
Introductory Material

Examining Kernel Code

This section describes the structure of the UNICOS kernel source
code, and gives some tips on how to examine the code for
debugging purposes.

Structure of kernel source code

SP-2023 5.0

In the released system, the kernel source code is in the directory
lusrlsrcluts. (This directory should not be accessible to users.)
This manual describes the source code in this directory and its
subdirectories. Associated definition files (include files, also
called header files) are also described; they are found in the
source directory lusr/include/sys.

This manual does not describe the software in other directories
(for example, the TCP/IP source code).

The uts directory contains the following subdirectories:

Subdirectory Description

boot Boot subdirectory

cf Configuration subdirectory

fs File system subdirectory

io I/O subdirectory

md Machine-dependent subdirectory

os Operating system subdirectory

The directory uts also contains files used in building the kernel;
for example, the file osdef.s is the kernel's version of the
assembler definition file used in building the kernel.

CRAY PROPRIETARY 7

Examining Kernel Code

boot

The boot subdirectory

The cf subdirectory

8

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

Figure 1 shows the structure of the lusrlsrcluts directory.

cf fs io md

Figure 1. Structure of the uts directory

The directory lusr/include/sys is the system include file
subdirectory. It contains the include files needed to build the
kernel.

os

The remainder of this subsection describes the contents of the
subdir~ctories.

This subdirectory contains the source files boot.c, booth.s, and
boot.mk. It also contains the UNICOS boot program, osboot, if
that program has been built.

This subdirectory contains the following files and subdirectories:

File Description

Makefile Kernel makefile.

conf.c Configuration file.

name.c File that contains the date and time of the kernel
generation, as well as system jnformation returned

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Examining Kernel Code

The fs subdirectory

SP-2023 5.0

File Description

hconf.h

lib

Iibtcp

libnfs

by the uname(2) system call. name.c is edited at
kernel compilation time to reflect the uname
information; this editing is done in the kernel
makefile.

Hardware configuration file; used for configuring
devices for the foreground processor.

Subdirectory containing UNICOS object files used
in building the kernel.

Subdirectory containing TCP/IP object files used
in building the kernel.

Subdirectory contain~g UNICOS NFS object files
used in building the kernel.

For more information on these files, or on system configuration in
general, see the UN/COS System Administrator's Guide for
CRAY-2 Computer Systems, publication SO-2019.

This subdirectory contains the file-system-specific portiO!1 of the
file system switch (FSS) in the directories c2, proc, and sl.

The directory c2 contains the file system routines for the native
file system (C2FS).

The directory proc contains the file system routines for the /proc
file system.

The directory sl contains the file system routines for the
SUPERLINK file system (SLFS). (Only the kernel-level code for
SUPERLINK is in the UNICOS 5.0 release; customers wishing to
obtain SUPERLINK must order it as a separate product.)

See "File System Switch," page 53, for more information on these
file systems.

CRAY PROPRIETARY 9

Examining Kernel Code

The io subdirectory

The md subdirectory

The os subdirectory

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

This subdirectory contains the UNICOS device drivers. For
example, device drivers for the disks, the HYPERchannel, and the
CPUs are located in this subdirectory.

This subdirectory contains the machine-dependent code in the
UNICOS kernel; this code includes routines for context switching,
error processing, and interrupt handling. All of the kernel
assembly language files are in this subdirectory.

This subd~ectory contains the routines that are the core of the
UNICOS operating system.

The lusr/include/sys subdirectory

This directory contains the include files that the UNICOS kernel
uses when it is being built.

Kernel data structures

10

The kernel data structures, also referred to as tables, hold
important information for the kernel. For example, the process
table is an array that holds information about active processes on
the system. The "Kernel Data Structures" section, page 15,
describes some important data structures in UNICOS.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Examining Kernel Code

Tips for examining kernel code

This subsection describes the use of the ctags(l) command with
the tag feature of the ex(l) and vi(l) editors to search for kernel
routines.

Creating an index of kernel routines

SP-2023 5.0

To print an index of kernel routines, listing the routine name, the
location of the definition, and the line number of the definition,
perfonn the following operations:

• Change to a directory for which you have write pennission (for
example, Itmp).

• Use the ctags(l) command to create a tag file for the kernel
directories in lusrlsrc/uts, as follows:

ctags - x /usr/src/uts/cf/* \
/usr/src/uts/fs/c2/* \
/usr/src/uts/fs/proc/* \
/usr/src/uts/fs/sV* \
/usr/src/uts/io/* \
/usr/src/uts/md/* \
/usr/src/uts/os/* \
/usr/include/sys/* \
/usr/include/sys/fs/* > tag

This creates a file called tag; it contains a list of routine names
and the full path names of the files containing those routines .

• Print this file; use landscape mode or a wide printer, if possible,
as some of the lines are very long.

CRAY PROPRIETARY 11

Examining Kernel Code UNlCOS lnJernal Reference Manual for CRAY-2 Computer Systems

Creating a tag file for ex or vi

12

To provide a functional index capability for the ex and vi editors,
use the ctags command as follows:

• Change to a directory for which you have write pennission (for
example, Itmp) .

• Use the ctags command to create a tag file for the kernel
directories in lusrlsrc/uts, as follows:

ctags /usr/src/uts/cf/* \
/usr/src/uts/fs/c2/* \
/usr/src/uts/fs/proc/* \
/usr/src/uts/fs/sV* \
/usr/src/uts/io/* \
/usr/src/uts/nod/* \
/usr/src/uts/os/* \
/usr/include/sys/* \
/usr/include/sys/fs/*

You may wish to redirect standard error output, as this
command issues several screenfuls of warning messages.

This creates a file called tags; it contains a list of routine
names, the full path names of the files containing those
routines, and ex (or vi) directives for locating those routines.

• Move this file to the directory from which you will examine
kernel code (for example, your home directory or /usr/src/uts).
The ex and vi commands look for a tag file called tags in the
current directory.

To use this tag file, type an ex or vi command with the following
format:

ex -ta routine
or

vi - ta routine

For example, to see the routine copen() without having to specify
the file it is in, type the following command:

vi -ta copen

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Examining Kernel Code

sp-2023 5.0 ,

Once you are in the ex or vi editor, use the ta command to locate
another routine in the same or a different file, as in the following
example:

:ta chdir

For more information, see the ctags(l), ex(l), and vi(l) man
pages.

CRAY PROPRIETARY 13

callout - The callout table

SP-2023 5.0

Kernel Data Structures

UNICOS source files and include files define some important
tables, maps, linked lists, caches, areas, buffers, pools, and
queues. This section describes these entities, using the term data
structures to refer to them all.

This section is a "mini-manual" by itself (similar to the CRI
tables manuals for COS). That is, the discussion of data
structures is a discussion of the basic structure and organization of
the UNICOS kernel as a whole. This section presents a summary
of important points, with many details excluded. Where possible,
references to more complete material are included.

The data structures are described in terms of the data they hold,
not how the data is assigned or manipulated. This information
can be helpful when trying to solve kernel problems (dump
busting).

The callout table, callout (also called the time-out table), is used
to call a routine after a given amount of time. This table is
checked on every clock interrupt (every clock tick), and the
routines are executed when the specified delay time has expired.
Each entry in callout specifies the address of a routine to be
invoked, a parameter for that routine, and the real-time clock
value when the routine should be called. The entries are
maintained in chronological order.

The callout table is an array of callo structures; the callo structure
is defined in the include file sys/callo.h. The size of the callout
table is determined by the NeALL parameter in sys/param.h.

CRAY PROPRIETARY 15

Kernel Data Structures UNICOS Internal Reference Manual for CRAY-2 Computer Systems

coremap - The memory map

dblock - The dynamic block

The memory map, coremap, is used to keep track of free
memory. Each entry in coremap defines a segment of main
memory available for allocation. An entry is composed of an
address and a size in 512-word clicks. The mallocO and mfreeO·
routines manage coremap, allocating and freeing memory,
respectively. At system initialization time, one entry in coremap
defines all memory available to the user.

coremap is described by the map structure, which is defined in
the include file sys/map.h. The size of coremap is determined
by the CMAPSIZE parameter defined in sys/param.h.

A dynamic. block holds volatile information about a· given file
system; this includes the list of free sectors, the free i-node
bitmap, the free track bitmap, total free blocks, total free tracks,
and total free i-nodes. The dynamic block is·read into the system
buffers when the file system is mounted. A pointer to the
dynamic block for a file system is kept in the mount table.

The dblock structure describes a dynamic block for eRA Y -2 file
systems; dblock is defined in the include file sys/fs/c2filsys.h.

See "UNICOS File System," page 47, for more information on the
dynamic block.

devblock - The device control block

16

The device control block, devblock, is used along with the
fcpublk table for communication between the foreground
processor (FP) and the UNICOS kernel. devblock contains an
entry for each device configured in the FP. This includes the
clock, console input, console output, each physical disk, each
striped disk device, each HYPERchannel input and output
channel, each low-speed channel, each extended low-speed

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Kernel Data Structures

channel, and each background processor. Each entry contains
. fields for an FP parameter and reply word, the FP device
numbers, and the address of the interrupt handler routine.

devblock is created by md/lowcm.s; its configuration must match
that of the FP system. devblock is loaded at a specific address

. (0200) in low memory; this address is referenced by the FP
system.

devblock is an array made up of devdata structures; it is indexed
by the FP index number. The devdata structure is defined in the
include file sysldevdata.h.

See "Foreground Processor and Kernel Communication," page 33,
for more information on devblock.

diskspec - The disk specification table

The disk specification table, diskspec, is used to hold inform~tion
about the physical location of a given partition. The data in the
diskspec table is copied from the device i-node when the device
is opened. In addition to partition addresses, the diskspec table
has fields that specify the type of disk, the number of sectors per
track, the number of tracks per cylinder, and the number of
striped devices per striped group.

The diskspec table is an array of diskspec structures indexed by
the minor device number. The diskspec structure is defined in
the include file sysl diskspec.h. The maximum number of entries
in diskspec is determined by the parameter NMNT in the include
file sys!param.h.

dskutab - The disk unit table

SP-2023 5.0

The disk unit table, dskutab, contains I/O control information for
each physical disk device defined on the system. The disk unit
table is used only by the disk driver and contains information
pertaining to the currently active I/O operation. This table

CRAY PROPRIETARY 17

Kernel Data Structmes

errtab - The error table

UNICOS Internal Reference Manualfor CRAY-2 Computer Systems

contains an entry corresponding to each physical disk device, plus
one for each striped device. Each entry maintains pointers to the
head of a linked list of buffers queued for I/O.

The dskutab table is an array of iobuf structures indexed by the
FP index number. The number of usable entries in dskutab is
determined by the physical disk configuration of the FP in
conjunction with the devblock table in mdllowcm.s. The
maximum number of entries in dskutab is determined by the
parameter DSKMAX in the include file sys/param.h.

The error table, errtab, is used to keep track of hardware errors,
including single-bit errors, double-bit errors, local memory parity
errors, floating-point range errors, and floating-point table errors.
Each entry iri the error table· contains the type of the error, a
count of how many times the error has occurred, and an exchange
package.

The error table is· described by the errtab structure, which is
defined in the include file sys/errtab.h.

fcpublk - The FP/CPU control block

18

The FP/CPU control block, fcpublk, is used along with the
devblock table to communicate between the background
processors and the FP. Each entry in fcpublk contains the
exchange packets and the FP call word used to communicate CPU
requests to the FP.

There is one entry in fcpublk for each CPU. The fcpublk is
loaded at a specific address because it is referenced by the FP
system.

fcpublk is an array of fcpudata structures indexed by CPU
number. The fcpudata structure is defined in the include file
sys/cpudata.h.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Kernel Data Structures

file - The file table

ftox - The file lock table

SP-2023 5.0

See "Foreground Processor and Kernel Communication," page 33,
for more information on fcpublk.

The file table is used to hold information about open files. Each
open file in the system has an entry in the file table; each entry
holds specific information about the open file: an offset into the
associated file, a status flag (for example, an open-for-reading
flag) and a pointer to the corresponding i-node. An entry in the
file table is the result of an open(2), a creat(2), or a pipe(2)
system call.

The file table is an array of file structures. The file structure is
defined in the include file sys/file.h. The size of the file table is
determined by the parameter NFILE in sys/param.h.

Available file structures are stored in a linked list called ffreelist.

The file lock table, ftox, is an array holding information about the
file locks for a file. There is one entry for each locked region of
the file. Each entry includes the following information:

• Type of lock (read or write)
• Start and end of lock (stored as byte offsets)
• Ownership of lock
• Other processes waiting for the lock

The i_fiIocks field in the i-node points to the file locking structure
(filock) for the associated file. All file locks applied to a given
file are threaded together in a linked list connected to the inode
structure of a given file.

The fiIock structure is defined in the include file sys/ftock.h. ftox
is defined in cf/conf.c. The maximum number of file lock regions
(NFLOCKS) is defined in syslparam.h.

CRAY PROPRIETARY 19

Kernel Data Structures UNICOS Internal Reference Manual for CRAY-2 Computer Systems

fstypsw - The file system switch table

The file system switch (FSS) table, fstypsw, defines all entry
points to each file system's routines. It is an array of file­
system-specific routines, indexed by the file system type. File­
system-independent routines call the file-system-specific routines

. through this array .

Each i-node contains a pointer to fstypsw in the field i_fstypp.
This pointer is used by the FSS macros (defined in sys/fstyp.h) to
access the correct file-system-specific routine for each operation.

fstypsw is defined in the include file sys/conf.h and is initialized
in the file cf/conf.c.

See "File System Switch," page 53, for more information.

inode -·The in-core i-node table

20

The in-core i-node table, inode, is used to hold infonnation on the
i-nodes of active files. It contains an entry for each open file.

The inode table is an array of inode structures. The inode
structure is defined in the include file syS/inode.h; the si~e of the
inode table is determined by the parameter NINO DE in
sys/param.h.

UNICOS uses two types of doubly-linked lists, ifreelist and
hinode, to maintain the i-node entries.

The linked list ifreelist is a list of available i-node table slots.
When the reference count of an i-node in an i-node table slot goes
to 0, the slot is linked to the ifreelist. At boot time, all the
i-node entries are linked into this list

The linked list hi node is the i-node hash table; each entry is a
linked list of allocated i-node table slots. To get the index of the
start of the appropriate hash list, UNICOS uses a hashing
algorithm on the device number and i-node number (i-number).

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Kernel Data Structures

ioh - The I/O header table

jtab - The job table

The I/O header table, ioh, is used to keep track of I/O requests.
An I/O header is allocated for every I/O request (read or write
operation). The request is broken up into one or more atomic
units for the actual I/O. Each atom has one or more
corresponding buf or pbuf structures allocated; these structures
point back to the I/O header.

The io_addr field of the I/O header is set to the beginning of the
first atom, and the io_endaddr field is set to the end of the last
atom. If an I/O error occurs in an atom, and its address field is
less than io_endaddr, the field io_error is set to the error code,
and io_endaddr is set to the atom's beginning address.

When all atoms have completed, the difference between
io_endaddr and io_addr is the amount of data successfully
transferred.

The I/O header is described by the ioh structure, which is defined
in the include file sys/ioh.h.

The job table, jtab, is used to keep track of active jobs in the
system. There is one entry in the job table for each active job.

The job table is an array of jtab structures; the jtab structure is
defined in the include file sys/jtab.h.

kcpublk - The kernel control block

SP-2023 5.0

The kernel control block, kcpublk, holds per-CPU information for
the kernel.

kcpublk is an array of kcpudata structures indexed by CPU
number. The kcpudata structure is defined in the include file
syslcpudata.h.

CRAY PROPRIETARY 21

Kernel Data Structures UN/COS buernal Reference Manual for CRAY-2 Computer Systems

In ode - The limits node table

mount - The mount table

The limits node table, Inode, contains per-user process
information for the Share scheduler. Each active user on the
system has an entry in the Inode table. Each entry in the process
table (each proc structure) contains a pointer (p_lnode) to the
In ode table.

The Inode table consists of Inode structures; the Inode structure is
defined in sysllnode.h.

The mount table, mount, is used to keep track of mounted file
systems. Each entry contains the pointers to i-node structures
necessary to link the root of the mounted file system to the
directory it is mounted on. A mount table entry also contains a
pointer to the file-system-specific mount structure. (In UNIX
systems, this pointer points to the in-core super block instead of
to a mount structure.)

The table is an array of mount structures. The mount structure
is defined in the include file sys/mount.h. The· size of the mount
table is determined by the NMOUNT parameter in the include
file sys/param.h.

pipchan - The pipe channel table

22

The pipe channel table, pipchan, contains information about the
pipes in the system. There is one entry for each open pipe; the
entry includes the number of readers of the pipe, the number of
writers of the pipe, and data buffers in use.

The pipchan table is defined in the include file sys/pip.h.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Kernel Data Structures

proc - The process table

The process table contains infonnation about each process on the
system; this infonnation includes the process status and priority,
and the address of the user structure.

The process table i~ "an array of proc structures; one proc
structure is allocated per active process. The proc structure is
defined in the include file sys/proc.h. The number of process
table entries is determined by the NPROC parameter in
sys/param.h.

Unless the associated process is currently executing in a CPU,
each proc structure is linked into one of two lists: the run queue
or the sleep queue. Part of the proc structure is the process
common structure, pcomm. There is one pcomm structure active
for each multitasked process group. (Every process is in a
multitasked group, even if the group contains only one process.)

resinfo - The checkpoint/restart table

The checkpoint/restart table, resinfo, is a free list of restart info
buffers used to hold dynamic infonnation during checkpoint and
restart operations.

The resinfo structure is defined in sys/restartinf.h; the resinfo
table is defined and initialized in os/restart.c.

sllLbuf - The security log buffer

SP-2023 5.0

The security log buffer, slLbuf, is used to buffer security log
messages generated by the kernel until these messages are read
and recorded by the security log daemon. slLbuf includes the
buffer that the security log routines use to store security-related
events, input and output pointers into the buffer,and flags
describing the buffer's status.

CRAY PROPRIETARY " 23

· Kernel Data Structures UN/COS Internal Reference Manualfor CRAY-2 Computer Systems

Each entry in the security log buffer is described by the structure
slg, which is defined in the include file sys/slog.h. The security
log buffer is initialized by the routine slginitO in the module
os/slogext.c.

statblk - The device index block

stripeblk - The stripe block

24

The device index block, statblk, is an area in low memory (0100)
used by the kernel and FP as an index to the devices configured
in the system. The statblk contains information on the size of
physical memory, the size of the devblock, and the base address
and index number for each device.

The statblk is created from information in mdllowcm.h and
mdllowcm.s. See "Memory Layout," page 39, for more
information on the statblk.

The stripe block (stripeblk) is an area in low memory that is used
to map stripe device references to physical disks. The CAL
routines in mdllowcm.s set up the stripe block beginning at
location 060 (octal).

The stripe block contains up to 4 entries, one for each logical
stripe device configured. The entries are located at 060, 064, 070,
and 074. Each entry is an array of 32 bytes (4 words). Each
byte contains theFP index number of one of the members of this
stripe device. Unused entries in stripeblk are filled with O's.

The macros that mdllowcm.s uses to define the stripe block are
located in mdllowcm.h.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Kernel Data Structures

swap_bb - The swap bad block table

swapmap - The swap map

The swap bad block table, swap_bb, contains a list of bad
(flawed) blocks residing on the swap device. The bad block
infonnation is copied from the swap super block at system
initialization time.

The swapO routine scans swap_bb for bad blocks before every
I/O operation and then avoids the bad blocks.

The swap_bb table is declared in cf/conf.c. The number of
entries is defined by the expression
NSWBAD + NSWFX * FXNBAD (defined in the include file
syslfslc2filsys.h). The swap super block is described by the
swblock structure, which is defined in syslfs/c2filsys.h.

The swap map, swapmap, is a map of free swap space. Each
entry in swapmap defines a segment of the swap space available
for allocation. An address and a size in 512-word blocks make
up each entry.

The malloc() and mfree() routines manage the swap map,
allocating and freeing swap space, respectively. At system
initialization time, one entry in swapmap defines all available
swap space.

swapmap is an array of map structures; the map structure is
defined in the include file sys/map.h. The size of swapmap is
determined by the SMAPSIZE parameter defined in sys/param.h.

sysent - The system call entry point table

SP-2023 5.0

The system call entry point table, sysent, is used to map system
call numbers to kernel routines.

The sysent table is defined in oslsysent.c.

CRAY PROPRIETARY 25

Kernel Data Structures

System buffer cache

26

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

See "System Calls," page 65, for more information on the sysent
table. \

The system buffer cache is used to hold, or buffer, data between
users and devices for buffered I/O operations. The data resides in
the buffer for as long as possible, thereby reducing the number of
device I/O calls for subsequent reuse of data.

The system has the following types of buffer pools:

• A sector buffer pool (for sector I/O)

• A track buffer pool for each type of disk device configured in
the system; that is, a pool for track I/O on DD-29 drives, a
pool for track I/O on DD-40 drives, and a pool for track I/O on
DD-49 drives. There is also an optional track buffer pool for
each type of striped device configured in the system; that is, a
pool for striped DD-29 drives and a pool for striped DD-49
drives.

• A physical buffer pool for unbuffered, or·raw, I10A The buffer
headers are maintained the same way as for buffered I/O,
except there are no data buffers associated with them.

Each buffer pool consists of an array of buf structures called
buffer headers. Buffer headers are allocated at system
initialization time; size information is located in the sysvars table
in cf/conf.c. Each buffer header has all the information needed
for doing the I/O, including the device number, block number,
byte count, and completion status; it also has a -pointer to an
associated I/O data buffer.

Each buffer header may be linked into two lists; it is always
linked to the hash table (hashed on the device and block number
of the device with which it is currently associated) and is linked
to the available list when not in use.

The buf structure is defined in the include file sys/buf.h.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Kernel Data Structures

The trace buffer

user - The user structure

The trace buffer is a a circular buffer that contains the entries
written by the operating system trace macro UTRACE.

The trace buffer is allocated in the file md/trace.s. The symbol
.. etbegin marks the first entry in the trace buffer.

See "Trace Buffer," page 149, for more information on the trace
buffer.

The user structure (also called the user area) holds information
about a process. One user structure is allocated for each active
process. Unlike the proc structure, the user structure is needed
only when the process is running. Because of this, the user
structure is swapped with the process.

The user structure contains a register save area, I/O control and
status information, and the per-process system stack.

The user structure is defined in the include file sys/user .h.
Memory space for user structures is allocated as needed:

ucomm - The user common structure

SP-2023 5.0

The user common structure, ucomm, contains information
common to groups of processes. There is one ucomm structure
for each multitasked process group. The ucomm structure
includes the user's user ID and group ID, pointers to file table
entries of open files, and accounting information.

CRAY PROPRIETARY 27

Kernel Data Structures

28

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

The ucomm structure is located at the beginning of the. process'
.memory image or swap image. The pcomm structure contains
the address of the image.

The ucomm structure is defined in the include file sys/user .h.
Memory space for ucomm structures is allocated as needed.

CRAY PROPRIETARY SP-2023 5.0

Boot procedure

SP-2023 5.0

System Initialization

System initialization for UNIeOS running on eRA Y -2 systems is
perfonned from the system control console (See). The see
deadstarts the foreground processor (FP), then loads and begins
execution of UNIeOS in the background processor (BP). This
initialization is perfonned by an see command script, boot.

This section describes the boot procedure (both slow and fast boot
operations) and provides an overview of UNIeOS initialization.

see disk storage contains the see command script boot and the
files containing the FP programs and the UNIeOS kernel binary.

The boot script performs the following steps:

1. Loads the BP reciprocal and square-root approximation tables
from the file ratable.

2. Deadstarts the FP program dumper; this program allows the
see to write to FP local memory.

3. Deadstarts the FP system support program fpsys. This
includes copying the FP local memory image from the file
fpsys to FP local memory.

4. eopies the UNIeOS kernel binary from the see file unicos to
common memory.

5. Starts the BP with the exchange package in the kernel.

CRAY PROPRIETARY 29

System Initialization

Fast boot procedure

UNICOS Internal Reference Manualfor CRAY-2 Computer Systems

The SCC boot script also sets displays for the SCC. In particular,
the system console display is set; the SCC then waits for further
initialization from the UNICOS kernel.

Copying the UNICOS kernel binary to common memory takes
several minutes on a slow SCC. To speed up this process, the
fast boot procedure may be used with a configured UNICOS
system. The following operations are necessary:

1. Place the UNICOS kernel on a dedicated disk partition
(/dev/dsk/os).

2. Compile the program osboot with the definition for
Idev/dsk/os.

3. Copy os boot to the SCC disk.

4. Modify the SCC boot script to copy osboot to common
memory and start the BP with the osboot exchange package.

Once these operations have been performed, osboot. then copies
the kernel from the dedicated disk partition to common memory
during the fast boot procedure.

See the UN/COS System Administrator's Guide for CRAY-2
Computer Systems, publication SO-2019, for a complete
description of the deadstart procedure.

UNICOS initialization

30

This subsection describes UNICOS initialization on the
background processors. It covers the actions of the CAL routines
in the module mdlinout"s~ the mainO routine, and the init
process.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems System Initialization

The routines in md/inout.s

The mainO routine

SP-2023 5.0

UNICOS execution starts at the entry point BEGINn (n is the
CPU number; for example, 00 for CPU A) in md/inout.s. This
code sets up the initial exchange package (XASYS) for the CPU
and the initial stack information.

This code performs the following functions:

• Clears local memory

• Sets up a shared system stack area

• Calls main()

Control transfers to the main() routine (in oslmain.c).

The main() routine (in os/main.c) performs the following
operations:

• Clears kernel BSS and user memory.

• Initializes the memory map (coremap).

• Clears the semaphores.

• Sets the clock from the SCC.

• Sets up the first system process, process 0 (also called proc[O]);
this process later turns into the swapper.

• Initializes the lnodes (used for Share scheduling).

• Creates process 1 (proc[l], or init) and the idle processes. The
file mdlicode.s contains the code executed by the idle
processes.

• Prints console startup messages.

• Calls system. initialization routines iinitO, secure_init() (if the
system is running in secure mode), and restartinit().

• Mounts the root file system.

CRAY PROPRIETARY 31

System Initialization

The init process

32

UNICOS Internal Reference ManUJllfor CRAY-2 Computer Systems

• Puts init on the run queue.

• Calls igetO to open the root and swap devices.

• Calls scbedO (the swapper), which switches to the init process.
Control never returns to main().

Note

If, for some reason, the file letc/init is missing or corrupted, the
system hangs (after printing "Scheduling CPU A"). The lights on
the mainframe blink in a regular, alternating pattern. This
pattern corresponds to the error number, errno, resulting from
the exec operation of letc/init.

The init process (in letC/init) perfonns the following actions:

• Checks letclinittab for a default level.

• Sets up the console (opens the console device, Idev/console).

• Executes the Bourne shell.

• Executes the script /etc/brc to initialize the mount table.

• Initializes the /etc/utmp file and enters the time of the boot.

At this point, the system is in single user mode; further actions
depend on the operator or system administrator. See the UN/COS
System Administrator's Guide for CRAY -2 Computer Systems,
publication SO-2019, for infonnation on system start procedures.

CRAY PROPRIETARY SP-2023 5.0

Foreground Processor
and Kernel Communication

This section describes communication between the foreground
processor (FP) and the UNICOS kernel. It covers the following
topics:

• Common configuration

• The device communication block, devblock

• Relative device addressing

• The FP/CPU control block, fcpublk

Common configuration

SP-2023 5.0

A common configuration file, cf/hconf.h, is used to build the FP
system and the tables in low common memory that are used for
communication between the FP and the UNICOS kernel. Two
tables, devblock and fcpublk, are assembled in the UNICOS
kernel module mdllowcm.s.

The file hconf.c contains an entry for each physical device, each
background processor, and any other informati~n that is to be
shared by the FP and the UNICOS kernel.

Both the UNICOS kernel module mdllowcm.s and the fpsys
source include the file hconf.h, using the CAL include feature.
hconf.h contains CAL macro calls to a separate set of CAL
macro definitions. The macro definitions for generating the
lowcm module are in the file mdllowcm.h. The macro definitions
for fpsys are in the binary definition file fp/fp.t. Use of the same
configuration file (hconf.h) ensures that the FP system and the

CRAY PROPRIETARY 33

FP-Kemel Communication UN/COS Internal Reference ManUIJI for CRAY-2 Computer Systems

UNICOS kernel always agree on the device configuration and the
areas of common memory where I/O and control requests are
communicated.

For a more detailed description of the device macro parameters,
seethe CRAY-2 Foreground Processor Reference Manual,

. publication SP-2020.

The device communication block (devblock)

34

The device communication block, known to UNICOS as
devblock, is located in common memory starting at address 0200.
There is an entry for each physical I/O device, an entry for the

. console, and an entry for real-time clock interrupts. Some devices
may use two entries in the devblock, one for input and one for
output.

Currently, each entry in devblock is 7 words in length. There are
a maximum of 64 entries. The structure of a device block entry
is defined by the devdata structure in the ~le sys/devdata.h, as
follows:

struct devdata {

);

word fgpdata;
word fgpparam;
int (*intr)Q;
uint fgpdev;
uint index;
uint pdev;
wordaux;

1* inout use only */
1* parameter and reply word*/
1* interrupt service address * /
1* fgp device number * /
1* fgp index number */
1* physical device number *1
1* aux - driver dependent * /

The. fgpdata field receives the FP reply word from fpsys upon
completion of an I/O request. When UNICOS acknowledges the
I/O interrupt, the FP reply word is moved to the fgpparam field.
The fgpparam field is also used to hold the I/O parameter word
picked up by fpsys on an I/O request.

The intr field holds the address of the device interrupt service
routine (the interrupt handler).

The fgpdev field is the index into the fpsys internal device tables.

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY·2 Computer Systems FP-Kemel Communication

The index field specifies an entry's position in the devblock.

'The pdev field is the physical device address; it is for
infonnational use such as error logging. Physical addressing is
done in fpsys based on the fgpdev value.

The aux field is device dependent; it normally contains additional
configuration information, such as a controller revision level.

For a more detailed description of the use of devblock entries for
all supported devices, see the CRAY-2 Foreground Processor
Reference Manual, publication SP-2020.

Relative device addressing

SP-2023 5.0

Each entry in the devblock is referenced by its FP index number.
The FP index number is the absolute location of a given entry in
the devblock. Devices of a given type are always in contiguous
devblock entries. For example, devblock entries for disk devices
may start at FP index 3. The first index number of a given
device type is known as its device base.

For each type of device, there is a base and a count of the
number of devices of that type; these are the devbase and ndev
numbers, respectively. The devbase and ndev numbers are
assembled starting at address 01 (){) of common memory and are
labeled with the ASen names of the device type to provide for
easy reference.

The devbase number is used by the driver for that device type to
provide a relative addressing mechanism. The ndev number tells
the driver how many devices of a given type exist

For example, the disk driver assigns a pointer, ddp, to a device's
devblock location as follows:

ddp = &devblock[index+diskbase];

index is the relative index number from the device i-node.

CRAY PROPRIETARY 35

FP-Kemel Communication

devbase

cpu base

disk base

hsxbase

hybase

Ispbase

Isxbase

stripebase

tsbase

UN/COS Internal Reference Manual for CRAY-2 Computer Systems

Table 1 shows the device devbase and device ndev variables
defined in the module mdllowcm.s and used by the device
drivers.

Table 1. devbase and ndev variables defined in lowcm.s

"ndev Description

nbp Base for and number of CPUs

ndisk Base for and number of disk devices

nhsx Base for and number of high-speed
channel (HSX) devices

nhy Base for and number of NSC A130
HYPERchannel devices

nlsp Base for and number of low-speed
channel (LSP) devices

nlsx Base for and number of full-duplex
low-speed channel (LSX) devices

nstripe Base for and number of logical
striped devices

nts Base for and number of tape
subsystem devices

FP/CPU Control Block

36

The FP/CPU control block, known to UNICOS as fcpublk,
contains the exchange packages and an FP call word for each
background processor. The FP uses the exchange packages in
fcpublk to control the background processors' interrupt
processing and state switching between user and system mode.
An FP call word is used to pass I/O requests to the FP.

fcpublk is defined by the fcpudata structure in the include file
sys/cpudata.h. fcpublk currently starts at address 01200 in
common memory. The size of an entry corresponding to one

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems FP-Kemel Communication

SP-2023 5.0

CPU is currently 40 octal words. The fcpudata structure is
defined as follows:

struct fcpudata (
word fgpcall;
word align 1 [2];
word realtime;
xp_t serrxp;
sv_t serrsv;
xp_t osxp;
sv_t ossv;
xp_t userxp;
xp_t resxp;
word align2[4];

);

1* FP call word */

1* XASER - entry for system mode errors * /
1* XASlP - saved during system mode errors * /
1* XASYS - entry for most of operating system * /
1* XAINOUT - saved during system entrance * /
1* XAUSER - copy of packet for current user * /
/* system restart xp * /

The UNICOS kernel requests service from the FP with the CPU
exit instruction. The exit parameter specified in the exit
instruction tells the FP what kind of service is requested. For I/O
requests, the FP call word has been filled as required by the
driver before the exit operation.

For a more detailed description of CPU state control, exchange
packages, and the use of the FP call word, see the CRAY-2
Foreground Processor Reference Manual, publication SP-2020.

CRAY PROPRIETARY 37

' .. ; "

Memory Management

Memory Layout

This section describes the layout of common memory and local
memory. It covers the following topics:

• Printing memory contents with crash(lM) and nmab(l)

• Layout of common memory

• Layout of low common memory (also called low memory),
including an example of crash output

• Layout of local memory, including an example of nmab output

• Memory management restrictions

Printing memory contents

SP-2023 5.0

The layout of memory can change with each system
reconfiguration. To see the layout of your system, use crash(lM)
or nmab(l) as in the following examples.

Use the crash directive od, as in the following example:

crash

> od starting_address number _of_words

Use the following command format:

nmab -nw kernel_binary

Following subsections contain examples produced with these
commands.

CRAY PROPRIETARY 39

· Memory Layout UNICOS Internal Reference Manual for CRAY-2 Computer Systems

Layout of common memory

The layout of common memory changes with each system
reconfiguration. To see the layout, use the nmab(l) command as
described in the following subsection.

Layout of low memory

File mdllowcm.s

40

The contents of low memory are determined by the following
files:

File

cf/hconf.h

mdllowcm.h

mdllowcm=s

Description

Contains definitions of devices and location
of devices

Contains macros for device configuration

Contains information to set up low memory

Sites change hconf.h as needed, but do not normally change
lowcm.h and lowcm.s. Each time hconf.h is changed, the layout
of low memory changes.

The remainder of this subsection describes the file mdllowcm.s
and shows an example of crash(lM) output.

The file lowcm.s contains assembly directives to set up low
memory. One of its actions is to define symbols for some
absolute addresses in low memory; these symbols can be used in

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Memory Layout

Example: crash(lM) output

SP-2023 5.0

crash to print the contents of interesting device tables. These
. definitions are as follows:

stripebIk =
statbIk =
ioactive =
devblock =
fcpubIk =
dumpbIk =
tsdvblock =
cpublzzz =

zero@cm+o'60
zero@cm+o'l00
zero@cm+o'170
zero@cm+o'200
zero@cm+o'1200
zero@cm+o'1400
zero@cm+o'1430
zero@cm+o'2000

This example shows a dump of low memory from the crash(lM)
command. The first column shows the word number, the second
column shows the contents of the word as an octal word, and the
third column shows the contents of the word as characters. The
rightmost column contains comments, in italics, to aid in
identifying the words; this information does not appear in crash
output.

> od 0 100

00000000000: 000007000000000000000

00000000001: ooooooooooooooo
*
00000000060: 004016000000000000000

00000000061: ooooooooooooooo
*
00000000100: 0701503627155531266440 physmem

00000000101: 0000000000002000000000

00000000102: 0671443127304010020040 ndev

00000000103: 00000000000000054 size of statblk

00000000104: 0621513466544010020040 disk

00000000105: 0000000000000003 diskbase

00000000106: 00000000000000051) ndisk

00000000107: 0715643446456031220040 stripe

00000000110: 00000000000000053 + stripebase

00000000111: 0000000000000001 nstripe

CRAY PROPRIETARY 41

Memory Layout

42

UNICOS Inlernal Reference Manual for CRAY-2 Computer Systems

00000000112: 0641711002004010020040 hy

00000000113: 00000000000000033 hybase

00000000114: 0000000000000001 nhy

00000000115: 0661633402004010020040 lsp

00000000116: ()()()()()()()(777 lspbase

00000000117: ()()()()()()()(nlsp

00000000120: 0721633462004010020040 tss

00000000121: 0000000000000003 # tsbase

00000000122: OOOOOOOOOOOOOOO nts

00000000123: 0641633602004010020040 hsx

00000000124: 0000000000000007 hsxbase

00000000125: OOOOOOOOOOOOOOO nhsx

00000000126: 0661633602004010020040 lsx

00000000127: 00000000000000035 lsxbase

00000000130: 0000000000000003 nlsx

00000000131: 0615603522004010020040 cpu

00000000132: 00000000000000077 1 cpubase

00000000133: OOOOOOOOOOOOOOO nbp

00000000134: OOOOOOOOOOOOOOO

•

The device index block, statblk, contains infonnation on the
devices configured into the system. The string "ndev" marks the
word containing the size (number of entries) . of devblocko Each
class of device has an entry in the statblk that contains the
following infonnation:

• Character string used to identify the device type in a dump

• Base (the index into statblk)

• Count (the number of devices of the type that are configured)

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Memory Layout

The devices types include the following:

Device Description

cpu CPUs

disk Disk drives

hsx High-speed channels

hy HYPERchannels

lsp Low-speed channels

lsx Full-duplex low-speed channels

stripe Logical striped devices

ts Tape subsystems

For example, the entry for the logical stripe device is marked with
the string "stripe" at word 0107; word 0110 contains the value of
stripebase, ()()()(){)()()(53; word 0111 contains the
value of nstripe, 1, which means that
there is 1 logical stripe device configured.

Words 0060 through 0063 show the members of this logical stripe
device. The following figure shows these words expanded as·· 8-
bit bytes.

00000000060: 010 016 0 0 0 0 0 0
00000000061: 0 0 0 0 0 0 0 0
00000000062: 0 0 0 0 0 0 0 0
00000000063: 0 0 0 0 0 0 0 0

Layout of local memory

SP-2023 5.0

The kernel uses local memory words 0 through 0777. This area
contains frequently used global variables and variables shared
with user processes.

The file md/lowlm.s defines the position of these words in local
memory.

CRAY PROPRIETARY 43

Memory Layout

Example: nmab(l) output

44

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

This example shows a portion of a dump of local memory from
the command nmab -nw kernel_binary. The first column shows
the absolute address, and the second column shows the symbol at
that address.

/lmicos - input file
numeric sort in local memory

0 lowlmbottom
0 cpunum

01 sigdata
02 sigoff
03 sigpend
04 cpelaps
05 cpstart
06 sigmask
01 u

010 uc
011 up
012 upc
013 fcpudata
014 kcpudata
015 ostc
016 semf
017 lmtmctrl
020 lmtmcrit
021 lmtmint
022 lmrt
023 lmvm
024 $fp
024 $fpidnt
025 $fprtm
026 $fpprev
027 $fpbase
030 $fptop
031 $fpsegl
033 $fpname
033 fpname
034 $lm

0116 $scr
0216 $args
0242 usrregs
0464 bssbss
0464 lmend
0465 INOUTsaveregs
0605 ERROR$Oonereg
0606 zzzzzzlm

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Memory Layout

Global pointers in local memory

The following global pointers are local memory resident:

Pointer

u

Description

. Pointer· to the user structure for the currently
executing process

uc Pointer to the user common (ueomm) structure for
the currently executing process

up Pointer to the process table (proc) entry for the
currently executing process

upe Pointer to the process common (pcomm) structure
for the currently executing process

Throughout the kernel code, fields prefaced with u->, ue->, up->,
and upe-> are references to values in these structures.

Memory management restrictions

This subsection describes features of UNIX System V memory
management that were not implemented on CRA Y -2 systems. It
then describes features of UNIX memory management that were
implemented in UNICOS running on CRA Y -2 systems.

Memory management features not on eRA Y·2 systems

SP-2023 5.0

The CRAY-2 hardware has a simple base/limit method of
memory management that makes the following UNIX features
impossible to implement:

• Shared text

• Segmentation

CRAY PROPRIETARY 45

Memory Layout UNICOS Internal Reference Manual for CRAY -2 Computer Systems

• Paging

• Shared memory

When the UNIX System V operating system was ported to the
CRA Y -2 system, all code pertaining to shared text or memory
was removed.

Memory management in UNICOS

46

On UNIX systems, the kernel addresses user structures by using a
memory management trick; specifically, it uses a segment register
or a page table to map each user structure to a constant address.
The CRAY-2 hardware does not support use of segmentation or
paging. Certain items have been moved from the user structure
on a UNIX system to the proc structure in UNICOS, because
UNICOS relies on these items staying at a fixed address.

The user structure is now referenced by a local memory pointer
of the form u->u_xxx, rather than a fixed address reference of the
form u.u_xxx.

The user process table pointer (u.u_procp) was moved into a
global pointer (up) to eliminate a double pointer reference of the
form u->u_procp->p_xxx.

UNIX systems also expect the kernel stack to remain at a fixed
address. UNICOS solves this problem by dereferencing the stack
frame pointers when a stack is moved, and by not taking the
address of any data resident on a stack.

CRAY PROPRIETARY SP-2023 5.0

File Management

UNICOS File Systems

This section describes the differences between file systems for
UNIX System V and UNICOS running on CRA Y-2 systems.

The design of the CRA Y -2 native file system, C2FS, shows the
influence of UNIX System V and of earlier COS systems. Like
System V, UNICOS has a flat i-node space and a tree-structured
directory that provide for file specification by i-node number
(i-number) or by path name. Like COS, and unlike System V,
larger files on UNICOS are allocated in larger (track-sized) units.

Differences between System V and UNICOS

SP-2023 5.0

The CRA Y -2 file system contains the following differences from
the file systems on UNIX System V:

• Bitmap-based track allocation for large files

• Multipartition file systems

• Flawing handled by user-level code

• Multiple i-node regions

• Super block split into two parts, the super block and the
dynamic block

• Revised i-node format

The remainder of this subsection discusses these features.

CRAY PROPRIETARY 47

UNICOS File Systems UNICOS Internal Reference Manual for CRAY-2 Computer Systems

Bitmap-based track allocation

Multipartition file systems

48

In UNICOS, sector files are allocated from a free list, as they are
in System V. However, large files use a bitmap-based track
allocation method. This change was designed to improve I/O
throughput.

In UNIX System V, sector-sized allocation is from the top of a
push-down list of free sectors, which results in smaller allocations
scattered throughout the file system; disk throughput is limited by
the seek time needed to access each sector. The CRA Y-2 system
maintains the push-down free list for small files (files requiring 8
or fewer sectors). When a file requires the ninth sector, or if it is
opened as a large file, the existing data is moved to the beginning
of a disk track; further allocations are made in track-sized units.
This speeds up I/O in two ways: (a) the allocations are in larger
units, so more data may be moved in one I/O request; and (b) the
allocator travels sequentially through the bitmap so that large files
tend to be contiguous.

Track size (the number of sectors per track) depends on disk type.
(See disk(4D) for specifications.) Note that copying large files
between different types of disks changes a file's track usage.

The disadvantage of track allocation is that the space between the
end of a file and the next track boundary is unused.

In UNIX System V, a file system is limited to a portion of a
physical device; this portion is called a panition. This limits the
size of files to the size of the largest physical device. On a
CRA Y -2 system, however, several partitions can be grouped into
a single file system. This provides a larger maximum file size
and allows striping of files across several devices. This striping is
called background striping. The disadvantage of striping is that
the loss of an i-node on one partition may cause damage that
extends beyond a single device.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems UNICOS File Systems

Flawing

Multiple i-node regions

UNICOS also supports foreground striping (also called disk
striping). Foreground striping is used mainly for striping swap
devices.

See "Disk Striping," page 129, for more information on
foreground striping.

In UNICOS, flawed sectors are handled by user-level code
(mkfs(lM) and fsck(lM); note that mkswp(lM) is used to handle
bad blocks for swap partitions). Together, these two programs
keep flawed areas out of the free list. Consequently, kernel and
driver software are not aware of the existence of flawed areas.
The disadvantage to this method is that a raw disk backup
procedure is more complicated in UNICOS than it is on systems
that limit flawed sectors to the first part of a disk or those systems
that use a redirect header to mark flawed sectors.

UNIX System V has a fixed number of i-nodes (fixed when
mkfs(lM) is run) at the beginning of the file system. Since the
i-nodes are often accessed by the kernel, this strategy causes
excessive disk arm movement. In the CRAY-2 file system,
mkfs(1M) establishes the i-nodes near the center of the partition.
The provision for more than one i-node region permits the i-nodes
to be mapped around flawed sectors and permits limited capability
for expanding the number of i-nodes.

Super block and dynamic block

SP-2023 5.0

On UNICOS systems, the information contained in a UNIX super
block is divided into a super block and a dynamic block. In
UNIX System V, the super block is at the beginning of the disk;

CRAY PROPRIETARY 49

UNICOS File Systems

I-node format

50

UN/COS /nlernal Reference Manualfor CRAY-2 Computer Systems

it includes dynamic information such as the list of free sectors.
,However, since the dynamic information must be updated
constantly to keep the file system reasonably consistent, and since
the amount of information required in UNICOS overflows one
sector, the UNICOS super block was divided.

The CRA Y -2 super block contains static information that is
needed only when the file system is mounted; this information
includes, for example, the location of the i-nodes, the number of
sectors, and the location of the overflow super block. This
overflow super block is called the dynamic block; mkfs(lM) puts
the dynamic block near the center of the partition. The
information in the dynamic block includes the list of free sectors,
the bitmap of free i-node areas, and the bitmap of free tracks. On
some disk types, the bitmap of free tracks has grown to require a
separate sector.

In UNICOS, the format of an i-node has been modified to contain
a bit indicating small or large format and 8 address pointers,
instead of 13 in UNIX. For a small file, all of these pointers
point to sector-sized blocks of data. Figure 2 shows the structure
of an i-node for a small file.

For a large file (one consisting of more that 8 sectors), the first 5
pointers point to tracks of data. The sixth points to a sector
containing 512 pointers to tracks of data. The seventh is double
indirect, and the eighth is triple indirect.

In UNICOS, the maximum file size is as follows:

(5+512+5122 +5123)* track_size * 4096

The value of track_size is 18, 42, or 48, depending on the disk
drive type.

CRAY PROPRIETARY SP-2023 5.0

UN/COS Internal Reference Manual for CRAY-2 Computer Systems UNICOS File Systems

Figure 2. I-node fonnat for a small file

SP-2023 5.0 CRAY PROPRIETARY 51

File System Switch

The file system switch (FSS) provides a mechanism to implement
more than one type of file system on a single machine. The file
systems defined in release 5.0 of UNICOS are as follows:

• UNICOS native file system (C2FS)

• /proc file system (PROC)

• UNICOS Network File System (NFS)

• SUPERLINK file system (SLFS)

This section describes the kernel-level implementation of the FSS.
It covers the FSS mechanism, the flow of control, the FSS data
structures, and the FSS routines.

Overview of the file system switch

SP-2023 5.0

In some versions of UNIX, the system call layer interfaces
directly with the file system routines; in UNICOS, the FSS layer
contains the file-system-independent routines that access specific
file systems. Figure 3 displays the relationship of the FSS to the
rest of the system.

CRAY PROPRIETARY 53

File System Switch

54

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

System
call
routine

,

FSS
macro

l

File system switch (fstypsw[D

II

.~ , , , ,

C2FS
kernel
routine

• I
I •

NFS
kernel
routine

• I
I

t

PROC
kernel
routine

" ,
'" , ',-
SLFS
kernel
routine

Figure 3. Overview of the file system switch

The actual mechanism for the FSS consists of an array of file­
system-specific routines; this array is indexed by the file system
type. File-system-independent routines call the file-system­
specific routines through this array, which is called fstypsw. The
fstypsw array is defined in the include file sys/conf.h, and is
initialized in the file cf/conf.c.

Each i-node contains a pointer to this array in i_fstypp. The FSS
macros (defined in syslfstyp.h) use this pointer to access the
correct file-system-specific routine for each operation.

The following example of the FSS uses the open(2) system call
and the C2FS file system. The system performs the following
actions to access the file-system-specific open routine in the
kernel.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems File System Switch

FSS data structures

SP-2023 5.0

1. Calls the C library openO routine (IiblIibc/sys/open.s).

2. Enters the system through the sysent table (defined in
os/sysent.c). (See "System Calls," page 65, for more
information on the sysent table.)

3. Calls the kernel-level routine openO (defined in os/sys2.c).

4. Calls the routine copenO (defined in os/sys2.c). copenO
performs all operations needed to verify access to the file.

5. Calls cfinopenO (defined in os/sys2.c). cfinopen() completes
the open operation.

6. Uses the macro FS_OPENI (defined in sys/fstyp.h) to access
the file-system-specific openi routine.

7. Calls the c2openiO routine (defined in fs/c2/c2subr.c); this
routine actually opens the file on a C2FS file system.

The data structures, constants, and variables in the FSS code are
as follows:

Item Description

fstypsw The FSS table; it is defined in sys/conf.h. This structure
defines all entry points to each file system.

fsinfo This structure contains general and configuration
information about each file system. It is defined in the
include file sys/conf.h.

i_fstypp Pointer in the i-node into the FSS table (fstypsw) for the
appropriate file system.

inode This structure defines a generic i-node; each active file
has an inode structure allocated to it. Fields in this
structure are used and assigned by each file system type.
The inode structure contains a pointer to a file-system­
specific area used only by the associated file system.

CRAY PROPRIETARY 55

· File System Switch UNICOS Internal Reference Manual for CRAY-2 Computer Systems

Item Description

mount This structure defines the mount point for a file system;
each mounted file system has a mount structure
allocated to it.

File-system-specific routines

Native file system routi.nes

The kernel uses the following fstyp names (defined in the include
file sys/fsid.h) to map the file system type to an index in the
fstypsw table.

#define C2FS

#define NFS

#define PROC

#define SLFS

"C2FS"

"NFS"

"PROC"

"SLFS"

1* CRA Y -2 file system * /
1* NFS file system * /
1* /proc debugger file system * /
1* SUPERLINK file system * /

These names are used for the sysfs(2) system call.

The symbols SLON and CRINFS are used to enable or disable
code that is applicable only if the specific fjle system types are
built into the kernel. UNICOS requires the C2FS and Iproc file
systems to boot.

The file-system-specific routines for the native system, C2FS, are I

found in the directory uts/fS/c2.

UNICOS NFS file system routines

56

The file-system-specific routines for the UNICOS NFS file system
are found in the directories lusrlsrclnet/nfs/fs/nfs (the source
files) and lusrlsrclnetlrpclinclude/sys/fs/nfs (the include files).
These routines are included in the FSS table, fstypsw, if the
symbol CRINFS is defined.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems File System Switch

/proc file system routines

See the UNICOS NFS Internal Reference Manual, publication
.SM-2065, for more information about the UNICOS NFS routines.

The file-system-specific routines for the /proc file system are
found in the directory uts/fs/proc.

See the UNICOS System Administrator's Guide for CRAY-2
Computer Systems, publication SO-2019, for more information
about the /proc file system.

SUPERLINK file system routines

SP-2023 5.0

The file-system-specific routines for the SUPERLINK file system
are found i~ the directory uts/fs/sl. These routines are included in
the FSS table, fstypsw, if the symbol SLON is defined.

See the SUPERUNK UNICOS Installation, Tuning, and
Customization Guide, publication SI-0187, for more information
on SLFS.

CRAY PROPRIETARY 57

Data Migration

The UNICOS data migration facility manages the on-line mass
storage systems on a Cray computer system. It allows you to
keep a specified amount of disk space available on a UNICOS file
system by migrating files off-line to magnetic tape.

A number of changes were made to the UNICOS kernel for data
migration. These changes can be summarized as follows:

• The UNICOS file system structure has been changed to support
data migration.

• The UNICOS i-node structure has been changed to support data
migration.

• The dmmode(2) system call has been added to allow user
selection of automatic file retrieval.

• The dmofrq(2) system call has been added to allow user access
to information on the status of migrated files and to implement
data migration requests from the data migration daemon
(dmdaemon(lM)) to the kernel.

• A data migration driver has been added to provide the kernel
interface.

This section describes the kernel-level portion of the data
migration feature.

Enabling the data migration feature

SP-2023 5.0

The kernel make file uses the symbol DM_SYS to control the
inclusion of many portions of the data migration feature.

CRAY PROPRIETARY 59

. Data Migration UNICOS Internal Reference Manual for CRAY-2 Computer Systems

When DM_SYS is set to 1 in the kernel makefile, the UNICOS
kernel is built with all of the data migration features enabled. If
the kernel is built with DM_SYS undefined (or set to 0), the off­
line files are recognized, but cannot be recalled, and new files
cannot be migrated.

User interface to data migration

File system changes

60

The data migration facility allows the kernel to initiate retrieval of
an off-line file. In addition, each process has a flag (uc_dmode)
in the user common (ucomm) area that allows the user to
determine which processes can use automatic retrieval. The flag
can be set with the dmmode(l) command and the dmmode(2)
system call. A value of 1 indicates that the file can be retrieved
(automatic retrieval is enabled); a value of 0 indicates that the file
cannot be opened (automatic retrieval is disabled). The flag is
inherited as part of the environment for a child process. The
default value for this flag is defined by DMODE in the include
file sys/param.h. However, regardless of the value, any user can
use the dmget(l) command to request the :recall of a migrated
file.

When a process attempts to open a migrated file, there are two
possible results:

• The process pauses, waiting for the file to be staged back to
Cray disks.

• The process fails to open the file with a system error EO FFLIN (
\

(file off-line, no automatic retrieval).

A significant portion of the changes necessary for data migration
were implemented in the kernel to avoid changing existing file
systems. Additionally, file systems are upward-compatible; ~at
is, a UNICOS 4.0 file system can be used with UNICOS 5.0.
When files are migrated (that is, moved off-line) under UNICOS

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Compuler Systems Data Migration

5.0, those files are no longer accessible under UNICOS 4.0;
unless compatibility mods are added to UNICOS 4.0, the 4.0
version of fsck(lM) removes the i-nodes for migrated files.
However, if all off-line files are retrieved under UNICOS 5.0, the
file system runs under UNICOS 4.0 with no undesired effects.

Two file types, IFOFL and IFOFD, have been added to the
UNICOS kernel. Like a regular file, a migrated file has an
i-node. The type of a migrated file is identified in the i-node's
mode field as IFOFL (a regular file is identified by IFREG).
The IFOFD file type is a transition type used when data blocks
from a file are being copied to another i-node. This transition
state should exist only for an instant, but has been defined to
prevent corruption of the file system, or the file's data blocks,
when a file is being moved.

Files of type IFOFL appear to reside in the UNICOS file system;
however, these files are off-line and have no data blocks
associated with them. The i-node for an IFOFL file contains a
file handle, which is a pointer to the off-line data for the file ..
This file handle is 2 words long and is written into the data block
area of the disk i-node. dmdaemon(lM) assigns the file handle.

A migrated file appears as a regular file (IFREG) to most
UNICOS utilities. The stat(2) and fstat(2) system calls have
been modified to return IFREG instead of IFOFD or IFOFL for
an off-line file. The dmofrq(2) system call can be used to
determine whether an off-line file is of type IFOFD or IFOFL.

Data migration system calls

SP-2023 5.0

The user interface to data migration consists of two system calls:
dmmode(2) and dmofrq(2). The dmmode(2) system call selects
(toggles) automatic file retrieval, and the dmofrq(2) system call
returns information on the status of migrated files and processes
requests from the data migration daemon.

CRAY PROPRIETARY 61

Data Migration UNICOS Internal Reference Manual for CRAY-2 Computer Systems

The dmmode(2) system call implements user selection of
automatic retrieval. As described in "User interface to data .
migration," page 60, dmmode(2) can set or clear the uc_dmode
flag to toggle automatic retrieval of migrated files.

The dmofrq(2) system call processes requests from
dmdaemon(lM); it can also be used to return infonnation on the
status of migrated files. The following functions are available:

• Indicate that a file is to be changed from IFREG to IFOFL
with the specified handle information. (U sed when the
premigration entry creation has been completed; data blocks are
not returned to the file system, but the data block area of the
specified file's i-node is cleared.)

• Specify reading and writing the file handle from or to the off
line file i-node.

• Transform an IFO FD file to an IFREG file. The original
i-node is transformed when being retrieved; the premigration
copy is transfonned when being migrated.

• Move the data block area in an IFREG i-node.

• Return a stat() block with the mode unmodified.

The data migration driver

62

The data migration driver (see dmd(4D» is the interface between
the kernel and dmdaemon(lM). The driver's function is to
recall, restore, and remove off-line ·files, as requested by
dmdaemon(lM). The driver is defined in the file io/mig.c.

The parameter KERNEL_DAEMON (in sysldmkreq.h) defines
the special file (device node) used for the device driver. By
default, KERNEL_DAEMON is Idev/dm/migO. The include file
sysldmkreq.h also contains the definitions for the ioctl(2)
requests for the driver.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manualfor CRAY-2 Computer Systems Data Migration

SP-2023 5.0

The driver typically passes messages from the kernel to
dmdaemon(lM) to recall and remove off-line files. Only one
user (usually dmdaemon(1M» is allowed to have the device
(/dev/dmlmigO) open. (Code in the open routines ensures this; in
practice, only the daemon should open this special file.)

The recall message. (KDMRCLRCL) is used to recall an off-line
file. When an off-line file is being opened, the kernel routine
copeni() calls dmopeniO (in module osldmsys.c). dmopeni()
sends the recall message, which is queued awaiting a reply
message from dmdaemon(lM). The open operation waits until
the file has been retrieved (that is, the process sleeps at an
interruptible priority). If the process is interrupted (by the
interrupt signal), the error EOFLRIN is returned.

A remove message (KDMRCL VDC) is used to remove an off­
line file. It is sent when the user removes an off-line file, thus
voiding any off-line copies made. The processing for a remove
message is similar to that for a recall message, but the process
does not wait for a reply from the daemon.

CRAY PROPRIETARY 63

Process Management

System Calls

System calls provide the mechanism for user processes to
communicate with and make requests of the UNICOS kernel.
This section describes the interface between the user-level
routines, C library routines invoked in user programs, and the
kernel-level routines that perform the work in the kernel.

The user-level system call routines are described in detail in
Volume 4: UN/COS System Calls Reference Manual, publication
SR-2012. This manual does not attempt to duplicate that
documentation; rather, it describes the lower levels of the system
call interface to the kernel. Specifically, this subsection addresses
the following topics:

• Categories of system calls

• Origin of UNICOS system calls

• System call interface

• Flow of control during system call execution

This section also provides an example of the execution of a
simple system call (umask(2)).

Categories of system calls

SP-2023 5.0

There are three categories of system calls:

• True system calls; the library interfaces for these system calls
transfer control directly to the kernel routine that performs the
system call. Most system calls fall into this category. An
example of a true system call is getpid(2).

CRAY PROPRIETARY 65

System Calls UNICOS Internal Reference Manual for CRAY-2 Computer Systems

• Preprocessed system calls; the library interfaces for these
system calls perform some preprocessing before transferring
control to the kernel. The exec family of system calls (for
example, execl(2)) includes system calls that are preprocessed .

• Pseudo system calls; the library interfaces for these system calls
perfonn all processing at the library level. In other words,
control is never transferred to the kernel with an exit
instruction. There are few system calls in this category. An
example of a pseudo system call is the sigblock(2) system call,
which manipulates a word in local memory; it does not need to
transfer control to the kernel for any processing.

UNIX System V system calls

66

The following UNICOS system calls are derived from AT&T
UNIX System V release 3:

fstatfs(2)
getdents(2)
mkdir(2)
rmdir(2)
s!gho!d(2)
sigignore(2)

si gpause (2)
sigrelse(2)
sigset(2)
statfs(2)
sysfs(2)

The following UNICOS system calls are derived from versions of
UNIX System V prior to release 3:

access (2)
acct(2)
alarm(2)
brk(2)
chdir(2)
chmod(2)
chown(2)
chroot(2)
c1ose(2)
creat(2)
dup(2)
exec(2)

CRAY PROPRIETARY

exece(2)
exit(2)
fcntl(2)
fork (2)
fstat(2)
getgid(2)
getpid(2)
getuid(2)
ioctl(2)
kill(2)
Iink(2)
I seek (2)

SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 CompuJer Systems System Calls

mknod(2)
mount(2)
nice(2)
open (2)
pause(2)
pipe(2)
plock (2)
profil(2)
ptrace(2)
read(2)
setgid(2)
setpgrp(2)
setuid(2)
stat (2)
stime(2)

sync(2)
time(2)
times(2)
uIimit(2)
umask(2)
umount(2)
uname(2)
unlink(2)
ustat(2)
utime(2)
utimes(2)
wait (2)
write(2)

UNIX 4.2BSD system calls

UNICOS system calls

SP-2023 5.0

The following UNICOS system calls are derived from UNIX
4.2BSD.

getgroups(2)
geUimeofday(2)
setgroups(2)
settimeofday(2)
sigblock(2)
sigsetmask(2)

Table 2 lists the system calls available only on Cray computer
systems running UNICOS.

CRAY PROPRIETARY 67

System Calls

68

System call

acctid(2)
chacid(2)

.. chkpnt(2)
cpselect(2)
dmmode(2)
dmofrq(2)
fsecstat(2)

getfacl(2)

getfcmp(2)

getfivl(2)

getjtab(2)
getsysl(2)

getucmp(2)

getulvl(2)

getusrv(2)

ialloc(2)
jacct(2)
killm(2)
limit (2)
limits(2)
Iistio(2)
mtimes(2)
nicem(2)

reada(2)
resch(2)
resume(2)

UNICOS Internal Reference Manual for CRAY-2 CompuJer Systems

Table 2. UNICOS system calls

Description

Changes account ID of a process
Changes disk file account ID
Checkpoints. a process, multitask group, or job
Selects which processors may run the process
Sets and gets data management retrieval mode
Processes off-line file requests
Gets file security status (available on secure sys­
tems only)
Gets access control list for a file (available on
secure systems only)
Gets compartments of named file (available on
secure systems only)
Gets security level of named file (available on
secure systems only)
Gets the job table entry associated with a process
Gets minimum and maximum security levels for
the system (available on secure systems only)
Gets user's active compartments (available on
secure systems only)
Gets user's active security level (available on
secure systems only)
Gets user's security validation information
(available on secure systems only)
Allocates storage for a file
Enables or disables job accounting
Sends a signal to a group of processes
Sets resource limits
Returns or· sets limits structure
Initiates a list of I/O requests
Multitasking execution overlap profile
Changes priority of processes or group of
processes
Asynchronous read from file
Reschedules a process
Resumes execution of processes

CRAY PROPRIETARY SP-2023 5.0

· UNICOS Internal Reference Manual for CRAY-2 Computer Systems

System call

restart(2)
rmfacl(2)

secstat(2)

select(2)
setfacl(2)

setfcmp(2)

setfivl(2)

setjob(2)
setsysl(2)

settfm(2)

setucmp(2)

setulvl(2)

setusrv(2)

sigctl(2)
slgentry(2)

suspend(2)
sysconf(2)
target(2)
tfork(2)
trunc(2)
upanic(2)
waitjob(2)
writea(2)

System Calls

Description

Restarts a process, multitask group, or job
Removes an access control list from a file (avail­
able on secure systems only) ,
Gets file security status (available on secure sys­
tems only)
Examines synchronous I/O multiplexing
Sets access control list for a file (available on
secure systems only)
Sets file's security compartments (available on
secure systems only)
Sets directory or file security level (available on
secure systems only)
Sets job ID
Sets security levels for the system (available on
secure systems only)
Sets and gets trusted facility mask (available on
secure systems only)
Sets user's active security compartments (avail­
able on secure systems only)
Sets user's active security level (available on
secure systems only)
Sets user's validation information (available on
secure systems only)
Provides generalized signal control
Makes security log entry (available on secure
systems only)
Suspends execution of processes
Retrieves system implementation information
Retrieves or modifies machine characteristics
Creates a multitasking process
Truncates a file
User panic; stops the system from a user process
Gets information about a terminated child job
Performs asynchronous write on a file

SP-2023 5.0 CRAY PROPRIETARY 69

System Calls

System call interface

C library routines

The sysent table

70

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

This subsection describes the C library routines involved with
system calls, the sysent table, and the kernel-level system call
routines.

System calls are generally invoked through a C library interface.
This is a predefined library of functions (the C library) whose
names correspond or are similar to the system call names. The
source for these interface routines is in Iib/libc/sys. These
routines use the exit 1 instruction (usually by using the
SYSCALL macro, defined in Iib/csu/asdef.s), which changes the
process execution from user mode to kernel mode and causes the
kernel to start executing code for system calls.

The file lib/csu/asdef.s contains the C library's definitions of the
system call numbers.

The file uts/oslsysent.c contains the sysent table. This is the
system call entry point table; it contains information for each
system call.

The kernel uses the system call number as an index into this table
to find the entry point for the system call and to find the number
of parameters that the system call expects.

The format of an entry in the sysent table is defined in the
include file sys/sysent.h.

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems System Calls

Flow of control

Figure 4 shows the flow of control in system call handling.

SP-2023 5.0

lib/libclsys/*.s routines

SYSCALL macro

exit instruction

inout module

trapO routine

sysent table

,

Specific system
call Toutine

Figure 4. System call flow of control

CRAY PROPRIETARY 71

System Calls UNICOS Internal Reference Manual for CRAY-2 Computer Systems

Example: Flow of control in omask(2) system call

72

The following example shows the flow of control for the
umask(2) system call. This system call is used as an example
because it is a true system call; no library level processing is
done.

The flow of control in a call to umask is as follows:

1. A user program calls umask as in the following example:

newmask = umask(cmask);

The C language calling sequence copies the contents of cmask
into local memory and calls the umask function
(Ii bllibc/sys/umask.s).

2. The $SYSCALL macro places a pointer to the local memory
arguments in register Al and the system call number (defined
in Iib/asdef/asdef.s) in register SO. The upper eight bits of SO
,are set to 1 for most system calls; this indicates that the vector
registers do not need to be saved.

3. An EXIT 1 instruction is executed. The background
processor (BP) stops execution, sets the idle and exit bits in
the status word and waits for the foreground processor (FP) to
sense the exit.

4. The FP saves the P and S registers of the BP, switches it to
kernel mode and begins execution with the P/SIBAILA in the
operating system inbound exchange package. Execution ,
begins at pNNgosys (NN is the CPU number the system call is \
executing in). The entry and exit code for the kernel is called
the EXEC; this code is located in uts/mdlinout.s.

5. The kernel saves the user's registers, initializes several of its
variables, updates user/system time, acquires the kernel lock (a
common memory lock), then calls the trapO function
(uts/mdltrap.c).

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems System Calls

SP-2023 5.0

6. trapO copies the system call arguments pointed to by Al
from local memory to an array in the proc structure. The
three system call return values (RVALO, RVALI and
RVAL2, which correspond to the user's saved SO, SI, and S2,
respectively) are cleared. If the system call is interruptible
(for example, open(2), read(2), or write(2», trapO calls
setjrnp to set up a return address for the interrupt. Finally,
the system call number in SO is used as an index in the sysent
table and the proper routine is called. In this example, SO
equals 60; the corresponding sysent table is as follows:

SYSENT("umask", 1, 0, umask) /* : umask */

7. The urnaskO function (uts/os/sys4.c) is called; the previous
mask is stored in RV ALl and the user's mask
(uc->uc_cmask) is set from the value passed in by the user.
The urnaskO function is as follows:

/*
* mode mask for creation of files
*/

umaskO
{

}

register struct a {
int mask;

} *uap = (struct a *)up->p_arg;
register int t;

t = uc->uc_cmask;
uc->uc_cmask = uap->mask & 0777;
RVALl = t;

8. The urnaskO function returns to trapO. If there was an error
during the system call execution, u->u_error is copied to
RV ALO. trap() updates some scheduling information and
checks the runrun and runwout variables to see if this
process should be rescheduled or should process wayout
entries.

9. trapO returns to the EXEC. The devblock table is scanned
for interrupts arriving during the system call execution, the
user's registers are restored, and the kernel executes an EXIT
I instruction to notify the FP to return this CPU to user mode.

CRAY PROPRIETARY 73

System Calls

74

UNICOS Internal Reference Manualfor CRAY-2 Computer Systems

10. The FP loads the user's saved P/SIBAILA into the BP and
resumes execution at the instruction following the user's
EXIT 1.

11. If SO is set, this error number is copied into the user's global
variable errno and S 1 is set to -1. If SO is not set, the
correct return value is already in register S 1, so the system
call simply returns to its caller.

12. The calling sequence copies the value in SI to the user's
variable newmask.

CRAY PROPRIETARY SP-2023 5.0 ~

Signals

This section discusses UNICOS signals. It covers the following
topics:

• Signal differences between UNICOS and UNIX System V

• Signal kernel routines

• Signal macros

• Data areas

• Signal differences between CRA Y -2 systems and CXlt and
CEA systems

Differences of UNICOS signals

SP-2023 5.0

The differences between UNICOS signals and signals in UNIX
System V are summarized as follows:

• In UNICOS, more signal management is done at the library
level than at the kernel level.

• More signals (64) are available in UNICOS.

• TheUNICOS signal routines are a mixture of routines from
UNIX System V release 2, UNIX System V release 3, UNIX
4.2 BSD and routines unique to Cray systems. The kernel
signal interface is through the sigctl(2) system call; this system
call provides more general control than is available on UNIX
systems.

CRAY PROPRIETARY 75

Signals UN/COS Internal Reference Manual for CRAY-2 Computer Systems

• User processes have control of the default action of a signal.

• Some UNICOS signal names differ from UNIX signal names
(for example, in UNICOS, SIGABRT is used instead of
SIGIOT).

Signal kernel routines

76

The following routines are involved in the low-level management
of signal processing.

Routine Description

fsigO This routine gets the lowest-order bit in p_sig, the
mask of signals that have been sent to the process.
fsig() is in the module mdlfsig.s.

issig() This routine tests for the. existence of a signal.
issigO is called for each process as it enters the
kernel. If there are signals pending that are not
ignored, issig() returns true (unless the signal is
SIGCLD or SIGPWR). If the signal is SIGCLD or
SIGPWR. UNICOS processes them in the same way
that UNIX does. issig() is in the module os/sig.c.

psig() This routine is called if issig() returns with a signal
to process. psig() determines what will happen
when a signal is seen by a process; the process
receiving the signal executes psig() to perform one
of three actions:

• Send the signal if the process has registered
for it. psigO sends a process a signal by
calling sendsigO and then clears the p_sig bit
associated with the signal.

• Dump process memory (do a core dump) and
die.

• Die without doing a core dump.

psi gO is in the module os/sig.c.

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Signals

SP-2023 5.0

Routine Description

psignalO This routine sends a signal. Unless the receiving
process is the swapper (process 0) or an idle process,
psignalO sets the signal bit in p_sig. If the process
is being killed with the SIG KILL signal and is
currently suspended, the suspend is cleared so that
the process can be killed. Processes sleeping at
interruptible priorities are awakened, and processes
connected in another CPU are interrupted for quick
servicing. This is the only signal routine ever
executed by a process other than the one receiving
the signal. psignal() is in the module os/sig.c.

retsigO This routine is called when the user makes a
sigctl(2) call with the SCTL_RET action. The
library does not restore all the registers (P, SO, St,
S2, and At registers), so retsigO must restore them.
In addition, retsigO sets the semaphore pointer in
case it was changed by the kemel.retsig() is in the
module os/sig.c.

sendsig() This routine is called by psig() to send a signal to
the user process. sendsig() checks the signal nesting
level (if greater than to, sendsigO returns to try
again later). It then checks the top stack entry; if
the entry can be reused, sendsig() does so;
otherwise, it gets another stack entry. sendsig() is
in the module os/sig.c.

sigctlO Entry point (in os/sys4.c) for the sigctl family of
routines.

signalO This routine (in os/sys4.c) sends the specified signal
to all processes with pgrp as their process group. It
calls psignal() to actually send the signal.

CRAY PROPRIETARY 77

Signals

Macros

Data areas

78

UNICOS Internal Reference Manum for CRAY-2 Computer Systems

The following macros are used in signal processing:

Macro Description

SIGOFF -Mll;croto tum- signals off for the currently running
process. This macro is defined in the file
Iib/csu/asdef.s.

SIGON Macro to tum signals on for the currently running
process. This macro is defined in the file
Iib/csulasdef.s.

The user structure contains a storage area, the u_sigenv[] array,
used to save the user context during signal processing. The
process (proc) structure contains the field p_sig, which is a
bitmask of signals pending for the process.

Several words in local memory are used in signal- processing.
These words are described as follows:

Memory
Word

_sigdata

Description

Used to hold an incoming signal. The _sigdata
word has the following format:

I os flag I signo I P-address

The first field, os_flag, is 24 bits; it is used in
only one routine to check the version of signal
handling. The signo field is 8 bits; it holds the
signal number. The P -address field is 32 bits; it
holds the address of the user process (the point at
which it was interrupted).

U sed to hold the sigoff word; this word is set to 0
to enable signal trapping and to a nonzero value to
disable signal trapping.

CRAY PROPRIETARY SP-2023 5.0 t

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Signals

Memory
Word Description

_sigpend Used to hold signals that come in when signal
trapping has been disabled.

_sigmask U sed to hold the signal mask.

_sigsave U sed to store the _sigoff word when signals are
disabled.

Signal differences between CRA Y-2
and CX/1 and CEA systems

SP-2023 5.0

There are several differences between the implementation of
signals on CRA Y -2 computer systems and the implementation of
signals on CX/I and CEA computer systems.

Most of the differences are due to architectural or hardware
differences; for example, signals on CRA Y -2 systems use local
memory, which is not available on the otheJ" systems. However,
there are also some software differences. (Note, however, that
software differences might not remain in future releases of
UNICOS.) These differences are as follows:

• CX/I and CEA systems allow unlimited signal nesting;
CRA Y -2 systems limit nesting to SIGNEST levels.
(SIGNEST is defined in sys/signal.h.)

• On CX/I and CEA systems, all signal functions result in system
calls, except sigon(3C) and sigoff(3C), which are library
routines. On CRA Y -2 systems, most signal functions are
implemented at the library level and utilize local memory .

• CX/I and CEA systems define but do not use the SIGBUFIO,
SIGMT, and SIGMTKILL signals. These signals are used for
Fortran and multitasking programs on CRA Y -2 systems .

• CRA Y-2 systems define but do not use the SIGUME and
SIGDLK (SIGCRA Y7) signals. On CX/I and CEA systems,
these signals are used upon encountering uncorrectable memory
errors (UMEs) and hardware deadlocks, respectively.

CRAY PROPRIETARY 79

Interrupts

Typical UNIX machines have a multilevel priority system
whereby activities with higher priority can preempt those with
lower priority. The UNIX structure assumes a multilevel
environment, and low-priority activities proceed to completion
without checking to see if something else should be done first.
Typically, disk interrupts would preempt terminal interrupt
servicing, and terminal interrupts would preempt system call
servicing.

The CRA Y-2 architecture is only a two-level system in which
user mode is always interruptible and kernel mode never is. Two
UNICOS files, mdlinout.s and mdltrap.c, are used in interrupt
processing. mdlinout.s contains a CAL routine that contains the
intscan entry point and the INTSCAN macro, which scans for
interrupts.

The remainder of this section describes the ENABLE and
DISABLE macros and the UNICOS interrupt handlers.

The ENABLE and DISABLE macros

SP-2023 5.0

To prevent interrupts at inopportune times, UNIX artificially
raises its priority with an spl instruction and then lowers it at the
end of the critical region with an splO. UNICOS uses the
ENABLE and DISABLE macros to perform the same function.

CRAY PROPRIETARY 81

Interrupts UNICOS Internal Reference Manual for CRAY-2 Computer Systems

These macros are defined in the include file sys/sysmacros.h;
they have the following functions:

Macro Description

ENABLE This macro lets interrupts occur (reach the
process).

DISABLE This macro keeps interrupts from reaching the
process. If an interrupt is in progress when this
macro is invoked, the interrupt processing is
finished before the disable action takes effect.

xENABLE This macro is the nested version of the ENABLE
macro.

xDISABLE This macro is the nested version of the DISABLE
macro.

The interrupt handlers

82

The device control block, devblock (defined in sys/devdata.h),
contains the interrupt handler addresses for the devices configured
on the system. (Interrupt handlers are also called device interrupt
service routines.)

For more information on interrupt handlers and devblock, see
"Kernel Data Structures," page 15, and "Foreground Processor
and Kernel Communication," page 33.

CRAY PROPRIETARY SP-2023 5.0

SP-2023 5.0

Process Management Chains

This section describes the extensions to the process table for
process management. These extensions consist of linked lists,
termed process management chains, in the process table entry;
they are used to decrease search time for entries.

In previous versions of UNICOS and in the UNIX operating
system, the process table consisted of entries that were ordered
sequentially, as they were created. UNICOS now has several
process management chains that provide access to the following
elements:

• The next available entry in the process table

• All active processes, starting with the youngest (most recently
created) process

• All processes on a particular hash chain

• The most recent child of a particular process

• All the sibling processes for a process

• All the processes in a multitask group, starting with the oldest
(first) process

• All the processes in a job

These chains reduce the need to perform linear search operations
to find an entry in the process table. Consequently, several
system calls (for example, kill(2), killm(2), nicem(2), and
wait(2)) run considerably faster. In addition, the scan operations
in clockO, swtch(), and sched()) are more efficient.

The chkpnt(2) and restart(2) system calls depend heavily on the
existence of several of these extensions (for example, the chains
listing the pcomm areas in a process group).

CRAY PROPRIETARY 83

Process Management Chains UNICOS Internal Reference Manual for CRAY-2 Computer Systems

The fields of interest in the process structure (proc) are as
follows:

struct proc *p_pidhash Next process in the process ID
(PID) hash chain

struct pcomm *p_children Most recent child process

struct proc *p_prev Previous process in the chain

struct proc *p_next Next process in the chain

See the include file syslproc.h for more information on the proc
structure.

The fields of interest in the pcomm area are as follows:

struct proc *pc_mproc Pointer to oldest process in
a multitask group

struct pcomm *pc_pgrpprev Pointer to previous process
in the same process group

struct pcomm *pc_pgrpnext Pointer to next process in
the same process group

struct pcomm *pc_sibling Pointer to next sibling in a
multitask group

struct pcomm *pc.Jlink Pointer to next process in a job

See the include file syslproc.h for more information on the
pcomm structure.

The remainder of this section describes these chains.

Chains in the proc structure

84

The process management extensions added three chains to the
process table entry structure, proc. These chains are as follows:

• Process ID (PID) hash chains

• Active process chain

• Available process chain

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Process Management Chains

PID hash chains

SP-2023 5.0

The following subsections describe these chains. In addition, the
proc structure contains a child process pointer; this pointer is also
described.

The PID hash chains provide a method of mapping a PID to a
process table entry. The PID hash table, pidhash[], is an array of
pointers, one for each hash chain; each process is stored at an
index determined by its hash value. Each entry in the pidhash[]
array is the head of a singly-linked list of proc structures. Each
hash chain holds all the process table entries for the processes
whose PIDs hash to the same value.

The field p_pidhash points to the next entry on a hash chain.
Each hash chain is NULL terminated.

There are NPIDHASH hash chains in the PID hash table.
NPIDHASH is defined in the include file syslparam.h.

The macro PIDHASH() provides a hash function for the process
table entries. It returns an index into the PID hash table. (This
value is in the range 0 ~ value < NPIDHASH.) PIDHASHO is
defined in the include file sys/sysmacros.h.

CRAY PROPRIETARY 85

· Process Management Chains UNICOS Internal Reference Manualfor CRAY-2 Computer Systems

Figure 5 shows a simplified view of the PID hash chain.

pidhash

NULL

Figure 5. PID hash chain

86 CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manualfor CRAY-2 CompuJer Systems Process Management Chains

Active process chain

proc c

The active process chain is a doubly-linked list of active
(allocated) process table entries. In addition to user processes,
this chain includes scbedO (proc[O], or the swapper), the idle
processes, init, and any uncollected zombie processes.

The pointer aUproc points to the most recently created process in
the system. p_next is used as a pointer to the next older active
process. p_prev is used as a pointer to the next younger active
process.

Figure 6 shows a simplified view of the active process chain.

NULL

(youngest) (oldest)

Figure 6. Active process chain

SP-2023 5.0 CRAY PROPRIETARY 87

Process Management Chains

A vaiIable process chain

88

UNICOS Internal Reference Manualfor CRAY-2 Computer Systems

The available process chain is a singly-linked list of available
(free) process table entries. The structure availproc is a pointer
to the first entry in the chain. p_next is used as a pointer to the
next available process. This chain is NULL tenninated.

Figure 7 shows a simplified view of the available process chain.

proc c proc r

NULL

Figure 7 . Available process chain

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Process Management Chains

Child process pointer

SP-2023 5.0

The p_children field is used as a pointer to the most recent child
of a given process.

To find all the children of a process n, follow process n's
p_children pointer to find its most recent child process, then use
the pc_sibling field in that child process' pcomm area to find all
of process n's earlier children. (The pc_sibling field is described
in "Sibling process chain," page 90.)

Figure 8 shows a simplified view of the child process pointer.

Parent
process

Most recent
child

Figure 8. Child process pointer

CRAY PROPRIETARY 89

Process Management Chains UNICOS Internal Reference Manualfor CRAY-2 Computer Systems

Chains in the pcomm structure

Sibling process chain

pcomm c

90

The process management extensions added three chains to the
process common area, pcomm. These chains are as follows:

• Sibling process chain

• Chain of processes in a process group

• Chain of processes in a job

The following subsections describe these chains. In addition, the
pcomm structure contains a pointer to processes in a multitask
group; this pointer is also described.

The sibling process chain is a singly-linked list of sibling
processes in a process group. The field pc_sibling is a pointer to
the pcomm area of another sibling process in the same process
group. This chain is NULL terminated.

Figure 9 shows a simplified view of the sibling process chain.

pcommk pcomm a

NULL

Figure 9. Sibling process chain

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference ManUIJI for CRAY-2 Computer Systems Process Management Chains

Chain of processes in a process group

commc

SP-2023 5.0

This chain is a doubly-linked list of all processes (pcomm areas)
in a process group. (The process group leader is indicated by the
field pc_pgrp.) The structure pc_pgrpnext is a pointer to the
next pcomm area in the process group. The structure
pc_pgrpprev is a pointer to the previous pcomm area in the
process group.

Figure 10 shows a simplified view of this chain.

pcommm pcommo

Figure 10. Chain of processes in a process group

CRAY PROPRIETARY 91

Process Management Chains

Chain of processes in a job

jtab

jtab[i]

92

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

This chain is a circular, singly-linked list of processes (pcomm
areas) in a job. The job table, jtab[] (defined in sys/jtab.h), is an
array of pointers, one for each job; each entry in the job table is a
pointer to a chain of processes in a job.

The field l-youngest in the jtab structure is a pointer to the
youngest pcomm area in the job. The structure pc-Jlink is a
pointer to the next oldest process (pcomm area) in a job. The
oldest process' pc-Jlink pointer points back to the youngest
process in the job.

Figure 11 shows a simplified view of this chain:

commu

(oldest) (youngest)

Figure 11. Chain of processes in a job

~

CRAY PROPRIETARY SP-20235.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Process Management Chains

Multitask group pointer

procj

SP-2023 5.0

The structure pc_mproc is a pointer to the process table entry of
the oldest process in a multitask group.

The oldest process in a multitask group is treated specially by
several routines (for example, the checkpoint/restart routines).
See "Multitasking," page 97, for more information.

Figure 12 shows a simplified view of this pointer.

proc I procp

(oldest)

pc_mproc -'------
Figure 12. Multitask group pointer

CRAY PROPRIETARY 93

Process Management Chains

Examples

94

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

The following example shows how to find a particular process
table entry when the PID is known (that is, by using the value in
the p_pid field):

p = pidhash[pIDHASH(search-pid)];

while(p != NULL && p->p_pid != search-pid) (

p = p->p-pidhash;
)

if(p=NULL)

1* pid does not exist *1

The following example shows how to walk through the process
table (examine all active processes), excluding process 0 and
zombie processes:

for(rp = allproc; rp != &proc[O]; rp = rp->p_next) (

1* no need to check for SZOMB * /
1* they are guaranteed to exist in the p_next chain * /
1* after proc[O] */

The following example shows how to walk through the process table,
excluding only zombie processes:

for(pp = &proc[O]; pp != NULL; PP = PP->P-IJrev) (

1* no need to check for SZOMB * /
1* they are guaranteed not to exist in the p-prev chain */
1* after proc[O] * /

The following example shows how to walk through the process table,
handling zombie processes one way and all other processes another
way:

rp = allproc;

do (

if(rp->p_stat = SZOMB) (

1* do one thing *1
) else (

1* do something else * /

rp = rp->p_next;

) while(rp != NULL);

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Process Management Chains

SP-2023 5.0

For examples relating to specific searches (for example, by process
group), refer to the killmO routine in the module os/sysS.c.

CRAY PROPRIETARY 95

Multitasking

This section covers the following topics:

• Multitasking support in UNICOS

• Multitasked processes

• Multitasking system calls and kernel routines

• Limitations with multitasking

• Memory integrals used in accounting

Multitasking support in UNICOS

SP-2023 5.0

UNICOS has a mechanism that allows processes to use multiple
physical CPUs for a single program.

The main conceptual change required to implement multitasking
is termed the multitasking group (also called the m-group). A
multitasking group is a circular linked list of processes that share
one user execution image and swap image. UNIX assumes in
several places that the swap image consists of a user area and
then the user execution area (starting at the low-address end).
This was changed in UNICOS to allow multiple user areas in the
swap image. Every process table entry (the proc structure) now
points to a process common (pcomm) structure, which contains
the fields common to all processes in the multitasking group, such
as swap-image address/size fields, memory residency infonnation,
and user execution image address fields.

CRAY PROPRIETARY 97

Multitasking UNICOS Internal Reference Manualfor CRAY-2 Computer Systems

Every swap image also has a shared area (the user common, or
ncomm, area) where information for all processes in the group
(for example, the table of open file pointers) is stored.

Multitasked processes

Multitasking routines

98

All processes within a multitasking group are equal and
symmetric for most purposes. However, the oldest sibling process
(the process created first) has some special cases associated with
it: the pcomm structure resides in the oldest sibling's proc entry,
and the oldest sibling is always the last process in the
multitasking group to exit. A process can belong to only one
multitasking group at a time. Thus, if any process in a
multitasking group performs a tfork(2) operation, the new process
belongs to its parent's multitasking group.

Two system calls were added to or modified in UNICOS to
support multitasking. The tfork(2) system call is used to create
another process within the multitasking group. The resch(2)
system call reschedules a process to the (logical) end of the run
queue (runq).

The following kernel routines are available to support
multitasking:

Routine Description

endmtsingleO This routine ends single threading (see
mtsingleO).

mtsingle() This routine starts single threading. UNICOS
temporarily has to force all the other processes
in an multitasking group out of the physical
CPU s to allow things like memory expansions.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systemr Multitasking

Limitations with multitasking

Memory integrals

SP-2023 5.0

Some system calls are not allowed for processes in a multitasking
group; these include fork(2) and the exec(2) family of system
calls.

Memory integrals are algorithms for computing memory use; they
are designed to take the unique considerations of multitasked
programs into account. Use of the UNICOS memory integrals
provides incentives for using multitasking programs, as they are
able to gauge more accurately the load that a program requiring
large amounts of memory places on a multi-CPU system.

There are three memory integrals used in UNICOS accounting
calculations. All three integrals are maintained and placed in the
accounting records. Memory integral 1 is preserved because it is
a consistent algorithm, which is very important at some sites.
Memory integral 2 is the default memory integral. Memory
integral 3 may become the default in future releases. The
constant MEMINT in the file lusrlsrclcmdlacctlacctdef.h defines
the default memory integral.

The UNICOS memory integrals are described in detail in the
UN/COS System Administrator's Guide for CRAY-2 Computer
Systems, publication SO-2019.

CRAY PROPRIETARY 99

SP-2023 5.0

Fair-share Scheduler

The UNICOS fair-share scheduler, Share, is a per-user scheduler
that runs on top of the standard per-process scheduler. It provides
a fair distribution of resources for all users according to their
allocation of shares. A share is a term covering elements of the
UNICOS kernel (for example, memory usage) that affect the
priority of a user's job.

The standard (low-level) scheduler in UNICOS schedules
processes on a short term, per-process basis. Share is a per-user,
short-term and long-term scheduler; it takes account of a user's
past usage of machine resources. The system administrator sets
the length. of time during which usage is remembered; system
usage is decayed by a factor referred to as half life. If, for
example, the administrator sets the decay rate to 10 minutes, a
user's usage is reduced by half in 10 minutes, to one-fourth in 20
minutes, to one-eighth in 30 minutes, and so on. (For more
infonnation, see the UN/COS System Administrator's Guide for
CRAY Y-MP, CRAY X-MP EA, CRAY X-MP, and CRAY-)
Computer Systems, publication SG-2018.)

Share is inactive by default; it is initialized by shradmin(IM).
Systems that boot and run the UNICOS 5.0 kernel without
running this program will not notice any difference in the
scheduler. However, different scheduling algorithms are being
used. These different algorithms are explained in the remainder
of this section.

The scheduler operates on two levels, the user level and the
kernel level. The user-level operation is explained in the
UN/COS System Administrator's Guide for CRAY Y-MP, CRAY
X-MP EA, CRAY X-MP, and CRAY-1 Computer Systems,
publication SG-2018. See also the share(info), shradmin(IM),
shrmon(IM), shrdaemon(1M), limits(2), and Inode(4F) man
pages.

CRAY PROPRIETARY 101

Fair-share Scheduler UNICOS Internal Reference Manual for CRAY-2 Computer Systems

Components of Share

The kernel has been modified to support the requirements of share
scheduling. Share code is in the modules os/share.c, oS/limits.c,
and os/clock.c. A new system call, Iimits(2), provides an
interface between the kernel and user levels of Share; it
manipulates a kernel limits structure according to the value of its
arguments. A daemon, shrdaemon(lM), updates usage
infonnation in the UNICOS user database (UDB) and recovers
user infonnation from unplanned system halts. An administrator
command, shradmin(lM), allows an administrator to change the
share scheduling priorities; shrmon(lM) provides an administrator
display. In addition, login(l), cron(l), and all NQS utilities have
been modified to access the information in the UDB and pass it
on to the kernel. The include files sys/share.h and sys/lnode.h
are also part of this feature.

The user limits structure (Inode)

102

Share relies on the UDB. When a user logs in, Share copies
certain values from the UDB file (see udb(4F» to initialize an
entry for the user in the Inode table.

Share uses a per-user data structure known as an lnode (which
stands for limits node) to store important information about each
user's resources and shares. The Inode structure is defined in the
include file sys/lnode.h.

All fields in the Inode structure are filled in with information
from the UDB. This is done indirectly with the Iimits(2) system
call.

The Inode structure is a subset of infonnation kept in the kernel
Inode table. The information in the Inode structure is updated in
the UDB when an active user becomes inactive. The remainder
of the infonnation in the kernel Inode table is needed only when
the user has active processes.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Fair-share Scheduler

The kernel lnode table

The Inode structure is embedded in a larger kern_lnode structure
(both structures are defined in syslInode.h). The kernel Inode
table holds information on each active user (a user with at least
one active process); each active user is represented by a
kern_lnode structure. It contains all the temporary variables
needed by Share to manage an active user. The Inode structure
contains all the parameters maintained for active users on a long­
term basis. The Inode structure is used in communication with
the Share administrator programs that manage the scheduler
interface to the kernel.

The field p_lnode in the process structure (proc) points to the
kern_lnode structure for the user (the owner of the process).

Entries in the kernellnode table are installed by login(1), which
uses the setlimits library routine to access values in the UDB.
shrdaemon(lM) removes "dead" lnodes when the last process for
a user exits.

Share priority calculations

SP-2023 5.0

A user's usage value (for example, CPU usage, memory usage,
and I/O) is that user's accumulation of costs, as defined by
shradmin(lM). The usage is calculated by accumulating the
charges incurred during a scheduling time period and dividing
them by the square of the user's allocated shares. Thus, a user
with a larger number of shares will have a usage with a faster
decay rate than a user with a smaller number of shares.

The share scheduler affects the low-level scheduling of processes
by calculating a normalized usage from each lnode' s usage field;
this number is added to the priority of a process. The
(numerically) higher its priority, the less often a process is
scheduled; therefore, processes belonging to users with high usage
will get a smaller share of resources. Note, however, that at any
one time, a user can use all of the resources available provided
there is no competition from others.

CRAY PROPRIETARY 103

Fair-share Scheduler

104

UNlCOS lnlernal Reference Manual for CRAY-2 Computer Systems

There are three cycles for adjusting a process' priority, as follows:

• Minor cycle; this is every clock tick (1/60 of a second or 1/100
of a second, depending on the value OS_HZ in the file
sys/param.h). Every minor cycle, the usage value (the
kl_usage field in the Inode) is multiplied by the rate (kl_rate),
and the result is added to its scheduling priority (p_sharepri);
this calculation is expressed as follows:

p_sharepri += p_Inode->kl_usage * p_Inode->kl_rate

The value in p_sharepri is decayed (in the routines in
os/clock.c and os/share.c) by an amount that depends on the
process' nice value (the value in the p_nice field); the lower
the priority of the process, the slower the decay. This value is
copied into the low-level scheduler's priority (p_pri) whenever
the process is run in user space.

• Middle cycle; this is every second. Each middle cycle, the
priorities of all the processes on the run queue are re-evaluated;
their resource consumption valuls are decayed at a rate
determined by their nice values. This has the effect of
gradually moving processes to the top of the queue and assures
that every process will be scheduled to run. It is necessary to
balance the rate of migration to the top of the queue with the
rate of resource consumption so that relative priorities are
remembered for a long enough time to prevent large numbers
of processes from migrating to the top of the queue. .

• Major cycle; this is every 4 seconds. Every major cycle,
overall resource usage is decayed for all processes in the Inode
table. A major cycle is 4 seconds in the released system; the
administrator can change the length of the major cycle with the
shradmin(lM) command.

t Processes with nice values of 0 move toward the top of the queue faster
than those with nonzero values.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manualfor CRAY-2 CompuJer Systems Fair-share Scheduler

Kernel-level support functions

SP-2023 5.0

The following modules contain the Share routines:

Module Description

os/sbare.c This module contains the major cycle code (the code
executed once every major cycle).

osllimits.c This module contains the system call used by the
user-level Share code to interrogate and modify the
kernel Inode table. The routines in limits.c look at
the Inode table to detennine the limits for a user.

os/clock.c The routines in this module have been modified to
handle the new calculations for each minor cycle
(clock tick), each middle cycle (I-second interval),
and each major cycle.

When the current process voluntarily gives up the CPU, or a
scheduling cycle is initiated by the kernel (the minor cycle),
process priority of the current process is evaluated, and its priority
is adjusted based on its relative position among the available
processes and the proportion of shares allocated to the user. This
may lower, raise, or leave unchanged the position of the process
in the scheduling queue. When this evaluation has been done, the
n processes (where n is the number of active CPU s) at the top of
the queue are started.

At the kernel level, processes are scheduled on a priority-ordered
queue; the process with the highest priority (that is, the priority
with lowest numerical value) is at the front, or top, of the queue.
The user's entry in the Inode table keeps track of the count (or
rate) in the kl_rate field; this is the number of processes that the
user has on the queue. The value in kl_rate is decayed over
time.

At every clock tick, the current process has its priority
incremented by an amount proportional to the values in the
kl_usage and kl_rate fields in its owner's kemellnode table
entry.

CRAY PROPRIETARY 105

Fair-share Scheduler

Idle processes

Effect of nice(2)

106

UNlCOS lmernal Reference Manual for CRAY-2 Computer Systems

Every second, the priority of each process is decayed by an
amount depending on the nice value for the process (the nicer the
process, the slower the decay).

Each process is also charged at various times for consumption of
resources, by an amount appropriate to the resource, which is
added into the kl_~ost field in the kernel Inode table entry.

Idle processes are considered users (with the name Idle) of
system resources. Therefore, the idle processes must have an
entry in the UDB; user number eleven (11) has been reserved for
representation of the user Idle's usage of the system. Share
guarantees that these processes never interfere with other
processes by attaching the idle processes to a special kernel Inode
table entry belonging to the user Idle; this is done at boot time.
(The program shrdaemon(IM) executes a special system call (the
routine IimitsO in osllimits.c) during start-up to change the OOot- .
time identity (UID of -1) of the user Idle to one represented in
the UDB.)

Note that the idle processes must be allocated zero shares so that
an idle process runs only when no other user requests the CPU.

The usage figure for the idle processes is set arbitrarily large by
the user-level portion of Share (this is actually handled in
os/main.c and os/share.c); this ensures that idle processes stay at
the bottom (the low-priority end) of the active queue.

The nice(2) system call has a slightly different effect under Share.
The nice parameter for a process now affects the rate at which its
priority decays to a higher priority over time. "Nicing" a process
will make it run more slowly, by reducing its effective share of
the resources, but it may not run more slowly than another user's
processes if that user has an even lower effective share of the

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Fair-share Scheduler

SP-2023 5.0

resources. However, processes with a nice priority of 19 are
guaranteed to run only when no other processes need the CPU.
"Niced" processes are charged less for CPU time than normal
processes; processes with a nice value of 19 are charged almost
nothing for CPU time.

CRAY PROPRIETARY 107

SP-2023 5.0

Recovery

UNICOS recovery provides the ability to stop and save a process,
a multitasking group, or a job and restart it later. This section
describes how recovery (also called job and process recovery) has
been implemented in the UNICOS kernel.

There are several reasons for providing a recovery mechanism in
UNICOS:

• Many applications require more time than can be delivered in
one continuous interval. Machine maintenance, system
reconfiguration, and the need to distribute machine resources
for optimum use by a demanding user community can prevent a
site from dedicating the machine for a time that is long enough
for the most compute-bound applications to complete their
work.

• Applications can insure work by saving partially completed
work at critical points or plateaus; this guards against
unexpected events (machine and program failures).

The subsections in this section cover the following topics:

• Definitions of terms used in describing recovery

• Issues in checkpointing and recovery

• Description of restart files and their structure

• Description of the checkpoint algorithm

• Description of the recovery algorithm

CRAY PROPRIETARY 109

Recovery

Definitions of terms

110

UNlCOS lmernal Reference Manual for CRAY-2 COmputer Systems

This subsection provides term definitions and references used in
describing recovery.

Term Description

chkpnt(2) System call responsible for freezing
(temporarily halting the execution of) the
target process set and then placing all of
the information necessary to restore the
target processes into a restart file.

job Collection of one or more processes
created with fork(2) that are tracked as a
single unit, through a job ID (JID), for
the purposes of resource control,
accounting, and recovery.

Multitasking group Collection of processes created with
tfork(2); the processes in a multitasking
group share many resources, including a
common address space. A multitasking
group is sometimes referred to as an m­
group or tightly coupled processes.

restart(2) Inverse of the chkpnt(2) system call.
The restart(2) system call acc((pts a
restart file as input and then recovers the
processes described by the restart file.

restart file File created by chkpnt(2) that contains
all information needed to restore the
target process set to its execution state
when the restart file was created. A
restart file is sometimes called a recovery
image.

restarted process

target process set

Process that has been recovered from a
restart file.

Single process, multitasking group, or
job.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Recovery

Issues in checkpointing and recovery

SP-2023 5.0

This subsection discusses some issues in checkpointing and
recovery.

The system prohibits attempts to checkpoint processes,
multitasking groups, or jobs that have no hope of recovery. For
example, a process with an open socket connection to another
process on a remote machine is not checkpointable, because there
is no means to checkpoint and restart the target process and its
remote network peer in a consistent state. Similarly, a process
cannot be checkpointed if it has an open pipe connection to
another process that is not also included in the set of processes
being checkpointed.

UNICOS recovery differentiates between/ast and slow I/O
operations. Fast I/O is I/O to fast devices, such as memory and
disks; slow I/O is I/O to slow devices, such as terminals and
pipes. When a process is checkpointed, all fast I/O is allowed to
complete prior to the actual checkpoint operation (before the
restart file is written), because all fast I/O completes relatively
soon. Slow I/O operations in progress when the checkpoint
operation starts are immediately frozen; they are restarted when
the process is recovered. All outstanding slow I/O requests are
recorded in the restart file for later recovery.

In general, slow I/O operations in progress at the time of
checkpoint are always restarted upon recovery as though no
checkpoint/restart activity occurred. However, slow I/O
operations started with the Iistio(2) system call are not restarted
upon recovery; all such I/O requests fail with the EINTR error
upon recovery.

Only the super user is allowed to checkpoint and restart entire
jobs. Because many resource consumption limits are enforced at
the job level, this restriction prohibits ordinary users from using
the Network Queueing System (NQS) to escape their resource
limits (by submitting NQS batch requests, checkpointing the job
created to service the request, and then restarting the job as part
of an interactive session).

CRAY PROPRIETARY 111

Recovery

Restart files

112

UNICOS Internal Reference ManUIJI for CRAY-2 Computer Systems

The system makes extensive efforts to prevent the recovery of a
target process set if the recovery could lead to the production of
incorrect results. Several validity checks are perfonned on each
file referenced by the corresponding restart file whenever a restart
operation is attempted; if any of the referenced files have been
changed, the restart operation fails. However, restart(2) has a

. flag, REST ART_FORCE, to restart the necessary processes even
if one or more of the needed files has been modified.

Checkpoint and restart activity is transparent to the target process
set. However, applications are informed that they have been
restarted from a restart file. Upon the successful completion of a
restart operation, the SIGRECOVERY signal is sent to one
member of each recovered multitasking group. The
SIGRECOVERY signal is ignored by default, but a process can
catch this signal if desired.

Process IDs (PIDs), process group IDs (POIDs), and job IDs
(JIDs) are preserved across checkpoint and restart operations.
However, maintaining the ID values creates a problem if a needed
ID value is already in use by another process or job when a
restart operation· is attempted~ This problem remains unresolved;
if the situation occurs, the restart operation fails.

A restart file is constructed by the chkpnt(2) system call
whenever a target process set is successfully checkpointed. The
file contains the information needed to restore the checkpointed
processes to their original state.

Restart files are created with all write permissions disabled; the
owner is allowed read permission only if no setuid processes were
checkpointed into the file. (A restart file containing any setuid
processes is not readable; this prevents sensitive information from
being read by unauthorized users.)

A restart file is a regular file (type IFREG). However, it is
distinguished from other types of regular files by a bit in the
i_ftype field of the i-node; this bit is called the restart file

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Recovery

Restart file structure

SP-2023 5.0

attribute bit (IREST ART, defined in the include file syslinode.h).
This bit allows the system to prevent attempts made at changing
the protections or ownership of any restart file. There is no way
to set or clear the restart file attribute bit in a file, and there are
only two ways to create a restart file with this bit set:

. • Using chkpnt(2) to checkpoint a target process set.

• Using the open(2) system call with O_CREAT and
o _REST ART to create a new file with the restart file attribute
bit set. The restore(lM) utility uses open(2) in this manner to
restore restart files. Only the super user can use this method of
creating a restart file.

In the 4.0 release of UNICOS, the super user could use the
mknod(2) system call to create a file with the restart attribute bit
set. This is no longer possible in the 5.0 release.

Unlinked temporary files of limited size are supported by the
UNICOS 5.0 version of recovery. Unlinked temporary files
always disappear as soon as a process exits. To circumvent this
difficulty, the contents of the unlinked temporary files are copied
into the restart file during checkpointing; the unlinked temporary
files are then rebuilt from the saved copy during recovery. The
parameter MAX_UNLINKED_BYTES (defined in syslparam.h)
defines the maximum amount (the number of bytes) of unlinked
file data that can be placed in the restart file; this prevents restart
files from becoming too large.

The restart file structure is defined in the include file
syslrestartfil.h. The include file sys/restart.h contains the
definitions for the restart specification flags, which are used in the
chkpnt(2) and restart(2) system calls.

CRAY PROPRIETARY 113

· Recovery

114

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

As shown in figure 13, a restart file is divided into several
sections.

Header
I-node descriptors

. File table descriPtors
File lock descriptors

I/O header descriptors
I/O request descriptors

Pipe and unlinked file data
Tar~et process ima~es

Figure 13. Restart file structure

The sections contain the following information:

Header The first section of a restart file contains information
describing the contents of the restart file. Fields in the
header define the type of entity contained in the restart
file (for example, a process or job) and the number of
various object descriptions appearing in the file (for
example, the number of i-node, file table, file lock, I/O
header, and I/O request descriptors)~ Other
information. present· in the header includes the number
of processes and multitasking groups defined in the
restart file and the characteristics of any original
controlling tty connection.

The format of the header section is described by the
reshdr structure in syslrestartfil.h.

I-node descriptors
This section of a restart file contains descriptions of
each file in use by the checkpointed processes. Each
entry in this section contains the information needed to
recover the file that it describes (for example, the file's
mount device, file type, owner ID, user ID, group ID,
i-node number (i-number), and i-node generation
number). If the i-node describes a pipe, its entry in

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Recovery

SP-2023 5.0

this section also contains a pointer to the pipe data in
the pipe and unlinked file data section of the restart file
(as a byte offset relative to the start of this section).

The format of the i-node descriptor section is described
by the resinodesc structure in syslrestartfil.h.

File table descriptors
This section of a restart file contains a descriptor for
each open file in use by the checkpointed processes.
A file table descriptor completely describes a file table
entry in use by one or more of the checkpointed
processes. This infonnation includes the file table
flags (for example, read, write, or append), the index
of the i-node descriptor for the file (this is a pointer to
the corresponding i-node data, stored as an index
relative to the beginning of the i-node data section of
the restart file), and the current file position (the byte
offset from the beginning of the file).

The fonnat of the file table descriptor section is
described by the resfildesc structure in sys/restartfil.h.

File lock descriptors
This section contains a descriptor for file locks in use
by the checkpointed processes. The descriptor
contains the i-node description index (the index of the
i-node to which the lock was applied) and the file lock,
which is a description of the original lock.

The format of the file lock descriptor section is
described by the resflockdesc structure in
sys/restartfil.h.

1/0 header descriptors
This section of the restart file contains the common 1/0
header structures (ioh structures) in use by the
checkpointed processes. A user-level 1/0 request may
be broken into smaller requests that each reference a
common I/O header. Each such coordinating structure
combines smaller 1/0 requests and has a corresponding
descriptor in this section of a restart file.

CRAY PROPRIETARY 115

Recovery

116

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

The format of the I/O header descriptor section is
described· by the resiohdesc structure in the include
file sys/restartfil.h.

I/O request descriptors
This section of the restart file contains a descriptor for
each user-level I/O request in use by the checkpointed
processes. Each I/O request descriptor contains the
information necessary to restore the associated I/O
request. This information includes the index of the
i-node descriptor describing the file for which the I/O
request is taking place, the index of the I/O header
coordinating the request, and a description of the saved
I/O request. Multiple I/O request descriptors can
reference the same I/O header.

The format of the I/O request descriptor section is
described by the resiodesc structure in sys/restartfil.h.

Pipe and unlinked file data
This section of the restart file contains the data present
in pipes and unlinked temporary files that are
referenced by the checkpointed process.

The data in this section is not in a predetermined
format. The size of this section is recorded in the
rh_Dobjdata field in the header section of the restart
file.

Target process images
This section of the restart file contains the images of
the target process set. Every multitasking group that
has been checkpointed into the restart file appears here.
(Note that a single process is considered a degenerate
form of a multitasking group; see "Multitasking," page
97, for more information.)

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Recovery

The fonnat of a single multitasking group description
in this section is as follows:

Process (proc) structures for all processes
in the multitasking group, oldest process
first

User (user) structures for all processes in
the multitasking group, oldest process first

User common (ucomm) structure for the
multitaskin

If necessary, the system rounds up to the next sector
boundary between each set of entries in a multitasking
group section.

The number of multitasking group images is recorded
in the rh_nmtasks field in the header section of the
restart file.

The checkpoint algorithm

SP-2023 5.0

The chkpnt(2) system call is used to checkpoint a target process
set. It locates and freezes the target process set, then writes the
restart file, so that the target process set can be recovered later
with the restart(2) system call.

There are three phases of a chkpnt system call: locating the target
process set, freezing the target process set, and writing the restart
file. These three phases are described in the following
subsections.

CRAY PROPRIETARY 117

Recovery UNICOS Internal Reference Manual for CRAY-2 Computer Systems

Phase 1: Locating the target process set

The first phase of checkpointing consists of the following
operations:

1. Locating the target process set

2. Performing ownership checks on the target process set

3. Checking for zombie processes

These operations are described in the following subsections.

Locating the target process set

Performing ownership checks

118

The target process set is identified by category and id arguments
to the chkpnt(2) system call. category is either C_PROC or
C_JOB, . indicating that a process or a job, respectively, should be
checkpointed. The id argument identifies the PID of the. process
or JID of the job, as appropriate.

When chkpnt is invoked to checkpoint a specific process, it also
checkpoints all of the sibling processes in the multitasking group
associated with that process. This is done because any restart
operation is meaningful only if all processes within a multitasking·
group are also recovered upon restart.

After the target process set is located, chkpnt checks the process
ownership to ensure that the caller owns the processes that are to
be checkpointed. (Of course, the super user can checkpoint
processes or jobs owned by other users.)

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Recovery

Checking for zombie processes

A final check is made to ensure that the target process set
contains at least one active (nonzombie) process. If all of the
targets are zombie (exiting) processes, the checkpoint operation
fails, because it is useless to checkpoint an entire set of processes
that have finished execution. However, when a job is
checkpointed, any zombie processes present in the job must be
included in the checkpoint, because the parent process will likely
issue a wait(2) system call to retrieve the status of the zombie
child process.

Phase 2: Freezing the target processes

SP-2023 5.0

The second phase of chkpnt is concerned with freezing the target
process set. The system cannot copy the processes' text and data
into the restart file until this is done, because the processes might
change state while the copy is being made.

A process may be frozen quickly or slowly. The determining
factors are as follows:

• If the process is not executing a system call, it is frozen
quickly. If the process is connected to a CPU executing user
code, the CPU is immediately yanked away. The P _FROZE
flag in the process structure and the PC_FREEZE flag in the
process common (pcomm) area are set so that the process is
blocked from further execution.

• If the process is executing a system call, but is sleeping at an
interruptible priority, it is also frozen quickly. The process is
blocked from execution as in the first case.

• If the target process is executing a system call and is sleeping at
a non-interruptible priority, a further check must be made. The
P _RW AIT flag in the process structure is checked; if it is set,
the process is frozen quickly as in the first two cases. If the
flag is not set, the process is frozen slowly; the PC_FREEZE
flag in the process structure tells the process that when its

CRAY PROPRIETARY 119

Recovery UNICOS Internal Reference Manualfor CRAY-2 Computer Systems

system call work is done, it should block itself from further
execution and wake up the checkpointing process when it has
done so. The checkpointing process then waits for this to
occur.

In practice, all of the processes that cannot be immediately frozen
are told to block themselves when their critical work is complete,
before chkpnt does any waiting. A second loop in the algorithm
then waits for all of the processes not yet blocked to block
themselves.

When all of the processes are finally blocked, the checkpointing
process waits for all fast I/O operations (for example, disk
operations) associated with the target processes to complete (the
pc_fastiocnt field in the pcomm area is used to keep track of
outstanding fast I/O operations). All slow I/O operations are
recorded in the restart file.

When all fast. I/O is complete,. all· of the processes in the. target,
process set are completely· frozen.

Phase 3: Writing the restart file

120

In the third phase of checkpointing, all state information. that is
necessary in order to recover the target process set is written to
the restart file. The system examines each process, gathering
infonnation about file i-node, file table, and pipe usage. During
this examination, checks are made to see that none of the
processes is using any irrecoverable resources. (If one or more is,
the checkpoint operation is terminated.)

A check is also made at this point for any irrecoverable situations.
The system cannot checkpoint processes with pipes going outside
the target process set, processes with open socket connections, or
processes with more than the system-defined amount of open
unlinked temporary file data (default of 1 Mbyte in the released
system).

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 CompuJer Systems Recovery

SP-2023 5.0

The restart file is written as follows:

1. The system writes the restart file header in the fonnat
described in "Restart file structure," page 113. The header
contains all of the resource usage counts, the description of
any associated terminal connection characteristics, and job
,resource consumption statistics (if an entire job is being
checkpointed).

2. The system writes each section of the restart file in sequential
order. The system maintains the appropriate i-node, file table,
and I/O header descriptor indices, in order to correctly record
the dependency relationships of the descriptors in the later
descriptor sections. For example, when the file table
descriptors section is written, the system uses the mapping (of
the i-node and file table entries to the index of the
corresponding i-node descriptor in the restart file) that was
built when the i-node descriptors section was written.

3. The system writes the target process images as the last section
of the restart file. For each multitasking group, the system
loops over all of the processes, from oldest to youngest,
writing out their process and user structures in the order
described in "Restart file structure," page 113.

A single ucomm structure is then written for the multitasking
group. The ucomm structure is changed slightly when it is
written in the restart file; all file and i-node pointers are recast
as the integer indices of the corresponding file and i~node
descriptors.

After the ucomm structure is written, the system writes the
multitasking group's execution image in the restart file.

When all of the multitasking group information has been written
to the restart file, the restart file is complete. If the
CHKPNT _KILL flag was specified in the call to chkpnt, all of
the checkpointed processes are killed. Otherwise, all flags
blocking the execution of the checkpointed processes are cleared,
and the processes resume execution.

CRAY PROPRIETARY 121

Recovery UNICOS Internal Reference Manual for CRAY-2 Computer Systems

The recovery algorithm

The restart(2) system call restores the processes described in a
restart file to their saved execution state. The recovery process
has two distinct phases: initial restoration and completed
restoration. These phases are described in the following
"Subsections.

Phase 1: The initial restoration

Reading in the header

Creating the RPP

The first phase of recovery consists of the following operations:

1. Reading the header section of the restart file

2. Creating a restart prototype process (RPP) for the oldest
process of each multitasking group

3. Creating an RPP for the remaining processes in each
multitasking group

4. Partially recovering each process

These operations are described in the following subsections.

The recovery operation begins by opening the restart file and
reading in the header section. Sanity checks are conducted on the
header to detect corrupt restart files. If all checks are passed, the
information in the header is used to compute the byte offset of the
descriptor sections in the rest of the restart file.

The system reads in the process table entry (proc structure) of the
oldest process in the restart file. The system executes the kernel
fork routine, doforkO, to create an RPP for this first process.

~

122 CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Recovery

This fork operation is unusual for two reasons: the first RPP is of
zero size, because its text and data size are not known at this
point (they are later read from the restart file); and the first RPP
has the same PID and porn the original process had when it was
checkpointed. (If any of the ID values is already in use, the
recovery operation fails.)

The process that started restart then goes to sleep until the first
phase is completed. The first RPP checks to see if an entire job
is being recovered. If this is the case, the first RPP places itself
into a new job, using the original JID. (As with the other ID
values, if this JID is in use, the restart fails.)

Creating RP Ps for other processes

The first RPP process reads through the remainder of the restart
file. It uses dofork() to create an RPP for the oldest process of
each multitasking group (as before, ID values are preserved, and
the processes are of zero size).

Each of these RPPs calls the kernel routine resmtask() (in
os/restart.c) to restore the other processes in its multitasking
group and to restore the user common (ucomm) area for the
multitasking group. The first RPP also calls this common routine
to restore its multitasking group contents.

Partially recovering each process

SP-2023 5.0

When RPPs for each process in the restart file have been created,
each RPP recovers its own user structure from the restart file.
Then the oldest RPP for each multitasking group restores the
infonnation common to the entire multitasking group. This p~
of the recovery is quite intricate, because it involves the
restoration of all of the i-node and file table entries in use by the
multitasking group, plus the possible reconnection to a controlling
tty if the recovered multitasking group had an original tty
connection. Recovering the i-node and file table entries requires
some care, because the needed i-node or file table entry may have

CRAY PROPRIETARY 123

Recovery UNICOS Internal Reference Manual for CRAY-2 Computer Systems

already been recovered by another related multitasking group that
has already completed some portion of its recovery. To prevent
duplicate recoveries, tables are maintained internally to keep track
of i-node and file table references already restored.

The recovery of i-nodes must also be done carefully. Many
integrity checks are done to ensure that the recovered i-node truly
describes the file referenced by the processes being recovered. If
the file has been changed, the restart operation must fail, unless
the RESTART_FORCE flag was specified in the options
argument to the restart system call.

The recovery of pipes is also complicated, because data present in
the pipe at checkpoint time needs to be restored. The first RPP to
recover a file table entry that refers to a pipe i-node is responsible
for writing the data into the pipe. Modifications made to the pipe
driver allow this activity to occur even when no other process has
the pipe open.

After the RPP recovers i-node and pipe data, it restores its own
user structure, expands the multitasking group to its original size,
and then recovers the multitasking group text and data from the
restart file. .

Phase 2: Completing the restoration

124

The RPPs cannot completely restore themselves, so the process
that originally called restart handles the second phase of the
recovery. It performs the following operations:

1. Reads all the file lock descriptors from the restart file. For
each file lock, recovery information is placed at a fixed
address, and the RPP that originally owned the lock is
awakened to restore its own file lock with the internal file
locking system call.

2. Reads all the I/O request descriptors and I/O header
descriptors from the restart file and reissues all I/O requests
that were outstanding when the processes were checkpointed.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manualfor CRAY-2 Computer Systems Recovery

SP-2023 5.0

3. Notifies all recovered processes when the I/O recovery is
complete; these processes go to sleep again after advancing to
the next state-change wait loop.

4. Reads through the multitasking group descriptions of the
restart file to restore all process and job table information.
Any terminal connection characteristics are also restored at
this time.

5. Clears the kernel flag (the PC_RSTART flag in the pcomm
area) for each recovered process; these are the flags that have
kept the RPPs from being seen by the rest of the system.
(The RPPs are now real processes.)

The recovered processes are then awakened; each process does
some final restorative work (resetting the system call arguments
and timing statistics) before reentering the system call thread 'of
the kernel. Each process either restarts the system call that it was
in when originally checkpointed or returns to the execution of the
recovered user program.

CRAY PROPRIETARY 125

I/O Management

SP-2023 5.0

UNICOS I/O

This section describes UNICOS I/O on CRA Y-2 systems. It
covers buffered and raw I/O, synchronous and asynchronous I/O,
and the reada(2) and writea(2) system calls.

Buffered I/O, also called block I/O, is the default fonn of
UNICOS I/O. With a buffered I/O transaction, data is moved
through system buffers between the device and the user's buffer.
Raw I/O is available by specifying the O_RA W bit to the open(2)
system call. With a raw I/O transaction, data is moved directly
between the user's buffer and the specified I/O device. When raw
I/O is used, the user process is locked in memory for the duration
of the operation (that is, the process cannot be swapped).

With synchronous I/O, the calling process sleeps until the
requested data is available from the device. Asynchronous I/O
returns control to the calling process after issuing the I/O request.
Notice of completion is through an I/O status word and an
optional signal.

The reada(2) and writea(2) system calls were added to UNICOS
to support asynchronous I/O. The reada(2) system call performs
an asynchronous read operation from a file; the writea(2) system
call perfonns an asynchronous write operation from' a file.

The file position for the read or write operation is always the
current position at the time of the reada or writea call. At that
time, the file's position is incremented by nbytes. In this way,
reada, writea, and Iseek(2) operations can be interspersed, and
the file position is incremented naturally.

In most cases, it is undesirable for any I/O completions to go
unnoticed. To ensure that this does not happen, the following
must be taken into account. All outstanding I/O operations must
have their own status words so that the user program can tell

CRAY PROPRIETARY 127

UNICOS I/O

128

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

which have completed. One or more signal numbers can be used
for I/O completions, but each signal should have its own handling
routine. When an I/O completion handler is entered, the status
words under its control should be scanned for completed I/O
operations. As the status words are processed, they should be
zeroed. At the end of I/O completion handling, the status words
should be rescanned for newly completed I/O operations. If more
are found, control should loop back so they are also processed.
Otherwise, the handler will be exited with a SCTL_RET action
(with the sigctl(2) system call). UNICOS then checks the last
completion status word to make sure it was serviced, and, if it is
still nonzero (that is, not serviced), the signal handling routine is
reentered.

CRAY PROPRIETARY SP-2023 5.0

Foreground striping

SP-2023 5.0

Disk Striping

This section discusses foreground striping, which is also called
disk striping, and background striping.

Foreground striping refers to the practice of combining two or
more physical disk devices for the purpose of increasing the disk
transfer rate.

A striped disk device, also known as a stripe group, is comprised.
of from 2 to 32 physical disk devices, also known as members,
logically tied together by the foreground processor (FP) and the
disk driver.

Track 1/0 to a striped device is done in units of striped tracks.
The size of a striped track is the size of one physical track times
the number of members of the stripe group. 1/0 of less than a
stripe track in size is done in the background disk driver, using
requests to the individual physical members of the stripe group.
Note that all drives in a stripe group must be of the same device
type.

A stripe group is defined by the hardware configuration file
cf/hconf.h. It has an entry in devblock in low common memory
(md/lowcm.s). (See "Foreground Processor and Kernel
Communication," page 33, for more information on devblock.) A
list of FP index numbers of the members of a stripe group make
up one entry of the stripeblk table defined in mdlIowcm.s. The
stripeblk is defined as a character array and is used by the stripe
disk driver, io/sdsk.c, for mapping non-stripe sized requests and
raw disk requests to the individual physical members of the stripe

CRAY PROPRIETARY 129

Disk Striping

130

UN/COS /nlernal Reference Manualfor CRAY-2 Computer Systems

group. Currently, the maximum allowable number of stripe
groups is 4. There can be no common members among the stripe
groups.

Foreground striping is most useful for swapping, but a foreground
striped file system can be built as long as a track buffer pool of
the appropriate stripe track size is selected in sys/param.h. See
the UNlCOS System Administrator's Guide for CRAY-2 Computer
Systems, publication SG-2019, for more information on
configuring foreground striped file systems.

A striped swap device or striped file system can use all or part of
the defined striped group. The device i-nodes determine the
starting and ending blocks for a given partition. The partitions
are identical for each member of the stripe group. Individual
members of a striped file group can contain non-striped file
systems. If this is done, the individual file systems should be
backup file systems or file systems that are not heavily used at the
same time as the stripe group.

The blocks in the first cylinder of a two-member DD-49 stripe
partition are numbered as· follows:

Member 0 1

Head o
1

0-41
84-125

42-83
125-167

7 546-588 630-671

A device i-node of a two-member DD-49 stripe partition that is
one striped cylinder in length, starting at cylinder 1, appears as
follows:

MO: character special (0/200) 4 32 672 672 42 8 2 0

The striped disk driver needs minor device numbers for
communication with the individual members of the stripe group.
These minor numbers are assigned consecutively. The minor
numbers in the above example would be 201 for member 0 and
202 for member 1.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Disk Striping

Background striping

SP-2023 5.0

Background striping refers to making consecutive allocations for a
single file on consecutive partitions of a cluster.

A disk cluster allows several disk partitions to be mounted
together on a single mount point as one file system. The
partitions need not be the same size. Files can overflow from one
partition to another in the same cluster.

In file systems on many UNIX systems, disk partition sizes are
fixed in the driver with constants and are selected with the three
low-order bits of the minor device number. This limits the
system to a small number of fixed partition sizes. If a disk has a
bad sector, partitions must be made to skip it. With this
restriction, it is quite easy to run out of partitions and difficult to
change them. Also, each partition is an independent file system,
so files are limited in size.

In UNICOS, major and minor device numbers do not specify a
partition's characteristics (controller, drive, and partition) but
simply a logical partition number. The information about the
partition (type, channel, controller, unit, start, and length) is stored
in the i-node of the special file representing the device. Bad
blocks are handled independently of partitioning.

When a file is created, the cbits (cluster bits) field allows the user
to specify which partition or partitions of the cluster should be
used. Each bit of this field (starting with 2"0) corresponds to a
disk partition in the cluster; the order of the partitions is the order
in which they were mounted. If the user specifies 00 11 for one
file and 1100 for another, each is striped two drives wide on
different drives. Bits beyond the number of drives in the cluster
are ignored, so full-width striping can be easily specified with -1
(all bits set). If cbits is 0, the system chooses a partition.

In UNICOS, pointers within the file system were expanded to
allow clusters. I-node pointers have a device field and a i-node
number field; block pointers have a device field and a block
number field. Each entry in the c2mount table corresponds to a
disk partition. The partitions are linked together for easy
conversion of cbits to partitions during track allocation.

CRAY PROPRIETARY 131

Miscellaneous Information

Security

This section describes the kernel-level include files and routines
for the UNICOS security feature. It covers the following topics:

• Changes to the UNICOS kernel

• Additional and changed include files

• Security system calls

• Additional and changed kernel routines

For infotmation on the user-level security features, see the
UN/COS Security Administration Reference Manual, publication
SR-2062. For information on security definitions and
requirements, see the following publications:

UNIX System Security
Patrick H. Wood and Stephen G. Kochan
Hayden Book Company, 1985.

Department of Defense Trusted
Computer System Evaluation Criteria
CSC-STD-OO 1-83
Library No. S225,711
15 August 1983

Changes to the UNICOS kernel

SP-2023 5.0

The security kernel executes discretionary access controls and
mandatory access controls required for implementation of the
UNICOS security policy. This security kernel resides completely
within the UNiCOS kernel. All discretionary access and
mandatory access controls for file objects are in the routine

CRAY PROPRIETARY 133

· Security

134

UNICOS InJernal Reference Manual for CRAY-2 Computer Systems I

c2acc~ssO in the module utslfslc2/c2subr.c; all mandatory access
controls for TCP/IP objects (sockets) reside in the routine
net_accessO in the module tcp/kerDel/sys/uipc_sysca.c.

The security system calls establish and change the user's security
policy, alter object markings (labels and compartments), and
maintain the access control list (ACL) assignments. These system
calls are implemented in the kernel; their kernel entry points are
in the module utsloslsecure.c. Other new security functions, such
as ACL searches and console access constraints, are implemented
as single routines and are also in secure.c.

Other security policy software, such as that for permission checks,
directory security hierarchical control, file creation labels, file
system mount and unmount operations, file mode and owner
changes, and file removal, is implemented in the UNICOS kernel
function that controls the relevant operation.

The security software is activated by setting the SECURE_SYS
and SECURE_INC parameters in the include file sys/param.h to
1. This directs the compiler to compile the security code bounded
by the directives #if SECURE_SYS and #eDdif SECURE_SYS.

The design philosophy for the UNICOS security feature is to
maintain UNICOS usability and to preserve the UNICOS
operating system, which runs on all Cray systems. The security
extension to UNICOS retains the security mechanisms and user
interfaces present in the UNIX operating system. Modifications
and extensions to UNICOS have been confined, for the most part,
to small kernel functions; access controls for all processes are
centralized and exercised consistently with the existing operating
system software.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Secmity

Include files

SP-2023 5.0

The following include files were added to support the UNICOS
secuui~ feature:

File Description

syslacl.h Defines the contents (format) for an access
control list

syslnaJ.h Defines the contents for a network authorization
list (NAL)

syslsecparm.h Defines the secuuity parameters for a secure
system

syslsecstat.h Defines status format for security label
information (returned by secstat(2»

syslslog.h Defines the structure of the security log pseudo
device, /dev/slog (see slog(4D) for more
information)

syslslrec.h Defines the security log entry formats (see
slrec(4F) for more information)

syslusrv.h Defines the format of the usrv structure, which
contains the user's security parameters.

The following include files contain modifications to support the
security feature:

File

syslfilsys.h

syslino.h

syslinode.h

syslproc.h

Description

Includes the file system's lower security level,
upper security level, and the SECURE magic
number.

Includes secuuity level and compartment label
information and access control list disk address
for the in-core i-node.

Includes the security level and compartment label
information and access control list disk address
for the disk i-node.

Includes active security level and active
compartments for a process.

CRAY PROPRIETARY 135

Security UNICOS Internal Reference Manual for CRAY-2 Computer Systems

Security system calls

136

File Description

sys/unistd.h Defines the system configuration request
SC_CRAY_SECURE_SYS. When this request
is used as the argument for the sysconf(2) system
call, the value 1 is returned if the system was
built as a secure system; otherwise, the value 0 is
returned.

sys/user.h Includes a user's lower security level, upper
security level, authorized compartments, and
permissions. Also defines the user's maximum
security level, active security level, active
compartments, permissions, and the security level
of open file(s); these are needed in the ucomm
area to validate file access and other system
services.

This subsection describes the system calls added to UNICOS in
order to implement the security feature. See the UN/COS
Security Administration Reference Manual, publication SR-2062,
and Volume 4: UN/COS System Calls Reference Manual,
publication SR -2012, for information on the use of these system
calls.

These system calls are defined as follows:

System call

fsecstat(2)

getfacl(2)

getfcmp(2)

getflvI(2)

getsysI(2)

Description

Gets file's security levels and compartments
(usage: general user)

Gets access control list assigned to a file (usage:
file owner or security administrator)

Gets compartments of a named file

Gets security level of a named file

Gets system security levels (usage: general user)

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

System call

getucmp(2)

getulvl(2)

getusrv(2)

rmfacl(2)

secstat(2)

setfacl(2)

setfcmp(2)

setflvl(2)

setsysl(2)

settfm(2)

setucmp(2)

setulvl(2)

setusrv(2)

slgentry(2)

Security

Description

Gets user's active compartments

Gets user's security level and compartments
(usage: general user)

Gets user's minimum/maximum security levels,
valid compartments, and permissions (usage:
users and subsystems)

Removes access control list assigned to a file
(usage: file owner or security administrator)

Gets file's security levels and compartments
(usage: general user)

Assigns access control list to a file (usage: file
owner or security administrator)

Sets file's compartments (usage: security
administrator)

Sets file's security level (usage: security
administrator)

Sets system security levels (usage: security
administrator)

Sets the trusted facility management (TFM)
mask (usage: user with TFM privileges)

Sets user's compartments (usage: general user)

Sets user's security level (usage: general user)

Sets user security level, compartments, and
permissions (usage: trusted subject process)

Makes security log entry (usage: trusted
processes)

SP-2023 5.0 CRAY PROPRIETARY 137

Security

Kernel routines

138

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

The following kernel modules and routines have been added to
support the security feature:

Module

oslsecure.c

Description

This module contains all system calls and
supportive functions for the security feature.
Some important routines are as follows:

aclchkO
Performs discretionary access checks
against an access control list.

secure_console()
Verifies that the system administrator or
security administrator has logged in at the
designated administration console (defined
in syslsecparm.h as
SECURE_SYSTEM_CONSOLE and
SYSTEM_ADMIN_CONSOLE) and that
the system operator has logged in at the
designated operator's console (defined in
sys/secparm.h as
SECURE_OPERA TOR_CONSOLE).

secure_filsys()
Verifies that a file system to be mounted
has lower and upper security levels that fit
within the security window of the system.

secure_labelO
Compares the user's active security level (
against the file's security level and checks

os/slogext.c

that the file's compartments are equal to or
a subset of the user's active compartments.

This module contains security log functions
available to users and the system. These
routines include slginit(), slgentry(), slggo(),
slgeoj(), slgtchgO, slgcdr(), slgput(), slgcdrO,
slgput(), and slglogn().

~

CRAY PROPRIETARY SP-2023 5.0 4

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Security

SP-2023 5.0

The following kernel modules have been modified to support the
security feature:

Module Description

fsfc2/c2alloc.c The routine c2allocO ensures that the file system
has the SECURE label and that the user's

fsf c2/c2iget.c

active security level and compartments are
acceptable for those authorized for the file
system. c2alloc() also assigns the user's active
security level and compartments to the file's
i-node.

The routine c2iput() returns the ACL disk block
to the available pool.

The routine c2ireadO reads i-node security
information from disk memory.

fsfc2/c2nami.c The routine c2nameiO performs the following:

• Ensures that the user has permission
(PERMIT_SUIDGID) to link a setuid or
setgid file

• Ensures that the security levels of linked files
are equal

• Ensures that the security level of a new
directory is equal to or greater than the
security level of its parent directory

• Ensures that the user's active security level
and compartments are equal to the security
level and compartments of the directory
to be removed

• Ensures that the user's active security level .
and compartments are equal to the security
level and compartments of the file
to be removed

The routine c2setattrO checks the user's active
security level and compartments, ensures that
the user has permission (pERMIT _SUIDGID)
to change the mode of a setuid/setgid file, and
disallows a change-owner request for a
setuid/setgid file when the user does not have
the appropriate permission
(pERMIT_SUIDGID).

CRAY PROPRIETARY 139

Security UNICOS Internal Reference Manual for CRAY-2 CompuJer Systems

140

Module Description

fs/c2/c2subr.c The routine c2accessO applies discretionary and
mandatory access controls. This is the major
security module controlling file access.

fs/c2/c2sys3.c When.a secure file system is mounted, the
routine c2mount() checks to ensure that its
security level fits within the security-level range
set for the system.

os/chkpnt.c The routine chkpntO ensures that only a trusted
subject process can checkpoint an entire job. It
also ensures that the calling process'
compartments and security level are a superset
of those of the target process set being
checkpointed. It gives the restart file the same
security level and compartments as the original
processes.

os/exit.c

os/main.c

os/restart.c

os/sys2.c

The routine slgeojO makes end-of-job entries in
the security log (/dev/slog).

The mainO routine contains instructions to set
the system's lower and upper security levels. It
also sets the trusted subject user validation
information: lower and upper security levels;
active security level; active compartments;
authorized compartments; and permissions.
main() also initializes the security log
(/dev/slog) and the system console.

The routine restart() sets process security level
and compartments upon recovery of a
checkpointed process.

The routine copen() forces the mode to
APPEND for a write-upward open request (a
write open request of a file at a security level
higher than that of the user who has write-up
pennission). If a user without write-up
pennission makes a similar write request, this
request fails. copen() also checks for super-user
and security-administrator privileges when
creating a restart file.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Security

SP-2023 5.0

Module Description

os/sys4.c

os/sysS.c

os/subr.c

The routine linkO ensures that the user's active
security level and compartments are equal to the
file's security level and compartments for link
requests.

The routine setthetimeO makes a security log
entry.

The routine chmod() ensures that the user has
permission (pERMIT_SUIDGID) to set a file's
mode to setuidlsetgid.

The routine chdir() tracks the security path for
use in the security log.

The routine umaskO ensures that the user has
permission (pERMIT _SUIDGID) to set the
mode mask for a setuidlsetgid file.

The routine utimeO checks that the user's active
security level is equal to the file's security level
and that the user's active compartments are a
proper subset of the file's compartments before
completing the utime(2) request.

The routine sysconf() tests for the secure state
of UNICOS (SC_CRAY _SECURE_SYS).

The routines spathO and upath() contain the
security path tracking code; these routines are
used if security path tracking is enabled. This
code saves the relative path name being
referenced in u->u_ vpath for use by the
security log processing routines.

CRAY PROPRIETARY 141

Kernel Stack

This section describes the kernel stack conventions for CRAY-2
systems. It covers the following topics:

• Kernel stack structure

• The errregs area

The current stack frame is in local memory and the previous
stack frame is in common memory. Therefore, in a dump of the
kernel stack, all stack frames are complete, except for the current
stack frame.

When a kernel error exit is processed, information about the
current stack frame is copied from local memory to a common
memory area at errregs. errregs is a table defined in
md/error.s.

Kernel stack structure

SP-2023 5.0

The kernel stack consists of a series of stack frames, one for each
function on the stack.

Figure 14 shows the structure of a kernel stack frame.

CRAY PROPRIETARY 143

Kernel Stack

144

UNICOS Internal Reference Manual for CRAY-2 Computer Systems I

Value of register SO

Value of register AO

Frame package Previous stack frame base address

$fp+O ($fpidnt)

$fp+ 1 ($fprtrn)

Sfp+2 (Sfpprev)

Sfp+3 (Sfpbase)

Sfp+4 (Sfptop)

Sfp+ 5 (Sfpsegl)

Sfp+6

information Stack frame base address

($fp) Top of stack address

Segment limit

Caller's FPSIZE + LMSIZE

Function name $fp+ 7 (Sfpname)

Saved local memory data

Saved local for this function

memory
($Jm) (register arguments

and variables)

Auto variables Nonregister auto variables Register A2 points here

and compiler· temps

Arguments Arguments for this function Register A6 points here

Top of Stack -->

Figure 14. Kernel stack frame

All areas except $fp are optional; they are included only if
necessary.

The frame package information area and the saved local memory
area are not valid for the current stack frame, because information
for the current stack frame is in local memory at $fp and $Im,
respectively. (All areas are valid for the previous stack frame.)
The frame package information area and the saved local memory
area for a function are not written to the stack until another
function is called. Specifically, the save operation is performed
by the centry code of the process being called.

The following subsections describe the elements in the kernel
stack frame.

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Kernel Stack

Frame package information ($fp)

SP-2023 5.0

The fields in the stack frame are described as follows:

Field Description

$fp+O ($fpidnt) Contains the value of register SO in the
following format:

13 bits 19 bits 32 bits
I arg count line number entry address

These fields have the following meanings:

arg_count Number of arguments for
the function

line_number Line number of the
beginning of the function

entry _address Entry-point address of
the function

$fp+ 1 ($fprtrn) Contains the value of register AO; this is
the return address of the calling process.

$fp+2 ($fpprev) Contains the previous stack frame base
address (caller's stack frame base address).

$fp+3 ($fpbase) Contains the current stack frame base
address.

$fp+4 ($fptop) Contains the top of the stack address. This
is the stack frame base address for the next
stack frame.

$fp+5 ($fpsegl) Contains the'segment limit (the maximum
size of the stack segment)

$fp+6 Calling routine's frame package
information area; contains the size of the
frame package for the associated function

$fp+ 7 ($fpname) Contains the name of the function.

Before a return from a function call,
$fp+ 7 is changed to It --name".

CRAY PROPRIETARY 145

Kernel Stack

Saved local memory ($Im)

Auto variables

Arguments

The errregs area

146

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

This area is allocated in the following order:

1. Register-resident arguments, if any

2. Register-resident auto variables

3. Compiler-allocated scratch registers

Any register arguments or register variables, along with some
stack variables (if possible), are stored in local memory.

This area contains sequentially allocated memory locations for the
associated function's auto variables that are not register resident.
It also contains the compiler's temporary variables.

This area contains sequentially allocated memory locations for the
arguments to the associated function. Register-resident arguments
are also allocated here, but are not used, because they are in local
memory. The first argument takes the first word, the second
argument takes the second word, and so on.

When the kernel processes an error exit, the first thing it does is
save the following items in the common memory table errregs:

• Frame package information
• Local memory
• A registers
• S registers
• Two of the vector registers

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Kernel Stack

SP-2023 5.0

errregs

There is an entry allocated in errregs for each CPU. Each entry
is 0321 words in length.

Figure 15 shows the format of this area. You can examine
errregs for all four CPUs by using the crash(IM) utility with the
command od errregs 01504.

COMMON MEMORY

errregs+O

AO ... A7 (010 words)

SO ... S7 (010 words)

VM, VL, VO, VI (0202 words)

CPU A saved info Frame package info ($fp) (010 words)

Saved local memory ($Im) (067 words)

errregs+0321
CPU B saved info

errregs+064 3
CPU C saved info

errregs+O 1163
CPU D saved info

Figure 15. Fonnat of errregs area

CRAY PROPRIETARY 147

Trace Buffer

This section describes the trace buffer and provides other details
concerning operating system traces.

The trace buffer is a circular buffer that contains entries created
with the trace macro UTRA CEo Information in the trace buffer
is used in debugging the system; the crash(lM) directive traceb
prints trace buffer entries.

Format of trace buffer

SP-2023 5.0

The trace buffer is initialized (in mdltrace.s) to allO's. The
symbol etbegin marks the first entry in the trace buffer. A "next"
pointer (etindex) is used to point to the next available slot in the
buffer. After a trace entry is written in the buffer, etindex is
advanced to the next open entry. Buffer entries are reused often
on a busy system (on the order of several times every second).

The trace buffer is at address 02000 in common memory.

An entry in the trace buffer is 4 words in length; it has the
following format:

string CPU, RTclock Parameter_1

CRAY PROPRIETARY 149

Trace Buffer

150

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

The components of the entry have the following descriptions:

Component Description

string Word containing a descriptive string, supplied by
the programmer, that uniquely identifies the trace
entry. This is the parameter M in the UTRACE
macro call.

CPU CPU in which the process is running. This value
is 7 bits in length.

RTclock Real-time (RT) clock time. This value is 54 bits
in length.

Parameter _1 Word containing the first parameter; this value is
something the programmer considered to be
useful in debugging. This is the parameter X in
the UTRACE macro call.

Parameter _2 Word containing the second parameter; this value
is something the programmer considered to be
useful in debugging. This is the parameter Y in
the UTRACE macro call.

The following example shows some example entries in the trace
buffer. (This output was generated with the crash(lM) directive
traceb on a CRAY-2 system running UNICOS 5.0.2.)

String CPU RT Clock Parameter 1 Parameter 2

trap A 7270385104865 122 0636357
sleep A 7270385141073 0201500003162775 0636357
swtch A 7270385151791 0636357 0630377

resume A 7270385152313 0630377 0
resume2 A 7270385152860 02 0237720201
resume3 A 7270385165361 02 0237700200

trap-end A 7270385178190 0630377 056050000
trap B 7270385179354 19 061065.t

CRAY PROPRIETARY SP-2023 5.0 ~

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Trace Buffer

Trace control bitmask

The trace control bitmask, ostctri, is defined in the file cf/conf.c.
There is also a copy of the mask, called ostc, in local memory.
Traces are enabled by setting the appropriate bit in the trace
mask.

The trace bits T _CLOCK and T _LOCKS are off by default in
the released system. Enabling these traces significantly increases
the trace activity.

Note

The trace mask is determined by CRI and is set in the released
system. Although generating traces takes resources, this
information is considered important. Note that if a site turns off
existing traces, CRI may not be able to assist in debugging
dumps.

Trace type definitions

SP-2023 5.0

The trace type bits correspond with bits in the trace mask. They
are defined in the include file sys/sysmacros.h as follows:

1* ostctrl bits *1

#define T_CLOCK 00000000001
#define T_LOCKS 00000000002
#define T_MALLOC OOOOOOOOOO4
#define T_HY ()()()()()()()(10
#define T_DISK ()()()()()()()(O

#define T_SYSCALL ()()()()()()()(O

#define T_RDWR ()()()()()()()(100
#define T_BIO ()()()()()()()(200
#define T_SWTCH OOOOOOOO4OO
#define T_SLEEP 00000001000
#define T_IGET 00000002000

CRAY PROPRIETARY 151

Trace Buffer UNICOS Internal Reference Manualfor CRAY-2 Computer Systems

#define T _PROCS

#define T_INIT

#define T_CONS
#define T _EXEC

#define T _PIP

#define T_TTY

#define T _NET

#define T _SWAP

#define T _LSP

#define T_TS

()()()()()()()4000

00000o 1 0000

00000020000

00000040000 1* also known in inout.s * /
()()()()() 1 ()()()()()

()()()()()2()()()()()

()()()()()4()()()()()

0000 1 00000o
00002000000

00004000000
#define T_CHKPNT 00010000000
#define T_RESTART 00020000000
#define T_SL 00040000000 1* Super Link */
#define T_HSX 001()()()()()()()(1* HSX */
#define T _THREAD 00200000000 1* thread * /
#define T _UL 1RA
#define T _LSX

#define T _FREEZE

#define T _CPU

OO4OOOOOOOO 1* ultra net */
01000000000 1* lsx channel * /
02000000000

04000000000 1* cpu device * /

Trace entries in kernel code

152

Appendix A contains instructions for producing a list of all calls
to the trace macro UTRACE from current source code.

CRAY PROPRIETARY SP-2023 5.0

Appendix Section

Creating the list

Sorting the output

SP-2023 5.0

Appendix A:
Producing a List of Trace Entries

The following procedure outlines how to produce a list of trace
macro calls in the kernel source code.

First, create a data file consisting of all the trace macro calls, as
follows:

cd /usr/src/uts
grep -n UTRACE * /* /*.c > infile
grep -n UTRACE */*.c » infile

cd /usr/include/sys
grep -n UTRACE *.h » infile
grep -n UTRACE */*.h » infile

This file is sorted in order of modules; the subdirectories are in
the order fs, io, md, os, include/sys.

You may find it useful to have a list sorted on one of the fields in
the trace macro call. The following subsections present several
methods to do this.

CRAY PROPRIETARY 153

Appendix A

Sorting by trace type

Sorting by string

154

UNICOS Internal Reference Manualfor CRAY-2 CompuJer Systems

A list sorted on the trace type can be useful if you are considering
turning bits in the trace mask on or off. (See the disclaimer on
page 151, however, before changing the trace mask bits.) This
enables you to see all the trace macro calls that would be affected
by the change. To produce a list sorted by trace type, use the
following command:

sed , sr\(.*\)\(T_[A-Z]\)\(. *\)$/\2 \1 \2\3/' infile I sort -df

The output from this command appears as follows:

T_BIO io/mdsk.c:158: lITRACE(T_BIO, 'mdskstrO', (long)bp->b_flags«32I(long)bp,

T_BIO os/bio.c:593: lITRACE(T_BIO, 'grabbed',

T_BIO os/bio.c:600: UTRACE(T_BIO, 'getblk-s',

T_BIO os/bio.c:613: UTRACE(T_BIO, 'gb-dump',

T_BIO os/bio.c:627: lITRACE(T_BIO, 'getblk-r',

T_BIO os/bio.c:655: UTRACE(T_BIO, 'getblk-b',

T_BIO os/bio.c:696: UTRACE(T_BIO, 'getblk', (long)ioh«321(uint)bp, (long)dev«321

T_BIO os/bio.c:714: UTRACE(T_BIO, 'getpblks', &pfreelist, 0);

T_BIO os/bio.c:724: UTRACE(T_BIO. 'getpblk', bp, 0);

T_BIO os/bio.c:747: lITRACE(T_BIO, 'geteblk', bfl, bsize);

T _BIO os/bio.c:779: UTRACE(T _BID, 'geteblk', (long)ioh«321(uint)bp, ioh->io_husy);

T_BIO os/bio.c:794: lITRACE (T_BIO, 'breIse', bp, (long)bp->av_forw«32 I flags);

T_BIO os/bio.c:936: lITRACE(T_BIO, 'iomove',(long)bp->b_ioh«321(uint)bp,

Perhaps most useful of all is a list sorted on the string in the trace
macro call. This string appears in the trace buffer entry and
uniquely identifies the trace macro call, so it is useful for
debugging. The following command produces a list of these
strings in alphabetical order:

sed "sr\([A']*\),\([,,']*\),\(. *\)$/\2 \1 '\2'\3/" infile I sort -df

CRAY PROPRIETARY SP-2023 5.0

UNICOSlnternal Reference Manual for CRAY-2 Computer Systems Appendix A

SP-2023 5.0

The output from this command appears as follows:

aread oslbio.c: 152:

ATRACK io/ddsk.c:408:

UTRACE(T_RDWR, 'aread', ioh, (long)dev<<32Iblkno);

UTRACE(T_DISK, 'ATRACK', head, dp->atrack);

awrite oslbio.c:282: UTRACE(T_RDWR, 'awrite',(1ong)ioh«32, (long)dev«32Iblkno

badaddr md/machdep.c:307: UTRACE(T_THREAD, 'savee_th', 'badaddr', 0);

bdwrite oslbio.c:396: UTRACE(T_RDWR, 'bdwrite', (long)bp->b_ioh<<321(uint)bp,

binit oslbio.c:980: UTRACE(T_INIT, 'binit', 0, 0);

bmxdemop iolbrnxdem.c:51: UTRACE (T_TS, 'bmxdemop', 0, 0);

oslbio.c:252: UTRACE(T_RDWR, 'bread', dey, bUeno); bread

breIse

bwrite

c2iinit

c2iread

oslbio.c:794: UTRACE (T_BIO, 'breIse', bp, (long)bp->av_forw<<32 I flags);

oslbio.c:362: UTRACE(T _RDWR, 'bwrite', (long)bp->b_ioh«321(uint)bp,

fs/c2/c2iget.c:483: UTRACE(T_INIT. 'c2iinit', rootdev, swapdev);

fs/c2/c2iget.c:48: UTRACE(T_IGEf, 'c2iread'. ip. dey);

CRAY PROPRIETARY 155

Glossary

block

block special file

boot

buffer pool

CEA systems

SP-2023 5.0

Glossary

A logical term denoting an arbitrary amount of data; generally a
synonym for a disk hardware sector. A block is the smallest allocation
unit in a file system. It is the size of one physical disk sectort or 512
words (4096 bytes).

A special file that reads and writes a block device and buffers its data
through the kerners buffer cache. Its i-node contains the major and
minor device number of the logical disk it represents.

Block special files appear in Idev as follows (when the Is -I command
is used):

brw------- 1 root root Ot 0 Aug 25 1988 dsk/root

The act of starting the system. During an initial system boot (a slow
boot)t the SCC program loads the kernel image from the hard disk on
the system console. The term boot also refers to the osboot program
(used for afast boot) and the boot(2) system call.

A kernel cache of copies of disk blocks representing blocks on any
block device. TypicallYt these are the disk devices comprising the file
systems. The sync(2) system call flushes the cachet ensuring that the
file systems physically on disk are consistent. Also called a buffer
cache.

Abbreviation for CRA Y X-MP EA and CRA Y Y -MP systems.

CRAY PROPRIETARY 157

Glossary UN/COS Internal Reference Manualfor CRAY-2 Computer Systems

158

character special file A special file that reads and writes a character device and does not
buffer data through the kernel's buffer cache. Character special files
appear in Idev as follows (when the Is -I command is used):

child process

click

cluster

core file

CPU

current directory

CX/I systems

crw -w - -w - I operator operator I, 0 Apr 3 09:06 console

The i-node for a character special file contains the major and minor
device number of the device it represents.

A duplicate of the parent process created with the system call fork(2).
A child process inherits the environment of the parent process.
SIGCLD signals death of child to the parent process (see zombie).

In UNICOS, 512 words. The term click implies an area in memory;
the term block implies an area on disk.

A file system that consists of one or more physical disk partitions. A
file system descriptor file is used to represent a cluster externally; the
format of this file is defined by the rsdesc structure in the· include file
syslrslc2rsdesc.b. A cluster is represented internally in the c2mount
table.

A file to which an image of a process is written in response to various
errors. The core file may be used for post-mortem debugging of the
problem. (See core(4F) for information on core file format and
signal(2) for information on when a core file is written.)

Central processing unit.

Each process has one directory i-node in the inode table designated
(by the pointer uc_cdir) as its current directory. A process inherits its
initial current directory from its parent process. The current directory
may be changed with the cbdir(2) system call. All path names that do
not begin with a slash (/) are resolved from the current directory.

Abbreviation for CRAY-I and CRAY X-MP systems.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Glossary

SP-2023 5.0

daemon

Idev

directory

dynamic block

effective user ID
effective group ID

file

Any program that executes continually, waiting to respond to certain
events. One example is errdemon(lM), which collects error records
from Idev/errlog and puts them in lusr/adm/errfile (by default).

A directory that normally contains special files. Although special files
can exist at any point in the .file system, they are usually kept under
the Idev directory for administrative reasons.

A directory consists of the same components as a file (an i-node and
its associated data), except that its data consist of a series of directory
entries that are i-node numbers of files or other directories in the file
system. A directory contains at least two links (. and ••); these are
referred to, by convention, as dot and dot-dot, respectively. Dot refers
to the directory itself, and dot-dot refers to its parent directory.

The format for a file-system-independent directory is defined by the
dirent structure in the include file sysldirent.b.

A disk block containing information about the current state of the file
system. A dynamic block is pointed to by the super block and is
located near the center of the partition.

The dynamic block is defined by the structure dblock in the include
file sys/fslc2fi1sys.b. (See fs(4F) for more information.)

An active process has an effective user ID and an effective group
ID that are used to determine file access permissions. The effective
user ID and effective group ID are equal to the real user ID and real
group ID of the process, respectively, unless the process or one of its
ancestors evolved from a file that had the set-user-ID (setuid or suid)
bit or set-group-ID (setgid or sgid) bit set; see exec(2).

The data contained in a logically connected series of blocks (viewed
by the user as a simple string of bytes). Always identified by an
i-node, a file has one or more links in the file system that serve as the
terminating names in paths to the file. A file must have at least one
link; otherwise it has no name and does not exist because the system
deallocates an i-node with zero links.

CRAY PROPRIETARY 159

Glossary

160

UN/COS Internal Reference Manualfor CRAY-2 Computer Systems

file access permissions Read, write, and execute/search permissions on a file are granted to a
process if one or more of the following are true:

file descriptor

file name

file pointer

• The effective user ID of the process is super user.

• The effective user ID of the process matches the user ID of the file
owner, and the appropriate access bit of the owner portion (0700) of
the file mode is set

• The effective user ID of the process does not match the user ID of
the file owner, and the effective group ID of the process matches the
group of the file, and the appropriate access bit of the group portion
(0070) of the file mode is set.

• The effective user ID of the process does not match the user ID of
the file owner, and the effective group ID of the process does not
match the group ID of the file, and the appropriate access bit of the
other portion (0007) of the file mode is set.

Otherwise, the corresponding permissions are denied.

A small integer used to do I/O processing on a file. The value of a file
descriptor ranges from 0 to NOFlLE-l. (NOFILE is defined in the
include file sys/param.b.) A process may have no more than NOFILE
file descriptors open simultaneously. A file descriptor is returned by
system calls such as open(2) or pipe(2). Calls such as read(2),
write(2), ioctl(2), and close(2) use the file descriptor as an argument.

The kernel uses the file descriptor as an index into the per-user array
of open file pointers (the uc_ofile field in the user common (ucomm)
area); each entry in this array points to an entry in the file table,
which, in turn, points to an entry in the in ode table, which contains the
i-node. .

You may use names consisting of 1 to 14 characters (DIRSIZ, defined
in sys/param.b) to name an ordinary file, special file, or directory.
Select these characters from the set of all character values excluding \D
(null) and the ASCII code for I (slash). Using "*tI, "?", "[tI, or 'T' as
part of a file name is generally unwise because of the special meaning
attached to these characters by the shell (see sb(1». Although
permitted, using unprintable characters in file names is also
inadvisable.

The pointer (f_offset) defining the position at which reads and writes
are to start in an open file. The position is updated by the read(2) or
write(2) system call, based on the number of bytes transferred. The
pointer can also be set with the Iseek(2) system call.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Glossary

file system

FSS

GID

header file

home directory

include file

i-node

SP-2023 5.0

The file pointer is contained in the system file table, which is defined
in the include file syslfile.h.

A tree-structured collection of files and their associated data and
attributes.

File system switch.

Group identification number.

C language files that contain definitions used by more than one
program (such as compilers, assemblers, and system utilities), often for
data interchange between programs. System header files are called
include files; they are found in the directory lusr/include/sys.

The main directory of a user's account; the user's home directory
becomes the current directory of the user's shell when the user first
logs in to the system. The home directory is stored in the user
common (ucomm) area as an i-node pointer.

See "header file."

A file identifier, containing the file's state infonnation and pointers to
the data composing the contents of the file. .

There are two versions of every i-node, the disk i-node and, when the
i-node is in use, an in-core i-node. The disk i-node may have a
different fonnat for each type of file system supported; the disk i-node
for the C2FS file system is defined by the dinode structure in the
include file syslino.h. The fonnat of an in-core i-node is independent
of the file system type; it is defined by the inode structure in the
include file syslinode.h.

CRAY PROPRIETARY 161

Glossary

162

job ID

kernel mode

large file

link

major clock tick

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

The C2FS-dependent i-node is defined by the c2inode structure in the
include file fslsys/c2inode.b.

This term is written as "inode" in some source modules.

Each .active. process may be a member of a job that is identified by a
positive integer called the job ID (lID). This grouping allows limiting
of resource usage (that is, CPU and memory) for a set of related
processes.

The state a CPU is in when executing the kernel. Every CPU is
always executing on behalf of some user, either in user mode
(executing user code) or in kernel mode.

A file larger than 8 sectors, or a file created with O_BIG bit specified
in open(2).

A directory entry containing a file name and an i-node number; this
entry provides a mapping between the path name of the directory entry
and the file. A file may have more than one link. A link may not
map to an i-node on a different file system.

An interrupt that occurs once every second. Each major tick causes
the kernel to adjust the CPU scheduling priority of every process.

major device number Each regular and special file has a major device number; the kernel
uses this number to identify the device driver used when accessing the
device.

MCC

Major and minor device numbers for a special file are displayed when
the command Is -I is used on a special file.

The Maintenance Control Console (MCC) program; it is used for
system maintenance and debugging.

CRAY PROPRIETARY SP~2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Glossary

SP-2023 5.0

member

migrated file

A partition on a physical disk that is part of a striped group.

A file that has been moved, or archived, to a tape drive. Migrated files
appear as follows (when the Is -I command is used):

mrw - --- --- 1 jhb opsys 2, 0 Feb 14 1989 myfile

The permissions are the same as those for the file before it was
migrated.

minor clock tick A software-generated clock interrupt that occurs once every 1/100 of a
second. At each minor tick, each connected process is lowered in
priority according to CPU usage, and the run queue is checked for the
lowest-priority process to connect

minor device number Identifies a specific device in a major device group. Each special file
has a minor device number that is passed to the appropriate device
driver for the special file. The driver may use the value of the minor
device number as it chooses (typically as an index into a list of logical
devices).

mode bits

Major and minor device numbers for a special file are displayed when
the command Is -I is used on a special file.

The bits in an i-node that identify the access permissions for the file
and the file type (for instance, block special, character special, or
directory).

The following table shows the mode letters and octal permissions (the
latter are defined in syslinode.b):

CRAY PROPRIETARY 163

Glossary

164

UN/COS Internal Reference Manual for CRAY-2 Computer Systems

Mode Octal
Letter Permission Description

017()()()() File type as follows:
p 00 1 ()()()() FIFO special file (named pipe)
c 002()()()() Character special file
d 004()()()() Directory
b 006000O Block special file

01 Q()()()() Regular file
m 012()()()() Off-line file without data
s 014()()()() UNIX domain socket (TCP/IP only)
s or S 000400O Sets UID on execution
s or S 00020nO Sets GID on execution if n is 7, 5, 3, or 1
I 00020nO Enables mandatory file/record locking, if

the file is a regular file and n is 6,4, 2, or 0
0000777 Access permissions as follows:

r 000040O Allows read operations by file owner
w 0000200 Allows write operations by file owner
x 0000100 Allows execute operations (or search

operations if a directory) by file owner
---rwx--- 0000070 Allows read, write, and execute

operations (or searches) by group
------rwx ()()()()007 Allows read, write, and execute

mount

multitasking group

multiuser mode

NFS

operations (or searches) by· others

Properly-formatted file systems may be mounted on a directory.
Subsequent references to the directory are mapped to the root of the
newly mounted file system.

The mount table, which is defined by the mount structure in the
include file syslmount.h, is the bridge between the two in-core i-nodes.

A group of processes created via the tfork(2) system call; these
processes work together in one address space to achieve parallel
processing. Also called an m-group.

Any run level intended for time-shared use by many users. Multiuser
mode is traditionally associated with run-level 2. For more
information, see inittab(4F) and the UN/COS System Administrator's
Guide for CRAY-2 Computer Systems, publication SG-2019.

Network File System.

CRAY PROPRIETARY SP-2023 5.0 I

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Glossary

nice value

node

NQS

orphan process

parent process ID

partition

path name

pennission bits

SP-2023 5.0

A process's nice value (the value in the p_nice field of the proc
structure) is used in evaluating its priority; the nicer the process, the
slower it runs. The nice value is changed with the nice(2) system call.

A synonym for special file.

The Network Queueing System, which is a batch queueing subsystem
running under UNICOS.

A child process whose parent has exited before it has. The init
process inherits orphan processes.

A new process is created by a currently active process; see fork(2).
The parent process ID of a process is the process ID of its creator.

The parent process ID is often referred to as the ppid.

A contiguous set of blocks on a logical device. In file allocation,
partitions pennit the distribution of files across the physical devices of
a file system.

A sequence of branches in the file system tree that defines a route for
accessing a file. A path can start at the root or at the current directory.
The last segment of the path is one name for the file. A full path
name is one that starts with a slash character. A relative path name is
one that does not start with a slash character; it is interpreted as
starting in the current directory.

The bits in an i-node that control access to the file; a subset of the
i-node's mode bits. See "mode bits."

CRAY PROPRIETARY 165

Glossary

priorities

process group ID

process ID

pty

166

UNICOS Internal Reference Manual for CRAY-2 Computer Systems

The "rank" of a process in terms of execution. If a process' priority
(stored in the field p_pri) is less than PUSER, the priority is the level
at which a process sleeps. If a process' priority is greater than
PZERO, the sleep is interruptible; if the priority is less than or equal
to PZERO, the sleep is not interruptible.

Sleep priorities signify the event for which a process is waiting. The
. important system priorities are defined in sys/param.h.

Priorities greater than PZERO determine the order of execution for
running processes.

Each active process is a member of a process group that is identified
by a positive integer called the process group ID. (Generally, a
process group is the set of all processes controlled by a single
terminal; hence, the group leader is typically a user's login shell.) This
ID is the process ID of the group leader. This grouping permits the
signaling of related processes; see kill(2).

The process group ID is also referred to as the pgid; the field pc_pgrp
field in the process common (pcomm) area contains this value.

Each active process in the system is uniquely identified by a positive
integer called a process ID. The symbol MAXPID, which is defined
in the include file sys/param.h, defines this range as from 0 to 99999.

The process ID is also referred to as the pid.

Pseudo tty; a logical device that provides a path from networking
software to the processes associated with a user's interactive session.

The pty has two sides: a control, or master, side and a slave, or
subordinate, side. The user process in this connection is called the
slave side of the pty. Each user (for example, the telnetd daemon and
a shell) opens a different major device type but the same minor device
type, so each is sharing the same buffers but addressing a driver that
reads and writes the buffer as a mirror image of the other. The control
side typically communicates with a front-end terminal over a TCP/IP
socket or the HYPERchannel.

The special files in Idev that represent the pty pseudo-devices are
named, by convention, Idev/ptylnnn and Idev/ttypnnn.

CRAY PROPRIETARY SP-2023 5.0 I

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Glossary

SP-2023 5.0

real user ID Each user allowed on the system is identified by a positive integer
real group ID called a real user ID. Each user is also a member of a group.
simultaneous group ID The group is identified by a positive integer called the real group ID.

root

root directory

run level

see

script

An active process has a real user ID and real group ID that are set to
the real user ID and real group ID, respectively, of the user responsible
for the creation of the process.

Each user can belong to multiple groups simultaneously. The largest
number of groups to which a user can belong is NGROUPS (defined
as 64 in sys/param.h).

This word generally has four distinct meanings, depending on context:

• The primary file system that is always mounted; the root file system.

• The traditional account name associated with UID O. This UID is
called the root or super user.

• The first level of any file system; the root of a file system.

• The partition, in a cluster, containing the root directory of the entire
file system.

Each process has associated with it a concept of a root directory and a
current working directory for the purpose of resolving path name
searches. The root directory of a process need not be the root
directory of the root file system.

The fields uc_rdir and uc_cdir in the user common (ucomm) area
point to the root directory and current working directory, respectively,
for the user. See also "home directory."

A system software configuration controlled by the contents of the
letclinittab file (see inittab(4F» and the init process (proc[l]).

The system control console program, used during all normal system
operation.

A text file consisting of commands to be executed by a shell program.
Also called a shell script.

CRAY PROPRIETARY 167

Glossary

168

sector

sector allocation

secure system

setgid

setuid

Share
share

shell

single-user mode

small file

UNICOS Internal Reference Manual/or CRAY·2 Computer Systems

A 4096-byte unit of disk space (see block).

Method of allocation used for sector files.

A system built with the UNICOS security feature enabled; that is, with
the SECURE_SYS and SECURE_INC parameters in the include file
syslparam.h set to 1. This directs the compiler to compile the security
code bounded by the directives fif SECURE_SYS and
lendif SECURE_SYS.

A specific bit in the mode bits of an i-node, indicating that any user
who executes the program contained in the corresponding file assumes
the effective GID of the file's group.

A specific bit in the mode bits of an i-node, indicating that any user
who executes the program contained in the corresponding file assumes
the effective UID of the file's owner.

The term Share refers to the fair-share scheduler. The term share
refers to a unit of allocated resources.

Any command interpreter. In addition to interpreting and executing
user commands, a shell generally provides various programming
constructs (for example, variable assignment, expression evaluation,
and conditional execution) for greater utility in writing scripts.
UNICOS supports two traditional UNIX shells, sb{l) (the Bourne
shell) and csb(l) (the Berkeley-derived C-shell).

A run level intended for use by a single user working from the system
console.

A file 8 sectors or smaller (see "large file").

CRAY PROPRIETARY SP-2023 5.0 I

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Glossary

special files

special processes

striping

super block

super user

system mode

SP-2023 5.0

Directory entries that provide access to peripheral devices and other
system resources. Special files do not contain data; rather, they
provide the kernel with the information (namely, major and minor
device numbers) needed to access specific devices. There are two
types of special files: character special files and block special files.

Protection of and access to files is the same for both special and
regular files. Access to logical as well as physical devices is possible
through this mechanism. For example, access to main memory and a
communication path for logging hardware errors are available.

Special files are typically stored in the Idev directory. A special file is
also known as a node or device node.

The processes with a process ID of 0 and a process ID of 1 are special
processes and are referred to as proc[O] and proc[1]. proc[O] is the
memory scheduler, or swapper, and proc[1] is the initialization process
(initO). proc[l] is the ancestor of every other process in the system
and controls the process structure.

Writing to multiple disk devices as a single group, with data blocks
interieaved among the members for maximum throughput at very high
bandwidth. The set of disk devices is referred to as a striped group.

A disk block containing configuration information for a given file
system. The super block is replicated across all blocks of the first
track of each partition.

The super block is defined by the structure sblock in the include file
syS/fs/c2fi1sys.h.

Any user (and by extension, process) whose effective user ID (UlD) is
O. UID 0 may override the normal UNICOS permission mechanism.

See "kernel mode."

CRAY PROPRIETARY 169

Glossary

TCP/IP

, . ,trusted subject

tty

tty group ID

UID

lunicos

USCP

170

UN/COS Internal Reference Manualfor CRAY-2 Computer Systems

Transmission Control Protocol/Internet Protocol. TCP/IP is the set of
software that enables Cray computer systems to communicate with
other systems that also use these protocols. Much of TCP/IP is
implemented in the kernel.

Term .used with the UNICOS security feature; a process or daemon
that has the authorized compartments secadm, sysadm, sysops, and
unicos. Trusted subject processes include main, sched, init, getty, and
login. Trusted subject daemons include the NQS daemon
(nqsdaemon(lM», the USCP daemon, and the tape daemon
(tpdaemon(lM)).

Commonly used as a synonym for terminal. A terminal can be a
physical terminal, or it can be the slave side of a pseudo terminal (or
pty).

The special files (nodes) in /dev that are named, by convention,
/dev/ttyp nnn represent the slave side of the pseudo terminals. The
special file /dev/tty is the control terminal associated with a process
group.

Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping
is used to terminate a group of related processes upon termination of
one of the processes in the group; see exit(2) and signal(2).

The tty group ID is the same as the process group ID (pgid) that is
stored in the pc_pgrp field of the process common (pcomm) area.

User identification number.

The file name of the currently executing kernel binary image. Various
commands, such as crash(lM) and ps(I), use this file to access the
kernel symbol tables.

The UNICOS Station Call Processor; a daemon that runs under
UNICOS and allows users on front-end systems running CRI link
(station) software access to the system through the COS SCP interface.

CRAY PROPRIETARY SP-2023 5.0

UNICOS Internal Reference Manual for CRAY-2 Computer Systems Glossary

F S
1 S
1 Z

SP-2023 5.0

User database (UDB) CRI's enhancement of the traditional fetcfpasswd and fetc/group files.

user mode

utsname

zombie process

UID PID PPID
1082 3417 1
1082 3462 3417

The state a CPU is in when executing user code. Every CPU is
always executing on behalf of some user, either in user mode or in
kernel mode (executing kernel code).

A structure that is the list of values that identifies the system to
programs. The first field is sysname; this is the name of the current
version of the system.

The utsname is available by using the uname(2) system call.

A process that has exited and, optionally, sent a SIGCLD signal to its
parent. The process retains its process table entry until its parent
process executes a wait(2) system call to collect the status of the
exited child process.

Zombie processes are marked with a ttZtl in the output of ps(1), as
shown in the following example:

CM PRJ NI ADDR SIZE WCHAN ITY TIME COMMAND
0
0

28 20 64022 209 605415 004 0:00 ksh
990 24 0:00 <defimct>

This fragment of ps output shows the status of a zombie process and
its parent process. (The zombie was executed as a background
process.) The parent is waiting for terminal I/O (PRI is equal to
PPTy); it will likely perform the wait(2) operation after the user types
the next command.

CRAY PROPRIETARY 171

READER'S COMMENT FORM

UNICOS Internal Reference Manual for CRAY-2 Computer Systems SP-2023 5.0

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify): ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name __________ _ Address ------------------------------Title __________ _ City ___________ _
Company ________ _ State/ Country ______ _
Telephone _______ _ Zip Code ______ --,. __
Today's Date ______ _

--~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE Will BE PAID BY ADDRESSEE

RESEARCH, INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, M N 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

--~

(")
C
-I
l>
r o
Z
C)

-I
:I:
Ci5
r
Z
m

READER'S COMMENT FORM

UNICOS Internal Reference Manual for CRAY-2 Computer Systems SP-2023 5.0

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify)·: ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (exce"ent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name __________ _ Address _________ _
Title __________ _ City _________ _
Company _______________ __
Telephone ________ _

Statel Country ______ _
ZIP Code _____________ _

Today's Date ______ _

--~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL, MN

POSTAGE Will BE PAID BY ADDRESSEE

RESEARCH, INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, M N 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---------------------------------------~----~

(")
C
-4

~
r o
Z
G)

--I
::c
Cii
r
Z
m

