
C T I X O P E R A T I N G S Y S T E M M A N U A L

Version C

Volume 4

Convergent Technologies is a registered trademark of
Convergent Technologies, Inc.

Convergent, CTIX, S/80, S/280, S/480, S/640, and S/4040 are trademarks of

Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent Technologies under license from

AT&T. UNIX and RFS are trademarks of AT&T.

Material excerpted from the UNIX System V, Release 3.2 System Administrator's/User s

Reference Manual and Programmer's Reference Manual is Copyright 1989 by AT&T

Technologies. Reprinted by permission.

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

This manual was prepared on a Convergent Technologies S/640 Computer System and
was printed on an Apple LaserWriter II Laser Printer.

Second Edition (November 1989) 09-02265-01
Update Notice 1 (November 1990) 09-02578

Copyright © 1990 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. No part of this document may be reproduced, transmitted, stored in a
retrieval system, or translated into any language without the prior written consent of
Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Convergent Technologies reserves the right
to revise this publication and to make changes from time to time in its content without
being obligated to notify any person of such revision or changes.

TABLE OF CONTENTS: VOLUME 4

H o w to Use This M a n u a l vii

4. File F o r m a t s

intro introduction to file fo rmats
a.out c o m m o n assembler and link editor output
acct per-process account ing file fo rmat
aliases aliases file for sendmai l
ar c o m m o n archive file fo rmat
c f t ime language specif ic strings
checkl is t list of file systems processed by fsck and ncheck
core fo rmat of core image file
cpio fo rmat of cpio archive
cprof i le setting up a C shell env i ronment at login t ime
dir fo rmat of directories
dirent file system independent directory entry
errfi le error-log file fo rmat
expor ts NFS file systems export conf igurat ion file
filehdr file header for c o m m o n object files

fs format of system vo lume
fspec fo rmat specif icat ion in text files
fs tab file-system-table
ga teways routed configurat ion file
ge t tydefs speed and terminal settings used by getty

gps graphical primit ive string, format of graphical files
g roup group file
hosts list of hosts on ne twork
inetd.conf conf igurat ion file for inetd (internet " s u p e r - s e r v e r ")
inittab script for the init process
inode format of an i -node
issue issue identi fication file
ldfcn c o m m o n object file access rout ines
limits file header for implementat ion-spec i fic constants
l inenum line number entries in a c o m m o n object file
loginlog log of fai led login at tempts
mas ter master device informat ion table
mnt tab mounted file sys tem table
netcf Ne twork Conf igura t ion File

netrc login file for remote ne tworks
ne tworks names and n u m b e r s for the internet
p a s s w d password file
plot graphics in ter face
prof i le setting u p an env i ronment at login t ime
protocols list of Internet protocols
queuedef s a t /batch/cron queue descr ipt ion file
re loc relocation informat ion for a c o m m o n object file
resolver resolver configurat ion file
r fmas te r Remote File Sharing n a m e server master file

UPDATE -111 - 12/90

rhosts r emote equivalent users

rmtab remotely mounted file system table
rpc Sun rpc p rogram number data base
r tab Remote I /O Processor conf igurat ion table
sccsfile fo rma t of S C C S file
scnhdr section header for a c o m m o n objec t file
s c r_dump format of curses screen image file.
services list of Internet services
syms c o m m o n object file symbol table fo rmat
sys tem system descr ipt ion file
tapedrives tape drive specific informat ion used by the /etc/ tapeset c o m m a n d .
term fo rmat of compi led te rm file.
t e rmcap terminal capabil i ty data base
te rminfo terminal capabil i ty data base
t imezone set defaul t system t ime zone
t tytype list of terminal types by terminal n u m b e r
unistd file header for symbol ic constants
u t m p u t m p and w t m p entry formats

5. Misce l laneous Facilit ies

introduction to misce l lany
configurat ion file for uucp communica t ions lines

A C U / m o d e m call ing protocols
m a p of A S C n character set

user env i ronmen t
special character def ini t ions for eqn and neqn

file control opt ions
macros for format t ing manua l pages

• ma th funct ions and constants
macros for format t ing papers

. . . . the M M macro package for format t ing documen t s
. . . the macro package for format t ing a pe rmuted index

text format t ing macros
a troff macro package for typesett ing v iew graphs and slides

prof i le within a funct ion
regular express ion compi le and match rout ines

data re turned by stat sys tem call
convent ional names for terminals

pr imi t ive system data types
m a c h i n e - d e p e n d e n t values

handle variable a rgument list

6. G a m e s

m t r o introduct ion to games
advent explore Colossal Cave
ari thmetic provide drill in n u m b e r facts
back the g a m e of b a c k g a m m o n
bj the g a m e of black j ack
craps the g a m e of craps
fish play " G o F i s h "
for tune print a r andom, hopefu l ly interesting, adage

intro .
Devices
Dialers
ascii
environ
eqnchar
fcntl .
m a n .
math
m e .
m m . .
mptx
m s . .
mv . .
prof . .
r egexp ,
stat . .
term .
types .
values .
varargs

UPDATE - iii - 12/90

h a n g m a n guess the word
maze generate a m a z e
m o o guessing g a m e
number conver t Arabic numera l s to Engl ish
quiz test your knowledge
trk trekkie game
ttt t ic-tac-toe
w u m p the game of hun t - the -wumpus

7. Special Files

intra introduction to special files

arp Address Resolut ion Protocol
c lone open any minor device on a S T R E A M S driver
console console terminal
disk general disk driver
dr ivers loadable device dr ivers
e n Ethernet Processor
err error- logging in ter face
i cmp Internet Control Message Protocol
inet Internet protocol family

tp Internet Protocol
ipt interface for In terphase V/TAPE 3200 hal f - inch tape controller
lo sof tware loopback network interface

' ° g interface to S T R E A M S error logging and event tracing
lp parallel printer interface
m e m system memory in terface
null the null file

prf operat ing system prof i ler
qic interface for Q I C tape
scsi scsi control device
stape SCSI quarter- inch and half - inch tape
s t reamio S T R E A M S ioctl c o m m a n d s
sxt S T R E A M S mult iplexor
tcp Internet Transmiss ion Control Protocol
termio general terminal interface
t imod Transpor t Interface cooperat ing S T R E A M S modu le
t iop terminal accelerator in terface
t irdwr Transport In ter face read/wri te in terface S T R E A M S m o d u l e

tp controll ing t e rmina l ' s local R S - 2 3 2 channels
tty controll ing terminal in terface
udp Internet User Datagram Protocol
v m e V M E bus in terface
v t virtual terminal
w i n d o w window managemen t pr imi t ives

UPDATE - iii - 12/90

FILEHDR (4) FILEHDR (4)

NAME

filehdr - file header for common object files

SYNOPSIS

#include <filehdr.h>

DESCRIPTION

Every common object file begins with a 20-byte header. The following C
struct declaration is used:

struct filehdr

{

fjympir is the byte offset into the file at which the symbol table can be found.
Its value can be used as the offset in fseek(3S) to position an I/O stream to the
symbol table. The operating system optional header is always 36 bytes. The
valid magic numbers are given below.

long f symptr;
long f nsyms;

unsigned short f m a g i c ;
unsigned short f_nscns;
long f t i m d a t ;

unsigned short f o p t h d r ;
unsigned short M l a g s ;

/* magic number */
/* number of sections */
/ • time & date stamp */
/* file ptr to symtab »/
/* # symtab entries */
/* sizeof(opt hdr) */
/* flags */

#define MC66KWRMAGIC 0520
#define MC68KROMAGIC 0521
#define MC68KPGMAGIC 0522

/* writeable text segments */
/* readonly shareable text segments */
/* demand paged text segments */

The value in ftimdat is obtained from the time (2) system call.

Flag bits currently defined are as follows:

#define F R E L F L G 0000001
#define F_EXEC 0000002
#define F L N N O 0000004
#define F_LSYMS 0000010
#define F M I N M A L 0000020
#define F_UPDATE 0000040
#define F_SWABD 0000100

#define F AR32W 0001000

#define F PATCH 0002000

I* relocation entries stripped */
/* file is executable • /
/* line numbers stripped */
/» local symbols stripped */
/ • minimal object file • /
/* update file, ogen produced */
/* file is "pre-swabbed" */
/* non-DEC host, including Convergent
/* Technologies systems */
/* "patchT list in opt hdr */

UPDATE - 1 - 12/90

FILEHDR(4) FILEHDR(4)

The CPU type is encoded in bits 04000 and 010000. The FPU (floating-point
unit) type is encoded in bits 0100000, 040000, and 020000. Macros are defined
to set and extract the CPU and FPU values are as follows:

SETFPU(flag, value)
SETCPU(flag, value)
GETFPU(flag)
GETCPU(flag)

Valid values for CPU are as follows:

#define F_M68010 0
#define F_M66020 1

The new C compiler generates code that works on both MC68020 and
MC68040-based systems. The MC68040 instruction set is a superset of the
MC68020 set; therefore, MC68020 values are valid on MC68040 systems.

Valid values for FPU are as follows:

#define F_NOFPU 0
#define F_SOFT 1
#define F_M68881 2

#define F S K Y 4

SEE ALSO

time(2), fseek(3S), a.out(4).

UPDATE - 2 - 12/90

PASSWD(l) PASSWD(l)

NAME

passwd - password file

DESCRIPTION
The /etc/passwd file contains for each user the following information:

• login name
• encrypted password
• numerical user ID
• numerical group ID
• user name
• initial working directory
• program to use as shell

This is an ASCII file. Each field within each user entry is separated by a colon.
Each user entry is separated by a new-line. If the password field is null, no
password is demanded; if the shell field is null, /bin/sh is used.

The file contains user login information; it has general read permission and can
be used, for example, to map numerical user IDs to names.

Note that if an /etc/shadow file exists, encrypted passwords are stored in the
/etc/shadow file, not in /etc/passwd. The password field remains in
/etc/passwd for compatibility reasons only when /etc/shadow exists. If the
password field in /etc/passwd contains an x, the encrypted password for that
login is stored in the /etc/shadow file. If the login does not have a password,
the password field in /etc/passwd is empty.

If /etc/shadow does not exist and the login has a password, the password field
in /etc/passwd contains the encrypted password.

The encrypted password consists of 13 characters chosen from a 64-character
alphabet (., /, 0-9, A-Z, a-z), except when the password is null, in which case
the encrypted password is also null. Password aging is in effect for a user if the
encrypted password is followed by a comma and a non-null string of characters
from the above alphabet. (Such a string must be introduced in the first instance
by the superuser.)

The first character of the age, M say, denotes the maximum number of weeks
for that a password is valid. A user who attempts to log in after the password
has expired is forced to supply a new one. The next character, m say, denotes
the minimum period in weeks that must expire before the password can be
changed. The remaining characters define the week (counted from the
beginning of 1970) when the password was last changed. (A null string is
equivalent to zero.) M and m have numerical values in the range 0 -63 that
correspond to the 64-character alphabet shown above (for example, 1 = 1 week;

UPDATE -2- 12/90

PASSWD(l) PASSWD(l)

z = 63 weeks). If m = M = 0 (derived from the string . or ..), the user must
change the password at the next login (and the " a g e " disappears from the
password file entry). If m > M (signified by the string . /) , only the superuser
can change the password.

FILES

/etc/passwd
/etc/shadow
/etc/opasswd
/etc/oshadow

SEE ALSO

login(l), passwd(l), passmgmt(lM), a641(3C), getpwent(3C), getspcnt(3X),
group(4).

UPDATE - 2 - 12/90

TIMEZONE (4) TIMEZONE(4)

NAME

timezone - set default system time zone

SYNOPSIS

/etc/TIMEZONE

DESCRIPTION

This file sets and exports the time zone environmental variable TZ.

This file is "dot ted ' ' into other files that must know the time zone.

The syntax of TZ can be described as follows:

TZ zone

/ zone signedjime

/ zone signedjime zone

/ zone signedjime zone dst

zone —> letter letter letter

signedjime —> sign time

/ time

time —> hour

/ hour : minute

/ hour : minute :

dst —»signedjime

/ signedjime ; dstjiate ,

/ ; dst date , dst date

dst date —»julian

/ julian / time

letter a / A / b / B / . . . / z / Z
hour 001011... 123

minute -> 001011... / 59
second 00101 j... 159

julian -> 00110021 ...1366

sign - / +

EXAMPLES

The contents of /etc/TIMEZONE corresponding to the simple example below
could be

Time Zone
TZ=EST5EDT
export TZ

A simple setting for New Jersey could be

TZ=EST5EDT

UPDATE - 1 - 12/90

TXMEZONE(4) TTMEZONE (4)

where EST is the abbreviation for the main time zone, 5 is the difference, in
hours, between GMT (Greenwich Mean Time) and the main time zone, and EDT
is the abbreviation for the alternate time zone. The most complex
representation of the same setting, for the year 1986, is

TZ="EST5:00:(K)EDT4:00:00;117/2:00:00 ,299/2:00:00"

where EST is the abbreviation for the main time zone, 5:00:00 is the difference,
in hours, minutes, and seconds between GMT and the main time zone, EDT is
the abbreviation for the alternate time zone, 4:00:00 is the difference, in hours,
minutes, and seconds between GMT and the alternate time zone, 117 is the
number of the day of the year (Julian day) when the alternate time zone will
take effect, 2:00:00 is the number of hours, minutes, and seconds past midnight
when the alternate time zone will take effect, 299 is the number of the day of
the year when the alternate time zone will end, and 2:00:00 is the number of
hours, minutes, and seconds past midnight when the alternate time zone will
end.

A southern hemisphere setting such as the Cook Islands could be

TZ="KDT9:30KSTl0:00;64/5:00,303/20:00"

This setting means that KDT is the abbreviation for the main time zone, KST is
the abbreviation for the alternate time zone, KST is 9 hours and 30 minutes later
than GMT, KDT is 10 hours later than GMT, the starting date of KDT is the 64th
day at 5 AM, and the ending date of KDT is the 303rd day at 8 PM.

Starting and ending times are relative to the alternate time zone. If the alternate
time zone start and end dates and the time are not provided, the days for the
United States that year will be used and the time will be 2 AM. If the start and
end dates are provided but the time is not provided, the time will be midnight.

NOTES
When the longer format is used, the TZ variable must be surrounded by double
quotation marks as shown.

The system administrator must change the Julian start and end days annually if
the longer form of the TZ variable is used.

Setting the time during the interval of change from the main time zone to the
alternate time zone or vice versa can produce unpredictable results.

SEE ALSO
init(lM), ctime(3C), environ(5), rc2(lM).

UPDATE - 2 - 12/90

DISK(7) DISK(7)

NAME

disk - general disk driver

SYNOPSIS

#include <sys/types.h>

#include <sys/gdisk.h>

#include <sys/gdioctl.h>

DESCRIPTION

The CTIX special files /dev/rdsk/cOdOsO through /dev/rdsk/ctdbcsx and
/dev/dsk/cOdOsO through /dev/dsk/cxdxsjc refer to CTIX device names and
slices, where cx is the controller number, dx is the drive number, sjc is the slice
number, and x is a hexadecimal digit. An r in the name indicates the character
(raw) interface.

A disk is formatted with 512-byte physical sectors. I/O to a raw disk
(/dev/rdsk/cxdxsjc) must be in a multiple of 512 bytes, or else an error
(EINVAL) is returned. Logical block zero contains the Volume Home Block

(VHB), which describes the disk. The VHB is structured to use two physical
sectors as one logical block (1024 bytes).

The following structure defines the VHB:

struct vhbd {
uint magic;
int chksum

struct gdswprt dsk;

/* S/MT disk format code 7

/* adjustment so 32-bit sum starting
from magic for 1K bytes sums to -1 7

/ ' specific description of this disk 7

struct partit partab[MAXSLICE]; /* partition table 7

struct resdes { /* reserved area special files 7

daddr t blkstart; /* start logical block # 7

ushort nblocks; /* length in logical blocks

(zero implies not present) 7

} resmap[8];
/* resmap consists of the following entries:
* loader area

bad block table

* dump area
* down load image file
* Bootable program,
* size determined by a.out format. nblocks=1.
7

char fpulled;
long time;

r dismounted last time? 7

/* time last came on line 7

UPDATE - 1 - 12/90

DISK (7) DISK (7)

struct gdswprt2 dsk2; /* Drive specific parameters */
char minires[38]; /* for future mini/miti frame enhancements"
char sysres[292]; /* custom system area */
struct mntnam mntname[MAXSLICE];

/* names for auto mounting; null
* string means no auto mount
* not used in mitiframe */

char userres[256]; /* user area */

};
struct gdswprt {

char name{6]; /* printf name */
ushort cyls; /* the number of cylinders for this disk */
ushort heads; /* number of heads per cylinder */
ushort psectrk; /'* number of physical sectors per track */
ushort pseccyl; /* number of physical sectors */

/* per cylinder */
char flags; /* floppy density and high tech drive flags */
char step; /* stepper motor rate to controller - ST506 only */
ushort sectorsz; /* size of physical sectors (in bytes) */

};
struct gdswprt2 {

short wpccyl; /* value to program for RWC/WPC - ST506 only */
ushort enetaddr[3];/* Ethernet station address •

* MiniFrame only */
unchar g a p l ; /* Gap size on SMD drives */
unchar gap2;
char filler[28];

};
#define sparesec gapl / ' spare sectors per track */
#define sparecyl gap2 /* spare tracks per cylinder */
#define scinterleave wpccyl /* interleave factor */

struct partit{
union {

uint strk;/* start track number (new style) */
struct {

ushort strk;/* start track # '/
ushort nsecs;/* # logical blocks available to user */

} old;
}sz ;

};

UPDATE -5 - 12/90

DISK (7) DISK (7)

If a VHB is valid, magic is equal to VHBMAGIC and the 32-bit sum of the
VHB's bytes is OxFFFFFFFF (-1); chksum is the adjustment that makes the sum
come out right.

The dsk structure describes the peculiarities of the disk, including deliberate
deviations from the system standard. The dsk.flags field is the bitwise OR of
zero or more of the following constants:

HITECH (ST506 only) If on, head select bit 3 is valid; if off, reduced

write current is valid.

NEWPARTTAB If off, the old style slice (partition) table is in use; if on, the

new style slice table is in use.

RWCPWC (ST506 only) If on, sets reduced write currcnt/write
precompensation.

HITECH Selects write precompensation.

FORMATEXTRA If on, the SMD drive is formatted with an extra sector on

each track. (This sector is ignored by CTIX but is required

for some disk drives, notably the Eagle-XP.)

The dsk.step field specifies a stepper motor rate for the ST506; uses 14 in this
field.

The partab structure divides the disk into slices (partitions).

The fpulled field indicates whether an exchangeable disk was properly removed
from the drive. The system sets this field to 1 when the disk is inserted in the
drive. To clear fpulled, run dismount (\M).

The mntname, minires, and userres arrays are reserved for future use.

The resmap array describes the files that share slice 0 with the VHB. Provision
is made for eight such files, but only five have assigned slots in resmap. Each
resmap entry gives the starting location (logical block number) and length
(logical blocks). A length of zero indicates that the file is not provided. The
first five entries in resmap describe the following:

1. The loader. When the system is reset or turned on, the boot PROM
loads the loader into the loader address and jumps execution to it. The
function of the loader is to search for and load a program that will boot
the system.

On the S/640 and S/480, the loader searches the onboard tape, onboard
(ST506) disks 0 ,1 , and 2, the VME, and the SCSI disks, in that order.

On each disk, the loader checks for a CTIX kernel, which must be a

CTIX executable object file called /unix in the file system in slice 1.

UPDATE -5 - 12/90

DISK (7) DISK (7)

When the loader locates an appropriate program, it preserves the crash
dump table, loads the program it found at the address it was linked at
(0x0 if unknown), and executes it. If no disk contains an appropriate
file, the loader continues searching until an appropriate disk is
inserted.

2. The bad block table, which always begins at logical block 1 of the
disk. Each logical block in the bad block table consists of a four-byte
checksum followed by 127 bad block cells. The checksum is a value
that makes the 32-bit sum of the logical block as OxFFFFFFFF (-1). A
bad block cell is defined by the following structure.

struct bbcell {
ushort cyl; /* the cylinder of the bad block */
ushort badblk; /* the physical sector address of the

bad block within the cylinder cyl */
ushort altblk; /* track number of alternate */
ushort nxtind; /* index into the cell array for next

bad block cell for this cylinder */

};
A single sequence of numbers, starting from zero, identifies the
checksums and cells. For non-SCSI disks, in each cell in use, cyl

identifies a cylinder that contains the bad block; badblk is the physical
block offset within the cylinder of the bad block; altblk identifies the
track that contains the alternate block; nextind (not used in S/MT)
identifies the next cell for a bad block on the same cylinder or, if this is
the last bad block, as zero.

SCSI disks perform their own bad block housekeeping. The bad block
table contains only blocks that CTIX cannot read. At the next attempt
to write to the bad block, CTIX issues a reassign block command to the
SCSI drive. The drive then performs the bad block mapping for that
sector, and the sector number is removed from the bad block table.

3. The dump area. After a reset or system crash, the boot PROM dumps
processor registers, the memory map, a crash dump block, and the
contents of physical memory, until it runs out of room in the dump
area.

UPDATE -5 - 12/90

DISK (7) DISK (7)

4. The download image area. The download images are described by a
table at the beginning of the area. The area is described by the
following array:

struct dldent {

short d s t r t ; /* block displacement from download index 7

short d_sz; /* # of blocks for this entry 7

};
The image number is the index for dldent. The dstrt field is the offset
in bytes of the image from the beginning of the download image area;
d_sz is the size in bytes of the image.

Slice 0 is called the Reserved Area. Only the Volume Home Block and the files
described by resmap can be in the Reserved Area. A formatted disk used by a
working system certainly has at least one more slice.

The ioctl system calls use the following structure:

struct gdioctl {

ushort status; /* status 7

struct gdswprt params; /* description of the disk 7

struct gdswprt2 params2; /* more description of the disk 7

short ctrltyp; /* the type of disk controller 7

short driveno;

};

where status is the bitwise OR of the following constants:

VALID_VHB A valid Volume Header Block has been read.

DRV READY The disk is online.

PULLED Last removal of disk from drive was not preceded by proper
dismount.

params is a gdswprt structure, the same type used in the volume header block.

dsktype is equal to one of the following:

GD_WD1010 for Western Digital 1010 ST506 Controller

GD_WD2010 for Western Digital 2010 ST506 Controller

GD_RAMDISK for RAM Disk Emulator

GD_SMD3200 for Interphase SMD3200 disk controller

GD SCSI for SCSI disk controller

UPDATE - 5 - 12/90

DISK (7) DISK (7)

CTIX understands the following disk ioctl calls:

ioctl(fd, GDIOCTYPE, 0)
Returns GDIOC i f f d is a file descriptor for a disk special file.

iocd(fd, GDGETA, gdcU_ptr)
gdctl_ptr points to a gdioctl structure; ioctl fills the structure
with information about the disk.

iocd(fd, GDSETA, gdctl_ptr)
gdctlj)tr points to a gdioctl structure; ioctl passes the
description of the disk to the disk driver. This is primarily
meant for reading disks created by other kinds of computers.

iocd(fd, GDFORMAT, ptr)
ptr points to formatting information. The disk driver formats
a track.

iocU(fd, GDDISMNT)
ioctl informs the driver that the user intends to remove the
disk from the drive. When this system call successfully
returns, the driver has flushed all data in the buffer cache and
waited for all queued transfers to complete. The last transfer
is to write out the Volume Home Block with \hc fpulled flag
cleared. Once this call returns, the drive is inaccessible until a
new disk is inserted.

iocd(fd, GDPASSTHRU, arg)
arg points to a disk driver-specific command block; gd passes
the command to the specific disk driver untouched, and the
disk driver performs the specific command.

SEE ALSO

iv(l), mknod(lM), ioctl(2).
SISeries CTIX Administrator s Guide.

UPDATE -5 - 12/90

