CONVERGENT TECHNOLOGIES
PROGRAMMER’S NOTES FOR
C CROSS-COMPILATION & FLEXNAMES
Revised 05,21 /86
Trademark Notice

Convergent Technologies, NGEN, and MegaFrame gare
registered trademarks of Convergent Technologies, Inc.

MiniFrame, MightyFrame, AWS, IWS, PT, GT, CTIX and
CTOS are trademarks of Convergent Technologies, Inc. CTIX
is derived from UNIX System V software, under license from
ATE&T. UNIX is a trademark of AT&T.

TABLE OF CONTENTS

SECTION TITLE " PAGE
. 1. Introduction . .« + « + ¢« ¢ & 4 4 e e W 1
2. Cross Compilation Environment 1

2.1 What Code Runs on Which Machines .- . . . 2
2.2 How to Set Up Your Compilation Environment
for a Specific Target Hardware

Configuration+ « .+ « + + .+ . 3
2.3 Compiler Options Affecting Cross-
Compilation .« « . « « « « « « « + o+ . 6

2.4 How to Get Optimal Code for 68020
Execution . « + + « « + « + « .« .

2.5 How to Add Your Own Libraries to be Used
When Cross-Compiling + « . . 9

B-09-000689-01-B
-ii-

2.6 Linking Object Files Compiled for Different

Machines« . . .

2.6.1 Object File Markings . .

2.6.2 a.outs Resulting From Linked

Objects . .«

. Flexnames
3.1 Implications of the Flexname Feature .
3.2 Backward Compatibility Options on the Compller

and Assembler

3.3 Converting Your Programs and Libraries to a

Flexname Environment . . .

B-09-000889-01-B
-ii-

.

-

.

12

14
14

15

15

?

P

()

~

1. Introduction

The “Software Generation System” is a new set of compilers,
libraries and utilities that allow you to develop applications on a
CTIX-based host machine that will run on all CTIX-based target
machines, ie. the MiniFrame, MegaFrame and MightyFrame.

Generating code for any CTIX hardware environment different
from that of the host machine is called "cross-compiling” or, in
the case of assembler code, "cross-assembling.”

The first version of the Software Generation System is included
in the MightyFrame release, with the MiniFrame and
MegaFrame versions to follow in 1986. The purpose of such a
system is to simplify the development of an application or user
program for all CTIX architectures through the use of a single
source program, thus making source code easy to control and
maintain.

This document is divided into two sections: the first section
discusses cross-compilation issues and the second section
discusses flexnames.

2. Croass Compilation Environment

There are three types of architectures to consider when
compiling your application:

+ a 68010 CPU (MiniFrame or MegaFrame) system with no
hardware floating point processor

e a 68020 CPU (MightyFrame or MegaFrame with AP2)
system with no hardware floating point processor

B-09-000689-01-B
Page 1 of 18

e a 68020 CPU (MightyFrame or MegaFrame with AP2) N/
system with a 68881 floating point processor.

In order to support code generated for different architectures,
Convergent has provided compilers and libraries that have
been built for each of the hardware configurations. This section
describes how an end user or a third party vendor can:

e cross-compile to generate code for a specific architecture
different from the host

e cross-compile to generate code that runs on all CTIX
machines

¢ provide libraries to support each configuration.

2.1 What Code Runs on Which Machines 4

1. Code compiled to run on the 68010 processor with
software floating point runs on all new processors. Thus,
all existing applications programs that run on MiniFrame
and MegaFrame will run on MightyFrame, except as
follows:

e C applications that access certain operating system
tables defined in fusr/include/sys. Typical examples
are system programs like debuggers, ISAM file
servers, and data communications products.

¢ Basic, COBOL, FORTRAN, Pascal, or assembly code
programs linked with C routines that access certain
operating system tables defined in /usr/include/sys. —~

These exceptional cases require that you compile a e’
separate version for each target system.

B-08-000889-01-B
Page 2 of 16

Although the vast majority of 68010 applications run on
the 68020 based systems, they run less efficiently on the
68020 than they would if they were compiled for the
68020 processor. This is because the 68020 based systems
have a more efficient architecture, 32 bit data paths, new
instruction sets, and better compiler optimizations.
Performance degradation due to alignment problems is
avoidable. Refer to the subsection, "How to Get Optimal
Code for 68020 Execution.”

2. Code that is compiled for the 68020 can only run on the
68020.

3. Code that is compiled for the 68881 math coprocessor will
only run on machines with the 68881s.

N\

2.2 How to Set Up Your Compilation Environment for a Specific
Target Hardware Configuration

Setting up your compilation environment so that you can
cross-compile requires these steps:

1. Include the group CROSS at installation time.

When you specify the CROSS group, libraries for cross
compilation are installed as subdirectories of the directory
/eross. Each subdirectory contains a /lib and a fusr/lib.

o The directory /eross/lsw contains the libraries
necessary to cross-compile for 68010-based products.

¢ The directory /[ecross/2sw contains the libraries
! \ necessary to cross-compile for 68020 with software
floating point.

B-09-000689-01-B
Page 3 of 16

o The directory /ecross/2fp contains the libraries
necessary to cross-compile for 68020 with 68881.

2. Create a subdirectory under /ecross for the target machine
(for example, /cross/mega). Then copy the include files
from the target machine and install them on the hostin a
new /usr/include directory under the subdirectory you
have created (for example, under
/cross /mega fusr/include).

3. Set and export three environment variables:
CENVIRON, LIBROOT, and INCROOT. You can do this
in your .profile for Bourne shell, or .login for C shell, or
directly from the shell.

e CENVIRON specifies the target hardware. (The
procedure that installs MightyFrame CTIX from tape
sets CENVIRON to CPU=68020 in the file
[ete/profile.)

The value of CENVIRON is enclosed in quotes and is
specified as two keyword strings, separated by a
comma: the first keyword string is CPU (68020 or
68010); the second is floating point (SOFTWARE or
68881).

For example:

CENVIRON="CPU=68020,FPU=68881"
export CENVIRON

Note that the default values are 68010 and
SOFTWARE. (That is, if you remove the
CENVIRON setting from /fetc/profile and CENVIRON
is not otherwise set, the default values are 68010 and

B-09-000889-01-B
Page 4 of 16

SOFTWARE.)

LIBROOT specifies the location of libraries for the
loader (1d) to search during the final link.

The value of LIBROOT is enclosed in quotes and is
specified as a subdirectory containing the appropriate
libraries. It is recommended that you keep all cross-
compilation libraries under the /eross directory: in
this case, there are three possible values for LIBROOT
(”/cross/1sw”, ”/eross/2sw”, and "/cross/2fp"). The
value of this variable is prepended to the directories
the loader normally searches.

For example:

LIBROOT="/cross/2{p”
export LIBROOT
-cc myprog.c — lm

Note with respect to this example that if LIBROOT
were not set, the loader would search the library in
/lib/libm.a in order to complete the linking. With the
LIBROOT variable set as above, the loader searches
the file /cross/2fp/lib/libm.a instead.

Also note that the LIBROOT setting does not affect
the search path of libraries whose full path name is
specified on the command line.

The INCROOT environment variable specifies the set
of include files to be used for cross development.

The value of INCROOT is enclosed in quotes and is
specified as a subdirectory containing the appropriate

B-09-000889-01-B
Page 5 of 16

include files (for example, /cross/mega). As explained
earlier, the include files directly under fusr/include
are equivalent for all CTIX based machines, but a
small number of the data structures defined in
fusr/include/sys differ among the three machines.

EXAMPLES OF POSSIBLE ENVIRONMENT
VARIABLE COMBINATIONS

The following combination of environment variables
establishes the environment to cross compile for a
MiniFrame (the compilation requires system header
files and thus the appropriate include files):

CENVIRON="CPU=68010,FPU=SOFTWARE"
LIBROOT="/cross/1sw"
INCROOT="/cross/mini"

The following combination of environment variables
establishes the environment to cross compile for a
MightyFrame with software floating point:

CENVIRON="CPU=68020,FPU=SOFTWARE”"
LIBROOT="/cross/2sw”"

The following combination of environment variables
establishes the environment to cross compile for a
MightyFrame with hardware floating point:

CENVIRON="CPU=68020,FPU=68881"
LIBROOT="/cross/2fp"

2.3 Compiler Options Affecting Cross-Compilation

There are three compiler options {ce or Id flags) that affect
cross-compilation: — 2, - T, and - G.

B-09-000889-01-B
Page 6 of 16

The — T (ce) and — G (1d) flags allow the loader (1d) to resolve
references between code whose identifiers have been truncated
to eight characters, and code whose identifiers are not or would
not otherwise be truncated. (Pre-5.00 CTIX compilers
automatically truncate identifiers to eight characters.) These two
options are described in more detail in Section 3 of this
document.

The — 2 (cc or Id) option directs the loader on a 5.00 CTIX
machine to produce an executable file whose format is different
from the default 5.00 format; this option is required to cross-
compile for a pre-5.00 CTIX machine.

By default, the format of a.out (executable) files is different on
5.00 CTIX from pre-5.00 CTIX: on a 5.00 CTIX machine, the
loader (ld) produces s.out files in AT8T paged file format,
which will execute only on 5.00 CTIX machines; the loader on
a pre-5.00 CTIX machine produces a.out files in Berkeley paged
file format, which will execute on both pre-5.00 CTIX and 5.00
CTIX machines.

The — 2 flag is thus provided to enable you to produce code on
a 5.00 CTIX machine in Berkeley paged file format, which will
run on all machines. Note that code produced with the — g flag
takes longer to page into memory on a 5.00 CTIX machine than
code produced without it.

Use the file command to identify the file format of an
executable file: output of the file command displayed with — =
identifies the file as being in Berkeley paged file format, output
displayed with — F identifies the file as being in AT8T paged file
Jormal.

B-09-000889-01-B
Page 7 of 16

2.4 How to Get Optimal Code for 68020 Execution

The 32-bit bus to memory on the 68020 permits longword data
aligned on longword addresses to be accessed in half the
number of memory cycles as that required on the 68010
processor. The 68020 C compiler is aware of this feature, and
lays out a program’s data in such a way that 32-bit values reside
at 32-bit memory boundaries. This is true for all data types
except data residing inside C structures.

For backward compatibility reasons, the elements inside a struct
remain aligned using the 68010 scheme, which places 32-bit
values on 16-bit boundaries in some cases. You can achieve an
incremental efficiency improvement by hand-aligning the 32-bit
struct elements in your code to 32-bit boundaries.

For example, the following C structure is not aligned correctly
for optimal 68020 execution:

struct example {

int fieldl;
short field?2;
int field3;

2

For correct 32-bit alignment in this example, either pad the
structure (add a short to insert two slack bytes between field2
and field3), or reverse the order of field2 and field3.

Note that some Convergent libraries and kernel routines have
been compiled using the old alignment scheme: these structs
should not be changed or they will no longer correspond to the
definitions in force when the code was compiled.

B-09-000889-01-B
Page 8 of 16

2.5 How to Add Your Own Libraries to be Used When Cross-
Compiling

This section describes how to add libraries to support each of
three possible machine configurations.

You will probably want to provide a different library for each
architecture if your goal is to achieve optimal performance or if
the library performs floating point operations. If, however, a
library does not perform floating point, it can be built for the
68010 architecture, and code linked with it will run on any of
the three machines.

Any library you create to be used for cross-compilation should
be installed in the appropriate subdirectory under /eross. This
allows users who have set the CENVIRON, LIBROOT, and
INCROOT environment variables correctly to access your
libraries (along with Convergent’s) by specifying the — 1 option
to cc or (1d).

2.8 Linking Object Files Compiled for Different Machines

This section describes
¢ object file "markings”

o what circumstances allow an object file or library compiled
. for one architecture to be linked with an object file or library
compiled for another architecture

o a.out "markings” resulting from linked objects compiled for
different architectures.

~

In general, it is best to avoid linking object files compiled for
different architectures. In some cases, however, it is useful to

B-09-000889-01-B
Page 9 of 18

do this: for example, to prevent having to support many
versions of libraries.

2.6.1 Object File Markings

When a source file is compiled, the resulting object file is
"marked” (that is, bits are set in the file header) with the type
of CPU and FP_U instructions used.

e The CPU marking is 68010 or 68020. If a compilation for
68020 uses no 68020-specific instructions, the object file is
marked 68010.

o The FPU marking is SOFTWARE, 68881, or no floating
point. (An object file is defined as being compiled for no
floating point if the keywords float and double were not used
and no floating point constants appear in the program.)
Table 1 shows what FPU markings result from the possible
compilation environments.

B-09-000689-01-B
Page 10 of 16

™~

N

Table 1 : FPU Object File Markings

no FPU FPU=SOFTWARE | FPU=68881
specified

code with

no floating none none none

point variables

or constants

code with

Roating SOFTWARE | SOFTWARE 68881

point variables

or constants

To determine how an object file is marked, use the file
command.
~

Note that when the file command is applied to an archived
library, it prints only the archive format of the library: 5.0
archive corresponds to pre-5.00 CTIX archive format, and 5.2
corresponds to 5.00 CTIX archive format. :

To determine how an archived object file is marked, follow this
procedure:

1. edto /tmp.

2. Obtain a list of .o files in the library by using the ar
command with the — t option.

~ For example,

ar — t /lib/libc.a |more

B-09-000889-01-B
Page 11 of 16

3. Extract the .o file from the archive using the ar command
with the — x option. (This does not remove the file from
the library; it only copies the .o file to the current
directory.)

For example,

ar — x /lib/libc.a acct.o

4. Use the file command on the .0 in /tmp (your current
directory).

. For example,

file acct.o

2.6.2 a.outs Resulting From Linked Objects

Most combinations of object files with different markings are
legal. Table 2 shows all possible combinations and the file
markings of their resulting a.outs. Here are some general rules
about linking differently-marked objects:

e Objects with FPU marked SOFTWARE can not be linked
with objects marked 68881.

o In legal combinations, when objects have different file
markings, the a.out is always ™upgraded” to the most
advanced object marking: for example, if a 68010 object
without floating point is linked with a 68020 object with
software floating point, the a.out is marked with 68020 and
software floating point. (Note that this principle applies
equally to normal environments where no cross-compilation
is involved: for example, when a source file that has no
floating point variables or constants references a C run-time

B-08-000689-01-B
Page 12 of 18

function, like printf, that uses floating point, the executable
file is marked with floating point.)

When the upgraded marking of an a.out will conflict with
the value of CENVIRON on the machine doing the linking,
the linker issues a warning and proceeds with the final link.

Table 2 : a.outs Resulting From Linked Objects

10 10+ sw | 20 20+ sw | 20+ 1p
10 10 10+sw | 20 20+sw | 20+ fp
104+ sw || 10+ sw | 10+ sw | 20+sw | 20+ sw | illegal
20 20 20+sw | 20 20+ sw | 20+ 1p
20+ sw || 20+ sw | 20+ sw | 20+ sw | 20+ sw | illegal
20+fp || 20+ fp | illegal 20+ fp | illegal 20+ fp
! Y

B-09-000889-01-B
Page 13 of 18

3. Flexnames
3.1 Implications of the Flexname Feature

"Flexname” is the AT&T term for the feature that allows a C
program identifier (e.g., a variable or function name) to be
longer than eight characters. Support of long identifier names
is a significant part of the AT&T System V.2 standard.

Pre-5.00 CTIX compilers automatically truncate identifiers to
eight characters. For example, when a C program calls the
ISAM procedure StoreISAMRecord, the pre-5.00 compiler
truncates the identifier to StoreISA. (The Store]lSAMRecord
procedure is similarly known to the pre-5.00 CTIX archiver and
ISAM library as StoreISA.)

Porting code written for a machine without flexname support to
a 5.00 CTIX machine is normally very easy. Porting code
written for a machine with flexname support to a pre-5.00 CTIX
machine can introduce bugs that can be difficult to find unless
you are sensitive to flexname-related issues and consequences.

These are the Convergent Technologies program development
products that are impacted by flexnames: the C compiler (cc)
and loader (1d), make, ar, strip, size, nm, as, dump, lint,
cflow, sdb, adb, cxref, prof and convert.

Because of flexname differences in these tools and other
flexname-related issues, we recommend that you recompile
programs wriiten for the pre-5.00 CTIX compiler and essembler
when you recewve 5.00 CTIX soflware.

Note that Convergent Technologies will release new versions of
its libraries that do not presently use flexnames. These are
ISAM, Sort/Merge, Forms, several compiler libraries, and data
communications libraries. Until new versions of these libraries

B-09-000688-01-B
Page 14 of 16

become available, use backward compatibility compiler options
when you link them on a 5.00 CTIX machine.

3.2 Backward Compatibility Options on the Compiler and
Assembler

The C compiler and assembler provide two options to allow you
to link code from the pre-CTIX 5.00 compiler and assembler,
whose identifiers are truncated, with code whose identifiers are
not or would not otherwise be truncated:

s the — T flag tells cc and as to truncate all identifiers to eight
characters and to pass the ~ G option to the loader. The
loader (1d) then resolves references on the basis of the first
eight characters only.

This option causes the 5.00 CTIX compiler and assembler to
behave exactly like the pre-5.00 compiler and assembler
with respect to identifier length.

e the — G flag does notf cause identifiers to be truncated during
compilation, but tells (Id) to use the following algorithm
when it attempts to resolve external references: if two
external names do not initially match and one of them is
exactly eight characters, allow the match if their first eight
characters match and issue a warning. (The warning
message can be suppressed if you specify the — w flag.)

3.3 Converting Your Programs and Libraries to a Flexname
Environment

Note that Convergent Technologies currently supports two
formats for assembly code. At 3.0 we changed the assembler to
the new format and called it mas and mee at 3.0 as and cc where
the old format. At 5.0 asand cc use the new format.

B-09-000889-01-B
Page 15 of 18

The pre-CTIX 5.0 as format is derived from Convergent’s
original, non-optimizing C compiler. This assembler does not
support flexnames.

The new assembler mas supports assembly language format of
Convergent's new, optimizing C compiler mec, introduced at
the 3.00 CTIX release. This assembler supports flexnames.
Note that CTIX 5.00 as format is equivalent to mas and CTIX
5.00 cc is equivalent to mce.

Convergent will be providing a tool to ease the assembly code
conversion process.

These are the steps required to convert your own programs and
libraries to a flexname environment:

1. If there is assembly code, and it uses identifiers longer
than eight characters, convert it by assembling it using the
new assembler.

2. Recompile all the code in your libraries and rebuild your
libraries with the ar utility. Use the 5.00 CTIX version of
ar, since ar uses a new archive format with this release.
Although the loader supports pre-5.00 archive format, we
recommend that you convert all of your libraries.

3. Recompile your C programs, assemble your assembly
programs, and link them with the necessary libraries.

B-08-0006889-01-B
Page 16 of 18

A Py e

