL ON THE SAME PAGE

******* TABLE ERROR *******

MASK TESTING CAN ALSO BE DONE

IF M252.0.M125,M377
NOP THIS WILL BE ASSEMBLED
XIF

IFZ M252.A.M125
IFGT 5,4
IFS M377

CONDITIONAL ASSEMBLY TESTS MAY BE NESTED TO ANY DEPTH. IN SUCH A
CASE, THE CODE WILL ONLY BE ASSEMBLED IF ALL PRECEEDING TESTS ARE
TRUE. NOTICE THAT ALTHOUGH THE THREE PRECEEDING IF'S ARE TRUE AS
CAN BE SEEN BY THE ASSEMBLY OF THIS DC STATEMENT,

DC 1,2,3,~,5
THE FOLLOWING IF IS NOT SATISFIED AND THEREFORE THE LINES OF CODE
WHICH FOLLOW IT WILL NOT BE EXAMINED BY THE STATEMENT SCANNER.

IFLE 010,7
SKIP 4 ALL OF THESE STATEMENTS ARE IGNORED
HALT
ERR
DC 0,0

DO NOTE THAT SINCE THE SCANNER IS ONLY LOOKING FOR AN XIF AT THIS
TIME THAT ALTHOUGH THE FOLLOWING IF'S ARE SATISFIED ON A LINE FOR
LINE BASIS, THEY WILL BE IGNORED AND WILL NOT ALLOW ASSEMBLY OF
THE CODE wHICH FOLLOWS THEM.

IFEQ 2,2
DC 2
IF 3,2*1+1
DC 3
NOP
XIF BUT THIS WILL TURN ON THE ASSEMBLY
DC 5,4 ALLOwING THIS TO ASSEMBLE!

PAGE 9

272.
273·
274.
275.
276.

E 17.A 010040
F 43.A

277.
27(j ..
279.
2(j0.
281.

1.B
2.B
3·B
4.B
5.B
b.B
7.B
(j.B
9.B

10.B
11.B
12.B
13.B
14.B
15.B
16.B

E 17.B 010040
1!l.B
19.B 000007
20.B
21.B
22.B
23.B 000007
24.B
25.B
26.B
27.B
2b.B
29.B

ASM5SMPLITXT

30.B 011304
31.B
32.B
33.B
34.B
35.B
36.b
3'7.B
3d.B
39.B
40.B
41.B
42.B

APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGRAM

+
INCLUDE TEXT FROM ANOTHER FILE

LIST -I DO NOT LIST INCLUDED LINES
INC ASM5TST2

4DOGS EQU $ THIS IS AN ERROR DUllING INCLUSION
END ERROR! THIS IS AN INCLUDt:D LINE

NOW INCLUDE THE SMIE TEXT BUT LIST IT

LIST I
INC ASM5TST2 THIS INCLUSION USES SUFFIX 'B'

NOTICE THAT THIS IS LINE NUMBER 4 OF AN INCLUDED FILE.
THE INCLUSION LEVEL IS INDICATED BY THE TRAILING CHARACTER
OF THE LINE NUMBER WHICH WILL START WITH AN 'A' AND INCREMENT
THROUGH THE ALPHABET AS EACH INCLUSION IS MADE REGARDLESS
OF WHETHER THE INCLUDED LINES ARE LISTED OR NOT.

ALL OF THE INCLUSION FILE INFORMATION LINKING EACH INCLUSION
OF EACH FILE wITH AN ALPHABETIC CHARACTER IS GIVEN ON PAGE 1
OF THIS LISTING IN SEQUENrIAL ORDER.

NOTICE THAT THE CROSS-REFERENCE MAP WILL FLAG ALL REFERENCES
WITH THEIR FILE IDENTIFICATION CHARACTER.

4DOGS EQU $

HICUPS EQU MANY

MANY: EQU 7

DECHL= EQU 011304

THIS IS AN ERROR DURING INCLUSION

THIS WILL PRODUCE A 'D' ERROR
SINCE IT IS NOT SPECIFIED AS
MULTIPLY DEFINABLE.

ALL lNCLUDED ITEMS MUST HAVE THE
TRAJLING = MARK IF THEY MIGHT
POSSIBLY BE DEFINED MORE THAN
ONCE, SUCH AS IN THE CASE OF
INCLUDED SUBROUTINES WHICH ALL
USE COMMON OPERATING SYSTEM
ROUTINES

HEHE IS SUCH A CRITTER

THE INCLUDED FILE IS ALSO AN INTEGRAL PART OF THE ASSEMBLER'S
ENTRY POINT / EXTERNAL REFERENCE 'LINKING' CAPABILITY. THE
ONLY MANNER IN WHICH THE ENTRY POINT fILE CAN BE USED IS BY
AN INCLUSION IN AN OVERLAY~D PROGRAM'S SOUR~E fILE.

INCLUDED FILES MAY NOT CONTAIN AN '~ND' STATEMENT. FILt:S
WHICH DO CONTAIN END'S ARE NOT TERMINATED AT THE END BUT ARE
READ TO THEIR END OF FILE MARK WITH THE END STATEMENT(S) FLAGGED
BY 'F' ERRORS WHICH ARE PRINTED REGARDLESS OF THE 'I' CONTROL FLAG.

PAGE 10

F 43.B
44.B
45.B
40.B
47.B

ASM5SMPLITXT APPENDIX E. SAMPLE ASSEMBLt LANGUAGE 2ROGRAM

END ERROR! THIS IS AN INCLUDED LINE

THESE ARE THE LAST TWO LINES OF THe INCLUDED FILE 'ASM5TST2' AND
TtiE LINE IMMEDIATELY FOLLOwING THE INCLUDE WILL NOW bE SCANNED.

PAGE 11

E

2b2.
2b3.
284.
2b5.
286.
2tH.
2bl:L
289.
290.
291.
292.

293.

294.

295.
296.
297.
29b.
299.
300.
301.
302.

303.
304.
305.
306.

307.
3Ub.
309.
310.
311 .
312.

ASM5SMPLlTXT

010040

010043
010050
010055
010062
010067
010074
010101
010106
010107
010114
010121
010126
010133
010140
010142
010147
010154

000003

010155
010162
010167
010174
010201

010204
010211
010216
010223
010230

010 020 030

124 110 111 123 040
115 125 114 124 111
055 103 110 101 122
101 103 124 105 122
040 115 105 123 123
101 107 105 040 111
123 040 107 117 117
104
102 105 103 101 125
123 105 105 101 103
110 105 130 120 122
105123123111117
116 123 124 101 122
124 123
127 111 124 110 101
123 124 122 111 116
107

120 122 117 107 122
101 115 040 130 130
130 130 130 040 126
105 122 123 111 117
116 040 063

120 122 117 107 122
101 115 040 130 130
130 130 130 040 126
105 122 123 111 117
116 040 060 000

313. 010234 120 122 117 107 122

APPENDIX E. SAMPLE ASSEMbLY LANU~AGE PBOUHAM

+
NOW A MULTIPLE DEFINITION OF A PREVIOUS LABEL
WHERE NO TRAILING EQUAL (=) IS USED PRODUCES
AN ERROR IN PASS ONE (SEE PAGE ONE)

TABLE
*

DC 010,020,030 THREE CODE BYTES ARE GENERATED

HERE IS AN EXAMPLE OF THE SPECIAL DC STRINGS

LIST G
DC 'THIS MULTI-CHARACTER MESSAGE IS GOOD'

DC 'BECAUSE' ,'EACH' ,'EXPRESSION' ,'STARTS'

DC 'WITH' ,'A' ,'STRING'

A GOOD MANNER IN WHICH TO CHANGE A NUMBER wITHIN A DISPLAY
MESSAGE WITHOUT SEARCHING FOR THE ACTUAL DC STATEMENT COULD
BE HANDLED FROM AN EQU AT THE START OF THE PROGRAM.

VER EQU 3 PROGRAM VERSION NUMBER
AND IMBEDDED WITHIN THE PROGRAM WOULD BE THE FOLLOWING:

DC 'PROGRAM XXXXX VERSION' ,VER+'O'

HOWEVER, THIS WILL PRODUCE AN ERROR:

DC 'PROGRAM XXXXX VERSION' ,'O'+VER

THE ASSEMBLER WILL PRINT ALL ERROR LINES REGARuLESS JF TH~
LIST CONTROL FLAGS. HERE IS THE ABOVE EXAMPLE WITH THE 'G'
FLAG TURNED OFF AND THE ERROR PRINTED.

LIST -G
DC 'PROGRAM XXXXX VERSION ','O'+VER

PAGE 12 ASM5SMPLlTXT APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGrlAM

E 010260 116 040 060 000
314.
315.
316.
317.
31d.
319.

E 320.
U 321.
E 322.

323.
324.
325.
326.
327.
32ts.
329.
330.
331-

E 332.

333.
334.
335.
336.
337.
338.

339.
340.

E 341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351-

ERRORS:

010264
010266
010270
010275
010302
010307
010314
010321

006 005
006 000
111 116 126 101 114
111 104 040 104 125
105 040 124 117 040
124 122 101 111 114
1 1 1 116 107 040 045
040 115 1 01 122 113

*
NOW NOTICE THE FLAGGING OF AN ILLEGAL LABEL WILL STILL
ALLOw THE PRODUCTION OF CODE

1DOG
2DOG
QUICK)

LIST G
LA 5
LA DOGGIE ONLY ONE ERROR FLAG WILL BE SEEN
DC 'INVALID DUE TO TRAILING % MARK'

THE SLN AND SRN MACROS GENERATE SEVERAL SLC OR SRC INSTRUCTIONS

010326 002 002 002 002 002 SLN 5
010333 012 012 012 SRN 3

SINCE A ZERO SHIFT COUNT WILL NOT PRODUCE CODE, A VARIABLE
MAY BE USED AS LONG AS THE RANGE 0-7 IS MAINTAINED

SLN VER-VER
ERROR OCCURS IF THE COUNT IS OUT OF RANGE

010336 002 002 002 002 002 SLN 25
010343 002 002 002

010346
010352
010357

010362

014000
EUF

000 030 030 000
014 020 020 014 357
364 364 357

000 000
*

NOW NOTICE THE ORDER OF GENERATION OF THE MSP AND LSP IN THE
FOLLOWING DA DIRECTIVES

DA START,*START
DA TABLE,*TABLE,'*-TABLE,-TABLE

ALTHOUGH A LEADING ASTBRISK WILL SET THE 'STAR' FLAG, THE SECOND
ASTERISK IMPLIES MULTIPLICATION AND THE MULTIPLIER DOES NOT EXIST

DA .'*3+TABLE

THE MNEMONIC STARTING ADDRESS IS 'START' AND BY PLACING THIS
NAME IN THE EXPRESSION FIELD OF THE END STATEMENT, THE
ASSEMBLER WILL FLAG ITS OCTAL ADDRESS AS THE 'PRIMARY
TRANSFER ADDRESS' FOR THE LOADER. (ALSO NOTED AT THE FIRST
OF TriE LISTING)

END START END OF ALL SOURCE STATEMENTS

PAGE 13 ASM5SMPL/TXT APPENDIX E. SAMPLE ASSEMBLY LANGUAGE PROGRAM

14000 BUFl *117 119
14120 BUF2 ·121 123
14240 BUF3 -125 127
14000 BUFFER *116 130 130 136
10056 CHAR 72 85 87 90 91 *96
11304 DECHL *30:A -30:B
00341 DISPL *27
*lI ••• DOGGIE 321
00034 GOBACK lI207 223
00007 HICUPS *19:A *19:B
00024 IDLE *202 217
10176 INCHL 74 *105 154 159
14040 INT 151 152 *188 227
00037 INT2 196 -210
14137 INTEND 152 lI226
00341 KEYBD ·26 27 64
00125 M125 *39 242 246
00252 M252 *38 242 246
00377 M377 *40 242 248
00007 MANY 19:A 19:B *23:A *23:B
14013 MOVE *153 166
00003 MSEC *192 197 211
10000 PNTR *119 *133 136 136 136
00075 QSEC 213 *224
10270 QUICK it322
00076 SEC 220 *225 *227
14000 START ·149 337 337 351
10026 STATUS *79 82
10014 TABLE *233 235 *2tl7 33tl 338 338 338
00026 TIMEIT *204 206
00003 VER -300 302 330 330
10003 WAITI *66 68

NUMBER OF SYMBOLS USED 32

