
Convergent Technologies 

RELEASE NOTICE 
for 

1.13 S/Series Remote I / O Processor 

Revised December 15, 1989 

Trademark Notice 

Convergent Technologies, NGEN, MegaFrame and 
MightyFrame are registered trademarks of Convergent 
Technologies, Inc. 

WGS/Office, WGS/Desktop Manager, WGS/Word Processor, 
WGS / Spreadsheet, WGS/Mail , WGS/Calendar, Workgroup 
Solutions, P C Exchange, S/840, S/480, S/320, S/280, S/222, 
S/221, S/220, S/120, S/80, MiniFrame, AWS, IWS, Server 
PC, PT, GT, c n x , CTIX/386 and CTOS are trademarks of 
Convergent Technologies, Inc. 

CTIX and CTIX/386 are derived from U N I X System V 
software, under license from AT&T. U N I X is a trademark of 
AT&T. 

B-09-02078-01-B 





* TABLE OF CONTENTS 

-* SECTION TITLE P A G E 

A 1. General Description of the RIOP Option 1 

2. Changes from the Previous Release 3 
2.1 Bugs Fixed in this Release 3 
2.2 New Functionality in this Release 4 

2.2.1 External Processing on the RIOP . . . . 4 
2.2.2 New Cluster Driver Buffer 

Allocation 5 
2.2.3 Modem Control Signaling 6 
2.2.4 Other New Features 7 

3. Product Dependencies 8 
3.1 Software Dependencies 8 
3.2 Hardware Dependencies 8 
3.3 Memory Requirements 8 

4. Configuring the System for RIOP's 10 
4.1 Creating RIOP Devices 10 
4.2 Inittab Administration 12 
4.3 Editing the RIOP Configuration File 13 
4.4 Enabling the RIOP Virtual Terminal 

D river • • • • • • • • • • • • • • • 14 
4.5 Enabling the RIOP Daemon 14 
4.6 Editing the System File 14 

5. Using the Product 16 
5.1 Driver Loading 16 
5.2 RIOP Status 17 
5.3 Steps to Add an RIOP 17 
5.4 Steps to Remove an RIOP 18 
5.5 Diagnostic Output 19 

6. Performance Considerations 21 
6.1 External Processing 21 
6.2 Eight-port Versus Sixteen-port RIOP's . . . . 22 
6.3 RIOP Distribution over RS-422 23 
6.4 Mixing Bare Serial and RIOP Ports 23 
6.5 General Guidelines 23 

B-09-02078-01-B 
- ii -



7. Known Errors, Warnings, and Restrictions . . . . 25 * 
7.1 Warnings 25 
7.2 Restrictions 25 

* 

w 

B-09-02078-01-B 
- ii -



1. General Description of the RIOP Option 

The Remote I /O Processor (RIOP) at Release 1.13 provides 
connectivity of up to 96 RS-232 serial devices to S/Series 
machines. There can be a maximum of 64 terminals and 32 
other devices attached to S/Series machines capable of 
supporting the RIOP. This is achieved by attaching a number 
of these serial I /O multiplexors to the lines of an RS-422 
Expansion Board. Each RIOP can be configured with either 
eight or sixteen RS-232 ports. There can be up to a total of 
sixteen RIOP's connected to one system. These can be 
distributed in any way between the 2 or 4 lines of the RS-422 
Expansion card with a maximum of eight RIOP's on one RS-
422 line. This Release provides the operational and host 
interface software required for use of the Remote I /O 
Processor. 

For this Release, the RIOP's can share a single RS-422 line 
with only one other kind of device. "Ihis is the P C running 
P C Exchange/VINES interconnect software. Both of these 
devices run the line at 1.8 Mbit per second. Other separate 
RS-422 lines of the Expansion card, however, can be 
connected simultaneously to P T s or G T s running at 307 
Kbaud. With the addition of P C s , the number of RIOP's on 
a line should be reduced appropriately. 

The software provided with this Release contains user and 
kernel level code which runs on the S/Series machine as well as 
a downloadable image to run on the Remote I /O Processor 
itself. The host side software contains a user level daemon and 
a loadable virtual tty driver. 

The user-level daemon controls downloading of software into 
the RIOP's . The virtual tty driver makes use of CTIX resident 
line discipline code, packetizing data gathered into clists for 
output to the cluster driver and depacketizing and 
demultiplexing input data from the cluster driver into the input 
clists. The cluster driver communicates with the RIOP's using a 
polled, master/slave protocol. The protocol used is a subset of 
the unbalanced Normal Response Mode of the Advanced Data 
Communications Control Procedures (ADCCP) . 

B-09-02078-01-B 
Page 1 of 25 



A t the RIOP end, data received from the RS-232 ports is 
multiplexed and packetized for shipment to the host while 
output data is received from the host and transmitted to the 
individual ports. * 

The RIOP at Release 1.13 has the ability to handle some of the 
line discipline code at the remote device. This allows clists to ^ ^ 
be bypassed on output and echoing of characters to be handled 
remotely. Although a great deal of tty processing can still be 
done at the host, the number of interrupts to the hosts is 
reduced substantially since blocks of output data are sent in one 
packet and since input from up to 16 ports can be sent in one 
packet. 

B-09-02078-01-B 
Page 2 of 25 



2. Changes from the Previous Release 

2.1 Bug9 Fixed in this Release 

This Release for 6.2 CTIX is functionally equivalent to the 
RIOP subsystem in 5.25.3 CTIX. The following bug fixes are 
new for those users moving from a 1.00 RIOP Release (pre 
5.25.1 CTIX). These bugs were fixed in 5.25.1 CTIX and 1.10 
RIOP and they are included in 1.13 RIOP. 

1. The TCSETAF tty ioctl command would cause output 
data to be lost on RIOP ports. Also the TCSETA 
command would wait for output to drain before doing a 
port re parameterization. (See termio(7) ) . Since the 
generic tty code in CTIX prior to 5.25.1 had no 
mechanism for informing the device level that a wait was 
in progress, RIOP code always waited for all output to 
drain before doing a port reparameterization. This 
allowed the more critical TCSETAW command to work 
correctly. But it also caused a flush to occur during the 
TCSETAF command before the wait was specified. This 
mechanism was added to the generic tty code in 5.25.1 
and 6.10 CTIX. The RIOP code then recognizes and 
handles the wait cases correctly. 

2. A problem where lack of buffers at the RIOP could cause 
loss of a message and consequently hang a terminal was 
fixed. 

3. A problem where rebooting RIOP's would cause RS-422 
PT's to reboot was fixed. 

The following bug was fixed in 1.11 RIOP (6.1 CTIX) and are 
included in the 1.13 RIOP Release. 

Some RS-232 receive interrupt code which read more 
than one byte of data from the receive FIFO was 
removed. It was found that in some receive error cases 
the Z8530 chip does not always reset the bit which 
indicates whether more data is available. This would in 
turn cause an infinite loop until the watch-dog timer 
forced a reboot. The code now only attempts to read one 
byte of data from the FIFO at each receive interrupt. 

The following bugs were fixed in 5.25.3 CTIX and are included 

1. 

B-09-02078-01-B 
Page 3 of 25 



in the 1.13 RIOP Release. 

1. The byte sequences 0x9f and Oxdf were being transposed 
to 0x09 and to OxOd 0x09. This made the RIOP useless 
for 8-bit Kanji character set applications. Some code in 
the RIOP driver main function is now always included. 

2. If cl_deflines in / e tc / system was changed to '1' and ^ ^ 
RIOP's are used, the system crashed with a 
"panic:cl_incalxbe: invalid allocation''. Changes were 
made to the cluster driver at the point where an entry is 
removed from the xbuf queue to call a low-water routine 
in an upper layer of the cluster protocol. 

3. Executing stty f f l and/or cr2 on a serial printer connected 
to an RIOP port caused the RIOP to reboot. There are 
changes in the vtd driver routines to fix the character 
delay. There are fixes in the RIOP Z8530 driver code for 
character delays and improved input handling. 

4. On an S/640 with RIOP's , all terminals on one or more of 
the RIOP's locked up within a few seconds to a few hours 
of operation. The system had to be rebooted to recover. 
The console repeatedly displayed the message: "panic: 
watchdog timeout". There are fixes in the RIOP Z8530 
driver code for character delays and improved input 
handling. 

2.2 New Functionality in this Release 

The following sections describe enhancements which have been 
made to the RIOP or Cluster Driver. This Release for 6.2 
CTIX is functionally equivalent to the RIOP subsystem in 
5.25.3 CTIX. The following features are new for those users 
moving from a 1.00 RIOP Release. 

2.2.1 External Processing on the RIOP 

The tty code which handles output processing of characters in 
line discipline has been ported to the RIOP resident download 
image. Line discipline is the standard tty interface as described 
in terniio(7). Doing external output processing allowed two 
other enhancements. , 

The first is the ability to echo characters local to the RIOP. ^ ^ 
This is helpful when in cooked mode, for example, when 

B-09-02078-01-B 
Page 4 of 25 



issuing commands to a shell, as it greatly reduces the number 
of messages sent between the RIOP and host. Unfortunately, 
for most screen based applications which operate in raw mode, 
this has no effect. 

The second enhancement made possible is an optimization at 
the host end. This allows output data to be moved directly 
f rom the user space into the output buffer used by the Cluster 
Driver for D M A transfer onto the RS-422 line. Doing this by-
passes clist buffering altogether. This optimization is effective 
in both raw and cooked modes and greatly increases host CPU 
idle times during periods of heavy tty output. 

All of these related features are treated as a single feature 
which is referred to simply as external processing. This 
external processing feature can be disabled or enabled on a per 
RIOP basis (see riopcfg(lM) ) or on an individual port basis 
(see extproc(lM) ). The default state is for external processing 
enabled on all ports. The reason for making the feature 
optional is that for small numbers of RIOP ports, output 
throughput might be somewhat higher (at the expense of host 
CPU cycles) when the feature is disabled. This is true since the 
RIOP has more processing to accomplish and might become the 
bottleneck in some cases when the feature is enabled. Please 
see Section 6, "Performance Considerations", which gives 
benchmarking results. 

2.2.2 New Cluster Driver Buffer Allocation 

In the release prior to 1.11 RIOP, the buffer allocation routines 
of the Cluster Driver were called by the RIOP virtual terminal 
driver. Unfortunately, many assumptions based upon P T (RS-
422 terminal) needs are embedded in these routines which are 
no t truly suited for RIOP use. 

In the current release the virtual terminal driver contains its 
own buffer allocation routines which are used internally and are 
also called f rom below by the Cluster Driver when the drop is 
of type RIOP. These allocation routines allow a greater number 
of buffers to be allocated to an RIOP drop than was allowed for 
a PT. Because of this, processes are less likely to sleep waiting 
for buffers and fewer process switches should occur. 

B-09-02078-01-B 
Page 5 of 25 



The new allocation scheme also allocates new pools of buffers 
dynamically as more RIOP's come on-line. The old scheme 
used an algorithm based on cl_defdrops and cl_deflines in 
/ e tc / system to determine the number of buffers statically at * 
boot time. The new method eliminates the need for setting 
cl_defdrops at an artificially high value just to get a reasonable 
amount of buffers allocated for RIOP use. This then allows the ^ ^ 
Cluster Driver overhead to be optimized once again by 
minimizing this value. 

The new method is automated and invisible to the system 
administrator. The system administrator should be aware 
however that about 5K of kernel virtual memory will be 
allocated for each on-line RIOP port. These buffer pools are 
no t deallocated when RIOP's go out of service but they remain 
available for subsequent use. The pools are only deallocated 
when the virtual terminal driver is unloaded. 

2.2.3 Modem Control Signaling 

The RIOP tty ports support the new modem control capability 
accessible through the ioctlf2) system call. 
This has the following format: 

ioctl(fildes, command, arg) 

The new commands are: 

TCGEXT 

TCSEXT 

Get the parameters associated with the terminal. 
The parameters are passed back as the return 
value from the ioctlQ function. The return 
value is defined as follows 
(see /usr/ include/sys/t ty .h): 

#def ine CD BIT 0x04 
#def ine CTSBIT 0x08 
#def ine DSRBIT 0x10 
#def ine RIBIT 0x20 

(CD is present) 
(CTS is present) 
(DSR is present) 
(RI is present) 

Set the parameters associated with the terminal 
f rom arg. The bits in arg are defined as follows: 

#def ine RTSBIT 0x08 (set/clear RTS) 

B-09-02078-01-B 
Page 6 of 25 



#def ine DTRBIT 0x10 (set/clear DTR) 
#def ine SETEXT 0x80 (1 = set, 0 = clear) 

If the SETEXT bit is set, then the RTS and/or 
DTR lines might be turned on. If the SETEXT bit 
is cleared, then either or both of these lines 
might be turned off. 

TCSEXTW Wait for the output to drain before setting 
the new parameters as in TCSEXT. 

2.2.4 Other New Features 

1. PC Exchange and RIOP's now work concurrently on the 
same RS-422 line. 

2. A new RIOP memory query function allows reading the 
remote device's memory space. See riopqry(lM) and 
Section 5.5, "Diagnostic Outpuf, for a description. 

3. The existence of the file KRIOP in the /etc/rcopts 
directory is used to determine whether the RIOP driver is 
loaded and the RIOP daemon is executed at boot time. 
See Sections 4.4 and 4.5 for further discussion. 

4. Applications that used the RIOP experienced a 
degradation of performance. The fix was to add packet 
coalescing to the driver. Most of the changes are to the 
vtcl_output routine. This routine determines when it is 
appropriate to coalesce, and calls the new coalesceQ 
procedure to add the caller's packet to the packet held in a 
staging buffer. Two forms of coalescing axe possible. The 
first is to add the new vtd_tpkt to the end of the vtd_pkt, 
the second is to move the data from the caller's vtd_tpkt 
to the existing vtd_tpkt in the staging buffer. The second 
mechanism is the preferred one, but will only be done if 
the last vtd_tpkt is the same type as the caller's. If the 
type of the caller's vtd_pkt is different f rom the staging 
buffer, the staging buffer will be sent, and the caller's 
packet set up as the new staging buffer. 

B-09-02078-01-B 
Page 7 of 25 



3. Product Dependencies 

3.1 Software Dependencies 

The current release Remote I / O Processor as well as the * 
compatible Enhanced Cluster Driver are incorporated into the 
6.2 CTIX product. This Release for 6.2 CTIX is functionally 
equivalent to the RIOP subsystem in 5.25.3 CTIX. In other ^ ^ ^ 
words it is derived from the same source code with minor 
porting differences. This Release Notice is part of the bill of 
materials for 6.2 CTIX. 

3.2 Hardware Dependencies 

The Remote I /O Processor Software works with the following 
systems: 

S/120, S/22x, S/320, S/480, S/640 

These systems must have the Two-port RS-422 Expansion 
board (60-00434) or Four-port RS-422 Expansion board (60-
00371) installed in the I /O processor slot. 

3.3 Memory Requirements 

Since this product allows the connection of many users to an 
S/Series system, the amount of memory available on the host ^ ^ ^ 
for application processing, up to some limit, will directly affect 
overall system performance. A rough approximation of this 
limit can be calculated by adding up the memory requirements 
of each application which must run concurrently. The data and 
stack space required for each process must be multiplied by the 
maximum number of concurrent users whereas the text or code 
portion is added only once if it was compiled for shared text 
usage. 

The size of the kernel and loadable drivers also needs to be 
taken into consideration. Please see Section 5.1, "Driver 
Loading", on driver loading to determine the memory used. 
The buffer allocation mechanism for RIOP communication uses 
approximately 5K of memory per RIOP port between 1 and 96 
ports. 

B-09-02078-01-B 
Page 8 of 25 



» 
While using the optimum amount of memory will give the 
highest performance, many applications will operate 
satisfactorily in a smaller amount of memory by taking 

* advantage of the virtual memory features of the system. 

B-09-02078-01-B 
Page 9 of 25 



4. Configuring the System for RIOP's 

Please read all sections of this document before attempting to 
configure and use RIOP's. The following sections describe 
steps required to configure CTIX for RIOP use. 

4.1 Creating RIOP Devices 

Three major devices1 are used for RIOP operation. The first is 
the controlling major device which has two minor devices. 
These are: 

crw-r—r— 1 root sys 6 7 , 0 /dev/vtct l 
crw-r—r~ 1 root sys 6 7 , 1 /dev/vtrdiag 

The first of these minor devices is used by the riopd daemon 
program for downloading the RIOP's . The second minor 
device is used by the riopstat(lM) program as well as other 
diagnostic or administration programs wishing to query RIOP 
information from the kernel driver. 

The other two major devices are used for the tty interfaces to 
the ports of the RIOP's . This allows for the use of 96 RIOP 
ports, 96 through each major device. 

In 5.23 CTIX and beyond these device nodes reside in a 
subdirectory of /dev named /dev/rtty and are named rOOO 
through r095. These should appear as: 

crw—w—w- 1 root sys 70, 0 /dev/rtty/rOOO 

crw-w—w- 1 root sys 7 0 , 9 5 /dev/r t ty / r095 

These devices are mapped in a straight forward way to the ports 
of the RIOP's . The RIOP with the ordinal number of 0 in 
/etc/riop/rtab will be accessible through the first 16 devices of 
the above array. The RIOP with the ordinal number of 1 will 
be accessible through the second 16 devices of the above array, 

1. See Section 4.4, Enabling the RIOP Virtual Terminal Driver 

B-09-02078-01-B 
Page 10 of 25 



etc. 

It is no t necessary and not recommended to create the full array 
of device nodes above. This however means that new device 
nodes will need to be created later if the originally configured 
number of RIOP's is exceeded. 

If this is the first installation of the product then this file will 
not exist and so the program queries for the number of RIOP's 
to be supported and creates a template /etc/riop/rtab file based 
on that number . It then continues by using this file as a guide 
to create the correct devices. 

If this is the first time RIOP's have been configured on the 
system or you are supporting additional RIOP's then you will 
need to make the correct device nodes. The use of the 
program riopcfg(lM) is recommended for this purpose. To 
create the required control and tty entries in /dev run the RIOP 
configuration program: 

/etc/riop/riopcfg -d -r 1.13 

Since we have not passed explicit RIOP numbers to this 
program, it uses the file /etc/riop/rtab as a guide in making the 
tty devices. 

If the program detects the presence of the directory / dev / r t t y 
(which should exist in 5.23 CTIX or higher), it creates device 
nodes in this directory beginning with rOOO, otherwise it creates 
device nodes in /dev starting at t ty400. 

If two RIOP's were specified then the transaction would look 
something like the following: 

Assume initial RIOP installation. 
A template version of /e tc/r iop/r tab will be created. 
How many RIOP's are to be supported? 2 
RIOP # 0 : /dev/rtty/rOOO through /dev/r t ty/ r015 made 
RIOP # 1 : /dev/r t ty/ r016 through /dev/r t ty / r031 made 

Notice that the release level,"1.13", passed to this program is 
only required when /etc/riop/rtab does not exist. It is used to 
fill in the release level field of the template file. If 

B-09-02078-01-B 
Page 11 of 25 



/etc/riop/rtab was created for a previous installation of RIOP, 
the last field should be changed to the current release level: 
1.13. 

4.2 Inittab Administration 

RIOP terminal login sessions are controlled in the same way as 
for other system tty ports. This is through the administration 
of the file /etc/ inittab and the use of the getty(l) program. For 
each RIOP tty device described above a getty can be started by 
adding a line of the form: 

rNNN:2:respawn:/etc/getty r t ty / rNNN 9600 

where N N N is the ordinal number of the port, for 5.23 CTIX 
and beyond. The installation should have added entries for the 
number of RIOP's that you specified but with the third field set 
to o f f . You must change these to respawn before login prompts 
appear at RIOP ports. Any legal baud rate can be specified here 
(see termio(7) ). 

If this is the first time RIOP's have been configured on the 
system or you are supporting additional RIOP's then you will 
need to make the correct /etc/ inittab entries (assuming logins 
are desired). The use of the program riopcfg(lM) is 
recommended for this purpose. To create the required entries 
run the RIOP configuration program: 

/etc/riop/riopcfg -i 

Since we have not passed explicit RIOP numbers to this 
program, it uses the file /etc/riop/rtab as a guide in making the 
entries. This file should already exist (see section 4.1, "Creating 
RIOP Devices"). The program should respond with output like 
the following if two RIOP's are configured. 

RIOP # 0 : 16 inittab entries made 
RIOP # 1 : 16 inittab entries made 

If the program detects the presence of valid entries for an RIOP 
from a previous installation, it will abort its processing for that 
RIOP only, but then continue for subsequent RIOP's . 

B-09-02078-01-B 
Page 12 of 25 



4.3 Editing the RIOP Configuration File 

The RIOP configuration file, /etc/riop/rtab is the file which 
„ defines what RIOP's are known to the system. Each entry in 

this table is one line with up to four ascii fields separated by a 
colon ( ' : ' ) which gives information about one RIOP in the 
system. A short example follows: 

03fa:0:1.13: Computer Room 
5el0:l :1.13: Marketing 
0032:2:1.13: Technical Support 

The first field is the unique identification number which is 
coded into an ID prom on the RIOP. In the RIOP this is a 4 
byte number where the most significant byte is the product 
code which is always 0x20 for the RIOP. The rtab field should 
only contain the lower 3 significant bytes of this number (ie, 
the last 6 characters), and be expressed in hexadecimal. You 
can ignore leading 0 's if you wish. For example, 0x2000013a 
could be entered as 13a, 013a or 00013a. Please see section 5.3 
step 1, "Steps to Add an RIOP', for details on obtaining the 
unique ID from the RIOP. This number can also be obtained 
f rom an error message in the file /etc/riop/elog when an 
unknown RIOP attempts to boot. 

The second field is a decimal ordinal number for this RIOP. 
This field is used to order each RIOP from 0 to 5 such that 
RIOP # 0 is related to the first group of 16 virtual tty's, RIOP 
# 1 is related to the second group of 16 virtual tty's, etc. The 
numbers of this field in different lines of the file do not have to 
be sequentially ordered although it is recommended for ease of 
ad m in is tratio n. 

The third field is the version number suffix string which is 
appended to the string /etc/riop/riop by the RIOP daemon to 
form the full path name of the executable object file to be 
downloaded into the RIOP. For this Release, this field will 
always contain "1.13". This mechanism allows for the 
simultaneous use of multiple RIOP's operating at different 
download image release levels. 

The fourth field is optional and can be used as a comment field. 

B-09-02078-01-B 
Page 13 of 25 



This will allow a system administrator to comment on the 
physical location of a specific RIOP. It is started by a colon (s) 
and includes all text up to a following newline. 

* 

4.4 Enabling the RIOP Virtual Terminal Driver 

To have the system automatically load the RIOP virtual 
terminal driver when it boots, you must create the zero length 
file /etc/rcopts/KRIOP. The script /etc/drvload(lM) uses the 
presence of this file as a key to load the driver. This script then 
executes a line like the following: 

, /lddrv -a vtctl vtfcyO vt ty l &&. echo "Riop-terminals Loaded." 

The RS-422 board must also be installed so that the cluster 
driver will automatically be loaded. The cluster driver needs to 
be loaded in order for the RIOP driver to operate. 

This should not be necessary, bu t check that the file 
/etc /master has the following entries uncommented (no 
leading '* ') : 

vtctl 1137 44 vtc 0 67 1 
vttyO 37 44 vtO 0 70 256 
vt tyl 37 44 v t l 0 71 256 

4.5 Enabling the RIOP Daemon 

To have the system automatically start the RIOP daemon when 
it boots, you must create the zero length file 
/etc/rcopts/KRIOP. This causes the initialization scripts to 
start the download daemon running when it goes to multi-user 
states. 

4.6 Editing the System File 

A new variable, vtd_defcnt in the file / e tc / system is used by 
the RIOP virtual terminal driver to determine how many tty 
and other structures to allocate in the kernel. This variable can 
be tuned to avoid wasting memory. Take the largest RIOP 
number which you intend to use in /etc/riop/rtab plus 1. 
Then multiply this number by 16 to get the optimal value for 
vtd_defcnt. The default value will be 256, good for sixteen 
RIOP's , if this line is left commented. 

B-09-02078-01-B 
Page 14 of 25 



The variable cl_defdrops defines the maximum number of 
RIOP's (or 'drops') that you can have on one RS-422 line. If it 
is not set, the system will default to 8. You only need to 

* change it if you wish to have more than 8 RS-422 devices 
(RIOP's , PCX PC's or PT/GT ' s ) on one line. 

To implement changes, edit the file / e tc / system and remove 
the f rom the f ront of the lines you wish to uncomment . 
Then change the number to the appropriate value. 

You must reboot the system any time you edit this file for it's 
new values to take effect. If you are enabling RIOP's for the 
first time you should also reboot the system now. 

B-09-02078-01-B 
Page 15 of 25 



5. Using the Product 

The following sections contain information useful in 
administering RIOP's . Please read all of this material before 
attempting to use the product. 

5.1 Driver Loading 

The kernel virtual terminal driver used for RIOP 
communication is a loadable device driver which interfaces 
directly with another driver, ie. the enhanced cluster driver. As 
such it is necessary that this driver be loaded before the RIOP 
virtual terminal driver can successfully be loaded. To check 
that both drivers are correctly loaded, login as root and issue 
the following command: 

/etc/lddrv/lddrv - s R E T U R N 

A group of lines similar to the following should be contained 
within the display: 

D E V N A M E ID TYPE BLK CHAR 
cluster 

vtctl 

DRIVER 

DRIVER 

1 
21 
22 

70 
71 

66 

67 

SIZE 
0x8000 

0x7000 

This indicates that both the cluster and virtual terminal drivers 
have been loaded. 

It is possible to unload and reload one or both of these drivers 
as long as all processes using them have been killed and the 
cluster driver is unloaded last and reloaded first. This 
operation is only recommended for expert users. I t is safer to 
reboot the system if you need the drivers to be re-loaded. If 
you intend to unload the RIOP driver, please take all RIOP's 
out of service first by powering them down. To reload, use the 
lines in /etc/drvload as a guide and be sure to restart the 
/etc/riop/riopd daemon. 

B-09-02078-01-B 
Page 16 of 25 



5.2 RIOP Status 

The program /etc/riopstat is actually the following one line 
shell script: 

/etc/riop/riopcfg - s $1 

Either of these forms can be used to determine the status of 
RIOP's in the system. Given no arguments this program will 
use the file /etc/riop/rtab as a guide and query the driver for 
the status of each RIOP specified there. For instance a system 
with four RIOP's might respond with the following output: 

Unique Id Line Drop Ports 

4 0 0 8 
f 0 1 8 

RIOP State 

0 U P 
1 U P 
2 DOWN 
3 BOOTING 1 0 16 

One argument can also be passed which specifies that a single 
RIOP number is to be queried and reported on. 

5.3 Steps to Add an RIOP 

The following steps should be taken in adding a new RIOP to a 
system which already supports one or more RIOP's: 

1. Get the hexadecimal unique ID of the RIOP to be added. 
This might be done by powering on the RIOP with a 
terminal attached to port 0 at 9600 BAUD or to port 1 at 
1200 BAUD. The RIOP will print out its unique ID. 
(Remember to only use the last 6 characters of the ID, 
ignore the 0x20. See the section 4.3, "Editing the RIOP 
Configuration File".) An alternate method for identifying 
the Unique ID is to examine /etc/riop/elog for an entry 
"id: Oxab not found, boot failed", where Oxab is an RIOP 
not listed in /etc/riop/rtab. 

2. Add an entry with this unique ID and the next available 
RIOP number to the file /etc/riop/rtab. 

3. Issue the command /etc/riop/riopcfg - m n where n is the 
RIOP ordinal number (the second field of the rtab entry 
added). This will report the range of tty devices 

B-09-02078-01-B 
Page 17 of 25 



supported by this RIOP. 

4. Check to see if these devices exist. If they do not then 
issue the command /etc/riop/riopcfg - d n where n is the ^ 
RIOP ordinal number. This will create the necessary tty 
devices for the RIOP. 

5. Take this step only if you desire to start getty's on the ^ ^ ^ 
RIOP. Check to see if entries exist for the RIOP in 
/etc/inittab. If they do not then issue the command 
/etc/riop/riopcfg -i n where n is the RIOP ordinal 
number . This will create the necessary inittab entries for 
the RIOP. (NOTE: The last two steps might be folded 
into one by issuing the d and i options concurrently) 

6. Physically connect the RIOP to one of the lines of the 
S/Series RS-422 board. To avoid disrupting other devices 
already in service, the RIOP should be added to the end 
of a daisy chain by connecting a cable between the 
currently terminated end of the chain and the RIOP, and 
then terminating the remaining plug of the RIOP. 

7. Power on the RIOP. A terminal attached to port 0 at 
9600 BAUD or to port 1 at 1200 BAUD can be used to 
act as an RIOP console. The RIOP should automatically 
request and receive its download image. It will print out a 
colon ( ' : ' ) when the download starts, followed by a series 
of dots ( ' . ' ) when each download packet is received, 
followed by a semi-colon ( ' ; ' ) when the download is 
complete. The riopstat(lM) program should now report 
that the RIOP is up. 

8. If desired, edit /etc/ inittab to turn on any getty's. 
Normally this is done by changing the field containing the 
word off to respawn. Give the command telinit q. The 
requested login's should be appear on RIOP terminals 
within 15 seconds. 

5.4 Steps to Remove an RIOP 

If the RIOP to be removed from service is in the middle of a 
daisy chain, physically disconnecting it might take all devices 
fur ther down the chain out of service also. In this case take 
steps to warn users of these devices that they might be 
temporarily down. 

B-09-02078-01-B 
Page 18 of 25 



The following steps should be taken to remove an RIOP f rom 
service: 

1. Determine the ordinal number of the RIOP to be 
removed. It is recommended to label each RIOP 
physically with its unique ID so the ordinal number can 
easily be looked up in /etc/riop/rtab. Failing this, try to 
determine the tty device name of one of the terminals 
connected through it. This can be obtained by issuing the 
tty command at the terminal in question. Then use the 
/etc/riop/riopcfg - m command to get a list of all RIOP to 
device mappings in the system. 

2. Warn all users on the RIOP in question that it will be 
taken out of service. See ps / f^ ,whodo( lM) and wall(lM). 

3. Turn off all getty's associated with this RIOP in 
/etc/inittab. Give the command telinit q. 

4. Kill all processes associated with the devices attached to 
the RIOP. See kill(l) and fuser(lM). 

5. Power down the RIOP and physically disconnect it. If it is 
in the middle of a daisy chain, be sure to reconnect the 
devices before and after it in the chain. The riopstat(lM) 
program should report that it is down. 

6. If this is a permanent removal, delete the RIOP entry 
f rom /etc/riop/rtab, otherwise the entry can safely be left 
intact. 

5.5 Diagnostic Output 

The /etc/riop/riopd program will report non-fatal error 
conditions to the file /etc/riop/elog. If the daemon is running 
and you experience difficulty in downloading an RIOP, please 
read this file for the latest error messages. The daemon will 
always append to the end of this file unless it reaches a size of 
10240 bytes in which case it will truncate it to 0 before writing. 

It is possible to enable certain informational or error messages 
f rom the RIOP virtual terminal driver. If you are experiencing 
trouble with your system this can be helpful in helping to 
isolate the problem. To do this you must have the debugger 
loaded in your system. Type "B at the console to enter the 
debugger and then enable selective prints as follows: 

B-09-02078-01-B 
Page 19 of 25 



I 

> kp RETURN 
> k q v R E T U R N 
> pm RETURN 
> go RETURN 

Messages f rom the underlying cluster driver can also be 
enabled with the command: 

> k q y RETURN 

This driver will occasionally print ou t a message reporting that 
it had to re t ransmit a message to a RS-422 drop. Many 
messages of this type might indicate a noisy line or a bad 
physical connection. Enabling this option during heavy RS-422 
use might cause excessive printing that might interfere with the 
t iming sensitive Cluster protocol. 

For more information on how to use the kernel debugger 
please see the manual Writing MightyFrame Device Drivers 
(DAC-120) . Al though the material on S/Series drivers in this 
manual is somewhat ou t of date, the manual has the mos t 
complete se t of information on the use of the kernel debugger, 
the interactive loader, and the kernel routines (section 2K). 

If the R I O P reaches a panic condition, for instance, detecting a 
checksum error on its download program image then it will 
pr int the condition on its designated console and reboot. 

The designated console will always defaul t to por t 0 at 9600 
B A U D . This can be changed to port 1 at 1200 BAUD by 
hitting "B f rom a port 1 terminal running at 1200 BAUD 
shortly after the R I O P prints ou t its version n u m b e r and unique 
ID while rebooting. The RIOP will drop into its R O M 
debugger. Type go to continue operation with por t 1 as the 
designated console. 

The entire contents of an RIOP ' s memory can be uploaded into 
a CTIX file by issuing the following command: 

/etc /r iop/riopdump n > dump 

where n is the RIOP number to be dumped. 

B-09-02078-01-B 
Page 20 of 25 



6. Per formance Considerat ions 

This section is intended for those interested in details of RIOP 
* performance. Skip to the Section 6.5, "General Guidelines", if 

that is all you require. In the following discussion raw mode 
^ ^ refers to that used by a typical screen based application where 

output postprocessing is turned off. The cooked mode is typical 
of interaction with a shell where output postprocessing is turned 
on. 

6 .1 Externa l P r o c e s s i n g 

The measurements discussed in this section were done with the 
1.11 RIOP Release. 

The external processing feature of this Release allows for great 
increases in host CPU idle time for a given amount of output 
through an RIOP. (See Section 2.2.1, "External Processing on 
the RIOP', for a general description of external processing.) For 
example, with 32 ports over four RIOP's in cooked mode on an 
S/320, around 22K chars/sec were delivered with the external 
processing feature enabled or disabled. The CPU idle time 
measured, however, went from around 2% to 95% when the 
feature was enabled. Similar increases in idle time were 
measured in both cooked and raw mode for both the S/320 and 
S/640. This feature should be used by those running 
applications which are CPU bound. This feature can be more 
critical for S/320 users, since less CPU cycles are available on 
slower machines. 

Since the external processing feature moves character handling 
tasks f rom the host CPU to the RIOP CPU, it might also 
decrease total throughput slightly when the RIOP CPU 
becomes the bottleneck. For example, with eight RIOP ports 
in cooked mode on an S/320, around 6.8K chars/sec were 
delivered with the external processing feature disabled and only 
5.5K with the feature enabled. The idle times measured were 
73% and 99% respectively. So, for small numbers of ports or 
where idle times are not a critical factor, better throughput can 
be achieved with the external processing feature disabled. 

The external processing feature also greatly improves the 
character echo latency since echo is done local to the RIOP 

B-09-02078-01-B 
Page 21 of 25 



with this feature. This helps to improve the perceived 
performance when typing commands. This does not help 
screen based applications which do their own echoing. 

The external processing feature does not affect the performance 
of other line disciplines such as SLIP or Shell Layers. 

6 . 2 Eight -port V e r s u s S ix teen-port R I O P ' s 

In general it is not recommended to use more than eight RIOP 
ports concurrently. The expansion serial board with eight extra 
ports are provided for customers who have a need for the 
greater connectivity where all ports will not normally be in use 
at the same time. The following table shows output throughput 
of an example system configuration for Eighth versus Sixteen-
port RIOP's . 

tty Output Test, S /320 
RIOP total ave eh/ % proc 
ports ch/sec sec/port idle mode 

8 8 6565 821 99.6 RX 
8 8 5561 695 99.4 CX 
8 8 6732 842 88.6 RN 
8 8 6860 858 73.3 CN 

16 8 5556 695 98.7 RX 
16 8 4890 611 99.5 CX 
16 8 6087 761 85.4 RN 
16 8 6168 771 71.7 CN 

16 16 9846 615 95 RX 
16 16 6677 417 97 CX 
16 16 6879 430 64.9 RN 
16 16 7302 456 50 CN 

M_N = M port RIOP, N ports tested 
RX = raw mode with external processing 
CX = cooked mode with external processing 
R N = raw mode with no external processing 
CN = cooked mode with no external processing 

It can be seen that Eight-port RIOP's exhibit about 10% higher 
throughput than Sixteen-port RIOP's with only eight ports in 
use. This can be attributed to greater buffer space available per 

B-09-02078-01-B 
Page 22 of 25 



port on the Eightrport version. The Sixteen-port RIOP with all 
16 ports in use performs fairly well in raw mode with external 
processing on, but suffers in the remaining modes. 

6 .3 R I O P Dis tr ibut ion over R S - 4 2 2 

The performance results with RIOP's will vary somewhat 
depending upon their configuration on RS-422 lines. Testing 
has shown that the best performance results can be obtained 
when RIOP's are distributed evenly over 4 RS-422 lines. Even 
so, the following results show that the impact of putting many 
RIOP's on one RS-422 line are significant only when the 
external processing feature is turned off. 

Eight-port RIOP's, S /640 
RS-422 total ave ch/ % proc 

lines ch/sec sec/port idle mode 
4 39073 813 93.6 RX 
4 33052 688 94.8 CX 
4 37353 778 53.9 RN 
4 37829 788 15 CN 
1 37819 788 94 RX 
1 33065 689 92.6 CX 
1 26570 554 14.2 RN 
1 26950 561 6.3 CN 

6 . 4 M i x i n g Bare Serial a n d R I O P Ports 

The current architecture of the S Series does not allow for use 
of both the RS-422 and IOP cards. This means that when 
RIOP's are used, the base ports will have no I /O support and 
all interrupts will go directly to the main CPU. Therefore some 
care should be used in making sure that base port use is kept to 
a minimum when using RIOP's . It is recommended that heavy 
bare base serial port use be limited to 8 ports on an S/640 and 
4 ports on an S/320. 

6 . 5 General Guide l ines 

The following guidelines are recommended for achieving good 
performance results with RIOP's. 

1. Eightrport RIOP's are recommended for most 
applications. Sixteen-port RIOP's are suitable where high 

B-09-02078-01-B 
Page 23 of 25 



connectivity is required or where throughput requirements 
are moderate. In other words, it is not recommended that 
more than 8 ports be used simultaneously for applications 
requiring high screen repainting rates. In this case 2 
Eight-port RIOP's should be substituted for 1 Sixteen-port 
RIOP. 

2. Base serial port use should be kept to a minimum when 
using RIOP's . 

3. The external processing feature should be enabled for 
CPU intensive applications. 

4. RIOP devices should be distributed as much as possible 
between the available RS-422 lines. 

The following test results show the output and idle times for 
the rated number of users when these guidelines are followed. 
Each test used Eight^port RIOP's distributed over 4 RS-422 
lines. 

Eight-port RIOP's , S /320 
RIOP total ave ch/ % proc 
ports ch/sec sec/port idle mode 
8 32 25165 786 77.3 RX 
8 32 21807 681 94.7 CX 
8 32 24672 771 38.7 R N 
8_32 22358 699 1.7 CN 

Eight-port RIOP's , S /640 
RIOP total ave ch/ % proc 
ports ch/sec sec/port idle mode 
8 64 51657 807 90.0 RX 
8 64 43935 686 91.3 CX 
8 64 45273 707 22.7 R N 
8_64 44766 699 0 CN 

B-09-02078-01-B 
Page 24 of 25 



. Known Errors, Warnings, and Restrictions 

. 1 W a r n i n g s 

1. When using RIOP's for any type of machine to machine 
communication flow control in both directions should be 
enabled. Also no more than 4 lines at 9600 BAUD or 2 
lines at 19200 BAUD will accept sustained input without 
incurring occasional lost characters due to receiver 
overruns. 

2. When switching the use of a RS-422 line from one kind 
of device to another you must reboot the S/Series 
system. It is possible for PT ' s which have not received 
logins to steal station addresses while awaiting a 
download. This could restrict the number of station 
addresses left for use, and therefore the number of drops 
which can be added to the line. 

.2 Restrictions 

1. Shell layers has been converted to STREAMS. It does 
not work now on RS422 ports nor on RIOP ports. 

2. The current maximum number of RIOP's on a single 
RS-422 line is 15. 

3. The current version of WGS is not fully supported by 
1.13 RIOP. When using P T or G T terminals over the 
RIOP, the windows will often be trashed. 

B-09-02078-01-B 
Page 25 of 25 



j:! 


