CTIX™ OPERATING SYSTEM MANUAL

Version B
Volume 2

Specifications Subject to Change.

Convergent Technologies and NGEN are registered trademarks of
Convergent Technologies, Inc.

Art Designer, Convergent, CT-DBMS, CT-MAIL, CT-Net,
CTIX, CTOS, DISTRIX, Document Designer, The Operator,
AWS, CWS, IWS, MegaFrame, MightyFrame,
MiniFrame, MiniFrame Plus, Voice/Data Services,
Voice Processor, and X-Bus are trademarks of
Convergent Technologies, Inc.

CTIX is derived from UNIX System V by Convergent
Technologies under license from AT&T. UNIX is a trademark of
AT&T Bell Laboratories.

Material excerpted from the UNIX System V User Reference
Manual, Administrator Reference Manual, and Programmer
Reference Manual is Copyright 1984 by AT&T Technologies.
Reprinted by permission.

This software and documentation is based in part on the Fourth
Berkeley Software Distribution under license from the Regents of
the University of California.

This manual was prepared on a Convergent Technologies
MegaFrame Computer System and was printed on an Imagen
8/300 Laser Printer.

First Edition (November 1985) B-09-00635-01
Update Notice 1 (May 1986) 09-00793-01

Copyright © 1985, 1986 by Convergent Technologies, Inc.,
San Jose, CA. Printed in USA.

All rights reserved. Title to and ownership of the documentation
contained herein shall at all times remain in Convergent
Technologies, Inc., and/or its suppliers. The full copyright
notice may not be modified except with the express written
consent of Convergent Technologies, Inc.

HOW TO USE THIS MANUAL

The CTIX Operating System Manual, Version B, describes the
commands, system calls, libraries, data files, and device
interfaces that make wup the CTIX Operating System on
MiniFrame Computer Systems and MightyFrame Computer
Systems. Only internal-use and unbundled software products are
excluded. This manual should always be your starting point
when you need to find the documentation for a CTIX feature
with which you are unfamiliar.

The manual consists of a large number of short entries,
sometimes called “the man pages,’” after the command which
accesses the entries when they are kept online. Each entry
briefly documents some feature of CTIX. Some features require
longer documentation than an entry in this manual; such features
have an entry that outlines the feature and cross-references the
manual that documents the feature fully. Entries that do not
refer to other manuals are self-contained and are the final word
on the features they describe.

Organization of the manual. The entries are organized into
seven sections in two volumes:

Volume 1:
1. Commands and Application Programs.

Volume 2:

System Calls.

Subroutines and Libraries.
File Formats.
Miscellaneous Facilities.
Games.

Special files.

N ok

Within each section, entries are alphabetical by title, except for
an intro entry at the beginning of each section.

Entry Title Conventions. An entry title looks like this
example:

erf(3M)

ntry Type
ection Number

ame

5/86 -1-

Name is the name of the entry. Section Number indicates the
section that contains the entry. In this case, the entry is in
Section 3, which is in Volume 2. Entry Type is only on entries
that belong to special categories; refer to the section’s intro entry
for an explanation. In this case, a reference to intro(3) would tell
you that erf3M) describes functions from the Math Library,
which the C compiler does not load by default.

Finding the entry you need. To find out which entry you
need, refer to the following guides:

. The Permuted Index. This indexes each significant word
in each entry’s description. It is useful when you only
have a general notion what you’re looking for. It is also
useful when you know the name of the command,
function, etc., that you are interested in, but there is no
entry by that name. To simplify its use, a complete
Permuted Index for both volumes is in each volume.

. The Table of Contents. This is a simple list of entries,
by section, together with the entry descriptions. Volume
1 has a Table of Contents for Section 1. Volume 2 has a
Table of Contents for Sections 2 through 7.

. The Table of Related Entries. For Volume 1 only. A
table of entries organized so that related entries are
grouped together.

Section organization. Each section begins with an intro entry,
which provides important general information for that section.

Section 1, Commands and Application Programs, describes
programs intended to be invoked directly by the user or by
command language procedures, as opposed to subroutines, which
are intended to be called by the user’s programs. Commands
generally reside in the directory /bin (for binary programs).
Some programs also reside in /usr/bin, to save space in /bin.
These directories are searched automatically by the command
interpreter called the shell. Commands that were not
transported from UNIX System V reside in /usr/local/bin; this
directory is recommended for locally implemented programs.
Some administrative commands reside in /etc and various other
places. The /etc directory is searched automatically if you are
logged in as root; otherwise type out the full path name given
under SYNOPSIS or change the PATH environment variable to
include the command’s directory.

Section 2, System Calls, describes the entries into the CTIX
kernel, including the C language interfaces.

5/86 -2-

Section 3, Subroutines and Libraries, describes the available
library functions or subroutines. Their binary versions reside in
various system libraries in the directories /lib and /usr/lib. See
intro(3) for descriptions of these libraries and the files in which
they are stored.

Section 4, File Formats, documents the structure of particular
kinds of files; for example, the format of the output of the link
editor is given in a.out(4). Excluded are files used by only one
command (for example, the assembler’s intermediate files). In
general, the C language struct declarations corresponding to
these formats can be found in the directories /usr/include and
/usr/include/sys.

Section 5, Miscellaneous Facilities, contains a variety of things.
Included are descriptions of character sets, macro packages, etc.

Section 6, Games, describes the games and educational programs
that reside in the directory /usr/games.

Section 7, Special Files, discusses the characteristics of files that
actually refer to input/output devices.

Entry organization. All entries are based on a common
format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly
states its purpose.

The SYNOPSIS part summarizes the use of the program
being described. A few conventions are used, particularly in
Section 1 {Commands):

Boldface strings are literals and are to be typed just as
they appear.

Italic strings usually represent substitutable argument
prototypes and program names found elsewhere in the
manual (they are underlined in the typed version of the
entries).

Square brackets [] around an argument prototype
indicate that the argument is optional. When an
argument prototype is given as ‘“‘name’” or ‘“file”, it
always refers to a file name.

Ellipses ... are used to show that the previous
argument prototype may be repeated.

A final convention is used by the commands themselves.
An argument beginning with a minus -, plus +, or
equal sign = is often taken to be some sort of flag

argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files
whose names begin with —, +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where
appropriate.

The FILES part gives the file names that are built into the
program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic
indications that may be produced. Messages that are
intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes
deficiencies. Occasionally, the suggested fix 1is also
described.

A table of contents and a permuted index derived from that
table precede Section 1. On each tndex line, the title of the
entry to which that line refers is followed by the appropriate
section number in parentheses. This is important because there
is considerable duplication of names among the sections, arising
principally from commands that exist only to exercise a
particular system call.

If the entries are online, they are available via the catman(1)
command.

PERMUTED INDEX

This index includes entries for all pages of both Volumes 1 and 2.
The entries themselves are based on the one-line descriptions or
titles found in the NAME portion of each manual page; the
significant words (keywords) of these descriptions are listed
alphabetically down the center of the index.

The index is actually a keyword-in-context (KWIC) index that
has three columns. To use the index, read the center column to
look up specific commands by name or by subject topics. Note
that the entry may begin in the left column or wrap around and
continue into the left column. A period (.) marks the end of the
entry, and a slash (/) indicates where the entry has been
continued or truncated. The right column gives the manual page
where the command or subject is described.

/functions of HP 2640 and 2621-series terminals. . . hp(1)
/special functions of HP 2640 and 2621-series/ . . . hp(1)
special functions of/ 300, 300s: handle 300(1)
/functions of DASI 300 and 300s terminals. . . 300(1)
functions of DASI/ 300, 300s: handle special 300(1)
[of DASI 300 and 300s terminals. 300(1)
/ltol3: convert between 3-byte integers and long/ . . 13tol(3C)
comparison. diff3: 3-way differential file . diff3(1)
TEKTRONIX 4014/ 4014: paginator for the . . . 4014(1)
/[for the TEKTRONIX 4014 terminal. 4014(1)
functions of the DASI/ 450: handle special 450(1)
functions of the DASI 450 terminal. /special . . . 450(1)
/parameters for Xylogics 772 half-inch tape/ . xmset(1M)
between long integer/ a64l, 164a: convert 2641(3C)
fault. abort: generate an IOT . . abort(3C)
absolute value. abs: return integer abs(3C)
adb: absolute debugger. adb(l)
abs: return integer absolute value. abs(3C)
ceiling, remainder, absolute value/ /floor, . . . floor(3M)
tiop: terminal accelerator interface. tiop(7)

socket. accept:
connection on a socket.

accept a connection on a
accept: accepta

. accept{2N)
. accept(2N)

allow/prevent LP/ accept, reject: « . . « . . . accept{1M)
times of/ touch: update access and modification . . touch(1)
times. utime: set file access and modification . . utime(2)
accessibility of a/ access: determine access(2)
numerical/ graphics: access graphical and graphics(1G)
drvalloc, drvbind: access loadable drivers. . . . lddrv(2)
in a/ sputl, sgetl: access long integer data sputl(3X)
sadp: disk access profiler. sadp(1M)
common object file access routines. ldfen: . . ldfen(4)
file systems for optimal access time. /copy . . dcopy(IM)

5/86

locking: exclusive
/endutent, utmpname:
access: determine

or disable process
accteon2: connect-time
acctpre2: process

shell procedures for
acctwtmp: overview of
/and miscellaneous
diskusg: generate disk
acct: per-process
/search and print process
/merge or add total
/summary from per-process
/manipulate connect
runacct: run daily
process accounting.
accounting file format.
from per-process/
print process/
connect-time/
accounting. acctconl,
accton, acctwtmp:/
acctwtmp:/ acctdisk,
total accounting files.
acctdisk, acctdusg,
process accounting.
accounting. acctprel,
/acctdusg, accton,

sin, cos, tan, asin,
killall: kill all

sag: system

sal, sa2, sadc: system
sar: system

SCCS file editing
process data and system
protocols. Dialers:
hopefully interesting,

acctmerg: merge or
putenv: change or

/set DARPA Internet
/inet_netof: Internet
setenet: write Ethernet
administer SCCS files.
admin: create and
interface. swap: swap
Cave.

alarm: set a process
alarm clock.

data segment space
calloe: main memory
fast main memory
accept, reject:

running process/ renice:
sort: sort

and link editor output.

5/86

access to regions of a/ . .
access utmp file entry. . .
accessibility of a file. . . .
accounting. /enable . . .
accounting. acctconl, . .
accounting. acctprel, . .
accounting. /turnacct: ..
accounting and/ /accton,

accounting commands. . .
accounting data by user/ .
accounting file format. . .
accounting file(s).
accounting files. .,
accounting records. . . .
accounting records. . . .
accounting.
acct: enable or disable . .
acct: per-process
acctems: command summary
acctcom: search and . . .
accteconl, accteon2: . . .
acctcon2: connect-time . .
acctdisk, acctdusg, . . .
acctdusg, accton,
acctmerg: merge or add .
accton, acctwtmp:/ . . .
acctprel, acetpre2: . . .
acctpre2: process
acctwtmp: overview of/ .
acos, atan, atan2:/ . . .
active processes.
activity graph.
activity report package. .
activity reporter.
activity. /print current .
activity. /report
ACU/modem calling . . .
adage. /print a random, .
adb: absolute debugger. .
add total accounting/ . .
add valueto/ . . . o . .
address from node name. .
address manipulation/ . .
address on disk.
admin: create and
administer SCCS files. . .
administrative
advent: explore Colossal .
alarm clock.
alarm: set a process . . .
allocation. /change . . .
allocator. /realloc, . . .
allocator. /mallinfo: . . .
allow/prevent LP/ . . .
alter priority of
and /or merge files.
a.out: common assembler .

locking(2)
getut(3C)
access(2)
acct(2)
accteon(1M)
acctpre(1M)
acctsh(1M)
acct(1M)
acct(1M)
diskusg(1M)
acct(4)
acctcom(1)
acctmerg(1M)
acctems(1M)
fwtmp(1M)
runacct(1M)
acct(2)
acct(4)
acctems(1M)
acctcom(1)
acctcon(1M)
accteon(1M)
acct(1IM)
acct(1IM)
acctmerg(1M)
acct(1IM)
acctpre(1M)
acctpre(1M)
acet(1M)
trig(3M)
killall(1M)
sag(1G)
sar(1M)
sar(1)
sact(1)
timex(1)
Dialers(5)
fortune(6)
adb(1)
acctmerg(1M)
putenv(3C)
setaddr(1NM)
inet(3N)
setenet(1NM)
admin(1)
admin(1)
swap(1M)
advent(6)
alarm(2)
alarm(2)
brk(2)
mallo¢(3C)
malloc(3X)
accept(1M)
renice(1)
sort(1)
a.out(4)

/to commands and
maintainer for portable/
format.

number: convert
arithmetic/ be:
maintainer for/ ar:
cpio: format of cpio

ar: common

header of a member of an
[convert object and
Idahread: read the

tar: tape file

maintainer for portable
cpio: copy file

varargs: handle variable
[output of a varargs
xargs: construct

/get option letter from
expr: evaluate

echo: echo

be: arbitrary-precision
drill in number facts.
expr: evaluate arguments

/and detach serial lines
/locate a terminal to use
asa: interpret

carriage control/

ascii: map of

hd: hexadecimal and
character set.

long integer and base-64
atof: convert

strings: extract the
date/ /localtime, gmtime,
sin, cos, tan,

help:

editor/ a.out: common
as:

assertion.

assert: verify program
setbuf, setvbuf:

out the list of blocks
commands at a later/
cos, tan, asin, acos,
/tan, asin, acos, atan,
string to/

strtod,

integer. strtol, atol,
string to/ strtol,
slattach, sldetach:
process. wait:

and processing/
ungetc: push character
backgammon.

back: the game of

finc: fast incremental

5/86

application programs. .
ar: archive and library .
ar: common archive file

Arabic numerals to/ . .
arbitrary-precision . . .
archive and library . .
archive. .« . ¢ . 4 v &
archive file format. . .
archive file. /archive .
archive files to common/
archive header of a/ . .
archiver.
archives. /and library .
archives in and out. . .
argument list.
argument list. +
argument list(s) and/ .
argument vector. . . .
arguments asan/ . . .
arguments. .« « ¢ o o o
arithmetic language. . .
arithmetic: provide . .
as an expression. . . .
as: assembler.
as network interfaces. .
as the virtual system/ .
ASA carriage control/ .
asa: interpret ASA . .
ASCII character set. . .
ascii file dump.
ascii: map of ASCIT . .
ASCII string. /between

ASCII string to/ . . .
ASCII text strings in a/

asctime, tzset: convert .
asin, acos, atan, atan2:/

ask for help.
assembler and link . .
assembler.
assert: verifly program .
assertion. « . « . o o .
assign buffering to a/ .
associated with/ /print

at, batch: execute . . .
atan, atan2:/ sin, . . .
atan2: trigonometric/ .
atof: convert ASCII . .
atof: convert string to/ .
atoi: convert string to .
atol, atoi: convert . . .
attach and detach serial/
await completion of . .
awk: pattern scanning .
back into input stream.

back: the game of . . .
backgammon.
backup.

intro(1)

ar(1)

ar(4)
number(6)
be(1)

ar(1)

cpio(4)

ar(4)
ldahread(3X)
convert(1)
1dahread(3X)
tar(1)

vprintf(3S)
xargs(1)
getopt(3C)
expr(1)
echo(1)
be(1)
arithmetic(6)
expr(1)
as(1)
slattach{1NM)
conlocate(1M)
asa(1)
asa(l)
ascii(5)
hd(1)
ascii5)
a641(3C)
atof(3C)
strings(1)
ctime(3C)
trig(3M)
help(1)
a.out(4)
as(1)
assert(3X)
assert(3X)
setbuf(3S)
beheck(1M)
at(1)
trig(3M)
trig(3M)
atof(3C)
strtod(3C)
strtol(3C)
strtol(3C)
slattach(1NM)
wait(1)
awk(1)
unget¢(3S)
back(6)
back(6)
fine(1M)

recover files from a

terminal capability data
terminal capability data
/between long integer and
/(visual) display editor
proto file; set links
deliver portions of/

at a later time. at,
arithmetic language.

list of blocks/

drvload: system/ bre,
copy.

¢b: C program
j0, j1, jn, ¥0, y1, yn:

/install object files in
fread, fwrite:

table. bsearch:
/tdelete, twalk: manage
bind:

socket.

jack.

bj: the game of

beopy: interactive

sum: print checksum and
sync: update the super
/print out the list of
number of free disk
manipulate Volume Home
powerfail, drvload:/
segment space/

sorted table.

stdio: standard

setbuf, setvbuf: assign
mknod:

vme: VME

between host and network
swab: swap

cc:

cflow: generate

cpp: the

includes: determine

cb:

lint: a

cxref: generate

ctrace:

and share strings in
cprofile: setting up a

de: desk

cal: print

service.

system. cu:

returned by stat system
Dialers: ACU/modem

5,/86

backup tape. frec: frec(1M)
banner: make posters. . . . banner(l)
base. termecap: termcap(4)
base. terminfo: terminfo(4)
base-64 ASCII string. . . . a64l(3C)
basedonex. vi(1)

based on. /lists from . . . qlist(1)
basename, dirname: basename(1)
batch: execute commands . at(1)

be: arbitrary-precision . « be(1)
bcheck: print out the . . . bcheck(IM)
bcheckre, re, powerfail, . . . bre(1M)
beopy: interactive block . . beopy(1M)
bdiff: big diff. bdiff(1)
beautifier. eb(1)
Bessel functions. bessel(3M)
bfs: big file scanner. bfs(1)
binary directories. cpset{1M)
binary input/output. . . . fread(3S)
binary search a sorted . bsearch(3C)
binary search trees. tsearch(3C)
bind a name to a socket. . bind(2N)
bind: bind a name toa . . . bind(2N)
bj: the game of black . . . bj(6)

black jack. bj(6)

block copy. « « « + « « . . beopy(IM)
block count of a file. sum(1)
block. « ¢« v o v o0 o syne(1)
blocks associated with/ . bcheck(1M)
blocks. df:report df(IM)
Blocks (VHB). libdev: . . . libdev(3X)
bre, beheckre, re, bre(1M)
brk, sbrk: change data . . . brk(2)

bsearch: binary search a
buffered input/output/
buffering to a stream. . . .
build special file.
bus interface.
byte order. /values . . .

. . bsearch(3C)
. stdio{35)

setbuf(3S)
mknod(1M)
vme(7)

. byteorder(3N)

bytes. « « ¢ ¢ 0 000 . swab(3C)
C compiler. ce(1)

C flowgraph. cflow(1)

C language preprocessor. . . cpp(l)

C language preprocessor/ . . includes(1)
C program beautifier. . . . ¢b(1)

C program checker. lint(1)

C program/ . « . .« . . . exref(1)

C program debugger. . . . ctrace(1)
C programs. /extract . . . xstr(l)

C shell environment at/ . . cprofile(4)
cal: print calendar. cal(l)
calculator. de(1)
calendar. call)
calendar: reminder calendar(l)
call another computer . . . cu(1C)
call. stat: data stay(5)
calling protocols. Dialers(5)

malloc, free, realloc,
malloc, free, realloc,
/introduction to system
link and unlink system
requests to an LP/ lp,
termcap: terminal
terminfo: terminal

asa: interpret ASA
(variant of ex for

print files.

catman: create the

files for the manual.
advent: explore Colossal
beautifier.

directory.

commentary of an SCCS/
ceiling,/ floor,

/ceil, fmod, fabs: floor,
flowgraph.

delta: make a delta

of running process by
create an interprocess
terminal’s local RS-232
input/ ungete: push
for/ eqnchar: special
the user. cuserid: get
/Tgete, getw: get
/fpute, putw: put

ascii: map of ASCII
ASA carriage control
toascii; translate

isascii: classify

tr: translate

dodisk, lastlogin,/
directory.

/file system consistency
directories/ uucheck:
constant-width text/ cw,
mathematical/ eqn, neqn,
lint: a C program
password /group file
file systems with label
systems processed by/
documents/ mm, osdd,
of a file. sum: print
group. chown,

times: get process and
wait: wait for

file.

group of a file.
owner or group.
directory.

directory for a/
lastlogin,/ chargefee,
/isentrl, isascii:

5,/86

calloc: main memory/ . .
calloe, mallopt,/ « . « . .
calls and error numbers. .
calls. /unlink: exercise . .
cancel: send/cancel . . .
capability data base. . . .
capability data base. . . .
carriage control/
casual users). /editor . .
cat: concatenate and . . .
cat files for the/
catman: create the cat . .
Cave.
¢b: C program
cc: C compiler.
cd: change working . . .
cde: change the delta . .
ceil, fmod, fabs: floor, . .
ceiling, remainder,/ . . .
cflow: generate C
{change) to an SCCS/ . .
changing nice. /priority .
channel. pipe:
channels. /controlling . .
character back into . . .
character definitions . . .
character login name of .
character or word from a/
character or word on a/ .
characterset. . «
characters. /interpret . .
characters. /_tolower, . .
characters. /isentrl, . . .
characters.
chargefee, ckpacet, . . .
chdir: change working . .
check and interactive/ . .
check the UUCP . .
checkcw: prepare . .
checkeq: format
checker.
checkers. pwck, grpck: . .
checking. /labelit: copy
checklist: list of file . . .
checkmm: print/check . .
checksum and block count
chgrp: change owneror .
child process times. . . .
child process to stop or/ .
chmod: change mode. . .
chmod: change mode of .
chown: change owner and
chown, chgrp: change . .
chroot: change root . . .
chroot: change root . . .
ckpacct, dodisk, « « « . .
classify characters. « o

« s e s

L A T SN

malloc(3C)
malloc(3X)
intro(2)
link(1M)
Ip(1)
termcap(4)
terminfo(4)
asa(l)
edit(1)
cat(1)
catman(1)
catman(1)
advent(6)
¢b(1)

ee(1)

¢d(1)
cde(1)
floor(3M)
floor(3M)
cflow(1)
delta(l)
renice(1)
pipe(2)
tp(7)
ungetc(3S)
eqnchar(5)
cuserid(3S)
gete(3S)
pute(3S)
ascii(5)
asa(l)
conv(3C)
ctype(3C)
tr(1)
acctsh(IM)
chdir(2)
fsck(1M)
uucheck(1M)
cw(1)
eqn(1)
lint(1)
pwck(1M)
voleopy(1M)
checklist{4)
mm(1)
sum(1)
chown(1)
times(2)
wait(2)

acctsh(1M)
ctype(3C)

uucp spool directory
screen.

clri:

clear:

status/ ferror, feof,
interpreter) with
set a process alarm
cron:

used.

ldclose, ldaclose:
close:

descriptor.

fclose, fflush:

line-feeds.

advent: explore

deltas.

comb:

lines common to two/
nice: run a

root directory for a

env: set environment for
remd: remote shell

uux: CTIX to CTIX remote
hangups/ nohup: run a
with/ csh: a shell
getopt: parse

executable file for

/the standard /restricted
a stream to a remote
data and/ timex: time a
uuxqt: execute remote
stream to a remote
per-process/ acctems:
system: issue a shell
condition evaluation
time: time a

list(s) and execute
miscellaneous accounting
intro: introduction to
at, batch: execute
graphical and numerical
install: install

mkhosts: make node name
useful with graphical
cde: change the delta
format. ar:

link editor/ a.out:

and archive files to
access routines. ldfcn:
ldopen, ldaopen: open a
/line number entries of a
/ldaclose: close a

/the file header of a

Jof asection of a

/file header of a

5/86

clean-up. uucleanup: . .
clear: clear terminal
clear i-node.
clear terminal screen. . .
clearerr, fileno: stream . .
C-like syntax. /(command
clock. alarm:
clock demon.
clock: report CPU time .
close a common object/ .
close a file descriptor. . .
close: close afile . . « . «
close or flush a stream. . .
clri: clear i-node.
cmp: compare two files. .
col: filter reverse
Colossal Cave.
comb: combine SCCS . .
combine SCCS deltas. . .
comm: select or reject . .
command at low priority.

command. chroot:; change

command execution.
command execution. . . .
command execution. . . .
command immune to . .
(command interpreter) . .
command options.
command. path: locate .
command programming/ .
command. /for returning

command; report process .
command requests.
command. rexec: return .
command summary from .
command.

command. test:
command. .« . .+ ¢ . .
command. /argument . .
commands. fand
commands and application/
commands at a later/ . .
commands. /access . . .
commands. « « ¢« s . . .
commands. .« « + « o o

commands. /network . .
commentary of an SCCS/

common archive file
common assembler and .
common formats. jobject

common object file
common object file for/ .
common object file/ . . .
common object file. . . .
common object file. . . .
common object file. . . .
common object file. . . .

uucleanup(1M)
clear(1)
clri(1M)
clear(1)
ferror(3S)
¢esh(1)
alarm(2)
cron(1M)
clock(3C)
ldclose(3X)
close(2)
close(2)
fclose(3S)
clri(1M)
emp(1)
col(1)
advent(6)
comb(1)
comb(1)
comm(1)
nice(1)
chroot(1M)
env(1)
remd(1N)
uux(1C)
nohup(1)
csh(1)
getopt(1)
path(1)

sh(1)
remd(3N])
timex(1)
uuxqt(1M)
rexec(3N)
acctems(1M)
system(3S)
test(1)
time(1)
xargs(1)
acct(1M)
intro(1)
at(1)
graphics(1G)
install(1M)
mkhosts(1NM)
stat(1G)
cde(1)

ar(4)
a.out(4)
convert(1)
1dfen(4)
1dopen(3X)
ldIread(3X)
ldclose(3X)
1dfhread(3X)
1dlseek(3X)
ldohseek(3X)

[of a section of a
/section header of a
/section of a

symbol table entry of a
/symbol table entry of a
/to the symbol table of a
/line number entries in a
nm: print name list of
/information for a
[section header for a
/information from a
/retrieve symbol name for
symbol table/ syms:
filehdr: file header for
1d: link editor for

/print section sizes of
/select or reject lines
/report inter-process
/standard interprocess
create an endpoint for
/file for uuep

diff: differential file
cmp:

an SCCS file. scesdiff:
3-way differential file
diremp: directory
regular/ regemp, regex:
/regular expression
regular expression

term: format of

ce: C

tic: terminfo

yacc: yet another

/erfe: error function and
wait: await

pack, pcat, unpack:
symbol table/ ldtbindex:
cu: call another

files. cat:

command. test:

system.

uucp/ Devices:

config:

interface/ ifconfig:
spooling/ lpadmin:
terminal to use as the/
/wtmpfix: manipulate
connection on a socket.
getpeername: get name of
out-going terminal line
accept: accept a
connect: initiate a

part of a full-duplex
listen: listen for
accteonl, accteon2:

fsck, dfsck: file system
as the virtual system

5/86

common object file. . .
common object file. . .
common object file. . .
common object file. /a

common object file. . .
common object file. . .
common object file. . .
common object file. . .
common object file. . .
common object file, . .
common object file. . .
common object file/ . .
common object file . .
common object files, . .
common object files. . .
common object files. . .
common to two sorted/

communication facilities/
communication package.
communication. socket:

communications lines. .
comparator. .+ + . . .
compare two files. . . .
compare two versions of
comparison. diff3: . . .
cOmparison. « « » o »
compile and execute . .
compile and match/ . .
compile. regemp: . . .
compiled term file.. . .
compiler. . . . « ¢ .« .
compiler. « . « + & o .
compiler-compiler. . . .
complementary error/ .
completion of process. .
compress and expand/ .
compute the indexof a .
computer system. . . .
coucatenate and print .
condition evaluation . .
config: configure a CTIX
configuration file for . .
configure a CTIX system.
configure network . . .
configure the LP . . .
conlocate: locatea . . .
connect accounting/ . .
connect: initiatea . . .
connected peer.
connection. fan
connection on a socket.

connection on a socket.

connection. /shut down
connections on a socket.
connect-time accounting.
consistency check and/ .
console. /to use

ldrseek(3X)
ldshread(3X)
ldsseek(3X)
1dtbindex(3X)
1dtbread(3X)
1dtbseek(3X)
linenum(4)
nm(1)

reloc(4)
senhdr(4)
strip(1)
ldgetname(3X)
syms{4)
filehdr(4)
1d(1)

size(1)
comm(1)
ipes(1)
stdipc(3C)
socket(2N)
Devices(5)
diff(1)

emp(1)
scesdiff(1)
diff3(1)
diremp(1)
regemp(3X)
regexp(5)
regemp(1)
term(4)

ce(1)

tic(1IM)
yace(1)
erf(3M)
wait(1)
pack(1)
1dtbindex(3X)
cu{1C)

cat(1)

test(1)
config(1M)
Devices(5)
config(1M)
ifconfig{1NM)
lpadmin(1M)
conlocate(1M)}
fwtmp(1M)
connect(2N)
getpeername(2N)
dial(3C)
accept(2N)
connect(2N)
shutdown(2N)
listen(2N)
accteon(1M)
fsck(1M)
conlocate(1M)

terminal.

console:

math: math functions and
cw, checkew: prepare
mkfs:

list(s) and/ xargs:
/tbl, and eqn

with/ Uutry: try to

Is: list

toc: graphical table of
esplit:

Jinterpret ASA carriage
ioctl:

fentl: file

init, telinit: process
msgctl: message

semctl: semaphore
shmctl: shared memory
fentl: file

status inquiry and job
ve: version

772 half-inch tape
interface. tty:

local RS-232/ tp:
terminals. term:

units:

dd:

to English. number:
floating-point/ atof:
integers/ 13tol, ltol3:
integer and/ ab4l, 164a:
and archive files to/
/gmtime, asctime, tzset:
ecvt, fevt, gevt:

scanf, fscanf, sscanf:
archive files/ convert:
strtod, atof:

strtol, atol, atoi:
/htons, ntohl, ntohs:
dd: convert and

beopy: interactive block
and out. cpio:

optimal access/ dcopy:
label/ volcopy, labelit:
files. ¢p, In, mv:

rcp: remote file

system to CTIX system
CTIX-to-CTIX system file
for the UUCP/ uucico:
image file.

core: format of

atan, atan2:/ sin,
functions. sinh,

print checksum and block
we; word

or move files.

cpio: format of

5/86

console: console
console terminal. . . .
constants.
constant-width text for/
construct a file system. .
construct argument . .
constructs. .+
contact a remote system
contents of directory. .
contents routines.
context split.
control characters. . . .
control device.
control. + & 4 . 4 .
control initialization. . .
control operations. . .
control operations. . .
control operations. . .
control options. ., . . .
control. uustat: uuep .
control.
controller. /Xylogics . .
controlling terminal . .
controlling terminal’s .
conventional names for .
conversion program. . .
convert and copy a file.
convert Arabic numerals
convert ASCII string to
convert between 3-byte
convert between long .
convert: convert object .
convert date and time to/
convert floating-point/ .
convert formatted input.
convert object and . .
convert string to/ .
convert string to/
convert values between/
copy a file.
copy.
copy file archivesin . .
copy file systems for . .
copy file systems with .
copy, link or move . . .
copy.
copy. uuep: CTIX . . .
copy. [uupick: public .
copy-in/copy-out program
core: format of core . .
core image file.
cos, tan, asin, acos, . .
cosh, tanh: hyperbolic .
count of a file. sum: . .
count.
cp, In, mv: copy, link .
cpio archive.

console(7)
console(7)
math(5)
ew(1)
mkfs(1M)
xargs(1)
deroff(1)
Uutry(1M)
1s(1)
toc(1G)
esplit(1)
_asa(1)
ioctl(2)
fentl(2)
init(IM)
msgetl(2)
semctl(2)
shmetl(2)
fentl(5)
uustat(1C)
ve(l)
xmset(1M)
tty(7)
tp(7)
term(5)
units(1)
dd(1)
number(6)
atof(3C)
13t0l(3C)
a641(3C)
convert(1)
ctime(3C)
ecvt(3C)
scanf(3S)
convert(1)
strtod(3C)
strtol(3C)
byteorder(3N)
dd(1)
beopy(1M)
cpio(1)
deopy(1M)
voleopy(1M)
cp(1)
rep(1N)
uucp(1C)
uuto(1C)
uucico(1M)
core(4)
core(4)
trig(3M)
sinh(3M)
sum(1)
we(1)
ep(1)
cpio(4)

in and out.

archive.

preprocessor.

shell environment at/
files in binary/

clock: report

craps: the game of
craps.

images.

or rewrite an existing/
tmpnam, tempnam:
rewrite an/ creat:
fork:

ctags:

tmpfile:
communication. socket:
channel. pipe:

SCCS files. admin:
the manual. catman:
umask: set and get file

file.

crontab - user
generate C program
optimization/ curses:
generate hashing/
interpreter) with/

remote terminal.

file.

name for terminal.
gmtime, asctime, taset:/
software.

execution. uux: CTIX to
config: configure a

uucp: CTIX system to
system copy. uucp:
print name of current
get name of current
command execution. uux:
uuto, uupick: public
debugger.

computer system.

tht,

uname: print name of
uname: get name of
gethostname: get name of
editing/ sact: print

in the utmp file of the
getcwd: get path-name of
handling and/
interpolate smooth

login name of the user.
fields of each line of/

of each line of a/ cut:
constant-width text for/
program/

5/86

cpio: copy file archives . .
cpio: format of cpio . . .
cpp: the C language . . .
cprofile: settingupa C . .
cpset: install object . . .
CPU time used.
CIAPS. o o o o o o o o &«
craps: the gameof
crash: examine system . .
creat: create a new file . .
create a name fora/ . . .
create a new fileor . . .
create a new process. ..
create a tags file.
create a temporary file. .
create an endpoint for . .
create an interprocess . .
create and administer . .
create the cat files for . .
creation mask.
cron: clock demon. . . .
crontab - user crontab . .
crontab file.
cross-reference. cxref: . .
CRT screen handling and

crypt, setkey, encrypt: . .
csh: a shell (command . .
csplit: context split. .+ . .
ct: spawn getty toa . . .
ctags: create a tags . . .
ctermid: generate file . .
ctime, localtime,
ctinstall: install
CTIX remote command .
CTIX system. « o« + « 4+
CTIX system copy. .« . .
CTIX system to CTIX . .
CTIX system. uname: . .
CTIX system. uname: . .
CTIX to CTIX remote . .
CTIX-to-CTIX system file/
ctrace: C program
cu: call another .,
cubic: tic-tac-toe.
current CTIX system. . .
current CTIX system. . .
current host. . + . « . &
current SCCS file .+ . . .
current user. /theslot . .
current working/
curses: CRT screen . . .
curve. spline:
cuserid: get character . .
cut: cut out selected . . .
cut out selected fields . .
cw, checkew: prepare . .
cxref: generate C . . ., .

cpio(1)
cpio(4)
cpp(1)
cprofile(4)
cpset(1M)
clock(3C)
craps(6)
craps(6)
crash(1M)
creat(2)
tmpnam(3S)
creat(2)
fork(2)
ctags(1)
tmpfile(3S)
socket(2N)
pipe(2)
admin(1)
catman(1)
umask(2)
cron(1M)
crontab(1)
crontab(1)
cxref(1)
curses(3X)
erypt{3C)
csh(1)
esplit(1)
ct(1C)
ctags(1)
ctermid(3S)
ctime(3C)
ctinstall(1)
uux(1C)
config(1M)
uucp(1C)
uucp(1C)
uname(1)
uname(2)
uux(1C)
uuto(1C)
ctrace(1)
cu(1C)
t14(6)
uname(1)
uname(2)
gethostname(3N)
sact(1)
ttyslot(3C)
getewd(3C)
curses(3X)
spline(1G)
cuserid(3S)
cut(1)
cut(1)
ew(1)
exref(1)

runacct: run

from node/ setaddr: set
Transfer Protocol/ ftpd:
server. telnetd:

/user interface to the
Transfer/ tftpd:
/special functions of
/special functions of the
command; report process
terminal capability
terminal capability
generate disk accounting
access long integer

lock process, text, or
prof: display profile
system call. stat:

brk, sbrk: change

types: primitive system
join: relational

the mkfs(1) proto file
tput: query terminfo
/asctime, tzset: convert
date: print and set the
date.

for optimal access/

file.

adb: absolute

ctrace: C program
fsdb: file system

sdb: symbolic

a remote system with
neqn. /special character
basename, dirname:

a file. tail:
commentary of an SCCS
SCCS/ delta: make a
SCCS/ cde: change the
rmdel: remove a
(change) to an SCCS/
comb: combine SCCS
cron: clock

errdemon: error-logging
the error-logging

mesg: permit or
nroff/troff, tbl, and/
system: system

close: close a file
duplicate an open file
de:

/sldetach: attach and
of a file. access:
preprocessor/ includes:
file:

drivers: loadable

for finite width output
table. master: master

5/86

daily accounting.
DARPA Internet address . .
DARPA Internet File . . .
DARPA TELNET protocol
DARPA TFTP protocol. . .
DARPA Trivial File
DASI 300 and 300s/
DASI 450 terminal.
data and system/ /timea .
data base. termcap:
data base. terminfo:
data by userID.
data in a/ sputl, sgetl: . . .

. runacct(1M)

setaddr(1NM)
ftpd(1INM)

. telnetd(1INM)

tftp(1N)
tftpd(INM)
300(1)

. 450(1)

timex(1)
termcap(4)
terminfo(4)
diskusg(1M)
sputl(3X)

data in memory. plock: . . plock(2)
data. prof(l)
data returned by stat . . . stat(5)
data segment space/ brk(2)
data types. types(5)
database operator. join(1)
database. /using qinstall(1)
database. tput(1)
date and time to string. . ctime(3C)
date. o« o ¢« v 0 00 0. date(1)
date: print and set the . . . date(l)
dc: desk calculator. de(1)
deopy: copy file systems decopy(1M)
dd: convert and copy a . . . dd(1)
debugger. adb(1)
debugger. ctrace(1)
debugger. fsdb(1M)
debugger. sdb(1)

debugging on. /contact
definitions for eqn and
deliver portions of path/

. Uutry(1M)
. eqnchar(5)
. basename(1)

deliver the last part of . tail(1)

delta. /change the delta . . cde(1)

delta (change) to an .« o delta(1)

delta commentary of an . . cde(1)

delta from an SCCS file. . rmdel(1)
delta: make a delta delta(l)
deltas. o ¢ ¢ o ¢ 0 0 .. comb(1)
demon. « + ¢ 4 ¢ 04 0. cron(1M)
demon. errdemon(1M)

demon. /terminate
deny messages.
deroff: remove
description file.
descriptor.
descriptor. dup:
desk calculator.
detach serial lines as/
determine accessibility
determine C language
determine file type.

device drivers.
device. [fold long lines . . .
device information

-10 -

. errstop(1M)

mesg(1)
deroff(1)
system(4)
close(2)
dup(2)
de(1)

. slattach(1NM)
. .« access(2)
. .« includes(1)
. . file(1)

. drivers(7)

fold(1)
master(4)

ioctl: control

devnm:

/tekset, td: graphical
file for uucp/

free disk blocks.
consistency check/ fsck,
out-going terminal fine/
calling protocols.

bdiff: big

comparator.

differential file/

sdiff: side-by-side

files. diffmk: mark
comparator. diff:

diff3: 3-way

between files.
directories.

comparison.

uucheck: check the UUCP
object files in binary
dir: format of

rmdir: remove files or
cd: change working
chdir: change working
chroot: change root
uucleanup: uucp spool
diremp:

unlink: remove

chroot: change root
make a lost+found

of current working

Is: list contents of
mkdir, mkdirs: make a
mvdir: move a

pwd: working

or/ mknod: make a
portions of/ basename,
LP printers. enable,
acct: enable or

modes, speed, and line
modes, speed, and line
sadp:

user/ diskusg: generate
report number of free
remove exchangeable
disk: general

driver.

Ethernet address on
update: provide

du: summarize
accounting data by user/
mount, umount: mount and
exchangeable disk.
/screen-oriented (visual)
prof:

on local/ ruptime:

5/86

device.
device name.
device routines and/
Devices: configuration . .

joctl(2)

. devnm(1M)

gdev(1G)

. Devices(5)

devnm: device name. devnm(1M)
df: report number of df(1M)
dfsck: file system fsck(1M)
dial: establishan dial(3C)
Dialers: ACU/modem . . . Dialers(5)
diff. v v v e e e bAIfF(1)
diff: differential file diff(1)
diff3: 3-way diff3(1)
difference program. sdiff(1)
differences between diffmk(1)
differential file diff(1)
differential file/ diff3(1)
diffmk: mark differences . . diffmk(1)
dir: formatof dir(4)
diremp: directory diremp(1)
directories and/ uucheck(1M)
directories. /install cpset(1IM)
directories. + « « o dir(4)
directories. rm, . . .« .« . . rm(1)
directory. .+ .+ v 0 4 0 .. cd(1)
directory. « « . chdir(2)
directory. + « o o ¢ . . . chroot(2)

directory clean-up. . . .
directory comparison. . . .
directory entry.

. uucleanup(1M)

diremp(1)

. unlink(2)

directory for a command. . . chroot(1M)
directory for fsck. mklost+found(1M)
directory. /path-name . getewd(3C)
directory. .+ . . o o . . . I8(1)
directory. .« .+ ¢ 0 0 0 . mkdir(1)
directory. mvdir(IM)
directory name. pwd(l)
directory, or a special . . . mknod(2)
dirname: deliver basename(1)
disable: enable/disable . . . enable(1)
disable process/ acct(2)
discipline. /type, getty(IM)
discipline. /type, uugetty(1M)
disk access profiler. sadp(1M)

disk accounting data by

. diskusg(1M)

disk blocks. df: df(1M)

disk. dismount: dismount(1)

disk driver. . e . disk(7)

disk: general disk disk(7)

disk. setenet: write setenet(1INM)
disk synchronization. . . . update(1M)

disk usage. « + o 4 du(1)

diskusg: generate disk
dismount file system. . .

. diskusg(1M)
. mount(1M)

dismount: remove dismount(1)
display editor based on/ . vi(1)
display profile data. . . prof(1)

display status of nodes

- 11 -

. . ruptime(1N)

hypot: Euclidean
generate uniformly
/checkmm: print/check
package for formatting
and/ mmt, mvt: typeset

distance function. hy pot(3M)
distributed/ /lcong48: . . . drand48(3C)
documents formatted with/ . mm(1)
documents. /the MM macro mm(5)
documents, view graphs, . . mmt(1)

chargefee, ckpacct, dodisk, lastlogin,/ acctsh(1M)
whodo: who is doing what. whodo(1M)
/atof: convert string to double-precision number. . . strtod(3C)
ptdl: RS-232 terminal download. tdl, gtdl, tdl(1)
Irand48, nrand48,/ drand48, erand48, drand48(3C)
graph: drawagraph. « . « « « . . graph(1G)

arithmetic: provide drill in number facts. . arithmetic(6)

Xylogics 772/ xmset: set drive parameters for xmset(1M)
disk: general disk driver. . . ¢« + ¢ o disk(7)
sxt: pseudo-device driver. oo osxt(7)

make a loadable driver for tunable variables. mktunedrv(1M)
drivers: loadable device drivers.« drivers(7)
/manage loadable drivers.« lddrv(1M)
drvbind: access loadable drivers. drvalloc, lddrv(2)
drivers. drivers: loadable device . drivers(7)
access loadable/ drvalloc, drvbind: lddrv(2)
drivers. drvalloc, drvbind: access loadable . 1ddrv(2)
bcheckre, re, powerfail, drvload: system/ bre, . bre(1M)

usage. du: summarize disk du(l)
parts of an object/ dump: dump selected . . . dump(l)}
status information from dump. /error records and . errdead(1M)
and ascii file dump. hd: hexadecimal . hd(1)

od:octal dump. + « ¢« . 0 . 0 . .. od(1)

an object file. dump: dump selected partsof . . . dump(l)
file deseriptor. dup: duplicate an open . . . dup(2)
descriptor. dup: duplicate an open file . . . dup(2)

echo: echo arguments. . . . « . . echo(1)
echo: echo arguments. . . . echo(l)
ecvt, fevt, geve: o o ecvt(3C)

ed, red: text editor. ed(1)

convert floating-point/

program. end, etext, edata: last locationsin . . . end(3C)
(variant of ex for/ edit: text editor edit(1)
print current SCCS file editing activity. sact: . . . sact(1)
/(visual) display editor based on ex. vi(l)
ed, red: text editor. ed(1)
ex: text editor. . . . 4 . .. ex(1)
files. Id: link editor for common object . . 1d(1)
ged: graphical editor. ged(1G)
assembler and link editor output. /common . . a.out(4)
sed: stream editor. sed(1)
for casual/ edit: text editor (variant of ex edit(1)
ldeeprom: load EEPROM. ldeeprom(1M)
/user, real group, and effective group IDs. getuid(2)
/getegid: get real user, effective user, real/ . . getuid(2)

FORTRAN, ratfor, or efl files. /split fsplit(1)

file for a/ grep, egrep, fgrep: searcha . . . grep(1)
enable/disable LP/ enable, disable: enable(1)
process/ acct: enable or disable acct(2)
enable, disable: enable/disable LP/ . . . enable(1)
hashing/ crypt, setkey, encrypt: generate crypt(3C)
generate hashing encryption. /emcrypt: . . . crypt(3C)
locations in program. end, etext, edata: last . end(3C)

5/86 -12-

/getgrnam, setgrent,
host entry. /sethostent,
/getnetbyname, setnetent,
socket: create an
protocol/ /setprotoent,
/getpwnam, setpwent,
entry. [setservent,
/pututline, setutent,
Arabic numerals to
nlist: get

linenum: line number
man, manprog: print
/macros for formatting
/manipulate line number
a/ [seek to line number
a/ [seek to relocation
wtmp: utmp and wtmp
get group file

get network host
endnetent: get network
get protocol

get password file
endservent: get service
access utmp file

object file symbol table
/index of a symbol table
/an indexed symbol table
write password file
unlink: remove directory
command execution.
environment.

/setting up a C shell
profile: setting up an
environ: user

execution. env: set
getenv: return value for
change or add value to
inteface, and terminal
definitions for
nroff/troff, tbl, and
format mathematical/
character definitions/
rhosts: remote
nrand48,/ drand48,

td: graphical/ hpd,
function and/
complementary/ erf,
interface.

records and status/
demon.

format.

sys_nerr:/ perror,

erf, erfc:

/and complementary
/sys_perr: system

/to system calls and
errdead: extract

5/86

endgrent, fgetgrent: get/ .
endhostent: get network .
endnetent: get network/ .
endpoint for/
endprotoent: get
endpwent, fgetpwent: get/
endservent: get service . .
endutent, utmpname:/ . .
English. /eonvert
entries from name list. . .
entries in a common/ . .
entries in this manual. . .
entries in this manual. . .
entries of a common/ . .
entries of a section of . .
entries of a section of . .
entry formats. utmp, . .
entry. /fgetgrent:
entry. /endhostent: . . .
entry. /setnetent,
entry. /endprotoent: ..
entry. /fgetpwent: . . .
entry. /setservent, . . .
entry. /utmpname:
entry. /name for common
entry of a common object/
entry of a common object/
entry. putpwent:
entry.
env: set environment for .
eNVITON: USer .« « » o o
environment at login/ . .
environment at login/ . .
environment.
environment for command
environment name. . . .
environment. putenv: . .
environment. /terminal .
eqn and neqn. /character

eqn constructs. /remove .
eqn, neqgn, checkeq: . . .
eqnchar: special
equivalent users.
erand48, Irand48,
erase, hardcopy, tekset, .
erf, erfcierror « « « & + .
erfc: error function and .
err: error-logging
errdead: extract error . .
errdemon: error-logging .
errfile: error-log file . . .
errno, sys_errlist,
error function and/ . . .
error function.
error ImMessages. .« « « « »
error numbers.
error records and status/ .

-13 -

getgrent(3C)
gethostent(3N)
getnetent(3N)
socket(2N)
getprotoent(3N)
getpwent(3C)
getservent(3N)
getut(3C)
number(6)
nlist(3C)
linenum(4)
man(1)

man(5)
1dIread(3X)
ldlseek(3X)
ldrseek(3X)
utmp(4)
getgrent(3C)
gethostent(3N)
getnetent(3N)
getprotoent(3N)
getpwent(3C)
getservent(3N)
getut(3C)
ldgetname(3X)
1dtbindex(3X)
ldtbread(3X)
putpwent(3C)
unlink(2)
env(1)
environ(5)
cprofile(4)
profile(4)
environ(5)
env(1)
getenv(3C)
putenv(3C)
tset(1)
eqnchar(5)
deroff(1)
eqn(1)
eqnchar(5)
rhosts(4N)
drand48(3C)
gdev(1G)
erf(3M)
erf(3M)

err(7)
errdead(1M)
errdemon(1M)
errfile(4)
perror(3C)
erf(3M)
erf(3M)
perror(3C)
intro{2)
errdead(1M)

matherr:

errfile:

errdemon:

errstop: terminate the
err:

a report of logged
hashcheck: find spelling
of logged errors.
error-logging demon.
terminal line/ dial:
setmnt:

loadable drivers.
locations in/ end,
disk. setenet: write
function. hypot:
expression. expr:

test: condition

/text editor (variant of

display editor based on
crash:

dismount: remove
regions of a/ locking:
execve, execlp, execvp:/
execvp:/ execl, execy,
/execv, execle, execve,
command. path: locate
execve, execlp, execvp:
/argument list(s) and
later time. at, batch:
regex: compile and
requests. uuxqt:
environment for command
sleep: suspend

sleep: suspend

monitor: prepare

remote shell command
rexecd: remote

profil:

to CTIX remote command
execlp, execvp:/ execl,
execl, execv, execle,
/execle, execve, execlp,
system/ link, unlink:

a new file or rewrite an
process.

process. exit,

sqrt: exponential,/
unpack: compress and
and/ expand, unexpand:
tabs to spaces, and/
advent:

/log, 1og10, pow, sqrt:

as an expression.

match/ regexp: regular
regemp: regular

evaluate arguments as an

5/86

error-handling function. .
error-log file format. . . .
error-logging demon. . . .
error-logging demon. . . .
error-logging interface. . .
errors. errpt: process . .
errors. /spellin,
errpt: process a report . .
errstop: terminate the . .
establish an out-going . .
establish mount table. . .
Iddrv: manage
etext, edata: last
Ethernet addresson . . .
Euclidean distance
evaluate arguments as an .
evaluation command. . .
ex for casual users). . . .
ex: text editor.
ex. /(visual)
examine system images. .
exchangeable disk.
exclusive accessto
execl, execv, execle, . . .
execle, execve, execlp, . .
execlp, execvp: execute/ .
executable file for
execute a file. /execle, . .
execute command.
execute commands at a .
execute regular/ regemp, .
execute remote command .
execution. env:set . . .
execution for an/
execution for interval. . .
execution profile.
execution. remd:
execution server.
execution time profile. . .
execution. uux: CTIX . .
execv, execle, execve, . . .
execve, execlp, execvp:/ .
execvp: execute a file. . .
exercise link and unlink .
existing one. /create . . .
exit, _exit: terminate . . .
_exit: terminate
exp, log, logl0, pow, . . .
expand files. /peat, . . .
expand tabs to spaces, . .
expand, unexpand: expand
explore Colossal Cave. . .
exponential, logarithm,/ .
expr: evaluate arguments .
expression compile and . .
expression compile. . . .
expression. expr: . .« o

- 14 -

matherr(3M)
errfile(4)
errdemon(1M)
errstop(1M)
err(7)
errpt(1M)
spell(1)
errpt(1M)
errstop(1M)
dial(3C)
setmnt(1M)
1ddrv(1M)
end(3C)
setenet(1INM)
hypot(3M)
expr(1)
test(1)

edit(1)

ex(1)

vi(1)
crash(1M)
dismount(1)
locking(2)
exec(2)
exec(2)
exec(2)
path(1)
exec(2)
xargs(1)

at(1)
regemp(3X)
uuxqgt(1M)
env(1)
sleep(1)
sleep(3C)
monitor(3C)
remd(1N)
rexecd(1INM)
profil(2)
uux(1C})
exec(2)
exec(2)
exec(2)
link(1M)
creat(2)
exit(2)
exit(2)
exp(3M)
pack(1)
expand(1)
expand(1)
advent(6)
exp(3M)
expr(1)
regexp(5)
regemp(1)
expr(1)

and execute regular
strings in C/ xstr:
and status/ errdead:
strings in a/ strings:
floor, ceil, fmod,
factor:

values. true,

in a machine-independent
fine:

/mallopt, mallinfo:

abort: generate an 10T
flush a stream.

options.

floating-point/ ecvt,
fopen, {reopen,

stream sta.tus/ ferror,
fileno: stream status/
and statistics for a/
stream. fclose,

getc, getchar,
/setgrent, endgrent,
/setpwent, endpwent,
a stream. gets,

a pattern. grep, egrep,
modification/ utime: set
ldfen: common object
accessibility of a

tar: tape

out. cpio: copy

grpck: password/group
chmod: change mode of
owner and group of a
diff: differential

3-way differential
fentl:

fentl:

rcp: remote
CTIX-to-CTIX system
format of core image
umask: set and get
crontab - user crontab
ctags: create a tags
fields of each line of a
using the mkfs(1) proto
dd: convert and copy a
(change) to an SCCS
close: close a

dup: duplicate an open
type.

hexadecimal and ascii
parts of an object

sact: print current SCCS
fgetgrent: get group
fgetpwent: get password
utmpname: access utmp

5/86

expression. fcompile . .
extract and share . . .
extract error records . .
extract the ASCII text .
fabs: floor, ceiling,/ . .
factor a number. . . .
factor: factor a number.
false: provide truth . .
fashion.. /integer data .
fast incremental backup.
fast main memory/ . .
fault. . . . « .« ¢ o &
fclose, fflush: close or .
fentl: file control. . . .
fentl: file control . . .
fevt, gevt: convert . . .
fdopen: open a stream. .
feof, clearerr, fileno: . .
ferror, feof, clearerr, . .
ff: list file names . . .
fflush: close or flusha .
fgetc, getw: get/ . . .
fgetgrent: get group/ .
fgetpwent: get password/
fgets: get a string from .
fgrep: search a file for .
file access and c s e
file access routines. , .
file. access: determine .
file archiver,
file archives in and . .
file checkers. pwek, . .
file. v o o v o o o v«
file. chown: change . .
file comparator.
file comparison. diff3: .
file control.
file control options. ., .
file copy.
file copy. /public . . .
file. core: « « v ¢ « &
file creation mask. . . .
file. & o v o o o oo
file. « o« o oo oo
file. /cut out selected .
file database. /software
file. 4 ¢ o v o oo
file. /make a delta . .
file descriptor.
file descriptor.
file: determine file . . .
file dump. hd:
file. /dump selected . .
file editing activity. . .
file entry. /endgrent, .
file entry. /endpwent, .
file entry. /endutent, .

- 15 -

regemp(3X)
xstr(1)
errdead(1M)
strings(1)
floor(3M)
factor(1)
factor(1)
true(1)
sputl(3X)
finc(1M)
malloc(3X)
abort(3C)
fclose(3S)
fentl(2)
fentl(5)
ecvt(3C)
fopen(3S)
ferror(3S)
ferror(3S)
f1(1M)
fclose(3S)
getc(3S)
getgrent(3C)
getpwent(3C)
gets(3S)
grep(1)
utime(2)
ldfen(4)
access(2)
tar(1)
epio(1)
pwck(1M)
chmod(2)
chown(2)
diff(1)
diff3(1)
fentl(2)
fentl(5)
rep(IN)
uuto(1C)
core(4)
umask(2)
crontab(1)
ctags(1)
cut(1)
qinstall(1)
dd(1)
delta(1)
close(2)
dup(2)
file(1)

hd(1)
dump(1)
sact(1)
getgrent(3C)
getpwent(3C)
getut(3C)

putpwent: write password
execvp: execute a
/egrep, fgrep: search a
path: locate executable
Jopen a common object
Devices: configuration
per-process accounting
ar: common archive
errfile: error-log

intro: introduction to

of a common object

get a version of an SCCS
group: group

object files. filehdr:
ldfhread: read the

/seek to the optional
split: split a

issue identification

a member of an archive
close a common object
of a common object

of a common object

of a common object

of a common object

of a common object

of a common object
entry of a common object
entry of a common object
table of a common object
in a common object
link: link to a

file;/ qlist: print out
access to regions of a

an ifile from an object
mknod: build special

or a special or ordinary
ctermid: generate
mktemp: make a unique
statisties/ ff: list

the format of a text

list of common object
null: the null

/the slot in the utmp
/processes using a

creat: create a new
passwd: password
subsequent lines of one
soft-copy/ pg:

/ftell: reposition a

lseek: move read/write
prs: print an SCCS
read: read from

for a common object

a delta from an SCCS
bfs: big

two versions of an SCCS
scesfile: format of SCCS

5/86

fileentry. .+ putpwent(3C)
file. /execve, execlp, exec(2)

file for a pattern. grep(l)

file for command. path(1)

file for reading. . « » . . . ldopen(3X)
file for uuep/ « « « « + . . Devices(5)
file format. acct: acct(4)

file format. . « « « ar(4)

file format. . . « errfile(4)
file formats. . . « intro(4)

file function. /entries . . . ldlread(3X)
file. get: o v o « o o« o« o . get(l)

file. & ¢ o o o v o o o o group(4)
file header for common . . . filehdr(4)
file header of a common/ . . ldfhread(3X)

file header of a common/

. ldohseek(3X)

file into pieces. « « & o . split(1)

file. issue: . . « o « + . . issue(4)

file. /archive header of . . ldahread(3X)
file. /ldaclose: ldclose(3X)
file. /the file header ldfhread(3X)
file. /of a section ldlseek(3X)
file. /file header ldohseek(3X)
file. /of a section 1drseek(3X)
file. /section header . ldshread(3X)
file. /section ldsseek(3X)
file. /of a symbol table . . ldtbindex(3X)
file. /symbol table ldtbread(3X)
file. /to the symbol ldtbseek(3X)
file. /number entries . . linenum(4)
file. .+ ..o ... link(2)

file lists from proto . qlist(1)

file. /exclusive locking(2)
file. mkifile: make mkifile(1M)
file. o ¢ o o o v 0 0 v o mknod(1M)
file. /make a directory, . . mknod(2)
file name for terminal. . . . ctermid(3S)
filename. mktemp(3C)
file namesand ff(1M)

file. newform: change . newform(1)
file. nm: print name nm(l1)

file. o o oo 0o null(7)

file of the current/ . . .

. ttyslot(3C)

file or file structure. fuser(1M)
file or rewrite an/ creat(2)
file. « ¢+ passwd(4)
file. /several filesor paste(l)
file perusal filter for . pg(l)

file pointer ina/ fseek(3S)
file pointer. Iseek(2)
file. o o o oo« oo prs(l)
file. o o o o . read(2)
file. /information reloc(4)
file. rmdel: remove rmdel(1)
file scanmer. bfs(1)

file. scesdiff: compare
file.

- 16 -

. scesdiff(1)

scesfile(4)

for a common object
/file lists from proto
fsize: report

i-node. openi: open a
stat, fstat: get

ASCII text strings in a
from a common object
/using a file or

and block count of a
synchronous write on a
/name for common object
syms: common object
check and/ fsck, dfsck:
fsdb:

and statistics for a

fs:

mkfs: construct a
mount and dismount
mount: mount a

ustat: get

mnttab: mounted
umount: unmount a
system description
access/ dcopy: copy
by/ checklist: list of
volcopy, labelit: copy
the last part of a
format of compiled term
create a temporary

a name for a temporary
modification times of a
ftp:

ftpd: DARPA Internet
tftpd: DARPA Trivial
ftw: walk a

file: determine

TZ: time zone

previous get of an SCCS
repeated lines in a

and Permissions

val: validate SCCS
write: write on a
umask: set

common object files.
ferror, feof, clearerr,
print process accounting
or add total accounting
and administer SCCS
concatenate and print
cmp: compare two
common to two sorted
mv: copy, link or move
mark differences between
header for common object
find: find

catman: create the cat
tape. frec: recover

5/86

file. /section
file; set links
file size.

header . . .
based/ . . .

. . a s e o

file specified by

file status.
file. /extract

file structure.

file. /print checksum

file. swrite:

senhdr(4)
qlist(1)
fsize(1)

. openi(2)

the
file. /information
. fuser(1M)
. sum(1)

file symbol table entry. . . .
file symbol table/
file system consistency .
file system debugger. . .

file system. /file names
file system format.

file system.

file system. /umount:

file system.

file system statistics. . . .

file system table.

file system.
file. system:

file systems for optimal

file systems p

rocessed . .

file systems with label/

file.
file..
file.

term:
tmpfile:

tail: deliver

file. /tempnam: create

file. /update

access and

file transfer program.

File Transfer
File Transfer
{ile tree.
file type. .
file. ...
file. unget: u
file.
file. /UUCP
file.
file.

uniq: report

Protocol/ . .

Protocol/

ndo a
directories

file-creation mode mask. .
filehdr: file header for
fileno: stream status/
file(s). /searchand . . .

files.
files.
files.
files.
files.
files.
files.
files.
files.

admin:
cat:

cp, In,
diffmk:
filehdr:

acctmerg: merge

create

Jor reject lines . . .

file

files for the manual. . . .

files from a b

.17 -

ackup

stat(2)
strings(1)
strip(1)

. swrite(2)

ldgetname(3X)
syms(4)

. fsck(1M)

fsdb(1M)

. fi(1M)

: . fs(4)

mkfs(1M)

. mount(1M)
. mount(2)

ustat(2)
mnttab{4)

. umount(2)
. system(4)

deopy(1M)
checklist(4)
volcopy(1M)
tail(1)
term(4)
tmpfile(3S)
tmpnam(3S)
touch(1)
ftp(1N)
ftpd(1NM)
tftpd(1NM)

. ftw(3C)

file(1)

tz(4)
unget(1)
unig(1)
uucheck(1M)
val(1)
write(2)
umask(1)
filehdr(4)
ferror(3S)
acctcom(1)
acctmerg(1M)

. admin(1)

cat(1)
emp(1)
comm(1)
ep(1)

. diffmk(1)

filehdr(4)
find(1)

. catman(1)

frec(1M)

specification in text
ratfor, or efl

format of graphical
cpset: install object
preprocessor include
introduction to special
editor for commeon object
lockf: record locking on
rm, rmdir: remove
/same lines of several
compress and expand
pr: print

sizes of common object
sort: sort and/or merge
/object and archive
what: identify SCCS
pg: file perusal

greek: select terminal
nl: line numbering
line-feeds. col:

device routines and
tplot: graphics

backup.

find:

hyphen:

ttyname, isatty:

for an object/ lorder:
/spellin, hashcheck:
utmp file of/ ttyslot:
/fold long lines for
fish: play “Go

tee: pipe

/convert ASCII string to
/fevt, gevt: convert
/manipulate parts of
floor, ceiling,/

floor, ceil, fmod, fabs:
cflow: generate C

felose, fflush: close or
ceiling,/ floor, ceil,

for finite width output/
finite width/ fold:
open a stream.

process.

accounting file

ar: common archive file
errfile: error-log file

fs: file system

for/ eqn, neqn, checkeq:
newform: change the

inode:

file.. term:
file. core:
cpio:

dir:

5/86

files. fspec: format fspec(4)
files. /split FORTRAN, . . fsplit(1)
files. /string, « . « « . . . gps(4)
files in binary/ cpset(IM)
files. /C language includes(1)
files. intro: + « « & « « » . intro(7)
files. 1d:link 1d(1)
files. « o v ¢« v o ¢ o o+ . lockf(3C)
files or directories. . « + « . rm(1)
files or subsequent/ paste(l)
files. /pcat, unpack: pack(l)
files, o« v v oo v . pr(1)
files. /print section size(l)
files. & o ¢ oo v oo« . sort(l)
files to common formats. . . convert(1)
files. « o « v v ¢ « v ¢« . what(l)
filter for soft-copy/ . . pg(l)
filter. + « « & o+ « « . . greek(1)
filter. ¢ ¢ ¢« o & o ¢ o« . m(1)
filter reverse . . « + . « . col(l)
filters. /td: graphical . . gdev(1G)
filters. « « « « « o « « « . tplot(1G)
fine: fast incremental « « fine(1M)
find files. . «« . find(1)
find: find files. find(1)
find hyphenated words. . . hyphen(l}
find name of a terminal. . . ttyname(3C)
find ordering relation « o lorder(1)
find spelling errors. . « . . speli(1)
find the slot in the ttyslot(3C)
finite width output/ fold(1)
Fish”. = v es o oo« fish(6)
fish: play “Go Fish". .« . fish(6)
fitting. « « ¢ o o « v « « . tee(l)
floating-point number. . . atof(3C)
floating-point number to/ . ecvt(3C)
floating-point numbers. . . frexp(3C)
floor, ceil, fmod, fabs: + «+ floor(3M)
floor, ceiling,/ « « . « . . . floor(3M)
flowgraph. cflow(l)
flush a stream. fclose(3S)
fmod, fabs: floor, . « . . . floor(3M)
fold: fold long lines « « o fold(1)
fold long lines for fold(1)
fopen, freopen, f{dopen: . . . fopen(3S)
fork: create anew fork(2)
format. /per-process .« acct(4)
format. ¢ ¢ ¢ ¢ ¢ o o . . ar(4)
format.+« . .. errfile(4)
format. . . . ¢ o« o .. f5(4)
format mathematical text . eqn(1)
format of a text file. newform(1)
format of an i-node. . inode(4)
format of compiled term . . term(4)
format of core image core(4)
format of cpio archive. . cpio(4)
format of directories. . . . dir(4)

- 18 -

/primitive string,
scesfile:

text files. fspec:

object file symbol table
or troff. tbl:

nroff:

archive files to common
introduction to file

utmp and wtmp entry
fscanf, sscanf: convert
varargs/ /vsprintf: print
/fprintf, sprint{: print
/print/check documents
/the macro package for
/the MM macro package for
this/ man: macros for
management. netman:
efl/ fsplit: split
hopefully interesting,/
formatted/ printf,

pute, putchar,

stream. puts,
input/output.

a backup tape.

df: report number of
main memory/ malloc,
mallopt,/ malloe,
stream. fopen,
manipulate parts of /
frec: recover files

/line number information
/receive a message

get character or word
fgets: get a string
mkifile: make an ifile
rmdel: remove a delta
/get option letter

and status information
read: read

ncheck: generate names
nlist: get entries

DARPA Internet address
acctems: command summary
/print out file lists
getpw: get name

formatted input. scanf,
systems processed by

make a lost+found directory for
consistency check and/
debugger.

reposition a file/

specification in text/
ratfor, or efl files.

stat,

pointer/ fseek, rewind,

5/86

format of graphical/ . .
format of SCCS file. . .
format specification in .
format. syms: common

format tables for nroff .
format text.
formats. /object and .
formats. intro:
formats. utmp, wtmp: .
formatted input. scanf,

formatted output of 2 .
formatted output.
formatted with the MM/
formatting a permuted/

formatting documents. .
formatting entries in . .
form-based network . .
FORTRAN, ratfor, or .
fortune: print a random,
fprintf, sprintf: print . .
fpute, putw: put/
fputs: put a string on a

fread, fwrite: binary . .
frec: recover files from .
free disk blocks.
free, realloc, calloe: . .
free, realloc, calloc, . .
freopen, fdopen: open a

frexp, ldexp, modf: . .
from a backup tape. . .
from a common object/

from a socket.
from a stream. /getw: .
from a stream. gets, . .
from an object file. . .
from an SCCS file. . .
from argument vector. .
from dump. /records .
from file.
from i-numbers.
from name list.
from node name. /set .
from per-process/
from proto file; set/ . .
fromUID.
fs: file system format. .
fscanf, sscanf: convert .
fsck. /list of file
fsck.
fsck, dfsck: file system .
fsdb: file system
fseek, rewind, ftell: . .
fsize: report file size. . .
fspec: format . . . + .
fsplit: split FORTRAN,

fstat: get file status. . .
ftell: reposition a file . .

« e 4 o e s o s .

- 19 -

gps(4)
scesfile(4)
fspec(4)
syms(4)
tbl(1)
nroff(1)
convert(1)
intro(4)
utmp(4)
scanf(3S)
vprintf(3S)
printf(3S)
mm(1)
mptx(5)
mm(5)
man(5)
netman(1NM)
fsplit(1)
fortune(6)
printf(3S)
pute(3S)
puts(3S)
fread(3S)
frec(1M)
dr(1M)
malloc¢(3C)
malloc(3X)
fopen(3S)
frexp(3C)
frec(1M)
strip(1)
recv(2N)
gete(3S)
gets(3S)
mkifile(1M)
rmdel(1)
getopt(3C)
errdead(1M)
read(2)
ncheck(IM)
nlist(3C)
setaddr(1NM)
acctems(1M)
qlist(1)
getpw(3C)
fs(4)
scanf(3S)
checklist(4)

mklost+found(1M)

fsck(1M)
fsdb(1M)
fseek(3S)
fsize(1)
fspec(4)
fsplit(1)
stat(2)
fseek(3S)

interprocess/
program.
File Transfer Protocol/

/shut down part of a
erf, erfc: error

and complementary error
gamma: log gamma
Euclidean distance

of a common object file
matherr: error-handling
prof: profile within a
math: math

jn, y0, y1, yn: Bessel
power, square root
absolute value

ocurse: optimized screen
/300s: handle special
hp: handle special

450/ 450: handle special
cosh, tanh: hyperbolic
atan2; trigonometric
processes using a file/
input/output. fread,
manipulate connect/
moo: guessing

back: the

bj: the

craps: the

wump: the

trk: trekkie

intro: introduction to
gamma: log

function.

ecvt, fevt,

maze:
abort:

cflow:

cross-reference. cxref:
data by user/ diskusg:
terminal. ctermid:
crypt, setkey, encrypt:
i-numbers. ncheck:
simple lexical/ lex:
/seed48, lcong48:
simple random-number
stream. gets, fgets:
file. get:

getsockopt, setsockopt:
ulimit:

of the user. cuserid:
/getchar, fgete, getw:
list. nlist:

umask: set and

stat, fstat:

statistics. ustat:

5/86

ftok: standard stdip¢(3C)
ftp: file transfer ftp(IN)
ftpd: DARPA Internet . . . ftpd(1NM)
ftw: walk a file tree. ftw(3C)
full-duplex connection. . . . shutdown(2N)
functionand/ « « + + + . . erf(3M)
function. /function erf(3M)
function. + +« + « « « . . . gamma(3M)
function. hypot: hypot{3M)
function. /entries ldlread(3X)
function. . . . « matherr(3M)
function. « prof(5)
functions and constants. . . math(5)
functions. jO, jI, bessel(3M)
functions. /logarithm, . . . exp(3M)
functions. /remainder, . . . floor(3M)
functions. ocurse(3X)
functions of DASI 300/ . . 300(1)
functions of HP 2640 and/ . hp(1)
functions of the DASI . . . 450(1)
functions. sinh, sinh(3M)
functions. /acos, atan, . . . trig(3M)
fuser: identify fuser(IM)
fwrite: binary fread(3S)
fwtmp, wtmpfix: fwtmp(1M)
gaME. .« s+ « « « « + o« « » Moo(6)
game of backgammon. . . . back(6)
game of black jack. bj(6)

game of eraps. .+ « . » . . craps(6)
game of hunt-the-wumpus. . wump(6)
game. . « « « s o . - o o trk(6)
gAMES. « + « & « o « o« » o intro(6)
gamma function. gamma(3M)
gamma: log gamma gamma(3M)
gevt: convert/ ecvt(3C)
ged: graphical editor. . . . ged(1G)
generate a maze. maze(6)
generate an 10T fault. . . . abort(3C)
generate C flowgraph. . . . cflow(l)
generate C program cxref(1)
generate disk accounting . . diskusg(1M)
generate file name for . . . ctermid(3S)
generate hashing/ crypt(3C)
generate names from ncheck(1M)
generate programs for . . . lex(1)
generate uniformly/ drand48(3C)
generator. rand, srand: . . rand(3C)
get a string froma gets(3S)
get a version of an SCCS . . get(1)

get and set options on/ . . getsockopt(2N)
get and set user limits. . . . ulimit(2)
get character login name . . cuserid(3S)
get character or word/ . . . getc(3S)
get entries from name . . . nlist(3C)
get file creation mask. . . . umask(2)
get file status. stat(2)

get file system ustat(2)

- 90 -

SCCS file.

/endgrent, fgetgrent:
getlogin:

logname:

msgget:

getpw:

peer. getpeername:
system. uname:

host. gethostname:
/setnetent, endnetent:
/sethostent, endhostent:
unget: undo a previous
argument/ getopt:
/endpwent, fgetpwent:
working/ getewd:
process times. times:
/getpgrp, getppid:
/endprotoent:

user,/ /getgid, getegid:
/setservent, endservent:
semget:

segment. shmget:
getsockname:

terminal. tty:

time:

getw: get character or/
get character or/ gete,
current working/
getuid, geteuid, getgid,
environment name.
getegid: get/ getuid,
real/ getuid, geteuid,
getgrnam, setgrent,/
setgrent,/ getgrent,
getgrent, getgrgid,
gethostent,
/gethostbyaddr,
gethostbyaddr,/
current host.

name.

getnetent,

getnetent, getnetbyaddr,
getnetbyname,/

letter from argument/
options.

password.

connected peer.
process,/ getpid,
getppid: get process,/
getpid, getpgrp,
/getprotobynumber,
getprotoent,
getprotobynumber,/
UDD.

getpwnam, setpwent,/
getpwent, getpwuid,
setpwent,/ getpwent,

5/86

get: get a version of an . .
get group file entry. . . .
get login name.
get login name.
get message queue. . . .
get name from UID. . . .
get name of connected . .
get name of current CTIX
get name of current . . .
get network entry.
get network host entry. .
get of an SCCS file. . . .
get option letter from . .
get password file entry. .
get path-name of current .
get process and child . .
get process, process/ . . .
get protocol entry.
get real user, effective . .
get service entry.
get set of semaphores. . .
get shared memory . . .
get socket name.
get the name of the . . .
gettime. . + + 4 v & .+ &
getc, getchar, fgete, . . .
getchar, fgetc, getw:
getcwd: get path-name of

getegid: get real user,/ . .
getenv: return value for .
geteuid, getgid,
getgid, getegid: get . . .
getgrent, getgrgid,
getgrgid, getgrnam, . . .
getgrnam, setgrent,/ . . .
gethostbyaddr,/
gethostbyname,/
gethostent, . . .« . « . .
gethostname: get name of

getlogin: get login
getnetbyaddr,/

getnetbyname, setnetent,/
getnetent, getnetbyaddr, .
getopt: get option
getopt: parse command .
getpass: read a
getpeername: get name of

getpgrp, getppid: get . .
getpid, getpgrp,
getppid: get process,/ . .
getprotobyname,/
getprotobynumber,/ . . .
getprotoent,
getpw: get name from . .
getpwent, getpwuid, . . .
getpwnam, setpwent,/ . .
getpwuid, getpwnam, . .

-91 -

get(1)
getgrent(3C)
getlogin(3C)
logname(1)
msgget(2)
getpw(3C)
getpeername(2N)
uname(2)
gethostname(3N)
getnetent(3N)
gethostent(3N)
unget(1)
getopt(3C)
getpwent(3C)
getewd(3C)
times(2)
getpid(2)
getprotoent(3N)
getuid(2)
getservent(3N)
semget(2)
shmget(2)
getsockname(2N)
tty(1)

time(2)

gete(3S)
gete(3S)
getewd(3C)
getuid(2)
getenv(3C)
getuid(2)
getuid(2)
getgrent(3C)
getgrent(3C)
getgrent(3C)
gethostent(3N)
gethostent(3N)
gethostent(3N)
gethostname(3N)
getlogin(3C)
getnetent(3N)
getnetent(3N)
getnetent(3N)
getopt(3C)
getopt (1)
getpass(3C)
getpeername(2N)
getpid(2)
getpid(2)
getpid(2)
getprotoent(3N)
getprotoent(3N)
getprotoent(3N)
getpw(3C)
getpwent(3C)
getpwent(3C)
getpwent(3C)

string from a stream.
/getservbyport,
getservent,
getservbyport,/

name.

get and set options on/
settings used by

type, modes, speed, and/
terminal. ct: spawn
terminal settings used/
getegid: get real user,/
getutline, pututline,/
pututline,/ getutent,
getutent, getutid,

getc, getchar, fgetc,
ctime, localtime,

fish: play

longjmp: non-local
string, format of/

graph: draw a

sag: system activity
graphics: access
/network useful with
hardcopy, tekset, td:
ged:

/string, format of
string, format of/ gps:
contents routines. toc:
gutil:

graphical and numerical/
tplot:

plot:

subroutines. plot:
/typeset documents, view
/for typesetting view
filter.

search a file for a/
/effective user, real

/get process, process
chgrp: change owner or
/endgrent, fgetgrent: get
group:

setpgrp: set process

id: print user and
group, and effective
setgid: set user and
newgrp: log in to a new
chown: change owner and
signal to a process or a
/update, and regenerate
file checkers. pwck,
signals. ssignal,

Jfor relocate a PT or
terminal download. tdl,
hangman:

5/86

gets, fgets: geta
getservbyname,/ . . .
getservbyport,/
getservent,
getsockname: get socket

getsockopt, setsockopt: .
getty. /and terminal .
getty: set terminal . . .
getty to aremote . . .
gettydefs: speed and . .
getuid, geteuid, getgid, .
getutent, getutid, . . .
getutid, getutline, . . .
getutline, pututline,/ .
getw: get character or/ .
gmtime, asctime, tzset:/

“Go Fish”.
goto. setjmp,
gps: graphical primitive

graph: draw a graph. .
graph.
graph.
graphical and numerical/
graphical commands. .
graphical device/ /erase,
graphical editor.
graphical files.
graphical primitive . .
graphical tableof . . .
graphical utilities. . . .
graphics: access
graphics filters.
graphics interface. . . .
graphics interface . . .
graphs, and slides. . . .
graphs and slides. . . .
greek: select terminal .
grep, egrep, fgrep: .
group, and effective/ .
group, and parent/ . .
group. chown,
group file entry.
group file.
group: group file. . . .
group ID.
group IDs and names. .
group IDs. /user, real .
group IDs. setuid, . . .
group.
group of a file.
group of processes. /a .
groups of programs. . .
grpck: password/group .
gsignal: software . . .
GT local printer. . . .
gtdl, ptdl: RS-232 . . .
guess the word.

929 -

gets(3S)
getservent(3N)
getservent(3N)
getservent(3N)
getsockname(2N)
getsockopt(2N)
gettydefs(4)
getty(1M)

ct(1C)
gettydefs(4)
getuid(2)
getut(3C)
getut(3C)
getut(3C)
gete(3S)
ctime(3C)
fish(6)
setjmp(3C)
gps(4)
graph(1G)
graph(1G)
sag(1G)
graphics(1G)
stat(1G)
gdev(1G)
ged(1G)
gps(4)

gps(4)
toc(1G)
gutil(1G)
graphics(1G)
tplot(1G)
plot(4)
plot(3X)
mmt(1)
mv(5)
greek(1)
grep(l

group(4)
setpgrp(2)
id(1)
getuid(2)
setuid(2)
newgrp(1)
chown(2)
kill(2)
make(1)
pwek(1M)
ssignal(3C)
mktpy(1)
tdi(1)
hangman(6)

moo:
utilities.

/for Xylogics 772
processing. shutdown,
of DASI 300/ 300, 300s:
of HP 2640 and/ hp:
of the DASI 450/ 450:
list. varargs:

curses: CRT screen

/run a command immune to
graphical/ hpd, erase,
hinv:

/hdestroy: manage
/hashmake, spellin,
/encrypt: generate
hashcheck: find/ spell,
manage hash/ hsearch,
ascii file dump.
hsearch, hereate,
object/ scnhdr: section
files. filehdr: file
ldfhread: read the file
to the optional file
indexed /named section
/read the archive

help: ask for

file dump. hd:
inventory.

/manipulate Volume
fortune: print a random,
/convert values between
endhostent: get network
get name of current
network.

/special functions of
functions of HP 2640/
tekset, td: graphical/
hdestroy: manage hash/
ntohs: convert values/
convert values/ htonl,
wump: the game of
sinh, cosh, tanh:

words.

hyphen: find

distance function.
accounting data by user
set or shared memory
IDs and names.

set process group

issue: issue

a file or file/ fuser:
what:

id: print user and group
and parent process

and effective group

5/86

guessing game.

gutil: graphical
half-inch tape/

halt: terminate all
handle special functions
handle special functions
handle special functions
handle variable argument
handling and/
hangman: guess the word.
hangups and quits. . . .
hardcopy, tekset, td: . . .
hardware inventory.
hash search tables. . . .
hashcheck: find spelling/
hashing encryption. . . .
hashmake, spellin,

moo(6)
gutil(1G)
xmset(1M)
shutdown(1M)
300(1)

hp(1)

. 450(1)

. varargs(5)
. curses(3X)
. hangman(6)
. nohup(1)

. gdev(1G)

hinv{1M)

. hsearch(3C)

hereate, hdestroy: .+ « . « «

hd: hexadecimal and . . .
hdestroy: manage hash/
header for a common . .
header for common object

header of a common/ /seek
header of a common/ /an
header of a member of an/
help: ask for help.
help. . « « v ¢« o v o .
hexadecimal and ascii . .
hinv: hardware .
Home Blocks (VHB). . . .
hopefully interesting,/

host and network byte/
host entry. /sethostent,

spell(1)
erypt{3C)
spell(1)
hsearch(3C)

. hd(1)
. hsearch(3C)

scnhdr(4)

. filehdr(4)
header of a common/ . . .

ldfhread(3X)
ldohseek(3X)
ldshread(3X)

. ldahread(3X)

help(1)
help(1)
hd(1)
hinv(1M)
libdev(3X)

. fortune(6)
. byteorder(3N)

host. gethostname:

hosts: list of nodeson . .
HP 2640 and 2621-series/

hp: handle special
hpd, erase, hardcopy,
hsearch, hcreate,

gethostent(3N)
gethostname(3N)
hosts(4N)

. hp(1)

htonl, htons, ntohl,
. byteorder(3N}

htons, ntohl, ntohs: . . .
hunt-the-wumpus.
hyperbolic functions. . . .
hyphen: find hyphenated
hyphenated words. . . .
hypot: Euclidean
ID. generatedisk
id. /queue, semaphore

id: print user and group
ID. setpgrp:
identification file.
identify processes using
identify SCCS files.
IDs and names.

hp(1)
gdev(1G)
hsearch(3C)
byteorder(3N)

wump(6)
sinh(3M)
hyphen(1)
hyphen(1)
hy pot(3M)

. diskusg(1M)
. iperm(1)

. id(1)

. setpgrp(2)

issue(4)

. fuser(1IM}
. what(1)

IDs. /process group, . . « .
. getuid(2)

IDs. /user, real group,

- 923 -

id(1)
getpid(2)

set user and group
network interface/

file. mkifile: make an
core: format of core
crash: examine system
nohup: run a command
/C language preprocessor
language preprocessor/
finc: fast

/tgoto, tputs: terminal
formatting a permuted
ldtbindex: compute the
ptx: permuted

entry/ ldtbread: read an
/ldnshread: read an

of/ /ldnsseek: seek to an
inet_ntoa,/

Internet/ /inet_makeaddr,
/inet_network, inet_ntoa,
address/ /inet_lnaof,
inet_addr,

inet_addr, inet_network,
inittab: script for the
control initialization.
telinit: process control
/drvload: system
volume. iv:

a socket. connect:
process. popen, pclose:
init process.

clri: clear

i-node.

inode: format of an
open a file specified by
blocks associated with
/start and stop terminal
convert formatted

push character back into
fread, fwrite: binary
stdio: standard buffered
fileno: stream status
uustat: wucp status
software/ qinstall:
install:

commands.

binary/ cpset:

or GT/ mktpy, mvtpy:
ctinstall:

/set terminal, terminal
abs: return

/convert between long
/sgetl: access long

atoi: convert string to
/convert between 3-byte
3-byte integers and long
beopy:

processing/ mailx:

5/86

IDs. setuid, setgid: . .
ifconfig: configure . . .
ifile from an object . .
image file.
images.

immune to hangups and/
include files.
includes: determine C .
incremental backup.
independent operations.
index. /package for
index of a symbol table/
index. « ¢« ¢ o o ..
indexed symbol table .
indexed /named section/
indexed/named section .
inet_addr, inet_network,
inet_lnaof, inet_netof: .
inet_makeaddr,/ . . .
inet_netof: Internet
inet_network, inet_ntoa,/
inet_ntoa,/
init process.
init, telinit: process . .
initialization. init, . . .
initialization shell/ . .
initialize and maintain .
initiate a connection on

initiate pipe to/from a .
inittab: script for the .
i-node.
inode: format of an . .
i-node.
i-node. openi: + .+ . .« .
i-node(s). /thelist of .
input and output.
input. /fscanf, sscanf:
input stream. ungetc:

input/output. « . . .
input/output package.
inquiries. /clearerr, .
inquiry and job control.
install and verify
install commands.
install: install
install object files in .
install or relocate a PT
install software.
inteface, and terminal/ .
integer absolute value. .
integer and base-64/ . .
integer data in a/
integer. strtol, atol, . .
integers and long/ . . .
integers. /between . .
interactive block copy. .
interactive message . .

.24 -

setuid(2)
ifconfig(1NM)
mkifile(1M)
core(4)
crash(1M)
nohup(1)

. includes(1)

includes(1)
finc(1M)
termcap(3X)
mptx(5)
Idtbindex(3X)
ptx(1)
1dtbread(3X)
ldshread(3X)
ldsseek(3X)
inet(3N)

inet(3N)
inittab(4)
init(1M)
init(1M)
bre(1M)
iv(1)
connect(2N)
popen(3S)
inittab(4)
clri{ 1IM)
inode(4)
inode(4)
openi(2)
becheck(1M)
rsterm(1M)
scanf(38)
unget¢(3S)
fread(3S)
stdio3S)
ferror(3S)
uustat(1C)
ginstall(1)
install(1M)
install(1M)
cpset(1M)
mktpy(1)
ctinstall(1)
tset(1)
abs(3C)
2641(3C)
sputl(3X)
strtol(3C)
13t0l(3C)
13t0l(3C)
beopy(1M)
mailx(1)

/consistency check and

/a random, hopefully

err: error-logging

qic:

lp: parallel printer

mem, kmem: system memory
/eonfigure network

plot: graphics

plot: graphics

swap administrative

termio: general terminal
terminal accelerator
protocol. telnet: user
TFTP/ tftp: user
controlling terminal

vme: VME bus

serial lines as network

node/ setaddr: set DARPA
/inet_lnaof, inet_netof:
Protocol/ ftpd: DARPA
and numbers for the
protocols: list of

services: list of

curve. spline:

control/ asa:

csh: a shell (command

pipe: create an

ipes: report

ftok: standard

suspend execution for an
suspend execution for
commands and/

file formats.

games.

miscellany.

special files.

subroutines and/

system calls and error/

and application/ intro:
formats. intro:

intro:
intro:
intro:
subroutines and/ intro:
calls and error/ intro:
generate names from
hinv: hardware

miscellany.
files.

abort: generate an
queue, semaphore set or/
inter-process/

/isdigit, isxdigit,

islower, isdigit,/
/isgraph, iscntrl,
terminal. ttyname,
/isprint, isgraph,
/isupper, islower,

5,/86

interactive repair.
interesting, adage.
interface.
interface for QIC tape. . .
interface.
interface.
interface parameters. . .
interface.
interface subroutines. . .
interface. swap:
interface. + . . « « . . .
interface. tiop: .+ « + « «
interface to TELNET . .
interface to the DARPA .
interface. tty:
interface. . .« « « . . .o .
interfaces. /and detach .
Internet address from . .
Internet address/
Internet File Transfer . .
internet. /names
Internet protocols.
Internet services.
interpolate smooth . . .
interpret ASA carriage . .
interpreter) with C-like/ .
interprocess channel. . . .
inter-process/ . « .« . . .
interprocess/ . «
interval. sleep:
interval. sleep:
intro: introduction to . .
intro: introduction to . .
intro: introduction to . .

D

intro: introduction to . .
intro: introduction to . .
intro: introduction to . .
intro: introduction to . .

introduction to commands
introduction to file . . .
introduction to games. . .
introduction to
introduction to special . .
introductionto . « . . .
introduction to system . .
i-numbers. ncheck: . . .
inventory.
joctl: control device. . . .
10T fauit. .+ ¢« « « &« « &
ipcrm: remove a message .
ipesireport +
isalnum, isspace,/
isalpha, isupper, »
isascii: classify/
isatty: find name ofa . .
isentrl, isasciiz/
isdigit, isxdigit,/

- 95 -

fsck(1M)
fortune(6)
err(7)
qic(7)
1p(7)

. mem(7)

ifconfig(1INM)
plot(4)
plot(3X)
swap(1M)
termio(7)
tiop(7)
telnet(1N)
tftp(1N)
tty(7)

vme(7)
slattach(1NM)
setaddr(1NM)
inet(3N)
ftpd(1NM)
networks(4N)
protocols(4N)
services(4N)
spline(1G)
asa(1)

csh(1)

pipe(2)
ipes(1)
stdipe(3C)
sleep(1)
sleep(3C)

ncheck(1M)
hinv(1M)
ioctl(2)
abort(3C)
iperm(1)
ipes(1)
ctype(3C)
ctype(3C)
ctype(3C)
ttyname(3C)
ctype(3C)
ctype(3C)

/ispunct, isprint,
isalpha, isupper,
/isspace, ispunct,
/isalnum, isspace,
/isxdigit, isalnum,
system:

file. issue:
identification file.
isdigit,/ isalpha,
/islower, isdigit,

news: print news
maintain volume.
Bessel functions.
Bessel functions. jO,
bj: the game of black
functions. j0, j1,
database operator.
/nrand48, mrand48,
processes. killall:
process or a group of/
process.

processes.

interface. mem,

quiz: test your

between 3-byte integers/
long integer and/ ab4l,
/copy file systems with
systems with/ volcopy,
scanning and processing
/arithmetic

cpp: the C

includes: determine C
/command programming
/ckpacet, dodisk,

shl: shell

/srand48, seed48,
common object files.
object file. ldclose,
archive header of a/
object file for/ ldopen,
a common object file.

parts of/ frexp,

file access routines.
header of a common/
symbol name for common/
manipulate/ ldlread,
IdIread, ldlinit,

1dlitem: manipulate/

to line number entries/
number entries/ ldlseek,
relocation/ ldrseek,
ldshread,

indexed /named/ ldsseek,
optional file header of/
common object file for/
to relocation entries/

5/86

isgraph, isentrl,/ ctype(3C)
islower, isdigit,/ ctype(3C)
isprint, isgraph,/ ctype(3C)
ispunct, isprint,/ ctype(3C)
isspace, ispunct,/ ctype(3C)
issue a shell command. . . . system(3S)
issue identification issue(4)
issue: issue < o« issue(4)
isupper, islower, ctype(3C)
isxdigit, isalnum,/ ctype(3C)
items. news(l)
iv: initialize and iv¥(1)

j0, j1,jn, y0, ¥y1, yn: bessel(3M)
j1, jn, y0,yl,yn: . . < . . bessel(3M)
jack. « . .. e e e e . bj(6)

jn, y0, y1, yn: Bessel bessel(3M)
join: relational join(1)
jrand48, srand48,/ drand48(3C)
kill all active killall(1M)
kill: send a signal toa . . . kill(2)
kill: terminatea Kkill(1)
killall: kill all active . killall(1M)
kmem: system memory . . . mem(7)
knowledge. quiz(6)
13tol, ltol3: convert 13tol(3C)

164a: convert between . . .
label checking.

)
. volcopy(1M)
(M

a641(3C

labelit: copy file voleopy(1M)
language. awk: pattern . awk(1)
language. « « « « o « » o o be(l)
language preprocessor. . cpp(1)
language preprocessor/ . . . includes(1)
language. + « « 4 o 0 . . . sh(1)
lastlogin, monacct,/ . acctsh(1IM)
layer manager. shl(1)
lecong48: generate/ drand48(3C)
Id: link editor for 1d(1)
ldaclose: close a common . . ldclose(3X)
ldahread: read the ldahread(3X)
ldaopen: open a common .. . idopen(3X)

Idclose, ldaclose: close .
ldeeprom: load EEPROM.
ldexp, modf: manipulate
Idfen: common object
ldfhread: read the file
Idgetname: retrieve
Idlinit, 1dlitem:
ldlitem: manipulate line/ . .
ldlread, 1dlinit,
ldlseek, ldnlseek: seek . . .
ldniseek: seek to line
ldnrseek: seekto
Idnshread: read an/
Idnsseek: seek toan
Idohseek: seek to the
ldopen, ldaopen: open a
ldrseek, ldnrseek: seek

- 96 -

. ldclose(3X)
. ldeeprom(1M)
. frexp(3C)
. . ldfen(4)
. ldfhread(3X)
. ldgetname(3X)
. ldlread(3X

)
1dIread(3X)
1dIread(3X)
Idlseek(3X)
1dIseek(3X)

. ldrseek(3X)
. ldshread(3X)

ldsseek (3X)
1dohseek(3X)

. ldopen(3X)
. ldrseek(3X)

read an indexed/named/
to an indexed/named/
index of a symbol table/
indexed symbol table/
symbol table of a/
getopt: get option

for simple lexical/
programs for simple
update. lsearch,

Volume Home Blocks/
to subroutines and
relation for an object

ar: archive and

ulimit: get and set user
/an out-going terminal
/type, modes, speed, and
/type, modes, speed, and
line: read one

common object/ linenum:
/1dlitem: manipulate
/ldnlseek: seek to

strip: strip symbol and
nl:

selected fields of each
/requests to an LP

Ipset: set parallel

Ipr:

update. Isearch, Ifind:
col: filter reverse

entries in a common/
/attach and detach serial
comm: select or reject
for uucp communications
output/ fold: fold long
head: give first few

uniq: report repeated
/files or subsequent

or/ paste: merge same
link, unlink: exercise
object files. 1d:
/common assembler and

¢p, ln, mv: copy,

link:

link and unlink system/
from proto file; set
checker.

directory. lIs:

statistics for a/ ff:

get entries from name
bcheck: print out the
file. nm: print name
processed by/ checklist:
protocols. protocols:
services. services:
network. hosts:

5/86

ldshread, idnshread:
ldsseek, ldnsseek: seek . . .
ldtbindex: compute the . .
ldtbread: read an
ldtbseek: seek to the
letter from argument/ . . .
lex: generate programs .« . .
lexical tasks. /generate

Hfind: linear search and . .

ldshread(3X)
ldsseek(3X)
1dtbindex(3X)
1dtbread(3X)
ldtbseek(3X)
getopt(3C)
lex(1)

. lex(1)
. lsearch(3C)

libdev: manipulate libdev(3X)
libraries. /introduction . . intro(3)
library. /find ordering . . . lorder(l)
library maintainer for/ . . . ar(l)
limits. « « « o v v o o o ulimit(2)
line connection. dial(3C)
line discipline. getty(IM)
line discipline. uugetty(1M)
line. e e+« o . line(1)
line number entriesina . . linenum(4)
line number entries of a/ . . ldlread(3X)
line number entries of a/ . . ldlseek(3X)
line number information/ . strip(1)
line numbering filter. . . . nl(1)

line of a file. Jeutout . . . cut(l)

line printer.o . Ip(2)

line printer options. Ipset(1M)
line printer spooler. lpr(1)
line: read one line. line(1)
linear search and lsearch(3C)
line-feeds. . . « « col(l)
linenum: line number . . . linenum(4)
lines as network/ slattach(1NM)
lines common to two/ . . . comm(l)
lines. /file Devices(5)
lines for finite width fold(1)
lines. .« .. 000 head(1)
linesinafile. + unig(1)
linesof one file. « paste(1)
lines of several files paste(l)
link and unlink system/ . . link(1M)
link editor for common . . . 1d(1)

link editor output. a.out(4)
link: link to a file. link(2)
link or move files. ep(1)

link toafile. o oo .. link(2)
link, unlink: exercise link(1IM)
links based on. /lists . . . qlist(1)
lint: a C program . . « . . lint(1)

list contentsof Is(1)

list file namesand ff(1M)

list. nlist: e e e e nlist(3C)
list of blocks/ « . . beheck(1M)
list of common object . . . nm(1)

list of file systems checklist(4)
list of Internet protocols(4N)

list of Internet
list of nodes on

- 97 -

. services(4N)

hosts(4N)

by terminal/ ttytype:
uuname:

handle variable argument
of a varargs argument
on a socket. listen:
connections on a/
/eonstruct argument
qlist: print out file
move files. ¢p,
Ideeprom:

drivers:

mktunedrv: make a
Iddrv: manage
drvbind: access
asctime, tzset:/ ctime,
as the/ conlocate:

for command. path:
end, etext, edata: last
data in memory. plock:
files.

access to regions of a/
lockf: record

gamma:

newgrp:

exponential,/ exp,
exponential,/ exp, log,
/pow, sqrt: exponential,
uulog: output

process a report of
network. rwho: who is
getlogin: get

logname: get

cuserid: get character
logname: return
passwd: change

rlogin: remote

rlogind: remote

a C shell environment at
up an environment at

name of user.

/164a: convert between
sputl, sgetl: access
3-byte integers and
width output/ fold: fold
setjmp,

relation for an object/
make a

nice: run a command at
requests to an LP line/
/requests to an
interface.

disable: enable/disable
/ipmove: start/stop the
reject: allow/prevent
Ipadmin: configure the

5/86

list of terminal types . . .
list UUCP system names. .
list. varargs:
list. /formatted output .
listen for connections . .
listen: listen for
list(s) and execute/ . . .
lists from proto file;/ . .
In, mv: copy, linkor . . .
load EEPROM.
loadable device drivers. .
loadable driver for/ . . .
loadable drivers.
loadable drivers.
localtime, gmtime,
locate a terminal to use .
locate executable file . . .
locations in program. . .
lock process, text,or . . .
lockf: record locking on .
locking: exclusive
locking on files.
log gamma function. . . .
log in to a new group. . .
log, logl0, pow, sqrt: . . .
log10, pow, sqrt:
logarithm, power, square/

logfile information. . . .
logged errors. errpt: . . .
logged inon local

login name.
login name.
login name of the user. . .
login name of user. . . .
login password.
login.o
login server. .«
login: signon. « « « + . .
login time. /setting up . .
login time. /setting . . .

logname: get login name. .
logname: return login . .
long integer and base-64/

long integer dataina/ . .
long integers. /between .
long lines for finite
longjmp: non-local goto. .
lorder: find ordering

lost+found directory for fsck

low priority.
Ip, cancel: send/cancel . .
LP line printer.
1p: parallel printer
LP printers. enable, . . .
LP request scheduler and/
LP requests. accept, . . .
LP spooling system. . . .

- 98-

ttytype(4)
uuname(1C)
varargs(5)
vprintf(3S)
listen(2N)
listen(ZN)
xargs(1)

qlist(1)

cp(1)
ldeeprom(1M)
drivers(7)
mktunedrv(1M)
1ddrv(IM)
1ddrv(2)
ctime(3C)
conlocate(1M)
path(1)

end(3C)
plock(2)
lockf(3C)
locking(2)
lockf(3C)
gamma(3M)
newgrp(1)
exp(3M)
exp(3M)
exp(3M)
uulog(1C)
errpt(1M)
rwho(1N)
getlogin(3C)
logname(1)
cuserid(3S)
logname(3X)
passwd(1)
rlogin(1N)
rlogind(1INM)
login(1)
cprofile(4)
profile(4)
logname(
logname(
a841(3C)
sputl(3X)
13tol(3C)
fold(1)
setjmp(3C)
lorder(1})

1)
3X)

mklost+found(1M)

nice(1)

1p(1)

1p(1)

1p(7)
enable(1)
Ipsched(1M)
accept(1M)
lpadmin(1M)

Ipstat: print

LP spooling system.
LP/ lpsched, Ipshut,
spooler.

start/stop the LP/
printer options.
start/stop the/ lpsched,
information.

drand48, erand48,
directory.

search and update.
file pointer.

3-byte integers/ 13tol,

values. values:

/long integer data in a
formatting a/ mptx: the
formatting/ mm: the MM
typesetting/ mv: a troff
m4:

entries in this/ man:
formatted with the MM
mail to users or read

to users or read mail.
mail. mail, rmail: send
message processing/
/Iree, realloc, calloc:
/mallopt, mallinfo: fast
regenerate groups/ make:
iv: initialize and

ar: archive and library
an SCCS file. delta:
mkdir, mkdirs:

special or/ mknod:
mktunedryv:
mklost+found:
mktemp:

object file. mkifile:

and regenerate groups/
mkhosts:

banner:

terminal/ script:
memory/ /calloc, mallopt,
calloc: main memory/
calloc, mallopt,/

/free, realloc, calloc,
formatting entries in/
entries in this manual.
/tfind, tdelete, twalk:
/hcreate, hdestroy:
iddrv:

form-based network
window: window

wm: window

shl: shell layer

fwtmp, wtmpfix:
/1dlinit, ldlitem:

5/86

LP status information. . . .
Ipadmin: configure the
Ipmove: start/stop the . . .
Ipr: line printer
Ipsched, lpshut, Ipmove: . .
Ipset: set parallel line
Ipshut, lpmove:
Ipstat: print LP status
Irand48, nrand48,/
Is: list contentsof
Isearch, Ifind: linear
Iseek: move read/write . . .
ltol3: convert between . . .
m4: macro processor. ...
machine-dependent
machine-independent/ . . .
macro packagefor
macro packagefor
macro packagefor
macro processor.
macros for formatting . . .
macros. /documents
mail. mail, rmail: send
mail, rmail: send mail . . .
mail to usersorread
mailx: interactive
main memory allocator. . .
main memory allocator. . .
maintain, update, and . . .
maintain volume.
maintainer for portable/ . .
make a delta (change) to . .
make a directory.
make a directory,ora . . .
make a loadable driver/ .

make a lost+found dlrectory/
make a unique file name.
make an ifile froman . . .
make: maintain, update, . .
make node name commands.
make posters.
make typescriptof
mallinfo: fast main
malloe, free, realloe,
malloe, free, realloc,
mallopt, mallinfo: fast/ . .
man: macros for . « + . . .
man, manprog: print . . « .
manage binary search/ . . .
manage hash search/ . . .
manage loadable drivers. . .
management. netman: . . .
management primitives. . .
management.
manager.
manipulate connect/
manipulate line number/ . .

- 29 -

Ipstat(1)
lpadmin(1M)
Ipsched(1M)
Ipr(1)
Ipsched(1M)
Ipset(1M)
Ipsched(1M)
lpstat(1)
drand48(3C)
Is(1)
Isearch(3C)
Iseek(2)
13t0l(3C)
m4(1)
values(5)
sputl(3X)
mptx(5)
mm(5)
mv(5)

m4(1)
man(5)

mailx(1)
malloc(3C)
malloc(3X)
make(1)

iv(1)

ar(1)

delta(1)
mkdir(1)
mknod(2)
mktunedrv(1M)
mklost+found (1M}
mktemp(3C)
mkifile(1M)
make(1)
mkhosts(1NM)
banner(1)
script(1)
malloc(3X)
malloc(3C)
malloce(3X)
malloc(3X)
man(5)
man(1)
tsearch(3C)
hsearch(3C)
1ddrv(1M)
netman(1NM)
window(7)
wm(1)

shl(1)
fwtmp(1M)
ldIread(3X)

frexp, ldexp, modf:
tables. route: manually
Blocks (VHB). libdev:
/Internet address

in this manual. man,
the cat files for the
print entries in this
entries in this

routing tables. route:
terminal input/ rsterm:
set. ascii:

files. diffmk:

set file-creation mode
and get file creation
information/ master:
information table.
expression compile and
constants. math:
constants.

/neqn, checkeq: format
function.

maze: generate a

vax: provide truth/
interface.

memepy, memset: memory/
memset: memory/ memccpy,
memory/ memeccpy, memchr,
memecpy, memchr, mememp,
realloc, calloc: main
/mallinfo: fast main

shmetl: shared

semaphore set or shared
mem, kmem: system
/memcmp, memepy, memset:
shmop: shared

text, or data in

shmget: get shared

memchr, memcmp, memcpy,
sort. sort and/or
accounting/ acctmerg:
several files or/ paste:
messages.

operations. msgetl:
/recvfrom: receive a

msgop:

mailx: interactive

msgget: get

set or/ iperm: remove a
send, sendto: send a

mesg: permit or deny
sys_nerr: system error
directory.

directory. mkdir,

system.

/software using the
commands.

5/86

manipulate parts of/ . .
manipulate the routing .
manipulate Volume Home
manipulation routines. .
manprog: print entries .
manual. catman: create
manual. man, manprog:
manual. /for formatting
manually manipulate the
manually start and stop
map of ASCII character
mark differences between
mask. umask:
mask. umask:set . . .
master device
master: master device .
match routines. /regular
math functions and
math: math functions and
mathematical text for/ .
matherr: error-handling
maze: generate a maze. .
MAZE. + =« o = o « o o
mc68k, pdpll, u3b, u3b5,

mem, kmem: system memory

memeccpy, memchr, mememp,

memchr, memecmp, memepy,
mememp, memcpy, memset:

memepy, memset: memory/

memory allocator. /free,
memory allocator. . . .
memory control/ . . .
memory id. /queue, . .
memory interface. . . .
memory operations. . .
memory operations. . .
memory. /lock process,

memory segment.

memset: memory/ memeccpy,

merge files.
merge or add total
merge same lines of . .
mesg: permit or deny .
message control
message from a socket. .
message operations. . .
message processing/ . .
message queue.
message queue, semaphore
message to a socket.
messages.
messages. /sys_errlist, .

mkdir, mkdirs: make a .

mkdirs: makea

mkfs: construct a file .

mkfs(1) proto file/ . . .

mkhosts: make node name

- 30 -

frexp(3C)
route(1NM)
libdev(3X)
inet(3N)
man(1)
catman(1)
man(1)
man(5)
route(1NM)
rsterm{1M)
ascii(5)
diffmk(1)
umask(1)
umask(2)
master(4)
master(4)
regexp(5)
math(5)
math(5)
eqn(1)
matherr(3M)
maze(6)
maze(6)
machid(1)
mem(7)
memory(3
memory(3
memory(3
memory(3
mallo¢(3C
malloe(3X
shmetl(2)
iperm(1)
mem(7)
memory(3C)
shmop(2)
plock(2)
shmget(2)
memory(3C)
sort(1)
acctmerg(1M)
paste(1)
mesg(1)
msgctl(2)
recv(2N)
msgop(2)
mailx(1)
msgget(2)
iperm(1)
send(2N)
mesg(1)
perror(3C)
mkdir(1)
mkdir(1)
mkfs(1M)
qinstall(1)
mkhosts(LNM)

C)
C)
C)
C)
)
)

from an object file.
lost+found directory/
file.

or a special or/

file name.

relocate a PT or GT/
driver for tunable/
formatting/ mm: the
formatted with the
print/check documents/
for formatting/
documents, view graphs,/
system table.

chmod: change

umask: set file-creation
chmod: change

/set terminal type,

/set terminal type,

of/ frexp, ldexp,

touch: update access and
/set file access and
/dodisk, lastlogin,
execution profile.
uusub:

perusal.

mount:

system. mount, umount:
system.

setmnt: establish
dismount file system.
table. mnttab:

mvdir:

In, mv: copy, link or
pointer. lseek:

LP request scheduler and
for formatting a/
/lrand48, nrand48,
operations.

queue.

operations.

package for typesetting/
files. ¢p, In,

view graphs, and/ mmt,
relocate a PT or/ mktpy,
from i-numbers.
mathematical text/ eqn,
definitions for eqn and
network management.
status.

/values between host and
/endnetent: get
/endhostent: get

hosts: list of nodes on
ifconfig: configure

detach serial lines as

5/86

mkifile: make an ifile . . .
mklost+found: makea . . .
mknod: build special
mknod: make a directory, .
mktemp: make a unique .
mktpy, mvtpy: install or . .
mktunedrv: make a loadable

MM macro package for . .
MM macros. /documents .
mm, osdd, checkmm: . . .
mm: the MM macro package
mmt, mvt: typeset
mnttab: mounted file
mode.
mode mask.
modeof filee.
modes, speed, and line/ . .
modes, speed, and line/ . .
modf: manipulate parts . .
modification times of a/ . .
modification times,
monacct, nulladm,/
monitor: prepare
monitor uucp network. . . .
moo: guessing game. . . « .
more, page: text
mount a file system.
mount and dismount file . .
mount: mount a file
mount table,
mount, umount: mount and

mounted file system
move a directory.
move files. ¢p, + + o« + o »
move read/write file
move requests. /the
mptx: the macro package . .
mrand48, jrand48,/
msgctl: message control . .
msgget: get message . . .
msgop: message
mv: a troff macro
my: copy, link or move . . .
mvdir: move a directory. . .
mvt: typeset documents, . .
mvtpy: install or
ncheck: generate names . .
neqn, checkeq: format . . .
neqn. /special character . .
netman: form-based
netstat: show network . . .
network byte order.
network entry.
network host entry.
network.
network interface/
network interfaces. /and . .

-31-

mkifile(1M)
mklost+found(1M)
mknod(1M)
mknod(2)
mktemp(3C)
mktpy(1)
mktunedrv(IM)
mm(5)

mm(1)

mm(1)

mm(5)
mmt(1)
mnttab(4)
chmod(1)
umask(1)
chmod(2)
getty (1M)
uugetty(1M)
frexp(3C)
touch(1)
utime(2)
acctsh(1M)
monitor(3C)
uusub{1M)
moo(6)
more(1)
mount(2)
mount(1M)
mount(2)
setmnt{1M)
mount{1M)
mnttab(4)
mvdir(1M)
ep(1)

Iseek(2)
Ipsched(1M)
mptx(5)
drand48(3C)
msgetl(2)
msgget(2)
msgop(2)
mv(5)

cp(1)
mvdir(IM)
mmt(1)
mktpy(1)
ncheck(1IM)
eqn(1)
eqnchar(5)
netman(1NM)
netstat{1N)
byteorder(3N)
getnetent(3N)
gethostent(3N)
hosts(4N)
ifconfig(1NM)
slattach(1NM)

netman: form-based
status of nodes on local
is logged in on local
netstat: show

stat: statistical
uucpd:

uusub: monitor uucp
numbers for the/
format of a text file.
group.

news: print

a process.

process by changing
low priority.

filter.

name list.

common object file.
mkhosts: make
Internet address from
rwhod:

/display status of
hosts: list of

immune to hangups and/
setjmp, longjmp:
/erand48, Irand48,

mathematical text for
tbl: format tables for
eqn/ deroff: remove
values/ htonl, htons,
htonl, htons, ntohl,
null: the

/lastlogin, monacct,

nl: line

number: convert Arabic
Jaccess graphical and

to/ convert: convert
routines. ldfen: common
selected parts of an
/ldaopen: open a common
/entries of a common
Idaclose: close a common
file header of a common
of a section of a common
file header of a common
of a section of a common
header of a common
/section of a common
table entry of a common
table entry of a common
symbol table of a common
entries in a common
make an ifile from an
name list of common
information for a common

5/86

network management. .
network. /display . . .
network. rwho: who . .
network status.
network useful with/ .
network uucp server. .
network.
networks: names and .
newform: change the . .
newgrp: log in to a new

news items, . . ¢« . . .
news: print news items.

nice: change priority of .
nice. Jof running . . .
nice: run a command at

nl: line numbering . . .
nlist: get entries from .
nm: print name list of .
node name commands. .
node name. /set DARPA
node status server. . .
nodes on local network.

nodes on network. . . .
nohup: run a command

non-local goto.
nrand48, mrand48,/ . .
nroff: format text. . . .
nroff or troff. /format .
nroff or troff.
nroff/troff, tbl, and . .
ntohl, ntohs: convert . .
ntohs: convert values/ .
null file.
null: the null file. . . .
nulladm, pretmp,/ . . .
numbering filter. . . .
numerals to English. . .
numerical commands. .
object and archive files .
object file access
object file. dump: dump
object file for reading. .
object file function. . .
object file. ldclose, . .
object file. /read the .
object file. /entries . .
object file. /optional .
object file. /entries . .
object file. /section . .
object file.
object file,
object file.
object file.
object file.
object file.
object file.
object file.

* s

/a symbol .
/symbol . .
/tothe . .
/number . .
mkifile: . .
nm: print .
/relocation .

-32.

netman(1NM)
ruptime(1N)
rwho(IN)
netstat(1N)
stat(1G)
uucpd(1NM)
uusub(1M)
networks(4N)
newform(1)
newgrp(1)
news(1)
news(1)
nice(2)
renice(1)

)

nlist(3C)
nm(1)
mkhosts(1NM)
setaddr(1NM)
rwhod(1NM)
ruptime(1N)
hosts(4N)
nohup(1)
setjmp(3C)
drand48(3C)
nroff(1)
eqn(1)

tbi(1)
deroff(1)
byteorder(3N)
byteorder(3N)
null(7)

null(7)
acctsh(1M)
nl(1)
number(6)
graphics(1G)
convert(1)
1dfen(4)
dump(1)
ldopen(3X)
1diread(3X)
ldclose(3X)
1dfhread(3X)
ldiseek(3X)
ldohseek(3X)
Idrseek(3X)
ldshread(3X)
1dsseek(3X)
1dtbindex(3X)
ldtbread(3X)
1dtbseek(3X)
linenum(4)
mKifile(1M)
nm(1)

reloc(4)

header for a common
/from a common
/symbol name for common
format. syms: common
file header for common
cpset: install

link editor for common
section sizes of common
ordering relation for an
od:

functions.

file/ 1dopen, ldaopen:
i-node. openi:

fopen, freopen, fdopen:
dup: duplicate an
writing. open:

or writing.

specified by i-node.
profiler. prf:

/prfde, prfsnap, pripr:
memcpy, memset: memory
msgctl: message control
msgop: message
semaphore control
semop: semaphore
shared memory control
shmop: shared memory
strespn, strtok: string
terminal independent
relational database
/copy file systems for
/CRT screen handling and
functions. ocurse:
argument/ getopt: get
a/ ldohseek: seek to the
fentl: file control

stty: set the

getopt: parse command
parallel line printer
/[setsockopt: get and set
object/ lorder: find
/or a special or
print/check/ mm,

dial: establish an

and link editor

lines for finite width
information. uulog:
/print formatted
sprintf: print formatted
stop terminal input and
and/ /accton, acctwtmp:
file. chown: change
chown, chgrp: change
compress and expand/
and optimization

mptx: the macro

5/86

object file. /section . .
object file.
object file symbol table/
object file symbol table

object files. filehdr: . .
object files in binary/ .
object files. ld:
object files. /print . .
object library. /find . .
octal dump.
ocurse: optimized screen
od: octal dump.
open a common object .
open a file specified by .
open a stream.
open file descriptor. . .
open for reading or . .
open: open for reading .
openi: open afile . . .
operating system . . .
operating system/ . . .

operations. /memcmp, .
operations.
operations. .«
operations. semectl: . .
operations. .« . . . o .
operations. shmetl: . .
operations.
operations. /strspn, . .
operations. ftputs: . .

operator. join:
optimal access time. . .
optimization package. .
optimized screen . . .
option letter from . . .
optional file header of .
options.
options for a terminal. .
options.
options. lpset:set . . .
options on sockets. . .
ordering relation for an

ordinary file.
osdd, checkmm:
out-going terminal line/

output. /assembler . .
output device. [long .
output logfile
output of a varargs/ . .
output. /fprintf, . . .
output. /start and . .
overview of accounting .
owner and group of 2 .
owner or group.
pack, pcat, unpack: . .
package. /handling . .
package for formatting a/

-33-

senhdr(4)
strip(1)
ldgetname(3X)
syms(4)
filehdr(4)
cpset(1M)
1d(1)

size(1)
lorder(1)
od(1)
ocurse(3X)
od(1)
1dopen(3X)
openi(2)
fopen(3S)
dup(2)
open(2)
open(2)
openi(2)
pri(7)
profiler(1M)
memory(3C)
msgetl(2)
msgop(2)
semctl(2)
semop(2)
shmetl{2)
shmop(2)
string(3C)
termeap(3X)
join(1)
dcopy(1M)
curses(3X)
ocurse(3X)
getopt(3C)
ldohseek(3X)
fentl(5)
stty(1)
getopt(1)
Ipset(1M)
getsockopt(2N)
lorder(1)
mknod(2)
mm(1)
dial(3C)
a.out(4)
fold(1)
uulog(1C)
vprintf(3S)
printf(3S)
rsterm(1M)
acct(1M)
chown(2)
chown(1)
pack(1)
curses(3X)
mptx(5)

mm: the MM macro
view/ mv: a troff macro
system activity report
buffered input/output
communication

more,

TEKTRONIX 4014/ 4014:
options. Ipset: set
interface. Ip:

772/ xmset: set drive
network interface
/process group, and
getopt:

password.

/endpwent, fgetpwent: get
putpwent: write
passwd:

getpass: read a

passwd: change login
checkers. pwck, grpck:
of several files or/

file for command.
deliver portions of
working/ getewd: get
search a file for a
processing/ awk:

until signal.

and expand files. pack,
to/from a/ popen,
provide truth/ mc68k,
get name of connected
the UUCP directories and
mesg:

package for formatting a
ptx:

file format. acct:
/command summary from
sys_errlist, sys_nerr:/
soft-copy/ pg: file
more, page: text

for soft-copy/

split: split a file into
interprocess channel.
tee:

popen, pclose: initiate
fish:

text, or data in/
interface.

subroutines.

/ftell: reposition a file
move read/write file
pipe to/from a process.
library maintainer for
/dirname: deliver
banner: make

exp, log, logl0,

5/86

package for formatting/
package for typesetting
package. /sa2, sadc: .
package. /standard .
package. /interprocess
page: text perusal. . .
paginator for the . .
parallel line printer . .
parallel printer
parameters for Xylogics
parameters. /configure
parent process [Ds. . .
parse command options.
passwd: change login .
passwd: password file. .
password file entry. . .
password file entry. . .
password file.
password.
password.
password /group file . .
paste: merge same lines
path: locate executable
path names. /dirname:
path-name of current
pattern. /egrep, fgrep:
pattern scanning and .
pause; suspend process
pcat, unpack: compress
pclose: initiate pipe . .
pdpll, u3b, u3b5, vax: .
peer. getpeername: . .
Permissions file. /check
permit or deny messages.
permuted index. /macro
permuted index. + . . .
per-process accounting .
per-process accounting/
perror, errno,
perusal filter for
perusal.
pg: file perusal filter . .
pieces.
pipe: create an
pipe fitting. + « . « o .
pipe to/from a process.
play “Go Fish”.
plock: lock process, . .
plot: graphics
plot: graphics interface .
pointer in a stream. . .
pointer. lseek:
popen, pclose: initiate .
portable archives. /and
portions of path names.
posters.
pow, sqrt: exponential,/

- 34 -

mm(5)
mv(5)
sar(1M)
stdio(3S)
stdipc(3C)
more(1}

ifconfig(1NM)
getpid(2)
getopt(1)
passwd(1)
passwd(4)
getpwent(3C)
putpwent(3C)
passwd(4)
getpass(3C)
passwd(1)
pwck(1M)
paste(1)
path(1)
basename(1)
getewd(3C)
grep(1)
awk(1)
pause(2)
pack(1)
popen(3S)
machid(1)
getpeername(2N)
uucheck(1M)
mesg(1)
mptx(5)
ptx(1)
acct(4)
acctems(1M)
perror(3C)
pg(1)
more(1)
pg(1)

split(1)
pipe(2)
tee(1)
popen(3S)
fish(6)
plock(2)
plot(4)
plot(3X)
fseek(3S)
Iseek(2)
popen(3S)
ar(1)
basename(1)
banner(1)
exp(3M)

/exponential, logarithm,
bre, beheckre, re,

/monacct, nulladm,
/nulladm, pretmp,

text for/ cw, checkcw:
profile. monitor:

cpp: the C language
/determine C language
file. unget: undo a
profiler.

prfld, prfstat,

prisnap, pripr:/
/prfstat, prfde, prfsnap,
prfld, prfstat, pride,
pripr: operating/ prild,
of/ gps: graphical
types. types:

window management
hopefully/ fortune:
prs:

date:

cal:

count of a file. sum:
editing activity. sact:
manual. man, manprog:
cat: concatenate and

pr:

of/ /vfprintf, vsprintf:
/Tprintf, sprintf:
information. lpstat:
common object file. nm:
CTIX system. uname:
news:

from proto file;/ qlist:
blocks/ bcheck:
acctcom: search and
trpt:

common object/ size:
and names. id:

mm, osdd, checkmm:
Ip: parallel

requests to an LP line
a PT or GT local
Ipset: set parallel line
Ipr: line

enable/disable LP
sprintf: print/

run a command at low
nice: change

process/ renice: alter
logged errors. errpt:
acct: enable or disable
acctprel, acctpre2:
/search and print
alarm: set a

process/ times: get

5/86

power, square root/ . .
powerfail, drvload:/ . .
pr: print files.
pretmp, prdaily,/ . . .
prdaily, prtacct,/
prepare constant-width
prepare execution . . .
Preprocessor. . « « « o
preprocessor include/ .
previous get of an SCCS
prf; operating system .
prfdc, prfsnap, prfpr:/ .
prfld, prfstat, pride,
pripr: operating system/
prfsnap, prfpr:/
pristat, prfdc, prfsnap, .
primitive string, format
primitive system data .
primitives. window: . .
print a random,
print an SCCS file. . .
print and set the date. .
print calendar.
print checksum and block
print current SCCS file
print entries in this . .
print files.
print files.
print formatted output
print formatted output.
print LP status
print name list of
print name of current .
print news items. . . .
print out file lists . . .
print out the list of
print process accounting/
print protocol trace.
print section sizes of . .
print user and group IDs
print/check documents/
printer interface.
printer. /send/cancel .
printer. for relocate . .
printer options.
printer spooler.
printers. /disable: . . .
printf, fprintf,
priority. nice:
priority of a process. . .
priority of running . .
process a report of . . .
process accounting. . .
process accounting. . .
process accounting/ . .
process alarm clock. . .
process and child . . .

. .

- 35 -

exp(3M})
bre(1M)
pr(1)
acctsh(1M)
acctsh(1M)
ew(1)
monitor(3C)
cpp(1)
includes(1)
unget(1)
prf(7)
profiler(1M)
profiler(1M)
profiler(1M)
profiler(1M)
profiler(1M)
gps(4)
types(5)
window(7)
fortune(6)
prs(1)
date(1)
cal(1)
sum(1)
sact(1)
man(1)
cat(1)

pr(1)
vprintf(3S)
printf(3S)
lpstat(1)
nm(1)
uname(1)
news(1)
qlist(1)
beheck(1M)
acctcom(1)
trpt(1NM)
size(1)

id(1)

Ipset(1M)
Ipr(1)
enable(1)
printf(3S)
nice(1)
nice(2)
renice(1)
errpt(1M)
acct(2)
acctpre(1M)
acctecom(1)
alarm(2)
times(2)

/priority of running
init, telinit:

/time a command; report
exit, _exit: terminate
fork: create a new
/getppid: get process,
setpgrp: set

group, and parent
seript for the init

kill: terminate a
change priority of a
kill: send a signal toa
initiate pipe to/from a
/getpgrp, getppid: get
ps: report

in memory. plock: lock
get process and child
wait: wait for child
ptrace:

pause: suspend

await completion of
/list of file systems

a process or a group of
killall: kill all active

or file/ fuser: identify
/pattern scanning and
‘halt: terminate all
/interactive message
m4: macro

truth value about your
data.

function.

profile.

prof: display

prepare execution
profil: execution time
environment at login/
function. prof:

prf: operating system
prfpr: operating system
sadp: disk access
/command

/using the mkfs(1)
Jout file lists from
/endprotoent: get
Internet File Transfer
telnetd: DARPA TELNET
Trivial File Transfer
user interface to TELNET
to the DARPA TFTP
trpt: print
ACU/modem calling
Internet protocols.

list of Internet

update:

facts. arithmetic:
/pdp11, u3b, u3bs, vax:

5/86

process by changing/ . .
process control/
process data and system/

process.
process.
process group, and/ . . .
process group ID. . .
process IDs. /process . .
process. inittab:
process.
process. nice:
process or a group of/ . .
process. popen, pclose: . .
process, process group,/ .
process status.
process, text, or data . .
process times. times: . .
process to stop or/ . . .
process trace.
process until signal. . . .
process. wait:
processed by fsck.
processes. /a signal to . .
processes.
processes using a file . . .
processing language. . . .
processing. shutdown, . .
processing system.
processor.
processor type. /provide .
prof: display profile . . .
prof: profile withina . . .
profil: execution time . .
profile data.
profile. monitor:
profile.
profile: setting up an . .
profile within a
profiler.
profiler. /prfsnap, « . . .
profiler.
programming language. .
proto file database. . . .
proto file; set links/ . . .
protocol entry.
Protocol server. /DARPA
protocol server. « . .+ o
Protocol server. /DARPA
protocol. telnet:
protocol. /interface . . .
protocol trace.
protocols. Dialers: . . + .
protocols: listof .«
protocols. protocols: . . .
provide disk/
provide drill in number .
provide truth value/ . . .

TR Y

" e s e .

- 36 -

renice(1)
init(1M)
timex(1)
exit(2)
fork(2)
getpid(2)
setpgrp(2)
getpid(2)
inittab(4)
kill(1)

nice(2)

kill(2)
popen(3S)
getpid(2)
ps(1)
plock(2)
times(2)
wait(2)
ptrace(2)
pause(2)
wait(1)
checklist(4)
ill(2)
killall(1M)
fuser(1M)
awk(1)
shutdown(1M)
mailx(1)
m4(1)
machid(1)
prof(1)
prof(5)
profil(2)
prof(1)
monitor(3C)
profil(2)
profile(4)
prof(5)

prf(7)
profiler(1M)
sadp(1M)
sh(1)
ginstall(1)
qlist(1)
getprotoent(3N)
ftpd(1INM)
telnetd(1INM)
tfepd(INM)
telnet(1N)
tftp(1N)
trpt(1NM)
Dialers(5)
protocols(4N)
protocols(4N)
update(1M)
arithmetic(6)
machid(1)

true, false:

/pretmp, prdaily,
status.

sxt:

Juniformly distributed
/install or relocate a
download. tdl, gtdl,

input stream. ungetc:
putw: put character or/
put character or/ putc,
value to environment.
file entry.

string on a stream.
/getutid, getutline,
putc, putchar, fpute,
password /group file/
name.

tape.

qic: interface for

verify software using/
lists from proto file;/

tput:

msgget: get message
iperm: remove a message
qsort:

immune to hangups and
knowledge.
random-number/
fortune: print a

rand, srand: simple
fsplit: split FORTRAN,
system/ bre, beheckre,
command execution.
ruserok: routines for/

getpass:

table entry/ ldtbread:
ldshread, ldnshread:
read:

send mail to users or
line:

of a member/ ldahread:
a common/ ldfhread:

a common object file for
open: open for

Iseek: move

memory/ malloc, free,
mallopt,/ malloc, free,
system.

reboot:

/specify what to do upon
socket. recv, recvfrom:

5/86

provide truth values. .
prs: print an SCCS file.
prtacct, runacet,/ . . .
ps: report process . . .
pseudo-device driver. .
pseudo-random numbers.
PT or GT local printer.
ptdl: RS-232 terminal .
ptrace: process trace. .
ptx: permuted index. .
push character back into
putc, putchar, fpute, . .
putchar, fpute, putw: .
putenv: change or add .
putpwent: write password
puts, fputs: puta . . .
pututline, setutent,/ . .
putw: put character or/
pweck, grpek:
pwd: working directory
qic: interface for QIC .
QIC tape.
qinstall: install and . .
qlist: print out file . . .
gsort: quicker sort.
query terminfo database.
queue. .
queue, semaphore set or/
quicker sort.
quits. /run a command
quiz: test your
rand, srand: simple . .
random, hopefully/
random-number generator.
ratfor, or efl files.
re, powerfail, drvload: .
remd: remote shell . . .
remd, rresvport,
rep: remote file copy. .
read a password.
read an indexed symbol
read an indexed/named/
read from file.
read mail. mail, rmail: .
read one line.
read: read from file. . .
read the archive header
read the file header of .
reading. /ldaopen: open
reading or writing. . .
read /write file pointer. .
realloc, calloc: main . .
realloc, calloc, « + « « &
reboot: reboot the . . .
reboot the system. . . .
receipt of a signal. . . .
receive a message from a

-37-

.

« 4 e a

true(1)
prs(1)
acctsh(1M)
ps(1)

sxt(7)
drand48(3C)
mktpy(1)
tdi(1)
ptrace(2)
ptx(1)
ungete(3S)
putc(3S)
putc(3S)
putenv(3C)
putpwent(3C)
puts(3S)
getut(3C)
pute(3S)
pwek(1M)
pwd(1)
qic(7)
qic(7)
qinstall(1)
qlist(1)
gsort(3C)
tput(1)
msgget{2)
iperm(1)
gsort(3C)
nohup(1)
quiz(B)
rand(3C)
fortune(6)
rand(3C)
fsplit(1)
bre(1M)
remd(1N)
remd(3N)
rep(1N)
getpass(3C)
1dtbread(3X)

. ldshread(3X)

read(2)
mail(1)
line(1)
read(2)
ldahread(3X)
1dfhread(3X)
ldopen(3X)
open(2)
Iseek(2)
malloc(3C)
malloc(3X)
reboot(1M)
reboot(1M)
signal(2)
recv(2N)

lockf:

per-process accounting
errdead: extract error
connect accounting
backup tape. frec:

a message from a/
message from a/ recv,
ed,

and execute regular/
expression compile.
/maintain, update, and
execute regular/ regemp,
expression compile and/
Jexclusive access to
compile and/ regexp:
compile. regcmp:
/compile and execute
requests. accept,

two/ comm: select or
lorder: find ordering
operator. join:
information for a/
mktpy, mvtpy: install or
/1dnrseek: seek to

for a common/ reloc:
/Tabs: floor, ceiling,
calendar:

uux: CTIX to CTIX
returning a stream to a
uuxqt: execute

return stream to a
rhosts:

rexecd:

rep:

rlogin:

rlogind:

execution. remd:

rshd:

Uutry: try to contact a
ct: spawn getty toa
SCCS file. rmdel:
semaphore set or/ iperm:
unlink:

disk. dismount:
directories. rm, rmdir:
and eqn/ deroff:

of running process by/
check and interactive
file. uniq: report
clock:

fsize:

communication/ ipes:
disk blocks. df:

errpt: process a

sadec: system activity
timex: time a command;
ps:

5,/86

record locking on files. .
records. /summary from
records and status/ . .
records. /manipulate .
recover files froma . .
recv, recyfrom: receive .
recvfrom: receivea . .
red: text editor.
regemp, regex: compile .
regemp: regular
regenerate groups of/ .
regex: compile and . . .
regexp: regular
regions of afile.
regular expression . . .
regular expression . . .
regular expression. . . .
reject: allow /prevent LP
reject lines common to .
relation for an object/ .
relational database . .
reloc: relocation
relocate a PT or GT/ .
relocation entries of a/ .
relocation information .
remainder, absolute/ . .
reminder service.
remote command/ . . .
remote command. /for .

e o o 8

remote command requests.

remote command. rexec:
remote equivalent users.
remote execution server.
remote file copy.
remote login.
remote login server. . .
remote shell command .
remote shell server. . .
remote system with/ . .
remote terminal.
remove a delta from an

remove a message queue,
remove directory entry.

remove exchangeable . .
remove files or
remove nroff /troff, tbl, .
renice: alter priority
repair. [consistency . .
repeated linesina . . .
report CPU time used. .
report file size.
report inter-process
report number of free .
report of logged errors. .
report package. /sa2, .
report process data and/
report process status. .

. .

- 38 -

lockf(3C)
acctems(1M)
errdead(1M)
fwtmp(1M)
frec(1M)
recv(2N)
recv(2N)
ed(1)
regemp(3X)
regemp(1)
make(1)
regemp(3X)
regexp(5)
locking(2)
regexp(5)
regemp(1)
regemp(3X)
accept(1M)
comm(1)
lorder(1)
join(1)
reloc(4)
mktpy(1)
ldrseek(3X)
reloc(4)
floor(3M)
calendar(1)
uux(1C)
remd(3N)
uuxqt(1M)
rexec(3N)
rhosts(4N)
rexecd(1NM)
rep(1N)
rlogin(1N)
rlogind(1NM)
remd(1N)
rshd{1NM)
Uutry(1M)
ct(1C)
rmdel(1)
iperm(1)
unlink(2)
dismount(1)
rm(1)
deroff(1)
renice(1)
fsck(1M)
unig(1)
clock(3C)
fsize(1)
ipes(1)
df(1M)
errpt(1IM)
sar(1M)
timex(1)
ps(1)

a file. uniq:
sar: system activity
fseek, rewind, ftell:

move/ /start/stop the LP
reject: allow/prevent LP
scheduler and move
syslocal: special system
Ip, cancel: send/cancel
execute remote command
common/ ldgetname:
value. abs:

user. logname:

remote command. rexec:
environment/ getenv:
call. stat: data

/ruserok: routines for
col: filter

reposition a/ fseek,
/create a new file or

a remote command.
server.

equivalent users.

server.
or directories.

users or read/ mail,
from an SCCS file.
directories. rm,

chroot: change
command. chroot: change
/logarithm, power, square
manipulate the routing/
/td: graphical device
/rresvport, ruserok:
address manipulation
object file access

compile and match

table of contents
manually manipulate the
routines for/ rcmd,
/terminal’s local

tdl, gtdl, ptdl:
standard/restricted/ sh,
server.

and stop terminal input/
priority. nice:

hangups and/ nohup:
runacct:

accounting.

/prdaily, prtacct,

/alter priority of

of nodes on local/

remd, rresvport,

on local network.

server.

activity report/

activity report/ sal,

5/86

report repeated lines in .
reporter,
reposition a file/
request scheduler and . .
requests. accept,
requests. /LP request . .
requests.
requests to an LP line/ . .
requests. uuxqt: “ e
retrieve symbol name for .
return integer absolute . .
return login nameof . . .
return streamtoa
return valuefor
returned by stat system .
returning a streamtoa/ .
reverse line-feeds.
rewind, ftell:
rewrite an existing one. .
rexec: return stream to . .
rexecd: remote execution .
rhosts: remote
rlogin: remote login. . . .
rlogind: remote login . . .
rm, rmdir: remove files . .
rmail: send mailto . . .
rmdel: remove a delta . .
rmdir: remove filesor . .
root directory.
root directory fora . . .
root functions.
route: manually
routines and filters. . . .
routines for returning a/ .
routines. /Internet . . .
routines. ldfcn: common .
routines. /expression . .
routines. /graphical . . .
routing tables. route: . .
rresvport, ruserok:
RS$-232 channels.
RS-232 terminal/
rsh: shell, the
rshd: remote shell
rsterm: manually start . .
run a command at low . .
run a command immune to
run daily accounting. . .
runacet: run daily
runacct, shutacet,/ . . .
running process by/ . . .
ruptime: display status . .
ruserok: routines for/ . .
rwho: who is logged in . .
rwhod: node status . . .
sal, sa2, sade: system . .
sa2, sade: system

-39 -

unig(1)
sar(1)
fseek(3S)
Ipsched(1M)
accept(1M)
Ipsched(1M)
syslocal(2)
ip(1)
uuxqt(1M)
ldgetname(3X)
abs(3C)
logname(3X)
rexec(3N)
getenv(3C)
stat(5)
remd(3N)
col(1)
fseek(3S)
creat(2)
rexec(3N)
rexecd(1NM)
rhosts(4N)
rlogin(1N)
rlogind(1INM)
rm(1)
mail(1)
rmdel(1)
rm(1)
chroot(2)
chroot(1M)
exp(3M)
route(1NM)
gdev(1G)
remd(3N)
inet(3N)
1dfen(4)
regexp(5)
toc(1G)
route(1NM)
remd(3N)
tp(7)

tdi(1)

sh(1)
rshd(1NM)
rsterm(1M)
nice(1)
nohup(1)
runacct(1M)
runacct(1M)
acctsh(1IM)
renice(1)
ruptime(1N)
remd(3N)
rwho(1N)
rwhod(1NM)
sar(1M)
sar(1M)

file editing activity.
report/ sal, sa2,
profiler.

graph.

reporter.

segment space/ brk,
convert formatted/
bfs: big file

language. awk: pattern
delta commentary of an
comb: combine

a delta (change) to an
sact: print current

get: get a version of an
prs: print an

remove a delta from an
two versions of an
scesfile: format of

a previous get of an
val: validate

create and administer
what: identify

versions of an SCCS/
file.

/the LP request
system. uusched: the
for a common object/
clear: clear terminal
ocurse: optimized
curses: CRT

display editor/ vi:
process. inittab:

of terminal session.
initialization shell

difference program.
grep, egrep, fgrep:
bsearch: binary
accounting/ acctcom:
Isearch, Ifind: linear
hdestroy: manage hash
twalk: manage binary
common object/ senhdr:
/read an indexed /named
line number entries of a
relocation entries of a
/to an indexed /named
object/ size: print

/irand48, srand48,
ldsseek, ldnsseek:
ldlseek, ldnlseek:
Idrseek, ldnrseek:

file header/ ldohseek:
of a common/ ldtbseek:
get shared memory

brk, sbrk: change data

5/86

sact: print current SCCS . . sact(1)
sadc: system activity sar(1M)
sadp: disk access sadp(1M)
sag: system activity . sag(1G)
sar: system activity . sar(1)
sbrk: change data brk(2)
scanf, fscanf, sscanf: . . scanf(3S)
SCANMET. & o o o s o o = & bfs(1)
scanning and processing . . awk(l)
SCCS delta. /change the . cde(1)
SCCS deltas. + « v o & . . comb(1)
SCCS file. delta: make . delta(l)
SCCS file editing/ sact(1)
SCCSfile. .+ v v v v o get(1)
SCCSfile. prs(l)
SCCS file. rmdel: rmdel(1)
SCCS file. /compare . scesdiff(1)
SCCSfile. & o v o o v o scesfile(4)
SCCS file. unget: undo . unget(l)
SCCSfile. « v v v o o« . vall)
SCCS files. admin: admin(1)
SCCSfiles. o v o o v v« . what(1)
scesdiff: compare two . . . scesdiff(1)
scesfile: format of SCCS . scesfile(4)
scheduler and move/ Ipsched(1M)
scheduler for the UUCP . uusched(1M)
scnhdr: section header . . . scnhdr(4)
screen. e o s e e oo o clear(l)
screen functions. ocurse(3X)

screen handling and/

. curses(3X)

screen-oriented (visual) . . . vi(1)
script for theinit inittab(4)
script: make typescript . . . script(1)
scripts. /system bre(1M)
sdb: symbolic debugger. . . sdb(l)
sdiff: side-by-side sdiff(1)
search afilefora/ grep(1)

search a sorted table.
search and print process
search and update.
search tables. /hcreate,
search trees. /tdelete,
section header for a
section headerofa/
section of a common/ /to .
section of a common/ /to
section of a common/
section sizes of common
sed: stream editor.
seed48, lcong48:/
seek to an/
seek to line number/
seek to relocation/
seek to the optional
seek to the symbol table
segment. shmget:
segment space/

- 40 -

. bsearch(3C)

. acctcom(1)
« .« Isearch(3C)

. hsearch(3C)

. tsearch(3C)
. . scnhdr(4)

Idshread(3X)
1dlseek(3X)

. ldrseek(3X)
. ldsseek(3X)
. size(1)

sed(1)
drand48(3C)
ldsseek(3X)
ldlseek(3X)
ldrseek(3X)

. . ldohseek(3X)
. ldtbseek(3X)

shmget(2)
brk(2)

common to two/ comm:
greek:

line of a/ cut: cut out
object file. dump: dump
operations. semctl:
semop:

/remove a message queue,
semget: get set of
control operations.
semap hores.

operations.

socket. send, sendto:
process or a/ kill:

read mail. mail, rmail:
message to a socket.

an LP line/ lp, cancel:
to a socket. send,
/attach and detach

File Transfer Protocol
rexecd: remote execution
rlogind: remote login
rshd: remote shell
rwhod: node status
DARPA TELNET protocol
File Transfer Protocol
uucpd: network uucp
typescript of terminal
Internet address from/
buffering to a stream.
address on disk.

group IDs. setuid,
/getgrgid, getgrnam,
get/ /gethostbyname,
non-local goto.

generate hashing/ crypt,
table.

get/ /getnetbyname,
group ID.
/getprotobyname,
/getpwuid, getpwnam,
get/ /getservbyname,
options on/ getsockopt,
environment/ cprofile:
environment at/ profile:
/speed and terminal

and group IDs.

system.

/getutline, pututline,
buffering to a/ setbuf,
integer data in/ sputl,
standard/restricted/
xstr: extract and
operations. shmctl:
/queue, semaphore set or
operations. shmop:
shmget: get

remd: remote

5/86

select or reject lines . .
select terminal filter. . .
selected fields of each .
selected partsofan . .
semaphore control . . .
semaphore operations. .
semaphore set or shared/
semaphores.
semctl: semaphore . . .
semget: get set of . . .
semop: semaphore . . .
send a messagetoa . .
send a signaltoa . . .
send mail to usersor . .
send, sendto: senda . .
send/cancel requests to

sendto: send a message .
serial lines as network/

server. /DARPA Internet
server.
server.
server.
SEIVEL. o & o o o o o o
server. telnetd:
server. /DARPA Trivial
SEIVEr. « s « o » o o o
session. script: make .
setaddr: set DARPA . .
setbuf, setvbuf: assign .
setenet: write Ethernet .
setgid: set userand . .
setgrent, endgrent,/ . .
sethostent, endhostent: .
setjmp, longjmp: . . .
setkey, encrypt:
setmnt: establish mount
setnetent, endnetent: .
setpgrp: set process . .
setprotoent,/
setpwent, endpwent,/
setservent, endservent: .
setsockopt: get and set .
setting up a C shell . .
settingupan .« « « .
settings used by getty. .
setuid, setgid: set user .
setuname: set name of .
setutent, endutent,/ . .
setvbuf: assign
sgetl: access long . . .
sh, rsh: shell, the . . .
share stringsin C/ . .
shared memory control .
shared memory id. . . .
shared memory
shared memory segment.
shell command execution.

- 41 -

comm(1)
greek(1)
cut(1)
dump(1)
semct(2)
semop(2)
iperm(1)
semget(2)
semetl(2)
semget (2}
semop(2)
send(2N)
Kill(2)

mail(1)
send(2N)

Ip(1)
send(2N)
slattach{1NM)
ftpd(1NM)
rexecd(1NM)
rlogind(1INM)
rshd(INM)
rwhod(1NM)
telnetd(1NM)
tftpd(1NM)
uucpd(1INM)
seript(1)
setaddr{1NM)
setbuf(3S)
setenet(1NM)
setuid(2)
getgrent(3C)
gethostent(3N)
setjmp(3C)
crypt(3C)
setmnt(1M)
getnetent(3N)
setpgrp(2)
getprotoent(3N)
getpwent(3C)
getservent(3N)
getsockopt(2N)
cprofile(4)
profile(4)
gettydefs(4)
setuid(2)
setuname(1M)
getut(3C)
setbuf(3S)
sputl(3X)
sh(1)

xstr(1)
shmetl(2)
iperm(1)
shmop(2)
shmget(2)
remd(1N)

interpreter)/ esh: a
system: issue a

cprofile: setting up a C
shl:

/startup, turnacct:
system initialization
rshd: remote

sh, rsh:

manager.

control operations.
memory segment.
operations.
full-duplex/ shutdown:
/prtacct, runacct,
terminate all/

of a full-duplex/
program. sdiff:

login:

suspend process until
to do upon receipt of a
do upon receipt of a/
group of/ kill: send a
gsignal: software
/generate programs for
generator. rand, srand:
acos, atan, atan2:/
hyperbolic functions.
fsize: report file

sizes of common object/
size: print section
attach and detach/
detach serial/ slattach,
for an interval.

for interval.

view graphs, and

view graphs and

the/ ttyslot: find the
spline: interpolate
accept a connection on a
bind: bind a name to a
a connection on a
endpoint for/

for connections on a
getsockname: get
receive a message from a
send a message to a
get and set options on
/file perusal filter for
ctinstall: install

ssignal, gsignal:

/install and verify

sort:

gsort: quicker

files.

tsort: topological

lines common to two
bsearch: binary search a

5/86

shell (command
shell command.
shell environment at/ . .
shell layer manager. . . .
shell procedures for/ . . .
shell scripts. /drvload: . .
shell server.
shell, the/
shl: shell layer
shmetl: shared memory .
shmget: get shared . . .
shmop: shared memory . .
shut down partofa . . .
shutacet, startup,/ . . .
shutdown, halt:
shutdown: shut down part
side-by-side difference . .
sign on.
signal. pause:
signal. /specify what . .
signal: specify what to . .
signal to a processora . .
signals. ssignal,
simple lexical tasks. . . .
simple random-number . .
sin, cos, tan, asin,
sinh, cosh, tanh:
SIZE. o ¢ b 6 s s e e e
size: print section
sizes of common object .
slattach, sldetach:
sldetach: attach and . . .
sleep: suspend execution .
sleep: suspend execution .
slides. /documents, . . .
slides. /for typesetting
slot in the utmp file of . .
smooth curve.
socket. accept:
socket.
socket. /initiate
socket: createan
socket. listen: listen . . .
socket name.
socket. recv, recvfrom: . .
socket. send, sendto: . .
sockets. /setsockopt: . .
soft-copy terminals. . . .
software.

software signals.

software using the/ .« . .
sort and/or merge files. .
SOTL. & o o o ¢ o o & o &
sort: sort and/or merge .
SOTt. '« o ¢ o o s o o s &
sorted files. /or reject . .
sorted table.

- 49 -

¢sh(1)
system(3S)
cprofile(4)
shl(1)
acctsh(1M)
bre(1M)
rshd(1INM)
sh(1)

shl(1)
shmetl(2)
shmget(2)
shmop(2)
shutdown(2N)
acctsh(1M)
shutdown(1M)
shutdown(2N
sdiff(1)
login(1)
pause(2)
signal(2)
signal(2)
ill(2)
ssignal(3C)
lex(1)
rand(3C)
trig(3M)
sinh(3M)
fsize(1)

size(1)

size(1)
slattach(1NM)
slattach(1NM)
sleep(1)
sleep(3C)
mmt(1)

mv(5)
ttyslot(3C)
spline(1G)
accept(2N)
bind(2N)
connect(2N)
socket(2N)
listen(2N)
getsockname(2N)
recv(2N)
send(2N)
getsockopt(2N)
pg(1)
ctinstall(1)
ssignal(3C)
ginstall(1)
sort(1)
gsort(3C)
sort(1)
tsort(1)
comm(1)
bsearch(3C)

change data segment
/unexpand: expand tabs to
terminal. ct:

files. fspec: format
openi: open a file
receipt of a/ signal:
terminal type, modes,
terminal type, modes,
settings/ gettydefs:
spellin, hashcheck:/
spell, hashmake,
/spellin, hashcheck: find
smooth curve.

pieces. split:

csplit: context

or efl files. fsplit:
pieces.

uucleanup: uucp

Ipr: line printer
/configure the LP
printf, fprintf,

long integer data in a2/
exp, log, logl0, pow,
/logarithm, power,
random-number/ rand,
/mrand48, jrand48,
scanf, fscanf,

software signals.
input/output/ stdio:
communication/ ftok:
sh, rsh: shell, the
input/ rsterm: manually
Ipsched, Ipshut, Ipmove:
/runacect, shutaect,

stat system call.

status.

network useful with/
stat: data returned by
useful with/ stat:

/list file names and
ustat: get file system
dump. /error records and
Ipstat: print LP
clearerr, fileno: stream
control. uustat: uucp
communication facilities
netstat: show network
ruptime: display

ps: report process
rwhod: node

stat, fstat: get file
input/output package.

for child process to
/manually start and
strnemp, strepy,/
/strepy, strnepy, strlen,

5/86

space allocation. /sbrk:

spaces, and vice versa.

spawn getty to a remote

specification in text
specified by i-node.

specify what to do upon

speed, and line/ /set
speed, and line/ /set
speed and terminal

spell, hashmake,

spellin, hashcheck: find/

spelling errors.
spline: interpolate
split a file into

« o s e

split. ¢ & o & 0 v b .

split FORTRAN, ratfor,

split: split a file into

spool directory/

spooler.

D I I

spooling system.
sprintf: print formatted/

sputl, sgetl: access .
sqrt: exponential,/ .
square root functions.
srand: simple
srand48, seed48,/ .
sscanf: convert/ . .
ssignal, gsignal: . .
standard buffered .
standard interprocess
standard /restricted/

start and stop terminal

start/stop the LP/

startup, turnacct: shell/

stat: data returned by
stat, fstat: get file .
stat: statistical . .
stat system call. . .
statistical network .
statistics for a file/
statistics.

status information from

status information.

status inquiries. [feof,
status inquiry and job
status. /inter-process
status.

status of nodes on local/

status.
status server.
status.

stdio: standard buffered

stime: set time.

® s o » s ¢ o

stop or terminate. /wait
stop terminal input and/
strcat, strncat, stremp, .
strchr, strrehr,/ . . .

- 43 -

brk(2)
expand(1)
¢t(1C)
fspec(4)
openi{2)
signal(2)
getty(1IM)
uugetty(1M)
gettydefs(4)
spell(1)
spell(1)
spell(1)
spline(1G)
split(1)
esplit(1)
fsplit(1)
split(1)
uueleanup{1M)
Ipr(1)
Ipadmin(1M)
printf(3S})
sputl(3X)
exp(3M)
exp(3M)
rand(3C)
drand48(3C)
scanf(3S)
ssignal(3C)
stdio(3S)
stdipe(3C)
sh(1)
rsterm(1M)
Ipsched(1M)
acctsh(1M)
stat(5)
stat(2)
stat(1G)
stat(5)
stat(1G)
ff(1M)
ustat(2)
errdead(1M)
Ipstat(1)
ferror(3S)
uustat(1C)
ipes(1)
netstat(1N)
ruptime(1N)

. ps(1)

rwhod(1NM)
stat(2)
stdio(3S)
stime(2)
wait(2)
rsterm(1M)
string(3C)
string(3C)

strcat, strncat,

/stremp, strnemp,
/strpbrk, strspn,

sed:

fflush: close or flush a
freopen, fdopen: open a
a file pointer in a
character or word from a
get a string from a
character or word on a
fputs: put a string on a
assign buffering to a
/feof, clearerr, fileno:
/routines for returning a
command. rexec: return
back into input

and base-64 ASCII
convert date and time to
floating-point number to
gps: graphical primitive
gets, fgets: get a

puts, fputs: put a
/strspn, strespn, strtok:
strtod, atof: convert
atof: convert ASCII
Jatol, atoi: convert
ASCII text strings in a/
/extract the ASCII text
xstr: extract and share
line number information/
number/ strip:

/strepy, strnepy,
strnemp,/ streat,
streat, strncat, stremp,
/stremp, strnemp, strepy,
/strlen, strchr, strrehr,
/strnepy, strlen, strchr,
/strrchr, strpbrk,

string to/

strspn, strespn,

convert string to/

using a file or file

for a terminal.

another user.

intro: introduction to
plot: graphics interface
/of several files or

block count of a file.

du:

acctems: command
sync: update the

sync: update

user. su: become
interval. sleep:

interval. sleep:

signal. pause:

5/86

stremp, strnemp, strepy,/

strepy, strnepy, strien,/ .
strespn, strtok: string/ . .
stream editor.

stream. fclose,
stream. fopen,
stream. /reposition . . .
stream. /getw:get . . .
stream. gets, fgets: . . .
stream. /putw:put . . .
stream. puts,
stream. /setvbuf:

stream status inquiries. .
stream to a remote/ . . .
stream to a remote . . .
stream. /push character .
string. /long integer . . .
string. /asctime, taset: . .
string. /gcvt: convert . .
string, format of/
string from a stream. . .
string on a stream. . . .
string operations.
string to/
string to floating-point/ .
string to integer.
strings: extract the . . .
strings in a file.
strings in C programs. . .
strip: strip symbol and . .
strip symbol and line . .
strlen, strehr, strrchr,/ . .
strncat, stremp, + o ¢ o .
strnemp, strepy,/
strncpy, strlen, strehr,/ .
strpbrk, strspn,/
strrchr, strpbrk,/
strspn, strespn, strtok:/ .
strtod, atof: convert . . .
strtok: string/ /strpbrk, .
strtol, ato], atoi:
structure. /processes . .
stty: set the options . . .
su: become super-user or .
subroutines and/
subroutines.
subsequent lines of one/ .
sum: print checksum and .
summarize disk usage. . .
summary from per-process/
super block.
super-block.
super-user or another . .
suspend execution for an .
suspend execution for . .
suspend process until . .
swab: swap bytes.

s e o s s *

- 44 -

string(3C)
string(3C)
string(3C)
sed(1)
fclose(3S)
fopen(3S)
fseek(3S)
gete(38)
gets(38)
pute(3S)
puts(3S)
setbuf(3S)
ferror(3S)
remd(3N)
rexec(3N)
unget¢(3S)
a641(3C)
ctime(3C)
ecvt(3C)
gps(4)
gets(3S)
puts(3S)
string(3C)
strtod(3C)
atof(3C)
strtol(3C)
strings(1)
strings(1)
xstr(1)

strtol(3C)
fuser(1M)
stty(1)
su(1)
intro(3)
plot(3X)
paste(1)
sum(1)
du(1)
acctems(1M)
syne(1)
syne(2)
su(1)
sleep(1)
sleep(3C)
pause(2)
swab(3C)

interface. swap:

swab:

administrative/

write on a file.

driver.

strip: strip

ldgetname: retrieve

/for common object file
/compute the index of 2
common/ /read an indexed
syms: common object file
ldtbseek: seek to the
sdb:

symbol table format.
super-block.

block.

update: provide disk
file. swrite:

interpreter) with C-like
system/ perror, errno,
requests.

Jerrno, sys_errlist,
binary search a sorted
object file symbol

/the index of a symbol
/read an indexed symbol
object file symbol
device information
mounted file system
/seek to the symbol
toc: graphical

setmnt: establish mount
troff. tbl: format
manage hash search
manipulate the routing
tabs: set

terminal.

expand, unexpand: expand
ctags: create a

part of a file.

atan2:/ sin, cos,
functions. sinh, cosh,
Xylogics 772 half-inch
tar:

files from a backup

qic: interface for QIC

for simple lexical
/remove nroff/troff,
nroff or troff.

/erase, hardcopy, tekset,
binary/ tsearch, tfind,
terminal download.

hpd, erase, hardcopy,

4014: paginator for the
initialization. init,

5/86

swap administrative . . .
swap bytes.
swap: swap
swrite: synchronous . . .
sxt: pseudo-device
symbol and line number/ .
symbol name for common/
symbol table entry. . . .
symbol table entry of a/ .
symbol table entry of a .
symbol table format. . . .
symbol table of a common/
symbolic debugger.
syms: common object file .
sync: update
sync: update the super . .
synchronization.
synchronous writeona .
syntax. /shell (command .
sys_errlist, sys_nerr: . . .
syslocal: special system . .
sys_nerr: system error/ . .
table. bsearch:
table entry. /for common

table entry of a common/

table entry of a common/

table format. /common .
table. master: master . .
table. mnttab:
table of a common object/
table of contents/
table.
tables for nroff or
tables. /hdestroy:
tables. route: manually .
tabs on a terminal. . . .
tabs: set tabsona
tabs to spaces, and vice/ .
tags file.
tail: deliver the last . . .
tan, asin, acos, atan, . . .
tanh: hyperbolic
tape controller. /for . . .
tape file archiver.
tape. frec: recover
tape. « ¢« o ¢ s e 0 e o0
tar: tape {ile archiver. . .
tasks. /programs
tbl, and eqn constructs. .
tbl: format tables for . .
td: graphical device/ . . .
tdelete, twalk: manage . .
tdl, gtdl, ptdl: RS-232 . .
tee: pipe fitting.
tekset, td: graphical/ .

TEKTRONIX 4014 termmal
telinit: process control

e & ® o s e .

« s o

- 45 -

swap(1M)
swab(3C)
swap{1M)
swrite(2)

sxt(7)

strip(1)
ldgetname(3X)
ldgetname(3X)
ldtbindex{3X)
ldtbread(3X)
syms(4)
ldtbseek(3X)
sdb(1)

syms(4)
syne(2)

sync(1)
update(1M)
swrite(2)
csh(1)

. perror(3C)

syslocal(2)
perror(3C)
bsearch(3C)
ldgetname(3X)
Jdtbindex(3X)
1dtbread(3X)
syms(4)
master(4)
mnttab(4)
ldtbseek(3X)
toe(1G)
setmnt(1M)
tbl(1)
hsearch(3C)
route(1NM)
tabs(1)
tabs(1)
expand(1)
ctags(1)
tail(1)
trig(3M)
sinh(3M)
xmset(1M)
tar(1)
frec(1M)
qic(7)

tar(1)

lex(1)
deroff(1)
tbl(1)
gdev(1G)
tsearch(3C)
tdl(1)

tee(1)
gdev(1G)
4014(1)
init(1M)

telnetd: DARPA

/user interface to

to TELNET protocol.
protocol server.

for a temporary/ tmpnam,
tmpfile: create a

/create a name for a

for terminals.

term: format of compiled
term file..

capability data base.

for the TEKTRONIX 4014
of the DASI 450
interface. tiop:

base. termcap:

base. terminfo:

console: console

spawn getty to a remote
generate file name for
tdl, gtdl, ptdl: RS-232
/terminal inteface, and
greek: select

/tgetstr, tgoto, tputs:
/manually start and stop
tset: set terminal,
termio: general

tty: controlling

establish an out-going

of terminal types by
clear: clear

/make typescript of

by/ gettydefs: speed and
set the options for a
tabs: set tabs on a
inteface, and/ tset: set
conlocate: locate a

tty: get the name of the
isatty: find name of a
speed, and/ getty: set
speed, and/ uugetty: set
ttytype: list of

vt: virtual

of DASI 300 and 300s
HP 2640 and 2621-series
tp: controlling

filter for soft-copy
conventional names for
kill:

shutdown, halt:

exit, _exit:

error-logging/ errstop:
child process to stop or
tic:

tput: query

capability data base.
interface.

evaluation command.

5/86

TELNET protocol server.
TELNET protocol. . .
telnet: user interface
telnetd: DARPA TELNET
tempnam: create a name

temporary file.
temporary file.
term: conventional names
term file..
term: format of compiled
termcap: terminal
terminal. /paginator .
terminal. /functions . .
terminal accelerator
terminal capability data
terminal capability data
terminal.
terminal. ct:
terminal. ctermid: . . .
terminal download. . .
terminal environment. .
terminal filter.
terminal independent/ .
terminal input and/ . .
terminal inteface, and/ .
terminal interface.
terminal interface. . . .
terminal line/ dial: . .
terminal number. /list .
terminal screen.
terminal session.
terminal settings used .
terminal. stty:
terminal.
terminal, terminal
terminal to use as the/ .
terminal.
terminal. ttyname, . .
terminal type, modes, .
terminal type, modes, .
terminal types by/ . .
terminal.
terminals. /functions .
terminals. /functions of
terminal’s local RS-232/

terminals. /file perusal

terminals. term: . . .
terminate a process. . .
terminate all/
terminate process. . . .
terminate the
terminate. /wait for . .
terminfo compiler. . . .
terminfo database. . .
terminfo: terminal
termio: general terminal
test: condition

. e

e o 8 o e+ o o

- 46 -

telnetd(1NM)
telnet(1N)
telnet(1N)
telnetd(1NM)
tmpnam(3S)
tmpfile(3S)
tmpnam(3S)
term(5)
term(4)
term(4)
termeap(4)
4014(1)
450(1)
tiop(7)
termcap(4)
terminfo(4)
console(7)
ct(1C)
ctermid(3S)
td1(1)
tset(1)
greek(1)
termeap(3X)
rsterm(1M)
tset(1)
termio(7)

. tty(7)

dial(3C)
ttytype(4)
clear(1)
seript(1)
gettydefs(4)
stty(1)
tabs(1)
tset(1)
conlocate(1M)
tty(1)

. ttyname(3C)

getty (IM)
uugetty(1M)
ttytype(4)
vt(7)

300(1)

hp(1)

tp(7)
pg(1)
term(5)

kill(1)
shutdown(1M)
exit(2)
errstop(1M)
wait(2)
tic(1M)
tput(l)
terminfo(4)
termio(7)

. test(l)

quiz:

ed, red:

ex:

ex for casual/ edit:
change the format of a
format specification in
/format mathematical
/prepare constant-width
nroff: format

plock: lock process,
more, page:

/extract the ASCII
troff: typeset

manage binary/ tsearch,
interface to the DARPA
the DARPA TFTP/
File Transfer Protocol/
tgetflag, tgetstr,/
tgetent, tgetnum,
tgetstr,/ tgetent,
/tgetnum, tgetflag,
/tgetflag, tgetstr,

ttt, cubic:

process data and/ timex:
time:

commands at a later
environment at login

for optimal access

profil: execution
an environment at login
stime: set

time: get

/tzset: convert date and
clock: report CPU

TZ:

child process times.
access and modification
and child process

access and modification
report process data and/
accelerator interface.
temporary file.

a name for a temporary/
/_toupper, _tolower,
contents routines.
/pclose: initiate pipe
/tolower, _toupper,
_tolower,/ toupper,
tsort:

acctmerg: merge or add
modification times of a/
toupper, tolower,
_toupper, _tolower,/
terminal’s local RS-232/

5/86

test your knowledge. . . .
text editor.
text editor. . « « & o . .
text editor (variant of . .
text file. newform: . . .
text files. fspec: « « . . .
text for nroff or troff. . .
text for troff.
text. ¢« + o« o 0 o 0 ..
text, or data in memory. .
text perusal.
text strings in a file. . . .
teXt. o« ¢ 4 4 o 6 e 0 e
tfind, tdelete, twalk: . . .
TFTP protocol. /user . .
tftp: user interface to . .
tftpd: DARPA Trivial . .
tgetent, tgetnum,
tgetflag, tgetstr,/
tgetnum, tgetflag,
tgetstr, tgoto, tputs:/ . .
tgoto, tputs: terminal/ . .
tic: terminfo compiler. . .
tic-tac-toe. o« o 4 4 4 .
time a command; report .
time a command.
time. /batch: execute . .
time. /up a Cshell . ..
time. /copy file systems .
time: get time.
time profile.
time. /settingup
time.
time: time a command. . .
time.
time to string.
time used. . . « . 0 o .
time zone file.
times: get process and . .
times of a file. /update .
times. /get process . . .
times. utime: set file . .
timex: time a command; .
tiop: terminal
tmpfile: createa . « « . .
tmpnam, tempnam: create
toascii: translate/
toc: graphical table of . .
to/from a process. « . . .
_tolower, toascii:/
tolower, _toupper,
topological sort.
total accounting files. .« .
touch: update access and .
_toupper, _tolower,/ . . .
toupper, tolower,
tp: controlling

- 47 -

quiz(6)
ed(1)

ex(1)
edit(1)
newform(1)
fspec(4)
eqn(1)
ew(1)
nroff(1)
plock(2)
more(1)
strings(1)
troff(1)
tsearch(3C)
titp(1N)
tftp(1N)
tftpd(LINM)
termeap(3X)
termeap(3X)
termeap(3X)
termeap(3X)
termecap(3X)
tic(1M)
ttt(6)
timex(1)
time(1)
at(1)
cprofile(4)
deopy(1M)
time(2)
profil(2)
profile(4)
stime(2)
time(1)
time(2)
ctime(3C)
clock(3C)
tz(4)
times(2)

tiop(7)
tmpfile(3S)
tmpnam(3S)
conv(3C)
toc(1G)
popen(3S)
conv(3C)
conv(3C)
tsort(1)
acctmerg(1M)
touch(1)
conv(3C)
conv(3C)
tp(7)

database.

/tgetstr, tgoto,
characters.

ptrace: process

trpt: print protocol

ftp: file

DARPA Internet File
/DARPA Trivial File

/ _tolower, toascii:

tr:

ftw: walk a file

manage binary search
trk:

/asin, acos, atan, atan2:
Protocol/ tftpd: DARPA

constant-width text for
text for nroff or
typesetting view/ mv: a
tables for nroff or

trace.

truth values.

/u3b, u3b5, vax: provide
true, false: provide
system with/ Uutry:
twalk: manage binary/
terminal inteface, and/

terminal interface.
terminal.

name of a terminal.

in the utmp file of the/
terminal types by/

/a loadable driver for
/shutacct, startup,
tsearch, tfind, tdelete,
file: determine file

about your processor
getty: set terminal
uugetty: set terminal
/list of terminal

data types.

primitive system data
session. script: make
graphs, and/ mmt, mvt:
troff:

/troff macro package for

time/ /gmtime, asctime,
truth/ mc68k, pdpll,
me68k, pdpll, u3b,
getpw: get name from

limits.

5/86

tplot: graphics filters. .
tput: query terminfo . .
tputs: terminal/
tr: translate
trace.
trace. .« . ¢ . .
transfer program. . . .
Transfer Protocol/ ftpd:
Transfer Protocol/ . .
translate characters. . .
translate characters. . .
tree.
trees. /tdelete, twalk: .
trekkie game.
trigonometric functions.

Trivial File Transfer . .
trk: trekkie game.
troff. /checkcw: prepare
troff. /mathematical .
troff macro package for

troff. tbl: format . . .
troff: typeset text. . . .
trpt: print protocol . .
true, false: provide . .
truth value about your/

truth values.
try to contact a remote

tsearch, tfind, tdelete, .
tset: set terminal,
tsort: topological sort. .
ttt, cubic: tic-tac-toe. .
tty: controlling
tty: get the name of the

ttyname, isatty: find . .
ttyslot: find the slot . .
ttytype:listof
tunable variables. . . .
turnacct: shell/ ., . . .
twalk: manage binary/ .
type.
type. /truth value . .
type, modes, speed, and/
type, modes, speed, and/
types by terminal/
types: primitive system
types. types:
typeseript of terminal .
typeset documents, view
typeset text.
typesetting view graphs/
TZ: time zone file.
tzset: convert date and .
u3b, u3b5, vax: provide

u3b5, vax: provide truth/
UID.

e s s .

ul: do underlining.

ulimit: get and set user

- 48 -

tplot(1G)
tput(1)
termcap(3X)
tr(1)
ptrace(2)
trpt(1NM)
ftp(1N)
ftpd(1NM)
titpd(INM)
conv(3C)
tr(1)
ftw(3C)
tsearch(3C)
trk(6)
trig(3M)
tftpd(1NM)
trk(6)

ew(1)
eqn(1)
mv(5)

tbi(1)
troff(1)
trpt(1NM)
true(1)
machid(1)
true(1)
Uutry(1M)
tsearch(3C)
tset(1)
tsort(1)
t4(6)

tty(7)
tty(1)
ttyname(3C)
ttyslot(3C)
ttytype(4)
mktunedrv(1M)
acctsh{1M)
tsearch(3C)
file(1)
machid(1)
getty(1M)
uugetty(1M)
ttytype(4)
types(5)
types(5)
seript(1)
mmt(1)
troff(1)
mv(5)

tz2(4)
ctime(3C)
machid(1)
machid(1)
getpw(3C)
ul(1)
ulimit(2)

creation mask.

mode mask.

dismount file/ mount,
system.

current CTIX system.
current CTIX system.
ul: do

an SCCS file. unget:
spaces, and/ expand,
get of an SCCS file.
back into input stream.
/lcong48: generate
lines in a file.

mktemp: make a
program.

and unlink system/ link,
entry.

/exercise link and
umount:

expand/ pack, pcat,
modification/ touch:
groups/ make: maintain,
Ifind: linear search and
synchronization.

sync:

sync:

du: summarize disk
/statistical network
names. id: print
setuid, setgid: set
crontab -

login name of the

real/ /getegid: get real
environ:

protocol. telnet:
DARPA TFTP/ tftp:
ulimit: get and set
return login name of
/get real user, effective
super-user or another
utmp file of the current
write: write to another
of ex for casual

/rmail: send mail to
remote equivalent
wall: write to all
/identify processes
/and verify software
statistics.

gutil: graphical

and modification times.
formats. utmp, wtmp:
/utmpname: access
/find the slot in the
wtmp entry formats.
/setutent, endutent,
directories and/

5/86

umask: set and get file . .
umask: set file-creation . .
umount: mount and . . .
umount: unmount a file .
uname: get name of . . .
uname: print name of , .
underlining.
undo a previous get of . .
unexpand: expand tabs to

unget: undo a previous . .

ungetc: push character . . .

uniformly distributed/ . .
uniq: report repeated . .

unique file name.

units: conversion
unlink: exercise link . . .
unlink: remove directory .
unlink system calls. . . .
unmount a file system. . .
unpack: compress and . .
update accessand
update, and regenerate .
update. lsearch, . « . . .
update: provide disk .
update super-block. .
update the super block. .
USAZE. o o = o o o o o o
useful with graphical/ . .
user and group IDs and .
user and group IDs. . . .
user crontab file.
user. /get character . . .
user, effective uyser, . . .
user environment. .« . . .
user interface to TELNET
user interface to the . . .
user limits. . . « « ¢ . .
user. logname:
user, real group, and/ . .
user. su: become
user. /the slot in the . .
USET. o + o = o o o o & =
users). /editor (variant .
users or read mail. . . ., .
users. rhosts:
USETS. & = o s o o = & »
using a file or file/
using the mkfs(1) proto/

ustat: get file system . . .
utilities. . .«
utime: set file access . . .
utmp and wtmp entry . .
utmp file entry.
utmp file of the current/ .

“ e s s e

utmp, wtmp: utmp and . .
. getut(3C)

utmpname: access utmp/ .
uucheck: check the UUCP

- 49 -

umask(2)
umask(1)
mount(1M)
umount(2)
uname(2)
uname(1)
ul(1)
unget(1)

. expand(l)

unget(1)
ungetc(3S)
drand48(3C)
unig(1)
mktemp{3C)
units(1)
link(1M)
unlink(2)
link{1M)
umount(2)
pack(1)
touch(1)
make(1)
lsearch(3C)
update(1M)
sync(2)
syne(1)
du(1)
stat(1G)
id(1)
setuid(2)
crontab(1)
cuserid(3S)
getuid(2)
environ(5)
telnet(1N)
tftp(1N)
ulimit(2)
logname(3X)
getuid(2)
su(1)
ttyslot(3C)
write(1)
edit(1)
mail{1)
rhosts{4N)
wall(1M)
fuser(1M)
qginstall(1)
ustat(2)
gutil(1G)
utime(2)
utmp(4)
getut(3C)
ttyslot(3C)
utmp(4)

uucheck(1M)

program for the UUCP/
directory clean-up.
/configuration file for
CTIX system copy.
uucheck: check the
uusub: monitor

uucpd: network
clean-up. uucleanup:
job control. uustat:
uuname: list

/program for the

the scheduler for the
server.

type, modes, speed, and/
information.

names.
CTIX-to-CTIX/ uuto,
for the UUCP system.
inquiry and job/
network.
CTIX-to-CTIX system/
remote system with/
command execution.
command requests.

val:

u3b5, vax: provide truth
return integer absolute
name. getenv: return
/remainder, absolute
putenv: change or add
/ntohl, ntohs: convert
machine-dependent/
false: provide truth
machine-dependent
/formatted output of a
argument list.

varargs: handle

driver for tunable

edit: text editor

me68k, pdpll, u3b, u3bs,

letter from argument
assertion. assert:
qinstall: install and

tabs to spaces, and vice
ve:

get: get a

scesdiff: compare two
print/ vprintf,

Volume Home Blocks
(visual) display editor/
tabs to spaces, and
/mvt: typeset documents,
/package for typesetting
/a terminal to use as the
vt:

5/86

uucico: copy-in/copy-out . .

uucleanup: wucp spool . . .

uucp communications/ . . .
uuep: CTIX systemto . . .
UUCP directories and/ . . .
uucp network.
UUCD SEFVEr. o o o o o o »
uucp spool directory
uucp status inquiry and . .
UUCP system names. . . .
UUCP system.
UUCP system. uusched: . .
uucpd: network uucp . . .
uugetty: set terminal . . .
uulog: output logfile
uuname: list UUCP system .
uupick: public
uusched: the scheduler . . .
uustat: uucp status
uusub: monitor uuep
uuto, uupick: public
Uutry: try to contacta . . .
uux: CTIX to CTIX remot,e .
uuxqt: execute remote . . .
val: validate SCCS file. . .
validate SCCS file.
value about your/ /u3b, . .
value. abs: .
value for environment . . .
value functions.
value to environment. . . .
values between host and/ .
values: « v 4 s o v o v e s
values. true,

values. values:
varargs argument list. . . .
varargs: handle variable . .
variable argument list. . . .
variables. /a loadable . . .
(variant of ex for/
vax: provide truth value/ . .
ve: version control.
vector. /get option
verify program
verify software using/ . . .
versa. /unexpand: expand .
version control.
version of an SCCS file. . .
versions of an SCCS/ . ..
viprintf, vsprintf:
(VHB). /manipulate
vi: screen-oriented
vice versa. /expand
view graphs, and slides. . .
view graphs and slides. . . .

virtual system console. . . .
virtual terminal. e e s e e
- 50 -

uucico(1M)
uucleanup(1M)
Devices(5)
uucp(1C)
uucheck(1M)
uusub(1M)
uucpd(1NM)
uucleanup(1M)
uustat(1C)
uuname(1C)
uucico(1M)
uusched(1M)
uucpd(1NM)
uugetty(1M)
uulog(1C)
uuname(1C)
uuto(1C)
uusched(1M)
uustat(1C)
uusub(1M)
uuto(1C)
Uutry(1M)
uux(1C)
uuxqt(1M)
val(1)
val(1)
machid(1)
abs(3C)
getenv(3C)
floor{3M)
putenv(3C)
byteorder(3N)
values(5)
true(l)
values(5)
vprintf(3S)
varargs(5)
varargs(5)
mktunedrv(1M)
edit(1)
machid(1)
ve(l)
getopt(3C)
assert(3X)
qinstall(1)
expand(1)
ve(l)

get(1)
scesdiff(1)
vprintf{3S)
libdev(3X)
vi(1)
expand(1)
mmt(1)
mv(5)
conlocate(1M)
vi(7)

vi: screen-oriented
vme:

file systems with label/
libdev: manipulate
initialize and maintain
vsprintf: print/
vprintf, vfprintf,

of process.

to stop or/ wait:
process to stop or/
ftw:

users.

files.

of a/ signal: specify
whodo:
rwho:
who:
system.

what.

/long lines for finite
primitives. window:
wm:

management primitives.

local network.

cd: change

chdir: change

/get path-name of current
pwd:

on disk. setenet:

swrite: synchronous

write:

entry. putpwent:

wall:

write:

user.
open for reading or
utmp, wtmp: utmp and
entry formats. utmp,
connect/ fwtmp,
hunt-the-wumpus.
argument list(s) and/
parameters for Xylogies/
strings in C programs.
/set drive parameters for
functions. jO, ji, jn,

i0, j1, jn, y0,
compiler-compiler.

0, i1, jn, y0, y1,

TZ: time

5/86

(visual) display editor/ . . .
VME bus interface.
vme: VME bus interface. . .
volcopy, labelit: copy .
Volume Home Blocks/ . . .
volume. iv: v . .
vprintf, viprintf,
vsprintf: print/
vt: virtual terminal.
wait: await completion . . .
wait for child process . . .
wait: wait for child
walk a file tree.
wall: write toall
we: word count.
what: identify SCCS
what to do upon receipt . .
who is doing what.
who is logged inon
who is on the system. . . .
who: whoisonthe
whodo: who is doing
width output device.
window management . . .
window management. . . .
window: window
wm: window management. .
working directory. . « . . .
working directory.
working directory.
working directory name. . .
write Ethernet address . . .
writeonafile.
writeonafile.
write password file
write to all users.
write to another user. . . .
write: writeon a file. . . .
write: write to another .
writing. open:
wtmp entry formats.
wtmp: utmp and wtmp . .
wtmpfix: manipulate
wump: the gameof
xargs: construct « . . o . .
xmset: set drive
xstr: extract and share . . .
Xylogics 772 half-inch/ . . .
y0, y1, yn: Bessel
yl,yn: Bessel/
yacc: yet another
yn: Bessel functions.
zone file.

- 5] -

vi(1)
vme(7)
vme(7)
volcopy(1M)
libdev(3X)
iv(1)
vprintf(3S)
vprintf(3S)
vi(7)
wait(1)
wait(2)
wait(2)
ftw(3C)
wall(1IM)
we(1)
what(1)
signal(2)
whodo{1M)
rwho(1N)
who(1)
who(1})
whodo(1M)
fold(1)
window(7)
wm(1)
window(7)
wm(1)
cd(1)
chdir(2)
getcwd(3C)
pwd(1)
setenet(1INM)
swrite(2)
write(2)
putpwent(3C)
wall{(1M)
write(1)
write(2)
write(l)

TABLE OF CONTENTS

2.

System Calls

introintroduction to system calls and error numbers
acceptaccepta connection on a socket
access .+« . . .+ . «determine accessibility of a file
acctenableordisable process accounting
alarmseta processalarm clock
bind « « . . bind 2 name to a socket
brk. change data segment space allocation
chdirchange working directory
chmodchangemodeofﬁle
chown change owner and group of a file
chrootchangeroot directory
close .+ .. . e s e e e e e e . .closeafile descriptor
connectinitiate a connection on a socket
creatcreate a new file or rewrite an existing one
dup..............duplicate an open file descriptor
EXEC + 4 ¢ 4 4 4 e e 4 4 e 4 e e s s s . s .« . .execute afile
exitterminate process
fentl . « « + « « . . file control
forkcreate anew process
getpeername « . . get name of connected peer
getpid get process process group, and parent process IDs
getsockname « - .getsocket name
getsockoptget and set options on sockets
getuidgetuserand group IDs
loctl. v ocontrol device
kill o o o 0. send a 51gna] to a process or a group of processes
lddrv oaccess loadable drivers
link . . .0 000000 « « « « o link toafile
listen . « . . . o o0 ... llsten for connectlons on a socket,
locking, .. excluswe access to regions of a file
Iseek move read/write file pointer
mknod make adlrectory, or a special or ordinary file
mount ¢ ¢+ emountafilesystem
msgetlmessage control operations
msggetget message queue
MSEOP « &+ &+ & « « « + « « « « » « « « « . essage operations
nice+.....changepriority of a process
OpeN « « « + <« « « .« . « « «open for reading or writing
openl . . « +« . . .«opena file specified by i-node
pausesuspend process until signal
pipe.create an interprocess channel
plocklock process, text, or data in memory
profilexecution time profile
ptrace 4 . vprocesstrace

5/86 -1-

read « . v v 0 e e e e e e e e . « « . .read from file
TECV & v v o 4 o o s o o o o » recelveamessage from a socket
semet!semaphore control operations
semget ¢ . o e . 0getset of semaphores
SEMOP + « + « o « o« = « + o « « « « « «semaphore operations
send . . .+ .+ s s s « o « « » « .« «send a message to a socket
setpgrp + « + .+« « « 4 4 4« - « .«setprocess group ID
setuid+setuser and group IDs
shmetl . « o o . o o oL L. shared memory control operations
shmgetgetshared memory segment
shmop + . .shared memory operations
shutdown shut down part of a full-duplex connection
signalspecify what to do upon receipt of a signal
socketcreate an endpoint for communication
stat . . . 0 L . e e e e e e e w e e e e . .. get file status
stime « « & & ¢ v v o v v v v e s e e e 4 ssettime
SWIite + + « 4 +» « &« « « + « « « . .synchronous write on a file
SYIC + v « o « + « « s o o« o« » « « « » « .update super-block
syslocalo L0000 .special system requests
time « v v v i v e e e e e e e+« .« . get time
times « « & « « v 4 o« o . . .get process and child process times
ulimitgetandset user limits
umask . «0 0.set and get file creation mask
umount . . . e 44 e . e o . + . . unmount a file system
UNAIME & + + o o « » o o « » get name of current CTIX system
unlinkremove directory entry
ustat .« . . 0. . e s . .. « .« . «get file system statistics
utime + « « v 4 0 00 .. .set file access and modification times
waltwait for child process to stop or terminate
WIte & v v v 4 v v v v s 4 4 4 s s e . s o . «Writeon afile

3. Subroutines and Libraries

intro « . .Introduction to subroutines and libraries
ab4l . . . convert between long integer and base-64 ASCII string
aborto L. . « « « .generate an [OT fault
absreturn integer absolute value
assert .+ . v 4 . e . . + « « . verify program assertion
atof o & . . 0 . convert ASCH string to floating-point number
besselBesselfunctions
bsearch« + « » . . binary search a sorted table
byteorder . convert values between host and network byte order
clockreport CPU time used
COMV 4 & & « o & o o « « « « o « « « « « . translate characters
erypt + « ¢ v .+ « 4 + « « « . . .generate hashing encryption
ctermidgenerate file name for terminal
ctimeconvertdateand time to string
ctype « « « . classify characters
CUISES & + + « & CRT screen handllng and optlmlzatlon package
cuseridget character login name of the user
dial estabhsh an out-going terminal line connection

5/86 _9.

drand48 . . generate uniformly distributed pseudo-random numbers
ecvtconvert floating-point numbert,ostring
end00 e e . . last locations in program
erferror functlon and comp]ementary error function
eXpexponential, logarithm, power, square root functions
felosecloseor flush a stream
ferror « . . .stream status inquiries
floor floor cellmg, remalnder absolute value functions
fopen.................. . . open a stream
fread e e blnary input/output
frexp mampulate parts of floatlng-pomt numbers
fseekreposition a file pointer in a stream
ftw.....................walkafiletree
GAMMA + « & o « o o « & & « « + « »log gamma function
gete 000 .. get character or word from a stream
getewd get path name of current working directory
getenv.return value for environment name
getgrentgetgroup file entry
gethostentgetnetwork host entry

gethostname « . . get name of current host
getlogingetlogin name
getnetent L. 0. ... get network entry
getopt get optlon letter from argument vector
getpassread apassword
getprotoentgetprotocol entry
getpw s o s s s e e e e e e . . get name from UID
getpwent L. get password file entry

gets v e v v 4« . « . . .getastring from a stream
getserventgetservice entry
getutaccess utmp file entry
hsearch manage hash search tables
hypot “ e e Euclldean distance function
mmet e Internet address manipulation routines
183tol convert between 3-byte integers and long integers
ldahread . . read the archive header of a member of an archive file
ldclose+ . close a common object file

ldfhread read the flle header of a common object file

ldgetname retrieve symbol name for common object file

Idlread manipulate line number entries
ldlseek . . . « « .+ . .seek to line number entries of a section
ldohseek . seek to the optronal file header of a common object file

ldopenopenacommon object file for reading
ldrseekseek to relocation entries of a section
ldshreadread an indexed/named section header
ldsseek . seek to an indexed/named section of a common object file
ldtbindex compute the index of a symbol table entry
Idtbreadread an indexed symbol table entry
Idtbseek seek to the symbol table of a common object file
libdevmanipulate Volume Home Blocks (VHB)
lockfrecord locking on files
lognamereturn login name of user

5/86 -3-

Isearch . . .
malloc .
malloc .
matherr . .
memory . .
mktemp
monitor
nlist .
ocurse
perror

plot .
popen .
printf .
putc
putenv .
putpwent
puts

gsort

rand

remd .
regcmp
rexec

scanf .
setbuf .
setjmp
sinh . .
sleep

« ¢ « « v o o« « o o . linear search and update
. main memory allocator

. fast main memory allocator

. . error-handling function

« « « « « .« . .Inemory operations

. . make a unique file name

. prepare execution profile

. get entries from name list

. optimized screen functions

. system error messages

. graphics interface subroutines

. Initiate pipe to/from a process

. . print formatted output

put character or word on a stream

change or add value to environment

. . . write password file entry

« + 4« s+ 4« « + + .« . .puUtastring on a stream
. . quicker sort

sunple random-number generator

. routlnes for returning a stream to a remote command

. compile and execute regular expression
. return stream to a remote command
. convert formatted input

. assign buffering to a stream

. non-local goto

. hyperbolic functions

. suspend execution for interval

sputl . . access long 1nteger data in a machine-independent fashion.

ssignal .
stdio .
stdipc .
string .
strtod .
strtol .
swab .
system .
termcap .
tmpfile
tmpnam .
trig .
tsearch
ttyname
ttyslot .
ungetc .
vprintf .

4. File Formats

intro
a.out
acct

5,/86

.. . software signals
standard buffered mput/output package
. standard interprocess communication package
. - strlng operations
convert strmg to double -precision number
. convert string to integer
. . swap bytes
. . Issue a shell command
termlnal 1ndependent operations
.. . create a temporary file
. create a name for a temporary file
. trigonometric functions
. manage binary search trees
. . find name of a terminal
flnd the slot in the utmp file of the current user
e . push character back into input stream
. print forrnatted output of a varargs argument list

.. . Introduction to file formats
. common assembler and link editor output
. per-process accounting file format

Al e + « + + 4 s & + s o s+ « « « . .common archive file format
checkhst e e e e e e . W listof frle systems processed by fsck
COTE . & + = + ¢ + + 4« o« o« « « » « o »format of core 1mage file
CPIO v v v v format of cpio archive
cprofile settmg up a C shell environment at login time
dir 000000format of directories
errfile « « . error-log file format
filehdr. flle header for common object files
fs....................fllesystemformat
fspec « . format specification In text files
gettydefs speed and terminal settings used by getty
gDPS + « v . . . graphlcal primitive string, format of graphical files
EIOUD + «+ + 4 + s & o « o o o o o o & . . . group file
hostso L L hst of nodes on network
inittabscriptfor the init process
modeformatof an i-node
ISSUE v v v 4 v 4 v e e e e .. . « . .Issue identification file
ldfen L. . .+« . .cCOmmon obJect file access routines
linenum hne number entries in a common object file
mastermaster device information table
mnttab 0L L, . « . . mounted file system table
networksnames and numbers for the internet
pa,sswd....................passwordflle

plot « « . .graphics interface
profile settmg up an environment at login time
protocols « « « .+ . . list of Internet protocols

reloc. relocatlon mformatlon for a common object file
thostsremote equivalent users

scesfile . ¢ format of SCCS file
senhdr sectron header for a common object file
SEIVICES v v v v v 4« . . list of Internet services

symscommon object flle symbol table format
system .« «+ .«system description file
term . . 0.0 00 L e e format of compiled term file.
termcap .«terminal capability data base

terminfo, terminal capability data base
ttytype llst of termmal types by terminal number
tZ o v v h e e e e e e e e e . . « « .« .time zone file

utmp « . 0000 0L 0. . .utrnp and wtmp entry formats

5. Miscellaneous Facilities

introintroduction to miscellany
asCll « v v & 4 & . « . . map of ASCII character set
Devices conflguratlon file for uucp communications lines
DialersACU/modem calling protocols

ENVITON + « « & user environment
eqnchar specna character deflmtlons for eqn and neqn
fentl L. « « + . . file control options

man .+ « « .+ « . . . INACIOS for forrnattmg entries in this manual
mathmath functions and constants

5/86 -5-

mm .
mptx

. the MM macro package for formatting documents
. the macro package for formatting a permuted index

mv . . a troff macro package for typesetting view graphs and slides

prof
regexp
stat
term
types
values
varargs

6. Games

intro .
advent
arithmetic
back

bj .

craps

fish
fortune . .
hangman .
maze

moo . . .
number . .
quiz

trk .

ttt

wump .

7. Special Files

intro .
console
disk .
drivers .
err .

Ip
mem
null .
prf

qic .
sxt
termio
tiop

tp

tty
vme

vt .
window

5/86

.. . profile within a function
regular expre551on compile and match routines
. data returned by stat system call

. conventional names for terminals

. primitive system data types

. machine-dependent values

. handle variable argument list

. introduction to games

. . explore Colossal Cave

. provide drill in number facts

. the game of backgammon

. the game of black jack

. the game of craps

. .. . play “Go Fish”
. pr]nt a random hopefully interesting, adage
. guess the word

. generate a maze

. . . guessing game

convert Arablc numerals to English

. test your knowledge

. trekkie game

.. . tic-tac-toe

the game of hunt- the wumpus

. introduction to special liles

. console terminal

. general disk driver

. loadable device drivers

. error-logging interface

. parallel printer interface

. system memory interface

. . the null file

. operatlng system profiler

. Interface for QIC tape

. pseudo-device driver

. general terminal interface

. .. . terminal accelerator interface
. contrr»lllng termmal s local RS-232 channels
. controlling terminal interface

. VME bus interface

. . virtual terminal

wmdow management primitives

INTRO (2)

NAME
intro — introduction to system calls and error numbers

— SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls.

System call entries that are suffixed by (2N) are part of
the CTIX networking packages. The link editor searches
these calls under the -1 socket option. To use these
calls you must have the network protocols on your
system. See the CTIX Internetworking Manual for
further information.

Most of these calls have one or more error returns. An
error condition is indicated by an otherwise impossible
returned value. This i1s almost always —1; the individual
descriptions specify the details. An error number is also
made available in the external variable errno. Errno is
not cleared on successful calls, so it should be tested only
after an error has been indicated.

Each system call description attempts to list all possible

error numbers. The following is a complete list of the
error numbers and their names as defined In
<errno.h>.

1 EPERM Not super-user
Typically this error indicates an attempt to
modify a file in some way forbidden except to its
owner or super-user. It is also returned for
attempts by ordinary users to do things allowed
only to the super-user.

ENOENT No such file or directory
This error occurs when a file name or [PC
identifier is specified and the file or IPC
structure should exist but doesn’t, or when one
of the directories in a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that
specified by pid in kil or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or
Pamn quit), which the user has elected to catch,
occurred during a system call. If execution is
resumed after processing the signal, it will
appear as if the interrupted system call returned
this error condition.

(8]

INTRO(2)

5 EIO I/O error
ome physical I/O error has occurred. This
error may in some cases occur on a call following
the one to which it actually applies.

6 ENXIO No such device or address

I/O on a special file refers to a subdevice which
oes not exist, or beyond the limits of the
device. It may also occur when, for example, a
tape drive is not on-line or no disk pack is
loaded on a drive. On local terminals, it may
indicate that the host terminal lacks the
specified channel; for example, opening tpa256,
when tty256 refers to a Programmable Terminal,
not a Graphics Terminal.

7 E2BIG Arg list too long
An argument list longer than 10,240 bytes is
presented to a member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which,
although it has the appropriate permissions, does
not start with a valid magic number (see
a.out(4)), or the executable file requires
hardware that does not exist (e.g., floating-
point).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a
read (respectively, write) request is made to a
file which is open only for writing (respectively,
reading).

10 ECHILD No child processes
A wast was executed by a process that had no
existing or unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system’s process table
is full or the user is not allowed to create any
more processes, or an IPC call is made with the
IPC_NOWAIT option and the caller would
block.

12 ENOMEM Not enough space
During an ezec, brk, or sbrk, a program asks for
more space than the system is able to supply.

13 EACCES Permission denied
An attempt was made to access a file or IPC
structure in a way forbidden by the protection
system. From locking, an attempt to lock bytes
already under a checking lock.

-92.

14

15

16

17

18

19

20

21

22

INTRO (2)

EFAULT Bad address
The system encountered a hardware fault in
attempting to use an argument of a system call.

ENOTBLK Block device required
A non-block file was mentioned where a block
device was required, e.g., in mount.

EBUSY Device or resource busy

An attempt was made to mount a device that
was already mounted or an attempt was made to
dismount a device on which there is an active
file (open file, current directory, mounted-on file,
active text segment). It will also occur if an
attempt is made to enable accounting when it is
already enabled. The device or resource is
currently unavailable.

EEXIST File exists
An existing file or IPC structure was mentioned
in an inappropriate context, e.g., link.

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate
system call to a device; e.g., read a write-only
device.

ENOTDIR Not a directory
A non-directory was specified where a directory
is required, for example in a path prefix or as an
argument to chdir(2).

EISDIR Is a directory
An attempt was made to write on a directory.

EINVAL Invalid argument
Some invalid argument {e.g., dismounting a
non-mounted device; mentioning an undefined
signal in stgnal, or kill; reading or writing a file
for which Iseek has generated a negative
pointer). Also set by the math functions
described in the (3M) entries of this manual.

ENFILE File table overflow
The system file table is full, and temporarily no
more opens can be accepted.

EMFILE Too many open files
No process may have more than 20 file
descriptors open at a time. When a record lock
is being created with fentl, there are too many
files with record locks on them.

-3-

25

26

27

28

29

30

31

32

33

34

35

36

INTRO(2)

ENOTTY Not a character device
An attempt was made to toct{2) a file that is
not a special character device.

ETXTBSY Text file busy
An attempt was made to execute a pure-
procedure program that is currently open for
writing. Also an attempt to open for writing a
pure-procedure program that is being executed.

EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ultmit(2).

ENOSPC No space left on device
During a write to an ordinary file, there is no
free space left on the device. In fentl, the setting
or removing of record locks on a file cannot be
accomplished because there are no more record
entries left on the system. In an IPC call, no
IPC identifiers are available.

ESPIPE Illegal seek
An lseek was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was
made on a device mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum
number of links (1000) to a file.

EPIPE Broken pipe
A write on a pipe for which there is no process
to read the data. This condition normally
generates a signal; the error is returned if the
signal is ignored.

EDOM Math argument

The argument of a function in the math package
(3M) is out of the domain of the function.

ERANGE Result too large
The value of a function in the math package
(3M) is not representable within machine
precision.

ENOMSG No message of desired type
An attempt was made to receive a message of a
type that does not exist on the specified message
queue; see msgop(2).

EIDRM Identifier Removed
This error is returned to processes that resume

5/86

37

38

39

40

41

42

43

44

45

46

50

51

52

53

54

55

INTRO(2)

execution due to the removal of an identifier

from the file system’s name space (see msgct{(2),
semctl(2), and shmetl(2)).

ECHRNG Channel number out of range
Not used; retatned for compatibility.

EL2NSYNC Level 2 not synchronized
Not used; retained for compatibility.

EL3HALT Level 3 halted
Not used; retatned for compatibality.

EL3RST Level 3 reset
Not used; retatned for compatibility.

ELNRNG Link number out of range
Not used; retained for compatibility.

EVNATCH Protocol driver not attached
Not used; retained for compatibility.

ENOCSI No CSI structure available
Not used; retained for compatibility.

EL2HLT Level 2 halted
Not used; retained for compatibility.

EDEADLK Record locking deadlock
Call cannot be honored because of a potential
deadlock. See fenti(2).

ENOLCK No record locks available
No free entries are currently available in the
kernel lock array.

EBADE Invalid exchange
A user-specified exchange descriptor is out of
range or specifies an unallocated exchange.

EBADR Invalid request descriptor
An attempt has been made to reference a request
that is not outstanding.

EXFULL Exchange full
No request descriptors are currently available for
this exchange.

ENOANO No anode
Not used; retained for compatibility.

EBADRQC Invalid request code
No routing is currently available for this request
code.

EBADSLT Invalid slot
Not used; retained for compatibility.

5/86

INTRO(2)

56 EDEADLOCK Deadlock error
Call cannot be honored because of potential
deadlock or because lock table is full. See
locking(2).

57 EBFONT Bad font file format
Not used; retained for compatibility.

224 ENOHDW No hardware available for operation
The address specification exceeds the allowable
limits or the required hardware does not exist.
See exec(2).

225 EBADFS Bit-mapped file system is marked dirty
An attempt to mount a bit-mapped file system
failed due to the dirty flag being set for that file
system.

226 EWOULDBLOCK Operation would block
An operation which would cause a process to
block was attempted on a object in non-blocking
mode.

227 EINPROGRESS Operation now in progress
An operation which takes a long time to
complete (such as a connec{2N)) was attempted
on a non-blocking object.

228 EALREADY Operation already in progress
An operation was attempted on a non-blocking
object which already had an operation in
progress.

229 ENOTSOCK Socket operation on non-socket
Self-explanatory.

230 EDESTADDRREQ Destination address required
A required address was omitted from an
operation on a socket.

231 EMSGSIZE Message too long
A message sent on a socket was larger than the
internal message buffer.

232 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support
the semantics of the socket type requested. For
example, you cannot use the ARPA Internet
UDP protocol with type SOCK_STREAM.

233 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the
system or no implementation for it exists.

234 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been

-6 -

5,/86

235

236

237

238

239

240

241

INTRO (2)

configured into the system or no implementation
for it exists.

EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a
datagram socket.

EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into
the system or no implementation for it exists.

EAFNOSUPPORT Address family not supported by
protocol
An address incompatible with the requested
protocol was used. For example, you shouldn’t
necessarily expect to be able to use PUP Internet
addresses with ARPA Internet protocols.

EADDRINUSE Address already in use

Only one usage of each address is normally
permitted.

EADDRNOTAVAIL Can’t assign requested address
Normally results from an attempt to create a
socket with an address not on this machine.

ENETDOWN Network is down
A socket operation encountered a dead network.

ENETUNREACH Network is unreachable
A socket operation was attempted to an
unreachable network.

ENETRESET Network dropped connection on reset
The host you were connected to crashed and
rebooted.

ECONNABORTED Software caused connection
abort
A connection abort was caused internal to your
host machine.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This
normally results from the peer executing a
shutdown (2) call.

ENOBUFS No buffer space available
An operation on a socket or pipe was not
performed because the system lacked sufficient
buffer space.

EISCONN Socket is already connected
A connect request was made on an already
connected socket; or, a sendto or sendmsy
request on a connected socket specified a

-7-

INTRO(2)

destination other than the connected party.

247 ENOTCONN Socket 1s not connected
An request to send or receive data was
disallowed because the socket is not connected.

248 ESHUTDOWN Can’t send after socket shutdown
A request to send data was disallowed because
the socket had already been shut down with a
previous shutdown(2) call.

249 ETOOMANYREFS Too many references: cant’ splice

250 ETIMEDOUT Connection timed out
A connect request failed because the connected
party did not properly respond after a period of
time. (The timeout period is dependent on the
communication protocol.)

251 ECONNREFUSED Connection refused
No connection could be made because the target
machine actively refused it. This usually results
from trying to connect to a service which is
inactive on the foreign host.

252 EHOSTDOWN Host is down
The host is down.

253 EHOSTUNREACH No route to host
The gateway does not recognize the requested
host via the route specified.

254 ENOPROTOOPT Protocol not available
A bad option was specified in a gefsockopt(2N)
or setsockopt(2N) call.
DEFINITIONS
Process ID
Each active process in the system is uniquely identified

by a positive integer called a process ID. The range of
this ID is from 1 to 30,000.

Parent Process ID
A new process is created by a currently active process;
see fork(2). The parent process ID of a process is the
process ID of its creator.

Process Group ID
Each active process is a member of a process group that
is identified by a positive integer called the process
group ID. This ID is the process ID of the group leader.

This grouping permits the signaling of related processes;
see kill(2).

5/86 -8-

Tty

INTRO (2)

Group ID

Each active process can be a member of a terminal group
that is identified by a positive integer called the tty
group ID. This grouping is used to terminate a group of
related processes upon termination of one of the
processes in the group; see ezit(2) and signal(2).

Real User ID and Real Group ID

Each user allowed on the system is identified by a
positive integer called a real user ID.

Each user is also a member of a group. The group is
identified by a positive integer called the real group ID.

An active process has a real user ID and real group ID
that are set to the real user ID and real group ID,
respectively, of the user responsible for the creation of
the process.

Effective User ID and Effective Group ID

An active process has an effective user ID and an
effective group ID that are used to determine file access
permissions (see below). The effective user ID and
effective group ID are equal to the process’s real user ID
and real group ID respectively, unless the process or one
of its ancestors evolved from a process that had the set-
user-ID bit or set-group ID bit set; see erec(2).

Super-user

A process is recognized as a super-user process and is
granted special privileges if its effective user ID is 0.

Special Processes

File

File

5/86

The processes with a process ID of 0 and a process ID of
1 are special processes and are referred to as proc0 and
procl.

Proc0 is the scheduler. Procl is the initialization
process (init). Procl is the ancestor of every other
process in the system and is used to control the process
structure.

Descriptor

A file descriptor is a small integer used to do 1/O on a
file. The value of a file descriptor is from 0 to 19. A
process may have no more than 20 file descriptors (0-19)
open simultaneously. A file descriptor is returned by
system calls such as open(2), or pipe(2). The file
descriptor is used as an argument by calls such as
read(2), write(2), 1octl2), and close(2).

Name

Names consisting of 1 to 14 characters may be used to
name an ordinary file, special file or directory.

-9-

INTRO (2)

These characters may be selected from the set of all
character values excluding \0 (null) and the ASCII code
for / (slash).

Note that it is generally unwise to use *, ?, [, or | as part
of file names because of the special meaning attached to
these characters by the shell. See sh(1). Although
permitted, it is advisable to avoid the use of unprintable
characters in file names.

Path Name and Path Prefix

A path name is a null-terminated character string
starting with an optional slash (/), followed by zero or
more directory names separated by slashes, optionally
followed by a file name.

More precisely, a path name is a null-terminated
character string constructed as follows:

< path-name > ::= <file-name >| < path-prefix> <file-
name>|/

< path-prefix > ::= <rtprefix >| / <rtprefix >

<rtprefix > ::= < dirname > /| <rtprefix > <dirname>/

where <file-name> is a string of 1 to 14 characters
other than the ASCII slash and null, and <dirname> 1is
a string of 1 to 14 characters (other than the ASCII slash
and null) that names a directory. Any number of
consecutive slashes is equivalent to a single slash.

If a path name begins with a slash, the path search
begins at the root directory. Otherwise, the search
begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name
is treated as if it named a non-existent file.

Directory

Directory entries are called links. By convention, a
directory contains at least two links, . and .., referred to
as dot and dot-dot respectively. Dot refers to the
directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory

Each process has associated with it a concept of a root
directory and a current working directory for the purpose
of resolving path name searches. The root directory of a
process need not be the root directory of the root file
system.

File Access Permissions

5/86

Read, write, and execute/search permissions on a file are
granted to a process if one or more of the following are

- 10 -

INTRO (2)

true:
The effective user ID of the process is super-user.

The effective user ID of the process matches the
user ID of the owner of the file and the
appropriate access bit of the “owner” portion
(0700) of the file mode is set.

The effective user ID of the process does not
match the user ID of the owner of the file, and
the effective group ID of the process matches the
group of the file and the appropriate access bit

of the “group” portion (070) of the file mode is
set.

The effective user ID of the process does not
match the user ID of the owner of the file, and
the effective group ID of the process does not
match the group ID of the file, and the
appropriate access bit of the ‘“‘other” portion
(07) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier

5/86

A message queue identifier (msqid) is a unique positive
integer created by a msgget(2) system call. Each msqid
has a message queue and a data structure associated with
it. The data structure is referred to as msqid_ds and
contains the following members:

struct ipc_perm msg_perm,;
/* operation permission struct */
ushort msg_gnum; /* number of msgs on q */
ushort msg_gbytes; /* max number of bytes on q */
ushort msg_lspid; /* pid of last msgsnd operation */
ushort msg_Irpid; /* pid of last msgrev operation */
time_t msg_stime; /* last msgsnd time */
time_t msg_rtime; /* last msgrev time */
time_t msg_ctime; /* last change time */
/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 %/

Msg_perm is an ipc_perm structure that specifies the
message operation permission (see below). This structure
includes the following members:

ushort cuid; /* creator user id */

ushort cgid; /* creator group id */

ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/w permission */
- 11 -

INTRO (2)

Msg_qnum is the number of messages currently on the
queue. Msg_qgbytes is the maximum number of bytes
allowed on the queue. Msg_lspid is the process id of
the last process that performed a msgsnd operation.
Msg_Irpid is the process id of the last process that
performed a msgrev operation. Msg_stime is the time
of the last msgsnd operation, msg_rtime is the time of
the last msgrev operation, and msg_ctime is the time of
the last msgctl(QS) operation that changed a member of
the above structure.

Message Operation Permissions

In the msgop(2) and msgctl(2) system call descriptions,
the permission required for an operation is given as
"{token}”, where "token” is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqgid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
msg_perm.[cJuid in the data structure
associated with msqid and the appropriate bit of
the “user” portion (0600) of msg_perm.mode
is set.

The effective user ID of the process does not
match msg_perm.[cJuid and the effective
group ID of the process matches
msg_perm.|[c]gid and the appropriate bit of the
“group” portion (060} of msg_perm.mode is
set.

The effective user ID of the process does not
match msg_perm.[cJuid and the effective
group ID of the process does not match
msg_perm.[c|gid and the appropriate bit of the
“other” portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier

5/86

A semaphore identifier (semid) is a unique positive
integer created by a semget(2) system call. Each semid
has a set of semaphores and a data structure associated
with it. The data structure is referred to as semid_ds
and contains the following members:

=12 -

INTRO (2)

struct ipc_perm sem_perm;

/* operation permission struct */
ushort sem_nsems; /* number of sems in set */
time_t sem_otime; /* last operation time */
time_t sem_ctime; /* last change time */

*Times measured in secs */
* since 00:00:00 GMT, */
/*Jan. 1, 1970 */

Sem_perm is an ipc_perm structure that specifies the
semaphore operation permission (see below). This
structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/a permission */

The value of sem_nsems is equal to the number of
semaphores in the set. Each semaphore in the set is
referenced by a positive integer referred to as a
sem_num. Sem_num values run sequentially from 0 to
the value of sem_nsems minus 1. Sem_otime is the
time of the last semop(2) operation, and sem_ctime is
the time of the last semct!/(2) operation that changed a
member of the above structure.

A semaphore is a data structure that contains the
following members:

ushort semval; /* semaphore value */

short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 */

Semval is a non-negative integer. Sempid is equal to
the process ID of the last process that performed a
semaphore operation on this semaphore. Semncnt is a
count of the number of processes that are currently
suspended awaiting this semaphore’s semval to become
greater than its current value. Semszent is a count of
the number of processes that are currently suspended
awaiting this semaphore’s semval to become zero.

Semaphore Operation Permissions

5,/86

In the semop(2) and semctl(2) system call descriptions,
the permission required for an operation is given as
"{token}”, where ”token” is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Alter by user

- 13-

INTRO(2)

00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
sem_perm.[cluid in the data structure
associated with semid and the appropriate bit of
the ‘“‘user”” portion (0600) of sem_perm.mode
is set.

The effective user ID of the process does not
match sem_perm.[c]uid and the effective group
ID of the process matches sem_perm.[c]gid and
the appropriate bit of the “group” portion (060)
of sem_perm.mode is set.

The effective user ID of the process does not
match sem_perm.{c|uid and the effective group
ID of the oprocess does not match
sem_perm.[c|gid and the appropriate bit of the
“other”” portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier

5/86

A shared memory identifier (shmid) is a unique positive
integer created by a shmget(2) system call. Each shmid
has a segment of memory (referred to as a shared
memory segment) and a data structure associated with
it. The data structure is referred to as shmid_ds and
contains the following members:

struct ipc_perm shm_perm;
/* operation permission struct */
int shm_segsz; /* size of segment */
ushort shm_cpid; /* creator pid */
ushort shm_lpid; /* pid of last operation */
short shm_nattch; /* number of current attaches */
time_t shm_atime; /* last attach time %/
time_t shm_dtime; /* last detach time */
time_t shm_ctime; /* last change time */
/* Times measured in secs since */
/% 00:00:00 GMT, Jan. 1, 1970 */

Shm_perm is an ipc_perm structure that specifies the
shared memory operation permission (see below). This
structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

- 14 -

INTRO (2)

ushort gid; /* group id */
ushort mode; /* r/w permission */

Shm_segsz specifies the size of the shared memory
segment. Shm_cpid is the process id of the process that
created the shared memory identifier. Shm_lpid is the
process id of the last process that performed a shmop(2)
operation. Shmn_nattch is the number of processes that
currently have this segment attached. Shm_atime is
the time of the last shmat operation, shm_dtime is the
time of the last shmdt operation, and shm_ctime is the
time of the last shmctl(2) operation that changed one of
the members of the above structure.

Shared Memory Operation Permissions

In the shmop(2) and shmctl(2) system call descriptions,
the permission required for an operation is given as
"{token}”, where “token” is the type of permission
needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a
process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
shm_perm.[c uid in the data structure
associated with shmid and the appropriate bit of
the “user” portion (0600) of shm_perm.mode
1s set.

The effective user ID of the process does not
match shm_perm.[cJuid and the effective
group ID of the process matches
shm_perm.[c]gid and the appropriate bit of the
“group” portion (060) of shm_perm.mode is
set.

The effective user ID of the process does not
match shm_perm.[cluid and the effective
group ID of the process does not match
shm_perm.[c|gid and the appropriate bit of the
“other” portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO

5/86

close(2), ioctl(2), open(2), pipe(2), read(2), write(2),
intro(3).
CTIX Internetworking Manual.

- 15 -

ACCEPT(2N)

NAME
accept — accept a connection on a socket

— SYNOPSIS
#finclude <sys/types.h>
#include <sys/socket.h>

accept(s, addr, addrlen)
int s;

struct sockaddr *addr;
int *addrlen;

DESCRIPTION
Accept accepts a connection on a socket. The argument
s is a socket which has been created with socket(2),
bound to an address with btnd(2), and is listening for
connections after a listen(2). Accept extracts the first
connection on the queue of pending connections, creates
a new socket with the same properties of s and allocates
a new file descriptor for the socket. If no pending
connections are present on the queue, and the socket is
not marked as non-blocking, accept blocks the caller
until a connection is present. If the socket is marked
non-blocking and no pending connections are present on
—_— the queue, accept returns an error as described below.
The accepted socket, ns, may not be used to accept
more connections. The original socket s remains open.

The argument addr is a result parameter which is filled
in with the address of the connecting entity, as known to
the communications layer. The exact format of the addr
parameter is determined by the domain in which the
communication is occurring. The addrlen is a value-
result parameter; it should initially contain the amount
of space pointed to by addr; on return it will contain the
actual length (in bytes) of the address returned. This
call is used with connection-based socket types, currently

with SOCK_STREAM.
RETURN VALUE
The call returns —1 on error. If it succeeds it returns a

non-negative integer which is a descriptor for the
accepted socket.

ERRORS
The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file,

not a socket.

[EOPNOTSUPP] The referenced socket is not of
type SOCK_STREAM.

-1-

ACCEPT(2N)

[EFAULT)] The addr parameter is not in a
writable part of the user address
space.

SEE ALSO

bind(2N), connect(2N), listen(2N), socket(2N).
CTIX Internetworking Manual.
NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

NAME

ACCESS(2)

access — determine accessibility of a file

SYNOPSIS

int access (path, amode)
char *path;
int amode;

DESCRIPTION

Path points to a path name naming a file. Access
checks the named file for accessibility according to the
bit pattern contained in eamode, using the real user ID in
place of the effective user ID and the real group ID in
place of the effective group ID. The bit pattern
contained in amode is constructed as follows:

04 read

02 write

01 execute {search)

00 check existence of file

Access to the file is denied if one or more of the
following are true:

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] Read, write, or execute (search)
permission is requested for a null path
name.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a
component of the path prefix.

[EROFS] Write access is requested for a file on a
read-only file system.

[ETXTBSY]

Write access is requested for a pure
procedure (shared text) file that is being
executed.

[EACCES]

Permission bits of the file mode do not
permit the requested access.

[EFAULT]

Path points outside the allocated
address space for the process.

The owner of a file has permission checked with respect
to the ‘“‘owner” read, write, and execute mode bits.
Members of the file’s group other than the owner have
permissions checked with respect to the “group” mode

ACCESS(2)

bits, and all others have permissions checked with
respect to the “other” mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is
returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

NAME

ACCT(2)

acct — enable or disable process accounting

SYNOPSIS

int acct (path)
char *path;

DESCRIPTION

Acct is used to enable or disable the system process
accounting routine. If the routine is enabled, an
accounting record will be written on an accounting file
for each process that terminates. Termination can be
caused by one of two things: an ezit call or a signal; see
exit(2) and signal(2). The effective user ID of the calling
process must be super-user to use this call.

Path points to a path name naming the accounting file.
The accounting file format is given In acct(4).

The accounting routine is enabled if path is non-zero and
no errors occur during the system call. It is disabled if
path is zero and no errors occur during the system call.

Acet will fail if one or more of the following are true:

[EPERM] The effective user of the calling process
1S not super-user.

[EBUSY] An attempt is being made to enable
accounting when it is already enabled.

[ENOTDIR| A component of the path prefix is not a
directory.

[ENOENT] One or more components of the
accounting file path name do not exist.

[EACCES] A component of the path prefix denies
search permission.

[EACCES] The file named by path is not an
ordinary file.

[EACCES] Mode permission is denied for the
named accounting file.

[EISDIR] The named file is a directory.

[EROFS] The named file resides on a read-only
file system.

[EFAULT) Path points to an illegal address.

RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

ACCT(2)

SEE ALSO
exit(2), signal(2), acct(4).

ALARM(2)

NAME
alarm — set a process alarm clock

= SYNOPSIS
unsigned alarm (sec)
unsigned sec;
DESCRIPTION

Alarm instructs the alarm clock of the calling process to
send the signal SIGALRM to the calling process after
the number of real time seconds specified by sec have
elapsed; see signal(2).

Alarm requests are not stacked; successive calls reset the
alarm clock of the calling process.

If sec¢ is 0, any previously made alarm request is
canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining
in the alarm clock of the calling process.

SEE ALSO
pause(2), signal(2).

BIND (2N)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sys/types.h>
#finclude <sys/socket.h>

bind (s, name, namelen)
int s;

struct sockaddr *name;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a
socket is created with socket(2N), it exists in a name
space (address family) but has no name assigned. Bind
requests that name be assigned to the socket.

NOTES
The rules used in name binding vary between
communication domains. Consult the manual entries in
section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return
value of —1 indicates an error, which is further specified
in the global errno.

ERRORS
The bind call will fail if:
[EBADF) S is not a valid descriptor.
[ENOTSOCK] S is not a socket.

[EADDRNOTAVAIL] The specified address is not
available from the local machine.

[EADDRINUSE] The specified address is already in
use.

[EINVAL] The socket is already bound to an
address.

[EACCESS] The requested address is

protected, and the current user
has inadequate permission to

access it.

[EFAULT) The name parameter is not in a
valid part of the user address
space.

SEE ALSO
connect(2N), getsockname(2N), listen(2N), socket(2N).
CTIX Internetworking Manual.

5/86 -1-

BIND (2N)

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

BRK (2)

NAME

brk, sbrk — change data segment space allocation
SYNOPSIS

int brk (endds)

char *endds;

char *sbrk (incr)

int incr;
DESCRIPTION

Brk and sbrk are used to change dynamically the
amount of space allocated for the calling process’s data
segment; see ezec(2). The change is made by resetting
the process’s break value and allocating the appropriate
amount of space. The break value is the address of the
first location beyond the end of the data segment. The
amount of allocated space increases as the break value
increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the
allocated space accordingly.

Sbrk adds tner bytes to the break value and changes the
allocated space accordingly. Incr can be negative, in
which case the amount of allocated space is decreased.

Brk and sbrk will fail without making any change in the
allocated space if one or more of the following are true:

[ENOMEM,]
Such a change would result in more space
being allocated than is allowed by a system-
imposed maximum (see ulimit(2)). Note that
due to a lack of swap space this may be less
than what ulimit(2) reports.

[ENOMEM|
Such a change would result in the break
value being greater than or equal to the start
address of any attached shared memory
segment (see shmop(2)).

RETURN VALUE

Upon successful completion, brk returns a value of 0 and
sbrk returns the old break value. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

SEE ALSO

exec(2).

CHDIR (2)

NAME
chdir — change working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Path points to the path name of a directory. Chdir
causes the named directory to become the current
working directory, the starting point for path searches
for path names not beginning with /.

Chdir will fail and the current working directory will be
unchanged if one or more of the following are true:

[ENOTDIR] A component of the path name is not a
directory.

[ENOENT] The named directory does not exist.

[EACCES) Search permission is denied for any
component of the path name.

[EFAULT) Path points outside the allocated

address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
chroot(2).

CHMOD (2)

NAME
chmod — change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets
the access permission portion of the named file’s mode
according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.

02000 Set group ID on execution.

01000 Save text image after execution.

00400 Read by owner.

00200 Write by owner.

00100 Execute (search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

The effective user ID of the process must match the
owner of the file or be super-user to change the mode of
a file.

If the effective user ID of the process is not super-user,
mode bit 01000 (save text image on execution) is cleared.

If the effective user ID of the process is not super-user
and the effective group ID of the process does not match
the group ID of the file, mode bit 02000 (set group ID on
execution) is cleared.

If an executable file is prepared for sharing then mode
bit 01000 prevents the system from abandoning the
swap-space image of the program-text portion of the file
when its last user terminates. Thus, when the next user
of the file executes it, the text need not be read from the
file system but can simply be swapped in, saving time.

Chmod will fail and the file mode will be unchanged if
one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a
component of the path prefix.

[EPERM] The effective user ID does not match

the owner of the file and the effective

-1-

CHMOD (2)

user ID is not super-user.

[EROFS| The named file resides on a read-only
file system.
[EFAULT) Path points outside the allocated

address space of the process.
RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.
SEE ALSO
chown(2), mknod(2).

CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID
and group ID of the named file are set to the numeric
values contained in owner and group respectively.

Only processes with effective user ID equal to the file
owner or super-user may change the ownership of a file.

If chown is invoked by other than the super-user, the
set-user-ID and set-group-ID bits of the file mode, 04000
and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named
file will remain unchanged if one or more of the
following are true:

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a
component of the path prefix.

[EPERM] The effective user ID does not match

the owner of the file and the effective
user ID is not super-user.

[EROFS] The named file resides on a read-only
file system.
(EFAULT) Path points outside the allocated

address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
chown(1), chmod(2).

~—

NAME

CHROOT(2)

chroot — change root directory

SYNOPSIS

int chroot (path)
char *path;

DESCRIPTION

Path points to a path name naming a directory. Chroot
causes the named directory to become the root directory,
the starting point for path searches for path names
beginning with /. The user’s working directory is
unaffected by the chroot system call.

The effective user ID of the process must be super-user to
change the root directory.

The .. entry in the root directory is interpreted to mean
the root directory itself. Thus, .. cannot be used to
access files outside the subtree rooted at the root
directory.

Chroot will fail and the root directory will remain
unchanged if one or more of the following are true:

[ENOTDIR| Any component of the path name is not
a directory.

[ENOENT] The named directory does not exist.

[EPERM] The effective user ID is not super-user.

[EFAULT) Path points outside the allocated

address space of the process.

RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO

chdir(2).

CLOSE(2)

NAME
close — close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a ereat, open,
dup, fentl, or pipe system call. Close closes the file
descriptor indicated by fildes. All outstanding record
locks owned by the process (on the file indicated fildes)
are removed.

[EBADF| Close will fail if fildes is not a valid open file
descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fentl(2), open(2), pipe(2).

5/86

CONNECT (2N)

NAME
connect — initiate a connection on a socket
SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
connect (s, name, namelen)
int s;
struct sockaddr *name;
int namelen;
DESCRIPTION
Connect initiates a connection on a socket. The
parameter 8 is a socket. If it is of type SOCK_DGRAM,
then this call permanently specifies the peer to which
datagrams are to be sent; 1if it is of type
SOCK_STREAM, then this call attempts to make a
connection to another socket. The other socket is
specified by name; namelen is the length of name. which
is an address in the communications space of the socket.
Each communications space interprets the name
parameter in its own way.
— RETURN VALUE
If the connection or binding succeeds, then 0 is returned.
Otherwise a —1 is returned, and a more specific error
code is stored in errno.
ERRORS
The call fails if:
[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is a descriptor for a file, not a
socket.
[EADDRNOTAVAIL] The specified address is not
available on this machine.
[EAFNOSUPPORT] Addresses in the specified address
family cannot be used with this
socket.
[EISCONN] The socket is already connected.
[ETIMEDOUT) Connection establishment timed
out without establishing a
connection.
—

[ECONNREFUSED] The attempt to connect was
forcefully rejected.

[ENETUNREACH| The network is not reachable {from
this host.

CONNECT (2N)

[EADDRINUSE] The address is already in use.
[EFAULT)] The name parameter specifies an
area outside the process address
space.
SEE ALSO

accept(2N), getsockname(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 -2-

—_—

NAME

CREAT(2)

creat — create a new file or rewrite an existing one

SYNOPSIS

int creat (path, mode)
char *path;
int mode;

DESCRIPTION

Creat creates a new ordinary file or prepares to rewrite
an existing file named by the path name pointed to by
path.

If the file exists, the length is truncated to O and the
mode and owner are unchanged. Otherwise, the file’s
owner ID is set to the effective user ID, of the process the
group ID of the process is set to the effective group ID, of
the process and the low-order 12 bits of the file mode are
set to the value of mode modified as follows:

All bits set in the process’s file mode creation
mask are cleared. See umask(2).

The ‘“‘save text image after execution bit” of the
mode is cleared. See chmod(2).

Upon successful completion, the file descriptor is
returned and the file 1s open for writing, even if the
mode does not permit writing. The file pointer is set to
the beginning of the file. The file descriptor is set to
remain open across erec system calls. See fentl(2). No
process may have more than 20 files open
simultaneously. A new file may be created with a mode
that forbids writing.

Creat will fail if one or more of the following are true:

[EACCES] Search permission is denied on a
component of the path prefix.
[EACCES] The file does not exist and the directory

in which the file is to be created does
not permit writing.

[EACCES] The file exists and write permission is
denied.

[ENOTDIR] A component of the path prefix is not a
directory.

[ENOENT] A component of the path prefix does
not exist.

[ENOENT] The path name is null.

[EROFS] The named file resides or would reside

on a read-only file system.

-1-

CREAT(2)

[ETXTBSY] The file is a pure procedure (shared
text) file that is being executed.

[EISDIR] The named file is an existing directory.

[EMFILE] Twenty (20) file descriptors are
currently open.

[EFAULT) Path points outside the allocated
address space of the process.

[ENFILE] The system file table is full.

[EDEADLOCK| A side effect of a previous locking(2)
call.

RETURN VALUE
Upon successful completion, a non-negative integer,
namely the file descriptor, is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the
error.

SEE ALSO
chmod(2), close(2), dup(2), fentl(2), locking(2), Iseek(2),
open(2), read(2), umask(2), write(2).

NAME

DUP(2)

dup - duplicate an open file descriptor

SYNOPSIS

int dup (fildes)
int fildes;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open,
dup, fentl, or pipe system call. Dup returns a new file
descriptor having the following in common with the
original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share
one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across erec
system calls. See fentl(2).

The file descriptor returned is the lowest one available.
Dup will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file
descriptor.
[EMFILE] Twenty (20) file descriptors are

currently open.

RETURN VALUE

Upon successful completion a non-negative integer,
namely the file descriptor, is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the
error.

SEE ALSO

creat(2), close(2), exec(2), fentl(2), open(2), pipe(2).

NAME

EXEC(2)

execl, execv, execle, execve, execlp, execvp - execute a
file

SYNOPSIS

int execl (path, arg0, argl, ..., argn, 0)

char *path, *arg0, *argl, ..., *argn;

int execv (path, argv)

char *path, *argv| ﬁ

int execle (path, arg0, argl, ..., argn, 0, envp)
char *path, *arg0, *argl, ..., *argn, *envp| |;
int execve (path a.rgv, env

char *path, *argv[|, *envp

int execlp (file, arg0, argl, ..., argn, 0)

char *file, *arg0, *argl, ..., *argn;

int execvp (file, argv)

char *file, *argv| |;

DESCRIPTION

Ezec in all its forms transforms the calling process into a
new process. The new process is constructed from an
ordinary, executable file called the new process file.
This file consists of a header (see a.out(4)), a text
segment, and a data segment. The data segment
contains an initialized portion and an uninitialized
portion (bss). There can be no return from a successful
erec because the calling process is overlaid by the new
process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where arge is the argument count and ergv is an array of
character pointers to the arguments themselves. As
indicated, arge is conventionally at least one and the
first member of the array points to a string containing
the name of the file.

Path points to a path name that identifies the new
process file.

File points to the new process file. The path prefix for
this file is obtained by a search of the directories passed
as the environment line "PATH =" (see environ(5)).
The environment is supplied by the shell (see sh(1)).

Arg0, argl, ..., argn are pointers to null-terminated
character strings. These strings constitute the argument

EXEC(2)

list available to the new process. By convention, at least
arg0 must be present and point to a string that is the
same as path (or its last component).

Argv is an array of character pointers to null-terminated
strings. These strings constitute the argument list
available to the new process. By convention, argv must
have at least one member, and 1t must point to a string
that is the same as path (or its last component). Argv is
terminated by a null pointer.

Envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the
new process. Envp is terminated by a null pointer. For
execl and ezxecv, the C run-time start-off routine places
a pointer to the environment of the calling process in the
global cell:
extern char **environ;

and it is used to pass the environment of the calling
process to the new process.

File descriptors open in the calling process remain open
in the new process, except for those whose close-on-exec
flag is set; see fentl(2). For those file descriptors that
remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to
terminate the new process. Signals set to be ignored by
the calling process will be set to be ignored by the new
process. Signals set to be caught by the calling process
will be set to terminate the new process; see signal(2).

If the set-user-ID mode bit of the new process file is set
(see chmod(2)), exec sets the effective user ID of the new
process to the owner ID of the new process file.
Similarly, if the set-group-ID mode bit of the new process
file is set, the effective group ID of the new process is set
to the group ID of the new process file. The real user ID
and real group ID of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling
process will not be attached to the new process (see

shmop(2)).
Profiling is disabled for the new process; see profil{2).

The new process also inherits the following attributes
from the calling process:

nice value (see nice(2))
process ID
parent process ID

EXEC(2)

process group ID

semad] values (see semop(2))

tty group ID (see ezit(2) and signal(2))

trace flag (see ptrace(2) request 0)

time left until an alarm clock signal (see
alarm(2))

current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see wlimit(2))

utime, stime, cuttme, and cstime (see {imes(2))

Ezec will fail and return to the calling process if one or
more of the following are true:

[ENOENT)

[ENOTDIR]

[EACCES)

[EACCES)]
[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

One or more components of the new
process path name of the file do not
exist.

A component of the new process path of
the file prefix is not a directory.

Search permission is denied for a
directory listed in the new process file’s
path prefix.

The new process file is not an ordinary
file.

The new process file mode denies
execution permission.

The exec is not an ezeclp or ezecvp,
and the new process file has the
appropriate access permission but an
invalid magic number in its header.

The new process file is a pure procedure
$sha.red text) file that is currently open
or writing by some process.

The new process requires more memory
than is allowed by the system-imposed
maximum. This limit is a configurable
quantity up to the limitations of the
hardware. It may be less due to
restrictions on swap space.

The number of bytes in the new
process’s argument list 1s greater than
the system-imposed limit of 10,240
bytes.

[EFAULT]

[EFAULT]

[ENOHDW)|

[ENOEXEC

[ENOEXEC

[EPERM|

RETURN VALUE

If erec returns to the calling process an error has
occurred; the return value will be -1 and errno will be
set to indicate the error.

SEE ALSO

5/86

sh(1), alarm(2),

semop(2),

signal(2), times(2), ulimit(2), umask
a.out(4), environ(5).

EXEC(2)

The new process file is not as long as
indicated by the size values in its

header.

Path, argv, or envp point to an illegal
address.

The executable file requires hardware
that does not exist (such as floating-
point).

The file format does not correspond to
that expected as specified with the
magic number (such as a hole in the
file§

The virtual address specification in the

header(s) exceeds the allowed system
limits.

The process is being traced (see
ptrace(2)), but the file does not permit
reading.

exit(2), fork(2), nice(2), ptrace%?%,
2

b

NAME

EXIT(2)

exit, _exit — terminate process

SYNOPSIS

void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION

Ezit terminates the calling process with the following
consequences:

All of the file descriptors open in the calling
process are closed.

If the parent process of the calling process is
executing a watt, it is notified of the calling
process’s termination and the low order eight
bits (i.e., bits 0377) of status are made available
to it; see wait(2).

If the parent process of the calling process is not
executing a watt, the calling process 1is
transformed into a zombie process. A zombie
process is a process that only occupies a slot in
the process table. It has no other space
allocated either in user or kernel space. The
process table slot that it occupies is partially
overlaid with time accounting information (see
<sys/proc.h>) to be used by times.

The parent process ID of all of the calling
process’s existing child processes and zombie
processes is set to 1. This means that the
initialization process (see ¢ntro(2)) inherits each
of these processes.

Each attached shared memory segment is
detached and the value of shm_nattach in the
data structure associated with i1ts shared memory
identifier is decremented by 1.

For each semaphore for which the calling process
has set a semadj value (see semop(2)), that
semad] value is added to the semval of the
specified semaphore.

If the process has a process, text, or data lock,
an unlock is performed (see plock(2)).

An accounting record is written on the
accounting file if the system’s accounting routine
is enabled; see acct (2).

EXIT(2)

If the process ID, tty group ID, and process group
ID of the calling process are equal (i.e., it is a
process group leader), the SIGHUP signal is sent
to each process that has a process group ID equal
to that of the calling process.

If the process is a process group leader, all
processes in its group are made members of the
null group.

The C function ezit may cause cleanup actions before
the process exits. The function _ezit circumvents all
cleanup.
SEE ALSO
intro(2), acct(2), plock(2), semop(2), signal(2), wait(2).
WARNING
See WARNING in signal(2).

NAME

FCNTL(2)

fentl — file control

SYNOPSIS

#include <fentlh>

int fentl (fildes, cmd, arg)
int fildes, c¢md, arg;

DESCRIPTION

Fentl provides for control over open files. Fildes is an
open file descriptor obtained from a creat, open, dup,
fentl, or pipe system call.

The commands available are:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL

F_GETLK

Return a new file descriptor as follows:

Lowest numbered available file
descriptor greater than or equal to arg.

Same open file (or pipe) as the original
file.

Same file pointer as the original file (i.e.,
both file descriptors share one file
pointer).

Same access mode (read, write or
read/write).

Same file status flags (i.e., both file
descriptors share the same file status
flags).

The close-on-exec flag associated with
the new file descriptor is set to remain
open across ezec(2) system calls.

Get the close-on-exec flag associated
with the file descriptor fildes. If the
low-order bit is O the file will remain
open across erec, otherwise the file will
be closed upon execution of ezec.

Set the close-on-exec flag associated with
fildes to the low-order bit of arg (0 or 1
as above).

Get file status flags.
Set file status flags to arg. Only certain
flags can be set; see fentl(5).

Get the first lock which blocks the lock
description given by the variable of type
struct flock pointed to by arg (see
fentl(5)). The information retrieved

-1-

FCNTL(2)

overwrites the information passed to
fentl in the flock structure. If no lock is
found that would prevent this lock from
being created, then the structure is
passed back unchanged except for the
lock type which will be set to F_UNLCK.

F_SETLK Set or clear a file segment lock
according to the variable of type struct
flock pointed to by arg [see fcntl(S)L.
The emd F_SETLK is used to establis
read (F_RDLCK) and write (F_WRLCK)
locks, as well as remove either type of
lock (F_UNLCK). If a read or write lock
cannot be set, fentl will return
immediately with an error value of —1.

F_SETLKW This e¢md is the same as F_SETLK except
that if a read or write lock is blocked by
other locks, the process will sleep until
the segment is free to be locked.

A read lock prevents any process from write locking the
protected area. More than one read lock may exist for a
given segment of a file at a given time. The file
descriptor on which a read lock is being placed must
have been opened with read access.

A write lock prevents any process from read locking or
write locking the protected area. Only one write lock
may exist for a given segment of a file at a given time.
The file descriptor on which a write lock is being placed
must have been opened with write access.

The structure flock describes the type (l_type), starting
offset (I_whence), relative offset (I_start), size ([_len), and
process id (I_pid) of the segment of the file to be
affected. The process id field is only used with the
F_GETLK emd to return the value for a block in lock.
Locks may start and extend beyond the current end of a
file, but may not be negative relative to the beginning of
the file. A lock may be set to always extend to the end
of file by setting [_len to zero (0). If such a lock also has
[_start set to zero (0), the whole file will be locked.
Changing or unlocking a segment from the middle of a
larger locked segment leaves two smaller segments for
either end. Locking a segment that is already locked by
the calling process causes the old lock type to be
removed and the new lock type to take effect. All locks
associated with a file for a given process are removed
when a file descriptor for that file is closed by that
process or the process holding that file descriptor

-2

FCNTL(2)

terminates. Locks are not inherited by a child process in
a fork(2) system call.

Fentl will fail if one or more of the following are true:

[EBADF]
[EMFILE]
[EINFILE]

[EINVAL]

[EACCES]

[EMFILE]

[ENOSPC]

[EDEADLK]

RETURN VALUE

Fildes is not a valid open file
descriptor.

Cmd is F_DUPFD and 20 file descriptors
are currently open.

Cmd is F_DUPFD and arg is negative or
greater than 20.

Cmd is F_GETLK, F_SETLK, or
SETLKW and arg or the data it points
to is not valid.

Cmd is F_SETLK; the type of lock
[_type) is a read (F_RDLCK) or write
F_WRLCK lock, and the segment of a
ile to be locked is already write locked
by another process; or the type is a
write lock, and the segment of a file to
be locked 1is already read or write
locked by another process.

Cmd is F_SETLK or F_SETLKW, the
type of lock is a read or write lock and
there are no more file locking headers

available (too many files have segments
locked).

Cmd is F_SETLK or F_SETLKW, the
type of lock is a read or write lock and
there are no more file locking headers
available (too many files have segments
locked) or there are no more record

locks available (too many file segments
locked).

Cmd is F_SETLK, when the lock is
blocked by some lock from another
process and sleeping (waiting) for that
lock to become free, this causes a
deadlock situation.

Upon successful completion, the value returned depends
on emd as follows:

F_DUPFD A new file descriptor.

F_GETFD Value of flag (only the low-order

bit is defined).

FCNTL(2)

F_SETFD Value other than -1.
F_GETFL Value of file flags.

F_SETFL Value other than - 1.
F_GETLK Value other that —1.
F_SETLK Value other than —1.

F_SETLKW Value other than —1.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
close(2), exec(2), open(2), fentl(5).
BUGS
Two forms of file locking are available: locking(2) and

fentl(2). These two methods are not compatible; a lock
by one is not honored by the other.

FORK(2)

NAME
fork — create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process
child process) is an exact copy of the calling process
parent process). This means the child process inherits
the following attributes from the parent process:

environment
close-on-exec flag (see exec(2))
signal handling settings (i.e., SIG_DFL,
SIG_IGN, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice(2))
all attached shared memory segments (see
shmop(2))
process group ID
tty group ID (see ezit(2) and signal(2))
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see
alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ultmit(2))
The child process differs from the parent process in the
following ways:

The child process has a unique process ID.

The child process has a different parent process
ID (i.e., the process ID of the parent process).

The child process has its own copy of the
parent’s file descriptors. Each of the child’s file
descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

All semadj values are cleared (see semop(2)).

Process locks, text locks and data locks are not
inherited by the child plock(2)).

The child process’s utime, stime, cutime, and
cstime are set to 0. The time left until an alarm
clock signal is reset to 0.

FCNTL(2)

F_SETFD Value other than —1.
F_GETFL Value of file flags.

F_SETFL Value other than -1.
F_GETLK Value other that —1.
F_SETLK Value other than -1.

F_SETLKW Value other than -1.

Otherwise, a value of ~1 is returned and errno is set to
indicate the error.

SEE ALSO
close(2), exec(2), open(2), fentl(5).

BUGS
Two forms of file locking are available: locking(2) and
fentl(2). These two methods are not compatible; a lock
by one is not honored by the other.

FORK (2)

NAME

fork — create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process
child process) is an exact copy of the calling process
parent process). This means the child process inherits
the following attributes from the parent process:

environment
close-on-exec flag (see ezec(2))
signal handling settings (i.e., SIG_DFL,
SIG_IGN, function address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice(2))
all attached shared memory segments (see
shmop(2))
process group ID
tty group ID (see exit(2) and signal(2))
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see
alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit(2))
The child process differs from the parent process in the
following ways:

The child process has a unique process ID.

The child process has a different parent process
ID (i.e., the process ID of the parent process).

The child process has its own copy of the
parent’s file descriptors. Each of the child’s file
descriptors shares a common file pointer with
the corresponding file descriptor of the parent.

All semadj values are cleared (see semop(2)).

Process locks, text locks and data locks are not
inherited by the child plock(2)).

The child process’s utime, stime, cutime, and
csttime are set to 0. The time left until an alarm
clock signal is reset to 0.

FORK(2)

Fork will fail and no child process will be created if one
or more of the following are true:

[EAGAIN] The system-imposed limit on the total
number of processes under execution
would be exceeded.

[EAGAIN] The system-imposed limit on the total
number of processes under execution by
a single user would be exceeded.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to
the child process and returns the process ID of the child
process to the parent process. Otherwise, a value of -1
is returned to the parent process, no child process is
created, and errno is set to indicate the error.

SEE ALSO
exchanges(2), exec(2), nice(2), plock(2), ptrace(2),
semop(2), shmop(2), signal(2), times(2), ulimit(2
umask(2), wait(2).

’

GETPEERNAME (2N)

NAME

getpeername — get name of connected peer
SYNOPSIS

getpeername(s, name, namelen)

int s;

struct sockaddr *name;
int *namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to
socket s. The namelen parameter should be initialized
to indicate the amount of space pointed to by name. On
return it contains the actual size of the name returned

(in bytes).
DIAGNOSTICS

A 0 is returned if the call succeeds, -1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid

descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in
the system to perform the operation.

[EFAULT] The name parameter points to memory
not in a valid part of the process
address space.

SEE ALSO
bind(2N), socket(2N), getsockname(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

GETPID (2)

NAME
getpid, getpgrp, getppid — get process, process group,
and parent process IDs
SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()
DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling
process.

Getpprd returns the parent process ID of the calling
process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

GETSOCKNAME (2N)

NAME
getsockname — get socket name
SYNOPSIS
getsockname(s, name, namelen)
int s;

struct sockaddr *name;
int *namelen;

DESCRIPTION
Getsockname returns the current name for the specified
socket (s). The namelen parameter should be initialized
to indicate the amount of space pointed to by name. On
return namelen contains the actual size of the name
returned (in bytes).

RETURN VALUE
A 0 is returned if the call succeeds, —1 1if it fails.

ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid
descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in
the system to perform the operation.
[EFAULT] The name parameter points to memory
not in a valid part of the process
address space.
SEE ALSO

bind(2N), socket(2N).
CTIX Internetworking Manual.
NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

GETSOCKOPT(2N)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char *optval;

int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated
with a socket. Options may exist at multiple protocol
levels; they are always present at the uppermost
“socket”’ level.

When manipulating socket options the level at which the
option resides and the name of the option must be
specified. To manipulate options at the “socket’ level,
level is specified as SOL_SOCKET. To manipulate
options at any other level the protocol number of the
appropriate protocol controlling the option is supplied.
For example, to indicate an option is to be interpreted
by the TCP protocol, level should be set to the protocol
number of TCP; see getprotoent(3N).

The parameters optval and optlen are used to access
option values for setsockopt. For getsockopt they
identify a buffer in which the value for the requested
option{s) are to be returned. For getsockopt, optlen is a
value-result parameter, initially containing the size of
the buffer pointed to by optval, and modified on return
to indicate the actual size of the value returned. If no
option value is to be supplied or returned, optval may be
supplied as 0.

Optname and any specified options are passed
uninterpreted to the appropriate protocol module for
interpretation. The include file < sys/socket.h >
contains definitions for ‘“socket’” level options; see
socket(2N). Options at other protocol levels vary in
format and name, consult the appropriate entries in
(4N).
RETURN VALUE
A 0 is returned if the call succeeds, —1 if it fails.

-1-

GETSOCKOPT (2N)

ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid
descriptor.
[ENOTSOCK] The argument s is a file, not a
socket.
[ENOPROTOOPT]| The option is unknown.
[EFAULT) The options are not in a valid
part of the process address space.
SEE ALSO

socket(2N), getprotoent(3N).
CTIX Internetworking Manual.
NOTE

This command is for use with a special version of the
OTIX kernel that supports networking protocols.

GETUID (2)

NAME
getuid, geteuid, getgid, getegid — get real user, effective
user, real group, and effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()
unsigned short getgid ()
unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteurd returns the effective user ID of the calling
process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling
process.

SEE ALSO
intro(2), setuid(2).

NAME

IOCTL(2)

ioctl — control device

SYNOPSIS

ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION

Toctl performs a variety of functions on character special

files (devices).

The write-ups of various devices in

Section 7 discuss how 1octl applies to them.

Toctl will fail if one or more of the following are true:

[EBADF)
(ENOTTY]
[EINVAL|
[EINTR]
[EFAULT)

RETURN VALUE

Fildes is not a wvalid open file
descriptor.

Fildes is not associated with a character
special device.

Request or arg is not valid. See
Section 7.

A signal was caught during the doct!
system call.

The options are not in a valid part of
the process address space.

If an error has occurred, a value of —1 is returned and
errno is set to indicate the error.

SEE ALSO
termio(7).

5/86

—

NAME

KILL(2)

kill - send a signal to a process or a group of processes

SYNOPSIS

int kill (pid, sig)
int pid, sig;

DESCRIPTION

Kill sends a signal to a process or a group of processes.
The process or group of processes to which the signal is
to be sent is specified by pid. The signal that is to be
sent is specified by sig and is either one from the list
given in signal(2), or 0. If sig is O (the null signal), error
checking is performed but no signal is actually sent.
This can be used to check the validity of pid.

The real or effective user ID of the sending process must
match the real or effective user ID of the receiving
process, unless the effective user ID of the sending
process is super-user.

The processes with a process ID of 0 and a process ID of
1 are special processes (see tntro(2)) and will be referred
to below as proc0 and procl, respectively.

If pid is greater than zero, sig will be sent to the process
whose process ID is equal to ptd. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding
proc0 and procl whose process group ID is equal to the
process group ID of the sender.

If pid is —1 and the effective user ID of the sender is not
super-user, stg will be sent to all processes excluding
proc0 and procl whose real user ID is equal to the
effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is
super-user, stg will be sent to all processes excluding
procO0 and procl.

If pid is negative but not -1, sig will be sent to all
processes whose process group ID is equal to the absolute
value of pid.

Kl will fail and no signal will be sent if one or more of
the following are true:

[EINVAL] Sig is not a valid signal number.

[EINVAL] Sig is SIGKILL and ptd is 1 (procl).

[ESRCH] No process can be found corresponding
to that specified by pid.

[EPERM] The user ID of the sending process is

not super-user, and its real or effective

-1-

KILL(2)

user ID does not match the real or
effective user ID of the receiving
process.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
kill(1), getpid(2), setpgrp(2), signal(2).

LDDRV(2)

NAME
drvalloc, drvbind - access loadable drivers

SYNOPSIS
#include <sys/types.h>
#include <syslocal.h>
#include <sys/drv.h>

syslocal (SYSL_ALLOCDRY, option, ds)
int option;
struct drvalloc *ds;

syslocal (SYSL_BINDDRYV, option, ds)
int option;
struct drvbind *ds;

DESCRIPTION
These two functions accessed via syslocal(2) implement
the loadable driver functions of CTIX. They both require
super-user privilege.

Loading drivers consists of two phases: allocation of
virtual space, device numbers, and device IDs; and
binding. Fully relocating a driver into memory,
allocating physical space, plugging the device switch
tables, calling initialization routines, and unloading
require the same two phases in reverse.

SEE ALSO
Hdrv(IM), syslocal(2).

NAME

LINK (2)

link - link to a file

SYNOPSIS

int link (pathl, path2)
char *pathl, *path2;

DESCRIPTION

Pathl points to a path name naming an existing file.
Path?2 points to a path name naming the new directory
entry to be created. Link creates a new link (directory
entry) for the existing file.

Link will fail and no link will be created if one or more
of the following are true:

[ENOTDIR]
([ENOENT)
[EACCES]

[ENOENT)
[EEXIST]
[EPERM]

[EXDEV]

[ENOENT]
[EACCES)
[EROFS]

[EFAULT)
(EMLINK]

RETURN VALUE

A component of either path prefix is
not a directory.

A component of either path prefix does
not exist.

A component of either path prefix
denies search permission.

The file named by path! does not exist.
The link named by path2 exists.

The file named by path!l is a directory

and the effective user ID is not super-
user.

The link named by path2 and the file
named by pathl are on different logical
devices (file systems).

Path?2 points to a null path name.

The requested link requires writing in a
directory with a mode that denies write
permission.

The requested link requires writing in a
directory on a read-only file system.

Path points outside the allocated
address space of the process.

The maximum number of links to a file
would be exceeded.

Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
unlink(2).

LISTEN(2N)

NAME
listen — listen for connections on a socket

SYNOPSIS
listen (s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with
socket(2N), a backlog for incoming connections is
specified with listen, and then the connections are
accepted with accept(2N). The listen call applies only to
sockets of type SOCK_STREAM or
SOCK_PKTSTREAM.

The backlog parameter defines the maximum length to
which the queue of pending connections may grow. If a
connection request arrives with the queue full the client
will receive an error with an indication of

ECONNREFUSED.
RETURN VALUE

A 0 return value indicates success; ~1 indicates an error.
ERRORS

The call fails if:

[EBADF] The argument s is not a valid

descriptor.
[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that
supports the operation listen.

SEE ALSO
accept(2N), connect{2N), socket(2N).
CTIX Internetworking Manual.

BUGS
The backlog is currently limited (silently) to 5.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

5/86 -1-

NAME

LOCKING (2)

locking — exclusive access to regions of a file

SYNOPSIS

int locking (filedes, mode, size);
int fildes, mode;
long size;

DESCRIPTION

Locking places or removes a kernel-enforced lock on a
region of a file. The calling process has exclusive access
to regions it has locked. If another process uses read(2),
write(2), creat(2), or open(2) (with O_TRUNC) in a
way that reads or modifies part of the locked region, the
second process’s system call does not return until the
lock is released, unless deadlock or some other error is
detected. A process whose execution is suspended in
such a manner is said to be blocked.

Parameters specify the file to be locked or unlocked, the
kind of lock or unlock, and the region affected:

. Filedes specifies the file to be locked or
unlocked; filedes is a file descriptor
returned by an open, create, pipe, fentl,
or dup system call.

° Mode specifies the action: 0 for lock
removal; 1 for blocking lock; 2 for
checking lock. Blocking and checking
locks differ only if the attempted lock is
itself locked out: a blocking lock waits
until the existing lock or locks are
removed; a checking lock immediately
returns an error.

. The region affected begins at the current
file offset associated with filedes and is
stze bytes long. If size is zero, the
region affected ends at the end of the
file.

Locking imposes no structure on a CTIX file. A process
can arbitrarily lock any unlocked byte and unlock any
locked byte. However, creating a large number of
noncontiguous locked regions can fill up the system’s
lock table and make further locks impossible. It is
advisable that a program’s use of locking segment the file
in the same way as does the program’s use of read and
write.

A process is said to be deadlocked if it is sleeping until
an unlocking which is indirectly prevented by that same

LOCKING (2)

sleeping process. The kernel will not permit a read,
write, creat, open with O_TRUNC, or blocking locking
if such a call would deadlock the calling process. Errno
is set to EDEADLOCK. The standard response to such
a situation is for the program to release all its existing
locked areas and try again. If a locking call fails because
the kernel’s table of locked areas is full, again, errno is
set to EDEADLOCK and, again, the calling program
should release its existing locked areas.

Special files and pipes can be locked, but no
input/output is blocked.

Locks are automatically removed if the process that
placed the lock terminates or closes the file descriptor
used to place the lock.

SEE ALSO
create(2), close(2), dup(2), open(2), read(2), write(2).
RETURN VALUE

A return value of -1 indicates an error, with the error
value in errno.

[EACCES] A checking lock on a region already
locked.
[EDEADLOCK] A lock that would cause deadlock or
overflow the system’s lock table.
WARNING
Do not apply any standard input/output library function
to a locked file: this library does not know about locking.
BUGS
Two forms of file locking are available: locking(2) and

fentl(2). These two methods are not compatible; a lock
by one is not honored by the other.

LSEEK (2)

NAME
lseek — move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open,
dup, or fentl system call. Lseek sets the file pointer
associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current
location plus offset.

If whence is 2, the pointer is set to the size of
the file plus offset.

Upon successful completion, the resulting pointer
location, as measured in bytes from the beginning of the
file, 1s returned.

Lseek will fail and the file pointer will remain unchanged
if one or more of the following are true:

[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or fifo.
[EINVAL and SIGSYS signal]

Whence isnot 0, 1, or 2.

[EINVAL] The resulting file pointer would be
negative.

Some devices are incapable of seeking. The value of the
file pointer associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer
indicating the file pointer value is returned. Otherwise,
a value of —1 is returned and errno is set to indicate the
error.

SEE ALSO
creat(2), dup(2), fentl(2), open(2).

MKNOD (2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
Mknod creates a new file named by the path name
pointed to by path. The mode of the new file is
initialized from mode. Where the value of mode is
interpreted as follows:
0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file
0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the
following
0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute search; by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of
the process. The group ID of the file is set to the
effective group ID of the process.

Values of mode other than those above are undefined
and should not be used. The low-order 9 bits of mode
are modified by the process’s file mode creation mask: all
bits set in the process’s file mode creation mask are
cleared. See umask(2). If mode indicates a block or
character special file, dev is a configuration-dependent
specification of a character or block I/O device. If mode
does not indicate a block special or character special
device, dev is ignored.

Mknod may be invoked only by the super-user for file
types other than FIFO special.

Mknod will fail and the new file will not be created if
one or more of the following are true:

[EPERM] The effective user ID of the process is
not super-user.

[ENOTDIR]
[ENOENT]
[EROFS]
[EEXIST]
[EFAULT]

RETURN VALUE

MKNOD (2)

A component of the path prefix is not a
directory.

A component of the path prefix does
not exist.

The directory in which the file is to be
created is located on a read-only file
system.

The named file exists.

Path points outside the allocated
address space of the process.

Upon successful completion a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO

mkdir(1), chmod(2), exec(2), umask(2), fs(4).

NAME

MOUNT(2)

mount — mount a file system

SYNOPSIS

int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION

5/86

Mount requests that a removable file system contained
on the block special file identified by spec be mounted
on the directory identified by dir. Spec and dir are
pointers to path names.

Upon successful completion, references to the file dir will
refer to the root directory on the mounted file system.

The low-order bit of rwflag is used to control write
permission on the mounted file system; if 1, writing is
forbidden, otherwise writing is permitted according to
individual file accessibility.

Mount may be invoked only by the super-user.
Mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT] Any of the named files does not exist.

[ENOTDIR| A component of a path prefix is not a
directory.

[ENOTBLK] Spec is not a block special device.

[ENXIO] The device associated with spec does
not exist.

[ENOTDIR| Dsr is not a directory.

[EFAULT) Spec or dir points outside the allocated

address space of the process.

[EBUSY] Dir is currently mounted on, is
someone’s current working directory, or
is otherwise busy.

[EBUSY] The device associated with spec is
currently mounted.

[EBUSY)] There are no more mount table entries.

[EROFS] The low-order bit of rwflag is zero and
the volume containing the file system is
physically write-protected.

[EBADFS] An attempt to mount a bit-mapped file
system failed due to the dirty flag being
set for that file system.

MOUNT(2)

[ENXIO] The device is a swap partition.

[ENXIO] The superblock found on the specified
device does not have a correct magic
number.

RETURN VALUE
Upon successful completion a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
umount(2).

5/86 -2-

NAME

MSGCTL(2)

msgctl — message control operations

SYNOPSIS

ffinclude <sys/types.h>
#finclude <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;

struct msqid_ds *buf;

DESCRIPTION

Msgetl provides a variety of message control operations
as specified by emd. The following emds are available:

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member
of the data structure associated with
msqid into the structure pointed to by
buf. The contents of this structure are
defined in intro(2). {READ}

Set the value of the following members
of the data structure associated with
masgqtd to the corresponding value found
in the structure pointed to by buf:

msg_perm.uid

msg_perm.gid

msg_perm.mode /* only low 9 bits */
msg_gbytes

This e¢md can only be executed by a
process that has an effective user ID
equal to either that of super user or to
the value of msg_perm.uid in the data
structure associated with msqid. Only
super user can raise the value of
msg_qgbytes.

Remove the message queue identifier
specified by msgtd from the system and
destroy the message queue and data
structure associated with it. This e¢md
can only be executed by a process that
has an effective user ID equal to either
that of super user or to the value of
msg_perm.uid in the data structure
associated with msqid.

Msgctl will fail if one or more of the following are true:

[EINVAL]

[EINVAL]
(EACCES]

[EPERM|

[EPERM]

[EFAULT]
RETURN VALUE

MSGCTL (2)

Msqid is not a valid message queue
identifier.

Cmd is not a valid command.

Cmd is equal to IPC_STAT and
{READ} operation permission is denied
to the calling process (see intro(2)).

Cmd is equal to IPC_RMID or
IPC_SET. The effective user ID of the
calling process is not equal to that of
super user and it is not equal to the
value of msg_perm.uid in the data
structure associated with masgqid.

Cmd is equal to IPC_SET, an attempt
1s being made to increase to the value
of msg_qgbytes, and the effective user
ID of the calling process is not equal to
that of super user.

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO

intro(2), msgget(2), msgop(2).

MSGGET(2)

msgget — get message queue

SYNOPSIS

#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/msg.h>
int msgget (key, msgflg)
key_t key;

int msgflg;

DESCRIPTION

Msgget returns the message queue identifier associated
with key.

A message queue identifier and associated message queue
and data structure (see tntro(2)) are created for key if
one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a message queue
identifier associated with it, and (msgfly &
IPC_CREAT) is ‘“‘true”.

Upon creation, the data structure associated with the
new message queue identifier is initialized as follows:

Msg_perm.cuid, msg_perm.uid,
msg_perm.cgid, and msg_perm.gid are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.

The low-order 9 bits of msg_perm.mode are
set equal to the low-order 9 bits of msgflg.
Msg_qnum, msg_lspid, msg_lrpid,
msg_stime, and msg_rtime are set equal to 0.

Msg_ctime is set equal to the current time.
Msg_qgbytes is set equal to the system limit.
Msgget will fail if one or more of the following are true:

[EACCES] A message queue identifier exists for
key, but operation permission (see
intro(2)) as specified by the low-order 9
bits of msgflg would not be granted.

[ENOENT] A message queue identifier does not
exist for key and (msgfly &
IPC_CREAT) is ‘“false”.

[ENOSPC] A message queue identifier is to be
created but the system-imposed limit on
the maximum number of allowed

MSGGET(2)

message queue identifiers system wide
would be exceeded.

[EEXIST)] A message queue identifier exists for key
but ((msgfly & IPC_CREAT) & (msg/flg
& IPC_EXCL)) is “‘true”.
RETURN VALUE
Upon successful completion, a non-negative integer,
namely a message queue identifier, is returned.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), msgctl(2), msgop(2).

—

NAME

MSGOP(2)

msgop — message operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#tinclude <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsgz, msgflg;

int msgrev (msqid, msgp, msgss, msgtyp, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsg;

long msgtyp;

int msgflg;

DESCRIPTION

Msgsnd is used to send a message to the queue associated
with the message queue identifier specified by msqid.
{WRITE} Masgp points to a structure containing the
message. This structure is composed of the following
members:

long mtype; /* message type */
char mtext[]; /* message text */

Mtype is a positive integer that can be used by the
recelving process for message selection (see masgrcv
below). Mtezt is any text of length msgsz bytes. Msgsz
can range from 0 to a system-imposed maximum.

Msgflg specifies the action to be taken if one or more of
the following are true:

The number of bytes already on the queue is
equal to msg_qbytes (see tniro(2)).

The total number of messages on all queues
system-wide is equal to the system-imposed
limit.

These actions are as follows:
If (msgfly & IPC_NOWAIT) is ‘‘true”, the
message will not be sent and the calling process
will return immediately.

If (msgfly & TPC_NOWAIT) is ‘“false”, the
calling process will suspend execution until one
of the following occurs:

MSGOP (2)

The condition responsible for the
suspension no longer exists, in which
case the message is sent.

Msqid is removed from the system (see
magctl(2?). When this occurs, errno is
set equal to EIDRM, and a value of -1
is returned.

The calling process receives a signal
that is to be caught. In this case the
message is not sent and the calling
process resumes execution in the
manner prescribed in signal(2)).

Msgsnd will fail and no message will be sent if one or
more of the following are true:

[EINVALJ Masgid is not a valid message queue
identifier.

[EACCES] Operation permission is denied to the
calling process (see intro(2)).

[EINVAL) Mtype is less than 1.

[EAGAIN] The message cannot be sent for one of

the reasons cited above and (msgfly &
IPC_NOWAIT) is “true”.

[EINVAL] Msgsz is less than zero or greater than
the system-imposed limit.
[EFAULT] Msgp points to an illegal address.

Upon successful completion, the following actions are
taken with respect to the data structure associated with
msqid (see intro (2)).

Msg_gnum is incremented by 1.

Msg_lspid is set equal to the process ID of the
calling process.

Msg_stime is set equal to the current time.

Msgrev reads a message from the queue associated with
the message queue identifier specified by ms¢id and
places it in the structure pointed to by msgp. {READ}
This structure is composed of the following members:
long mtype; /* message type */
char mtext|]; /* message text */
Mtype is the received message’s type as specified by the
sending process. Mtext is the text of the message. Msgsz
specifies the size in bytes of mtert. The received
message is truncated to msgsz bytes if it is larger than

-9-

MSGOP (2)

msgsz and (msgfly & MSG_NOERROR) is “true”. The
truncated part of the message is lost and no indication of
the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to O, the first message on the
queue is received.

If msgtyp is greater than 0, the first message of
type msgtyp is received.

If msgtyp is less than 0, the first message of the
lowest type that is less than or equal to the
absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the
desired type is not on the queue. These are as follows:

If (msgfly & IPC_NOWAIT) is ‘“‘true”, the
calling process will return immediately with a
return value of —1 and errno set to ENOMSG.

If (msgfly & IPC_NOWAIT) is ‘“false”, the
calling process will suspend execution until one
of the following occurs:

A message of the desired type is placed
on the queue.

Msqid is removed from the system.
When this occurs, errno is set equal to
EIDRM, and a value of -1 is returned.

The calling process receives a signal
that is to be caught. In this case a
message 1s not received and the calling
process resumes execution in the
manner prescribed in signal(2})).

Msgrev will fail and no message will be received if one or
more of the following are true:

[EINVAL] Msqid is not a valid message queue
identifier.

[EACCES] Operation permission is denied to the
calling process.

[EINVAL] Masgsz is less than 0.

(E2BIG| Mtext is greater than msgsz and (msgfig

& MSG_NOERROR) is ‘“false”.

[ENOMSG] The queue does not contain a message

of the desired type and (msgtyp &
IPC_NOWAIT) is ‘“true”.

MSGOP (2)

[EFAULT) Msgp points to an illegal address.

Upon successful completion, the following actions are
taken with respect to the data structure associated with
msqid (see intro (2)).

Msg qnum is decremented by 1.

Msg_Irpid is set equal to the process ID of the
calling process.

Msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal,
a value of —1 is returned to the calling process and errno
is set to EINTR. If they return due to removal of msgid
from the system, a value of -1 is returned and errno is
set to EIDRM.

Upon successful completion, the return value is as
follows:

Msgsnd returns a value of 0.

Msgrev returns a value equal to the number of
bytes actually placed into mtezt.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), msgetl(2), msgget(2), signal(2).

NAME

NICE(2)

nice — change priority of a process

SYNOPSIS

int nice (incr)
int incr;

DESCRIPTION

Nice adds the value of iner to the nice value of the
calling process. A process’s nice value is a positive
number for which a more positive value results in lower
CPU priority.

The system allows nice values only from -8 to 39. The
nice system call grants nice values from -8 to —1 only to
super-user processes. These negative nice values cause
the CPU priority of the process to be fixed
independently of CPU usage of the process. Nice values
from 0 to 39 allow the system to adjust dynamically the
actual CPU priority of the process, temporarily lowering
it in proportion to the process’s recent level of CPU
usage. If a super-user process requests a nice value
below -8, or if any other process requests a nice value
below 0, the system imposes a nice value of 0. If any
process requests a nice value above 39, the system
imposes a nice value of 39.

[EPERM)] Nice will fail and not change the nice
value if ¢ner is negative or greater than
40 and the effective user ID of the
calling process is not super-user.

RETURN VALUE

Upon successful completion, nice returns the new nice
value minus 20. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

SEE ALSO

nice(1), exec(2).

NAME

OPEN (2)

open — open for reading or writing

SYNOPSIS

#include <fentlh>

int open (path, oflag { , mode |)
char *path;

int oflag, mode;

DESCRIPTION

5/86

Path points to a path name naming a file. Open opens a
file descriptor for the named file and sets the file status
flags according to the value of oflag. Oflag values are
constructed by OR-ing flags from the following list (only
one of the first three flags below may be used):

O_RDONLY Open for reading only.
O_WRONLY

Open for writing only.
O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and
writes. See read(2) and write(2).

When opening a FIFO with O_RDONLY or
O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will
return without delay. An open
for writing-only will return an
error if no process currently has
the file open for reading.

If O_NDELAY is clear:
An open for reading-only will
block until a process opens the file
for writing. An open for writing-

only will block until a process
opens the file for reading.

When opening a file associated with a
communication line:

If O_NDELAY is set:

The open will return without
waiting for carrier.

 O_NDELAY is clear:

The open will block until carrier is
present.

5/86

OPEN(2)

O_APPEND If set, the file pointer will be set to the

O_DIRECT

end of the file prior to each write.

If set, subsequent reads or writes that
satisfy the following criteria will be moved
directly to or from the user space to the
physical media:

The transfer must start on a 1K
byte boundary in the file, and it
must be in multiples of 1K byte
blocks.

This option applies only to regular files.
Note that direct implies synchronous.

O_NODIRECT

O_SYNC

O_CREAT

O_TRUNC

O_EXCL

Do not perform direct I/O for this file,
even if a transfer satisfies the system
default criteria.

If set, all writes will be synchronous. This
option applies only to regular files.

If the file exists, this flag has no effect.
Otherwise, the owner ID of the file is set
to the effective user ID of the process, the
group ID of the file is set to the effective
group ID of the process, and the low-order
10 bits of the file mode are set to the
value of mode modified as follows (see
creat(2)):

All bits set in the file mode

creation mask of the process are

cleared. See umask(2).

The ‘‘save text image after
execution bit” of the mode is
cleared. See chmod(2).

If the file exists, its length is truncated to
0 and the mode and owner are unchanged.

If O_EXCL and O_CREAT are set, open
will fail if the file exists.

The file pointer used to mark the current position within
the file is set to the beginning of the file.

The new file descriptor is set to remain open across ezxec
system calls. See fentl(2).

The named file is opened unless one or more of the
following are true:

[ENOTDIR]
([ENOENT]
[EACCES]
[EACCES]
[EISDIR]

[EROFS]

[EMFILE]

(ENXIO]

[ETXTBSY)]

[EFAULT]
(EEXIST]

[ENXIO

[EINTR]

[ENFILE]
[EDEADLOCK)]

RETURN VALUE
Upon successful completion, the file descriptor is
returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chmodS2), close(2), creatS), du p(2)) fentl(2), locking(2),
2

5/86

Iseek(2

, read(2), umask(2

OPEN(2)

A component of the path prefix is not a
directory.

O_CREAT is not set and the named file
does not exist.

A component of the path prefix denies
search permission.

Oflag permission is denied for the
named file.

The named file is a directory and oflag
is write or read/write.

The named file resides on a read-only
file system and oflag is write or
read /write.

Twenty (20) file descriptors are
currently open.

The named file is a character special or
block special file, and the device
associated with this special file does not
exist.

The file is a pure procedure (shared
text) file that is being executed and
oflag is write or read/write.

Path points outside the allocated
address space of the process.

O_CREAT and O_EXCL are set, and the
named file exists.

O_NDELAY is set, the named file is a
FIFO, O_WRONLY is set, and no process
has the file open for reading.

A signal was caught during the open
system call.

The system file table is full.

A side effect of a previous locking(2)
call, when applying O_TRUNC .

write(

OPENI(2)

NAME
openi — open a file specified by i-node

o SYNOPSIS

#include <sys/types.h>
#include <fentl.h>

int openi (dev, inode, oflag)
dev_t dev;

ino_t inode;

int oflag;

DESCRIPTION

Opent permits access to a file without reference to any
of its directory links. Because it doesn’t use the
directory hierarchy, opent doesn’t require any access
permission except from the file itself. Use of openi must
be authorized in advance by syslocal(2).

Dev specifies the device number of the file system that
contains the file. Inode is the i-number of the file.
Oflag is a set of open flags, identical to those used with
open(2). The return value is a file descriptor, like that
returned by open.

A file descriptor returned by open{ has the same
properties as one returned by epen. It counts against
the per-process limit of 20 file descriptors.

The specified file is opened unless one or more of the
following are true:

The specified inode is not allocated. [ENOENT]

Oflag permission is denied for the named file.
[EACCES]

The named file is a directory. [EISDIR|

The named file resides on a read-only file system
and oflag is write or read/write. [EROFS]

Twenty (20) file descriptors are currently open.
[EMFILE]

The named file is a character special or block
special file. [ENXIO|

The file is a pure procedure (shared text) file
that is being executed and oflag is write or
read/write. [ETXTBSY]

Path points outside the process’s allocated
address space. [EFAULT]

O_CREAT and O_EXCL are set, and the named
file exists. [EEXIST]

-1-

OPENI(2)

O_NDELAY is set, the file is a FIFO, O_WRONLY
is set, and no process has the file open for
reading. [ENXIO|
The specified file system is not mounted.
(ENXIO]

RETURN VALUE

On success, returns a file descriptor, a nonnegative
integer. On failure, returns —1 and sets errno.

SEE ALSO
creat(2), open(2), syslocal(2).

—_—

PAUSE(2)

NAME

pause — suspend process until signal
SYNOPSIS

pause ()
DESCRIPTION

Pause suspends the calling process until it receives a
signal. The signal must be one that is not currently set
to be ignored by the calling process.

If the signal causes termination of the calling process,
pause will not return.

If the signal is caught by the calling process and control
is returned from the signal-catching function (see
signal(2)), the calling process resumes execution from the
point of suspension; with a return value of —1 from
pause and errno set to EINTR.

SEE ALSO

alarm(2), kill(2), signal(2), wait(2).

PIPE(2)

NAME
pipe — create an interprocess channel

SYNOPSIS
int pipe (fildes)
int fildes|2};
DESCRIPTION
Pipe creates an I/O mechanism called a {Fe and returns

two file descriptors, fildes [0 and fildes Fildes|0
opened for reading and ftldca] is opened for wrltmg

Up to 9K bytes of data are buffered by the pipe before
the writing process is blocked. A read only file
descriptor fildes[0] accesses the data written to fildes[1]
on a first-in-first-out (FIFO) basis.

[EMFILE] Pipe will fail if 19 or more file
descriptors are currently open.
[ENFILE] The system file table is full.

RETURN VALUE
Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
sh(1), read(2), write(2).

5/86 -1-

—_—

NAME

PLOCK (2)

plock — lock process, text, or data in memory

SYNOPSIS

#include <sys/lock.h>

int plock (op)
int op;

DESCRIPTION

Plock allows the calling process to lock its text segment
(text lock), its data and stack segments (data lock), or
both its text and data segments (process lock) into
memory. Locked segments are immune to all routine
swapping. Plock also allows these segments to be
unlocked. For 407 object modules TXTLOCK and
DATLOCK are identical. The effective user ID of the
calling process must be super-user to use this call. Op
specifies the following:

PROCLOCK lock text and data segments into
memory (process lock)

TXTLOCK lock text segment into memory (text

lock)

DATLOCK lock data segment into memory (data
lock)

UNLOCK remove locks

Shared regions (e.g., text) may be locked by anyone
using the text, but they may be unlocked only if the
caller is the last one using the region. Note that sticky-
bit text that is not explicitly unlocked will remain locked
in core even after the last process using it terminates.

Plock will fail and not perform the requested operation if
one or more of the {ollowing are true:

[EPERM] The effective user ID of the calling
process is not super-user.
[EINVAL] Op is equal to PROCLOCK and a

process lock, a text lock, or a data lock
already exists on the calling process.

[EINVAL] Op is equal to TXTLOCK and a text
lock, or a process lock already exists on
the calling process.

|[EINVAL] Op is equal to DATLOCK and a data
lock, or a process lock already exists on
the calling process.

[EINVAL] Op is equal to UNLOCK and no type of
lock exists on the calling process.

-1-

PLOCK(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned to
the calling process. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2).

—

NAME

PROFIL (2)

profil — execution time profile

SYNOPSIS

void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION

Buff points to an area of core whose length (in bytes) is
given by bufsiz. After this call, the user’s program
counter (pc) is examined each clock tick (60th second);
offset is subtracted from it, and the result multiplied by
scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point
fraction with binary point at the left: 0177777 (octal)
ives a 1-1 mapping of pc’s to words in buff; 077777
%octal) maps each pair of instruction words together.
02(octal) maps all instructions onto the beginning of buff
(producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is
rendered ineffective by giving a bufstz of 0. Profiling is
turned off when an ezec is executed, but remains on in
child and parent both after a fork. Profiling will be
turned off if an update in buff would cause a memory
fault.

RETURN VALUE

Not defined.

SEE ALSO

prof(1), monitor(3C).

NAME

PTRACE(2)

ptrace — process trace

SYNOPSIS

int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION

Ptrace provides a means by which a parent process may
control the execution of a child process. Its primary use
is for the implementation of breakpoint debugging; see
sdb(1). The child process behaves normally until it
encounters a signal (see signal(2) for the list), at which
time it enters a stopped state and its parent is notified
via wait(2). When the child is in the stopped state, its
parent can examine and modify its ‘“core image’ using
ptrace. Also, the parent can cause the child either to
terminate or continue, with the possibility of ignoring
the signal that caused it to stop.

The request argument determines the precise action to
be taken by ptrace and is one of the following:

0 This request must be issued by the child process if
it i1s to be traced by its parent. It turns on the
child’s trace flag that stipulates that the child
should be left in a stopped state upon receipt of a
signal rather than the state specified by func; see
signal{2). The pid, addr, and data arguments are
ignored, and a return value is not defined for this
request. Peculiar results will ensue if the parent
does not expect to trace the child.

The remainder of the requests can only be used by the
parent process. For each, ptd is the process ID of the
child. The child must be in a stopped state before these
requests are made.

1, 2 With these requests, the word at location eddr in
the address space of the child is returned to the
parent process. If I and D space are separated (as
on PDP-11s), request 1 returns a word from I space,
and request 2 returns a word from D space. If I
and D space are not separated (as on Convergent
Technologies 68000-family processors), either
request 1 or request 2 may be used with equal
results. The data argument is ignored. These two
requests will fail if addr i1s not the start address of
a word, in which case a value of -1 is returned to
the parent process and the parent’s errno is set to -
EIO.

PTRACE(2)

With this request, the word at location addr in the
child’s USER area in the system’s address space (see
<sys/user.h>) is returned to the parent process.
Addresses in this area range from 0 to USIZE on
Convergent Technologies 68000-family processors.
The date argument is ignored. This request will
fail if addr is not the start address of a word or is
outside the USER area, in which case a value of -1
is returned to the parent process and the parent’s
errno is set to EIO.

With these requests, the value given by the data
argument is written into the address space of the
child at location addr. If I and D space are
separated (as on PDP-11s), request 4 writes a word
into I space, and request 5 writes a word into D
space. If I and D space are not separated (as on
Convergent Technologies 68000-family processors),
either request 4 or request 5 may be used with
equal results. Upon successful completion, the
value written into the address space of the child is
returned to the parent. These two requests will fail
if addr is a location in a pure procedure space and
another process is executing in that space, or addr
is not the start address of a word. Upon failure a
value of -1 is returned to the parent process and
the parent’s errno is set to EIO.

With this request, a few entries in the child’s USER
area can be written. Data gives the value that is
to be written and addr is the location of the entry.
The few entries that can be written are:

the general registers (i.e., registers 0 to 15
on Convergent Technologies 68000-family
processors).

all processor status bits except 8, 9, 10, 12,
and 13.

This request causes the child to resume execution.
If the data argument is 0, all pending signals
including the one that caused the child to stop are
canceled before it resumes execution. If the data
argument is a valid signal number, the child
resumes execution as if it had incurred that signal,
and any other pending signals are canceled. The
addr argument must be equal to 1 for this request.
Upon successful completion, the value of date is
returned to the parent. This request will fail if
data is not O or a valid signal number, in which
case a value of —1 is returned to the parent process

-92.

PTRACE(2)

and the parent’s errno is set to EIO.

This request causes the child to terminate with the
same consequences as exil(2).

This request sets the trace bit in the Processor
Status Word of the child (i.e.,, bit 15 on
Convergent Technologies 68000-family processors)
and then executes the same steps as listed above
for request 7. The trace bit causes an interrupt
upon completion of one machine instruction. This
effectively allows single stepping of the child.

To forestall possible fraud, ptrace inhibits the set-user-id
facility on subsequent ezec(2) calls. If a traced process

calls

erec, it will stop before executing the first

instruction of the new image showing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following

are true:
[EIO] Request is an illegal number.
[ESRCH] Pid identifies a child that does not exist

FILES

or has not executed a ptrace with
request O.

/usr/include/sys/page.h
/usr/include/sys/user.h

SEE ALSO

exec(2), signal(2), wait(2).

5/86

~_

NAME

READ(2)

read — read from file

SYNOPSIS

int read (fildes, buf, nbyte)
int fildes;

char *buf;

unsigned nbyte;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open,
dup, fentl, or pipe system call.

Read attempts to read nbyte bytes from the file
associated with fildes into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a
position in the file given by the file pointer associated
with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from
the current position. The value of a file pointer
associated with such a file is undefined.

Upon successful completion, read returns the number of
bytes actually read and placed in the buffer; this number
may be less than nbyte if the file is associated with a
communication line (see foct/(2) and termio(7)), or if the
number of bytes left in the file is less than nbyte bytes.
A value of 0 is returned when an end-of-file has been
reached.

When attempting to read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until
data is written to the file or the file is no longer
open for writing.

When attempting to read a file associated with a tty
that has no data currently available:

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until
data becomes available.

Read will fail if one or more of the following are true:

|[EBADF] Fildes is not a valid file descriptor open
for reading.

[EFAULT) Buf points outside the allocated address
space.

READ(2)

[EINTR| A signal was caught during the read
system call.

[EDEADLOCK] A side effect of a previous locking(2)
call.

RETURN VALUE
Upon successful completion a non-negative integer is
returned indicating the number of bytes actually read.
Otherwise, a -1 is returned and errno is set to indicate
the error.

SEE ALSO

creat(2), dup(2), fentl(2), ioctl(2), locking(2), open(2),
pipe(2), termio(7).

RECV(2N)

NAME
recv, recvfrom — receive a message {rom a socket

~=~ SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

recv(s, buf, len, flags)
int s;

char *buf;

int len, flags;

recvfrom(s, buf, len, flags, from, fromlen)
int s;

char *buf;

int len, flags;

struct sockaddr *from;

int *fromlen;

DESCRIPTION
Recv and recufrom are used to receive messages from a
socket.

The recv call may be used only on a connected socket
(see connect(2)), while recufrom may be used to receive

— data on a socket whether it is in a connected state or
not.

If from is non-zero, the source address of the message is
filled in. Fromlen is a value-result parameter, initialized
to the size of the buffer associated with from, and
modified on return to indicate the actual size of the
address stored there. The length of the message is
returned in ce. If a message is too long to fit in the
supplied buffer, excess bytes may be discarded depending
on the type of socket the message is received from; see
socket(2).

If no messages are available at the socket, the receive
call waits for a message to arrive.

The flags argument to a send call is formed by or’ing
one or more of the values:

#defineMSG_PEEK 0x1

/* peek at incoming message */
#defineMSG_OOB 0x2

/* process out-of-band data */

RETURN VALUE
These calls return the number of bytes received, or ~1 if
an error occurred.

ERRORS
The calls fail if:

[EBADF]

[ENOTSOCK]
(EINTR]

[EFAULT)

SEE ALSO

RECV(2N)

The argument & is an invalid
descriptor.

The argument & is not a socket.

The receive was interrupted by
delivery of a signal before any
data was available for the receive.

The data was specified to be
received into a non-existent or
protected part of the process
address space.

connect(2N), read(2), send(2), socket(2N).
CTIX Internetworking Manual.

NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

SEMCTL(2)

NAME
semct]l — semaphore control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#finclude <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, e¢md;
int semnum;
union semun {
int val;
struct semid_ds *buf;
ushort *array;
} arg;
DESCRIPTION
Semctl provides a variety of semaphore control
operations as specified by e¢md.

The following e¢mds are executed with respect to the
semaphore specified by semid and semnum:

GETVAL Return the value of semval (see tntro(2)).
{READ}

SETVAL Set the value of semval to arg.val.
{ALTER} When this cmd is successfully
executed, the semadj value corresponding
to the specified semaphore in all processes
is cleared.

GETPID Return the value of sempid. {READ}
GETNCNT Return the value of semncent. {READ}
GETZCNT Return the value of semzent. {READ}

The following ¢mds return and set, respectively, every
semval in the set of semaphores.

GETALL Place semvals into array pointed to by
arg.array. {READ}

SETALL Set semvals according to the array
pointed to by arg.array. {ALTER} When
this cmd is successfully executed the
semadj values corresponding to each
specified semaphore in all processes are
cleared.

The following emds are also available:

IPC_STAT Place the current value of each member
of the data structure associated with
semid into the structure pointed to by

-1-

IPC_SET

SEMCTL(2)

arg.buf. The contents of this structure
are defined in fntro(2). {READ}

Set the value of the following members of
the data structure associated with semid
to the corresponding value found in the
structure pointed to by arg.buf:
sem_perm.uid

sem_perm.gid

sem_perm.mode /* only low 9 bits */

This ¢cmd can only be executed
by a process that has an effective
user ID equal to either that of
super-user or to the value of
sem_perm.uid in the data
structure associated with semid.

IPC_RMID Remove the semaphore
identifier specified by
semud from the system and
destroy the set of
semaphores and data
structure associated with
it. This ¢cmd can only be
executed by a process that
has an effective user ID
equal to either that of
super-user or to the value
of sem_perm.uid in the
data structure associated
with semid.

Semctl will fail if one or more of the
following are true:

[EINVAL] Semid is not a valid
semaphore identifier.

[EINVAL] Semnum is less than zero
or greater than
sem_nsems.

[EINVAL] Cmd is not a valid
command.

[EACCES] Operation permission is

denied to the calling

process (see intro(2)).
[ERANGE] Cmd is SETVAL or

SETALL and the value

to which semval is to be
set is greater than the

SEMCTL(2)

[EPERM|

[EFAULT)

RETURN VALUE

system imposed
maximum.

Cmd is equal to
IPC_RMID or IPC_SET
and the effective user ID
of the calling process is
not equal to that of
super-user and it is not
equal to the value of
sem_perm.uid in the
data structure associated
with semid.

Arg.buf points to an
illegal address.

Upon successful completion, the value returned depends

on cmd as follows:
GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semnent.
The value of semzent.
A value of 0.

Otherwise, a value of -1 is returned and errno is set to

indicate the error.

SEE ALSO
intro(2), semget(2), semop(2).

SEMGET(2)

NAME
semget — get set of semaphores

SYNOPSIS
#include <sys/types.h>
#tinclude <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)

key_t key;

int nsems, semflg;
DESCRIPTION

Semget returns the semaphore identifier associated with
key.
A semaphore identifier and associated data structure and

set containing nsems semaphores (see intro(2)) are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore
identifier associated with it, and (semfly &
IPC_CREAT) is “‘true’.

Upon creation, the data structure associated with the
new semaphore identifier is initialized as follows:

Sem_perm.cuid, sem_perm.uid,
sem_perm.cgid, and sem_perm.gid are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.

The low-order 9 bits of sem_perm.mode are
set equal to the low-order 9 bits of semflg.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is
set equal to the current time.

Semget will fail if one or more of the following are true:

[EINVAL] Nsems is either less than or equal to
zero or greater than the system-imposed
limit.

[EACCES] A semaphore identifier exists for key,

but operation permission (see intro(2))
as specified by the low-order 9 bits of
semflg would not be granted.

[EINVAL] A semaphore identifier exists for key,
but the number of semaphores in the
set associated with it is less than nsems
and nsems 1s not equal to zero.

[ENOENT]

[ENOSPC]

[ENOSPC]

[EEXIST)

RETURN VALUE

Upon successful

SEMGET(2)

A semaphore identifier does not exist
for key and (semflg & IPC_CREAT) is
“false”.

A semaphore identifier is to be created
but the system-imposed limit on the
maximum number of allowed semaphore
identifiers system wide would be
exceeded.

A semaphore identifier is to be created
but the system-imposed limit on the
maximum number of allowed
semaphores system wide would be
exceeded.

A semaphore identifier exists for key
but &cmﬂg & IPC_CREAT) and
(semflg& IPC_EXCL)) is ““true”.

completion, a non-negative integer,

namely a semaphore identifier, is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the

error.
SEE ALSO

intro(2), semetl(2), semop(2).

NAME

SEMOP (2)

semop — semaphore operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

struct sembuf **sops;

int nsops;

DESCRIPTION

Semop 1s used to atomically perform an array of
semaphore operations on the set of semaphores
assoclated with the semaphore identifier specified by
semid. Sops is a pointer to the array of semaphore-
operation structures. Nsops is the number of such
structures in the array. The contents of each structure
includes the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_{lg; /* operation flags */

Each semaphore operation specified by sem_op is
performed on the corresponding semaphore specified by
semid and sem_num.

Sem_op specifies one of three semaphore operations as
follows:

If sem_op is a negative integer, one of the
following will occur: {ALTER}

If semval (see intro(2)) is greater than
or equal to the absolute value of
sem_op, the absolute value of sem_op
is subtracted from semval. Also, if
(sem_flg & SEM_UNDO) is ‘“‘true”, the
absolute value of sem_op is added to
the calling process’s semadj value (see
ezit(2)) for the specified semaphore.
All processes suspended waiting for
semval are rescheduled.

If semval is less than the absolute value
of sem_op and (sem_flg &
IPC_NOWAIT) is “true’”, semop will
return immediately.

If semval is less than the absolute value
of sem_op and (sem_flg &
IPC_NOWAIT) is “false”, semop will

-1-

SEMOP (2)

increment the semncnt associated with
the specified semaphore and suspend
execution of the calling process until
one of the following conditions occurs:

Semval becomes greater than or
equal to the absolute value of
sem_op. When this occurs, the
value of semncnt associated with the
specified semaphore is decremented,
the absolute value of sem_op is
subtracted from semval and, if
(sem_flg & SEM_UNDO) is “true”,
the absolute value of sem_op is
added to the calling process’s semad;
value for the specified semaphore,
and all the operations are tried
again.

The semid for which the calling
process is awaiting action is removed
from the system (see semctl(2)).
When this occurs, errno is set equal
to EIDRM, and a value of -1 is
returned.

The calling process receives a signal
that is to be caught. When this
occurs, the value of semncnt
associated with the specified
semaphore is decremented, and the
calling process resumes execution in
the manner prescribed in signal(2).
If sem_op is a positive integer, the value of
sem_op is added to semval and, if gsem_ﬂg &
SEM_UNDO) is “true”, the value of sem_op is
subtracted from the calling process’s semad;
value for the specified semaphore. {ALTER}

If sem_op is zero, one of the following will
occur: {READ}

If semval is zero, semop will return
immediately.

If semval is not equal to zero and
(sem_flg & IPC_NOWAIT} is ‘“‘true”,
semop will return immediately.

If semval is not equal to zero and

SEMOP (2)

(sem_flg & IPC_NOWAIT) is “false”,
semop will increment the semzcnt
assoclated with the specified semaphore
and suspend execution of the calling
process until one of the following
occurs:

Semval becomes zero, at which time
the value of semzcent associated with
the specified semaphore is
decremented.

The semid for which the calling
process is awaiting action is removed
from the system. When this occurs,
errno is set equal to EIDRM, and a
value of -1 is returned.

The calling process receives a signal
that is to be caught. When this
occurs, the value of semzcent
associated with the specified
semaphore is decremented, and the
calling process resumes execution in
the manner prescribed in signal(2).

Semop will fail if one or more of the following are true
for any of the semaphore operations specified by sops:

[EINVAL]

[EFBIG]

[E2BIG]
[EACCES]

[EAGAIN]

[ENOSPC]

[EINVAL)

Semid is not a valid semaphore
identifier.

Sem_num is less than zero or greater
than or equal to the number of
semaphores in the set associated with
semid.

Nsops is greater than the system-
imposed maximum.

Operation permission is denied to the
calling process (see intro(2)).

The operation would result in
suspension of the calling process but
(sem_flg & IPC_NOWAIT) is “‘true”’.

The limit on the number of individual
processes requesting an SEM_UNDO
would be exceeded.

The number of individual semaphores
for which the calling process requests a
SEM_UNDO would exceed the limit.

SEMOP (2)

[ERANGE] An operation would cause a semval to
overflow the system-imposed limit.

[ERANGE] An operation would cause a semad)
value to overflow the system-imposed
limit.

[EFAULT) Sops points to an illegal address.

Upon successful completion, the value of sempid for each
semaphore specified in the array pointed to by sops is set
equal to the process ID of the calling process.

RETURN VALUE
If semop returns due to the receipt of a signal, a value of
-1 is returned to the calling process and errno is set to
EINTR. If it returns due to the removal of a semid from
the system, a value of -1 is returned and errno is set to
EIDRM.

Upon successful completion, the value of semval at the
time of the call for the last operation in the array
pointed to by sops is returned. Otherwise, a value of -1
1s returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

SEND (2N)

NAME
send, sendto — send a message to a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

send(s, msg, len, flags)
int s;

char *msg;

int len, flags;

sendto(s, msg, len, flags, to, tolen)
int s;

char *msg;

int len, flags;

struct sockaddr *to;

int tolen;

DESCRIPTION
Send and sendto are used to transmit a message to
another socket (s). Send may be used only when the
socket is in a connected state, while sendto may be used
at any time.

The address of the target is given by to with tolen
specifying its size. The length of the message is given by
len. If the message is too long to pass atomically
through the wunderlying protocol, then the error
EMSGSIZE is returned, and the message 1is not
transmitted.

No indication of failure to deliver is implicit in a send.
Return values of -1 indicate some locally detected
errors.

If no message space is available at the socket to hold the
message to be transmitted, then send blocks.

The flags parameter may be set to SOF_OOB to send
out-of-band data on sockets which support this notion
(e.g., SOCK_STREAM).

RETURN VALUE

The call returns the number of characters sent, or -1 if
an error occurred.

ERRORS
[EBADF An invalid descriptor was
specified.
[ENOTSOCK] The argument s is not a socket.
[EFAULT)] An invalid user space address was

specified for a parameter.

SEND (2N)

[EMSGSIZE] The socket requires that message
be sent atomically, and the size of
the message to be sent made this
impossible.

SEE ALSO

recv(2N), socket(2N).

CTIX Internetworking Manual.
NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

NAME
setpgrp — set process group ID

SETPGRP(2)

SYNOPSIS

int setpgrp ()

DESCRIPTION

Setpgrp sets the process group ID of the calling process to
the process ID of the calling process and returns the

process group 1D.

RETURN VALUE

Setpgrp returns the value of the process group ID.

SEE ALSO

NOTE

exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

This function is incorrectly documented in the UNIX
System V Interface definition and other UNIX
documentation. The description here accurately
describes the system call.

—

NAME

SETUID(2)

setuid, setgid — set user and group IDs

SYNOPSIS

int setuid (uid)
int uid;
int setgid (gid)
int gid;

DESCRIPTION

Setuid (setgid) is used to set the real user (group) ID and
effective user (group) ID of the calling process.

If the effective user ID of the calling process is super-
user, the real user (group) ID and effective user (group)
ID are set to uid (gid).

If the effective user ID of the calling process is not
super-user, but its real user (group) ID is equal to uid
(g¢d), the effective user (group) ID is set to uid (gid).

If the effective user ID of the calling process is not
super-user, but the saved set-user (group) ID from ezec(2)
is equal to wuid (gid), the effective user (group) ID is set to
uid (gid).

Setuid (setgid) will fail if the real user (group) ID of the
calling process is not equal to utd (gid) and its effective
user ID is not super-user. [EPERM]

The wutd is out of range. |[EINVAL]

RETURN VALUE

Upon successful completion, a value of 0 is returned.
Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO

getuid(2), intro(2).

SHMCTL(2)

NAME
shmect]l — shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmetl (shmid, cmd, buf)
int shmid, emd;
struct shmid_ds *buf}

DESCRIPTION
Shmetl provides a variety of shared memory control

operations as specified by emd. The following emds are
available:

IPC_STAT Place the current value of each member of
the data structure associated with shmaid
into the structure pointed to by buf. The
contents of this structure are defined in
[EINVAL]| intro(2). {READ}

IPC_SET Set the value of the following members of
the data structure associated with shmid to
the corresponding value found in the
structure pointed to by buf:
shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9 bits */

This ¢md can only be executed by a process
that has an effective user ID equal to either
that of super-user or to the value of
shm_perm.uid in the data structure
associated with shmid.

SHM_LOCK Lock the shared memory segment
specified by shmid in memory. This
¢emd can only be executed by a process
that has an effective user ID equal to
super user.

SHM_UNLOCK
Unlock the shared memory segment
specified by shmid. This ¢md can only
be executed by a process that has an
effective user ID equal to super user.

IPC_RMID Remove the shared memory identifier
specified by shmid from the system and
destroy the shared memory segment
and data structure associated with it.
This e¢md can only be executed by a

-1-

SHMCTL (2)

process that has an effective user ID
equal to either that of super-user or to
the value of shm_perm.uid in the
data structure associated with shmid.

Shmetl will fail if one or more of the following are true:

[EINVAL]

[EINVAL|
[EACCES]

[EPERM|

[EPERM|

[EINVAL]

[EFAULT]
RETURN VALUE

Shmid is not a valid shared memory
identifier.

Cmd is not a valid command.

Cmd is equal to IPC_STAT and
{READ} operation permission is denied
to the calling process (see intro(2)).

Cmd is equal to IPC_RMID or
IPC_SET and the effective user ID of
the calling process is not equal to that
of super user and it is not equal to the
value of shm_perm.uid in the data
structure associated with shmid.

Cmd is equal to SHM_LOCK or
SHM_UNLOCK and the effective user
ID of the calling process is not equal to
that of super user.

Cmd is equal to SHM_UNLOCK and
the shared-memory segment specified
by shmid is not locked in memory.

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned.
Otherwise, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO

intro(2), shmget(2), shmop(2).

SHMGET(2)

NAME
shmget — get shared memory segment

SYNOPSIS
#finclude <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

DESCRIPTION

Shmget returns the shared memory identifier associated
with key.

A shared memory identifier and associated data structure
and shared memory segment of size size bytes (see
intro(2)) are created for key if one of the following are
true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory
identifier associated with it, and (shmfly &
IPC_CREAT) is “‘true”.

Upon creation, the data structure associated with the
new shared memory identifier is initialized as follows:

Shm_perm.cuid, shm_perm.uid,
shm_perm.cgid, and shm_perm.gid are set
equal to the effective user ID and effective group
ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are
set equal to the low-order 9 bits of shmfly.
Shm_segsz is set equal to the value of size.
Shm_lpid, shm_nattch, shm_atime, and
shm_dtime are set equal to 0.

Shm_ctime is set equal to the current time.
Shmget will fail if one or more of the following are true:

[EINVAL] Size is less than the system-imposed
minimum or greater than the system-
imposed maximum.

[EACCES] A shared memory identifier exists for
key but operation permission (see
intro(2)) as specified by the low-order 9
bits of shmflg would not be granted.

[EINVAL] A shared memory identifier exists for

key but the size of the segment
associated with it i1s less than size and

-1-

SHMGET (2)

s1ze is not equal to zero.

[ENOENT] A shared memory identifier does not
exist for key and (shmfly &
IPC_CREAT) is “false”.

[ENOSPC] A shared memory identifier is to be
created but the system-imposed limit on
the maximum number of allowed shared
memory identifiers system wide would
be exceeded.

[ENOMEM] A shared memory identifier and
associated shared memory segment are
to be created but the amount of
available physical memory is not
sufficient to fill the request.

[EEXIST] A shared memory identifier exists for
key but ((shmflg & IPC_CREAT) and
(shmflg & IPC_EXCL)) is “‘true”.
RETURN VALUE
Upon successful completion, a non-negative integer,
namely a shared memory identifier is returned.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
intro(2), shmetl(2), shmop(2).

SHMOP (2)

NAME
shmop ~ shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;

char *shmaddr

int shmflg;

int shmdt (shmaddr)
char *shmaddr

DESCRIPTION
Shmat attaches the shared memory segment associated
with the shared memory identifier specified by shmid to
the data segment of the calling process. The segment is
attached at the address specified by one of the following
criteria:

If shmaddr is equal to zero, the segment is
attached at the first available address as selected
by the system.

If shmaddr is not equal to zero and (shmfly &
SHM_RND) is “true”, the segment is attached
at the address given by (shmaddr - (shmaddr
modulus SHMLBA)).

If shmaddr is not equal to zero and (shmfly &
SHM_RND) is “false”, the segment is attached
at the address given by shmaddr.

The segment is attached for reading if (shmfly &
SHM_RDONLY) is ‘“true’” {READ}, otherwise it is
attached for reading and writing {READ/WRITE}.

Shmat will fail and not attach the shared memory
segment if one or more of the following are true:

[EINVAL] Shmid is not a valid shared memory
identifier.

[EACCES] Operation permission is denied to the
calling process (see intro(2)).

[ENOMEM] The available data space is not large

enough to accommodate the shared
memory segment.

[EINVAL] Shmaddr is not equal to zero, and the
value of (shmaddr - (shmaddr modulus
SHMLBA)) is an illegal address.

[EINVAL)|

[EMFILE]

[EINVAL)|

[EINVAL)|

RETURN VALUES

SHMOP (2)

Shmaddr is not equal to zero, (shmflg &
SHM_RND) is “false”, and the value of
shmaddr is an illegal address.

The number of shared memory
segments attached to the calling process
would exceed the system-imposed limit.

Shmdt detaches from the calling
process’s data segment the shared
memory segment located at the address
specified by shmaddr.

Shmdt will fail and not detach the
shared memory segment if shmaddr is
not the data segment start address of a
shared memory segment.

Upon successful completion, the return value is as

follows:

Shmat returns the data segment start address of
the attached shared memory segment.

Shmdt returns a value of 0.

Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO

exec(2), exit(2), fork(2), intro(2), shmetl(2), shmget(2).

SHUTDOWN (2N)

NAME
shutdown — shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int 8, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex
connection on the socket associated with s to be shut
down. If how is O, then further receives will be
disallowed. If how is 1, then further sends will be
disallowed. If how is 2, then further sends and receives
will be disallowed.

DIAGNOSTICS

A 0 is returned if the call succeeds, ~1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK]| Sis a file, not a socket.
[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2N), socket(2N).
CTIX Internetworking Manual.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

NOTES

SSIGNAL(3C)

There are some additional signals with numbers outside
the range 1 through 15 which are used by the Standard
C Library to indicate error conditions. Thus, some
signal numbers outside the range 1 through 15 are legal,
although their use may interfere with the operation of
the Standard C Library.

NAME

STDIO(3S)

stdio — standard buffered input/output package

SYNOPSIS

#include <stdio.h>
FILE #*stdin, *stdout, *stderr;

DESCRIPTION

The functions described in the entries of sub-class 3S of
this manual constitute an efficient, user-level 1/0
buffering scheme. The in-line macros getc(3S) and
pute(3S) handle characters quickly. The macros getchar
and putchar, and the higher-level routines fgete, fgets,
forintf, fpute, fputs, fread, fscanf, fwrite, gets, getw,
printf, puts, putw, and scanf all use or act as if they use
getec and putc; they can be freely intermixed.

A file with associated buffering is called a stream and is
declared to be a pointer to a defined type FILE.
Fopen(3S) creates certain descriptive data for a stream
and returns a pointer to designate the stream in all
further transactions. Normally, there are three open
streams with constant pointers declared in the
<stdio.h> header file and associated with the standard
open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-1) is returned upon end-of-
file or error by most integer functions that deal with
streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the
buffers used by the particular implementation.

Any program that uses this package must include the
header file of pertinent macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of
sub-class 3S of this manual are declared in that header
file and need no further declaration. The constants and
the following “functions” are implemented as macros
(redeclaration of these names is perilous): getc, getchar,
putc, putchar, ferror, feof, clearerr, and fileno.

SEE ALSO

open(2), close(2), lseek(2), pipe(2), readg write(2),
ctermid(3S), cuserid(3S), fclose(3S), ferror(3S), fopen 39),
fread(3S), fseek(3S), getc(3S) gets(3S popen 39),

-1-

STDIO(3S)

printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S),
system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S).

A~ DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder,
possibly including program termination. Individual
function descriptions describe the possible error
conditions.

STDIPC(3C)

NAME
ftok — standard interprocess communication package

SYNOPSIS
#finclude <sys/types.h>
#include <sys/ipc.h>

key_t ftok(path, id)
char *path;
char id;

DESCRIPTION

All interprocess communication facilities require the user
to supply a key to be used by the msgget(2), semget(2),
and shmget(2) system calls to obtain interprocess
communication identifiers. One suggested method for
forming a key is to use the ftok subroutine described
below. Another way to compose keys is to include the
project ID in the most significant byte and to use the
remaining portion as a sequence number. There are
many other ways to form keys, but it is necessary for
each system to define standards for forming them. If
some standard is not adhered to, it will be possible for
unrelated processes to unintentionally interfere with each
other’s operation. Therefore, it is strongly suggested
that the most significant byte of a key in some sense
refer to a project so that keys do not conflict across a
given system.

Ftok returns a key based on path and id that is usable in
subsequent msgget, semget, and shmget system calls.
Path must be the path name of an existing file that is
accessible to the process. [d is a character which
uniquely identifies a project. Note that ftok will return
the same key for linked files when called with the same
td and that it will return different keys when called with
the same file name but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).
DIAGNOSTICS

Ftok returns (key_t) —1 if path does not exist or if it is
not accessible to the process.

WARNING
If the file whose path is passed to ftok is removed when
keys still refer to the file, future calls to fiok with the
same path and td will return an error. If the same file is
recreated, then ftok is likely to return a different key
than it did the original time it was called.

STRING (3C)

NAME
streat, strncat, stremp, strnemp, strepy, strnepy, strlen,

strchr, strrchr, strpbrk, strspn, strespn, strtok — string
operations

SYNOPSIS
#include <string.h>

char *strcat (sl, s2)
char *sl, *s2;

char #*strncat (sl, s2, n)
char *sl1, *s2;

int n;

int stremp (sl, s2)
char *sl, $s82;

int strncmp (sl, s2, n)
char *s1, *s82;
int n;

char *strcpy (sl, s2)
char *sl1, *s2;

char *strncpy (sl, s2, n)
char *s1, *s2;

int n;

int strlen (s)

char *s;

char *strchr (s, c)

char *s;

int c;

char #strrchr (s, c)
char *s;
int ¢;
char sstrpbrk (sl, s2)
char *sl, *s82;
int strspn (s1, s2)
char *sl, *s2;
int strespn (s1, s2)
char *sl1, *s82;
char *strtok (sl, s2)
char *s1, *s2;
DESCRIPTION
The arguments s1, s2 and s point to strings (arrays of
characters terminated by a null character). The
functions strcat, strncat, strcpy and strnepy all alter s1.

These functions do not check for overflow of the array
pointed to by s1.

NOTE

STRING (3C)

Streat appends a copy of string 82 to the end of string
s1. Strncat appends at most n characters. Each returns
a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer
less than, equal to, or greater than 0, according as s! is
lexicographically less than, equal to, or greater than s2.
Strnemp makes the same comparison but looks at at
most n characters.

Strepy copies string 82 to sl, stopping after the null
character has been copied. Strnepy copies exactly n
characters, truncating 82 or adding null characters to s1
if necessary. The result will not be null-terminated if
the length of 82 is n or more. Each function returns sI.

Strlen returns the number of characters in s, not
including the terminating null character.

Strchr (strrchr) returns a pointer to the first (last)
occurrence of character ¢ in string s, or a NULL pointer
if ¢ does not occur in the string. The null character
terminating a string is considered to be part of the
string.

Strpbrk returns a pointer to the first occurrence in string
81 of any character from string 82, or a NULL pointer if
no character from 82 exists in s1.

Strspn (strcspn) returns the length of the initial segment
of string s! which consists entirely of characters from
(not from) string 82.

Strtok considers the string 8! to consist of a sequence of
zero or more text tokens separated by spans of one or
more characters from the separator string 82. The first
call (with pointer s specified) returns a pointer to the
first character of the first token, and will have written a
null character into 8! immediately following the
returned token. The function keeps track of its position
in the string between separate calls, so that subsequent
calls (which must be made with the first argument a
NULL pointer) will work through the string sf
immediately following that token. In this way
subsequent calls will work through the string sI until no
tokens remain. The separator string 82 may be different
from call to call. When no token remains in 8/, a NULL
pointer is returned.

For user convenience, all these functions are declared in
the optional < string.h> header file.

BUGS

STRING (3C)

Stremp and strnemp use native character comparison,
which is signed on Convergent Technologies 63000-
family processors. This means that characters are 8-bit
signed values; all ASCII characters have values of at
least 0; non-ASCII are negative. On some machines, all
characters are positive. Thus programs that only
compare ASCII values are portable; programs that
compare ASCII with non-ASCII values are not.

Character movement is performed differently in different
implementations. Thus, overlapping moves may yield
surprises.

STRTOD (3C)

NAME
strtod, atof — convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, **ptr;

double atof (str)
char *str;

DESCRIPTION
Strtod returns as a double-precision floating-point
number the value represented by the character string
pointed to by str. The string is scanned up to the first
unrecognized character.

Strtod recognizes an optional string of ‘“‘white-space”
characters (as defined by isspace in ctype(3C)), then an
optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E
followed by an optional sign or space, followed by an
integer.

If the value of ptr is not (char **)NULL, a pointer to the
character terminating the scan is returned in the location
pointed to by ptr. If no number can be formed, *ptr is
set to str, and zero is returned.

Atof(str) is equivalent to strtod(str, (char **)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, +HUGE is
returned (according to the sign of the value), and errno
is set to ERANGE.
If the correct value would cause underflow, zero is
returned and errno is set to ERANGE.

NAME

STRTOL(3C)

strtol, atol, atol — convert string to integer

— SYNOPSIS

long strtol (str, ptr, base)
char *str, **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION

Strtol returns as a long integer the value represented by
the character string pointed to by str. The string is
scanned up to the first character inconsistent with the
base. Leading ‘“‘white-space” characters (as defined by
isspace in ctype(3C)) are ignored.

If the value of ptr is not (char **)NULL, a pointer to the
character terminating the scan is returned in the location
pointed to by ptr. If no integer can be formed, that
location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as
the base for conversion. After an optional leading sign,
leading zeros are ignored, and “Ox” or “0X” is ignored if
base is 16.

If base is zero, the string itself determines the base
thusly: After an optional leading sign a leading zero
indicates octal conversion, and a leading ‘“0x’’ or “0X”
hexadecimal conversion. Otherwise, dectmal conversion
is used.

Truncation from long to int can, of course, take place
upon assignment or by an explicit cast.

Atol(str) is equivalent to atrtol(str, (char **)NULL, 10).
Atoi(str) is equivalent to (int) strtolfstr, (char **x)NULL,
10).

SEE ALSO

BUGS

ctype(3C), scanf(3S), strtod(3C).

Overflow conditions are ignored.

SWAB(3C)

NAME
swab — swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the
array pointed to by to, exchanging adjacent even and
odd bytes. It is useful for carrying binary data between
PDP-11s and other machines. Nbytes should be even and
non-negative. If nbytes is odd and positive swab uses
nbytes—1 instead. If nbytes is negative, swab does
nothing.

SYSTEM(3S)

NAME
system - issue a shell command

SYNOPSIS
#include <stdio.h>

int system (string)
char #*string;

DESCRIPTION
System causes the string to be given to sh(1l) as input,
as if the string had been typed as a command at a
terminal. The current process waits until the shell has
completed, then returns the exit status of the shell.

FILES
/bin/sh
SEE ALSO
sh(1), exec(2).
DIAGNOSTICS
System forks to create a child process that in turn exec’s

/bin/sh in order to execute string. If the fork or exec
fails, system returns a negative value and sets errno.

NAME

TERMCAP (3X)

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs -
terminal independent operations

SYNOPSIS

char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(cmstr, destcol, destline)
char *cmstr;

tputs(cp, affent, outc)
register char *cp;

int affent;

int (*outc)();

DESCRIPTION

These functions extract and use information from
terminal descriptions that follow the conventions in
termcap(4). The functions only do basic screen
manipulation: they find and output specified terminal
function strings and interpret the cm string. Curses(3X)
describes a screen updating package built on termcap.

Tygetent finds and copies a terminal description. Name is
the name of the description; bp points to a buffer to hold
the description. Tgetent passes bp to the other termcap
functions; the buffer must remain allocated until the
program 1s done with the termeap functions.

Tgetent uses the TERM and TERMCAP environment
variables to locate the terminal description.

. If TERMCAP isn’t set or is empty, tgetent
searches for name in /ete/termeap.
. If TERMCAP contains the full pathname of a

file i}any string that begins with /), tgetent
searches for name in that file.

TERMCAP (3X)

. If TERMCAP contains any string that does
not begin with / and TERM is not set or
matches name, tgetent copies the TERMCAP

string.

. If TERMCAP contains any string that does
not begin with / and TERM does not match
name, tgetent searches for name in
/etc/termeap.

Tgetent returns —1 if it couldn’t open the terminal
capability file, O if it couldn’t find an entry for name,
and 1 upon success.

Tgetnum returns the value of the numeric capability
whose name is td. It returns —1 if the terminal lacks the
specified capability or it is not a numeric capability.

Tgetflag returns 1 if the terminal has boolean capability
whose name is id, 0 if it does not or it is not a boolean
capability.

Tgetstr copies and interprets the value of the string
capability named by id. Tygetstr expands instances in
the string of \ and ". It leaves the expanded string in
the buffer indirectly pointed to by area and leaves the
buffer’s direct pointer pointing to the end of the
expanded string; for example,

tgetstr(”cl”, &ptr);

where pir is a character pointer -- not an array name!
Tgetstr returns a (direct) pointer to the beginning of the
string.

Tgoto interprets the % escapes in a em string. It
returns cmstr with the % sequences changed to the
position indicated by destcol and destline. This function
must have the external variables BC and UP set to the
values of the be and up capabilities; if the terminal
lacks the capability, set the external variable to null. If
tgoto can’t interpret all the % sequences in cm, it
returns ‘‘OOPS”

Tgoto avoids producing characters that might be
misinterpreted by the terminal interface. If expanding a
% sequence would produce a null, control-d, or null, the
function will, if possible, send the cursor to the next line
or column and use BC or UP to move to the correct
location. Note that tgoto does not avoid producing tabs;
a program must turn off the TAB3 feature of the
terminal interface (termio(7)). This is a good idea
anyway: some terminals use the tab character as a

- 2.

TERMCAP (3X)

nondestructive space.

Tputs directs the output of a string returned by tgetsir
or tgoto. This function must have the external variable
PC set to the value of the pe capability; if the terminal
lacks the capability, set the external variable to null.
Tputs interprets any delay at the beginning of the string.
Cp is the string to be output; affent is the number of
lines affected by the action (1 if “number of lines
affected”” doesn’t mean anything); and outc points to a
function that takes a single char argument and outputs
it, such as putchar.

FILES
/usr/lib/libtermcap.a library
/etc/termeap data base
SEE ALSO

ex(1), curses(3), termcap(5)

TMPFILE (35)

NAME
tmpfile ~ create a temporary file

SYNOPSIS
#include <stdio.h>
FILE *tmpfile ()

DESCRIPTION
Tmpfile creates a temporary file using a name generated
by tmpnam(3S‘), and returns a corresponding FILE
pointer. If the file cannot be opened, an error message is
printed using perror(3C), and a NULL pointer is
returned. The file will automatically be deleted when
the process using it terminates. The file is opened for
update ("w+").

SEE ALSO

creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C),
tmpnam(3S).

NAME

TMPNAM (3S)

tmpnam, tempnam — create a name for a temporary file

SYNOPSIS

##include <stdio.h>
char *tmpnam (s)

char *s;

char *tempnam (dir, pfx)
char =*dir, *pfx;

DESCRIPTION

These functions generate file names that can safely be
used for a temporary file.

Tmpnam always generates a file name using the path-
prefix defined as P_tmpdir in the <stdio.h> header
file. If 8 is NULL, tmpnam leaves its result in an internal
static area and returns a pointer to that area. The next
call to tmpnam will destroy the contents of the area. If
8 is not NULL, it is assumed to be the address of an
array of at least L_tmpnam bytes, where L_tmpnam
is a constant defined in < stdio.h>; tmpnam places its
result in that array and returns s.

Tempnam allows the user to control the choice of a
directory. The argument dir points to the name of the
directory in which the file is to be created. If dir is
NULL or points to a string which is not a name for an
appropriate directory, the path-prefix defined as
P_tmpdir in the <stdio.h> header file is used. If that
directory is not accessible, /tmp will be used as a last
resort. This entire sequence can be up-staged by
providing an environment variable TMPDIR in the
user’s environment, whose value is the name of the
desired temporary-file directory.

Many applications prefer their temporary files to have
certain favorite initial letter sequences in their names.
Use the pfr argument for this. This argument may be
NULL or point to a string of up to five characters to be
used as the first few characters of the temporary-file
name.

Tempnam uses malloc(3C) to get space for the
constructed file name, and returns a pointer to this area.
Thus, any pointer value returned from tempnam may
serve as an argument to free (see malloc(3C)). If
tempnam cannot return the expected result for any
reason, i.e. malloc(302 failed, or none of the above
mentioned attempts to find an appropriate directory was
successful, a NULL pointer will be returned.

NOTES

TMPNAM (35)

These functions generate a different file name each time
they are called.

Files created using these functions and either fopen(3S)
or creat(2) are temporary only in the sense that they
reside in a directory intended for temporary use, and
their names are unique. It is the user’s responsibility to
use unlink (2) to remove the file when its use is ended.

SEE ALSO

BUGS

creatﬁ2), unlink(2), fopen(3S), malloc(3C), mktemp(3C),
tmpfile(3S).

If called more than 17,576 times in a single process, these
functions will start recycling previously used names.
Between the time a file name is created and the file is
opened, it is possible for some other process to create a
file with the same name. This can never happen if that
other process is using these functions or mktemp, and the
file names are chosen so as to render duplication by
other means unlikely.

TRIG (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric
functions

SYNOPSIS

#include <math.h>
double sin (x)

double x;
double cos (x)
double x;
double tan (x)
double x;
double asin (x)
double x;
double acos (x)
double x;
double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION

Sin, cos and tan return respectively the sine, cosine and
tangent of their argument, z, measured in radians.

Asin returns the arcsine of z, in the range - 7/2 to /2.
Acos returns the arccosine of z, in the range 0 to .

Atan returns the arctangent of z, in the range —7/2 to
/2.
Atan?2 returns the arctangent of y/z, in the range — to

m, using the signs of both arguments to determine the
quadrant of the return value.

DIAGNOSTICS

Sin, cos, and tan lose accuracy when their argument is
far from zero. For arguments sufficiently large, these
functions return zero when there would otherwise be a
complete loss of significance. In this case a message
indicating TLOSS error is printed on the standard error
output. For less extreme arguments causing partial loss
of significance, a PLOSS error is generated but no
message is printed. In both cases, errno is set to
ERANGE.

If the magnitude of the argument of astn or acos is
greater than one, or if both arguments of atan2 are zero,
zero is returned and errno is set to EDOM. In addition,
a message indicating DOMAIN error is printed on the

-1-

TRIG (3M)

standard error output.

These error-handling procedures may be changed with
the function matherr(3M).

SEE ALSO
matherr(3M).

TSEARCH(3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search
trees

SYNOPSIS
#include <search.h>

char s*tsearch ((char *) key, (char #*#) rootp,
compar)
int (*compar)();

char #*tfind ((char *) key, (char =**) rootp,
compar
int (*compar)();

char *tdelete ((char #*) key, (char #**) rootp,
compar)
int (*compar)();

void twalk ((char *) root, action)
void (*action)();

DESCRIPTION

Tsearch, tfind, tdelete, and twalk are routines for
manipulating binary search trees. They are generalized
from Knuth (6.2.2) Algorithms T and D. Al
comparisons are done with a user-supplied routine. This
routine is called with two arguments, the pointers to the
elements being compared. It returns an integer less
than, equal to, or greater than 0, according to whether
the first argument is to be considered less than, equal to
or greater than the second argument. The comparison
function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the
values being compared.

Tsearch is used to build and access the tree. Key is a
pointer to a datum to be accessed or stored. If thereis a
datum in the tree equal to *key (the value pointed to by
key), a pointer to this found datum is returned.
Otherwise, *key is inserted, and a pointer to it returned.
Only pointers are copied, so the calling routine must
store the data. Rootp points to a variable that points
to the root of the tree. A NULL value for the variable
pointed to by rootp denotes an empty tree; in this case,
the variable will be set to point to the datum which will
be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree,
returning a pointer to it if found. However, if it is not
found, tfind will return a NULL pointer. The arguments
for tfind are the same as for tsearch.

TSEARCH (3C)

Tdelete deletes a node from a binary search tree. The
arguments are the same as for tsearch. The variable
pointed to by rootp will be changed if the deleted node
was the root of the tree. Tdelete returns a pointer to the

parent of the deleted node, or a NULL pointer if the node
is not found.

Twalk traverses a binary search tree. Root is the root
of the tree to be traversed. (Any node in a tree may be
used as the root for a walk below that node.) Action is
the name of a routine to be invoked at each node. This
routine is, in turn, called with three arguments. The
first argument is the address of the node being visited.
The second argument is a value from an enumeration
data type typedef enum { preorder, postorder, endorder,
leaf } VISIT,; (defined in the <search.h>> header file),
depending on whether this is the first, second or third
time that the node has been visited (during a depth-first,
left-to-right traversal of the tree), or whether the node is
a leaf. The third argument is the level of the node in
the tree, with the root being level zero.

The pointers to the key and the root of the tree should
be of type pointer-to-element, and cast to type pointer-
to-character. Similarly, although declared as type
pointer-to-character, the value returned should be cast
into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures
containing a pointer to each string and a count of its
length. It then walks the tree, printing out the stored
strings and their lengths in alphabetical order.

#include <search.h>
#include <stdio.h>

struct node {
/* pointers to these are stored in the tree */
char *string;

int length;
b
char string_space|10000]; /* space to store strings */
struct node nodes[500]; /* nodes to store */

struct node *root = NULL;
/# this points to the root »/

main()
char #*strptr = string_space;
struct node *nodeptr = nodes;

-9

TSEARCH(3C)

void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 500) {
/* set node */
nodeptr- >string = strptr;
nodeptr- >length = strlen(strptr);
/* put node into the tree %/
(void) tsearch((char *)nodeptr, &root,
node_compare);

/* adjust pointers,

so we don't overwrite tree */
strptr += nodeptr- >length + 1;
nodeptr++;

twalk(root, print_node);

}

/t
This routine compares two nodes, based on an
alphabetical ordering of the string field.

*/

int

node_compare(nodel, node2)

struct node *nodel, *node2;

t return stremp(nodel->string, node2- >string);
}
/*
This routine prints out a node, the first time
twalk encounters it.
*/
void

print_node(node, order, level)
struct node **node;

VISIT order;

int level;

{

if (order == preorder || order == leaf) {
(void)printf("string = %20s, length = %d\n”,
(*#node)- >string, (*node)->length);

}
SEE ALSO
bsearch(3C), hsearch(3C), Isearch(3C).

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not
enough space available to create a new node.
A NULL pointer is returned by tsearch, tfind and tdelete

- 3.

TSEARCH (3C)

if rootp is NULL on entry.

If the datum is found, both tsearch and tfind return a
pointer to it. If not, tfind returns NULL, and tsearch
returns a pointer to the inserted item.

WARNINGS

BUGS

The root argument to twalk is one level of indirection
less than the rootp arguments to tsearch and tdelete.
There are two nomenclatures used to refer to the order
in which tree nodes are visited. Tsearch uses preorder,
postorder and endorder to respectively refer to visting a
node before any of its children, after its left child and
before its right, and after both its children. The
alternate nomenclature uses preorder, inorder and
postorder to refer to the same visits, which could result
in some confusion over the meaning of postorder.

If the calling function alters the pointer to the root,
results are unpredictable.

TTYNAME (3C)

NAME
ttyname, isatty — find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION
Ttyname returns a pointer to a string containing the
null-terminated path name of the terminal device
associated with file descriptor fildes.

Isatty returns 1 if fildes is associated with a terminal
device, 0 otherwise.

FILES
/dev/*

DIAGNOSTICS
Ttyname returns a NULL pointer if fildes does not
describe a terminal device in directory /dev.

BUGS

The return value points to static data whose content is
overwritten by each call.

TTYSLOT(3C)

NAME
ttyslot — find the slot in the utmp file of the current
user

SYNOPSIS
int ttyslot ()

DESCRIPTION
Ttyslot returns the index of the current user’s entry in
the /etc/utmp file. This is accomplished by actually
scanning the file /etc/inittab for the name of the
terminal associated with the standard input, the
standard output, or the error output (0, 1 or 2).

FILES
/etc/inittab
/ete/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS

A value of 0 is returned if an error was encountered
while searching for the terminal name or if none of the
above file descriptors is associated with a terminal
device.

UNGETC(3S)

NAME
ungetc — push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc (¢, stream)
int ¢;
FILE #*stream;

DESCRIPTION
Ungete inserts the character ¢ into the buffer associated
with an input stream. That character, ¢, will be
returned by the next getc(8S) call on that stream.
Ungete returns ¢, and leaves the file sfream unchanged.

One character of pushback is guaranteed, provided
something has already been read from the stream and
the stream is actually buffered. In the case that stream
is stdin, one character may be pushed back onto the
buffer without a previous read statement.

If ¢ equals EOF, ungetc does nothing to the buffer and
returns EOF.

Fseek(3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it cannot insert the character.

VPRINTF (3S)

NAME
vprintf, viprintf, vsprintf — print formatted output of a
varargs argument list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *format;
va_list ap;

int vfprintf (stream, format, ap)
FILE #*stream;

char *format;

va_list ap;

int vsprintf (s, format, ap)
char *s, *format;
va_list ap;

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf,
fprintf, and sprintf respectively, except that instead of
being called with a variable number of arguments, they
are called with an argument list as defined by
varargs(5).

EXAMPLE

The following demonstrates how yfprintf could be used to
write an error routine.

#include <stdio.h>
#include <varargs.h>

/t

* error should be called like

* error(function_name, format, argl, arg2...);
*/

/*VARARGSO0*/

void

error(va_alist)
/* Note that the function_name and format arguments
* cannot be separately declared because of the
* definition of varargs.
*/
va_decl
{
va_list args;
char *fmt;

VPRINTF (35)

va_start{args);

/* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char «));
fmt = va_arg(args, char *);

/* print out remainder of message */
(void)vfprintf(stderr, fmt, args);
va_end{args);

(void)abort();

}

SEE ALSO
printf(3S), varargs(5).

_—

NAME

INTRO (4)

intro — introduction to file formats

DESCRIPTION

This section outlines the formats of various files. The C
struct declarations for the file formats are given where
applicable. Usually, these structures can be found in the
directories /usr/include or /usr/include/sys.

Entries suffixed by (4N) describe the configuration files
used with the CTIX networking packages. These files

can be manipulated directly (using a text editor) or with
netman(1NM).

SEE ALSO

Internet Protocol Transition Workbook. Menlo Park, CA:
Network Information Center, SRI International, 1982.

CTIX Internetworking Manual.

NAME

A.OUT(4)

a.out — common assembler and link editor output

SYNOPSIS

#include <a.out.h>

DESCRIPTION

The file name a.out is the output file from the
assembler as(1) and the link editor /d(1). Both programs
will make a.out executable if there were no errors in
assembling or linking and no unresolved external
references.

A common object file consists of a file header, a CTIX
system header, a table of section headers, relocation
information, (optional) line numbers, a symbol table, and
a string table. The order is given below.

File header.
CTIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

ééction n line numbers.
Symbol table.
String table.

The last three parts (line numbers, symbol table and
string table) may be missing if the program was linked
with the —s option of /d(1) or if they were removed by
strip(1). Also note that the relocation information will
be absent if there were no unresolved external references
after linking. The string table exists only if the symbol
table contains symbols with names longer than eight
characters.

The sizes of each section (contained in the header,
discussed below) are in bytes and are even.

When an a.out file is loaded into memory for execution,
three logical segments are set up: the text segment, the
data segment (initialized data followed by uninitialized,
the latter actually being initialized to all 0’s), and a
stack. The text segment begins at location 0x0000 in the

-1-

A.OUT(4)

core image. The header is never loaded, except for
magic 0413 files created with the —F option of {d(1). If
the magic number (the first field in the operating system
header) is 407 (octal), it indicates that the text segment
is not to be write-protected or shared, so the data
segment will be contiguous with the text segment. If the
magic number is 410 (octal), the data segment and the
text segment are not writable by the program; if other
processes are executing the same a.out file, the processes
will share a single text segment. Magic number 413
(octal) is the same as 410 {octal), except that 413 (octal)
permits demand paging. Both the —z and —F options of
the loader ld(1) create a.out files with magic numbers
0413. If the —z option is used, both the text and data
sections of the file are on 1024-byte boundaries. If the
—F option is used, the text and data sections of the file
are contiguous. Loading a single 4096-byte page into
memory requires 4 transfers of 1024 bytes each for —g,
and typically one transfer of 4096 bytes for —F. Thus
a.out files created with —F can load faster and require
less disk space.

The stack begins at the end of memory and grows
towards lower addresses. The stack is automatically
extended as required. The data segment is extended
only as requested by the brk(2) system call.

The value of a word in the text or data portions that is
not a reference to an undefined external symbol is
exactly the value that will appear in memory when the
file is executed. If a word in the text involves a reference
to an undefined external symbol, the storage class of the
symbol-table entry for that word will be marked as an
“external symbol”, and the section number will be set to
0. When the file is processed by the link editor and the
external symbol becomes defined, the value of the
symbol will be added to the word in the file.

File Header
The format of the filehdr header is

A.OUT(4)

struct filehdr

{

unsigned short f_magic; /* magic number */
unsigned short f_nscns; /* number of sections */
long f_timdat; /% time and date stamp */
long f_symptr; /# file ptr to symtab */
long {_nsyms; /* # symtab entries */
unsigned short f_opthdr; /* sizeof(opt hdr) */
unsigned short f_flags; /% fags */

b
CTIX System Header
The format of the CTIX system header is

typedef struct aouthdr

{

short magic; /% magic number */

short vstamp; /# version stamp */

long tsize; /* text size in bytes, padded */
long dsize; /# initialized data (.data) */
long bsize; /#* uninitialized data (.bss) */
long entry; /* entry point */

long text_start; /* base of text used for this file */
long data_start; /# base of data used for this file */
} AOUTHDR,;

Section Header
The format of the section header is

struct senhdr

{

char s_name[SYMNMLEN]|;/* section name */
long s_paddr; /* physical address */

long s_vaddr; /* virtual address */

long s_size; /* section size */

long s_scnptr; /* file ptr to raw data */
long s_relptr; /* file ptr to relocation */
long s_lnnoptr; /* file ptr to line numbers */
unsigned short s_nreloc; /* # reloc entries */
unsigned short s_nlnno; /* # line number entries */
long s_flags; /* flags */

A.OUT(4)

Relocation
Object files have one relocation entry for each
relocatable reference in the text or data. If relocation
information is present, it will be in the following format:

struct reloe

{
long r_vaddr;/s (virtual) address of reference ¢/
long r_symndx; /# index into symbol table »/
short r_type; /s relocation type ¢/

b

The start of the relocation information is s_relptr from
the section header. If there is no relocation information,
s_relptris 0.

Symbol Table
The format of each symbol in the the symbol table is

#define SYMNMLEN 8
#define FILNMLEN 14

#define SYMESZ 18 /* the size of a SYMENT */
struct syment
{
union /* get a symbol name */
{
char _n_name[SYMNMLEN]; /* name of symbol */
struct
{
long _N_zeroes; /* == OL if in string table */
long _n_offset; /* location in string table */
} _n_n;
char *_n_nptr(2]; /* allows overlaying */
}on;
unsigned long n_value; /* value of symbol »/
short n_scnum; /# section number »/
unsigned short n_type; /# type and derived type %/
char n_sclass; /* storage class /
char n_numaux; /* number of aux entries */
b
#define n_name _n._n_name
#define n_zeroes _N._n_n._n_zeroes
#tdefine n_offset _n._n_n._n_offset
#define n_nptr _n._n_nptr{1}

Some symbols require more information than a single
entry; they are followed by auziliary eniries that are the
same size as a symbol entry. The format follows.

A.OUT(4)

union auxent {

struct {
long x_tagndx;
union {
struet {
unsigned short x_lnno;
unsigned short x_size;
} x_insz;
long x_fsize;
} x_misc;
union {
struct {
long x_lnnoptr;
long x_endndx;
} x_fen;
struct {
unsigned short x_dimen|[DIMNUM];
} x_ary;
} x_fenary;
unsigned short x_tvndx;
} x_sym;
struct {
char x_fname[FILNMLEN];
} x_file;
struct {
long x_scnlen;

unsigned short x_nreloc;
unsigned short x_nlinno;
} x_sen;

struct {
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran|2];
} x_tv;
b
Indexes of symbol table entries begin at zero. The start
of the symbol table is f_symptr (from the file header)
bytes from the beginning of the file. If the symbol table
is stripped, f_symptr is 0. The string table (if one exists)
begins at f_symptr + (f_nsyms * SYMESZ) bytes from
the beginning of the file.
SEE ALSO
as(1), cc(1), 1d(1), brk(2), filehdr(4), 1dfcn(4), linenum(4),
reloc(4), scnhdr(4), syms{4).

ACCT (4)

NAME

acct — per-process accounting file format
SYNOPSIS

#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records

in the form defined by <sys/acct.h>, whose contents
are:

typedef ushort comp_t; /# "floating point” */
/* 13-bit fraction, 3-bit exponent */

struect acct

{
char ac_flag; /* Accounting flag */
char ac_stat; /* Exit status */
ushort ac_uid; /* Accounting user ID /
ushort ac_gid; /* Accounting group ID */
dev_t ac_tty; /* control typewriter */
time_t ac_btime; /¢ Beginning time */
comp_t ac_utime; /% acctng user time in clock ticks */
comp_t ac_stime; /* acctng system time in clock ticks */
comp_t ac_etime; /% acctng elapsed time in clock ticks */
comp_t ac_mem; /* memory usage in clicks */
comp_t ac_io; /* chars trnsfrd by read/write *»/
comp_t ac_rw; /* number of block reads/writes %/
char ac_comm|(8]; /# command name */

b

extern struct acct acctbuf;
extern struct inode #*acctp; /# inode of accounting file */

#define AFORK 01 /* has executed fork, but no exec */
#define ASU 02 /* used super-user privileges */
#define ACCTF 0300 /# record type: 00 = acct &/

In ac_flag, the AFORK flag is turned on by each fork(2)
and turned off by an ezec(2). The ac_comm field is
inherited from the parent process and is reset by any
ezec. Each time the system charges the process with a
clock tick, it also adds to ac_mem the current process
size, computed as follows:

(data size) + (text size) / (number of in-core
processes using text,)

The value of ac_mem / (ac_stime + ac_uttme) can be
viewed as an approximation to the the resident-set size
(or mean process size), defined as the total number of
pages in memory. Note that this differs from the UNIX

-1-

ACCT(4)

System V formula, which is based on the current process
size; such a formula is inappropriate to a paging
environment.

The structure tacet.h, which resides with the source files
of the accounting commands, represents the total
accounting format used by the various accounting
commands:

/t

* total accounting (for acct period), also for day

+/

struct tacet {
uid_t ta_uid; /* userid */
char ta_name(8]; /# login name */
float ta_cpu[2]; /* cum. cpu time, p/np (mins) */
float ta_kcore[2]; /* cum kcore-minutes, p/np */
float ta_con|2]; /* cum. connect time, p/np, mins */
float ta_du; /* cum. disk usage */
long ta_pc; /#* count of processes */
unsigned short ta_sc; /* count of login sessions */
unsigned short ta_dc; /* count of disk samples */
unsigned short ta_fee;/* fee for special services #/

b

SEE ALSO

BUGS

acct(IM), accteom(1), acct(2), exec(2), fork(2).

The ac_mem value for a short-lived command gives little
information about the actual size of the command,
because ac_mem may be incremented while a different
command (e.g., the shell) is being executed by the
process.

_

NAME

AR(4)

ar — common archive file format

DESCRIPTION

The archive command ar(1) is used to combine several

files into one. Archives are used mainly as libraries to be
searched by the link editor /d(1).

Each archive begins with the archive magic string.

#define ARMAG ”!<arch>\n"
/* magic string */
#tdefine SARMAG 8
/* length of magic string */

Each archive which contains common object files (see
a.out(4)) includes an archive symbol table. This symbol
table is used by the link editor /d(1) to determine which
archive members must be loaded during the link edit
process. The archive symbol table (if it exists) is always
the first file in the archive (but is never listed) and is
automatically created and/or updated by ar.

Following the archive magic string are the archive file
members. Each file member is preceded by a file
member header which is of the following format:

#define ARFMAG ”"‘\n” /* header trailer string */

struct ar_hdr /* file member header */

{
char ar_name[16); /# /" terminated file member name */
char ar_date[12]; /* file member date */
char ar_uid|[6]; /# file member user identification */
char ar_gid[6]; /#+ file member group identification */
char ar_mode[8}; /* file member mode (octal) */
char ar_size|10[; /# file member size */
char ar_fmag(2); /* header trailer string */

b

All information in the file member headers is in printable
ASCII. The numeric information contained in the
headers is stored as decimal numbers (except for
ar_mode which is in octal). Thus, if the archive contains
printable files, the archive itself is printable.

The ar_name field is blank-padded and slash (/)
terminated. The ar_date field is the modification date
of the file at the time of its insertion into the archive.
Common format archives can be moved from system to

-1-

AR(4)

system as long as the portable archive command ar(1) is
used. Conversion tools such as arcv(l) and convert(1)
exist to aid in the transportation of non-common format
archives to this format.

Each archive file member begins on an even byte
boundary; a newline is inserted between files if
necessary. Nevertheless the size given reflects the actual
size of the file exclusive of padding.

Notice there is no provision for empty areas in an
archive file.

If the archive symbol table exists, the first file in the
archive has a zero length name (i.e., ar_name[0] ==
’/?). The contents of this file are as follows:

° The number of symbols. Length: 4 bytes.

) The array of offsets into the archive file.
Length: 4 bytes * ‘““‘the number of symbols”.

° The name string table. Length: ar_size — (4

bytes * (“the number of symbols” + 1)).

The number of symbols and the array of offsets are
managed with sgetl and sputl. The string table contains
exactly as many null terminated strings as there are
elements in the offsets array. Each offset from the array
is associated with the corresponding name from the
string table (in order). The names in the string table are
all the defined global symbols found in the common
object files in the archive. Each offset is the location of
the archive header for the associated symbol.

SEE ALSO

BUGS

ar(1), arcv(l), convert(l), ld(1), strip(1), sputl(3X),
a.out(4).

Strip(1) will remove all archive symbol entries from the
header. The archive symbol entries must be restored via
the ts option of the ar(l) command before the archive
can be used with the link editor /d(1).

CHECKLIST (4)

NAME
checklist — list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory /ete and contains a list of
at most 15 special file names. Each special file name is
contained on a separate line and corresponds to a file
system. FEach file system will then be automatically
processed by the fsck(1M) command.

SEE ALSO
fsck(IM).

NAME

CORE(4)

core — format of core image file

DESCRIPTION

CTIX writes out a core image of a terminated process
when any of various errors occur. See signal(2) for the
list of reasons; the most common are memory violations,
illegal instructions, bus errors, and user-generated quit
signals. The core image is called core and is written in
the process’s working directory (provided it can be;
normal access controls apply). A process with an
effective user ID different from the real user ID will not
produce a core image.

The first section of the core image is a copy of the
system’s per-user data for the process, including the
registers as they were at the time of the fault. The size
of this section depends on the parameter USIZE, which
is defined in /usr/include/sys/page.h. The
remainder represents the actual contents of the user’s
core area when the core image was written. If the text
segment is read-only and shared, or separated from data
space, it is not dumped.

The format of the information in the first section is
described by the user structure of the system, defined in
/usr{include/sys/user.h. The important stuff not
detailed therein is the locations of the registers, which
are outlined in /usr/include/sys/reg.h.

SEE ALSO

crash(1M), sdb(1), setuid(2), signal(2).

—_

NAME

CPIO(4)

cpio — format of cpio archive

DESCRIPTION

The header structure, when the —e option of cpio(1) is
not used, is:

struct {
short h_magic,
h_dev;
ushort h_ino,

short h_nlink,
h_rdev,
h_mtime(2],
h_namesize,
h_filesize[2];
char h_name[h_namesize rounded to word];
} Hdr;
When the —e¢ option is used, the header information is
described by:

sscanf(Chdr,

" %%60%%60%60%60%60%60%60%60%1110%60%1110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino,
&Hdr.h_mode, &Hdr.h_uid, &Hdr.h_gid,
&Hdr.h_nlink, &Hdr.h_rdev, &Longtime,
&Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime
and Hdr.h_filesize, respectively. The contents of each
file are recorded in an element of the array of varying
length structures, archive, together with other items
describing the file. Every instance of h_magic contains
the constant 070707 (octal). The items h_dev through
h_mtime have meanings explained in stat{2). The length
of the null-terminated path name h_name, including the
null byte, is given by h_namesize.

The last record of the archive always contains the name
TRAILERH!. Special files, directories, and the trailer are
recorded with h_filesize equal to zero.

SEE ALSO

cpio(1), find(1), stat(2).

NAME

CPROFILE (4)

cprofile — setting up a C shell environment at login time

DESCRIPTION

FILES

eprofile is for use with csh(1). For every user of csh the
system file /etc/cprofile is executed immediately upon
login. If the user’s login directory contains a file named
.cshre, that file will then be executed, followed by
commands from the .login file.

The following example is typical for a user’s .cshre file:

setenv PATH :$PATH:$HOME /bin
setenv MAIL /usr/mail/myname
setenv TERM pt

umask 022

The system file /ete/cprofile can be customized to set
the TERM environment variable via tset(1) and to
automatically invoke wm(1) on RS-422 terminals.

For further information about setting variables, see
csh(1) and sh(1).

$HOME/ .login
$HOME/ .cshre
$HOME/ .logout
/ete/cprofile

SEE ALSO

csh(1), cprofile(4), env(1), login(1), mail(1), sh(1), stty(1),
su(1), tset(1), wm(1), ttytype(4), environ(5), term(5).
MightyFrame Administrator’s Reference Manual.
MiniFrame Administrator’'s Manual.

NAME

DIR(4)

dir - format of directories

SYNOPSIS

#finclude <sys/dir.h>

DESCRIPTION

A directory behaves exactly like an ordinary file, save
that no user may write into a directory. The fact that a
file is a directory is indicated by a bit in the flag word of
its i-node entry (see fs(4)). The structure of a directory
entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ14
#endif

struct direct

ino_t d_ino;
} char d_name[DIRSIZ];
b
By convention, the first two entries in each directory are
for . and ... The first is an entry for the directory itself.
The second is for the parent directory. The meaning of
.. is modified for the root directory of the master file

system; there is no parent, so .. has the same meaning
as ..

SEE ALSO

fs(4).

ERRFILE (4)

NAME
errfile — error-log file format

SYNOPSIS
#finclude <sys/erec.h>

DESCRIPTION
When hardware errors are detected by the system, an
error record is generated and passed to the error-logging
daemon for recording in the error log for later analysis.
The default error log is /usr/adm/errfile.

The format of an error record depends on the type of
error that was encountered. Every record, however, has
a header with the following format:
struct errhdr {
short e_type; /* record type */
short e_len; /% bytes in record (inc¢ hdr) */
time_t e_time; /* time of day */

The permissible record types are as follows:

#define E_GOTS 010 /* start =/

#define E_STOP 012 /* stop */

#define E_TCHG 013 /* time change */

#define E.CCHG 014 /#* configuration change */
#define E_BLK 020 /#* block device error */
#define ECSTRAY 030 /# stray interrupt */
#define E_PRTY 031 /% memory parity */
#define E_BUSFLT 032 /#* bus fault */

#define E_CONS 040 /#* console string */
#define E_CONR 041 /#* console record */
#define E_CONO 042 /#* console overflow */
#define E_SERIAL 043 /# serial device driver error ¥/

Some records in the error file are of an administrative
nature. These include the startup record that is entered
into the file when logging is activated, the stop record
that is written if the daemon is terminated “gracefully”’,
and the time-change record that is used to account for
changes in the system’s time-of-day. These records have
the following formats:

ERRFILE (4)

struct estart {

short e_cpu; /* CPU type */

struct utsname e_name; /s system names s/

short e_mmr3; /* boot reason from CDT #*/

long e_syssize; /¢ system memory size #/

int e_fhole; /# 64K chunks of memory omitted s/
short e_bconf; /# block dev configuration */

char e_panic; /s if reboot from panic, what was it */

b
#define eend errhdr /% record header *#/

struct etimchg {
time_t e_ntime; /¢ new time */
b

Stray interrupts cause a record with the following format
to be logged:
struct estray {

physadr e_saddr; /# stray loc or device addr #/

short e_sbacty; /* active block devices »/
J
Memory subsystem error causes the following record to
be generated:

For MiniFrame systems:
struct eparity {
ushort e_gsr; /* general status register =/
ushort e_pte; /# pte for virtual address in BSR */
&
For MightyFrame systems:

struct eparity {
uint e_gsr; /* general status register */
b

Error records for block devices have the following
format:

ERRFILE (4)

struct eblock {
dev_t e_dey; /* "true” major + minor dev no %/
physadr e_regloc; /# controller address s/
short e_bacty; /s other block I/0 activity /
struct jostat {
long io_ops; /* number read/writes +/
long io_misc; /+# number "other” operations s/
ushortio_unlog; /* number unlogged errors */
} e_stats;
short e_bflags; /¢ read/write, error, etc */
short e_trkoff; /*logical dev start trk */
daddr_t e_bnum; /* logical block number */
ushort e_bytes; /# number bytes to transfer */
paddr_t e_memadd;/# buffer memory address */

ushort e_rtry; /* number retries */

short e_nreg; /* number device registers */

short e_trks /* number of heads */

short e_secs /* number of physical sectors per track */
short e_ctlr /* controller type /

b
The following values are used in the e_bflags word:

#define E_WRITE 0 /* write operation *
#define E_READ 1 /* read operation *
#define E_NOIO 02 /* no 1/O pending */
#define E_PHYS 04 /* physical 1/O */
#define E_MAP 010 /% Unibus map in use */
#tdefine E_ERROR 020 /* 1/O failed */

The error types CONS and CONO are flagged by
errdemon(IM) and errdead and written to the console

log /etc/log/confile.
A bus fault generates the following record.

struct ebusflt {

short e_type; /* kind of fault */
caddr_t e_vaddr /* virtual address of fault */

uint e_bsr; /* combined bsr0 and bsrl */
ushort e_pte; /* page frame of fault */
ushort e_pid; /* pid */

uint e_pc; /* PC at time of fault */
uint e_rps; /* RPS at time of fault */

uint e_regs{16]; /* all the registers */
b
A serial driver error generates the following reports:

struct eserial {
ushort e_type /* type of error */
ushort e_dev /* which physical port */

-3-

ERRFILE (4)

b
The following types exist for e_type:

#define ECHLOS 0x1 /* character lost in input FIFO #/
#define ERXORUN 0x2 /* receiver overrun */

#define ENOCLIST 0x4 /# no new clist available »/
#define ENORBUF 0x8 /* no receive buffer available */

SEE ALSO
errdemon(1M).

FILEHDR (4)

NAME

filehdr — file header for common object files
SYNOPSIS

#include <filehdr.h>
DESCRIPTION

Every common object file begins with a 20-byte header.
The following C struct declaration is used:

struct filehdr

unsigned short f_magic; /* magic number */
unsigned short f_nscns; /* number of sections */
long {_timdat; /* time & date stamp */
long f_symptr; /* file ptr to symtab */
long f_nsyms; /* # symtab entries */
unsigned short f_opthdr; /* sizeof{opt hdr) */
unsigned short f_flags; /* flags */p

¥

F_symptr is the byte offset into the file at which the
symbol table can be found. Its value can be used as the
oflset in fseek(3S) to position an I/O stream to the

symbol table. The operating system optional header is
always 36 bytes. The valid magic numbers are given
below.

#define MCGBIKWRMAGIC 0520

/* writeable text segments */
#define MC6SKROMAGIC 0521

/* readonly shareable text segments */
#define MC6SKPGMAGIC 0522

/* demand paged text segments */

The value in f_timdat is obtained from the time(2)
system call.
Flag bits currently defined are:

#define F_RELFLG 00001
/* relocation entries stripped */

#define F_EXEC 00002
/* file is executable */
#define F_LNNO 00004

/* line numbers stripped */
#define F_LSYMS 00010

/* local symbols stripped */
#define F_MINMAL 00020

/* minimal object file */
#define F_UPDATE 00040

/* update file, ogen produced */
#define F_SWABD 00100

-1-

FILEHDR (4)

/* file is "pre-swabbed” */
#define F_AR32W 01000

/* non-DEC host,

including Convergent

Technologies systems */
#defineF_PATCH 02000

/* "patch” list in opt hdr */
The CPU type is encoded in bits 04000 and 010000. The
FPU (floating-point unit) type is encoded in bits
0100000, 040000, and 020000. Macros are defined to set
and extract the CPU and FPU values as follows:

SETFPU(flag, value
SETCPU(flag, value
GETFPU(flag
GETCPU(flag

Value values for CPU are:

#define F_MG68010 0
#define F_MG68020

Valid values for FPU are:

[y

#define F_NOFPU
#define F_SOFT
#define F_M08331
#define F_SKY

D O

SEE ALSO

time(2), fseek(3S), a.out(4).

FS(4)

NAME
fs — file system format

SYNOPSIS
#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/filbitmap.h>

DESCRIPTION
Every file system storage volume has a common format
for certain vital information. Every such volume is
divided into a certain number of 512-byte long sectors.
Sector 0 is unused and is available to contain a bootstrap
program or other information.

Sector 1 is the super-block. The format of a super-block

18

/t

* Structure of the super-block

*/

struct filsys

¢ ushort s_isize; /* size in blocks of i-list */
daddr_t s_fsize; /* size in blocks of entire volume »/
short s_nfree; /* number of addresses in s_free */
daddr_t s_free{NICFREE]; /* free block list */
short s_ninode; /* number of i-nodes in s_inode */
ino_t s_inode[NICINODJ; /* free i-node list */
char s_flock; /* lock during free list manipulation */
char s_ilock; /* lock during i-list manipulation */
char s_fmod; /* super block modified flag %/
char s_ronly; /* mounted read-only flag */
time_t s_time; /* last super block update */
short s_dinfo[4]; /* device information */
daddr_t s_tfree; /* total free blocks*/
ino_t s_tinode; /#* total free i-nodes */
char s_fname[6]; /* file system name */
char s_fpack|[B]; /#file system pack name */

sema_t s_semflock;
sema_t s_semilock;
long s_file[1];
short s_fills; /* more adjust */
short s_bucnum; /* Bucket currently in use */
daddr_t s_buckets[2]; /* addresses of buckets for bitmap */
daddr_t s_bitmap[2]; /* address of free bitmap */
char s_fsbitmap; /# if set, file system has

a valid bitmap */
char s_fsok; /* if set then file system clean */
short s_fill2{3]; /* used to be used by pilf */

-1-

FS(4)

long s_magic; /* magic number to denote new
file system */
long s_type; /* type of new file system */
long s_fill3[2]; /* final ADMUSTMENT so
sizeof filsys is 512 */
k
#define FsMAGIC 0xfd187e20 /* s_magic number */
#define Fslb 1 /* 512 byte block */
#define Fs2b 2 /* 1024 byte block */

CTIX recognizes two kinds of file systems, specified by

s_type:

. Oriented to 512-byte I/O. Identified by an
s_type equal to Fslb. This type is also assumed
if s_magic is not equal to FsMAGIC. (This
type was originally the only type supported by
UNIX Systems; CTIX does not support this type.)

. Oriented to 1024-byte I/O. Identified by an
s_type equal to Fs2b. This is essentially the
standard file system for CTIX and UNIX System
V.

In the following description, the size of a logical block is
determined by the file system type. For the original
512-byte oriented file system, a block is 512 bytes. For
the 1024-byte oriented file system a block is 1024 bytes
or two sectors. The operating system takes care of all
conversions from logical block numbers to physical sector
numbers.

S_isize is the address of the first data block after the i-
list; the i-list starts just after the super-block, namely in
block 2; thus the i-list is s_tsize -2 blocks long. S_fsize
is the first block not potentially available for allocation
to a file. These numbers are used by the system to
check for bad block numbers; if an “impossible’” block
number is allocated from the f{ree list or is freed, a
diagnostic is written on the on-line console. Moreover,
the free array is cleared, so as to prevent further
allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows.
The s_free array contains, in s_free[l], ...,
s_free[s_nfree—1], up to 49 numbers of free blocks.
S_free|0] is the block number of the head of a chain of
blocks constituting the free list. The first long in each
free-chain block is the number (up to 50) of free-block
numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the

FS(4)

next member of the chain. To allocate a block:
decrement s_nfree, and the new block is s_free[s_nfree].
If the new block number is 0, no blocks remain, so give
an error. If s_nfree became 0 read in the block named
by the new block number, replace s_nfree by its first
word, and copy the block numbers in the next 50 longs
into the s_free array. To free a block, check if s_nfree
is 50; if so, copy s_nfree and the s_free array into it,
write it out, and set s_nfree to 0. In any event set
s_free(s_ nfrec] to the freed block’s number and
increment s_nfree.

S_tfree is the total free blocks available in the file
system.

S_ninode is the number of free i-numbers in the s_inode
array. To allocate an i-node: if s_ninode is greater than
0, decrement it and return s_inodc[s_ninodeﬁ If it was
0, read the i-list and place the numbers of all free i-nodes
&up to 100) into the s_tnode array, then try again. To
ree an i-node, provided s_ninode is less than 100, place
its number into s_inode[s_ninode] and increment
s_ninode. If s_ninode is already 100, do not bother to
enter the freed i-node into any table. This list of i-nodes
is only to speed up the allocation process; the
information as to whether the i-node is really free or not
is maintained in the i-node itself.

S_tinode 1s the total free i-nodes available in the file
system.

S_flock and s_tlock are flags maintained in the core copy
of the file system while it is mounted and their values on
disk are immaterial. The value of s_finod on disk is
likewise immaterial; it is used as a flag to indicate that
the super-block has changed and should be copied to the
disk during the next periodic update of file system
information.

S_ronly is a read-only flag to indicate write-protection.

S_time 1is the last time the super-block of the file system
was changed, and is the number of seconds that have
elapsed since 00:00 Jan. 1, 1970 {(GMT). During a reboot,
the s_time of the super-block for the root file system is
used to set the system’s idea of the time.

S_fname is the name of the file system and s_fpack is
the name of the pack.

I-numbers begin at 1, and the storage for i-nodes begins
in block 2. Also, i-nodes are 64 bytes long. I-node 1 is
reserved for future use. I-node 2 is reserved for the root
directory of the file system, but no other i-number has a

-3-

FILES

FS(4)

built-in meaning. Each i-node represents one file. For
the format of an i-node and its flags, see tnode(4).

The s_fsok flag indicates that the file system was
unmounted after the last use, or that fsck was run
successfully. The s_fsbitmap flag indicates that the file
system has a valid bitmap describing a number of blocks
that are omitted from the free list; these blocks are
placed on the bitmap (filbitmap.h). If both flags are
set, CTIX uses the bitmap; otherwise the old free list is
used and any blocks that were in the bitmap (not on the
free list) will be lost until fsck is run.

s_buckets and s_bitmap are the disk addresses of the
filbttmap structure; each address is for a 1024-byte logical
block.

All allocations of blocks are made from the bitmap. If a
block being deallocated is in the section of the disk
represented by s_bucknum, it is put in the bitmap. If
the block is not in the area represented by the bitmap, it
is put on the free list.

The format of the file system bitmap and bucket list is:

struct filbitmap {
/* list of buckets describing the free list */
ushort fb_buckets{1024];
{* bitmap describing free blocks no on the free list */
ong fb_bitmap[512];

y

/usr/include/sys/filsys.h
/usr/include/sys/stat.h
/usr/include /sys/filbitmap.h

SEE ALSO

fsck(1M), fsdb(1M), mkfs(1M), inode(4).

NAME

FSPEC(4)

fspec — format specification in text files

DESCRIPTION

It is sometimes convenient to maintain text files on CTIX
with non-standard tabs, (i.e., tabs which are not set at
every eighth column). Such files must generally be
converted to a standard format, frequently by replacing
all tabs with the appropriate number of spaces, before
they can be processed by CTIX commands. A format
specification occurring in the first line of a text file

specifies how tabs are to be expanded in the remainder
of the file.

A format specification consists of a sequence of
parameters separated by blanks and surrounded by the
brackets <: and :>. FEach parameter consists of a
keyletter, possibly followed immediately by a value. The
following parameters are recognized:

ttabs The t parameter specifies the tab settings
for the file. The value of tabs must be one
of the following:

1. a list of column numbers separated by
commas, indicating tabs set at the
specified columns;

2. a — followed immediately by an
integer n, indicating tabs at intervals
of n columns;

3. a — followed by the name of a
“canned” tab specification.

Standard tabs are specified by t-8, or
equivalently, t1,9,17,25,etc. The canned
tabs which are recognized are defined by the
tabs(1) command.

ssize The s parameter specifies a maximum line
size. The value of size must be an integer.
Size checking is performed after tabs have
been expanded, but before the margin is
prepended.

mmargin The m parameter specifies a number of
spaces to be prepended to each line. The
value of margin must be an integer.

d The d parameter takes no value. Its
presence indicates that the line containing
the format specification is to be deleted
from the converted file.

FSPEC(4)

e The e parameter takes no value. Its
presence indicates that the current format is
to prevail only until another format
specification is encountered in the file.

Default values, which are assumed for parameters not
supplied, are t—8 and mO. If the s parameter is not
specified, no size checking is performed. If the first line
of a file does not contain a format specification, the
above defaults are assumed for the entire file. The
following is an example of a line containing a format
specification:

* <1t5,10,15 s72:> *
If a format specification can be disguised as a comment,
it is not necessary to code the d parameter.

Several CTIX commands correctly interpret the format
specification for a file.

SEE ALSO
ed(1), newform(1), tabs(1).

NAME

GETTYDEFS(4)

gettydefs — speed and terminal settings used by getty

DESCRIPTION

The /ete/gettydefs file contains information used by
getty(IM) to set up the speed and terminal settings for a
line. It supplies information on what the login prompt
should look like. It also supplies the speed to try next if
the user indicates the current speed is not correct by
typing a <break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt
##next-label

Each entry is followed by a blank line. The various
fields can contain quoted characters of the form \b, \n,

c, etc., as well as \nnn, where nnn is the octal value of
the desired character. The various fields are:

label This is the string against which getty tries
to match its second argument. It is often
the speed, such as 1200, at which the
terminal is supposed to run, but it need
not be (see below).

initial-flags These flags are the initial toct!{2) settings
to which the terminal is to be set if a
terminal type is not specified to getty.
The flags that getly understands are the
same as the ones listed in
/usr/include/sys/termio.h &see
termio(7)). Normally only the speed flag
is required in the instial-flags. Getty
automatically sets the terminal to raw
input mode and takes care of most of the
other flags. The initial-flag settings
remain in effect until getty executes
login(1).

final-flags These flags take the same values as the
tnitial-flags and are set just prior to getty
executes login. The speed flag is again
required. The composite flag SANE
takes care of most of the other flags that
need to be set so that the processor and
terminal are communicating in a rational
fashion. The other two commonly
specified final-flags are TAB3, so that
tabs are sent to the terminal as spaces,
and HUPCL, so that the line is hung up
on the final close.

-1-

FILES

GETTYDEFS (4)

login-prompt This entire field is printed as the login-
prompt. Unlike the above fields where
white space is ignored (a space, tab or
new-line), they are included in the login-
prompt field.

next-label If this entry does not specify the desired
speed, indicated by the user typing a
< break> character, then getty will
search for the entry with nezt-label as its
label field and set up the terminal for
those settings. Usually, a series of speeds
are linked together in this fashion, into a
closed set; for instance, 2400 linked to
1200, which in turn is linked to 300,
which finally is linked to 2400.

If getty is called without a second argument, then the
first entry of /etc/gettydefs is used, thus making the
first entry of /etcfgettydefs the default entry. It is
also used if getty can not find the specified label. If
/etc/gettydefs itself is missing, there is one entry built
into the command which will bring up a terminal at
9600 baud.

It is strongly recommended that after making or
modifying /etc/gettydefs, it be run through getty with
the check option to be sure there are no errors.

/ete/gettydefs

SEE ALSO

getty(1M), login(1), ioctl(2), termio(7).

NAME

GPS(4)

gps — graphical primitive string, format of graphical files

DESCRIPTION

GPS is a format used to store graphical data. Several
routines have been developed to edit and display GPS
files on various devices. Also, higher level graphics
programs such as plot (in stat(1G)) and wtoc (in
toc(1G)) produce GPS format output files.

A GPS is composed of five types of graphical data or

primitives.

GPS PRIMITIVES

lines

arc

text

hardware

comment

The lines primitive has a variable number of
points from which zero or more connected
line segments are produced. The first point
given produces a move to that location. (A
move is a relocation of the graphic cursor
without drawing.? Successive points produce
line segments from the previous point.
Parameters are available to set color, weight,
and style (see below).

The are primitive has a variable number of
points to which a curve is fit. The first point
produces a move to that point. If only two
points are included, a line connecting the
points will result; if three points a circular arc
through the points is drawn; and if more than
three, lines connect the points. (In the
future, a spline will be fit to the points if
they number greater than three.) Parameters
are available to set color, weight, and style.

The text primitive draws characters. It
requires a single point which locates the
center of the first character to be drawn.
Parameters are color, font, textsize, and
textangle.

The hardware primitive draws hardware
characters or gives control commands to a
hardware device. A single point locates the
beginning location of the hardware string.

A comment is an integer string that is
included in a GPS file but causes nothing to
be displayed. All GPS files begin with a
comment of zero length.

GPS(4)

GPS PARAMETERS

color

weight

style

font

textsize

textangle

Color is an integer value set for arc, lines,
and tezt primitives.

Weight is an integer value set for arc and
lines primitives to indicate line thickness.
The value 0 is narrow weight, 1 is bold, and
2 is medium weight.

Style is an integer value set for lines and arc
primitives to give one of the five different
line styles that can be drawn on TEKTRONIX
4010 series storage tubes. They are:

0 solid

1 dotted

2 dot dashed

3 dashed

4 long dashed

An integer value set for fezt primitives to
designate the text font to be used in drawing
a character string. (Currently font is
expressed as a four-bit weight value followed
by a four-bit style value.)

Textsize is an integer value used in fext
primitives to express the size of the
characters to be drawn. Textsize represents
the height of characters in absolute universe-
unsts and is stored at one-fifth this value in
the size-orientation (s0) word (see below).

Textangle is a signed integer value used in
text primitives to express rotation of the
character string around the beginning point.
Textangle is expressed in degrees from the
positive x-axis and can be a positive or
negative value. It is stored in the size-
orientation (s0) word as a value 256/360 of
it’s absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:

lines

are

text
hardware
comment

cw

cw potnls sw

cw poinls sw

cw point sw so [slring|

cw point [string]

cw f)atring

Cw is the control word and begins all
primitives. It consists of four bits that
contain a primitive-type code and twelve bits
that contain the word-count for that

-9.

point(s)

swW

80

string

SEE ALSO

GPS(4)

primitive.

Point(s) is one or more pairs of integer
coordinates. Tezt and hardware primitives
only require a single point. Point(s) are
values within a Cartesian plane or unwerse
having 64K (-32K to +32K) points on each
axis.

Sw is the style-word and is used in lines, arc,
and tert primitives. For all three, eight bits
contain color information. In arc and lines
eight bits are divided as four bits weight and
four bits style. In the tezt primitive eight bits
of sw contain the font.

So is the size-orientation word used in tezt
primitives. Eight bits contain text size and
eight bits contain text rotation.

String is a null-terminated character string.
If the string does not end on a word
boundary, an additional null is added to the
GPS file to insure word-boundary alignment.

graphics(1G), stat(1G), toc(1G).

GROUP (4)

NAME
group — group file
DESCRIPTION
Group contains for each group the following information:
group name
encrypted password

numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons;
each group is separated from the next by a new-line.
the password field is null, no password is demanded.

This file resides in directory /etc. Because of the
encrypted passwords, it can and does have general read
permission and can be used, for example, to map
numerical group ID’s to names.

FILES
/etc/group

SEE ALSO
newgrp(1), passwd(1), crypt(3C), passwd(4).

NAME

HOSTS(4N)

hosts — list of nodes on network

DESCRIPTION

The file /etc/hosts is a list of nodes that share the
network, including the local node. It is referred to by
programs which need to translate between node names
and DARPA Internet addresses. Each line in the file
describes a single node on the network and consists of
three fields separated by any number of blanks or tabs:

address name alias ...

where
address

name

altases ...

is the DARPA Internet address.
Unless another type of address is
required by some node on the
network, address should be a Class
A address, which takes the form
net.node, where net is the network
number from /etc/networks (see
networks(4)), which must be betwen
0 and 127; and node is a value
which must be unique for each node
and be between 0 and 16777215.

is the official name of the node. If
the node is a computer system
running CTIX , it must claim this
node name by executing
setuname(1M) when it is initializing
itself.

is a list of alternate names for the
node. Aliases can be used in
network commands in place of the
official name.

The routines which search this file ignore comments
(portions of lines beginning with #£) and blank lines.

Internet addresses can actually take one of four forms:

A
A.B

A.B.C

A is a simple 32-bit integer.

A is an eight-bit quantity occupying
the high-order byte and B is a 24-bit
quantity occupying the remaining
bytes. This form is suitable for a
Class A address of the form
net.node.

A is an eight-bit quantity occupying
the high-order byte; B is an eight-bit

-1-

HOSTS(4N)

quantity occupying the next byte;
and C is a 16-bit quantiy occupying
the remaining bytes. This form is
suitable for a Class B address of the
form 128.net.node.

A.BC.D The four parts each occupy a byte in
the address.

EXAMPLE
Engineering network

1.12 src netd # Network Source Machine
1.10 test net2 # Network Test Machine

1.16 mifa # Software Development,
1.17 mifb # Hardware Development
FILES
/ete /hosts
SEE ALSO
networks(4N).

CTIX Internetworking Manual.

For a discussion of network addresses, see ‘‘Address
Mappings,”” RFC 796 in the Internet Protocol Transition
Workbook, March 1982. Network Information Center,
SRI International, Menlo Park, CA 94025.

NOTE
This command is for use with a special version of the
CTIX kernel that supports networking protocols.

NAME

INITTAB(4)

inittab — script for the init process

DESCRIPTION

The inittadb file is the script to init’s role as a general
process dispatcher. The process that constitutes the
majority of tnit’s process dispatching activities is the line
process /etc/getty that initiates individual terminal
lines. Other processes typically dispatched by tnit are
daemons and the shell.

The nittad file is composed of entries that are position
dependent and have the following format:

id:rstate:action:process

Each entry is delimited by a newline, however, a
backslash (\) preceding a newline indicates a
continuation of the entry. Up to 512 characters per
entry are permitted. Comments may be inserted in the
process field using the sh(1) convention for comments.
Comments for lines that spawn gettys are displayed by
the who(l) command. It is expected that they will
contain some information about the line such as the
location. There are no limits (other than maximum
entry size) imposed on the number of entries within the
tnittab file. The entry fields are:

id This is one to four characters used to uniquely
identify an entry.

rstate This defines the run-level in which this entry is
to be processed. Run-levels effectively
correspond to a configuration of processes in
the system. That is, each process spawned by
tnit is assigned a run-level or run-levels in
which it is allowed to exist. The run-levels are
represented by a number ranging from O
through 6. As an example, if the system is in
run-level 1, only those entries having a 1 in the
rstate field will be processed. When init is
requested to change run-levels, all processes
which do not have an entry in the rstate field
for the target run-level will be sent the warning
signal (SIGTERM) and allowed a 20-second
grace period before being forcibly terminated
by a kill signal &SIGKILL). The rstate field
can define multiple run-levels for a process by
selecting more than one run-level in any
combination from 0-8. If no run-level is
specified, then the process is assumed to be
valid at all run-levels 0—8. Three other values,

-1-

action

INITTAB(4)

a, b and ¢, can appear in the rstate field, even
though they are not true run-levels. Entries
which have these characters in the rstate field
are processed only when the telinit (see
init(IM)) process requests them to be run
(regardless of the current run-level of the
system). They differ from run-levels in that
intt can never enter run-level a, b or ¢. Also, a
request for the execution of any of these
processes does not change the current run-level.
Furthermore, a process started by an a, b or ¢
command 1is not killed when inst changes levels.
They are only killed if their line in
/ete/inittab is marked off in the action field,
their line is deleted entirely from /ete/inittab,
or nit goes into the SINGLE USER state.

Key words in this field tell snit how to treat the
process specified in the process field. The
actions recognized by tnit are as follows:

respawn If the process does not exist then
start the process, do not wait for
its termination (continue

scanning the tnittab file), and
when it dies restart the process.
If the process currently exists
then do nothing and continue
scanning the tnsttab file.

wait Upon init’s entering the run-level
that matches the entry’s rstate,
start the process and wait for its
termination. All subsequent
reads of the dnittad file while init
is in the same run-level will cause
tnit to ignore this entry.

once Upon 1nit’s entering a run-level
that matches the entry’s rstate,
start the process, do not wait for
its termination. When it dies, do
not restart the process. If upon
entering a new run-level, where
the process is still running from a
previous run-level change, the
program will not be restarted.

boot The entry is to be processed only
at tnit’s boot-time read of the
tnittab file. Init is to start the
process, not wait for its

-92-

INITTAB(4)

bootwait

powerfail

powerwait

off

ondemand

initdefault

termination, and when it dies,
not restart the process. In order
for this instruction to Dbe
meaningful, the rstate should be
the default or it must match
init’s run-level at boot time.
This action is wuseful for an
initialization function following a
hardware reboot of the system.

The entry is to be processed only
at i1nit’s boot-time read of the
tnittad file. Inst is to start the
process, wait for its termination
and, when it dies, not restart the
process.

Execute the process associated
with this entry only when :nit
receives a power fail signal
(SIGPWR see signal(2)).

Execute the process associated
with this entry only when it
receives a power fail signal
(SIGPWR) and wait until it
terminates before continuing any
processing of snittab.

If the process associated with this
entry 1s currently running, send
the warning signal (SIGTERM)
and wait 20 seconds before
forcibly terminating the process
via the kill signal (SIGKILL). If
the process is nonexistent, ignore
the entry.

This instruction is really a
synonym for the respawn action.
It is functionally identical to
respawn but is given a different
keyword in order to divorce its
association with run-levels. This
1s used only with the a, b or ¢
values described in the rstate

field.

An entry with this action is only
scanned when et initially
invoked. Init uses this entry, if it
exists, to determine which run-

sysinit

INITTAB(4)

level to enter initially. It does
this by taking the highest run-
level specified in the rstate field
and using that as its initial state.
If the rstate field is empty, this is
interpreted as 0123458 and so
tnit will enter run-level 8. Also,
the initdefault entry cannot
specify that it start in the
SINGLE USER state.
Additionally, if #nit does not find
an initdefault entry in
/ete/inittab, then it will request
an initial run-level from the user
at reboot time.

Entries of this type are executed
before tnit tries to access the
console. It is expected that this
entry will be only used to
initialize devices on which init
might try to ask the run-level
question. These entries are
executed and waited for before
continuing.

process This is a sh command to be executed. The
entire process field is prefixed with ezec and
passed to a forked sh as sh —c ‘exec
command’. For this reason, any legal sh syntax
can appear in the process field. Comments can
be inserted with the ; #£comment syntax.

FILES
/etc /inittab

SEE ALSO

getty(IM), init(IM), sh(l), who(l), exec(2), open(2),

signal(2).

INODE (4)

NAME
inode — format of an i-node
SYNOPSIS
#tinclude <sys/types.h>
#include <sys/ino.h>
DESCRIPTION
An i-node for a plain file or directory in a file system has
the following structure defined by <sys/ino.h>.

/* Inode structure as it appears on a disk block. */
struct dinode

{
ushort di_mode; /# mode and type of file */
short di_nlink; /¢ number of links to file */
ushort di_uid; /* owner's user id */
ushort di_gid; /* owner's group id */
off_t di_size; /# number of bytes in file */
char di_addr[40]; /#* disk block addresses */
time_t di_atime; /* time last accessed */
time_t di_mtime;/* time last modified */
time_t di_ctime; /# time of last file status change */
};
/t
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*/

For the meaning of the defined types off t and time_t
see types(5).
FILES
/usr/include/sys/ino.h
SEE ALSO
stat(2), fs(4), types(5).

NAME

ISSUE (4)

issue — issue identification file

DESCRIPTION

The file /etc/issue contains the tssue or project
identification to be printed as a login prompt. This is an
ASCIH file which is read by program getty and then
written to any terminal spawned or respawned from the
/etc/inittab file.

FILES
/etce /issue
SEE ALSO
login(1).

5/86

NAME

LDFCN(4)

ldfen — common object file access routines

SYNOPSIS

#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

DESCRIPTION

The common object file access routines are a collection
of functions for reading an object file that is in common
object file form. Although the calling program must
know the detailed structure of the parts of the object file
that it processes, the routines effectively insulate the
calling program from knowledge of the overall structure
of the object file.

The interface between the calling program and the
object file access routines is based on the defined type
LDFILE, defined as struct ldfile, declared in the header
file ldfen.h. The primary purpose of this structure is to
provide uniform access to both simple object files and to
object files that are members of an archive file.

The function ldopen(3X) allocates and initializes the
LDFILE structure and returns a pointer to the structure
to the calling program. The fields of the LDFILE
structure may be accessed individually through macros
defined in Idfen.h and contain the following
information:

LDFILE *ldptr;

TYPE(ldptr) The file magic number, used to
distinguish between archive members
and simple object files.

OPTR(ldptr) The file pointer returned by fopen and
used by the standard input/output
functions.

OFFSET(ldptr) The file address of the beginning of the
object file; the offset is non-zero if the
object file is a member of an archive
file.

HEADER(ldptr) The file header structure of the object
file.

The object file access functions themselves may be
divided into four categories:

(1) functions that open or close an object file

LDFCN(4)

ldopen(3X) and Idaopen
open a common object file

ldclose(3X) and Ildaclose

close a common object file

(2) functions that read header or symbol table
information

ldahread(3X)
read the archive header of a member of
an archive file

ldfhread(3X)
read the file header of a common object
file

ldshread(3X) and ldnshread
read a section header of a common
object file

ldtbread(3X)
read a symbol table entry of a common
object file

ldgetname (J3X)
retrieve a symbol name from a symbol
table entry or from the string table

(3) functions that position an object file at (seek to) the
start of the section, relocation, or line number
information for a particular section.

ldohseek(3X)
seek to the optional file header of a
common object file
ldsseek(3X) and ldnsseck
seek to a section of a common object file
ldrseek(3X) and ldnrseek
seek to the relocation information for a
section of a common object file
ldiseek(3X) and ldnlseek
seek to the line number information for
a section of a common object file
ldtbseek(3X)
seek to the symbol table of a common
object, file

(4) the function ldtbindez(3X) which returns the index of
a particular common object file symbol table entry.

These functions are described in detail on their
respective manual pages.

All the functions except ldopen ldgetname(3X),
ldaopen (8X), and Idtbindexz return elther
SUCCESS or FAILURE, both constants defined in
ldfen.h. Ldopen and Idaopen both return pointers to a

-92.

LDFCN(4)

LDFILE structure.

Additional access to an object file is provided through a
set of macros defined in ldfen.h. These macros parallel
the standard input/output file reading and manipulating
functions, translating a reference of the LDFILE
structure into a reference to its file descriptor field.

The following macros are provided:

GETC(ldptr)

FGETC(1dptr)

GETW(ldptr)

UNGETC(c, ldptr

FGETS(s, n, ldptr
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrnamegj
FTELL(ldptr)
REWIND(ldptr)

FEOF(ldptr

FERROR(ldptr)
FILENO(ldptr)
SETBUF(ldptr, buf

STROFF ET(ldptr;

The STROFFSET macro calculates the address of the
string table in an object file. See the manual entries for
the corresponding standard input/output library
functions for details on the use of the rest of the macros.

The program must be loaded with the object file access
routine library libld.a.

WARNING
The macro FSEEK defined in the header file ldfcn.h
translates into a call to the standard input/output
function fseek(3S). FSEEK should not be used to seek
from the end of an archive file since the end of an
archive file may not be the same as the end of one of its
object file members!

SEE ALSO

fseek(3S), ldahread(3X), Idclose(3X), ldgetname(3X),
ldfhread(3X), Ildlread(3X), Idlseek(3X), Idohseek(3X),
ldopen(3X), ldrseek(3X), Idlseek(3X), ldshread(3X),

ldtbindex(3X), ldtbread(3X), ldtbseek(3X).

LINENUM (4)

NAME
linenum - line number entries in a common object file
SYNOPSIS
#finclude <linenum.h>
DESCRIPTION
Compilers based on pcc generate an entry in the object
file for each C source line on which a breakpoint is
possible (when invoked with the —g option; see cc(1)).
Users can then reference line numbers when using the
appropriate software test system (see sdb(l?). The
structure of these line number entries appears below.
struct lineno
union
long l_symndx ;
long 1_paddr ;
1_addr ;
unsigned short 1_Inno ;
}i
Numbering starts with one for each function. The initial
line number entry for a function has {_Inno equal to zero,
and the symbol table index of the function’s entry is in
I_symndz. Otherwise, [_Inno is non-zero, and [_paddr is
the physical address of the code for the referenced line.
Thus the overall structure is the following:
|_addr _Inno
function symtab index 0
physical address line
physical address line
function symtab index 0
physical address line
physical address line
SEE ALSO

cc(1), sdb(1), a.out(4).

MASTER (4)

NAME
master — master device information table

DESCRIPTION

This file is used by the config(1M) program to obtain
device information that enables it to generate the
configuration files. Do not modify it unless you fully
understand its construction. The file consists of 3 parts,
each separated by a line with a dollar sign (§$) in column
1. Part 1 contains device information; part 2 contains
names of devices that have aliases; part 3 contains
tunable parameter information. Any line with an
asterisk (*) in column 1 is treated as a comment.

Part 1 contains lines consisting of 7 or 10 fields, with the
fields delimited by tabs and/or blanks:

Field 1: device name (8 chars. maximum).
Field 2: device mask (octal)-each “‘on” bit
indicates that the handler exists:
001000 has release handler for
downloadable drivers
000200 tty header exists
000100 initialization handler
000040 power-failure handler
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.
Field 3: device type indicator (octal):
001000 cluster device
000400 VME device
000200 allow only one of these devices
000040 suppress interrupt vector
000020 required device
000010 block device
000004 character device
000002 floating vector
000001 fixed vector.

Field 4: handler prefix (4 chars. maximum).

Field 5: major device number for block-type
device.

Field 6: major device number for character-type
device.

Field 7: maximum number of devices on system.

Field 8: device vector size.

Field 9: device address type SVIVIE modifier).

Field 10: device interrupt level.

MASTER (4)

Part 2 contains lines with 2 fields each:

Field 1:
Field 2:

alias name of device (8 chars. maximum).
reference name of device (8 chars.
maximum; specified in part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1:
Field 2:
Field 3:

FILES
/etc/master

SEE ALSO
config(1M).

parameter name (as it appears in
description file; 20 chars. maximum)
parameter name (as it appears in the
conf.c file; 20 chars. maximum)

default parameter value (20 chars.
maximum; parameter specification is
required if this field is omitted)

MNTTAB(4)

NAME

mnttab — mounted file system table
SYNOPSIS

#include <mnttab.h>
DESCRIPTION

Mnttab resides in directory /etc and contains a table of
devices, mounted by the mount(1M) command, in the
following structure as defined by <mnttab.h>:

struct mnttab {

char mt_dev([32];
char mt_filsys[32};
short, mt_ro_flg;
time_t mt_time;

b
Each entry is 70 bytes in length; the first 32 bytes are
the null-padded name of the place where the special file
is mounted; the next 32 bytes represent the null-padded
root name of the mounted special file; the remaining 6
bytes contain the mounted special file’s read/write
permissions and the date on which it was mounted.

The maximum number of entries in mnttab is based on
the system parameter NMOUNT located in
/usr/src/uts/cf/conf.c, which defines the number of
allowable mounted special files.

SEE ALSO
mount(1M), setmnt(1M).

NETWORKS(4N)

NAME

networks — names and numbers for the internet

DESCRIPTION

The file /etc/networks lists networks on the internet.
Each line describes a single network and consists of the
following blank separated fields:

name number aliases ...

where
name

number

aliases . ..

EXAMPLE

is the official name of the network.
All nodes on the internet should use
the same official name for a given
network.

is the network number, which
serves as part of the DARPA
Internet address for each node on
the internet. All nodes on the
internet must use the same number
for a given network.

is a blank-separated list of local
aliases for the network.

The routines which search this file
ignore comments (portions of lines
beginning with #) and blank lines.

Building 1 Internet
Engineering 1 #R&D
Production 2 #Administration, etc.

SEE ALSO
hosts(4N).

CTIX Internetworking Manual.

FILES
/etc/networks

NOTE

This command is for use with a special version of the
CTIX kernel that supports networking protocols.

NAME

PASSWD (4)

passwd — password file

DESCRIPTION

Passwd contains for each user the following information:

login name

encrypted password
numerical user ID
numerical group ID

user name

initial working directory
program to use as Shell

This is an ASCII file. Each field within each user’s entry
is separated from the next by a colon. Each user is
separated from the next by a new-line. If the password
field is null, no password is demanded; if the Shell field
is null, /bin/sh is used.

This file resides in directory /etc. Because of the
encrypted passwords, it can and does have general read
permission and can be used, for example, to map
numerical user IDs to names.

The encrypted password consists of 13 characters chosen
from a 64-character alphabet (., /, 0-9, A-Z, a-z),
except when the password is null, in which case the
encrypted password is also null. Password aging is
effected for a particular user if his encrypted password in
the password file is followed by a comma and a non-null
string of characters from the above alphabet. (Such a
string must be introduced in the first instance by the
super-user.)

The first character of the age, M say, denotes the
maximum number of weeks for which a password is
valid. A user who attempts to login after his password
has expired will be forced to supply a new one. The next
character, m say, denotes the minimum period in weeks
which must expire before the password may be changed.
The remaining characters define the week (counted from
the beginning of 1970) when the password was last
changed. (A null string is equivalent to zero.) M and m
have numerical values in the range 0-63 that correspond
to the 64-character alphabet shown above (i.e., / = 1
week; £ = 63 weeks). If m = M = 0 (derived from the
string . or ..) the user will be forced to change his
password the next time he logs in (and the ‘“age” will
disappear from his entry in the password file). If m >
M (signified, e.g., by the string ./) only the super-user
will be able to change the password.

-1-

PASSWD (4)

FILES
/etc /passwd
SEE ALSO

1641(3C), login(1), passwd(1), a641(3C), crypt(3C),
getpwent(3C), group(4{

NAME

PLOT(4)

plot — graphics interface

DESCRIPTION

Files of this format are produced by routines described in
plot(3X) and are interpreted for various devices by
commands described in tplot(1G). A graphics file is a
stream of plotting instructions. Each instruction consists
of an ASCII letter usually followed by bytes of binary
information. The instructions are executed in order. A
point is designated by four bytes representing the x and
y values; each value is a signed integer. The last
designated point in an 1, m, n, or p instruction becomes
the “‘current point’’ for the next instruction.

Each of the following descriptions begins with the name
of the corresponding routine in plot(3X).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point
given by the next four bytes. See tplot(1G).

p point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next
four bytes to the point given by the following four
bytes.

t label: Place the following ASCH string so that its
first character falls on the current point. The string
is terminated by a new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line,
as the style for drawing further lines. The styles are
“dotted”, “solid”, “longdashed”, “shortdashed”, and
“dotdashed”. Effective only for the —-T4014 and
—Tver options of tplot(1G) (TEKTRONIX 4014
terminal and Versatec plotter).

s space: The next four bytes give the lower left corner
of the plotting area; the following four give the upper
right corner. The plot will be magnified or reduced
to fit the device as closely as possible.

Space settings that exactly fill the plotting area with
unity scaling appear below for devices supported by the
filters of tplot(1G). The upper limit is just outside the
plotting area. In every case the plotting area is taken to
be square; points outside may be displayable on devices
whose face is not square.

DASI 300 space(0, 0, 4096, 4096);

PLOT (4)

DASI 300s space(0, 0, 4096, 4096);
DASI 450 space(0, 0, 4096, 4096);
TEKTRONIX 4014 space(0, 0, 3120, 3120);
Versatec plotter space(0, 0, 2048, 2048);

SEE ALSO
graph(1G), tplot(1G), plot(3X), gps(4), term(5).
WARNING
The plotting library plot(3X) and the curses library
curses(3X) both use the names erase() and move(). The
curses versions are macros. If you need both libraries,
put the plot(3X) code in a different source file than the

curses(3X) code, and/or #undef move() and erase() in
the plot(3X) code.

NAME

PROFILE (4)

profile — setting up an environment at login time

DESCRIPTION

FILES

If the file /etc/profile exists, it will be executed for
every Bourne shell user immediately upon login. After
this, if the user’s login directory contains a file named
.profile, that file will be be executed (via . .profile)
before the user’s session begins. The .profile is useful
for exporting environment variables and terminal modes.

The following example is typical for a user’s .profile file:

PATH=:$PATH:$HOME /bin
MAIL=/usr/mail/myname
TERM=pt

export PATH MAIL TERM
umask 022

The system file /etc/profile can be customized to set
the TERM environment variable via tset(1) and to
automatically invoke wm(1) on RS-422 terminals.

Shell environment variables that can be set are described
in sh(1).

$HOME/.profile
/ete/profile

SEE ALSO

csh(1), cprofile(4), env(1), login(1), mail(1), sh(1), stty(1),
su(1), tset(1), wm(1), ttytype(4), environ(5), term(5).
MightyFrame Administrator’s Reference Manual.
MiniFrame Adminisstrator’s Manual.

PROTOCOLS (4N)

NAME
protocols — list of Internet protocols
DESCRIPTION
The file /ete/protocols lists known DARPA Internet

protocols. Each line describes a single protocol and
consists of the following blank separated fields:

name number aliases ...

where

name is the official name of the protocol.

number is the protocol number.

aliases ... is a blank-separated list of local aliases for

the protocol.

The routines which se<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>