
C O N V E R G E N T T E C H N O L O G I E S

P R O G R A M M E R ' S N O T E S F O R
C C R O S S - C O M P I L A T I O N & F L E X N A M E S

Revised 05/21 /86

Trademark Notice

Convergent Technologies, N G E N , a n d MegaF r ame are
registered t r ademarks of Convergent Technologies, Inc .

M i n i F r a m e , Migh tyFrame , AWS, I W S , P T , GT, CT1X a n d
C T O S are t r ademarks of Convergent Technologies, Inc . C11X
is derived f r o m U N I X Sys tem V sof tware , under l icense f r o m
AT&T. U N I X is a t r ademark of AT&T.

TABLE OF CONTENTS

SECTION TITLE P A G E

1. Introduction 1

2. Cross Compilation Environment 1
2.1 Wha t Code Runs on Which Machines 2
2.2 How to Set U p Your Compilation Envi ronment

for a Specific Target Hardware
Configuration 3

2.3 Compiler Options Affecting Cross-
Compilation 6

2.4 How to Ge t Optimal Code for 68020
Execution 8

2.5 How to Add Your Own Libraries to be Used
When Cross-Comp'iling 9

B-0Q-000S89-01-B
- i i -

*

-9
i

2.6 Linking Object Files Compiled for Different y
Machines 9
2.6.1 Object File Markings 10
2.6.2 a.outs Resulting From Linked

Objects 12

3. Flexnames 14
3.1 Implications of the Flexname Feature 14
3.2 Backward Compatibility Options on the Compiler

and Assembler 15
3.3 Converting Your Programs and Libraries to a

Flexname Envi ronment 15

B-OQ-OOO080-O1-B
- i i -

1. Introduction

The "Software Genera t ion System" is a new se t of compilers,
libraries and utilities tha t allow you to develop applications on a
CTDC-based host machine tha t will run on all CTEX-based target
machines , ie. the Min iFrame , MegaFrame and MightyFrame.

Genera t ing code for any CTIX hardware e n v i r o n m e n t d i f ferent
f r o m tha t of the host machine is called "cross-compiling" or, in
the case of assembler code, "cross-assembling."

The first version of the Software Generat ion System is included
in the MightyFrame release, with the Min iFrame and
MegaFrame versions to follow in 1986. The purpose of such a
system is to simplify the deve lopmen t of an application or user
program for all CTIX architectures through the use of a single
source program, thus making source code easy to control and
maintain.

This d o c u m e n t is divided into two sections: the first section
discusses cross-compilation issues and the second section
discusses flexnames.

2. Cross Compilation Environment

There are three types of architectures to consider when
compil ing your application:

• a 68010 CPU (MiniFrame or MegaFrame) system with no
hardware floating poin t processor

• a 68020 CPU (MightyFrame or MegaFrame with A P 2)
system with no hardware floating point processor

B-09-000689-01-B
Page 1 of 16

• a 68020 CPU (MightyFrame or MegaFrame with A P 2)
system with a 68881 floating poin t processor.

In order to suppor t code generated fo r d i f ferent architectures,
Conve rgen t has provided compilers and libraries tha t have
been buil t for each of the hardware configurations. This section
describes how an end user or a third party vendor can:

• cross-compile to generate code for a specific architecture
d i f fe ren t f rom the host

• cross-compile to generate code tha t runs on all CTIX
machines

• provide libraries to suppor t each configuration.

2.1 Wha t Code Runs on Which Machines

1. Code compiled to run on the 68010 processor with
software floating point runs on all new processors. Thus ,
all existing applications programs that run on Min iF rame
and MegaFrame will run on MightyFrame, except as
follows:

• C applications tha t access certain operat ing system
tables defined in / u s r / i n c l u d e / s y s . Typical examples
are system programs like debuggers, ISAM file
servers , and data communica t ions products.

• Basic, COBOL, F O R T R A N , Pascal, or assembly code
programs linked with C rout ines tha t access certain
operat ing system tables defined in / u s r / i n c l u d e / s y s .

These exceptional cases require tha t you compile a
separate version for each target sys tem.

B-09-000689-01-B
Page 2 of 16

Although the vast majority of 68010 applications run on
the 68020 based systems, they run less efficiently on the
68020 than they would if they were compiled for the
68020 processor. This is because the 68020 based systems
have a more efficient architecture, 32 bit data paths, new
instruction sets, and bet ter compiler optimizations.
Per formance degradation due to a l ignment problems is
avoidable. R e f e r to the subsection, "How to G e t Optimal
Code for 68020 Execut ion."

2. Code tha t is compiled for the 68020 can only run on the
68020.

3. Code tha t is compiled for the 68881 math coprocessor will
only run on machines with the 68881s.

2.2 How to Set Up Your Compilation Environment for a Specific
Target Hardware Configuration

Sett ing u p your compilation e n v i r o n m e n t so tha t you can
cross-compile requires these steps:

1. Include the group CROSS at installation t ime.

W h e n you specify the CROSS group, libraries for cross
compilation are installed as subdirectories of the directory
/ c ross . Each subdirectory contains a / l i b and a / u s r / l i b .

• The directory / c r o s s / l s w contains the libraries
necessary to cross-compile for 68010-based products.

• The directory / c r o 6 s / 2 s w contains the libraries
necessary to cross-compile for 68020 with software
floating point .

B-09-000689-01-B
Page 3 of 16

The directory /eroBs/2fp contains the libraries ^
necessary to cross-compile for 68020 with 68881.

2. Create a subdirectory under / c ross for the target machine
(for example, / c ros s /mega) . Then copy the include files
f rom the target machine and install them on the host in a
new / u s r / i n c l u d e directory under the subdirectory you
have created (fo r example, under
/ c r a s s / m e g a / u s r / i n c l u d e) .

3. Set and export three envi ronment variables:
CENVIRON, LIBROOT, and INCROOT. You can do this
in your .profile for Bourne shell, or .login for C shell, or
directly f rom the shell.

• CENVIRON specifies the target hardware. (The
procedure that installs MightyFrame C H X from tape
sets CENVIRON to CPU = 6 8 0 2 0 in the file
/e tc/profi le .)

H ie value of CENVIRON is enclosed in quotes and is
specified as two keyword strings, separated by a
comma: the first keyword string is CPU (68020 or
68010); the second is floating point (SOFTWARE or
68881).

For example:

C E N V I R O N = " C P U =68020 ,FPU = 6 8 8 8 1 "
export CENVIRON

Note that the default values are 68010 and
SOFTWARE. (Tha t is, if you remove the
CENVIRON setting f rom /e tc /prof i le and CENVIRON
is not otherwise set, the default values are 68010 and

B-09-000689-01-B
Page 4 of 16

SOFTWARE.)

• LIBROOT specifies the location of libraries for the
loader (Id) to search during the final link.

The value of LIBROOT is enclosed in quotes and is
specified as a subdirectory containing the appropriate
libraries. It is recommended that you keep all cross-
compilation libraries under the /cross directory: in
this case, there are three possible values for LIBROOT
(" /c ross / I sw" , " /cross /2s w", and " /cross /2fp") . The
value of this variable is prepended to the directories
the loader normally searches.

For example:

LIBROOT="/c ross /2 fp"
export LIBROOT
cc myprog.c - lm

Note with respect to this example that if LIBROOT
were no t set, the loader would search the library in
/ l i b / I i bm . a in order to complete the linking. With the
LIBROOT variable set as above, the loader searches
the file / c r o e s / 2 f p / l i b / l i b m . a instead.

Also note that the LIBROOT setting does not affect
the search path of libraries whose full path name is
specified on the command line.

• The INCROOT envi ronment variable specifies the set
of include files to be used for cross development.

The value of INCROOT is enclosed in quotes and is
specified as a subdirectory containing the appropriate

B-09-000689-01-B
Page 5 of 16

include files (fo r example, / c r o s s / m e g a) . As explained
earlier, the include files directly under / u s r / i n c l u d e
are equivalent fo r all CTDC based machines , b u t a
small n u m b e r of the da ta s t ructures defined in
/ u s r / i n c l u d e / s y s differ among the three machines .

E X A M P L E S O F POSSIBLE E N V I R O N M E N T
V A R I A B L E COMBINATIONS

The following combinat ion of e n v i r o n m e n t variables
establishes the e n v i r o n m e n t to cross compile for a
Min iFrame (the compilation requires system header
files and thus the appropriate include files):

C E N V I R O N = " C P U = 6 8 0 1 0 , F P U = S O F T W A R E "
L I B R O O T = " /c ross / I sw"
I N C R O O T = " / c r o s s / m i n i "

• W

The following combinat ion of e n v i r o n m e n t variables
establishes the env i ronmen t to cross compile for a
MightyFrame with software floating point:

C E N V I R O N = " C P U = 6 8 0 2 0 ,FPU = S O F T W A R E "
L I B R O O T = " / c r o s s / 2 s w "

The following combinat ion of e n v i r o n m e n t variables
establishes the e n v i r o n m e n t to cross compile for a
MightyFrame with hardware floating point:

C E N V I R O N = " C P U = 6 8 0 2 0 , FPU = 6 8 8 8 1 "
L I B R O O T = " / c r o s s / 2 f p "

2.3 Compiler Options Affecting Croes-Compilation
v v

There are three compiler opt ions (cc or Id flags) tha t affect ^ ^
cross-compilation: — — T, and — G.

B-09-000689-01-B
Page 6 of 16

The — T (c c) and — G (Id) flags allow the loader (Id) to resolve
references between code whose identifiers have been truncated
to eight characters, and code whose identifiers are not or would
no t otherwise be truncated. (Pre-5.00 CTEX compilers
automatically truncate identifiers to eight characters.) These two
options are described in more detail in Section 3 of this
document .

The — t (cc or Id) option directs the loader on a 5.00 CTIX
machine to produce an executable file whose format is different
f rom the default 5.00 format; this option is required to cross-
compile for a pre-5.00 CTIX machine.

By default, the format of a .ou t (executable) files is different on
5.00 CTIX from pre-5.00 CTIX: on a 5.00 CTIX machine, the
loader (Id) produces a .ou t files in AT&T paged file format,
which will execute only on 5.00 CTIX machines; the loader on
a pre-5.00 CTIX machine produces a .ou t files in Berkeley paged
file format, which will execute on both pre-5.00 CTIX and 5.00
CTIX machines.

The — t flag is thus provided to enable you to produce code on
a 5.00 CTDC machine in Berkeley paged file format, which will
run on all machines. Note that code produced with the — t flag
takes longer to page into memory on a 5.00 CTIX machine than
code produced without it.

Use the file command to identify the file format of an
executable file: ou tpu t of the file command displayed with — e
identifies the file as being in Berkeley paged file format, ou tput
displayed with — F identifies the file as being in AT&T paged file
format.

B-09-000689-01-B
Page 7 of 16

2.4 How to Get Optimal Code for 88020 Execution V u i

The 32-bit bus to memory on the 68020 permits longword data
aligned on longword addresses to be accessed in half the
n u m b e r of m e m o r y cycles as that required on the 68010
processor. The 68020 C compiler is aware of this fea ture , and
lays o u t a p rogram's data in such a way tha t 32-bit values reside
at 32-bit m e m o r y boundaries . This is t rue for all data types
except data residing inside C s t ructures .

F o r backward compatibility reasons, the e lements inside a struct
remain aligned using the 68010 scheme, which places 32-bit
values on 16-bit boundar ies in some cases. You can achieve an
incremental efficiency improvemen t by hand-aligning the 32-bit
struct e lements in your code to 32-bit boundaries .

F o r example , the following C structure is n o t aligned correctly
fo r opt imal 68020 execut ion:

s t ruc t example {
int fieldl;
sho r t field2;
in t field3;

};

F o r correct 32-bit a l ignment in this example , ei ther pad the
s t ructure (add a short to inser t two slack bytes between field2
and field3), or reverse the order of field2 and field3.

Note tha t some Convergen t libraries and kernel rout ines have
been compiled using the old a l ignment scheme: these structs
should n o t be changed or they will no longer correspond to the
definitions in force when the code was compiled.

w

B-09-000689-01-B
Page 8 of 16

2.5 How to Add Your Own Libraries to be Used When Cross-
Compiling

This section describes how to add libraries to suppor t each of
three possible machine configurations.

You will probably want to provide a d i f ferent library for each
architecture if your goal is to achieve optimal per formance or if
the library pe r fo rms floating poin t operat ions. If , however , a
library does n o t per form floating point , it can be buil t fo r the
68010 architecture, and code linked with it will run on any of
the three machines .

A n y library you create to be used for cross-compilation should
be installed in the appropriate subdirectory under / c ross . This
allows users who have se t the CENVIRON, LIBROOT, and
I N C R O O T e n v i r o n m e n t variables correctly to access your
libraries (a long with Convergen t ' s) by specifying the — 1 option
to cc or (Id) .

2.6 Linking Object Files Compiled for Different Machines

This section describes

• object file "markings"

• wha t circumstances allow an object file or library compiled
for one architecture to be linked with an object file or library
compiled for ano ther architecture

• a -ou t "markings" result ing f r o m linked objects compiled for
d i f ferent architectures.

In general, it is bes t to avoid linking object files compiled for
d i f ferent architectures. In some cases, however , it is usefu l to

B-09-000689-01-B
Page 9 of 16

do this: for example, to prevent having to support many
versions of libraries.

2.6.1 Object File Markings

When a source file is compiled, the resulting object file is
"marked" (that is, bits are set in the file header) with the type
of CPU and FPU instructions used.

• The CPU marking is 68010 or 68020. If a compilation for
68020 uses no 68020-specific instructions, the object file is
marked 68010.

• The FPU marking is SOFTWARE, 68881, or no floating
point. (An object file is defined as being compiled for no
floating point if the keywords float and double were not used
and no floating point constants appear in the program.) v j
Table 1 shows what FPU markings result f rom the possible
compilation environments .

B-09-000689-01-B
Page 10 of 16

Table 1 : F P U Object Fi le M a r k i n g s

no FPU
specified

F P U = S O F T W A R E F P U = 6 8 8 8 1

code with

no floating

point variables

or constants

none none none

code with
floating

point variables

or constants

S O F T W A R E S O F T W A R E 68881

To determine how an object file is marked, use the file
command.

Note that when the file command is applied to an archived
library, it prints only the archive format of the library: 5.0
archive corresponds to pre-5.00 CTIX archive format, and 5.2
corresponds to 5.00 CTIX archive format.

To determine how an archived object file is marked, follow this
procedure:

1. cd to / t a p .

2. Obtain a list of .o files in the library by using the a r
command with the — t option.

For example,

a r - t / l i b / l i bc . a |more

B-09-000689-01-B
Page 13 of 16

3. Extract the .o file from the archive using the a r command ^ ^
with the — x option. (This does not remove the file f rom
the library; it only copies the .o file to the current
directory.)

For example,

a r — x / ! ib / l ibc . a acct .o

4. Use the file command on the .o in / t m p (your current
directory).

. For example,

file acct .o

2.6.2 a.outs Resulting From Linked Objects

M o s t combinations of object files with different markings are
legal. Table 2 shows all possible combinations and the file
markings of their resulting a .outs . Here are some general rules
about linking differently-marked objects:

. Objects with FPU marked SOFTWARE con not be linked
with objects marked 68881.

• In legal combinations, when objects have different file
markings, the a .ou t is always "upgraded" to the most
advanced object marking: for example, if a 68010 object
without floating point is linked with a 68020 object with
software floating point, the a .ou t is marked with 68020 and
software floating point. (Note that this principle applies
equally to normal environments where no cross-compilation
is involved: for example, when a source file that has no
floating point variables or constants references a C run-t ime

B-09-000689-01-B
Page 12 of 16

function, like print/, that uses floating point, the executable
file is marked with floating point.)

When the upgraded marking of an a . ou t will conflict with
the value of CENVIRON on the machine doing the linking,
the linker issues a warning and proceeds with the final link.

Table 2 : a.outs Resu l t ing From L i n k e d Objects

10 10+ sw 20 20+ sw 20+ fp

10 10 10+ sw 20 20+ sw 20+ fp

10+ sw 10+ sw 10+ sw 20+ sw 2 0 + s w illegal

20 20 20+ sw 20 20+ sw 20+ f p

20+ sw 20+ sw 20+ sw 2 0 + s w 20+ sw illegal

2 0 + f p 2 0 + f p illegal 20+ fp illegal 2 0 + f p

B-09-000689-01-B
Page 13 of 16

3. Flexnames

3.1 Implications of the Flexname Feature

"Flexname" is the A T & T term for the feature tha t allows a C
program identifier (e.g., a variable or funct ion name) to be
longer than eight characters. Suppor t of long identifier names
is a significant par t of the A T & T System V.2 standard.

Pre-5.00 CTIX compilers automatically truncate identifiers to
e ight characters. Fo r example, when a C program calls the
ISAM procedure StorelSAMRecord, the pre-5.00 compiler
t runcates the identifier to StorelSA. (The StorelSAMRecord
procedure is similarly known to the pre-5.00 CTDC archiver and
ISAM library as StorelSA.)

Port ing code written for a machine without f lexname suppor t to
a 5.00 CTDC machine is normally very easy. Por t ing code
written for a machine with f lexname suppor t to a pre-5.00 CTIX ^ ^
machine can introduce bugs tha t can be difficult to find unless
you are sensit ive to flexname-related issues and consequences .

These are the Convergent Technologies program deve lopmen t
products tha t are impacted by flexnames: the C compiler (cc)
and loader (Id) , m a k e , a r , s t r ip , size, n m , as, dump , l in t ,
cflow, sdb , adb, cxref, prof and convert .

Because of flexname differences in these tools and o ther
flexname-related issues, we recommend that you recompile
programs written for the pre-5.00 CTIX compiler and assembler
when you receive 5.00 CTIX software.

Note tha t Convergent Technologies will release new vers ions of
its libraries tha t do n o t presently use flexnames. These are
ISAM, Sor t /Merge , Forms , several compiler libraries, and data
communica t ions libraries. Unt i l new vers ions of these libraries

B-09-000689-01-B
Page 14 of 16

become available, use backward compatibility compiler options
when you link them on a 5.00 CTIX machine.

3.2 Backward Compatibility Options on the Compiler and
Assembler

The C compiler and assembler provide two options to allow you
to link code from the pre-CTTX 5.00 compiler and assembler,
whose identifiers are truncated, with code whose identifiers are
no t or would not otherwise be truncated:

• the — T flag tells cc and a s to truncate all identifiers to eight
characters and to pass the — G option to the loader. The
loader (Id) then resolves references on the basis of the first
eight characters only.

This option causes the 5.00 CTIX compiler and assembler to
behave exactly like the pre-5.00 compiler and assembler
with respect to identifier length.

• the — G flag does not cause identifiers to be truncated during
compilation, but tells (Id) to use the following algorithm
when it attempts to resolve external references: if two
externa] names do not initially match and one of them is
exactly eight characters, allow the match if their first eight
characters match and issue a warning. (The warning
message can be suppressed if you specify the — "w flag.)

3.3 Converting Your Programs and Libraries to a Flexname
Environment

Note that Convergent Technologies currently supports two
formats for assembly code. A t 3.0 we changed the assembler to
the new format and called it mas and mcc at 3.0 as and cc where
the old format. A t 5.0 as and ee use the new format.

B-09-000689-01-B
Page 15 of 16

The pre-CTIX 5.0 as format is derived from Convergent 's
original, non-optimizing C compiler. This assembler does not
support flexnames.

The new assembler mas supports assembly language format of
Convergent 's new, optimizing C compiler mcc, introduced at
the 3.00 CTIX release. This assembler supports flexnames.
Note that CTIX 5.00 as format is equivalent to mas and CTIX
5.00 ec is equivalent to mcc.

Convergent will be providing a tool to ease the assembly code
conversion process.

These are the steps required to convert your own programs and
libraries to a flexname environment:

If there is assembly code, and it uses identifiers longer
than eight characters, convert it by assembling it using the
new assembler.

2. Recompile all the code in your libraries and rebuild your
libraries with the ar utility. Use the 5.00 CTDC version of
ar, since ar uses a new archive format with this release.
Although the loader supports pre-5.00 archive format, we
recommend that you convert all of your libraries.

3. Recompile your C programs, assemble your assembly
programs, and link them with the necessary libraries.

B-09-000689-01-B
Page 16 of 16

