
CTIX OPERATING SYSTEM MANUAL
Version C
Volume 3

Convergent Technologies is a registered trademark of
Convergent Technologies, Inc.

Convergent, CTIX, S/80, S/280, S/480, S/640, and S/4040 are trademarks of
Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent Technologies under liccnsc from
AT&T. UNIX and RFS are trademarks of AT&T.

Material excerpted from the UNIX System V, Release 3.2 System Administrator' si User s
Reference Manual and Programmer s Reference Manual is Copyright 1989 by AT&T
Technologies. Reprinted by permission.

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

This manual was prepared on a Convergent Technologies S/640 Computer System and
was printed on an Apple LaserWriter II Laser Printer.

Second Edition (November 1989) 09-02264-01
Update Notice 1 (November 1990) 09-02578

Copyright © 1990 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. No part of this document may be reproduced, transmitted, stored in a
retrieval system, or translated into any language without the prior written consent of
Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Convergent Technologies reserves the right
to revise this publication and to make changes from time to time in its content without
being obligated to notify any person of such revision or changes.

TABLE OF CONTENTS: VOLUME 3

How to Use This Manual ix

2. System Calls

intro introduction to system calls and error numbers
access determine accessibility of a file
acct enable or disable process accounting
adjtime correct the time to allow synchronization of the system clock
alarm set a process alarm clock
bind bind a name to a socket
brk change data segment space allocation
chdir change working directory
chmod change mode of file
chown change owner and group of a file
chroot change root directory
close close a file descriptor
connect initiate a connection on a socket
creat create a new file or rewrite an existing one
dup duplicate an open file descriptor
exec execute a file
exit terminate process
fcntl file control
fork create a new process
getdents read directory entries and put in a file
getdtablesize get descriptor table size
gethostid get/set unique identifier of current host
gethostname get/set name of current host
getmsg get next message off a stream
getpeemame get name of connected peer
getpid get process, process group, and parent process IDs
getsockname get socket name
getsockopt get and set options on sockets
gettimeofday get/set date and time
getuid get real user, effective user, real group, and effective group IDs

ioctl control device
kill send a signal to a process or a group of processes
link link to a file
listen listen for connections on a socket
locking exclusive access to regions of a file
lseek move read/write file pointer
mkdir make a directory
mknod make a directory, or a special or ordinary file
mount mount a file system
msgctl message control operations
msgget get message queue
msgop message operations
nfssys common shared NFS system calls
nice change priority of a process

UPDATE -111 - 12/90

notify manage notifications
open open for reading or writing
pause suspend process until signal
pipe create an interprocess channel
plock lock process, text, or data in memory
poll STREAMS input/output multiplexing
profil execution time profile
ptrace process trace
putmsg send a message on a stream
read r e a d from file
recv receive a message from a socket
rmdir remove a directory
select synchronous I/O multiplexing
semctl semaphore control operations
semget get set of semaphores
semop semaphore operations
s e n d send a message to a socket
setpgrp set process group ID
setmd set user and group IDs
shmctl shared memory control operations
shmget get shared memory segment identifier
shmop shared memory operations
shutdown shut down part of a full-duplex conncction
signal specify what to do upon receipt of a signal
s i 8 s e t signal management
socket create an endpoint for communication
s t a t get file status
statfs get file system information
stime t j m c

s w n t e synchronous write on a file
update super block

sysfs get file system type information
syslocal special system requests
time get time
U m e s get process and child process times
uadmin administrative control
u l i m i t get and set user limits
umask set and get file creation mask
umount unmount a file system
uname get name of current CTIX system
unlink remove directory entry
u s t a t get file system statistics
utime set file access and modification times
w a l t wait for child process to stop or terminate
w r i t e write on a file

3. Subroutines and Libraries

m t r o • • introduction to functions and libraries
a641 convert between long integer and base-64 ASCII string
abort generate a SIGABRT
a bs return integer absolute value

UPDATE - iii - 12/90

assert verify program assertion
bessel Bessel functions
bsearch binary search a sorted table
bstring bit and byte string operations
byteorder convert values between host and network byte order
clock report CPU time used
conv translate characters
crypt generate hashing encryption
crypt password and file encryption functions
ctermid generate file name for terminal
ct ime convert date and time to string
ctype character handling
curses terminal screen handling and optimization package
cuserid get character login name of the user
dbm database subroutines
dial establish an out going terminal line connection
directory directory operations
drand48 generate uniformly distributed pseudo-random numbers
dup2 duplicate an open file descriptor
ecvt convert floating-point number to string
end last locations in program
erf error function and complementary error function
exp exponential, logarithm, power, square root functions
fclose close or flush a stream
ferror stream status inquiries
floor floor, ceiling, remainder, absolute value functions
fopen open a stream
fpgetround IEEE floating point environment control
fread binary input/output
frexp manipulate parts of floating-point numbers
fseek reposition a file pointer in a stream
ftw walk a file tree
gamma log gamma function
getc get character or word from a stream
getcwd get path-name of current working directory
getenv return value for environment name
getgrent get group file entry
gethostbyname get network host entry
getlogin get login name
getnetent get network entry
getopt get option letter f rom argument vector
getpass read a password
getprotoent get protocol entry
getpw get name from UID
getpwent get password file entry
getrpcent get rpc entry
getrpcport get RPC port number
gets get a string from a stream
getservent get service entry
getspent get shadow
getut access utmp file entry
hsearch manage hash search tables

UPDATE - iii - 12/90

hypot Euclidean distance function
met Internet address manipulation routines
isnan test for floating point N a N (Not-A-Number)
Dtol convert between 3-byte integers and long integers
ldahread read the archive header of a member of an archive file
ldclose close a common object file
ldfhread read the file header of a common object file
ldgetname retrieve symbol name for common object file symbol table entry
ldlread manipulate line number entries of a common object file function
ldlseek seek to line number entries of a section of a common object file
ldohseek seek to the optional file header of a common object file
ldopen open a common object file for reading
ldrseek seek to relocation entries of a section of a common object file
ldshread read an indexed/named section header of a common object file
ldsseek seek to an indexed/named section of a common object file
ldtbindex compute the index of a symbol table entry of a common object file
ldtbread read an indexed symbol table entry of a common object file
ldtbseek seek to the symbol table of a common object file
libdev manipulate Volume Home Blocks (VHB)
lockf record locking on files
logname return login name of user
lsearch linear search and update
malloc main memory allocator
malloc fast main memory allocator
matherr error-handling function
memory memory operations
mktemp make a unique file name
monitor prepare execution profile
ndbm database subroutines
nlist get entries from name list
nlsgetcall gel cl ient 's data passed through the listener
nlsprovider get name of transport provider
nlsrequest format and send listener service request message
ocurse optimized screen functions
otermcap terminal independent operations
perror system error messages
plot graphics interface subroutines
popen initiate pipe to/from a process
printf print formatted output
putc put character or word on a stream
putenv change or add value to environment
putpwent write password file entry
puts put a string on a stream
putspent write shadow password file entry
qsort quicker sort
rand simple random-number generator
remd routines for returning a stream to a remote command
regcmp compile and execute regular expression
resolver resolver routines
rexec return stream to a remote command
scanf convert formatted input
setbuf assign buffering to a stream

UPDATE - v i - 12/90

set jmp non-local goto
stnh hyperbolic functions
sleep suspend execution for interval
sputl access long integer data in a machine-independent fashion
ssignal software signals
stdio standard buffered input/output package

stdipc standard interprocess communication package

string string operations
strtod convert string to double-precision number
strtol convert string to integer
swab swap bytes
system issue a shell command
t_accept accept a connect request
t_alloc allocate a library structure
t_bmd bind an address to a transport endpoint
t_close close a transport endpoint
t_connect establish a connection with another transport user
t_error produce error message
t_free free a library structure
t_getinfo get protocol-speci fic service information
t_getstate get the current state
t j i s t e n listen for a connect request
t j o o k look at the current event on a transport endpoint
t_open establish a transport endpoint
t_optmgmt manage options for a transport endpoint
t_rcv receive data or expedited data sent over a connection
t_rcvconnect receive the confirmation from a connect request
t_rcvdis retrieve information from disconnect
t_rcvrel acknowledge receipt of an orderly release indication
t_rcvudata receive a data unit
t_rcvuderr receive a unit data error indication
t_snd send data or expedited data over a connection
t_snddis send user-initiated disconnect request
t_sndrel initiate an orderly release
t_sndudata send a data unit
t_sync synchronize transport library
t_unbind disable a transport endpoint
tmpfile create a temporary file
tmpnam create a name for a temporary file
trig trigonometric functions
tsearch manage binary search trees
t tyname find name of a terminal
ttyslot find the slot in the utmp file of the current user
ungetc push character back into input stream
vprintf print formatted output of a varargs argument list

UPDATE - iii - 12/90

FPGETROUND (3C) FPGETROUND(3C)

N A M E

fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky - IEEE
floating-point environment control

S Y N O P S I S

#include <ieeefp.h>

typedef enum {
F P R N = 0 ,

F P R Z = 0 x l 0 ,

F P R M = 0 x 2 0 ,

F P R P = 0 x 3 0 ,

} f p r n d ;

f p r n d fpgetround();

/* round to nearest *l
/* round to zero (truncate) */
I* round to minus */
I* round to plus */

fp rnd fpsetround(rnddir)
fp rnd r n d d i r ;

#define
#define

fpexcept
FP X INV

int
0x80 /* invalid operation • /

#define F P X O F L 0x40
/* exception *l
/* overflow */

#define FP X UFL 0x20
/* exception */
/* underflow */

#deFme FP X DZ 0x10
/* exception */
/* divide-by-zero */

#define FP X IMP 0x08
/* exception */
I* imprecise (loss */
/* of precision) */

fpexcept fpgetmask();

fpexcept fpsetmask(mask);
fp except mask;

fp except fpgetsticky();

fp except fpsetsticky(sticky);
fp except sticky;

D E S C R I P T I O N

These routines let the user change the behavior on the occurrence of any of five
floating-point exceptions: divide-by-zero, overflow, underflow, imprecise
(inexact) result, and invalid operation. The routines also change the rounding
mode for floating-point operations. When a floating-point exception occurs,

UPDATE - 1 12/90

FPGETROUND (3C) FPGETROUND(3C)

the corresponding sticky bit is set (1), and if the mask bit is enabled (1), the trap
takes place. The routines are valid only on systems that are equipped with
floating-point accelerator hardware; otherwise, floating-point operations are
compiled differendy and handled in software.

The fpge t round() routine returns the current rounding mode.

The fpsetround() routine sets the rounding mode and returns the previous
rounding mode.

T h e f p g e t m a s k () routine returns the current exception masks.

The fpsetmask() routine sets the exception masks and returns the previous
setting.

Thefpgets t icky () routine returns the current exception sticky flags.

The fpsetsticky () routine sets (clears) the exception sticky flags and returns the
previous setting.

The environment for Convergent computers with either a MC68040 CPU or a
combined MC68020 CPU with MC68881 or MC68882 floating-point processor
follows:

• Rounding mode set to nearest(FP_RN)

• Divide-by-zero

• Floating-point overflow

• Invalid operation traps enabled

S E E A L S O

isnan(3C).

C A V E A T S

The utilities described in this man page are applicable only for computers that
are equipped with either the MC68040 microprocessor, or both the MC68020
microprocessor CPU and the MC68881, or the MC68882 microprocessor for a
hardware-floating point accelerator. Programs that invoke these utilities are run
on computers without the floating-point hardware and result in no operation and
no returned error message for the particular function.

One must clear the sticky bit to recover from the trap and to proceed. If the
sticky bit is not cleared before the next trap occurs, a wrong exception type may
be signaled.

For the same reason, when calling fpsetmask(), the user should make sure that
the sticky bit corresponding to the exception being enabled is cleared.

UPDATE - 1 12/90

FPGETROUND (3C) FPGETROUND(3C)

WARNINGS
The fpsetsticky () routine modifies all sticky flags; fpsetmask () changes all
mask bits.

C requires truncation (round to zero) for floating point to integral conversions.
The current rounding mode has no effect on these conversions.

UPDATE - 1 12/90

GETSPENT(3X) GETSPENT(3X)

NAME
getspent, getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf - get
shadow password file entry

SYNOPSIS
#include <shadow.h>

struct spwd *getspent ()

struct spwd * getspnam (name)
char *name;

int lckpwdf ()
int ulckpwdf ()

void setspent ()

void endspent ()

struct spwd *fgetspent (fp)
FILE *fp;

DESCRIPTION
The getspent and getspnam routines each return a pointer to an object with the
following structure containing the broken-out fields of a line in the /etc/shadow
file. Each line in the file contains a shadow password structure (spwd),
declared in the < shadow.h > header file:

struct spwd{
char • s p n a m p ;
char *sp_pwdp;
long s p j s t c h g ;
long sp min;
long sp_max;

The getspent routine, when first called, returns a pointer to the first spwd
structure in the file; thereafter, it returns a pointer to the next spwd structure in
the file. This way, successive calls can be used to search the entire file. The
getspnam routine searches from the beginning of the file until a login matching
name is found, and then returns a pointer to the particular structure in which it
was found. The getspent and getspnam routines populate the sp_min or
sp_max field with -1 if the corresponding field in /etc/shadow is empty. If an
end-of-file or an error is encountered on reading, these functions return a NULL
pointer.

The /etc/.pwd.lock file is the lock file, which is used to coordinate modification
access to the password files in /etc/passwd and /etc/shadow. The lckpwdf()

UPDATE 12/90

GETSPENT(3X) GETSPENT(3X)

and ulckpwdfO routines are used to gain modification access to the password
files, through the lock file. A process first uses IckpwdfO to lock the lock file,
thereby gaining exclusive rights to modify the /etc/passwd or /etc/shadow file.
Upon completing modifications, a process should release the lock on the lock
file by using ulckpwdfi). This lock mechanism prevents simultaneous
modification of the password files.

The IckpwdfO routine attempts to lock the file /etc/.pwd.lock. If the file is
already locked, IckpwdfO tries for 15 seconds to lock the file. If unsuccessful,
IckpwdfO returns a -1; if successful within 15 seconds, IckpwdfO returns a
return code other than -1.

The ulckpwdfO routine attempts to unlock the file /etc/.pwd.lock. If
successful, ulckpwdfO returns a 0; if unsuccessful (if the file is not locked),
ulckpwdfO returns a -1.

A call to the setspent routine has the effect of rewinding the shadow password
file to allow repeated searches. The endspent routine may be called to close the
shadow password file when processing is complete.

The fgetspent routine returns a pointer to the next spwd structure in the stream
fp, which matches the format of /etc/shadow.

FILES
/etc/shadow
/etc/passwd
/ e t c / . p w d . l o c k

SEE ALSO
putspent(3X).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

CAVEAT
All information is contained in a static area, so it must be copied if it is to be
saved.

WARNING
If a program not otherwise using standard I/O uses this routine, the size of the
program increases more than might be expected.

This routine is for internal use only; compatibility is not guaranteed.

UPDATE - 2 - 12/90

MONITOR (3C) MONITOR (3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)();
WORD •buffer;
int bufsize, nfunc;

DESCRIPTION
An executable program created by cc-p, it automatically includes calls for
monitor with default parameters; monitor need not be called explicitly.

monitor is an interface to profit (2). lowpc and highpc are the addresses of two
functions; buffer is the address of a (user-supplied) array of bufsize WORDs
(defined in the <mon.h> header file), monitor arranges to record a histogram
of periodically sampled values of the program counter, and of counts of calls of
certain functions, in the buffer. The lowest address sampled is that of lowpc
and the highest is just below highpc. lowpc may not equal 0 for this use of
monitor. At most, nfunc call counts can be kept; only calls of functions
compiled with the profiling option -p of cc(l) are recorded.

prof(1) can then be used to examine the results.

The name of the file written by monitor is controlled by the environment
variable PROFD1R. If PROFDIR does not exist, mon.out is created in the current
directory. If PROFDIR exists but has no value, monitor does not do any
profiling and creates no output file. Otherwise, the value of PROFDIR is used as
the name of the directory in which to create the output file. If PROFDIR is
dirname, then the file written is dirname!pid.mon.out, where pid is the
program's process ID. (When monitor is called automatically by compiling via
cc -p, the file created is dirname!pid.progname, where progname is the name of
the program.)

The following discussion is a sketch of monitor usage.

For the results to be significant, especially where there are small, heavily used
routines, it is suggested that the buffer be no less than one half of the range of
locations sampled.

To profile the entire program, put the following at the start of main():

extern etext;

monitor ((int (*)())2, &etext, buf, bufsize, nfunc);

UPDATE -2- 12/90

MONITOR (3C) MONITOR (3C)

etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results, put the following at the end
of main():

monitor ((int (*)())0, 0, 0, 0, 0);

Do not compile with the -p option. Run the program and use prof(1) to view
the results in the output file mon.out.

FILES
mon.out

SEE ALSO
cc(l), prof(l), profil(2), end(3C).

BUGS
The "dirnamelpid.mon.oul" form does not work; the
"dirnameIpid.progname" form (automatically called via cc -p) docs work.

UPDATE - 2 - 12/90

SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

SLEEP(3C)

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than that
requested for two reasons: (1) because scheduled wakeups occur at fixed
1-second intervals (on the second, according to an internal clock), and (2)
because any caught signal terminates the sleep following execution of that
signal's catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount due to the scheduling of other activity in the
system. The value returned by sleep will be the "unslept" amount (the
requested time minus the time actually slept), in case the caller had an alarm set
to go off earlier than the end of the requested sleep time, or premature arousal
due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or
some other signal) occurs. The previous state of the alarm signal is saved and
restored. The calling program may have set up an alarm signal before calling
sleep. If the sleep time exceeds the time till such alarm signal, the process
sleeps only until the alarm signal would have occurred. The caller's alarm
catch routine is executed just before the sleep routine returns. But if the sleep
time is less than the time till such alarm, the prior alarm time is reset to go off at
the same time it would have without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

WARNING
sleep uses signal (2), not sigset(2), to reset the caller's SIGALRM handler
routine. Therefore, the signal action is reset to its default action on execution of
the SIGALRM handler. This is probably not what the programmer intended if
sigset(2) had originally been used to set the signal action.

sleep uses a longjmp, which returns to the sleep context when the alarm(2)
signal handler routine is executed. This may cause premature preemption and
loss of context from other nested signal handler routines.

UPDATE 12/90

