
CTIX OPERATING SYSTEM MANUAL

Version C
Volume 2

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Art Designer, Chart Designer, ClusterCard, ClusterNet,
ClusterShare, Context Manager/VM, Convergent, CT-DBMS,

CT-MAJL, CT-Net, CTIX, CTOS, CTOS/VM, DISTRIX, Document
Designer, The Operator, AWS, CWS, IWS, S/50, S/120, S/160, S/220,
S/320, S/640, S/1280, Multibus, TeleCluster, Voice/Data Services,

Voice Processor, WGS/Calendar, WGS/Desktop Manager,
WGS/Mail, and X-Bus arc trademarks of

Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent Technologies under licensc from
AT&T. UNIX and RFS are trademarks of AT&T.

Material excerpted from the UNIX System V, Release 3.2 System Administrator' si User s
Reference Manual and Programmer s Reference Manual is Copyright 1989 by AT&T
Technologies. Reprinted by permission.

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

This manual was prepared on a Convergent Technologies S/320 Computer System and
was printed on an Apple LaserWriter II Laser Printer.

Second Edition (November 1989) 09-02263-01

Copyright © 1989 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. No part of this document may be reproduced, transmitted, stored in a
retrieval system, or translated into any language without the prior written consent of
Convergent Technologies, Inc.

Convergent Technologies makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Further, Convergent Technologies reserves the right
to revise this publication and to make changes from time to time in its content without
being obligated to notify any person of such revision or changes.

TABLE OF CONTENTS: VOLUME 2

How to Use This Manual ix

Permuted Index xiii

1. Commands and Application Programs: M-Z

m4 macro processor
machid mc68k, miti, mini, mega, unixpc, i386, i286,
mail send mail to users or read mail
mailx interactive message processing system
make maintain, update, and regenerate groups of programs
makekey . generate encryption key
man print entries in this manual
mcs manipulate the object file comment section
mesg permit or deny messages
mkboot reformat CTDC kernel and copy it to CTOS
mkdbsym load symbols in kernel debugger
mkdir make directories
mkfs construct a file system
mkhosts make node name commands
mkifile make an ifile from an object file
mklost+found make a lost+found directory for fsck
mknod build special file
mkshlib create a shared library
mktpy install or relocate a PT or GT local printer
mm print/check documents formatted with the MM macros
mmt typeset documents, view graphs, and slides
more text perusal
mount mount and unmount file systems and remote resources
mountall mount, unmount multiple file systems
mountd NFS mount request server
muser reconfigure system for specific number of users
mvdir move a directory
named Internet domain name server
nawk pattern scanning and processing language
ncheck generate path names from i-numbers
netstat show network status
newaliases rebuild the data base for the mail aliases file
newform change the format of a text file
newgrp log in to a new group
news print news items
nfsd NFS daemons
nfsstat Network File System statistics
nice run a command at low priority
nl line numbering filter
nlsadmin network listener service administration
nm print name list of common object file
nmountall mount, unmount Network File System resources
nohup run a command immune to hangups and quits

- ill -

nroff format text
nsquery Remote File Sharing name server query
od octal dump
ofcli command line interpreter for interactive CTOS JCL
ofcopy copy to or from the CTOS file system
ofcpin copy files between CTEX and CTOS file systems
ofdf report number of free disk blocks in CTOS volumes
ofeditors edit CTOS files
oflog display the contents of the system log
ofls list CTOS files and directories
ofmkdir create and remove CTOS directories
ofrm remove and rename CTOS files
pack compress and expand files
passwd change login password
paste merge same lines of several files or subsequent lines of one file
path locate executable file for command
pbuf print the kernel print buffer
perc describe CTOS error return code (ere)
pg file perusal filter for CRTs
ping send ICMP ECHO_REQUEST packets to network hosts
pmon display statistics for an Application Processor
portmap DARPA port to RPC program number mapper
P r print files
prof display profile data
profiler operating system profiler
prs print an SCCS file

report process status
ptx permuted index
P w c k password/group file checkers
P w d working directory name
qinstall install/verify software using mkfs (l) proto file database
qlist print out file lists from proto file; set links based on
ratfor rational FORTRAN dialect
rcO run commands performed to stop the operating system
rc2 run commands performed for multi-user environment
remd remote shell command execution
rep remote file copy
reboot reboot the system
regemp regular expression compile
renice alter priority of running process by changing nice
rexecd remote execution server
rfadmin Remote File Sharing domain administration
rfpasswd change Remote File Sharing host password
rfstart start Remote File Sharing
rfstop stop the Remote File Sharing environment
rfuadmin Remote File Sharing notification shell script
rfudaemon Remote File Sharing daemon process
riopefg configure system for Remote I/O processor
riopqry query Remote I/O processor for online data
rlogin remote login
rlogind remote login server
rm remove files or directories

- xxxviii -

rmdel remove a delta from an SCCS file
rmntstat display mounted resource information
rmount retry remote resource mounts
rmountall mount, unmount Remote File Sharing resources
route manually manipulate the routing tables
routed network routing daemon
rpcinfo report RPC information
rshd remote shell server
rsterm manually start and stop terminal input and output
rtpenable real-time priorities enabled/disabled
runacct run daily accounting
ruptime display status of nodes on local network
rwho who is logged in on local network
rwhod host status server
sact print current SCCS file editing activity
sadp disk access profiler
sag system activity graph
sar system activity reporter
sar system activity report package
sccsdiff compare two versions of an SCCS file
script make typescript of terminal session
scsimap set mappings for SCSI devices
sdb symbolic debugger
sdiff side-by-side difference program
sed stream editor
sendmail mail routing program
setmnt establish mount table
setuname set name of system
sh shell, the standard/restricted command programming language
shl shell layer manager
showmount show all remote mounts
shutdown shut down system, change system state
size print section sizes in bytes of common object files
slattach attach and detach serial lines as network interfaces
sleep suspend execution for an interval
slink streams linker, load socket configuration
slipd switched Serial Line Internet Protocol control facility
sno SNOBOL interpreter
sort sort and/or merge files
spell find spelling errors
spline interpolate smooth curve
split split a file into pieces
starter information about the operating system for beginning users
stat statistical network useful with graphical commands
strace print STREAMS trace messages
strclean STREAMS error logger cleanup program
strerr STREAMS error logger daemon
strings extract the ASCII text strings in a file
strip strip symbol and line number information
stty set the options for a terminal
su become super-user or another user
sum print checksum and block count of a file

- xxxviii -

swap swap administrative interface
sync update the super block
sysdef output system definition
tabs set tabs on a terminal
tail deliver the last part of a file
talk talk to another user
talkd remote user communication server
tapeset set drive parameters for tape controllers
tar tape file archiver
tbl format tables for nroffor troff
tc photoypesetter simulator
tdl RS-232 terminal download
tee pipe fitting
telnet user interface to TELNET protocol
telnetd DARPA TELNET protocol server
test condition evaluation command
tftp user interface to the DARPA TFTP protocol
tftpd DARPA Trivial File Transfer Protocol server
tic terminfo compiler
time time a command
timex time a command; report process data and system activity
tio tape i/o filter
toe graphical table of contents routines
touch update access and modification times of a file
tplot graphics filters
tput initialize a terminal or query terminfo database
tr translate characters
troff typeset text
true provide truth values
tset set terminal, terminal inteface, and terminal environment
tsioctl facilitate usage of a tape drive
tsort topological sort
tty get the name of the terminal
uadmin administrative control
uconf configure the operating system
ul do underlining
umask set file-creation mode mask
unadv unadvertise a Remote File Sharing resource
uname print name of current CI'IX system
unget undo a previous get of an SCCS file
uniq report repeated lines in a file
units conversion program
update provide disk synchronization
usage retrieve a command description and usage examples
uucheck check the uucp directories and permissions file
uucico file transport program for the uucp system
uucleanup uucp spool directory clean-up
uucp CTEX-to-CTTX system copy
u u c p d network uucp servers
uugetty set terminal type, modes, speed, and line discipline
uusched the scheduler for the UUCP system
u u s t a t uucp status inquiry and job control

- vt -

uuto public CnX-to-CTIX system file copy
Uutry try to contact a remote system with debugging on
mix CTIX-to-CTIX system command execution
uuxqt execute remote command requests
val validate SCCS file
v c version control
v> screen-oriented (visual) display editor based on ex
volcopy make literal copy of file system
w a i t await completion of process
w a l l write to all users
w c word count
what identify SCCS files
w h o who is on the system
whodo who is doing what
w m window management
write write to another user
xargs construct argument list(s) and execute command
x s t r extract and share strings in C programs
y 3 0 0 yet another compiler-compiler

- Vll -

HOW TO USE THIS MANUAL

This second edition of the CTIX Operating System Manual, Version C, describes the
commands, system calls, libraries, data files, and device interfaces that make up the CTIX
Operating System for S/Series Computer Systems. This manual should always be your
starting point when you need to find the documentation for a CTIX feature with which
you are unfamiliar.

The manual consists of a large number of short entries, sometimes called "the man
pages," after the command that accesses the entries when they are kept online. Each
entry briefly documents some feature of CTIX. Some features require longer
documentation than an entry in this manual; such features have an entry that outlines the
feature and cross-references the manual that documents the feature fully. Entries that do
not refer to other manuals are self-contained and are the final word on the features they
describe.

Organization of the manual. The entries are organized into seven sections in four
volumes:

Volumes 1 and 2:
1. Commands and Application Programs.

Volume 3:
2. System Calls.
3. Subroutines and Libraries.

Volume 4:
4. File Formats.
5. Miscellaneous Facilities.
6. Games.
7. Special Files.

Within each section, entries are alphabetical by title, except for an intro entry at the
beginning of each section.

Entry Title Conventions. An entry title looks like this example:

Name is the name of the entry. Section Number indicates the section that contains the
entry. In this case, the entry is in Section 3, which is in Volume 2. Entry Type appears
only on entries that belong to special categories; refer to the section's intro entry for an
explanation. In this case, a reference to intro{Y) would tell you that erf{3M) describes
functions from the Math Library, which the C compiler does not load by default.

I Entry Type

Section Number

Name

- xxxviii -

Finding the entry you need. To find out which entry you need, refer to the following
guides:

• The Permuted Index. This indexes each significant word in each entry's
description. It is useful when you have only a general notion what you're
looking for. It is also useful when you know the name of the command or
function you are interested in, but there is no entry by that name.

• The Table of Contents. This is a simple list of entries, by section, together with
the entry descriptions. Volumes 1 and 2 have Tables of Contents for Section 1.
Volume 3 has a Table of Contents for Sections 2 and 3. Volume 4 has a Table of
Contents for Sections 4 through 7.

• The Table of Related Entries. For Volume 1 only. A table of entries organized
so that related entries are grouped together.

Section organization. Each section begins with an intro entry, which provides
important general information for that section.

Section 1, Commands and Application Programs, describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to
subroutines, which are intended to be called by the user's programs. Commands
generally reside in the directory /bin (for binary programs). Some programs also reside
in /usr/bin, to save space in /bin. These directories are searched automatically by the
command interpreter called the shell. Commands that were not transported from UNIX
System V reside in /usr/local/bin; this directory is recommended for locally
implemented programs. Some administrative commands reside in /etc and various other
places. The /etc directory is searched automatically if you are logged in as root;
otherwise use the full path name given under SYNOPSIS or change the PATH
environment variable to include the command's directory.

Section 2, System Calls, describes the entries into the CTIX kernel, including the C
language interfaces.

Section 3, Subroutines and Libraries, describes the available library functions or
subroutines. Their binary versions reside in various system libraries in the directories
/lib and /usr/Iib. See intro(3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular kinds of files; for example,
the format of the output of the link editor is given in a.out(4). Excluded are files used by
only one command (for example, the assembler's intermediate files). In general, the C
language struct declarations corresponding to these formats can be found in the
directories /usr/include and /usr/include/sys.

Section 5, Miscellaneous Facilities, contains descriptions of character sets, macro
packages, and other such information.

Section 6, Games, describes the games and educational programs that reside in the
directory /usr/games.

Section 7, Special Files, discusses the characteristics of files that actually refer to
input/output devices.

- xxxviii -

Entry organization. All entries are based on a common format, in which some parts are
optional:

NAME The NAME part gives the name(s) of the entry and briefly states its
purpose.

SYNOPSIS The SYNOPSIS part summarizes the use of the program being
described. A few conventions are used, particularly in Section 1
(Commands and Application Programs):

Bold Boldface strings are literals, and are to be typed just as
they appear.

Regular Regular face strings usually represent substitutable
argument prototypes and program names found
elsewhere in the manual.

[] Square brackets around an argument prototype indicate
that the argument is optional. When an argument
prototype is given as "name" or "f i le ," it always refers
to a file name.

Ellipses are used to show that the previous argument
prototype can be repeated.

- + = A final convention is used by the commands themselves.
An argument beginning with a minus (—), plus (+), or
equal sign (=) is often taken to be some sort of flag
argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with - , +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that
may be produced. Messages that are intended to be self-explanatory
are not listed.

The NOTES part gives information that might be helpful under the
particular circumstance described.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies.
Occasionally, the suggested fix is also described.

A table of contents is provided at the front of each of the four volumes, along with a
complete permuted index derived from the tables. On each index line, the title of the

DESCRIPTION

EXAMPLE(S)

FILES

SEEALSO

DIAGNOSTICS

NOTES

WARNINGS

BUGS

- xxxviii -

entry to which that line refers is followed by the appropriate section number in
parentheses. This is important because there is considerable duplication of names
among the sections, arising principally from commands that exist only to exercise a
particular system call.

- xxxviii -

PERMUTED INDEX

This index includes entries for all pages of Volumes 1 through 4. The entries themselves
are based on the one-line descriptions or titles found in the NAME portion of each
manual page; the significant words (keywords) of these descriptions are listed
alphabetically down the center of the index.

The index is actually a keyword-in-context (KWIC) index that has three columns. To
use the index, read the center column to look up specific commands by name or by
subject topics. Note that the entry may begin in the left column or wrap around and
continue into the left column. A period (.) marks the end of the entry, and a slash (/)
indicates where the entry has been continued or truncated. The right column gives the
manual page where the command or subject is described.

hpio: Hewlett-Packard 2645A terminal tape file/ hpio(l)
/special functions of DASI 300 and 300s terminals 300(1)

for Interphase V/TAPE 3200 half-inch tape/ /interface ipt(7)
13tol, ltol3: convert between 3-byte integers and long/ 13tol(3C)

comparison. diff3: 3-way differential file difD(l)
paginator for the Tektronix 4014 terminal. 4014: 4014(1)

special functions of the DASI 450 terminal. 450: handle 450(1)
long integer and base-64/ a641, 164a: convert between a641(3C)

abort: generate a SIGABRT. abort(3C)
value, abs: return integer absolute abs(3C)

adb: absolute debugger adb(l)
abs: return integer absolute value abs(3C)

/floor, ceiling, remainder, absolute value functions floor(3M)
tiop: terminal accelerator interface tiop(7)

t_accept: accept a connect request t_accept(3n)
prevent LP requests, accept, reject: allow or accept(lM)

a directory for remote access, adv: advertise adv(lM)
of a file, touch: update access and modification times touch(l)

utime: set file access and modification times utime(2)
accessibility of a file, access; determine access(2)
commands, graphics: access graphical and numerical graphics(lG)

sputl, sgetl: access long integer data in a/ sputl(3X)
fusage: disk access profiler fusage(lM)

sadp: disk access profiler sadp(liM)
ldfcn: common object file access routines ldfcn(4)

copy file systems for optimal access time, dcopy: dcopy(lM)
locking: exclusive access to regions of a file locking(2)

/setutent, endutent, utmpname: access utmp file entry getut(3C)
access: determine accessibility of a file access(2)

enable or disable process accounting, acct: acct(2)
acctcon2: connect-time accounting, acctconl acctcon(lM)

acctprcl, acctprc2: process accounting acctprc(lM)
tumacct: shell procedures for accounting, /startup acctsh(lM)

/accton, acctwtmp: overview of accounting and miscellaneous/ acct(lM)
accounting and miscellaneous accounting commands, /of acct(lM)

diskusg: generate disk accounting data by user ID diskusg(lM)
acct: per-process accounting file format acct(4)

- xxxviii -

search and print process accounting file(s). acctcom: acctcom(l)
acctmerg: merge or add total accounting files acctmerg(lM)

summary from per-process accounting records, /command acctcms(lM)
wtmpfix: manipulate connect accounting records, fwtmp, fwtmp(lM)

rnnacct: run daily accounting runacct(lM)
process accounting, acct: enable or disable accl(2)

file format, acct: per-process accounting acct(4)
per-process accounting/ acctcms: command summary from acctcms(lM)

process accounting file(s). acctcom: search and print acctcom(l)
connect-time accounting, acctconl, acctcon2: acctcon(lM)

acctwtmp: overview of/ acctdisk, acctdusg, accton acct(lM)
accounting files, acctmerg: merge or add total acctmerg(lM)

accounting, acctprcl, acctprc2: process acctprc(lM)
orderly release/ t__rcvrel: acknowledge receipt of an t_rcvrel(3n)

trig: sin, cos, tan, asin, acos, atan, atan2:/ trig(3M)
killall: kill all active processes killall(lM)

sag: system activity graph sag(lG)
sar: sal, sa2, sadc: system activity report package sar(lM)

sar: system activity reporter sar(l)
current SCCS file editing activity, sact: print sact(l)

report process data and system activity. Aime a command; timex(l)
Dialers: ACU/modem calling protocols Dialers(5)

random, hopefully interesting, adage, fortune: print a fortune(6)
adb: absolute debugger adb(l)

acctmerg: merge or add total accounting files acctmerg(lM)
putenv: change or add value to environment putenv(3C)

/inet_netof: Internet address manipulation routines inet(3)
getservaddr: get network address of service host getservad(lM)

control, arp: address resolution display and arp(lM)
arp: Address Resolution Protocol arp(7)

endpoint. t_bind: bind an address to a transport t_bind(3n)
allow synchronization of the/ adjtime: correct the time to adjtime(2)

system, adman: administer a CTIX adman(l)
SCCS files, admin: create and administer admin(l)

network listener service administration, nlsadmin: nlsadmin(lM)
rfadmin: Remote File Sharing administration rfadmin(lM)

uadmin: administrative control uadmin(lM)
uadmin: administrative control uadmin(2)

swap: swap administrative interface swap(lM)
remote access, adv: advertise a directory for adv(lM)

advent: explore Colossal Cave advent(6)
remote access, adv: advertise a directory for adv(LM)

fumount: forced unmount of an advertised resource fumount(lM)
alarm: set a process alarm clock alarm(2)

clock, alarm: set a process alarm alarm(2)
sendmail. aliases: aliases file for aliases(4)

aliases: aliases file for sendmail aliases(4)
the data base for (he mail aliases file, /rebuild newaliases(l)

t_alloc: allocate a library structure t_alloc(3n)
change data segment space allocation, brk, sbrk: brk(2)

realloc, calloc: main memory allocator, malloc, free, malloc(3C)
mallinfo: fast main memory allocator, /calloc, mallopt, malloc(3X)

accept, reject: allow or prevent LP requests accept(lM)
adjtime: correct the time to allow synchronization of the/ adjtime(2)

process by changing/ renice: alter priority of running renice(l)
sort: sort and/or merge files sort(l)

link editor output, a.out: common assembler and a.oul(4)
introduction to commands and application programs, intro: intro(l)

- xxxviii -

maintainer for portable/ ar: archive and library ar(l)
format, ar: common archive file ar(4)

number: convert Arabic numerals to English number(6)
language, be: arbitrary-precision arithmetic bc(l)

for portable archives, ar: archive and library maintainer ar(l)
cpio: format of cpio archive cpio(4)

ar: common archive file format. ar(4)
header of a member of an archive file, /the archive ldahread(3X)
formats, convert: convert archive files to common convert(l)

an archive/ldahread: read the archive header of a member of ldahread(3X)
2645A terminal tape file archiver. /Hewlett-Packard hpio(l)

tar: tape file archiver tar(1)
maintainer for portable archives, /archive and library ar(')

cpio: copy file archives in and out cpio(l)
varargs: handle variable argument list varargs(5)

formatted output of a varargs argument list, /print vprintf(3S)
command, xargs: construct argument list(s) and execute xargs(l)

getopt: get option letter from argument vector getopt(3C)
expr: evaluate arguments as an expression expr(l)

echo: echo arguments echo(l)
be: arbitrary-precision arithmetic language bc(l)

number facts, arithmetic: provide drill in arithmetic(6)
display and control, arp: address resolution arp(lM)

Protocol, arp: Address Resolution arp(7)
ftp: ARPANET file transfer program f 'p(l)

expr: evaluate arguments as an expression expr(l)
as: common assembler as(l)

/attach and detach serial lines as network interfaces slattach(lM)
/locate a terminal to use as the virtual system console conlocate(lM)

characters, asa: interpret ASA carriage control asa(l)
and/ /gmtime, asctime, cftime, ascftime, tzset: convert date ctime(3C)

ascii: map of ASCII character set ascii(5)
hd: hexadecimal and ascii file dump hd(l)

set. ascii: map of ASCII character ascii(5)
long integer and base-64 ASCII string, /convert between a641(3C)

strings: extract the ASCII text strings in a file strings(l)
ctime, localtime, gmtime, asctime, cftime, ascftime,/ ctime(3C)

trig: sin, cos, tan, asin, acos, atan, atan2:/ trig(3M)
output, a.out: common assembler and link editor a.out(4)

as: common assembler a s (l)
assertion, assert: verify program assert(3X)

setbuf, setvbuf: assign buffering to a stream setbuf(3S)
system commands, assist: assistance using CTIX assist(l)

astgen: generate/modify ASSIST menus and command/ astgen(l)
commands, assist: assistance using CTIX system assist(l)

print the list of blocks associated with an. bcheck: bcheck(lM)
/create device nodes for assorted device types createdev(lM)

menus and command forms, astgen: generate/modify ASSIST astgen(l)
a later time, at, batch: execute commands at at(l)

/sin, cos, tan, asin, acos, atan, atan2: trigonometric/ trig(3M)
cos, tan, asin, acos, atan, atan2: trigonometric/ /sin, trig(3M)

description file, queuedefs: at/batch/cron queue queuedefs(4)
double-precision/ strtod, atof: convert string to strtod(3C)

integer, strtol, atol, atoi: convert string to strtol(3C)
integer, strtol, atol, atoi: convert string to strtol(3C)

as/ slattach, sldetach: attach and detach serial lines slattach(lM)
resources, rmnttry: attempt to mount remote rmnttry(lM)
log of failed login attempts, /usr/adm/loginlog: loginlog(4)

- xxxviii -

wait: await completion of process wait(l)
processing language, awk: pattern scanning and awk(l)

ungetc: push character back into input stream ungetc(3S)
back: the game of backgammon back(6)

back: the game of backgammon back(6)
fine: fast incremental backup finc(lM)

ckbupscd: check file system backup schedule ckbupscd(lM)
free: recover files from a backup tape frec(lM)

banner: make posters banner(l)
newaliases: rebuild the data base for the mail aliases/ newaliases(l)

Sun rpc program number data base, rpc: rpc(4)
terminal capability data base, termcap: termcap(4)
terminal capability data base, terminfo: terminfo(4)

between long integer and base-64 ASCII string, /convert a641(3C)
(visual) display editor based on ex. /screen-oriented vi(l)

from proto file; set links based on. /out file lists qlist(l)
portions of path names, basename, dirname: deliver basename(l)

later time, at, batch: execute commands at a at(l)
arithmetic language, be: arbitrary-precision bc(l)

blocks associated with an. bcheck: print the list of bcheck(lM)
system initialization/ brc, bcheckrc, drvload, powerfail: brc(lM)
string operations, bcopy, bemp, bzero: bit and byte bstring(3)

byte string operations, bcopy, bemp, bzero: bit and bstring(3)
bcopy: interactive block copy bcopy(lM)
bdiff: big diff. bdiff(l)

cb: Cprogram beautifier cb(l)
about the operating system for beginning users, /information starter(l)

jO, j l , jn, yO, yl, yn: Bessel functions, bessel: bessel(3M)
yn: Bessel functions, bessel: jO, j l , jn, yO, yl bessel(3M)

bfs: big file scanner bfs(l)
cpset: install object files in binary directories cpset(l.M)

fread, fwrite: binary input/output fread(3S)
bsearch: binary search a sorted table bsearch(3C)

tfind, tdelete, twalk: manage binary search trees, tsearch, tsearch(3C)
bind: bind a name to a socket bind(2)

endpoint. t_bind: bind an address to a transport t_bind(3n)
bind: bind a name to a socket bind(2)

nfsd, biod: NFS daemons nfsd(lM)
bcopy, bemp, bzero: bit and byte string/ bstring(3)

bj: the game of black jack bj(6)
bj: the game of black jack bj(6)

bcopy: interactive block copy bcopy(lM)
sum: print checksum and block count of a file sum(l)

sync: update the super block sync(lM)
sync: update super block sync(2)

df: report number of free disk blocks and i-nodes df(lM)
bcheck: print the list of blocks associated with an bcheck(lM)

libdev: manipulate Volume Home Blocks (VHB) libdev(3X)
powerfail: system/ brc, bcheckrc, drvload brc(lM)

space allocation, brk, sbrk: change data segment brk(2)
modest-sized programs, bs: a compiler/interpreter for bs(l)

sorted table, bsearch: binary search a bsearch(3C)
stdio: standard buffered input/output package stdio(3S)

setbuf, setvbuf: assign buffering to a stream setbuf(3S)
mknod: build special file mknod(lM)

vme: VME bus interface vme(7)
between host and network byte order, /convert values byteorder(3)

bcopy, bemp, bzero: bit and byte string operations bstring(3)

- xxxviii -

size: print section sizes in bytes of common object files size(l)
swab: swap bytes swab(3C)

operations, bcopy, bcmp, bzero: bit and byte string bstring(3)
cc: C compiler cc(l)

cflow. generate C flow graph cflow(l)
cpp: the C language preprocessor CPP(1)

include/ includes: determine C language preprocessor includes(l)
cb: C program beautifier cb(l)

lint: a C program checker lint(l)
cxref: generate C program cross-reference cxref(l)

ctrace: C program debugger clrace(l)
extract and share strings in C programs, xstr: xstr(l)
time, cprofile: setting up a C shell environment at login cprofile(4)

object file, list: produce C source listing from a common list(l)
cal: print calendar cal(l)

dc: desk calculator dc(l)
cal: print calendar cal(l)

calendar: reminder service calendar(l)
cu: call another UNIX system cu(lC)

data returned by stat system call, stat: stat(5)
Dialers: ACU/modem calling protocols Dialers(5)

malloc, free, realloc, calloc: main memory allocator malloc(3C)
fast/ malloc, free, realloc, calloc, mallopt, mallinfo: malloc(3X)

intro: introduction to system calls and error numbers intro(2)
common shared NFS system calls, nfssys: nfssys(2)

request, rumount: cancel queued remote resource rumount(lM)
to an LP line printer, lp, cancel: send/cancel requests lp(l)

termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)

description into a terminfo/ captoinfo: convert a termcap captoinfo(lM)
asa: interpret ASA carriage control characters asa(l)

text editor (variant of ex for casual users), edit: edil(l)
files, cat: concatenate and print cat(l)

advent: explore Colossal Cave advent(6)
cb: C program beautifier cb(l)
cc: C compiler cc(l)

cc2sw, cc2fp: front-end to the cc command, cclsw, cclsw(l)
create a front-end to the cc command, gencc: gencc(l.Vl)

to the cc command, cclsw, cc2sw, cc2fp: front-end cclsw(l)
command, c c l s w , cc2sw, cc2fp : front-end to the cc c c l s w (l)

cc command, cclsw, cc2sw, cc2fp: front-end to the cclsw(l)
cd: change working directory cd(l)

commentary of an SCCS delta, cdc: change the delta cdc(l)
/ceil, fmod, fabs: floor, ceiling, remainder, absolute/ floor(3M)

cflow: generate C flowgraph cflow(l)
/localtime, gmtime, asctime, cftime, ascftime, tzset:/ ctime(3C)

strings, cftime: language specific cftime(4)
delta: make a delta (change) to an SCCS file delta(l)

priority of running process by changing nice, renice: alter renice(l)
pipe: create an interprocess channel pipe(2)

terminal's local RS-232 channels, tp: controlling tp(7)
stream, ungetc: push character back into input ungetc(3S)

conversion/ chrtbl: generate character classification and chrtbl(lM)
and neqn. eqnchar: special character definitions for eqn eqnchar(5)

_toupper, setchrclass: character handling. /_tolower, ctype(3C)
user, cuserid: get character login name of the cuserid(3S)

/getchar, fgetc, getw: get character or word from a/ getc(3S)
/putchar, fputc, putw: put character or word on a stream putc(3S)

- xxxviii -

ascii: map of ASCII character set ascii(5)
fgrep: search a file for a character string fgrep(l)

interpret ASA carriage control characters, asa: asa(l)
_tolower, toascii: translate characters. /_toupper, conv(3C)

tr: translate characters tr(l)
lastlogin, monacct, nulladm,/ chargefee, ckpacct, dodisk, acctsh(lM)

directory, chdir: change working chdir(2)
fsck, dfsck: check and repair file systems fsck(lM)

schedule, ckbupscd: check file system backup ckbupscd(l.M)
permissions file, uucheck: check the uucp directories and uucheck(lM)

constant-width text for /cw, checkcw: prepare cw(l)
text for nroff or/eqn, neqn, checkeq: format mathematical eqn(l)

lint: a C program checker lint(l)
grpck: password/group file checkers, pwck pwck(lM)

systems processed by fsck and/ checklist: list of file checklist^)
formatted with the MM/mm, checkmm: print/check documents mm(l)

file, sum: print checksum and block count of a sum(l)
chown, chgrp: change owner or group chown(l)

times: get process and child process times times(2)
terminate, wait: wait for child process to stop or wait(2)

libraries tool, chkshlib: compare shared chkshlib(l)
chmod: change mode chmod(l)
chmod: change mode of file chmod(2)

of a file, chown: change owner and group chown(2)
group, chown, chgrp: change owner or chown(l)

chroot: change root directory chroot(2)
for a command, chroot: change root directory chroot(lM)

classification and conversion/ chrtbl: generate character chrtbl(lM)
backup schedule, ckbupscd: check file system ckbupscd(lM)

monacct, nulladm,/ chargefee, ckpacct, dodisk, lastlogin, acctsh(lM)
chrtbl: generate character classification and conversion/ chrtbl(lM)

strclean: STREAMS error logger cleanup program strclean(lM)
uucp spool directory clean-up. uucleanup: uucleanup(lM)

clear: clear terminal screen clear(l)
clri: clear i-node clri(lM)

clear: clear terminal screen clear(l)
status/ ferror, feof, clearerr, fileno: stream ferror(3S)

the listener, nlsgetcall: get client's data passed through nlsgetcall(3n)
(command interpreter) with C-like syntax, csh: a shell csh(l)

synchronization of the system clock. /the time to allow adjtime(2)
alarm: set a process alarm clock alarm(2)

cron: clock daemon cron(lM)
clock: report CPU time used clock(3C)

on a STREAMS driver, clone: open any minor device clone(7)
ldclose, ldaclose: close a common object file ldclose(3X)

close: close a file descriptor close(2)
t close: close a transport endpoint t_close(3n)

fclose, fflush: close or flush a stream fclose(3S)
telldir, seekdir, rewinddir, closedir: directory/ /readdir, directory(3X)

clri: clear i-node clri(lM)
cmp: compare two files cmp(l)

dis: object code disassembler dis(l)
line-feeds, col: filter reverse col(l)

advent: explore Colossal Cave advenl(6)
comb: combine SCCS deltas combO)

common to two sorted files, comm: select or reject fines comm(l)
nice: run a command at low priority nice(l)

cc2fp: front-end to the cc command, cclsw, cc2sw, cclsw(l)

- x v m -

change root directory for a command, chroot: chroot(lM)
examples, usage: retrieve a command description and usage usage(l)

env: set environment for command execution env(l)
rcmd: remote shell command execution rcmd(l)

uux: UNIX-to-UNIX system command execution uux(lC)
/ASSISTmenus and command forms astgen(l)

create a front-end to the cc command, gencc: gencc(lM)
quits, nohup: run a command immune to hangups and nohup(l)

C-like syntax, csh: a shell (command interpreter) with csh(l)
getopt: parse command options getopt(l)

getopts, getoptcvt: parse command options getopts(l)
locate executable file for command, path: path(l)

/shell, the standard/restricted command programming language sh(l)
returning a stream to a remote command, /routines for rcmd(3)

and system/ timex: time a command; report process data timex(l)
uuxqt: execute remote command requests uuxqt(lM)

return stream to a remote command, rexec: rexec(3)
per-process/ acctcms: command summary from acctcms(lM)

system: issue a shell command system(3S)
used by the /etc/tapeset command.. /information tapedrives(4)

test: condition evaluation command test(l)
time: time a command time(l)

locate: identify a CTIX system command using keywords locate(l)
argument list(s) and execute command, xargs: construct xargs(l)

and miscellaneous accounting commands, /of accounting acct(lM)
intro: introduction to commands and application/ intro(l)

assistance using CTTX system commands, assist: assist(l)
at, batch: execute commands at a later time at(l)

access graphical and numerical commands, graphics: graphics(lG)
install: install commands install(lM)

mkhosts: make node name commands mkhosts(lM)
multi-user/ rc2,rc3:run commands performed for rc2(lM)

operating system. rcO: run commands performed to stop the rcO(lM)
network useful with graphical commands, stat: statistical stat(lG)

streamio: STREAMS ioctl commands streamio(7)
manipulate the object file comment section, mcs: mcs(l)

cdc: change the delta commentary of an SCCS delta cdc(l)
ar: common archive file format ar(4)

editor output, a.out: common assembler and link a.out(4)
as: common assembler as(l)

glossary: definitions of common CTIX system terms and/ glossary(l)
convert archive files to common formats, convert: convert(l)

routines, ldfcn: common object file access ldfcn(4)
conv: common object file converter conv(l)

cprs: compress a common object file cprs(l)
ldopen, ldaopen: open a common object file for/ ldopen(3X)
/line number entries of a common object file function ldlread(3X)
ldclose, ldaclose: close a common object file ldclose(3X)

read the file header of a common object file, ldfhread: ldfhread(3X)
entries of a section of a common object file, /number ldlseek(3X)

the optional file header of a common object file, /seek to ldohseek(3X)
/entries of a section of a common object file ldrseek(3X)

/section header of a common object file ldshread(3X)
an indexed/named section of a common object file, /seek to ldsseek(3X)

of a symbol table entry of a common object file. Ahe index ldtbindex(3X)
symbol table entry of a common object file, /indexed ldtbread(3X)

seek to the symbol table of a common object file, ldtbseek: ldtbseek(3X)
line number entries in a common object file, linenum: linenum(4)

- xxxviii -

C source listing from a common object file, /produce . list(l)
nm: print name list of common object file nm(l)

relocation information for a common object file, reloc: reloc(4)
scnhdr: section header for a common object file scnhdr(4)

line number information from a common object file, /and strip(l)
/retrieve symbol name for common object file symbol/ ldgetname(3X)

table format, syms: common object file symbol syms(4)
filehdr: file header for common object files filehdr(4)

Id: link editor for common object files ld(l)
section sizes in bytes of common object files, /print size(l)

calls, nfssys: common shared NFS system nfssys(2)
comm: select or reject lines common to two sorted files comm(l)

ipcs: report inter-process communication facilities/ ipcs(l)
/ftok: standard interprocess communication package stdipc(3C)

talkd: remote user communication server talkd(lM)
socket: create an endpoint for communication socket(2)

/configuration file for uucp communications lines Devices(5)
diff: differential file comparator ditf(l)

descriptions, infocmp: compare or print out terminfo infocmp(lM)
chkshlib: compare shared libraries tool chkshlib(l)

cmp: compare two files cmp(l)
SCCS file, sccsdilf: compare two versions of an sccsdiff(l)

dif!3: 3-way differential file comparison difD(l)
dircmp: directory comparison dircmp(l)

expression, regcmp, regex: compile and execute regular regcmp(3X)
regexp: regular expression compile and match routines regexp(5)

regcmp: regular expression compile regcmp(l)
term: format of compiled term file term(4)

cc: C compiler cc(l)
tic: terminfo compiler tic(lM)

yacc: yet another compiler-compiler yacc(l)
modest-sized programs, bs: a compiler/interpreter foT bs(l)

erf, erfc: error function and complementary error function erf(3M)
wait: await completion of process wait(l)

cprs: compress a common object file cprs(l)
pack, peat, unpack: compress and expand files pack(l)

table entry of a/ldtbindex: compute the index of a symbol ldtbindex(3X)
cat: concatenate and print files cat(l)

test: condition evaluation command test(l)
system, config: configure a CTIX config(lM)

NFS file systems export configuration file, exports: exports(4)
(internet/ inetd.conf: configuration file for inetd inetd.conf(4)

communications/ Devices: configuration file for uucp Devices(5)
gateways: routed configuration file gateways(4)

netcf: Network Configuration File netcf(4)
resolv.conf: resolver configuration file resolver(4)

STREAMS linker, load socket configuration, /ldsocket: slink(l)
nab: Remote I/O Processor configuration table rtab(4)

config: configure a CTIX system config(lM)
enpstart: configure Ethernet processor enpstart(lM)

parameters, ifconfig: configure network interface ifconfig(lM)
I/O Processor, riopefg: configure system for Remote riopcfg(lM)

system, lpadmin: con figure the LP spooling lpadmin(lM)
system, uconf: configure the operating uconf(lM)

t_rcvconnect: receive the confirmation from a connect/ t_rcvconnect(3)
to use as the virtual system/ conlocate: locale a terminal conlocate(lM)

fwtmp, wtmpfix: manipulate connect accounting records fwtmp(lM)
on a socket, connect: initiate a connection connect(2)

- xxxviii -

t_accept: accept a connect request t_accept(3n)
t l is ten: listen for a connect request t_listen(3n)

the confirmation from a connect request, /receive t_rcvconnect(3)
getpeemame: get name of connected peer getpeername(2)
an out-going terminal line connection, dial: establish dial(3C)

connect: initiate a connection on a socket connect(2)
down part of a full-duplex connection, shutdown: shut shutdown(2)

or expedited data sent over a connection, /receive data t_rcv(3n)
data or expedited data over a connection. t_snd: send t_snd(3n)

t_connect: establish a connection with another/ t_connect(3n)
listen: listen for connections on a socket listen(2)

acctconl, acctcon2: connect-time accounting acctcon(lM)
to use as the virtual system console. Aocate a terminal conlocate(lM)
the kernel debugger system console port, /change dbconsole(lM)

console: console terminal console(7)
for implementation-speci fic constants, /file header limits(4)

math: math functions and constants math(5)
file header for symbolic constants, unistd: unistd(4)

cw, checkcw: prepare constant-width text for troff. cw(l)
mkfs: construct a file system mkfs(lM)

execute command, xargs: construct argument list(s) and xargs(l)
nroflTtroff, tbl, and eqn constructs, deroff: remove deroff(l)

debugging on. Uutry: try to contact a remote system wilh Uutry(lM)
Is: list contents of directory ls(l)

Uoc, vtoc: graphical table of contents routines, toe: dtoc, toc(lG)
csplit: context split csplil(l)

address resolution display and control, arp: arp(lM)
asa: interpret ASA carriage control characters asa(l)

ioctl: control device ioctl(2)
scsi: scsi control device scsi(7)

Serial Line Internet Protocol control facility, /switched slipd(lM)
fcntl: file control fcntl(2)

floating point environment control, /fpsetsticky: IEEE fpgetround(3)
init, telinit: process control initialization init(lM)

icmp: Internet Control Message Protocol icmp(7)
msgctl: message control operations msgctl(2)

semctl: semaphore control operations semctl(2)
shmctl: shared memory control operations shmctl(2)

fcntl: file control options fcntl(5)
tcp: Internet Transmission Control Protocol t cp(7)

uadmin: administrative control uadmin(lM)
uadmin: administrative control uadmin(2)

uucp status inquiry and job control, uustat: uustat(lC)
vc: version control vc(l)

V/TAPE 3200 half-inch tape controller, /for Interphase ipt(7)
set drive parameters for tape controllers, tapeset: tapeset(lM)

interface, tly: controlling terminal tty(7)
RS-232 channels, tp: controlling terminal's local tp(7)

converter, conv: common object file conv(l)
_toupper, _tolower, toascii:/ conv: toupper, tolower conv(3C)

terminals, term: conventional names for term(5)
units: conversion program units(l)

character classification and conversion tables, /generate chrtbl(lM)
into a terminfo/ captoinfo: convert a termcap description captoinfo(lM)

dd: convert and copy a file dd(lM)
English, number: convert Arabic numerals to number(6)

common formats, convert: convert archive files to convert(l)
integers and/ 13tol, ltol3: convert between 3-byte 13tol(3C)

- xxxviii -

and base-64 ASCH/ a641,164a: convert between long integer a641(3C)
to common formats, convert: convert archive files convert(l)

/cftime, ascftime, tzset: convert date and time to/ ctime(3C)
to string, ecvt, fcvt, gcvt: convert floating-point number ecvt(3C)

scanf, fscanf, sscanf: convert formatted input scanf(3S)
strtod, atof: convert string to/ strtod(3C)

strtol, atol, atoi: convert string to integer strtol(3C)
htonl, htons, ntohl, ntohs: convert values between host/ byteorder(3)
conv: common object file converter conv(l)

timod: Transport Interface cooperating STREAMS module timod(7)
dd: convert and copy a file dd(lM)

bcopy: interactive block copy bcopy(lM)
cpio: copy file archives in and out cpio(l)

access time, dcopy: copy file systems for optimal dcopy(lM)
cp, In, mv: copy, link, or move files cp(l)

volcopy: make literal copy of file system volcopy(lM)
rep: remote file copy rcp(l)

uuname: UNIX-to-UNIX system copy, uucp, uulog, uucp(lC)
UNIX-to-UNIX system file copy, uuto, uupick: public uuto(lC)

core: format of core image file core(4)
synchronization of/ adjtime: correct the time to allow adjtime(2)

aun2:/ trig: sin, cos, tan, asin, acos, atan trig(3M)
functions, sinh, cosh, tanh: hyperbolic sinh(3M)

sum: print checksum and block count of a file sum(l)
wc: word count wc(l)

movefiles, cp, In, mv: copy, link, or cp(l)
cpio: format of cpio archive cpio(4)

and out. cpio: copy file archives in cpio(l)
preprocessor, epp: the C language cpp(l)

environment at login time, cprofile: setting up a C shell cprofile(4)
file, cprs: compress a common object cprs(l)

binary directories, cpset: install object files in cpset(lM)
clock: report CPU time used clock(3C)

craps: the game of craps craps(6)
crash: examine system images crash(l.M)

rewrite an existing one. creat: create a new file or creat(2)
command, gencc: create a front-end to the cc gencc(lM)

file, tmpnam, tempnam: create a name for a temporary tmpnam(3S)
an existing one. creat: create a new file or rewrite creat(2)

fork: create a new process fork(2)
mkshlib: create a shared library mkshlib(l)

ctags: create a tags file ctags(l)
tmpfile: create a temporary file tmpfile(3S)

communication, socket: create an endpoint for socket(2)
channel, pipe: create an interprocess pipe(2)

files, admin: create and administer SCCS admin(l)
assorted device/ createdev: create device nodes for createdev(lM)

umask: set and get file creation mask umask(2)
cron: clock daemon cron(lM)

crontab: user cron tab file crontab(l)
cxref: generate C program cross-reference cxref(l)

pg: file perusal filter for CRTs PgO)
crypt: encode/decode crypt(l)

encryption functions, crypt: password and file crypt(3X)
generate hashing encryption, crypt, setkey, encrypt: crypt(3C)

interpreter) with C-like/ csh: a shell (command csh(l)
csplit: context split csplit(l)

terminal, ct: spawn getty to a remote ct(lC)

- xxxviii -

ctags: create a tags file ctags(l)
for terminal, ctermid: generate file name ctermid(3S)

asctime, cftime, ascftime,/ dime, localtime, gmtime, ctime(3C)
ctinstall: install software ctinstall(l)

adman: administer a CTDC system adman(l)
config: configure a CTIX system config(lM)

uname: get name of current CTIX system uname(2)
/definitions of common CTDC system terms and/ glossary(l)

ctrace: C program debugger ctrace(l)
cu: call another UNIX system cu(lC)

ttt, cubic: tic-tac-toe ttt(6)
uname: get name of current CTIX system uname(2)

endpoint. t_look: look at the current event on a transport t_look(3n)
get/set unique identifier of current host, /selhostid: gethostid(2)

sethostname: get/set name of current host, gethostname gethostname(2)
set or print identi fier of current host system, hostid: hostid(l)

uname: print name of current CTIX system uname(l)
activity, sact: print current SCCS file editing sact(l)

t_getstate: get the current state t_getstale(3)
the Internet host name of the current system, /set or print hostname(l)

slot in the utmp file of the current user, /find the ttyslot(3C)
getcwd: get path-name of current working directory getcwd(3C)

scrdump: format of curses screen image file scr_dump(4)
handling and optimization/ curses: terminal screen curses(3X)

spline: interpolate smooth curve spline(lG)
name of the user, cuserid: get character login cuserid(3S)

each line of a file, cut: cut out selected fields of cut(l)
constant-width text for/ cw, checkcw: prepare cw(l)

cross-reference, cxref: generate C program cxref(l)
cron: clock daemon cron(lM)

rfudaemon: Remote File Sharing daemon process rfudacmon(lM)
routed: network routing daemon routed(lM)

strerr: STREAMS error logger daemon strerr(lM)
nfsd, biod: NFS daemons nfsd(lM)

runacct: run daily accounting runacct(lM)
Protocol server, ftpd: DARPA Internet File Transfer ftpd(lM)

number mapper, portmap: DARPA port to RPC program portmap(lM)
telnetd: DARPA TELNET protocol server telnetd(lM)

tftp: user interface to the DARPA 1TTP protocol tftp(l)
Protocol server, tftpd: DARPA Trivial File Transfer tftpd(lM)

/handle special functions of DASI 300 and 300s terminals 300(1)
special functions of the DASI 450 terminal, /handle 450(1)

Aime a command; report process data and system activity timex(l)
file, newaliases: rebuild the data base for the mail aliases newaliases(l)

rpc: Sun rpc program number data base fpc(4)
termcap: terminal capability data base termcap(4)
terminfo: terminal capability data base terminfo(4)

generate disk accounting data by user ID. diskusg: diskusg(lM)
t rcvuderr: receive a unit data error indication t_rcvuderr(3)
/sgetl: access long integer data in a machine-independent/ sputl(3X)

plock: lock process, text, or data in memory plock(2)
connection. t_snd: send data or expedited data over a t_snd(3n)

over a/ t_rcv: receive data or expedited data sent t_rcv(3n)
nlsgetcall: get client's data passed through the/ nlsgetcall(3n)

prof: display profile data prof(l)
call, stat: data returned by stat system stal(5)

I/O Processor for online data, riopqry: query Remote riopqry(lM)
brk, sbrk: change data segment space allocation brk(2)

- XX111 -

/receive data or expedited data sent over a connection t_rcv(3n)
types: primitive system data types types(5)

t_rcvudata: receive a data unit t_rcvudata(3)
t_sndudata: send a data unit t_sndudata(3)

changes to the Help Facility database, helpadm: make helpadm(lM)
join: relational database operator join(l)

using the mkfs(l) proto file database, /and verify software qinstall(l)
delete, firstkey, nextkey: database subroutines, /store, dbm(3X)

/dbm_error, dbm_clearerr: database subroutines ndbm(3X)
a terminal or query terminfo database, tput: initialize tput(l)

udp: Internet User Datagram Protocol udp(7)
settimeofday: get/set date and time, gettimeofday, gettimeofday(2)

/ascftime, tzset: convert date and time to string ctime(3C)
date: print and set the date date(l)

date: print and set the dale date(l)
debugger system console port, dbconsole: change the kernel dbconsole(lM)

/dbm_nextkey, dbm_error, dbm_clearerr: database/ ndbm(3X)
dbm_storey dbm_open, dbm_close, dbm_fetch, ndbm(3X)
/dbm_fetch, dbm_store, dbm_delete, dbm_firstkey,/ ndbm(3X)

/dbm_firstkey, dbm_nextkey, dbm_error, dbm_clearerr:/ ndbm(3X)
dbm_open, dbm_close, dbm_fetch, dbm_store,/ ndbm(3X)

/dbm_store, dbm_delete, dbm_firstkey, dbm_nextkey,/ ndbm(3X)
firstkey, nextkey: database/ dbminit, fetch, store, delete, dbm(3X)
/dbm_delete, dbm_firstkey, dbm_nextkey, dbmerror , / ndbm(3X)

dbm_fetch, dbm_store,/ dbm_open, dbm_close, ndbm(3X)
/dbm_close, dbm_fetch, dbm_store, dbm_delete,/ ndbm(3X)

dc: desk calculator dc(l)
optimal access time, dcopy: copy file systems for dcopy(lM)

dd: convert and copy a file dd(lM)
adb: absolute debugger adb(l)

ctrace: C program debugger ctrace(l)
fsdb: file system debugger fsdb(lM)

load symbols in kernel debugger, mkdbsym: mkdbsym(lM)
sdb: symbolic debugger sdb(l)

dbconsole: change the kernel debugger system console port dbconsole(lM)
contact a remote system with debugging on. Uulry: try to Uutry(lM)

timezone: set default system time zone timezone(4)
sysdef: output system definition sysdef(lM)

eqnchar: special character definitions for eqn and neqn eqnchar(5)
system terms and/ glossary: definitions of common CTIX glossary(l)

dbminit, fetch, store, delete, firstkey, nextkey:/ dbm(3X)
names, basename, dimame: deliver portions of path basename(l)

file, tail: deliver the last part of a tail(l)
delta commentary of an SCCS delta, cdc: change the cdc(l)

file, delta: make a delta (change) to an SCCS delta(l)
delta, cdc: change the delta commentary of an SCCS cdc(l)

rmdel: remove a delta from an SCCS file rmdel(l)
to an SCCS file, delta: make a delta (change) delta(l)

comb: combine SCCS deltas comb(l)
errdemon: error-logging demon erTdemon(lM)

terminate the error-logging demon, errstop: errstop(lM)
mesg: permit or deny messages mesg(l)

tbl, and eqn constructs, deroff: remove nrofTArofT, deroff(l)
usage: retrieve a command description and usage/ usage(l)
description into a terminfo description, /a termcap captoinfo(lM)

queuedefs: at/batch/cron queue description file queuedefs(4)
system: system description file system(4)

captoinfo: convert a termcap description into a terminfo/ captoinfo(lM)

- XXLV -

compare or print out terminfo descriptions, infocmp: infocmp(lM)
close: close a file descriptor close(2)

dup: duplicate an open file descriptor dup(2)
dup2: duplicate an open file descriptor dup2(3C)

getdlablesize: get descriptor table size getdtablesize(2)
dc: desk calculator dc(l)

slattach, sldetach: attach and detach serial lines as network/ slattach(lM)
file, access: determine accessibility of a access(2)

preprocessor/ includes: determine C language includes(l)
identifier, fstyp: determine file system fstyp(lM)

file: determine file type file(l)
drivers: loadable device drivers drivers(7)

lines for finite width output device, fold: fold long fold(l)
master: master device information table master(4)

ioctl: control device ioctl(2)
devnm: device name devnm(lM)

device/ createdev: create device nodes for assorted createdev(lM)
clone: open any minor device on a STREAMS driver clone(7)

Aekset, id: graphical device routines and filters gdev(lG)
scsi: scsi control device scsi(7)

device nodes for assorted device types, /create creatcdev(lM)
for uucp communications/ Devices: configuration file Devices(5)

scsimap: set mappings for SCSI devices scsimap(lM)
devnm: device name devnm(lM)

blocks and i-nodes. df: report number of free disk df(lM)
systems, fsck, dfsck: check and repair file fsck(l.M)

terminal line connection, dial: establish an out-going dial(3C)
ratfor: rational F O R T R A N dialect r a t fo r (l)

protocols. Dialers: ACU/modem calling Dialers(5)
bdiff: big diff. bdiff(l)

comparison. diff3: 3-way differential file dilB(l)
sdiff: side-by-side difference program sdiff(l)

diffink: mark differences between files diffmk(l)
diff: differential file comparator diff(l)

dilB: 3-way differential file comparison diS3(l)
dir: format of directories dir(4)
dircmp: directory comparison dircmp(l)

file, uucheck: check the uucp directories and permissions uucheck(lM)
install object files in binary directories, cpset: cpset(lM)

dir: format of directories dir(4)
link and unlink files and directories, link, unlink: link(lM)

mkdir, mkdirs: make directories mkdir(l)
rm, rmdir: remove files or directories ™(1)

cd: change working directory cd(l)
chdir: change working directory chdir(2)

chroot: change root directory chroot(2)
uucleanup: uucp spool directory clean-up uucleanup(lM)

dircmp: directory comparison dircmp(l)
file, getdents: read directory entries and put in a geldents(2)

file system independent directory entry, dirent: dirent(4)
unlink: remove directory entry unlink(2)

chroot: change root directory for a command chroot(lM)
/make a lost+found direaory for fsck mklostfnd(lM)

adv: advertise a directory for remote access adv(lM)
path-name of current working directory, getcwd: get getcwd(3C)

Is: list contents of directory ls(l)
mkdir: make a directory mkdir(2)
mvdir: move a directory mvdir(lM)

- xxxviii -

pwd: working directory name pwd(l)
/seekdir, rewinddir, closedir: directory operations directory(3X)
ordinary file, mknod: make a directory, or a special or mknod(2)

rmdir: remove a directory rmdir(2)
independent directory entry, dirent: file system dirent(4)

path names, basename, dirname: deliver portions of basename(l)
dis: object code disassembler dis(l)

t_unbind: disable a transport endpoint t_unbind(3n)
printers, enable, disable: enable/disable LP enable(l)

acct: enable or disable process accounting acct(2)
dis: object code disassembler dis(l)

type, modes, speed, and line discipline, /set terminal getty(lM)
type, modes, speed, and line discipline, /set terminal uugetty(lM)
t_snddis: send user-initiated disconnect request. t_snddis(3n)

retrieve information from disconnect. t_rcvdis: t_rcvdis(3n)
fusage: disk access profiler fusage(lM)

sadp: disk access profiler sadp(lM)
ID. diskusg: generate disk accounting data by user diskusg(lM)

df: report number of free disk blocks and i-nodes df(lM)
disk: general disk driver disk(7)

update: provide disk synchronization update(lM)
du: summarize disk usage du(lM)

accounting data by user ID. diskusg: generate disk diskusg(lM)
arp: address resolution display and control arp(lM)

vi: screen-oriented (visual) display editor based on ex vi(l)
information, rmntstat: display mounted resource rmntstat(lM)

prof: display profile data prof(l)
statistics, serstat: display serial port error serstat(lM)

local network, mptime: display status of nodes on ruptime(l)
hypot: Euclidean distance function hypot(3M)

/lcong48: generate uniformly distributed pseudo-random/ drand48(3C)
Sharing domain and network/ dname: print Remote File dname(lM)

routines. /res_send, res_init, dn_comp, dn_expand: resolver resolver(3)
/res_send, res_init, dn comp, dn_expand: resolver routines resolver(3)

MM/ mm.checkmm: print/check documents formatted with the mm(l)
macro package for formatting documents, mm: the MM mm(5)

slides, mmt, mvt: typeset documents, view graphs, and mmt(l)
nulladm,/ chargefee, ckpacct, dodisk, lastlogin, monacct, acctsh(lM)

whodo: who is doing what whodo(lM)
/print Remote File Sharing domain and network names dname(lM)

named: Internet domain name server named(lM)
/atof: convert string to double-precision number strtod(3C)

gtdl, ptdl: RS-232 terminal download, tdl tdl(l)
nrand48, mrand48, jrand48/ drand48, erand48, lrand48, drand48(3C)

graph: draw a graph graph(lG)
arithmetic: provide drill in number facts arithmetic(6)

controllers, tapeset: set drive parameters for tape tapesel(lM)
used by the/ tapedrives: tape drive specific information tapedrives(4)

facilitate usage of a tape drive, tsioctl: tsioctl(l)
any minor device on a STREAMS driver, clone: open clone(7)

disk: general disk driver disk(7)
lddrv: manage loadable drivers lddrv(lM)

drivers, drivers: loadable device drivers(7)
initialization/ brc, bcheckrc, drvload, powerfail: system brc(lM)

table of contents/ toe: dtoc, ttoc, vtoc: graphical toc(lG)
du: summarize disk usage du(lM)

and status information from dump, /extract error records errdead(lM)
hd: hexadecimal and ascii file dump hd(l)

- xxxviii -

od: octal dump od(l)
object file, dump: dump selected parts of an dump(l)

descriptor, dup: duplicate an open file dup(2)
descriptor. dup2: duplicate an open file dup2(3C)

descriptor, dup: duplicate an open file dup(2)
descriptor. dup2: duplicate an open file dup2(3C)

echo: echo arguments echo(l)
network/ ping: send ICMP ECHO_REQUESTpackets to ping(lM)

floating-point number to/ ecvt, fcvt, gcvt: convert ecvt(3C)
ed, red: text editor ed(l)

program, end, etext, edata: last locations in end(3C)
ex for casual users), edit: text editor (variant of edit(l)

sact: print current SCCS file editing activity sact(l)
/(visual) display editor based on ex vi(l)

ed, red: text editor ed(l)
ex: text editor ex(l)

files. Id: link editor for common object ld(l)
ged: graphical editor ged(lG)

common assembler and link editor output, a.out: a.out(4)
sed: stream editor sed(l)

casual users), edit: text editor (variant of ex for edit(l)
ldeeprom: load EEPROM ldeeprom(l.M)

/user, real group, and effective group IDs getuid(2)
and/ /getegid: get real user, effective user, real group, getuid(2)

language, efl: extended FORTRAN efl(l)
split FORTRAN, ratfor, or efl files, fsplit: fsplit(l)
pattern using full regular/ egrep: search a file for a egrep(l)

en: Ethernet Processor en(7)
enable/disable LP printers, enable, disable: enable(l)

accounting, acct: enable or disable process acct(2)
real-time priorities enabled/disabled, rtpenable: rtpenable(lM)

enable, disable: enable/disable LP printers enable(l)
crypt: encode/decode crypt(l)

encrypt: generate hashing encryption, crypt, setkey, crypt(3C)
crypt: password and file encryption functions crypt(3X)

makekey: generate encryption key makekey(l)
locations in program, end, etext, edata: last end(3C)

/getgrgid, getgrnam, setgrent, endgrent, fgetgrent: get group/ getgrent(3C)
/gethostent, sethostent, endhostent: get network host/ gethostbyname(3)

/ge tne tbyname, setnetent, endnetent: get network entry getnetent(3)
socket: create an endpoint for communication socket(2)

bind an address to a transport endpoint. t_bind: t_bind(3n)
t close: close a transport endpoint t_close(3n)

current event on a transport endpoint. t look: look at the t_look(3n)
t open: establish a transport endpoint t_open(3n)

manage options for a transport endpoint. t optmgmt: t_optmgmt(3n)
t_unbind: disable a transport endpoint t_unbind(3n)

/gelprotobyname, setprotoent, endprotoent: get protocol/ getprotoent(3)
/getpwuid, getpwnam, setpwent, endpwent, fgetpwent: get/ getpwent(3C)

/getservbyname, setservent, endservent: get service entry getservent(3)
getspent, getspnam, setspent, endspent, fgetspent, lckpwdf,/ getspent(3X)

utmp/ /pututline, setutent, endutent, utmpname: access getut(3C)
convert Arabic numerals to English, number: number(6)

processor, enpstart: configure Ethernet enpstart(lM)
getdents: read directory entries and put in a file getdents(2)

nlist: get entries from name list nlist(3C)
file, linenum: line number entries in a common object linenum(4)

file/ /manipulate line number entries of a common object ldlread(3X)

- XXV11 -

/ldnlseek: seek to line number entries of a section of a/ ldlseek(3X)
/ldnrseek: seek to relocation entries of a section of a/ ldrseek(3X)

system independent directory entry, dirent: file dirent(4)
utmp, wtmp: utmp and wtmp entry formats utmp(4)

fgetgrent: get group file entry, /setgrent, endgrent getgrcnt(3C)
endhostent: get network host entry, /sethostent, gethostbyname(3)

endnetent: get network entry, /setnetent, getnetent(3)
endprotoent: get protocol entry, /setprotoent getprotoent(3)

fgetpwent: get password file entry, /setpwent, endpwent getpwent(3C)
getrpcbynumber: get rpc entry, /getrpcbyname getrpcent(3)

endservent: get service entry, /setservent, getservent(3)
utmpname: access utmp file entry, /setutent, endutent, getut(3C)

object file symbol table entry, /symbol name for common ldgetname(3X)
/the index of a symbol table entry of a common object file ldtbindex(3X)

/read an indexed symbol table entry of a common object file ldtbread(3X)
putpwent: write password file entry putpwent(3C)

write shadow password file entry, putspent: putspent(3X)
unlink: remove directory entry unlink(2)

command execution, env: set environment for env(l)
environ: user environment environ(5)

cprofile: setting up a C shell environment at login time cprofile(4)
profile: setting up an environment at login time profile(4)
/IEEE floating point environment control fpgetround(3)

environ: user environment environ(5)
execution, env: set environment for command env(l)

getenv: return value for environment name getenv(3C)
putenv: change or add value to environment pulenv(3C)

performed for multi-user environment, /run commands rc2(lM)
stop the Remote File Sharing environment rfstop: rfstop(lM)

interface, and terminal environment. Aerminal tset(l)
character definitions for eqn and neqn. /special eqnchar(5)

remove nroflTtroff, tbl, and eqn constructs, deroff: deroff(l)
mathematical text for nrofiy eqn, neqn, checkeq: format eqn(l)

definitions for eqn and neqn. eqnchar: special character eqnchar(5)
rhosts: remote equivalent users rhosts(4)

mrand48, jrand48y drand48, erand48, lrand48, nrand48 drand48(3C)
graphical device/ gdev: hpd, erase, hardcopy, tekset, td: gdev(lG)

complementary error function, erf, erfc: error function and erf(3M)
err: error-logging interface err(7)

and status information from/ errdead: extract error records errdead(lM)
errdemon: error-logging demon errdemon(lM)

format, errfile: error-log file errfile(4)
system error/ perror, errno, sys_errlist, sys_nerr: perror(3C)

function and complementary error function, /erfc: error erf(3M)
receive a unit data error indication. t_rcvuderr: t_rcvuderr(3)

strclean: STREAMS error logger cleanup program strclean(lM)
strerr: STREAMS error logger daemon strerr(lM)

log: interface to STREAMS error logging and event/ log(7)
t error: produce error message t_error(3n)

syserrlist, sys_nerr: system error messages, /errno, perror(3C)
to system calls and error numbers, /introduction intro(2)

information/ errdead: extract error records and status errdead(lM)
serstat: display serial port error statistics serstat(lM)

matherr: error-handling function matherr(3M)
errfile: error-log file format errfile(4)

errdemon: error-logging demon errdemon(lM)
errstop: terminate the error-logging demon errstop(lM)

err: error-logging interface err(7)

- XXV111 -

process a report oflogged errors, errpt: errpt(lM)
hashcheck: find spelling errors, /hashmake, spellin, spell(l)

error-logging demon, errstop: terminate the errstop(lM)
another transport/ t_connect: establish a connection with t_connect(3n)

endpoint. t_open: establish a transport t_open(3n)
terminal line/ dial: establish an out-going dial(3C)

setmnt: estabhsh mount table setmnt(lM)
with information from /etc/passwd.//etc/shadow pwconv(lM)
with information from /etc/passwd. //etc/shadow pwunconv(lM)

pwconv: install and update /etc/shadow with information/ pwconv(lM)
pwunconv: install and update /etc/shadow with information/ pwunconv(lM)

/information used by the /etc/tapeset command tapedrives(4)
in program, end, etext, edata: last locations end(3C)

en: Ethernet Processor en(7)
enpstart: configure Ethernet processor enpstart(lM)

hypot: Euclidean distance function hypot(3M)
expression, expr: evaluate arguments as an expr(l)

test: condition evaluation command test(l)
t_look: look at the current event on a transport endpoint t_look(3n)

to STREAMS error logging and event tracing, log: interface log(7)
notify, unnotify, evwait, evnowait: manage/ notify(2)

notify, unnotify, evwait, evnowait: manage/ notify(2)
edit: text editor (variant of ex for casual users) edit(l)

ex: text editor ex(l)
display editor based on ex./screen-oriented (visual) vi(l)

crash: examine system images crash(l.M)
a file, locking: exclusive access to regions of locking(2)

execve, execlp, execvp:/ exec: execl, execv, execle, exec(2)
execlp, execvp: execute/ exec: execl, execv, execle, execve exec(2)

execvp:/ exec: execl, execv, execle, execve, execlp, exec(2)
/execl, execv, execle, execve, execlp, execvp: execute a/ exec(2)

path: locate executable file for command palh(l)
execve, execlp, execvp: execute a file, /execle exec(2)

construct argument list(s) and execute command, xargs: xargs(l)
time, at, batch: execute commands at a later at(l)

regcmp, regex: compile and execute regular expression regcmp(3X)
requests, uuxqt: execute remote command uuxqt(lM)

set environment for command execution, env: env(l)
sleep: suspend execution for an interval sleep(l)
sleep: suspend execution for interval s leep(3C)

monitor: prepare execution profile monitor(3C)
rcmd: remote shell command execution rcmd(l)

rexecd: remote execution server rexecd(lM)
profil: execution time profile profil(2)

UNIX-to-UNIX system command execution, uux: uux(lC)
execvp: execute/ exec: execl, execv, execle, execve, execlp, exec(2)

exec: execl, execv, execle, execve, execlp, execvp:/ exec(2)
/execv, execle, execve, execlp, execvp: execute a file exec(2)

a new file or rewrite an existing one. creat: create creat(2)
exit, _exit: terminate process exit(2)

exponential, logarithm,/ exp, log, loglO, pow, sqrt: exp(3M)
peat, unpack: compress and expand files, pack pack(l)

to spaces, and vice versa, expand, unexpand: expand tabs expand(l)
t_snd: send data or expedited data over a/ t_snd(3n)

t_rcv: receive data or expedited data sent over a/ t_rcv(3n)
advent: explore Colossal Cave advent(6)

exp, log, loglO, pow, sqrt: exponential, logarithm, power,/ exp(3M)
exports: NFS file systems export configuration file exports(4)

- xxxviii -

export configuration file, exports: NFS file systems exporls(4)
expression, expr: evaluate arguments as an expr(l)

routines, regexp: regular expression compile and match regexp(5)
regcmp: regular expression compile regcmp(l)

expr: evaluate arguments as an expression e x p r (l)
compi le and execute regular expression, regamp, rcgex: regcmp(3X)

a pattern using full regular expressions, /a file for egrep(l)
efl: extended FORTRAN language efl(l)

extproc: turn external processing on or off. extproc(lM)
programs, xstr: extract and share strings in C xstr(l)

status information/ errdead: extract error records and errdead(lM)
in a file, strings: extract the ASCII text strings strings(l)

remainder,/ floor, ceil, fmod, fabs: floor, ceiling, floor(3M)
drive, tsioctl: facilitate usage of a tape tsiocll(l)

factors of a number, factor: obtain the prime factor(1)
factor: obtain the prime factors of a number factor(l)

/usr/adm/loginlog: log of failed login attempts loginlog(4)
true, false: provide truth values true(l)

data in a machine-independent fashion, /access long integer sputl(3X)
fine: fast incremental backup finc(lM)

/calloc, mallopt, mallinfo: fast main memory allocator malloc(3X)
a stream, fclose, fflush: close or flush fclose(3S)

fcntl: file control fcntl(2)
fcntl: file control options fcntl(5)

floating-point number/ ecvt, fevt, gcvt: convert ecvt(3C)
fopen, freopen, fdopen: open a stream fopen(3S)

status inquiries, ferror, feof, clearerr, fileno: stream ferror(3S)
fileno: stream status/ ferror, feof, clearerr, ferror(3S)

firstkey, nextkey:/ dbminit, fetch, store, delete, dbm(3X)
for a file system, ff: file names and statistics ff(lM)

stream, fclose, fflush: close or flush a fclose(3S)
word from a/ getc, getchar, fgetc, getw: gel character or getc(3S)

/getgmam, setgrent, endgrent, fgelgrent: get group file/ getgrent(3C)
/getpwnam, setpwent, endpwent, fgetpwent: get password file/ getpwent(3C)

stream, gets, fgets: get a string from a gets(3S)
/getspnam, setspent, endspent, fgetspent, lckpwdf, ulckpwdf:/ getspent(3X)

character string, fgrep: search a file for a fgrep(l)
times, utime: set file access and modification utime(2)

ldfcn: common object file access routines ldfcn(4)
determine accessibility of a file, access: access(2)

/2645A terminal tape file archiver hpio(l)
tar: tape file archiver tar(l)

cpio: copy file archives in and out cpio(l)
pwck, grpek: password/group file checkers pwck(lM)

chmod: change mode of file chmod(2)
change owner and group of a file, chown: chown(2)

mcs: manipulate the object file comment section mcs(l)
diff: differential file comparator diff(1)

diiI3: 3-way differential file comparison dif!3(l)
fcntl: file control fcntl(2)
fcntl: file control options fcntl(5)

conv: common object file converter conv(l)
rep: remote file copy rcp(l)

public UNIX-to-UNIX system file copy, uuto, uupick: uuto(lC)
core: format of core image file core(4)

cprs: compress a common object file cprs(l)
umask: set and get file creation mask umask(2)

crontab: user cronlab file crontab(l)

- xxxviii -

ctags: create a tags file ctags(l)
fields of each fine of a file, cut: cut out selected cut(l)

using the mkfs(l) proto file database, /software qinstall(l)
dd: convert and copy a file dd(lM)

a delta (change) to an SCCS file, delta: make delta(l)
close: close a file descriptor close(2)

dup: duplicate an open file descriptor dup(2)
dup2: duplicate an open file descriptor dup2(3C)

file: determine file type file(l)
hd: hexadecimal and ascii file dump hd(l)
selected parts of an object file, dump: dump dump(l)

sact: print current SCCS file editing activity sact(l)
crypt: password and file encryption functions crypt(3X)

endgrent, fgetgrent: get group file entry, /setgrent, getgrent(3C)
fgetpwent: get password file entry, /endpwent, getpwent(3C)
utmpname: access utmp file entry, /endutent, getut(3C)

putpwent: write password file entry putpwent(3C)
write shadow password file entry, putspent: putspent(3X)

execlp, execvp: execute a file, /execv, execle, execve, exec(2)
systems export configuration file, exports: NTS file exports(4)

fgrep: search a file for a character string fgrep(l)
grep: search a file for a pattern grep(l)

regular/ egrep: search a file for a pattern using full egrep(l)
path: locate executable file for command path(l)

inetd.conf: configuration file for inetd (internet/ inetd.conf(4)
ldaopen: open a common object file for reading, ldopen, ldopen(3X)

netrc: login file for remote networks netrc(4)
aliases: aliases file for sendmail aliases(4)

lines. Devices: configuration file for uucp communications Devices(5)
acct: per-process accounting file format acct(4)

ar: common archive file format ar(4)
errfile: error-log file formal errfile(4)

intro: introduction to file formats intro(4)
entries of a common object file function, /line number ldlread(3X)

gateways: routed configuration file gateways(4)
get: get a version of an SCCS file gel(l)
directory entries and put in a file, getdents: read getdents(2)

group: group file group(4)
files, filehdr: file header for common object filehdr(4)

limits: file header for/ limits(4)
constants, unistd: file header for symbolic unistd(4)

file, ldfhread: read the file header of a common object ldfhread(3X)
ldohseek: seek to the optional file header of a common object/ ldohseek(3X)

split: split a file into pieces split(l)
issue: issue identification file issue(4)

of a member of an archive file, /read the archive header ldahread(3X)
close a common object file, ldclose, ldaclose: ldclose(3X)

file header of a common object file, ldfhread: read the ldfhread(3X)
a section of a common object file, /line number entries of ldlseek(3X)

file header of a common object file, /seek to the optional ldohseek(3X)
a section of a common object file, /relocation entries of ldrseek(3X)

header of a common object file, /indexed/named section ldshread(3X)
section of a common object file, Ao an indexed/named ldsseek(3X)

table entry of a common object file. Ahe index of a symbol ldlbindex(3X)
table entry of a common object file, /read an indexed symbol ldtbread(3X)

table of a common object file, /seek to the symbol]dtbseek(3X)
entries in a common object file, linenum: line number linenum(4)

link: link to a file link(2)

- xxxviii -

listing from a common object file, list: produce C source list(l)
set links/ qlist: print out file lists from proto file; qlist(l)

access to regions of a file, locking: exclusive locking(2)
masterupd: update the master file masterupd(lM)

make an ifile from an object file, mkifile: mkifile(lM)
mknod: build special file mknod(lM)

or a special or ordinary file, /make a directory mknod(2)
ctermid: generate file name for terminal ctermid(3S)

mktemp: make a unique file name mktemp(3C)
for a file system file names and statistics ff(lM)

netcf: Network Configuration File netcf(4)
data base for the mail aliases file, newaliases: rebuild the ncwaliases(l)

change the format of a text file, newform: newform(l)
name list of common object file, nm: print nm(l)

null: the null file null(7)
/find the slot in the utmp file of the current user uyslot(3C)

/identify processes using a file or file structure fuser(lM)
one. creat: create a new file or rewrite an existing creat(2)

passwd: password file passwd(4)
or subsequent lines of one file, /lines of several files paste(l)

pg: file perusal filter for CRTs PgU)
/rewind, ftell: reposition a file pointer in a stream fseek(3S)

lseek: move read/write file pointer lseek(2)
prs: print an SCCS file prs(l)
queue description file, /at/batch/cron queuedefs(4)

read: read from file r ead®
for a common object file, /relocation information reloc(4)

resolver configuration file, resolv.conf: resolver(4)
Sharing name server master file, rfmaster: Remote File rfmaster(4)

remove a delta from an SCCS file, rmdel: rmdel(l)
bfs: big file scanner bfs(l)

two versions of an SCCS file, sccsdiff: compare sccsdifT(l)
sccsfile: format of SCCS file sccsfile(4)

header for a common object file, scnhdr: section scnhdr(4)
format of curses screen image file.. scr_dump: scr_dump(4)

/out file lists from proto file; set links based on qlist(l)
shadow: password file shadow(4)

rfadmin: Remote File Sharing administration rfadmin(lM)
rfudaemon: Remote File Sharing daemon process rfudaemon(lM)

network/ dname: print Remote File Sharing domain and dname(lM)
rfstop: stop the Remote File Sharing environment rfstop(lM)

rfpasswd: change Remote File Sharing host password rfpasswd(lM)
master file, rfmaster: Remote File Sharing name server rfmaster(4)

query, nsquery: Remote File Sharing name server nsquery(lM)
shell/ rfuadmin: Remote File Sharing notification rfuadmin(lM)

unadv: unadvertise a Remote File Sharing resource unadv(l.M)
/mount, unmount Remote File Sharing (RFS) resources rmountall(lM)

rfstarl: start Remote File Sharing rfstart(lM)
mapping, idload: Remote File Sharing user and group idload(l.M)

fsize: report file size fsize(l)
stat, fstat: get file status stat(2)

the ASCII text strings in a file, strings: extract strings(l)
from a common object file, /line number information strip(l)

processes using a file or file structure, /identify fuser(lM)
checksum and block count of a file, sum: print sum(l)
swrite: synchronous write on a file swrite(2)

/symbol name for common object file symbol table entry ldgetname(3X)
syms: common object file symbol table format syms(4)

- xxxviii -

ckbupscd: check file system backup schedule ckbupscd(lM)
fsdb: file system debugger fsdb(lM)

volume, fs: file system: format of system fs(4)
fstyp: determine file system identifier fstyp(lM)

directory entry, dirent: file system independent dirent(4)
statfs, fstatfs: get file system information statfs(2)
mkfs: construct a file system mkfs(lM)

mount: mount a file system mount(2)
/mount, unmount Network File System resources nmountall(lM)

nfsstat: Network File System statistics nfsstat(lM)
ustat: get file system statistics ustat(2)

fsstat: report file system status fsstat(lM)
mnttab: mounted file system table mnttab(4)

rmtab: remotely mounted file system table rmtab(4)
sysfs: get file system type information sysfs(2)

umount: unmount a file system umount(2)
volcopy: make literal copy of file system volcopy(lM)

system: system description file system(4)
/umount: mount and unmount file systems and remote/ mount(lM)

configuration/ exports: NFS file systems export exports(4)
access time, dcopy: copy file systems for optimal dcopy(lM)

fsck, dfsck: check and repair file systems fsck(lM)
labelit: provide labels for file systems labelit(lM)
mount, unmount multiple file systems, /umountall: mountall(lM)

and/ checklist: list of file systems processed by fsck checklist(4)
deliver the last part of a file, tail: tail(l)

term: format of compiled term file term(4)
tmpfile: create a temporary file tmpfile(3S)

create a name for a temporary file, tmpnam, tempnam: tmpnam(3S)
and modification times of a file, touch: update access touch(l)

ftp: ARPANET file transfer program ftp(l)
ftpd: DARPA Internet File Transfer Protocol server ftpd(lM)
tftpd: DARPA Trivial File Transfer Protocol server tftpd(lM)
uucp system, uucico: file transport program for the uucico(lM)

ftw: walk a file tree ftw(3C)
file: determine file type file(l)

undo a previous get of an SCCS file, unget: unget(l)
report repeated lines in a file, uniq: uniq(l)

directories and permissions file, uucheck: check the uucp uucheck(lM)
val: validate SCCS file val(l)

write: write on a file write(2)
umask: set file-creation mode mask umask(l)

common object files, filehdr. file header for filehdr(4)
ferror, feof, clearerr, fileno: stream status/ ferror(3S)

and print process accounting file(s). acctcom: search acctcom(l)
merge or add total accounting files, acctmerg: acctmerg(lM)

create and administer SCCS files, admin: admin(l)
link, unlink: link and unlink files and directories link(lM)

cat: concatenate and print files cat(l)
cmp: compare two files cmp(l)

lines common to two sorted files, comm: select or reject comm(l)
In, mv: copy, link, ormove files, cp, cp(l)

mark differences between files, diffmk: diffmk(l)
file header foT common object files, filehdr: filehdr(4)

find: find files find(l)
free: recover files from a backup tape frec(lM)

format specification in text files, fspec: fspec(4)
FORTRAN, ratfor, or efl files, fsplil: split fsplit(l)

- xxxviii -

string, format of graphical files, /graphical primitive gps(4)
cpset: install object files in binary directories cpset(lM)

language preprocessor include files, includes: determine C includes(l)
intro: introduction to special files intro{7)

link editor for common object files. Id: ld(l)
lockf: record locking on files lockf(3C)

passmgmt: password files management passmgmt(lM)
rm, rmdir: remove files or directories rm(l)

/merge same lines of several files or subsequent lines of/ paste(l)
unpack: compress and expand files, pack, peat, pack(l)

pr: print files pKl)
in bytes of common object files, /print section sizes size(l)

sort: sort and/or merge files sort(l)
convert: convert archive files to common formats convert(l)

what: identify SCCS files what(l)
fstab: file-system-table fstab(4)

pg: file perusal filter for CRTs pg(l)
greek: select terminal filter greek(l)

nl: line numbering filter nl(l)
col: filler reverse line-feeds col(l)

tio: tape io filter tio(l)
graphical device routines and filters. ftekset, td: gdev(lG)

tplot: graphics filters tplot(lG)
fine: fast incremental backup finc(lM)

find: find files find(l)
hyphen: find hyphenated words hyphen(l)

ttyname, isatty: find name of a terminal ttyname(3C)
object library, lorder: find ordering relation for an lorder(l)

hashmake, spellin, hashcheck: find spelling errors, spell, spell(l)
of the current user, ttyslot: find the slot in the utmp file ttyslot(3C)

lookup program, finger: user information finger(l)
information server, fingerd: remote user fingerd(lM)

fold: fold long lines for finite width output device fold(l)
dbminit, fetch, store, delete, firstkey, nextkey: database/ dbm(3X)

fish: play "Go Fish" fish(6)
tee: pipe fitting tee(l)

/fpgetsticky, fpsetsticky: IEEE floating point environment/ fpgetround(3)
isnand, isnanf: test for floating point NaN/ isnan: isnan(3C)

ecvt, fevt, gcvt: convert floating-point number to/ ecvt(3C)
/modf: manipulate parts of floating-point numbers frexp(3C)

floor, ceil, fmod, fabs: floor, ceiling, remainder,/ floor(3M)
cflow: generate C flowgraph cflow(l)

fclose, fflush: close or flush a stream fclose(3S)
remainder,/ floor, ceil, fmod, fabs: floor, ceiling floor(3M)

width output device, fold: fold long lines for finite fold(l)
stream, fopen, freopen, fdopen: open a fopen(3S)

advertised resource, fumount: forced unmount of an fumount(lM)
fork: create a new process fork(2)

per-process accounting file format, acct: acct(4)
service request/ nlsrequest: format and send listener nlsrequest(3n)

ar: common archive file format ar(4)
errfile: error-log file format errfile(4)

nroff or/eqn, neqn, checkeq: format mathematical text for eqn(l)
newform: change the format of a text file newform(l)

inode: format of an i-node inode(4)
term: format of compiled term file term(4)
core: format of core image file core(4)
cpio: format of cpio archive cpio(4)

- xxxviii -

file.. scr_dump: format of cuTses screen image scr_dump(4)
dir: format of directories dir(4)

/graphical primitive string, format of graphical files gps(4)
sccsfile: format of SCCS file sccsfile(4)

fs: file system: format of system volume fs(4)
files, fspec: format specification in text fspec(4)

object file symbol table format, syms: common syms(4)
troff. tbl: format tables for nroff or tbl(l)

nroff: format text nroff(l)
archive files to common formats, convert: convert convert(l)

intro: introduction to file formats intro(4)
wtmp: utmp and wtmp entry formats, utmp utmp(4)
scanf, fscanf, sscanf: convert formatted input scanf(3S)

/vfprintf, vsprintf: print formatted output of a varargs/ vprintf(3S)
fprintf, sprintf: print formatted output, printf printf(3S)

/checkmm: print/check documents formatted with the MM macros mm(l)
mptx: the macro package for formatting a permuted index mptx(5)

mm: the MM macro package for formatting documents mm(5)
ms: text formatting macros ms(5)

man: macros for formatting manual pages man(5)
me: macros for formatting papers me(5)

ASSIST menus and command forms, /generate/modify astgen(l)
ratfor: rational FORTRAN dialect ratfor(l)

efl: extended FORTRAN language efl(l)
files, fsplit: split FORTRAN, ratf or, or efl fsplit(l)

hopefully interesting, adage, fortune: print a random, fortune(6)
fpgetround, fpsetround, fpgetmask, fpsetmasky fpgetround(3)
fpgetmask, fpsetmasky fpgetround, fpsetround, fpgetround(3)
/fpgetmask, fpsetmask, fpgetsticky, fpsetsticky: IEEE/ fpgetround(3)

formatted output, printf, fprintf, sprintf: print printf(3S)
/fpsetround, fpgetmask, fpsetmask, fpgetsticky,/ fpgetround(3)
fpsetmasky fpgetround, fpsetround, fpgetmask, fpgetround(3)

point/ /fpsetmask, fpgetsticky, fpsetsticky: IEEE floating fpgetround(3)
word on a/ putc, putchar, fputc, putw: put character or putc(3S)

stream, puts, fputs: put a siring on a puts(3S)
input/output, fread, fwrite: binary fread(3S)
backup tape, free: recover files from a frec(lM)

t_free: free a library structure t_free(3n)
df: report number of free disk blocks and i-nodes df(lM)

memory allocator, mal loc, free, realloc, calloc: main mal loc(3C)
mallopt, mallinfo:/ malloc, free, realloc, calloc malloc(3X)

stream, fopen, freopen, fdopen: open a fopen(3S)
parts of floating-point/ frexp, ldexp, modf: manipulate frexp(3C)

free: recover files from a backup tape frec(lM)
list: produce C source listing from a common object file list(l)
/and line number information from a common object file strip(l)

/receive the confirmation from a connect request t_rcvconnect(3)
reevfrom: receive a message from a socket, recv, recv(2)
getw: get character or word from a stream, /fgetc, getc(3S)

gets, fgets: get a string from a stream gets(3S)
mkifile: make an ifile from an object file mkifile(lM)
rmdel: remove a delta from an SCCS file rmdel(l)

getopt: get option letter from argument vector getopt(3C)
t_rcvdis: retrieve information from disconnect t_rcvdis(3n)

records and status information from dump, /extract error errdead(lM)
/etc/shadow with information from/etc/passwd. /and updale pwconv(lM)
/etc/shadow with information from /etc/passwd. /and update pwunconv(lM)

read: read from file read(2)

- xxxviii -

ncheck: generate path names from i-numbers ncheck(lM)
nlist: get entries from name list nlist(3C)

acctcms: command summary from per-process accounting/ acctcms(lM)
qlist: print out file lists from proto file; set links/ qlist(l)

getpw: get name from UID getpw(3C)
cclsw, cc2sw, cc2fp: front-end to the cc command cclsw(l)

gencc: create a front-end to the cc command gencc(lM)
system volume, fs: file system: format of fs(4)

formatted input, scanf, fscanf, sscanf: convert scanf(3S)
of file systems processed by fsck and ncheck. /list checklisl(4)

file systems, fsck, dfsck: check and repair fsck(lM)
a lost+found directory for fsck. mklost+found: make mklostfnd(lM)

fsdb: file system debugger fsdb(lM)
reposition a file pointer in/ fseek, rewind, ftell: fseek(3S)

fsize: report file size fsize(l)
text files, fspec: format specification in fspec(4)

or efl files, fsplit: split FORTRAN, ratfor fspfit(l)
status, fsstat: report file system fsstat(lM)

fstab: file-system-table fstab(4)
stat, fstat: get file status stat(2)

information, statfs, fstatfs: get file system statfs(2)
identifier, fstyp: determine file system fstyp(lM)

pointer in a/ fseek, rewind, ftell: reposition a file fseek(3S)
communication/ stdipc, ftok: standard interprocess stdipc(3C)

program, ftp: ARPANET file transfer ftp(l)
Transfer Protocol server, ftpd: DARPA Internet File ftpd(lM)

ftw: walk a file tree ftw(3C)
/a file for a pattern using full regular expressions egrep(l)

shutdown: shut down part of a full-duplex connection shutdown(2)
advertised resource, fumount: forced unmount of an fumount(lM)
error/ erf, erfc: error function and complementary erf(3M)
gamma: log gamma function gamma(3M)

hypot: Euclidean distance function hypot(3M)
of a common object file function, /line number entries ldlread(3X)
matherr: error-handling function matherr(3M)

prof: profile within a function prof(5)
math: math functions and constants math(5)

intro: introduction to functions and libraries intro(3)
jO, j l , jn, yO, yl , yn: Bessel functions, bessel: bessel(3M)

password and file encryption functions, crypt: crypt(3X)
logarithm, power, square root functions, /sqrt: exponential exp(3M)

remainder, absolute value functions, /floor, ceiling, floor(3M)
ocurse: optimized screen functions ocurse(3X)
300, 300s: handle special functions of DASI300 and 300s/ 300(1)

terminals, hp: handle special functions of Hewlett-Packard hp(l)
terminal. 450: handle special functions of the DASI 450 450(1)

sinh, cosh, tanh: hyperbolic functions sinh(3M)
atan, atan2: trigonometric functions. Aan, asin, acos, trig(3M)

fusage: disk access profiler fusage(lM)
using a file or file/ fuser: identify processes fuser(lM)

fread, fwrite: binary input/output fread(3S)
connect accounting records, fwtmp, wtmpfix: manipulate fwtmp(lM)

moo: guessing game moo(6)
back: the game of backgammon back(6)

bj: the game of black jack bj(6)
craps: the game of craps craps(6)

wump: the game of hunt-the-wumpus wump(6)
trk: trekkie game trk(6)

- xxxviii -

intro: introduction to games intro(6)
gamma: log gamma function gamma(3M)

file, gateways: routed configuration gateways(4)
number to siring, ecvt, fcvt, gcvt: convert floating-point ecvt(3C)
tekset, td: graphical device/ gdev: hpd, erase, hardcopy, gdev(lG)

ged: graphical editor ged(lG)
the cc command, gencc: create a front-end to gencc(lM)

maze: generate a maze maze(6)
abort: generate a SIGABRT. abort(3C)
cflow: generate C flowgraph cflow(l)

cross-reference, cxref: generate C program cxref(l)
classification and/ chrtbl: generate character chrtbl(lM)

by user ID. diskusg: generate disk accounting data diskusg(lM)
makekey: generate encryption key makekey(l)

terminal, ctermid: generate file name for ctermid(3S)
crypt, setkey, encrypt: generate hashing encryption crypt(3C)

i-numbers. ncheck: generate path names from ncheck(lM)
lexical tasks, lex: generate programs for simple lex(l)

/srand48, seed48, lcong48: generate uniformly distributed/ drand48(3C)
and command forms, astgen: generate/modify ASSIST menus astgen(l)

srand: simple random-number generator, rand, rand(3C)
gets, fgets: get a string from a stream gets(3S)

get: get a version of an SCCS file get(l)
getsockopt, setsockopt: get and set options on/ getsockopt(2)

ulimit: get and set user limits ulimit(2)
the user, cuserid: get character login name of cuserid(3S)

getc, getchar, fgetc, getw: get character or word from a/ getc(3S)
through the/nlsgetcall: get client's data passed nlsgetcall(3n)

getdtablesize: get descriptor table size getdtablesize(2)
nlist: get entries from name list nlist(3C)

umask:setand get file creation mask umask(2)
sut, fstat: get file status stat(2)

statfs, fstatfs: get file system information statfs(2)
ustat: get file system statistics ustat(2)

information, sysfs: get file system type sysfs(2)
file, get: get a version of an SCCS get(l)

/setgrent, endgrent, fgetgrent: get group file entry getgrent(3C)
gellogin: get login name getlogin(3C)
logname: get login name logname(l)

msgget: get message queue msgget(2)
getpw: get name from UID getpw(3C)

getpeemame: get name of connected peer getpeemame(2)
system, uname: get name of current CTIX uname(2)

provider, nlsprovider: get name of transport nlsprovider(3n)
host, getservaddr: get network address of service getservad(lM)

/setnetent, endnetent: get network entry getnetent(3)
/sethostent, endhostent: get network host entry gethostbyname(3)

getmsg: get next message off a stream getmsg(2)
unget: undo a previous get of an SCCS file uriget(l)

argument vector, getopt: get option letter from getopt(3C)
/setpwent, endpwent, fgetpwent: get password file entry getpwent(3C)

working directory, getcwd: get path-name of current getcwd(3C)
times, times: get process and child process times(2)

and/ getpid, getpgrp, getppid: get process, process group, getpid(2)
/setprotoent, endprotoent: get protocol entry getprotoent(3)

information. t_gelinfo: get protocol-speci fic service t_getinfo(3n)
/geteuid, getgid, getegid: get real user, effective user J getuid(2)

getrpcbyname, getrpcbynumber: get rpc entry, getrpcent, getrpcent(3)

- x x x v i i i -

getrpcport: get RPC port number getrpcport(3)
/setservent, endservent: get service entry getservent(3)

semget: get set of semaphores semget(2)
fgetspent, lckpwdf, ulckpwdf: get shadow, /endspent, getspent(3X)

identifier, shmget: get shared memory segment shmget(2)
getsockname: get socket name getsockname(2)

t_getstate: get the current state t_getstate(3)
tty: get the name of the terminal tty(l)

time: get time time(2)
get character or word from a/ getc, getchar, fgetc, getw: getc(3S)
character or word from/ getc, getchar, fgetc, getw: get getc(3S)

current working directory, getcwd: get path-name of getcwd(3C)
entries and put in a file, getdents: read directory getdents(2)

table size, getdtablesize: get descriptor getdtablesize(2)
getuid, geteuid, getgid, getegid: get real user,/ getuid(2)

environment name, getenv: return value for getenv(3C)
real user, effective/ getuid, geteuid, getgid, getegid: get getuid(2)

user J getuid, geteuid, getgid, getegid: get real getuid®
setgrent, endgrenty getgrent, getgrgid, getgrnam, getgrent(3C)

endgrenty getgrent, getgrgid, getgrnam, setgrent getgrent(3C)
getgrent, getgrgid, getgrnam, setgrent, endgrenty getgrent(3C)

sethostent,/ gethostbyname, gethostbyaddr, gethostent, gethostbyname(3)
gethostent, sethostent,/ gethostbyname, gethostbyaddr gelhostbyname(3)

gethostbyname, gethostbyaddr, gethostent, sethostent,/ gethostbyname(3)
unique identi fier of current/ gethostid, sethostid: get/set gethostid(2)

get/set name of current host, gethostname, sethostname: gelhostname(2)
getlogin: get login name getlogin(3C)

stream, getmsg: gel next message off a getmsg(2)
setnelent,/ getnetent, getnetbyaddr, gelnetbyname getnetent(3)

getnetent, getnetbyaddr, getnetbyname, setnetent,/ getnetent(3)
getnetbyname, setnetent,/ getnetent, getnetbyaddr getnetent(3)

argument vector, getopt: get option letter from getopt(3C)
getopt: parse command options getopt(l)

options, getopts, getoptcvt: parse command getopts(l)
command options, getopts, getoptcvt: parse getopts(l)

getpass: read a password getpass(3C)
connected peer, getpeemame: get name of getpeername(2)

process group, and/ getpid, getpgrp, getppid: get process, getpid(2)
process, process group, and/ getpid, getpgrp, getppid: get getpid(2)
group, and/ getpid, getpgrp, getppid: get process, process getpid(2)

getprotoent, getprotobynumber, getprotobyname, setprotoenty getprotoent(3)
getprotobynamey getprotoent, getprotobynumber getprotoent(3)
getprotobyname, setprotoenty getprotoent, getprotobynumber, getprotoent(3)

getpw: get name from UID getpw(3C)
setpwent, endpwenty getpwent, getpwuid, getpwnam, getpwent(3C)
getpwent, getpwuid, getpwnam, setpwent, endpwenty getpwent(3C)

endpwenty getpwent, getpwuid, getpwnam, setpwent, getpwent(3C)
get rpc entry, getrpcent, getrpcbyname, getrpcbynumber: getrpcent(3)

getrpcbynumber: get rpc/ getrpcent, getrpcbyname getrpcent(3)
number, getrpcport: get RPC port getrpcport(3)

a stream, gets, fgets: get a string from gets(3S)
address of service host, getservaddr: get network getservad(lM)

getservent, getservbyport, getservbyname, setservent,/ getservent(3)
setservent,/ getservent, getservbyport, getservbyname, getservent(3)

getservbyname, setservent,/ getservent, getservbyport, getservent(3)
gettimeofday, settimeofday: get/set date and time gettimeofday(2)

gethostname, sethostname: get/set name of current host gethostname(2)
current/ gethostid, sethostid: get/set unique identi fier of gethostid(2)

- xxxv i i i -

getsockname: gel socket name getsockname(2)
and set options on sockets, getsockopt, setsockopt: get getsockopt(2)

endspent, fgetspent, lckpwdf,/ getspent, getspnam, setspent getspent(3X)
fgetspent, lckpwdf,/ getspent, getspnam, setspent, endspent, getspent(3X)

get/set date and time, gettimeofday, settimeofday: gettimeofday(2)
and terminal settings used by getty. gettydefs: speed gettydefs(4)

modes, speed, and line/ getty: set terminal type, getty(lM)
ct: spawn getty to a remote terminal ct(lC)

settings used by getty. gettydefs: speed and terminal gettydefs(4)
getegid: get real user J getuid, geteuid, getgid, getuid(2)

pututline, setutenty getut: getutent, getutid, getutline, getut(3C)
setutenty getut: getutent, getutid, getutline, pututline, getut(3C)

getut: getutent, getutid, getutline, pututliney getut(3C)
from a/getc, getchar, fgetc, getw: get character or word getc(3S)

common CTIX system terms and/ glossary: definitions of glossary(l)
ascftimey ctime, localtime, gmtime, asctime, cftime ctime(3C)

fish: play "Go Fish" fish(6)
setjmp, longjmp: non-local goto setjmp(3C)
string, format of graphical/ gps: graphical primitive gps(4)

graph: draw a graph graph(lG)
sag: system activity graph sag(lG)

commands, graphics: access graphical and numerical graphics(lG)
/network useful with graphical commands stal(lG)

/erase, hardcopy, tekset, td: graphical device routines and/ gdev(lG)
ged: graphical editor ged(lG)

primitive string, format of graphical files, /graphical gps(4)
toe: dtoc, ttoc, vtoc: graphical table of contents/ toc(lG)

gutil: graphical utilities gutil(lG)
numerical commands, graphics: access graphical and graphics(lG)

tplot: graphics filters tplot(lG)
plot: graphics interface plot(4)

subroutines, plot: graphics interface plot(3X)
mvt: typeset documents, view graphs, and slides, mmt mmt(l)
package for typesetting view graphs and slides, /macro mv(5)

greek: select terminal filter greek(l)
pattern, grep: search a file for a grep(l)

/user, effective user, real group, and effective group/ getuid(2)
/getppid: get process, process group, and parent process IDs getpid(2)

chown, chgrp: change owner or group chown(l)
endgrent , fgetgrent : get group file entry, /setgrent, getgrent(3C)

group: group file group(4)
setpgrp: set process group ID setpgrp(2)

id: print user and group IDs and names id(lM)
real group, and effective group IDs. /effective user getuid(2)

setuid, setgid: set user and group IDs setuid(2)
Remote File Sharing user and group mapping, idload: idload(lM)

newgrp: log in to a new group newgrp(lM)
chown: change owner and group of a file chown(2)

a signal to a process or a group of processes, /send kill(2)
update, and regenerate groups of programs, /maintain, make(l)

checkers, pwck, grpek: password/group file pwck(lM)
ssignal, gsignal: software signals ssignal(3C)

install or relocate a PTor GTlocal printer, /mvtpy: mktpy(l)
download, tdl, gldl, ptdl: RS-232 terminal tdl(l)

hangman: guess the word hangman(6)
moo: guessing game moo(6)

gutil: graphical utilities gutil(lG)
/for Interphase V/TAPE 3200 half-inch tape controller ipt(7)

- xxxviii -

stape: SCSI quarter-inch and half-inch tape stape(7)
system state, shutdown, halt: shut down system, change shutdown(lM)

DASI 300 and 300s/ 300, 300s: handle special functions of 300(1)
Hewlett-Packard/ hp: handle special functions of hp(l)

the DASI 450 terminal. 450: handle special functions of 450(1)
varargs: handle variable argument list varargs(5)

curses: terminal screen handling and optimization/ curses(3X)
setchrclass: character handling. /_tolower, toupper, ctype(3C)

hangman: guess the word hangman(6)
nohup: run a command immune to hangups and quits nohup(l)

graphical/ gdev: hpd, erase, hardcopy, tekset, td: gdev(lG)
hinv: hardware inventory hinv(l.M)

hcreate, hdestroy: manage hash search tables, hsearch hsearch(3C)
spell, hashmake, spellin, hashcheck: find spelling/ spell(l)
setkey, encrypt: generate hashing encryption, crypt, crypt(3C)

find spelling errors, spell, hashmake, spellin, hashcheck: spell(l)
search tables, hsearch, hcreate, hdestroy: manage hash hsearch(3C)

dump, hd: hexadecimal and ascii file hd(l)
tables, hsearch, hcreate, hdestroy: manage hash search hsearch(3C)

file, scnhdr: section header for a common object scnhdr(4)
files, filehdr: file header for common object filehdr(4)

limits: file header for/ limits(4)
unistd: file header for symbolic constants unistd(4)

file, ldfhread: read the file header of a common object ldfhread(3X)
/seek to the optional file header of a common object/ ldohseck(3X)

/read an indexed/named section header of a common object/ ldshread(3X)
ldahread: read the archive header of a member of an/ ldahread(3X)

helpadm: make changes to the Help Facility database helpadm(lM)
help: CIIX system Help Facility help(l)

help: CTIX system Help Facility help(l)
Help Facility database, helpadm: make changes to the helpadm(l.M)

tape file archiver. hpio: Hewlett-Packard 2645A terminal hpio(l)
/handle special functions of Hewlett-Packard terminals hp(l)

dump, hd: hexadecimal and ascii file hd(1)
hinv: hardware inventory hinv(l.Vl)

libdev: manipulate Volume Home Blocks (VHB) libdev(3X)
fortune: print a random, hopefully interesting, adage fortune(6)

/ntohs: convert values between host and network byte order byteorder(3)
endhostent: get network host entry, /sethostent, gethostbyname(3)

unique identifier of current host, /sethostid: get/set gethostid(2)
get/set name of current host, /sethostname: gethostname(2)

get network address of service host, getservaddr: getservad(lM)
/set or print the Internet host name of the current/ hostname(l)

change Remote File Sharing host password, rfpasswd: rfpasswd(l.M)
rwhod: host status server rwhod(lM)

or print identi fier of current host system, hostid: set hostid(l)
identi fier of current host/ hostid: set or print hostid(l)

Internet host name of the/ hostname: set or print the hostname(l)
packets to network hosts, /send ICMP ECHO_REQUEST ping(lM)

of Hewlett-Packard terminals, hp: handle special functions hp(l)
td: graphical device/ gdev: hpd, erase, hardcopy, tekset gdev(lG)
terminal tape file archiver. hpio: Hewlett-Packard 2645A hpio(l)

manage hash search tables, hsearch, hcreate, hdestroy: hsearch(3C)
convert values between host/ htonl, htons, ntohl, ntohs: byteorder(3)

values between host/htonl, htons, ntohl, ntohs: convert byteorder(3)
wump: the game of hunt-the-wumpus wump(6)

sinh, cosh, tanh: hyperbolic functions sinh(3M)
hyphen: find hyphenated words hyphen(l)

- X i -

function, hypot: Euclidean distance hypot(3M)
network hosts, ping: send ICMP ECHO_REQUESTpackets to ping(lM)

Protocol, icmp: Internet Control Message icmp(7)
disk accounting data by user ID. diskusg: generate diskusg(lM)

semaphore set or shared memory ID./remove a message queue ipcrm(l)
and names, id: print user and group IDs id(lM)

setpgrp: set process group ID setpgrp(2)
issue: issue identification file issue(4)

fstyp: determine file system identifier fstyp(lM)
/sethostid: get/set unique identi fier of current host gethostid(2)

system, hostid: set or print identi fier of current host hostid(l)
get shared memory segment identi fier. shmget: shmget(2)

using keywords, locate: identify a CTIX system command locate(l)
file or file/fuser: identify processes using a fuser(lM)

what: identify SCCS files what(l)
user and group mapping, idload: Remote File Sharing idload(lM)

id: print user and group IDs and names id(lM)
group, and parent process IDs. /get process, process getpid(2)

group, and effective group IDs. /effective user, real getuid(2)
setgid: set user and group IDs. setuid, setuid(2)
/fpgetsticky, fpsetsticky: IEEE floating point/ fpgetround(3)

interface parameters, ifconfig: configure network ifconfig(lM)
mkifile: make an ifile from an object file mkifile(lM)

core: format of core image file core(4)
format of curses screen image file., scr dump: scr_dump(4)
crash: examine system images crash(lM)
nohup: run a command immune to hangups and quits nohup(l)

limits: file header for implementation-sped fie/ limits(4)
C language preprocessor include files, /determine includes(l)

fine: fast incremental backup finc(l.M)
dirent: file system independent directory entry dirent(4)

/tgoto, tputs: terminal independent operations otermcap(3X)
for formatting a permuted index, /the macro package mptx(5)

of a/ ldtbindex: compute the index of a symbol table entry ldtbindex(3X)
plx: permuted index ptx(l)

a common/ ldtbread: read an indexed symbol table entry of ldtbread(3X)
ldshread, ldnshread: read an indexed/named section header/ ldshread(3X)
ldsseek, ldnsseek: seek to an indexed/named section of a/ ldsseek(3X)
receipt of an orderly release indication, /acknowledge t_rcvrel(3n)

receive a unit data error indication. t_rcvuderT: t_rcvuderr(3)
family, inet: Internet protocol inet(7)

inet_ntoa, inetmakeaddry inet_addr, inet_network, inet(3)
"super-server", inetd: internet inetd(lM)

configuration file for inetd (internet/ inetd.conf: inetd.conf(4)
for inetd (internet/ inetd.conf: configuration file inetd.conf(4)

/inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof:/ inet(3)
Anet_network, ine tntoa , inet_makeaddr, inet lnaofy inet(3)

Anet_makeaddr, inet_lnaof, inet_netof: Internet address/ inet(3)
inet_makeaddry inet addr, inet network, inet ntoa, inet(3)

inet_addr, inet_network, inet ntoa, inetmakeaddry inet(3)
terminfo descriptions, infocmp: compare or print out infocmp(lM)

inittab: script for the init process inittab(4)
initialization, init, telinit: process control init(lM)

init, telinit: process control initialization init(lM)
/drvload, powerfail: system initialization procedures brc(lM)

terminfo database, tput: initialize a terminal or query tput(l)
volume, iv: initialize and maintain iv(l)

socket, connect: initiate a connection on a connect(2)

- x l i -

t_sndrel: initiate an orderly release t_sndrel(3n)
process, popen, pclose: initiate pipe to/from a popen(3S)

process, inittab: script for the init inittab(4)
clri: clear i-node clri(lM)

inode: format of an i-node inode(4)
number of free disk blocks and i-nodes. df: report df(lM)

start and stop terminal input and output, /manually rsterm(lM)
sscanf: convert formatted input, scanf, fscanf, scanf(3S)
push character back into input stream, ungetc: ungetc(3S)

fread, fwrite: binary input/output fread(3S)
poll: STREAMS input/output multiplexing poll(2)

stdio: standard buffered input/output package stdio(3S)
fileno: stream status inquiries, /feof, clearerr, ferror(3S)

uustat: uucp status inquiry and job control uustat(lC)
with information from/ pwconv: install and update /etc/shadow pwconv(lM)

with information/ pwunconv: install and update/etc/shadow pwunconv(lM)
using the mkfs(l)/qinstall: install and verify software qinstall(l)

install: install commands install(lM)
directories, cpset: install object files in binary cpset(lM)

local printer, mktpy, mvtpy: install or relocate a PT or GT mktpy(l)
ctinstaU: install software ctinstall(l)

abs: return integer absolute value abs(3C)
/164a: convert between long integer and base-64 ASCII/ a641(3C)

sputl, sgetl: access long integer data in a/ sputl(3X)
atol, atoi: convert string to integer, strtol, strtol(3C)

3-byte integers and long integers, /convert between 13tol(3C)
bcopy: interactive block copy bcopy(l.M)

system, mailx: interactive message processing mailx(l)
print a random, hopefully interesting, adage, fortune: fortune(6)

tset: set terminal, terminal interface, and terminal/ tsct(l)
module, timod: Transport Interface cooperating STREAMS timod(7)

err: error-logging interface err(7)
V/TAPE 3200 half-inch/ ipt: interface for Interphase ipt(7)

qic: interface for QIC tape qic(7)
lo: software loopback network interface lo(7)

lp: parallel printer interface lp(7)
mem, kmem: system memory interface mem(7)

ifconfig: configure network interface parameters ifconfig(lM)
plot: graphics interface plot(4)

STREAMS/ tirdwr: Transport Interface read/write interface tirdwr(7)
/Transport Interface read/write interface STREAMS module tirdwr(7)

plot: graphics interface subroutines plot(3X)
swap: swap administrative interface swap(lM)

termio: general terminal interface termio(7)
tiop: terminal accelerator interface tiop(7)

logging and event/ log: interface to STREAMS error log(7)
telnet: user interface to TELNET protocol telnet(l)

protocol, tftp: user interface to the DARPA TFTP tftp(l)
tty: controlling terminal interface tty(7)

vme: VME bus interface vme(7)
detach serial fines as network interfaces, /attach and slattach(lM)

Anet_lnaof, inet_netof: Internet address manipulation/ inet(3)
Protocol, icmp: Internet Control Message icmp(7)

named: Internet domain name server named(lM)
Protocol server, ftpd: DARPA Internet File Transfer ftpd(lM)

hostname: set or print the Internet host name of the/ hostname(l)
names and numbers for the internet, networks: networks(4)
slipd: switched Serial Line Internet Protocol control/ slipd(lM)

- xl i i -

inel: Internet protocol family inet(7)
ip: Internet Protocol ipOO

protocols: list of Internet protocols protocols(4)
services: list of Internet services services(4)

inetd: internet "super-server" inetd(lM)
/configuration file for inetd (internet "super-server") inetd.conf(4)

Protocol, tcp: Internet Transmission Control tcp(7)
Protocol, udp: Internet User Datagram "dp(7)

half-inch/ ipt: interface for Interphase V/TAPE 3200 ipt(7)
spline: interpolate smooth curve spline(lG)

characters, asa: interpret ASA carriage control asa(l)
sno: SNOBOI. interpreter sno(l)

syntax, csh: a shell (command interpreter) with C-like csh(l)
pipe: create an interprocess channel pipe(2)

facilities/ ipcs: report inter-process communication ipcs(l)
stdipc, ftok: standard interprocess communication/ stdipc(3C)

suspend execution for an interval, sleep: sleep(l)
sleep: suspend execution for interval sleep(3C)
application programs, intro: introduction to commands and intro(l)

intro: introduction to file formats intro(4)
libraries, intro: introduction to functions and intro(3)

intro: introduction to games intro(6)
intro: introduction to miscellany intro(5)
intro: introduction to special files intro(7)

and error numbers, intro: introduction to system calls intro(2)
generate path names from i-numbers. ncheck: ncheck(lM)

hinv: hardware inventory hinv(lM)
tio: tape io filter tio(l)

select: synchronous I/O multiplexing select(2)
table, rtab: Remote I/O Processor configuration rtab(4)

riopqry: query Remote I/O Processor for online data riopqry(lM)
configure system for Remote I/O Processor, riopcfg: riopcfg(lM)

streamio: STREAMS ioctl commands streamio(7)
ioctl: control device ioctl(2)
ip: Internet Protocol ip(7)

semaphore set or shared/ ipcrm: remove a message queue ipcrm(l)
communication facilities/ ipcs: report inter-process ipcs(l)

V/TAPE 3200 half-inch tape/ ipt: interface for Interphase ipt(7)
/islower, isupper, isalpha, isalnum, isspace, iscntrl,/ ctype(3C)
/isxdigit, islower, isupper, isalpha, isalnum, isspace,/ ctype(3C)

Aspunct, isprint, isgraph, isascii, tolower, toupper/ ctype(3C)
terminal, ttyname, isatty: find name of a ttyname(3C)

Asalpha, isalnum, isspace, iscntrl, ispunct, isprint,/ ctype(3C)
isupper, isalpha, isalnum,/ isdigit, isxdigit, islower, ctype(3C)

Ascntrl, ispunct, isprint, isgraph, isascii, tolower,/ ctype(3C)
isalnum/ isdigit, isxdigit, islower, isupper, isalpha, ctype(3C)

for floating point NaN/ isnan: isnand, isnanf: test isnan(3C)
floating point NaN/ isnan: isnand, isnanf: test for isnan(3C)
point NaN/ isnan: isnand, isnanf: test for floating isnan(3C)

/isspace, iscntrl, ispunct, isprint, isgraph, isascii,/ ctype(3C)
Asalnum, isspace, iscntrl, ispunct, isprint, isgraph/ ctype(3C)

Asupper, isalpha, isalnum, isspace, iscntrl, ispunct,/ clype(3C)
system: issue a shell command system(3S)

issue: issue identification file issue(4)
isdigit, isxdigit, islower, isupper, isalpha, isalnum/ ctype(3C)

isalpha, isalnum/ isdigit, isxdigit, islower, isupper ctype(3C)
news: print news items news(l)

volume, iv: initialize and maintain iv(l)

- xl i i i -

functions, bessel: jO, j l , jn, yO, y l , yn: Bessel bessel(3M)
functions, bessel: jO, j l , jn, yO, yl , yn: Bessel bessel(3M)
bj: the game of black jack bj(6)

functions, bessel: jO, j l , jn, yO, yl , yn: Bessel bessel(3M)
operator, join: relational database j°in(l)

/lrand48, nrand48, mrand48, jrand48, srand48, seed48y drand48(3C)
mkdbsym: load symbols in kernel debugger mkdbsym(lM)

port, dbconsole: change the kernel debugger system console dbconsole(lM)
makekey: generate encryption key makekey(l)

a CTDC system command using keywords, locate: identify locate(l)
kill all: kill all active processes killall(lM)

process or a group of/ kill: send a signal to a kill(2)
kill: terminate a process kill(l)

processes, killall: kill all active killall(lM)
mem, kmem: system memory interface mem(7)

quiz: test your knowledge quiz(6)
3-byte integers and long/ 13tol, ltol3: convert between 13tol(3C)

integer and base-64/ a641, 164a: convert between long a641(3C)
labelit: provide labels for file systems labelit(lM)

scanning and processing language, awk: pattern awk(l)
arbitrary-precision arithmetic language, be: bc(l)

efl: extended FORTRAN language efi(l)
scanning and processing language, nawk: pattern nawk(l)

epp: the C language preprocessor cpp(l)
files, includes: determine C language preprocessor include includes(l)

command programming language, /standard/restricted sh(l)
cftime: language specific strings cftime(4)

chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm,/ acctsh(lM)
shl: shell layer manager shl(l)

/setspent, endspent, fgetspent, lckpwdf, ulckpwdf: get shadow getspent(3X)
/jrand48, srand48, seed48, lcong48: generate uniformly/ drand48(3C)

object files. Id: link editor for common !d(l)
object file, ldclose, ldaclose: close a common ldclose(3X)

header of a member of an/ ldahread: read the archive ldahread(3X)
file for reading, ldopen, ldaopen: open a common object ldopen(3X)

common object file, ldclose, ldaclose: close a ldclose(3X)
drivers, lddrv: manage loadable lddrv(lM)

ldeeprom: load EEPROM ldeeprom(lM)
of floating-point/ frexp, ldexp, modf: manipulate parts frexp(3C)

access routines, ldfcn: common object file ldfcn(4)
of a common object file, ldfhread: read the file header ldfhread(3X)

name for common object file/ ldgetname: retrieve symbol ldgetname(3X)
fine number entries/ ldlread, ldlinit, ldlitem: manipulate ldlread(3X)

number/ ldlread, ldlinit, ldlitem: manipulate line ldlread(3X)
manipulate line number/ ldlread, ldlinit, ldlitem: ldlread(3X)
line number entries of a/ ldlseek, ldnlseek: seek to ldlseek(3X)

entries of a section/ ldlseek, ldnlseek: seek to line number ldlseek(3X)
entries of a section/ ldrseek, ldnrseek: seek to relocation ldrseek(3X)

indexed/named/ ldshread, ldnshread: read an ldshread(3X)
indexed/named/ ldsseek, ldnsseek: seek to an ldsseek(3X)
file header of a common/ ldohseek: seek to the optional ldohseek(3X)

object file for reading, ldopen, ldaopen: open a common ldopen(3X)
relocation entries of a/ ldrseek, ldnrseek: seek to ldrseek(3X)

indexed/named section header/ ldshread, ldnshread: read an ldshread(3X)
socket configuration, slink, ldsocket: STREAMS linker, load slink(l)

indexed/named section of a/ ldsseek, ldnsseek: seek to an ldsseek(3X)
of a symbol table entry of a/ ldtbindex: compute the index ldtbindex(3X)

symbol table entry of a/ ldtbread: read an indexed ldtbread(3X)

- x l iv -

table of a common object/ ldtbseek: seek to the symbol ldtbseek(3X)
getopt: gel option letter from argument vector getopt(3C)

generate programs for simple lexical tasks, lex: lex(l)
update, lsearch, lfind: hnear search and lsearch(3C)
Blocks (VHB). libdev: manipulate Volume Home libdev(3X)

introduction to functions and libraries, intro: intro(3)
chkshlib: compare shared libraries tool chkshlib(l)

relation for an object library, /find ordering lorder(l)
portable/ ar: archive and library maintainer for ar(l)
mkshlib: create a shared library mkshlib(l)

t_alloc: allocate a library structure t_alloc(3n)
t_free: free a library structure t_free(3n)

t sync: synchronize transport library t_sync(3n)
implementation-speci fic/ limits: file header for limits(4)

ulimit: get and set user limits ulimit(2)
an out-going terminal line connection, /establish dial(3C)

type, modes, speed, and line discipline, /set terminal getty(lM)
type, modes, speed, and line discipline, /set terminal uugetty(lM)

slipd: switched Serial Line Internet Protocol control/ slipd(lM)
line: read one line line(l)

common object file, linenum: line number entries in a linenum(4)
/ldlinit, ldlitem: manipulate line number entries of a/ ldlread(3X)

ldlseek, ldnlseek: seek to line number entries of a/ ldlseek(3X)
strip: strip symbol and line number information from a/ strip(l)

nl: line numbering filter nl(l)
out selected fields of each line of a file, cut: cut cut(l)

send/cancel requests to an LP line printer. Ip, cancel: lp(l)
lpset: set parallel line printer options lpset(lM)

lpr: line printer spooler lpr(l)
line: read one line line(l)

lsearch, lfind: linear search and update lsearch(3C)
col: filter reverse line-feeds col(l)

in a common object file, linenum: line number entries linenum(4)
/attach and detach serial lines as network interfaces slattach(lM)

files, coram: select or reject lines common to two sorted comm(l)
file for uucp communications lines. Devices: configuration Devices(5)

device, fold: fold long lines for finite width output fold(l)
head: give first few lines head(l)

uniq: report repealed lines in a file uniq(l)
subsequent/ paste: merge same lines of several files or paste(l)

directories, link, unlink: link and unlink files and link(lM)
files. Id: link editor for common object ld(l)

a.out: common assembler and link editor output a.out(4)
link: link to a file link(2)

cp. In, mv: copy, link, or move files cp(l)
link: link to a file link(2)

slink, ldsocket: STREAMS linker, load socket/ slink(l)
lists from proto file; set links based on. /out file qlist(l)

lint: a C program checker lint(l)
Is: list contents of directory ls(l)

nlist: get entries from name list nlist(3C)
and statistics for file system list file names ff(l M)

an. bcheck: print the list of blocks associated with bcheck(lM)
nm: print name list of common object file nm(l)

by fsck and/ checklist: list of file systems processed checklist(4)
hosts: Ust of hosts on network hosts(4)

protocols: list of Internet protocols protocols(4)
services: list of Internet services services(4)

- x lv -

terminal number, ttytype: list of terminal types by ttytype(4)
from a common object file, list: produce C source listing list(l)

handle variable argument list, varargs: varargs(5)
output of a varargs argument list, /print formatted vprintf(3S)

t_listen: listen for a connect request t_listcn(3n)
socket, listen: listen for connections on a listen(2)

data passed through the listener, /get client's nlsgetcall(3n)
nlsadmin: network listener service/ nlsadmin(lM)

nlsrequest: format and send listener service request/ nlsrequest(3n)
file, list: produce C source listing from a common object list(l)
xargs: construct argument list(s) and execute command xargs(l)

links/ qlist: print out file lists from proto file; set qlist(l)
volcopy: make literal copy of file system volcopy(lM)

files, cp, In, mv: copy, link, or move cp(l)
interface, lo: software loopback network lo(7)

ldeeprom: load EEPROM ldeeprom(l.M)
/Idsocket: STREAMS linker, load socket con figuration slink(l)

debugger, mkdbsym: load symbols in kernel mkdbsym(lM)
drivers: loadable device drivers drivers(7)

lddrv: manage loadable drivers lddrv(lM)
cftime, ascftime/ clime, localtime, gmtime, asctime ctime(3C)

the virtual system/conlocate: locate a terminal to use as conlocate(lM)
command, path: locate executable file for path(l)

command using keywords, locale: identify a CTIX system locate(l)
end, etext, edata: last locations in program end(3C)

memory, plock: lock process, text, or data in plock(2)
files, lockf: record locking on lockf(3C)

regions of a file, locking: exclusive access to locking(2)
lockf: record locking on files lockf(3C)

gamma: log gamma function gamma(3M)
newgrp: log in to a new group newgrp(lM)

error logging and event/ log: interface lo STREAMS log(7)
exponential, logarithm,/ exp, log, loglO, pow, sqrt: exp(3M)

/usr/adm/loginlog: log of failed login attempts loginlog(4)
logarithm, power,/exp, log, log 10, pow, sqrt: exponential, exp(3M)

/loglO, pow, sqrt: exponential, logarithm, power, square root/ exp(3M)
errpt: process a report of logged errors errpl(lM)

rwho: who is logged in on local network rwho(l)
slrclean: STREAMS error logger cleanup program strclean(lM)

strerr: STREAMS error logger daemon strerr(lM)
/interface to STREAMS error logging and event tracing log(7)

/log of failed login attempts loginlog(4)
networks, nelrc: login file for remote netrc(4)

getlogin: gel login name getlogin(3C)
logname: get login name logname(l)

cuserid: get character login name of the user cuserid(3S)
logname: return login name of user logname(3X)
passwd: change login password passwd(l)

rlogin: remote login rlogin(l)
rlogind: remote login server rlogind(lM)

login: sign on login(l)
up a C shell environment at login time, cprofile: setting cprofile(4)

setting up an environment at login time, profile: profile(4)
logname: get login name logname(l)

user, logname: return login name of logname(3X)
a641,164a: convert between long integer and base-64 ASCII/ a64l(3C)

spull, sgetl: access long integer data in a/ sputl(3X)
between 3-byte integers and long integers. /llol3: convert 13tol(3C)

- x lv i -

output device, fold: fold
setjmp,

finger: user information
lo: software

for an object library,
mklost+found: make a

nice: run a command at
send/cancel requests lo an

interface,
disable: enable/disable
reject: allow or prevent

/lpshut, lpmove: start/stop the
lpadmin: configure the

lpstat: print
spooling system,

scheduler/ lpsched, lpshut,

start/stop the LP scheduler/
printer options.

LP scheduler and/ lpsched,
information.

jrand48/ drand48, erand48,
directory,

and update,
pointer.

integers and long/ 13tol,

mega, unixpc,.
values:

/access long integer data in a
permuted index, mptx: the

documents, mm: the MM
view graphs and/ mv: a troff

m4:
pages, man:

me:
formatted with the MM

ms: text formatting
/rebuild the data base for the

users or read mail.
sendmail:

processing system,
malloc, free, realloc, calloc:

/mallopt, mallinfo: fast
regenerate groups of/ make:

iv: initialize and
ar: archive and library

SCCS file, delta:
mkdir:

or ordinary file, mknod:
for fsck. mklost+found:

mklemp:
file, mkifile:

Facility database, helpadm:
mkdir, mkdirs:

system, volcopy:
regenerate groups of/

mkhosts:

long lines for finite width fold(l)
longjmp: non-local goto setjmp(3C)
lookup program finger(l)
loopback network interface lo(7)
lorder: find ordering relation lorder(l)
lost+found directory for fsck mklostfnd(lM)
low priority nice(l)
LP line printer. Ip, cancel: lp(l)
lp: parallel printer lp(7)
LP printers, enable enable(l)
LP requests, accept accept(lM)
LP scheduler and move/ lpsched(lM)
LP spooling system lpadmin(lM)
LP status information lpstat(l)
lpadmin: configure the LP lpadmin(lM)
lpmove: start/stop the LP Ipsched(lM)
lpr: line printer spooler lpt(l)
lpsched, lpshut, lpmove: lpsched(l.M)
Ipset: set parallel line lpset(lM)
lpshut, lpmove: start/stop the lpsched(lM)
lpstat: print LP status lpstat(l)
lrand48, nrand48, mrand48 drand48(3C)
Is: list contents of ls(l)
lsearch, lfind: linear search lsearch(3C)
lseek: move read/write file lseek(2)
ltol3: convert between 3-byte 13tol(3C)
m4: macro processor m4(l)
machid: mc68k, miti, mini, machid(l)
machine-dependent values values(5)
machine-independent fashion sputl(3X)
macro package for formatting a mptx(5)
macro package for formatting mm(5)
macro package for typesetting mv(5)
macro processor m4(l)
macros for formatting manual man(5)
macros for formatting papers me(5)
macros./print/check documents mm(l)
macros ms(5)
mail aliases file newaliases(l)
mail, rmail: send mail to mail(l)
mail routing program sendmail(lM)
mailx: interactive message mailx(l)
main memory allocator malloc(3C)
main memory allocator malloc(3X)
maintain, update, and make(l)
maintain volume iv(l)
maintainer for portable/ ar(l)
make a delta (change) to an delta(l)
make a directory mkdir(2)
make a directory, or a special mknod(2)
make a lost+found directory mklostfnd(lM)
make a unique file name mktemp(3C)
make an ifile from an object mkifile(lM)
make changes to the Help helpadm(lM)
make directories mkdir(l)
make literal copy of file volcopy(lM)
make: maintain, update, and make(l)
make node name commands mkhosts(lM)

- x lv i i -

banner: make posters banner(l)
session, script: make typescript of terminal script(l)

key. makekey: generate encryption makekey(l)
/realloc, calloc, mallopt, mallinfo: fast main memory/ malloc(3X)
main memory allocator, malloc, free, realloc, calloc: malloc(3C)

mallopt, mallinfo: fast main/ malloc, free, realloc, calloc malloc(3X)
malloc, free, realloc, calloc, mallopt, mallinfo: fast main/ malloc(3X)

manual pages, man: macros for formatting man(5)
Afind, tdelete, twalk: manage binary search trees tsearch(3C)

hsearch, hcreate, hdestroy: manage hash search tables hsearch(3C)
lddrv: manage loadable drivers lddrv(lM)

unnotify, evwait, evnowait: manage notifications, notify notify(2)
endpoint. t_optmgmt: manage options for a transport t_optmgmt(3n)

passmgmt: password files management passmgmt(lM)
window: window management primitives window(7)

sigignore, sigpause: signal management, /sigrelse, sigset(2)
wm: window management wm(l)

shl: shell layer manager shl(l)
records, fwtmp, wtmpfix: manipulate connect accounting fwtmp(lM)

of/ ldlread, ldlinit, ldlitem: manipulate line number entries ldlread(3X)
frexp, ldexp, modf: manipulate parts of/ frexp(3C)

comment section, mcs: manipulate the object file mcs(l)
route: manually manipulate the routing tables route(lM)
(VHB). libdev: manipulate Volume Home Blocks libdev(3X)

/inet_netof: Internet address manipulation routines inet(3)
man: macros for formatting manual pages man(5)

routing tables, route: manually manipulate the route(lM)
terminal input and/ rsterm: manually start and stop rsterm(lM)

ascii: map of ASCII character set ascii(5)
port to RPC program number mapper, portmap: DARPA portmap(lM)

File Sharing user and group mapping, idload: Remote idload(lM)
scsimap: set mappings for SCSI devices scsimap(lM)

files, difimk: mark differences between diffink(l)
umask: set file-creation mode mask umask(l)

set and get file creation mask, umask: umask(2)
table, master: master device information master(4)

masterupd: update the master file masterupd(lM)
File Sharing name server master file, rfmaster: Remote rfmaster(4)

information table, master: master device master(4)
file, masterupd: update the master masterupd(lM)

regular expression compile and match routines, regexp: regexp(5)
math: math functions and constants math(5)

constants, math: math functions and math(5)
eqn, neqn, checkeq: format mathematical text for nroff or/ eqn(l)

function, matherr: error-handling matherr(3M)
maze: generate a maze maze(6)
unixpc,. machid: mc68k, miti, mini, mega machid(l)

file comment section, mcs: manipulate the object mcs(l)
machid: mc68k, miti, mini, mega, unixpc, machid(l)

interface, mem, kmem: system memory mem(7)
memcpy, memset:/ memory: memccpy, memchr, memcmp memory(3C)

memset:/ memory: memccpy, memchr, memcmp, memcpy memory(3C)
memory: memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)

/memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)
free, realloc, calloc: main memory allocator, malloc malloc(3C)

mallopt, mallinfo: fast main memory allocator, /calloc, malloc(3X)
shmctl: shared memory control operations shmctl(2)

queue, semaphore set or shared memory ID./remove a message ipcrm(l)

- x lv i i i -

mem, kmem: system memory interface mem(7)
memcmp, memcpy, memset:/ memory: memccpy, memchr, memory(3C)
memcmp, memcpy, memset: memory operations, /memchr memory(3C)

shmop: shared memory operations shmop(2)
lock process, text, or data in memory, plock: plock(2)

shmget: get shared memory segment identifier shmget(2)
/memchr, memcmp, memcpy, memset: memory operations memory(3C)

astgen: generate/modify ASSIST menus and command forms astgen(l)
sort: sort and/or merge files sort(l)
files, acctmerg: merge or add total accounting acctmerg(lM)

files or subsequent/ paste: merge same lines of several paste(l)
mesg: permit or deny messages mesg(l)

msgctl: message control operations msgctl(2)
recv, recvfrom: receive a message from a socket recv(2)

send listener service request message, /format and nlsrequest(3n)
getmsg: get next message off a stream getmsg(2)

putmsg: send a message on a stream putmsg(2)
msgop: message operations msgop(2)

mailx: interactive message processing system mailx(l)
icmp: Internet Control Message Protocol icmp(7)

msgget: get message queue msgget(2)
or shared/ ipcrm: remove a message queue, semaphore set ipcrm(l)

t_error: produce error message t_error(3n)
send, sendto: send a message lo a socket. send(2)

mesg: permit or deny messages mesg(l)
sys_nerr: system error messages, /ermo, sys errlist perror(3C)

strace: print STREAMS trace messages slrace(lM)
machid: mc68k, miti, mini, mega, unixpc machid(l)

driver, clone: open any minor device on a STREAMS clone(7)
machid: mc68k, miti, mini, mega, unixpc, machid(l)

kernel debugger, mkdbsym: load symbols in mkdbsym(lM)
mkdir: make a directory mkdir(2)

directories, mkdir, mkdirs: make mkdir(l)
mkfs: construct a file system mkfs(lM)

/and verify software using the mkfs(l) proto file database qinstall(l)
commands, mkhosts: make node name mkhosts(lM)
object file, mkifile: make an ifile from an mkifile(lM)

lost+found directory for/ mklost+found: make a mklostfnd(lM)
mknod: build special file mknod(lM)

special or ordinary file, mknod : make a directory, or a mknod(2)
library, mkshlib: create a shared mkshlib(l)

name, mktemp: make a unique file mktemp(3C)
relocate a PTor GT local/ mktpy, mvtpy: install or mktpy(l)

documents formatted with the/ mm, checkmm: print/check mm(l)
formatting documents, mm: the MM macro package for mm(5)

documents formatted with the MM macros, /print/check mm(l)
formatting documents, mm: the MM macro package for mm(5)

view graphs, and slides, mmt, mvt: typeset documents, mmt(l)
table, mnttab: mounted file system mnttab(4)

chmod: change mode chmod(l)
umask: set file-creation mode mask umask(l)

chmod: change mode of file chmod(2)
getty: set terminal type, modes, speed, and line/ getty(lM)

uugetty: set terminal type, modes, speed, and line/ uugetty(lM)
bs: a compiler/interpreter for modest-sized programs bs(l)
floating-point/ frexp, ldexp, modf: manipulate parts of frexp(3C)

touch: update access and modification times of a file touch(l)
utime: set file access and modification times utime(2)

- x l ix -

Interface cooperating STREAMS module, timod: Transport timod(7)
read/write interface STREAMS module. /Transport Interface tirdwr(7)

/ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,/ acctsh(lM)
profile, monitor: prepare execution monitor(3C)

moo: guessing game moo(6)
more, page: text perusal more(l)

mount: mount a file system mount(2)
and remote/ mount, umount: mount and unmount file systems mount(lM)

rmnttry: attempt to mount remote resources rmnttry(lM)
mountd: NFS mount request server mountd(lM)

setmnt: establish mount table setmnt(lM)
systems, mountall, umountall: mount, unmount multiple file mountall(lM)

System/ nmountall, numountall: mount, unmount Network File nmountall(lM)
rmountall, rumountall: mount, unmount Remote File/ rmountall(lM)
unmount multiple file/ mountall, umountall: mount, mountall(lM)

server, mountd: NFS mount request mountd(l.M)
mnttab: mounted file system table mnttab(4)

rmtab: remotely mounted file system table rmtab(4)
rmntstat: display mounted resource information rmntstat(lM)

rmount: queue remote resource mounts rmount(lM)
showmount: show all remote mounts showmount(lM)

mvdir: move a directory mvdir(lM)
cp, In, mv: copy, link, or move files cp(l)

lseek: move read/write file pointer lseek(2)
the LP scheduler and move requests, /start/stop lpsched(lM)

formatting a permuted index, mptx: the macro package for mptx(5)
/erand48, lrand48, nrand48, mrand48, jrand48, srand48y drand48(3C)

ms: text formatting macros ms(5)
operations, msgctl: message control msgctl(2)

msgget: get message queue msgget(2)
msgop: message operations msgop(2)

/umountall: mount, unmount multiple file systems mountall(lM)
poll: STREAMS input/output multiplexing poll(2)

select: synchronous I/O multiplexing select(2)
sxt: STREAMS multiplexor sxt(7)

run commands performed for multi-user environment. /rc3: rc2(lM)
typesetting view graphs and/ mv: a troff macro package for mv(5)

cp, In, mv: copy, link, or move files cp(l)
mvdir: move a directory mvdir(lM)

graphs, and slides, mmt, mvt: typeset documents, view mmt(l)
PT or GT local/ mktpy, mvtpy: install or relocate a mktpy(l)

server, named: Internet domain name named(lM)
test for floating point NaN (Not-A-Number). /isnanf: isnan(3C)
processing language, nawk: pattern scanning and nawk(l)

systems processed by fsck and ncheck. /list of file checklist(4)
from i-numbers. ncheck: generate path names ncheck(lM)

mathematical text for/ eqn, neqn, checkeq: format eqn(l)
definitions for eqn and neqn. /special character eqnchar(5)

File, netcf: Network Configuration netcf(4)
networks, netrc: login file for remote netrc(4)

netstat: show network status netstat(l)
host, getservaddr: get network address of service getservad(lM)

values between host and network byte order, /convert byteorder(3)
netcf: Network Configuration File netcf(4)

setnetent, endnetent: get network entry, /getnetbyname getnetent(3)
/numountall: mount, unmount Network File System resources nmounlall(lM)

statistics, nfsstat: Network File System nfsstat(lM)
/sethostent, endhostent: get network host entry gethostbyname(3)

- 1 -

ICMP ECHO_REQUESTpackets to network hosts, ping: send ping(lM)
hosts: list of hosts on network hosts(4)
lo: software loopback network interface lo(7)

ifconfig: configure network interface parameters ifconfig(lM)
and detach serial lines as network interfaces, /attach slattach(lM)

administration, nlsadmin: network listener service nlsadmin(lM)
Remote File Sharing domain and network names, dname: print dname(lM)

routed: network routing daemon routed(lM)
status of nodes on local network, ruptime: display ruptime(l)

who is logged in on local network, rwho: rwho(l)
netstat: show network status netstat(l)

commands, stat: statistical network useful with graphical stat(lG)
uucpd, ouucpd: network uucp servers uucpd(lM)
for the internet, networks: names and numbers networks(4)

netrc: login file for remote networks netrc(4)
base for the mail aliases/ newaliases: rebuild the data newaliases(l)

a text file, newform: change the format of newform(l)
ncwgrp: log in to a new group newgrp(l.M)

news:pri.nt news items news(l)
/store, delete, firstkey, nextkey: database subroutines dbm(3X)

nfsd, biod: NFS daemons nfsd(lM)
configuration file, exports: NFS file systems export exports(4)

mountd: NFS mount request server mountd(lM)
nfssys: common shared NFS system calls nfssys(2)

nfsd, biod: NFS daemons nfsd(lM)
statistics, nfsstat: Network File System nfsstat(lM)

system calls, nfssys: common shared NFS nfssys(2)
process, nice: change priority of a nice(2)

of running process by changing nice, renice: alter priority renice(l)
priority, nice: run a command at low nice(l)

nl: line numbering filter nl(l)
list, nlist: get entries from name nlist(3C)

service administration, nlsadmin: network listener nlsadmin(lM)
passed through the listener, nlsgetcall: get client's data nlsgetcal](3n)

transport provider, nlsprovider: get name of nlsprovider(3n)
listener service request/ nlsrequest: format and send nlsrequest(3n)

object file, nm: print name list of common nm(l)
unmount Network File System/ nmountall, numountall: mount, nmountall(lM)

mkhosts: make node name commands mkhosts(lM)
createdev: create device nodes for assorted device/ creaiedev(lM)

ruplime: display status of nodes on local network niptime(l)
hangups and quits, nohup: run a command immune to nohup(l)

setjmp, longjmp: non-local goto setjmp(3C)
test for floating point NaN (Not-A-Number). Asnanf: isnan(3C)

rfuadmin: Remote File Sharing notification shell script rfuadmin(lM)
evwait, evnowait: manage notifications, /unnotify, notify(2)

evnowait: manage/ notify, unnotify, evwait notify(2)
drand48, erand48, lrand48, nrand48, mrand48, jrand48/ drand48(3C)

nroff: format text nroff(l)
format mathematical text for nroff or troff. /checkeq: eqn(l)

tbl: format tables for nroff or troff. tbl(l)
constructs, deroff: remove nroff/troff, tbl, and eqn deroff(l)

name server query, nsquery: Remote File Sharing nsquery(lM)
between host/ htonl, htons, ntohl, ntohs: convert values byteorder(3)

host and/ htonl, htons, ntohl, ntohs: convert values between byteorder(3)
null: the null file null (7)

/dodisk, lastlogin, monacct, nulladm, prctmp, prdaily,/ acctsh(lM)
nl: line numbering filter nl(l)

- l i -

number: convert Arabic numerals to English number(6)
graphics: access graphical and numerical commands graphics(lG)

Network File/nmountall, numountall: mount, unmount nmountall(lM)
dis: object code disassembler dis(l)

ldfcn: common object file access routines ldfcn(4)
mcs: manipulate the object file comment section mcs(l)

conv: common object file converter conv(l)
cprs: compress a common object file cprs(l)
dump selected parts of an object file, dump: dump(l)

ldopen, ldaopen: open a common object file for reading !dopen(3X)
number entries of a common object file function, /line ldlread(3X)

ldaclose: close a common object file, ldclose, !dclose(3X)
the file header of a common object file, ldfhread: read ldfhread(3X)

of a section of a common object file, /number entries ldlseek(3X)
file header of a common object file. Ao the optional ldohseek(3X)

of a section of a common object file, /entries ldrseek(3X)
section header of a common object file, /indexed/named ldshread(3X)

section of a common object file, /indexed/named ldsseek(3X)
symbol table entry of a common object file. Ahe index of a ldtbindex(3X)
symbol table entry of a common object file, /read an indexed ldtbread(3X)

the symbol table of a common object file, /seek to ldtbseek(3X)
number entries in a common object file, linenum: line linenum(4)

C source listing from a common object file, list: produce list(l)
mkifile: make an ifile from an object file mkifile(lM)

nm: print name list of common object file nm(l)
information for a common object file, /relocation reloc(4)

section header for a common object file, senhdr: scnhdr(4)
information from a common object file, /and line number strip(l)

entry, /symbol name for common object file symbol table ldgetname(3X)
format, syms: common object file symbol table syms(4)
file header for common object files, filehdr: filehdr(4)

directories, cpset: install object files in binary cpset(l.M)
Id: link editor for common object files ld(l)

sizes in bytes of common object files, /print section size(l)
find ordering relation for an object library, lorder: lorder(l)

number, factor: obtain the prime factors of a factor(l)
od: octal dump od(l)

functions, ocurse: optimized screen ocurse(3X)
od: octal dump od(l)

query Remote I/O Processor for online data, riopqry: riopqry(lM)
reading, ldopen, ldaopen: open a common object file for ldopen(3X)

fopen, freopen, fdopen: open a stream fopen(3S)
STREAMS driver, clone: open any minor device on a c lone®

dup: duplicate an open file descriptor dup(2)
dup2: duplicate an open file descriptor dup2(3C)

open: open for reading or writing open®
seekdir,/ directory: opendir, readdir, telldir directory(3X)

starter: information about the operating system for beginning/ starter®
prf: operating system profiler p r f ®

/prfdc, prfsnap, prfpr: operating system profiler profiler(lM)
commands performed to stop the operating system. rcO: run rcO(lM)

uconf: configure the operating system uconf(lM)
bzero: bit and byte string operations, bcopy, bemp, bstring(3)

rewinddir, closedir: directory operations. Aelldir, seekdir, directory(3X)
memcmp, memcpy, memset: memory operations, /memccpy, memchr, memory(3C)

msgctl: message control operations msgct l®
msgop: message operations msgop®

tputs: terminal independent operations. Agetstr, tgoto, otermcap(3X)

- lii -

semctl: semaphore control operations semctl(2)
semop: semaphore operations semop(2)

shmctl: shared memory control operations shmctl(2)
shmop: shared memory operations shmop(2)

strcspn, strtok: string operations, /strpbrk, strspn, string(3C)
join: relational database operator join(l)

dcopy: copy file systems for optimal access time dcopy(lM)
terminal screen handling and optimization package, curses: curses(3X)

ocurse: optimized screen functions ocurse(3X)
vector, getopt: get option letter from argument getopt(3C)

common/ldohseek: seek to the optional file header of a ldohseek(3X)
fcntl: file control options fcntl(5)

stty: set the options for a terminal stty(l)
endpoint. t_optmgmt: manage options for a transport t_optmgmt(3n)

getopt: parse command options getopt(l)
geloptcvt: parse command options, getopts, getopts(l)

set parallel line printer options, lpset: lpset(lM)
/setsockopt: get and set options on sockets getsockopt(2)

object library, lorder: find ordering relation for an lorder(l)
/acknowledge receipt of an orderly release indication t_rcvrel(3n)

t_sndrel: initiate an orderly release t_sndrel(3n)
a directory, or a special or ordinary file, mknod: make mknod(2)

keywords, locate: identify a CTIX system command using locate(l)
assist: assistance using CTDC system commands assist(l)

help: CTDC system Help Facility help(l)
uname: print name of current CTDC system uname(l)

dial: establish an out-going terminal line/ dial(3C)
assembler and link editor output, a.out: common a.out(4)
long lines for finite width output device, fold: fold fold(l)
/vsprintf: print formatted output of a varargs argument/ vprintf(3S)

sprintf: print formatted output, printf, fprintf, printf(3S)
and stop terminal input and output, /manually start rsterm(lM)

sysdef: output system definition sysdef(lM)
uucpd, ouucpd: network uucp servers uucpd(lM)

/acctdusg, accton, acctwtmp: overview of accounting and/ acct(lM)
chown: change owner and group of a file chown(2)

chown, chgrp: change owner or group chown(l)
and expand files, pack, peat, unpack: compress pack(l)

handling and optimization package. Aerminal screen curses(3X)
permuted/ mptx: the macro package for formatting a mptx(5)

documents, mm: the MM macro package for formatting mm(5)
graphs and/mv: a troff macro package for typesetting view mv(5)

sadc: system activity report package, sar: sal, sa2, sar(lM)
standard buffered input/output package, stdio: stdio(3S)

interprocess communication package, /ftok: standard stdipc(3C)
ping: send ICMP ECHO_REQUEST packets to network hosts ping(lM)

more, page: text perusal more(l)
macros for formatting manual pages, man: man(5)

4014 terminal. 4014: paginator for the Tektronix 4014(1)
me: macros for formatting papers me(5)

lpset: set parallel line printer options lpset(lM)
lp: parallel printer interface lp(7)

tapeset: set drive parameters for tape/ tapeset(lM)
configure network interface parameters, ifconfig: ifconfig(lM)
process, process group, and parent process IDs. /get getpid(2)

getopt: parse command options getopt(l)
getopts, getcptcvt: parse command options getopts(l)

nlsgetcall: get client's data passed through the listener nlsgetcall(3n)

- liii -

management, passmgmt: password files passmgmt(lM)
passwd: change login password passwd(l)
passwd: password file passwd(4)

functions, crypt: password and file encryption crypt(3X)
/endpwent, fgetpwent: get password file entry getpwent(3C)

putpwent: write password file entry putpwent(3C)
putspent: write shadow password file entry putspent(3X)

passwd: password file passwd(4)
shadow: password file shadow(4)

passmgmt: password files management passmgmt(lM)
gelpass: read a password getpass(3C)

passwd: change login password passwd(l)
Remote File Sharing host password, rfpasswd: change rfpasswd(lM)

pwck, grpck: password/group file checkers pwck(lM)
several files or subsequent/ paste: merge same lines of paste(l)

for command, path: locate executable file path(l)
dimame: deliver portions of path names, basename basename(l)

ncheck: generate path names from i-numbers ncheck(lM)
directory, gelcwd: get path-name of current working gelcwd(3C)
grep: search a file for a pattern grep(l)

processing language, awk: pattern scanning and awk(l)
processing language, nawk: pattern scanning and nawk(l)

egrep: search a file for a pattern using full regular/ egrep(l)
signal, pause: suspend process until pause(2)

expand files, pack, peat, unpack: compress and pack(l)
a process, popen, pclose: initiate pipe to/from popen(3S)

get name of connected peer, getpeername: getpeemame(2)
rc2, rc3: run commands performed for multi-user/ rc2(lM)

operating/ rcO: run commands performed to stop the rcO(lM)
check the uucp directories and permissions file, uucheck: uucheck(lM)

mesg: permit or deny messages mesg(l)
macro package for formatting a permuted index, mptx: the mptx(5)

ptx: permuted index ptx(l)
formal, acct: per-process accounting file acct(4)

acctcms: command summary from per-process accounting/ acctcms(lM)
sys_nerr: system error/ perror, errno, sys errlist, perror(3C)

pg: file perusal filter for CRTs PgO)
more, page: text perusal more(l)

CRTs, pg: file perusal filter for PgO)
split: split a file into pieces split(l)

packets to network hosts, ping: send ICMP ECHO_REQUFST ping(lM)
channel, pipe: create an interprocess pipe(2)

tee: pipe fitting tee(l)
popen, pclose: initiate pipe to/from a process popen(3S)

fish: play "Go Fish" fish(6)
data in memory, plock: lock process, text, or plock(2)

plot: graphics interface plot(4)
subroutines, plot: graphics interface plot(3X)

ftell: reposition a file pointer in a stream, /rewind, fseek(3S)
lseek: move read/write file pointer lseek(2)

multiplexing, poll: STREAMS input/output poll(2)
to/from a process, popen, pclose: initiate pipe popen(3S)

kernel debugger system console port, dbconsole: change the dbconsole(lM)
serstat: display serial port error statistics serstat(lM)

getrpcport: get RPC port number getrpcport(3)
mapper, portmap: DARPA port to RPC program number portmap(lM)

and library maintainer for portable archives, /archive ar(l)
basename, dimame: deliver portions of path names basename(l)

- l i v -

program number mapper, portmap: DARPA port to RPC portmap(lM)
banner: make posters banner(l)

logarithm/ exp, log, log 10, pow, sqrt: exponential, exp(3M)
/sqrt: exponential, logarithm, power, square root functions exp(3M)

brc, bcheckrc, drvload, powerfail: system/ brc(lM)
pr: print files pr(l)

/lastlogin, monacct, nulladm, prctmp, prdaily, prtacct/ acctsh(lM)
/monacct, nulladm, prctmp, prdaily, prtacct, runacctJ acctsh(lM)

for troff. cw, checkcw: prepare constant-width text cw(l)
monitor: prepare execution profile monitor(3C)

cpp: the C language preprocessor cpp(l)
includes: determine C language preprocessor include files includes(l)

accept, reject: allow or prevent LP requests accept(lM)
unget: undo a previous get of an SCCS file unget(l)

profiler, prf: operating system prf(7)
profiler: prfld, prfstat, prfdc, prfsnap, prfpr:/ profiler(lM)

prfsnap, prfpr:/ profiler: prfld, prfstat, prfdc profiler(lM)
/prfstat, prfdc, prfsnap, prfpr: operating system/ profiler(lM)

system/ /prfld, prfstat, prfdc, prfsnap, prfpr: operating profiler(lM)
prfpr:/profiler: prfld, prfstat, prfdc, prfsnap profiler(lM)

factor: obtain the prime factors of a number factorfl)
graphical/ gps: graphical primitive siring, formal of gps(4)

types: primitive system data types types(5)
window: window management primitives window(7)

interesting, adage, fortune: print a random, hopefully fortune(6)
prs: print an SCCS file prs(l)

date: print and set the date date(l)
cal: print calendar cal(l)

of a file, sum: print checksum and block count sum(l)
editing activity, sact: print current SCCS file sact(l)

cat: concatenate and print files cat(l)
pr: print files pr(l)

vprintf, vfprintf, vsprintf: print formatted output of a/ vprintf(3S)
printf, fprintf, sprintf: print formatted output printf(3S)

host system, hostid: set or print identi fier of current hostid(l)
lpstat: print LP status information lpstat(l)

object file, nm: print name list of common nra(l)
system, uname: print name of current CTIX uname(l)

news: print news items news(l)
proto file; set links/ qlist: print out file lists from qlist(l)

infocmp: compare or print out terminfo/ infocmp(lM)
file(s). acctcom: search and print process accounting acctcom(l)

domain and network/ dname: print Remote File Sharing dname(lM)
of common object files, size: print section sizes in bytes size(l)

strace: print STREAMS trace messages strace(lM)
of the/hostname: set or print the Internet host name hostname(l)

associated with an. bcheck: print the list of blocks bcheck(lM)
names, id: print user and group IDs and id(lM)

formatted with/mm, checkmm: print/check documents mm(l)
lp: parallel printer interface lp(7)

requests to an LP line printer, /cancel: send/cancel lp(l)
or relocate a PT or GT local printer, /mvtpy: install mklpy(l)

lpset: set parallel line printer options lpset(lM)
lpr: line printer spooler lpr(l)

disable: enable/disable LP printers, enable, enable(l)
print formatted output, printf, fprintf, sprintf: printf(3S)

rtpenable: real-time priorities enabled/disabled rtpenable(lM)
nice: run a command at low priority nice(l)

- l v -

nice: change priority of a process nice(2)
changing nice, renice: alter priority of running process by renice(l)

errors, errpt: process a report of logged erTpt(lM)
acct: enable or disable process accounting acct(2)

acc tp rc l , acctprc2: process accounting a c c t p r c (l M)
acctcom: search and print process accounting file(s) acctcom(l)

alarm: set a process alarm clock alarm(2)
times, times: get process and child process times(2)

/alter priority of running process by changing nice renice(l)
bit, telinit: process control/ init(lM)

timex: lime a command; report process data and system/ timex(l)
exit, _exit: terminate process exit(2)

fork: create a new process fork(2)
/getpgrp, getppid: get process, process group, and parent/ getpid(2)

setpgrp: set process group ID setpgrp(2)
process group, and parent process IDs. /get process, getpid(2)
inittab: script for the init process inittab(4)

kill: terminate a process kill(l)
nice: change priority of a process nice(2)

kill: send a signal to a process or a group of/ kil!(2)
initiate pipe to/from a process, popen, pclose: popen(3S)

getpid, getpgrp, getppid: get process, process group, and/ getpid(2)
Remote File Sharing daemon process, rfudaemon: rfudaemon(lM)

ps: report process status ps(l)
memory, plock: lock process, text, or data in plock(2)

times: get process and child process times times(2)
wait: wait for child process to stop or terminate wait(2)

ptrace: process trace ptrace(2)
pause: suspend process until signal pause(2)

wait: await completion of process wait(l)
/list of file systems processed by fsck and ncheck checklist(4)

to a process or a group of processes, /send a signal kill(2)
killall: kill all active processes killall(lM)

structure, fuser: identify processes using a file or file fuser(lM)
awk: pattern scanning and processing language awk(l)

nawk: pattern scanning and processing language nawk(l)
extproc: turn external processing on or off. extproc(lM)

mailx: interactive message processing system mailx(l)
rtab: Remote I/O Processor configuration table rtab(4)

en: Ethernet Processor en(7)
enpstart: configure Ethernet processor enpstart(lM)

riopqry: query Remote I/O Processor for online data riopqry(lM)
m4: macro processor m4(l)

system for Remote I/O Processor, riopcfg: configure riopcfg(lM)
a common object file, list: produce C source listing from list(l)

t_error: produce error message t_error(3n)
prof: display profile data prof(l)

function, prof: profile within a prof(5)
profile, profil: execution time profil(2)

prof: display profile data prof(l)
monitor: prepare execution profile monitor(3C)

profil: execution time profile profil(2)
environment at login time, profile: setting up an profile(4)

prof: profile within a function prof(5)
fusage: disk access profiler fusage(lM)

prf: operating system profiler prf(7)
prfdc, prfsnap, prfpr:/ profiler: prfld, prfstat, profiler(lM)

prfpr: operating system profiler, /prfdc, prfsnap profiler(lM)

- lvi -

sadp: disk access profiler sadp(lM)
standard/restricted command programming language. Ahe sh(l)

software using the mkfs(l) proto file database, /verify qinstall(l)
on. /print out file lists from proto file; set links based qlist(l)

arp: Address Resolution Protocol arp(7)
/switched Serial Line Internet Protocol control facility slipd(lM)
/setprotoent, endprotoent: get protocol entry getprotoent(3)

inet: Internet protocol family inet(7)
icmp: Internet Control Message Protocol icmp(7)

ip: Internet Protocol ip(7)
DARPA Internet File Transfer Protocol server, ftpd: ftpd(LM)

telnetd: DARPA TELNET protocol server telnetd(lM)
DARPA Trivial File Transfer Protocol server, tftpd: tftpd(lM)

Internet Transmission Control Protocol, tcp: tcp(7)
user interface to TELNET protocol, telnet: telnet(l)

interface to the DARPA TFTP protocol, tftp: user tftp(l)
udp: Internet User Datagram Protocol udp(7)

Dialers: ACU/modem calling protocols Dialers(5)
protocols, protocols: list of Internet protocols(4)

information. t_gelinfo: get protocol-speci fic service t_getinfo(3n)
update: provide disk synchronization update(lM)

arithmetic: provide drill in number facts arithmetic(6)
systems, labelit: provide labels for file labelit(lM)

true, false: provide truth values true(l)
get name of transport provider, nlsprovider: nlsprovider(3n)

prs: print an SCCS file prs(l)
/nulladm, prctmp, prdaily, prtacct, rnnacct, shutacct,/ acctsh(lM)

ps: report process status ps(l)
/generate uniformly distributed pseudo-random numbers drand48(3C)

/mvtpy: install or relocate a PT or GT local printer mktpy(l)
download, tdl, gtdl, ptdl: RS-232 terminal tdl(l)

ptrace: process trace ptrace(2)
ptx: permuted index ptx(l)

stream, ungetc: push character back into input ungetc(3S)
put character or word on a/ putc, pulchar, fputc, putw: putc(3S)

character or word on a/ putc, putchar, fputc, putw: put putc(3S)
environment, putenv: change or add value to putenv(3C)

stream, putmsg: send a message on a putmsg(2)
entry, putpwent: write password file putpwent(3C)

stream, puts, fputs: put a string on a puts(3S)
password file entry, putspent: write shadow putspent(3X)

/getutent, getutid, getutline, pututline, setutent, endutent/ getut(3C)
a/ putc, putchar, fputc, putw: put character or word on putc(3S)

file checkers, pwck, grpck: password/group pwck(lM)
/etc/shadow with information/ pwconv: install and update pwconv(lM)

pwd: working directory name pwd(l)
/etc/shadow with information/ pwunconv: install and update pwunconv(lM)

qic: interface for QIC tape qic(7)
software using the mkfs(l)/ qinstall: install and verify qinstall(l)

from proto file; set links/ qhst: print out file lists qlist(l)
qsort: quicker sort qsort(3C)

tape, slape: SCSI quarter-inch and half-inch stape(7)
File Sharing name server query, nsquery: Remote nsquery(lM)

online data, riopqry: query Remote I/O Processor for riopqry(lM)
tput: initialize a terminal or query terminfo database tput(l)

queuedefs: at/batch/cron queue description file queuedefs(4)
msgget: get message queue msgget(2)

rmount: queue remote resource mounts rmount(lM)

- lvi i -

ipcrm: remove a message queue, semaphore set or shared/ ipcrm(l)
request, ramount: cancel queued remote resource rumount(lM)

description file, queuedefs: at/batch/cron queue queuedefs(4)
qsort: quicker sort. qsort(3C)

command immune to hangups and quits, nohup: run a nohup(l)
quiz: test your knowledge quiz(6)

random-number generator, rand, srand: simple rand(3C)
adage, fortune: print a random, hopefully interesting, fortune(6)

rand, srand: simple random-number generator rand(3C)
fsplit: split FORTRAN, ratfor, or efl files fsplit(l)

dialect. ratfor: rational FORTRAN ratfor(l)
ratfor: rational FORTRAN dialect ratfor(l)

stop the operating system. rcO: run commands performed to rcO(lM)
performed for multi-user/ rc2, rc3: run commands rc2(lM)

for multi-user/ rc2, rc3: run commands performed rc2(lM)
execution, rcmd: remote shell command rcmd(l)

routines for returning a/ rcmd, rresvport, ruserok: rcmd(3)
rep: remote file copy rcp(l)

getpass: read a password getpass(3C)
entry of a common/ ldtbread: read an indexed symbol table ldtbread(3X)
header/ ldshread, ldnshread: read an indexed/named section ldshread(3X)

in a file, getdents: read directory entries and put getdents(2)
read: read from file r ead®

rmail: send mail to users or read mail, mail, mail(l)
line: read one fine line(l)

read: read from file read®
member of an/ldahread: read the archive header of a ldahread(3X)

common object file, ldfhread: read the file header of a ldfhread(3X)
directory: opendir, readdir, telldir, seekdir,/ directory(3X)

open a common object file for reading, ldopen, ldaopen: ldopen(3X)
open: open for reading or writing open®

lseek: move read/write file pointer l seek®
tirdwr: Transport Interface read/write interface STREAMS/ t i rdwr®

allocator, malloc, free, realloc, calloc: main memory malloc(3C)
mall info: fast / mal loc, free, realloc, calloc, mallopt mal loc(3X)

enabled/disabled, rtpenable: real-time priorities rtpenable(lM)
reboot: reboot the system reboot(lM)

mail aliases/ newaliases: rebuild the data base for the newaliases(l)
specify what to do upon receipt of a signal, signal: signal®

t_rcvrel: acknowledge receipt of an orderly release/ t_rcvrel(3n)
t_rcvudata: receive a data unit t_rcvudata(3)

socket, recv, reevfrom: receive a message from a r ecv®
indication, t rcvuderr: receive a unit data error t_rcvuderr(3)

sent over a/ t_rcv: receive data or expedited data t_rcv(3n)
a connect/ trcvconnect: receive the confirmation from t_rcvconnecl(3)

lockf: record locking on files lockf(3C)
from per-process accounting records, /command summary acctcms(lM)
from/ errdead: extract error records and status information errdead(lM)

manipulate connect accounting records, fwtmp, wtmpfix: fwtmp(lM)
tape, free: recover files from a backup frec(lM)

message f rom a socket, recv, reevfrom: receive a r e c v ®
from a socket, recv, reevfrom: receive a message r ecv®

ed, red: text editor ed(l)
execute regular expression, regcmp, regex: compile and regcmp(3X)

compile, regcmp: regular expression regcmp®
make: maintain, update, and regenerate groups of programs make(l)
regular expression, regcmp, regex: compile and execute regcmp(3X)
compile and match routines, regexp: regular expression regexp(5)

- lvi i i -

locking: exclusive access to regions of a file locking(2)
match routines, regexp: regular expression compile and regexp(5)

regcmp: regular expression compile regcmp(l)
regex: compile and execute regular expression, regcmp, regcmp(3X)

file for a pattern using full regular expressions, /search a egrep(l)
requests, accept, reject: allow or prevent LP accept(lM)

sorted files, coram: select or reject lines common to two comm(l)
lorder: find ordering relation for an object/ lorder(l)

join: relational database operator join(l)
/receipt of an orderly release indication t_rcvrel(3n)

t sndrel: initiate an orderly release t_sndrel(3n)
for a common object file, reloc: relocation information reloc(4)
mklpy, mvtpy: install or relocate a PTor GT local/ mktpy(l)

ldrseek, ldnrseek: seek to relocation entries of a/ ldrseek(3X)
common object file, reloc: relocation information for a reloc(4)
/fmod, fabs: floor, ceiling, remainder, absolute value/ floor(3M)

calendar: reminder service calendar(l)
adv: advertise a directory for remote access adv(l.M)

for returning a stream to a remote command, /routines rcmd(3)
uuxqt: execute remote command requests uuxqt(lM)

rexec: return stream to a remote command rexec(3)
rhosts: remote equivalent users rhosts(4)

rexecd: remote execution server rexecd(lM)
rep: remote file copy rcp(1)

administration, rfadmin: Remote File Sharing rfadmin(lM)
process, rfudaemon: Remote File Sharing daemon rfudaemon(lM)

network names, dname: print Remote File Sharing domain and dname(lM)
environment, rfstop: stop the Remote File Sharing rfstop(l.M)
password, rfpasswd: change Remote File Sharing host rfpasswd(lM)
server master file, rfmaster: Remote File Sharing name rfmaster(4)

server query, nsquery: Remote File Sharing name nsquery(lM)
notification shell/ rfuadmin: Remote File Sharing rfuadmin(lM)

unadv: unadvertise a Remote File Sharing resource unadv(lM)
/rumountall: mount, unmount Remote File Sharing (RFS)/ rmountall(lM)

rfstart: start Remote File Sharing rfstan(lM)
group mapping, idload: Remote File Sharing user and idload(lM)

configuration table, rtab: Remote I/O Processor rtab(4)
online data, riopqry: query Remote I/O Processor for riopqry(lM)

riopefg: configure system for Remote I/O Processor riopcfg(lM)
rlogin: remote login rlogin(l)

rlogind: remote login server rlogind(lM)
showmount: show all remote mounts showmount(lM)

netrc: login file for remote networks netrc(4)
rmount: queue remote resource mounts rmount(lM)

rumount: cancel queued remote resource request rumount(lM)
and unmount file systems and remote resources, /mount mount(lM)

rmnttry: attempt to mount remote resources rmnttry(lM)
execution, remd: remote shell command rcmd(l)

rshd: remote shell server rshd(lM)
on. Uutry: try to contact a remote system with debugging Uutry(lM)

ct: spawn getty to a remote terminal ct(lC)
server, talkd: remote user communication talkd(lM)

server, fingerd: remote user information fingerd(lM)
table, rmtab: remotely mounted file system rmtab(4)

file, rmdel: remove a delta from an SCCS rmdel(l)
rmdir: remove a directory rmdir(2)

semaphore set or/ipcrm: remove a message queue, ipcrm(l)
unlink: remove directory entry unlink(2)

- l i x -

rm,rmdir. remove files or directories mi(l)
eqn constructs, deroff: remove nrofi/troff, tbl, and deroff(l)

running process by changing/ renice: alter priority of renice(l)
fsck, dfsck: check and repair file systems fsck(lM)

uniq: report repeated lines in a file u n i q (l)
clock: report CPU t ime used c lock(3C)
fsize: report file size fsize(l)
fsstat: report file system status fsstat(lM)

communication/ ipcs: report inter process ipcs(l)
blocks and i-nodes. df: report number of free disk df(lM)

errpt: process a report of logged errors errpt(lM)
sa2, sadc: system activity report package, sar: sal sar(lM)
timex: time a command; report process data and system/ timex(l)

ps: report process status ps(l)
file, uniq: report repeated lines in a uniq(l)

rpcinfo: report RPC information rpcinfo(l.M)
sar: system activity reporter sar(l)

stream, fseek, rewind, ftell: reposition a file pointer in a fseek(3S)
and send listener service request message, /format nlsrequest(3n)

cancel queued remote resource request, rumount: rumount(lM)
mountd: NFS mount request server mountd(lM)

t_accept: accept a connect request t_accept(3n)
t j i s ten: listen for a connect request t_listen(3n)
confirmation from a connect request, /receive the t_rcvconnect(3)

send user-initiated disconnect request. t_snddis: t_snddis(3n)
reject: allow or prevent LP requests, accept, accept(lM)
the LP scheduler and move requests, /lpmove: start/stop lpsched(lM)

syslocal: special system requests syslocal(2)
lp, cancel: send/cancel requests to an LP line/ lp(l)

uuxqt: execute remote command requests uuxqt(lM)
res_mkquery, res_send, res_init, dn_comp, dn_expand:/ resolver(3)

res_init, dn_comp, dn_expand:/ res_mkquery, res_send resolver(3)
control, arp: address resolution display and arp(lM)

arp: Address Resolution Protocol arp(7)
configuration file, resolv.conf: resolver resolver(4)

resolv.conf: resolver configuration file resolver(4)
res init, dn_comp, dn_expand: resolver routines. /res_send, resolver(3)

unmount of an advertised resource, fumount: forced fumount(lM)
rmntstat: display mounted resource information rmntstat(lM)

rmount: queue remote resource mounts rmount(lM)
rumount: cancel queued remote resource request rumount(lM)

a Remote File Sharing resource, unadv: unadvertise unadv(lM)
file systems and remote resources, /mount and unmount mount(lM)

unmount Network File System resources, /numountall: mount nmountall(lM)
attempt to mount remote resources, rmnttry: rmnttry(lM)

Remote File Sharing (RFS) resources./mount, unmount rmountall(lM)
dn expand:/ res_mkquery, res send, res_init, dn_comp, resolver(3)

and usage examples, usage: retrieve a command description usage(l)
disconnect, t rcvdis: retrieve information from t_rcvdis(3n)

common object file/ ldgetname: retrieve symbol name for ldgetname(3X)
abs: return integer absolute value abs(3C)

logname: return login name of user logname(3X)
command, rexec: return stream to a remote rexec(3)

name, getenv: return value for environment getenv(3C)
stat: data returned by stat system call stat(5)

/ruserok: routines for returning a stream to a remote/ rcmd(3)
col: filter reverse line-feeds col(l)

file pointer in a/ fseek, rewind, ftell: reposition a fseek(3S)

- l x -

/readdir, telldir, seekdir,
creat: create a new file or

remote command.
server,

administration,
name server master file.
Sharing host password,

unmount Remote File Sharing
Sharing.

Sharing environment,
notification shell script,

daemon process.
users.

Remote I/O Processor.
Processor for online data.

directories,
read mail, mail,

SCCS file.

directories, nn,
resource information,

remote resources.
mounts.

unmount Remote File Sharing/
system table,

chroot: change
chroot: change

logarithm, power, square
routing tables,

gateways:
daemon.

Aekset, td: graphical device
rcmd, rresvport, ruserok:

Internet address manipulation
common object file access

expression compile and match
dn_comp, dn_expand: resolver

graphical table of contents
routed: network
sendmail: mail

route: manually manipulate the
getrpcbynumber: get

rpcinfo: report
getrpcport: get

rpc: Sun
portmap: DARPA port to

data base,
information,

for returning a stream/ rcmd,
controlling terminal's local

tdl, gtdl, ptdl:
standard/restricted/ sh,

stop terminal input and/
configuration table,

priorities enabled/disabled.

rewinddir, closedir: directory/ directory(3X)
rewrite an existing one creat(2)
rexec: return stream to a rexec(3)
rexecd: remote execution rexecd(lM)
rfadmin: Remote File Sharing rfadmin(lM)
rfmaster: Remote File Sharing rfmaster(4)
rfpasswd: change Remote File rfpasswd(lM)
(RFS) resources, /mount, rmountall(lM)
rfstart: start Remote File rfstart(lM)
rfstop: stop the Remote File rfstop(lM)
rfuadmin: Remote File Sharing rfuadmin(l.M)
rfudaemon: Remote File Sharing rfudaemon(lM)
rhosts: remote equivalent rhosts(4)
riopcfg: configure system for riopcfg(lM)
riopqry: query Remote I/O riopqry(lM)
rlogin: remote login rlogin(l)
rlogind: remote login server rlogind(lM)
rm, rmdir: remove files or rm(l)
rmail: send mail to users or mail(l)
rmdel: remove a delta from an rmdel(l)
rmdir: remove a directory rmdir(2)
rmdir: remove files or rm(l)
rmntstat: display mounted rmntstat(lM)
rmnttry: attempt to mount rmnttry(lM)
rmount: queue remote resource rmount(l.M)
rmountall, rumountall: mount, rmountall(lM)
rmtab: remotely mounted file rmtab(4)
root directory chroot(2)
root directory for a command chroot(lM)
root functions, /exponential, exp(3M)
route: manually manipulate the route(lM)
routed configuration file gateways(4)
routed: network routing routed(lM)
routines and filters gdev(lG)
routines for returning a/ rcmd(3)
routines, /inet netof: inet(3)
routines, ldfcn: ldfcn(4)
routines, regexp: regular regexp(5)
routines, /res send, res init, resolver(3)
routines, /dtoc, ttoc, vtoc: toc(lG)
routing daemon routed(lM)
routing program sendmail(lM)
routing tables route(lM)
rpc entry, /gelrpcbyname, getrpcent(3)
RPC information rpcinfo(lM)
RPC port number getrpcport(3)
rpc program number data base rpc(4)
RPC program number mapper portmap(1M)
rpc: Sun rpc program number rpc(4)
rpcinfo: report RPC rpcinfo(lM)
rresvport, ruserok: routines rcmd(3)
RS-232 channels, tp: tp(7)
RS-232 terminal download ldl(l)
rsh: shell, the sh(l)
rshd: remote shell server rshd(lM)
rsterm: manually start and rsterm(lM)
rtab: Remote I/O Processor rtab(4)
rtpenable: real-time rtpenable(lM)

- lx i -

resource request, rumount: cancel queued remote rumount(lM)
Remote File/ rmountall, rumountall: mount, unmount rmountall(lM)

nice: run a command at low priority nice(l)
hangups and quits, nohup: run a command immune to nohup(l)

multi-user/ rc2, rc3: run commands performed for r c 2 (l M)
the operating system. rcO: run commands performed lo stop rcO(lM)

runacct: run daily accounting runacct(lM)
runacct: run daily accounting runacct(lM)

/prctmp, prdaily, prtacct, runacct, shutacct, startup,/ acctsh(lM)
renice: alter priority of running process by changing/ renice(l)

nodes on local network, ruptime: display status of ruptime(l)
returning a/ rcmd, rresvport, raserok: routines for rcmd(3)

local network, rwho: who is logged in on rwho(l)
rwhod: host status server rwhod(lM)

activity report package, sar: sal, sa2, sadc: system sar(lM)
report package, sar: sal, sa2, sadc: system activity sar(lM)

editing activity, sact: print current SCCS file sact(l)
package, sar: sal, sa2, sadc: system activity report sar(lM)

sadp: disk access profiler sadp(lM)
sag: system activity graph sag(lG)

activity report package, sar: sal, sa2, sadc: system sar(lM)
sar: system activity reporter sar(l)

space allocation, brk, sbrk: change data segment brk(2)
formatted input, scanf, fscanf, sscanf: convert scanf(3S)

bfs: big file scanner bfs(l)
language, awk: pattern scanning and processing awk(l)

language, nawk: pattern scanning and processing nawk(l)
the delta commentary of an SCCS delta, cdc: change cdc(l)

comb: combine SCCS deltas comb(l)
make a delta (change) to an SCCS file, delta: delta(l)

sact: print current SCCS file editing activity sact(l)
get: get a version of an SCCS file get(l)

prs: print an SCCS file prs(l)
rmdel: remove a delta from an SCCS file rmdel(l)

compare two versions of an SCCS file, sccsdiff: sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

undo a previous get of an SCCS file, unget: unget(l)
val: validate SCCSfile val(l)

admin: create and administer SCCS files admin(l)
what: identify SCCS files what(l)

of an SCCS file, sccsdiff: compare two versions sccsdiff(l)
sccsfile: format of SCCS file sccsfile(4)

check file system backup schedule, ckbupscd: ckbupscd(lM)
/lpmove: start/stop the LP scheduler and move requests lpsched(lM)

uusched: the scheduler for the UUCP system uusched(lM)
common object file, scnhdr: section header for a scnhdr(4)

screen image file., scrdump: format of curses scr_dump(4)
clear: clear terminal screen clear(l)

ocurse: optimized screen functions ocurse(3X)
optimization/ curses: terminal screen handling and curses(3X)

scr_dump: format of curses screen image file scr_dump(4)
display editor based on/vi : screen-oriented (visual) vi(l)

inittab: script for the init process inittab(4)
terminal session, script: make typescript of script(l)

Sharing nolification shell script, rfuadmin: Remote File rfuadmin(lM)
scsi: scsi control device scsi(7)

scsimap: set mappings for SCSI devices scsimap(lM)
half-inch tape, stape: SCSI quarter-inch and stape(7)

- lxii -

scsi: scsi control device scsi(7)
devices, scsimap: set mappings for SCSI scsimap(lM)

sdb: symbolic debugger sdb(l)
program, sdiff: side-by-side difference sdiff(l)

string, fgrep: search a file for a character fgrep(l)
grep: search a file for a pattern grep(l)

using full regular/egrep: search a file for a pattern egrep(l)
bsearch: binary search a sorted table bsearch(3C)

accounting file(s). acctcom: search and print process acctcom(l)
lsearch, lfind: linear search and update lsearch(3C)

hcreate, hdestroy: manage hash search tables, hsearch, hsearch(3C)
tdelete, twalk: manage binary search trees, tsearch, tfind, tsearch(3C)

object file, scnhdr: section header for a common scnhdr(4)
object/ /read an indexed/named section header of a common ldshread(3X)

the object file comment section, mcs: manipulate mcs(l)
Ao line number entries of a section of a common object/ ldlseek(3X)

Ao relocation entries of a section of a common object/ ldrseek(3X)
/seek to an indexed/named section of a common object/ ldsseek(3X)

common object/ size: print section sizes in bytes of size(l)
sed: stream editor sed(l)

/mrand48, jrand48, srand48, seed48, lcong48: generate/ drand48(3C)
section of/ ldsseek, ldnsseek: seek to an indexed/named ldsseek(3X)

a section/ ldlseek, Idnlseek: seek to line number entries of ldlseek(3X)
a section/ ldrseek, ldnrseek: seek to relocation entries of ldrseek(3X)

header of a common/ ldohseek: seek to the optional file ldohseek(3X)
common object file, ldtbseek: seek lo the symbol table of a ldlbseek(3X)

/opendir, readdir, telldir, seekdir, rewinddir, closedir:/ directory(3X)
shmget: get shared memory segment identifier shmgel(2)

brk, sbrk: change data segment space allocation brk(2)
to two sorted files, comm: select or reject lines common comm(l)

multiplexing, select: synchronous I/O select(2)
greek: select terminal filter greek(l)

of a file, cut: cut out selected fields of each line cut(l)
file, dump: dump selected parts of an object dump(l)

semctl: semaphore control operations semctl(2)
semop: semaphore operations semop(2)

ipcrm: remove a message queue, semaphore set or shared memory/ ipcrm(l)
semget: get set of semaphores semget(2)

operations, semctl: semaphore control semctl(2)
semget: get set of semaphores semget(2)
semop: semaphore operations semop(2)

t_sndudata: send a data unit t_sndudata(3)
putmsg: send a message on a stream putmsg(2)

send, sendto: send a message to a socket send(2)
a group of processes, kill: send a signal to a process or kill(2)
over a connection, t snd: send data or expedited data t_snd(3n)

to network hosts, ping: send ICMP ECHO_REQUESTpackets ping(lM)
nlsrequest: format and send listener service request/ nlsrequest(3n)

mail, mail, rmail: send mail to users or read mail(l)
to a socket, send, sendto: send a message send(2)

request. t_snddis: send user-initiated disconnect t_snddis(3n)
line printer. Ip, cancel: send/cancel requests to an LP lp(l)
aliases: aliases file for sendmail aliases(4)

program, sendmail: mail routing sendmail(lM)
socket, send, sendto: send a message to a send(2)

/receive data or expedited data sent over a connection t_rcv(3n)
control/ slipd: switched Serial Line Internet Protocol slipd(lM)

/sldetach: attach and detach serial lines as network/ slattach(lM)

- lxiii -

serstat: display serial port error statistics serstat(lM)
error statistics, serstat: display serial port serstat(lM)

remote user information server, fingerd: fingerd(lM)
File Transfer Protocol server, ftpd: DARPA Internet ftpd(lM)

Remote File Sharing name server master file, rfmaster: rfmaster(4)
mountd: NFS mount request server mountd(lM)

named: Internet domain name server named(lM)
Remote File Sharing name server query, nsquery: nsquery(lM)

rexecd: remote execution server rexecd(lM)
rlogind: remote login server rlogind(lM)

rshd: remote shell server rshd(lM)
rwhod: host status server rwhod(lM)

remote user communication server, talkd: talkd(lM)
telnctd: DARPA TELNET protocol server telnetd(lM)

Trivial File Transfer Protocol server, tftpd: DARPA tftpd(lM)
uucpd, ouucpd: network uucp servers uucpd(lM)

make typescript of terminal session, script: script(l)
buffering to a stream, setbuf, setvbuf: assign setbuf(3S)

Aoascci, _tolower, _toupper, setchrclass: character/ ctype(3C)
IDs. setuid, setgid: set user and group setuid(2)

getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent:/ getgrent(3C)
/gethostbyaddr, gethostent, sethostent, endhostent: get/ gethostbyname(3)

identifier of/gethostid, sethostid: get/set unique gethostid(2)
current host, gethostname, sethostname: get/set name of gethostname(2)

goto, setjmp, longjmp: non-local setjmp(3C)
hashing encryption, crypt, setkey, encrypt: generate crypt(3C)

setmnt: establish mount table setmnt(lM)
/getnetbyaddr, getnetbyname, setnetent, endnetent: get/ gelnetent(3)

setpgrp: set process group ID setpgrp(2)
protocol/ /getprotobyname, setprotoent, endprotoent: get gctprotoent(3)

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent:/ getpwent(3C)
/getservbyport, getservbyname, setservent, endservent: get/ getservent(3)

options on/ getsockopt, setsockopt: get and set getsockopt(2)
Ickpwdf,/ getspent, getspnam, setspent, endspent, fgetspent, getspent(3X)

time, gettimeofday, settimeofday: get/set date and gettimeofday(2)
environment at/ cprofile: setting up a C shell cprofile(4)

login time, profile: setting up an environment at profile(4)
gettydefs: speed and terminal settings used by getty gettydefs(4)

group IDs. setuid, setgid: set user and setuid(2)
setuname: set name of system setuname(l.M)

/getutid, getutline, pututline, setutent, endutent, utmpname:/ getut(3C)
stream, setbuf, setvbuf: assign buffering to a setbuf(3S)

data in a/ sputl, sgetl: access long integer sputl(3X)
standard/restricted command/ sh, rsh: shell, the sh(l)

Ickpwdf, ulckpwdf: get shadow, /endspent, fgetspent, getspent(3X)
putspent: write shadow password file entry putspent(3X)

shadow: password file shadow(4)
xstr: extract and share strings in C programs xstr(l)

chkshlib: compare shared libraries tool chkshlib(l)
mkshlib: create a shared library mkshhb(l)

operations, shmctl: shared memory control shmctl(2)
queue, semaphore set or shared memory ID./a message ipcrm(l)

shmop: shared memory operations shmop(2)
identifier, shmget: get shared memory segment shmget(2)

nfssys: common shared NFS system calls nfssys(2)
rfadmin: Remote File Sharing administration rfadmin(lM)

rfudaemon: Remote File Sharing daemon process rfudaemon(lM)
dname: print Remote File Sharing domain and network/ dname(lM)

- lx iv -

rfstop: stop the Remote File Sharing environment rfstop(lM)
rfpasswd: change Remote File Sharing host password rfpasswd(lM)

file, rfmaster: Remote File Sharing name server master rfmaster(4)
nsquery: Remote File Sharing name server query nsquery(lM)

script, rfuadmin: Remote File Sharing notification shell rfuadmin(lM)
unadvertise a Remote File Sharing resource, unadv: unadv(lM)

/mount, unmount Remote File Sharing (RFS) resources rmountall(lM)
rfstart: start Remote File Sharing rfstart(lM)

mapping, idload: Remote File Sharing user and group idload(lM)
rcmd: remote shell command execution rcmd(l)

with C-like syntax, csh: a shell (command interpreter) csh(l)
system: issue a shell command system(3S)

cprofile: setting up a C shell environment at login/ cprofile(4)
shl: shell layer manager shl(l)

shutacct, startup, tumacct: shell procedures for/ /runacct, acctsh(l.M)
File Sharing notification shell script. /Remote rfuadmin(lM)

rshd: remote shell server rshd(lM)
command programming/ sh, rsh: shell, the standard/restricted sh(l)

shl: shell layer manager shl(l)
operations, shmctl: shared memory control shmctl(2)

segment identi fier. shmget: get shared memory shmget(2)
operations, shmop: shared memory shmop(2)

mounts, showmount: show all remote showmount(lM)
/prdaily, prtacct, runacct, shutacct, startup, tumacct:/ acctsh(l.Vl)

system, change system state, shutdown, halt: shut down shutdown(lM)
full-duplex connection, shutdown: shut down part of a shuldown(2)

program, sdiff: side-by-side difference sdiff(l)
abort: generate a SIGABRT. abort(3C)

sigpause: signal/ sigset, sighold, sigrelse, sigignore sigsel(2)
sigset, sighold, sigrelse, sigignore, sigpause: signal/ sigset(2)

login: sign on login(l)
sigrelse, sigignore, sigpause: signal management, /sighold, sigset(2)
pause: suspend process until signal pause(2)
what to do upon receipt of a signal, signal: specify signal(2)

of processes, kill: send a signal to a process or a group kill(2)
ssignal, gsignal: software signals ssignal(3C)

/sighold, sigrelse, sigignore, sigpause: signal management sigset(2)
signal/ sigset, sighold, sigrelse, sigignore, sigpause: sigset(2)

sigignore, sigpause: signal/ sigset, sighold, sigrelse, sigset(2)
lex: generate programs for simple lexical tasks lex(l)

generator, rand, srand: simple random-number rand(3C)
atan, atan2:/ trig: sin, cos, tan, asin, acos, trig(3M)

functions, sinh, cosh, tanh: hyperbolic sinh(3M)
fsize: report file size fsize(l)

get descriptor table size, getdtablesize: getdtablesize(2)
object/ size: print section sizes in bytes of ccmmon size(l)

detach serial lines as/ slattach, sldetach: attach and slattach(lM)
serial lines as/ slattach, sldetach: attach and detach slattach(lM)

an interval, sleep: suspend execution for sleep(l)
interval, sleep: suspend execution for sleep(3C)

documents, view graphs, and slides, mmt, mvt: typeset mmt(l)
typesetting view graphs and slides, /macro package for mv(5)

linker, load socket/ slink, ldsocket: STREAMS slink(l)
Internet Protocol control/ slipd: switched Serial Line slipd(lM)

current/ ttyslot: find the slot in the utmp file of the ttyslot(3C)
spline: interpolate smooth curve spline(lG)

sno: SNOBOL interpreter sno(l)
bind: bind a name lo a socket bind(2)

- lxiv -

ldsocket: STREAMS linker, load socket configuration, slink, slink(l)
initiate a connection on a socket, connect: connect(2)

communication, socket: create an endpoint for socket(2)
listen for connections on a socket, listen: listen(2)

getsockname: get socket name getsockname(2)
receive a message from a socket, recv, reevfrom: recv(2)

sendto: send a message to a socket, send, scnd(2)
get and set options on sockets, /setsockopt: gctsockopt(2)

ctinstall: install software ctinstall(l)
interface, lo: software loopback network lo(7)

ssignal, gsignal: software signals ssignal(3C)
qinstall: install and verify software using the mkfs(l)/ qinstall(l)

sort: sort and/or merge files sort(l)
qsort: quicker sort qsort(3C)

sort: sort and/or merge files sort(l)
tsort: topological sort tsort(l)

or reject fines common to two sorted files, comm: select comm(l)
bsearch: binary search a sorted table bsearch(3C)

object file, fist: produce C source listing from a common list(l)
brk, sbrk: change data segment space allocation brk(2)

/unexpand: expand tabs to spaces, and vice versa expand(l)
terminal, cl: spawn getty to a remote ct(lC)

the/ tapedrives: tape drive specific information used by tapedrives(4)
cftime: language specific strings cftime(4)

fspec: formal specification in text files fspec(4)
receipt of a signal, signal: specify what to do upon signal®
/set terminal type, modes, speed, and line discipline getty(lM)
/set terminal type, modes, speed, and line discipline uugetty(lM)
used by getty. gettydefs: speed and terminal settings gettydefs(4)

spelling/ spell, hashmake, spellin, hashcheck: find spell(l)
spellin, hashcheck: find spelling errors, /hashmake spell(l)

curve, spline: interpolate smooth spline(lG)
split: split a file into pieces split(l)

csplit: context split csplit(l)
efl files, fsplit: split FORTRAN, ratfor, or fsplit(l)

uucleanup: uucp spool directory clean-up uucleanup(lM)
lpr: line printer spooler l p r ®

lpadmin: configure the LP spooling system lpadmin(lM)
output, printf, fprintf, sprintf: print formatted printf(3S)

integer data in a/ sputl, sgetl: access long spull(3X)
power,/exp, log, log 10, pow, sqrt: exponential, logarithm, exp(3M)

exponential, logarithm, power, square root functions, /sqrt: exp(3M)
generator, rand, srand: simple random-number rand(3C)

/nrand48, mrand48, jrand48, srand48, seed48, lcong48:/ drand48(3C)
input, scanf, fscanf, sscanf: convert formatted scanf(3S)

signals, ssignal, gsignal: software ssignal(3C)
package, stdio: standard buffered input/output stdio(3S)

communication/ stdipc, ftok: standard interprocess stdipc(3C)
sh, rsh: shell, the standard/restricted command/ sh(l)

half-inch tape, stape: SCSI quarter-inch and stape(7)
and output, rsterm: manually start and stop terminal input rsterm(lM)

rfstart: start Remote File Sharing rfstart(lM)
operating system for/ starter: information about the starter®

and/lpsched, lpshut, lpmove: start/stop the LP scheduler lpsched(lM)
/prtacct, runacct, shutacct, startup, tumacct: shell/ acctsh(lM)

stat, fstat: get file status s la t®
useful with graphical/ stat: statistical network stat(lG)
stat: data returned by stat system call stal(5)

- Ixvi -

system information, statfs, fstatfs: get file statfs(2)
with graphical/ stat: statistical network useful stat(lG)

£f: file name and statistics for a file system ff(lM)
nfsstat: Network File System statistics nfsstat(lM)

display serial port error statistics, serstat: serstat(lM)
ustat: get file system statistics ustat(2)

fsstat: report file system status fsstat(lM)
/extract error records and status information from dump errdead(lM)

lpstat: print LP status information Ipstat(l)
feof, clearerr, fileno: stream status inquiries. Terror ferror(3S)

control, uustat: uucp status inquiry and job uustat(lC)
communication facilities status, /report inter-process ipcs(l)

netstat: show network status netstat(l)
network, ruptime: display status of nodes on local ruptime(l)

ps: report process status ps(l)
rwhod: host status server rwhod(lM)

stat, fstat: get file status stat(2)
input/output package, stdio: standard buffered stdio(3S)

interprocess communication/ stdipc, ftok: standard stdipc(3C)
stime: set time stime(2)

wait for child process to stop or terminate, wait: wait(2)
rsterm: manually start and stop terminal input and/ rsterm(lM)

rcO: run commands performed lo stop the operating system rcO(l.M)
environment, rfstop: stop the Remote File Sharing rfstop(lM)

nextkey:/ dbminit, fetch, store, delete, firstkey dbm(3X)
messages, strace: print STREAMS trace strace(lM)

strcmp, slmcmp,/ string: strcat, strdup, stmcat, string(3C)
/strcpy, stmcpy, strlen, strchr, strrchr, strpbrk,/ string(3C)

cleanup program, strclean: STREAMS error logger strclean(lM)
/strcat, strdup, stmcat, strcmp, stmcmp, strcpy,/ string(3C)

/stmcat, strcmp, stmcmp, strcpy, stmcpy, strlen/ string(3C)
/strrchr, strpbrk, strspn, strcspn, strtok: string/ string(3C)
stmcmp,/ string: strcat, strdup, stmcat, strcmp string(3C)

sed: stream editor sed(l)
fflush: close or flush a stream, fclose, fclose(3S)

fopen, freopen, fdopen: open a stream fopen(3S)
reposition a file pointer in a stream, fseek, rewind, ftell: fseek(3S)

get character or word from a stream, /getchar, fgetc, getw: getc(3S)
getmsg: get next message off a stream getmsg(2)

fgets: gel a string from a stream, gets, gets(3S)
put character or word on a stream, /putchar, fputc, putw: putc(3S)

putmsg: send a message on a stream putmsg(2)
puts, fpuls: put a string on a stream puts(3S)

setvbuf: assign buffering to a stream, setbuf setbuf(3S)
/feof, clearerr, fileno: stream status inquiries ferror(3S)

/routines for returning a stream to a remote command rcmd(3)
rexec: return stream to a remote command rexec(3)

push character back into input stream, ungetc: ungetc(3S)
commands, streamio: STREAMS ioctl streamio(7)

open any minor device on a STREAMS driver, clone: clone(7)
program, strclean: STREAMS error logger cleanup strclean(lM)

strerr: STREAMS error logger daemon strerr(lM)
event/ log: interface to STREAMS error logging and log(7)

multiplexing, poll: STREAMS input/output P°U(2)
streamio: STREAMS ioctl commands streamio(7)

slink, ldsocket: STREAMS linker, load socket/ slink(l)
Interface cooperating STREAMS module. /Transport timod(7)

Interface read/write interface STREAMS module. /Transport tirdwr(7)

- lxxvii -

sxt: STREAMS multiplexor sxt(7)
strace: print STREAMS trace messages strace(lM)

daemon, strerr: STREAMS error logger strerr(lM)
long integer and base-64 ASCII string. /164a: convert between a641(3C)

convert date and time to string, /ascftime, tzset: ctime(3C)
floating-point number to string, /fcvt, gcvt: convert ecvt(3C)

search a file for a character string, fgrep: fgrep(l)
gps: graphical primitive string, format of graphical/ gps(4)

gets, fgets: get a string from a stream gets(3S)
puts, fpuls: put a string on a stream puls(3S)

bemp, bzero: bit and byte string operations, bcopy, bstring(3)
strspn, strcspn, strtok: string operations, /strpbrk string(3C)

number, strtod, atof: convert string to double-precision strtod(3C)
strtol, atol, atoi: convert siring to integer strtol(3C)

cftime: language specific strings cftime(4)
text strings in a file, strings: extract the ASCII strings(l)

extract the ASCII text strings in a file, strings: strings(l)
xstr: extract and share strings in C programs xstr(l)

number information from a/ strip: strip symbol and fine strip(l)
information from a/ strip: strip symbol and line number strip(l)
/strncmp, strcpy, strncpy, strlen, strchr, strrchr,/ string(3C)

string: strcat, strdup, stmcat, strcmp, stmcmpj string(3C)
/strdup, stmcat, strcmp, strncmp, strcpy, strncpy,/ string(3C)

/strcmp, strncmp, strcpy, strncpy, strlen, strchr,/ string(3C)
/strlen, strchr, strrchr, strpbrk, strspn, strcspn,/ string(3C)

/strncpy, strlen, strchr, strrchr, strpbrk, strspny string(3C)
/strchr, strrchr, strpbrk, strspn, strcspn, strtok:/ string(3C)

to double-precision number, strtod, atof: convert string strtod(3C)
/strpbrk, strspn, strcspn, strtok: string operations string(3C)

string to integer, strtol, atol, atoi: convert strtol(3C)
processes using a file or file structure, fuser: identify fuserflM)

t_alloc: allocate a library structure t_alloc(3n)
t_free: free a library structure t_free(3n)

terminal, stty: set the options for a stty(l)
another user, su: become super-user or su(lM)

firstkey, nextkey: database subroutines, /store, delete, dbm(3X)
dbm clearerr: database subroutines, /dbm error, ndbm(3X)
plot: graphics interface subroutines plot(3X)

/same fines of several files or subsequent lines of one file paste(l)
count of a file, sum: print checksum and block sum(l)

du: summarize disk usage du(lM)
accounting/ acctcms: command summary from per-process acctcms(lM)

base, rpc: Sun rpc program number data rpc(4)
sync: update the super block sync(lM)

sync: update super block sync(2)
inetd: internet "super-server" inetd(lM)

/file for inetd (internet "super-server") inetd.conf(4)
su: become super-user or another user su(lM)

interval, sleep: suspend execution for an sleep(l)
interval, sleep: suspend execution for sleep(3C)

pause: suspend process until signal pause®
swab: swap bytes swab(3C)

swap: swap administrative interface swap(lM)
swab: swap bytes swab(3C)

interface, swap: swap administrative swap(lM)
Protocol control/ slipd: switched Serial Line Internet slipd(lM)

file, swrite: synchronous write on a swrite(2)
sxt: STREAMS multiplexor sxt(7)

- lxviii -

information from/ strip: strip symbol and line number strip(l)
file/ ldgetname: retrieve symbol name for common object ldgetname(3X)

name for common object file symbol table entry, /symbol ldgetname(3X)
object/ /compute the index of a symbol table entry of a common ldtbindex(3X)

ldtbread: read an indexed symbol table entry of a common/ ldtbread(3X)
syms: common object file symbol table format syms(4)

object/ ldtbseek: seek to the symbol table of a common ldtbseek(3X)
unistd: file header for symbolic constants unistd(4)

sdb: symbolic debugger sdb(l)
common Cl'lX system terms and symbols, /definitions of glossary(l)

mkdbsym: load symbols in kernel debugger mkdbsym(lM)
symbol table format, syms: common object file syms(4)

sync: update super block sync(2)
sync: update the super block sync(lM)

/correct the lime to allow synchronization of the system/ adjtime(2)
update: provide disk synchronization update(lM)

t_sync: synchronize transport library t_sync(3n)
select: synchronous I/O multiplexing select(2)
swrite: synchronous write on a file swrite(2)

interpreter) with C-like syntax, csh: a shell (command csh(l)
definition, sysdef: output system sysdef(lM)

error/ perror, ermo, sys_eiTlist, sys_nerr: system perror(3C)
information, sysfs: get file system type sysfs(2)

requests, syslocal: special system syslocal(2)
perror, ermo, sys_errlist, sys nerr: system error/ perror(3C)

shutdown, halt: shut down system, change system state shutdown(lM)
binary search a sorted table, bsearch: bsearch(3C)

for common object file symbol table entry, /symbol name ldgetname(3X)
/compute the index of a symbol table entry of a common object/ ldtbindex(3X)

file, /read an indexed symbol table entry of a common object ldtbread(3X)
common object file symbol table format, syms: syms(4)
master device information table, master: master(4)

mnttab: mounted file system table mnttab(4)
ldtbseek: seek to the symbol table of a common object file ldtbseek(3X)

/dtoc, Uoc, vtoc: graphical table of contents routines toc(lG)
remotely mounted file system table, rmtab: rmtab(4)

I/O Processor configuration table, rtab: Remote rtab(4)
setmnt: establish mount table setmnt(lM)

getdtablesize: get descriptor table size getdtablesize(2)
classification and conversion tables, /generate character chrtbl(lM)

tbl: format tables for nroff or troff. tbl(l)
hdestroy: manage hash search tables, hsearch, hcreate, hsearch(3C)

manipulate the routing tables, route: manually route(lM)
tabs: set tabs on a terminal labs(l)

expand, unexpand: expand tabs to spaces, and vice/ expand(l)
request. taccept: accept a connect t_accept(3n)

ctags: create a tags file ctags(l)
a file, tail: deliver the last part of tail(l)
talk: talk to another user talk(l)

communication server, talkd: remote user talkd(lM)
structure, t alloc: allocate a library t_alloc(3n)

trigonometric/ trig: sin, cos, tan, asin, acos, atan, atan2: trig(3M)
sinh, cosh, tanh: hyperbolic functions sinh(3M)

V/TAPE 3200 half-inch tape controller. /Interphase ipt(7)
set drive parameters for tape controllers, tapeset: tapeset(lM)

information used/ tapedrives: tape drive specific tapedrives(4)
tsioctl: facilitate usage of a tape drive tsioctl(l)

Hewlett-Packard 2645A terminal tape file archiver. hpio: hpio(l)

-lxix -

tar: tape file archiver tar(l)
recover files from a backup tape, free: frec(lM)

tio: tape io filter lio(l)
qic: interface for QIC tape qic(7)

quarter-inch and half-inch tape, stape: SCSI stapc(7)
specific information used by/ tapedrives: tape drive tapedrives(4)

for tape controllers, tapeset: set drive parameters tapeset(lM)
tar: tape file archiver tar(l)

programs for simple lexical tasks, lex: generate lex(l)
transport endpoint. t_bind: bind an address to a t_bind(3n)

deroff: remove nroffAroff, tbl, and eqn constructs deroff(l)
or troff. tbl: format tables for nroff tbl(l)

endpoint. t_close: close a transport t_close(3n)
connection with another/ t_connect: establish a t_connect(3n)

Control Protocol, tcp: Internet Transmission tcp(7)
/hpd, erase, hardcopy, tekset, td: graphical device routines/ gdev(lG)

search trees, tsearch, tfind, tdelete, twalk: manage binary tsearch(3C)
terminal download, tdl, gtdl, ptdl: RS-232 tdl(l)

lee: pipe fitting tee(l)
gdev: hpd, erase, hardcopy, tekset, td: graphical device/ gdev(lG)

4014: paginator for the Tektronix 4014 terminal 4014(1)
initialization, init, telinit: process control init(lM)

directory: opendir, readdir, telldir, seekdir, rewinddiry directory(3X)
telnetd: DARPA TELNET protocol server telnetd(lM)

telnet: user interface to TELNET protocol telnet(l)
TELNET protocol, telnet: user interface to telnet(l)

server, telnetd: DARPA TELNET protocol telnetd(lM)
temporary file, tmpnam, tempnam: create a name for a tmpnam(3S)

tmpfile: create a temporary file tmpfile(3S)
tempnam: create a name for a temporary file, tmpnam tmpnam(3S)

terminals, term: conventional names for term(5)
term: format of compiled term file term(4)

terminfo/ captoinfo: convert a termcap description into a captoinfo(lM)
data base, termcap: terminal capability termcap(4)

for the Tektronix 4014 termini. 4014: paginator 4014(1)
functions of the DASI 450 terminal. 450: handle special 450(1)

interface, tiop: terminal accelerator tiop(7)
termcap: terminal capability data base termcap(4)

terminfo: terminal capability data base terminfo(4)
console: console terminal console(7)

ct: spawn getty to a remote terminal ct(lC)
generate file name for terminal, ctermid: ctermid(3S)
tdl, gtdl, ptdl: RS-232 terminal download tdl(l)

Aerminal interface, and terminal environment tset(l)
greek: select terminal filteT greek(l)

Agetstr, tgoto, tputs: terminal independent/ otermcap(3X)
/manually start and stop terminal input and output rsterm(lM)

terminal/ tset: set terminal, terminal interface, and tset(l)
termio: general terminal interface termio(7)
tty: controlling terminal interface tty(7)

dial: establish an out-going terminal line connection dial(3C)
list of terminal types by terminal number, ttytype: ttytype(4)

database, tput: initialize a terminal or query terminfo tput(l)
clear: clear terminal screen clear(l)

optimization package, curses: terminal screen handling and curses(3X)
script: make typescript of terminal session script(l)

getty. gettydefs: speed and terminal settings used by gettydefs(4)
stty: set the options for a terminal stty(l)

- lxx -

tabs: set tabs on a terminal tabs(l)
hpio: Hewlett-Packard 2645A terminal tape file archiver hpio(l)

and terminal/ tset: set terminal, terminal interface, tset(l)
system/ conlocate: locate a terminal to use as the virtual conlocate(lM)

tty: get the name of the terminal ttyO)
isatty: find name of a terminal, ttyname, ttyname(3C)

and line/ getty: set terminal type, modes, speed, getty(lM)
and line/uugetty: set terminal type, modes, speed, uugetty(lM)

number, tlytype: list of terminal types by terminal ttytype(4)
vt: virtual terminal vt(7)

functions of DASI 300 and 300s terminals, /handle special 300(1)
functions of Hewlett-Packard terminals, hp: handle special hp(l)

channels, tp: controlling terminal's local RS-232 tp(7)
term: conventional names for terminals term(5)

kill: terminate a process kill(l)
exit, _exit: terminate process ex i t®

demon, errstop: terminate the error-logging errstop(lM)
for child process to stop or terminate, wait: wait wait(2)

tic: terminfo compiler tic(lM)
initialize a terminal or query terminfo database, tput: tput(l)
a termcap description into a terminfo description, /convert captoinfo(lM)

infocmp: compare or print out terminfo descriptions infocmp(lM)
data base, terminfo: terminal capability terminfo(4)
interface, termio: general terminal termio(7)

/of common CTDC system terms and symbols glossary(l)
message. t_error: produce error t_error(3n)

command, test: condition evaluation test(l)
isnan: isnand, isnanf: test for floating point NaN/ isnan(3C)

quiz: test your knowledge quiz(6)
ed, red: text editor ed(l)

ex: text editor ex(l)
casual users), edit: text editor (variant of ex for edit(l)

change the format of a text file, newform: newform(l)
fspec: format specification in text files fspec(4)

/checkeq: format mathematical text for nroff or troff. eqn(l)
prepare constant-width text for troff. cw, checkcw: cw(l)

ms: text formatting macros ms(5)
nroff: format text nroff(l)

plock: lock process, text, or data in memory plock(2)
more, page: text perusal more(l)

strings: extract the ASCII text strings in a file strings(l)
troff: typeset text troff(l)

binary search trees, tsearch, tfind, tdelete, twalk: manage tsearch(3C)
structure. t_free: free a library t_free(3n)

user interface to the DARPA TFTP protocol, tftp: tftp(l)
DARPA TFTPprotocol, tftp: user interface to the tftp(l)
Transfer Protocol server, tftpd: DARPA Trivial File tftpd(lM)

tgetstr, tgoto, tputs:/ tgetent, tgetnum, tgetflag, otermcap(3X)
tputs:/ tgetent, tgetnum, tget flag, tgetstr, tgoto otermcap(3X)

protocol-specific service/ t getinfo: get t_getinfo(3n)
tgoto, tputs:/ tgetent, tgetnum, tgetflag, tgetstr, otermcap(3X)

state. t_getstate: get the current t_getstate(3)
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs:/ otermcap(3X)
Agetnum, tgetflag, tgetstr, tgoto, tputs: terminal/ otermcap(3X)

tic: terminfo compiler tic(lM)
tit, cubic: tic-tac-toe ttt(6)

data and system/timex: time a command; report process timex(l)
time: time a command time(l)

- Ixxi -

execute commands at a later time, at, batch: at(l)
a C shell environment at login time, cprofile: setting up cprofile(4)

systems for optimal access time, dcopy: copy file dcopy(lM)
time: get time time(2)

settimeofday: get/set date and time, gettimeofday gettimeofday(2)
profil: execution time profile profil(2)

up an environment at login time, profile: setting profile(4)
stime: set time stime(2)
time: get time time(2)

of the/ adjtime: correct the time to allow synchronization adjtime(2)
tzset: convert date and time to string, /ascftime, ctime(3C)

clock: report CPU time used clock(3C)
timezone: set default system time zone timezone(4)

process times, times: gel process and child limes(2)
update access and modification times of a file, touch: touch(l)

get process and child process times, times: t imes®
file access and modification times, utime: set utime(2)

process data and system/ timex: time a command; report timex(l)
time zone, timezone: set default system timezone(4)

cooperating STREAMS module, timod: Transport Interface timod(7)
tio: tape io filter tio(l)

interface, tiop: terminal accelerator tiop(7)
read/write interface STREAMS/ tirdwr: Transport Interface tirdwr(7)

request. t_listen: listen for a connect t_listen(3n)
event on a transport/ t_look: look at the current t_look(3n)

file, tmpfile: create a temporary tmpfile(3S)
for a temporary file, tmpnam, tempnam: create a name tmpnam(3S)

/isascii, tolower, toupper, toascci, tolower, toupper,/ ctype(3C)
Aolower, _toupper, tolower, toascii: translate characters conv(3C)

graphical table of contents/ toe: dtoc, ttoc, vtoc: toc(lG)
popen, pclose: initiate pipe to/from a process popen(3S)

Aoupper, tolower, _loupper, _tolower, toascii: translate/ conv(3C)
tolower, toupper, toascci, _tolower, _toupper,/ /isascii ctype(3C)

toascii:/ conv: toupper, tolower, _toupper, _tolower, conv(3C)
compare shared libraries tool, chkshlib: chkshlib(l)

endpoint. t open: establish a transport t_open(3n)
tsorl: topological sort tsort(l)

a transport endpoint. t_optmgmt: manage options for t_optmgmt(3n)
acctmerg: merge or add total accounting files acctmerg(lM)

modification times of a file, touch: update access and touch(l)
Aoupper, toascci, _tolower, _toupper, setchrclass:/ ctype(3C)

conv: toupper, tolower, toupper, _tolower, toascii:/ conv(3C)
local RS-232 channels, tp: controlling terminal's tp(7)

tplot: graphics filters tplot(lG)
query terminfo database, tput: initialize a terminal or tput(l)

Agetfiag, tgetstr, tgoto, tputs: terminal independent/ otermcap(3X)
tr: translate characters tr(l)

strace: print STREAMS trace messages strace(lM)
ptrace: process trace ptrace(2)

error logging and event tracing, /interface to STREAMS log(7)
ftp: ARPANET file transfer program ftp(l)

ftpd: DARPA Internet File Transfer Protocol server ftpd(lM)
tftpd: DARPA Trivial File Transfer Protocol server tftpd(l.M)

/_toupper, _tolower, toascii: translate characters conv(3C)
tr: translate characters tr(l)

tcp: Internet Transmission Control Protocol tcp(7)
t_bind: bind an address to a transport endpoint t_bind(3n)

t_close: close a transport endpoint t_close(3n)

- lxxii -

look at the current event on a transport endpoint. t_look: t_look(3n)
t_open: establish a transport endpoint t_open(3n)

/manage options for a transport endpoint t_optmgmt(3n)
t_unbind: disable a transport endpoint t_unbind(3n)

cooperating STREAMS/ timod: Transport Interface timod(7)
interface STREAMS/ tirdwr: Transport Interface read/write tirdwr(7)

t_sync: synchronize transport library t_sync(3n)
system, uucico: file transport program for the uucp uucico(lM)

nlsprovider: get name of transport provider nlsprovider(3n)
a connection with another transport user, /establish t_connect(3n)

expedited data sent over a/ t_rcv: receive data or t_rcv(3n)
confirmation from a connect/ t_rcvconnect: receive the t_rcvconnect(3)

from disconnect, trcvdis: retrieve information t_rcvdis(3n)
of an orderly release/ t rcvrel: acknowledge receipt t_rcvrel(3n)

unit. t_rcvudata: receive a data t_rcvudata(3)
data error indication. t_rcvuderr: receive a unit t_rcvuderr(3)

ftw: walk a file tree ftw(3C)
twalk: manage binary search trees. Afind, tdelele, tsearch(3C)

trk: trekkie game trk(6)
tan, asin, acos, atan, atan2: trigonometric functions, /cos, trig(3M)

server, tftpd: DARPA Trivial File Transfer Protocol tftpd(lM)
trk: trekkie game trk(6)

constant-width text for troff. cw, checkcw: prepare cw(l)
mathematical text for nroff or troff./neqn, checkeq: format eqn(l)

typesetting view graphs/mv: a troff macro package for mv(5)
format tables for nroff or troff. tbl: tbl(l)

troff: typeset text troff(l)
true, false: provide tmth values true(l)

with debugging on. Uutry: try to contact a remote system Uutry(lM)
twalk: manage binary search/ tsearch, tfind, tdelete tsearch(3C)

interface, and terminal/ tset: set terminal, terminal tset(l)
tape drive, tsioctl: facilitate usage of a tsioctl(l)

data over a connection, t snd: send data or expedited t_snd(3n)
disconnect request. t_snddis: send user-initiated t_snddis(3n)

release. t_sndrel: initiate an orderly t_sndrel(3n)
t_sndudata: send a data unit t_sndudata(3)
tsort: topological sort tsort(l)

library, t sync : synchronize transport t_sync(3n)
contents routines, toe: dtoc, ttoc, vtoc: graphical table of loc(lG)

ttt, cubic: tic-tac-toe Ut(6)
interface, tty: controlling terminal uy(7)
terminal, tty: get the name of the tty(l)

a terminal, ttyname, isatty: find name of ttyname(3C)
utmp file of the current/ ttyslot: find the slot in the ttyslot(3C)

types by terminal number, ttytype: list of terminal ttytype(4)
endpoint. t_unbind: disable a transport t_unbind(3n)

/runacct, shutacct, startup, tumacct: shell procedures for/ acctsh(lM)
tsearch, tfind, tdelete, twalk: manage binary search/ tsearch(3C)

file: determine file type file(l)
sysfs: get file system type information sysfs(2)

getty: set terminal type, modes, speed, and line/ getty(lM)
uugetty: set terminal type, modes, speed, and line/ uugetty(lM)

ttytype: list of terminal types by terminal number ttytype(4)
nodes for assorted device types, /create device createdev(lM)

types, types: primitive system data types(5)
types: primitive system data types types(5)

session, script: make typescript of terminal script(l)
graphs, and slides, mmt, mvt: typeset documents, view mmt(l)

- lxx i i i -

troff: typeset text. troff(l)
mv: a troff macro package for typesetting view graphs and/ mv(5)
to/ /asctime, cftime, ascftime, tzset: convert date and time ctime(3C)

control, uadmin: administrative uadmin(lM)
control, uadmin: administrative uadmin(2)
system, uconf: configure the operating uconf(lM)

Protocol, udp: Internet User Datagram udp(7)
getpw: get name from UID getpw(3C)

ul: do underlining ul(l)
/endspent, fgetspent, Ickpwdf, ulckpwdf: get shadow getspent(3X)

limits, ulimit: get and set user ulimit(2)
creation mask, umask: set and get file umask(2)

mask, umask: set file-creation mode umask(l)
systems and remote/ mount, umount: mount and unmount file mount(lM)

umount: unmount a file system umount(2)
multiple file/ mountall, umountall: mount, unmount mountall(lM)

File Sharing resource, unadv: unadvertise a Remote unadv(lM)
Sharing resource, unadv: unadvertise a Remote File unadv(lM)

CTIX system, uname: get name of current uname(2)
CTIX system, uname: print name of current uname(l)

ul: do underlining ul(l)
file, unget: undo a previous get of an SCCS unget(l)

spaces, and vice/ expand, unexpand: expand tabs to expand(l)
an SCCS file, unget: undo a previous get of unget(l)

into input stream, ungetc: push character back ungetc(3S)
/seed48, lcong48: generate uniformly distributed/ drand48(3C)

a file, uniq: report repealed lines in uniq(l)
mktemp: make a unique file name mktemp(3C)

gethostid, sethostid: get/set unique identi fier of current/ gethostid®
symbolic constants, unistd: file header for unistd(4)

t rcvuderr: receive a unit data error indication t_rcvuderr(3)
t rcvudata: receive a data unit t_rcvudata(3)

t sndudata: send a data unit t_sndudata(3)
units: conversion program units(l)

mc68k, miti, mini, mega, unixpc,. machid: machid(l)
execution, uux: UNIX-to-UNIX system command uux(lC)

uucp, uulog, uuname: UNIX-to-UNIX system copy uucp(lC)
uuto, uupick: public UNIX-to-UNIX system file copy uuto(lC)

link, unlink: link and unlink files and directories link(lM)
entry, unlink: remove directory unl ink®

umount: unmount a file system umount®
mount, umount: mount and unmount file systems and/ mount(lM)

mountall, umountall: mount, unmount multiple file systems mountall(lM)
nmountall, numountall: mount, unmount Network File System/ nmountall(lM)

resource, fumount: forced unmount of an advertised fumount(lM)
rmountall, rumountall: mount, unmount Remote File Sharing/ rmountall(lM)

manage notifications, notify, unnotify, evwait, evnowait: no t i fy®
files, pack, peat, unpack: compress and expand pack(l)

times of a file, touch: update access and modification touch®
of programs, make: maintain, update, and regenerate groups make(l)

pwconv: install and update /etc/shadow with/ pwconv(lM)
pwunconv: install and update /etc/shadow with/ pwunconv(lM)
lfind: linear search and update, lsearch lsearch(3C)

synchronization, update: provide disk update(lM)
sync: update super block sync®

masterupd: update the master file masterupd(lM)
sync: update the super block sync(lM)

du: summarize disk usage du(lM)

- lxxiv -

a command description and usage examples, /retrieve usage(l)
tsioctl: facilitate usage of a tape drive tsioctl(l)

description and usage/ usage: retrieve a command usage(l)
stat: statistical network useful with graphical/ stat(lG)

id: print user and group IDs and names id(lM)
setuid, setgid: set user and group IDs setuid(2)

idload: Remote File Sharing user and group mapping idload(lM)
talkd: remote user communication server talkd(lM)

crontab: user crontab file crontab(l)
character login name of the user, cuserid: get cuserid(3S)

udp: Internet User Datagram Protocol udp(7)
/getgid, getegid: get real user, effective user, real/ getuid(2)

environ: user environment environ(5)
disk accounting data by user ID. diskusg: generate diskusg(lM)

program, finger: user information lookup finger(l)
fingerd: remote user information server fingerd(lM)

protocol, telnet: user interface to TELNET telnet(l)
TFTP protocol, tftp: user interface lo the DARPA tftp(l)

ulimit: get and set user limits ulimit(2)
logname: return login name of user logname(3X)

/get real user, effective user, real group, and/ getuid(2)
become super-user or another user, su: su(lM)

talk: talk to another user talk(l)
with another transport user, /establish a connection t_connect(3n)

the utmp file of the current user, /find the slot in ttyslot(3C)
write: write to another user write(l)

request. t_snddis: send user-initiated disconnect t_snddis(3n)
(variant of ex for casual users), edit: text editor edit(l)

mail, rmail: send mail to users or read mail mail(l)
rhosts: remote equivalent users rhosts(4)

operating system for beginning users, ^information about the slarter(l)
wall: write to all users wall(l)

fuser: identify processes using a file or file/ fuser(lM)
search a file for a pattern using full regular/ egrep: egrep(l)

identify a CTDC system command using keywords, locate: locate(l)
assist: assistance using CTDC system commands assist(l)

/install and verify software using the mkfs(l) proto file/ qinstall(l)
failed login attempts, /usr/adm/loginlog: log of loginlog(4)

statistics, ustat: get file system ustat(2)
gutil: graphical utilities gutil(lG)

modification times, utime: set file access and utime(2)
utmp, wtmp: utmp and wtmp entry formats utmp(4)

endutent, utmpname: access utmp file entry, /setutent, getut(3C)
ttyslot: find the slot in the utmp file of the current user ttyslot(3C)

/pututline, setutent, endutent, utmpname: access utmp file/ getut(3C)
directories and permissions/ uucheck: check the uucp uucheck(lM)

for the uucp system, uucico: file transport program uucico(lM)
directory clean-up. uucleanup: uucp spool uucleanup(lM)

/configuration file for uucp communications lines Devices(5)
uucheck: check the uucp directories and/ uucheck(lM)

uucpd, ouucpd: network uucp servers uucpd(lM)
uucleanup: uucp spool directory clean-up uucleanup(lM)

control, uustat: uucp status inquiry and job uustat(lC)
file transport program for the uucp system, uucico: uucico(lM)

uusched: the scheduler for the UUCP system uusched(lM)
UNIX-to-UNDC system copy, uucp, uulog, uuname: uucp(lC)

servers, uucpd, ouucpd: network uucp uucpd(lM)
modes, speed, and line/ uugetty: set terminal type, uugetty(lM)

- lxxv -

system copy, uucp, uulog, uuname: UNIX-to-UNIX uucp(lC)
copy, uucp, uulog, uuname: UNIX-to-UNIX system uucp(lC)

system file copy, uuto, uupick: public UNIX-to-UNIX uuto(lC)
UUCP system, uusched: the scheduler for the uusched(lM)

and job control, uusut: uucp status inquiry uustat(lC)
UNIX-to-UNIX system file/ uuto, uupick: public uuto(lC)
system with debugging on. Uutry: try to contact a remote Uutry(lM)

command execution, uux: UNIX-to-UNTX system uux(lC)
requests, uuxqt: execute remote command uuxqt(lM)

val: validate SCCS file val(l)
abs: return integer absolute value abs(3C)

getenv: return value for environment name getenv(3C)
ceiling, remainder, absolute value functions, /fabs: floor floor(3M)

putenv: change or add value to environment putenv(3C)
/htons, ntohl, ntohs: convert values between host and/ byteorder(3)

values, values: machine-dependent values(5)
true, false: provide truth values true(l)

values: machine-dependent values values(5)
/print formatted output of a varargs argument list vprintf(3S)

argument list, varargs: handle variable varargs(5)
varargs: handle variable argument list varargs(5)

users), edit: text editor (variant of ex for casual edit(l)
vc: version control vc(l)

option letter from argument vector, getopt: get getopt(3C)
assert: verify program assertion assert(3X)

mkfs(l)/ qinstall: install and verify software using the qinstall(l)
tabs to spaces, and vice versa, /unexpand: expand expand(l)

vc: version control vc(l)
get: get a version of an SCCS file get(l)

sccsdiff: compare two versions of an SCCS file sccsdiff(l)
formatted output of/ vprintf, vfprintf, vsprintf: print vprintf(3S)

manipulate Volume Home Blocks (VHB). libdev: libdev(3X)
display editor based on ex. vi: screen-oriented (visual) vi(l)
expand tabs to spaces, and vice versa, expand, unexpand: expand(l)

mmt, mvt: typeset documents, view graphs, and slides mmt(l)
macro package for typesetting view graphs and slides. Aroff mv(5)

/a terminal to use as the virtual system console conlocate(lM)
vt: virtual terminal vt(7)

on ex. vi: screen-oriented (visual) display editor based vi(l)
vme: VME bus interface vme(7)

file system, volcopy: make literal copy of volcopy(lM)
file system: format of system volume, fs: fs(4)

libdev: manipulate Volume Home Blocks (VHB) libdev(3X)
iv: initialize and maintain volume iv(l)

print formatted output of a/ vprintf, vfprintf, vsprintf: vprinlf(3S)
vt: virtual terminal vt(7)

ipt: interface for Interphase V/TAPE 3200 half-inch tape/ ipt(7)
contents/ toe: dtoc, ttoc, vtoc: graphical table of loc(lG)

process, wait: await completion of wait(l)
or terminate, wait: wait for child process to stop wait(2)

ftw: walk a file tree ftw(3C)
wall: write to all users wall(l)
wc: word count wc(l)
what: identify SCCS files what(l)

signal, signal: specify what to do upon receipt of a signal(2)
whodo: who is doing what whodo(lM)

network, rwho: who is logged in on local rwho(l)
who: who is on the system who(l)

- lxxvi -

whodo: who is doing what whodo(lM)
fold long lines for finite width output device, fold: fold(l)

window: window management primitives window(7)
wm: window management wm(l)

primitives, window: window management window(7)
wm: window management wm(l)

cd: change working directory cd(l)
chdir: change working directory chdir(2)

get path-name of current working directory, getcwd: getcwd(3C)
pwd: working directory name pwd(l)

swrite: synchronous write on a file swnte(2)
write: write on a file write(2)

putpwent: write password file entry putpwent(3C)
entry, putspent: write shadow password file putspent(3X)

wall: write to all users wall(l)
write: write to another user write(l)

write: write on a file wr i te®
open: open for reading or writing opcn(2)

utmp, wtmp: utmp and wtmp entry formats utmp(4)
accounting records, fwtmp, wtmpfix: manipulate connect fwtmp(lM)

hunt-the-wumpus. wump: the game of wump(6)
list(s) and execute command, xargs: construct argument xargs(l)

strings in C programs, xstr: extract and share xstr(l)
bessel: jO, j 1, jn, yO, y 1, yn: Bessel functions bessel(3M)

bessel: jO, j l , jn , yO, yl , yn: Bessel functions bessel(3M)
compiler-compiler, yacc: yet another yacc(l)

bessel: jO, j l , jn, yO, yl , yn: Bessel functions bessel(3M)
set default system time zone, timezone: timezone(4)

- l xxv i i -

M4(l) M4(l)

NAME
m4 - macro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION
The m4 command is a macro processor intended as a front end for Ratfor, C,
and other languages. Each of the argument files is processed in order; if there
are no files, or if a file name is -, the standard input is read. The processed text
is written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is
unbuffered.

-s Enable line sync output for the C preprocessor (#line . . .)

-Bint Change the size of the push-back and argument collection buffers
from the default of 4096.

-Hint Change the size of the symbol table hash array from the default of
199. The size should be prime.

-Sint Change the size of the call stack from the default of 100 slots.
Macros take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, the options listed above must appear before any file names and
before any -D or -U flags.

-D name [-val]
Defines name to val or to null in val's absence.

-Uname undefines name.

Macro calls have the following form:

name(argl,arg2,...,argn)
The left parenthesis (() must immediately follow the name of the macro. If the
name of a defined macro is not followed by a left parenthesis, it is deemed to be
a call of that macro with no arguments. Potential macro names consist of
alphabetic letters, digits, and underscore (_) , where the first character is not a
digit

Leading unquoted blanks, tabs, and new-lines are ignored while collecting
arguments. Left and right single quotation marks are used to quote strings. The
value of a quoted string is the string stripped of the quotation marks.

M4(l) M4(l)

When a macro name is recognized, its arguments are collected by searching for
a matching right parenthesis. If fewer arguments are supplied than are in the
macro definition, the trailing arguments are taken to be null. Macro evaluation
proceeds normally during the collection of the arguments, and any commas or
right parentheses which happen to turn up within the value of a nested call are
as effective as those in the original input text After argument collection, the
value of the macro is pushed back onto the input stream and rescanned.

The m4 command makes available the following built-in macros. They can be
redefined, but in doing so, the original meaning is lost Unless otherwise stated,
the macro values are null.

define The second argument is installed as the value of the macro
whose name is the first argument. Each occurrence of %n in the
replacement text, where n is a digit, is replaced by the nth
argument Argument 0 is the name of the macro; missing
arguments are replaced by the null string; $# is replaced by the
number of arguments; $* is replaced by a list of all the
arguments separated by commas; $@ is like $•, but each
argument is quoted (with the current quotation marks).

undefine Removes the definition of the macro named in its argument.

defn Returns the quoted definition of its argument(s). It is useful for
renaming macros, especially built-ins.

pushdef Like define, but saves any previous definition.

popdef Removes current definition of its argument(s), exposing the
previous one, if any.

ifdef If the first argument is defined, the value is the second
argument; otherwise, it is the third. If there is no third
argument, the value is null. The word unix is predefined on
CTIX system versions of m4.

shift Returns all but its first argument; the other arguments are
quoted and pushed back with commas in between. The quoting
nullifies the effect of the extra scan that is subsequently
performed.

changequote Changes quotation symbols to the first and second arguments.
The symbols can be up to five characters long. Changequote
without arguments restores the original values (that is,v ') .

changecom Changes left and right comment markers from the default # and
new-line. With no arguments, the comment mechanism is

- 2 -

M4(l) M4(l)

effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes newline.
With two arguments, both markers are affected. Comment
markers may be up to five characters long.

divert m4 maintains 10 output streams, numbered 0-9. The final
output is the concatenation of the streams in numerical order;
initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string) argument.
Output diverted to a stream other than 0 through 9 is discarded.

undivert Causes immediate output of text from diversions named as
arguments, or all diversions if no argument Text can be
undiverted into another diversion. Undiverting discards the
diverted text

divnum Returns the value of the current output stream.

dnl Reads and discards characters up to and including the next
new-line.

ifelse Takes three or more arguments. If the first argument is the
same string as the second, the value is the third argument If
not, and if there are more than four arguments, the process is
repeated with arguments 4, 5, 6 and 7; otherwise, the value is
either the fourth string, or, if it is not present, null.

incr Returns the value of its argument incremented by 1. The value
of the argument is calculated by interpreting an initial digitr
string as a decimal number.

deer Returns the value of its argument decremented by 1.

eval Evaluates its argument as an arithmetic expression, using 32-bit
arithmetic. Operators include the symbols +, -, /, %,
(exponentiation), bitwise &, | , \ and "; relational; and
parentheses. Octal and hexadecimal numbers can be specified
as in C. The second argument specifies the radix for the result;
the default is 10. The third argument can be used to specify the
minimum number of digits in the result.

len Returns the number of characters in its argument

index Returns the position in its first argument where the second
argument begins (zero origin), or -1 if the second argument
does not occur.

- 3 -

M4(l) M4(l)

substr Returns a substring of its first argument The second argument
is a zero origin number selecting the first character; the third
argument indicates the length of the substring. A missing third
argument is taken to be large enough to extend to the end of the
first string.

translit Transliterates the characters in its first argument from the set
given by the second argument to the set given by the third. No
abbreviations are permitted.

include Returns the contents of the file named in the argument

sinclude Identical to include, except that it does not report if the file is
inaccessible.

syscmd Executes the CTIX system command given in the first
argument No value is returned.

sysval The return code from the last call to syscmd.

maketemp Fills in a string of XXXXX in its argument with the current
process ID.

m4exit Causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is 0.

m4wrap Pushes back argument 1 at final EOF; for example,
m4wrap(vcleanup() ')

errprint Prints its argument on the diagnostic output file.

dumpdef Prints current names and definitions for the named items, or for
all if no arguments are given.

traceon With no arguments, enables tracing for all macros (including
built-ins); otherwise, enables tracing for named macros.

traceoff Disables trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific
calls to traceoff.

SEE ALSO
cc(l),cpp(l).
Programmer s Guide: CTIX Supplement.

- 4 -

MACHID(l) MACHID(l)

NAME
machid: mc68k, miti, mini, mega, unixpc, i386, i286, pdp l l , u3b, u3b2, u3b5,
u3bl5, u370, vax - get processor type truth value

SYNOPSIS

mc68k

miti

mini

mega

unixpc

i386

i286

pdpl l

u3b

u3b2

u3b5

u3bl5

u370

vax

DESCRIPTION
The following commands return a true value (exit code of 0) if you are on a
processor that the command name indicates.

mc68k True if you are on a 68000-, 68010-, or 68020-based
computer.

miti True if you are on an S/Series computer,

mini True if you are on a MiniFrame computer,

mega True if you are on an S/1280 computer,

unixpc True if you are on a Unix PC computer.

i386 True if you are on an Intel 80386-based computer.

i286 True if you are on an Intel 80286-based computer,

pdpl l True if you are on a PDP-11/45 or PDP-11/70.

u3b True if you are on a 3B20 computer.

MACHID (1) MACHID (1)

u3b2 True if you are on a 3B2 computer.

u3b5 True if you are on a 3B5 computer.

u3bl5 True if you are on a 3B15 computer.

u370 True if you are on an IBM 370 computer.

vax True if you are on a VAX-11/750 or VAX-11/780.

The commands that do not apply will return a false (non-zero) value. These
commands are often used within makefiles [see make(Y)\ and shell procedures
[see .s7i(l)] to increase portability.

SEE ALSO
make(l), sh(l), test(l), true(l).

MAILX(l) MAILX(l)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
Sending mail:

mail [-wt] persons

rmail [-wt] persons

Reading mail:

mail [-ehpqr] [-f file] [-F persons]

DESCRIPTION
Sending mail:

The command-line arguments that follow affect SENDING mail:

-w causes a letter to be sent to a remote user without waiting for the
completion of the remote transfer program.

-t causes a To: line to be added to the letter, showing the intended
recipients.

A person is usually a user name recognized by login(1). When persons are
named, mail assumes a message is being sent (except in the case of the -F
option). It reads from the standard input up to an end-of-fde (control-d), or
until it reads a line consisting of just a period. When either of those signals is
received, mail adds the letter to the mailfile for each person. A letter is a
message preceded by a postmark. The message is preceded by the sender's
name and a postmark. A postmark consists of one or more 'From' lines
followed by a blank line.

If a letter is found to be undeliverable, it is returned to the sender with
diagnostics that indicate the location and nature of the failure. If mail is
interrupted during input, the file dead.letter is saved to allow editing and
resending. dead.letter is recreated every time it is needed, erasing any
previous contents.

rmail only permits the sending of mail; uucp(1C) uses rmail as a security
precaution.

If the local system has been configured for UUCP, mail can be sent to a
recipient on a remote system. Prefix person by the system name and
exclamation point. A series of system names separated by exclamation points
can be used to direct a letter through an extended network.

MAILX(l) MAILX(l)

Reading Mail:

The command-line arguments that follow affect reading mail:

-e Causes mail not to be printed. An exit value of 0 is returned if the user
has mail; otherwise, an exit value of 1 is returned.

-h Causes a window of headers to be displayed rather than the latest
message. The display is followed by the ? prompt

-p Causes all messages to be printed without prompting for disposition.

-q Causes mail to terminate after interrupts. Normally an interrupt causes
only the termination of the message being printed.

-r Causes messages to be printed in first-in, first-out order.

•ffile Causes mail to use file (for example, mbox) instead of the default
mailfile.

-Fpersons
Entered into an empty mailbox, causes all incoming mail to be
forwarded to persons.

Unless otherwise influenced by command-line arguments, mail prints a user's
mail messages in last-in, first-out order. For each message, the user is prompted
with a ?, and a line is read from the standard input. The following commands
are available to determine the disposition of the message:

<newline>, +, or n Go on to next message.

d, or dp Delete message and go on to next message.

d # Delete message number #. Do not go on to next
message.

dq Delete message and quit mail.

h Display a window of headers around current message.

h # Display header of message number #.

h a Display headers of ALL messages in the user's
mailfile.

h d Display headers of messages scheduled for deletion,

p Print current message again.

Print previous message,

a Print message that arrived during the mail session.

MAILX(l) MAILX(l)

Print message number #.

r [users] Reply to the sender, and other user(s), then delete the
message.

s [f i l e s] Save message in the named files (mbox is default).

y Same as save.

u [#] Undelete message number # (default is last read).

w [files] Save message, without its top-most header, in the
named files (mbox is default).

m [persons] Mail the message to the named persons.

q, or ctl-d Put undeleted mail back in the mailfile and quit mail.

x Put all mail back in the mailfile unchanged and exit
from mail.

!command Escape to the shell to do command.

? Print a command summary.

When a user logs in, the presence of mail, if any, is indicated. Also, notification
is made if new mail arrives while using mail.

The mailfile can be manipulated in two ways to alter the function of mail. The
other permissions of the file may be read-write, read-only, or neither read nor
write to allow different levels of privacy. If changed to other than the default,
the file will be preserved even when empty to perpetuate the desired
permissions. The file can also contain the following first line which forwards to
person all mail sent to the owner of the mailfile:

Forward to person

A Forwarded by... message is added to the header. This is especially useful in a
multi-machine environment to forward all of a person's mail to a single
machine, and to keep the recipient informed if the mail has been forwarded.
Installation and removal of forwarding is done with the -F option.

To forward all of one's mail to systemaluser, enter:

mail -FsystemaluMr

To forward to more than one user, enter:

mail -F" userl ,systemaluser2,systemalsystemb!user3'

Note that when more than one user is specified, the whole list should be
enclosed in double quotation marks so that it can all be interpreted as the

MAILX(l) MAILX(l)

operand of the -F option. The list can be up to 1024 bytes; either commas or
white space can be used to separate users.

To remove forwarding enter:

mail -F

The pair of double quotation marks is mandatory to set a NULL argument for the
-F option.

In order for forwarding to work properly the mailfile should have mail set as
group ID, and the group permission should be read-write.

Note that mail can not be used as a user agent for sendmail.

SEE ALSO
login(l), mailx(l), write(l).
UNIX System VRelease 3.2 User's Guide.
S/Series CTIX Administrator's Guide.
CTIX Administration Tools Manual.

WARNING
The "Forward to person" feature can result in a loop, if sysl'.userb forwards to
sys2!userb and sys2!userb forwards to sysltuserb. The symptom is the display
of the following message:

FILES
/etc/passwd

/usr/mail/nier

$HOME/mbox

SMAIL

/tmp/ma*

/usr/mail/*.lock

dead.letter

to identify sender and locate persons

incoming mail for user, that is, the mailfile

saved mail

variable containing path name of mailfile

temporary file

lock for mail directory

unmailable text

unbounded...saved mail in dead.letter.

BUGS
Conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message might not be printed; enter p to force
printing.

MAILX(l) MAILX(l)

NAME
mailx - interactive message processing system

SYNOPSIS
mailx [options] [name...]

DESCRIPTION
The command mailx provides a comfortable, flexible environment for sending
and receiving messages electronically. When reading mail, mailx provides
commands to facilitate saving, deleting, and responding to messages. When
sending mail, mailx allows editing, reviewing and other modification of the
message as it is entered.

Many of the remote features of mailx work only if UUCP is configured on your
system, mailx can also act as a user agent for sendmail (see the sendmail
variable below).

Incoming mail is stored in a standard file for each user, called the mailbox for
that user. When mailx is called to read messages, the mailbox is the default
place to find them. As messages are read, they are marked to be moved to a
secondary file for storage, unless specific action is taken, so that the messages
need not be seen again. This secondary file is called the mbox, and is normally
located in the user's HOME directory (see the description of MBOX under
ENVIRONMENT VARIABLES for a Messages can be saved in other secondary files
named by the user. Messages remain in a secondary file until manually
removed.

The user can access a secondary file by using the -f option of the mailx
command. Messages in the secondary file can then be read or otherwise
processed by using the same commands used in the primary mailbox. This
gives rise within these pages to the notion of a current mailbox.

On the command line, options start with a dash (-) and any other arguments are
taken to be destinations (recipients). If no recipients are specified, mailx
attempts to read messages from the mailbox. Command line options are as
follows:

-e Test for presence of mail, mailx prints nothing and exits
with a successful return code if there is mail to read.

-f [filename] Read messages from filename instead of from mailbox. If
no filename is specified, the mbox is used.

-F Record the message in a file named after the first recipient.
Overrides the record variable, if set; see the desctiption of
record under ENVIRONMENT VARIABLES.

MAILX(l) MAILX(l)

-h number The number of network hops made so far. This is provided
for network software to avoid infinite delivery loops; see
the description of addsopt under ENVIRONMENT
VARIABLES.

-H Print header summary only.

-i Ignore interrupts; see the description of ignore under
(ENVIRONMENT VARIABLES).

-n Do not initialize from the system default mailx.rc file.

-N Do not print initial header summary.

-r address Pass address to network delivery software. All tilde
commands are disabled; see the description of addsopt
under ENVIRONMENT VARIABLES.

-s subject Set the Subject header field to subject.

-u user Read user's mailbox. This is effective only if user's
mailbox is not read-protected.

-U Convert uucp style addresses to Internet standards.
Overrides the conv environment variable; see the
description of addsopt under ENVIRONMENT VARIABLES.

When reading mail, mailx is in command mode. A header summary of the first
several messages displays, followed by a prompt indicating that mailx can
accept regular commands; see COMMANDS below. When sending mail, mailx
is in input mode. If no subject is specified on the command line, a prompt for
the subject appears. (A subject longer than 1024 characters causes mailx to
dump core.) As the message is typed, mailx reads the message and stores it in a
temporary file. Commands can be entered by beginning a line with the tilde (~)
escape character followed by a single command letter and optional arguments.
See TILDE ESCAPES for a summary of these commands.

At any time, the behavior of mailx is governed by a set of environment
variables. These are flags and valued parameters which are set and cleared via
the set and unset commands. See ENVIRONMENT VARIABLES below for a
summary of these parameters.

Recipients listed on the command line may be of three types: login names,
shell commands, or alias groups. Login names may be any network address,
including mixed network addressing. If mail is found to be undeliverable, an
attempt is made to return it to the sender's mailbox. If the recipient name
begins with a pipe symbol (I), the rest of the name is taken to be a shell
command to pipe the message through. This provides an automatic interface

MAILX(l) MAILX(l)

with any program that reads the standard input, such as lp(1) for recording
outgoing mail on paper. Alias groups are set by the alias command (see
COMMANDS below) and are lists of recipients of any type.

Regular commands are of the form

[command] [msglist] [arguments]

If no command is specified in command mode, print is assumed. In input mode,
commands are recognized by the escape character, and lines not treated as
commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the
notion of a current message, marked by a right angle bracket (>) in the header
summary. Many commands take an optional list of messages (msglist) to
operate on. The default for msglist is the current message. A msglist is a list of
message identifiers separated by spaces, which may include:

n Message number n.

• The current message.
* The first undeleted message.

$ The last message.
* All messages.

n-m An inclusive range of message numbers.

user All messages from user.

/string All messages with string in the subject line (case ignored).

:c All messages of type c, where c is one of:

d deleted messages
n new messages
o old messages
r read messages
u unread messages

Note that the context of the command determines whether this type
of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the
command involved. File names, where expected, are expanded via the normal
shell conventions [see jA(1)]. Special characters are recognized by certain
commands and are documented with the commands below.

MAILX(l) MAILX(l)

At start-up time, mailx tries to execute commands from the optional system-
wide file (/usr/lib/mailx/ mailx.rc) to initialize certain parameters, then from a
private start-up file ($HOME/.mailrc) for personalized variables. With the
exceptions noted below, regular commands are legal inside start-up files. The
most common use of a start-up file is to set up initial display options and alias
lists. The following commands are not legal in the start-up file: !, Copy, edit,
followup, Followup, hold, mail, preserve, reply, Reply, shell, and visual. An
error in the start-up file causes the remaining lines in the file to be ignored. The
.mailrc file is optional and must be constructed locally.

COMMANDS
The following is a complete list of mailx commands:

Ishell-command

Escape to the shell. See "SHELL" (ENVIRONMENT VARIABLES).

comment

Null command (comment). This may be useful in .mailrc files.

Print the current message number.
9 Prints a summary of commands.

alias alias name ...
group alias name ...

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

alternates name ...
Declares a list of alternate names for your login. When responding to
a message, these names are removed from the list of recipients for the
response. With no arguments, alternates prints the current list of
alternate names. See also "allnet ' ' (ENVIRONMENT VARIABLES).

cd [directory]
chdir [directory]

Change directory. If directory is not specified, SHOME is used.

copy [filename]
copy [ttiyg/z'sr] filename

Copy messages to the file without marking the messages as saved.
Otherwise, equivalent to the save command.

MAILX(l) MAILX(l)

Copy [msglist]
Save the spccificd messages in a file whose name is derived from the
author of the message to be saved, without marking the messages as
saved. Otherwise equivalent to the Save command.

delete [msglist]
Delete messages from the mailbox. If "autoprint" is set, the next
message after the last one deleted is printed (see ENVIRONMENT
VARIABLES).

discard [header-field ...]
ignore [header-field ...]

Suppresses printing of the specified header fields when displaying
messages on the scrccn. Examples of header fields to ignore are
"status" and "cc . " The fields are included when the message is
saved. The Print and Type commands override this command.

dp [msglist]
dt [msglist]

Delete the spccificd messages from the mailbox and print the next
message after the last one deleted. Roughly equivalent to a delete
command followed by a print command.

echo string ...
Echo the given strings [like echo(1)J.

edit [msglist]
Edit the given messages. The messages are placed in a temporary file
and the "EDITOR" variable is used to get the name of the editor (see
ENVIRONMENT VARIABLES). Default editor is ed(1).

exit
xit

Exit from mailx, without changing the mailbox. No messages are
saved in the mbox (see also quit).

file [filename]
folder [filename]

Quit from the current file of messages and read in the specified file.
Several special characters are recognized when used as file names,
with the following substitutions:

MAILX (1) MAILX (1)

% the current mailbox.
%user the mailbox for user.
the previous file.
& the current mbox.

Default file is the current mailbox.

folders
Print the names of the files in the directory set by the "folder"
variable (see ENVIRONMENT VARIABLES).

followup [message]
Respond to a message, recording the response in a file whose name is
derived from the author of the message. Overrides the "record"
variable, if set. See also the Followup, Save, and Copy commands and
"outfolder" (ENVIRONMENT VARIABLES).

Followup [msglist]
Respond to the first message in the msglist, sending the message to the
author of each message in the msglist. The subject line is taken from
the first message and the response is recorded in a file whose name is
derived from the author of the first message. Sec also the followup,
Save, and Copy commands and "outfolder" (ENVIRONMENT
VARIABLES).

from [msglist]
Prints the header summary for the specified messages.

group alias name ...
alias alias name ...

Declare an alias for the given names. The names will be substituted
when alias is used as a recipient. Useful in the .mailrc file.

headers [message]
Prints the page of headers which includes the message specified. The
"screen" variable sets the number of headers per page (see
ENVIRONMENT VARIABLES). See also the z command.

help
Prints a summary of commands.

MAILX (1) MAILX (1)

hold [msglist]
preserve [msglist]

Holds the specified messages in the mailbox.

if j I r
mail-commands
else
mail-commands
endif

Conditional execution, where 5 will execute following mail-
commands, up to an else or endif, if the program is in send mode, and r
causes the mail-commands to be executed only in receive mode.
Useful in the .mailrc file.

ignore header-field ...
discard header-field ...

Suppresses printing of the specified header fields when displaying
messages on the screen. Examples of header fields to ignore are
"status" and "cc . " All fields are included when the message is
saved. The Print and Type commands override this command.

list
Prints all commands available. No explanation is given.

mail name ...
Mail a message to the specified users.

Mail name
Mail a message to the specified user and record a copy of it in a file
named after that user.

mbox [msglist]
Arrange for the given messages to end up in the standard mbox save
file when mailx terminates normally. See " M B O X " (ENVIRONMENT
VARIABLES) for a description of this file. See also the exit and quit
commands.

next [message]
Go to next message matching message. A msglist may be specified,
but in this case the first valid message in the list is the only one used.
This is useful for jumping to the next message from a specific user,

MAILX (1) MAILX (1)

since the name would be taken as a command in the absence of a real
command. See the discussion of msglists above for a description of
possible message specifications.

pipe [msglist] [shell-command]
| [tfisg/wf] [shell-command]

Pipe the message through the given shell-command. The message is
treated as if it were read. If no arguments are given, the current
message is piped through the command specified by the value of the
" c m d " variable. If the "page" variable is set, a form feed character is
inserted after each message (see ENVIRONMENT VARIABLES).

preserve [msglist]
hold [msglist]

Preserve the specified messages in the mailbox.

Print [msglist]
Type [msglist]

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

print [msglist]
type [msglist]

Print the specified messages. If " c r t " is set, the messages longer than
the number of lines specified by the " c r t " variable are paged through
the command specified by the "PAGER" variable. The default
command is pg(1) (see ENVIRONMENT VARIABLES).

quit
Exit from mailx, storing messages that were read in mbox and unread
messages in the mailbox. Messages that have been explicitly saved in
a file are deleted.

Reply [msglist]
Respond [msglist]

Send a response to the author of each message in the msglist. The
subject line is taken from the first message. If "record' ' is set to a file
name, the response is saved at the end of that file (see ENVIRONMENT
VARIABLES).

MAILX(l) MAILX(l)

reply [message]
respond [message]

Reply to the specified message, including all other recipients of the
message. If "record' ' is set to a file name, the response is saved at the
end of that file (see ENVIRONMENT VARIABLES).

Save [msglist]
Save the specified messages in a file whose name is derived from the
author of the first message. The name of the file is taken to be the
author's name with all network addressing stripped off. See also the
Copy, followup, and Followup commands and "outfolder"
(ENVIRONMENT VARIABLES).

save [filename]
save [msglist] filename

Save the specified messages in the given file. The file is created if it
does not exist. The message is deleted from the mailbox when mailx
terminates unless "keepsave" is set (see also ENVIRONMENT
VARIABLES and the exit and quit commands).

set
set name
set name=string
set name=number

Define a variable called name. The variable may be given a null,
string, or numeric value. Set by itself prints all defined variables and
their values. See ENVIRONMENT VARIABLES for detailed
descriptions of the mailx variables.

shell
Invoke an interactive shell [see also "SHELL" (ENVIRONMENT
VARIABLES)].

size [msglist]

Print the size in characters of the specified messages,

source filename
Read commands from the given file and return to command mode.

MAILX(l) MAILX(l)

top [msglist]
Print the top few lines of the specified messages. If the "toplines"
variable is set, it is taken as the number of lines to print (see
ENVIRONMENT VARIABLES). The default is 5.

touch [msglist]
Touch the specified messages. If any message in msglist is not
specifically saved in a file, it will be placed in the mbox, or the file
specified in the MBOX environment variable, upon normal
termination. See exit and quit

Type [msglist]
Print [msglist]

Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command.

type [msglist]
print [msglist]

Print the specified messages. If " c r t " is set the messages longer than
the number of lines specified by the " c r t " variable are paged through
the command specified by the "PAGER" variable. The default
command is />g(l) (see ENVIRONMENT VARIABLES).

undelete [msglist]
Restore the specified deleted messages. Will only restore messages
deleted in the current mail session. If "autoprint" is set, the last
message of those restored is printed (see ENVIRONMENT
VARIABLES).

unset name ...
Causes the specified variables to be erased. If the variable was
imported from the execution environment (that is, a shell variable)
then it cannot be erased.

version
Prints the current version and release date,

visual [msglist]
Edit the given messages with a screen editor. The messages are placed
in a temporary file and the "VISUAL" variable is used to get the
name of the editor (see ENVIRONMENT VARIABLES).

write [msglist] filename
Write the given messages on the specified file, minus the header and
trailing blank line. Otherwise equivalent to the save command.

- 10-

MAILX(l) MAILX(l)

Exit from mailx, without changing the mailbox. No messages are
saved in the mbox (see also quit).

Scroll the header display forward or backward one screen-full. The
number of headers displayed is set by the "screen" variable (see
ENVIRONMENT VARIABLES).

TILDE ESCAPES
The following commands can be entered only from input mode, by beginning a
line with the tilde escape character ("). See "escape" (ENVIRONMENT
VARIABLES) for changing this special character.

"! shell-command
Escape to the shell.

Simulate end of file (terminate message input).

mail-command
mail-command

Perform the command-level request. Valid only when sending a
message while reading mail.

Print a summary of tilde escapes.

A
Insert the autograph string "Sign" into the message (see
ENVIRONMENT VARIABLES).

"a
Insert the autograph string "s ign" into the message (see
ENVIRONMENT VARIABLES).

"b name ...

Add the names to the blind carbon copy (Bcc) list,

"c name ...
Add the names to the carbon copy (Cc) list.

d
Read in the dead.letter file. See "DEAD" (ENVIRONMENT
VARIABLES) for a description of this file.

xit
exit

z[+ I -]

- 11 -

MAILX(l) MAILX(l)

e
Invoke the editor on the partial message. See also "EDITOR"
(ENVIRONMENT VARIABLES).

"f [msglist]
Forward the specified messages. The messages are inserted into the
message without alteration.

"h
Prompt for Subject line and To, Cc, and Bcc lists. If the field displays
with an initial value, it may be edited as if you had just typed i t

"i string
Insert the value of the named variable into the text of the message. For
example, "A is equivalent to "i Sign.' Environment variables set and
exported in the shell are also accessible by ~i.

~m [msglist]
Insert the specified messages into the letter, shifting the new text to the
right one tab stop. Valid only when sending a message while reading
mail.

~P
Print the message being entered.

"q
Quit from input mode by simulating an interrupt. If the body of the
message is not null, the partial message is saved in dead.letter. Sec
"DEAD" (ENVIRONMENT VARIABLES) for a description of this file.

"r filename
"< filename
~~< !shell-command

Read in the specified file. If the argument begins with an exclamation
point (!), the rest of the string is taken as an arbitrary shell command
and is executed, with the standard output inserted into the message.

"s string ...
Set the subject line to string.

"t name ...
Add the given names to the To list.

- 1 2 -

MAILX(l) MAILX (1)

v
Invoke a preferred screen editor on the partial message. See also
"VISUAL" (ENVIRONMENT VARIABLES).

~w filename
Write the partial message onto the given file, without the header.

"x

Exit as with "q except the message is not saved in dead.letter.

~ | shell-command
Pipe the body of the message through the given shell-command. If the
shell-command returns a successful exit status, the output of the
command replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution environment
and are not alterable within mailx.

HOME=directory
The user's base of operations.

MAILRC =filename
The name of the start-up file. Default is SHOME/.mailrc.

The following variables are internal mailx variables. They can be imported
from the execution environment or set by using the set command at any time.
The unset command can be used to erase variables.

addsopt
Enabled by default. If Ibinlmail is not being used as the deliverer,
noaddsopt should be specified. (See WARNINGS below)

allnet
All network names whose last component (login name) match are
treated as identical. This causes the msglist message specifications to
behave similarly. Default is noallnet. See also the alternates
command and the "metoo" variable.

append
Upon termination, append messages to the end of the mbox file instead
of prepending them. Default is noappend.

askcc
Prompt for the Cc list after message is entered. Default is noaskcc.

- 13-

MAILX(l) MAILX(l)

asksub
Prompt for subject if it is not specified on the command line with the -s
option. Enabled by default.

autoprint
Enable automatic printing of messages after delete and undelete
commands. Default is noautoprint.

bang
Enable the special-casing of exclamation points (!) in shell escape
command lines as in vz'(l). Default is nobang.

cmd=shell-command
Set the default command for the pipe command. No default value.

con\=conversion
Convert uucp addresses to the specified address style. The only valid
conversion now is internet, which requires a mail delivery program
conforming to the RFC 822 standard for electronic mail addressing.
Conversion is disabled by default. See also "sendmail" and the -U
command line option.

crt=number
Pipe messages having more than number lines through the command
specified by the value of the "PAGER" variable [p£(l) by default].
Disabled by default.

DEAD =filename
The name of the file in which to save partial letters in case of untimely
interrupt. Default is SHOME/dead.letter.

debug
Enable verbose diagnostics for debugging. Messages are not
delivered. Default is nodebug.

dot
Take a period on a line by itself during input from a terminal as end-
of-file. Default is nodot.

VDYTOR=shell-command
The command to run when the edit or "e command is used. Default is
ed{ 1).

escape=c
Substitute c for the " escape character. Takes effect with next message
sent

- 14-

MAILX (1) MAILX(l)

folder-directory
The directory for saving standard mail files. User-specified file names
beginning with a plus (+) are expanded by preceding the file name
with this directory name to obtain the real file name. If directory does
not start with a slash (/), $HOME is prepended to i t In order to use the
plus (+) construct on a mailx command line, " fo lder" must be an
exported sh environment variable. There is no default for the "folder"
variable. See also "outfolder" below.

Enable printing of the header summary when entering mailx. Enabled
by default.

Preserve all messages that are read in the mailbox instead of putting
them in the standard mbox save file. Default is nohold.

Ignore interrupts while entering messages. Handy for noisy dial-up
lines. Default is noignore.

ignoreeof
Ignore end-of-file during message input. Input must be terminated by
a period (.) on a line by itself or by the command. Default is
noignoreeof. See also " d o t " above.

keep
When the mailbox is empty, truncate it to zero length instead of
removing i t Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox
instead of deleting them. Default is nokeepsave.

MBOX=fdename
The name of the file to save messages which have been read. The xit
command overrides this function, as does saving the message
explicitly in another file. Default is SHOME/mbox.

metoo
If your login appears as a recipient, do not delete it from the list.
Default is nometoo.

LISTER=shell-command
The command (and options) to use when listing the contents of the
"folder" directory. The default is /s(l).

header

hold

ignore

- 15-

MAILX(l) MAILX (1)

onehop
When responding to a message that was originally sent to several
recipients, the other recipient addresses are normally forced to be
relative to the originating author's machine for the response. This flag
disables alteration of the recipients' addresses, improving efficiency in
a network where all machines can send directly to all other machines
(that is, one hop away).

outfolder
Causes the files used to record outgoing messages to be located in the
directory specified by the "folder" variable unless the path name is
absolute. Default is nooutfolder. See "folder" above and the Save,
Copy, followup, and Followup commands.

Used with the pipe command to insert a form feed after each message
sent through the pipe. Default is nopage.

-shell-command
The command to use as a filter for paginating output. This can also be
used to specify the options to be used. Default is pg(1).

prompt=.?fn>ig
Set the command mode prompt to string. Default is " ? " .

quiet
Refrain from printing the opening message and version when entering
mailx. Default is noquiet.

record-filename
Record all outgoing mail in filename. Disabled by default. See also
"outfolder" above.

save
Enable saving of messages in dead.letter on interrupt or delivery
error. See "DEAD" for a description of this file. Enabled by default.

screen=number
Sets the number of lines in a screen-full of headers for the headers
command.

page

PAGER=

- 16-

MAILX(l) MAILX (1)

sendmail=shell-command
Alternate command for delivering messages. Default is Ibinlrmail.
See mail{\).

On systems running sendmail, the system administrator should add the
command

*et sendmail = /usr/lib/sendmail

in the system-wide mailx startup file, /usr/lib/mailx/mailx.rc.

sendwait
Wait for background mailer to finish before returning. Default is
nosendwait.

SHELL=shell-command
The name of a preferred command interpreter. Default is s/i(l).

When displaying the header summary and the message is from you,
print the recipient's name instead of the author's name.

sign=\fri>ig
The variable inserted into the text of a message when the "a
(autograph) command is given. No default [see also "i [TILDE
ESCAPES)].

Sign=sfrmg
The variable inserted into the text of a message when the "A command
is given. No default [see also "i [TILDE ESCAPES)].

top\ines=number
The number of lines of header to print with the top command. Default
is 5.

VlSUAL=shell-command
The name of a preferred screen editor. Default is vz'(l).

showto

FILES
SHOME/.mailrc

SHOME/mbox

/usr/mail/*

/usr/lib/mailx/mailx.help'

/usr/lib/mailx/mailx.rc

/tmp/R[emqsx]*

personal start-up file

secondary storage file

post office directory

help message files

optional global start-up file

temporary files

- 17-

MAILX(l) MAILX(l)

SEE ALSO
ls(l), mail(l), pg(l), sendmail(lM).

WARNINGS
The -h, -r and -U options can be used only if mailx is built with a delivery
program other than Ibin!mail. The tilde character (~) does not work as the
escape character over the network; substitute another character for escape (see
ESCAPE under ENVIRONMENT VARIABLES).

BUGS
Where shell-command is shown as valid, arguments are not always allowed.
Experimentation is recommended.

Internal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by mailx. The new standards
need some time to settle down.

Attempts to send a message having a line consisting only of a " . " are treated
as the end of the message by mail(\) (the standard mail delivery program).

- 18-

MAKE(l) MAKE (1)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] [-p] [-i] [-k] [-s] [-r] [-n] [-b] [-e] [-u]
[-t] [-q] [names]

DESCRIPTION
The make command allows the programmer to maintain, update, and regenerate
groups of computer programs. The following is a brief description of all
options and some special names:

-f makefile Description filename, makefile is assumed to be the name of a
description file.

-p Print out the complete set of macro definitions and target
descriptions.

-i Ignore error codes returned by invoked commands. This mode is
entered if the fake target name .IGNORE appears in the description
file.

-k Abandon work on the current entry if it fails, but continue on other
branches that do not depend on that entry.

-s Silent mode. Do not print command lines before executing. This
mode is also entered if the fake target name .SILENT appears in the
description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even
lines beginning with an @ are printed.

-b Compatibility mode for old makefiles.

-e Environment variables override assignments within makefiles.

-t Touch the target files (causing them to be up-to-date) rather than
issue the usual commands.

-q Question. The make command returns a zero or non-zero status
code depending on whether the target file is or is not up-to-date.

.DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the name
.DEFAULT are used if it exists.

1) MAKE(l)

.PRECIOUS
Dependents of this target will not be removed when quit or
interrupt are hit.

.SILENT Same effect as the -s option.

.IGNORE Same effect as the -i option.

make executes commands in makefile to update one or more target names.
Name is typically a program. If no -f option is present, makefile, Makefile,
and the Source Code Control System (SCCS) files s.makefile, and s.Makefile
are tried in order. If makefile is -, the standard input is taken. More than one -f
makefile argument pair may appear.

make updates a target only if its dependents are newer than the target. All
prerequisite files of a target are added recursively to the list of targets. Missing
files are deemed to be out-of-date.

makefile contains a sequence of entries that specify dependencies. The first
line of an entry is a blank-separated, non-null list of targets, then a :, then a
(possibly null) list of prerequisite files or dependencies. Text following a ; and
all following lines that begin with a tab are shell commands to be executed to
update the target. The first non-empty line that does not begin with a tab or #
begins a new dependency or macro definition. Shell commands can be
continued across lines with the <backslashxnew-line> sequence. Everything
printed by make (except the initial tab) is passed directly to the shell as is.
Thus,

echo a\
b

will produce

ab

exactly the same as the shell would.

Sharp (#) and new-line surround comments.

The following makefile says that pgm depends on two files, a.o and b.o, and
that they in turn depend on their corresponding source files (a.c and b.c) and a
common file incl.h:

MAKE(l) MAKE(l)

pgm: a.o b.o
cc a.o b.o -o pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The SHELL
environment variable can be used to specify which shell make should use to
execute commands. The default is Ibinlsh. The first one or two characters in a
command can be the following: -, @, or If @ is present, printing of the
command is suppressed. If - is present, make ignores an error. A line is printed
when it is executed unless the -s option is present, or the entry .SILENT: is in
makefile, or unless the initial character sequence contains a The -n option
specifies printing without execution; however, if the command line has the
string $(MAKE) in it, the line is always executed (see discussion of the
MAKEFLAGS macro under Environment). The -t (touch) option updates the
modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option
is present, or the entry .IGNORE: appears in makefile, or the initial character
sequence of the command contains the error is ignored. If the -k option is
present, work is abandoned on the current entry, but continues on other
branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of make)
to run without errors.

Interrupt and quit cause the target to be deleted unless the target is a dependent
of the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environment variables are processed
before any makefile and after the internal rules; thus, macro assignments in a
makefile override environment variables. The -e option causes the environment
to override the macro assignments in a makefile. Suffixes and their associated
rules in the makefile will override any identical suffixes in the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing
any legal input option (except -f and -p) defined for the command line. Further,
upon invocation, make "invents" the variable if it is not in the environment,
puts the current options into it, and passes it on to invocations of commands.
Thus, MAKEFLAGS always contains the current input options. This proves
very useful for "super makes." In fact, as noted above, when the -n option is

- 3 -

MAKE(l) MAKE (1)

used, the command $(MAKE) is executed anyway; hence, one can perform a
make -n recursively on a whole software system to see what would have been
executed. This is because the -n is put in MAKEFLAGS and passed to further
invocations of $(MAKE). This is one way of debugging all of the makefiles for
a software project without actually doing anything.

Include Files
If the string include appears as the first seven letters of a line in a makefile, and
is followed by a blank or a tab, the rest of the line is assumed to be a filename
and will be read by the current invocation, after substituting for any macros.

Macros
Entries of the form stringl - string2 are macro definitions. String2 is defined
as all characters up to a comment character or an unescaped new-line.
Subsequent appearances of %{stringl [:substl =[subst2]]) are replaced by
string2. The parentheses are optional if a single character macro name is used
and there is no substitute sequence. The optional \substl -subst2 is a substitute
sequence. If it is specified, all non-overlapping occurrences of substl in the
named macro are replaced by subst2. Strings (for the purposes of this type of
substitution) are delimited by blanks, tabs, new-line characters, and beginnings
of lines. An example of the use of the substitute sequence is shown under
Libraries.

Internal Macros
There are five internally maintained macros that are useful for writing rules for
building targets.

$* The macro $* stands for the filename part of the current dependent with
the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule.
It is the module that is out-of-date with respect to the target (that is, the
"manufactured" dependent filename). Thus, in the .c.o rule, the $<
macro would evaluate to the .c file. An example for making optimized .o
files from .c files is:

.c.o:

cc -c -O $*.c

or:

.c.o:
cc -c -O $<

MAKE(l) MAKE (1)

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out-of-date with respect to
the target; essentially, those modules that must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library
member of the form lib(file.o). In this case, $@ evaluates to lib and $%
evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F
is appended to any of the four macros, the meaning is changed to "directory
part" for D and "file part" for F. Thus, $(@D) refers to the directory part of
the string $@. If there is no directory part, J is generated. The only macro
excluded from this alternative form is $?.

Suffixes
Certain names (for instance, those ending with .o) have inferable prerequisites
such as .c, .s, etc. If no update commands for such a file appear in makefile, and
if an inferable prerequisite exists, that prerequisite is compiled to make the
target. In this case, make has inference rules that allow building files from
other files by examining the suffixes and determining an appropriate inference
rule to use. The current default inference rules are:

.c .c~ .f .r .sh .sir

.c.o .c.a .c~.o ,c".c .c~.a

.f.o .f.a .r .o .r.f .r.a

.h".h .s.o ,s~.o .s~.s .s'.a .sh'.sh

.1.0 ,i.c .r.o .r.i r . c

.y.o .y.c .y~.o .y'.y .y'.c

The internal rules for make are contained in the source file rules.c for the make
program. These rules can be locally modified. To print the rules compiled into
the make on any machine in a form suitable for recompilation, the following
command is used:

make -fp - 2>/dev/null </dev/null

A tilde in the above rules refers to an SCCS file [see sccsfile{4)]. Thus, the rule
.c".o would transform an SCCS C source file into an object file (.o). Because the
s. of the SCCS files is a prefix, it is incompatible with make's suffix point of
view. Hence, the tilde is a way of changing any file reference into an SCCS file
reference.

A rule with only one suffix (that is, .c:) is the definition of how to build x from
x.c. In effect, the other suffix is null. This is useful for building targets from
only one source file (for example, shell procedures, simple C programs).

MAKE(l) MAKE (1)

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is
inferred as a prerequisite. The default list is:

.SUFFIXES: .o .c ,c~ .y ,y" .1 .1" .s ,s~ .sh ,sh~ .h ,h~ .f ,f~

Here again, the above command for printing the internal rules will display the
list of suffixes implemented on the current machine. Multiple suffix lists
accumulate; .SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -o pgm a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user can
add rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS,
and YFLAGS arc used for compiler options to cc(l), lex(1), and yacc(1),
respectively. Again, the previous method for examining the current rules is
recommended.

The inference of prerequisites can be controlled. The rule to create a file with
suffix .o from a file with suffix .c is specified as an entry with .c.o: as the target
and no dependents. Shell commands associated with the target define the rule
for making a .o file from a .c file. Any target that has no slashes in it and starts
with a dot is identified as a rule and not a true target.

Libraries
If a target or dependency name contains parentheses, it is assumed to be an
archive library, the string within parentheses referring to a member within the
library'- Thus, Iib(file.o) and $(LIB)(fiIe.o) both refer to an archive library that
contains file.o. (This assumes the LIB macro has been previously defined.) The
expression $(LIB)(filel.o fi!e2.o) is not legal. Rules pertaining to archive
libraries have the form . XX. a where the XX is the suffix from which the archive
member is to be made. An unfortunate byproduct of the current implementation
requires the XX to be different from the suffix of the archive member. Thus,
you cannot have lib(file.o) depend upon file.o explicitly. The most common
use of the archive interface follows. Here, we assume the source files arc all C
type source:

M A K E (l) MAKE (1)

lib: lib(filel.o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

.c.a: $(CC) -c $(CFLAGS) $<
S(AR) S(ARFLAGS) $@ $*.o
rm -t $*.o

In fact, the x.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib: lib(file1.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
$(AR) S(ARFLAGS) lib $?
rm $? @echo lib is now up-to-date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is
defined to be the set of object filenames (inside lib) whose C source files are
out-of-date. The substitution mode translates the .0 to x . (Unfortunately, one
cannot as yet transform to x~; however, this may become possible in the
future.) Note also, the disabling of the x.a: rule, which would have created
each object file, one by one. This particular construct speeds up archive library
maintenance considerably. This type of construct becomes very cumbersome if
the archive library contains a mix of assembly programs and C programs.

FILES
[Mmjakefile and s.[Mm]akefile
/bin/sh

SEE ALSO
cc(l), cd(l), lex(l), sh(l), yacc(l), printf(3S), sccsfile(4).
UNIX System VRelease 3.2 Programmer's Guide.

NOTES
Some commands return non-zero status inappropriately; use -i to overcome the
difficulty.

BUGS
Filenames with the characters = : @ will not work. Commands that are directly
executed by the shell, notably cd{ 1), are ineffective across newlines in make.
The syntax (lib(filel.o fiIe2.o file3.o) is illegal. You cannot build lib(file.o)
from file.o. The macro $(a:.o=x") does not work. Named pipes are not handled
well.

MAKEKEY(l) MAKEKEY(l)

NAME
makekey - generate encryption key

SYNOPSIS
/usr/lib/makekey

DESCRIPTION
The makekey command improves the usefulness of encryption schemes
depending on a key by increasing the amount of time required to search the key
space. It reads 10 bytes from its standard input, and writes 13 bytes on its
standard output The output depends on the input in a way intended to be
difficult to compute (that is, to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters.
The last two (the salt) are best chosen from the set of digits,., /, and uppercase
and lowercase letters. The salt characters are repeated as the first two
characters of the output. The remaining 11 output characters are chosen from
the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to
select one of 4,096 cryptographic machines all based on the National Bureau of
Standards DES algorithm, but broken in 4,096 different ways. Using the input
key as key, a constant string is fed into the machine and recirculated a number
of times. The 64 bits that come out are distributed into the 66 output key bits in
the result.

makekey is intended for programs that perform encryption. Usually, its input
and output will be pipes.

SEE ALSO
ed(l), crypt(l), vi(l), passwd(4).

CAVEAT
The makekey command can produce different results depending upon whether
the input is typed at the terminal or redirected from a file.

WARNING
The standard CTIX distribution is the international version, which does not
support encryption.

MASTERUPD (1M) MASTERUPD(IM)

NAME
masterupd - update the master file

SYNOPSIS
masterupd [flags] [devicename]

masterupd [-t] [-T] [flags] [parameter
[definename definevalue minvalue masvalue]]

DESCRIPTION
The masterupd command is used to modify the /etc/master file. Different
options to masterupd add/delete devices in the file. Options are also available
to add/delete tunable parameters in the master file. Although the file can be
directly edited, it is often more convenient to use the features of masterupd.

The options to masterupd follow:

-a Add a device (or, if -t or -T is used, a tunable parameter) to the master
file. The devicename must be specified. Also, the -f option must be
given to specify the device's functions.

-d Delete a device (or, if -t or -T is used, a tunable parameter) from the
master file. Only the devicename need be given. If the device is not
found in the master file, the command silendy terminates with no error
message.

-q Query the master file for a particular device. The devicename must be
given. Also, one of the device type options (see below) must be given
to specify the type of device to look for. If a block or character device
is specified, the major number is written to standard output. If a line
discipline is specified, the line discipline index is output. If a software
module is specified, the software ID is output. If the device cannot be
found in the master file, masterupd returns a question mark.

-v Verify the consistency of the master file.

-M Specify an alternate master file.

Any or all of the above options can be used together. If -a is used with -d, the
device is deleted from the master file first, then added again. If the -q option is
used with -a and/or -d, it reports the major number of the device after the
addition/deletion.

MASTERUPD (1M) MASTERUPD(IM)

The -a option and the -q option require a device type to be given. The
following options specify the device type:

-b block device

-c character device

-1 line discipline

-m stream module

-s software module

-r required device

-F file system

Other options that can be used with -a follow:

-f followed by a string of function letters, specifies functions for the
device. See master (4) for a description of the letters.

-p followed by a string, specifies a prefix for the device. The default
prefix is the device name.

-V followed by a decimal integer, specifies an interrupt vector for the
device.

-L followed by a decimal integer, specifies an interrupt priority level for
the device.

-i followed by a decimal integer, specifies an init parameter for the
device. Up to three -i options can specify up to three init parameters,
which are appended to the end of the line in the master file.

For file systems, exactly two init parameters must be given. The first
becomes the flags field; the second becomes the notify field of the
fsinfo structure.

The following options (used with the -a or -d option, described earlier) specify
that you want to add/delete a tunable parameter in the master file. Depending
on which you use (- t or -T), you can use parameter or definename to specify
the tunable parameter to add/delete.

-t Specifies that you want to add/delete a tunable parameter in the master
file. When adding a parameter with -t, all three fields {parameter,
definename, definevalue) must be present. The minvalue and
maxvalue arguments are optional; if not specified, the parameter is
added to the master file without min or max values.

M A S T E R U P D (1 M) MASTERUPD(IM)

When deleting a parameter, only parameter should be given. If a
parameter with that parameter name already exists in the master file,
an error is reported.

If parameter is a dash (-), and there is an existing parameter with the
same definename, the parameter name is taken to be the parameter
name of the existing parameter. If there is no existing parameter, the
parameter name is taken to be the same as the definename.

-T Like the -t option, except that -T uses definename instead of
parameter to find the tunable parameter to add/delete.

When adding a tunable parameter, -T acts like -t, except that an error
is reported if an existing parameter in the master file has the same
define name (rather than the same parameter name).

When deleting, the tunable parameter whose define name matches
definename is deleted. The single argument is taken to be the define
name rather than the parameter name.

EXAMPLES
The following command installs a new character device driver named "xyz"
(with the prefix xyz) and functions open, close, read, write, ioctl, init, and
release:

masterupd -a -c -f ocrwi xyz

As a more realistic example, the following script does the same as the command
shown above, but it first deletes the driver if it already exists in the master file
and then it uses the query feature to make /dev files for the newly assigned
character major number (note that the single quotation marks must be
backquotes):

MAJ='masterupd -daq -c -f ocrwi xyz'
if ["$MAJ" = "?"]
then

echo "Error"
else

mknod /dev/xyzO c $MAJ 0
mknod /dev/xyzl c $MAJ 1

fi

SEE ALSO
config(lM), master(4).

MCS(l) MCS(l)

NAME
mcs - manipulate the object file comment section

SYNOPSIS
mcs [options] object-file ...

DESCRIPTION
The mcs command manipulates the comment section, normally the
" .comment" section, in an object file. It is used to add to, delete, print, and
compress the contents of the comment section in a CTIX System object fde. mcs
must be given one or more of the options described below. It takes each of the
options given and applies them in order to the object-files.

If the object file is an archive, the file is treated as a set of individual object
files. For example, if the -a option is specified, the string is appended to the
comment section of each archive element.

The following options are available.

-a string
Append string to the comment section of the object-files. If string
contains embedded blanks, it must be enclosed in quotation marks.

-c Compress the contents of the comment section. All duplicate entries
are removed. The ordering of the remaining entries is not disturbed.

-d Delete the contents of the comment section from the object file. The
object file comment section header is removed also.

-n name Specify the name of the section to access. By default, mcs deals with
the section named .comment. This option can be used to specify
another section.

-p Print the contents of the comment section on the standard output If
more than one name is specified, each entry printed is tagged by the
name of the file from which it was extracted, using the format
"filename:string."

EXAMPLES
To print a file's comment section:

mcs -p file

To append string to file's comment section:

mcs -a string file

MCS(l) MCS (1)

FILES
TMPDIR/mcs*

TMPDIR/*

temporary files

temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environment
variable TMPDIR [see tempnamQ in tmpnam{3S)].

mcs cannot insert or delete comment sections in executable objects with magic
number 0413. (By default, Id creates executable objects with magic number
0413 [see a.out(4) and M(l)].) However, the -d option to mcs can make the
comment section of a 0413 file zero-length: this allows use of mcs with the -a
and -c options on such files. All libraries provided with CTIX have comment
sections in each library member as well as in the C start up routines: thus, there
would normally be a comment section in every a.out file.

SEE ALSO
cpp(l), a.out(4).

NOTES

MESG(l) MESG(l)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [-n] [-y]

DESCRIPTION
mesg with argument n forbids messages via write (1) by revoking non-user
write permission on the user's terminal, mesg with argument y reinstates
permission. All by itself, mesg reports the current state without changing it.

FILES
/dev/tty*

SEE ALSO
write(l).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

MKDBSYM(IM) MKDBSYM(IM)

NAME
mkdbsym - load symbols in kernel debugger

SYNOPSIS

/etc/lddrv/mkdbsym [-f input file] [-o output file]

DESCRIPTION
mkdbsym takes an input file (default /unix) and writes the symbols to the output
file (default /dev/dbsym, in which case the running kernel is changed). The
drivers debugger and dbsym must be in the kernel [these drivers may be loaded
with lddrv{ 1M), if they are not already loaded].

FILES
/unix
/dev/dbsym

SEE ALSO
lddrv(lM), dbsym(7).

MKDIR(l) MKDIR(l)

NAME
mkdir, mkdirs - make directories

SYNOPSIS
mkdir [-m mode] [-p] dirname ...

mkdirs [-e] dirname ...

DESCRIPTION
mkdir creates the named directories in mode 111 [possibly altered by
umask(\)].
Standard entries in a directory (for example, the files ., for the directory itself,
and .., for its parent) are made automatically, mkdir cannot create these entries
by name. Creation of a directory requires write permission in the parent
directory.

The owner ID and group ID of the new directories are set to the process's real
user ID and group ID, respectively.

Two options apply to mkdir:

-m This option allows users to specify the mode to be used for new
directories. Choices for modes can be found in chmod(1).

-p With this option, mkdir creates dirname by creating all the non-existing
parent directories first.

mkdirs creates the specified directory by using mkdir, as well as all nonexistent
parent directories. (Effectively, mkdirs does the same thing as mkdir with the
-p option.) The -e option causes mkdirs to list the directories it would make
without actually making them. All diagnostics are those of mkdir. If no
directories are made, mkdir is silent and has an exit status of 0.

EXAMPLE
To create the subdirectory structure ltr/jd/jan, type:

mkdir -p ltr/jd/jan

SEE ALSO
sh(l), rm(l), umask(l), intro(2), mkdir(2).

DIAGNOSTICS
mkdir returns exit code 0 if all directories given in the command line were
made successfully. Otherwise, it prints a diagnostic and returns non-zero. An
error code is stored in errno.

MKFS(IM) MKFS(IM)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs special [- 0] [-M] blocks[:i-nodes] [gap blocks/cyl]
[-b blocksize]

/etc/mkfs special [-O] [-M] proto [gap blocks/cyl] -b blocksize]

/etc/mkfs special [-O] [-M]

DESCRIPTION
The mkfs command constructs a file system by writing on the special file using
the values found in the remaining arguments of the command line (except in the
case of the third form of the command, discussed below). The command waits
ten seconds before starting to construct the file system. During this ten-second
pause the command can be aborted with a delete character.

The -b blocksize option specifies the logical block size for the file system: the
number of bytes read or written by the operating system in a single I/O
operation. Valid values for blocksize are 1024 and 40%. If the -b option is
omitted, the default block size is 1024.

Note that if you make a 4K file system, you must add the buffers_4k parameter
in the dfile to specify the number of 4K file system buffers to use.

If the second argument is a string of digits, the size of the file system is the
value of blocks interpreted as a decimal number. This is the number of physical
(512-byte) disk blocks the file system occupies. If the number of i-nodes is not
given, the default is the number of logical (1024- or 4096-byte) blocks divided
by 4 (rounded down); i-nodes are allocated in groups of 16. The mkfs command
builds a file system with a single empty directory on it. The boot program block
(block zero) is left uninitialized.

If the second argument is the name of a file that can be opened, mkfs assumes it
to be a prototype file proto, and takes its directions from that file. The
prototype file contains tokens separated by spaces or newlines. A sample
prototype specification follows (line numbers are added for clarity):

1
2
3
4
5
6
7

/stand/diskboot
4872110
d--777 3 1
usr d- -777 3 1

sh ---755 3 1 /bin/«h
ken d--755 6 1

$

MKFS(IM) MKFS(IM)

8
9
10
11

bO b- -€44 3 1 0 0
cO c--644 3 1 0 0
$

$

Line 1 in the example is the name of a file to be copied onto block zero as the
bootstrap program.

Line 2 specifies the number of physical (512 byte) blocks the file system is to
occupy and the number of i-nodes in the file system.

Lines 3 through 9 tell mkfs about files and directories to be included in this file
system.

Line 3 specifies the root directory.

Lines 4 through 6 and 8 through 9 specify other directories and files.

The dollar sign ($) on line 7 instructs mkfs to end the branch of the file system it
is on and continue from the next higher directory. The dollar signs on lines 10
and 11 end the process, since no additional specifications follow.

File specifications give the mode, the user ID, the group ID, and the initial
contents of the file. Valid syntax for the contents field depends on the first
character of the mode.

The mode for a file is specified by a six-character string. The first character
specifies the type of the file. The character range is -bed to specify regular,
block special, character special and directory files, respectively. The second
character of the mode is either u or -, to specify set-user-ID mode or not. The
third character is g or -, for the set-group-ID mode. The rest of the mode is a
three-digit octal number specifying the owner, group, and other read, write, and
execute permissions [see chmod(l)].

Two decimal number tokens come after the mode; they specify the user and
group IDs of the owner of the file.

If the file is a regular file, the next token of the specification can be a path name
to where the contents and size are copied. If the file is a block or character
special file, two decimal numbers follow, which give the major and minor
device numbers. If the file is a directory, mkfs makes the entries . and .. and
then reads a list of names and (recursively) file specifications for the entries in
the directory. As noted above, the scan is terminated with the token dollar sign

MKFS(IM) MKFS(IM)

The first two forms of the command allow the rotational gap and the number of
blocks/cyl to be specified. The default gap size is 7. The default
blocks/cylinder is 400. The default is used if the supplied gap and blocks/cyl
are considered illegal values, or if a short argument count occurs.

The -O option makes a file system with a free list instead of a bit map. This is
the default for removeable disks.

The -M option makes a file system with a bit map in addition to a free list. This
is the default for fixed disks.

Special must be a disk slice. The third form of the mkfs command extracts the
slice size from the Volume Home Block and creates a file system the same size;
this third option cannot be used where there are overlapping partitions. The
number of i-nodes is the number of logical blocks divided by 4. Optimal values
for gap size and blocks/cylinder are calculated; these may not be 7 and 400.

SEE ALSO
chmod(l), dir(4), fs(4).
S/Series CTIX Administrator s Guide.

BUGS
With a prototype file, there is no way to specify links. The maximum number
of i-nodes configurable is 65500.

MKHOSTS (1M) (CTIX Internetworking) MKHOSTS (1M)

NAME
mkhosts - make node name commands

SYNOPSIS
/etc/mkhosts

DESCRIPTION
mkhosts makes the simplified forms of the rcmd{ 1) and rlogin(1) commands.
For each node listed in /etc/hosts, mkhosts creates a link to /usr/loca 1/bin/rcmd
in /usr/hosts. Each link's name is the same as the node's official name in
/etc/hosts.

SEE ALSO
rcmd (1), rlogin(l).

MKIFILE(IM) MKIFILE(IM)

NAME
mkifile - make an ifile from an object file

SYNOPSIS
/etc/lddrv/mkifile a.out ifile

DESCRIPTION
mkifile takes an object module and writes in ifile a line of the form

symbol = 0 xvalue

For each external symbol in the object module this ifile can be used as an
argument to ld{\) as an absolute symbol table against which other modules may
be linked, mkifile is used with loadable drivers to provide the symbols for the
currently running CTIX.

SEE ALSO
ld(l), lddrv(lM), ldeeprom(lM).

MKLOST+FOUND (1M) MKLOST+FOUN D (1M)

NAME
mklost+found - make a lost+found directory for fsck

SYNOPSIS
/etc/mklost+found

DESCRIPTION
A directory lost+found is created in the current directory and a number of
empty files are created therein and then removed so that there will be empty
slots for fsck(M). This command should be run immediately after first
mounting a newly created file system.

SEE ALSO
fsck(lM), mkfs(lM).
S/Series CTIX Administrator's Guide.

BUGS
Should be done automatically by mkfs.

WARNING
It is dangerous to run mklost+found if the free list is not clean.

MKNOD(IM) MKNOD(IM)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name b I c major minor

/etc/m knod name p

DESCRIPTION
The mknod command makes a directory entry and corresponding i-node for a
special file.

The first argument is the name of the entry. The convention is to keep such files
in the /dev directory.

In the first case, the second argument is b if the special file is block-type (disks,
tape) or c if it is character-type (other devices). The last two arguments are
numbers specifying the major device type and the minor device (that is, unit,
drive, or line number). The major and minor numbers can be specified in
decimal or octal. The assignment of major device numbers is specific to each
system. The information is contained in the system master file /etc/master.
You must be the superuser to use this form of the command.

The second case is the form of the mknod used to create FIFO's (also known as
named pipes).

WARNING
If mknod is used to create a device in a remote directory (Remote File Sharing),
the major and minor device numbers are interpreted by the server.

SEE ALSO
createdev(lM), mknod(2).

MKSHLIB(l) MKSHLIB (1)

NAME
mkshlib - create a shared library

SYNOPSIS

mkshlib -s specfil [-t target] [-h host] [-n] [-L dir ...] [-q]

DESCRIPTION
The mkshlib command builds both the host and target shared libraries. A shared
library is similar in function to a normal, non-shared library, except that
programs which link with a shared library will share the library code during
execution whereas programs which link with a non-shared library will get their
own copy of each library routine used.
The host shared library is an archive which is used to link-edit user programs
with the shared library [see ar{4)]. A host shared library can be treated exactly
like a non-shared library and should be included on cc(l) command lines in the
usual way [see cc(l)]. Further, all operations which can be performed on an
archive can also be performed on the host shared library.

The target shared library is an executable module that is bound into the user's
address space during execution of a program using the shared library. The
target shared library contains the code for all the routines in the library and
must be fully resolved. The target will be brought into memory during
execution of a program using the shared library, and subsequent processes that
use the shared library will share the copy of code already in memory. The text
of the target is always shared, but each process will get its own copy of the data.

The user interface to mkshlib consists of command line options and a shared
library specification fde. The shared library specification file describes the
contents of the shared library.

The mkshlib command invokes other tools such as the archiver, ar{ 1), the
assembler, OJ(1), and the loader, ld(l). Tools are invoked through the use of
execvp [see exec(2)], which searches directories in the user's PATH. Also,
prefixes to mkshlib are parsed in the same manner as prefixes to the cc(l)
command, and invoked tools are given the prefix, where appropriate. For
example, pfxmkshlib will invoke pfxld.

The following command line options are recognized by mkshlib'.

-s specfd Specifies the shared library specification file, specfil. This file
contains the information necessary to build a shared library.

-t target Specifies the output filename of the target shared library being
created. It is assumed that this fde will be installed on the target
machine at the location given in the specification file (see the

MKSHLIB (1) MKSHLIB (1)

#target directive below). If the -n option is used, then a new
target shared library will not be generated.

-h host Specifies the output filename of the host shared library being
created. If this option is not given, then the host shared library
will not be produced.

-n Do not generate a new target shared library. This option is
useful when producing only a new host shared library. The -t
option must still be supplied since a version of the target shared
library is needed to build the host shared library.

-L dir ... Change the algorithm of searching for the host shared libraries
specified with the #objects noload directive to look in dir before
looking in the default directories. The -L option can be
specified multiple times on the command line in which case the
directories given with the -L options are searched in the order
given on the command line before the default directories.

-q Quiet warning messages. This option is useful when warning
messages are expected but not desired.

The shared library specification file contains all the information necessary to
build both the host and target shared libraries. The contents and format of the
specification file are given by the directives listed below.

All directives that can be followed by multi-line specifications are valid until
the next directive or the end of the file.

#address sectname address
Specifies the start address, address, of section sectname for the target.
This directive typically is used to specify the start addresses of the .text
and .data sections. One #address per section name is valid. A #address
directive must be given exactly once for the .text section and once for
the .data section.

#target pathname
Specifies the absolute pathname, pathname, at which the target shared
library will be installed on the target machine. The operating system
uses this pathname to locate the shared library when executing a.out
files that use this shared library. This directive must be specified
exactly once per specification file.

#branch
Specifies the start of the branch table specifications. The lines
following this directive are taken to be branch table specification lines.

MKSHLIB(l) MKSHLIB (1)

Branch table specification lines have the following format:

funcname <white space> position

where funcname is the name of the symbol given a branch table entry
and position specifies the position of funcname's branch table entry.
Position may be a single integer or a range of integers of the form
position!-position2. Each position must be greater than or equal to one,
the same position can not be specified more than once, and every
position from one to the highest given position must be accounted for.

If a symbol is given more than one branch table entry by associating a
range of positions with the symbol or by specifying the same symbol on
more than one branch table specification line, then the symbol is defined
to have the address of the highest associated branch table entry. All
other branch table entries for the symbol can be thought of as "empty"
slots and can be replaced by new entries in future versions of the shared
library.

Finally, only functions should be given branch table entries, and those
functions must be external symbols.

This directive must be specified exactly once per shared library
specification file.

#objects
The lines following this directive are taken to be the list of input object
files in the order they are to be loaded into the target. The list simply
consists of each pathname followed by a newline character. This list is
also used to determine the input object files for the host shared library,
but the order for the host is given by running the list through lorder(1)
and tsort(1).

This directive must be specified exactly once per shared library
specification file.

#objects noload
The #objects noload is followed by a list of host shared libraries. These
libraries are searched in the order listed to resolve undefined symbols
from the library being built. During the search it is considered an error
if a non-shared version of a symbol is found before a shared version of
the symbol.

Each name given is assumed to be a pathname to a host or an argument
of the form -IXwhere libX.a is the name of a file in LIBDIR or
LLIBDIR. This behavior is identical to that of Id, and the -L option can

MKSHLIB(l) MKSHLIB (1)

be used on the command line to specify other directories in which to
locate these archives.

Note that if a host shared library is specified using #objects noload, any
cc command that links to the shared library being built will need to
specify that host also.

#hide linker [*]
This directive changes symbols that are normally external into static
symbols, local to the library being created. A regular expression may be
given [j/!(l),/ind(l)], in which case all external symbols matching the
regular expression are hidden; the #export directive (see below) can be
used to counter this effect for specified symbols.

The optional "*" is equivalent to the directive
#hide linker *

and causes all external symbols to be made into static symbols.

All symbols specified in #init and #branch directives are assumed to be
external symbols, and cannot be changed into static symbols using the
#hide directive.

#export linker [*]
Symbols given in the #export directive are external symbols (global
among files) that, because of a regular expression in a #hide directive,
would otherwise have been made static. For example,

#hide linker *
#export linker

one
two

causes all symbols except one, two, and those used in #branch and
#init entries to be tagged as static.

#init object
Specifies that the object file, object, requires initialization code. The
lines following this directive are taken to be initialization specification
lines.

Initialization specification lines have the following format:

pimport <white space> import

MKSHLIB(l) MKSHLIB (1)

Pimport is a pointer to the associated imported symbol, import, and
must be defined in the current specified object file, object. The
initialization code generated for each such line is of the form:

pimport = & import;

All initializations for a particular object file must be given at once and
multiple specifications of the same object file are not allowed.

#ident string
Specifies a string, string, to be included in the .comment section of the
target shared library. This directive can be specified only once

Specifies a comment All information on a line following this
directive is ignored.

FILES
TEMPDIR/* temporary files

TEMPDIR is usually /tmp but can be redefined by setting the environment
variable TMPDIR [see tempnamQ in tmpnamQS)].

UBDIR usually /lib

LUBDIR usually /usr/lib

SEE ALSO
ar(l), as(l), cc(l), chkshlib(l), ld(l), lorder(l), tsort(l), a.out(4), ar(4).
UNIX System VRelease 3.2 Programmer s Guide.

CAVEATS
The -n option cannot be used with the #objects noload directive.

If mkshlib is asked to create a host library and a host of that name already
exists, mkshlib will update the host using ar -ru. This means that you should
always remove the host before rebuilding whenever an object file previously
included in the library is removed or renamed.

If the address specified with the #address directive is outside user space, the
library build may look successful, but if you try to use it, it might not work.

MKTPY(l) MKTPY(l)

NAME
mktpy, mvtpy - install or relocate a PT or GT local printer

SYNOPSIS
/usr/local/bin/mktpy [namel [name2 [tty]]]
/usr/local/bin/mvtpy name tty n

DESCRIPTION
To install a PT or GT local printer initially, the system administrator must use
the lpadmin (1M) command. The administrator must use the -I flag to ensure
that the spooling system knows that the printer is attached to a login terminal. If
this is not done, the printers will be attached to random devices at boot time,
and behavior is undefined.

mktpy is used to inform the lp{ 1) spooling system of the location of a printer
that is attached to a PT or GT and to enable (I) the printer to accept print
requests, mktpy installs a printer on an RS-422 terminal's local port mvtpy
updates a mktpy installation by changing the device association when the
terminal's device number changes. The device number may change each time
the system or the terminal is powered off and on.

The mktpy command accepts the names of one or two printers as arguments. If
no arguments are given, it will prompt for the name of two printers. As an
argument, the null string "" must be used in the first argument position if only
one printer exists and is attached to the second port In response to a prompt, a
<cr> indicates that no printer is attached to the indicated port.

If mktpy is run and the indicated printer is already attached to another tty
device, the location of that printer is not changed and a warning message is
printed.

If the command is being executed to inform the system of a printer attached to a
terminal other than the terminal from which the command is being run, then the
printers must be specified as arguments (with a null string, if necessary, as a
place holder). The tty line to which the printer's host terminal is attached must
be specified as the third argument

The mvtpy command is most commonly used when a PT or GT has been
powered off and then on again and the tty number of the PT or GT has changed.
The system needs to be informed of the tty line that should receive the print
requests. Before running mvtpy, the new tty number must be determined.
Namel is the name of the printer, name2 is the tty number of the new tty, and n
is the port on the PT or GT to which the printer is attached; n must be either 1 or

MKTPY(l) MKTPY(l)

2. mvtpy processes these arguments and issues an Ipadmin (IM) command to
move the specified printer to the indicated tty line. Diagnostics are from
Ipadmin.

For the convenience of users, a mktpy login is provided. The mktpy login
executes mktpy for the terminal where it is executed and prompts for printer
names.

EXAMPLES
Use the following command to install two printers on the same tty:

mktpy DIABLO EPSON

The following command installs a printer on the second port of another tty:

mktpy " QUME tty256

The following command tells the system that the tty number of the terminal to
which a printer is attached has changed:

mvtpy QUME tty260

NOTES
Only PT or GT terminals that are on cluster lines can have printers attached to
the serial ports. GT terminals have two serial ports and PT terminal s have one
serial port. Printers attached to PT terminals are considered to be attached to
the first port. For each terminal lde\/ttynnn on the system, two other character
special files exist, /dev/tp/anw/i and /dev/tp/bnnn. These devices refer to the
first and second serial ports respectively on the matching terminal.

FILES
/dev/ttynn/i

/dev/tpa

/dev/tpb

/tmp/mkt[12]*

/tmp/mvt*

/dev/tp/*

SEE ALSO
accept(l), disable(l), enable(l), lp(l), lpadmin(lM), lpsched(lM), reject(l),
tp(7).
S/Series CTIX Administrator's Guide.

Name of tty

First serial port of /dev/ttynnn

Second serial port of /dev/tty «n/z

Temporary files to hold printer status for mktpy

Temporary file to hold printer status for mvtpy

MKTPY(l) MKTPY(l)

DIAGNOSTICS
Generally self explanatory. "LP doesn't know xxxx " if the printer has not been
created yet. Check spelling of printer name or see system administrator.

WARNINGS
The following command has no effect; it does not prompt for input:

mktpy " " ttyxxx

Printing to the second port of a PT is not recommended (this is because it is
addressable even though it does not exist).

XOFF from the printer can not be distinguished from XOFF from the keyboard
of the terminal controlling the printer: thus, the printer must not use flow
control.

MM(1) MM(1)

NAME
mm, checkmm - print/check documents formatted with the MM macros

SYNOPSIS
mm [options] [files]

checkmm [fdes]

DESCRIPTION
The mm command can be used to print documents using nroff and the MM text-
formatting macro package. The command has options to specify preprocessing
by tbl (I) and/or neqn [see neqn(\)\ and postprocessing by various terminal-
oriented output filters. The proper pipelines and the required arguments and
flags for nroff and MM are generated, depending on the options selected.

Options for mm are listed and described below. Any other arguments or flags
(for example, -rC3) are passed to nroff or to MM, as appropriate. Such options
can occur in any order, but they must appear before the files arguments. If no
arguments are given, mm prints a list of its options.

-Tterm Specifies the type of output terminal. (Use help term2. to list
recognized values for term.) If -T is not specified, mm uses the
value of the shell variable $TERM from the environment [see
profile {A) and environ {5)] as the value of term, if $TERM is set;
otherwise, mm uses 450 as the value of term. If several terminal
types are specified, the last one takes precedence.

-12 Indicates that the document is to be produced in 12-pitch. Can be
used when $TERM is set to one of 300, 300s, 450, and 1620. (The
pitch switch on the DASI 300 and 300s terminals must be manually
set to 12 if this option is used.)

-c Causes mm to invoke co/(l); note that col(1) is invoked
automatically by mm unless term is one of 300, 300s, 450, 37,
4000a, 382,4014, tek, 1620, and X.

-e Causes mm to invoke neqn; also causes neqn to read the
/usr/pub/eqnchar file [see eqnchar(5)].

-t Causes mm to invoke tbl (I).

-E Invokes the -e option of nroff.

-y Causes mm to use the non-compacted version of the macros [see
mm(5)].

MM(1) MM(1)

As an example (assuming that the shell variable $TERM is set in the
environment to 450), the two command lines below are equivalent:

mm -t -rC3 -12 ghh*
tbl ghh* | nroff -cm -T450-12 -h -rC3

The mm command reads the standard input when - is specified instead of file
names. (Mentioning other files together with - leads to disaster.) This option
allows you to use mm as a filter; for example:

cat dws | mm -

The checkmm program checks the contents of the named files for errors in the
use of the Memorandum Macros, missing or unbalanced neqn delimiters, and
.EQ/.EN pairs. Note that you need not use the checkeq program [see neqn(\)].
Appropriate messages are produced. The program skips all directories, and if
no file name is given, standard input is read.

HINTS
The mm command invokes nroff with the -h flag. With this flag, nroff assumes
that the terminal has tabs set every eight character positions.

Use the -olist option of nroff to specify ranges of pages to be output. Note,
however, that mm, if invoked with one or more of the -e, -t, and - options,
together with the -olist option of nroff can cause a harmless "broken pipe"
diagnostic if the last page of the document is not specified in list.

If you use the -s option of nroff (to stop between pages of output), use line-feed
(rather than return or newline) to restart the output. The -s option of nroff does
not work with the -c option of mm, or if mm automatically invokes col(1) (see
the description of the -c option above).

If you specify a different terminal than the actual output terminal, mm produces
(often subtle) garbage; however, if you are redirecting output into a file, use the
-T37 option, and then use the appropriate terminal filter when you actually
print that file.

SEE ALSO
col(l), env(l), neqn(l), greek(l), nroff(l), tbl(l), profile(4), mm(5), term(5).

DIAGNOSTICS

The mm command can produce the following diagnostic message:

mm: no input file
None of the arguments is a readable file, and mm is not used as a filter.

MM(1) MM(1)

The checkmm command can produce the following diagnostic message:

Cannot open filename
The file(s) is unreadable. The remaining output of the program is
diagnostic of the source fde.

MMT(l)
MMT(l)

NAME
mmt, mvt - typeset documents, view graphs, and slides

SYNOPSIS

mmt [options] [files]

mvt [options] [files]

DESCRIPTION
These two commands are very similar to mm{ 1), except that they both typeset
their input via troffil), as opposed to formatting it via nroff \ mmt uses the MM
macro package, while mvt uses the Macro Package for View Graphs and Slides.
These two commands have options to specify preprocessing by fW(l) and/or
eqn(l). The proper pipelines and the required arguments and flags for troff (1)
and for the macro packages are generated, depending on the options selected.
Options are given below. Any other arguments or flags (for example, -rC3) are
passed to troff(1) or to the macro package, as appropriate. Such options can
occur in any order, but they must appear before the files arguments. If no
arguments are given, these commands print a list of their options.

-e Causes these commands to invoke eqn{\)\ also causes eqn to read
the /usr/pub/eqnchar file [see eqnchar{5)\.

-t Causes these commands to invoke tbl (I).
-Tvp Directs the output to a Versatec printer; this option is not available

at all sites.
-T4014 Directs the output to a Tektronix 4014 terminal via the rc(l) filter.
-Ttek Same as -T4014.
-a Invokes the -a option of troff(1).
-y Causes mmt to use the non-compacted version of the macros [see

/wn(5)]. No effect for mvt.

These commands read the standard input when - is specified instead of any file
names.

mvt is just a link to mmt.

HINT
Use the -olist option of troff(l) to specify ranges of pages to be output. Note,
however, that these commands, if invoked with one or more of the -e, -t, and -
options, together with the -olist option of troff{ 1) may cause a harmless
"broken pipe" diagnostic if the last page of the document is not specified in
list.

SEE ALSO
env(l), eqn(l), mm(l), tbl(l), tc(l), troff(l), profile(4), environ(5), mm(5),
mv(5).

- 1 -

MMT(1^ MMT(l)

DIAGNOSTICS
" m [m v] t : n o input file" if none of the arguments is a readable file and the

command is not used as a filter.

- 2 -

MORE(l) MORE(l)

NAME
more, page - text perusal

SYNOPSIS

more [-cdflsu] [- «] [+linenumber] [+/pattern] [name ...]

page [-cdflsu] [- «] [+ /] [+/pattern] [name ...]

DESCRIPTION
more and page display text a screenful at a time, page clears the screen before
each screenful; otherwise, page and more are identical. The rest of this
description uses more.
When the screen is full, more prints the string "--More--". If input is a file,
more indicates how much of the file has been read. To display the next
screenful, type a space. To display a list of commands, type an " h " .

more treats underlining and form feeds ("L) specially; otherwise it passes along
its input unmodified. If your terminal has an underline mode or some other
standout mode, more uses this mode to display underlined text. If a file begins
with a form feed, more clears the screen before displaying the file. Subsequent
form feeds cause more to pause.

If the standard output is not a terminal, more does not pause between screenfuls.

To make more pause in the middle of a screenful, type QUIT (normally code-\).
Some text is lost when you do this, and you may terminate whatever program is
piping to more.

These are the options.

-n Display n lines instead of a screenful.

-c Avoid scrolling, more begins each screenful at the top of the screen
and erases each line as it is needed.

-d Prompts user with "Hit space to continue, Rubout to abort" at the end
of each screenful.

-f Count file lines, rather than screen lines.

-1 No special treatment for form feeds.

-s Suppress all but one of each sequence of blank lines. Useful with
nroff.

-u No special handling of underlining.

+linenumber
Begin displaying the file at line number I.

MORE(l) MORE(l)

+/pattern
Search for pattern and begin displaying the file two lines before i t
Pattern is a regular expression; it follows the same rules as does a
search inex(l) .

If the program is invoked as page, then the screen is cleared before each
screenful is printed (but only if a full screenful is being printed), and k - 1 rather
than k - 2 lines are printed in each screenful, where k is the number of lines the
terminal can display.

To supply options automatically, put the options in the M O R E environment
variable. Here's an example for the Bourne Shell:

MORE = '-s -d'

more looks at the TERM environment variable to find what kind of terminal
you're using and at the TERMCAP environment variable to find how the
terminal works. If TERMCAP is not set, more examines /etc/termcap.

more resets terminal modes. This permits character (as opposed to line)
commands and limits echoing of commands.

more looks in the environment variable MORE to pre-set any flags desired. For
example, if you prefer to view files using the -c mode of operation, the csh
command setenv MORE -c or the sh command sequence MORE='-c ; export
MORE would cause all invocations of more , including invocations by programs
such as man and msgs , to use this mode. Normally, the user will place the
command sequence that sets up the MORE environment variable in the .cshrc or
.profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed
along with the --More- prompt This gives the fraction of the file (in
characters, not lines) that has been read so far.

Other sequences that may be typed when more pauses, and their effects, are as
follows (i is an optional integer argument defaulting to 1):

i <space>
display i more lines, (or another screenful if no argument is given)

"D display 11 more lines (a "scroll"). If i is given, then the scroll size is
set to i .

d same as "D (code-D)

iz same as typing a space except that i, if present, becomes the new
window size.

MORE(l) MORE(l)

i s skip i lines and print a screenful of lines

i f skip i screenfuls and print a screenful of lines

q or Q Exit from more.

= Display the current line number.

v Start up the editor vi at the current line.

h Help command; give a description of all the more commands.

i /expr search for the i-th occurrence of the regular expression expr. If there
are less than i occurrences of expr, and the input is a file (rather than a
pipe), then the position in the file remains unchanged. Otherwise, a
screenful is displayed, starting two lines before the place where the
expression was found. The user's erase and kill characters may be
used to edit the regular expression. Erasing back past the first column
cancels the search command.

i n search for the i -th occurrence of the last regular expression entered.

(single quotation mark) Go to the point from which the last search
started. If no search has been performed in the current file, this
command goes back to the beginning of the file.

! command
invoke a shell with command. The characters % and ! in "command"
are replaced with the current file name and the previous shell
command respectively. If there is no current file name, % is not
expanded. The sequences \% and \! are replaced by % and !,
respectively.

i :n skip to the i -th next file given in the command line (skips to last file if
n doesn't make sense)

j':p skip to the i -th previous file given in the command line. If this
command is given in the middle of printing out a file, then more goes
back to the beginning of the file. If i doesn't make sense, more skips
back to the first file. If more is not reading from a file, the bell is rung
and nothing else happens.

:f display the current file name and line number.

:q or :Q exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately; that is, it is not necessary to type a
carriage return. Up to the time when the command character itself is given, the

MORE(l) MORE(l)

user can press the line kill character to cancel the numerical argument being
formed. In addition, the user can press the erase character to redisplay the
-More~(xx%) message.

At any time when output is being sent to the terminal, the user can press the quit
key (normally codeA). more will stop sending output, and will display the usual
—More— prompt. The user can then enter one of the above commands in the
normal manner. Unfortunately, some output is lost when this is done because
any characters waiting in the terminal's output queue are flushed when the quit
signal occurs.

The terminal is set to noecho mode by this program so that the output can be
continuous. What you type will not show on your terminal, except for the / and
! commands.

If the standard output is not a teletype, then more acts just like cat, except that a
header is printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n | more -s

FILES
/etc/termcap

/usr/lib/more.help

Terminal database

Help file

SEE ALSO
csh(l), man(l), script(l), sh(l), termcap(4), environ(5).

MOUNT(IM) MOUNT(IM)

NAME
mount, umount - mount and unmount fde systems and remote resources

SYNOPSIS
/etc/mount

/etc/mount [-r] [-f fstyp] special directory

/etc/mount [-r] -f NFS t,options] special directory

/etc/mount [-r] [-c] -d resource directory

/etc/umount special

/etc/umount [-d] resource

DESCRIPTION
File systems other than root (/) are considered removable in the sense that they
can be either available to users or unavailable. The mount command announces
to the system that special (a block special device) or resource (a remote
resource) is available to users from the mount point directory. Note that
directory must already exist; it becomes the name of the root of the newly
mounted special or resource. A unique resource can be mounted only once (no
multiple mounts).

When invoked with no arguments, mount displays the entire mount table.
When entered with arguments, mount adds an entry to the table of mounted
devices, /etc/mnttab. The umount command removes the entry. If invoked with
any of the following partial argument lists, mount searches /etc/fstab for the
missing arguments: special, -d resource, directory, or -d directory.

The following options are available:

-v With no other arguments, prints a more verbose mount table
containing file system type identifier (S51K, DUFST, NFS); with
other arguments, print the fully expanded mount command before
mounting.

-r Indicates that special or resource is to be mounted read-only. If
special or resource is write-protected or read-only advertised, this
flag must be used.

-c Indicates that remote reads and writes should not be cached in the
local buffer pool, -c is used in conjunction with -d.

-d Indicates that resource is a remote resource to be mounted on
directory or unmounted. To mount a remote resource, Remote File
Sharing (RFS) or the Network File System (NFS) must be up and
running, and the resource must be advertised by a remote computer

MOUNT(IM) MOUKT(IM)

[see rfstart(1M) and adv{ 1M)]. If -d is not used, and this is not an
NFS mount, special must be a local block special device.

-ffstyp Indicates that fstyp is the file system type to be mounted. If this
argument is omitted, it defaults to the root fstyp.

If fstyp is NFS, NFS comma-separated options can be added after the fstyp. The
available NFS options follow:

soft Return error if the server doesn't respond.

rsize=n Set the read-buffer size to n bytes.

wsize=rc Set the write-buffer size to n bytes.

timeo=n Set the initial NFS timeout to n tenths of a second.

retrans=n Set the number of NFS retransmissions to n.

port=n Set the server P port number to n.

Indicates the block special device to be mounted on directory. If
fstyp is NFS, special should be of the form hostname:/pathname.

Indicates the remote resource name to be mounted on directory.

Indicates the directory mount point for special or resource. (The
directory must already exist.)

The umount command announces to the system that the file system previously
mounted special or resource is to be made unavailable. If invoked with an
incomplete argument list, umount searches /etc/fstab for the missing arguments.

Note that mount can be used by any user to list mounted file systems and
resources. Only the super-user can mount and unmount file systems.

FILES
/etc/mnttab mount table
/etc/fstab file system table

SEE ALSO
adv(lM), fuser(lM), mountd(lM), nfsd(lM), nsquery(lM), rfstart(lM),
rmntstat(lM), setmnt(lM), showmount(lM), unadv(lM), mount(2), umount(2),
fstab(4), mnttab(4).
S/Series CTIX Administrator's Guide.

DIAGNOSTICS
If the mount(2) system call fails, mount prints an appropriate diagnostic. The
mount command issues a warning if the file system to be mounted is currently
mounted under another name. A remote resource mount fails if the resource is
not available, or if it is advertised read-only and not mounted with -r, or if
Remote File Sharing is not running.

special

resource

directory

- 2 -

M O U N T (I M) M O U N T (I M)

The umount command fails if special or resource is not mounted or if it is busy.
special or resource is busy if it contains an open fde or some user's working
directory. In such a case, use fuser(1M) to list and kill processes using special
or resource.

WARNINGS
Physically removing a mounted file system diskette from the diskette drive
before issuing the umount command damages the file system.

MOUNT ALL(IM) MOUNT ALL(IM)

NAME
mountall, umountall - mount, unmount multiple file systems

SYNOPSIS
/etc/mountall [-] [file-system-table] . . .

/etc/umountall [-k]

DESCRIPTION
mountall is used to mount local file systems according to a file-system-table.
(/etc/fstab is the default file system table.) The special file name " - " reads
from the standard input. All remote RFS file systems can be mounted using
rmountall(lm) and remote NFS file systems mounted using nmountall(lm) .

Before each file system is mounted, it is checked using fsstat(\M) to see if it
appears mountable. If the file system does not appear mountable, it is checked,
using/sc£(lM), before the mount is attempted.

umountall causes all mounted file systems, both local and remote, except root
to be unmounted. The -k option sends a SIGKILL signal, via fuser(\M), to
processes that have files open. Although umountall handles remote file
systems, rumountall should be used for RFS and numountall used for NFS.

These commands may be executed only by the super-user.

FILES
File-system-table format:

column 1 Block special file name of file system,

column 2 Mount-point directory,

column 3 -r if to be mounted read-only; -d if remote,

column 4 (Optional) file system type string,

column 5+ Ignored.

White-space separates columns. Lines beginning with a pound sign (#) are
comments. Empty lines are ignored.

A typical file-system-table might read:

/dev/dsk/c1d0s2 Aisr -r S51K

SEE ALSO
fsck(lM), fsstat(lM), fuser(lM), mount(lM), signal(2).

MOUNTALL (1M) MOUNTALL (1M)

DIAGNOSTICS
No messages are printed if the file systems are mountable and clean.

Error and warning messages come from fsck(1M), fsstat(1M), and mount{\M).

BUGS
Care should be taken when using with remote file systems since the network
could be down or the host may be in or going to single-user mode where the
network has been dismantled.

MOUNTD(IM) (NFS Utilities) MOUNTD(IM)

NAME
mountd - NFS mount request server

SYNOPSIS
/etc/mountd

DESCRIPTION
mountd is an rpc server that answers file system mount and exported file system
information requests. It reads the file /etc/exports, described in exports(4), to
determine which file systems are available to which machines and users. It also
provides information as to which clients have file systems mounted. This
information can be printed using the showmount (1M) command.

mountd is started automatically when the system is booted if there is a zero-
length file /etc/rcopts/KNFS.

FILES
/etc/rc[23].d/S95nfs
/etc/rcopts/KNFS

SEE ALSO
exports(4), services(4), showmount(lM).

MVDIR(IM) MVDIR(IM)

NAME
mvdir - move a directory

SYNOPSIS
/etc/mvdir dirname name

DESCRIPTION
mvdir moves directories within a file system. Dirname must be a directory. If
name does not exist, it will be created as a directory. If name does exist,
dirname will be created as namel dirname. Dirname and name may not be on
the same path; that is, one may not be subordinate to the other. For example:

mvdir x/y x/z

is legal, but

mvdir x/y x/y/z

is not.

SEE ALSO
mkdir(l), mv(l).

WARNINGS
Only the super-user can use mvdir.

NAMED(IM) (CTIX Internetworking) NAMED(IM)

NAME
named - Internet domain name server

SYNOPSIS
named [-p port] [bootfile]

DESCRIPTION
The named (Berkeley Internet Name Domain, or BIND) server for distributed
database systems implements DARPA Internet domains. Its chief use is storing
and retrieving host names and addresses; therefore, it can be used as a
replacement for /etc/hosts [see hosts(4)]. Both named and the original host
lookup mechanism are supported under CTIX Internetworking.

The domain name server's great advantage over the original host lookup table
(/etc/hosts) and the get hosts (\ M) program is that it makes it unnecessary to
propagate copies of a single, master database for host name resolution over an
entire network. The original host lookup mechanism works well for a small,
single-domain network where a master database is easily maintained and
propagated from a central location. The advantage of named is seen in a large,
multiple-domain network where machines cross organizational boundaries.
Thus, a network configuration using named is appropriate in the following
network situations:

• Where the configuration changes often (say, once a week).

• Where it is difficult to maintain centralized control over the network.

• Where DARPA RFC compliance is required.

Options are interpreted as follows:

-p port Use port rather than the port specified in /etc/services.

bootfile Use bootfile rather than /usr/local/domain/named.boot (the
default) for named's boot-time information.

The Domain Name Space
The named server allows the entire name space to be partitioned into a tree-like
structure of domains. A domain is a basic indivisible entity containing a set of
hosts administered by the same authority.

The domain name is a dot-separated list of the domains from the current domain
to the root, ordered from left to right. (Each domain name above the current
domain in the dot-separated list is given as the left-most qualifier of its own full
domain name. For example, if the nodes in the tree from the current node to the
root are Sales, MySite, and COM, the domain name is Sales.MySite.COM,
not Sales.MySite.COM.MySite.COM.COM.) The host name consists of

NAMED(IM) (CTIX Internetworking) NAMED(IM)

the domain name with an additional qualifier, signifying the host, appended to
the left side: for example, jack.Sales.MySite.COM. A host name need only
be unique within the current domain.

Conceptually, each domain names a set of information, and query operations
are attempts to extract specific types of information from a particular set A
query specifies the domain of interest and the type of resource information that
is desired. For example, the ARPA Internet uses some of its domain names to
identify hosts; queries for address resources return ARPA Internet host
addresses. Note that domain names are not required to have a one-to-one
correspondence with host names, host addresses, or any other type of
information.

Note that the the term domain has a different meaning in the Internet name
server context from its meaning in the Remote File Sharing context. For an
explanation of domain as it is used in connection with Remote File Sharing, see
the S/Series CTIX Administrator s Guide.

Name Server Functions and Types
Name servers are programs that hold information about the domain's tree
structure and associated information (addresses, resources, and so forth). A
name server may cache information about any part of the domain tree, but in
general a particular name server has complete information about a subset of the
domain space, and pointers to other name servers that can lead to information
about any part of the domain tree. Name servers know the parts of the domain
tree for which they have complete information: these parts are called zones. A
name server is an authority for these parts of the name space. A zone can be as
small as a single domain or as large as an extensive subhierarchy of the total
domain name space. The important distinction here is that a zone is the
authoritative unit for a particular server. In effect, the division of the name
space into zones allows the grouping of domains into larger units for the
purpose of reducing the number of authoritative servers. A zone is named after
the highest level domain in i t

There are two basic types of servers:

1 Master server. A master server is an authority for a zone. A primary
master maintains the database for its zone of authority on disk. There
can be multiple primary masters for a zone, but the benefits of such a
configuration must be weighed against the risk of introducing
inconsistencies into the database.

In addition to a primary master, each zone should have at least one
secondary master. A secondary master is also an authority for the
zone. Its authority is delegated by the primary master, and it receives

- 2 -

NAMED(IM) (CTIX Internetworking) NAMED(IM)

its data from the primary: At boot time a secondary master requests all
the data for the zone; the data is loaded into memory, and the
secondary server then periodically checks with the primary server to
see if it needs to update its cache. (The frequency of periodic refresh
checks is configurable, as described below in the "Standard Resource
Record Format" description.)

A master server can be primary for one zone and secondary for
another.

The concept of primary and secondary servers applies also to the
special domain, IN-ADDR.ARPA, discussed below.

2 Caching Only server. Any machine that actually runs named locally is
running a caching server, since the server caches the information it
receives until the data expires (data expiration is determined by the
time to live field attached to the data when it is received).

A Caching Only server is a server that is not authoritative for any part
of the name space but services queries and asks other servers who have
the authority for the information needed.

A host does not need to run the name server to run all the networking programs
that use the name server: a workstation or other machine with limited memory
and CPU can be a serverless node. This option allows all queries to be serviced
by a remote name server (that is, a name server running on another machine on
the network).

Resolvers
Resolvers are routines that extract information from name servers in response to
user program requests: these routines are used specifically for making, sending,
and interpreting packets to Internet domain name servers [see resolver(3)].
Resolvers must be able to access at least one name server and use that name
server's information to answer a query directly, or pursue the query using
referrals to other name servers.

The IN ADDR.ARPA Domain
User programs extract information from servers with either a name or an
address as a key. Since Internet addresses are organized as a hierarchy that is
separate from the host name space hierarchy (which is the fundamental domain
hierarchy), name server operations need a mechanism for mapping between the
two hierarchies. This mechanism is provided by inverse mapping, and it uses
the IN-ADDR.ARPA domain as a special domain for mapping addresses to
names. An Internet address suffixed by a IN-ADDR.ARPA label specifies the
reversal of the address for inverse mapping purposes and signifies its location in

NAMED(IM) (CTIX Internetworking) NAMED(IM)

the IN-ADDR.ARPA domain. For example, the Internet address 45.0.0.7 is
located in the domain 7.0.0.45.IN-ADDR.ARPA, Note that all four octets must
be specified, even if an octet is zero.

IN-ADDR.ARPA domains have primary and secondary servers that are
authoritative for these special domains.

Inverse mapping is discussed below in relation to the named.boot file, the
hosts.rev file, and PTR record type.

Configuration Files
named uses several configuration files to load its data. Any machine running a
server locally must configure each type of file except for the hosts file, which is
configured only on a primary server, and the IN-ADDRARPA database file. The
set of entries for a file depends on whether the server is a primary server, a
secondary server, or a caching only server. A remote server configuration is a
special case: a serverless node needs only one configuration file,
/usr/local/domain/resolv.conf.

The boot file and the resolver file (resolv.conf) have their own formats for data.
All other files use the "Standard Resource Record Data" format, which is
described in a separate subsection below.

Discussions that follow refer to a sample configuration in which MySite.COM
is the root domain (MySite is not on the DARPA Internet in this example); there
are four subdomains under the root domain (Sales, Marketing, Finance, and
Training); and there are also hosts (leaves) in a corporate unit in the root
domain. Any of the four subdomains could have subordinate subdomains, but
in this example they do not. Complete examples are given under EXAMPLES
below.

Boot File
Each machine running the name server reads its boot file when it first
comes up. By default, the name of the boot file is
/usr/local/domain/named.boot, but a different file name can be specified
as a parameter to named. The boot file tells the server what type of server
it is, which zones it has authority over, and where to get its initial data.

Entries in the boot file are as follows:

Domain:
The line in the boot file that specifies the default domain consists of two
fields: the keyword domain and the domain name, as shown below:

domain Sales.MySite.COM

NAMED(IM) (CTIX Internetworking) NAMED(IM)

When the name server receives a query for a name without a dot (.) , it
appends the domain name string, as specified in this entry, to the name.
The domain entry is specified in every boot fde. If more than one domain
entry is specified, each domain is tried in the order given.

Sortlist:
The line in the boot fde that specifies a preferential order for sorting
addresses (in the case of a machine that has multiple interfaces) consists of
two fields: the keyword sortlist and a list of the network numbers in order
of priority, starting with the highest priority, as shown below:

sortlist 3.0.0.0 128.1.0.0

This entry is required only if you want to control the order that addresses
are returned from the name server.

Primary Master:
The line in the boot file that specifies that the current host is a primary
master for a domain or zone consists of three fields: the keyword
primary, the domain name for which it is authoritative, and the file from
which host data is read (by convention, /usr/local/domain/named.hosts),
as shown below:

primary Sales.MySite.COM /usr/local/domain/named.hosts

This entry appears only in the boot file for a server that is a primary master
for a domain or zone.

Secondary Master:
The line in the file that specifies that the current host is a secondary master
for a domain or zone consists of three fields: the keyword secondary, the
domain name for which it is authoritative, and a list of the network
addresses for the name servers that are primary for the domain or zone, as
shown below:

secondary Sales.MySite.COM 3.0.0.24 3.0.0.94

Addresses are tried in successive order. (In the above example, the
machine that has this boot file might have the Internet domain name
jack.Sales.MySite.COM.)

Secondary entries can also list local disk files containing backup
information to be used in the event that none of the specified addresses can
be reached, named periodically dumps its information into such a backup
file: if a disk file is used by the secondary server when it boots, the server
gets refreshes when one of the addresses becomes reachable. For example,
the following entry specifies that named should dump the hosts file to

NAMED(IM) (CTIX Internetworking) NAMED(IM)

/usr/local/domain/hosts.bak and should use this file if it cannot reach
either of the two authoritative servers to obtain its zone information:

secondary Sales.MySite.COM 3.0.0.24 3.0.0.94
/usr/local/domain/hosts.bak

This entry appears only in a boot file for a server that is a secondary master
for a domain or zone.

Cache:
The line in the boot file that specifies the file containing the server's initial
cache information (to prime the cache) consists of three fields: the
keyword cache, a dot (.) (which denotes the current machine), and the file
name of the cache file (by convention, /usr/local/domain/named.ca), as
shown below:

cache /usr/local/domain/named.ca

This entry is specified in every boot file. What distinguishes a boot file for
a Caching Only server is the absence of primary and secondary master
entries, except for the loopback entry described immediately below.

Local Loopback:
The line in the file that specifies that the current host is a primary server
for its own loopback address consists of three fields: the keyword
primary, the address of the loopback in the IN-ADDR.ARPA domain (the
address 0.0.127.IN-ADDR.ARPA), and the name of the localhost file (by
convention, /usr/local/domain/named.local), as shown below:

primary 0.0.127.IN-ADDR.ARPA /usr/local/domain/named.local

This entry is specified in every boot file.

Primary/Secondary Master for IN-ADDRARPA Domain:
IN-ADDR.ARPA domains, used for host information lookups where the
address rather than the host name is given as a key, require primary and
secondary master servers. An entry for a primary server consists of three
fields: the keyword primary, the IN-ADDR.ARPA domain, and the name
of the file containing the reverse lookup database for this IN-ADDR.ARPA
domain, as shown below:

primary 0.0.3.IN-ADDR.ARPA /usr/local/domain/hosts.rev

An entry for a secondary server specifies secondary instead of primary,
the IN-ADDR.ARPA domain, and one or more addresses of primary IN-
ADDR.ARPA servers. A backup file may also be specified (see the
discussion above about secondary entries with backup file specifications).

NAMED(IM) (CTIX Internetworking) NAMED(IM)

Cache Initialization File
Each machine running the name server primes its cache with information
about the root authoritative servers for the network with data specified in
the cache initialization fde. (By convention, this file is
/usr/local/domain/named.ca; the file name is specified in the boot file, as
described above.) The root servers are at the top of the tree, and any part
of the tree can be accessed via these root servers. Information about these
authorities includes their names and network addresses and a time Jo Jive
(data expiration) specification. The time Jo Jive value is normally set
high enough to exclude any possibility of the data expiring. This file uses
the Standard Resource Record Data format.

The cache initialization file should be identical for all servers whose root
authority is the same.

Localhost File
This file specifies the address for the local loopback interface, better
known as the localhost with the network address 127.0.0.1. (By
convention, this file is named /usr/local/domain/named.local; the file
name is specified in the boot file, as described above.) This file uses the
Standard Resource Record Data format.

Hosts File
This file contains complete host address and resource information about
the zone for which a master server is authoritative. Only a primary master
server keeps this file on disk: other authoritative servers for the zone
cache this information. (By convention, this file is named
/usr/local/domain/named.hosts; the file name is specified in the boot file
for a primary master, as described above.) This file uses the Standard
Resource Record Data format.

IN-ADDR.ARPA Database File
This file contains information about the IN-ADDR. ARPA domain, which is
a special domain for allowing address to name mapping. (By convention,
this file is named /usr/local/domain/hosts.rev; the file name is specified
in the boot file for a server that is primary for an IN-ADDR. ARPA domain.)

(Refer to the discussion about this domain above and to the complete
example file under EXAMPLES below.) This file uses the Standard
Resource Record Data format.

NAMED(IM) (CTIX Internetworking) NAMED(IM)

Serverless Node Configuration File
The only configuration file used by a serverless node is
/usr/local/domain/resolv.conf. The file specifies the name servers on the
network that service queries for this node. The format of the file is a line
specifying the domain, as shown below:

domain MySite.COM

and a line with the keyword nameserver and that server's address for each
remote server that handles queries, as shown below:

nameserver 3.0.0.11
nameserver 3.0.0.18

This file is read when gethostbyname or gethostbyaddr [see
gethostbyname (3)] is called.

There should not be a resolv.conf file on a host running a name server.

Standard Resource Record Data Format
The records in the name server data files are called resource records. The
Standard Resource Record Data format (RR) is specified in RFC882 and RFC973.
The following is a general description of these records:

{name} {ttlj addr-class Record Type Record_Specific_data

Resource records have a standard format shown above. The first field is always
the name of the domain record. For some RRs the name may be left blank; in
that case it takes on the name of the previous RR. The second field is an
optional time to live field. This specifies how long this data is stored in the
database. By leaving this field blank the default time to live is specified in the
Start Of Authority resource record (see below). The third field is the address
class; use IN for Internet addresses. The fourth field states the type of the
resource record. The fields after that are dependent on the type of the RR. Case
is preserved in names and data fields when loaded into the name server. All
comparisons and lookups in the name server data base are case insensitive.

The following characters have special meanings:

A free standing dot in the name field refers to the current domain. The
origin is appended to a free-standing dot (see below).

@ A free standing @ in the name field denotes the current origin.

NAMED(IM) (CTIX Internetworking) NAMED(IM)

\X Where X is any character other than a digit (0 through 9), quotes that
character so that its special meaning does not apply. For example,
" \ l . " can be used to place a dot character in a label.

\DDD Where each D is a digit, is the octet corresponding to the decimal
number described by DDD. The resulting octet is assumed to be text
and is not checked for special meaning.

() Parentheses are used to group data that crosses a line. In effect, line
terminations are not recognized within parentheses. Note that the left
and right parentheses must each be preceded by a space, as shown in
the examples.

; Semicolon starts a comment; the remainder of the line is ignored.

* An asterisk signifies wildcarding.

Most resource records have the current origin appended to names if they are not
terminated by a " . " . This is useful for appending the current domain name to
the data, such as machine names, but may cause problems where you do not
want this to happen. A good rule of thumb follows: if the name is not in of the
domain for which you are creating the data file, end the name with a " . " .

$INCLUDE

An include line begins with $INCLUDE, starting in column 1, and is followed
by a fde name. This feature is particularly useful for separating different types
of data into multiple files. For example,

{INCLUDE /usr/named/data/mailboxes

The line would be interpreted as a request to load the file
/usr/named/data/mailboxes. The $INCLUDE command does not cause data to
be loaded into a different zone or tree. This is simply a way to allow data for a
given zone to be organized in separate files. For example, mailbox data might
be kept separately from host data using this mechanism.

$ORIGIN

The origin is a way of changing the origin in a data file. The line starts in
column 1, and is followed by a domain origin. This is useful for putting more
then one domain in a data file. If origin is not specified in a Resource Record
Data file, the origin is taken from the boot file.

NAMED(IM) (CTIX Internetworking) NAMED(1M)

SOA - Start Of Authority

name {ttl}
@

addr-
class
IN

SOA Origin

SOA
1.1
3600
300
3600000
3600)

hub.MySite.COM
Serial
Refresh every hour
Retry
Expire
Minimum

Person
in charge
jack.hub.MySite.COM. (

The Start of Authority, SOA, record designates the start of a zone. The name is
the name of the zone; origin is the name of the host on which this data file
resides; person in charge is the mailing address for the person responsible for
the name server [note that a dot (.) rather than an at sign (@) is used in the
mailing address). The serial number is the version number of this data file; this
number should be incremented whenever a change is made to the data. The
name server cannot handle numbers over 9999 after the decimal point. The
refresh indicates how often, in seconds, a secondary name server is to check
with the primary name server to see if an update is needed. The retry indicates
how long, in seconds, a secondary server is to retry after a failure to check for a
refresh. Expire is the upper limit, in seconds, that a secondary name server is to
use the data before it expires for lack of getting a refresh. Minimum is the
default number of seconds to be used for the time to live field on resource
records. There should only be one SOA record per zone.

NS - Name Server

{name} {ttl} addr-class NS Name servers name
Sales IN NS jack.Sales.MySite.COM.

The Name Server record, NS, lists a name server responsible for a given
domain: the name server specified is generally a server responsible for a
subdomain (this occurs, for example, in the hosts file) or the root (for example,
in the cache file). The first name field lists the domain that is serviced by the
listed name server. There should be one NS record for each primary and each
secondary master server for the domain. Precedence should be given to a more
reliable server: that is, of several servers for a given domain, list them in order
of reliability.

- 1 0 -

NAMED(IM) (CTIX Internetworking) NAMED(IM)

A - Address

{name} {ttl}
hub. MySite

addr-class
IN
IN

A address
A 3.0.0.18
A 128.1.0.12

The Address record, A, lists the address for a given machine; the name field
specifies the machine name; and the address is the network address. There
should be one A record for each address of the machine.

HINFO - Host Information

{ n a m e } { t t l } a d d r - H I N F O H a r d w a r e OS

Host Information resource record, HINFO, is for host specific data. This lists
the hardware and operating system that are running at the listed host. It should
be noted that only a single space separates the hardware info and the operating
system info. If you want to include a space in the machine name, you must
enclose the name in quotation marks. There should be one HINFO record for
each host.

WKS - Well Known Services

{name} {ttl} addr- W^S address protocol list of

The Well Known Services record, WKS, describes the well-known services
supported by a particular protocol at a specified address. The list of services
and port numbers come from the list of services specified in /etc/services.
There should be only one WKS record per protocol per address.

c l a s s
IN HINFO S/MT CTIX

class
IN WKS 3.0.0.11 UDP
IN WKS 3.0.0.11 TCP

services
who route tftp
(echo telnet
discard
daytime
chargen ftp
time finger
smtp domain)

- 11 -

NAMED(IM) (CTIX Internetworking) NAMED(1M)

CNAME - Canonical Name

a l i a s e s { t i l } a d d r - c l a s s C N A M E C a n o n i c a l name
PR IN CNAME Salee

Canonical Name resource record, CNAME, specifies an alias for a canonical
name. An alias should be unique and all other resource records should be
associated with the canonical name and not with the alias. Do not create an
alias and then use it in other resource records.

PTR - Domain Name Pointer

name { t t l } a d d r - P T R real name c l a s s
22 IN PTR pek.Salm.MySite.COM.

A Domain Name Pointer record, PTR, allows special names to point to some
other location in the domain. The above example of a PTR record is used in
setting up reverse pointers for the special IN-ADDR .ARPA domain. This line is
from the example hosts.rev file. PTR names should be unique to the zone.

MB - Mailbox

name {ttl} addr-class MB Machine
ida IN MB Bill.YourSite.COM.

MB is the Mailbox record. This lists the machine where a user wants to receive
mail. The name field is the users login; the machine field denotes the machine
to which mail is to be delivered. Mail Box names should be unique to the zone.

MR - Mail Rename Name

name {ttl} addr-class MR corresponding MB
Postman IN MR ira

Mail Rename, MR, can be used to list aliases for a user. The name field lists the
alias for the name listed in the fourth field, which should have a corresponding
MB record.

MINFO - Mailbox Information

name {ttl} addr-class MINFO requests
g r p 1 IN M I N F O g r p l - R E Q U E S T

Mail Information record, MINFO, creates a mail group for a mailing list. This
resource record is usually associated with a mail group Mail Group, but can be
used with a Mail Box record. The name specifies the name of the mailbox; the
requests field is where mail such as requests to be added to a mail group should

- 12 -

NAMED(IM) (CTIX Internetworking) NAMED(1M)

be sent; the maintainer is a mailbox that should receive error messages. This is
particularly appropriate for mailing lists when errors in members names should
be reported to a person other than the sender.

MG - Mail Group Member

{mail group name} {ttl} addr- MG member
class name
IN MG Roy

Mail Group, MG, lists members of a mail group. An example for setting up a
mailing list follows:

IN MINFO grpl-Requestkp. MySite. COM.
IN MG Joe. Sales.MySite. COM.
IN MG Harry.Sales.MySite.COM.
IN MG Jim .Marketing.MySite.COM.
IN MG Nancy.Marketing.MySite.COM
IN MG Bob.pa.Xerox.COM.

MX - Mail Exchanger

name {ttl} addr- MX preference mailer
class value exchanger

*. x25.COM. IN MX 0 mail-gateway.COM.

Mail Exchanger records, MX, are used to specify a machine that knows how to
deliver mail to a machine that is not directly connected to the network. In the
example above, mail-gateway. COM is a mail gateway that knows how to
deliver mail to x25.COM, which contains hosts the other machines on the
network can not access directly. These machines may have a private
connection or use a different transport medium. The preference value is the
order that a mailer should follow when there is more then one way to deliver
mail to a single machine. See RFC974 for more detailed information.

Wildcard names containing the asterisk character (*) may be used for mail
routing with MX records. There are likely to be servers on the network that
simply state that any mail to a domain is to be routed through a relay.

FILES
/etc/hosts
/usr/local/domain/hosts.rev
/etc/named
/usr/local/domain/named.boot
/usr/local/domain/named.ca
/usr/local/domain/named.hosts

- 1 3 -

NAMED(IM) (CTIX Internetworking) NAMED(1M)

/usr/local/domain/named.local
/usr/local/domain/named.pid Process ID for named written to this file when

named is started; used by programs that send
signals to named.

/etc/rcopts/NETD Starts named at boot time,
/usr /local/domain/resolv .conf

SEE ALSO
gethostbyname(3), resolver(3), hosts(4), services(4).
CTIX Network Administrator's Guide.

NOTES
The following signals have the specified effect when sent to the server process
using the kill{\) command.

SIGHUP Causes server to read named.boot and reload database.

SIGINT Dumps current data base and cache to /usr/tmp/named_dump.db

EXAMPLES

Boot file, /usr/local/domain/named.boot, for a primary master server:

; Boot file for primary name server
; Note that there should be one primary entry for each SOA record

type domain source file or host

domain MySite.COM
sortlist 3.0.0.0 128.1.0.0
primary MySite.COM /usr/loca l/domain/named. hosts
cache /usr/local/domain/named.ca
primary 0.0.3.IN-ADDR.ARPA /usr/loca l/domain/hosts.rev
primary 0.0.127.IN-ADDR. ARPA /usr/local/domain/named.local

Boot file, /usr/local/domain/named.boot, for a secondary master server:

; Boot file for secondary name server
; Note that there should be one primary entry for each SOA record

; type domain source file or host

domain MySite.COM
secondary MySite.COM 3.0.0.18 3.0.0.14

- 14-

NAMED(IM) (CTIX Internetworking) NAMED(1M)

cache
secondary
primary

0.0.3.IN-ADDR.ARPA
0.0.127.IN-ADDR.ARPA

/usr/loca l/domain/hosts.bak
/usr/loca l/domain/named.ca
3.0.0.18 3.0.0.14
/usr/loca l/domain/named.local

Boot file for caching only server:

Boot file for caching only server

type

domain
cache
primary

domain

MySite.COM

0.0.127.IN-ADDR. ARPA

source file or host

/usr/loca l/domain/named.ca
/usr/iocal/domain/named. local

Serverless node configuration file, /usr/local/domain/resolv.conf:

domain MySite.COM
nameserver 3.0.0.18
nameserver 3.0.0.14

The hosts file, /usr/local/domain/named.hosts, for the MySite.

@ IN SOA hub.MySite.COM. jack.hub.MySite.
1 .1 ; Serial
3600 ; Refresh every hour
300 ; Retry
3600000 ; Expire
3600) ; Minimum

pub IN A 128.1.0.15
IN HINFO S/220

public IN CNAME pub
exec IN A 128.1.0.16

IN HINFO S/320
localhost IN A 127.1
Finance. IN NS gj.Finance.MySite.COM

IN NS pk.Finance.Mysite.COM
gj.Finance IN A 3.0.0.57

IN HINFO S/640 CTIX
pk.Finance IN A 3.0.0.46

IN HINFO S/220 CTIX
Sales. IN NS jack.Sales.MySite.COM

- 1 5 -

NAMED(IM) (CTIX Internetworking) NAMED(1M)

IN NS east.Sales.Mysite.COM
jack.Sales IN A 3.0.0.22

IN HINFO S/640 CTIX
east.Sales IN A 3.0.0.32

IN HINFO S/220 CTIX
Training. IN NS nh.Training.MySite.COM

IN NS tom.Training.Mysite.COM
nh.Training IN A 3.0.0.41

IN HINFO S/MT CTIX
tom.Training IN A 3.0.0.42

IN HINFO S/320 CTIX
Marketing. IN NS po.Marketing.MySite.COM

IN NS ja.Marketing.Mysite.COM
po.Marketing IN A 3.0.0.65

IN WKS 3.0.0.65 UDP who route tftp
IN WKS 3.0.0.65 TCP (echo telnet

discard daytime
chargen ftp
time finger smtp
domain)

IN HINFO S/MT CTIX
ja.Marketing IN A 3.0.0.66

IN HINFO S/MT CTIX
grp1 IN MINFO grpl-REQUEST pk.YourSite.COM.

IN MG Joe.Sales.MySite.COM.
IN MG Harry.Sales.MySite.COM.
IN MG Jim.Marketing.MySite.COM.
IN MG Nancy.Marketing.MySite.COM.
IN MG Bob.pa.Xerox.COM.

* .x25.COM. IN MX 0 mail-gateway.COM.
Postman IN MR ira

Cache file, /usr/local/domain/named.ca, for
not on the DARPA Internet).

; initial cache data for root domain servers

99999999 IN NS
99999999 IN NS

; Prep the cache (hardwire the addresses)
hub.MySite.COM. 99999999 IN A

all machines on the local internet (that is,

hub.MySite.COM.
jet.MySite.COM.

3.0.0.18

- 1 6 -

NAMED(IM) (C T I X I n t e r n e t w o r k i n g) NAMED(1M)

99999999 IN A 128.1.0.12
jet.MySite.COM. 99999999 IN A 3.0.0.14

Cache file, /usr/local/domain/nanied.ca, for machines on the DARPA

; Initial cache data for root domain servers

j
99999999 IN NS USC-ISIB.ARPA.
99999999 IN NS BRL-AOS.ARPA.
99999999 IN NS SRI-NIC.ARPA.

; Prep the cache (hardwire the addresses)
SRI-NIC.ARPA. 99999999 IN A 10.0.51
USC-ISIB.ARPA. 99999999 IN A 10.3.0.52
USC-ISIC.ARPA. 99999999 IN A 10.0.0.52
BRL-AOS.ARPA. 99999999 IN A 128.20.1.2
BRL-AOS.ARPA. 99999999 IN A 192.5.22.82

Localhost file, /usr/local/domain/named.local:

@ IN SOA jack.Sales.MySite.COM.
1 .1 ; Serial
3600 ; Refresh every hour
300 ; Retry
3600000 ; Expire
3600) ; Minimum

1 IN PTR localhost.

jack.hub.MySite.COM. (

One-level IN-ADDR.ARPA domain file, /usr/local/domain/hosts.rev (if there were
subdomains, there would be an NS record in this file):

SORIGIN 3.IN-ADDR.ARPA

@ IN SOA hub.MySite.COM.
1 .1 ; Serial
3600 ; Refresh every hour
300 ; Retry
3600000 ; Expire
3600) ; Minimum

14 IN PTR hub.MySite.COM.
18 IN PTR jet.MySite.COM.
57 IN PTR gj.Finance.MySite.COM.
46 IN PTR pk.Finance.MySite.COM.
22 IN PTR jack.Sales.MySite.COM.

jack.hub.MySite.COM. (

- 17-

NAMED(IM) (CTIX Internetworking) NAMED(1M)

32 IN PTR east.Sales.MySlte.COM.
41 IN PTR nh.Tralnlng.MySite.COM.
42 IN PTR tom.Training.MySite.COM.
65 IN PTR po.Marketing.MySite.COM.
66 IN PTR ja.Marketing.MySite.COM.
47 IN PTR gem.Sales.MySite.COM.
51 IN PTR zorba.Sales.MySite.COM.
62 IN PTR forecast.Sales.MySite.COM.
63 IN PTR news.Finance.MySite.COM.
64 IN PTR Personnel.Training.MySite.COM.
71 IN PTR west.Sales. MySite.COM.
74 IN PTR flora.Marketing.MySite.COM.

- 1 8 -

NAWK(l) NAWK(1)

NAME
nawk - pattern scanning and processing language

SYNOPSIS

nawk [-F re] [parameter...] ['prog'] [-f progfile] [file...]

DESCRIPTION
The nawk command is a new version of awk that provides capabilities
unavailable in previous versions. This version will become the default version
of awk in the next major UNIX system release.
The -F re option defines the input field separator to be the regular expression
re.

Parameters, in the form x=... y=... can be passed to nawk, where x and y are
nawk built-in variables (see list below).

nawk scans each input file for lines that match any of a set of patterns specified
in prog. The prog string must be enclosed in single quotation marks (') to
protect it from the shell. For each pattern in prog there may be an associated
action performed when a line of a file matches the pattern. The set of pattern-
action statements may appear literally as prog or in a file specified with the -f
progfile option.

Input files are read in order; if there are no files, the standard input is read. The
file name - means the standard input. Each input line is matched against the
pattern portion of every pattern-action statement; the associated action is
performed for each matched pattern.

An input line is normally made up of fields separated by white space. (This
default can be changed by using the FS built-in variable or the -F re option.)
The fields are denoted $1, $ 2 , . . . ; $0 refers to the entire line.

A pattern-action statement has the following form:

pattern { action }

Either pattern or action can be omitted. If there is no action with a pattern, the
matching line is printed. If there is no pattern with an action, the action is
performed on every input line.

Patterns are arbitrary Boolean combinations (!, | | , &&, and parentheses) of
relational expressions and regular expressions. A relational expression is one of
the following:

expression relop expression
expression matchop regular expression

NAWK(l) NAWK(1)

where a relop is any of the six relational operators in C, and a matchop is either
' (contains) or ! ~ (does not contain). A conditional is an arithmetic
expression, a relational expression, the special expression var in array," or a
Boolean combination of these.

The special patterns BEGIN and END can be used to capture control before the
first input line has been read and after the last input line has been read
respectively.

Regular expressions are as in egrep [see grep(Y)\. In patterns they must be
surrounded by slashes. Isolated regular expressions in a pattern apply to the
entire line. Regular expressions may also occur in relational expressions. A
pattern may consist of two patterns separated by a comma; in this case, the
action is performed for all lines between an occurrence of the first pattern and
the next occurrence of the second pattern.

A regular expression can be used to separate fields by using the -F re option or
by assigning the expression to the built-in variable FS. The default is to ignore
leading blanks and to separate fields by blanks and/or tab characters. However,
if FS is assigned a value, leading blanks are no longer ignored.

Other built-in variables include:

ARGC command line argument count

ARGV command line argument array

FILENAME name of the current input file

FNR ordinal number of the current record in the current file

FS input field separator regular expression (default blank)

NF number of fields in the current record

NR ordinal number of the current record

OFMT output format for numbers (default %.6g)

OFS output field separator (default blank)

ORS output record separator (default new-line)

RS input record separator (default new-line)

An action is a sequence of statements. A statement may be one of the
following:

if (conditional) statement [else statement]
while (conditional) statement
do statement while (conditional)

NAWK(l) NAWK(1)

for (expression ; conditional; expression) statement
for (var in array) statement
delete array[subscript]
break
continue
{ [statement] . . . }
expression # commonly variable = expression
print [expression-list] [e x p r e s s i o n]
printf format [, expression-list] [e x p r e s s i o n]
next # skip remaining patterns on this input line
exit [expr] # skip remaining input; exit status is expr
return [expr]

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole input line. Expressions take on string or
numeric values as appropriate, and are built using the operators +, -, *, /, %,
and concatenation (indicated by a blank). The C operators ++, - -, +=, -=, *=,
/=, and %= are also available in expressions. Variables may be scalars, array
elements (denoted x[i]), or fields. Variables are initialized to the null string or
zero. Array subscripts can be any string, not necessarily numeric; this allows
for a form of associative memory. String constants are quoted (") .

The print statement prints its arguments on the standard output, or on a file if
expression is present, or on a pipe if I cmd is present. The arguments are
separated by the current output field separator and terminated by the output
record separator. The printf statement formats its expression list according to
the format [see printfi3S)].

nawk has a variety of built-in functions: arithmetic, string, input/output, and
general.

The arithmetic functions are: atan2, cos, exp, int, log, rand, sin, sqrt, and srand.
int truncates its argument to an integer, rand returns a random number between
0 and 1. srand (expr) sets the seed value for rand to expr or uses the time of
day if expr is omitted.

The string functions are:

gsubifor, repl, in)
behaves like sub (see below), except that it replaces
successive occurrences of the regular expression (like the ed
global substitute command).

index(s, t) returns the position in string s where string t first occurs, or 0
if it does not occur at all.

NAWK(l) NAWK(1)

length (s) returns the length of its argument taken as a string, or of the
whole line if there is no argument

match(s, re) returns the position in string s where the regular expression re
occurs, or 0 if it does not occur at all. RSTART is set to the
starting position (which is the same as the returned value),
and RLENGTH is set to the length of the matched string.

split(s, a,fs) splits the string s into array elements a[7], a[2], a[n], and
returns n. The separation is done with the regular expression
f s or with the field separator FS i f f s is not given.

sprintfifmt, expr, expr,...)
formats the expressions according to the printf(3S) format
given by fmt and returns the resulting string.

subtfor, repl, in) substitutes the string repl in place of the first instance of the
regular expression for in string in and returns the number of
substitutions. If in is omitted, nawk substitutes in the current
record ($0).

substr{s, m, n) returns the n-character substring of s that begins at position
m.

The input/output and general functions are:

close {filename) closes the file or pipe named filename.

cmd\ getline pipes the output of cmd into getline; each successive call to
getline returns the next line of output from cmd.

getline sets $0 to the next input record from the current input file.

getline <file sets $0 to the next record from file.

getline var sets variable var instead.

getline var <file sets var from the next record affile.

system{cmd) executes cmd and returns its exit status.

All forms of getline return 1 for successful input, 0 for end of file, and -1 for an
error.

nawk also provides user-defined functions. Such functions can be defined (in
the pattern position of a pattern-action statement) as

function name(args,...) { stmts)
func name(args,...) { stmts }

NAWK(l) NAWK(1)

Function arguments are passed by value if scalar and by reference if array
name. Argument names are local to the function; all other variable names are
global. Function calls may be nested and functions may be recursive. The
return statement can be used to return a value.

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ",[\t]"|[\t]+" }
{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1}

END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{for (i = NF; i > 0; --i) print $ i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

Simulate echo{\):

BEGIN {
for (i = 1; I < ARGC; i++)
printf "%s", ARGV[i]
printf "\n"
exit }

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++;}
{ print}

NAWK(l) NAWK(1)

Command line:

nawk -f program n=5 Input

SEE ALSO
grep(l), lex(l), sed(l), printf(3S).
UNIX System VRelease 3.2 Programmer's Guide.

BUGS
Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number, add 0 to it; to force it to be treated as a
string, concatenate the null string (" ") to it.

NCHECK(IM) NCHECK(IM)

NAME
ncheck - generate path names from i-numbers

SYNOPSIS

/etc/ncheck [-i i-numbers] [-a] [-s] [file-system]

DESCRIPTION
ncheck with no arguments generates a path-name vs. i-number list of all files on
a set of default file systems (see I etc! checklist). Names of directory files are
followed by /..

The options are as follows:

-i Limits the report to only those files whose i-numbers follow.

-a Allows printing of the names . and .., which are ordinarily suppressed.
-s Limits the report to special fdes and fdes with set-user-ID mode. This

option can be used to detect violations of security policy.

File system must be specified by the file system's special file.

The report should be sorted so that it is more useful.

SEE ALSO
bcheck(lM), fsck(lM), sort(l).

DIAGNOSTICS
If the file system structure is not consistent, ?? denotes the parent of a
parendess file and a path-name beginning with . . . denotes a loop.

NETSTAT(l) (CTIX Internetworking) NETSTAT(1)

NAME
netstat - show network status

SYNOPSIS
netstat [-Aan] [-f addressJamily] [system] [core]
netstat [-himnrs] [-f address Jamily] [system] [core]
netstat [-n] [-1 interface] interval [system] [core]

DESCRIPTION
The netstat command symbolically displays the contents of various network-
related data structures. There are a number of output formats, depending on the
options for the information presented. The first form of the command displays a
list of active sockets for each protocol. The second form presents the contents
of one of the other network data structures according to the option selected.
Using the third form, with an interval specified, netstat will continuously
display the information regarding packet traffic on the configured network
interfaces.

The options have the following meanings:

-A With the default display, show the address of any protocol control
blocks associated with sockets; used for debugging.

-a With the default display, show the state of all sockets; normally
sockets used by server processes are not shown.

-h Show the state of the IMP (Interface Message Processor) host table.

-i Show the state of interfaces which have been auto-configured
(interfaces statically configured into a system, but not located at boot
time are not shown).

-I interface
Show information only about this interface; used with an interval as
described below.

-m Show statistics recorded by the memory management routines (the
network manages a private pool of memory buffers).

-n Show network addresses as numbers (normally netstat interprets
addresses and attempts to display them symbolically). This option can
be used with any of the display formats.

-s Show per-protocol statistics.

-r Show the routing tables. When -s is also present, show routing
statistics instead.

NETSTAT(l) (CTIX Internetworking) NETSTAT(1)

-f address _family
Limit statistics or address control block reports to those of the
specified addressJamily. The following address families are
recognized: inet, for AF INET, and unix, for AF_UNIX.

The arguments, system and core allow substitutes for the defaults /unix and
/dev/kmem.

The default display, for active sockets, shows the local and remote addresses,
send and receive queue sizes (in bytes), protocol, and the internal state of the
protocol. Address formats are of the form host.port or network.port if a socket's
address specifies a network but no specific host address. When known the host
and network addresses are displayed symbolically according to the data bases
/etc/hosts and /etc/networks, respectively. If a symbolic name for an address is
unknown, or if the -n option is specified, the address is printed numerically,
according to the address family. For more information regarding the Internet
"dot format," refer to Unspecified, or "wildcard," addresses and
ports appear as " * " .

The interface display provides a table of cumulative statistics regarding packets
transferred, errors, and collisions. The network addresses of the interface and
the maximum transmission unit (mtu) are also displayed.

The routing table display indicates the available routes and their status. Each
route consists of a destination host or network and a gateway to use in
forwarding packets. The flags field shows the state of the route (U if up),
whether the route is to a gateway (G), and whether the route was created
dynamically by a redirect (D). Direct routes are created for each interface
attached to the local host; the gateway field for such entries shows the address
of the outgoing interface. The refent field gives the current number of active
uses of the route. Connection oriented protocols normally hold on to a single
route for the duration of a connection while connectionless protocols obtain a
route while sending to the same destination. The use field provides a count of
the number of packets sent using that route. The interface entry indicates the
network interface utilized for the route.

When netstat is invoked with an interval argument, it displays a running count
of statistics related to network interfaces. This display consists of a column for
the primary interface (the first interface found during autoconfiguration) and a
column summarizing information for all interfaces. The primary interface can
be replaced with another interface with the -I option. The first line of each
screen of information contains a summary since the system was last rebooted.
Subsequent lines of output show values accumulated over the preceding
interval.

NETSTAT(l) (CTIX Internetworking) NETSTAT(1)

SEE ALSO
hosts(4N), networks(4N), protocols(4N), services(4N).

BUGS
The notion of errors is ill-defined. Collisions mean something else for the IMP.

NEWALIASES (1) NEWALIASES (1)

NAME
newaliases - rebuild the data base for the mail aliases file

SYNOPSIS
newaliases

DESCRIPTION
newaliases rebuilds the random access data base for the mail aliases fde
/usr/lib/aliases. It must be run each time /usr/lib/aliases is changed in order for
the change to take effect.

SEE ALSO
sendmail(l), aliases(4).

DIAGNOSTICS
If the aliases file is incorrectly formulated, newaliases will print diagnostics;
the data base will not be updated if there are errors.

NEWFORM(l) NEWFORM (1)

NAME
newform - change the format of a text file

SYNOPSIS
newform [-s] [-i tabspec] [-o tabspec] [-bn] [-en] [-pn] [-an]
[-f] [-cchar] [-In] [fi les]

DESCRIPTION
The newform command reads lines from the named files, or the standard input if
no input file is named, and reproduces the lines on the standard output. Lines
are reformatted in accordance with command line options in effect.

Except for -s, command line options may appear in any order, may be repeated,
and may be intermingled with the optional files. Command line options are
processed in the order specified. This means that option sequences like " - e l 5
-160" will yield results different from "-160 - e l5" . Options are applied to all
files on the command line.

-s Shears off leading characters on each line up to the first tab and
places up to 8 of the sheared characters at the end of the line. If
more than 8 characters (not counting the first tab) are sheared, the
eighth character is replaced by a * and any characters to the right
of it are discarded. The first tab is always discarded.

An error message and program exit will occur if this option is used
on a file without a tab on each line. The characters sheared off are
saved internally until all other options specified are applied to that
line. The characters are then added at the end of the processed line.

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after
the first expanded to spaces, padded with spaces out to column 72
(or truncated to column 72), and the leading digits placed starting
at column 73, the command would be:

newform -t -i -J -a file-name

-itabspec Input tab specification: expands tabs to spaces, according to the
tab specifications given. Tabspec recognizes all tab specification
forms described in tabs (I). In addition, tabspec may be --, in
which newform assumes that the tab specification is to be found in
the first line read from the standard input [see fspec(4)]. If no
tabspec is given, tabspec defaults to -8. A tabspec of -0 expects no
tabs; if any are found, they are treated as -1.

NEWFORM(l) NEWFORM (1)

•otabspec Output tab specification: replaces spaces by tabs, according to the
tab specifications given. The tab specifications are the same as for
-itabspec. If no tabspec is given, tabspec defaults to -8. A tabspec
of -0 means that no spaces will be converted to tabs on output.

-bn Truncate n characters from the beginning of the line when the line
length is greater than the effective line length (see -In). Default is
to truncate the number of characters necessary to obtain the
effective line length. The default value is used when -b with no n
is used. This option can be used to delete the sequence numbers
from a COBOL program as follows:

newform -11 -b7 file-name

-en Same as -bn except that characters are truncated from the end of
the line.

-pn Prefix n characters (see -ck) to the beginning of a line when the line
length is less than the effective line length. Default is to prefix the
number of characters necessary to obtain the effective line length.

-an Same as -pn except characters are appended to the end of a line.

-f Write the tab specification format line on the standard output before any
other lines are output The tab specification format line which is printed
will correspond to the format specified in the last -o option. If no -o
option is specified, the line which is printed will contain the default
specification of -8.

-ck Change the prefix/append character to k. Default character for k is a
space.

-In Set the effective line length to n characters. If n is not entered, -1 defaults
to 72. The default line length without the -I option is 80 characters. Note
that tabs and backspaces are considered to be one character (use -i to
expand tabs to spaces).

The -11 must be used to set the effective line length shorter than any existing
line in the file so that the -b option is activated.

DIAGNOSTICS
All diagnostics are fatal.

usage: ...
newform was called with a bad option.

not -5 format
There was no tab on one line.

NEWFORM(l) NEWFORM (1)

can't open file
Self-explanatory.

internal line too long
A line exceeds 512 characters after being expanded in the internal
work buffer.

tabspec in error
A tab specification is incorrectly formatted, or specified tab stops are
not ascending.

tabspec indirection illegal
A tabspec read from a file (or standard input) may not contain a
tabspec referencing another file (or standard input).

EXIT CODES
0 - normal execution
1 - for any error

SEE ALSO
csplit(l), expand(l), tabs(l), fspec(4).

BUGS
newform normally only keeps track of physical characters; however, for the -i
and -o options, newform will keep track of backspaces in order to line up tabs in
the appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the standard
input (by use of - i - or -o-) .

If the -f option is used, and the last -o option specified was -o--, and was
preceded by either a -o— or a -i—, the tab specification format line will be
incorrect.

NEWGRP(IM) NEWGRP(IM)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [-] [group]

DESCRIPTION
newgrp changes a user's group identification. The user remains logged in and
the current directory is unchanged, but calculations of access permissions to
files are performed with respect to the new real and effective group IDs. The
user is always given a new shell, replacing the current shell, by newgrp,
regardless of whether it terminated successfully or due to an error condition
(that is, unknown group).

Exported variables retain their values after invoking newgrp; however, all
unexported variables are either reset to their default value or set to null. System
variables (such as PS1, PS2, PATH, MAIL, and HOME), unless exported by the
system or expliciUy exported by the user, are reset to default values. For
example, a user has a primary prompt string (PS1) other than $ (default) and has
not exported PS 1. After an invocation of newgrp , successful or not, their PS 1
will now be set to the default prompt string $. Note that the shell command
export [see s/i(l)] is the method to export variables so that they retain their
assigned value when invoking new shells.

With no arguments, newgrp changes the group identification back to the group
specified in the user's password file entry. This is a way to exit the effect of an
earlier newgrp command.

If the first argument to newgrp is a -, the environment is changed to what would
be expected if the user actually logged in again as a member of the new group.

A password is demanded if the group has a password and the user does not, or if
the group has a password and the user is not listed in /etc/group as being a
member of that group.

FILES
/etc/group system's group fde
/etc/passwd system's password file

SEE ALSO
csh(l), login(l), sh(l), group(4), passwd(4), environ(5).

BUGS
There is no convenient way to enter a password into /etc/group. Use of group
passwords is not encouraged, because, by their very nature, they encourage
poor security practices. Group passwords may disappear in the future.

NEWS (1) NEWS (1)

NAME
news - print news items

SYNOPSIS
news [-a] [-n] [-s] [items]

DESCRIPTION
news is used to keep the user informed of current events. By convention, these
events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current files
in /usr/news, most recent first, with each preceded by an appropriate header.
news stores the "currency" time as the modification date of a file named
.news time in the user's home directory (the identity of this directory is
determined by the environment variable $HOME); only files more recent than
this currency time are considered "current."

-a Causes news to print all items, regardless of currency. In this case, the
stored time is not changed.

-n Causes news to report the names of the current items without printing
their contents, and without changing the stored time.

-s Causes news to report how many current items exist, without printing
their names or contents, and without changing the stored time.

news is invoked in /etc/profile.

All other arguments are assumed to be specific news items that are to be
printed.

If a delete is typed during the printing of a news item, printing stops and the
next item is started. Another delete within one second of the first causes the
program to terminate.

FILES
/etc/profile
/usr/news/*
$HOME/.news_time

SEE ALSO
profile(4), environ(5).
S/Series CTIX Administrator's Guide.

NFSD(IM) (NFS Utilities) NFSD(IM)

NAME
nfsd, biod - NFS daemons

SYNOPSIS
/etc/nfsd [nservers]

/etc/biod [nservers]

DESCRIPTION
nfsd starts the NFS server daemons that handle client filesystem requests.
Nservers is the number of file system request daemons to start. This number
should be based on the average number of simultaneous NFS requests expected
on this server.
biod, run on an NFS client, starts nservers asynchronous block I/O daemons,
which do read-ahead and write-behind of blocks from the client's buffer cache.

nfsd and biod are started automatically when the system is booted if there is a
zero-length file /etc/rcopts/KNFS. Nserve defaults to 4 in /etc/init.d/nfs for
both servers and may be increased by creating the files /etc/rcopts/NNFSD
and/or /etc/rcopts/NBIOD containing the desired number. Increasing these
numbers imposes additional system overhead and could be counter productive
on lighdy loaded NFS systems.

FILES
/etc/init.d/nfs
/etc/rcopts/KNFS

SEE ALSO
mountd(lM), exports(4).

NFSSTAT(IM) (NFS Utilities) NFSSTAT(IM)

NAME
nfsstat - Network File System statistics

SYNOPSIS
nfsstat [-csnrz]

DESCRIPTION
nfsstat displays statistical information about the Network File System (NFS)
and kernel-level Remote Procedure Call (RPC) subsystems. Statistics on user-
level RPC are not reported. It can also be used to reinitialize this information.
If no options are given the default is

nfsstat -csnr

That is, print everything and reinitialize nothing.

OPTIONS
-c Display client information. Only the client side NFS and RPC

information will be printed. Can be combined with the -n and -r
options to print client NFS or client RPC information only.

-s Display server information. Works like the -c option above.

-n Display NFS information. NFS information for both the client and
server side will be printed. Can be combined with the -c and -s options
to print client or server NFS information only.

-r Display RPC information. Works like the -n option above.

-z Zero (reinitialize) statistics. Can be combined with any of the above
options to zero particular sets of statistics after printing them. The user
must have write permission on Idevlkmem for this option to work.

FILES
/unix
/dev/kmem

system namelist
kernel memory

NICE(l) NICE(l)

NAME
nice - ran a command at low priority

SYNOPSIS
nice [-increment] command [arguments]

DESCRIPTION
nice executes command with a lower CPU scheduling priority. If the increment
argument (in the range 1-19) is given, it is used; if not, an increment of 10 is
assumed.

The super-user may run commands with priority higher than normal by using a
negative increment, e.g., - 1 0 .

The normal range of negative nice values is -1 to -20; however, an additional
range, -21 to -28, is enabled if rtpenable(1M) has been executed. Note that the
additional range of negative nice values is fixed and pre-emptive and should be
used with extreme care.

SEE ALSO
nohup(l), rtpenable(lM), nice(2).

DIAGNOSTICS
nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

NL(1) NL(1)

NAME
nl - line numbering filter

SYNOPSIS
nl [-h type] [-b type] [-f type] [-v start#] [-i incr] [-p]
[-1 num] [-s sep] [-w width] [-n format] [-d delim] file

DESCRIPTION
The nl command reads lines from the named file or the standard input if no file
is named and reproduces the lines on the standard output Lines are numbered
on the left in accordance with the command options in effect.

The nl command views the text it reads in terms of logical pages. Line
numbering is reset at the start of each logical page. A logical page consists of a
header, a body, and a footer section. Empty sections are valid. Different line
numbering options are independently available for header, body, and footer (for
example, no numbering of header and footer lines while numbering blank lines
only in the body).

The start of logical page sections are signaled by input lines containing nothing
but the following delimiter character(s):

Line contents Start of

VW header

W body

V footer

Unless optioned otherwise, nl assumes the text being read is in a single logical
page body.

Command options may appear in any order and may be intermingled with an
optional file name. Only one fde may be named. The options are:

-btype Specifies which logical page body lines are to be numbered.
Recognized types and their meaning are:

•htype Same as -btype except for header. Default type for logical page
header is n (no lines numbered).

a number all lines

t number lines with printable text only

n no line numbering

NL(1) NL(1)

pstring number only lines that contain the regular expression
specified in string.

Default type for logical page body is t (text lines numbered).

-ftype Same as -btype except for footer. Default for logical page footer is
n (no lines numbered).

•\start# Start# is the initial value used to number logical page lines.
Default is 1.

-\incr Incr is the increment value used to number logical page lines.
Default is 1.

-p Do not restart numbering at logical page delimiters.

-1 num Nutn is the number of blank lines to be considered as one. For
example, -12 results in only the second adjacent blank being
numbered (if the appropriate -ha, -ba, and/or -fa option is set).
Default is 1.

-ssep Sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a tab.

-wwidth Width is the number of characters to be used for the line number.
Default width is 6.

-nformat Format is the line numbering format. Recognized values are: In,
left justified, leading zeroes suppressed; rn, right justified, leading
zeroes suppressed; rz, right justified, leading zeroes kept. Default
format is rn (right justified).

-dxx The delimiter characters specifying the start of a logical page
section may be changed from the default characters (V) to two
user-specified characters. If only one character is entered, the
second character remains the default character (:). No space should
appear between the -d and the delimiter characters. To enter a
backslash, use two backslashes.

EXAMPLE
The command:

nl -v10 -i10 -d!+ filel

will number filel starting at line number 10 with an increment of ten. The
logical page delimiters are !+.

SEE ALSO
pr(l).

NLSADMIN(IM) (Networking Support Utilities) NLSADMIN(1M)

NAME
nlsadmin - network listener service administration

SYNOPSIS
nlsadmin -x
nlsadmin [options] net_spec

DESCRIPTION
The nlsadmin command administers the network listener process(es) on a
machine. Each network has a separate instance of the network listener process
associated with it; each instance (and thus, each network) is configured
separately. The listener process "listens" to the network for service requests,
accepts requests when they arrive, and spawns servers in response to those
service requests. The network listener process works with any network (more
precisely, with any transport provider) that conforms to the transport provider
specification.
The listener supports two classes of service: a General Listener Service,
serving processes on remote machines, and a Terminal Login Service, for
terminals connected direcUy to a network. The Terminal Login Service
provides networked access to this machine in a form suitable for terminals
connected directly to the network. However, this direct terminal service
requires special associated software, and is available only with some networks.
Currendy, it is supported on the DARPA Internet networks, and not through the
Terminal Login Service.

The following are valid option parameters or arguments to nlsadmin:

net spec The relative path name under /dev of the network special device
(for example, STREAMS driver) to open for access to a given
network. For example, inet/tcp refers to the Transmission Control
Protocol (tcp) transport provider within the DARPA Internet (inet)
protocol family.

service Uniquely identifies the service the listener is managing. It can be
expressed symbolically as a name or numerically as a code. If it is
specified as a name, the name is looked up in the file
/usr/net/nls/servcodes and converted into a code.

address The transport address on which the listener awaits requests for
service. Since they await disjointed sets of services, the General
Listener Service and the Terminal Login Service require separate
listener network addresses. Network addresses are interpreted using
a syntax that allows for a variety of addressing formats [see
naddr.d(5)].

NLSADMIN(IM) (Networking Support Utilities) NLSADMIN(1M)

Each unique network (for example, net_spec) must have a dedicated listener
process. When the network is first connected, nlsadmin with the -i option must
be used to initialize the listener's database, the -I and -t options used to set the
listener's addresses, and the -a option used to explicitly add supported services.
Once the networks on a new machine have been set up, they need not be set up
again. If a unique new network (for example, net_spec) is connected, these
steps should be repeated.

Once the network is set up, nlsadmin can be used to query the status of all or
particular listener networks and services; to start or kill the listener process per
network; to temporarily enable or disable a service per network; or to
permanently add or remove a service per network. Changing the list of services
provided by the listener produces immediate changes, while changing an
address on which the listener listens has no effect until the listener is restarted.

The following combination of options can be used:

nlsadmin Gives a brief usage message.

nlsadmin -x
Reports the status of all of the listener processes installed on this
machine.

netspec

Prints the status of the listener process for net_spec.

-q net spec
Queries the status of the listener process for the specified network,
and reflects the result of that query in its exit code. If a listener
process is active, nlsadmin exits with a status of 0; if no process is
active, the exit code is 1; in case of error, the exit code is greater
than 1.

nlsadmin -v netspec
Prints a verbose report on the servers associated with net spec,
giving the service code, status, command, and comment for each.

nlsadmin -z service net spec
Prints a report on the server associated with net_spec that has
service, giving the same information as in the -v option.

nlsadmin -q -z service net_spec
Queries the status of service on network net_spec, and exits with a
status of 0 if that service is enabled, 1 if that service is disabled,
and greater than 1 in case of error.

nlsadmin

nlsadmin

NLSADMIN(IM) (Networking Support Utilities) NLSADMIN(1M)

nlsadmin -1 address net_spec
Changes or sets the address on which the General Listener Service
listens for network net_spec. This is the address generally used by
remote processes to access the servers available through this
listener (see the -a option, below).

A change of address does not take effect until the next time the
listener for that network is started. Since all listeners on a common
network must be accessible by remote clients at a commonly-
agreed upon address, care should be exercised when changing the
listener address. For the Internet networks, this known address is
built from the service port in the shared /etc/services file.

If address is a dash ("-"), nlsadmin reports the address that is
currently configured, instead of changing i t

nlsadmin -t address net_spec
Changes or sets the address on which the Terminal Login Service
listens for network net spec. A terminal service address should not
be defined unless the appropriate remote login software is
avaUable. Otherwise, this option is identical to the -1 option.

nlsadmin -i net_spec
Initializes or changes a listener process for the network specified
by net spec: that is, it creates and initializes the files required by
the listener. Note that the listener should be initialized only once
for a given network, and that doing so does not actually invoke the
listener for that network. The listener must be initialized before
assigning addresses or services.

nlsadmin [-m] -a service [-c command] [-p modules] [-y comment] net spec
Adds a new service to the list of services available through the
General Listener Service for network net_spec. When a service is
added, it is automatically enabled (see the -e and -d options,
below).

If the -m option is specified, the entry is added but not be enabled:
it is marked as an administrative entry.

The command is the full pathname of the command with all
arguments that are to be invoked in response to the service request
Since it must appear as a single word to the shell, it should be
quoted if arguments are given.

NLSADMIN(IM) (Networking Support Utilities) NLSADMIN(1M)

If the -p option is specified, f2modules is interpreted as a list of
STREAMS modules for the listener to push before starting the
added service.

The list is comma-separated with no white space. The modules are
pushed in the order they are specified. The module list is specific to
the network (net spec) supporting the service.

The optional comment is a brief (free-form) description of the
service for use in various reports. If the comment contains white
space, it must be quoted.

nlsadmin -r service net_spec
Removes the entry for the service from that listener's list of
services. This is normally performed only in conjunction with the
removal of a service from a machine.

nlsadmin -e service net_spec
nlsadmin -d service net_spec

Enables or disables (respectively) the service specified by service
for the specified network net_spec. The service must have
previously been added to the listener for that network (see the -a
option, above). Disabling a service causes subsequent service
requests for that service to be denied, but the processes from any
prior service requests that are still running continue unaffected.

nlsadmin -s net spec
nlsadmin -k net_spec

Starts and kills (respectively) the listener process for the indicated
network net_spec. These operations are normally performed as part
of the system startup and shutdown procedures. Before a listener
can be started for a particular network, it must first have been
initialized, and an address must have been defined for the General
Listener Service (see the -i and -I options, above). When a listener
is killed, processes that are still running as a result of prior service
requests continue unaffected.

The listener runs under its own ID of listen, with group ID adm. This ID must be
entered in the system password file; the HOME directory listed for that ID is
concatenated with net_spec to determine the location of the listener
configuration information for each network.

The nlsadmin command can be invoked by any user to generate reports, but all
operations that affect a listener's status or configuration are restricted to the
super-user.

NLSADMIN(IM) (Networking Support Utilities) NLSADMIN(1M)

FILES
/usr/net/nIsAief_spec
/etc/hosts
/etc/services

SEE ALSO
servcodes(4), hosts(4), services(4), rfmaster(4).
UNIX System V Release 3.2 Network Programmer s Guide.

NM(1) NM(1)

NAME
nm - print name list of common object file

SYNOPSIS
nm [-oxhvnefurpVT] filename ...

DESCRIPTION
The nm command displays the symbol table of each common object file,
filename. Filename may be a relocatable or absolute common object file; or it
may be an archive of relocatable or absolute common object files. For each
symbol, the following information will be printed:

Name The name of the symbol.

Value Its value expressed as an offset or an address depending on its
storage class.

Class Its storage class.

Type Its type and derived type. If the symbol is an instance of a structure
or of a union then the structure or union tag will be given following
the type (for example, struct-tag). If the symbol is an array, then the
array dimensions will be given following the type (for example,
char[n][m]) . Note that the object fde must have been compiled
with the -g option of the cc(l) command for this information to
appear.

Size Its size in bytes, if available. Note that the object file must have
been compiled with the -g option of the cc(l) command for this
information to appear.

Line The source line number at which it is defined, if available. Note that
the object file must have been compded with the -g option of the
cc(l) command for this information to appear.

Section For storage classes static and external, the object file section
containing the symbol (for example, text, data or bss).

The output of nm may be controlled using the following options:

-o Print the value and size of a symbol in octal instead of decimal.

-x Print the value and size of a symbol in hexadecimal instead of
decimal.

-h Do not display the output header data,

-v Sort external symbols by value before they are printed.

NM(1) NM(1)

-n Sort external symbols by name before they are printed,

-e Print only external and static symbols.

-f Produce full output Print redundant symbols (.text, .data, .lib, and
.bss), normally suppressed.

-u Print undefined symbols only.

-r Prepend the name of the object file or archive to each output line.

-p Produce easily parsable, terse output Each symbol name is
preceded by its value (blanks if undefined) and one of the letters U
(undefined), A (absolute), T (text segment symbol), D (data segment
symbol), S (user defined segment symbol), R (register symbol), F
(file symbol), or C (common symbol). If the symbol is local (non-
external), the type letter is in lower case.

-V Print the version of the nm command executing on the standard error
output

-T By default, nm prints the entire name of the symbols listed. Since
object files can have symbols names with an arbitrary number of
characters, a name that is longer than the width of the column set
aside for names will overflow its column, forcing every column after
the name to be misaligned. The -T option causes nm to truncate
every name which would otherwise overflow its column and place
an asterisk as the last character in the displayed name to mark it as
truncated.

Options may be used in any order, either singly or in combination, and may
appear anywhere in the command line. Therefore, both nm name -e -v and nm
-ve name print the static and external symbols in name, with external symbols
sorted by value.

FILES
TMPDIR/* temporary files

TMPDIR is usually /tmp but can be redefined by setting the environment
variable TMPDIR [see tempnam() in tmpnam(iS)].

- 2 -

NM(227) NM(1)

BUGS
When all the symbols are printed, they must be printed in the order they appear
in the symbol table in order to preserve scoping information. Therefore, the -v
and -n options should be used only in conjunction with the -e option.

SEE ALSO
as(l), cc(l), ld(l), tmpnam(3S), a.out(4), ar(4).

DIAGNOSTICS
nm: name: cannot open

if name cannot be read.

nm: name: bad magic
if name is not a common object fde.

nm: name: no symbols
if the symbols have been stripped from name.

NMOUNTALL(IM) (NFS Utilities) NMOUNT ALL (1M)

NAME
nmountall, numountall - mount, unmount Network File System resources

SYNOPSIS

/etc/nmountall [-] " file-system-table " [. . .]

/etc/numountall [-k]

DESCRIPTION
nmountall is a Network File System command used to mount remote resources
according to a file-system-table. (/etc/fstab is the recommended file-system-
table.) The special file name "-" reads from the standard input.
Numountall causes all mounted remote resources to be unmounted. The -k
option sends a SIGKILL signal, via/ujer(lM), to processes that have files open.

These commands may be executed only by the super-user.

The file-system-table format is as follows:

column 1 block special file name of file system

column 2 mount-point directory

column 3 -r if to be mounted read-only

column 4 file system type; "NFS" for Network File System

column 5+ ignored

White-space separates columns. Lines beginning with "#" are comments.
Empty lines are ignored.

SEE ALSO
fuser(lM), mount(lM), signal(2).

DIAGNOSTICS
Error and warning messages come from mount{ 1M).

NOHUP(l) NOHUP(l)

NAME
nohup - run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION
The nohup command executes command with hangups and quits ignored. If
output is not re-directed by the user, both standard output and standard error are
sent to nohup.out. If nohup.out is not writable in the current directory, output
is redirected to $HOME/nohup.out.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of commands. This
can be done only by placing pipelines and command lists in a single file, called
a shell procedure. One can then issue:

nohup sh file

and the nohup applies to everything in file. If the shell procedure fde is to be
executed often, then the need to type sh can be eliminated by giving fde execute
permission. Add an ampersand and the contents of fde are run in the
background with interrupts also ignored [see J/I(1)]:

nohup file &

An example of what the contents of fde could be follows:

sort ofile > nfile

SEE ALSO
chmod(l), nice(l), sh(l), signal(2).

WARNINGS
In the case of the following command, nohup applies only to command 1:

nohup commandl; command2

The following command is syntactically incorrect:

nohup (commandl; command2)

NROFF(l) NROFF(l)

NAME
nroff - format text

SYNOPSIS
nroff [options] [files]

DESCRIPTION
nroff formats text contained in files (standard input by default) for printing on
typewriter-like devices and line printers.

If no input file is given, or if the argument - is encountered, nroff reads from the
standard input fde. The options, which may appear in any order, but must
appear before the files, are:

-olist Print only pages whose page numbers appear in the list of numbers
and ranges, separated by commas. A range N-M means pages N
through M; an initial -N means from the beginning to page N\ and a
final N- means from N to the end. (See BUGS below.)

-ruV Number first generated page N.
-sN Stop every N pages, nroff will halt after every N pages (default N=\)

to allow paper loading or changing, and will resume upon receipt of a
line-feed or new-line [new-lines do not work in pipelines, for
example, with mm{\)]. This option does not work if the output of
nroff is piped through col{\). When nroff halts between pages, an
ASCn BEL is sent to the terminal.

-raN Set register a (which must have a one-character name) to N.
-i Read standard input after files are exhausted,
-q Invoke the simultaneous input-output mode of the .rd request.
-z Print only messages generated by .tm (terminal message) requests,
-mname Prepend to the input files the non-compacted (ASCII text) macro file

/usr/Iib/tmac/tmac^wme.
-c name Prepend to the input files the compacted macro files

/usr/lib/macros/cmp.[nt].[dt]^u2w and
/usr/lib/macros/ucmp.[nt]^iam£.

-kname Compact the macros used in this invocation of nroff, placing the
output in files [dt]jiame in the current directory

-Tname Prepare output for specified terminal. Known names are 37 for the
(default) TELETYPE® Model 37 terminal, tn300 for the GE
TermiNet 300 (or any terminal without half-line capability), 300s for
the DASI 300s, 300 for the DASI 300, 450 for the DASI 450, Ip for a
(generic) ASCII line printer, 382 for the DTC-382, 4000A for the
Trendata 4000A, 832 for the Anderson Jacobson 832, X for a (generic)
EBCDIC printer, and 2631 for the Hewlett Packard 2631 line printer.

NROFF(l) NROFF (1)

-e Produce equally-spaced words in adjusted lines, using the full
resolution of the particular terminal,

-h Use output tabs during horizontal spacing to speed output and reduce
output character count. Tab settings are assumed to be every 8
nominal character widths,

-u/i Set the emboldening factor (number of character overstrikes) for the
third font position (bold) to n, or to zero if n is missing.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/ta$# temporary file
/usr/lib/tmac/tmac. * standard macro files and pointers
/usr/lib/macros/* standard macro files
/usr/lib/term/* terminal driving tables for nroff

SEE ALSO
col(l), cw(l), eqn(l), greek(l), mm(l), tbl(l), troff(l), mm(5).

BUGS
nroff believes in Eastern Standard Time; as a result, depending on the time of
the year and on your local time zone, the date that nroff generates may be off by
one day from your idea of what the date is.

When nroff is used with the -olist option inside a pipeline it may cause a
harmless "broken pipe" diagnostic if the last page of the document is not
specified in list.

NSQUERY(IM) (RFS Utilities) NSQUERY(IM)

NAME
nsquery - Remote File Sharing name server query

SYNOPSIS
nsquery [-h] [name]

DESCRIPTION
nsquery provides information about resources avadable to the host from both
the local RFS domain and from other RFS domains. All resources are reported,
regardless of whether the host is authorized to access them. When used with no
options, nsquery identifies all resources in the domain that have been advertised
as sharable. A report on selected resources can be obtained by specifying name,
where name is:

nodename The report will include only those resources available
from nodename.

domain. The report will include only those resources available
from domain.

domain.nodename The report will include only those resources available
from domain.nodename.

When the name does not include the delimiter " . " , it will be interpreted as a
nodename within the local domain. If the name ends with a delimiter " . " , it
will be interpreted as a domain name.

The information contained in the report on each resource includes its advertised
name (domain.resource), the read/write permissions, the server
(nodename.domain) that advertised the resource, and a brief textual description.

When -h is used, the header is not printed.

A remote domain must be listed in your rfmaster fde in order to query that
domain.

EXIT STATUS
If no entries are found when nsquery is executed, the report header is printed.

ERRORS
If your host cannot contact the domain name server, an error message will be
sent to standard error.

SEE ALSO
adv(lM), unadv(lM), rfmaster(4).

PASSWD(l) PASSWD(l)

NAME
od - octal dump

SYNOPSIS

od [-bcdosxf] [fde] [[+]offset[.][b]]

DESCRIPTION
od dumps fde in one or more formats as selected by the first argument. If the
first argument is missing, -o is default. The meanings of the format options are:
-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null=\0, backspace=\b, form-feed=\f, new-line=\n, return=\r,
tab=\t; others appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-o Interpret words in octal.

-s Interpret 16-bit words in signed decimal.

-x Interpret words in hex.

-f Interpret bytes in hexadecimal with ASCII listing at side.

The fde argument specifies which file is to be dumped. If no file argument is
specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to
commence. This argument is normally interpreted as octal bytes. If . is
appended, the offset is interpreted in decimal. If b is appended, the offset is
interpreted in blocks of 512 bytes. If the file argument is omitted, the offset
argument must be preceded by +.

Dumping continues until end-of-file.

SEE ALSO
dump(l), hd(l).

PACK(l) PACK(l)

NAME
pack, peat, unpack - compress and expand fdes

SYNOPSIS
pack [-] [-f] name . . .

peat name , . .

unpack name . . .

DESCRIPTION
pack attempts to store the specified files in a compressed form. Wherever
possible (and useful), each input file name is replaced by a packed file name.z
with the same access modes, access and modified dates, and owner as those of
name. The -f option will force packing of name. This is useful for causing an
entire directory to be packed even if some of the files will not benefit. If pack
is successful, name will be removed. Packed fdes can be restored to their
original form using unpack or peat.

pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If
the - argument is used, an internal flag is set that causes the number of times
each byte is used, its relative frequency, and the code for the byte to be printed
on the standard output. Additional occurrences of - in place of name will cause
the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and
the character frequency distribution. Because a decoding tree forms the first
part of each .z file, it is usually not worthwhile to pack files smaller than three
blocks, unless the character frequency distribution is very skewed, which may
occur with printer plots or pictures.

Typically, text fdes are reduced to 60-75% of their original size. Load modules,
which use a larger character set and have a more uniform distribution of
characters, show little compression, the packed versions being about 90% of the
original size.

pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

• the file appears to be already packed;

• the file name has more than 12 characters;

• the file has links;

• the file is a directory;

• the file cannot be opened;

PACK(l) PACK(l)

• no disk storage blocks will be saved by packing;

• a file called name.z already exists;

• the .z file cannot be created;

• an I/O error occurred during processing.

The last segment of the file name must contain no more than 12 characters to
allow space for the appended .z extension. Directories cannot be compressed.

peat does for packed files what cat(1) does for ordinary files, except that peat
cannot be used as a filter. The specified files are unpacked and written to the
standard output Thus to view a packed file named name.z use:

peat name.z

or jus t

peat name

To make an unpacked copy, say nnn, of a packed file named name.z (without
destroying name.z) use the command:

peat name >nnn

peat returns the number of files it was unable to unpack. Failure may occur if:

• the file name (exclusive of the .z) has more than 12 characters;
• the file cannot be opened;
• the file does not appear to be the output of pack.

unpack expands files created by pack. For each file name specified in the
command, a search is made for a file called name.z (or just name, if name ends
in .z). If this file appears to be a packed file, it is replaced by its expanded
version. The new file has the .z suffix stripped from its name, and has the same
access modes, access and modification dates, and owner as those of the packed
file.

unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in peat, as well as for the
following:

• a file with the "unpacked' ' name already exists;
• if the unpacked file cannot be created.

SEE ALSO
cat(l).

PASSMGMT(IM) PASSMGMT(IM)

NAME
passmgmt - password files management

SYNOPSIS
passmgmt -a options name
passmgmt -m options name
passmgmt -d name

DESCRIPTION
The passmgmt command updates information in the password fdes. This
command works with both /etc/passwd and /etc/shadow. If there is no shadow
password fde the changes done by passmgmt will go in /etc/passwd.

The passmgmt -a form of the command adds an entry for user name to the login
password fdes. This command does not create any directory for the new user
and the new login remains locked (with the string *LK* in the password field)
until the passwd(1M) command is executed to set the password.

The passmgmt -m form of the command modifies the entry for user name in the
login password files. The name field in the /etc/shadow entry and all the fields
(except the password field) in the /etc/password entry can be modified by this
command. Only fields entered on the command line are modified. If there is no
/etc/shadow file, all modifications are made in /etc/passwd.

The passmgmt -d command deletes the entry for user name from the login
password files. It does not remove any files the user owns on the system; they
must be removed manually.

The login name of the user, name, must be unique.

The following options are available:

-c comment A short description of the login. It is limited to a maximum of
128 characters and defaults to an empty field. If the comment is
more than one word, it must be enclosed in single or double
quotation marks.

-h homedir Home directory of name. It is limited to a maximum of 256
characters and defaults to I u!name.

-u uid UID of the name. This number must range from 0 to the
maximum value for the system. It defaults to the next available
UID greater than 100. Without the -o option, it enforces the
uniqueness of a UID.

-o This option allows a UID to be non-unique. It is used only with
the -u option.

PASSMGMT(IM) PASSMGMT(IM)

-g gid GID of the name. This number must range from 0 to the
maximum value for the system. The default is 1.

-s shell Login shell for name. It should be the full pathname of the
program to be executed when the user logs in. The maximum
length of shell is 256 characters. The default is for this field to
be empty and to be interpreted as /bin/sh.

-1 logname This option changes the name to logname for the -m option only.

The total size of each login entry, whether existing or new, is limited to a
maximum of 511 bytes in the password files.

FILES
/etc/passwd
/etc/shadow
/etc/opasswd
/etc/oshadow

SEE ALSO
passwd(l), passwd(4), shadow(4).

DIAGNOSTICS
The passmgmt command exits with one of the following values:

0 Success.

1 Permission denied.
2 Invalid command syntax. Usage message of the passmgmt command is

displayed.

3 Invalid argument provided to option.

4 UID in use.

5 Inconsistent password files (for example, name is in the /etc/passwd file
and not in the /etc/shadow file, or vice versa).

6 Unexpected failure. Password files unchanged.

7 Unexpected failure. Password file(s) missing.

8 Password file(s) busy. Try again later.

9 name does not exist (if -m or -d is specified), already exists (if -a is
specified), or logname already exists (if -m -1 is specified).

NOTE
Do not use a colon or carriage return; these characters are interpreted as field
separators.

PASSWD(l) PASSWD(l)

NAME
passwd - change login password

SYNOPSIS
passwd [name]

passwd -s [name]

passwd -1 [-f] [-x max] [-n min] name

passwd -d [-f] [-x max] [-n min] name

passwd -s [-a]

DESCRIPTION
The passwd command changes, sets, or lists attributes of a password associated
with the login name. Ordinary users can change only the password which
corresponds to their login name; the super-user can additionally set or change
passwords and attributes associated with any login name.
When used to change a password, passwd prompts ordinary users for their old
password, if any; it then prompts for the new password twice. When the old
password is entered, passwd checks to see if the old password has " a g e d "
sufficiendy. Password "aging" is the amount of time (usually a number of
days) that must elapse between password changes. If aging is insufficient,
passwd terminates; see passwd{4).

Assuming aging is sufficient, a check is made to ensure that the new password
meets construction requirements. When the new password is entered a second
time, the two copies of the new password are compared. If the two copies are
not identical, the cycle of prompting for the new password is repeated (at most,
two more times).

Passwords must be constructed to meet the following requirements:

• Each password must have at least six characters. Only the first eight
characters are significant.

• Each password must contain at least two alphabetic (upper- and
lowercase) characters and at least one numeric or special character.

• Each password must differ from the user's login name and any reverse
or circular shift of that login name. For comparison purposes, an
uppercase letter and its corresponding lowercase letter are equivalent.

• New passwords must differ from the old by at least three characters.
For comparison purposes, an uppercase letter and its corresponding
lowercase letter are equivalent.

PASSWD(l) PASSWD(l)

One whose effective user ID is zero is called a super-user; see id(1), and su(l).
Super-users can change any password; therefore, passwd does not prompt
super-users for the old password. Super-users are not forced to comply with
password aging and password construction requirements. A super-user can
create a null password by entering a carriage return in response to the prompt
for a new password.

Any user can use the -s option to show password attributes for the login name.

The format of the display is as follows:

name status mm/dd/yy min max

or, if password aging information is not present,

name status

where:

name Is the login ID of the user.

status Is the password status of name: PS stands for passworded or
locked, LK stands for locked, and NP stands for no password.

mm/dd/yy Is the date the password was last changed for name. Note that all
password aging dates are determined by using Greenwhich Mean
Time and, therefore, may differ by as much as a day in other
time zones.

min Is the minimum number of days required between password
changes for name.

max Is the maximum number of days the password is valid for name.

Only a super-user can use the following options:

-1 Locks the password entry for name.

-d Deletes the password for name. The login name is not prompted
for a password.

-n Sets the minimum field for name. The min field contains the
minimum number of days between password changes for name. If
min is greater than max, the user cannot change the password.
Always use this option with the -x option, unless max is set to -1
(aging disabled), in which case min need not be set

-x Sets the maximum field for name. The max field contains the
number of days the password is valid for name. The aging for

PASSWD(l) PASSWD(l)

name is disabled immediately if max is set to -1. If max is set to 0,
the user must change the password at the next login session, and
aging is disabled.

-a Shows password attributes for all entries. Use only with the -s
option; name must not be provided.

-f Forces the user to change the password at the next login by
expiring the password for name.

FILES
/etc/passwd
/etc/shadow
/etc/opasswd
/etc/oshadow

SEE ALSO
id(lM), login(l), passmgmt(lM), pwconv(lM), su(lM), crypt(3C), passwd(4),
shadow(4).

DIAGNOSTICS
The passwd command exits with one of the following values:

0 Success.

1 Permission denied.

2 Invalid combination of options (incorrect syntax).

3 Unexpected failure. Password fde unchanged.

4 Unexpected failure. Password fde(s) missing.

5 Password fde(s) busy. Try again later.

6 Invalid argument to option.

WARNINGS
If the optional /etc/shadow file exists, passwd uses that file instead of
/etc/passwd to obtain password information. Because the two files store
password aging information in different ways, the output from the passwd
options can differ.

PASTE(l) PASTE(l)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste filel file2 . . .

paste -dlist filel file2 . . .

paste -s [-dlist] filel file2 . . .

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input
files filel ,file2, etc. It treats each file as a column or columns of a table and
pastes them together horizontally (parallel merging). If you will, it is the
counterpart of cat (I) which concatenates vertically, that is, one file after the
other. In the last form above, paste replaces the function of an older command
with the same name by combining subsequent lines of the input file (serial
merging). In all cases, lines are glued together with the tab character, or with
characters from an optionally specified list. Output is to the standard output, so
it can be used as the start of a pipe, or as a filter, if - is used in place of a file
name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last fde (or
last line in case of the -s option) are replaced by a tab character. This
option allows replacing the tab character by one or more alternate
characters (see below).

list One or more characters immediately following -d replace the default
tab as the line concatenation character. The list is used circularly, that
is, when exhausted, it is reused. In parallel merging (that is, no -s
option), the lines from the last fde are always terminated with a new-
line character, not from the list. The list may contain the special
escape sequences: \n (new-line), \t (tab), \\ (backslash), and \0 (empty
string, not a null character). Quoting may be necessary, if characters
have special meaning to the shell (for example, to get one backslash,
use -d 'WW").

-s Merge subsequent lines rather than one from each input fde. Use tab
for concatenation, unless a list is specified with -d option. Regardless
of the for, the very last character of the fde is forced to be a new-line.

May be used in place of any fde name, to read a line from the standard
input. (There is no prompting).

PASTE(1) PASTE(l)

EXAMPLES
To list directory in one column:

Is | paste -d" " -

To list directory in four columns:

Is | paste

To combine pairs of lines into lines:

paste -s -d"\ t\ n" file

SEE ALSO
cut(l), grep(l), pr(l).

DIAGNOSTICS
line too long

Output lines are restricted to 511 characters.

too many files
Except for -s option, no more than 12 input files may be specified.

PATH(l) PATH(l)

NAME
path - locate executable file for command

SYNOPSIS
path [-options] command

DESCRIPTION
The path command provides a quick way to discover which executable file is
behind a shell command. It searches each directory mentioned in your PATH
environment variable until it finds an executable fde called command.

Any options specified are passed to ls{ 1).

WARNING
The shell |>/i(l)] hashes the location of certain commands. Therefore, path and
type (shell budt-in) may give different results.

SEE ALSO
ls(l).

PG(1) PG(1)

N A M E

pg - file perusal filter for CRTs

S Y N O P S I S

pg [-number] [-p string] [-cefns] [+linenumber] [+/patternJ]
[files...]

DESCRIPTION
The pg command is a filter which allows the examination of files one screenful
at a time on a CRT. (The file name - and/or NULL arguments indicate that pg
should read from the standard input.) Each screenful is followed by a prompt.
If the user types a carriage return, another page is displayed; other possibilities
are enumerated below.

This command is different from previous paginators in that it allows you to
back up and review something that has already passed. The method for doing
this is explained below.

In order to determine terminal attributes, pg scans the terminfo (4) data base for
the terminal type specified by the environment variable TERM. If TERM is not
defined, the terminal type dumb is assumed.

The command line options are:

-number
An integer specifying the size (in lines) of the window that pg is to use
instead of the default. (On a terminal containing 24 lines, the default
window size is 23).

-p string
Causes pg to use string as the prompt. If the prompt string contains a
" % d " , the first occurrence of " % d " in the prompt will be replaced by
the current page number when the prompt is issued. The default
prompt string is " : " .

-c Home the cursor and clear the screen before displaying each page.
This option is ignored if clearscreen is not defined for this terminal
type in the terminfo {A) data base.

-e Causes pg not to pause at the end of each fde.

-f Normally, pg splits lines longer than the screen width, but some
sequences of characters in the text being displayed (for example,
escape sequences for underlining) generate undesirable results. The - /
option inhibits pg from splitting lines.

PG(1) PG(1)

-n Normally, commands must be terminated by a <newline> character.
This option causes an automatic end of command as soon as a
command letter is entered.

-s Causes pg to print all messages and prompts in standout mode (usually
inverse video).

+linenumber
Start up at linenwnber.

+1 pattern I
Start up at the first line containing the regular expression pattern.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that
modify the perusal environment.

Commands which cause further perusal normally take a preceding address, an
optionally signed number indicating the point from which further text should be
displayed. This address is interpreted in either pages or lines depending on the
command. A signed address specifies a point relative to the current page or
line, and an unsigned address specifies an address relative to the beginning of
the file. Each command has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

{+\)<newline > or <blank>
This causes one page to be displayed. The address is specified in
pages.

(+1) I With a relative address this causes pg to simulate scrolling the screen,
forward or backward, the number of lines specified. With an absolute
address this command prints a screenful beginning at the specified
line.

(+1) d or "D

Simulates scrolling half a screen forward or backward.

The following perusal commands take no address.
. or "L Typing a single period causes the current page of text to be

redisplayed.

$ Displays the last windowful in the file. Use with caution when the
input is a pipe.

The following commands are available for searching for text patterns in the
text The regular expressions described in ed(1) are available. They must
always be terminated by a <newline >, even if the -n option is specified.

- 2 -

PG(1) PG(1)

i/patternl
Search forward for the (th (default i'=l) occurrence of pattern.
Searching begins immediately after the current page and continues to
the end of the current fde, without wrap-around.

j"pattern"
i?pattern?

Search backwards for the /th (default z'=l) occurrence of pattern.
Searching begins immediately before the current page and continues to
the beginning of the current fde, without wrap-around. The * notation
is useful for Adds 100 terminals which will not properly handle the ?.

After searching, pg will normally display the line found at the top of the screen.
This can be modified by appending m or b to the search command to leave the
line found in the middle or at the bottom of the window from now on. The
suffix t can be used to restore the original situation.

The user of pg can modify the environment of perusal with the following
commands:

/n Begin perusing the /th next file in the command line. The i is an
unsigned number, default value is 1.

ip Begin perusing the /th previous file in the command line, i is an
unsigned number, default is 1.

i'w Display another window of text If i is present, set the window size to
i.

s filename
Save the input in the named file. Only the current file being perused is
saved. The white space between the s and filename is optional. This
command must always be terminated by a <newline>, even if the -n
option is specified.

h Help by displaying an abbreviated summary of available commands.

q o r Q Quit pg.

I command
Command is passed to the shell, whose name is taken from the SHELL
environment variable. If this is not available, the default shell is used.
This command must always be terminated by a <newline>, even if the
-n option is specified.

At any time when output is being sent to the terminal, the user can hit the quit
key (normally control-V) or the interrupt (break) key. This causes pg to stop
sending output, and display the prompt The user may then enter one of the

- 3 -

PG(254) PG(1)

above commands in the normal manner. Unfortunately, some output is lost
when this is done, due to the fact that any characters waiting in the terminal's
output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat(1), except that
a header is printed before each file (if there is more than one).

EXAMPLE
A sample usage of pg in reading system news would be:

news | pg -p "(Page %d):"

N O T E S

While waiting for terminal input, pg responds to BREAK, DEL, and * by
terminating execution. Between prompts, however, these signals interrupt pg's
current task and place the user in prompt mode. These should be used with
caution when input is being read from a pipe, since an interrupt is likely to
terminate the other commands in the pipeline.

Users of Berkeley's more will find that the z and f commands are available, and
that the terminal /, or ? may be omitted from the searching commands.

FILES
/usr/lib/terminfo/?/* terminal information database

/tmp/pg* temporary file when input is from a pipe
SEE ALSO

ed(l), grep(l), more(l), terminfo(4).

BUGS
If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal I/O
options terminal settings may not be restored correctly.

PING(IM) (CTIX Internetworking) PING(IM)

N A M E

ping - send ICMP ECHO_REQUEST packets to network hosts

S Y N O P S I S

/etc/ping [-r] [-v] host [packetsize] [count]

D E S C R I P T I O N

ping is a troubleshooting tool for tracking a single-point hardware or software
failure in the Internet. It uses the ICMP protocol's mandatory
ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from a host
or gateway. ECHOJREQUEST datagrams ("pings") have an IP and ICMP
header, followed by a struct timeval, and then an arbitrary number of " p a d "
bytes used to fill out the packet. Default datagram length is 64 bytes, but this
may be changed using the command-line option. Other options are:
-r Bypass the normal routing tables and send direcUy to a host on an

attached network. If the host is not on a directly-attached network, an
error is returned. This option can be used to ping a local host through
an interface that has no route through it [for example, after the
interface was dropped by routed(1M)].

-v Verbose output ICMP packets other than ECHO RESPONSE that are
received are listed.

When using ping for fault isolation, it should first be run on the local host, to
verify that the local network interface is up and running. Then, hosts and
gateways further and further away should be "pinged", ping sends one
datagram per second, and prints one line of output for every
ECHO_RESPONSE returned. No output is produced if there is no response. If
an optional count is given, only that number of requests is sent Round-trip
times and packet loss statistics are computed. When all responses have been
received or the program times out (with a count specified), or if the program is
terminated with a SIGINT, a brief summary is displayed.

This program is intended for use in network testing, measurement and
management. It should be used primarily for manual fault isolation. Because
of the load it could impose on the network, it is unwise to use ping during
normal operations or from automated scripts.

S E E A L S O

netstat(l), ifconfig(lM).

PORTMAP(IM) (CTXX Inlemctworfciag) PORTMAP(IM)

NAME
portmap - DARPA port to RPC program number mapper

SYNOPSIS
/etc/portmap

DESCRIPTION
portmap is a server that converts RPC program numbers into DARPA protocol
port numbers. It must be running in order to make RPC calls.

When an RPC server is started, it will tell portmap what port number it is
listening to, and what RPC program numbers it is prepared to serve. When a
client wishes to make an RPC call to a given program number, it will first
contact portmap on the server machine to determine the port number where RPC
packets should be sent

portmap is started automatically when the system is booted if there is a zero-
length file /etc/rcopts/URPC.

FILES
/etc/rc[23].d/S95nfs
/etc/rcopts/URPC

SEE ALSO
rpcinfo(lM).

BUGS
If portmap crashes, all RPC servers must be restarted.

PR(1) PR(1)

NAME
pr - print files

SYNOPSIS
pr [[-column] [-wwidth] [-a]] [-eck] [-ick] [-drtfp] [+page]
[-nek] [-ooffset] [-Ilength] [-sseparator] [-hheader] [fde . . .]

pr [[-m] [-wwidth]] [-eck] [-ick] [-drtfp] [+page] [-nek]
[-ooffset] [-Ilength] [-sseparator] [-hheader] fdel file2 . . .

DESCRIPTION
pr is used to format and print the contents of a fde. If file is or if no files are
specified, pr assumes standard input, pr prints the named files on standard
output

By default, the listing is separated into pages, each headed by the page number,
the date and time that the file was last modified, and the name of the file. Page
length is 66 lines which includes 10 lines of header and trailer output. The
header is composed of 2 blank lines, 1 line of text (can be altered with -h), and
2 blank lines; the trailer is 5 blank lines. For single column output, line width
may not be set and is unlimited. For multicolumn output line width may be set
and the default is 72 columns. Diagnostic reports (failed options) are reported
at the end of standard output associated with a terminal, rather than interspersed
in the output. Pages are separated by series of line feeds rather than form feed
characters.

By default, columns are of equal width, separated by at least one space; lines
which do not fit are truncated. If the -s option is used, lines are not truncated
and columns are separated by the separator character.

Either -column or -m should be used to produce multi-column output -a should
only be used with -column and not -m.

Command line options are:

+page Begin printing with page numbered page (default is 1).

•column Print column columns of output (default is 1). Output appears as if
-e and -i are turned on for multi-column output May not use with
-m.

-a Print multi-column output across the page one line per column.
columns must be greater than one. If a line is too long to fit in a
column, it is truncated.

PR(1)

Merge and print al] files simultaneously, one per column. The
maximum number of files that may be specified is eight. If a line is
too long to fit in a column, it is truncated. May not use with
-column.

Double-space the output Blank lines that result from double-
spacing are dropped when they occur at the top of a page.

Expand input tabs to character positions k+1,2*k+l, 3*£+l, etc. If
k is 0 or is omitted, default tab settings at every eighth position are
assumed. Tab characters in the input are expanded into the
appropriate number of spaces. If c (any non-digit character) is
given, it is treated as the input tab character (default for c is the tab
character).

In output, replace white space wherever possible by inserting tabs
to character positions jfc+1, 2*£+l, 3*£+l, etc. If k is 0 or is
omitted, default tab settings at every eighth position are assumed.
If c (any non-digit character) is given, it is treated as the output tab
character (default for c is the tab character).

Provide £-digit line numbering (default for k is 5). The number
occupies the first £+1 character positions of each column of single
column output or each line of -m output If c (any non-digit
character) is given, it is appended to the line number to separate it
from whatever follows (default for c is a tab).

-wwidth Set the width of a line to width character positions (default is 72).
This is effective only for multi-column output (-column and -m).
There is no line limit for single column output

-oojfset Offset each line by offset character positions (default is 0). The
number of character positions per line is the sum of the width and
offset.

-Uength Set the length of a page to length lines (default is 66). -10 is reset to
-166. When the value of length is 10 or less, -t appears to be in
effect since headers and trailers are suppressed. By default, output
contains 5 lines of header and 5 lines of trailer leaving 56 lines for
user-supplied text When -Uength is used and length exceeds 10,
then length-10 lines are left per page for user supplied text When
length is 10 or less, header and trailer output is omitted to make
room for user supplied text

-h header Use header as the text line of the header to be printed instead of the
file name, -h is ignored when -t is specified or -Uength is specified

PR(1)

-m

-d

-eck

-i ck

-n ck

- 2 -

PR(1) PR(1)

and the value of length is 10 or less, (-h is the only pr option
requiring space between the option and argument.)

-p Pause before beginning each page if the output is directed to a
terminal (pr will ring the bell at the terminal and wait for a carriage
return).

-f Use single form-feed character for new pages (default is to use a
sequence of line-feeds). Pause before beginning the first page if
the standard output is associated with a terminal.

-r Print no diagnostic reports on fdes that will not open.

-t Print neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page. Use of -t
overrides the -h option.

-sseparator Separate columns by the single character separator instead of by
the appropriate number of spaces (default for separator is a tab).
Prevents truncation of lines on multicolumn output unless -w is
specified.

E X A M P L E S

Print filel and filel as a double-spaced, three-column listing headed by "file

list":

pr -3dh "file list" filel file2

Copy filel to file2, expanding tabs to columns 10,19,28, 37 , . . .

pr -e9 -t <file1 >file2

Print filel and file2 simultaneously in a two-column listing with no header or trailer where both columns have line numbers:

F I L E S

pr -t -n filel | pr -t -m -n file2 -

/dev/tty* If standard output is directed to one of the special fdes /dev/tty*,
then other output directed to this terminal is delayed until standard
output is completed. This prevents error messages from being
interspersed throughout the output

S E E A L S O

cat(l), pg(l).

PROF(l) PROF(1)

NAME
prof - display profde data

SYNOPSIS

prof [-tcan] [-ox] [-g] [-z] [-h] [-s] [-m mdata] [prog]

DESCRIPTION
The prof command interprets a profde file produced by the monitor(3C)
function. The symbol table in the object file prog (a.out by default) is read and
correlated with a profile file (mon.out by default). For each external text
symbol the percentage of time spent executing between the address of that
symbol and the address of the next is printed, together with the number of times
that function was called and the average number of milliseconds per call.
The mutually exclusive options t, c, a, and n determine the type of sorting of
the output lines:

-t Sort by decreasing percentage of total time (default),

-c Sort by decreasing number of calls,

-a Sort by increasing symbol address,

-n Sort lexically by symbol name.

The mutually exclusive options o and x specify the printing of the address of
each symbol monitored:

-o Print each symbol address (in octal) along with the symbol name.

-x Print each symbol address (in hexadecimal) along with the symbol
name.

The following options may be used in any combination:

-g Include non-global symbols (static functions).

-z Include all symbols in the profile range [see monitor(3C)], even if
associated with zero number of calls and zero time.

-h Suppress the heading normally printed on the report. (This is useful if
the report is to be processed further.)

-s Print a summary of several of the monitoring parameters and statistics
on the standard error output

-m mdata
Use file mdata instead of mon.out as the input profile file.

PROF(l) PROF(264)

A program creates a profile file if it has been loaded with the -p option
of cc(l). This option to the cc command arranges for calls to
monitor (3C) at the beginning and end of execution. It is the call to
monitor at the end of execution that causes a profile file to be written.
The number of calls to a function is tallied if the -p option was used
when the file containing the function was compiled.

The name of the file created by a profiled program is controlled by the
environment variable PROFDIR. If PROFDIR does not exist, "mon.out" is
produced in the directory that is current when the program terminates. If
PROFDIR = string, "string/pid.progname" is produced, where progname
consists of argv[0] with any path prefix removed, and pid is the program's
process id. If PROFDIR is the null string, no profiling output is produced.

A single function may be split into subfunctions for profiling by means of the
MARK macro [see prof (5)].

FILES
mon.out for profile
a.out for namelist

SEE ALSO
cc(l), exit(2), profil(2), monitor(3C), prof(5).

WARNING
The times reported in successive identical runs may show variances of 20% or
more, bccause of varying cache-hit ratios due to sharing of the cache with other
processes. Even if a program seems to be the only one using the machine,
hidden background or asynchronous processes may blur the data. In rare cases,
the clock ticks initiating recording of the program counter may "bea t " with
loops in a program, grossly distorting measurements.

Call counts are always recorded precisely.

The times for static functions are attributed to the preceding external text
symbol if the -g option is not used. However, the call counts for the preceding
function are still correct, that is, the static function call counts are not added in
with the call counts of the external function.

CAVEATS
Only programs that call exit(2) or return from main will cause a profile file to
be produced, unless a final call lo monitor is explicitly coded.

PROF(l) PROF(l)

The use of the -p option to cc(l) to invoke profiling imposes a limit of 600
functions that may have call counters established during program execution.
For more counters you must call monitor(3C) direcUy. If this limit is exceeded,
other data will be overwritten and the mon.out file will be corrupted. The
number of call counters used will be reported automatically by the prof
command whenever the number exceeds 5/6 of the maximum.

- 3 -

PROFILER (1M) PROFILER (1M)

N A M E

profiler: prfld, prfstat, prfdc, prfsnap, prfpr - operating system profiler

S Y N O P S I S

/etc/prfld [namelist]

/etc/prfstat on

/etc/prfstat off

/etc/prfdc file [period [off_hour]]

/etc/prfsnap file

/etc/prfpr file [cutoff [namelist]]

S/640 Only:
/etc/prfstat time

D E S C R I P T I O N

The prfld, prfstat, prfdc, prfsnap, and prfpr programs form a system of
programs to facilitate an activity study of the CTIX operating system. A kernel
configured with kernel profiling must be used: the pfr driver may be loaded
with lddrv(1M).

The prfld program is used to initialize the recording mechanism in the system.
It generates a table containing the starting address of each system subroutine as
extracted from namelist.

The prfstat program is used to enable or disable the sampling mechanism.
Profiler overhead is less than one percent as calculated for 500 text addresses.
Note that prfstat also reveals the number of text addresses being measured.

Addresses are sampled every clock tick (definition for Hz is given in param.h).
S/640 systems allow sampling every time microsecond: the lower limit is 100
microsecond intervals.

The prfdc and prfsnap programs perform the data collection function of the
profiler by copying the current value of all the text address counters to a file
where the data can be analyzed. The prfdc program stores the counters into file
every period minutes and turns off at offjiour (valid values for offjiour are
0-24). The prfsnap program collects data at the time of invocation only,
appending the counter values to file.

The prfpr program formats the data collected by prfdc or prfsnap. Each text
address is converted to the nearest text symbol (as found in namelist) and is
printed if the percent activity for that range is greater than cutoff.

PROFILER (1M) PROFILER (1M)

FILES
/dev/prf interface to profile data and text addresses

/etc/lddrv/unix.exec default for namelist file

SEE ALSO
prf(7).

PRS(l) PRS(l)

NAME
prs - print an SCCS file

SYNOPSIS
prs [-d[dataspec]] [-r[SID]] [-e] [-1] [-c[date-time] -a files

DESCRIPTION
The prs command prints, on the standard output, parts or all of an SCCS file [see
sccsfile(4)] in a user-supplied format. If a directory is named, prs behaves as
though each file in the directory were specified as a named file, except that
non-SCCS files (last component of the path name does not begin with s.), and
unreadable files are silendy ignored. If a name of - is given, the standard input
is read; each line of the standard input is taken to be the name of an SCCS file or
directory to be processed; non-SCCS files and unreadable files are silendy
ignored.

Arguments to prs, which may appear in any order, consist of key letter
arguments, and file names.

All the described keyletter arguments apply independently to each named file:

-d[dataspec] Used to specify the output data specification. The dataspec
is a string consisting of SCCS file data keywords (see DATA
KEYWORDS) interspersed with optional user supplied text.

-r[SID] Used to specify the SCCS IDentification (SID) string of a
delta for which information is desired. If no SID is specified,
the SID of the most recently created delta is assumed.

-e Requests information for all deltas created earlier than and
including the delta designated via the -r keyletter or the date
given by the -c option.

-1 Requests information for all deltas created later than and
including the delta designated via the -r keyletter or the date
given by the -c option. The cutoff date-time -c[cutoff]] is in
the form:

YY[MM[DD[HH[MM[SS]]]]]

-c[date-time] Units omitted from the date-time default to their maximum
possible values; that is, -c7502 is equivalent to
-c750228235959. Any number of non-numeric characters
can separate the various two-digit pieces of the cutoff date:

-C77/2/2 9:22:25

PRS(l) PRS(l)

-a Requests printing of information for both removed, that is,
delta type = R, [see rmdel(1)] and existing, that is, delta type
= D, deltas. If the -a keyletter is not specified, information
for existing deltas only is provided.

DATA KEYWORDS
Data keywords specify which parts of an SCCS file are to be retrieved and
output. All parts of an SCCS file [see sccsfile{4)] have an associated data
keyword. There is no limit on the number of times a data keyword can appear
in a dataspec.

The information printed by prs consists of: (1) the user-supplied text; and (2)
appropriate values (extracted from the SCCS file) substituted for the
recognized data keywords in the order of appearance in the dataspec. The
format of a data keyword value is either Simple (S), in which keyword
substitution is direct, or Multi-line (M), in which keyword substitution is
followed by a carriage return.

User-supplied text is any text other than recognized data keywords.

A tab is specified by \t and carriage return/new-line is specified by \n. The
default data keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"

TABLE 1
K e y w o r d D a t a I t e m

:Dt: Delta information
:DL: Delta line statistics
:Li: Lines inserted by Delta
:Ld: Lines deleted by Delta
:Lu: Lines unchanged by Delta
:DT: Delta type

:I: SCCS ID string (SID)
:R: Release number
:L: Level number
:B: Branch number
:S: Sequence number
:D: Date Delta created

:Dy: Year Delta created
:Dm: Month Delta created
:Dd: Day Delta created

SCCS Files Data Keywords
F i l e S e c t i o n
Delta Table

V a l u e
See below*

:Li:/:Ld:/:Lu:
nnnnn
nnnnn
nnnnn

D or R
:R:.:L:.:B:.:S:

nrmn
nnrm
nnrm
nnnn

:Dy:/:Dm:/:Dd:
rm
nn
nn

F o r m a t
S
S
s
s
s
s
s
s
s
s
s
s
s
s

PRS(l) PRS(l)

:T: Time Delta created :Th:::Tm:::Ts: S
:Th: Hour Delta created nn S

:Tm: Minutes Delta created nn S

:Ts: Seconds Delta created rm S
:P: Programmer who created Delta logname S

:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnim S
:DI: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq #) :DS: :DS: . . . s
:Dx: Deltas excluded (seq #) :DS: :DS: ... s
:Dg: Deltas ignored (seq #) :DS: :DS: . . . s
:MR: MR numbers for delta text M
:C: Comments for delta text M

:UN: User names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag text S

:MF: MR validation flag yes or no S
:MP: MR validation pgm name text S
:KF: Keyword error/warning flag yes or no S
:KV: Keyword validation string text S
:BF: Branch flag yes or no S

•.J: Joint edit flag yes or no S
:LK: Locked releases :R: . . . S
:Q: User defined keyword text S
:M: Module name text S
:FB: Floor boundary :R: S
:CB: Ceiling boundary :R: S
:Ds: Default SID :I: s
:ND: Null delta flag yes or no s
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body " text M
:W: A form of what(\) string N/A :Z::M:St:I: S
:A: A form of what(\) string N/A :Z::Y: :M: :I::Z: S
:Z: what(\) string delimiter N/A @(#) s
:F: SCCS file name N/A text s

:PN: SCCS file path name N/A text s
* :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:

- 3 -

PRS(l) PRS(l)

EXAMPLES
The command
prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

can produce the following on standard output:

Users and/or user IDs for
s.file
are:
xyz
131

a be

The command

prs -d"Newest delta for pgm :M:: :I: Created :D: By :P:" -r s.file

can produce the following on standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case, the command:

prs s.file

can produce the following on the standard output:
D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the " D " type. The only keyletter argument
allowed to be used with the special case is the -a keyletter.

FILES
/tmp/pr?????

SEE ALSO
admin(l), delta(l), get(l), help(l), sccsfile(4).
UNIX System VRelease 3.2 Programmer s Guide.

DIAGNOSTICS
Use help{ 1) for explanations.

- 4 -

PS(1) PS(1)

N A M E

ps - report process status

S Y N O P S I S

ps [options]

D E S C R I P T I O N

ps prints certain information about active processes. Without options,
information is printed about processes associated with the controlling terminal.
The output consists of a short listing containing only the process ID, terminal
identifier, cumulative execution time, and the command name. Otherwise, the
information that is displayed is controlled by the selection of options.

Options accept names or lists as arguments. Arguments can be either separated
from one another by commas or enclosed in double quotes and separated from
one another by commas or spaces. Values for proclist and grplist must be
numeric.

The options are given in descending order according to volume and range of
information provided:

-e Print information about every process now running.

-d Print information about all processes except process group
leaders.

-a Print information about all processes most frequently requested:
all those except process group leaders and processes not
associated with a terminal.

-f Generate a full listing. (Normally, a short listing containing only
process ID, terminal ("tty") identifier, cumulative execution
time, and the command name is printed.) See below for
significance of columns in a full listing.

-1 Generate a long listing. (See below.)

-n namelist Take argument signifying an alternate system namelist fde in
place of /unix.

-t termlist List only process data associated with the terminal given in
termlist. Terminal identifiers may be specified in one of two
forms: the device's fde name (for example, tty004) or, if the
device's file name starts with tty, just the digit identifier (for
example, 004).

-p proclist List only process data whose process ID numbers are given in
proclist.

PS(1) PS(1)

-u uidlist List only process data whose user ID number or login name is
given in uidlist. If the -1 option was used, the numerical UID is
printed. If the -f option was used, the login name is printed.

-g grplist List only process data whose process group leader's ID
number(s) appears in grplist. (A group leader is a process whose
process ID number is identical to its process group ID number. A
login shell is a common example of a process group leader.)

Under the -f option, ps tries to determine the command name and arguments
given when the process was created by examining the user block. Failing this,
the command name is printed, as it would have appeared without the -f option,
in square brackets.

The column headings and the meaning of the columns in a ps listing are given
below; the letters f and 1 indicate the option (full or long, respectively) that
causes the corresponding heading to appear; all means that the heading always
appears. Note that these two options determine only what information is
provided for a process; they do not determine which processes will be listed.

F (1) Flags (hexadecimal and additive) associated with the
process:

00 Process has terminated: process table entry now
available.

01 A system process: always in primary memory.

02 Parent is tracing process.

04 Tracing parent's signal has stopped process: parent
is waiting [ptrace{2)].

10 Process is currently in primary memory.

20 Process currently in primary memory: locked until
an event completes.

2000 Process being swapped.

S (1) The state of the process:

O Process is running on a processor.

5 Sleeping: process is waiting for an event to
complete.

R Runnable: process is on run queue.

- 2 -

PS(1) PS(1)

U I D

P I D

P P I D

C

P R I

N l

A D D R

S Z

W C H A N

S T I M E

T T Y

(f,D

(all)

I Idle: process is being created.

Z Zombie state: process terminated and parent not
waiting.

T Traced: process stopped by a signal because parent
is tracing i t

X SXBRK state: process is waiting for more primary
memory.

The user ID number of the process owner (the login name is
printed under the -f option).

The process ID of the process (this datum is necessary in
order to kdl a process).

(f, 1) The process ID of the parent process.

(f,l) Processor utilization for scheduling.

(1) The priority of the process (higher numbers mean lower
priority).

(1) Nice value, used in priority computation.

(1) The physical page number of the process's user page.

(1) The size (in 4-Kbyte pages) of the swappable process's
image in main memory.

(1) The address of an event for which the process is sleeping, or
in SXBRK state, (if blank, the process is running).

(f) The starting time of the process, given in hours, minutes,
and seconds. (A process begun more than twenty-four
hours before the ps inquiry is executed is given in months
and days.)

(all) The controlling terminal for the process (the message, ?, is
printed when there is no controlling terminal). The s prefix
implies a shell layer; the p prefix implies a virtual terminal;
and the w prefix implies a CTAM window (/dev/wxt/*), the
r prefix indicates a terminal controlled by an RIOP.

- 3 -

PS(276) PS(1)

TIME (all) The cumulative execution time for the process.

COMMAND (all) The command name (the full command name and its
arguments are printed under the -f option).

A process that has exited and has a parent, but has not yet been waited for by
the parent, is marked <defunct>.

FILES
/dev
/dev/sxt/*
/dev/wxt/*
/dev/tty*
/dev/rtty*
/dev/kmem kernel virtual memory
/dev/swap the default swap device
/dev/mem memory
/etc/passwd UID information supplier
/etc/ps_data internal data structure
/unix system namelist

SEE ALSO
acctcom(l), getty(lM), kill(l), nice(l).

WARNING
Things can change while ps is running; the snap-shot it gives is only true for a
split-second, and it may not be accurate by the time you see it. Some data
printed for defunct processes is irrelevant.

If no termlist, proclist, uidlist, or grplist is specified, ps checks stdin, stdout, and
stderr in that order, looking for the controlling terminal and attempts to report
on processes associated with the controlling terminal. In this situation, if stdin,
stdout, and stderr are all redirected, ps does not find a controlling terminal, so
there is no report

On a heavily loaded system, ps may report an lseek(2) error and exit, ps may
seek to an invalid user area address: having obtained the address of a process'
user area, ps may not be able to seek to that address before the process exits and
the address becomes invalid.

ps -ef may not report the actual start of a tty login session, but rather an earlier
time, when a getty was last respawned on the tty line.

If the user specifies the -n flag, the real and effective UID/GID is set to the real
UID/GID of the user invoking ps.

PTX(l) PTX(l)

NAME
ptx - permuted index

SYNOPSIS
ptx [options] [input [output]]

DESCRIPTION
The ptx command generates the file output that can be processed with a text
formatter to produce a permuted index of file input (standard input and output
default). It has three phases: the first does the permutation, generating one line
for each keyword in an input line. The keyword is rotated to the front; the
permuted file is then sorted; finally, the sorted lines are rotated so the keyword
comes at the middle of each line. The ptx output is in the following form:

•xx "tail" "before keyword" "keyword and after" "head"

where .xx is assumed to be an nroff or troff (1) macro provided by the user, or
provided by the mptx(5) macro package. The before keyword and keyword and
after fields incorporate as much of the line as fits around the keyword when it is
printed. Tail and head, at least one of which is always the empty string, are
wrapped-around pieces small enough to fit in the unused space at the opposite
end of the line.

The index for this manual was generated using ptx.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter.

-w n Use the next argument, n, as the length of the output line. The
default line length is 72 characters for nroff and 100 for troff.

-g n Use the next argument, n, as the number of characters that ptx
reserves in its calculations for each gap among the four parts of
the line as finally printed. The default gap is 3.

-o only Use as key words only the words given in the only file.

-i ignore Do not use as keywords any words given in the ignore file. If the
-i and -o options are missing, use /usr/lib/eign as the ignore file.

-b break Use the characters in the break file to separate words. Tab, new-
line, and space characters are always used as break characters.

PTX(l) PTX(l)

-r Take any leading non-blank characters of each input line to be a
reference identifier (as to a page or chapter), separate from the
text of the line. Attach that identifier as a 5th field on each output
line.

F I L E S

/bin/sort
/usr/lib/eign
/usr/lib/tmac/tmac.ptx

S E E A L S O

nroff(l), troff(l), mm(5), mptx(5).

B U G S

Line length counts do not account for overstriking or proportional spacing.
Lines that contain tildes (") are botched, because ptx uses that character
internally.

PWCK(IM) PWCK(IM)

N A M E

pwck, grpck - password/group file checkers

S Y N O P S I S

/etc/pwck t file]

/etc/grpck [file]

D E S C R I P T I O N

The pwck command scans the password file and notes any inconsistencies. The
checks include validation of the number of fields, login name, user ID, group ID,
and whether the login directory and the program-to-use-as-Shell exist. The
default password file is /etc/passwd.

Grpck verifies all entries in the group file. This verification includes a check of
the number of fields, group name, group ID, and whether all login names appear
in the password fde. The default group file is /etc/group.

F I L E S

/etc/group
/etc/passwd

S E E A L S O

group(4), passwd(4).
SlSeries CTIX Administrator's Guide.

D I A G N O S T I C S

Group entries in /etc/group with no login names are flagged.

PWCONV(IM) PWCONV(IM)

N A M E

pwconv - install and update /etc/shadow with information from /etc/passwd

S Y N O P S I S

pwconv

D E S C R I P T I O N

The pwconv command creates and updates /etc/shadow with information from
/etc/passwd. If the /etc/shadow fde does not exist, pwconv creates it with
information from /etc/passwd. The command populates /etc/shadow with the
user's login name, password, and password aging information. If password
aging information does not exist in /etc/passwd for a given user, none is added
to /etc/shadow; however, the "last changed" information is always be updated.

If the /etc/shadow fde does exist, the following tasks are performed:

• Entries in the /etc/passwd fde but not in the /etc/shadow fde are added
to the /etc/shadow file.

• Entries in the /etc/shadow fde but not in the /etc/passwd fde are
removed from /etc/shadow.

• Password attributes (such as password and aging information) that
exist in an /etc/passwd entry are moved to the corresponding entry in
/etc/shadow.

The pwconv program is a privileged system command that can be executed only
by the super-user. The passwd command should be used to add or change
password aging information or passwords.

F I L E S

/etc/passwd
/etc/shadow
/etc/opasswd
/etc/oshadow

S E E A L S O

passwd(lM), passmgmt(lM), pwunconv(lM).

PWCONV(IM) PWCONV(IM)

D I A G N O S T I C S

The pwconv command exits with one of the following values:

0 Success.

1 Permission denied.

2 Invalid command syntax.

3 Unexpected failure. Conversion not done.

4 Unexpected failure. Password file(s) missing.

5 Password file(s) busy. Try again later.

- 2 -

PWD(l) PWD(l)

N A M E

pwd - working directory name

S Y N O P S I S

pwd

D E S C R I P T I O N

pwd prints the path name of the working (current) directory.

S E E A L S O

cd(l).

D I A G N O S T I C S

"Cannot open .." and "Read error in .." indicate possible fde system trouble
and should be referred your system administrator.

- 1 -

P WUNCONV (1M) PWUNCONV (1M)

N A M E

pwunconv - install and update /etc/shadow with information from /etc/passwd

S Y N O P S I S

pwunconv

D E S C R I P T I O N

The pwunconv command converts a system from a two-password fde scheme
(/etc/passwd and /etc/shadow) to a one-password fde scheme (/etc/passwd). It
updates /etc/passwd with password information from /etc/shadow. If aging
information is present in /etc/shadow, the password aging information in
/etc/passwd is also updated.

The total size of a login entry for the password fde is limited to a maximum of
511 bytes.

F I L E S

/etc/passwd
/etc/shadow
/etc/opasswd
/etc/oshadow

S E E A L S O

passwd(lM), passmgmt(lM), pwconv(lM).

D I A G N O S T I C S

The pwunconv command exits with one of the following values:

0 Success.

1 Permission denied.

2 Invalid command syntax.

3 Unexpected failure. Conversion not done.

4 Unexpected failure. Password fde(s) missing.

5 Password fde(s) busy. Try again later.

QINSTALL(l) QINSTALL(1)

N A M E

qinstall - install and verify software using the mkfs(l) proto fde database

S Y N O P S I S

/usr/local/bin/qinstall -c [-esoimk] proto root

/usr/local/bin/qinstall -g [-p prefix] [- t num] root

/usr/local/bin/qinstall -b [- a] [- t num] proto 1 proto2

/usr/local/bin/qinstall -u [-oeiw] proto 1 proto2

/usr/local/bin/qinstall -r [- k q] proto root from_rfile to_rfde

D E S C R I P T I O N

qinstall is used to package software on distribution media, to install software,
and to verify the correctness of the installation. Output from qinstall goes to
standard output. Root must be a full pathname or " . " .
The following options are recognized by qinstall:

-V output additional, verbose messages to stderr.

-c check whether files under root match files in proto for owner and
permission. This option is used primarily to verify the correctness of
an installation, but it is also used in the software distribution
packaging process.

-k allow changing owners/modes of CORE directories.

-o print omissions from root/proto2.

-s set permissions and owners to be correct if incorrect.

-e print extra files not found in proto/protol.

-i ignore differences in special fdes.

-m check mounted file systems as well.

-g generate a proto fde from root. This option is used in the software
distribution packaging process.

-p prefix

add prefix to path names.

-t num specify number of tabs to indent

-b blend the two proto files together into one.
-a add a group name generated from the name of proto2

(converted to upper case).

QINSTALL(l) QINSTALL(l)

-t num specify number of tabs to indent

checks if files in proto 1 match files in proto 2 for owner and
permissions.

-o print omissions from root!proto2.

-e print extra files not found in proto/protol.

-i ignore differences in special files .

-w check groups as well.

replace file tojfile in root with contents of fromjfile, keeping
permissions as in proto. Tojfile path must be a full path name as in
the proto file, and will be offset with root. Multiple from/to pairs may
be specified. This option is used to install customizable software.

-k allow changing owners/modes of CORE directories.

-q query before replace. Options are to replace torfile with
fromjfile, to save fromjfile, to ignore to rfile, to perform
an sdiff(1) between the two files or to replace to rfile with the
previous diff.

EXAMPLE
A sample proto file created with the -g option follows,
(qinstall -g . > ../proto)

/mkboot
0 0

d--777 2 2
install d - -775 0 0

IsamRel - - -444 0 0/install/lsamReH
$

usr d- - 775 2 2
include d--775 2 2

iserc.h ---444 2 2/usr/include/lserc.h
isam.h ---444 2 2 /usr/lnclude/isam.h
$

lib d - - 775 2 2
isam d - - 775 2 2

IsamConfig ---755
IsamCreate ---755
Isam Protect - - -755
IsamReorg ---755
IsamStat ---755

- U

-r

2 2 /usr/lib/isam/lsamConfig
2 2 /usr/lib/isam/lsamCreate
2 2 /usr/lib/isam/lsamProtect
2 2 /usr/lib/lsam/lsamReorg
2 2 /usr/lib/isam/isamStat

- 2 -

QINSTALL(l) QINSTALL(289)

IsamStop - - -755 2 2 /uar/lib/isam/lMmStop
IsamTransfer - - -755 2 2 /u»r/lib/i»am/l»amTran»fer
IxFilter - - -755 2 2 /usr/lib/lMin/lxFilter
IxSpoc •• •755 2 2 /u*r/lib/lsam/lxSpec
Isam
$

- - -755 2 2 /u»r/lib/l»am/l«am

libisam.a - - -444 2 2 /usr/lib/libisam.a
$

$
$

S E E A L S O

qlist(l), ctinstall(l), mkfs(l).

B U G S

qinstall invoked with the - m option on an inconsistent fde system produces
error messages of the form "filename: cannot stat".

QLIST(l) QLIST(l)

N A M E

qlist - print out file lists from proto file; set links based on lines in proto file.

S Y N O P S I S

/usr/local/bin/qlist -m [-d dir] [-d dir] [-o] [-p prefix] proto

/usr/local/bin/qlist -1 dir [-p prefix] proto

/usr/local/bin/qlist -n proto root

/usr/local/bin/qlist -s proto root

D E S C R I P T I O N

The qlist command is used in the distribution software packaging process and in
the software installation process. It makes lists of files from proto files created
by qinstall(\). Lists are based on the files' group identifiers and types, qlist
also sets links based on lines in the proto file during software installation.
qlist understands extended proto files, in which a line beginning with :L
indicates that the first file named is a link to the second file. Other lines
beginning with : are comments. The last field on a line in an extended proto file
is a group identifier of 9 or fewer characters, such as " W P " for the Word
Processor product The following symbols appearing immediately after the
group identifier designate the file's type and have the following meanings:

+ designates a customizable file, such as /etc/passwd. This type of file is
one which the user may or may not want to install over his existing
version. This type of file can be installed with the -rq option of
qinstall (I).

designates a zero-length file. The specified file should not be used
when updating an existing system; rather, it should be used for raw, or
first installs only.

@ implies an update but no query from qinstall (1). This symbol is used
for files required by the installation tools for installation and for
possible text busy files.

< designates an optional file, or a file requiring special installation such
as a hardware configuration-dependent fde. Its associated special
installation scripts are GROUP.opt and GROUP.ins, where GROUP
represents the group name.

< id designates a file of the above category which has special installation
scripts named GROUPid.opt GROUPid.ins, where GROUP represents
the group name. Id can be 5 or fewer characters. The total number of
characters in GROUP and id must be 10 or fewer.

QLIST(l) QLIST(l)

The following options are recognized by qlist:

-V output additional, verbose messages to stderr.

-m make file lists from proto file. This option is used in packaging
software.

-o print files in no group.

-d use dir as location for file lists.

-p use prefix when printing (default = . /).

File lists output with the -m option for group " W P " are named as
follows:

+ WP.cust

WP.noup

@ WP.noqu

< WP.fopt, WP.flst

< id WP.fopt, WPid.lst

the rest WP

-1 list files in directory dir from proto file to stdout.

-p use prefix when printing (default = . /).

-s set links in root directory which are indicated by :L lines in proto file.
Root must be a rooted path name or " . " . This option is used in
software installations.

-n mknod special files if they do not exist allready.

E X A M P L E

A sample extended proto file follows. Note that the files Document and Gloss
are really links to the file Admin, as indicated by :L at the beginning of these
lines. Also note that the lines ending in < designate optionally installed, or
specially installed files.

QLIST(l) QLIST (1)

/mkboot

00

d--777 2 2

install d--775 0 0

WPRal — 4 4 4 0 0 /install/WPRal WP

$
oa d--775 0 0

.Kay d - 7 5 5 0 0

Admin — 4 4 4 2 2/oa/.Kay/Admin CTIXOA

:L Document /oa/.Kay/Admin CTIXOA

:L Gloss /oa/.Kay/Admin CTIXOA

$
.Document d —775 0 0

Racruit - — 666 2 2 /oa/.Documant/RacruitWP
$

.Gloss d - 7 7 5 0 0

Sampla
*

- — 666 2 2 /oa/.GIoss/Sampla WP

•

Centronix — 555 2 2 /oa/Cantronix WP< sys

ImaganDrivar ---555 2 2 /oa/lmaganOrivar WP< sys

SarialDrlvar - - - 555 2 2 /oa/SartalDrivar WP< aya

abs_ral-- - 555 2 2 /oa/abs_ral WP< propt

ct os pool - - - 555 2 2/oa/ctospool WP

def_wp-- 555 2 2 /oa/daf_wp WP< propt

spoolstat ---555 2 2 /oa/spoolstat WP

w p d a f — 5 5 5 2 2 /oa/wpdat WP< propt

wp_edi1 - - - 555 2 2 /oa/wp_edit WP

wpmerga - - - 555 2 2 /oa/wp marga WP

wp_print - - - 555 2 2 /oa/wp_print WP

wpravlaw - - - 555 2 2 /oa/wp_raviaw WP

wpp_band - - 555 2 2/oaAwpp_band WP< propt

wppcanprt ---555 2 2 /oa/wpp_canprt WP

wppdlablo - - 555 2 2 /oa/wpp diablo WP< propt

wpplmagan -—555 2 2 /oaAwpp lmagan WP< propt

wpplasar - - - 555 2 2 /oa/wpp Jaaar WP« propt

wpp_nacspin - - - 555 2 2 /oa/wpp_n*cspin WP< propt

wppprtsh — 555 2 2/oa/wpp_prtsh WP

$
<

S E E A L S O

qinstall(l), ctinstall(l).

- 3 -

RATFOR(l) RATFOR(l)

N A M E
ratfor - rational FORTRAN dialect

S Y N O P S I S

ratfor [options] [fdes]

D E S C R I P T I O N

ratfor converts a rational dialect of FORTRAN into ordinary irrational
FORTRAN, ratfor provides control flow constructs essentially identical to those
in C:

statement grouping:
{ statement; statement; statement }

decision-making:
if (condition) statement [else statement]
switch (integer value) {

case integer: statement

[default:] statement
}

loops:
while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break
next

ratfor also provides the following syntactic enhancements to make programs
easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment.

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

define:
define name replacement

RATFOR(l) RATFOR(l)

include:
include file

The -h option causes quoted strings to be turned into 27H constructs. The -C
option copies comments to the output and attempts to format it neatly.
Normally, continuation lines are marked with a & in column 1; the option -6x
makes the continuation character x and places it in column 6.

S E E A L S O

efl(l).

Brian W. Kernighan; P. J. Plauger. Software Tools. Reading, Mass.: Addison-
Wesley, 1976.

RCO(IM) RCO(IM)

NAME
rcO - run commands performed to stop the operating system

SYNOPSIS
/etc/rcO

D E S C R I P T I O N

This file is executed at each system state change that needs to have the system
in an inactive state. It is responsible for those actions that bring the system to a
quiescent state, traditionally called "shutdown."

The following five system states require the letclrcO procedure: 0 ,1 , 4, 5, and 6.
The procedure is run each time a change to one of these states occurs. The
entry in /etc/inittab should read as follows:

s0:01456:wait:fetc/rc0 Wdev/console 2>&1

Some of the actions performed by /etc/rcO are carried out by files beginning
with K in /etc/rcO.d. (All /etc/rcO.d/K* files are merely links to files in
/etc/init.d: the K at the beginning of the file name designates it as a system
"s top" procedure.) These K* files are executed in ASCII order, and each
terminates some system service. The combination of commands in /etc/rcO and
files in /etc/rc0.d determines how the system is shut down. (Note that /etc/rcO
actually executes files beginning with S in /etc/rc0.d if there are any such files.
The CTIX distribution provides only K fdes in /etc/rcO.d.)

/etc/rcO performs the following:

• Announces that the system is coming down.

• Stops error logging, the spooler, and any other system service for
which there is an executable file named /etc/rcO.d/K*.

• Kills all active processes.

• Unmounts fde systems.

• Instructs users to wait for a message that it is okay to stop or reset the
processor.

Depending on which system state the system ends up in, the entries in
/etc/inittab direct what happens next. If the /etc/inittab has not defined any
other actions to be performed, as in the case of system state 0, a shell prompt is
displayed. The command can be used only by the super-user.

N O T E
Although /etc/rcO is an ASCII text commands fde, it is not meant to be
"configurable." System services are terminated through procedures in
/etc/rc.d/K* files; these files check for the presence of fdes in the /etc/rcopts

RCO(IM) RCO(IM)

F I L E S

directory. Therefore, configurability is provided at the level of an "rcopt :" that
is, the system administrator creates an rcopt file with a specific name (see the
README file in that directory), and pre-defined, non-configurable scripts
perform all the necessary start and stop procedures.

/etc/init.d/* procedures to be started and stopped when there is a change in
run-level; linked to files in /etc/rc?.d; whether the file is
executed at a particular run-level is determined by whether there
is a K (terminate) or S (start) file in the /etc/rc?.d directory that
corresponds to the run-level

/etc/rcO.d/K* files executed in ascii order when /etc/rcO is called; each script
terminates a particular system service

/etc/rcopts/* their presence (and in some cases their contents) checked by
/etc/rc?.d/* scripts to determine what system service (such as
the spooler) must be started or stopped.

S E E A L S O

init(lM), killall(lM), rc2(lM), shutdown(lM). inittab(4).
S/Series CTIX Administrator's Guide.

RC2(1M) RC2(1M)

NAME
rc2, rc3 - run commands performed for multi-user environment

SYNOPSIS
/etc/rc2

/etc/rc3

DESCRIPTION
/etc/rc2 is executed via an entry in /etc/inittab and is responsible for those
initializations that bring the system to a ready-to-use state, traditionally state 2,
called the "multi-user" state. The CTIX distribution includes /etc/rc3 for use in
state 3, the multi-user state for Remote File Sharing: the distribution /etc/rc2
and /etc/rc3 fdes are identical except for references to the state number.

The actions performed by /etc/rc[23] are found in fdes in the directory
/etc/init.d: these fdes are linked to fdes with a Knn prefix or an Snn prefix in
/etc/rc[23].d. The files are executed by /bin/sh in ASCII sort-sequence order, K
fdes with the parameter stop and then S files with the parameter start. (See
FILES for more information).

The functions done by the /etc/rc[23] command and associated /etc/rc[23].d
fdes (depending on the presence of particular files in the /etc/rcopts directory)
include:

• Setting-up and mounting file systems.

• Cleaning up (remaking) the /tmp and /usr/tmp directories.

• Setting the system node name and Internet hostname.

• Starting network daemons.

• Starting the cron daemon by executing /etc/cron.

• Cleaning up (deleting) uucp locks status, and temporary files in the
/usr/spool/uucp directory.

If Remote File Sharing is installed, Knn fdes in /etc/rc2.d stop Remote File
Sharing and Snn fdes in /etc/rc3.d start Remote File Sharing.

EXAMPLES
The following are prototypical fdes found in /etc/rc[23].d. These fdes are
prefixed by an S and a number indicating the execution order of the files.

MOUNTFILESYS
Set up and mount file systems

c d /
/etc/mountall /etc/fstab

RC2(1M) RC2(1M)

RMTMPFILES

clean up /tmp
rm -rf /tmp
mkdlr /tmp
chmod 777 /tmp
chgrp s y s /tmp
chown s y s /tmp

uucp
clean-up uucp locks, status,

and temporary files

rm -rf /usr/spool/locks/*

The file /etc/TIMEZONE is included early in letc/rc[23], thus establishing the
default time zone for all commands that follow.

N O T E
Although /etc/rc2 and /etc/rc3 are ASCII text commands files, they are not
meant to be "configurable". System services are started via procedures in
/etc/rc[23].d/S* files. These files check for the presence of files in the
/etc/rcopts directory. Thus, configurability is provided at the level of an
"rcopt" : that is, the system administrator creates an rcopt file with a specific
name [see the README file in that directory], and pre-defined, non-
configurable scripts perform all the necessary start and stop procedures.
Custom izations may also be added by creating files in /etc/init.d and making
links to /etc/rc[23].d files.

F I L E S

/etc/init.d/* procedures to be started and stopped when there is a change in
run-level; linked to files in /etc/rc[23].d; whether the file is
executed at a particular run-level is determined by whether there
is an S (start) file or K (stop) file in the /etc/rc[23].d directory
that corresponds to the run-level

RC2(1M) RC2(1M)

/etc/rc[23].d/S*
files executed in ASCII order when /etc/rc[23] is called; each
script starts a particular system service or performs some other
startup function

/etc/rcopts/* their presence (and in some cases their contents) checked by
some of the /etc/rc[23].d/* scripts to determine what system
service (such as the spooler) must be started or stopped or other
function performed.

Here are some hints about files in /etc/rc[23].d:

The order in which fdes are executed is important. Since they are executed in
ASCH sort-sequence order, using the first character of the fde name as a
sequence indicator will help keep the proper order. Thus, files starting with the
following characters would be:

[0-9]. very early
[A-Z], early
[a-n], later
[o-z], last

Files in /etc/rc[23].d that begin with a dot (.) will not be executed. This feature
can be used to hide fdes that are not to be executed for the time being without
removing them.

Files in /etc/rc2.d must begin with an S or a K followed by a number and the
rest of the fde name. Upon entering run level 2, files beginning with S are
executed with the start option; files beginning with K, are executed with the
stop option. (The corresponding is true for run level 3 and files in /etc/rc3.d).
Files beginning with other characters are ignored.

S E E A L S O

shutdown(lM).
S/Series CTIX Administrator's Guide.

RCMD(l) (CTIX Internet work lag) RCMD(l)

N A M E

rcmd - remote shell command execution

SYNOPSIS

/usr/local/bin/rcmd node [-1 user] [- n] [command]

/usr/hosts/node [-1 user] [- n] [command]

D E S C R I P T I O N

The rcmd command sends command to node for execution. It passes the
resulting remote command its own standard input and outputs the remote
command's standard output and standard error. Command can consist of more
than one parameter. The second, simplified form of the command is equivalent
to the first, but is only avadable if the system administrator previously ran

Interrupt, quit, and terminate signals received by rcmd are also
received by the remote command; rcmd normally terminates at the same time as
the remote command.
If command is omitted, rcmd simply runs rlogin(1).

By default, the command belongs to the user on the remote node with the same
name as the user who ran rcmd. This means that the resulting processes belong
to the remote user and begin with the remote user's home directory as their
working directory. Options permit you to specify another user on node as the
owner. In any case, the remote system must have declared the local user
equivalent to the remote user an entry in /etc/hosts.equiv or in a .rhosts file in
the current directory (normally the home directory) of the target user will
demonstrate equivalence. [See rcmd(3).]

Options to rcmd follow:

-1 user The command is to belong to user on node.

-n Prevent the remote command from blocking on input by making its
standard input be /dev/null instead of rcmd's standard input.

If -n is not specified, rcmd reads the local standard input regardless of
whether the remote machine reads standard input.

E X A M P L E S

The following command runs who on a node called "central," putting the
output in a file on the local machine:

rcmd central who > /tmp/c.who

RCMD(l) (CTIX Internet work lag) RCMD(l)

The next example puts the same output on the remote machine:

rcmd central who \> /tmp/c.who

F I L E S

$HOME/.rhosts (on the target machine)

/etc/hosts.equiv (on the target machine)

S E E A L S O
rlogin(l), rshd(lM), rhosts(4).

R E Q U I R E M E N T S

r j W (l M) must be running on the target machine.

N O T E
In some installations, this command is called rsh, so as to be like other versions
of the software.

W A R N I N G S

As the above examples illustrate, metacharacters to be interpreted by the remote
shell must be hidden from the local shell. Thus

rcmd central cd /etc ; cat passwd

clearly doesn't do what was intended because the semicolon is interpreted by
the local shell, not the remote shell, and the remote shell never even sees the cat
command. Either of the following commands properly escapes the semicolon:

rcmd central cd /etc \; cat passwd
rcmd central 'cd /etc ; cat passwd'

RCP(l) (CTIX internetworking) RCP(l)

NAME
rep - remote file copy

SYNOPSIS

/usr/local/bin/rcp [-r] [-p] filel [file2 ...] target

DESCRIPTION
The rep command copies files between two nodes; working like the cp
command [see cp(l)], with some extensions.

Filel is copied to target. If target is a directory, one or more files are copied
into that directory; the copies have the same names as the originals.

File and directory names follow a convention that is an extension of the normal
CTIX convention. Names take one of three forms:

user (5) host: path
host: path
path

where

host is the name of the system that contains or will contain the file. If no
host is specified (the simple path form of the name), the system on
which the command is executed is assumed.

user is the name of a user on the specified system. If no user is specified
(the hosf.path and path forms of the name), the user name on the
remote system that is the same as the user who executed the rep
command is used.

Access to the fde system is as if by the specified user who has just
logged in. Created fdes belong to the specified user and the specified
user's group (taken from the password file). File and directory
modifications can only occur if the specified user has permission to do
them. If path does not begin with a slash (/) , it is assumed to be
relative to the specified user's home directory.

To use a user name on a remote system, the remote system must have
declared it "equivalent' ' to your user name; see rhosts(A).

path is a conventional CTIX/UNIX path name. It can include file name
generation sequences (• , ?, [...]); it may be necessary to quote the
sequences to prevent their expansion on the local system.

An exclamation point (!) is allowed in place of the colon.

RCMD(l) (CTIX Internet work lag) RCMD(l)

The -r (recursive) option copies directory hierarchies. If a file specified for
copying is a directory and -r is specified, the entire hierarchy under it is copied.
When -r is specified, target must be a directory.

When -r is not specified, copying directories is an error.

By default, the mode and owner of file2 are preserved if it already existed;
otherwise the mode of the source file modified by the umask (2) on the
destination host is used. The -p option causes rep to attempt to preserve
(duplicate) in its copies the modification times and modes of the source files,
ignoring the umask.

Note that a third system (not the source or target system of the copy) can
execute rep.

E X A M P L E S
The following examples are executed on system alpha, by user fred. Alpha is
networked to beta and gamma.

The first example copies list from fred's home directory on alpha to fred's home
directory on beta:

rep list beta:list

The next example copies a directory hierarchy. The original is rooted at sre in
fred's home directory on beta; the copy is to be rooted in sre in the working
directory:

rep -r beta:src .

Finally, fred copies a file named junk from diane's home directory on beta to
/usr/tmp on gamma; the copy on gamma is to belong to karl. Both diane and
karl must have previously declared fred on alpha equivalent to their own user
names [see rhosts(4)].

rep diane\@beta:junk karl@gamma:/usr/tmp

Note that junk is not placed in karl's home directory because the path part of
the name begins with a slash.

F I L E S

/etc/hosts.equiv
$HOME/.rhosts

S E E A L S O
hostname(lM), uname(l).

R E Q U I R E M E N T S
Both nodes involved in the copy must be running the rshd(1M) server.

RCP(l) (CTDC Internetworking) RCP(l)

D I A G N O S T I C S

Most diagnostics are self-explanatory. "Permission denied" means either that
the remote user does not have permission to do what you want or that the
remote user is not equivalent to you.

W A R N I N G S

If a remote shell invoked by rep has output on startup, rep gets confused; J/I(1)
never has this problem, because it is not called as a login shell.

The -r option doesn't work correcdy if the copy is purely local. Use cpio (1)
instead.

REBOOT(IM) REBOOT(IM)

N A M E

reboot - reboot the system

S Y N O P S I S

/etc/reboot [-r | -h]

D E S C R I P T I O N

The reboot command issues a uadmin(2) call to unmount the root fde system.
When the -r option is used (this is the default), the system waits for the disks to
become quiescent before rebooting. When the -h option is used, the system
waits for the disks to become quiescent, and then halts in preparation for power
off.

Note that only the super-user can execute reboot.

S E E A L S O

shutdown(lM).

REGCMP(l) REGCMP (1)

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
The regcmp command performs a function similar to regcmp(3X) and, in most
cases, precludes the need for calling regcmp (3X) from C programs. This saves
on both execution time and program size. The command regcmp compiles the
regular expressions in file and places the output in/I/e.i. If the - option is used,
the output will be placed in file.c. The format of entries in file is a name (C
variable) followed by one or more blanks followed by a regular expression
enclosed in double quotes. The output of regcmp is C source code. Compiled
regular expressions are represented as extern char vectors. File.i files may
thus be included in C programs, or file.c fdes may be compiled and later
loaded. In the C program which uses the regcmp output, regex(abc,line) will
apply the regular expression named abc to line. Diagnostics are self-
explanatory.

EXAMPLES
name " ([A-Za-z][A-Za-zO-9 J *)$0 "
telno "N<{0,1 }([2-9][01][1-9])$0\){0,1} * "

"([2-9][0-9]{2})$1[-]{0,1}"
"([0-9]{4})$2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regcmp(3X).

RENICE(l) RENICE(l)

NAME
renice - alter priority of running process by changing nice

SYNOPSIS
/usr/local/bin/renice pid [priority]

DESCRIPTION
renice can be used by the super-user to alter the priority of a running process.
By default, the nice of the process is made 19, which means that it will run only
when nothing else in the system wants to. This can be used to lower the priority
of long running processes that are interfering with interactive work.

renice can be given a second argument to choose a nice other than the default.
A negative nice value can be used to raise the priority of a process.

FILES
/unix
/dev/kmem

SEE ALSO
nice(l).

BUGS
If you make the nice very negative, then the process cannot be interrupted. To
regain control you must put the nice back (for example, to 0).

REXECD(IM) (C T I X I n t e r n e t w o r k i n g) REXECD(IM)

NAME
rexecd - remote execution server

SYNOPSIS
/etc/rexecd

DESCRIPTION
rexecd is the server for the rexec(3X) routine. The server provides remote
execution facdities with authentication based on user names and encrypted
passwords.

rexecd listens for service requests at the port indicated in the "exec" service
specification; see services (A). When a service request is received the following
protocol is initiated:

1) The server reads characters from the socket up to a null (0) byte. The
resultant string is interpreted as an ASCII number, base 10.

2) If the number received in step 1 is nonzero, it is interpreted as the port
number of a secondary stream to be used for the stderr. A second
connection is then created to the specified port on the client's machine.

3) A null-terminated user name of at most 16 characters is retrieved on
the initial socket

4) A null-terminated, encrypted, password of at most 16 characters is
retrieved on the initial socket

5) A null-terminated command to be passed to a shell is retrieved on the
initial socket The length of the command is limited by the upper
bound on the size of the system's argument list.

6) rexecd then validates the user as is done at login time and, if the
authentication was successful, changes to the user's home directory
and establishes the user and group protections of the user. If any of
these steps fail, the connection is aborted with a diagnostic message
returned.

7) A null byte is returned on the connection associated with the stderr
and the command line is passed to the normal login shell of the user.
The shell inherits the network connections established by rexecd.

rexecd is started by the "super-server" inetd, and therefore must have an entry
in inetd's configuration file, /etc/inetd.conf [see inetd(1M) and inetd.conf(4)].

REXECD(IM) (C T I X I n t e r n e t w o r k i n g) REXECD(IM)

SEE ALSO
inetd(lM), rexec(3X), inetd.conf(4), services(4).

DIAGNOSTICS
All diagnostic messages are returned on the connection associated with the
stderr, after which any network connections are closed. An error is indicated
by a leading byte with a value of 1 (0 is returned in step 7 above upon
successful completion of all the steps prior to the command execution).

"username too long"
The name is longer than 16 characters.

"password too long"
The password is longer than 16 characters.

"command too long"
The command line passed exceeds the size of the argument list (as configured
into the system).

"Login incorrect."
No password file entry for the user name existed.

"Password incorrect."
The wrong password was supplied.

"No remote directory."
The chdir command to the home directory failed.

"Try again."
A fork by the server failed.

"/bin/sh: ..."
The user's login shell could not be started.

BUGS
Indicating "Login incorrect" as opposed to "Password incorrect" is a security
breach which allows people to probe a system for users with null passwords.

A facility to allow all data exchanges to be encrypted should be present.

RFADMIN(IM) (RFS Ut i l i t ic i) RFADMIN(IM)

N A M E
rfadmin - Remote File Sharing administration

S Y N O P S I S

rfadmin

rfadmin -[ar] domain.nodename

rfadmin -[pq]

rfadmin -o option

D E S C R I P T I O N

The rfadmin command is primarily used to add and remove computers and their
associated authentication information from a domain/passwd fde on a Remote
File Sharing primary domain name server. It is also used to transfer domain
name server responsibilities from one machine to another. Used with no
options, rfadmin returns the domain.nodename of the current domain name
server for the local domain. Other options let you check if RFS is running and
turn on the RFS loop back feature.

rfadmin can only be used to modify domain fdes on the primary domain name
server (-a and -r options). If domain name server reponsibilities are
temporarily passed to a secondary domain name server, that computer can use
the -p option to pass domain name server responsibility back to the primary.
rfadmin can be used on any computer with no options or with the q or o options,
to print information about the current domain name server. The user must have
root permissions to use the command.

-a domain.nodename

Used to add a computer to the member list of the domain that
is served by this primary domain name server. The
computer's name must be of the form domain.nodename.
This command creates an entry for nodename in the
domain! passwd file, which has the same format as
/etc/passwd, and prompts for an initial authentication
password. The password prompting process conforms with
that of passwd(1).

-r domain.nodename

Used to remove a computer from its domain by removing it
from the domain!passwd fde.

-p Used to pass the domain name server responsibilities back to
a primary or to a secondary name server.

RFADMIN(IM) (RFS Utilities) RFADMIN(IM)

Prints a message that will tell you whether or not RFS is
running.

Lets you set RFS system options, by replacing option with
one of the following:

loopback
Enables loopback facility for your computer. When
this is set, you can mount a resource that is
advertised from your own computer. This is used for
testing applications in RFS when only one computer
is available. Loopback is disabled by default.

noloopback
Disables the loopback facility for your computer.
This is the default.

E R R O R S

When used with the -a option, if domain.nodename is not unique in the domain,
an error message will be sent to standard error.

When used with the -r option, if (1) domain.nodename does not exist in the
domain, (2) domain.nodename is defined as a domain name server, or (3) there
are resources advertised by domain.nodename, an error message will be sent to
standard error.

When used with the -p option to change the domain name server, if there are no
backup name servers defined for domain, a warning message will be sent to
standard error.

F I L E S

/usr/nserve/auth.info/domam/passwd

(For each domain, this file: is created on the primary, should be copied to all
secondaries, and should be copied to all computers that want to do password
verification of computers in the domain.)

S E E A L S O

passwd(l), rfstart(lM), rfstop(lM), umount(lM).
S/Series CTtX Administrator's Guide.

-q

-o option

RFPASSWD(IM) (RFS Utilities) RFPASS WD (1M)

N A M E

rfpasswd - change Remote File Sharing host password

S Y N O P S I S

rfpasswd

D E S C R I P T I O N

rfpasswd updates the Remote File Sharing authentication password for a host;
processing of the new password follows the same criteria as passwd(1). The
updated password is registered at the domain name server
(/usr/nserve/auth.info/domazn/passwd) and replaces the password stored at the
local host (/usr/nserve/loc.passwd fde).

This command is restricted to the super-user.

NOTE: If you change your host password, make sure that hosts that validate
your password are notified of this change. To receive the new password, hosts
must obtain a copy of the domain!passwd file from the domain's primary name
server. If this is not done, attempts to mount remote resources may fail!

E R R O R S

If (1) the old password entered from this command does not match the existing
password for this machine, (2) the two new passwords entered from this
command do not match, (3) the new password does not satisfy the security
criteria in passwd(1), (4) the domain name server does not know about this
machine, or (5) the command is not run with super-user privileges, an error
message will be sent to standard error. Also, Remote File Sharing must be
running on your host and your domain's primary name server. A new password
cannot be logged if a secondary is acting as the domain name server.

FILES
/usr/nserve/auth.info/cfomain/passwd
/usr/nserve/loc.passwd

S E E A L S O

passwd(l), rfstart(lM), rfadmin(lM).

RFSTART(IM) (RFS Utilities) RFSTART(IM)

N A M E

rfstart - start Remote File Sharing

S Y N O P S I S

rfstart [-v] [-p primary_addr]

D E S C R I P T I O N

rfstart starts Remote File Sharing and defines an authentication level for
incoming requests. [This command can be used only after the domain name
server is set up and your computer's domain name and network specification
has been defined using dname(1M).]

-v Specifies that verification of all clients is required in response to initial
incoming mount requests; any host not in the file
/usr/nserve/auth.info/do/mw'/i/passwd for the domain they belong to,
will not be allowed to mount resources from your host If -v is not
specified, hosts named in domain/passwd will be verified, other hosts
will be allowed to connect without verification.

-p primary_addr
Indicates the primary domain name server for your domain.
primary addr must be the network address of the primary name server
for your domain. If the -p option is not specified, the address of the
domain name server is taken from the rfmaster file. [See
rfmaster (1M) for a description of the valid address syntax.]

If the host password has not been set, rfstart will prompt for a password; the
password prompting process must match the password entered for your machine
at the primary domain name server [see rfadmin(1M)]. If you remove the
loc.passwd file or change domains, you will also have to reenter the password.

Also, when rfstart is run on a domain name server, entries in the rfmaster (A) file
are syntactically validated.

This command is restricted to the super-user.

E R R O R S

If syntax errors are found in validating the rfmaster (A) file, a warning
describing each error will be sent to standard error.

If (1) the shared resource environment is already running, (2) there is no
communications network, (3) the domain name server cannot be found, (4) the
domain name server does not recognize the machine, or (5) the command is run
without super-user privileges, an error message will be sent to standard error.

RFSTART(IM) (RFS Utilities) RFSTART(IM)

Remote file sharing will not start if the host password in
/usr/nserve/loc.passwd is corrupted. If you suspect this has happened, remove
the file and run rf start again to reenter your password.

NOTE: rf start will NOT fail if your host password does not match the password
on the domain name server. You will simply receive a warning message.
However, if you try to mount a resource from the primary or any other host that
validates your password, the mount will fail if your password does not match
the one that host has listed for your machine.

F I L E S

/usr/nserve/rfmaster
/usr/nserve/loc.passwd

S E E A L S O

adv(lM), dname(lM), mount(lM), rfadmin(lM), rfstop(lM), unadv(lM),
rfmaster(4).
S/Series CTIX Administrator's Guide.

RFSTART(IM) (RFS Utilities) RFSTART(IM)

NAME
rfstop - stop the Remote File Sharing environment

SYNOPSIS
rfstop

DESCRIPTION
rfstop disconnects a host from the Remote File Sharing environment until
another rfstart(1M) is executed.

When executed on the domain name server, the domain name server
responsibdity is moved to a secondary name server as designated in the
rfmaster(4) fde. If there is no designated secondary name server rfstop will
issue a warning message, Remote File Sharing will be stopped, and name
service will no longer be available to the domain.

This command is restricted to the super-user.

ERRORS
If (1) there are resources currendy advertised by this host, (2) resources from
this machine are still remotely mounted by other hosts, (3) there are stdl
remotely mounted resources in the local file system tree, (4) rfstart{ 1M) had not
previously been executed, or (5) the command is not run with super-user
privileges, an error message will be sent to standard error and Remote File
Sharing will not be stopped.

SEE ALSO
adv(lM), mount(lM), rfadmin(lM), rfstart(lM), unadv(lM), rfmaster(4).
S/Series CTIX Administrator's Guide.

RFUADMIN(IM) (RFS Utililici) RFU ADMIN (1M)

N A M E

rfuadmin - Remote File Sharing notification shell script

S Y N O P S I S

rfuadmin message remote_resource [seconds]

D E S C R I P T I O N

The rfuadmin administrative shell script responds to unexpected Remote File
Sharing events, such as broken network connections and forced unmounts,
picked up by the rfudaemon process. This command is not intended to be run
direcdy from the shell.
The response to messages received by rfudaemon can be tailored to suit the
particular system by editing the rfuadmin script. The following paragraphs
describe the arguments passed to rfuadmin and the responses.

disconnect remote resource
A link to a remote resource has been cut. rfudaemon executes
rfuadmin, passing it the message disconnect and the name of the
disconnected resource, rfuadmin sends this message to all terminals
using wall(1):

Remotejresource has been disconnected from the system.

Then it executes /krer (lM) to kill all processes using the resource,
unmounts the resource [umount(1M)] to clean up the kernel, and starts
rmount to try to remount the resource.

fumount remote_resource
A remote server machine has forced an unmount of a resource a local
machine has mounted. The processing is similar to processing for a
disconnect

fuwarn remote_resource seconds
This message notifies rfuadmin that a resource is about to be
unmounted, rfudaemon sends this script the fuwarn message, the
resource name, and the number of seconds in which the forced
unmount will occur, rfuadmin sends this message to all terminals:

Remote resource is being removed from the system in # seconds.

S E E A L S O

fumount(lM), rmount(lM), rfudaemon(lM), rfstart(lM), wall(l).

RFUDAEMON(IM) (RFS Uti l i t ies) RFUDAEMON (1M)

N A M E

rfudaemon - Remote File Sharing daemon process

S Y N O P S I S

rfudaemon

D E S C R I P T I O N

The rfudaemon command is started automatically by rfstart(1M) and runs as a
daemon process as long as Remote File Sharing is active. Its function is to
listen for unexpected events, such as broken network connections and forced
unmounts, and execute appropriate administrative procedures.

When such an event occurs, rfudaemon executes the administrative shell script
rfuadmin, with arguments that identify the event This command is not
intended to be run from the shell. Here are the events:

DISCONNECT
A link to a remote resource has been cut. rfudaemon executes
rfuadmin, with two arguments: disconnect and the name of the
disconnected resource.

FUMOUNT
A remote server machine has forced an unmount of a resource a local
machine has mounted, rfudaemon executes rfuadmin, with two
arguments: fumount and the name of the disconnected resource.

GETUMSG
A remote user-level program has sent a message to the local
rfudaemon. Currendy the only message sent is fuwarn, which notifies
rfuadmin that a resource is about to be unmounted. It sends rfuadmin
the fuwarn, the resource name, and the number of seconds in which the
forced unmount will occur.

LASTUMSG
The local machine wants to stop the rfudaemon [//itop(lM)]. This
causes rfudaemon to exit.

S E E A L S O

rfstart(lM), rfuadmin(lM).

RIOPCFG(IM) RIOPCFG(IM)

N A M E

riopcfg - configure system for Remote I/O Processor

S Y N O P S I S

/etc/riop/riopcfg [options] [-r release] [riopnumber ...]

D E S C R I P T I O N

The riopcfg command is used to configure and give status information about
Remote I/O Processors (RIOPs). An RIOP number is a decimal number in the
range 0 to 31 which is used to order all RIOPs in a system. This number is
placed in the second field of the /etc/riop/rtab file when an RIOP is put in
service [see rtab(4)]. If one or more RIOP numbers are passed as arguments, the
options are processed for those RIOP numbers only. If no RIOP number is given,
the options are processed for all RIOP numbers listed in nab. If no RIOP number
is given and rtab does not exist, riopcfg assumes that an initial install is being
done, prompts for the number of RIOPs to be supported, and creates a template
rtab, which it then uses as a guide to process the specified options.
The following options are allowed:

-d Create the 16 tty devices associated with this RIOP. If the directory
/dev/rtty exists, start naming for RIOP number 0 from /dev/rtty/rOOO;
otherwise, start from /dev/tty400. The program complains if any of the
device nodes already exist, but continues making the rest of the nodes.

-i Append entries to /etc/inittab for the 16 tty devices associated with
this RIOP. Write entries with gettys set for 9600 BAUD and turned off.
If any of the entries for an RIOP already exist, make no entries for that
RIOP.

-s Print out the status of the RIOP. Output is in tabular form giving RIOP
number, state, unique ID, line, drop, and number of ports.

-m Print out the range of tty devices supported by this RIOP.

-b Cause the RIOP to reboot. An I/O control call to the driver causes a
reboot message to be sent to the RIOP.

-x Turn on external echo and output processing for this RIOP. All ports
are set for external processing. This takes effect for each port during
its next closed to open transition.

RIOPCFG(IM) RIOPCFG(IM)

-n Turn off external echo and output processing for this RIOP. All ports
are set for no external processing. This takes effect for each port
during its next closed to open transition.

-r The string following this option is taken as the release level to be used
in filling in the third field of /etc/riop/rtab when a template file is
needed during installation.

D I A G N O S T I C S

The program prints out informational messages describing the results of its
processing.

F I L E S

/etc/riop/rtab

S E E A L S O

extproc(lM), rtab(4).

RIOPCFG(IM) RIOPCFG(IM)

N A M E

riopqry - query Remote I/O Processor for online data

S Y N O P S I S

/etc/riop/riopqry [-p] address length [riopnumber ...]

DESCRIPTION
The riopqry command queries for and displays length memory data bytes
beginning at address from online Remote I/O Processors (RIOPs). An RIOP
number is a decimal number in the range 0 to 31 which is used to order all
RIOPs in a system. This number is placed in the second field of the
/etc/riop/rtab file when an RIOP is put in service [see rtab(4)]. If one or more
RIOP numbers are passed as arguments, each RIOP is queried in turn. If no RIOP
number is given then each RIOP number listed in rtab is specified.
The -p option causes the retrieved data to be printed as an ASCII hexadecimal
dump. Without this option the binary data is sent to the standard output. When
multiple RIOPs are specified, an RIOP identification line is printed to standard
error before each query action.

F I L E S

/etc/riop/rtab

S E E A L S O
rtab(4)

RLOGIN(l) (CTIX Internetworking) R L O G I N (l)

N A M E

rlogin - remote login

S Y N O P S I S

/usr/local/bin/rlogin host [-ec] [-I name]
/usr/hosts/host [-ec] [-1 name]

D E S C R I P T I O N

The rlogin command connects you to a login shell executing on host. The
second simplified form of the command is equivalent to the first, but is
available only if mkhosts (IM) was previously run by the system administrator.
By default rlogin uses the same user name on the remote host that the user is
using on the local host The remote login program does not require a password
if the remote host has declared the two users equivalent [see rhosts(4)].

The rlogin command attempts to configure the remote "terminal" in a
convenient way. The TERM environment variable on the remote shell is
automatically set to match its value on the local shell which ran rlogin.
Echoing takes place at the remote host. Flow control on XON/XOFF and
flushing of input and output on interrupts are handled properly.

Close the connection by hanging up on rlogin, by logging out of the remote
host, or by typing (tilde-period) at the beginning of a line. The hangup
and the tilde-period command both cause a hangup on the remote "terminal."
To send an input line beginning with tilde to the remote host, begin the line with
two tildes.

The rlogin command understands the following options:

-ec Use the character c instead of tilde as the escape character. There
must not be a space between e and c on the command line. A c . (c-
period) at the beginning of an input line closes the connection, and cc
at the beginning of an input line sends a single c.

-1 user Login as user on the remote system. User's password is not required
provided that the local user name is on user's list of "equivalent' '
user names. See rhosts(4).

S E E A L S O

rcmd(l), rlogind(lM), rhosts(4).

RLOGIND(IM) (CTIX Internetworking) RLOGIND(IM)

NAME
rlogind - remote login server

SYNOPSIS
/etc/rlogind

DESCRIPTION
The rlogind network server supports remote logins by programs such as
rlogin(\). It is started by the "super-server" inetd, and therefore must have an
entry in inetd's configuration file, /etc/inetd.conf [see inetd(lM) and
inetd.conf (4)].

The rlogind server enforces an authentication procedure based on equivalence
of user names [see rhosts (4)]. This procedure assumes all hosts on the network
are equally secure.

SEE ALSO
inetd(lM), rlogin(l), inetd.conf(4), rhosts(4), services(4).

RM(1) RM(1)

NAME
rm, rmdir - remove fdes or directories

SYNOPSIS
rm [-f] [-i] fde ...

rm -r [-f] [-i] dirname . . . [fde . . .]

rmdir [-p] [-s] dirname . . .

DESCRIPTION
The rm command removes the entries for one or more fdes from a directory. If
an entry was the last link to the fde, the file is destroyed. Removal of a file
requires write permission in its directory, but neither read nor write permission
on the file itself.
If a file has no write permission and the standard input is a terminal, the full set
of permissions (in octal) for the file are printed followed by a question mark.
This is a prompt for confirmation. If the answer begins with y (for yes), the file
is deleted, otherwise the file remains.

Note that if the standard input is not a terminal, the command will operate as if
the -f option is in effect.

rmdir removes the named directories, which must be empty.

Three options apply to rm:

-f This option causes the removal of all fdes (whether write-protected or
not) in a directory without prompting the user. In a write-protected
directory, however, files are never removed (whatever their permissions
are), but no messages are displayed. If the removal of a write-protected
directory was attempted, this option cannot suppress an error message.

-r This option causes the recursive removal of any directories and
subdirectories in the argument list. The directory will be emptied of fdes
and removed. Note that the user is normally prompted for removal of any
write-protected files which the directory contains. The write-protected
files are removed without prompting, however, if the -f option is used, or
if the standard input is not a terminal and the -i option is not used.

If the removal of a non-empty, write-protected directory was attempted,
the command will always fail (even if the -f option is used), resulting in
an error message.

-i With this option, confirmation of removal of any write-protected file
occurs interactively. It overrides the -f option and remains in effect even
if the standard input is not a terminal.

RM(1) RM(1)

Two options apply to rmdir:

-p This option allows users to remove the directory dirname and its parent
directories which become empty. A message is printed on standard
output as to whether the whole path is removed or part of the path
remains for some reason.

-s This option is used to suppress the message printed on standard output
when -p is in effect.

DIAGNOSTICS
All messages are generally self-explanatory.
To avoid the consequences of inadvertently doing something like the following,
the files . and . . cannot be removed.

rm -r .*

Both rm and rmdir return exit codes of 0 if all the specified directories are
removed successfully. Otherwise, they return a non-zero exit code.

SEE ALSO
unlink(2), rmdir(2).

RMDEL(1) RMDEL(1)

NAME
rmdel - remove a delta from an SCCS fde

SYNOPSIS
rmdel -rSID fdes

DESCRIPTION
rmdel removes the delta specified by the SID from each named SCCS fde. The
delta to be removed must be the newest (most recent) delta in its branch in the
delta chain of each named SCCS file. In addition, the SID specified must not be
that of a version being edited for the purpose of making a delta (that is, if a p-
file [see get(l)\ exists for the named SCCS fde, the SID specified must not
appear in any entry of the p-file).

The -r option is used for specifying the SID (SCCS IDentification) level of the
delta to be removed.

If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the
path name does not begin with s.) and unreadable files are silendy ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed; non-SCCS files and
unreadable files are silendy ignored.

Simply stated, they are either (1) if you make a delta you can remove it; or (2) if
you own the file and directory you can remove a delta.

FILES
x.file [see delta (I)]
z.file [see de//a(l)]

SEE ALSO
delta(l), get(l), help(l), prs(l), sccsfile(4).

DIAGNOSTICS
Use help (I) for explanations.

RMNTSTAT(IM) (RFS Utili t ici) RMNTST AT (1M)

NAME
rmntstat - display mounted resource information

SYNOPSIS
rmntstat [-h] [resource]

DESCRIPTION
When used with no options, rmntstat displays a list of all local Remote File
Sharing resources that are remotely mounted, the local path name, and the
corresponding clients, rmntstat returns the remote mount data regardless of
whether a resource is currently advertised; this ensures that resources that have
been unadvertised but are still remotely mounted are included in the report.
When a resource is specified, rmntstat displays the remote mount information
only for that resource. The -h option causes header information to be omitted
from the display.

EXIT STATUS
If no local resources are remotely mounted, rmntstat will return a successful
exit status.

ERRORS
If resource (1) does not physically reside on the local machine or (2) is an
invalid resource name, an error message will be sent to standard error.

SEE ALSO
mount(lM), fumount(lM), unadv(lM).

RMNTTRY(IM) (RFS Utilities) RMNTTRY(IM)

NAME
rmnttry - attempt to mount remote resources

SYNOPSIS
/usr/nserve/rmnttry [resource . . .]

DESCRIPTION
The rmnttry command sequences through the pending mount requests stored in
/usr/nserve/rmnttab, trying to mount each resource. If a mount succeeds, the
resource entry is removed from the /usr/nserve/rmnttab fde.

If specific (one or more) resource names are supplied, mounts are attempted
only for those resources, rather than for all pending mounts. Mounts are not
attempted for resources not present in the /usr/nserve/rmnttab file [see
rmount(\M)]. If a mount invoked from rmnttry takes over three minutes to
complete, rmnttry aborts the mount and issues a warning message.

The rmnttry command is typically invoked from a cron entry in
/u/spool/cron/crontabs/root to attempt mounting queued resources at periodic
intervals. The default strategy is to attempt mounts at 15-minute intervals, as
shown in the following cron entry:

10,24,40,55 * * * * /usr/nserve/rmnttry >/dev/null

FILES
/usr/nserve/rmnttab pending mount requests

SEE ALSO
cron(lM), mount(lM), rmount(lM), rumount(lM), mnttab(4).

DIAGNOSTICS
The rmnttry command returns the following codes:

0 Success.

1 One or more mounts failed.

2 Incorrect usage.

RMOUNT(IM) (RFS Utilities) RMOUNT(IM)

NAME
rmount - queue remote resource mounts

SYNOPSIS
/etc/rmount [-d[r] resource directory]

DESCRIPTION
The rmount command queues a remote resource for mounting. The command
enters the resource request into /usr/nserve/rmnttab, which is formatted
identically to /etc/mnttab. The rmnttry (1M) command is used to poll entries in
the rmnttab fde.

When used without arguments, rmount prints a list of resources with pending
mounts, along with their destined directories, modes, and dates of request. The
resources are listed chronologically, the oldest resource request first.

The following options are available:

-d Indicates that the resource is a remote resource to be mounted on
directory.

-r Indicates that the resource is to be mounted read-only. If the resource
is write-protected, this flag must be used.

FILES
/usr/nserve/rmnttab pending mount requests

SEE ALSO

mount(lM), rmnttry(lM), rumount(lM), rmountall(lM), mnttab(4).

DIAGNOSTICS
An exit code of 0 is returned upon successful completion of rmount; otherwise,
a non-zero value is returned.

RMOUNT ALL(IM) (RFS Utilities) RMOUNT ALL(IM)

NAME
rmountall, rumountall - mount, unmount Remote File Sharing (RFS) resources

SYNOPSIS

/etc/rmountall [-] " file-system-table " [. . .]

/etc/rumountall [-k]

DESCRIPTION
The rmountall Remote File Sharing (RFS) command is used to mount remote
resources according to a file-system-table. (Note that /etc/fstab is the
recommended file-system-table.) The special fde name dash (-) reads from the
standard input. The rmountall command also invokes the
/usr/nserve/rmnttry(lM) command, which attempts to mount queued
resources.
The rumountall command causes all mounted remote resources to be
unmounted and deletes all resources that were queued from rmount(lM). The
-k option sends a SIGKILL signal, through /u.wr(lM), to processes that have
fdes open.

These commands can be executed only by the super-user.

The file-system-table format is as follows:

column 1 block special fde name of file system

column 2 mount-point directory

column 3 -r if to be mounted read-only; -d if remote resource

column 4 fde system type (not used with Remote File Sharing)

column 5+ ignored

White-space separates columns. Lines beginning with a pound sign (#) are
comments. Empty lines are ignored.

SEE ALSO
fuser(lM), mount(lM), rfstart(lM), rmnttry(lM), rmount(lM), signal(2).

DIAGNOSTICS

No messages are printed if the remote resources are mounted successfully.

Error and warning messages come from mount(1M).

ROUTE(IM) (CTDC Internetworking) ROUTE(IM)

NAME
route - manually manipulate the routing tables

SYNOPSIS

/etc/route [-f] [command destination gateway [metric]]

DESCRIPTION
route is a program used to manually manipulate the network routing tables. It is
normally not needed, since the routing daemon, routed manages the system
routing table and therefore handles this function.
route accepts two commands: add, to add a route; and delete, to delete a route.

All commands have the following syntax:

/etc/route command destination gateway [metric]

where destination is a host or network for which the route is " to" , gateway is
the gateway to which packets should be addressed, and metric is an optional
count indicating the number of hops to the destination. If no metric is
specified, route assumes a value of 0. Routes to a particular host are
distinguished from those to a network by interpreting the Internet address
associated with destination. If the destination has a "local address part" of
INADDR_ANY, the route is assumed to be to a network; otherwise, it is
presumed to be a route to a host. NOTE-. If the route is to a destination
connected via a gateway, metric should be greater than 0. All symbolic names
specified for a destination or gateway are looked up first in the host name
database; see hosts (4). If this lookup fails, the name is then looked for in the
network name database; see networks (4).

route uses a raw socket and the SIOCADDRT and SIOCDELRT ioctl's to do its
work. As such, only the super-user may modify the routing tables.

If the -f option is specified, route will " f lush" the routing tables of all gateway
entries. If this is used in conjunction with one of the commands described
above, the tables are flushed prior to the command's application.

DIAGNOSTICS
add host: gateway host flags hex-flag

The specified route is being added to the tables. The values printed are
from the routing table entry supplied in the ioctl call.

delete host: gateway host flags hex-flags
As above, but when deleting an entry.

host host done
When the -f flag is specified, each routing table entry deleted is
indicated with a message of this form.

- 1 -

ROUTE(IM) (CTIX Internetworking) ROUTE(IM)

A delete operation was attempted for an entry which
wasn't present in the tables.

An add operation was attempted, but the system was
low on resources and was unable to allocate memory to create the new
entry.

SEE ALSO
intro<4), adman(l), routed(lM), hosts(4), networks(4).

- 2 -

ROUTED(IM) (CTIX Internetworking) ROUTED(1M)

NAME
routed - network routing daemon

SYNOPSIS
/etc/routed [- d] [-g] [- s] [- t] [logfile]

/etc/routed [- d] [- g] [- q] [- t] [logfile]

DESCRIPTION
The routed daemon manages the Internet routing tables by using a variant of the
Xerox NS Routing Information Protocol. It is invoked at boot time and should
be started if the file /etc/rcopts/KINET is present

In normal operation routed listens on the udp(l) socket for the route service
[see services (4)] for routing information packets. If the host is an internetwork
router, it periodically supplies copies of its routing tables to any directly
connected hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioctl to find those directly
connected interfaces configured into the system and marked " u p " (the software
loopback interface is ignored). If multiple interfaces are present, it is assumed
that the host will forward packets between networks. The routed daemon then
transmits a request packet on each interface (by using a broadcast packet if the
interface supports it) and enters a loop, listening for request and response
packets from other hosts.

When a request packet is received, routed formulates a reply based on the
information maintained in its internal tables. The response packet generated
contains a list of known routes, each marked with a "hop count" metric (a
count of 16, or greater, is considered "infinite"). The metric associated with
each route returned provides a metric relative to the sender.

Response packets received by routed are used to update the routing tables if one
of the following conditions is satisfied:

(1) No routing table entry exists for the destination network or host, and
the metric indicates the destination is "reachable" (for example, the
hop count is not infinite).

(2) The source host of the packet is the same as the router in the existing
routing table entry. That is, updated information is being received
from the very internetwork router through which packets for the
destination are being routed.

(3) The existing entry in the routing table has not been updated for some
time (defined to be 90 seconds) and the route is at least as cost
effective as the current route.

RLOGIND(IM) (CTIX Internetworking) RLOGIND(IM)

(4) The new route describes a shorter route to the destination than the one
currently stored in the routing tables; the metric of the new route is
compared against the one stored in the table to decide this.

When an update is applied, routed records the change in its internal tables and
updates the kernel routing table. The change is reflected in the next response
packet sent

In addition to processing incoming packets, routed also periodically checks the
routing table entries. If an entry has not been updated for three minutes, the
entry's metric is set to infinity and marked for deletion. Deletions are delayed
an additional 60 seconds to ensure that the invalidation is propagated
throughout the local internet

Hosts acting as internetwork routers gratuitously supply their routing tables
every 30 seconds to all directly-connected hosts and networks. The response is
sent to the broadcast address on networks capable of that function, to the
destination address on point-to-point links, and to the router's own address on
other networks. The normal routing tables are bypassed when sending
gratuitous responses. The reception of responses on each network is used to
determine that the network and interface are functioning correctly. If no
response is received on an interface, another route may be chosen to route
around the interface, or the route may be dropped if no alternative is available.

The routed daemon supports several options:

-d Enable additional debugging information to be logged, such as bad
packets received.

-g Used on internetwork routers to offer a route to the "defaul t"
destination. This is typically used on a gateway to the Internet, or on a
gateway that uses another routing protocol whose routes are not
reported to other local routers.

-s Forces routed to supply routing information whether it is acting as an
internetwork router or not This is the default if multiple network
interfaces are present, or if a point-to-point link is in use.

-q The opposite of the -s option.

-t All packets sent or received are printed on the standard output. In
addition, routed does not divorce itself from the controlling terminal
so that interrupts from the keyboard kill the process.

Any other argument supplied is interpreted as the name of file in which
routed's actions should be logged. This log contains information about any

RLOGIND(IM) (CTIX Internetworking) RLOGIND(IM)

changes to the routing tables and, if not tracing all packets, a history of recent
messages sent and received which are related to the changed route.

In addition to the routed facilities, routed also supports the notion of distant
gateways. When routed is started up it reads the fde etc/gateways to find
gateways that may not be located using only information from the SIOGIFCONF
ioctl.

FILES

/etc/gateways for distant gateways

SEE ALSO
"Internet Transport Protocols," XSIS 028112, Xerox System Integration
Standard.
udp(7), gateways(4).

BUGS
The kernel's ICMP routing tables may not correspond to those of routed when
redirects change or add routes.

RPCINFO(IM) (CTIX Internetworking) RPCINFO(IM)

NAME
rpcinfo - report RPC information

SYNOPSIS
rpcinfo -p [host]
rpcinfo -u host program-number [version-number]
rpcinfo -t host program-number [version-number]

DESCRIPTION
The rpcinfo command makes an RPC call to an RPC server and reports what it
finds.

OPTIONS
-p Probe the portmappcr on host, and print a list of all registered RPC

programs. If host is not specified, it defaults to the hostname returned
by hostname (1).

-u Make an RPC call to procedure 0 of program-number using UDP, and
report whether a response was received.

-t Make an RPC call to procedure 0 of program-number using TCP, and
report whether a response was received.

The program-number argument can be either a name or a number. If no version
is given, it defaults to 1.

FILES
/etc/rpc names for RPC program numbers

SEE ALSO
rpc(4), portmap(lM).

RSHD(IM) (C T D C I n t e r n e t w o r k i n g) RSHD(IM)

NAME
rshd - remote shell server

SYNOPSIS
/etc/rshd

DESCRIPTION
rshd is the network server for programs such as rcmd{ 1) and rcp(1) which need
to execute a noninteractive shell on remote machines, rshd is started by the
"super-server" inetd, and therefore must have an entry in inetd's configuration
fde, /etc/inetd.conf [see inetd (\M) and inetd.conf(4)].

rshd enforces an authentication procedure based on equivalence of user names
[see rhosts (4)]. This procedure assumes all nodes on the network are equally
secure.

SEE ALSO
inetd(lM), rcmd(l), rcp(l), inetd.conf(4), rhosts(4).

RSTERM(IM) RSTERM(IM)

NAME
rsterm - manually start and stop terminal input and output

SYNOPSIS
/usr/local/bin/rsterm number device

DESCRIPTION
The rsterm command manually exercises the start/stop features of the terminal
driver. [For a discussion of start/stop features, see the STOP and START
characters and IXON, IXANY, and [XOFF flags under termio(l).] The rsterm
command requires two parameters:

number A number specifying the action:

0 Suspend output as if the terminal had sent a STOP character
to the system.

1 Resume output as if the terminal had sent a START character
to the system.

2 Block input by sending the terminal a STOP character as if
the terminal had nearly Filled the terminal's input queue.

3 Unblock input by sending the terminal a START character as
if the system had nearly emptied the terminal's input queue.

device The special File for the terminal.

Normally, STOP is the ASCII XOFF character, Control-S, and START is the
ASCn XON character, Control-Q.

Operation 2 (resume output) is the most often-used parameter. Use it when a
terminal (a printer for example) has sent a STOP character and cannot be made
to send a START character.

The rsterm command provides one way to clear up a terminal. Another way is
to kill all processes associated with the terminal: this momentarily closes the
special File, returning all terminal modes to their initial state; see kill(1).

Note that you must be the super-user to run rsterm.

FILES
/dev/tty??? - terminal devices

SEE ALSO
kill(l), termio(7).

RTPENAB LE (1M) RTPENABLE(IM)

NAME
rtpenable - real-time priorities enabled/disabled

SYNOPSIS
/etc/rtpenable -e | d

DESCRIPTION
rtpenable is used to enable or disable the additional range of eight negative nice
values (values in the range -21 to -28 [see nice(1)Y). The additional range of
nice values is fixed and pre-emptive. This range will be automatically enabled
when the system boots if the zero length fde /etc/rcopts/RTPENABLE exists.
As distributed, CTIX has the extra range of priorities disabled.

The following options are recognized by rtpenable:

-e enable the additional priority range.

-d disable the additional priority range.

FILES
/etc/rcopts/RTPENABLE

SEE ALSO
nice(2), syslocal(2).

WARNING
Since the additional range of negative nice values are pre-emptive, they should
be used with utmost care.

RUMOUNT(1M) (Remote File Sharing Utilitie.) RUMOUNT(1M)

NAME
rumount - cancel queued remote resource request

SYNOPSIS
/usr/nserve/rumount resource . . .

DESCRIPTION
The rumount command cancels a request for one or more resources that are
queued for mount Entries for the resources are deleted from
/usr/nserve/rmnttab.

FILES
/usr/nserve/rmnttab pending mount requests

SEE ALSO
mount(lM), rmnttry(lM), rmount(lM), rmountall(lM), mnttab(4).

DIAGNOSTICS
The following exit code., are returned by rumount:

0 Successful.

1 Resource request for dequeing is not in /usr/nserve/rmnttab.

2 Bad usage or error in reading/writing /usr/nserve/rmnttab.

RUNACCT(IM) RUNACCT (1M)

NAME
runacct - run daily accounting

SYNOPSIS
/usr/lib/acct/runacct [mmdd [state]]

DESCRIPTION
The runacct command invokes the main daily accounting shell procedure. It is
normally initiated via cron(\M). runacct processes connect, fee, disk, and
process accounting files. It also prepares summary fdes for prdaily or billing
purposes. Disk block counts are reported for 512-byte blocks.

runacct takes care not to damage active accounting files or summary files in the
event of errors. It records its progress by writing descriptive diagnostic
messages into active. When an error is detected, a message is written to
/dev/console, mail[(see mail(l)] is sent to root and adm, and runacct
terminates, runacct uses a scries of lock fdes to protect against re-invocation.
The files lock and lockl are used to prevent simultaneous invocation, and
lastdate is used to prevent more than one invocation per day.

runacct breaks its processing into separate, restartable states using statefile to
remember the last state completed. It accomplishes this by writing the state
name into statefile. runacct then looks in statefile to see what it has done and
to determine what to process next. States are executed in the following order:

SETUP Move active accounting files into working files.

WTMPFIX Verify integrity of wtmp file, correcting date changes if
necessary.

CONNECT1 Produce connect session records in ctmp.h format.

CONNECT2 Convert ctmp.h records into tacct.h format.

PROCESS Convert process accounting records into tacct.h format.

MERGE Merge the connect and process accounting records.

FEES Convert output of chargefee into tacct.h format and merge
with connect and process accounting records.

DISK Merge disk accounting records with connect, process, and fee
accounting records.

MERGETACCT
Merge the daily total accounting records in daytacct with the
summary total accounting records in /usr/adm/acct/sum/tacct.

RUNACCT(IM) RUNACCT (1M)

CMS Produce command summaries.

USEREXIT Any installation-dependent accounting programs can be
included here.

CLEANUP Cleanup temporary files and exit

To restart runacct after a failure, first check the active file for diagnostics, then
fix up any corrupted data files such as pacctorwtmp. The lock files and
lastdate file must be removed before runacct can be restarted. The argument
mmdd is necessary if runacct is being restarted, and specifies the month and
day for which runacct will rerun the accounting. Entry point for processing is
based on the contents of statefile; to override this, include the desired state on
the command line to designate where processing should begin.

EXAMPLES
To start runacct:
nohup runacct 2> /usr/adm/acct/nite/fd21og &

To restart runacct:
nohup runacct 0601 2 » /usr/adm/acct/nite/fd21og &

To restart runacct at a specific state:
nohup runacct 0601 MERGE 2 » /usr/adm/acct/nite/fd21og &

FILES
/etc/wtmp
/usr/adm/pacct*
/usr/src/cmd/acct/tacct.h
/usr/src/cmd/acct/ctmp.h
/usr/adm/acct/nite/active
/usr/adm/acct/nite/daytacct
/usr/adm/acct/nite/lock
/usr/adm/acct/nite/lock 1
/usr/adm/acct/nite/lastdate
/usr/adm/acct/nite/statefile
/usr/adm/acct/nite/ptacc t * .mmdd

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM), acctprc(lM),
acctsh(lM), cron(lM), fwtmp(lM), mail(l), acct(2), acct(4), utmp(4).
S/Series CTIX Administrator's Guide.

RUNACCT(IM) RUNACCT (1M)

BUGS
Normally it is not a good idea to restart runacct in the SETUP state. Run
SETUP manually and restart via:

runacct mmdd WTMPFIX

If runacct failed in the PROCESS state, remove the last ptacct file because it
will not be complete.

RUPTIME(l) (C T I X I n t e r n e t w o r k i n g) RUPTTME(1)

NAME
ruptime - display status of nodes on local network

SYNOPSIS

/usr/local/bin/ruptime [-a] [-I] [-t] [-u]

DESCRIPTION
The ruptime command displays status information for hosts on the local
network. For each node, a line reports: the node name; whether the node is up
[a node is considered "down" if its rwhod(1M) server has not broadcast in five
minutes]; the time the node has been up in days, hours, and minutes; the number
of logged-in users logged who have used their keyboards in the last hour; and
the load (average number of jobs in the run queue) for the last one minute, five
minutes, and 15 minutes.

When no options are specified, the status lines are sorted by node name.

Options to ruptime follow:

-a Count all logged-in users, including idle ones.

-1 Sort status lines by load average,

-t Sort status lines by time node has been up.

-u Sort status lines by number of users.

R EQUIRMENTS
Each node to be listed must be running the rwhod(1M) server, which broadcasts
a status packet once a minute. The local node must also be running this server
to maintain data files.

FILES
/usr/spool/rwho/whod.* data files

SEE ALSO
rwho(l), rwhod(lM).

RWHO(l) (CTIX Internetworking) RWHO(l)

NAME
rwho - who is logged in on local network

SYNOPSIS
/usr/local/bin/rwho [-a]

DESCRIPTION
The rwho command lists users logged in on machines on the local network. The
format is similar to that of who (I). Without options, only users who have typed
in the last hour are listed. For each user listed, rwho displays the user name; the
host name; and the date and time the user logged in. If the user has not typed in
the last minute, rwho also displays the user's idle time in hours and minutes.

Options to rwho follow:

-a List all users on active hosts (users idle for more than an hour
are listed).

If information from a host is more than five minutes old, the host is assumed to
be down and its users are not listed.

REQUIREMENTS
Each host to be listed must be running the rwhod(\M) server, which broadcasts
a status packet once a minute. The local host must also be running this server to
maintain the data files. Since broadcasts do no cross gateways, hosts on other
networks are not listed.

FILES
/usr/spool/rwho/whod.* information about other hosts

SEE ALSO
ruptime(l), rwhod(lM).

RWHOD(IM) (CTIX Internetworking) RWHOD(IM)

NAME
rwhod - host status server

SYNOPSIS
/etc/rwhod

DESCRIPTION
rwhod collects and distributes information about hosts on the local network,
including the local host. It is normally started via an entry in
/etc/rcopts/NETD. It performs four chores once a minute:

• Gathers information about the local host.

• Broadcasts information about the local host for the benefit of rwhod
servers running on other hosts.

• Collects information broadcast by rwhod servers on other hosts.

• Maintains network status files, using information gathered by this and the
other rwhod servers.

The files maintained by rwho have names of the form
/' u s r/s p oo I / r w h o/ w h od. AM me, where name is the name of the host whose status
is in the file. Each status file begins with the header of the following form:

struct whod {
char w d v e r s ; /* version number »/
char w d t y p e ; /* type number */
char wdf i l l ; /* ignored */
int wd_sendtime; I* time this packet sent»/
int wdreevtime; /• time this packet received */
char wd_hostname[32]; /* name of originating hosts */
int wd_loadav[3]; /» load averages; see rwho(1) */
int wd boottime; /* boot time of originating host */

};
The host name of a system is printed by the uname (1) command. The
remainder of the file consists of user records:

struct outmp {
char out_line[8];
char out_name[8];
int outjt ime;
int outjt ime;

/* terminal name */
/* user name */
/« login time */
I* idle time »/

R L O G I N D (I M) (CTIX Internetworking) R L O G I N D (I M)

rwho performs an nlist (3C) on /unix every 10 minutes in case that file is not the
current system image.

rwho transmits and receives messages at the port indicated in the "rwho"
service specification. See services(4).

FILES
/usr/spool/rwho/whod. *
/etc/rcopts/NETD

SEE ALSO
rwho(l), ruptime(l).

WARNINGS
Death of this server makes other hosts think that this host is down.

SACT(l) SACT(l)

NAME
sact - print current SCCS file editing activity

SYNOPSIS
sact fdes

DESCRIPTION
sact informs the user of any impending deltas to a named SCCS file. This
situation occurs when get(l) with the -e option has been previously executed
without a subsequent execution of delta(1). If a directory is named on the
command line, sact behaves as though each file in the directory were specified
as a named file, except that non-SCCS files and unreadable files are silendy
ignored. If a name of - is given, the standard input is read with each line being
taken as the name of an SCCS fde to be processed.

The output for each named file consists of five fields separated by spaces.

Field 1 specifies the SID of a delta that currently exists in the SCCS file
to which changes will be made to make the new delta.

Field 2 specifies the SID for the new delta to be created.

Field 3 contains the logname of the user who will make the delta (that is,
executed a get for editing).

Field 4 contains the date that get -e was executed.

Field 5 contains the time that get -e was executed.

SEE ALSO
delta(l), get(l), unget(l).

DIAGNOSTICS
Use help (I) for explanations.

SADP(IM) SADP(IM)

NAME
sadp - disk access profder

SYNOPSIS
sadp [-th] [-d disk[-drive]] s [n]

DESCRIPTION
The sadp program reports disk-access location and seek distance, in tabular or
histogram form. It samples disk activity once every second during an interval
of s seconds, repeatedly if n is specified. Cylinder usage and disk distance are
recorded in units of 8 cylinders.

The valid value of disk is disk. Drive specifies the disk drives as one of the
following:

• A drive number in the range supported by disk (currently, 0 through
255).

• Two drive numbers separated by a minus (indicating an inclusive
range).

• A list of drive numbers separated by commas.

Up to eight disk drives can be reported. If only one disk is present, the -d
option can be omitted.

The -t flag (default) causes the data to be reported in tabular form. The -h flag
produces a histogram on the printer of the data.

EXAMPLES
The following command generates four tabular reports, each describing
cylinder usage and seek distance of disk drive 0 during a 15-minute interval:

sadp -d disk-0 900 4

The following command generates a histogram for drive 0 (cOdO) and drive 2
during a 5-minute interval:

sadp -h -d disk-0,2 300

FILES
/dev/kmem

SEE ALSO
S/Series CTIX Administrator's Guide.

NOTE
If the time inverval is too small, sadp produces an invalid report

SAG(IG) (Category 2 Support) SAG(IG)

N A M E

sag - system activity graph

S Y N O P S I S

sag f options]

DESCRIPTION
The sag command graphically displays the system activity data stored in a
binary data fde by a previous sar(l) run. Any of the sar data items can be
plotted singly, or in combination: as cross plots, or versus time. Simple
arithmetic combinations of data can be specified. The sag command invokes
sar and finds the desired data by string-matching the data column header [see
sar (1) to see what is available]. The following options are passed through to
sar:

-s time Select data later than time in the form hh [:mm]. Default is 08:00.

-e time Select data up to time. Default is 18:00.

-i sec Select data at intervals as close as possible to sec seconds.

-ifile Use file as the data source for sar. Default is the current daily data
file /usr/adm/sa/saJJ.

Other options:

-T term Produce output suitable for terminal term. See tplot(\G) for known
terminals. Default for term is $TERM.

-x spec x axis specification with spec in the following form:

name [op name] . . . [lo hi]

-y spec y axis specification with spec in the same form as above.

Name is either a string that matches a column header in the sar report, with an
optional device name in square brackets (for example, r+w/s[dsk-l]), or an
integer value. Op is + - * or / surrounded by blanks. Up to five names can be
specified. Parentheses are not recognized. Contrary to custom, + and -
have precedence over * and /. Evaluation is left to right. Thus
A / A + B * 100 is evaluated (A/(A+B))*100, and A + B / C + D is
(A+B)/(C+D). Lo and hi are optional numeric scale limits. If unspecified, they
are deduced from the data.

SAG(IG) (Category 2 Support) SAG(IG)

A single spec is permitted for the x axis. If unspecified, time is used. Up to 5
specs separated by semicolons (;) can be given for -y. Enclose the -x and -y
arguments in double quotation marks (" ") if blanks or \carriage return are
included. The -y default is shown below:

-y " % u s r 0 100; %usr + % s y s 0 100; %usr +%sys + %wk> 0 100"

EXAMPLES

The following command displays today's CPU utilization:

sag
The following command sequence reports on activity of all disk drives over a
period of 15 minutes:

TS=date +%H:%M
sar -o tempfile 60 15
TE=date +%H:%M
sag -f tempfile -s $TS -e $TE -y "r+w/stdsk]"

FILES
/usr/adm/sa/sadd daily data file for day dd.

SEE ALSO
sar(l), tplot(lG).
S/Series CTIX Administrator's Guide.

SAR(l) SAR(l)

NAME
sar - system activity reporter

SYNOPSIS

sar [-ubdycwaqvmprDSAC] [-o file] t [n]

sar [-ubdycwaqvmprDSAC] [-s time] [-e time] [- i sec] [-f file]

DESCRIPTION
In the first instance, sar samples cumulative activity counters in the operating
system at n intervals of t seconds, where t should be 5 or greater. If the -o
option is specified, it saves the samples in file in binary format. The default
value of n is 1. In the second instance, with no sampling interval specified, sar
extracts data from a previously recorded file, either the one specified by the -f
option or, by default, the standard system activity daily data file
/usr/adm/sa/sadd for the current day dd. The starting and ending times of the
report can be bounded by use of the -s and -e time arguments of the form
hh[\mm[:ss]\. The -i option selects records at sec second intervals. Otherwise,
all intervals found in the data file are reported.
In either case, subsets of data to be printed are specified by the following
options:

-u Report CPU utilization (the default):

%usr, %sys, %wio, %idle
Portion of time running in user mode, running in
system mode, idle with some process waiting for block
I/O, and otherwise idle. When used with -D, %sys is
split into percentage of time servicing requests from
remote machines (%sys remote) and all other system
time (%sys local).

-b Report buffer activity:

bread/s, bwrit/s Transfers per second of data between system buffers
and disk or other block devices.

lread/s, Iwrit/s Accesses of system buffers.

%rcache, %wcache
Cache-hit ratios: that is, (1-bread/lread) as a
percentage.

pread/s, pwrit/s Transfers through raw (physical) device mechanism.
When used with -D, buffer caching is reported for
locally-mounted remote resources.

SAR(l) SAR(l)

-d Report activity for each block device: for example, disk or tape drive.
When data is displayed, the device specification dsk- is generally used to
represent a disk drive. The following activity data is reported:

%busy, avque Portion of time device was busy servicing a transfer
request, average number of requests outstanding
during that time.

r+w/s, blks/s Number of data transfers from or to device, number of
bytes transferred in 512-byte units.

avwait, avserv Average time in minutes that transfer requests wait
idly on queue, and average time to be serviced (which
for disks includes seek, rotational latency, and data
transfer times). RS-422 activity is also reported in this
section.

-y Report TTY device activity:

rawch/s, canch/s, outch/s
Input character rate, input character rate processed by
canon, output character rate.

rcvin/s, xmtin/s, mdmin/s
Receive, transmit and modem interrupt rates.

-c Report system calls:

scall/s system calls of all types.

sread/s, swrit/s, fork/s, exec/s
Specific system calls.

rchar/s, wchar/s Characters transferred by read and write system calls.
When used with -D, the system calls are split into
strictly local calls, remote outgoing (client) calls, and
remote incoming (server) calls.

-w Report system swapping and switching activity:

swpin/s, swpot/s, bswin/s, bswot/s
Number of transfers and number of 512-byte units
transferred for swapins and swapouts (including initial
loading of some programs).

pswch/s Process switches.

-a Report use of file access system routines: iget/s, namei/s, dirblk/s.

- 2 -

SAR(l) SAR(l)

-q Report average queue length while occupied, and percentage of time
occupied:

runq-sz, %runocc
Run queue of processes in memory and runnable.

swpq-sz, %swpocc
Swap queue of processes swapped out but ready to run.

-v Report status of process, i-node, fde tables:

text-sz, proc-sz, inod-sz, file-sz, lock-sz
Entries/size for each table, evaluated once at sampling
point.

ov Overflows that occur between sampling points for
each table.

-m Report message and semaphore activities:

msg/s, sema/s Primitives per second,

-p Report paging activities:

vflt/s Address translation page faults (valid page not in
memory).

pflt/s Page faults from protection errors (illegal access to
page) or copy-on-writes.

pgfil/s vflt/s satisfied by page-in from file system.

rclm/s Valid pages reclaimed for free list.

-r Report unused memory pages and disk blocks:

freemem Average pages available to user processes.

freeswap Disk blocks available for process swapping.

-D Report Remote File Sharing (RFS) activity. When used in combination
with -u, -b or -c, it causes sar to produce the remote file sharing version
of the corresponding report. -Du is assumed when only -D is specified.

-S Report server and request queue status:

serv/lo-hi Average number of Remote File Sharing servers on the
system.

request %busy Percentage of time receive descriptors are on the
request queue.

- 3 -

SAR(l) SAR(l)

request avg Igth Average number of receive descriptors waiting for
service when queue is occupied.

server % avail Percentage of time there are idle servers.

server avg avail Average number of idle servers when idle ones exist

-A Report all data. Equivalent to -udqbwcayvmprSDC.

-C Report Remote File Sharing (RFS) buffer caching overhead:

snd-inv/s Number of invalidation messages per second sent by
your machine as a server.

snd-msg/s Total outgoing RFS messages sent per second.

rcv-inv/s Number of invalidation messages received from the
remote server.

rcv-msg/s Total number of incoming RFS messages received per
second.

dis-bread/s Number of buffer reads that would be eligible for
caching if caching were not disabled. (Indicates the
penalty of running uncached.)

blk-inv/s Number of buffers removed from the client cache.

EXAMPLES
The following command reports today's CPU activity so far:

sar
The following command reports on CPU activity over a period of ten minutes
and saves the data:

sar -o temp 60 10

The following command reports disk and tape activity saved from a previous
sar (like that shown above) in which data was saved:

sar -d -f temp

FILES
/usr/adm/sa/sadd daily data file, where dd are digits representing the day

of the month.

SEE ALSO
sag(lG), sar(lM).
SfSeries CTIX Administrator's Guide.

SAR(IM) SAR(IM)

NAME
sar: sal , sa2, sadc - system activity report package

SYNOPSIS
/usr/lib/sa/sadc [t n] [ofile]

/usr/lib/sa/sal [t n]

/usr/lib/sa/sa2 [-ubdycwaqvmprDSAC] [-s time] [-e time] [-i sec]

DESCRIPTION
System activity data can be acccsscd at the special request of a user [see sar(l)]
and automatically on a routine basis as described here. The operating system
contains a number of counters that are incremented as various system actions
occur. These include counters for CPU utilization, buffer usage, disk and tape
I/O activity, TTY device activity, switching and system-call activity, file-access,
queue activity, interprocess communications, paging and Remote File Sharing.

The sadc and shell procedures, sal and sal, are used to sample, save, and
process this data.

The data collector, sadc, samples system data n times, with an interval of t
seconds between samples and writes in binary format to ofile or to standard
output. If t and n arc omitted, a special record is written. The sadc facility is
used at system boot time, when booting to a multiuser state, to mark the time at
which the counters restart from zero. The /etc/init.d/perf script checks for the
presence of /etc/rcopts/SAR; if the startup script finds a file by that name, it
uses the following command entry to write the restart mark to the daily data:

/bin/su - sys -c "/usr/lib/sa/sadc /usr/adm/sa/sa'date +%d' "

The shell script sal, a variant of sadc, is used to collect and store data in binary
file /usr/adm/sa/sadd, where dd is the current day. The arguments t and n cause
records to be written n times at an interval of t seconds, or once if omitted. The
following entries in /usr/spool/cron/crontabs/sys [see cron(1M)] produce
records every 20 minutes during working hours and hourly otherwise:

0 * * * 0,6 /usr/lib/sa/sa1
20,40 8-17 * * 1-5 /usr/!ib/sa/sa1

The shell script sal, a variant of w (l) , writes a daily report in file
/usr/adm/sa/sarcM. The options are explained in ja r (l) . The following
/usr/spool/cron/crontabs/sys entry reports important activities hourly during
the working day:

5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A &

SAR(IM) SAR(IM)

The structure of the binary daily data file follows:

struct sa {
struct sysinfo si;
struct minfo mi;
struct dinfo di;
struct rcinfo rc;
struct bpbinfo bi;
int bpb utilize
int minserve, maxserve;
int szinode;
int szfile;
int sztext;
int szproc;
int szlckf;
int szlckr;
int mszinode;
int mszfile;
int msztext;
int mszproc;
int mszickf;
int mszlckr;
long inodeovf;
long fileovf;
long textovf;
long procovf;
time t ts;
int apstate;
long devio[NDEVS][4];

#define IO_OPS 0
#define IO_BCNT 1
#define IO_ACT 2
#define IO RESP 3
};

r see /usr/include/sys/sysinfo.h */
r defined in sys/sysinfo.h */
/* RFS info defined in sys/sysinfo.h */
I* Client cache info defined in sys/sysinfo.h */
/* Coprocessor info defined in sys/sysinfo.h */
/* Coprocessor utilize flag */
r RFS server low and high water marks */
r current size of inode table */
/* current size of file table */
/* current size of text table */
f current size of proc table */
/* current size of file record header table */
/'" current size of file record lock table */
/* size of inode table */
/* size of file table */
/* size of text table */
r size of proc table */
/* maximum size of file record header table */
/* maximum size of file record lock table */
/* cumulative overflows of inode table */
/* cumulative overflows of file table */
/* cumulative overflows of text table */
f cumulative overflows of proc table */
/* time stamp, seconds */
r ignored */
/* device unit information */
/* cumulative I/O requests */
/* cumulative blocks transferred */
/* cumulative drive busy time in ticks */
/* cumulative I/O resp time in ticks */

FILES
/usr/adm/sa/sadd daily data file
/usr/adm/sa/sardd daily report file
/tmp/sa.adrfl address file

SEE ALSO
cron(lM), sag(lG), sar(l), timex(l).
S/Series CTIX Administrator's Guide.

SCCSDIFF(l) SCCSDIFF(l)

NAME
sccsdiff - compare two versions of an SCCS file

SYNOPSIS
sccsdiff -rSIDl -rSID2 [-p] [-sn] fdes

DESCRIPTION
The sccsdiff command compares two versions of an SCCS file and generates the
differences between the two versions. Any number of SCCS files may be
specified, but arguments apply to all files.

-tSID? SIDl and SID2 specify the deltas of an SCCS file that are to
be compared. Versions are passed to bdiff(1) in the order
given.

-p pipe output for each file through pr(1).

-sn n is the file segment size that bdiff will pass to d i f f (l) .
This is useful when diff fails due to a high system load.

FILES
/tmp/get????? Temporary files

SEE ALSO
bdiff(l), get(l), hclp(l), pr(l).

DIAGNOSTICS
"file: No differences" If the two versions are the same.
Use help(\) for explanations.

SCRIPT(l) SCRIPT(l)

NAME
script - make typescript of terminal session

SYNOPSIS
script [-a] [-q] [-S shell] [file]

DESCRIPTION
script makes a typescript of your interaction with the system, script forks a
shell with standard input and output diverted to pipes. Input to script is written
to the shell's input pipe; script writes the shell's output pipe; and a typescript of
both is written to file. The default for file is typescript. File begins and ends
with time stamps for the session, script terminates with an error if file already
exists.

To terminate script, terminate the shell or type Control-D. A Control-D to
script terminates the shell and all programs run from the shell by closing the
pipes.

The run file for the shell is taken from the SHELL environment variable, set by
/0gm(lM). If SHELL is not set, /bin/sh is used.

Here are the options:

-q Quiet operation. script's opening and closing
suppressed, as are the time stamps at the beginning and

-S shell Use shell as the name of the shell run file.

-a If file already exists, append typescript to i t

WARNINGS
script's limitations result from its use of pipes:

There is no way to send an end-of-file to the shell without terminating
script.

Programs that use the standard input to examine and control the user's
terminal will have problems or not work at all. Examples are JttyCl).
tset{\), tty(l), ex(l), and w'(l).

When the user interrupts a printing process, script attempts to flush the
output backed up in the pipe for better response. Usually the next
prompt also gets flushed.

messages are
end of file.

SCSIMAP(IM) SCSIMAP(IM)

NAME
scsimap - set mappings for SCSI devices

SYNOPSIS
scsimap [-s system_fde]

scsimap [-s system_file]

scsimap [-s system_file]
DESCRIPTION

The scsimap command interrogates and sets the logical-to-physical mappings
for all devices on the SCSI bus or busses. The logical SCSI device mapping
determines how a physical tape or disk is mapped to an entry in the /dev
directory.

Command line options are interpreted as follows:

-s system Jile
Use the file specified by systemJile, rather than the default
/etc/system, as the system file.

-e Examine the system file and check its format for consistency. The
mappings that would result from running scsimap with the -u option
are displayed.

-d Display the current kernel SCSI mappings.

-u Update the current kernel SCSI mappings.

System File Format
The system file consists of a number of sections, each preceded by a section
header [see system(4)]. The scsimap command reads the data in the ISCSIMAP
section of the system file. The format of this data consists of several lines, each
line specifying a logical-to-physical mapping. The format of a line follows:

logical device bus=bns target = target \un = logical_unit_number options

Either tape-tapedrive or disk-diskdrive, where tapedrive
is a drive number dO to d7 and diskdrive is a drive
number cOdO to cOdf. The drive number corresponds to
the logical device number: for example, if tapedrive is 4,
the device /dev/rmt/cnd4 is mapped.

The SCSI bus number: 0 for onboard SCSI, 1 to 4 for the
I/O slot number of the SCSI combo board.

The target address of the device, 0 to 6. (7 is the host
ID.)

-e [-d]

-u [-d]

-d

logical device

bus

target

SCSIMAP(IM) SCSIMAP(IM)

logical_unit number The logical unit number of the device, 0 to 3 (usually 0).

options parity, reselect, and halfinch.

The parity option indicates that the target generates
parity errors when they occur; reselect indicates that the
target can handle disconnect/reselect protocol; halfinch
indicates that the target is a half-inch tape drive.

EXAMPLE
The following example shows the JSCSIMAP section of the /etc/system file for
a system with five SCSI disks, a SCSI quarter-inch cartridge (QIC) tape, and two
SCSI half-inch tapes.

Note that the bus number is system expansion slot-dependent. If the board is in
slot number 2, the bus number is 2.

Once you select the drive target number, remember to set the physical drive
switches or jumpers to that target number.

ISCSIMAP
disk-cOdO bus=0 target=6 lun=0 parityreselect
disk-c0d1 bus=0 target =5 lun=0 parityreselect
tape-dO bus=0 target=1 lun=0 parityreselect
tape-d1 bus=0 target=2 lun=0 parityreselect
disk-c0d2 bus=1 target=6 lun=0 parityreselect
disk-cOd3 bu»=1 target=5 lun=0 parityreselect
disk-c0d4 bus=1 target =4 lun=0 parityreselect
tape-d2 bus=2 target=0 lun=0 parityreselect

Disks 0 and 1 are connected to the onboard SCSI bus, with target IDs of 6 and 5,
respectively. The SCSI QIC tape is connected to the onboard SCSI bus, with a
target ID of 1. The first SCSI half-inch tape is connected to the onboard SCSI
bus, with a target ID of 2. Disks 2, 3, and 4 are connected to the SCSI RS-232
board in the first slot, with target IDs of 6, 5, and 4, repectively. The second
SCSI half-inch tape is connected to the SCSI RS-232 board in the second slot,
with a target ID of 0. Note that the disk controller number is always cO and that
the range for disk drives is 0 through f; the range for tape drives is 0 through 7.

DIAGNOSTICS
If scsimap encounters errors in accessing, or in the entries of the system_file, it
prints error messages. Some of the possible errors follow:

Unable to access system Jile.

Unable to write to kernel memory.

SCSIMAP(IM) SCSIMAP(IM)

Ill-formed SCSIMAP section entry lines.

Multiple targets on a bus.

More than seven targets on one bus.

Too many disk drives or tape drives in the map.

FILES
/dev/scsi
/etc/system
/usr/sys/cf/*dfile*

SEE ALSO
system (4), scsi(7).

S/Series CTIX Administrator's Guide.

WARNINGS
If scsimap encounters errors in the system_file being used to update the kernel
SCSI mapping, or if it cannot successfully read from or write to kernel memory,
it prints an error message and does not update the map.
On an S/80, on bus 0, target 0 is reserved for the SCSI LAN Board; avoid using
this target number if you plan to use the SCSI LAN board.

SDB(l) SDB(l)

NAME
sdb - symbolic debugger

SYNOPSIS

sdb [-w] [-W] [objfil [corfil [directory-list]]]

DESCRIPTION
The sdb command calls a symbolic debugger that can be used with C programs.
It can be used to examine their object files and core fdes and to provide a
controlled environment for their execution.
Objfil is an executable program fde that has been compiled with the -g (debug)
option. If objfil has not been compiled with the -g option, the symbolic
capabilities of sdb are limited, but the file can still be examined and the
program debugged. The default for objfil is a.out. Corfil is assumed to be a
core image file produced after executing objfil; the default for corfil is core.
The core file need not be present A - in place of corfil forces sdb to ignore any
core image file. The colon-separated list of directories (directory-list) is used to
locate the source files used to build objfil.

It is useful to know that at any time there is a current line and current file. If
corfil exists, they are initially set to the line and fde containing the source
statement at which the process terminated. Otherwise, they are set to the first
line in main(). The current line and file can be changed by using the source file
examination commands.

Initially sdb has an asterisk character (*) prompt which indicates that sdb is
ready for the user to enter the first command. If the S, s, I, or i command is
used, the prompt corresponds to the command letter (for example, S when the S
command is used).

By default, warnings are provided if the source fdes used in producing objfil
cannot be found, or are newer than objfil. This checking feature and the
accompanying warnings may be disabled by the use of the -W flag.

Names of variables are written just as they are in C. sdb does not truncate
names. Variables local to a procedure may be accessed using the form
procedure •.variable. If no procedure name is given, the procedure containing
the current line is used by default.

It is also possible to refer to structure members as variable jnember, pointers to
structure members as variable->member and array elements as
variable [number]. Pointers may be dereferenced by using the form pointer[0].
Combinations of these forms may also be used. A number may be used in place
of a structure variable name, in which case the number is viewed as the address
of the structure, and the template used for the structure is that of the last

SDB(l) SDB(l)

structure referenced by sdb. An unqualified structure variable may also be used
with various commands. Generally, sdb will interpret a structure as a set of
variables. Thus, sdb will display the values of all the elements of a structure
when it is requested to display a structure. An exception to this interpretation
occurs when displaying variable addresses. An entire structure does have an
address, and it is this value sdb displays, not the addresses of individual
elements.

Elements of a multidimensional array may be referenced as variable
[number][number]..., or as variable [number,number,...]. In place of number,
the form number',number may be used to indicate a range of values, * may be
used to indicate all legitimate values for that subscript, or subscripts may be
omitted entirely if they are the last subscripts and the full range of values is
desired. As with structures, sdb displays all the values of an array or of the
section of an array if trailing subscripts are omitted. It displays only the address
of the array itself or of the section specified by the user if subscripts are
omitted.

A particular instance of a variable on the stack may be referenced by using the
form procedure'.variable plumber. All the variations mentioned in naming
variables may be used. Number is the occurrence of the specified procedure on
the stack, counting the top, or most current, as the first If no procedure is
specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer
constants which are valid in C may be used, so that addresses may be input in
decimal, octal or hexadecimal.

Line numbers in the source program are referred to as file-name'.number or
procedure '.number. In either case the number is relative to the beginning of the
file. If no procedure or file name is given, the current file is used by default. If
no number is given, the first line of the named procedure or file is used.

While a process is running under sdb, all addresses refer to the executing
program; otherwise they refer to objfil or corfil. An initial argument of -w
permits overwriting locations in objfil.

Addresses
The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two triples

SDB(l) SDB(l)

(bl, e l . f l) and (b2, e2,f2) and the file address corresponding to a written
address is calculated as follows:

bl <=address<el

file address=address+fl -bl
otherwise

b2<=address<e2

file address =address+f2-b2,

otherwise, the requested address is not legal. In some cases (for example, for
programs with separated I and D space) the two segments for a fde may
overlap.

The initial setting of both mappings is suitable for normal a.out and core files.
If either file is not of the kind expected then, for that file, bl is set to 0, el is set
to the maximum file size, and f l is set to 0; in this way the whole file can be
examined with no address translation.

In order for sdb to be used on large files, all appropriate values are kept as
signed 32-bit integers.

Commands
The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.

T Print the top line of the stack trace.

variable I elm
Print the value of variable according to length I and format m. A
numeric count c indicates that a region of memory, beginning at the
address implied by variable, is to be displayed. The length specifiers are:

b one byte

h two bytes (half word)

1 four bytes (long word)

Legal values for m are:

c character

d decimal

u decimal, unsigned

o octal

SDB(l) SDB(l)

x hexadecimal

f 32-bit single precision floating point

g 64-bit double precision floating point

s Assume variable is a string pointer and print characters
starting at the address pointed to by the variable.

a Print characters starting at the variable's address. This
format may not be used with register variables.

p pointer to procedure

i disassemble machine-language instruction with
addresses printed numerically and symbolically.

I disassemble machine-language instruction with
addresses just printed numerically.

Length specifiers are only effective with the c, d, u, o and x formats. Any
of the specifiers, c, /, and m, may be omitted. If all are omitted, sdb
chooses a length and a format suitable for the variable's type as declared
in the program. If m is specified, then this format is used for displaying
the variable. A length specifier determines the output length of the value
to be displayed, sometimes resulting in truncation. A count specifier c
tells sdb to display that many units of memory, beginning at the address
of variable. The number of bytes in one such unit of memory is
determined by the length specifier I, or if no length is given, by the size
associated with the variable. If a count specifier is used for the s or a
command, then that many characters are printed. Otherwise successive
characters are printed until either a null byte is reached or 128 characters
are printed. The last variable may be redisplayed with the command J.

The sh(l) metacharacters * and ? may be used within procedure and
variable names, providing a limited form of pattern matching. If no
procedure name is given, variables local to the current procedure and
global variables are matched; if a procedure name is specified then only
variables local to that procedure are matched. To match only global
variables, the form :pattern is used.

linenumbertlm
variable:1lm

Print the value at the address from a.out or I space given by linenumber
or variable (procedure name), according to the format Im. The default
format is ' i ' .

-4 -

SDB(1) SDB(1)

variable =lm
linenumber=lm
number=lm

Print the address of variable or linenumber, or the value of number, in
the format specified by Im. If no format is given, then Ix is used. The last
variant of this command provides a convenient way to convert between
decimal, octal and hexadecimal.

variable lvalue
Set variable to the given value. The value may be a number, a character
constant or a variable. The value must be well defined; expressions
which produce more than one value, such as structures, are not allowed.
Character constants are denoted 'character. Numbers are viewed as
integers unless a decimal point or exponent is used. In this case, they are
treated as having the type double. Registers are viewed as integers. The
variable may be an expression which indicates more than one variable,
such as an array or structure name. If the address of a variable is given, it
is regarded as the address of a variable of type int. C conventions are
used in any type conversions necessary to perform the indicated
assignment

f Print the 68881 floating-point registers.

x Print the machine registers and the current machine-language instruction.

X Print the current machine-language instruction.

The commands for examining source files are:

e procedure
e file-name
e directory/
e directory file-name

The first two forms set the current fde to the fde containing procedure or
to fde-name. The current line is set to the first line in the named
procedure or file. Source fdes are assumed to be in directory. The
default is the current working directory. The latter two forms change the
value of directory. If no procedure, fde name, or directory is given, the
current procedure name and file name are reported.

I regular expression/
Search forward from the current line for a line
containing a string matching regular expression as in ed(l). The trailing
/ may be deleted.

- 5 -

SDB(l)

? regular expression ?
Search backward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing ? may be deleted.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the current line to
the last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current line.

count +

Advance the current line by count lines. Print the new current line.

count—
Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument beginning
with < or > causes redirection for the standard input or output,
respectively. If count is given, it specifies the number of breakpoints to
be ignored.

linenumber c count
linenumber C count

Continue after a breakpoint or interrupt If count is given, the program
will stop when count breakpoints have been encountered. The signal
which caused the program to stop is reactivated with the C command and
ignored with the c command. If a line number is specified, a temporary
breakpoint is placed at the line and execution is continued. This
temporary breakpoint is deleted when the command finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line. If
count is given, it specifies the number of breakpoints to be ignored.

SDB(l) SDB(1)

s count
S count

Single step the program through count lines. If no count is given then the
program is run for one line. S is equivalent to s except it steps through
procedure calls.

i
I Single step by one machine-language instruction. The signal which

caused the program to stop is reactivated with the I command and
ignored with the i command.

variable$m count
address.m count

Single step (as with s) until the specified location is modified with a new
value. If count is omitted, it is effectively infinity. Variable must be
accessible from the current procedure. Since this command is done by
software, it can be very slow.

level v
Toggle verbose mode, for use when single stepping with S, s or m. If
level is omitted, dien just the current source file and/or subroutine name
is printed when either changes. If level is 1 or greater, each C source line
is printed before it is executed; if level is 2 or greater, each assembler
statement is also printed. A v turns verbose mode off if it is on for any
level.

k Kill the program being debugged.

procedure(arg 1 ,arg2,...)
procedure(argl,arg2,. ,.)/m

Execute the named procedure with the given arguments. Arguments can
be integer, character or string constants or names of variables accessible
from the current procedure. The second form causes the value returned
by the procedure to be printed according to format m. If no format is
given, it defaults to d. This facility is only available if the program was
loaded with the -g option.

linenumber b commands
Set a breakpoint at the given line. If a procedure name without a line
number is given (for example, "proc:") , a breakpoint is placed at the first
line in the procedure even if it was not compiled with the -g option. If no
linenumber is given, a breakpoint is placed at the current line. If no
commands are given, execution stops just before the breakpoint and
control is returned to sdb. Otherwise the commands are executed when
the breakpoint is encountered and execution continues. Multiple

- 7 -

SDB(l)

commands are specified by separating them with semicolons. If k is used
as a command to execute at a breakpoint, control returns to sdb, instead
of continuing execution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is given then the
breakpoints are deleted interactively. Each breakpoint location is printed
and a line is read from the standard input. If the line begins with a y or d
then the breakpoint is deleted.

D Delete all breakpoints.

1 Print the last executed line.

linenumber a
Announce. If linenumber is of the form proc-.number, the command
effectively does a linenumber b 1. If linenumber is of the form proc:, the
command effectively does a proc: b T.

Miscellaneous commands:

! command
The command is interpreted by sh(1).

new-line
Perform the previous command again.

end-of-file character
Scroll. Print the next 10 lines of instructions, source or data depending
on which was printed last. The end-of-file character is usually control-D.

< filename
Read commands from filename until the end of file is reached, and then
continue to accept commands from standard input. When sdb is told to
display a variable by a command in such a file, the variable name is
displayed along with the value. This command may not be nested; < may
not appear as a command in a file.

M Print the address maps.

M[?/] [*]b ef
Record new values for the address map. The arguments ? and / specify
the text and data maps, respectively. The first segment (bl , el, f l) is
changed unless * is specified, in which case the second segment (b2, el,
f l) of the mapping is changed. If fewer than three values are given, the
remaining map parameters are left unchanged.

SDB(1)

" string
Print the given string. The C escape sequences of the form \character are
recognized, where character is a nonnumeric character.

q Exit the debugger.

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and fdes being debugged.
Y Toggle debug output.

sdb may be instructed to monitor a given memory location and stop the program
when the value at that location changes in any given way. For example:

> if x <= 123

The above example instructs sdb to monitor the value at location x.
When the user gives the command to continue (c), sdb checks the
value of x at every source line executed and stops the program if the
given condition becomes true. Note that use of this construct slows the
real-time execution of a program.

The syntax of the if command is as follows:

if Shows a list of the current data breakpoints; assigns a number to each.

if var Monitors the value of var and stops the program if the value changes.
A variable name may be used for var, as well as a constant address.
Comparisons are done as either 4-byte signed or 4-byte unsigned,
depending on the data type. To perform a 1-byte or 2-byte comparison,
an optional length value may accompany var. An example of a 2-byte
comparison is

if x,2 = Oxff

if var rel value
Compares the value of var to the constant given and stops the program
if the condition is true. The values of rel may be =, ==, <, <=, >, >=,
or !=.

off n Disables or turns off a data breakpoint without removing it from the
list.

on n Enables a breakpoint that was turned off.

out n Removes a breakpoint from the list.

SDB(l) SDB(l)

Conditional breakpoints are used in a manner similar to data breakpoints,
except that the user specifies a place in the program at which sdb should stop to
check the data values. For example,

mysub:99 b if xyz = 123

The above example instructs sdb to check the value of xyz every time the
program arrives at line 99 of subroutine my sub. If the condition is true, then
execution stops there, as with a normal breakpoint This type of breakpoint
does not monitor the value xyz at every line of code, as the data breakpoint
does.

FILES
a.out
core

SEE ALSO
cc(l), sh(l), a.out(4), core(4), syms(4).

WARNINGS
When sdb prints the value of an external variable for which there is no
debugging information, a warning is printed before the value. The size is
assumed to be int (integer).

Data which are stored in text sections are indistinguishable from functions.

Line number information in optimized functions is unreliable, and some
information may be missing.

BUGS
If a procedure is called when the program is not stopped at a breakpoint (such
as when a core image is being debugged), all variables are initialized before the
procedure is started. This makes it impossible to use a procedure which formats
data from a core image.

When setting a breakpoint at a procedure, sdb will inconsistently produce the
incorrect line number. Recompiling the source program will correct this
problem.

- 10-

SDIFF(l) SDIFF(l)

NAME
sdiff - side-by-side difference program

SYNOPSIS
sdiff [options ...] fdel fde2

DESCRIPTION
sdiff uses the output of diff (I) to produce a side-by-side listing of two fdes
indicating those lines that are different Each line of the two fdes is printed
with a blank gutter between them if the lines are identical, a < in the gutter if
the line only exists in fdel, a > in the gutter if the line only exists in fde2, and a
| for lines that are different.

For example:

x I y
a a
b <
c <
d d

> c

The following options exist:

-w n Use the next argument, n, as the width of the output line. The
default line length is 130 characters.

-1 Only print the left side of any lines that are identical.

-s Do not print identical lines.

-o output Use the next argument output, as the name of a third fde that is
created as a user-controlled merging of filel and file2. Identical
lines of filel and file2 are copied to output. Sets of differences,
as produced by diff{ 1), are printed; where a set of differences
share a common gutter character. After printing each set of
differences, sdiff prompts the user with a % and waits for one of
the following user-typed commands:

1 append the left column to the output fde

r append the right column to the output fde

s turn on silent mode; do not print identical lines

v turn off silent mode

call the editor with the left column

SDIFF(l) SDIFF(l)

e r call the editor with the right column

e b call the editor with the concatenation of left and right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on the
end of the output file.

SEE ALSO
diff(l), ed(l).

SED(l) SED(l)

NAME
sed - stream editor

SYNOPSIS
sed [-n] [-e script] [-f sfde] [fdes]

DESCRIPTION
sed copies the named files (standard input default) to the standard output,
edited according to a script of commands. The -f option causes the script to be
taken from fde sfile; these options accumulate. If there is just one -e option and
no -f options, the flag -e may be omitted. The -n opuon suppresses the default
output A script consists of editing commands, one per line, of the following
form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space
(unless there is something left after a D command), applies in sequence all
commands whose addresses select that pattern space, and at the end of the
script copies the pattern space to the standard output (except under -n) and
deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern space
for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across fdes, a $ that addresses the last line of input, or a context address, that is,
a /regular expression / in the style of ed(\) modified thus:

In a context address, the construction \?regular expression?, where ?
is any character, is identical to /regular expression/. Note
that in the context address \xabc\xdefx, the second x stands
for itself, so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern
space.

A period . matches any character except the terminal new-line of the
pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that
matches the address.

A command line with two addresses selects the inclusive range from
the first pattern space that matches the first address through
the next pattern space that matches the second. (If the second

SED(l)

address is a number less than or equal to the line number First
selected, only one line is selected.) Thereafter the process is
repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of
the negation function ! (below).

In the following list of functions the maximum number of permissible addresses
for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which end
with \ to hide the new-line. Backslashes in text are treated like backslashes in
the replacement string of an s command, and may be used to protect initial
blanks and tabs against the stripping that is done on every script line. The rfile
or wfile argument must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can
be at most 10 distinct wfile arguments.

(1)a\
text Append. Place text on the output before reading the next input

line.

(2)b label Branch to the : command bearing the label. If label is empty,
branch to the end of the script.

(2)c\
text Change. Delete the pattern space. With 0 or 1 address or at the

end of a 2-address range, place text on the output. Start the next
cycle.

(2) d Delete the pattern space. Start the next cycle.

(2)D Delete the initial segment of the pattern space through the first
new-line. Start the next cycle.

(2) g Replace the contents of the pattern space by the contents of the
hold space.

(2) G Append the contents of the hold space to the pattern space.

(2)h Replace the contents of the hold space by the contents of the
pattern space.

(2) H Append the contents of the pattern space to the hold space.

(l) i \
text Insert. Place text on the standard output

SED(l) SED(l)

(2) I List the pattern space on the standard output in an unambiguous
form. Non-printable characters are displayed in octal notation
ASCII and long lines are folded.

(2) n Copy the pattern space to the standard output Replace the pattern
space with the next line of input

(2)N Append the next line of input to the pattern space with an
embedded new-line. (The current line number changes.)

(2) p Print. Copy the pattern space to the standard output

(2)P Copy the initial segment of the pattern space through the first
new-line to the standard output

(1) q Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rfile Read the contents of rfile. Place them on the output before reading
the next input line.

(2) s/regular expression /replacement /flags
Substitute the replacement string for instances of the regular
expression in the pattern space. Any character may be used instead
of /. For a fuller description see ed{\). Flags is zero or more of:

n n= 1 - 512. Substitute for just the n th occurrence of the
regular expression.

g Global. Substitute for all nonoverlapping instances of the
regular expression rather than just the first one.

p Print the pattern space if a replacement was made.

w wfile Write. Append the pattern space to Hfile if a replacement
was made.

(2) t label Test Branch to the : command bearing the label if any
substitutions have been made since the most recent execution of a
t. If label is empty, branch to the end of the script.

(2) w wfile Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.

- 3 -

SED(l) SED(l)

(2) y/string 1!string! t
Transform. Replace all occurrences of characters in string! with
the corresponding character in string2. The lengths of stringl and
string2 must be equal.

(2)! function
Don't Apply the function (or group, if function is {) only to lines
not selected by the address(es).

(0): label This command does nothing; it bears a label for b and t commands

to branch to.

(1) = Place the current line number on the standard output as a line.

(2) { Execute the following commands through a matching } only when
the pattern space is selected.

(0) An empty command is ignored.

(0) # If a # appears as the first character on the first line of a script file,
then that entire line is treated as a comment, with one exception. If
the character after the # is an 'n', then the default output will be
suppressed. The rest of the line after #n is also ignored. A script
file must contain at least one non-comment line.

SEE ALSO
awk(l), ed(l), grep(l).
Programmer's Guide: CTIX Supplement.

SENDMAIL(IM) SENDMAIL(IM)

NAME
sendmail - mail routing program

SYNOPSIS
/usr/lib/sendmail [flags] [address ...]

newaliases

mailq [-v]

DESCRIPTION
sendmail sends a message to one or more recipients, routing the message over
whatever networks are necessary, sendmail does internetwork forwarding as
necessary to deliver the message to the correct place.

sendmail is not intended as a user interface routine; other programs provide
user-friendly front ends; sendmail is used only to deliver pre-formatted
messages.

With no flags, sendmail reads its standard input up to an end-of-file or a line
consisting only of a single dot and sends a copy of the message found there to
all of the addresses listed. It determines the network(s) to use based on the
syntax and contents of the addresses.

sendmail supports the Simple Mail Transfer Protocol (SMTP) as documented in

Local addresses are looked up in a fde and aliased appropriately. Aliasing can
be prevented by preceding the address with a backslash. Normally the sender is
not included in any alias expansions, for example, if 'john' sends to 'group', and
'group' includes 'john' in the expansion, then the letter will not be delivered to
'john'.

RFC 821.

Flags are:

•ba Go into ARPANET mode. All input lines must end with a
CR-LF, and all messages will be generated with a CR-LF
at the end. Also, the "From:" and "Sender:" fields are
examined for the name of the sender.

-bd Run as a daemon. This requires TCP/IP. sendmail will
fork and run in background listening on the SMTP socket
[see services (4)]. This is normally run from
/etc/rcopts/NETWORK.

-bi Initialize the alias database.

bm Deliver mail in the usual way (default).

SENDMAIL(IM) SENDMAIL(IM)

-bp

-bs

-bt

-bv

-bz

-Cfile

-dX

-Ffull name

-fname

-hN

-n

-ox value

-q [time]

Print a listing of the queue.

Use the SMTP protocol as described in RFC 821 on
standard input and output This flag implies all the
operations of the -ba flag that are compatible with SMTP.

Run in address test mode. This mode reads addresses and
shows the steps in parsing; it is used for debugging
configuration tables.

Verify names only - do not try to collect or deliver a
message. Verify mode is normally used for validating
users or mailing lists.

Create the configuration freeze file.

Use alternate configuration fde. sendmail refuses to run
as root if an alternate configuration file is specified. The
frozen configuration file is bypassed.

Set debugging value to X.

Set the full name of the sender.

Sets the name of the " f rom" person (that is, the sender of
the mail), -f can only be used by "trusted" users
(normally root, daemon, and network) or if the person you
are trying to become is the same as the person you are.

Set the hop count to N. The hop count is incremented
every time the mail is processed. When it reaches a limit,
the mail is returned with an error message, the victim of
an aliasing loop. If not specified, "Received:" lines in
the message are counted.

Don't do aliasing.

Set option x to the specified value. Options are described
below.

Processed saved messages in the queue at given intervals.
If time is omitted, process the queue once. Time is given
as a tagged number, with 's' being seconds, 'm' being
minutes, 'h' being hours, 'd ' being days, and 'w' being
weeks. For example, " -q lh30m" or " -q90m" would both
set the timeout to one hour thirty minutes. If time is
specified, sendmail will run in background. This option
can be used safely with -bd.

- 2 -

SENDMAIL(IM) SENDMAIL(IM)

-t Read message for recipients. To:, Cc:, and Bcc: lines will
be scanned for recipient addresses. The Bcc: line will be
deleted before transmission. Any addresses in the
argument list will be suppressed, that is, they will not
receive copies even if listed in the message header.

-v Go into verbose mode. Alias expansions will be
announced, etc.

There are also a number of processing options that may be set. Normally these
will only be used by a system administrator. Options may be set either on the
command line using the -o flag or in the configuration file,
/usr/lib/sendmail.cf. The options are:

A f i le Use alternate alias file.

c On mailers that are considered "expensive" to connect to,
don't initiate immediate connection. This requires
queueing.

At Set the delivery mode to x. Delivery modes are 'i ' for
interactive (synchronous) delivery, 'b' for background
(asynchronous) delivery, and 'q' for queue only - that is,
actual delivery is done the next time the queue is run.

D Try to automatically rebuild the alias database if
necessary.

cx Set error processing to mode x. Valid modes are 'm' to
mail back the error message, 'w' to "wri te" back the error
message (or mail it back if the sender is not logged in), 'p'
to print the errors on the terminal (default), and 'q' to
throw away error messages (only exit status is returned).
If the text of the message is not mailed back by modes 'm'
or 'w' and if the sender is local to this machine, a copy of
the message is appended to the file "dead.letter" in the
sender's home directory.

Fmode The mode to use when creating temporary files.

f Save UNIX-style From lines at the front of messages.

gN The default group id to use when calling mailers.

Hfile The SMTP help file.

SENDMAIL(IM) SENDMAIL(IM)

l

L n

m

Qqueuedir

xtimeout

Sfile

s

T time

Istz.dtz

uN

Do not take dots on a line by themselves as a message
terminator.

The log level.

Send to " m e " (the sender) also if I am in an alias
expansion.

If set, this message may have old style headers. If not set,
this message is guaranteed to have new style headers (that
is, commas instead of spaces between addresses). If set,
an adaptive algorithm is used that will correctly determine
the header format in most cases.

Select the directory in which to queue messages.

The timeout on reads; if none is set, sendmail will wait
forever for a mailer. This option violates the word (if not
the intent) of the SMTP specification, show the timeout
should probably be fairly large.

Save statistics in the named file.

Always instantiate the queue file, even under
circumstances where it is not strictly necessary. This
provides safety against system crashes during delivery.

Set the timeout on undelivered messages in the queue to
the specified time. After delivery has failed (for example,
because of a host being down) for this amount of time,
failed messages will be returned to the sender. The
default is three days.

Set the name of the time zone.

Set the default user id for mailers.

In aliases, the first character of a name may be a vertical bar to cause
interpretation of the rest of the name as a command to pipe the mail to. It may
be necessary to quote the name to keep sendmail from suppressing the blanks
from between arguments. For example, a common alias is:

msgs: "|/usr/local/msgs -s"

S ENDM AIL (1M) SENDMAIL(IM)

Aliases may also have the syntax ":includ^filename " to ask sendmail to read
the named file for a list of recipients. For example, an alias such as:

poets: ":include:/usr/local/poets.list"

would read /usr/Iocal/poets.list for the list of addresses making up the group.

sendmail returns an exit status describing what it did. The codes are defined in
<sysexits.h>

EX_OK Successful completion on all addresses.
EX_NOUSER User name not recognized.
EX_UNAVAILABLE Catchall meaning necessary resources were not

available.
EX_SYNTAX Syntax error in address.
EX_SOFTWARE Internal software error, including bad arguments.
EX_OSERR Temporary operating system error, such as

If invoked as newaliases, sendmail will rebuild the alias database. If invoked as
mailq, sendmail will print the contents of the mail queue.

Except for /usr/lib/sendmail.cf and /bin/rmail, these pathnames are all
specified in /usr/lib/sendmail.cf. Thus, these values are only approximations.

EX_NOHOST
EX_TEMPFAIL

"cannot fork".
Host name not recognized.
Message could not be sent immediately, but was
queued.

FILES

/bin/rmail
/usr/lib/aliases

mail delivery program
raw data for alias names

/usr/lib/aliases.pag
/usr/lib/aliases.dir
/usr/lib/sendmail.cf
/usr/lib/sendmail.fc
/usr/lib/sendmail.hf
/usr/lib/sendmail. st
/usr/spool/mqueue/*

data base of alias names
configuration file
frozen configuration
help file
collected statistics
temp files

SEE ALSO
mail(l), newaliases(l), rmail(l), aliases(4), mailaddr(5).
RFC 819, RFC 821, RFC 822.

SERSTAT(IM) SERSTAT(IM)

NAME
serstat - display serial port error statistics

SYOPNSIS
serstat

DESCRIPTION
The serstat command reports error status information about groups of serial tty
ports. The command does not currently support IOP and RIOP ports. When first
invoked, serstat finds the four ports with the largest number of total errors
logged and displays the ogged errors.

The command then runs in "automatic" mode, in which it scans all serial ports
for any change of status As port status changes, serstat updates the display to
ensure that the four ports with the largest number of errors logged are displayed
at all times. Ports with fewer errors logged are replaced as other ports with
more errors logged are displayed. A message at the bottom of the screen
indicates which port has most recently changed.

The serstat program can also be run in "scan" mode and "continuous" mode.
In scan mode, serstat scans sequential groups of ports every three seconds and
displays the errors. In continuous, serstat continues to scan and update the
currently-displayed ports only.

To exit serstat, generate a keyboard interrupt.

Once serstat is running, use any of the following one-character commands:

r Redraw the screen. No mode change,

a Redraw the screen. Start automatic mode.

m Redraw the screen with ports having the most errors. Start automatic
mode.

s Redraw the screen. Start scan mode,

c Redraw the screen. Start continuous mode.

The program displays data from the following status structure maintained by the
serial driver in the kernel:

struct sererrstat {
uint s e t t y h o g ; I* tty input hog status achieved (ttin) */
ulnt se j f lushed; /* hogs Input queues discarded (ttin) */
uint se idropped; r input char(s) dropped (ttin, serrint) */
uint senorbuf ; r no receive buffer available (serrint) */
uint seothrottle; /* output throttled, low clists (T_HIWATER) */
uint s e o f l u s h e d ; r hogs output queue discarded (ttxput) */

SERSTAT(IM) SERSTAT(IM)

uint se_odropped; /* output char(s) dropped (serxsend, sersend) */
I* no transmit buffer available (ttout) */
/* receiver overrun (serrint) */
f external status change (sertint) */
/* parity errors (serrint) */
/* CRC/framing error (serrint) */

uint s e n o t b u f ;
uint se_rxorun;
uint se_exstat;
uint *«_p«;
uint s e f r a m e ;

All fields are incremented once per event occurrence except se idropped and
se_odropped. These two fields try to keep track of the number of characters
dropped for that particular error event instead of the number of times that error
event occurred. Note that 256 characters or more can be lost when the input
queue is flushed, but the only record of this event is a single increment to the
se iflushed field.

The field se_exstat counts the number of external status changes occurring on a
port A break condition or change in the Carrier Detect or Clear To Send lines
increments this number. These are not normally error conditions, but may be of
interest.

This utility is intended for diagnostic use by qualified system administrators; it
is not a basic user command.

SEE ALSO
termio(7).

NOTE

SETMNT(IM) SETMNT(IM)

NAME
setmnt - establish mount table

SYNOPSIS
/etc/setmnt

DESCRIPTION
setmnt creates the /etc/mnttab table which is needed for both the mount (1M)
and umount commands, setmnt reads standard input and creates a mnttab entry
for each line. Input lines have the format:

fdesys node

where filesys is the name of the file system's special file (for example,
/dev/dsk/c?d?s?) and node is the root name of that file system. Thus filesys
and node become the first two strings in the mount table entry.

FILES
/etc/mnttab

SEE ALSO
mount(lM).

BUGS
Problems may occur if filesys or node are longer than 32 characters.

setmnt silendy enforces an upper limit on the maximum number of mnttab
entries.

SETUNAME(IM) SETUNAME(IM)

NAME
setuname - set name of system

SYNOPSIS

/etc/setuname [-s sysname] [-n nodename] [-r release] [-v version]

DESCRIPTION
setuname sets the values reported by uname. Options set the same things that
they report in uname. Sysname, nodename, and release are truncated to eight
characters. Note that setuname -n nodename resets the nodename component
of the Internet hostname [see hostname (I)].
See hostname (I) for information about how the nodename as returned by
uname(\) is set when the system is rebooted.

Only the superuser can execute setuname successfully.

SEE ALSO
rc2(lM), uname(l), uname(2).

SH(1) SH(1)

NAME
sh, rsh - shell, the standard/restricted command programming language

SYNOPSIS
sh [-acefhiknrstuvx] [args]

rsh [-acefhiknrstuvx] [args]

DESCRIPTION
The sh interpreter provides a command programming language that executes
commands read from a terminal or a file. The rsh interpreter is a restricted
version of the standard command interpreter sh; it is used to set up login names
and execution environments whose capabilities are more controlled than those
of the standard shell. See "Invocation" for the meaning of arguments to the
shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or
underscores beginning with a letter or underscore. A parameter is a name, a
digit, or any of the characters *, #, ?, -, $, and !.

Commands
A simple-command, is a sequence of non-blank words separated by blanks. The
first word specifies the name of the command to be executed. Except as
specified below, the remaining words are passed as arguments to the invoked
command. The command name is passed as argument 0 [see exec(2)]. The
value of a simple-command is its exit status if it terminates normally, or (octal)
200^status if it terminates abnormally [see signal(2) for a list of status values].

A pipeline is a sequence of one or more commands separated by |. The
standard output of each command but the last is connected by a pipe (2) to the
standard input of the next command. Each command is run as a separate
process; the shell waits for the last command to terminate. The exit status of a
pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by ; , & , & & , or | | , and
optionally terminated by ; or &. Of these four symbols, ; and & have equal
precedence, which is lower than that of && and | | . The symbols && and | |
also have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execution of the
preceding pipeline (the shell does not wait for that pipeline to finish). The
symbol && (| |) causes the list following it to be executed only if the

SH(1) SH(1)

preceding pipeline returns a zero (non-zero) exit status. An arbitrary number of
new-lines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless
otherwise stated, the value returned by a command is that of the last simple-
command executed in the command.

for name [in word . . .] do list done
Each time a for command is executed, name is set to the next word
taken from the in word list. If in word ... is omitted, the for
command executes the do list once for each positional parameter that
is set (see "Parameter Substitution"). Execution ends when there are
no more words in the list.

case word in [pattern [| pattern] ... list ;;] . . . esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for
file-name generation (see "File Name Generation") except that a
slash, a leading dot, or a dot immediately following a slash need not be
matched explicitly.

if list then list [elif list then list] . . . [else list] 11
The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the list following the next then
is executed. Failing that, the else list is executed. If no else list or
then list is executed, the if command returns a zero exit status.

while list do list done
A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list;
otherwise the loop terminates. If no commands in the do list are
executed, the while command returns a zero exit status; until can be
used in place of while to negate the loop termination test.

(list)
Execute list in a sub-shell.

{list;}
list is executed in the current (that is, parent) shell.

name () {list;}
Define a function referred to by name. The body of the function is the
list of commands between { and }. Execution of functions is described
below (see "Execution").

- 2 -

SH(425) SH(1)

The following words are recognized only as the first word of a command and
when not quoted:

if then else elif fi case esac for while until do done { }

Comments
A word beginning with # causes that word and all the following characters up to
a new-line to be ignored.

Command Substitution
The shell reads commands from the string between two grave accents (N v) and
the standard output from these commands can be used as all or part of a word.
Trailing new-lines from the standard output are removed.

No interpretation is done on the string before the string is read, except to
remove backslashes (\) used to escape other characters. Backslashes can be
used to escape a grave accent (v) or another backslash (\) and are removed
before the command string is read. Escaping grave accents allows nested
command substitution. If the command substitution lies within a pair of double
quotes (" ... "), a backslash used to escape a double quote (V) is
removed; otherwise, it is left intact.

If a backslash is used to escape a new-line character (\ new-line), both the
backslash and the new-line are removed (see "Quoting"). In addition,
backslashes used to escape dollar signs (\$) are removed. Since no
interpretation is done on the command string before it is read, inserting a
backslash to escape a dollar sign has no effect. Backslashes that precede
characters other than \, v , ", new-line, and $ are left intact when the command
string is read.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are two
types of parameters: positional and keyword. If parameter is a digit, it is a
positional parameter. Positional parameters can be assigned values by set.
Keyword parameters (also known as variables) can be assigned values as
follows:

name rvalue [name =value] ...

Pattern-matching is not performed on value. A function and a variable must not
use the same name.

${parameter}
The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. If

SH(1) SH(1)

parameter is * or all positional parameters, starting with $1, are
substituted (separated by spaces). Parameter $0 is set from argument
zero when the shell is invoked.

${parameter :-word}
If parameter is set and is non-null, substitute its value; otherwise
substitute word.

${parameter: =word}
If parameter is not set or is null set it to word\ the value of the
parameter is substituted. Positional parameters cannot be assigned to
in this way.

%{parameter :?word}
If parameter is set and is non-null, substitute its value; otherwise, print
word and exit from the shell. If word is omitted, the message
' 'parameter null or not set ' ' is printed.

%{parameter :+word}
If parameter is set and is non-null, substitute word; otherwise
substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted

string; in the following example, pwd is executed only if d is not set or is null:

echo ${d:-' pwd'}

If the c o l o n (:) is omitted from the above expressions, the shell checks only

whether parameter is set or not.

The following parameters are automatically set by the shell:

The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed

command.

$ The process number of this shell.

! The process number of the last background command invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see "Execution"). The user may not

change PATH if executing under rsh.

- 4 -

SH(427) SH(1)

CDPATH
The search path for the cd command.

MAIL If this parameter is set to the name of a mail file and the MAILPATH
parameter is not set, the shell informs the user of the arrival of mail in
the specified file.

MAILCHECK
How often (in seconds) the shell checks for the arrival of mail in the
fdes specified by the MAILPATH or MAIL parameters. The default
value is 600 seconds (10 minutes). If set to 0, the shell checks before
each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the
shell informs the user of the arrival of mail in any of the specified files.
Each file name can be followed by % and a message that is printed
when the modification time changes. The default message is you have
mail.

PS1 Primary prompt string, by default " $ " .

PS2 Secondary prompt string, by default " > " .

IFS Internal field separators, normally space, tab, and new-line.

SHACCT
If this parameter is set to the name of a file writable by the user, the
shell writes an accounting record in the file for each shell procedure
executed. Accounting routines such as acctcom(1) and acctcms(1M)
can be used to analyze the data collected.

SHELL When the shell is invoked, it scans the environment (see
"Environment") for this name. If it is found and rsh is the file name
part of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PS1, PS2, MAILCHECK and IFS.
HOME and MAIL are set by login(\).

Blank Interpretation
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and split into
distinct arguments where such characters are found. Explicit null arguments
(" " or ' ') are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

SH(428) SH(1)

Input/Output
A command's input and output may be redirected using a special notation
interpreted by the shell. The following can appear anywhere in a simple-
command or can precede or follow a command and are not passed on as
arguments to the invoked command. Note that parameter and command
substitution occurs before word or digit is used.

<word Use fde word as standard input (file descriptor 0).

>word Use fde word as standard output (fde descriptor 1). If the file
does not exist it is created; otherwise, it is truncated to zero
length.

» w o r d Use file word as standard output. If the file exists output is
appended to it (by first seeking to the end-of-file); otherwise,
the file is created.

« [-] w o r d After parameter and command substitution is done on word,
the shell input is read up to the first line that literally matches
the resulting word, or to an end-of-file. If, however, - is
appended to « :

1) leading tabs are stripped from word before the shell input
is read (but after parameter and command substitution is
done on word),

2) leading tabs are stripped from the shell input as it is read
and before each line is compared with word, and

3) shell input is read up to the first line that literally
matches the resulting word, or to an end-of-file.

If any character of word is quoted (see "Quoting"), no
additional processing is done to the shell input. If no
characters of word are quoted:

1) parameter and command substitution occurs,

2) (escaped) \new-line is ignored, and

3) \ must be used to quote the characters \, $, and v .

The resulting document becomes the standard input.

Use the file associated with file descriptor digit as standard
input. Similarly for the standard output using >&digit.

The standard input is closed. Similarly for the standard output
using >&-.

<& digit
<&-

SH(429) SH(1)

If any of the above is preceded by a digit, the fde descriptor to be associated
with the file is that specified by the digit (instead of the default 0 or 1). For
example:

. . . 2>&1

associates file descriptor 2 with the file currenUy associated with fde descriptor
1.

The order in which redirections are specified is significant. The shell evaluates
redirections left-to-right. For example:

. . . l>xxx 2>&1

first associates file descriptor 1 with fde xxx. It associates fde descriptor 2 with
the file associated with fde descriptor 1 (xxx). If the order of redirections were
reversed, file descriptor 2 would be associated with the terminal (assuming file
descriptor 1 had been) and file descriptor 1 would be associated with file xxx.

Using the terminology introduced on the first page, under "Commands," if a
command is composed of several simple commands, redirection is evaluated for
the entire command before it is evaluated for each simple command. That is,
the shell evaluates redirection for the entire list, then each pipeline within the
list, then each command within each pipeline, then each list within each
command.

If a command is followed by & the default standard input for the command is
the empty file /dev/null. Otherwise, the environment for the execution of a
command contains the file descriptors of the invoking shell as modified by
input/output specifications.

Redirection of output is not allowed in the restricted shell.

File Name Generation
Before a command is executed, each command word is scanned for the
characters *, ?, and [. If one of these characters appears the word is regarded as
a pattern. The word is replaced with alphabetically sorted fde names that
match the pattern. If no file name is found that matches the pattern, the word is
left unchanged. The character . at the start of a file name or immediately
following a /, as well as the character / itself, must be matched explicitly.

* Matches any string, including the null string.

? Matches any single character.

[. . .] Matches any one of the enclosed characters. A pair of
characters separated by - matches any character lexically

SH(430) SH(1)

between the pair, inclusive. If the first character following
the opening " [" is a " ! " any character not enclosed is
matched.

Quoting
The following characters have a special meaning to the shell and cause
termination of a word unless quoted:

; & () | * < > new-line space tab

A character can be quoted (made to stand for itself) by preceding it with a
backslash (\) or inserting it between a pair of quote marks (' ' or " ") . During
processing, the shell may quote certain characters to prevent them from taking
on a special meaning. Backslashes used to quote a single character are removed
from the word before the command is executed. The pair \new-line is removed
from a word before command and parameter substitution.

All characters enclosed between a pair of single quote marks (") . except a
single quote, are quoted by the shell. Backslash has no special meaning inside a
pair of single quotes. A single quote can be quoted inside a pair of double
quote marks (for example, " ' ") .

Inside a pair of double quote marks ("") , parameter and command substitution
occurs and the shell quotes the results to avoid blank interpretation and file
name generation. If $* is within a pair of double quotes, the positional
parameters are substituted and quoted, separated by quoted spaces ("$1 $2
. . ."); however, if $@ is within a pair of double quotes, the positional

parameters are substituted and quoted, separated by unquoted spaces ("$1"
"$2" . . .). \ quotes the characters \ , - , ", and $. The pair \new-line is removed
before parameter and command substitution. If a backslash precedes characters
other than \ , v , ", $, and new-line, the backslash is quoted by the shell.

Prompting
When used interactively, the shell prompts with the value of PS1 before reading
a command. If at any time a new-line is typed and further input is needed to
complete a command, the secondary prompt (that is the value of PS2) is issued.

Environment
The environment [see environ (5)] is a list of name-value pairs that is passed to
an executed program in the same way as a normal argument list. The shell
interacts with the environment in several ways. On invocation, the shell scans
the environment and creates a parameter for each name found, giving it the
corresponding value. If the user modifies the value of any of these parameters
or creates new parameters, none of these affect the environment unless the
export command is used to bind the shell's parameter to the environment (see

SH(431) SH(1)

also set -a). A parameter can be removed from the environment with the unset
command. The environment seen by any executed command is thus composed
of any unmodified name-value pairs originally inherited by the shell, minus any
pairs removed by unset, plus any modifications or additions, all of which must
be noted in export commands.

The environment for any simple-command can be augmented by prefixing it
with one or more assignments to parameters. Thus, the following two command
lines are equivalent (as far as the execution of cmd is concerned):

TERM=450 cmd

and

(export TERM; TERM=450; cmd)

If the -k flag is set, all keyword arguments are placed in the environment, even
if they occur after the command name. The following command sequence first
prints a=b c and c:

echo a=b c
set -k
echo a=b c

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the
command is followed by &; otherwise, signals have the values inherited by the
shell from its parent, with the exception of signal 11 (but see also the t rap
command below).

Execution
Each time a command is executed, the above substitutions are carried out. If
the command name matches one of the Special Commands listed below, it is
executed in the shell process. If the command name does not match a Special
Command, but matches the name of a defined function, the function is executed
in the shell process (note how this differs from the execution of shell
procedures). The positional parameters $1, $2, are set to the arguments of
the function. If the command name matches neither a Special Command nor
the name of a defined function, a new process is created and an attempt is made
to execute the command via exec (2).

The shell parameter PATH defines the search path for the directory containing
the command. Alternative directory names are separated by a colon (:). The
default path is :/bin:/usr/bin (specifying the current directory, /bin, and
/usr/bin, in that order). Note that the current directory is specified by a null

SH(1) SH(1)

path name, which can appear immediately after the equal sign, between two
colon delimiters anywhere in the path list, or at the end of the path list. If the
command name contains a / the search path is not used; such commands are not
executed by the restricted shell. Otherwise, each directory in the path is
searched for an executable file. If the fde has execute permission but is not an
a.out fde, it is assumed to be a fde containing shell commands. A sub-shell is
spawned to read i t A parenthesized command is also executed in a sub-shell.

The location in the search path where a command was found is remembered by
the shell (to help avoid unnecessary execs later). If the command was found in
a relative directory, its location must be redetermined whenever the current
directory changes. The shell forgets all remembered locations whenever the
PATH variable is changed or the hash -r command (described later) is executed.

Special Commands
Input/output redirection is now permitted for these commands. File descriptor 1
is the default output location.

: No effect; the command does nothing. A zero exit code is returned.

. file Read and execute commands from file and return. The search path
specified by PATH is used to find the directory containing file.

break [n]
Exit from the enclosing for or while loop, if any. If n is specified
break n levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is
specified resume at the ri-th enclosing loop.

cd [arg]
Change the current directory to arg. The shell parameter HOME is the
default arg. The shell parameter CDPATH defines the search path for
the directory containing arg. Alternative directory names are
separated by a colon (:). The default path is <null> (specifying the
current directory). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If arg
begins with a / the search path is not used. Otherwise, each directory
in the path is searched for arg. The cd command cannot be executed
by rsh.

echo [arg ...]
Echo arguments. See echo{ 1) for usage and description.

- 10-

SH(1) SH(1)

eval[arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this
shell without creating a new process. Input/output arguments may
appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is
omitted the exit status is that of the last command executed (an end-
of-file will also cause the shell to exit.)

export [name ...]
The given names are marked for automatic export to the environment
of subsequendy-executed commands. If no arguments are given,
variable names that have been marked for export during the current
shell's execution are listed. (Variable names exported from a parent
shell are listed only if they have been exported again during the
current shell's execution.) Function names are not exported.

getopts Use in shell scripts to support command syntax standards [see
intro (I)]; it parses positional parameters and checks for legal options.
See getopts (1) for usage and description.

hash [-r] [name ...]
For each name, the location in the search path of the command
specified by name is determined and remembered by the shell. The -r
option causes the shell to forget all remembered locations. If no
arguments are given, information about remembered commands is
presented. Hits is the number of times a command has been invoked
by the shell process. Cost is a measure of the work required to locate a
command in the search path. If a command is found in a "relative"
directory in the search path, after changing to that directory, the stored
location of that command is recalculated. Commands for which this is
done are indicated by an asterisk (*) adjacent to the hits information.
Cost are incremented when the recalculation is done.

newgrp [arg ...]
Equivalent to exec newgrp arg See newgrp (I) for usage and
description.

- 11 -

SH(1) SH(1)

pwd Print the current working directory. See pwd (I) for usage and
description.

read [name ...]
One line is read from the standard input and, using the internal field
separator, IFS (normally space or tab), to delimit word boundaries, the
first word is assigned to the first name, the second word to the second
name, and so on, with leftover words assigned to the last name. Lines
can be continued using \new-line. Characters other than new-line can
be quoted by preceding them with a backslash. These backslashes are
removed before words are assigned to names, and no interpretation is
done on the character that follows the backslash. The return code is 0
unless an end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of the these
names cannot be changed by subsequent assignment. If no arguments
are given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n is
omitted, the return status is that of the last command executed.

set [- -aefhkntuvx [arg ...]]

-a Marie variables that are modified or created for export.

-e Exit immediately if a command exits with a non-zero exit
status.

-f Disable file name generation.

-h Locate and remember function commands as functions are
defined (function commands are normally located when the
function is executed).

-k All keyword arguments are placed in the environment for a
command, not just those that precede the command name.

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

- 12-

SH(1) SH(1)

times

Do not change any of the flags; end the option list; for
example, set - - - sets $1 to -.

Using + rather than - causes these flags to be turned off. Using - by
itself is equivalent to using +xv. These flags can also be used upon
invocation of the shell. The current set of flags may be found in $-.
The remaining arguments are positional parameters and are assigned,
in order, to $1, $2, If no arguments are given, the values of all
names are printed.

shift [n }
The positional parameters from $n+l . . . are renamed $1 If n is
not given, it is assumed to be 1.

test
Evaluate conditional expressions. See test(l) for usage and
description.

Print the accumulated user and system times for processes run from the
shell.

trap [arg] [n]...
The command arg is to be read and executed when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Trap commands are executed in order of
signal number. Any attempt to set a trap on a signal that was ignored
on entry to the current shell is ineffective. An attempt to trap on signal
11 (memory fault) produces an error. If arg is absent all trap(s) n are
reset to their original values. If arg is the null string this signal is
ignored by the shell and by the commands it invokes. If n is 0 the
command arg is executed on exit from the shell. The trap command
with no arguments prints a list of commands associated with each
signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a
command name.

ulimit [n]
Impose a size limit of n blocks on fdes written by the shell and its
child processes (fdes of any size may be read). If n is omitted, the
current limit is printed. You can lower your own ulimit, but only a
super-user can raise a ulimit [see jh(1M)].

- 13-

SH(1) SH(1)

umask [nnn]
The user file-creation mask is set to nnn [see umask(1)]. If nnn is
omitted, the current value of the mask is printed.

unset [name ...]
For each name, remove the corresponding variable or function. The
variables PATH, PS1, PS2, MAILCHECK and IFS cannot be unset.

wait [n]
Wait for your background process whose process ID is n and report its
termination status. If n is omitted, all your shell's currently-active
background processes are waited for and the return code will be zero.

Invocation
If the shell is invoked through exec (2) and the first character of argument zero
is -, commands are initially read from /etc/profile and from $HOME/.profile, if
such files exist. Thereafter, commands are read as described below, which is
also the case when the shell is invoked as Ibinlsh. The flags below are
interpreted by the shell on invocation only. Note that unless the -c or -s flag is
specified, the first argument is assumed to be the name of a file containing
commands, and the remaining arguments are passed as positional parameters to
that command file:

-c string If the -c flag is present commands are read from string.

-s If the -s flag is present, or if no arguments remain, commands are
read from the standard input. Any remaining arguments specify the
positional parameters. Shell output (except for Special
Commands) is written to file descriptor 2.

-i If the -i flag is present, or if the shell input and output are attached
to a terminal, this shell is interactive. In this case TERMINATE is
ignored (so that kill 0 does not kill an interactive shell) and
INTERRUPT is caught and ignored (so that wait is interruptible). In
all cases, QUIT is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command
above.

rsh Only
The rsh command interpreter is used to set up login names and execution
environments whose capabilities are more controlled than those of the standard
shell. The actions of rsh are identical to those of sh, except that the following
are disallowed:

- 14 -

SH(1) SH(1)

changing directory [see a f (l)] ,
setting the value of $PATH,
specifying path or command names containing /,
redirecting output (> and ») .

The restrictions above are enforced after .profile is interpreted.

A restricted shell can be invoked in one of the following ways: (1) rsh is the
file name part of the last entry in the /etc/passwd fde [see passwd (4)]; (2) the
environment variable SHELL exists and rsh is the fde name part of its value; (3)
the shell is invoked and rsh is the fde name part of argument 0; (4) the shell is
invoke with the -r option.

When a command to be executed is found to be a shell procedure, rsh invokes
sh to execute i t Thus, it is possible to provide to the end-user shell procedures
that have access to the full power of the standard shell, while imposing a
limited menu of commands; this scheme assumes that the end-user does not
have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profde [see profde {4)] has
complete control over user actions by performing guaranteed setup actions and
leaving the user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (for example,
/usr/rbin) that can be safely invoked by a restricted shell. Some systems also
provide a restricted editor, red.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a
non-zero exit status. If the shell is being used non-interactively execution of
the shell file is abandoned. Otherwise, the shell returns the exit status of the
last command executed (see the exit command above).

FILES
/etc/profile
SHOME/.profile
/tmp/sh*
/dev/null

SEE ALSO
acctcom(l), acctcms(lM), cd(l), csh(l), echo(l), env(l), getopts(l), intro(l),
login(l), newgrp(l), pwd(l), test(l), umask(l), wait(l), dup(2), exec(2), fork(2),
pipe(2), signal(2), ulimit(2), profile(4).

- 15-

SH(1) SH(1)

N O T E

If the first character in an executable file is #, csh assumes that the file is a csh
script. For compatibility with csh, it is recommended that sh scripts begin with
a blank line.

C A V E A T S

Words used for filenames in input/output redirection are not interpreted for
filename generation (see "File Name Generation," above). For example, cat
filel >a» creates a file named a*.

Because commands in pipelines are run as separate processes, variables set in a
pipeline have no effect on the parent shell.

If you get the error message cannot fork, too many processes, try using the
wait (I) command to clean up your background processes. If this doesn't help,
the system process table is probably full or you have too many active
foreground processes. (There is a limit to the number of process IDs associated
with your login, and to the number the system can keep track of.)

B U G S

If a command is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command
was found, the shell continues to exec the original command. Use the hash
command to correct this situation.

If you move the current directory or one above it, pwd may not give the correct
response. Use the cd command with a full path name to correct this situation.

Not all the processes of a 3- or more-stage pipeline are children of the shell, and
thus cannot be waited for.

For wait n, if n is not an active process id, all your shell's currently active
background processes are waited for and the return code is zero.

- 16-

SHL(l) SHL(l)

NAME
shl - shell layer manager

SYNOPSIS
shl

DESCRIPTION
The shl program allows a user to interact with more than one shell from a single
terminal. The user controls these shells, known as layers, using the commands
described below.

The current layer is the layer that can receive input from the keyboard. Other
layers attempting to read from the keyboard are blocked. Output from multiple
layers is multiplexed onto the terminal. To block the output of a layer when it is
not current, the stty option loblk can be set within the layer.

The stty character swtch (set to ~Z if NUL) is used to switch control to shl from
a layer. The shl prompt, » > , distinguishes shl from a layer.

A layer is a shell that has been bound to a virtual tty device (/dev/sxt/???). The
virtual device can be manipulated like a real tty device by using sffy(l) and
ioctl (2). Each layer has its own process group ID.

Definitions
A name is a sequence of characters delimited by a blank, tab or new-line. Only
the first eight characters are significant. The names (1) through (7) cannot be
used when creating a layer. They are used by shl when no name is supplied.
They can be abbreviated to just the digit

Commands
The following commands can be issued from the shl prompt level; any unique
prefix is accepted:

create [name]
Create a layer called name and make it the current layer. If no
argument is given, a layer is created with a name of the form (#) where
is the last digit of the virtual device bound to the layer. The shell
prompt variable PS1 is set to the name of the layer followed by a
space. A maximum of seven layers can be created.

block name [name ...]
For each name, block the output of the corresponding layer when it is
not the current layer. This is equivalent to setting the stty option
- loblk within the layer.

SHL(l) SHL(l)

delete name [name ...]
For each name, delete the corresponding layer. All processes in the
process group of the layer are sent the SIGHUP signal [see signal (2)].

help (or ?)
Print the syntax of the shl commands.

layers [-1] [name ...]
For each name, list the layer name and its process group. The -1 option
produces a p5(l)-like listing. If no arguments are given, information is
presented for all existing layers.

resume [name]
Make name the current layer. If no argument is given, the last existing
current layer is resumed.

toggle Resume the layer that was current before the last current layer.

unblock name [name ...]
For each name, do not block the output of the corresponding layer
when it is not the current layer. This is equivalent to setting the stty
option - loblk within the layer.

quit Exit shl. All layers are sent the SIGHUP signal.

name Make name the current layer.

FILES
/dev/sxt/???
$SHELL

Virtual tty devices
Variable containing the path name of the shell to use
(default is /bin/sh).

/etc/drvload

S E E A L S O

sh(l), stty(l). ioctl(2), signal(2), sxt(7).

SHOWMOUNT(IM) (NFS Uti l i t ies) SHOWMOUNT(IM)

NAME
showmount - show all remote mounts

S Y N O P S I S

/etc/showmount [-a] [-d] [-e] [-r] f host]

DESCRIPTION
The showmount command lists all clients that have remotely mounted a
filesystem from host. This information is maintained by mountd(1M) on the
server host, and is saved by the server across crashes in the file /etc/rmtab.
The default value for host is the Internet hostname name returned by
hostname (1).

O P T I O N S

-d List directories that have been remotely mounted by clients.

-a Print all remote mounts in the format

hostname:directory

where hostname is the name of the client, and directory is the root of
the file system that has been mounted.

-e Print the list of exported file systems and eligible clients. For the
purpose of mounting, the eligible client list includes all hostname
aliases.

-r Remove all references to this client in the /etc/rmtab of the server
host. Used by the client upon rebooting after a crash; restricted to the
super-user.

S E E A L S O
rmtab(4), mountd(lM), exports(4).

B U G S

If a client crashes, its entry is not removed from the server's list until it reboots
and goes multi-user.

SHUTDOWN(IM) SHUTDOWN (1M)

NAME
shutdown, halt - shut down system, change system state

SYNOPSIS

/etc/shutdown [-y] [-ggrace_period] [-iinit_state]

/etc/halt

DESCRIPTION
The shutdown command is executed by the super-user to change the state of the
machine. By default, it brings the system to "single-user" state.
The command sends a warning message and a final message before it starts
actual shutdown activities. By default, the command asks for confirmation
before it starts shutting down daemons and killing processes. The options are
used as follows:

-y Pre-answers the confirmation question so the command can be run
without user intervention. A default of 60 seconds is allowed between
the warning message and the final message. Another 60 seconds is
allowed between the final message and the confirmation.

-g grace _period
Allows the super-user to change the number of seconds from the 60-
second default.

-\init_state
Specifies the state that //u7(lM) is to be put in following the warnings,
if any. By default, system state "s" is used. (Currendy, all single user
states execute /etc/rcO, which kills all processes, unmounts all file
systems except root, and spawns a shell at the terminal that executed
shutdown or hall).

After entering single user state, the system can be prepared for power off by
using /etc/reboot -h.

The halt command shuts down CTIX in a safe but abrupt way. It is meant for
small installations where verbal warnings are faster than terminal messages.

DIAGNOSTICS
The most common error diagnostic to occur is device busy. This diagnostic
happens when a particular file system could not be unmounted.

SEE ALSO
init(lM), rcO(lM), rc2(lM), inittab(4).
S/Series CTIX Administrator's Guide.

SIZE(l) SIZE(l)

NAME
size - print section sizes in bytes of common object files

SYNOPSIS
size [-n] [-f] [-o] [-x] [-V] files

DESCRIPTION
The size command produces section size information in bytes for each loaded
section in the common object files. The size of the text, data, and bss
(uninitialized data) .sections is printed, as well as the sum of the sizes of these
sections. If an archive file is input to the size command the information for all
archive members is displayed.

The -n option includes NOLOAD sections in the size.

The -f option produces full output, that is, it prints the size of every loaded
section, followed by the section name in parentheses.

Numbers will be printed in decimal unless either the -o or the -x option is used,
in which case they will be printed in octal or in hexadecimal, respectively.

The -V flag will supply the version information on the size command.

SEE ALSO
as(l), cc(l), ld(l), a.out(4), ar(4).

CAVEAT
Since the size of bss sections is not known until link-edit time, the size
command will not give the true total size of pre-linked objects.

DIAGNOSTICS
size: name: cannot open

if name cannot be read.

size: name: bad magic
if name is not an appropriate common object fde.

SLATTACH(IM) (CTIX Internetworking) SLATTACH(IM)

N A M E

slattach, sldetach - attach and detach serial lines as network interfaces

S Y N O P S I S

/etc/slattach devname source destination [baudrate]

/etc/sldetach interface-name

D E S C R I P T I O N

slattach is used to assign a serial (tty) line to a network interface using the
DARPA Internet Protocol, and to define the source and destination network
addresses. The devname parameter is the name of the device the serial line is
attached to, for example, /dev/ttyOOl. The source and destination are either
host names present in the host name data base [see hosts (4)], or DARPA
Internet addresses expressed in the Internet standard "dot notation". The
optional baudrate parameter is used to set the speed of the connection; if not
specified, the default of 9600 is used.
Only the superuser may attach or detach a network interface.

sldetach is used to remove the serial line that is being used for IP from the
network tables and allow it to be used as a normal terminal again. Interface-
name is the name that is shown by netstat (1).

E X A M P L E S
/etc/slattach tty001 tom-src genstar
/etc/slattach /dev/tty001 hugo dahl 4800
/etc/sldetach slO

FILES
/etc/hosts
/dev/*

D I A G N O S T I C S
Various messages indicating:
- the specified interface does not exist
- the requested address is unknown
- the user is not the superuser

SEE A L S O
hosts(4), netstat(l), ifconfig(lM).

SLEEP(l) SLEEP(l)

NAM E
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
sleep suspends execution for time seconds. It is used to execute a command
after a certain amount of time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

whde true
do

command
sleep 37

done

SEE ALSO
alarm(2), sleep(3C).

SLIPD(IM) (CTIX Internetworking) SLIPD(IM)

N A M E

slipd - switched Serial Line Internet Protocol control facility

SYNOPSIS
/etc/slipd [-kufsvd] [-e timeout] [-1 logfile]
/etc/slipin

DESCRIPTION
The slipd facility controls the CTIX Switched SLIP (Serial Line Internet
Protocol) facility. This facility permits the use of switched asynchronous
communication links, such as telephones and dataswitches, for CTIX
Internetworking. All actions performed by slipd are recorded in a log file. The
default log file is /etc/log/sliplog.

slipd runs in three modes: master mode, slave mode, and control mode. Each
mode is discussed separately below.

• Master Mode. In master mode, slipd has three basic functions:

1. Maintain the kernel table of switched SLIP links.

2. Take connection requests (via the kernel) and make connections.
After making the connection, slipd performs the same functions
as slattach(lM).

3. Clean up when connections are done. This involves monitoring
the phone line, and performing the functions of sldetach [see
slattach(\M)}.

Normally switched SLIP uses the same Devices file as UUCP,
/usr/lib/uucp/Devices. However, switched SLIP uses a different
Systems file, /usr/lib/uucp/Systems.slip, to keep connection
information. The information is in the same format as the equivalent
UUCP files. Note that Systems.slip is associated with the slip service
by the file /usr/lib/uucp/Sysfiles.

Connections to be made via switched SLIP are requested in the same
manner as other CTIX network connections [using listen (2) and
connect (2)]. User requests are recognized using special routing table
entries, and are passed to the master daemon.

slipd in master mode is usually invoked at boot time via
/etc/init.d/devices (if there is a file named /etc/rcopts/SLIPD).

SLIPD(IM) (CTIX Internetworking) SLIPD(IM)

slipd is affected by the following flags:

-d operate in debug mode. Status of connections being made is
written to the log.

-e [timeout]
change timeouts, where timeout is specified in seconds. This
option is used while logging into the remote system and
making connections. Default is 15 seconds.

-v write log output to stderr, as well as to the log fde.

-1 logfile
use file name supplied as logfile rather than the default
/etc/log/sliplog.

• Slave Mode, slipd in slave mode is usually invoked as a login shell in
/etc/passwd (via the link /etc/slipin). An example of such an entry
follows:

slip:qNJEagn2oFtlc:50:50:Switched SLIP slave:/usr/spool/uucp:/etc/slipin

Once invoked, slipd does the following:

1. Finds out from the master who the caller is and validates the
login.

2. Performs an slattach(\M).

3. Monitors the line and performs an sldetach [see slattach{ 1M)J.

Authentication is perfomed in a manner similar to UUCP, using UUCP's
Permissions file, /usr/lib/uucp/Permissions. Currently only the LOGNAME
entry is used.

Slave mode is entered automatically when slipd is invoked as slipin. However,
it may also be invoked using the -s flag.

• Control Mode. Control mode is used to send messages to the master
slipd. Control mode is invoked by specifying one of the following
flags:

-u immediately update kernel routing tables from the system
host database. (This is done automatically every 180
minutes.)

-f flush all present connections.

SLIPD(IM) (CTIX Internetworking) SLIPD(IM)

-k kill the master daemon,

-d toggle daemon's debug mode.

Monitoring SLIP

Two tools are available for monitoring Switched SLIP:

1. The log fde. The log file records the following information:

• when requests for connections are received

• any errors during establishment of the connection

• when connections are closed

• any Control Mode actions

• connection status when the -d flag is specified to the daemon

• the associations between sw and si devices (see below).

2. The netstat(l) command, netstat -r shows which hosts will presendy be
connected to using switched SLIP. Routes with interfaces of type sw are
switched.

Switched links will show up in netstat -i as inactive (for example, swO*) while
not connected. After connection the sw device will be active, and the new si
(slip) device will appear with address Any (because the interface address is
associated with the .w device).

FILES
/etc/passwd

/etc/inittab

/etc/gettydefs

/etcAog/sliplog

/usr/spool/locks/slippid. *

/usr/lib/uucp/Sysfiles

/usr/lib/uucp/Systems.slip

/usr/lib/uucp/Permissions

SEE ALSO
netstat(l), slattach(lM), uucico(lM).

contains SLIP logins

specifies uugetty(lM) for communication lines

line speed definitions used in inittab

default log file

PIDs of daemons

points to Systems file

default Systems file

Permissions file

SLINK(l) (C T I X I n t e r n e t w o r k i n g) SLINK(l)

NAME
slink, ldsocket - STREAMS linker, load socket configuration

SYNOPSIS
slink [-v] [-c cfile]

ldsocket [-dvw] [-c cfile]

DESCRIPTION
slink and ldsocket are used to initialize the CTIX STREAMS-based
internetworking software. They are normally run at boot time and are called
from the script /etc/init.d/devices (which has links to files in /etc/rc?.d
directories). Note that /etc/init.d/devices invokes slink if it finds a file named
/etc/rcopts/KSTRM, and invokes ldsocket if it finds a file named
/etc/rcopts/KSOCK.

slink is the STREAMS linker. It links the available STREAMS protocols modules
into the running system, slink must be run before most networking facilities
become available, slink reads the /etc/netcf file to obtain configuration
information, and remains as a daemon process to maintain the linkage.

ldsocket initializes the CTIX Berkeley networking compatability interface,
which is an alternate stream head supporting the socket {2) system call family.
ldsocket loads the kernel with associations between the protocol family, type
and number triplets passed to the socket system call, and the STREAMS devices
supporting those protocols, ldsocket reads the /etc/netcf file to obtain
configuration information, and must be run before the Berkeley networking
interface can be used.

The following options are recognized by both slink and ldsocket:

-c cfile Use cfile instead of /etc/netcf

-v Verbose mode

The following options are recognized by slink only:

-w Print warning messages

-d Print debugging messages

FILES
/etc/netcf

SEE ALSO
netcf(4), intro(7).

SNO(l) SNO(l)

NAME
sno - SNOBOL interpreter

SYNOPSIS
sno [files]

DESCRIPTION
sno is a SNOBOL HI compiler and interpreter (with slight differences), sno
obtains input from the concatenation of the named files and the standard input.
All input through a statement containing the label end is considered program
and is compiled. The rest is available to syspit.

sno differs from SNOBOL HI in the following ways:

There are no unanchored searches. To get the same effect:

a ** b unanchored search for b.
a * x * b = x c unanchored assignment

There is no back referencing.

x -• "abc"
a *x* x is an unanchored search for abc.

Function declaration is done at compde time by the use of the (non-unique)
label define. Execution of a function call begins at the statement following the
define. Functions cannot be defined at run time, and the use of the name define
is preempted. There is no provision for automatic variables other than
parameters. Examples:

define f ()
define f(a, b, c)

All labels except define (even end) must have a non-empty statement.

Labels, functions and variables must all have distinct names. In particular, the
non-empty statement on end cannot merely name a label.

If start is a label in the program, program execution will start there. If not,
execution begins with the first executable statement; define is not an
executable statement.

There are no built-in functions.

Parentheses for arithmetic are not needed. Normal precedence applies.
Because of this, the arithmetic operators / and * must be set off by spaces. The
right side of assignments must be non-empty. Either ' or " may be used for
literal quotes.

SNO(l) SNO(l)

The pseudo-variable sysppt is not available.

SEE ALSO
awk(l).

SORT(l) SORT(l)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-btx] [+posl
[-pos2]] [fdes]

DESCRIPTION
sort sorts lines of all the named fdes together and writes the result on the
standard output. The standard input is read if - is used as a fde name or no input
fdes are named.

Comparisons are based on one or more sort keys extracted from each line of
input. By default, there is one sort key, the entire input line, and ordering is
lexicographic by bytes in machine collating sequence.

The following options alter the default behavior:

-c Check that the input fde is sorted according to the ordering rules; give no
output unless the file is out of sort.

-m Merge only, the input fdes are already sorted.

-u Unique: suppress all but one in each set of lines having equal keys.

-ooutput
The argument given is the name of an output fde to use instead of the
standard output This file may be the same as one of the inputs. There
may be optional blanks between -o and output.

•ykmem
The amount of main memory used by the sort has a large impact on its
performance. Sorting a small file in a large amount of memory is a waste.
If this option is omitted, sort begins using a system default memory size,
and continues to use more space as needed. If this option is presented
with a value, kmem, sort will start using that number of kilobytes of
memory, unless the administrative minimum or maximum is violated, in
which case the corresponding extremum will be used. Thus, -yO is
guaranteed to start with minimum memory. By convention, -y (with no
argument) starts with maximum memory.

•zrecsz
The size of the longest line read is recorded in the sort phase so buffers
can be allocated during the merge phase. If the sort phase is omitted via
the -c or -m options, a popular system default size will be used. Lines

1) SORT(l)

longer than the buffer size will cause sort to terminate abnormally.
Supplying the actual number of bytes in the longest line to be merged (or
some larger value) will prevent abnormal termination.

The following options override the default ordering rules.

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons.

-f Fold lower case letters into upper case.

-i Ignore non-printable characters.

-M Compare as months. The first three non-blank characters of the field are
folded to upper case and compared. For example, in English the sorting
order is "JAN" < "FEB" < . . . < "DEC". Invalid fields compare low to
"JAN". The -M option implies the -b option (see below).

-n An initial numeric string, consisting of optional blanks, optional minus
sign, and zero or more digits with optional decimal point, is sorted by
arithmetic value. The -n option implies the -b option (see below). Note
that the -b option is only effective when restricted sort key specifications
are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the
requested ordering rules are applied globally to all sort keys. When attached to
a specific sort key (described below), the specified ordering options override all
global ordering options for that key.

The notation +posl -pos2 restricts a sort key to one beginning at posl and
ending just before pos2. The characters at position posl and just before pos2
are included in the sort key (provided that pos2 does not precede posl). A
missing -pos2 means the end of the line.

Specifying posl and pos2 involves the notion of a field, a minimal sequence of
characters followed by a field separator or a new-line. By default, the first
blank (space or tab) of a sequence of blanks acts as the field separator. All
blanks in a sequence of blanks are considered to be part of the next field; for
example, all blanks at the beginning of a line are considered to be part of the
first field. The treatment of field separators can be altered using the options:

-b Ignore leading blanks when determining the starting and ending positions
of a restricted sort key. If the -b option is specified before the first +posl
argument, it will be applied to all +posl arguments. Otherwise, the b flag
may be attached independently to each +posl or -pos2 argument (see
below).

SORT(l) SORT(l)

- t t Use x as the field separator character; x is not considered to be part of a
field (although it may be included in a sort key). Each occurrence of x is
significant (for example, xx delimits an empty field).

Posl and pos2 each have the form mji optionally followed by one or more of
the flags bdfinr. A starting position specified by +mji is interpreted to mean
the n+lst character in the m+lst field. A missing ji means .0, indicating the
first character of the m+lst field. If the b flag is in effect n is counted from the
first non-blank in the m+lst field; +m.0b refers to the first non-blank character
in the m+lst field.

A last position specified by -mj i is interpreted to mean the nth character
(including separators) after the last character of the m th field. A missing .n
means .0, indicating the last character of the mth field. If the b flag is in effect
n is counted from the last leading blank in the m+lst field; -m. lb refers to the
first non-blank in the m+lst field.

When there are multiple sort keys, later keys are compared only after all earlier
keys compare equal. Lines that otherwise compare equal are ordered with all
bytes significant.

EXAMPLES
Sort the contents of infile with the second field as the sort key:

sort +1 -2 infile

Sort, in reverse order, the contents of infile 1 and infile2, placing the output in
outfile and using the first character of the second field as the sort key:

sort -r -o outfile +1.0 -1.2 infilel infile2

Sort, in reverse order, the contents of infilel and infile2 using the first non-
blank character of the second field as the sort key:

sort -r +1.0b -1.1b infilel infile2

Print the password file [passwd(4)] sorted by the numeric user ID (the third
colon-separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first
occurrence of lines having the same third field (the options -um with just one
input fde make the choice of a unique representative from a set of equal lines
predictable):

sort -um +2 -3 infile

SORT(l) SORT(l)

FILES
/usr/tmp/stm???

SEE ALSO
comm(l), join(l), uniq(l).

WARNINGS
Comments and exits with non-zero status for various trouble conditions (for
example, when input lines are too long), and for disorder discovered under the
-c option. When the last line of an input fde is missing a new-line character,
sort appends one, prints a warning message, and continues.

sort does not guarantee preservation of relative line ordering on equal keys.

SPELL(l) SPELL(l)

NAME
spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS

spell [-v] [-b] [-x] [-1] [-i] [+local_file] [files]

/usr/lib/spell/hashmake

/usr/lib/spell/spellin n

/usr/lib/spell/hashcheck spelling_list

DESCRIPTION
The spell program collects words from the named files and looks them up in a
spelling list. Words that neither occur among nor are derivable from (by
applying certain inflections, prefixes, and/or suffixes) words in the spelling list
are printed on the standard output. If no files are named, words are collected
from the standard input.
The spell program ignores most troff (I), tbl(1), and eqn(1) constructions.

Invoked with the -v option, all words not literally in the spelling list are printed,
and plausible derivations from the words in the spelling list are indicated.

Invoked with the -b option, British spelling is checked. Besides preferring such
spellings as centre, colour,programme, speciality, travelled, this option insists
upon -ise in words like standardise, Fowler and the OED to the contrary
notwithstanding.

Invoked with the -x option, every plausible stem is printed with = for each
word.

By default, spell [like deroff(1)] follows chains of included files [.so and .nx
troff(\) requests], unless the names of such included fdes begin with /usr/lib.
Invoked with the -I option, spell follows the chains of all included files.
Invoked with the -i option, spell ignores all chains of included files.

Invoked with the +local Jile option, words found in local Jile are removed
from spell's output. Local Jile is the name of a user-provided file that contains
a sorted list of words, one per line. With this option, the user can specify a set
of words that are correct spellings (in addition to spell's own spelling list) for
each job.

The spelling list is based on many sources and, while more haphazard than an
ordinary dictionary, is also more effective with respect to proper names and
popular technical words. Coverage of the specialized vocabularies of biology,
medicine, and chemistry is light.

SPELL(l) SPELL(l)

Pertinent auxiliary files can be specified by specifying name arguments,
indicated below with their default settings (see FILES). Copies of all output are
accumulated in the history fde. The stop list fdters out misspellings (for
example, thier=thy-y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output

spellin Reads n hash codes from the standard input and writes a
compressed spelling list on the standard output

hashcheck Reads a compressed spelling list and recreates the nine-digit hash
codes for all the words in it; it writes these codes on the standard
output

FILES
D_SPELL=/usr/lib/spell/hlist[ab]

S_SPELL=/usr/lib/spell/hstop

H_SPELL=/usr/lib/spell/spellhist

/usr/lib/spell/spellprog

SEE ALSO
deroff(l), eqn(l), sed(l), sort(l), tbl(l), tee(l), troff(l).

BUGS
The spelling list's coverage is uneven; new installations will probably want to
monitor the output for several months to gather local additions; typically,
additions are kept in a separate local file that is added to the hashed
spelling list by spellin.

hashed spelling lists, American & British

hashed stop list

history file

program

SPLINE (1G) (Category 2 Support) SPLJNE(IG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [options]

DESCRIPTION
spline takes pairs of numbers from the standard input as abscissas and ordinates
of a function. It produces a similar set, which is approximately equally spaced
and includes the input set, on the standard output The cubic spline output has
two continuous derivatives, and sufficiendy many points to look smooth when
plotted, for example by graph(1G).

The following options are recognized, each as a separate argument

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument or is assumed to be 1 if next
argument is not a number.

-k The constant k used in the boundary value computation:

yo = ky i', y'n = ky'n_i

is set by the next argument (default k = 0).

-n Space output points so that approximately n intervals occur between
the lower and upper x limits (default n - 100).

-p Make output periodic, that is, match derivatives at ends. First and last
input values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally,
these limits are calculated from the data. Automatic abscissas start at
lower limit (default 0).

SEE ALSO
graph(lG).

DIAGNOSTICS
When data is not stricdy monotone in x, spline reproduces the input without
interpolating extra points.

BUGS
A limit of 1,000 input points is enforced silendy.

SPLIT(l) SPLIT(l)

NAME
split - split a file into pieces

SYNOPSIS
split [-n] [file [name]]

DESCRIPTION
split reads file and writes it in n-line pieces (default 1000 lines) onto a set of
output fdes. The name of the first output file is name with aa appended, and so
on lexicographically, up to zz (a maximum of 676 files). Name cannot be
longer than 12 characters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is
used.

SEE ALSO
bfs(l), csplit(l).

STARTER(l) (Category 2 Support) STARTER(l)

N A M E
starter - information about the operating system for beginning users

SYNOPSIS
[help] starter

DESCRIPTION
The CTIX system Help Facility command starter provides five categories of
information about the CTIX system to assist new users.

The five categories are:

• commands a new user should leam first

• CTIX system documents important for beginners

• education centers offering CTIX system courses

• local environment information

• on-line teaching aids installed on the CTIX system

The user may choose one of the above categories by entering its corresponding
letter (given in the menu), or may exit to the shell by typing q (for "qui t") .
When a category is chosen, the user will receive one or more pages of
information pertaining to i t

From any screen in the Help Facility, a user may execute a command via the
shell [sh(l)] by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt
If entered at any other prompt level, only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment. This is done by adding the following line to your .profile file [see
profile (4)]:

export SCROLL ; SCROLL=no

If you later decide that scrolling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

SEE ALSO
glossary(l), help(l), locate(l), sh(l), usage(l), term(5).

STARTER(l) (Category 2 Support) STARTER(l)

WARNINGS
If the shell variable TERM [see s/i(l)] is not set in the user's .profile file, then
TERM will default to the terminal value type 450 (a hard-copy terminal). For a
list of valid terminal types, refer to term{5).

STAT(IG) (Category 2 Support) STAT(IG)

NAME
stat - statistical network useful with graphical commands

SYNOPSIS
node-name [options] [files]

DESCRIPTION
The stat utility is a collection of command level functions (nodes) that can be
interconnected using s/z(l) to form a statistical network. The nodes reside in
/usr/bin/graf (see graphics(1G)). Data is passed through the network as
sequences of numbers (vectors), where a number of the following form is
evaluated in the usual way:

[sign](digits)(.digits) [e [sign]digits]

Brackets and parentheses surround fields. All fields are optional, but at least
one of the fields surrounded by parentheses must be present. Any character
input to a node that is not part of a number is taken as a delimiter.

Note that stat nodes are divided into four classes:

Transformers Map input vector elements into output vector elements.

Summarizers Calculate statistics of a vector.

Translators Convert among formats.

Generators Sources of definable vectors.

Most nodes accept options indicated by a leading minus (-). In general, an
option is specified by a character followed by a value, such as c5. This is
interpreted as c := 5 (c is assigned 5). The following keys are used to designate
the expected type of the value:

c characters

i integer

/ floating point or integer

file file name

string string of characters, surrounded by quotes to include a shell argument
delimiter

Options without keys are flags. All nodes except generators accept files as
input.

Below is a list of synopses for stat nodes:

STAT(IG) (Category 2 Support) STAT(IG)

Transformers:

abs

af

ceil

cusum

exp

floor

gamma

list

log

mod

pair

power

root

round

siline

sin

subset

[-cz'] - absolute value
columns (similarly for -c options that follow)

[-cz t v] - arithmetic function
titled output, verbose

[-cz] - round up to next integer

[-cz] - cumulative sum

[-cz] - exponential

[-cz] - round down to next integer

[-cz] - gamma

[-cz dstring] - list vector elements
delimiter(s)

[-cz bif] - logarithm
base

[-cz m /] - modulus
modulus

[-cz F'file xi] - pair elements
File containing base vector, x group size

[-cz p /] - raise to a power
power

[-cz rf] - take a root
root

[-cz pz sz] - round to nearest integer, .5 rounds to 1
places after decimal point, significant digits

[-cz i/nz's/] - generate a line given slope and intercept
intercept, number of positive integers, slope

[-cz] - sine

[-a/b/cz F f i le iz 1/nl np p/sz tz] - generate a subset
above, below, File with master vector, interval, leave, master
contains element numbers to leave, master contains element
numbers to pick, pick, start, terminate

STAT(IG) (Category 2 Support) STAT(IG)

Summarizers:

bucket [-az ci F'file h/i(1/nz] - break into buckets
average size, File containing bucket boundaries, high, interval,
low, number
Input data should be sorted

cor [-F'file] - correlation coefficient
File containing base vector

hilo [- h 1 o ox oy]- find high and low values
high only, low only, option form, option form with x prepended,
option form with y prepended

Ireg [-Ffile i o s] - linear regression
File containing base vector, intercept only, option form for siline,
slope only

mean [-if nz p /] - (trimmed) arithmetic mean
fraction, number, percent

point [- f f n i p / s] - point from empirical cumulative density function
fraction, number, percent, sorted input

prod - internal product

qsort [-ci] - quick sort

rank - vector rank

total - sum total

var - variance

Translators:

bar [-a b f g rz wz xf xa yf ya yj/" yh/] - build a bar chart
suppress axes, bold, suppress frame, suppress grid, region, width in
percent, x origin, suppress x-axis label, y origin, suppress y-axis
label, y-axis lower bound, y-axis high bound
Data is rounded off to integers.

hist [-a b f g rz xf xa yf ya yj/" yh/] - budd a histogram
suppress axes, bold, suppress frame, suppress grid, region, x origin,
suppress x-axis label, y origin, suppress y-axis label, y-axis lower
bound, y-axis high bound

label [-b c F'file h p rz x xu y yr] - label the axis of a GPS file
bar chart input, retain case, label File, histogram input, plot input,
rotation, x-axis, upper x-axis, y-axis, right y-axis

STAT(IG) (Category 2 Support) STAT(IG)

pie [- b o p pn/' ppz rz v xz yz] - build a pie chart
bold, values outside pie, value as percentage(:=100), value as
percentage(:=i), draw percent of pie, region, no values, x origin, y
origin
Unlike other nodes, input is lines of the form

[< i e f cc >] value [label]
ignore (do not draw) slice, explode slice, fill slice, color slice
c=(black, red, green, blue)

plot [-a b cstring d f F'file g m rz xf xa xi/" xh/ x]/" xnz xt yf ya yif yh/
ylf ynz yt] - plot a graph
suppress axes, bold, plotting characters, disconnected, suppress
frame, File containing x vector, suppress grid, mark points, region,
x origin, suppress x-axis label, x interval, x high bound, x low
bound, number of ticks on x-axis, suppress x-axis title, y origin,
suppress y-axis label, y interval, y high bound, y low bound,
number of ticks on y-axis, suppress y-axis title

title [-b c Istring \string ustring] - title a vector or a GPS
title bold, retain case, lower title, upper title, vector title

Generators:

gas

prime

rand

RESTRICTIONS
Some nodes have a limit on the size of the input vector.

SEE ALSO
graphics(lG), gps(4).

[-cz i/nz sftf] - generate additive sequence
interval, number, start, terminate

[-cz hz lz nz] - generate prime numbers
high, low, number

[-cz h / If mf nz sz] - generate random sequence
high, low, multiplier, number, seed

STRCLEAN (1M) (Networking Support Utilities) STRCLEAN (1M)

NAME
strclean - STREAMS error logger cleanup program

SYNOPSIS
strclean [-d logdir] [-a age]

DESCRIPTION
The strclean program is used to clean up the STREAMS error logger directory
on a regular basis [for example, by using cron(1M)]. By default, all fdes with
names matching error.* in /usr/adm/streams that have not been modified in
the last three days are removed. The -d options specifies a directory other than
/usr/adm/streams. The -a options specifies the maximum age in days for a log
file.

EXAMPLE
The following command produces the same result as running strclean with no
arguments:

strclean -d /usr/adm/streams -a 3

NOTES
The strclean program is typically run from cron(lM) on a daily or weekly basis.

FILES
/usr/adm/streams/error. *

SEE ALSO
cron(lM), strerr(lM).
UNIX System V Release 3.2 Streams Programmer's Guide.

STRERR(IM) (Networking Support Utilities) STRERR(IM)

NAME
strerr - STREAMS error logger daemon

SYNOPSIS
strerr

DESCRIPTION
The strerr daemon receives error log messages from the STREAMS log driver
[log(T)\ and appends them to a log file. The error log files produced reside in
the directory /usr/adm/streams, and are named error jnm-dd, where mm is the
month and dd is the day of the messages contained in each log fde.

The format of an error log message follows:

<seq> <time> <ticks> <flags> <mid> <sid> <text>

<seq> error sequence number

<time> time of message in hh:mm:ss

<ticks> time of message in machine ticks since boot priority level

<flags> T : the message was also sent to a tracing process
F : indicates a fatal error
N : send mail to the system administrator

<mid> module ID number of source

<sid> sub-ID number of source

<text> formatted text of the error message

Messages that appear in the error log are intended to report exceptional
conditions that require the attention of the system administrator. Those
messages that indicate the total failure of a STREAMS driver or module should
have the F flag set. Those messages requiring the immediate attention of the
administrator will have the N flag set, which causes the error logger to send the
message to the system administrator through mail(1). The priority level usually
has no meaning in the eiror log but has meaning if the message is also sent to a
tracer process.

Once initiated, strerr continues to execute until terminated by the user.
Commonly, strerr is executed asynchronously.

CAVEATS
Only one strerr process at a time is permitted to open the STREAMS log driver.

If a module or driver is generating a large number of error messages, running
the error logger causes a degradation in STREAMS performance. If a large burst
of messages are generated in a short time, the log driver may not be able to

STRERR(IM) (N e t w o r k i n g S u p p o r t U t i l i t i e s) STRERR(IM)

deliver some of the messages; this situation is indicated by gaps in the sequence
numbering of the messages in the log fdes.

FILES
/usr/adm/streams/error.mm-<£i

SEE ALSO
log(7).
UNIX System V Release 3.2 Streams Programmer s Guide.

STRJNGS(l) STRINGS (1)

NAME
strings - extract the ASCII text strings in a file

SYNOPSIS
strings [-a] [-o] [-#] file ...

DESCRIPTION
strings looks for ASCII text strings in a file. It is useful for examining and
identifying object and other binary fdes. A string is any sequence of 4 or more
printing characters ending with a newline or a null. If the file is an object file,
the search is restricted to the initialized data space.

Here are the options:

-a Don't restrict object file searches.

-o Precede each string with its octal offset.

-# Make # the minimum string length instead of 4.

SEE ALSO
od(l).

WARNING
The algorithm for identifying strings is rather primitive.

STRIP(l) STRIP(l)

NAME
strip - strip symbol and line number information from a common object fde

SYNOPSIS

strip [-1] [-x] [-i] [-r] [-V] fdename ...

DESCRIPTION
The strip command strips the symbol table and line number information from
common object fdes, including archives. Once this has been done, no symbolic
debugging access will be avadable for that fde; therefore, this command is
normally run only on production modules that have been debugged and tested.
The amount of information stripped from the symbol table can be controlled by
using any of the following options:

-1 Strip line number information only; do not strip any symbol table
information.

-x Do not strip static or external symbol information.

-b Same as the -x option, but also do not strip scoping information (for
example, beginning and end of block delimiters).

-r Do not strip static or external symbol information, or relocation
information.

-V Print the version of the strip command executing on the standard error
output

If there are any relocation entries in the object fde and any symbol table
information is to be stripped, strip will complain and terminate without
stripping filename unless the -r option is used.

If the strip command is executed on a common archive fde [see ar(4)] the
archive symbol table will be removed. The archive symbol table must be
restored by executing the a r (l) command with the s option before the archive
can be link-edited by the ld(1) command, strip will produce appropriate
warning messages when this situation arises.

strip is used to reduce the fde storage overhead taken by the object fde.

FILES
TMPDIR/strp* temporary fdes

TMPDIR is usually /tmp but can be redefined by setting the environment
variable TMPDIR [see tempnamQ in tmpnam(3S)].

SEE ALSO
ar(l), as(l), cc(l), ld(l), tmpnam(3S), a.out(4), ar(4).

STRIP(l) STRIP(l)

DIAGNOSTICS
strip: name: cannot open

if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object fde.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r flag is not used, the
symbol table information cannot be stripped.

STTY(l) STTY(l)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a] [-g] [options]

DESCRIPTION
The stty command sets certain terminal I/O options for the device that is the
current standard input; without arguments, it reports the settings of certain
options.

In this report, if a character is preceded by a caret ("), the value of that option is
the corresponding Control character (for example, *H is Control-H; in this case,
recall that Control-H is the same as the Backspace key). The sequence " means
that an option has a null value. For example, normally stty -a reports that the
value of swtch is "'; however, if shl(l) has been invoked, stty -a has the value

-a Reports all option settings.

-g Reports current settings in a form that can be used as an argument to
another stty command.

Options in the last group are implemented by using options in the previous
groups. Note that many combinations of options make no sense, but no sanity
checking is performed. The options are selected from the following:

Control Modes
parenb (-parenb)

Enable (disable) parity generation and detection.

parodd (-parodd)
Select odd (even) parity.

cs5 cs6 cs7 cs8
Select character size [see termio(l)].

0 Hang up phone line immediately.

110 300 600 1200 1800 2400 4800 9600 19200 38400
Set terminal baud rate to the number given, if possible. (All speeds are
not supported by all hardware interfaces.)

hupcl (-hupcl)
Hang up (do not hang up) Dataphone connection on last close.

hup (-hup)
Same as hupcl (-hupcl).

STTY(l) STTY(l)

cstopb (-cstopb)
Use two (one) stop bits per character.

cread (-cread)
Enable (disable) the receiver.

c local (-clocal)
Assume a line without (with) modem control.

ctscd (-ctscd)
Enable (disable) CTS as transmit enable

Input Modes
ignbrk (-ignbrk)

Ignore (do not ignore) break on input.

brkint (-brkint)
Signal (do not signal) INTR on break.

ignpar (-ignpar)
Ignore (do not ignore) parity errors.

parmrk (-parmrk)
Mark (do not mark) parity errors [see termio(7)].

inpck (-inpck)
Enable (disable) input parity checking.

istrip (-istrip)
Strip (do not strip) input characters to seven bits.

inlcr (-inlcr)
Map (do not map) NL to CR on input.

igncr (-igncr)
Ignore (do not ignore) CR on input.

icrnl (-icrnl)
Map (do not map) CR to NL on input.

iuclc (-iuclc)

Map (do not map) uppercase alphabetics to lowercase on input,

ixon (-ixon)
Enable (disable) START/STOP output control. Output is stopped by
sending an ASCII DC3 and started by sending an ASCII DC1.

ixany (-ixany)
Allow any character (only DC1) to restart output.

STTY(l) STTY(l)

ixoff (-ixoff)
Request that the system send (not send) START/STOP characters when
the input queue is nearly empty/full.

Output Modes
opost (-opost)

Post-process output (do not post-process output; ignore all other output
modes).

olcuc (-olcuc)
Map (do not map) lowercase alphabetics to uppercase on output.

onlcr (-onlcr)
Map (do not map) NL to CR-NL on output.

ocrnl (-ocrnl)
Map (do not map) CR to NL on output

onocr (-onocr)
Do not (do) output CRs at column zero.

onlret (-onlret)
On the terminal NL performs (does not perform) the CR function.

ofill (-ofill)
Use fill characters (use timing) for delays.

ofdel (-ofdel)
Fill characters are DELs (NULs).

crO crl cr2 cr3
Select style of delay for carriage returns [see termio(7)].

nlO n i l Select style of delay for line-feeds [see termio(l)\.

tabO tabl tab2 tab3

Select style of delay for horizontal tabs [see termio(7)].

bsO bsl Select style of delay for backspaces [see termio(7)].

ffO f f l Select style of delay for form-feeds [see termio{l)}.

vtO v t l Select style of delay for vertical tabs [see termio(l)].
Local Modes

isig (-isig)
Enable (disable) the checking of characters against the special control
characters INTR, QUIT, and SWTCH.

icanon (-icanon)
Enable (disable) canonical input (ERASE and KILL processing).

- 3 -

STTY(l) STTY(l)

xcase (-xcase)

Canonical (unprocessed) uppercase/lowercase presentation,

echo (-echo)

Echo back (do not echo back) every character typed,

echoe (-echoe)
Echo (do not echo) ERASE character as a backspace-space-backspace
string. Note that this mode erases the ERASEed character on many CRT
terminals; however, it does not keep track of column position and, as a
result, can be confusing on escaped characters, tabs, and backspaces.

echok (-echok)
Echo (do not echo) NL after KILL character.

lfkc (-lfkc)
The same as echok (-echok); obsolete.

echonl (-echonl)
Echo (do not echo) NL.

noflsh (-noflsh)
Disable (enable) flush after INTR, QUIT, or SWTCH.

Control Assignments
control-character c

Set control-character to c, where control-character is erase, kill, intr,
quit, swtch, eof, ctab, min, or time [min and time are used with
-icanon; see termio(l)\. If c is preceded by an (escaped from the
shell) caret (*), then the value used is the corresponding Control
character (for example, *D is Control-D); *? is interpreted as DEL; and
*- is interpreted as undefined.

line i Set line discipline to i (0 < i < 127).

Combination Modes
evenp or parity

Enable parenb and cs7.

oddp Enable parenb, cs7, and parodd.

-parity, -evenp, or -oddp
Disable parenb, and set cs8.

raw (-raw or cooked)
Enable (disable) raw input and output (no ERASE, KILL, INTR, QUIT,
SWTCH, EOT, or output post processing).

STTY(l) STTY(l)

nl (-nl) Unset (set) icrnl, onlcr. In addition -nl unsets inlcr, igncr, ocrnl, and
onlret.

lease (-lease)
Set (unset) xcase, iuclc, and olcuc.

LCASE (-LCASE)
Same as lease (-lease).

tabs (-tabs or tab3)

Preserve (expand to spaces) tabs when printing.

ek Reset ERASE and KILL characters back to normal # and

sane Resets all modes to some reasonable values.
term Set all modes suitable for the terminal type term, where term is one of

tty33, tty37, vt05, tn300, ti700, or tek.

Cluster Terminals
Options that are meaningless to the RS422 interface are ignored by cluster
terminals. See termio (7) for specifics.

SEE ALSO
tabs(l), iocd(2), termio(7).

SU(1M) SU(1M)

NAME
su - become super-user or another user

SYNOPSIS
su [-] [name [arg . . .]]

DESCRIPTION
su allows one to become another user without logging off. The default user
name is root (that is, super-user).

To use su, the appropriate password must be supplied (unless one is already
root). If the password is correct, su will execute a new shell with the real and
effective user ID set to that of the specified user. The new shell will be the
optional program named in the shell field of the specified user's password file
entry [see passwd(4)], or /bin/sh if none is specified [see J/I(1)]. TO restore
normal user ID privileges, type an EOF (cntrl-d) to the new shell.

Any additional arguments given on the command line are passed to the program
invoked as the shell. When using programs like sh(\), an arg of the form -c
string executes string via the shell and an arg of -r will give the user a
restricted shell.

The following statements are true only if the optional program named in the
shell field of the specified user's password file entry is like s/i(l). If the first
argument to su is a -, the environment will be changed to what would be
expected if the user actually logged in as the specified user. This is done by
invoking the program used as the shell with an argO value whose first character
is -, thus causing first the system's profile (/etc/profile) and then the specified
user's profile (.profde in the new HOME directory) to be executed. Otherwise,
the environment is passed along with the possible exception of $PATH, which is
set to /bin:/etc:/usr/bin for root. Note that if the optional program used as the
shell is /bin/sh, the user's .profde can check argO for -sh or -su to determine if
it was invoked by login(\) or JU(1), respectively. If the user's program is other
than /bin/sh, then .profile is invoked with an argO of -program by both login(1)
and su(l).

All attempts to become another user using su are logged in the log file
/usr/adm/sulog.

EXAMPLES
To become user bin whde retaining your previously exported environment,
execute:

su bin

SU(1M) SU(1M)

To become user bin but change the environment to what would be expected if
bin had originally logged in, execute:

•u • bin

To execute command with the temporary environment and permissions of user
bin, type:

•u • bin -c "command argrf"

FILES
/etc/passwd
/etc/profile
SHOME/.profde
/usr/adm/sulog

system's password fde
system's profde
user's profile
log file

SEE ALSO
env(l), login(l), sh(l), passwd(4), profile(4), environ(5).

SUM(l) SUM(l)

NAME
sum - print checksum and block count of a file

SYNOPSIS
sum [-r] file

DESCRIPTION
sum calculates and prints a 16-bit checksum for the named file, and also prints
the number of 512-byte blocks in the file. It is typically used to look for bad
spots, or to validate a file communicated over some transmission line. The
option -r causes an alternate algorithm to be used in computing the checksum.

SEE ALSO
wc(l).

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check the
block count.

SWAP(IM) SWAP(IM)

NAME
swap - swap administrative interface

SYNOPSIS

/etc/swap -a swapdev [swaplow [swaplen]]

/etc/swap -d swapdev [swaplow]

/etc/swap -I

DESCRIPTION
The swap command provides a method of adding, deleting, and monitoring the
system swap areas used by the memory manager. The following options are
recognized:
-a Add the specified swap area. Swapdev is the name of block special

device: for example, /dev/dsk/c0dls2. Swaplow is the offset, in 512-
byte blocks, into the device where the swap area should begin. Swaplen
is the length of the swap area, in 512-byte blocks, up to the size of the
specified partition. Note that this option can be used only by the super-
user. Swap areas are added at system startup time through one or more
entries in /etc/rcopts/KSWAP: each entry consists of the swapdev to be
added.

-d Delete the specified swap area. Swapdev is the name of block special
device: for example, /dev/dsk/c0dls2. Swaplow is the offset, in 512-
byte blocks, into the device where the swap area should begin. Using this
option marks the swap area as INDEL (in the process of being deleted).
The system does not allocate any new blocks from the area, and tries to
free swap blocks from i t The area remains in use until all blocks from it
are freed. Note that this option can be used only by the super-user.

-I List the status of all swap areas. The output has five columns:

path The swapdev special file for the swap area, if one can be
found in the /dev/dsk or /dev directories.

dev

swaplow

blocks

The major/minor device number of the swapdev, in decimal.

The swaplow value for the area, in 512-byte blocks.

The swaplen value for the area, in 512-byte blocks.

SWAP(IM) SWAP(IM)

free The number of free 512-byte blocks in the area. If the swap
area is being deleted, this column is marked INDEL.

SEE ALSO
S/Series CTIX Administrator s Guide.

WARNINGS
No check is performed to see if a swap area being added overlaps with an
existing swap area or fde system.

SYNC(IM) SYNC(IM)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION
sync executes the sync system primitive. If the system is to be stopped, sync
must be called to insure fde system integrity. It will flush all previously
unwritten system buffers out to disk, thus assuring that all fde modifications up
to that point will be saved. See sync (2) for details.

NOTE
If you have done a write to a file on a remote machine in a Remote File Sharing
environment, you cannot use sync to force buffers to be written out to disk on
the remote machine, sync will only write local buffers to local disks.

SEE ALSO
sync(2).

SYSDEF(IM) SYSDEF(IM)

NAME
sysdef - output system definition

SYNOPSIS
/etc/sysdef [namelist [master]]

DESCRIPTION
sysdef outputs the current system definition in tabular form. It lists all hardware
devices, their local bus addresses, and unit count, as well as pseudo devices,
system devices, loadable modules and the values of all tunable parameters. It
generates the output by analyzing the named operating system fde (namelist)
and extracting the configuration information from the name list itself.

SEE ALSO
master(4), nlist(3C).

DIAGNOSTICS
internal name list overflow

if the master table contains more than an internally specified number
of entries for use by nlist{3C).

FILES
/unix

/etc/master

default operating system fde (where the system namelist is)

default master device information table

TABS(l) TABS(l)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec] [-Ttype] [+mn]

DESCRIPTION
The tabs command sets the tab stops on the user's terminal according to the tab
specification tabspec, after clearing any previous settings. The user's terminal
must have remotely-settable hardware tabs.

tabspec Four types of tab specification are accepted for tabspec. They are
described below: canned (-code), repetitive (-n), arbitrary (nl ,n2,...),
and file (--fde). If no tabspec is given, the default value is -8, that is,
CTIX system "standard" tabs. The lowest column number is 1. Note
that for tabs, column 1 always refers to the leftmost column on a
terminal, even one whose column markers begin at 0, for example, the
DASI 300, DASI 300s, and DASI 450.

-code Use one of the codes listed below to select a canned set of tabs. The
legal codes and their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this
code, the first typed character corresponds to card column 7,
one space gets you to column 8, and a tab reaches column 12.
Files using this tab setup should include a format specification
as follows [see fspec(4)]:

<:t-c2 m6 s66 d:>

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more
tabs than -c2. This is the recommended format for COBOL.
The appropriate format specification is [see fspec(4)]:

<:t-c3 m6 s66 d:>

TABS(l) TABS(l)

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNI VAC 1100 Assembler

-n A repetitive specification requests tabs at columns 1 +n, 1+2*n, etc.
Of particular importance is the value 8: this represents the CTIX
system "standard" tab setting, and is the most likely tab setting to be
found at a terminal. Another special case is the value 0, implying no
tabs at all.

nl,n2,... The arbitrary format permits the user to type any chosen set of
numbers, separated by commas, in ascending order. Up to 40
numbers are allowed. If any number (except the first one) is preceded
by a plus sign, it is taken as an increment to be added to the previous
value. Thus, the formats 1,10,20,30, and 1,10,+10,+10 are considered
identical.

-file If the name of a file is given, tabs reads the first line of the file,
searching for a format specification [see fspec(A)]. If it finds one
there, it sets the tab stops according to it, otherwise it sets them as -8.
This type of specification may be used to make sure that a tabbed file
is printed with correct tab settings, and would be used with the pr(1)
command:

tabs - file; pr file

Any of the following also may be used; if a given flag occurs more
than once, the last value given takes effect:

tabs usually needs to know the type of terminal in order to set tabs
and always needs to know the type to set margins, type is a name
listed in term(5). If no -T flag is supplied, tabs uses the value of the
environment variable TERM. If TERM is not defined in the
environment [see environ (5)], tabs tries a sequence that will work for
many terminals.

The margin argument may be used for some terminals. It causes all
tabs to be moved over n columns by making column n+1 the left
margin. If +m is given without a value of n, the value assumed is 10.

-T type

+m n

- 2 -

TABS(l) TABS(l)

For a TermiNet, the first value in the tab list should be 1, or the
margin will move even further to the right. The normal (leftmost)
margin on most terminals is obtained by +m0. The margin for most
terminals is reset only when the +m flag is given explicitly.

Tab and margin setting is performed via the standard output

E X A M P L E S
The following command uses -code (canned specification) to set tabs to the
settings required by the IBM assembler: columns 1 ,10,16,36,72.

tabs -a

The following command uses -n (repetitive specification), where n is 8, setting
tabs every eighth position: 1+(1*8), l+(2*8), . . . , which evaluate to columns 9,
17, and so on.

tabs -8

The following command uses nl,n2, ... (arbitrary specification) to set tabs at
columns 1, 8, and 36.

tabs 1,8,36

The following command uses --fde (fde specification) to indicate that tabs
should be set according to the first line of $HOMEIfspec.listlatt4425 [see
fspec(4)].

tabs —$HOME/fspec.lLst/att4425

D I A G N O S T I C S
illegal tabs

Arbi t r a ry tabs a r e o rde red incor rec t ly .

illegal increment
A zero or missing increment is found in an arbitrary specification.

unknown tab code
A canned code cannot be found.

can't open

The file named in the --file option cannot be opened.

file indirection
The specification in the file named in the -file option points to yet
another file. Indirection of this form is not permitted.

S E E A L S O
newform(l), pr(l), tput(l), fspec(4), terminfo(4), environ(5), term(5).

TABS(l) TABS(l)

NOTE
There is no consistency among different terminals regarding ways of clearing
tabs and setting the left margin.

The tabs command clears only 20 tabs (on terminals requiring a long sequence),
but is willing to set 64.

WARNING
The tabspec used with the tabs command is different from that used with the
newform(1) command. For example, tabs -8 sets tabs every eighth position;
however, newform -i-8 indicates that tabs are set every eighth position.

TALK(l) TALK(l)

NAME
talk - talk to another user

SYNOPSIS
talk person [ttyname]

DESCRIPTION
The talk program copies lines from your terminal to that of another user.

If you want to talk to someone on your own machine, person is just the person's
login name. If you want to talk to a user on another host, person is of one of the
following forms:

user@host (This is the preferred form.)

If you want to talk to a user who is logged in more than once, the ttyname
argument can be used to indicate the appropriate terminal name.

When talk is first invoked, it sends the following message to the user you want
to talk to:

Message from TalkDaemon@his_machin«_.
talk: connection requested by your_name@your_machine.
talk: respond with: talk your_name@your_machine

At this point, the recipient of the message should reply as follows:

talk your_name@your_machlne

It does not matter which machine the recipient uses for the reply, as long as the
user's login-name is the same. Once communication is established, the two
parties can type simultaneously, with their output appearing in separate
windows. The CTRL-L key sequence reprints the screen; erase, kill, and word
kill characters work in talk as normal. Use the interrupt character to exit talk;
talk then moves the cursor to the bottom of the screen and restores the terminal.

Permission to talk can be denied or granted by use of the mesg(1) command. At
the outset talking is allowed. Certain commands, in particular nroff and pr(1),
disallow messages in order to prevent messy output

host.'user
host, user
host.user

FILES
/etc/hosts
/etc/utmp

to find the recipient's machine
to find the recipient's tty

TALK(l) TALK(l)

SEE ALSO
mesg(l), named(lM), talkd(lM), who(l), mail(l), write(l).

BUGS
This version of talk uses a protocol that is compatible with 4.3BSD. It is
incompatible with other vendors' 4.2BSD versions of talk.

- 2 -

TELNETD(IM) (CTIX Internetworking) TELNETD(IM)

NAME
talkd - remote user communication server

SYNOPSIS
/etc/talkd

DESCRIPTION
talkd is the server that notifies a user that somebody else wants to initiate a
conversation. It acts a repository of invitations, responding to requests by
clients wishing to rendezvous to hold a conversation. In normal operation, a
client, the caller, initiates a rendezvous by sending a CTL_MSG to the server of
type LOOK_UP (see <protocols/talkd.h>). This causes the server to search its
invitation tables to check if an invitation currenUy exists for the caller (to speak
to the callee specified in the message). If the lookup fails, the caller then sends
an ANNOUNCE message causing the server to broadcast an announcement on
the callee's login ports requesting contact When the callee responds, the local
server uses the recorded invitation to respond with the appropriate rendezvous
address and the caller and callee client programs establish a stream connection
through which the conversation takes place.

talkd is started by the "super-server" inetd, and therefore must have an entry in
inetd's configuration file, /etc/inetd.conf [see inetd(IM) and inetd.conf (4)].

SEE ALSO
talk(l), write(l), inetd.conf(4).

TAPESET(IM) TAPESET(IM)

NAME
tapeset - set drive parameters for tape controllers

SYNOPSIS
tapeset [-p] device

tapeset [-t drive_type] [-f tapedrives_file] [-p] device

DESCRIPTION
The tapeset command initializes VME controller-based half-inch and SCSI
controller-based tape drives. Normally initialization is performed
automatically through entries in /etc/drvload and does not need to be repeated
until the system is rebooted. (The /etc/drvload fde looks for the presence of
/etc/rcopts/KIPT and /etc/rcopts/KSCSI; if they exist, they are "dotted;" see
the FILES section.)

Execute tapeset after loading the appropriate tape driver [by using lddrv(1M)].
Device is /dev/rmt/c?d#c, where # is the drive number. (The second c indicates
to the driver software that this special controller command does not require that
the drive be online.)

The tapeset command recognizes the following options:

-f tapedrivesJile Use the file tapedrivesJile instead of /etc/tapedrives for
tape drive-specific information.

-p Print the current configuration on stdout.

-t drive type Automatically configure the controller for a drive type
drive. Examine the /etc/tapedrives fde for a list of
supported tape drives.

EXAMPLES
The following command displays the current configuration of VME controller-
based half-inch tape drive 0:

tapeset -p /dev/rmt/cldOc

The following command enables autoload on SCSI controller-based tape drive 0
(S/640 only):

tapeset -t5945S-auto /dev/rmt/cOdOc

The following command sets the drive parameters of drive 1 for a Cipher M990
tape drive and then displays the resulting configuration:

tapeset -t M990 -p /dev/rmt/cldlc

TAPESET(IM) TAPESET(IM)

FILES

contains tapeset commands for half-inch drives and
causes automatic execution of these commands when the
system is rebooted

contains tapeset commands for SCSI tape drives and
causes automatic execution of these commands when the
system is rebooted; note that on S/640 systems, if this file
does not exist, the following tapeset command is issued
by default:

tapeset-t 5945S-noauto /dev/rmt/cOdOc

SEE ALSO
config(lM), lddrv(lM), tapedrives(4), ipt(7).
MightyFrame VME Half-Inch Tape Controller Card Manual.

WARNINGS
Some SCSI half-inch tape drives do not accept commands if the drive is not
online; you may have to perform tapeset commands by hand after the system is
booted.

/dev/rmt/c?d#c

/etc/tapedrives

/etc/rcopts/KIPT

/etc/rcopts/KSCSI

TAR(l) TAR(l)

NAME
tar - tape file archiver

SYNOPSIS
/etc/tar -c[vwfb[#s]] device block fdes ...

/etc/tar -r[vwb[#s]] device block [fdes ...]

/etc/tar -t[vf[#.s] device

/etc/tar -u[vwb[#j]] device block [files ...]

/etc/tar -x[lmovwf[#.v]] device [files ...]

DESCRIPTION
The tar command saves and restores fdes on magnetic tape. Its actions are
controlled by the key argument. The key is a string of characters containing
one function letter (c, r, t, u, or x) and possibly followed by one or more
function modifiers (v, w, f, b, and #). Other arguments to the command are files
(or directory names) specifying which files are to be dumped or restored. In all
cases, appearance of a directory name refers to the files and (recursively)
subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r Replace. The named files are written on the end of the tape. The c
function implies this function. Blocked tapes cannot be appended.

x Extract. The named files are extracted from the tape. If a named file
matches a directory whose contents had been written onto the tape, this
directory is (recursively) extracted. Use the fde or directory's relative
path when appropriate, or tar will not find a match. The owner,
modification time, and mode are restored (if possible). If no files
argument is given, the entire content of the tape is extracted. Note that
if several files with the same name are on the tape, the last one
overwrites all earlier ones.

t Table. The names and other information for the specified files are
listed each time that they occur on the tape. The listing is similar to
the format produced by the ls(1) command; if the v option is used with
t, the listing produced is like that of the Is-1 command. If no files
argument is given, all the names on the tape are listed.

u Update. The named files are added to the tape if they are not already
there, or have been modified since last written on that tape. This key
implies the r key. Blocked tapes (including QIC tapes) cannot be
updated.

TAR(l) TAR(l)

c Create a new tape; writing begins at the beginning of the tape, instead
of after the last file. This key implies the r key.

The following characters can be used in addition to the letter that selects the
desired function; use them in the order shown in the synopsis.

#s This modifier determines the drive on which the tape is mounted
(replace # with the drive number) and the speed of the drive (replace s
with 1, m, or h for low, medium or high). The modifier tells tar to use
a drive other than the default drive, or the drive specified with the -f
option. For example, with the 5h modifier, tar would use
/dev/rmt/c0d5h instead of the default drive /dev/rmt/cOdO. The
default is 0. The density option is ignored on some tapes, such as QIC
tapes.

v Verbose. Normally, tar does its work silently. The v (verbose) option
causes it to type the name of each file it treats, preceded by the
function letter. With the t function, v gives more information about
the tape entries than just the name.

w What This causes tar to print the action to be taken, followed by the
name of the fde, and then wait for the user's confirmation. If a word
beginning with y is given, the action is performed. Any other input
means "no" . This is not valid with the t key.

f File. This causes tar to use the device argument as the name of the
archive instead of /dev/rmt/cOdO? or /dev/mt/cOdO? (where ? is
[lmh]). If the name of the file is -, tar writes to the standard output or
reads from the standard input, whichever is appropriate. Thus, tar can
be used as the head or tail of a pipeline, tar can also be used to move
hierarchies with the following command:

cd fromdir; tar cf - . | (cd todir; tar xf -)

b Blocking Factor. This causes tar to use the block argument as the
blocking factor for tape records (512 bytes). The default is 128 for
most tape drives; the maximum is 128. A warning message appears if
your device does not handle 64K bytes. This function should not be
supplied when operating on regular archives or block special devices.
It is mandatory however, when reading archives on raw magnetic tape
archives (see f above). The block size is determined automatically
when reading tapes created on block special devices (key letters x and
t)-

- 2 -

TAR(1) TAR(1)

1 Link. This tells tar to complain if it cannot resolve all of the links to
the files being dumped. If 1 is not specified, no error messages are
printed.

m Modify. This tells tar to not restore the modification times. The
modification time of the file will be the time of extraction.

o Ownership. This causes extracted fdes to take on the user and group
identifier of the user running the program, rather than those on tape.
This is only valid with the x key.

The following command can be used to archive onto a QIC tape:

cd dir; tar c

FILES
/dev/rmt/*
/dev/mt/*
/tmp/tar*

SEE ALSO
ar(l), cpio(l), ls(l), ipt(7), qic(7).

DIAGNOSTICS
Complains about bad key characters and tape read/write errors.

Complains if enough memory is not available to hold the link tables.

NOTES
CTIX does not currently support block tape devices. Specifying the block
device (for example, /dev/mt/cOdO) will cause tar to fail.

BUGS
There is no way to ask for the n-th occurrence of a file.

Tape errors are handled ungracefully.

The u option can be slow.

The b option should not be used with archives that are going to be updated. The
current magnetic tape driver cannot backspace raw magnetic tape. If the
archive is on a disk file, the b option should not be used at all, because updating
an archive stored on disk can destroy it.

TAR(1) TAR(1)

The current limit on file name length is 100 characters.

tar doesn't copy empty directories or special files.

The r option does not work with QIC tapes.

- 4 -

TDL(l) TDL(l)

NAME
tdl, gtdl, ptdl - RS-232 terminal download

SYNOPSIS
/usr/loca 1/bin/tdl [type]
/usr/local/bin/gtdl [runfde]
/usr/local/bin/ptdl [runfde]

DESCRIPTION
tdl, gtdl, and ptdl download a terminal system image over a an RS-232 line.
The program is run from the terminal that is to receive the system image, which
must be a Convergent Technologies terminal running in boot ROM emulation
mode.

Type is a number that specifies one of the standard terminal types. If type is
omitted, tdl sends an escape sequence to the terminal to discover its type. (If
the user has not used the boot ROM T command, the escape sequence produces
a " 1 0 1 " on a Programmable Terminal and a " 2 0 1 " on a Graphics Terminal.
These cause tdl to download /usr/lib/iv/wslO 1.232 or /usrAib/iv/ws201.232,
respectively.)

Runfde is the name of a download image fde.

ptdl and gtdl require a terminal with a Release 1.0 boot ROM. tdl requires a
terminal with a Release 2.0 boot ROM.

To use tdl, follow this procedure:

1. Turn the terminal on while holding down the space bar. Be sure to
keep the space bar down until the boot ROM prompt appears on the
screen.

2. Use the boot ROM commands to set whatever communication options
you need. Do not use the T (system image type) command unless you
need a nonstandard type.

3 Enter the boot ROM E (emulate serial terminal) command.

4. If necessary, establish a connection with the host system and log in as
tdl, ptdl, or gtdl.

5. Run tdl, ptdl, or gtdl with no parameters.

To allow users to download their terminals by logging in, for example, as tdl,
add the appropriate login entries to /etc/passwd:

tdl::50:1:Terminal Down Loadi/i/usr/local/bin/tdl
ptdl::S1:1:PT232 Download (1.0 boot ROM) :/:/usr/local/bin/ptdl
gtdl::52:1:GT232 Download (1.0 boot ROM) ^^usr/local/bln/gtdl

TDL(l) TDL(l)

The download area must be specified on the disk; see <v(l).

FILES
/usr/lib/iv/ws* .232

/usr/local/bin/ ws* .232

CTIX copies of the system images

checked if system image not in /usr/lib/iv

When acting on a type sent from the terminal, tdl downloads
/usr/liv/iv/wsxcc.232, where xxx is the three-digit terminal type. If that file is
missing, tdl looks for /usr/local/bin/wsxxx.232.

Programmable Terminal Programmer s Guide.
Graphics Terminal Programmer's Guide.

DIAGNOSTICS
The terminal displays dashs (-) to indicate successfully transmitted blocks,
questions marks (?) to indicate nonfatal tranmission errors. A fatal
transmission error produces an appropriate message from the terminal and a
return to the boot ROM emulate code; you may need to press the RETURN key
to get a shell prompt.

WARNINGS
tdl, tdtl, and ptdl do not verify that the download file is a valid terminal system
image.

The 2.0 GT boot ROM does not support downloading run images greater than
65,536 bytes. Attempting to download images greater than 65,536 bytes may
cause the terminal to fail.

SEE ALSO
iv(l).

TEE(l) TEE(l)

NAME
tee - pipe fitting

SYNOPSIS
tee [-i] [-a] [file] ...

DESCRIPTION
tee transcribes the standard input to the standard output and makes copies in the
files. There are two options:

-i ignores interrupts;

-a causes the output to be appended to the files rather than overwriting
them.

TELNET(l) (CTIX Internetworking) TELNET(l)

NAME
telnet - user interface to TELNET protocol

SYNOPSIS
/usr/local/bin/telnet [host]

DESCRIPTION
The telnet command establishes connections to other hosts using the TELNET
protocol. It is more general than rlogin(1) because TELNET servers run under a
wider variety of operating systems. However, rlogin is more convenient to use.

Establishing a Single Connection
If host is specified, telnet establishes a connection to that host; host can be a
host name or a DARPA Internet address in dot notation [see hosts(4)]. While the
connection remains open, telnet is in input mode (see below). When the
connection is closed, telnet terminates. Usually the remote system closes the
connection when you log out. To close the connection yourself, use the escape
character to enter the close command (see below).

Input Mode
The telnet command enters input mode when a connection is opened and exits it
when a connection is closed. In input mode all text typed goes to the remote
host except when the escape character is typed.

To enter a single telnet command without first closing the connection, press the
escape character at any time in input mode. Initially the escape character is
control-[(ASCn GS; octal 035); The telnet prompt (telnet>) appears, and telnet
executes a single command line instead of sending it to the remote host. After
you press Return and the command is executed, telnet resumes sending your
input to the remote host, unless your command closed the connection (close or
quit).

Use the escape command to change the escape character.

The input mode entered is either "character-at-a-time'' or "line-by-line,"
depending on what the remote system supports.

In character-at-a-time mode, most text typed is immediately sent to the remote
host for processing.

In line-by-line mode, all text is echoed locally, and (normally) only completed
lines are sent to the remote host The local echo character (initially E) can be
used to disable and enable the local echo.

In either mode, if the localchars toggle is TRUE (the default in line mode; see
below), the user's quit, intr, and flush characters are trapped locally, and sent as
TELNET protocol sequences to the remote side. Some options (see toggle

TELNET(l) (CTIX Internetworking) TELNET(l)

autoflush and toggle autosynch below) cause this action to flush subsequent
output to the terminal (until the remote host acknowledges the TELNET
sequence) and flush previous terminal input (in the case of quit and intr).

Command Mode
If host is not specified, telnet enters command mode. The telnet prompt
appears, and telnet understands the following commands (and truncated
command names, as long as they aren't ambiguous; for example, ope is valid,
but op is not):

? [command]

AO

AYT

BREAK

EC

EL

IP

SYNCH

crmod

close

Give command summaries. If command is specified, give just
that command summary.

Send the TELNET command AO (abort output) and an out-of-
band signal to the remote server with DM as the
synchronizing mark.

Send the TELNET command AYT (are you there?) and an
out-of-band signal to the remote server with DM as the
synchronizing mark.

Send the TELNET command BREAK to the remote server.

Send the TELNET command EC (erase character) to the
remote server.

Send the TELNET command EL (erase line) to the remote
server.

Send the TELNET command IP (interrupt process) and an
out-of-band signal to the remote server with DM as the
synchronizing mark.

Send an out-of-band signal to the remote server with DM as
the synchronizing mark.

Turn on/off carriage return mode. Initially carriage return
mode is off. When carriage return mode is on, carriage return
characters from the remote host are expanded to a carriage
return followed by a line feed.

Close the current connection. Useful only with the escape
character (see "Input Mode" above).

display [argument...]
Display all, or some, of the set and toggle values (see below).

do option Tell the remote server to process option. This command is
used largely for testing option negotiation.

TELNET(l) (CTDC Internetworking) TELNET(l)

help [command

mode type

dontoption Tell the remote server to stop processing option. This
command is used largely for testing option negotiation.

escape Change the escape character used in input mode (see below).
The telnet command prompts for a new escape character;
press a key that generates a single character, then press
Return. To leave the escape character unchanged, press
Return without entering a character.

I
Give summaries of commands. If command is specified, give
summary of just that command.

Type is either line (for line-by-line mode) or character (for
character-at-a-time mode). The remote host is asked for
permission to go into the requested mode. If the remote host
is capable of entering that mode, the requested mode is
entered.

open host Open a connection to host. While the connection remains
open, telnet is in input mode (see below). If you close the
connection with a telnet command from input mode, telnet
returns to command mode; if the connection is closed from
the other end, telnet terminates. Usually the remote system
closes the connection when you log out.

options Turn on/off viewing of TELNET options negotiations.
Initially viewing is off. When viewing is on, telnet shows its
negotiations with the telnetd.

quit Close any open connection and terminate telnet.

send arguments Sends one or more special character sequences to the remote
host The following arguments can be specified; more than
one argument can be specified at one time:

escape Sends the current telnet escape character (initially

synch Sends the TELNET SYNCH sequence. This
sequence causes the remote system to discard all
previously typed (but not yet read) input. This
sequence is sent as TCP urgent data (and may not
work if the remote system is a 4.2 BSD system — if it
doesn't work, a lower case r can be echoed on the
terminal).

- 3 -

TELNET(l) (CTIX Internetworking) TELNET(l)

brk Sends the TELNET BRK (break) sequence, which
can have significance to the remote system.

ip Sends the TELNET IP (Interrupt Process) sequence,
which should cause the remote system to abort the
currently running process.

ao Sends the TELNET AO (Abort Output) sequence,
which should cause the remote system to flush all
output from the remote system to the user's
terminal.

ayt Sends the TELNET AYT (Are You There) sequence,
to which the remote system may or may not choose
to respond.

ec Sends the TELNET EC (Erase Character) sequence,
which should cause the remote system to erase the
last character entered.

el Sends the TELNET EL (Erase Line) sequence, which
should cause the remote system to erase the line
currently being entered.

ga Sends the TELNET GA (Go Ahead) sequence, which
likely has no significance to the remote system.

nop Sends the TELNET NOP (No OPeration) sequence.

set argument value
Set any one of a number of telnet variables to a specific
value. The special value off disables the function associated
with the variable. The values of variables may be
interrogated with the display command. Valid values follow:

echo This is the value (initially ~E) which, when in line-
by-line mode, toggles between local echoing of
entered characters (for normal processing) and
suppressed echoing of entered characters (for
entering, say, a password).

escape This is the telnet escape character (initially "[),
which causes entry into telnet command mode
(when connected to a remote system).

interrupt
If telnet is in localchars mode (see toggle localchars
below) and the interrupt character is typed, a

-4 -

TELNET(l) (CTIX Internetworking) TELNET(l)

TELNET IP sequence (see send ip above) is sent to
the remote host The initial value for the interrupt
character is taken to be the terminal's intr character.

quit If telnet is in localchars mode (see toggle localchars
below) and the quit character is typed, a TELNET
BRK sequence (see send brk above) is sent to the
remote host The initial value for the quit character
is taken to be the terminal's quit character.

flushoutput
If telnet is in localchars mode (see toggle localchars
below) and the flushoutput character is typed, a
TELNET AO sequence (see send ao above) is sent to
the remote host The initial value for the flush
character is taken to be the terminal's flush
character.

erase If telnet is in localchars mode (see toggle localchars
below), and if telnet is operating in character-at-a-
time mode, when this character is typed, a TELNET
EC sequence (see send ec above) is sent to the
remote system. The initial value for the erase
character is taken to be the terminal's erase
character.

kill If telnet is in localchars mode (see toggle localchars
below), and if telnet is operating in character-at-a-
time mode, when this character is typed, a TELNET
EL sequence (see send el above) is sent to the
remote system. The initial value for the kill
character is taken to be the terminal's kill character.

eof If telnet is operating in line-by-line mode, entering
this character as the first character on a line sends
this character to the remote system. The initial value
of the EOF character is taken to be the terminal's
EOF character.

status Show the current connection and escape character.

toggle arguments ...
Toggle (between TRUE and FALSE) various flags that control
how telnet responds to events. More than one argument may

- 5 -

TELNET(l) (CTIX Internetworking) TELNET(l)

be specified. The state of these flags may be interrogated
with the display command. Valid arguments follow:

localchars
If this is TRUE, flush, interrupt, quit, erase, and
kill characters (see set above) are recognized locally,
and transformed into (hopefully) appropriate
TELNET control sequences (respectively ao,ip, brk,
ec, and el; see send above). The initial value for
this toggle is TRUE in line-by-line mode, and FALSE
in character-at-a-time mode.

autoflush
If autoflush and localchars are both TRUE, then
when the ao, intr, or quit characters are recognized
(and transformed into TELNET sequences; see set
above for details), telnet refuses to display any data
on the user's terminal until the remote system
acknowledges (via a TELNET Timing Mark option)
that it has processed those TELNET sequences. The
initial value for this toggle is TRUE if the terminal
user had not performed an stty noflsh; otherwise
FALSE [seestty(l)].

autosynch
If autosynch and localchars are both TRUE; and then
when either the intr or quit characters is typed (see
set above) the resulting TELNET sequence sent is
followed by the TELNET SYNCH sequence. This
procedure should cause the remote system to begin
throwing away all previously typed input until both
of the TELNET sequences have been read and acted
upon. The initial value of this toggle is FALSE.

crmod Toggle carriage return mode. When this mode is
enabled, most carriage return characters received
from the remote host is mapped into a carriage
return followed by a line feed. This mode docs not
affect those characters typed by the user, only those
received from the remote host. This mode is not
very useful unless the remote host only sends
carriage return, but never line feed. The initial value
for this toggle is FALSE.

- 6 -

TELNET(l) (CTIX Internetworking) TELNET(l)

debug Toggles socket level debugging (useful only to the
super user). The initial value for this toggle is
FALSE.

options Toggles the display of some internal telnet protocol
processing (having to do with TELNET options).
The initial value for this toggle is FALSE.

netdata Toggles the display of all network data (in
hexadecimal format). The initial value for this
toggle is FALSE.

? Displays the legal toggle commands.

will option Tell the remote server we will process option. This command
is used largely for testing option negotiation.

wont option Tell the remote server we won't process option. This
command is used largely for testing option negotiation.

z Suspend telnet. This command works only when the user is
using the CJ/Z(1).

escape character Send the escape character to the remote host.

Telnet Options
Once a connection is established, both sides negotiate various options to get the
best possible service. The following options are recognized:

BINARY Controls transmission of binary data.

ECHO Controls echoing.

SGA Suppress go ahead.

STATUS Status of options.

TM Timing Mark.

EXOPL Extended Options List.

SEE ALSO
rlogin(l), telnetd(lM).

BUGS
There is no adequate way for dealing with flow control.

On some remote systems, echo must be manually disabled in line-by-line mode.

TELNET(l) (CTIX Internetworking) TELNET(l)

There is enough settable state to justify a .telnetrc file.

No capability for a .telnetrc file is provided.

In line-by-line mode, the terminal's EOF character is recognized (and sent to the
remote system) only when it is the first character on a line.

TELNETD(IM) (CTIX Internetworking) TELNETD(IM)

NAME
telnetd - DARPA TELNET protocol server

SYNOPSIS
/etc/telnetd [-d] [port]

DESCRIPTION
The telnetd server supports the DARPA standard TELNET virtual terminal
protocol. The TELNET server operates at the port indicated in the " te lnet"
service description; see services (4). This port number can be overridden (for
debugging purposes) by specifying a port number on the command line. If the
-d option is specified, each socket created by telnetd has debugging enabled
[see SO_DEBUG in socket(2)].

The telnetd server operates by allocating a virtual-terminal device [see vf(7)]
for a client, then creating a login process which has the slave side of the
pseudoterminal as stdin, stdout, and stderr. telnetd manipulates the master side
of the pseudoterminal, implementing the TELNET protocol and passing
characters between the client and login process.

When a TELNET session is started up, telnetd sends a TELNET option to the
client side indicating a willingness to do "remote echo" of characters. The
pseudoterminal allocated to the client is configured to operate in "cooked"
mode and with XT ABS and CRMOD enabled [see ttyil)}. Aside from this initial
setup, the only mode changes telnetd carries out are those required for echoing
characters at the client side of the connection.

The following options are recognized:

BINARY Controls transmission of binary data.

ECHO Controls echoing.

SGA Suppress go ahead.

STATUS Status of options.

TM Timing Mark.

EXOPL Extended Options List.

The telnetd server is started by the "super-server" inetd, and therefore must
have an entry in inetd's configuration fde, /etc/inetd.conf [see inetd(IM) and
inetd. conf (4)].

SEE ALSO
inetd(lM), telnet(l), inetd.conf(4).

TEST(l) TEST(l)

NAME
test - condition evaluation command

SYNOPSIS
test expr

[expr]

DESCRIPTION
test evaluates the expression expr and, if its value is true, sets a zero (true) exit
status; otherwise, a non-zero (false) exit status is set; test also sets a non-zero
exit status if there are no arguments. When permissions are tested, the effective
user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the second
SYNOPSIS line) must be separate arguments to the test command; normally
these items are separated by spaces.

The following primitives are used to construct expr :

-r file true if file exists and is readable.

-w file true iifile exists and is writable.

-x file true if file exists and is executable.

-f file true if file exists and is a regular fde.

-d file true if file exists and is a directory.

-c file true if file exists and is a character special fde.

-b file true i f f i l e exists and is a block special fde.

-p file true if file exists and is a named pipe (fifo).

-u file true if file exists and its set-user-ID bit is set

-gfile true i f f i l e exists and its set-group-ID bit is set

-k file true if file exists and its sticky bit is set

-s file true if file exists and has a size greater than zero.

-t [fildes] true if the open fde whose fde descriptor number isfildes (1 by
default) is associated with a terminal device.

-z si true if the length of string si is zero.

-n si true if the length of the string si is non-zero.

si = s2 true if strings si and s2 are identical.

TEST(l) TEST(l)

si != s2 true if strings si and s2 are not identical.

si true if si is not the null string.

nl -eq n2 true if the integers nl and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, and -le may be used in place of
-eq.

These primaries may be combined with the following operators:

! unary negation operator,

-a binary and operator.

-o binary or operator (-a has higher precedence than -o).

(expr) parentheses for grouping. Notice also that parentheses are
meaningful to the shell and, therefore, must be quoted.

SEE ALSO
find(l), sh(l).

WARNING
If you test a fde you own (the -r,-w, or -x tests), but the permission tested does
not have the owner bit set, a non-zero (false) exit status will be returned even
though the file may have the group or other bit set for that permission. The
correct exit status will be set if you are super-user.

The = and != operators have a higher precedence than the -r through -n
operators, and - and != always expect arguments; therefore, = and != cannot be
used with the -r through -n operators.

If more than one argument follows the -r through -n operators, only the first
argument is examined; the others are ignored, unless a -a or a -o is the second
argument

TFTP(l) (CTIX Internetworking) TFTP(l)

NAME
tftp - user interface to the DARPA TFTP protocol

SYNOPSIS
tftp [host [port]]

DESCRIPTION
The tftp program is a user interface to the DARPA standard Trivial File Transfer
Protocol. The program allows a user to transfer fdes to and from a remote
network site.

The client host with which tftp is to communicate can be specified on the
command line, in which case tftp immediately attempts to establish a
connection to a TFTP server on that host Otherwise, tftp enters its command
interpreter and awaits instructions from the user. When tftp is awaiting
commands from the user, the following prompt appears:

tftp>

The following commands are recognized by tftp:

connect host-name [port]
Set the host (and optionally port) for transfers. Note that the TFTP
protocol, unlike the FTP protocol, does not maintain connections
betweeen transfers; thus, the connect command does not actually
create a connection, but merely remembers what host is to be used for
transfers. You need not use the connect command; the remote host can
be specified as part of the get or put commands.

mode transfer-mode
Set the mode for transfers; transfer-mode can be one of ascii or binary.
The default is ascii.

put fde

put localfde remotefile
put filel file2 ...fdeN remote-directory

Put a fde or set of files to the specified remote fde or directory.
Because tftpd allows only publicly readable and writable fdes to be
accessed, the remote fde must exist and be writable. The destination
can be in one of two forms: a filename on the remote host, if the host
has already been specified, or a string of the form host:fdename to
specify both a host and filename at the same time. If the latter form is
used, the hostname specified becomes the default for future transfers.
If the remote-directory form is used, the remote host is assumed to be a
UNIX or CTIX machine. The use of tftp does not require an account or

TFTP(l) (CTIX Internetworking) TFTP(l)

password on the remote system. Due to the lack of authentication
information, the tftpd server allows only publicly readable fdes to be
accessed.

get filename
get remotename localname
get filel file2 ...fileN

Get a fde or set of fdes from the specified sources. Source can be in
one of two forms: a filename on the remote host, if the host has
already been specified, or a string of the form host filename to specify
both a host and filename at the same time. If the latter form is used,
the last hostname specified becomes the default for future transfers.
The use of tftp does not require an account or password on the remote
system. Due to the lack of authentication information, the tftpd server
allows only publicly readable fdes to be accessed.

quit Exit tftp. An end of file also exits.

verbose Toggle verbose mode.

trace Toggle packet tracing.

status Show current status.

rexmt retransmission-timeout
Set the per-packet retransmission timeout, in seconds.

timeout total-transmission-timeout
Set the total transmission timeout, in seconds.

ascii Shorthand for "mode ascii"

binary Shorthand for "mode binary"

? [command-name ...]
Print help information.

FILES
/etc/hosts

SEE ALSO
tftpd(lM).

WARNINGS
Because there is no user-login or validation within the TFTP protocol, the
remote site usually has some sort of file-access restrictions in place. The exact
methods are specific to each site.

TFTPD(IM) (CTDC Internetworking) TFTPD(IM)

NAME
tftpd - DARPA Trivial File Transfer Protocol server

SYNOPSIS
/etc/tftpd [-d] [port]

DESCRIPTION
tftpd is a server that supports the DARPA Trivial File Transfer Protocol. The
TFTP server operates at the port indicated in the " t f t p " service description; see
services (4). This port number may be overridden (for debugging purposes) by
specifying a port number on the command line. If the -d option is specified,
each socket created by tftpd will have debugging enabled [see SO_DEBUG in
socket (2)1.

The use of tftp does not require an account or password on the remote system.
Due to the lack of authentication information, tftpd allows only publicly
readable and writable fdes to be accessed. Note that this extends the concept of
"public" to include all users on all hosts that can be reached through the
network; this may not be appropriate on all systems, and its implications should
be considered before enabling tftp service.

tftpd is spawned by the "super-server" inetd, and therefore must have an entry
in inetd's configuration fde, /etc/inetd.conf [see inetd(\M) and inetd.conf(4)].
Note that the tftpd entry in this file must be "wai t" : this is to avoid subsequent
selects from being successful before the first tftpd process does its receive,
tftpd takes care to prevent multiple tftpd processes from being spawned to
service the same request (inetd is able to continue processing new messages on
the port.)

SEE ALSO
inetd(lM), adman(l), tftp(l), inetd.conf(4), services(4).

WARNINGS
This server is known only to be self consistent [that is, it operates with the user
TFTP program, tftp(1)].
The search permissions of the directories leading to the fdes accessed are not
checked.

TIC(IM) T I C (I M)

NAME
tic - terminfo compiler

SYNOPSIS
tic [-v[n]] [-c] file

DESCRIPTION
The tic command translates a terrrunfo(A) fde from the source format into the
compiled format. The results are placed in the directory lusrlliblterminfo. The
compiled format is necessary for use with the library routines described in
curses(3X).

-vn (Verbose) output to standard error trace information showing tic's
progress. The optional integer n is a number from 1 to 10, inclusive,
indicating the desired level of detail of information. If n is omitted,
the default level is 1. If n is specified and greater than 1, the level of
detail is increased.

-c Check only file for errors. Errors in use= links are not detected.

fde Contains one or more terminfo{4) terminal descriptions in source
format [see terminfo(4)]. Each description in the fde describes the
capabilities of a particular terminal. When a use=entry-name field is
discovered in a terminal entry currendy being compded, tic reads in
the binary from lusrlliblterminfo to complete the entry. (Entries
created from file will be used first If the environment variable
TERMINFO is set that directory is searched instead of
lusrlliblterminfo.) tic duplicates the capabilities in entry-name for the
current entry, with the exception of those capabilities that explicitly
are defined in the current entry.

If the environment variable TERMINFO is set the compded results are placed
there instead of lusrlliblterminfo.

FILES
/usr/lib/terminfo/?/* compded terminal description data base

SEE ALSO
curses(3X), term(4), terminfo(4).
UNIX System VRelease 3.2 Programmer s Guide.

WARNINGS
Total compiled entries cannot exceed 4096 bytes. The name field cannot
exceed 128 bytes.

Terminal names exceeding 14 characters are truncated to 14 characters and a
warning message is printed.

T I C (I M) T I C (I M)

When the -c option is used, duplicate terminal names are not diagnosed;
however, when -c is not used, they are diagnosed.

BUGS
To allow executables from previous releases of CTIX to run with the compiled
terminfo entries created by the new terminfo compiler, canceled capabilities are
not marked as canceled within the terminfo binary unless the entry name has a
plus sign (+) within i t (Such terminal names are only used for inclusion within
other entries through the use of a use= entry; such names would not be used for
real terminal names.)

For example:

4415+nl, kf1@, kf2@

4415+ba»e,kf1=\EOc, kf2=\EOd,....

4415-nl|4415 terminal without keys,
use=4415+nl, use=4415+base,

The above example works as expected; the definitions for the keys do not show
up in the 4415-nl entry. However, if the entry 4415+nl did not have a plus sign
within its name, the cancelations would not be marked within the compiled file
and the definitions for the function keys would not be canceled within 4415-nl.

DIAGNOSTICS
Most diagnostic messages produced by tic during the compilation of the source
file are preceded with the approximate line number and the name of the
terminal currently being worked on.

mkdir ... returned bad status
The named directory could not be created.

File does not start with terminal names in column one
The first thing seen in the file, after comments, must be the list of
terminal names.

Token after a seek(2) not NAMES
Somehow the file being compiled changed during the compilation.

Not enough memory for usejist element
or
Out of memory

Not enough free memory was available (malloc (3) failed).

Can't open ...
The named file could not be created.

TIC(IM) T I C (I M)

Error in writing ...
The named fde could not be written to.

Can't link ... to ...
A link failed.

Error in re-reading compiled file ...
The compded file could not be read back in.

Premature EOF
The current en j y ended prematurely.

Backspaced off beginning of line
This error indicates something wrong happened within tic.

Unknown Capability - "..."
The named invalid capability was found within the fde.

Wrong type used for capability "..."
For example, a string capability was given a numeric value.

Unknown token type
Tokens must be followed by to cancel, ', ' for booleans, '# ' for
numbers, or '= ' for strings.

"...": bad term name
or
Line ...: Illegal terminal name - "..."
Terminal names must start with a letter or digit

The given name was invalid. Names must not contain white space or
slashes, and must begin with a letter or digit

"...": terminal name too long.
An extremely long terminal name was found.

"...": terminal name too short.
A one-letter name was found.

"..." fdename too long, truncating to "..."
The given name was truncated to 14 characters due to CTIX fde name
length limitations.

"..." defined in more than one entry. Entry being used
is "...". An entry was found more than once.

Terminal name "..." synonym for itself
A name was listed twice in the list of synonyms.

At least one synonym should begin with a letter.
At least one of the names of the terminal should begin with a letter.

n c (i M) T I C (I M)

Illegal character - "..."
The given invahd character was found in the input fde.

Newline in middle of terminal name
The trailing comma was probably left off of the list of names.

Missing comma
A comma was missing.

Missing numeric value
The number was missing after a numeric capability.

NULL string value
The proper way to say that a string capability does not exist is to
cancel i t

Very long string found. Missing comma?
Self-explanatory.

Unknown option. Usage is:
An invalid option was entered.

Too many file names. Usage is:
Self-explanatory.

"..." non-existant or permission denied
The given directory could not be written into.

"..." is not a directory
Self-explanatory.

"...": Permission denied
Access denied.

"...": Not a directory
tic wanted to use the given name as a directory, but it already exists as
a fde.

SYSTEM ERROR!! Fork failed!!!
A fork (2) failed.

Error in following up use-links. Either there is a loop
in the links or they reference non-existent terminals.
The following is a list of the entries involved:

A terminfo (4) entry with a use-name capability either referenced a
non-existant terminal called name or name somehow referred back to
the given entry.

TIME(l) TTME(1)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in
execution of the command. Times are reported in seconds.

The times are printed on standard error.

SEE ALSO
times(2).

TIMEX(l) TIMEX(l)

NAME
timex - time a command; report process data and system activity

SYNOPSIS
timex [options] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time
spent in execution are reported in seconds. Optionally, process accounting data
for the command and all its children can be listed or summarized, and total
system activity during the execution interval can be reported.

The output of timex is written on standard error.

Options are:

-p List process accounting records for command and all its children.
Suboptions f, h, k, m, r , and t modify the data items reported. The
options are as follows:

-f Print the fork/exec flag and system exit status columns in the
output.

-h Instead of mean memory size, show the fraction of total
available CPU time consumed by the process during its
execution. This "hog factor" is computed as:

(total CPU time)/(elapsed time).

-k Instead of memory size, show total kcore-minutes.

-m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user-time).

-t Show separate system and user CPU times. The number of
blocks read or written and the number of characters transferred
are always reported.

-o Report the total number of blocks read or written and total characters
transferred by command and all its children.

-s Report total system activity (not just that due to command) that
occurred during the execution interval of command. All the data items
listed in j a r (l) are reported.

SEE ALSO
acctcom(l), sar(l).

TIMEX(l) TIMEX (1)

WARNING
Process records associated with command are selected from the accounting file
/usr/adm/pacct by inference, since process genealogy is not available.
Background processes having the same user-ID, terminal-ID, and execution
time window will be spuriously included.

EXAMPLES
A simple example:

timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub-
shell:

timex -opskmt sh

sess ion commands

EOT

TTO(l) TTO(l)

NAME
tio - tape io filter

SYNOPSIS
tio -r tape_device [-b blocksize]
tio -w tape_device [-b blocksize]

DESCRIPTION
tio reads from or writes to a tape device asynchronously, which results in high
throughput tape streaming. If the -r option is used, tio reads from tape_device
and writes to standard output; if the -w option is used, tio reads from standard
input and writes to tape_device. The block size specified with tio -r must be
the same as the block size specified with tio -w when the tape is made.

When end-of-tape is reached, tio prompts the user to choose between
continuing (by inserting a new tape) or exiting. The user may select either the
same tape device or a new tape device by pressing Return when the drive is
ready.

The -b flag can be used to select a particular block size which can be specified
in the same format as in dd{ 1); for example, 512 (512 bytes), 64k (64*1024
bytes), 128b (128*512 bytes). The default is 65536 bytes.

Although tio has been optimized to support tape streaming, the user may get
only partial streaming, depending on the archiving software and tape drives
used. For example, cpio(1) is usually too slow for tio, especially when there are
a lot of small fdes. On the contrary, the Cipher 990 Caching tape drive is too
fast for tio to stream.

For the quarter-inch cartridge tape drive, the user can expect increase in
performance of about 100% using cpio(\) and tio. For the half-inch drives
(Cipher 880), the user can expect a 50% performance gain if cpio (I) is used and
about a 200% performance gain if dd{\) is used.

EXAMPLES

find . -print j cpio -oQc | tio -w /dev/rmtO

tio -r /dev/rmtO | cpio -ItcQ

dd If=/d«v/rdsk/c0d1 s1 b»=10k | tio -w /dev/rmt/c1d0h

FILES
/dev/rmt*, /dev/rmt/*

TPLOT(IG) (Category 2 Support) TPLOT(IG)

NAME
toe: dtoc, ttoc, vtoc - graphical table of contents routines

SYNOPSIS
dtoc [directory]

ttoc mm-fde

vtoc [-cdhnimsvn] [TTOC fde]

DESCRIPTION
The commands listed below reside in /usr/bin/graf [see graphics (1G)].

dtoc Dtoc makes a textual table of contents, TTOC, of all subdirectories
beginning at directory (directory defaults to .). The list has one
entry per directory. The entry fields from left to right are level
number, directory name, and the number of ordinary readable fdes
in the directory. Dtoc is useful in making a visual display of all or
parts of a file system. The following command makes a visual
display of all readable directories under /:

dtoc / | vtoc | td

ttoc Output is the table of contents generated by the .TC macro of mm(1)
translated to TTOC format The input is assumed to be an mm file
that uses the .H family of macros for section headers. If no file is
given, the standard input is assumed.

vtoc Vtoc produces a GPS describing a hierarchy chart from a TTOC.
The output drawing consists of boxes containing text connected in
a tree structure. If no file is given, the standard input is assumed.
Each TTOC entry describes one box and has the followingform:

id [line-weight,line-style] "text" [mark]

where:

id Is an alternating sequence of numbers and dots. The
id specifies the position of the entry in the
hierarchy. The id 0. is the root of the tree.

line-weight Is one of the following:

n normal-weight

m medium-weight

b bold-weight

TPLOT(IG) (Category 2 Support) TPLOT(IG)

line-style Is one of the following:

so solid-line

do dotted-line

dd dot-dash line

da dashed-line

Id long-dashed line

text Is a character string surrounded by quotation marks.
The characters between the quotation marks become
the contents of the box. To include a quotation mark
within a box, escape it (V) .

mark Is a character string (surrounded by quotation marks
if it contains spaces), with included dots being
escaped. The string is put above the top right corner
of the box. To include either a quotation mark or a
dot within a mark, escape i t

Entry example: 1.1 b,da "ABC" DEF

Entries can span more than one line by escaping the
newline (\newline).

Comments are surrounded by the /*,*/ pair;
comments can appear anywhere in a TTOC.

Options to vtoc follow:

c Use text as entered (default is all upper case).

d Connect the boxes with diagonal lines.

hn Horizontal interbox space is n % of box width.

i Suppress the box id.

m Suppress the box mark.

s Do not compact boxes horizontally.

vn Vertical interbox space is n% of box height.

SEE ALSO
graphics(lG), gps(4), mm(5).
Programmer's Guide: CTIX Supplement.

TOUCH(1) TOUCH(l)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-amc] [mmddhhmmfyy]] fdes

DESCRIPTION
The touch command causes the access and modification times of each argument
to be updated. The file name is created if it does not exist. If no time is
specified [see date(1)] the current time is used. The -a and -m options cause
touch to update only the access or modification times respectively (default is
-am). The -c option silendy prevents touch from creating the fde if it did not
previously exist.

The return code from touch is the number of files for which the times could not
be successfully modified (including fdes that did not exist and were not
created).

SEE ALSO
date(l), utime(2).

TPLOT(IG) (Category 2 Support) TPLOT(IG)

NAME
tplot - graphics filters

SYNOPSIS
tplot [-Tterminal [-e raster]]

DESCRIPTION
These commands read plotting instructions [see plot (4)] from the standard input
and in general produce, on the standard output, plotting instructions suitable for
a particular terminal. If no terminal is specified, the environment parameter
$TERM [see environ (5)] is used. Known terminals follow:

300 DASI 300.

300S DASI 300s.

450 DASI 450.

4014 Tektronix 4014.

gt Convergent Graphics Terminal.

ver Versatec D1200A. This version of plot places a scan-converted image
in /usr/tmp/raster$$ and sends the result direcdy to the plotter device,
rather than to the standard output The -e option causes a previously
scan-converted file raster to be sent to the plotter.

FILES
/usr/lib/t300
/usr/lib/t300s
/usr/lib/t450
/usr/lib/t4014
/usr/lib/tgt
/usr/lib/vplot
/usr/tmp/raster$$

SEE ALSO
plot(3X), plot(4), term(5).

TPUT(l) TPUT(l)

NAME
tput - initialize a terminal or query terminfo database

SYNOPSIS
tput [-T type] capname [parms . . .]

tput [-T type] init

tput [-T type] reset

tput [-T type] longname

tput -S < < fde

DESCRIPTION
The tput command uses the terminfo(A) database to make the values of
terminal-dependent capabilities and information avadable to the shell [see
JA(1)], to initialize or reset the terminal, or return the long name of the
requested terminal type. If the attribute (capability name) is of type string, tput
outputs a string; if the attribute is of type integer, tput outputs an integer; if the
attribute is of type boolean, tput sets the exit code (0 for TRUE if the terminal
has the capability, 1 for FALSE if it does not), and produces no output Before
using a value returned on standard output the user should test the exit code [$?,
see sft(l)] to be sure it is 0. (See EXIT CODES and DIAGNOSTICS below.) For
a complete list of capabilities and the capname associated with each, see
terminfo(A).

-Ttype indicates the type of terminal. Normally this option is
unnecessary, because the default is taken from the environment
variable TERM. If -T is specified, then the shell variables LINES
and COLUMNS and the layer size [see layer s(\)] will not be
referenced.

capname indicates the attribute from the terminfo (4) database.

parms If the attribute is a string that takes parameters, the arguments
parms will be instantiated into the string. An all numeric
argument will be passed to the attribute as a number.

-S Allow more than one capability per invocation of tput. The
capabilities must be passed to tput from a file or from the standard
input instead of from the command line. Only one capname is
allowed per line. The -S option changes the meaning of the 0 and
1 boolean and string exit codes (see EXIT CODES below).

init If the terminfo(A) database is present and an entry for the user's
terminal exists (see -Ttype, above), the following occurs: (1) if

TPUT(l) TPUT(l)

present, the terminal's initialization strings will be output (isl, is2,
is3, if, iprog), (2) any delays (for example, newline) specified in
the entry will be set in the tty driver, (3) tabs expansion will be
turned on or off according to the specification in the entry, and (4)
if tabs are not expanded, standard tabs will be set (every 8
spaces). If an entry does not contain the information needed for
any of the four above activities, that activity will silendy be
skipped.

reset Instead of putting out initialization strings, the terminal's reset
strings will be output if present (rsl, rs2, rs3, rf). If the reset
strings are not present, but initialization strings are, the
initialization strings will be output Otherwise, reset acts
identically to init.

longname If the terminfo (A) database is present and an entry for the user's
terminal exists (see -Itype above), then the long name of the
terminal will be put out The long name is the last name in the
first line of the terminal's description in the terminfo (4) database
[see term(5)].

EXAMPLES
The following command initializes the terminal according to the type of
terminal in the environmental variable TERM:

tput init

This command should be included in every user's .profile after the
environmental variable TERM has been exported, as illustrated on the profile^4)
manual page.

The following command resets an AT&T 5620 terminal, overriding the type of
terminal in the environmental variable TERM:

tput -T5620 reset

The following command sends the sequence to move the cursor to row 0,
column 0 (the upper-left corner of the screen, usually known as the home cursor
position):

tput cup 0 0

The following command echoes the clear-screen sequence for the current
terminal:

tput clear

1) TPUT(l)

The following command prints the number of columns for the current terminal:

tput cols

The following command prints the number of columns for the 450 terminal:

tput -T450 cols

The following command sequence sets the shell variables bold, to begin stand-
out mode sequence, and ofTbold, to end standout mode sequence, for the current
terminal:

bold='tput smso'
offbold='tput rmso"' This might be followed by a prompt:

echo "${bold}Please type your name: ${offbokJ}\cT

The following command sets an exit code to indicate if the current terminal is a
hardcopy terminal:

tput he

The following command sends the sequence to move the cursor to row 23,
column 4:

tput cup 23 4

The following command prints the long name from the terminfo (4) database for
the type of terminal specified in the environmental variable TERM:

tput longname

The following command accepts several tput instructions from standard input in
one invocation: it clears the screen, moves the cursor to position 10, 10, and
enables bold mode. The > character prompts for tput commands until the list is
terminated by an exclamation point (!), on a line by itself.

tput -S « !
> clear
> cup 10 10
>bold
> !

The following command performs tput instructions from the file named teeput:

tput -S cteeput

The commands in the teeput fde shown below, clear the screen, move the
cursor to position 10,10, and enable bold mode.

TPUT(l) TPUT(l)

clear

compiled terminal description database

curses(3X) header fde

terminfo(4) header fde

tab settings for some terminals, in a format
appropriate to be output to the terminal (escape
sequences that set margins and tabs); for more
information, see the Tabs and Initialization
section of terminfo (4)

SEE ALSO
stty (1), tabs (1), profile(4), terminfo(4).
UNIX System VRelease 3.2 Programmer's Guide.

EXIT CODES
a value of 0 is set for TRUE and 1 for FALSE, unless the -S option is used.

If capname is of type string, a value of 0 is set if the capname is defined for this
terminal type (the value of capname is returned on standard output); a value of
1 is set if capname is not defined for this terminal type (a null value is returned
on standard output).

If capname is of type boolean or and the -S option is used, a value of 0 is
returned to indicate that all lines were successful. No indication of which lines
failed can be given, so exit code 1 never appears. Exit codes 2, 3, and 4 retain
their usual interpretatios.

If capname is of type integer, a value of 0 is always set, whether or not
capname is defined for this terminal type. To determine if capname is defined
for this terminal type, the user must test the value of standard output. A value
o f - 1 means that capname is not defined for this terminal type.

Any other exit code indicates an error; see DIAGNOSTICS, below.

DIAGNOSTICS
tput prints the following error messages and sets the corresponding exit codes.

Exit Code Error Message

0 -1 (capname is a numeric variable that is not specified in the
terminfo(4) database for this terminal type, for example, tput
-T450 lines and tput -T2621 xmc)

cup 1010
bold

FILES
/usr/lib/terminfo/? /*

/usr/include/curses.h

/usrAncl ude/term .h

/usr/lib/tabset/*

TPUT(l) TPUT(l)

1 no error message is printed, see EXIT CODES, above.

2 usage error

3 unknown terminal type or no terminfo{4) database 4 unknown
terminfo(4) capability capname

- 5 -

TR(1) TR(1)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [string 1 [string2]]

DESCRIPTION
tr copies the standard input to the standard output with substitution or deletion
of selected characters. Input characters found in stringl are mapped into the
corresponding characters of string2. Any combination of the options -cds may
be used:

-c Complements the set of characters in stringl with respect to the
universe of characters whose ASCII codes are 001 through 377 octal.

-d Deletes all input characters in stringl.

-s Squeezes all strings of repeated output characters that are in string2
to single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from
character a to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is considered
octal; otherwise, n is taken to be decimal. A zero or missing n is
taken to be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special meaning
from any character in a string. In addition, \ followed by 1,2, or 3 octal digits
stands for the character whose ASCII code is given by those digits.

EXAMPLE
The following example creates a list of all the words in filel one per line in
file2, where a word is taken to be a maximal string of alphabetics. The strings
are quoted to protect the special characters from interpretation by the shell; 012
is the ASCH code for newline.

tr -c» "[A-Z][a-z]" "[\012«]" <file1 >file2

SEE ALSO
ed(l), sh(l), ascii(5).

BUGS
Will not handle ASCH NUL in stringl or string2; always deletes NUL from
input.

TROFF(l) TROFF(l)

NAME
troff - typeset text

SYNOPSIS
troff [options] [files]

DESCRIPTION
The troff program formats text contained in files (standard input by default) for
a Wang Laboratories, Inc., C /A/T phototypesetter.

If no input fde is given, or if the argument - is found, troff reads from the
standard input fde. The options, which can appear in any order, but must
appear before the files, follow:

-olist Print only pages whose page numbers appear in the list of numbers
and ranges, separated by commas. A range N-M means pages N
through M; an initial -N means from the beginning to page N; and a
final N- means from N to the end. (See BUGS below.)

-nN Number first generated page N.

-sN Stop every N pages, troff stops the phototypesetter every N pages,
produce a trailer to allow changing cassettes, and resume when the
typesetter's start button is pressed.

-raN Set register a (which must have a one-character name) to N.

-i Read standard input after files are exhausted.

-q Invoke the simultaneous input-output mode of the .rd request.

-z Print only messages generated by .tm (terminal message) requests.

-mname Prepend to the input files the non-compacted (ASCII text) macro file
/usr/lib/tmac Itmac.name.

-cname Prepend to the input files the compacted macro files
/usr/lib/macros/cmp.[nt].[dt]^iame and
/usr/lib/macros/ucmp.[nt] jiame.

-kname Compact the macros used in this invocation of troff, placing the
output in files [di\ jiame in the current directory.

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the
end of the run.

-w Wait until phototypesetter is available, if it is currently busy.

TROFF(l) TROFF(l)

Report whether the phototypesetter is busy or available. No text
processing is done.

Send a printable ASCII approximation of the results to the standard
output

Print all characters in point size N while retaining all prescribed
spacings and motions, to reduce phototypesetter elapsed time.

Prepare output for the Murray Hill Computation Center
phototypesetter and direct it to the standard output (this option is not
usable on most systems). This option is not compatible with the -s
option; furthermore, when this option is invoked, all .fp (font
position) requests (if any) in the troff input must come before the first
break, and no .tl requests may come before the first break.

-Tname Use font-width tables for device name (the font tables are found in
/usr/lib/font/name/*). Currendy, no names are supported.

FILES
/usr/lib/suftab
/tmp/ta$#
/usr/lib/tmac/tmac. *
/usr/lib/macros/*
/usr/lib/font/*

SEE ALSO
cw(l), eqn(l), mmt(l), nroff(l), tbl(l), tc(l), mm(5), mv(5).
Programmer s Guide: CTIX Supplement.

BUGS
troff believes in Eastern Standard Time; as a result, depending on the time of
the year and on your local time zone, the date that troff generates may be off by
one day from your idea of what the date is.
When troff is used with the -olist option inside a pipeline [for example, with
one or more of cw(l), eqn(\), and tbl{ 1)], it may cause a harmless "broken
pipe" diagnostic if the last page of the document is not specified in list.

-b

-a

-pJV

•g

suffix hyphenation tables
temporary fde
standard macro files and pointers
standard macro files
font width tables for troff

TRUE(l) TRUE(l)

NAME
true, false - provide truth values

S Y N O P S I S

true

false

DESCRIPTION
true does nothing, successfully. False does nothing, unsuccessfully. They are
typically used in input to sh(1) such as:

while true
do

command
done

SEE ALSO
sh(l).

DIAGNOSTICS
true has exit status zero; false nonzero.

U N G E T (l) U N G E T (l)

NAME
tset - set terminal, terminal interface, and terminal environment

SYNOPSIS

tset [options] [-m [pseudotype][test speed]:type ...] [type]

DESCRIPTION
tset initializes your terminal. Its primary use is in login scripts [see profile (4)]
to set terminal options, terminal interface options, and environment variables.
Its secondary use is to restore the terminal interface and terminal after an editor
or other video program has crashed.
To restore the terminal interface and terminal, just type " tse t" . It may be
necessary to end the command with Control-J or the NEXT key instead of the
RETURN key.

To set up login initialization, construct a command with the options and
arguments you need and place it in your login script.

An argument indicates a terminal type to use in place of the TERM environment
variable. If the argument begins with a question mark, tset prompts you for a
terminal type; if you enter a blank line, you get the type specified by the
argument. Terminal type arguments (in conjunction with the - or -s options) are
useful at installations where none of the terminals are permanently connected to
the host.

tset accepts the following options.

Print the terminal type. This is useful for setting the TERM
environment variable in the .profile file:

export TERM

TERM=" tset - '?adm3a"

-S Print commands that will set the TERM and TERMCAP environment
variables. The value for TERMCAP contains a description of the
terminal; this makes it unnecessary for programs to read the terminal
capability file each time they start up. For example:

eva l*tse t - s '?adm3a"

tset uses the SHELL environment variable to decide the kind of
commands to print.

-S Prints values for TERM and TERMCAP. Useful only in .login; if you
use the values to set a shell variable, you get a two-element array.

U N G E T (l) U N G E T (l)

-ec Set the erase character to c. Indicate a control character with a *. If c
is missing, tset uses the value of your backspace key; this is usually
control-H. You also get control-H if your terminal lacks a backspace
key.

-kc Set the kill character to c. Indicate a control character with a *. If c is
missing tset uses control-X.

-I Don't initialize the terminal.

-Q Don't remind user of erase and kill values.

-mpseudotype test speed: type
Use one or more -m options in place of a type argument when you
want tset to figure out your terminal type for you. Pseudotype should
be a type that your installation has reserved for a class of " s o f t "
connections, such as dialup, arpanet, or plugboard. A missing
pseudotype means "any type.". Test and speed indicate a class of
baud rates. Test is = or @ for "equals"; < for "less than"; > for
"greater than"; or !=, !@, !<, or !> for negations. A missing speed
indication means "all speeds." Type is the type to assume if the
pseudotype and terminal speeds match. Type can begin with a
question mark to indicate a user query. Thus,

t s e t - - m ' d i a l up@300 : t r s 80 ' -m 'd ialup:tO '

prints trs80 if TERM is dialup and the baud rate is 300; tO if TERM is
dialup and the baud rate isn't 300; and the value of TERM otherwise.

The login scripts /etc/profile and /etc/cprofile check for the presence of a file
named /etc/rcopts/TSETX : if the file is found, these scripts set the TERM
environment variable as follows:

tset - ' ? d u m b '

This causes users to be queried about their terminal types when they log in.

FILES
/etc/ttytype type wired to each port
/etc/termcap terminal capability database

SEE ALSO
sh(l), stty(l), cprofile(4), profile(4), ttytype(4), termcap(4), environ(5).
SISeries CTIX Administrator's Guide.

U N G E T (l) U N G E T (l)

DIAGNOSTICS
Nonzero return status if it could not process all options and user input. This is
useful to confirm that user entered known terminal type: see profile (4) for an
example.

TSIOCTL(l) TSIOCTL(l)

N A M E

tsioctl - facilitate usage of a tape drive

SYNOPSIS

/usr/local/b in/tsioctl [-s] [-c cmd] device [arg]

DESCRIPTION
The tsioctl command facilitates the use of a tape drive by allowing commands
to be issued to a tape controller or by obtaining diagnostic information from a
tape controller.
Device is one of the following:

/dev/rmt/cOdOc QIC tape on an S/Series computer other than an S/640.

/dev/rmt/cOd/zc SCSI tape on an S/640, where n is the drive number (0
through 7).

/dev/rmt/c ldnc Half-inch tape, where n is the drive number (0 through 7).

The following options are recognized by tsioctl:

-s Read the status from the tape controller, similar to the read tape status
option in the Diagnostic.

-c cmd Issue a command to the tape drive, where cmd is one of the following:

erase
rewind
retension
skip

Not all commands are supported by all tape drive controllers. In
particular, Interphase half-inch tape does not currendy support
retension or erase.

arg Skip arg number of tape fde marks if -c skip is specified. (Arg defaults
to one.)

FILES
/dev/rmt/cOdOc QIC
/dev/rmt/cOd?c SCSI QIC on an S/640
/dev/rmt/cld?c VME half-inch tape
/dev/rmt/cld?c half-inch tape
/dev/rmt/c?d?c QIC and half-inch

TSIOCTL(l) TSIOCTL(l)

EXAMPLES
The first command below rewinds the tape; the second command skips the first
five files on the QIC:

tsloctl -c rewind /dev/rmt/cOdOc
Uioctl -c skip /dev/rmt/cOdOc 5

The first command below rewinds the tape; the second command skips the first
five fdes on a VME half-inch tape, drive 0:

tsloctl -c rewind /dev/rmt/c1dOc
tsloctl -c skip /dev/rmt/c1d0c 5

SEE ALSO
qic(7), ipt(7).
S/Series CTIX Administrator's Guide.

TSORT(l) TSORT(l)

N A M E
tsort - topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
The tsort command produces on the standard output a totally ordered list of
items consistent with a partial ordering of items mentioned in the input file. If
no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different items indicate ordering. Pairs of identical items indicate
presence, but not ordering.

SEE ALSO
lorder(l).

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.

TTY(l) TTY(l)

NAME
tty - get the name of the terminal

SYNOPSIS
tty [-1] [-s]

DESCRIPTION
The tty command prints the path name of the user's terminal. The following
options are available:

-I Print the synchronous line number to which the user's terminal is
connected, if it is on an active synchronous line.

-s Inhibit printing of the terminal path name, allowing one to test just the
exit code.

The tty command returns one of the following exit codes:

2 Invalid options were specified,

0 Standard input is a terminal,

1 Otherwise.

DIAGNOSTICS
not on an active synchronous line

if the standard input is not a synchronous terminal and -1 is specified.

not a tty if the standard input is not a terminal and -s is not specified.

UADMIN(IM) UADMIN(IM)

NAME
uadmin - administrative control

SYNOPSIS
/etc/uadmin cmd fen

DESCRIPTION
The uadmin command provides control for basic administrative functions. This
command is tighdy coupled to the System Administration procedures and is not
intended for general use. It may be invoked only by the super-user.

The arguments cmd (command) and fen (function) are converted to integers and
passed to the uadmin system call.

SEE ALSO
uadmin(2).

UCONF(IM) UCONF (1M)

NAME
uconf - configure the operating system

SYNOPSIS

uconf [-v I -V] [-n namelist] [-m master] [parameter [parameter . . .]]

uconf -w [-n namelist]

uconf parameter=value [parameter=value . . .]

DESCRIPTION
The uconf program is used to display tunable parameter values, reconfigure the
operating system, or change tunable parameter values in memory of a running
CTIX operating system. The uconf program examines three files:

• A system namelist file (by default, the currently running
operating system, /unix)

• A master device file (by default, /etc/master)

• The system file (/etc/system)

Defaults for the first two files can be overridden by using the -n namelist and
-m master options.

The first form of the command prints a summary of current parameter values. A
null output indicates that there are no discrepancies in parameter values
between the namelist, master, and system files. The -v option specifies
verbose output, which displays values of all configurable parameters, truncating
the parameter name to ten characters; -V specifies verbose output, with full
parameter names. The verbose output contains information under the following
headings:

MNAME Parameter name as it appears in the default master file (or the
file specified with the -m option).

SNAME Parameter name as it appears in the /etc/system file.

STRUCT Structure containing the item.

MASTER Value specified in the master file.

SYSTEM Value specifed in /etc/system.

UNIX Value in namelist fde (for example, /unix).

KMEM Value in the running system.

NEW VALUE Value that would result if uconf were invoked with the -w
option.

UCONF(IM) UCONF (1M)

Note that if the value for KMEM is suffixed with a plus sign (+), a memory
write is allowed for that parameter (see the description of the third form of the
command, below.

Use the parameter argument with the first form to display current information
for the specified parameter(s) only. (The display is like that produced by the -v
option, except that only values for the specified parameters appear.) The
parameter argument corresponds to the SNAME field in the display.

The second form of the command updates the namelist file with all values
contained in the /etc/system file. Note that each time you edit the /etc/system
file, you must run uconf -w to update the operating system image /unix. The
system must be rebooted for the change to take effect after running uconf -w.

The third form of the command changes the value in memory for each
parameter lvalue pair specified. Note that this form is valid only for parameters
for which a memory write is allowed [as designated by a plus sign (+) suffixing
the KMEM value in the uconf display],

ERRORS
Any of the following conditions produces a fatal error:

Cannot open the namelist file.

Cannot open the master or system files.

Cannot read COFF information or bad COFF information in
the namelist file.

Cannot allocate memory.

nlist(3C) failed.

Cannot locate parameter in namelist file.

Cannot locate parameters section of the master file,

read (2) or write (2) errors.

A warning is issued if the system file cannot be parsed correctly.

FILES
/etc/master
/etc/system
/unix
/dev/kmem

NOTES
To hard-code a loadable driver into the kernel (rather than have it load
dynamically), you must remake the kernel.

UCONF(IM) UCONF (1M)

SEE ALSO
config(lM).
S/Series CTIX Administrator's Guide.

UL(1) UL(1)

NAME
ul - do underlining

SYNOPSIS
ul [-i] [-t terminal] [name . . .]

DESCRIPTION
ul reads the named fdes (or standard input if none are given) and translates
occurrences of underscores to the appropriate underlining sequence for the
terminal in use, as specified by the environment variable TERM. The -t option
overrides the terminal type specified in the environment. The /etc/termcap fde
is read to determine the appropriate sequences for underlining. If the terminal
is incapable of underlining but is capable of a standout mode, standout mode is
used instead. If the terminal can overstrike or handles underlining
automatically, ul reverts to cat (I). If the terminal cannot underline, underlining
is ignored.

The -i option causes ul to indicate underlining by a string of hyphens on the
following line. This is useful for looking at the underlining in an nroff output
stream on a terminal.

SEE ALSO
man(l), nroff(l).

BUGS
nroff usually outputs a series of backspaces and underlines intermixed with the
text to indicate underlining. No attempt is made to optimize the backward
motion.

UMASK(l) UMASK(l)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [o o o]

DESCRIPTION
The user file-creation mode mask is set to ooo, where ooo represents three
octal digits. The three octal digits refer to read/write/execute permissions for
owner, group, and others, respectively [see chmod{2) and umask(2)]. The
value of each specified digit is subtracted from the corresponding "dig i t"
specified by the system for the creation of a fde [see creat(2)]. For example,
umask 022 removes group and others write permission (fdes normally created
with mode 777 become mode 755; fdes created with mode 666 become mode
644).

If ooo is omitted, the current value of the mask is printed.

umask is recognized and executed by the shell.

The CTIX distribution /etc/profile file sets the umask to 022. umask can also be
included in the user's .profde [see profile{4)].

SEE ALSO
chmod(l), sh(l), chmod(2), creat(2), umask(2), cprofile(4), profile(4).

UNADV(IM) (RFS Utilitiei) UNADV(IM)

NAME
unadv - unadvertise a Remote File Sharing resource

SYNOPSIS
unadv resource

DESCRIPTION
The unadv command unadvertises a Remote File Sharing (RFS) resource, which
is the advertised symbolic name of a local directory, by removing it from the
advertised information on the domain name server, unadv prevents subsequent
remote mounts of that resource. It does not affect continued access through
existing remote or local mounts.

An administrator at a server can unadvertise only those resources that
physically reside on the local machine. A domain administrator can
unadvertise any resource in the domain from the primary name server by
specifying resource name as domain.resource. (A domain administrator should
unadvertise another hosts resources only to clean up the domain advertise table
when that host goes down. Unadvertising another host's resource changes the
domain advertise table, but not the host advertise table.)

This command is restricted to the super-user.

ERRORS
If resource is not found in the advertised information, an error message is sent
to standard error.

SEE ALSO
adv(lM), fumount(lM), nsquery(lM).

UNAME(l) UNAME(l)

NAME
uname - print name of current CTIX system

SYNOPSIS
uname [-snrvma]
uname [-S system name]

DESCRIPTION
uname prints the current system name of the CTIX system on the standard
output file. It is mainly useful to determine which system one is using. The
options cause selected information returned by uname (2) to be printed:

-s print the system name (default).

-n print the nodename (the nodename is the name by which the system is
known to a communications network).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

-S system name
set the system name.

The CTIX distribution files /etc/profile and /etc/cprofile do a uname as part of
the login procedure.

SEE ALSO
uname(2), cprofde(4), profile(4).

UNGET(l) UNGET(l)

NAME
unget - undo a previous get of an SCCS fde

SYNOPSIS
unget [-rSID] [-s] [-n] fdes

DESCRIPTION
The unget command undoes the effect of a get -e done prior to creating the
intended new delta. If a directory is named, unget behaves as though each fde
in the directory were specified as a named fde, except that non-SCCS fdes and
unreadable files are silendy ignored. If a name of - is given, the standard input
is read with each line being taken as the name of an SCCS fde to be processed.

Keyletter arguments apply independenUy to each named fde.

-rSID Uniquely identifies which delta is no longer intended. (This would
have been specified by get as the "new delta"). The use of this
keyletter is necessary only if two or more outstanding gets for editing
on the same SCCS file were done by the same person (login name). A
diagnostic results if the specified SID is ambiguous, or if it is necessary
and omitted on the command line.

-s Suppresses the printout, on the standard output, of the intended delta's
SID.

-n Causes the retention of the gotten fde which would normally be
removed from the current directory.

SEE ALSO
delta(l), get(l), help(l), sact(l).

DIAGNOSTICS
Use help(1) for explanations.

UNIQ(l) UNIQ(l)

NAME
uniq - report repeated lines in a fde

SYNOPSIS

uniq [-udc [+n] [-n]] [input [output]]

DESCRIPTION
uniq reads the input fde comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed; the remainder is
written on the output fde. Input and output should always be different. Note
that repeated lines must be adjacent in order to be found; see sort(1). If the -u
flag is used, just the lines that are not repeated in the original file are output
The -d option specifies that one copy of just the repeated lines is to be written.
The normal mode output is the union of the -u and -d mode outputs.
The -c option supersedes -u and -d and generates an output report in default
style but with each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the
comparison:

-n The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated
by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before
characters.

SEE ALSO
comm(l), sort(l).

UNTTS(l) UNTTS(l)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION
units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch
You want: cm

* 2.540000e+00
/ 3.937008e-01

A quantity is specified as a multiplicative combination of units optionally
preceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign:

You have: 15 lbs force/in2
You want: atm

* 1.020689e+00
/ 9.797299e-01

units only does multiplicative scale changes; thus it can convert Kelvin to
Rankine, but not Celsius to Fahrenheit. Most famdiar units, abbreviations, and
metric prefixes are recognized, together with a generous leavening of exotica
and a few constants of nature including:

pi ratio of circumference to diameter,
c speed of light,
e charge on an electron,
g acceleration of gravity,
force same as g,
mole Avogadro's number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run
together, (for example, lightyear). British units that differ from their U.S.
counterparts are prefixed thus: brgallon. For a complete list of units, type:

cat /usr/lih/unittab

FILES
/usr/lib/unittab

UPDATE(IM) UPDATE(IM)

NAME
update - provide disk synchronization

SYNOPSIS
update [s]

DESCRIPTION
update implements regular synchronization. It executes an infinite loop with
two actions:

• A sleep for 5 seconds (30 seconds default).

• A sync system call. This feature calls for less overhead than the
practice of having the cron command run sync.

Run it only once, in background. The CTIX initialization procedure starts
update automatically. The initialization routine in /etc/init.d/sysetup looks for
the presence of a fde named /etc/rcopts/UPDRATE: if the fde exists, the
initialization routine sets the frequency between syncs to the number of seconds
specified in UPDRATE. Otherwise, update is started with the default
frequency (30 seconds).

FILES
/dev/dsk/*

/etc/init.d/sysetup

disk interfaces

initialization routine that includes update command;
linked to /etc/rc?.d/S20sysetup

SEE ALSO
rc2(lM), iocd(2), sleep(3), disk(7).

USAGE(l) (Category 2 Support) USAGE(l)

NAME
usage - retrieve a command description and usage examples

SYNOPSIS

[help] usage [-d] [-e] [-o] [command_name]

DESCRIPTION
The CTIX system Help Facility command usage retrieves information about
CTIX system commands. With no argument, usage displays a menu screen
prompting the user for the name of a command, or allows the user to retrieve a
list of commands supported by usage. The user may also exit to the shell by
typing q (for "qui t") .
After a command is selected, the user is asked to choose among a description of
the command, examples of typical usage of the command, or descriptions of the
command's options. Then, based on the user's request, the appropriate
information will be printed.
A command name may also be entered at shell level as an argument to usage.
To receive information on the command's description, examples, or options, the
user may use the -d, -e, or -o options respectively. (The default option is -d.)

From any screen in the Help Facility, a user may execute a command via the
shell [sh (1)] by typing a ! and the command to be executed. The screen will be
redrawn if the command that was executed was entered at a first level prompt.
If entered at any other prompt level, only the prompt will be redrawn.

By default, the Help Facility scrolls the data that is presented to the user. If you
prefer to have the screen clear before printing the data (non-scrolling), the shell
variable SCROLL must be set to no and exported so it will become part of your
environment. This is done by adding the following line to your .profile file [see
profile (4)]:

export SCROLL ; SCROLL=no

If you later decide that scrolling is desired, SCROLL must be set to yes.

Information on each of the Help Facility commands (starter, locate, usage,
glossary, and help) is located on their respective manual pages.

SEE ALSO
glossary(l), help(l), locate(l), sh(l), starter(l), term(5).

USAGE(l) (Category 2 Support) USAGE(l)

WARNINGS
If the shell variable TERM [see JA(I)] is not set in the user's .profile file, then
TERM will default to the terminal value type 450 (a hard-copy terminal). For a
list of valid terminal types, refer to lerm(5).

UUCHECK (1M) UUCHECK(IM)

N A M E

uucheck - check the uucp directories and permissions fde

S Y N O P S I S

/usr/lib/uucp/uucheck [-v] [-x debugjevel]

DESCRIPTION
uucheck checks for the presence of the uucp system required fdes and
directories. Within the uucp makefile, it is executed before the installation
takes place. It also checks for some obvious errors in the Permissions fde
(/usr/lib/uucp/Permissions). When executed with the -v option, it gives a
detailed explanation of how the uucp programs will interpret the Permissions
fde. The -x option is used for debugging, debug-option is a single digit in the
range 1-9; the higher the value, the greater the detail.
Note that uucheck can only be used by the super-user or uucp.

FILES
/usr/lib/uucp/Systems
/usr/lib/uucp/Permissions
/usr/lib/uucp/Devices
/usr/lib/uucp/Maxuuscheds
/usr/lib/uucp/Maxuuxqts
/usr/spool/uucp/*
/usr/spool/locks/LCK*
/usr/spool/uucppublic/*

SEE ALSO
uucico(lM), uucp(lC), uusched(lM), uustat(lC), uux(lC).

BUGS
The program does not check file/directory modes or some errors in the
Permissions fde such as duplicate login or machine name.

UUCICO(IM) UUCICO (1M)

N A M E

uucico - file transport program for the uucp system

S Y N O P S I S

/usr/lib/uucp/uucico [-r role_number] [-x debug_level) [-i interface]
[-d spool_directory] -s system_name

D E S C R I P T I O N

The uucico program performs fde transport for uucp work file transfers. Role
numbers for the -r are the digit 1 for master mode or 0 for slave mode (default).
The -r option should be specified as the digit 1 for master mode when uucico is
started by a program or cron. The uux and uucp programs both queue jobs that
are transferred by uucico. The uucico program is normally started by the
scheduler, uusched, but it can be started manually; this is done for debugging.
For example, Uutry starts uucico with debugging turned on. A single digit must
be used for the -x option with higher numbers for more debugging.

The -i option defines the interface used with uucico. This interface only affects
slave mode. Known interfaces are UNIX (default), TLI (basic Transport Layer
Interface), and TLIS (Transport Layer Interface with Streams modules,
read/write).

The -d option specifies the directory (spool directory) that contains the work
files to be transferred. The default spool directory is /usr/spool/uucp. The -s
option defines the system (systemname) that uucico tries to contact. The
systemname must be defined in the Systems file.

FILES
/usr/lib/uucp/Systems
/usr/lib/uucp/Permissions
/usr/lib/uucp/Devices
/usr/lib/uucp/Devconfig
/usr/lib/uucp/S y sfiles
/usr/lib/uucp/Maxuuxqts
/usr/lib/uucp/Maxuuscheds
/usr/spool/uucp/*
/usr/spool/locks/LCK*
/usr/spool/uucppublic/*

S E E A L S O

cron(lM), uucp(lC), uusched(lM), uustat(lC), Uutry(lM). uux(lC).
S/Series CTIX Administrator s Guide.

UUCLEANUP(IM) UUCLEANUP (1M)

NAME
uucleanup - uucp spool directory clean-up

SYNOPSIS
/usr/lib/uucp/uucleanup [-Ctime] [-Wtime] [-Xtime] [-mstring]
[-otime] [-ssystem]

DESCRIPTION
The uucleanup command scans the spool directories for old fdes and takes
appropriate action to remove them in a useful way:

• Inform the requestor of send/receive requests for systems that can not
be reached.

• Return mail, which cannot be delivered, to the sender.

• Delete or execute rnews for rnews type files (depending on where the
news originated-locally or remotely).

• Remove all other files.

In addition, there is provision to warn users of requests that have been waiting
for a given number of days (default 1). Note that uucleanup will process as if
all option times were specified to the default values unless time is specifically
set.

The following options are available.

-Ctime Any C. fdes greater or equal to time days old will be removed with
appropriate information to the requestor, (default 7 days)

-Dtime Any D. files greater or equal to time days old will be removed. An
attempt will be made to deliver mad messages and execute rnews
when appropriate. Note: rnews is public domain software not
provided with CTIX. (default 7 days)

•Wtime Any C. files equal to time days old will cause a mail message to be
sent to the requestor warning about the delay in contacting the
remote location. The message includes the JOBID, and in the case
of mail, the mail message. The administrator may include a
message line telling whom to call to check the problem (-m
option), (default 1 day)

-Xtime Any X. files greater or equal to time days old will be removed. The
D. files are probably not present (if they were, the X. could get
executed). But if there are D. files, they will be taken care of by D.
processing, (default 2 days)

UUCLEANUP (1M) UUCLE ANUP (1M)

-mstring This line will be included in the warning message generated by the
-W option. The default message is

"See your local administrator to locate the problem."

-Mime Other files whose age is more than time days will be deleted,
(default 2 days)

-ssystem Execute for system spool directory only.

-xdebuglevel
The -x debug level is a single digit between 0 and 9; higher
numbers give more detailed debugging information.

This program is typically started by the shell script uudemon.clean, which
should be started by cron (1M).

F I L E S

/usr/lib/uucp directory with commands used by uucleanup
internally

/usr/spool/uucp spool directory

S E E A L S O

cron(lM), uucp(lC), uux(lC).
SISeries CTIX Administrator's Guide.

UUCP(IC) UUCP(IC)

NAME
uucp, uulog, uuname - UNIX-to-UNIX system copy

SYNOPSIS
uucp [options] source-files destination-file

uulog [options] -s system

uulog [options] system

uulog [options] -fsystem

uuname [-1] [-c]

DESCRIPTION
uucp

uucp copies files named by the source-file arguments to the destination-file
argument A fde name can be a path name on your machine, or can have the
following form:

node!path-name

where node is taken from a list of system names that uucp knows about. The
node can also be a list of names such as

node! node!...! node! path-name

in which case an attempt is made to send the file through the specified route, to
the destination. See WARNINGS and BUGS below for restrictions. Care should
be taken to ensure that intermediate nodes in the route are willing to foward
information (see WARNINGS below for restrictions).

The shell metacharacters ?, * and [. . .] appearing in path-name will be
expanded on the appropriate system.

Path names can be one of the following:

(1) a full path name;

(2) a path name preceded by 'user where user is a login name on the
specified system and is replaced by that user's login directory;

(3) a path name preceded by "/destination where destination is appended
to /usr/spool/uucppublic; (NOTE: This destination will be treated as
a file name unless more than one fde is being transfered by this request
or the destination is already a directory. To ensure that it is a
directory, follow the destination with a slash (/) : for example, using
"/dan/ as the destination makes the directory
/usr/spool/uucppublic/dan if it does not exist and puts the requested
fde or fdes in that directory).

UUCP(IC) UUCP(IC)

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will fail.
If the destination-file is a directory, the last part of the source-file name is used.

uucp preserves execute permissions across the transmission and gives 0666
read and write permissions [see chmod(2)].

The following options are interpreted by uucp:

-c Do not copy local fde to the spool directory for transfer to the
remote machine (default).

-C Force the copy of local fdes to the spool directory for transfer.

-d Make all necessary directories for the fde copy (default).

-f Do not make intermediate directories for the fde copy.

-ggrade Grade is a single letter/number; lower ascii sequence characters
will cause the job to be transmitted earlier during a particular
conversation.

-j Output the job identification ASCII string on the standard output.
This job identification can be used by uustat to obtain the status or
terminate a job.

-m Send mail to the requester when the copy is completed.

-nuser Notify user on the remote system that a file was sent.

-r Do not start the file transfer, just queue the job.

-s file Report status of the transfer to file. Note that the file must be a full
path name.

-xdebug level
Produce debugging output on standard output The debugjevel is
a number between 0 and 9; higher numbers give more detailed
information.

uulog
uulog queries a log file of uucp or uuxqt transactions in a file
/usr/spool/uucp/.Log/uucico/.vy.s'fem, or /usr/spool/uucp/.Log/uuxqtAvystem.

The options cause uulog to print logging information:

-ssys Print information about file transfer work involving system sys.

-fsystem Does a "tail -f" of the file transfer log for system. (You must hit
BREAK to exit this function.) Other options used in conjunction
with the above:

UUCP(IC) UUCP(IC)

-x Look in the uuxqt log file for the given system.

-number Indicates that a " ta i l " command of number lines should be
executed.

uuname
uuname lists the names of systems known to uucp. The -c option returns the
names of systems known to cu. (The two lists are the same, unless your
machine is using different Systems fdes for cu and uucp. See the Sysfiles file.)
The -1 option returns the local system name.

FILES
/usr/spool/uucp

/usr/spool/uucppublic/ *

/usr/lib/uucp/*

SEE ALSO
mail(l), uustat(lC), uux(lC), uuxqt(lM), chmod(2).
S/Series CTIX Administrator's Guide.

WARNINGS
The domain of remotely accessible fdes can (and for obvious security reasons,
usually should) be severely restricted. You will very likely not be able to fetch
files by path name; ask a responsible person on the remote system to send them
to you. For the same reasons you will probably not be able to send fdes to
arbitrary path names. As distributed, the remotely accessible fdes are those
whose names begin /usr/spool/uucppublic (equivalent to ~f).

All files received by uucp will be owned by uucp.
The -m option will only work sending fdes or receiving a single fde. Receiving
multiple fdes specified by special shell characters ? * [. . .] will not activate
the -m option.

The forwarding of fdes through other systems may not be compatible with the
previous version of uucp. If forwarding is used, all systems in the route must
have the same version of uucp.

BUGS
Protected files and files that are in protected directories that are owned by the
requestor can be sent by uucp. However, if the requestor is root, and the
directory is not searchable by "other" or the fde is not readable by "other,"
the request will fail.

spool directories

public directory for receiving and sending
(/usr/spool/uucppublic)

other data and program fdes

UUCPD(IM) (CTDC Internetworking) UUCPD(IM)

NAME
uucpd, ouucpd - network uucp servers

SYNOPSIS
/etc/uucpd

/etc/ouucpd

DESCRIPTION
uucpd and ouucpd are network servers for CTIX network fde transfer using the
uucp user interface and protocols, uucpd is used for fde transfers in which the
client machine is running a version of uucp based on the Honey-Danber or
Berkeley implementations. (The Honey-Danber implementation is used on
versions of CTIX that are 5.1 and higher.) uucpd requires a password for
authentication.

ouucpd is used for fde transfers in which the client machine is running a
Convergent-specific version of uucp over TCP/IP prior to the Honey-Danber
implementation.

This server is similar to the rshd (1M) server, except:

1) The remote socket need not be privileged,

2) The /usr/lib/uucp/uucico shell must be invoked, and

3) If a .rhosts fde does not exist in the home directory of the user
specified in the Systems file of the client, any host in the Systems file
on the server will be allowed access.

A network uucp connection is indicated with the TCP, UCBTCP, and INET
keywords in the configuration file /usr/lib/uucp/Systems. The former two
connect to uucpd, the latter to ouucpd. uucpd and ouucpd are started by the
"super-server" inetd, and therefore must have entries in inetd's configuration
fde, /etc/inetd.conf [see inetd(1M) and inetd.conf (4)].

SEE ALSO
inetd(lM), rshd(l), uucp(lC), inetd.conf(4), services(4).

UUGETTY(IM) UUGETTY(IM)

NAME
uugetty - set terminal type, modes, speed, and line discipline

SYNOPSIS
/usr/lib/uucp/uugetty [-h] [-t timeout] [-r] [-f] line [speed [type
[linedisc]]]

/usr/lib/uucp/uugetty -c file

DESCRIPTION
The uugetty program is actually the getty (1M) program altered to allow
bidirectional use of a line. The uugetty program allows users to log in, but if the
line is free, uucico(1M), c«(lC), or cr(lC) can use it for dialing out or receiving
calls.
The options to uugetty are identical to getty(1M) options; two additional
options are provided: -r and -f.

The -r option causes uugetty to wait to read a character before sending the login
script, thus preventing two uugetty s from looping.

The -r option must be used if a uugetty is present on both the sending and
receiving systems or if the calling system uses an intelligent modem. When the
-r option is used, several carriage return characters might be required to elicit
the login message; human users can handle this slight inconvenience. The
expect/send sequence used by uucico (1M), however, must be altered in the
/usr/lib/uucp/Systems file to include the additional carriage return characters
and pauses; for example:

" " \r\d\r\d\r\d ogin:-ogin: systemname sswordpassword

The -f option causes input to be ignored for a short time after the line is opened,
and again after reading a character if the -r flag was specified. It also disables
echo until the login prompt is printed, which is useful where modems are being
used on systems that print banners and connection information.

When c«(lC) or uucico(1M) is invoked, it creates a lock file that prevents users
from logging in at the device while the process is running.

Note that uugetty must be on both the sending and receiving systems (that is,
there cannot be a uugetty on one and a getty on the other).

EXAMPLE
The following /etc/inittab entry can be used for an intelligent modem or a
direct line:

002:2:respawn:Aisr/lib/uucp/uugetty -r -t 60 tty002 1200

UUGETTY (1M) UUGETTY(IM)

FILES
/etc/gettydefs
/etc/issue
/usr/lib/uucp/Devices
/usr/spool/locks/LCK.*

SEE ALSO
ct(lC), cu(lC), getty(lM), init(lM), login(l), uucico(lM), iocU(2),
gettydefs(4), inittab(4), tty(7).
SISeries CTIX Administrator's Guide.

BUGS
The ct command does not work when uugetty is used with an intelligent modem
such as penril or ventel.

UUSCHED(IM) UUSCHED(IM)

NAME
uusched - the scheduler for the UUCP system

SYNOPSIS

/usr/lib/uucp/uusched [-x debug_level] [-u debug_level]

DESCRIPTION
uusched is the UUCP scheduler. It is usually started by the demon
uudemon.hour, which is started by cron(1M).
The two options may be used for debugging, -x debug Jevel displays
debugging messages from uusched. -u debug Jevel is passed as -x debug Jevel
to uucico (1M). Debug level is a number between 0 and 9; higher numbers give
more detailed information.
To invoke uusched the following entry must be included in the
/usr/spool/cron/crontabs/root file:

5 6 * * * * /usr/lib/uucp/uudemon.hour > /dev/null 2>&1

When uusched is invoked, it checks the /usr/spool/uucp directories for files
awaiting transfer. If uusched encounters a C. (control) file, it invokes
uucico (1M) to make the transfer.

FILES
/usr/lib/uucp/uudemon .hour
/usr/lib/uucp/Systems
/usr/lib/uucp/Permissions
/usr/lib/uucp/Devices
/usr/spool/uucp/*
/usr/spool/locks/LCK.*
/usr/spool/uucppublic/*
/usr/spool/cron/crontabs/root

SEE ALSO
cron(lM), uucico(lM), uucp(lC), uustat(lC) uux(lC).
S/Series CTIX Administrator's Guide.

UUSTAT(IC) UUSTAT(IC)

NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [-a]

uustat [-m]

uustat [-p]

uustat [-q]

uustat [-kjobid]

uustat [-rjobid]

uustat [-ssystem] [-u user]

DESCRIPTION
The uustat command displays the status of, or cancels, previously specified
uucp commands, or provides general status on uucp connections to other
systems. Only one of the following options can be specified with uustat per
command execution:

-a Display all jobs in queue,

-m Report the status of accessibility of all machines,

-p Execute a "ps -f lp" for all the process-IDs that are in the lock fdes.

-q List the jobs queued for each machine. If a status fde exists for the
machine, its date, time and status information are reported. In
addition, if a number appears in () next to the number of C or X
fdes, it is the age in days of the oldest CJX. fde for that system.
The Retry field represents the number of hours until the next
possible call. The Count is the number of failure attempts. NOTE:
for systems with a moderate number of outstanding jobs, this could
take 30 seconds or more of real-time to execute. As an example of
the output produced by the -q option:

eagle 3C 04/07-11:07 NO DEVICES AVAILABLE
mh3b«3 2C 07/07-10:42 SUCCESSFUL

The above output tells how many command fdes are waiting for
each system. Each command fde may have zero or more files to be
sent (zero means to call the system and see if work is to be done).
The date and time refer to the previous interaction with the system
followed by the status of the interaction.

U U S T A T (I C) U U S T A T (I C)

Kill the uucp request whose job identification is jobid. The killed
uucp request must belong to the person issuing the uustat
command unless one is the super-user.

Rejuvenate jobid. The files associated with jobid are touched so
that their modification time is set to the current time. This prevents
the cleanup daemon from deleting the job until the jobs
modification time reaches the limit imposed by the deamon.

Either or both of the following options can be specified with uustat:

-ssys Report the status of all uucp requests for remote system sys.

-uuser Report the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

•aglenOOOO 4/07-11:01:03 (POLL)
eagleN1bd7 4/07-11:07 S eagle dan 522 /usr/dan/A
eagleC1bd8 4/07-11:07 S eagle dan 59 D.3b2al2ce4924

4/07-11:07 S eagle dan rm ail mike

With the above two options, the first field is the jobid of the job. This is
followed by the date/time. The next field is either an 'S' or 'R' depending on
whether the job is to send or request a fde. This is followed by the user-ID of
the user who queued the job. The next field contains the size of the file, or in
the case of a remote execution (rmail - the command used for remote mail), the
name of the command. When the size appears in this field, the file name is also
given. This can either be the name given by the user or an internal name (for
example, D.3b2alce4924) that is created for data files associated with remote
executions (rmail in this example).

When no options are given, uustat outputs the status of all uucp requests issued
by the current user.

FILES
/usr/spool/uucp/* spool directories

SEE ALSO
uucp(lC).

-kjobid

-rjobid

UUTO(IC) UUTO(IC)

NAME
uuto, uupick - public UNIX-to-UNIX system file copy

SYNOPSIS
uuto [options] source-files destination

uupick [-s system]

DESCRIPTION
uuto sends source-files to destination, uuto uses the uucp (I C) facdity to send
files, whde it allows the local system to control the file access. A source-file
name is a path name on your machine. Destination has the form:

system I user

where system is taken from a list of system names that uucp knows about (see
uuname). User is the login name of someone on the specified system.

Two options are avadable:

-p Copy the source file into the spool directory before transmission.

-m Send mad to the sender when the copy is complete.

The fdes (or sub-trees if directories are specified) are sent to PUBDIR on
system, where PUBDIR is a public directory defined in the uucp source. By
default this directory is /usr/spool/uucppublic. Specifically the fdes are sent to

PUBDIRAeceive/ user/mysystem/files.

The destined recipient is notified by mail (I) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUBDIR for files destined for the user. For each entry (file or
directory) found, the following message is printed on the standard output:

from system: [file file-name] [dir dirname] ?

Uupick then reads a line from the standard input to determine the disposition of
the fde:

<new-line>

d

m [dir]

Go on to next entry.

Delete the entry.

Move the entry to named directory dir. If dir is not
specified as a complete path name (in which $HOME is
legitimate), a destination relative to the current directory
is assumed. If no destination is given, the default is the
current directory.

UUTO(IC) UUTO(IC)

a [dir] Same as m except moving all the files sent from system.

p Print the content of the file,

q Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

* Print a command summary.

Uupick invoked with the -ssystem option will only search the PUBDIR for files
sent from system.

FILES
PUBDIR /usr/spool/uucppublic public directory

SEE ALSO

mail(l), uucleanup(lM), uucp(lC), uustat(lC), uux(lC).

WARNINGS
In order to send files that begin with a dot (for example, .profile) the files must
by qualified with a dot For example: .profile, .prof*, .profil? are correct;
whereas *prof*, ?profile are incorrect.

UUX(IC) UUX(IC)

NAME
uux - UNIX-to-UNIX system command execution

SYNOPSIS
uux [options] command-string

DESCRIPTION
The uux command gathers zero or more files from various systems, executes a
command on a specified system, and then sends standard output to a file on a
specified system.

The command-string is made up of one or more arguments that look like a shell
command line, except that the command and file names may be prefixed by
system-namel. A null system-name is interpreted as the local system.

File names can be one of the following:

(1) a full path name;

(2) a path name preceded by "xxx where xxx is a login name on the
specified system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

As an example, the command:

uux " !diff usg!/usr/dan/fdel pwba!/a4/dan/file2 > !7dan/file.diff"

gets the file! and file2 files from the usgandpwba machines, executes a diff (I)
command, and puts the results in file, diff in the local PUBDIR/dan/ directory.

Any special shell characters, such as <>; |, should be quoted, either by quoting
the entire command-string or by quoting the special characters as individual
arguments.

uux attempts to get all files to the execution system. For files that are output
files, the file name must be escaped using parentheses. For example, the
command:

uux a!cut -fl b!/usr/file \(c!/usr/file\)

gets /usr/file from system b and sends it to system a, performs a cut command
on that file, and sends the result of the cut command to system c.

uux notifies you if the requested command on the remote system was
disallowed. This notification can be disabled by use of the -n option. The
response comes by remote mail from the remote machine.

UUX(IC) UUX(IC)

The following options are interpreted by uux:

The standard input to uux is made the standard input to the
command-string.

-aname Use name as the user identification replacing the initiator user-ID.
(Notification will be returned to the user.)

-b Return whatever standard input was provided to the uux command
if the exit status is non-zero.

-c Do not copy local file to the spool directory for transfer to the
remote machine (default).

-C Force the copy of local fdes to the spool directory for transfer.

-ggrade Grade is a single letter/number; lower ASCII sequence characters
will cause the job to be transmitted earlier during a particular
conversation.

-j Output the jobid ASCII string on the standard output which is the
job identification. This job identification can be used by uustat to
obtain the status or terminate a job.

-n Do not notify the user if the command fails.

-p Same as -: The standard input to uux is made the standard input to
the command-string.

-r Do not start the file transfer, just queue the job.

-sfile Report status of the transfer in file.

-xdebugjevel
Produce debugging output on the standard output. The debugJevel
is a number between 0 and 9; higher numbers give more detailed
information.

-z Send success notification to the user.

FILES
/usr/spool/uucp/* spool directories
/usr/lib/uucp/Permissions remote execution permissions
/usr/lib/uucp/* other data and programs

SEE ALSO
cut(l), mail(l), uucp(lC), uustat(lC).

UUX(IC) UUX(IC)

NOTES
For security reasons, most installations limit the list of commands executable on
behalf of an incoming request from uux, permitting only the receipt of mail [see
mail (I)]. (Remote execution permissions are defined in
/usr/lib/uucp/Permissions.)

WARNINGS
Only the first command of a shell pipeline can have a system-namel. All other
commands are executed on the system of the first command.

The use of the shell metacharacter * does not probably do what you want it to
do. The shell tokens « and » are not implemented.

The execution of commands on remote systems takes place in an execution
directory known to the uucp system. All files required for the execution are put
into this directory unless they already reside on that machine. Therefore, the
simple file name (without path or machine reference) must be unique within the
uux request. The following command does not work:

uux "a!diff b!/usr/dan/xyz c!/usr/dan/xyz > Jxyz.diff"

but, the following command does work (if diff is a permitted command):

uux "a!diff a!/usr/dan/xyz c!/usr/dan/xyz > Ixyz.diff"

BUGS
Protected files and files that are in protected directories that are owned by the
requestor can be sent in commands using uux. However, if the requestor is
root, and the directory is not searchable by other, the request fails.

UUXQT(IM) UUXQT(IM)

NAME
uuxqt - execute remote command requests

SYNOPSIS

/usr/lib/uucp/uuxqt [-s system] [-x debug_level]

DESCRIPTION
The uuxqt program executes remote job requests from remote systems
generated by the use of the uux command. (Mail uses uux for remote mail
requests). Uuxqt searches the spool directories looking for X. fdes. For each X.
fde, uuxqt checks to see if all the required data fdes are avadable and
accessible, and fde commands are permitted for the requesting system. The
Permissions file is used to validate fde accessibdity and command execution
permission.
Two environment variables are set before the uuxqt command is executed:

UUMACHINE
Is the machine that sent the job (the previous one).

UUUSER
Is the user that sent the job.

These can be used in writing commands that remote systems can execute to
provide information, auditing, or restrictions.

The -x debug Jevel is a single digit between 0 and 9. Higher numbers give
more detailed debugging information.

FILES
/usr/lib/uucp/Permissions
/usr/lib/ uucp/Maxuuxqts
/usr/spool/uucp/*
/usr/spool/locks/LCK*

SEE ALSO
mail(1), uucico(1M). uucp(1C), uustat(1C), uux(1C).

VAL(l) VAL(l)

NAME
val - validate SCCS file

SYNOPSIS
val -

val [-s] [-rSID] [-mname] [-ytype] fdes

DESCRIPTION
The val command determines if the specified file is an SCCS fde meeting the
characteristics specified by the optional argument list. Arguments to val may
appear in any order. The arguments consist of keyletter arguments, which begin
with a -, and named files.

val has a special argument, -, which causes reading of the standard input until
an end-of-file condition is detected. Each line read is independendy processed
as if it were a command line argument list.

val generates diagnostic messages on the standard output for each command
line and file processed, and also returns a single 8-bit code upon exit as
described below.

The keyletter arguments are defined as follows. The effects of any keyletter
argument apply independendy to each named fde on the command line.

-s The presence of this argument silences the diagnostic message
normally generated on the standard output for any error that is
detected whde processing each named fde on a given command
line.

- rSID The argument value SID (SCCS /Dcntification String) is an SCCS
delta number. A check is made to determine if the SID is
ambiguous (for example, r l is ambiguous because it physically
does not exist but implies 1.1, 1.2, etc., which may exist) or
invalid (for example, rl.O or r 1.1.0 are invalid because neither
case can exist as a valid delta number). If the SID is valid and
not ambiguous, a check is made to determine if it actually exists.

-mname The argument value name is compared with the SCCS %M%
keyword infile.

-ytype The argument value type is compared with the SCCS %Y%
keyword in file.

VAL(l) VAL(l)

The 8-bit code returned by val is a disjunction of the possible errors, that is, can
be interpreted as a bit string where (moving from left to right) set bits are
interpreted as follows:

bit 0 = missing fde argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted SCCS fde;
bit 3 = cannot open file or fde not SCCS;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = %Y%, -y mismatch;
bit 7 = %M%, -m mismatch;

Note that val can process two or more fdes on a given command line and in turn
can process multiple command lines (when reading the standard input). In
these cases an aggregate code is returned - a logical OR of the codes generated
for each command line and fde processed.

SEE ALSO
admin(l), delta(l), get(l), help(l), prs(l).

DIAGNOSTICS
Use help (I) for explanations.

BUGS
val can process up to 50 files on a single command line. Any number above 50
will produce a core dump.

VC(1) VC(1)

NAME
vc - version control

SYNOPSIS

vc [-a] [-t] [-cchar] [-s] [keyword=value ... keyword=value]

DESCRIPTION
The vc command copies lines from the standard input to the standard output
under control of its arguments and control statements encountered in the
standard input. In the process of performing the copy operation, user declared
keywords may be replaced by their string value when they appear in plain text
and/or control statements.
The copying of lines from the standard input to the standard output is
conditional, based on tests (in control statements) of keyword values specified
in control statements or as vc command arguments.
A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon
(:), except as modified by the -c keyletter (see below). Input lines beginning
with a backslash (\) followed by a control character are not control lines and are
copied to the standard output with the backslash removed. Lines beginning
with a backslash followed by a non-control character are copied in their
entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic.
A value is any ASCII string that can be created with ed(1); a numeric value is an
unsigned string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded
by control characters is encountered on a version control statement. The -a
keyletter (see below) forces replacement of keywords in all lines of text. An
uninterpreted control character may be included in a value by preceding it with
V If a literal \ is desired, then it too must be preceded by \.

Keyletter Arguments
-a Forces replacement of keywords surrounded by control characters

with their assigned value in all text lines and not just in vc
statements.

-t All characters from the beginning of a line up to and including the
first tab character are ignored for the purpose of detecting a control
statement. If one is found, all characters up to and including the tab
are discarded.

-cchar Specifies a control character to be used in place of: .

VC(1) V C (1)

-s Silences warning messages (not error) that are normally printed on
the diagnostic output

Version Control Statements
:dcl keyword[,..., keyword]

Used to declare keywords. All keywords must be declared.

:asg key word=value
Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line and
all previous asg's for that keyword. Keywords declared, but not assigned
values have null values.

: if condition

rend
Used to skip lines of the standard input. If the condition is true all lines
between the if statement and the matching end statement are copied to
the standard output. If the condition is false, all intervening lines arc
discarded, including control statements. Note that intervening if
statements and matching end statements are recognized solely for the
purpose of maintaining the proper if-end matching.

The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

= ["not"] <or>
= <and> | <and> " I" <or>
= <exp> | <exp> "&" <and>
= "(" <or> ")" <value> <op> <value>

= <arbitrary ASCII string> | cnumeric string>

The available operators and their meanings are:

= equal
!= not equal
& and
I or

> greater than
< less than
() used for logical groupings
not may only occur immediately after the i f , and when present, inverts

the value of the entire condition

VC(1) VC(1)

The > and < operate only on unsigned integer values (for example, : 012
> 12 is false). All other operators take strings as arguments (for example,
: 012 != 12 is true). The precedence of the operators (from highest to
lowest) is:

= != > < all of equal precedence

f
Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least one
blank or tab.

::text
Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed, and keywords
surrounded by control characters in text are replaced by their value
before the line is copied to the output file. This action is independent of
the -a keyletter.

:on

:off

Turn on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line ... (915)

on the diagnostic output, vc halts execution, and returns an exit code of
1.

SEE ALSO
ed(l), help(l).

DIAGNOSTICS
Use help(1) for explanations.

EXIT CODES
0 - normal
1 - any error

VI(1) VI(1)

NAME
vi - screen-oriented (visual) display editor based on ex

SYNOPSIS
vi [-t tag] [-r file] [-L] [-1] [-wn] [-R] [-x] [-C]
[-c command] fde . . .
view [-t tag] [-r file] [-L] [-1] [-wn] [-R\fl] [-x] [-C] [-c
[-c command] fde . . .

vedit [-t tag] [-a file] [-L] [-1] [-wn] [-R] [-x] [-C]
[-c command] file . . .

DESCRIPTION
The vi (visual) command invokes a display-oriented text editor based on an
underlying line editor ex(\). It is possible to use the command mode of ex from
within vi and vice-versa. The visual commands are described on this manual
page; how to set options (like automatically numbering lines and automatically
starting a new output line when you type carriage return) and all ex(\) line
editor commands are described on the ex(l) manual page.

When using vi, changes you make to the file are reflected in what you see on
your terminal screen. The position of the cursor on the screen indicates the
position within the file.

Invocation Options
The following invocation options are interpreted by vi (previously documented
options are discussed in the NOTES section at the end of this manual page):

-t tag Edit the file containing the tag and position the editor at its
definition.

-r file Edit file after an editor or system crash. (Recovers the
version of file that was in the buffer when the crash
occurred.)

-L List the name of all fdes saved as the result of an editor or
system crash.

-wn Set the default window size to n. This is useful when using
the editor over a slow speed line.

-1 LISP mode; indents appropriately for lisp code, the () {} [[
and]] commands in vi and open are modified to have
meaning for lisp .

-R Read-only mode; the readonly flag is set, preventing
accidental overwriting of the file.

VI(1) V I (1)

-x Encryption option; when used, vi simulates the X command
of ex(l) and prompts the user for a key. This key is used to
encrypt and decrypt text using the algorithm of crypt{ 1).
The X command makes an educated guess to determine
whether text read in is encrypted or not. The temporary
buffer fde is encrypted also, using a transformed version of
the key typed in for the -x option. NOTE: the standard CTIX
distribution is the international version, which does not
support encryption. (This is described also in the WARNING
section at the end of this manual page.)

-C Encryption option; same as the -x option, except that vi
simulates the C command of ex{\). The C command is like
the X command of ex(\), except that all text read in is
assumed to have been encrypted.

-c command Begin editing by executing the specified editor command
(usually a search or positioning command).

The fde argument indicates one or more files to be edited.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. It is the same as vi except that
the report flag is set to 1, the showmode and novice flags are set, and magic is
turned off. These defaults make it easier to learn how to use vi.

vi Modes
Command

Input

Last line

Normal and initial mode. Other modes return to command
mode upon completion. ESC (escape; GO on Convergent
PT/GT terminals) is used to cancel a partial command.

Entered by setting any of the following options: a A i I o O
c C s S R . Arbitrary text may then be entered. Input mode is
normally terminated with ESC character, or, abnormally,
with an interrupt.

Reading input for : / ? or !; terminate by typing a carriage
return; an interrupt cancels termination.

VI(1) VI(1)

COMMAND SUMMARY
The following sequences represent special keys:

ESC Escape key. GO on Convergent Technologies PT/GT
terminals.

Control key: hold down the CTRL key (CODE on
Convergent Technologies terminals) and press x.

CR RETURN or CARRIAGE RETURN key.

| Circumflex ("). On teletypewriter-style terminals, usually an
up arrow (T).

Sample commands

X T —» arrow keys move the cursor

h j k I same as arrow keys

itoc/ESC insert text

cwnewESC change word to new
eavESC pluralize word (end of word; append s; escape from input

state)

x delete a character

dw delete a word

dd delete a line

3dd delete three lines

u undo previous change

ZZ exit vi, saving changes

:q!CR quit, discarding changes

ItextCR search for text

*U "D scroll up or down

:cmdCR any ex or ed command

Counts before vi commands
Numbers may be typed as a prefix to some commands. They are interpreted in
one of these ways.

line/column number z G |

scroll amount *D *U

VI(1) v i (l)

repeat effect most of the rest

Interrupting, canceling

ESC end insert or incomplete cmd

DEL (delete or rubout) interrupts

File manipulation

ZZ if fde modified, write and exit; otherwise, exit

:wCR write back changes

:w! CR forced write, if permission originally not valid

:qCR quit

:q! CR quit, discard changes

:e name CR edit fde name

:e! CR reedit, discard changes

:e + name CR edit, starting at end

:e +nCR edit starting at line n

:e #CR edit alternate file

:e! #CR edit alternate file, discard changes

:w name CR write file name

:w! name CR overwrite file name

:shCR run shell, then return

:! cmdCR run cmd, then return

:nCR edit next file in arglist

:n argsCR specify new arglist

*G show current file and line

:ta tagCR position cursor to tag
In general, any ex or ed command (such as substitute or global) may be typed,
preceded by a colon and followed by a carriage return.

Positioning within fi le
"F

"B

D

forward screen

backward screen

scroll down half screen

- 4 -

VI(1) VI(1)

*U scroll up half screen

nG go to the beginning of the specified line (end default), where
n is a line number

/pat next line matching pat

'?pat previous line matching pat

n repeat last / or ? command

N reverse last / or ? command

Ipatl+n nth line after pat

Ipatl-n nth line before pat

]] next section/function

[[previous section/function

(beginning of sentence

) end of sentence

{ beginning of paragraph

} end of paragraph

% find matching () { or }

Adjusting the screen
"L clear and redraw window

"R clear and redraw window if ~L is —> key

zCR redraw screen with current line at top of window

z-CR redraw screen with current line at bottom of window

z .CR redraw screen with current line at center of window

/pat/z-CR move pat line to bottom of window

zn .CR use n-line window

~E scroll window down 1 line

*Y scroll window up 1 line

V I (1) VI(1)

Marking and returning
move cursor to previous context

move cursor to first non-white space in line

mx mark current position with the ASCII lower-case letter x

~x move cursor to mark x

'x move cursor to first non-white space in line marked by x

Line positioning

H top line on screen

L last line on screen

M middle line on screen

+ next line, at first non-white

previous line, at first non-white

CR return, same as +

1 or j next line, same column

T or k previous line, same column

Character positioning

first non white-space character

0 beginning of line

$ end of line

hor —» forward

1 or <- backward

"H same as <— (backspace)

space same as —> (space bar)

fx find next x

Fx find previous x

tr move to character prior to next x

Tx move to character following previous x

; repeat last f F t or T

, repeat inverse of last f F t or T

VI(1) v i (l)

n\ move to column n

% find matching ({) or }

Words, sentences, paragraphs

w forward a word

b back a word

e end of word

) to next sentence

} to next paragraph

(back a sentence

{ back a paragraph

W forward a blank-delimited word

B back a blank-delimited word

E end of a blank-delimited word

Commands for LISP Mode
) Forward s-expression
}

(Back s-expression
{

Corrections during insert
*H erase last character (backspace)

"W erase last word

erase your erase character, same as *H (backspace)

kill your kill character, erase this line of input

\ quotes your erase and kill characters

ESC ends insertion, back to command mode

DEL interrupt, terminates insert mode

*D backtab one character; reset left margin of autoindent
"D caret (") followed by control-d f D); backtab to beginning of

line; do not reset left margin of autoindent

v i (l) v i (l)

0"D backtab to beginning of line; reset left margin of autoindent

V quote non-printable character

Insert and replace

a append after cursor

A append at end of line

i insert before cursor

I insert before first non-blank

o open line below

O open above

TX replace single char with x

RfexrESC replace characters

Operators
Operators are followed by a cursor motion, and affect all text that would have
been moved over. For example, since w moves over a word, dw deletes the
word that would be moved over. Double the operator, e.g., dd to affect whole
lines.

d delete

c change

y yank lines to buffer

< left shift

> right shift

! filter through command

toggle change

= indent for LISP

Miscellaneous Operations
c change rest of line (c$)

D delete rest of line (d$)

s substitute chars (cl)

S substitute lines (cc)

J join lines

X delete characters (dl)

VI(1) VI(1)

X delete characters before cursor (dh)

Y yank lines (yy)

Yank and Put
Put inserts the text most recently deleted or yanked; however, if a buffer is
named (using the ASCH lower-case letters a - z), the text in that buffer is put
instead.

3yy yank three lines

3yi yank three characters

p put back text after cursor

p put back text before cursor

xp put from buffer x

xy yank to buffer x

xd delete into buffer x

Undo, Redo, Retr ieve
u undo last change

U restore current line

repeat last change

dp retrieve d'th last delete

FILES
/tmp default directory where temporary work files arc placed;

it can be changed using the directory option (see the
ex(l) set command)

/usr/lib/terminfo/?/* compiled terminal description database
/usr/lib/terminfo/?/* compiled terminal description
database

NOTES
Two options, although they continue to be supported, have been replaced in the
documentation by options that follow the Command Syntax Standard (see
intro(1)). A -r option that is not followed with an option-argument has been
replaced by -L and +command has been replaced by -c command.

SEE ALSO
ed(l) , edit(l), ex(l) .
Programmer s Guide: CTIX Supplement.

VI(1) VI(1)

WARNING
Due to export restrictions, encryption features are not available in the standard
CTIX distribution.

Tampering with entries in /usr/lib/terminfo/?/* (for example, changing or
removing an entry) can affect programs such as vi'(l) that expect the entry to be
present and correct. In particular, removing the "dumb" terminal may cause
unexpected problems.

BUGS
Software tabs using "T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete
character operations in the terminal.

- 1 0 -

VOLCOPY(IM) VOLCOPY(IM)

NAME
volcopy - make literal copy of file system

SYNOPSIS

/etc/volcopy [options] fsname srcdevice volnamel destdevice volname2

DESCRIPTION
volcopy makes a literal copy of the fde system using a blocksize matched to the
device. Options are:
-a invoke a verification sequence requiring a positive operator response

instead of the standard 10 second delay before the copy is made
-s (default) invoke the DEL if wrong verification sequence.

-to The output file is a disk section (also called slice or partition), but is to
be treated like a tape.

-ti The input file is a disk section, but is to be treated like a tape.

-y Suppress prompts that ask for "yes/no' ' responses and assume "yes ' ' .

-v If output file is a tape or is to be treated like a tape, do a verification
pass to insure that the tape was written correctly.

Other options are used only with tapes:
-bpidensity bits-per-inch (that is, 800/1600/6250)
-feetsize size of reel in feet (that is, 1200/2400),
-reelnum beginning reel number for a restarted copy,
-buf use double buffered I/O.
-Q Use -bpi and -feet values appropriate for quarter-inch tape

cartridge.

The -t option puts tape headers on media other than tape. If -ti or -to is
specified, the " ree l " capacity is simply the size of the disk section; the " r ee l "
is assumed to be on a removable disk, such as a floppy.

For a true tape such as half-inch reel-to-reel or quarter-inch cartridge, capacity
is derived from tape length and density.

The program requests length and density information if it is not given on the
command line or is not recorded on an input tape label. If the file system is too
large to fit on one reel, volcopy will prompt for additional reels. Labels of all
reels are checked. Tapes may be mounted alternately on two or more drives. If
volcopy is interrupted, it will ask if the user wants to quit or wants a shell. In
the latter case, the user can perform other operations (for example, labelit) and
return to volcopy by exiting the new shell.

VOLCOPY(IM) VOLCOPY(IM)

The fsname argument represents the mounted name (for example: root, u l ,
etc.) of the file system being copied.

The srcdevice or destdevice should be the physical disk section or tape (for
example: /dev/rdsk/c0d0s5, /dev/rmt/cOdO, etc.).

The volname is the physical volume name (for example: pk3, t0122, etc.) and
should match the external label sticker. Such label names are limited to six or
fewer characters. Volname may be - to use the existing volume name.

Srcdevice and volnamel are the device and volume from which the copy of the
file system is being extracted. Destdevice and volname2 are the target device
and volume.

Fsname and volname are recorded in the last 12 characters of the superblock
(char fsname[6], voIname[6];).

FILES
/etc/log/filesave.log a record of file systems/volumes copied

EXAMPLE

The following command backs up the root file system to a tape:

volcopy -a -Q -buf root /dev/rdsk/cOdOsl dO /dev/rmt/cOdO epochl

SEE ALSO
labelit(lM), fs(4).

WARNINGS
volcopy does not support tape-to-tape copying. Use dd{ 1) for tape-to-tape
copying.

BUGS
Only device names beginning /dev/rmt1 are treated as tapes.

If the -buf option is used with the -v option, only the writing of the tape (not the
verification pass) uses double buffered I/O.

WAIT(l) WAIT(l)

NAME
wait - await completion of process

SYNOPSIS
wait [n]

DESCRIPTION
Wait for your background process whose process ID is n and report its
termination status. If n is omitted, all your shell's currendy active background
processes are waited for and the return code will be zero.

The shell itself executes wait, without creating a new process.

SEE ALSO
sh(l).

CAVEAT
If you get the error message cannot fork, too many processes, try using the
wait{\) command to clean up your background processes. If this doesn't help,
the system process table is probably full or you have too many active
foreground processes. (There is a limit to the number of process IDs associated
with your login, and to the number the system can keep track of.)

NOTE
The n option is not supported under csh.

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the shell, and
thus cannot be waited for.

If n is not an active process ID, all your shell's currendy active background
processes are waited for and the return code will be zero.

WALL(l) WALL(l)

NAME
wall - write to all users

SYNOPSIS
/etc/wall

DESCRIPTION
wall reads its standard input unul an end-of-file. It then sends this message to
all currendy logged-in users preceded by:

Broadcast Message from . . .

It is used to warn all users, typically prior to shutting down the system.

The sender must be super-user to override any protections the users may have
invoked [see

FILES
/dev/tty*

SEE ALSO
mesg(l), write(l).

DIAGNOSTICS
Cannot send to ...

when the open on a user's tty fde fails.

WC(1) WC(1)

NAME
wc - word count

SYNOPSIS
wc [-lwc] [names]

DESCRIPTION
wc counts lines, words, and characters in the named fdes, or in the standard
input if no names appear. It also keeps a total count for all named fdes. A
word is a maximal string of characters delimited by spaces, tabs, or new-lines.

The options 1, w, and c may be used in any combination to specify that a subset
of lines, words, and characters are to be reported. The default is -lwc.

When names are specified on the command line, they will be printed along with
the counts.

WHAT(1) WHAT(l)

NAME
what - identify SCCS fdes

SYNOPSIS
what [-s] fdes

DESCRIPTION
The what command searches the given files for all occurrences of the pattern
that gef(l) substitutes for %Z% [this is @(#) at this printing] and prints out
what follows until the first >, new-line, \, or null character. For example, if
the C program in fde f.c contains:

char ident[] = "@(#)identification information ";

and f.c is compiled to yield f.o and a.out, then the command:

what f.c f.o a.out

will print:

f.c:
identification information

f.o:
identification information

a.out:
identification information

what is intended to be used in conjunction with the command #er(l), which
automatically inserts identifying information, but it can also be used where the
information is inserted manually. Only one option exists:

-s Quit after finding the first occurrence of pattern in each file.

SEE ALSO
get(l), help(l).

DIAGNOSTICS
Exit status is 0 if any matches are found, otherwise 1. Use help (I) for
explanations.

BUGS
It is possible that an unintended occurrence of the pattern @(#) could be found
just by chance, but this causes no harm in nearly all cases.

WHO(l) WHO(l)

NAME
who - who is on the system

SYNOPSIS
who [-uTIHqpdbrtas] [-n x] [file]

who am i

who am I

DESCRIPTION
The who command can list the user's name, terminal line, login time, elapsed
time since activity occurred on the line, and the process ID of the command
interpreter (shell) for each current CTIX system user. It examines the /etc/utmp
fde at login time to obtain its information. If file is given, that fde [which must
be in utmp(4) format] is examined. Usually, file is /etc/wtmp, which contains a
history of all the logins since the fde was last created.

Used with the am i or am I option, who identifies the invoking user.

The general format for output follows:

name [state] line time [idle] [pid] [comment] [exit]

The name, line, and time information is produced by all options except -q; the
state information is produced only by -T; the idle and pid information is
produced only by -u and -1; and the comment and exit information is produced
only by -a. The information produced for -p, -d, and -r is explained during the
discussion of each option, below.

With options, who can list logins, logoffs, reboots, and changes to the system
clock, as well as other processes spawned by the init process. These options
are:

-u Lists only those users currendy logged in. The name is the user's login
name. The line is the name of the line as found in the directory /dev.
The time is the time the user logged in. The idle column contains the
number of hours and minutes since activity last occurred on that
particular line. A dot (.) indicates that the terminal has seen activity in
the last minute and is therefore "current." If more than 24 hours have
elapsed or the line has not been used since boot time, the entry is
marked old. This field is useful when trying to determine whether a
person is working at the terminal or not. The pid is the process ID of the
user's shell. The comment is the comment field associated with this line
as found in /etc/inittab [see init tab (4)]. This can contain information
about where the terminal is located, the telephone number of the dataset,
the type of terminal if hard-wired, and so on.

WHO(l) WHO(l)

-T This option is the same as the -s option, except that the state of the
terminal line is printed. The state describes whether someone else can
write to that terminal. A plus sign (+) appears if the terminal is
writable by anyone; a minus sign (-) appears if it is not Note that root
can write to all lines with a + or a - in the state field. If a bad line is
encountered, a ? is printed.

-I Lists only those lines on which the system is waiting for someone to
login. The name field is LOGIN in such cases. Other fields are the same
as for user entries except that the state field does not exist.

-H Prints column headings above the regular output

-q A quick who, displaying only the names and the number of users
currendy logged on. When used, all other options (except -n) are
ignored.

-n x This option takes a numeric argument, x, which specifies the number of
users to display per line. Note that x must be at least 1. The -n option
must be used with the -q option.

-p Lists any other process that is currently active and has been previously
spawned by init. The name field is the name of the program executed
by init as found in /etc/inittab. The state, line, and idle fields have no
meaning. The comment field shows the ID field of the line from
/etc/inittab that spawned this process; see inittab (4).

-d Displays all processes that have expired and not been respawned by init.
The exit field appears for dead processes and contains the termination
and exit values [as returned by wait(2)], of the dead process. This can
be useful in determining why a process terminated.

-b Indicates the time and date of the last reboot

-r Indicates the current run-level of the init process. In addition, it
produces the process termination status, process ID, and process exit
status [see utmp(4)] under the idle, pid, and comment headings,
respectively.

-t Indicates the last change to the system clock by root [determined
through use of the date (I) command], see .vw(l).

-a Processes /etc/utmp or the named file with all options enabled.

-s This default option lists only the name, line, and time fields.

Note to the super-user: after a shutdown to the single-user state, who returns a
prompt; the reason is that since /etc/utmp is updated at login time and there is

WHO(l) WHO(l)

no login in single-user state, who cannot report accurately on this state, who am
i, however, returns the correct information.

FILES
/etc/utmp
/etc/wtmp
/etc/inittab

SEE ALSO
date(l), init(lM), login(l), mesg(l), su(lM). wait(2), inittab(4), utmp(4).

WHODO(IM) WHODO(IM)

NAME
whodo - who is doing what

SYNOPSIS
/etc/whodo

DESCRIPTION
whodo produces formatted and dated output from information in the letc/utmp
and letclpsjlata fdes.

The display is headed by the date, time and machine name. For each user
logged in, device name, user-ID and login time is shown, followed by a list of
active processes associated with the user-ID. The list includes the device name,
process-ID, CPU minutes and seconds used, and process name.

EXAMPLE
The command:

whodo

produces a display like this:

Tue Mar 1215:48:031985
bailey

tty009 men 8:51
tty009 28158 0:29 sh

tty052 bdr 15:23
tty052 21688 0:05 sh
tty052 22788 0:01 whodo
tty052 22017 0:03 vi
tty052 22549 0:01 sh

sxt/003 lee 10:20
tty008 6536 0:05 sh
tty008 6748 0:01 shl
sxt001 6751 0:01 sh
sxt002 6761 0:05 sh

FILES
/etc/passwd
/etc/ps_data
/etc/utmp

SEE ALSO
ps(l), who(l).

WM(1) WM(1)

NAME
wm - window management

SYNOPSIS

exec /usr/local/bin/wm [-k][-s][- -] [passparam]

DESCRIPTION
The wm program is the window manager. It provides services to application
programs running under its control and to users using terminals under its
control. The window manager can divide the terminal screen into windows that
the user can use like separate terminals. Other services include placement, size,
scrolling, and synchronization of windows. Note that wm requires a
Convergent Technologies Programmable Terminal or Graphics Terminal on a
cluster line. The window manager must be running for the window
management library functions to work.
The window manager is normally executed in place of the user's login shell by
the exec command in /etc/profile or the user's own .profile. The window
manager then executes the user's shell each time the user splits a window. The
SHELL environment variable [normally set by login(\M) to /bin/sh] provides
the full pathname of the initial program run in the windows.
When wm starts, the user sees four regions on the screen, going from top to
bottom:

message line
A single line, always at the top of the screen. It holds
messages and prompts from application programs.

tag line A single line, always above each window, which labels the
particular application program or display that is active in the
window.

window The main display area used by programs. Text input and
output to the shell or an application program goes here. The
window is a window into a virtual display. An application
program can use the virtual display as a 28-line screen,
regardless of the size of the window. The virtual display is
usually larger than the window. Normally the window
manager automatically positions the window over the part of
the virtual display that contains the cursor. If the user
program moves the cursor to a part of the virtual display not
in the window, the window manager scrolls the window until
the cursor is visible again. The user can also scroll the
display (see below).

WM(1) WM(1)

function key line
A single line, always at the bottom of the screen, that labels
the function keys for the currently active window.

The wm program accepts user commands activated by the ACTION key; such
commands are not seen by the user program. Use the ACTION key like the
CODE or SHIFT keys: hold down the ACTION key and press the other key used
with i t Holding down the ACTION key changes the function key line to show
how ACTION changes the meanings of the function keys.

Valid wm user commands follow:

ACTION-FIO (SPLIT)
Split the active window, creating a new window. The new window
and its tag line replace the bottom half of the window being split. Any
program running in the old window is unaffected. The virtual display
of the old window is unchanged, though less of it is visible. The user
shell then starts up in the new window.

The new window is active; all other windows are inactive. Programs
running in inactive windows continue to run, but input calls will not
return until the user reactivates the window and types something.
Keyboard input goes to the active window.

Each window, whether active on inactive, has its own message line,
function key line, and cursor, but the terminal only displays them if
they belong to the active window. (Application programs can also
make the cursor invisible.) If an application program in a inactive
window writes to the message line, the message is not visible until you
make that window active again.

On Programmable Terminals the active window's tag line is displayed
full intensity, with the other tag lines displayed half intensity. On
Graphics Terminals the active window's tag line is displayed in bold,
with the other tag lines displayed without bold.

When the SPLIT key creates a new window, wm automatically
provides a program to run in the window. The program is a process
group leader; the new process group is controlled by the new window
and has terminal fde descriptors associated with the new window. The
program is a shell unless wm was run with the -k option. When all
processes in the process group die, wm automatically closes the
window.

- 2 -

WM(1) WM(1)

The SPLIT key becomes inoperative if the terminal already displays its
maximum number of windows or if a user program has disabled
window splitting.

ACTION-F9 (BELOW)
The window below the active window becomes the active window
with the old active window becoming inactive. The new active
window takes over the message line and the function key line, and its
cursor becomes visible.

ACTION-I is the same as ACTION-F9.

ACTTON-F8 (ABOVE)
The window above the active window becomes the active window.
ACTION-T is the same as ACTION-F8.

ACTION-n
Activate window n, where n is a number from 1 to 4. A window's
number is assigned when it's first created, with a new window getting
the lowest unused number. Unless erased by a user program, the
window number is displayed on the left end of the tag line.

ACTION-F7 (SWAP I)
The active window and the window below it trade places.

ACTION-F6 (SWAP T)
The active window and the window above it trade places.

ACTION-F5 (SHRINK)
The active window decreases in size by 1 line. Ignored if the window
is already 0 lines long (only the tag line visible).

ACTION-SHIFT-F5
The active window decreases in size by 4 lines. If the window is
already less than 4 lines long, it becomes 0 lines long.

ACTION-CODE-F5
The active window becomes 0 lines long.

Shrinking the top window increases the size of the window below; shrinking
any other window increases the size of the window above.

ACTION-F4 (GROW)
The active window increases in size by 1 line. Ignored if the other
windows are all 0 lines long.

- 3 -

WM(656) WM(1)

ACTI0N-SHIFT-F4
The active window increases in size by 4 lines. If the other windows
don't have 4 lines to spare, the active window increases until all other
windows are 0 lines long.

ACTION-F3 (MAX)
ACTION-CODE-F4

The active window increases in size until all other windows are 0 lines
long.

Increasing the top window decreases the size of the window below; increasing
any other window decreases the size of window below. If the window that
would otherwise shrink is already 0 lines long, the next window shrinks. If all
the windows below the second or third window are 0 lines long, space comes
from the windows above.

ACTION-SCROLL UP
The active window is scrolled up a line. Ignored if the window already
shows the very bottom of the virtual display or if the cursor is on the
window's top line.

ACTION-SCROLL DOWN
The active window is scrolled down a line. Ignored if the window
already shows the very top of the virtual display or if the cursor is on
the window's bottom line.

The wm command understands the following options:

-k Run keyprompt(1) in the first window and in manually-created (SPLIT
key) windows instead of the shell.

-s Disable the SPLIT key. The user cannot create new windows, but
programs running under wm still can.

End of wm options. Subsequent parameters are passed to the shell,
keyprompt, or the Office Applications Interface, even if they begin
with a dash (-). Parameters other than options are passed unchanged to
programs executed by wm.

The wm program uses or sets the following environment parameters:

TERM If already set, wm passes it unchanged to its own children. If
not already set, wm has the terminal identify itself and sets
TERM to pt or gt accordingly.

WM(657) WM(1)

SHELL Name of the shell's executable file. If -k and -c aren't
specified, SHELL is the initial program in the first window
and in user-created (SPLIT windows. If -k or -c is specified,
SHELL must still have a useful value, such as Ibinlsh.

TERMPARM If the user's terminal is a Graphics Terminal, wm reads the 32
bytes in the terminal's EAPROM, codes them in hexadecimal,
and provides its children with those 64 digits in
TERMPARM.

SEE ALSO
sh(l).

WARNING
If a program quickly outputs two things at the virtual display's top and bottom,
the user can easily miss one of them. This normally is the fault of programs,
originally designed for terminals without window features, that use the bottom
line as a message line. Use the terminal message line instead.

BUGS
Message sent by write (1) appear only in the first window.

Some cj/i(1) features may not work with wm.

WRITE (1) WRITE(l)

NAME
write - write to another user

SYNOPSIS
write user [line]

DESCRIPTION
write copies lines from your terminal to that of another user. When first called,
it sends the message:

Message from yourname (tty???) [date]...

to the person you want to talk to. When it has successfully completed the
connection, it also sends two bells to your own terminal to indicate that what
you are typing is being sent

The recipient of the message should write back at this point. Communication
continues until an end of fde is read from the terminal, an interrupt is sent, or
the recipient has executed "mesg n ." At that point write writes EOT on the
other terminal and exits.

If you want to write to a user who is logged in more than once, the line
argument may be used to indicate which line or terminal to send to (for
example, ttyOOO); otherwise, the first writable instance of the user found in
/etc/utmp is assumed and the following message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg(l) command.
Writing to others is normally allowed by default. Certain commands, such as
nroff and pr(1) disallow messages in order to prevent interference with their
output However, if the user has super-user permissions, messages can be forced
onto a write-inhibited terminal.

If the character ! is found at the beginning of a line, write calls the shell to
execute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to
another user, wait for them to write back before starting to send. Each person
should end a message with a distinctive signal [that is, (o) for "over"] so that
the other person knows when to reply. The signal (oo) (for "over and out") is
suggested when conversation is to be terminated.

WRITE(l) WRITE (1)

FILES
/etc/utmp to find user

/bin/sh to execute !

SEE ALSO
mail(l), mesg(l), pr(l), sh(l), who(l).

DIAGNOSTICS
"user is not logged on" if the person you are trying to write to is not logged on.

"Permission denied" if the person you are trying to write to denies that
permission (with mesg).

"Warning: cannot respond, set mesg -y" if your terminal is set to mesg n and
the recipient cannot respond to you.

"Can no longer write to user" if the recipient has denied permission (mesg n)
after you had started writing.

XARGS(l) XARGS(l)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS

xargs [flags] [command [initial-arguments]]

DESCRIPTION
xargs combines the fixed initial-arguments with arguments read from standard
input to execute the specified command one or more times. The number of
arguments read for each command invocation and the manner in which they are
combined are determined by the flags specified.
command, which may be a shell file, is searched for, using one's $PATH. If
command is omitted, /bin/echo is used.
Arguments read in from standard input are defined to be contiguous strings of
characters delimited by one or more blanks, tabs, or new-lines; empty lines are
always discarded. Blanks and tabs may be embedded as part of an argument if
escaped or quoted. Characters enclosed in quotes (single or double) are taken
literally, and the delimiting quotes are removed. Outside of quoted strings a
backslash (\) will escape the next character.

Each argument list is constructed starting with the initial-arguments, followed
by some number of arguments read from standard input (Exception: see -i flag).
Flags -i, -1, and -n determine how arguments are selected for each command
invocation. When none of these flags are coded, the initial-arguments are
followed by arguments read continuously from standard input until an internal
buffer is full, and then command is executed with the accumulated args. This
process is repeated until there are no more args. When there are flag conflicts
(for example, -1 vs. -n), the last flag has precedence. Flag values are:

-1 number command is executed for each non-empty number lines of
arguments from standard input. The last invocation of command
will be with fewer lines of arguments if fewer than number
remain. A line is considered to end with the first new-line unless
the last character of the line is a blank or a tab; a trailing blank/tab
signals continuation through the next non-empty line. If number
is omitted, 1 is assumed. Option -x is forced.

-ireplstr Insert mode: command is executed for each line from standard
input, taking the entire line as a single arg, inserting it in initial-
arguments for each occurrence of replstr. A maximum of 5
arguments in initial-arguments may each contain one or more
instances of replstr. Blanks and tabs at the beginning of each line

1) XARGS(1)

are thrown away. Constructed arguments may not grow larger
than 255 characters, and option -x is also forced. {} is assumed
for replstr if not specified.

-nnumber Execute command using as many standard input arguments as
possible, up to number arguments maximum. Fewer arguments
will be used if their total size is greater than size characters, and
for the last invocation if there are fewer than number arguments
remaining. If option -x is also coded, each number arguments
must fit in the size limitation, else xargs terminates execution.

-t Trace mode: The command and each constructed argument list are
echoed to file descriptor 2 just prior to their execution.

-p Prompt mode: The user is asked whether to execute command
each invocation. Trace mode (-t) is turned on to print the
command instance to be executed, followed by a ? . . . prompt. A
reply of y (optionally followed by anything) will execute the
command; anything else, including just a carriage return, skips
that particular invocation of command.

-x Causes xargs to terminate if any argument list would be greater
than size characters; -x is forced by the options -i and -1. When
neither of the options -i, -I, or -n are coded, the total length of all
arguments must be within the size limit.

-ssize The maximum total size of each argument list is set to size
characters; size must be a positive integer less than or equal to
470. If -s is not coded, 470 is taken as the default. Note that the
character count for size includes one extra character for each
argument and the count of characters in the command name.

-eeofstr eofstr is taken as the logical end-of-file string. Underbar (_) is
assumed for the logical EOF string if -e is not coded. The value -e
with no eofstr coded turns off the logical EOF string capability
(underbar is taken literally), xargs reads standard input until
either end-of-file or the logical EOF string is encountered.

xargs will terminate if either it receives a return code of -1 from, or if it cannot
execute, command. When command is a shell program, it should explicitly exit
[see sh(1)] with an appropriate value to avoid accidentally returning with -1.

XARGS (1) XARGS(l)

EXAMPLES
The following will move all files from directory $1 to directory $2, and echo
each move command just before doing it:

Is $1 | xargs -i -t mv $1/{} SZ'{}

The following will combine the output of the parenthesized commands onto one
line, which is then echoed to the end of fde log:

(logname; date; echo $0 $*) | xargs » l o g

The user is asked which files in the current directory are to be archived and
archives them into arch (1.) one at a time, or (2.) many at a time.

1. Is | xargs -p -I ar r arch
2. Is | xargs -p -I | xargs ar r arch

The following will execute diff(\) with successive pairs of arguments originally
typed as shell arguments:

echo $* | xargs -n2 diff

SEE ALSO
sh(l).

XSTR(l) XSTR(l)

NAME
xstr - extract and share strings in C programs

SYNOPSIS
xstr -c source

xstr

xstr source

DESCRIPTION
xstr creates a version of a C program in which all strings are contained in a
single external array, xstr. This optimizes the program in two ways:

• Redundant characters are removed from the object file. A string that is
identical to a string earlier in the program is eliminated. A string that
is a terminal substring of a longer string is also eliminated, but only if
xstr sees the longer string First

• The xstr array can be made read-only (shared), reducing space and
swapping.

Compiling and linking a program with xstr requires three changes in the usual
procedure:

1. Instead of compiling the source fdes, pass each source fde to xstr with
the -c option (see first synopsis above). This produces a file x.c which
is compiled in place of source.

X.c contains the same code as source but with each string replaced by
an expression of the form (&xstr[n«mAer]), where number is the
appropriate offset in xstr. xstr also creates or updates the fde strings
in the current directory to include strings encountered in source.

Source can be a -, indicating standard input. This is useful when the C
preprocessor produces or suppresses strings. The command to use the
preprocessor with xstr takes the form

cc -E source | xstr -c -

2. Run xstr without parameters (second synopsis above), xstr uses strings
to create xs.c, a file that declares the xstr array. Compile xs.c.

3. Link the object fde compiled from xs.c (normally called xs.o) together
with all the object fdes produced in step 1.

Strings is only touched when a string is added or removed. Thus make (I) can
speed things up by making xs.o dependent on strings.

XSTR(l) XSTR(l)

If a program has a single source file, pass it to xstr without the -c option (third
synopsis above). This creates x.c and xs.c without touching strings

EXAMPLE
The following makefile uses xstr to produce a program from three source files:
main.c, uno.c, and omega.c.

a.out: maln.o uno.o omega.o xs.o
cc main.o uno.o omega.o xs.o

xs.o: strings
xstr
cc -c xs.c

.c.o:
cc -E $*.c | xstr -c -
cc -c x.c
mv x.o $*.o

FILES
strings
x.c
xs.c
/tmp/xs*

strings found in source
massaged C source
definition of xstr array
Temp file

Y A C C (l) Y A C C (l)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vdlt] grammar

DESCRIPTION
The yacc command converts a context-free grammar into a set of tables for a
simple automaton which executes an LR(1) parsing algorithm. The grammar
may be ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a
program yyparse. This program must be loaded with the lexical analyzer
program, yylex, as well as main and yyerror, an error handling routine. These
routines must be supplied by the user, /ejc(l) is useful for creating lexical
analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a description
of the parsing tables and a report on conflicts generated by ambiguities in the
grammar.

If the -d flag is used, the file y.tab.h is generated with the #define statements
that associate the yacc-assigned "token codes" with the user-declared "token
names". This allows source files other than y.tab.c to access the token codes.

If the -1 flag is given, the codc produced in y.tab.c will not contain any #Iine
constructs. This should only be used after the grammar and the associated
actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional
compilation control. By default, this code is not included when y.tab.c is
compiled. However, when yacc's -t option is used, this debugging code will be
compiled by default. Independent of whether the -t option was used, the
runtime debugging code is under the control of YYDEBUG, a preprocessor
symbol. If YYDEBUG has a non-zero value, then the debugging code is
included. If its value is zero, then the code will not be included. The size and
execution time of a program produced without the runtime debugging code will
be smaller and slightly faster.

FILES
y.output
y.tab.c
y.tab.h
yacc.tmp,
yacc.debug, yacc.acts
/usr/lib/yaccpar

defines for token names

temporary files
parser prototype for C programs

YACC(l) YACC(l)

SEE ALSO
lex(l).

UNIX System VRelease 3.2 Programmer s Guide.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the
standard error output; a more detailed report is found in the y.output file.
Similarly, if some rules are not reachable from the start symbol, this is also
reported.

CAVEAT
Because file names are fixed, at most one yacc process can be active in a given
directory at a given time.

